Control Data® 3600 Computer System
SCOPE/Reference Manual

Any comments concerning this manual should be addressed to:

CONTROL DATA CORPORATION
Documentation Department
3145 PORTER DRIVE

PALO ALTO, CALIFORNIA

September 1964

© 1964, Control Data Corporation
Pub. No, 60053300

Printed in the United States of America

CONTENTS

CHAPTER 1

CHAPTER 2

SCOPE OPERATING SYSTEM

1.1
1.2
1.3
14

CONTROL STATEMENTS
REQUESTS

JOBS

LOGICAL UNITS

Minimum Unit Configuration
Equipment Assignment

SCOPE CONTROL STATEMENTS

2.1
2.2
2.3
24

2.5

2.6
2.7
2.8

2.9

2.10
2.11

SEQUENCE STATEMENT
JOB STATEMENT

FILE STATEMENT
EQUIP STATEMENT

Hardware Declarations
Usage Declarations
Density Declarations
Release Declarations
Equivalence Declarations
Tape Labels

LOADING, EXECUTING LIBRARY PROGRAMS

COMPASS

FORTRAN

COBOL

ALGOL

Source Deck Structure
SCOPE Parameters

AET STATEMENT
END REEL STATEMENT
LOADING OBJECT PROGRAMS

Standard Input
Other Units

EXECUTING OBJECT PROGRAMS

Program Termination
End-of-File Card

ENDSCOPE STATEMENT
EXAMPLES OF DECK STRUCTURE

iii

| 11
SO U O W NN

NNNNNNNI‘\?NNN NN NN
1
e o)

CHAPTER 3

CHAPTER 4

CHAPTER 5

PROGRAMMER REQUESTS

3.1

3.2

3.3

3.4

3.5

3.6

INPUT/OUTPUT REQUESTS

READ/WRITE

REOT/WEOT

TAPE CONTROL REQUESTS
UNLOAD

RELEASE

MODE

STATUS

LABEL

SAVE

STACKING OF REQUESTS
HELD REQUESTS AND INTERRUPTS

EXTERNAL INTERRUPT CONTROL
INTERNAL INTERRUPT CONTROL

SELECT/REMOVE
BOUND/UNBOUND

CLOCK INTERRUPT

LIMIT
FREE
TIME
DATE

SPECIAL REQUESTS

LIBRARY
LOADER
MEMORY
EXTT
HERESAQ

DEBUGGING AIDS

4.1 SNAP DUMP

4.2 TRACE DUMPS

4.3 RECOVERY DUMP

44 MEMORY MAP

LOADER

5.1 LOADER OPERATIONS
Loader Names

5.2 LOADER CONTROL CARDS

BANK Statement
CORRECT Statement

W
I
[y

W W W OWwWw WWw W W WWwWWWWwwWwww W
[1
H O30 U0 o BN

5-1
5-2
5-3

5-3
5-6

CHAPTER 6

CHAPTER 7

5.5

5.6

LOADER CALLS
Program Assignment

Bank Assignment
Storage Allocation
Storage Diagram

CORRECTING SUBPROGRAMS

Relocation Factors
Data Fields
Program Extension Area

BINARY CARD FORMATS

IDC CARD
EPT CARD
BCT CARD
RBD CARD
EXT CARD
LAT CARD
BRT CARD
TRA CARD
LCC CARD
OCC CARD

PREPARATION OF OVERLAY TAPES

6.1

6.2

6.3

6.4

LOADER CONTROL STATEMENTS

MAIN

OVERLAY
SEGMENT

Rules

Storage Diagram
Deck Structure

EXECUTING OVERLAY PROGRAMS

Immediate Execution
Prepared Overlay Tape

LOADING OVERLAYS AND SEGMENTS

Rules for Loading
FORTRAN Call
COMPASS Call

FORMAT OF OVERLAY TAPES

LIBRARY PREPARATION AND MAINTENANCE

7.1
7.2

INPUT/OUTPUT
RECORD TYPES

|
B W W =

mmmmm?mmmmmmm
1 1 [1

= - = O o B

W W =

o
[

[

N

(=]
1
-
©

Relocatable Binary Records 7-3

Absolute Binary Records 7-4
Binary Records 7-4
BCD Records -4

Macro Definitions
User Control Card
Directories
End-of-File

7.3 CONTROL STATEMENTS ON STANDARD INPUT UNIT

PRELIB Run

Comments

Repeated Records

Logical Unit for Input Records
Listing Table of Contents
Editing Existing Library

New Library Tape

7.4 CHANGING PRELIB
7.5 TABLE OF CONTENTS

I R I e B B R I IO
ki = O OS] =1 OO UL

APPENDIX A AVAILABLE EQUIPMENT TABLE A-1

APPENDIX B MACRO DEFINITIONS AND CALLING SEQUENCES

B-1
INTERNAL B-1
INPUT/OUTPUT B-2
INTERRUPT B-6
SPECIAL B-8

APPENDIX C SCOPE MESSAGES AND DIAGNOSTICS C-1

nrTy ANT Re

QQA MNTQ ~ATT
WVLLOOAUTLY UN UUL

MAP

Recovery Dumps
CATAT ~ .3 MDAMAT
PINALD allul 1 Dunav n

Octal Corrections and Loader Cards
MESSAGES ON OCM

SCOPE Initiation Typeout
AET Listing

MESSAGES ON ACC
MESSAGES ON PUN
DIAGNOSTICS ON OUT

[

|
s
Iy

©w

|
N =
o

Recovery Dump Diagnostics
SNAP/TRACE Diagnostics

aaaoa a0 aa a aacaaa O
a
]

Loader Diagnostics -21
PRELIB Error Diagnostics -25
DIAGNOSTICS ON OCM C-26
Autoload Recovery C-28

vi

SCOPE OPERATING SYSTEM 1

The SCOPE monitor system for the Control Data® 3600 computer facilitates
job processing and simplifies programming and operating by providing:
® Job Processing
Assigns equipment
Initiates compilations and assemblies
Loads, links and initiates execution of subprograms
Allocates storage
Provides OVERLAY processing and accounting information
Communicates with Satellites ©
for input/output tape handling
® Debugging Aids
Diagnostics
Octal corrections

Special debugging dumps
SNAP
TRACE

Memory map

Error dumps (recovery dumps)

® Input/output Control and Special Requests
Input/output routines with drivers
External interrupt control
Tape handling - including labeling and continuation reels
Internal interrupt control

Sampling of time, date, equipment status, and available storage

® Library Preparation and Maintenance
Preparation of a new library tape
Editing

Listing the table of contents

1.1

CONTROL
STATEMENTS

1.2
REQUESTS

13
JOBS

1.4
LOGICAL UNITS

Monitor operations are specified in a job by control statements and
programmer requests.

The resident section of SCOPE occupies the low numbered locations of
bank zero. Resident includes the control routine (EXEC), input/output
control (IOC), interrupt control (INC), equipment assignment (EQA), and
the Satellite control program (SCP), if used. The loader is adjacent to
resident in lower storage. System I/O drivers are loaded into the highest
locations of the highest available bank. The system 1/0 drivers and SCOPE
are protected by an internal interrupt system.

SCOPE control statements have the following card format: a7,9 punch in
column 1; a statement name (beginning in column 2); and parameters, if
required, separated by commas.

Control statements are free-field, but must be contained on a single
80-column card. No terminating character is needed.

A request is written as a macro instruction and assembled into a calling
sequence to a SCOPE routine. Requests may be written as calling sequences
in assembly language programs.

The request name begins in column 10 and is terminated by a blank column.
The address field may begin anywhere after the blank and before column 41.
Unless noted otherwise, requests may contain any legal COMPASS expres-
sion in the address field. Further details on statement parameters are given
in the COMPASS REFERENCE MANUAL.

A job includes all operations indicated between JOB cards or between a JOB
statement and an ENDSCOPE statement. Each job is terminated with an
end-offile mark. A job may consist of multiple assemblies, compilations,
and executions.

A job stack consists of a group of jobs placed together for processing by the

monitor control system, The stack begins with the first monitor statement
and ends with an ENDSCOPE statement.

In SCOPE control statements and requests, the logical unit designation allows
reference to a piece of equipment within the logic of the program; it is

1-2

independent of the physical unit designation. The programmer designates input
and output units with logical unit numbers 1 through 79. Mnemonics may he
used in programmer requests. Logical units are divided into three classes:

PROGRAMMER UNITS (logical units 1-49)

s fha nmAoga
i

5 §

e unloaded and saved for
euse in a later job.

When a tape is released at the end of the job, it may
the programmer, if specified; or made available for

H g

SCRATCH UNITS (logical units 50-59) Mnemonic
80,81, ...89

Scratch units may be referenced at any time by the programmer, but they are
released after each execution and may not be saved.

SYSTEM UNITS (logical units 60-80)

The system units assigned by the monitor system are used by SCOPE and the
programmer and, with two exceptions, are released only at the end of the job
stack. The load-and-go unit, available to compilers and assemblers, is

released at run time; auxiliary libraries are released at the end of each job.

Logical Number Mnemonic

STANDARD INPUT 60 INP

5

The control cards for all SCOPE jobs are placed on this unit by the operator.
S

STANDARD OUTPUT 61 ouT

SCOPE control statements, diagnostics, dumps, and loader control cards are
written in BCD mode on this unit. Program output may also be written on OUT.

STANDARD PUNCH OUTPUT 62 PUN

Program and SCOPE output for punching is recorded on this unit.

INPUT COMMENT 63 ICM

Comments from the operator to the monitor system are made on this unit. The
programmer may also use ICM for input directions.

1-3

Logical Number Mnemonic
OUTPUT COMMENT 64 OCM

Statements from the monitor system to the operator are made on this unit.
The programmer may also list information on this unit. ICM and OCM are
usually assigned to the console typewriter.

ACCOUNTING INFORMATION 65 ACC

Job statements, date, time on and off, and elapsed job time are written on
this unit for installation records.

SATELLITES 66-68 none

Satellite units are assigned by the operator to computers which communicate
with the 3600. SCOPE contains a control program for handling Satellite
input/output requests. Programmers cannot control or reference the Satellite
units.

LOAD-AND-GO 69 LGO

Binary object programs transferred from the standard input unit or produced
by compilation or assembly may be stored here prior to loading and executing.
This unit may be saved by the programmer with an EQUIP statement. If saved,
it will be released at the end of the jobh. If not saved, it will be released at the
beginning of the run.

SCOPE LIBRARY 70 LIB

The SCOPE library contains the monitor system and all programs and sub-
routines which operate under SCOPE, such as, FORTRAN, COBOL, COMPASS,
SORT, and ALGOL.

AUXILIARY LIRRARIES 71-79 none

Auxiliary libraries are used for library preparation and editing and additional
system libraries.

SYSTEM SCRATCH RECORD 80 SCR

Monitor equipment tables, accounting data, and recovery dump information
for each job are stored in the first vecord of this unit. If part of resident is
destroyed by a running program, the system uses the information on this tape
for recovery. The first scratch unit requested by a program is assigned to
this unit. The programmer may never reference logical unit 80.

MINIMUM UNIT
CONFIGURATION The minimum configuration required by SCOPE includes:

INP ACC (may be bypassed)
ouT LIB
ICM SCR

Compilers and assemblers operating under SCOPE may require additional
units.

EQUIPMENT

ASSIGNMENT SCOPE assumes that all programmer and scratch logical unit numbers refer
to unique, high-density (556bpi), labeled, magnetic tapes read or written in
binary mode; and that tapes are not saved at the end of a job. If programmer
and seratch units meet this description, no special equipment declarations are
needed.

The normal equipment assignments may be altered by:

EQUIP
Equate a logical unit to a specific hardware type
Equate different logical units to a single physical unit

Declare a tape to be unlabeled

EQUIP or LABEL

Indicate a desired tape label for a logical unit

MODE

Indicate the recording mode of a tape unit

EQUIP or MODE
Select a particular density for a tape unit

Restrict the use of a unit

EQUIP or SAVE
Indicate that a tape is to be saved at the end of the job

Blank labels are written on all tapes that are not saved; only blank labeled tapes
may be assigned as output tapes.

2.1

SEQUENCE
STATEMENT

SCOPE CONTROL STATEMENTS 2

Jobs and directives are submitted to SCOPE on the standard input unit.
Jobs are executed in sequence from the standard input unit or as specified
by the operator.

gSEQUENCE,n

This statement assigns a job sequence number, n, which serves as identi-
fication for scheduling purposes. SCOPE does not check the order of the
numbers.

The SEQUENCE statement immediately precedes a JOB statement on the
standard input unit. When INP is magnetic tape, an end-of-file mark should
precede each SEQUENCE statement (section 2.7).

When the SEQUENCE statement is encountered, SCOPE unloads saved tapes,
and releases all other programmer units, scratch units, and the load-and-go
unit. The current job is terminated and the new job initiated.

Example:

<end-of-file>
gSEQUENCE,AL
7
JJOB, . ..

end-of-file
gSEQUENCE,5
7
0B, . ..

In Satellite mode, SEQUENCE cards are recognized but are renumbered by
the Satellite computer.

22
JOB STATEMENT

23
FILE STATEMENT

All programs submitted for processing under SCOPE start with a JOB card
which signals the beginning of a job, provides accounting information for the
installation, identifies the programmer, and sets a job processing time limit.
Lo.a I J:V.
) Y V1 pe v M
T30B,c,ist G f 7/’
A

¢ the charge number; unlimited nymber of alphanumeric

characters. SCOPE truncates to 8 characters in

Satellite mode for Satellite accounting.

i the programmer identification. It may be any length and
appears as given in the control card listing; it is truncated
to 6 characters for operator identification or tape labels.

t the maximum time limit in minutes allowed for the entire
job including operator functions. No job may exceed 2236
minutes; if a limit is not specified, the maximum is assumed.

The job is terminated if the ¢ and i fields are not present. A single JOB
card may be used for any number of independent programs: however, the

“time specified is the maximum allowed for the combined programs.
,,,,.‘.v—«—-—%

Binary records can be transferred from the standard input unit to another
logical unit by the FILE statement.

7
9FILE,u
All records which follow the FILE statement up to a FILE END statement
are transferred to logical unit u 1-59, or 69 (load-and-go). The records
are written in odd (binary) parity.

JFILE END

SCOPE writes an end-of-file mark and then backspaces over it when the
FILE END statement is encountered. Any number of FILE - FILE END
sequences may be directed to the same or a different logical unit. Any
type of binary data may be transferred with a FILE statement except the
SCOPE control statements: SEQUENCE, JOB, END REEL, END SCOPE.
An attempt to transfer any of these statements will terminate the job.

In the sample deck shown for compiling and executing a FORTRAN program,
JOB, FTN, LOAD, and RUN are SCOPE control statements. The FORTRAN
program is composed of the statements PROGRAM through END. The
SCOPE statement indicates the end of the deck to be compiled.

2-2

24
EQUIP
STATEMENT

(end-of-file I

s 1 |

(data | I
GRUN, 5,220,3 i
I/gLOAD
f SCOPE
(END |
Vs 1T 1 e

£
L
Vs
Vs

Vi
(PROGRAM SUMX

;FTN,L,X,A

;JOB,3060,JOE D,10

Narmally, the EQUIP statement precedes the RUN card of the program or
the entry point name statement. However, it may be entered on Input
Comment Unit by the operator during a run. EQUIP statements are re-
quired to declare programmer or scratch units which are not unique,
standard-density, labeled, magnetic tapes.

7
oEQUIPu=d ,d,.d,,d_

u logical unit number; 1-59,69,71-79 for INP;
1-65,69-79 for ICM

d declaration

There are six types of EQUIP declarations:

hardware release
usage equivalence
density labels

The length of time that the EQUIP declaration remains in force depends upon
the logical unit category. Declarations pertaining to scratch units are in
effect for a single execution only. Programmer unit declarations carry over
between executions of a job, unless changed by other EQUIP statements.
System unit declarations remain until all jobs have been processed, unless
specifically redefined.

23

HARDWARE
DECLARATIONS

Declarations may be combined in one EQUIP statement; however, there is
no error checking. If they conflict, the last declaration in the list takes
precedence.

Z)EQUIP,u=hhn

hh specifies the hardware type:

CR card reader

PT paper tape station
CP card punch

DF disk file

LP on-line printer
DR drum

TY typewriter

TV display

PL plotter

MT magnetic tape

n is the AET ordinal of the hardware type, (Appendix A). If n is
absent, the next unassigned physical unit of the hardware type
is assumed to be referenced.

When hh specifies a Satellite, SA, SB, SC, SD, SE, or SF, n is the octal ordinal
for the unit connected to the specified Satellite. It must be specified.

After an EQUIP statement is processed, SCOPE types a message indicating
which physical unit has been assigned. (Appendix C).
Examples:
TEQUIP,10=CR
The first available card reader is assigned to unit 10.
TEQUIP,12=CR2

Logical unit 12 will be the second card reader in the Available
Equipment Table.

7J0B,3215079,PETE,15

2.4

ZEQUIP, 10=CR2
TEQUIP, 9=CP1
object program
TRUN,7,300,7,1
<end-of-file>
TEQUIP, 11=CR3
object program
gRUN, 6,250
<end-oi-file>

Logical unit 10 is the second card reader, logical unit 9 is the first
card punch, and logical unit 11 is the third card reader in the AET.

USAGE
DECLARATIONS TEQUIP,u=hh
hh RW read/write; all operations are allowed.
BY bypass; all references to this unit except MODE (usage)

and STATUS are treated as no operation.
RO read only; output operations are rejected.

Read-only units such as card readers need not be de-
clared as such.

Usage declarations may be made for logical units 1-59, 65, 71-79.

TEQUIP,11=RO Unit 11 is a read-only unit.

DENSITY
DECLARATIONS [EQUIP,u=hh
hh LO low density magnetic tape (200bpi)
HI high density magnetic tape (556bpi)
HY hyper density magnetic tape (800bpi)

Density declarations are allowed for any acceptable logical unit
nat yet referenced.

RELEASE
DECLARATIONS

YEQUIP,12=HY

Density declarations may be followed by a magnetic tape ordinal, n.

gEQUIP,5=HIO5 processed as if the statement were:

{EQUIP,5=MT05,HI

TEQUIP,u=hh
hh SV
PR
PU
DD

save tape at end of job. SCOPE unloads tape at end of

job and directs a message to the operator. SCOPE writes
blank labels on all tapes not saved and they become avail-
able for reuse. Only logical units 1-49, 69-79 may be saved.

print

More than one release declaration may appear in an EQUIP state-
ment, but only the last will be effective. SV, PR is the same as PR,
SV. PU, PR is not the same as PP; only PR would be effective.

EQUIP STATEMENTS MAY | /. | THESE EQUIP DECLARATIONS ARE LIMITED TO THE CHECKED UNITS
ORIGINATE FROM: UNITS USAGE LABEL RELEASE EQUIVALENCE EQUIP, u=u'
INP (60) ICM (63) EQUIP, u = Rg EQUIP,u=() EQUIP, u = SV | EQUIP, u = PR,PU,PP N o
YES vES 1-43 YES YES YES YES YES YES
YES YES 50-59 YES YES YES
YES 60,63 YES
YES 61,62, 64 YES
YES 65 YES
66-68
YES YES 69 YES YES YES YES
YES 70 YES
YES YES 71-79 YES YES YES YES YES
80
DECLARATIONS CONCERN- ANY ACCEPT- EQUIVALENCING OF
ING HARDWARE TYPE AND ABLE UNIT MAY SYSTEM UNITS IS LIMITED
DENSITY MAY BE MADE BE DECLARED TO: 62=61
FOR ANY ACCEPTARTF, TO BE UNLABEL. 65=86i
UNIT. ED EQUIP, u= ** 65=62

EQUIVALENCE
DECLARATIONS

Satellite mode:
PR,PU,PP cause the tape to be turned over to the Satellite for printing
and/or punching. Unless SV is given, the tape is labeled with blanks and
returned to the system. When SV is given, the tape is unloaded after
being processed by the Satellite.

Non-Satellite mode:
PR,PU,PP cause the tape to be unloaded and an appropriate message
typed to the operator.

TEQUIP 2-5V,PR

In Satellite mode, logical unit 2 is printed by the Satellite, and unloaded.

In non-Satellite mode, a PRINT message is given to the operator on OCM
and logical unit 2 is unloaded.

Master Logical Unit

7
9EQUIP,u=u'
u' unit is made equivalent to u.
Unit u must be unassigned when the declaration is made, unless it is

a system unit. Units 1-59, 71-79 (u) may be equated to units 1-64, 69,
71-79 (u"). System unit equivalencing is restricted to the following:

62 =61
65 =61
65 = 62

Two logical units are equivalent if they refer to the same physical unit. Any
number of units may be equated to each other, but separate EQUIP state-
ments must be used for each pair. Only one u' may be equated to one u per
EQUIP card. The master logical unit is the last unit in the string of
equivalences.

Examples:

7
9 EQUIP,30=61 Unit 30 is equated to standard output unit (61).

2.7

7 EQUIP,31=32 Unit 31 and 32 are the same physical unit

EQUIP,2=6 }
Unit 6 is the master logical unit
TEQUIP,3=2
TAPE LABELS The label provided by SCOPE or defined by an equipment declaration is
written as the first record on a tape.
Word BCD Parameters
1 nn-eerr,
2
3 name
4
5 L =
6 ,iiiiii,
7 mm/dd/yy
nn a logical unit number; or blank, if name is non-blank.
ee an edition number 1 to 99 or blank.
rr a reel number, 1 to 99.
name 32 alphanumeric characters. If blank, the unit number

must be non-blank.
iiiiii the programmer identification given on the JOB statement.

mm/dd/yy the date the tape is written.

A standard label includes either a name or a logical unit number, but not

both. (Library tapes are exceptions.) On the first write request, SCOPE
writes the logical unit number nn as specified in the WRITE request, unless

an EQUIP statement or LABEL request declares a different number or a label.

Declaration of edition and reel number is optional. Unless specified otherwise,
SCOPE provides a blank edition number for output tapes and performs no check
for input tapes. Unless the reel number is specified, SCOPE assumes that
reel number 1 is the first reel and increments the number by one for each
subsequent reel on the output tapes; for input tapes, the lowest numbered

reel is read. Tape labels on library tapes are written in BCD mode. SCOPE
supplies the identification and date for output tapes and ignores these fields

on input tupes.

UNLABELED TAPE
DECLARATION

Example:

Write on logical unit 25 (high density magnetic tape) in binary mode,
with standard labeling. Without an EQUIP statement or LABEL request,
SCOPE searches for an available tape and writes a label containing:

logical unit number. 25

edition number blank

reel number 1

name blank

identification from job card

date entered by operator at beginning of
SCOPE run

If a tape without a label is to be used, it must be declared as an unlabeled tape.
If a name or a unit number different from that appearing in the request is

to be read/written in a tape label, the name or number must be declared.

All labels have either a name or a logical unit number in the label; library
tape labels have both.

If the first request for a particular logical unit is a READ request and no
label declaration has been given, SCOPE will search for a tape with the
designated logical unit number in the label and read from it. If the correct
label is not found, a message to the operator requests the tape. The
operator may supply the tape or terminate the job.

If the first request is a WRITE request and no label declaration has been
given, SCOPE will find a tape with a blank label, write the logical unit
number in it, and execute the WRITE request.

o EQUIP,u=**
** yunlabeled or non-standard labeled tape.

Any acceptable logical tape unit may be declared unlabeled. For unlabeled
tapes, the operator makes a hardware declaration for the unit from infor-
mation supplied by the programmer.

READ The programmer must inform the operator which physical reel
should be mounted on which logical unit. The operator must give
an EQUIP,u=hhn defining the specific physical tape unit on which
the reel is mounted.

229

LABELED TAPE
DECLARATIONS

LOGICAL
UNIT NUMBER
DECLARATIONS

WRITE The operator must designate with EQUIP,u=hhn an unassigned tape
unit with a blank reel of tape.

When unlabeled tapes are used, the first read command will read the first
record on the tape. When tapes are labeled, the first read command reads
the second record on the tape.

gEQUIP,20=**,HI,SV

This statement makes it possible to read or write on an unlabeled,

high density tape (556 bpi), unit 20. The SV (save) declaration
causes SCOPE to unload the tape at the end of the job.

9EQU’IP,u=(na.me,edition,reel)
Logical units 1-49, 69, 71-79 may be labeled.
Name may contain up to 32 alphanumeric characters, it may not be blank.
Name begins with the first character after the left parenthesis and ends
with the comma or right parenthesis.
Edition and reel number (1 to 99) are optional; but they should be used if
two or more labels have the same name. If no reel number is specified,
the lowest reel number is taken for input, output reel number is 1.
Examples:
7
9EQUIP,25=(INVENTORY,1,1),LLO,RO,SV
Logical unit 25 contains a tape labeled INVENTORY, edition 1. reel 1.
It is a low density, read-only unit, which is to be unloaded at the end
of the job.
gEQUIP,lO=(RUSSIAN-ENGLISH LEXICON, ,1)

Label a tape (logical unit 10) with RUSSIAN-ENGLISH LEXICON reel 1,
the first operation on this tape must be a write.

9EQUIP ,u=(*nn,edition,reel)

Logical units 1-49, 69, 71-79 may be labeled.

2-10

nn is the 2-digit logical unit number contained in the logical unit field of the
tape label (this is not the tape name) or to be written in the label. nn may be
1-79. X no tape with nn in its label is found when the first request for unit u is
a READ request, SCOPE will ask the operator to supply the tape or terminate
the job. If the first request for unit u is a WRITE request, the number nn will
be written in the label.

Only u may be used in a request for that unit. I the programmer wishes to
use a request with nn, he must first give EQUIP, u=nn.

7
oEQUIP, 28=(*35,1,1)

The tape on logical unit 28 contains a 35 as the logical unit number in the tape
label, although it is referenced as unit 28 in the program.

When writing, this statement may be used to label a tape referenced as unit
28 with the logical unit number 35.

EQUIP statements precede the program in which the logical unit is referenced.
In the following example, FILE A, edition number 1, is the name of unit 20.
CHANGE FILE is the name of unit 21. Unit 22 has the same name as unit
20, but it is the second edition. All units are to be saved.

7

9JOB,20,BETA 15

gEQUIP,10=CR

gEQUIP,11=CP

TEQUIP,20=(FILE A,1),SV, RO, LO

gEQUIP,21= (CHANGE FILE), RO, 8V, LO

gEQU'IP,ZZ: (FILE A,2),SV, LO

gLOAD,49
"RUN, 13,3000

9
Logical units 5 and 20 are high density (556 bpi) and to be saved. COSY
input to the COMPASS assembly is on logical unit 5. COSY output is to be
on logical unit 20.

1JOB 30,QWERTY,30

gEQUIP,5=(COSY TAPE,1,1),SV,HI

;EQUIP,20=(COSY TAPE,21,1),SV,HI

2

25
LOADING,
EXECUTING
LIBRARY
PROGRAMS

COMPASS

7
gCOMPASS,Y=5,C-20,L,X
IDENT

SCOPE
Z)EQUIP,25=(*40)

7EQUIP,26=** HY
7

LOAD
gRUN,ZS,IOOO

Logical unit 25 contains a tape with a label bearing the logical unit number
40; input/output requests within the program which reference 25 will
reference this tape. (If 40 were referenced, a new unit would be assigned;
both labels would contain the unit number 40.)

The hyper density (800 bpi) tape on unit 26 has a non-standard label. The
physical unit must be specified by the operator via ICM.

Library programs* are referenced by statements which name the entry

point to a library program (FTN, COMPASS, ALGO, ALDAP, COBOL). The
execution of this statement directs the referenced program to be loaded.
Control is then given to the program and the necessary operation is performed.
Upon return of control to SCOPE, the A register indicates whether errors
were (non-zero) or were not (zero) detected during compilation or assembly.

7entry point name pl,pz, RN o]

9 m

p, are parameters interpreted by the library program.
Assembly options are indicated by free-field parameters separated by

commas. Parameters may appear in any order. The parameters may be
followed by =n, indicating a non-standard unit is to be used.

gCOMPASS,assembly options

*Library programs.should not be confused with SCOPE library subroutines which are called by
symbolic reference in a subprogram.

212

Options Meanin

1-9,60 t—tht0T BCD source language input
o=t Y COSY input

¢-\9,6v O<H4AZP Punch relocatable binary object program deck

G- M9 e=TIETC COSY output

o1 el bd- ~4L X Write relocatable binary object program output for a load-and-go
69 option
A / | ZM‘L List source language subprogram
/‘¢'q ?} (v B Punch source subprograms from a COSY deck
Caehr, 43/ bt R Cross referenced symbol table listing

Prini g L . . s
/ L Specific information concerning the COMPASS card is in the 3600 COMPASS

ey
et Reference Manual.
Examples:

{ COMPASS,P X,L

Source input is on logical unit 60.
Binary deck is punched on logical unit 62.
Load-and-go tape is produced on logical unit 69.

Source language programs are listed on logical unit 61.

COMPASS,L=25,P=10

Source input is on logical unit 60.
Source language programs are listed on logical unit 61.

Binary output is punched on logical unit 10.

ZCOMPASS,Y=1,L,C=2

BCD input is on logical unit 60.
COSY input is read from logical unit 1.
Source language programs are listed on logical unit 61.

COSY output is on logical unit 2.

2-13

FORTRAN TFTN,options

A terminal period is optional; the field may also be terminated by the end

of the card.
Options Meanin,
£l L List source language program
[—59,P Punch relocatable binary deck
1-59,e9X Write load-and-go tape
6/ A List assembly language program, COMPASS
/-39 601 BCD source language input
/'-,,'-"1; £1C Punch a COSY output deck
B BCD assembly output
* Compile code for one bank

Specific information concerning the FTN card is in the 3600 FORTRAN
Reference Manual.

Examples:

TPTN,I=49,L,A

Source input is on logical unit 49.

Source and compiled program are listed on unit 61.

TFTN,A,LX

Source and compiled program are listed on unit 61.

Binary object program is written on unit 69.

COBOL I cOBOL,options

The parameter list may be terminated by a blank or a period.

214

ALGOL

Options Meaning

Suppress source program listing

Write object program on load-and-go

2 K N

Print a data map

HJ

List trivial errors

List the object program

Uz o 1

Oy dafe d7vsim
Specific infornfation concerning the COBOIL card is in the 3600 COBOL
Reference Manual.

Number source codfjlines on s%\ge listing

Examples:
fcoBoL,z X

suppress the source program listing and write object program on
standard load-and-go unit.

1 COBOL X

print source program listing on OUT and write the object program on
standard load-and-go unit.

{coBoL

treated as gCOBOL X

ALGOL 60 programs may be compiled in two modes. ALGO mode compiles
and executes immediately. ALDAP compiles; execution may occur immediately
or later.

TALGO

gALDAP ,options

Options Meaning
C/ L List source program
é / A List assembly language program, COMPASS

2-15

/’ - L{?} L1 P Punch relocatable binary object program
] ;"'u“) (,f E or X Prepare load-and-go tape
L4y B Punch BCD COMPASS cards
- T9B7/0 Assign a unit as translator overflow tape
o 57 , éi/ I BCD source language input

Specific information concerning the ALGO and ALDAP cards is in the 3600
ALGOL Programming Systems Bulletin.

Examples:

7
§ALGO

The source program following the ALGO card on the standard input
unit is compiled and executed.

JALDAP,L,P X

Source input is on logical unit 60.
Binary cards are punched on logical unit 62.
Source program is listed on logical unit 61.

Load-and-go tape is prepared on logical unit 69.

SOURCE DECK
STRUCTURE The entry point name statement is followed hy the source program to he
assembled or compiled by the library program.

A FTN card may be followed by either FORTRAN or COMPASS source
language subprograms to be compiled or assembled.

A COMPASS card is followed by COMPASS subprograms to be assembled.

A COBOL card is followed by a COBOL source program to be compiled.

An ALDAP card may be followed by an ALGOL source procedure to be
compiled or compiled and executed or a COMPASS subprogram to be
assembied. An ALGO card is followed by an ALGOL source procedure to be

compiled and executed or a COMPASS subprogram to be assembled.

If more than one library program (compilers or assemblers) is used for
processing the subprograms for a single program, the source decks are
stacked consecutively.

2-16

When there are consecutive calls to the same library program with no

Sindmmnnan m A2 b n massian 4l n Tilesamcacr maraviamian A m At wmalAan A MThia i 1+
HILCLIHoculale LUulls, uic 11Ul aLy piL Ugtlaiil 1D UL Lt Civaucu. L 114D ID LLUC TVCOILL

if the calls occur in different jobs.

For each source language subprogram, a binary object program will be
produced and stored on the logical unit designated by one of the parameters
on the entry point name card. After each binary program is written on a
logical unit, the library program writes an end-of-file mark and backspaces
over it. Therefore, after all binary subprograms are written on the unit,
only one end-of-file mark will remain; and the unit will be positioned so that
any subsequent compilations for that unit will write over it. Consequently,
at the end of the last compilation, an end-of-file mark remains on the unit.

