3400
SB0C
S809,, ..

AAAAAAAAAAAAAA

RECORD of REVISIONS

REVISION NOTES
A (3-1-66) Final Edition Released
B (4-19-67) Publications Change Order CA16274. Manual enlarged from one to three volumes, replacing

3600 COMPASS Programming Guide, Pub, No. 60166700, which becomes Volume 2 of the new

3-volume set. Miscellaneous corrections to Volume 2, pages 1-1, 1-21, 1-26, 2-10, 2-14, 7-3,

7-10, 11-5, 12-26, 12-30, 13-25, 15-13, 15-18, 15-22, 15-30, 15-42, 16-6, 17-2, 17-3, 17-6,

18-2, 18-6, 18-10, 18-14, 18-18, and 18-22, This edition obsoletes all previous editions.

Pub No. 60166700
© 1966, 1967

by Control Data Corporation

Address comments concerning this
manual to;

Control Data Corporation
Marketing Training Department
8100 - 34th Avenue South

Printed in United States of America Minneapolis, Minnesota 55440

FORM CA230 REV. 1-67

FOREWORD

This manual is intended as a guide in learning how to program the
upper 3000 computer systems. It includes a hardware concept of

the systems, the use of the COMPASS programming language, and
the use of the SCOPE monitor. Step-by-step example problems, with
and without given solutions, are included to develop the capability of
using the language.

This manual is a major revision to and a replacement for the 3600

Computer System COMPASS Programming Guide and retains the

same publication number. It is now expanded to three volumes.

Volume 1

This volume consists of three sections. The
first section deals with the introduction to the
systems. The second section deals with the
central processor. The third section deals with
problem-oriented exercises in which random

instructions are picked to solve problems.

Volume 11

This volume consists of one section. The
instruction repertoire is divided into groups.
Groups 1-18 are hardware instruction groups,

and groups 19-25 are pseudo instruction groups.
Each group is followed by explanations of new

concepts and problems designed to use instruc-
tions from the group.

iii

Volume III

This volume consists of two sections.

The

first section deals with the SCOPE system.

shows how to run jobs under the system and

It

explains new concepts such as overlay process-

ing and library preparation. The second section

contains several computer output listings obtain-

ed as a result of running the example problems

under SCOPE,

REFERENCES

3400 SCOPE /| COMPASS Reference Manual
3400/3600/ 3800 Instant TAPE SCOPE
3600 Computer System Reference Manual
3600 COMPASS Reference Manual

3600 Instant COMPASS

SCOPE Reference Manual

3000 Series Peripheral Equipment Reference Manual

[N
”
<'4

Pub.
Pub.
Pub.
Pub.
Pub.
Pub.
Pub.

. 60057800
. 60059000
. 60021300
. 60052500

cnneecnn
(GRVAVIDURD RVAV)

. 60053300
. 60108800

CONTENTS

VOLUME III

SECTION I - SYSTEM SOFTWARE
THE SCOPE SYSTEM

UNIT SPECIFICATION
SCOPE CONTROL STATEMENTS
EXAMPLES OF DECK STRUCTURE
SYSTEM MACROS
INTRODUCTION TO COSY
GENERATING A COSY DECK
INPUTING A COSY DECK
OVERLAY PROCESSING
PREPARATION OF OVERLAY TAPES
THE CALLING AND EXECUTION OF OVERLAYS
LIBRARY PREPARATION AND MAINTENANCE
LISTING A LIBRARY TAPE
EDITING A LIBRARY TAPE
PREPARING A LIBRARY TAPE

SECTION II - OUTPUT LISTINGS

1-1

1-2

1-5

1-15
1-19
1-54
1-55
1-57
1-65
1-66
1-75
1-77
1-78
1-85
1-91

SECTION I

SYSTEM SOFTWARE

THE SCOPE SYSTEM

SCOPE stands for Supervisory Control Of Program Execution. It is frequently referred

to as the Monitor of the upper 3000 systems. The Scope Monitor provides a system of
operator and programmer aids to simplify the operator's job and increase through-put.
By having a monitor for the system, operator errors, operator intervention, and amount

of computer time are minimized.

Other features of the monitor include job stacking, equipment allocation, recovery and
debugging aids, interrupt processing, overlay processing, and library preparation.
Many of these features are explained as we go along.

Monitor operations are specified in a job by use of control statements and programming
requests. Control statements have the following card format: a 7,9 punch in column 1
and a statement name beginning in column 2 with parameters separated by commas
following. Control statements are free-field, but must be contained on a single 80
column card. No terminating character is needed. Programming requests are written
as system macros and are assembled into a calling sequence to a Scope routine. This

will be explained in detail later,

A job includes all operations indicated between JOB cards, or, if one job, between the
JOB card and ENDSCOPE card. Each job is terminated with an end-of-file card.
End-of-file cards are also used to separate runs within a job. If more than one job is
to be processed, jobs are placed together (job stacking) with the ENDSCOPE card at
the end of the last job. If jobs are stacked, SEQUENCE cards with sequence numbers
are inserted just before each JOB card so that, if the stack was on tape, the nth job

could be read, compiled, and executed bypassing the others.

Within a job other control cards determine what the monitor is to do. A COMPASS card

directs the monitor to read the Compass assembler from the library into core storage.

A LOAD card directs the loader to load the binary object program into core storage.

A RUN card directs the monitor to execute the object program.

In general, then, a job might look like this:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
T
AEEEENERE NTRRALE KN IR L RS R NN TR TN S0 DAL L ST INE TR S R T TE AE Pt R e T I 46145 140 147 (4850080 583 3083 108 [106801 9K 199 005 61502 el s 04 ie5 (00 s 6T M6y [(76 (TE
0 SEQUENCS - E e]
5388 . . , . e i
e pmpas s e i I
; : \LDEMT. L . | L
S i : i
. | i -
i o4
I i .
L | i . i L
) ’A/D : I! — ER ES
. | ScoPE i |
SLda0 . . % | .
FRUM . . . i . : ‘
} Pt : ; [N L i 1 { L Ll 1 I

This constitutes a Compass assembly in which the object program is loaded and executed.
If the program is to read and process data cards, the data cards would be inserted be-
tween the RUN card and the end-of-file card(gg) .

UNIT SPECIFICATION

Before each statement is taken separately, it is necessary to understand how units are

PO P, L] TTm 2l o mom s S
reciecrencecd. UIlLLS 4dI'e 4alv

ided into two groups - PHYSICAL and LOGICAL. Physical
units have been discussed up to this point. A programmer references these units by
specifying the proper data channel number, the proper controller number, and the proper
unit number. If the specified unit is down (not operable), he must attempt another. This
method requires that the programmer know the hardware configuration and be well vers-
ed in the hardware use of the system. To alleviate the problem a method has been devis-
ed to help the programmer program units without having to know the intimate intricacies
of the hardware system. Instead of referencing physical units, he references logical

units.

Logical units are specified by numbers ranging from 1-80. These units are independent

of the physical units in the system. No channel, controller, or hardware designate is

1-2

necessary. Scope automatically equates a logical unit to a physical unit in the system -
one which is up (operable). If the same logical unit is specified later in the program

(e. g. to read back data), the same equated physical unit will be referenced.

The logical units are composed of three classes:

1. Programmer Units 1-49
2. Scratch Units 50 - 59
3. System Units 60 - 80

Programmer Units

The programmer units are assigned throughout the job for reference by the program.
The programmer may choose any number within the range. He must use the same
number if he wishes to re-reference the same unit. These units can be saved at the

end of a job and they will be available for reuse in a later job.

Scratch Units

The scratch units may be referenced at any time by the programmer. However, they
are released after each execution and may not be saved.

System Units

The system units are assigned by the monitor system. They can be used by the monitor

or by the programmer. The definitions of the system units are now given.

The Standard Input unit is logical unit 60. This unit contains the job stack. Normally

it is assumed to be magnetic tape, but it may be a card reader. Card images are re-
presented on tape as either binary or BCD records. Each control card (binary) is
recorded as one binary record on tape. Each binary record contains 160 frames. Each
program card (BCD) is recorded as one BCD record on tape. Each BCD record contains
80 frames. Data cards may be either binary or BCD.

1-3

The Standard Output unit is logical unit 61. This unit contains the listable output such

as the source deck, memory map, and program generated answers, Normally it is
assumed to be magnetic tape, but it may be the line printer. Output is recorded as 120

characters per record. Recording format is always BCD.

The Standard Punch unit is logical unit 62. This unit contains the binary object deck.

Normally it is assumed to be magnetic tape, but it may be a card punch. Card images

are recorded on tape as binary records each card forming 160 frames of information.

The Standard Input Comments unit and Standard Output Comments unit are logical units

63 and 64 respectively. Normally'they are assumed to be the typewriter. These units
allow the operator to communicate with the system through interrupt control.

The Standard Accounting unit is logical unit 65. This unit contains the job statements

and the time used by each job. This can be used for billing purposes to users of the

system.

The Standard Load-and-Go unit is logical unit 69. This unit contains binary object

programs. If an execution is to be performed, the information is loaded and run. This
unit is normally magnetic tape. Output is recorded in binary format with 160 frames
to each record. The writing of this tape usually means an execution of the program is

desired.

The Standard Library unit is logical unit 70. This unit contains the Scope library. It

includes the Scope Monitor, the Fortran compiler, the Cobol compiler, the Compass

assembler, and the object time routines, just to name a few.

Logical units 66, 67 and 68 are Scope reserved units. Any attempt to reference these

units will cause the job to terminate abnormally.

Logical units 71-79 are auxiliary library units. These are magnetic tapes and are
prepared using PRELIB. More about this is given at the end of this section.

1-4

SCOPE CONTROL STATEMENTS

Scope controls each job as it is processed. Through the use of control cards the pro-
grammer can see to it that the job is monitored during compilation and execution.
Safeguards are taken so that the computer is not caught in an endless loop or that an
output tape is not destroyed by a following job.

In order for Scope to perform the right operation at the right time it is important for
the programmer to follow the proper field designations per control card and to see to
it that the control cards are in the proper order.

A control card is a binary card which has a 7, 9 punch in column 1. Beginning in

column 2 the statement name is given followed by parameters separated by commas.
The first set of control cards given are:

SEQUENCE
JOB
COMPASS
SCOPE

LOAD

RUN
END-OF-FILE

IR~ S BN U R

The SEQUENCE Control Statement

FORM:
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
75£Q¢LEA/C';;n‘ E— P 3 L
i Ll \‘:'x‘L‘ll=I51=»‘i:: - i s i
1 1

The SEQUENCE control statement assigns a job sequence number, n, to the following
job. When this statement is encountered, saved tapes, programmer units, scratch
units, and the load-and-go unit are released. Released tapes that are not unloaded

are available to the next job.

1-6

The JOB Control Statement

FORM:

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i .

INERERTREETHERTE KA LIC T AL R ER TN RE AR RS £ ELRE- AR SE R RE DR AT, Sh: A TELTE RE-AE TR R FEAE RR IR CRE AR L I L A AT TE L IR R R N E I AL TR TR T SO RO I T RT ST SR LR EiNE:)

: i
.) t
;J/B}Ci,lx' ,\t booi e i i FO N S S W S Y 1 it VI S [beredeed L H id bodt
!
) . . o L L
i

e bkl

All programs submitted for processing under Scope start with a JOB statement which
signals the beginning of a job, provides accounting information for the installation,

identifies the programmer, and sets a job processing time limit.

The parameters of the statement are defined as follows:

c the charge number: it may be an unlimited number of alpha-
numeric characters.

i the programmer identification:
it may be any length and appears as given
in the control card listing; it is truncated
to 6 characters for operation identification
or tape labels.

t the maximum time limit: the maximum in minutes allowed for the
entire job including operator functions.
No job may exceed 2236 minutes; if blank,

the maximum time is assumed.
The job is terminated if the c and i fields are not present. A single JOB card may be

used for any number of independent programs; however, the time specified is the

maximum allowed for the combined programs.

1-7

oo}

be produced on unit 69 (standard load-and-go).

List option where u may assume values 1-49 or 61; if the parameter
is absent, no listing will be produced. If only L appears, the list-
ing will appear on unit 61 (standard output).

Cosy input medium where the logical unit u may assume values
1-49 or 60; if the parameter is absent, input from unit 60 (standard
input) is assumed.

Hollerith output where u may assume values 1-49 or 62; logical
unit u must be specified. If the C option is specified, the B option
is ignored.

List cross reference symbol table on unit 61 (standard output).

List programmer macros. The source card images of the pro-
grammer macros are listed when the macros are called. The

source card images of generative coding is also listed.

1-8

The COMPASS Control Statement

FORM:

LOCATION | PERATION,MODIFIERS ADDRESS FIELD COMMENTS
[)

INERERRRE AT

= R K3 IR A SRR I TR PR L TN SR T N S SR AN Sk A8 TEITE RE I Ik L FEAE AL)
[
COIMPASSIT =, Y = w.iPx:u. Cozay Nz, Law;,ﬂau‘; R,

NS S L i T B R N A A SR A R AT

i

614718310188 M) 0T (4 00 5018300 ST N LB 6L 4T M IS0 000 61 aTiad [e 68 08 4T (0169 ([TH (VT

bl ik bbb b b TS S TS WL SO0 I W

=

The COMPASS statement is one of several program name statements representing
compilers or assemblers. Other examples that are included in this category are;
FORTRAN, COBOL and ALGOL. The purpose of a program name statement is to
call the compiler or assembler from the library tape, read it into core, and turn
control over to it. The cards following the program name statement must be in the

format which is unique to its language.

Column 1 of the control card contains punches in rows 7 and 9. Starting in column 2,
the word COMPASS appears, followed by a comma and up to 9 free field parameters
separated by commas. The 9 parameters are options that may have different forms

or are left out entirely. The 9 options are;

I =u Hollerith input medium where the logical unit u may assume
values 1-49 or 60; if the parameter is absent, input from unit
60 (standard input) is assumed.

P = u Punch option where the logical unit u may assume values 1-49
or 62; if the parameter is absent, no binary output will be
produced on unit 62 (standard punch).

C =u Cosy output option where the logical unit u may assume values
1-49 or 62; if the parameter is absent, no Cosy output will be
produced. If only C appears, Cosy output will be produced on
unit 62 (standard punch).

X =u Binary output for load-and-go unit where u may assume values
1-49 or 69; if the parameter is absent, no load-and-go tape will

be written. If only X appears, binary output for load-and-go will

1-9

The SCOPE Statement

FORM:

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD COMMENTS

p2idiesvieirisle

BCREAE B L STIRE S K IV P NY BC AL Tk TN TRITE-FE -TE PE RE WAL RIS IR AN]

SCAPE .. .|

fedond : I [N N TS T N N S S

6048 10447 (40 49 10 (3150 05T IS4 (S |36 87 SR 991800 61567 03 8463 06 4T 08 109 1R ITIITE

The SCOPE statement terminates the assembly or compilation process and causes
the return of control to the Scope Monitor. The SCOPE card begins in column 10.
This statement is not really a Scope control statement in a true sense. This statement

is actually read by the assembler.

The LOAD Control Statement

FORM:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
|
.lv:nu
i
[
L
i

viaisgasszecrndadwin e e
L:¢A:D§"A fded

P T S N B | Lo foioniod

217270308 (00 T e 20 36y BH1 T 95 2ei3e i i 20 e a0 b ad sen a0t e RN en (0000 i1 00N 00 100 1 200 0T SN IS I0 1 61 NT AT 00 43 0N 50T 00 10 1000402

[T S0 00 SO LI S S N YOS S0 SO0 SOOE R N

]
i
i
TRCINY WU T S0 T SO SO N S O | I FIE ST SR S ST S0 B
1
!
v

The LOAD statement will cause the loader to load relocatable binary subprograms
into storage from programmer units or the load-and-go unit. The unit u is a logical
unit number having values 1-49 or 69. If u is omitted (also comma). the standard

load-and-go unit (69) is assumed.

When the LOAD statement is encountered, Scope backspaces unit u one file and loads
subprograms until an end-of-file, two transfer cards, or another control card is
encountered. If the unit cannot be backspaced, Scope immediately loads the sub-
programs. Scope interprets a second transfer card as a loader terminator, but it

is not required. If binary subprograms, transferred from the standard input unit

and produced by compilation or assembly, are stored on the same logical unit during
the job, only one end-of-file mark will be present and it will follow the last subprogram

stored on the unit.

1-11

FORM:

The RUN Control Statement

LOCATION | IOPERATION MODIFIERS ADDRESS FIELD COMMENTS

3 ETCSUSE I ST C SCI U SEIRE L JERE N NE L JE- TR TR INE PR T WL R REAT RE LAY) NPT AN S0 IO AT A AT TN SU ST IR RT ST NE A TR L FRCIY TR ICC P R RO AT FUAT RO R Nk NE.]

L Rur 1., -0 m, LD

The RUN statement initiates program execution by transferring control to the object

program in sotrage. This statement is required to execute all object programs.

The parameters are defined as follows:

t

the execution time limit in minutes {(maximum 2236). The entire
job is terminated if the limit is exceeded. Ift is blank, a constant
time limit, determined by the installation, is used. If the run
time limit is greater than the remaining job time limit, execution
continues only until the job time is depleted. The run limit may

not equal zero.

the maximum number of print or write operations which may be
requested on the standard output unit during the execution. This
includes debugging dumps and any other output during execution.
The entire job is terminated if the print limit is exceeded. If the
print limit is blank, a constant print limit, determined by each

installation, is used. The print limit may not equal zero.

the recovery indicator specifies an area to be dumped if the

program does not proceed to normal completion. The recovery
dump is written on standard output (unit 61) and uses the following

indicators:

1-12

r dumped area

or blank console
program and console

labeled common and console

0

1

2

3 program, labeled common, and console

4 numbered common and console

5 program, numbered common, and console

6 labeled common, numbered common, and
console

7 complete area used except resident Scope

m the memory map indicator. If m is blank, storage allocations
after loading will be listed on the standard output unit. No map

is written if m is any other character.

d dump indicator. A dump is to be taken after normal termination

of the program if d is not blank.

