000G

COMPUTER SYSTEMS
FORTRAN

REFERENCE MANUAL

CONTROL DATA

34500
=350 (0O
23S0

COMPUTER SYSTEMS
FORTRAN

REFERENCE MANUAL

CONTROL DATA

CORPORATION

REVISION RECORD

60132900
REVISION NOTES
This printing includes the most current revision level.
(8-65) Original printing.
A
(12-66) Reprint with revision,

Additional copies of this manual may he
obtained from the nearest Control Data
Corporation sales office.

Pub. No. 60132900

© 1965, 1966 Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

PREFACE

This manual describes the combined features of 3400 FORTRANT (version 1.4)
and 3600 FORTRAN (version 5.3). 3600 FORTRAN is also used on the 3800
computing system. 3400 FORTRAN source language is upward compatible
with 3600 FORTRAN source language. Both languages contain the features

of FORTRAN-63.

This reference manual was written as a text for advanced 3400 and 3600
FORTRAN classes and as a reference manual for programmers using the
3400 and 3600 FORTRAN system. The manual assumes a basic knowledge
of the FORTRAN language, COMPASS language, and the SCOPE monitor
system.

For additional information see:

Publication No.

3400 SCOPE/COMPASS Reference 60057800
3600 SCOPE Reference 60053300
3400/3600 Instant FORTRAN 60057500
3400 FORTRAN/Library Routines 60057200
3600 FORTRAN/Library Routines 60056400

+FORTRAN is an abbreviation for FORmula TRANslation and was originally
developed for International Business Machine equipment.

iii

CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

PREFACE

ELEMENTS OF 3400/3600/3800 FORTRAN

.1 Quantities
Constants
Variables
Arrays
Statements
Expressions

R ke
Ul W

EXPRESSIONS

2.1 Arithmetic Expressions
2.2 Logical Expressions
2.3 Masking Expressions

REPLACEMENT STATEMENTS

3.1 Arithmetic Replacement
3.2 logical Replacement
3.3 Masking Replacement
3.4 Multiple Replacement

TYPE DECLARATIONS AND STORAGE ALLOCATIONS

4.1 Type Declarations
4.2 DIMENSION

4.3 COMMON

4.4 EQUIVALENCE
4.5 DATA

4.6 Bank Statement for 3600 FORTRAN

NON-STANDARD TYPE DECLARATIONS AND EXPRESSIONS

5.1 TYPE-OTHER Declarations
5.2 Evaluation of Non-Standard Arithmetic Expressions
5.3 Sample Program

CONTROL STATEMENTS

GO TO Statements

IF Statements

FAULT Conditions

DO Statements

Other Control Statements

[=r I i« >R« Pl e N
G W N+

iii

1
= = =]
o =

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

PROGRAM, FUNCTION, SUBROUTINE

Program and Subprogram Parameters
Main Program
Subroutine Subprogram
Call Statement
Function Subprogram
Function Reference
Statement

Library Functions
Return and End

.10 Entry Statement

.11 External Statement
.12 Variable Dimensions

0o =~1 O G bk Wi+

3 =] =] ~] =3 =3 -3 ~3 ~J =3 =3 =3
©

OVERLAYS AND SEGMENTS

8.1 FORTRAN Call
8.2 COMPASS Calling Sequence
8.3 Errors

FORMAT SPECIFICATIONS

1/0 List

FORMAT Statement
Conversion Specifications
Editing Specifications

nP Scale Factor

Repeated Format Specifications
Variable Format

WO W WO WY
N oUW

INPUT/OUTPUT

10.1 WRITE Statements

10.2 READ Statements

10.3 BUFFER Statements

10.4 Unit Handling Statements
10.5 Status Checking Statements
10.6 Encode/Decode Statements

COMPILATION AND DECK STRUCTURE

11.1 Control Cards
11.2 Examples

Lo
N

|
= o -1 O

L |
-
o o

i
b
o W =

Q] -3 =3 N3 =7 =3 =3 -7 -3 33
|

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

CODING PROCEDURES AND CHARACTER CODES
STATEMENT INDEX

LIBRARY FUNCTIONS

FORTRAN TABLE LIMITS

CALLING SEQUENCES

COMPILATION DIAGNOSTICS

EXECUTION DIAGNOSTICS

vii

1.1
QUANTITIES

ELEMENTS OF 3400/3600/3800 FORTRAN 1

FORTRAN handles floating point and integer quantities. Floating point
quantities have an exponent and a fractional part. The following types of
numbers are floating point quantities.

REAL

DOUBLE

COMPLEX

Exponent and sign 11 bits; fraction and sign 37 bits; range of
number (in magnitude) 107307= [N] = 10397 and zero; pre-
cision approximately 10 decimal digits.

Exponent and sign 11 bits; fraction and sign 85 bits; range of
number (in magnitude) 10-307= [N] = 10397 ang Zero; pre-
cision approximately 25 decimal digits.

Two consecutive reals, as defined above, which constitute
the real and imaginary parts respectively.

Integer quantities do not have a fractional part. The following types of
numbers are integer quantities:

INTEGER

LOGICAL

HOLLERITH

Represented by 48 bits, left most bit is the sign; range of
number (in magnitude) 0 = [N] = 247 _1; precision is up to
15 decimal digits.

1 bit represents the value true.
0 bit represents the value false.

Binary coded decimal (BCD) representation treated as an
integer number.

The FORTRAN program may contain any or all of these types of numbers in
form of constants, variables, elements of arrays, evaluated functions and

so forth. Variables, arrays and functions are associated with types assigned
by the programmer. The type of a constant is determined by its form.

1-1

WORD STRUCTURE Floating Point Quantities

SIGNS
|2|10 | 36 | REAL - 1 word
EXP. FRACT.
SIGNS I—SIGNS
o] 36 | [ofwo] 36 | coMPLEX - 2 words
REAL IMAGINARY
[— SIGNS
lio] 36 : 48 | DOUBLE - 2 words
MOST LEAST
SIGNIFICANT SIGNIFICANT
Integer Quantities
ﬂ 47 J INTEGER - 1 word

I—— SIGN

LOGICAL - 1 word
(unsubscripted variable)

|6[6|6|6l6l6|6l£l HOLLERITH - 1 word
6 bits/character

1.2

CONSTANTS Five basic kinds of constants are used in FORTRAN: integer, octal, floating
point, Hollerith, and logical. Complex and double precision constants can
be formed from floating point constants. The type of a constant is deter-
mined by its form and context.

INTEGER Integer constants may consist of up to 15 decimal digits. If the range

of 0 = [N] < 247-1 is exceeded, the constant is treated as zero and a com-
piler diagnostic is provided.

Examples:
63 3647631
247 2
314159265 464646464

OCTAL

LOGICAL

FLOATING POINT
REAL

Octal constants may consist of up to 16 octal digits. The form is:

n; ---,B
n; are octal digits.

If the constant exceeds 16 digits, or if a non-octal digit appears, the constant
is treated as zero and a compiler diagnostic is provided.

Examples:

7777777700000000B
7777700077777B
2323232323232323B
7B
TTTTTTTTTII77700B

Logical constants are in the form . TRUE. (1) and . FALSE. (0). Logical
constants are treated as integers.

Real constants may be expressed with a decimal point or with a fraction and
an exponent representing a power of ten. Forms of real constants:

nE n.n n. .n nEk+s n.nEts n.Ets .nEts

n is the base; s is the exponent to the base 10. The plus sign may be omitted
for positive s. The range of s is 0 through 308. If the range is exceeded, the
constant is treated as zero and a compiler diagnostic occurs. When the ex-
ponent (E) is followed by a + or - sign, all characters between the sign

and the next operator or delimiter are assumed to be part of the exponent
expression.

Examples:
3.1415768 31.41592E-01
314. .31415E01
. 0749162 .31415E+ 01
314159E-05

1-3

HOLLERITH

DOUBLE

COMPLEX

Double precision constant forms:

nD n.nD n.D .nD nD g .nD *sg n.nD s n.D £s

The base is n; s is the exponent to the base 10. The D must always appear.
The plus sign may be omitted for positive s; the range of s is 0 through 308,

If the range is exceeded, the constant is treated as zero and a compiler di-
agnostic occurs. When the exponent (D) is followed by a + or - sign, all
characters between the sign and the next operator or delimiter are assumed

to be part of the exponent expression. Unnormalized double precision numbers
are not allowed in 3400,

Examples:
3.1415926535897932384626D 31415.D-04
3.1415D 379867524430111D+01
3.1415D0

3141.598D-03

Complex constants are represented by pairs of real constants separated by a
comma and enclosed in parentheses (R1, Ry). R, represents the real part of
the complex number and Ry, the imaginary part. Either constant may be
preceded by a minus sign.

If the range of the reals forming the constant is exceeded, a compiler diag-
nostic is provided. Diagnostics also occur when the number pair consists
of integer constants, including (0, 0).

Examples:
FORTRAN Representation Complex Number
(1., 6.55) 1. + 6.551
(15., 16.7) 15. + 16.7i
(~14.09, 1,654E-04) -14,09 + ,00016541
(0., -1.) -i

A Hollerith constant is a string of alphanumeric characters of the form hHf; h
is an unsigned decimal integer between 1 and 136 representing the length of
the field f. Spaces,are significant in the field f. When h is not a multiple of 8,
the last computer word is left-justified with BCD spaces filling the remainder
of the word. When h is greater than 136, a diagnostic is provided.

1.3
VARIABLES

SIMPLE

An alternate form of a Hollerith constant is hRf. When h is less than or equal
to 8, the computer word is right-justified with zero fill, When h is greater
than 8 only the first 8 characters are retained and the excess characters are
discarded, but no diagnostic is provided. h may not be zero.

Hollerith constants appearing in arithmetic replacement statements and as
actual parameters will be treated as integers and only the first 8 characters
will be used. Hollerith constants may also appear in DATA statements where
the entire constant is used.

Examples:
6HCOGITO 8RCDC 3600
4HERGO 8R *ok
3HSUM 1H)

Simple and subscripted variables are recognized. A simple variable repre~
sents a single quantity; a subscripted variable represents an array or a single
quantity (element) within an array of quantities. Variables are identified by
1-8 alphanumeric characters; the first character must be alphabetic.

The variable type may be defined in a TYPE declaration (section 4.1) and may
be integer, real, complex, double, logical, or an arbitrary mode (5.1).

If a variable is not declared by a TYPE declaration, it is determined by the first

letter of the variable name. I, J, K, L, M, or N indicates a fixed point (integer)

variable; any other first letter indicates a floating point (real) variable.

A simple variable references the location in which values can be stored. The
value specified by the name is always the current value stored in that location.

Examples:
VECTOR A65302
BAGELS BATMAN
N NOODGE
K2SO4 M58 Since spaces are ignored in variable
LOX M 58 names, M58 and M 58 are identical,

1-5

SUBSCRIPTED VARIABLE A subscripted variable is an alphanumeric identifier with one, two, or three

1-6

SUBSCRIPT FORMS

associated subscripts enclosed in parentheses. If more than three subscripts
appear, a compiler diagnostic is given. The identifier is the name of an array.
The subscripts can be integer constants, variables, or expressions. Any other
constant, variable, or expression will be truncated to an integer value.

When a subscripted variable represents the entire array, the subscripts are the
dimensions of the array. When a subscripted variable references a single
element in an array, the subscripts describe the relative location of the element
in the array.

A standard subscript has one of the following forms; other forms are non-
standard. I is a simple integer variable which must be defined before being
used, and c and d are unsigned integer constants.

c*¥Ixd

I1+d

c*I

I

c

Examples:
Subscripted Variable Subscripted Variable
(Standard) (Non-standard)

Ad,d) AMAXF(I,J, M))
B(+2,J+3,2*K+1) B(J,SINF(J))
Q(14) C(I+K)
P(KLIM,JLIM+5) MOTZO(3*K*ILIM+3,5)
SAM(J-6) WOW(I(J(K)))
B(,2,3) Q(l,~4,-2)

Standard subscripted variables are treated as non-standard subscripted vari-
ables whenever (array length - constant addend -1) 232768, Array length is
the greater of number of words or number of elements. See page E-5 for
definition of constant addend.

1.4
ARRAYS

An array is a block of successive memory locations for storage of variables.
The entire array may be referenced by the array name without subscripts
(I/0 lists and implied DO loops, 9. 1). Arrays may have one, two, or

three dimensions; the array name and dimensions must be declared at the
beginning of the program in a DIMENSION, COMMON, or TYPE (except 3400)
statement (sections 4.1, 2, 3). The type of an array is determined by the
array name or the TYPE declaration.

Each element of an array may be referenced by the array name plus the sub-
script notation. Program execution errors may result if subscripts are
larger than the dimensions initially declared for the array. The maximum
number of elements in an array, the product of the dimensions, cannot
exceed 32767. The maximum amount of storage reserved for an array
cannot exceed 32767 words.

Array Structure

Elements of arrays are stored by columns in ascending order of storage
location. In the array declared as A(3,3,3):

A A A

111 “121 %13
Aot Aaar Aom
A1 Agp1 Mgy
f112 A2e Arse
Ao12 Aapa Aoz
As1z A3pp Asgy
A113 Ar2z Aiss
Aoz Aazz Agss
A313 A3a3 Aszs

The planes are stored in order, starting with the first, as follows:

— — A +
A111 A A121 A+3 ... A133—>A 24

— A+ — At+4 ,,. —= A+
A211 A+l A221 A+4 A233 A+25

—— A — A e — +
A311 A+2 A321 A+5 A333 A+26

Array allocation is discussed in Chapter 4. The location of an array element
with respect to the first element is a function of the maximum array dimensions
and the type of the array. Addresses are computed modulo 215, Given
DIMENSION A(L,M,N) the location of A(i,j,k), with respect to the first
element A of the array, is given by:

A+{i-1+L(G-1+ME-1)}*E

The quantity in braces is the subscript expression. If it is not an integer value,
it is truncated after evaluation.

E is the element length, the number of storage words required for each
element of the array; for real and integer arrays, E = 1.

Referring to the array A(3,3,3 the location of A (2,2, 3) with respect to
A (1,1,1) is

Locn {A(2,2,3)}

Locn {A(1,1,1)} + {2-1+3(1+3(2))}
A+ 22

Example:

Given DIMENSION Z (5,5,5) and I=1, K=2, X =45°, A=17.29, B=1.62.
The location, z, of Z (I * K, TANF (X), A —B) with respect to Z (1,1,1) is:
z = Locn {Z(1,1,1) } + {2-1+5(1-1+5(4. 67))} Integer part

= Loen {Z(1;1,1) } + {117.75} Iteger part

= Locn {2(1,1,1)} + 117

Given the location, A + constant of A (i, j, k) with respect to the first
element of the array dimensioned A (L, M, N) with E words per element,
i, j and k may be found by the following procedure:

Compute: X0 = (constant + (L*(M+1)+1)*E)/E

a) K = X0/(L*M) with remainder of X1

if X1 = 0, then k = K-1, j = M-1, i =L,
else, if X1 = L, then k = K-1, X1 = X1 + (L*M)
or, if X1 > L, k=K and

b) J = X1/L with remainder of I
ifI=0, thenj=J-1,i=1L
elsej=J,1i=1
For two dimensional arrays such as A (L, M):
Compute: X1= (constant + (L+1)*E)/E

J = X1/L with remainder of I
ifI=0,thenj=J-1, i= L
else j=4J,i=1

Examples:

1. Given A + 54 for the real array A (2, 5, 7)
X0 =54+2 (5+1)+1 =67

a) K=67/10=6with X1 =17
k=6

by J=7/2=3withI=1
j=3,i=1
therefore A(1, 3, 6) = A +540f A (2, 5, 7)

2. Given B + 124 for the real array B (5, 13, 3)
X0=124+5 (13 +1) +1 =195

a) K =195/65=3 with X1 =0
therefore k=2, j=12, i=5

3. Given P + 27 for array P (7, 3) with E =3
X1=@7+ T+ 1)*3)/3 = 17

by J=17/7=2withI=3
therefore j =2, i=3

An integer variable which appears as a subscript in any multi-
subscripted array element reference should never be assigned
a value greater than 215-1 since address calculation depends
on the previous value of the index function calculation. For
example:

.

.

Jd = 25625252525252526B

.

J=1
IARRAY (1,J) = 1

The index of JARRAY is miscalculated since the previous value of
J exceeded 215-1,

ArraX Notation

The following subscript notations are permitted for array elements:

For a 3-dimensional array A(Dl’ D, D

o Dg)s
A(l, J, K) implies A (I, J, K)
Ad, J) implies A (I, J, 1)
A implies A(l, 1, 1)

A implies A(1, 1, 1)

1-10

1.5
STATEMENTS

1.6
EXPRESSIONS

For a 2~-dimensional array A (Dl, Dz),
A@,J) implies A(,J)
A®D) implies A(l,1)
A implies A (1,1)

For a single-dimension array A (D 1) ,

A@) implies A(I)
A implies A(1)

However, the elements of a single-dimension array A(D,) may not be referred
to as A(I,J,K) or A(1,J), and elements of a two-dimensional array A D,, D2)
may not be referred to as A(,J,K). Diagnostics occur if this is attemplted.

Statements are the basic functional units of the language. An executable state-
ment performs a calculation or directs control of the program; a nonexecutable
statement provides the compiler with information regarding variable structure,
array allocation, storage sharing requirements, etc.

An expression is a constant, variable, function or any combination of these
separated by operators and parentheses, written to comply with the rules
given for constructing a particular type of expression.

There are four kinds of expressions in FORTRAN: arithmetic and masking
(Boolean) expressions which have numerical values, and logical and
relational expressions which have truth values. For each type of expression
there is an associated group of operators and operands.

1-11

2.1
ARITHMETIC
EXPRESSIONS

EXPRESSIONS 2

An arithmetic expression may be a constant, variable (simple or subscripted),
or an evaluated function (Chapter 7). Arithmetic expressions may be combined
by arithmetic operators to form complicated arithmetic expressions.

Arithmetic operators are:

+ addition / division
- subtraction ** exponentiation
* multiplication

An arithmetic expression may not contain adjacent arithmetic operators:
X op op Y is not permitted.

If X is an expression, (X), (X)) are expressions. If X, Y are arithmetic
expressions, then the following are expressions:

X+Y X/Y +X X**y
X-Y X*xY -X

Expressions of the form X**Y and X**(-Y) are legitimate, subject to the
restrictions in section 2.3, Masking Expressions.

The following forms of implied multiplication are permitted:

constant (...) implies constant * (...)
(o) (.2) implies (...) * (...)

(. ..) constant implies (...) * constant
(...) variable implies (...) * variable

Complex constants are enclosed in two set of parentheses:

constant ((Ry, Ro)) implies constant * (R, Rg)

2-1

ORDER OF
EVALUATION

2-2

Expressions:

A

3.141592

B + 16. 8946

(A - B(LJ + K))

G * C(J) + 4.1/ (Z(I+J, 3*K)) *SINF (V)

(Q + V(M, MAXF (A, B))*Y**2)/(G¥H-F(K + 3))
-C + D(1, J)*13. 627

The hierarchy of arithmetic operation is:

*k exponentiation class 1
/ division class 2
* multiplication

+ addition class 3
- subtraction

In an expression with no parentheses or within a pair of parentheses, in which
the operators are in different classes, evaluation proceeds in the above order.
When expressions contain operators in the same class, evaluation proceeds
from left to right. For example, A**B**C is evaluated as (A*¥B)**C,

Exponentiation is performed and parenthetical expressions are evaluated as
they are encountered in the left to right scanning process. In nested parenthet-
ical expressions, evaluation begins with the innermost expression.

When writing an integer expression it is important to remember not only
the left to right scanning process, but also that dividing an integer quan-
tity by an integer quantity always yields a truncated result; thus 11/3 = 3.
The expression I*J/K may yield a different result than the expression
J/K*1. For example, 4*3/2 = 6; but 3/2*4 = 4,

Examples:
In the following examples, R indicates an intermediate result in evaluation:

A**B/C+D*E*F-G is evaluated:
A**B —R;
R)/C—Rp
D*E —Rg
R3*F —=Ry
R4tRg >R5
R5-G —>Rg evaluation completed

A**¥B/(C+D)*(E*F-G) is evaluated:
A¥*B —>R;
C+D =>Rg
E*F-G —>Rg
R1/Rg —>Ry
R4*R3 —>Rj5 evaluation completed

If the expression contains a function, the function is evaluated first.

H(13)+C(1, J+2)*COSF(Z)**2 is evaluated:
COSF(Z) —R;
R; **2 —Ry
Rp*C(I,J+2) —Rg3
Rg+tH(13) —=Ry evaluation completed

The following is an example of an expression with imbedded parentheses.

A*(B+((C/D)-E)) is evaluated:
C/D —R;
R;-E—>Ry
Ro+B —>Rg
R3*A—>Ry evaluation completed

MIXED MODE
ARITHMETIC

2-4

(SINF(X)+1.)-Z/(C*D-(E+F))) is evaluated:
SINF(X) — Ry
Ry+l. =Ry
E+F —=>Rg
-R3 —>Rg3
R3+D —=>R4
Ry*C—>Rs

-Z —>Rg
Rg/R5 —> Ry
R7+tRy; —>Rg evaluation completed

Full mixed mode arithmetic is permitted; mixed mode arithmetic is accom-
plished through the special library subroutines. In the 3400 computer system,
these routines include complex and double precision arithmetic. In the 3600
computer some double arithmetic is provided by the hardware. The five
standard operand types are complex, double, real, integer, and logical. The
programmer may also define three non-standard types. (chapter 5)

Mixed mode arithmetic is completely general; however, most applications will
probably mix operand types, real and integer, real and double, or real and
complex. The following rules establish the relationship between the mode of
an evaluated expression and the types of the operands it contains.

The mode of an evaluated arithmetic expression is referred to by the name of
the dominant operand type. The order of dominance of the standard operand
types within an expression from highest to lowest is:

COMPLEX
DOUBLE
REAL
INTEGER
LOGICAL

In mixed arithmetic expressions containing non-standard types the following
restrictions hold:

The three non-standard types may never be mixed with each other; but
any one of them may be mixed with any --r all of the standard types. When
this is done, the non-standard type dominates the hierarchy established above.

In expressions of the form A**B, the following rules apply:
B may not be type logical or byte (non-standard) type. If A is logical or
byte type, B must be an integer constant from 1 to 8.
B may be negative in which case the form is: A**(-B).

If A or B or both are of non-standard type, the programmer must provide
subroutines for the evaluation of A**B,

For the standard types (except logical) the mode/type relationships are:

Ty aep| I R D C

I I R D C

R R R D C
mode of A**B

D D D D C

C C C C C

For example, if A is real and B is complex, the mode of A**B is complex.

The following exponentiation routines are provided:

real ** real integer ** integer double ** double
real ** integer integer ** double double ** complex
real ** double integer ** complex double ** real
real ** complex integer ** real double ** integer

complex ** integer
complex ** complex
complex ** real Calls to these routines will give an error message.

complex ** double

EVALUATION EXAMPLES 1) Given A, B type real; I, J type integer. The mode of expression A*B-I+J
will be real because the dominant operand is type real. It is evaluated:
A*B—>R; real
Convert Ito real
R -1 >Ry real
Convert J to real
Rp+J—>Rg real evaluation completed

2) The use of parentheses may change the evaluation. A, B, I, J are defined
as above. A*B-(I-J) is evaluated:
I-d =R integer
Convert R; to real =Ry
A*B =Ry real
Rp-R; > Rg real evaluation completed

3) Given Cl, C2 type complex; Al, A2 type real. The mode of expression
A1%(C1/C2)*+A2 will be complex because its dominant operand is type
complex. It is evaluated:

C1/C2 =Ry

Convert Al to complex

Al*R; —>Rg complex

Convert A2 to complex

Rp+A2 —>R3 complex evaluation completed

4) Consider the expression C1/C2+(A1-A2) where the operands are defined
as in 3 above. It is evaluated:
Al-A2 =>R; real
Convert R; to complex =R
C1/C2 —>Ryg complex
Ro+R) —>R3g complex evaluation completed

5) Mixed mode arithmetic with all standard types is illustrated by this

example.

Given: C complex
D double
R real
I integer
L logical

and the expression C*D+R/I-L

The dominant operand type in this expression is type complex; therefore, the
evaluated expression will be of mode complex. Evaluation:

Round D to a real and affix zero imaginary part:

C*D —>R; complex

Convert R to complex; convert Ito complex

R/I —Ry complex

R2+R1 —>Rg complex

Convert L to complex

R3—L >Ry complex evaluation completed

If the same expression is rewritten with parentheses as C*D+(R/I-L), the
evaluation proceeds:

Convert Ito real

R/I—=>R; real

Convert L to real

Rj-L—>R, real

Convert R,y to complex

Round D to real and affix zero imaginary part

C*D R4 complex

Rg+*Ryg—=>R, complex evaluation completed

2-7

22
LOGICAL
EXPRESSIONS

Any logical operand by itself is a logical expression or may be combined by
logical operators with other logical operands to form more complex logical
expressions. The value of a logical expression is true if non-zero, false if zero.

When an arithmetic expression appears as a term of a logical expression, the
value is examined. If the value is non-zero, the term is true. If the value
is zero, the term is false.

If L is a logical expression, (L), ((L)) are logical expressions. Logical
expressions are generally used in logical IF-statements (section 6.2).

A logical operand may be:

logical variable
logical constant (. TRUE. or . FALSE.)
arithmetic expression

arithmetic relation

ARITHMETIC RELATION An arithmetic relation has the form:

qd; OP Qg

The q's are arithmetic expressions; op is a relational operator belonging to
the set:

Operator Meaning

. EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
. LT. Less than

. LE. Less than or equal to

A relation is true if q; and qy satisfy the relation specified by op, otherwise
it is false.

Relations are evaluated as illustrated in the relation, p . EQ. q. This is
equivalent to the question, does p-q = 0?

The difference is computed and tested for zero. If the difference is zero, the
relation is true. If the difference is not zero, the relation is false. Relations

LOGICAL OPERATIONS

are converted internally to arithmetic expressions according to the rules of
mixed mode arithmetic. These expressions are evaluated and compared with
zero to determine the truth value of the corresponding relational expression.
When expressions of mode complex are tested for zero, only the real part is
used in the comparison.

41 op qp OpP 43. .- is not permissible

The evaluation of a relation of the form q; op qg is from left to right. The
relations q; op gy, d; oP (dy), (d7) oP 4 , (q;) op (ap) are equivalent.

Examples:
A .GT. 16. R() .GE. R(I-1)
R-Q(D*Z .LE. 3.141592 K .LT. 16
B-C .NE. D+E 1.EQ. JK)

In the general forms of logical expressions containing logical operators, L;
are logical operands:

LjopLpopLg... op is . AND. indicating conjunction
or . OR. indicating disjunction
op Ly op is . NOT. indicating negation

Logical expressions are scanned left to right and logical operations are per-
formed according to the following precedence:

first . NOT.
then .AND.
then . OR.

L; op op Ly is not permitted if the logical operators are . AND. or . OR.
The following combinations of NOT are allowed:

L; .AND. .NOT. Lg
Lj .OR. .NOT. Lo

Lj .AND. (.NOT. ...)
L; .OR. (.NOT. ...)

2-9

.NOT. may appear with itself only in the form . NOT. (. NOT. (.NOT.
Other combinations will cause compilation diagnostics.

If Ly, Ly are logical expressions, the logical operators are defined as follows:

.NOT. 14 is false only if L, is true
L; .AND. Lo is true only if Ly, Lo are both true
L; .OR. Lo is false only if Ly, Lo are both false

Incorrect usages such as the following will cause compiler diagnostics.

A.GT. (B.AND. C)
Q. NOT..OR.R
C.AND..NOT..NOT. B

The last expression is permissible in the form C.AND. . NOT. (. NOT. B).
Examples: Logical Expressions:

{The product A*B greater than 16.} .AND. {C equals 3. 141519}
A*B GT. 16. .AND. C .EQ. 3.141519

BEGIN

AxB-16.—> Ll

Is 1,>0? No

Yes

C-3.141519 — L2

2-10

{A(D greater than 0} .OR. {B(J) less than 0} A(D .GT. 0 .OR. B(J)

LT, 0

In the two examples below, all L; are of TYPE LOGICAL
(L2 .OR. .NOT. L3)

Yes Yes

TRUE

2-11

23
MASKING
EXPRESSIONS

2-12

L2 .OR. .NOT. L3 .AND. (.NOT. L6 .OR. Lj)

Yes 1 L, # 07

No

)
No

‘ = 07

Yes

Yed 16 1, = 02
s 6=

No

In a masking expression, 48-bit arithmetic is performed bit-by-bit on the
operands within the expression.

The following are masking expressions:

Bj op By op is . AND. or .OR.
op By op is . NOT.

A masking expression may be enclosed in parentheses, (B), ((B)), etcetera.
The masking operand, B;, may be:

variable (real or integer) function (real or integer)
unsigned constant (real or integer) masking statement function

masking expression

Type integer includes octal and Hollerith constants. If operands of other
types are used, a diagnostic will occur.

Mode conversion does not occur for mixed real and integer operands.

Although the masking operators are identical in appearance to the logical
operators, their meanings are different. They are listed according to
hierarchy, and the following definitions apply:

. NOT. complement the operand
.AND. form the bit-by-bit logical product of two operands
.OR. form the bit-by-bit logical sum of two operands

The operations are described below.

P|{Vv|p.AND.v| p.OR. v |[.NOT. p
1 1 1 1 0
1{0 0 1 0
011 0 1 1
010 0 0 1

.NOT. may appear with . AND. or . OR. only as follows:

.AND. .NOT. .AND. (.NOT....)
.OR. .NOT. .OR. (.NOT....)

Masking expressions of the following forms are evaluated from left to right.

A .AND. B .AND. C ...
A .OR. B.OR. C...

Masking expressions must not contain arithmetic or relational operators
statement functions other than masking statement functions.

A masking expression is valid only in a masking replacement statement.
masking expression will be interpreted as logical if the replacement vari
is type logical or if used in a logical IF statement.

Examples:

Ay 7777000000000000 octal constant
Ag 0000000077777777 octal constant
0000000000001763 octal form of integer constant

C 2004500000000000 octal form of real constant
.NOT. A; is 0000777777777777
Aj .AND. C is 2004000000000000
A; .AND. .NOT. C is 5773000000000000
B .OR. .NOT. A, is 7777777700001763

, Oor

A
able

2-13

3.1
ARITHMETIC
REPLACEMENT

MIXED MODE
REPLACEMENT

REPLACEMENT STATEMENTS 3

Values are assigned to variables by the replacement statement: V = E.

The = operator means that V is replaced by the value of the evaluated
expression, E, with conversion for mode if necessary. The replacement
variable, V, may be simple or subscripted. Replacement statements may be
arithmetic, logical, or masking.

In an arithmetic replacement statement, the replacement variable V is of
any type, and E is any arithmetic expression.

Examples:
A = 1+BA(2)*3 C = D-(Y+3)
X4 = (Y-Z(3,2))/I+K L= (J+K(1,1,1))

The mode of the evaluated arithmetic expression and the type of the replace-
ment variable may be mixed. However, if the mode of the replacement
variable is of non-standard type, the mode of the evaluated arithmetic ex—
pression must not be a different non-standard type (see Chapter 5). The
following chart shows the V, E relationship for all the standard modes.

Arithmetic Replacement Statement V= E

V is an identifier

E is an arithmetic expression

R is the evaluated arithmetic expression

Mode of R
Type
of V Complex Double Real Integer

Complex | Store real & imag- | Round R to real. Store R in real part | Convert R to real &
inary parts of R in Store in real part of V. Store zero in | store in real part of
real & imaginary of V. Store zero imaginary part of V.| V. Store zero in
parts of V. in imaginary part imaginary part of V.

of V.

Double Discard imaginary | Store R (most & If R is + affix +0 as | Convert R to real.
part of R & replace | least significant least significant Fill out least signif-
it with +0 according| parts) in V (most part. Store in V, icant half with binary
to real part of R. & least significant most & least sig- Zeros or ones accord-

parts). nificant parts. ingly as sign of R is
plus or minus. Store
in V, most and least
significant parts.

Real Store real part of Round R to real & Store R in V. Convert R to real.

R in V. Imaginary | storein V. Least Store in V.
part is lost. significant part of
R is lost.

Integer Truncate real part Truncate R to Truncate R to Store Rin V.
of R to INTEGER. INTEGER & store INTEGER. Store
Store in V. Imag- in V. in V.
inary part is lost.

Logical If real part of R #0,| K R#0, 1—>V. Same as for double | Same as for double
1—V. I real IfR=0, 0—=>V. at left. at left.
part of R =0,

0—V.

3-2

When all of the operands in the expression E are of type logical, the
expression is evaluated as if all the logical operands were integers.

For example, if Ly, Lo, Lg, Ly are logical variables, R is a real variable,
and I is an integer variable, then

I= Ll*L2+L3-L4

will be evaluated as if the L; were all integers (0 or 1) and the resulting value
will be stored, as an integer, in I.

R= Ll*L2+L3—L4

is evaluated as stated above, but the result is converted to a real (a floating
point quantity) before it is stored in R.