A SCOPE card is required to indicate the end of the source subprograms
following a FORTRAN or COMPASS card; also to indicate the end of the
source procedures following an ALDAP card. An EOP card is required to
indicate the end of the program following an ALGO card. COBOL does not
require a SCOPE card. The word SCOPE begins in column 10; since it is
not a SCOPE control card, there is no 7,9 punch in column 1.

Examples:
| 10
;COMPASS,C,L,R
IDENT ANDROCLES
COMPASS subprogram
END
IDENT BRENDA
j COMPASS subprogram
END
SCOPE
1 7 o
oFIN,A,L PP
PROGRAM ONE
FORTRAN program
[END
IDENT TWO
: COMPASS subprogram
END
SUBROUTINE TWO
: FORTRAN subroutine
IEND
SCOPE

217

SCOPE
PARAMETERS

|
;ALDAP,L,T,A
PROGRAM ARCO
ALGOL program
'EOP'
ALGOL procedure
'EOP'
SCOPE

| 8

;COBOL,M,L,,P,T
IDENTTFICATION DIVISION,

COBOL program

FND PROGRAM.

| 10

7

ALDAP, L JP,A

IDENT FOR
: COMPASS subprogram

ﬁNDf

IEOPI

ALGOL procedure
: ALGOL procedure
'EOP'
IDENT TAG
COMPASS subprogram

END
|SCOPE

The SCOPE parameters, s, and s_, in the entry point name statement are
used to modify or debug the library program (not the program being compiled
or assembled).

7(-mtr oint name (s_,s,.)
9 yp 159 >p1:p2, cee ,Pm

1’59 C Octal Correction Cards for the library program are submitted

on INP. The corrections apply only to the subprogram containing
the specified entry point. The Octal Correction Cards are ter-
minated by a single TRA card. The OCC and TRA card formats
are given in 5.6.

S

2-18

If subprograms other than those with a main entry point are to be
corrected, use the CORRECT Loader Control Card {5.5). Foliowing
the CORRECT card, are the OCC cards and 1 TRA card for each
name on the CORRECT card.

SNAP or TRACE statements for the library program are submitted
on INP. The names on the SNAP and TRACE cards may be relative
to any program name, entry point, or common block loaded during

the loading of the specified entry point name (Chapter 4).

Note: The C and D designators may be interchanged, or either
one may be absent.
Examples:
SNAP or TRACE statements only

7 .
gepname (D), p,.p,

TRACE and OCC

7
9epname (D,C),p1 ,p2

or

7
erna.me (C,D),pl,p2

When the SCOPE parameters are used, the OCC and TRA cards follow the
entry point statement. If both C and D are used, the Octal Correction Cards
must precede SNAP and TRACE cards. A RUN statement (2.4) must be
included to initiate execution. Source decks to be assembled or compiled
follow the RUN statement.

Examples:

[10

7
9

COMPASS |(C),C,L,X

0CC
occ See section 5.6

TRA

RUN,2,400,5
COMPASS Subprograms

SCOPE

7
9

219

10

FIN (D),[L,X

SNAP, xxx See chapter 4 for options

SNAP, xx¥]

TRACE , x

W N O NWONWO SN0 N —

RUN, 5, 1000, 3

COPE

I 10

7

gCOBOL (DLC), X,L

occ
0cC
TRA

SNAP , xxx|

SNAP,XXﬁ

O ~N O NOo N

RUN,2,10P,7
COBOL{ program

| 10

7
9

COMPASS |(C,D),L,X

n
v

7CORRECT, COMPASSX, SIOPACK

9
oce'ls .
TRA corrections for COMPASSX
occ'ls)
TRA corrections for SIOPACK
7
9SNAP,xxxu
7
9TRACE,XHX
! 7
oRUN, 2,100,

IDENT

2-20

| 10

;ALDAP (,L,X

;SNAP s XXX

Z)TRACE,XXIX

;RUN,Z,SO ,7

ALGOL programs
SCOPE

2.6
AET
STATEMENT If conditions arise which alter the availability of the physical equipment, the

Available Equipment Table (AET) entries in storage may be changed by the
AET control statement. When changes are made by the AET statement, only
the table in storage is altered; the original table recorded on LIB is not
affected.

The operator or programmer may use the AET control statement to: (1) obtain
a listing of the contents of the Available Equipment Table, (2) alter the status
of a unit, and (3) establish or alter an entire table entry. In the following for-
mats, e is the octal ordinal of the entry in the table.

To obtain a listing: ;AET, e, m

If e is blank, the entire table is referenced.

m is the unit on which the entry or table is to be written:

m = blank the output comment unit

m = OUT the listable output unit
To alter the status of a unit: ;AET, e, a
a is the availability of the unit:

a = DOWN the unit is unavailable
a=UP the unit is available
The operator uses DOWX to indicate the equipment is not

operating. When the condition is corrected, the UP entry is
made.

2-2]

To alter an entire entry: ZAET, e, 0000000000000000
o's represent 16-octal digits which is the value replacing the previous
value for entry e. See Appendix A for the format of the Available

Equipment Table.

After changing a table entry, SCOPE writes the new entry on OCM (Appendix C).

Examples:
9AET 5 The 5th entry of the table is printed on OCM.
;AET, ,OUT SCOPE writes the entire table on OUT.
ZAET, 15, DOWN Operator notifies SCOPE that the 15th unit is down.
;AET, 15, UP Unit represented in the 15th entry is again available.

2/

OOO‘OOI OOO 001 OOO OOO Q01 OOO 00| lO 0 OO O ol0 IO‘O 000'000

h l/OS sd cr sc o' e ' u ! d

h signifies magnetic tape
i/o indicates tape may be used for both input and output
s unit is accessible to SCOPE
sd identifies the driver ordinal for the unit
cr identifies the controller ordinal for the unit
sc Satellite control channel field
a unit is assigned to SCOPE
e Satellite equipment code field
u unit AET ordinal
driver ordinal

to indicate that the unit is to be used for input only would require that i/o = 10
rather than ii. The statement:

2.22

27
END D

LiINWw N

STATE

m

mm

r—-

NT

7
JAET,12,0140100101402400

would make the necessary change in the AET.

;END REEL

This statement terminates the current reel of the standard input unit and
.may appear between runs on the INP. It causes SCOPE to locate the next
INP reel or, if a Satellite is defined, to accept the standard input unit from
the Satellite. An end-of-tape also causes SCOPE to locate the next INP
reel, and does not require the END REEL statement. It does not terminate
a job; no job accounting occurs.

An end-of-file mark must precede an END REEL statement.

In Satellite mode, END REEL cards are recognized but not processed by the
Satellite computer.

Examples:

;COMPASS,L,X

——————————————— physical end-of-tape mark

SCOPE will look for the next reel of the standard input unit and continue
processing the COMPASS program.

;COMPASS,L,X

END
SCOPE

<end-of -file>

7
9EI\IDREEL

2-23

28

LOADING
OBJECT
PROGRAMS

STANDARD
INPUT

OTHER UNITS

SCOPE will look for the next reel of the standard input unit. If there are
more COMPASS programs to be assembled in this job, the first control
statement on the next reel of the standard input may be:

7
9COMPASS X, L

A description of the loader is in chapter 5. The LOADER request (3.4) allows

PRI

the programmer additional control over loading operations.

A binary object program on the standard input unit is loaded into storage
unless a preceding control statement specifies other processing. All binary
program cards up to a SCOPE control statement or two transfer cards are
loaded.

,;JOB,1234—A,DDS,7

binary object program

Relocatable binary subprograms can be loaded into storage from programmer
and scratch units or the load-and-go unit by the LOAD statement.

7
4LOAD,u

u a logical unit number 1-49, or 69. When u is omitted, the standard

lead-and go unit {69} is implied.
When the LOAD statement is encountered, SCOPE backspaces unit u one file
and loads subprograms until an end-of-file, two transfer cards, or another
control card is encountered. If the unit cannot be backspaced, SCOPE
immediately loads the subprograms. SCOPE interprets a second transfer
card as a loader terminator, but it is not required. I binary subprograms,
transferred from the standard input unit and produced by compilation or
assembly, are stored on the same logical unit during the job, only one end-of-
file mark will be present and it will follow the last subprogram stored on
the unit.

Binary subprograms may follow the LOAD statement if the loaded information
was terminated by an end-of-file mark and not two consecutive transfer cards.

2-24

2.9
EXECUTING
OBJECT
PROGRAMS

Examples:

© J W w3

JOB,ACC77,AWS,12

LOAD 36

LOAD,37

Binary subprograms are loaded from logical units 36 and 37. If there are
two consecutive TRA cards, they must be the last records on unit 37.

© ~q © =3

LOAD

JOB,ACC77,ABC,5

binary object subprogram

The RUN statement initiates program execution by transferring control to
the object program in storage. This statement is required to execute all
nhinnt nrAacrara T 3Thnantr mmnogrnane s manitmn o DTTAT cdad e amd ~omTo. 20
OgjeCy programs. Liorary programis require a nuiv statement oniy it

SCOPE parameters are specified.

7
9RUN,t,p,r,m

t

the execution time limit in minutes (maximum 2236 minutes). The
entire job is terminated if the limit is exceeded. If t is blank, a
constant time limit, determined by the installation, is supplied. If
the run time limit is greater than the remaining job time limit,
execution continues only until the job time is depleted. The run
limit may not equal zero.

the maximum number of print or write operations which may be
requested on the standard output unit during the execution. This
includes debugging dumps and any other output during execution.
The entire job is terminated if the print limit is exceeded. If the
print line limit is blank, a constant print limit, determined by each
installation, is supplied. The print limit may not equal zero.

2-25

r the recovery indicator specifies an area to be dumped if the program
does not proceed to normal completion. See Appendix D for recovery
dump format.

r dumped area, written on standard output unit

0 or blank console

program and console

labeled common and console

program and labeled common and console
numbered common and console

program and numbered common and console

labeled and numbered common and console

N e S L 22 - T

console and all locations in all banks except those
occupied by SCOPE

m the memory map indicator. If m is blank, storage allocations after
loading will be listed on the standard output unit. No map is written
if m is any other character. See Appendix C for format.

Example:
7
9RUN,28,3000

Execution time limit is 28 minutes, and 3000 is the maximum number
of print requests. The console dump, if the program is ferminated,

and the memory map are written on the standard output unit.

PROGRAM

TERMINATION The last executable statement in a program should return control fo the
operating system. This is accomplished through an EXIT request (3.4) or
a jump to the named transfer. (An exit is accomplished by jumping to the
transfer address specified by the entry point on an END card in a COMPASS
subprogram.) Programs that terminate by returning control to the operating
system, with no abnormal conditions existing, terminate normally. Programs
terminated by any other method are terminated abnormally. Recovery dumps,
if specified in the RUN statement, will be taken upon abnormal termination.
The only way to get a dump on normal completion is to use SNAP or TRACE
cards.

2-26

END-OF-FILE

CARD End-of-file indicators are required to separate jobs and are frequently used
to separate runs within a single job. If a job or run is texrminated abnor-
mally, SCOPE skips to the next end-of-file on INP and reads the following
statement.

Runs should be separated by end-of file indicators which must appear just
prior to the time when control is returned to SCOPE from the running

program. If program data follows the RUN card, the end-of-file comes
after the data.

If fatal errors occur during assembly or compilation of a program, loading
of the job is not attempted. Subsequent assemblies or compilations of
programs in the job are processed, however, if the entry point name control
statement is preceded by an end-of-file.

iﬁ

at 11“9 mode or using the on-line card

When a program is running under Sate 10de or using the line ¢
reader, an end-of-file is produced by a card with a 7,8 punch in column 1.
Other peripheral processing programs may require a different punch con-

figuration to produce an end-of-file mark on tape.

(79JOB,42359,THR,5

<end-of-file>]

;RUN, 5,10000 l

binary deck L

1 Program 2
data l

(ZRUN,1,450 I
/7 =4

binary deck l
/;JOB,42358,TWO,3 |

/ <end-of-file>

[—
L

data

/;RUN,Z ,5000
== Program 1

L

(, binary deck

;JOB,A2357,0NE,4

If program 1 terminates abnormally, SCOPE skips to the beginning of the
next job. I program 1 runs to completion, but all of the data is not proc-
essed, SCOPE attempts to read the next data card, prints a diagnostic and
skips to the next job.

2-27

(<end-of-file>

(data

(ZRUN,3,1200
(;LOAD no compilation
- 1 errors
L
(source deck program #3
7
(oFTN,L,A X
(<end-of-file» I \
data]
’RuN, 2,500 l
9 3 b
L compilation errors
1 compiled only
“L
source deck program #2 I
FIN,L,A,X
(<end-of-file>
(data | \
1
(Z;RUN,A, 1000
(71,0aD .
A9 X no compilation errors
P loaded and executed
source deck program #1 1
/; FIN,L,A,X ! /
o JOB,41142,G4,5

Since there are no errors in the first compilation, the object prograin is
loaded and executed. Errors are encountered in the second compilation;
after compilation is completed, SCOPE skips to the end-of-file mark and
begins compiling the third program. After the third compilation, SCOPE
skips to the next end-of-file mark. Had any of the runs terminated abnor-
mally, SCOPE would have skipped to the beginning of the next job.

Ifs bsequent compilations or assemblies are not to proceed when compiler

¥Ors occur, the runs should not be separated by end-of-file indicators.

(D

2-28

210

ENDSCOPE)
STATEMENT éENDSCOPE

This statement signals SCOPE that the job stack is completed, and job
accounting for the last job is recorded. ENDSCOPE appears on the standard
input unit following the series of jobs to be processed. If INP consists of

, - . " 0 oo QT ‘ e e
more than one reel. a nhveical end-of-tane cancecs SCOPER to transfer from
more uail OO ICC1, a pAysllasr COLG-OL—wepPe Cautts SLUUTL L0 vwiallsicl 11040

a current reel to the next and ENDSCOPE appears on the last reel. The
operator may enter this statement on the input comment unit to terminate
processing prematurely.

SCOPE releases INP, OUT, PUN, and ACC when ENDSCOPE is encountered.
An end-of-file mark must precede an ENDSCOPE statement.

21

EXAMPLES OF
DECK STRUCTURE 1) Compilation of a single FORTRAN subroutine.

(end-of-file
(SCOPE

/ END

Ve

z
-
Va
Vs

SUBROUTINE GO

(gFTN,L,A

gJon, 12345,0NE, 5

2) Compilation of a single COMPASS subroutine.

end-of-file
(SCOPE
(END
=
IL
[DENT STOP
/gcom’ASS,L
;JOii, 12346,1W0, 5
—

2-29

3) Compilation of a single COBOL program.

{ end-of-file

/ EXD PROGRAM .,

s
A

Va

L

L

(IDENTIFICATION DIVISION,

/;COEOL

(;JOB, 12347 ,THR, 5

4) Compilation of a single ALGOL program.

J end-of-file

/ SCOPE

L "EOP'

PROCRAM TIUREE

7/ 9/ ALDAP,L,A

(gJOB,LszAs,r‘OR,S

PROGRAM |1 2:3:4: 516 7(8|9fi01111211314]i516/17{18]I8[2021

REMARKS

FIRST CARD OF SOURCE

SUBPROGRAM(OPTIONAL)
‘ LAST CARD OF EACH
Al L)
ALGOL Ej0® SUBPROGRAM
END OF COMPILE
S|c|o|P|E (ALDAP ONLY)
IipjE|NIT|1IF T/ AlT|Tl0IN gg{s}mmnwsouacx
COBOL
' END OF PROGRAM
E|N|D| [P|R{OIG|RjA[M]|. AND COMPTLE
FIRST CARD OF EACH
] ITDENT mampe SOURCE SUBPROGRAM
I . LAST CARD OF EACH
COMPASS L END ; SOURCE SUBPROGRAM
S|cio{P|E| END OF ASSEMBLY
: P|R|OJGIR|A{M| |n|a|m|e
FIRST CARD OF EACH
S|{U|BfRIO|U|T{I|N|E nia mie SOURCE SUBPROGRAM
FORTRAN | FIU|NIC|T!I|O|N] [niaim]e
BRSNS ! LAST CARD OF EACH
e [SOURCE SUBPROGRAM
T 7 T
; i : 5(C10jP|E o END UF CUMPLLE
1 ‘\ ’ L] 1 1 l I ;] i 1 l i L I]

2-30

5) Compilation of a FORTRAN Program and several subprograms together
sxrith o MTOAMDACT acaannihhler A1l hhinawy nhinnt nracrara ara nlanna ~n
VWALLL A U\VLYLLD NV G.DDCLJJ.ULVV . LALll Minial UUJC\/U prvgL GLILD QL T prauvcu vis
unit 4, which is saved.

(end-of-file
{ SCCPE
(EXD l

[

(IDEXT DOG

(EXD

/—
Vi

(IDENT KAT
(EXD
pi
Vi

(SUBROUTINE Sa:BO H
]

\D

6) Execute directly from the standard input unit.

{ end-of-file
/ (data)
(gRUN,lo,looo,l

L
Va

ys
L

(binary object program)

/gJOB,ACC 141,RNAME, 13

2-31

7) Load from two programmer units and INP.

/ end-of-file

(;RUN,S,IOOO,Z

y:

/L 1

= |
(binary object program)

(;LOAD, 37

(;LOAD .36 ‘

/;JOB LACC 77 ,TNAME,12

8) Sequential execution using EQUIP cards

{ end-of-file

L
Va

y:
/ (data for program #2) I

E’T__

(;RUN,7,1000,1

Vi
Va
L —1

((binary object program #1) ‘

(end-of-file ’ “J

Vi 1

((data for program #1)

(;RUN,lo,soo,z
I ‘

(;EQUIP,16=CP r
/;EQUIP, 15=CR i

/7308,574123,08.20

F

Iy

A=

(binary object program #1) |

Changes made because of EQUIP statements remain in effect for the duration
of the job or until changed by another EQUIP statement.

2-32

9) Assemble a COMPASS subprogram and FORTRAN subprogram on the load-
and-go unit, Execute the program. Save the load-and-go tape.

(end-of-file I

(;RUN,20,2000,4

{ SCOPE P
(END
ya i |
II
/
/
(PROGRAM KRIK
(END
II

/
L 1

s

(IDENT BENYA l
/TFIN X

|

(gEQU[P,69=SV

;JOB,ACC1123,DS,22

10) Compile and load a FORTRAN program. Load a binary subprogram
from INP. Execute.

(end-of-file
(gRUN, 10,1000,1

P
Va

L = I
g o
[(binary object programs)

(;LOAD, 15
[SCOPE
-

Va
L

L
/(FORTRAN source programs) |

(; FORTRAN, X=15

éJOB,ACC5123,DS 12

2-33

11) Include debugging aids.

(end-of-file
(data)
(ZRUN,IO,ZOOO,A
((5TRACE by --spy
(550050
y

]
Vs

v]
((binary object programs) —”m
gLOAD, 15

[SCOPE

L
Va
=

/£
L

(FORTRAN program)

(?FTN,X=15

JOB,726123,DS,12

9

SNAP and TRACE cards precede the RUN card. (Refer to Chapter 4)

. The
number of print requests includes SNAP or TRACE dumps.

12) Compile and execute ALGOL program.

/ end-of-file

/ data |]

r 'EQP’ ‘_m—‘
p!
/
/
A=
/
/
/o oomare mom |
[LavoenNarT vuy —]

7
/ 4ALGO

lﬂ
mH
7J0B,1457 ,ZER , 4

2-34

13) Compile and execute ALGOL program.

{ end-of-file

]
= |
|

data

(gRUN,s,wOOJ l
/7L0aD, 69 |
} =

/ SCOPE

L "EOP’

L =
W
Vs

(PROGRAM HUR

-

(;ALDAP,L ,P,X=69

rhos,uaso,ww,m

9

| |

14) COMPASS subprograms in the form of subroutines may be assembled
with an ALDAP compilation containing external declarations for the
COMPASS subprograms. Neither a COMPASS nor FORTRAN subroutine
may have a transfer card, since the ALGOL program always has a
transfer card.

gRUN,s, 1000,7

(97LOAD,69

(SCOPE

(END |

L
L
= =
(COMPASS source deck |

(*EQOP'

/ !
£ ,J”
{’ALGOL source program !
L

(END ’
II *
f COMPASS source deck

(;ALDAP,L,X=69 !

//7TOR,acc,iﬂ time

ya

2-35

15) ALGOL programs may be compiled before or after FORTRAN programs
for the same job. The basic operations for ALDAP, compile only, execute
only and load-and-go are similar in format to those of other systems. A
transfer address is generated by the ALDAP compiler and may not be
provided by the programmer.

/ end-of-file
(ZRUN,5,1000,7
(97LOAD,69

[/ END

L 1
fu

NS

ya
((FORTRAN source subprogram)

/;FTN,L,X
/ SCOPE

/ "EOP'

L 1|

L
Ja
Va

(ALGOL source program) ”m

/;ALDAP,L,X

4708, 1872, MiH, 9

2-36

PROGRAMMER REQUESTS 3

Programmer requests are statements which can be included only in assembly
language (COMPASS) programs. They specify operations for input/output
control, internal interrupt, clock interrupt, and special requests. They may
be written as system macros or in any fashion which generates a calling
sequence to SCOPE as outlined in Appendix B.

U
REQUESTS SCOPE processes all input/output requests, including read/write, equipment
status checks, and tape handling, and performs the following operations:
¢ Agssigns logical unit numbers to physical units
® Selects an available channel
e Stacks a request if a channel is not available
e Responds to external interrupts
e Initiates input/output operations
e Locates a continuation tape when needed to complete an input/output
operation or initiates one when end-of-tape is reached.
Parameters used in describing the requests are:
u a logical unit number, 1-79, or a mnemonic for a system or scratch
unit, (For mnemonics see 1.5).

cwa the address of the I/O control word, or the first I/O control word
in a chain. (See the 3600 REFERENCE MANUAL for control word
format.)

ra the reject address to which control is transferred if the unit is
upnavailable. A reject address must always be specified. If an
asterisk, *, is given as the reject address, the request is repeated
until the unit becomes available.

ia the address of the programmer's interrupt subroutine to which
control transfers when an interrupt condition is sensed; this term
may be omitted. If an abnormal condition occurs, the tape is
stopped at the end of the record.

The logical unit number and the program addresses may be modified by the
contents of an index register. The base operand (m) and the index register

3-1

designator (b) are separated by a comma, and enclosed within parentheses
(m,b). b may designate index registers, 1-6, or may specify indirect
addressing, 7.

All addresses (control word, reject, interrupt) must be located within the
same bank as the subprogram containing the READ/WRITE request. Any
address may be defined as an external symbol; but the subprogram con-
taining the associated entry point must be in the same bank (see BANK
control statement).

Neither the reject nor control word address may be 0 or 77777g; the
interrupt address may not be 77777g. If these addresses are used, the
program will be terminated when they are detected by SCOPE.

BSPR over an end-of-file or read beyond end-of-file on logical unit 60 is
illegal.

Input/output requests which SCOPE cannot handle will be rejected or the
job will be terminated. The conditions causing job termination are listed
with the diagnostic (Appendix C).

The conditions causing request rejection are:

Unit unavailable

Request must be stacked, but stack already contains 25 requests
1

itou

SULP

o
]
:D
2
[43
n
(ol
(4]
[N
Q
ot
o+
[}

efined as read-only by EQUIP or MODE

Request for an impossible operation (i.e., READ printer)

READ/WRITE READ

u,cwa,ra,ia
WRITE | ()

The programmer may direct the reading and writing of daia with a
READ/WRITE request. If a multi-reel operation has been indicated, the
READ/WRITE request will initiate the search for the new reel and the
release of the old reel.

The direction of read may be designated by a parameter in the MODE request,

Examples:

READ (IMP, CONTROLA, SAM, INTRPT)

Data is to be read from the standard input unit; the control word is
at CONTROLA. If the request is rejected, control is to be transferred

3-2

The following table indicates the various units on which the requests are acceptable.

Systems Units

60-80
Programmer Scratch INP OuUT 61 Auxiliary | Satellite
e | e |00 | U 8 g g 1ap o | LY 6500
63 ACC 65
READ X X X X X X
WRITE X X X X X
REOT X X X X
WEOT X X X X
BSPF X X X
BSPR X X X X : X X X
REWIND X X X X
SKIP X X X X
ERASE X X X X X X X
MARKEF X X X X X
UNLOAD X X
RELEASE X X X X
MODE X X X X X X X
STATUS X X X
LABEL X X
SAVE X X X X

3-3

to SAM. When the read operation is completed (or an abnormal condition
occurs), control transfers to the interrupt subroutine at location INTRPT.

WRITE (OUT, CONTROLB, *, INTRPTB)

A write operation is to be performed on the standard output unit. The
control word is at CONTROLB, and the write request will be executed
when OUT becomes available. When interrupt occurs, control transfers
to INTRPTB.

REOT/WEOT REOT } (1, cwa, Ta, ia)

WEOT
REOT and WEOT are tape movement controls which allow the programmer
to read and write after the physical end-of-tape, before a continuation reel
is assigned. If the request occurs before a physical end-of-tape, the reading
or writing occurs and a logical end-of-tape condition is set. At the next
READ or WRITE request, a continuation reel is established.

If a REOT or WEOT request falls between a LABEL and any other request,
the job is terminated.

Example:

REOT (25, RDCWA, *)

Logical unit 25 is read. After reading is completed, a logical end-of-
tape condition is set. Upon the next READ request for unit 25, a
continuation reel will be assigned.

-
>
0
n
0
0
4
-
i
2

REQUESTS control name (u, ra, ia)

u is the logical unit number or a mnemonic. The reject address must always
be specified; * indicates that the request is repeated until the unit becomes
available. The interrupt address may be omitted.

Requests may be stacked.

Control names applicable to magnetic tape units are listed below:

BSPF Backspace one file.

BSPR Backspace one record

3-4

BSPR and BSPF clear a logical end-of-tape condition. The
physical end-of-tape may remain set if the unit is not back-
spaced beyond the end-of-tape mark. BSPR at loadpoint
causes the tape to be unloaded.

REWIND Rewind to load point. REWIND moves the currently
assigned physical unit to the load point.

SKIP Skip to end-of-file or end-of-tape
ERASE Erase 6 inches of tape.

MARKEF Mark end-of-file.

Examples:
REWIND (20, RETURN, INT)

MARKEF (82, REJECTI1, INT2)

UNLOAD An UNLOAD request may be used to rewind and unload a physical unit
(applicable to magnetic tape only).

UNLOAD (u, ra, ia, c)

If the logical unit represents a multi-reel assignment, only the physical
unit presently assigned will be affected by the UNLOAD request. A reject
address must always be specified. * indicates that the request is to be
repeated until the unit becomes available. The interrupt address may be
omitted.

The release code, ¢, specifies the disposition of the physical unit after it
has been unloaded:

0 unit is to be released
non-zero unit is not to be released
RELEASE This request releases the assignment of a logical unit and directs the

disposition of the current physical unit.
RELEASE (u, ra, c)

A reject address must always be specified. * indicates that the request is
to be repeated until the unit becomes available.

3-5

The release code, c, specifies the disposition of the physical unit currently
assigned to the logical unit:
0 dispose of physical unit according to previous directions.

non-zero rewind the physical unit and release the assignment, but
do not dispose of the tape.

MODE A MODE request defines the usage of a tape unit or specifies density or
recording mode for the unit. A MODE request can be honored only if the
unit is available; if it is unavailable, control returns to the reject address.

MODE (u, ra, s, f,d, dr)

The reject address is the location to which control is transferred if the
unit is unavailable or if invalid designators are specified. A logical unit
designator and a reject address must always be present.

Usage, s, specifies an operating condition for the unit:

RW (read and write) all legal requests will be performed.

BY (bypass) all requests except STATUS will be treated as
no operation until the end of the job or until another usage
is specified.

RO (read only) WRITE, WEOT, MARKEF, or ERASE requests
will be rejected.

Format, f, is specified by BCD for even tape parity or BIN for odd
tape parity.

Density, d, is specified:

HY hyper density tape (800 bpi) or highest possible density
HI high density tape (556 bpi)
LO low density tape (200 bpi)

Direction, dr, of tape; if no direction is specified, normal is
assumed.

RV any READ or BSPR request for the unit is to be done in
reverse mode of operation. Data is stored according to
the control word address with no alteration.

ND any READ or BSPR renuest for the unit is to he done in
the normal direction.

MODE declarations are mutually exclusive; if more than one designator for
usage, format, density, or direction is indicaied in a single MODE request,
the job is terminated; one of each may appear in a single MODE statement;
all four are not required. Specifying density with the MODE request actually
establishes the operating density for the unit.

Examples:
MODE (24, INSTR, RW, BIN, HY)
Logical unit 24 will perform all legal requests, with odd tape
parity and hyper density. Reject address is INSTR.

MODE (25, REJECT, BY)

All requests except STATUS are treated as no operation.

STATUS The programmer may request the status of a logical unit at any time during
operation.

STATUS (u, M)

M designates that the status of the master unit is required (see Equivalence
Declarations Sec.2.2)

The reply to the STATUS request is entered in the A and Q registers as
follows: (The same information is contained in A and Q upon entering user's
interrupt subroutines for input/output operations.)

47 44 38 23 714 0
A Register
(Control Word) cgge unused word count unused |bank storage address
)
45 |43 .o contro \ -
\#ﬂmp contro! starting ¥ address
47 45 43
Q Register
alb|t|y srb u d h cwa
46 44 30 2423 7 Y

a is the physical unit availability indicator
0, unit may accept request
1, unit in operation, or request is stacked

3-7

srb

is the physical unit busy indicator
0, not busy
1, busy

is the magnetic tape indicator
0, unit is magnetic tape
1, unit is not magnetic tape

is the bypass indicator
0, unit is not bypassed
1, unit is bypassed

are the status reply bits given at the last reference to the unit;
srb depend upon hardware type.

is a logical unit number assigned to this physical unit, or the
number of the logical unit specified in the last I/O request for
this physical unit.

Since a physical unit may be referenced alternately by several
logical units, the logical unit appearing in the reply may not be
identical to the one given in the STATUS request. If the physical
unit is available, u will be the logical unit number of the request;
if not, u is one of the equivalent logical units.

If master status is requested, u will contain the master logical
unit number.

d and h depend on the value of t

if t = 0, d and h give reel number (1-99) of the magnetic tape
if t =1, d is the driver indicator
d = 0, no driver for unit

d = 1,driver required for unit; h is the hardware type of
physical unit.

ewa is the current or last content of the control word address register

The

of ihe daia channel governing the unit {displayed in A register). X
the request is given during processing, the control word is taken
from the communication module. It reflects the latest word count
and storage address.

ab indicators, when combined, have the following meaning:

ab =00 unit may accept request

ab =01 unit is available, but interrupt for previous I/O request
has not been processed

ab =10 an I/O request is stacked

ab =11 unii is in vperalion

STATUS REPLY BITS

status 362X 3641 3649
reply Magnetic 3655 3659 Card Card 3644 3682 731
bits Tape Printer Printer Reader Reader Punch Satellite | Console
(octal) Controller Controller Controller Controller Controller Controller Coupler Typewriter
xxx1 ready ready ready ready ready ready flag 0 ready
Xxx2 read/write busy busy busy busy flag 1 busy
control
(and/or)
busy
xxx4 write binary card | binary card flag 2 upper /lower
enable case
xx1x end-of-file paper out end -of -file end-of -file flag 3
card
XX2X load point last line feed failure | stacker full flag 4
on form or jam, or
fail to feed
xx4x end-of -tape** stacker full | hopper empty flag 5 end-of -line
x0xx 200 bpi
density
x1xx 556 bpi hopper end -of -file fail to feed flag 6
density empty switch
X2xx 800 bpi ready and amplifier ready not ready and flag 7
density busy failure busy not busy
x4xx lost data end of end of end of O.D.*
operation operation operation computer
running
1xxx longitudinal abnormal abnormal abnormal O.D.
parity error end of end of end of read
operation operation operation
2xxx vertical compare or | compare 0.D, parity error
parity error pre-read error write
error
4xxx reserve reserved reserved reserve reserve 0.D.
reject for other reject reject reject parity
control error

**The end-of-tape bit will be set when the physical end-of-tape has been sensed or when the logical end-of-tape has been
defined in the program. Logical end-of-tape may be defined before or after the physical end-of-tape has been sensed. The
logical end-of-tape is set if a REOT, WEOT, or LABEL request for a unit is given before physical end-of-tape.

*Qther Division

3-9

If the unit is in operation (ab = 11), the reply describes the dynamic
condition of the unit. For all other values of ab, the reply reflects
the condition of the unit at the end of the last I/O operation.

