@@

COMPUTER SYSTEM
SCOPE

REFERENCE MANUAL

CORPORATION

CONTROL DATA
corpoRrATION

=500

COMPUTER SYSTEM
SCOPE

REFERENCE MANUAL

CONTROL DATA
comroraTion

CORPORATION

REVISION RECORD

60053300
REVISION NOTES
This printing includes the most current revision level.
9/64 Original printing.
A
4/65 Reprint with revision.
B
6/65 Reprint with revision.

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub, No, 60053300B

°1964, 1965 Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Software Documentation
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

CONTENTS

CHAPTER 1

CHAPTER 2

SCOPE OPERATING SYSTEM

1.1 Control Statements

1.2 Requests

1.3 Jobs

1.4 Logical Units

1.5 Minimum Unit Configuration
1.6 Equipment Assignment

1.7 Satellite

1.8 Tape Labeling

SCOPE CONTROL STATEMENTS

SEQUENCE Statement
JOB Statement

FILE Statement
EQUIP Statement

Library Statement
AET Statement

END REEL Statement
ENDSCOPE Statement

© 0 3 O U~ W N =

.10 Loading Object Programs
.11 Executing Object Programs

NONONMODN NN NN DNDDND DD N

.12 Examples of Deck Structure

Loading, Executing Library Programs

2-12
2-21
2-22
2-23
2-24
2-24
2-26
2-30

iii

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

v

PROGRAMMER REQUESTS

3.1 Input/Output Requests

3.2 Stacking of Requests

3.3 External Interrupt Control
3.4 Internal Interrupt Control
3.5 Clock Interrupt

3.6 Special Requests

DEBUGGING AIDS

4.1 Snap Dump

4.2 Trace Dump
4.3 Recovery Dump
4.4 Memory Map

LOADER

5.1 Loader Operations

5.2 Loader Control Cards
5.3 Loader Calls

5.4 Program Assignment
5.5 Correcting Subprograms

5.6 Binary Card Formats

PREPARATION OF OVERLAY TAPES

6.1 Loader Control Statements

6.2 Executing Overlay Programs
6.3 Loading Overlays and Segments
6.4 Format of Overlay Tapes

3-1

3-12
3-14
3-14
3-19
3-21

4-1

4-1
4-3
4-5
4-5

5-1
5-3
5-7
5-10
5-13
5-16

6-1

6-1
6-9
6-13
6-19

CHAPTER 7

SECTION A

SECTION B

SECTION C

LIBRARY PREPARATION AND MAINTENANCE

7.1 Input/Output

7.2 Record Types

7.3 Control Statements on Standard Input Unit
7.4 Changing PRELIB

7.5 Table of Contents

AVAILABLE EQUIPMENT TABLE
MACRO DEFINITIONS AND CALLING SEQUENCES

Internal
Input/Output
Interrupt

Special
SCOPE MESSAGES AND DIAGNOSTICS

Messages on OUT
Messages on ICM
Messages on OCM
Messages on ACC
Messages on PUN
Diagnostics on OUT
Diagnostics on OCM

7-1

7-2
7-3
7-7
7-19
7-20

C-1

C-~15
C-18
C-20
C-21
C-21
C-30

SCOPE OPERATING SYSTEM 1

The SCOPE monitor system for the Control Data® 3600 computer facilitates

job processing and simplifies programming and operating by providing:
® Job Processing
Assigns equipment
Initiates compilations and assemblies
Loads, links and initiates execution of subprograms
Allocates storage
Provides OVERLAY processing and accounting information
Communicates with Satellites ©
for input/output tape handling
® Debugging Aids
Diagnostics
Octal corrections

Special debugging dumps
SNAP
TRACE

Memory map

Error dumps (recovery dumps)

¢ Input/output Control and Special Requests
Input/output routines with drivers
External interrupt control
Tape handling - including labeling and continuation reels
Internal interrupt control

Sampling of time, date, equipment status, and available storage

® Library Preparation and Maintenance
Preparation of a new library tape
Editing

Listing the table of contents

11

CONTROL
STATEMENTS

1.2
REQUESTS

13
JOBS

14
LOGICAL UNITS

1-2

Monitor operations are specified in a job by control statements and
programmer requests.

The resident section of SCOPE occupies the low numbered locations of bank
zero. Resident includes the control routine, EXEC, input/output control,
10C, interrupt control, INC, equipment assignment, EQA, and the Satellite
control program, SCP, if used. The loader is adjacent to resident in lower
storage. System I/0 drivers and the library table of contents are loaded
into the highest locations of the highest available bank. The system I/O
drivers and SCOPE are protected by an internal interrupt system.

SCOPE control statements have the following card format: a7,9 punch in
column 1: a statement name (beginning in column 2); and parameters, if
required, separated by commas.

Control statements are free-field, but must be contained on a single
80-column card. No terminating character is needed.

A request is written as a macro instruction and assembled into a calling
sequence to a SCOPE routine. Requests may be written as calling sequences
in assembly language programs.

The request name begins in column 10 and is terminated by a blank column.
The address field may begin anywhere after the blank and before column 41.
Unless noted otherwise, requests may contain any legal COMPASS expres-
sion in the address field. Further details on statement parameters are given
in the COMPASS Reference Manual.

A job includes all operations indicated between JOB cards or between a JOB
statement and an ENDSCOPE statement. Each job is terminated with an
end-of-file mark. A job may consist of multiple assemblies, compilations,
and executions.

A job stack consists of a group of jobs placed together for processing by the
monitor control system. The stack begins with the first monitor statement
and ends with an ENDSCOPE statement.

In SCOPE control statements and requests, the logical unit designation allows
reference to a piece of equipment within the logic of the program; it is

independent of the physical unit designation. The programmer designates input
and output units with logical unit numbers 1 through 79. Mnemonics may be
used in programmer requests. Logical units are divided into three classes:

PROGRAMMER UNITS (logical units 1-49)

These units are assigned throughout the job for reference by the program.
When a tape is released at the end of the job, it may be unloaded and saved for
the programmer, if specified; or made available for reuse in a later job.

Mnemonic

SCRATCH UNITS (logical units 50-59) So0,81, ... S9

Scratch units may be referenced at any time by the programmer, but they are
released after each execution and may not be saved.

SYSTEM UNITS (logical units 60-80)

The system units assigned by the monitor system are used by SCOPE and the
programmer and, with two exceptions, are released only at the end of the job
stack. The load-and-go unit, available to compilers and assemblers, is
released at run time; auxiliary libraries are released at the end of each job.

Logical Number Mnemonic

STANDARD INPUT 60 INP

The control cards for all SCOPE jobs are placed on this unit by the operator.
Frequently, the programs and data to be processed are also on INP.

STANDARD OUTPUT 61 ouT

SCOPE control statements, diagnostics, dumps, and loader control cards are
written in BCD mode on this unit. Program output may also be written on OUT.

STANDARD PUNCH OUTPUT 62 PUN

Program and SCOPE output for punching is recorded on this unit.

INPUT COMMENT 63 ICM

Comments from the operator to the monitor system are made on this unit. The
programmer may also use ICM for input directions.

1-3

14

Logical Number Mnemonic
OUTPUT COMMENT 64 OCM

Statements from the monitor system to the operator are made on this unit. The
programmer may also list information on this unit. ICM and OCM are usually
assigned to the console typewriter. OCM must be assigned and operable, other-
wise the jobs are terminated.

ACCOUNTING INFORMATION 65 ACC
Job statements, date, time on and off, and elapsed job time are written on this
unit for installation records.

SATELLITES 66-68 none
Satellite units are used by the system when it is operating in Satellite mode.
SCOPE contains a control program for handling Satellite input/output requests.
Programmers cannot control or reference the Satellite units.

LOAD-AND-GO 69 LGO
Binary object programs transferred from the standard input unit or produced by
compilation or assembly may be stored here prior to loading and executing.
This unit may be saved by the programmer with an EQUIP statement. If saved,
it will be released at the end of the job. If not saved, it will be released at the
beginning of the run.

SCOPE LIBRARY 70 LIB
The SCOPE library contains the monitor system and all programs and subrou-
tines which operate under SCOPE, such as, FORTRAN, COBOL, COMPASS,
SORT. and ALGOL.

AUXILIARY LIBRARIES 71-79 none
Auxiliary libraries are used for library preparation and editing and additional
system libraries.

SYSTEM SCRATCH RECORD 80 SCR
Monitor equipment tables, accounting data, and recovery dump information for

each job are stored in the first record of this unit. If part of resident is
destroyed by a running program, the system uses the information on this tape

15
MINIMUM UNIT
CONFIGURATION

1.6
EQUIPMENT
ASSIGNMENT

for recovery. The first scratch unit requested by a program is made equivalent
to this unit. The programmer may never reference logical unit 80.

An available tape must be provided on a unit numbered 1 through 7 for assign-

ment to SCR at autoload time. Since the number is set in the STOP switches,
the STOP switches are not available for programmer use.

The minimum configuration required by SCOPE includes:

INP ACC (may be hypassed)
ouT LIB

ICM SCR

OCM

Compilers and assemblers operating under SCOPE may require additional
units.

SCOPE assumes that all programmer and scratch logical unit numbers refer
to unique, high-density (556bpi), labeled, magnetic tapes read or written in
binary mode; and that tapes are not saved at the end of a job. If programmer
and scratch units meet this description, no special equipment declarations are
needed.

The normal equipment assignments may be altered by:

EQUIP
Equate a logical unit to a specific hardware type
Equate different logical units to a single physical unit

Declare a tape to be unlabeled

EQUIP or LABEL

Indicate a desired tape label for a logical unit

MODE

Indicate the recording mode of a tape unit

EQUIP or MODE
Select a particular density for a tape unit

Restrict the use of a unit

EQUIP or SAVE
Indicate that a tape is to be saved at the end of the job

1.7

SATELLITES Satellite computers may be used in conjunction with the 3600 computer. The
3600 computer is set to Satellite mode when Satellites are performing peripheral
processing, input tape preparation, output tape processing or accounting for
these jobs through 3600 communication.

18

TAPE HANDLING The label provided by SCOPE or defined by the programmer is the first record
of a tape. Tapes handled by SCOPE are usually labeled. An unlabeled tape must
be declared, and its physical unit number fixed. A logical tape may contain any
number of reels, the labels of which differ from one another only in reel number.
Reels of the same tape are usually written in the order 1, 2, 3, ..., 99; reel 1
follows reel 99.

Character

Position Parameters
1 Density 2, 5 or 8
2-3 Unique label identifier ()
4-5 Logical unit number - 2 BCD digits
6-8 Retention code - 3 BCD digits
9-22 File name - 14 alphanumeric characters
23-24 Reel number - 2 BCD digits
25-30 Date written - month, day, year in BCD (mmddyy)
31-32 Edition number - 2 BCD digits
33-80 Any information user chooses

MODE All labels, except SCR and LIB, are read and written in BCD mode (even parity).

1-6

WRITE
ASSIGNMENT

LABEL WRITING

When a tape is to be assigned for writing, each tape with a write enable ring is
examined by SCOPE. In examining the first record, SCOPE determines if the
label is standard by checking character positions 2 and 3 for left and right paren-
theses. If the record is a standard label, SCOPE adds the retention code and

the date written and compares the result to the current date. The tape is con-
sidered available if the current date is greater than the result. If the record is
not a label the tape is considered available. When a tape is needed for output,
SCOPE searches for an available tape. If a tape cannot be found, SCOPE notifies
the operator who may remedy the situation as indicated in Appendix C, Messages
on ICM and Messages on OCM. When a tape is assigned, SCOPE types the label
identification (positions 9-32) for that unit.

Retention code is tested twice during a job, when tapes are assigned and when
they are released. When the retention code is zero or blank, the tape is not to
be saved. A retention code of 1 through 998 specifies that number of days; 999
reserves the tape permanently.

The programmer supplies the data for the first four words of a label with either
a LABEL request or an EQUIP statement. The WRLABEL instruction specifies
the last six words of the label as user supplied information and transmits the
full ten words from core storage to the magnetic tape.

Name or

Logical Unit Whenever a label is written, either a name or logical unit
is written in the label. If both are specified, the name is
written. The name may be specified in either an EQUIP
statement or a LABEL request. The logical unit is either
the master unit (specified in WRLABEL or the first output
request) or the unit specified in an EQUIP statement or
LABEL request. The file name is 14 alphanumeric char-
acters. If the file name is blank, the tape will be a numbered
tape; edition, retention code or date written will be the same
as that specified on a label request for that logical unit.

Identification Label identifiers () are always written in the label.
Density Density designation is always written in the label.

Reel Number Declaration of reel number is optional. It may be specified
in either an EQUIP statement or LABEL request. If it is
not specified for output reels, SCOPE assumes the first
reel is number 1 and increments by 1 for each subsequent
reel. If previous reels are numbered and no reel number
is specified for continuation reels, the last reel number is
incremented by one.

Edition Number Declaration of edition number is optional. It may be
specified in an EQUIP or LABEL request. If it is not
specified, SCOPE writes blanks for edition number.

A specified edition number is the same for all reels of a
file. If edition is not specified for continuation reels,
SCOPE assigns the edition number of previous reels.

Retention Code Retention code may be specified in an EQUIP statement or
LABEL request. If not specified, zero is used but the tape
may be saved via the SAVE request or EQUIP statement
and unloaded at the end of the job. When the retention
code is non-zero, a SAVE request for that unit is not
needed.

Date The date written is specified by the operator at initial
autoload and written in each label.

User's Area Information may be specified in a WRLABEL request,
otherwise BCD zeros are written in these 48 character
positions.

LABEL READING A LABEL request or an EQUIP statement specifies the first four words of data

to be interrogated in an input label. The programmer can access the last six
words via the RDLABEL instruction which transmits ten words from the magnetic
tape to core storage.

Name or

Logical Unit When labels are used for assigning logical units, either the
unit number or the label name is checked. I specified in
an EQUIP statement or LABEL request, the name is used.
A logical unit differing from that specified in the call may
be specified in EQUIP or LABEL.

Identification The label identifiers and the record length are used to
determine whether the first record on tape is a label.

Density The density character specifies the recording density for
reading and/or checking this label.

Reel Number Reel number is optional and may be specified with a

LABEL request or EQUIP statement. Unless otherwise
specified SCOPE reads the lowest numbered input reel

first and increments the number by one for each subsequent
reel. For continuation reels, a number one greater than
the previous reel is sought.

ASSIGNMENT
PROBLEMS

LABEL SKIPPING

Edition Number The edition number, which is the same for all reels of
a file, may be specified in an EQUIP or LABEL request.
If no edition number is specified, the field is ignored when
checking labels and making the assignment.

Retention Code When input reels are sought, retention code is ignored.

Date The date specified in an EQUIP or LABEL statement must
exactly match the date on the label. If a date is not spec-
ified, the date on the label is ignored.

User's Area Information in this area may be interrogated via the
RDLABEL request. If the first request on a unit is not
RDLABEL, this information is ignored.

No available input reel, duplicate input reels, (except on RDLABEL) no available
reel for output, or non-standard label assignment (unlabeled tapes) may prevent
the normal assignment of units. The operator is queried via the OCM unit and
must reply via the ICM unit. For specific detail, see Appendix C, ICM messages
and OCM messages.

Example:
Write on logical unit 25, high density magnetic tape, in binary mode, with

standard labeling. Without an EQUIP statement or LABEL request, SCOPE
searches for an available tape and writes a label containing:

density 5

unique label identifier ()

logical unit number 25

retention code 000

file name (14 characters) blank

reel number MMDDYY entered by operator at beginning
of SCOPE run

edition number 2 BCD blanks

6 words BCD zeros

If a tape without a label is to be used, it must be declared as unlabeled. If a
name or a unit number different from that appearing in the request is to be read
or written in a tape label, the name or number must be declared. All labels
contain either a name or a logical unit number; library tape labels have both.

If a unit is positioned at load point when a request which produces tape motion is
issued, the label will be skipped by the system. ‘In the case of RDLABEL and
WRLABEL, the skipping is not performed.

1-9

SCOPE CONTROL STATEMENTS 2

21

SEQUENCE
STATEMENT

Jobs and directives are submitted to SCOPE on the standard input unit.
Jobs are executed in sequence from the standard input unit or as specified
by the operator.

gSEQUENCE,n

This statement assigns a job sequence number, n, which serves as identi-
fication for scheduling purposes. SCOPE does not check the order of the
numbers.

The SEQUENCE statement immediately precedes a JOB statement on the
standard input unit. An end-of-file mark should precede each SEQUENCE
statement (section 2. 10).

When the SEQUENCE statement is encountered, SCOPE unloads saved tape

S,

and releases all other programmer units, scratch units, and the load-and-go

unit. The current job is terminated and the new job initiated.

Example:

<end-of-file>
gSEQUENCE,z;
7
JJOB, . ..

end-of-file
gSEQUENCE,S

7
9JOB, ..

In Satellite mode, SEQUENCE cards are recognized but are renumbered by

the Satellite computer.

2-1

22
JOB STATEMENT

23
FILE STATEMENT

2-2

All programs submitted for processing under SCOPE start with a JOB card
which signals the beginning of a job, provides accounting information for the
installation, identifies the programmer, and sets a job processing time limit.

7 .
9JOB,c,l,t

¢ the charge number; unlimited number of alphanumeric
characters. SCOPE truncates to 8 characters in
Satellite mode for Satellite accounting.

i the programmer identification. It may be any length and
appears as given in the control card listing; it is truncated
to 6 characters for operator identification.

t the maximum time limit in minutes allowed for the entire
job including operator functions. No job may exceed 2184
minutes; if a limit is not specified, the maximum is assumed.

The job is terminated if the ¢ and i fields are not present. A single JOB
card may be used for any number of independent programs; however, the
time specified is the maximum allowed for the combined programs.

Binary records can be transferred from the standard input unit to another
logical unit by the FILE statement.

7
9FILE,u

All records which follow the FILE statement up to a FILE END statement
are transferred to logical unit u:1-59, or 69 (load-and-go). The records
are written in odd (binary) parity.

gFILE END

SCOPE writes an end-of-file mark and then backspaces over it when the
FILE END statement is encountered. Any number of FILE - FILE END
sequences may be directed to the same or a different logical unit. Any
type of binary data may be transferred with a FILE statement except the
SCOPE control statements: SEQUENCE, JOB, END REEL, END SCOPE.
An attempt to transfer any of these statements will terminate the job.

24

EQUIP
STATEMENT

HARDWARE
DECLARATIONS

Normally, the EQUIP statement precedes the RUN card of the program or the
entry point name statement. However, it may be entered on Input Comment Unit
by the operator during a run. EQUIP statements are required to declare pro-
grammer or scratch units which are not unique, standard-density, labeled,
magnetic tapes.

TEQUIP,u=d;,dy,ds, .. . ,dy

u logical unit number; 1-59, 69, 71-79 from INP;
1-65,69-79 from ICM

d declaration

The types of EQUIP declarations are:

hardware disposition assignment
usage equivalence
density labels

The logical unit category determines how long the EQUIP declaration remains in
force. Declarations pertaining to scratch units are in effect for a single execu-
tion only. Programmer unit declarations carry over between executions of a
job, unless changed by other EQUIP statements. System unit declarations
remain until all jobs have been processed, unless specifically redefined.

Declarations may be combined in one EQUIP statement; however, there is no
error checking. If they conflict, the last declaration in the list takes precedence.

JEQUIP, u=hhn

hh specifies the hardware type:

MT magnetic tape LP on-line printer
CR card reader DR drum

PT paper tape station TY typewriter

CP card punch TV display

DF disk file PL plotter

n is the AET ordinal of the hardware type, (Appendix A). If n is absent,
the next available physical unit of the hardware type is assumed to be
referenced.

2-3

2-4

When hh specifies a Satellite, SA, SB, SC, SD, SE, or SF, n is the octal ordinal
for the unit connected to the specified Satellite. It must be specified.

After an EQUIP statement is processed, SCOPE types a message indicating
which physical unit has been assigned. (Appendix C, Messages on OCM).

Examples:
7
9EQUIP, 10=CR
The first available card reader is assigned to unit 10.
7
9EQUIP, 12=CR2

Logical unit 12 will be the second card reader in the Available Equipment
Table.

ZJOB,3215079, PETE, 15
7
9EQUIP,10-CR2
7 —
9EQUIP, 9=CP1
object program
7
gRUN,7,300,7,1
< end-of-file>

TEQUIP,11=CR3

object program

gRUN, 6,250
< end-of-file>

Logical unit 10 is the second card reader, logical unit 9 is the first card
punch, and logical unit 11 is the third card reader in the AET.

USAGE 7
DECLARATIONS 9EQUIP,u=hh

hh RW read/write; all operations are allowed.

BY bypass; all references to this unit except MODE (usage) and
STATUS are treated as no operation.

RO read only; output operations (WRITE, WEOT, WRLABEL,
MARKEF and ERASE) cause job to be abandoned.

Read-only units such as card readers need not be declared as
such.

Usage declarations may be made for logical units 1-59, 65, 71-79.

JEQUIP,11=RO Unit 11 is a read-only unit.

DENSITY .
DECLARATIONS §EQUIP,u=hh

hh LO low density magnetic tape (200bpi)
HI high density magnetic tape (556bpi)

HY hyper density magnetic tape (800bpi) or the highest density of
which the unit is capable.

Density declarations are allowed for any acceptable logical unit not yet refer-
enced.

JEQUIP, 12-HY

Density declarations may be followed by a magnetic tape ordinal, n.
gEQUIP, 5=HI05 processed as if the statement were:

T EQUIP, 5=MT05, HI

2-5

ASSIGNMENT
DECLARATION

DISPOSITION
DECLARATIONS

gEQUIP,u=DA (units 1-49 and 71-79)

DA Defer automatic assignment of logical unit; SCOPE requests
assignments from the operator.

JEQUIP,u=hh

hh SV

directs a message to the operator.
available for reuse when the limit set by the retention code

expires.

PR

PU

PP

print tape at end of job.

punch tape at end of job.

save tape at end of job. SCOPE unloads tape at end of job and

All tapes not saved become

Only logical units 1-49, 69-79 may be saved.

print BCD records and punch binary records at end of job.

More than one disposition declaration may appear in an EQUIP statement, but
only the last will be effective.

the same as PP; only PR would be effective.

allowed for logical units 1-49 and 69.

SV, PR is the same as PR, SV. PU, PR is not
PR, PU and PP declarations are

UTNIT.

EQUIP STATEMENTE MAY THESE EQUIP DECLARATIONS ARE LIMITED TO THE CHECKED UNITS
ORIGINATE FROM: LOGICAL
i ROM: UNITS | USAGE LABEL DISPOSITION EQUIVALENCE EQUIP, u=u'
INP (60) ICM (63) EQUIP, u =% EQUIP,u=() EQUIP, u = SV | EQUIP, u = PR,PU,PP " o
YES YES 1-49 YES YES YES YES YES YES
YES YES 50-59 YES YES YES
YES 60,63 YES
YES 61,62,64 YES
YES 65 YES
66-68
YES YES 69 YES YES YES
YES 70 YES
YES YES 71-79 YES YES YES YES YES
80
DECLARATIONS CONCERN- ANY ACCEPT- EQUIVALENCING OF
ING HARDWARE TYPE AND ABLE UNIT MAY SYSTEM UNITS IS LIMITED
DENSITY MAY BE MADE BE DECLARED TO: 62=61
FOR ANY ACCEPTABLE TO BE UNLABEL- 65=61
ED EQUIP, u= ** 65=62

2-6

Satellite mode:
PR, PU, PP cause the tape to be turned over to the Satellite for processing.

The tape is blank labeled and returned to the system unless SV is specified,
in which case, the tape is unloaded after being processed by the Satellite.

Non-Satellite mode:

PR, PU, PP cause the tape to be unloaded; a message is typed to the
operator.

5EQUIP, 2=SV, PR
In Satellite mode, logical unit 2 is printed by the Satellite, and unloaded.

In non-Satellite mode, a PRINT message is given to the operator on OCM
and logical unit 2 is unloaded.

EQUIVALENCE
DECLARATIONS Master Logical Unit

EEQUIP,u=u'
u' unit is made equivalent to u.
Unit u must be unassigned when the declaration is made, unless it is a

system unit. Units 1-59, 71-79 (u) may be equated to units 1-64, 69, 71-79
(u'). System unit equivalencing is restricted to the following:

62 = 61
65 = 61
65 = 62

If two logical units are equivalent they refer to the same physical unit. Any
number of units may be equated to each other, but separate EQUIP statements
must be used for each pair. Only one u' may be equated to one u per EQUIP
card. The master logical unit is the last unit in the string of equivalences.

2-7

Examples:

gEQUIP,30=61 unit 30 is equated to standard output unit (61)
gEQUIP,31=32 units 31 and 32 are the same physical unit
7 -
9EQUIP, 2=6
>

7 unit 6 is the master logical unit
9EQUIP, 3=2

Tequp,1-2 |
JEQUIP,2=3 | unit 4 is the master logical unit
T UL, 32

JEQUIP,3=2 |

TEQUIP, 1=2

7 unit 2 is the master unit
9EQUIP, 3=2

UNLABELED TAPE q
DECLARATION gEQUIP,u=**

** unlabeled or non-standard labeled tape.

Any acceptable logical tape unit may be declared unlabeled.

READ The programmer must inform the operator which physical reel should
be mounted. With an EQUIP,u=hhnn, the operator must define the
specific physical tape unit containing the reel.

WRITE SCOPE looks for an available unit.

When unlabeled tapes are used, the first read command will read the first

record on the tape. When tapes are labeled, the first read command reads the
second record on the tape.

gEQUIP, 20=** HI, SV

This statement makes it possible to read or write on an unlabeled, high
density tape (556 bpi), unit 20. The SV (save) declaration causes SCOPE
to unload the tape at the end of the job.

JEQUIP, 20=**, MT

SCOPE attempts to locate an available tape. Therefore, the MT form of the
EQUIP statement should not be used for an input tape.

LABELED TAPE .
DECLARATIONS gEQUIP,u=(name, edition, reel, retention code or date)

Logical units 1-49, 71-79 may be labeled.

Name may contain up to 14 alphanumeric characters. Name begins with the
first character after the left parenthesis and ends with the comma or right
parenthesis; blanks will be filled in to the right.

Edition and reel number (1 to 99) are optional; but they should be used if two or
more labels have the same name. I no reel number is specified, the lowest
reel number is taken for input and the output reel is numbered 1.

If logical unit u represents an output tape, the last parameter is the retention
code; a blank or zero specifies that the tape is not to be retained. A code of 1
through 998 indicates the number of days the tape is to be saved; 999 indicates
the tape is to be retained indefinitely.

If logical unit u represents an input tape, the last parameter is the date the tape

was originally prepared. If a date is specified, SCOPE compares this date with
the date contained in the label. If no date is specified, no check is performed.

Examples:

T EQUIP, 25=(INVENTORY, 1, 1), LO, RO, SV

Logical unit 25 contains a tape labeled INVENTORY, edition 1, reel 1. It is
a low density, read-only unit, which is to be unloaded at the end of the job.
The date is not to be checked.

gEQUIP, 10=(RUSSIAN-ENGLISH LEXICON,,1,999)

Label a tape (logical unit 10) with RUSSIAN-ENGLISH LEXICON reel 1, the
first operation on this tape is a write. The tape is to be permanently
reserved.

2-10

LOGICAL
UNIT NUMBER 7
DECLARATIONS 9EQUIP,u=(*nn, edition, reel, retention code or date)

Logical units 1-49, 71-79 may be labeled.

nn is the 2-digit logical unit number, 1-79, contained in the tape label (this is
not the tape name) or to be written in the label. If no tape with nn in its label is
found when the first request for unit u is a READ request, SCOPE will ask the
operator to supply the tape or terminate the job. If the first request for unit u

is a WRITE request, the number nn will be written in the label.

Only u may be used in a request for that unit. If the programmer wishes to use
a request with nn, he must first give EQUIP, u=nn.

gEQUIP, 28=(*35,1,1,30)

The tape assigned to logical unit 28 contains 35 as the logical unit number
in the tape label, although it is referenced as unit 28 in the program.

This statement may be used to write a tape referenced as logical unit 28
with unit number 35 in the label. It will be retained for 30 days from the
"current date.

EQUIP statements precede the program in which the logical unit is referenced.
In the following example, FILE A, edition number 1, is the name of unit 20.
CHANGE FILE is the name of unit 21. Unit 22 has the same name as unit 20,
but it is the second edition. All units are to be saved.

4JOB,20, BETA 15

7

9EQUIP,10=CR

7 _

9EQUIP, 11=CP

JEQUIP. 20=(FILE A, 1), SV, RO, LO
JEQUIP, 21=(CHANGE FILE), RO, SV, LO
JEQUIP, 22=(FILE A, 2), SV, LO

TLOAD, 49

JRUN. 13,3000

In the next example, high density (556 bpi) logical units 5 and 20 are to be saved.
COSY input to the COMPASS assembly is on logical unit 5. COSY output is to be
on logical unit 20.

gJOB 30,QWERTY, 30

gEQUIP, 5=(COSY TAPE,1,1,20565)

JEQUIP, 20=(COSY TAPE, 21,1,999)
JcoMPASS, Y=5, C=20, L, X

IDENT

SCOPE

gEQUIP, 25=(*40)

JEQUIP, 26=+*, HY

7
gLOAD

gRUN,ZB, 1000

Logical unit 25 contains a tape with a label bearing the logical unit number
40; input/output requests within the program which reference 25 will
reference this tape. (If 40 were referenced, a new unit would be assigned;
both labels would contain the unit number 40.)

The hyper density (800 bpi) tape on unit 26 has a non-standard label. The
physical unit must be specified by the operator via ICM when the unit is read.

2-11

25
LOADING,
EXECUTING
LIBRARY
PROGRAMS

COMPASS

2-12

2 W oW B X O YooK

Library programsT are referenced by statements which name the entry points to
them (FTN, COMPASS, ALGO, ALDAP, COBOL). Execution of this statement
directs that the referenced program be loaded. Control is then given to the
program and the operation is performed. Upon return of control to SCOPE, the
lower address of the A register indicates whether errors were (non-zero) or
were not (zero) detected during compilation or assembly. The upper address
portion of the A register indicates whether the library subroutine must be
reloaded before being re-entered by another call. I it is non-zero, the library
subroutine will be reloaded, otherwise not.

7entr int name P

9 Yy po ,Pl,Pz’---, m
pi are parameters interpreted by the library program.

Assembly options are indicated by free-field parameters separated by commas.

Parameters may appear in any order. The parameters may be followed by =n,
indicating a non-standard unit is to be used.

Z,C OMPASS, assembly options

Options Meaning

—

BCD source language input

COSY input

Punch relocatable binary object program deck

COSY output

Write relocatable binary object program output for load-and-go
List source language subprogram

Punch source subprograms from a COSY deck

Cross referenced symbol table listing

Produce full macro/ECHO detail list

Specific information concerning the COMPASS card is in the 3600 COMPASS
Reference Manual.

*Library programs should not be confused with SCOPE library subroutines which are called by
symbolic reference in a subprogram.

Examples:

Icompass, P, X, L
Source input is on logical unit 60.
Binary deck is punched on logical unit 62.
Load-and-go tape is produced on logical unit 69.

Source language programs are listed on logical unit 61.

JcoMPASS, 1~25, P=10
Source input is on logical unit 60.
Source language programs are listed on logical unit 61.

Binary output is punched on logical unit 10.

gCOMPASS, Y=1,L,C=2
BCD input is on logical unit 60.
COSY input is read from logical unit 1.
Source language programs are listed on logical unit 61.

COSY output is on logical unit 2.

7

FORTRAN gFTN, options
A terminal period is optional; the field may also be terminated by the end of the
card.
Options Meaning
L List source language program
P Punch relocatable binary deck
X Write load-and-go tape
A List assembly language program, COMPASS
I BCD source language input
C Punch a COSY output deck
B BCD assembly output

*

Compile code for one bank

Specific information concerning the FTN card is in the 3600 FORTRAN
Reference Manual.

2-13

coBOL

2-14

Examples:

g)FTN, I=49,L,A
Source input is on logical unit 49.

Source and compiled program are listed on unit 61.

IPTN, A, L, X

Source input is on logical unit 60.
Source and compiled program are listed on unit 61.

Binary object program is written on unit 69.

$COBOL, options

The parameter list may be terminated by a blank or a period.

Options Meaning

Suppress source program listing

Write object program on load-and-go unit

Print a data map on standard output unit

Write relocatable binary object program on standard punch unit
List trivial errors

List the object program on standard output unit

Z B oS w2 KON

Number source code lines on source listing; source input deck numbers
are ignored

Specific information concerning the COBOL card is in the 3600 COBOL Reference
Manual.

Examples:

dcosoL, z,x

suppress the source program listing and write object program on
standard load-and-go unit.

JcoBoL, x

print source program listing on OUT and write the object program on
standard load-and-go unit.

gCOBOL
treated as gCOBOL, X.

ALGOL ALGOL 60 programs may be compiled in two modes. ALGO mode compiles and
executes immediately. ALDAP compiles; execution may occur immediately or
later.
gALGO

gA LDAP, options
Options Meaning

L List source program
A List assembly language program, COMPASS
P Punch relocatable binary object program

E or X Prepare load-and-go tape

B Punch BCD COMPASS cards
o Assign a unit as translator overflow tape
I BCD source language input

Specific information concerning the ALGO and ALDAP cards is in the 3600
ALGOL Programming Systems Bulletin.

2-15

SOURCE DECK
STRUCTURE

2-16

Examples:

TALGO

The source program following the ALGO card on the standard input unit
is compiled and executed.

T ALDAP, L, P, X
Source input is on logical unit 60.
Binary cards are punched on logical unit 62.
Source program is listed on logical unit 61.

Load-and-go tape is prepared on logical unit 69.

The entry point name statement is followed by the source program to be
assembled or compiled by the library program.

A FTN card may be followed by either FORTRAN or COMPASS source
language subprograms to be compiled or assembled.

A COMPASS card is followed by COMPASS subprograms to be assembled.
A COBOL card is followed by a COBOL source program to be compiled.

An ALDAP card may be followed by an ALGOL source procedure to be
compiled or compiled and executed or a COMPASS subprogram to be
assembled. An ALGO card is followed by an ALGOL source procedure to be
compiled and executed or a COMPASS subprogram to be assembled.

If more than one library program (compilers or assemblers) is used for
processing the subprograms for a single program, the source decks are
stacked consecutively.

