Sz @)@)
B0
S @)@)

COMPUTER SYSTEMS
COMPASS

TRAINING MANUAL
VOLUME |

CONTROL DATA
[comeorarion

CORPORATION

RECORD of REVISIONS

REVISION NOTES
A (3-1-66) Fipal Edjtion Released
B (4-19-867) Publications Change Order CA16274. Manual enlarged from one to three volumes, replacing

3600 COMPASS Programming Guide, Pub. No. 60166700, which becomes Volume 2 of the new

3-volume set. Miscellaneous corrections to Volume 2, pages 1-1, 1-21, 1-28, 2-10, 2-14, 7-3,

7-10, 11-5, 12-26, 12-30, 13-25, 15-13, 15-18, 15-22, 15-30, 15-42, 16-6, 17-2, 17-3, 17-6,

18-2, 18-6, 18-10, 18-14, 18-18, and 18-22. This edition obsoletes all previous editions.

Pub No. 60166700

© 1966, 1967
by Control Data C

Printed in United

orporation

States of America

Control Data Corporation
Marketing Training Department
8100 - 34th Avenue South
Minneapolis, Minnesota 55440

FORM CA230 REV. 1-67

FOREWORD

This manual is intended as a guide in learning how to program the
upper 3000 computer systems. It includes a hardware concept of

the systems, the use of the COMPASS programming language, and
the use of the SCOPE monitor. Step-by-step example problems, with
and without given solutions, are included to develop the capability of
using the language.

This manual is a major revision to and a replacement for the 3600

Computer System COMPASS Programming Guide and retains the

same publication number. It is now expanded to three volumes.
Volume I

This volume consists of three sections. The
first section deals with the introduction to the
systems. The second section deals with the
central processor. The third section deals with
problem-oriented exercises in which random

instructions are picked to solve problems.

Volume II

This volume consists of one section. The
instruction repertoire is divided into groups.
Groups 1-18 are hardware instruction groups,

and groups 19-25 are pseudo instruction groups.
Each group is followed by explanations of new

concepts and problems designed to use instruc-

iii

Volume 1

This volume consists of two sections.

The

first section deals with the SCOPE system.

shows how to run jobs under the system and

It

explains new concepts such as overlay process-

ing and library preparation. The second section

contains several computer output listings obtain-

ed as a result of running the example problems

under SCOPE,

REFERENCES

3400 SCOPE / COMPASS Reference Manual
3400/3600/ 3800 Instant TAPE SCOPE

3600 Computer System Reference Manual

3600 COMPASS Reference Manual

3600 Instant COMPASS

SCOPE Reference Manual

3000 Series Peripheral Equipment Reference Manual

iv

Pub.
Pub.
Pub.
Pub.
Pub.
Pub.
Pub.

. 60057800
. 60059000
. 60021300
. 60052500
. 60056500
. 60053300
. 60138800

CONTENTS

VOLUME 1

SECTION I - INTRODUCTION TO THE SYSTEMS

HISTORY 1-1

BASIC SYSTEMS MODULARITY 1-1
CENTRAL PROCESSOR 1-2
CONSOLE 1-3
MEMORY 1-5
1/0 1-9

SYSTEM CONFIGURATIONS 1-24
MULTI-CHANNEL CONTROLLERS 1-25
SATELLITE SYSTEMS 1-27

SECTION II - THE CENTRAL PROCESSOR

INTRODUCTION 2-1
ARITHMETIC SECTION 2-1
CONTROL SECTION 2-5
MEMORY SECTION 2-8
1/O SECTION 2-10
INTERRUPT SECTION 2-14

SUMMARY 2-20

SECTION III - PROGRAMMING THE 34/36/3800 SYSTEMS

INTRODUCTION 3-1
HARDWARE INSTRUCTION FORMAT 3-1
COMPASS INSTRUCTION FORMAT 3-5

COMPUTER-ORIENTED PROBLEM SOLVING 3-9

SECTION I

INTRODUCTION TO THE SYSTEMS

HISTORY

The 34/36/3800 computer systems are three separate distinct computer systems in
Control Data's upper 3000 line. Each of these systems is designed for large scale
scientific problems and large-volume data processing. Each is built and programmed
essentially the same way. Any minor difference among the systems lies in the area of

expandability and timing.

Since the 3800 system is the latest and most advanced of the three systems, most of
the concentration will be towards it. Occasionally reference will be made to the 3400

and 3600 systems to point out the differences.

The upper 3000 line was started with the introduction of the 3600 with production begin-
ning around 1961. By 1966 there were 50 of these systems in the field. Within this
period the other systems were introduced. The 3400 system, smaller than the 3600
and with less features, began production in 1963. About 20 of these systems have been
produced. The 3800 system, slightly larger and much faster than the 3600, began pro-
duction in 1964 with approximately 7 having been produced by 1966.

BASIC SYSTEMS MODULARITY
The upper 3000 systems are constructed in functional modules providing the maximum

in flexibility and capability in system s applications.

Since they are constructed in functional modules it is important for the programmer,
before using the system, to understand what each module does and how it operates

within the system,

A basic system (e. g. 3800) consists of a central computer, an input/output section,

magnetic core sotrage, and a console. The basic diagram might look like Figure 1-1.

Console

/
Central Input
Computer Output
/
Magnetic
Core
Storage
Figure 1-1

In this diagram you might note how magnetic core storage is shared by both the cen-
tral computer and I/O. This is the principle of the upper 3000 line. Further explana-
tion on this will be given.

At this time we want to take each module, one at a time, show what it looks like, and

what function it performs in the system. Later we will see how it operates within the
system.

CENTRAL PROCESSOR

The basic module within the system is the Central Processor; the 3804, 3604 or 3404,
Some people might call it the Computation Module, Mainframe or Main Control. All
are the same. Figure 1-2 shows an example of the 3600 Central Processor.

Figure 1-2

Physically the Central Processor is a huge frame about 7 feet high and 18 feet long
filled with thousands of printed circuit cards. Logically it contains the circuitry for
all registers and status that can be displayed on the console, all control to perform
arithmetic and logical operations, and all control to service interrupts and initiate
input/ output operations. Logically then, this module interprets the program and per-

forms the execution of it.
CONSOLE

The Central Processor connects directly to the Console. The consoles for the 3600/

3800 systems look the same. An example is shown in Figure 1-3.

Figure 1-3

The 3801/3601 Consoles are divided into two portions.
Operator's Portion.

with the system.

The right portion is called the
It contains the typewriter where the operator can communicate

It also contains status of the system, six sense switches, and three

jump switches. The left portion is called the Maintenance Portion.

It contains the
octal display registers where the maintenance engineers can examine the contents of
the registers.

These registers will be shown and explained in detail later.

This por-
tion also contains a few maintenance switches.

The console for the 3400 system is shown in Figure 1-4.

Figure 1-4

This console represents only one-half of the 3400 console - the Operator's Portion.
On this portion you can see the typewriter, the status display indicators, and a few

of the switches.
MEMORY

The Memory for the 3400/3600/3800 systems is similar when we speak of the ''bank'’.
A bank is a memory module of 32, 768 storage addresses ranging from address 00000
through address 777778. Each address holds a 48-bit word (actually 48 bits plus 3
parity bits) that can be transferred to either the central processor or to peripheral

equipment by means of different access lines.

The 3800 memory module is termed a 3803. Up to eight of these modules can be in-

corporated into a system. They would be designated as banks 0-T7.

1-5

Figure 1-5 shows one 3803,

00000008
- ="

00000008

..g

Figure 1-5

The small attached unit on the left contains a simple efficient refrigerator unit using

freon to cool the module. It also contains the power supply.

FUNCTIONAL FLOW BETWEEN CENTRAL PROCESSOR AND MEMORY

At this time we would like to see how the central processor references memory for

data and how data transfer takes place.

The 3600/3800 central processors, when requiring a memory reference, will generate
an 18-bit address (18 bits plus 1 parity bit) and transmit it to memory. The upper
three bits of the 18-bit address will reference the bank and the lower fifteen bits will
reference the address within that bank. The address is accompanied by either a ''read"
or "write" signal. If it is a ""write' signal, the central processor will also generate a

48-bit data word (48 bits plus 3 parity bits) to be stored and transmit it.
When memory receives the signals, a timing cycle is initiated, the data is read or
written at the specified address and a "'resume'' is returned to the central processor

along with a data word if the operation is a ''read".

Figure 1-6 illustrates this process.

Console

Central
Processor

Storage Address (18 bits + 1
parity bit)
Data Word

(48 bits + 3 parity bits) Bank 0 Bank 1

3600/3800 System

Figure 1-6

The 3803 uses the same logic and principles found in Control Data's 6000 line of compu-
ters. With this logic the cycle time for a memory reference is only 800 nanoseconds

(.8 usecs.). This includes both the read and write phases.

The 3400 and 3600 memory modules use 3000 series logic, are built different, and are
slower. The cycle time for them is approximately 1. 5 usecs. Figure 1-7 is a picture

of the 3600 memory module.

Figure 1-7

The module contains 32K storage addresses. Up to eight of these may be included in a

3600 system. However, in the 3400 system only one bank is allowed..

As long as no parity error occurs the operation is normal. However, three types of

parity errors could occur, all of which are monitored on the console.

1. Storage Address Parity Error
2. Instruction Parity Error
3. Operand Parity Error

1. A Storage Address Parity Error occurs when the central processor generates
the address, attaches the parity bit, and memory finds an error. Memory in
this case will signal the processor to stop. This constitutes an unrecoverable

error.

2. An Instruction Parity Error occurs when the central processor reads a 48-bit word
as an instruction. If the 51 bits transmitted to it are found to have a parity error,
the processor stops. This constitutes an unrecoverable error (3400 it is trapped

in interrupt).

3. An Operand Parity Error occurs when the central processor reads a 48-bit word as
an operand. If the 51 bits transmitted to it are found to have a parity error, the
processor can continue. This constitutes an interruptible condition and can be

checked in the program.
INPUT/OUTPUT
Up to this point we have shown the central processor, the console and the memory.
From here we would like to show.the input/output section of the 34/36/3800 systems.
Again, we will concentrate on the 3800 system and any differences in the 3400 and 3600

systems will be noted.

In order to maintain organization and clarity of purpose, we are not at this time going

to become deeply involved in the intricacies of the input/output equipment. We will

1-9

approach it in the following order:

1. System concept

2. Basic data flow

System Concept

In order to explain the system concept, we are going to show the maximum configura-

tion possible. Maybe no one has a maximum system, but if we understand the overall

concept, any smaller system should offer no trouble to us.

Connected to the central processor is the Communications Module (3602/3802). This
module does not take up much room; in fact, it only takes up a small portion of the

physical module shown in Figure 1-8.

If you take a close look at Figure 1-8, the 3602/3802 is on the extreme right hand side.
It is only fourteen inches wide. The rest of the physical module contains data channels.
There are five data channels included in Figure 1-8. Each has six indicator lights at

the top.
The communications module does not do much in itself and at this point it is difficult to
explain its exact role in an input/output operation. At this time we might say that it

acts as a transfer path between memory and the I/O equipment.

Building our diagram from previous explanations, it now looks like Figure 1-9.

Console

Central Control Only
Processor 3602/38GC2

= Memory

Figure 1-9

Notice how the arrows point in both directions, except between the central processor
and the communications module. Control only goes across this line, i.e. never actual
data words. If the central processor is to process data from external equipment, the

data must first be transmitted to memory and then called from memory and processed.

The arrow from the communications module to memory shows that data can be read
from memory and transferred to the external equipment or can be read from the ex-
ternal equipment and transferred to memory. Forty-eight bits are transferred across

the line along with 3 parity bits for each word. Of course, an 18 bit address is also

1-11

transmitted along with the data, whether it be a read or a write.

You might sense that the communications module is much like the central processor
with respect to memory. You are right. They both send and receive the same types
of signals. Memory couldn't tell the difference. It just reads or writes the requested
data at the specified address.

Up to 8 data channels may be physically connected to a communications module. The
data channel is a 3406/3606/3806. Each data channel is bi-directional, i.e. informa-

tion may transfer in either direction.

An expansion of the system would look like Figure 1-10.

Console
Central Communication
Processor Module Data Channeﬂ
——>| Data Channel l

%[Data Channel |
—%LData Channel I
Memory

Core ———9[Data Channel
—%u)ata Channel

—%[Data Channel
——>| Data Channel

d e e d L

Expansion of a 3600/3800 System

Figure 1-10

1-12

The data channel, after assuming control from the central processor, directs the flow
of information. For an input operation information is assembled from the external
equipment. As 48 bits are assembled, the data channel transfers the word to memory
via the communications module. For an output operation information is read from
memory via the communications module, disassembled in the data channel, and trans-

ferred 12 bits at a time to the external equipment.

The cycle time for the 12 bits is 250KC for the 3406/3606 and 1000KC for the 3806.
The 3606 and 3806 are interchangeable.

To each data channel a maximum of 8 controllers (synchronizers) may be connected.
A controller is a necessary interface between the data channel and the actual unit.
Some refer to the controller as the equipment and the actual I/O gear as the unit.

We will keep this distinction throughout.

1-13

There are many types of controllers that serve as interfaces between data channels and

their units. Representative examples are given in the figures below.

Tape Controller Tape Unit

Figure 1-11

1-14

Card Reader and Controller

Figure 1-12

1-15

conTRoL 0ATA - —

Card Punch Controller Card Punch

Figure 1-13

1-16

Line Printer Controller Line Printer

Figure 1-14

1-17

{

Disk Controller Disk

Figure 1-15

1-18

!
R
i
!
I
I
/
/
/
/
/
/
/

Drum Controller Drum

Figure 1-16

1-19

Up to 8 controllers may be connected to a data channel physically. However, only one

may be connected logically. This means that only one controller and one unit of that

controller may be operating with the data channel at any given time. Only after the one

operation is finished, may the data channel logically be connected to another unit of the

same controller or to another controller and another operation started. An expansion
of the system could look like Figure 1-17,

Data Channel l(

>| Magnetic Tape |——>> Magnetic Tape Units
Controller
Line Printer | >~ 1.ine Printer
/ Controller
Card Reader
 EEEEEE—
Controller Card Reader
Card Punch —
Controller = Card Punch
Dram —= Drum Units
Controller
Disk -)
> Disk Fil
Controller isk Kiles
Paper Tape
Reader/Punch }—————= Reader/Punch
Controller
Typewriter — i
“| Controller > Typewriter
Figure 1-17

1-20

To each controller up to 16 units may be physically connected. As of this writing only
the magnetic tape controller has this capability. The drum controller can feed up to

8 drums. The disk controller can feed up to 4 disk files. All other controllers can
feed only one unit.

The 3400 system's input/output section is virtually the same as the 3600/3800 system
except with the limitation that the maximum number of data channels is only 4. This
is because the channels are tied directly into memory and each channel services one of

memory's access lines, There are no communications modules in the 3400 system.

Basic Data Flow

Data flow for an input/output operation is a transmission of data either from memory to
the external equipment (output) or from the external equipment to memory (input). Let's

look further into each of these operations.

Write Operation (Output)

During a write operation words are read from memory and transferred to external equip-

ment, Each word read from memory is disassembled as in Figure 1-18.

Communication 48 bit word >{ Data Channel
Module
51 bits
(48 bit word + /
3 parity bits)
Memory
Figure 1-18

Fifty-one bits are transferred from memory to the communications module where the
parity bits are checked. If parity is correct, the parity bits are discarded and the 48

bit word is transmitted to the data channel.

1-21

The data channel disassembles the word into four 12 bit bytes and transmits them, one

at a time, to the presently connected controller as in Figure 1-19.

Data 12 bits + 1 parity bit
Channel Controller

byte 1 | byte 2 | byte 3 | byte 4

Figure 1-19

As each byte is transferred, a parity bit is generated by the data channel and accompan-
ies it. The controller has a 12 bit parity checker.

As the controller receives each 12 bit byte, it relays the information to the presently
connected unit. Controllers vary at this point depending on what type of equipment it

services. Let's assume a magnetic tape controller servicing 607 tape units and proceed.

This controller disassembles the 12 bit byte further into two 6 bit bytes. The 6 bit bytes

are transmitted, one at a time, to the presently connected 607. The controller generates
a parity bit for each 6 bit byte transmitted. The 6 bits plus parity bit comprise the 7

bits per frame recorded on magnetic tape. Figure 1-20 below illustrates this portion

of the transmission.

12 bits+1 parity bit-l 6 bits+ 1 parity bit—l

Data Channel (————>»{ Magnetic Tape Controller >> Magnetic Tape Unit

12 bits 12 bits 12 bits 12 bits 6 bits 6 bits 7 bits per frame

byte 1 byte 2 byte 3 | byte 4 byte 1| byte 2

< RN an
Flg'u.l. e 1-20

1-22

How is data transmitted in the opposite direction? Let's take a look.

Read Operation (Input)

During a read operation data is read from external equipment and transferred to memory.
Each piece of data is assembled making a 48 bit word before being transmitted by the

data channel to memory.

Control is given to the data channel to begin inputing data. The data channel issues a
request to the equipment to transmit data. If we again assume magnetic tape control-

lers and units, data will be read 7 bits per frame.

The frames are read from tape, one at a time. As each frame.is read, the parity bit
is checked and discarded with only 6 bits of the frame being assembled. When the con-
troller has accumulated two 6 bit bytes, it transmits the 12 bits to the data channel
along with a parity bit. The data channel checks the parity bit of the 12 bit byte, dis-
cards it, and holds the 12 bits of data. It then requests more data from the controller
which in turn requests two more frames to be read. Figure 1-21 is an illustration of

the assembly of data.

12 bits + 1 parity bit —ﬂ 6 bits +1 parity bitj,

Data Channel Magnetic Tape Magnet.ic Tape
Controller Unit
12 bits 12 bits 12 bits 12 bits 6 bits 6 bits 7 bits per frame
byte 1 | byte 2 | byte 3 | byte 4 byte 1 | byte 2
Figure 1-21

Only when the data channel has received 48 bits does it transmit the word to storage.
The word is transmitted to storage via the communications module which generates

3 parity bits and stores the 51 bits as shown in Figure 1-22.

1-23

48 bit

Communication Module Data Word Data Channel
51 bits
(48 bit Data
Word+ 3
parity bits)
Memory
Figure 1-22

This operation continues until the data channel or the central processor terminates it.

SYSTEMS CONFIGURATIONS

At this time we would like to discuss various small systems configurations as an aid

to further understanding the functions of modules and how they operate within the system.

Consider the system in Figure 1-23,

Console
Central Communication Data Channel Card Reader Card
Processor [Module = Controller Reader
Magnetic Tape Magnetic
Controller Tape Unit
Memory Line Printer Line
Controller Printer
Card Punch Card
=1 Controller 1 Puanch

Figure 1-23

1- 24

This system has one data channel and four types of equipment. Since the data channel
is bi-directional, information could be transferred from memory to either magnetic
tape, the line printer, or the card punch. Also information could be transferred from
magnetic tape or the card reader to memory. Only one operation may take place at any

given time, however. This means that maximum efficiency is not attained from this

system.

To help alleviate the servicing of I/O equipment only one at a time, consider the system

in Figure 1-24,

Console

Central Communication Data Card Reader Card

Processor Module Channel Controller Reader
Magnetic Tapeé__a Magnetic

Controller Tape

Memor Data Line Printer Line
> M Channel Controller 7 Printer

Card Punch Card

~] Controller Punch

Figure 1-24

This system is more efficient than the previous system. Here, the two data channels

may operate simultaneously. For example, the first data channel could be inputing
from the card reader at the same time the second data channel is outputing to the line

printer. The communications module has a free running scanner to service up to 8
data channels, one memory reference at a time.

MULTI-CHANNEL CONTROLLERS

An important concept used in satellite systems and in systems where it is necessary to

operate simultaneously two or more units of the same controller is the concept of the

1-25

Multi-channel Controller.

A multi-channel controller is a controller that can be fed by more than one data channel.

A bi-channel controller might be diagrammed as in Figure 1-25.

Data]
Channel Controller Unit
>| Write Control Ln}e
——————————————— Printer
Write Control
Data
Channel

Figure 1-25
An example of a controller of this type is the 3659 (line printer controller).

Each half of the controller has its own separate write controls allowing either channel
to transmit information to the line printer. The data channels could be from different

computers, thus comprising part of a satellite system.

The largest multi-channel controller may take up to 4 channels. This is the magnetic
tape controller which is a 3623 or 3624 (4 x 8 or 4 x 16 respectively). A system might
include Figure 1-26,

Magnetic Tape

Controller
gﬁginel Read/Write Controls Magnet[ilii'%‘ape
gﬁgatlmel) I—%; a-d- / jW—r_it—e—C_ o;t_r:)l-s_k Magne[']cri]ci tTaPe
B Ao S
e et N
Figure 1-26

1-26

The controller has four separate Read/Write controls, each of which are capable of

transmitting data to or from the channel and unit simultaneously. This means that the

four tape units could be going simultaneously, assuring maximum efficiency.

SATELLITE SYSTEMS

Multi-channel controllers can also be used in satellite systems.
example of a dual 3600 system.

Figure 1-27 is an

Console
T
Central Communication Data Magnetic Tape
Processor Module Channel — Controller
v
Memory Satellite = Line Printer
— Coupler —L—=1 Controller
) '
Central Communication Data Card Reader
Processor Module Channel < ~ | Controller
Console

Figure 1-27

In this system the multi-channel controllers are attached to channels of both systems
meaning that either processor can reference them. The central processors also share

a common memory. Communication between the two processors takes place via the
satellite coupler (3682).