If the unit is in operation (ab = 11) during an interrupt subroutine, the
user should not wait for ab to change by repeating the STATUS re-
quest; since an interrupt on that unit cannot be processed (which may
change ab) until control is returned to SCOPE. Any request but
STATUS may be given to allow SCOPE to process interrupts.

When a logical unit has been bypassed, y is set to 1 and u is the logical unit
to which the physical unit has most recently been assigned; the rest of the
reply is zero.

If STATUS is given on an unassigned logical unit, A and Q are zero, except
for the u field which contains either the called or the master logical unit.

Example:

The logical units are equited by EQUIP statements such that 2 is equivalent
to 6, and 6 is the master unit,

STATUS (2) gives the dynamic status of logical unit 2, with 2 in the u
field of the Q register.

STATUS (2,M) gives the dynamic status of logical unit 2, with 6 in the u
field of the Q register. The status is identical in both
examples, except for the u field.

provides ideniilying information for tape iabels.

LABEL (u, addr, edition, reel)

logical unit a decimal number.

addr the address of the first of four computer words containing
the name. The name may be 32 characters, alphabetic,
numeric, or spaces; or it may be *nn, where nn is a logical
unit number less than 50.

edition number 1-99. If not specified, blanks will be written as the edition
number in the output label; or any edition number will be
accepted on an input label.

reel number 1-99. If not specified, reel 1 is written on an output label;
or the lowest numbered reel is read from an input lahel.

3-10

SAVE

If a tape is not named, the logical unit number will be placed in the label.
This number is either the master logicail unit used in the program, or the
number, less than 50 and preceded by an asterisk, specified in place of the
name in the LABEL request. The number preceded by the *, may not be
used as the logical unit number in programmer requests to refer to the tape.

When a LABEL request is given, a new reel of the unit is defined, and a
logical end-of-tape condition is set on the current reel. If REOT or WEOT
is then requested for the current reel before a READ or WRITE request,

the program will be terminated.

Normally, a single LABEL request suffices for a unit throughout a run; it
must precede the first I/O operation on the unit. When the first READ re -
quest is given, the specified input label must match the label on the input
tape. SCOPE writes the complete label at the first WRITE request. Label
information may be given in an EQUIP statement rather than in a LABEL
request.

Example:

LABEL (15, =H*10bbbbb)

Logical unit 15 will contain a label with a logical unit number of 10. The
spaces ,b. . .b, are required since =H defines a Hollerith literal of 8
characters. Logical unit number 15 must be used in subsequent program-
mer requests.

Since edition number and reel number are unspecified, the edition
number will be blank and reel will be number 1 for output, or the lowest
reel for input.

The programmer may specify that a tape be saved at the completion of the job.

SAVE (u)

The SAVE request may be given at any point in the program as it does not
inhibit reading and writing on the unit. At the end of the job, the current
reel of the saved logical unit is unloaded and a message directs the operator
to reserve the tape for the programmer. For a multi-reel saved logical
unit, each reel is unloaded and saved as it is completed or released. Save
may also be requested in an EQUIP statement.

32
STACKING OF
REQUESTS

HELD REQUESTS
AND iINTERRUPTS

Examples
SAVE (29)

SAVE (LGO)

When an I/0 request is given (see fig 3-1), SCOPE determines whether the
request was given while the interrupt mode was active or it came from an
interrupt subroutine (interrupt mode not active).

If the request was made while the interrupt mode was active, and SCOPE
finds that the unit requested is not available, the request will be rejected.

If the unit is available and not in operation, SCOPE will check to see if a
channel is available to which the unit may be connected. If a channel is
found, the unit will be connected and the request will be initiated. If no
available channel can be found, the request will be placed in the I/O request
stack. In either case, control will return to the calling routine via the normal
return.

If the I/O request came from within an interrupt processing routine (interrupt
mode not active), SCOPE will determine whether or not the unit is available.

K the unit is available, but is busy {(an interrupt on thig unit ig being held), the
request will be held until the interrupt has been processed. If the unit is
available and not busy, SCOPE determines whether or not a channel is available
to connect to the unit. If a channel is available, it is connected and the request
is initiated. If no channel is available, the request is added to the I/O stack.
When SCOPE determines that the unit is not available, it checks to see if the
unit is busy. I the unit is not busy (an 1/O request on this unit is already in
the stack), but no channel is available the request is rejected. If a channel is
available the interrupt for the just completed operation is held and the stacked
requests are processed. The I/O request is again routed through the unit and
channel availability checks. If an operation is being performed on the re-
quested unit (unit not available and busy) SCOPE checks the channel avail-
ability to see if the operation has been completed. If the channel is not
available, the request will be rejected. If the channel is now available
(operation has been completed), and an interrupt subroutine was not specified
the channel will be connected and the request initiated. If an interrupt sub-
routine was specified, the current request is held while the interrupt is
processed.

After an interrupt processing subroutine has been completed, SCOPE checks
to see if any 1/0 requests or interrupts are being held. All held requests are

3-12

1/O REQUEST

a = availability indicator

b = busy indicator

UNIT BUSY (b=1)

REJECT

UNIT AVAILABLE
CHANNEL
AVAILABLE
UNIT NOT
BUSY (b=0)

INTERRUPT MODE ACTIVE CHANNEL NOT

UNIT NOT AVAILABLE (a=1)

REQUEST

CONNECT UNIT
AND INITIATE
1/Q REQUEST

PLACE THE

REQUEST iN
1/0 STACK

REJECT

REQUEST

UNIT BUSY (b=1)

UNIT AVAILABLE

REQUEST IS HELD

INTERRUPT ENTRY

ON THIS UNIT IS
PROCESSED.

CHANNEL
AVAILABLE

\ UNIT NOT BUSY (b=0) /

CONNECT UNIT

AND INITIATE

1/O REQUEST

CHANNEL
NOT AVAILABLE

PLACE
REQUEST IN
/O STACK

INTERRUPT MODE
NOT ACTIVE

INTERRUPT
SUBROUTINE

CHANNEL
AVAILABLE

REQUEST HELD
CONTROL TO
INT. SUBR.

NO INTERRUPT

UNIT BUSY SUBROUTINE

b=1)

CONNECT UNIT
AND INITIATE
1/O REQUEST

CHANNEL NOT AVAILABLE

UNIT NOT

REJECT
REQUEST

AVAILABLE (a=1)

CHANNEL
AVAILABLE

\ UNIT NOT BUSY (b=0) /

INTERRUPT FOR JUST
COMPLETD OPERATION
IS HELD. 1/O STACK

CHANNEL NOT
AVAILABLE

REJECT
REQUEST

3-13

iS PROCESSED. CHECK
UNIT FOR AVAILABILITY.

33
EXTERNAL
INTERRUPT
CONTROL

34
INTERNAL

i
INTERRUPT

CONTROL

processed (on a last-in-first-out basis) before each held interrupt. This is
done so that the requests held during the execution of an interrupt subroutine
may be honored before the next interrupt routine begins processing. When
all of the held requests and held interrupts have been processed, SCOPE
returns control to the main program.

If an interrupt address is specified, control will be transferred to that
address at the end of the operation or upon abnormal condition interrupt.
Before giving control to the interrupt address, SCOPE stores the Aand Q
registers and enters the control word in the A register and the unit status

in the Q register (see STATUS 3.1). Control will be transferred to the
interrupt address by a bank return jump. The programmer returns control
from the interrupt processing routine to SCOPE by returning to the interrupt
address. Upon regaining control, SCOPE processes any other interrupts,
restores the A and Q registers, and returns to the running program.

Input/output operations may be requested from within interrupt subroutines.
However, if a request is given in an interrupt subroutine, the end of operation
interrupt for that request will not be processed until the interrupt sub-
routine has been completely processed.

Four controls are available for handling internal interrupt features. SELECT
indicates the type of interrupt and the location of a routine to be entered when
that interrupt occurs. REMOVE releases the interrupt. An interrupt address
may also be reassigned, by an indirect technique, to a previously selected
location. BOUND sets storage area limits outside of which references are
not to be made and the address to which control is transferred if the bounds
are violated.

UNBOUND O tho laat ant of honndg and reim

releases the last set of bounds and osesg the houndsg that

n £
Lipd e DO ALt

were in effect before the last BOUND request.

Program address parameters in all internal interrupt requests may be
modified by the contents of an index register by enclosing within parentheses
the program address and the index register designator separated by a comma,
(m,b). The program address, m, may be any legal COMPASS address field
expression. If b is 1-6, the address will be m + (b). I bis 7, indirect address-
ing will be used.

All pregram address parameters must be located within the same bank as

the subprogram containing the internal interrupt request.

3-14

SELECT/REMOVE SELECT designates the specific interrupt; when the interrupt occurs, a jump
is made to the interrupt address. If a previous SELECT request with the
same interrupt had been made, its interrupt address will be saved in the
current SELECT calling sequence. When the interrupt occurs, further inter-
rupts are locked out and a bank return jump is made to the interrupt address.
Control is transferred from the interrupt subroutine to the monitor by a

31 Fa tha intaverint addraaa
JULLIP LU uli© UitTL L UL aululTOo .

SELECT (interrupt, address)

Address the location to which control is transferred when the
interrupt is detected.

Interrupt

SHIFT shift fault

DIVIDE divide fault

EXOV exponent overflow fault ~
EXUN exponent underflow fauit ‘. ;;’,'f)
OVER fixed point overflow fault o AJ 5 ’; av
ADDR *non-existent address fault ’d? v '

M1604 1604 mode alert

TRACE trace mode alert

INST *illegal instruction fault

OPER *operand parity fault

MANUAL manual interrupt alert
REMOVE (interrupt)
REMOVE removes the specified interrupt and saves the interrupt address
declared in the SELECT request for that interrupt. The interrupt address
is saved in the current REMOVE calling sequence.
If there was no SELECT, REMOVE acts as a NOP.

SELECT (I, SELECT or REMOVE address)

I specifies an indirect selection of the interrupt address assigned before
the specified SELECT or REMOVE.

SELECT or REMOVE address is the location at which a previous SELECT
or REMOVE request was made.

*If these interrupts are not selected by the programmer, they will terminate the program.

3-15

SELECT indirect reselects an interrupt address designated by the SELECT
or REMOVE instruction in effect prior to the instruction at the specified
address. The indirectly selected interrupt address will be the address
contained in the SELECT or REMOVE request, for the same interrupt, which
was in effect prior to the request at the specified address.

i0

Cl

SUBL

A3

SUB2

Bl

IDENT STARTEST
SELECTf(OVER, STX1)
RTJ SU%I

RTJ su§2

END

IDENT SUBL
ENTRY SUB1

SELECT (OVER, OVX2)
RTJ SUB2

SELECT (I, A3)
SLJ SUBL
[END

IDENT SUB2
[ENTRY SUB2

SELECT (OVER, VYZ)

SELECT (I, Bl)
SLJ SUB2
END

3-16

BOUND/
UNBOUND

Indirect interrupt select is requested in subprograms SUB1 and SUB2 before
control is returned to the calling subprograms. Therefore, in each of these
routines, a new interrupt address is taken when the routine is entered and

the previous interrupt address is reinstated before control is transferred
back to the calling program. The indirect interrupt request in SUBI, for
example, removes the SELECT at address A3, leaving in effect the last inter-
rupt address (STX1) specified for OVER before that SELECT was given. The
indirect interrupt request in SUB2 removes the SELECT at Bl leaving in
effect the last interrupt address, OVX2. This indirect SELECT allows the
programmer to reinstate the interrupt address in the calling program before
he transfers back to it, without knowing which program he will be returning to.

SCOPE is protected by upper and lower bounds. The upper bound is the
highest location in the highest numbered bank available, excluding the system
I/O drivers. The lower bound is the lowest numbered location in bank 0
excluding SCOPE and the loader, unless numbered common is assigned to

the region usually occupied by the loader.

The BOUND request sets bounds outside of which any instruction reference
will cause an interrupt. The first BOUND request executed in a program may
set any BOUND range allowed by SCOPE. Subsequent BOUND requests must
set bounds which lie within the previously set bounds. If any requested
bounds overlay those previously set, the request is rejected and control is
transferred to the reject address. If the bounds are accepted, the previous

bounds are stored. The number of nested bounds is limited to 5.
m——T——— I

BOUND (lower bound, upper bound, reject address, interrupt address)

lower bound

upper bound are addresses to which the memory bounds are set;
bank terms may be included in these addresses. If
they are omitted, ($) is assumed. The lower and
upper bounds cannot be indexed because of bank terms.

(3) name, indicates that the bank already associated
with name will be used.

reject address is the location to which control is transferred if the
bounds list is full (5 requests) or if the requested
bounds do not fall within those previously set.

interrupt

address is the location of the programmer's interrupt sub-
routine to which control is transferred when an
interrupt condition occurs.

3-17

LIMIT

Example:

BOUND (((*) LIMIT1), LIMIT2, RA, IA)

The lower bound will be LIMIT1 in the bank containing the BOUND request.
The upper bound will be LIMIT2 in the bank in which LIMIT2 is located.
Note: ($) LIMIT2 is assumed.

UNBOUND

The UNBOUND request removes the bounds set by the last executed BOUND
request and re-establishes the bounds previously set. UNBOUND cannot be
used to remove the bounds set by SCOPE.

Example:
BOUND (((0) LOWEST), ((0) HIGHEST), RA, IA)
BOUND (((0) LOWER), ((0) UPPER), RA, IA)
UNBOUND

The first set of bounds are LOWEST and HIGHEST. The next set,
LO‘U‘TP and UDDFD lia within tha firat set nf knnhrls_ LTI\IBO'UND

Sy Al DAY, AT Wauriaid Wi 11150 9TV Ul pUuLlU

removes LOWER and UPPER and reinstates LOWEST and HIGHEST.

Four controls handle clock interrupts. LLIMIT imposes a time restriction.
FREE releases the last time limit, and re-establishes the previous time
limit. TIME returns the time remaining until the next time interrupt in the
A register. and the time of day in the Q register. DATE returns the calendar
date in the A register.

The LIMIT request sets a time limit after which control will be transferred
to the interrupt address.

LIMIT (du, ra, ia)

du the duration in seconds of the time limit; milliseconds may be
appended by giving the parenthesized expression (seconds,
milliseconds)

3-18

FREE

TIME

ra the transfer location if the 1limit is not accepted.

ia the location to which control is transferred when the limit is
reached. The interrupt subroutine is entered by a bank return
jump. The interrupt subroutine should return to the interrupt
address.

h A AT v] Samd mvanans
L agaress ana interr

(See 3.1).

of an index register.

No more than five limits may be in effect at one time; each must fall within
the time set by the last executed LIMIT request. If the new limit is larger
than the previous, control will transfer to the reject address. When each
new limit is accepted, the clock comparison register is reset and the pre-
vious limit is stored. Upon time interrupt, the limit which caused the
interrupt is released before transferring control to the interrupt address.

Example:

LIMIT ((1000,500), RA1, IA1)

FREE

FREE releases the last time set by a LIMIT request (the smallest in the
list of time limits) and re-establishes the next previous time set (the next
smallest limit in the list). Limits set by SCOPE cannot be freed.

TIME

Upon receiving a TIME request, SCOPE enters the time of day into the Q
register in BCD and the time remaining before the next time interrupt into
the A register in binary.

The time of day is based upon a 24-hour clock (one minute before midnight
is 235900) and is given in hours (hh), minutes (mm) and seconds (ss).
This time is entered in the Q register in the format:

/0/// hh mm 55 7 O//
) 7

4 4l 29 17

3-19

U
>
-
m

36

SPECIAL
REQUESTS

LIBRARY

The time to the next interrupt is entered in the A register in the format:

2
47 38

DATE

When a DATE request is received, SCOPE enters month, day and year into
the A register, in BCD, in the format:

a7 41 35 29 23 7 I 5 0

A running program may request SCOPE to position the library at a particular
record or at the directory preceding it (LIBRARY). Requests are also
available for calling the loader to load programs (LOADER]), obtaining or

settingo memory limits (IMEMORY), and for returnine control to the monitor

SCLLLE HCIn 22ILAVS (ARSI), QUG 101D DCVL NNy CONLIOL VO L0 ILON0L

system (EXIT). An interrupt subroutine may modify the A and Q registers
of the program at the time the interrupt occurred (HERESAQ).

LIBRARY may be used to position the library tape.
LIBRARY (u, ra, record name address, record number)

u the library logical unit number, 70.

ra the location to which control is transferred if the
specified record is not found.

record name the storage location of the first of four computer
address words containing the record name.

s . . ‘. o s 524
record number a signed integer, 0 through 224,

Library unit, reject address, and record name address may be modified by
the contents of an index register. (See 3.1)

3-20

LOADER

The possibilities for the record number and location of record name in
positioning the library are as foliows:

Record Name Address Record Number SCOPE Positions Library at:
zero or blank zero or blank the next directory
Lon-Zero non-zZero record r of the series

beginning with the named
record
non-zero zero or blank the directory containing

that record

zero or blank non-zero (see below)

LIBRARY may also specify the number of records which the user has
moved the library tape. When the user has read or backspaced the library
tape and intends to use either LIBRARY or LOADER requests later in the
run, a LIBRARY request must be given indicating the current position of
the library tape. The record name address will be blank or zero and the
record number will be the signed number of records that the tape has been
moved (+ forward, - backward).

Example:
LIBRARY (70, REJECTA, CTABLE,1)

This request positions the library tape at the beginning of the record,
CTABLE.

Assume that the user reads 2 records and then wants to find another
table MATCHC. He must give:

LIBRARY (70, REJECTB, ,+2)

LIBRARY (70, REJECTC, MATCHC,1)

LOADER

The loader request is used by a running program tc call the loader. If the
loader is not in storage, SCOPE will read it from the library into its
customary position immediately following resident. Just prior to giving the
request, the parameters (sec. 5.4) specifying what is to be loaded must be
placed in the A and Q registers. SCOPE passes these parameters to the
loader and retains control until that call to the loader is complete. Upon exit
from the loader, the contents of A and Q are returned to the calling program
for examination. The loader returns control to SCOPE through its entry
point, and SCOPE returns control to the calling program.

3-21

MEMORY

EXIT

HERESAQ

If numbered common has been assigned to bank 0, the loader will overlay
numbered common. SCOPE does not adjust the limits of available storage
after loading the loader.

The limits of available storage may be obtained or changed by the
MEMORY request.
MEMORY (bank designator, lower limit, upper limit)

bank designator a number 0-7,*, or $symbol.
* designates the bank containing this request

$symbol designates the bank in which symbol is

located
lower limit absolute octal locations in the range 1-77777.
upper limit These must not be prefixed with bank designators

or suffixed with index designators.

If either limit in the programmer request is zero, the other limit is not
changed. Limits larger than SCOPE bounds can not be set. If the lower
limit requested lies in resident, it will be reset to the first location following
resident. If the requested upper limit is greater than the upper bound of
SCOPE, the job is terminated. When the limits have been changed by
MEMORY, the new limits are returned in the A register. If no limits are
supplied in the request or il both limits are zero, the current storage limits
for the specified bank will be entered in the A register in the following

o Dl 11l e clelr'c regisier 1n

binary format:

o
4 38 23 22 1514 0

A non-existent bank is indicated when the A register is equal to zero.

EXIT

The EXIT request returns control from a running program to SCOPE. This
causes a normal termination of the program as long as there are no abnormal
conditions. Control may also be returned to the monitor system by trans-
ferring to the running program transfer address which is preset with an
EXIT request by SCOPE.

HERESAQ
An mterrupt subroutine may modify the A and @ regisiers ai time of

interrupt by the HERESAQ request. Just prior to giving the request, the
new contents for A and Q are placed in the respective registers.

3-22

4.1
SNAP DUMP

DEBUGGING AIDS 4

Selected areas of storage may be dumped each time a particular instruction
is encountered (SNAP) or before execution of each jump instruction in a
designated area (TRACE). Recovery dumps may be designated for abnormal
termination and a memory map, giving a listing of absolute addresses
assigned to the program by the loader, may be obtained.

SNAP and TRACE dumps consist of a console scoop and a storage dump.
(See Appendix C). The A and Q registers are printed in the mode
requested. The index registers, bounds registers and P register are
printed in octal. The interrupt register, interrupt mask register and
switches are printed in binary. '

Each printed line contains an absolute octal address, an octal address rela-
tive to the name in the first word address (fwa), and four to ten computer
words, depending upon the mode requested. One or more lines of identical
words are omitted.

Snap dumps are periodic dumps of specified areas. The programmer
specifies the instruction address where the dump request is executed. He
also specifies the frequency and the areas to be dumped. SCOPE replaces
the instructions at the dump addresses with jumps to the SNAP routine.

The SNAP routine dumps the specified areas onto the standard output unit,
executes the instructions originally at the dump address, and returns control
to the program.

More than one snap dump may be specified for an address and any number
of addresses may produce snaps. After the last snap is produced, normal
program operation resumes. The only restrictions on the number of shap
dumps are the print request limit in the RUN statement and the amount of
available storage remaining after the program is loaded.

JSNAP,a,fwa lwa,f,d; dg.dg,id

a the program address where the dump is initiated. The
program address may be a program name or an entry
point name plus or minus an octal displacement, p=n;

p is an entry point or program name and n is an octal
number. If a program name is used, the program address
will be the first location in the program. If an entry

point name is used, the program address will be the entry
point location. If the program and entry point names are
identical, the program address will be the first location in
the program. If a is blank, a snap is taken only if abnormal
termination occurs.

fwa,lwa The first word address and the last word address of the area
to be dumped may be:

1) A 6-digit absolute octal location; the left-most digit is
the bank designator. If less than 6 digits are given,
bank 0 is assumed.

2) Pyhy, a common block name, an entry point name, or
a program name, p.; plus an octal displacement, ny,
relative to the name. If a common block name is used,
it is enclosed in slashes: /name/. If the block name
is blank, two slashes are given: //.

3) =ng,,an octal displacement relative to the previously
declared entry point, common block, or program name
on this SNAP card.

4) blank (fwa and lwa), no area will be snapped; the console
will be snapped if C is suffixed to the mode designator.
Where fields are omitted commas must be placed,
unless no non-blank fields follow.

If fwa equals lwa, a console scoop will be given.

f the format of the dump on the standard output unit is designated by:
0 or blank octal dump
M octal dump with mnemonic operation codes

fixed decimal dump, integer

[

floating decimal dump, single precision
floating decimal dump, double precision

BCD dump

Q W O @

is suffixed to the designator, if a snap of the
console is to be included

dy.do,dg control the start, stop, and frequency of the SNAP dump. A
dump will be produced at the dy encounter of address pan,
and at every dg encounter thereafter until dg is reached.
If these parameters are biank, a dump is produced at every
encounter of the address. If dg is blank, a dump is produced
at every encounter of thizi?}'ezs bztvs:/ee%zgl d da.

id ig an optional identification for ea cr dump on the standard output
unit. It may be up to five alphanumeric characters.

-

4-2

The SNAP cards are placed immediately before the RUN card in the

mmmmmm mw Anals
Prograiic GCln.

Exampies:
7SNAP,ANNA +5,+30,MC,1,100,5,JACK
o

The area of storage occupied by locations ANNA+5 through ANNA+30 will

be dumped. A dump is produced the first time location ANNA is encountered,
and every 5th time thereafter until the 100th time. JACK is printed with
each dump as identification. An octal dump with mnemonics and a console
scoop are produced.

TSNAP,BETA,+0,+50

9
The snap is triggered by location BETA. The area of storage to be dumped
is BETA through BETA+50. An octal dump will be produced every time

BETA is encountered.

gSNAP,BETA,/SAM/ ,+50,5,1,20,2,JM
The common storage area SAM through SAM~+50 is dumped in floating
decimal, single precision when BETA is encountered. A dump is produced
the first encounter and every alternate encounter until the 20th. JM is

the identification.

42

TRACE DUMPS The TRACE statement produces a dump whenever jump instructions within
a specified range of the program are executed. The dump will be written
on the standard output unit in the same format as the snap dump.

. gTRACE,al,aZ,fwa,lwa,f,dl,dz,dg,id

a; is the first address of the trace area; may be an entry point or
program name plus or minus an octal displacement (p=n).

a, is the last address of the trace area; agp must be greater than ay.
ay may be one of the following:

=Ny an octal displacement relative to the program

entry point or program name. D.
Py =y, an octal displacement relative to program entry
o point or program name, p...
Any number of ranges (a; to ag) may be specified. The contents of the
address a; may not be referenced or modified within the program nor
may either aj or ag contain an input/output control word or a jump

instruction (RTJ or BRTJ class) which sets an address for return.
When the last trace is produced, normal program operation resumes.

fwa is the first word address of the area to be dumped.
lwa is the last work address of the area to be dumped.

The parameters, fwa and lwa correspond to those of the
SNAP statement.

f is the format of the dump on the standard output unit. The
various designators are described following thie SNAP statement.

d; specifies the number of times the area to be traced is passed
through before a jump may produce the first dump. d; must
be less than 4096.

d2 specifies the last time through the trace area that a jump
instruction will cause a dump. dy must be less than 4096.

dg specifies how often tracing occurs when passing through the
trace area. d3 must be less than 4096.

The area is traced at the d encounter of a;, and at every
dg encounter thereafter until dy is reached. During tracing,
the counter is not incremented until ag is encountered;
jumps to a; in TRACE mode will not affect the count of the
trace. If the parameters are blank, tracing is initiated at
every encounter of ay.

The specified area (fwa to lwa) is dumped before the jump
instructions are executed. If the jump transfers control to

a location outside of the tracing limits, trace output is

halted. Upon returning within limits, trace output is resumed,
beginning with the first jump instruction within the limits.

If a jump instruction is located at aq. it is traced; at ag,

it is not traced.

The TRACE cards are placed immediately before the RUN statement. If
both SNAF and TRACE cards ave used, their order is not significani, as

long as they are the last cards before the RUN card.

Example:

gTRACE ,ALPHA ,BETA, +5,+30,MC,1,100,5,JACK

sump instructions in the range ALPHA - BETA will be traced. The locations
BETA+5 through BETA+30 will be dumped whenever a jump instruction is
executed. Tracing will begin with the first encounter of ALPHA and every
fifth encounter until the 100th: BETA must be executed in order to increment
this count. An octal dump with mnemonics and a console scoop will be given.
JACK is written as identification on the standard output unit.

4.3
RECOVERY DUMP

4.4
MEMORY MAP

On the RUN control statement (sec. 2.4) a recovery dump may be specified
for abnormal termination of a program.

Recovery dumps are given in octal with mnemonics and have the following
form:
Console scoop, if requested

Print lines containing an absolute octal address, an ocial address
relative to the beginning of the subprogram or common block, and
the contents of four words. When a new subprogram or common
block is encountered, its name is printed and the relative address
reset to zero.

One or more lines of identical words are omitted.

Information on recovery dump diagnostics is in Appendix C.

If a memory map is to be suppressed, this must be indicated in the RUN
control statement (sec. 2.4). When debugging aids are used, a map is always
given. The locations are given as six octal digits, the leftmost designating
the bank. The memory map lists the absolute location of the following items:

subprograms

program extension areas

labeled common

numbered common

entry points

Information on memory map diagnostics is in Appendix C.

4-5

LOADER S

The loader performs the following functions:
Loads and links subprograms
Detects errors and provides diagnostics
Patches subprograms and labeled common
Assigns program extension areas
Selects banks

A program may be divided into several subprograms, each separately compiled
or assembled. The loader links these subprograms to each other and to
library subroutines by associating entry points with external symbols.

The central control routine of SCOPE transfers control to the loader for load-
ing drivers and programs to be executed. When loading is completed, control
returns to the calling program. All errors detected are written out as diagnos-
tics on the standard output unit (Appendix C). Theloader provides for patching
subprograms and labeled common and assigns a program extension area if

necessary.

5.1

LOADER

QPERATIONS As each cn‘mrogram is loaded into storage, the names and locations of all

stored in the symbol table and, as loading progresses linked with their
corresponding entry points. When the entire loading process is completed,
either by two consecutive transfer cards or by a RUN statement, the loader
searches the SCOPE library directories for subroutines corresponding to the
names of all undefined external symbols. If any undefined symbol is not the
name of a library subroutine, a loader diagnostic is written on the standard
output unit and the job is terminated. If an undefined symbol is the name of a
library subroutine, the loader loads the library subroutine into storage, records
the transfer address, and returns control to the calling program. Unless the
loader was called by the LOADER request, control returns to the next control
statement on INP.

All programs loaded into storage for execution must have at least one transfer
address. A transfer address is the entry point to which control will be trans-
ferred to begin execution. A transfer address is contained on a named TRA
card.

5-1

The FORTRAN compiler compiles a single TRA card for each subprogram.

A name is generated on the TRA card for each subprogram beginning with the
PROGRAM statement. The COBOL compiler compiles a single TRA card for
each paragraph. In COMPASS each END statement becomes a TRA card with
the transfer address included if it was given in the END statement. Only one
transfer card is needed for each subprogram. The ALDAP compiler compiles
a single TRA card (without a transfer address) for each independently compiled
procedure. A TRA card with a transfer address is always generated for each
ALDAP compiled program. The name on the TRA card is the program name,
if given, or a name generated by ALDAP.

If two transfer addresses are encountered in loading subprograms for execution,
control transfers to the second address. The first address is placed in the A
register, bits 41-24 (bits are numbered from right to left beginning with zero).

More than two transfer addresses will terminate a job, and a loader diagnostic
will be written on the standard output.

The cards which the loader encounters while loading and processing subpro-
grams and library subroutines are listed below. Details about the loader
cards are in section 5.5.

IDC Subprogram Identification Card

EPT Entry Point Symbol Table

BCT Block Common Table

RBD Relocatable Binary Subprogram Deck
EXT External Symbol Table

LAT Linkage Address Table

BRT Bank Relocation Table

occ Octal Correction Card

TRA Transfer Card

ILcc Tecader Contrel Card

LOADER NAMES All loader names, including entry point names, external symbols, and subpro-
gram names except common block names are 1-32 characters long. A name
of 8 characters or less is contained in one word. If the name is greater than
8 characters but less than or equal to 32 characters, it is prefixed by 1-4,
specifying the number of words comprising the name.

A name prefixed by a number is not identical to the same name not prefixed by
a number.

5-2

52

LOADER CONTROL
CARDS

BANK
STATEMENT

Example:

1A# A
2AAAAAAA A # AAAAAAAA
first word 2nd word 1 word

Loader control cards indicate subprograms to be overlayed, subprograms to be
corrected, or the memory banks to which subprograms and common blocks are
to be assigned. All loader control cards contain 11 (-), 0, 7, and 9 punches in
card column 1. There are six types:

0

7
9BANK,(b1), ce ,namei, . .(bz), Ce ,namek, ..

or

0
gBANK,(m),syml,symz, .

0

gCORRECT,epname1 ,epname,, .

MAIN,u

W=-JOt

0
SOVERLAY,u,o described in chapter 6.

<

gSEGMENT,u,n

There are two types of BANK statements.

The programmer may specify a particular bank for each subprogram and
common block, or that particular subprograms and common blocks go into the
same bank. This statement is placed before the subprograms to which it

pertains, if they are binary (object) subprograms; otherwise, it is placed
immediately before the LOAD statement.

11
0

7
9BANK,(b1), e ,namei, ... ,(bz), C. ,namek, ...

b a bank number (0-7), an entry point, or a common block name.

name an enfry point, program, or common block name. A common
block name is enclosed in slashes.

If b is an entry point or common block name, the names which follow it are
allocated to the same bank as the entry point or common block name, and the
loader places the subprograms in the bank having the largest amount of avail-
able storage, other than bank zero. If there are several entry points in a
subprogram, only one of these need appear in the BANK statement.

Programs compiled or assembled by systems such as FORTRAN, COMPASS,
ALGOL, must have provisions for bank relocation before they may appear in

a BANK statement.

(gRUN,s,sao,z

(END
V4
L
ya
/

/ =
F COMMON/MEN/A ,B

PROGRAM MICE

/- = |
{ PROGRAM LENNY H
] .

(;FTN,X,L,A

JOB, 3064 ,KG, 8

9

5-4

Two FORTRAN subprograms are to be compiled and written on the load-and-
go unit. The BANK statement precedes the LOAD statement. Subprogram
MICE and the common block MEN are to be placed in bank 2 and subprogram
LENNY is to be placed in bank 1.

Various combinations of subprograms or common blocks may be forced into a
particular bank.

11
0

gBANK, (ml) ,sym1 ,Sym ,Sym

. ,(mz),sym o

2’ 3

m, is a bank number, 0-7
sylmi may be the following designators:

SP. = subprograms)
NC. =numbered common on binary input unit
LC. =labeled common

LSP. = library subprograms

LNC. = library numbered common , from library subroutines

LLC. =library labeled common S

APC. =8P, + NC. + LC.

ALC, =L1LSP, + LNC. + LLC.