When there are consecutive calls to the same library program with no
intermediate runs, the library program is not reloaded. This is true even
if the calls occur in different jobs.

For each source language subprogram, a binary object program will be
produced and stored on the logical unit designated by one of the parameters
on the entry point name card. After each binary program is written on a
logical unit, the library program writes an end-of-file mark and backspaces
over it. Therefore, after all binary subprograms are written on the unit,
only one end-of-file mark will remain; and the unit will be positioned so that
any subsequent compilations for that unit will write over it. Consequently,
at the end of the last compilation, an end-of-file mark remains on the unit.

A SCOPE card is required to indicate the end of the source subprograms
following a FORTRAN or COMPASS card; also to indicate the end of the
source procedures following an ALDAP card. An EOP card is required to
indicate the end of the program following an ALGO card. COBOL does not
require a SCOPE card. The word SCOPE begins in column 10; since it is
not a SCOPE control card, there is no 7,9 punch in column 1.

Examples:

10

|
Z?OM‘PASS,C,L,R
IDENT ANDY
: COMPASS subprogram

END
IDENT BRENDA

. COMPASS subprogram

END
SCOPE

i 7 |10

FIN,A,L,P
PROGRAM ONE

~J

FORTRAN program

[END
IDENT TWO

COMPASS subprogram

ND

SUBROUTINE TWO
: FORTRAN subroutine

EN.

SCOPE

2-17

10

I
ZALDAP,L, A
PROGRAM co
ALGOL program
'EOP'
ALGOL procedure
'EOP'
SCOPE

s

COBOL M,L,,P,T
IDENTIFICATION DIVISION.

: COBOL program
ND PROGRAM.

| 10
7
ALDAP, L JP A
IDENT FOR
: COMPASS subprogram
[END
ALGOL procedure
'EOP’
ALGOL procedure
'EOP’
IDENT TAG
: COMPASS subprogram
ND
COPE
DEBUGGING
PARAMETERS The parameters, s; and sy, in the entry point name statement are used to
modify or debug the library program (not the program being compiled or
assembled).
7 .
gentry point name (Sl , 52) +P1:Pgs -+, Py

81,89 are designators C and D; they may be interchanged or either one
may be absent.

C Octal correction cards for the library program are submitted on
INP. The corrections apply only to the subprogram containing
the specified entry point. The octal correction cards are ter-
minated by a single TRA card. Card formats OCC and TRA are
given in 5.6.

2-18

If subprograms other than those with a main entry point are to be
corrected, use the CORRECT loader control card (5.2). Following
the CORRECT card, are the OCC cards and 1 TRA card for each
name on the CORRECT card.

D SNAP or TRACE statements for the library program are submitted
on INP. The names on the SNAP and TRACE cards may be relative
to any program name, entry point, or common block used during the
loading of the specified entry point name (Chapter 4).

Examples:
SNAP or TRACE statements only

7
epname (D)$ pl P

9 2

TRACE and OCC

7
9epname (D,C), p1 , P2

or

7
9epna.me (C,D),p1 s Pz

When the SCOPE parameters are used, the OCC and TRA cards follow the
entry point statement. If both C and D are used, the octal correction cards
must precede SNAP and TRACE cards. A RUN statement must be included
to initiate execution. Source decks to be assembled or compiled follow the
RUN statement.

Examples:

1 10

COMPASS |(C),C,L,X

0CC
oce See section 5.6

TRA

RUN,2,400,5
COMPASS Subprograms

SCOPE

7
9

7
9

2-19

2-20

O |-

FIN (D),k,X

2
B

RUN, 5,1000, 3

ORTRAN Subprograms
COPE

W~NONONON

] 10

See chapter 4 for options

;COBOL ooy, X,L

0ocC
ocC
TRA

SNAP, x

SNAP, xx:

O NYONON

RUN,2,10p,7
COBOL program

) 10

COMPASS |(C,D),L,X

O~

7CORRECT | COMPASSX, SIOPACK

OCCJs
TRA

occ'
TRA P

SNAP, xxx
TRACE,x:Jx

RUN,2,100,7
1DENT

OSSN OWN VN

e

corrections for COMPASSX

corrections for SIOPACK

26

LIBRARY
STATEMENT

10

ALDAP (Dy),L,X
SNAP, xx¥]

TRACE , xxi

O N WO NONON

RUN, 2,50 ,7

ALGOL programs
SCOPE

With the library statement, the programmer may define an auxiliary library
tape during a job.

JLIBRARY,u
u logical unit number 70, 71-79.

Logical unit numbers 71-79 define auxiliary library tapes, and 70 is used to
return to the standard library tape during a job. However, the standard library
tape remains available to SCOPE for I/0 routines, debugging aids and the sys-
tem itself while the auxiliary library feature is in use. All programmer
requests for loading undefined entry points will call those routines from the
auxiliary library tape.

When an auxiliary tape is defined with the LIBRARY statement, the table of
contents for that tape is transferred to high core and is bounds protected.
When end of job or the next LIBRARY, 70 statement occurs, the tape and core
are released, but the tape is not unloaded so that it may be referenced by the
next job if necessary.

To assure that the proper tape has been mounted, an EQUIP statement should
be used defining the label of the requested auxiliary tape. If there is no EQUIP
statement, any library tape may be used as the auxiliary library, but only one
auxiliary library tape is permitted during each run. A LIBRARY, 71 statement
followed in the same job by a LIBRARY, 72 statement releases logical unit 71
and logical unit 72 becomes the auxiliary library tape.

The programmer determines the logical unit number (70-79) of the library unit
currently in effect by specifying U = 0 in a library request (Section 3.6.).

2-21

27

AET

STATEMENT If conditions arise which alter the availability of the physical equipment, the
Available Equipment Table (AET) entries in storage may be changed by the
AET control statement. When changes are made by the AET statement, only
the table in storage is altered; the original table recorded on LIB is not
affected.

The operator or programmer may use the AET control statement to: (1) obtain
a listing of the contents of the Available Equipment Table, (2) alter the status
of a unit, and (3) establish or alter an entire table entry. In the following for-
mats, e is the octal ordinal of the entry in the table.

To obtain a listing: ZAET, e, m

If e is blank, the entire table is referenced.

m is the unit on which the entry or table is to be written:

m = blank the output comment unit

m = OUT the listable output unit
To alter the status of a unit: ’;AET, e, a
a is the availability of the unit:

a = DOWN the unit is unavailable
a=UP the unit is available
The operator uses DOWN to indicate the equipment is not

operating. When the condition is corrected, the UP entry is
made.

To alter an entire entry: ;AET, e, 0000000000000000
o's represent 16-octal digits which is the value replacing the previous
value for entry e. See Appendix A for the format of the Available

Equipment Table.

After changing a table entry, SCOPE writes the new entry on OCM (Appendix C).

Examples:
Z)AET, 5 The 5th entry of the table is printed on OCM.
;AET, ,OUT SCOPE writes the entire table on OUT.
Z;AET, 15, DOWN Operator notifies SCOPE that the 15th unit is down.
;AET, 15, UP Unit represented in the 15th entry is again available.

2-22

0160100101402400

I

000'001 ooo 001 ooo ooo oo1|oooto0! IO 0 oo o 010 lolo 000'000
h l/O s sd cr sc c:1 e ' u ! d

h magnetic tape cr identifies controller ordinal

i/o both input and output tape sc Satellite control channel field

may be used for a unit is assigned to SCOPE

s unit is accessible to SCOPE e Satellite control channel field
X unit is not c?pable of asyn- 4 unit AET ordinal
chronous interrupt

sd identifies driver ordinal driver ordinal

If unit is to be used for input only, i/o = 10 rather than 11. The statement:
TAET,12,0140100101402400 would make the necessary change in AET.

9
28
END REEL
STATEMENT JEND REEL

This statement terminates the current reel of the standard input unit and may
appear between runs on the INP. It causes SCOPE to locate the next INP reel
or, if in Satellite mode, to accept the standard input unit from the Satellite.

An end-of-tape also causes SCOPE to locate the next INP reel, and does not
require the END REEL statement. It does not terminate a job; no job accounting
occurs. END REEL should be used with discretion, usually the installation
provides the END REEL statement.

An end-of-file mark must precede an END REEL statement.

In Satellite mode, END REEL cards are recognized but not processed by the
Satellite computer.

2-23

29

ENDSCOPE
STATEMENT

2-24

Examples:

Z)COMPASS, L,X

--------------- physical end-of-tape mark

SCOPE will look for the next reel of the standard input unit and continue
processing the COMPASS program.

Tcompass, L, X

END
SCOPE

< end-of-file>
gENDREEL

SCOPE will look for the next reel of the standard input unit. If there are
more COMPASS programs to be assembled in this job, the first control
statement on the next reel of the standard input may be:

ZCOMPASS, X,L

T ENDSCOPE

This statement signals SCOPE that the job stack is completed, and job
accounting for the last job is recorded. ENDSCOPE appears on the standard
input unit following the series of jobs to be processed. If INP consists of

more than one reel, a physical end-of-tape causes SCOPE to transfer from a
current reel to the next and ENDSCOPE appears on the last reel. The operator
may enter this statement on the input comment unit to terminate processing
prematurely.

SCOPE releases INP, OUT, PUN, and ACC when ENDSCOPE is encountered.
An end-of-file mark must precede an ENDSCOPE statement.

210

LOADING
OBJECT
PROGRAMS

STANDARD
INPUT

OTHER UNITS

A description of the loader is in chapter 5. The LOADER request (3.4) allows
the programmer additional control over loading operations.

A binary object program on the standard input unit is loaded into storage
unless a preceding control statement specifies other processing. All binary
program cards up to a SCOPE control statement or two transfer cards are
loaded.

7JOB,1234-A, DDS, 7

binary object program

Relocatable binary subprograms can be loaded into storage from programmer
units or the load-and-go unit by the LOAD statement.

7
LOAD,u
9
u a logical unit number 1-49, or 69. When u is omitted, the standard
load-and-go unit (69) is implied.

When the LOAD statement is encountered, SCOPE backspaces unit u one file
and loads subprograms until an end-of-file, two transfer cards, or another
control card is encountered. If the unit cannot be backspaced, SCOPE
immediately loads the subprograms. SCOPE interprets a second transfer
card as a loader terminator, but it is not required. If binary subprograms,
transferred from the standard input unit and produced by compilation or
assembly, are stored on the same logical unit during the job, only one end-of-
file mark will be present and it will follow the last subprogram stored on

the unit.

Binary subprograms may follow the LOAD statement if the loaded information
was terminated by an end-of-file mark and not two consecutive transfer cards.

2-25

Examples:

1J0B,ACCT7, AWS, 12
7
7 LOAD, 36

! LOAD, 37

Binary subprograms are loaded from logical units 36 and 37. If there are two
consecutive TRA cards, they must be the last records on unit 37.

7

4JOB,ACCT7,ABC, 5
TLOAD
binary object subprogram
2.1t
EXECUTING
OBJECT
PROGRAMS The RUN statement initiates program execution by transferring control to the

object program in storage. This statement is required to execute all object
programs. Library programs require a RUN statement only if debugging
parameters are specified.

ZRUN,t,p,r,m, TD

t the execution time limit in minutes (maximum 2184 minutes). The
entire job is terminated if the limit is exceeded. If t is blank, a
constant time limit, determined by the installation, is supplied. If
the run time limit is greater than the remaining job time limit,
execution continues only until the job time is depleted. The run
limit may not equal zero.

p the maximum number of print or write operations which may be
requested on the standard output unit during the execution. This
includes debugging dumps and any other output during execution.
The entire job is terminated if the print limit is exceeded. If the
print line limit is blank, a constant print limit, determined by each
installation, is supplied. The print limit may not equal zero.

2-26

T recovery indicator specifies area to be dumped if program does not
proceed to normal completion. Appendix D gives recovery dump
format.

r dumped area, written on standard output unit

0 or blank console

program and console

labeled common and console

program and labeled common and console
numbered common and console

program and numbered common and console

labeled and numbered common and console

N OO OB W N

console and all locations in all blanks except those
occupied by SCOPE

m the memory map indicator. If m is blank, storage allocations after
loading will be listed on the standard output unit. No map is written
if m is any other character. See Appendix C for format.

TD Terminal dump. If TD is non-blank, a terminal dump will be provided
at normal termination according to the specified recovery key. The
rest of the job will be skipped.

Example:

JRUN, 28,3000

Execution time limit is 28 minutes, and 3000 is the maximum number of
print requests. The console dump, if the program is terminated, and the
memory map are written on the standard output unit.

PROGRAM

TERMINATION The last executable statement in a program should return control to the operating
system. This is accomplished through an EXIT request (Section 3.6) or a jump
to the named transfer. (An exit is accomplished by jumping to the transfer
address specified by the entry point on an END card in a COMPASS subprogram.)
Programs that terminate by returning control to the operating system, with no
abnormal conditions existing, terminate normally. Programs terminated by any
other method are terminated abnormally.

2-27

END-OF-FILE
CARD

2-28

End-of-file indicators are required to separate jobs and are frequently used
to separate runs within a single job. If a job or run is terminated abnor-
mally, SCOPE skips to the next end-of-file on INP and reads the following
statement.

Runs should be separated by end-of-file indicators which must appear just
prior to the time when control is returned to SCOPE from the running
program. If program data follows the RUN card, the end-of-file comes
after the data.

If errors occur during assembly or compilation of a program, loading of the
job is not attempted. Subsequent assemblies or compilations of programs
in the job are processed, however, if the entry point name control statement
is preceded by an end-of-file.

When a program is running under Satellite mode or using the on-line card
reader, an end-of-file is produced by a card with a 7,8 punch in column 1.
Other peripheral processing programs may require a different punch con-
figuration to produce an end-of-file mark on tape.

(;:on ,42359,THR, 5

<end-of-file> l

;RUN, 5,10000 l

binary deck Ali
1 Program 2

data I

7

gRUN, 1,450 |

binary deck 441

/;JOB,1¢2358,’1‘W0,3 |
(/ <end-of-file>
ya 1
data

(97 RUN, 2, 5000

r
L
L
A=

Program 1

binary deck

7

9JOB, 42357 ,ONE, 4

If program 1 terminates abnormally, SCOPE skips to the beginning of the
next job. If program 1 runs to completion, but all of the data is not proc-
essed, SCOPE attempts to read the next data card, prints a diagnostic and
skips to the next job.

(93 RUN, 3,1200
(;LOAD
/
ll

—
L

r source deck program #3

(7FTN,L,A,X

data

<end-of-file>
\

<end-of-file>

data

source deck program #2]

FTN,L,A,X |
Y

(<end-of-file>

(data
(gRUN ,4,1000
7L0AD
(s
ya

L
A
A—
L
L

(, source deck program #1

/Z FIN,L,A,X

JOB,41142,CW,5

9

Since there are no errors in the first compilation, the object program is
loaded and executed. Errors are encountered in the second compilation;

no compilation
errors

compilation errors
compiled only

no compilation errors
loaded and executed

after compilation is completed, SCOPE skips to the end-of-file mark and
begins compiling the third program. After the third compilation, SCOPE
skips to the next end-of-file mark. Had any of the runs terminated abnor-
mally, SCOPE would have skipped to the beginning of the next job.

If subsequent compilations or assemblies are not to proceed when compiler
errors occur, the runs should not be separated by end-of-file indicators.

2-29

2.12

EXAMPLES OF
DECK STRUCTURE 1) Compilation of a single FORTRAN subroutine.

(end-of-file

(SCOPE

F END

N
1

Va
Va

£
(SUBROUTINE GO

(;FTN,L,A

§J0B, 12345, 0NE, 5

2) Compilation of a single COMPASS subroutine.

(end-of-file

(SCOPE

END

Y 1

([DENT STOP

(;(:ommss ,L

;JOH, 12346,1W0, 5

3) Compilation of a single COBOL program.

end-of-file

{,
[E&D PROGRAM .

Vi 1

ya
VA

IDENTIFICATION DIVISION,

éCOBOL

7908,12347 iR, 5

4) Compilation of a single ALGOL program.

l end-of-file

/ SCOPE

L "EOP'

ya

/
II \
.

L
PROCRAM TIIREE

/;ALDAP,L,A

7JOB, 12348, FOR, 5

9
PROGRAM 112(314(5]|6|78]{9)io|tip2li3[i1a]15]I6|17]18]19j202] 4|25(26[27{28(29|30|31(32] REMARKS
FIRST CARD OF SOURCE
P|R[O[GIRIAIM] |njajm|e SUBPROGRAM(OPTIONAL)
LAST CARD OF EACH
1] 1
ALGOL E|ojp SUBPROGRAM
END OF COMPILE
S|C|O|FIE (ALDAP_ONLY
1iole{n|T{1|F|1|cla|Tiz]o|N| |D|Z|v|T{s|T|O|N]. f,;ggmARDOFSOURCE
COBOL
END OF PROGRAM
e|n|o| |e|r|olc|r]a|M]. AND COMPILE
FIRST CARD OF EACH
IIDIE|N|T] |njajme SOURCE SUBPROGRAM
LAST CARD OF EACH
COMPASS E|NID SOURCE_SUBPROGRAM
s|clolelE END OF ASSEMBLY
P|R|O]JG|R[A|M nla/mje
FIRST CARD OF EACH
S|U|B|R|O|U|T{I|N|E nja|mje SOURCE SUBPROGRAM
FORTRAN Flulvc|t|z|o[n] |nla|m|e
me TAST CARD OF EACH
SOURCE SUBPROGRAM
s|clo|p|E END OF COMPILE

2-31

2-32

5) Compilation of a FORTRAN Program and several subprograms together
with a COMPASS assembly. All binary object programs are placed on
unit 4, which is saved.

end-of-file

y - . |
(SUBROUTIKE SAiBO

[END

A—
Va

L
/ PROGRAIM TRACE l

GFTN,L,X=4

9EQU1P,1+=S\7 F

790B,6-1407,D8,5

6) Execute directly from the standard input unit.

[end-of-file
/ (data)
(;RUN,lo,IOOO,l
L
= '
y-=
/ (binary object program)
gJon,Acc 141,RNAME, 13

7) Load from two programmer units and INP,

f end-of-file

{7Rw,8,1ooo,z

9

Vs
L
/=
A=
A—
 —

/ (binary object program)

ﬂLOAD ,37 +

7
(4LOAD, 36

770B,ACC 77, TNAME, 12

8) Sequential execution using EQUIP cards

(end-of-file

Vs
L
Va

L
((data for program #2)

ﬂauu,7,1000,1

Va
/A
L |

((binary object program #2)

{ end-of-file

A—
/£
Vs
Va

((data for program #1)

(;Run,lo,soo,z

[
A—
Va

(binary object program #1)

;EQUIP, 16=CP

/;EQUIP, 15=CR

/3103,574123,03,20

Changes made because EQUIP statements remain in effect for the duration of
the job or until changed by another EQUIP statement.

2-33

9) Assemble a COMPASS subprogram and FORTRAN subprogram on the load-
and-go unit, Execute the program. Save the load-and-go tape.

r end-of-file
(;RUN,20,2000,4

7
(9LOAD
(SCOPE

L
(PROGRAI! KRIK

/ END

L
L
Vi
L
L
L

/ IDENT BENY:

FIN,X

(5
(Z)EQU{P,é‘):SV

;JOI’,,A\CC1123,DS,22

10) Compile and load a FORTRAN program. Load a binary subprogram
from INP. Execute.

end-of-file
(chx ,10,1000,1
y:

A
L —
Va |

)
((Izinary object programs)

(97 LOAD, 15
/ SCOPE

L~ |
L
L 1
Vs

L
/(FORTRAN source programs)

ﬂyoxrmm X=15

;Jos,Accsuz,us 12

2-34

11) Include debugging aids.

end-of-file

(data)
J;RUN, 10,2000, 4
((5TRACE by, --,p,

((55WR Py --py

L
Va
A=
L

((binary object programs)

{gLOAD, 15

(SCOPE

L
ya
y—
ya
Vi

(FORTRAN program)

7 =
(9FTN,X 15

JOB,726123,DS,12

9

SNAP and TRACE cards precede the RUN card. (Refer to Chapter 4). The
number of print requests includes SNAP or TRACE dumps.

12) Compile and execute ALGOL program.

[end-of-file

L
Ve

/ data
/ 'EOP'

L
A—
L 'l
A=
ya

L
(PROGRAM DUD

(9TALG0

JOB, 1457 ,ZER 4

9

2-35

2-36

13) Compile and execute ALGOL program.

(r end-of-file

P

L

data
RUN, 5,1000,7

(®

7
IgLOAD,69

SCOPE

4
/ 'EOP'

(@ROGRAM HUR

(gALDAP,L,P,X=69

;Jos,123so,DEw,14

14) COMPASS subprograms in the form of subroutines may be assembled
with an ALDAP compilation containing external declarations for the
COMPASS subprograms. Neither a COMPASS nor FORTRAN subroutine
may have a named transfer card, since the ALGOL program always has a
named transfer card.

@RUN, 5.,1000,7

ﬂLOAD,GQ
{ SCOPE

(END
L

y.
(COMPASS source deck

(' EOP'

y a—

(vALGOL source program

/ END
ya

A
—

L

L

{cox@x«ss source deck

(97,\LDAP,L,X:69

ZJOB,accsid,time

15) ALGOL programs may be compiled before or after FORTRAN programs
for the same job. The basic operations for ALDAP, compile only, execute
only and load-and-go are similar in format to those of other systems. A
transfer address is generated by the ALDAP compiler and may not be
provided by the programmer.

end-of-file

@RUN,S,IOOO,?

/;LOAD ,69
F SCOPE
/ END

((ALGOL source program)

(;ALDAP,L,X

JOB,1872,MWH, 9

9

2-37

PROGRAMMER REQUESTS 3

Programmer requests are statements which can be included only in assembly
language (COMPASS) programs. They specify operations for input/output
control, internal interrupt, clock interrupt, and special requests. They may
be written as system macros or in any fashion which generates a calling
sequence to SCOPE as outlined in Appendix B.

31
INPUT/OQUTPUT

REQUESTS SCOPE processes all input/output requests, including read, write, equipment
status checks, and tape handling, and performs the following operations:
® Assigns logical unit numbers to physical units
e Selects an available channel
e Stacks a request if a channel is not available

® Responds to external interrupts

Initiates input/output operations

Locates a continuation tape when needed to complete an input/output
operation or initiates one when end-of-tape is reached

Parameters used in describing the requests are:

u logical unit number, 1-79, or a mnemonic for a system or scratch unit.
Mnemonics are given in section 1.4.

cwa address of the I/0 control word, or the first I/O control word in a chain.
Control word format is shown in the 3600 Reference Manual.

ra reject address to which control is transferred if the unit is unavailable.
A reject address must elways be specified. If an asterisk, *, is given
as the reject address, the request is repeated until the unit becomes
available.

ia address of the programmer's interrupt subroutine to which control
transfers when an interrupt condition is sensed; this term may be
omitted. If an abnormal condition occurs, the tape is stopped at the
end of the control.

The logical unit number and the program addresses may be modified by the
contents of an index register. The base operand (m) and the index register
designator (b) are separated by a comma, and enclosed within parentheses
(m,b). b may designate index registers, 1-6, or may specify indirect
addressing, 7.

All addresses (control word, reject, interrupt) must be located within the same
bank as the subprogram containing the READ/WRITE request. Any address may
be defined as an external symbol; but the subprogram containing the associated
entry point must be in the same bank (see BANK control statement).

Neither the reject nor control word address may be 0 or 77777g; the interrupt
address may not be 77777g. If these addresses are used, the program will be
terminated when they are detected by SCOPE.

The conditions causing request rejection are:

Unit unavailable

Request must be stacked, but stack already contains 25 requests
Input/output requests that SCOPE cannot handle are either rejected or cause the
job to be abandoned. The following conditions cause job termination:

Too many labels required for the job.

System or equipment failure such as rejection by equipment supposed to be
available or illegal entries in system tables.

OCM not assigned or operable
Illegal parameters in I/O calls such as:
logical unit not in the range 1-79
reject address of 0 or 77777
interrupt address of 77777
control word address of 0 or 77777
Contradictory MODE request
Output operation for a read only unit
Request for an impossible function, (WRITE card reader)

An operation in which the request specifies an illegal unit as indicated in
the following table:

Programmer| Scratch Satel- Aux.

Units |INP|OUT |PUN|ICM |OCM|ACC]|lites |LGO|LIB| LIB {SCR

50-59 | 60 61 62 63 64 65 |{66-68| 69 70 {71-79| 80
READ 1T T T T T
WRITE T T T T T
REOT T T T T T T T T T T
WEOT T T T T T T T T T T
BSPF T T T T T T T T T T
BSPR) T T
REWIND T T T T T T T T T
SKIP T T T T T T T T T
ERASE T T T T
MARKEF T T T T
UNLOAD T T T T T T T T T T T
RELEASE T T T T T T T T T
MODE T T
STATUS T T
LABEL T T T T T T T T T T T
SAVE T T T T T T T T T
RDLABEL T T T T T T T T T T T T
WRLABEL T T T T T T T T T T T T

T job terminated if request specifies this unit.

T READ or BSPR beyond EOF on 60 causes job termination.

3-3

READ/WRITE

RDLABEL/
WRLABEL

READ | (u,cwa, ra,ia)

WRITE § 7707

The programmer may direct the reading and writing of data with the READ/
WRITE requests. If an end-of-tape condition exists, the READ/WRITE request
will initiate a search for a new reel and release an old reel.

The direction of read may be designated by a parameter in the MODE request.

Examples:
READ (INP, CONTROLA, SAM, INTRPT)

Data is to be read from the standard input unit; the control word is at
CONTROLA. If the request is rejected, control is to be transferred to
SAM. When the read operation is completed (or an abnormal condition
occurs), control transfers to the interrupt subroutine at location INTRPT.

WRITE (OUT, CONTROLB, *, INTRPTB)

A write operation is to be performed on the standard output unit. The
control word is at CONTROLB, and the write request will be executed when
OUT becomes available. When interrupt occurs, control transfers to
INTRPTB.

RDLABEL 1 .

WRLABEL } (4. 1a, xa, 1a)

When RDLABEL and WRLABEL are encountered, the tape is assigned and the
label is read or written. If the tape is not at load point the job is abandoned.
For RDLABEL, the label is transferred to the label area in core storage. The
programmer may interrogate any of thc ten words in the label area after a label
has been read. For WRLABEL, SCOPE transfers the tirst four words of the
label (provided by EQUIP or LABEL statement or SCOPE supplied) into the first
four words of the label area (la to la+3). The last six words in the label area
(la+4 to la+9) are written into the label in character positions 33-80. (See Sec.
1.8.) If no tape is found for a RDLABEL request and the operator types in NONE,
the first word of the label area is zeroed and the normal return is taken.

REOT/WEOT REOT
WEOT

} (u,cwa, ra,ia)

REOT and WEOT are tape movement controls which allow the programmer to
read and write after the physical end-of-tape, before a continuation reel is
assigned. If the request occurs before a physical end-of-tape, the reading or
writing occurs and a logical end-of-tape condition is set. At the next READ or
WRITE request, a continuation reel is established.

If a REOT or WEOT request falls between a LABEL and any other request, a
new unit is assigned and the operation is performed.

Example:

REOT (25, RDCWA, *)

Logical unit 25 is read. After reading is completed, a logical end-of-tape
condition is set. Upon the next READ request for unit 25, a continuation
reel will be assigned.

TAPE CONTROL

REQUESTS control name (u, ra, ia)

Requests may be stacked.

Control names applicable to magnetic tape units are listed below:

BSPF
BSPR

REWIND

SKIP
ERASE

Backspace one file. \(If the unit is unassigned these

Backspace one record. S requests are bypassed.

BSPR and BSPF clear a logical end-of-tape condition. The
physical end-of-tape may remain set if the unit is not back-
spaced beyond the end-of-tape mark.

Rewind to load point. REWIND moves the currently assigned
physical unit to the load point.

Skip to end-of-file or end-of-tape.

Erase 6 inches of tape.

MARKEF Mark end-of-file.

Examples:

REWIND (20, RETURN, INT)
MARKEF (82, REJECTI1, INT2)

3-5

UNLOAD An UNLOAD request may be used to rewind and unload a magnetic tape unit.
UNLOAD (u, ra,ia,c)

If the logical unit represents a multi-reel assignment, only the physical unit
presently assigned will be affected by the UNLOAD request.

The release code, c, specifies the disposition of the unit assignment after it
has been unloaded:

0 unit assignment released

non-zero unit assignment not released

If an interrupt address is specified, a non-zero release code is assumed.

RELEASE This request releases the assignment of a logical unit and directs the disposition
of the current physical unit.

RELEASE (u,ra,c)

The release code, ¢, specifies the disposition of the physical unit currently
assigned to the logical unit:

0 dispose of physical unit according to previous declaration; if
none is given, the tape is rewound.

non-zero rewind the physical unit and release the assignment, but do not
dispose of the tape.

MODE A MODE request defines the usage of a tape unit or specifies density or
recording mode for the unit. A MODE request can be honored only if the unit
is available; if it is unavailable, control returns to the reject address.

MODE (u, ra,s,f,d,dr)

Usage, s, specifies an operating condition for the unit:

RW (read and write) all legal requests will be performed.

BY (bypass) all requests except STATUS or MODE will be treated
as no operation until the end of the job.

RO (read only) WRITE, WRLABEL, WEOT, MARKEF, or ERASE

requests will be rejected.

Format, f, is specified by BCD for even tape parity or BIN for odd tape
parity.

Density, d, is specified:

HY hyper density tape (800 bpi) or highest possible density
HI high density tape (556 bpi)

LO low density tape (200 bpi)

OoP operator: Use density of mounted tape

Direction, dr, of tape; if not specified, normal is assumed.

RV reverse direction for the READ or BSPR requests. Data is
stored according to the control word address with no alteration.
ND normal direction for READ or BSPR requests.

One of each of the designators, usage, format, density, or direction may be
specified in a single MODE request; all four are not required. A blank, 0,
designator terminates the list. If more than one designator for s, f, d or dr is
indicated in a single mode request, the job is terminated.

Examples:
MODE (24, INSTR, RW, BIN, HY)

Logical unit 24 will perform all legal requests, with odd tape parity and
hyper density. Reject address is INSTR.

MODE (25, REJECT, BY)

All requests except STATUS and MODE will be treated as no operation.

STATUS STATUS (u, M)

The programmer may request the status of a logical unit at any time during
operation. M designates the master unit (Equivalence Declarations 2. 4)

The STATUS reply is entered in the A and Q registers as follows: (The same
information is contained in A and Q upon entering user's interrupt subroutines
for input/output operations.)

47 44 38 23 7 14 o
A Register
(Control Word) op unused word count unused |bank storage oddress
code
}
45 | 43 : AN -/
L—-Jump control starting ¥ oddress
47 45 43
Q Register
albitly srb u d h cwa
46 44 31 2423 rg (o]

3-7

a physical unit availability indicator 0, unit may accept request
1, unit in operation, or request
is stacked

b physical unit busy indicator , not busy

) busy

, unit is not magnetic tape

y bypass indicator , unit is not bypassed

0
1
t magnetic tape indicator 0, unit is magnetic tape
1
0
1, unit is bypassed

srb are the status reply bits given at the last reference to the unit;
srb depend upon hardware type.

u is a logical unit number assigned to this physical unit, or the
number of the logical unit specified in the last I/O request for
this physical unit.

Since a physical unit may be referenced alternately by several
logical units, the logical unit appearing in the reply may not be
identical to the one given in the STATUS request. If the physical
unit is available, u will be the logical unit number of the request;
if not, u is one of the equivalent logical units.

If master status is requested, u will contain the master logical
unit number.

d and h depend on the value of t

if t = 0, d and h give reel number (1-99) of the magnetic tape
if t = 1, d is the driver indicator

d = 0, no driver for unit

d = 1, driver required for unit; h is the hardware type of

physical unit.

cwa is the current or last content of the control word address register
of the data channel governing the unit (displayed in A register). If
the request is given during processing, the control word is taken
from the communication module. It reflects the latest word count
and storage address.

The ab indicators, when combined, have the following meaning:

ab = 00 unit may accept request

ab = 01 unit is available, but interrupt for previous I/O request
has not been processed

ab =10 an I/O request is stacked

ab =11 unit is in operation

STATUS REPLY BITS

status 362X 3641 3649
reply Magnetic 3655 3659 Card Card 3644 3682 731
bits Tape Printer Printer Reader Reader Punch Satellite Console
(octal) Controller Controller Controller Controller Controller Controller Coupler Typewriter
xxx1 ready ready ready ready ready ready flag 0 ready
xxx2 read/write busy busy busy busy flag 1 busy
control
(and/or)
unit busy
xxx4 write binary card | binary card flag 2 upper /lower
enable case
xx1x end-of -file paper out end-of -file end-of -file flag 3
card
XX2X load point last line feed failure | stacker full flag 4
on form or jam, or
fail to feed
Xx4x end-of-tapet stacker full | hopper empty flag 5 end-of -line
x03x 200 l?pi
density
0 in bit 6
x1xx 256 ‘?f‘ hopper end-of-file | fail to feed | flag 6
ensity .
1in bit 6 empty switch
800 bpi o
X2XxX density ready and amplifier ready not ready and flag 7
1in bit 7 busy failure busy not busy
x4xx lost data end of . end of) end of) O.D. computer
operation operation operation Oﬁht‘ar' running
Division
Lo end of abnormal abnormal abnormal 0.D.
operation end of end of end of read
operation operation operation
23 vertical compare or | compare O.D. parity error
parity error pre-read error write
error
4xxx reserve reserved reserved reserve reserve 0.D.
reject for other reject reject reject parity
control error

T The end-of-tape bit will be set when the physical end-of-tape has been sensed or when the logical end-of-tape has been
defined in the program. Logical end-of-tape may be defined before or after the physical end-of-tape has been sensed. The
logical end-of-tape is set if a REOT, WEOT, or LABEL request for a unit is given before physical end-of-tape.

3-9

LABEL

3-10

If the unit is in operation (ab = 11), the reply describes the dynamic
condition of the unit. For all other values of ab, the reply reflects
the condition of the unit at the end of the last I/O operation.

If the unit is in operation (ab = 11) during an interrupt subroutine, the
user should not wait for ab to change by repeating the STATUS re-
quest; since an interrupt on that unit cannot be processed (which may
change ab) until control is returned to SCOPE. Any request but
STATUS may be given to allow SCOPE to process interrupts.

When a logical unit has been bypassed, y is set to 1 and u is the logical unit
to which the physical unit has most recently been assigned; the rest of the

reply is zero.

