COMPUTER SYSTEMS
MSIO

REFERENCE MANUAL

CONTROL DATA

=00
SIS @)=

COMPUTER SYSTEMS
MSIO

REFERENCE MANUAL

CONTROL DATA

CORPORAT.ON

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales Office.

Revised—September, 1967 ©1967, Control Data Corporation
Pub. No. 60174800A Printed in the United States of America

CHAPTER 1

CHAPTER 2

CHAPTER 3

CONTENTS

INTRODUCTION

FILE STRUCTURE

Logical Records
Physical Records

Buffer and Record Areas
Labels

File Environment Table
Seek Address Key

File Security

Massfile

FILE DESCRIPTION MACROS

FILEDESC
LABELING
VARIABLE
LINKMODE
OWNCODE
RANDOM

REQUEST MACROS

ALLOCATE
OPENFILE
READFILE
RITEFILE
CLOSFILE
CLOSREEL
POSITION
LOOK
INSERTM
DELETEM
INDXFILE
SPACEM
ATTACH
READBLOC/RITEB LOC
REWINDM
BACKSPACE
SKIPM
MARKEFM

|
[y

e e e e e e
1

|
2RSS S VU \C R R

i
—

NN NDNDDNDN N
t

|
-1 O OO W

I
[

R
U

GO Lo o Lo Lo LW LWL W W W WWWWW W
]
el i i =R =R <IN B PR &) R

iii

CHAPTER 4

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

iv

RECORD LOCATING ROUTINES

Sequential

Linked Sequential
Random
Sequentially Indexed

FILE ENVIRONMENT TABLE FORMAT
ERROR MESSAGES AND RECOVERY PROCEDURE

MSIO/GPIO INCOMPATIBILITY

Index-1

INTRODUCTION

The 3600/3800 Mass Storage Input/Output system provides complete input/output
control for mass storage devices. (Mass storage devices include all normally
marketed disks installed on CONTROL DATA®3600 or 3800 computers.) The
devices initially intended for implementation in this system are the 828 and 813/
814 disk files. The system is designed to allow for the implementation of any
new mass storage devices., At least two banks (65K) of memory are required
for mass storage input/output.

All tape handling functions are performed by the 3600/3800 General Purpose
Input/Output (GPIO) system. The Mass Storage Input/Output (MSIO) system
consists of all routines necessary to perform input/output functions and record
blocking and deblocking for mass storage devices. The GPIO system is called
to perform input/output functions on physical devices other than mass storage.

This manual describes the MSIO features only; Appendix C contains a descrip-
tion of the areas where GPIO and MSIO are incompatible. A familiarity with
the GPIO reference manual is advisable.

The MSIO environment includes the systems that use MSIO:

COBOL
DISK SORT III

and the system used by MSIO:

3600/3800 Drum SCOPE.

1.1
LOGICAL RECORDS

1.1.1
FIXED
LENGTH FORMAT

1.1.2
VARIABLE
LENGTH FORMAT

FILE STRUCTURE 1

Data placed on the mass storage devices is stored in logically related sets
called files. A file consists of a set of logical records related to one subject
or function. A logical record is a single unit of information, the smallest
unit that may be specified by an 1/0 request. Logical records may be
arranged in groups convenient for storage on a mass storage device. These
groups, consisting of one or more logical records, are called physical
records or blocks. Logical records may span blocks. The content, format,
and inter-relationship of logical records, physical records, and files are
defined by the user with macros and requests.

Before a file may be opened, it must be allocated space on a mass storage

device. Space may be allocated in one or more segments where a segment
is a contiguous section of disk storage. A device may contain one or more

segments, but no segment may extend past the HI and LO limits assigned in
the device label (1.4.1).

Logical records may be either fixed or variable in length and may be so
described in five different ways. Any given file, however, must be composed
of logical records described in the same manner.

Logical records in this format are all of the same length.

Logical records which vary in length may be defined in four ways:

Simple Variable Length Records

Logical records described in this manner require that the user define a key
field which specifies the record length. This key field occupies the same
position for all logical records in the file. Before the record is written, the
value of the key field must be set to the number of 6-bit bytes in the logical
record, including the key field.

Fixed Length with Trailer

This type of variable length logical record consists of a fixed length base

and a variable number of fixed length trailer items. A key field is defined
within the fixed portion of the logical record which specifies the number of
trailer items. The key field occupies the same position within the record
for every logical record in the file.

Record Mark

This type of variable length logical record is terminated by a record mark
character (72g) which is supplied by the user as a part of the record. The
record mark character must occupy the last character position (bits 0-5)
within a word.

Universal Record

With this type of variable length logical record, the user specifies an
address which contains the length of the logical record as a write request
parameter at the time the record is written. An MSIO record blocking
routine prefixes each record with a 48-bit word containing a value equal to
the number of 6-bit bytes in the record. This routine removes the prefix
when the record is read. The prefix is carried in the buffer areas and not
in the record area.

1.2

PHYSICAL RECORDS \Vvhen mass storage files are used, record blocks must be fixed in length and
contain no preamble. An important consideration in specifying block size
is the physical record limit for the device to be used. With the 828 disk, for
example, the physical record limit is a 32-word sector. Therefore, a 33-
word block would require two sectors on the disk. The next block begins
with a new sector leaving 31 words associated with each block unused and
unavailable. Each block is read with a single command.

Block sizes which are multiples of 32 words provide the most efficient disk
usage; however, the user may prefer to define block size such that his
records do not span blocks.

1.3
BUFFER AND
RECORD AREAS MSIO uses two types of intermediate storage areas in transferring data

between storage devices and the computer: buffer areas and record areas.

1-2

A buffer area can contain one record block; a record area can contain one
logical record. For variable length records, the record area must be large
enough to contain the file's largest logical record. The buffer areas are
defined by the user with the FILEDESC macro and the READFILE and
RITEFILE requests. If both FILEDESC and READ/RITEFILE contain record
area descriptions, READ/RITEFILE takes precedence.

Tive variations are allowed on the number of record and buffer areas which
may be defined:

e Two buffer areas and one record area—data is transferred from one
buffer area to the record area/external device while the other buffer
area is refilling. Records are blocked/deblocked as they are trans-
ferred to the external device/record area.

e Two buffer areas—data is transferred into/from one buffer area
while records from the other area are being processed. Records
are blocked and deblocked; however, records which span blocks and
are larger than one block size may be partially inaccessible.

e One buffer area and one record area—records are blocked/deblocked
as they are transferred to the external device/record area; but
efficiency is reduced, since data from the buffer area must be
completely emptied before the area can be refilled and transferred
again.

e One buffer area—the user reserves space for one record block but
no I/0 buffering can take place. If a record spans blocks, the first
portion of the record will not be available to the user.

e One record area—no blocking or deblocking is performed. Trans-
mission to/from the external device is limited to the size of one
block. If the file consists of records which are larger than the block
size, the section of each record extending beyond the block size
will be inaccessible.

Random and linked sequential accessing require the presence of at least one
buffer area and one record area. With random accessing, MSIO cannot
anticipate the next record address; therefore, no buffering will occur regardless
of the number of buffer areas.

1.4
LABELS MSIO uses two types of labels: device labels and file labels.

1-3

1.4.1
DEVICE LABELS

1.4.2
FILE LABELS

1-4

Each mass storage device has a label which uniquely identifies the device
within the system. This label is written onto the device with a utility program
when the system is installed.

The position of the device lahel is fixed for each type of mass storage equip-
ment. The purpose of this label is to point to the label directory and to record
and hold device allocation information.

Before any records on a file may be processed, space must be allocated for
the file on the mass storage device. When allocation is to be made, the
device label is searched for the smallest contiguous area which is large
enough to satisfy the ALLOCATE request (3.1). If such an area does not
exist, the largest available area is reserved as the first file segment, followed
by the next largest and so on, unitl the request has been satisfied or the
number of segments allocated exceeds the number specified in the request.

Each device has 18 allocatable areas; the HI, LO, next available sector, and
unused sector are given for each such area. The size and type of area are

installation dependent.

A device label contains the following fields:

Name Function
Device name Identifies device
Device address Hardware address of device label
Directory address Hardware address of label for label

directory file

HI limit Highest absolute address for each of 18 areas
of device

LO limit Lowest absolute address for each of 18 areas
of device

Next available sector Relative address of next available sector in

each of 18 areas of device

Unused sectors Number of released sectors in each of 18
areas of device

A file label identifies a file so that it may be referred to by input/output
requests. When an OPENFILE request (3.2) is issued, MSIO refers to the
label to locate the file and ready it for input/output operations. Labels for
mass storage files are not attached to the file, but are stored in a directory

10

11

12

13

file. MSIO allocates space and maintains the directory file. The user need
not allow space for his file labels. A file label is required for all mass
storage files.