A RUN statement is used after a LOAD statement or after a binary program on

standard input (unit 60).

113

The END-OF-FILE Statement

FORM:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
[

EREBEBTWEALE B2 LIGIUSLEUTE IS T IE AU CRPIRE - SE TE N ST Ve IE ST TR P SO S A E IR At] D T nnrnrnrmmm

!
PN
1

L

11
=
4

AR

FCIT R U I ST AT SULRY SEEL.]
I T SO0 A VO S0 SO HT SN WL S S N S RSN IS R N N N i 4t

P | I R A A I

_

The END-OF-FILE statement is required to separate jobs and is frequently used
to separate runs within a job. A 7,8 multiple punch represents a 17g code in BCD.

This is an end-of-file mark on tape.

If fatal errors occur during assembly or compilation of a program, loading is not
attempted. Subsequent assemblies or compilations of programs in the job are pro-

cessed, however, if the program name control statement is preceded by an end-of-file.

1-14

EXAMPLES OF DECK STRUCTURE

1) Assembly of a COMPASS routine
LOCATION MWMMWIERS’ ADDRESS FIELD COMMENTS
i .

3i4ls siminjn o PRI BELA EXTIRE T JERC N W TE R AR VTR EE T E P R R SE RS0 DIRY RN R0 IT RS RT R0 SO AT R CIRT LR R AR TR SR SN SR (T SIS RE YT ST TR SO B SEiRE]

.
5328 S 451917, MINTAX,, /l;o. e .]
CEMPASSLIL ol !
R B/ 277 T Y

7¢

m
S

In this job the programmer is interested in obtaining a listing of the source program

with any assembly errors.

The job is called MINTAX, has a control number of 54587, and will assemble for
a maximum of 10 minutes. When the COMPASS card is read by Scope, the CARD
is scanned to the first comma. Recognizing it as a COMPASS control card, Scope
will read the Compass assembler into core and turn control over to it (exit Scope -
enter Compass). Compass then scans, interprets, and assembles all cards until
the Scope card is read. When it is scanned, control is turned back to Scope (exit

Compass - enter Scope), which reads the next card. The end-of-file is read by
Scope. The card after the end-of-file might be another JOB card if jobs are stacked.

2) Assembly and execution of a COMPASS routine

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
|
Gz iaisge v e ol winiyhr it ez e iy 000) 2 o e e W 05 i s e 9 2130 s bei 1 = " s3SI Sa €5 08 4T 8 i
5 T4 8, 7005 1, MERTEHAE, 1T oo | L
JC B/ KL X L i -
TOEMT ? 1 _
e : : ; : 1 i ~
. Y Compeass ProcraM .
i
‘ [_ H e e e et i b
EVD / 1
. Begpe 4 I
Segan || f i R L .
ZRuN, 1 0, 5|00, 2 : | - .
28 o) L }

In this job the programmer is interested in obtaining a listing of the source program

with any assembly errors. He also wishes execution if no assembly errors occur.

The job is called MORTGAGE, has a control number of 7065-1, and has a maximum
time of 15 minutes for assembly and execution or 10 minutes for execution. The
Scope Monitor reads the JOB card and processes the parameters. Upon encountering
the END card, the source program is listed on unit 61 with errors, if any. The object

program (relocatable binary) formed from the source program is then recorded on
unit 69.

The next card read is SCOPE This card transfers control back to the monitor, which

reads the next card. The LOAD card directs the loader to read unit 69 (since no unit
specified) into core destroying the assembler (not needed anymore).

When the RUN card is read, Scope extracts the parameters. The execution time limit
is extracted and compared with the remaining time left from the limit on the JOB card.
Whichever is less at this point is the effective time limit used for the remainder of the

job. The maximum print limit is recorded and the recovery indicator is set. Program
control then goes to the transfer address of the loaded program and execution begins.

When the program is finished (assuming no errors), control goes back to Scope which
reads the end-of-file, and the job is finished.

3) Assembly and execution of a COMPASS routine with Cosy output.
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS

3 DTSR T T I I E P LTI e AT S S TS TR TE T T UL ST At I 0]

2308,.98(¢s 2/, DIE, b .:
écﬂﬂf’ﬁssa Ly, X=/0, C=210
o T pEn o

|
1
.) . i
I
1

1542540160 68 L a0 L7 (40 49 88T BTINEIM IS %6 B gR NI Ne I ATIaT 3 e e e O MM ey (0] PE AN

L

" |

T
Ye-y.¥2 ; e e

34#40; /0] | .. - i

2 RuM, S, 3ldeoo, 1. . .

L

!
i PN VS SR UNY RV S0 O U WO 0 SO
- |
i
1
1

(Da.ta. Cards) . . .

|
i
I
i
N N O SN S O O GO NP R WU S

SERVANE SR SO DUCTR GUNE SIS OSSO U TGOS S U SN S GOSN N S S S S S S 4 Lok Lot ddiod . foLd fodl B U T VTN W S
¥

1-16

This job consists of an assembly and execution of a Compass program having data
cards to be processed during the execution portion. The data cards are within the

job and are read from standard input (unit 60).

The programmer is interested in obtaining a listing of the source cards and an output
of source in Cosy format. The Cosy output goes to logical unit 20 and can be saved
(shown later) for a later job.

The relocatable binary formed from the assembly of the program is output to unit 10.
When the assembler transfers control back to the monitor through the use of the SCOPE
card, the monitor loads unit 10 into core. The RUN card is read by the monitor and

execution is initiated.

The data cards are next on standard input and they are read from unit 60 by the Compass
program, processed, and the results output on unit 61. The data cards are read up to
but not including the end-of-file. When the program is finished, control is given back

to Scope. Scope reads the end-of-file and goes on to the next job.

4) Execution of a job with no assembly.
LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS

45431601031 N0 147 (A8 U 9B 19T 00T S LN | SN O3990 €0 I2 48 54 65 (00 (T 6 49 TAITILTE

s
3

ZI48,9.00)|,MI5LE0,3

F IR SO U0 SO N S B S

YR AR e LN T L TR TR TR T PR T IOk RE S AL IR]
i

I

PR T S hd i

e (binacy. ob
7 Ul

Rup,.3, 360, |,
é

bl b

S b e

I s
eaf »'Dra7-ﬁ4m}~ .

e, fodendod

L Ll

b O

= e o o o b o e e

O SN ST FRR T i ISR

1

In this case the binary object program (a relocatable binary deck) is inserted in the
job. It has the same form as was output to the load-and-go unit during the assembly

of Compass programs in the previous example.

Scope reads the JOB card and records the parameters. Upon encountering the relocat-
able binary deck, the Scope loader immediately loads it into core from standard input.
The RUN card is read, parameters processed, and execution of the program begins.
When the program is finished, control is transferred to 3cope which reads the end-of-
file.

5) Assembly and execution of multi-jobs.

LOCATION | |DPERATION, MODIFIERS ADDRESS FIELD COMMENTS
: T
95['ﬂ”“k5n/14.r:f4 %;' TS ST SO0 S SO U0 N S f I B AR P ii : fis i il bt
i
S T48, 500040, MAX, S, L L ,
ZCAmpAssl, |, P, X I SO .
IQEA/r i g I 1 .1 . I i i 1 1
i
hd { L L] L : .
. | i
L L I i 1 | i)
| f
: ! |
i
M D . i { .
s SCBPE Lo | B
7
2,48 4D : 1' . i
FRurly 5,10,/ l <
77 i
g_z ; ;’ . L]l ,,,,, L
ZSEQuEA/c -3 i { Lodd
i 1
72TB8, DEPT|-4,MIM50 0.1 ., . . e L N
|
i Y bl T N : P i T T N
i (5/na/-,7‘ aéa‘ec-;(,ﬂna?rrmmj. SR i
- : : A . e g e
PR UMy 104350050 . .| e l »
772 7 I [
L34 : il ! 1 PRI -

These jobs processed together are the same type used previously except the SEQUENCE

card with its number is shown. SEQUENCE cards are usually given when there is more
than one job to be processed. SEQUENCE cards go just before the job that they repre-
sent.

1-18

SYSTEM MACROS

In the previous section we discussed programmer macros. We found that programmer
macros are defined by the programmer at the beginning of the subprogram, and then
are called at various places within the subprogram. Each time they are called the

macros are assembled with possible parameter substitutions.

At this time we introduce another type of macro - the SYSTEM MACRO. The system
macro uses the same idea as used with the programmer macro, except that the system
macro is already defined. A system macro exists on the library tape and can be called
by a calling sequence in the form of a macro. The standard definition of a macro is

set, and any programmer wishing to incorporate (call) the macro into his program must
know and follow the format of the macro call precisely in order to have it inserted into

his program.

Before we discuss how the system macros can be incorporated and used in a Compass
subprogram, let's first define what they are and how they're formatted. The first half

will include the I/O requests and the second half will include all other requests.

The MODE Request

FORM:

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD COMMENTS

INERERE NN NERE S RS LT L RR S TN TS R I L. ST N AR I R N T I I I IR simir sle

Mpoe . [« ra.s 4,d.dr)

1T AR e016S P61 0] 8 A9 SN eT 80 ST IS4 (S % 8T SE S a0A1:eT 5l S4ieS 06 6T M @0 7747

1
!
1
T
1
|

The MODE request defines the operating or recording mode of a tape unit. The
request will only be performed if the unit is available for use. If available, the
request will be honored and program control will continue to the next Compass
instruction. If unavailable, program control will go to the reject address. In effect,
this request is similar to the hardware EXTF instruction. The parameters for this

instruction are defined as follows:

Parameter Meaning
1. u Logical unit number
2. ra Reject address
3. s Specifies an operating condition for the

unit. The allowable parameters are;

a. RW (read and write) - all legal

requests will be performed.

b. BY (bypass) - all requests except
STATUS or MODE will be treated as

no operation until the end of the job.

dr

c. RO (read only) - WRITE, WRLABEL,
WEOT, MARKEF, or ERASE requests

will be rejected.

Specifies the format of the unit. The

allowable parameters are;
a. BCD - Binary coded-decimal
b. BIN - Binary

Density. The allowable parameters are;

a. HY - hyper density (800)

b. HI - high density (556)

c. LO - low density (200)

d. OP - operator, use density of

mounted tape.

Direction of tape. If not specified, normal

is assumed. The allowable parameters are;

a. ND - normal direction for READ
or BSPR requests,

b. RV - reverse direction for the
READ or BSPR requests.
Data is stored according to
the control word specification

with no alteration.

1-21

The READ Request

FORM:

LOCATION | (OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
]

T I TR T 2o
READ ihd A_,;,_;;L_V_erWALjiﬂD.L/zi-sm)hg,; SR

40588 (57835 (T iNe 4SSO a0 @1ias el b 48 a0 6T (S 9 (I

.._._.tv.....i_._
|
L

The READ request activates a buffered read from logical unit u. If the unit is
available, the read is initiated and program control goes to the next Compass
instruction. If the unit is unavailable, program control transfers to the reject

address.
When the read operation is completed or an abnormal condition occurs, control

transfers to the interrupt subroutine at the interrupt address. If no interrupt address

is specified, no interrupt will take place to the interrupt subroutine.

1-22

The WRITE Request

FORM:

LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
|

34313 e iy b el e e ar e e a0 gun T2y 20 098 16 51 M0 31 pTac 3T 2 98 10653y 38 1 an fai ez i 63 ke a8 40 1 53 3
WRTITE . .. E(UI bsh’(u' r;a.);ig..) L

b i I ERNEENEEN RYE A
1 t

The WRITE request activates a buffered write on logical unit u. If the unit is
available, the write is initiated and program control goes to the next Compass

instruction. If the unit is unavailable, program control transfers to the reject

address.

When the write operation is completed or an abnormal condition occurs, control
transfers to the interrupt subroutine at the interrupt address. If no interrupt address

is specified, no interrupt will take place to the interrupt subroutine.

1-23

The REOT Request

FORM:

LOCATION | PERATION,MODIFIERS ADDRESS FIELD o COMMENTS

R T T AL PR £ R T IT R T et eI T C R T L Rt R A R 3 DL RR AT T TN RO SO S ST T S SL RN R A TR TR TT T AT T SULAT RO RY.SE: 0]

REST .. (u,cma,nd, ia). .

fodod FEN U S S O WO SR S S SR T) I

The REOT request is a tape movement control which allows the programmer to read
after the physical end-of-tape. The tape is read from logical unit u according to the
control word at the control word address. If the unit is available, the read is

initiated and program control goes to the next instruction. If the unit is unavailable,

program control transfers to the reject address.
When the read operation is completed or an abnormal condition occurs, control

transfers to the interrupt subroutine at the interrupt address. If no interrupt address

is specified, no interrupt will occur.

1-24

The WEOT Request

FORM:

LOCATION [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i T

INEEERNRESTURINE Kl KT NN RN IR SR TR SR CATIRE TR - SE BN RE L TR DR TR INE RE T E N EL R SELAE ER U] DR AR R T N AT T T S R T R LN T A NI R T AT N L AT FL AT ST R SEIIL]
[\ 1
\A‘de'r' Poiid M cwa Na ;L'(L\‘ L4] Lot i : ol i i ios
T T 7 b} !

i
11 FE ST S WO SN S WU W WY AN SO S S S U S S N S S S SO VT S S Voot i i R
1

The WEOT request is a tape movement control which allows the programmer to write
after the physical end-of-tape. The tape is written on logical unit u according to the
control word at the control word address. If the unit is available, the write is
initiated and program control goes to the next instruction. If the unit is unavailable,

program control transfers to the reject address.

When the write operation is completed or an abnormal condition occurs, control
transfers to the interrupt subroutine at the interrupt address. If no interrupt address

is specified, no interrupt will occur.

1-25

The TAPE CONTROL Requests

FORM:

LOCATION | DPERATION MODIFIERS ADDRESS FIELD COMMENTS
|

[EENK) R R RS kTR R SR L W ks T A TR LR SR AT Nk R R SRS .8 L)
) .
i(u.,na.q.ar)

|

i

Junction

The tape control requests move tape in the forward or backward direction without
transmitting data. If logical unit u can perform the request, it is initiated and
program control goes to the next instruction. If the unit is unavailable, program
control goes to the reject address. If the interrupt address is specified, program

control goes to the interrupt routine when the request has been performed.

The tape control requests may be any of the following:

1. BSPR
2. BSPF
3. SKIP
4, MARKEF
5. ERASE
6. REWIND
1. The BSPR request backspaces the unit one record. If the unit is unassigned,
this request is bypassed.
2. The BSPF request backspaces the unit one file. If the unit is unassigned, this
request is bypassed.
3. The SKIP request skips to an end-of-file or end-of-tape.

4, The MARKEF request marks an end-of-file.

1-26

6.

The ERASE request erases approximately six inches of tape.

The REWIND request rewinds the tape to load point.

The UNLOAD Request

FORM:

LOCATION | |OPERATION MODIFIERS ADDRESS FIELD COMMENTS
1

LRI ACL S 1A QAT A 4S8 G053 S0 (B0 S0 83 KIS0 000 61 (et iad [Be 65 (a0 (0 SN CH9 (T {TIITE

FAE N L TR AT B E R e TR SE T AR SR TR TR T TR L REAE TR)

NLOR.D .. g(,q.:r,a.lz‘a‘.,c,); .
i i i g : [i

INERERENE R NERTE R

L 4t NI S S SO ST S VU0 WL S0 S

[S R

The UNLOAD request causes tape unit u to unload. If the unit is unavailable, program
control transfers to the reject address. If the interrupt address is specified, the

computer interrupts to that address at the end of the operation.

The release code c specifies the disposition of the unit assignment after it has been

unloaded:

0 unit assignment released

non-zero unit assignment not released

If an interrupt address is specified, the unit is assumed as not released.

1-28

The RELEASE Request

FORM:

LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
[NENENERERTNERTE A2 LIRRE T RS I S ARRAL) ESERE TR AL R PE R ESEL VR TR TRINE-RE-SETUELRE SR LI SR IT ' LIRPLY)

RELEASE . E(q,.ra.icall L

43000145 146 147 (40 409 183 3 (53 M (|56 0TI S0 A0 61i a7 83 64 45 00 47 A0 (IRI2INE

Pt

The RELEASE request releases the assignment of logical unit u and directs the
disposition of the current physical unit. If the unit is unavailable, program control

transfers to the reject address.

The release code c specifies the disposition of the physical unit currently assigned to

the logical unit:

0 dispose of physical unit according to previous declaration; if

none is given, the tape is rewound.

non-zero rewind the physical unit and release the assignment, but do not

dispose of the tape.

1-29

The RDLABEL Request

FORM:

LOCATION | IDPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i

s mingm ;e 52020 100 7200 10 L s T g e BR300y i et an e e s e 102 A a0 S AT SNSRI 00 %6 B ISR 08 N0 1 6110100 1 00168 sun T AR 1Y 3TE |28 TE

el

1

s i i
ROLABEL x:(«./(a.‘r‘a‘.x.a)]
{

. : L . i
i

The RDLABEL request reads the label from logical unit u and transfers the label to
memory starting at the label address. If the unit is unavailable, program control
transfers to the reject address. If specified, program control transfers to the

interrupt address when the label has been read.

If the tape is not at load point, the job is abandoned. The label occupies ten words of

core storage and may be interrogated by the programmer.

1-30

The WRLABEL Request

FORM:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I

Ciaiyieirieiritks 00 0 T e e 37 g, SELIII %3730 a0 a4 M A 8T 130D LS S S M 1 et a3 i €S ie0 L LN e |7 (T

(o e ra. ia). ..
} LA R |

1

]
i
1
podeii Lo
1
!
i

WRLARE L.

The WRLABEL request writes a label onto logical unit u. The label of ten words is
transmitted from the label area to the unit. If the unit is unavailable, program control

transfers to the reject address. If specified, program control transfers to the interrupt

address when the label has been written.

If the tape is not at load point, the job is abandoned.

