COMPUTER SYSTEMS

DRUM SCOPE /MSIO

OPERATING GUIDE

CONTROL DATA

CORPORATION

S B500
SISIE)(E)

COMPUTER SYSTEMS
DRUM SCOPE

REFERENCE MANUAL

CONTROL DATA

CORPORATION

60059200 REVISION RECORD
REVISION NOTES
This printing includes the most current revision level.
(11-64) Original printing.
A
(11-65) Reprint with revision.
B
(1-67) Reprint with revision, Errata sheets and chapter 8 have been added and corrected.

Additional copies of this manual may be Address comments concerning this
obtained from the nearest Control Data manual to:

Corporati office,
poration sales ce Control Data Corporation

Software Documentation
. . 60059200
Pub. No 4201 North Lexington Avenue
St. Paul, Minnesota 55112

© 1964,1965,1967 Control Data Corporation or use Comment Sheet in the back of
Printed in the United States of America this manual.

INTRODUCTION

CHAPTER 1

CHAPTER 2

CONTENTS

OPERATING SYSTEM

Job Processing

Job Structure

Programmer Requests
Logical Units

1.4.1 Programmer Units

[N R
W N

1.4.2 Scratch Units

1.4.3 System Units

1.4.4 Background Units
1.4.5 System Accounting Unit

CONTROL STATEMENTS

Format
PRIORITY Statement
JOB Statement
DEMAND Statement
EQUIP Statement
.5.1 Hardware Declarations
Usage Declarations
Density Declarations
Disposition Declarations
Equivalence Declarations
Label Declarations
Data Organization

. Deferred Assignment
2.6 FAMILY Statements

NN DNDNDN
QD W N

NNDNNDNDNDDNLN
[SLENS LI R S I) IS I)
O =0 OO wWwN

2.7 Phase Control Statements
2.7.1 Loading Statements
2.7.2 Execution Statements

2.8 LIBRARY Statement

2.9 COMMENT and PAUSE

2.10 MASSFILE

2.11 Source Deck Structure

vii

LR B |
LW W L

o s T e T e T T S Qi VOO T
I [|
[2B %) B S) B Y N

[
b

] |
G WD =

[
[=xI o)

1
fay
no

NN NNDNNNDNDNDNDNNDNDNDIN NN
| !
[T o
L w N

N
|

2-15
2-17
2-18
2-19
2-20

iii

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

iv

CENTRAL PROGRAMS

3.1 Normal Entry and Exit
3.2 Interrupts

3.2.1 Register Saving
Abnormal Termination
ENABLE/DISABLE Mode
Storage Allocation

W w w
U W

PROGRAMMER REQUESTS

4.1 Input/Output Requests
4.1.1 Assignment
4.1.2 Data Transmission
4.1.3 1/0 Buffering
4.2 Interrupts
4.2.1 I/0O Interrupts
4.2.2 Internal Interrupts
4.3 System Requests

LABELS, ASSIGNMENT AND RELEASE PROCEDURES

5.1 Assignment
5.1.1 Unlabeled Device
5.1.2 Labeled Device
5.2 Release Procedures

DEBUGGING AIDS

6.1 Snap Dump

6.2 Trace Dump

6.3 Post-Mortem Dump
6.4 Memory Map
LOADER

7.1 Loader Functions
7.2 Card Format

7.3 IDC Card

7.4 EPT Card

7.5 BCT Card

7.6 RBD Card

7.7 EXT Card

7.8 LAT Card

7.9 BRT Card

7.10 OCC Card

7.10.1 Relocation Factor
7.10.2 Data Fields
TRA Card
7.12 LCC Cards
7.12.1 BANK Card
7.13 Loader Calls

-3
Ju—
ot

[U |
o

ol Sl I

| i
D b b et
oo o o,

I U
[Y N S

!
= © 0031,

“] =3 =3 ~1 =3 ~3 =3 ~3 =3 ~3 ~J ~J -3 ~J =7 =3I
|

CHAPTER 8

CHAPTER 9

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

OVERLAY PROCESSING

8.1

8.2
8.3

Control Statements

LOAD and EXECUTE Partitions
Data Format

8.3.1
8.3.2

Header Record
Data Records

LIBRARY MAINTENANCE

9.1

9.2

External Library Format
9.1.1

© O W

L

W W YWY WwWWww

Do

O U W N

b b

NN NN

O W N

EDIT

Autoload File
System Files
Background Files
Library Files
Production Files

LIBEDIT Input

LIBEDIT Output

LIBEDIT Control Cards
LIBEDIT Directive Cards
LIBEDIT Input

Special Control Cards
Listing External Libraries

DRUM SCOPE BACKGROUND PROGRAMS

EXPANSION OF REQUESTS

TAPE SCOPE COMPATIBILITY

INSTALLATION PARAMETERS

BLOCKED TAPE FORMAT

DIAGNOSTICS

SUPPORT PROGRAMS

| P U B |
DN

J | |]

—

W W YW W YW YWUWLYWowowLe oo
1
1B N N SN NN Ny o

|
p—
V]

INTRODUCTION

Drum SCOPE, a comprehensive operating system for the Control Data® 3600 computer system,
uses the drum storage system as the principal input/output device. Drum SCOPE provides
economy of operation, higher throughput capacity, automatic priority job scheduling, and a full
realization of the total computing power of the 3600 system.

The Drum SCOPE monitor system facilitates job processing and simplifies programming and
operating by providing:
® Job Processing
Maintenance of job accounting information
Compilations, assemblies, and executions

ALGOL FORTRAN PERT
COBOL COMPASS SORT

Dynamic assignment of programmer units to available hardware units
Loading, linking, and execution of object subprograms

Program, data, and common storage allocation

Program overlay and segment processing

Loading of absolute production programs from drum

® Debugging Aids
Execution time diagnostics
Octal corrections
Selective dumps during program execution (SNAP and TRACE)
Memory maps of program elements

Post-mortem dumps for abnormal program termination

® Program Requests
Standard and non-standard I/O processing by background programs
Tape handling, including labeling and continuation reels
Drum handling
Random access processing
External and internal interrupt control

Sampling of time, date, equipment status, and available memory

vii

® Library Preparation and Maintenance
Preparation of a new library tape

Editing of an external library tape

® Background Processors
Card-to-drum
Card-to-tape
Card-to-printer
Drum-to-printer
Drum-to-punch

User programs, such as, file updating, information retrieval,
and processing of input from remote stations

EQUIPMENT |
CONFIGURATION Drum SCOPE can operate with varying equipment configurations. Certain

minimal capabilities must be provided as follows:
3603 Storage Module, designated bank 0
3604 Computation Module
3602 Communication Module
3606 Data Channel
Drum Storage System with two drums
Card Punch System
Card Reader System
Line Printer System

Magnetic Tape System with two tape units

Additional 3603 or 3609 storage modules and 3606 data channels may be
added as desired. If MSIO is to be used, two 3603 storage modules are required,
Each peripheral system mentioned above may be satisfied by various devices:

Drum Storage System Standard Non-Standard
Drum Storage Controller 3436 or 3637
Two Drum Storage Units (up to eight 861
may be accommodated)
Direct Data Channel 3816 3806/3602
or
3606/3602

Card Reader System

Card Reader Controller 3447 or 3649
Card Reader 405

Card Punch System

Card Punch Controller 3446 or 3644
Card Punch 415 or IBM
544 or 523

Line Printer System

Printer Controller 3256 or 3659 3655
Line Printer 501 1612

Magnetic Tape System

Tape Controller 3228 or 3229
3421, 3422,
or 3423

3622, 3623,
3624, 3625,
or 3626

Two Tape Units 604, 607, 603 or
or 601 606

Addenda and Errata February 1968

CONTROL DATA
3600/3800 Computer System DRUM Scope Reference Manual Pub. No. 60059200B

These addenda and errata are composed of two sections —
general corrections within various parts of the text, and
a revised Chapter 8 which completely replaces the old
Chapter 8 in the manual.

Page

2-12

2-17

2-17

4-3

4-9

4-12

4-23

Location

Top line

Sec. 2.7

Sec. 2.7.2,
Line
Immediately
above heading

2.8 LIBRARY
STATEMENT

Card illus-
tration

Line 17

Lines 21-22

Line 9

Chart, Table
4-1, last

column, second

block from
tape

Footnote

GENERAL CORRECTIONS

Error

The LOCATE request
(Sec. 3.1.2)...

...loader is in Chapter 5.
The LOADER request (Sec.
3.3)...

...program (Overlay
Processing, Chapter 6).

Statement to be added

LOADMAIN,u,t,p,r

RELEASE u,ra,s

s Any character, meaning-
less unless u is magnetic
tape. If s is non-zero,
the unload is suppressed.

. ..otherwise, the assign-
ment is kept. (Sec. 3.1.4)

next card binary

T See OVERLAY
PROCESSING, Chapter 6.

Should Read

The LOCATE request
(Sec. 4.1.2)...

...loader is in Chapter 7.
The LOADER request (Sec. 4.3)...

...program (Overlay
Processing, Chapter 8).

d Phase termination dump key for
error-free run. If non-blank, an
octal dump of all memory assigned
to the job will be written on standard
output at the end of an error-free
run.

LOADMAIN,u,t,p,r,d

RELEASE u, ra,p
P Meaningless unless u is magnetic

tape. If p is a non-zero digit, the
unload is suppressed.

...otherwise, the assignment
is kept. (Sec. 2.5.7)

(This block should be blank.)

T See OVERLAY PROCESSING,
Chapter 8.

Page

4-24

Location

Line 15

Sec. 6.3,
Top line

Next to last
paragraph,
second
sentence

Bec. 7.7,
last paragraph

Line 7

Error

...placed in the A and Q
registers (section 5. 2).

On the RUN control state-
ment (Sec. 2.3),..

.. .through the BANK control
card (Sec. 7.12)...

... (Bee IDC card, sec. 7,1.1).

RELEASE u,ra, s

Should Read

...placed in the A and Q registers
(Sec. 7.13).

On the RUN control statement
(Sec. 2.7.2)...

.. .through the BANK control card
Sec. 7.12.1)...

...(8ee IDC card, sec. 7.3)

RELEASE u,ra,p

OPERATING SYSTEM 1

1.1

JOB PROCESSING Data to be processed by Drum SCOPE is submitted in units called jobs.
The extent, purpose, equipment requirements, and priority of the job are
controlled by the programmer with Drum SCOPE control statements
(Chapter 2).

A job submitted to the system on any applicable input device is placed along
with other user-specified jobs in a job stack on the drum. Drum SCOPE
then selects from the stack the job with the highest priority and processes it
in memory. The job output is placed on the drum. Similarly, on output a
stack is formed; jobs are selected from the drum for output according to
their priority.

CARD READER

ouTPUT
JOB STACK

LINE PRINTER

RESOURCES

SNOILVYNLILS3Q 8O

JOB

CARD PUNCH

INPUT
-_- JOB STACK

11

1-2

The solid lines in the diagram above represent the typical data flow of a job;
however, variations are easily permissible, these are represented by dot-
ted lines.

The Drum SCOPE system includes routines for such tasks as card to drum,
card to tape, card to printer, drum to printer, and drum to punch. The
installation may also code its own. These routines, called background
programs, may be performed concurrently with the user's job processing.
The user's job being processed in memory is called the central program.

Background programs, the central program, and the Drum SCOPE system
share the compute module on a priority basis achieved through the computer
interrupt system. Background programs, which perform extensive input/
output operations, are coded so that control returns to Drum SCOPE while
time-consuming 1/O operations are being completed. Drum SCOPE then
gives control to the waiting program with the next highest priority; it may
be another background program or the central program. This procedure
continues as control passes down the program priority hierarchy.

When a program with priority higher than the one currently being executed
completes an I/0 operation and is ready to continue executing, Drum SCOPE
returns control to that program. This method of dynamically controlled
execution, in conjunction with the high character transfer rate of the 861
drum, utilizes the full computing power of the 3600 system.

63 Reserved by Drum SCOPE
62 Reserved by Drum SCOPE
61 Background processor
60 Background processor
e
o
S
)
"
o
3 Reserved by Drum SCOPE
2 Reserved by Drum SCOPE
1 Central program interrupt subroutine
0 Central program

1.2
JOB STRUCTURE

1.3
PROGRAMMER
REQUESTS

1.4
LOGICAL UNITS

Jobs submitted by a programmer typically consist of one or more assemblies,
compilations, and executions; the programmer defines the extent of a job

with Drum SCOPE control cards. A job is specifically defined as all opera-
tions which follow a JOB card. End-of-file cards separate jobs.

A job may be divided into runs. Within each run, phase control cards spec-
ify the operations to be performed. A run consists of one or more library
phases, and/or execution phases. Runs are separated by end-of-file cards.

During a library phase, a source program, coded in a source language, is
prepared for execution. The Drum SCOPE library includes ALGOL, COBOL,
FORTRAN, COMPASS, PERT, and SORT. The installation may modify or
add to the Drum SCOPE library with LIBEDIT (Chapter 9). An object pro-
gram is produced from a library phase, and the program may then enter the
execution phase.

The first request for an execution phase encountered after an error is
detected in any library phase causes the remainder of the run to be deleted.

Programmer requests, which may be included in assembly language programs,
specify operations for input/output control, internal interrupt, and system
requests. They are written as system macros and assembled into a calling
sequence to Drum SCOPE.

All I/0 references to equipment within a program are in terms of logical
units. All units are on the drum, unless specifically assigned to some other
equipment. Logical units designated by the programmer are divided into
four classes: programmer, scratch, system, and background.

1-3

1.4.1
PROGRAMMER UNITS

1-4

These units are assigned throughout the job for reference by the program.
Assignment is released at the end of the job, except for unit 69, load-and-go,
which is normally released when an execution phase is initiated.

Standard Input INP (logical unit 60)
Control cards for all Drum SCOPE jobs are read from this unit. Frequently,

programs and data to be processed are also on INP,

Standard Output OUT (logical unit 61)

Drum SCOPE control statements, diagnostics, dumps, and loader control
cards are written in BCD mode on this unit. Program output may also be
written on OUT.

Standard Punch PUN (logical unit 62)
Program and Drum SCOPE output for punching is recorded on this unit. All
information on PUN is punched.

Load-and-Go LGO (logical unit 69)
Binary object programs transferred from the standard input unit or produced
by compilation or assembly may be stored here prior to loading and executing.
The programmer may save this unit by assigning it to other equipment with an

EQUIP statement. If saved, it will be released at the end of the job; other-
wise, it will be released at the beginning of the run.

Auxiliary Libraries (logical units 71-79)

Auxiliary libraries are used for library preparation and editing and for
augmenting the system library.

Other Programmer Units (logical units 1-49)

These units may be assigned throughout the job for reference by the program.

1.4.2
SCRATCH UNITS

1.4.3
SYSTEM UNITS

1.4.4
BACKGROUND UNITS

Scratch units may be referenced at any time by the programmer, but they are
released after each execution phase.

The system units, assigned by Drum SCOPE, are used by the programmer
and Drum SCOPE; they are never released.

System Input Comment ICM (logical unit 63)

Comments from the operator to the monitor system are made on this unit,
usually the console typewriter. The programmer may also use ICM for
certain input directions.

System Output Comment OCM (logical unit 64)

Statements from the monitor system to the operator are made on this unit,
usually the console typewriter. The programmer may also list information
on this unit.

System Library LIB (logical unit 70)

The library contains the monitor system and all programs and subroutines
which operate under Drum SCOPE, such as FORTRAN, COBOL, COMPASS,
SORT, and ALGOL.

Other System Units (logical units 65-68)

These numbers are reserved for use by the system.

These units, assigned by request to background programs, use the designa-
tion 1 to n; n is an integer specified by a parameter of the IDENT card of the
background program (Appendix A).

1-5

1.4.5

SYSTEM

ACCOUNTING UNIT Accounting information is written on the drum with a disposition code of AC.
The SYSIO request is used to write the accounting information.

1-6

CONTROL STATEMENTS 2

2.1
FORMAT

22
PRIORITY
STATEMENT

23
JOB STATEMENT

Drum SCOPE control statements have the following format: a 7,9 punch in
column 1 followed by a statement name beginning in or to the right of column
2. Parameters are separated from the statement name and each other by
commas. H a parameter is omitted, the commas surrounding it must be
included; however, if the last parameter or group of parameters is omitted,
no commas are required.

Control cards containing a fixed number of parameters may contain com-
ments after the last parameter; in this case, all commas must be punched,

with an additional comma separating the parameters from the comments.

Control statements are free-field, but must be contained on a single 80-
column card. No terminating character is needed.

This statement defines job priority.

(;PRIORITY, p

p priority number, 7-0 (7, most urgent; 0, least urgent)

A priority applies only to the ensuing data. Jobs having the same priority
number are executed in the order of input. As jobs are recognized by the
card reader processor, they are assigned a sequence number. When jobs
have the same priority, they are executed sequentially beginning with the
lowest sequence number. If no PRIORITY card appears, 0 is assumed. The
PRIORITY card must be followed immediately by a JOB or DISPOSE control
card.

All programs to be processed under Drum SCOPE begin with a JOB card
which indicates the beginning of a job, provides accounting information,
identifies the programmer, and sets a time limit.

1-JOB, LIBRARY, CORRECT, LOAD, RUN, and LOADMAIN

Option 1

7 .
(QJOB,C,l,t

c charge number; alphanumeric characters of any length. Drum
SCOPE truncates to the first 16 non-blank characters for
accounting identification.

i programmer identification; may be any length and appears as
given in the control card listing. It is truncated to the first 16
non-blank characters for operator identification and accounting.

t maximum time limit (m. s) in minutes and seconds for the entire
job. Ift= 0 or blank, a standard time determined by the
installation # msed.

Option 2
(;JOB(n) ,c,i,t

n is a decimal number which indicates how many extra logical units are
required by the job in addition to the number allotted by the installation.
Option 1 is equivalent to JOB (0). If the total is greater than 75, 75
units will be allotted.

Each extra logical unit requested by the programmer will require five
locations in bank 0. Drum SCOPE will employ this number (5 x n)
when allocating memory.

24
DEMAND
STATEMENT The DEMAND card permits the user to reserve sufficient memory and hard-

ware requirements for successful job execution. No cards other than
COMMENT and PAUSE may appear between the JOB and DEMAND cards.

(ZDEMAND’I-].’I-Z’ N 1

2-2

2.5
EQUIP STATEMENT

i memory or hardware requirement. A decimal number (or octal
ending with B) declares a memory requirement in bank 0. The
hardware mnemonics, listed below, may be preceded by a decimal
number to indicate the need for more than one device.

CR card reader

CP card punch

LP line printer

DR drum

MT magnetic tape

CT console typewriter
Example:

DEMAND, MT, 2LP, 1MT, 62000B, CP

declares a requirement of two magnetic tapes. two line printers, one
card punch, and 620004 locations in bank 0.

If the hardware is currently assigned, and demands cannot be met immediately,
the operator is informed and is permitted to make hardware available, post-
pone, or cancel the job. If the hardware is not attached, demands cannot be
met, and the job is abandoned without operator intervention.

If the system is unable to provide the bank 0 memory requirements, the job
is abandoned. The system will attempt to interrupt non-resident background
processing to provide the memory requirements, if necessary.

EQUIP statements provide information concerning the hardware type, usage,
random access properties, logical unit equivalence, disposition, and label
declarations of a logical unit. The EQUIP statement precedes the RUN card
or the entry point name statement of the program in which the logical unit is
referenced.

(ZEQUIP,L\:dl,dZ 3o s e ,dn

u logical unit number, 1-49, 61, 62, 69, 71-79

d; declarations

251
HARDWARE
DECLARATIONS

2-4

Declarations for a single logical unit may be combined in one EQUIP state-

ment.

Unrecognized declarations are ignored. When contradictory declarations are
given, the last mentioned (rightmost) takes precedence. If the unit specified
in the EQUIP statement is currently assigned, the original assignment will be
released. All declarations refer to the master logical unit (Equivalence
Declarations).

Hardware type may be specified by d;; the mnemonics depend upon the equip-
ment used by the installation.

CR
CP
LP
DR
CT
MT

card reader

card punch

line printer

drum

console typewriter

magnetic tape

If no hardware mnemonic is specified, DR is assumed unless a density
declaration (implying magnetic tape) is given.

Example:

gJOB, 3215079,JAYNE, 15

gEQUIP, 10=MT an available magnetic tape will be
assigned to 10

gEQUIP, 9=CP an available card punch will be assigned
to 9

object program

{RUN,7,300,7,1

< end-of-file>

gEQUlP, 11=MT a second available magnetic tape will be

assigned to 11

object program

gRUN, 6,250

< end-of-file>

2.5.2
USAGE
DECLARATIONS Usage on logical unit u may be specified by d;:
RW read/write; no restrictions exist other than those imposed by the
hardware.
BY Dbypass; all references to this unit except MODE (usage), STATUS,
and RELEASE are treated as no operation.
RO read only; no write operations (WRITE, MARKEF, ERASE,
WRLABEL, WEOT) are permitted. Read-only units such as a
card reader need not be declared as such.
WO write only; no read operations (READ, REOT, RDLABEL, SKIP)

are permitted. Write-only units such as a card punch need not be
declared as such.