File labels may be examined by the user through the after- beginning-label
OWNCODE options (2.5). At which time, the label is in the user's record
area (if available) or buffer area and may be changed. The first ten words
describe tape files; the first 14 words describe mass storage files. (The
whole label consists of 32 words but only the first 14 are available to the
user; the remaining 18 words contain the security key, segment location
information, and relevant SAK pointers used by MSIO.)

47 41 ;35 29 l23 17 I11 l5 0
d () nn rtn
file
name rr
mmddyy ee

any information

file usage file condition

number

first eof block no. of OPEN's Linkage loc.

trailer size s key position

record
type
47 42

fixed record sizelfile format; block size

38 2423 15'14 0

The shaded areas of the File Label are not used.

1-5

Bit
Word position
1 47-42
1 41-30
1 29-18
1 17-0
1,2 47-0

47-12
2 11-0
3 47-12
3 11-0
10 47-24
10 23-0
11 47-24
11 23-15
11 14-0
12 38-24
12 23-20
12 19-18
12 14-0
13 47-42
13 38-24
13 23-15
13 14-0

1-6

FILE LABEL FIELDS

Code

0

nn

rtn

file name

rT
mmddyy
ee

file usage

file condition

first EOT block
number

number of OPEN
requests

linkage location

trailer size

S

M

key position
record type
fixed record size
file format

block size

Meaning

density; 2=200 bpi, 5=556 bpi, 8=800 bpi
unique label identifier

logical unit number; must be blank if file name is
non-blank

retention code, 000 to 999. Number of days file is
to be saved after date written. 999 specifies
permanent retention; 000 specifies retention for the
run/job only.

14 alphanumeric characters; must be blank if nn is
non-blank

reel number, 01 to 99 (tape only)
date written; mm=month, dd=day, yy=year
edition number, 01 to 99 or blank

cumulative count of the number of times the file has
been opened. This count is reduced to zero when the
file is re-ordered.

cumulative count of the number of record linkages

relative block position of the end-of-file; if none, this
field is set to zero

number of FET's which indicate the file is currently
open

location of work in logical record that contains link-
age information

size of trailer portion, in 6-bit bytes

size of key field

mode of key (not used)

position of key field within logical record

type of fixed or variable-length logical records

size of fixed portion of logical record, in 6-bit bytes
unused

size of the physical record (block), in 6-bit bytes

1.5
FILE ENVIRONMENT
TABLE

1.6
SEEK ADDRESS KEY

1.7
FILE SECURITY

The File Environment Table (FET) describes each file processed by MSIO.
1t is constructed by MSIO at assembly time from user-subm itted file
description macros (Chapter 2). An entry for a file consists of 32 words in
the format shown in Appendix A.

For each file, MSIO maintains several Seek Address Key (SAK) fields in the
FET. These fields identify: the record currently in process, the next
available record for writing, the previous record processed, the last record
in the file, and the first record of the file. Each SAK field consists of a
relative block address; and a word count field. A relative block address
gives the position relative to the beginning of the file. For example, a file
consisting of 25,000 blocks would have block addresses from 1 to 25,000.
The word count field is relative to the beginning of the block; the first word
in the block is 1. The format of the Seek Address Key is:

47 24,23 0

block address word count

The SAK field is vital in determining the order in which records are accessed
within a file. MSIO provides four types of file access: sequential , linked
sequential, random, and sequentially indexed. Each record locating routine
determines how many of the SAK fields it needs to keep.

MSIO provides the facility to protect files and validate user requests to refer
to files. Each user of a file must submit an access key with each request to
use a file; this key is compared with a security key in the file label during
OPENFILE processing. File access and security keys are determined at the
time the system is installed; they supply the following options:

Reject Access to this file is not permitted to this user

Read Only Only read and position activities may be processed on
this file by the user

Write Only Only write and position activities may be processed on
this file by this user

1-7

1.8
MASSFILE

1-8

Read/Write Both reading and writing activities processed,
allowing this user to modify the data in this file

Master Full access allowed this user for reading and writing
this file and its associated file label data. Master
access is required to alter file size (ALLOCATE).

A master access will be established for each user for the files he creates:
an allocation request for a new file results in a master access.

This Drum SCOPE control card is required for all jobs containing MSIO calls
which refer to mass storage devices. The primary function of the MASSFILE
card is to allocate memory for the file definition tables.

7 =, = =
gMASSFILE, k; =d, .k =d,, ...,k =d_

The k and d parameters may assume the values described below:

FILES=dd This declaration is required; dd is a one- or two-
digit decimal number defining the total number of
files to be processed by the job. This parameter
should be specified first and appear only once in
any set of MASSFILE cards for a job.

The remaining declarations are optional and apply to one particular file.
Each MASSFILE card may contain information about only one file; con-
tinuation cards are formed by repeating the FN declaration on every card
of the set. Declarations on the MASSFILE card override those declared
in the FET in the running program.

FN=dd dd is a one- or two-digit decimal number defining an
internal file number. Within a COBOL program all
files are numbered consecutively from 1 through n as
they appear in SELECT specifications within the
ENVIRONMENT division. For COMPASS programs,
the FN declaration is given as a parameter of the
FILEDESC macro.

ID=name name is an external file name or label identifier; it
may contain from 1 to 14 characters, including
blanks. A comma before the fourteenth character
causes the filed to be completed with blanks.

EDT=dd

DATE=mmddyy

DSP=SAVE

DSP=ddd

BLOC=*num

SEG=dd

dd is a one- or two-digit decimal number defining a
file edition number.

Date written; month, day, year; mmddyy must be
six characters; for example, January 6, 1966 would
be specified 010666.

This declaration causes a file to have a retention code
of zero, but to be retained until the end of the job before
being released. If a file is not assigned a retention
code and SAVE is not specified, the file is released

at the end of the run.

ddd is a one- to three-digit decimal number defining
the retention cycle for a file. 999 specifies permanent
retention. Otherwise ddd is the number of days the
file is to be saved from the date written. This
declaration is given when creating the file.

num is a one- to eight-digit decimal number defining
the number of blocks to be allocated. Plus indicates
an addition to an existing allocation for the file, minus
indicates reduction; omission of both indicates an
initial allocation.

dd is a one- or two-digit decimal number specifying
how many segments allowed for the allocation. The
maximum number of segments is 63; omission of the
parameter, SEG=00, or any number larger than 63
causes the maximum to be used.

1-9

FILE DESCRIPTION MACROS 2

Label processing, record blocking and deblocking and other automatic features
of MSIO require more information than can be contained in the calling sequence
of each I/O request. To obtain this information, yet keep the 1/0 calling
sequence a reasonable size, File Environment Tables (FET) are constructed.

The macros described below are used in constructing an FET. The FILEDESC
macro reserves space for an FET and provides necessary information to be
placed in the FET. FILEDESC is required and must appear first. LABELING
is also required for mass storage files but may appear anywhere in the set

of macros following FILEDESC. Additional macros are optional; when used,
they must immediately follow FILEDESC but their order is unimportant.

2.1
FILEDESC . [10
’ loc IFILEDESC (B Bys -5y 5)

loc File name which identifies the file; assigned to the FET entry
and used in subsequent I/0 requests.

15 Logical record length

Record type Value
fixed length number of 6-bit bytes

simple variable
universal blank
record mark

trailer number of 6-bit bytes in
fixed portion of record

Legal values for this parameter are 17 to 32,760 or blank.

When used with GPIO, this parameter is the maximum logical
record size in characters.

P, Record area; the address of an area in memory into which each
record is to be moved for input or from which each record is
to be obtained for output. If the READFILE and RITEFILE
requests specify a record area, that area takes precedence
over this parameter for the specific call.

2-2

10

Record block length; the length, in computer words, of the
buffer area. This value must be large enough to accommodate
one complete record block. Legal values are 3 =p =4,095.

Buffer address; the memory address of the first (or only) buifer
area assigned to this file.

Alternate buffer address: the memory address of the alternate
buffer assigned to this file, if any.

Mass storage indicator or logical unit number; 828 or 814
specify a disk file. Blank indicates any mass storage device may
be chosen by MSIO for this file. For files stored in non-mass
storage devices, this parameter indicates the logical unit
number.

If p,. indicates a mass storage device, P, indicates device name:
1-8 BCD characters = device name
blank = device name unknown

If Pg indicates a magnetic tape unit, p; specifies recording
density:

1.0 = 200 bpi; HI = 556 bpi; HY = 800 bpi

any other value = LO

For mass storage devices, this parameter specifies the internal
file number. This parameter is required if MASSFILE cards
(1.8) are used with this file. The internal file number must be
unique for a scratch file that is to be closed and reopened. This
number is the only check for reopening a scratch file since
MSIO does not write scratch file labels on the disk.

TFor magnetic tape units and low volume 1/0 devices, this
parameter indicates recording mode:

B binary
other BCD

For mass storage files, this parameter indicates the type of
logical record:

F fixed length

V simple variable length

T fixed length with trailer fields
R terminated by record mark

U universal record

For magnetic tape files, this parameter indicates the position
of the file on a multi-file reel.