Examples:
Given: Cj, A1 complex Ii , A4 integer
Di, A2 double Lij, As logical
Rij, A3 real
A1 =Cp *Cg - C3/Cy (6.907, 15.393) = (4.4, 2.1) * (3.0, 2.0) -

(3.3, 6.8)/(1.1, 3.4)
The mode of the expression is complex. Therefore, the result of the
expression is a two-word, floating point quantity. A, is type complex and
the result replaces A;.
Ag=Cq 4.4000+000 = (4.4, 2.1)
The mode of the expression is complex. Ag is type real; the real part of
Cj replaces Ag.
Ag = Cy*(0., -1.) 2.1000+000 = (4.4, 2.1)*(0.,-1.)
The mode of the expression is complex. Ag is type real; the imaginary
part of C; replaces As.
A4 = Ry/Ro*(Rg-Ry)+1; -(I;*Rs) 13 = 8.4/4.2 * (3.1-2.1) + 14 - (1*2.3)

The mode of the expression is real. Ay 1is type integer; the result of the
expression evaluation, a real, will be converted to an integer replacing Ay

3-3

3.2
LOGICAL
REPLACEMENT

33
MASKING
REPLACEMENT

34

Ag = Dy **2%(Dg+(D3*Dy)) 4.96800000000000000000000+001 =
+(Dg*D1 *Dg) 2.0D**2%(3. 2D+(4. 1D*1. 0D))

+(3. 2D*2. 0D*3. 2D)
The mode of the expression is double. A2 is type double; the result of the
expression evaluation, a double precision floating quantity, replaces A2.
Ag = C{*R1-Rytl; 1=(4.4, 2.1) *8.4-4.2+14
The mode of the expression is complex. Since Ag is type logical, a 1 (true)

will replace A5 if the real part of the evaluated expression is not zero.
A zero (false) will replace A5 if the real part is zero.

In a logical replacement statement, the replacement variable is type logical
and the expression must be a logical expression.

Examples: L is type logical

L@3)=.NOT. A L(1,3,3) = A(l)
L=B.OR. C L=X.EQ. Y.AND. Q.GT. P

In a masking replacement statement, the replacement variable must be type
integer or real, and the expression must be a masking expression. Mode
conversion does not occur for mixed real and integer operands.

Examples:

All variables are type real or integer.

A =B .OR. .NOT. C(J]

B =D .AND. Q

C(L, J) =.NOT. Z(K) .AND. (Ql .OR. .NOT. Q2)
TEST = CELESTE .AND. THECLIPSE

AB =D .OR. FUNC (X, T)

34

MULTIPLE

REPLACEMENT The multiple replacement statement is an extended form which may be used to
assign the same value to more than one variable.

Vp = Va-1=... = Vg =V] = expression

Vj are simple or subscripted variables; V7 is subject to the following restric-
tions:

Replacement Statement: Vi = EXP

if EXP is an arithmetic expression, V1 may be any type.
if EXP is a logical expression, V1 must be a logical variable only.

if EXP is a masking expression, V1 must be type real or integer
variable only.

The remaining n-1 V; may be variables of any type, and the multiple
replacement statement replaces each of the variables Vg, ..., V, with
the value of V, in a manner analogous to that employed in mixed mode
arithmetic statements.

Examples:
A real The numbers in the examples represent
E, F complex the evaluations of expressions.
G double
I integer
K logical

A =G =3.1415926535897932384626D
3.1415926535897932384626D~G

3.141592654 —-A

3-5

3-6

I1=A= 4.6 4.

4

A=1= 4,6 4

4.

I=A=E-=(0.2,3.0) 10.
3.
10.

10

F=A=1=E=(13.4,16.2) 13.
16.

13

13.
13.
0.

K= 1= -14.6 -14
(true)1

1= K= -14.6 (true)1
1

6 —A

—1

—;I

0—A

2—E
0—E
2— A

—1

4 —» E
2—E
—1
00— A
0—F
0—F

-1

— K

— K

- 1

real
imaginary

real
imaginary

real
imaginary

TYPE DECLARATIONS AND STORAGE ALLOCATIONS 4

-
TYPE, DIMENSION, COMMON, EQUIVALENCE, and DATA declarations may
appear in the same program in any order. They are non-executable and must
appear before the first executable statement.
4.1
TYPE
DECLARATIONS The TYPE declaration provides the compiler with information on the structure

of variable and function identifiers. There are five standard variable types
(non-standard types are explained in Chapter 5). The type of a variable is
declared by one of the following statements:

FORTRAN-63 Statement Characteristics

TYPE COMPLEX list 2 words/element Floating point

TYPE DOUBLE list 2 words/element Floating point

TYPE REAL list 1 word/element Floating point

TYPE INTEGER list 1 word/element Integer

TYPE LOGICAL list 1 word/element Logical (non-dimensioned)
32 elements/word Logical (dimensioned)

FORTRAN-IV Alternate Statement Forms

COMPLEX list

DOUBLE PRECISION list
REAL list

INTEGER list

LOGICAL list

A list is a string of identifiers separated by commas. List identifiers may
be simple variables, array names, function names, formal parameters,
ASSIGN variables, ENTRY names, and so forth. An example of a list is:

A, B1, CAT, D36F, EUPHORIA

4-1

4.2
DIMENSION

4-2

Except for 3400, dimensioning in TYPE statements is allowed anywhere in
FORTRAN-IV TYPE declarations and TYPE-other declarations. The first
variable of each FORTRAN-63 TYPE declaration may not be dimensioned;
all others may be dimensioned. Examples:

TYPE COMPLEX A, B(10,10), C FORTRAN-63
COMPLEX A(10,20), B(10,10), C FORTRAN-IV
REAL E(20), F, G(10) FORTRAN-IV
TYPE REAL E, F(20), G(10) FORTRAN-63

The TYPE declaration is non-executable and must precede the first executable
statement in a given program. Any number of TYPE declarations may appear
in a program section.

If an identifier is declared in two or more TYPE declarations, a compilation
diagnostic will occur. An identifier not declared in a TYPE statement will be
an integer if the first letter of the identifier is I, J, K, L, M, N; for any other
letter, it will be real.

Examples:

COMPLEX A (147), RIGGISH, ATILL2
TYPE DOUBLE TEEPEE, B2BAZ (10, 10)
REAL EL, CAMINO, REAL, IDE63
TYPE INTEGER QUID, PRO, QUO
TYPE LOGICAL GEORGES6

Storage may be reserved for arrays by the non-executable statements
DIMENSION, TYPE (except 3400), or COMMON. The standard form of the
DIMENSION statement is:

DIMENSION Vl’ v . Vn

9
The variable names, Vj, may have 1, 2, or 3 integer constant subscripts
separated by commas, as in SPACE (5, 5, 5). Under certain conditions within
subprograms only, the subscripts may be integer variables. This is explained
in section 7.12. ’

The number of computer words reserved for a given array is determined by the
product of the subscripts in the subscript string, and the type of the variable.
A maximum of 32767 elements or storage locations may be reserved for any
given array. If the maximum is exceeded, a diagnostic is given. In the fol-
lowing statements, the number of elements in the array HERCULES is 200.

TYPE COMPLEX HERCULES
DIMENSION HERCULES (10, 20)

Two words are used to store a complex element; therefore, the number of
computer words reserved is 400. The argument is the same for double preci-
sion. For reals and integers the number of words in an array equals the
number of elements in the array.

For subscripted logical variables, up to 32 bits of a computer word are used;
each bit represents an element of the logical variable array. The elements
are stored left to right in a computer word starting with the most significant
bit position. In the following statements the 125 elements in the array
XERXES will occupy four sequential words as shown below.

TYPE LOGICAL XERXES
DIMENSION XERXES (5, 5, 5)

'4— 32 BITS ——I

WORD

WORD+1

WORD+2

WORD+3

le— 29 BITS—]

VARIABLE DIMENSIONS When an array identifier and its dimensions appear as formal parameters in
a function or subroutine, some or all of the dimensions may be assigned
through the actual parameter list accompanying the function reference or
subroutine call. The dimensions must not exceed the maximum array size
specified by the dimensioning statement in the calling program. See section
7.12 for details and examples.

4-3

4.3
COMMON

4-4

The COMMON statement reserves blocks of storage, numbered or labeled,
that can be referenced by more than one subprogram. Only labeled common
blocks may be preset; that is, data may be stored in labeled common blocks
by the DATA statement and is made available to any subprogram using the
appropriate labeled block. The areas of common information are specified
by the statement form.

COMMON/1 1/1ist/12/1ist. ..

1is a common block identifier, up to 8 characters, which designates either a
labeled or numbered common block. An alphabetic first character denotes

a labeled common block; the remaining characters may be alphabetic or nu-
meric. If the first character is numeric, the remaining characters must be
numeric and the identifier denotes a numbered common block. Leading zeros
in numeric identifiers are ignored. Zero by itself is an acceptable numbered
common block identifier. The following are common block identifiers:

Labeled Numbered
AZ13 1
MAXIMUS 146

Z 3600
XRAY 0

List is composed of simple variable identifiers and array identifiers
(subscripted or non-subscripted). If a non-subscripted array name appears
in the list, the dimensions must be defined by a DIMENSION or TYPE
(except 3400) statement in that program.

Arrays may also be dimensioned in the COMMON statement when a subscript
string appears with the identifier. An array declared in COMMON may be
dimensioned in either a DIMENSION or TYPE (except 3400) statement (not
both). A diagnostic results if an array is dimensioned more than once in a
DIMENSION and/or TYPE statement. If an array is dimensioned in a
COMMON and either a DIMENSION or TYPE statement, the dimensions in the
DIMENSION or TYPE statement are used and a warning diagnostic is issued.

The common block identifier with or without the separating slashes may be
omitted for blank common. Blank common is treated as numbered common by
the compiler. Blank common without separating slashes may immediately
follow another blank common statement, but any other multiple use of blank
common will cause a diagnostic to be issued.

Any number of COMMON statements may appear in a program section.
COMMON is non-executable and must precede the firstexecutable statement
in the program, otherwise a diagnostic will occur. If TYPE, DIMENSION or
COMMON appear together, the order is immaterial. The following arrange-
ments are equivalent:

TYPE DOUBLE A TYPE DOUBLE A
DIMENSION A (10) COMMON A
COMMON A DIMENSION A (10)
DIMENSION A (10) TYPE DOUBLE A
TYPE DOUBLE A COMMON A (10)
COMMON A

An identifier (block name or common variable) in one common block may
not appear in another common block. If it does the identifier is doubly
defined and a diagnostic occurs. However, since labeled common block
identifiers are used only by the LOADER at load time, they may be used
elsewhere in the program as other kinds of identifiers except as program
or subprogram names on the 3400. The following is permissible:

COMMON /A/A(10)/B/B(5,5)/C/C(5,5,5)

The order of the arrays in a common block is determined by their
appearance in a COMMON statement.

At the beginning of the program execution, the contents of common are
undefined unless preset using the DATA statement.

Integer variables in COMMON and those used in subscript expressions
must be assigned values before the subprogram in which the variables
appear is called for execution.

Subscripts which are defined as common area variables should be preset
with a DATA statement in the first subprogram which declares the common
block. This applies to labeled common only, and only when the subscript
variable is used on a multi-subscripted variable. Declaring subscript
variables as elements of blank or numbered common may cause undiagnosed
errors.

4-5

Examples of general COMMON statements:
COMMON A, B,C
COMMON // A, B,C,D
COMMON/BLOCK1/ A, B/1234/C(10), D(10, 10), E(10,10, 10)

COMMON/BLOCK A/D (15), F(3,3), GOSH(2, 3, 4), Q1

COMMON BLOCK RULES The length of a common block is determined from the number and type
of the list identifiers. In the following statement, the length of the
common block A is 12 computer words. The origin of the common block
is Q(1). (Q and R are real variables and S is complex).

COMMON/A/Q (4), R(4), S(2)

block A
origin Q1)
Q@)
Q@)
QW)
R@)
R(2)
R(3)
R(4)
s@) real part
S@) imaginary part
S(2) real part
S(2) imaginary part

The length of the common block must not be changed by the subprograms
using the block; declaring different sizes for a common block causes a
loader error.

Each subprogram using a common block assigns the allocation of words
in the block. The identifiers used within the block may differ as to name,
type, and number of elements although the block identifier itself must
remain the same.

4-6

Example:

MAIN PROG TYPE COMPLEX C
COMMON/TEST/C(20)/36/A, B, Z

The length of TEST is 40 computer words.
The subprogram may rearrange the allocation of words as in:

SUBPROG1 COMMON/TEST/A (10), G(10), K(10)
TYPE COMPLEX A

The length of TEST is 40 words. The first 10 elements (20 words) of the
block, represented by A, are complex elements. Array G is the next 10
words, and array K is the last 10 words. Within the subprogram, elements
of G are treated as floating point quantities; elements of K are treated as
integer quantities.

If a subprogram does not use all of the locations reserved in a common block,
unused variables may be necessary in the COMMON statement to insure proper
correspondence of common areas.

MAIN PROG COMMON/SUM/A, B, C
SUB PROG COMMON/SUM/E, F, G
In the above example, only the variables E and G are used in the subpro-

gram. The unused variable F is necessary to space over the area
reserved by B.

4.4
EQUIVALENCE The EQUIVALENCE statement is designed to permit sharing of storage by two
or more variables. It should not be used to mathematically equate these

variables. The general form is:

EQUIVALENCE (A, B, ...), (A1,B1, ...), ...

(A,B, ...) is an equivalence group of two or more simple or singly subscripted
variable identifiers., A multi-subscripted variable can be represented by a
singly subscripted variable. The correspondence is:

A(i,j,k) is the same as A(the value of (i+(j-1)*I+ (k-1)*I*J))

4-7

i, j, k are integer constants; I and J are the integer constants appearing in
DIMENSION A (I, J,K). For example, in DIMENSION A(2,3,4), the element
A(1,1,2) is represented by A(7).

EQUIVALENCE is most commonly used when two or more arrays can share
the same storage locations. The lengths may be different or equal.

Example:

DIMENSION A(10,10), 1(100)
EQUIVALENCE (A, J)

.

5 READ 10,A

.

6 READ 20, I

The EQUIVALENCE statement assigns the first element of array A and
array Ito the same storage location. The READ statement 5 stores the
A array in consecutive locations. Before statement 6 is executed,all
operations using A should be completed as the values of array I will be
read into the storage locations previously occupied by A.

EQUIVALENCE is non-executable and must precede the first executable state-
ment in the program or subprogram. If TYPE, DIMENSION, COMMON, or
EQUIVALENCE appear together, the order is immaterial.

Any full or multi-word variable, standard or non-standard type, may be made
equivalent to any other full or multi-word variable. The variables may be with
or without subscript. Any partial word variable, standard logical or non-
standard byte, may be made equivalent to any type of partial, full, or multi-
word variable. The partial word variable must not be subscripted.

Storage is allocated differently to equivalenced arrays depending on whether
the storage area is a common block or not.

If two arrays, not in common, are equivalenced:

TYPE INTEGER A, B, C
DIMENSION A(3), B(2), C(4)
EQUIVALENCE (A(3), C(2))

storage locations are assigned as follows:
L A1)
L+l A@2) c@)
L+2 A(3) C(2)

L+3 C(3)
L+4 C(4)
L+5 B(1)
L+6 B(2)

However, if two arrays in common are equivalenced:

COMMON A(3), B(2), C(4)
EQUIVALENCE (A(3), C(2))
storage locations are assigned as follows:
L AQ1)
L+l A(2) C(1)
L+2 A3) C(2)
L+3 B(1) C@3)
Lt+4 B(2) C(4)

When equivalenced integer variables are used in subscript expressions, proper
address calculation is insured if each equivalenced variable is assigned an
explicit value.

Example:

EQUIVALENCE (JP, J)

DO1K=1, 3
JP=K+1
J=dJP

1 IAQ =1

49

The EQUIVALENCE statement does not rearrange common, but arrays may be
defined as equivalent so that the length of the common block is changed. The
origin of the common block must not be changed by the EQUIVALENCE state-
ment.

The following simple cases illustrate changes in block lengths caused by the
EQUIVALENCE statement.

Given: Arrays A and B
Sa = subscript of A
Sb = subscript of B

CASE 1 A, B both in COMMON

a) If A appears before B in the COMMON statement:

Sa = 8b is a permissible subscript arrangement

Sa < Sb is not
Block 1
origin—=>A(1) COMMON/1/ A(5), B(7)
A2) B(1) EQUIVALENCE (A(4), B(3))
A@B) B(2)
A(4) B(3)
A(d) B(4)
B(5)
B(6)
B(7)

Statement EQUIVALENCE (A(3), B(4)) changes the origin of block 1.
This is not permitted.

B(1) «— origin changed

origin —A(1) B(2)

AQ2) B(3)
A(3) B(4)
A(4) B(5)

b) If B appears before A in the COMMON statement:

Sa < Sb is a permissible subscript arrangement

Sa > Sb is not

4-10

CASEI A in COMMON, B not in COMMON (corresponds to CASE Ia)

Sb = Sa is a permissible subscript arrangement

Sb > Sa is not

Block 1
origin—A(l) COMMON /1/A(4)
AQ2) B(1) DIMENSION B(5)
AQ3) B(2) EQUIVALENCE (A(3), B@))
A(4) B(3)
B(4)
B(5)

CASE I B in COMMON, A not in COMMON (corresponds to CASE Ib)

Sa < Sb is a permissible subscript

Sa > Sb is not

Block 1
origin—>B(l) COMMON/1/ B (4)
B(2) A1) DIMENSION A (5)
B(3) A(2) EQUIVALENCE (B(2), A(l))
B@4) A@3)
A(4)
A(5)

CASE IV A, B not in COMMON

No subscript arrangement restrictions.

4.5

DATA The programmer may assign constant values to variables and arrays in the
source program by using the DATA statement either by itself or with a
dimensioning statement. It may be used to store constant values in variables
and arrays contained in a labeled common block.

DATA(L, = list), (I, = list), ...

4-11

4-12

1is an identifier representing a simple variable, array name, or a variable
with integer constant subscripts or integer variable subscripts (implied DO-
loop notation).

List contains constants only and has the form

al,az, «eaey k(bl,bz, ...), 01,02, “e

k is an integer constant repetition factor that causes the parenthetical list
following it to be repeated k times. If k is non-integer, a compiler diagnostic
occurs.

DATA is non-executable and must precede the first executable statement in any
program or subprogram in which it appears. When DATA appears with TYPE,
DIMENSION, COMMON or EQUIVALENCE statements, the order is immaterial.

DO loop-implying notation is permissible with the restriction that the third
indexing parameter, mg, cannot appear. This notation may be used for storing
constant values in arrays.

DIMENSION GIB (10)
DATA ((GIB(I), IF1,10)=1. ,2. ,3. ,7(4.32))

ARRAY GIB

1

2

3.
4.32
4.32
4.32
4.32
4.32
4.32
4.32

The order of the DO loop-implying notation is interpreted according to the
order of the subscripts regardless of the order in which it is written. For
instance,

((V(, J), J=1,10), I=1, 5) is interpreted as (V(,J), F1, 5), J=1,10)

Variable dimensioned arrays may not be preset in a DATA statement.
Violation of this rule causes an assembly error.

The list may contain constants (floating, integer, octal, or Hollerith),
either unsigned or signed. Use of . NOT. will cause a compiler diag-
nostic.

In the DATA statement, the type of the constant stored is determined by the
structure of the constant rather than by the identifier in the statement. In
DATA (A=2), an integer 2 replaces A, not a real 2 as might be expected from
the form of the identifier. There should be a one-one correspondence between
the identifiers and the list. This is particularly important in arrays. For
instance

COMMON/BLK/A(3), B
DATA(A=1. ,2., 3. ,4.)
The constants 1., 2., 3. are stored in array locations A, A+1, A+2; the

constant 4. is stored in location B. If this occurs unintentionally, errors
may occur when B is referred to elsewhere in the program.

COMMON / TUP / C(3)
DATA (C=1., 2.)

The constants 1., 2. are stored in array locations C and C+1; the contents
of C(3) (that is, location C+ 2) is not defined.

When the number of list elements exceeds the range of the implied DO, the
excess list elements are stored in consecutive locations starting with the first
location specified in the DO-loop.

DATA ((A()), I=1,5) =1., ..., 10.)

The excess values 6. through 10. are stored in locations A through A + 4.

. For a logical or a byte size variable, the identifier may only be a simple
variable or array name and the constant value in the list must completely fill
each computer word.

TYPE OTHERS (/6)A

DIMENSION A (14)

DATA (A= 4142434445464761B, 6263646566676060B) or
DATA (A= 14HJKLMNOP/STUVWX)

Use of DATA with a logical variable constitutes a special case, as shown in
the following example.

Given: TYPE LOGICAL L
COMMON / NETWORK / L (4, 8)

Store the following matrix of logical elements:

=

]
[=
I~ -
N
O O
o0 o+
oo O
e O
O O

Arrays are stored by columns. Elements of logical arrays are stored 32 bits
to the word, left to right, left justified with zero fill.

The matrix fits into one computer word as follows:
111 110 101 111 o011 010 000 100 101 110 100 O... O
and its octal equivalent is
7657320456400000
Therefore, the appropriate DATA statement is:
DATA (L = 7657320456400000B)
Examples:

1) DATA (LEDA=15), (CASTOR=16.0), (POLLUX=84.0)

LEDA 15
CASTOR 16.0
POLLUX 84.0

2) DATA (A(1,3) = 16.239)
ARRAY A

A(1,3) 16.239

4-14

3) DIMENSION B(10)
DATA (B = 77B, -77B, 4(776B, -774B))

ARRAY B 77B
-77B
776B

-774B
776B
-774B
776B
-774B
776B
-774B

4) COMMON /HERA/ C(4)
DATA (C = 3.6, 3(10.5))

ARRAY C

P e
eeew
(S IS -

5) TYPE COMPLEX PROTEUS
DIMENSION PROTEUS (4)
DATA (PROTEUS = 4((1.0, 2.0)))

ARRAY PROTEUS

1
2
1
2.
1
2
1
2

oo oo oCCC

6) DIMENSION MESSAGE (3)
DATA (MESSAGE = 3HWHO, 2HIS, 6HSYLVIA)

ARRAY MESSAGE WHO

IS
SYLVIA

4-15

4.6
BANK STATEMENT

FOR 3600 FORTRAN The 3600 FORTRAN programmer has the option of specifying the banks to

4-16

which common blocks or subprograms are to be assigned, or of allowing the
SCOPE loader to determine the bank storage assignment. If no bank assign-
ment is made, the subprograms and common blocks are assumed to be bank
relocatable; the loader places the subprograms in the bank in which they fit
most tightly. If the subprograms and common blocks are assigned the same
general bank, the loader will place the subprograms in the bank having the
largest amount of available memory.

The general form of the statement is:
BANK, (by), identifiery, ..., (bg), identifiers, .

b may be a bank designator, 0-7, a subprogram name or entry point,
or the name of a common block enclosed in slashes, (/block/).

identifier may be a subprogram name, entry point, or a common
block name enclosed in slashes.

The BANK statement is ignored by the 3400 FORTRAN compiler.

A program may contain any number of BANK statements. The BANK state-
ment must appear after the PROGRAM, SUBPROGRAM or FUNCTION
statement and before the first executable statement. When BANK appears
with TYPE, DIMENSION COMMON, DATA or EQUIVALENCE, the order is
immaterial.

If b is a bank designator, all identifiers following will be assigned to that
specific bank. If b is a name, all succeeding identifiers will be assigned to
the same bank as b. The specific bank will be determined by the monitor
when the program is loaded or by another BANK statement.

The subprogram names, entry points, and common block names need not be
defined or referenced in the same subprogram containing the BANK statement.

Execution time can be decreased by using the BANK statement to assign
subprograms and common blocks to the same bank. This eliminates the use
of augmented instructions at references to variables located in the same bank
as the current operand bank.

ENO $C

LDA C
. ENO $B
A=B+C generates FAD B
ENO $A
STA A
BANK, (C),B
. LDA C
. FAD B
A=B+C generates ENO $A
STA A

Bank assignments for 3600 FORTRAN programs may also be made by a
SCOPE BANK control card or by a COMPASS BANK pseudo instruction.
Details are given in 3600 SCOPE/Reference Manual, Pub. No. 533, and
3600 COMPASS/Reference Manual, Pub. No. 525. .

IDENT DRIVE
BANK (2), PLUS, /A/,/B/

END

SUBROUTINE PLUS Subprogram PLUS and common blocks
BANK, (PLUS), /A/,/B/ /A/ and /B/ will be assigned to bank 2.

COMMON /A/.../B/....

SCOPE BANK statements may be mixed with FORTRAN BANK statements.
Inconsistent BANK statements may give loader errors or may be loaded without
any indication of an erroneous result. Bank statements within a FORTRAN
program may not include subprogram names containing periods or other special
characters normally considered as delimiters. A SCOPE bank card must be
used for these names. (See Instant 3600 SCOPE).

4-17

Examples:

PROGRAM SAM
BANK, (2), SAM, /AL/, (1), LENNY
COMMON /AL/A, B

END
SUBROUTINE LENNY

END

Program SAM and common block AL will be loaded into bank 2. Subpro-
gram LENNY will be loaded into bank 1.

PROGRAM ONE
BANK, (ONE), /A/,/B/,/C/
COMMON /A/.../B/...

END

SUBROUTINE UNO

BANK, (UNO), /A/

COMMON /A/.../B/.../C/...

END

SUBROUTINE DUO
BANK, (DUO), /B/
COMMON /B/...

END

Program ONE, subprograms UNO and DUO, and common blocks /A/,/B/,
and /C/ will be assigned to the same bank by the loader.

4-18

NON-STANDARD TYPE DECLARATIONS AND EXPRESSIONS 5

FORTRAN allows eight distinct modes of arithmetic. The mode and the
size of the operand is fixed for the five standard types - real, integer,
double, complex and logical. The routines or instructions required to
handle these arithmetic modes are provided with the system. For further

details see Appendix E.

The programmer can define up to three modes of non-standard arithmetic
arbitrarily identified as types 5, 6, 7. A non-standard type is arbitrary both
in mode and execution and may specify multi-word elements (operands) or
partial word elements, called bytes.

The mode and structure of the operand is defined in the TYPE-other declaration.
Execution of all expressions containing non-standard variables must be defined
in routines supplied by the user (Appendix E).

Non-standard types may be used to introduce a new kind of arithmetic by giving
new meaning to the basic arithmetic operators. In a standard arithmetic
expression, a + symbol has the fixed interpretation 'to add'. In a non-standard
expression, the programmer may, for example, define + to mean "'shift" or
"cube''.

Non-standard types also may be used to extend precision up to seven computer
words or to manipulate bytes in arithmetic operations.

Standard Non-Standard
Number of types 5 3
Mode and structure Fixed Arbitrary (defined in

TYPE-other)

Arithmetic Fixed (defined in Arbitrary (defined in
operations system routines) user routines)

The steps in solving a non-standard operation are:
1. Define a problem

2. Write and compile a program to solve the problem

Define non-standard variables in TYPE-other declarations

3. Analyze the calls to subroutines generated by the compiler
(Appendix E).

4. Provide subroutines with the calls as entry points; the subroutines
will perform the operations desired by the programmer (Appendix E).

5. Compile and execute the program and subroutine (Chapter 11, Deck

Structure).
5.1
TYPE-OTHER
DECLARATIONS The TYPE-other declaration provides the compiler with information regarding

the structure of the non-standard identifier that names variables and functions.
The general form of a non-standard declaration is:

TYPE name# (/b) list
or
TYPE name# (w) list

name# is an arbitrary alphanumeric identifier, 2-8 characters. The last
character, #, must be one of the type indicators 5, 6, or 7.

(/b) specifies the number of bits in a partial word element. b must be a
divisor of 48; if it is not, a compilation diagnostic will be given.

TYPE BYTES5 (/6) A A is a 6-bit element

TYPE PARTS6 (/3) MAX MAX is a 3-bit element
When simple partial word elements are specified, the leftmost b characters of
a word are used. When partial word element arrays are specified, the elements
are in consecutive locations, left to right, in the word. The number of elements

in a word is 48/b.

(w) specifies the number of words in a multi-word element. w must be in
the range 1-7; otherwise, a compilation diagnostic will be given.

TYPE DOUBLE7 (4) OX OX is a 4-word element

5-2

list is a string of simple variable identifiers, or array names, separated
by commas. Identifiers have w words per element or b bits per
element. Both multi-word elements and partial word element
identifiers may be dimensioned in the TYPE-other declaration
(except in 3400) or in separate DIMENSION or COMMON statements.

.3600/3800 Example: TYPE BYTE5 (/8)A(10), B

An identifier is doubly defined if it occurs in more than one TY PE-other
declaration:

TYPE BYTE5 (3) A,B

TYPE BYTE6 (/2) A, B } This causes a compilation diagnostic.

Example:

DIMENSION A (13)
TYPE BYTES5 (/8) A, B

LB I j word 1

8 bits
law [a@ [ae [a@ [a6) [aE)] wordz

Lam | a@ | a@ [aao[aan[aaz)] words

laas] [T T T] woras

A program may contain a maximum of three non-standard types (type 5, 6, 7).
Any number of TYPE-other declarations with the same name, type, and ele-
ment length may appear in a program section.

Two or more TYPE-other declarations of the same name and type with multi-
word elements of different lengths may appear in the same program.

Examples:
TYPE SAM5 (6) A,B will compile cerrectly; the programmer
TYPE SAM5 (3) C,D must provide a way to determine element

length of variables which are the same type.

TYPE LIEBE6 (6) E, F will cause a compilation diagnostic; only
TYPE LIEBE6 (/5) G,H full word elements may be used.
TYPE PATTI7T (1) M will cause a compilation diagnostic; the
TYPE BARBI7 (3) B name must be the same.

5.2

EVALUATION OF
NON-STANDARD
ARITHMETIC
EXPRESSIONS

5.3
SAMPLE PROGRAM

5-4

The translation of a non-standard arithmetic expression follows the same
rules of precedence as for standard arithmetic expressions: exponentiation,
multiplication-division, addition-subtraction. The scanning order of the ex-
pression is left to right.

The non-standard types (5, 6, 7) may not be mixed within an expression. Non-
standard variables of the same type but with different element lengths may be
mixed with each other, and any one of the types 5. 6, 7 may be mixed with any
of the standard types in arithmetic expressions.

An evaluated expression assumes the mode of the non-standard type variable in
the expression.

A non-standard type variable of byte size may not participate in exponentiation
unless the exponent is an integer constant 1-8. If A or B or both are non-
standard multi-word elements (and B is not an integer constant 1-8), the
programmer must provide subroutines for the evaluation of A**B. For expo-
nentiation, if the exponent is an integer constant 1-8, the value is calculated
by successive multiplications which may or may not be calculated in a separate
subroutine.

Further information on non-standard types in mixed mode arithmetic is given
in Chapter 2 under Mixed Mode Arithmetic Expression.

The following is a simple example of using non-standard variables in a non-
standard arithmetic operation.

Step1 Define problem:
Add B to A by using a multiply operator, *. Store the value in C and

print value in the form: C =

Step 2 Define variables:
A and B are non-standard and are defined in the TYPE-other declara-
tion; C is real:

TYPE OTHER5(1) A, B

Step 3 Write a FORTRAN program and compile it:
PROGRAM OTHER

2 TYPE REAL C

3 TYPE OTHERS5 (1) A, B

4 A=4.1 $ B=5.4 $ C=A*B

5 PRINT1,C

1 FORMAT (2HC=E14. 8)
END

Step 4 Analyze the calls to subroutines generated by the COMPASS assembler:

3400 OBJECT CODE

IDENT OTHER
PROGRAM LENGTH 00027
ENTRY POINTS
OTHER 00002
EXTERNAL SYMBOLS
Q8QEXITS
Q1Q10510
Q1Q04550
Q1Q00550
Q1Q10550
Q1Q00510
CONVERT
THEND
STH
PROGRAM OTHER
00000 FORMAT. BSS 2
ENTRY OTHER
00002 ENDING. BSS 0
00002 75 0 PO0002 OTHER SLJ OTHER
50 0 00000 ENI 0
00003 75 4 X77777 .4 RTJ Q1Q00510 Load accumulator
with 4.1
00 0 P0O0023 00 =02003406314631463
00004 75 4 X77777 + RTJ Q1Q10550 Store accumulator
in A
00 0 P00021 00 A
00005 75 4 X00004 + RTJ Q1Q00510 Load accumulator
with 5.4
00 0 P00024 00 =02003531463146315
00006 75 4 X00005 + RTJ Q1Q10550 Store accumulator
in B
00 0 ©P00020 00 B
00007 75 4 X77777 + RTJ Q1Q00550 Load accumulator
with A
00 0 P00021 00 A
00010 75 4 X77777 + RTJ Q1Q04550 Multiply (add) A
and B
00 0 P00020 00 B
00011 75 4 X77777 + RTJ Q1Q10510 Store product in C
00 O PO00022 00 C

5-5

3400 (cont.)

00012
00013
00014
00015
00016
00000

00001

00016
00017
00020
00021

00022

00023

00024

5-6

10
04
50
75
12
75
75
50

o PO P, OOCO

74
13
33
60

=N O

75
50
75
50
00
00
00
00
00
00

QO O0OCOOOOOH

20
14
20
63

- 0O OO

NULLS

00075
P00016
P0000O
X77777
P00022
X77777
X777717

00000

P0O0000
23023
50104
03460
06060

P00016

X77777
00000

P00002
00000
00000
00000
00000
00000
00000
00000

34063
31463
35314
46315

+

+

GG00000.

.1

EXIT. .