1-31

FORM:

The STATUS Request

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD

COMMENTS

vgacaeszeredolmin e e e s T 00 B B 3B

e

4018 (81 i30S M () S N7 SR (SR 00: 61 a1 63 {04 68 (00 63 M6y (N ININE

BTATUS . .

fdod i il

[BT T N A S S A SR S S R S

;(u"t'M)flLll’ R N

The STATUS request of a logical unit u may be taken at any time. If units are

equivalenced, an M specification will request status of the master unit.

The STATUS reply is entered in the A and Q register as follows:

A register (Control Word)

Q Register

Bits 47-45
Bit 44
Bits 43-39
Bits 38-24
Bits 23-18
Bits 17-0

Bit 47

Bit 46
Bit 45
Bit 44
Bits-43-32
Bits 31-25

Op Code

Jump Control
Unused

Word Count
Unused

Starting Address

Physical Unit Availability
Indicator

Physical Unit Busy Indicator
Magnetic Tape Indicator
Bypass Indicator

Status Reply Bits

Logical Unit Number Assigned
To This Physical Unit

Bit 24 Driver Indicator
Bits 23-18 Hardware Type Indicator
Bits 17-0 Control Word Address

1-33

FORM:

The LABEL Request

LOCATION KPERATMMWIHERS

ADDRESS FIELD

COMMENTS

bt

T
shw i s e PREy 2 whe 7 L ab 4988 45 15T SR I (8D S WK S0 00560 el ied 3 &M ey (TR iTATE
LABEL. . :(a a,c[JquJﬁﬁcon reel ;<0A,c) e i ,
1
R i , X . .
[

fo)

The LABEL request provides identifying information for tape labels. The parameter

definitions are as follows:

addr

edition

reel

code

logical unit number

address of the first of two computer words

containing the name.

1-99. If not specified, blanks are written
on the output label.

1-99. If not specified, reel 1 is written on
the output label.

000-999., For an output tape, this retention

code is the number of days tape is to be

saved. 999 indicates infinite retention.

1-34

The SAVE Request

FORM:

LOCATION | OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

T T TR oTE L DT T T T E T T R T r T T FEIE T TETTE SRR LS TE UEII0T) PRV AT ST IOV IC SO S ST I LT RN C I ST FE NN S SRS AL SUAL RTINS

]
i

OAVE o fla)
!

iadi

The SAVE request allows the programmer to save a tape at the completion of a job.
This request may be given at any point in the program since it does not inhibit
reading or writing on the unit. At the end of a job the current reel of the saved
logical unit is unloaded and a message directs the operator to reserve the tape for

the programmer,.

U changes this request to UNSAVE,

1-35

The UNSAVE Request

FORM:
LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
1
vz iy ieisge iy w0 ey s e e 0 a3 M M2 w0 J 00 a2 43 eeies ke A (aw e 500 (93 ST % (38 Se. 878 895000 §)ieR a0 S 05 M 6T S 80 |82 |TD
AV O T e
1
i s SRS U S NS S S SR L I’ il Lol PSS W I VO A ST S A

The UNSAVE request cancels any previous SAVE request and may be given at any
point in the program. The tape is released at the end of the job for subsequent use.

1-36

The SELECT Request

FORM:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i

R RN BN AES RS LIRS BRI SRCIR SIAR BRI L SCLNE SR T E RE B S AR TR AR JELIE - ST L UL NE SEL5)

SELFCT . .. i(;m-{-,ennwpxtl.aJJreisJM

D 54314306108 4 (07 (40500 50183 55285 (90 (S8 % 9T SR N0 001 DT 03124 45 |00 ST 80 10 470 54T

N i G P N SO - S MY S SN O O SO S O

[
L fedod L H RTINS NN N S S 0 WA S W

i

The SELECT request allows the programmer to set up the interrupt system so that
interrupt of the program will take place if the interrupt condition arises. The type
of interrupt selected is given by the first parameter. The second parameter
represents the interrupt address; i.e., the address to which program control

transfers when the interrupt takes place.

The programmer selectable interrupts are the following:

Parameter Meaning

SHIFT Shift Fault

DIVIDE Divide Fault

EXOV Exponent Overflow Fault
EXUN Exponent Underflow Fault
OVER Fixed Point Overflow Fault
ADDR Storage Address Fault
M1604 1604 Mode Alert

TRACE Trace Mode Alert

INST Illegal Instruction Fault
OPER Operand Parity Fault
MANUAL Manual Interrupt Alert
ABNORM Abnormal Termination

The REMOVE Request

FORM:
LOCATION | OPERATION MODIFIERS ADDRESS FIELD COMMENTS
T
14383 i ai 3z 7 a o R @iy i e e e e 19§20 (22520 i34 008 s P T8 3 30030133 8500 S0 07 (0000 40 het 142 14D 66 us | ak gD (a8 A0 S8 53 6. » s - . ey gy
EMIVE ;: xn{:,enrw‘pvt) o , E ;
ii | Bt e i ; b e
i 1

The REMOVE request removes the specified interrupt. If the interrupt was not
selected, REMOVE acts as a NOP,

1-38

The ABNORM Request

FORM:

LOCATION | DPERATIONMODIFIERS __ ADDRESS FIELD COMMENTS
i
NEEE R NENERTS L) KT SN PR SR TR S AR BRI L SELRE JE ST NENE SR SR RE- AR TRITE BR:SE SE_ NS FEIAE FE\]
BUpRM - (A CerrupT akbeess)

i ;
1

P PR ST T TS T AT R T T STIRT R LRSI PRI TUITE S RE FL LR S-S SULEE BEANR:]

bbb

The ABNORM request allows the programmer to specify an alternate interrupt
subroutine to be entered before Scope terminates a job for an abnormal condition. If

the programmer does not specify ABNORM, Scope terminates an abnormal condition

immediately.

—t
'
(9>}
©

The BOUND Request

FORM:

LOCATION | JDPERATION,MODIFIERS ADDRESS FIELD COMMENTS
1

L ERIEEEESERRATE LY LIUIUIL SR T T AT BUT L JEIRE I8 ST SO R TR 2L ISR TR I TR e T T i

T

Lot ioraages mgn
gudo E(IL‘,.,ub 09,43) [

!
, Lottt i 1

]

L

The BOUND request sets bounds outside of which any instruction reference will cause
an interrupt. The first BOUND request executed in a program may set any bound
range allowed by Scope. Subsequent BOUND requests must set bounds which lie
within the previously set bounds. If any requested bounds overlay those previously
set, the request is rejected and control is transferred to the reject address. If the
bounds are accepted, the previous bounds are stored. The number of nested bounds
is 5. The BOUND request has the following parameters:

lower bound are upper and lower bounds within which the
upper bound program is to operate. Bank terms may be

specified. If they are not, ($) is assumed.

reject address location to which control is transferred if the
bounds list is full (5 requests) or if the requested

bounds do not fall within those previously set.
interrupt address location of the programmer's interrupt

subroutine to which control is transferred when

an interrupt condition occurs.

1-40

The UNBOUND Request

FORM:
LOCATION | JOPERATION MODIFIERS ADDRESS FIELD COMMENTS
|]
vgzipiaiszesraabolieg e eyl g 220 b o M r 200 0 [0 AN R T EUE (0000w a0 e 00 as BT (A8 409180 (I3 S0 BN 1 S0 00 S 9K 1IN 00 : 6112 (60 [84148 (a6 6T 06 T 20 4TE
WBpudp (b, wb,ra,.3). e i
; L T I i . i A 5y F W SR S S W
[

The UNBOUND request removes the bounds set up by the last executed BOUND

request and re-establishes the bounds previously set. UNBOUND cannot be used to

remove the initial bounds set by Scope.

[y
t
[5=N
[y

The LIMIT Request

FORM:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i

1433 ieisie;r el oA i iz ik Madiidsdrise e e wle e ae

LIMI/’ ‘ 0d L&;er,,.,LG.J‘ o

]
e il i |
{

]
!
1
I e i
|
i

The LIMIT request sets a time limit after which control will be transferred to the

interrupt address. The parameters represent the following:

du the duration in seconds of the time limit.
Milliseconds may be appended by giving the

parenthesized expression (seconds, Milliseconds).
ra the reject address if the limit is not accepted.

ia the location to which control is transferred when
the limit is reached. The interrupt subroutine
is entered by a bank return jump. The interrupt
subroutine should return to the interrupt address.
The reject address and interrupt address may be

modified by the contents of an index register.

1-42

The FREE Request

FORM:

LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
’ i

LATIOEIA0 a8 ke {02 a0 49 ST N1 SO0 1S3 M (B[S HT SR S0 61 0t 63100 45 (a0 (62 (B EY (TH{TiEN

FREE. ..

The FREE request releases the last time set by a LIMIT request (the smallest in the
list of time limits) and re-establishes the next previous time set (the next smallest

limit in the list). Limits set by Scope cannot be freed.

1-43

The TIME Request

FORM:

LOCATION | DPERATION MODIFIERS ADDRESS FIELD COMMENTS

ANEEEREREECERATN 3 L LT N L T T STII% BAL3 LI EIRE IR I RE NY T I R I mm

Imne ...

[
1
]
TN T YO SO S N WO AT S S Y | R
I
|
i
H

The TIME request allows the programmer to receive the time of day in the Q
register in BCD. The time of day is based upon a 24-hour clock and is given in hours
(hh), minutes (mm), and seconds (ss). 12:30 P. M. would be given as 123000 in BCD.

The time is entered in Q in the format:

47 41 29 17 5 0
Q) =

0 hh mm ss 0

This request also returns the time remaining before the next time interrupt in the A

register in binary. The time to the next interrupt is entered in A in the format:

417 38 23 15 0
(A) =

0 milliseconds 0 seconds

-44

ek

The DATE Request

FORM:
LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
E |
— [} !
/41‘/15 i i TR ST U N S S S N S | SRR S S SN S S Lt
t
L i1l L TRETNE I 0 S RO N SO S ST S S ST S i i Lid
i

The DATE request allows the programmer to receive the month, day and year in the
A register in BCD. The format is as follows:

41 41 35 29 23 17 11 5 0
(A) =

1-45

The LIBRARY Request

FORM:

LOCATION | |OPERATION, MODIFIERS ADDRESS FIELD COMMENTS
i

INERERERE R RESE N L) PR AR T R Wr R IE TF TR TR IECRE S VR RE RE-RE TR 30) IRLIOY

LTBRARY. ;(q,.,r.a ..Fna:.,.rru)

The LIBRARY request may be used to position the library tape. The programmer

specifies the following parameters:
u library logical unit number; 70 to 79 or 0.

ra location to which control is transferred if the

specified record is not found.

record name address storage location of the first of four computer

words containing the record name.

record number signed integer, 0 through 224

Upon return to the program, the A register contains the logical unit number of the

current library.

1-46

The LOADER Request

FORM:

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
1

L [
BADER o v
1
‘

el e e LT AL (007 30 0e e e e U S b B S S0e0 a7

L

The LOADER request is used by a running program to call the loader. If the loader
is not in storage, Scope will read it from the library into its normal position

following resident.

Before this request can be given properly, the A and Q registers must contain
meaningful parameters. A definition of these parameters is given in the 3600 Scope
Reference Manual (Pub. No. 60053300), pages 5-7.

The MEMORY Request

FORM:

LOCATION | IDPERATION,MODIFIERS ADDRESS FIELD
I

COMMENTS

uiMisim

S0 e

LTI

S5 ISUINH N LI I8N S (SN0 €1 AT 420 (45 0k 4T S0 09

123 iaidie syl niuis ARG C JTIRE I T N NP RE L TR IR SEITE SRS YENE I

[T W

MEMIRY. ..

Abdphd)
J..t L

PR

) N S,

The MEMORY request returns or changes the limits of available storage.

parameters are the following:

bank designator

* designates the bank containing this request.
$ symbol designates the bank in which symbol

is located.

lower limit any legal Compass address expression in the

upper limit range 1 - 777768.

If either limit in the programmer request is zero, the other limit is not changed.
no limits are supplied in the request or if both limits are zero, the current storage

limits for the specified bank will be entered in the A register in the following binary

format:

417 38
Aa) =

23

0-7, *, or $ symbol,

14

/ upper limit

lower limit

1-48

The EXIT Request

FORM:
LOCATION | IOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
13:3 6183437358 WH[NE VY N1 1T g0 19020 (20 (72 (79 134 028 e i 17 00 {200 00N 32 95 438 065U 39, 40 §at i (4316415 |00 |47 (48 4% S8 18) SR IST D0 (53 { %6975 3900 €11 e% 43 8468 (a0 | €7 |09 |72 100 (%
N gt Lo I:‘l!‘é:saisvl L‘JI il bl da i1

The EXIT request returns control from a running program to Scope. This causes a

normal termination of the program as long as there are no abnormal conditions.

The HERESAQ Request

FORM:

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD » COMMENTS
|
adod i 1 s e bRy 2 20 se % a6 BT 20 I I NS I e 3N 16 3T I 0 w0 bt a2y 63 aaas 1A § 47 a8 49 S 81 (80033 (% |53 {6 93 5R 59 90 4112143 i %e 48 uh 4T 8K 9)78 TiNTE
ERESAQ

The HERESAQ request allows the programmer to modify the A and Q registers in his
interrupt subroutine so that when control is transferred back to the main program,

Scope will enter A and Q with these values.

1-50

The CORE Request

FORM:

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS

vy2isiersie;raefelwinyuin i 2122529 %0520 18 T8 2100 BN 30 3038 05 i3 w0 be a0 60 e s a0 1 (a0 a5 10T T LNT (9 08 B0 SIS0 00 S1i AR50 B 65 (00 6T M ce (00202

ChRE)

v

bt

t

The CORE request allows the programmer to obtain or change the limits of

available core within the bank of the subprogram. The parameters are:

lower limit upper and lower limits within the bank.

upper limit

1-51

The system macros may be used in thousands of different ways. To illustrate how
some of them might be used and to show how they would be incorporated into a

program consider the following problem:

Suppose a set of data cards in BCD format are to be analyzed. Each card represents

information about each employee of a company. A card is punched so that;

Columns 1-30 give the employee's name.
Columns 31-40 give the area he works in.
Columns 41-48 give his annual salary.

Columns 49-64 give his social security number.

Columns 65-72 give his marital status.

N A W N

Columns 73-80 give his dependents' status.
All information in a column is left justified with blank fill.
Assume:

1, The data cards are on standard input (60) between the
RUN and end-of-file card.

2. The data cards are terminated with a BCD 55 punched

in Columns 1 and 2.

Write a program that will list the information of each employee whose annual salary
is at or above $15, 000 on standard output (61).

1-52

Flowchart:

Read First
Or Next Card

Terminator "
Card?

Salary Greater
Than $15,000°?

List Card

This problem could be coded in the following manner:

LOCATION mgnmmonms ADDRESS FIELD COMMENTS
|
R SER RS NEREY K LTSRN LI A ulnlv AR I R T I IR 131263559 wla 148 3 3¢ stk = s - o
IDEMT . .. ;CngPwMt. e e ‘
EAMTRY ;cmvmeg i -
puTPuT | |BCD ‘ ./ N R ém«u: S PACE AD Lol 4157 |
T Pul. BSS .. Vo . - Lo bt
Cuwid) . TATu J/Pul,/a | .
CwAa | DATW . paTpuT,) TH Twoes LIST e
ca// <0 [,.15000 3
CEMPARE | BSS. . . i - i . ,
. R N2 SET MJpE T4 Bcp
EXT READ . I 6a, Cu//}/ *) \ReAD pue caRO .
BIFIN | ISTATUS [6a). i . e o
‘ QIP, NI MITEIM . ., UNIT STLLL TN JPERATLOA . .
vpeid | |Log . \IMPUT Do R
.| EMA 0. | . .
LLS /A e
\ WA 1-5058. e ’coss
. AP, ZR . FAINMISHED _DATA CARD /Egmmrym ,
EMI RS A Msea Td ALLIGN SAL. WITH .1S,.8aa
» DR o IA/PaT+5 . . e
WEXTCHAR) (EnlA 0. i e
, AULs . 6 N , | , B L
RGIP, £ A, o8 ALLIGH . - BLAVK .
TMI =6y DECREASE SAIFT CpuT
‘ WIP . NEXTCHAR N R
LLIGA | ILDA TNPUTHS | ,
o I HRS ﬁdﬂ// o » B.59,.000 L
L AT, m xA/E)CT » L BELEW #/S,000 e
o werE icel ,.au/Az %) AT AR ABOVE $/S,000 ...\ ...
WALT . | is7ATus . l(6)) . R
L QIR MIWALT . WAIT .
, TP ,,.,,,JMQSI”.J-&,_,,.,‘-,“] .
INIsHed EALT T S) . B
10 COMPARE T S

INTRODUCTION TO COSY

The symbol COSY represents COmpressed SYmbolic and offers another useful aid to
the programmer. The compressed symbolic coding is actually a compression of the
source cards with the blanks squeezed. These BCD source characters when output,
are output in binary mode so that, on cards, two characters per column are punched.
This reduces a deck size by a maximum of 19:1 and also reduces assembly time the

next time the deck is run.

When we refer to a COSY deck, we mean the compressed symbolic source coding of
one subprogram ranging from IDENT through END. A COSY deck may easily be
modified using Compass instructions especially designed for COSY decks. They are;
DELETE, INSERT and REPLACE. An up-to-date COSY deck can be maintained with
- each subsequent assembly.

COSY decks may be maintained contiguously on tape. It becomes relatively easy

with the BYPASS and COSY instructions to read in and assemble any deck and to
modify the deck with the INSERT, DELETE and REPLACE instructions.

1-54

GENERATING A COSY DECK

Suppose a programmer writes a long subprogram. How can he generate a COSY deck
from it? A COSY deck can be generated by specifying the C option on the Compass
control card. The C option means that COSY output is requested. A COSY deck can
be output to magnetic tape or directly to a card punch if one is available in the system.
If both the L and C options are specified, the output listing will have sequence
numbers assigned to each instruction. The IDENT instruction is assigned number 1
and END is assigned number n, the nth instruction of the subprogram. The
sequencing is automatic, even if no sequence numbers appear on the source cards.
From these numbers the programmer can easily modify his subprogram, as will be

pointed out shortly.