For mass storage devices, blank indicates standard error
recovery procedures (Appendix B) will be used; any other value
indicates standard error recovery procedures will be inhibited.

For magnetic tape files, this parameter is unused.

For mass storage files, this parameter specifies the file
security key (1.7). Key may be 1-8 BCD characters or blank.

For magnetic tape files, this parameter is unused.

Optional file indicator; blank indicates a mandatory file; if
MSIO cannot locate the file, SCOPE requests operator assign-
ment of the file. Any other value indicates an optional file; if
the file is not present, the first READFILE request will take
the end-of-file exit.

Optional files must have standard labels. This parameter is
ignored for output files.

For mass storage files, this parameter specifies the location
in memory of the routine used to locate a record on the file
(Chapter 4).

13

RLOC.SEQ sequential access by physical position
RLOC. LSQ linked sequential access
RLOC. RND random access using system randomizing

RLOC. SQI sequential index access; index processed
sequentially, file processed randomly
according to SAK found as index entry

Any user-specified record locating routine may be used by
specifying its entry point name.

For magnetic tape files, this parameter indicates whether
records are to be written one at a time or blocked to the
capacity of the buffer area.

Omitted assumed unblocked

U unblocked output, or same size logical and
physical records

B blocked output, or different size logical and
physical records

2.2

LABELING This macro is required for all mass storage files and for magnetic tape files
with standard or non-standard header labels.
10

LABELING (pl,pz,ps,p4,p5)

2-3

Py Label identification address required for mass storage files.
Memory location of the file identification. The value in this
location is compared against the file identification field in the
label for input files. For output files, this value is written in
the file identification field in the label. This field is assumed
to contain 14 characters, left justified, and two trailing blanks.

Edition number address must be two BCD digits, left justified
with blank fill. This parameter is optional.

Py Reel number address (magnetic tape only) must be two BCD
digits, left justified with blank fill.

P, Date written address; mmddyy, month, day, year. This
value is left justified with blank fill; it is used in locating the
correct input file, but ignored for output files, as MSIO supplies
the current date.

Retention cycle location required for mass storage files; three
BCD digits, left justified with blank fill. This value is placed
in an output file label; on input, it indicates whether a mass
storage file is permanent or scratch.

blank or 000 = scratch file
1-998 = number of days file is to be retained
999 = file retained indefinitely

This parameter is ignored by GPIO when processing non-mass
storage input files.

Both p; and ps are required for mass storage files; the other parameters
are specified only when necessary to ensure that a file is unique or to provide
file protection.

All label processing is initiated when a file is opened by the OPENFILE request
macro (3.1). For mass storage files, this request refers to the FET to obtain
the identifying information provided by the LABELING macro. This infor-
mation is used in a search through the label directory to find the file and
prepare it for processing. If only the file identification is specified in the
LABELING macro, and it is not unique, MSIO selects the first file encoun-
tered with that identification.

If the retention code in P5 is zero or blank, a search is made for the
appropriate scratch file; otherwise, the given parameters are used to search
the label directory for the correct file and to prepare for processing.

If the proper file cannot be found, a message is displayed on the console;
and the following actions may be taken:

Request all labels on the directory to be displayed.

Request all labels bearing a given file name to be displayed.

2.3
VARIABLE

Request to override the file identification parameters given in the
program with new parameters.

Abandon the job.

If the file is defined in the FILEDESC macro as optional, no display is
created. Instead, the FET will be set to cause the first READFILE
operation to take the end-of-file return specified in the READFILE request
or the OWNCODE macro.

MSIO provides no labels for scratch files. If a scratch file is to be closed
and then reopened, it must have a unique internal file number (p8 of
FILEDESC) by which it may be identified.

This macro provides information for variable-length logical records; it is
not necessary for files defined as having fixed-length or universal records.

10
VARIABLE (pl,pz,pS,p4)

Indicates the type of variable-length logical records. Blank
indicates simple variable or fixed length with trailer. Any
other value indicates variable-length logical records terminated
by record marks in last character of word. In this case

Py - P4 are ignored.

P, Key field size from 0 to 7. 0 indicates the length of the key
field as a full word binary key. 1-7 indicate the number of
6-bit bytes in a BCD key field.

Byte position of the first character of the key field within the
logical record. If py=0, p3 must be a multiple of 8 plus 1.

I Trailer size: the number of 6-bit bytes contained in one
occurrence of the trailer item.

If the record length varies by the occurrence of trailer fields, Py and p

refer to a field giving the number of occurrences of the trailer item. a
record is variable with trailer items, it is processed as if it were packed;
the first trailer item begins in the character immediately following the fixed
portion, the next trailer item in the character immediately following the first,
and so forth. If the record is not a trailer type, py and Py describe a field
giving the number of 6-bit bytes in the record.

24
LINKMODE

25
OWNCODE

2-6

This macro describes the linkage fields necessary for processing linked
sequential or random files; it may be omitted when other types of access
are specified.

10

LINKMODE (p1 , p2)

Linkage key address; the character position within the fixed
portion of the logical record of the first character of the link-
age key. This field must always start at the beginning of a
computer word; the values which it may assume are expressed
by the formula P, = 8k + 1, where k=0,1,2,...,n.

Linkage type:

F Forward linkage only
B Backward linkagé only
FB Forward and backward linkage

The B and FB parameters are included for users who code and
use their own record locating routines for backward linkage or
forward and backward linkage. Forward and backward linkage
words must be 48 bits each and occupy adjacent fields in the
record, the forward linkage key precedes the backward linkage
key.

This macro and thelinkage fields it specifies, are required if INSERTM or
DELETEM operations are performed on the file (3.9, 3.10).

This macro is optional; it may be used to specify entry points, P, to user

routines.

10

‘OWNCODE (B Pyr <P})

Routine to be entered

At the end-of-file on an input file; required for tape files only

Before MSIO beginning label processing for an input file

2.6
RANDOM

Routine to be entered

Py After MSIO beginning label processing for an input file

P, Before MSIO ending label processing for an input file

P After MSIO ending label processing for an input file

P Upon occurrence of a parity error on an input file

P, Before MSIO beginning label processing for an output file
Py After MSIO beginning label processing for an output file

Py Before MSIO ending label processing for an output file

p10 After MSIO ending label processing for an output file

Py Upon occurrence of a parity error on an output file

Py When an attempt is made to process an invalid linkage key,

requesting a record outside of the file limits

All parameters except p; and pyg are entered by a Bank Return Jump at the
first word of the user's routine. To continue processing, the user must
specify a jump returning control to the entry point. Within the routine the
user may: (1) ignore the condition and return to continue processing,

(2) make an indication of the error and return to continue processing,

(3) terminate the job.

Parameters Py and p 9 do not generate a Bank Return Jump; control is
returned to these entry points when the call is completed.

MSIO request macros may not be specified from within the user's OWNCODE
routines unless the routine is an end-of-file or invalid key return (p1 or p 12).

There are no ending labels in the MSIO system. Any before-ending and after-
ending label procedures specified by py, P5, Pg» and pp(will be executed
during the CLOSFILE process, but no labels are produced.

This macro is required when random accessing is to be performed on the file,
or when a new index is being created for sequentially indexed files. When
accessing is random, parameters p; - pg must be specified; py - p; may be
specified if desired. Only p; is required when a new index is created for
sequentially indexed files.

2-7

2-8

When random accessing is selected, MSIO provides a randomizing routine
which includes a comparison between the nomenclature field in the record
and the nomenclature field in memory. These fields are defined below.

10

RANDOM (pl) pz, Pg> P4, P5)

For random access, location of nomenclature field in memory
to be compared against a nomenclature field in the record;
must be beginning of a word.

For sequentially indexed access, location of the SAK to be
entered into the index file.

Relative character position within the record of first characterof
nomenclature field; must be beginning of a word. Values range
from 1 to record size.

Length in characters of fields described by Py, Pys Py Value is
counted from beginning of word whether a mask 1s specified or not.

Memory location of an optional mask field. If the user wishes

to omit any characters or groups of characters from the nom-
enclature fields during the comparison, he may specify a mask
field. This field contains zeros wherever unused characters
occur, and one's elsewhere in the field. When a mask is
specified, the randomizing routine takes the logical product of
the mask and the P, field and then the logical product of the mask
and the p_ field. The comparison is made between the masked
p; field and the masked po field. ps must be the beginning of a
word. If p,4 is not specified, the entire fields are used.

Number of contiguous characters from the beginning of the
nomenclature to be used in randomizing. The characters are
counted from the beginning of the field whether or not a mask

is specified by Py If p. is not specified, the entire fields are
used in combination witg p, or separately; if neither is specified,
the entire field is compared

3.1
ALLOCATE

REQUEST MACROS 3

With the Mass Storage Input/Output system, the user performs input/output
operations by calls to open, read, write, and close operations. The
description of each operation indicates whether or not it applies to magnetic
tape as well as to mass storage files. However, the user writing or reading
tape files should consult the GPIO specifications.