ALL. = APC. +ALC.
The designated subprograms and common blocks will be allocated to the
specified bank. These declarations apply only to subprograms or common

blocks for which no previous bank declaration defining a unique bank has been
given.

Examples:

0
¢BANK, (0), APC., LSP.

The succeeding subprograms, labeled, and numbered common, read
from the binary input unit and library subprograms will be stored in
bank 0. Numbered and labeled common blocks from the library are
dynamically assigned by the loader.

0
;BANK, (A),B

5-5

CORRECT
STATEMENT

0
gBANK,(O) A

0
gBANK, (1),ALL.

Subprograms containing entry points A and B will be forced into bank
0 by the first two bank statements. The remaining subprograms and
common blocks will be loaded into bank 1.

If library subprograms other than those specified on the entry point name
statement are to be corrected, the CORRECT card is used.

11
0

‘CORRECT,epname 1 ,epname

9 2’

epname, is an entry point name within the library subprogram to
be corrected; names must occur in the order in which
they appear on the library tape.

Octal correction cards containing the corrections to the subprogram must
follow the CORRECT card. The corrections for each subprogram are termi-
nated by a single TRA card. The octal corrections must appear in the same
order as the subroutines on the library tape to which they apply.

SNAP and TRACE cards may follow the last TRA card. The corrected deck

and/or SNAP and TRACE cards must be followed by a RUN card. In this
example COMPASSX must appear on LIB before SIOPACK.

5-6

ya -]
/ TDENT

i
(SRUN,xxx | iﬂj

/7TRACE , XXX
[l
(;SNAP, XXX l_J

[ma |

r— I T S | -

—
L 1
I l

{ occ . corrections for SIOPACK
(occ s
(a)
/ (oczcc corrections for COMPASSX
[occ
HCORRECT , COMPASSX , STOPACK -

9 ;COMPASS (¢,D),L,X

L

5.3
LOADER CALLS When the LOADER request is made, the A and Q registers must contain certain
parameters. Control is given to the loader only by EXEC upon a return jump.
With certain parameters in the A and Q registers, the calling sequence is the
following:
RTJ LOADER

+ return

The parameters supplied in A and Q are:

am

is an 18-bit address, or zero, specifying a location for preset
entry points which have been defined by the calling program:

is a mapping parameter:

0 no map after loading
1 map after loading

specifies the kind of loading operation:
00 load library programs from n1 (upper Q is used)
01 load program from n, (lower Q is used)

10 load library program from n_, and octal corrections to it
from INP (upper Q is used)

11 complete loading operation after interruption - (ignore
remainder of A and Q)

the logical unit number of the library unit (usually 70).

the number of names in the list starting at bp.

an 18-bit address specifying the beginning of a list of library
subroutine entry point names to be loaded from the library
tape (n.). A name may be in either form allowed for loader
names (5.1).

the location, in bank zero, of the first binary card image of the
program to be loaded. The rest of the cards are found on n

If z = 0, the first card is also foundonn

sU Cal wasQ 20UNG O 42 .

9"

designates the logical unit from which binary cards, or images
of cards, one per record, are to be loaded.

The unused portions of A and Q must be zero.

The location defining the preset entry points contains:

r y e
47 35 17

r a 12-bit value specifying the number of entry points which are
preset into the entry point symbol table.

v the first word address (18 bits) of the list of entry point names.
The names must be in contiguous storage locations and may
extend to 32 characters per name.

e the first word address (18 bits) of the list of entry point

addresses. This list must be eontiguous words with one
address occupying one word. Each address is contained in

5-8

the lower 18 bits of its word. The number of entry point
addresses must equal the number of entry point names, each
of which must equal r.

The four loading operations, keyed by the s parameter in the call to the
loader, are as follows:

=00
Load from unit n; the library subroutines called by the entry point names at
bp. The entry point symbol table is preset if am is not zero.

SCOPE uses this call for COMPASS, COBOL, FORTRAN, ALGO, ALDAP
and those programs defined on an entry point name statement, unless SCOPE
parameters are used.

When the loader returns control to its calling program, the lower address of
the A register specifies the first location in bank zero of the address list.
This list gives the relocated addresses of the entry point names found at bp
in the lower 18 bits of consecutive words. Bit 47 of the A register is zero.
Bit 46 of the A register specifies whether numbered common in bank zero
has (1), or has not (0) overlayed the loader. The Q register contains the
number of errors encountered in loading, right justified. If a transfer
address was encountered during loading, it is placed in the lower address

of A, and the location of the address list is placed in the upper address of A.

Any time numbered common overlays the loader,the loader must be re-
loaded (Sec.3.4) before another loader operation can be executed.

s =01

Load subprograms from unit n,; when two consecutive TRA cards are en-
countered, load externally-referenced library subroutines from n,. If z
is non-zero, it gives the location of the first card image in bank Zero. An
entry point symbol table is preset if am is non-zero.

SCOPE uses this call to load from INP or a load-and-go unit.

No more than two TRA cards may specify transfer addresses. When the
loader returns to its calling program, the lower address of the A register
gives the relocated address of the last transfer address encountered. If
there were two transfer addresses, the first is given in bits 41-24 of the A
register. Bit 47 of the A register is zero. Bit 46 of the A register specifies
whether numbered common in bank zero has (1), or has not (0) overlayed the
loader. The Q register contains the number of errors noted during loading,
right justified.

If an end-of-file is encountered on n_, control is returned with a 1 in bit 47
of the A register and bits 14-0, zero. If a binary card with w = 0 is en-
countered, bit 47 is one, and bits 14-0 in A contain the location in bank zero
of that card image. In both cases, library subroutines are not loaded before
returning. Loading is completed by the s = 11 call; loading is continued by
another s = 01 call.

54

PROGRAM
ASSIGNMENT

BANK
ASSIGNMENT

STORAGE
ALLOCATION

s =10

This is the same as the loading operation when s = 00, except that j must be

1 and OCC cards are accepted. After the named program from n. is loaded,
OCC cards are loaded from INP until a TRA card is encountered. If a SCOPE
control card is detected on INP, the loader returns with a 1 in bit 47 of the A
register and bits 14-0 specify the location of the card image. Loading is com-
pleted by an s = 11 call.

SCOPE uses this call when loading programs defined by an entry point name
statement with SCOPE parameters.

s=11

Complete the loading operation after an end-of-file or SCOPE control card
interruption. Only the s field in the A register is interpreted. If the pre-
vious operation was s = 01, library subroutines are loaded and return is
made to the calling program.

If the previous operation was s = 10, processing of the octal corrections is
completed, any remaining library subroutines are loaded, and return is made
to the calling program.

During loading, the program is assigned to various portions of storage.
Programs which are too large for available storage may be divided into

sections and executed sequentially under OVERLAY control. (Chapter 6).

If the programmer specifies a particular bank, SCOPE loads the subprogram
or common block into that bank. If the programmer specifies that particular
subprograms and common blocks go into the same bank, as each is en-
countered it will be assigned to the bank with the most available storage,
excluding bank zers. I thore is no bank declaration, SCOPE selects the baik,
other than zero, having the amount of available storage into which the sub-
program or common block fits most tightly. Bank zero is assigned only
when the other banks cannot provide space. Banks may be specified with

the BANK statement (Sec. 5.5).

After each load operation, SCOPE records the consecutive storage locations
which have ot been assigned to a subprogram, common block, or monitor
routine. These constitute available storage and the limits may be obtained
or changed by a programmer request during execution (MEMORY request,
3.4). Storage in a bank extends from the lowest location, 000008, to the

highest location, 777778.

5-10

STORAGE
DIAGRAM

SCOPE resides in lower memory of bank 0.

Object subprograms, labeled common, program extension areas, programmer
1/0 drivers, and library subroutines are loaded into the highest available
locations in their assigned bank.

Numbered commeon is a g
storage in its assigned bank. Numbered common, if in bank zero, overlays the
loader, beginning at the first loader location. If numbered common is not in
bank 0, the loader remains in storage. The last mmbered common block in

each bank may vary in size from one declaration to the next.

ssigned storage beginning at the lower end of available

The loader permits subprogram and labeled common modification by octal
correction cards. Instructions which do not fit a corrected area in the
program are loaded into a program extension area declared by the programmer
and assigned by the loader. The program extension area is limited in size

only by the amount of available storage in the bank into which the program

and corrections are loaded.

The locations occupied by a program after it is loaded can be obtained from
the memory map, which includes a listing of the names and locations of all
subprograms, labeled common, numbered common, program extension areas,
and entry points in storage.

The following diagram illustrates how an object program might be stored.

Assuming that there is only one bank of storage, the SCOPE I/0 drivers are
loaded into the highest numbered area while SCOPE and the loader occupy
the lowest portion of storage. During execution SCOPE and the I/0O drivers
are bounds protected.

The first subprogram, A, is loaded into highest available storage followed

by labeled common blocks V and W. The loader is assigned the next available
locations as a program extension area; the size is determined by information
on the octal correction cards. Next, subprogram B is loaded; then labeled
common X, Y, Z, and subprogram C. The area for numbered common over-
lays the loader; numbered common can not be preset. Subprogram C may or
may not have contained octal corrections; however, if octal corrections were
present, no program extension area was defined.

7777

SCOPE I/0 Drivers

Ln

.

.

H subprogram A

H

LO
Ln
. : Labeled common V
(o]
L
L" : Labeled common W
o -
Lnl, Program Extension Area
Ll for subprogram A

Ln

.

: Subprogram B

L]
L e
n
e Labeled common X
0
Ln

S Labeled common Y
Lo
L
L" . Labeled common Z
0

Ln

M

: subprogram ¢

L]

L

00000

o

SCOPE loader (during
loading operation only)

RESIDENT portion of SCOPE

N

I

declared in
Subprogram A

declared in
Subprogram B

available storage

Numbered common

55
CORRECTING
SUBPROGRAMS

Octal correction cards can be included with an object program at load-time.

Existing instructions and labeled common data may be altered; additional
instructions and data may be loaded into a program extension area. Any

section of a program may be corrected. This area, determined and assigned

by the loader, is limited in size only by the amount of available storage in

the bank into which the program and corrections are loaded.

All octal correction cards contain a load address, the contents of one to four
computer words, and relocation designators for the address portion of each
instruction:

Octal correction cards are placed immediately before the TRA card of the

Column

1
2-6

©w oo =3

18-26

63-71

72-80

Contents
punches in rows 11, 0, 7, and 9

relocatable load address, aaaaa, for the first
correction field on the card

relocation factor for address aaaaa

blank
data field 1 - upper instruction or data word to be
loaded at the address aaaaa

data field 2 - lower instruction or data word to be
loaded at the address aaaaa

data field 7 - upper instruction or data word to be
loaded at the address aaaaa + 3

data field 8 ~ lower instruction or data word to be
loaded at the address aaaaa + 3

binary subprogram to which they pertain.

Example:

To correct a single instruction in a subprogram:

I

|

0
7
9

0000S5S +

7 S A A AT 2 3 + AA A A A A A A

7]8]9

17||8

In the fifth instruction of the subprogram, the upper instruction
will be changed to an SLJ to relocatable 123 in the subprogram. The
lower instruction will not be affected.

5-13

26|27

RELOCATION
FACTORS

The relocation factor, which follows the load address in card column 7, may
be any one of the following:

Factor Relocation
E Relative to the first location of the program extension
area
+ Relative to the first location of the subprogram
1 Relative to the first location of the first declared

common block

2 Relative to the first location of the second declared
common block

9 Relative to the first location of the ninth declared
common block

0 Relative to the first location of the tenth declared
common block

Only labeled common blocks may be corrected, data cannot be prestored in
numbered common blocks. In selecting the correct factor for a common
block, however, both numbered and labeled common blocks in the program
must be counted in the order in which they are declared. Only the first
ten blocks can be corrected.

Examples:

A TINTITT AN o
8D rvun

COMMON /1/A/B3/G,H/B4/F/6/Z/COG/P

Y ST SIS S R L I d A o A
TRAN prograin coitains ine ioliowing statement:

MA aldnm Aaka 3m hiaal DO 4lhn wala andiam £amdaw O wrase 14 ba s1and
AV ALLCli uala Ll vivuen g, LlT LT1IvLalivil 1auvlvul g WUULW UT UDCTu.
To alter data in block COG, factor 5 would be used. Data cannot
be prestored in the numbered common blocks.

A COMPASS program contains the following statements:

21 BLOCK 10

COMMON AFLAGS(5), BFLAGS(5)
H30 BLOCK 200

COMMON A(10, 10), B(10, 10)
26 BLOCK 3

COMMON R1, R2, R3

RTABLE BLOCK 100
COMMON R(10, 10)

5-14

To alter data in block H30, the relocation factor 2 would be used.

used. Data cannot be prestored in blocks 21 and 26 because they
are numbered common.

DATA FIELDS The format of each data field, card columns 9-80, is:
NNNXXXXXi

Data fields 1~-8 are loaded into sequential half-words in storage starting with
address aaaaa (columns 2-6).

nnn the upper 9 binary digits of an instruction or data word.

xxxxx the address of an instruction, or lower 15 binary digits of a
data word.

i the relocation factor for the address, xxxxx. Any of the factors
in the relocation list may be used with two additions:

Factor Relocation
blank no relocation

- Relative to the complement of the first
address of the subprogram.

Since program instructions may refer to both numbered and labeled
common, the value of the relocation designator, i, must be deter-
mined by counting each declared common block -- both labeled and
numbered -- up to the one to which the address refers.

Blanks in the nnn and xxxxx fields are converted to zeros; if the entire field
is blank, the related portion of storage is not altered.

PROGRAM

EXTENSION AREA The size of the program extension area is defined by the largest reference
to the area in the load address. Data field references are not taken into
consideration when determining the size. If 2E were the largest load
address, the program extension area would consist of three words (0, 1, and 2).

The programmer must provide a jump to the program extension area from the

program to execute the octal corrections. A return jump from the program
extension area to the program must also be included.

5-15

Example of two cards in an octal correction deck.

I
0
700001+ |blbbbbbbbbb |75400002E|75bbb123+|bbbbbbbbb

card column f A 78 2627 35/36 44jas

75077777b 1250010457 5000002E lbbbbbbbbbl

O~NO -

00002E |b

card column f HEE 17)18 26|27 35]36 4445

In the subprogram:

at location 00001+ Ul is unchanged because of the blanks

LI contains a return jump to the 3rd word (2E) of
the program extension area

at location 00602+ Ul contains an SLJ to relocatable 123 in the sub-
program (blanks fill to zeros).

LI is unchanged, because it is blank.
In the program extension area:

at location 2E UI contains an SLJ **. The blank designator indicates
no relocation.

LI contains a LDA with the contents of relocatable 104
of fifth declared common block.

at location 3E Ul contains an SLJ to 2E, the third location of the
program extension area, to exit back to the program.

LI is unchanged.

The program extension area is allocated 4 words, 0, 1, 2, and 3.

5.6
BINARY CARD

FORMATS SCOPE loader processes the subprograms and subroutines that are to be ex-
ecuted as a running program under SCOPE control. The loader assumes that
the programs contain certain elements that enable it to relocate the coding
and tie the subprograms and subroutines together. These elements are contained
on binary cards, listed below. Generally, they are produced by COMPASS,
FORTRAN, COBOL, and ALGOL; and are of no concern to the programmer.
It is possible, however, to prepare all cards directiy without using an assembier
or compiler.

5-16

1. Subprogram Identification Card IDC
2. Entry Point Symbol Table EPT
3. Block Common Table BCT
4. Relocatable Binary Subprogram Deck RBD
5. External Symbol Table EXT
6. Linkage Address Table LAT
7. Bank Relocation Table BRT
8. Octal Correction Cards occC
9. Transfer Card TRA
10. Loader Control Cards LCC

Card types 1 to § must occur in the order listed; only IDC and TRA are
required in all subprograms. Type 10 occu
ahead of the first subprogram in a series.

w
@]
=
<
8"»:
%.f
a
=
[0}
]
o
]
]
(=]
Q
o
=S
7]
(@)
=

Unless identified as octal or coded decimal, information is assumed to be
in binary on cards or in card format. In most cases more than one entry is
contained on a card. With the exception of the octal correction card and the
named TRA card, subprogram cards are punched in binary.

Each column on a card represents 12 bits of a 48-bit computer word. The
correspondence between card positions and computer word bit positions for

each group of four card columns is shown below.

Corresponding Bit Position

Row Column 1 Column 2 Column 3 Column 4
12 47 35 23 11
11 46 34 22 10

0 45 33 21 9

1 44 32 20 8

9 36 24 12 0

All SCOPE loader cards have a 7, 9 punch in column 1. On most loader cards
the first four columns identify the type to provide a means of checking its
contents.

5-17

Corresponding

Mnemonic Row Column Word Bits Purpose
(none) 12 1 47 must = 0
w 11 1
to 46-42 card type or word count (RBD)
3 1
a 4 1
to 41-39 relocatable address (RBD)
6 1
12 2
to 35-24 sequence number, or blank
9 2
b 7 1 38 and 36 indicates a binary card
9 1
i 8 1 37 indicates whether a checksum

will be processed
1, checksum is ignored
0, checksum is compared

to 23-0 24-bit checksum
9 4

The remaining words (columns) depend upon the card type.

The checksum is formed by finding the 48-bit arithmetic sum of the 20 words
on the card {columns 3 and 4 are set to 0 and left carries go ints the low
order bit). The high order 24 bits of the 48-bit sum are added to the low
order 24 bits to form a 24-bit result. A left carry is generated if overflow

into the 25th bit occurs. The 24-bit result is the checksum.

5-18

IDC CARD

Card representation of first word:

1 2 3 4

12 o a c c

i a c c

0 a c c

| w a c c a address or sequence number
2 w a c c b binary card indication

3 w a c c ¢ checksum

4 a a ¢ ¢ i ignore checksum bit

5 a a c c w word count

6 a a c c

7 b a c c

8 I a c c

9 b a c c

Bit structure of first computer word:

of w a (bjilb a c
47 46 42 4 39383736 35 24 23 o]

The subprogram identification card names the subprogram which follows it and
provides information about the subprogram to the loader.

Card Content:

Columns Computer Word Use
1-4 1 Card type
5-8 2 Subprogram identification
9-24 3-6 Subprogram name in BCD
25-80 7-20 Zero

5-19

Word Content:

Word 1: w=318

a zZero

¢ checksum

Word 2:

7’’’/

47

d word number, 3-6, of the first word on the card which contains load-
able data. Data begins in the (d+1)st word of all RBD cards.

r length, 2 to 8, of the relocation byte on the RBD cards.
p the number, 6 to 24, of relocation bytes per word on the RBD cards.
s length of the subprogram in binary; 0 to 77777 g

s is 0 if only common blocks follow.

The unused portions of word 2 are zero.

no™

s 3-6: name of subprogram in BCD, in format specified for
loader cards (Section 5.1).

EPT CARD The Entry Point Symbol Table defines the names and relocatable addresses
for the entry points in the subprogram.

Columns Computer Word Use
1-4 1 Card type
5-80 2-20 These columns contain

entry point names, in BCD,
and related addresses, in

binary.
Word Content:
Word 1: w =32 g
a sequence number in binary; all cards must be in
sequence.

¢ checksum

5-20

BCT CARD

Words 2-20:

Each entry point requires from 2 to 5 whole words: the name of the entry
point occupies from 1 to 4 words (either form given for loader names,

Section 5.1); and the relocatable address of the entry point in the subprogram
occuples positions 14-0 of the last word Each entry point definition 1mmed1-

Ter £~ P

4~
iLELY

‘M

11 41 ~
I01I0OWS tne ll!l-'l I;‘Illllg fa)at

word 2 of the next card.

t'D

As many EPT cards as are necessary may be used to define the entry points
of a subprogram; the cards must be in sequence.

The Block Common Table defines the name and length of each common storage
area declared in the subprogram.

Card Content:

Columns Computer Word Use
1-4 1 Card type
5-8 2 Zero
9-80 3-20 Common declarations

Word Content:

Word 1: w=338

a ascending sequence number in binary; all cards
must be in sequence.

¢ checksum.

Words 3,5, 7,...19: Names, in BCD code, of the blocks of
common assigned. A name may not contain
more than 8 characters; it may be numeric
(for numbered common) or alphanumeric
(for labeled common).

Words 4, 6, 8, ... 20: Length of the common block named in the
preceding word.

Common blocks are data storage areas which are shared by subprograms and
library subroutines. Common may be labeled or numbered. For labeled
common, the first character must be alphabetic. The 8-character name for a
block of labeled common is assigned from high order to low order storage,
following the subprogram in which it was first referenced. The 8-character
name for a block of numbered common must begin with a numeric character.

5-21

Numbered common is always assigned to locations in lower storage following
SCOPE, Numbered common may not be preset; it may be assigned to the area
used by the SCOPE loader and overlays the loader when it is referenced.

Subprograms sharing a block of common must each identify common by the
same name and block length. There is one exception: the last numbered
common block in a storage bank may vary in length between subprograms.

Up to 126 blocks may be defined for one subprogram.

RBD CARD The Relocatable Binary Subprogram Deck contains the instructions, constants,
and data to be positioned. A relocation increment or decrement may be

applied to the address portions of each word.

Card Content:

Columns Computer Word
1-4 1
5-24 2-6
13-80 4-20

Word Content:

Word 1: w =word count, 1 to 21

Use

Number of instruction words
on the card, the first re-
locatable address and a
checksum.

Relocation bits, in constant
length bytes, which determine
the kind of relocation and the
address portions of each
word. Up to 6 computer words
are filled.

Instruction words to be loaded.
As many computer words are
used as are available.

a initial load address for the words on the card

¢ checksum

b,i are as defined for all standard card types

The number of words reserved for the relocation bytes depends on the length
of each byte (2-8 bits) which in turn depends on the number of common blocks
to be used. The number of words may be determined from the following table:

5-22

No. of Relocation Max. No. Total Possible No. of Words

Common Byte of No. of for
Blocks Length Bytes/Word Bytes Relocation Bytes
0 2 24 35 2
1-2 3 16 33 3
3-6 4 12 33 3
7-14 5 9 31 4
15-30 6 8 31 4
31-62 7 6 29 5
63-126 8 6 29 5

An integral number of bytes is arranged in a word, left justified. The first
byte in word 2 designates relocation for the load address. Subsequent bytes
correspond to left, then right, address portions of the first instruction word,
then the second, and so on. The value of the byte, excluding the leftmost bit,
is used to locate an entry in a table of relocation factors during loading
(RFTABLE). The leftmost bit of the byte specifies incrementing (0) or dec-
rementing (1) the contents of the related portion of the instruction or the
load address. The remaining bits give the ordinal of the proper word in the
table. The first word of this table contains the relocation factor for fixed
addresses and, therefore, contains zero. The second word contains the factor
for addresses to be relocated relative to the subprogram; the third word for
addresses to be reiocated relative to the first declared common block on the
BCD card; the fourth word for the second declared common block, and so on.
If a byte points to an undeclared common block, an error diagnostic is printed.

If an address is to be decremented, the complement of the indicated reloeation
factor is used when relocating the address. The words not used by the reloca-
tion bytes are used for the relocatable instruction, constants, data, and so
forth. These words always begin in the same column, for each subprogram,
as though the maximum number of relocation bytes were needed.

A byte length, the word number of the last word containing relocation bytes, d,
and the total number of bytes per word, p, are contained on the IDC card.

A byte value of 10 . . . 0 is illegal.

A byte value of 00 . . . 0 implies that the address is not to be modified.

A byte valueof 0...010r 10 ... 01 implies a subprogram instruction.

A byte value of 0. .. 010 or 10 . . . 010, refers to the first common block;
0...011o0r10... 011, the second: 0 ... 100 or 10 . . . 100, the third, and

so on. The reference to the 126th common block would be 01111111 or 11111111.

The load address byte maynotbe 0...0,0r1x....X.

5-23

EXT CARD

The External Symbol Table contains names of the symbols external to the

subprogram. The names are entry points to other subprograms and library

subroutines.
Card Content:

Columns
1-4
5-80

Word Content:

Word 1:
a

C

Words 2-3:

W =

Computer Word
1 Card type.

External symbol names in
BCD.

2~20

4
38

ascending sequence number in binary

checksum

External symbol names in BCD are arranged contiguously

on a card and may be split between successive cards; a
name may continue from word 20 of one card to word 2
of the next card. Loader name format is given in
Section 5.5. As many EXT cards as are necessary may
be used to define external symbols; the cards must be in
sequence.

LAT CARD

The Linkage Address Table provides linkage for all references to external

symbols. A minimum of one LAT word exists for every external symbol.

Card Content:

Word Content:
Word 1: w
a

cC

Use

Card type.

Relocatable addresses and
related information for the
external symbols referenced
in the subprogram.

=358

ascending sequence number in binary

checksum

5-24

Word 2-20: Each LAT entry, one word in length, points to a single
string of references io one EXT symboi. The LAT

entries for each EXT symbol are threaded through the

table.
s
/é i | t o} o]
% ' " ¥
7z
47 4443424 29 14 0

m relocation mode indicator for the external symbol.
1 normal (incremented) references

0 complementary (decremented) references

w upper/lower string indicator.

0 string starting at p refers to an external symbol in the upper
portion of the word in the subprogram.

1 string starting at p refers to an external symbol in the lower
portion of the word in the subprogram.

i1

t ordinal of the next LAT entry related to the same external symbol or
zero if no more LAT entries are needed.

q is the quantity added to the relocated address of the EXT symbol
(@ may be zero).

p relocatable address of the word in which the external symbol is used.
It is the initial location in the subprogram of the string of references to
an EXT + Q. This address gives the location of the next reference, and
so on. The last address in the string contains 77777 g

For each EXT symbol there will be at least one LAT entry. If the identical
symbol appears in both the upper and lower positions of a word, there will be
two LAT entries. There will be other LAT entries for each modification value,
q, of the symbol. Finally, there will be separate entries for each g-valued
portion of the symbol for either value of the relocation mode indicator, m.
There may be many LAT entries for a single external symbol. For example,
each of the following references will require two LAT entries if each is refer-
enced from an upper and lower portion of a word. Eight entries would result
from:

EXT +Q
EXT +Q
-EXT +Q
-EXT +Q

N = N

5-25

The EXT and LAT tables are arranged in parallel so that the ith LAT begins
the series of references to the ith symbol. When more than one LAT entry
exists for an EXT symbol, successive entries continue after all initial LAT
entries. The related LAT entries are threaded together by the t designation
in the entry.

If a symbol with unique values for m, w, and q appears only once in a sub-
program, the address of the word using it is recorded in the p portion of the
entry. If the same symbol with identical values of m, w, and q appears more
than once in a subprogram, SCOPE assumes that all these references are
strung together. The string is constructed so that the address portion of the
word in which the particular version of the symbol is used is replaced by the
location of the word in which the next reference occurs. The location of the
following reference is placed in the preceding address portion, and so on.
The last address portion is assumed to contain 7 77778. The location of the
first word of the string is recorded in the p portion of the LAT entry. This
method of stringing identical versions of the symbol allows SCOPE to replace
the relocatable address by a particular relocated address for the symbol
when it can be determined (defined as an entry point).

The designator, t, is used to locate the next LAT entry for a specific symbol
regardless of the values of m, w, and q. The thread of LAT entries is

terminated by t setting to zero. t is also zero if the symbol occurs only once.

If an extraneous EXT entry exists, (an EXT is listed but not referenced) the
LAT entry will have the value: m=w =t =g =0andp = 777778.

If no LAT entry exists for an EXT entry, it is an error.

As many LAT cards as are necessary may be used, they must be in sequence
and all but the last must contain 19 entries.

SOURCE SUBPROGRAM

UPPER LOWER OBJECT SUBPROGRAM

Loc ADDRESS ADDRESS

aaaaa SAM aaaaa 77777
bbbbb SAM -SAM-2 bbbbb 77777 77777
ccccc SAM+2 ccceccce 77777
ddddd SAM+2 ddddd ccccece
eeeee ROGER+5 eeeee 77777
feEfff ROGER+5 fffff eeeee
ggagg ROGER+ 6 gaggag 77777

5-26

BRT CARD

EXT ENTRIES

SAM

ROGER

ANDY

LAT ENTRIES
ORDINAL | m w t q p
0 I I 3 0 aaaaa
!] | 5 5 fffff
2 0o o | o 77777
3 | o] 4 o] bbbbb
4 i | & 2 ddddd
5 I I o| e 99999
6 o}] o | -2 bbbbb

The Bank Relocation Table indicates locations within the subprogram where
bank designators depend on the banks to which this or other subprograms or
common blocks are assigned. As many BRT cards as necessary may be used;
they must be in sequence.

Card Content:

Columns
1-4
5-80

Word Content:

Word 1:

Words 2 - 20:

Computer Word Use
1 Card type.
2-20 Threaded list of BRT
entries.
w = 368

a sequence number in binary

¢ checksum

The BRT table has three sections. The first section
paraliels the EXT table and each word contains the

first two entries for that EXT symbol. If no bank
designators depend on that symbol, there are no entries.
The second section consists of a pointer to the beginning
of the thread of entries for this subprogram and each
common block it defines. Section three holds the rest of
the BRT entries, two per word, pointed to from sections
one and two.

5-27

Format of the words in sections one and three:

47 42 41 29 14

y specifies one of the five bank designator positions to be relocated
within the word at a and a,.

The value of y may be one of the 30 possibilities, 1-3 68:

y = (code for 2 designator) + 5 times (code for ay designator).

If a, is not present, y is 1 to 5.
i o

t designates the next BRT word (two entries) in this thread.

a, and a are addresses in this subprogram in which a relocatable
1 . . :
bank designator appears. If more than one designator in
a word is relocatable, each has a BRT entry.

Section two parallels the RFTABLE with four entries per word:

I T tisz ti+s

47 35 23 B

t is the ordinal in section three, relative to the beginning of BRT, at
which the first two BRT entries corresponding to the ith RFTABLE
entry occur. t. points to the entries depending on the bank into which
the subprogram is loaded. t2 through t o7 (or the last t field) point
to the entries depending on the banks to which the corresponding
common blocks arc assigned. i, and any fields not pointing to a
section three entry are zero. As many t fields are required as the
number of declared common blocks.

TRA CARD The Transfer Card signals the end of the subprogram deck or the entire pro-

gram deck, and in some cases, the starting location of the program.

Card Content:

Columns Computer Words Use
1-4 1 Card type.
9-80 not applicable Entry point name of the
starting address of the pro-
gram.

5-28

LCC CARD

Word Content:

Word 1: w=378
a O

¢ checksum

Beginning in column 9, an entry point transfer name is punched in Hollerith.
Up to 31 Hollerith characters may be used. When there is no transfer name,
columns 9 through 80 must be blank.

Usually, only one subprogram or library subroutine encountered in a loading
operation specifies a transfer name. Control is given to the address specified
by that name when the program is run. However, a second transfer name may
be specified in a later subprogram or library subroutine. When the program
is run, control is given to the second address, the first address placed in the
A register (bits 41-24).

The Loader Control Cards indicate overlay subprograms and the banks to
which subprograms and common blocks are to be assigned.

Card Content:

Columns Computer Word Use
1 w = 308 not applicable Card type 11, 0, 7, 9.
2-80 not applicable Hollerith characters

representing loader control
statements and parameters.

In the six types of LCC cards, columns 2 through 80 are free field; parameters
are separated by commas, and blanks are ignored. All information must be
contained on one card.
MAIN,u
OVERLAY ,u,0 see chapter 6
SEGMENT ,u,n
u decimal number, 0 to 50 or 69, specifying the unit on which the main
program, overlay or segment is to be written.
o decimal number specifying the overlay number.

n decimal number specifying the segment number.

5-29

BANK,(bl), ... ,namei, NN ,(bz), .. .,name

BANK,(m),syml,symz, ce

k' °

see chapter 5

CORRECT,epnamel,epname 9 *

b bank designator, 0-7; the name of an entry point, enclosed in
parentheses (entry point); or the name of a common block, enclosed
in slashes and parentheses (/block/).

m bank designator, 0-7.

name entry point or common block name; a block name must be enclosed
in slashes.
sym, symbol to specify subprogram, numbered or labeled common, or
! library subroutines.
epnamei entry point name in a library subroutine.
OCC CARD The Octal Correction Cards provide facility to correct existing instructions

in the subprogram and to add new instructions in a program extension area
preceding the subprogram in storage.

Card Content:

Columns Use

1 w = 308 Card type.

2-7 Relocatable load address for first
correction field on card and relocation
increment.

9-80 Corrections or additions.

Information on this card is punched in Hollerith characters to be
loaded into sequential half words in storage. The card is divided
into 9 fixed fields; the first consists of 6 characters; the remainder,
9 characters each. This card is described in Section 5.3.

5-30

PREPARATION OF OVERLAY TAPES 6

6.1
LOADER CONTROL
STATEMENTS

Overlay processing allows programs that exceed available storage to be di-
vided into independent parts which may be called and executed as needed.