ENA
ENQ
50

RTJ
LDA
RTJ
RTJ

BSS
ORGR
BCD

ORGR
RTJ

SLJ
oCT
OCT
OoCT

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

END

+61
GG00000.
.1

STH

c
CONVERT.
THEND,

0
FORMAT,
2, (2HC=E14.8)

*
Q8QEXITS

ENDING.

0000000000000000
0000000000000000
0000000000000000

Q8QEXITS
Q1Q10510
Q1Q04550
Q1Q00550
Q1Q10550
Q1Q00510
CONVERT
THEND
STH

OTHER

.5 EXIT,.

3600 OBJECT CODE

(5.1) OTHER

PROGRAM LENGTH

ENTRY POINTS

EXTERNAL SYMBOLS

00000

00001

00002

00003

00010

00011

00012

00013

00014

060015

00015

63
20
00
00
46
51

63
03

[e N N eNoNeNe)

oo NololoNoNoNeNoNol

IDENT
00053
OTHER 00010
Q8QENTRY
Q1Q00510
Q1Q10550
Q1Q00550
Q1Q04550
Q1QL0510
THEND.
Q8QDICT.
STH.
QNSINGL.
PO0000 EXIT. 63
X77777 20
00000 DICT, OCT
00000
33025 OCT
06060
FORMAT, BSS
ENTRY
00000 OTHER UBJP
P00010
PO0010 + 63
X00000 20
P00010 63
P00001 20
00000 BRTJ
X77777
PO0015 SLJ
P00001 00
EXT
A BSS
EXT
00000 BRTJ
X77777

OTHER

(§)*
($)Q8QDICT.
0

4663302551606060

5
OTHER
($)OTHER, ,*

($)%-1
($)Q8QDICT.
($)*-2
($)DICT.
($)Q8QENTRY, ,*

41

DICT.

Q8QENTRY

0

Q1Q00510
($)QlQo0510, ,*

09/13/66

5-7

(5.1)

OTHER

00016

00017

00020

00021

00022

00023

00024

00025

00026

00027

00030

00031

00032

00033

00034

00035

00036

00037

00040

00041

00042
00003

00004

77
60

00

OO0

o =

O OO o= OO

Q- OO

O OO

[cNoNoNolNNeNeoNeNoNoNoNoNoloNol Sk =/

oo oW

04000
P0O0051

00000
X77777
04000
P00044

00000
X00015
04000
P00052

00000
X00017
04000
P00043

00000
X77777
04000
P00044

00000
X77777
04000
P00043

00000
X77777
04000
P00045
00075
P00042
00000
X77777
P00037
P00001
P00003
00000
P00045
P00047
00000
X77777
P00042
P0O0001

P0O0003

PO0003
30160
06060
00000
01002

CRFMT .
GG00000.

.1

ENO
LDA
EXT
BRTJ

ENO
STA
EXT
BRTJ

ENO
LDA
EXT
BRTJ

ENO
STA
EXT
BRTJ

ENO
LDA
EXT
BRTJ

ENO
LDA
EXT
BRTJ

ENO
STA
ENA
ENQ
BRTJ

SLJ
01
00
00
LDA
RTJ
BRTJ

SLJ
00
EXT
EQU
BSS
ORGR
0CT

OCT

*

=02003406314631463
Q1Q10550
($)Q1Q10550, ,*

*

A

Q1Q00510
($)Q1Q00510, ,*

*

=02003531463146315
Q1Q10550
($)Q1Q10550, ,*

*

B

Q1Q00550
($)Q1Q00550, ,*

*

A

QlQ04550
($)Q1Q04550, ,*

*

B
Q1Q10510
($)Q1Q10510, ,*

*

C

61
GG00000.
($)STH. , ,*

42

DICT.

($)..1

0

c

CNVRT1.
($)THEND. , ,*

*+1

DICT.

THEND.

FORMAT.

0

CRFMT.
7733016060606060

3000000000001.002

09/13/66

(5.1)

OTHER

00005

00006

00007

00042
00043
00044
00045
00046

00047

00050
00051

00052

00030 SYMBOLS

63
03
75
75

75
50
20
14
20
63

cCoocoor

o o

30000
00000
00000
04016
00000
00000
P00042
P00050
00000

00000
X77777
77777
P00046

P0O0000
00000
34063
31463
35314
46315

O P> w

CNVRT1.

ENDING.

OCT

OCT

OCT

ORGR
SLJ

BSS
BSS
BSS
EXT
EXT
BRTJ

SLJ
SLJ
EXT
SLJ

END

09/13/66

2313000000000000
2500000000004016

3700000000000000

*
ENDING.

1

1

1

Q8QDICT.

STH.
($)QNSINGL. , ,*

%

*.1
QNSINGL.
EXIT,

OTHER

Step 5 Provide a subroutine with the external calls as entry points to perform
the desired operation:

3400 IDENT JOE.
ENTRY Q1Q00510
Q1Q00510 SLJ ok
LDA *
+ ARS 24
INA -1
+ SAU *]1
+ LDA *% 7
SLJ Q1Q00510
- ENTRY Q1Q10550
Q1Q10550 SLJ *k
STA TEMP
+ LDA *.1
ARS 24
+ INA -1
SAL *]1
+ LDA TEMP
STA *% 7
SLJ Q1Q10550
ENTRY Q1Q00550
Q1Q00550 SLJ ok
LDA *
+ ARS 24
INA -1
+ SAU %41
+ LDA *%,7
SLJ Q1Q00550
ENTRY Q1Q04550
Q1Q04550 SLJ *k
STA TEMP
+ LDA %1
ARS 24
+ INA -1
SAL %41
+ LDA TEMP
FAD %% 7
SLJ Q1Q04550
ENTRY Q1Q10510

5-10

3400 (cont.)

3600

Q1Q10510

+

TEMP

GET
Q1Q00510

PUT
Q1Q10550

GET2
Q1Q00550

SLJ *%
STA TEMP
LDA *-1
ARS 24

INA -1

SAL *+]
LDA TEMP
STA *% 7
SLJ Q1Q10510

BSS 1
END

IDENT JOE

ENTRY Q1Q00510,Q1Q10550,Q1Q00550,Q1Q04550,Q1QL0510
REM ROUTINE TO LOAD REAL CONSTANT AS TYPE 5

EXEC o GO LOAD CONSTANT AND RETURN

UBJP (%) ** ADDR, WILL BE SET FOR RETURN TO MAIN

PROGRAM

LDA (*)*-1 PICK UP ADDR, STORED BY BRTJ INST.
SBYT,A0,E19 GET STORE ADDR, TAG, BANK; IN GET 0-18
RAO Q1Q00510 INC. RETURN ADDR, BY ONE

SLJ GET JUMP TO GET

REM ROUTINE TO STORE CONSTANT

EXEC *k GO STORE A-REG. AND RETURN

UBJP (%) %%

RXT A,D SAVE A-REG.

RXT 1B,0B SAVE INST. BANK REG.

LDQ Q1Q10550

RAO Q1Q10550

SBYT,Q0,E19 PUT

RXT D,A RESTORE A-REG.

SLJ PUT

REM ROUTINE TO LOAD TYPE 5 CONSTANT AS TYPE 5

EXEC ok

UBJP (%) %%

LDA (¥)*-1

SBYT,A0,E19 GET2

5-11

3600 (cont.) RAO Q1Q00550

SLJ GET2
REM ROUTINE TO OBTAIN PRODUCT OF CONSTANTS
Q1Q04550 UBJP () #%
STA (*) TEMP SAVE A-REG,
LDQ Q1Q04550
RAO Q1Q04550
SBYT,Q0,E19 COMP
COMP EXEC *k OBTAIN SUM
FAD (*) TEMP OF CONSTANTS
SLJ Q1Q04550
REM ROUTINE TO STORE PRODUCT AS REAL NUMBER
PUT2 EXEC ok
Q1Q10510 UBJP (%) **
RXT A,D
RXT 1B,0B
LDQ Q1Q10510
RAO Q1Q10510
SBYT,QO0,E19 PUT2
RXT D,A
SLJ PUT2
TEMP DEC 0
END

Step 6 Compile and execute FORTRAN program and COMPASS subprogram.

5-12

6.1
GO 17O
STATEMENTS

UNCONDITIONAL

ASSIGNED

CONTROL STATEMENTS 6

Program execution normally proceeds from statement to statement as they
appear in the program. Control statements can be used to alter this sequence
or cause a number of iterations of a program section. Control may be trans-
ferred to an executable statement only; a transfer to a non-executable statement
will result in a program error which is usually recognized during assembly.
With the DO statement, a predetermined sequence of instructions can be
repeated any number of times with the stepping of a simple integer variable
after each iteration.

Statements are identified by unsigned numbers, 1 to 99999, which can be

referred to from other sections of the program. An identifier up to 5 digits
long may occupy any of the first five columns of the coding form; blanks are
squeezed out and leading zeros are ignored, 1, 01, 001, 0001, are identical.

GO TO statements provide transfer of control.

GO TOn
This statement causes an unconditional transfer to the statement labeled n; n
is a statement identifier.

GO TOm, (n3, ng, ..., D)

This statement acts as a many-branch GO TO. m is a simple integer variable
assigned an integer value n; in a preceding ASSIGN statement. The n, are
statement numbers. Although a parenthetical list need not be present, it should
appear when the statement is used in a DO-loop for more efficient object code.

The comma after m is optional when the list is omitted. m cannot be the result

of a computation. No compiler diagnostic is given if m is computed, but the
object code will be incorrect.

6-1

ASSIGN STATEMENT ASSIGN s TO m
This statement is used with the assigned GO TO statement. s is a statement
number, m is a simple integer variable.

ASSIGN 10 TO LSWTCH

GO TO LSWTCH, (5,10, 15, 20)

Control will transfer to statement 10.

COMPUTED GO TO (n3, ng, ..., nyy), E
GO TO (n3, ng, ..., ny) E

This statement acts as a many-branch GO TO where the expression, E, is
evaluated prior to its use in the GO TO.

The n; are statement numbers; E is an arithmetic expression which will be
reduced to an integer value, i. i = 1, a transfer to n; occurs; ifi 2m, a
transfer to ny, occurs. Otherwise, transfer is to nj.

Example:

A=1, B=2, C=1
GO TO (10, 20,30), A*B-C

10 A=A+l
GO TO (11,21,31), A*B-C

control will transfer to statement 31.

6.2

IF STATEMENTS The following IF statements and the status of sense lights and switches provide
conditional transfer of control. Masking cannot be done in any IF statement;
the masking expression will be interpreted as logical.

6-2

THREE BRANCH IF
(arithmetic)

TWO BRANCH IF
{logical)

ONE BRANCH IF
(logical)

SENSE LIGHT

IF (A) nl, nz, n3
A is an arithmetic expression and the n; are statement numbers. This state-
ment tests the evaluated quantity A and jumps accordingly.

A< 0 jump tong
A=0 jump to ng
A >0 jump to ng

In the test for zero, +0 = -0. When the mode of the evaluated expression is
complex, only the real part is tested for zero.

IF (A*B-C*SINF(X))10,10,20
IF ()5,6,7
IF (A/B**2)3,6,6

IF (L) ny, ng
L is a logical expression. The n; are statement numbers.

The evaluated expression is tested for true (non-zero) or false (zero). I Lis
true jump to statement nj. I L is false jump to statement ng.

IF (A .GT. 16. .OR. 1 .EQ. 0)5,10

IF (L)1,2 (L is TYPE LOGICAL)
IF (A*B-C)1,2 (A*B-C is arithmetic)
IF (A*B/C .LE. 14.32)4,6

IF (L) s

L is a logical expression and s is a statement. s must not be a DO, another
one branch IF, END, or FORMAT statement. If L is true (non-zero), execute
statement s. If L is false (zero), continue in sequence to the statement
following the IF logical.

IF (L) GO TO 3 (L is logical)
IF (L) Y = SINF (X) /2

SENSE LIGHT i

Execution of this statement turns on the sense light i. SENSE LIGHT 0 turns
off all sense lights. i may be a simple integer variable or constant (1 to 48).
Sense lights are simulated internally.

IF (SENSE LIGHT i) n;, ng

The statement tests sense light i. If it is on, it is turned off and a jump occurs
to statement n;. If it is off, a jump occurs to statement ny. 1is a sense light

6-3

SENSE SWITCH

6.3
FAULT CONDITIONS

6-4

and the n; are statement numbers; i may be a simple integer variable or
constant.

IF (SENSE LIGHT 4)10,20

IF (SENSE SWITCH ijn,, n,

If sense switch i is set (on), a jump occurs to statement ny. If it is not set
(off), a jump occurs to statement n_; i must be a simple integer variable or
constant (1 to 6). Sense switches are simulated as a SCOPE monitor function in
the 3400.

N=5

IF (SENSE SWITCH N)5,10

At execute time, the computer is set to interrupt on divide, overflow or
exponent fault. The fault condition statements should be placed immediately
after any statement for which the check is intended. If not, erroneous indica-
tions may be returned.

IF DIVIDE CHECK n;, n
IF DIVIDE FAULT n,, n,

The above statements are equivalent. A divide fault occurs following division

by zero. The statement checks for this fault; if it has occurred, the indicator
is turned off and a jump to statement n, takes place. If no fault exists, a jump
to statement n, takes place.

IF EXPONENT FAULT n,, n,

An exponent fault occurs when the result of a real or complex arithmetic
operation exceeds the upper limits specified for these types. Results that are
less than the lower limits are set to zero without indication. This statement
is therefore a test for floating-point overflow only. If the fault has occurred,
the indicator is turned off, and a jump to statement n, takes place. If no fault
exists a jump to statement n takes place.

IF OVERFLOW FAULT n,, n,

An overflow fault occurs when the magnitude of the result of an integer sum or
difference exceeds 247-1. This fault does not occur in division and it is not
indicated in multiplication. If the fault occurs, the indicator is turned off and
a jump to statement n takes place. If no fault exists, a jump to statement n,
takes place.

6.4
DO STATEMENT

DO LOOPS

DOni —ml, mz, m3

This statement makes it possible to repeat a group of subsequent statements
and to change the value of a fixed point variable during the repetition. n is the
number of the statement ending the DO loop. A comma separating n and i is
permissible. i is the index variable (simple integer). The m; are the index-
ing parameters; they may be unsigned non-zero integer constants or simple
integer variables. The initial value assigned to i is mq; mg is the largest
value assigned to i, and mg is the increment added to i after each iteration

of the DO loop. If mg does not appear, it is assigned the value 1.

The DO statement, the statement labeled n, and any intermediate statements
constitute a DO loop. Statement n may not be a GO TO, FORMAT, another
DO statement or an IF statement (except IF (L) S). See Transmission of
Arrays (section 9.1) and DATA statement (section 4.5) for usage of implied
DO loops.

The indexing parameters mjy, moy, mg are either unsigned non-zero integer
constants or simple integer variables. Subscripted variables and negative or
zero integer constants cause a diagnostic. If the value of the DO variable is
to be used outside the DO loop, it must appear as an operand in any statement
within the DO loop.

The indexing parameters mj and mg, if variable, may assume positive
or negative values, or zero.

The indexing parameter mg, if variable, should be a positive value.

The values of mg and mg may be changed during the execution of the
DO loop.

iis initially m;. As soon as i exceeds my, the loop is terminated.

DO loops may be nested 50 deep.

The initial value of i, m,, is compared with m, before executing the DO loop
and, if it does not exceed m,, the loop is executed. After this step, iis
increased by mg. Againiis compared with moy; this process continues until

i exceeds m, as shown below. Control then passes to the statement immediately
following n, and the DO loop is satisfied. Should m; exceed my on the initial
entry to the loop, the loop is not executed and control passes to the next state-
ment after n.

6-5

DO NESTS

START

Is isz" ‘NO »/ DO
r— ATISFIE

EXECUTE STATE-

MENTS IN LOOP
INCLUDING

STATEMENT N,

-
-

When the DO lcop is satisfied, the value of the index variable i is no longer
well defined. If a transfer out of the DO loop occurs before the DO is satisfied,
the value of i is preserved and may be used in subsequent statements.

When a DO loop contains another DO loop, the grouping is called a DO nest.
The last statement of a nested DO loop must either be the same as the last
statement of the outer DO loop or occur before it. H D;, Dy, ... D repre-
sent DO statements, where the subscripts indicate that D; appears before Dy
appears before Dg, and nj, ng, ..., n,, represent the corresponding limits of
the Dj, then n,) must appear before (or coincide with) ny,-1.. .o must appear
before (or coincide with) n;.

DO LOOP TRANSFER

Examples:

DO loops may be nested in common with other DO loops:

—n,

DO 1. 1=1,10,2
DO 2 J=1,5
DO 3: K=2,8

3 CON'iI‘INUE

2 CONEI‘]NUE
DO 4: 1~1,3

4 CONEI'INUE

1 CONTINUE

— D;

Dy

n2= n3

=

Ny

DO 100 L=2, LIMIT

DO 10 IF1,10
DO 10 J-1,10

10 CONTINUE
DO 20 K=K1,K2
20 CONTINUE

100 CONTINUE

DO51I=1,5
DO 5 J=1,10
DO 5 K=J,15

5 CONTINUE

In a DO nest, a transfer may be made from one DO loop into a DO loop that
contains it; and a transfer out of a DO nest is permissible.

The special case is transferring out of a nested DO loop and then transférring

back to the nest.

In 2 DO nest, if the range of i includes the range of j and a

transfer out of the range of j occurs, then a transfer into the range of i or j is

permissible.

6-7

6.5
OTHER CONTROL
STATEMENTS

CONTINUE

PAUSE

6-8

In the following diagram, EXTR represents a portion of the program outside
of the DO nest,

— i
j out
e
in
| in

If two or more DO loops terminate at the same statement and a transfer is
made to the terminal statement for the outer DO loop, then the inner DO
should have its own terminal statement,

Example:

DO 20 ITEM=1,5
IF (DATAITEM)) 11,20

11 STORE=DATA(ITEM)
DO 10 JOE= 1,6

10 CONTINUE
20 CONTINUE

CONTINUE

This statement is most frequently used as the last statement of a DO loop to
provide a loop termination when a GO TO or IF would normally be the last
statement of the loop. If CONTINUE is used elsewhere in the source program
it acts as a do-nothing instruction and control passes to the next sequential
program statement. Alphanumeric characters following a CONTINUE state-
ment are ignored (treated as a comment). Non-alphanumeric characters

may cause errors.,

PAUSE
PAUSE n

n £5 octal digits without a B suffix, PAUSE n generates a jump to the library
subroutine Q8QPAUSE where PAUSE n is typed out on the console typewriter.
When OK (for 3400) or any letter, digit, or symbol (for 3600) is typed on the
console and the carriage return key is pressed, program execution proceeds
with the statement immediately following PAUSE n. PAUSE (n omitted)
generates a jump to Q8QPAUSE, but acts as a do-nothing. Although n is
octal, a B suffix will cause a diagnostic. In DRUM SCOPE the operator
types @on the console and presses the carriage return key to return control
to the program.

STOP STOP
STOP n

n = 5 octal digits without a B suffix. STOP n generates a jump to the library
subroutine Q8QSTOP with n typed out on the console typewriter. When OK
(on 3400) or any letter, digit or symbol (on 3600) is typed on the console and
the carriage return key is pressed, an exit will be made to the SCOPE
monitor. STOP (n omitted) generates a jump to Q8QSTOP which causes
immediate exit to monitor. A B suffix will cause a diagnostic if used with n.
In Drum SCOPE when the operator types @ in the console and presses the
carriage return key, an exit will be made to the monitor (3600/3800),

END END

This statement mayinclude the name of the program or subprogram which it
terminates. This name is ignored. However, the name FILE may not be used.
END marks the physical end of a program or subprogram. It is executable

in the sense that it will effect return from a subprogram in the absence of a
RETURN.

6-9

7.1

PROGRAM AND
SUBPROGRAM
PARAMETERS

PROGRAM, FUNCTION, SUBROUTINE 7

A FORTRAN program consists of a main program with or without subprograms.
The main program and subprograms communicate with each other via parame-
ters and common variables and may call or may be called by any other subpro-
gram within the program as long as the calls are non-recursive. That is, if
program A calls subprogram B, subprogram B may not call program A.
Furthermore, a program or subprogram may not call itself. A calling
program is a main program or subprogram that refers to another subprogram.

There are two kinds of subprograms, subroutine and function. In the following
discussions, the term subprogram refers to both. Subprograms are compiled
independently of the main program.

In addition to multi-statement function subprograms, a function may be defined
by a single statement in the program (arithmetic statement function) or may be
defined in the compiler (library function).

An arithmetic statement function definition may appear only in a main program
or subprogram body and is available only to the subprogram or main program
containing it. The meanings of the identifiers appearing in a statement function
are the same as those assigned to them in the subprogram. A statement
function may contain references to function subprograms, library functions, or
other statement functions in the same subprogram.

Library function references may appear in the main program, subprograms,
and statement functions.

Main programs (when overlays and segments are used), subprograms, state-
ment functions, and library functions use parameters as one means of
communication. The parameters appearing in a subroutine call or a function
reference are actual parameters. The corresponding arguments appearing
with the program, subprogram, statement function or library function name
in the definition are formal parameters.

Actual and formal parameters must agree in order, type and number. If they
do not agree in type no conversion takes place. For the 3600, parameters
must agree in number for the first call of the subprogram only. Missing
parameters may only have been simple or subscripted variables, array
names or unsigned constants. (See example on page 7-4.) Missing param-
eters are not allowed on the 3400.

FORMAL PARAMETERS

ACTUAL PARAMETERS

7-2

Formal parameters may be array names, simple variables, or names of

library functions and function and subroutine subprograms. Since formal

parameters are local to the subprogram containing them, they may be the
same as names appearing outside the procedure.

No element of a formal parameter list may appear in a COMMON, DATA, or
EQUIVALENCE statement within the subroutine. If it does, a compiler
diagnostic results. When a formal parameter represents an array, it should
be dimensioned in a DIMENSION or TYPE (except 3400) statement within the
subprogram; otherwise, only the first element of the array will be available
to the subprogram and the array name must appear without subscripts.

Permissible forms:

arithmetic expression function subprogram name
constant library function name
simple or subscripted variable subroutine name

array name

When an actual parameter is a constant, the corresponding formal para-
meter should not be used as the object of a replacement or input statement
in the called subprogram. This would change the value of the constant in
the calling program or subprogram.,

Since a tunction always returns a single value, a function used as an actual
parameter may appear as one parameter or iwo parameters:

Two Parameters

FUNCTION PULL (X,Y)

B= X(.Y)

.
.

Function Subprogram Reference

EXTERNAL SINF
A= PULL (SINF,X)

The function SINF is passed as a parameter.

One Parameter
FUNCTION PULL (X)

.

B=X

Function Subprogram Reference

.
-

A= PULL (SINF(X))

The Value of SINF(X) is passed as a parameter.

When a subroutine appears as an actual parameter, the subroutine name may
appear alone or with a parameter list. When a subroutine appears with a
parameter list, the subroutine name and its parameters must appear as
separate actual parameters:

FUNCTION PULL (X,Y,Z)

CALL X(Y, Z)

Subroutine Subprogram Reference

EXTERNAL DIS
A= PULL(DIS, A,B)

When an actual parameter is the name of a function or subroutine, that name
must also appear in an EXTERNAL statement in the calling program,

7.2
MAIN PROGRAM

7-4

Example of missing parameter calls:

Subroutine Subprogram

SUBROUTINE PIP (A, B, C)

A = B**C

END

Ca.lli.ng Program Reference
1 CAL?L PIP (V(1), X, 3) parameters must agree in number
2 CAL:L PIP (V(2),Y,) or (V(2),Y) implies CALL PIP (V(2), Y, 3)
3 CALfL PIP (V(3),,4) implies CALL PIP (V(3), Y, 4)

4 CALL PIP (V(4),,) or (V(4)) implies CALL PIP (V(4), Y, 4)

The first statement of a main program must be of the following form; name
is an alphanumeric identifier, 1-8 characters:

PROGRAM name

When the PROGRAM statement appears in an overlay or segment, it has the
form:

PROGRAM name (py; ..., Pp) 1=n=59

The overlay or segment program is treated as a subroutine except the name
becomes the transfer name on the transfer (TRA) card. The formal parame-
ters, pj, correspond to the actual parameters in an overlay or segment call
(section 8.1).

7.3
SUBROUTINE
SUBPROGRAM

74
CALL STATEMENT

A subroutine is a computational procedure which may return none, one or
more values. No value or type is associated with the name of a subroutine.

The first statement of subroutine subprograms must have the following form;
name is an alphanumeric identifier and p; are formal parameters.

SUBROUTINE name
or
SUBROUTINE name (Py, ..., Pp) 1=n=63

The name of the subprogram must not appear in any declarative statement, as
an identifier in a replacement statement, in an input/output list, or as an
argument of a CALL statement.

The executable statement in the calling program for referring to a subroutine
is:

CALL name
or
CALL name (P3, ..., Pp) 1=n=¢63

name is the name of the subroutine being called, and p; are the actual para-
meters. The name may not appear in any declarative statement in the calling
program with the exception of the EXTERNAL statement when name is also an
actual parameter. Name should not be a Library Function Name (Appendix C) .,

The CALL statement transfers control to the subroutine. When a RETURN or
END statement is encountered in the subroutine, control is returned to the
next executable statement following the CALL in the calling program. If the
CALL statement is the last statement in a DO loop, looping continues until
satisfied.

Examples:

1) Subroutine Subprogram

SUBROUTINE BLVDLDR (A, B, W)
W = 2. *B/A
END

7.5
FUNCTION
SUBPROGRAM

7-6

Calling Program References

CALL BLVDLDR (X(I), Y(I), W)
CALL BLVDLDR (X()+H/2., Y(+C(1)/2. , W)

CALL BLVDLDR (X(D+H, Y()+C(3), Z)

2) Subroutine Subprogram (Matrix Multiply)

SUBROUTINE MATMULT
COMMON/BLK1/X(20, 20), Y(20, 20), Z(20, 20)
DO 10 1,20
DO 10 J=1,20
Z(1,J) = 0.
DO 10 K=1,20
10 Z®E H=2Z(,)X, K)*Y (K, J)
RETURN
END

Calling Program References

COMMON/BLK1/A (20, 20), B(20, 20), C(20, 20)

CALL MATMULT

A function is a computational procedure which returns a single value asso-
ciated with the function name. The mode of the function is determined by a
type indicator or the name of the function.

The first statement of a function subprogram must have the following form:

type FUNCTION name (P, ---» Pp)
or 1 <n=<63
FUNCTION name (py, ---> Pp)

Type is REAL, INTEGER, DOUBLE PRECISION, COMPLEX, LOGICAL.
When the type indicator is omitted, the mode is determined by the first char-
acter of the function name or a TYPE declaration. Name is an alphanumeric
identifier and p; are formal parameters.

7.6
FUNCTION
REFERENCE

The name of a function must not be dimensioned. The name must appear,
however, at least once within the function subprogram as any of the following:

the left-hand identifier of a replacement statement
an element of an input list

an actual parameter of a subprogram call

name(pl, cees pn) 1=n =63

name identifies the function being referenced; it is an alphanumeric identifier
and its type is determined in the same way as a variable identifier. p; are
actual parameters. The name of a function subprogram should not be a
Library Function Name (see Appendix C).

A function reference may appear any place in an expression that an operand
may be used. The evaluated function will have a single value associated with
the function name. When a function reference is encountered in an expression,
control is transferred to the function indicated. When a RETURN or END
statement in the function subprogram is encountered, control is returned to
the statement containing the function reference.
Example (1)
Function Subprogram
FUNCTION GREATER (A,B)
IF (A.GT.B)1,2
1 GREATER=A-B
RETURN
2 GREATER= A+B

END

Calling Program Reference

Z(,J)=F14F2-GREATER(C-D, 3. *1/J)

When a variable is used as an index which is subsequently modified in a function
subprogram, a statement, variable = variable, must follow the statement con-
taining the function reference to insure proper updating of index functions
depending on this variable.

7-7

Example (2)
Function Subprogram
FUNCTION FUS (C,D)
COMMON L1

L1=11+2

END

Calling Program Reference

COMMON L1
W=F(L1,3)
A=FUS(C,D)
IL1=11
W=F(L1,d)
7.7
STATEMENT
FUNCTION A statement function is defined by a single expression and applies to the

program or subprogram containing the definition.
name (py ..., P)=E 1<n<63

The name of the statement function is an alphanumeric identifier; a single value
is associated with the name. The formal parameters pi' must be simple
variables. The expression E may contain references to library functions,
statement functions, or function subprograms. Formal parameters should
appear in the expression. Non-parameter identifiers in the expression have
the same values as they have outside the function,

During compilation, the statement function definition is inserted in the code
wherever the statement function reference appears as an operand in an ex-
pression. A statement function reference has the form:

name (Py, ..., Pp)

Name is the name of the statement function; the actual parameters p; may be
any arithmetic expressions. The statement function name must not be
dimensioned or appear in an EQUIVALENCE, COMMON or EXTERNAL
statement.

All statement functions must precede the first executable statement of the
program or subprogram, but they must follow all declarative statements.

Actual and formal parameters must agree only in number and order. The type
of the statement function name or formal parameters is ignored; the mode of
the evaluated statement function is determined by the expression E evaluated
with the actual parameters (chapter 2). Statement function references may
not have missing parameters.

Statement function names must not appear as actual or formal parameters.
Statement function names may be contained in a parameter list if they appear
with parameters, e.g., CALL SUB (ASF (1.,2.),X).

Example: (1)

SUBROUTINE SMAT
7(X,Y)=(1.,0.)*EXPF(X)*COSF(Y)+(0. ,1.) *EXPF (X)*SINF(Y)

3 X=7Z(3.,8.)/R+S

END
This arithmetic statement function computes the complex exponential
Z(X,Y) = eX'Y, The formal parameters X and Y assume the values

3. and 8. and the statement function expression replaces the state-
ment function reference in statement 3.

X=((1.,0.)*EXPF(3.)*COSF(8.)+(0.,1.)*EXPF (3.) *SINF(8.))/R+S
Example: (2)

SUBROUTINE EXAM
XOR (X,Y)=(X.OR.Y). AND. .NOT. (X.AND.Y)

A=XOR(R,S)

END

This masking statement function computes the exclusive OR of the
formal parameters X, Y.

7-9

7.8
LIBRARY FUNCTIONS The standard library functions are available as listed in Appendix C. When
one of these appears as an operand in an expression, the compiler identifies it

as a library function and generates the appropriate calling sequence within the
object program.

The modes of the library functions have been established through usage. The
compiler recognizes the library functions and associates the established type
with the results. The actual parameters must be the type indicated in
Appendix C; if they are not, no conversion is done.

For example, in the function identifier LOGF, the first letter, L, would
normally cause that function to return an integer result. The compiler

recognizes LOGF as a standard library function with the return of a real
result.

The FORTRAN IV function name mnemonics that differ from 3400/3600
FORTRAN function names will have an object code reference to the corres-
ponding 3400/3600 FORTRAN library name. For example, SIN and COS will
reference SINF and COSF. Consequently, no 3400/3600 function subprogram
may have a FORTRAN IV name.

79
RETURN AND END A subprogram normally contains RETURN statements that indicate the end of
logic flow within the subprogram and return control to the calling program.

In function subprograms, control returns to the statement containing the
function reference. In subroutine subprogram, control returns to the next
executable statement following the CALL. A RETURN statement in the main
program causes an exit to the monitor.

The END statement marks the physical end of a program, subroutine subpro-
gram or function subprogram. If the RETURN statement is omitted, END
acts as a RETURN.,

PROGRAM

ARRANGEMENT FORTRAN assumes that all statements and comments appearing between a
PROGRAM, SUBROUTINE or FUNCTION statement and an END statement
belong to that subprogram. Comment statements located after END are
associated with the subprogram containing the END statement. A typical
arrangement of a set of main program and subprograms follows.

7-10

PROGRAM SOMTHING

END
SUBROUTINE S1

|
I
-
-
o

FUNCTION F1 (..

FUNCTION F2 (...)

7.10
ENTRY STATEMENT This statement provides alternate entry points to a function or subroutine
subprogram.
ENTRY name

Name is an alphanumeric identifier, and may appear within the subprogram
only in the ENTRY statement. Each entry identifier must appear in a separate
ENTRY statement. The maximum number of entry points, including the sub-
program name, is 20. The formal parameters, if any, appearing with the
FUNCTION or SUBROUTINE statement do not appear with the ENTRY state-
ment. ENTRY may appear anywhere within the subprogram executable
statement range except within a DO; it cannot be labeled.

In the calling program, the reference to the entry name is made just as if

reference were being made to the FUNCTION or SUBROUTINE in which the
ENTRY is imbedded.

7-11

ENTRY names must agree in type with the function or subroutine name.
Examples:

FUNCTION JOE(X, Y)
10 JOE=X+Y
RETURN
ENTRY JAM
IFX.GT.Y)10,20
20 JOE=X-Y
END

This could be called from the main program as follows:

Z=A+B-JOE(3.*P,Q-1)

R=S+JAM(Q, 2. *P)

7-12

7.11
EXTERNAL
STATEMENT

When the actual parameter list of a given function or subroutine reference
contains a function or subroutine name, that name must be declared in an
EXTERNAL statement.

EXTERNAL identifierl, identifier2 y e

Identifier; are the names of functions or subroutines. The EXTERNAL
statement must precede the first executable statement of any program in
which it appears. When it is used, EXTERNAL always appears in the calling
program; it must not be used with arithmetic statement functions. If it is,

a compiler diagnostic is given.