If STATUS is given on an unassigned logical unit, A and Q are zero, except
for the u field which contains either the called or the master logical unit.

Example:

The logical units are equated by EQUIP statements such that 2 is equivalent
to 6, and 6 is the master unit,

STATUS (2)

STATUS (2, M)

gives the status of logical unit 2, with 2 in the u field of
the Q register.

gives the status of logical unit 2, with 6 in the u field of
the Q register. The status is identical in both examples,
except for the u field.

This statement provides identifying information for tape labels.

LABEL (u, addr, edition, reel, code)

logical unit

addr

edition number

reel number

decimal number

address of the first of two computer words containing the
name. Name may be 14 characters, alphabetic, numeric,
or spaces; or it may be *nn, where nn is a logical unit
number less than 80. If the first two characters are **,
the tape is declared unlabeled.

1-99. If not specified, blanks are written in the output
label; or any edition is accepted on an input label.

1-99. If not specified, reel 1 is written on an output label;
or the lowest numbered reel is read from an input label.

SAVE

code 000-999. For an output tape, this retention code is the
number of days tape is to be saved. 999 indicates infinite
retention. If unspecified, zero is assumed which indicates
immediate availability.

mmddyy For an input tape, this code is the date the
tape was written.

Il a tape is not named, the logical unit number will be placed in the label. This
number is either the master logical unit or *nn specified in place of the name in
the LABEL request. For *nn, nn may not be used as the logical unit number in
programmer requests to refer to the tape.

When a LABEL request is given, the assignment of the current reel is released,
and the reel is rewound. At the end of the job, the reel is disposed of according
to the disposition declaration.

Normally, a single LABEL request suffices for a unit throughout a run; it must
precede the first I/0O operation on the unit. When the first READ or RDLABEL
request is given, the specified input label must match the label on the input tape.
SCOPE writes the complete label at the first output request. Label information
may be given in an EQUIP statement rather than in a LABEL request.

Example:
LABEL (15, =H*10aaAnAN

Logical unit 15 will contain a label with a logical unit number of 10. The
five spaces are required since =H defines a Hollerith literal of 8 characters.
Logical unit 15 must be used in subsequent programming requests.

Since edition number and reel number are unspecified, the edition number
will be blank and reel will be number 1 for output, or the lowest reel for
input. Retention code is zero.

The programmer may specify that a tape be saved at the completion of the job.
SAVE (u, U)

The SAVE request may be given at any point in the program as it does not
inhibit reading and writing on the unit. At the end of the job, the current reel
of the saved logical unit is unloaded and a message directs the operator to
reserve the tape for the programmer. For a multi-reel. saved logical unit,
each reel is unloaded and saved as it is completed or released. Save may also
be requested in an EQUIP statement.

U changes this request to UNSAVE.

3-11

32

STACKING OF
REQUESTS

3-12

Examples:

SAVE (29)
SAVE (LGO)
SAVE (LGO, U)

UNSAVE (u)

This request which cancels any previous SAVE or EQUIP SV request may be
given at any point in the program. The tape is released at the end of job for
subsequent use. Unexpired retention codes can be overridden only by an
UNSAVE request after the tape is assigned.

When an 1/O request is given (see diagram) SCOPE determines whether it
occurred while the interrupt mode was active or whether it came from an
interrupt subroutine (interrupt mode not active).

if a request is made while the interrupt mode is active, and SCOPE finds that
the unit is not available, the request is rejected. If the unit is available and

not in operation, SCOPE will determine if a channel is available to which the

unit may be connected. If so, the unit is connected and the request initiated.

If no channel is available, the request is placed in the 1/0 request stack. In

either case, a normal return is made to the calling routine.

When the I/O request comes from within an interrupt processing routine
(interrupt mode not active), SCOPE determines availability of the unit. If the
unit is available, but busy (an interrupt on this unit is being held), the request
will be held while the interrupt is processed. If the unit is available and not
busy, SCOPE determines if a channel is available to connect to the unit. If so,
it is connected and the request is initiated. If no channel is available, the
request is added to the I/O stack.

When SCOPE determines that the unit is not available and it is not busy (an 1/0
request on this unit is already in the stack) but no channel is available, the
request is rejected. If a channel is available, the interrupt for the just com-
pleted operation is held and the stacked requests are processed. The 1/O
request is again routed through unit and channel availability checks. If an
operation is being performed on the requested unit (unit not available and busy)
SCOPE checks channel availability to see if the operation has been completed.
If the channel is not available, the request will be rejected. If the channel is
now available (operation has been completed) and an interrupt subroutine was
not specified, the channel will be connected and the request initiated. If an
interrupt subroutine was specified, the current request is held while the

interrupt is processed. ;

UNIT BUSY (b=1) REJECT
REQUEST

UNIT AVAILABLE

Aﬁ/"L‘;LNAh;& CONNECT UNIT
| AND INITIATE
UNIT NOT 1/O REQUEST
BUSY (b=0
INTERRUPT MODE ACTIVE CHANNEL NOT
AVAILABLE PLACE THE
REQUEST IN
1/O STACK
UNIT NOT AVAILABLE (o= 1) REJECT
REQUEST

REQUEST IS HELD
UNIT BUSY (b=1) INTERRUPT ENTRY
ON THIS UNIT IS
PROCESSED.
1/
/O REQUEST UNIT AVAILABLE
a=0
cHaNEL (o
AND INITIATE
1/O REQUEST
UNIT NOT BUSY (b=0)
CHANNEL
NOT AVAILABLE PLACE
REQUEST IN
1/O STACK
INTERRUPT MODE INTERRUPT
REQUEST HELD
NOT ACTIVE SUBROUTINE | ~ohmroL 10
CHANNEL INT. SUBR.
AVAILABLE
NO INTERRUPT
UNIT BUSY CONNECT UNIT
b=-1) 2UBROUTINE | "AND (NITIATE
1/O REQUEST
CHANNEL NOT AVAILABLE REJECT
UNIT NOT REQUEST
AVAILABLE (a=1)
CHANNEL INTERRUPT FOR JUST

AVAILABLE COMPLFTD OPERATION
IS HELD. 1/O STACK
S PROCESSED. CHECK

UNIT NOT BUSY (b=0) UNIT FOR AVAILABILITY.
a = ovailabili.y indicator
CHANNEL NOT
b = busy indicator AVAILABLE REJECT
REQUEST

HELD REQUESTS

AND INTERRUPTS After an interrupt processing subroutine has been completed, SCOPE determines
if any I/O requests or interrupts are being held. All held requests are pro-
cessed (on a last-in-first-out basis) before each held interrupt. This is done
so that the requests held during the execution of an interrupt subroutine may be
honored before the next interrupt routine begins processing. When all of the
held requests and held interrupts have been processed, SCOPE returns control
to the main program.

3-13

33
EXTERNAL
INTERRUPT
CONTROL

34
INTERNAL
INTERRUPT
CONTROL

3-14

If an interrupt address is specified, control will be transferred to that address
at the end of the operation or upon abnormal condition interrupt. Before giving
control to the interrupt address, SCOPE stores the A and Q registers and enters
the control word in the A register and the unit status in the Q register (see
STATUS 3.1). The Q register and the index registers are set to their values
at the time of the interrupt. Control will be transferred to the interrupt
address by a bank return jump. The programmer returns control from the
interrupt processing routine to SCOPE by returning to the interrupt address.
Upon regaining control, SCOPE processes any other interrupts, restores the A
and Q registers, and returns to the running program. The Q register and the
index registers must be preserved by the interrupt subroutine.

Input/output operations may be requested from within interrupt subroutines.
However, if a request is given in an interrupt subroutine, the end of operation
interrupt for that request will not be processed until the interrupt subroutine
has been completely processed.

Four controls are available for handling internal interrupt features. SELECT
indicates the type of interrupt and the location of a routine to be entered when
that interrupt occurs. REMOVE releases the interrupt. An interrupt address
may also be reassigned, by an indirect technique, to a previously selected
location. BOUND sets storage area limits outside of which references are
not to be made and the address to which control is transferred if the bounds
are violated.

UNBOUND releases the last set of bounds and reimposes the bounds that
were in effect before the last BOUND request.

Program address paraméters in all internal interrupt requests may be
modified by the contents of an index register by enclosing within parentheses
the program address and the index register designator separated by a comma,
(m,b). The program address, m, may be any legal COMPASS address field
expression. If b is 1-6, the address will be m + (b). If b is 7, indirect address-
ing will be used.

All pregram address parameters must be located within the same bank as
the subprogram containing the internal interrupt request.

SELECT/REMOVE SELECT designates the specific interrupt; when the interrupt occurs, a jump
is made to the interrupt address. If a previous SELECT request with the
same interrupt had been made, its interrupt address will be saved in the
current SELECT calling sequence. When the interrupt occurs, further inter-
rupts are locked out and a bank return jump is made to the interrupt address.
Control is transferred from the interrupt subroutine to the monitor by a
jump to the interrupt address.

SELECT (interrupt, address)

Address the location to which control is transferred when the
interrupt is detected.

Interrupt

SHIFT shift fault

DIVIDE divide fault

EXOV exponent overflow fault
EXUN exponent underflow fault
OVER fixed point overflow fault
ADDR *non-existent address fault
M1604 1604 mode alert

TRACE trace mode alert

INST *illegal instruction fault
OPER *operand parity fault

MANUAL manual interrupt alert

ABNORM abnormal termination
REMOVE (interrupt)
REMOVE removes the specified interrupt and saves the interrupt address
declared in the SELECT request for that interrupt. The interrupt address
is saved in the current REMOVE calling sequence.
If there was no SELECT, REMOVE acts as a NOP.

SELECT (I, SELECT or REMOVE address)

I specifies an indirect selection of the interrupt address assigned before
the specified SELECT or REMOVE.

SELECT or REMOVE address is the location at which a previous SELECT
or REMOVE request was made.

*If these interrupts are not selected by the programmer, they will terminate the program.

3-15

3-16

SELECT indirect reselects an interrupt address designated by the SELECT
or REMOVE instruction in effect prior to the instruction at the specified
address. The indirectly selected interrupt address will be the address
contained in the SELECT or REMOVE request, for the same interrupt, which
was in effect prior to the request at the specified address.

| 10
IDENT STARTEST

C1 SELECT (OVER, STX1)
RTJ SUBL

RTJ SUB2

FND

IDENT SUBL
[ENTRY SUB1
SUB1

A3 SELECT (OVER, OVX2)
RTJ SUB2

SELECT (I, A3)

SLJ SUB1
[END
IDENT SUB2
FNTRY SUB2
SUB2
Bl SELECT (OVER, VYZ)

SELECT (I, Bl)
SLJ SUB2
END

ABNORM

Indirect interrupt select is requested in subprograms SUB1 and SUB2 before
control is returned to the calling subprograms. Therefore, in each of these
routines, a new interrupt address is taken when the routine is entered; and the
previous interrupt address is reinstated before control returns to the calling
program. The indirect interrupt request in SUB1, for example, removes the
SELECT at address A3, leaving in effect the last interrupt address (STX1)
specified for OVER before that SELECT was given. The indirect interrupt
request in SUB2 removes the SELECT at Bl leaving in effect the last interrupt
address, OVX2. Indirect SELECT allows the programmer to reinstate the
interrupt address in the calling program before he transfers back to it and
without knowing to which program the return will be made.

ABNORM

The ABNORM interrupt allows the programmer to specify an alternate interrupt
subroutine to be entered before SCOPE terminates a job for an abnormal condi-
tion. If the job terminates abnormally and the ABNORM interrupt has been
specified, control transfers to the interrupt subroutine; if the programmer does
not specify ABNORM, SCOPE terminates the job immediately. Within the
ABNORM interrupt subroutine, the programmer can take steps to provide a
clearer indication of the job conditions. At the end of the interrupt subroutine,
control returns to SCOPE by a jump to the interrupt address, and SCOPE pro-
vides the requested recovery dump.

When control transfers to the ABNORM interrupt subroutine, several conditions
are in effect. The interrupt system is active; internal interrupts have been
cleared. All previous 1/0 operations have been terminated; any held requests,
stacked requests, held interrupts or interrupt subroutines have not been processed.
The bounds register has been reset to the original programmer bounds. A fixed
time limit and print limit, established by the installation, is imposed on the pro-
grammer's subroutine.

An abnormal condition, such as programmer area destroyed, or bad unit, may
preclude successful execution of the ABNORM interrupt subroufine. If a second
abnormal termination occurs during the ABNORM interrupt subroutine (for
instance, time limit exhausted), the recovery information from the first termi-
nation is lost, information is given for the second termination, and the job is
abandoned.

The ABNORM interrupt subroutine will not be entered following AUTOLOAD
recovery.

3-17

BOUND/
UNBOUND

3-18

SCOPE is protected by upper and lower bounds. The upper bound is the highest
location in the highest numbered bank available, excluding the system Table of
Contents and I/O drivers. The lower bound is the lowest numbered location in
bank zero excluding SCOPE and the loader, unless numbered common is
assigned to the region usually occupied by the loader.

The BOUND request sets bounds outside of which any instruction reference will
cause an interrupt. The first BOUND request executed in a program may set
any BOUND range allowed by SCOPE. Subsequent BOUND requests must set
bounds which lie within the previously set bounds. If any requested bounds
overlay those previously set, the request is rejected and control is transferred
to the reject address. If the bounds are accepted, the previous bounds are
stored. The number of nested bounds is limited to 5. If the programmer spec-
ifies lower and upper bounds as zero, SCOPE returns the last setting of the
BOUNDS register in the A register.

BOUND (lower bound, upper bound, reject address, interrupt address)

lower bound

upper bound are addresses to which the memory bounds are set; bank
terms may be included in these addresses. If they are
omitted, ($) is assumed. The lower and upper bounds
cannot be indexed because of bank terms.

($) name, indicates that the bank already associated with
name will be used.

reject address is the location to which control is transferred if the
bounds list is full (5 requests) or if the requested bounds
do not fall within those previously set.

interrupt
address is the location of the programmer's interrupt subroutine
to which control is transferred when an interrupt condition
occurs.
UNBOUND

The UNBOUND request removes the bounds set by the last executed BOUND
request and re-establishes the bounds previously set. UNBOUND cannot be
used to remove the bounds set by SCOPE.

Examples:
BOUND (((*) LIMIT1), LIMIT2, RA, IA)

The lower bound will be LIMIT1 in the bank containing the BOUND request.
The upper bound will be LIMIT2 in the bank in which LIMIT?2 is located.
($) LIMIT2 is assumed.

BOUND (((0) LOWEST), ((0) HIGHEST), RA, IA)
BOUND (((0) LOWER), ((0) UPPER), RA, IA)
UNBOUND

The first set of bounds are LOWEST and HIGHEST. The next set, LOWER
and UPPER, lie within the first set. UNBOUND removes LOWER and
UPPER and reinstates LOWEST and HIGHEST.

35

CLOCK INTERRUPT Four controls handle clock interrupts. LIMIT imposes a time restriction.
FREE releases the last time limit, and re-establishes the previous time limit.
TIME returns the time remaining until the next time interrupt in the A register,
and the time of day in the Q register. DATE returns the calendar date in the
A register.

LIMIT The LIMIT request sets a time limit after which control will be transferred to
the interrupt address.

LIMIT (du, ra, ia)

du the duration in seconds of the time limit; milliseconds may be
appended by giving the parenthesized expression (seconds, milli-
seconds)

ra the transfer location if the limit is not accepted.

ia the location to which control is transferred when the limit is

reached. The interrupt subroutine is entered by a bank return
jump. The interrupt subroutine should return to the interrupt
address.

The reject address and interrupt address may be modified by the contents of an
index register. (See 3.1).

3-19

FREE

TIME

3-20

No more than five limits may be in effect at one time; each must fall within
the time set by the last executed LIMIT request. If the new limit is larger
than the previous, control will transfer to the reject address. When each
new limit is accepted, the clock comparison register is reset and the pre-
vious limit is stored. Upon time interrupt, the limit which caused the
interrupt is released before transferring control to the interrupt address.

Example:

LIMIT ((1000,500), RA1, IA1)

FREE

FREE releases the last time set by a LIMIT request (the smallest in the
list of time limits) and re-establishes the next previous time set (the next
smallest limit in the list). Limits set by SCOPE cannot be freed.

TIME

Upon receiving a TIME request, SCOPE enters the time of day into the Q
register in BCD and the time remaining before the next time interrupt into
the A register in binary. '

The time of day is based upon a 24-hour clock (one minute before midnight
is 235900) and is given in hours (hh), minutes (mm) and seconds (ss).
This time is entered in the Q register in the format:

hh mm ss

29 17

The time to the next interrupt is entered in the A register in the format:

milliseconds seconds

DATE

36

SPECIAL
REQUESTS

LIBRARY

DATE

When a DATE request is received, SCOPE enters month, day and year into
the A register, in BCD, in the format:

47 4| 35 29 23 17 1l 5 [¢]

A running program may request SCOPE to position the library at a particular
record or at the directory preceding it (LIBRARY). Requests are also
available for calling the loader to load programs (LOADER), obtaining or
setting memory limits (MEMORY), and for returning control to the monitor
system (EXIT). An interrupt subroutine may modify the A and Q registers

of the program at the time the interrupt occurred (HERESAQ).

LIBRARY may be used to position the library tape.
LIBRARY (u, ra, record name address, record number)
u library logical unit number, 70 to 79 or 0.

ra location to which control is transferred if the spec-
ified record is not found.

record name storage location of the first of four computer words
address containing the record name.
record number signed integer, 0 through 224,

If u is zero, the other parameters are ignored; upon return to the program,

the A register contains the logical unit number of the current library. Library
unit, reject address, and record name address may be modified by the contents
of an index register. (See 3.1)

3-21

The possibilities for the record number and location of record name in
positioning the library are as follows:

Record Name Address Record Number SCOPE Positions Library at:

zero or blank zero or blank the next directory

non-zero non-zero record r of the series
beginning with the named
record

non-zero zero or blank the directory containing

that record

zero or blank non-zero (see below)

LIBRARY may also specify the number of records which the user has
moved the library tape. When the user has read or backspaced the library
tape and intends to use either LIBRARY or LOADER requests later in the
run, a LIBRARY request must be given indicating the current position of
the library tape. The record name address will be blank or zero and the
record number will be the signed number of records that the tape has been
moved (+ forward, - backward).

Example:
LIBRARY (70, REJECTA, CTABLE,1)

This request positions the library tape at the beginning of the record,
CTABLE.

Assume that the user reads 2 records and then wants to find another
table MATCHC. He must give:

LIBRARY (70, REJECTB, ,t2)

LIBRARY (70, REJECTC, MATCHC, 1)

LOADER LOADER

The loader request is used by a running program to call the loader. If the
loader is not in storage, SCOPE will read it from the library into its
customary position immediately following resident. Just prior to giving the
request, the parameters (sec. 5.3) specifying what is to be loaded must be
placed in the A and Q registers. SCOPE passes these parameters to the
loader and retains control until that call to the loader is complete. Upon exit
from the loader, the contents of A and Q are returned to the calling program
for examination. The loader returns control to SCOPE through its entry
point, and SCOPE returns control to the calling program.

3-22

MEMORY

EXIT

If numbered common has been assigned to bank 0, the loader will overlay
numbered common. SCOPE does not adjust the limits of available storage
after loading the loader.

The limits of available storage may be obtained or changed by the
MEMORY request.

MEMORY (bank designator, lower limit, upper limit)

bank designator 0-7, *, or $symbol.
* designates the bank containing this request.
$symbol designates the bank in which symbol is located.

lower limit any legal Compass Address expression in the range
1-77776g.
upper limit These must not be prefixed with bank designators or

suffixed with index designators.

If either limit in the programmer request is zero, the other limit is not
changed. Limits larger than SCOPE bounds can not be set. If the lower
limit requested lies in resident, it will be reset to the first location following
resident. If the requested upper limit is greater than the upper bound of
SCOPE, the job is terminated. When the limits have been changed by
MEMORY, the new limits are returned in the A register. If no limits are
supplied in the request or if both limits are zero, the current storage limits
for the specified bank will be entered in the A register in the following
binary format:

upper limit lower limit

a7 39 38 23 22 1514 o]

A non-existent bank is indicated when the A register is equal to zero.

EXIT

The EXIT request returns control from a running program to SCOPE. This
causes a normal termination of the program as long as there are no abnormal
conditions. Control may also be returned to the monitor system by trans-
ferring to the running program transfer address which is preset with an

EXIT request by SCOPE.

3-23

HERESAQ

CORE

3-24

HERESAQ

The programmer's interrupt subroutine may modify the A and Q registers at
time of interrupt with the HERESAQ request. When the request is given, new
values specified by the programmer are stored temporarily. The A and Q
registers are set to those values when the return is taken from the interrupt

subroutine.
Example:
LDA CON1
LDQ CON2
HERESAQ
UBJP interrupt address
J

programmer's
> interrupt
subroutine

CON1 and CON2 are stored temporarily by SCOPE when HERESAQ is
executed. UBJP transfers control to SCOPE. When SCOPE transfers
back to the user's subprogram, CONl and CON2 are the contents of A and Q.

The limits of available storage in the bank in which the subprogram is located
may be obtained or changed by the CORE request. This request differs from
the MEMORY request in that no bank need be specified.

CORE (lower limit, upper limit)

DEBUGGING AIDS 4

Selected areas of storage may be dumped each time a particular instruction
is encountered (SNAP) or before execution of each jump instruction in a
designated area (TRACE). Recovery dumps may be designated for abnormal
termination and a memory map, giving a listing of absolute addresses
assigned to the program by the loader, may be obtained.

SNAP and TRACE dumps consist of a console scoop and a storage dump.
(See Appendix C). The A and Q registers are printed in the mode
requested. The index registers, bounds registers and P register are
printed in octal. The interrupt register, interrupt mask register and
switches are printed in binary.

Each printed line contains an absolute octal address, an octal address rela-
tive to the name in the first word address (fwa), and four to ten computer
words, depending upon the mode requested. One or more lines of identical
words are omitted.

41

SNAP DUMP The programmer specifies the addresses where snap dumps are executed, the
frequency, and the areas to be dumped. SCOPE replaces the instructions at
the dump addresses with jumps to the SNAP routine. The SNAP routine dumps
the specified areas onto the standard output unit, executes the instructions
originally at the dump address from within the range of the SNAP subroutine,
and returns control to the program.

More than one snap dump may be specified for an address and any number
of addresses may produce snaps. After the last snap is produced, normal
program operation resumes. The only restrictions on the number of snap
dumps are the print request limit in the RUN statement and the amount of
available storage remaining after the program is loaded.

JSNAP a fwa,lwa,f,d) g d3,id
a the program address where the dump is initiated. The
program address may be a program name or an entry
point name plus or minus an octal displacement, p=n;
p is an entry point or program name and n is an octal
number. If a program name is used, the program address
will be the first location in the program. If an entry

4-2

fwa,lwa

dy»dy.d3

point name is used, the program address will be the entry
point location. If the program and entry point names are
identical, the program address will be the first location in
the program.

The contents of that address must not be referenced or modified
within the program. The contents of the cell must not contain
an I/0 control word, an RTJ or BRTJ jump which sets an
address for reference, or an instruction which may skip exit.

The first word address and the last word address of the area
to be dumped may be:

1) A 6-digit absolute octal location; the left-most digit is
the bank designator. If less than 6 digits are given,
bank 0 is assumed.

2) py#ny, a common block name, an entry point name, or
a program name, p_; plus an octal displacement, n_,
relative to the name. If a common block name is used,
it is enclosed in slashes: /name/. If the block name
is blank, two slashes are given: //.

3) =N, an octal displacement relative to the previously

declared entry point, common block, or program name
on this SNAP card.

4) blank (fwa and lwa), no area will be snapped; the console
will be snapped if C is suffixed to the mode designator.
Where fields are omitted commas must be placed,
unless no non-blank fields follow.

If fwa equals lwa, a console scoop will be given.

the format of the dump on the standard output unit is designated by:
O or blank octal dump

M octal dump with mnemonic operation codes

fixed decimal dump, integer

floating decimal dump, single precision

floating decimal dump, double precision

BCD dump

Q w g »n “=

is suffixed to the designator, if a snap of the
console is to be included

control the start, stop, and frequency of the SNAP dump. A dump
will be produced at the d; encounter of address p+n, and at every
d3 encounter thereafter until d2 is reached. If these parameters
are blank, a dump is produced at every encounter of the address.
If d3 is blank, a dump is produced at every encounter of the

address between dl and dz' The maximum value of dl’ d2, or d3 is
4096. After the last (d;) encounter, the original contents of the call
are restored.

id is an optional identification for each dump on the standard output
unit. It may be up to five alphanumeric characters.

The SNAP cards are placed immediately before the RUN card in the program
deck.

Examples:
JSNAP, ANNA, +5,+30, MC, 1,100, 5, JACK

The area of storage occupied by locations ANNA+5 through ANNA+30 will
be dumped. A dump is produced the first time location ANNA is encoun-
tered, and every 5th time thereafter until the 100th time. JACK is printed
with each dump as identification. An octal dump with mnemonics and a
console scoop are produced.

SNAP, BETA, +0, +50

The snap is triggered by location BETA. The area of storage to be dumped
is BETA through BETA+50. An octal dump will be produced every time
BETA is encountered.

57;SNAP,BETA,/SAM/,+50,S, 1,20,2,JM

The common storage area SAM through SAM+50 is dumped in floating deci-
mal, single precision when BETA is encountered. A dump is produced the
first encounter and every alternate encounter until the 20th. JM is the
identification.

42

TRACE DUMP The TRACE statement produces a dump whenever jump instructions within
a specified range of the program are executed. The dump will be written
on the standard output unit in the same format as the snap dump.

gTRACE,al,az Jfwa,lwa,f,d;,dg,dg,id

a; is the first address of the trace area; may be an entry point or
program name plus or minus an octal displacement (psn).

is the last address of the trace area; agp must be greater than a,.
as may be one of the following:

ag

an octal displacement relative to the program
entry point or program name, p.

:tl'lx

4-3

py=Dy an octal displacement relative to program entry
point or program name, Py-

Any number of ranges (a;to ag) may be specified. If two or more tracing
limits overlap, the second supersedes the first. The contents of the address
a; may not be referenced or modified within the program nor may either a,
or ay contain an input/output control word or a jump instruction (RTJ or
BRTJ) which sets an address for return or any instruction which may skip
exit. When the last trace is produced, ag and agare restored and normal
program operation resumes.

fwa is the first word address of the area to be dumped.
lwa is the last work address of the area to be dumped.

The parameters, fwa and lwa correspond to those of the
SNAP statement.

f is the format of the dump on the standard output unit. The
various designators are described following the SNAP statement.

dq specifies the number of times the area to be traced is passed
through before a jump may produce the first dump. d; must
be less than 4096.

dy specifies the last time through the trace area that a jump
instruction will cause a dump. d2 must be less than 4096.

dg specifies how often tracing occurs when passing through the
trace area. ds must be less than 4096.

The area is traced at the d; encounter of ay, and at every
dg encounter thereafter until dg is reached. During tracing,
the counter is not incremented until ag is encountered;
jumps to a, in TRACE mode will not affect the count of the
trace. If the parameters are blank, tracing is initiated at
every encounter of aj.

The specified area (fwa to lwa) is dumped before the jump
instructions are executed. If the jump transfers control to

a location outside of the tracing limits, trace output is

halted. Upon returning within limits, trace output is resumed,
beginning with the first jump instruction within the limits.

If a jump instruction is located at ag, it is traced; at ag,

it is not traced.

The TRACE cards are placed immediately before the RUN statement. If
both SNAP and TRACE cards are used, their order is not significant, as
long as they are the last cards before the RUN card.

Example:

gTRACE,ALPHA, BETA, +5,+30,MC,1,100,5,JACK

44

43
RECOVERY DUMP

44
MEMORY MAP

Jump instructions in the range ALPHA - BETA will be traced. The loca-
tions BETA+5 through BETA+30 will be dumped whenever a jump instruction
is executed. Tracing will begin with the first encounter of ALPHA and
every fifth encounter until the 100th: BETA must be executed in order to
increment this count. An octal dump with mnemonics and a console scoop
will be given. JACK is written as identification on the standard ouput unit.

On the RUN control statement (sec. 2.10) a recovery dump may be specified for
abnormal termination of a program.

Recovery dumps consist of:

Console scoops

Program area print lines containing an absolute octal address, an octal address

relative to the beginning of the subprogram, and the contents of four words in

octal with mnemonics.

Common area print lines containing an absolute octal address, an octal address

relative to the beginning of the common block and the contents of five words in
octal.

When a new subprogram or common block is encountered, its name is printed
and the relative address reset to zero.

Additional lines of identical words are not printed.

Information on recovery dump diagnostics is in Appendix C.

If 2 memory map is to be suppressed, this must be indicated in the RUN control
statement (sec. 2.10). When debugging aids are used, a map is always given.
The locations are given as six octal digits, the leftmost designating the bank.
The memory map lists the absolute location of the following items:

subprograms

program extension areas

labeled common

numbered common

entry points

Information on memory map diagnostics is in Appendix C.

4-5

LOADER S

5.1

LOADER
OPERATIONS

The loader performs the following functions:
Loads and links subprograms
Detects errors and provides diagnostics
Patches subprograms and labeled common
Assigns program extension areas
Selects banks

A program may be divided into several subprograms, each separately compiled
or assembled. The loader links these subprograms to each other and to
library subroutines by associating entry points with external symbols.

The central control routine of SCOPE transfers control to the loader for load-
ing drivers and programs to be executed. When loading is completed, control
returns to the calling program. All errors detected are written out as diagnos-
tics on the standard output unit (Appendix C). The loader provides for patching
subprograms and labeled common and assigns a program extension area if
necessary.

As each subprogram is loaded into storage, the names and locations of all entry
points are entered into a symbol table. External symbols are also stored in the
symbol table and linked with their corresponding entry points. When the loading
process is complete, indicated either by two consecutive transfer cards or by a
RUN statement, the loader searches the SCOPE library directories for subrou-
tines corresponding to the names of all undefined external symbols. K any
undefined symbol is not the name of a library subroutine, a loader diagnostic is
written on the standard output unit and the job is terminated. If an undefined
symbol is the name of an entry point to a library subroutine, the library sub-
routine is loaded into storage and the loader records the transfer address and
returns control to the calling program. Unless the loader was called by the
LOADER request, control returns to the next control statement on INP, Only
77775g locations are loaded into a bank.

All programs loaded for execution must have at least one transfer address, the

entry point to which control will be transferred to begin execution. A transfer
address is contained on a named TRA card.

5-1

LOADER NAMES

The FORTRAN compiler compiles a single TRA card for each subprogram.

A name is generated on the TRA card for each subprogram beginning with the
PROGRAM statement. The COBOL compiler compiles a single TRA card for
each paragraph. In COMPASS each END statement becomes a TRA card with
the transfer address included if it was given in the END statement. Only one
transfer card is needed for each subprogram. The ALDAP compiler compiles
a single TRA card (without a transfer address) for each independently compiled
procedure. A TRA card with a transfer address is always generated for each
ALDAP compiled program. The name on the TRA card is the program name,
if given, or a name generated by ALDAP.

If two transfer addresses are encountered in loading subprograms for execution,
control transfers to the second address. The first address is placed in the A
register, bits 41-24 (bits are numbered from right to left beginning with zero).

More than two transfer addresses will terminate a job, and a loader diagnostic
will be written on the standard output.

The cards which the loader encounters while loading and processing subpro-
grams and library subroutines are listed below. Details about the loader
cards are in section 5. 6.

IDC Subprogram Identification Card

EPT Entry Point Symbol Table

BCT Block Common Table

RBD Relocatable Binary Subprogram Deck
EXT External Symbol Table

LAT Linkage Address Table

BRT Bank Relocation Table

ocCcC Octal Correction Card

TRA Transfer Card

LCC Loader Control Card

All loader names, including entry point names, external symbols, and subpro-
gram names except common block names are 1-32 characters long. A name
of 8 characters or less is contained in one word. If the name is greater than
8 characters but less than or equal to 31 characters, it is prefixed by 1-4,
specifying the number of words comprising the name.

A name prefixed by a number is not identical to the same name not prefixed by
a number.

5.2
LOADER CONTROL
CARDS

BANK
STATEMENT

Example:

1A # A
2AAAAAAA A # AAAAAAAA
first word 2nd word 1 word

Loader control cards indicate subprograms to be overlayed, subprograms to be
corrected, or the memory banks to which subprograms and common blocks are
to be assigned. All loader control cards contain 11 (-), 0, 7, and 9 punches in
card column 1. There are six types:

© 301

BANK,(bl), Ce ,namei, .. .(bz), e ,namek, RN

or

t%;'lol

ANK,(m),syml,Symz, .

0
;;CORRECT,epname1 .epname, , . . .

0 \

7
9MAIN ,u

0
gOVER LAY,u,0 > described in chapter 6.

EGMENT,u,n

(%\'IOI

There are two types of BANK statements.
The programmer may specify a particular bank for each subprogram and

common block, or that particular subprograms and common blocks go into the
same bank. This statement is placed before the subprograms to which it

5-3

5-4

pertains, if they are binary (object) subprograms; otherwise, it is placed
immediately before the LOAD statement.

11
0

7
9BANK,(bl), v ,namei, P ,(bz), e ,namek, .
b a bank number (0-7), an entry point, or a common block name.

name an entry point or common block name. A common block name is
enclosed in slashes.

If b is an entry point or common block name, the names which follow it are
allocated to the same bank as the entry point or common block name, and the
loader places the subprograms in the bank having the largest amount of avail-
able storage, other than bank zero. If there are several entry points in a
subprogram, only one of these need appear in the BANK statement.

Programs compiled or assembled by systems such as FORTRAN, COMPASS,
ALGOL, must have provisions for bank relocation before they may appear in
a BANK statement.

{;RUN,S,330,2

7
(;LOAD

BANK, (2) ,MICE,/MEN/, (1) ,LENNY

(SCOPE

END

0
7
9

COMMON/MEN/A , B

PROGRAM MICE

Z)Fm,x,L,A

7308,3064,KG, 8

Two FORTRAN subprograms are to be compiled and written on the load-and-
go unit. The BANK statement precedes the LOAD statement. Subprogram
MICE and the common block MEN are to be placed in bank 2 and subprogram
LENNY is to be placed in bank 1.

Various combinations of subprograms or common blocks may be forced into a
particular bank.