If no usage declaration is given on an EQUIP card, RW is assumed
unless usage is restricted by the hardware type (CR, LP, ...).

2-5

253
DENSITY
DECLARATIONS

254
DISPOSITION
DECLARATIONS

255
EQUIVALENCE
DECLARATIONS

2-6

The operating density for logical unit u may be designated by d;:

OP operator option; for input, defines the density to be the same as
the density of the label or, if unlabeled, the density of the physi-
cal unit. For output, a standard density determined by the
installation is selected.

LO low density (200 bpi)
HI high density (556 bpi)
HY hyper density (800 bpi)

A density declaration automatically implies a MT hardware declaration. If
no density is given for a unit which has been declared MT, a standard density,
determined by the installation, is assumed.

Disposition of logical unit u at the end of the job may be defined by dj. If no
disposition declaration is supplied, the unit is released at the end of the job.
Additional disposition declarations may be defined by the installation. These
declarations are meaningful only on drum units,

PR print PU punch

d; may be another logical unit number in the range 1-64, 69, 70-79. In this
manner, two logical units may be assigned to the same physical unit. Any
number of units may be equated, but separate EQUIP statements must be
used for each pair; only one dij may be equated to one u per equip card.

dg, dg, ... if given, are not recognized.

The equivalence is one-way and transitive; for example:

gEQUIP, 30=61 unit 30 is equated to standard output
unit (61)

dEQuUIP, 31=32
SEQUIP,32-33 unit 31 is equated to units 32, 33, and 34

SEQUIP, 33=34

The last three EQUIP statements, above, are an example of an equivalence
chain. The last unit in a chain, the unit which is equivalent to nothing, is
the master logical unit (34 above).

25.6

LABEL DECLARATIONS Label declarations may be used to define information contained in the label of
a magnetic tape, or to declare an unlabeled tape. A label declaration implies
magnetic tape, unless overridden by an explicit hardware declaration.

LABELED TAPE DECLARATIONS

dj format: (name, edition, reel, creation date or retention code).

Parentheses are required.

name

edition

reel

creation
date

retention
code

14 alphanumeric characters, including blanks; the first
character must not be an asterisk. If less than 14 char-
acters are specified, remaining positions on the right are
filled with blanks. More than 14 characters are truncated
from the right. The name is checked on input, written on
output.

edition number, 01 to 99. Optional, but should be used if
two or more labels have the same name. Checked on in
input; written on output. If 00 is specified, a blank is
written.

reel number, 01 to 99. Optional, but should be used if
two or more reels have the same name. If no reel number
is specified for input, the lowest numbered reel is taken;
for output, the reels are numbered beginning with 01.

date written; mmddyy (mm = month, dd = day, yy = year).
The date specified is checked against the date written for
an input tape. It is ignored on an output tape.

3 or 6 digits, 000 to 999. Indicates number of days an
output tape is to be saved from the date written. 999
results in permanent retention. A retention code is
ignored on an input tape.

2-7

2-8

Examples:

gEQUIP, 25=(INVENTORY,1,1,012965), LO, RO

Logical unit 25 is a tape labeled INVENTORY edition 1, reel 1,
written on January 29, 1965. It is a low density, read-only unit.

gEQUIP, 10=(LEXICON,, 1, 030), HI

Label a high density tape (logical unit 10) with LEXICON, reel 1,
retention code of 30 days.

LOGICAL UNIT NUMBER DECLARATIONS

d; format:
(*nn, edition, reel, retention)

The asterisk is required; nn is the 2-digit logical unit number (01-49) con-
tained (input) or to be written (output) in character positions 4-5 of the tape
label. If no tape with nn in its label is found when the first request for unit
u is a read request, Drum SCOPE will ask the operator to supply the tape or
to terminate the job.

Edition, reel, and retention are the same as for labeled tape declarations.
Only u may be used in a request for that unit. If the programmer wishes to

use a request with nn, he must first give EQUIP, nn=u.

Example:

IEQUIP, 28=(*35,1, 1)

When logical unit 28 is referenced in a read operation, the system will
search for a label with logical unit 35.

For a write operation, this statement may be used to label a tape
referenced as unit 28 with logical unit number 35.

NON-STANDARD LABEL DECLARATION

Using a d; of ** declares non-standard labeling.

A write request is handled in the same manner as for a labeled device; that
is, the system will assign any unit which:

1 is magnetic tape

2. is not currently assigned

3. has a status indication of ready

4. contains a label in which the retention has expired
A read assignment consults the operator with a message requesting assign-

ment of a particular device. The assignment will be made if the first three
conditions stated above are met.

The following examples demonstrate some typical forms of the EQUIP
statement:

Example 1:

130B,20, BETA, 15

TEQUIP,10=CR

7

9EQUIP,11=CP

gEQUIP, 20=(FILE A,1), RO, LO

7 _
9EQUIP, 21=(CHANGE FILE), RO, LO ppy @ A cdition 1, is the name

7 of unit 20. CHANGE FILE is
9EQUIP,22=(FILE A,2), LO the name of unit 21. Unit 22
has the same name as unit 20,

gLO AD, 49 but it is the second edition.

JRUN, 13,3000

2-9

2-10

Example 2:

gJOB, 30, QWERTY, 30

7 _
9EQUIP,5=(COSY TAPE, 1,1), HL, RO Logical units 5 and 20 are high

7 density (556 bpi). COSY input
gEQUIP, 20=(COSY TAPE, 21,1),HI, WO to the COMPASS assembler is
on logical unit 5. COSY output

scomPass, Y=5,0=20, L, X on logical unit 20.

IDENT
SCOPE
SEQUIP, 25=(*40), MT Logical unit 25 with a label
bearing logical unit number 40;
input/output requests within the
program which reference 25
will reference this tape.
Z)EQUIP, 26=** HY Hyper density tape referenced
as logical unit 26 with a non-
standard label. The physical
unit must be specified by the
operator if a read request is
given for this unit.
’;LOAD

JRUN, 28,1000

257
DATA ORGANIZATION

Data organization declarations specify a logical unit to be random access
rather than sequential access. This declaration may be made only on units
for which it is logically permissible; at present, the drum. No other
declarations are recognized on an EQUIP card when RA is used.

d; format: RA(my,m,)

RA declares random access. When used alone, the largest number
of contiguous words remaining in the random access area on the
drum is assigned to the unit--equivalent to RA(0,0).

m; minimum word requirement. If mj contiguous words are not
available in the random access area of the drum, the job will be
abandoned. May be used alone: RA(mj).

my If at least m; contiguous words remain in the random access
area of the drum, up to my contiguous words will be assigned to
the unit. If m; words are not available, the job is abandoned.
If mg is less than my, it is assumed equal to m;.

Associated with each random access unit, the system maintains two values:
the actual base address of the random access area on the drum, and the
current relative address. The current relative address dictates the starting
address for the next read or write operation. The following requests are
permitted on random access units. The number of words in a data transmis-
sion request is indicated by the symbol wdct.

Relative Address Value

Request (after request has been honored)
LOCATE set to specified value

REWIND, UNLOAD 0

READ, REOT wdect + old value

WRITE, WEOT wdct + old value

RELEASE releases unit

The following requests are ignored on random access units:

DISPOSE BSPF
ENTER MARKEF
BSPR ERASE
MODE SKIP

2-11

25.8
DEFERRED
ASSIGNMENT

2.6
FAMILY
STATEMENTS

2-12

The LOCATE request (Sec. 3.1.2) may be used to determine the size of the
area. Words are assigned in an integral number of contiguous drum blocks;
therefore, the number of words allotted may exceed that requested.

Example:

gEQUIP ,5=RA(600, 700)

700 words are desired, but 600 will be acceptable.

When this declaration is used, the system will query the operator for
assignment of an output unit rather than assign the unit automatically. This
allows assignment to particular physical units, such as a special reel of
tape. This declaration is ignored in the case of an input unit.

d; format: DA; indicates deferred assignment

Example:

{EQUIP,13=DA, MT

The physical unit assignment will be made by the operator at Drum
SCOPE's request.

The FAMILY statement groups logical units into a family for the purpose of
sharing buffer areas.

Option 1

7 =
r9FAMILY,f Up Uy, e e,y

f family number, 0 to F; F is a limit, less than 64, determined by
the installation.

27
PHASE CONTROL
STATEMENTS

271
LOADING
STATEMENTS

logical unit 1-62, 69, 71-79

The specified units are attached to family f. Any u; currently
attached to another family will be re-attached to the specified
family.

Each family that contains one or more buffered units will be assigned two
buffer areas.

Option 2
(ZFAMILY(n) sE=ug,uy, ey
n 0-2 decimal. Indicates the number of buffer areas to be

allocated.

Family 0 is the system family and should be avoided to maintain efficient
I/0 processing.

Unless other specifications are made, Drum SCOPE automatically assigns
units 60, 62, and 69 to family 1, and unit 61 to family 2. Two buffer areas
are assigned for each.

Phase control statements control program loading and execution and provide
a means to load and correct routines on the system library. A description
of the loader is in Chapter 5. The LOADER request (Sec. 3.3) allows
additional programmer control over loading operations.

Library Program

Library ProgramsJf are called by control statements which name the entry
point to the library program. When the program is loaded, it assumes con-
trol, performing assembly or compilation. Upon return of control to Drum

TLibrary programs should not be confused with Drum SCOPE library subrou-
tines which are called by symbolic reference in a subprogram.

2-13

2-14

ENTRY POINT

CORRECT

LOAD

SCOPE, the A register indicates whether errors were (non-zero) or were not
(zero) detected. If the errors were detected, the loading and execution of the
binary object program is inhibited on a load-and-go run.

The program will be loaded from the production file if it is there. If not, it
will be loaded from the auxiliary library if one exists and the program is on
it. Otherwise, it will be loaded from the regular library.

7 .
ﬁentry point name ,p1 ,p2 yoe .pm

entry point name may be one of the following: FTN, COMPASS, COBOL,
ALGO, ALDAP, Installation Program

p1 yeeesP assembly options differ with each program; see pertinent
reference manuals.

The system is directed to load a routine from the auxiliary library if it exists
and the program is on it. Otherwise it will be loaded from the regular library.

;CORRECT , epname

epname an entry point on the library

Only the routine specified by epname will be loaded. The routine may be cor-
rected by Octal Correction Cards (Sec. 7.10) directly following the CORRECT
card. The corrections terminate with the first non-loader card.

Relocatable binary subprograms are loaded into memory from programmer
units or the load-and-go unit.

ﬁLOAD,u

u logical unit number 1-49, or 69. When u is 0 or omitted,
standard load-and-go (69) is implied.

The first time unit u is referenced in a loading operation, it is rewound
prior to loading; otherwise, loading starts at the current position. Loading
terminates on unit u at an end-of-file mark or a non-loader control card.

Binary Program

A binary object program on the standard input unit (60) is loaded into
memory until a non-loader control card or an end-of-file is encountered.

Example:

730B,1234-A, JRH, 7

binary object program

2.7.2
EXECUTION
STATEMENTS

RUN RUN initiates program execution by transferring control to the object
program in memory.

r;RUN,t,p,r,m,d

t time limit (m.s) in minutes and seconds; the period may be
omitted, if no seconds are specified. If blank or zero, an
amount determined by the installation is assumed. If the
time requested in the RUN statement exceeds the remaining
time requested in the JOB statement, execution continues only
until job time is depleted. The entire job is terminated if
either limit is exceeded.

p maximum number of print or write operations which may be
requested on the standard output unit (61) during execution.
This includes debugging dumps and any other execution output.
If blank or zero, a standard limit determined by the installa-
tion is used. This field may also be in the form

(dd=ii, dd=ii, ... dd=ii)

where dd is a disposition code and ii is a decimal limit. For
instance; (PR = 1) 1 is the limit for standard print output. The
entire job is terminated if the limit is exceeded.

2-16

dump key; specifies information to be dumped in case of
abnormal termination or forced dump. All dumps provide a
console scoop at the point of program termination.

r dumped area, written on standard output
0 or blank none

1 programs including library routines

*1 programs not including library routines
2 labeled common

3 programs and labeled common, including

library routines

*3 programs and labeled common, not including
library routines

4 numbered common

5 programs and numbered common including
library routines

*5 programs and numbered common not inclu-
ding library routines

6 numbered and labeled common

7 all memory assigned to the job

*7 all memory assigned to the job except library
routines

8 all assigned memory including library routines

map suppress key; if non-blank, maps are suppressed. If
blank or zero, or if snap or trace facilities have been employed,
a memory map is printed on the standard output unit showing
absolute locations of programs, program extension areas,
common blocks, and entry points.

phase termination dump key. If non-blank, the dump speci-
fied by the r parameter will be written on standard output at
the end of an error-free run.

LOADMAIN This statement loads and initiates execution of a previously partitioned
program (Overlay Processing, Chapter 6).

(gLOADMAIN,u,t,p,r

u logical unit number, 1-49.

t time limit (m. s) for the run in minutes and seconds; the
period may be omitted if no seconds are specified. If blank
or zero, a standard time limit determined by the installation
is used. If the time requested in LOADMAIN exceeds the
remaining time requested in the JOB statement, execution
continues only until the job time is depleted. The entire job
is terminated if the limit is exceeded.

P maximum number of print or write operations which may be
requested on the standard output unit (61) during execution.
This includes debugging dumps and any other execution
output. If blank or zero, a standard limit determined by the
installation is used. The entire job is terminated if the limit
is exceeded.

T dump key; if non-blank or non-zero, an octal dump of all
memory assigned to the job will be provided in the event of
an abnormal termination.

The specified unit will be rewound and the main partition loaded and given
control. The main partition must be the first partition encountered.
LOADMAIN may not be preceded by any previous loading operations performed
by other phase control statements, or debugging aids planted by a snap or

trace.
2.8
LIBRARY
STATEMENT This statement directs Drum SCOPE to augment the current system library.

(gLIBRARY, u,Lname

u logical unit, 1-49, 70-79, containing the file which is to
augment the system library.

2-17

Lname name of the file which is to augment the system library.
This name must begin with an L.

If any of the routines in the new file have the same names as routines on the
current system library, the new routines effectively replace the current
routines. If Lname is not found, the job is abandoned.

A LIBRARY card remains in effect until the end of the job or until another
LIBRARY card is used. A LIBRARY.,70 statement nullifies the effect of
the preceding LIBRARY statements; that is, the original library is reinstated.

Examples:
gLIBRARY, 30, LIBFILE

{LIBRARY, 70

29

COMMENT

AND PAUSE The COMMENT statement allows the user to write comments on the standard
output comment unit (console typewriter) during a program phase.

(ZCOMMENT, comments

An alternate COMMENT statement allows the comments following the comma
to be written on LUN as well as on the typewriter.

ﬁDOMMENT (LUN), comments

The PAUSE statement stops the current job; but the system continues pro-
cessing background tasks. To continue the jo-, the operator must signal the
system with an appropriate comment.

(; PAUSE

2-18

2.10
MASSFILE

This card is required for all jobs containing MSIO calls which refer to mass
storage devices. The primary function of the MASSFILE card is to allocate
memory for the file definition tables.

7 — — j—
(QMASSFILE,kl—dl,kz—dz, vk =d

The k and d parameters may assume the values described below:

FILES=dd This declaration is required; dd is a one- or two-digit
decimal number defining the total number of files to be
processed by the job. This parameter should be spe-
cified first and appear only once in any set of MASSFILE
cards for a job.

The remaining declarations are optional and apply to one particular file. Each
MASSFILE card may contain information about only one file; continuation cards
are formed by repeating the FN declaration on every card of the set. Declara-
tions on the MASSFILE card override those declared in the FET in the running
program.

FN=dd dd is a one- or two-digit decimal number defining an
internal file number. Within a COBOL program all
files are numbered consecutively from 1 through n as
they appear in SELECT specifications within the EN-
VIRONMENT division,

ID=name name is an external file name or label identifier; it may
contain from 1 to 14 characters, including blanks. A
comma before the fourteenth character causes the field
to be completed with blanks.

EDT=dd dd is a one- or two-digit decimal number defining a file
edition number.

DATE=mmddyy date written; mm=month, dd=day, yy=year. mmddyy
must be six characters; for example, January 6, 1966
would be specified 010666.

DSP=SAVE This declaration causes a file to have a retention code of
zero, but to be retained until the end of the job before
being released. If a file is not assigned a retention
code and SAVE is not specified, the file is released at
the end of the run.

2-19

21
SOURCE DECK
STRUCTURE

2-20

DSP=ddd dd is a one- to three-digit decimal number defining the
retention cycle for a file. 999 specifies permanent re-
tention. Otherwise ddd is the number of days the file
is to be saved from the date-written. This declaration
is given when creating the file.

BLOC=#num num is a one- to eight-digit decimal number defining
the number of blocks to be allocated. Plus indicates an
addition to an existing allocation for the file, minus
indicates reduction. Neither plus nor minus indicates
an initial allocation.

SEG=dd dd is a one- or two-digit decimal number specifying
how many segments allowed for the allocation. The
maximum number of segments is 63; omission of the
parameter, SEG=00, or any number larger than 63
causes the maximum to be used.

The entry point name statement is followed by the source program to be
assembled or compiled by the library program.

A FTN card may be followed by either FORTRAN or COMPASS source
language subprograms to be compiled or assembled.

A COMPASS card is followed by COMPASS subprograms to be assembled.
A COBOL card is followed by a COBOL source program to be compiled.

An ALDAP card may be followed by an ALGOL source procedure to be
compiled or compiled and executed or a COMPASS subprogram to be
assembled. An ALGO card is followed by an ALGOL source procedure to be
compiled and executed or a COMPASS subprogram to be assembled.

If more than one library program (compilers or assemblers) is used for
processing the subprograms for a single program, the source decks are
stacked consecutively.

For each source language subprogram, a binary object program will be
produced and stored on the logical unit designated by one of the parameters
on the entry point name card. After each binary program is written on a
logical unit, the library program writes an end-of-file mark and backspaces
over it. Therefore, after all binary subprograms are written on the unit,
only one end-of-file mark will remain; and the unit will be positioned so that
any subsequent compilations for that unit will write over it. Consequently,
at the end of the last compilation, an end-of-file mark remains on the unit.

A SCOPE card is required to indicate the end of the source subprograms
following a FORTRAN or COMPASS card; also to indicate the end of the
source procedures following an ALDAP card. An EOP card is required to
indicate the end of the program following an ALGO card. COBOL does not
require a SCOPE card. The word SCOPE begins in column 10; since it is
not a Drum SCOPE control card, there is no 7,9 punch in column 1.

! 10

;COMPASS,C,L,R

IDENT ASIMOV

: COMPASS subprogram
END
IDENT BRENDA

. COMPASS subprogram

END
SCOPE

| I?IO

FTN,AI,L,P
PRAGRAM ONE
: FORTRAN program
END
IDENT TWO
: COMPASS subprogram
END
SUBROUTINE TWO
: FORTRAN subroutine

[END
SCOPE

2-21

| 10
;ALDAP,L,P,A
PROGRAM ARCO
ALGOL program
'EOP'
ALGOL procedure
'EOP'
SCOPE
| 8
7
COBOL JM,L, P, T
IDENTIFICATION DIVISION,
: COBOL program
[END PROGRAM.
| 10
7ALDAP
9 > L iP ,A
IDENT FOR
: COMPASS subprogram
#ND
ALGOL procedure
'EOP'
ALGOL procedure
'EOP'
IDENT TAG
. COMPASS subprogram
END
SCOPE

2-22

Examples:

1) Compilation of a single FORTRAN subroutine.

AI{ end-of-file

[SCOPE

l SUBROUTINE GO

(;FTN,L,A

gJOB,12345,0NE,5

2) Compilation of a single COMPASS subroutine.

(end-of-file
/ SCOPE
END

IDENT STOP

éCOMPASS,L

ZJJOB, 12346,TWO, 5

3) Compilation of a single COBOL program.

l end-of-file

!/ END PROGRAM.

Y
L
L
Vs
Vs
L

(IDENTIFICATION DIVISION,

/7
9COBOL
7

4J0B, 12347, THR, 5

2-23

4) Compilation of a single ALGOL program.