1-27

SECTION II
THE CENTRAL PROCESSOR
INTRODUCTION
The make-up of the 34/36/3800 central processors varies only slightly. This section
will discuss mainly the 36/3800 processors. If there is any significant difference for

the 3400 processor, it will be noted.

The central processor is made up of five parts which will be discussed in this section;

Arithmetic, Control, Memory (addressing), 1/O, and Interrupt.

ARITHMETIC SECTION

The central processor is capable of performing arithmetic operations using the follow-

ing types of arithmetic:

fixed point integer
2. fixed point fractional (except 3400)
3. floating point (3400 option)

The range for fixed point integer is from —(24'7 -1) through + 24'7 -1 in increments of 1.

The arithmetic is always one's complement.

The range for fixed point fractional is between -1 and + 1 making it very limited. This

arithmetic is also one's complement.

The floating point arithmetic entails a combination of fixed point integer and fixed point
fractional in that integers, fractions, or mixed numbers can be expressed and opera-
tions performed without the programmer adjusting the point. The range for floating
point numbers is between -10308 and + 10308 which gives programmers plenty of leeway

W
in working scientific problems. This arithmetic is also performed using one's comple

ment.

There are three adders (really subtractors) used to perform the arithmetic; the A
adder (48 bit), the Q adder (48 bit), and the U adder (15 bit). A and Q adders feed

the A and Q registers with a final result from an add or subtract operation. They
always perform operations using one's complement arithmetic. The A and Q adders
for some instructions combine to form a 96 bit answer. The U adder is only 15 bits
and is normally used for address modification such as the adding of m + (Bb), y + (Bb),
or k + (Bb). It usually performs arithmetic using one's complete notation. However,
there is an instruction that can set it to two's complement mode, especially if the pro-
grammer wishes to obtain 777778 from it through normal incrementation of an index

register.
The registers in the central processor are all displayed on the console, except for the
S register which is non-program addressable. The registers discussed in the arithmetic

section are A, Q, index registers, and D.

The A register is called the Main Arithmetic Register and looks like Figure 2-1.

Figure 2-1

The A register is 48 bits. It contains nearly all results from arithmetic and logical

operations. The A adder feeds this register directly.

Sometimes the A register works in conjunction with the Q register to form a 96 bit
result. This is done, for example, when forming the product from a multiplication

operation.
Quantities in the A register can also be shifted; either alone or in conjunction with Q.
Quantities are shifted by binary bit positions either to the left (normally end-around)

or to the right (end-off).

The Q register is called the Auxiliary Arithmetic Register and looks like Figure 2-2.

Figure 2-2

The Q register is 48 bits. Very often it is used in conjunction with the A register to
form a 96 bit quantity from arithmetic operations. The Q adder feeds this register

directly.

Sometimes this register represents a mask for logical and search operations. Quanti-
ties compared or searched can be masked with the quantity in Q before the comparison

takes place.

Quantities in the Q register can also be shifted; either alone or in conjunction with A,
Quantities are shifted by binary bit positions either to the left (normally end-around)
or to the right (end-off).

There are six index registers that are shown through one octal display. Typical exam-

ples are shown in Figure 2-3.

Figure 2-3

Index registers 1 and 2 are shown. The others could be shown merely by changing a

switch on the console.
Each index register is 15 bits. The registers perform the following functions:

2 -3

1. as address modifiers for relative addressing.

2. as loop control counters.
3. as control quantities for search operations.

As address modifiers the contents of an index register serves as a ''pointer'' relative

to a base address when a memory table is processed.

As loop control counters a loop can be repeated the exact number of times and then
discontinued. Each time a pass is made within a loop a check can be made for possible

termination of the loop.

As control quantities for search operations the contents of an index register can deter-
mine the number of values in a table to compare. Also, it aan determine which ones

to skip.

The D Register (also referred to as the ''Flag'' Register) is 48 bits and looks like
Figure 2-4,

| Do 744 76

This register has a two-fold purpose.

7 7

Figure 2-4

1. as temporary storage.
2. as a flag holder (hence ''Flag'" register).

As temporary storage this register affords the programmer a relatively fast and effi-
cient method for holding a value temporarily before being processed. There is a regis-
ter-to-register instruction that will transmit any register to D and return it when need-
ed. This is faster than storing the value in memory and then retrieving it.

As a flag holder the D register has 48 bit positions, each position representing a flag
that is set or clear. There is a flag test instruction that will test any flag to determine
its status. Also, of course, there is an instruction that can initially set or change any

one flag.

CONTROL SECTION

The control section of the central processor directs the operations required to execute
instructions and establishes the timing relationships needed to perform these operations
in the proper sequence. It acquires an instruction from storage, interprets it, and

sends commands to other sections.

Before the control section of the central processor transmits an address to memory for
the next instruction or instruction set, it merges two registers together; the P Register
and Instruction Bank Register. This forms an 18 bit address which is sent to memory.
A discussion of the P and Instruction Bank Register follows. (In the 3400 only the P

register exists and only 15 bits are transferred since it is a one bank machine.)

The P Register is called the Program Address Counter, is 15 bits, and looks like

Figure 2-5.

Figure 2-5
The P register holds the address of the current instruction or instruction set. It is
controlled by a two's complement counter, so that, as the contents of P are incremented

it counts from 00000 through 777778 and then reverts back to 00000.

The contents of P can be changed accordingly:

1. (P)+ 1
2. (P)+ 2
3. changed by a "jump address"

The contents of P are advanced by one when a "'full exit" is taken. This means that the
central processor has finished with the present instruction or instruction set and is

ready for the next.

The contents of P are advanced by two when a "skip exit' is taken. This happens on a

jump instruction where a test is made and following the test a full exit or skip exit is

taken.

The contents of P are changed by a "jump address' when a jump instruction is encount
ered and the jump condition is satisfied. Program control will reference a new address
usually out of sequence with the main program and this new address will replace the

contents of P.

The P register does not comprise the complete address that is transmitted to memory
when referencing instructions. As alluded to before, an 18 bit address is always trans
mitted to memory from the central processor. The contents of P is always merged

with the Instruction Bank register.

The Instruction Bank Register (IB) is a 3 bit register and is shown in Figure 2~6

(non-existent in 3400 since it is a one bank machine).

Figure 2-6

The Instruction Bank register determines which bank is to be referenced for instructions.
A maximum of eight banks may be referenced; hence the range of 0-7 for IB. It is
vitally important that the programmer be aware of the bank registers and know how to
change them if he uses a multi bank system (36/3800). He may have the correct 15

bit address, but if he references the wrong bank, he will receive incorrect information.

Program control, in reading instructions, then, forms an 18 bit address which is really

IB-P and forms it as in Figure 2-7.

A special note might be added on the concept of incrementing the program counter in a
multi -bank system. It is important to realize that only the P register is incremented
as the program advances (not jumps). When the counter gets to address 777778, it
reverts to 00000 but within the same bank. Program control will not jump banks. The
only way to transfer program control to another bank is by use of a Bank Jump instruc—=

tion. This will then actually change IB to the new bank.

The U Register is called the Program Control Register, is 48 bits, and looks like
Figure 2-8.

Figure 2-8

When program control reads a word from memory for execution, the word enters this
register. This word may represent either two 24 bit instructions or one 48 bit instruc=-
tion. If it represents two 24 bit instructions, the upper one is executed first. Program
control then half exits (no memory reference) and executes the lower one (assuming no
jumps). If the word represents one 48 bit instruction, a full exit takes place after execu-
tion. The full exit causes program control to advance the P register and reference the

next word and the process is repeated.

When an instruction is executed, it may direct cont rol to read or write an operand (data)
from memory. The instruction forms a 15 bit address to transmit. In the 3400 it then
would transmit it to memory. However, in the 36/3800 systems, since an 18 bit address

must be transferred, a 3 bit Operand Bank Register is joined before transmission.

The Operand Bank Register (OB) is 3 bits and is shown in Figure 2-9.

2 -1

Figure 2-9

The Operand Bank Register determines which bank is to be referenced for operands.
A maximum of eight banks may be referenced; hence the range of 0-7 for OB. The
programmer can set this bank register to any of these values. When he does, all

succeeding references to memory for operands will go to this bank. This bank will

continue to be referenced for operands until explicitly changed by the programmer.

The last register mentioned in the control section is the Bounds Register. It is 37

Figure 2-10

This register regulates the Bounds principle- an interruptible feature. Thirty-six of
the bits represent two 18 bit addresses, within which program control must operate.
The two addresses are an upper and lower bounds. If program control attempts to jump
or write out of bounds and the interrupt system is active, the attempt will be blocked
and interrupt will occur. Even with the Bounds principle set up operands may still be

read out of bounds (except in 1604 mode) with no effect.

The 37th bit (highest order bit), if set, will remove the upper bounds. The lower bounds

would still remain in effect.
MEMORY SECTION

The memory exists external to the central processor. It is composed of storage address-
es of up to 262, 144 (32, 768 for the 3400) words. Figure 2-11 illustrates the eight bank

maximum.

Bank O Bank 1 Bank 7

0-00000 1-00000 { | eeecaneeaa 7-00000
0-37777 3233 1-37777 3§33 ---------- 7-37777 3323
0-40000 | OF 1-40000 | O | -meeeenee- 7-40000 | %
0-77777 1-777770 | e 7-77777

Maximum 36/3800 Memory
Figure 2-11
The uppermost three bits of the 18 bit storage address transmitted determines which
bank is referenced. The lower fifteen bits determine the address within that particular

bank.

When an address is referenced, 51 bits are read or stored at that address. The upper
three bits of the memory word are parity bits. A ''read' causes the word to be read
and transmitted to the central processor or to some I/O device as we shall see later.
The word still remains at the address. A "write' causes a new word to be written at
the address. If a word is written, the 3 parity bits are generated by the central pro-

cessor and 51 bits are transmitted to memory.

Figure 2-12 shows the format for the memory word.

50 49 48 47 39 38 24 23 15 14 0

X X X Upper Upper Address Lower Lower Address
Function Function

Parity bits
Figure 2-12

The word is formatted according to two 24 bit instructions even though the word may

be an instruction or an operand. The parity bits follow this pattern.

2-9

1. parity bit 48 is associated with bits 0-14 (lower address)

2. parity bit 49 is associated with bits 24~ 38 (upper address)

3. parity bit 50 is associated with the sum of bits 15-23 and 39-47 (functions)
Parity is always odd. The lower address and upper address portions also represent
the execution portions of 24 bit instructions. These may be changed in memory using
the partial read and partial write instructions available in the 34/36/3800 repertoire of

instructions.
1/O SECTION

At this time we make no attempt to explain every detail about how the I/O section of the
system performs. This is done later. However, at this time it is appropriate to dis-

cuss some of the details as a follow.up to the general system explained in Section I

To each data channel a maximum of eight controllers may be physically connected. To
each controller a maximum of eight controllers may be physically connected (magnetic
tape). However, only one controller and one unit may be logically connected to a data
channel at any given time. This means that only one controller aad one unit of the
controller may be operating with a data channel. If there is need to operate another
unit of the controller with the same data channel or another controller and unit with

the same data channel, the second operation must wait until the first is completely

finished (channel becomes not busy) before it can be initiated.

Generally, how does a programmer connect anything to a data channel and initiate act-

ivity? In order to explain this let us set up a system.

Suppose the system has four data channels. The programmer refers to these channels

by number. The range of these channels is 0-3.

Next, assume channel 0 feeds two controllers ~ a line printer and magnetic tape; channel
1 feeds two controllers -~ a card reader and magnetic tape; channel 2 feeds two control«
lers - a line printer and card punch; channel 3 feeds a drum. The system is as in

Figure 2-13.

2-10

#0 #0 #2 #0

Data Channel Line Printer Data Channel >| Line Printer
Controller Controller
#1 - #1
Magnetic Tape [Card Punch
Controller Controller
#1 #0 #3 #0
Data Channel < Card Reader Data Channel Drum
Controller Controller
#1
Magnetic Tape
Controller
Figure 2-13

A data channel is specified by use of it s number which is hardware built in. A control-

ler is also specified by use of its number. At the entrance to each controller there is a
dial or switch having numbers ranging from 0-7. Each number represents one of the

eight maximum controllers physically connected to the data channel. The programmer
references the controller by its designated number. All controllers to one data channel

must have different numbers.

A programmer must know beforehand how these numbers are set up. If he thinks con-
troller #1 is the card reader when it really is the line printer, and he tries to read from

it. he is going to run into trouble.

According to the diagram, the programmer might connect to data channel #0, equipment
#0. He has effectively connected the line printer. This is done by program control
through the use of a CONNECT instruction. The CONNECT instruction also allows a

unit number to be specified. However, since only one line printer can be physically

2-11

attached to its controller, this number is ignored.

If later in the program the programmer connects to data channel #0, equipment #1,

the magnetic tape controller will be connected. This automatically removes the connec-
tion to the line printer. The CONNECT instruction again allows for a unit number.

Here the unit number is interpreted since more than one unit may be physically attach-
ed to the magnetic tape controller. The unit is the tape handler or tape drive. I also
has a dial of numbers ranging from 0-7. The programmer indicates which tape drive
off the tape controller he wants connected. He does this also by specifying its number,

Figure 2-14 shows a further breakdown of channel #0.

unit number ignored since only
l one unit physically possible

#0 #0
Data Line Printer Line Printer
Channel Controller
#1 #0
Magnetic Tape Tape Unit |

Controller

1
Tape Unit |

#2
Tape Unit I

Figure 2-14

A programmer might connect to channel #0, equipment #1 and unit #0. The tape unit
is connected. If later he wishes to use tape unit #2 he first connects with another
CONNECT instruction. The same data channel and controller numbers are specified
but with the new unit. He will have lost his old tape connection. From this it is im-
portant to keep in mind that, logically, only one equipment and one unit may be connect-

ed to a data channel at any time.

With respect to our initial diagram what device would have been connected with:

2 - 12

channel #1, equipment #1 ?
channel #2, equipment #0 ?
channel #3, equipment #0 ?

If you picked magnetic tape, line printer, and drum, respectively, you are right.

Once a unit is connected to a channel, there are function codes that should be sent prior
to reading or writing. On a tape unit, for example, the density and format should be set
This is done by the use of an external function instruction (EXTF). Here the program-
mer specifies only the data channel and issues the proper code. The code will automati-
cally go to the unit last connected to the channel. The codes for each equipment can be
obtained in its reference manual. More will be explained about the types of function

codes in Volume II.

After functions are set up, actual read or write operations may begin. A Read operation
is interpreted to mean a transmission of data from the external equipment to memory.
A Write operation is interpreted to mean a transmission of data from memory to the

external equipment. There is a READ or WRITE instruction that will do either,

These instructions are very similar. They both specify a Control Word Address, an
address in memory which must be preset with a control word. The control word deter-
mines where in core the information is to be read or written and how large a block. The
control word also contains special features such as chaining, terminating upon end-of-

record, scatter reads, and scatter writes. More on this will be explained in Volume II.

When the data channel is busy, either reading or writing, another operation cannot be
initiated. However, status checks can be taken of the operation at any time. The pro-
grammer does this by use of the COPY instruction. Status could include any of the

following.

1. Control Word Address
2. Control Word
3. Channel and Equipment Status
The first two involve what is mentioned above. The channel status indicates whether a

parity error occurred during transmission of data. It also indicates if the channel is

2-13

reading or writing. The equipment status indicates such things as Ready, Busy,
Reserved, End of Operation, Interrupt, etc. Some of the status definitions will be

grouped and explained in Volume II.

INTERRUPT SECTION

Since the 3400 and 36/3800 systems differ so greatly, the 36/3800 will be explained
first. Then the 3400 differences will be mentioned.

Interrupt in the 36/3800 systems is based on priority. There are 48 sources of inter-

rupt and they are in the following order of priority.

1. Shift Fault - lowest 25, Data Channel 08
2. Divide Fault 26. Data Channel 09
3. Exponent Overflow Fault 27. Data Channel 10
4. Exponent Underflow Fault 28. Data Channel 11
5. Arithmetic Overflow Fault 29. Data Channel 12
6. Interrupt #1 30. Data Channel 13
7. Interrupt #2 31. Data Channel 14
8. Internal Reject 32. Data Channel 15
9. Real Time Clock 33. Data Channel 16
10. Storage Reference Fault 34. Data Channel 17
11, 1604 Mode 35. Data Channel 18
12, Trace Mode 36. Data Channel 19
13. Bounds Fault 37. Data Channel 20
14, Illegal Instruction Fault 38. Data Channel 21
15. Operand Parity Error 39, Data Channel 22
16, Manual Interrupt 40, Data Channel 23
17. Data Channel 00 41. Data Channel 24
18. Data Channel 01 42, Data Channel 25
19. Data Channel 02 43. Data Channel 26
20, Data Channel 03 44. Data Channel 27
21, Data Channel 04 45, Data Channel 28
22, Data Channel 05 46. Data Channel 29
23. Data Channel 06 47. Data Channel 30
24. Data Channel 07 48. Data Channel 31 - highest

2 -14

Shift Fault

A Shift Fault interrupt condition occurs only upon the execution of one of the six shift
instructions. It happens when the instruction attempts to overshift a register. An

overshift is a shift greater than 48 for the ARS, QRS, ALS, and QLS instructions and
greater than 96 for the LRS and LLS instructions. If an attempt is made, the shift is

blocked and the interrupt condition occurs.
Divide Fault
A Divide Fault interrupt condition can occur only on a divide instruction. The DVI, DVF,

and FDV instructions are the only ones. The fault occurs if the divisor is zero or if the

quotient exceeds the capacity of the answer register.

Exponent Overflow Fault

This fault occurs only on a floating point instruction. It occurs when the resultant ex-

77
ponent exceeds the modules of its format, i.e. greater than 2 8

Exponent Underflow Fault

This fault also occurs only on a floating point instruction. It occurs wl‘ie;?qﬁhe resultant
exponent exceeds the modulus of its format, i.e. becomes less than 2 8

Arithmetic Overflow Fault

This fault occurs when the result of an add or subtract operation exceeds the modulus

of the register, i.e. when the absolute value becomes greater than 247-1.

Interrupt #1

Interrupt #2

A direct interrupt from another computer or device can be tied in and sensed.

2 - 15

Internal Reject

The Internal Reject interrupt occurs when this computer attempts I/O and the equipment

is not physically attached to the system.

Real Time Clock

This condition results when the real time clock reaches a preset value.

Storage Reference Fault

This fault occurs when the central processor tries to reference a non-existent bank of
core. Through this feature a programmer can determine how much core is available

or which core is down (inoperative).

1604 Mode

This interrupt is caused when a 1604-3600 incompatible instruction is ready for execu -

tion. This interrupt allows the 3600 to interpret 1604 instructions and convert them

to 3600 logic.

Trace Mode

This interrupt is caused by a jump instruction in which the jump condition is met. The
interrupt will take place before the jump takes place. This feature allows the program-

mer to ''trap'' jumps.

Bounds Fault

This fault pertains to the Bounds Register which contains two 18 bit addresses within
which the program is to operate. If the program attempts to jump or write out of

bounds, the interrupt takes. This is effectively a memory protect feature.

2 - 16

Illegal Instruction Fault

This instruction prevents the use of illegal parameters in certain instructions.

Operand Parity Error

This interrupt occurs if an operand (data) read from memory contains a parity error.

Manual Interrupt

This interrupt is caused by depressing the manual interrupt switch on the console.

Data Channel

Each data channel is capable of interrupting the central processor. A channel may
interrupt the central processor for;
a. an end-of-operation

b. an error (storage error, parity error, etc.)

The interrupt system is initially set up by making it active. This can be done by exec-
uting the INTERNAL FUNCTION instruction with the proper code. Without the inter-

rupt system active no interrupt will take place. All would be ignored.
Besides the interrupt system being active, another condition must be present in order
for an interrupt condition to be recognized. The mask bit for the condition must be set.

The programmer can do this in his program.

The Interrupt Mask Register is a 48 bit register and is shown in Figure 2-15.

Figurc 2-15

Each bit position in the register represents one of the 48 possible interrupt conditions.

The uppermost bit represents Data Channel 31. The lowermost bit represents

2 - 17

Shift Fault. A bit set means that the condition associated with that bit will be recogniz-
ed as an interruptible condition if and when it occurs. If the bit is not set, an interrupt
caused by that condition will not force the program into interrupt. It would be ignored.
In this way the programmer can choose which conditions he wants to monitor and which

ones he doesn't.

Not all the bits in the Interrupt Mask register can the programmer control. You may
notice from the picture of the register that the leftmost 32 bits representing the data

channel interrupts are all 1's. These interrupts are called the External Interrupts and

are non-programmable - they cannot be changed. These are always automatically
monitored. The 16 to the right, however, are programmable and may be changed.
These are called the Internal Interrupts and the programmer can choose to monitor

or ignore these types of interrupts. These bits are usually set in the register at the

entrance to a routine within a program or at the entrance to the program itself.

Along with the Interrupt Mask register there exists a 48 bit Interrupt Register as

shown in Figure 2-16.

l

The register works in conjunction with the Interrupt Mask register. Here also, each

bit represents one of the possible interrupts. A bit in this register is set when an

Figure 2-16

interruptible condition monitored actually occurs.