In the MSIO system, each file is labeled and file storage space is allocated
prior to any use of file storage space. With complete file labeling, the
opening of a mass storage file is accomplished by first seeking out the label
in the directory and from that label obtaining the information needed to open
and use the file. The file description macros (Chapter 2) provide this
information. The ALLOCATE macro is required, in addition, to allocate
space to a file before it can be opened.

In each of the following descriptions, the file name is the symbolic reference
to the File Environment Table which was specified in the FILEDESC macro
for the file.

This request allocates space on a mass storage device for a file. Initial
allocation for a file must be made before an OPENFILE request is issued.
Since the size of an index file is a factor in randomizing, the allocation for
an index file may not be changed, once specified.

ALLOCATE may not be issued from an interrupt subroutine.

The user may request physically contiguous space, or he may allow segmen-
tation. When contiguous space request cannot be honored, a message is dis-
played, allowing the operator to release the requirement for contiguous space
or terminate the program.

The space available for allocation is limited according to the pg and p; para-
meters of the FILEDESC macro. If a device name has been specified, only
that device is searched for available space; if device type has been specified,
all devices of that type are searched. If no device is specified, the search
is limited to the device type used by the first segment.

3.2

OPENFILE

10

ALLOCATE
(pl,pz,ps,p4)

File name specified in the FILEDESC macro.

Memory location containing the number of record blocks to be
allocated.

This parameter controls the action of ALLOCATE. A + indicates
the existing allocation to be incremented by Py record blocks.

A - indicates the existing allocation to be decremented by py
record blocks. Anything else indicates a new allocation.
Allocation for an index file cannot be changed; it is necessary

to release the file and create a new one.

Any digit from 1 to n indicates the number of segments into which
the allocation may be divided. Blank or zero indicates as many
segments as required by the space allocation on the device. The
maximum number of segments allowed by MSIO is 63 10°

OPENFILE initiates processing of the file named; this request must be
specified prior to any file processing. Tt may not be issued from an interrupt

subroutine.

10

Py
Py

OPENFILE (p,,P,)

File name specified in FILEDESC macro.

File type indicator; O output only file, I input only, B both
input and output. For magnetic tape, this parameter must be
either T or O.

A mass storage file may be opened any number of times within the same
program as long as a different FET is supplied with each OPENFILE state-
ment, or there is an intervening CLOSFILE request. For example, a file
may be in an open state for both random and sequential accessing. The file
may be opened only one time as an output file even though different FET's
are supplied. Any number of FET's may open the file as input even though
the file is already open as output; however, problems may arise if the user
reads such a file while it is being altered. The user may check bits 18-23
to determine the type of other open request (see Appendix A).

The appropriate before-beginning-label OWNCODE is executed before the
label is made available by OPENFILE. After-beginning-label owncodes may
refer to the label in the record area, provided the user has master access to
the file. If the file is I/0, an input OWNCODE is used.

OPENTFILE does not establish the initial SAK for a file nor read any records
from the data file. At the time of the OPENFILE request, the current SAK
field is not altered; it will be zero unless the user has altered it following the
last CLOSFILE request. After OPENFILE, the label will be in the record
area or the primary buffer. The address of the label is stored in RECBEGIN
in the FET. That is FET + 1010 in bits 17-0.

3.3

READFILE This request transfers a logical record to the record area; or if no record
area is specified, it indicates the location of the logical record in the buffer
area by an entry in the FET. The first word address of the delivered record
is always placed in a field called RECBEGIN in the FET table at FET + 10 10
in bits 17-0.

A READFILE request followed by a RITEFILE request is, in effect, a replace;
the logical records must be of the same length.

10
READFILE (p,,P,; Py, P,)

File name specified in the FILEDESC macro. (For tape files,
only p; may be specified; the other parameters are ignored.)

P, Record area address; location into which the logical record is
to be transferred from the buffer area. Optional; if specified,
it takes precedence over any record area specified in the
FILEDESC macro for this call only.

End-of -file return; entry point name of a routine to be executed
upon detection of end-of-file. Optional; if specified, it takes
precedence over any end-of-file return specified in the
OWNCODE macro for this call only.

P, Return indicator; if non-blank, control is returned to the user
upon initiation of the request. The user must determine when
the action is complete by testing for a zero in bit 47 of the
second word of the FET entry for the file.

3-3

34
RITEFILE

An invalid key return occurs under the following conditions:

If the record requested is outside of the file limits
If the record requested is past the last record written

If a record requested by random accessing cannot be found (nomenclatures
do not match) (4. 3)

In every case, the invalid key exit specified in the OWNCODE macro is
taken. If no invalid key routine is provided, the job is terminated.

This request transfers a logical record from the record area, or, if no
record area is specified, updates the index of the buffer area. If a record
outside the file limits is sought, the invalid key exit specified in the
OWNCODE macro is taken. If no invalid key exit has been specified when
this condition occurs, the job will be abandoned.

10

RITEFILE (pl s p2 PgsP

4,p5)

P, File name specified in the FILEDESC macro.

P, Record area address: location from which the logical record
is to be transferred into the buffer area. Optional; if specified,
it takes precedence over any record area specified in the
FILEDESC macro for this call only. Ignored by GPIO.

Py Logical record length; location in memory of the record length
value. Required only for universal type logical records.
Ignored by GPIO.

P, Return indicator; if non-blank, control is returned to the user
upon initiation of the request. The user must determine when
the action is complete by testing for a zero in bit 47 of the
second word of the FET entry for the file. Ignored by GPIO.

Writecheck indicator; blank indicates normal write, non-blank
indicates writecheck mode. The writecheck mode is described
in the hardware manual for the particular disk used. Ignored
by GPIO.

3.5

CLOSFILE This request terminates the processing of a file with any one FET and
prevents any subsequent accessing of that file until it is opened again. It
may not be issued from an interrupt subroutine.

10

CLOSFILE (pl,p2)

p File name specified in the FILEDESC macro.

P, For a mass storage file, this parameter indicates modification
of storage allocation for the file. If Py is blank, the storage
allocation for the file remains unchanged. If non-blank, the
allocation will be reduced to correspond to the actual size of
the file. Only a user with master access to the file may alter
storage allocation with this parameter.

For magnetic tape files, this parameter specifies the rewind
option; U indicates unload, R indicates rewind to loadpoint,
anything else indicates no rewind.

Before- and after-ending-label OWNCODE is executed during CLOSFILE
processing. If the file is 1/0, input OWNCODE is used.

3.6

CLOSREEL This request closes a reel of a magnetic tape file.
10

CLOSREEL (p,p,)

P, File name specified in the FILEDESC macro.
Rewind option; U indicates unload, R indicates rewind to

loadpoint, anything else, no rewind.

CLOSREEL may only be specified for magnetic files; if specified for a mass
storage file, an error diagnostic is printed and the job is terminated.

37
POSITION

This request alters the SAK fields in the FET in accordance with the infor-
mation in parameters 2 and 3. This may result in a buffer transfer to the
mass storage device. The mass storage access mechanism will be moved
to the specified record block, if physically possible.

10

POSITION (p1 1Py P3)

pl File name specified in the FILEDESC macro.
P, The address of a field containing the record locator parameter
for the type of record location used with this file. Value of
locator depends on type of record locating routine used for access.
Routine Value of P4
Sequential Current SAK
Linked Sequential)
Random Nomenclature
Sequentially Indexed SIK (Sequential Index Key)
Py This parameter modifies Dy

For sequential or linked sequential files, all values are
significant and modify the SAK

For sequentially indexed files, all values are significant
and modify the SIK

For random files, only blank is significant

blank Value in the location specified by p,_ replaces any pre-
vious record locator for the file.

+ Value in the location specified by py is used to increment
the current SAK or SIK for the file. The file must be
positioned already at some value before p, = + may be
specified. This is accomplished with a READFILE,
RITEFILE, or a POSITION request where Py has any
value except +.

F Py will be ignored and the SAK or SIK for the file will be
set to the value necessary to access the first record in
the file.

L py Will be ignored and the SAK or SIK will be set to the
value necessary to access the last record in the file.

A P, will be ignored and the SAK or SIK will be set to the
value necessary to access the next available record for
writing.

3.8
LOOK

LOOK searches a file for a logical record which satisfies a condition defined
by the parameters. The search begins with the current logical record and
proceeds to the limit defined by Py A set of up to ten values (arguments)

are compared with specific fields within the logical records in the file.

When a logical record is found which satisfies the condition for the first

value (major argument), the next value, if any, is compared with its specified
field within the logical record, and so forth.

Control is passed to a location, dependent upon whether a logical record is
found with fields which satisfy the condition for all the arguments specified.

LOOK requires that the file be open and an initial SAK be established.

The COBOL collating sequence is used for all comparisons.