The EXTERNAL statement is optional in the following case:

In a subprogram, if the function or subroutine name appearing as a par-
ameter has been declared as a formal parameter of that subprogram.

PROGRAM TEST
EXTERNAL ONE
CALL TEST2 (ONE)
END

SUBROUTINE TEST2 (FUN)

EXTERNAL FUN may be omitted
CALL TEST3 (FUN)

END

Examples:

1) Function Subprogram

FUNCTION PHI(ALFA,PHI2)
PHI=PHI2(ALFA)
END

7-13

Calling Program Reference

EXTERNAL SINF

C=D-PHI(Q(K),SINF)
From its call in the main program, the formal parameter ALFA is

replaced by Q(K), and the formal parameter PHI2 is replaced by SINF.
PHI will be replaced by the value of the sine of Q(K).

2) Function Subprogram

FUNCTION PSYCHE (A,B,X)
CALL X

PSYCHE = A/B*2.*(A-B)
END

Calling Program Reference

EXTERNAL EROS

R=S-PSYCHE (TLIM, ULIM, EROS)

In the function subprogram, TLIM, ULIM replaces A,B. The CALL X is
a call to a subroutine named EROS. EROS appears in an EXTERNAL
statement so that the compiler recognizes it as a subroutine name rather
than a variable identifier.

3) Function Subprogram

FUNCTION AL(W,X,Y,7)
CALL W(X,Y,Z)
AL=Z**4

RETURN

END

7-14

4)

Calling Program Reference

EXTERNAL SUM

G=AL(SUM,E,V,H)

In the function subprogram the name of the subroutine (SUM) and its
parameters (E,V,H) replace W and X,Y,Z. SUM appears in the
EXTERNAL statement so that the compiler will treat it as a sub-
routine name rather than a variable identifier.

Subroutine Subprogram

SUBROUTINE ISHTAR (Y, Z)
COMMON/1/X(100)
7=0.
DO 5 1=1,100
5 Z=Z+X()
CALLY
RETURN
END

Calling Program Reference

COMMON/1/A(100)
EXTERNAL PRNTIT

CALL ISHTAR (PRNTIT,SUM)

7-15

7.12

VARIABLE

DIMENSIONS In many subprograms, especially those performing matrix manipulation, the
programmer may wish to vary the dimension of the arrays each time the
subprogram is called. This is accomplished by specifying the array identifier
and its dimensions as formal parameters in the FUNCTION or SUBROUTINE |
statement heading a subprogram. In the subroutine call from the calling pro-
gram, the corresponding actual parameters specified in the calling program
reference are used by the called subprogram. The maximum dimension that
any given array may assume is determined by a dimensioning statement in the
calling program at compile time.

The formal parameters representing the array variable dimensions must be
simple integer variables. The array identifier must also be a formal parame-
ter. The actual parameters representing the array dimensions may be
unsigned non-zero integer constants or integer variables.

If the total number of elements of a given array in the calling program is N, then
then the total number of elements of the corresponding array in the subprogram
may not exceed N.

Examples:
1) Consider a simple matrix add routine written as a subroutine:

SUBROUTINE MATADD(X, Y, Z, M, N)
DIMENSION X(M, N), Y(M, N), Z(M, N)
DO 10 =1, M
DO 10 J=1,N

10 Z(, 3)=X{,)+Y (I, J)
RETURN
END

The arrays X, Y, Z and the variable dimensions M, N must all appear as
formal parameters in the SUBROUTINE statement and be declared in a
DIMENSION or TYPE (except 3400) statement. If the calling program con-
tains the array allocation declaration:

DIMENSION A(10,10), B(10,10), C(10,10),
1E(5,5), F(5,5),G(5,5), H(10,10)

7-16

2)

The program may call the subroutine MATADD from several places within
the main program as follows:

CALL MATADD (A, B, C, 10, 10)
CALL MATADD (E, F, G, 5, 5)
CALL MATADD (B, C, A, 10,10)

CALL MATADD (B, C, H,10,10)

The compiler does not check whether the limits of the array established
by the dimensioning statement in the main program are exceeded.

-

Yi1-+-Yin Its transpose Y' is:
Yo1--+-Y2n Yir Y21 Y31 Va1
Y=‘ ' . . . 3
¥31---¥3n Y =
YIn ¥2n Y3n Y4n
\Y41- *+Y4n

The following FORTRAN program permits variation of N from call to call:

SUBROUTINE MATRAN (Y, YPRIME, N)
DIMENSION Y(4,N), YPRIME (N, 4)

DO 7 I=1,N

DO 7 J=1,4

7 YPRIME (I, J)=Y(J,])

END

OVERLAYS AND SEGMENTS 8

Programs that exceed available memory may be divided into independent
parts which may be called and executed as needed. Such programs consist of
a main program, overlays of the main program and segments of overlays.
The main program may contain subprograms; overlays and segments are one
or more subprograms. One subprogram in each overlay and segment must
begin with the following statement:

PROGRAM name
or
PROGRAM name (p1, -.., Pp) 1=n=59

Name is the transfer address for the overlay or segment, and p; are formal
parameters corresponding to the actual parameters pj in the call statement.

The main subprogram remains in core storage during execution; overlays and
segments are loaded from an overlay tape when called. Only main, one overlay,
and one segment may occupy storage at a given time. The main program may
call overlays and segments. An overlay may not call another overlay; over-
lays may only call their associated segments. A segment belonging to an
overlay not currently in storage cannot be loaded. Overlays, and segments
within an overlay, may be called in any order.

When a call is encountered, control is transferred to a FORTRAN subroutine
which has an entry point for overlays, OVERLAY, and an entry point for
segments, SEGMENT. The FORTRAN subroutine passes the parameters to
LOVER, a SCOPE subroutine, which loads the overlay or segment from the
overlay tape.

An overlay or segment, entered via the return jump instruction (3400) or
bank return jump instruction (3600) when LOVER is used, should exit with a
normal return. The overlay or segment may also exit directly to the calling
overlay or main program; however, because of the bookkeeping in LOVER,
a new overlay or segment cannot be loaded until the previous one has exited
with a normal return.

For information on preparation and format of overlay tapes, and deck structure

for processing overlays see 3600 SCOPE/Reference Manual, Pub. No.
60053300.

8-1

8.1

FORTRAN CALL FORTRAN source subprograms use the following call statement to load and
execute overlays and segments:

jSEGMENT}
CALL |OVERLAY (o,s,u,d,pl, ces pn)
0 overlay identification number; specified for both segment and

overlay. Overlays are numbered sequentially, starting at 1, on
each overlay tape. Segments are numbered sequentially, starting
at 1, for each overlay.

s segment identification number, blank (3600) or zero (3400) if the
call references an overlay.

u logical unit number of the overlay tape.

d dummy parameter which must be present if any actual parameters
appear, otherwise it may be blank. d may also be the literal
8H. RECALL. or a variable containing that literal if the last loaded
overlay or segment is to be recalled. In recall mode, the overlay
or segment is not reloaded; initialization of variables local to the
overlay or segment is the programmers responsibility. In RE-
CALL mode, the overlay, segment, and unit parameters should
appear.

p. actual parameters, if any, to be passed to the overlay or segment
routine; no more than 59 may appear.

If o, s, u, ord is blank, the comma must appear; when they are present, the
order is fixed.

8.2
COMPASS
CALLING SEQUENCE This calling sequence is generated during compilation for the CALL statement:
3400 3600
{OVERILAY (j SEGMENT |
RTJ)\ SEGMENT BRTT ®) 9 ovEriay S
n *4+m + SLJ *+m
+ 00 0 n DICT.
00 s + 00 $)o
+ 00 u 00 ($)s
00 d + 00 ($)u
+ 00 Py 00 ($)d
. + 00 $)p
1
00 P . .
n
00 $p,

n is the total number of parameters in the FORTRAN call state-
ment (0...pp)

+1
m is (—n-z—)ﬂ; *+m is the return address

DICT. contains the entry point into the subroutine called and is used by
the standard error procedure

The above calling sequence jumps to the OVERLAY or SEGMENT subroutine
which passes the parameters o, s, and u to LOVER. LOVER loads the
segment or overlay and returns either a loading error code (in the A register)
or the transfer address (in the Q register) for the overlay or segment loaded.

If no errors occur during loading, the following call to the transfer address is
generated by the SEGMENT or OVERLAY subroutine. Control is then given
to the overlay or segment subroutine.

3400 3600
RTJ name BRTJ ($) name, , *
n *+m + SLJ *+m
+ 00 P n DICT.
+ 00 Py
00 Pn
00 P,
name is the transfer address for the loaded overlay or segment
n is the total number of parameters p1 RN pn.
m, DICT. are defined above
pi are the actual parameters in the FORTRAN call
Example:

PROGRAM SUB2 (X, Y, Z)

CALL SEGMENT (3,2,25,,A,B,C)

8-3

8-4

The transfer address in segment 2 of overlay 3 is SUB2.

FORTRAN to load the segment is:

BRTJ
SLJ
07

00

00

00

00

00

00

00

nop

The call from SEGMENT to the transfer address SUB2 in segment 2 of overlay

3 is:

BRTJ
SLJ
03

00

00

00

($) SEGMENT, , *
*+5

DICT.

($)=D3

($)=D2

($)=D25

$o

$HA

($)B

$c

($) SUB2, ,*
*+3

DICT.

$A

($B

HC

The call for 3600

8.3

ERRORS If errors occur during the loading of the overlays or segments, the job is
terminated. The A register will contain the contents of the parameters for the
last LOVER call specified. ‘

@W=lufo] o T o] &

47 41 38 23 14

ol_|

u = logical unit number
o = overlay number
5 = segment number

The contents of the A register is written out followed by one of the following

messages:
3400 3600
NON-RECOVERABLE PARITY ERROR READ PARITY ERROR

Non-recoverable parity error encountered when loading overlay or
segment record.

ILLEGAL LOGICAL UNIT USED LUN OUT OF RANGE
Specified logical unit is not 1-49.

TOO MANY LOGICAL UNITS USED USE OF TOO MANY LUN
More than four logical units addressed in reading overlay and segment
records.

RECORD CALLED NOT ON THIS UNIT RECORD NOT ON THIS LUN

Overlay or segment in calling sequence not on specified logical unit.

INCONSISTENT SEQUENCE ILLEGAL SEQUENCE
Overlay or segment in calling sequence not consistent with last overlay
or segment loaded.

OUT OF BOUNDS LOAD ATTEMPTED OUT OF BOUNDS LOAD
Attempt was made to load an overlay or segment out of bounds.

9.1
1/O LIST

FORMAT SPECIFICATIONS 9

Data transmission between storage and external units requires an I/O control
statement and for BCD, a FORMAT statement. The I/0O statement specifies
the input/output device and process--READ, WRITE, and a list of data to be
moved. The FORMAT statement specifies the manner in which the data is to
be converted, edited and moved. In binary tape statements, no FORMAT
statement is used.

The list portion of an I/O control statement indicates the data elements and the
order, from left to right, of transmission. Elements may be simple variables
or array names (subscripted or non-subscripted). They may be unsigned con-
stants on output only. All variables in the list must be standard type. List
elements are separated by commas, and the order must correspond to the
order of the FORMAT specifications.

Subscripts in an I/0 list may be one of the following standard forms:

(c*I+d)
(I£d)
(c*T)

@

(c)

¢ and d are unsigned integer constants; and I is a simple integer variable,
previously defined, or defined within an implied DO loop.

Non-standard subscripted variables are allowed in an I/O list which does not
contain an implied DO loop. (See Subscript Forms, p. 1-6.)

Examples:
A, B,H(D),Q(3,4) ((BUZ (K, 2*L),K= 1,5), L-1,13, 2)
SPECS QE), Z(2,2), (TUP(3*I-4), =2, 10)
A, DELTAX(J*+ 1) (RAZ(K),K= 1, LIM1, LIM2)
3.2,10,1.56D0, 5SHEND ((B,1(3), Z,X(L), J= 1, 5), L=1,10)

A+ J/K-INTF(SINF (X)), B(A(D)

9-1

DO-IMPLYING

SEGMENTS A DO-implying segment consists of one or more list elements and indexing
values. Multi-dimensioned arrays may appear in the list, with values specified
for the range of the subscripts in an implied DO loop. The general form is:

(((AQ,J,K), yj=mj,mg,mg), ya=nj,n9,n3), y3=p1,P9,P3)

mj,nj,pj unsigned integer constants or predefined positive integer
variables. If mg,ng or pg is omitted, it is construed as 1.

I,J,K are subscripts of A and must be of the standard form.

v1.v2:v3 L J, or K; y1#ya#ys

During execution, each subscript (index variable) is set to the initial index
value: Y1 =m1 s Y9 :nl > Y3 =p1 .

The first index variable defined in the list is incremented first. Data named
in the implied DO loops is transmitted in increments according to mg until the
my is exceeded. If the third parameter is omitted, the increment value is 1.
When the first index variable reaches the maximum value, it is reset; the next
index variable to the right is incremented and the process is repeated until the
last index variable has been incremented. If mq initially exceeds mg, a card
is read but no data is transmitted.

The DO-implying segment replaces a nest of DO loops of the form:

DO 10 v3=p;.Py,P3
DO 10 yg=njp,ny,ng
DO 10 yj; =mj,my,mg
Transmit A(l, J, K)

10 CONTINUE

An implied DO loop may also be used to transmit a variable or sequence of
variables more than one time. In (A,K=1,10), A will be transmitted 10 times.

The I/0 list may contain nested implied DO loops to a maximum depth of 10.
Examples:
1) DO loops nested 5 deep:

(((((A(I:JyK)’ BM), C(N), N:n]_’nz’n3): M=m1,m2,m3),
K=k;.kg,kg). J=j1,J2,J3) IFip,ip,i3)

9-2

During execution, each subscript (index variable) is set to the initial
index value: IFiy, J=j;, K=kj, M=m;, N=n;.

2) To transmit the elements of a 3 by 3 matrix by columns:
((A@, J), =1,3), J=1,3)
3) To transmit the elements of a 3 by 3 matrix by rows:
(A), 3-1,3), F1,3)
4) (B@), L, (AQ,L), I=1,L), J=3,9,3)
In this input I/0O list, L appears before it is used as an index function.
5) (CAT, DOG, RAT, I=1,10)
The variables CAT, DOG, RAT will be transmitted 10 times.
If any of the variables are arrays, the entire array will be
transmitted 10 times.
TRANSMITTING
ENTIRE ARRAYS If a dimensioned array name appears in a list without subscripts the entire

array is transmitted.

Example:

DIMENSION SPECS (7,5, 3)

Transmit SPECS

transmits the array SPECS as if under control of the nested DO loops:

DO 10 K=1,3

DO 10 J=1,5

DO 10 1,7

Transmit SPECS(I, J, K)
10 CONTINUE

or as if under control of an implied DO loop;

., ((SPECS(1,J,K), 1,7), J=1,5), K=1,3), ...

9.2

FORMAT

STATEMENT Each BCD I/O control statement references a FORMAT statement which con-
tains the specifications relating to the internal-external structure of the
corresponding 1/0 list elements.

FORMAT (specq, ..., k(specy,, «..), spec,, ...)

Speci are format specifications and k is an optional repetition factor which
must be an unsigned integer constant. The FORMAT statement is non-
executable, and may appear anywhere in the program.

If the control card option, F, does not appear, the FORMAT statement is
checked and converted to an interpretive list at compile time. Any erroneous
specifications or improper form in the statement will be diagnosed. FORMAT
statements read in at object time are still acceptable (section 9.7).

9.3

CONVERSION

SPECIFICATIONS The data elements in I/O lists are converted from external to internal or from
internal to external representation according to FORMAT conversion specifi-
cations. FORMAT specifications may also contain editing codes.

Conversion Specifications

Ew.d Single precision floating point with exponent

Fw.d Single precision floating point without exponent
Dw.d Double precision floating point with exponent
C(Zw.d,Zw.d) Complex conversion; Z may be E or F conversion

Iw Decimal integer conversion
Ow Octal integer conversion
Aw Alphanumeric conversion
Rw Alphanumeric conversion
Lw Logical conversion

nP Scaling factor

Editing specifications

wX Intra-line spacing

{*. ¥ } . d labeli
wH Heading and labeling
/ Begin new record

Both w and d are unsigned integer constants. w specifies field width, the
number of character positions in the record; and d specifies the number of
digits to the right of the decimal within the field.

Ew.d OUTPUT

Ew.d INPUT

E conversion converts floating point numbers in storage to the BCD character
form for output. The field occupies w positions in the output record; the
corresponding floating point number will appear right justified in the field as

Aa. a- - - g*eee 0 < eee < 308

o, a--- are the most significant digits of the integer and fractional part and
eee are the digits in the exponent. If d is zero or blank, the decimal point
and fraction to the right of the decimal do not appear as shown above. Field
w must be wide enough to contain significant digits, signs, decimal point, and
exponent. Generally, w is greater than or equal to d+7.

If the field is not long enough to contain the output value, asterisks are inserted
for the entire field. If the field is longer than the output value, the quantity is
right justified with blank fill to the left.

For P-scaling on output, see section 9.5.
Examples Ew.d Output:

PRINT 10, A A contains -67. 32
10 FORMAT(E10. 3) or +67.32
Result: -6.732+001 or A6.732+001

PRINT 10,A
10 FORMAT(E13.3)
Result: ypp-6.732+001 or AAAB- 732+001

PRINT 10,A h A contains -67. 32

10 FORMAT(ES. 3)
Result: ok ok %k ok kK k

> provision not made for sign
PRINT 10,A

10 FORMAT(E10.4)
Result: *xkrkkskokskok J

The E specification converts the number in the input field (specified by w) to
a real and stores it in the appropriate storage location.

9-5

9-6

Subfield structure of the input field:

input field
~ A A}
+ +
digit E
integer fraction exponent
-——decimal point

The total number of characters in the input field is specified by w. This field
is scanned from left to right; blanks are interpreted as zeros. Leading blanks
in the input field are ignored.

An integer subfield begins with a sign (+ or -) or a digit and may contain a
string of digits terminated by a decimal point, an E or D, a + or -, or the
end of the input field.

A fraction subfield begins with a decimal point and may contain a string of
digits terminated by an E or D, a + or -, or the end of the input field,

An exponent subfield may begin with an E or D, a + or -, When it begins
with D or E, the + is optional between D or E and the string of digits of the
subfield, The value of a string of digits in this subfield must not exceed 308,

Permissible subfield conbinations:

+1,6327-04 integer fraction exponent
-32.7216 integer fraction

+328+5 integer exponent
.629E~1 fraction exponent

+136 integer only

. 07628431 fraction only

E-06 (interpreted as zero) exponent only

In the Ew.d specification, d acts as a negative power of ten scaling factor
when the decimal point is not present. The internal representation of the
input quantity will be:

(integer subfield) x10~dx1o(exponent subfield)

For example, if the specification is E7.8, the input quantity 3267+05 will be
converted and stored as: 3267 x10~8x10%= 3.267,

When d does not appear it is assumed to be zero.

If E conversion is specified, but a decimal point occurs in the input constants,
the decimal point will override d. The input quantity 3. 67294+5 may be read
by any E9.d specification but will always be stored as 3. 67294x10°,

The field length specified by w in Ew.d should always be the same as the length
of the input field containing the input number. When it is not, incorrect num-
bers may be read, converted and stored as shown below. The field w includes
the significant digits, signs, decimal point, E, and exponent.

READ 20,A, B, C
20 FORMAT (E9.3,E7.2,E10.3)

The input quantities appear on a card in three contiguous field columns 1
through 24:

{ 9 Is{ 10 i
+6. 47E-01-2. 36+5. 321 E+02

The second specification (E7.2) exceeds the physical field width of the
second value by two characters.

Reading proceeds as follows:

—9 ——-L_
7 —-L_

10—

6. 47E-01]-2. 36+5. 321 E+02

+6. 4TE-01{-2. 36+5{. 321 E+02)

+6. 47E-01-2. 36+5. 321 E+02))

First +6.47-01 is read, converted and placed in location A.

Next, -2.36+5 is read, converted and placed in location B. The number
actually desired was -2.36, but the specification error (E7.2 instead of
E5.2) caused the two extra characters to be read. The number read
(-2.36+5) is a legitimate input representation under the definitions and
restrictions.

Finally .321E+0200 is read, converted and placed in location C even
though it is not the number desired.

The above example illustrates a situation where numbers are incorrectly read,
converted, and stored, and yet there is no immediate indication that an error

has occurred.

9-7

Fw.d

Examples Ew.d Input:

Specifi- Converted

Input Field cation Value Remarks
+143.26E-03 E11.2 .14326 All subfields present
-12.437629E+1 E13.6 -124.37629 All subfields present
8936 E+004 E9.10 . 008936 No fraction subfield. Input con-

verted as 8936.x10-10+4
327.625 E7.3 327.625 No exponent subfield
4.376 E5 4.376 No d in specification
-.0003627+5 E11.7 -36.27 Integer subfield contains - only
-.0003627E5 E11.7 -36.27 Integer subfield contains - only
blanks Ew.d -0. All subfields empty
1E1 E3.0 10. No fraction subfield. Input con-
verted as 1.x101
E+06 E10.6 0. No integer or fraction subfield.

Zero stored regardless of exponent
field contents.

1. pAEpl E6.3 10. Blanks interpreted as zeros.

The field occupies w positions in the output record; the corresponding list
element must be a floating point quantity, and it will appear as a decimal num-
ber, right justified in the field w, as:

Ad-—=5. 5

b represents the most significant digits. The number of decimal places to
the right of the decimal is specified by d. If d is zero or omitted, the decimal
point and digits to the right do not appear. If the number is positive, the +
sign is suppressed. On output, w is generally greater than or equal to d+ 3
to allow for the decimal point, at least one digit, and a possible minus sign.

If the field is too short to accommodate the number, asterisks will appear in
the output field. If the field w is longer than required, it is right justified
with blanks occupying the excess positions to the left.

For F conversion output, the magnitude of the internal number representation
after P-scaling must not exceed 1014,

Output Examples:
A contains +32.694

PRINT 10, A
10 FORMAT(F7.3)
Result: A32.694

PRINT 11,A
11 FORMAT(F10.3)
Result: AAAA32.694

A contains -32.694

PRINT 12, A
12 FORMAT (F6. 3) no provision for - sign
Result: *¥*xkx

Fw.d input is a modification of Ew.d. The input field consists of an integer
and a fraction subfield. An omitted subfield is assumed to be zero. All the
restrictions for Ew.d input apply. P scaling is permissible.

Input Examples:

Specifi- Converted

Input Field cation Value Remarks
367.2593 F8.4 367.2593 Integer and fraction field
37925 F5.7 . 0037925 No fraction subfield. Input con-
verted as 37925 x 1077
-4.7366 F7 -4.7366 No d in specification
. 62543 F6.5 . 62543 No integer subfield
. 62543 F6.d . 62543 Decimal point overrides d
+144.15E-03 F11.2 .14415 Exponents allowed in F input and

may have P-scaling

blanks Fw.d -0. All subfields empty

99

Dw.d D conversion corresponds to Ew.d input except that 25 (84 binary bits) is the

maximum number of significant digits in the combined integer-fraction field;
excess digits are read and discarded. P-scaling is not applicable for input.

The field occupies w positions of the output record, the corresponding list
element which must be a double precision quantity will appear as a decimal
number, right justified in the field w as:

Aq. o -~ - ateee 0 = eee =308
Input Example:
TYPE DOUBLE Z,Y,X
READ1, Z,Y,X
1 FORMAT (D24.17,D15,D17.4)

Input card:

col.1
N—

-6.31675298443769217E-03+2.71892645314716293477 528869D-0j

e 24 15 17 |

CZ,w,.d,,Z,w,.d,) Z is either E or F. The field occupies w; + wp character positions, and the
corresponding list element must be complex. wj and wg are two real values;
w1 represents the real part of the complex number and W9 represents the
imaginary part. The value may be one of the following forms:

A§,0---0 Exp. 2 8,6---5 Exp. (Ew.d, Ew.d)
A§ 0---38 Exp. 2 6---0,6---0 (Ew.d, Fw.d)
2§---8,6---8 25 ,6---0 Exp. (Fw.d, Ew.d)
e D Lk AN T, BT B) (Fw.d, Fw.d)

EXp is £ 616293.
The restrictions for Ew.d and Fw.d apply. If spaces are to appear between the

two output numbers, the second specification should indicate a field (wz)
larger than required.

9-10

Output Example:

TYPE COMPLEX A real part of A is 362.92
PRINT 10, A imaginary part is -46.73
10 FORMAT (C(F7.2,F9.2))

Result: 7362.92AA7-46.73

Input Example:

TYPE COMPLEX A, B
READ 10, A, B
10 FORMAT (C(F6.2,F6.2), C(E10.3,E10.3))

Input card:

3+13.91+1.456E+03-1.216E-01

l‘e. 6—-L—10 ~,L 10 !

|

N~
N
-

I specification is used to output decimal integer values; and the corresponding
list element must be a decimal integer quantity. The output quantity occupies
w output record positions right justified in the field w, as:

P

¢ are the most significant decimal digits (maximum 15) of the integer; if
positive the + sign is suppressed.

If the field w is larger than required, the output quantity is right justified with
blanks occupying excess positions to the left. If the field is too short, asterisks
will appear in the output field in 3400 FORTRAN; in 3600 FORTRAN, excess
characters are discarded from the left.

Output Example:

PRINT 10,1,J,K I contains -3762
10 FORMAT (I8, 110, I5) J contains +4762937
K contains +13

Result: AAA-3762AA 747629377 A ALS

]

9-11

9-12

The input field w which consists of an integer subfield may contain only the
characters +, -, 0 through 9, or blank. When a sign appears, it must
precede the first digit in the field; blanks are interpreted as zeros. The
value is stored right-justified in the specified variable. An all blank field
is interpreted as -0. The integer subfield may not exceed 2 47 _ .

Input Example:

READ 10,1,J,K, L, M, N
10 FORMAT (I3,17,12,13, 12, 14)

Input card:

col 1

139 /\-15/\/\18 7/\3 1/\4

I contains 139
J contains -1500
K contains 18
L contains 7
M contains 3
N contains 104

Octal integer values are converted under O specification. The field is w
octal integer characters in length and the corresponding list element should
be an integer quantity.

The output, unsigned octal integer values, occupies w output record posi-
tions, and the octal digits will appear right justified in the field as: 6 ... ¢

In 3600, if w is 16 or less, the rightmost w digits appear; in 3400, asterisks
will appear in the output field. If w is greater than 16, the number is right
justified in the field with blanks to the left of the output quantity. A negative
number is output in its machine form (one's complement).

The input field w consists of an integer subfield only (maximum of 16 octal
digits). In 3600, if w > 16, the first w - 16 characters are ignored and the
last 16 characters are read. In 3400, the first w - 16 characters must be
blank or an error occurs when w > 16. The only characters that may appear
in the field are + or -, blank and 0 through 7. Only one sign is permitted;

it must precede the first digit in the field. Blanks are interpreted as zeros,
An all blank field is converted as -0.

Input Example:
TYPE INTEGER P,Q,R
READ 10,P,Q,R
10 FORMAT (010,012,02)

Input Card:

3737373737666 56644 5 444-0
10 12 2

P contains 0000003737373737
Q contains 0000666066440444
R contains 7777777777777

A negative octal number is represented internally in 16-digit seven's comple-
ment form obtained by subtracting each digit of an octal number from seven.
For example, if -703 is an input quantity, its internal representation is
7ITTTT7777777074. That is,

710NNV
-0000000000000703
TTTTTTTTI7777074

This conversion outputs alphanumeric characters. If w is 8 or more, the
output quantity appears right justified in the output field, blank fill to left. I w
is less than 8, the output quantity represents the leftmost w characters, left
justified in the field.

On input, this specification will accept as list elements any set of 6-bit charac-
ters including blanks. The internal representation is BCD; the field width is
w characters.

If w exceeds 8, the input quantity will be the rightmost 8 characters. Hw is 8
or less, the input quantity goes to the designated storage location as a left
justified BCD word, the remaining spaces are blank-filled.

w 28 output w <8 output
w>8 input w =8 input
- w > - 8 -
field
Id——— 8 ———j [4— _»]
L w
suppressed
storage 8 BCD characters w BCD char. char. or blanks

9-13

Input Example: (Compare with next example)

READ 10,Q,P,0
10 FORMAT (A8,A8,A4)

Input card: Q contains LUXbMENT
col.1l P contains ISbLUXbO
’ O contains RBISbbbb

LUX MENTIS LUX ORBIS

DA

Rw This specification is the same as the Aw specification with the following
exception.

On output, if w is less than 8, the output quantity represents the rightmost
‘characters.

On input, if w is less than 8, the input quantity goes to the designated storage
location as a right justified binary zero filled word.

w Z8 output w <8 output
w >8 input w =8 input
- w - - 8 o
; l< o le |
field I -~ 8 > -~ w
)
storage L 8 BCD characters l [ZEeros w BCD char.
Input Example: (Compare with previous example)

READ 10,Q,P,0
10 FORMAT (RS, R8, R4)

Input card: Q contains LUXbMENT
col.1l P contains ISbLUXbO
N—

O contains 0000RBIS

LUX MENTIS LUX ORBIS

Lanki ks 25

L specification is used to output logical values. The output field is w
characters long and the corresponding list element must be a logical element.

If wis greater than 1, 1 (for true) or 0 (for false) is printed right justified
in the field w with blank fill to the left.

Lw

9-14

Output Example:

TYPE LOGICAL L J,K,L Iis true, J is false, K is true,
PRINT 5,1,J,K, L L is true
5 FORMAT (4L3)

Result: AAIAAO /\I\lf\f\l
Input

For the 3400, this specification accepts logical quantities as list elements.
Zero or blank in the field w is false. One in the field w is true. Only one
character (0 or 1) may appear in any input field. Any other character is
incorrect.

For the 3600, é. zero or blank field is false and a non-zero field is true; the
value may not exceed +247-1,

9.4

EDITING

SPECIFICATIONS

wX This specification may be used to include w blanks in an output record or to
skip w characters on input to permit spacing of input/output quantities. AX is
interpreted as 1X. 0X is not permitted.

Examples:

PRINT 10,A,B,C A contains 7, B contains 13.6,
10 FORMAT(I2, 6X, F6.2,6X, E12.5) C contains 1462. 37

Result: A7AAAAAAA 13.60AAAAMA 1.46237+003

READ 11,R,S, T
11 FORMAT(F5. 2,3X, F5. 2, 6X, F5.2) or FORMAT (F5.2,3XF5. 2, 6XF5.2)

Input card: R contains 14. 62
col. 1 S contains 13.78
et T contains 15. 97

F4. 62))$13.78 \ COST 715.97

In the specification list, the comma following X is optional.

wH This specification provides for the output of any set of 6-bit characters,
including blanks in the form of comments, titles, and headings. w is an
unsigned integer specifying the number of characters to the right of the H that
will be transmitted to the output record. H denotes a Hollerith field. The
comma following the H specification is optional.

9-15

Output Examples:

Source program: PRINT 20

20 FORMAT(28H BLANKS COUNT IN AN H FIELD.)
produces output record: ABLANKS COUNT IN AN H FIELD.
Source program: PRINT 30,A A contains 1.5

30 FORMAT(6H LMAX=, F5.2) comma is optional
produces output record: ALMAX= Al. 50

On input, the H editing specification may be used to read a new heading into an
existing H field.

Input Example:

Source program: READ 10 ‘
10 FORMAT (2THAAAAAAAAAMAAAAAAAAAAAAAA)

Input card:

col.l
N

ATHIS IS A VARIABLE HEADING

Iti 27 cols ———l

After READ, the FORMAT statement labeled 10 will contain the alphanumeric
information read from the input card; a subsequent reference to statement 10
in an output control statement would act as follows:

PRINT 10

produces the printer line: ,THISIS A VARIABLE HEADING

* ok The specification *,..* can be used as an alternate form of wH to output
headings, titles, and comments. Any 6-bit character (except asterisk) be-
tween the asterisks will be output. The asterisks delineate the Hollerith
field. This specification need not be separated from other specifications
by commas.

Output Examples:

1) Source program: PRINT 10
10 FORMAT (*),SUBTOTALS¥)

produces the output record: ASUBTOTALS

9-16

NEW RECORD

2) Improper source program to output ABC*BE:

PRINT 1
1 FORMAT(*ABC*BE¥)

The * in the output causes the specification to be interpreted as *ABC*
and BE*. BE* is an improper specification; therefore, the wH specification
must be used to output ABC*BE.

For input, this specification may be used in place of wH to read a new heading
into an existing Hollerith field. On the 3600, characters are stored in the
heading until an asterisk is encountered in the input field or until all the
spaces in the format specification are filled. If the format specification con-
tains n spaces and the mth character (m=n) in the input field is an asterisk,
all characters to the left of the asterisk will be stored in the heading and the
remaining character positions in the heading will be filled with blanks.

On the 3400, characters are stored in the heading until all the spaces in the
format specification are filled as in the wH specification.

Input Examples:

1) Source program: READ 10
10 FORMAT (* A\AAAAAAAAAAAAAAAAAAA ®)

Input card: (FORTRAN FOR THE 3800

A subsequent reference to statement 10 in an output control statement:

PRINT 10 produces: FORTRAN FOR THE 3800

2) Source program: READ 10
10 FORMAT (*papaaaan™
(HEAD*LINE
PRINT 10 produces: HEADp A

The slash / which signals the end of a BCD record may occur anywhere in
the specifications list. It need not be separated from the other list elements
by commas; consecutive slashes may appear in a list. During output, it is
used to skip lines, cards, or records. During input, it specifies that con-
trol passes to the next record or card. k-1 lines will be skipped for (k(/)).