If C is specified, the output will be to logical unit 62 which is the standard COSY
output unit. If C = xx is specified, the output will be to logical unit xx (1 to 49).
Here is an example of a do-nothing program that will generate a COSY deck on tape.

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
. |
NERERERESTRUALY LA EILELFK SRR P SE L FEL € SR TR SRR RR e TE IR TR T P LR T T N Sy I I T B4 (30 {36097 SK 39500 61507580 54 [65 a6 67 S i 133 N5 (TF
T A8, 1AXTWER, D o D e
SCAHPASS,IL,C220 T | s Lot
. IDEUT ., . IEXBMALE | L B
VIR EXamPLE e
X | Bss T | e]
ExAMPLE | BSS. il ; ’
- WA . X A | ‘
TUA S . | . . N
STA Yo o !)
U3 P EXAMPLE i
EVMD. . o . -
L SCApE E i ,
28 i i fi ! 1 ! -

COSY output will be formed on logical unit 20. The standard output will look like this:

1-55

BEGIN JOB AT
JOB# 123+ INCRs3
SCOPE VERSION

COMPASS L oCm20

(5.1) EXAMPLE

1018

6.28%

PROGRAM LENGTH
ENTRY POINTS

00000
00001
00002

00003

- 35

EXAMPLE

0 PO0OCGO
0 00005
0 P00000O
0 P00001

00002 SYMBOLS

00004
00001

X
EXAMPLE

IDENT

ENTRY

ass
L0a
INA
STA
uJp
END

EXAMPLE

EXAMPLE

1
A
S
A
[

XAMPLE

1-56

03/720/67

En
COSY NUGRFRING

PAGE NO,

00001

00002
00003
00004
00005
00006
00007
n000R8
00009

INPUTING A COSY DECK

A COSY deck can be input and assembled by the programmer. In order to do so, he
must specify the Y option on the Compass control card (unless the COSY deck is on
standard input). If the COSY deck is on magnetic tape, the programmer must specify
Y = xx, where xx represents the logical unit number (1-49). If the COSY deck is on
the standard input unit, the programmer may specify Y or nothing, since standard
input is assumed for all COSY input.

We now know how to define the COSY input unit, but how does the programmer read
in the COSY deck, modify it, assemble it and execute it? Before we can illustrate

how, we first must understand the five instructions associated with COSY. They are;

COSY
BYPASS
INSERT
DELETE
REPLACE

[B o I

1-57

The COSY Instruction

FORM:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
T

13y iatage i rgedo iz e w0 i Tai s e 2 a0 s T e 90 MG 30Y 00 ;01 a 18 06 12000 900 00) ad et} €00 ian §am AT (48 00 50 131 132153 196 160 {56 TSN [995 a6: 61IeT a3} 04 (45 a6 6T OR 4V (7RI IR

[|
¢5Y | SO NP TOOL TNV S SO SO0 S OSSN O S S ST [i Lbdbd i debedo AL

i
1

b

The COSY instruction is associated with COSY decks in that this instruction will read

one COSY deck into core, translate it, perform any modification previously specified,
re-number the sequence, form new COSY output (if requested), assemble it, and list

the modified subprogram on the standard output unit with the new sequence numbers

(if requested).
It is important to note that the COSY instruction will do this to only one COSY deck

(equivalent to one subprogram - IDENT through END). If more COSY decks are to be

read and assembled, each one requires another COSY instruction.

1-58

The BYPASS Instruction

FORM:

LOCATION | |OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
INERERERENE RN LR LIRS N SRS I PSR RS S L ATIRE AR ST LN SR SE TR AR TR RE L e OE T E I) O]

]
i 0 4500 ;6110763 [84168 00 T MO (TE T ITE
! i
s | BYPASS AU I I i
]
i {
[

RN S S I SR RN E S N S R A SR SN
t

The BYPASS instruction is associated with COSY decks that are contiguously on tape.
BYPASS provides a means of skipping n decks to arrive at a particular deck for
processing. If BCD or COSY output is specified on the Compass control card, new
Hollerith or COSY decks will be produced from the bypassed decks. After bypassing
n decks, the programmer can read the next deck with a COSY instruction.

1-59

The INSERT Instruction

FORM:

LOCATION | PERATION,MODIFIERS ADDRESS FIELD COMMENTS

L i ieisiesvoahelmo i e o e el e ke g b a i iy e
’fMSERTTHAEm

. [

6048 13847 4940 8008 (30 ISH (0 19H 30T SIS0 00 61 a2 ed |5 48 (ae 7 M a0 172 THINE

The INSERT instruction is used to add lines of coding in an existent COSY deck.
INSERT causes the instructions which follow it to be inserted after line m as long
as they are not COSY, BYPASS, INSERT, DELETE or REPLACE instructions.

When the first COSY instruction following this instruction is encountered, a COSY

deck is read and modified accordingly. In other words the INSERT instruction would

precede the COSY instruction for the deck that it modifies.

1-60

The DELETE Instruction

FORM.:

LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS

IRESENEE! iafoleg : A 5 .
12 PEESYREALY I TR TR TR AL T L TR R T R S TR T TR TR T e C R A SRS DR I T ORI IO AT FEIRT L R U TR FE T PR VIT RO ST ST UL SUBL.SRANL]

)
DELE"’EA bn N, EN O SO T T B S S I : ; i L R ;)
I} i 1
i L . : ' . A L i) L v

[

|

The DELETE instruction is used to modify lines of coding in an existent COSY deck.
DELETE causes the deletion of coding lines m through n. A single line is deleted

if only m is specified.

This instruction also allows the instructions following to be inserted in the deleted
area as long as they are not COSY, BYPASS, INSERT, DELETE, or REPLACE
instructions. The instructions following need not be less than, equal to, or greater

than the number of instructions deleted.
When the first COSY instruction following this instruction is encountered, a COSY

deck is read and modified accordingly. In other words the DELETE instructions

would precede the COSY instruction for the deck that they modify.

1-61

The REPLACE Instruction

oo i s
1

FORM:
LOCATION [[OPERATION.MODIFIERS ADDRESS FIELD COMMENTS
| [
PR 2 e Ly e 00 T 20 s LT 0 AT e 0 (00 3 an b et 03041 1007 e 0 5T NS S B e ed e L ah 56T L 60 138 (24T
EPLACE . o . . TR N
i
i {

The REPLACE instruction is used to replace lines of coding in an existent COSY deck.
The REPLACE instruction will do the same as the DELETE instruction.

1-62

With the previous COSY instructions in mind let us form a couple of problems in order
to apply their functions. Consider the following problem:

Suppose a COSY tape contains fifty contiguous COSY decks, each deck representing a
Compass subprogram. Write a program that will input the tenth deck and list it on

standard output. Reference the COSY tape as logical unit 20.

This problem could be solved by coding in the following manner:

LOCATION RATION MODIFIERS ADDRESS FIELD ‘ COMMENTS
TTTSTITIva I I m'ulnn:u‘u;u»u(:t:ugum»n(n;;.'m»xuzv.nunmn;n»::lulu st ar i el et L3 L4010 LS A1 L0915 6 9S8 RO 41T 0D e ee (O 11 T
o THB (A3, 1PTB L0 i iiii el
GCpMPAS oY Z20
e | 1BYPASS 19 , R S T
) <HsSY) e A e
. SCAPE ... ‘} I . -
< i ‘ s I : Liein L

The COSY instruction reads the tenth deck, assembles it, and lists the coding on

standard output.
Consider another problem:

Suppose a programmer writes three long Compass subprograms, assembles it and
asks for a COSY output on logical unit 30. While holding onto his COSY tape and while
scrutinizing his output listing, he notices he made a few mistakes. If the three sub-
programs are called A, B and C, he would like to modify them as follows:

Subprogram A: Insert after line 15, ENA 12B
Subprogram B: Delete lines 25 through 31
Subprogram C: Insert after line 10, LDA XMIN
Delete lines 14 and 15 and
replace with the instructions; ENA 5
ADD X
STA Z

Write a program that will correct the three subprograms and execute them the second

time he runs on the computer.

The problem could be coded in the following manner:

LOCATION | DPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I8, /23, MBDTFS R0\« e e
P CAMPASS L Y =30,% | } 1 L

B LIWSERT . US oo

WA WAG. A BCTAL i
lkdsy.] e : e
L DELETE RS, 3./, » e , L ,
 ps e Lo »
TUSERT /o B ! - , ,
LDA XM I .] L
| lpeceTe . W4, 08" | R
T i&/ﬁ L:S il Jl .
(ADD S b
7.~ e

2 T T l . s
" SC/PtE N i
ZMAD} f..-x.:.!,:.,.“.,:“:.ew{H..»,v:suuw b il bl

Rurs20,800,7 4. ... \ | e l

H .
7. R il i1 L i 5 1t 1 i ik ;f“‘,iLA. T PR a

ecede the COSY instruction for the deck they
represent. Note also how execution immediately takes place.

Note how the COSY correction cards pr

1-64

OVERLAY PROCESSING

Overlay processing is a feature of the Scope system that allows execution of programs
that exceed available core storage. The program is divided into independent parts,
stored on tape, and called in as needed at execution time. A program may be divided
into a main section and any number of overlays, each of which may contain any number
of segments. Main, overlay, and segment may each contain many subprograms. How-

ever, only one main, one overlay, and one segment may be in core at any given time.

Initially control is transferred to main, which resides in core storage continuously.
Main in turn can call overlays when they are needed during program execution.

Segments may be called by either main or overlay.

Two questions come to mind when getting started on overlay processing:
1. How are overlay tapes prepared?

2. How are overlays called and executed?

(oY
1
3]
(1]

PREPARATION OF OVERLAY TAPES

In order to prepare an overlay tape the programmer must first determine which set

of subprograms he wants included under the main section, which set of subprograms
he wants included under each overlay, and which set of subprograms he wants

included under each segment. The main section always resides in core storage. Each

overlay and its associated segment must be small enough to fit in memory core when
called.

Each section is preceded by a loader control statement. A loader control statement

is just like a Scope control statement (7, 9 punch in column 1) except that it contains

an 11, 0, 7, 9 punch in column 1. The loader control statement defines the following
set of subprograms as being a section, an overlay, or a segment. Each statement will
specify on which logical unit the set of subprograms following will be written on. The
subprograms may be in Compass or in relocatable binary (Compass already assembled)
Each main, overlay, or segment must contain one transfer address to which program
control transfers when that section is loaded.

We now define the meaning of three loader control statements.
1. MAIN

2. OVERLAY
3. SEGMENT

1-66

The MAIN Loader Control Statement

FORM:

LOCATION RATION, MODIFIERS ADDRESS FIELD COMMENTS
i

ol g gy e e R0 s 720 e 0 0T 000 0T ML I 06 I e e b0 a2 0 G e g7 40 09058 191 503 ST I3 58 300 92 0 5 0500 L 61T 0% 4% {08 a0 (6T SN a9)P0 [21ATE

%MAIA/,L«

Lol

‘‘‘‘‘

u the logical unit number of the overlay tape, 1-49, on which

the main section is to be stored. u may not be omitted.

The MAIN loader control statement defines the following subprogram(s) to be a part
of the main section. At load time the main section is transferred to logical unit u and
to memory core. The main section represents the section to which program control

transfers at the start of execution.

1-67

The OVERLAY Loader Control Statement

FORM.:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
I

[NEREBRNEBERRERES 88 LGN SA SN IR SR G BB L ST R A L NE RERk JE AN TR INE FR E TE NE SEIAt SR .20 3 IALTE) 7 ee 155183 34
SOVERLAI Juyar

I
| AT RN
i

i

u logical unit number, 1-49, of the overlay tape on which the

overlay section is to be written. u may not be omitted.
o) the decimal number (starting with 1) identifying the overlay.

The OVERLAY loader control statement defines the following subprogram(s) to be a
part of an overlay section. This section is written on the tape specified by the logical

unit number.
At execution time the overlay is called into memory core by a calling sequence in the

main section. It is necessary for the programmer to understand this calling sequence

so that he can call the overlay and transfer control to it. This is explained later.

1-68

The SEGMENT Loader Control Statement

FORM:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS

|
IR NERERCHRELS LA L TRNL R S SR TR SR I BRI C ST IR AR S N Y RE AL TE-IF TE T R e L A a1 o :
- i
;;:’SCéMEA/Tm;,M fid b I B H RS
i
i : L [:
T

i TSRS SRS S SN TN Y WS S O T S YO S S TS VOO OO S HL SO SO ST

u logical unit number, 1-49, of the overlay tape on which the
segment is to be written. u may not be omitted.

n decimal number (starting with 1) identifying the segment.

The SEGMENT loader control statement defines the following subprogram (s) to be
part of a segment section. This section is written on the tape specified by the logical

unit number.

At execution time the overlay is called into memory core by a calling sequence in the

main or associated overlay section. The calling sequence is explained later.

1-69

In order for the Scope loader to process subprograms and form the overlay tape the
sequence of input must be in the following form:

11

0 MAIN

7

9 (Relocatable binary subprogram (s))

11

0 OVERLAY

7

9 (Relocatable binary subprogram (s))

11

0 SEGMENT

7

9 (Relocatable binary subprogram (s))
If this sequence were on standard input (60), a JOB card at the beginning, and a RUN
and end-of-file card at the end of the deck would suffice. Scope would process the
JOB card, the Scope loader would process, write the overlay tape and load main into
memory core, and Scope would run the program by transferring control to main's
transfer address. Main in turn can call overlay and either main or overlay can call

segment when it is needed.

Many times, however, the programmer's subprograms are not in relocatable binary
form. So the next question is, '""How is the source deck formed into relocatable binary
if the programmer wants to run a Compass program?'' In order to show this, we must

know the definition of two new statements.

1. FILE
2. FILE END

The FILE Statement

FORM:

LOCATION | [OPERATION MODIFIERS ADDRESS FIELD COMMENTS
i

IRSTRTEERTN £3 LIRNU SR TR SR A0 SR L NCINE R TE R RE R SE PE N TR TE-RR PE NE NC TEaE R RO A LR TRy R L AT R VRV RO P AT IR LN T N TR FE ROy AR T TR T ST L AL ST

S,

A |

]
i

Lid ; SRR N PR N S R N N A N O A L. i
!

The FILE statement is a Scope statement that allows all records following up to the
FILE END statement to be transferred to logical unit u, where u may be 1-59 or 69
(load-and-go). The records are written in odd parity (binary).

1-71

The FILE END Statement

FORM:

LOCATION | IPERATION,MODIFIERS ADDRESS FIELD COMMENTS

TR ER ET RN N R RN PR SRR AL L RPN TE S R RE T e AR TR ITE TR e e BC TG B T DI AN A T SO AT ST T ST TR AL A I AT SR O0 TR T T RO SL T BULST BY- Bt SERL:)

i
1 L i bk)
1
!
]

SEILE Eap) .

The FILE END statement signifies the end of a FILE-FILE END sequence that transfers
the binary data. Any binary data may be transferred except the Scope Control state-
ments; SEQUENCE, JOB, END REEL, and END SCOPE.

1-72

The reason it is necessary to know these two statements is that the MAIN, OVERLAY,
and SEGMENT statements must be transferred to the load-and-go unit just previous

to the binary subprograms that they represent. The binary subprograms then follow
each statement as a result of the Compass assemblies. Once the load-and-go tape has
been formed, the LOAD statement will cause the loader to load the main section and
then write the main section and all other sections on the overlay tape. The RUN state-
ment will then execute the program.

Consider the following example showing the sequence needed to have a Compass

program assembled and run with separate parts:

LOCATION RATION,MODIFIERS ADDRESS FIELD COMMENTS
i]
waisiaisiezraalelwingn iy iejaege e e 91,205 3] PR RE wowlea) 185 188 5 . 3¢ 5) s - L
7 I08, 123, PIE55 530 |o .. | .
’ifI/.fi,,gg .. . : . e -
IMAIM, .10 I .
ZEILEEND | .
i

2cdmpAs sy |Ls X

.
. b

(Compass |sabprogram(s))

SchrE

CEILE, b9 .
2/ ERLAY, 0,5

3 LLLEEMD :
.CaMPASY L X

14 7
.

" L Begpe
S EILE g .
ZseomenTh o0,]
SELLEEND | ..
SCAMPASS)yLa X oo

[S N S D S S

i

i

i

i

i

:

1
L bt J b i i i L. i H

i
(Compass Swbprogran (s)).

§

i

|

j

1

1

I

G ii b

(¢ ompess

ANRPRRE S SNPSEON HOUE O S

]
|
I
|
t
!
I
!
]
]
i

S é,ff,‘a;irq,m (s))

-
i

ScAPE i
1
1

{

i

L. N !
élﬁﬁ,@ ~ B
S0up, 20,1000, 4 . i
}

i

i

[oate cards)
77 !

5 e ,A

1-73

In this example the sequence of events is as follows:

1. The JOB card is processed by Scope.

2. All card images between the FILE-FILE End control statements are trans-
ferred to logical unit 69 (load-and-go). In this case the binary loader con-
trol statement MAIN, 10 is transferred.

3. The COMPASS control card causes Scope to load the Compass assembler
which assembles the Compass subprograms. As the subprograms are

assembled, the relocatable binary decks (object program) are output to
logical unit 69 (X option).

4. The process continues until just before encountering the LOAD control
statement, logical unit 69 looks like this:

MAIN

(Relocatable binary subprograms)

©aD I

OVERLAY, 10, 1

010 I

(Relocatable binary subprograms)

SEGMENT, 10, 1

[NoRE Ren iy

(Relocatable binary subprograms)

5. The LOAD statement will cause the Scope loader to;

load the main section into core and transfer it to logical unit 10,
transfer the overlay section to logical unit 10, and

o 0 T W

transfer the segment section to logical unit 10.