The bit causing the interrupt is cleared by the programmer by means of the INTERNAL
FUNCTION instruction, if it is an internal interrupt. If it is an external interrupt
(data channel), either a CLEAR CHANNEL or EXTERNAL FUNCTION instruction will

drop the interrupt.

When interrupt occurs, program control goes to bank 0 address 00001. A return in-
struction is placed by the hardware at address 00000. The interrupt program stores
registers and determines the source of interrupt, clears it as mentioned above, and
processes it. When he jumps to address 00000 the main program will be resumed.

2 -18

The 3400 interrupt systems differ in that there are three categories of interrupt.

Category I is the largest and consists of the following:

Arithmetic Overflow Fault
Exponent Overflow Fault
Exponent Underflow Fault

Becoming Inactive
Becoming Inactive
Becoming Inactive

Becoming Inactive

0

1

2

3

0 I/O Transmission Parity Error
1 1/O Transmission Parity Error
2 1/O Transmission Parity Error
3 I/O Transmission Parity Error
0 External Interrupt

1 External Interrupt

2 External Interrupt

3 External Interrupt

Operand Parity Error

1. Shift Fault
2. Divide Fault
3.
4.
5.
6. Channel
7. Channel
8. Channel
9. Channel
10. Channel
11. Channel
12, Channel
13. Channel
14, Channel
15, Channel
16. Channel
17. Channel
18, Out Of Bounds
19. Manual Interrupt
20. Time Interrupt
21.
22,

Instruction Parity Error

Program control transfers to address 00007 for this type.

Category II interrupts occur when a floating point instruction is attempted when the

floating point option is not

present. Program control transfers to address 30—338

depending on the function code of the instruction attempted.

Category III interrupts occur when an illegal instruction is attempted. Program control

transfers to address 208.

2 -19

SUMMARY

This section has dealt with the general, but with a little more detail than Section I,
concepts of the central processor. We have shown the basic parts of the central
processor, parts that will help the programmer to understand what is going on when
he programs the machine.

The input/output section has been explained in more detail than in Section I of this
volume so as to prepare for the actual programming of it in Section III of this volume
and in Volume II.

The interrupt section also was introduced because a systems programmer would have

need for this in programming the I/O equipment as well as in the programming of the
macros.

2 - 20

SECTION III

PROGRAMMING THE 34/36/3800 SYSTEMS

INTRODUCTION

The objective of this section is to present to the reader a step-by-step process of
learning the definition and use of some of the computer instructions through problem
solving. We are given a problem, we discuss the instructions needed to solve the

problem, and then we present the solution to the problem.

Before we can solve any problems, we must understand instruction format.

HARDWARE INSTRUCTION FORMAT

Instructions are divided into two categories.

1. 24 bit instructions

2. 48 bit instructions
A memory word read to be executed consists of either two 24-bit instructions or one
48-bit instruction. If it consists of two 24-bit instructions, the one on the left (upper
instruction) is executed first. When the upper instruction is executed a "half exit'
takes place (assume no jump instructions) upon which the instruction to the right is
executed (lower instruction). After the lower instruction is executed a "full exit' takes

place which advances the Program Address Counter by one and references memory

for a new 48-bit word.

Half Exit

P Upper Instruction Lower Instruction h
Full Exit

P+1 —;‘ Upper Instruction Lower Instruction }-—
Half Exit T

P+ 2 ‘—>

If the next word consists of one 48-bit instruction, it will be completely executed.

After execution, a full exit is taken to read the next word (never a half exit).

P [48 Bit Instruction h

Full Exit

P+1 l-a[48 Bit Instruction —

Full Exit

P+ 2 |—>| 48 Bit Instruction I

The two categories of instructions may be mixed.

Half Exit

P | Upper Instruction] Lower Instruction |—

Full Exit

P+1 |->r 48 Bit Instruction +—

Full Exit

Half Exit

P+ 2 Upper Instruction Lower Instruction

A 48 bit instruction must start at the left side of the word, i.e., it cannot start at the

middle and extend through the first half of the next word.

The format for each 48-bit instruction varies considerably. These will be discussed

later. Following is the general form for the 24-bit instructions.

6 3 15
bits bits bits
f b or j m,y,or k
f = function code
borj = index designator or jump designator
m,y,or k = execution address, where m represents address, y represents

operand, and k represents shift count.

The function code is six bits and is different for each instruction.

The index designator represents an index register and is used for address modification.

If b=0, no index register is represented and direct addressing is implied. If b=1-6,

one of six index registers is represented and relative addressing is implied. If b=7,
indirect addressing is implied. At this time direct addressing (b=0) will be discussed.

Later, relative and indirect addressing will be discussed.

The execution address portion is fifteen bits and represents the base address (m),
base operand (y), or base shift count (k). However, this is not the actual base address,
base operand, or base shift count used. The actual address, operand, or shift count

used is M, Y, or K where,

1. M=m+ (Bb), the address plus the contents of an index register.
2. Y=y+ (Bb), the operand plus the contents of an index register.
3. K=k+ (Bb), the shift count plus the contents of an index register.

The index register mentioned is the one specified by b. If b=0, no address modification

is performed and,

AN KB
w<<|<.lg

If m is specified in the format of an instruction, it represents a 15 bit address and

will require a memory reference in order to read or write a 48 bit word.

If y is specified in the format of an instruction, it represents a 15 bit operand. This

instruction transmits the operand y and does not require a memory reference.

If k is specified in the format of an instruction, it represents a 15 bit shift count. This

instruction shifts a register by k and does not require a memory reference.
To make this concept clear we will illustrate with an example.

1. Suppose the Load A instruction had the format;

o m

e o
—

3 -4

What would 12 0 10000 mean? 12 means Load A with the contents of

memory address 10000. One memory reference is made.

2. Suppose the Enter A instruction had the format;

f b y

What would 10 0 00126 mean? 10 means Enter A. Index designator
b-0 means no modification (direct addressing). 126 means enter A

with the octal number 126. No memory reference is made,

3. Suppose the A Right Shift instruction had the format;

What would 01 0 00030 mean? 10 means A Right Shift. Index
designator b-0 means no modification (direct addressing). 30 means

shift the contents of A by 308 places. No memory reference is made.

These three examples show the difference of using the form m, y, or k in different
types of instructions. For the time being we will stay with direct addressing (b=0)

treating relative addressing (b=1-6) and indirect addressing (b=7) later.

COMPASS INSTRUCTION FORMAT

At this time we want to relate hardware instruction format to Compass format because
all problems will be coded in Compass. On the following page is an example form of
the 34/36/3800 Compass coding sheet*,

Columns 73-80 are purposely left out for all examples in this manual. However,
the field is explained.

ROUTINE — DATE
LICK OPERATION, MOBIFIERS ABBRESS FIELD COMMENTS DENT
< ‘ {
seispeqsysgrgelelopey ! SN Ju 1 I gy e e e,
| I
o R At L L L I S S I I WA S A
[
S T S U SO S S A U S A A A S O O B U A R P OO S S S S G U 0 O A O Y W S S A
[\
Lavuy bl L ISt L 1 L I
| .
L I N i P 1 L]
' i
I I A S A Ll N U S A A A SV R ISP, S
'
..... L A AT A I A S Y A A A S 1 1 L Ly Ll
'
) L I S A A S S G S e I 1 L L
1
Lt PR N A S T U U S A S A S R S U I SO S S R L L . I
[
Lt I S SV WA L i 1 L Lt I L
'
NI NI I AT R A NG B S S S A A S S St Ll L I L L L L L
] '
La e T A S A S S U SU S A A S A A A S L L1 L Lo I I
| .
I N A A A A A e L . I s L
I |
Ll PR U VO U S T S S S U0 T U S S S0 Y O N Y S W S SV B R R Wt L L L i
I
I N W I A i S A A i L L . L L ceanaa]
[|
L TS L L L P P R S
| ;
Lo P S U S I T U ST U0 U 00 WA Y T S A S A A O S Y U A O 1 . .
|] !
La N S Ll L i i " L,
| v 1
P I AU A A S S U S AR SRS T O A A S L L L L NI
| ' i
L P O UV S U S U 0 S GO S S Y O O Y B Liia i sl A L
') 1
bl IS S T S U S U B S 0 S BV U A S Y S T A S U S S S S R "
1 v
L P U U N S S S T S S S B S S S 0 A A A A I L
| |
L TR U 0 U U S S U S A S 0 G G B W 0 0 G Y A B S A S G U U0
i]
I O I R U A U S 0 S SV S ST A S 0 U 0 A U O S SR RS WU
[l
ITIUSTSTTTTLIT:) FYUpeeTe ey
oc

Note the ''fields' on the form.

Location field (columns 1-8)
. Operation field (starting with column 10)
Address field (starting with column 20)

. Comments field (starting with column 41)

DR Ww N

. Ident field (starting with column 73)

Within these fields we enter symbols rather than absolute numbers because symbols

are much easier to remember.

Instead of remembering an absolute address like 34175, it is easier to remember a
symbolic address like ELEMENT, especially when an operand must be stored and

retrieved from this address several times. If we reference address ELEMENT, the

computer assembler will allow an absolute address for this symbol. From this point

on we don't care where the address is as long as we can reference it by the symbol.

Instead of remembering 12 as a Load A instruction, it is much easier to remember

LDA and let the assembler remember that it represents a 12.

With these notes in mind we now want to discuss the coding form and define a few rules

that we need to know before writing a program.

A symbol on the coding form must be _eight characters or less. The first character
must be a letter rather than a number. Succeeding characters may be letters or

numbers, or a mixture of both (alpha-numeric). The following are valid symbols:

1. VALU1

2. Al

3. TESTCASE
4, X1ARRAY

The following are invalid symbols:

1. 4TH
2. TESTAGAIN

Can you tell why?

A symbol on the coding form may not have special characters within it. Characters
illegal are: $, *, 1, ,, (,), +, and -. A period is allowed.

FIELD RULES

The LOCATION field consists of columns 1-8 which may be all blank or contain any of
the following:

1. A legal symbol as defined above (Imbedded blanks are ignored). This

symbol usually represents an address.

2. A plus or minus sign placed anywhere in the field with the remaining
columns blank. A plus sign forces that particular instruction into the
upper half of a memory word. A minus sign forces that particular

instruction into the lower half of a memory word.

The OPERATION field starts with column 10 and ends with the first blank column.

The Operation field may contain:

The mnemonic for the machine language instruction (e.g. LDA)
The pseudo instruction (explained later)

A macro instruction (explained later)

B W N

The actual numeric function code (e.g. 12)

There are also sub-fields in the Operation field. However, these will be discussed

later.

The ADDRESS field begins in any column following the operation's field blank
terminator. It then ends when the first blank character is encountered. For
convenience we usually start in column 20 (see dotted line on coding form). We
usually start here so that the source listing is easier to read in case the program has

to be de~bugged.

The COMMENTS field begins in any column following the address field blank
terminator and ends at column 72. For convenience we usually start at column 41
(see dotted line on coding form). We usually start here in order to make the
comments easily readable. This field is not interpreted by Compass but only
printed on the listing. It can become very valuable, however, to the programmer/
analyst in remembering what each section of the program is doing. A programmer
should use many brief comments as helpful aids when he initially codes a program.

It makes it much more meaningful.

The IDENT field starts with column 72 and ends with column 80. Here a programmer
will usually number his cards in ascending order 1 through N so that if he happens to
drop the source deck he won't have any trouble rearranging them. This would be

quite a task if the cards wouldn't be numbered.

COMPUTER - ORIENTED PROBLEM SOLVING

This portion of Section III deals with problems involving some, but not all of the
instructions within the repertoire. The idea is to introduce a few instructions
through problem-solving, understand how the instructions are coded, and understand
how the instruction set solves the problem. In Vol. II a detailed analysis of the

complete instruction repertoire is given along with more problems using them.

Problem 1:
An equation for X states that, X = A+ B - C. Solve for X if A, B and C are given.

Flowchart:

- Load A Add B Subtract C ittO;(e Result .

The instructions needed to solve this problem are:

1. LOAD A - LDA
2. ADD - ADD
3. SUBTRACT - SUB
4, STORE A - STA
1. Instruction: - LOAD A Mnemonic: LDA

Elementary Form:

LOCATION RATION, MODFIERS ADDRESS FIELD COMMENTS
!

DA E"‘

This instruction replaces the A register contents with an operand from memory
address m. A storage reference is made to obtain the 48-bit quantity. A is
cleared, the 48-bit quantity is then loaded into the A register. The memory

location remains unchanged.

3-10

Instruction: ADD Mnemonic: ADD

Elementary Form:

LOCATION | IOPERATION MODIFIERS ADDRESS FIELD COMMENTS
Lz iersiecriad el e e g oy w0 ia o % a2 i3 300 901N 2T LI BB
ADD . . Em i

|
i Lk {

[

This instruction adds a 48-bit operand to the previous contents of the A
register in 1's complement, fixed point format. A storage reference is made
to obtain the 48-bit quantity at memory address m. The memory location

remains unchanged.

When the sum of two quantities exceeds the capacity of A, an arithmetic

overflow fault occurs which may cause the computer to be interrupted.

Instruction: SUBTRACT Mnemonic: SUB

Elementary Form:

LOCATION | |OPERATION MODIFIERS ADDRESS FIELD COMMENTS
I

RN RE RN ASES L TR R LR N R LR A S NNl £ I NE R R T Lo E R R T N E- S0 PR SR R NRLAE AP0 8 CURC AN (L N S LR 4
S.ug |

This instruction subtracts a 48-bit operand from the previous contents of the
A register in 1's complement, fixed point format. A storage reference is
made to obtain the 48-bit quantity at memory address m. The memory

location remains unchanged.

When the difference of two quantities exceeds the capacity of A, an arithmetic

overflow fault occurs which may cause the computer to be interrupted.

3-11

4, Instruction: STORE A Mnemonic: STA
Elementary Form:
LOCATION | DPERATION MODIFIERS ADDRESS FIELD COMMENTS
o !
ot e ho b i in v e v e 201 22373 de i3s3 T 390 4t 3ii3e. e 3 3. ye e berian iS5 eees ek a0 s 54 Eoa w s -
I 87A %"1 R JZ I L
. i I

This instruction stores the contents of the A register at storage location m.

The A register contents are not modified by this instruction.

Problem 1 could be solved by coding in the following manner:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I 1
S e B e e T B s s s i p s de e 0k % 2180588
CDA oo B
o D B . w8 . .)
L Syl i e e
e 1BTA f o AswER

The symbols in the address field refer to symbolic addresses which would have to be
defined somewhere in the location field.

Student Problem 1A:

An equation for Y states that, Y=A - B - (B+ C).
given.

Solve for Y if A, B, and C are

3-12

Flowchart*:

Problem 1A could be solved by coding in the following manners;

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
[

IR RO I T ORI) EIT LM SR Y3 %S00, 41ie et S 43 w509 a8 a0

wi s
i
PN SRS SIS N6 ST DU SO AT S OV S ST S S S S U SO SO0 SOUR VDI S SO PER
i
L.
!
!
i
]
y

: -
RPN RIS VRPN SUNPU SO

e
b

The reader is expected to flowchart and provide the coding for all student problems.

3 - 13

Problem 2:

An equation for W states that, W = 2 (X + Y) - 34956,

given,

Flowchart:

Solve for W if X and Y are

- — Load X

Add Y

Store At
TEMP

—0

Add TEMP
To (A)

Subtract
34956

Store Result
At W

Two new instructions introduced at this time are storage allocation instructions:

1. Block Reservation - BSS
2. Decimal Data Initialization - DEC
1. Instruction: Block Reservation

Elementary Form:

Mnemonic: BSS

LOCATION | [OPERATION,MODIFIERS

ADDRESS FIELD

COMMENTS

(NERERRRENTREATS L)

sk seiae i sy

memimisiseian iy wi el e

BSs. . in
{
i

This instruction is not a hardware instruction but rather a pseudo instruction.

As such it is interpreted by the assembler; not the hardware.

When the

assembler interprets the instruction, it reserves a block of storage (n words)

at this point of the program and the starting address of the block is labeled £

(location symbol). When this block is reserved in core, it is not zeroed out.

Usually the programmer will store data in the reserved area using it as

temporary storage and then read out the data later in the program.

3 - 14

2. Instruction: Decimal Data Initialization Mnemonic: DEC
Elementary Form:
LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS

|

Y] iAo a0

sy el
1

; C ;
i
i

LBl r i i iwlaza

e

This instruction is not a hardware instruction but rather a pseudo instruction.
When the

assembler interprets the instruction, it prestores a fixed point decimal

As such it is interpreted by the assembler; not the hardware.

constant (no point) at the address specified in the location field.

More can be said about this instruction but this will be in Volume II.

Problem 2 could be solved by coding in the following manner:

LOCATION | JDPERATION,MODIFIERS ADDRESS FIELD COMMENTS
{]

S @02 (g ey U 00 i s 2 0 20 e 08 26 e 0 00 0NG9S0 0N D06 20 I 201 00 40 a7 0 63 0000 10 AT (400 40 S 18T 50 43 Nk (58 [56 TSI S a0: €)ia2 el s .65 as ;67 0k sy
LDA .. X o L L
D Moo e BUM BE X AMD Y
STA TEMP . . N L 1
40D TEMP.. CROXEA)
SuB ICONSTAMT . 2 (X+3Y). = 3495 N

.| BT4 W AMsweR .

Somewhere, but not in this line of coding would exist the following three cards:

TEMP BSS 1
W BSS 1
CONSTANT DEC 34956

Two locations are reserved: One called TEMP and one called W.

contains the decimal fixed point number, 34956,

3 - 15

Student Problem 2A:

An equation for Y states that, Y = 5413648 - 3(A-B). Solve for Y if A and B are

given.

Flowchart:

Problem 2A would be solved by coding in the -following manner:

LOCATION | DPERATION, MODIFIERS ADDRESS FIELD COMMENTS
i

G, a4 8 SINLISE BT S w e thise el 3 Gan €S s 18T M) (TRITE %

Ciziviesnseraabele e e o sl o m s a1 28 s

!
i
!
; L - i | i H S S S S -
i
|
i

b
i
i
i
I

3 -16

Problem 3:

Given: X and Y as integers each greater than -1600 but less than +1600. For any

given values for X and Y:

1. If 5X + 8Y > 0, form the sum of X and Y and store at Z
2. If 5X + 8Y < 0, form the difference of X and Y and store at Z
Flowchart:
F Prod F Prod C bi
e L HE DR Gomeme (1)
S Sum Of
@—{Sumzo'?}“;) X And ¥
At Z
No
Store
Difference
Of X And
Y At Z

The new instructions needed to solve this problem are:

1. MULTIPLY INTEGER - MUI
2. A JUMP - AJP
3. UNCONDITIONAL JUMP - SLJ/UJP
1, Instruction: MULTIPLY INTERGER Mnemonic: MUI
Elementary Form:
LOCATION | 'OPERATION MODIFIERS ADDRESS FIELD COMMENTS
i |
: . > sl v s e e} g 2 3 3TI0 2L W S LT 3 wle R R N TN DoALsSite 8
MUT o m g .
B o I t . I

3 - 17

This instruction forms a 96-bit product from two 48-bit operands. The
multiplier must be loaded into the A register prior to the execution of this
instruction. The multiplicand is read from storage address m. The result-
ing product is contained in the QA register as a 96-bit quantity where least
significant bits are in A. The contents of address m are not affected by this

instruction.

Since the product resides in a 96-bit register (QA), there is no chance of an

overflow condition and no interrupt is possible from the execution of this

instruction.
Instruction: A JUMP Mnemonic: AJP
Elementary Form:
LOCATION | JOPERATION, MODIFIERS ADDRESS FIELD COMMENTS
AJP, = Lidm btk b Voot . . L
H
- I i ‘|=<i.l>1iiivv,l.3~i l= L

This is the first instruction encountered with a sub-op modifier specified in

the operation field. This sub-op is necessary.

The forms this instruction may take are:

1. AJP, ZR m
2. AJP,NZ m
3. AJP, PL m
4, AJP, M1 m

This instruction examines the contents of the A register for one of four
conditions; zero, non-zero, positive, or negative. Hence the reason and
necessity for the sub-op modifiers. If the condition checked for is satisfied,
a jump occurs to address m. If the condition is not satisfied, the next

instruction is executed.

3-18

3. Instruction: UNCONDITIONAL JUMP Mnemonic: SLJ or UJP
Elementary Form:
LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
1
13 ieiE e s o dmiir i e e a0 gy 20y e 0 e 3 e 28 30300 s 0 s ke e L 145 146, 5 38 S5 59. 06 450 » 1
SLY : im] L
H
. i I

This instruction causes an unconditional jump to address m.

Problem 3 could be solved by coding in the following manner:

Somewhere, but not in this line of coding, would exist the following pseudo instructions:

CON1
CON2
TEMP
Z

DEC
DEC
BSS
BSS

= = o O

3 - 19

LOCATION | IOPERATION, MODIFIERS ADDRESS FIELD COMMENTS
I]
RSB RN G i h 0 i v in e ar e 0w da0 (a7 23 A s3s 362518 01300 301 A 28 10653730 20 90 fed ian i 636014 PG A7 a0 00 % a0 %383 % NS 9T SN ST 06 15 0T 63 94 68 ae (67 M ey 10370 7
; L DA gVt . R
Mmut X L sX .
- STA. \Temp, | L .
LpA _CANR |
MU T e gy]
....... 40D TEMP X+ &Y
. ATP, PL . lsumM _Jump JF Sum Zz O
D) FF Lop X R .
: suB oo X = R
STA g o L
o SLT CONTIIUE e
UM LDA N | L T
o0 y X+,
~ L \sTA Z Lo
C PuITIWUE f ; » .
. —— | J— 1 F—

Student Problem 3A:

Given: A and B as integers each greater than -1200 but less than +1200. For any

given values for A and B:

1, If 10A - 3B = 0, substitute the current values of A and B into this
equation Y = 10A + 7B solving for Y.