9-17

Examples:

PRINT 10
10 FORMAT (20X, 7THHEADING///6X, SHINPUT, 19X, 6BHOUTPUT)

Print-out: HEADING line 1
line 2

line 3

INPUT OUTPUT line 4

Each line corresponds to a BCD record. The second and third records are
null and produce the line spacing illustrated.

PRINT 11,A,B,C,D A contains -11.6
11 FORMAT (2E10.2/2F7.3) B contains . 325
C contains 46. 327
D contains -14. 261
Result: -1.16+0015 73.25-001 line 1
46.327-14. 261 line 2

PRINT 11,A,B,C,D
11 FORMAT (2E10.2//2F7.3)

Result: -1.16+001,3.25-001 line 1
line 2
46.327-14.261 line 3

PRINT 15, (A(D),F1,9)
15 FORMAT (8H RESULTS2(/) (3F8.2))

RESULTS line 1
line 2

3.62 -4.03 -9.78 line 3
-6.33 7.12 3.49 line 4
6.21 -6.74 -1.18 line 5

9-18

9.5

nP SCALE FACTOR The C, D, E, and F conversion may be preceded by the scale factor:
external number = internal number x10Scale factor | The scale factor applies
to Fw.d on both input and output and to Ew.d and Dw.d on output only. The nP
specification may appear with complex conversion. C(Zw.d, Zw.d); each word
is scaled separately according to Fw.d or Ew.d scaling. A scaled specifica-
tion is written as:

nPDw.d n is a signed integer constant which cannot
nPEw.d exceed 13 for output.

nPFw.d
nPC(Zw.d, Zw.d)

Fw.d SCALING For input, the number in the input field is divided by 102 and stored. For
example, if the input quantity 314.1592 is read under the specification 2PF8. 4,
the internal number is 314.1592x1072 = 3, 141592.

For output, the number in the output field is the internal number multiplied by
102, In the output representation, the decimal point is fixed; the number moves
to the left or right depending on whether the scale factor is plus or minus. For
example, the internal number 3.1415926536 may be represented on output
under scaled F specifications as follows:

Specification Output Representation
F13.6 3.141593
1PF13.6 31.415927
3PF13.6 3141.592654
-1PF13.6 . 314159
" Ew.d SCALING The scale factor has the effect of shifting the output number left n places while

reducing the exponent by n. Using 3.1415926538 some output representations
corresponding to scaled E-specifications are:

Specification Output Representation

E20. 2 3.14+000
1PE20.2 31.42-001
2PE20. 2 314.16-002
3PE20. 2 3141.59-003
4PE20. 2 31415.93-004
5PE20. 2 314159.27-005
-1PE20. 2 0.31+001

9-19

SCALING RESTRICTIONS The scale factor is assumed to be zero if no other value has been given; how-

9.6
REPEATED FORMAT
SPECIFICATIONS

ever, once a value has been given, it will hold for all D, E and F specifications
following the scale factor within the same FORMAT statement. To nullify this
effect in subsequent D, E and F specifications, a zero scale factor, 0P, must
precede a D, E or F specification. Scale factors for D, E and F output speci-
fications must be in the range -13 < n < 13.

Scale factors on D or E input specifications are ignored.

The scaling specification nP may appear independently of a D, E or F specifi-
cation, but it will hold for all D, E and F specifications that follow within the
same FORMAT statement unless changed by another nP.

(3P, 319, F10.2) same as (319, 3PF10.2)

Any FORMAT specification may be repeated by using an unsigned non-zero
integer constant repetition factor, k, as follows: k(spec); spec is any speci-
fication except nP. The parentheses are optional when spec is a conversion
specification. For example, to print two quantities K,L:

PRINT 10 K, LL
10 FORMAT (12, I2)

Specifications for K, L are identical; the FORMAT statement may be:
10 FORMAT (212)
When a group of FORMAT specifications repeats itself, as in:

FORMAT (E15.3,F6.1,14, 4, E15.3, F6.1, 4, 4), the use of k produces:
FORMAT (2(E15.3,F6.1,214))

A repeated group, the parenthetical grouping of FORMAT specifications, may
be nested to 10 levels.

FORMAT (ky(...kg(...k1o(---))))))))))

Therefore, FORMAT statements like the following example are legal.

FORMAT (1H1,2(25X,3(5X, F6.2)))

UNLIMITED GROUPS

9.7
VARIABLE FORMAT

FORMAT specifications may be repeated without the use of a repetition factor.
The innermost parenthetical group that has no repetition factor is unlimited
and will be used repeatedly until the I/O list is exhausted. Each repetition

of an unlimited group will start a new record. Parentheses are the controlling
factors in repetition. The right parentheses of an unlimited group terminates
the specifications. Specifications to the right of an unlimited group can never
be reached.

The following are format specifications for output data:

(E16.3, F20.7, (214, 2(I3, F7.1)), F8.2)

Print fields according to E16.3 and F20.7. Since 2(I3, F7.1) is a re-
peated parenthetical group, print fields according to (214,2(13, F7. 1)),
which does not have a repetition operator, until the last elements are

exhausted. F8. 2 will never be reached.

FORMAT lists may be specified at the time of execution. The specification
list including left and right parentheses, but not the statement number or the
word FORMAT, is defined in a DATA statement or read under the A con-
version and stored in an array. The name of the array containing the speci-
fications may be used in place of the FORMAT statement number in the
associated input/output operation. The array name that appears with or
without subscript specifies the location of the first word of the FORMAT in-
formation.

Examples:

1) Assume the following FORMAT specifications:
(E12.2,F8.2,I7,2E20.3,F9.3, 4)

This information could be punched in an input card and read by a program
such as:

DIMENSION IVAR(4)
READ 1, (IVAR(), =1, 4)
1 FORMAT(3A8, A6)

The elements of the input card will be placed in storage as follows:

IVAR : (E12.2,F
IVAR+1 : 8.2,I7,2
IVAR+2 : E20.3,F9
IVAR+3 : .3,I14)AA

9-21

9-22

2)

A subsequent output statement in the same program could refer to these

FORMAT specifications as:

PRINT IVARQ),A,B,1,C,D,E,J
or
PRINT IVAR,A,B,1,C,D,E,J

This would produce exactly the same result as the program:
PRINT 10,A,B,1,C,D,E,J
10 FORMAT (E12.2,F8.2, I7,2E20.3,F9.3,14)

DIMENSION LAIS(4)
DATA (LAIS= 32H(E12.2,F8.2,2I7)(F8.2,E12. 2, 2I7))

Output statements: I=1
or PRINT LAIS(),A,B,IJd
PRINT LAIS,A,B,1,J

which is the same as: PRINT 1,A,B,1,J
1 FORMAT (E12. 2, F8. 2, 2I7)

I=3
PRINT LAIS()),C,D,1,J

which is the same as: PRINT 2,C,D,1,J
2 FORMAT (F8.2,E12.2,2I7)

10.1
WRITE STATEMENTS
PRINT n,L
PUNCH n,L

INPUT/OUTPUT 10

Input/output statements control and transfer information between the storage
unit and an external device. The particular device used is selected by SCOPE
control cards, SCOPE standard usage, or by specific FORTRAN statements
(READ, PUNCH, PRINT).

The following definitions for i, n, L apply for all standard I/O control state-
ments.

The logical unit number, i, must be an integer variable or an unsigned, non-
zero constant. Logical numbers are assigned to physical units by SCOPE. The
standard input unit is 60; standard output unit is 61; standard punch unit is 62.
Records on standard input are buffered; records on standard output are blocked.

The FORMAT statement describing the data is represented by n which may be
the statement number, a variable identifier (section 9. 7) or a formal parameter.
Binary data transmission does not require a related FORMAT statement.

The input/output list is specified by L. Binary information is transmitted
with odd parity checking bits. BCD information is transmitted with even parity
checking bits.

transfers information from the storage locations given by the list (L) to the
standard output unit. This information is transferred as line printer images,
136 characters or less per line in accordance with the FORMAT statement,
n. The maximum record length is 136 characters, but the first character of
every record is used for carriage control on the printer and is not printed.
(Carriage Control, Appendix A). Characters in excess of the print line are
lost; each new record starts a new line. The PRINT statement is equivalent
to WRITE (61,n) L.

If the standard output unit (61) is assigned to a magnetic tape, a blocked output
record will be written.

transfers information from the memory locations given by the list (L) identi-
fiers to the standard punch unit. This information is transferred as Hollerith
images, 80 characters or less per card in accordance with the FORMAT
statement, n. A maximum of 80 characters are permitted on one card.

10-1

WRITE(,nlL

WRITE OUTPUT TAPE i,n,L

10-2

WRITE(L
WRITE TAPE i,L

are equivalent forms which transfer information from storage locations given
by identifiers in the list (L) to a specified unit (i) according to the FORMAT
statement (n); i may be 1 to 59 or 61, 62, 64.

A logical record containing up to 136 characters is recorded on a unit

in even parity (BCD mode). Each logical record is one physical record. The
number of words in the list (L) and the FORMAT statement (n) determine the
number of records that will be written on a unit. If the logical record is less
than 136 characters, blanks will be filled to the nearest multiple of 8 characters.

If the output is to be printed, the first character of a record is a printer con-
trol character and will not be printed. If the programmer fails to allow for a
printer control character, the first character of the output data will be lost on
the printed listing.

Examples:

1) WRITE OUTPUT TAPE 10,20,A,B,C
20 FORMAT (3F10.6)

2) TYPE DOUBLE D
DIMENSION D (4)
WRITE (10, 30) D

30 FORMAT (4D25.16)

3) WRITE OUTPUT TAPE 4, 21
21 FORMAT (33H THIS STATEMENT HAS NO DATA LIST.)

are equivalent forms which transfer information from storage locations given
by the list (L) identifiers to a specified unit (i); i may be 1 to 59. If the list
(L) is omitted, the WRITE (i) statement acts as a do-nothing statement.

The number of words in the list (L) determines the number of physical records
that will be written on that unit. A physical record contains a maximum of

256 words — the first word is a control word. The last physical record may
contain from 2 to 256 words. The physical records written by one WRITE (i) L
statement constitutes one logical record. The information is recorded in odd
parity (binary mode); the method is illustrated in figures 10-1 and 10-2.

If there are n physical records in the logical record, the first word of the first
n-1 physical records contain zero; the first word of the nth physical record
contains the integer n. This first word indicates how many physical records
exist in a logical record. If there is only one physical record in the logical
record, the first word contains the integer 1.

Examples:

1) DIMENSION A(260), B(4)
WRITE(10)A, B
writes 1 logical record of 2 physical records

2) DO51=1, 10
5 WRITE TAPE 6, AMAX(), (M(LJ), J=1, 5)

writes 10 logical records each consisting of 1 physical record
containing 6 words.

WRITE
BINARY
1—COUNT
a p+l
Y . .
(1s k@-—es—> = COUNT— 8
No atk-1 g+k
o ﬁ+1
-
Od'éSl!- B+255 RECORD k + 1
WORD
BUFFER
: ON UNIT i
0—p
4
a+255 >«
k-255 -k
a represents a word in storage.
4
COUNT +1 B represents the first word of a
—> COUNT physical record on unit i.
k total number of words to be written.
RECORD 256 i i
COUNT h d .
WORD BUFFER is the physical record count
ON UNIT i

Figure 10-1. WRITE: BINARY (ODD PARITY) k WORDS

10-3

10-4

MAGNETIC TAPE

MEMORY

256 WORD 0] Count Word 7

BUFFER

Typical
Physical Logical
Record Record

rec. gap
& 3 Number of
Physical
Records

‘L)
Last physical

record = 256 words

atk-1

B+255

EXAMPLE: Write 520 binary words on tape.

Set count to 1. First 255 words placed in buffer.
More words remain so first buffer word is 0.
Write 256 word physical record on tape.

Bump count 1.

Next 255 words to buffer. Same procedure as above.
Bump count 1.

10 words remain. Transfer to buffer.
Enter count (3) in first buffer word.

Write 11 word physical record on tape.
Exit.

Figure 10-2. WRITE: BINARY (ODD PARITY) k WORDS

10.2
READ STATEMENTS

READ n,L

READ(i,niL
READ INPUT TAPE inL

If an input list and FORMAT specification list specifies more elements per
record than can be filled by the input records, the job is terminated. A
FORMAT EXCEEDS LINE LENGTH diagnostic is written. When the input unit
is a magnetic tape, the unit is buffered ahead ten records (3400), or one re-
cord (3600). Buffering ahead stops if a parity error or EOF is detected on the
previous record. A read on a bypass unit causes job termination and a
diagnostic is given.

reads one or more card images from the standard input unit, converting the
information from left to right, in accordance with FORMAT specification (n)
and stores the converted data in the storage locations named by the list (L)
identifiers. The images read may come from 80-column Hollerith cards, or
from magnetic tapes, prepared off-line containing 80-character records in
BCD mode. This statement is equivalent to READ (60,n) L.

Example:

READ 10,A,B,C
10 FORMAT (3F10.4)

are equivalent forms which transfer one logical record of information from a
specified logical unit (i), 1 through 60 and 63 to storage locations named by the
list (L) identifiers according to FORMAT statement (n).

The number of words in the list and the FORMAT specifications must conform
to the record structure on the logical unit (up to 136 characters in the BCD
mode). A record read by READ (i,n)L should be the result of a BCD mode
WRITE statement. A binary record read in BCD mode will produce a parity
error.

Examples:

1) READ INPUT TAPE 10,11,X,Y,Z
11 FORMAT (3F10.6)

2) TYPE DOUBLE D2
DIMENSION D2 (4)
READ (10,12) D2

12 FORMAT (4D25.16)

3) READ (2,13) (Z(K),K=1, 8)
13 FORMAT (F10.4)

10-5

10.3

READIiL
READ TAPE i L

are equivalent forms which transfer one logical record of information from a
specified logical unit (i), 1 through 59, to storage locations named by the list
(L) identifiers.

A record read by READ (i) should have been written in binary mode. The
count word is not transmitted to the input area, L. The number of elements
in the list of READ (i) L must be equal to or less than the number of elements
in the corresponding WRITE statement.

If the list (L) is omitted, READ (i) spaces over one logical record.

Caution

If the record read by READ (i) L was written with a BUFFER OUT statement,
the first word of each physical record is not transmitted. If the first word is
non-zero, the current record will be the last one read with this request; if the
first word is zero, an attempt will be made to read another record.

Examples:

DIMENSION C(264)
READ (10)C

DIMENSION BMAX (10), M2 (10, 5)
DO 7 1,10
7 READ TAPE 6, BMAX (), (M2(L,J), J=1,5)
READ (5) (skip one logical record on unit 5)
READ (6) ((A(1, J),I=1,100), J=1, 50)

READ TAPE 6, ((A(1,J),1=1,100),J=1,50)

BUFFER STATEMENTS There are three primary differences between the buffer 1/0 statements and

10-6

the read/write I/O statements.

1. The mode of transmission (BCD or binary) is tacitly implied by the form
of the read/write control statement. In a buffer control statement, parity
must be specified by a parity indicator.

2. The read/write control statements are associated with a list, and, in BCD
transmission, with a FORMAT statement. The buffer control statements
are not associated with a list; data transmission is to or from one area in
storage.

BUFFER IN (i,p) (A,B)

3. A buffer control statement initiates data transmission, and then returns
control to the program, permitting the program to perform other tasks
while data transmission is in progress. Before buffered data is used, the
status of the buffer operation should be checked. (Section 10.5). A
read/write control statement completes the operation indicated before
returning control to the program.

.
A magnetic tape written in odd parity must be buffered in odd parity; a
tape written in BCD mode must be buffered in even parity. All tape input

and output statements will be buffered if sufficient buffer storage is
available.

In the descriptions that follow, these definitions apply.

i logical unit number: from 1 to 59 (integer constant or variable). The
FORTRAN compiler will not check for reference to units 60-79;
however, SCOPE will prevent any incorrect use of units greater than
59. If a unit is referenced by a BUFFER statement, it may not be
referenced by a standard I/0 statement unless a REWIND or SKIPFILE
has occurred between the BUFFER and the standard I/0 statement.

The 3600 allows the programmer to reference a unit with a standard I/0
statement and then a BUFFER statement.

p recording mode (integer constant or variable). For magnetic tapes
0 selects even parity; 1 selects odd parity; 2 selects reverse read
even parity; 3 selects reverse read odd parity. T

A variable identifier: first word of data block to be transmitted (fwa).
B variable identifier: last word of data block to be transmitted (lwa).

In the BUFFER statements fwa must be in the same bank (3600) and
less than or equal to lwa. If not, the job will be terminated.

transmits information from unit i in mode p to storage locations A through B.
The record structure is shown infigure 2. If a unit containing BCD records
written by WRITE (i,n) in a previous program is used by BUFFER IN, only
one physical record (17 words or less), will be read. When a unit written by
WRITE (i) in a previous program is read by BUFFER IN, provision must be
made for the count word which is buffered in with the transmitted data. Only
one physical record is read for each BUFFER IN statement.

TOptions 2 and 3 may not be used for standard or non-tape units. Backspacing
y
in the reverse mode is not allowed.

In generating a ragnetic tape to be used in the reverse read mode, one word
records on output should not be requested since the output routine will always
pad the record to two words. Therefore, when a read in reverse mode with
a one word request is executed, only the padded word will be transmitted.

10-7

BUFFER OUT (i,p} (A B) transmits information from storage locations A through B, and writes one
physical record on logical unit i in mode p. The physical record contains all

the words from A to B inclusive (figure 10-3).

) MAGNETIC TAPE
STORAGE
A
k words > Physical Record = Logical Record
B

A first word address
B last word address
k total number of words
to be written (B-A+1)
Figure 10-3. BUFFERED WRITE: BINARY OR BCD

BUFFER OUT (i,p) (A, B)

10-8

PARTIAL RECORD

10.4
UNIT HANDLING
STATEMENTS

REWIND i

BACKSPACE i

The unit always moves to the next logical record after a READ(i,n) L,
READ(i)L, or to the next physical record after a BUFFER IN statement,
even if the entire record is not transmitted. Consequently, the remainder
of the record will not be read with the next READ or BUFFER IN statement.

Example:

DIMENSION C(10), D(120)

} 10 characters

: transmitted

READ (3, 10) C

10 FORMAT (10Al)
READ (3, 12) D

12 FORMAT (12F10.2)

110 characters not
transmitted

logical
record

120 characters
transmitted

When REWIND or BACKSPACE follows a write operation, an end of file is
written and backspaced over before the command is executed. If a read
operation is specified on a unit for which the last operation was a write, the
job is terminated with the diagnostic W-R SEQ ERROR (unless the console
typewriter is referenced). To read from the unit, BACKSPACE or REWIND
must be specified after the write operation.

Since programmer and scratch units assigned to the drum simulate magnetic
tapes,the following statements operate the same way in Tape SCOPE and Drum
SCOPE:. However, only one backspace is allowed on unit 60, the standard
input unit. The logical unit number, i, may be a simple integer variable or
unsigned non-zero constant.

rewinds unit i, 1 to 59, to beginning of information. If unit is already re-
wound, the statement acts as a do-nothing.

backspaces unit i one logical record. (A logical record is a physical record,
except for units written by @ WRITE (i) L statement.) If the unit is rewound,
this statement acts as a do-nothing. When backspacing on standard units

61 or 62, no more records may be backspaced than have been written.

10-9

ENDFILE i

UNIT HANDLING
ROUTINES

10.5

STATUS CHECKING
STATEMENTS

10-10

IFIEOF,iin, n,

IFIOCHECK,iln, n,

IFIUNIT, i}n,,n,,n5,n0,

On standard unit 60, no more records may be backspaced than have been
read. 1 may be 1 through 62. SKIPFILE restrictions are given under Unit
Handling Routines. In Drum SCOPE,only one backspace is allowed on unit 60.

writes an end-of-file on unit i, 1 through59.

BACKFILE and SKIPFILE are FORTRAN library routines which may be
called by the user; i may be 1 - 59. BACKSPACE requests are not re-
commended following the sequence SKIPFILE, BACKSPACE, or SKIPFILE,
BACKFILE, if any of the records to be backspaced were written by BUFFER
OUT in binary mode (3600) or WRITE(i)L (3400).

CALL BACKFILE (i) backspaces one file on logical unit i.

CALL SKIPFILE (i) skips ahead one file on logical unit i.

IF (EOF) and IF (IOCHECK) are the status checking statements to be used
with the read/write I/0 control statements. If they reference buffered
units, the job will terminate abnormally. IF (UNIT) is the only status
checking statement that may be used with BUFFER OUT/IN statements.

checks the previous read operation to determine if an end-of-file has
been encountered on unit i. If it has, control is transferred to statement nl;
if not, control is transferred to statement nz‘

checks the previous read operation to determine if a parity error has
occurred on unit i. If it has, control is transferred to statement nl; if

not, control is transferred to statement n2.

checks the status of units used in buffered operation. For input, the trans-
fer points are interpreted as follows:

IF (UNIT, i) nl, n,n,n

2" 3 4

n1 not ready

n_ ready and no previous error
n_ EOF sensed on last operation

n

B W N

irrecoverable parity error sensed on last operation

LENGTHF(i)

IF (UNIT, i)n1 »Ng,Ng

n; not ready
no ready and no previous error
ng EOF or parity error

IF (UNIT,i)n;,ng
n; not ready

ny ready, EOF or parity error

For output, only n; (not ready) and ny (ready and no previous error) are used
for write operations.

is used with an integer variable, for example I = LENGTHF (i), to find the
number of 48-bit words read during the last BUFFER operation on unit i. It
should be preceded by an IF(UNIT, i) statement to insure that input/output is
completed and there were no errors. LENGTHF (i) will force completion of
an operation, but if a unit is referenced on which there were unchecked errors
on the last operation, the job will be terminated.

Example:
PROGRAM REMARKS
J=1 Set flag = 1.
BUFFER IN (10, 0) (A, Z) Initiate buffered read in even (BCD) parity.

4 IF (UNIT, 10)5, 6, 7, 8 Check status of buffered transfer. Not
5 GO TO (50, 4), J finished. Do calculations at 50.

50 Computation not involving
locations A - Z '

J=J+1 Calculations complete; increase flag by 1.
GO TO 4 Go to 4.

7 PRINT 70
70 FORMAT (12H EOF UNIT 10) End of file error
GO TO 200

8 PRINT 80
80 FORMAT (21H PARITY ERROR UNIT 10)

200 REWIND 10 Rewind tape and stop
STOP Stop
6 CONTINUE Buffer transmission complete

Continue program

10-11

TAPE ERRORS

10.6
ENCODE/DECODE
STATEMENTS

10-12

EOF and parity errors are sensed on input operations:

An EOF error precludes the possibility of a parity error. The actual number
of words read may be obtained with the LENGTHF (i) function for buffered
1/0. The 1/0O routine will retry a read five times if errors occur in read
operation.

If an input error occurs, the remainder of the record is not read. If an
error occurs on a unit and another read or write request is made to that
unit before an error check is made, the job will be terminated after issuing
the message; HANGING PARITY or EOF ON UNIT N.

On write operations, the I/0O routine will attempt to rewrite the record a
maximum of five times (3400) or until it succeeds (3600).

The ENCODE/DECODE statements are comparable to the BCD WRITE/READ
statements, with the difference being that no peripheral equipment is involved.
Information is transferred under FORMAT specifications from one area of
storage to another. Symbols are defined below:

c Unsigned integer constant or an integer variable (simple or sub-
scripted) specifying the number of characters in the record.
¢ may be an arbitrary number of BCD characters.

The first record within an encoded (decoded) area starts with the
leftmost character position specified by V and continues & 27 *8
BCD characters, 8 BCD characters per computer word.

If the specification list (n) translates less than a full record, the
remaining characters of the record are ignored for DECODE and

blank-filled for ENCODE. The record length is € ; L *8 characters.

Since each succeeding record begins with a new computer word,
an integral number of computer words is allocated for each record
C_*é_7 words. The total words allocated for the combined records
in one encoded (decoded) area must not exceed program bounds.

n A statement number, a variable identifier or a formal parameter
representing the FORMAT statement,

\% Variable identifier or an array identifier which supplies the starting
location of the BCD record. The identifier may have standard or

non-standard subscripts.

L . Input/output list.

ENCODE fc,n,V 1L

DECODE fc,n,V)L

Transmits machine-language elements in a manner similar to PRINT n, L and
PUNCH n,L. The information of the list variables, L, is transmitted accor-
ding to the FORMAT (n) and stored in locations starting at Vv, c_-g_ *8 BCD
characters per record. If the I/0 list (L) and specification list (n) translate
more than &7 *8 characters per record, an execution diagnostic occurs:
FORMAT EXCEEDS LINE LENGTH (3600) or OUTPUT RECORD OVERFLOW
(3400) . If the number of characters converted is less than the record length,
the remainder of the record is filled with blanks.

Transmits and edits BCD characters in a manner similar to READ n,L. The
information in consecutive records (—u—*S BCD characters/record) star-
ting at address V is translated according to the FORMAT (n) and stored in

the list variables (L). If the number of characters specified by the 1/0 list
and the specification list (n) is greater than c_g_ *@ characters per record,
an execution diagnostic occurs. If DECODE attempts to process a character
illegal under a given conversion specification, an execution diagnostic occurs:
INVALID CHARACTER ON INPUT (3600) or ILLEGAL CHARACTER, BCD
INPUT (3400).

Examples:

1) The following is one method of packing the partial contents of two words
into one word. Information is stored in core as follows:

LOC(1) SSSSxxxx

LOC(6) xxxxaaoa
8 bed ch/wd

To form SSSS aaa o in storage location NAME:

DECODE(8, 1, LOC(6)) TEMP

1 FORMAT(4X, A4)
ENCODE(8, 2, NAME) LOC(1), TEMP
2 FORMAT(2A4)

The DECODE statement places the last 4 BCD characters of LOC(6) into
the first 4 characters of TEMP. The ENCODE statement packs the first
4 characters of LOC(1) and TEMP into NAME.

With the R specification; the program may be shortened to:

ENCODE (8,1,NAME) LOC(1), LOC(6)
1 FORMAT (A4, R4)

10-13

10-14

2)

DECODE may be used to calculate a field definition in a FORMAT speci-
fication at object time. Assume that in the statement FORMAT (2A8, Im)
the programmer wishes to specify m at some point in the program, subject
to the restriction 2 =m =9. The following program permits m to vary.

IF(M .LT. 10 .AND. M .GT. 1)1,2
1 ENCODE (8,100, SPECMAT) M
100 FORMAT (6H(2A8, L, I, 1H))

PRINT SPECMAT, A, B,J

M is tested to insure it is within limits. If not, control goes to statement
2 which could be an error routine. If M is within limits, ENCODE packs
the integer value of M with the characters: (2A8,I). This packed FORMAT
is stored in SPECMAT. SPECMAT contains (2A8, Im), a variable FORMAT.

The print statement will print A and B under specification A8, and the
quantity J under specification 12, or I3 or ...or I9 according to the value of
of m.

ENCODE can be used to rearrange and change the information in a record.
The following example also shows that it is possible to encode an area into
itself and that encoding will destroy information previously contained in an
area.

PROGRAM ENCO2

FTRBCDEFGH

IA=1H1

ENCODE (7, 10, DI, IA, I
10 FORMAT (A2, Al, R4)

PRINT 11, I
11 FORMAT (020)

END

PRINT OUT

22012526273060

The BCD equivalent is
B1EFGHblank

4)

In this example, accounting information is to be read from a magnetic
tape prepared off-line from 80-column Hollerith card input.

Each record

on this tape will be 10 words (80 characters) long. The program is to
initiate a read, decode the information of this read and initiate a second
read while decoding the information obtained from the first read. Two
10-word buffers are used (AIN and CIN). The FORMAT specification in
DECODE is

(6A1,A1,8A1,A3,12,A6,4I12,2A1,A8,A3,2A1)

this specification breaks the first 49 characters of each BCD record read

from magnetic tape.

Let the list be the string of identifiers:

LIST: DT, CC,CN, PR, X,XM, N1, M1, N2, M2, CR, ADJ, PER, RUN, ATT

DT is an array of length 6; CN is an array of length 8; the remaining
identifiers name simple variables.

Flow chart of the basic procedure:

miscellaneouslA
calculationsr

0 — NRD
1—1
1 [~ @
No
Buffer
I =07
s NRD=0 Complete
No ‘Yes ‘Yes
No
C§;f§22e ! Is I=17 Errors? Yes T
P Rout
Yes Yes No
) 135
Buffer In: Buffer In:
E ? :
rrors CIN to CIN +9 ATN toAIN +9
4 Y
1 — NRD 0—> NRD
4 Y
Yes DECODE 136
0—1 Is I=17 (49,3,CIN)
List
No
DECODE 126
(49,3,AIN)
List

10-15

10-16

Examples:

A(l) = ABCDEFGH
A@2) = WKLM

B(1) = NOPQRSTU
B(2) = VWXYZ

1) c=multiple of 8

ENCODE (16, 10, ALPHA) A, B
10 FORMAT (A8, A5)

record a record b

A Ao
- YV)

ALPHA |ABCDEFGH | 1IKLM |blanks [NOPQRSTU | vwxyZ [blanks]

word 1 word 2 word 3 word 4

2) c#multiple of 8

ENCODE (13, 10, ALPHA)A, B
10 FORMAT (A8, Ab5)

record a record b
A ﬁblanks P A jblanks

4
ALPHA lABCDEFGH IJKLM |NOPQRSTU | VWXYZ

word 1 word 2 i word 3 word 4
start new record

3) cZmultiple of 8

DECODE (13, 10, BETA)Al, B1
10 FORMAT (A8, A5)

record a record b

A A

4 N\ 4 N\
BETA | TRIALA08 [ATEST| 230 | TRIAL,01 | ATEST | A03]

word 1 word 2 word 3 word 4

start new record

Al(l) = TRIAL08
A1(2) = ATEST
B1(1) = TRIAL,01
B1(2) = ATEST

COMPILATION AND DECK STRUCTURE 11

The SCOPET monitor system performs the following functions:

loads and links subprograms and library subroutines

initiates compilation

initiates program execution

transfers records to a logical unit
The arrangement and content of control statements indicate the manner in
which a job is to be processed. Jobs and control statements are submitted to

SCOPE on the standard input unit; object subprograms and data may be con-
tained on other logical units.

The deck structure for compilation and execution of a 3400/3600 FORTRAN
program is:

/;RUN,5,220,3 Execute.
9LOAD Load binary object program from
unit 69.
SCOPE SCOPE card indicates end of
compilation deck; SCOPE begins
END in column ten.
LL FORTRAN program terminated
pa by an END card.
/
/
PROGRAM F63Y
;FTN,L,A,X. Compile, list source language and
assembled program and write
;JOB,1407,DS,10 binary program on logical unit 69.
JOB card.

TMore detailed information is contained in SCOPE/Reference Manual.

11-1

111

CONTROL CARDS SCOPE control statements contain 7,9 punches in column 1, followed by
statement name and parameters if required, separated by commas. Control
statements are free field, but must be contained on a single 80-column card.
No terminating character is required; omitted fields must be marked by
commas. Blanks are ignored.

JOB CARD A job consists of control statements and source or object programs. The
JOB card defines the beginning of a job and provides installation accounting
information, programmer identification, and a job processing time limit.

7 .
9JOB, c, i, t

¢ Charge number 1 to 6 (3600) or 12 (3400) alphanumeric characters.

i Programmer identification 1 to 6 (3600) or 12 (3400) alphanumeric
characters.

t Time limit in minutes for the entire job including operator and
computer operations. The maximum allowable time, 582 minutes
(3400), or 2236 minutes (3600), will be assumed if no time limit is
specified. This field may be omitted. In Drum SCOPE time may also
be specified in minutes or in the form: minutes. seconds.
Examples:

gJOB, 34 7-00, DS, 10

34 7-00 is charge number; DS is programmer's initials; 10 is
job time limit in minutes.

Time limit omitted; maximum time assumed.

;JOB, C234, DD

3600 Drum SCOPE

;JOB(n), c, i, t

(n) Optional decimal number that indicates how many extra logical units
are required by the job in addition to the number allotted by the in-
stallation. n may not exceed 75. Each extra logical unit requested
by the user requires five locations in bank O. Drum SCOPE uses
this information when allotting memory.

11-2

FORTRAN CARD

The FORTRAN system is loaded and executed when the FORTRAN card is
encountered. The 7, 9 punch in column 1 is followed by FTN which specifies
3400/3600 FORTRAN. All columns are free field.

gFTN , options.

The options defined below may appear in any order separated by commas.

The terminating period is optional; the field may also be terminated by the end
of the card. Unrecognized options and extraneous characters are ignored. If

no options are present, only error messages and the basic assembler headings

are printed (gFTN).
An option may be abbreviated to its first character only:

3400 ‘FTN, L, P, X, A, I, C, R, F.

-/ 9

3600 gFTN, L, P, X, A, I C, B=n, *, R, F, Q.

An option may be followed by =n; n represents the logical unit number.

7

9FTN, L, X=10

If n is 0 or not numerically defined, the option is ignored except for Q.