10

LOOK (pl,pz, RN ,p37)
P, File name.
P, Location containing number of logical records to be searched.
Py Type of search; if the file consists of fixed length logical records

ordered by the arguments, a bisecting search can be performed.
Otherwise, a sequential search through the file must be specified.

Both types of searches will locate the same logical record; if
more than one logical record in the file satisfies the condition,
the first one to appear on the file will be located.

Bisecting Sequential
Search Search Function
EQS EQL Equality
LQS LQL Less than or equal
GQS GQL Greater than or equal

The bisecting search is used with sequential access files only;
the sequential search is used with sequential, linked sequential,
and sequentially indexed files.

P, Location to which control is transferred if the condition is
satisfied.

8 Location to which control is transferred if the condition is not
satisfied.

Pg Location of area into which the record satisfying the condition is

transferred. If omitted, the record address in the buffer area is
returned in the FET. If a record area is omitted in both LOOK
and the FET (FILEDESC parameter), the records may not span
blocks for a successful LOOK operation.

3-7

3.9
INSERTM

11 737

Number of arguments, 1-10.

Memory location of the first (major) argument. The argument
must be positioned in the word so that no shift is necessary
before comparison with the logical record fields.

Length of first argument as number of 6-bit bytes. May be any
value from 1 to 100, but the total length of all arguments must
not exceed 100 6-bit bytes.

Byte position within the logical record of the first 6-bit byte of
the search field. Legal values are 1 to n, where n+p6: logical
record length in 6-bit bytes.

Same as PgP1g: applying to second through tenth arguments and
search fields.

This request writes a logical record according to the rules of the RITEFILE
request and provides linkage which will cause it to be logically inserted just
before the record most recently retrieved from the file. Subsequent con-

secutive INSERTM requests cause the records they write to logically follow
each other, all to precede the record most recently retrieved from the file.

INSERTM requires processing in linked sequential mode; the File Environ-
ment Table must contain the current SAK and the previous SAK: the current
record is approached in a logically sequential manner, not by positioning.

10

INSERTM (pl, Py Py p4)

File name specified in the FILEDESC macro.
Memory location of the record to be inserted (optional).

Memory location of the record length value (for universal type
logical records only).

Return indicator: if non-blank, control is returned to the user
upon initiation of the request; if blank, control is retained until
completion. To determine when the action is complete, the user
must test for a zero in bit 47 of the second word of the FET.

3.10
DELETEM

3.11
INDXFILE

This request generates the linkage which causes logical deletion of the record
most recently retrieved from the file. Each subsequent DELETEM request
causes logical deletion of the next succeeding record in the file.

DELETEM requires processing in the linked sequential mode. The FET
must contain the current and previous SAK; the current record is approached
in a logically sequential manner and not by positioning.

10

DELETEM (p))

p File name specified in the FILEDESC macro.

Files which are to be accessed in a random manner or by a sequential index
require an index designating the locations of the logical records in the file.
This index is written by MSIO when an output file is opened for processing

in either of these modes, or the index may be created for an existing file with
the INDXFILE request. The index is written as a separate file which must
be opened and have space allocated to it.

An ATTACH macro (3. 13) is required to link the data file and index file any
time an index file is used. Only one index file can be attached to a data file
through any one FET.

10

INDXFILE (p,)

p File name specified in the FILEDESC macro for the index file.

1

When an index is written for random access files, the user must use the
RANDOM macro (2.6) to provide the nomenclature for the data file; all
parameters of RANDOM are meaningful in this case. For random files, the
current SAK of the data file is stored as the index entry; the position of the
index entry (SIK) is developed by randomizing the data file nomenclature
fields.

3.12
SPACEM

3-10

For sequentially indexed files, only Py of the RANDOM macro is specified.
The contents of this field must be in SAK format. It is stored as the next
sequential index entry in the index file.

This macro provides the user with a list of the remaining space available to
the system for allocation of files.

10

SPACEM (p,,P,)

Py Address (18 bits) of area where list of information is to be stored.

P, Number of devices desired.

p1 must be at least py cells in length. The number of sectors remaining will
be stored as a 48-Dbit binary number where the space remaining on device n
is stored in location: P, +n - 1.

Devices 1 through py are exam ined and the remaining space is returned in the

appropriate position of the pj area. If P, is zero, only device 1 will be
examined.

If a device is not open, or if more devices are specified by py than are
available to the system, a zero is returned as the space remaining for that
device.

On the return to the calling program from SPACEM, the A register will
contain the following:

A Upper Address of device name table.

A Lower Address of MSIO key word for communication area.

The remaining bits in the A register are zero; both addresses may be pro-
cessed as 18-bit addresses.

3.13
ATTACH

3.14
READBLOC/
RITEBLOC

This request links the File Environment Tables of two files so that one file
is used as an index for accessing the other file.

10

ATTACH (p,, P,)

P, File name specified in the FILEDESC macro for file to be
indexed.
P, File name specified in the FILEDESC macro for the index file.

Both files must have been opened prior to this request, and both files must
have complete File Environment Tables.

The user may specify his own record locating routine for multi-level indexing;
subsequent ATTACH macros may be issued as required. ATTACH may not
be issued from an interrupt subroutine.

These requests transmit one block according to the control word chain
supplied; no deblocking is provided. The blocks will be read/written
sequentially.

_ 10
READBLOC ()
RITEBLOC P1°P2
P, File name specified in the FILEDESC macro.
P, Memory location of control word chain.

The control word chain must be in the format described for a Drum SCOPE
READ request. The total word count must be equal to the block size specified
for the file. Normal Drum SCOPE restrictions apply. (See Drum SCOPE
Reference Manual, Publication No. 60059200.)

If a parity error occurs with READBLOC or RITEBLOC, no automatic retry
is provided.

The following requests, REWINDM, backspace, SKIPM, and MARKEFM may
be used for tape simulation only, and the sequential mode of access must be
used.

3-11

3.15

REWINDM This request manipulates the SAK fields of the file such that the order of
reference of the next logical record is the first logical record in the file.
REWINDM may be only used for sequential files.

10

REWINDM (p,)

File name specified in the FILEDESC macro.

3.16

BACKSPACE Two backspace requests are available: backspace file (BSPFM) and backspace
record (BSPRM). These requests cause MSIO to manipulate the SAK fields
of the file such that the order of reference of the next logical record is changed.
BSPFM positions the file at the first logical record in the file or the previous
end-of-file block specified by the user. BSPRM backspaces one record block.
If the request is issued when the current point of reference is not the beginning
of the block, BSPRM will position the file at the first word in the same block.
When already at the beginning of a block, the point of reference will be
changed to the preceding block.

10

BSPFM (p.)
BSPRM (p))

p File name specified in the FILEDESC macro.

1

Only files using sequential accessing may be backspaced. BSPRM should
not be used when logical records span blocks.

3.17

SKIPM This request effectively positions the file at the first record after the next
user-supplied end-of-file. If there is no end-of-file, this request will take
the invalid key return. This request is valid only with a file using sequential

accessing.
10

SKIPM (p,)

File name specified in the FILEDESC macro.

3-12

3.18
MARKEFM This request marks the end-of-file; it should be used only to mark sets of

data as end-of-file marks are not used by MSIO. If this request is given
before the current block has been filled, the current block will be written
as it exists in the buffer. An end-of-file mark requires one complete block.

10

MARKEFM (p,)

P, File name specified in the FILEDESC macro.

This request is valid only with files using sequential accessing.

3-13

RECORD LOCATING ROUTINES 4

The technique of a record locating routine provides flexibility of file structure.
A record locating routine forms the linkage between the user and the data
rerords contained in a file. Four routines are provided by MSIO; thepar-
ticular one to be used for a file is specified in the FILEDESC macro (p,.,),

and is designated within the File Environment Table. Only one type of

routine may be used for any one file.

The user may prepare his own record locating routines; in this case he must
specify the entry point to his routine in Pi3 of the FILEDESC macro.

MSIO provides the routine for the access desired if Pis is specified as any
of the following:

pi3 of FILEDESC Record Locating Routine
RLOC. SEQ Sequential

RLOC. LSQ Linked sequential
RLOC.RND Random

RLOC. SQI Sequentially indexed

Seek Address Key

The controlling element for file processing is the Seek Address Key (SAK).
Any record in a data file is accessible to the user through its SAK field. A
record locating routine produces and maintains the particular SAK for the
record being accessed. SAK format:

47 24, 11 0
Block number 0 Relative word
count
Range of block number is: 1 = n =file size

Range of the word count is: 1 = n = block size

4.
SEQUENTIAL

4.2
LINKED
SEQUENTIAL

4-2

Link Field

Linked sequential and random routines require a link field. This is a 48-bit
field in SAK format which may be placed anywhere within a data record: but
its position must be constant for all the data records in any one file. When
this field is non-zero, MSIO has created linkage which will be followed as
far as necessary to locate the proper record.

With sequential access, records are processed as they occur on the external
device (input) or in the order they are produced (output): physical and logical
sequence are the same.