6. The RUN statement begins execution at the transfer address of main.
At some time the main section may wish to call in the overlay from logical unit 10.
What are the necessary instructions to do this? How do you call it in and how do

you transfer control to it? This is the topic now covered.

THE CALLING AND EXECUTION OF OVERLAYS

Once the overlay tape has been prepared and execution has begun, it is relatively
easy to call the overlay and execute it. The main section must include a calling

sequence to a standard Scope routine called LOVER (Load OVERIlay) specifying the
logical unit number and the overlay or segment number. The LOVER routine only

loads the overlay.

The main section declares LOVER an external symbol and does a bank return jump
(BRTJ) to it. Immediately following the BRTJ the programmer must prestore the

necessary parameters:
The form looks like this:

the logical unit number and the overlay or segment number.

LOCATION MRATmmmlﬂms ADDRESS FIELD COMMENTS
]
IRESEREBEET) sjolbwiijzin oy 4523150 139 a6 TS0 M 30] 1|3 B0 3% o afae a3 A6 474 % 5 5 3 e 2 u -
6RTT .. [(ﬂ)wz/:k, ,;‘1 »] :
EXT .. ILA/ER | ‘ .
4/ VED iAb/N, 43/, 4/5/ ;/ 4o/ his]s _
ﬂ'f‘g .e*uf‘n i ! : Lo L L ; ; i I

The VFD pseudo instruction hag been defined in Volume IL In this case;
N = logical unit number of overlay tape
V = overlay number

S = segment number; 0 if loading an overlay

Another way of forming the same calling sequence is to write it using the CALL

pseudo instruction.

LOCATION RATION,MOOIFIERS ADDRESS FIELD COMMENTS
1
[2:3 560508 BT T T T T TR IR AR AT BT U SR AL PR A TELNE P TS RELRE BE 25, BE 2 woder a2 i a3 e as us a2 a8 4780 519 5 3 % x 208758 ”
A ,Ad//t. . Lo _ .
4 ... | VED . y4é/¢\/ 453/0 A/S/y da/a ALS/S .
#2 . refacn L. T e S

In order to load overlay 1 as was written in the previous problem, it could be done thus:

LOCATION | DPERATONMODFERS _ DDRESS FIELD COMMENTS
1
" I) PO T I ar S et F OSSP IN) PP PSPPIV SO PSP IIT RN i P ®
o eAL h,A,lsz/.e’,e : S e ot
VED A48/, 3/0,3/5]1, da/@'ﬁﬂz,s/gw S
gﬁrCWLurn:H % N e L N . R

The LOVER routine will load the overlay. If the overlay was loaded correctly, the
return will leave the A register equal to zero and a bank return jump to the transfer
address in the Q register. All the programmer must do is check A for zero, and if
it is, execute the bank return jump instruction. The sequence might look like this:

LOCATION RATION, MODIFIERS ADDRESS FIELD : COMMENTS

INEEENESEBTNEALE L L IR ST RN D S SEU L SRS T% T RC N e Ir PR IE TR Tt S I M1500148 T A6 147 (a8 4T 52 83 8 B 055 97K 39005 6180 a0 sa 65 06 67 S &) T2 (%I iTE
Karl .. ;Ld:/cﬁl i LrMa @VE&LA‘/ e
VED _AbLJso, ;éz/p*&lﬂLqu/o».ﬂ/S/o « R
IR 2R .. ERRER f _

| BTQ sTRAA/scm/T | e

TRANSC okt r@cr . Tume_T# PUERLAY. . o

i ‘uen -Cn&-m Oue»(a,a E T .

If later in the main section a calhng sequence called another overlay, the first one
would be destroyed since only one overlay and one segment associated with that

overlay may reside in core at one time. But this shows you that they can be called
and they can be executed when needed.

More can be written on this subject than is given here, but this much information
gives some insights on how to get started with overlay processing. More information

can be found in the 3600 Scope Reference Manual, page 6-1 (publication nv. 60053300).

1-76

LIBRARY PREPARATION AND MAINTENANCE
INTRODUC TION

PRELIB is a routine on the library tape that will prepare and maintain library tapes.
Library tapes include binary routines, binary data, BCD data, and end-of-file marks.
Routines may be extracted from existing library tapes or they may be taken from other

logical units when preparing a new library tape.

When we think about library processing, three questions come to mind.

1. How can we find out the contents and the order of contents
on a library tape?

2. How can we change a present library tape?

3. How can we prepare a new library tape?

These questions serve as the next three topics. As each topic is encountered, the new

control statements needed to answer the question and solve the problem are defined.

LISTING A LIBRARY TAPE

A library tape contains a set of binary records. Each record serves some purpose
when monitoring, compiling, assembling, or executing a program, and each is called
and used only when needed. A table of contents of the library can be listed on standard
output by a short program using a library routine called PRELIB. To write the program
three new control statements must be used. They are;

1. PRELIB
2. LIST
3. FINISH

The PRELIB Control Statement

FORM:

LOCATION | OPERATION, MODIFIERS ADDRESS FIELD COMMENTS

WA Y e e s 9]0 0 172020 e e i (3 00 9 300 A1) RN I A8 53 138000500 Lah 12 1 63100168 106 100 (20 00 80 80 (90 C63 (B (50| seL T SK 5[00, 61162 16D | 54,45 (0 16T L5160 {IE (2(TE

L PRELT B

i : SR R S O TN

PN NS DS S S0 ST S S W S T O ESNT U NS S U N S S NS S SO RO SN ST NN T SO Y S W

I

sl i

} 1
il PO S O Y A A NSO W SO S ST S NV N SO0 T S ST ST SO S S S ST SO TN S N

| 1

i |

i 1

The PRELIB control statement is read by Scope. It causes Scope to load the PRELIB
routine and transfer control to it. PRELIB then reads and interprets all control
statements following until it reads the FINISH control statement. It then returns

control to Scope for the next control statement.

The PRELIB statement must be followed by the LIST, EDIT, or PREPARE control

statements.

1-79

The LIST Control Statement

FORM:

LOCATION | JOPERATION,MODIFIERS ADDRESS FIELD COMMENTS
1 T

ENETE TESC SY UL I SR F R TR RE U e T R L RNV RO R Y Rr N P NV Y S PT ST R T ROt N N TR AT PR It YR R RPN A AT T R T Nis]

i

i i
i

1

! .

SimiuiNiope

;l LLST(na v-]¢=_11] mamed:,

S I AR S i -

7

L

e

The LIST control statement is read by PRELIB and is one of the three possible state-
ments following the PRELIB statement. This statement will list the contents of the
named library tape on standard output. An asterisk (*) represents the present Scope

system tape.

[y
|
0
2

The FINISH Control Statement

FORM:
LOCATION | IOPERATION MODIFIERS ADDRESS FIELD COMMENTS
]
[NEEEREEENTNRNLE LS L TENUNE FU SR TN SRR BRI L SEIRE SR ST RE RE TR b TR A TR T R Ty TE A TR T ALy I N N N N N N e
FEIMISH || : . f
i it ke 1 | I !

The FINISH control statement is read by the PRELIB routine. It returns control
to Scope since this signals the end of a PRELIB run.

1-81

Using these statements the table of contents could be listed on standard output using

the following job:

LOCATION | IOPERATION, MODIFIERS ADDRESS FIELD COMMENTS
T

Ciars iatn ey b o b v e e s v e w0 a 72y M e sse a0 20 e, B 1300 00T B il 08 106 2T B 3 4 ban a2 63 Neas TG 14T 40 809 AT BRI M (SN 87 ISR S S00i 83 i st el b a8 8 6T 0 69 (TR ININTE
s

L SEQUENCE,.!
9IBB, LA, TRI, 3 ..
D PRELLR
2LIS7(¥) ‘
IFIWIsH
7 7

i -

P TSVUES RS MG SIS SN SO .o
i
I
S SR U W S N SO
L
i
i
i
i
1
I
i
i
i
b

Below is the actual output generated from a 3600 System showing the table of contents

of the library tape.

LABEL 5070 TC SCOPE 6P2 80109036602

RECORD NUMBER NAME MODE
1 800T ABS
2 LOADER ABS
3 EOF
4 OIR
s CARPYU REL
6 DR3649 REL

END

7 EOF
8 LOADER ABS
9 DIR
1o PRELIB REL
11 S10PACK REL
12 FTN REL
13 COMPASSX REL
14 FTNDIAG 8CD
15 COMPASS REL
16 MACOIK MDR
17 cOBOL REL
18 ALDAP REL
19 ALGO REL
20 CDCSORT REL
END

23 EOF
22 LOADER ABS
23 OIR
24 MACROSIM REL
25 MS$510 REL
26 BUF IN REL
27 GREENWCH REL.
28 LISTNU REL
29 IEVAL REL
30 ICARDRD REL
31 FBUFFIO REL
32 IFINISH REL
33 TITLESET REL
34 PAGE REL
35 L8C REL
36 IRELEASE REL
37 LOADSIM REL
38 10P REL
39 108 REL
40 WBQERROR REL
4] Q8QENTRY REL
42 aLLoc REL
43 104 REL
44 STH REL
45 TSH REL
46 stl REL
47 SWRTF REL
48 SINF REL
49 EXPF REL
S0 LOGF REL
51 POWRF REL
S2 ASINF REL
53 ATANF REL
54 DISKFILE REL
55 FORMERR REL
56 QlQSTORE REL

1-82

QLQREINT
QBQIFIOC
xT0I
RANF

XF IXF
ITOX
TANKF
1TO
MAX)F
Q2QL0ADA
@BQALOADA
TANF
COTF
Q8QMOLF
QBOXMOOF
REW
UNLOADN
EFT

108

BSP

8FI
BACKSKIP
QBQIFUNI
LENGTHF
OEC

ENC
Q1QADUBLE
QlACPLEX
Q7QLOULC
QBQIFUIV
DSGRT
DLOG
DSIN
DEXP
DPOWER
Q8UWDLDA
Q2QDLUA
DATAN
PUN
QBASENLT
Q8QIFSSw
CUBERTF
DCUBRT
Q8INOUT4
SLio4
cLOG
CSIN
CEXP
CSQRT
CATAN
CABS
ATAN2
DATAN2
ALOGlo
0LOGlO
IDINT
0SIGN
nDMOD
DMAX]
Q2Q07202
pTOI
Q2wo7323

Q2@07313
Q2007330
Q9QEVAL
OVERSEG
02Q0733)
QBQRESIUL
ABSF
TIMEF
QBQPAUSE
FLOATF

CMPLXCVR
SNGL
CONJG
DABS
NUMBER
SYMBOL
PLOT
LOVER
BLKAPROC
ROPROC
LEAP
AL3GINIT
AL36FLT
AL36FIX
MEMFULL
AL366UTO
AL36XTOY
AL3&XTOI
AL361TOJ
AL36READ
AL36WRIT
AL360UPT
AL3GEXVL
AL3eLN
AL3SATVL
AL36SUVL
ALIESIVL
AL36ATNm
AL36SUNM
AL36EANM
AL36ENNM
AL 36SNNM
AL36ACNM
AL36SINM
AL36IFIOQ
ALISIFEF
AL3GENFL
AL36BKSP
AL36REW
AL36BIRU
AL3GINPT
AL3I6INBW
AL36TIME
VGEN

LOADER

1-83

180 RIDUMP REL

181 BLKB REL
182 ouUTPUTO REL
183 CEDIT REL
184 ARITMOVE REL
185 ANCHOR REL
186 SSMERGE REL
187 DCP REL
188 ALGO1 REL
189 COPYX REL

END
190 EOF
191 LOADER ABS
192 DIR
193 sT0 REL
194 1IF0BJ REL
195 FILLL REL
196 FllLe REL
197 SGNTRAN REL
198 XFERY REL
199 XFER2A REL
200 XFER2S REL
201 XFER3A REL
202 XFER3R REL
203 XFERS REL
204 XFER4A REL
205 ALLIT REL
206 SUBMOVES REL
207 SCMUDV] REL
208 DBINT REL
209 BOINT) REL
210 XFER3600 REL
211 GOIF REL
212 ACCEPT REL
213 DBOEPON REL
214 SEQNCR REL
215 0BJEDT REL
216 GP10 REL
217 DISPLAY REL
218 EXAMOBY REL
219 ADDOVFLO REL
220 AUJOVFLU REL
221 RNDOVFLU REL
222 SUBROUT REL
223 sToP REL
224 CURNDATE REL
225 DUMMY | REL
226 DUMMY2 REL
227 DUMMY 3 REL
228 DUMMY & REL
2e9 DUMMYS REL
230 DUMMY6 REL
23 DUMMY 7 REL
232 DUMMY S REL
233 DUMMY 9 REL
234 DUMMY 10 REL
235 DUMMY]] REL

ENO
236 EOF
237 EOF
238 TAPENU EOF

From the table you can see the names of routines that may be familiar. Record 10
is the PRELIB routine. Record 12 is the FORTRAN compiler. All assemblers and

compilers are generally in one area.

Obiject routines (routines needed during execution of a nraocram) are aleo listed
s J\‘\f" 4 UMLLILILC O (1 VUulLdiiv o v uvwu uus ‘-Lls AL ULAULL Ul QG r’L Us& CAiil) QAd Vv QALUU Lo vu
Record 47 is the square root routine. Record 48 is the routine that calculates the

sine of an angle. These are often used in FORTRAN,

1-84

EDITING A LIBRARY TAPE

An existing library may be edited or changed by deleting, inserting, or replacing
records. If the programmer knows the record number of a routine on the library,
he can replace the routine with an updated version. The updated version must be in

the same mode as the routine it replaces.

In order to replace a routine the programmer must first generate the updated version
on a separate unit. There are several ways of doing this. At this time we are going

to describe one method, and in order to do so, we will use an example.

Suppose the routine SQRTF (record 47) needed changing. It exists on the library tape
in relocatable binary form. The programmer must generate a new version of SQRTF

with the proper modifications.

To start, it is necessary to obtain the Compass source coding that was used when the
routine was first written. This is sometimes difficult to do. Howevei', each data
center keeps on file a COSY tape containing a copy of each library routine, but in COSY
format (source code but compressed). The programmer can perform the modifications
and form the new relocatable binary deck (P option on the Compass control card) in

one run. You might review the COSY portion of this volume for the necessary proce-

dure.

Once the new SQRTF routine is on a tape unit (assume logical unit 62) in relocatable
binary form, it then has to be transferred to the library tape. The old record 47 must
be extracted and the new one inserted. All other records on the library tape should

remain as they were.

In order to replace record 47, a program must be written that will include the follow-
ing new statements:

1. EDIT
2. REPLACE
3. UNIT
4. REL

1-85

The EDIT Control Statement

FORM:

H i

[LOCATION | [OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i ! 1

820 3 B B o e e L e e 00 58T %E S 05 s s s sl a5 a2 e

r

T

'/.»’,1 ;;;(Lf, O N N L ‘l
7ERTT L YAb) axmc:,c:c)k,Jﬁv‘q TS s I
' i

|

t

e PRSI S R

i

The EDIT control statement is read by PRELIB and is one of the three possible state-
ments following the PRELIB statement. This statement is the first statement of an
editing deck. The editing deck contains any number of INSERT, DELETE, and
REPLACE control statements.

The parameter specifies the source library tape. If * is specified, the current Scope
system library is used. The new library will have the same name as the old one with
the edition number incremented by 1. All records will be copied except those that are
deleted or replaced. During editing, the old directories (table of contents) are updated
by PRELIB,

The FINISH control statement terminates the editing deck. When it is encountered the

rest of the source library is copied. The new table of contents is written on the stan-

dard output unit,

1-86

The REPLACE Control Statement

FORM:
LOCATION | [OPERATION MODIFIERS ADDRESS FIELD COMMENTS
1

LR TR SR R SRR SR BRL2 L JELRE: R NE SEURE RSk RE TR TR Rk - BE FELNE, SRRk SE)

| . i,

b
i

I;XEPL/}Cé(ccﬂ.rccl)é---\»

The REPLACE control statement will copy the source library up to the records that
are to be replaced. The following control statements will determine what then will be

written on the new library tape and from which unit it will come.

1-817

The UNIT Control Statement

FORM:

LOCATION [DPERATION,MODIFIERS ADDRESS FIELD COMMENTS

\\\\\\\\\

The UNIT control statement specifies from which logical unit, 1-49, 60, or 62, the
input records will be read. This unit will be referenced for any subsequent input

requests until another UNIT control statement changes the specification.

This statement just specifies the unit. The input record is not read until a control

statement specifying mode (e. g. REL) is encountered.

1-88

The REL Control Statement

FORM:

LOCATION | [OPERATION MODIFIERS ADDRESS FIELD COMMENTS
i ;

viaiyieiszesriafedwingu niuzeeupe

H
?K_E_L_/,JL% il i : i i (ot bl
i ! U N AR S ;

R ENE TR e BT AR AE R TR TR R RR AP NENE RELREEF 3]

s

D 54206000188 a0 (47 (40549 S0 31 (BT TSD SN TN 509D 8K {0001 615 0T 163 (8[43 (a7 M 0 D TEANY

Ll

[SN N

The REL control statement is one of several control statements that specify the mode
of input. REL specifies that the information on a logical unit is a single subroutine in
relocatable binary card form and is to be written as one record on the new library in

a condensed relocatable form.

If the programmer understands the previous control statements, he is ready to write
a program that will transfer his updated SQRTF subroutine from logical unit 62 to the
library tape. He can do so by the following coding:

LOCATION | DPERATIONMODIIERS ___ ADDRESS FIELD COMMENTS
i

;’fSE@U;EA/Cf;JI e

$.008,./23,WEWLIE, S
9 PRELIA L
sEDLT(#)| | |
é&’EPLACE (y7)
ga/c/[f,l@;
REL, SQRTIE
L FTMISH

72

This program will;

TADAZ L N 0 B M a0) e i e e 9 s %S I S B S0 e el L L5 iob 47 5o et

TS S W S fodedo b

[

I=a
|
L
|

|

[

1

f

I

|

Sy SRR VPO R ‘WS SNSRI S NI S

1. Copy the source library up to record 47.

2. Transfer the relocatable binary subroutine (SQRTF) from logical unit 62.
3. Skip the old record 47 and copy the rest of the library.