11
0

7
9BANK,(m1),sym1,sym2, e ,(mz),syms,sym4, .

mi is a bank number, 0-7
sym, may be the following designators:

SP. = subprograms

NC. = numbered common on binary input unit

LC. =labeled common

LSP. = library subprograms 2

LNC, =library numbered common from library subroutines
LLC. =library labeled common S

APC. =8P, + NC. + LC.
ALC. =1SP, + LNC. + LLC.
ALL. = APC. + ALC.

The designated subprograms and common blocks will be allocated to the
specified bank. These declarations apply only to subprograms or common
blocks for which no previous bank declaration defining a unique bank has been
given.

Examples:

0
JBANK, (0), APC., LSP.

The succeeding subprograms, labeled, and numbered common, read
from the binary input unit and library subprograms will be stored in
bank 0. Numbered and labeled common blocks from the library are
dynamically assigned by the loader.

O30

BANK, (A),B

CORRECT
STATEMENT

5-6

0
gBANK,(O) A

0
gBANK, (1),ALL.

Subprograms containing entry points A and B will be forced into bank
0 by the first two bank statements. The remaining subprograms and
common blocks will be loaded into bank 1.

If library subprograms other than those specified on the entry point name
statement are to be corrected, the CORRECT card is used.

11
0
gCORRECT,epname ephame,, « . .
epname, is an entry point name within the library subprogram to

be corrected; names must occur in the order in which
they appear on the library tape.

Octal correction cards containing the corrections to the subprogram must
follow the CORRECT card. The corrections for each subprogram are termi-
nated by a single TRA card. The octal corrections must appear in the same
order as the subroutines on the library tape to which they apply.

SNAP and TRACE cards may follow the last TRA card. The corrected deck
and/or SNAP and TRACE cards must be followed by a RUN card. In this
example COMPASSX must appear on LIB before SIOPACK.

L 1
L

L

L

ﬁ ID[::NT

7
9RUN,xxx

(zTRACE,xxx

r;SNAP,xxx
(=

{ occ S corrections for SIOPACK
[,
[ma

ll oce corrections for COMPASSX
ocC

0occC

9CORRECT,COMPASSX,SIOPACK

9 (gconmss (C,D),L,X

53

LOADER CALLS When the LOADER request is made, the A and Q registers must contain certain
parameters. The calling sequence is the following:

RTJ LOADER

+ return

The parameters supplied in A and Q are:

5-7

5-8

am

is an 18-bit address, or zero, specifying a location for preset
entry points which have been defined by the calling program:

is a mapping parameter:

0 no map after loading
1 map after loading

specifies the kind of loading operation:
00 load library programs from n1 (upper Q is used)
01 load program from n2 (lower Q is used)

10 load library program from n_, and octal corrections to it
from INP (upper Q is used)

11 complete loading operation after interruption - (ignore
remainder of A and Q)

the logical unit number of the library unit (usually 70).

the number of names in the list starting at bp.

an 18-bit address specifying the beginning of a list of library
subroutine entry point names to be loaded from the library
tape (n.). A name may be in either form allowed for loader
names](5.1).

the location, in bank zero, of the first binary card image of the
program to be loaded. The rest of the cards are found on n,.
I z = 0, the first card is also found on nz.

designates the logical unit from which binary cards, or images
of cards, one per record, are to be loaded.

The unused portions of A and Q must be zero.

The location defining the preset entry points contains:

r y e
a7 35 14

r a 12-bit value specifying the number of entry points which are
preset into the entry point symbol table.

y the first word address (18 bits) of the list of entry point names.
The names must be in contiguous storage locations and may
extend to 32 characters per name.

e the first word address (18 bits) of the list of entry point

addresses. This list must be contiguous words with one
address occupying one word. Each address is contained in

the lower 18 bits of its word. The number of entry point
addresses must equal the number of entry point names, each
of which must equal r.

The four loading operations, keyed by the s parameter in the call to the
loader, are as follows:

s =00

Load from unit n, the library subroutines called by the entry point names at
bp. The entry point symbol table is preset if am is not zero.

SCOPE uses this call for COMPASS, COBOL, FORTRAN, ALGO, ALDAP
and those programs defined on an entry point name statement, unless SCOPE
parameters are used.

When the loader returns control to its calling program, the lower address of
the A register specifies the first location in bank zero of the address list.
This list gives the relocated addresses of the entry point names found at bp
in the lower 18 bits of consecutive words. Bit 47 of the A register is zero.
Bit 46 of the A register specifies whether numbered common in bank zero
has (1), or has not (0) overlayed the loader. The Q register contains the
number of errors encountered in loading, right justified. If a transfer
address was encountered during loading, it is placed in the lower address

of A, and the location of the address list is placed in the upper address of A.

Any time numbered common overlays the loader, the loader must be reloaded
(Sec. 3.1 LOADER) before another loader operation can be executed.

s =01

Load subprograms from unit n,; when two consecutive TRA cards are en-
countered, load externally-reférenced library subroutines from n_. If z
is non-zero, it gives the location of the first card image in bank zero. An
entry point symbol table is preset if am is non-zero.

SCOPE uses this call to load from INP or a load-and-go unit.

No more than two TRA cards may specify transfer addresses. When the
loader returns to its calling program, the lower address of the A register
gives the relocated address of the last transfer address encountered. If
there were two transfer addresses, the first is given in bits 41-24 of the A
register. Bit 47 of the A register is zero. Bit 46 of the A register specifies
whethei numbered common in bank zero has (1), or has not (0) overlayed the
loader. The Q register contains the number of errors noted during loading,
right justified.

If an end-of-file is encountered on n_, control is returned with a 1 in bit 47
of the A register and bits 14-0, zero. If a binary card with w = 0 is en-
countered, bit 47 is one, and bits 14-0 in A contain the location in bank zero
of that card image. In both cases, library subroutines are not loaded before
returning. Loading is completed by the s = 11 call; loading is continued by
another s = 01 call.

5-9

54

PROGRAM
ASSIGNMENT

BANK
ASSIGNMENT

STORAGE
ALLOCATION

5-10

s =10

This is the same as the loading operation when s = 00, except that j must be

1 and OCC cards are accepted. After the named program from n. is loaded,
OCC cards are loaded from INP until a TRA card is encountered. If a SCOPE
control card is detected on INP, the loader returns with a 1 in bit 47 of the A
register and bits 14-0 specify the location of the card image. Loading is com-
pleted by an s = 11 call.

SCOPE uses this call when loading programs defined by an entry point name
statement with SCOPE parameters.

s =11

Complete the loading operation after an end-of-file or SCOPE control card
interruption. Only the s field in the A register is interpreted. If the pre-
vious operation was s = 01, library subroutines are loaded and return is
made to the calling program.

If the previous operation was s = 10, processing of the octal corrections is
completed, any remaining library subroutines are loaded, and return is made
to the calling program.

During loading, the program is assigned to various portions of storage.
Programs which are too large for available storage may be divided into
sections and executed sequentially under OVERLAY control. (Chapter 6).

If the programmer specifies a particular bank, SCOPE loads the subprogram
or common block into that bank. If the programmer specifies that particular
subprograms and common blocks go into the same bank, as each is en-
countered it will be assigned to the bank with the most available storage,
excluding bank zero. If there is no bank declaration, SCOPE selects the bank,
other than zero, having the amount of available storage into which the sub-
program or common block fits most tightly. Bank zero is assigned only
when the other banks cannot provide space. Banks may be specified with

the BANK statement (Sec. 5.2).

After each load operation, SCOPE records the consecutive storage locations
which have not been assigned to a subprogram, common block, or monitor
routine. These constitute available storage and the limits may be obtained

or changed by a programmer request during execution (MEMORY request,

3.6). Storage in a bank extends from the lowest location, 00001g, to the highest
location, 77776g.

STORAGE
DIAGRAM

SCOPE resides in lower memory of bank 0.

Object subprograms, labeled common, program extension areas, programmer
I/O drivers, and library subroutines are loaded into the highest available loca-
tions in the bank assigned.

Numbered common begins at the lower end of available storage in the assigned
bank. In bank zero, numbered common overlays the loader. If numbered
common is not in bank 0, the loader remains in storage. The last numbered
common block in each bank may vary in size from one declaration to the next.
Both numbered and labeled common blocks may be reduced in size from one
declaration to the next.

The loader permits subprogram and labeled common modification by octal
correction cards. Instructions which do not fit a corrected area in the
program are loaded into a program extension area declared by the programmer
and assigned by the loader. The program extension area is limited in size

only by the amount of available storage in the bank into which the program

and corrections are loaded.

The locations occupied by a program after it is loaded can be obtained from
the memory map, which includes a listing of the names and locations of all
subprograms, labeled common, numbered common, program extension areas,
and entry points in storage.

The following diagram illustrates how an object program might be stored.

Assuming that there is only one bank of storage, the SCOPE I/0 drivers are
loaded into the highest numbered area while SCOPE and the loader occupy
the lowest portion of storage. During execution SCOPE and the I/0 drivers
are bounds protected.

The first subprogram, A, is loaded into highest available storage followed

by labeled common blocks V and W. The loader is assigned the next available
locations as a program extension area; the size is determined by information
on the octal correction cards. Next, subprogram B is loaded; then labeled
common X, Y, Z, and subprogram C. The area for numbered common over-
lays the loader; numbered common can not be preset. Subprogram C may or
may not have contained vctal corrections; however, if octal corrections were
present, no program extension area was defined.

5-11

77777
SCOPE TABLE OF CONTENTS
SCOPE I/0 Orivers
Lﬂ
.
: subprogram A
H
LO
L
L" : Labeled common V declared in
0
L
L" . Labeled common W Subprogram A
(4]
Ln}, Program Extension Area
Lol® for subprogram A
‘:-n
E Subprogram 8
L]
Lo
L
Ln H Labeled common x
° .
Ln declared in
L . Labeled common Y subprogram B8
L
L" . Labeled common Z
(]
l:-n
: subprogram ¢
.
Lo |
W > available storage
———————————————————— LNumbered common
SCOPE _loader (during
loading operation only)
P
RESIDENT portion of SCOPE
00000

5-12

55

CORRECTING

SUBPROGRAMS Octal correction cards can be included with an object program at load~time.
Existing instructions and labeled common data may be altered; additional
instructions and data may be loaded into a program extension area. Any
section of a program may be corrected. This area, determined and assigned
by the loader, is limited in size only by the amount of available storage in
the bank into which the program and corrections are loaded.

All octal correction cards contain a load address, the contents of one to four
computer words, and relocation designators for the address portion of each

instruction:

Column Contents

1 punches in rows 11, 0, 7, and 9

2-6 relocatable load address, aaaaa, for the first

correction field on the card

7 relocation factor for address aaaaa

8 blank

9-17 data field 1 - upper instruction or data word to be
loaded at the address aaaaa

18-26 data field 2 - lower instruction or data word to be
loaded at the address aaaaa

63-71 data field 7 - upper instruction or data word to be
loaded at the address aaaaa + 3

72-80 data field 8 - lower instruction or data word to be

loaded at the address aaaaa + 3

Octal correction cards are placed immediately before the TRA card of the
binary subprogram to which they pertain.

Example:

To correct a single instruction in a subprogram:

7 5 A A AN 1 2 3 + A NA A ANANA A A

i 7| e |7||s 2s|27

In the fifth instruction of the subprogram, the upper instruction
will be changed to an SLJ to relocatable 123 in the subprogram. The
lower instruction will not be affected.

5-13

RELOCATION
FACTORS The relocation factor, which follows the load address in card column 7, may
be any one of the following:

Factor Relocation
E Relative to the first location of the program extension
area
+ Relative to the first location of the subprogram
1 Relative to the first location of the first declared

common block

2 Relative to the first location of the second declared
common block

9 Relative to the first location of the ninth declared
common block

0 Relative to the first location of the tenth declared
common block

Only labeled common blocks may be corrected, data cannot be prestored in
numbered common blocks. In selecting the correct factor for a common
block, however, both numbered and labeled common blocks in the program
must be counted in the order in which they are declared. Only the first
ten blocks can be corrected.

Examples:

A FORTRAN program contains the following statement:
COMMON /1/A/B3/G,H/B4/F/6/Z/COG/P

To alter data in block B3, the relocation factor 2 would be used.
To alter data in block COG, factor 5 would be used. Data cannot

be prestored in the numbered common blocks.

A COMPASS program contains the following statements:

21 BLOCK 10

COMMON AFLAGS(5), BFLAGS(5)
H30 BLOCK 200

COMMON A(10, 10), B(10, 10)
26 BLOCK 3

COMMON R1, R2, R3

RTABLE BLOCK 100
COMMON R(10, 10)

5-14

To alter data in block H30, the relocation factor 2 would be used.
To alter data in block RTABLE, the relocation factor 4 would be
used. Data cannot be prestored in blocks 21 and 26 because they
are numbered common.

DATA FIELDS The format of each data field, card columns 9-80, is:
nNNXxXxXxxi

Data fields 1-8 are loaded into sequential half-words in storage starting with
address aaaaa (columns 2-6).

nnn the upper 9 binary digits of an instruction or data word.

xxxxx the address of an instruction, or lower 15 binary digits of a
data word.

i the relocation factor for the address, xxxxx. Any of the factors
in the relocation list may be used with two additions:

Factor Relocation
blank no relocation

- Relative to the complement of the first
address of the subprogram.

Since program instructions may refer to both numbered and labeled
common, the value of the relocation designator, i, must be deter-
mined by counting each declared common block -- both labeled and
numbered -- up to the one to which the address refers.

Blanks in the nnn and xxxxx fields are converted to zeros; if the entire field
is blank, the related portion of storage is not altered.

PROGRAM

EXTENSION AREA The size of the program extension area is defined by the largest reference
to the area in the load address. Data field references are not taken into
consideration when determining the size. If 2E were the largest load
address, the program extension area would consist of three words (0, 1, and 2).

The programmer must provide a jump to the program extension area from the

program to execute the octal corrections. A return jump from the program
extension area to the program must also be included.

5-15

56
BINARY CARD
FORMATS

5-16

Example of two cards in an octal correction deck.

||

o}

700001+ {b|bbbbbbbbb [75400002E|75bbb 123+ |bbbbbbbbb

9
Card column 7l8le 78 2627 3536 aalas

I

o}

;ooooz E[b] 750777770 [125001045|75000002E |bbbbbbbbb
Card column HER 78 26137 35/36 3445
In the subprogram:
at location 00001+ upper half word is unchanged because of the blanks.

lower half word contains a return jump to the 3rd word
(2E) of the program extension area.

at location 00002+ upper half word contains an SLJ to relocatable 123 in the
subprogram (blanks fill to zeros).

lower half word is unchanged, because it is blank.
In the program extension area:

at location 2E upper half word contains an SLJ **. The blank designator
indicates no relocation.

lower half word contains a LDA with the contents of relo-
catable 104 of fifth declared common block.

at location 3E upper half word contains an SLJ to 2E, the third location
of the program extension area, to exit back to the
program.

lower half word is unchanged.

The program extension area is allocated 4 words, 0, 1, 2, and 3.

SCOPE loader processes subprograms and subroutines to be executed as a
running program under SCOPE control. The loader assumes that the programs
contain elements which will enable it to relocate the coding and tie the subpro-
grams and subroutines together. These elements are contained on binary cards,
listed below. Generally, they are produced by COMPASS, FORTRAN, COBOL,
and ALGOL; and are of no concern to the programmer.

Mnemonic

IDC

EPT
BCT
RBD
EXT

BRT
occ
TRA
LCC

Name

Subprogram Identification Card
Entry Point Symbol Table

Block Common Table

Relocatable Binary Subprogram Deck
External Symbol Table

Linkage Address Table

Bank Relocation Table

Octal Correction Cards

Transfer Card

Loader Control Cards

Word Count
or

Card Type
31g

324

33g
1sWs2lg
34g

35¢

36g

30g

37g

30g

Card types 1 to 9 must occur in the order listed; only IDC and TRA are
required in all subprograms. Type 10 occurs only between subprograms or
ahead of the first subprogram in a series.

Unless identified as octal or coded decimal, information is assumed to be
in binary on cards or in card format. In most cases more than one entry is
contained on a card. With the exception of the octal correction card and the

named TRA card, subprogram cards are punched in binary.

Each column on a card represents 12 bits of a 48-bit computer word. The
correspondence between card positions and computer word bit positions for
each group of four card columns is shown below.

Row

12
11

Corresponding Bit Position

Column 1 Column 2 Column 3
47 35 23
46 34 22
45 33 21
44 32 20
36 24 12

Column 4

11
10
9
8

0

All SCOPE loader cards have a 7, 9 punch in column 1. On most loader cards
the first four columns identify the type to provide a means of checking its

contents.

5-17

5-18

Corresponding

Mnemonic Row Column Word Bits Purpose
(none) 12 1 47 must = 0
w 11 1
to 46-42 card type or word count (RBD)
3 1
a 4 1
to 41-39 relocatable address (RBD)
6 1
12 2
to 35-24 sequence number, or blank
9 2
b 7 1 38 and 36 indicates a binary card
9 1
i 8 1 37 indicates whether a checksum
will be processed
1, checksum is ignored
0, checksum is compared
c 12 3
to 23-0 24-bit checksum
9 4

The remaining words (columns) depend upon the card type.

The checksum is formed by finding the 48-bit arithmetic sum of the 20 words

on the éard (columns 3 and 4 are set to 0 and left carries go into the low
order bit). The high order 24 bits of the 48-bit sum are added to the low
order 24 bits to form a 24-bit result. A left carry is generated if overflow
into the 25th bit occurs. The 24-bit result is the checksum.

Card representation of first word:

1 2 3 4
/
12 0
1]
o
[w [a address or sequence number
2 b binary card indication
3 ¢ checksum
4 _ i ignore checksum bit
5 a c w word count
6
7
8
9

Bit structure of first computer word:

of w a {bl]i]b a c
47 46 4241 39_ 37 35 24 23 o]
38 36
IDC CARD The subprogram identification card names the subprogram which follows it and

provides information about the subprogram to the loader.

Card Content:

Columns Computer Word Use
1-4 1 Card type
5-8 2 Subprogram identification
9-24 3-6 Subprogram name in BCD
25-80 7-20 Zero

5-19

EPT CARD

5-20

Word Content:

Word 1: w=318

a zero

¢ checksum

Word 2:

word number, 3-6, of the first word on the card which contains load-
able data. Data begins in the (d+1)st word of all RBD cards.

length, 2 to 8, of the relocation byte on the RBD cards.

the number, 6 to 24, of relocation bytes per word on the RBD cards.
length of the subprogram in binary; 0 to 77777 g
s is 0 if only common blocks follow.

The unused portions of word 2 are zero.

Words 3-6: name of subprogram in BCD, in format specified for
loader cards (Section 5.1).

The Entry Point Symbol Table defines the names and values for the entry
points in the subprogram.

Card Content:

Columns Computer Word Use
1-4 1 Card type
5-80 2-20 These columns contain

entry point names, in BCD,
and related addresses, in

binary.
Word Content:
Word 1: w =32 8
a sequence number in binary; all cards must be in
sequence.

¢ checksum

BCT CARD

Words 2-20:

Each entry point requires from 2 to 5 whole words. The name of the entry point
occupies the first 1 to 4 words depending upon the length of the name. A name
can be 1-32 characters, 6 bits per character. See section 5.1 for entry point
name format. The address occupies positions 14-0 of the last of the 2 to 5
words. Each entry point definition immediately follows the preceding one;
definitions continue from word 20 of one card to word 2 of the next card.

As many EPT cards as are necessary may be used to define the entry points of
a subprogram; the cards must be in sequence.

The Block Common Table defines the name and length of each common storage
area declared in the subprogram.

Card Content:

Columns Computer Word Use
1-4 1 Card type
5~8 2 Zero
9-80 3-20 Common declarations

Word Content:

Word 1: w=338

a ascending sequence number in binary; cards must
be in sequence

¢ checksum.

Words 3,5, 7, .. .19: Names, in BCD code, of the blocks of
common assigned. A name may not contain
more than 8 characters; it may be numeric
(for numbered common) or alphanumeric
(for labeled common).

Words 4, 6, 8, . . . 20: Length of the common block named in the
preceding word.

Common blocks are data storage areas which are shared by subprograms and
library subroutines. Common may be labeled or numbered. For labeled
con:non, the first character must be alphabetic. The 8-character name for a
block of labeled common is assigned from high order to low order storage,
following the subprogram in which it was first referenced. The 8-character
name for a block of numbered common must be all numeric.

5-21

Numbered common is always assigned to locations in lower storage following
SCOPE. Numbered common may not be preset; it may be assigned to the area
used by the SCOPE loader and overlays the loader when it is referenced.

Subprograms sharing a block of common must each identify common by the
same name and block length. There is one exception: the last numbered
common block in a storage bank may vary in length between subprograms.

Up to 126 blocks may be defined for one subprogram.

RBD CARD The Relocatable Binary Subprogram Deck contains the instructions, constants,
and data to be positioned. A relocation increment or decrement may be

applied to the address portions of each word.

Card Content:

Columns Computer Word
1-4 1
5-24 2-6
13-80 4-20

Word Content:

Word 1: w =word count, 1 to 21

Use

Number of instruction words
on the card, the first re-
locatable address and a
checksum.

Relocation bits, in constant
length bytes, which determine
the kind of relocation and the
address portions of each
word. Up to 6 computer words
are filled.

Instruction words to be loaded.
As many computer words are
used as are available.

a initial load address for the words on the card

¢ checksum

b,i are as defined for all standard card types

The number of words reserved for the relocation bytes depends on the length
of each byte (2-8 bits) which in turn depends on the number of common blocks
to be used. The number of words may be determined from the following table:

No. of Relocation Max. No. Total Possible No. of Words

Common Byte of No. of for
Blocks Length Bytes/Word Bytes Relocation Bytes
0 2 24 35 2
1-2 3 16 33 3
3-6 4 12 33 3
7-14 5 9 31 4
15-30 6 8 31 4
31-62 7 6 29 5
63-126 8 6 29 5

An integral number of bytes is arranged in a word, left justified. The first
byte in word 2 designates relocation for the load address. Subsequent bytes
correspond to left, then right, address portions of the first instruction word,
then the second, and so on. The value of the byte, excluding the leftmost bit,
is used to locate an entry in a table of relocation factors during loading
(RFTABLE). The leftmost bit of the byte specifies incrementing (0) or dec-
rementing (1) the contents of the related portion of the instruction or the
load address. The remaining bits give the ordinal of the proper word in the
table. The first word of this table contains the relocation factor for fixed
addresses and, therefore, contains zero. The second word contains the factor
for addresses to be relocated relative to the subprogram; the third word for
addresses to be relocated relative to the first declared common block on the
BCD card; the fourth word for the second declared common block, and so on.
If a byte points to an undeclared common block, an error diagnostic is printed.

If an address is to be decremented, the complement of the indicated relocation
factor is used when relocating the address. The words not used by the reloca-
tion bytes are used for the relocatable instruction, constants, data, and so
forth. These words always begin in the same column, for each subprogram,
as though the maximum number of relocation bytes were needed.

A byte length, the word number of the last word containing relocation bytes, d,
and the total number of bytes per word, p, are contained on the IDC card.

A byte value of 10 . . . 0 is illegal.

A byte value of 00 . . . 0 implies that the address is not to be modified.

A byte value of 0. .. 01 or 10 . . . 01 implies a subprogram instruction.

A byte value of 0 . .. 010 or 10 . .. 010, refers to the first common block;
0...0l11or10... 011, the second; 0 .. .100 or 10...100, the third, and

so on. The reference to the 126th common block would be 01111111 or 11111111.

The load address byte may notbe 0 . ..0,0or 1xXx.

5-23

EXT CARD The External Symbol Table contains names of the symbols external to the
subprogram. The names are entry points to other subprograms and library
subroutines.

Card Content:

Columns Computer Word Use
1-4 1 Card type.
5-80 2-20 External symbol names in
BCD.

Word Content:

Word 1: w=348

a ascending sequence number in binary

¢ checksum

Words 2-3: External symbol names in BCD are arranged contiguously
on a card and may be split between successive cards; a
name may continue from column 80 of one card to column 5
of the next card. Loader name format is given in
Section 5.5. As many EXT cards as are necessary may be
used to define external symbols; the cards must be in
sequence.

LAT CARD The Linkage Address Table provides linkage for all references to external
symbols. A minimum of one LAT word exists for every external symbol.

Card Content:

Columns Computer Word Use
1-4 1 Card type.
5-80 2-20 Relocatable addresses and

related information for the
external symbols referenced
in the subprogram.

Word Content:

Word 1: w= 358
a ascending sequence number in binary
¢ checksum

5-24

Word 2-20: Each LAT entry, one word in length, points to a single
string of references to one EXT symbol. The LAT
entries for each EXT symbol are threaded through the
table.

47 4443424 29 14 o

m relocation mode indicator for the external symbol.
1 normal (incremented) references

0 complementary (decremented) references

w upper/lower string indicator.

0 string starting at p refers to an external symbol in the upper
portion of the word in the subprogram.

1 string starting at p refers to an external symbol in the lower
portion of the word in the subprogram.

t ordinal of the next LAT entry related to the same external symbol or
zero if no more LAT entries are needed.

q is the quantity added to the relocated address of the EXT symbol
(q may be zero).

p relocatable address of the word in which the external symbol is used.
1t is the initial location in the subprogram of the string of references to
an EXT + Q. This address gives the location of the next reference, and
so on. The last address in the string contains 77 7778.

For each EXT symbol there will be at least one LAT entry. If the identical
symbol appears in both the upper and lower positions of a word, there will be
two LAT entries. There will be other LAT entries for each modification value,
q, of the symbol. Finally, there will be separate entries for each g-valued
portion of the symbol for either value of the relocation mode indicator, m.
There may be many LAT entries for a single external symbol. For example,
each of the following references will require two LAT entries if each is refer-
enced from an upper and lower portion of a word. Eight entries would result
from:
EXT + Q1
EXT +
Q2
-EXT + Q1
-EXT + Q2

5-25

5-26

The EXT and LAT tables are arranged in parallel so that the ith LAT begins
the series of references to the ith symbol. When more than one LAT entry
exists for an EXT symbol, successive entries continue after all initial LAT
entries. The related LAT entries are threaded together by the t designation
in the entry.

If a symbol with unique values for m, w, and q appears only once in a sub-
program, the address of the word using it is recorded in the p portion of the
entry. If the same symbol with identical values of m, w, and q appears more
than once in a subprogram, SCOPE assumes that all these references are
strung together. The string is constructed so that the address portion of the
word in which the particular version of the symbol is used is replaced by the
location of the word in which the next reference occurs. The location of the
following reference is placed in the preceding address portion, and so on.
The last address portion is assumed to contain 77777,. The location of the
first word of the string is recorded in the p portion of the LAT entry. This
method of stringing identical versions of the symbol allows SCOPE to replace
the relocatable address by a particular relocated address for the symbol
when it can be determined (defined as an entry point).

The designator, t, is used to locate the next LAT entry for a specific symbol
regardless of the values of m, w, and q. The thread of LAT entries is

terminated by t setting to zero. t is also zero if the symbol occurs only once.

If an extraneous EXT entry exists, (an EXT is listed but not referenced) the
LAT entry will have the value: m=w =t =q=0andp = 777778.

If no LAT entry exists for an EXT entry, it is an error.

As many LAT cards as are necessary may be used, they must be in sequence
and all but the last must contain 19 entries.

SOURCE SUBPROGRAM

UPPER LOWER OBJECT SUBPROGRAM

LoC ADDRESS ADDRESS

aaaaa SAM aaaaa 77777
bbbbb SAM -SAM-2 bbbbb 77777 77777
ccccce SAM+2 ccccecc T77TT7
ddddd SAM+2 ddddd cccce
eeeee ROGER+5 eeeee 77777
ffrfff ROGER+5 fefff eeeee
a49g9gg ROGER+ 6 ggggag 77777

BRT CARD

EXT ENTRIES

SAM

ROGER

ANDY

LAT ENTRIES

ORDINAL | m w t q p
(o] | | 3 (] aaaaa
I I ! 5 5 fffff
2 o] (o] [¢] (o] r7T777
3 I o] 4 o] bbbbb
4] I 6 2 ddddd
5 [[0 6 9g9gqgg
6 0 | o | -2 bbbbb

The Bank Relocation Table indicates locations within the subprogram where
bank designators depend on the banks to which this or other subprograms or
common blocks are assigned. As many BRT cards as necessary may be used;
they must be in sequence.

Card Content:

Columns
1-4
5-80

Word Content:

Word 1:

Words 2 - 20:

Computer Word Use
1 Card type.
2-20 Threaded list of BRT
entries.
w = 368

a sequence number in binary

¢ checksum

The BRT table has three sections. The first section
parallels the EXT table and each word contains the

first two entries for that EXT symbol. If no bank
designators depend on that symbol, there are no entries.
The second section consists of a pointer to the beginning
of the thread of entries for this subprogram and each
common block it defines. Section three holds the rest of
the BRT entries, two per word, pointed to from sections
one and two.

5-27

Format of the words in sections one and three:

y i t a, az

47 42 a4 29 14

y specifies one of the five bank designator positions to be relocated
within the word at a1 and a2.

The value of y may be one of the 30 possibilities, 1—368:

y = (code for 2 designator) + 5 times (code for a, designator).
If a2 is not present, y is 1 to 5.

i 0
t designates the next BRT word (wo entries) in this thread.

a_ and a are addresses in this subprogram in which a relocatable
1 . . .
bank designator appears. If more than one designator in
a word is relocatable, each has a BRT entry.

Section two parallels the RFTABLE with four entries per word:

4 sl tiv2 43

47 35 23 H

t is the ordinal in section three, relative to the beginning of BRT, at
which the first two BRT entries corresponding to the ith RFTABLE
entry occur. t_ points to the entries depending on the bank into which
the subprogram is loaded. t2 through t 27 (or the last t field) point
to the entries depending on the banks to which the corresponding
common blocks are assigned. t,, and any fields not pointing to a
section three entry are zero. As many t fields are required as the
number of declared common blocks.

TRA CARD The Transfer Card signals the end of the subprogram deck or the entire pro-
gram deck, and in some cases, the starting location of the program.

Card Content:

Columns Computer Words Use
1-4 1 Card type.
9-80 not applicable Entry point name of the
starting address of the pro-
gram.

5-28

Word Content:

Word 1: w=378

a 0

¢ checksum

Beginning in column 9, an entry point transfer name is punched in Hollerith.
Up to 31 Hollerith characters may be used. When there is no transfer name,
columns 9 through 80 must be blank.

Usually, only one subprogram or library subroutine encountered in a loading
operation specifies a transfer name. Control is given to the address specified
by that name when the program is run. However, a second transfer name may
be specified in a later subprogram or library subroutine. When the program

is run, control is given to the second address, the first address is placed in the
A register (bits 41-24). Except for overlays, it is an error to declare more
than two entry point addresses.

LCC CARD The Loader Control Cards indicate overlay subprograms and the banks to
which subprograms and common blocks are to be assigned.

Card Content:

Columns Computer Word Use
1 w = 308 not applicable Card type 11, 0, 7, 9.
2-80 not applicable Hollerith characters

representing loader control
statements and parameters.

In the six types of LCC cards, columns 2 through 80 are free field; parameters
are separated by commas, and blanks are ignored. All information must be
contained on one card.
MAIN,u
OVERLAY ,u,0 see chapter 6
SEGMENT,u,n
u decimal number, 0 to 50 or 69, specifying the unit on which the main
program, overlay or segment is to be written.
o decimal number specifying the overlay number.

n decimal number specifying the segment number.

5-29

OCC CARD

5-30

BANK,(bl), . ,namei, PR (o 30 P ,name, , . . .

BANK,(m),syml,symZ, .

CORRECT,epname1 ,epname

b

name
sym,
¥ 1

epname,
1

2

see section 5.2.

2’

bank designator, 0-7; the name of an entry point, enclosed in
parentheses (entry point); or the name of a common block, enclosed
in slashes and parentheses (/block/).

bank designator, 0-7.

entry point or common block name; a block name must be enclosed
in slashes.

symbol to specify subprogram, numbered or labeled common, or
library subroutines.

entry point name in a library subroutine.

The Octal Correction Cards provide facility to correct existing instructions
in the subprogram and to add new instructions in a program extension area
preceding the subprogram in storage. These cards are not automatically
produced by assembling or compiling a source deck; they must be provided
by the user.

Card Content:

Columns Use

1 w = 308 Card type.

2-7 Relocatable load address for first
correction field on card and relocation
increment.

9-80 Corrections or additions.

Information on this card is punched in Hollerith characters to be
loaded into sequential half words in storage. The card is divided
into 9 fixed fields; the first consists of 6 characters; the remainder,
9 characters each. This card is described in Section 5.5.

PREPARATION OF OVERLAY TAPES 6

6.1
LOADER CONTROL
STATEMENTS

Overlay processing allows programs that exceed available storage to be di-
vided into independent parts which may be called and executed as needed.

A program may be divided into a main section and any number of overlays,
each of which may contain any number of segments. Main, overlay, and
segment may each contain subprograms. Only main, one overlay, and one
segment may occupy storage at a given time.

In a program containing overlays, the loader control statements, MAIN,
OVERLAY, and SEGMENT, precede the relocatable binary subprograms
which comprise the respective sections. After a source program is assem-
bled or compiled, overlay processing loads the relocatable binary subpro-
grams into storage and writes each overlay or segment as a separate
record in absolute binary on an overlay tape. This overlay tape is then
called in sections for execution. The absolute records do not require the
relocatable binary loader to perform the usual relocating and linking
functions. Debugging aids cannot be used.

Initially, control is transferred to main which resides in storage continu-
ously; itin turn calls the overlays when they are needed during program
execution. Segments may be called either by main or an overlay. FORTRAN
and COMPASS subroutines are available to call the overlays and segments
during execution; these must be included in the source subprograms. Once
an overlay tape is created, it may be executed subsequently with the SCOPE
control statement, LOADMAIN.

An overlay tape is composed of absolute binary records, followed by two end
of files. Each record, constituting a main subprogram, overlay, or segment,
may be composed of many subprograms. A particular main, overlay, or
segment may occupy any number of banks when in absolute form.