2. If 10A - 3B # 0, jump to address TRYAGN,

Flowchart:

3-20

Problem 3A could be solved by coding in the following manner:

LOCATION | JOPERATION, MODIFIERS ADDRESS FIELD COMMENTS
]
I |
i IS U U S S NN NN WA AN TS ST SN NS EVUE S W WOU SN SO NE T SO0 SO S S S T SRR ST I Y S N Y S NN
! [
i) | 1 Ll i
i 1
SEE . | . [.
l 1
i o] e i L oo Lk
I i
A | L L
| I
: N = B . i L I N A A T
- e e | Lo
! !
b b 1 1
| !
I < i -
] i
- ok - - | e . s
i i
_ - ! 1
| |
- i i 1 I L L L |
1 [
i | { L I
i]
. S B N |
i i
i wd. i } R ST SO b i
{ !
| i 1 i ot
i t

3 -21

Problem 4:

Evaluate Z = %Xt—?"

-2000 and +2000.

Any remainder is to be stored at R.

if X and Y are given as positive or negative integers between

Flowchart:
Form Product Form Product
T= =7 0Of4AndX Of 2 And ¥ Add 3 —9@
And Save
. Store Result At
Divide By .]
() Saved Product it RRemamder -T-
The new instructions needed to 5o0lve this problem are:
1. Store Q - STQ
2. Divide Integer - DVI
3. Enter Q - ENQ
4, Increase A - INA
1. Instruction: STORE Q Mnemonic: STQ
Elementary Form:
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
i]
L3 KNSR SN T SR E AL IR IR T S e SE A R TR TP R e R REAr At I LA I I T s 3283 I8 18NS N S 9 a6 41ietied 5 - i
ST@ ;:m T o)
i
, I i s

This instruction stores the contents of the Q register at storage address m.

The Q register contents are not modified by this instruction.

3 -22

Instruction: DIVIDE INTEGER Mnemonic: DVI

Elementary Form:

LOCATION | |OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

2SS0 a0 e e s BT 00 300 3L 91 ae 13 06 27 o sz ke bar i an

1
|

I
(R KLFRANE: L 1 vist 31502 7 5 1870031 04165 20 67 0 49
1
DVJ im ebd A i) I RS R i i
i

This instruction divides a 96-bit integer dividend by a 48-bit integer divisor.
The 96-bit dividend must be formed in the QA register, with the least
significant bits in A, prior to the execution of this instruction. The quotient
is formed in the A register. The remainder is left in the Q register at the
end of the operation. The remainder will have the same algebraic sign as

the initial dividend.

The only fault that can occur as a result of this instruction is a divide fault.

This will occur when one of two conditions exist. They are:
1. division by zero
2. the dividend being so large as compared to the divisor that the

answer exceeds the capacity of the A register,

A divide fault constitutes an interruptible condition and could force the

computer into interrupt.
Instruction: ENTER Q Mnemonic: ENQ

Elementary Form:

LOCATION | [OPERATION MODIFIERS ADDRESS FIELD COMMENTS

R0 BT By s s e s e s hecen 6 e e e e e s s s

I A

[
L PR RE R R TR SRLTS DAL i SEi3tianerier o
3 t
EVR S I R S S -
i t
| !

3 -23

This instruction clears the contents of the Q register and enters it with the
15-bit quantity y, right justified, with the sign (bit 14) of y extended into the
upper order bits of Q. No storage reference is made.

Positive or negative numbers are allowed for y up to + 214 -1, i.e., + 16,383.

Instruction: INCREASE A Mnemonic: INA

Elementary Form:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
|

ado b v ey e a4 e e as e 0e . T G0N LI 2 M 38 L
TNA N

1i2iy D4R 4380108 1NG (4D A4 S 9T SR S0 U8 0L T O SN0 41 02 a3 0 68 ae T 0N 49 (TE{TIANY

This instruction adds a 15-bit quantity to the A register. Positive or negative
numbers are allowed for yupto+ 214 -1, i.e., + 16, 383. The addition is
performed as if the 15 bits were 48 bits with the 15 bits right justified and the
upper order bits simply an extension of the sign bit. The arithmetic is

performed in 1's complement notation.
If the operation causes the capacity of the A register to be exceeded, an

arithmetic overflow fault will occur which could force the computer into

interrupt.

3 - 24

Problem 4 could be solved by coding in the following manner:

LOCATION | IOPERATION, MODIFIERS ADDRESS FIELD COMMENTS
i]
1133 ieis et w el v ine i et uns v r e el 0 4 (72020 1Ge 038 i ke i 2T I 20 (300 31 (00 ;051308 36 3 (I 30 du |60 A2 €3 0€L6% 106 4aT L a8: 60 $h 81 (5285 L% S8, S 87 SK: S0 a6 &1 el el b5 28 L 6T A 4D (35 2IL02
DA, N b
] IMaz ., y “ux
STA ... TEMP S PR :
(DA .) A T
MU kg - o
R T b
o Mze, el deas . KCHECK STex/.
- =~ o JEXTEUD NECATIVE S1.64 THROUGH K .
e luge L ROYL L o «
Pds e %) ‘ EXTEUD PHSITIVE S1éa/ THRAUVSH Q
Ry ... |DVI TEMR.. ‘ o 2)#3). S () .
i BT e
5TQ Ei? R PO
L { n
t

Somewhere, but not in this line of coding would exist the following pseudo

instructions:
CON1 DEC 4
CON2 DEC 2
TEMP BSS 1
Z BSS 1
R BSS 1

Student Problem 4A:

_20I-53
Evaluate N = 3TrAR

between -3000 and +3000. Any remainder after the divide is to be stored at R.

if I, J, and K are given as positive or negative integers

3 -25

Flowchart:

Problem 4A could be solved by coding in the following manner:

LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
| i
$0259 0080 e i r i O hIein I e 0 e (e 0L 0 0000 LD €0 A7 LA A 818N LS 5T 00 615D a8 L8 Ll 8 L 7L
i
i i i ik ! i ; : Loids o5 ot fd
| 1
2) TSR RSN T A S A SR NP A A S A
{
L "
!
i : I : i
i {
1 i ke
i
i SRR B S L o
[l
2 i I e L
1 |
e 1 { L
i |
I et b £
| i
L | i
i i
- » it i e — ! .
t {
! i 1 L L4
I i
it id i - L i . -
I '
bt b i ! \ i i
+ i

3 - 26

Problem 5:
Assuming a Compass subprogram to be executed, code the instructions needed to
form A B + C in the A register if A, B, and C are given as integers between -4000

and +4000.

Flowchart:

Form Product
Of A And B Add €

The new instructions needed to solve this problem are:

1, SUBPROGRAM IDENTIFICATION - IDENT
2. SUBPROGRAM TERMINATION - END
3. ENTRY POINT - ENTRY
1. Instruction:. SUBPROGRAM IDENTIFICATION Mnemonic: IDENT

Elementary Form:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I

R RR AT INE N R N N R AT A R TR IR E WL RS I TE RE RELAE SRt LT A I ST

|

[
i
i
m RSN S OO S SO S S SR Lot i s
i
!

TDENMT. ..

i
]
-

This instruction is a pseudo instruction which must be the first instruction
of each subprogram. The m subfield must contain a symbol of 1 to 8

characters, which names the subprogram.

3 - 27

Instruction: SUBPROGRAM TERMINATION Mnemonic: END

Elementary Form:

LOCATION RATION, MODIFIERS ADDRESS FIELD COMMENTS
1 ;
NSRRI NN LS L AL NA RN RSN NN, 2 . JELRECRE S RECRE S R AP SRR R N E RE SR FIIAE. R LNE N L1} 95065

- [
blMD ;E;i::m‘ fotd Lol ki
. L)

This instruction is a pseudo instruction which must be the last instruction of
each subprogram. END signals termination of the subprogram. The symbol
in the address field is optional. If present, the symbol represents the

transfer address to which control is sent when beginning the execution of the
program. The symbol must also be declared as an ENTRY point in the sub-

program in which it resides.

Instruction: ENTRY POINT Mnemonic: ENTRY

Elementary Form:

LOCATION RATION MODIFIERS ADDRESS FIELD COMMENTS
i

60547143 L00A8 106147 4040 IS8 I 3R IS3 M I {3 I S0 € 0T 02 08 00 T MWD {THITIATE

]
1
]
Ghe Lododdo bk Lot Lo i : ! O T O SOF TGS U P SN W W
i
1

This instruction is a pseudo instruction that declares the symbol within the
subprogram as an entry point that may be referenced by other subprograms.
The entry point symbol must be in the location field within the same sub-
program that declares it.

The ENTRY instruction does not use up a memory location and can be placed

anywhere in the subprogram deck.

3 - 28

Problem 5 could be solved by coding in the following manner:

LOCATION | IOPERATION, MODIFIERS ADDRESS FIELD COMMENTS
i |
: R SR s s e o7 e s a3 Ea0 (dn T2 I (G 8 36 08 N1 305 38 00 154 0% 36122538599 0 |43 a2 43 aatat pa 4T L ae 1is2i83 8 s S stia0 5 P s e (00N
DEVT. EVALUATE . . Lol ,
e | EMIRY. . EMALUATE ... :
L UATE Bss . 11 = Lo _
DA A oo s
Ll B A8 , x J
) DD L C';/lﬁ—f-c,) .)
. T EVALUATE. 1
EA/D ; , i .

The subprogram consists of the instructions IDENT through END which could be
entrant from the Scope monitor or from some other subprogram within the job.
Entrance would be by means of a "return'' jump to EVALUATE. After the algebraic
expression is solved, a jump is made to the entry point EVALUATE. The instruction
executed at EVALUATE "returns’' program control to the calling subprogram. You
might keep this idea in mind because a further discussion will follow that will

involve the return jump instructions and the use of more than one subprogram,

From this point on all problems will be solved by also including the three pseudo
instructions just learned: IDENT, ENTRY, and END,

Student Problem 5A:

Use the pseudo instructions just learned to form a subprogram that, when entered,
will form X2 + X -11in the A register if X is given as an integer between -6000 and

+6000.

3 -29

Flowchart:

Problem 5A could be solved by coding in the following manner:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
) i
I ol 1
| [
[R] -
1 1
. | PURR
] i
I [
1 !
L i
i
1
1 . -
] 1
. . L bbbk bbb i e

3 - 30

Problem 6:

Given: 100 scores from a test. Each score ranges from 50 through 100 and takes up
one memory location starting at the symbolic address SCORES. Find the average of

these scores and store it at AVE, Any remainder store at REM,

There are two ways of going about solving this problem. One way is to add the 100
scores with sequential ADD instructions. Another way is to repeat one ADD
instruction until the 100 scores are added. The first method is cumbersome because
so many cards have to be punched. The second method takes far fewer cards and uses

the concept of INDEXING. It is at this point that we wish to introduce this concept.

At the beginning of this section we presented the machine and Compass format for
the 24-bit instructions. We mentioned that the 3 bit index designator b could be used

in any of the following manners:

b=20 no indexing specified
b=1-6 indexing specified
b =7 indirect addressing

Number 2 is now considered. There exists within the central processor 6 index
registers (hence b = 1 - 6) the contents of which could be used as "pointers' that point
either forward or backward from the base address of an instruction. This is called
relative addressing. The actual address referenced by an instruction always takes
into consideration the possibly of indexing. A few examples will show how indexing is

performed.
Suppose (Bl) = 3, (Bz) = 5 and the following instructions were executed.

1, LDA TAX, 1

[\V)
&
S
o
£
e

3 - 31

The first instruction loads a 48 bit operand from an address. What address is it?
It would be address TAX + 3 (three addresses ahead of address TAX), since index
register' 1 is specified and it contains +3.

The second instruction adds a 48 bit operand from an address to the contents of A.
What address is it? It would be address MAX + 5 (five addresses ahead of address
MAX), since index register 2 is specified and it contains +5.

If these instructions are executed repeatedly and each time the contents of the index
register are incremented by 1, each address referenced will be one ahead of the

address previously referenced. This is the technique we will use to solve the problem.

Flowchart:

Clear A Add First Or
Register Next Score

All Scores
Added?

() . Store Answer Store Remainder
Divide By 100 At AVE ‘At REM

The new instructions needed to solve this problem are:

1. ENTER INDEX - ENI
2. INDEX SKIP - ISK

3 - 32

Instruction; ENTER INDEX Mnemonic: ENI

Elementary Form:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
[

IRERENERERTNRAT S L] LIS NN SRIRUCIR FRLIRL AL L N ELRE SR R L NE SRS SE-JE SEINE FETE FE-NE FELat NIV) 113

I I SO TR I SR TS TN I I IT PO SR T IT T IS

|
)
|MI ISR L [ETTON S SO A NN SE SV TN ST O MU NATINE SN VLR WY L
I
"] . ;

TR BRI N Bt L i TR TN TN S VA S SN T US4

This instruction replaces the contents of the designated index register with the

value y . No storage reference is made with this instruction.
The range for y varies from -16, 383 through +16, 383.

Instruction: INDEX SKIP Mnemonic: ISK
Elementary Form:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS

na2iviegsre e he]@itipu i te; i e ko ey yiae s s ae g2 ive Ay 30 09092 55 0e 13 i 370y a0 her i an) 08 e ias ae g (am e 81 (80 90 %0 (0 |80 97 9000 e a2 ez 68 0ajes)

ZSK NN R P

|
X4]
L.

This instruction compares the quantity in the designated index register with

the base operand y. If the two are not equal, a half-exit is taken and the

contents of the designated index register are increased by 1 (2's complement).

If the two are equal, a full exit is taken and the contents of the designated

index register are cleared.

Since this instruction has the capability of half-exiting or full-exiting, it is

necessary that this instruction be in the upper half of a memory word. The

Compass assembler will automatically force this instruction upper.

3 - 33

Problem 6 could be solved by coding in the following manner:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
| . |
saiviesieiriaded oo i n i i a e a re Teeae a0 e Ll e LA R A B S5 LB LB Y 5800 810 ek o 5 s 5 38 83 7 LT
N Tperr . TEST .]
N MR . FESTT |
rEST BsS1 .. N B . .
B EMT 051 o i))
; EMA o . ; - e
REPEAT. . | DD SCHRES, |
Tsk _b9,1 i e
ST KEPEAT | , .
V) 0. PREPARE FAR DIVIDE
DV \DECL00
B5.7A4 e N
79 ReM., S e
, Ly . \Tes7 . ReTurr
DECA00O ec . 1deo . . Do
WE . . |IBsS A .. i .
ReM . T |
\ D | |
B |

Somewhere within this subprogram would also be included the symbol SCORES in the

location field with the 100 scores entered.

Student Problem 6A:

One thousand Army recruits were given a test, their integer scores were entered
onto cards, and the cards were read into memory starting at address TALLY. Find

the average of these scores and store at MEAN. Any remainder store at REM.

3 - 34

Flowchart:

Problem 6A could be solved by coding in the following manner:

LOCATION

DPERATION, MODIFIERS

ADDRESS FIELD

COMMENTS

]
P13 618287 DRI M ey Ty e S0 0TS0 000030 I3 0013018 (30 i3 i3 s 30 a0 D an) 00018 16107 (0000 IS0 51 iE 1S3 00 130 {50 80 050 410 e Se S5 06 60 0 19 TN 10 |TE
|
P W R SR S A W Lotk L4 o dodd . I TR Lt
[} i
PN S B : 1 I . i . et
|
[ETRNERA TR i i L) 1 i ! TR
i
. i Lt i : it tid ; il bbb i L :
i {
. R i | Lot] i L 1 - e Lolt
i
bl Al . Ll : b d 4 L Ll L4t i 1
L P : Ll Lo
|
L Ll : Lodi) . : IS | Lo b 1
| i
IR 1 fodided i T . : i i Ll
t
i i 1 bkl T L i L Il bl it
i
R B L L.i i L ! L L Ly :
TR b dii g b TUE RN NN RN R S ! : i TS S S T S I
i
TR T O TN TS WU T T T TR, | Ledod &1 114 g
] I
Lt g TSR I RN RS R BN 1 d ISR N N A Lt
| 1
Liid] L. IS B) ! il Lo 1 T S S N S RN W i i
|
Ll Lt I Loded do i il] Lo i Lo fodiid Ll i
!
il i SRS S T S S N S LtiiL izl L bbb b] L
i]
fod Lt il T i Lo ok ! It il ok SN Y
v v

Problem 7:

During the school year a group of 10, 000 grade school boys were asked which of 5

professions they thought they would be interested in. The 5 professions were:

1. Doctor

2. Lawyer

3. Fireman

4. Garbageman
5. Salesman

Each boy indicated his choice by choosing the number associated with the profession;
1 for doctor, 2 for lawyer, 3 for fireman, 4 for garbageman, and 5 for salesman.
The 10, 000 numbers were entered into the computer starting at address NUM, each

number taking up one memory location,

From the list of 10, 000 numbers determine how many boys thought they would like to
be doctors (indicate number in address DOC), how many would like to be lawyers
(indicate number in address LAW), and how many would like to be fireman (indicate
number in address FIRE), how many would like to be garbagemen (indicate number
in address GARBAGE), and how many would like to be salesmen (indicate number in
address SALES).

3 - 36

Flowchart:

Continue
Search

|

ITable For Choice}
Of Lawyer

Is A Lawyer \Yes
Present?

Search NUM
[Table For Choice I; AsDotc;tor Lo ‘éddtl "{OOf DOC
Of Doctor resent? ontents
No
Continue
Search
[Search NUM Add 1 To

Contents Of

LAW

No

Continue
Search

Search NUM
iTable For Choice
Of Fireman

Is A Fireman \Yes

Present?

Add 1 To
Contents Of
FIRE

No

Continue
Search

Search NUM
‘Table For Choicé
Of Garbageman

s A Garbageman\Yes
Present?

Search NUM
‘Table For Choice
Of Salesman

No

1

Add 1 To
Contents Of
GARBAGE

Continue
Search

Is A Salesman \Yes
Present?

Add 1 To
Contents Of
SALES

The new instructions needed to solve this problem are:

1. EQUALITY SEARCH - EQS
2. REPLACE ADD ONE - RAO
1. Instruction: EQUALITY SEARCH Mnemonic: EQS
Elementary Form:
LOCATION | OPERATION MODIFIERS ADDRESS FIELD COMMENTS
1]
vpaiaietnze ool ofwin eyl ga 7o 00 e i 30r NI 0 00100 (96107 e a0 de) a2 g Bl ea A | ae 07 (0000 (0000 IS0 IAT 0N U8 (S STI IS R0 €): a2 1e0 (84S 0k 16T M0 RY (0TI (TS
E’Qbsi»‘:~ii'\llbjllllllix’l 'Jll' RS TS S S WS VS JUU SO S S SO SO SO0 S VS SO SO S N WU SN S S
i i i I l) booi b b b } 1 Ao ft i i

This instruction searches a list of consecutive operands to find one that is
equal to the contents of the A register. If an operand within the list satisfies
the search, a full exit is taken skipping the lower instruction. If no operand

within the list satisfies the search, a half exit is taken,

Before the instruction is executed, the specified index register must contain

the number of words to be examined. For each operand examined the contents
of the index designation are reduced by 1. The designator m is the first word
address of the list. If no index designator is specified, one word is examined,

at address m.

If an operand satisfies the search, the address of that operand is given as
M + (Bb). If the instruction is re-entered without destroying the contents of
either the specified index register or A, the search continues with the next

location. This technique is used in the coding for the solving of the problem.

3 - 38

Instruction: REPLACE ADD ONE Mnemonic: RAO

Elementary Form:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
] ;

[KPR AN R R LI TR AR SRS L SLINL AR R N e B A FE TR TRIRE N6 RE-RE FELAE R N0 % LR SN RN AL

|

oo s i

RAJ gm e |
] , j

i i

This instruction replaces the quantity at address m with its original value

plus one in integer format. The resultant sum is also left in the A register.