1-90

PREPARING A LIBRARY TAPE

Besides editing an existing library tape, it may become necessary at times to prepare
a new library tape. A new library can be formed by extracting information from an

existing library and including records from other logical units.

In order to extract records from existing libraries to form a new library, two new

control statements must be defined.

1. PREPARE
2. EXTRACT

1-91

The PREPARE Control Statement

FORM:
LOCATION | IPERATION MODIFIERS ADDRESS FIELD COMMENTS
ISFRPSPITSRNISN P RESPIPS En L NN LA B e 1)1 1 L L L et
PR‘EP.AKE; ,t&n\el(vhvﬁ.nezl.-nam&;;.x-x-;-)A L : l' I bl
1
. Ld i aed 1 I
t i

The PREPARE control statement is read by PRELIB and is one of the three possible
statements following the PRELIB statement. PREPARE instructs PRELIB to prepare
a new library from the source libraries.

NAME]1 designates the name of the new library. If * is specified, the new library will
have the same name as the current system library. NAME2, NAME3, etc., designates
the names of library tapes from which information will be taken to form the new library.

An * for one of these names means that the current system library can be used as a
source.

1-92

The EXTRACT Control Statement

FORM:
LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS
i 1
tgziyiesyzezaabe et e i v e o0 a7 0 e 0 a1 et 0, 0 X200 030 i e 0 e an i an (0 ae s Je q a7 e ee s isn 00 ISR e (M 30 0T K 00 260 80,43 (08 47 80 [
ZfX:T,)Q/}Cf;!g(‘rt?c.»l. rec, ... -} b e ,
|
: kol :) O D A R S A N O T N T A
1 [

The EXTRACT control statement specifies the records on source library tapes which
are to be transferred to the new tape. The records will be transferred from logical
unit u (*, 70, 72-79) onto the new tape, unit 71 (logical unit 71 is always considered
the new library tape). A record may be referred to by either its name or its number
as found in the table of contents.

1-93

A job to prepare a new library tape from two existing ones might look like the following:

LOCATION | OPERATION,MODIFIERS ADDRESS FIELD COMMENTS

=
E
3
e
i
¢
s
13
3
e
k

INTRTITT] ol e e e e a8 i T T L S 0 M0

4 S \

FSEQUENC L, L, ; L
7 TEB 5. £33, EXAM S
Zporel IR || . . o
77/?;\’.5#,4«5,. x(*,LIG1) | . y
SEXTRACT, (/= /6) |

S exTRACT 72 (P8 4L)
5 xTrACT] (1 8-238)
ggfws,f/ .

B e e T T T S e

This job effectively replaces the old library with the exception that it has a new COBOL
compiler,

1. A new Scope system library is prepared from the current library and LIBL1.
It has the same name as the current library.

2. Records 1-16 are copied from current library.
3. The COBOL compiler is copied from LIB1 (72).

4. The rest of the current library is copied.

This may give some insights on

how to begin preparing or editing a library tape. Much
more can be included as the reader has use for it. For more information read the
"Library Preparation and Maintenance' section (P. 7-1) of the 3600 Scope Reference
Manual (Pub. No. 60053300),

1-94

SECTION II

OUTPUT LISTINGS

This section containg the computer output listings generated from the example problems
given in each of the three volumes. The purpose of these listings is to show how the

subprograms are assembled.

The coding on the listing is taken from the coding on the coding sheet for each problem.

The only difference is that a few block storage reserve (BSS) instructions may have
been added at the end of each subprogram. This is to prevent a diagnostic resulting

from an undefined symbol.

(5.1) EVALUATE

03/20/67

En 0 PAGE NO,

TOENT cVALUATE VOLUME {=SECTION IIT.PRNALEM §
PRUGRAM LENGTH 00006
ENTRY POINTS EVALUATE 00000
ENTRY tVALUATE
00000 EVALUATE WSS 1
00001l 12 0 Po0OOO3 Lwoa a
24 0 PO0QO4 Hyg =Y [1:}
00002 14 0 PUOOOOS ALD C AB + C
75 0 POOOOQU SLJd EVALUATE
00003 A uSS 1
00006] EEL] i
00005 C BSS 1
END
00004 SYMBOLS
(541) TEST 03/20/61 Fn 0 PAGE NO,
IOENT TEST VOLUME 1=SECTION II1-PRNBLEM 6
PROGRAM LENGTH 00156
ENTRY POINTS TEST 00000
ENTRY TEST
00000 TEST HSS 1
00001 50 1 00000 ENI Usl
1o 0 00000 ENA v
00002 14 1 P00012 REPEAT a00 SCORES,1
50 ¢ 00000
00003 54 1 00143 15K 791
75 0 POOO0OZ SLkJ HEPEAT
00004 ¢e 0 00000 ENQ v PREPARE FOR DIVIDE
25 0 PoOO0O7 uve vECloo
00005 20 0 PoOOOl0 STA AVE
21 0 POOO1) sTo nEM
00006 75 0 PUOQOU SLy IEST RETURN
50 0 00000
00007 00 0 00000 DEC1O0 DEC 100
00 0 00144
00010 AVE 1 i
00011 REM 6SS i
00012 SCORES RN 100
END

00006 SYMBOLS

(5¢1) INTEREST 03/20/67 ED [PAGE NO,
TUENT INTEREST VOLUME 1=SECTION II[-PRABLEM 7
PRUGRAM LENGTH 23445
ENTRY POINTS INTEREST 0000>
ENTRY INTEREST
00000 00 0 00000 UOC neC v PRESTORF ZEROS
G0 0 00000
00001 00 0 00000 LAW vEC v AT THESF
00 0 00000
00002 00 0 0000u FIRE vEC 2 LOCATIONS
00 0 00000
00003 00 0 00000 GARBAGE DEC u
00 0 00000
00004 00 U 00000 SALES vEe 0
00 0 0000U
00005 INTEREST bss 1
00006 S0 1 23420 ENT 1000041
10 0 00001 ENA 1
00007 64 1 PO0025 A £Qs§ UMy y SEARCH FOR DOCTOR
75 0 PO0OLL SLy ° NO MORE DNCTORS
00010 72 © PO0OOO RAQ boc FOUND A DOCTOR
75 0 P0O0QOO7 SuJ A CONTINUF SEaRCH
0001l So I 23420 B ENT 1000041
10 0 00002 ENA e
00012 64 1 P0002S £QS NUMy | SEARCH FOR LAWYERS
75 0 PO0014 Sud < NO MDRE [AWYERS
00013 72 0 P0000L RAO LAw FOUND A LAWYER
75 0 PoOOll SLJ L} CONTINUF SEARCH
00014 So 1 23420 C ENI 1000091
10 0 00003 ENA 3
00015 64 1 P00025 EWS NUMy) SEARCH FOR FIREMEN
75 0 Po00L7 Sty v NO MORE FIREMEN
00016 72 0 P00002 KAO rIRE FOUND A FIREMEN
75 0 POO0l4 SLy % CONTINUF SEARCH
00017 Sp 1 23420 D ENT 1000091
10 0 00004 ENa 4
00020 64 1 Po002S £QS UMy SEARCH FOR GARBAGEMEN
75 0 Ppoo22 SLJy 3 NO MORE GARRAGEMEN
00021 72 0 P00003 RAO GARBAGE FOUND A GARRAGEMAN
75 0 POOOL7 stJ u CONTINUF SEARCH
00022 Sp 1 23420 E ENI 1000091
10 0 00005 ENA 5
00023 64 1 P00025 £EQS NUMy | SEARCH FOR SALESMEN
75 0 PO00OS SLJ INTEREST NO MORE SALFSMEN
00024 72 0 P00004 RAQ SALES FOUND A SALFSMAN
75 0 P00022 SLJ e CONTINUF SEARCH
00025 NUM 5SS 10000
END
00014 SYMBOLS
(Sel) ENTRANT 03720767 €D 0 PAGE NO,
10ENT ENTRANT VOLUME 1=-SECTION II11.PRNBLEM 8
PROGRAM LENGTH 00012
ENTRY POINTS ENTRANT 00002
ENTRY ENTRANT
00000 C HSS 1
0000l 11 1 11111 CHECK ocr 111111111181K111
11 1 1l
00002 ENTRANT BSS 1
00003 37 0 POOOOL SSH CHECK 1STe 2Nn, OR 3RD
75 0 P00006 sLJ aPLB 1ST OR 28D
00004 12 0 POOOLO Lua A 3R0
15 0 POOOLL SuB]
00005 20 0 P00OOV STa % C=4A=R
75 0 P00002 SLJ ENTRANT
00006 12 0 POOOlO APLB LuA a
14 0 PO0OO1] AQD L]
00007 20 0 PO0OOQOUL sTa C C=Ae¢R
75 0 PoOOO02 Sty ENTRANT
00010 A 6SS 1
00011 8 HSS 1
END

00006 SYMBOLS

(541) ENTREXAM 03/20/67 £D n PAVE NO,

10ENT ENTREXAM VOLUME 1-SEATION 1I1.PRNARLEM 9
PRUGRAM LENGTH 11615
ENTRY POINTS ENTREXAY 00001
ENTRY ENTREXAM
00000 HANK H8S§ i
00001 ENTREXAM 4SS)
00002 04 0 00777 ENQ 1778 oCTaL 777
06 0 0003v uLs c4
00003 44 1 P000OS LuL ANFORMy)
01 0 0003v ars 4
V0004 29 0 P0000O sTa HANK
75 0 PO00O1 1] ENTHEXAM
00005 INFORM 8SS 2000
END
00003 SYMBULS
(541) SEWUENCE 03720767 £n 0 PAGE NO,
LUENT SEQUENCE VOLUME 1-SECTION II1-PRORLEM 10
PRUGKAM LENGTH 00013
ENTRY POINTS SEQUENCE 00001
ENTRY SEQUENCE
00000 SEQ1 58§ i
00001 SEQUENCE =SS 1
00002 S0 1 00000 ENI vl
12 0 p00017 LOA StQ+9 10TH TERM
00003 26 1 POO020 KREPEAT MUF SEQ+10,1
50 0 00000
00004 54 1 00003 ISk 391
75 0 P000O3 SLy REPEAT
00005 20 0 P0000O STA 2£Q)
75 0 P0O0OOOL sLY SEQUENCE
00006 SEQ uS§ B
END

00004 SYMBOLS

(5e1) MATRIX 03/20/67 ED [PAGE NO,
TDENT MATRIX VOLUME 1=SECTION II1.PRNBLEM 11
PROGRAM LENGTH 01757
ENTRY POINTS MATRIX 00002
ENTRY MATRIX
00000 RANGE 4SS 1
00001 0lvis 4Ss 1
00002 MATRIX ©SS 1
ooo0o03 12 0 PoQoOO7 LOA TERM + 6] = 62ND TERM
26 0 Po0O0O7 MUF [ERM + 69 = T0TH TERM
00004 20 0 P00001 STA vIVIS
12 0 PooooO7 LDA IERM + 59 = 60TH TERM
00005 26 0 P000O7 MUF TERM + 7} = T2ND TERM
27 0 P000O1 OVF vivis
ooo0o06 20 0 P00000 STA RANGE
75 0 P00002 Sty MATRIX RETURN
00007 TERM 4SS 1000
END
00004 SYMBOLS
(5.1) EVAL 03/20/67 En n PAGE NO,
10ENT evVAL VOLUME 1-SECTION IlI1.PRNBLEM 12
PRUGRAM (ENGTH 00013
ENTRY POINTS EVAL 00004
ENTRY VAL
00000 ¥ 18§ 1
00001 SAVE 48§ 1
00002 20 0 54500 CON) vEC 1845
00 0 00000
00003 20 0 26314 CON2 DEC 32
63 1 46315
00004 EVAL HSS 1
00005 12 0 P00OO02 Loa CUN]
32 0 POO011 My A 1845%
00006 20 0 P0O0001 sTa SAVE
12 0 P00003 Lba CUNZ
00007 32 0 POOOlR FMy Y 3e2Y
30 0 P0O00O1 FAD SAVE
00010 20 0 POO0OD STa I3
75 0 P0O0OO& SLy EVAL
00011l x 88§ 1
00012 Y BSS 1
END

00007 SYMBOLS

2-5

(5.1) FURMULA 03720767 ED) PAGE NO,
IDENT FORMULA VOLUME 1=SECTION II1.PRNBLEM 13
PROGRAM LENGTH 00020
ENTRY POINTS FORMULA 00005
ENTRY FORMUL &
00000 SAvV] 4S§ i
00001 SAV2 HSS 1
00002 20 1 3567p CON} vEC 1900,
00 0 00000
00003 17 7 36314 CON2 DEC «05
63 1 46315
00004 w dass 1
00005 FORMULA ©S$§ 1
00006 12 0 P00OLS LDA R
32 0 POOOL7 FMy [}
00007 30 0 POOOL6 FAD 5
20 v POOOOU sTa 3AV] = S ¢« RT
000l 12 0 PO0OL7 LLA t
32 0 POOQO2 FMU CONi
0001} 20 0 PQOOOL STa SAV2 = 15007
12 0 P000O1S LDa o}
00012 31 0 P000OL FS8 SAV2
32 0 P00003 FMy CONZ x.05(R~1500T)
00013 33 0 POOOOU FOV >4v1
20 0 P00004 STA " ANSWER
00014 75 0 PO00OS sLJd F ORMUL A
S0 0 00000
00015 R 8$s 1
00016 S HSS 1
00017 T H#Ss 1
END
00011 SYMBOLS
(5s41) FUNCTION 03/20/67 ED [\ PAGE NO,
[DENT FUNCTION VOLUME $-SECTION III.PRNBLEM 14
PRUGRAM LENGTH 001
ENTRY POINTS FUNCTION 00003
ENTRY FUNCTION
00000 20 0 26000 CON) DEC 3o
00 0 00000
0001 20 0 14000 CON2 DEC le
00 0 00000
00002 SAVE 8SS§ i
00003 FUNCTION 8SS !
00004 12 0 POOOls LA Al
32 0 PO0OOO FMU CON)
00005 20 0 P00002 STa SAVE = 3ex]
12 0 p000O14 LDa Al
00006 32 0 PoOOlé4 FMY Al
30 0 poOOOR FAD SAVE
00007 31 0 Po0OOO1 FSg Con2
20 0 PO0002 STA SAVE = (X])*w2e38X]=]
00010 77 1 00004 LOAYMG SAVE
12 0 p00002
00011 31 0 POOOO1 FS8 CONZ
22 2 Poo0l3 AJPsPL GREATER
00012 10 0 00000 LESS ENA [
75 0 P000O3 SLJ FUNCTION
00013 10 0 00077 GREATER ENA 778 77 OCTAL
75 0 P00003 sLJ FUNCTION
00014 X1 8Ss 1
END

00007 SYMBOLS

(Se1) MATRIXMU 03/20/67 ED 0 PAGE NO,
IDENT MATRIXMU VOLUME 1<SECTION III<PRNBLEM 15
PROGRAM LENGTH 00127
ENTRY POINTS MATRIXMU 00000
ENTRY MATRTXMU
00000 MATRIXMU BSS 1
00001 S0 1 00000 ENI 091 1ST EL+ OF FIRST COL,
50 2 00110 ENI 7242 1ST ELes OF LAST COL.
00002 12 1 PO0006 A LDA ARRAYy1
50 0 00000
00003 77 1 20040 FADoRP ARRAYs192 (AX1)e(AX9) AX9
30 1 P00006
00004 56 1 00010 18K 891 9 ELEMENTS
75 0 p00002 SLJ A NO
00005 75 0 PO0OCOC Sty MATRIXMU YES: RETURN
50 0 00000
00006 ARRAY BSS 81
END
00003 SYMBOLS
(5.1) SEPARATE 03/20/67 ED 0 PAGE NO,
10ENT SEPARATE VOLUME 1«SECTION II11<PRABLEM 16
PROGRAM LENGTH 01154
ENTRY POINTS SEPARATE 00764
ENTRY SEPARATE
00000 UNSAT 8Ss 100
00144 POOR uSS 100
00310 FAIR BSS 100
00454 G000 8S§ 109
00620 EXCELENT uSS 100
00764 SEPARATE 4SS i
00765 S0 1 00000 ENT (13}
50 2 00000 ENI 092
00766 50 3 00000 ENT 093
S0 & 00000 ENI Ve
00767 50 S5 00000 ENI us5
50 6 00000 ENT U6
00770 12 6 P0O1010 NEXT Loa SCORESy6
50 0 00000
00771 62 0 00106 RGJPILT A9T0,LT70 (A) LTTn
21 3 PO1000
00772 62 U 00lie KOUPILT A9T76,LTT6 (R) LTT4
21 3 p01002
00773 62 0 00133 RGJPILT A991,LT9] (A) LT
21 3 POl004
00774 62 0 00140 RGJPILT Ar196,LT96 (A) LT9%x
21 3 p01006
00775 20 5 P0062U GE96 sTa EXCELENT,S
51 S 00001 INI les
00776 54 6 00143 TEST 18K 9946 100 SCORES TESTED
75 U p00770 SLJ NEXT NO
00777 75 0 POOT64 SLJ SEPARATE YES
S0 0 00000
01000 20 1 PO000O LT70 sTa UNSAT,1
51 1 o000l INT 1ol
01001 75 0 POOTT76 Sty TEST
50 0 00000
01002 20 2 PO0l44 LT76 sTa POOR,2
51 2 00001 INT 192
01003 75 0 p00776 Sty IEST
50 0 00000
01004 20 3 pP00310 LT91 sTa FAIR,3
51 3 00001 INT 103
01005 75 0 p00776 SLJ TEST
S0 0 00000
01006 20 0 PO0456¢ LT96 STA 600D, &
51 4 00001 INI L4
01007 75 0 p00776 Skd TEST
50 0 00000
01010 SCORES HSS 100
END