/ end-of-file
/ SCOPE

/ 'EOP'

L
£
Vs 1
L
Va

=
PROGRAM THREE

/gALDAP,L,A
gJoa,lzus,Foa,s
PROGRAM | 112]3]als|e|7|8]o]io]ii]i2]i3]ia|is]ie|i7]i8]iojed21]e2fe3la]25[26[27]ed 2930031 32| REMARKS
FIRST CARD OF SOURCE
PIRIOIGIRIAM| |nfalm|e SUBPROGRAM(OPTIONAL)
TAST CARD OF EACH
1 1
ALGOL E|OfP SUBPROGRAM
END OF COMPILE
S|CIO|FIE (ALDAP_ONLY)
tip|e|n|r|z|F|z|c|alT|z]o|N] [p|1|v|Z|s|z|o|N]. xggmmnorsouncs
COBOL
END OF PROGRAM
E[(N{D P{RIOIGIR|AIM]|, AND COMPILE
FIRST CARD OF EACH
LIDIE{NIT] [n[a]|m|e SOURCE_SUBPROGRAM
LAST CARD OF EACH
COMPASS E|N|D SOURCE_SUBPROGRAM
i s|ciolp|E END OF ASSEMBLY
PIR|OJG|RIAIM n|a|mle
FIRST CARD OF EACH
L S{U|BJR{OJU|T|I[N|E nia|m|e SOURCE SUBPROGRAM
FORTRAN ! FIU|N|C|T|I|O|N n|lalmje
‘ e TAST CARD OF EACH
| SOURCE SUBPROGRAM
T
3 s|clolp|E END OF COMPILE
A

5) Compilation of a FORTRAN Program and several subprograms together
with a COMPASS assembly. All binary object programs are placed on
unit 4, which is magnetic tape.

end-of-file

(IDENT DOG

(END
A=

L 1

(7 IDENT KAT

(END

Va
1
A
Vs

(SUBROUTINE SAMBO

/ END

Va

-
{ PROGRAM TRACE
(ﬁ‘m ,L,X=4

/gEQUIP,4=(TAPE4, ,.3)

7308,6-1407,DS, 5

6) Execute directly from the standard input unit.

end-of-file
(data)
(gRUN,lo,moo,l
L

M

((binary object program) W

gJOB,Acc 141,RNAME, 13

2-25

7) Load from two programmer units and INP.

end-of-file

(;RUN,S,IOCO,Z

ya

L
L 1
£ 1l

(binary object program)

gwAn, 37
(7LOAD, 36

(ZEQUIP,37=(ROUTINE B,02,01,033037)

(Z)EQUIP,36=(ROUTINE A,,,071039)

{JOB,ACC 77, TNAME, 12

8) Sequential execution using EQUIP cards.

(end-of-file

Va
L
Va

L
(data for program #2)

9

A

L=
Vs |

(?binary object program #2)

(7RUN,7,1000,1 }

/ end-of-file

Vs
f—
Yo

(data for program #1)

(gRUN,lo,soo,z
A

Y —
Vs
Y —

(binary object program #1)

gEQUIP,16=CP

gEQUIP, 15=CR

3J05,574123,Ds,20

Changes made because of EQUIP statements remain in effect for the duration
of the job or until changed by another EQUIP statement.

2-26

9) Assemble a COMPASS subprogram and FORTRAN subprogram on the
load-and-go unit. Execute the program. Punch the load-and-go unit.

(end-of-file
(;Ruu,zo,zooo,A

7
(JL0AD

(7 SCOPE
FF END

Vs

fa
L
A=
s

(PROGRAM KRIK

(END

Va
A
A=
A~ 1|
=

IDENT BENYA

/§FIN,X

;EQUIP, 69=PU

1J0B,ACC1123, DS, 22

10) Compile and load a FORTRAN program. Load a binary subprogram
from INP. Execute.

end-of-file
(;Rm,10,1000,1

/£~
A
L
L 1
L

(binary object programs)

7
JLOAD, 15
/ SCOPE
F
Ili

L
Va

(FORTRAN source programs)

L FORTRAN,X=15

730B,ACC5123,D8,12

2-27

11) Include debugging aids.

end-of-file
(data)
(gRUN,lo,zooo,a

(gTRACE)pl,--’p

(;smr,pl,--,pn
p:
fr

L
L

(binary object programs)

m

gLOAD,ls

/ SCOPE

(FORTRAN program)

Z}FTN,X=15

7308,726123,D8,12

SNAP and TRACE cards precede the RUN card. (Refer to Chapter 6).
number of print requests includes SNAP or TRACE dumps.

12) Compile and execute ALGOL program.

(end-of-file

A~
/ data

(PROGRAM DUD

7
{ JALGO

gJOB, 1457 ,ZER 4

2-28

13. Compile and execute ALGOL program.

{ end-of-file
/

L

/— data

(Z)RUN,S,loOOJ
7
(gLQAD,69

/7 SCOPE

("EOP'
Y-

Va

L
Va

PROGRAM HUR

gALDAP,L,P ,X=69

;JOB, 12350, DEW, 14

14) COMPASS subprograms in the form of subroutines may be assembled
with an ALDAP compilation containing external declarations for the
COMPASS subprograms. Neither a COMPASS nor FORTRAN subroutine
may have a transfer card, since the ALGOL program always has a
transfer card.

gRUN,5,1000,7

(;LOAD, 69
{ SCOPE
4 END
I!

Vs
£

[COMPASS source deck
{ 'Eop’

Pon
L

(ALGOL source program
Vs

(END
L
P
[COMPASS source deck
(ZALDAP,L,X=69

gJOB,acc,id,time

2-29

15) ALGOL programs may be compiled before or after FORTRAN programs
for the same job. The basic operations for ALDAP, compile only, exe-
cute only and load-and-go are similar in format to those of other systems.
A transfer address is generated by the ALDAP compiler and may not be
provided by the programmer.

(end-of-file
RUN, 5,1000,7

(5
(710AD, 69

SCOPE

(Exp

(ALGOL source program)

/79ALDAP,L,x

gJos,1872,m,9

CENTRAL PROGRAMS 3

3.1
NORMAL ENTRY
AND EXIT

3.2
INTERRUPTS

Central programs may consist of assemblies, compilations, and execution.
Assembly or compilation result in a binary object program which may be
executed as part of the central program, or transferred to a data storage
device for later execution.

In the following text, a differentiation is made between the term "'central
program’' and ''user's binary object program.' In actual practice, they may
be the same, or the latter may be only a part of the whole central program.
This depends upon how the central program is defined by the Drum SCOPE
control cards discussed in Chapter 2.

When the user's binary object program is given control by Drum SCOPE, an
EXIT request (Section 4. 3) is placed in the first program location, and con-
trol goes to the second program location. Therefore, the user may return
control to Drum SCOPE by transferring control to the first location of his
program or by specifying his own EXIT request.

The logical flow of control in a central program may be interrupted by certain
conditions.

With the SELECT request (Section 4. 2. 2) the user may choose conditions
which interrupt the logical flow of control during the execution of his binary
object program and cause a user-specified interrupt subroutine to be entered.
Also, input/output requests (Section 4.1.2) contain an optional interrupt
address parameter; the subroutine indicated by that parameter is entered
when the I/O operation is complete.

Drum SCOPE enters an interrupt subroutine by placing a RETURN request in
the first location of the subroutine and initiating control at the second. The
programmer may return control to Drum SCOPE by transferring control to
the first location of his interrupt subroutine or by specifying his own RETURN
or RETURNM request.

3.2.1

REGISTER SAVING When an interrupt subroutine is entered, the B1-B6 registers remain as they
were when the interrupt occurred. The interrupt subroutine is responsible for
maintaining these registers for their own use from enter to interrupt, how-
ever. When an 1/0 interrupt occurs, the A and Q reglsters contain the status;
in all other cases, they remain unchanged.

When an interrupt subroutine returns control to the system by a RETURN or
RETURNM request, the A, Q, and B1-B6 registers will not be modified;
when control is returned to the central program, the system will restore
their values. The values of the A and Q registers may be modified by the
HERESAQ request. The location to which control is returned may be
obtained by the WHERE request and modified using the RETURNM request.

When an interrupt subroutine is entered because of a bounds fault, illegal
instruction or storage reference, a RETURNM request must be used.
Otherwise, the error-producing instruction will be repeated. (See 3600
Computer System Reference Manual 60021300, table 4-1.)

3.3
ABNORMAL

TERMINATION A program will be terminated abnormally (abandoned) if illegal or invalid
conditions arise. Any I/O operations which have been initiated will be
processed, but no interrupt subroutines will be entered. Programs will be
abandoned under the following conditions:

1. Violations of the rules given for the requests

2. An invalid or unrecognizable request

3. Exceeding the time limit imposed by the JOB, LOADMAIN, or
RUN card in a central program

4. Exceeding the print limit imposed by a RUN or LOADMAIN card
in a central program

5. An ABORT request
6. A bounds fault

7. The occurrence of an illegal instruction as defined by the monitor
protect feature with the exception of DISABLE and ENABLE in a
central program

8. A storage reference fault

9. Operator termination of a central program

3.4
ENABLE/DISABLE
MODE

Conditions numbered 6, 7, and 8 will not cause program termination within
central program enabled code if an interrupt subroutine has been selected
for these conditions with SELECT or BOUND requests.

When a program is abandoned, a diagnostic message is produced on OuT
with a record of the console at the time the condition arose. If an execution
phase is terminated, a core dump, as requested on the RUN or LOADMAIN
card, is produced.

A central program is originally activated (given control) in the enabled
mode. In this mode, the logical flow of the program may be interrupted by
a user-selected interrupt condition. When the interrupt subroutine is
entered, the central program enters the disabled mode.

In disabled mode, the following conditions hold:

1.

Bounds specified with the BOUNDS request are ignored; only the
Drum SCOPE job bounds are in effect.

A bounds fault, illegal instruction, or storage reference fault
will result in abnormal termination.

Except for the abnormal conditions listed in (2). the logical flow
will not be interrupted by the occurrence of a selected interrupt
condition. Execution will continue without entering an interrupt
subroutine; the conditions will be held until the central program
exits from the disabled mode either through a RETURN or
RETURNM request or through an ENABLE request.

The central program may also enter the disabled mode with this request:

DISABLE

The same conditions as stated above hold. If the disabled mode is in effect,
when this request is issued, no change occurs.

The central program will enter the enabled mode with this request:

ENABLE

This request should be used only to return to enabled mode after a DISABLE
request. Any other use may cause endless loops.

3-3

Both ENABLE and DISABLE must be used with caution. Their purpose is
only to permit enabled code to logically lock out for a period of time those
interrupts which disrupt the logical flow of the program.

35
STORAGE

ALLOCATION The central program may use any portion of memory except certain areas
of bank zero. Bank zero is divided into four areas:

Fixed System Area

The size of this area is fixed when the system is initialized.

Background-Driver Area

The size of this area is fixed at the start of each phase and is adjusted by
the system between phases. The user may control the size of this area as
follows:

Direct Cantrol

Operator request for a background program. The adjustment
will not be made until a phase break.

DEMAND card. The background program and drivers will be
removed, if necessary, to meet the memory requirements.

Indirect Control
Creating strings that require a background program for processing.
Establishing a unit which requires a driver.

Calling a production program that requires more space than is
currently available.

No Control

Background program or driver no longer needed.

Central Program Service Area

The size is fixed at the start of each phase, and is adjusted by the system
between phases. A minimum size exists; otherwise, the programmer has
direct control over the size of the area. There are three components of
the central program service area:

3-4

Logical Unit block

The size in words is one plus five times the number of logical
units allowed. This number is set when the system is initialized
and can be modified to some extent by the JOB card. This size is
fixed for the duration of a job.

Label Table

The size in words is ten times the number of labels allowed. This
is set by EQUIP cards and may be increased between phases.

The Buffers

The size is the number of buffers assigned times the block size.
The number of buffers assigned depends on the FAMILY card and
BUFFER request history. This size is adjusted between phases.

Central Program Area

This area may contain central program code or numbered common. Any
remainder is available through the MEMORY request.

The following diagram illustrates the areas in bank zero:

00000
FIXED SYSTEM AREA

BACKGROUND DRIVER AREA

CENTRAL PROGRAM SERVICE AREA

CENTRAL PROGRAM AREA

(This area may be contained
in more than one bank)

77777

3-5

PROGRAMMER REQUESTS 4

Programmer requests are statements which can be included in assembly
language programs. They specify operations for input/output control,
internal interrupt, and system requests. They may be written as system
macros or in any manner that generates the proper calling sequence to

Drum SCOPE.

4.1

INPUT/OUTPUT

REQUESTS Drum SCOPE processes all input/output requests, including read/write,
equipment status checks, and tape handling, and performs the following
operations:

. Assigns logical unit numbers to physical units
. Selects an available channel

. Stacks a request if a channel is not available

. Responds to external interrupts

. Initiates input/output operations

. Locates a continuation tape when needed to complete an input/output
operation or initiates one when end-of-tape is reached

All input/output requests must comply with the following rules:

1. Logical unit numbers used in requests originating from central
programs must fall in the range 1-64, 63-79.

2. All parameters specifying destination of data must fall within the
bounds allotted to the originating program.

3. In requests involving control word chains, control words must fall
within the bounds allotted to the originating program. When control
words specify input data transmission, both the first and last word
addresses must fall within bounds.

4. The maximum number of control words (excluding IOJP) in control
word chains on unblocked units is determined by the installation.

4-1

5. Parameters, unless otherwise specified, may be indexed or
indirectly addressed. Indexing is performed in one's complement
arithmetic using the values of the index registers at the time of the
request and operand bank set to the bank from which the request

originated.
4.1.1
ASSIGNMENT The user may control the assignment of equipment. However, in many cases,
these requests add information already supplied by EQUIP cards or implicitly
assumed.
LABEL The user may change information previously given in conjunction with the

assignment of labeled devices.
LABEL u, addr, edition, reel, retention or creation date

u logical unit number (decimal); this unit must have been
assigned to a labeled unit by a previous EQUIP card. ¥ a
unit is currently assigned, it will be released.

addr address of the first of two computer words containing the
name. The name may be:

14 characters, alphanumeric or spaces; parentheses and
commas cannot be used, nor can the first character be an
asterisk. Characters beyond are ignored.

*nn in the first three character positions of the first word;
nn is a number, 01-49. Results are the same as *nn in
EQUIP label request.

** in the first two character positions of the first word,
signify a non-standard labeled tape.

edition 1-99. I not specified, blanks will be written in the output
label; or any edition number will be accepted on an input
label.

reel 1-99. X not specified, reel 1 is written on an output label
or the lowest numbered reel is read from an input label.

retention retention days for an output tape (0-999) 999 specifies
permanent retention.

creation date written for an input tape. (mmddyy; month, day,
date year)

4-2

DISPOSE The user may set or change the disposition of the specified unit. Disposition
set by the system or by EQUIP cards may be overridden by the DISPOSE
request.

DISPOSE u, dd, ea

u logical unit number 1-49, 61-62, 69, 71-79. I the unit is
not a drum, disposition is ignored.

dd disposition mnemonic; cannot be indexed
PR print
PU punch

Other mnemonics may be included by the installation.

ea error address; if the specified disposition is not recognized,
an exit to the error address is taken.

Example:

DISPOSE 39, PR, ERROR
Logical unit 39 is to be printed when released.

RELEASE To release an assignment, the user may specify:
RELEASE u, ra, s
u logical unit number, 1-62, 69, 71-79.

ra reject address to which control is transferred if the unit is
busy. A reject address must always be specified.

s Any character, meaningless unless u is magnetic tape. I s
is non-zero, the unload is suppressed.

The RELEASE request will not remove any hardware declarations for
central programs. Thus, if an EQUIP card declares

EQUIP,5 = MT, (label declaration)
and unit 5 is assigned later, for example by a READ request, and then

released by a RELEASE request, a new READ for logical unit 5 will again
assign magnetic tape. The label declaration is released, however.

4-3

SAVE, UNSAVE These requests are ignored; they are provided for compatibility with
Tape SCOPE.

{ SAVE } u
UNSAVE

4.1.2
DATA TRANSMISSION In these requests, the following parameters are uniformly defined:
u logical unit number
cwa address of the 1/0 control word or the first I/O control word

in a chain. (See the 3600 REFERENCE Manual for control
word format.) Maximum length of a chain is determined by
the installation.

ra location to which control is transferred in case the specified
unit has not completed the former operation.

ia address of the programmer's interrupt subroutine to which
control transfers when the requested operation is terminated.

READ/WRITE Reading and writing of data are initiated with these requests.

{READ } u, cwa, ra, ia

WRITE ’ ’ ’

If a multi-reel operation on magnetic tape has been indicated, the READ/
WRITE request initiates the search for the new reel and the release of the
old reel. The direction of read may be designated by a parameter in the
MODE request.

The operation will terminate if either the control word chain has been satis-
fied or an abnormal condition, according to the hardware, arises.

Examples:

READ (INP, CONTROLA, SAM, INTRPT)

Data is to be read from the standard input unit, the first control word
is at CONTROLA. If the request is rejected, control is to be trans-
ferred to SAM. When the read operation is completed (or an abnormal
condition occurs), control transfers to the interrupt subroutine at
location INTRPT.

REOT/WEOT

RDLABEL

WRITE (OUT, CONTROLB, *, INTRPTB)

A write operation is to be performed on the standard output unit. The
first control word is at CONTROLB, and the write request will be
executed when OUT becomes available. When interrupt occurs, control
transfers to INTRPTB.

These requests are tape movement controls which allow reading and writing
after the physical end-of-tape, before a continuation reel is assigned.

{REOT } u, cwa, ra, ia

wEgoT f 1 W& T

If the request is issued before a physical end-of-tape, the reading or writing
occurs and a logical end-of-tape condition is set. At the next READ or
WRITE request, a continuation reel is assigned.

Example:

REOT 25, RDCWA, *

Logical unit 25 is read; a logical end-of-tape condition is set after
reading is complete. Upon the next READ request for unit 25, a
continuation reel will be assigned. Since ia is blank, an interrupt sub-
routine will not be entered upon completion of request.

This request permits the user to examine contents of the label on a standard
labeled unit.

RDLABEL u, ba, ra, ia

u logical unit number of a device with a standard label.
ba first word address of a 10-word buffer.

Drum SCOPE reads the label from u, which must be at the beginning of the
volume' or unassigned, into the 10-word area beginning at ba. If the system
cannot assign the unit, and the operator signals the system to continue by
typing in NONE, the word at ba is set to machine zero.

TWhen the anount of space required for a file on a storage device exceeds the
amount of contiguous space available, the file will be stored in two or more
non-contiguous areas, or volumes. Volumes are then linked together logi-
cally. Drum SCOPE opens and closes the various volumes automatically.

In the case of tape, volumes are reels of tape for multi-reel files.

4-5

WRLABEL

RDBLOCK/WRBLOCK

Example:

RDLABEL 20, BUFFER, *

The standard label on logical unit 20 will be read into the location beginning
at BUFFER. Since ia is blank, an interrupt subroutine will not be entered
upon completion of request.

With this request, the user may write information into the optional text area of
the standard label. (The unit must be labeled, and it must be either at the
beginning of volume or assigned.)

WRLABEL u, ba, ra, ia

Upon completion of the operation, the label written by the system will be in the
area beginning at ba. The system will supply the first 32 characters and use
the 48 characters beginning at ba + 4 (refer to Standard Label Format, Chapter
5).

RDBLOCK u, cwa, ea, ia
WRBLOCK u, cwa, ea, ia

These requests, valid on blocked units only, transmit full blocks of information
rather than single records. They are primarily intended for use by background
programs and systein programs such as assemblers and compilers. They may
be used by other central programs but require thorough knowledge of blocked
1/0 processing. Some restriction on the use of these requests follow:

1. Record control words (RCW) are checked for legality on WRBLOCK
(and WRITE) requests. The RCW's must either string to the end of
the block or to an RCW. E control word. The program will be ter-
minated if these conditions are not met.

2. The CWA in the request must point to a word containing (in bits 17-00)
the location of a block-size buffer. The upper half of the word will
be ignored--BLSIZE words will be transmitted regardless of the word
count, or type of IOxy. Chaining will also be ignored.

3. If the CWA points to a family buffer the following points must be care-
fully observed.

Any other I/0 on the same family will destroy information in the buffer
(example: RDBLOCK on LUN 60 and WRITE on LUN 62 may cause
trouble).

If the family contains two buffers, all RDBLOCK and WRBLOCK re-
quests must specify the primary buffer. (A member request will
return with the primary buffer location in QL and the secondary in
QU. In addition bit FAT.PP, if set, signifies that the buffer is being
read from or written onto the drum and should not be distrubed until
the bit becomes zero.) The primary and secondary buffers are alter-
nated; once the primary buffer is determined, it is necessary only to
switch buffers on requests.

4. Mixing READ with RDBLOCK and WRITE with WRB LOCK requests
require further precautions:

The first word of the buffer (normally, the BCW) contains in the lower
9 bits, a pointer to the word following the last record READ if a RD-
BLOCK follows a READ. The entire buffer will be transmitted, but
part of it has already been processed. (This will usually be true inthe
case of the first RDBLOCK on LUN 60 since at least some READS
have been done by the system).

A SETUPT request must be used to set the pointer if the user has not
processed all records in a block after a RDBLOCK request if READ
requests on the same unit are to follow. (For example, if COMPASS
does a RDBLOCK on LUN 60 and encounters a SCOPE card part way
through the block, a SETUPT request must be made pointing to the
next record to keep the central program from being terminated on the
next READ request.)

Before issuing a WRBLOCK request on a family buffer, a GETUPT
request should be made to find out if any information has been stored
in the buffer by previous WRITE requests. GETUPT will return with
the A Lower containing the pointer. (Zero if no writes have been
made, otherwise the location in the buffer where the next RCS should
go.) A SETUPT request must be issued to set the pointer back to
zero before the first WRBLOCK if the pointer was non-zero to avoid
losing information.