3~ 39

Problem 7 could be solved by coding in the following manner:

LOCATION hpcmmmrm ADDRESS FIELD COMMENTS
]
Vi1 4686 s ude u LT MM In B my e ETH IO 305 IY I35 13008 106 07 i3 09 00 Dah et 3 en s 1ae 47 A0 a0 1St I90 1S3 %M 1B i % LS L 80 ML 11T 43184 45 ek 47 I
mem’ wrekesrl...,». e »
i F I ‘Wﬂﬁy L WFKESf H } i 1 i i1 i i L A S S S
Ddc ... |lbec . o o \PREST.ARE ZERYS ; s
LA/ Ec 0. . T THESE i
ELRE . | DEC. . O NACATIAS . [
SABAGE | DEC 0] . . .
ALES. EC o, X B
TATEREST] |BSS | ii : i ,
£UT . Jioaad 1 L
EXA . i
4 LA b m/tm L. SE4RCH AR Dgcram e
SLT, . Lﬁ’ ~.W¢M.Aﬂ,51>¢<mes.,L..m;,.
L 1IRAA . Dc. , o \GAuMD £ DECTER
SsLT CAUTIMUE SEARCH. , . . . | - .
Lo | EMT. ,=.100001 Lo e e
ENA . 2 e b
fa EQS WuM.l o EARCH [FR LAWIERS .
5 LT G { NA MIRE LAWY ELS :
e 44 . LA |F¢uAJDA LAWN R
. SLT B2, CAMTIMUE SEARCH. e
{ EMT H0000,1 f
. Mo L. 5 . L e ,
(3, ERS u/uM 1. bcarcy_EAe FIpcHar.
503, DL VB MPRE FIREMEL TR
Al _EIRE Fpuad A FIREMAL
L L:Y e - COMTINUE SEARCH .
I, L’Loooa,l_.. e
51/4.._{4_”.,” . ’
02 QS _WuM,. . Seﬂac.# EHR édwﬁégte o]
o st &L W4 MERE GARRAGEMEL)
. RAG. . GARBACE . PR 4 EARBAE AN, .
L st b mfwluue SEARCA,
a8 ML L0220 ,1 |
WA s }
£2 @s ‘A/uH. , :SExmcy FoR Sacesne
sLT . LLwceesr W MBIE SALESMEL .]
AL saLes ELurd A SALESMAL
L BT B2 W,«/nws SEARcH
D~ i : i i I ! It L1 L I
} i
Y [Loi 1 & 1 L il 1 l Lo [1 J)

3 - 40

Somewhere within this subprogram would also be included the symbol NUM in the
location field with a declaration of the 10000 memory locations

Student Problem 7A:

A group of 943 students took a final wxam and were given points for each grade in the

following manner:

1 A = 4 points
2 B = 3 points
3 C = 2 points
4 D = 1 point

5 F = 0 points

All grades were entered into the computer, each grade represented by its
associated value, and each grade taking up one memory location. Write a program
that will indicate the number of students failing the exam (F). Store this number at
address FLUNK.

3 - 41

Flowchart:

3 - 42

Problem T7A could be solved by coding in the following manner:

LOCATION | OPERATION MODIFIERS ADDRESS FIELD COMMENTS
1
[NENERENESERERTE L) mnm.u.ue-s:u.un-milmn-mmx=:srxrn.n.mmmn;mu.x:u:n:uvmulu A2 003146343 | 4142 {84958 8) SRS S (98 | 56097 ISA SN 60; €11aR (63 [S [63 [ub (47 0 (00 1R T ITD
1 i
H Ll PN N PR SO NS S S0 S PSS T B | I L Lodbt I S WO S N
i 1
i i L i 1 l 1 1.t i 1 i 1 H | S ya| 1 L1 | S O SO O S S N i
{
FANED WS S N S S I 1 I kS do b i i 1 dd odd Lt i i i N
[
g i l 1 F .3 L Lodob 1 i e l ER N S i Lol d . IS S S WO SN N N 1
i i
i ! 1 : Lt 4 s b L boidd
i
L e 1t i i H L et '] i i U0 OSSO RS WY NN SO SO O S £ 1
]
L L el L i i I 1 4.l i I id A i fodd
i i
L . il : L1 : TR : Y P S S VT TS S W
Jul i il ! i loodod e
i L i L i i i " S R
i
i ! : e L L P i AR Y)
[|
! L dode l il F SN N IO S W | I St - l Y S N Lo i ded bbb 1) i
{ i
i L RO | L i T : i i L
t
Lt L SRS OSSOV S 0 0 N WO N S T S SR ST S TN R T TSI S S VN N S N T T T T S
i
Lk i i TR L L L Ly L T S L T folel i) i
i
Ll FNS SO TOS WS N AN N W N0 TS S T S il it dd o L i R S U U N A U
!
L ! Ladn i Lt L o : T RN L
{ |
L * Lo Loi bk it . Aol A i, b - i i L e b2
! [
. : .] it P i [L
I 1
il Lo Lo L i ided L L L L i : 1 i L L Pdo b1l -
i
b L IR STV S SV S SR S S i L | | T !
!
: (SRS | : i 1 L i ! It bl i it
t
L i i | SN i L I i . ' Lddid i Lot) L
I
: i : b i i d] i i Ll Lt IS ISR R Ll R S WA TN W
] I
A ook i ' i L4 il L Y A i I j bk bt bl i i dd i
! |
IS [U IS | i ! i 1 : Lot [NS : L Lo T
! |
1 L i T L L dy L i L L ke 1 : T i i A L
] 1
i i URTTT S NS W SO A0 N0 N N S A S A S S S | TR i S IR S
i 1
L | IR R S i Lo i i ;
i |
S S ! ! iia A L L.l 1 | Loit TR FE S W T
I i
L b TR S 1] IR i i L i i L
! |
R ! tololpoio1k i i SRR | i L i : L
1]
i : L i t L L : L i 1 L L Lol L TR SR S S S W T S
! |
L i : il id ; S i voaraed R il L
i |
I TS BN T I IS U fted i PR S S R
i !
i d i 1 L L L L
1 |)
. Ldedt L . Loliodt - . i i 1 I Ly Lol L Lt Loda1
| |
: - ! i L i Lol o] i ; | : il
| i
: T .| i ST SRS SN O O SO YO O Y SO W TR N N S N S W S S S Lt
I !)
Lioiid 4 : ST SO ST NSNS U S N 0 S U S S0 U U N i1 d IR S R A [ST S T S R W A 0 M
I [

Problem 8:

Write a 'Compass subprogram such that every 1lst and 2nd time it is entered it
calculates C = A + B, and every 3rd time it is entered it calculates C &+ A - B. The

series would look like the following:

1. C=A+B

2. C=A+B

3. C=A-B

4. C=A+B

5. C=A+8B

6. C=A-B
Flowchart:

Every 1lst _ /‘\ '
Time Entered? C=a+B S« Exit
Every 2nd
Time Entered?
No
Every 3rd
Time Entered
C=A+B

3 - 44

The new instructions needed to solve this problem are:

1. STORAGE SHIFT - SSH
2. OCTAL DATA INITIALIZATION - OCT
1. Instruction;: STORAGE SHIFT Mnemonic: SSH
LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
]
sz iaqszezrgaholgsigne g v e iwlon n 12030 a0 208 02003113 N (20098 196107 W09 00 |el a2 E €31 000 as |00 1 a7 (40 001008 [31153 30 150 | %6 971 0E {90 a0 61507 63 [84145 a0 6T 4M 168 U8 |75 (TE
SISI:’\ =-lf:rf‘"'Ll((['lll=l‘ "J}\wx S S T S IS S S W WO SN W A |
i LA xv:‘|='n:41'1i“lar:»i.=1~=1 i bodeiedodd g b B Ll L L e L d i

This instruction senses the sign bit of the quantity at storage address m. If
the sign of the quantity is negative, a full exit is taken skipping the next
instruction. If the sign of the quantity is positive, a half exit is taken and no

instruction is skipped.

In either case the quantity in storage is then left shifted end-around one binary

bit position. The A and Q registers are not affected by this instruction.

Since this instruction has the capability of half or full exiting upon the sensing,
it is automatically placed in the upper half of the memory word by the Compass

assembler.

2. Instruction: OCTAL DATA INITIALIZATION Mnemonic: OCT

Elementary Form:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i

[NERERTNERTRERTN KA K YT R NN SR FRC TR TN NE SRS k. NEINE TR DE R T WE A T AN JEINE PRI R LT RECRE SR)

[}
I 1
i
.C‘7-,,,, Iqu‘I’IIIII\4Ll|<¢“]‘li|.L:E O SOUT TNT S T A L HOF S ST WY W S S W SN N O
i
t

P
I B S S v b Lol il

3 - 45

This instruction is closely related to the DEC instruction.
hardware instruction but rather a pseudo instruction.

interpreted by the assembler.

Hence it is not a
As such it is

When the assembler interprets it, it prestores

a fixed point octal constant at the address specified in the location field. The

constant C may be up to 16

10

Problem 8 could be solved by coding in the following manner:

digits since this is the maximum at any address.

LOCATION | [DPERATION,MODIFIERS ADDRESS FIELD COMMENTS
| 1

LNEREETRESTNESYTE L1 LIRSS I VLR LA L FERL TR e R R Ve 20 TE T TN R E PN N Rt R O) DT T L I S O TT IT T R S L LT A T I I LI
ey N UIDEMT . \EMIRAMT i
e EMTRY, L MEURAOT e e
o LBSS
ek |\ BaTr o IAIL LA L L e
EMTRANT | BSS o i o i
e | ISSHL L CHECK i ST, QWD @R BRDD
e | SET L APLB e UST PR DMD L
e MDA A BRD 1 J
N Ly N ? - 4- & ‘
e IS2TT L EATRAMT ,

LA . VYDA W b et
L 4op LB o L [L
N 1 -7 N A = A+ B
.‘..Lsc;r.m:.ifmmm e . e
i AD Ll L b

Somewhere within the subprogram would also be included the symbols A and B in the

location field with a declaration of the prestored data or area reserved.

Student Problem 8A:

Write a subprogram that will calculate Y is sometimes Y = 2A end sometimes

Y = -3B according to the following pattern:

3 - 46

= 2A
= 2A
= -3B
= 2A
= -3B
= -3B
= 2A
= 2A
= -3B
= 2A
= -3B
= -3B

© 0 T O O b W LN R
L S P S

10.

R R I T RO RO RV RV RV RO R

12.

A and B are given as integers between -30, 000 and +30, 000.

Flowchart:

3 - 47

Problem 8A could be solved by coding in the following manner:

LOCATION RATION, MODIFIERS ADDRESS FIELD COMMENTS
1
FETETNTITITRESTS L) PO IT SR PUSEJE N0, £ JeNE-TETESTRE TEAE: 31 R SRR S T P I I I T O AT ST TS ISP AT Y T S SE AL FRUITTR\RE T FERUSCSUSE UL
1
i i U W W Gk i FIRUR Y NS S S S0 T WO U TS S SN SN N S ‘ NS TS T T W S H H H i IR S fod ot
1
L [T TS SO U P T T S ; i PRI OO0 NS S S L
bbbl i [N I B 1o L L i L L b L Lolt
[
1 P IR L 1 i
] i
L L1 L P 1 i i Lol d
i
i LA d - i i d L Ll o
]
L i IR : i i i Ld
| 1
i . i TR | o d 1 . Loil
i |
: L R N 1t ! :] ol i B s
{ |
i i i L Lol ik i : i L Loded b
1
: L i L Lo . fod b il : PR
o [T AT S AN WSSOI SN U O U WAOC VNS S0 U O U SO0 A O SN 50 S RIS W S | PR TN SIS S N 1O VOO N T TSN Y SO Y NS S SO S St
i
L il i i il i i L i) i i : il
S0 W T T S S " L Lodeid ek IR PR N S O Y WS S A S 1L i § N W SN S OV S N 1L AR YOS U S TR NN WU S U SHS e
L odiddd L R UOU S ST N L ! ria | R T U ! Loiddt '
| |
L PSR YN W SO0 T O OO S S S T T b1t ll L i L i iodi il
i

Problem 9:

A group of 5000 senior high school students took a college entrance examination and
were told to remember an assigned number if they wanted to find out pertinent infor-
mation on how well they did. The information was stored in memory in the form of a
block of 5000 words starting at address INFORM, each word representing information

on a particular student. The block looked like the following:

Address Word
(INFORM) = | Pertinent information on student #0
(INFORM+4999) = { Pertinent information on student #4999

Assuming a student's percentile ranking to be positioned at bit positions 24 through

32 of each word, write a subprogram that will store a student's percentile ranking

right justified at address RANK if his number initially is in index register 1.

Flowchart:

Extract Right Justify .
Percentile Percentile ?{t:rf}f the;CAe;]‘l;éle
Rank Rank

The new instructions needed to solve this problem are:

1. LOAD LOGICAL - LDL
2. A RIGHT SHIFT - ARS
3. Q LEFT SHIFT - QLS

3 - 49

Instruction: LOAD LOGICAL Mnemonic; LDL

Elementary Form:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
T

ANERESTRESTNEIE L) ETRSL R L TR SU I SN SR TR S S ST TR TR ITE FL TR N RE R r PR S U) LR AN T T R PR R 0 ST STCRL ST RL R SN TR CaT PRI TR O R I AT SUAT RO REIEIL]
LDL | |
i LS SN - %M_ﬂ, 1 ! b lbdld Ll L H l LIS T SO S 1 R B N S

N - A I A A I A I L PR TN S SE S S S S U U S EY WU SN SN SOT O WF SO N N SOV S S S S T S S

This instruction loads the A register with the bit by bit logical product of the

Q register contents and the quantity in the referenced storage address.

By ''bit by bit logical product' we mean the corresponding bits under multi-

plication. Illustrated are the four cases.

1st Operand 0 0 1 1
2nd Operand 0 1 0 1
Logical Product 0 0 0 1

The Q register frequently contains a mask which must be loaded prior to the
execution of this instruction. The mask consists of a set of ''1" bits. '"1"
multiplied by any bit will return the bit. '"0" bits are used to eliminate un-

wanted bits since "0" multiplied by any bit will always return zeros.

Instruction: A RIGHT SHIFT Mnemonic: ARS

Elementary Form:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I 1
[NEREURRERTRERTS L3 LIS S RN TSI SR L ST AR I T R T T e R N | ¥
RS i Ek LIS U S U S T R ;i.1‘=‘:,'.‘»~ : N
T

A Ldl i i ‘L‘,igﬂ_:,;A,,,;f,LE;.;AL

63431434168 AN (4 120 AN S8 S5 I D IST 0N (95 (56 8TI SN SO A0 aNi et e) |54 [3 06 &1 M 48 (T TI(T)

This instruction shifts the contents of the A register to the right by k number
of bit positions. The sign bit is extended as the bits shift right. The lowest
order bits are discarded as they are shifted out of the register (end-off).

3 - 50

Elementary Form:

Instruction: Q@ LEFT SHIFT

Mnemonic:

QLS

LOCATION

IDPERATION MODIFIERS

ADDRESS FIELD

COMMENTS

INERE RSN REAT)

L2 LN N SIS SN A R L STINS S TR NEURE SE .S S AR TR T R TR VE 3

ecwiwimiwlon

A3i4sias jueier e gy,

S0 ALISTISHIM (V1S TISK S0 41,67 405 8 45 n0 8T 80 4

4 LLS

|
' S

bl TS SO SR S

{
ENE NN S
i

This instruction shifts the contents of the Q register to the left by k number

of bit positions. The highest order bits are shifted circularly and are picked

up at the lower end of the register (end around). No bits are lost during a

normal left shift.

Problem 9 could be solved by coding in the following manner:

Somewhere within the subprogram

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
]
11203 P4 B e T 0 kLI N i M7 e E0 120 72 g0 ae 98 s e DS T8 L9000 BE 100 05 2A 38 96 5 008391 00] a0 i a2) 63 60 e [00 [T (00149 86 (93 (32143006 (59) 56 471 5K, V[0 411703 04 (43 106 (47 (S a9 (IR (1T
Zpenr EMTREXAM . o oo L .
e | EATRY, o EUTREXAM » o R x
lande . |Bss) T Lo " il
SATR.ExAM 1BsS /A . i
27 727 BcTal 777 R
@S R . | - .
‘ LDL. TnFmML o l
1 L RS a4 1 -
SZ WAV, ; Lo ‘
, ST L EMNTREXAM . [
{‘/DE L 5‘ e
! b doi g] i IS S S B [S N T S ST N B B B i

would also be included the symbol INFORM in the

location field with a declaration of the prestored data or area reserved.

Student Problem Z2A:

Assume the same situation in the previous problem. If a student's IQ rating is
positioned at bit positions 0 through 8 of each word, write a subprogram that will
store his IQ rating right justified at address IQ. Assume the student's number

initially in index register 1.

Flowchart:

Problem 9A could be solved by coding in the following manner:

vizissegspecrsafeleri e e olan 2 iy iae v o 20y 31305061308 506 TN i i e e 05000 1es T AT 00 N SO0 I8N SR SR S0)8 S0 0T ISRSIN ML O1INT 160 {0105 (00 16T Y0 (00 18 4T TD
. SR ST S ST SN SO VS S T S0 S T 0 N S S S S SO ST SUCHNN N SS SOF O WSO S S S SO O SO S0 S WSO ST A S-S SO ST S T SO S O A
i '
FERER TR N FU ST S VAT UL U0 S NS ST N SO S S TR S0 S S B Lo [N S A SO R R | T N TS N SN S ST S S S
Ld Ll TR Lidd ke L Lt Ld Lol
: b d iy R 1 RN | R B TR SO S T S S Y VAT S S S S
1 |
: L T S S N : | IR i i i i
i
bl 1L gl [T R A T S Ll il ‘ i
T i L L TN A U A it i L
1 Ll b : i { 1 i Ll Loit
I L FUEN R L IR, ol L
-t i ST | i L SRS NS O A 00 A U U 5O RS A O OO S 0 U OO [T S SN W S O
i
bkt) ik L P Lo
[i1t TR S S S T O O T Y O W L4eg FIOUETOUS 0 VOSSN T O O
1

3 - 52

Problem 10:
A sequence of terms looks like the following:
1/2, 2/3, 3/4, 4/5

Assume this sequence of terms is in core starting at address SEQ and that each

fraction is in fractional format, one memory location per fraction. Write a sub-

program that will multiply the 10th through 14th terms with the answer stored at
address SEQ1.

Flowchart:

Form Product Of

S10° 811" S12° Store Result
~ t
513" S14 Q

The new instruction needed to solve this problem is:

1. MULTIPLY FRACTIONAL - MUF

1. Instruction: MULTIPLY FRACTIONAL Mnemonic: MUF

Elementary Form:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS

RN SRR TRESTE Ll LI N I TR U R L TERE T S ST NP CLSC T T TN R TR L e ST RSV % DR AL AL I R T AT. SV PO ST SOBE SRS TEAT FE S SEUT L SUTC A SUST SUBLSEANL]
MUE o

RN S W i i L TR | PO I DL S N S S ST

T R WU TSNS SO SO ST SN o v i1

[
.|
[
1
¥

This instruction forms a 96-bit product from two 48-bit operands. All
quantities in this operation are treated as fractions with the binary point
immediately to the right of the sign bit. The sign bit is again the leftmost bit

of the operand as we have in the integer format.

3 - 53

The multiplier must be loaded into the A register prior to the execution of the
instruction. The multiplicand is read from the storage location specified by
the sum of the execution address and the contents of the designated index
register. The product is formed in the AQ register.

Since this instruction treats both initial operands as fractions, the answer in

AQ is also a fraction that is less than either the multiplier or multiplicand.
No error can result from this instruction barring a machine malfunction.

Problem 10 could be solved by coding in the following manner:

LOCATION | OPERATIONMODIFIERS ADDRESS FIELD COMMENTS
SO 1 O S A
. ZDEMT . . SEQUENCE [e s
e L ENTRY. L Iseduedes . | e N
seas . | Bss01 L, A T .
SEQUEVCET [BSS v 0L L . it
ML 10,2, Lo - .
e DA SEFG . . . UOTH TERM e ,
EAT | MUE ISEQ+10, A, .\ L ‘
‘ ISk B e J
i SLT .. REPEAT b e
. S74 ISeq1 | .
e 5.3 SEqQueidcE, | L e
I 7Y/, N N Lo R -

Somewhere within the subprogram would also be included the symbol SEQ in the

location field with a declaration of the prestored data.

3 - 54

Student Problem 10A:

A sequence of terms consists of the following:
+2/3, - 4/5, +6/7, -8/9, + 10/11,

If this sequence starts at address NUM and is in fractional format, write a subprogram

to calculate the product of the 20th through 25th term and store the result at address
RES.

Flowchart:

Problem 10A could be solved by coding in the following manner:

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
| . |
INERERERTSTNENNS K LTGTLSC SRR ST AL L £ STIRE TR JE N R TE e TE IR TETE FE -V TE e RE AT S IV] DRV IL IY IS S R IO T ST R SN ST IT FEOT PRI TE U ST T T SR RCSLAELAL.)
L L Lidod i | 11 1 R S SN T U NN SO
[1
L e ; ; : | RS R TR ;
{
444444 TR 1 L | L I L
!
L ST RN 1 Sk ! I L U A A S U N i
i !
i L 1 L L L bdd
i
ik L I RN A S L
[}
i | | L
! !
i L 1. " L L 1 :
|
1 . ! Lt
J i bbb dod I
i
i I i L
i 1
f!l‘l'\‘\lili“' Lo PO TN OO T N W U S Y SN U0 U S S S N S0 SO SO
v

Problem 11:

A sequence of terms resides in memory starting at address TERM according to the

pattern:
1/2, 2/3, 4/5, 5/6, 7/8, 8/9,

If each fraction is in fractional format and each takes up one memory location, write

a subprogram that will form at address RANGE:
RANGE = ((60th Term) (72nd Term)) / ((62nd Term) (70th Term))

Flowchart:

Form
2ny
(62nd Term) Form Divide 2nd Store Result
70th T) (60th Term) Evaluation By ;
1t erm N . At RANGE
And Hold (72nd Term) First Evaluation

The new instruction needed to solve this problem is:

1. DIVIDE FRACTIONAL - DVF

1. Instruction: DIVIDE FRACTIONAL Mnemonic: DVF
Elementary Form:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i

INEEENYRESTNE ST N L2 ETRTL ST NS IS T SR L NTIRE AR e S S NE ST AR AR RN E RE T YL RE SR At SR T I LR ar L I RO T I R N I I N Ty
VE '
AN BRS¢ WU W SN S ST S A S WS S S

T Ll FU S SR | L T VOO VS S U N S S N T il

P S T Ededoi g H O O S

3 -56

This instruction divides a 96-bit dividend by a 48-bit divisor. All quantities
involved in this operation are treated as fractions with the binary point
immediately to the right of the sign bit. The 96-bit dividend must be loaded
into the AQ register prior to the execution of this instruction.. The 48-bit
divisor is read from storage address m. At the end of the operation, the
quotient is left in the A register and the remainder is left in the Q register.