For sequential access, the user must specify p3 of the FILEDESC macro
as: RLOC.SEQ. Any record/buffer combination is legal within the
restrictions specified for records and buffers (1.5).

Since the first block number is 1 and the first word in the file is 1, the initial
SAK for a sequential file is:

47 2423 0

As each record is accessed, the block and word count are incremented
according to the size of the record and the number of records per block.

Sequential access is the only type of access for which the following tape
simulation macros may be used:

REWINDM SKIPM
BSPRM (Backspace Record) MARKEFM (Mark End-of-File)
BSPFM (Backspace File)

Linked sequential access is used when the physical and logical sequence of
records in a file are not necessarily the same. It is often used when a file

is updated by deletion of old records or inclusion of new records with the
DELETEM or INSERTM macros. When INSERTM or DELETEM are used
with this mode, care must be taken that a POSITION request has not destroyed
the previous SAK in the File Environment Table.

When linked sequential access is desired, the user must specify Pig of
FILEDESC as: RLOC. LSQ

In addition, a record area and at least one buffer area must be specified.
If the second buffer is given, it will be used only to hold out-of-sequence
records.

When physical and logical sequences are not the same, the logical sequence

is maintained by linkage data within the current logical record. The linkage
data consists of a 48-bit word in SAK format within each record which
indicates the next record in logical sequence. The field containing this linkage
word is specified by the user with the LINKMODE macro (2. 4); it may occur
anywhere within a data record but its position within the record must be
constant for all logical records in the file. The link field always appears in
both the record and buffer areas. When the logical and physical sequences

of a file are the same, this field will contain zero. The user is not required
to preset the link field when creating a file.

4.3

RANDOM Random access allows the user to refer to a logical record in a file by a
symbolic key or name (nomenclature) within the record. MSIO uses a
randomizing routine to determine the location in an index file of a word in
SAK format which locates each data file record.

To use the random routine, the user must define and allocate an index file in
addition to the data file being accessed. The index file and the data file are
then attached with the ATTACH macro (3. 13).

The user must specify pyg of the FILEDESC macro as RLOC. RND for both
the data file and the index file when used for random access. Any other
index references prior to a CLOSFILE are handled automatically by MSIO.
(The creation of a new index file requires special procedures which are
described later in this section.)

One buffer area and one record area must be specified for the data file; a
second buffer will be ignored. Only one buffer area may be specified for
the index file; anything else is ignored. The record type in the index file
should be the same as that of the data file. When POSITION is specified for
random files, p3 must be blank.

The RANDOM macro (2.6) must be used to define both the position of the
nomenclature field within each record of the data file, and the location of a
corresponding nomenclature field in memory which will be randomized. The
user must also define a field within the data file record in SAK format for
linkage ; this field is used by MSIO. The user defines this field with the
LINKMODE macro (2.4). RANDOM and LINKMODE are used for the data
file only.

4-3

The user should always specify an invalid key routine to be entered when
reading a random file; the entry point to such a routine is defined by p
the OWNCODE macro (2.5).

12t

When a file is processed randomly, the user must place the key name
(nomenclature) for each record in the memory location defined by p; of
RANDOM before he specifies a READFILE or a RITEFILE for that record.
The nomenclature field in memory is randomized to determine the position
within the index file of the index entry whether the record is being written

or read. When reading, MSIO sets bit 47 of word 15 in the File Environment
Table (Appendix A) when the record is found. If the record is not found,that
bit is set to 0 and MSIO takes the invalid key return specified by p12 of
OWNCODE.

The index file is maintained by MSIO and all reading and writing of the index
is done automatically. The index file consists of one word entries in SAK
format. The order of the entries depends on the nomenclature; the index file
is written randomly. Once an index file is created, the size may not be
changed; however, a new index file may be created by the user for a random
data file. This might be desired if the existing index file is either too small
requiring excessive linkage, or too large resulting in waste space. The
following procedure is used to make a new index file for a random data file:

1. Define the data file with the FILEDESC, LINKMODE. and RANDOM
macros; p, . of FILEDESC must be RLOC. SEQ.
2. Open the data file for 1/0 with the OPENFILE macro (p, = B).

3. Define the index file with FILEDESC (P13 = RLOC. RND);
ALLOCATE, OPENFILE (p2 = B), and ATTACH new index file.

4. Read first record (scquentially) from data file and pick up the
nomenclature from the record.

(7]

Place nomenclature from record into nomenclature field in memory
(defined by RANDOM macro).

6. Use INDXFILE macro (3.11) to place data file SAK field into a
slot in new index file.

7. Read next record and return to step 5. Continue until end of file,
then close both files.

4.4
SEQUENTIALLY
INDEXED

Sequentially indexed access allows the user to read a data file in the order
specified by an index. When a sequentially indexed file is written, MSIO
automatically constructs an index file in the same order as the data file.
When a sequentially indexed file is read, the index is processed sequentially
and the data file is read according to the index. Each entry in the index file
is the SAK for a particular record in the data file. The index file is distinct
from the data file; the user must define this file and allocate storage for it.

This type of access is particularly useful for sorting. The sort tag or key
together with the SAK field may be extracted from each record to produce a
set of abbreviated records. These records are then sorted according to the
tag or key producing a list of sorted SAK's.

It is recommended that one buffer area and one record area be specified for
the data file; either may be used alone subject to the buffering restrictions
(1.3). Only one buffer area may be specified for the index file; anything else
is ignored.

A new index consisting of the sorted SAK's is then produced as follows:
1. Define the data file with the FILEDESC and RANDOM macros; p13
of FILEDESC must be RLOC.SQI.
2. Open the data file with the OPENFILE macro.

3. Define the index file with FILEDESC (p;3 = RLOC. SQI), ALLOCATE
and OPENFILE; ATTACH the new index file.

4. Use INDXFILE macro to place the SAK field into the next available
consecutive slot in the new index file. The location of the SAK is
specified in the RANDOM macro for the data file.

5. Continue to the end of the SAK list, then close both files.

FILE ENVIRONMENT TABLE FORMAT A

The format of areas in an FET which the user may wish to examine are listed below; areas not listed
are reserved for internal use by MSIO.

Word Bits Usage

0 46 1 designates optional file indication

1 47 transmission in progress
45 transmission error
41-24 location of 14-character ident field

2 47 pointer advanced flag
46 open or closed file
45 end-of-file read on input
41-24 location of edition number
23-18 type of open found on label when opening

100000 = master
000001 = input
000010 = output
000100 = input/output

3 41-24 location of date-written value in label
17-0 location of retention code value in label
4 38-24 word count of current record in record area
17-0 location of record area (FWA)
5 17-0 location of primary buffer
6 17-0 location of secondary buffer
7 46 standard error recovery suppressed
17-0 record locating routine entry point address
8 41-24 address of submitted nomenclature
9 41-40 10 = variable trailer items or 01 = universal format
38-24 fixed record size in characters or zero if variable
14-0 physical record size in words (maximum) (block size)
10 32-24 FN = file number (in binary)
23-18 device type
17-0 address of record (buffer or record area)
11 41-24 before-beginning-label on input entry point address
17-0 before-beginning-label on output entry point address

Word

12

13

14

15

16

18

19
20
21

22

23

24

25
26
27
28

29
30

Bits

44-42
41-24
17-0

41-24
17-0

41-24
17-0

47
41-24
17-0
41-24
17-0

47
38-24
23-21
14-0

47-0
47-0

35-24
23-0

47-45
32-24
23-0

47
17-0

47
41-24
17-0
47-0
47-0
47-0
47-24
23-0
47-0
47-0
47-42
41-24

23-18
17-0

Usage

001 = input; 010 = output; 100 = input/output
after-beginning-label on input entry point address
after-beginning-label on output entry point address

before-ending-label on input entry point address
before-ending-label on output entry point address

after-ending-label on input entry point address
after-ending-label on output entry point address

record found indicator
error on input entry point address
after errors on output, entry point address

after end-of-file on input, entry point address
invalid key entry point address

1 = record size determined by record mark

size of OCCURS item (if used)

number of characters in size descriptor (maximum = 7)
location of key in record relative to beginning (character count)

device name
access key

relative position of link key in record
file condition

allocation control
number of segments allowable
number of record blocks allocated for file

writecheck requested
FET location of index file

call specified return before completion
blocking routine entry address
deblocking routine entry address

current SAK
SAK of next available record
SAK of last logical record

block number of last EOF accessed (sequential)
block number of next EOF (sequential)
if not sequentially accessed, first SAK

SAK of previous record

count of characters to be used when randomizing
location in memory of mask to use with nomenclature
size of nomenclature fields, character count

relative position of nomenclature within record

ERROR MESSAGES AND RECOVERY PROCEDURE B

MSIO checks for errors at assembly and execution time to ensure the validity of each call to MSIO.
Automatic procedures are available at the user's option to attempt recovery from data transmission
errors.