SYSIO With this request the user may write accounting data or a message 4o the op-
erator.
SYSIO f, k, fwa, wdet
f function; unindexed digit, 0 or 1

0, write message to operator
1, accounting information

k relevant only if f = 0

4-7

message appears always

if stop key 1 is set

if stop key 2 is set

if stop keys 1 or 2 are set

if stop key 3 is set

if stop keys 1 or 3 are set

if stop keys 2 or 3 are set

if stop keys 1, 2, or 3 are set

SO U WD O

fwa 18-bit unindexed address
wdct 15-bit word count, unindexed; with fwa, this parameter defines

a buffer area

The message beginning at location fwa, containing wdet words will be written
on the unit specified by f.

f= 0-3 reserved for the system
4-7 available for installation use
0 write output comment
1 write accounting
2 unused
3 unused
Example:

SYSIO 0, 5, (($)MSG),3

The 3-word message beginning at location MSG will be output on the
typewriter if stop keys 1 or 3 are set. The message is in internal
BCD mode.

CONTROL REQUESTS control name u, ra, ia
Control names are listed below:

BSPF Backspace until an end-of-file mark or beginning
of volume is reached, whichever occurs first.
On tapes, a BSPF given at load point will cause
a backward motion; remounting will probably be
necessary.

BSPR Backspace one record or to beginning of volume,
whichever occurs first. On tapes, a BSPR
given at load point will cause a backward motion;
remounting will probably be necessary.

REWIND Rewind to beginning of current volume.

STATUS

SKIP Skip to end-of-file or end of volume, whichever
occurs first.

ERASE Erase 6 inches of tape (unblocked tapes only).
MARKEF Write end-of-file mark.

The formats of the following control requests differ slightly from those listed
above:

UNLOAD u, ra, ia, p Rewind to beginning of current volume and
unload. If p is 0, the assignment is released;
otherwise, the assignment is kept. (Sec. 3.1.4)

LOCATE u, lra, ra Position random access unit at address contained
in location lra. Unless u is a random access
unit, the request is bypassed. The relative
address contained in location lra must be be-
tween 0 and the total number of words in the
file minus one. Upon return, either normal or
reject, the A register contains the total number
of words in the file.

When a status request is issued, information regarding the unit involved is
returned in the AQ register. A unit on which an operation has been requested
may be in one or four phases; quiet, held, busy, or stacked. Requests are
rejected on units which are not quiet.

In the quiet phase, no operation has been requested, or the operation is
complete and the interrupt subroutine has been entered.

In the held phase, the previously initiated operation is complete, but the
interrupt subroutine has not yet been entered.

In the busy phase, an I/O operation is currently in process.

In the stacked phase, an operation has been requested but has not yet been
initiated by the system.

STATUSu

This request permits the user to detect the completion of an operation and
obtain the status response. The status on a quiet or held unit reflects the
status of the unit at the completion of the prior operation or at the last instance
of a DYSTAT request.

4-10

DYSTAT u

This request is like STATUS except that if the unit is assigned and is quiet, a
dynamic status, the current status of the physical device, is returned. The
DYSTAT request should be used with care since it can take considerably
longer than the STATUS request. If the unit is unassigned or if the unit is a
blocked unit, the DYSTAT request behaves exactly like STATUS.

The reply to the STATUS and DYSTAT requests is entered in the A and Q
registers as follows:

Q Register
47 45 43 41 37 35 33 31 25 24 18
P|ple
p [t|f|e|m| sz:'b1 el|blf s mlu r/h
\
46 44 42 38 36 34\32
srb2
p phase: 00, quiet
01, held
11, busy
10, stacked
t tape flag: 0, unit is a tape or a blocked unit, examination of
the r/h field will determine which.
1, unit is not a tape or a blocked unit. The r/h
field contains the hardware code.
f bypass indicator: 0, unit is not bypassed
1, unit is bypassed
mlu master logical unit; may differ from u in the request if units

are equivalenced.

r/h if t = 0 and:
r/h = 0, unit is blocked.
r/h # 0, unit is tape and r/h is current volume number.
ift=1:

r/h contains the ordinal of the hardware type.

The remainder of the status is meaningful only on a quiet or held unit. If a
unit is busy or stacked, the accuracy of the flags and fields cannot be guaran-

teed.

pe

pb

ef

end of volume indicator
0, end of volume condition does not exist.

1, end of volume condition does exist; this may arise from an
REOT or WEOT request, or physical end of volume. The
condition is cleared when a continuation volume is assigned,
or when a backward motion request is issued and the physi-
cal end of volume condition is removed.

physical end of volume indicator

0, not physical end of volume.

1, physical end of volume.

physical beginning volume indicator

0, unit not positioned at beginning of volume.
1, unit is positioned at beginning of volume.
end-of-file indicator

0, end-of-file has not been read.
1, end-of-file has been read. This condition arises after:

Reading end-of-file with READ, REOT
Writing end-of-file with MARKEF
After BSPF, SKIP, or BSPR which read a file mark

ready indicator

0, unit is not ready or not assigned
1, unit is assigned and ready
transmission error indicator

1, parity or mode error occurred during prior transmission.
A retry is recommended.

0, no transmission error.

Interpretation of the status reply bits (srb; and srby) depends upon the hard-

ware device.

(See table 4.1)

4-11

Table 4-1. Hardware-Dependent Status Reply BitsJr

Unblocked
Card Card Line Magnetic Random Blocked
Reader Punch Printer Tape Access Units
Q(34) next card write ring next card
binary present binary
Q(35) card with 7-8 EOF mark has
punch in column been read
1 has been read
Q(36) load point beginning beginning
is present of volume of volume
Q(37) input tray end of tape end of end of
empty reflective spot | volume volume
has been read
Q(38) end-of-file feed failure paper supply | unit set to HI
switch ON and |or card jam low density
last card has
been read
Q(39) stacker full compare paper is at unit set to HY
or card jam error on card | last line density
prior to last (channel 7)
one punched
Q(40) read compare lost data
or pre-read condition
error
Q(41) end of
operation

TBlanks indicate the bit is meaningless for that particular hardware.

4-12

MODE

A register:

op. code bank
45 39 17Y1

storage address

word count

47 a4 38 23 16 14 0

If the previous operation was a read or write, the control word, on completion
of operation, is returned in the A register. The unused fields in A and Q are
of no significance to the user.

A MODE request defines the usage of a unit or specifies density or recording
mode. A MODE request can be honored only if the unit is quiet; otherwise,
control returns to the reject address.

MODE u, ra, dl’ d2, d3, d4

A logical unit designator and a reject address must be present; d, declarations
are defined below. If declarations contradict the last mentioned,1 or rightmost,
takes precedence. All declarations apply to the master logical unit. Certain
declarations are implied by the hardware, for example, LR is WO.

Only one (the rightmost) parameter firom each of the following groups will be
recognized. The order is not important, except that there may be no null para-
meters within the declaration list. (The processor will not process any para-
meters beyond the first blank or null indication.)

Usage specifies an operating condition for the unit:
RW (read and write) all legal requests will be performed.

BY (bypass) STATUS, MODE, and RELEASE requests will be pro-
cessed. Other operations will be accepted and interrupt sub-
routines entered.

RO (read only) WRITE, WEOT, MARKEF, ERASE, or WRLABEL
requests are illegal.

wO (write only) READ, REOT, RDLABEL, or SKIP are illegal.

FO (forward only) BSPF, REWIND, or UNLOAD requests are illegal.

Drum SCOPE releases the drum area on which the information
is recorded while reading or writing is taking place, allowing
the user, for example, to start printing prior to the release of
the entire file. One BSPR following a READ or WRITE is per-
mitted provided that the record size is less than the system
buffer size, but subsequent BSPR requests cannot be guaranteed.
If a BSPR is requested and the data is not available, a diagnostic
will result and the job will be abandoned. FO may be cleared
only by a RELEASE.

4-13

The declarations RW, RO, WO, and BY are mutually exclusive and reset any
former declaration except FO.

Recording mode selection remains until modified.

BIN binary mode
BCD BCD mode

Density may be declared for magnetic tape; it is ignored elsewhere. A
density declaration in MODE request does not automatically imply magnetic
tape, as it does in the EQUIP control card.

oP operation option; for input, defines the density to be the same
as the density of the label; for an unlabeled tape, the operator
selects the density when he mounts the tape. For output, a
standard density determined by the installation is used.

HY hyper density tape (800 bpi)
HI high density tape (556 bpi)
LO low density tape (200 bpi)

Direction may be declared for magnetic tape; it is ignored elsewhere.
ND normal direction

RV reverse direction; READ, BSPR, and REOT employ reverse
read as defined in 3600 Reference Manual. Although FO and
RV are seemingly contradictory, FO applies only to blocked
units and RV applies only to tapes.

CHECK This request terminates input/output operations. The response returned from
the CHECK request gives the status at the time the operation terminated.

CHECK u

The response depends upon the phase of the unit at the time the operation
terminates. If the unit is quiet, the CHECK request returns a quiet status,
as in the STATUS request. If the unit is held, the request returns a held
status, but the interrupt subroutine is cancelled. If the unit is busy, the
system will wait until the unit is no longer busy. If the unit is stacked, the
request returns a stacked status and the stacked request is cancelled.

After a CHECK request, the unit is quiet.

4-14

READY With this request the user may sense a ready condition on a unit; the interrupt
subroutine is entered when the unit is ready.

READY u, ra, ia

This request has little meaning if no interrupt address is specified; the
programmer would have to constantly check the status of the unit with one of
the status requests.

A ready condition is generally defined as ready and not busy, that is, ready
for an operation.

GETUPT GETUPT lun

This request returns, in A lower, the pointer to the next record control word
on the blocked unit specified by lun. It is to be used with RDBLOCK/WRBLOCK
requests. A pointer of zero points to the first record control word in the
buffer (the second word of the buffer).

SETUPT SETUPT lun, val

This request sets the pointer to the next record control word to val, on the
blocked unit specified by lun. It is intended for use with RDBLOCK/
WRBLOCK requests.

4.1.3

1/O BUFFERING Buffers are used as intermediate storage areas for data transmitted between
internal memory and external storage. Buffer size is determined by the
installation, within limits of 129-511 words.

To provide efficient buffering on blocked units, Drum SCOPE requests allow
the programmer to group logical units into families and assign a pool up to 2
buffers to a family. The system family, 0, contains the system units. For
central programs, family 1 is initially defined to contain units 60, 62, and 69;
family 2, unit 61. These associations may be changed with the FAMILY
request.

Drum SCOPE is able to buffer one member of each family at a time; thus
optimal performance is obtained for consecutive forward motion operations.
Assigning two buffer areas allows maximum efficiency for input/output
operations; Drum SCOPE will attempt to transmit one block of the data from
one buffer while the other buffer is refilling.

4-15

4-16

FAMILY

BUFFER

Closely alternating input or output of two or more members of one family
slows transmission; Drum SCOPE must unload the buffer areas for the old
member and initiate buffering for the new one each time. If the need for fast
transmission of units is not simultaneous, the time used in unloading the
buffers for the old member and initiating the new one is not prohibitive. For
example, consider an application where a program reads a large amount of
data from one unit and then writes a large amount of data on some other unit.
In other cases, slow buffering could possibly be tolerated, for example, with
low frequency units.

A two-buffer family is more efficient. If only one buffer is available, no
one-ahead buffering is possible; each time a new block of data is required, a
delay will occur.

Another important consideration is the amount of storage used by buffers.
Two family 0 buffers are always present; the central programmer can nor-
mally assume that there is room for four more buffers, nominally assigned
to families 1 and 2.

With this request a programmer may attach a unit to a family.

FAMILY u, f
f family number, 0 to F, where F is a quantity determined by
the installation.
u logical unit number 1-62, 69, 71-79 (or limited to valid

references from a background program)

To maintain efficient I/O processing, avoid attaching a unit to family 0.

This request declares a buffer pool for a family.
BUFFERu, a, ¢
u unit number
a, ¢ 18-bit addresses or zero
Non-zero a and c define the starting addresses of the buffer areas which the
system may use for the family which contains unit u. If only one buffer is to

be used, specify ¢ = 0. No check is made to detect storage conflicts; however,
an attempt to locate a buffer area outside of the job bounds will be detected.

MEMBER

4.2
INTERRUPTS

If more than one BUFFER statement is made for units in the same family, the
last one encountered by Drum SCOPE overrides the others. The MEMBER
request as well as the . POOL common block (Section 7.1) may be used to
determine the size of buffer areas.

This request determines the family membership and buffer area allocations
of a unit.
MEMBER u
u logical unit number
The reply is contained in A and Q as follows:
A register:

39

family number buffer size

47 38 23 14 0
family number number of the family to which this unit is currently
attached.
buffer size current system buffer size.

Q register:

42

location of
other buffer

location of
one buffer

The user may define certain events as interrupt conditions. When such an
event occurs, normal processing is discontinued, and control goes to a
user-specified interrupt subroutine. Control must be returned to the inter-
rupted program via the RETURN or RETURNM requests.

4-17

4.2.1

1/0 INTERRUPTS

4.2.2

INTERNAL INTERRUPTS

4-18

SELECT

Interrupts may be specified by the ia parameter of certain input/ output
requests. When this type of interrupt subroutine is entered, the A and Q
registers contain the status of the interrupted unit as defined in the STATUS
request.

Drum SCOPE contains eight additional requests with which the user may
control internal interrupts.

This request selects the condition to be detected by an interrupt subroutine.
When the interrupt feature occurs, the subroutine indicated by the interrupt
address will be entered.

The fault will be cleared when the SELECT request is given. That is, an
error which has occurred prior to the issuance of the SELECT request will
not cause the interrupt subroutine to be entered.

If the feature has been requested before in this job, the old interrupt address
is saved within the request. Thus, a form of push-down selection can be
obtained.

SELECT m, ia

m interrupt feature mnemonic; may not be indexed.
SHIFT shift fault
DIVIDE divide fault

EXOV exponent overflow
EXUN exponent underflow
OVER arithmetic overflow
ADDR storage reference fault

TRACE trace mode alert
INST illegal instruction
MANUAL operator message

ABNORM abnormal termination - only one ABNORM may
be given in any phase. The specified routine is
entered if any abnormal termination occurs.

REMOVE

BOUND

The user is given an amount of time, determined by
the installation, to perform desired termination pro-
cedures (such as writing out partial buffers, guaran-
teeing termination of all I/O and so forth). While op-
erating in the disabled mode, the logical flow of the
program will not be interrupted by the occurence of a
selected interrupt condition.

I indirect - ia must be the address of a REMOVE or an-
other SELECT request where an interrupt selection has
been saved. Both the feature and interrupt address
will be obtained from this request.

ia interrupt address, or if m = I, the address of a SELECT or
REMOVE address; ia may not be zero.

This request removes the selection of an interrupt.
REMOVE m

m any interrupt feature mnemonic except I, as explained in
SELECT.

If any of the features ADDR, ABNORM, or INST is removed, an automatic
selection will take effect to cause abnormal program termination if they
occur. The fault is cleared.

Drum SCOPE is protected by upper and lower bounds. The upper bound is
the highest location in the highest numbered bank available, excluding the
system and background programs. The lower bound is the lowest numbered
location in bank 0 excluding Drum SCOPE. A bounds fault causes program
termination unless a BOUND request has been used previously to select a
programmer interrupt subroutine.

This request may be used to impose bounds inside the Drum SCOPE bounds.
BOUND 1b, ub, ra, ia

1b lower bound; 18-bit, unindexed address; zero indicates
Drum SCOPE lower bound.

ub upper bound; 18-bit, unindexed address; zero indicates
Drum SCOPE upper bound.

ra reject address; control transfers to this location if the
requested bounds do not fall within Drum SCOPE bounds.

4-19

ia interrupt address; control transfers to this location if a bound
fault occurs, if zero, UNBOUND is simulated.

The current bounds setting is returned in the A register.
If b =ub =0, IA is ignored and normal return taken.
Example:

BOUND (((*) LIMIT1), LIMITZ, RA, IA)

The lower bound is LIMIT1 in the bank containing the BOUND request.
The upper bound is LIMIT2 in the bank containing LIMIT2. ($) LIMIT2
is assumed. T

UNBOUND The Drum SCOPE bounds are restored with this statement. UNBOUND cannot
remove the bounds set by the system.

UNBOUND

MEMORY The limits of available storage may be obtained or changed by the MEMORY
request.

MEMORY bank designator, lower limit, upper limit
bank designator bank number (0-7)

lower/ limits set by the programmer; may not be indexed.

upper limits If zero, limits are set equal to Drum SCOPE job
limit. Lower limit must be less than upper unless
upper limit is zero.

When the limits have been changed by MEMORY, the new limits are returned
in the A register. A non-existent bank is indicated when the A register is
equal to zero. If no limits are supplied in the request or if both limits are
zero, the current storage limits for the specified bank will be entered in the
A register in the following binary format:

upper limit lower limit

47 3938 24 23 1514 0

TSee the 3600 COMPASS manual for meaning of bank designator ($).

4-20

LIMIT

FREE

RETURN

RETURNM

A time limit is set after which control will be transferred to the interrupt

address.

LIMIT du, ra, ia

du duration in seconds of the time limit; milliseconds may be
appended with the parenthesized expression (seconds, milli-
seconds)

ra transfer location if the limit is not accepted

ia location to which control transfers when the limit is reached

No more than a standard number (determined by the installation) of limits
may be in effect at one time; each must fall within the time set by the last
executed LIMIT request. I the new limit is greater than the time remaining
for the previous selection, control will transfer to the reject address.

Example:

LIMIT)) 1000, 500), RA1, IA1)

This request releases the last time set by a LIMIT request (the smallest in
the list of time limits) and re-establishes the next previous time set (the
smallest in the list). Limits, such as JOB and RUN, set by the system
cannot be freed.

FREE

Control returns to Drum SCOPE from an interrupt subroutine. When' it is
issued, from a central program enabled routine, it is treated as an EXIT

request.

RETURN
Modifications may be made to the address to which control will be returned.
RETURNM lower/upper, address, operand bank

lower/upper L indicates control is to return to the lower half word.
(A BJPL instruction is generated.)

U indicates upper half word. (A UBJP instruction is
generated.)

address 18-bit address to which control is to be returned.

operand bank 3-bit operand bank value.

4-21

4.3

SYSTEM REQUESTS

TIME

DATE

WHERE

RETURNM may originate from a central program interrupt subroutine only;
when it is issued from a central program enabled routine, it is treated as an
EXIT request.

The remaining requests are used to interrogate and make requests of Drum
SCOPE.

Upon receiving a TIME request, Drum SCOPE enters the time of day into the
Q register in BCD and the time remaining before the next time interrupt into
the A register in binary.

TIME

The time of day is based upon a 24-hour clock (one minute before midnight
is 235900) and is given in hours (hh), minutes (mm) and seconds (ss). This
time is entered in BCD in the Q register in the format:

abhhmmss, (,indicates a blank)

The time remaining until the next user, RUN, or JOB time interrupt is
entered in the A register in the format:

milliseconds seconds

38 24 23 0

When this request is received, Drum SCOPE enters into the A register the
current date in BCD: mm/dd/yy (mm = month, dd = day, yy = year) and
the Julian date in the Q register: AA Ayyddd (yy = year, ddd = day)

DATE
With this request, a central program interrupt subroutine obtains the last
location executed in the normal central program. The bank jump command

stored by the machine when the interrupt occurred is returned in A.

WHERE

EXIT

ABORT

LOVER

This request returns control from a running program to Drum SCOPE.
Re-entry to the program will not occur; the program is complete.

EXIT

The Drum SCOPE system contains a diagnostic routine with stored messages
which are definable by the installation. When the program issuing an ABORT
request is terminated, post-mortem procedures are taken and the diagnostic
6pecified by the BCD diagnostic key) is printed. If no diagnostic message
exists which corresponds to the diagnostic key, the key will be printed.

ABORT diagnostic key

Drum SCOPE is directed to load the overlay partitiont specified by the para-
meters.

LOVERu, f, n

u logical unit number containing the partition; must be 1-49, or
70 if the program is included in the production file.

f and n specify the type of partition.

n i partition

0 Oor S main
overlay number (6] overlay
segment number S segment

When control returns to the system, the A register contains:

One address encountered, A =

address

47 17 0

Two addresses encountered, A =

first address second address

TSee OVERLAY PROCESSING, Chapter 6.

4-23

LIBRARY This request positions the system library in front of the routine whose name
is at address In, left justified with trailing blanks.

LIBRARY In, ea
In address of library routine name

ea location to which control is transferred if the routine does not
exist in the library.

When the last card of a routine has been read from the system library, end of
volume will be set in a STATUS reply.

LOADER A running program uses this request to call the loader.
LOADER

If the loader is not in storage, Drum SCOPE will read it from the library.

It is loaded into the lower part of bank zero, and it uses the area immediately
folowing for tables. The user should avoid saving any information in the
lower part of bank 0. dJust pricr to this request, the parameters specifying
what is to be loaded must be placed in the A and Q registers (section 5.2).
Drum SCOPE passes these parameters to the loader and retains control until
the call is complete. When control is returned, the recording modes of the
units referenced by the loader (which may include LIB, OUT) may be changed.