Options: ‘ n#o0

LIST List source language program List source language program
on unit 61 on unit n, 1-59, 61

PUNCH Punch relocatable binary deck Output relocatable binary deck
on unit 62 on unit n, 1-59, 62

XECUTE Write load-and-go on tape Write load and go on unit n,
unit 69 1-59, 69

ASSEMBLY List assembled program on List assembled program on
LIST unit. ASSEMBLY unit LIST unit
is always 61 if LIST option
does not appear

INPUT Input source from unit 60; Input source from n, 1-59, 60
same if option is not present

COSY Punch a COSY deck on unit 62 OQutput on unit n, 1-59, 62

BCD Output a COMPASS deck of Same as first column

the compiled assembly code.
Unit n must be designated;
1-59, 62

Compile code for one bank Compile code for one bank
(all variables treated as

local). If option not present,

general compilatiop

11-3

Options: n f 0
REFERENCE List COMPASS reference List reference table on
table on unit assignedfor LIST. unit assigned for LIST.

FORMATS Do not diagnose orcrack Do not diagnose or crack
FORMAT statements at com- FORMAT statement at
pile time; if not present, FOR- compile time.

MAT statements are cracked.

Q-OPTION Create object code using Create object code using
Q8QRESID for formal par- Q8QRESID for formal par-
ameter substitution; if not ameter substitution.

present, in-line parameter
substitution is used.

Examples:
gFTN, INPUT=49, LIST=30, ASSEM.

Source input is on logical unit 49.
Source language will be listed on unit 30.
Assembled program will be listed on unit 30.

;FTN,A, L,X
Source input is on logical unit 60.

Listing of source and assembled program will be on unit 61.
Binary object program will be written on unit 69.

The FORTRAN card is followed by the source language subprograms to be
compiled. The source deck may consist of the main program with its subrou-
tine and function subprograms. The program may contain assembly (COM-
PASS) language subprograms and FORTRAN subprograms in any order. T
COMPASS subprograms must not be COSY decks. For each source language
subprogram, a binary object program may be produced and stored on the
logical unit designated by a parameter on the FORTRAN card.

For the fastest execution of a 3600 FORTRAN program, the * option is speci-
fied. This eliminates the use of all augment instructions (ENO and RXT) in
the object program, except for parameter references.

FORTRAN source subprograms must begin with a PROGRAM SUBROUTINE,
or FUNCTION statement and terminate with an END card. Any COMPASS
programs must begin with an IDENT card and end with an END card, both
starting in column 10.

T For more detail see COMPASS/FORTRAN Mixed Deck, PSB no. 60137000.

114

SCOPE COMPILER CARD The SCOPE compiler card is required to indicate the end of the source sub-

LOAD CARD

RUN CARD

programs. It is not a SCOPE control card, since it is recognized and
interpreted by the FORTRAN compiler. The word SCOPE begins in column 10.
No imbedded blanks are allowed.

This statement loads binary object subprograms into storage from programmer
and scratch units or the load-and-go unit.

gLOAD, u

u logical unit number from 1 to 59, 62 or 69. If u is blank, the load-
and-go unit (69) is assumed (the comma is also omitted).

Example:

gLOAD, 42 Subprograms are loaded from logical unit 42.

The RUN statement initiates execution by transferring control to the object
program in storage. Execution time limit, print request limit, recovery
indicator, and memory map suppression indicator are specified. The RUN
statement is required to execute all object programs.

Z,RUN,t,p,r,m

t execution time limit in minutes. The entire job is terminated if the
time limit is exceeded. Kt is zero, a memory map is written but
execution does not occur. The maximum limit is 582 minutes (3400)
or 2236 minutes (3600). If the run time limit exceeds the remaining
job time, execution terminates when the job time is depleted.

P maximum number of print or write operations which may be requested
on the standard output unit during the execution. This includes
debugging dumps and any other execution output. The entire job is
terminated if the print limit is exceeded. I blank, the print limit is
determined by each installation.

r recovery indicator which specifies an area to be dumped if the program
does not run to normal termination.

11-5

11.2

EXAMPLES

COMPILATION ONLY

11-6

dumped area, written on standard output unit

1=

0 or blank console

1 (program

labeled common

program and labeled common
numbered common

console + | program and numbered common

labeled and numbered common

~N o g s W N

all locations including SCOPE (3400);
all locations in all banks except those
L occupied by SCOPE (3600)

suppresses memory map. If m is blank, a listing of memory alloca-
tions after loading will be written on the standard output unit. No
map is written if m is any other character.

Example:

ZRUN, 28,3000

Execution time limit is 28 minutes, and 3000 is the maximum number
of print requests. The console dump, if the job is terminated abnor-
mally, and the memory map will be written on the standard output
unit.

The examples illustrate the deck arrangement for compilation and execution
of FORTRAN programs.

Compile a FORTRAN program or subprogram.
7
gJOB,c,i,t

g FTN,options

source subprogram
END

source subprogram
END

SCOPE

A subprogram may be a program, subroutine, or function subprogram and
must be terminated with an END card. Any number of COMPASS and/or
FORTRAN subprograms may follow the FTN card, and they may appear in any
order. A COMPASS card is not required to compile COMPASS subprograms.
The END card of one subprogram is followed immediately by the first card of
the next subprogram (PROGRAM, SUBROUTINE, FUNCTION or an IDENT
(COMPASS) statement). Decks of subprograms to be compiled must terminate

with a SCOPE card.

r’ SCOPE
A
ya
A
V4

r/ END
A

r’ IDENT TWO

END

SUBROUTINE

r/ END

/

y

/[

yA

/

r/ PROGRAM ONE

7
{/9FTN,L,A,P

;JOB,1234,BLL,8

Signals end of compilation,
begins in column 10.

IDENT and END cards begin
in column 10.

Two FORTRAN source lan-
guage subprograms and one
COMPASS subprogram, each
terminated by an END card.

Source input on unit 60.
Listing of source and assem-
bled program on unit 61.
Punch relocatable binary
deck on unit 62.

Charge number: 1234.

Programmer: BLL. Time
limit: 8 minutes.

11-7

EXECUTION ONLY Execute directly from standard input unit.

SJOB,c,i,t

binary object program

gRUN,t, p.r,m

data

Data to be included on the standard input unit must follow the RUN card.
Several executions may be performed in the same job.

7RUN 7,1000,1 Time limit: 7 minutes. If
terminated abnormally, dump
is on standard output unit,

1 map on standard output unit.

(b1nary object program #2)

1
—1 Data for object program
= || follows RUN card on standard
(data for program #1) F input unit.
Execute first object program.
(RUN, 10, 500, 2 . ;

Time: 10 minutes. Print
limit: 500. Dump labeled
common on standard output

(binary object program #1) unit for abnormal termination,
memory map on standard out-
7J0B,ACC 123,DS,20 put unit.

9

Charge number: ACC 123.
Programmer: DS
Job Time limit: 20 minutes.

Execute from a programmer unit.

130B,c,i,t
7
gLOAD,u

gRUN, t,p,r,m
data

11-8

COMPILATION
AND EXECUTION

Subprograms may be loaded from different programmer units. If data is to
be included on the standard input unit, it must follow the RUN card.

/;RUN,IO, 1000,2 Execute time does not include load
time.
/;LOAD,37
TOAD 36 Load binary subprograms from
/; ’ logical units 36 and 37. If there are
JOB,ACC 77 ,NAME,12 two TRA cards, second must be last
9 record on unit 37.

Job time: 12 minutes.

Compile a FORTRAN program and execute it immediately.
gJOB,c,i,t

gFTN, options
source program (FORTRAN and/or COMPASS)
SCOPE

g LOAD,u
7
gRUN,t,p,r,m
data
If the data is to be included on the standard input unit, it must follow the RUN
card. For compilation only, any number of subprograms may follow the FTN

card. The deck of subprograms to be compiled must terminate with a SCOPE
card.

3600 Drum SCOPE only

Several runs can be included in one job, but they must be separated by EOF
cards. Compilation errors prevent execution of succeeding run only, not
the entire job.
7 EOF
9 RUN,t,p,r,m
data

11-9

Time: 14 minutes. Recovery,

(7RUN, 14,500 dup}p and map on standard output
9 unit.
7 LOAD Load binary subprograms from
? unit 69 until end-of-file.
/ SCOPE End of compilation; begins in
(END 7 column 10.

FORTRAN source language

//
(SUBROUTINE subprograms, each terminated

v

(END by an END card.
y A
=
Il
PROGRAM ONE
J
(gFTN,L,X Source input on unit 60; list

source on 61; write object

7 30B,ACC 123,DS,20 program on 69

9

Charge number: ACC 123.
- Programmer: DS.
Time: 20 minutes.

Include binary decks.

gJOB,c,i,t

gFTN, options
source subprogram (3400/3600 FORTRAN and/or 3400/3600 COMPASS)
SCOPE

{LOAD,u
binary object subprogram

gRUN,t,p, r,m

After compilation is completed, the subprograms may be loaded in any order.
Linkage does not take place until all subprograms are loaded.

11-10

7 Time: 8 minutes. Dump
(9 RUN, 8,500 and map on standard output
— 7 unit.
=
= Load binary subprograms
(binary object subprogram) from unit 15.
97LOAD, 15 FORTRAN source language
» and COMPASS subprograms,
/ SCOPE each terminated by an END card.
Yan
l[
A
((source subprogram) Source input on 60; write
J object program on 15; list
(;FTN,I,X=15,L source on 61
4JOB,ACC 123,DS,12 |

11.3

EQUIPMENT

ASSIGNMENT SCOPE locates and assigns physical equipment at run time. All references to
input/output units are by logical unit numbers. In Drum SCOPE, logical units
are assigned to the drum unless the user specifies otherwise with an EQUIP
statement. All programmer input tapes and all output units to be saved after
job termination must be declared with EQUIP statements. For a complete
description of the use of EQUIP statements, see the 3600 Computer System
Drum SCOPE Reference Manual.

LOGICAL UNITS PROGRAMMER UNITS (logical units 1-49) are retained throughout the job for

reference by the program and are released at the end of the job. A program-
mer tape may be saved after a job is completed by an EQUIP statement.
Otherwise, the tape will be available for reuse.

SCRATCH UNITS (logical units 50-59), for temporary use during the operation
of a program, are released after each program execution and may not be saved.

11-11

11-12

SYSTEM UNITS (logical units 60-80), used by SCOPE and the programmer, are

not released until the end of the monitor sequence, with the exception of a load-
and-go unit and auxiliary library tape. They are defined by the monitor system,
and the physical units to which they are assigned are determined by SCOPE.
Following are the system units:

STANDARD INPUT (60)
All jobs to be processed by SCOPE are placed on this unit by the operator.

STANDARD OUTPUT (61)

Accounting information, diagnostics, dumps and job control statements
are printed on this unit in BCD mode. The programmer may also use
this unit for program output.

STANDARD PUNCH OUTPUT (62)

Output for punching is made to this unit. All records are written in
binary mode unless specified otherwise.

INPUT COMMENT (63)

Comment from the operator to the monitor system is made on this unit.
The programmer may also use it for input.

OUTPUT COMMENT (64)

Statements from the monitor system to the operator are made on this unit.
The programmer may also use it for output information. The comment
units are usually assigned to the console typewriter.

ACCOUNTING RECORD (65)

Job statements and total time used by the job are recorded on this unit.
In Drum SCOPE the drum is used for storing accounting records and
units 65-68 are reserved for use by the system.

LOAD-AND-GO (69)

Binary object programs transferred from the standard input unit or pro-
duced by compilation or assembly may be stored here prior to loading
and executing. This unit may be saved by the programmer with an EQUIP
statement. If the unit is not saved, it is released at execution time.

SATELLITES (66-68)

Satellite” units are assigned by SCOPE to computers which communicate
with the 3600. SCOPE contains a Satellite control program which answers
input/output requests from a Satellite and directs requests to it. Pro-
grammers cannot control Satellite units. In Drum SCOPE, Satellite

units are replaced by background programs.

SCOPE LIBRARY (70)

The SCOPE library contains the monitor system and all programs and
subroutines which operate under SCOPE, such as FORTRAN, COBOL,
COMPASS, ALGOL and SORT.

AUXILIARY LIBRARIES (71-79)

Auxiliary libraries are used for library preparation and editing and are
released at the end of the job.

SYSTEM SCRATCH RECORD (80)

Monitor equipment tables and accounting data for each job may be stored
in the first record of this unit. If part of resident is destroyed by a run-
ning program, SCOPE uses the information on this tape for system
recovery. The first scratch unit requested by a program will be assigned
to this unit. The programmer cannot control this unit. In 3400 Drum
SCOPE units 80-99 are reserved for use by the system in operating
background programs; in 3600 Drum SCOPE unit 80 is reserved for
system use.

The programmer may use system units 60-65 and 69-79 for input/output as
long as he does not attempt any of the following operations:

rewind to load point (REWINDI)

backspace a record (BACKSPACE]I)

write an end-of-file (END FILE])

write on units 70, 60, 63 (except Drum SCOPE)

In Drum SCOPE 63 equivalent to 64.

11-13

APPENDIX SECTION

CODING PROCEDURES AND CHARACTER CODES A

STATEMENTS

FORTRAN coding forms contain 80 columns in which the characters of the language are written, one
character per column. The statements are written in columns 7 through 72. Statements longer than
66 columns may be carried to the next line by using a continuation designator. More than one state-
ment may be written on a line. Blanks may be used freely in FORTRAN statements to provide
readability. Blanks are significant, however, in H fields.

The special character $ may be used to write more than one statement on a line. Statements so
written may also use the continuation feature. A $ symbol may not be used as a statement separator
with FORMAT statements or continuations of FORMAT statements.

These statements are equivalent:

I=10 I=10$JLIM=1$K=K+1 $GO TO 10
JLIM=1
K = K+1
GO TO 10

Also:

DO 1 E1, 10 DO 1 E1, 10 $ A(D=B()+C(])
A(M=BD)+C (D 1 CONTINUE $ 3

1 CONTINUE
I=3

COMMENTS

Comment information is designated by a C in column 1 of a statement. Comment information will
appear in the source program, but it is not translated into object code. Columns 2 through 80 may
be used. Continuation is not permitted; that is, each line of comments must be preceded by the
column 1 C designator.

All comment cards belonging to a specific program, or subprogram, should appear between the
PROGRAM, SUBROUTINE, or FUNCTION statement and the END statement.

A-1

STATEMENT IDENTIFIERS

Any statement may have an identifier but only statements referred to elsewhere in the program
require identifiers. A statement identifier is a string of from 1 to 5 digits, 1 to 99999, in columns
1 through 5. Leading zeros are ignored; 1, 01, 001, 0001 are equivalent forms. Zero is not a
statement identifier. In any given program or subprogram each statement identifier must be unique.
If the statement identifier is followed by a character other than zero in column 6 the statement iden-
tifier is ignored.

Statement identifiers of declarative statements (excepting FORMAT) are ignored by the compiler,
except for diagnostic purposes.

CONTINUATION

In the first line of every statement, column 6 must beblank., If statements occupy more than one
line, all subsequent lines must have a character other than blank or zero in column 6, A FORTRAN
statement may contain up to 598 operators, delimiters (commas or parentheses) and identifiers;
blanks are not included in this count. The number of continuations allowed is a function of the
number of operators, delimiters and identifiers within it.

IDENTIFICATION FIELD

Columns 73 through 80 are always ignored in the translation process. They may be used for identi-
fication when the program is to be punched on cards. Usually these columns contain sequencing
information provided by the programmer.

PUNCHED CARDS

Each line of the coding form corresponds to one 80-column card; the terms line and card are often
used interchangeably. Source programs and data can be read into the computer from cards; a relo-
catable binary deck, or data, can be punched directly onto cards.

Blank cards within the input deck are treated as follows:

If a blank card appears between a statement and its continuation, the continuation and other
continuations following it are lost. Compilation continues.

A blank card between two statements is ignored.

When cards are being used for data input, all 80 columns may be used.

A-2

CARRIAGE CONTROL

When printing on-line, the first character of a record transmitted by a PRINT statement is a
carriage control character for spacing on the printer. The carriage control characters are:

Character Action

Blank or any charact~r other

than 0 or 1 Single space after printing
0 Double space before printing
1 Eject page before printing

The characters, 0 and 1, are not printed. Some printers provide additional codes which are given
in the specific manuals.

When printing off-line, the printer control is determined by the installation.

A-3

CHARACTER CODES

Source BCD Punch position Source BCD Punch position
Language (Internal in a Hollerith Language (Internal in a Hollerith
Character only) Card Column Character only) Card Column

A 21 12-1 Y 70 0-8
B 22 12-2 Z 71 0-9
C 23 12-3 0 00 0
D 24 12-4 1 01 1
E 25 12-5 2 02 2
F 26 12-6 3 03 3
G 27 12-7 4 04 4
H 30 12-8 5 05 5
1 31 12-9 6 06 6
d 41 11-1 7 07 7
K 42 11-2 8 10 8
L 43 11-3 9 11 9
M 44 11-4 / 61 0-1
N 45 11-5 + 20 12
(o) 46 11-6 - 40 11
P 47 11-7 blank 60 space

Q 50 11-8 . 33 12-8-3
R 51 11-9) 34 12-8-4
S 62 0-2 $ 53 11-8-3
T 63 0-3 * 54 11-8-4
U 64 0-4 , 73 0-8-3
\% 65 0-5 (74 0-8-4
w 66 0-6 = 13 8-3
X 67 0-7 # 14 8-4

A4

STATEMENT INDEX

Subprogram Statements

Entry Points PROGRAM name
PROGRAM name (py, Pgs +.-)
SUBROUTINE name
SUBROUTINE name (py, P, ---)
FUNCTION name (p1, P9, «..)
REAL FUNCTION name (p;, Pgs ---)
INTEGER FUNCTION name (Py; P2, --.)

DOUBLE PRECISION FUNCTION name (py, Pg, ..

COMPLEX FUNCTION name (pl, Pos «++)
LOGICAL FUNCTION name (pg, Pg, «..)
ENTRY name

Inter-subroutine EXTERNAL namey, names ...

Transfer Statements CALL name
CALL name (p1, «.., Pp)

OVERLAY} d
SEGMENT (0,8, u,d, py, ..., Pp)
RETURN

CALL {

Data Declaration and Storage Allocation

Type Declaration TYPE COMPLEX List
TYPE DOUBLE List
TYPE REAL List
TYPE INTEGER List
TYPE LOGICAL List
COMPLEX List
DOUBLE PRECISION List
REAL List
INTEGER List
LOGICAL List
TYPE name# (w,/b) List #is 5, 6, 7

i N = Non-executable E= Executable

-)

—

Z22z2222222222Z

z

=

22222222222

)

o
g

o©

[} | 1]
I

|
HFoooooo,ou L,

i
—_

=] -3 N3 =1 =3 =1 -3 =3 =3 -3
i

-~
|

—

w

O]
i 1
oo

1 o
[S N S TR SR LR

o

I
[\

B-1

Storage Allocations

3600 only

Arithmetic Statement Function

DIMENSION Vi, Vg, ..., Vg
COMMON/ 11/ List

EQUIVALENCE (A, B, ...), (Al, B1, ...

DATA (I = List), (I = List), ...
BANK, (bj), nameyq, .

Function (p, P2, ... Pp) = Expression

Symbol Manipulation, Control and I/O

Replacement

Intra-program Transfers

Loop Control

B-2

Arithmetic
Logical/Relational
Masking

Multiple

GO TOn

GO TOm, (nj, ...)

GO TO (01, ..., ny) E

GO TO (n, ..., D), E

IF (A) nj, ng, n3

IF (L) ny, ny

IF (L) s

IF (SENSE LIGHT i) ny, no

IF (SENSE SWITCH i) ny, ny
FAULT }

CHECK f 1> "2

IF EXPONENT FAULT nj, ny

IF OVERFLOW FAULT n3, np

IF (EOF,i) n1, ny
IF (IOCHECK, i) ny, ng

IF DIVIDE {

IF (UNIT,i),nl, ng, ng, Ny
IF (UNIT, i) ny, 0y, ng

IF (UNIT, i) ng, ny

DOni=mj, m2, m3

., (b2), namesg, .

HoHE EHE HE H HHEEbDEEEEE HEEE T

=

7-8

|
W NN

|
o

[
IS

| |
(SIS

- =2 B ~F I = > I = PR o PR = PR » - B o PR = PR = M o)
|
L W

0-10

—
<
1
-
L]

10-10
10-11

10-11

6-5

Miscellaneous Program Controls

I/0 Format

1/0 Control Statements

I/0 Unit Handling

Internal Data Manipulation

Termination

ASSIGN s TOm
SENSE LIGHT i
CONTINUE
PAUSE; PAUSE n
STOP; STOP n

FORMAT (specl, specs, ...)

READn, L

PRINT n, L

PUNCH n, L

READ (i,n) L }
READ INPUT TAPE i,n, L
WRITE (i,n) L

WRITE OUTPUT TAPE i,n,L}
READ (i) L |

READ TAPE i, L{

WRITE (i) L

WRITE TAPE i, L}

BUFFER IN (i,p) (A,B) }
BUFFER OUT (i,p) (A,B)

END FILE i
REWIND i
BACKSPACE i
CALL BACKFILE (i)
CALL SKIPFILE (i)

ENCODE (c,n,V) L
DECODE (¢,n,V) L

END

Z HHEEEE

=

oNoNoNoNo! o]

==

N/E

10-5
10-2
10-6
10-2
10-8
10-10
10-9
10-9
10-10
10-10

10-13
10-13

6-9

B-3

LIBRARY FUNCTIONS C
———————
Actual Mode
Parameter of
Form Definition Type Result

ABS(X), ABSFX) Absolute value Real Real
ACOS(X), ACOSF(X) Arccosine X radians Real Real
AIMAG(C) Obtain imaginary part of com- Complex Real

plex number
AINT(X), INTF(X) Truncation, integer Real Real
ALOGX), LOGFX) Natural log of X Real Real
ALOG10(X) Log of X to base 10 Real Real
AMAXO(I;, I, ...), MAXOF(I;, L, ...) Integer Real
AMAX1(X;, Xy, ...), MAXIF(X;, Xy, ...)%Determme maximum argument o) Real
AMINO(;, Iy, ...), MINOF(I;, Ly, ...) Integer Real
AMIN1(Xy, X3, ...), MINIF(, I, ...) z Determine minimum argument p.., Real
AMOD(X;, X9), MODF (X3, X9) X1 modulo X Real Real
ASIN(X), ASINF(X) Arcsine X radians Real Real
ATANX), ATANFX) Arctangent X radians Real Real
ATAN2(X;, Xo) Arctangent % Real Real
CABS(C) Magnitude or modulus of C Complex Real
CANG(C) Argument or angle associated

with a complex number Complex Real
CATAN(C) Complex arctangent of C in

radians Complex Complex
CCOS(C) Complex cosine of C in radians Complex Complex
CEXP(C) Complex exponential of C Complex Complex
CLOG(C) Complex natural log of C Complex Complex
CMPLX(Xy, Xy) Form complex number Real Complex
CONJG(C) Conjugate of C Complex Complex
COS(X), COSFX) Cosine X radians Real Real
COTF(X) (3600 only) Co-tangent of X radians Real Real
CSIN(C) Complex sine of C in radians Complex Complex

C-1

Form

CSQRT(C)
CUBERTF(X)
DABS(D)

DATAN(D)

DATAN2(D1, Do)
DBLE(X)
DCOS(D)

DCUBRT(D)
DEXP(D)

DIM(X;, Xp), DIMF(X{, Xp)
DLOG(D)

DLOG10(D)

DMAX1(D;, ..., Dp)
DMIN1(Dy, ..., Dy)

DMOD(D;, Dy)
DPOWER(D1, Dg) (3400 only)
DSIGN(D;, Dg)

DSIN(D)

DSQRT(D)

EXP(X), EXPF(X)
FLOAT(I), FLOATF(J)
IABS(I), XABSF(])

IDIM(;, Ip), XDIMF(l;, I)
IDINT(D)

IFIX (X), XFIXF (X)

INT(X), XINTF(X)
INTF (X), AINT (X)

C-2

Definition

Complex square root of C
Cube root of X

Absolute value of double preci-
sion arguments

Double precision arctangent of
D in radians

Angle whose tangent is %
Convert single to double

Double precision cosine D in
radians

Double precision cube root of D

Double precision exponential of D Double

IX;>X9:X]1 -Xg
Double precision natural log of D

Log of double precision D to
base 10

Determine maximum double
Precision argument

Determine minimum double
precision argument

D; modulo Do

D, D2

Sign of Dy time Dy

Double prec. sine of D in radians
Double prec. square root of D

e to Xth power

Integer to Real Conversion

Absolute Value

It L > I:1; - L
Double to Integer Conversion

Real to Integer Conversion
Real to Integer Conversion

Truncation to Integer

Actual Mode
Parameter of
Type Result
Complex Complex
Real Real
Double Double
Double Double
Double Double
Real Double
Double Double
Double Double
Double
Real Real
Double Double
Double Double
Double Double
Double Double
Double Double
Double Double
Double Double
Double Double
Double Double
Real Real
Integer Real
Integer Integer
Integer Integer
Double Integer
Real Integer
Real Integer
Real Real

Form

ISIGN(, Ly), XSIGNF(I;, Iy)
ITOJ(I, J)

ITOX(I, X)

LENGTHF())

MAXO0(I;, L, ...), XMAXOF({;, L, ...)

MAX1(X;, X5, ...), XMAXIF(X;, Xy, ...

MINO(;, Iy, ...), XMINOF(I;, Iy, ...)

MIN1 (X, Xgs vee)s XMIN1F(X;, X5, ...)

MOD(I;, Ip), XMODF(l;, Ip)
POWRF(X;, Xo)
RAN(N) (3400 only), RANF(N)T

REAL(C)

SIGN(X;, X,), SIGNF(X;, Xy)
SIN(X), SINF(X)

SNGL(D)

SQRT(X), SQRTF(X)

TAN(X) (3400 only), TANF(X)
TANH(X), (3400 only) TANHF(X)
TIMEF(X) (3600 only)

XTOIX, I)

LIBRARY SUBROUTINES
Q8QERROR(k, m)

Q8QERSET (n) (3600 only)

Actual Mode
Parameter of
Definition Type Result
Sign of I, times ’ I, l Integer Integer
IJ Integer Integer
Integer
IX {Re al Real
Number of words read/written
on unit I Integer Integer
Integer Integer
)}Determme maximum argument Real Integer
‘ Integer Integer
Determine minimum argument Real Integer
I; modulo Iy Integer Integer
x, X2 Real Real
Generate Random Number {Neg?t} ve Real
Positive Integer
Obtain real part of complex
number Complex Real
Sign of X, times |X;| Real Real
Sine X radians Real Real
Double to Real Conversion Double Real
Square root of X Real Real
Tangent X radians Real Real
Hyperbolic tangent X radians Real Real
Current time in floating point
format Real Real
1 Real
X {Integer Real
Error trace and message 3 Integer BCD
Any
Set/clear error key Integer BCD
(Oor1l)

TAny compiled calls to RANF(N), used as a function, treat the resulting value as real; to get a value
treated as integer use: EQUIVALENCE(X,I) and use I to get an integer value.

X = RANF (+1)

The following 3600 functions will be coded in-line rather than called as closed routines. The closed
function may be obtained by the appearance of the name in an EXTERNAL statement. If any of these
function names appear as actual parameters, they must also appear in an EXTERNAL statement.

ABS or ABSF

SIGN or SIGNF

DIM or DIMF
FLOAT or FLOATF

IABS or XABSF
ISIGN or XSIGNF
IDIM or XDIMF
INTF or AINT

DBLE REAL
AIMAG DABS
CONJG

CMPLX

FORTRAN TABLE LIMITS D

The phrase 'literal appearance' means that if the same item appears more than once, it must be
counted each time. The term "unique'' means that an item is counted only once regardless of how
many times it appears.

1.

2.

10.

11.

Total unique appearances of variables in EQUIVALENCE statements must not exceed 500.
Total unique appearances of variables in COMMON statements must not exceed 500.

Combined total unique appearances of variables in DIMENSION, COMMON, EQUIVALENCE,
TYPE, EXTERNAL, PROGRAM, SUBROUTINE and FUNCTION statements must not exceed 699.

Total unique appearances of constants and statement numbers (literal appearances for Hollerith)
during processing:

declarative statements - 500 (3600); 600 (3400)

arithmetic statements - 1000 + 3 (700-DV) - (FPR + V + ASF)
DV number of unique variable names used in item 3.

FPR number of formal parameter references in the program.
A4 number of unique local variable names.

ASF number of literal operators, operands and delimiters in each arithmetic statement
function to the right of the replacement operator.

Not more than 50 branches in a computed GO TO statement.

Nested DO-loops must not exceed 50.

Literal appearances of operators, operands and delimiters within any one statement must not
exceed 600. This includes the expansion of arithmetic statement functions within the executable

statement.

Non-declared functions must not exceed 200. This includes two entries for each arithmetic
statement function.

The number of parameters for any SUBROUTINE, FUNCTION or CALL may not exceed 63.
A Hollerith constant may not contain more than 136 characters.

Unique ENTRY statements may not exceed 20 in any one subprogram.

12.

13.

14.

15.

D-2

The limit on the number of non-declared (local) variable names in a subprogram is:
1000 + 3 (700-DV) - (FPR + V + ASF) - C

DV, FPR, V and ASF are defined in item 4.

C is the number of unique constants in executable statements (item 4).
The number of standard index functions in any one subprogram is limited to 95.

An index function is an expression representing the variable portion of the address calculation of
an array element. Identical index functions will have only one entry in the index function table.

For example: DIMENSION A(5,5), B(5,10) C(5,20)
TYPE DOUBLE C

The references A(2*I, 2*J), B(2*I-3, 2¥J+10) and C(l, J) will be represented by
the same index function.

The number of non-standard index functions is 32.
The limit on dimensions for array A{d;, dg, dg) referenced as A(l, J, K) is:
e*(d) *(K*dg +J)+1) < 32767

dj, dg are dimensions one and two respectively.
e is the element size (i.e., double e = 2, real e = 1)

I, J, K are the 1st, 2nd, and 3rd subscript values respectively.

CALLING SEQUENCES E

The following material assumes familiarity with COMPASS instructions and coding procedures.

The detailed discussion of calling sequences for standard arithmetic expressions should aid the user
in writing additional functions and non-standard type arithmetic subroutines. All arithmetic subrou-
tines for non-standard arithmetic must be provided by the user.

INSTRUCTION TYPES

During compilation of an expression, the translator generates the following instruction types to
execute the operations indicated by the operators.

Instruction Types Operators

Add operand +

Subtract operand -

Multiply operand *

Divide operand /

Complement accumulator - (unary)

Power *x

Load operand

Load negative operand } operand manipulations
Store operand

Instructions are generated independently of the arithmetic mode and type of operand. The mode of
the accumulator and operands as well as the element size are determined from the TYPE declarations
or the variable name convention. They are fixed for standard types (real, integer, double, complex,
logical).

The appropriate machine instruction or a jump to a routine which executes the intended operation then
replaces the generated instruction type.

CALL IDENTIFIER

3400

Load and load complement instructions for all modes and arithmetic involving reals or integers,
exclusively, generate 3400 COMPASS machine instructions; these operations are performed in line.

To perform double and complex operations (other than load, load complement), logical operations
and conversions for mixed mode arithmetic, the compiler generates calls to library routines.

E-1

3600

Load and load complement instructions for all modes, and store instructions for all modes except
logical, and arithmetic involving reals, integers, or double precision, exclusively, generate 3600

COMPASS machine instructions.

To perform complex operations (other than store, load and load complement), logical operations, and

conversions for mixed mode arithmetic, the compilar generates library routine calls.

Library routine calls have the form:

E-2

(o]0}

QnQoomst

indicates the number of operands to be treated.

n = 0 for operations on the accumulator only

n = 1 if the operand is a full or multiple word element

n = 2 for exponentiation; not defined for partial word operands
n = 3 if the operand is a partial word or byte-sized element

indicates the operation code. The operation is determined by the operator in the
expression.

00 Load accumulator with operand

01 Load accumulator with complement of operand
02 Add operand to accumulator

03 Subtract operand from accumulator

04 Multiply accumulator by operand

05 Divide accumulator by operand

06 Complement accumulator

07 Raise operand1 to the power operandz

10 Store accumulator in operand

indicates the mode of the accumulator before store operations and after all other
operations.

0 mode is integer

1 mode is real

2 mode is double

3 mode is complex

4 mode is logical

5 mode is non-standard
6 mode is non-standard
7 mode is non-standard

indicates the mode of the operand. The values of s are the same as those defined for m.

indicates the mode of the exponent. It appears only with identifiers of the form Q2Q07mst
for other QnQ identifiers, it is always 0. Exponentiation involving a partial word operand

is not permitted, except where the exponent is an integer constant 1-8.

Examples:

TYPE REAL A
TYPE INTEGER B
TYPE COMPLEX C
C=(A+B)

Translator Instructions

Load A
Add B
Store C

Resulting 3400 COMPASS object code:

LDA A

+ RTJ Q1Q02100
00 B

+ RTJ Q1Q10130
00 C

Resulting 3600 COMPASS object code:

ENO $A
LDA A
EXT Q1Q02100
+ BRTJ ($)Q1Q02100
ENO $B
LDA B
EXT Q1Q10130
+ BRTJ ($)Q1Q10130
DSTA @®)C

Conversions Call Identifier
none none

integer to real QR1Q02100
real to complex Q1Q10130
Interpretation

Transmit contents of location A to accumulator.
Go to subroutine; convert B to real and add to accumulator.