ASSEMBLY TIME ERROR MESSAGES

An error detected at assembly time produces an assembly error from COMPASS by generating an
illegal operation code with a remark describing the error condition. These error diagnostics are
provided in addition to the normal error checking done by the COMPASS system.

The assembly diagnostics are printed in the form:
099 p message
where 0 =the COMPASS error flag;

99 = the illegal operation code field;

p = the value of the parameter found in error.

0 99 (value of pg) ~ ERROR CONDITION—ILLEGAL DEVICE TYPE
FILEDESC macro submitted device type not 828 or 814 or an unknown device type

099 (value of Pg) ERROR CONDITION—BOTH DEVICE TYPE AND NAME USED
FILEDESC macro submitted both device type and device name

099 (value of pl) ERROR—MASS FILE MUST BE LABELED
LABELING macro submitted NON—STND label for disk file

0 99 (value of pl) ERROR—LINKMODE NOT USED FOR TAPES
LINKMODE macro submitted for tape file

0 99 (value of Py ERROR—RANDOM NOT USED FOR TAPE FILES
RANDOM macro submitted for tape files

0 99 (value of p2) ERROR—ILLEGAL INPUT/OUTPUT KEY
OPENFILE macro submitted an I/0 key not equal to I, O, or B

099 (value of pg) ERROR—ILLEGAL SEARCH TYPE
LOOK macro submitted an unknown search type

EXECUTION TIME ERROR MESSAGES

In addition to error checking at assembly time, certain tests are made by MSIO each time a request
for processing is made. When an error is discovered, a diagnostic is printed on the standard output
unit and the job is terminated. The following diagnostics are printed in the form:

FILE-NAME

diagnostic
ALLOCATION PARAM. ERROR

initial allocation was specified for existing file; or an increase or decrease in allocation was
requested when creating file.

BUSY FET CALLED
last operation for this FET is not yet completed; can occur when using return type calls to MSIO.

CHAIN ADDRESS ERROR
input/output chain refers to area outside of bounds.

CHAIN SIZE ERR.
for READ/RITEBLOC, the control word chain total word count is not equal to the block size.

DUPLICATE RANDOM RECORD
occurs when an index is constructed for random access file and an index entry already exists
with identical nomenclature to the record presently being processed.

FET NOT BUSY AFTER CALL
MSIO system error.

FILE ALREADY OPEN
attempt made to open a file already opened.

FILE NOT OPEN
file must be opened prior to processing.

ILLEGAL ACCESS
an attempt was made to write on an input-only file, read an output-only file, allocate without
master access, or there is security check error.

ILLEGAL PROGRAM LEVEL
an OPENFILE, CLOSFILE, ALLOCATE, or ATTACH request may not be specified from within
an interrupt subroutine.

INT. SUB. -LOST RETURN
a call from within an interrupt subroutine has destroyed the return address to MSIO.

INVALID REQUEST
illegal call for this type access; for example, a REWIND request for a random-access file.

LOOK PARAMETER ERROR
the number of characters in search field greater than 100; or the number of search fields
greater than 10.

MORE THAN 63 SEGMENTS
allocation for this file would take more than 63 segments.

MSIO BUSY
an MSIO call was issued from an interrupt subroutine while a main program MSIO request
was being processed.

NO EOF/INVKEY OWNCODE
an error has occurred and no end-of-file or invalid key OWNCODE routine has been specified.

NO ERR. OWNCODE
a parity error has occurred (input or output file) and no OWNCODE routine has been specified.

NO LABEL FOR FILE
no label can be found in the label directory for this input file.

NO LABEL ID
attempt made to open a file with no address given for file name.

NO MASSFILE CRD
attempt made to open mass storage file without MASSFILE card.

NO RECORD AREA

processing has been attempted in random or linked sequential mode and no record area was
specified.

NO REC. LENGTH
universal record format being used and no record length given for RITEFILE.

NOT ENOUGH SPACE ON DEV,
not enough space available on the device for file allocation.

OUTPUT NOT ALLOWED
write protect set in the label on opening the file.

PARITY ON LABEL
parity error on the label; no reading or writing can be processed.
POS.-INS. /DEL. ILLEGAL
attempt made to insert or delete record in file but previous SAK not found; previous POSITION

macro destroyed SAK.

PRIM. DEV. DOWN
device to which first segment is allocated (primary device) unavailable.

SECONDARY DEVICE DOWN
device to which second through nth segment is allocated (secondary device) is unavailable. The
operator may request continuation of processing or terminate the job (OPENFILE request). If
continuation is requested and a READFILE request for the file is given, a message is printed:
BLOCKS x TO y UNAVAILABLE. Accessing must be sequential and may be input only.

TOO MANY FILES
descriptor tables are full (MASSFILE card parameter too small), or files have too many segments.

TOO MANY SEGMENTS REQD.,
allocation cannot be made within the number of segments alloted.

ZERO ALLOCATION
attempt was made to open a file without a prior ALLOCATE.

DATA TRANSMISSION ERROR RECOVERY

The user may request standard error recovery procedures through the FILEDESC macro. Recovery
procedures for tape:

Reading: Tape is backspaced and re-read three times.

Writing: Tape is re-written three times at original position: if error persists, the tape is
erased 6 inches, and the write procedure repeated. A series of three erase
sequences and 16 writes are attempted.

If the error persists, the user's OWNCODE subroutine is executed, if specified. This subroutine is
expected to perform necessary actions to continue or terminate the job. Ifno OWNCODE routine is
specified, the operator is consulted. He can ignore the error and continue processing, repeat the
recovery sequence, or terminate the job. If the job is terminated, appropriate messages are
written on the standard output unit.

If standard error recovery procedures are requested for mass storage files, the record is re-read
or re-written three times before the OWNCODE routine is entered or the operator is consulted for
action.

MSIO/GPIO INCOMPATIBILITY C

1. Record mark; when a record is terminated by a record mark
MSIO: must be last character (bits 0-5) of word
GPIO: may be any character in record

2. FILEDESC macro; parameter pl designates logical record length

MSIO: blank = simple variable length records
universal records
record mark records

n = length in 6-bit bytes of fixed portion of trailer type variable length records,
17=n<32760

GPIO: n = maximum logical record size in characters

LABELING macro
MSIO: Py required
Py optional
Pg omitted
Py optional, ignored for output
Py required, if specified as zero or blank the file is assumed to be scratch

[

GPIO: p; required
p, optional
Py optional
Py optional
optional, ignored for input

4. VARIABLE macro
MSIO: p. blank = simple variable or fixed length with trailer
non-blank = variable terminated by record mark; p,-p, are omitted
If the record is a simple variable, p2 and pg give the size and position of a key
field in each record holding the number of characters in the record; if the
record has a trailer field, pg and pg describe a key containing the number of
occurrences of the trailer for the record.
Py contains the size of the trailer item

GPIO: Py 0 = simple variable; has key field
1 = variable terminated by record mark, p_-p, are omitted
P, and pg always give the size and position of a key field in the record contain-
ing the number of characters in the record.
p, size of trailer item, or number of 6-bit bytes if record is binary

5. OWNCODE

OWNCODE Exit Descriptions

OWNCODE exits are not serviced in the same manner by MSIO and GPIO. The exits are
described below as they are handled by each 1/0 system.

Py

MSIO - Exit (UBJP) when a READFILE request is made after the last logical record
in a file has been read, or after the last logical record preceding an end-of-file block
has been read. This exit occurs before p4 and p5 exits.
GPIO - Exit (BRTJ) when the end of an input file is reached. This exit occurs after
p4 and p5 exits. If this exit is not specified, GPIO aborts the run at this point, with
error message "I0 ER. INCR USE 20'".
Both - Exit (BRTJ) while processing an input OPENFILE request, before the
beginning label (if any) is available to the user.
MSIO - Exit (BRTJ) while processing an input OPENFILE request before the begin-
ining label is rewritten. The label is available to the user with master access, and
certain fields may be modified. The location of the label is contained in item
RECBEGIN (FET).
GPIO - Exit (BRTJ) while processing an input OPENFILE request. A standard label
is available for examination in 9COMMON+1 after it is checked by GPIO. A non-
standard label is stored in the record area and its location is defined by item
RECAREA (FET). Tor a file with standard labels which is not the first file on a
multi-file reel, the first label on the tape is checked by GPIO, stored at
9COMMON+1 and the label of the input file is treated as non-standard (read into
the record area, unchecked).
MSIO - Exit (BRTJ) while processing an input CLOSFILE request, before the
beginning label is rewritten and before the FET is cleared. The beginning label is
not available to the user. MSIO provides no ending label.
GPIO - Exit (BRTJ) while processing a READFILE request: for standard labels.,
after the file mark preceding an end-of-file or end-of-tape label is read but before
the label is available: for non-standard or no labels, after a file mark is read.
MSIO - Exit (BRTJ) while processing an input CLOSFILE request, after the
beginning label is rewritten and the FET cleared. MSIO provides noending labels.
GPIO - Exit (BRTJ) while processing a READFILE request: for standard labels,
before the file mark following an end-of-file or end-of-tape label is read, the label
is available for examination in 9COMMON+11; for non-standard or no labels,
immediately after the p4 exit option is processed.
MSIO - Exit (BRTJ) on a read error after three reread attempts have been made.
If no owncode routine is specified, a message indicating the error is typed. The
operator is given the option of:

1. Abandoning the job (ABANDON)

2. Repeating the error recovery procedure (RETRY) or

3. Accepting the erroneous record (CONTINUE)
A logical input record may be reread by setting item POINTADV (FET) = 1 and
reissuing the read request.
GPIO - Exit (BRTJ) on a read error after sixteen read attempts have been made.
A message is typed indicating the error. If no owncode routine is specified, the
operator is given the option of: ignoring the error; requesting a reread; dropping
the physical record and printing it on the standard output; terminating the job.