HERESAQ This request permits the programmer to change the values of A and Q of the
interrupted enabled code while in disabled central program code. The values
are retained by Drum SCOPE until control is returned to the central program,
and are then restored to the A and Q registers for the enabled code.

HERESAQ

CLBCD This request converts a column binary card image to a BCD card image.
CLBCD bufa, bufb

bufa first word address of a 20-word area containing the column
binary card image to be converted.

bufb first word address of a 10-word area in which the BCD con-
version will be stored.

There is no checking for illegal characters. Column one of the resulting
card image is set to 60g.

4-24

BYNBY

JOB.ID

SWAP

Each column is converted as follows:
12 punch = 20g
11 punch = 40g

0 punch = 60g if no 12 or 11 punch
= 12g if either a 12 or 11 punch

1-9 punch = 018 to 118
The resultant character, c, is formed from the punch values, uy, as follows:

Setc=0
c=cvliy i=12,11,0,1,...,9

if ¢ = 0 then set ¢ = 608 or

ifc=608 then setc =0

This request enables a background program to select a time interrupt. Con-
trol will be given to ia following a time delay of less than one minute. This
request is value only from a background program.

JOB. ID returns an address in bank 0 at which is located a file word block of
information.

Word 0 contains the priority of the current job in bits 17-15 and the sequence
number (in binary form) in bits 14-0. Bits 47~18 are 0.

Words 1 and 2 contain the first 16 non-blank characters of the JOB card i field
with trailing blanks.

Words 3 and 4 contain the first 16 non-blank characters of the JOB card c field
with trailing blanks.

SWAP 1In, ea, ia
In location of name left adjusted with trailing blanks. The name must
be within the bounds of the requestor.

ea address to which control transfers when SWAP is honored, a retry
is possible. The following indicators will be in A.

Ty is logical or operation

4-25

4-26

A Q

0 Error . Diagnostic key in Q
1 A SWAP is already in process

2 No room in PNL for the program

3 There is no entry point to the program

ia address to which control transfers if SWAP is honored. The follow-
ing indicators will be in A.

A Q

0 It is loaded

1 The name is unknown

2 It used bank 0

-0 Exit

-1 Aborted Diagnostic key in Q

When this request is issued, the bank 1 portion of the central program (level
0) is moved from memory onto the drum after all program I/0 has ceased.
The production program named at In will be loaded into memory in the area

of the central program, and it will be run as a background program at the

next available level. The program must use only bank 1. If the SWAP request
is not rejected and the program is known and has an entry point, 1/0 will be
stopped, and bank 1 will be saved. The program will be loaded and entered

at its entry point.

This operation will have a lower priority than the requestor and therefore
cannot operate unless the requestor is not in execution. Normally the instruc-
tion following a SWAP request will not be executed; therefore the built-in re-
turn in SWAP is not effective because control will always come to either ea

or ia. The requestee will be given the A, Q, D registers and the index re-
gisters B1-B6. Also, the requestors two's complement status will be set.

LABELS, ASSIGNMENT AND RELEASE PROCEDURES 5

A label is a record which may be used to identify and protect a file. A data
storage device may have standard labels in a format recognizable to Drum
SCOPE or non-standard labels for which a user must code his own label-

checking routine.

Labels may also be omitted.

The manner in which a file is labeled affects the manner in which assignment

Standard Label Format

is made.

Character

Position Content

1 2, 5,0or8

2-3 ()

4-5 uu

6-8 rtn

9-22 name

23-24 vV

25-30 mmddyy

31-32 ee

33-80 user's
information

Meaning

density indicator; 2 = LO (200 bpi), 5 HI
(556 bpi), and 8 HY (800 bpi)

Unique label identifier

Logical unit number (01-49) or blank
Retention code (000-999); number of days
tape is to be saved from date written. 999
signifies permanent retention.
l4-character alphanumeric file name
volume (reel) number (01-99)

creation date; mm month, dd day, yy year.

edition number (01-99 or blank)

may be referenced by the user with RDLABEL,
WRLABEL.

5.1
ASSIGNMENT

5-2

Assignment may be defined as the association of a logical unit number with a
particular file of information; this association takes place during execution.

A forward motion request (read and write), the ASSIGN request from a back-
ground program, and certain operator messages cause assignment. EQUIP
and LABEL statements provide information necessary to make the assignment,
but do not cause assignment. These are three types of assignments: read,
write, and unit assignments.

Read Assignment

A read assignment procedure is executed when a unit is unassigned and a READ,
REOT, RDLABEL, or SKIP request is issued. It may also be executed when

a unit is unassigned, an end-of-volume condition exists, and a READ or

SKIP request is given. With READ or SKIP the old assignment is released,

and if a standard labeled device is specified, the reel number is increased by
one.

An EQUIP statement specifying hardware for a logical unit must appear before
that unit may be assigned by a read request from a central program. Simi-
larly a background program must issue an assign request before reading.
Units outside the range 1-49, 71-79 have non-standard labels even if the de-

vice is labeled.

Write Assignment

A write assignment procedure is executed when a unit is unassigned and a
WRITE, WEOT, MARKEF, WRLABEL, or ERASE request is issued. It

will also be executed when an ASSIGN request specifies a hardware mnemonic
without ordinal, or when a unit is assigned and an end-of-volume condition
exists when a WRITE request is issued. The latter condition can arise only
on units 1-49, 71-79.

Unit Assignment

A unit assignment is executed either as a result of an operator query or when
an ASSIGN request of the hardware-plus-ordinal form is issued.

5.1.1
UNLABELED DEVICE

5.1.2
LABELED DEVICE

A write assignment for a specified type of hardware will assign any device
which:

1. 1is of the specified hardware type

2. 1is currently unassigned

3. is ready when the status is checked
A read assignment of a specified type of hardware consults the operator with

a message; the operator assignment will be made only if the three conditions
stated above are met.

Standard Labels

A write assignment on a standard labeled device is made on the first unit
which:

is of the specified hardware type

is currently unassigned

is ready when status is checked

= W N

contains (a) a label with expired retention code; that is, the
creation date plus retention code occurred prior to the day assign-
ment is requested or (b) no recognizable label

5. contains a write enable ring if magnetic tape
A read assignment on a standard labeled device is made on the first unit
which:

1. is of the specified hardware type

2. is currently unassigned

3. is ready when status is checked

4

has the required label

5-3

5-4

Label checking is performed as follows:

a.

h.

If an EQUIP statement or LABEL request specifies a logical unit
number, the logical unit number field on the label must contain the
proper unit number.

Example:

EQUIP, 5= MT or
EQUIP, 5 = (*02)

In the first example, the proper unit number is 05, in the second,
02.

If the label text specifies a name, the 14 characters of the name
must agree.

If the requested reel number is zero, the unit satisfying (a) or (b)
with the lowest reel number is selected.

If the requested reel number is non-zero, the reel number field
must agree.

If the requested edition number is zero, the first volume encoun-
tered which satisfies the above conditions is selected.

If the requested edition number is non-zero, the edition number
field must agree.

If the creation date on the EQUIP or LABEL formats is zero, the
first volume encountered which satisfies the above is selected.

If the creation date is non-zero, the date field must agree.

If a labeled device is declared in either an EQUIP statement or a LABEL
request to contain a non-standard label, a read assignment is treated the
same as for an unlabeled device. A write statement, however, is treated
the same as for a labeled device.

5.2
RELEASE
PROCEDURES

When an assignment is released, the file is no longer needed and has been
returned to the system for disposition. A release procedure is executed as
follows:

Explicit Requests

When RELEASE, UNLOAD, ENTER, and LABEL requests are issued,
release procedures are executed on a previously assigned unit. RELEASE
and UNLOAD may modify the procedure.

Program Termination

When a program terminates, all units assigned to it are released.

Loading Termination

At the conclusion of a central program loading operation which uses unit 69,
unit 69 is released.

Phase Termination

At the conclusion of a central program phase, the units in the range 50-59
are released.

Continuation Volumes

When an end-of-volume condition exists for a central program unit, and a
continuation volume is to be assigned, the old volume is released.

The action taken by Drum SCOPE depends upon the conditions stated below:

Blocked Unit--No disposition

When a blocked unit is released, and no disposition is specified
(DISPOSE request) the information in the file is discarded. For the
drum, the blocks which contained the information are made available.
For tape, the tape is moved forward in search of the next file; if there
is none, the tape is unloaded if a write ring is absent; otherwise, it will
be blank labeled.

5-5

5-6

Blocked Unit--Disposition specified

When a blocked unit with a non-blank disposition is released, the
information currently contained in the file is saved and becomes a
drum unit of type equal to the current disposition. Thus the data may
be found by a background program via an ASSIGN request. A tape is
rewound to beginning of the file and becomes a "drum' unit of the
disposition type. The file may not be disturbed until the data has been
processed and released with a blank disposition.

Standard Labeled Device

When a standard labeled unit is released from a central program, the
information will be saved if there is no ring (tapes only) or the retention
cycle has not yet expired. Tapes will be unloaded unless overridden by
the RELEASE request. If there is a ring and the retention cycle has
expired, the unit becomes available and the data is lost.

Non-standard Labeled Devices

The unit is unloaded when released.

Labeled Devices--Background Assignments

When a labeled device assigned to a background program is released,
the device is not unloaded; it is rewound and becomes unassigned.

Unlabeled Devices

When an unlabeled device is released, it is unloaded. The interpreta-
tion of unloading is hardware dependent and may in some cases, such as
the printer, produce no external operation.

DEBUGGING AIDS 6

6.1
SNAP DUMP

Selected areas of storage may be dumped each time a particular instruction
is encountered (SNAP) or before execution of each jump instruction in a
designated area (TRACE). Recovery dumps may be designated for abnormal
termination; and a memory map, giving a listing of absolute addresses
assigned to the program by the loader, may be obtained.

SNAP and TRACE dumps consist of a console scoop and a storage dump.
The A and Q registers are printed in the mode requested. The index regis-
ters, bounds register and D register are printed in octal. The interrupt
register and interrupt mask register are printed in binary.

Each printed line contains an absolute octal address, an octal address
relative to the name in the first word address (fwa), and four to ten computer
words, depending upon the mode requested. One or more lines of identical
words are omitted.

SNAP dumps are periodic dumps of specified areas. The programmer
specifies the instruction address where the dump request is executed, the
frequency, and the areas to be dumped. Drum SCOPE replaces the instruc-
tions at the dump addresses with jumps to the SNAP routine. The SNAP
routine dumps the specified areas onto OUT, executes the instructions
originally at the dump address, and returns control to the program.

More than one snap dump may be specified for an address and any number of
addresses may produce snaps. After the last snap is produced, normal
program operation resumes. The only restrictions on the number of snap
dumps are the print request limit in the RUN statement and the amount of
available storage remaining after the program is loaded.

gSNAP, a,fwa,lwa,f,d;,dg,dg,id

a the program address where the dump is initiated. The
program address may be a program name or an entry
point name plus or minus an octal displacement, p+n; p
is an entry point or program name and n is an octal
number. I a program name is used, the program
address will be the first location in the program. I an
entry point name is used, the program address will be
the entry point location. If the program and entry point
names are identical, the program name will be used.

6-1

fwa,lwa

d;.dg.dg

id

The first word address and the last word address of the
area to be dumped may be:

1) A 6-digit absolute octal location; the leftmost digit is
the bank designator. If less than 6 digits are given,
bank 0 is assumed.

2) pying,, a common block name, an entry point name,
or a program name, p_; plus an octal displacement,
ny, relative to the name. If the program and entry
point names are identical, the program name will be
used. I a common block name is used, it is enclosed
in slashes: /name/. I the block name is blank, two
slashes are given: //.

3) #ny, an octal displacement relative v che last
mentioned entry point, common block, or program
name on this SNAP card.

4) Dblank (fwa and lwa), no area will be snapped; only the
console will be snapped. Where fields are omitted,
commas must be placed, unless no non-blank fields
follow.

the format of the dump on the standard output unit is
designated by:

O or blank octal dump

octal dump with mnemonic operation codes
fixed decimal dump, integer

floating decimal dump, single precision
floating decimal dump, double precision

BCD dump

QO W o wu = =2

is suffixed to the designator, if a snap of
the console is to be included

control the start, stop, and frequency of the SNAP dump.
A dump will be produced at the d; encounter of address a,
and at every dg encounter thereafter until dy is reached.
If these parameters are blank, a dump is produced at
every encounter of the address. If dg is blank, a dump is
produced at every encounter of the address between d;
and d2.

is an optional identification for each dump on the standard
output unit. It may be up to five alphanumeric characters.

The SNAP cards are placed immediately before the RUN card or the named
library card in the execution phase of the job.

Rules for Planting SNAPs

More than one SNAP may be placed at one location. However, since the
location will be replaced by a control jump, certain restrictions apply.

The user should be aware that the snap location will be executed elsewhere
in storage; and, if it is not a jump, control will be returned to the following
location. Therefore instructions which depend upon their relative position
in the program should not be snapped, for example, RTJ, BRTJ, RXT P,A,
SCAN. The location should not be modified or used as data. A TRACE
should not have been previously planted in the location. SNAPs may be
placed in either enabled code only or disabled code only, not both.

Examples:

gSNAP, ANNA, +5,+30,MC,1,100,5,JACK

The area of storage occupied by locations ANNA+5 through ANNA+30
will be dumped. A dump is produced the first time location ANNA is
encountered, and every 5th time thereafter until the 100th time. JACK
is printed with each dump as identification. An octal dump with mne-
monics and a console scoop are produced.

JSNAP, BETA, +0,+50

The snap is triggered by location BETA. The area of storage to be
dumped is BETA through BETA+50. An octal dump will be produced
every time BETA is encountered.

gSNAP, BETA,/SAM/,+50,8,1,20,2, JM

The common storage area SAM through SAM+50 is dumped in floating
decimal, single precision when BETA is encountered. A dump is pro-
duced the first encounter and every alternate encounter until the 20th.
JM is the identification.

6.2

TRACE DUMP The TRACE statement produces a dump whenever jump instructions within a
specified range of the program are executed. The dump will be written on
the standard output unit in the same format as the SNAP dump.

JTRACE,a; , a,, fwa,lwa, f,d; ,dy, dg, id

a; 1is the first address of the trace area; may be an entry point or
program name plus or minus an octal displacement (p+n).

ag is the last address of the trace area; ag must be greater than a;.
ag may be one of the following:

n, an octal displacement relative to the program entry point
or program name, p.

pyiny an octal displacement relative to program entry point or
program name, Py.

Any number of ranges (a; to ag) may be specified. When the last trace is
produced, normal program operation resumes.

fwa is the first word address of the area to be dumped.

lwa is the last work address of the area to be dumped.

The parameters, fwa and lwa correspond to those of the SNAP
statement.

f is the format of the dump on the standard output unit. The
various designators are described following the SNAP statement.

4 specifies the number of times the area to be traced is passed
through before a jump may produce the first dump. d; must be
less than 4096.

dz specifies the last time through the trace area that a jump
instruction will cause a dump. dg must be less than 4096.

dg specifies how often tracing occurs when passing through the
trace area. dg must be less than 4096.

The area is traced at the d; encounter of a;, and at every dg
encounter thereafter until dy is reached. During tracing, the
counter is not incremented until ay is encountered; jumps to a;
in TRACE mode will not affect the count of the trace. K the
parameters are blank, tracing is initiated at every encounter
of aj.

6.3
POST-MORTEM
DUMP

The specified area (fwa to lwa) is dumped before the jump
instructions are executed. I the jump transfers control to a
location outside of the tracing limits, trace output is halted.
Upon returning within limits, trace output is resumed,
beginning with the instruction which returned within the limits.
If a jump instruction is located at aj, it is traced; at ag, it is
not traced.

The TRACE cards are placed immediately before the RUN statement. If

both SNAP and TRACE cards are used, their order is not significant, as
long as they are the last cards before the RUN card.

Rules for Using Trace

If two or more tracing limits overlap, the last limit encountered takes effect
and any previous limit is canceled. The same rules apply to aj and a, as
apply to snapped locations. A TRACE may not be initiated at a location in
which a previous TRACE has been planted. Only enabled code may be traced.

Example:

gTRACE, ALPHA, BETA, +5,+30,MC, 1,100, 5, JACK

Jump instructions in the range ALPHA - BETA will be traced. The
locations BETA+5 through BETA+30 will be dumped whenever a jump
instruction is executed. Tracing will begin with the first encounter of
ALPHA and every fifth encounter until the 100th: BETA must be exe-
cuted in order to increment this count. An octal dump with mnemonics
and a console scoop will be given. JACK is written as identification on
the standard output unit.

On the RUN control statement (sec. 2.3) a post-mortem dump may be speci-
fied for abnormal termination of a program.

Post-mortem dumps are given in octal with mnemonics and have the following
form:

Console scoop, if requested

Print lines containing an absolute octal address, an octal address

relative to the beginning of the subprogram or common block, and

the contents of four words. When a new subprogram or common block

is encountered, its name is printed and the relative address reset to zero.

One or more lines of identical words are omitted.

6-5

6.4
MEMORY MAP If a memory map is to be suppressed, this must be indicated in the RUN con-

trol statement (sec. 2.7.2). When debugging aids are used, a map is always
given. The locations are given as six octal digits, the leftmost designates
the bank. The memory map lists the absolute location of the following items:

subprograms

program extension areas
labeled common
numbered common

entry points

6-6

LOADER 7

7.1
LOADER FUNCTIONS The loader performs the following functions:

Loads and links subprograms

Detects errors and provides diagnostics
Patches subprograms and labeled common
Selects banks

Assigns program extension areas

A program may be divided into several subprograms, each separately com-
piled or assembled. As each subprogram is loaded into storage, the names
and locations of all entry points are entered into a symbol table. External
symbols are also stored in the symbol table and, as loading progresses, they
are linked with corresponding entry points. When a RUN statement is encoun-
tered, the loader searches the library for subroutines corresponding to the
names of all undefined external symbols. These routines are then loaded and
linked by the loader. If external symbols remain which have not been linked
to an entry point of a subprogram or library subroutine, a loader diagnostic
is written on OUT and the job is terminated.

When loading is completed, control is returned to the calling program.
Errors detected during loading are written as diagnostics on OUT. In most
cases, the loader continues to process the subprograms to detect additional
errors; however, it is possible that new errors will be caused by preceding
ones.

The loader provides for patching of subprograms and labeled common through
the use of octal correction cards. Instructions which do not fit in a patched
area are loaded into a program extension area assigned by the loader.

A subprogram or common block may be assigned to a bank by the programmer
through the BANK control card (sec. 7.12) or by the loader. When there is
no bank declaration, the loader selects the bank, other than bank 0, into
which the subprogram or common block most tightly fits. Bank 0 is assigned
only when the other banks cannot provide enough available memory space.
After each subprogram or block is loaded, the limits of available memory are
reduced for that bank.

Programs and library subroutines are loaded at the high end of available

memory in the banks assigned to them. They share both labeled and num-
bered common.

7-1

7.2
CARD FORMAT

Labeled common is also assigned storage at the high end of available memory;
it may be preset with data. The size of a labeled common block whose name

POOLxxx, will be assigned by the loader to equal the current buffer size of
the system. This definition will override the one specified by the programmer
in his BLOCK request. The buffer size is selected by the installation, between
129 and 511 words.

Numbered common is assigned storage beginning at the lower end of available
memory in the assigned bank.

The length of any common block may vary in size from one subprogram to the
next as long as it does not exceed the first declared length. The last block of
numbered common assigned in each bank may vary in length from one sub-
program to the next; the maximum value will define the length of the block.

The Drum SCOPE loader processes subprograms and subroutines to be
executed as a running program under Drum SCOPE control. The loader
assumes that the programs contain certain elements that enable it to relocate
the coding and tie the subprograms and subroutines together. These elements
are contained on binary cards, listed below. Generally. they are produced by
COMPASS, FORTRAN, COBOL, and ALGOL and are of no concern to the
programmer. It is possible, however, to prepare all cards directly without
using an assembler or compiler.

1) IDC Subprogram Identification Card

2) EPT Entry Point Symbol Table

3) BCT Block Common Table

4) RBD Relocatable Binary Subprogram Deck

5) EXT External Symbol Table

6) LAT Linkage Address Table

7) BRT Bank Relocation Table

8) OCC Octal Correction Card

9) TRA Transfer Card

10) LCC Loader Control Card

Row

—
et

Card types 1-9 must occur in the order listed; however, only the IDC, RBD,
and TRA cards are required in every subprogram. Type 10 occurs only
between subprograms or ahead of the first subprogram in a series.

Unless identified as octal or BCD, information is assumed to be in binary on
cards or in card format. Each column on a card represents 12 bits of a 48-
bit computer word. The correspondence between card positions and computer
word bit positions for each group of four card columns is shown below:

Corresponding Bit Position

Row Column 1 Column 2 Column 3 Column 4
12 47 35 23 11
11 46 34 22 ' 10

0 45 33 21 9

1 44 32 20 8

9 36 24 12 0

All Drum SCOPE loader cards have a 7,9 punch in column 1. On most loader
cards the first four columns identify the type to provide a means of checking
its contents. Cards with bit 47 (row 12 of column 1) punched are bypassed.