Go to subroutine; convert accumulator to complex and
store in C.

Interpretation

Transmit contents of location A to accumulator.
Generates external symbol naming subroutine.
Go to subroutine. Convert B to real and add to accumulator.

Go to subroutine, convert accumulator to complex.

Store accumulator in C.

E-3

Breakdown of QnQ identifiers used in example:

mode of acc. is real

addition indicated type of B is integer

02 / 1 \0

t is zero except for exponentiation

Q1Q

store indicated

Q1Q 10 1 3 0

mode of acc. is real f \type of C is complex

CALLING SEQUENCES

Standard groups of COMPASS instructions are generated when jumps are made to QnQ subroutines,

library functions, and subprograms.

QnQ Subroutines

Q0Q Subroutines

For operation 06, complement accumulator, the following code is generated:

3400 L RTJ Q0Q06mst
L+1 Return

3600 L BRTJ ($)Q0Q06mst, , *
L+1 Return

Q1Q Subroutines

For full word operand (1-7 words per operand) and all operations except 06 and 07, the following

code is generated:

3400 L RTJ Q1Qoomst
00 V, b
L+l Return

3600 L BRTJ ($)Q1Qoomst, , *

L+1 XXX 3V, B xxx is DLDA, DLAC, DSTA
L+2 Return
L BRTJ ($)Q1Qoomst
L+1 ENO $V
XXX V,b
L+2 Return xxx is LDA, LAC, STA

V is the operand + constant addend

b is the index designator; the content of b is an indexing quantity (index function) reflecting
variable subscripts of the operand.

The effective operand address is (b) + operand + constant addend. b, (b) and/or the constant addend
may be 0.

Constant addend is a bias on the base address to balance a portion of the index function contained in
b, or simply a position relative to the base array address of a variable with constant subscripts. To
calculate the constant addend and (b) for element A (dj * iici,dj * jxcj, dk * kck) in array A (I, J, K)
the following formula is used.
Base Address Constant Address Index Function

Locn A+ (—lici+I*(-1;1:Cj+J*(-lztck))) *f + (di*i+1*(dj *ra*(d,)+

dj, dj, dk, cj, cj, ckx are unsigned integer constants
i» dj, dk, Ci, Cj, Ck

f is the element length (1-7 words)

Q2Q Subroutines

For operation 07, exponentiation, the following code is generated.

3400 L SLJ *+1
00 V, by
L+l RTJ Q2Q07mst
00 U, b,
L+2 Return

E-5

L+l

Lt+2
L+3

BRTJ
DLDA

DLDA
Return

($)Q2Q07mst, , *

ENO $V
@V by ° DAV, b

ENO $U
®U. bz °C IDA U, by

V is the base operand + constant addend

U is the exponent operand + constant addend

b;, by are index designators

Q3Q Subroutines - Logical

The calling sequence is:

3400 L
L+
L+2

3600 L
L+l
L+2

E-6

SLJ

n

RTJ
pof
Return

BRTJ

pof
Return

* +1
constant addend, b
Q3Qoomst
operand

($)Q3Qoomst, , *
constant addend, b
($) operand

is the element length in bits.
is an index register.

pof is the parameter offset which appears in the object code as 00.
An offset is the number of bits between the left end of the word
and the logical bit. The parameter offset is passed along with
the operand address when the operand is a parameter in a
subroutine call. During execution, it is transmitted with the
parameter to all Q3Q calls within the subroutine.

constant addend is a position relative to the base array address of a variable

with constant subscripts.

For logical arithmetic, the effective operand address is computed as follows by an object time _
routine:

a = ((@m*((b)*+ca))+pof)/p with remainder of d

a is first word address (FWA) addend (quotient)
d is actual offset (remainder)
n is element length in bits

(b) is content of index register

ca is constant addend

pof is parameter offset

p is packing number (32 bits per word for logical; 48 bits per word for byte)

The effective operand is the n bits of word FWA + a, d bits from left.

Q3Q Subroutines - Byte

The code generated for byte arithmetic is the same as for logical arithmetic. The offset for a byte
is the number of bits between the left end of the word and the leftmost bit of the byte element. The
programmer must include instructions in his Q3Q routine to compute the effective operand address
and to locate the effective operand, according to the equation used for logical arithmetic.

p the packing number for bytes, is 48 bits per word.

Example:

3400 COMPASS

FORTRAN Calling Sequences

PROGRAM OFFSET
DIMENSION A(20)
TYPE OTHERS5(/8)A

3600 COMPASS
Calling Sequences

BRTJ ($)SAM,,*
CALL SAM (A(3)) — ™ RTJ SAM SLJ %49
o1 *+2 01 DICT.
. .Znum. 00 [20] ** [A] .Znum. 00 [20] ($)A [A]

END

The offset is calculated by the QIQEVALB routine and stored with

the parameter address at location . Znum. as indicated by the

bracketed terms.

SUBROUTINE SAM (B)
DIMENSION B (15)
TYPE OTHERS5(/8)B

*4
=23 %‘J _12 b BRTJ ($)Q3Q00550, , *
= - > 4 1 -
C=B(I-15) RTJ Q3Q00550 og [20] (é)% Esﬂ
. 00 [20] ** [B+1] ~]
END This Q3Q00500 routine must compute the effective operand address;

it may call QIQEVALB to do this. b is an index containing 23.

Calculations performed in example:

1)

2)

for constant addend and index function

Locn B - (1+15)+(8+15)
Locn B - (16) + (23)

ca= -16

(b) = 23

effective operand address
a.d = ((8%(23+(-16)) + 16)/48

a=1, FWA addend
d = 24, actual offset

In memory:

B lam | a@ [a@) |a@) [AG) |A@)]
B(l) B(2) B(3) B(4)

B+1 [AM]A@®) [A@ [aqo|aan]aae)]
B(5) B(6) B(7) B(8) B(9) B(10)

B+ 2 |A(13)|A(14)|A(15)|A(16)|A(17)]A(18)]
B(11) B(12) B(13) B(14) B(15)

B+3 [aq9faeo] [[[|

SUBPROGRAMS

The subprograms (function or subroutine) are called by the following sequence.

FORTRAN:
CALL SUBNME (pl, p2, e ey pn)
or
V = FUNNME (pl, Pz, seey pn)

3400 COMPASS:

L RTJ name

np *+m
\

L+l 00 P,

00 Py
+

L+2 00 P3 address of actual parameter

00 Pn J

L+m Return

3600 COMPASS

The routine always returns to L+1 which, in turn, causes a jump to L+(m+1).

L
L+l

L+2

L+(m+1)

BRTJ ($)name, , *

SLJ *+m

np DICT.

00 ($)py

00 $)py address of actual parameter

. .

00 ®p,
Return

+
m is _ngzi +

np is the number of parameters

DICT. contains the entry point into the subroutine called and is used by the
standard error procedure.

The 00 operation code will be replaced by the offset for partial word parameters.

3400

3600

E-10

. Znum.

. Znum.

00 [offset] base address and if actual parameter specifies a partial
FWA addend word element.
00 effective address if actual parameter specifies a multi-word
element.

00 [offset] base address + FWA addend if actual parameter specifies a
partial word element.

00 effective address if actual parameter specifies a
multi-word element.

When the call for a subprogram with a partial-word actual parameter is generated, the offset is
calculated by special library routines, QIQEVALL and Q9QEVALB. QIQEVALL is called for logical
elements and QIQEVALB, for byte-size elements. The offset is made available to the subprogram
at execution time by storing it with the parameter relative to the word tagged . Znum. .

Examples:

(1) Function Subprogram Reference

Z = QUAINT (P, Q, R, S, T)

Results in call:

3400 + RTJ QUAINT
- 05 *+ 4
+ 00 P
- 00 Q
+ 00 R
- 00 S
+ 00 T
Return
3600 BRTJ ($)QUAINT
SLJ *+4
05 DICT.
+ 00 &P
- 00 (631
+ 00 $R
- 00 s
+ 00 $T
Return
In storage:

RRan

(2) Subroutine Subprogram

CALL SAM (M, M(3), M(4))

non-subscripted multi-word elements

non-subscripted multi-word elements

M is one word per element

E-11

3400

3600

3

3400

.Znum,

3600

.Znum.

E-12

Results in call:

o+

-+

+

In storage:

TYPE OTHERS (/8) B

RTJ
03

00

00

00
Return

BRTJ
SLJ

03

00

00

00
Return

M

SAM

* 4+ 3

M address of operand

M+2 effective address is 3rd word
M+3 effective address is 4th word

($)SAM
*+3
DICT.
M
($)M+2
(HM+3

| M(1) |

M+1 | M(@2) |
M+ 2 l M(3) |
M+3 | M(4) |

DIMENSION B(12)

CALL SAM (B, B(2), B (11))

Results in call:

+

RTJ
03
00

00 [10]

00 [40]

BRTJ
SLJ
03

00
00 [10]
00 [40]

SAM

* + 3

B First element of B array is leftmost character of first
word.

** [B] Second element of B array is offset from the left 8 bits
(octal 10) but is still in first word.

*x [B + 1] Eleventh element of B array is in second word and is
offset 32 bits from left.

($)SAM
*+3

DICT.

($)B
$ B [B]
$)B [B+1]

The values in the parentheses indicate the contents of the word at object time.

In storage:
8 bits
B |B) |B@ | BG) | B@) | B6) | B |

B+1 | B(7) | B(8) | B(9)]B(10)|B(11)|B(12)]

QI9QEVALL subroutine calling sequence:

3400 ENA ca, b
L RTJ QI9QEVALL
pof operand
L+1 XXX . Znum.

ca is the constant addend
b is the index register
pof is the parameter offset

xxx is STA for storing in upper half word
STQ for storing in lower half word

.Znum. is .Z and number followed by a period (.Z00001.); this tags the location
where the calculated address is stored.

3600 L BRTJ ($)QIQEVALL,, *
L+l 01 ca, b
pof ($)operand
L+2 XXX . Znum.

Q9QEVALB subroutine calling sequence:

3400 L ENA n
ENQ ca, b
L+1 RTJ Q9QEVALB
pof operand
L+2 XXX . Znum.

n is the element length in bits

ca, b, pof, xxx, .Znum. are defined above.

3600 L BRTJ (3)Q9QEVALB, , *
L+1 n ca, b
pof ($) operand
L+2 XXX . Znum.

E-13

Example:

FORTRAN:

PROGRAM OTHERS58
TYPE OTHERS5 (/3) A

TYPE OTHERS (/8) C, SUZY

TYPE OTHER7 3) E

DIMENSION A (20), C(10), E(10)
EXTERNAL SUZY
C(1)=SUZY (A(5), C(2), E@))

3600 COMPASS

. 200002.

E-14

EXT
BRTJ
03

00
STA

EXT
BRTJ
10

00
STQ

ENA
SAU
BRTJ
SLJ
03

00

00

00

QIQEVALB
($)QIQEVALB, , *
4

$A

. Z00002.

QIQEVALB
()QIQEVALB, , *
1

&cC
. Z00002.

E+6
. Z00002. +1
$suvzy,,*
*+3

DICT.

A

@cC

$E+6

This routine calculates parameter offset, num-
ber of lists in element A, and constant addend
to base.

Parameter offset and A are stored in upper
portion of . Z00002.

Parameter offset and C are stored in lower
portion of . Z00002.

The parameter E is a multi-word element.

LIBRARY FUNCTIONS

Library functions have two entry points as they may be called by value or by name. Some are also
called for expression evaluation; these are named with the conventions for mixed mode arithmetic.

CALL-BY-NAME

Included in this calling sequence are the MAX and MIN library functions and all library functions

with Q8Q name entry.

FORTRAN:
V = LIBNME (p1> pz, c ey pn)
COMPASS
3400 L RTJ LIBNAME
np *+m
L+1 00 P 3
L+2 00 P3 >~ addresses of actual parameters

L+tm Return

pn

o

In the special case of a function with a variable number of parameters (MIN and MAX functions),
the 00 op-code in the upper half of L + 1 will be replaced by np, the number of parameters.

3600

The routine always returns to L + 1 which, in turn, causes a jump to L+(m = 1).

L BRTJ ($) LIBNME
L+1 SLJ *+m
np DICT.
L+2 00 ®p;
00 ($)pg
r addresses of actual parameters
00 ($)pn)

L+(m + 1) Return
np+1

m is + 1

np is the number of parameters

DICT. contains the ent

ry point into the subroutine called and is used by standard

error procedure.

E-15

CALL-BY-VALUE

The call by value for most library subroutines which have one or two parameters generates the
following sequence. The actual parameter is passed to the A or Q register or both.

FORTRAN:

V = LIB(p;, Py)

COMPASS:
3400

The class of routines included in this calling sequence includes all trigonometric functions:

LOGF INTF XDIMF XTOI
EXPF XINTF MODF ITOX
SQRTF FLOATF XMODF ITOJ
CUBERTF XFIXF SIGNF
ABSF RANF XSIGNF
XABSF DIMF POWRF
LDA P
LDQ Py
L RTJ LIB
L+1 Return
3600
LDA Py
LDQ p
L BRTJ (g) LIB, , *
L+1 SLJ *+1
00 DICT.
L+2 Return

This calling sequence includes all the trigonometric functions. These routines also have
a call by name calling sequence to the entry Q8Qname.

ABSF TANF INTF LOGF POWRF
XABSF ATANF XINTF SIGNF XTOI

COSF TANHF SQRTF XSIGNF ITOX ali’;thave 2 Q2QU7mst entry
ACOSF RANF CUBERTF DIMF ITOJ point.

SINF MODF FLOATF XDIMF

ASINF XMODF EXPF XFIXF

E-16

The typical 3600 library function entry points are:

.

Q8QNAME UBJP (¥) **

L+l XMIT (*)*-1, ($)Q8QDICT.
L+2 XMIT (*)*-2, ($)DICT.
L+3 BRTJ ($)Q8QLOADA
NAME UBJP (¥) **

L+5 XMIT (*)*-1, ($)Q8QDICT.
Lt+6 XMIT (**-2, ($)DICT.
L+7 Normal return from Q8QLOADA

The call by name transfers to the special routine Q8QLOADA which analyzes the call by name and
makes it a call by value; the routine is then executed as if it had been called by value.

E-17

COMPILATION DIAGNOSTICS F

Diagnostics prepared by the compiler during compilation are output with the program listing
and immediately follow the source program.

3400

3400 general form is:

ERROR IN STATEMENT NUMBER n

XX yyyy ZZZ z

n is the statement number in which the error occurred or the number of
statements beyond the last numbered statement.

XX is the error type and may be:
NC no compilation
NX no execution

WN warning - informative
yYyy is the octal error code number

zzz ...z is the error message

Error Messages

1002
1003
1004
1005
1006
1007

1010

1011
1012
1013
1014
1015
1016
1020

A PREVIOUS DO TERMINATES ON THIS DO STATEMENT

A RUNNING INDEX USED PREVIOUSLY IN THIS NEST

NESTING CAPACITY OF THE COMPILER IS EXCEEDED

THE CONSTANT PARAMETER OF A DO OR DO-IMPLYING LOOP EXCEEDS 32767
THE PARAMETERS OF A DO OR DO-IMPLYING LOOP MUST BE UNSIGNED INTEGER

THE INITIAL VALUE OF A DO OR DO-IMPLYING LOOP MUST NOT EXCEED UPPER BOUND IF
BOTH ARE CONSTANT

THE RUNNING SUBSCRIPT IN A DO OR DO-IMPLYING LOOP MUST BE A SIMPLE INTEGER
VARIABLE

INCORRECT FORM FOR ENTRY STATEMENT

ENTRY STATEMENT LABELED

ENTRY STATEMENT IN MAIN PROGRAM

ALL DECLARATIVE STATEMENTS MUST PRECEDE THE FIRST EXECUTABLE STATEMENT
THE NUMBER OF INDEX VARIABLES EXCEEDS THE CAPACITY

NO PATH TO THIS STATEMENT

A DO LOOP MAY NOT TERMINATE AT THIS STATEMENT

F-1

3400

1021 A DO LOOP WHICH TERMINATES AT THIS STATEMENT INCLUDES AN UNTERMINATED DO
1022 THIS STATEMENT DOES NOT FOLLOW A DO WHICH IT TERMINATES

1023 TILLEGAL STATEMENT LABEL

1024 NON-STANDARD INDEXING IS NOT PERMITTED IN DO STATEMENTS

1025 THE TERMINAL LABEL OF A DO MUST BE AN INTEGER CONSTANT

1026 PREVIOUSLY USED ENTRY NAME

1027 NUMBER OF ENTRY STATEMENTS EXCEEDS 20

1030 UNLABELED FORMAT STATEMENT

1031 TIF THIS IS AN ARITHMETIC STATEMENT IT HAS NO LEFT HAND SIDE

1032 OBJECT OF ASSIGN OR ASSIGNED GO TO NOT A SIMPLE INTEGER VARIABLE
1033 STATEMENT LABEL IN GO TO STATEMENT NOT INTEGER CONSTANT

1035 PARAMETER TO THIS STATEMENT NOT INTEGER CONSTANT OR VARIABLE
1036 ILLEGAL SUBROUTINE NAME

1037 PARAMETER STRING IS NOT WELL-FORMED

1040 ASSIGNED STATEMENT LABEL IS NOT INTEGER

1042 SUBPROGRAM OR VARIABLE NAME USED AS ENTRY

1050 NO END CARD

1051 ENTRY STATEMENT INSIDE A DO LOOP

1053 THE INCREMENT IN A DO OR DO-IMPLYING LOOP IS O

1501 REAL CONSTANT EXCEEDS 2#%*%*1023

1502 TILLEGAL CHARACTER IN NUMERIC FIELD

1503 MORE THAN 16 OCTAL DIGITS

1504 NUMBER TOO LARGE

1505 ILLEGAL CHARACTER IN ALPHANUMERIC FIELD

1506 ILLEGAL CHARACTER IN EXPONENT FIELD OR REAL NUMB

1507 EXPONENT EXCEEDS 309

1510 INTEGERS MAY NOT EXCEED 2%**47-1

1700 INDEX VARIABLE NOT IN TABLE

1777 MORE THAN 100 ERRORS, END COMPILATION

2000 MISSING PROGRAM NAME

2001 PROGRAM, SUBROUTINE OR FUNCTION CARD NOT FIRST CARD OF DECK

2002 IMPROPER FORMAT OF PROGRAM STATEMENT, PROBABLY MORE THAN 8 CHARACTERS
2003 IMPROPER SUBROUTINE OR FUNCTION STATEMENT TERMINATION OR PARAMETER ERROR
2004 ALPHABETIC CHARACTER DOESNT START NAME

2005 DUPLICATE VARIABLE NAME IN DIMENSION STATEMENT

2006 NO LEFT PARENS AFTER VARIABLE NAME

3400

2007
2010
2011
2012
2013
2015
2016
2017
2020
2021
2022
2023
2024
2025
2026
2027
2030
2031
2032
2033

2034
2035
2036
2037
2040
2041
2042
2043
2044
2045
2046
2047
2050
2051
2052

VARIABLE DIMENSION IDENTIFIER NOT IN PARAMETER LIST
MORE THAN 3 DIMENSIONS IN DECLARATION OF ARRAY

NO RIGHT PARENTHESIS DELIMITER IN SUBSCRIPT DECLARATION
VARIABLE DIMENSIONED ARRAY USED IN COMMON

MORE THAN 63 PARAMETERS

NO SLASH (/) SEPARATOR IN BLOCK DESIGNATION

UNDEFINED SEPARATOR IN COMMON STATEMENT

NON-CONSTANT SUBSCRIPT IN COMMON DIMENSIONING

SUFFIX 5, 6 OR 7 NOT ON TYPE-OTHER NAME

TYPE OTHER DOUBLY DEFINED

ELEMENT LENGTH DESIGNATOR NOT (W) OR (/B)

LEFT, RIGHT PARENTHESIS OR COMMA MISSING IN EQUIVALENCE
TYPE OTHER APPEARING WITH SUBSCRIPTS

EQUIVALENCE CAUSES REORIGIN OF COMMON

FORMAL PARAMETER OR ADJUSTABLE DIMENSION IN EQUIVALENCE
NON-CONSTANT SUBSCRIPT IN EQUIVALENCE

DECLARED VARIABLE IN EXTERNAL STATEMENT
COMMON/EQUIVALENCE ERROR

LEFT/RIGHT PARENS NOT MATCHING

IMPLIED-DO ERROR IN DATA STATEMENT, NO = AFTER DO VARIABLE, NON-CONSTANT DO
LIMITS, ETC.

NO = AFTER IDENTIFIER

SUBSCRIPTED VARIABLE NOT PREVIOUSLY DIMENSIONED

DATA TO ADJUSTABLE DIMENSIONED OR PARTTAL WORD ARRAY

MULTIPLE DATA TO NON-DIMENSIONED VARIABLE

DUPLICATE BLOCK NAME

EQUIVALENCE OVERLAPS COMMON BLOCKS

FORMAL PARAMETER IN COMMON DECLARATION

VARIABLE NAME GREATER THAN 8 CHARACTERS OR NO COMMA SEPARATOR
NON-CONSTANT DATA IN LIST

DOUBLY DEFINED VARIABLE IN COMMON

REPEAT COUNT MUST BE AN INTEGER CONSTANT 1-32767

VARIABLE EQUATED TO ITSELF + N

(W) IS NOT AN INTEGER 1 THRU 7 OR (/B) IS NOT A DIVISOR OF 48
VARTABLE DEFINED IN PREVIOUS TYPE STATEMENT

DOUBLY DEFINED FORMAL PARAMETER

F-3

3400

2053
2144
2146
2147
2150
2201
2203
2205
2206
2207
2210
2212
2213
2701
2702
4001
4002

4003
4004
4021
4022
4023
4024
4026
4030
4031
4101
4102
4103
4104
4105
4106
4107
4110
4112

PROGRAM CARD CONTAINS PARAMETER LIST

COMPILER NON-EXECUTABLE STATEMENT TABLE EXCEEDED

COMPILER COMMON OR BLOCK TABLE EXCEEDED

COMPILER EQUIVALENCE TABLE EXCEEDED

MACHINE OR TABLE ERROR, VARIABLE NOT IN DIMENLIST

COMMA MISSING IN PARAMETER LIST OR VARIABLE MORE THAN 8 CHARACTERS
ILLEGAL SEQUENCE OR USE OF OPERATORS

POSSIBLE MACHINE ERROR IN PROCESSING COMMON EXPRESSIONS

ILLEGAL OR MISSING OPERATOR

ILLEGAL REPLACEMENT IN ARITHMETIC STATEMENT

AN * HAS BEEN INSERTED FOR THE APPEARANCE OF N (,) (,) VOR) N
LOGICAL OR MASKING OPERATOR IN CALL PARAMETER

ILLEGAL REPLACEMENT APPEARS IN AN EXPRESSION

POSSIBLE MACHINE ERROR, BAD SCRATCH TAPE

COMPASS DID NOT SEE END CARD

FIRST WORD OF ASF IS NOT AN IDENTIFIER

NO REFERENCE TO ONE OF THE PARAMETERS IN STATEMENT OF AN ARITHMETIC STATEMENT

FUNCTION

ERROR IN ASF SET-UP, NO END IN STRING

ARITHMETIC STATEMENT FUNCTION DOUBLY DEFINED

POSSIBLE MACHINE ERROR, ARITHMETIC FAULT TYPE NOT RECOGNIZED
POSSIBLE MACHINE ERROR. MACHINE CONDITION TEST NOT RECOGNIZED
PARAMETER NOT TYPE INTEGER

I IS OUTSIDE THE PERMITTED RANGE

UNIT NUMBER MUST BE A SIMPLE INTEGER VARIABLE OR AN INTEGER CONSTANT
UNIT NUMBER NOT FOLLOWED BY)

AN IF UNIT STATEMENT WITHOUT 2-4 BRANCH POINTS

BRANCH POINT ERROR IN IF STATEMENT

LOGICAL IF IS FORMED INCORRECTLY

TWO OR MORE RELATIONAL OPERATORS IN THE SAME RELATIONAL SUB-EXPRESSION
LOGICAL EXPRESSION INCORRECTLY FORMED

RELATIONAL SUB-EXPRESSION FORMED INCORRECTLY

THE .NOT. OPERATION MUST BE FOLLOWED BY EITHER (OR AN OPERAND
POSSIBLE MACHINE ERROR, LOGICAL OPERATOR NOT RECOGNIZED

POSSIBLE MACHINE ERROR IN EVALUATING LOGICAL EXPRESSION

LOGICAL CONNECTIVE MUST BE FOLLOWED BY (OR AN OPERAND

3400

4113
4114
4200
4201
4202
4210
4212
4213
4214
4215
4220
4402
5001
5002
5003
5004
5005
5006
5007
5010
5011
5012
5013
5014
5015
5016
5017
5020
5021
5022
5023
5024
5025
5026
5027
5030

LOGICAL SUBEXPRESSION BEGINS WITH AN OPERATOR

EXCESS LEFT PARENTHESIS IN LOGICAL EXPRESSION

MASKING ARITHMETIC EXPRESSION TOO LONG

ARITHMETIC SUB-EXPRESSION IN MASKING STATEMENT NOT FULLY PARENTHESIZED
FUNCTION CALLED INCORRECTLY

MASKING EXPRESSION INCORRECTLY FORMED

THE FIRST ELEMENT OF A BOOLEAN EXPRESSION NOT AN OPERAND, (OR ,NOT,
NOT FOLLOWED ONLY BY ,AND., .OR,,)

OPERATORS .AND., .OR, NOT FOLLOWED BY EITHER (, .NOT., OR AN OPERAND
MASKING OPERANDS MUST BE REAL OR INTEGER

REPLACEMENT VARTIABLE FOR AN EXPRESSION USING LOGICAL OPERATORS NOT LOGICAL

DIMENSION OF VARIABLE GREATER THAN 32767
ILLEGAL MARK IN COLUMN 6

UN-RECOGNIZED STATEMENT

ASSUMED DIMENSION STATEMENT

ASSUMED BACKSPACE STATEMENT

ASSUMED WRITE - TAPE STATEMENT
ASSUMED SUBROUTINE STATEMENT

ASSUMED READ-INPUT-TAPE STATEMENT
ASSUMED WRITE-OUTPUT-TAPE STATEMENT
TOO MANY CHARACTERS IN IDENT

ASSUMED SENSE-LIGHT STATEMENT

ASSUMED IF-DIVIDE-FAULT STATEMENT
ASSUMED IF-OVERFLOW-FAULT STATEMENT
ASSUMED IF-EXPONENT-FAULT STATEMENT
STATEMENT TOO LONG

UN-MATCHED PARENTHESIS

ILLEGAL USE OF BOOLEAN OR RELATIONAL OPERATOR
ASSUMED IF-SENSE-LIGHT STATEMENT
ASSUMED IF-SENSE-SWITCH STATEMENT
ASSUMED BUFFER OUT STATEMENT

ASSUMED EQUIVALENCE STATEMENT

IMPROPER LENGTH FOR HOLLERITH CONSTANT
ILLEGAL USE OF PERIOD

ILLEGAL CONSTANT TYPE

STATEMENT ENDS WITH *

F-5

3400

5032
5040
5041
5042
5043
5044
5045
5046
5050
5051
5052
5053
5060
5061
5062
5063
5201
5202
5203
5204
5205
5206
5207
5210
5211
5212
5213
5214
5215
5216
5217
5225
5400
5401
6001
6002

F-6

LABEL AND MARK IN COLUMN 6

TOO MANY SUBSCRIPT INDICES

ADJACENT COMMAS

RIGHT PAREN PRECEDED BY COMMA

LEFT PAREN FOLLOWED BY COMMA

EMPTY PARENTHETICAL EXPRESSION

LIMIT FOR NON-STANDARD SUBSCRIPT EXPRESSIONS EXCEEDED

NUMBER
NUMBER

OF CONSTANTS EXCEEDS COMPILER LIMIT
OF FUNCTIONS EXCEED COMPILER LIMIT

LABELED BLANK STATEMENT--CONTINUE ASSUMED

NUMBER

OF IDENTIFIERS EXCEEDS COMPILER LIMIT

LIMIT FOR STANDARD INDEX FUNCTIONS EXCEEDED

ASF PARAMETERS DO NOT AGREE IN NUMBER

TOO MANY ASF ENTRIES, POSSIBLY DUE TO RECURSIVE CALL
ASF PARAMETER LIST NOT ENDED

ILLEGAL USE OF PROGRAM, SUBROUTINE OR FUNCTION NAME

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
NUMBER
FORMAT

CONTAINS ZEROC MULTIPLIER

CONTAINS ILLEGAL MULTIPLIER FOR , + -) OR /

CONTAINS MISSING OR ZERO FIELD WIDTH

SPECIFICATION IS NOT FOLLOWED BY A DELIMITER

CONTAINS A NUMBER GREATER THAN 262143

CONTAINS ONE OF FOUR IMPROPER ADJACENT SEPARATOR PAIRS () . , (, OR)
CONTAINS ILLEGAL PLUS OR MINUS SIGN

CONTAINS AN IMPROPER C PATTERN

CONTAINS ILLEGAL CHARACTER

CONTAINS MORE THAN 10 PARENTHESIS LEVELS

HAS NO MATCHING CLOSING PARENTHESIS

LARGER THAN 999

CONTAINS CHARACTERS OUTSIDE THE LAST CLOSING PARENTHESIS

NO OPENING PARENTHESIS ON FORMAT STATEMENT

* TYPE
FORMAT
NO. OF

FORMAT HAS NO CLOSING *
HAS A D FIELD GREATER THAN 26
BRANCHES IN COMPUTED GO TO EXCEEDS 50

ASSIGNED STATEMENT LABEL EXCEEDS FIVE DIGITS
PARENTHESIS USAGE OR DO LOGIC OR TYPE IDENTIFIER IS ILLEGAL IN I/0 DATA LIST
WRONG FORMAT OF I/0 STATEMENT DATA LIST WAS NOT YET PROCESSED

3400

6003
6005
6006
6007
6010
7001
7002
7003
7004
7005

I/0 TAPE NUMBER GREATER THAN 80

TLLEGAL SUBSCRIPT IN I/0 DATA LIST

INPUT OF DATA INTO A CONSTANT IS ILLEGAL

TRANSMISSION OF BYTE SIZED DATA IN BINARY MODE IS ILLEGAL

1/0 TYPE 5, 6 OR 7 PROHIBITED

TYPE OTHER OPERAND DOES NOT APPEAR IN DEVVARLIST. POSSIBLE MACHINE ERROR
ERASABLE STORAGE REQUIRED IS TOO LARGE

TYPE OTHER INTERMIXED IN ARITHMETIC

LOGICAL OR BYTE SIZED OPERAND(S) USED IN EXPONENTIATION

IMPROPER OPERAND

3600

3600

1001
1002
1003
1004
1005
1006
1007

1010

1011
1012
1013
1014
1015
1016
1017
1020
1021
1022
1023
1024

general form is:

**%FORTRAN SOURCE CODE ERRORS*¥*%%
txxxx TYPE ERROR IN STATEMENT NUMBER nn

(error message)

t type of error
0 = informative
1, 2 = destructive - errors which prevent execution

4 = fatal - errors which terminate compilation
XXXX error number

nn statement number in which the error occurred or followed by PLUS n where n
is the number of statements beyond the last numbered statement.