A program may be divided into a main section and any number of overlays,
each of which may contain any number of segments. Main, overlay, and
segment may each contain subprograms. Only main, one overlay, and one
segment may occupy storage at a given time.

In a program containing overlays, the loader control statements, MAIN,
OVERLAY, and SEGMENT, precede the relocatable binary subprograms
which comprise the respective sections. After a source program is assem-
bled or compiled, overlay processing loads the relocatable binary subpro-
grams into storage and writes each overlay or segment as a separate
record in absolute binary on an overlay tape. This overlay tape is then
called in SeécCtions for execCution. e absolute records do not require the
relocatable binary loader to perform the usual relocating and linking
functions.

Initially, control is transferred to main which resides in storage continu-
ously; if in turn calls the overlays when they are needed during program
execution. Segments may be called either by main or an overlay. FORTRAN
and COMPASS subroutines are available to call the overlays and segments
during execution; these must be included in the source subprograms. Once
an overlay tape is created, it may be executed subsequently with the SCOPE
control statement, LOADMAIN.

An overlay tape is composed of absolute binary records, followed by two end
of files. Each record, constituting a main subprogram, overlay, or segment,
may be composed of many subprograms. A particular main, overlay, or
segment may occupy any number of banks when in absolute form.

The overlay tape is prepared by preceding each section of the program with
a loader control statement specifying whether it is a main section, overlay
or segment. A loader control statement (as opposed to a SCOPE control
statement) is interpreted by the loader and contains an 11, 0, 7, 9 punch in
card column 1. Each statement specifies the logical unit on which the re-
sultant absolute binary program will be stored. The cards following a
loader control statement may consist of binary subprograms, compiler lan-
guage or assembly language subprograms; SCOPE control statements may
be included if compilation and assembly is to be performed prior to creation

6-1

MAIN

OVERLAY

of the overlay tape. Each main, overlay or segment must contain one trans-
fer address. Main may contain two transfer addresses.

0

I MAIN,u

u is the logical unit number of the overlay tape, 1-49, on which the
main section of the program is to be stored in absolute binary.
u may not be omitted.

The MAIN control statement may precede the object subprograms which
comprise the main section; it defines the main part and the logical unit
number of the overlay tape on which it is to be stored.

When overlay tapes are being prepared, the main section remains in storage
for immediate execution. After all sections of the program have been stored
on tape, the main section may be executed.

The main subprograms must precede the first overlay; if the MAIN state-

ment is omitted, an overlay tape is written containing just the overlays and
segments. The overlay tape may be used for immediate execution whether

it contains main or not; however, if the overlay tape does not contain main,
it cannot be used in subsequent executions.

Portions of the main section may be assigned to several banks with the BANK
statement.

OVERLAY,u,0

W ~Nol

u is a logical unit number, 1-49, of the overlay tape on which the over-
lay section is to be written in absolute binary. u may not be omitted.

o is the decimal number identifying the overlay.

The OVERLAY control statement precedes the object subprograms which
comprise the overlay; when it is encountered SCOPE creates an overlay
section and writes this section in absolute binary on the overlay tape spec-
ified by the logical unit number.

The main section must include calling sequences to call each overlay into

storage. The overlay may be assigned to several banks with the BANK
statement.

6-2

SEGMENT

RULES

=301

9 SEGMENT,u,n

u is the logical unit number, 1-49, of the overlay tape on which the
segment is to be written in absolute binary. u may not be omitted.

n is the decimal number identifying the segment.
The SEGMENT control statement precedes the object subprograms which
comprise the segment; when it is encountered SCOPE creates a section
and writes it in absolute binary on the overlay tape specified by the logical
unit number.

The main or overlay section must include calling sequences for each seg-
ment. The segment may be assigned to several banks with the BANK
statement.

Rules for partitioning a program into overlays and segments:

1. Numbered and labeled common and all entry points declared in the
main subprograms may be referenced by any overlay and any
segment.

2. Numbered and labeled common and all entry points declared in an
overlay may be referenced by that overlay and its associated seg-
ments, but not by the main subprograms, another overlay, or seg-
ments contained in another overlay.

3. Numbered and labeled common and all entry points declared in a

segment may be referenced by that segment only.

4. The first overlay card must be preceded by a main program. If
the main program is not declared with a MAIN card, it.is not
written on the overlay tape.

5. The overlay numbers must start with one and be consecutive for
all overlays written.

6. The segment numbers, within an overlay, must be consecutive
starting with one.

7. Only four overlay tapes may be written. No overlay tape may
occupy more than one reel.

8. FEach overlay and segment must have a single named transfer
point.

9. All segments for a particular overlay must immediately follow
that overlay on the tape.

6-3

STORAGE
DIAGRAM

DECK

STRUCTURE

A diagram of storage during overlay processing and execution:

0

R = Resident
M = Main

O; = Overlay
Si = Segment

Tn = Time n

Deck structure in the preparation of an overlay tape differs according to input.
Relocatable binary subprograms. preceded on INP by the loader control state-
ments, MAIN, OVERLAY, and SEGMENT, are loaded and then written on the
overlay tape in absolute binary. Source language subprograms must be
compiled/assembled onto a load-and-go tape before they can undergo overlay
processing; the loader control statements MAIN, OVERLAY, SEGMENT,
preceding each portion coded in source language, must be transferred to the
load-and-go tape. The load-and-go tape then becomes input for the overlay
tape. Relocatable binary subprograms and source language subprograms may
be combined as input.

As the overlay tape is prepared, each section is assigned absolute locations
in storage. As each loader control statement is read, it is written on OUT.,
The section following the loader control statement is loaded into storage and
a MAP is written on OUT showing the absolute locations assigned to each
main, overlay, and segment.

Any subprogram within a main section, overlay, or segment may be assigned
to a specific bank. In source language subprograms, a bank may be selected
by the appropriate source language pseudo instruction.

6-4

BINARY
SUBPROGRAMS
ONLY

If relocatable binary subprograms are the input for an overlay tape, they may be

R S e e 202 o T naaTe o Taes ~ ~naAdA~ .
assigned to specific banks by the loader control statement:

0
gBANK,(bl) ,nameq, . - . , (by) ;nameq, . . . ;namey,

The BANK statements must precede the binary subprograms to which they per-

tain; however, BANK statements must follow the OVERLAY or SEGMENT state-
ment to which they pertain. If the relocatable binary subprograms are contained
on a load-and-go tape as the result of a compilation/assembly, the BANK state-

ments may not precede the LOAD statement which loads the load-and-go tape for

overlay processing.

If there are no BANK statements, normal bank assignment occurs.

To create an overlay tape when the deck consists only of relocatable binary sub-
programs, each subprogram must be preceded by a control statement ,MAIN,
OVERLAY, or SEGMENT. If a subprogram is to be assigned to a specific bank,
a BANK statement must be included before the binary subprogram and after the
loader control card. The order in this example (MAIN, subprograms, OVERLAY,
subprograms, . . .etcetera) must be followed in all overlay programs.

]
1.

relocatable binary subprogr%

0OVERLAY,u,n

— L1

7
9 - 1
[/frelocatable binary subprograms |
|

9‘BAN1<, (bl) ,name

o |

9 S’)SEGMENT,u,Z]

9]

1

1
relocatable binary subprograms I

OSEGMENT, u, 1 I
7

m
1

9
(/ relocatable binary subprograms I
i

9BANK,(b1),name1,... l
Y
—

9 @ov*sRLAY,u, 1 I
a
—

relocatable binary subprograms 1

6-5

The overlay tape logical unit numbers may be the same or they may differ;
however, segments must follow the overlay on the same overlay tape. If the
information in the preceding example were on a tape unit other than INP, it
could be loaded by a LOAD control statement and processed as though it were
on INP. With the deck in the preceding example on INP, processing proceeds
as follows:

1. Relocatable binary subprograms following the MAIN statement and
up to the first OVERLAY statement are loaded into storage and
linked by the loader. They are then written in absolute binary in
a single record on the overlay tape, logical unit u. The first two
words which identify it as the main record contain the absolute
transfer address. The control statement, MAIN, is written on OUT
followed by a MAP of the main section showing the assigned
absolute locations. If the main section is not preceded by a MAIN
statement, it is not written on the overlay tape, although it is
retained in storage during overlay processing.

2. The binary subprograms following the first OVERLAY statement are
loaded into an area beginning with the first location after the main
area. They are written in absolute binary as a single record on the
overlay tape, logicalunit u. The first word of the record identifies it
as an overlay with its overlay number (1 in the first case) . The con-
trol statement, OVERLAY, is written on OUT followed by a MAP of
the overlay section showing the assigned absolute locations. The
BANK statement following the OVERLAY statement controls the assign-
ment for subprograms contained in the first overlay.

3. The BANK statement following the second SEGMENT statement con-
trols bank assignment for subprograms contained in segment 2 of
overlay 1.

Step two is repeated for each overlay and segment. In storage, the

segment begins with the first location after its related overlay.
During this process the main section remains in storage.

All the overlays are loaded into the same area following main hefore
they are written on the overlay tape. All segments are loaded into
storage beginning at the same first location following the associated
overlay before they are written on tape.

4. The end of overlay processing is signaled by a SCOPE control state-
ment such as 9RUN or two consecutive transfer cards.

SOURCE
LANGUAGE
SUBPROGRAMS If source subprograms comprise the overlay deck, they must be compiled/
assembled onto a load-and-go tape. Loading of the load-and-go tape for overlay
processing is initiated by a LOAD statement. The loader contiol statements,

MAIN, OVERLAY, and SEGMENT, must precede the subprograms on INP and

6-6

the load-and-go unit as usual; they are transferred to the load-and-go tape by
FILE, FILE END control sequences. Bank assignment may be included in the
source language subprograms; BANK statements may be transferred to the
load-and-go tape by FILE, FILE END control sequences. gCOMPASS and gFTN
are entry point name statements; they must immediately precede the subprograms
to be assembled or compiled. Entry point name statements must follow each
FILE, FILE END sequence to return control to the compiler/assembler.

ﬂLOAD,ul
I~

{gentry point name,u

/;FILE END
OBANK, . .. l
7
9 /QOVERLAY,uz,o
9 7
IQFILE,ul
v 2
I;

source language subprograms

12

(;entry point name,ul, e

(gFILE END

QMAIN, u, 1

; 7FILE
g oY

1

With this deck on INP, processing proceeds as follows:
1. The MAIN statement is transferred to the load-and-go unit, uy.

2. The subprograms following the first FILE END statement will be
processed by the named library program. The entry point name
statement should specify that the binary object subprograms be
stored on the load-and-go unit, u;.

3. Steps 1 and 2 are repeated until the LOAD statement is encountered.
At this time the load-and-go unit, ug, contains the same deck
structure as INP would have contained (Section 6.1) were only
binary subprograms included in the deck, as follows:

0

7
9MAIN,u2

relocatable binary subprograms

6-7

0

7
9OVERLAY Ug,0

0
Z)BANK, ...

relocatable binary subprograms

4. When the LOAD statement is encountered, the load-and-go unit,
uy, is loaded, and processing is identical to the overlay processing
for binary subprograms only. The overlay tape is on logical unit,

U.2.

BINARY

AND SOURCE

SUBPROGRAMS
MIXED If relocatable binary subprograms are mixed with source language sub-

programs in an overlay deck, the binary subprograms must be transferred
to the load-and-go unit by FILE, FILE END sequences. The order on the
load-and-go unit must be the same as that on INP in the example (Section
6.1). Processing is similar to that for source language subprograms.

source language subprograms

(Zentry point name,ul, N L

(ZFILE END
(')bb‘(yMENl,uz,nl l |

1

s
relocatable binary subprograms]

OOVERLAY, u, ,0]

1

9 (gFILE,u
L

)
L

source language subprograms

/;entry point name,ul, e

(éFILE END

6-8

62

EXECUTING
OVERLAY
PROGRAMS When an overlay tape is prepared, it may be saved with an EQUIP control
statement for subsequent executions. If the overlay tape is to be prepared
for subsequent executions only, no RUN control statement is required.
J"l
—1
1
(({ relocatable binary subprograms 1
ikl S T e s oA . i
0OVERLAY,49,3 |
5 A
relocatable binary subprograms L
OOVERLAY, 49,2 I
5 L,
1
relocatable binary subprograms I
GSEGMENT, 49,2 l
7 .
9 n .
(Zrelocatable binary subprograms l
GSEGMENT, 49,1 l
1.
H
relocatable binary subprograms !
QOVERLAY, 49,1 |
relocatable binary subprograms]
OMAIN,49 I
7
9 (;EQUIP,A%SV ;
/;JOB,777,ABC,160
IMMEDIATE
EXECUTION When the overlay tape is prepared, the main section is retained in storage. To

execute immediately, a RUN control statement (LOADMAIN is not used) must
be placed at the end of the overlay deck or the LOAD statement on INP. When
the RUN statement is encountered, the overlay tape is rewound and control
goes to the transfer address in the main section. The main section then calls
the overlays and segments from the overlay tape.

6-9

1)

Main, overlay 2 and its segment are saved on unit

(gRUN,lo.loOOJ
.

23.

=
Vs
 —

J{ relocatable binary subprograms

QOVERLAY, 42,6

Overlays 1 and 6 are saved on unit 42.

Overlay 3 and overlay 5 and its segments are saved

Vs

) |

on unit 10.

(relocatable binary subprograms

9BANK,(b1),namel,....

Overlay 4 is saved on unit 45.

mJ
u

&

9 K;)SEGMENT,IOJ
9

Vs

J{ relocatable binary subpr

ograms

-

relocatable binary s

ubprograms l

OSEGMENT, 10,1
7

|

relocatable

binary subprograms l

QBANK, (b))

,name

1000

9

7

/ GOVERLAY, 10, 5

Vs

9

Vs

£

Af/relocatable binary subprograms

QOVERLAY, 45,4

7
9

{/ relocatable binary subprograms

l

Vs
L

’§)0VERLAY, 10,3

9

Ll

relocatable binary subprograms

(95EGMENT,23,1 I
7 L
relocatable binary subprograms]
GOVERLAY, 23,2 |
7
9 AL '
—|

Lle biunacry subprograms

l

relocatable binary subprograms

/MAIN, 23

7 7
9 /9EQUIP, 10=SV

' /TEQuIP, 45=sV
/;EQUIP ,42=SV

/-
‘Tgquip,23=8v

(9
/gJOB,777,DDs,15
|

6-10

2)

This deck illustrates a job in which
the overlay statements are trans-
ferred to load-and-go unit 69 with
the relocatable binary output from
FORTRAN compilations and a
COMPASS assembly. Logical unit
69 is loaded to prepare the overlay
tape; an overlay tape is created on
logical unit 23. When the RUN
statement is encountered the over-
lay tape is rewound and control
goes to the transfer address in the
main section.

/7TRUN,15,1000,4

!
{9
/1L0AD, 69 | '

T

IDENT ANDY

COMPASS , X, L

;FILE END

(GSEQMENT, 23,1
1

9 7
(;m.n,es;

SCOPE

PROGRAM JACK

/;FTN,X,L

(;FILE END

/QOVERLAY, 23,1

% /ZFILE ,69

/ SCOPE

—

(SUBROUTINE DAVID

PROGRAM LISA

(i

7FTN,X,L

(z?mz END

GMAIN, 23

H%=-

7

9 (ZFILE ,69

/gEQUIP,23=sv
;Joa,zmos ,DDSTONE , 20

o

6-1

PREPARED

OVERLAY TAPE Once an overlay tape has been prepared, the overlay program in absolute
binary can be loaded and executed with the SCOPE control statement,
LOADMAIN.

g LOADMAIN,u

LOADMAIN loads the main section from the overlay tape on logical unit u and
transfers control to the transfer address in the main section. During execution
the main section calls the overlays and segments from the overlay tape.
LOADMAIN cannot be used unless the main section is included on the overlay
tape. A RUN control statement is not required to execute overlays which are
loaded by LOADMAIN.

Example:

130B,7777,R0G,50

éLOADMAIN,ZS

data to be read by program

Diagnostics written on OUT by LOADMAIN and their cause are:

DIAGNOSTIC CAUSE

PARITY ERROR ON A parity error was encountered on five

MAIN RECORD successive readings of the main record.

ILL. L.U.N. Logical unit number was less than 1 or

SPECIFIED (LOAD- greater than 49.

MAIN)

MAIN NOT ON L.U, The main programs (O = 0, s = 0) could
not be found on the specified logical unit.

MAIN PROG. Attempt was made to load the main

OUT OF BOUNDS program outside the bounds found in the

bounds register at the time of entry.

6-12

6.3

LOADING OVERLAYS

AND SEGMENTS

RULES FOR
LOADING

SCOPE provides a subroutine to load overlays and segments (LOVER). A
call may be generated to LOVER in COMPASS subprograms. LOVER is
linked to the main subprogram when the overlay tape is prepared. FORTRAN
source programs may call OVERLAY and SEGMENT to load and execute

During execution of an overlay program, the main subprogram always remains
in storage. Only one overlay and one segment may occupy storage at one
time. The main subprogram may call overlays and segments from the overlay
tape; overlays may only call their associated segments.

1. Overlays and segments will normally be designed to be entered via
the bank return jump instruction when LOVER is used, and to exit
via their entry point, but they may exit directly to the calling over-
lay or main program.

2. An overlay may be loaded only by a call from the main program.

3. A segment may be loaded only by a call from the associated overlay
if the overlay is in storage, or from the main program. A segment
belonging to an overlay not currently in storage cannot be loaded.

4. Overlays can be called from the overlay tape in any order. Segments
within overlays can be called from the overlay tape in any order.

These rules apply to FORTRAN and COMPASS programs.

6-13

FORTRAN CALL

CALLING
SEQUENCE

FORTRAN source language subprograms use the following call statement to
load and execute overlays and segments. The overlay or segment call uses
LOVER to load overlays and segments.
SEGMENT
CALL 3 OVERLAY% (o,s,u,d,pl, .. ,pn)

SEGMENT loads and executes a segment.

OVERLAY loads and executes an overlay.

o is the overlay number, specified for both segment and
overlay.

s is the segment number, blank if an overlay.

u is the logical unit number.

is a dummy parameter which must be present if any
actual parameters appear. The dummy parameter
may be blank.

p are actual parameters to be passed to the overlay
or segment routine. No more than 59 may appear.

If o, s, u, or d is blank, the comma must appear; the order is fixed.

One subprogram in each overlay and segment must begin with the FORTRAN
statement PROGRAM name. This statement may contain a maximum of 59

parameters:

PROGRAM name (pl, cee ,pn)
name is the transfer address for the overlay or segment.
o) R ;b are formal parameters. The actual parameters, pj, in

the CALL must correspond to these formal parameters.

The following calling sequence is generated during compilation for the CALL
statement:

B0 | iy, -
+ SLJ *+m

On DICT.
+ 00 o

00]

6-14

00
+ 00
Py
00 pn
+
m = ntl +1

2

n is the number of parameters specified in the FORTRAN
CALL statement (0 . . . pn).

The above calling sequence jumps to the OVERLAY or SEGMENT subroutine
which passes the parameters, o, s, and u to LOVER. LOVER loads the
segment or overlay and returns either a loading error code or the transfer
address for the overlay or segment loaded.

If no errors occur during loading, the following call to the transfer address
is generated by the SEGMENT or OVERLAY subroutine:

BRTJ ($)name,, *

+ SLJ *4m
On DICT.
+ 00
Py
00 pn
name is the transfer address for the loaded overlay or
segment
n+1
= — +
m 2 1
n is the number of -actual parameters in the FORTRAN
CALL statement, (pl, R ,pn).
pl, ...,p arethe actual parameters in the FORTRAN CALL
1 statement.

6-15

Example:
CALL SEGMENT(3,2,25,,A,B,C)
The first FORTRAN card is: PROGRAM SUB2(X,Y,Z)
The transier address in segment 2 of overlay 3 is SUB2.

The call to load the segment is:

BRTJ ($)SEGMENT, , *
SLJ *+5
07 DICT.
00 =03
00 =02
00 =025
00 0

00 A

00 B

00 C

00 0

The call from SEGMENT to the transfer address SUB2 in segment
2 of overlay 3 is:

BRTJ ($)suBz, , *
SLJ *+3

03 DICT.

00 A

00 B

00 Cc

=)

00

ERRORS If errors occur during the loading of the overlays and segments, when using
the FORTRAN CALL, the job is terminated. The A register will contain the
contents of the parameters for the last LOVER call specified in the

OVERLAY

CALL ; SEGMENT

s statement.

6-16

(A) = n o] o o] s

47 41 38 23 4 (¢}

n = Logical unit number
o = Overlay number
s = Segment number

The contents of the A register is written on OUT together with one of the
following messages:

READ PARITY ERROR

LUN OUT OF RANGE

USE OF TOO MANY LUN

RECORD NOT ON THIS LUN

ILLEGAL SEQUENCE

I

OUT OF BOUNDS LOAD

COMPASS CALL The LOVER subroutine, which keeps a record of the last overlay and segment
loaded from each unit, must be in storage as a part of the main subprogram.
LOVER must be declared an external symbol to the main program in order for
the SCOPE loader to load LOVER from the library tape and link it to the main
program at the time the overlay tape is prepared. LOVER is called during
program execution when an overlay or segment record is to be loaded from the
overlay tape. LOVER does not execute the overlay or segment; it only calls it.

During execution of the overlay program, any residual tape beyond the double
end-of-file marking the end of the overlay tape may be put to other uses.
Therefore, when LOVER is entered, the overlay tape must not be positioned at
the end of recorded information.

CALLING

SEQUENCE The following calling sequence is included in a COMPASS subprogram to load an
overlay or segment:

a CALL LOVER

a+l n o] o] o] S

47 41 38 23 14 0

a+2 (return point)

6-17

n = Logical unit number of the overlay tape
o = Overlay number
s = Segment number, S = 0 for the overlay

If LOVER has loaded the overlay or segment correctly, the A register is set

to zero; a bank return jump instruction to the transfer address of the overlay

or segment is placed in the Q register; return is made to the return point.
The transfer address is stored in the second word of the overlay or segment
record on the overlay tape.

Example:

The following macro definition could be used to specify calls to
LOVER:

LOADOV MACRO (N,V,S)

BRTJ ($)LOVER,0,$ LOVER

VFD A6/N,03/0,A15/V,09/0, Al5/8
EXT LOVER

ENDM

To load overlay 2 from logical unit 10, the following macro call
can be made:

LOADOV (10,2)

To load segment 2 of overlay 5 from logical unit 6, the following
macro call can be made:

LOADOV (6,5,2)

ERRORS If errors are encountered while loading the overlay or segment, the A
register contains one of the following error codes right justified.

Error Code

1

A non-recoverable parity error was encountered when loading
the overlay or segment record.

The specified logical unit number is not 1-49.

More than four logical units have been addressed in reading
overlay and segment records.

The overlay or segment specified in the calling sequence was
not on the specified logical unit.

6-18

6.4
FORMAT OF
OVERLAY TAPES

5 The overlay or segment specified in the calling sequence was
not consistent with the last overlay or segment loaded.
(Either rule 3 or 4 in Section 6.3 has been violated.)

6 An attempt was made to load an overlay or segment out of
bounds.

Each overlay tape is divided into files. The first file contains either one
record, consisting of the main program, or no records. The second and
remaining files are overlay files, the last of which is terminated with two
end-of-file marks. Each file contains an overlay record, and records for
associated segments. A single end-of-file mark precedes each overlay
record. All the overlays and segments for one program must be on no more
than four logical units, and no unit may occupy more than one reel.

The first record in each overlay file must be an overlay record and may be
followed by segment records referenced by that overlay. The overlays on
each overlay tape must be numbered in ascending order. Segments within
an overlay file must be numbered and ordered consecutively. All segments
of one overlay must be in one overlay file on one reel of one logical unit.

Loading information is contained in each overlay and segment record. The
binary information in a record need not be all for one bank. A particular main,
overlay, or segment may occupy any number of banks. In order to allow for
the reloading of the various parts of a main, overlay or segment into the
correct bank, the loader inserts 3600 control words in the record. The

control word for loading a part of any overlay, segment or main program,

n words in length, into a particular bank will be inserted within the record,
immediately preceding the n words to be loaded. The n words will be followed
by another control word for loading the next m words into another bank, and

so on, until the last two words of the record are the control words, IOTR 0,0.

The first six words of each record contain identification parameters for that
overlay or segment. These six words are in the following format:

word 1: 0 00000 0 $55SS

6-19

word 2: (A) OVREC tHtttt
47 17
or
(B} o] ttittt o] ttittt
47 41 23 17
words 3-6: 0 fwa(7) o} fwa(e)
0 fwa(s) 0 fwa(4)
0 fwa(3) 0 fwa(2)
0 fwa (1) (o] fwa(0)
47 38 23 14

ooooo is the overlay number

sssss is the segment number

OVREC is the BCD mnemonic

tttttt is an 18-bit transfer address

fwa(n) is the first word address of available storage in bank n at
the time the record is written.

If the record is a main record, word 1 is zero. If there are two transfer
addresses for the main record, word 2 type (B) is used. The first'transfer
address encountered by the loader occupies bits 41-24; the second transfer
address occupies bits 17-0. If only one iransfer address is encouniered, it
occupies bits 17-0, and is in the format for type (A) of word 2.

If bits 14-0 of word 1 are zero, the record is an overlay record.

All overlay and segment records contain the mnemonic OVREC in bits 47-18
of word 2.

Words 3-6 of each record contain 15-bit addresses in the upper and lower
address portions of each word. Each address specifies the last word
address+1 of any numbered common in a particular bank at the time the
record was written. For a non-existent bank the address contains zero.
The last word address+1 of numbered common is the same as the first
word address of available storage for a bank.

6-20

A typical overlay record might be composed as follows:

000 00006 000 00003 word 1
OVREC 123456 word 2
000 00000 000 00000

000 00000 000 00000 words 3-6
000 00100 000 00001

000 01234 000 17654

IOTW,C) 10000,100

100 words absolute binary subprogram

I0TW,C (2) 70000,300

300 words absolute binary subprogram

10TW,C 3) 60000,200

200 words absolute binary subprogram

— — —r
e —— N

IOTR (©) 0,0

IOTR (0) 0,0

This example is segment 3 of overlay number 6. The lower limits of available
storage for this segment are: (0)17654, (1)01234, (2)00001, (3)00100. The
record specifies loading 100g words into bank 1 beginning at address 10000,
300g words in bank 2 beginning at address 70000, and 2008 words into bank 3
beginning at address 60000. The transfer address for this segment is 23456
in bank 1.

6-21

LIBRARY PREPARATION -7
AND MAINTENANCE

PRELIB is the SCOPE routine which prepares and maintains library tapes.
A library tape may include:

Absolute binary programs

Relocatable binary programs

¢ Binary data

BCD data

Subroutine directories

e User defined information

® End of file marks

New libraries may be created by extracting records from up to nine old
libraries, and/or processing data in any one of five modes from one or
more input units. The old libraries may be the standard SCOPE library
(logical unit 70) or the auxiliary libraries (logical units 72-79). The input
units may be the standard input unit (logical unit 60) or a programmer
defined unit (logical units 1-49, or 62). The five modes for processing
input records are absolute binary, relocatable binary, BCD data, binary
data, or special.

Directories describe the relocatable binary records which follow them on
the library tape. The loader uses the information contained in the directory
to locate and load subroutines.

The first record of every library contains a table of contents and a label.
The table of contents, which describes each record on the tape, is used by
SCOPE to position the library tape and to locate directories. Although
auxiliary libraries are referred to by logical unit numbers 72-79 during
PRELIB processing, all library tapes contain logical unit number 70 in
the label; however, the labels may contain different names and edition
numbers.

The PRELIB routine may be used to:
List the table of contents of a library

Edit an existing library while inserting records irom an input unit

Prepare a new library from the old SCOPE library, auxiliary
libraries, and records from an input unit

7-1

71
INPUT/ OUTPUT

PRELIB processing consists of two phases. In phase 1, control cards are
read from the standard input unit and records are processed according to
the mode specified. Those records that can be fully processed before
reading another control card (absolute, relocatable, binary data, BCD data,
special) are written on the scratch unit, SO, as soon as they have been
processed. Directories, initiated by DIR control cards and terminated by
END control cards, are prepared and stored internally. A table of contents
is developed internally containing the name of each record and its mode.

When PRELIB encounters the FINISH control card, the run will be terminated
if it was a LIST run. If it was EDIT, the rest of the tape is copied onto SO.

If it is either an EDIT or PREPARE run, SO is rewound and the table of
contents of the new library is listed on OUT. If any errors are found during
phase 1 processing, the run is terminated. If no errors occur, phase 2 is
initiated. The new library tape will be created on logical unit 71, the label
will contain logical unit 70 and the name for logical unit 71. The first

record on S0 must be binary; the new table of contents plus the label is
appended to the first record and written on the new library.

According to their order and mode in the table of contents in storage,
records are copied from S0 onto 71, directories are copied from storage
onto 71 and end-of-file marks are written on 71 where specified. If a
record on S0 has been defined in phase 1 as repeated, when it is encountered
on S0, it is copied into a repeat table in storage. If it is too long for storage
it is written on S1. When the repeated record is called for in the table of
contents, it is written onto logical unit 71. Upon completion of the new
library tape, 71 is rewound and unloaded and control is returned to SCOPE.
An end-of-file mark is not written at the end of the new library unless
specified.

Only parity errors are possible during phase 2. When an unrecoverable
parity error occurs, the message PARITY ERROR will be written on OUT
after the table of contents listing; no further records will be written on 71.

All control cards to a PRELIB run are read from the standard input unit (60).
Column 1 of PRELIB control cards must contain a 7,9 punch; the balance is
free-field, except for imbedded blanks, which are significant. A control
statement must be contained on one card and is terminated by a period or
column 80. Comments, which may appear beyond the period, are ignored

by PRELIB.

om logical units 1-49, 60, and 62, irom

Input to PRELIB may be records 1o
it 70), and from auxiliary libraries (logical

the SCOPE library (logical uni
units 72-79).

Input records in absolute, relocatable, BCD data, binary data, and special
form must be indicated by the control statements, ABS, REL, BCD, BIN,

special. The records may follow the control statements directly on logical
unit 60. Records contained on a different logical unit (1-49, or 62), must
be specified by a UNIT control statement. UNIT may specify 60; if no UNIT
statement is used, 60 is assumed.

During a PRELIB run, the following information is written on the standard
output unit:

all PRELIB control cards
the new table of contents
error messages

MAP of absolute and relative records

7.2

RECORD TYPES The mode of transfer for records from logical units 1-49, 60, or 62 to the
new library on logical unit 71 must be specified by a mode control statement.
Other control statements define directories and end-of-file marks on the
new library tape.

In the following statements, name is entered in the table of ¢ontents to
identify the information following the control statement on the logical unit.
It may be up to 31 characters in length. If no name is specified, the name
of the first subprogram in the record is inserted in the table of contents;
if no subprogram name exists, blanks are inserted. For relocatable
binary records, the name from the IDC card is inserted in the directory
which contains the record.

RELOCATABLE
BINARY

RECORDS gRE L,name

REL specifies that the information on a logical unit is a single subroutine
in relocatable binary card form and should be written as one record on the
new library in a condensed relocatable form. REL may be used only within
the range of a directory. A DIR control statement must precede the first
REL control statement.

REL processes the single relocatable binary subroutine by placing the
information from the IDC, EPT, BLT, and EXT cards in the subroutine
directory tables. BRT, RBD, LAT, and TRA cards are read into storage
in card image format. When one TRA card is processed, the entire record
is written on S0; another control statement is read from the standard

input unit.

7-3

ABSOLUTE

BINARY

RECORDS gABS,name(location)
PRELIB links relocatable binary subprograms read from the standard
input unit or another logical unit and writes them on S0 as one absolute
binary record. An absolute binary record may originate at any absolute
location specified in the location field (in octal). If the location is not
specified, the absolute binary record originates at location zero.

ABS processes the relocatable binary subprograms by loading the RBD

card images as though the first subprogram began at the specified absolute
location and subsequent subprograms began where the preceding subprogram
terminated. The subprograms are linked by associating external symbols
with entry points within the program. When two consecutive TRA cards

are encountered, the linked subprograms are written as one record on S0.

Examples:
gABS,BOOT
This record, BOOT, is originated at absolute location zero.

EABS,LDR(MOOO)

This record, LDR, is originated at absolute location 14000.

BINARY
RECORDS gBIN,name

Binary information is transferred without alteration from the standard
input unit or another logical unit to SO. It is written on S0 as a single
binary record. The end of the data is indicated by a card with a word count
of zero.

BCD RECORDS [BCD,name
BCD information is transferred without alteration from the standard input

unit or another logical unit to S0. It is written on SO as a single record.
The end of the data is indicated by a blank card.