The overlay tape is prepared by preceding each section of the program with
a loader control statement specifying whether it is a main section, overlay
or segment. A loader control statement (as opposed to a SCOPE control
statement) is interpreted by the loader and contains an 11, 0, 7, 9 punch in
card column 1. Each statement specifies the logical unit on which the re-
sultant absolute binary program will be stored. The cards following a
loader control statement may consist of binary subprograms, compiler lan-
guage or assembly language subprograms; SCOPE contro! statements may
be included if compilation and assembly is to be performed prior to creation

MAIN

OVERLAY

of the overlay tape. Each main, overlay or segment must contain one trans
fer address. Main may contain two transfer addresses.

0

T MAIN,u

u is the logical unit number of the overlay tape, 1-49, on which the
main section of the program is to be stored in absolute binary.
u may not be omitted.

The MAIN control statement may precede the object subprograms which
comprise the main section; it defines the main part and the logical unit
number of the overlay tape on which it is to be stored.

When overlay tapes are being prepared, the main section remains in storage
for immediate execution. After all sections of the program have been stored
on tape, the main section may be executed.

The main subprograms must precede the first overlay; if the MAIN state-

ment is omitted, an overlay tape is written containing just the overlays and
segments. The overlay tape may be used for immediate execution whether

it contains main or not; however, if the overlay tape does not contain main,
it cannot be used in subsequent executions.

Portions of the main section may be assigned to several banks with the BANK
statement.

O NOi

OVERLAY,u,0

u is a logical unit number, 1-49, of the overlay tape on which the over-
lay section is to be written in absolute binary. u may not be omitted.

o is the decimal number identifying the overlay.

The OVERLAY control statement precedes the object subprograms which
comprise the overlay; when it is encountered SCOPE creates an overlay
section and writes this section in absolute binary on the overlay tape spec-
ified by the logical unit number.

The main section must include calling sequences to call each overlay into
storage. The overlay may be assigned to several banks with the BANK
statement.

SEGMENT

RULES

0

1 SEGMENT,u,n
u is the logical unit number, 1-49, of the overlay tape on which the

segment is to be written in absolute binary. u may not be omitted.

n is the decimal number identifying the segment.

The SEGMENT control statement precedes the object subprograms which
comprise the segment; when it is encountered SCOPE creates a section
and writes it in absolute binary on the overlay tape specified by the logical
unit number.

The main or overlay section must include calling sequences for each seg-
ment. The segment may be assigned to several banks with the BANK
statement.

Rules for partitioning a program into overlays and segments:

1. Numbered and labeled common and all entry points declared in the
main subprograms may be referenced by any overlay and any
segment.

2. Numbered and labeled common and all entry points declared in an
overlay may be referenced by that overlay and its associated seg-
ments, but not by the main subprograms, another overlay, or seg-
ments contained in another overlay.

3. Numbered and labeled common and all entry points declared in a
segment may be referenced by that segment only.

4. The first overlay card must be preceded by 2 main program. If
the main program is not declared with a MAIN card, it is not
written on the overlay tape.

5. The overlay numbers must start with one and be consecutive for
all overlays written.

6. The segment numbers, within an overlay, must be consecutive
starting with one.

7. Only four overlay tapes may be written. No overlay tape may
occupy more than one reel.

8. Each overlay and segment must have a single named transfer
point.

9. All segments for a particular overlay must immediately follow
that overlay on the tape.

STORAGE
DIAGRAM

DECK
STRUCTURE

BANK
ASSIGNMENT

A diagram of storage during overlay processing and execution:

0

R = Resident

M = Main

O; = Overlay

Si = Segment _
Tn = Time n

Deck structure in the preparation of an overlay tape differs according to input.
Relocatable binary subprograms, preceded on INP by the loader control state-
ments, MAIN, OVERLAY, and SEGMENT, are loaded and then written on the
overlay tape in absolute binary. Source language subprograms must be
compiled/assembled onto a load-and-go tape before they can undergo overlay
processing; the loader control statements MAIN, OVERLAY, SEGMENT,
preceding each portion coded in source language, must be transferred to the
load-and-go tape. The load-and-go tape then becomes input for the overlay
tape. Relocatable binary subprograms and source language subprograms may
be combined as input.

As the overlay tape is prepared, each section is assigned absolute locations
in storage. As each loader control statement is read, it is written on OUT.
The section following the loader control statement is loaded into storage and
a MAP is written on OUT showing the absolute locations assigned to each
main, overlay, and segment.

Any subprogram within a main section, overlay, or segment may be assigned
to a specific bank. In source language subprograms, a bank may be selected
by the appropriate source language pseudo instruction.

BINARY
SUBPROGRAMS
ONLY

If relocatable binary subprograms are the input for an overlay tape, they may be
assigned to specific banks by the loader control statement:

0
gBANK,(bl) mameq, . . ., (by) ,nameq, . .. ,name,

The BANK statements must precede the binary subprograms to which they per-

tain; however, BANK statements must follow the OVERLAY or SEGMENT state -
ment to which they pertain. If the relocatable binary subprograms are contained
on a load-and-go tape as the result of a compilation/assembly, the BANK state-
ments may not precede the LOAD statement which loads the load-and-go tape for

overlay processing.

If there are no BANK statements, normal bank assignment occurs.

To create an overlay tape when the deck consists only of relocatable binary sub-
programs, each subprogram must be preceded by a control statement,MAIN,
OVERLAY, or SEGMENT. If a subprogram is to be assigned to a specific bank,
a BANK statement must be included before the binary subprogram and after the
loader control card. The order in this example (MAIN, subprograms, OVERLAY,
subprograms, . . .etcetera) must be followed in all overlay programs.

1
—
1

relocatable binary subprogrami

DOVERLAY, u,n]

.
e —
—

relocatable binary subprograms]

9BANK,(b1),name
9

100ee I
§SEGMENT,U,2]
9

1
—

1
relocatable binary subprograms I

SBSEGMENT,U, 1 l

-
1

relocatable binary subprograms |

OBANK, (b,) ,name
7 1

- |
9

9-OVERLAY, u,1]
9

-1
1

relocatable binary subprograms l

MAIN,u

ONO

6-5

The overlay tape logical unit numbers may be the same or they may differ;
however, segments must follow the overlay on the same overlay tape. If the
information in the preceding example were on a tape unit other than INP, it
could be loaded by a LOAD control statement and processed as though it were
on INP. With the deck in the preceding example on INP, processing proceeds
as follows:

1. Relocatable binary subprograms following the MAIN statement and
up to the first OVERLAY statement are loaded into storage and
linked by the loader. They are then written in absolute binary in
a single record on the overlay tape, logical unit u. The first two
words which identify it as the main record contain the absolute
transfer address. The control statement, MAIN, is written on OUT
followed by a MAP of the main section showing the assigned
absolute locations. If the main section is not preceded by a MAIN
statement, it is not written on the overlay tape, although it is
retained in storage during overlay processing.

2. The binary subprograms following the first OVERLAY statement are
loaded into an area beginning with the first location after the main
area. They are written in absolute binary as a single record on the
overlay tape, logicalunit u. The first word of the record identifies it
as an overlay with its overlay number (1 in the first case) . The con-
trol statement, OVERLAY, is written on OUT followed by a MAP of
the overlay section showing the assigned absolute locations. The
BANK statement following the OVERLAY statement controls the assign-
ment for subprograms contained in the first overlay.

3. The BANK statement following the second SEGMENT statement con-
trols bank assignment for subprograms contained in segment 2 of
overlay 1.

Step two is repeated for each overlay and segment. In storage, the
segment begins with the first location after its related overlay.
During this process the main section remains in storage.

All the overlays are loaded into the same area following main before
they are written on the overlay tape. All segments are loaded into
storage beginning at the same first location following the associated
overlay before they are written on tape.

4. The end of overlay processing is signaled by a SCOPE control state-
ment such as gRUN, or two consecutive transfer cards.

SOURCE'
LANGUAGE
SUBPROGRAMS If source subprograms comprise the overlay deck, they must be compiled/
assembled onto a load-and-go tape. Loading of the load-and-go tape for overlay
processing is initiated by a LOAD statement. The loader control statements,
MAIN, OVERLAY, and SEGMENT, must precede the subprograms on INP and

the load-and-go unit as usual; they are transferred to the load-and-go tape by
FILE, FILE END control sequences. Bank assignmént may be included in the
source language subprograms; BANK statements may be transferred to the
load-and-go tape by FILE, FILE END control sequences. gCOMPASS and TFTN
are entry point name statements; they must immediately precede the subprograms
to be assembled or compiled. Entry point name statements must follow each
FILE, FILE END sequence to return control to the compiler/assembler.

ﬁLOAD,ul
L
[l
7entry point name,u
9 U s
(9FILE END
OBANK, . . . l
7 |

9 QOVERLAY,u, ,0

7
9 7
(9FILE 2,
AL
=
source language subprograms
7 ;
(9entry point name ,u1 ye e
(;FILE END

QMAIN, u, L

0

7

9 JFILE,
T

1

With this deck on INP, processing proceeds as follows:
1. The MAIN statement is transferred to the load-and-go unit, uy.

2. The subprograms following the first FILE END statement will be
processed by the named library program. The entry point name
statement should specify that the binary object subprograms be
stored on the load-and-go unit, .

3. Steps 1 and 2 are repeated until the LOAD statement is encountered.
At this time the load-and-go unit, ug, contains the same deck
structure as INP would have contained (Section 6.1) were only
binary subprograms included in the deck, as follows:

0
7
9MAIN,u2

relocatable binary subprograms

6-7

0

7
9OVERLAY,uz,o

0
'{)BANK, ...

relocatable binary subprograms

4. When the LOAD statement is encountered, the load-and-go unit,
uq, is loaded, and processing is identical to the overlay processing
for binary subprograms only. The overlay tape is on logical unit,

u2.

BINARY
AND SOURCE

SUBPROGRAMS
MIXED If relocatable binary subprograms are mixed with source language sub-

programs in an overlay deck, the binary subprograms must be transferred
to the load-and-go unit by FILE, FILE END sequences. The order on the
load-and-go unit must be the same as that on INP in the example (Section
6.1). Processing is similar to that for source language subprograms.

(;LOAD,ul

L
L

source language subprograms

(;entry point name,ul,...
{;FILE END
5SEGMENT,U n]
—

L
9 Y I

relocatable binary subprograms

QOVERLAY, u, ,0]
9 1w
9.ILE,u1
o —

L

source language subprograms

(Zentry point name,u,, ..

E E
ﬂFIL ND

/9MAIN,u
9

2
/gFILE,u

1

6.2

EXECUTING

OVERLAY

PROGRAMS When an overlay tape is prepared, it may be saved with an EQUIP control
statement for subsequent executions. If the overlay tape is to be prepared
for subsequent executions only, no RUN control statement is required.

1

relocatable binary subprogram;41

OOVERLAY, 49, 3]
7

9 —1

relocatable binary subprograms l

DOVERLAY, 49,2 I
7

9 L

1
relocatable binary subprograms 1

GSEGMENT, 49,2 J
7 1

9 1
relocatable binary subprograms I
GSEGMENT, 49,1 j

9 — |

- |
relocatable binary subprograms |

90VERLAY,49 ,1]
9 =
relocatable binary subprograms I

OMAIN, 49 l
7
9 5EQUIP,49=5V l

;JOB,777,ABC,160

IMMEDIATE

EXECUTION When the overlay tape is prepared, the main section is retained in storage. To
execute immediately, a RUN control statement (LOADMAIN is not used) must
be placed at the end of the overlay deck or the LOAD statement on INP. When
the RUN statement is encountered, the overlay tape is rewound and control
goes to the transfer address in the main section. The main section then calls
the overlays and segments from the overlay tape.

6-9

1) ﬂRUN,lO.lOOOJ
L

L

L

(’relocatable binary subprograms
OOVERLAY, 42,6]
7

9 L

(;felocatable binary subprograms

o]

OBANK, (b.) ,name
7 1

Main, overlay 2 and its segment are saved on unit
23.

Overlays 1 and 6 are saved on unit 42.

Overlay 3 and overlay 5 and its segments are saved
on unit 10.

Overlay 4 is saved on unit 45.

9 ya

£

9 ﬁSEGMENT,IO,B

Vs

(/relocatable binary subprograms

0SEGMENT, 10,2
7

|

9

.l

relocatable binary subprogramsggl

0SEGMENT, 10,1
7

1

9

1

b

relocatable binary subprograms I

QBANK,(bl),namel,.... A]
% /GOVERLAY, 10, 5]
7 .
9 L
(rrelocatable binary subprograms
GOVERLAY, 45,4 I
7 L

L

9

I/ relocatable binary subprograms

(7-)0VERLAY ,10,3

|

9

6-10

=N
9SEGMENT,23, 1 l
9

relocatable binary subprograms

A
relocatable binary subprograms |

OOVERLAY, 23,2
I 4

,]

(relocatable binary subprograms

5|

/; (7')0VERLAY,42 1 I
9

-
-

relocatable binary subprograms 1

/=
QMAIN, 23 I

! 7
9 /9EQUIP, 10=8V

/;EQUIP,L%SV
/;EQUIP,42=SV

/-
. ;EQUIP, 23=SV

7308,777,0D8,15

2)

This deck illustrates a job in which
the overlay statements are trans-
ferred to load-and-go unit 69 with
the relocatable binary output from
FORTRAN compilations and a
COMPASS assembiy. Logical unit
69 is loaded to prepare the overlay
tape; an overlay tape is created on
logical unit 23. When the RUN
statement is encountered the over-
lay tape is rewound and control
goes to the transfer address in the
main section.

(97RUN, 15,1000, 4

(;LOAD,69

(;FILE END

;‘,s&cmm,w,z]

IDENT ANDY

COMPASS,X,L

OSEGMENT, 23, 1

7
9 J;FILE,69

SCOPE

PROGRAM JACK

/;FTN,X,L

/;FILE END

QOVERLAY, 23,1

5 f;FILE,w

r SCOPE

1 SUBROUTINE DAVID

PROGRAM LISA

(;Fm,x,

L

(;FILE END

GMAIN, 23

9

7
9 /7FILE,69

/ gEQUIP, 23=8V

9

7J0B,40305, DDSTONE , 20

6-11

PREPARED
OVERLAY TAPE

6-12

Once an overlay tape has been prepared, the overlay program in absolute binary
can be loaded and executed with the SCOPE control statement, LOADMAIN.

gLOADMAIN,u,t,p, T

t time limit in minutes (optional)

If t is blank or larger than the remaining job time limit, the job limit will
be used.

p print limit (optional)

r request for octal dump or console scoop on abnormal termination
non-blank, octal dump of all core

blank, console scoop

LOADMAIN loads the main section from the overlay tape on logical unit u and
transfers control to the transfer address in the main section. During execution
the main section calls the overlays and segments from the overlay tape.
LOADMAIN cannot be used unless the main section is included on the overlay
tape. A RUN control statement is not required to execute overlays which are
loaded by LOADMAIN.

The equipment configuration and SCOPE library tape should be the same as the
one under which the overlay tape was prepared. Both I/0 drivers and overlay
information are assigned to high core; consequently, the overlay information
may not fit into core if the 1/0 drivers needed for the equipment configuration
exceed the space available. If an error occurs while LOADMAIN reads the
MAIN program from tape, SCOPE writes a diagnostic on OUT and terminates
the job.

Example:

130B,7777, ROG, 50

I LOADMAIN, 25
data to be read by program

6.3

LOADING OVERLAYS

AND SEGMENTS

RULES FOR
LOADING

SCOPE provides a subroutine to load overlays and segments (LOVER). A
call may be generated to LOVER in COMPASS subprograms. LOVER is
linked to the main subprogram when the overlay tape is prepared. FORTRAN
source programs may call OVERLAY and SEGMENT to load and execute
overlays and segments.

During execution of an overlay program, the main subprogram always remains
in storage. Only one overlay and one segment may occupy storage at one
time. The main subprogram may call overlays and segments from the overlay
tape; overlays may only call their associated segments.

1. Overlays and segments will normally be designed to be entered via
the bank return jump instruction when LOVER is used, and to exit
via their entry point, but they may exit directly to the calling over-
lay or main program.

2. Anoverlay may be loaded only by a.call from the main program.

3. A segment may be loaded only by a call from the associated overlay
if the overlay is in storage, or from the main program. A segment
belonging to an overlay not currently in storage cannot be loaded.

4. Overlays can be called from the overlay tape in any order. Segments
within overlays can be called from the overlay tape in any order.

These rules apply to FORTRAN and COMPASS programs.

6-13

FORTRAN CALL FORTRAN source language subprograms use the following call statement to
load and execute overlays and segments. The overlay or segment call uses
LOVER to load overlays and segments.

CALL

SEGMENT
OVERILAY

’S’ ’d’ LR A)
% (0,8,u P, pn)

SEGMENT loads and executes a segment.

OVERLAY loads and executes an overlay.

o is the overlay number, specified for both segment and
overlay.
s is the segment number, blank or zero for an overlay.

is the logical unit number.

is a dummy parameter which must be present if any
actual parameters appear. The dummy parameter
may be blank.

) are actual parameters to be passed to the overlay
or segment routine. No more than 59 may appear.

If o0, s, u, or d is blank, the comma must appear; the order is fixed.

One subprogram in each overlay and segment must begin with the FORTRAN
statement PROGRAM name. This statement may contain a maximum of 59

parameters:
PROGRAM name (pl, .o ,pn)
name is the transfer address for the overlay or segment.
P ,p_ are formal parameters. The actual parameters, p;, in
the CALL must correspond to these formal parameters.
CALLING
SEQUENCE The following calling sequence is generated during compilation for the CALL
statement:
SEGMENT
BRTJ @) 3 OVERLAY s , ¥
+ SLJ *+m
On DICT.
+ 00 o
00 8

6-14

00
+
00 P 1
00 pn
n+l1
=— 4
m P 1

n is the number of parameters specified in the FORTRAN
CALL statement (0 . . . pn).

The above calling sequence jumps to the OVERLAY or SEGMENT subroutine
which passes the parameters, o, s, and u to LOVER. LOVER loads the
segment or overlay and returns either a loading error code or the transfer
address for the overlay or segment loaded.

If no errors occur during loading, the following call to the transfer address
is generated by the SEGMENT or OVERLAY subroutine:

BRTJ ($)name,, *

+ SLJ *+m
On DICT.
+
00 P 1
00 pn
name is the transfer address for the loaded overlay or
segment
n+l1
= — +
m 2 1
n is the number of actual parameters in the FORTRAN
CALL statement, (p R ,pn).

pP,, . - .,p_ are the actual parameters in the FORTRAN CALL
statement.

6-15

Example:
CALL SEGMENT(3,2,25,,A,B,C)
The first FORTRAN card is: PROGRAM SUB2(X,Y,Z)
The transfer address in segment 2 of overlay 3 is SUB2.

The call to load the segment is:

BRTJ ($)SEGMENT, , *
SLJ *+5
07 DICT.
00 =03
00 =02
00 =025
00 0

00 A

00 B

00 C

00 0

The call from SEGMENT to the transfer address SUB2 in segment
2 of overlay 3 is:

BRTJ ($)SUB2, , *
SLJ *43

03 DICT.

00 A

00 B

00 c

00 0

ERRORS If errors occur during the loading of the overlays and segments, when using
the FORTRAN CALL, the job is terminated. The A register will contain the
contents of the parameters for the last LOVER call specified in the

OVERLAY

CALL ; SEGMENT

% statement.

6-16

(A) = n 0 (] o} S

a7 41 38 23 14 o]

n = Logical unit number
o = Overlay number
s = Segment number

The contents of the A register is written on OUT together with one of the
following messages:

1. READ PARITY ERROR

2. LUN OUT OF RANGE

3. USE OF TOO MANY LUN

4. RECORD NOT ON THIS LUN
5. ILLEGAL SEQUENCE

6. OUT OF BOUNDS LOAD

COMPASS CALL The LOVER subroutine, which keeps a record of the last overlay and segment
loaded from each unit, must be in storage as a part of the main subprogram.
LOVER must be declared an external symbol to the main program in order for
the SCOPE loader to load LOVER from the library tape and link it to the main
program at the time the overlay tape is prepared. LOVER is called during
program execution when an overlay or segment record is to be loaded from the
overlay tape. LOVER does not execute the overlay or segment; it only calls it.

During execution of the overlay program, any residual tape beyond the double
end-of-file marking the end of the overlay tape may be put to other uses.
Therefore, when LOVER is entered, the overlay tape must not be positioned at
the end of recorded information.

CALLING
SEQUENCE The following ‘calling sequence is included in a COMPASS subprogram to load an
overlay or segment:

a CALL LOVER

a+l n (o] o (o) S

47 41 38 23 14 0

a+2 (return point)

6-17

6-18

n = Logical unit number of the overlay tape
o = Overlay number
s = Segment number, S = 0 for the overlay

If LOVER has loaded the overlay or segment correctly, the A register is set
to zero; a bank return jump instruction to the transfer address of the overlay
or segment is placed in the Q register; return is made to the return point.
The transfer address is stored in the second word of the overlay or segment
record on the overlay tape.

Example:

The following macro definition could be used to specify calls to
LOVER:

LOADOV MACRO (N,V,S)

BRTJ ($)LOVER,0,$ LOVER

VFD A6/N,03/0,A15/V,09/0,A15/S
EXT LOVER

ENDM

To load overlay 2 from logical unit 10, the following macro call
can be made:

LOADOV (10,2)

To load segment 2 of overlay 5 from logical unit 6, the following
macro call can be made:

LOADOV (6,5,2)

ERRORS If errors are encountered while loading the overlay or segment, the A
register contains one of the following error codes right justified.

Error Code

1

A non-recoverable parity error was encountered when loading
the overlay or segment record.

The specified logical unit number is not 1-49.

More than four logical units have been addressed in reading
overlay and segment records.

The overlay or segment specified in the calling sequence was
not on the specified logical unit.

6.4
FORMAT OF
OVERLAY TAPES

5 The overlay or segment specified in the calling sequence was
not consistent with the last overlay or segment loaded.
(Either rule 3 or 4 in Section 6.3 has been violated.)

6 An attempt was made to load an overlay or segment out of
bounds.

Each overlay tape is divided into files. The first file contains either one
record, consisting of the main program, or no records. The second and
remaining files are overlay files, the last of which is terminated with two
end-of-file marks. Each file contains an overlay record, and records for
associated segments. A single end-of-file mark precedes each overlay
record. All the overlays and segments for one program must be on no more
than four logical units, and no unit may occupy more than one reel.

The first record in each overlay file must be an overlay record and may be
followed by segment records referenced by that overlay. The overlays on
each overlay tape must be numbered in ascending order. Segments within
an overlay file must be numbered and ordered consecutively. All segments
of one overlay must be in one overlay file on one reel of one logical unit.

Loading information is contained in each overlay and segment record. The
binary information in a record need not be all for one bank. A particular main,
overlay, or segment may occupy any number of banks. In order to allow for
the reloading of the various parts of a main, overlay or segment into the
correct bank, the loader inserts 3600 control words in the record. The

control word for loading a part of any overlay, segment or main program,

n words in length, into a particular bank will be inserted within the record,
immediately preceding the n words to be loaded. The n words will be followed
by another control word for loading the next m words into another bank, and

so on, until the last two words of the record are the control words, IOTR 0,0.

The first six words of each record contain identification parameters for that
overlay or segment. These six words are in the following format:

00000 SSSSS

word 1

6-19

6-20

word 2: (A) OVREC Tttt

47 17
or
(8) titttt tttitt
words 3-6: fwa(7) fwa(e)
fwa(s) fwa(4)
fwa(3) fwa(2)
fwa (1) fwa(0)

38

00000 is the overlay number

sssss is the segment number

OVREC is the BCD mnemonic

tttttt is an 18-bit transfer address

fwa(m) is the first word address of available storage in bank n at
the time the record is written.

If the record is a main record, word 1 is zero. If there are two transfer
addresses for the main record, word 2 type (B) is used. The first'transfer
address encountered by the loader occupies bits 41-24; the second transfer
address occupies bits 17-0. If only one transfer address is encountered, it
occupies bits 17-0, and is in the formai for type (A) of word 2.

If bits 14-0 of word 1 are zero, the record is an overlay record.

All overlay and segment records contain the mnemonic OVREC in bits 47-18
of word 2.

Words 3-6 of each record contain 15-bit addresses in the upper and lower
address portions of each word. Each address specifies the last word
address+1 of any numbered common in a particular bank at the time the
record was written. For a non-existent bank the address contains zero.
The last word address+1 of numbered common is the same as the first
word address of available storage for a bank.

A typical overlay record might be composed as follows:

000 00006 000 00003 word 1
OVREC 123456 word 2
000 00000 000 00000

000 00000 000 00000 words 3-6
000 00100 000 00001

000 01234 000 17654

IOTW,C 1) 10000,100

{ 100 words absolute binary subprogram }

IOTW,C (2) 70000,300

{ 300 words absolute binary subprogram }

IOTW,C 3) 60000,200

{ 200 words absolute binary subprogram }

IOTR ©) 0,0

IOTR (0) 0,0

This example is segment 3 of overlay number 6. The lower limits of available
storage for this segment are: (0)17654, (1)01234, (2)00001, (3)00100. The
record specifies loading 1004 words into bank 1 beginning at address 10000,
300g words in bank 2 beginning at address 70000, and 200g words into bank 3
beginning at address 60000. The transfer address for this segment is 23456
in bank 1.

6-21

LIBRARY PREPARATION ~7
AND MAINTENANCE

PRELIB is the SCOPE routine which prepares and maintains library tapes.
A library tape may include:

o Absolute binary programs

® Relocatable binary programs
® Binary data

® BCD data

o Subroutine directories

e User defined information

e End of file marks

New libraries may be created by extracting records from up to nine old
libraries, and/or processing data in any one of five modes from one or
more input units. The old libraries may be the standard SCOPE library
(logical unit 70) or the auxiliary libraries (logical units 72-79). The input
units may be the standard input unit (logical unit 60) or a programmer
defined unit (logical units 1-49, or 69). The five modes for processing
input records are absolute binary, relocatable binary, BCD data, binary
data, or special.

Directories describe the relocatable binary records which follow them on
the library tape. The loader uses the information contained in the directory
to locate and load subroutines.

The first record of every library contains a table of contents and a label.
The table of contents, which describes each record on the tape, is used by
SCOPE to position the library tape and to locate directories. Although
auxiliary libraries are referred to by logical unit numbers 72-79 during
PRELIB processing, all library tapes contain logical unit number 70 in
the label; however, the labels may contain different names and edition
numbers.

An arrangement of an auxiliary library tape could include a directory for
relocatable routines followed by an end-of-file card, a second DIRECTORY for
subsequent relocatable routines and an end and end-of-file card and so on. The
SCOPE system routines need not be included on auxiliary library units. When
they are included, they may be called by the programmer but not by SCOPE. A
complete auxiliary library contains at least one directory including all REL
records and any others desired. If the directory is the first record on the tape,
the table of contents for that tape will be part of the first record.

The PRELIB routine may be used to:

List the table of contents of a library
Edit an existing library while inserting records from an input unit

Prepare a new library from the old SCOPE library, auxiliary libraries,
and records from an input unit

PRELIB processing consists of two phases. In phase 1, control cards are
read from the standard input unit and records are processed according to
the mode specified. Those records that can be fully processed before
reading another control card (absolute, relocatable, binary data, BCD data,
special) are written on the scratch unit, S0, as soon as they have been
processed. Directories, initiated by DIR control cards and terminated by
END control cards, are prepared and stored internally. A table of contents
is developed internally containing the name of each record and its mode.

When PRELIB encounters the FINISH control card, the run will be terminated
if it was a LIST run. If it was EDIT, the rest of the tape is copied onto SO.

If it is either an EDIT or PREPARE run, SO is rewound and the table of
contents of the new library is listed on OUT. If any errors are found during
phase 1 processing, the run is terminated. If no errors occur, phase 2 is
initiated. The new library tape will be created on logical unit 71, the label
will contain logical unit 70 and the name for logical unit 71. The first

record on SO must be binary; the new table of contents plus the label is
appended to the first record and written on the new library.

According to their order and mode in the table of contents in storage,
records are copied from SO onto 71, directories are copied from storage
onto 71 and end-of-file marks are written on 71 where specified. If a
record on SO has been defined in phase 1 as repeated, when it is encountered
on SO, it is copied into a repeat table in storage. If it is too long for storage
it is written on S1. When the repeated record is called for in the table of
contents, it is written onto logical unit 71. Upon completion of the new
library tape, 71 is rewound and unloaded and control is returned to SCOPE.
An end-of-file mark is not written at the end of the new library unless
specified.

Only parity errors are possible during phase 2. When an unrecoverable
parity error occurs, the message PARITY ERROR will be written on OUT
after the table of contents listing; no further records will be written on 71.

71

INPUT/OUTPUT All control cards to a PRELIB run are read from the standard input unit (60).
Column 1 of PRELIB control cards must contain a 7,9 punch; the balance is
free-field, except for imbedded blanks, which are significant. A control
statement must be contained on one card and is terminated by a period or
column 80. Comments, which may appear beyond the period, are ignored
by PRELIB.

7.2
RECORD TYPES

RELOCATABLE
BINARY
RECORDS

Input to PRELIB may be records from logical units 1-49, 60, and 62, from
the SCOPE library (logical unit 70), and from auxiliary libraries (logical
units 72-79).

Input records in absolute, relocatable, BCD data, binary data, and special
form must be indicated by the control statements, ABS, REL, BCD, BIN,
special. The records may follow the control statements directly on logical
unit 60. Records contained on a different logical unit (1-49, or 62), must
be specified by a UNIT control statement. UNIT may specify 60; if no UNIT
statement is used, 60 is assumed.

During a PRELIB run, the following information is written on the standard
output unit:

all PRELIB control cards
the new table of contents
error messages

MAP of absolute and relative records

The mode of transfer for records from logical units 1-49, 69 to the new
library on logical unit 71 must be specified with a REL, ABS, BIN, or BCD
control card. Other control statements define directories and end-of-file
marks on the new library tape.

In the following statements, name is entered in the table of contents to
identify the information following the control statement on the logical unit.
It may be up to 31 characters in length. If no name is specified, the name
of the first subprogram in the record is inserted in the table of contents;
if no subprogram name exists, blanks are inserted. For relocatable
binary records, the name from the IDC card is inserted in the directory
which contains the record.

ZREL,name
REL specifies that the information on a logical unit is a single subroutine
in relocatable binary card form and should be written as one record on the
new library in a condensed relocatable form. REL may be used only within
the range of a directory. A DIR control statement must precede the first
REL control statement.

REL processes the single relocatable binary subroutine by placing the
information from the IDC, EPT, BLT, and EXT cards in the subroutine
directory tables. BRT, RBD, LAT, and TRA cards are read into storage
in card image format. When one TRA card is processed, the entire record
is written on SO; another control statement is read from the standard

input unit.

7-3

ABSOLUTE
BINARY
RECORDS gABS,name(location)

PRELIB links relocatable binary subprograms read from the standard
input unit or another logical unit and writes them on S0 as one absolute
binary record. An absolute binary record may originate at any absolute
Jocation specified in the location field (in octal). If the location is not
specified, the absolute binary record originates at location zero.

ABS processes the relocatable binary subprograms by loading the RBD

card images as though the first subprogram began at the specified absolute
location and subsequent subprograms began where the preceding subprogram
terminated. The subprograms are linked by associating external symbols
with entry points within the program. When two consecutive TRA cards

are encountered, the linked subprograms are written as one record on SO.

Examples:
gABs,BOOT
This record, BOOT, is originated at absolute location zero.

gABS,LDR(MOOO)

This record, LDR, is originated at absolute location 14000.

BINARY

RECORDS gBIN,name
Binary information is transferred without alteration from the standard
input unit or another logical unit to S0. It is written on SO as a single
binary record. The end of the data is indicated by a card with a word count
of zero.

BCD RECORDS gBCD,name
BCD information is transferred without alteration from the standard input unit
or another logical unit to S0. It is written on SO as a single binary record in

internal BCD. The end of the data is indicated by a blank card.

The data appears on the library tape as a binary record in internal BCD.

7-4

MACRO
DEFINITIONS

USER CONTROL
CARD

gMACRo

MACRO composes the system and library macro tables for COMPASS.
Macro definitions in COMPASS language are read from the standard input
unit or another logical unit. The first set of definitions is the system
macro table and is terminated by ENDSYS* following the last ENDM.
Immediately following the ENDSYS* card are the library macro definitions
The table is terminated by an ENDLIB*. If there are no library macro
definitions, the ENDSYS* card need not appear.

When an ENDLIB* card is encountered, the entire table is written as one
binary record on S0 and control is returned to PRELIB.

Example:

gMACRO

NAME, MACRO (P1:P2s - - - 5 Pp)
ENDM

NAME, MACRO (P1:P2s - - - » Pp)
ENDM
ENDSYS*

NAMEq MACRO (P1:Pgs - - - » Pp)
ENDM
ENDLIB*

The user may add special routines to PRELIB. The special control state-
ment, 7 characters or less, must be added to the PRELIB list of control
statements. Input/output will be handled by PRELIB if jumps are made to
the proper routines with the correct parameters. If a special routine
results in one or more records on 71, the names and modes of the records
must be added to the table of contents.

DIRECTORIES

END-OF-FILE

7-6

gDIR ,name

The DIR control statement indicates that a directory is to be inserted on
the new library tape, 71. A directory of all subsequent relocatable sub-

programs is constructed in storage until an END, DIR, or FINISH control
statement is encountered. Only relocatable binary subprograms may be

contained in a directory.

The directory name and mode are entered in the table of contents. The
directory is constructed in storage from tables or, during the processing of
IDC, EPT, BLT, and EXT cards, in the relocatable binary subprograms.
During phase 2 when a directory mode is encountered in the table of contents,
the directory is written on the new library tape, logical unit 71.

gEND ,name

This control statement terminates the relocatable binary subprograms to
be included in the directory specified by the previous DIR control statement.
END does not result in a record on the new library tape.

Example:
gDIR,name
gREL,name
relocatable binary subprogram

gRE L,name

relocatable binary subprogram

gEND ,Jname

gEOF,name
EOF specifies that an end-of-file mark is to be written on the new library,
logical unit 71. When the EOF control statement is read from the standard
input unit, the name and mode are entered in the table of contents in storage.
During phase 2 when an end-of-file mode is encountered in the table of
contents, an end-of-file mark is written on the new library tape.

End-of-file marks placed before each directory, allow SCOPE to skip files
to locate directories. If a loader precedes a directory, the end-of-file
should precede the loader. End-of-file marks should not be used within the
directory.

7.3
CONTROL
STATEMENTS

PRELIB RUN

It is recommended that a library be terminated by two consecutive
end-of-file marks.