Error Messages
—_—— b

FUNCTION NAME NOT USED AS REPLACEMENT IN FUNCTION

A PREVIOUS DO TERMINATES ON THIS DO STATEMENT

A RUNNING INDEX USED IN THIS STATEMENT HAS BEEN USED PREVIOUSLY IN THIS NEST
THE NESTING CAPACITY OF THE COMPILER HAS BEEN EXCEEDED

THE CONSTANT PARAMETERS OF A DO OR DO-IMPLYING LOOP CANNOT EXCEED 32767

THE PARAMETERS OF A DO OR DO-IMPLYING LOOP MUST BE UNSIGNED INTEGER

THE INITIAL VALUE OF A DO OR DO-IMPLYING LOOP MUST NOT EXCEED THE UPPER BOUND IF
BOTH ARE CONSTANT

THE RUNNING SUBSCRIPT IN A DO OR DO-IMPLYING LOOP MUST BE A SIMPLE INTEGER
VARIABLE

THE CORRECT FORM FOR THE ENTRY STATEMENT IS ENTRY NAME

ENTRY STATEMENTS SHOULD NOT BE LABELED

MAIN PROGRAMS SHOULD NOT CONTAIN ENTRY STATEMENTS

ALL DECLARATIVE STATEMENTS MUST PRECEDE THE FIRST EXECUTABLE STATEMENT
THE NUMBER OF INDEX VARIABLES EXCEEDS THE CAPACITY OF THE COMPILER
THERE IS NO PATH TO THIS STATEMENT

A DO LOOP TERMINATES AT THIS STATEMENT

A DO LOOP MAY NOT TERMINATE AT AN END STATEMENT

DO LOOP WHICH TERMINATES AT THIS STATEMENT INCLUDES AN UNTERMINATED DO
THIS STATEMENT DOES NOT FOLLOW A DO WHICH IT TERMINATES

STATEMENT LABELS MUST BE BETWEEN 1 AND 99999

NON-STANDARD INDEXING IS NOT PERMITTED IN DO STATEMENTS

3600

1025 THE TERMINAL LABEL OF A DO MUST BE AN INTEGER CONSTANT

1026 THIS ENTRY NAME HAS BEEN USED PREVIOUSLY

1027 THE MAXIMUM PERMISSIBLE NUMBER OF ENTRY STATEMENTS IS 20

1030 THIS FORMAT STATEMENT IS UNLABELED

1031 IF THIS IS AN ARITHMETIC STATEMENT IT HAS NO LEFT HAND SIDE

1032 THE OBJECT OF AN ASSIGN OR ASSIGNED GO TO MUST BE A SIMPLE INTEGER VARIABLE
1033 STATEMENT LABELS IN GO-TO STATEMENTS MUST BE INTEGER CONSTANTS

1034 THE OBJECT OF A COMPUTED GO TO MUST BE A SIMPLE INTEGER VARIABLE

1035 THE PARAMETER TO THIS STATEMENT MUST BE AN INTEGER CONSTANT OR VARIABLE
1036 THE SUBROUTINE NAME IS NOT LEGITIMATE

1037 THE PARAMETER STRING IS NOT WELL-FORMED

1040 THE ASSIGNED STATEMENT LABEL IS NOT AN INTEGER

1042 SUBPROGRAM OR VARIABLE NAME USED AS ENTRY

1050 NO END CARD TERMINATES THIS ROUTINE

1051 THE ENTRY STATEMENT MAY NOT OCCUR INSIDE A DO LOOP

1053 THE INCREMENT IN A DO OR DO-IMPLYING LOOP MUST NOT BE ZERO

1502 ILLEGAL CHARACTER IN NUMERIC FIELD

1503 GREATER THAN 16 CHARACTERS IN OCTAL

1504 ILLEGAL CONVERSION-NUMBER TOO LARGE OR ILLEGAL CHARACTER

1700 INDEX VARIABLE NOT IN PROPER TABLE

1777 MORE THAN 25 ERRORS WERE DETECTED DURING COMPILATION. THE FIRST 25 ARE
RECORDED ABOVE

2001 PROGRAM, SUBROUTINE OR FUNCTION CARD NOT FIRST CARD OF DECK
2002 IMPROPER FORMAT OF PROGRAM, SUBROUTINE, OR FUNCTION STATEMENT

2003 IMPROPER SUBROUTINE OR FUNCTION STATEMENT TERMINATION OR PARAMETER
ERROR ‘

2004 NAME NOT STARTING WITH ALPHABETIC CHARACTER

2005 DIMENSIONED VARIABLE ALREADY DIMENSIONED OR DECLARED EXTERNAL
2006 NO LEFT PARENS AFTER VARIABLE NAME

2007 VARIABLE DIMENSION IDENTIFIER NOT IN PARAMETER LIST

2010 MORE THAN 3 DIMENSIONS IN DECLARATION OF ARRAY

2011 NO RIGHT PARENTHESIS DELIMITER IN SUBSCRIPT DECLARATION

3600

2012
2013
2014
2015
2016
2017
2020
2021
2022
2023
2024
2025
2026
2027
2030
2031
2032
2033

2034
2035
2036
2037
2040
2041
2042
2043
2044
2045
2046
2047
2050

F-10

VARIABLE DIMENSIONED ARRAY USED IN COMMON

MORE THAN 63 FORMAL PARAMETERS

VARIABLE DIMENSION IDENTIFIER NOT INTEGER VARIABLE

NO SLASH (/) SEPARATOR IN BLOCK DESIGNATION

UNDEFINED SEPARATOR IN COMMON STATEMENT
NON-CONSTANT SUBSCRIPT IN COMMON DIMENSIONING

SUFFIX 5, 6 OR 7 NOT ON-TYPE OTHER -NAME

TYPE OTHER 5, 6 OR 7 DOUBLY DEFINED

ELEMENT LENGTH DESIGNATOR NOT (S) OR (/F)

LEFT, RIGHT PARENTHESIS OR COMMA MISSING IN EQUIVALENCE
TYPE OTHER 5, 6 OR 7 APPEARING WITH SUBSCRIPTS

THIS EQUIVALENCE CAUSES A REORIGIN OF THE COMMON BLOCK
FORMAL PARAMETER OR ADJUSTABLE DIMENSION IN EQUIVALENCE
NON-CONSTANT SUBSCRIPT IN EQUIVALENCE

DECLARED VARIABLE APPEARING IN EXTERNAL STATEMENT
COMMON/EQUIVALENCE ERROR

LEFT/RIGHT PARENS NOT MATCHING OR COMMA MISSING

IMPLIED-DO ERROR IN DATA STATEMENT, NO = AFTER DO VARIABLE, OR NON-
CONSTANT DO LIMITS, OR DO VARIABLE DOES NOT AGREE WITH SUBSCRIPT

NO = AFTER IDENTIFIER

A VARIABLE APPEARS WITH SUBSCRIPTS BUT HAS NOT BEEN DIMENSIONED
DATA TO ADJUSTABLE DIMENSIONED OR PARTIAL WORD ARRAY

MULTIPLE DATA TO NON-DIMENSIONED VARIABLE

DUPLICATE BLOCK NAME

EQUIVALENCE OVERLAPS COMMON BLOCKS

FORMAL PARAMETER OR PROGRAM NAME APPEARS IN COMMON DECLARATION
VARIABLE NAME GREATER THAN 8 CHARACTER OR NO COMMA SEPARATOR
NON-CONSTANT DATA IN LIST

DOUBLY DEFINED VARIABLE IN COMMON

REPEAT COUNT MUST BE AN INTEGER CONSTANT 1-32767

VARIABLE EQUATED TO ITSELF+N

(S) IS NOT AN INTEGER 1 THRU 7, OR (/F) IS NOT A DIVISOR OF 48

3600

2051
2052
2144
2146
2147
2150
2201
2202
2203
2204
2205
2206
2207
2210
2211
2212
2213
3700
3702
3703
3704
3705
3706
3707
3710
3711
3712
3713

3714
3715
3716

ONE OF THE VARIABLES HAS BEEN DEFINED IN A PREVIOUS TYPE STATEMENT
DOUBLY DEFINED FORMAL PARAMETER

DECLARED VARIABLE TABLE LIMIT EXCEEDED

COMPILER COMMON OR BLOCK TABLE EXCEEDED

EQUIVALENCE TABLE LIMIT EXCEEDED

MACHINE OR TABLE ERROR, VARIABLE NOT IN DIMENLIST

COMMA MISSING IN PARAMETER LIST OR VARIABLE MORE THAN 8 CHARACTERS
IMPROPER USE OF FUNCTION NAME

ILLEGAL SEQUENCE OR USE OF OPERATORS

MIXED MODE-TYPE 5 AND/OR 6 AND/OR 7

ERROR IN PROCESSING COMMON EXPRESSIONS IN ARITHMETIC STATE MENT
ILLEGAL OPERATOR OR MISSING OPERATOR

ILLEGAL REPLACEMENT IN ARITHMETIC STATEMENT

AN * HAS BEEN INSERTED FOR THE APPEARANCE OF N(,) (,) V. OR) N
MORE THAN 63 PARAMETERS IN CALL OR FUNCTION

LOGICAL OR MASKING OPERATOR IN CALL PARAMETER

ILLEGAL REPLACEMENT APPEARS IN AN EXPRESSION

MISSING INDEX FUNCTION

FORMAT STATEMENT CONTAINS A NUMBER GREATER THAN 377 OCTAL
FORMAT STATEMENT CONTAINS UNNECESSARY PLUS OR MINUS SIGN

FORMAT STATEMENT CONTAINS A ZERO OR ILLEGAL MULTIPLIER

FORMAT STATEMENT CONTAINS AN ILLEGAL CHARACTER

FORMAT STATEMENT CONTAINS A MISPLACED PERIOD, SIGN, OR DELIMITER
FORMAT STATEMENT NOT SEPARATED BY LEGAL DELIMITER

FORMAT STATEMENT CONTAINS CHARACTERS OUTSIDE LAST CLOSE PARENTHESIS
FORMAT STATEMENT CONTAINS AN IMPROPER ADJACENT SEPARATOR PAIR
FORMAT STATEMENT CONTAINS MORE THAN 136 HOLLERITH CHARACTERS

FORMAT STATEMENT IS MISSING A CLOSING * OR THERE ARE MORE THAN 136
CHARACTERS BEFORE CLOSING *

FORMAT STATEMENT CONTAINS SCALING FACTOR GREATER THAN 13
FORMAT STATEMENT CONTAINS AN ILLEGAL C-PATTERN
FORMAT STATEMENT CONTAINS AN ILLEGAL D FIELD

F-11

3600

3717
3720
3721

3722
3723
4001
4002
4003
4004
4005
4021
4022
4023
4024
4025
4026
4030
4031
4100
4101
4102
4103
4104
4105
4106
4107
4110
4112
4113
4114
4200

F-12

FORMAT STATEMENT IS MISSING A CLOSING PARENTHESIS
FORMAT STATEMENT CONTAINS MORE THAN TEN PARENTHESIS LEVELS

FORMAT STATEMENT CONTAINS A MISSING OR ZERO FIELD WIDTH OR MISSING D FIELD
FOLLOWING DECIMAL

FORMAT STATEMENT CONTAINS AN ELEMENT WHICH WILL NEVER BE REACHED
FORMAT STATEMENT CONTAINS ILLEGAL () DELIMITER COMBINATION

FIRST WORD OF ASF IS NOT AN IDENTIFIER

ASF INVOLVES ITSELF

ERROR IN ASF SET-UP -NO END IN STRING

ARITHMETIC STATEMENT FUNCTION DOUBLY DEFINED

ASF PARAMETER ERROR

POSSIBLE MACHINE ERROR. ARITHMETIC FAULT TYPE NOT RECOGNIZED
POSSIBLE MACHINE ERROR. MACHINE CONDITION TEST NOT RECOGNIZED

THE PARAMETER OF THIS STATEMENT MUST BE TYPE INTEGER

I11IS OUTSIDE THE PERMITTED RANGE

STATEMENT NUMBER IS OUT OF RANGE

UNIT NUMBER MUST BE A SIMPLE INTEGER VARIABLE OR AN INTEGER CONSTANT
UNIT NUMBER MUST BE FOLLOWED BY)

AN IF UNIT STATEMENT MUST HAVE 2-4 BRANCH POINTS

STATEMENT NUMBER IS OUT OF RANGE

BRANCH POINT ERROR IN IF STATEMENT

LOGICAL IF IS FORMED INCORRECTLY

TWO OR MORE RELATIONAL OPERATORS IN THE SAME RELATIONAL SUB-EXPRESSION
LOGICAL EXPRESSION INCORRECTLY FORMED

RELATIONAL SUB-EXPRESSION FORMED INCORRECTLY

THE .NOT. OPERATION MUST BE FOLLOWED BY EITHER (OR AN OPERAND
POSSIBLE MACHINE ERROR. LOGICAL OPERATOR NOT RECOGNIZED

POSSIBLE MACHINE ERROR IN EVALUATING LOGICAL EXPRESSION

LOGICAL CONNECTIVE MUST BE FOLLOWED BY (OR AN OPERAND

A LOGICAL SUBEXPRESSION MAY NOT BEGIN WITH AN OPERATOR

EXCESS LEFT PARENTHESIS IN LOGICAL EXPRESSION

MASKING ARITHMETIC EXPRESSION TOO LONG

3600

4201
4202
4210
4212
4213
4214

4215
4220

4401
4402

5001
5002
5003
5004
5005
5006
5010
5011
5012
5013
5014
5015
5016
5017
5020
5021
5022
5023
5024
5025

ARITHMETIC SUB-EXPRESSION IN MASKING STATEMENT NOT FULLY PARENTHESIZED
FUNCTION CALLED INCORRECTLY

MASKING EXPRESSION FORMED INCORRECTLY

THE FIRST ELEMENT OF A BOOLEAN EXPRESSION MUST BE AN OPERAND,) , OR . NOT.
) MAY BE FOLLOWED ONLY BY .AND., .OR., OR)

THE OPERATORS .AND., .OR. MUST BE FOLLOWED BY EITHER (, . NOT., OR AN
OPERAND

MASKING OPERANDS MUST BE REAL OR INTEGER

THE REPLACEMENT VARIABLE FOR AN EXPRESSION USING LOGICAL OPERATORS MUST
BE LOGICAL IF THE STATEMENT IS LOGICAL, OR REAL OR INTEGER IF IT IS MASKING

EQUIVALENCE ATTEMPTS TO REORDER COMMON

DIMENSION OF VARIABLE GREATER THAN 32767 OR TOTAL DIMENSIONED AREA
EXCEEDS 32767

ILLEGAL MARK IN COLUMN SIX

UN-RECOGNIZED STATEMENT

ASSUMED DIMENSION STATEMENT

ASSUMED BACKSPACE STATEMENT

ASSUMED WRITE-TAPE STATEMENT

ASSUMED SUBROUTINE STATEMENT

ASSUMED WRITE —OUTPUT-—TAPE STATEMENT

TOO MANY CHARACTERS IN IDENTIFIER -MAX 8
ASSUMED SENSE-LIGHT STATEMENT

ASSUMED IF-DIVIDE-FAULT STATEMENT

ASSUMED IF-OVERFLOW-FAULT STATEMENT

ASSUMED IF-EXPONENT-FAULT STATEMENT
STATEMENT TOO LONG. TABLE OVERFLFOW IN ARITHME TIC PROCESSING
UN-MATCHED PARENTHESES

ILLEGAL USE OF BOOLEAN OR RELATIONAL OPERATOR
ASSUMED IF-SENSE-LIGHT STATEMENT

ASSUMED IF-SENSE-SWITCH STATEMENT

ASSUMED BUFFER OUT STATEMENT

ASSUMED EQUIVALENCE STATEMENT

IMPROPER LENGTH FOR HOLLERITH CONSTANT

F-13

3600

5026 ILLEGAL USE OF PERIOD
5027 ILLEGAL CONSTANT TYPE
5030 STATEMENT ENDS WITH ASTERISK

5031 ILLEGAL CHARACTER IN LABEL FIELD OR ZERO USED AS STATEMENT LABEL (MAY
NOT INHIBIT EXECUTION)

5032 CARD HAS LABEL AND MARK IN COLUMN 6

5040 TOO MANY SUBSCRIPT INDICES

5044 EMPTY PARENTHETICAL EXPRESSION

5045 LIMIT FOR NON-STANDARD SUBSCRIPT EXPRESSIONS EXCEEDED
5046 NUMBER OF CONSTANTS EXCEEDS COMPILER LIMIT

5047 SUBSCRIPT ON NON-DIMENSIONED VARIABLE OR IMPROPER USE OF DECLARED
VARIABLE

5050 NUMBER OF FUNCTIONS EXCEED COMPILER LIMIT

5051 LABELED OR IMBEDDED BLANK STATE MENT--CONTINUE ASSUMED

5062 NUMBER OF IDENTIFIERS EXCEEDS COMPILER LIMIT

5053 LIMIT FOR STANDARD INDEX FUNCTIONS EXCEEDED

5060 ASF PARAMETERS DO NOT AGREE IN NUMBER

5061 TOO MANY ASF ENTRIES, POSSIBLY DUE TO RECURSIVE CALL

5062 ASF PARAMETER LIST NOT ENDED

5063 ILLEGAL USE OF PROGRAM NAME

5074 S OF IF (L)S CANNOT BE ANOTHER IF(L)S OR DO-STATEMENT

5076 TYPE DOUBLE ASSUMED

5077 MACHINE MALFUNCTION (DETECTED BY SCANNER)

5400 TOO MANY BRANCHES IN COMPUTED GO TO

5402 EXTRANEOUS COMMAS IN COMPUTED-GO TO STATEMENT

6001 PARENTHESIS USAGE OR DO LOGIC OR TYPE IDENTIFIER IS ILLEGAL IN 1/0 DATA LIST
6002 WRONG FORMAT OF 1/O STATEMENT. DATA LIST WAS NOT YET PROCESSED
6003 TAPE NUMBER IN I/0O STATEMENT IS GREATER THAN 64

6004 PARITY IN I/0 STATEMENT IS NOT EQUAL TO 0 OR 1

6005 INVALID SUBSCRIPTING OCCURS IN DATA LIST BECAUSE OF IMPLIED DO-LOOP
6006 INPUT OF DATA INTO A CONSTANT IS ILLEGAL

6010 1/0 TYPE 5, 6 OR 7 PROHIBITED

F-14

3600

7001
7002
7003
7004
7005
7007

TYPE OTHER OPERAND DOES NOT APPEAR IN DEVARLIST. POSSIBLE MACHINE ERRQR
ERASABLE STORAGE REQUIRED IS TOO LARGE

TYPE OTHER INTERMIXED IN ARITHMETIC

LOGICAL OR BYTE SIZED OPERAND(S) USED IN EXPONENTIATION

IMPROPER OPERAND

ERROR IN GENERATING IN-LINE FUNCTION CODE

Assembly Errors

The following errors are detected in FORTRAN programs during the assembly phase of compilation:

U

The rightmost identifier on the line is not defined.

If the first character of the identifier is a period (eg., .n or.-n), it indicates that state-
ment number n is missing.

If the first character is alphabetic, it indicates that the identifier did not appear to the left
of an = (replacement) operator, or in a READ or subroutine argument list.

The identifier to the left of the line is multiply defined. This usually indicates that the same
statement number n (translated from .n or ..n) appears more than once in a subprogram.

Data statement attempted to initialize variables in blank or numbered common block.

F-15

EXECUTION DIAGNOSTICS G

STANDARD ERROR PROCEDURE

Execution diagnostics are output during object time; they may have one of three formats:

A. ERROR DETECTED DURING {INPUT

OUTPUT} CONVERSION ON UNIT n

(message)
{FORMAT (locn) pointer to faulty format specification*
DATA (locn) pointer to faulty data* }

A= (value of A) Q= (value of Q)
ERROR DETECTED IN ROUTINE{Name |

(program sequence trace with relative location of we call)

The program sequence trace begins with the subprogram which called the QSQERROR routine.
The calling programs are listed in sequence until the main program is encountered or until 60
lines have been printed, The relative location from which the call was made is indicated with
each subprogram name,

Example:

Assume that a program has executed the following set of calls:

PROGRAM MAIN at MAIN +00005 - calls SUB1
SUBROUTINE SUB1 at SUB1 +02561 - calls SUB2
SUBROUTINE SUB2 at SUB2 +12003 -~ calls FUN1
FUNCTION FUN1 at FUN1 +00205 - calls TSH.

TSH. detects an error.
The program sequence trace is as followss

ERROR DETECTED IN ROUTINE I/0O TSH.
CALLED FROM FUN1 +00205
CALLED FROM SUB2 +12003
CALLED FROM SUB1 +02561
CALLED FROM MAIN +00005

Formatted I/0O Messages

IMPROPER FORMAT SPECIFICATION

PARENTHESIS NESTING TOO DEEP

EXTRA RIGHT PARENTHESIS

FORMAT EXCEEDS LINE LENGTH

EXPONENT OVERFLOW DURING CONVERSION

ZERO FIELD WIDTH

INVALID CHARACTER ON INPUT

F P NUMBER IN I-FORMAT

INTEGER INPUT TOO BIG

LIST EXCEEDS DATA

Description

Error in format specification; such as
4FE12.4.

Nesting in a format statement has exceeded
10 deep.

Unmatched right parenthesis encountered.

The format statement is either calling for
the translation from, or the insertion of,
data into the record area outside the limits.
Normally the limits are 10 words on card
input, 17 words on output, and 10 words on
punching.

A calculation during conversion has over-
flowed the limits of the floating point format.

A format specification such as E0.4 has
been encountered.

An invalid character in the input field, such
as an 8 or 9 in octal input, or a letter in
numeric input.

A floating point number has been read under
I format.

A number in I-input field exceeded machine
capacity. On output, a format field which
is too small to contain the number will be
filled with asterisks.

A list in binary read called for more data
than the logical record contained.

(message)

A = (value of A) Q = (value of Q)

ERROR OCCURRED ON UNIT NO n.

ERROR DETECTED IN ROUTINE (name of routine)
(program sequence trace)

Message

UNCHECKED END OF FILE
UNCHECKED PARITY ERROR

STANDARD REFERENCE TO NON-STANDARD
TAPE

IMPROPER BUFFER IN/OUT PARAMETER S

SYNC ERROR

EOF ATTEMPTED ON LUN GT 59

(message)

Message

W-R SEQ

BIG UNIT

UN REQ.

BYPASS

Description

On last read operation, end-of-file or
parity error encountered was not checked
for.

End of file checked by: IF (EOF, i) nl,
n2 or by IF(UNIT, i) nl, n2, n3 which
takes the n3 branch. Parity errors are
checked by IF (IOCHECK, i) nl, n2.

Standard operation requested on a unit
used for buffer operations.

LWA may be greater than or equal to
FWA and both must be in the same bank

or mode parameter is improper.

End of file encountered in middle of
logical record during binary read.

Attempt to write an end-of-file on SCOPE
system units.

Description

Read operation attempted on unit which
has been written, but not backspaced or
rewound; unit number is listed.

Unit number reference exceeds 79.

IOP entered with function code larger
than 37 8 {undefined request).

Read on a bypass unit is illegal.

G-3

Q8QERROR

The standard error procedure routine is also available to the programmer to print execution error
messages not provided by the compiler. This routine is included in the library and may be called as
follows:

CALL Q8QERROR(k,m)
k the error return key, may be an integer expression (arithmetic).
m the location of first word of programmer's error message, may be a simple or subscripted
variable.
If k= 0, the job will terminate after printing the message followed by EXECUTION DELETED.
If k# 0, control will return to the program calling Q8QERROR after printing the message.

The error message must be in BCD and terminated with a period; there may be no imbedded periods.
The message will be printed on the standard output unit similar to standard execution errors.

A call to the Q8QERROR routine generates the following COMPASS calling sequence:

BRTJ ($)Q8QERROR
SLJ *+ 9

02 DICT.

00 ($)K

00 $™M

Form of the output from Q8QERROR:

(message)

A = (Value of A) Q = (Value of Q)
ERROR DETECTED IN ROUTINE (name)
(program sequence trace)

Below is a list of the standard diagnostics and the name of the routine which issues the diagnostic:

ROUTINE NAME MESSAGES

SQRTF NEG ARG.

SINF X >2 **36,

EXPF ARG GR THAN 709,

LOGF ARG = 0/NEG.

POWRF EXP = 0/NEG. ; B * LN (A) GT 709.; BASE
ISTHN ZERO.

ASINF X GT 1.

XTOI EXP OVERFLOW,.; X = 0, I = 0 OR NEG.

G-4

ROUTINE NAME MESSAGES

XFIXF INTEGER TOO BIG.
ITOJ OVERFLOWED INTG,; J GT 47.;I= 0, J = 0/NEG.
TANF ARG GT 2*%*36.

COTF ARG = 0,

Q8QMODF Q = ZERO.

Q8QXMODF DIVISOR IS ZERO.

DSQRT NEG ARG,

DLOG ARG = 0/NEG,

DSIN X GR THAN 2**83,

DEXP ARG GR THAN 709,

ATANZ2 ATAN (0/0) UNDEFINED.
DATAN2 ARCTAN (0/0) UNDEFINED.
IDINT INTEGER TOO BIG,

DMOD ARG2=0, ARG1/0 UNDEFINED.
DTOI D=0, EXP= 0/NEG.

DIMF OVERFLOW ERROR.

XDIMF OVERF LO/W ERROR.

Q2Q07331 ILLEGAL POWER.

QS8QSENLT SENSE LIGHT OUT OF RANGE,
Q8QIFSSW SENSE SWITCH OUT OF RANGE.
SII. TYPE OTHER NOT ALLOWED IN I/0 LISTS.

3400 EXECUTION DIAGNOSTICS

Math Library Error Messages (three forms)

number of arguments = 0
ILLEGAL INPUT TO name, message.
CALLED FROM xxxxxX

number of arguments = 1
ILLEGAL INPUT TO name, message.
CALLED FROM xxxxx ARG = yyyyyyyyyyyyyyyy

G-5

G-6

number of arguments = 2

ILLEGAL INPUT TO name, message.

CALLED FROM xxxxx ARGl=yyyyyyyyyyvyyyyyy ARG2=2z2272222222222%
XXXXX is the address from which the library subroutine was called.

ZZZZZZZZZZZZZ7Z22

are arguments (in octal) with which the subroutine was entered.
YYYYYYYYYYYYYYYY

Messages

SQRTF, NEG ARG.
EXPF, ARG GT 709.

LOGF, ARG IS NEG OR ZERO

SIN/COS, ABS (ARG) GE 2%*36.

TANF, ABS (ARG) GE 2+*36.

XDIMF, I1-12 OVERFLOWED.

DIMF, Al-A2 OVERFLOWED.

MODF, ARG2=0, ARG1/0 IS UNDEFINED.

XMODF, ARG2=0, ARG 1/0 UNDEFINED.

XFIXF, ARG GT MAX.

XINTF, ARG GT MAX.

POWRF, BASE=0, EXP LE ZERO.

POWRF, NEGATIVE BASE.

POWRF, A**B OVERFLOWED.

XTOI, BASE=0, EXP LE ZERO.

ITOJ, EXP GT 47.

ITOJ, BASE=0, EXP LE ZERO.

ITOJ, I**J OVERFLOWED.

ASIN/ACOS, ABS(ARG) GT 1.

COMPLEX**REAL, DOUBLE, OR COMPLEX, RESULT IS MULTIVALUED.
Q2Q07220, BASE=0, EXP=NEG OR ZERO.

DSQRT, NEG ARG.

DSIN/DCOS, ABS (ARG) GE 2%*83.

DLOG, ARG IS NEG OR ZERO.

DEXP, ARG GT 709.

CONVERSION OF REAL, DOUBLE, OR COMPLEX TO INTEGER, ARG TOO LARGE.

CANG/ATAN2, ATAN (0/0) UNDEFINED.
DATAN2, ARCTAN (0/0) IS UNDEFINED.
IDINT, ARG TOO LARGE TO FIX.

DMOD, ARG2=0, ARG1/0 IS UNDEFINED.

I/O Messages

The general form is:

message

CALLED FROM xxxxx

xxxxx is the address from which the I/O routine was called.

Message

MODE OTHER NOT ALLOWED IN BUFFER IN-OUT

LIMITS ON BUFFER IN-OUT INCONSISTENT

LIST EXCEEDS DATA

SYNC. ERROR

TYPE OTHER NOT ALLOWED IN I/0 LISTS

IF (EOF/IOCHECK) ON NON-STD UNIT

HANGING PARITY OR EOF ON UNIT n

STAND. REF. TO NON-STAND. UNIT n

Description

Mode specification in buffer statement is
not 0 or 1.

Last word address is greater than first
word address in buffer statement.

End of logical record reached in a binary
read before all list elements are processed.

In a binary read: end-of-file was encoun-
tered or more than 127 records were read
within a logical record; or the tape is
positioned on a backspace request.

A list element is specified which is not 1 or
2 words in length.

IF (IOCHECK) or IF(EOF) statements are
used on a non-standard tape unit.

Unchecked parity or end of file condition
remains on unit n when another operation is
requested.

A standard request is given to a tape on
which a buffered operation was performed.

Message

NON-STAND. REF. TO STAND. UNIT n

ERROR IN IOPACK BIG UNIT UNIT n

ERROR IN IOPACK UNIT REQ UNIT n

ERROR IN IOPACK W/R SEQ UNIT n

ERROR IN IOPACK WRITE CK UNIT n

ERROR IN IOPACK BSP PAR UNIT n

ERROR IN IOPACK BAD OPER UNIT n

Description

A buffered request is given to a tape on
which a standard operation was performed.

A logical unit greater than 80 is specified.

The request to IOP was not a recognizable
code.

A read request follows a write request.

An attempt was made to write on unit n
five times with no success. This comment
is also printed on the typewriter.

Sufficient core was not available to permit
backspacing by a bookkeeping means. A
record was read in both binary and BCD
mode to determine the backspacing, and
parity errors resulted.

An 1/0 request is rejected by SCOPE for
reasons other than availability.

INDEX

Actual parameters 7-2 Control cards 11-2
Arithmetic expressions FORTRAN 11-3

mixed mode 2-4 JOB 11-2

non-standard 5-4 LOAD 11-5

order of evaluation 2-2 RUN 11-5
Arithmetic relation 2-8 SCOPE compiler 11-5
Arithmetic replacement statement 3-1 Control statements 6-1
Arrays 1-7 Conversion specifications 9-4

notation 1-10 see format specifications

structure 1-7
transmission 9-3

ASSIGN 6-2 DATA 4-11
Deck structure 11-6
Diagnostics
Backspace 10-9 compilation F-1
BANK 4-16 execution G-1
BUFFER 10-6 DIMENSION 4-2
partial record 10-9 Dimensions, variable 4-3
DO 6-5
DO-loop 6-5
CALL 17-5 DO-loop transfer 6-7
Calling sequences E-1 DO-nests 6-6
call identifier E-1 DO-implying segments 9-2
instruction types E-1 Double-precision constants 1-4

library functions E-15
subprograms E-9

Carriage control A-3 Editing specifications 9-15
Character codes A-4 *...% 9-16
Coding procedures A-1 new record 9-17
Comments A-1 wH 9-15
COMMON 4-4 wX 9-15
Common block ENCODE/DECODE 10-12
rules 4-6 END 6-9, 7-10
COMPASS calling sequence 8-2 ENDFILE 10-10
Compilation diagnostics F-1 ENTRY 7-11
3400 F-1 Equipment assignment 11-11
3600 F-8 logical units 11-11
Compilation examples 11-6, 11-9 EQUIVALENCE 4-7
Complex constants 1-4 Execution diagnostics G-1
Constants 1-2 3600 G-1
Continuation A-2 3400 G-4
CONTINUE 6-8 Execution examples 11-18

Index-1

Expressions 1-11 Identification field A-2

arithmetic 2-1 IF 6-2

logical 2-8 one branch 6-3

masking 2-12 sense light 6-3

non-standard 5-4 sense switch 6-4
External statement 7-13 three branch 6-3

two branch 6-3
Input/Output 10-1

Fault conditions 6-4 Integer constants 1-2
Fixed point see integer Integer quantities 1-1
Floating-point 1/0 list 9-1

constants 1-3
quantities 1-1

Formal parameters 7-2 JOB card 11-2
FORMAT 9-4
Format specifications

Aw 9-13 Library functions 7-10, C-1

C(zw,.d;,Z,w,.d) 9-10 LOAD card 11-5

Dw]d 9—10 Logical constants 1-3

Ew.d 9-5 Logical expressions 2-8

scaling 9-19 Logical operations 2-9
Fw.d 9-8 Logical replacement statement 3-4
scaling 9-19 Logical units 11-11

Iw 9-11 LOVER 8-5

Lw 9-14

Oow 9-12

Rw 9-14 Main program 7-4
FORTRAN CALLS 8-2 Masking expressions 2-12
FORTRAN card 11-3 Masking replacement statement 3-4
FUNCTION 7-6 Mixed mode arithmetic expressions 2-4
Function reference 7-7 evaluation examples 2-6

Mixed mode replacement statement 3-1
Multiple replacement statement 3-5

GO TO 6-1

assigned 6-1

ASSIGN TO 6-2 nP scale factor 9-19

computed 6-2
unconditional 6-1
Octal constants 1-3
Order of evaluation 2-2
Hierarchy of operations 2-2 Overlays 8-1
Hollerith constants 1-4 errors during loading 8-5

Index-2

Parameters 7-2

PAUSE 6-8

PROGRAM 7-4

Program arrangement 7-10
Program parameters T7-1

Read statements 10-5
Real constants 1-3

Repeated format specifications 9-20

unlimited groups 9-21
Replacement statements 3-1
arithmetic 3-1
mixed mode 3-1
logical 3-4
masking 3-4
multiple 3-5
RETURN 7-10
REWIND 10-9
RUN card 11-5

Scaling 9-19

restrictions 9-20
SCOPE compiler card 11-5
Segments 8-1

errors during loading 8-5
Sense light 6-4
Sense switch 6-4
SKIPFILE 10-10
Statement function 7-8
Statement index B-1
Statements 1-11

Status checking statement 10-11
STOP 6-9
Storage allocation 4-1
Subprogram parameters 7-1
Subprograms 7-1

function 7-6

subroutine 7-5

variable dimensions 7-16
SUBROUTINE 7-5
Subroutine subprogram 7-5
Subscript forms 1-6
Subscripted variables 1-6

Table limits D-1

Tape errors 10-12

Type declarations 4-1
non-standard 5-1

Type-other declarations 5-2

Unit handling routines 10-7
Unit handling statements 10-9

Variable dimensions 7-16

Variable format 9-21

Variables 1-5
subscripted 1-6

Word structure 1-2
Write statements 10-1

Index-3

CUT ALONG LINE

PRINTED IN USA

CONTROL DATA
| corPoraTion]

CORPORATION
COMMENT AND EVALUATION SHEET

Yub. No. 60132900

THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Software Documentation

4201 North Lexington Avenve

St. Paul, Minnesota 55112

STAPLE

CUT ALONG LINE

CONTROL DATA

» CUT OUT FOR USE AS LOOSE ~LEAF BINDER TITLE TAB

Pub. No. 60132900

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

IAVANVYIW 3ONINI4TH NVHLHOd 008e/009e/00VE

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	A-00
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	Index-1
	Index-2
	Index-3
	replyA
	replyB
	xBack