00016 SYMBOLS

2-1

(5.1) UNPACK 03/20/67 ED 0 PAGE NO,
IDENT UNPACK VOLUME T<SECTION II1.PROBLEM 17
PROGRAM LENGTH 00021
ENTRY POINTS UNPACK 00000
ENTRY UNPACK
00000 UNPACK BSS i
00001 S0 1 00000 ENI 091
50 2 00052 ENI 242 MEM. OFFSET DES,
00002 63 1 20006 A LBYT1Q0sE69RIsCL CARDs192
52 2 P00007
00003 S0 2 00052 ENI 4202 EXECUTEN ONLY WHEN
S1 1 00001 INY 1y COMPLETE WORD EXAMINED
00006 62 O 00073 RGUPYEQ @97384UNPACK SKIP EXTT TO HERE
01 4 pP00000
00005 06 0 00052 qaLs 42
07 0 00006 LLS 6 CHAR TO a
00006 75 0 P00002 sLJ A NEXT CHaR
50 0 00000
00007 CARD 8ss 10
END
00003 SYMBOLS
(5.1) TAX 03/20/67 ED n PAGE NO,
1DENT 1ax VOLUME t=SECTION III4PRNBLEM 18
PROGRAM LENGTH 47054
ENTRY POINTS TAX 23620
ENTRY TAX
00000 TAXABLE #SS iooo0o
23420 Tax BSS i
236421 S50 1 00000 ENI usl
50 2 00000 ENI Us2
23422 12 1 P23434 NEXT LDA EMPLOY, L
50 0 00000
23423 63 0 26057 NBJP AraT,a
60 0 P23426
23424 54 1 23417 LAST 1Sk 9999, LAST EMoLOYEE
75 0 p23422 SLy NEXT NO
23425 75 0 P23420 SLJ 1aX YES
50 0 00000
23426 63 0 26056 A NBJP Ave6,8B
60 0 P2343¢
23427 75 0 P23424 Sty LAST
50 0 00000
23430 63 0 26055 8 28UP A945,ENTER FOUND ONE
64 0 P23432
23431 75 0 P23424 SLJ LAST
50 0 00000
23432 20 2 P00000 ENTER STA TAXABLE 2
51 2 00001 IND 102
23433 75 0 P23424 SLJ LAST
50 0 00000
23434 EMPLOY dSS 10000
END

00010 SYMBOLS

{Sel) INPUT

03/20/67 ED 0 PAGE NO,

IDENT INPUT VOLUME 1-SECTION 1I1.PRAOBLEM 19
PROGRAM LENGTH 00022
ENTRY POINTS INPUT 00014
EN;RV INPUT
00000 CARD dS 10
00012 10 O 00012 Cwal 107w CARD,10 8 CHAR PER #ORD
00 0 pP00OOO
00013 10 0 00077 REJ ENA 778
50 0 00000
00014 INPUT 8S8s 1
00015 74 0 P00013 CONN U92934REJ
00 0 02003
00016 T4 1 p00013 EXTF Us3eREY 5568p1
00 0 00003
00017 74 1 PO0OO13 EXTF Vs29REY BCD FORmAT
00 0 00002
00020 74 2 p00O13 BEGR UsCWALsREY
00 0 PoOOl2
00021 75 0 POOOl& sLy INPUT
50 0 00000
END
00004 SYMBOLS
(541) ARITHFUN 03/20/67 EN 0 PAGE NO,
T10ENT ARITHFUN VOLUME 1=SECTION IIl1.PRNBLEM 20
PROGRAM LENGTH 00005
ENTRY POINTS ARITHFUN 00000
ENTRY ARITHFUN
66000 ARITHFUN BSS
00001 63 0 36001 NBJP ST IMglywel SET DIV, FAU. BIT
61 0 p00002
00002 63 0 36004 NBJPST IMosy0e] SET ARITH. OVe BIT
61 0 p00003
00003 77 0 00022 INF 18 SET INT, ACT.
50 0 00000
CONT. PROG.
00004 75 0 p00000 SLJ ARITHFUN RETURN
50 0 00000
END

00001 SYMBOLS

2-9

(5.1) TEST 03/20/67 £n 0 PAGE NO,
IDENT TEST VOLUME 11ePROBLEM 1
PROGRAM LENGTH 01757
ENTRY POINTS TEST 00000
ENTRY TEST
00000 TEST BSS i
00001 04 0 00000 ENQ 0
50 1 00000 ENI 0l
00002 12 1 PO0007 NEXT L0A 148y
22 3 P00004 AJPIMI MINUS POS OR NEG
00003 21 1 P00007 PLUS sTe LEY-T3Y POS
50 0 00000
00004 77 1 00020 MINUS STAsCM TABy) NEG
20 1 PO00O7
00005 56 1 23417 1K 9999,1
75 0 P00002 SLJ NEXT
00006 75 0 P0000U] TEST
50 0 00000
00007 TAB 8ss 1000
END
00005 SYMBOLS
(S+41) TRANSFER 03/20/67 ED a PAGE NO,
10ENT TRANSFER VOLUME 1I-PROBLEM 2
PROGRAM LENGTH 00010
ENTRY POINTS TRANSFER 00001
ENTRY [RANSFER
00000 TEMP BSS i
00001 TRANSFER BSS 1
00002 60 0 PO00O6 SAU TRANSMIT INITIAL ADDRESS
01 0 00030 ARS 24
00003 61 0 PO0OOS SAL {RANSMIT TERMINAL ADDRESS
21 0 PO0OOO sTa TEMP
00004 53 1 P00000 LIL TEMP,) WORD COyNT
50 0 00000
00005 55 1 P00006 CHECKCNT IJP TRANSMIT,1
75 0 P00001 Sty TRANSFER
00006 12 1 TTTTT TRANSMIT Lba oy
20 1 177771 STa e,]
00007 75 0 P0000S SLJ CHECKCNT
50 0 00000
END

00004 SYMBOLS

(Se1) FILE 03/20/67 €D 0 PAGE NO,

IDENT FILE VOLUME' 11«PROBLEM 3
PROGRAM LENGTH 01760
ENTRY POINTS FILE 060d0
ENTRY FILE
00000 FILE B8SS 1
00001 5¢ 1 00000 ENI 0l ADDRESS COUNTER
50 2 00000 ENI Us2 CHARACTER COUNTER
00002 16 1 P00010 NEXTWORD LDQ BUF 1
50 0 00000
00003 10 0 00000 NEXTCHAR ENA v
07 0 00006 LLS 6
00004 11 0 77760 INA =178
22 0 PoogO7 AJPsZR FOUND
00005 54 2 00007 ISK 72 LAST CHARACTER
75 0 P00003 SLy NEXTCHAR NO
00006 51 1 00001 INT 111 YESy BUuP ADDRESS COUNTFR
75 0 p00002 SkJ NEXTWORD
00007 12 1 Pooolo FOUND LoA 8UFy)
75 0 pP0000O SLJ FILE
00010 BUF BSS 1000
END
00005 SYMBOLS
(S.1) SWITCH 03/20/67 ED 0 PAGE NO,
IDENT SWITCH VOLUME 11-PROBLEM 4
PROGRAM LENGTH 00152
ENTRY POINTS SWITCH 00000
ENTRY SWITCH
606000 SWITCH 8Ss$ i
0000} S0 1 00000 ENI vl COUNTER FOR FIRST WORD
S0 2 00143 ENI 9942 COUNTER FOR LAST WORD
00002 12 1 P0O0006 NEXT LDa 1ABy1
16 2 P00006 Loa fABy2
00003 20 2 p00006 sTa 1ABs2
21 1 p0000s sTQ 1a8y)
00004 55 2 P0000S 1Jp “ely2
75 0 P0000V SLJ SWHITCH (B2) = ny FINISH
00005 51 1 00001 INY led
75 0 P00002 SLJ NEXT
00006 TAB BSS 100
END

00003 SYMBOLS

2-11

(5.1) EvAL 03/20/67 ED n PAGE NO,

IDENT EvaL VOLUME 1I1<PROBLEM §
PROGRAM LENGTH 00020
ENTRY POINTS EVAL 00003
ENTRY cVAL
00000 0IvVls 4SS 1
o000l 00 0 00000 CON1 DEC 4
00 O 00004
00002 00 0 00000 CON2 DEC 3
00 0 00003
00003 EvaL 8S8s 1
00004 12 0 pooole LOA Y
24 0 PO0OOL MUT CONL
00005 15 0 PO0O01S sus A 4Y=X
20 0 P000OO STa vivis
00006 12 0 Po00O15 LOA A
24 0 P00002 MU CONZ
00007 1S 0 PO0016 sus Y
15 0 P00016 sus v 3X=2Y
00010 22 2 Po0OOl2 AJPyPL EXTZER EXTEND
04 0 TT7T7TT ENQ =0 SIGN
00011 75 0 PQ0013 Sty viv THROUGH
50 0 00000
00012 04 0 00000 EXTZER ENQ [Q
50 0 00000
00013 25 0 P00000 DIv ov1 vivls
20 0 P0OO17 STa £
00014 75 0 P000O3 SLJ EVAL
50 0 00000
00015 X 8SS 1
00016 | 8SS 1
00017 Z 8SS 1
END
00011 SYMBOLS
(5.1) SOLVE 03/20/67 En 0 PAGE NO,
I0ENT S0LVE VOLUME 11«PROBLEM 6
PROGRAM LENGTH 00016
ENTRY POINTS SOLVE 00005
ENTRY SOLVE
00000 T7 7 77777 CONi DEC -%
T 7T 11773
00001 00 0 00000 CON2 DEC 135
00 0 00207
00002 TT 7 TTITT X VEC =10
77 17765
00003 SAVEL 5SS ‘ X CUBED
00004 SAVER 4S§ 1
00005 SOLVE 4SS 1
00006 12 0 PO0O0O2 LDa X
50 0 00000
00007 24 0 P00002 TRYAGN MUl A X SQUARFDN
24 0 POOOO2 MUt A X CUBED
00010 20 0 P00003 STa DAVE)
24 0 POOOOZ2 MUl A X 4TH
00011 24 0 Po0002 MU1 A X STH
20 0 P00004 STa SAVER
00012 12 0 P00003 LDa SAVE)]
24 0 P0000O MUl CONY =4X CUBFD
00013 14 0 P00004 40D SAVER
14 0 Po000l ALD CUN2 X#85.4X0030135
00014 22 0 P00005 aJRsZR SOLVE EXIT .
72 0 P00002 RAO A
00015 75 0 PO0OOOT SLJ TRYAGN
S0 0 00000
END

00007 SYMBOLS

2-12

(8.1 SWITCH 03/20/67 ED n PAGE NO,
IDENT SWITCH VOLUME T11-PROBLEM 7
PROGRAM LENGTH 00014
ENTRY POINTS SWITCH 00001
ENTRY SWITCH
00000 c B8SS 1
00001 SWITCH 8SS i
00002 75 1 PO0004 sJd1 SUM JUMP SW { ON
75 2 P00006 sJ2 VIFF JUMP SW 2 ON
00003 75 3 POOOl1C sJ3 PROD JUMP SW 3 ON
75 0 P000O) SLJ SWITCH
00004 12 0 PO00l2 SUM LuaA A
14 0 P00013 A0D 8 A+B
00005 20 0 PO0O0OO STA c
75 0 PO00OI Sty SWITCH
00006 12 0 P000l2 DIFF LUA A
15 0 P00013 sus 8 A=8
00007 20 0 P0000O) [4
75 0 PO00QOL StJ SWITCH
00010 12 0 Po0012 PROD Loa A
24 0 POOO13 MUT 8 AB
00011 20 0 P0000O STa ¢
75 0 P00001 SLJ SWITCH
0o0l2 A HSs§ 1
00013 B BSS 1
END
00007 SYMBOLS
(Ss1) MAXIMIZE En 0 PAGE NO,
IDENT MAXIMIZE VOLUME 11=PROBLEM 8
PROGRAM LENGTH 00023
ENTRY POINTS MAXIMIZE 00001
ENTRY MAXIMIZE
00000 MAXF 6Ss
00001 MAXIMIZE 8SS 1
00002 50 0 00000
75 4 P00004 - RTJ SUBR
00003 75 0 PooOooOl SLJ MAXIMIZE
50 0 00000
00004 75 0 77777 SUBR SLJ L1 ENTRANCE TO SUBROUTINE
12 0 P0002¢ LoA A
00005 15 0 PO0021 sus d
22 2 P000l4 AJPPL AANDC AeGT,8
00006 12 0 po0021 LbaA]
15 0 pooo22 sus
00007 22 2 Poool2 AJPPL TRANSB BeGT.C
50 0 00090
00010 12 0 P00022 TRANSC LDaA C
20 0 P00000 STa MAXF
00011 75 0 POPOO4 SLJ SUBR EXIT SURROUTINE
50 0 00000
00012 12 0 P00021 TRANSB L0a 8
20 0 PO00OO STa MAXF
00013 75 0 P00004 SLJ SUBR EXIT SURROUTINE
50 0 00000
00014 12 0 P00020 AANDC Lba A
15 0 Po0022 sus <
00015 22 2 PO0OOL16 AJPyPL TRANSA AeGT,C
75 0 p00010 Sty TRANSC
00016 12 0 P00020 TRANSA LOA A
20 0 PO0000 STa MAXF
00017 75 0 P00004 Sty SUBR EXIT SURROUTINE
50 0 00000
00020 A 85§ 1
00021 8 8Ss 1
00022 4 8ss 1
END

00012 SYMBOLS

(5.1) SEPARATE 03/20/67 ED 0 PAGE NO,
IDENT SEPARATE VOLUME 11<PROBLEM 9
PROGRAM LENGTH 00322
ENTRY POINTS SEPARATE 00144
ENTRY SEPARATE
00000 RANGE 8Ss 100
00144 SEPARATE 8SS 1
00145 50 1 00000 ENI Usl
50 2 00000 ENI 0s2
00146 12 1 P00156 NEXTWORD LDA FLUX,1
50 0 00000
00147 62 0 77772 RGJPGT As=5,LT NUM4GT o5
11 3 Poo152
00150 54 1 00143 CKCNT 15K 99491 NOsoLEe
75 0 p00l46 Sty NEXTWORD
00151 75 0 POO144 SLy SEPARATE
50 0 00000
00152 62 0 00005 LT RGJUPLT AsSYENT NUMoLTeR
21 3 POO15¢
00153 75 0 PO0150 skJ CKCNT NOyoGEW
5S¢ 0 00000
00154 20 2 P00000 ENT sTa RANGE 42
S1 2 00001 INT ir2
00155 75 0 p00150 SLJ CKCNT
S0 0 00000
00156 FLUX B8SS loo0
END
00007 SYMBOLS
(5.1} PASS 03/20/67 ED 0 PAGE NO,
TDENT rASS VOLUME 11«PROBLEM 10
PRUGRAM LENGTH 00012
ENTRY POINTS PASS 00001
ENTRY PASS
00000 Y 4SS 1
00001 PASS #SS 1
00002 63 1 00000 READY BJSK SUB1
04 0 PO0005S
00003 00 0 00000 vEC 39256943
00 0 00003
00004 00 0 00000 256943
00 7 65657
00005 sus HSS L
00006 12 0 POOO1l LDA X
24 1 00001 MUT il ADDRESS READY *
00007 15 1 00002 ST 2rl ADDRESS READY +2
20 0 p00000 sTa Y
00010 51 1 00003 INI E1DY BYPASS nATA
75 0 p0000S SLy suUB
00011 X 8S§ i
END

00005 SYMBOLS

2-14

(5.1) ODDNUM 03/20/67 €0 n PAGE NO,
10ENT VDONUM VOLUME 11-PROBLEM 11
PROGRAM LENGTH 00012
ENTRY POINTS ODDNUM 00002
ENTRY QOONUM
60000 00 0 00000 ODDITY DEC v
00 0 00000
00001 00 0 00000 FIVE DEC S
00 0 00005
00002 ODONUM BSS 1
00003 10 0 00001 ENA 1
00 7 40555 RXT AsD
00004 S0 1 00002 ENT 2s]
50 0 00000
00005 00 S 32053 NEXT ROPy ¢ UsBlya NEXT 00n
S0 0 00000
00006 62 0 01750 RGJP9GT A910009+0DDNUM
11 3 P00002
00007 04 O 00000 ENQ 0
25 0 pP000O} ovi FIVE
00010 23 1 PO0005 QJUPyINZ NEXT
72 0 P0000O RAO ovolITY
00011 7S 0 P0000S (W] NEXT
50 0 00000
END
00004 SYMBOLS
{5¢1) REVERSE 03/20/67 ED o PAGE NO,
IDENT ~EVERSE VOLUME TI=PROBLEM 12
PROGRAM LENGTH 0o00lo
ENTRY POINTS REVERSE 00000
ENTRY REVERSE
00000 REVERSE ©S§ i
0000l S0 1 00000 ENT el CHARACTFR COUNTER
12 0 p00007 LUA INPUTREG
00002 77 1 00200 LRSHEO 48
03 0 0006U
00003 06 0 00052 uLs 42
07 0 00006 LLS 6 H
00004 06 0 00044 NEXTCHAR GLS 36
07 0 00006 LLS 6
00005 S4 1 00006 15k 6] B=2 LEFT
75 0 P00004 SLJ NEXTCHAR
00006 20 0 P000O7 STa I{NPUTREG
75 0 P0000O SLy REVERSE
00007 INPUTREG BSS 1
END

00003 SYMBOLS

(5.1)