Control statements on the standard input unit may prepare a new library
tape, edit an old library tape or list a library table of contents. Records
can be repeated and different logical units may be specified to contain
input records. PREPARE, EDIT, and LIST are mutually exclusive within
a PRELIB job.

The parameter, libname-ee, in a control statement refers to the name in

the label of a library tape. The tape edition number, ee (1 to 99), is optional.
For the SCOPE system library tape, logical unit 70, the name is *. LIB is
never used.

A libname beginning with an * means the current system library unit 70.
Any characters immediately following the * and before the next comma or
right parenthesis are ignored. PRELIB deletes leading blanks and fills in
trailing blanks so that all names are 32 characters in length, imbedded
blanks are counted.

The parameter, rec, in a control statement refers to an existing library
record which is to be transferred to the new library. When rec is numeric,
it specifies the ordinal of the record on the source library which is the
same as in the source library table of contents. When rec is alphabetic, it
specifies the name of a record listed in the table of contents of the source
library.

A range of record identifiers may be specified inclusively as rec;-recy.

A PRELIB run may be PREPARE, EDIT or LIST; it begins with a PRELIB
control statement and terminates with a FINISH control statement. There
may be only one PRELIB run in a SCOPE job.

gPRELIB

Calls the SCOPE library preparation routine into storage and transfers
control to it.

;FINISH

Returns control to SCOPE after processing is completed.

7-7

7
(9FINISH
L

ligl
7
QPRELIB
9JOB,c ,i,t I
f end-of-file

JFINISH
(;PRELIB
;Jon,c,i,t
COMMENTS A comment card is ignored by PRELIB and printed on the standard output unit.
Ty
9 . o

In a comment card, the first non-blank character must be *.

REPEATED

RECORDS The same record may be written in different positions on the new library by a
REPEAT statement.

’;REPEAT,name
name may be any record that has already been processed except an EOF or

DIR. To repeat a REL record, it must appear in a completed directory. Two
records with the same name may not be in the same directory.

LOGICAL UNIT
FOR INPUT
RECORDS

{;FINISH

lli
7
JpIR
(ZREPEAT ,LOADER
7
(Teor
7
(TEND
p=

[l |

7
(JREL

JDIR

(ZABS,LOADER
7EOF
9

lI
lll —]
7
(JPRELIB _J

(AN

A UNIT control statement specifies the logical unit, 1-49, or 69, from which
input records will be read until the next UNIT control statement is encoun-
tered on INP or until the end of the PRELIB run.

TUNIT,u

A control statement specifying mode, such as REL or ABS, is read from INP
before the input record is read from the specified logical unit.

7-10

|

.
—l

REL, BLKA l

7
JpIR I

(97ABS ,LOADER

;ABS ,BOOT

UNI
/Z T,S
Y sm—

Vs |

p=
(;PRELIB

;JOB,c,i,t

During processing, PRELIB encounters the UNIT,5 control statement.

1) The UNIT,5 control statement indicates that input records are on
logical unit 5.

2) ABS,BOOT specifies that PRELIB is to read the next input record,
BOOT, in relocatable binary from logical unit 5 until 2 consecutive
TRA cards are encountered. BOOT is written on S0 in absolute
binary.

3) ABS,RES specifies that RES is to be read from unit 5 and written on
S0 in absolute binary.

4) An end-of-file is indicated in the table of contents in storage.

5) ABS,LOADER specifies that the LOADER is to be read from unit
5 and written on SO in absolute binary.

6) A directory for the following relocatable binary subprograms will be
built in storage.

LISTING TABLE
OF CONTENTS

7) UNIT,60 indicates that input records are on the standard input,
logical unit 60.

8) REL,BLKA specifies that PRELIB is to read the next input record,
BLKA, a relocatable binary subprogram, from the standard input
unit until 1 TRA is encountered. BLKA is written on SO in re-
locatable binary.

The table of contents of the named library tape is written on the standard
output unit. As many as 9 tapes may be listed in one run if one is *, the
SCOPE system tape.

7 LIST (libname

9 -ee,libname_-ee,

1 2 o)

PRELIB considers the parameters as logical units 72-79 from left to right
in the statement. If a libname cannot be found, a message is typed on OUT.
(Messages and Diagnostics, Appn C.) If more than one tape with the same

name is specified, the edition numbers of all but the last in the list must be
specified. If this is not done, assignments must be made on the typewriter.

Examples:
gLIST(* ,SASY1-8,BRT SCOPE,MACRO,SASY1)

PRELIB considers libnames to be logical unit numbers:

* 70
SASY1-8 72
BRT SCOPE 73
MACRO 74
SASY1 75

For logical unit number 75, PRELIB will choose the library named
SASY1 which has not yet been assigned a logical unit number.

If there is no mounted tape with BRT SCOPE in the label (including
the space) a message will be typed: 73 NEEDED

7JOB,777,DDSTON, 3
gPRELIB
;LIST(SASYI—I,SASYI—Z,*)

Z)FINISH

7-11

The table of contents for SASY1-1, SASY1-2, and the SCOPE system
library are listed on the standard output unit. .

EDITING EXISTING
LIBRARY A single library tape is edited by deleting, replacing or inserting records.
Auxiliary libraries may not be used.

EDIT is the first statement in the editing deck.

7

9 EDIT (libname-ee)

Edit Example

7
oFINISH
(JREL,JACK
(;umr,zs
;DELETE(17-21,36,102-ROGER)]
—
Y e
{ relocatable binary program
;REL,SIN
;REPLACE(SIN)
L= —
Vs
y —
(relocatable binary program
ﬂREL,COBOL
{ JINSERT , STOPACK

(;EDIT(*)
(;PRELIB
730B,777,0GRE , 8

7-12

The source library tape is the SCOPE system library.

1) The source library is copied onto SO up to and including SIOPACK and
the tape is positioned at the beginning of the record following SIOPACK.

2) The relocatable program, COBOL, is copied from the standard input
unit onto SO.

3) The source library is copied beginning with the record following
SIOPACK, skipping SIN, and the tape is positioned at the beginning of
the record following SIN.

4) The relocatable program, SIN, is copied from the standard input unit
onto SO.

5) The source library is copied onto S0 beginning with the record following
SIN through record 101, skipping records 17-21 and 36. Records 102
through ROGER are skipped and the source library is left at the begin-
ning of the record following the one named ROGER (assuming that
ROGER comes after 102).

6) The relocatable binary subprogram, JACK, is then copied from logical
unit 25 onto SO..

7) FINISH indicates that the remainder of the source library is to be copied
onto S0. The new table of contents is listed on the standard output unit.
The new library is then copied from SO0 and storage onto 71. Note that
if a directory is within the range of records to be copied, that the
directory is not copied, but that a completely new directory is built in
storage and written on 71 at the location specified.

The name of the new library will be the same as the source library with
the edition number incremented by one. An * is used if the SCOPE system
library is to be edited.

All records on the source library, except those replaced or deleted, will

be copied onto S0. Since the source library can move forward only, records
must be declared in the order in which they appear on the source tape.
During editing, old directories are updated by PRELIB.

The FINISH control statement terminates the editing deck; after it is en-

countered, the rest of the source library is copied onto S0. The new table
of contents is listed on OUT; then the new library is written.

7-13

Example:
gEmT(LIBRARY-s)

The tape to be edited is named LIBRARY, edition number 5. The
new tape will be named LIBRARY, edition number 6.

DELETE specifies records, rec;, on the source library which are not to be copied;
all other records not to be deleted are copied.
Z)DELETE(recl,recz,rec3—rec4, v ,recn)

DELETE may be followed by control statements to insert any number of
records onto the new library to effect a REPLACE control statement.

Although an END control statement is not a record, it is indicated in the

source table of contents. To delete it from the source table of contents,
the record following it must be deleted.

Example:

7

9DELETE (1-4,COMPASS,17-FTN,PRELIB)

gREL,SIN

relocatable binary subprogram

While copying the source library on to S0:

1) Records 1-4 are skipped.

2) Records 5 to COMPASS minus 1 are copied onto SO.
3) COMPASS is deleted.

4) COMPASS plus 1 to record 16 are copied onto SO.
5) 17 to FTN are skipped.

6) FTN plus 1 to PRELIB minus 1 are copied onto S0.

7) PRELIB is skipped.

7-14

8) The source tape is positioned at the beginning of PRELIB
plus 1.

9) Relocatable binary subprogram SIN is read from the standard
input unit, processed, and written on S0O.

INSERT causes all records up to and including a specified record to be copied onto SO.
The mode of the information from INP is indicated by REL, ABS, BIN, BCD,
DIR, END, EOF and special control cards. Records will be copied from INP
until another INSERT, DELETE, REPLACE or FINISH control card is encoun-
tered. The source tape is positioned after the specified record. INSERT is
followed by control statements to insert any number of records on the new library
at that point.

gINSERT, recy

If rec; is 0, any input records following INSERT will be copied before any
records are copied from the source library.

Example:

{ABS,BOOT

relocatable binary program
JINSERT,ALGOL
IREL,SORT

relocatable binary subprogram

1) BOOT is written in absolute binary on SO.

2) The source library is copied onto SO up to and including ALGOL
and is positioned at the beginning of ALGOL plus 1.

3) The relocatable binary subprogram, SORT, is copied onto SO.

7-15

REPLACE

NEW LIBRARY

TAPE

7-16

PREPARE

Removes specified records from the source library as it is copied onto S0. The
source library tape is positioned after the specified records. REPLACE may be
followed by control statements to insert any number of new records at that point.
There need not be a one-to-one correspondence between the number of records
removed and inserted.

gREPLACE(recl , T€Cgy, T€C3-TECy, .. . , TECY)

Example:
TREPLACE (A-14)
7
TUNIT,7

ZREL,COMPASS

1) The source library is copied onto SO skipping records A-14.
The source library is positioned at the beginning of record 15.

2) The relocatable binary subprogram, COMPASS, is copied from
logical unit 7 to SO.

A new library is prepared by extracting information from existing libraries,
and including new records from a logical unit. When the FINISH statement
is encountered, information is taken from S0 and storage, the new table of
contents is written on OUT, and the new library is written on logical unit
71. During library preparation, records need not be declared in the order
of appearance on the library tapes. If a record is requested that has been
passed, the library tape will be rewound, then spaced forward to extract

the requested record.

instructs PRELIB to prepare a new library from the source libraries.

gPREPARE, namel (name2, names, ...)

Namel designates the new library tape (logical unit 71). Name2, name3, and
so on, specify library tapes (logical units 72, 73,...) from which information
will be taken to form the new library. A name beginning with an asterisk spec-
ifies the current library (unit 70). Any characters between the * and the next

comma or right parenthesis are ignored. PRELIB deletes leading blanks and
fills with trailing blanks so that all names are 14 characters in length (embedded
blanks are meaningful). If there is not enough room on one PREPARE card for
all of the names in the parameter list, extra PREPARE cards may be used.
Namel on subsequent cards will be ignored, but the field must be indicated by a
comma if the name is omitted, for example, PREPARE, (name4,...).

EXTRACT specifies the records on source library tapes which are to be transferred to the
new tape. EXTRACT can only be used with a PREPARE statement.

gEXTRACT,u(recl,recz, ...,Tecy)

u is the logical unit number (*, 70, 72-79). Either * or 70 may be used for the
current system library. A record identifier may be a three-digit number spec-
ifying the ordinal of the record on a library tape or it may be alphabetic specifying
the name of a record which is found in the table of contents of u. For example,

an alphabetic record identifier may be a COMPASS alphanumeric symbol or a
COBOL name.

The records to be extracted from the specified library tape, rec;j, need not
be specified in the order of appearance on the library tape, since the library
tape can be rewound. If the same name appears in the table of contents twice,
the first will be chosen.

Example:

gEXTRACT,* (1-5,4,19-FTN,12)
Records 1-5 are copied onto SO from the system library; the
library tape is rewound. Records 1-3 are skipped, record 4 is
copied, records 5-18 are skipped, records 19-FTN are copied.

The tape is rewound and records 1-11 are skipped then record

12 is copied. The library is positioned at the beginning of record

13 at this point. If FTN precedes record 19 on the tape, that tape
will be rewound after copying 19, then skipped forward to copy FTN.

7-17

7-18

1)

2)
3)

4)

ﬂFINISH

(;EXTRACT,70(12-200)
I;EXTRACTJZ(FTN)
(zEXTRACT,*(l-IO)

ﬂPREPARE,*(*,SASYl-&)
7
(9PRELIB
JOB,777 ,ASTONE, 8

9

A new SCOPE system library is prepared from the current library
and SASY1-4.

Records 1-10 are copied from * to S0.
FTN is copied from logical unit 72 to SO.

Records 12-200 are copied from logical unit 70 to SO.

|

EXTRACT,*(11-TAPEND) l

]

END I

EXTRACT, 72 (ARCTAN-COS)]

{;REL,SIN

UNIT, 5

{;DIR,MATH DIRECTORY
(;REPEAT ,LOADER

{;EXTRACTJO(I-IO)

(;PR.EPARE,*LIB(MATH LIBRARY,*)

7
/9PRELIB

¢J0B,777 ASTONE, 8

1)

2)

3)

4)

5)

6)
7)
8)

9)

10)

74

A new SCOPE system library will be prepared from the current
system library and the math library.

The first 10 records are copied from the current system library
onto SO.

The loader must have already been encountered on the system
library; indication will be made to repeat it.

A math directory will be built in storage to include the following
relocatable binary records.

The relocatable binary input record, SIN, will be read from
logical unit 5, processed, and written on S0.

ARCTAN-COS is copied onto SO from the math library.

The math directory is terminated by the END control statement.
EOF is written in the new library table of contents.

Records 11-TAPEND are copied from the current system library
to S0. Naming the last EOF in a library provides a convenient

way to read to the end of the library.

Library preparation is terminated with FINISH.

CHANGING PRELIB The SCOPE parameters, s and s,, may be used to temporarily modify,
snap, or trace PRELIB. The program extension area may not be used
with octal corrections.

7
9PRELIB (sl,sz)

7
(QFINISH

7
(;LIST(*)
(;RUN,I, 100,7

(TRA
J occ
/ occ

PRELIB(C)

7
9
§J0B,777 ASTONE, 2

7-19

75
TABLE OF
CONTENTS

The library table of contents is in the first record on a library tape between
the bootstrap routine and the tape label. Records are written in binary and
numbered in the order in which they appear on the library.

Entries are in the order specified by the control statements used to prepare
the library. An entry may or may not describe a record in the library. If it
does, the mode, name, and record number are recorded. If the entry does not
describe a record, such as END which is not a record on the library, mode
and name are recorded. If the name is longer than one word, the first charac-
ter gives the number of words in the name.

The table of contents of each new library is listed on the standard output unit
during library preparation or editing. The LIST control statement may specify
that the table of contents of an existing library is to be listed.

Following is a sample SCOPE system library, SASY1, as listed on the
standard output unit.

LABEL 5()70000SASY1 0104226406
Record Number Name Mode
1 BOOT ABS
2 RESIDENT ABS
3 EOF
4 DIR
5 CARPU REL
6 DR3649 REL
END
7 EOF
8 LOADER ABS
9 DIR
10 SIOPACK REL
11 COMPASS REL
12 COMPASSX REL
13 FTN REL
END
14 EOF
15 LOADER ABS
16 " DIR

Record Number

17

87

88
89
90

91
92
93

95
96
97

Name

IOP

DPOWER

STD
PRELIB

TAPEND

END OF LIBRARY TAPE

Mode

REL

REL
END
EOF
DIR

REL
END
EOF
DIR

REL
REL
END
EOF
EOF
EOF

7-21

APPENDIX SECTION

AVAILABLE EQUIPMENT TABLE A

This table is a record of the equipment at an installation. It may be altered temporarily in storage by
the AET statement (Sec. 2.6). The format of each word in the table is as follows:

h i/o]s sd X cr sC a e u d
6 2 || 6 | 8 6 2 3 6 7
47 41 3938 3231 23 17 15 12 6 (0]
h_(octal) Hardware Type Mnemonic
01 magnetic tape unit MT
02-03 (reserved for

tape-like equipment)

04 card reader CR
05 card punch (03
06 line printer LP
07 paper tape station PT
10 typewriter TY
11 disc file DF
12 drum DR
13 CRT display TV
14 plotter PL
15-17 -

20 3682 Satellite

21 equipment associated with

Satellite 1 (SA)

22 equipment associated with
Satellite 2 (SB)

.

defined within the
Satellite system

26 equipment associated with
Satellite 6 (SF)

27-57 -—-

60-77 reserved for
installation use

A-1

i/o input-output capability of the unit

01 output
10 input
11 input and output

s SCOPE accessibility bit

0 unit is accessible to SCOPE
1 unit is accessible only to Satellites.

sd ordinal of the driver for all Satellites capable of using the unit. This ordinal indicates
the distinction between units of the same hardware type which are programmed differently
such as 3641 and 3649 card readers.

x asynchronous interrupt capability of the unit.

1 unit is capable
0 unit is not capable

cr ordinal (>0) of the unit controller.
sc Satellite-control-channel field used as follows:
If h = 21-26, sc = hardware type for the Satellite

If the equipment is capable of interrupting the 3600 asynchronously, sc = SCOPE channel
connection and e = SCOPE equipment number

When a unit is connected, sc = channel connection. (sc = 40B initially)

a availability

00 unassigned, available
01 unassigned, down

10 assigned to SCOPE
11 assigned to Satellite

e equipment code of the unit for the Satellite.
u the unit code.

d the ordinal (d>0) of the driver name.

MACRO DEFINITIONS AND

CALLING SEQUENCES

INTERNAL

CALL36
+

MACRO (CC)

63 CC*8

03 SENTRY
EXT SENTRY
ENDM

SCOPE call codes (CC) are as follows:

W= U WO

STAR

EXIT 17 REMOVE
READ 18 LIMIT
WRITE 19 FREE
REOT 20 TIME
WEOT 21 BOUND
BSPR 22 UNBOUND
BSPF 23 DATE
REWIND 24 LOADER
UNLOAD 25 LIBRARY
SKIP 26 MEMORY (CORE)
ERASE 27 HERESAQ
MARKEF 28 RELEASE
MODE 29 RDLABEL
STATUS 30 WRLABEL
LABEL 31-63 Not Assigned
SAVE (UNSAVE) 64-4095 Reserved for individual installation
SELECT
MACRO (L,C, R, I, CC)
CALL36 (CC)
control word address (C)
logical unit number (L)
STAR ((R), *-2)
interrupt address (I)
ENDM
MACRO (R, S)
IFT, EQ R./*/,1
reject address (S)
IFT, NE R,/*/,1
reject address (R)
ENDM

B-1

Z MACRO (CC,L,X)
VFD A6/CC, A3/X, A15/1
ENDM

INPUT/OUTPUT

READ, WRITE, REOT, WEOT

Definition
READ
WRITE
REOT MACRO (L,C,R,) .
WEOT 9
IOF ((@L), (C), (R), (D, 3))
ENDM 4
Calling Sequence
READ 1
WRITE 2
*
REOT 63 3] *8
WEOT 4
03 SENTRY
00 control word address
00 logical unit number
00 reject address
00 interrupt address

NOTE: The names of these macros are used for illustrative purposes, and may be any
acceptable alphanumeric identifier.

RDLABEL, WRLABEL

Definition
(RDLABEL MACRO (L,B,R,]) 29
WRLABEL/ IOF ((LL), (B), (R), @, (30>)
Calling Sequence
RDLABEL 29 *
WRLABEL/ 63 30/ "8
03 SENTRY
00 buffer address (B)
00 logical unit number (L)
00 reject address (R)
00 interrupt address (I)

B-2

BSPR, BSPF, REWIND, SKIP, ERASE, AND MARKEF

BSPR
BSPF
REWIND
SKIP MACRO (L,R,]) 5
ERASE 6
MARKETF, 7
IOF ((@),0,R),dM,{ 8 }))
9
10
1
ENDM
Calling Sequence
name 63
6
7
8 *8
9
10
03 SENTRY
00 0
00 logical unit number
00 reject address
00 interrupt address

The following mnemonics may be used to reference scratch and system units:

Mnemonic Logical Unit Mnemonic Logical Unit
SO 50 INP 60
S1 51 ouT 61
S2 52 PUN 62
S3 53 ICM 63
s 54 OCM 64
S5 55 ACC 65
S6 56 LGO 69
S7 57 LIB 70
S8 58 SCR 80
89 59

UNLOAD

UNLOAD MACRO (L,R,L, P)
IOF ((L), (P), (R), (D, 8)
ENDM

Calling Sequence

name 63 8*8

03 SENTRY
pp release parameter
00 logical unit number
00 reject address
00 interrupt address

pp = 0 logical unit assignment is to be released after the physical unit

is unloaded.
0 logical unit assignment is not to be released after the physical

unit is unloaded.

RELEASE
RELEASE MACRO (L, R, P)
CALL36 (28)
1IFZ release parameter (P),1
k EQU 0
IFN release parameter (P),1
k EQU 1 :
IFT, EQ reject address (R),/*/,1
VFD A1/k,05/0, A18/*-1
IFT, NE reject address (R),/*/,1
VFD Al/k,05/0,Al18/reject address (R)

logical unit number (L)
ENDM

Calling Sequence

name 63 28*8
03 SENTRY
VFD release parameter, reject address (R)

00 logical unit number (L)

MODE

MODE MACRO (L,R,U, F,D,DR)
CALL3S6 12)
STAR ((R), *-1)
logical unit number
VFD 023/0,A5/U,A5/F,A5/D,A5,DR
ENDM

Calling Sequence

name 63 12*8
03 SENTRY
00 reject address
00 logical unit number
VFD 023/0,A5/U,A5/F,A5/D, A5,DR
RW 24B allow all legal operations
U{BY 22B bypass unit
(usage) \RO 21B allow only input operations
F { BCD 7 set BCD recording mode
(format) BIN 6 set binary recording mode
HY 13B 800 bpi
D HI 12B 556 bpi
(density) 11B 200 bpi
' op 10B operator's option
DR {RV 31B read reverse
(direction) 30B read normal
STATUS
STATUS MACRO (L, M)
CALL36 (13)
IFT, EQ M,/M/,1
00 0
- 00 logical unit number
ENDM

Calling Sequence

name 63 13*8
03 SENTRY
00 00

00 logical unit number

LABEL
LABEL MACRO

CALL36

00

00

VFD

ENDM

Calling Sequence

name 63
03
00
00
VFD
VFD

SAVE

SAVE MACRO
CALL36

00
ENDM

Calling Sequence

name 63
03
00
00

UNSAVE MACRO
SAVE

ENDM

Calling Sequence

name 63
03
00
00

B-6

(L,N,E,R,C)

(14)

location of name (N)
logical unit number (L)
A24/C,A12/E,A12/R

14*8

SENTRY

location of name

logical unit number

retention code or date written
edition number, reel number

(L, P)

15)

unsave parameter (P)
logical unit number

15*8

SENTRY

0

logical unit number

(L)
((L),77B)

15*8

SENTRY

77B

logical unit number

INTERRUPT

SELECT

SELECT

MACRO (F,I)
CALL36 (16)
IFT, EQ F,/1,2
10 %k %k

00 1

IFT, NE F,/1/,2
00 k%

Z (F.])
ENDM

Calling Sequence

name

F=01
02
03
04
05
10
11
12
14
15
16
17

REMOVE

REMOVE

63 16*8

03 SENTRY

00 **

F interrupt address

interrupt on shift fault

interrupt on divide fault

interrupt on exponent overflow fault
interrupt on exponent underflow fault
interrupt on arithmetic overflow fault
interrupt on storage reference fault
1604 mode alert

trace mode alert

interrupt on illegal instruction fault
interrupt on operand parity fault
manual interrupt alert

abnormal termination

MACRO (F)

CALL36 a7

VFD A6/F,018/0
ENDM

Calling Sequence

name

63 17*8

03 SENTRY
00 *%

F 00

B-8

LIMIT
LIMIT MACRO

CALL36

IOSR

00

00

ENDM

Calling Sequence

name 63
03
IOSR
00
00

BOUND
BOUND MACRO

CALL36

XMIT

00

00

ENDM

Calling Sequence

name 63
03
XMIT
00
00

(D,R, 1)

(18)

time (D)

reject address (R)
interrupt address (I)

18*8

SENTRY

(seconds, milliseconds)
reject address
interrupt address

(LB,UB,R,])

(21)

LB,UB

reject address
interrupt address

21*8
SENTRY

lower bound, upper bound

reject address
interrupt address

UNBOUND, EXIT, FREE, TIME, DATE, HERESAQ

UNBOUND!

EXIT

FREE

TIME MACRO

DATE

HERESAQ
CALL36
ENDM

Calling Sequence

name

SPECIAL
LOADER

LOADER

63

03

MACRO
CALL36
ENDM

Calling Sequence

name

LIBRARY

LIBRARY

63
03

MACRO
CALL36
00

00

VFD

00
ENDM

Calling Sequence

name

63
03
00
00
VFD
00

SENTRY

(24)

24*8
SENTRY

(L, R, NA, NU)

(25)

reject address (R)

logical unit number (L)
A24/record number (NU)
record name address (NA)

25%8

SENTRY

reject address
interrupt address
record number
record name address

B-10

MEMORY

MEMORY

MACRO
CALL36
VFD

00
ENDM

Calling Sequence

name

CORE

CORE

63
03
VFD
00

MACRO
MEMORY
ENDM

(B, LL, UL)
(26)

06/0, B3/B, A15/UL
LL

26*8

SENTRY

bank designator, upper limit
lower limit

(LL, UL)
(*,LL, UL)

SCOPE MESSAGES AND C
DIAGNOSTICS

Messages are written to the operator on the operator comment medium (OCM), to the programmer
on the standard output unit (OUT) and standard punch unit (PUN), and to the installation on the account-
ing unit (ACC). Messages do not require any corrective action.

Diagnostics are indications of error conditions which require corrective action. They are written on
OCM or OUT, or both.

MESSAGES ON OuUT

message meaning

AET printouts The AET table is printed according to the AET
statement options.

BEGIN JOB AT hhmm - ss The time is printed on OUT when no sequence
statement is present. f

SCOPE c. xy To separate the control statements from the run
and identify the version of the system.
¢ refers to a specific COSY tape.
x is the field update number.
y is the installation update number.

control cards except JOB, SEQUENCE, SCOPE control cards are listed before being
ENDSCOPE processed.

END JOB SEQUENCE xxxxxx DATE mm/dd/yy Job termination message.tt
TIME hhmm - ss ELAPSED TIME xx HRS
xx MIN xx SEC

end-of-file mark Jobs on OUT are separated by an EOF record.
JOB card image The JOB card is printed.
t hh = hours 11 mm = month

mm = minutes dd = day

8s = seconds yy = year

C-1

message meaning

SEQUENCE card image with words 8, 9, The SEQUENCE statement and job initiation time
and 10 preset to: AT hhmm - ss are written,
1 A page eject record separating runs.

The following example illustrates the messages and information written to the programmer on OUT
for a typical compilation and execution. According to the gFTN, L, A, X card, the FORTRAN source
program is listed, followed by the assembly language listing; next, a COMPASS program is assembled
and listed. All SCOPE control statements, times, MAP, and program output are listed. A memory
dump of the program, labeled and numbered common, and console scoop are forced because of an
illegal jump out of bounds.

SCOPE control statements hhmm - 88

SEQUENCE .8 AT 2023 - 45
JOB,52462, D D STONE .3
SCOPE 6.00
FIN,L.AX
(page eject)
FORTRAN Source Program Listing
5.1 PAGE NO. 1
PROGRAM A TEST RECOVERY OPTIONS
TYPE INTEGER B, SUM
COMMON/A/B(10)
DATA (B=10,16.4.2,3.5.7,9,2,18)
PRINT 12
12 FORMAT (17H SUM = Bi + Bi+1)
00 7 1=1,9.2

SUM=B(1)+B(1+1)
PRINT 10.SUM,B(1),B(i+1)
10 FORMAT (315)
CONT INUE
CALL START
END
0 0

22002 -
ler dia; ti
(page eject) compiler diagnostic

2/17F

Assembly Language Listing of FORTRAN Subprogram

IDENT
PROGRAM LENGTH 00055
ENTRY POINTS
TESTRECX 00007
BLOCK NAMES
A 00012
EXTERNAL SYMBOLS
ELD.
Q8QDICT.
START
STH.
Q8QENTRY
00000 63 O POOOOO EXIT. 63
20 0 X77777 20
00001 00 0 00000 DICT. ocT
00 0 00000
00002 63 2 56263 ocT
51 2 52367
00000 A BLOCK
00000 COMMON
€00000 ORGR
00000 00 O 00000 ocT
00 0 000}12
00001 00 0 00000 ocT
00 0 00020
00002 00 O 00000 ocT
00 0 00004
00003 00 O 00000 ocT
00 0 00002
00004 00 O 00000 ocT
00 0 00003
00005 00 O 00000 ocT
00 0 00005
00006 00 O 00000 ocT
00 0 00007
00007 00 O 00000 ocT
00 0 00011
00010 00 0O 00000 ocT
.00 0 00002
00011 00 O 00000 ocT
00 0 00022
P00003 ORGR
00003 FORMAT. BSS
ENTRY
00007 63 0 00000 TESTRECX UBJP
01 0 P00007
00010 63 O PO000O7 + 63
20 0 X00000 20
00052 75 0O P00050 SLJ
00 0 P000O! 00
00053 50 1 00000 ENDING. ENI
75 0 P00000 SLJ
END
NULLS TESTRECX

(page eject)

TESTRECX

($)*
($)Q8QDICT.
0000000000000000

6325626351252367

10

B(10)

B
0000000000000012

0000000000000020
0000000000000004
0000000000000002
0000000000000003
0000000000000005
0000000000000007
0000000000000011
0000000000000002

0000000000000022

*

L
TESTRECX
($)*, %

($)*-1
($)Q8gDICT.

.

BEGIN.
DICT.
0,1
EXIT.
TESTRECX

ED

PAGE NO.

C-3

COMPASS Program

2/17F

PROGRAM LENGTH

ENTRY POINTS

BLOCK NAMES

LOAD

00000
00000
00000
00000
00000
00000
00000

000C!
00002

00003

START

7070

00004
00000

00031
00012

LABELED 00012

7070
LABELED
50 0 00000 START
50 0 00000
50 1 00001 +
50 2 00002
50 3 00003
Ok 0 77777
63 0 00000
03 0 00076
NULLS

(page eject)

SCOPE control statements

IDENT

ENTRY

BLOCK
COMMON
BLOCK
COMMON
BLOCK
COMMON
NOP

ENI
ENI
ENI
ENQ
63

03

END

START

RUN,2.1000.7,, FOR STANDARD QUTPUT UNIT LISTINGS

(page eject)

MAP

PROGRAM NAMES
TESTRECX
1 77006 QBQERROR

1 77722

1 73746

10H.

PROGRAM EXTENS.

NONE

LABELED COMMON

177710

A

NUMBERED COMMON

1 00001

ENTRY POINTS

0 00062
1 77704
1 75635
177211
1 75470

EXECUTION STARTED AT

SENTRY
START
10P.
10S.
RETURN

(page eject)

Program Output

SUM = BI + Bi+]

26 10
6 L}
8 3
16 7

20 2

(page eject)

C4

16
2
5
9

18

00055
00163
01436

00012

00031

77704
75632

77672

00032

77731
75410
77244
77503
75602

RECOV
10P.

LABELED

7070

TESTRECX
STH.
QBQHIST.
10R.
ALLOCIN.

RECOV

START

ED 00000 PAGE NO. 1

THIS PROGRAM ATTEMPS A JUMP OUTSIDE TS AREA OF
MEMORY, PRODUCING A BOUNDS FAULT TERMINATION.

0
c(5,5)
A(10)
B(10)
1.1
2.2
3,3
777778
0
62 } jump out of bounds
c
00004 1 77577 QBQENTRY
01154 1 75463 ALLOC.
00012
00012
1 75020 ELD.
1 77600 Q8QENTRY
1 77171 10E.
1 77006 Q8QERROR
1 73746 10H.

2024 - ‘7\:1 FORTRAN run time printout

00073 177
00147 1 75404

V77577
1 77651
177363
1 75543

10S. 00406
STH. 00057

Q8QDICT.
£XIT
Q8QCHAIN
ALLOC.

Recovery Dump

RECOVER

(ZER0)=6300000101177707

A = 0000000000000001

81 = 00001
100001 0
100006 5
100013 12
*k *k
100025 24
7070
100032 0
100037 5
10H.
173746 0
173752 L
173756 10
173762 4
173766 20
175376 1430
175402 1434
STH.
175404 0
175410 A
175414 10
175454 50
175460 54
ALLOC.
175463 0
175467 A
175623 140
175627 T4k
10P.
175632 0
175636 4
177663 6k
177667 70
LABELED
177672 0
177677 5
RECOV
177704 0
A
177710 0
177715 5
TESTRECX
177722 0
177726 i
177732 10
177736 4
177742 20
177746 24
177752 30
177756 34
177762)
177766 AN
177772 50
177776 5k

END JOB SEQUENCE 8

(page eject)

ILL.