7-4

MACRO
DEFINITIONS

USER CONTROL
CARD

gMACRo

MACRO composes the system and library macro tables for COMPASS.
Macro definitions in COMPASS language are read from the standard input
unit or another logical unit. The first set of definitions is the system
macro table and is terminated by ENDSYS* following the last ENDM.

— . 4w e] .) TANTINQWD K e o] o rm Al a 13Te s aatr e o avas A A fdandhd nan
Immediately following the KNDUSYS™ card are ine 1iorary macro Geimiiions.

The table is terminated by an ENDLIB*. If there are no library macro
definitions, the ENDSYS* card need not appear.

When an ENDLIB* card is encountered, the entire table is written as one
binary record on S0 and control is returned to PRELIB.

Example:

IMACRO

NAME; MACRO (P1:Pgs - - - » Pp)
ENDM

NAMEy MACRO (P1:Pg> - - - » Py)
ENDM
ENDSYS*

NAMEg MACRO (P1:Pgs - - - » Pp)
ENDM
ENDLIB*

The user may add special routines to PRELIB. The special control state-
ment, 7 characters or less, must be added to the PRELIB list of control
statements. Input/output will be handled by PRELIB if jumps are made to
the proper routines with the correct parameters. If a special routine
results in one or more records on 71, the names and modes of the records
must be added to the table of contents.

7-5

DIRECTORIES

END-OF-FILE

gDIR,name

The DIR control statement indicates that a directory is to be inserted on
the new library tape, 71. A directory of all subsequent relocatable sub-

programs is constructed in storage until an END, DIR, or FINISH control
statement is encountered. Only relocatable binary subprograms may be

contained in a directory.

The directory name and mode are entered in the table of contents. The
directory is constructed in storage from tables or, during the processing of
IDC, EPT, BLT, and EXT cards, in the relocatable binary subprograms.
During phase 2 when a directory mode is encountered in the table of contents,
the directory is written on the new library tape, logical unit 71.

gEND,name

This control statement terminates the relocatable binary subprograms to
be included in the directory specified by the previous DIR control statement.
END does not result in a record on the new library tape.

Example:

gDIR,name

IREL,name
relocatable binary subprogram

gRE L,name

. 1. 1.

relocatable binary subprogram

gEND ,hame

gEOF,name
EOF specifies that an end-of-file mark is to be written on the new library,
logical unit 71. When the EOF control statement is read from the standard
input unit, the name and mode are entered in the table of contents in storage.
During phase 2 when an end-of-file mode is encountered in the table of
contents, an end-of-file mark is written on the new library tape.

End-of-file marks placed before each directory, allow SCOPE to skip files
to locate dirvecturies. If a lvader precedes a directory, the end-of-fiie
should precede the loader. End-of-file marks should not be used within the
directory.

7-6

7.3
CONTROL
STATEMENTS

PRELIB RUN

It is recommended that a library be terminated by two consecutive
end-of-file marks.

Control statements on the standard input unit may prepare a new library

tape, edit an old library tape or list a library table of contents. Records

can be repeated and different logical units may be specified to contain
input records. PREPARE, EDIT, and LIST are mutually exclusive within
a PRELIB job.

The parameter, libname-ee, in a control statement refers to the name in

the label of a library tape. The tape edition number, ee (1 to 99}, is optional.
For the SCOPE system library tape, logical unit 70, the name is *. LIB is
never used.

A libname beginning with an * means the current system library unit 70.
Any characters immediately following the * and before the next comma or
right parenthesis are ignored. PRELIB deletes leading blanks and fills in
trailing blanks so that all names are 32 characters in length, imbedded
blanks are counted.

The parameter, rec, in a control statement refers to an existing library
record which is to be transferred to the new library. When rec is numeric,
it specifies the ordinal of the record on the source library which is the
same as in the source library table of contents. When rec is alphabetic, it
specifies the name of a record listed in the table of contents of the source
library.

A range of record identifiers may be specified as recj-reck.

A PRELIB run may be PREPARE, EDIT or LIST; it begins with a PRELIB
control statement and terminates with a FINISH control statement. There
may be only one PRELIB run in a SCOPE job.

gPRELIB

Calls the SCOPE library preparation routine into storage and transfers
control to it.

gFINISH

Returns control to SCOPE after processing is completed.

7-7

COMMENTS

REPEATED
RECORDS

7
(9FINISH
L

L
L

om 1l
7
(9PRELIB
J30B,c,i,t |
(end-of-file
TFINISH |

{9
lli 1
pa]
IL
(ZPRELIB
gJOB,c,i,t

A comment card is ignored by PRELIB and printed on the standard output unit.

7
9 - -

In a comment card, the first non-blank character must be *.

The same record may be written in different positions on the new library by a
REPEAT statement.

’;REPEAT,name

name may be any record that has already been processed except an EOF or

DIR. To repeat aRELrecord, itmust appear in a completed directory. Two
records with the same name may not be in the same directory.

7-8

LOGICAL UNIT
FOR INPUT
RECORDS

@FINI SH

Vs

p: =
fl - 1 |
7
JDIR
gREPEAT ,LOADER
7
(QEOF
7
(gEND
/,L Il E
= |
i
o "
9 d

| (;ABS ,LOADER

L@EOF

A UNIT control statement specifies the logical unit, 1-49, 60, or 62, from
which input records will be read until the next UNIT control statement is
encountered on INP,

TUNIT,u

A control statement specifying mode, such as REL or ABS, is read from INP
before the input record is read from the specified logical unit.

7-9

7
{FINISH j

=1
=
=

relocatable binary subprogram |

JREL , BLKA |

JUNIT, 60]

f DIR]I

7ABS ,LOADER
(7EOF

ABS ,RES

gABS BOOT

UNT
/; T,5

L

ya
ya
7
LQPRELIB

;JOB,c,i,t

|
=i

During processing, PRELIB encounters the UNIT,5 control statement.

1)

2)

3)

4)

5)

6)

The UNIT,5 control statement indicates that input records are on
logical unit 5.

ABS,BOOT specifies that PRELIB is to read the next input record,
BOOT, in relocatable binary from logical unit 5 until 2 consecutive
TRA cards are encountered. BOOT is written on SO in absolute
binary.

ABS,RES specifies that RES is to be read from unit 5 and written on
S0 in absolute binary.

An end-of-file is indicated in the table of contents in storage.

ABS,LOADER specifies that the LOADER is to be read from unit
5 and written on SO in absolute binary.

A directory for the following relocatable binary subprograms will be
built in storage.

7-10

LISTING TABLE
OF CONTENTS

7) UNIT,60 indicates that input records are on the standard input,
logical unit 60.

8) REL,BLKA specifies that PRELIB is to read the next input record,
BILKA, a relocatable binary subprogram, from the standard input
unit until 1 TRA is encountered. BLKA is written on SO in re-

The table of contents of the named library tape is written on the standard
output unit. As many as 9 tapes may be listed in one run if one is *, the
SCOPE system tape.

?SLIST(libname, -ee,libname_-ee, . . .)

1 &
PRELIB considers the parameters as logical units 72-79 from left to right
in the statement. If a libname cannot be found, a message is typed on OUT.
(Messages and Diagnostics, Appn C.) If more than one tape with the same
name is specified, the edition numbers of all but the last in the list must be
specified. If this is not done, assignments must be made on the typewriter.
Examples:

TLIST(*,SASY1-8,BRT SCOPE,MACRO,SASY1)

PRELIB considers libnames to be logical unit numbers:

* 70
SASY1-8 72
BRT SCOPE 73
MACRO 74
SASY1 75

For logical unit number 75, PRELIB will choose the library named
SASY1 which has not yet been assigned a logical unit number.

If there is no mounted tape with BRT SCOPE in the label (including
the space) a message will be typed: 73 NEEDED

1JOB,777,DDSTON, 3
'Z)PRELIB
ZLIST(SASYI—I,SASYI—Z,*)

ZFINISH

7-n

The table of contents for SASY1-1, SASY1-2, and the SCOPE system
library are listed on the standard output unit.

EDITING EXISTING
LIBRARY A single library tape is edited by deleting, replacing or inserting records.
Auxiliary libraries may not be used.

EDIT is the first statement in the editing deck.

7

9EDIT (libname-ee)

Edit Example

7
9FINISH

(;REL,JACK
TyNI
(9 T,25
;DELETE(N -21,36,102-ROGER)

_________________ ¥ program ”
L H
JREL, SIN ! I

(;REPLACE(SIN)

-

y:
[I
/ relocatable binary program I‘
i
7REL, COBOL I
9
f 7 INSERT,STOPACK [
/7!7"\1'"1/7!7\ !
[LLLL 7Y
7PRELTB
9
gJOB,777,ocRE,8

7-12

The source library tape is the SCOPE system library.

1) The source library is copied onto SO up to and including SIOPACK and
the tape is positioned at the beginning of the record following SIOPACK.

2) The relocatable program, COBOL, is copied from the standard input

11T oniC SYU.

£

3) The source library is copied beginning with the record following
SIOPACK, skipping SIN, and the tape is positioned at the beginning of
the record following SIN.

4) The relocatable program, SIN, is copied from the standard input unit
onto SO.

5) The source library is copied onto SO beginning with the record following
SIN through record 101, skipping records 17-21 and 36. Records 102
through ROGER are skipped and the source library is left at the begin-
ning of the record following the one named ROGER (assuming that
ROGER comes after 102).

6) The relocatable binary subprogram, JACK, is then copied from logical
unit 25 onto SO..

7) FINISH indicates that the remainder of the source library is to be copied
onto S0. The new table of contents is listed on the standard output unit.
The new library is then copied from S0 and storage onto 71. Note that
if a directory is within the range of records to be copied, that the
directory is not copied, but that a completely new directory is built in
storage and written on 71 at the location specified.

The name of the new library will be the same as the source library with
the edition number incremented by one. An * is used if the SCOPE system
library is to be edited.

All records on the source library, except those replaced or deleted, will

be copied onto S0. Since the source library can move forward only, records
must be declared in the order in which they appear on the source tape.
During editing, old directories are updated by PRELIB.

The FINISH control statement terminates the editing deck; after it is en-

countered, the rest of the source library is copied onto S0. The new table
of contents is listed on OUT; then the new library is written.

7-13

Example:
Z)EDIT(LIBRARY-5)

The tape to be edited is named LIBRARY, edition number 5. The
new tape will be named LIBRARY, edition number 6.

DELETE specifies records, rec;, on the source library which are not to be copied;
all other records not to be deleted are copied.

Z,DELETE(recl,recz,recs—rec4, .. ,recn)

DELETE may be followed by control statements to insert any number of
records onto the new library to effect a REPLACE control statement.

Although an END control statement is not a record, it is indicated in the

source table of contents. To delete it from the source table of contents,
the record following it must be deleted.

Example:

EDELETE (1-4,COMPASS,17-FTN,PRELIB)

7
[

9R!:]]'_,,S]'.N

relocatable binary subprogram

While copying the source library on to S0:
1} Records 1-4 are skipped.

2) Records 5 to COMPASS minus 1 are copied onto S0.
3) COMPASS is deleted.

4) COMPASS plus 1 to record 16 are copied onto SO.
5) 17 to FTN are skipped.

6) FTN plus 1 to PRELIB minus 1 are copied onto SO.

7) PRELIB is skipped.

7-14

8) The source tape is positioned at the beginning of PRE LIB
pius 1.

9) Relocatable binary subprogram SIN is read from the standard
input unit, processed, and written on SO..

INSERT causes all records up to and including a specified record to be copied onto
S0. The source tape is positioned after the specified record. INSERT is
followed by control statements to insert any number of records on the new
library at that point.

TINSERT,rec;
If rec; is 0, any input records following INSERT will be copied before any
records are copied from the source library.
Example:
7ABS,BOOT
relocatable binary program
JINSERT,ALGOL

'gREL,SORT

relocatable binary subprogram

1) BOOT is written in absolute binary on S0.

2) The source library is copied onto SO up to and including ALGOL
and is positioned at the beginning of ALGOL plus 1.

3) The relocatable binary subprogram, SORT, is copied onto SO.

REPLACE copies records from the source library onto SO skipping one or more
specified records. The source library tape is positioned after the specified
records. DELETE may be followed by control statements to insert any
number of records on the new library at that point. There need not be a
one-to-one correspondence between tlie number of records deleted and inserted.

7-15

NEW LIBRARY

TAPE

PREPARE

EXTRACT

gREPLACE (rec;)

Example:
IREPLACE (A-14)
tuNIT,7

gREL,COMPASS

1) The source library is copied onto SO skipping records A-14.
The source library is positioned at the beginning of record 15.

2) The relocatable binary subprogram, COMPASS, is copied from
logical unit 7 to S0.

A new library is prepared by extracting information from existing libraries,
and including new records from a logical unit. When the FINISH statement
is encountered, information is taken from S0 and storage, the new table of
contents is written on OUT, and the new library is written on logical unit

71. During library preparation, records need not be declared in the order
of appearance on the library tapes. If a record is requested that has been
passed, the library tape will be rewound, then spaced forward to extract

the requested record.

instructs PRELIB to prepare a new library from the source libraries.

specifies the records on source library tapes which are to be transferred
to the new tape. EXTRACT can only be used with a PREPARE statement.

SEXTRACT,u(rec],recz, Ce. recn)
u is the logical unit number (*, 70, 72-79) or a source tape name specified

in the PREPARE statement. Either * or 70 may be used for the current
system library.

7-16

The records to be extracted from the specified library tape, recj, need not
be specified in the order of appearance on the library tape, since the library
tape can be rewound. If the same name appears in the table of contents twice,
the first will be chosen.

Example:
Z)EXTRACT,* (1-5,4,19-FTN,12)

Records 1-5 are copied onto SO from the system library; the
library tdape is rewound. Records 1-3 are skipped, record 4 is
copied, records 5-18 are skipped, records 19-FTN are copied.

The tape is rewound and records 1-11 are skipped then record

12 is copied. The library is positioned at the beginning of record
13 at this point. If FTN precedes record 19 on the tape, that tape
will be rewound after copying 19, then skipped forward to copy FTN.

/gFINISH
/97EXTRACT,70(12-200)
/JEXTRACT, 72 (FTN) |

(?EXTRACT,*(l-lO)
(79PREPARE L% (%, SASY1-4) ‘

7
(;PR.ELIB |

7308,777 ,ASTONE, 8

1) A new SCOPE system library is prepared from the current library
and SASY1-4.

2) Records 1-10 are copied from * to S0.
38) FTN is copied from logical unit 72 to S0.

4) Records 12-200 are copied from logical unit 70 to SO0.

7-17

1

2)

3)

4)

5)

7)

8)

(97 DIR,MATH DIRECTORY
J;REPEAT,LOADER
;EXTRACTJO(I-IO)

@PREPARE ,*LIB(MATH LIBRARY,*)

7
{QPRELIB

(;JOB,W? ,ASTONE, 8

l |

A new SCOPE system library will be prepared from the current
system library and the math library.

The first 10 records are copied from the current system library
onto S0.

The loader must have already been encountered on the system
e ; indication will be made o repeat it.

A math directory will be built in storage to include the following
relocatable binary records.

The relocatable binary input record, SIN, will be read from
logical unit 5, processed, and written on S0.

ARCTAN-COS is copied onto S0 from the math library.
The math directory is terminated by the END control statement.

EOF is written in the new library table of contents.

9) Records 11-TAPEND are copied from the current system library
to S0. Naming the last EOF in a library provides a convenient

way to read to the end of the library.

10) Library preparation is terminated with FINISH.

74

CHANGING PRELIB The SCOPE parameters, s; and sg, may be used to temporarily modify,
snap, or trace PRELIB. The program extension area may not be used
with octal corrections.

7
9PRE LIB (sl,sz)

7
(QFINISH

(ZLIST(*)

gRUN,1,1oo,7

TRA

focc

(occ

;PRELIB(C)

/;JOB,777 L,ASTONE , 2

75

TABLE OF

CONTENTS The library table of contents is in the first record on a library tape between
the bootstrap routine and the tape label. Records are written in binary and
numbered in the order in which they appear on the library.

Entries are in the order specified by the control statements used to prepare
the library. An entry may or may not describe a record in the library. If it
does, the mode, name, and record number are recorded. If the entry does not
describe a record, such as END which is not a record on the library, mode
and name are recorded. If the name is longer than one word, the first charac-
ter gives the number of words in the name.

The table of contents of each new library is listed on the standard output unit

during library preparation or editing. The LIST control statement may specify
that the table of contents of an existing library is to be listed.

7-19

Following is a sample SCOPE system library, SASY1, as listed on the

standard output unit.

70-0601,SASY1 04/22/64

Record Number Name Mode
1 BOOT ABS
2 RESIDENT ABS

[}

k=
(@]
o

4 DIR
5 CARPU REL
6 DR3649 REL
END
7 EOF
8 LOADER ABS
g DIR
10 SIOPACK REL
11 COMPASS REL
12 COMPASSX REL
13 FTN REL
END
14 EOF
15 LOADER ABS
16 DIR
17 0P REL
é7 i)POWER i%EL
END
88 EOF
89 DIR
90 DCP REL
END
91 EOF

7-20

[EGup el o V')

Rt

/ -y oy 0}’73,’)»/

7/

conblla d 7

K ,{O/[L‘é’fgj

z,ﬁtwvalﬂ"l F

(g

Record Numher Name
92
93 STD
94 PRELIB
95
96
97 TAPEND

END OF LIBRARY TAPE

7-21

Mode

DIR

REL
REL
END
EOF
EOF
EOF

APPENDIX SECTION

AVAILABLE EQUIPMENT TABLE A

This table is a record of the equipment at an installation. It may be altered temporarily in storage by
the AET statement (Sec. 2.6). The format of each word in the table is as follows:

h |io]| s sd cr sC a e u d
6 2 ! 6 9 6 2 3 6 7
47 41 39 38 32 23 17 15 12 6 0
h (octal) Hardware Type Mnemonic
01 magnetic tape unit MT
02-03 (reserved for

tape-like equipment)

04 card reader CR
05 card punch CP
06 line printer LP
07 paper tape station PT
10 typewriter TY
11 disc file DF
12 drum DR
13 CRT display TV
14 plotter PL
15-17 -

20 3682 Satellite

21 equipment associated with

Satellite 1 (SA)

22 equipment associated with

Satellite 2 (SB) defined within the

Satellite system

26 equipment associated with
Satellite 6 (SF)

27-57 —-

60-77 reserved for
installation use

A-l

i/o input-output capability of the unit

01 output
10 input
11 input and output

s SCOPE accessibility bit

0 unit is accessible to SCOPE \
{

1 unit is accessible only to Satellites. A
e ~ i
L\

PN \
. IR O AR\ S
sd is the ordinal of the unit driver. W b U»T AR v

cr is the ordinal (>0) of the unit controller.
sc Satellite-control-channel field used as follows:

If h = 21-26, sc = hardware type for the Satellite

If the equipment is capable of interrupting the 3600 asynchronously, sc = SCOPE channel

connection and e = SCOPE equipment number

When a unit is connected, sc = channel connection. (sc = 40B initially)

a availability

00 unassigned, available
01 unassigned, down

10 assigned to SCOPE
11 assigned to Satellite

e equipment code of the unit for the Satellite.
u the unit code.

d the ordinal (d>0) of the driver name.

A-2

MACRO DEFINITIONS AND
CALLING SEQUENCES

INTERNAL
CALIL36 MACRO (CC)
+ 63 CC*8
03 SENTRY
EXT SENTRY
ENDM

SCOPE call codes (CC) are as follows:

0 EXIT 16 SELECT
1 READ 17 REMOVE
2 WRITE 18 LIMIT
3 REOT 19 FREE
4 WEOT 20 TIME
5 BSPR 21 BOUND
6 BSPF 22 UNBOUND
7 REWIND 23 DATE
8 UNLOAD 24 LOADER
9 SKIP 25 LIBRARY
10 ERASE 26 MEMORY
11 MARKEF 27 HERESAQ
12 MODE 28 RELEASE
13 STATUS 29-63 Not Assigned
14 LABEL 64-4095 reserved for use of
15 SAVE individual installation
IOF MACRO (L,C,R,I,CC)
CALLS36 (CC)
control word address (C)
logical unit number (L)
STAR ((R),*-2)
interrupt address (I)
ENDM
STAR MACRO R,S)
IFT,EQ R,/*/,1
Call address (S)
IFT,NE R,/*/ 1
Reject address (R)
ENDM

zZ MACRO (CC,LX)
VFD A6/CC,A3/X,A15/1
ENDM

INPUT/OUTPUT

READ, WRITE, REOT, WEOT

Definition
READ
WRITE
REOT MACRO (L,C,R,]))
WEOT 2
IOF ((L),(C),(R),(D), 3])
4
ENDM
Calling Sequence
READ 1}
WRITE 2
k
REOT 63 3 8
WEOT 4
03 SENTRY
00 control word address
00 logical unit number
00 reject address
00 interrupt address

NOTE: The names of these macros are used for illustrative purposes, and may
be any acceptable alphanumeric identifier.

BSPR, BSPF, REWIND, SKIP, ERASE, AND MARKEF

name MACRO (L,R,I)
IOF ((1),0,(R),(1),CC)
ENDM

Calling Sequence

name 63 (CC)*8
03 SENTRY
00 0
00 logical unit number
00 reject address

interrupt address

The following mnemonics may be used to reference scratch and system units:

Mnemonic Logical Unit
SO 50
S1 51
s2 52
sS4 54
S5 55
S6 56
S7 57
S8 58
S9 59
UNLOAD
name MACRO
IOF
ENDM
Calling Sequence
name 63
03
pp
00
00
00
PP 0
0
RELEASE
name MACRO
CALL36
IFT,EQ
00
IFT,NE
40
STAR
ENDM

Mnemonic Logical Unit
INP 60
ouT 61
PUN 62
ICM 63
OCM 64
AcCC 65
LGO 69
LB 70
SCR 80

(L,R,I,P)

((L),(P),(R),(I),10B)

10B*8

SENTRY

release parameter
logical unit number
reject address
interrupt address

logical unit assignment is to be released after the
physical unit is unloaded.

logical unit assignment is not to be released after
the physical unit is unloaded.

(L,R,P)

(34B)

P,0,1

logical unit number
P,0,1

logical unit number
((R),*-1)

Calling Sequence

name 63 34B*8
03 SENTRY
p..0 logical unit number
00 reject address
pp = O dispose of the physical unit according to
previous specifications.
£ 0 rewind the physical unit and release the

assignment, but do not dispose of the tape.

MODE
name MACRO (L,R,U,F,D,DR)
CALL36 (14B)
STAR ((R),*-1)
logical unit number
VFD 023/0,A5/U, A5/F,A5/D, A5,DR
ENDM

Calling Sequence

name 63 14B*8
03 SENTRY
00 reject address
00 logical unit number
VFD 023/0, A5/U, A5/F, A5/D, A5, DR
RW 24B allow all legal operations
U {BY 22B bypass unit
(usage) (RO 2iB allow only input operations
F {BCD 7 set BCD recording mode
(format) | BIN 6 set binary recording mode
HY 13B 800 bpi
D HI 12B 556 bpi
densit LO 11B 200 bpi
(¥) oP 10B operator's option
{RV 30B read reverse
DR
(direction) 31B read normal
STATUS
STATUS MACRO (L,M)
CALL36 (15B)
IFT,NE M,/M/,1

Calling Sequence

name 63 13B*8
03 SENTRY
00 00
00 logical unit number

LABEL

LABEL MACRO (L,N,E,C)
CALL36 (16B)
00 location of name (N)
00 logical unit number (L)
00 edition number (E)
00 reel number (C)
ENDM

Calling Sequence

name 63 16B*8
03 SENTRY
00 location of name
00 logical unit number
00 edition number
00 reel number

SAVE

SAVE MACRO (L)

CALLS36 (17B)
0
- 00 logical unit number

ENDM

Calling Sequence

name 63 17B*8
03 SENTRY
00
00 logical unit number

B-5

INTERRUPT
SELECT

name

MACRO (F.D
CALL36 (20B)
IFT,EQ F,/1/,2
10 kk

00 1
IFT,NE F,/1/,2
00 kK

Z (F.D)
ENDM

Calling Sequence

name

REMOVE

name

63 20B*8

03 SENTRY

00 * %k

F interrupt address

interrupt on shift fault

interrupt on divide fault

interrupt on exponent overflow fault
interrupt on exponent underflow fault
interrupt on arithmetic overflow fauit

intoarrmimt on gtarace raferance fault
NLerIryupt On siérage reigrence iawit

1604 mode alert

trace mode alert

interrupt on illegal instruction fault
interrupt on operand parity fault
manual interrupt alert

MACRO (F)

CALL36 (21B)

VFD A6/F, 018/0
ENDM

Calling Sequence

name

63 21B*8

03 SENTRY
00 *ok

F 00

B-6

LIMIT

name MACRO

Calling Sequence

name 63
03
IOSR
00
00

BOUND

name MACRO
CALL36
XMIT
00
00
ENDM

Calling Sequence

name 83

a
ligaii

UNBOUND, EXIT, FREE, TIME,

name MACRO
CALL36
ENDM

Calling Sequence

name 63
03

(D,R,I)

(22B)

time (D)

reject address (R)
interrupt address (I)

22B*8

SENTRY

(seconds, milliseconds)
reject address
interrupt address

(LB,UB,R,])

(25B)

LB,UB

reject address
interrupt address

25B*8

SENTRY

lower bound, upper bound
reject address

interrupt address

DATE, HERESAQ

(CC)

CC*8
SENTRY

B-7

SPECIAL

LOADER
name MACRO
CALLS36
ENDM

Calling Sequence

name 63
03

LIBRARY

name MACRO
CALL 36
00
00
VFD
00
ENDM

Calling Sequence

name 63
03
00
00

AvAnaY
vViiJ

00

MEMORY

name MACRO
CALL36
VFD
00
ENDM

Calling Sequence

name 63
03
VFD
00

(30B)

30B*8
SENTRY

(L,R,NA,NU)

(31B)

reject address (R)

logical unit number (1)
A24/record number (NU)
record name address (NA)

31B*8

SENTRY

reject address
interrupt address
Tecord numbper
record name address

(B,LL,UL)
(32B)

06/0, B3/B, A15/UL
LL

32B*8
SENTRY

bank designator, upper limit
lower limit

B-8

SCOPE MESSAGES AND
DIAGNOSTICS

Messages are written to the operator on the operator comment medium (OCM), to the programmer
on the standard output unit (OUT) and standard punch unit (PUN), and to the installation on the account-
ing unit (ACC). Messages do not require any corrective action.

Diagnostics are indications of error conditions which require corrective action. They are written on

OCM or OUT, or both.

MESSAGES ON OUT

message

meaning

AET printouts

BEGIN JOB AT hhmm - ss

SCOPE c. xy

control cards except JOB, SEQUENCE,
ENDSCOPE

END JOB SEQUENCE xxxxxx DATE mm/dd/yy
TIME hhmm - ss ELAPSED TIME xx HRS
xx MIN xx SEC

end-of-file mark

JOB card image

t hh = hours 11 mm = month
mm = minutes dd = day
ss = seconds yy = year

The AET table is printed according to the AET
statement options.

The time is printed on OUT when no sequence
statement is present. T

To separate the control statements from the run
and identify the version of
¢ refers to a specific COSY tape.
x is the field update number.

y is the installation update number.

[A=2848

the system

SCOPE control cards are listed before being
processed.

Job termination message.ﬁ

Jobs on OUT are separated by an EOF record.

The JOB card is printed.

message meaning

SEQUENCE card image with words 8, 9, The SEQUENCE statement and job initiation time
and 10 preset to: AT hhmm - ss are written.
1 A page eject record separating runs.

The following example illustrates the messages and information written to the programmer on OUT
for a typical compilation and execution. According to the gFTN, L, A, X card, the FORTRAN source
program is listed, followed by the assembly language listing; next, a COMPASS program is assembled
and listed. All SCOPE control statements, times, MAP, and program output are listed. A memory
dump of the program, labeled and numbered common, and console scoop are forced because of an

illegal jump out of bounds.

SCOPE control statements hhmm - ss

SEQUENCE .8 AT 2023 - 45
JOB 52462, D D STONE,3
SCOPE 5.00
FIN.L.A X
(page eject)
FORTRAN Source Program Listing
5.1 PAGE NO. 1
PROGRAM A TEST RECOVERY OPTIONS
TYPE INTEGER B, SUM
COMMON/A/B(10)
DATA (B=10,16.4.,2,3,5.7,9,2,18)
PRINT 12
12 FORMAT (17H SUM = Bl + BI+1)
Do 7 1=1,9,2

SUM=B(1)+B(1+1)
PRINT 10.SUM,B(1),B(1+1)
10 FORMAT (315)

7 CONTINUE
CALL START
END
0 0 22002 ~—0u compiler diagnostic
(page eject)

Assembly Language Listing of FORTRAN Subprogram

1 DENT
PROGRAM LENGTH 00055
ENTRY POINTS
TESTRECX 00007
BLOCK NAMES
A 00012
EXTERNAL SYMBOLS
ELL,
Q8QDICT.
START
STH.
QB8QENTRY
00000 63 0 POOOOO EXIT. 63
20 0 X77777 20
00001 00 O 00000 DICT. ocT
00 0 00000
00002 63 2 56263 ocT
51 2 52367
00000 . A BLOCK
00000 COMMON
€00000 ORGR
0000C 00 O 00000 ocT
00 0 00012
00001 00 O 00000 0ocT
00 0 00020
00002 00 O 00000 ocT
00 0 0000k
00003 00 O 00000 ocT
00 0 00002
00004 00 O 00000 ocT
00 O 00003
00005 00 O 00000 ocT
00 © 00005
00006 0C 0 00000 ocT
00 0 00007
00007 OC © 000CO ocT
00 0 00011
00010 00 O 00000 ocT
00 0 00002
00011 00 O 00000 ocT
00 0 00022
P00003 ORGR
00003 FORMAT. BSS
ENTRY
00007 63 0 00000 TESTRECX UBJP
01 0 P00007
00010 63 0 PO0007 + 63
20 0 X00000 20
00052 75 O PO0050 SLJ
00 0 POO0O] 00
00053 50 1 00000 ENDING. ENI
75 0 PO000O SLJ
END
NULLS TESTRECX

{page eject}

TESTRECX

($)*

($)Q8QDICT.
0000000000000000
6325626351252367
10

B{10)

B
0000000000000012
0000000000000020
00000000000000Ck
0000000000000002
0000000000000003
0000000000000005
0000000000000007
0000000000000011
0000000000000002
0000000000000022

*

A
TESTRECX
($)*,,*

(§)*-1
($)Q8QDICT.

BEGIN.
DiCT.
0,1
EXIT.
TESTRECX

PAGE NO.

COMPASS Program

2/17F
IDENT
PROGRAM LENGTH 00004
ENTRY POINTS
START 00000
BLOCK NAMES
00031
7070 00012
LABELED 00012
ENTRY
00000 BLOCK
00000 COMMON
00000 7070 BLOCK
00000 COMMON
00000 LABELED BLOCK
00000 COMMON
00000 50 O 00000 START NOP
50 0 00000
00001 50 '} 00001 + ENt
50 2 00002 ENI
00002 50 3 00003 ENI
ok o 77777 ENQ
00003 63 0 00000 63
03 0 00076 03
END
NULLS START
(page eject)

SCOPE control statements
LoAD=~

RUN,2.1000.7,, FOR STANDARD QUTPUT UNIT LISTINGS
(page eject)

MAP

PROGRAM NAMES.

1 77722 TESTRECX 00055 1 77704 RECOV

1 77006 Q8QERROR 00163 1 75632 10P.

} 73746 10H. 01436

PROGRAM EXTENS.

NONE

LABELED COMMON

177710 A 00012 1 77672 LABELED
NUMBERED COMMON

1 00001 00031 1 00032 7070
ENTRY POINTS

0 00062 SENTRY 1 77731 TESTRECX
1 77704 START 1 75410 STH.

1 75635 0P, 1 77244 Q8QHIST.
177211 10S. 1 77503 IOR,

1 75470 RETURN. } 75602 ALLOCIN.

EXECUTION STARTED AT

{page cjcey)

Program Output

SUM = Bl + BI+]
26 10 16
6 b4 2
8 3 5
16 7 9
20 2 18
(page eject)

ED 00000
RECOV

START
THIS PROGRAM ATTEMPS A JUMP QUTSIDE ITS AREA OF
MEMORY, PRODUCING A BOUNDS FAULT TERMINATION.

0

€(5,5)

A(10)

B(10)

1.1

2,2

3,3

777778

0 .

62 } jump out of bounds

C A B

00004 1 77577 Q8QENTRY 00073 V77171

01154 1 75463 ALLOC. 00147 1 75404

00012

00012
1 75020 ELD. 177577
1 77600 Q8QENTRY 1 77651
1 77171 IOE. 1 77363
1 77006 Q8QERROR 1 75543
1 73746 10H.