The format of the first four columns (word 1) is shown below:

word 1 word 2 word 20
r - Y A f
12 2 rr 1 ~------ L
0
1 w
2
3 ——
4 ajlci|c
5 a
6 —
7|]
8 i
9 b Pl e L1 1

7-3

7.3
IDC CARD

7-4

Row 12 of column 1 must be zero (no punch)

w 5-bit word count identifies the card type
a 15-bit address or sequence number
i checksum indicator; 1 (punch) ignore checksum,

0 (no punch) check checksum
c checksum
b 7,9 punch in column 1 indicates binary card; required for all
loader cards.

Bit structure of first computer word:

O w a |blilb a ’ c
4746 424139 37 35 2423 0
38 36

The identification card names the subprogram which follows it and provides
information about the subprogram to the loader.

Word 1:

w 3lg
a 0 (no punches)

c checksum

15

14 0

d word number, 3-6, of the first word on the subsequent cards
which contain data to be loaded. Data begins in the (d+1) word of
all RBD cards.

T length, 2 to 8, of the relocation byte on the RBD cards.

7.4
EPT CARD

P number of relocation bytes, 6 to 24, per word on the RBD cards.

s length of subprogram, 0 to 77776g

The unused portions of Word 2 are zero.

Words 3-6:

Name of subprogram in BCD code. The name may be specified in one of two
formats:

I the name is 8 characters or less, the leftmost character of word 3
must be non-numeric. Only word 3 will be used for the name.

If the name is from 9 to 31 characters in length, the leftmost character
of word 3 must be numeric, 2-4, specifying the number of words
comprising the name.

Words 7-20:

Zero (no punches) unless the subprogram is to be a background program. In
this case, word 7 upper address contains the highest logical unit number used
and word 7 lower address contains the number of families used by the back-
ground program.

The entry point symbol table gives the names and addresses of entry points.

Word 1:
a sequence number, 00000, 00010, 00020, etc.
c checksum

Words 2-20:

These words define entry points. Each entry point requires from 2-5 whole
words; the name of the entry point occupies from 1-4 words (either form
given for subprogram name on IDC card), and the address of the entry point
in the subprogram occupies positions 14-0 of the last word. Relocatability is
indicated by bit 47 of the last word: bit 47 = 0, address is relocatable; bit

47 = 1, address is absolute. The entry point definitions are specified contig-

7-5

7.5
BCT CARD

uously, and definitions may continue from word 20 of one card to word 2 of
the next card. As many EPT cards as are necessary may be specified;
however, the cards must be in sequence ("a" field of word 1).

The block common table defines the name and length of each common block
declared in the subprogram.

Word 1:
a sequence number, 00000, 00010, 00020, etc.
c checksum

Word 2:

Zero (no punches)

Words 3, 5, 7, ... 19: names, in BCD code, of the blocks of common
assigned. A name may not contain more than 8
characters; it may be numeric (for numbered
common) or alphanumeric (for labeled common).

Words 4, 6, 8, ... 20: length of the common block named in the preceding
word.

Common blocks are data storage areas which are shared by subprograms
and library subroutines. Common may be labeled or numbered. For labeled
common, the first character must be alphabetic; for numbered common, it
must begin with a numeric character.

Labeled common is assigned from high order to low order storage, following
the subprogram in which it was first referenced. Numbered common is
always assigned to locations in lower storage following Drum SCOPE. Num-
bered common may not be preset; it may be assigned to the area used by the
Drum SCOPE loader and overlays the loader when it is referenced.

As many BCT cards as are necessary may be used; each card but the last
must define 9 common blocks; up to 126 blocks may be defined. All BCT
cards must be in sequence ("'a" field in word 1).

7.6
RBD CARD

The relocatable binary deck contains the data words to be positioned in
memory. A relocation increment or decrement is applied to the address
portions of each word.

Word 1:

w word count; number of words to be loaded (1= w = 218)

a initial load address (a = first data word address, a+1 =
second data word address, and so forth)

c checksum

Words 2-6, as needed:

These words contain relocation bits arranged in constant length bytes which
determine the kind of relocation of the load address (a) and the two address
portions of each data word.

The number of words reserved for the relocation bytes depends on the length
of each byte, which, in turn, depends on the number of common blocks defined

by the subprogram.

No. of words

Relocation byte required for
No. of common blocks length in bits relocation bytes

0 2 2

1-2 3 3

3-6 4 3

7-14 5 4

15-30 6 4

31-62 7 5

63-126 8 5

As many complete bytes as possible are arranged in a word, left justified.
The first byte in word 2 designates relocation for the load address. The
second byte designates relocation for the left address portion of the first
data word; the third, for the right address portion of the first data word, and
so forth.

7-7

7.7
EXT CARD

7-8

The value of a byte is used to specify the relocation quantity. The leftmost
bit specifies the sign of relocation (0 = incrementing, 1 = decrementing). The
remaining bits in the byte specify the relocation value, as follows:

0 no relocation

1 program relocation

2 relocation of first declared common block

3

relocation of second declared common block

The external symbol table gives the names, in BCD code, of symbols
external to the subprogram. These names are entry points to other subpro-
grams and library subroutines.

Word 1:
a sequence number, 00000, 00010, 00020, etc.
c checksum

Words 2-20:

External symbol names may be specified in either of the forms described for
subprogram names (see IDC card, sec. 7.1.1). The names are arranged
contiguously on a card and may be split between successive cards. That is,
a name may continue from word 20 of one card to word 2 of the next card.

As many EXT cards as are necessary may be used; however, the cards must
be in sequence ('a" field of word 1).

7.8
LAT CARD

The linkage address table points to locations within the subprogram at which
references to external symbols occur.

Word 1:
a sequence number, 00000, 00010, 00020, etc.
c checksum

Words 2-20:

Each LAT entry, one word in length, points to a single string of references
to one EXT symbol. The LAT entries for each EXT symbol are threaded
through the table.

44 42

w|i t q P

47 43 41 29 14 0

m relocation mode indicator for the external symbol

1 normal (incremented) references
0 complementary (decremented) references

w upper/lower string indicator

0 string of addresses beginning at p refers only to upper
addresses

1 string of addresses beginning at p refers only to lower
addresses

t indicates next LAT entry in this thread. The first LAT entry
(in word 2) would be referred to as 0001 g» the second as 0002g,
and so forth. If no more LAT entries are needed, t = 0000.

q quantity added to relocated address of the EXT symbol (q may
be zero)

p relocatable address of first word in which the external symbol
is used. This address contains the location of the next reference,
and so on. The last address in the string contains 77777 8-

79
BRT CARD

7-10

For each EXT symbol there is at least one LAT entry. If the identical
symbol appears in both the upper and lower positions of a word, there are
two LAT entries. There are other LAT entries for each modification value q,
of the symbol. Finally, there are separate entries for each g-valued portion
of the symbol for either value of the relocation mode indicator, m. There
may be many LAT entries for a single external symbol.

For example, each of the following references will require two LAT entries
if each is referenced from an upper and lower portion of a word; eight entries
would result from:
EXT +Q
EXT - Q
-EXT + Q
-EXT - Q
The EXT and LAT tables are arranged in parallel so that the ith LAT begins
the series of references to the ith symbol. When more than one LAT entry
exists for an EXT symbol, successive entries continue after all initial LAT

entries. The related LAT entries are threaded together by the t designation
in the entry. '

The bank relocation table indicates the subprogram locations at which bank
designators are dependent upon the banks to which this or other subprograms
or common blocks are assigned.

Word 1:

w 36
a sequence number, 00000, 00010, 00020, etc.

c checksum

Words 2-20:
The rest of the card contains a threaded list of BRT entries.

The BRT table has three sections; the first parallels the EXT table and each
word contains the first two entries for that EXT symbol. If no bank designa-
tors depend on that symbol, there are no entries. The second section consists
of a pointer to the beginning of the thread of entries for this subprogram and
each common block it defines. Section three holds the rest of the BRT
entries, two per word, to which sections one and two point.

Format of the words in sections one and three:

42

30 15

47

43 41

aj and ag

29 14 0

specifies one of the five bank designator positions to be
relocated within the word at a; and a5. The coding of the
designator position is as follows:

Code Bit Positions of Designator

none
10-8
17-15
26-24
34-32

N B W N - O

41-39
The value of y may be one of the 30 possibilities, 1-36g:

y = (code for a, designator) + 5 times (code for ag
designator). If ao is not present, y is 1 to 5.

designates the next BRT word (two entries) in this thread.

are addresses in this subprogram in which a relocatable
bank designator appears. If more than one designator in a
word is relocatable, each has a BRT entry.

Section two parallels the RFTABLE with four entries per
word:

36 24 12

i+1 i+2 tie3

47

ti

35 23 11 0

is the ordinal in section three, relative to the beginning of
BRT, at which the first two BRT entries corresponding to
the ith RFTABLE entry occur. tj points to the entries
depending on the bank into which the subprogram is loaded.

7-11

7.10
OCC CARD

7-12

tg through t197 (or the last t field) point to the entries
depending on the banks to which the corresponding common
blocks are assigned. t;, and any fields not pointing to a
section three entry are zero. As many t fields are required
as the number of declared common blocks.

OCC subprograms may be corrected with octal correction cards. Corrections
may be loaded over portions of the subprogram; or, if additional memory is
required, into the loader-assigned program extension area. This area is
assigned to the highest locations in available memory; its size is limited only
by the amount of available storage in the bank receiving the program and
corrections.

All octal correction cards contain a load address, the contents of one to four
computer words, and relocation designators for the address portion of each
instruction:

Column) Contents
1 punches in rows 11, 0, 7, and 9
2-6 relocatable load address, aaaaa, for the first correction

field on the card

7 relocation factor for address aaaaa
8 blank
9-17 data field 1 - upper instruction or data word to be loaded

at the address aaaaa

18-26 data field 2 - lower instruction or data word to be loaded
at the address aaaaa

63-71 data field 7 - upper instruction or data word to be loaded
at the address aaaaa + 3

72-80 data field 8 - lower instruction or data word to be loaded
at the address aaaaa + 3

Octal correction cards are placed immediately before the TRA card of the
binary subprogram to which they pertain.

Example:

To correct a single instruction in a subprogram:

i

00005+ 7 5 A ANA I 2 3 + A ANANANAAA A A

[

o]
7
9

| 7| B |7||e 26|27

In the fifth instruction of the subprogram, the upper instruction will be
changed to an SLJ to relocatable 123 in the subprogram. The lower
instruction will not be affected.

7.10.1
RELOCATION FACTOR The relocation factor, which follows the load address in card column 7, may

be any one of the following:

Factor Relocation
E Relative to the first location of the program extension area
+ Relative to the first location of the subprogram
1 Relative to the first location of the first declared common
block
2 Relative to the first location of the second declared

common block

9 Relative to the first location of the ninth declared common
block

0 Relative to the first location of the tenth declared common
block

Only labeled common blocks may be corrected, data cannot be prestored in
numbered common blocks. In selecting the correct factor for a common
block, however, both numbered and labeled common blocks in the program
must be counted in the order in which they are declared. Only the first ten
blocks can be corrected.

7-13

Examples:
A FORTRAN program contains the following statement:
COMMON /1/A/B3/G,H/B4/F/6/Z/COG/P
To alter data in block B3, the relocation factor 2 would be used. To
alter data in block COG, factor 5 would be used. Data cannot be pre-

stored in the numbered common blocks.

A COMPASS program contains the following statements:

21 BLOCK 10
COMMON AFLAGS(5), BFLAGS(5)
H30 BLOCK 200
COMMON A(10, 10), B(10, 10)
26 BLOCK 3

COMMON R1, R2, R3

RTABLE BLOCK 100
COMMON R(10, 10)

To alter data in block H30, the relocation factor 2 would be used. To
alter data in block RTABLE, the relocation factor 4 would be used.
Data cannot be prestored in blocks 21 and 26 because they are numbered

common.

7.10.2

DATA FIELDS The format of each data field, card columns 9-80, is:
NNNXXXXX1

Data fields 1-8 are loaded into sequential half-words in storage starting with
address aaaaa (columns 2-6).

nnn the upper 9 binary digits of an instruction or data word.
XXXXX the address of an instruction, or lower 15 binary digits of a
data word.
i the relocation factor for the address, xxxxx. Any of the

factors in the relocation list may be used with two additions:

7-14

Factor Relocation

blank no relocation

- Relative to the complement of the first
address of the subprogram.

Since program instructions may refer to both numbered and labeled
common, the value of the relocation designator, i, must be deter-

mined by counting each declared common block -- both labeled and
numbered -- up to the one to which the address refers.

Blanks in the nnn and xxxxx fields are converted to zeros; if the entire field
is blank, the releated portion of storage is not altered.

Example of two cards in an octal correction deck.

IR]
0
700001+ [blbbbbbbbbb [75400002E(75bbbi123+|bbbbbbbbb

Card column 7[8le 1718 26|27 3536 a4las

00002E |b] 750777770 |125001045|75000002F {bbbbbbbbb
7l8le 17ls 26l27 35[36 44)as

card column

©O©~NO-—

In the subprogram:

at location 00001+ UI is unchanged because of the blanks
LI contains a return jump to the 3rd word (00002E) of
the program extension area
at location 00002+ UI contains an SLJ to relocatable 123 in the subprogram

(blanks fill to zeros).
LI is unchanged, because it is blank.

In the program extension area:

at location 00002E UI contains an SLJ **. The blank designator indicates
no relocation.

LI contains a LDA with the contents of relocatable 104
of fifth declared common block.

7-15

7.1
TRA CARD

7-16

at location 00003E Ul contains an SLJ to 00002E, the third location of the
program extension area, to exit back to the program.

LI is unchanged.

The program extension area is allocated 4 words, 0, 1, 2, and 3.

The transfer card signals the end of each subprogram and may also specify
the name of the entry point to which control is to be given when the entire
program has been loaded.

Word 1:
w 37 8
a 0
c checksum

Word 2: 48 bit sum of words 1 of the preceding deck, including the TRA card.

If an entry point name is used, it is specified in Hollerith, beginning in column
9. When there is no transfer name, columns 9 through 80 must be blank.

Usally only one TRA card in a program specifies an entry point transfer name.
Control is given to that address when the program is run. However, a sec-
ond transfer address may be specified in a later subprogram, or more typi-
cally, in a library subroutine., When the program is run, control is given to
the second address; the first address is noted in the A register, bits 41-24,

7.12
LCC CARDS

7.12.1
BANK CARD

Loader Control Cards permit the programmer to overlay subprograms,
correct library routines, and declare at load time the memory banks to
which subprograms and common blocks are to be assigned.

0
gBANK, ®1), ..., namey, ... (bg) ..., namey, ...
- or
0
gBANK, (m), symj, symsg ...
- 3
0
gMAIN,u
0
gOVERLAY,u, 0 > Described in Chapter 8.
0
gSEGMENT,u,n
J

Option 1

The programmer may specify a particular bank for each subprogram and
common block; he may also specify that particular subprograms and common
blocks go into the same bank.

11
0
gBANK, (by),...,name;, ..., (y),...,namey,...
b a bank number (0-7), an entry point, or a common block name.
name an entry point, program, or common block name. A common

block name is enclosed in slashes.

If b is an entry point or common block name, the names which follow it are
allocated to the same bank as the entry point or common block name, and the
loader places the subprograms in the bank having the largest amount of avail-
able storage, other than bank zero. If there are several entry points in a
subprogram, only one of these need appear in the BANK statement.

7-17

Programs compiled or assembled by systems such as FORTRAN, COMPASS,
ALGOL, must have provisions for bank relocation before they may appear in
a BANK statement.

Example:

(;mm,s,aao,z

7
(;LOAD

OBANK, (2) ,MICE,/MEN/, (1) ,LENNY

? [SCOPE

END

N

(PROGRAM LENNY

(END
)
Va
A
A
L .
(COMMON/MEN/A, B

PROGRAM MICE

JFIN,X,L,A

;Jon,3064,|<c,8

Two FORTRAN subprograms are to be compiled and written on the
load-and-go unit. The BANK statement precedes the LOAD statement.
Subprogram MICE and the common block MEN are to be placed in bank
2 and subprogram LENNY is to be placed in bank 1.

7-18

Option 2

Various combinations of subprograms or common blocks may be forced into
a particular bank.

11
0

7
gBANK, (ml),syml,symz, cen ,(mz),sym3,sym4, .

m; is a bank number, 0-7

sym; may be the following designators:

SP. = subprograms
NC. = numbered common on binary input unit
LC. = labeled common

LSP. = library subprograms

LNC. = library numbered common from library subroutines

LLC. = library labeled common

APC. = SP. + NC. + LC.

ALC. = LST. + LNC. + LLC.

ALL. = APC. + ALC.
The designated subprograms and common blocks will be allocated to the
specified bank. These declarations apply only to subprograms or common

blocks for which no previous bank declaration defining a unique bank has
been given.

7-19

Examples:

11
0

TBANK, (0), APC. , LSP.

The succeeding subprograms, labeled, and numbered common, read
from the binary input unit and library subprograms will be stored in
bank 0. Numbered and labeled common blocks from the library are
dynamically assigned by the loader.

11
0

TBANK, (A), B

11
0

gBANK, (0), A

11
0

gBANK, (1), ALL.

Subprograms containing entry points A and B will be forced into bank 0
by the first two bank statements. The remaining subprograms -and
common blocks will be loaded into bank 1.

7.13

LOADER CALLS When the LOADER request is made (sec. 4.3), the A and Q registers must
contain certain parameters:

42 39 24 15 9

7

or

7-20

am an 18-bit address, or zero, specifying a location for preset entry

points which have been defined by the calling program. The con-
tents of the location specified by am are in the following format:

36 18
r y e
47 35 17 0

r value specifying the number of entry points preset into
the entry point symbol table (r < 4096).

y first word address (18 bits) of the list of entry point
names. The names must be in contiguous storage loca-
tions and may extend to 31 characters per name (either
form given for subprogram names on IDC card).

e first word address (18 bits) of the list of entry point
addresses. This list must be in contiguous storage
locations, with one address contained in the lower 18 bits
of each word. The number of entry point addresses
must equal the number of entry point names, both of
which must equal r.

d 1is a map parameter:
0 no map after loading
1 map after loading
s specifies the kind of loading operation:
00 load library programs from library
01 load program from n (lower Q is used)
10 load library program from library, and octal corrections to
it from INP (upper Q is used)
11 complete loading operation after interruption - (ignore
remainder of A and Q)
j the number of names in the list starting at bp
bp an 18-bit address specifying the beginning of a list of library
subroutine entry point names to be loaded from the library. A
name may be in either form allowed for the subprogram name on
the IDC card.
z the location, in bank zero, of the first binary card image of the

program to be loaded. The rest of the cards are found on n.
If z =0, the first card is also found on n.

7-21

7-22

n designates the logical unit from which binary cards, or images
of cards, one per record, are to be loaded.

The unused portions of A and Q must be zero.

i non-zero specifies that the loader is to initialize its tables to
start a new loading operation. Set only if last loading operation
was not completed and loader has not been reloaded.

The four loading operations, keyed by the s parameter in the A register, are
as follows:

=00

Load library subroutines called by the entry point names at bp in the order
listed. No externally referenced programs will be loaded. When the loader
returns to the calling program, bit 47 of the A register will be 1; the rest
of A has no meaning.

Q upper will contain the first location in bank zero of the address list. This
list gives the relocated addresses of the entry point names found at bp. The
list is in contiguous storage locations, with one address contained in the lower
18 bits of each word. Loading may be continued with further s=00, s=01, or
s=10 calls. Loading may be completed with an s=11 call.

s=01

Load subprograms from unit n until an end-of-file or Drum SCOPE control
card is encountered. If z is non-zero, it gives the location of the first card
image in bank 0. An entry point symbol table is preset if am is non-zero.

If an end-of-file is encountered on n, control is returned to the calling pro-
gram with bit 47 of the A register 1 and bits 14-00 zero. If a Drum SCOPE
control card is encountered, bit 47 of the A register is 1 and bits 14-00
specify the location in bank 0 of the card image of the control card. I neither
case are library subroutines loaded. Loading may be continued with an s=01,
5=00, or s=10 call. Loading is completed with an s=11 call.

In the event that this s=01 call is the first call to the loader, and the first card
encountered by the loader is a MAIN control card, the loader will completely
process the overlay program and return with bit 47 of the A register equal to
zero. Bits 17-00 will contain the last transfer address, bits 41-24 will con-
tain the first transfer address if two were encountered, else zero. Q upper
will contain zero if loading terminated with an end-of-file card, or it will
contain the location of the card if loading terminated with a SCOPE control
card. Q lower is non-zero if errors were encountered while loading. The
transfer addresses above refer to the main partition only.

s=10

This is the same as the loading operation with =00 except that j is assumed 1
and OCC cards are accepted. After loading the named program, the loader
loads OCC cards from INP until it encounters a TRA card or a SCOPE control
card. If a SCOPE control card is read, the loader returns with bit 47 of the
A register 1 and bits 14-00 specifying the location in bank 0 of the card image.
Loading may be continued with s=10 or s=00; it will be completed with an s=11
call.

s=11

Either load a library subroutine and all externally referenced programs, or
complete loading after an s=00, s=01, or s=10 call. Return is made with the
transfer address in A lower if one named transfer card was found; if two
were found, the first transfer address is in A upper and the second in A
lower.