BOUNDS INT

UBJP 6300000101175430
SAU60074207 SI1U56174255
$TQ21075257 ENI50000000

SBYT 6302000150774210
STA2007534k4 LDA12073746

LDQ]671531i ROP00000000
SAU60606060 SAU6060L4000

XMIT 6317540420177577
UBJP 6300000101177763
ENQO4000000 ENI50000000

LDA12076156 AJP22075453
SIU56575466 ENA10000001

ENA10077777 ENI50000000
LDQ16075602 RXTO0740615

BRTJ 6307777003000062
DV125246060 SAU60606060

ENI50100011 ENI50200047
STA 7710440020076173

SBL46L56062 63215163
ROP0O0000005 ROPO0177662

00000000 00000020
10400000 00000074

UBJP 6300000101177767

00000000 00000012
00000000 00000005

XM1T0631777222 177577
LOLLL601360 AJP22316020
XMIT 6317773120177577
BRTJ 6300000103175410
SLJ75077743 ROP0C077723
LDA 7710440012177707
B8RTJ 6300000103175410
LDA 7710440012177707
SLJ75077763 ROP00077723
BRTJ 6300000103177704
SLJ7507735 EN1500000000
ROP0O000000 ROPOO0000013
DATE 02/20/64

SENTRY=6300000001000062

07400077 00000074
77777777 00000000

00000000 00000020
00000000 00000007

Q =7777777777777777 D = 000000000000000
B2 = 00002 83 = 00003 B4 = 64003 85 = 00001
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000

ke i *dk Hk *k *k

00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000

RXTOO741225 STA2007526!
SIL57274255 SIU5637L4256

SBYT 6301170350574206
RXTO0740653 RXTOO740343
STA20074261 INA11000001

SST4L0000000 ROPOOéOOOOO
RSW00700000 ROP0OO000000

UBJP 6300000101177753
XMIT 6317541020177577
BRTJ 6300000003177211

ALS05000017 ENISOéOOOOO
STA20076063 STA20076153

EN150100075 ENI50200017
UBJP 6300000101176770

ROP002 14343 SBL46232163
FAD30000004 ROPO0O175624

EN150300000 ENI50464003
S1U56175632 SIL57275632

DV 125246021 63606060
ROPO0O000001 ROPOO177671

ENI50100001 ENI50200002

UBJP 6300000101177652
SAU60223120 ARSO1346060
XMIT 6317773120177723
SLJ75077741 ARS01077723
ENA10000001 RXTOO741225
ADD14177710 RXTOO741225
SLJ75077755 ARS01077723
77700000 LDA12177710
ENA10000002 RXTOO741225
SLJ75077770 ROP0O0077723
BRTJ 6300000103177600

TIME 2024 - 53
N ——
hhmm - ss

00000007 00000000
60606060 00000000

00000000 00000004
00000000 00000011

ELAPSED TIME 00 HRS

BOUNDS=0017777700014600

0 IR = 0000000000000000 IM = 7777777777771600
86 = 00000 MS = 00000000000000 4

00000000 00000000 00000000 00000000 00000000
00000000 00020640 00000006 00000000 00000000
00000000 00000000 00000000 00000000 00000000

*% *k *k ok *k *k *k
00000000 00000000 000000060 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000

SAL61074210 SAL61074356
SIL57474256 SIU56574257
SBYT 6301170350574213
SBYT 6301170350574177
STA20075031 INA11000001

SAU60000000 ROPO0OOO000D

FSB31614660 62633033
XMIT.6317541020175405
SAL61075434 LDQ16075422

RAD70000442 SLJ750754k47
SLJ75075467 ENI50000000

EN150300000 ENI50464003
RTJ 7701440075475606

SBLLE516023 FAD30213 145
77700000 [NF77000000

EN150500002 ENi50600052
S1U56375633 SIL57475633

QRS02000204 SAU60400107
ARSO1606060 SAU60606060

00000000 00007000
00000100 00000074

EN150300003 ENQOLO77777

00000000 00000002
00000000 00000002

LBYT 6325626351252367
CONN 7403310534606060
SIUS6177775 RTJ75477772
ROPO0177725 ROPO0000000
STA20077776 EN150000000
STA20077771 ENA10000075
ROPOO177730 ROPOOOC0000
77700000 EN150000000
RAD70077776 INA11077765
SLJ75077775 EN150000000
SLJ75077772 ROP00077723

01 MIN 07 SEC

SAL61074430 RXTO0740407
SIL57674257 EN150100010
ENI50200021 EN!50500000
SBYT 6300301750475262
SBYT 6300002250575162

SAUS0606060 SAU60606000

XMIT 6317540420177577
SBYT 6300001750775410
LBYT 6300302250375405

ROP00076212 L1U52575457

ENI50500002 ENI50600052
RGJP 6200000001075464

SAU6023L43L46 AJP22222551

UBJP 6300000101175436
S1U56575634 SIL57675634

SAU60606060 SAU60606060

40000000 00000011
77777777 77700350

BRTJ 6300000003000076

00000000 00000003
00000000 00000022

CONN 7401073060606264
BRTJ 6300000003000062
ENAT0000075 ENQOLO77743
BRTJ 6300000103175020
RXTO0741225 LIL53177776
ENQOLO77763 EN{50000000
LDA12077771 77700000
BRTJ 6300000103175020
AJP22377745 ENI150000000
ROPOOO00000 ROPOO000024
ENI50100017 SLJ75077722

C-5

MAP

MAP is obtained after the program is loaded. It is printed on OUT. Following is the map from the
sample job, All information in the MAP is in octal.

Under program names, names declared in the subprograms are listed first, library subroutine names
follow. Similarly, entry point names such as TESTRECX and RECOV in the subprograms precede
library subroutine entry point names. The library subroutines Q8QENTRY, I0S., QS8QERROR,
etcetera, are called by the FORTRAN object program.

MAP

bank containing program or common block
first word address in specified bank
name of program

size of program

PROGRAMy NAME S

| 77722 TESTRECX 00055 1 77704 RECOV 00004 1 77577 Q8QENTRY 00073 V77171 10S. 00406
1 77006 Q8QERROR 00163 1 75632 10P. 01154 1 75463 ALLOC. 00147 1 75404 STH. 00057
1 73746 10H. 01436

PROGRAM EXTENS.
NONE
block size of block

name
LABELED COMMO
1 77710 A 00012 1 77672 LABELED 00012

blank numbered common

NUMBERED COMMON _—sSize
1 00001 /00031 1 00032 7070 00012

ENTRY POINTS entry point name

0 00062 SENTRY V 77731 TESTRECX 1 75020 ELD. 1 77577 Q8QDICT.
} 77704 START 1 75410 STH. 1 77600 Q8QENTRY 177651 EXIT

1 75635 10P. 1 77244 QBQHIST. 177471 10E, 1 77363 QBQCHAIN
1 77211 10S. 1 77503 I0R. 1 77006 Q8QERROR 1 75543 ALLOC.
lJ\S‘i(/) RETURN. 1 75602 ALLOCIN. 1 73746 I0H.

entry point
address

C-6

RECOVERY DUMPS

Recovery dumps are taken for programs which do not terminate normally. The dump is written on
OUT. There are 4 computer words per line in octal with mnemonics for program locations, and 5
computer words per line in octal for common. An octal console scoop is always taken. A recovery key

of seven will dump all of storage except SCOPE. The dump will be blocked on tape.

A recovery diagnostic (see diagnostics on OUT) is written indicating the cause of the abnormal job
termination.

Additional identical lines are omitted and are indicated by a row of asterisks.

Mnemonics in the console scoop are:

A A register
Q Q register
D D register
IR Interrupt register
M Interrupt mask register
Bl1-6 Index registers 1-6
MS Miscellaneous mode selections register
BOUNDS Bounds register
(ZERO) Contents of all (0)00000 at recovery time
SENTRY Contents of SENTRY at recovery time

If the dump occurs with the interrupt system active, location zero contains an unconditional bank jump
(63.0) to the location +1, where the interrupt occurred.

C-7

Example:

Operand bank Upper/lower Instruction bank Location where
setting when the indicator setting when the interrupt occurred

interrupt occurred\ / interrupt occurred

(ZERO) = 630000010t 177507

:Bonk jump

SENTRY will contain the following:

Location of SENTRY
in bank O

63000000010 XXXXX

If the dump ocecurs during interrupt lockout mode, it is because of an I/0 request causing abnormal
termination and SENTRY contains an unconditional bank jump to the location +1 of the I/O request.

When autoload recovery is used, (ZERO) and SENTRY contain zero.

The recovery dump for the typical job is shown.

C-8

RECOVERY DUMP

recovery diagnostic
hank

ILL/BOUNDS INT location where interrupt occurred

e A, P et i,
(ZER0)=6300000101177707 SENTRY=6300000001000062

RECOVER
BOUNDS=0017777700014600

Console Scoop

A = 0000000000000001
B1 = 00001 B2

Q = 7777777177717717777 D = 0000000000000000 IR = 0000000000000000 IM = 7777777777771600
= 00002 B3 = 00003 B4 = 64003 B5 = 00001 B6 = 00000 MS = 0000000000000004

©<—~ numbered common with blank name

100001 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
100006 5 00000000 00000000 00000000 00000000 00000000 00000000 00020640 00000006 00000000 00000000 --==—octal
100013 12 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000
*k *% % *k *k *k % *k *k

100025

00000000 00000000
*% Jok Fk dek J%k

00000000 00000000

*k
24 00000000 00000000 00000000 5_

7070 -<a—name of numbhered common

00000000 00000000 00000000 00000000 00000000

indicates one or

100032 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 more lines of
100037 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000C dditional inf "
I0OH.==name of library subroutine aaditional inlormation
173746 0 UBJP 6300000101175430 RXTO0741225 STA20075261 SAL61074210 SAL61074356 SAL61074430 RXTO0740407
173752 4 SAU60074207 SI1US6174255 SIL57274255 S1U56374256 SIL57474256 S1US6574257 SIL57674257 EN150100010 octal with
173756 10 STQ21075257 ENI50000000 SBYT 6301170350574206 SBYT 6301170350574213. EN150200021 ENISO’SOOOOO“'m"emonics
173762 14 SBYT 6302000150774210 RXTOO740653 RXTOO740343 SBYT 6301170350574177 SBYT 6300301750475262
no mnemonic due to . .
/i]lc,r.;al instruction
176776 1144 RAD70777777 FAD30000000 ROP00000000 SAU60606060 SAU60606060 SST40000000 RCPOO0000Q0
177002 1150 MEQ66LO5T60 62255060 AJP22312760 EQS64L53163 EQS6L4L56051 DV125506060 ROP 00000000 ROP00000012
QBQERROR ~e——name of library subroutine
177006 0 ROPDO0O0O0OOC ROPOOO00000 STA 7720440020077121 LDA12077013 SI1U56177073 LBYT 6300302250177006
177012 4 ROPD0521110 STA20077013 XMIT 6307777720177123 LDA 7710440012077577 NBJP 6302602660077023
. . . no mnemonic due
to illegal instruction
177142 134 SAL61077272 SAU60077250 ROP0OO000017 ROPOO177124 SAU60255151 SBLL6516024 DVI125632523 /
177146 140 FSB31456051 SBLL66L6E33] ADL45256060 SAU60606060 ROP 00000000 ROP 00000000 ROP 00000005 ROPOO177 154
177152 144 ROPO0606021 SAUK0136060 ADD14077561 STA20077564 STA20077565 SAU60077212 SAU60606050 SAU60136060
177156 150 LDQ16077612 LDLLLO77777 INAT1000014 STA20077542 ROP 00000006 ROPO0177152 SAU60606060 SAU60606060
177162 154 QJP23214343 DVI25246026 INI51464460 SAU60606060 ROP 00000000 ROP 00000000 SAU60206060 SAU60606060
177166 160 ROPOOOD000S ROPOO177161 UBJP 6300000101177652 SAU60606060 SAU60606060

60

or-0

177171
177175
177201

177571
177575

177577
177603

177667

177672
177677

177704

177710
177715

177722
177726
177732
177736
177742
177746
177752
177756
177762
177766
177772
177776

10S .~¢——— name of librury subroutine

0
4
10

400
Loy

QBQENTRY==—name of library subroutine

0
4

70

ROP00000000 ROPOO000O0O !
DVF 7710000127077574
BRTJ 6300000003177006

$LJ75077552 EN150000000
ROPOO000000 ARSO 1000000

XMIT 6317540420177577
LDQ16077644 LDA12077600

ROP 00000005 ROPOO177662

LABELED =+=—1labcled common

0
5

00000000 00000020
10400000 00000074

RECOV ~—————COMPASS program

0

UBJP 6300000101177767

A «.——labeled common

0
5

00000000 00000012
00000000 00000005

TESTRECX -— IFORTRAN program

o] XMIT 6317772220177577
4 LDLLL601360 AJP22316020
10 XMIT 6317773120177577
14 BRTJ 6300000103175410
20 SLJ75077743 ROP0O0077723
24 LDA 7710440012177707
30 BRTJ 6300000103175410
34 LDA 7710440012177707
40 SLJ75077763 ROP00077723
Ly BRTJ 630000010317770k
50 SLJ75077735 ENI50000000

54
f END JOB@

absolute octal

18 bit address

ROP0O0000Q00 ROPO0O0O00013

UENCE 8

ATE 02/20/64
octal address relative word contents

07400077 00000074
77777777 00000000

00000000 00000020
00000000 00000007

SAU 7710440060077171
SBYT 6300001450777207
ROP0O0000000 ROPO0000000

ROP00000000 ROP00000000
ROP0O0000000 RXT00777777

UBJP 6300000101177774
RXTOO7L0O341 ARSO1000017

ROP0O0000001 ROPO0177671

ENIS0100001 EN{50200002

UBJP 6300000101177652

SAU60223120 ARS01346060

XMIT 6317773120177723

00000007 00000000
60606060 00000000

00000000 00000004
00000000 00000011

to the beginning of the

subprogram or common
block. When a new name

is printed, the relative
address is reset to 0.

SLJ75077741 ARS01077723
ENA 10000001 RXTO0741225
ADDY4177710 RXTOO741225
SLJ75077755 ARS01077723

77700000 LDA12177710
ENA10000002 RXTO0741225
SLJ75077770 ROP00077723

BRTJ 6300000103177600

TIME 2031 - 51

ELAPSED TIME 00 HRS

ENA10000000 LLS07000052
LDA12077171 ENQOL0O00075
ROPOO000000 ROPO0O177204

ROP0O0000000 ROPO00O00D 12

RXTO0741225 SLJ75077600
RXT00740565 LDA12100000

ARS01606060 SAU60606060

EN150300003 ENQOLO77777

LBYT 6325626351252367
CONN 7403310534606060
SIU56177775 RTJ75L77772
ROP00177725 ROPOO0O00000
STA20077776 ENI50000000
STA2007777) ENATO000075
ROP0O0177730 ROPOOO0O0000
77700000 EN150000000
RAD70077776 INA11077765
SLJ75077775 EN150000000
SLJ75077772 ROP00077723

00000000 00007000
00000100 00000074

00000000 00000002
00000000 00000002

01 MIN 07 SEC

DVF 7710000127077573
BRTJ 6300001503175635
DVI125515146 INI51604623

ROPOOOOOObO ROP0O0000100

ENA10077600 SAL61077601
RXTO0740341 STQ211000C0

40000000 00000011}
77777777 77700350/

(BRTJ 6300000003000076){

00000000 00000003 {
00000000 00000022

CONN 7401073060606264
BRTJ 6300000003000062
ENAT0000075 ENQO4O77743
BRTJ 6300000103175020
RXTOO741225 LIL53177776
ENQOLO77763 ENI150000C00
LDA12077771 77700000
BRTJ 6300000103175020
AJP22377745 ENI50000000
ROPO0O000000 ROPOO000024
ENI50100017 SLJ75077722

~=—octal

~=+octal

instruction
causes
interrupt

octal with
mnemonics

SNAP AND TRACE

SNAP and TRACE dumps are in the same format. The dump consists of a console scoop and a memory
dump written on OUT.

In the console scoop:
A and Q registers are printed in the requested mode.
Index registers, the Bounds register and the D register are printed in octal.

Interrupt register, interrupt mask register and sense switches are printed in binary. Above
the interrupt registers are bit positions for reference purposes.

In the memory dump, 4-10 computer words appear per line depending on the mode requested; aster-
isks in locations indicate that the information is identical to the preceding line.

The example shows the program and the SNAP dumps. Note the location of the SNAP card images;
the first is printed after the LOAD card and the rest after the MAP.

When tracing is initiated, the following statement is written on OUT:
TRACING BEGIN AT 6 octal digit address - first word address of area to trace jumps -a;
Before each dump in the SNAP format, the message is written:

P = address of jump instruction (P) = contents of P

C-11

¢1-0

SEQUENCE .9
JOB.9100} .LARSON.2
SCOPE 6.00
COMPASS X L

(page cject)

2/17F

PROGRAM LENGTH
ENTRY POINTS

BLOCK NAMES

00000
00000
00000
30001 50
50
30002 50
10
30003 20
50
3000k 5L
75
30005 10
50
30006 20
50
30007 5k
75
30010 75
50
NULLS

(page eject)

LOAD,69

0
0
1
0
|
0
1
0
0
0
1
0
1
0
0
0

FIRST
HELP

1234

00000
00000
00000
00000
P00000
00000
30000
P30003
77777
00000
P0OO000
00000
30000
P30006
P30001
00000

30011

30001
30006

001Lk4
1234

ARY
FIRST

PG

HELP

SNAP ,HELP,SNAPSSS ,+550.0C, 1.7 .3 .RESLT

(page eject)

MAP
(page eject)

IDENT

ENTRY
BLOCK
COMMON
BSS
NOP
NOP
ENI
ENA
STA

1SK
sLJ
ENA

STA
1SK
SLJ
SLJ

END
SPACE

AT 2031 - 51

02/20/6k

SNAPSSS

FIRST,HELP

0
SPACE (100)
300018

0.1
0
ARY 1

300008 , 1
STR
777778

ARY 1
300008, 1
HELP
FIRST

FIRST
PG

£D

PAGE NO.

€10

SNAP FIRST+1 ,FIRST,+7,M,1,2,
SNAP HELP,/1234/,+143,0,1,6,
RUN,2,2000, 1

1,PROG
1.NCOMM

PROG’identification from SNAP card

F IRST/entry point (name in fwa)

177767 0 BRTJ 6300000003000062 BRTJ 6300005003077757 STA20147766 ENI50000000 ISK54130000 SLJ75077771
177773 L ENA10077777 ENI50000000 BRTJ 6300012003077757 1SK54130000 SLJ75077774 SLJ75077767 ENI50000000
NCOMM‘/identification

IZBL",_—common block name (name in fwa)

100001 0 50100000 10000000 63000001 01177771 00000000 00000000 00000000 00000000 00000000 00000000
100006 5 00000000 00000000 00000000 00000000 00000000 00000000 00020640 00000036 00000000 00000000
100013 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 X
*k Kk *k *k *k *k *k dok *% *k ok *%k *k *k *% —-loCAtions are
100102 101 00000000 00000000 00000000 00043222 00000000 00000000 00000000 00000000 00000000 00000000 same (zeros)
100107 106 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
100114 113 00000000 00000000 00000000 00000000 00000000 00000000 00020637 00000030 00000000 00000000
100121 120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
* % *% *% *%k *% *%k **k *%k *x ¥k ke *% F*k *% *%

100140 137 00000000 00000000 10000000 00065777 00000000 00000000 00000000 00000000 00000062 23464725

identification
RESLT="

Console Scoop

A = 77777777717777777 Q = 0000004400000001 D = 0000000000013773 BR = 0017777700014600
B1 00000 B2 00000 83 00000 B4 61533 B5 00001 86 00000 SWITCHES 001000
bit_position bit position
7654321098765432 10987651{32 1098765432109876543210 \765'-032 109876543210987654321098765432109876543210
IR = 00 IM =TT 0TI 301 11111111111111001 110000000
SNAPSSS/pmgram name (name in fwa)
147766 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 GO000000
*k **f *% *%k *k sk *% *% *k s,k *% *x *k *k *%k
absolute octal
octal address
address relative
to name
in fwa

OCTAL CORRECTIONS AND LOADER CARDS

The following example contained an illegal instruction. OCC cards were used to correct the program
and inserted into the binary deck. Note, the program extension area is included in the MAP.

All loader control cards (LCC) are written on OUT. These include BANK, MAIN, OVERLAY, and
SEGMENT cards.

SEQUENCE ,931 AT 1409 - 45
JOB,52462,D0DS,5 entry point in USELESS

SCOPE 6.00 l:ﬁ/common block in USELESS

BANK, (1), HECE, /12347

0CC IN PROGRAM USELESS 00003+ 75000000E }Oct&l corrector cards are
0CC IN PROGRAM USELESS O0OOOOE 77200000 20000004+75000000+ f inserted into & binary deck.

(page eject)

PROGRAM NAMES
1 77771 USELESS 00006

PROGRAM EXTENS. } Second octal correction is loaded
1 77767 USELESS 00002 f in program extension area.

LABELED COMMON
NONE

NUMBERED COMMON
1 00001 1234 00500

ENTRY POINTS

0 00062 SENTRY 1 7777V HELP
RUN,4,1000,1

C-14

Messages are sent on the input comment medium (ICM) to the computer when SCOPE requests informa-
tion. The comments may be chosen by the operator. He may abandon the job, begin at any sequence,

or press manual interrupt.

MESSAGES ON ICM

Message

Meaning

AET

ENDSCOPE

EQUIP

LOOK

NEXT

or
NEXT,c
or

NEXT, ctd

NONE

OK and carriage return

PAUSE
or
PAUSE, job sequence number

An AET statement as described in this manual may
be typed. (See p. 2-22.)

Log off the last job, and perform final accounting. If

the computer is in Satellite mode, the units are turned
over to SASY to process, otherwise, the system units

are unloaded and the computer stops.

An EQUIP statement as described in this manual may
be typed. (See p. 2-3.)

Reply to a computer request for a tape. The operator
should mount the tape, and enter the message on ICM.
The computer performs a label search to find the tape.

¢ = job sequence number of a SEQUENCE card
d = the positive decimal number of jobs to be skipped

If neither c or d are given, the computer executes the
next consecutive job. If c only is given, the computer
searches for a job containing a SEQUENCE card with
the job sequence number, c. If ¢ +d is given, the
computer finds the job sequence number, ¢, on a
SEQUENCE card, skips the number of jobs indicated
by d and executes the succeeding job.

Reply to a computer request for a tape. The operator
enters the message and the computer attempts to
process the job without the requested tape.

Continue processing.

Transfer control to the operator at the beginning of a
computer job when the SEQUENCE statement is
encountered. If no job sequence number is given, the
computer halts at the next encountered SEQUENCE
statement; otherwise the computer halts at the
SEQUENCE statement containing the given job sequence
number. The type-in light turns on when this halt
occurs.

C-15

Message Meaning

REPEAT Log off the current job, find its beginning and start
it over.
. and carriage return Transfer control to the programmer's manual inter-

rupt subroutine for the currently running program.

No available input reel, duplicate input reels, no available reel for output, or non-standard label read
assignment (unlabeled tapes) may prevent the normal assignment of logical units. In all of these cases,
the operator is queried on the OCM unit and must reply on the ICM unit.

If there is no available input reel - a reel with the specified label cannot be found by SCOPE, the
message on OCM is nneerr, NEEDED. He may repeat the job (REPEAT message on ICM), or skip to
the next job (NEXT). He may mount the reel and instruct SCOPE to search for the desired label again
(LOOK). He may attempt to force the assignment (EQUIP). This attempt is futile if the label does not
check, consequently, the contents of the label will be typed out. If the tape assignment is requested by
a RDLABEL request, he may type a message (NONE) stating that the tape is not available. This will
set the first word of the user's buffer to +0 and return control to the programmer.

If there are duplicate or multiple input reels (reels with identical labels) and the request forcing the
assignment is not RDLABEL, the message on OCM is: nneerr, name of tape, NEEDED. If the request
is RDLABEL, SCOPE assigns one of the tapes to the specified logical unit, types a message telling the
operator which unit is assigned and transfers control to the programmer.

When no reel is available for output, "CANNOT ASSIGN uu = hh oo'" is typed. The operator may
attempt to force the assignment with the statement EQUIP u = MTnn. The label for physical unit MTnn
is typed out and the operator is queried. He may now reply on ICM with NEXT, REPEAT, EQUIP,u =
MTnn (attempt to force the assignment to a different physical unit), or OK.

SCOPE assigns output tapes with non-standard labels in the same manner as standard labeled tapes.

The operator is queried for the assignment of input reels unless they were previously assigned by an
EQUIP statement.

C-16

The following typewriter character codes are for comments typed in by the operator:

TYPEWRITER
CHARACTER CODES

CHARACTER BCD TYPET CHARACTER BCD TYPET
0 00 43 - 40 04
1 01 77 J 41 70
2 02 37 K 42 15
3 03 33 L 43 41
4 04 47 M 44 72
5 05 57 N 45 31
6 06 13 o 46 42
7 07 57 P 47 54
8 10 17 Q 50 10
9 11 07 R 51 56
= 13 34 S 53 U 47
@ 14 U 37 * 54 U 17
: 15 U 50 blank 60 1 60
; 16 50 / 61 44
? 17 U 44 S 62 46
+ 20 U 34 T 63 75
A 21 12 U 64 35
B 22 01 A% 65 36
C 23 11 w 66 02
D 24 55 X 67 71
E 25 51 Y 70 40
F 26 30 Z 71 1 73
G 27 74 s 73 14
H 30 45 (74 U 07
I 31 16 tab 75 1 62
. 33 I 32 backspace 76 I 61
) 34 U 43 carriage return none I 63

upper case none 1 64
lower case none 1 66
quotation mark none 1 52

TAlphabetic characters are not typed in upper case, but the code is transmitted. I signifies that the
upper case and lower case characters are identical. U signifies that upper case must be selected

for this particular character.

C-17

MESSAGES ON OCM

Message Meaning Action
AET printouts AET table is printed
according to AET state-
ment options.
ENTER DATE MDY Initial autoload or computed Enter date.

JOB ABANDONED

ssssss , iiiiii,

PAUSE xxXxxxx

RELEASED hh oo

UNLOADED hh oo

PRINT hh oo

PUNCH hh oo

PR/PU hh oo

nneer, NEEDED

nn eerr, = hh oot

nneerr, name of tape, NEEDED
nn eerr, name of tape 14
characters = hh oo

nn eerr, (TAPE IS UNLABELED)

MToo = contents of label

t an = logical unit number
ee = edition number appearing
in label, or blank

C-18

time is later than midnight.

Job is terminated because
of control statement errors
on INP,

New job. The first 6
characters of sequence card
and JOB identification are
typed.

A pause was requested
before this job.
hh oo is released.

Physical unit hh oo is
unloaded. Tape is to be

saved and has been unloaded.

No available input reel.
Identifies a numbered unit.

Duplicate or Multiple input
reel.

Identifies a named unit.

Identifies an unlabeled unit.

Response to EQUIP,nn=MToc If tape is acceptable to operator,
type OK. or a period. If tape is

informing operator of label
on MToo.

rr = reel number

hh = hardware type mnemonic

0o = AET ordinal of unit, within
hardware type

Any legal operator statement.
A period means continue with
next job.

Assign a tape.

SCOPE forced assignment of a
reel.

not acceptable, reassign or
abandon the job.

SCOPE INITIATION TYPEOUT

ENTER DATE MDY
M month, D day, Y year, 2 digits each

ENTER TIME HHMMSS. MARK BY JK1
HH hour, MM minute, SS second, 2 digits each
Operator types in time; when clock reaches selected second, operator presses jump key 1. Jump
key 1 may be released immediately if desired.
uu eerr, = hh00
uu logical unit number
ee edition number
rr reel number
hh hardware type
00 AET ordinal within hardware type (octal)

SET STOP SWITCH x ON FOR SCR=hhoo

Operator sets requested stop switches before processing continues.

Programmer 1/0 declarations (same format as for standard unit declarations)

Program output on OCM

Example:

ped in by the operator
ENTER DATE MDY 021964

ENTER TIME HHMMSS, MARK BY JK1 144315

70 0201, = MT20
65 01, = MTo02
61 01, = MTO03
SET STOP SWITCH 1 ON FOR SCR MT01

60 01,= MTO07
1 , DDSTON,
69 01,= MTo04

RELEASED MT04
01 02, (UNLABELED) =MT11
45 15, THIS LABEL IS=SMT07
UNLOADED MT11
UNLOADED MTO7

C-19

AET LISTING

The AET listing on OCM or OUT can be obtained by entering the statement AET, , or AET, , OUT, on
either OCM or INP.

Example:

Ordinal: Entry:

AET 001 0160100100000400
AET 002 0160100100000600
AET 003 0160100101401000
AET 004 0160100101401200
AET 005 0160100102001400
AET 006 0160100102001600
AET 007 0160100102002000
AET 010 0160100102002200
AET 011 0160100101002400
AET 012 0160100100002600
AET 013 0160100100403000
AET 014 0160100100003200
AET 015 0160100100003400
AET 016 0160100100003600
AET 017 0160100101404000
AET 020 0160100100060003
AET 021 0440500200040004
AET 022 0521200301520002
AET 023 0621400400340000
AET 024 0631401000520001
AET 025 1060000503020205
AET 026 2063040607000405
AET 027 2122000707000205
AET 030 2142000707000205

MESSAGES ON ACC

Message Meaning

END JOB SEQUENCE xxxoxxx DATE mm/dd/yy Job termination message.
TIME t hhmm - ss ELAPSED TIME xx HRS xx

MIN xx SEC
BEGIN JOB AT hhmm - ss Time is printed on ACC when no sequence statement
is present.t
JOB card image The JOB card is printed.
SEQUENCE card image with words 8,9, and The SEQUENCE statement card image and job
10 preset to: AT hhmm - ss initiation time are written.
1 hh = hours mm = month
mm = minutes dd = day
ss = seconds yy = year

MESSAGES ON PUN

Message

Meaning

end-of -file mark

SEQUENCE, sssSSS 00. . . 0
(80 character record)

DIAGNOSTICS ON OUT

Diagnostic

Separator for punch tape at the end of the job in
which unit 62 was used.

Separator for punch tape at beginning of each job
which requires unit 62. This record is binary.

Condition

Action

CONTROL STATEMENT
FORMAT ERROR

CONTROL STATEMENT
REJECTED

ERRORS IN LOADING I/0
DRIVERS

ERRORS RETURNED -
LOADING NOT ATTEMPTED

ERRORS IN LOADING
OPERATION

FILE I/O OR DATA ERROR

TIME LIMIT EXCEEDED

a) Illegal BCD character on a
control card.

b) Illegal equivalence declaration.

c) Illegal logical unit number in
the FILE LOAD or EQUIP card.

d) Illegal parameter on RUN card.

Statement out of sequence.
Illegal character on an ENTRY
POINT NAME card.

Loading errors detected when
loading drivers.

Compiler errors in the job before

this loading opera* »n was at-
tempted. The LOAD statement
precedes this message.

Loader returned errors.
I/0 error in FILE statement
or illegal control statement

within data to be filed.

Time Limit exceeded while
reading a control statement.

Correct the illegal field.

Check control cards for proper
ordering.

Consult loader diagnostics and
correct I/0 driver routines on
library tape.

Correct compiler/assembler
errors.

Consult loader diagnostics.

Check data to be filed.

Extend specified time limit.

C-21

Diagnostic

Condition Action

TAPE READ ERROR ON INP

TRA=0

1) Parity errors on control Check if program read all of data.
card read. (May be a BCD
record.)

2) Parity errors on binary
record when skipping.

Transfer address after loading Provide a transfer name.
is zero. No transfer name

provided on TRA card (generated

by COMPASS END cards). Job is

abandoned.

RECOVERY DUMP DIAGNOSTICS

Diagnostic

Condition

BAD SENTRY CALL

CWA ILLEGAL
EOF ON SYST UNIT
ILL. BOUNDS INT
ILLEGAL INSTR.

ILLEG LABEL CALL

MEMORY REQUEST
ILLEG MODE CALL

ILL. USE OF UNIT

IMPOS FUNCT

INTERNAL REJECT
INT. ADDR ILLEG

INT. ADDR. =0

C-22

Entry to SENTRY through a jump during interrupt mode, not neces-
sarily through a call.

Control word address is zero.

Attempt to backspace past end-of-file or read past end-of-file on INP.
Illegal bounds interrupt

Illegal instruction

Illegal LABEL request, (labeling a scratch tape; or edition number or
reel number too large; or more labels than tapes).

Illegal MEMORY request, (setting limits in an illegal bank).
Illegal MODE request, (specifying contradictory modes within a call).

Illegal use of unit, (a label macro reference to a unit which is not a
tape).

Unit not capable of function, (write on card reader or any unit speci-
fied as RO).

Hardware problem, see 3600 Reference Manual, Appendix II.
Interrupt address is 0 or -0.

Interrupt address of a BOUND, SELECT, or LIMIT request is zero.

Diagnostic

Condition

INT. FEATURE BAD

LIBRARY REQUEST

L.U.N. ILLEGAL

MACHINE OR SYSTEM ERROR
FROM (5 digit address within
SCOPE)

MEMORY REFERENCE

NO DRIVER

NO WRITE ENABLE

OPERAND PARITY

OPERATOR TERM.

PRINT LIMIT
REJECT ADDR = 0
REQUESTED DUMP

TIMESUP

Interrupt in SELECT request is illegal (0 or > 17).

Illegal condition in library request (table of contents not available for
requested unit).

Logical unit number illegal, negative, zero, or greater than 80.

SCOPE equipment tables destroyed; machine or equipment malfunction.

A reference has been made to a non-existent bank.

Equipment requiring driver was not properly assigned.

Trying to write on a tape with no ring which was previously read.
Hardware problem, see 3600 Reference Manual, Appendix I.

Operator terminated job with an operator statement on OCM or
recovery autoload.

Print limit specified on RUN card exceeded.
Reject address must be specified.
TD was specified on the RUN card and the job terminated normally.

Time limit specified on JOB or RUN card exceeded.

SNAP/TRACE DIAGNOSTICS

If an error occurs while processing SNAP or TRACE cards, the following message is written on OUT

followed by the card image.

P
CARD yyy { iIEXCE } ERROR AT COLUMN xxx mmmmmmmm
yyy number of card
XXX column being processed when error was detected

mmmmmmmm diagnostic listed below

C-23

Diagnostic

Condition

BIG NUM Octal value more than 6 digits

BIG PAR Parameter greater than 4096

EXC CARD Insufficient information on SNAP or TRACE card
FWA FWA exceeds LWA

ILL MODE Illegal character in mode field

ILL OCT Illegal character in octal field

ILL PAR Illegal character in parameter field (non-numeric)
ILL SLSH Slash appears illegally

LOC MEM Location references non-existent memory

LOC1 OCT Initial location is absolute octal

LOC1 REL Relative location with no preceding name

LOC2 OCT LOC2 absolute octal

NO LoC2 No LOC2 on TRACE card

NO LWA No LWA

NO ROOM Not enough available memory in bank for DEBUG tables
NOT LOAD Name not in loader tables

REL ERR Relative address with no preceding name

LOC1 BIG LOC1 greater than/equal to LOC2 on TRACE card

LOADER DIAGNOSTICS

All loader diagnostics are written on OUT in the following format:
LOADER ERROR P; Py Py

When the loader detects an error in the loading operation, the diagnostic is written on OUT, and loading
continues. For example, after writing the checksum error diagnostic on OUT, the card containing the
error is processed as though the checksum was correct. The exceptions are the memory overflow
errors and too many overlay tapes which cause the loading operation to be terminated. When errors
are encountered during the loading operation, no library subroutines are loaded.

Py is the last subprogram name encountered by the loader; or if the errors are on the library tape, Py
will be LIB yyy, or blank. The values of Py and Pg for each error are shown below.