10

11

12

MSIO - Exit (BRTJ) while processing an output OPENFILE request, before the
beginning label is available to the user.

GPIO - Exit (BRTJ) while processing an output OPENFILE request. For standard
labels, exit occurs before the first four label words are assembled by GPIO
starting at 9COMMON+1. But the user may store in the last six label words at this
time. A non-standard label will be written from the record area, defined by item
RECAREA (FET), and should be assembled at this time. The entire record area
is written.

MSIO - Exit (BRTJ) while processing an output OPENFILE request, before the
beginning label is written. The label is available to the user and certain fields
may be modified. The location of the label is contained in REC BEGIN (FET).
GPIO - Exit (BRTJ) while processing an output OPENFILE request, after the
beginning label has been written.

MSIO - Exit (BRTJ) while processing an output C LOSTFILE request, before the
beginning label is rewritten and the FET is cleared. The beginning label is not
available to the user. MSIO provides no ending label.

GPIO - Exit (BRTJ) while processing an output CLOSTILE or CLOSREEL request:
for standard labels, before the file mark preceding the end-of-file or end-of -tape
is written—the label is available for user modification in 9COMMON+11; for non-
standard or no labels, before the file mark ending a file or tape is written.

MSIO - Exit (BRTJ) while processing an output CLOSFILE request, after the
beginning label is rewritten and the FET is cleared. MSIO provides no ending
labels.

GPIO - Exit (BRTJ) while processing an output CLOSFILE or CLOSREET request:
for standard labels, after the file mark following an end-of-file or end-of-tape label
is written; for non-standard or no labels, after the file mark ending a file or tape
is written.

MSIO - Exit (BRTJ) on a write error after three rewrite attempts have been made.
If no owncode routine is specified, a message indicating the error is typed. The
operator is given the option of: ABANDON, RETRY, or CONTINUE. (Same as
input options.) A logical output record may be rewritten by saving item CNTSAK
(FET) prior to the first write and restoring it prior to the rewrite. This operation
can be done safely only if the file has been opened for 1/0, or, if two buffers are
defined and the largest logical record does not exceed the defined block size (buffer).
On write parity errors, item CNTSAK (FET) may be saved when OWNCODE exit
pllis taken, then restored for a rewrite after returning to the main program.
GPIO - Exit (BRTJ) on a write error after 16 rewrite attempts are made, blanking
tape cach time. A message, indicating the error, is typed. At this point, the bad
record has been erased and the tape is positioned at a new spot. If no owncode
routine is specified, or upon return from an owncode routine, GPIO will again
attempt to write the record. The write error procedure has been initialized so that
if subsequent errors occur, 16 rewrites will be attempted as described above.
MSIO - Exit (UBJP) when an attempt has been made to read, write or position
beyond the bounds of a file. If this exit is not specified, MSIO tvpes a message and
aborts the run at this point.

6.

~
[

OWNCODE Clarifications and Restrictions

RITEFILE

BOTH - No 1/0O may be performed, using MSIO or GPIO, within the respective
OWNCODE exit subroutines (p2 to pll).

GPIO - As far as GPIO logic is concerned, there are no multi-reel input files if
non-standard or no labels are specified. The user must close and open (and check
non-standard labels on) successive tapes as though they were separate files.

For tapes with standard label, closing and opening of reels is handled by GPIO and
the p1 exit takes place only after the end-of-file label has been read.

GPIO - On output, when an end-of-tape mark is detected, GPIO issues a CLOSREEL
(UNL) request, performing OWNCODE exits 9 and 10. On the next write request,
GPIO opens a new tape, performing OWNCODE exits 7 and 8 and writing a label
(standard or non-standard), then writes the logical record.

GPIO - Standard labels are read andwritten in BCD. Non-standard labels are read
and written in the recording mode defined for the tape.

GPIO - The OWNCODE exit parameters for GPTIO have been rearranged to conform
with the OWNCODE macro description in the MSIO manual.

MSIO - For exit p3, there is no item in the FET table telling whether the user has
master access or not. Therefore, the user might examine the label area defined
by RECBEGIN (FET) to determine if MSIO has actually provided a label. The
procedure should be to examine the first label word, bits 30-41 for a label
identifier [()]. The label will be provided whenever user record or buffer areas
are large enough (at least 14, words).

MSIO - The areas of the FET which are cleared during a CLOSFILE request (see
p5 and p10) are the dynamic items which must be initialized in preparation for a
possible re-open using the same FET. Items such as LINKFIELD, 0/C, OPENTYP,
1/O, ALLOCAT, DESLOC, CNTSAK, PREVSAK, ABLKCNT, BBLKCNT, etc., are
cleared. Items set by the file description macros (FILEDESC, LABELING, etc.)
are not cleared.

MSIO: p, location of record area

Py location of record length value, used only for universal type logical records

I return indicator; if non-blank control is returned to user upon initiation of
request

ps writecheck indicator; blank = normal write, non-blank = writecheck mode

GPIO: pz,ps,p4, and p5 ignored by GPIO

READFILE

'MSIO: p, location of record area

p3 entry point of end of file return
P, return indicator; if non-blank, control is returned to user upon initiation of
request

GPIO: p2,p3, and p4t are ignored by GPIO.

8.

CLOSFILE

MSIO:

GPIO:

file name specified in FILEDESC macro

modification indicator for storage allocation of mass storage file:

blank allocation unchanged

non-blank allocation reduced to size of file
lock indicator for non-mass storage files:

U unload

R rewind to loadpoint

other no rewind

rewind option:

RWD. rewind tape
UNL. rewind and unload tape
NOR. no tape action

symbolic address of FET entry for this file

INDEX

Access Linked sequential access 4-2, 3
linked sequential 4-2 LINKMODE 2-6; 4-4, 5
random 4-3, 4 Logical records
sequential 4-2 fixed length 1-1
sequentially indexed 4-5 fixed length with trailer 1-2
ALLOCATE 3-1 record mark 1-2
ATTACH 3-11 simple variable length 1-1
universal 1-2
LOOK 3-7

Backspace 3-12

Blocks 1-1, 2

BSPFM 3-12;4-2 MASSFILE 1-8
BSPRM 3-12; 4-2 MARKEFM 3-13;4-3
Buffer areas 1-2, 3

OPENFILE 3-2
CLOSFILE 3-5; C-5 OWNCODE 2-6; C-2, 3, 4
CLOSREEL 3-5

Physical records 1-2
DELETEM 3-9 POSITION 3-6
Device label 1-4

RANDOM 2-7, 8
Error Messages B-1, 2, 3 Random access 4-3, 4
Error Recovery B-4 READBLOC 3-11
‘ READFILE 3-3; C-4
Record areas 1-2, 3
Recovery procedures B-1, 4
RITEBLOC 3-11
RITEFILE 3-4; C-4
REWINDM 3-12; 4-3

FILEDESC 2-1; C-1

File Environment Table (FET) 1-7; A-1
File label 1-4, 5, 6

File security 1-7

INDXFILE 3-9

INSERTM 3-8 Sector 1-2, 4

Seek Address Key (SAK) 1-7; 3-6, 12; 4-1
Seek Index Key (SIK) 3-6

Segment 1-1, 4; 3-1

Sequential access 4-2

Sequentially indexed access 4-5

SKIPM 3-12; 4-3

SPACEM 3-10

LABELING 2-3, 4, 5; C-1
Labels 1-3, 4, 5, 6

Label processing 2-4
Link field 4-2, 4, 5

VARIABLE 2-5;C-1

Index-1

CONTROL DATA

CORPORATION

COMMENT AND EVALUATION SHEET

3600/3800 MSIO
Reference Manual

Pub. No. 60174800A Revised - September, 1967

THIS FORM IS.NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS. MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL. COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM name;

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

FOL.D ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FOLD

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

STAPLE

Pub. No. 60174800A

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

N ION3IH3I4d3Y OIS 008£/009¢€

VNN

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	4-01
	4-02
	4-03
	4-04
	4-05
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	Index-01
	replyA
	replyB
	xBack