2024 -17~—__ | FORTRAN run time printout

Cc-4

PAGE NO.

10S.
STH.

Q8QDICT.
EXIT
QB8QCHAIN
ALLOC.

00406
00057

Recovery Dump

RECOVER

(ZER0)=6300000101177707

A = 000000C00000000!

B1 = 00001
100001 o}
100006 5
100013 iz

*k ok
100025 24

7070
100032 0
100037 5
10H.
173746 o]
173752 4
173756 10
173762 14
173766 20
175376 1430
175402 1434
STH.
175404 o]
175410 L
175414 10
175454 50
175460 5h
ALLOC.
175463 0
175467 L
175623 140
175627 14k
10P.
175632 0
175636 L
177663 64
177667 70
LABELED
177672 0
177677 5
RECOV
177704 0
A
177710 0
177715 5
TESTRECX
177722 0
177726 4
177732 10
177736 b
177742 20
177746 24
177752 30
177756 34
177762 40
177766 Ly
177772 50
177776 54

END JOB SEQUENCE 8

(page eject)

ILL. BOUNDS INT

UBJP 6300000101175430
SAU60074207 S1U56174255
S$TQ21075257 ENI50000000

SBYT 6302000150774210
STA20075344 LDA12073746

SAU60606060 SAU60604000

XMIT 6317540L420177577
UBJP 6300000101177763
ENQO4000000 EN150000000

LDA12076156 AJP22075453
S1USE575466 ENA1000000!

ENA10077777 EN150000000
LDQ 16075602 RXTO0740615

BRTJ 6307777003000062
DV 125256060 SAU60606060

ENIS0100011 ENI50200047
STA 7710440020076173

SBLL6456062 63215163
ROP0O00O00005 ROPO0177662

00000000 00000020
10400000 00000074

UBJP 6300000101177767

00000000 00000012
00000000 00000005

XMIT0631777222 177577
LDL44601360 AJP22316020
XMIT 6317773120177577
BRTJ 6300000103175410
SLJ75077743 ROP00077723
LDA 7710440012177707
BRTJ 6300000103175410
LDA 7710440012177707
SLJ75077763 ROP00077723
BRTJ 6300000103 177704
SLJ7507735 EN1560000000
ROPO0O00000 ROPOO000C0O13
DATE 02/20/64

07400077 00000074
77777777 00000000

00000000 00000020
00000000 00000007

RXTO0741225 STA20075261
SIL57274255 S1U56374256

SBYT 6301170350574206
RXT00740653 RXT00740343
STA20074261 INA11000001

RSW00700000 ROPO000C000

UBJP 6300000101177753
XMIT 6317541020177577
BRTJ 6300000003177211

ALS05000017 EN150000000
STA20076062 STA20076153

EN150100075 EN150200017
UBJP 6300000101176770

ROPOO2 14343 SBLE6232163
FAD30000004 ROP00175624

ENI150300000 EN!50464003
SI1U56175632 SIL57275632

DV 125246021 63606060
ROPO0O0O00001 ROPO0177671

EN150100001 ENI50200002

UBJP 6300000101177652
SAU60223120 ARS01346060
XMIT 6317773120177723
SLJ75077741 ARS01077723
ENAT0000001 RXTOO741225
ADD14177710 RXT00741225
SLJ75077755 ARS01077723
77700000 LDA12177710
ENA10000002 RXTO0741225
SLJ75077770 ROPO0077723
BRTJ 6300000103 177600

TIME 2024 - 53
i e

hhmm - ss

00000007 00000000
60606060 00000000

00000000 00000004
00000000 00000011

SAL61074210 SAL61074356
SIL57474256 SI1U56574257
SBYT 6301170350574213
SBYT 6301170350574177
STA20075031 INA11000001

RALEASOAGRE RAPEASAAOEE
SAUDUUUUUUU RUruuuuuvuuu

FSB31614660 62633033
XMIT.6317541020175405
SAL61075434 LDQ16075422

SLJ75075447
ENI150000000

RAD70000442
SLJ75075467

EN150300000 ENI50464003
RTJ 77014L40075475606

SBLU65 16023 FAD30213145
77700000 1NF77000000

EN150500002 ENI50600052
S1U56375633 SIL57475633

QRS02000204 SAU60400107
ARS01606060 SAU60606060

00000000 00007000
00000100 00000074

EN150300003 ENQOLO77777

00000000 00000002
00000000 00000002

LBYT 6325626351252367
CONN 7403310534606060
S1U56177775 RTJ75477772
ROPO0177725 ROPO0O000000
STA20077776 ENI50000000
STA20077771 ENA10000075
ROP00177730 ROPO00O0O0000
77700000 ENi50000000
RAD70077776 INA11077765
SLJ75077775 EN!50000000
SLJ75077772 ROP00077723

ELAPSED TIME 00 HRS 01 MIN 07 SEC

IM = 7777777777771600

00000000
00000000

00000000
00000000
00000000

*k
00000000

nooonnnn
CCCC0CC0
*%

00000000

00000000
000C0000

00000000
00000000

SENTRY=6300000001000062 BOUNDS=00177777000 14600
Q = 77777771777777777 D = 0000000000000000 tR = 0000000000000000

B2 = 00002 B3 = 00003 B4 = 64003 B5 = 00001 B6 = 00000 MS = 0000000000000014
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000006 00000000 00000000 00000000 00000000 00020640 00000006
00000000 00000000 0O0GGO0C 00000000 G000GO00 00000000 000G000G0 GOGG0000
% *k *k ok *k % Fete ¥k *%k Fk
00000000 00000000 000000CO 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 GO00000C 00000000 00000000 0GO00000
00000000 0CO00000 00000000 00000000 0CO00000 0000000C 00000000 CO000000

SAL61074430 RXTOO740407
SIL57674257 EN150100010
EN150200021 EN150500000
SBYT 6300301750475262
SBYT 6300002250575162

1 4.4
SAU60606060 5AU60606000

XMIT 6317540420177577
SBYT 6300001750775410
LBYT 6300302250375405

ROP00076212 L1U52575457

EN150500002 ENI50600052
RGJP 6200000001075464

SAU60234346 AJP22222551

UBJP 6300000101175436
S1U56575634 S1L57675634

SAU60606060 SAU60606060

40000000 00000011
77777777 77700350

BRTJ 6300000003000076

00000000 00000003
00000000 00000022

CONN 7401073060606264
BRTJ 6300000003000062
ENATD000075 ENQOLO77743
BRTJ 6300000103175020
RXTO0741225 LIL53177776
ENQOL4077763 ENI150000000
LDA12077771 77700000
BRTJ 6300000103175020
AJP22377745 ENI50000000
ROP0000000C ROPOOO0O0C024
EN150100017 SLJ75077722

MAP

MAP is obtained after the program is loaded. It is printed on OUT. Following is the map from the
sample job. All information in the MAP is in octal.

Under program names, names declared in the subprograms are listed first, library subroutine names
follow. Similarly, entry point names such as TESTRECX and RECOV in the subprograms precede
library subroutine entry point names. The library subroutines Q8QENTRY, IOS., QS8QERROR,
etcetera, are called by the FORTRAN object program.

MAP

bank containing program or common block

first word address in specified bank

name of program
size of program
PROGRAMy NAMES /

| 77722 TESTRECX 00055 1 77704 RECOV 00004 1 77577 QB8QENTRY 00073 177171 10sS. 00406
1 77006 Q8QERROR 00163 1 75632 10P. 01154 1 75463 ALLOC. 00147 1 75404 STH. 00057
1 73746 10H. 01436

PROGRAM EXTENS.
NONE
hlock size of block

name
LABELED COMMEB/

177710 A 00012 1 77672 LABELED 00012

blank numbered common

NUMBERED COMMON size
1 00001 /00031 } 00032 7070 00012

entry point name

ENTRY POINTS -~

0 00062 SENTRY 1 77731 TESTRECX 1 75020 ELD. 1 77577 Q8QDICT.
1 77704 START 1 75410 STH. 1 77600 Q8QENTRY 1 77651 EXIT

1 75635 10P. 1 77244 Q8QHIST. 1 77171 IOE. 1 77363 Q8QCHAIN
177211 10S. 1 77503 IOR. 1 77006 Q8QERROR 1 75543 ALLOC.

1 75LL7£) RETURN. 1 75602 ALLOCIN. 1 73746 IOH.

entry point
address

C-6

RECOVERY DUMPS

Recovery dumps are taken for programs which do not terminate normally. The dump is written on
OUT. There are 4 computer words per line in octal with mnemonics for program locations, and 5
computer words per line in octal for common. An octal console scoop is always taken.

A recovery diagnostic (see diagnostics on OUT) is written indicating the cause of the abnormal job
termination.

One or more identical lines are omitted and are indicated by a row of asterisks.

Mnemonics in the console scoop are:

A A register
Q Q register
D D register
IR Interrupt register
M Interrupt mask register
B1-6 Index registers 1-6
MS Miscellaneous mode selections register
BR Bounds register

If the dump occurs with the interrupt system active, location zero contains an unconditional
bank jump (63.0) to the location or location +1, where the interrupt occurred.

c-7

Example:

Operand bank Upper/lower Instruction bank
setting when the indicator

interrupt occurred\ /

(ZERO) = 6300000101177507

Location where
setting when the interrupt occurred
interrupt occurred

Bank jump

SENTRY will contain the following:

Location of SENTRY
in bank O

63000000010 XXXXX

If the dump occurs during interrupt lockout mode, it is because of an 1/0 request causing abnormal
termination and SENTRY contains an unconditional bank jump to the location +1 of the I/O request.

When autoload recovery is used, (ZERO) and SENTRY contain zero.

The recovery dump for the typical job is shown.

67D

RECOVERY DUMP

recovery diagnostic

bank

RECOVER
UBJ 1P e
— ot [e e,
(ZER0)=6300000101177707

Console Scoop

A = 0000000000000001

SENTRY=6300000001000062

Q = 77777777777777177

L. BOUNDS__’IM/I()c:nion where interrupt occurred

B1 = 00001 B2 = 00002 B3 = 00003 B4 = 64003 B5 = 00001
C;j‘ ~numbered common with blank name
100001 0 00000000 00000000 00000000 00000000 00000000
100006 5 00000000 00000000 00000000 00000000 00000000
100013 12 00000000 00000000 00000000 00000000 00000000
*k Kok ok sk sed ¥ Fode Sede
100025 24 00000000 00000000 00000000 00000000 00000000
7070 =«—name of numbered common
100032 J 00000000 00000000 00000000 00000000 00000000
100037 5 00000000 00000000 00000000 00000000 00000000

10H . =—name of library subroutine

173746 0 UBJP 6300000101175430
173752 4 SAU6Q074207 S1U56174255
173756 10 STQ21075257 EN[50000000
173762 T4 SBYT 6302000150774210

no mnemonic due to
/illcgul instruction

176776 b (77777770 RAD70777777
177002 1153 MEQ66LO5160 62255060

QB8QERROR ~a——-name of library subroutine

177006 O ROP00000000 ROPO0O000000
177012 4 ROP0O0O521110 STA20077013
177142 134 SAL61077272 SAU60077250
177146 140 FSB31456051 SBLL66L6331
177152 144 ROP00606021 SAU60136060
177156 150 LDQ16077612 LOLLLO77777
177162 154 QJP23214343 DV 125246026

177166 160 ROP0O0O000005 ROP0OO177161

RXT00741225 STA20075261
SI1L57274255 SIU56374256

SBYT 6301170350574206
RXTOO740653 RXTO0740343

FAD30000000 ROPOOQéOOOO
AJP22312760 EQS6L4453163

STA 7720440020077121
XMIT 6307777720177123

ROP 00000017 ROPOO177124
ADLL5256060 SAU60606060
ADD14077561 STA20077564
INA11000014 STA2007754L2
INI51464460 SAU60606060

UBJP 6300000101177652

D = 0000000000000000

BOUNDS=0017777700014600

0000000000000000 M

IR =
= 00000

B6

00000000 00000000 00000000
00000000 00020640 00000006

00000000 00000000 00000000
Fke dede doke *%

00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000

SAL61074210 SAL61074L356
SIL57474256 SI1U56574257
SBYT 6301170350574213¢
SBYT 6301170350574177

SAU60606060 SAU60606060
EQS6LL56051 DV 125506060

LDA12077013 S1U56177073
LDA 7710440012077577

SAU60255151 SBLL651602L
ROP 00000000 ROP 00000000
$TA20077565 SAU60077212
ROP 00000006 ROP0O0177152
ROP 00000000 ROP 00000000
SAU60606060 SAU60606060

= 7777717777771600

MS = 0000000000000004

00000000 00000000
00000000 00000000 ~=-octal
00000000 00000000

Kok Kk Sk

00000000 00000000 X

*k

indicates one or
more lines of
additional information

SAL61075430 RXTOO740407

SIL57674257 ENI50100010 ,

EN15020002 1 ENIBOBOODOO":iz;ZziS
SBYT 6300301750L475262

00000000 00000000
00000000 0000000C

SSTHOOOOOOd RCPOO0O00O000
ROP 00000000 ROP0O0000012

LBYT 6300302250177006
NBJP 6302602660077023

no mnemonic due

to illegal instruction
DV 125632523 <6325gg%?‘“////

ROP 00000005 ROPOO1771

SAU60606050 SAU60136060

SAU60606060 SAU60606060

SAU60206060 SAUG0606060

ol

10S .~¢———— name of library subroutine

177171 0 ROPO000000O ROPO0000001
177175 L DVF 7710000127077574
177201 10 BRTJ 6300000003177006
‘7;571 400 SLJ75077552'ENI50000000

177575 LO4 ROPOO0O00O00O ARSO1000000

QB8QENTRY=e—name of library subroutine

177577 o] XMIT 6317540420177577
177693 L4 LDQ16077644 LDA12077600
17%667 70 ROP00000005 ﬁOP00177662

LABELED ~=—/1abeled common

177672 0 00000000 00000020
177677 5 10400000 00000074
RECQV <————COMPASS program
177704 0 UBJP 6300000101177767
A ~——labeled common
177710 0 00000000 00000012
177715 5 00000000 00000005
TESTRECX =—FFORT RAN program
177722 0 XMIT 6317772220177577

177726 4 LDLLL601360 AJP22316020

07430077 00000074
77777777 00000000

00010000 00000020
00000000 00000007

SAU 7710L440060077171
SBYT 6300001450777207
ROP0O0000000 ROP0O0000D00

ROP0O0000000 ROPOOéOOOOO
ROPO00O00000 RXT00777777

UBJP 6300000101177774
RXTOO740341 ARS01000017

ROPO0O00COOT ROPOO177671

ENI50100001 ENI150200002

UBJP 6300000101177652

SAU60223120 ARSO1346060

XMIT 6317773120177723

00000007 ©0000000
60606060 00000000

00000000 00000004
00000000 00000011

177732 10 XMIT 6317773120177577
177736 Th BRTJ 6300000103175410
177742 20 SL.J75077743 ROP0O0077723
177746 24 LDA 7710440012177707
177752 30 BRTJ 6300000103175410
177756 34 LDA 7710L440012177707
177762 L0 S1.J75077763 ROP00077723
177766 L BRTJ 6300000103177704

SLJ75077741 ARS01077723
ENA 10000001 RXTOO741225
ADDI4177710 RXTOO741225
SLJ75077755 ARS01077723

77700000 LDA12177710
ENAT0000002 RXTOO741225
SLJ75077770 ROP00077723

absolute octal

177772 50 S1.J75077735 ENI150000000
177716 54 ROPO0000000 ROPOO000013
END JOB<§E?UENCE 8

18 hit address to the beginning of the
subprogram or common
block. When a new name
is printed, the relative
address is reset to 0.

TIME 2031 - 51

ATE 02/20/6k4
octal address relative word contents

BRTJ 6300000103177600

ELAPSED TIME 00 HRS

ENA10000000 LLS07000052
LDA12077171 ENQOLOO0075
ROPO0000000 ROPO0O177204

ROPO0000000 ROP0OO000012

RXTO0741225 SLJ75077600
RXT00740565 LDA12100000

ARS01606060 SAU60606060
EN150300003 ENQO4077777

LBYT 6325626351252367

CONN 7L403310534606060
SI1U56177775 RTJ75477772
ROP00177725 ROPOO0O00000
STA20077776 ENI50000000
STA20077771 ENA10000075
ROP0O0177730 ROP0O0O000000

77700000 ENI50000000
RAD70077776 INA11077765
SLJ75077775 ENI50000000
SLJ75077772 ROP00077723

00000000 00007000
00000100 00000074

00000000 00000002
00000000 00000002

Ol MIN 07 SEC

DVF 7710000127077573
BRTJ 6300001503175635
DVI125515146 INI51604623

ROPOOOOOObO ROP0O0000100

ENA10077600 SAL61077601
RXTO0740341 STQ21100000

40000000 00000011
77777777 77700350

M)oooooaoooom);

00000000 00000003}
00000000 00000022

CONN 7401073060606264
BRTJ 6300000003000062
ENA10000075 ENQO4O77743
BRTJ 6300000103175020
RXTOO741225 LIL53177776
ENQOL077763 ENI50000000
LDA12077771 77700000
BRTJ 6300000103175020
AJP22377745 ENI50000000
ROPOOO00000 ROPOO000024L
ENIS0100017 SLJ75077722

}-— octal

(—e-octal

instruction
causes
interrupt

octal with
mnemonics

SNAP AND TRACE

SNAP and TRACE dumps are in the same format. The dump consists of a console scoop and a memory
dump written on OUT.

In the console scoop:
A and Q registers are printed in the requested mode.
Index registers and the D register are printed in octal.

Tnterrupt register, interrupt mask register and sense switches are printed in binary. Above
the interrupt registers are bit positions for reference purposes.

In the memory dump, 4-10 computer words appear per line depending on the mode requested; aster-
isks in locations indicate that the information is identical to the preceding line.

The example shows the program and the SNAP dumps. Note the location of the SNAP card images;
the first is printed after the LOAD card and the rest after the MAP.

When tracing is initiated, the following statement is written on OUT:
TRACING BEGIN AT 6 octal digit address - first word address of area to trace jumps -a;
Before each dump in the SNAP format, the message is written:

P = address of jump instruction (P) = contents of P

ard

SEQUENCE .9
JOB.91001,LARSON .2
SCOPE 5.00

COMPASS X, L

(page eject)

2/17F

PROGRAM LENGTH
ENTRY POINTS

BLOCK NAMES
00000
00000
00000
30001 50

50
30002 50
10
30003 20
50
30004 54
75
30005 10
50
30006 20
50
30007 54
75
30010 75
50
NULLS

(page eject)

LOAD,69

OCO0OO0O~0—~000—~0—0—-00

FIRST
HELP

1234

00000
00000
00000
00000
PC0000
00000
30000
P30003
77777
00000
P00000
00000
30000
P30006
P30001
00000

3001

30001
30006

00144
1234

ARY
FIRST

PG

STR

HELP

SNAP ,HELP,SNAPSSS ,+550,0C,1,7,3 RESLT

(page eject)

MAP
(page eject)

IDENT

ENTRY
BLOCK
COMMON
BSS
NOP
NOP
ENI
ENA
STA

ISK
SLJ
ENA

STA
ISK
SLJ
Sty

END
SPACE

AT 2031 - 5]

02/20/6k4

SNAPSSS

FIRST,HELP
0

SPACE (100)
300018

0,1
0

ARY, 1
300008, |
STR
777778
ARY, 1
300008, 1
HELP
FIRST

FIRST
PG

ED

PAGE NO.

€2

SNAP ,FIRST+1,FIRST,+7,M,1,2,1,PROG
SNAP ,HELP,/1234/,+143,0,1,6,1,NCOMM
RUN,2,2000,1

PROGA/identiﬁca.tion from SNAP card

Fi RST‘/.,entry point (name in {wa)

177767 0 BRTJ 6300000003000062
177773 4 ENA10077777 EN150000000

NCOMM=" identification

BRTJ 6300005003077757
BRTJ 6300012003077757

nBu,——common block name (name in fwa)

STA20147766
1SK54130000

EN150000000
SLJ75077774

100001 0 50100000 10000000 63000001 01177771 00000000
100006 5 00000000 00000000 00000000 00000000 00000000
100013 12 00000000 00000000 00000000 00000000 00000000
ek *k *% *¥ Kk Kk *k ok
100102 101 00000000 00000000 00000000 00043222 00000000
100107 106 00000000 00000000 00000000 00000000 00000000
100114 13 00000000 00000000 00000000 00000000 00000000
100121 120 00000000 00000000 00000000 00000000 00000000
*k *% *k EES ok K3 sk ok
100140 137 00000000 00000000 10000000 00065777 00000000
.~ identification
RESLT“

Console Scoop

A = 7777777777177777

B1 00000

bit position

SN765432109876543210987654321098765432109876543210
IR = 00

B2 00000

Q = 0000004400000001

00000000 00000000
00000000 00020640
00000000 00000000
*k *k Kk
00000000 00000000
00000000 00000000
00000000 00020637
00000000 00000000
*k *k *k

00000000 00000000

00000000
00000036
00000000
*%
00000000
00000000
00000030
00000000
Kk
00000000

1SK54130000 SLJ75077771
EN150000000

SLJ75077767

00000000
00000000
00000000
*k
00000000
00000000
00000000
00000000
*k

00000062

D = 0000000000013773 BR = 0017777700014600

B3 00000

B4 61533

B5 00001

bit position

S\.7654321098765

B6 00000

00000000
00000000
00000000
ok
00000000
00000000
00000000
00000000
*%

23464725

ook -

Kk

locations are
same (zeros)

SWITCHES 001000

143210987654321098765432109876543210

IM = 111111171111 111111111113111111111111001 110000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000

SNAPSSS"’prOgram name (name in fwa)
147766 0 00000000 00000000 00000000
** **, ok Kk ok Kk *k Ko
absolute octal
octal address
address relative
to name

in fwa

*k *% *Kk

*%

*x

KKk

Nk

OCTAL CORRECTIONS AND LOADER CARDS

The following example contained an illegal instruction. OCC cards were used to correct the program
and inserted into the binary deck. Note, the program extension area is included in the MAP,

All loader control cards (LCC) are written on OUT. These include BANK, MAIN, OVERLAY, and
SEGMENT cards.

SEQUENCE, 931 AT 1409 - 45
JOB,52462,DDS .5 _—entry point in USELESS

SCOPE 5,00 EF/ common block in USELESS

BANK, (1), HECT, /12347

OCC IN PROGRAM USELESS 00003+ 75000000F }Octa.l corrector cards are
OCC IN PROGRAM USELESS O00000E 77200000 20000004+75000000+ f inserted into a binary deck.

(page eject)
PROGRAM NAMES
1 77771 USELESS 00006

PROGRAM EXTENS. } Second octal correction is loaded
1 77767 USELESS 00002 f in program extension area.

LABELED COMMON
NONE

NUMBERED COMMON
1 00001 1234 00500

ENTRY POINTS
0 00062 SENTRY 1 77771 HELP

RUN, &, 1000, 1

Cc-14

MESSAGES ON OCM

Message Meaning Action
AET printouts AET table is printed
according to AET state-
ment options.
ENTER DATE MDY Initial autoload or computed Enter date

JOB ABANDONED

ssssss , iiiiii,

PAUSE xxXXXXX

RELEASED hh oo

UNLOADED hh oo
PRINT hh oo
PUNCH hh oo
PR/PU hh oo

nn eerr, = hh oo T

nn eerr, name of tape 32
characters = hh oo

nn eerr, (TAPE IS UNLABELED)

= hh oo

SCOPE INITIATION TYPEOUT

ENTER DATE MDY

time is later than midnight.

Job is terminated because
of control statement errors
on INP.

New job. The first 6
characters of sequence card
and JOB identification are
typed.

A pause was requested
before this job.

hh oo is released.

Physical unit hh oo is
unloaded. Tape is to be

saved and has been unloaded.

Identifies a numbered unit.

Identifies a named unit.

Identifies an unlabeled unit.

M month, D day, Y year, 2 digits each

T nn = logical unit number
ee = edition number appearing

in label, or blank

rr = reel number

hh = hardware type mnemonic

0o = AET ordinal of unit, within
hardware type

C-15

Any legal operator
statement. A period means
continue with next job.

ENTER TIME HHMMSS. MARK BY JK1
HH hour, MM minute, SS second, 2 digits each
Operator types in time; when clock reaches selected second, operator presses jump key 1.
uu eerr, = hhoo
uu logical unit number
ee edition number
rr reel number
hh hardware type
00 AET ordinal within hardware type (octal)
SET STOP SWITCH x ON FOR SCR=hhoo
Operator sets requested stop switches.
Programmer I/O declarations (same format as for standard unit declarations)

Program output on OCM

Example:

ed in by the operator
ENTER DATE MDY 021964
~

ENTER TIME HHMMSS, MARK BY JK1 144315

70 0201, = MT20
65 01, = MTo02
61 01, = MTO03
SET STOP SWITCH 1 ON FOR SCR MT01

60 01,= MTO7
1 , DDSTON,
69 01,= MT04

RELEASED MT04
01 02, (TAPE IS UNLABELED) =MT11
45 15, THIS LABEL IS 32 CHARACTERS LONG=MT07
UNLOADED MT11

TY N A TN W oreve s

UNLOADED MTO07

C-16

AET LISTING

The AET listing on OCM or OUT can be obtained by entering the statement AET, , or AET, ,OUT, on
. -,
either OCM or INP. é/ -
2 2N p(/‘ v
N
Example: | ‘/{ AR

I3
o

AET 001 0261000400000200
AET 002 0271000400000400
AET 003 0271000400000600
AET 004 0271000400001000
AET 005 0261000400001200
AET 006 0261000400001400
AET 007 0261000400001600
AET 010 0261000400002000
AET 011 0271000400002200
AET 012 0261000400002400
AET 013 0261000400002600
AET 014 0261000400003000
AET 015 0261000400003200
AET 016 0261000400003400
AET 017 0261000400003600
AET 020 0271000400000000
AET 021 0541020000660203
AET 022 0541020000660403
AET 023 0731020000120002
AET 024 2063000000120001

MESSAGES ON ACC

Message Meaning

END JOB SEQUENCE xxxxxx DATE mm/dd/yy Job termination message.
TIME t+ hhmm - ss ELAPSED TIME xx HRS xx

MIN xx SEC
BEGIN JOB AT hhmm - ss Time is printed on ACC when no sequence statement
is present.t
JOB card image The JOB card is printed.
SEQUENCE card image with words 8,9, and The SEQUENCE statement card image and job
10 preset to: AT hhmm - ss initiation time are written.
1 hh = hours mm = month
mm = minutes dd = day
ss = seconds yy = year

c-17

MESSAGES ON PUN

Message

Meaning

end-of file mark

SEQUENCE, ssssss 00. . . 0
(80 character record)

DIAGNOSTICS ON OuUT

Diagnostic

Separator for punch tape at the end of the job in
which unit 62 was used.

Separator for punch tape at beginning of each job
which requires unit 62. This record is binary.

Condition Action

CONTROL STATEMENT
FORMAT ERROR

CONTROL STATEMENT
REJECTED

ERRORS IN LOADING I/0
DRIVERS

ERRORS RETURNED -
LOADING NOT ATTEMPTED

ERRORS IN LOADING
OPERATION

FILE I/O OR DATA ERROR

TIME LIMIT EXCEEDED

a) Ilegal BCD character on a Correct the illegal field.
control card.

b) Illegal equivalence declaration.

c) Illegal logical unit number in
the FILE LOAD or EQUIP card.

d) Tllegal parameter on RUN card.

Statement out of sequence. Check control cards for proper
Illegal character on an ENTRY ordering.

POINT NAME card.

Loading errors detected when Consult loader diagnostics and
loading drivers. correct I/0 driver routines on
library tape.

Compiler errors in the job before Correect compiler/assembler

this loading operation was at- errors.
tempted. The LOAD statement
precedes this message.

Loader returned errors. Consult loader diagnostics.
I/O error in FILE statement Check data to be filed.
or illegal control statement

within data to be filed.

Time Limit exceeded while Extend specified time limit.
reading a control statement.

c-18

Diagnostic Condition Action

TAPE READ ERROR ON INP 1) Parity errors on control Check if program read all of
card read. (May be a BCD data.
record.)

2) Parity errors on binary
record when skipping.
TRA =0 Transfer address after loading Provide a transfer name.
is zero. No transfer name
provided on TRA card (generated
by COMPASS END cards). Job is
abandoned.

RECOVERY DUMP DIAGNOSTICS

Diagnostic Condition

BAD SENTRY CALL Entry to SENTRY through a jump during interrupt mode, not
necessarily through a call

CWA ILLEGAL Control word address is zero

EOF ON SYST UNIT Attempt to backspace past end-of-file on systems unit or read past
end-of-file on INP

EOT OP. - ILLEGAL REOT/WEOT request used as first operation on unit

ILL. BOUNDS INT Illegal bounds interrupt

ILLEGAL DENSITY Specifying illegal density, e.g., hyper on 606

ILLEGAL INSTR. Illegal instruction

ILLEG LABEL CALL Illegal LABEL request, e.g., labeling a scratch tape; or edition
number or reel number too large

ILL. MEM, MACRO Illegal MEMORY request, e.g., setting limits in an illegal bank

ILLEG MODE CALL Illegal MODE request, e.g., specifying contradictory modes within a
call

ILL. USE OF UNIT Ilegal use of unit, e.g., a label macro reference to a unit which is
not a tape

INTERNAL REJECT Hardware problem, see 3600 Reference Manual, Appendix II

c-19

Diagnostic Condition

INT. ADDR ILLEG Interrupt address is 0 or -0

INT, ADDR. = 0 Interrupt address of a BOUND, SELECT, or LIMIT request is zero
INT. FEATURE BAD Interrupt in SELECT request is illegal (0 or > 15)

L.U.N. ILLEGAL Logical unit number illegal, negative, zero, or greater than 80

MACHINE OR SYSTEM ERRCR SCOPE equipment tables destroyed; machine or equipment
FROM (5 digit address within malfunction

SCOPE)

MEMORY REFERENCE A reference has been made to a non-existent bank

NO WRITE ENABLE Trying to write on a tape with no ring

OPERAND PARITY Hardware problem, see 3600 Reference Manual, Appendix I

OPERATOR TERM. Operator terminated job with an operator statement on OCM or
recovery autoload

PRINT LIMIT Print limit specified on RUN card exceeded

REJECT ADDR = 0 Reject address must be specified

TIMESUP Time limit specified on JOB or RUN card exceeded

SNAP/TRACE DIAGNOSTICS

Tf an Avn

e e Te) sl
4l dat viLvL UL AL

curs while processing SNAP or TRACE cards, the foilowing message is written on OUT
followed by the card image.

CARD Yyy lTRACEIuAu\UR AT COLUMN xxx mmmmmmmm

yyy number of card

XXX column being processed when error was detected

mmmmmmmm diagnostic listed below

Diagnostic Condition

BIG NUM Octal value more than 6 digits
BIG PAR Parameter greater than 4096
EXC CARD Insufficient information on SNAP or TRACE card

C-20

Diagnostic Condition
FWA FWA exceeds LWA
ILL. MODE Tllegal character in mode field
ILIL. OCT Tllegal character in octal field
ILL. PAR Tllegal character in parameter field (non-numeric)
ILL SLSH Siash appears illegally
LOC MEM Location references non-existent memory
LOC1 OCT Initial location is absolute octal
LOC1 REL Relative location with no preceding name
1L.OC2 OCT 1.OC2 absolute octal
NO LOC2 No LOC2 on TRACE card
NO LWA No LWA
NOT LOAD Name not in loader tables
REL ERR Relative address with no preceding name
1LOC1 BIG LOC1 greater than/equal to LOC2 on TRACE card

All loader diagnostics are written on OUT in the following format:
LOADER ERROR Py Py P3

When the loader detects an error in the loading operation, the diagnostic is written on OUT, and loading
continues. For example, after writing the checksum error diagnostic on OUT, the card containing the
error is processed as though the checksum was correct. The exceptions are the memory overflow
errors and too many overlay tapes which cause the loading operation to be terminated. When errors
are encountered during the loading operation, no library subroutines are loaded.

Pq is the last subprogram name encountered by the loader; or if the errors are on the library tape, P1
will be LIB TP, or blank. The values of P2 and P3 for each error are shown below.

C-21

P3

Condition

BANK

CARD SEQ

CHKSUM

COM LNG

CD TERM

g
Q
=3

FEW BRT

FEW LAT

ILL BYTE

ILL CHAR

ILL PNCH

LAT OV

Portion of BANK card containing

format error.

Col. 1 and 2 of current card.

Col. 1 and 2 of current card.

Name of common block.

Col. 1 and 2 of current card.