C-24

Py

P3

Condition

BAD LAT

BANK

CARD SEQ

CHKSUM

COM LNG

CD TERM

EOT

FEW BRT

FEW LAT

ILL BYTE

ILL CHAR

ILL PNCH

LAT OV

Address from LAT string.

Portion of BANK card containing
format error.

Col. 1 and 2 of current card.

Col. 1 and 2 of current card.

Name of common block.

Col. 1 and 2 of current card.

Suppressed.

Suppressed.

Suppressed.

Col. 1 and 2 of current card.

Col. 1 thru 8 of OCC card.

Col. 1 thru 8 of the OCC card.

LAT(T).

More than 32767 entries in LAT string.

BANK card format error.

Card out of sequence, e.g., LAT card
followed by EXT card.

Checksum error; Checksum on binary
card does not agree with computed
checksum.

Common block length error. Labeled
common blocks differ in length or
multiple numbered common blocks in
one bank vary in length.

Previous card not terminated. On EPT
or EXT, the second card for a continued
name was not found.

An end-of-tape has been encountered in
writing an overlay tape.

Either the T portion of a BRT has made
a reference past the end of the BRT
table or the EXT entries exceed the
BRT entries.

Either the T portion of an LAT has
made a reference past the end of the
LAT table or the EXT entries exceed
the LAT entries.

Illegal byte value in R field of RBD
card; byte 10. . . 0, which is not used,
was encountered.

A character which is not octal or blank
appears in a correction, or an illegal
relocation designator is used.

An illegal punch configuration appears
on an OCC.

The computed value of T, when entering

an LAT into the permanent loader tables
is greater than 4095.

C-25

Py

P3

Condition

LAT RNG

LIB TP.

LIB EOF
LIB SEQ
LIB PAR

LOAD ADD

MD BANK

MD C BK

MD EPT

MD P.N.

MD TRA

OVERLAY

OV MEM

C-26

Address of attempted reference.

Suppressed.

Suppressed.
Suppressed.
Suppressed.

Col. 1 and 2 of RBD card or col. 1 - 8
of OCC.

EPT name.

Name of common block.

Entry point name.

Suppressed.

Illegal transfer name.

Overlay number.

Col. 1 and 2 of current card.

LAT range error; attempt to reference
SCOPE in an LAT string.

Library tape error on reading (lost data
not parity).

Library tape end-of-file.
Library tape card sequence error.
Library tape parity error.

Illegal load address on RBD or OCC
card. Byte for load address specified
either a fixed or decremented address
on RBD card. OCC load error may be
one of following:
Blank load address
relocation designator specifies:
decremented address
fixed address
numbered common

Multiply defined bank for EPT. Bank
specified for EPT on BANK statement
does not agree with bank assigned to
entry point.

Multiply defined common bank. Common
block has been assigned to two or more
banks by BANK statements or automatic
assignment of the block followed by a
BANK statement.

Multiply defined entry point. Same
entry point name defined at two
addresses.

Multiply defined program name.
Subprogram name encountered more
than once.

Multiply defined transfer name. More
than two TRA cards contain same name.

Current overlay card violates overlay
rule.

Memory overflow. Not enough memory
available to assign block of common,
subprogram, or program extension.

Py

P3

Condition

OVT MEM

PARAM

PARITY

SEC LIM

SEGMENT

SEQ NO.

TAPE NO

UN COM

UN EXT

UN TRA

127 BLK

5 TPS

Col. 1 and 2 of current card or col.
1 -8 of OCC.

A register parameter for current
loader call.

Suppressed.

Col. 1 thru 8 of OCC card.

Overlay number followed by segment
number.

Col. 1 and 2 of current card.
Requested tape number.

Col. 1 and 2 of RBD card or col. 1-8
of OCC.

External symbol.

Transfer name.

Col. 1 and 2 of current card.

Suppressed.

Memory overflow. Not enough memory
available for loader tables.

Parameter error. An illegal call to the

loader.

5=11 call after loader completed
previous load request.

5=10 or 00 call before loader completed
previous load request.

S=10 or 00 and QU = 0.

Non-recoverable parity error on loading
unit or overlay tape.

Current value of load address outside
program section being corrected.
(program section is the portion of the
program referenced by a relocation
designator of + or 1-9,0 on OCCQC) .

Current segment card has violated a
segment rule.

Sequence number on an EPT, BCT,
EXT, LAT or BRT is out of sequence.

Logical unit on LCC is out of range.

Undefined common reference. No
common block declared for byte value
on RBD card or relocation field on
OCC card; or associated common block
resulted in a COM LNG error.

Undefined external symbol. Reference
to an external symbol not defined as
entry point to any subprogram loaded or
to any library subroutine.

Undefined transfer name. Symbolic
transfer name on one of the TRA cards
was never defined as entry point to a
subprogram.

More than 126 common block names
have been encountered in a subprogram.

More than 4 overlay tapes requested
when preparing overlay tapes.

C-27

PRELIB ERROR DIAGNOSTICS

When PRELIB detects an error, the diagnostic is written on OUT and processing continues as though
the error had not been encountered. Exceptions are memory and table overflow errors, ILLEGAL BCD,

and ILLEGAL CONTROL CARD; these cause the job to be abanduned.

Message

Condition

Action

BLOCK LENGTHS UNEQUAL

CARD SEQUENCE ERROR

CHECKSUM ERROR

FEWER LATS THAN EXTS

ILLEGAL BCD

ILLEGAL BYTE VALUE

ILLEGAL CONTROL CARD

ILLEGAL LOAD ADDRESS

MD BANK
MEMORY OVERFLOW FROM
PROGRAM

MORE THAN 126 COMMON

C-28

Labeled common blocks of the
same name in programs of an
ABS record are not the same
length.

Card out of sequence.

Checksum on binary card does
not agree with the computed
checksum.

Fewer LATS than EXTS within a
subroutine.

Non-Hollerith character after
column one on control card. Job
abarndoned.

Illegal byte value in R field of
RBD card; byte 10. . . 0, which
is not used, was encountered.

Control statement illegal, or
name more than 31 characters,
or name as first parameter
(library name) on EXTRACT
statement instead of number in
tape designation field.

Byte for load address specified
a fixed or decremented address
on RBD card.

Multiply defined bank on EPT or
EXT card.

ABS or REL subprogram too
long. Job abandoned.

More than 126 common blocks
defined.

Make labeled common blocks the
same length.

Correct binary input.

Correct punched checksum.

Check for extra punches.

Check RBD card and IDC which

specifies byte length.

Check control cards.

Correct binary input.

Subdivide program

Reduce number of common blocks.

Message

Condition

Action

MULTIPLE TRANSFER NAMES

MULTIPLY DEFINED EPT

OVERFLOW FROM XXXXXXXX

TABLES

PARITY ERROR

PREVIOUS CARD UNFINISHED

SEQUENCE NUMBER WRONG

SUBROUTINE NOT ON TAPE

UNDEFINED COMMON BLOCK

UNDEFINED EXTS

MACRO FORMAT ERROR, name

MISPLACED MACRO CONTROL
STATEMENT

PARITY ERROR ON MAIN
RECORD

ILL. L.U.N. SPECIFIED
(LOADMAIN)

MAIN NOT ON L.U.

MAIN PROG. OUT OF BOUNDS

More than one named TRA card.

Entry point name already defined.

Directory or loader tables too
long. Job abandoned.

Parity error in reading or
writing a unit used by PRELIB.

Previous EPT or EXT card
incomplete.

EPT, EXT, BCT, or LAT card
out of sequence.

Name or record number in
DELETE, INSERT, REPLACE,
or EXTRACT statement not on
tape, or tape spaced beyond
record.

Relocation byte on RBD card
refers to undefined common
block.

Undefined external symbols in
an ABS record.

Probably misplaced card.

Possibly missing end statement.

Parity error detected by
LOADMAIN while reading MAIN
record.

Logical unit number specified
on the control card is not
(0<n<50).

MAIN is not the first record of
the tape specified by LOADMAIN
control card.

MAIN record is not compatible
with the memory limits.

Replace extra named TRA cards
with unnamed TRA.

Probably an extra subroutine in
ABS record.

Reassemble PRELIB with expanded
tables.

Remake binary input, or change
tape reels on 71 or 50.
Correct binary input.

Correct binary input..

Check source library tapes.

Correct binary input

Probably a subroutine is missing.

Correct deck.

Correct deck.

Reconstruct overlay tape.

Correct control card.

Correct control card or recon-
struct overlay tape.

I/0 and system configuration must
be identical to that on which the
tape was made.

C-29

DIAGNOSTICS ON OCM

Diagnostic

Condition

Action

BOUNDS REJECTED.
AUTOLOAD

CANCELLED hh oo

CANNOT ASSIGN uu=hh oo

CANNOT FIND REQUESTED
JOB

CONTROL STATEMENT
FORMAT ERROR

PRESS AUTOLOAD

SCR ORDINAL TOO LARGE
FOR RECOVERY

SCOPE PARITY

I BEG YOUR PARDON

nn eerr, NEEDED

nn eerr, name of tape
NEEDED

C-30

Perhaps a machine error.

Attempted release or unload
cannot be accomplished on unit
hh oo.

No unit containing a blank label
is available for output. oo may
be blank. oo was not connectable
and ready.

A NEXT, C was issued; job
containing sequence C cannot
be located.

Illegal BCD character on ICM
or illegal equivalence
declaration.

Equipment tables have been
destroyed.

No blank labeled tapes on bank
zero. SCR was assigned to a
tape on bank 1.

Parity errors on reading
RESIDENT or BOOT from system
library tape.

Illegal statement.

Malfunction on tape nn. Job
abandoned.

Either tape with specified label
is not mounted or not ready; or
multiple tapes with the speci-
fied label are available.

Autoload to try again.

Mount a tape with blank label or
unlabeled and give EQUIP state-
ment in the form: EQUIP,uu=MToo.

Mount tape with blank label. Type
LOOK or EQUIP,uu=hhoo where oo
is the unit on which the tape was
mounted.

When type-in light comes on,

respond with: .
Period to reprocess abandoned
job, or NEXT for another job.

Correct illegal character
declaration.

Autoload.

Press GO to continue, or restart
with a blank label tape on a unit
on bank 0.

Press GO to run with errors, or
set A # 0 to try three more reads.

Check spelling, punctuation, etc.,
and retype statement.

Call Customer Engineers to check
unit nn.

Mount or ready tape containing

specified label. Type in:

a) EQUIP, nn=hhoo; 00 is unit
containing needed tape.

b) LOOK to search again.

c) NONE if no tape is available.

Diagnostic

Condition

Action

nn eerr, (UNLABELED)
NEEDED

TROUBLE ON hh oo

PUT RING IN hh oo

60, NEEDED

OPRELIB PARITY ERROR
ON LTN xx

PARITY ON CH xx

LIB TAP
LIB SEQ
LIB EOF
LIB PAR

PARITY &

Unlabeled tape specified in a
control card on INP,

First reference to assigned unit
impossible (EQUIP statement
referenced non-existent unit).
Label did not match.

Tape with no write enable ring.

Type-in light comes on.

System cannot locate standard
input tape (logical unit 60).

Parity error on specified
logical unit.

Transmission parity error on
channel xx. Computer will
STOP.

Library tape error.

Library tape sequence error.

Library tape end-of-file.

Library tape parity error.

' Parity error on unit £ .

Type in: EQUIP, nn=hhoo; oo is
unit containing needed tape.

Operator must reassign the unit.

Operator must insert the ring
and enter a character on the
typewriter.

Check physical tape drive con-
taining INP for ready status.
Also check that no other tapes
are available to SCOPE with
identical standard input label.
Then, type: EQUIP, 60=HIoo,
00 is the unit on which INP

is mounted.

Remove tape from system and/or
try the job again.

Contact customer engineer.

C-31

AUTOLOAD RECOVERY

Autoload recovery may be used by an operator at any time to terminate a running program abnormally.

SCOPE reads the system scratch record indicated by the ordinal set in the stop switches. SCR contains
enough information to produce the recovery requested on the RUN card. If the checksum is proper, the
system is intact(). Otherwise, the system is not intact(I) .

If the recovery dump is to be on equipment other than tape, manually interrupt SCOPE during the
requests for tapes to be unloaded. When the TYPE-IN light comes on after unloading all programmer
tapes, enter an EQUIP statement to define 61 as non-tape.

I. SYSTEM IS INTACT (SATELLITE MODE)

Diagnostics

Condition

Action

65=SA01

WHERE IS LAST 60
WHERE IS LAST 61

WHERE IS LAST 62

UNLOAD TAPE NO.

WHICH JOB NEXT

C-32

ACC is assigned to paper tape
punch on the Satellite.

SCR has been found intact. The
following messages are to
locate the most recent reels of
the standard units.

'

All standard units have been
assigned. Message releases all
programmer and scratch tape
units in use at autoload time.

Recovery dump taken. INP is
positioned at point where last
program ceased reading.

None

Type in: a 1 or 2-digit ordinal

of tape assigned to requested

logical unit at time of this recovery.
This is obtained from the SCOPE
initiation typeout: if 61 01, = MT03
is in initiation typeout, answer with
03 or 3.

If requested unit was not assigned
during this job or was assigned to
a unit which is not magnetic tape,
a space followed by a carriage
return is sufficient.

Type in: a 1 or 2-digit ordinal of
a tape to be saved. This message
is repeated until there is a blank
and a carriage return. All tapes,
1-59, assigned within this job
should be unloaded.

Follow with a job sequencing
statement:

NEXT

ENDSCOPE

REPEAT

Repeat an AET statement given
during this job. Reassign any
non-tape equipment for standard
units given during this job.

Example:

70 1101, = MT 20
61 01, = MT 03
SET STOP SWITCH
60 03, = MT 12
0004 ,LLSLEI,
01 01, = MT 15
71 01, = MT 16
UNLOADED MT 16
60 Oh, = MT 14
0005 ,DMKURN,
05 01,FTN COSY
69 01, = MT 12
WAITING FOR INP
60 05, = MT 12
0006 ,EFJONE,
60 06, = MT 14
0007 ,GHJONE,
60 07, = MT 12
0008 ,IJJONE,
60 08, = MT 14
0009 ,KLJONE,
60 09, = MT 16
0010 ,MNJONE,
07 , = CP 0]
69 01, = MT 12
CANNOT ASSIGN 43

L3 01, = MT 12
CANNOT ASSIGN 25

25 01, = MT 05
65 , = SA 01
WHERE IS LAST 60
WHERE IS LAST 61
WHERE IS LAST 62
UNLOAD TAPE NO.
UNLOAD TAPE NO.
UNLOAD TAPE NO.
WHICH JOB NEXT

0011 ,0PJONE,

ON FOR SCR

MT LOOK.

MT LOOK.

MT 01

= MT 05

Sequence job #10

Point of AUTOLOAD recovery

Sequence job #10 was abandoned
and job #11 was executed.

C-33

SYSTEM IS INTACT (NON-SATELLITE MODE)

Diagnostics Condition Action

WHERE IS LAST 60 SCR has been found intact. The Type in: a 1 or 2-digit ordinal of
following messages are to locate tape assigned to requested logical

WHERE IS LAST 61 the most recent reels of the unit at time of this recovery. This
standard units. is obtained from the SCOPE

WHERE IS LAST 62 initiation typeout: if 61 01, = MTO03

is in initiation typeout, answer with
WHERE IS LAST 65 03 or 3.

If requested unit was not assigned
during this job or was assigned to
a unit which is not magnetic tape,
a space followed by a carriage
return is sufficient.

UNLOAD TAPE NO, All standard units have been Type in: a 1 or 2-digit ordinal of
assigned. Message releases a tape to be saved. This message
all programmer and scratch is repeated until there is a blank
tape units in use at autoload and a carriage return. All tapes,
time. 1-59, assigned within this job,

should be unloaded.

WHICH JOB NEXT Recovery dump has been taken. Follow with a job sequencing
INP is positioned at the point statement:
where the last program ceased NEXT
reading. ENDSCOPE
REPEAT

Repeat an AET statement given
during this job. Reassign any
non-tape equipment for standard
units given during this job.

C-34

Example:

ENTER DATE MDY 070164

ENTER TIME HHMMSS.

70 1201, = MT 20
61 01, = MT 02
65 01, = MT 11
SET STOP SWITCH
60 01, = MT 14
101 ,CDJONE,
102 ,EF JONE,
103 ,GHJONE ,
104 , JJONE ,
105 ,KLJONE,
106 ,MNJONE ,
07 , = CP 01
69 01, = MT 12
43 01, = MT 15
RELEASED MT 12
25 01, = MT 12

WHERE 1S LAST 60
WHERE IS LAST 61
WHERE IS LAST 62
WHERE IS LAST 65
UNLOAD TAPE NO.

UNLOADED MT 12
UNLOAD TAPE NO.

UNLOADED MT 15
UNLOAD TAPE NO.

12

15

1

MARK BY JKI

ON FOR SCR

WHICH JOB NEXT REPEAT.

106 ,MNJONE ,
07 , = CP 01
69 01, = MT Ok
43 01, = MT 16

RELEASED MT O4
25 01, = MT Ok

111500

MT

01

Normal printout during execution
of an input reel.

Point of AUTOLOAD recovery

Sequence job 106 will be
repeated

C-35

IILSYSTEM IS NOT INTACT (SATELLITE MODE]

Diagnostics

Condition

Action

65 = SA01

WHERE IS LAST 70
WHERE IS LAST 60
WHERE IS LAST 61
WHERE IS LAST 62

LEST OLD 60 BE
FORGOTTEN

ENTER DATE MDY

ENTER TIME HHMMSS. MARK
BY JK1

UNLOAD TAPE NO.

WHICH JOB NEXT

C-36

ACC is assigned to paper tape
punch on the Satellite.

SCR was not found intact. The
following messages are used to
locate the standard assignments
of tape units.

If the job in operation was part
of a priority input, this message
should be answered.

All standard units have been
assigned. Message releases all
programmer and scratch tape
units in use at autoload time.

Recovery dump has been taken.
INP is positioned at the point
where the last program ceased
reading.

None

Type in: A 1 or 2-digit ordinal
of tape assigned to requested
logical unit at time of this
recovery. If unit was not tape,
not assigned or equivalenced,
enter space, carriage return.

Type in: Space, carriage return
if not a priority job. If priority,
enter tape number of previous
input tape whether or not it has
been unloaded.

Enter 6 digits, MMDDYY.

Enter time and set jump key 1 to
mark the second when clock should
be read.

Type in: A 1 or 2-digit ordinal

of tape to be saved. This message
is repeated until there is a blank
and a carriage return. All tapes,
1-59, assigned within this job
should be unloaded.

Redefine any non-tape standard
units. Re-enter any AET state-
ments previously given which
should remain in effect. Follow
with a job sequencing statement:
NEXT, REPEAT, ENDSCOPE.
Terminate input by period, car~
riage return, when all messages
have been entered. Messages may
be in any order.

Example:

65 , = SA 01
WHERE IS LAST 7020

WHERE IS LAST 60

WHERE 1S LAST 613

WHERE IS LAST 62

LEST OLD 60 BE FORGOTTENI5
ENTER DATE MDY 070164

ENTER TIME HHMMSS. MARK BY JKI1
UNLOAD TAPE NO. 5

UNLOAD TAPE NO. 14

UNLOAD TAPE NO.

WHICH JOB NEXT NEXT.

JOB ABANDONED
CANNOT ASSIGN 61 = MT LOOK.

61 0101, = MT 05
0015 ,GHJONE,
0016 ,1JJONE,
0017 ,KLJONE,
0018 ,MNJONE,

07 , = CP O]
69 01, = MT 16
43 01, = MT 03
25 01, = MT 16NEXT.

040000

C-37

SYSTEM IS NOT INTACT (NON-SATELLITE MODE)

Diagnostics

Condition

Action

WHERE IS LAST 70
WHERE IS LAST 60
WHERE IS LAST 61
WHERE IS LAST 62
WHERE IS LAST 65
ENTER DATE MDY
ENTER TIME HHMMSS. MARK

BY JK1

UNLOAD TAPE NO.,

“WHICH JOB NEXT

C-38

SCR was not found intact. The
following messages are used to
locate the standard assignments
of tape units.

All standard units have been
assigned. Message releases
all programmer and scratch
tape units in use at autoload
time.

Recovery dump has been taken.
INP is positioned at point where
last program ceased reading.

Type in: A 1 or 2-digit ordinal
of tape assigned to requested
logical unit at time of this
recovery. If unit was not tape,
not assigned or equivalenced,
enter space, carriage return.

Enter 6 digits, MMDDYY.

Enter time and set jump key 1 to
mark the second when clock
should be read.

Type in: A 1 or 2-digit ordinal
of a tape to be saved. This mes-
sage is repeated until there is a
blank and a carriage return. All
tapes, 1-59, assigned within this
job should be unloaded.

Redefine non-tape standard units.
Re-enter AET or PAUSE state-
ments previously given which
should remain in effect. Follow
with a job sequencing statement:
NEXT, REPEAT, ENDSCOPE.
Terminate input by period,
carriage return, when all
messages have been entered.
Messages may be in any order.

Example:

ENTER DATE MDY 070164

ENTER TIME HHMMSS.

70 1201, = MT 20
61 01, = MT 02
65 01, = MT O4

SET STOP SWITCH
60 01, = MT 14

101 ,CDJONE,
102 ,EF JONE,
103 ,GHJONE ,
104 , | JJONE,
105 ,KLJONE ,
106 ,MNJONE ,
07 , = CP Ol
69 01, = MT 11
43 01, = MT 12
RELEASED MT 11
25 01, = MT 11

WHERE IS LAST 7020

WHERE IS LAST 6014

WHERE IS LAST 612

WHERE IS LAST 62

WHERE IS LAST 654

1

MARK BY JK1 114500

ON FOR SCR = MT 0]

ENTER DATE MDY 070164

ENTER TIME HHMMSS.

UNLOAD TAPE NO.

UNLOADED MT 12
UNLOAD TAPE NO.

UNLOADED MT 11
UNLOAD TAPE NO.

12

11

MARK BY JK1 120300

WHICH JOB NEXT NEXT,107

JOB ABANDONED

107 ,ABMILL,
108 ,MNJONE ,
109 ,FINISH,

60 02, NEEDED

Normal printout during execution
of an input reel.

Point of AUTOLOAD recovery

C-39

INDEX

Abnormal termination 2-26 Changing library tape 7-19
Absolute binary records 7-4 Charge number 2-2
Acceptable requests 3-3 Checksum 5-18
ACC, Accounting information, 1-5 Clock interrupt 3-19
Accounting information 1-4, 2-2 COBOL 2-14
AET, entry description 2-22 options 2-14
format A-1 Comment card 7-8
listing C-20 Control statements
statement 2-21 DELETE 7-14
ALDAP 2-16 DIR 7-6
options 2-16 EDIT 7-12
ALGO 2-15 END 7-6
ALGOL 2-15 EOF 7-6
Alter AET entry 2-22 EXTRACT 7-17
Areas of recovery dump 2-26 FINISH 7-7
Assignment declaration 2-6 INSERT 7-15
problems 1-10 LIST 7-11
Autoload recovery C-32 PRELIB 7-7, 7-19
Auxiliary libraries 1-3, 1-4 PREPARE 7-16
Available equipment table A-1 REPEAT 7-8

REPLACE 7-16
SCOPE 1-2, 2-2

BANK statement 5-3 UNIT 7-9
Bank assignment 5-10, 6-4 COMPASS 2-12
BCD records 7-4 options 2-12
BCT card 5-21 Compiled TRA 5-2
Binary cards 5-16 CORE request 3-24, B-10
BCT 5-21 CORRECT statement 5-6
BRT 5-27 Correcting subprograms 5-13
EPT 5-20
EXT 5-24
IDC 5-19 Data fields 5-15
LAT 5-24 DATE request 3-21, B-8
LCC 5-29 Debugging aids 1-1, 4-1
OCC 5-30 parameters 2-18
RBD 5-22 Deck examples 2-30
TRA 5-28 Deck structure 6-4
Binary card format 5-18 Declarations
Blank labels 1-5 assignment 2-6
BOUND/UNBOUND request 3-18, B-8 density 2-5, 3-7
BRT card 5-27 direction 3-7

disposition 2-6

Index-1

Declarations FILE statement 2-2

equivalence 2-7 FILE END statement 2-2
hardware 2-3, 2-4 FINISH control statement 7-7
labeled tape 2-9 Force bank 5-5
logical unit number 2-10 Format of overlay tapes 6-1
unlabeled tape 2-8 FORTRAN 2-13
usage 2-5, 3-6, B-4 call overlays 6-14
DELETE control statement 7-14 options 2-13
Density declarations 2-5, 3-6 FREE request 3-20, B-8
types 2-5, 3-6, B-4
Diagnostics
loader C-24 General macros B-1

LOADMAIN 6-12
on OCM C-30

on OUT C-21 Hardware declarations 2-3
PRELIB C-28 types 2-4, A-1

recovery dump C-22 Held requests and interrupts 3-13
SNAP/TRACE C-23 HERESAQ request 3-24, B-8

DIR control statement 7-6
Disposition of tapes 1-3

types 2-6 ICM - see input comment 1-5
Dump parameters 4-1, 4-3 messages C-15

recovery 4-5 IDC card 5-19

SNAP 4-1 Indirect interrupt select 3-15

TRACE 4-3 Initiation typeout C-19

INP, standard input, 1-5
Input comment 1-3

EDIT control statement 7-12 Input/output control 1-1
Editing library tape 7-12 requests 3-1, B-3

END control statement 7-6 INSERT control statement 7-15
End-of-file card 2-28 Internal interrupt control 3-14
ENDLIB* statement 7-5 Interrupts

ENDM statement 7-5 clock 3-18

END REEL statement 2-2, 2-23 external 3-14

ENDSCOPE statement 1-2, 2-2, 2-24 internal 3-14

ENDSYS* statement 7-5 types 3-15

Entry point name statement 2-3, 2-12, 2-18 Job sequence number 2-1

EOF control statement 7-6 stack 1-2

EPT card 5-20 time limit 2-2

Equipment assignment 1-5 JOB statement 1-2, 2-2

declarations 2-3
EQUIP statement 1-5, 2-3

Equivalence declarations 2-7 LAT card 5-24
ERASE request 3-5, B-2 Label
Executing object programs 2-26 blank 1-5
EXIT request 3-23, B-8 reading 1-8
EXT card 5-24 request 1-5, B-6
External interrupts 3-14 skipping 1-9
EXTRACT control statement 7-17 tape 2-9
tape declaration 2-9
writing 1-7

Index-2

LCC card 5-29
LIB, SCOPE library 1-5
Library 1-4

maintenance 7-1

preparation 1-1, 7-1

programs 2-12

request 3-21, B-9
LIBRARY statement 2-21
LIMIT request 3-19, B-8
List AET 2-22, C-17
LIST control statement 7-11
List library contents 7-11, 7-19
LOAD statement 2-25
Loader, position 1-2
Loader calls 5-7

cards 5-2, 5-17

control statements 6-1

diagnostics C-24

names 5-2

operations 5-1, 5-9

parameters 5-8

request 3-22, 5-7, B-9
Loader statements

OVERLAY 6-2

MAIN 6-2

SEGMENT 6-3
Loading from standard input 2-24

object programs 2-24

overlays 6-13
Load-and-go unit 1-3, 1-4, 2-1
LOADMAIN diagnostics 6-12

statement 6-1
Logical units 1-2

master 2-7

number declaration 2-10
Lower bound 3-18

Macro calling sequences B-1

definitions 7-5, B-1
MAIN loader statement 6-2
Map, memory 4-5, C-6
MARKEF request 3-5, B-2
Master logical unit 2-7
Master unit, status 3-7
Memory map 4-5

map indicator 2-26

request 3-23, B-10

Messages and diagnostics C-1
on ACC C-20
on ICM C-15
on OCM C-18
on OUT C-1
on PUN C-21
Minimum configuration 1-5
MODE request 1-5, 3-6, B-5
Monitor, SCOPE 1-1

Normal termination 2-26

Object programs
executing 2-26
loading 2-25
OCC card 5-30
OCM, output comment, 1-5

Octal correction cards 2-18, 5-13, C-14

OUT, standard output, 105

Output comment 1-4

Output limit 2-26

OVERLAY
loading 6-13
loading statement 6-2
processing 1-1, 6-1, 6-5, 6-9
processing, FORTRAN 6-14
Program, execution 6-9
tape 6-1

Parameters, dump 4-1, 4-3
loader 5-8
SCOPE 2-18
statement 1-2

PRELIB control statement 7-7, 7-19

diagnostics C-28
processing 7-1
PREPARE control statement 7-16
Prepare new library tape 7-16
Processing prepared overlay tape
assignment 5-10
extension area 5-15
termination 2-27
Programmer identification 2-2
requests 1-2, 1-3, 3-1
units 1-3, 2-1
PUN, standard punch output 1-3

Index-3

RBD card 5-22
READ/WRITE request 3-4, B-2
RDLABEL/WRLABEL 3-4, B-2
Records
absolute binary 7-4
BCD 7-4
relocatable binary 7-3
types 7-3
Recovery dump 4-5, C-7
dump, areas 2-27
dump diagnostics C-22
Recovery indicator 2-27
Release code 3-6
RELEASE request 3-6, B-4
Relocatable binary records 7-3
Relocation factors 5-14
REOT/WEOT request 3-5, B-2
REPEAT control statement 7-8
Repeated library records 7-8
REPLACE control statement 7-16
Requests
BOUND/UNBOUND 3-18, B-8
CORE 3-24, B-10
DATE 3-21, B-8
ERASE 3-5, B-2
EXIT 3-23, B-8
FREE 3-20, B-8
HERESAQ 3-24, B-8
input/output 3-1, B-2
LABEL 1-5, 3-10, B-6
LIBRARY 3-21, B-9
LIMIT 3-19, B-8
LOADER 3-22, 5-7, B-9
MARKEF 3-5, B-2
MEMORY 3-23, B-9
MODE 1-5, 3-6, B-5
programmer 1-2, 3-1
RDLABEL/WRLABEL 3-4, B-2
READ/WRITE 3-9, B-2
RELEASE 3-6, B-4
REOT/WEOT 3-5, B-2
REWIND 3-5, B-2
SAVE 1-5, 3-11, B-6
SELECT/REMOVE 3-15, B-7
SKIP 3-5, B-2
special 3-21, B-9
stacking 3-12
STATUS 3-7, B-5
TIME 3-20, B-8

Index-4

UNLOAD 3-5, B-4
UNSAVE 3-12, B-6
Restrictions on EQUIP 2-6
REWIND request 3-5, B-2
RUN statement 2-3, 2-26

Run time limit 2-26

SAVE request 1-5, 3-11, B-6
Satellites 1-6, C-32
communication 1-1
SCOPE
call codes B-1
control statements 2-1
initiation type-out C-19
library 1-4
monitor 1-1
parameters 2-18
resident 1-2
routines 1-2
SCR - see system scratch record,
Scratch units 1-3, 2-1
SEGMENT loader statement 6-3

1-5

SELECT/REMOVE request 3-15, B-7

SEQUENCE statement 2-1
SKIP request 3-5, B-2
SNAP cards 2-19

dump 4-1, C-11
SNAP/TRACE diagnostics C-23
Source deck structure 2-16
Special requests 3-20, B-8
Stack, job 1-2
Stacking requests 3-12
Standard input 1-3
Standard output 1-3
Standard punch output 1-3
Statements

AET 2-22

BANK 5-3

CORRECT 5-6

DELETE control 7-14

DIR control 7-6

EDIT control 7-12

END control 7-6

ENDLIB* 7-5

ENDM 7-5

END REEL 2-2, 2-23

ENDSCOPE 1-2, 2-2, 2-24

ENDSYS* 7-5

Statements

entry point name 2-3, 2-12, 2-18

EOF control 7-6
EQUIP 1-5, 2-3
EXTRACT control 7-17
INSERT control 7-15
FILE 2-2
FILE END 2-2
FINISH control 7-7
JOB 1-2, 2-2
LIST control 7-11
LOAD 2-24
LOADER control 6-1
LOADMAIN 6-1, 6-11
MAIN loader 6-2
OVERLAY loader 6-2
PRELIB control 7-7, 7-19
PREPARE control 7-16
REPEAT control 7-8
REPLACE control 7-16
RUN 2-3, 2-26
SCOPE control 1-2
SEGMENT loader 6-3
SEQUENCE 2-1
UNIT control 7-9
SCOPE control 1-2
Statement parameters 1-2
STATUS request 3-7, B-5
Status of master unit 3-7
Storage allocation 5-10
Storage diagram 5-12, 6-4
System scratch record 1-4
System units 1-3

Tape control requests 3-5
disposition 1-3
labels 2-9
labeling 1-6
units - see logical units
Time limit 3-19
job 2-2
TIME request 3-20, B-8
TRA card 5-28
TRACE cards 2-19
dump 4-3, C-11

Typewriter character codes C-17

Units, logical 1-2
programmer 1-3
scratch 1-3
system 1-3
UNIT control statement 7-9
Unlabeled tape 2-8
Unlabeled tape declaration 2-8
UNLOAD request 3-6, B-4
UNSAVE 3-12, B-6
Upper bound 3-18

Usage declarations 2-5, 3-6, B-4

types 2-5, 3-6, B-4
User control card 7-5

Write assignment 1-7

Index-5

CONTROL DATA
L corroration

CORPORATION

COMMENT AND EVALUATION SHEET
3600 Computer System
SCOPE Reference Manual

Pub. No. 60053300, Rev. B June, 1965

YOUR EVALUATION OF THIS MANUAL WILL BE WELCOMED BY CONTROL,DATA
CORPORATION. ANY ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL
COMMENTS MAY BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM NA ME :

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD

FIRST CLASS
PERMIT NO, 8241

MINNEAPOL IS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

I
|
|
|
|
l
I
I
!
I
I
I
|
I
I
|
I
I
I
I
|
|
I
I
f
I
I
I
|

n
o]
r
o]
-
[¢]
r
o

STAPLE STAPLE

|
|
!
I
|
I
I
[
|

§ conTRoL DATA

> » CUT OUT FOR USE AS LOOSE -LEAF BINDER

Pub. No. 60053300

TITLE TAB

[y V/2—
1-1/4

CORPORATION

CONTROL DATA
[corPoRraTiON

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

AVNANVIA 3ON3H3H3H 3d00S-006es

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	replyA
	replyB
	xBack