The quotient and remainder bear the same algebraic sign.

A divide fault is easily attained using this instruction. Any attempt to divide
by zero will yield this condition. Also, anytime an attempt is made when the
dividend is equal to or greater than the divisor, a divide fault will occur.
Besides the initial operands being fractional the result must be fractional,

i.e., only fractions are allowed.
A divide fault constitutes an interruptible condition.

Problem 11 could be solved by coding in the following manner:

LOCATION | IOPERATION MODIFIERS ADDRESS FIELD " COMMENTS
]
$ 3y i efsre v ud |y e s e 17 e 0 3 22 (2303 e T8 9) 0] 30| ;%5 [3138 136 137 30 . 3% 40 |ad 421 30 e (a8 £aa 147 0 4950 193 30093 54 (38 ;56 87 SE 3940 ;a2 3 i 8 a6 (67 40 169 |78 |75 |72
A ToEMT o MATRIN oot 4
e | |BMTRY o MATRIX.] .
Rﬂmg‘ SSL Lo died i'L fdo 1 B W O S PR N DO i; e 1 1
DIVIS . . | |BSS o e T
TRIX_ . | 1BSS . .. Mo ot
A L TerME 6L 0= GAMD TERM e
MUE. . . . |TERMt6q . . = 207H TERM .
Y7 DIVIS i ‘ o .
(DA TERM#S 9 = oTH 7eRM L
MUFE TERME7L = ZAMD_TERM.
... |PVE.. .. . DIWIS . ., I . ,
STA . MATRIX ReTwlt) o
i i FUY A/D ol Ao b i FE N LoE i E ioid F W W B 1 L L i i i
Ll I A A O I I A N I O U A A R O b s AT A O I A T A

Somewhere within this subprogram would also be included the symbol TERM in the

location field with a declaration of the prestored area.

3 - 57

Student Problem 11A.:

. 9X
Y

Evaluate Z = if X and Y are fractions and X < Y. Assume .9 is stored at

address CON1,

Flowchart:

Problem 11A could be solved by coding in the following manner:

LOCATION RATION MODIFIERS ADDRESS FIELD COMMENTS
- | . |
INESERTSEERNEATY L3 LTETUIT S T FL AL BRI L RE NS T TE S S T L Ve AT TR TE SR T T ST REaT TR S0) AR TE TR ORY R YOI S IR C R R R LA T ST PRIy O TT ST T O ST ST ST SR SR AT
§ S LI S Y TV SR W S Y SN TN TEUNS SO TN TN W S WO S S ‘ beddi b ik RS S S S W 4 i I S fd ot
i
i SIS T B | L i S B boiedL L. L ot . J. NS U SO S-S W i - i il 1_a
i i - b iy L
Ll ol L L i RN i) L Pl Lt
1 t
i S TR EOE S WO WA T SO SO SO P ISR ' Jd
i
1 1 Lot 1 ' i i RSSO SRS SSRD S SR
I
1 il i L Ly I RS
!]
L Lo i T : S L L
1
bl 1 it I L oA .
! [
L 1 c : s Y
I
1 Ll L 1 | S Y L. T YOS U0 A SO U S U SNS S YD SO S S L S S
H
i 1 U i i ' it OSSO N T W Atod i I H S - i i L.t I O i
I i
I A ! Lo d |
i]
iddd L 4 L Lot d it 1 it i)
t i

3 -58

Problem 12:
Evaluate Z = 18.5 X + 3.2 Y if X and Y are given.

Flowchart:

Form Product Form Product Add 1st And 2nd A
’ 2] Of 18.5 And X Of 3.2 And Y Products Store At Z

This is the first introduction to floating point instructions. Since mixed numbers are

involved, it is necessary to use floating point arithmetic because neither pure integer
nor pure fractional arithmetic would suffice. Floating point operations allow integer
fractional or mixed numbers to be used. A detailed discussion of floating point

format follows in the next section.

The new instructions needed to solve this problem are:

1. FLOATING ADD - FAD
2. FLOATING MULTIPLY - FMU
3. Floating Point Data Initialization - DEC
1, Instruction: FLOATING ADD Mnemonic: FAD

Elementary Form:

LOCATION | [DPERATION MODIFIERS ADDRESS FIELD COMMENTS

vaa iy ayssecryedsdwin Moy e o e s i e 0 e a8 ik T2 L
AD ‘
L i I | 11 NPT Sy S S U W A AR L

TS S SO T 't L. it TR ST A W U N SO S TS SO ST
[

1542 (43540048 146 102198149558 91 {81105 (96 1S9} 36097 5K SN0 61 e2363 (50 43 00 147 (68 (00 [TLTIITD

[N S B et e b PO TS S O S N I

3 -59

This instruction forms the sum of two 48-bit quantities which are both packed
in floating point format. An operand is read from the storage location
specified by m and is added to the previous contents of A. The floating point
result is automatically normalized and rounded unless otherwise specified

(discussed later).

The operation does make use of the Q register (residue), so any vital

information in Q prior to this instruction must be reloaded

Instruction: FLOATING MULTIPLY Mnemonic: FMU

Elementary Form:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS

L LTS TR T P P £ SR SR TE RE Y SO SE. IR T8 JEITE-RE T TE Bt FESAE TE.01

MY ;
q,.‘:) OSSN U WO S U SSRGS SN SO Y N NS

saberioronrenjas et ar onian o 0i 58083 (00 10 9000 I He: 61 02 62 04168 00 T 00 40 T T (TE

PV VNN S S S VS SO0 S ST 0 T SO S AT VA SO S 00 S S U O A N N A A

This instruction forms the product of two 48-bit quantities which are packed
in floating point format. An operand is read from storage location m and is
multiplied by the previous contents of the A register. The floating point
result is automatically normalized and rounded unless otherwise specified

(discussed later).

The operation does make use of the Q register (residue), so any vital

information in Q prior to this instruction must be reloaded.

3 - 60

Instruction: Floating Point Data Initialization Mnemonic: DEC

Elementary Form:

LOCATION | DPERATION MODIFIERS ADDRESS FIELD COMMENTS
i T

(NERERRRERYRERTY K CICAL IR SR SR IR ST AL BRI E S LRE TR -FE R N SR AC TR TF TEITE: PR TR RE e R ar RE A0] LR P TRy TL TR N T TE Ir R E R T N T T T S LI IR A R T T AT AT FUNE RIS]

-] i
t& ; T R fo i IR b i hET i FIE WU O S T W S0 Y I

! 1
i L TR S W NS A S Y S U S ST i TR NS b TR N S O O O U SO0 S SO S S A O S

This instruction has been introduced previously, however, only decimal
integers were used using integer format. Here we discuss the same
instruction but using floating point numbers and hence, the numbers must be

prestored in floating point format.

Since integer and floating point formats are in no way related, it is important

to note the following rules:

1. Integer arithmetic instructions may not operate on floating point
operands.

2. Floating point arithmetic instructions may not operate on integer
operands.

3-61

To do so will yield incorrect results. Below is a table separating the integer

arithmetic instructions and floating point arithmeti¢ instructions.

Integer Arithmetic Instructions Floating Point Arithmetic Instructions
Add - ADD Floating Add - FAD
Subtract - SUB Floating Subtract - FSB
Multiply Integer - MUI Floating Multiply - FMU
Divide Integer - DVI Floating Divide - FDV

Replace Add One - RAO
Replace Subtract One - RSO
Replace Add - RAD
Replace Subtract - RSB
Increase A - INA

Some of each you are already familiar with.

To prestore floating point instructions the DEC instruction is necessary. The
DEC instruction is a pseudo instruction that can be used to prestore operands
in integer or floating point format. If the value, ¢, contains no decimal point,
the number is stored in integer form. If a decimal point is contained in the

number, the number is stored in floating point form. Consider the two cards:

1. DEC
2. DEC

In the first case the prestored number is in integer format and would have to
be operated on with an integer arithmetic instruction. In the second case the
prestored number is in floating point arithmetic instruction. The two formats

differ greatly. A detailed discussion of these formats is given in Vol. II.

3 - 62

Problem 12 could be solved by coding in the following manner:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i [
23w 0 103 e e 128 180 14 72128 e 2% 1265201081 28| 0])| 3 c 33 3,08 1% i3 M e fa) D411 84188)86 (47 (484958035 192593 106 |59 | 36 57 SH . $9: 50 61102 3 ba 43 6k 43 869 (N TN
IDE/’# E'/Al? SN S T S N : : i L i Lod
L LEUTRY . EUA L.
2 Bss . . .4 . | .
sqve | Bss .. 14 » I 1 ,
cadt | pec 185 i
X% EC 5.2] .
CuAL | Bss . 1 ‘ . i .
DA cat .. L ;
md X .. 8 5% .
SR sAuE I o _
[DA A }
B L FEMu A F.2) e o i
4D kEaqve | s
e 57 A - B B
k4T EvaL L o i
EMD o i L

Somewhere within this subprogram would also be included the symbols X and Y in the

location field with a declaration of the prestored data.

Student Problem 12A:

2

Evaluate C = .5 7 R® H - 150 if R and H are given.

Flowchart:

3 - 63

Problem 12A could be solved by coding in the following manner:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i]
irre e peir e i e D e e e L 0 L8 L 0L A1 L0 e T
]
L 1 T AN W SN S S I i ; i TS AR B
! !
FRSETIE ST A B BEURUE N B S B S ST ST WSS S | !
1]
Ll TS ST TS WP NAE ST SN SN WO NS ST SN S S fo | I 1 Ll
1 i
| 1 | bl
t {
{ 1 i i i
i i
L i i L L
i i
; I . | L s .
i i
1 ! : .
! 1
A IR i) :
| |
IS B » 1 1 TR
i i
| 1 I
! {
1 i 1 i L T S 4 s
i i
L t ik | RN SR R S T S IR NN N U O A B RN A | L G i L1
i
I : 1 1 Lk L L bod 5 1.) W T .) I S
i Lol i | L Lt | ;
t |
il L 1 L L 3 L I i » ididad
H i

3 - 64

Problem 13:

Solve for W if R, S, and T are given.

W =05 (R-1500T)
S+ RT

Flowchart:

Divide

’ S Form S + RT Form Store Answer S ‘
Numerator By N

» And Save - 05 (R-1500T) Denominator At W 4

The new instructions needed to solve this problem are:

1. FLOATING SUBTRACT - FSB
2. FLOATING DIVIDE - FDV
1. Instruction; FLOATING SUBTRACT Mnemonic: FSB

Elementary Form:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
EBEEENTRRSE N LS L TRNE NN S NN e Y "Hl:"g”l“ LR A B NE SR R JE AR TRINR S SR SE FE RE 0% €30 3 LINPrAN:]

]

loa 088152198 (80 g 0505 43ieT 00 (0008 a8 G M ey T 4TS
! 1
TR SR S £$8>.='|M TS WA S0 G S SO WY S AT SO A SRS RTINS L : LAt
[1
L i I id IS EVRR :) 1 fied

This instruction forms the difference of two 48-bit quantities which are both packed
in floating point format. An operand is read from the storage location specified by
m and is subtracted the previous contents of A. The floating point result is auto-

matically normalized and rounded unless otherwise specified (discussed later).

The operation does make use of the Q register (residue), so any vital information in

Q prior to this instruction must be reloaded.

3 - 65

2. Instruction: FLOATING DIVIDE Mnemonic: FDV

Elementary Form:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
|

R R R R AT R L T R L T TR L I L N TR TN N S TR AR TR TR SR IO UL B R AE SR 3 DR LA T LA T BT PO PSR R R W S TR T SR U IR AT N P ST STLST. BT BE S ELNL S
£DV ‘ |

LA ; im AT S Y T A NS WA S T | IS SR PR ST WS USROS S S VAP DU N S Lbt
. L

i
AR N A SN R i | T L b
0

L

This instruction forms the quotient of two 48-bit quantities which are packed in
floating point format. The contents of A are divided by an operand read from storage
location m. The floating point result is automatically normalized and rounded unless

otherwise specified (discussed later).

The operation does make use of the Q register (residue), so any vital information in

Q prior to this instruction must be reloaded.

Division by zero constitutes a divide fault and represents an interruptible condition.

3 - 66

Problem 13 could be solved by coding in the following manner:

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD COMMENTS
e N TDEAT . FHRMALA b i
| |BMTRY L IFPRMULA N ,
SA%/;\r 35511..‘;I{~ Ll L L I IR A A Ll SRR 3 i it
YA VIBSS e
AW/ . |\ |DEG . . 1S88a i L . e
ca/a . | |bec. . -8] i .
l‘/' i il BSSI‘E 'i1/iix" G SN NS VUG N WO S S VS S S 3’;‘tl¢ 1 I T W S B I
Rmul A | 1BsS .. 1 . T . T
o R N t
e AFAD S \ s .
e STA o isAd 2 S R RT
N 1 2) T e ‘
T 1.7 D 2 T - T W A1 =) L .
R L 12 S S T e il
T N2y L Y I P T
o leMu e imeas(R-1S00T) e
N 2 Y . 4 S e
. istAa . W e AMSWER e

Somewhere within this subprogram would also be included the

in the location field with a declaration of the prestored data.

Student Problem 13A

_15%X% + 8.5XY - 10Y2

X - 10Y

Evaluate Z

Flowchart:

3 - 67

symbols R,

S,

and T

Problem 13A could be solved by coding in the following manner:

LOCAT|ON | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
1
1 INENTRERES L3 EICTU R PU TR TR AR BRI L ICINT SR e BC N SE- ST SE TR TEITE SR TE Y ELRE TR AT AT DT AT I T AT ST AT YOS ST IRT P S A E AL A SR S IC I FURC IS SUNEA RN
[}
L L L PRI (RSN WU ST SR S ST S SN S SO A S A I3 ISR AR il TSR !
1
NN UV L fddil TN W W SO0 SO S S NN W L il TN S TR N WSO S S SN SO T Y S SO Y OO S i
|
E SN WO SO WO it i 1 ' 1 ioded - 1. 0 TN T S § . l Lo] . H i, i.d 11
1 |
i e d L dd 1 | 1. ded. L L N N 8 il i i l S OO S N VIS SO S 1 fodbd dmdo AL L L4t
i |
: L Lokt L L IR IO U T W L | IR N ! [IR T S
i
Ll a1l R SUS DA B SRR T NI o RIS S I A L T AR T TNN R N 00 N N AU S S S N O
1
1. L i i i I Lol oo, Il i I deedodd L i Lowiold fedded Lod o
! |
1 | S | LY N S L} i L H I S l Lddd ded. B S S ¢ N TN T OO ISR SN SO U S S ¥
s b i 1 i I i i T L n : i T
|
L i ; : fdod LA 1 L I il : i i L N D SO T SO U S S
i
i TR L ik Lt : L.k : Ll R
}
[N T RTERE NSOV NOF SN VAN SV S Y Y S T S U S T IO S A L i T SR S S N S B BB R
! {
J - i i | B b dod i . H Lodd I B H I S) i i1 L S 1 L i 1. i L Lodo.b
|
EENS NS SN SO O 1 £ T SO U S S S l i bedd b Lk i LI SIS SO SO TS S B | i dodeod dod b1 it d.d
t
L i.d S) i 1 l L L H L il 1 H Ll I I S Lol bl d 4 LY DU S A
1
S A il I L TN 0 A S O S Ll S S 3 Lo H jodod ko d Lk
I
Lol Ll i: g TS SR el il 1 il Lt ik TR W N S SR S Y ;
| |
L it i I P Y N Y U U WO W} FUT Lt | R Ll : fodeda @41
] {
iy Lboa i1 : L i1 i il oLl L i
s s i L L s il L . . . i It
i
L Lt FRNERN Lt [I : Ll : L il
| .
Ll : Lo T S U | i L i i edd Lk H ! Lol i L Ledodebodn g

Problem 14:
Given the value X1 to be substituted into the function X2 + 3X -1, determine if the
absolute value of the function is less than 1. If it is, exit with zero in A. If not, exit

with octal 77 in A.

Flowchart:

Form 2
(X1)“+3(X1)-1| \Yes
1%+ 3 (X1) -1 ’—9@1? D—Q 0-a .

No

7B~ A
The new instruction needed to solve this problem is:
1. LOAD A, MAGNITUDE - LDA, MG
1. Instruction;. LOAD A, MAGNITUDE Mnemonic: LDA,CM
Form:
LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS

Va3 iersiecriededmyn v i e i a0 e a0 e i e w000 30 i3 0 (0008 006 09100 o0 tan g e aq s 00000 (A0 A0 S0 i8N VRIS (0N)00) 345 8 SN SN M0 W1 e eD e (43 Q060 0500 1T | TEANE
L DA,0M '
il 70 I 1o WP S WA O N SO 0 S O O TG W S 1 H PR S T N I Lod it TS TE ST SIS SO S0 TS W S B

[|
il Ll 1 FRE TS AT FN ST N WO SN SO S HO0 S SO0 WU T VAOE SN 0 W AN SR S S TG S0 0 S A P S N N O S S O O SO A S T
] [l

This instruction, even though it takes up one line of coding, actually consists
of two hardware instructions and takes up 48 bits. A new concept is intro-
duced called Augmenting and now we will take a little time to explain it.

Up to this point we have discussed several 24-bit instructions. Each

instruction had the form:

3 - 69

I:f lbl m,y,or k I

The Compass format was one of the following:

f m,b
f y,b
f k,b

However, if you look at a reference manual or a code book, you will notice

that the complete forms for 24-bit instructions entails more. For example:
LDA m,b

can be expanded to:
LDA,CM, MG (g)m,b,z

The modifiers CM and MG are operation field modifiers that change to a slight
degree, the operation of the instruction. CM means, ''load A with the
complement of the operand''. MG means ''load A with the magnitude of the
operand (absolute value). Either of these modifiers could be used.

The a within parentheses represents the bank that is to be referenced for the
operand. Only the 3600 and 3800 systems have this feature. Besides the
15-bit address, the programmer can designate a specific bank. This would be
if his program occupied more than one bank. He would have to be careful that
he referenced not only the correct 15-bit address, but also the correct bank.
If his program is completely contained in one bank, there is no need for

designating bank terms, as the present program bank is automatically assumed.

The v modifier in the address field is another index designator and allows for
increased address modification. At the beginning of this section we mentioned
that the modified address M = m+(B®) + (V¥). VvV represents the same index

registers that B represents.

3-70

For most 24-bit instructions inserting a modifier, a bank term, or a second

index designator requires a hardware 24-bit augment instruction to be placed

as the upper instruction of a memory word. The instruction itself then forms
the lower part of the memory word. Together they form two distinct instruc-
tions, the upper augmenting the lower, and both taking up 48 bits.

Problem 14 could be solved by coding in the following manner:

LOCATION | IOPERATIONMODIFIERS ADDRESS FIELD COMMENTS
1

14333 ias e iy iad el @iy it ni e v w0 () 2 Y8 de 200 s de 27T (291 30 3402 95 2130 13613508 0wy 00) at a2 1 43t eqias fhs g a7 (A s 319138 5682138 3 2543)84 LR ST R NELN]

A\ Foeur . Fuderréd Lo e
L EBMIRY L RAMETIAN
o/ (e .. 13-) , . _ ,
Cad . ec Ve L L L
SAVE BSS ot Lo e
FupeT IgM 1BsS i/ ,] e
o LDA . i T
R V=Y S X e ‘ A ,
L STA kave = 3] -
. DA XD |
e L IFMY B A i N .
e |IFAD . SAVE .
e =Y = . T]
e TA L dsAE = X kRAABEX -
L LILPA MG SAVE. . N
i LBSB i JCHMR e
TRPL . IGREATER . i e i
ESS . |\lema, .. e . L, o e .
ST FudeT I by
GREATER | EMA 1778\ . .. o T BCTAL
ST BumMT BN e
: END b D R bt .

Somewhere within this subprogram would also be included the symbol X1 in the

location field with a declaration of the prestored data.