Q upper contains the first location of the address list in bank zero. This list
gives the relocated addresses of the entry point names found at bp. The list
is in contiguous storage locations, with one address in the lower 18 bits of
each word. If more than one address list is specified on s=00 and/or s=10
calls, the last one encountered will be used. In all cases, bit 47 of the A
register is 0, and Q lower contains the number of errors encountered.

7-23

OVERLAY PROCESSING 8

A program which is too large to fit completely into available storage at one time can be divided into
independent partitions to be called and executed as needed; a partition is an absolute binary record
previously linked by the loader. There can be only one partition of highest functional level; it is
called the main partition, and resides permanently in core memory during execution of the pro-
gram. The main partition may have any number of associated overlay partitions, and each overlay
may contain any number of segments. However, only one overlay and one segment can reside in
memory with the main partition at one time.

For example, in the diagram below, a partition on one level (indicated by broken lines) may not
call (load into core) any other partition on that same level or any higher level; OVERLAY 1 may
not call OVERLAY 2, OVERLAY 3, nor the MAIN PARTITION. A partition may call any other

partition on a lower level if these two partitions are connected by a line of call (shown as heavy

solid arrows).

Interrelationship of Overlay Partitions

77777
Level 1 MAIN MAIN
PARTITION PARTITION
Level 2
!
OVERLAY OVERLAY OVERLAY OVERLAY
1 2 3
Level 3
1)
SEGMENT SEGMENT SEGMENT SEGMENT
1 1 2
OF OF OF
OVERLAY 1 OVERLAY 2 OVERLAY 2
0

CORE

8-1

8.1
OPERATING
PRINCIPLE

Each partition consists of one or more subprograms. An entry is an entry
point or common block within a partition. For example, any entry defined
at level n may be referenced only by a partition at a subordinate level (nt+1
or n+2) which is connected to the partition defining the entry by a line of call.
Entries defined in the main partition may be referenced by all overlays and
segments. Entry points defined in a particular overlay may be referenced
by all segments associated with that overlay. Within a segment, entries
may be referenced only by that segment.

STORAGE DURING OVERLAY
PROCESSING AND EXECUTION

0 T2 T3 T4 T5 Té6
R = Resident
M = Main
0i = Overlay
S. = Segment
n = Time n

The loader is called to create a partition by a partition control card (MAIN
OVERLAY, or SEGMENT). This card specifies the type of partition and the
unit on which it is to be placed. When the loader encounters such a card on a
particular unit, it loads and links all relocatable binary subprograms from
that unit and the library until the next control card is encountered. The
loader then writes the absolute partition record on the specified paritition unit.

In a program containing overlays, the loader control statements, MAIN,
OVERLAY, and SEGMENT, precede the relocatable binary subprograms
which comprise the partitions. These statements are read by the loader as

it loads from the load-and-go unit or from INP. Each subprogram or common
block is assigned to the bank of core into which it can fit most tightly (bank 0
is used only if there is no room elsewhere) and the limits of memory are ad-
justed to reflect the assignment. Bank assignments made with the BANK

8.2
CONTROL
STATEMENT
CARDS

card override the dynamic bank assignment. OCC cards are permitted
unless the program is on the library. Each partition must have one
transfer address.

Overlay processing loads the relocatable binary subprograms into storage

and writes each partition as a separate record in absolute binary on a partition
unit. This unit is then called in sections for execution. The absolute records
do not require the relocatable binary loader to perform the usual relocating
and linking functions. Debugging aids (SNAP and TRACE) cannot be used.

Initially, control is transferred to the main partition which resides in storage
continuously; it in turn calls the overlays when they are needed during pro-
gram execution. Segments may be called either by the main partition or by
an overlay. FORTRAN and COMPASS subroutines are available to call
overlays and segments during execution; calls to these subroutines must be
included in the source subprograms. After a partition unit has been created,
it is executed with the SCOPE control statement, LOADMAIN. All partition
control cards are designated by 11, 0, 7, or 9 punched in column 1.

Each partition deck begins with a control statement which specifies the type
of partition, the logical unit on which it should be written, and applicable
overlay and segment numbers.

The following control statements are used:

MAIN This statement defines the main partition; it may not
be omitted.

l(l)MAIN,u
7
9

u logical unit number on which the partition is to
be written, (1-49). The logical unit numbers for
the main partition, overlays, and segments may be
70 if the program is to be included in the produc-
tion file of the library tape as a production code
(PROGRAM card, section 9.2.5).

The MAIN control statement must precede the object
subprograms which comprise the main partition.

OVERLAY

SEGMENT

When overlay files are being prepared, the main partition
remains in storage. After all partitions have been
written, the main partition may be executed. The main
subprograms must precede the first overlay. Portions
of the main partition may be assigned to several banks
with the BANK statement.

This statement defines an overlay partition.

N GyERLAY, u,n

OO =

u logical unit number on which the partition is to
be written, (1-49). The logical unit numbers for
the main partition, overlays, and segments may be
70 if the program is included in the production
file of the library tape as a production code.

n overlay number; must begin with 1 and increase
consecutively for subsequent overlays.

The OVERLAY control statement precedes the object sub-
programs which comprise the overlay; when it is en-
countered, SCOPE creates an overlay partition and writes
this section in absolute binary on the partition unit specified.

Calling sequences to call each overlay into storage must be

included in the main partition. The overlay may be
assigned to several banks with the BANK statement.

This statement defines a segment partition.

1 SEGMENT,u,n

WO =

u logical unit number, 1-49, on which the partition
is to be written; segments must be written on
the same unit as the overlay with which they are
associated.

n segment number; within each overlay, segment
numbers must begin with 1 and increase
consecutively.

8.3

PARTITION
UNIT
PREPARATION

The SEGMENT control statement precedes the object
subprograms which comprise the segment; when it is
encountered, SCOPE creates a partition and writes it in
absolute binary on the overlay unit specified.

Calling sequences for each segment must be included in the
main or overlay partition. The segment may be assigned
to several banks with the BANK statement.

The following rules will aid in partitioning a program into overlays and
segments:

1. Numbered and labeled common blocks and all entry points declared
in the main subprograms may be referenced by an overlay and any
segment.

2. Numbered and labeled common blocks and all entry points declared
in an overlay may be referenced by that overlay and its associated
segments, but not by the main subprograms, another overlay, or
segments contained in another overlay.

3. Numbered and labeled common blocks and all entry points declared
in a segment may be referenced by that segment only.

4. The first overlay card must be preceded by the main program.

5. The overlay numbers must start with one and continue in consecutive
order for all overlays written.

6. The segment numbers, within an overlay, must start with one and
continue in consecutive order.

7. Only four overlay units may be written. If these units are tape, no
overlay may occupy more than one reel.

8. Each overlay and segment must have a single named transfer point.

9. All segments within a particular overlay must immediately follow
that overlay.

A partition unit is composed of absolute binary records followed by two end-
of-file records. Each record constitutes a main subprogram, overlay, or
segment. These records may be composed of many subprograms. In absolute
form, a particular main partition, overlay, or segment may occupy any
number of banks.

The overlay unit is prepared under direction of loader control statement
cards. Each control statement specifies the logical unit on which the re-
sulting absolute binary program will be stored. SCOPE control statements
may also be included if compilation or assembly must occur before the
overlay unit is created.

8.3.1
DECK
STRUCTURE

8.3.2
BANK
ASSIGNMENT

Each main partition, overlay, or segment must contain only one transfer
address; the main partition may contain two transfer addresses.

In the preparation of a partition unit, deck structure differs according to the
type of input. Relocatable binary subprograms, preceded on INP by the
loader control statements MAIN, OVERLAY, and SEGMENT are loaded and
then written on the overlay unit in absolute binary. Source language subpro-
grams must be compiled or assembled onto a load-and-go tape before they
can undergo overlay processing; the loader control statements MAIN,
OVERLAY, SEGMENT, preceding each portion coded in source language,
must be transferred to the load-and-go unit. The load-and-go unit then
becomes input for the overlay unit. Relocatable binary subprograms and
source language subprograms may be combined; the source language may be
compiled onto a load-and-go unit, and the binary deck may be transferred to
this same unit. As each loader control statement is read, it is written on
OUT. The section following the loader control statement is loaded into
storage, assigned absolute locations and a map is written on OUT showing
the absolute locations assigned to each main partition, overlay, and segment.

Any subprogram within a main partition, overlay, or segment may be
assigned to a specified bank. In source language subprograms, a bank may
be selected by the appropriate source language pseudo instruction.

If relocatable binary subprograms comprise the input for an overlay tape,
they may be assigned to specific banks by the loader control statement:

0
7BANK, (bl),namel, ey (bk),namel, --.,name

The BANK statements must precede the binary subprograms to which they
pertain, and follow the OVERLAY or SEGMENT statement to which they
pertain. If the relocatable binary subprograms are contained on a load-and-
go unit as the result of a compilation/assembly, the BANK statements may
not precede the LOAD statement which loads the load-and-go unit for over-
lay processing.

If there are no BANK statements, normal bank assignment occurs.

8.4

LOADING AND
EXECUTING
PARTITIONS

BINARY
SUBPROGRAMS
ONLY

The preparation and processing of partitions depends on whether the input
consists of binary or source language subprograms, or a combination of both.

To create an overlay unit when the deck consists only of relocatable binary
subprograms, each partition must be preceded by a control statement —

MAIN, OVERLAY, or SEGMENT. If a subprogram is to be assigned to a

specific bank, a BANK statement must be included before the binary subpro-
gram and after the loader control card. The order of subprograms in this
example must be followed in all overlay programs.

L Must be END of FILE card if this
lld-——is load-and-go file; must be 7TRUN
card if this is the INP file. 9

relocatable binary subprogran;s
11SEGMENT, u, 1 |

0

; ((.
9 (/ relocatable binary subprograms
lOVERLAY,u,n |

1
1
1
({l// relocatable binary subprograms

o

—L
1
ms
1BANK, (bl),namel, ..
0 /roERLAY,u, 1]
7 0 1
9 7 l1
9 relocatable binary subprograms]
11MAIN,u
0
7
9

8-7

8-8

SOURCE
LANGUAGE
SUBPROGRAMS

The overlay unit numbers may be the same or they may differ; however,
segments must follow the overlay on the same overlay unit. If the informa-
tion in the preceding example were on a unit other than INP, it could be
loaded by a LOAD control statement and processed just as though it were on
INP. With the deck on INP, processing proceeds as follows:

1. Relocatable binary subprograms following the MAIN statement and
continuing up to the first OVERLAY statement are loaded into
storage and linked by the loader. They are then written in absolute
binary on partition unit u. The control statement, MAIN, followed
by a map of the main section showing the assigned absolute loca-
tions, is written on OUT.

2. The binary subprograms following the first OVERLAY statement
are loaded into an area beginning with the first location after the
main area. They are written in absolute binary on partition unit u.
The control statement, OVERLAY, followed by a map of the over-
lay section showing the assigned absolute locations, is written on
OUT. The BANK statement following the OVERLAY statement
controls the assignment for subprograms contained in the first
overlay.

3. Step two is repeated for each overlay and segment. In storage, the
segment begins with the first location after its related overlay.
During this process, the main partition remains in storage.

All overlays are loaded into the same area following main before
they are written on the overlay unit. All segments are loaded into
storage beginning at the same first location following the associated
overlay before they are written.

The BANK statement following the second SEGMENT statement con-
trols bank assignment for subprograms contained in segment 2 of
overlay 1.

4. The end of overlay processing is signaled by an END-OF-FILE
record. Upon encountering a RUN statement, execution of the
partitioned program begins.

If source subprograms comprise the overlay deck, they must be compiled or
assembled onto a load-and-go unit. Loading of the load-and-go unit for over-
lay processing is initiated by a LOAD statement. The loader control statements
MAIN, OVERLAY, and SEGMENT, must precede the subprograms on INP

and the load-and-go unit just as they would on INP if only binary subprograms
were used; they are transferred to the load-and-go unit by FILE, FILE END

control sequences. Bank assignment may be included in the source language
subprograms; BANK statements may be transferred to the load-and-go unit
by FILE, FILE END control sequences. COMPASS and FTN are entry point
name statements; they must immediately precede the subprograms to be
assembled or compiled. Entry point name statements must follow each FILE,
FILE END sequence to return control to the compiler/assembler program.
The load-and-go unit, ul, must not be the same as the partition unit, u2.

7
(9L0AD, uy

W

/ source language subprograms

(;entry point name, X=u;,...

(!FILE END
TIBANK, ...

0
7 /110VERLAY,u_, 1
9f o 2

: (TFILE,u,

L
L

{ source language subprograms

/ ;entry point name,X=ul, e

;FILE END

1MAIN,u I
0 2

7 7
9 /QFILE,u1

With this deck on INP, processing proceeds as follows:

1. The loader control point statement (MAIN for the first time,
OVERLAY or SEGMENT for following instances) is transferred
to the load-and-go unit, u,.

2. The subprograms following the first FILE END statement will be
processed by the named library program. The entry point name
statement should specify that the binary object subprograms be
stored on the load-and-go unit, u.

Steps 1 and 2 are repeated until the LOAD statement is encountered.
At this time, the load-and-go unit, u;, contains the same deck
structure as INP would have contained if binary subprograms alone
had been included in the deck, as follows:

1IMAIN, u

7
9

2

relocatable binary subprograms
11

0
7O0VERLAY,u_,0
9 2

11

0
7BANK, ...
9

relocatable binary subprograms

When the LOAD statement is encountered, the load-and-go unit,
uy, is loaded, and processing is identical to the overlay processing
for binary subprograms only. The partitioned program is on logical

unit, “2'

MIXED BINARY
AND SOURCE
LANGUAGE
SUBPROGRAMS

If relocatable binary subprograms are mixed with source language subpro-
grams in an overlay deck, the binary subprograms must be transferred to
the load-and-go unit by FILE, FILE END sequences. The order on the load-
and-go unit must be the same as that on INP in the previous example.
Processing is similar to that for source language subprograms. Source
language and binary subprograms may be placed within the same partition.

(gLOAD,ul

L

{ source language subprograms

(;entry point name,X=u1, .

{ gFILE END
11SEGMENT,u_,n
0 2’71
7T L
9 AL
/ relocatable binary subprograms
/110VERLAY, s 1
0
5 (4FILE,u

L

L

VA
source language subprograms

(gentry point name,X=ul, .
JFILE END
11MAIN,u
0 / 2]
7 7
9 9FILE,u1 1

8-11

8.4.1

LOADING AND

EXECUTING THE
MAIN PROGRAM

SAVING AN OVERLAY TAPE

When an overlay tape is being prepared, it may be saved for subsequent
executions with an EQUIP control statement. If the overlay tape is to be
prepared for subsequent executions only, no RUN control statement is
required.

1

1

relocatable binary subprograms

110VERLAY, 49,3 I
0

1
—
relocatable binary subprograhas

10VERLAY, 49,2
0

1
relocatable binary subprogran;)s

11SEGMENT, 49, 2 |
0 7

1

7 1
9
(({relocatable binary subprograms

/11SEGMENT, 49, 1

0
7 {(lll
9 1
relocatable binary subprograms]
110VERLAY, 49,1 |

1
relocatable binary subprograms 1
11MAIN, 49 |

0

7 gEQUIP, 49=(LABEL,,, 999)
9
;JOB, 717, ABC, 160

Equip Control Card —— e

8-12

EXECUTION IMMEDIATELY AFTER PARTITION UNIT PREPARATION

While the partition units are being prepared, the main partition is retained
in storage. To execute the program immediately after the units are ready,
a RUN control statement must be placed at the end of the overlay deck or
after the LOAD statement on INP. (LOADMAIN is not used.) When the
RUN statement is encountered, the units are rewound and control goes to
the transfer address in the main section. The main section then calls the
overlays and segments from the partition units.

8-14

RUN Stat t

Example 1 °

/rlelocatable ‘binary subprogr;ms
10VERLAY, 42,6]

1

1
. |

1BANK, (b;) ,name,, . .. |
0
7 /110VERLAY, 10,5]

9 0 Va
Main partition, overlay 2, and its segment 7 AL
are saved on unit 23. 9/S‘elocatable binary subprograms
Overlays 1 and 6 are saved on unit 42. 110VERLAY, 45,4]
/£

Overlay 3 and overlay 5 with its segments

L
are saved on unit 10. 9 ﬁelocatable binary subprograms

110VERLAY, 10,3]
0 I
7 L
9 A‘elocatable binary subprograms
11SEGMENT, 23,1

Overlay 4 is saved on unit 45.

0 Vs
T L £
9/1‘elocatable binary subprograms
110VERLAY, 23,2 |
0 V4

7 L

9 /relocstable binary subprograms
10VERLAY, 42,1
0 Vs

L

-
%*elocatable binary subprograms
11MAIN, 23

0
7 /;EQUIP, 10=(MT10,,,999)

9
(;EQU!P,45=(MT45. ,999)

gEQUIP, 42=(MT42, ,,999)

(;EQUIP, 23=(MT23,,,999)

;JOB.777. DDS, 15

Example 2

;RUN, 15,1000, 4

{ ;LOAD, 69

ZFILE END

relocatable binary subprog'rams
ﬁlSEGMENT, 23,2 |

RUN Statement

0
7 ;FILE, 69 I
[SCOPE
A
(IDENT ANDY

;COMPASS.X. L |

Overlay statements are
transferred to load-and-go
unit 69 with the relocatable
binary output from FORTRAN
compilations and a COMPASS
assembly. Logical unit 69 is
loaded to prepare the overlay
tape; an overlay tape is
created on logical unit 23.
When RUN is encountered
overlay tape is rewound and
control goes to transfer
address in main section.

/"FILE END

/T(I)SEGMENT, 23,1

7 /Z,FILE,69

| L

SCOPE

L
=

program JACK

gFTN. X, L

FILE END

10VERLAY, 23,1
0
7 / ;FILE,GQ]
9
SCOPE
—
A
A
/ subroutine DAVID
L
A
w4
program LISA
FIN, X, L 1
9 MFILE END |
9 Y, 23
FILE, 69 |

7
9

EQUIP, 23=(MT23, , , 999)]

9

/ZJOB, 40305, DDSTONE, 20

8-15

EXECUTION OF
PREVIOUSLY
PREPARED
OVERLAY TAPE Once an overlay tape has been prepared, the overlay program in absolute
binary can be loaded and executed with the SCOPE control statement,
LOADMAIN. The LOADMAIN card is described further in section 2.7.2.

;LOADMA]N,u,t,p. r,d

u unit that contains partitioned program in absolute binary.

t time limit in minutes (optional)

p print limit (optional)

r request for octal dump or console scoop on abnormal termination

non-blank, octal dump of all core
blank, console scoop

d request for octal dump on normal termination

LOADMAIN loads the main partition from the overlay tape on logical unit u
and transfers control to the transfer address in the main section. During
execution the main partition calls the overlays and segments from the overlay
tape. A RUN control statement is not required to execute overlays loaded by
LOADMAIN.

The system configuration should be the same as the one under which the over-
lay tape was prepared. For example, if bank 0 and a DEMAND card are used
in preparing the partition tape, the same DEMAND card should be used when
loading the overlay tape. If an error occurs while LOADMAIN reads the
MAIN program from tape, SCOPE writes a diagnostic on OUT and terminates
the job.

Example:
730B,7777,ROG, 50

9

JLOADMAIN, 25
data to be read by program

8-16

8.4.2

LOADING AND
EXECUTING
OVERLAYS AND

SEGMENTS Overlays and segments are loaded into memory with the LOVER request.
This subroutine operates under the following rules:

1.

7.

A LOVER request does not initiate execution of the specified
partition; it only locates and loads the partition into core.

An overlay may be loaded only by a request from the main partition.

A segment may be loaded from the associated overlay or from the
main partition if the associated overlay is in core storage. A seg-
ment belonging to an overlay not currently in storage cannot be
loaded.

Overlays may be loaded in any order.
Segments within a given overlay may be loaded in any order.
A job is abandoned under the following circumstances:

Irrecoverable parity error is detected when loading a partition

Logical unit number specified in the request is not 1 to 49, or
70 if the program is included in the production file of the library
tape used to load the system

Specified partition could not be located
Rules 2-5 violated

When an overlay is loaded by the LOVER request, all previous

overlays and segments are erased from core. The loading of a
segment erases any previous segment from core.

Normally overlays and segments are designed to enter with the bank return
jump instruction and to exit via their entry point. However, they may also
exit directly to the calling overlay or main program.

Both FORTRAN source programs and COMPASS subprograms may issue
calls to LOVER.

8-18

FORTRAN CALL FORTRAN source language subprograms use the following call statement to
load and execute overlays and segments. (The overlay or segment call uses
LOVER to load overlays and segments.)