Suppressed.

Suppressed.

Suppressed.

Col. 1 and 2 of current card.

Col. 1 thru 8 of OCC card.

Col. 1 thru 8 of the OCC ecard.

LAT(T) .

C-22

BANK card format error.

Card out of sequence, e.g., LAT card
followed by EXT card.

Checksum error; Checksum on binary
card does not agree with computed

sm
checksum.

Common block length error. Labeled
common blocks differ in length or
multiple numbered common blocks in
one bank vary in length.

Previous card not terminated. On EPT
or EXT, the second card for a continued
name was not found.

An end-of-tape has been encountered in
writing an overlay tape.

Either the T portion of a BRT has made
a reference past the end of the BRT
table or the EXT entries exceed the
BRT entries.

Either the T portion of an LAT has
made a reference past the end of the
LAT table or the EXT entries exceed
the LAT emiries.

Illegal byte value in R field of RBD
card; byte 10. . . 0, which is not used,
was encountered.

A character which is not octal or blank
appears in a correction, or an illegal
relocation designator is used.

An illegal punch configuration appears
on an OCC.

The computed value of T, when entering
an LAT into the permanent loader tables
is greater than 4095,

Py

P3

Condition

LAT RNG

LIB TP

LOAD ADD

MD BANK

MD C BK

MD EPT

MD P.N.

MD TRA

OVERLAY

OV MEM

Address of attempted reference.

Suppressed.

Col.1and 2 of RBD card or col. 1 - 8
of OCC.

EPT name.

Name of common block.

Entry point name.

Suppressed.

Tllegal transfer name.

Overlay number.

Col. 1 and 2 of current card.

Cc-23

LAT range error; attempt to reference
SCOPE in an LAT string.

Library tape error. One of following
conditions encountered on library tape:
end-of-file
card # RBD, LAT, BRT, TRA
parity error

Tilegal load address on RBD or OCC
card. Byte for load address specified
either a fixed or decremented address
on RBD card. OCC load error may be
one of following:
Blank load address
relocation designator specifies:
decremented address
fixed address
numbered common

Multiply defined bank for EPT. Bank
specified for EPT on BANK statement
does not agree with bank assigned to
entry point.

Multiply defined common bank. Common
block has been assigned to two or more
banks by BANK statements or automatic
assignment of the block followed by a

DA
BANK statement.

Multiply defined entry point. Same
entry point name defined at two
addresses.

Multiply defined program name.
Subprogram name encountered more
than once.

Multiply defined transfer name. More
than two TRA cards contain same name.

Current overlay card violates overlay
rule.

Memory overflow. Not enough memory
available to assign block of common,
subprogram, or program extension.

Pa

P3

Condition

OVT MEM

PARAM

PARITY

SEC LIM

SEGMENT

SEQ NO

TAPE NO

UN COM

UN EXT

UN TRA

126 BLK

5 TAPES

Col. 1 and 2 of current card or col.
1 -8 of OCC.

A register parameter for current
loader call.

Suppressed.

Col. 1 thru 8 of OCC card.

Overlay number followed by segment
number.

Col. 1 and 2 of current card.
Requested tape number.

Col. 1 and 2 of RBD card or col. 1-8
of OCC.

External symbol.

Transfer name.

Col. 1 and 2 of current card.

Suppressed.

Cc-24

Memory overflow. Not enough memory
available for loader tables.

Parameter error. An illegal call to the
loader.
8=11 call after loader completed
previous load request.
S=10 or 00 call before loader completed
previous load request.
=10 or 00 and QU = 0.

Non-recoverable parity error on loading
unit or overlay tape.

Current value of load address outside
program section being corrected.
(program section is the portion of the
program referenced by a relocation
designator of + or 1-9,0 on OCC).

Current segment card has violated a
segment rule.

Sequence number on an EPT, BCT,
EXT, LAT or BRT is out of sequence.

Logical unit on LCC is out of range.

Undefined common reference. No
common block declared for byte value
oir RBD card or relocation field on
OCC card; or associated common block
resulted in a COM LNG error.

Undefined external symbol. Reference
to an external symbol not defined as
entry point to any subprogram loaded or
to any library subroutine.

Undefined transfer name. Symbolic
transfer name on one of the TRA cards
was never defined as entry point to a
subprogram.

More than 126 common block names
have been encountered in a subprogram.

More than 4 overlay tapes requested
when preparing overlay tapes.

PRELIB ERROR DIAGNOSTICS

When PRELIB detects an error, the diagnostic is written on OUT and processing continucs as though
the error had not been encountered. Exceptions are memory and table overflow errors, ILLEGAL BCD,

and ILLEGAL CONTROL CARD; these cause the job to be abandoned.

Message

Condition

Action

BLOCK LENGTHS UNEQUAL

CARD SEQUENCE ERROR

CHECKSUM ERROR

FEWER LATS THAN EXTS

ILLEGAL BCD

ILLEGAL BYTE VALUE

ILLEGAL CONTROL CARD

ILLEGAL LOAD ADDRESS

MD BANK

MEMORY OVERFLOW FROM
PROGRAM

MORE THAN 126 COMMON

Labeled common blocks of the
same name in programs of an
ABS record are not the same
length.

Card out of sequence.

Checksum on binary card does
not agree with the computed
checksum.

Fewer LATS than EXTS within a
subroutine.

Non-Hollerith character after
column one on control card. Job
abandoned.

Ilegal byte value in R field of
RBD card; byte 10, . . 0, which
is not used, was encountered.

Control statement illegal, or
name more than 31 characters,
or name as first parameter
(library name) on EXTRACT
statement instead of number in
tape designation field.

Byte for load address specified
a fixed or decremented address

on RBD card.

Multiply defined bank on EPT or
EXT card.

ABS or REL subprogram too
long. Job abandoned.

More than 126 common blocks
defined.

C-25

Make labeled common blocks the
same length.

Correct binary input.

Correct punched checksum.

Check for extra punches.

Check RBD card and IDC which

specifies byte length.

Check control cards.

Correct binary input.

Subdivide program

Reduce nunber of common blocks.

Message

Condition

Action

MULTIPLE TRANSFER NAMES
MULTIPLY DEFINED EPT
OVERFLOW FROM XXXXXXXX
TABLES

PARITY ERROR

PREVIOUS CARD UNFINISHED

SEQUENCE NUMBER WRONG

SUBROUTINE NOT ON TAPE

UNDEFINED COMMON BLOCK

UNDEFINED EXTS

DIAGNOSTICS ON OCM

Diagnostic

More than one named TRA card.

Entry point name already defined.

Directory or loader tables too
long. Job abandoned.

Parity error in reading or
writing a unit used by PRELIB.

Previous EPT or EXT card
incomplete.

EPT, EXT, BCT, or LAT card
out of sequence.

Name or record number in
DELETE, INSERT, REPLACE,
or EXTRACT statement not on

Replace extra named TRA cards
with unnamed TRA.

Probably an extra subroutine in
ABS record.

Reassemble PRELIB with
expanded tables.

Remake binary input, or change
tape reels on 71 or 50.

Correct binary input.

Correct binary input.

Check source library tapes.

tape, or tape spaced beyond record.

Relocation byte on RBD card
refers to undefined common

Undefined external symbols in
an ABS record.

Condition

Correct binary input.

Probably a subroutine is missing.

Action

BOUNDS REJECTED.
AUTOLOAD

CANCELLED hh oo

CANNOT ASSIGN uu=hh oo

Perhaps a machine error.

Attempted release or unload
cannot be accomplished on unit
hh oo.

No unit containing a blank label

is available for output. 00 may
be biank.

C-26

Autoload to try again.

Mount a tape with blank label or
unlabeled and give EQUIP state-
ment in the form: EQUIP,uu=MToo.

Mount tape with blank label. Type
EQUIP, uu=hh o0; 00 is unit on
which tape was mounted.

Diagnostic Condition Action

CANNOT FIND REQUESTED A NEXT,C was issued; job When type-in light comes on,
JOB containing sequence C cannot respond with:
be located. Period to reprocess

abandoned job, or
NEXT for another job.

CONTROL STATEMENT Tllegal BCD character on ICM Correct illegal character

FORMAT ERROR or illegal equivalence declaration.
declaration.

PRESS AUTOLOAD Equipment tables have been Autoload.
destroyed.

SCR ORDINAL TOO LARGE No blank labeled tapes on bank Press GO to continue, or restart

FOR RECOVERY zero. SCR was assigned to a with a blank label tape on a unit
tape on bank 1. on bank 0.

SCOPE PARITY Parity errors on reading Press GO to run with errors, or
RESIDENT or BOOT from system set A # 0 to try three more
library tape. reads.

STATEMENT UNINTELLIGIBLE Illegal statement. Check spelling, punctuation, etc.,

and retype statement.

nn BAD Malfunction on tape nn or label Call Customer Engineers to check
parity error. Job abandoned. unit nn.

nn eerr, NEEDED 2 Either,

Tape with specified label is Mount or ready tape containing
nn eerr, name of tape not mounted or not ready; or specified label.

NEEDED Multiple tapes with the specified Type in: EQUIP ,nn=hhoo; oo is

label are available. unit containing needed tape.

nn eerr,(TAPE IS UNLABELED) Unlabeled tape specified in a Type in: EQUIP nn=hhoo; oo is

NEEDED control card on INP, unit containing needed tape.

TROUBLE ON hh oo First reference to assigned unit Operator must reassign the unit.

impossible (EQUIP statement
referenced non-existent unit) .

PUT RING IN hh oo Blank labeled tape with no write ~ Operator must insert the ring and
enable ring. Computer stops. press GO.

60 ,NEEDED System cannot locate standard Check physical tape drive contain-
input tape (logical umit 60) . ing INP for ready status. Also

check that no other tapes are avail-
able to SCOPE with identical
standard input label. Then, type:
EQUIP,60=HIoo, oo is the unit on
which INP is mounted.

c-27

AUTOLOAD RECOVERY

Autoload recovery may be used by an operator at any time to terminate a running program abnormally.

SCOPE reads the system scratch record indicated by the ordinal set in the stop switches. SCR contains
enough information to produce the recovery requested on the RUN card. If the checksum is proper, the
system is intact(I). Otherwise, the system is not intact(Il) .

If the recovery dump is to be on equipment other than tape, manually interrupt SCOPE during the
requests for tapes to be unloaded. When the TYPE-IN light comes on after unloading all programmer
tapes, enter an EQUIP statement to define 61 as non-tape.

I. SYSTEM IS INTACT (SATELLITE MODE)

Diagnostics

Condition

Action

65=SA01

WHERE IS LAST 60 |
WHERE IS LAST 61

WHERE IS LAST 62

UNLOAD TAPE NO.

WHICH JOB NEXT

ACC is assigned to paper tape
punch on the Satellite.

SCR has been found intact. The
following messages are to
locate the most recent reels of
the standard units.

All standard units have been
assigned. Message releases all
programmer and scratch tape
units in use at autoload time.

Recovery dump taken. INP is
positioned at point where last
program ceased reading.

C-28

None

Type in: a 1 or 2-digit ordinal

of tape assigned to requested
logical unit at time of this recovery.
This is obtained from the SCOPE
initiation typeout: if 61 01, = MT03
is in initiation typeout, answer with

A 92
03 or 3.

If requested unit was not assigned
during this job or was assigned to
a unit which is not magnetic tape,
a space followed by a carriage
return is sufficient,

Type in: a 1 or 2-digit ordinal of
a tape to be saved. This message
is repeated until there is a blank
and a carriage return. All tapes,
1-59, assigned within this job
should be unloaded.

Follow with a job sequencing
statement:

NEXT

ENDSCOPE

REPEAT

Repeat an AET statement given
during this job. Reassign any
non-tape equipment for standard

units given during this job.

Example:

70 1101, = MT 20
61 01, = MT 03
SET STOP SWITCH
60 03, = MT 12
0004 ,LLSLE!,
01 01, = MT 15
71 01, = MT 16
UNLOADED MT 16
60 O4, = MT 14
0005 ,DMKURN,
05 O1,FTN COSY
69 01, = MT 12
WAITING FOR INP
60 05, = MT 12
0006 ,EFJONE,
60 06, = MT 14
0007 ,GHJONE,
60 07, = MT 12
0008 ,1JJONE,
60 08, = MT 14
0009 ,KLJONE,
60 09, = MT 16
0010 ,MNJONE,
07 , = CP 01
69 01, = MT 12
CANNOT ASSIGN 43

L3 01, = MT 12
CANNOT ASSIGN 25

25 01, = MT 05

65 , SA 01
WHERE IS LAST 60
WHERE IS LAST 61
WHERE IS LAST 62
UNLOAD TAPE NO.
UNLOAD TAPE NO.
UNLOAD TAPE NO.
WHICH JOB NEXT

0011 ,OPJONE,

ON FOR SCR

MT LOOK.

MT 01

= MT 05

Sequence job #10

Point of AUTOLOAD recovery

Sequence job #10 was abandoned
and job #11 was executed.

c-29

SYSTEM IS INTACT (NON-SATELLITE MODE)

Diagnostics

Condition

Action

WHERE IS LAST 60

WHERE IS LAST 61

WHERE IS LAST 62

WHERE IS LAST 65

UNLOAD TAPE NO,

WHICH JOB NEXT

SCR has been found intact. The
following messages are to locate
the most recent reels of the
standard units.

All standard units have been
assigned. Message releases
all programmer and scratch
tape units in use at autoload
time.

Recovery dump has been taken.
INP is positioned at the point
where the last program ceased
reading.

C-30

Type in: a 1 or 2-digit ordinal of
tape assigned to requested logical
unit at time of this recovery. This
is obtained from the SCOPE
initiation typeout: if 61 01, = MTO03
is in initiation typeout, answer with
03 or 3.

If requested unit was not assigned
during this job or was assigned to
a unit which is not magnetic tape,

a space followed by a carriage
return is sufficient.

Type in: a 1 or 2-digit ordinal of
a tape to be saved. This message
is repeated until there is a blank
and a carriage return. Ali tapes,
1-59, assigned within this job,
should be unloaded.

Follow with a job sequencing
statement:

NEXT

ENDSCOPE

REPEAT

Repeat an AET statement given
during this job. Reassign any
non-tape equipment for standard

P 100

units given during this job.

Example:
ENTER DATE MDY

ENTER TIME HHMMS

70 1201, = MT 20
61 01, = MT 02
65 01, = MT 11
SET STOP SWITCH
60 01, = MT 14
101 ,CDJONE,
102 ,EFJONE,
103 ,GHJONE,,
104 ,1JJONE,
105 ,KLJONE,
106 MNJONE,
07 , = CP 01
69 01, = MT 12
43 01, = MT 15

RELEASED MT 12
25 01, = MT 12
WHERE IS LAST 60

WHERE IS LAST 61
WHERE IS LAST 62
WHERE IS LAST 65
UNLOAD TAPE NO.

UNLOADED MT 12
UNLOAD TAPE NO.

UNLOADED MT 15
UNLOAD TAPE NO.

WHICH JOB NEXT

106 ,MNJONE ,
07 , = CP 01
69 01, = MT Ob
43 01, = MT 16
RELEASED MT Ok
25 01, = MT Ok

070164

S. MARK BY JK1 111500

]

12

15

REPEAT.

ON FOR SCR MT = 0]

c-31

x
%
)

Normal printout during execution
of an input reel.

Point of AUTOLOAD recovery

Sequence job 106 will be
repeated

ILSYSTEM IS NOT INTACT (SATELLITE MODE)

Diagnostics

Condition

Action

65 = SA01

WHERE IS LAST 70
WHERE IS LAST 60
WHERE IS LAST 61
WHERE IS LAST 62)

LEST OLD 60 BE
FORGOTTEN

ENTER DATE MDY

ENTER TIME HHMMSS. MARK
BY JK1

WHICH JOB NEXT

ACC is assigned to paper tape
punch on the Satellite.

SCR was not found intact. The
following messages are used to
locate the standard assignments
of tape units.

If the job in operation was part
of a priority input, this message
should be answered.

All standard units have been
assigned. Message releases all
programmer and scratch tape

units in use at autoload time.

Recovery dump has been taken.
INP is positioned at the point

A
where the last program ceoased

reading.

C-32

None

Type in: A 1 or 2-digit ordinal
of tape assigned to requested
logical unit at time of this
recovery. If unit was not tape,
not assigned or equivalenced,
enter space, carriage return.

Type in: Space, carriage return
if not a priority job. If priority,
enter tape number of previous
input tape whether or not it has
been unloaded.

Enter 6 digits, MMDDYY,

Enter time and set jump key 1 to

mark the second when clock should

be read.

Type in: A 1 or 2-digit ordinal
of tape to be saved. This message
is repeated until there is a blank
and a carriage return. All tapes,
1-59, assigned within this job
should be unloaded.

Redefine any non-tape standard
units. Re-enter any AET state-
ments previously given which
should remain in effect. Follow
with a job sequencing statement:
NEXT, REPEAT, ENDSCOPE.
Terminate input by period, car-
riage return, when all messages
have been entered. Messages may
be in any order.

Example:

65 , = SA 01
WHERE iS LAST 7020

WHERE IS LAST 60

m
»
m
w

LAST 613
WHERE 1S LAST 62

LEST OLD 60 BE FORGOTTEN15
ENTER DATE MDY 070164

ENTER TIME HHMMSS. MARK BY JKI
UNLOAD TAPE NO. 5

UNLOAD TAPE NO. 14

UNLOAD TAPE NO.

WHICH JOB NEXT NEXT.

JOB ABANDONED
CANNOT ASSIGN 61 = MT LOOK.

61 0101, = MT 05
0015 ,GHJONE,
0016 ,IJJONE,
0017 ,KLJONE,
0018 ,MNJONE,

07 , = CP Ol
69 01, = MT 16
43 01, = MT 03
25 01, = MT 16NEXT.

040000

C-33

SYSTEM IS NOT INTACT (NON-SATELLITE MODE)

Diagnostics

Condition

Action

WHERE IS LAST 70
WHERE IS LAST 60
WHERE IS LAST 61
WHERE IS LAST 62
WHERE IS LAST 65
ENTER DATE MDY
ENTER TIME HHMMSS, MARK

BY JK1

UNLOAD TAPE NO.

WHICH JOB NEXT

SCR was not found intact. The
following messages are used to
locate the standard assignments
of tape units.

All standard units have been
assigned. Message releases
all programmer and scratch
tape units in use at autoload
time.

Recovery dump has been taken.
INP is positioned at point where
last program ceased reading.

C-34

Type in: A 1 or 2-digit ordinal
of tape assigned to requested
logical unit at time of this
recovery. If unit was not tape,
not assigned or equivalenced,
enter space, carriage return.

Enter 6 digits, MMDDYY.

Enter time and set jump key 1 to
mark the second when clock
should be read.

Type in: A 1 or 2-digit ordinal
of a tape to be saved. This mes-
sage is repeated until there is a
blank and a carriage return. All
tapes, 1-59, assigned within this
job should be unloaded.

Redefine any non-tape standard
units. Re-enter any AET state-
ments previously given which
should still remain in effect.
Follow with a job sequencing
statement: NEXT, REPEAT,
ENDSCOPE.
period, carriage return, when all
messages have been entered.
Messages may be in any order.

L T L £ o Ty N, i,
Lerminate input vy

Example:
ENTER DATE MDY

ENTER TIME HHMMS

70 1201, = MT 20
61 01, = MT 02
65 01, = MT Ok
SET STOP SWITCH
60 01, = MT 14
101 ,CDJONE,
102 ,EFJONE,

103 _GHJONE,
104 , 1JJONE,

105 _KLJONE,
106 _MNJONE ,
07 , = CP 01
69 01, = MT 11
43 01, = MT 12
RELEASED MT 11
25 01, = MT 11

WHERE S LAST 70
WHERE IS LAST 60
WHERE 1S LAST 61
WHERE IS LAST 62
WHERE 1S LAST 65
ENTER DATE MDY

ENTER TIME HHMMS
UNLOAD TAPE NO.

UNLOADED MT 12
UNLOAD TAPE NO.

UNLOADED MT 11
UNLOAD TAPE NO.

WHICH JOB NEXT

JOB ABANDONED
107 ,ABMILL,
108 ,MNJONE ,
109 ,FINISH,
60 02, NEEDED

070164

S. MARK BY JKI

1 ON FOR SCR = MT 0l

20
4

2

L
070164
S. MARK BY JKI1

12

11

NEXT, 107

114500

120300

Cc-35

-

Normal printout during execution
of an input reel.

Point of AUTOLOAD recovery

Abnormal termination 2-26
Absolute binary records 7-4
Acceptable requests 3-3
ACC - see Accounting information, 1-5
Accounting information 1-4, 2-2
AET, entry description 2-22
format A-1
statement 2-21
ALDAP 2-15
ATLDAP options 2-15, 2-16
ALGO 2-15
ALGOL 2-15
Allowable EQUIP declarations 2-6
Alter AET entry 2-22
Areas of recovery dump 2-26
Autoload recovery C-28
Auxiliary libraries 1-3, 1-4
Available equipment table A-1

BANK statement 5-3
Bank assignment 5-10, 6-4
BCD records 7-4
BCT card 5-21
Binary cards 5-16

BCT 5-21

BRT 5-27

EPT 5-20

EXT 5-24

IDC 5-19

LAT 5-24

LCC 5-29

OCC 5-30

RBD 5-22

TRA 5-28
Binary card format 5-18
Blank labels 1-5
BOUND/UNBOUND request 3-17, B-T7
BRT card 5-27

Changing library tape 7-19
Charge number 2-2
Checksum 5-18

INDEX

Clock interrupt 3-18
COBOL 2-14
COBOL options 2-15
Comment card 7-8
Control statements
DELETE 7-14
DIR 7-6
EDIT 7-12
END 7-6
EOF 7-6
EXTRACT 7-16
FINISH 7-7
INSERT 7-15
LIST 7-11
PRELIB 7-7, 7-19
PREPARE 7-16
REPEAT 7-8
REPLACE 7-15
SCOPE 1-2, 2-2
UNIT 7-9
COMPASS 2-12
COMPASS call of overlay
COMPASS options 2-13

Compiled TRA 5-2

CORRECT statement 5-6
Correcting subprograms 5-13

Data fields 5-15
DATE request 3-20, B-7
Debugging aids 1-1, 4-1
Deck examples 2-28
Deck structure 6-4
Declarations
labeled tape 2-10
logical unit number 2-10
unlabeled tape 2-9
density 2-5, 3-6
equivalence 2-7
hardware 2-4
release 2-6
usage 2-5,3-6, B-4
DELETE control statement 7-14

Index-1

Density declarations 2-5, 3-6
Density types 2-5, 3-6, B-4
Diagnostics on OCM C-26
Diagnostics, loader C-21
Diagnostics

LOADMAIN 6-11, 6-13

on OUT C-18

prelib C-25

recovery dump C-19

SNAP/TRACE C-20
DIR control statement 7-6
Disposition of tapes 1-3
Dump parameters 4-1, 4-3

recovery 4-5

SNAP 4-1

TRACE 4-3

EDIT control statement 7-12

Editing library tape 7-12

END control statement 7-6

End-of-file card 2-27

ENDLIB* statement 7-5

ENDM statement 7-5

END REEL statement 2-2, 2-23
2,2

ENDSCOPE statement 1-2, 2-2, 2-27

INAUVQE chatarmant 75
ENDSYS* statement 7-5

Entry point name statement 2-3, 2-12, 2-18

EOF control statement 7-6

EPT card 5-20

Equipment assignment 1-5
declarations 2-3

EQUIP statement 1-5, 2-3

Equivalence declarations 2-7

ERASE request 3-5, B-2

Executing ohiect programs 2-25

EXIT request 3-22, B-7

EXT card 5-24

External interrupts 3-14

EXTRACT control statement 7-16

FILE statement 2-2

FILE END statement 2-2
FINISH control statement 7-7
Force bank 5-5

Format of overlay tapes
FORTRAN 2-14

FORTRAN, call overlays 6-14
FORTRAN options 2-14
FREE request 3-18, B-7

General macros B-1

Hardware declarations 2-4

types 2-4, A-1
Held requests and interrupts 3-12
HERESAQ request 3-22, B-7

ICM - see input comment 1-5
IDC card 5-19
Indirect interrupt select 3-15
Initiation typeout C-15
INP - see standard input, 1-5
Input comment 1-3
Input/output control 1-1
requests 3-1, B-2
INSERT control statement 7-15
interrupts
clock 3-18
external 3-14
internal 3-14
types 3-15

Job sequence number 2-1
Job stack 1-2
JOB statement 1-2, 2-1, 2-2
Job time limit 2-2
LAT card 5-24
Label
format 2-8
processing 2-8
request 1-5, 3-9, B-5
blank 1-5
tape 2-8
tape declaration 2-10
LCC card 5-29
LIB - see SCOPE library 1-5
Library 1-4
maintenance 7-1
preparation 1-1, 7-1
programs 2-12
request 3-20, B-8
LIMIT request 3-18, B-7
List AET 2-21, C-17
LIST control statement 7-11
List library contents 7-11, 7-19
LOAD statement 2-24
Loader, position 1-2

Index-2

Loader calls 5-7
cards 5-2, 5-17
control statements 6-1
diagnostics C-21
names 5-2
operations 5-1, 5-9
parameters 5-8
request 3-21, 5-7, B-8
Loader statements
OVERLAY 6-2
MAIN 6-2
SEGMENT 6-3
Loading from standard input 2-24
object programs 2-24
Loading overlays 6-13
Load-and-go unit 1-3, 1-4, 2-1
LOADMAIN diagnostics 6-11
diagnostics 6-13
statement 6-1, 6-11
Logical units 1-2
master 2-7
number declaration 2-10
Lower bound 3-17

Macro calling sequences B-1
definitions 7-5, B-1
MAIN loader statement 6-2
Map, memory 4-5
MARKEF request 3-5, B-2
Master logical unit 2-7
Master unit, status 3-7
Memory map 4-5
map indicator 2-26
request 3-22, B-8
Messages and diagnostics C-1
on ACC C-17
on OCM C-15
on OUT C-1
on PUN C-18
Minimum configuration 1-5
MODE request 1-5, 3-6, B-4
Monitor, SCOPE 1-1

Normal termination 2-26

Object programs, executing 2-25
Object programs, loading 2-24
OCC card 5-30

OCM - see output comment, 1-5

Octal correction cards 2-18, 5-1
OUT - see standard output, 1-5
Output comment 1-4
Output 1imit 2-25
OVERLAY
loading 6-13
loading statement 6-2
processing 1-1, 6-1, 6-5, 6-9
processing, FORTRAN 6-14
program, execution 6-9
tape 6-1

2

Parameters, dump 4-1, 4-3
loader 5-8
SCOPE 2-18
statement 1-2

PRELIB control statement 7-7,7-19

PRELIB diagnostics C-25
processing 7-1
PREPARE control statement 7-16
Prepare new library tape 7-16
Processing prepared overlay tape
Program
assignment 5-10
extension area 5-15
termination 2-26
Programmer identification 2-2
requests 1-2, 1-3, 3-1
units 1-3, 2-1
PUN - see standard punch output

RBD card 5-22

READ/WRITE request 3-2, B-2
Records, absolute binary 7-4
Records, BCD 7-4

Records, relocatable binary 7-3
Record types T-3

Recovery dump 4-5, C-7
Recovery dump, areas 2-26
Recovery dump diagnostics C-19
Recovery indicator 2-26
Release code 3-5, 3-6

Release declarations 2-6
RELEASE request 3-5, B-3
Release types 2-6

Relocatable binary records 7-3
Relocation factors 5-14
REOT/WEOT request 3-4
REPEAT control statement 7-8
Repeated library records 7-8

Index-3

REPLACE control statement 7-15 SEQUENCE statement 2-1, 2-2

Requests SKIP request 3-5, B-2
BOUND/UNBOUND 3-17, B-7 SNAP cards 2-19
DATE 3-20, B-7 dump 4-1
ERASE 3-5, B-2 SNAP/TRACE diagnostics C-20
EXIT 3-22, B-7 Special requests 3-20, B-8
FREE 3-18, B-7 Specify bank 5-4
HERESAQ 3-22, B-7 stack, job 1-2
input/output 3-1, B-2 Stacking requests 3-12
LABEL 1-5, 3-9, B-5 Standard input 1-3
LIBRARY 3-20, B-8 Standard label 2-8
LIMIT 3-18, B-7 Standard output 1-3
LOADER 3-21, 5-7, B-8 Standard punch output 1-3
MARKEF 3-5, B-2 Statements
MEMORY 3-22, B-8 AET 2-21
MODE 1-5, 3-6, B-4 BANK 5-3
programmer 1-2, 3-1 CORRECT 5-6
READ/WRITE 3-2, B-2 DELETE control 7-14
RELEASE 3-5, B-3 DIR control 7-6
Request REOT/WEOT 3-4 EDIT control 7-12
REWIND 3-5, B-2 END control 7-6
SAVE 1-5, 3-11, B-5 ENDLIB* 7-5
SELECT/REMOVE 3-15, B-6 ENDM 7-5
SKIP 3-5, B-2 END REEL 2-2, 2-23
special 3-20, B-8 ENDSCOPE 1-2, 2-2, 2-27
stacking 3-12 ENDSYS* 7-5
STATUS 3-7, B-4 entry point name 2-3, 2-12, 2-18
TIME 3-18, B-7 EOF control 7-6
UNLOAD 3-5, B-3 EQUIP 1-5, 2-3
Restrictionson EQUIP 2-6 EXTRACT control 7-16
REWIND request 3-5, B-2 INSERT control 7-15
RUN statement 2-3, 2-25 FILE 2-2
Run time limit 2-25 FILE END 2-2
FINISH control 7-7
SAVE request 1-5, 3-11, B-5 JOB 1-2, 2-1, 2-2
Sateiiites i-4 LIST control 7-11
communication 1-1 LOAD 2-24
SCOPE LOADER control 6-1
call codes B-1 LOADMAIN 6-1, 6-11
control statements 2-1 MAIN loader 6-2
library 1-4 OVERLAY loader 6-2
monitor 1-1 PRELIB control 7-7, 7-19
parameters 2-18 PREPARE control 7-16
resident 1-2 REPEAT control 7-8
routines 1-2 REPLACE control 7-15
SCR - see system scratch record, 1-5 RUN 2-3, 2-25
Scratch units 1-3, 2-1 SCOPE control 1-2
SEGMENT loader statement 6-3 SEGMENT loader 6-3
SELECT/REMOVE request 3-15, B-6 SEQUENCE 2-1, 2-2

Index-4

S"atements

UNIT control 7-9

SCOPE control 1-2
Statement parameters 1-2
STATUS request 3-7, B-4
Status of master unit 3-7
Storage allocation 5-10
Storage diagram 5-12, 6-4
System scratch record 1-4
System units 1-3

Tape control requests 3-4
Tape disposition 1-3

labels 2-8

units - see logical units
Time iimit 3-i8

job 2-2
TIME request 3-18, B-7
TRA card 5-28
TRACE cards 2-19

dump 4-3

Units, logical 1-2
programmer 1-3
scratch 1-3
system 1-3
UNIT control statement 7-9
Unlabeled tape 2-9
Unlabeled tape declaration 2-9
UNLOAD request 3-5, B-3
Upper bound 3-17
Usage declarations 2-5, 3-6, B-4
Usage types 2-5, 3-6, B-4
User control card 7-5

CONTROL DATA SALES OFFICES

ALAMOGORDO « ALBUQUERQUE + ATLANTA . BILLINGS « BOSTON « CAPE
CANAVERAL « CHICAGO « CINCINNATI « CLEVELAND « COLORADO SPRINGS
DALLAS « DAYTON « DENVER « DETROIT « DOWNEY, CALIFORNIA « HONOLULU
HOUSTON « HUNTSVILLE « ITHACA + KANSAS CITY, KANSAS « LOS ANGELES
MADISON, WISCONSIN « MINNEAPOLIS « NEWARK « NEW ORLEANS « NEW
YORK CITY « OAKLAND « OMAHA « PALO ALTO « PHILADELPHIA « PHOENIX
PITTSBURGH + SACRAMENTO « SALT LAKE CITY « SAN BERNARDINO « SAN

DIEGO » SEATTLE « WASHINGTON, D.C.

Pub. No. 60053300

ATHENS - CANBERRA : DUSSELDORF : FRANKFURT « THE HAGUE « HAMBURG

JOHANNESBURG ¢« LONDON « MELBOURNE -« MEXICO CITY (REGAL ELEC-

TRONICA DE MEXICO, S.A.) « MILAN « MUNICH « OSLO « OTTAWA (COMPUTING

DEVICES OF CANADA, LIMITED) « PARIS « STOCKHOLM « STUTTGART « SYDNEY

TOKYO (C. ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.) « ZURICH
UNTRUL DAIA

CORPORATION
8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

Litho in U.S.A.

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	xBack