3-1T1

Student Problem 14A.:

Given Y = X3 + 5,3X ~ 30, a value is to be tested for X such that, when substituted in

the function, IYl (absolute value) < ., 001

Substitute X and if,

1. [y] < .001, enter 1in A
2. vl > .001, enter 0in A
Flowchart:

3 -T2

Problem 14A could be solved by coding in the following manner:

V33 ialNiesy Dprt by i ey 1910 (30 (720 2000 10 AT 00 001 3003009104035 (90 179990 batian @3t e tas ey e ian S0 2 AT ST B L. SRIFL:]
H ded. F I T i i § VSN N SN SN PR O NN SN NS TN OO N S VO TN S { l IO N T S S | N B N W 4 H ii i L S
1
A b d 1 boded 1 i A Jmke fod A4l 1 i. 1 FNU S-S TS WS T U | i SN AU TP N SO N U S S SN SO S N | il
S T U S T G WU Y S S S § SRS R N Y 1 i l_.i I 3 Lod d. il ISR O S B | 1 A B R S B W §
Lol L. I O S i L.i I Lok dok L.l L SO O SO NS SN S SO U N | i ‘ O T S Y O S 8 i Ll L4 S TN S S Y { U S N o i
| |
TR : Jodod f i S S B R A bbb 1 | RN okt P Loidddded
i
ek L R I B : i it a1] PR I U S G TN N ST N NP N S S T SR T
f
il i i TR A AR U N SR e i Loid : ; i
I !
L Ll i H TN SR ST, R i : : i : PR | ~ : fobtd L Loddedod b 4 g
i el I — i k. L il S H I Ldbd i i dovrdm. I ol kb
L ; L i L4 ' L ‘ L i i Lodldo A4 L1
1
R T L T | Ll L Lot L Ll i i S T i
1
N S S T dmd 4 I ! F U O TN OUSUS S S N O U SO SO WS W | Ak | N S W W S '} e, SUNNS S DU SO WO A S VU VO SO SN U N SO i.d
i
4 F I 1t I W T H i i il H I i Ao i R S Y W B N\ I SO W T T i i i i1
Lot PR R RS R T RO S SO NN O A M e ekl bl TSRO I S N S R S S S
L bd i J T S N S Y N0 NN N S U S O SO S T O O NS S ST S ST VO S S A S A AR B S IR SRR S R A A i
IR S S G I | bk 1, IS SO N WO W S S i1 1.1 gk Lokl) i SN N S | i W S W S SO G | Ll L
Liddi i Lt Ll L [RS U S E N W : NI A O S) ST R Y T T T W Y WA A TOOF A T
F IS S S I SO S 1 RSN WD S S S S T § Y N S U B | ddi Ll ' dd b b L4 SRS WU SOV WS SNV VRO GO S S S |
i
: foe s S R 54 L R AR ! i : L L
i
Lididad i ot Ldodod b i Ll | R ! Lol L] P S S O SN W S T W O
I
L] Lt [T Ll L . L bl b i) b
1 .
O S N) I N S A | L.l i L e d F l £ T | 1 A A U W T U NN AW S S §

Problem 15:

Assume the

following 9 x 9 array:

All
A21
A3l
A41
A51
A6l
AT71
A81
A91

A12
A22
A32
A42
A52
A62
AT2
A82
A92

A13
A23
A33
A43
A53
A63
AT3
A83

A93

Al4
A24
A34
A44
Ab54
A64
AT4
A84
A94

Al5
A25
A35
A45
A55
A65
AT75
A85

A95

Al6
A26
A36
A46
A56
A66
A6
A86

A96

A1
A27
A37
A47
A57
A67
ATT
AB7
A97

A18
A28
A3s
A48
A58
A68
AT8
AB8
A98

A19
A29
A39
A49
A59
A69
AT79
AB89

A99

3-174

This 81 element array is in memory starting at address ARRAY and is formed

column by column as such:

1. All
2. A21
3. A31
4, A4l
5. A51
6. A61
7. AT1
8. A81
9. A9l
10. A12
11 A22

80. A89

81. A99

Write a subprogram that will add each element of the first column to its corresponding
element of the last column and place each result at each address of the last column.

The operation should go like this:

. (A114(A19) -A19
2. (A21)H(A29) - A29

9. (A91)+(A99) - A99

3 -175

Flowchart:

(AX1) + (AX9) Nine Elements
- AX9 Completed?
No
Advance
Element
Counter

The new concept needed to solve this problem is the concept of Double Indexing. We

mentioned before that most 24-bit instructions could be modified by:

1. operation field modifiers
2. bank terms
3. a second index designator

The second index designator allows double indexing. An instruction like the

following is an example:
LDA N,1,2
The address referenced is M where M = m + (Bb) +(VY), Inthiscase M =m + (Bl)

£ (v2).
how to interpret b, then he knows how to interpret v.

Designators b and v represent the same six index registers, so if one knows

3-16

Problem 15 could be solved by coding in the following manner:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
TOEMT . MATRIXMU o oo oot bt

i LIEMTRY. o IMATRIXMY L oo e e
MA[{R[ILXM“ BS‘SxIIAI1/‘|‘II|'A'|“1i=|Il L i L § LTS SO NN [NS S - S N SO NN SN0 00 N O W N S WY W ¥
EMI:AI=A=011/III=A!II|I' 1L'g=\|)e$7r£L'n .¢F| Flzklslz:qlll'llllll‘l"‘
i EME o Qaied i ST ,E,L-, @E.;.Lﬁézz__cgﬁé_‘_._x_l_g‘_;_n_s_;_p_
b L UDA o BRRAY D e
o | pADRE ARRAY D IAXIFCAG) AXG i e
e\ R ELEMEMTSS
N A 7

BT MATRIXMU ... NES, ReTuka e
il [RS I U N SN A WS S U S A N N AN | SR N U O U0 T 0 WOR T N0 T WO T N O O Y A

Somewhere within this subprogram would also be included the symbol ARRAY in the

location field with a declaration of the prestored data or area reserved.

Student Problem 15A:

With respect to the preceding array subtract the 7th column elements from the middle

column elements and store each result at the addresses of the 7th column,

Flowchart:

3 -777

Problem 15A could be solved by coding in the following manner:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
R]
vgziaiaqsseriefelwini niuis u:llL:l:w{nul'ﬂ|un-:tsxuux7 L YR TR YR FE T R RSt ST S PR RE N I PN AT TUT S IRE R S U L TR AT T ST TR IO C L T AT T L TEITL)
1
TR UMY TN LIRS VA S S G S N YOO S N S DU SN WO S W W W A Y S S S SO SUN TS S S WO YO 00 S A SV SO0 S S0 S0 WO S M A HE N SN U U T U S N
] 1
i i L R 1 Lot - . Lo [| il i TN S O S N WA WU S0 O S il
N i
Y VU S S N N PO N S T S S ik R I U S I S N N N | l b PO Lo L ik i § S WO SO T S U U 4
[l
U L l fbde bd i L I | G T B i l SO S U TS I S SN SN SN WS WS S TVORN WD WO N N AN SN VU S S W1
i |
i N BN SR N I : T BN Y A I Lodadedde
i
i L i i L. 1 bdediL bl] I i
|
1 il i fed Ld i I3 l § R O A S W S L i 4 Lot b
I 1
1 Leid L Ll L i : TR | .) L L bbb
|
s) L i L | IR 1 SR
i
n i L L4 i i I i - ; Lol i P T S N S W T SO O
I
Ll 1 | L I ! i
i
(R il T TR N S S SR N S B S U Wt N A R i ke A L1 L
! i

Problem 16:

A random set of 100 integers ranging from 1-100 and starting at address SCORES is to
be separated into groups according to the following pattern:

1. scores less than 70 stored beginning at address UNSAT

2. scores greater than or equal to 70 but less than 76 stored beginning at
address POOR

3. scores greater than or equal to 76 but less than 91 stored beginning at
address FAIR

4. scores equal to or greater than 91 but less than 96 stored beginning at
address GOOD

5. scores equal to or greater than 96 stored beginning at address
EXCELENT

Write a subprogram that will compare the integers and store them accordingly.

3-179

Flowchart:

>

100 Scores
Examined ?

Examine First | Yes Store Score At
Or Next Score (Score <707) UNSAT Table
lNo
70 < Score < 76?\Yes Store Score At
POOR Table
No

Yes Store Score At
FAIR Table

lNo
3 'Yes > Store Score At
GI < Score < 967 GOOD Table
No

Store Score At
=" EXCELENT
Table

76 < Score < 91?2

The new instruction needed to solve this problem is:

1. REGISTER JUMP - RGJP

1. Instruction; REGISTER JUMP Mnemonic: RGJP
Form:
LOCATION | OPERATION MODIFIERS ADDRESS FIELD COMMENTS

INERENENE R NEAEN LS LI NS ““!:u:"lni"ENIu AR R R R R S S AR JRITR RS I SR NS N x4»‘a:ﬂ:u;ntuuuuun« A0 80 4 (5383 (%)88 [%6 3T ISE [5980 61 82 a3 Sk 63 108 (67 08 4% TN | Vi TD

IPoys. o ipayaryh - i T
; AN :

1 i i e N S S TS S U S SO PU S S ST SN ST RS ST S S
1]

This instruction is the first 48-bit instruction encountered.

whether modifiers are specified or not.

four characters for their Compass operation code,.

This instruction is basically a compare instruction. It can compare any

operational register with the value y, which is a 15 bit quantity. This is a fast

3 - 80

It takes up 48 bits
The 48-bit instructions normally have

instruction since no memory reference is made.

The instruction compares the value in the register specified by p with the
value y. The Compass mnemonics for each register can be found in the
3600 Instant Compass booklet, page 8 (pub.no. 60056500). The basic

comparisons are:

(p) =y
(p)>y
(p)<y
p) ity
(p)<y
(p) >y

D O W N =

The particular comparison is specified by the operation modifier, s. For

each of the above:

1. s = EQ
2. s = GT
3. s = LT
4. s = NE
5. s = LE
6. s = GE

If the two quantities compare as tested (yes answer), a jump is made to
address M where M = m + (Bb). If the two quantities do not compare as tested

(no answer), a full exit is taken and the program continues.

3 - 81

Problem 16 could be solved by coding in the following manner:

LOCATION | IDPERATION,MODIFIERS ADDRESS FIELD COMMENTS

[
INESERERENUNRATE LA L TE L TR SRR NELE X INE T TE R T SR JE e TR R R YE L S At B30 I L I I I T A T I TN em 458640 S T 2T
TDEMNT . . !sepAMrléu,‘.ug,},.l..
e LEMTRY, ISEMKAIE_ e] . . R ‘ .
UMSAT . | BSS. oo o0 i
pare .. |[BsS. .. oo, | 1 ‘ \
ATR BSS00, e Lo ‘
oddp | IBSS . 0O) , . ‘
EXCeLENT, |BSS. . 00 , .. k o ‘
SEPARATA BSS o o Vb
R = T - , b . [

I B =7 ;0,,2,, , el ; 1
U O S S S | _HIE A<|10}[ii il R) B VO S H S

— |
N N T S S S | CA/I H L ‘q, DS S T N TN WY S S W § i i I J S T -1 i bt S U WO TS T S T A
- I
T R Lfnu.Z":J»;JLIQ).j/4:;»‘¢<:;~('4;\si.».:== S S S SN S S S N ST I L
- 1
NN S N T N MIx_ bbb did {Q,ALI VR SN WS Y N UOVO5 S W SN SN S S S | { S SO T O T W | i i boi1 S S SO N WU SO DU Y S S
EXT i . . DA . IS;CMES_,_._é ESRERI I B W ST S S S | TR S NN B TS R NS S S ST S S

e | REIP UL A 70,T7E . s ... WA LT70 e
R&I@.LT“L{;M,L.WQWwvw LTl
eV RETOLT ARG LTEL o CAY TR
6IFLLT. .A%LT% e TG
£ . | |74 _\Bcele 1 o L. L \
i IMLWHHUI-.S L ;L.,.HI bl o4 Y
TEST .. |Isk.99,4L i m;~/.qqscf£esr657£09
.H;‘.SL‘.I.‘HME)(T L INM

LI 1S¢PHR.AT€,. b 1YES

~
EN

=
>,

LT70 4. . ,.uusx;r‘...l.ww_“} e e ,
e AT.,»WTEST : . bt .
726 . . A APABRID i . e
AR S S S N | M’:il‘rli/‘lglil\ll“i1‘l“= ‘i‘ i - Lodo b 4o 44 o ki]
BT TESE 1 o

CTG NASTA o FATR B Lo ‘]
I L 7Y/ R T { . .

e BT TEST e . »
LT9% \ISTA . . . GopDo% ... J (
R A V% 4 Do T
SLJ'H,.leEST, T , e ,
. i TR RS B N Y Py L l FEE S T S SRS S S N S T T Y

e included the symbol SCORES in the

n
O
8
¢}
g
o
[}
'-s
@
o s
[y
e
=3
5
o+
oy
[~
1]
0
o
o
ko]
2}
(¢]
161
Ix)
SIJ
é
Q
—
Q.
[
o
0
o
o8

3 - 82

Student Problem 16A:

Given the function Y = X2 + 5 X - 3.

Assume there exists in core 100 integer values starting at address X to be substituted
one at a time for X. If any of the substitutions causes Y to be between -5 and +5

(inclusive), store that value for X in a table starting at address ROOT.

Flowchart:

3 - 83

Problem 16A could be solved by coding in the following manner:

LOCATION

ADDRESS FIELD

COMMENTS

JOPERATION, MODIFIERS
i

111 I T T I R T D R T R T L I I TR T P IO SO TR I] DRI IT S UAT AT ST SERE ST RE TE YL IT PRIV ST OIS St SO SEITL]
]
i Jo—d L 1 N S B W T it 4 " H l i 4 i L 1 W
1
L i1 L i I : I ; { L Lt i
i
S T S T T A U T | i Lol i i L L.d 1 i l Lol i i. 1 F I
1
. I L L TR L : ! fi RN
i , {
ok i Lot o di il ot | I I PR SO T T
N L : i : 1 i I st L
1 i i fil Loibd Lt i
{ 1
L il ; kit i L : Lo d i b Ll
|
1 i i i L SIS Y H 1 A
i ; I b L1 i L bt t i P ST W U
i
i) ; I i il L L L Ft : L
i
[N T L | T SN U0 W T O B S : ! P blil 1) Lt
| [
Lidd Ly b baia i i TR St 1 L I Lt
]
ool et FU S} L i ' P S S WO S S | i 1 i i P 1.i i SO O S |
] .
i i L Ld 1 i i) 1 i | ¢ L Ll (ot I i
[i
Lepp bt Ll Lo i il b S BN L i PR
[1
L i il L i : ! 1 il 1 i L "
| |
L) L Lot i 1 Ll i oL L |) i ideded -
1 i
: it I i L. ek
[i
it L idd s | it L I i : i bl d
i
U O U T | Lt poed SR R ' . ; Lk Ll
. !
: I N | il 1 i Lt Lt i fLL
!
i i i i ; 1, Lol H 1 H 1 Lod L. F.
O podddedd L I L Lo i : : :
i |
i i Lt i : : Lt L i A : ik P
! 1
L | i L 1 L i L
] 1
IS TR S SR i il L L i | i folddd
i 1
RS 1 ol Lod bl L i i IR
i i
: il 1 Lk i L 1 ! L R N ST
|]
i il 1t T . 1 PR ; Lt i : :
1 i
L et et i i L i L L T
| 1
L i) L il 0 i : 1 L "
| |
Lit L 1 Lol i L Lot Al il
i |
L i P i ; ol : : i}
i i
L L 1 L L Lo ; i
| !
i . Ldy { L L { i : :
I i
[R R : | . : i : : °) S
| |
: L : 1) | ; L
1 [

Problem 17:

Assume an 80 column card has been read into memory in BCD format starting at
 address CARD, each column forming a 6 bit internal BCD character. Assuming the
word before the first comma on the card to be less than or equal to 8 characters,
write a program to load the word into the A register. The internal BCD equivalent

to a comma is 73B.

Flowchart:

Examine First
Or Next
Character

Character
A Comma?

Pack Character
In A Register

The new instruction needed to solve this problem is:

1. LOAD BYTE - LBYT
1. Instruction: LOAD BYTE Mnemonic: LBYT
Form:
LOCATION RATION MODIFIERS ADDRESS FIELD COMMENTS
{

4953813005283 {00 (30186 97 S 90 0 43502 00] 6a 8 e 16T 60 |0 (71 T

b e bd L

$ 0253 assse e de gty s et r ek a0 a7y 3 e 08 2 (T i 900 30006 0 3065 3 (00 30 e fan a2y 63 iaqgas Jae 1) g4y
- | I i
LRAT, Ao, Leiy LT, CL mybyv oo]

1 >3 |
oo Qo 1 KT e !

0

3 -85

This instruction is an instruction that transmits a "byte'' of a memory word
from a memory location to the A or Q register, which ever is specified. In
effect this instruction is like the LOAD A or the LOAD Q. The only difference
is the variable size byte from any portion of the memory word can be trans-

ferred to any part of the A or Q register.
Since there are so many modifiers, let us begin by defining a few.

1. Ao or Qo - One of these must be specified. This represents the off-set
designator of the A or Q register. The off-set designator is the bit
position (0-47) representing the rightmost bit of the byte in the register.

2. Ee - This modifier represents the size of the byte that is to be
transferred (1-47).

3. (VY) - The contents of index register v represent the off-set designator
is the bit position (0-47). The off-set designator is the bit position
(0-47) representing the rightmost bit of the byte in the memory word.

The off-set designator must be entered in vy prior to this instruction.
4. M=m + (Bb) - This represents the memory location referenced.
This information gives enough to transmit a byte. Suppose you wanted to

transmit the uppermost 6 bit byte to the lowest part of the Q register, let's
say from address M. How would you code it?

I
_

l
1

6 bits

Q)

(M)

-

3 - 86

Two instructions are needed and would look like the following:

ENI 42,1
LBYT,QO0, E6 M,.1

Another modifier can be introduced at this time.

CL - Means clear the complete destination as the byte is being

transferred.

In this case it concerns the Q register. If CL is not specified, the rest of Q
will be untouched. If CL is specified, the rest of Q will be zeroed out.

As long as LI or RI are not specified, this instruction will always full exit

when completed.

If either LI or RI is specified, the complexity of the situation changes, and a
new concept for this instruction is introduced - INDEXING. Indexing means
that the memory off-set designator can act as a pointer and can move to the
right (right indexing) or left (left indexing) each time the instruction is
executed. This means that sequential bytes can be loaded and examined and
the pointer moves automatically. A check is also made, that if the memory
pointer completes a word, it will automatically provide for re-establishing the
pointer at the next word. After the loading of the byte has taken place, a check
is made to see if another byte could be taken from the present memory word.
If yes, a skip exit (P + 2) is taken. If no, a full exit (P + 1) is taken. The
programmer has a maximum of two instructions to re-establish the pointer

(contents of V') and increment (or decrement) the memory address referenced
b
(B™).

Let's return to problem 17 and see how the word before the first comma could

be loaded into the A register.

3 - 87

Problem 17 could be solved by coding in the following manner:

LOCATION | IOPERATION MODIFIERS ADDRESS FIELD COMMENTS
|
s a3 iegaae;ziekodmyiy vy e o0 an 7y 0 e 08 10 (T8) 3133259313038 (06130 ow 40 D0 a2 | a3 en s jea 17 (an an se 181 (52183 (0 38| S, 9TISE S0 e0 €1 a2 63 8y G e N
o \UDEMT o UMPACK . o 4
e L EMTRN L MMBACK 1 ‘
MPAcK | BSS .. 1) .. e Lo L
EML oo 002 P
. EMIL o R MEM.. 0FFsET DESIGAMATOR. .
g L UBYT, Q0, L4, RI,CL LARD, 152 . | T
‘ FUT . 22,0 \EXECUTED gLy, WhEA. .
BT e CPMPLETE WARD EXAMIVED |
o ReIP, 2@ . @, 138,UMPACK _SKIP EXIT. T4 HERE
o l@es e .
e VLS CHAR_Tf. A ,
5L A e NEXT. CHAR
N Y T T e L) L

Somewhere within this subprogram would also be included the symbol CARD in the

location field with a declaration of the prestored data or the area reserved.

Student Problem 17A:

Assume an 80 column internal BCD card image in memory starting at address CARD.,

Write a subprogram that will load A with the characters from column 10 up to but not

including the first blank encountered. The internal BCD equivalent to a blank is 60B.

Flowchart:

3 - 88

Problem 17A could be solved by coding in the following manner:

NESEETENNTERAYY L3 LILNUAT RIS ST ST £ SEURE TR TR SO SR aE e TR R TE SRV RE R LT AR TV] IR L Y IE R DY T R T TN I T I T I I T I T I T Lt
L TR i il TR Y R R | AT Lot TR
e Ll otseiedia e g TS) i oL 1 TR B S A T i
fdllfd P S ! L el L ! L b . i i1 43
i Lt I Lt s ieia de g i S Lol Ll
i {
il ik i i bk i i L] o R ld Coia il
i
L il ki I 1 I il . L ! I
[
i - 1 R NN RN SIS SRR i Lo
i
L bk I TR | L Lk d 1 il R
: - ; Lol Lldi Lt Lt
L. i I b 1) Lol i PR
|
1 Lold 2 i il . L fde Lo fedod i 1
[i
L T i Ja Lo di b | RN O B i N N S S bl
1 i
T TS Y : TS | L | L il i iio g
i 1
Lt it petdind Ll d P BTN S I R ittt G4 1) Ll

Problem 18:

A company employs 10, 000 people. For each employee information is contained in a

48-bit word concerning his status. The uppermost three bits mean the following:

Bit 47: = salary over $10, 000

0 = salary less than or equal to $10, 000
Bit 46: 1 = Male

0 = Female
Bit 45: = Married

0 = Single

If each employee's status is contained within a table in memory starting at address
EMPLOY, transmit all words of employees who are single men and earn over
$10, 000 to a table starting at address TAXABLE.

Flowchart:

No No No

Examine First Employee \Yes Employee \Yes _ [Employee Earn\ Yes .| Enter Employee
Or Next Word Single? Male? Over $10, 000 In TAXABLE
i

No

10, 000
Employees
Examined?