MINFUN 03/20/67 En n PAGE NO,
I0ENT MINF UN VOLUME [T1-PROBLEM 13
PRUGRAM LENGTH 00032
ENTRY POINTS MINFUN 00001
ENTRY MINFUN
00000 MINIMIZE HSS§ i
00001 MINFUN HSS 1
00002 S0 1 00000 ENT url
10 0 00000 ENA u
00003 00 7 40555 RXT AsD
04 0 00017 ENG 178 MASK IN Q@
00004 0& U 00052 QLS 42
50 0 00000
00005 43 1 P00022 NEXT SSy IRIAL.]
02 0 00006 uRS o
00006 54 1 00007 18K 1l 8 CHAR
75 0 £00005 Sty NEXKT
V0007 77 1 o200 LRSYEV 4y
03 0 00060
00010 07 0 00006 NEXT] LLsS)
00 S5 26655 HOPy o A9Ds0 DeNEXT fHAR
00011 10 0 00000 ENA)
50 0 00000
00012 54 2 00007 18K 792 A CHAR
75 0 POOOLL SLJ NEXT)
00013 04 0 00017 ENQ 178
50 0 00000
00014 45 1 P00022 NEXT2 aAlL IKIAL,1
S0 0 00000
00015 54 1 00007 15K Tel 8 CHAR
75 0 POOOL4 sty NEXT2
00016 00 6 2665« ROPy = 49090
23 2 po0o20 WJPPL UiAGSM
ooo01l7 20 0 p00OOU STa MINIMIZE AdLT,D
75 v POQOOL SLY MINFUN
00020 00 7 40653 DIAGSH RAT Ush
20 0 p0O000O S$Ta MINIMIZE DelTua
00021 75 0 PO0OOOL SLy MINFUN
50 0 00000
00022 TRIAL 5SS
END
00007 SYMBOLS
(5.1) EvaL 03/20/67 EN n PAGE NO,
LOENT VAL VOLUME 11-PROBLEM 14
PROGRAM LENGTH 00020
ENTRY POINTS EVAL 00005
ENTRY VAL
00000 b4 #SS i
00001l SAVE dS§ 1
00002 20 0 24000 CONST LEC 2e9344405
Q0 0 00000
00003 20 0 26000 3.
00 0 00000
00004 17 7 36314 «US
63 1 46315
00005 EvaL LEY 1
00006 12 0 PoOOle LDa LY
32 0 POOOL7 FMU Y
00007 32 0 P00002 FMY CONST 2XY
20 0 P0000L STa SAVE
00010 12 0 Po0Ol6 Lba A
32 0 P00ODl6 FMy A
00011 32 0 P00003 FMyU CUNST+) 3Xner
31 0 pPOOOOL FSg SAVE IXZ22e2XYeYNN2
00012 20 0 PO0OOL sTa SAVE
12 0 Po0O17 LoA Y
00013 32 0 PoOOLI7 FMy Y YHe2
30 0 P0O0OOL FAD SAVE 3XR82e2xYeYRN2
00014 32 0 P00004 FMy CONSTe2 FINAL EvALUATION
20 0 P000OO STa 3
00015 75 0 P00005 SLy evaL
S0 0 00000
00016 X BSS '3
00017 Y HSS 1
END
00006 SYMBOLS

2-16

(541) RESISTOR 03/20/67 ED 1} PAGE NO,

10ENT RESISTOR VOLUME 11-PROBLEM 15
PROGRAM LENGTH 01774
ENTRY POINTS RESISTOR 00014
ENTRY RESISTOR
00000 60 0 41463 CONST DEC =e054405
14 6 31462
00001 17 7 36314 «05
63 1 46315
00002 TOLRANCE BSS 10
00014 RESISTOR ©SS$ 1
00015 S0 4 00000 ENT Uré TOLRANCF POINTER
50 1 017s0 ENI 1000,1 NO OF WARDS
00016 50 2 00000 ENI Ue2 M+ (B2) 1S FwA
50 3 0000l ENI 193 SEQUENTTAL INCREMENTER
00017 12 0 pP000OL LDA CONST+1 UPPER LIMIT
16 0 PQ000O LLQ CONST LOWER LTMIT
00020 63 0 00000 CONSRCH SEwL [ESTCASEs RESISTOR
44 0 PO0024
ooo021 00 7 40555 RXT AsD SAVE
12 2 Poog2a3 LDa TESTCASE=192 SATISFIED OPERAND
00022 20 4 P00002 STA TOLRANCE 4 4
51 4 00001 INI lra BUMP POTNTER
00023 00 7 40653 RXT UsA RESTORE
75 0 p00020 Sty CONSRCH
00024 TESTCASE RSS 1000
END
00005 SYMBOLS
(541) GENERATE 03/20/67 ED 0 PAGE NO,
TOENT VENERATE VOLUME TI=-PROBLEM 16
PROGRAM LENGTH 01761
ENTRY POINTS GENERATE 01751
ENTRY GENERATE
00000 NUM BSS 1000
01750 00 0 02525 SWITCH oCT 252525252525
25 2 52525
01751 GENERATE 8SS$ 1
017s2 50 1 00000 ENY sl
10 0 00001 ENA 1
01753 37 0 PO1750 CKSWTCH SSH SWITCH
75 0 PO1T60 SkJ ST
01754 11 0 00004 INA 4
20 1 P00000 STaA UMy)
01755 11 0 oo0002 INA 3
S0 0 00000
01756 54 1 01747 CKCNT 18K 999,1
75 0 PO1753 Sty CKSWTCH
01757 75 0 PO1751 Sty QENERATE
50 0 00000
01760 20 1 P00000 ST STA NUMy)
7S 0 PO1756 StJ CKCNT
END

00006 SYMBOLS

2-17

(Sel)

PARAMCNT

03/20/67

ED [PAGE NO.

IDENT PARAMCNT VOLUME {1=PROBLEM 17
PROGRAM LENGTH 00053
ENTRY POINTS PARAMCNT 00024
ENTRY PARAMCNT
00000 PARAM BSS 20
00024 PARAMCNT B8SS 1
00025 10 © 00000 ENA 0
S0 1 00000 ENI url
00026 S50 2 00000 ENI 02
50 3 00052 ENI 4243
00027 63 2 30006 READCHAR LBYTyQ0sE6sRIVCL CARD,243
52 2 P00041
00030 S0 3 00052 ENI 293 EXECUTEN ONLY WHEN FINIGHED
51 2 00001 INI 12 WITH A MEMORY WORD
00031 62 0 00073 RGUPIEQ Wy738yCOMMA COMMa
01 & PO0036
00032 62 0 00060 RGJPIEQ w160By®=3 BLANK+ READ NEXT CHARACTER
01 & p00027
00033 62 0 00033 RGJPYEQ w933B,PERIOD PERIOD
01 4 pP0O004V
00034 06 0 00052 aLs 42
07 0 00006 LLS 6 CHARACTFR T0 A
00035 75 0 P00027 Sty HEADCHAR
S0 0 00000
00036 20 1 P00000 COMMA STA PARAM, 1 STORE PARAMETER
§1 1 00001 IN1 1l
00037 10 0 00000 ENA v
75 0 PO0027 SLJ READCHAR
00040 20 1 P00000 PERIOD STa PARAM, |
75 0 p0002s SLy PARAMCNT
00041 CARD LE 10
END
00006 SYMBOLS
(541) READINT 03720767 En 0 PAGE NO,
TVENT READINT VOLUME 71~PROBLEM 18
PRUGHAM LENGTH 00326
ENTRY POINTS READINT 00313
ENTRY READINT
00000 REC1 ¥SS 100
00144 REC3 #SS 100
00310 70 0 00144 CwAl I10TRsC REC1,100
00 0 p00000
00311 60 0 0014s 10SR+C vr100
00 0 00000
00312 30 0 0014¢ 10TR HEC3,100
00 0 PO0144
00313 READINT 8Ss 1
00314 74 5 00000 CLCH v
00 0 00000
00315 74 0 P0O0315S CONN Ue3e2e#
00 0 03002
00316 7e 1 pOO316 EXTF Ve2ew SET FORuAT TO BCD
00 0 00002
00317 74 1 p00317 EXTF Ur3ew SET DENgITY TO SS6
00 0 00003
00320 74 1 P00320 EXTF Usl0Bsw REWIND
00 0 00010
00321 74 1 po0321 EXTF Us24R, % ABNORMAL END OF OPERATINN
00 0 00024
00322 74 2 poo0322 BEGR UsCwaly® TRANSFER DATA
00 0 P00310
00323 74 4 11000 COPY Ul STATUS To B1
00 0 00000
00324 63 0 02014 NB P Blyl2y#e] LOOP IF STILL READING
60 0 P00323
00325 75 0 P00313 SLy READINT FINISHEN
50 0 00000
END

00004 SYMBOLS

(Se1) EVAL 03/20/67 ED n PAGE NO,
10ENT Eval VOLUME 11«PROBLEM 19
PROGRAM LENGTH 00015
ENTRY POINTS EVAL 00003
ENTRY Eval
00000 X BSS 1
00001 Y 88§ 1
00002 4 8Ss 1
00003 EvaL 8Ss 1
00004 12 0 P0000l L0A \
32 0 P00011 FMU 206.7
00005 20 0 POOOla STa =SHOLD
12 0 P0000O Loa L3
00006 32 0 Po00l2 FMU =05,8
31 0 POOOl4 FS8 2SHOLD SeBXwba7Y
00007 33 0 RPo0OO13 FOvV *0=4,9
20 0 P000QO2 STa Z
00010 75 0 P00003 SLJy EVAL
S0 0 00000
00011 20 0 36546
31 4 63146
00012 20 0 35631
46 3 14632
00013 57 T 43063
14 6 31462
END
00005 SYMBOLS
(5.1) A 03/20/67 EN n PALVE NO,
IDENT A VOLUME 1T1=PROBLEM 20
PRUGRAM LENGTH 00010
ENTRY POINTS A 00001
EXTERNAL SYMBOLS
ELEMENTS
ENTRY A
EXT ELEMENTS
00000 SUM 8Ss 1
00001 A B8SS 1
00002 50 1 00000 ENT Oel
50 0 00000
00003 77 1 04000 LDA (B)ELEMENTS, 1
l2 1 x77777
00004 16 1 XT7777 NEXT ADD ELEMENTS+]y}]
50 0 00000
00005 5¢ 1 000l0 I8 orl
75 0 P00004 SLd NEXT
00006 77 1 04000 STa () Sym IN THIS RANK
20 0 P0000O
00007 75 0 P000OIL SLJ A
S0 0 00000
END

00004 SYMBOLS

2-19

(5.1)

PRUGRAM LENGTH

ENTRY POINTS

EXTERNAL SYMBOLS

00000
00001
00002
00003
00004
00005
00006

00007
00010
00011

00007 SYMBOLS

(5.1)

PROGRAM LENGTH

ENTRY PQINTS

EXTERNAL SYMBOLS

00000
00001
00002
00003
00006
00005
00006
00007
00010
00011

00012

00005 SYMBOLS

0
0
1
0
0
[]
0
)

COCOOOOCO O O OO O mO O

N =< x>

Tz

P00011
00000
04000

X77777

00003

P000O04
35000
00000

3]

N o< x

X777
00000
0400u

PO0OL1
04000

XT7777

X17777
00000
04000

Pogol2
04000

X17777

R00001
00000
26000
00000
37000
00000

» DN X

X

00012
00004
00000
00001
00002

00013

00001
00001

00000

I10ENT

ENTRY
EXT
HSS
uSS
ASS
RSS
dSs
CALL
FMU
FMy

STa
SLJ

END

IVENT

ENTRY
EXT
8Ss
1SS
LDa
FMU
FS8
FS8
FOV
STA

SkJ

END

03720767 En 0 PAGE NO,

A VOLUME 11-PROBLEM 21

AgXeYel
™
i ASSUME rFLNATING POINT
1 NUMBERS PRESTORED
1
1
1
o GO TO («)R. SWITCH 08 Tn THIS
BU5, BANK
($)M EXTERNAL
w RE5MZ
a
03/20/67 ED 0 PAGE NO,
o
ETL]
AsYeZ
i
i
A
(%)=2D3,
($)v
Y 3Ix=2Y
(*)=07,
i($)Z EXTERNA(

-]

2-20

(5.1) A 03/20/67 EN n PAGE NO,
IODENT A VOLUME 11-PQOBLEM 22
PRUGRAM LENGTH 00005
ENTRY POINTS A 00000
BLOCK NAMES
8l 00005
ENTRY A
00000 81 RLOCK 5
00000 CUMMON FeRsSyToCONL
00001]
00002 >
00003 f
00004 CUN1
c00004 QRGR CON1
00004 20 0 0400v DEC «5
g0 0 00000
P00000 ORGR »
00000 A uSSs 1
00001 77 1 04000 Loa ($)S
12 0 cooooe
00002 30 0 C00003 FAD f
32 0 cooool FMU L
00003 32 0 co0004 FMU Cuny
20 0 c00000 STA [
00004 75 0 P000OOCO SLY A
50 0 00000
END
00006 SYMBOLS
(541) MATMUL 03/20/67 £n 0 PAGE NO,
IDENT MATMUL VOLUME T1-PROBLEM 23
PROGRAM LENGTH 00020
ENTRY POINTS MATMUL 00012
RETURN MACRO (P1sP2)
Lba 24P1439P2~4 CONVERTFD ADDRESS
ENDOM
ENTRY MATMUL
00000 z 4SS 1
00001 A HSS v ARRAY
00012 MATMUL BSS 1
00013 RETURN (1e1)
20 0 p000OOO STA 3
00014 RETURN 12¢2)
32 0 P0000D FMy i
00015 20 0 PO000O sTa I3
RETURN (393
00016 32 0 P00000 FMU I3
20 0 PO00OO STa I3
00017 75 0 POOOl2 Sty MATMUL
50 0 00000
END

00003 SYMBOLS

2-21

(541) MODE 03720767 ED 0 PAGE NO,
IDENT MQOE VOLUME 11«PROBLEM 24
PROGRAM LENGTH 00004
ENTRY POINTS MODE 00000
OPMODE MACRO (PleP2)
IFTHEQ Ply/BCD/ 1)
EXTF L9200 SET 10 acD
IFTHEQ Ple/BIN/ 1
EXTF lelee SET 70 mIN
IFT+EQ P24/200/41
EXTF Loase 200 Pl
IFYyEQ P29/556/41
EXTF le3se $568P1
IFT£Q P29/8007+1
EXTF legew 800 8Pl
ENDM
ENTRY MODE
00000 MODE 8SS 1
00001 OPMODE (BINy556)
00003 75 0 P00OOO SLy MODE
S0 0 00000
END
00001 SYMBOLS
(S.1) NUT G00DY 03720767 £D 0 PAGE NO,
IOENT lLLust VOLUME 11-PROBLEM 25
PROGRAM LENGTH 00005
ENTRY POINTS ILLUST 00000
ENTRY lLLusT
THIS IS A DO NOTHING
PROGRAM FOR ILLUSTRATION ONLY.
#E HAVE JUST SPACED 5 LINES
AND WE SPACE 5 MORE IN
URDER TO SEPARATE THIS AREA.
NOW LET#S ENTITLE THIS PAGE.
YOU SHOULD SEE NUT GOODY
AT THE TOP,
NOW LET#S START
OUR PROGRAM,
00000 ILLUST uSs 1
00001 12 0 PO0OO3 LOA CON1
30 0 PO0OOS FAD CON2
00002 75 0 P0COOOC Sty ILLust
50 0 00000
NOW LET#S ASSEMBLE
THE DECIMAL CONSTANTS
2UT NOT LIST THEM,
THE CONSTANTS ARE
ACTUALLY ASSEVBLED.
NO ASSEMBLY ERROR
APPEARS .+
THANKS FOR THE SHOW
AND NOW WE SaY,
THE
END

00003 SYMBOLS

BEGIN JOB AT
JOB+5458T+0JEs3
SCOPE VERSION

COMPASSyL9X

(S.1) COMPARE

lols

6428

PROGRAM LENGTH
ENTRY POINTS
EXTERNAL SYMBOLS

00000

00001
00013

00014
00015
00016
00017
00022
00025
00027
00030
00031
o032
00033
00034
00035
00036
00037
00040
00041
00044
00046

00047

00
60

10
00
10
00
01
00

23
75

- 4l

COMPARE
SENTRY

6 06060
6 06060

00012
P00001
00013
p0000O
50000
06060

cocec oo

P00025
00000
P00001
00000
00014
77272
PO0047
00036
PO000S
00000
00000
00006
00060
P00037
77771
P00034
P00006
00000
P00OLS
Po0022

WO OO HWOO OO O~O0 0o COW

3 PO0044
0 p000O22

00016 SYMBOLS

LOAD
RUN35+40+7

00050
00016

QuUTPUT

INPUT
Cwal

Ccwa2
CONY
COMPARE
NEXT
NOTFIN

INPFIN

NEXTCHAR

ALLIGN

WALT

FINISHED

IDENT

ENTRY
aco

8Ss
I0Tw

107w
8CD

8ss
MODE
HEAD
STATUS
QJP ML

Lbe
ENa
LLs
INa
AJPy ZR
ENT
Lo

ENA
LLS
RGUPYEQ

INT
uJP
Loa
ARS
sup
AJPyMI
WRITE
STATUS
QUPeMI
SLJy
EXIT
END

COMPARE

CUMPARE
190

10
INPUTY10

QUTPUT11
1915000

1

(609 #,B8CD)
(60scWal®)
160)

NOTFIN

INPUT

v

12

=5058

F INISHED
3041
INPUT+5

v
6
A160B9ALLIGN

=691
NEXTCHAR
INPUT+5

[}

CONl

NEXT
(61sCWAZ, %)
(61)

wAlT

NEXT

COMPARE

03/20/67

ED 0 PAGE NO,

YO DOUBLE SPACE AND TNDFNT L1ST

TO INDEMT LIST

SET MODE 71O BCD
READ ONr CARD

UNIT STiLL IN OPERATION

BCD s5
DATA CARD TERMINATOR
USED TO ALLIGN SALe wITH 15,000

A=BLANK

DECREASE SHIFT COUNTER
ALLIGN WITH $15,000
$15+000

BELOW $15,000

AT OR AROVE $15,000

WAIT

CORPORATION

CONTROL DATA
[coreoraTon]

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Pub. No. 60166700 Rev. B Litho in U.S.A.

	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	1-93
	1-94
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	xBack