The new instruction needed to solve this problem is:

1. BIT SENSING - NBJP
ZBJP

3 ~-90

Instruction: BIT SENSING Mnemonic: NBJP
ZBJP
Form:
LOCATION | DPERATION,MODIFIERS ADDRESS FIELD COMMENTS
|
11i3i4js iefolwin e g nin.u T8I T 0030130950198 196 2 a0 00)60 ian | a3t 0qas {0007 40 a0 90 15 {583 0N |58 | 56 8T SN, 8000 615 0T 160 {60 88 10b 6T 180 49 (LTI (TD
1
i i BJP ST : ID,g Am?jbl Lold i) [T | I I L Ju)
i
1. i1l | S CL NI SO S Y S S I L | Y S O T T | H SNV S S S | JE} Lod i T i N T S OV S T |
I i C‘M ! i F N U S U WO SO TN S | hedod i [EE T W I i fid i Lo i 4t
L i 2 1 ik N S I |) N S S S N i % S S N S B | A U U | B N W S S S 1 L 1
Or Form:
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
]
tg2i3 iely e Tl 4318w |a:m*2nz-: iy (050N MM s e e e s 5 YT TR T o saies 0 TR RReRL:
PN i ZajPST ﬂdmblll!'!r(‘l‘i =;‘,Jx:a».':::>yx ~~~~~~ Lol)
ID/ O
i b4 i Lc A 1 § I Y S SN SO SO SUUN SN ST S SO SN S SO S i N S S N G N S | I T T S T ¥ . i) il
1. 1 Clm 1 dedd i il B Lol i f 1 doi SN - S Y Y b I T N - | § S S T S S S
i 1 i 1 ! 1 Ll . 1] 1.t L i i . R SO SO W S 1 L. Lo d 1 F U TN T W S B 4 i

The BIT SENSING instruction has two forms because one checks a bit for
Both

instructions are fast since neither of them requires a memory reference.

being non-zero (1) and the other checks a bit for being zero.

This instruction checks any bit in any operational register for zero or non-
zero. The register is specified by p and the bit address of the register is
specified by g. The designator g can range from 0 through 47. For the
NBJP instruction, if the bit is a ""1", a jump is made to address M where
M=m+ (Bb). If it is an ''0", a full exit is taken.
For the ZBJP instruction, if the bit is an "'0"", a jump is made to address M.
If it is a ""1", a full exit is taken.

s the

After the bit is checked and the exit is determined, the programmer ha

change the bit or leave it forms are

34
S 1t wWas.

)

cpticn to The following

allowed for the operation field (assume NBJP):

3 -91

INSTRUCTION ACTION

1. NBJP BIT IS LEFT UNTOUCHED

2. NBJP, ST BIT IS THEN SET

3. NBJP,CL BIT IS THEN CLEARED

4. NBJP,CM BIT IS THEN COMPLEMENTED

Problem 18 could be solved by coding in the following manner:

LOCATION | DPERATION MODIFIERS ADDRESS FIELD COMMENTS
N VTAX Lo ' -
e MRS s TAX E . , [
TAXABLE | BSS o . 1000984 i , .
TAX . LBSS b l s
N =7, S 2 | \
ExT LA ... EmALA,) o Lo
e | WBTP 4,47, A e] ‘ . L ,
LAST Isk 1999l ... VAST EmPLONEE . . ‘
. LT WEXT ... WA B
e BT A VES. .. ; - o
'4’4 ol BJ/? Pt r}‘Ant‘/’iGaﬁi bl i do it o | S S I FE S OO S T U S S U O
e ST GEAST L e .
B, .. |BBIP . . A45,EMIER Fharlp oM . .
CATER |\ STA o TAXABLED | -
SLT o AT b k l L
wylllll: bbb dl B i 1 E """" 1
L i A I N N I A A N \1[,;:»‘H,Jli«‘,l.,J,,,llig‘,,

Somewhere within this subprogram would also be included the symbol EMPLOY in the

location field with a declaration of the prestored data on the area reserved.

3 - 92

Student Problem 18A:

With respect to the previous problem, write a subprogram that will store the status
of all married women making over $10, 000. Start this table at address JOINTAX,

Flowchart:

Problem 18A could be solved by coding in the following manner:

LOCATION | [DPERATIONMODIFIERS ADDRESS FIELD COMMENTS
]
VIR SR i [S U U N S S R S oot PN SO SO S T S S SO SV T ST SN N L Y S
]
1 L1 L ! It 1 Lt s
]
i L 1 i i l i i.L i i 1.1 i l L Loi b boilld i i i1
1 i
i ilt aed Lt . Ll 1 | hdd) U A S U A SRS NI
| {
i 1 it i L | IR Ldoi i b ii i : ik
I
ST T S B | Lt I ! A L
|
L 5 i L L : P P AR L
{ I
L Ll it : i o 2 L s
f
| U R R R R E ST B A
|
1 Lo T L L S T E W
i
i) ¢ id bl L hdodd X L L
| |
L it I R S A R R R A sl v L T S T TN W SR N N O O S
| i
1 T i 1 it { Ll : i Lol lbid
i |
L1 PSS RTINSO GO SO NS S S S i TN B fenb i i
! i
U SUTT U I S S S ! PN S L i | IR A S AR R 1 1 |
| i
i ik L1 TS SR N W S N L L4 Lo L n ke Liddd
| i
Loid Ll i Cadlii ! 1 AR : Ll 1 Lot d bk Ll
i |
L k £ At L TS SN U T TS S S WS T dedd L | SRR Ll L F IS G Y L
f i
L ¢ Lkt I 11 | SR e FNE S U B N T N
i i
fdd td Lol | Loid L i L L | : L i L TR T S

3 - 93

Problem 19:

If
the next record on tape is a card image of 80 BCD characters recorded at 556BPI,

Magnetic tape unit #3 is physically connected to data channel #0, controller #2.

read the card into memory starting at address CARD.

If the equipment cannot be referenced for any reason, enter A with 77 octal and exit

subprogram.

Flowchart:

Connect

Set Density

Tape Unit

At 556 BPI

Set Format
To BCD

Read Card
Into Memory

The new instructions needed to solve this problem are:

1. CONNECT - CONN
2. EXTERNAL FUNCTION - EXTF
3. BEGIN READ - BEGR
1. Instruction: CONNECT Mnemonic: CONN

Form:

LOCATION | OPERATION MOD¥IERS ADDRESS FIELD COMMENTS

i
113 a5 e ;v w bl miun et e 17 e w0020 (72 (0036 30 M0 T TE I 30 00 133 35500 8 %6 37 M e om |6 a2) 630 6e1es (A0 47 {40 W %8 33152183 (M (35 (3497 SE 900 61ie7 el i 84 63 %6 67 60 49 70 70|73
Iy :I¢MME=J=EX\;6‘M“!N’11111‘ H»:{x,,,.‘:v >>>>> AN

o L1 NIRRT U I R A A A AT [LJ'>3:I" PR ST S S N S HE O W SO S SO S W S S S S

This instruction connects one equipment and one unit of that equipment to data
10 for the 3600/3800

systems and 0-3 for the 3400 system since these are the maximum number of

channel x. The data channel is specified by numbers 0-31

data channels allowed.

3 -94

The e and u designators specify the equipment and unit numbers, respectively.
The range for e is 0-7 since a maximum of 8 controllers are allowed. The
range for u is 0 up to the maximum units the controller can feed. The
maximum to date is 1610 (magnetic tape). For each equipment (controller)
and unit there is a switch or a dial on it that can be manually changed, so

that it can be referenced if its number is specified in the program.

If the connection can take place, it does so immediately, and a full exit
occurs. If for some reason the connection does not take place (power down,
unmatched numbers, etc.), a jump is made to the address specified by the

designator n.

Instruction: EXTERNAL FUNCTION Mnemonic: EXTF
Form:
LOCATION | IOPERATION MODIFIERS ADDRESS FIELD COMMENTS
A]
1073 isis e roede Lm0 2y 20y 28030030 e 1 e 79 300 003 T 3 e % % i 30 a0 Dad a2 i a3 aaas pne g gan ® 5 Sep3 e Py BB €107 055465 06 ;6T S8 69 00 (7511
EXLF Ex,u/?nuf]
ke b.d Lok ’l'|llf=i‘!|“=£ ’ i idd il B T S) ki i

This instruction transmits a 12 bit function code w to the unit connected to
data channel x. The function codes for some of the units can be found in the

3000 Series Peripheral Eguipment Reference Manual, pub.no. 60108800.

If the unit interprets and can perform the specified function, it initiates it
and the instruction immediately full exits. If for some reason the function
cannot be performed (channel busy, illegal code, etc.), a jump is made to the

address specified by n.

3 - 95

Instruction: BEGIN READ Mnemonic: BEGR

Form:

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i

vy iegsieczonfedwi g e e] 72 a0t a1 P ity ey 00 3235 0 (18 (% M s el i etg
9 1
EGR .. 1, IR . WYY/ I W SR ST R WS WA U S SRV AE SN SN0 HT ST NN T S S S S A FRN N N S SO S S W B W
! 1
Ly ; ; 1
! 1

bobd

This instruction initiates the transmission of data from external equipment to

memory. The equipment referenced is that connected to data channel x.

Two things are lacking from this instruction; namely, the number of 48-bit

words to be transferred and the starting address in memory.

This is too much information to be contained in the instruction. Associated
with this instruction is a control Word Address (a)m at which is prestored
prior to this instruction the Word Count and the Starting Address. How does
the programmer prestore this information at the Control Word Address? In
order to explain this let us generally examine the general format of the

Control Word and see what more it contains.

There are four basic formats used to prestore Control Words:

1, I0SW, C (am, w
2. 1I0TW, C (a)m,w
3. IOSR, C (a)m,w
4, I0TR, C (a)m,w

Each format represents a 48-bit word. The designator (a)m represents the

Starting Address (bank term not necessary) and the designator w represents

the Word Count, i.e., the number of 48-bit words to be transferred. Why,
then, are there different operation codes and what is the modifier C? These

are other features built into the system.

3 - 96

First of all, what is the difference between IOSW, IOTW, IOSR, and IOTR?

Here are the definitions:

1. IOSW - Do the IO but skip w words. This means that w words
are read but not transmitted. In this way the programmer

can skip information.

2. IOTW - Do the IO and actually transmit w words to memory. This
means that words are continually read until the w count is
satisfied, even if it means reading multi-records or multi-

files.

3. IOSR - Do the IO but skip to end-of-record. This means that a
record can be skipped, even though the programmer does
not know its length. Care should be taken to specify a
large word count, enough to cover the skipped record.
(See IOTR).

4. IOTR - Do the IO and actually transmit words until either an end-of-
record is sensed or the w count is satisfied. This means
that a programmer can read a record of any size and then
have it terminate. Care should be taken that the w count
is sufficiently high to insure the reading of the complete
record. If the w count is smaller than the number of 48-bit
words in the record, some of the words will not be

transmitted.

Secondly, what is the modifier C? The modifier C is optional and specifies
"chaining'. Chaining means that when that control word is finished, either by
end-of-record being sensed or by the w count being satisfied, that another

wxr ~ AT XXT ~

1 e i 4 + - A
0L WOrda is p;cked up (al. Control Word

continues. There is no waiting or stopping o

this is done.

3 - 97

To illustrate this concept suppose a programmer wished to bypass the first

record on tape and read in the second. Here's an example of the control words

needed:
CWA1l IOSR, C

IOTR

0,5000
FWA1.5000

Both control words will go until end-of-record is sensed or until the w count
is satisfied (we assume records of less than 5000 words). A ficticious first
word address or zero is used in the first control word since no words go to
memory and to prevent an assembler diagnostic. The first control word after

skipping the first record ''chains' into the control word. The second control
word immediately transmits the second record to memory starting at address
FWAL.

chaining is not further specified. Now let's return to problem 19 and see how we

When this control word is finished, the read operation terminates since

might solve it.

Problem 19 could be solved by coding in the following manner:

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
|
D23 tags e iziuf e byt i ne iy pte a0 g3y T e a2 e 0 30 30030 0 (00 138 36 (2 0 39,00 Dad a7 | O35 e pan [0 1T (a0 N0 8 8 (8803 (% 138 369 S " 54165 06 W inn
it i DE:A/T,.x::I:UPL{TLlex;|||=x= :;; N A AR S A Ll
L L EBMIRY. L TPUT L i] .
CARD . . Y e
CWAL | TATW . CARDYIO . . 8 CHAR PER WHRD ...
RET . evs 27 S ‘ Lo ; , .
Moul . |\ Bss]]
e EBMM 03253, 06T
L EXTE o 10,3,KET B56BPI
A exTE %a}. 2,RET \BCD EARMAT
EER . . . D,CWALLAET o . .
o SLT .. \IAMPuUT
Y P I e i

3 -98

Problem 19A:

Write a subprogram that will:

connect channel #1 to equipment #2 unit #3
set density to 800 (assume code is 6)
set format to binary (assume code is 1)

bypass the first two records

Gl W W DN =

read the third record to memory starting at address RECS3.

If the equipment cannot be referenced for any reason, exit subprogram with (A) = 7.

Flowchart:

Problem 19A could be solved by coding in the following manner:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i
LNEEERENERERRALS LA LICICCITYE TR NI DRI LTI e N TR Rt PE TR TR IR E NS E e e R E e R v] PR P aE TR L RPN AT TE Tr TR S L I I I I
|
L 1 TR AR S il N A RN A S S N A ST R N S AT Ll
1
i L Ciili il L Ll I i : S SO SO TR ST U S SN SO S0 WU NS SN T S OO SR
i i L l L i 1
1
: | L L I I l L L
i {
Lo L L | il
i
L1 1 i 1. L TR R
!
| I . L
| 1
| i
i 1
L1 i 1l
| 1
R Ll l IS S
1 i
;] i
t |
] ; i S A bk L Lodi it | RSN S B A I WO NS VU VU N SO W S S S Y O S B
l 1

3 - 99

Problem 20:

Assume a particular routine contains many fixed point add, subtract, multiply and
divide instructions. In order to monitor any faults of Arithmetic Overflow or Divide
Fault the routine requires the interrupt system to be set up. Write the entrance to the
subprogram such that the computer would monitor either of these faults for the

remainder of the subprogram.

Flowchart:

Set Up System CoTTTTT T T T f Lo

To Montior Set Up System Activate The ' Conts | PR

Arithmetic To Monitor Interrupt s (ot Bt |
ivi ul

Overflow Divide Fault System ! prog ! o

PP —— | \\,

This problem deals with hardware interrupt and is used to acquaint the reader with

the 3600/3800 interrupt system. It must be noted that at times instructions used to
solve this problem are illegal. The Scope monitor, before giving control to the
Compass subprogram, will set up the interrupt system so as to make any attempt to
change interrupts illegal. This problem is designed for the systems programmer

rather than the applications programmer.

At this time let us say a few words about the upper 3000 interrupt system in general.

Within the system there are two registers that specifically deal with interrupt.

They are:
1. Interrupt Mask Register
2. Interrupt Register

The Interrupt Mask register is a register the bits of which represent each type of
possible interrupt. These bits can be set or cleared under program control (An
exception is the bits representing the data channels in the 3600/3800 systems. They
are hardware set and cannot be cleared.) A particular bit is set by the programmer

if he wishes to monitor a particular function and have the computer interrupt if that

3 - 100

function arises. If the mask bit is not set, and the function arises, no interrupt will
take place and the program will continue. So we can say that the programmer can
use the Interrupt Mask register to monitor any of the functions in order to interrupt

his program if the function takes place.

The Interrupt register is closely associated with the Interrupt Mask register. The

bits have a one-to-one correspondence so that the registers logically are pictured thus:

47 0

Interrupt Mask Register

113

47 0
Interrupt Register L 1

A bit is set in the Interrupt register when that particular function actually takes place
and its mask bit was set. When the interrupt routine is entered, a ''logical product' of
the two registers is taken by the programmer. Any binary position that yields a "'1"
determines the cause of interrupt and the programmer can jump to the routine that takes

care of that function.

We mentioned that before an interrupt can actually take place on a function, its mask
bit must be set. There is one more condition that must be present. The interrupt

system must be active. If the interrupt system is active and the functional mask bit
is set, interrupt will take place when that function arises. If the interrupt system is

not active, no interrupt will take place even though the mask bit is set.

In summary, then, these conditions must be present in order to force the computer into

interrupt:
1. Interrupt system must be active.
2. The mask bit must be set for the particular function.
3. The function representing the mask bit actually arises.

3 - 101

If any of these are lacking, interrupt will not take place and the main program will

continue.
’

The new instruction needed to solve this problem is:

1. INTERNAL FUNCTION - INF
1. Instruction;: INTERNAL FUNCTION Mnemonic: INF
Form:
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
|] -
23 iaf3ce;zied o fw i v i s e ;900 (2 72y 29y 00 100 e 2T 00 P00 301 VN5 (4,38 (M 3 3% 40 da) 430 366 1es | ak 1T (0 PETINE) S 45505, 975 59865 41167 43|54 43 08 (47 |8 4 | TijRD
IMFJ ‘JW‘II*!KI[IJ‘[ll“‘;lll’~’: \A\‘f:. 11 1 VIR DU S B |
i i
i F I L A:5L=Jlili“»":‘ffktiix! LSS NS WO D VS SN S0 NS S SO SN S NS NS HOD SN S SN SO S SO S § i i

This instruction is a general instruction that has many purposes, all based on

the code w. The codes dealing with the interrupt system are the following:

3 - 102

w code

Function

Meaning

1 Clear Shift Fault Interrupt These codes individually
2 Clear Divide Fault Interrupt clear its bit in the Interrupt
3 Clear Exponent Overflow Interrupt register. This is done
4 Clear Exponent Underflow Interrupt after the program has
S Clear Arithmetic Overflow Interrupt | determined that this bit
7 Clear Internal Reject Interrupt has caused the interrupt.
9 Clear Real Time Clock Interrupt It discontinues the signal
10 Clear Storage Reference Fault so that the computer is
Interrupt .
not re-interrupted and

11 Clear 1604 Mode Interrupt . .
caught in a never-ending

12 Clear Trace Mode Interrupt lo

op.
13 Clear Bounds Interrupt
14 Clear Illegal Instruction
Interrupt
15 Clear Operand Parity Error
Interrupt

16 Clear Manual Interrupt

17 Clear All Internal Interrupts Clears the entire Interrupt
register.

18 Set Interrupt Active Activates the interrupt
system. Without the system
active the interrupt signals
will still be generated,
but the computer will not
be interrupted.

21 Clear Interrupt Active Inactivates the interrupt

system. In this state no
interrupt signal will

interrupt the computer.

3 - 103

The first few codes clear individual bits in the Interrupt register.

This is

done only after the source of interrupt has been determined by the programmer.

He clears it out.

The hardware will not.

If the programmer does not clear it

out, the interrupt routine will be re-entrant and form a never-ending loop.

The last two codes set the interrupt system active and clear it out.

The

system must be set active in order for any interrupts to occur.

Problem 20 could be solved by coding in the following manner:
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
|]
ANEEEBKSESTUREES LN LIRSS AN TR SULTE BULE E SV IRE TR FE Rr RT RE ST TE R TR T T I R T) Bad o2 (48 000a8 100 147 (a8, 00,50 135 39183 30 155 | 56 87 SE L 585 k61 611 aT el | B4ieS 647 0869 7R N
1ZperT ARITHAUM . Lo .
e LENTRY . ARTTHEuM . b
RITHEUM 1BSS oot L . l
| WB3P,ST . ;Lmq.uw/ e SELDIV- FAU- BIT
B3P, ST _ . \TM,4, %+, _SET_ARITA- &V. BIT e
LN BVE g SET INT- AcT. o .
L | e CONT. PREG.. P
. . \ ; s e : .,
hd 1 ddit i
{ i
.. 1 | Lot 1
o g it P ¢ ; botod £
5.3 ARITHEUL . WETURN . o
D e e d . A
I - I | IO T S 1 ; i i L i1 : I) 1 F
i 1

Student Problem 20A:

Write the entrance to a subprogram that will allow the program

the following conditions:

B W N e

Real Time Clock

Storage Reference Fault

Bounds

Fault

Illegal Instructions Fault

3 - 104

to interrupt on any of

Flowchart:

Problem 20A could be solved by coding in the following manner:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I
V23 EALE e v e ety b iR g e L0 2y 20020 120 530 e LY 0N 00 05 91100 B0 LN (B339 0 Do i n t 00018 R ae 17 L0 a0 80 90 18 05 0 S8 I 36, 97 S 5 50 05 0 a2 {0 00 (4 (0 167 S e) (T TIITE
i
L i . i | bt
1
Ll L i i Li 1 L 2 L L TU N SO S N ST S S D ST SO S T |
1
L it " i i 1 Lo {‘ll__iA e -k S S S S P S U S B B
il i i 1 L.k ' i i i dd
I f
| L Lt L L 1
1
. bt . i Ll
i
. Lottt I i b
| i
i I L L | L i
[t
. i . | .
{ i
t ! L L
i i
. s } bl L | i ;
l |
i i IS S S S S R SO S W S S L1141 PRI R W NV SR B B S S
|]
1 | .| i
i
LLid : 1:. i Lol i : i 1 Lt

3 - 105

CONTROL DATA
[comromarion]

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

L]
Pub. No. 60166700 Rev. B Litho in U.S.A.