CALL

SEGMENT
OVERLAY
(]
8

u

Py

SEGMENT (0,8,u,d)
OVERLAY [Bk] ,pl,...,pn

loads and executes a segment

loads and executes an overlay

overlay number, specified for both segment and overlay
segment number, blank or zero for an overlay.

logical unit number

dummy parameter which must be present if any actual
parameters appear; otherwise, may be blank. dmay also
be the literal 8H. RECALL. or a variable containing that
literal if the last loaded overlay or segment is to be
recalled. In RECALL mode, the overlay or segment is not
reloaded; initialization of variables local to the overlay or
segment is the programmer's responsibility. In RECALL
mode, the overlay, segment, and unit parameters should
appear.

actual parameters to be passed to the overlay or segment
routine; may not exceed 59

if 0, s, u, or dis blank, a comma must appear; their order is fixed.

One subprogram in each overlay and segment must begin with the FORTRAN
statement, PROGRAM name. This statement may contain a maximum of 59

parameters:

PROGRAM name (pl, ceeyP)

name

Pysee Py

CALLING

n
transfer address for overlay or segment

formal parameters; actual parameters in the CALL must
correspond to these formal parameters

SEQUENCE The following calling sequence is generated during compilation for the CALL

statement:

BRTJ

00

In this sequence,

m = %+ 1, * + m is the return address.

n = number of parameters specified in FORTRAN CALL
statement (0. .. pn)

®
®
]
®
®

®

SEGMENT
® {OVERLAY

#+m

DICT.

Fooe
¥y

The above calling sequence jumps to the OVERLAY or SEGMENT subroutine

which passes the parameters o, s, and u to LOVER. LOVER loads the

segment or overlay and returns either a loading error code or the transfer

address for the overlay or segment loaded.

If no errors occur during loading, the following call to the transfer address

is generated by the SEGMENT or OVERLAY subroutine:

BRTJ
+ SLJ
nn
+ 00
00

($)name, , *
*+m

DICT.

Py

8-19

In this sequence,
name the transfer address for the loaded overlay or segment
m= -+l

n = number of actual parameters in the FORTRAN CALL statement,
(pl, ceey pn)
pl, ceey pn actual parameters in FORTRAN CALL statement

Example:

CALL SEGMENT(@, 2,25, ,A,B,C)

The first FORTRAN card is: PROGRAM SUB2(X, Y, Z)
The transfer address in segment 2 of overlay 3 is SUB2.
The call to load the segment is:

BRTJ ($)SEGMENT, , *

SLJ *+5
07 DICT.
00 $ =D3
00 §$ =D2
00 $ =D25
00 0

00 A

00 $ B

00 c

00 0

The call from SEGMENT to the transfer address SUB2 in segment 2 of
overlay 3 is:

BRTJ ($)SUB2, , *

SLJ *+3
03 DICT.
00 $ A

00 B

00 $ C

00 0

ERRORS

If errors occur during loading overlays and segments in response to the
FORTRAN CALL, the job is terminated. The A register will contain the
contents of the parameters for the last LOVER call specified in the CALL
OVERLAY/SEGMENT statement.

A) = n 0 o 0 8

47 41 38 23 14 0

n = Logical unit number
o = Overlay number
s = Segment number

Contents of the A register are written on OUT together with one of the
following messages:

READ PARITY ERROR

LUN OUT OF RANGE

USE OF TOO MANY LUN

RECORD NOT ON THIS LUN

ILLEGAL SEQUENCE

OUT OF BOUNDS LOAD

COMPASS

SEQUENCE Two calling sequences for COMPASS subprograms can be used to load
an overlay or a segment.

Sequence 1
a CALL LOVER
a+l u 0) 0 8
47 41 38 2423 14 0

ai2 {return point)
In this sequence,

n = logical unit number
o = overlay number

s = segment number (0 if an overlay)
This is equivalent to the Tape SCOPE call.
Sequence 2
The MACRO instruction LOVER can be used:

a LOVER lun,f,n

at2 {return point)

In this sequence,

lun = logical unit number

f = (O for overlay and S for segment)

n = overlay or segment number
In both cases, if the overlay or segment has been loaded correctly, the A

register is set to 0, a BRTJ to the transfer address of the overlay or segment
is placed in the Q register, and processing returns to the return point.

8-22

ERRORS

8.5
DATA FORMAT

8.5.1
HEADER RECORD

If errors are encountered while loading the overlay or segment, the A
register contains one of the following error codes, justified to the right.

Error Code

1 Non-recoverable parity error was encountered in loading the
overlay or segment record.

2 Specified logical unit number was not 1-49.

3 More than four logical units were addressed in reading

overlay and segment records.

4 Overlay or segment specified in the calling sequence was not
on the specified logical unit.

5 Overlay or segment specified in the calling sequence was not
consistent with the last overlay or segment loaded. (Rule 3
in section 8. 4.3 has been violated.)

6 An attempt was made to load an overlay or segment out of
bounds.

Each partition is written in the form of absolute records in a file-structure
format. The main partition always occupies the first file; each overlay
with its seguients comprises a separate file. The format for each main
partition, overlay, or segment, is shown below.

The first record in each overlay file must be an overlay record which may be
followed by segment records referenced by that overlay. The overlays on
each overlay tape must be numbered in ascending order. Segments within an
overlay file must be numbered and ordered consecutively. All segments

of one overlay must be contained in one overlay file on one reel of one

logical unit.

The header record describes and defines the limits of the subsequent
partition as follows:

bits

content

Word 1: 47-42 00; defines record as header record.
38-24 overlay number; zero denotes main partition
14-00 segment number; zero denotes main or overlay
partition
Word 2: 41-24 Second transfer address
17-00 First transfer address
Words 3-10: Control words for loading successive data
records, one word for each record. If less than
eight records follow, words at the end (beginning
with word 10) are filled with zeros.
Each control word is an input-output transmit
record (IOTR) instruction.
Words 11-17: Memory table at end of partition loading
8.5.2
DATA RECORDS The data records occur in the same order as the control words in the header
record.
bits content
Word 1: 47-42 record number; record 1 is loaded by the control
word in the third word of header record, record
2 by the fourth, etc.
38-24 overlay number; zero denotes main partition
14-00 segment number; zero denotes main or overlay
partition
Word 2: unused
Words 3 to nt+2 n data words
Word n+3 300 00000 000 00000

8-24

An EOF mark follows if:

Preceding partition was the main partition
Preceding partition was the last segment of an overlay:
Preceding partition was an overlay and there are no segments for

that overlay

An additional EOF mark follows if the preceding partition is the last partition
on the unit.

9.1
EXTERNAL
LIBRARY FORMAT

9.1.1
AUTOLOAD FILE

LIBRARY MAINTENANCE 9

During execution, the Drum SCOPE library resides on the drum. This drum
version of the library, called the internal library, is prepared by the
PREDRUM program from a set of cards or card images, called the external
library. With the LIBEDIT routine, an existing external library may be on
tape or a new one may be created; the internal library may be modified by
the LIBRARY control card (sec. 2.8).

The external Drum SCOPE library is composed of five files, each terminated
by an end-of-file mark. An external library to be used as an auxiliary library
unit need have only the library file present. An external library used to load
the system must have the first four files present in the order specified below;
the production file may be absent:

Autoload file
System file
Background file
Library file
Production file

Each file except the autoload file contains a *FILE card immediately following
the end-of-file.

The autoload file is loaded into memory as a result of autoloading the external
library. The information in this file is dependent upon the specific hardware
device, (conventionally a magnetic tape unit). LIBEDIT assumes that any
tape with a logical unit number of 72-79 has an autoload file and that a tape
with a logical unit of 1-49 does not have an autoload file. The autoload files
transfer control to PREDRUM, the first routine in the systems file.

9-1

9.1.2

SYSTEM FILES The systems file contains the Drum SCOPE system and installation drivers.
The order of routines within the systems file is rigid; any variance will
inhibit the successful preparation of an operating Drum SCOPE System.

PREDRUM Routine that prepares the internal library

PARAMS System parameters, may be selected by the installa-
tion. A complete list is in appendix D.

HTL Hardware Type List, BCD routine containing descrip-
tions of the hardware known to the system

AET Available Equipment Table, descriptions of each
separately connectable device in the computer system

DCODES List of up to 62 disposition mnemonics. The following
codes must be included.
Mnemonic Use
IN (Input) EXEC will search for IN strings

to operate as central programs.

HT (Held, Tried) Each time EXEC scans all held
programs, it saves those it
cannot process as HT.

HU (Held, Untried) = When scanning all held programs,
EXEC will temporarily set them

to HU.

PR (Print) Logical unit 61 is initially de-
clared PR.

PU (Punch) Logical unit 62 is initially de-
clared PU.

AC (Accounting) Accounting output is disposed of
as AC.

TP (Tape) Used by CRP to dispose of card
to tape disposition.

BT (Background Used by EXEC to dispose of

Trouble) dump data for an aborted back-

ground program.

SW (SWAP Scratch) Used by EXEC to save bank 1 of
the central program while a
SWAP request is being processed.

CF (Comment File) Used by EXEC to save console
messages for writing on standard
output.

9.1.3
BACKGROUND FILES

PNL Program Name List, list of resident background
programs

TITLE Listable comment which appears at the beginning of
each job's listing

SYSUNITS System units, I/O units assigned to the system
RDL Resident driver list
RESIDENT Resident system, relocatable routine loaded into

low memory

Drivers Drivers are named for each hardware specified in HTL:
DRhhDxxx
hh is the hardware mnemonic

xx are arbitrary characters

Overlays in the form: xxxxPyyy
xxxx is the name of the overlay
P is the letter L, Xor H

yyy are arbitrary characters

Modules in the form: xxxxMyyy
xxxx is the name of the module

yyy are arbitrary characters

BOOT Routine that provides the final system initialization
when PREDRUM has completed its task

This file contains all the background programs available to Drum SCOPE; it
is composed of relocatable routines each constituting a program. A back-
ground program named in PNL will be loaded immediately and not recorded
on the drum. An installation may add programs to the background file. A
background program must indicate to the system the number of logical units
and families that will be employed as indicated in the IDC card word 7; the
number of units is given in bits 38-24 and the number of families in 14-00.
Each of these values is restricted to less than 64. In COMPASS, the values
are given on the IDENT card as follows:

IDENT name, nlun, nfam

Routines specified in PNL should be included in this file.

9-3

9.1.4
LIBRARY FILES

9.1.5
PXODUCTION FILES

9.2
LIBEDIT

9.2.1
LIBEDIT INPUT

9.2.2
LIBEDIT OUTPUT

94

The library file contains routines available to the central program including
the BCD routine, DIAGNO, which contains the diagnostics.

Programs to be relocated at autoload time and stored on the drum as un-
blocked absolute records are contained in this file. This enables frequently
used programs to be loaded several times faster than the blocked relocatable
records in the library file.

LIBEDIT has two modes of operation:

Preparation of a new library requires the structure to be completely
specified in the control deck.

Editing requires specification of changes to an existing library.

Input to LIBEDIT consists of a deck of control cards on INP (lun 60), and
optionally, other libraries or data tapes contain routines to be included on
the external library. LIBEDIT derives all information concerning the library
being written from INP, unless directed to consult some other unit.

No use is made of the internal version of the library by LIBEDIT, except in
loading of LIBEDIT by the monitor. To edit the current library, therefore,
the external library must be used, not the internal version on unit 70. All
data processed by LIBEDIT as input is checked, when relevant, for parity
errors and checksum errors.

LIBEDIT produces an external library on logical unit 71 composed of the
control cards, routines, programs and file marks derived from input as
controlled by the statements on INP. Labels on external libraries are not
produced by LIBEDIT. They may be specified by EQUIP cards prior to
calling LIBEDIT.

9.2.3
LIBEDIT
CONTROL CARDS

9.2.4
LIBEDIT
DIRECTIVE CARDS

LIBEDIT control on the external library is subject to the following limitations:

Programs or routines which are not contained within programs may not
be duplicated within one file. The second and subsequent copies will
be bypassed if they occur.

If a routine is duplicated within a program, the second and subsequent
copies will be bypassed.

If two or more files have the same name, the second and subsequent
copies will be bypassed if they occur.

LIBEDIT functions are called by the control cards shown below:

ﬁ PREPARE

This card initiates external library preparation. It must be the first card,
and may not be used elsewhere. When PREPARE is used, the following
LIBEDIT control cards are illegal.

*MODIFY *PATCH
*INSERT *DELETE

The EDIT card initiates external library editing. It must be the first card,
and may not be used elsewhere.

7
(9EDIT,u

u logical unit number (1-49, 71-79) of the
library being edited.

These cards direct preparation or editing of the external library. They may
occur on INP only; their occurrence elsewhere will be ignored. All cards
contain a 7,9 punch in column one, and an asterisk in column two. Following
completion of the indicated activity, LIBEDIT returns to INP for controls.

9-5

9-6

(; *REWIND,u

LIBEDIT issues a REWIND request on logical unit u, 1-49, 72-79. Ifuis
72-79, the autoload file will be skipped after the rewind.

[7
*
9 BSPF,u

LIBEDIT issues a BSPF request on logical unit u, 1-49, 72-79.

ﬁ*smp,u

LIBEDIT issues a SKIP request on logical unit u, 1-49, 72-79.

7
(9*EXIRACT,u,m1,m2, ‘e sy

lrni names of routines, files, and programs to be extracted from
logical unit u; embedded blanks are not permitted. The list
terminates with the first blank not preceded by a comma. I the
list is continued on subsequent cards, each card except the last
terminates with a comma followed by a blank and continues on
the following card in column 3; the first two columns of each
continuation card must contain Z)*

The unit will be read and those routines and programs specified on the
EXTRACT card will be placed on the new library as they are encountered,
subject to the limitations stated in section 9.2.2. If a double end-of-file
is encountered, the unit is rewound and searched again. This request
terminates when all routines requested have been located, or the double
end-of-file is encountered for the second time; in this case, a diagnostic
will result.

7*COPY,u,r,m1,m2, ceosTy

9
u logical unit number. If the following conditions exist the
autoload file will be copied. If not, it will be skipped if it
exists.

1. u is in the range 72-79
2. an EDIT is being performed
3. u is the tape being edited

r name of routine, file or program on unit u. All routines, pro-
grams and files are considered to be entities; therefore, if R
specifies a file or a program, routines that are part of that file
or program will not be excluded if they appear on the ignore list.

m name of routine, file, or program on unit u uses same format as
EXTRACT.

The routines, programs, and files from the current position of unit u through
the routine, file, or program named by r will be copied omitting all the m;.
A double end-of-file encountered before r will terminate the copying. The
m, follow the same format rules as stated in EXTRACT, above.

(;*MODIFY ,m

m name of routine, file, or program on unit u

The current library is positioned at the named routine. Following the
MODIFY card are PATCH cards. This card is valid only for editing.

A one-word patch may be made on the current library by this statement. A
binary card will be appended to the routine being modified so that when it is
loaded, the patch will be loaded over the word which is to be modified. Any
number of PATCH statements may be used for any routine, but each must be
preceded by a MODIFY card naming the routine, or a PATCH card. This
card is valid only for editing.

9-7

98

r ;*PATCH,name+n=upper , lower

(;*PATCH ,/cname /4n=upper , lower
1

nametn

upper/lower

location of word to be modified. name is the routine
being modified; cname, enclosed in slashes, is the
labeled common region. n is an octal number specifying
displacement of word to be modified. n must be less
than the program or common block length.

value and relocation specification of the patch.

The load address is specified in one of the above forms. The value of the
patch is specified by half words, upper and lower, from one to eight octal
digits; both must be specified. Both are suffixed by a relocation specifica-

tion, as follows:

P

blank or none

ALl

-P,-A,...,~1

program relocation
no relocation

relocation of the first nine declared common blocks.
Only these may be specified.

corresponding negative relocation

The program being patched must be relocatable.

r ;*DELETE ,m

m name of routine, file, or program on current library

All routines, files, and programs up to the first occurrence of m are ex-
tracted; for input, m is bypassed. This card is equivalent to the following
if u specifies the old library.

;*COPY,u,m, m

This card is valid only if editing.

9.2.5
LIBEDIT INPUT

l ;*INSERT ,m

m name of routine, file, or program on current library

All routines, files, and programs on the old library up to and including the
first occurrence of m are extracted for input. This card is equivalent to the
following if u specifies the old library.

I*coPY,u,m

This card is valid only if editing.

Unlike the directive control cards which may be used in INP (60) only, the
input cards described below may be either on INP or encountered on some
other unit as a result of a directive card.

The input control cards may define routines and programs, in which case
they will be placed on logical unit 71 subject to the rules on page 9-2.

(;*F ILE ,name

Signals the start of a new file identified by name. An end-of-file mark will
be written on 71, followed by the *FILE card. The file terminates with the
next *FILE or *FINISH card. The name must begin with one of the following
letters, which identifies the type of file:

Systems file
Background file
Library file

Yo B o»m

Production file

If the *FILE card is encountered while extracting or copying and its name is
in the extraction or ignore list, the entire file will be extracted or ignored.

9-10

(;*PROGRAM, name

Signals the start of a production program identified by name. If this card is
encountered while extracting or copying, and its name is in the extraction

or ignore list, the entire program will be extracted or ignored. The program
terminates with the next *PROGRAM, *FILE, or *FINISH card.

This card is not permitted in the systems, background, and library files.

IDC Card

The occurrence of an IDC card (w=31_) signals and names a relocatable
routine. The routine consists of a relocatable binary deck and terminates
with a TRA (w=37 g card. The name of the routine is extracted from this
IDC card.

r;‘kBIN ,name

Identifies and names the subsequent binary cards as a binary routine. The
routine terminates with a TRA card (w=37 8)'

The data cards are similar to RBD cards except that the word count field
contains the count of data words on the card from 1 to 23 8 and the data
always begins in word 2 (column 5). The location field specifies the relative
origin of the data within the routine.

This card is not permitted in the background and production files.

(;*BCD, name, terminator

Identifies and names the subsequent cards as a BCD routine. Any number of
BCD cards may be specified; they are terminated by the first occurrence of a
card with the 8-character terminator in the first 8 columns (blanks included).
This card is not permitted in the background and production files.

9.2.6
SPECIAL
CONTROL CARDS

(; *MACRO,name

Signifies the start of a set of BCD cards containing the definitions of the
library macros for COMPASS. LIBEDIT will process the cards and produce
a binary data routine with the same name.

This card is not permitted in the background and production files.

(;*ABS ,u

Indicates a standard relocatable binary deck consisting of one subprogram
with no entry points, external symbols, or common blocks and not exceeding
50004 locations in length. The deck is on unitu, 1-49 or 60. If blank, 60 is
assumed.

With this card the user may define the contents of the autoload file, the only
one with this type of record. When preparing an external library for use,
the autoload file must be specified in this way, if it is to be present at all.
When editing, the absolute file of the old library will be copied unmodified,
unless the *ABS card is the first data encountered by LIBEDIT. The only
cards which may precede the *ABS card are *REWIND, *BSPF, *SKIP.

(;*FINISH

This card must be the last control card on INP. An end-of-file mark will be
written on logical unit 71, followed by the *FINISH card and two more file
marks. If a *FINISH card is detected by LIBEDIT while reading a unit other
than INP, it is assumed to signal the end of an external library and is equiva-
lent to a double end-of-file.

However, if an edit is being performed, the occurrence of a *FINISH card on
INP will cause LIBEDIT to read and process all data remaining on the old
library up to its *FINISH cards, subject to the rules on page 9-2.

9-11

9.2.7
LISTING

EXTERNAL LIBRARIES When LIBEDIT produces an external library, a list of the control cards, files,
programs, and routines on the external library will be written on OUT.

Also, the LISTLIB named entry card can be used to obtain a listing on OUT
of the contents of an external library.

l ;LISTLIB,u

u specifies the logical unit number (1-49, 71-79) of the external
library.

In both cases, the listing will be formatted to indicate grouping and order
on the external library. The names and lengths, where appropriate, of all
files, programs, and routines on the library will be written on OUT.

9-12

APPENDIX SECTION

DRUM SCOPE BACKGROUND PROGRAMS

| GENERAL INFORMATION

The 861 drum is the principal I/0 device in Drum SCOPE. Two drum
features in particular are inherent in the operating system design:

High rate of information transfer between drum and core storage
(4 usec per 48-bit word at 1-1 interlace)

Random access organization with minimum access time
(average access time = 17 ms)

For example, loading a library program into core from drum storage
requires less time than loading it from magnetic tape.

Drum SCOPE uses blocked records to facilitate the scheduling of drum
storage. Drum storage is partitioned into blocks of the same size as the
blocked records used by the system. A sequence of blocked records
linked by pointers in each block defines a string which may be assigned
to a logical unit. Block addressing is used internally for drum reference.

In Tape SCOPE, standard input and output units are magnetic tapes. The
information on the tapes is divided into contiguous units called jobs, and
the position of the job on the standard input unit determines the order of
execution.

In Drum SCOPE, a card-assigned priority number associated with each
job determines the sequence in which jobs are processed. If no assign-
ment is made, priority is zero* Jobs having the same priority number are
executed in the sequence with which they were introduced to the system.
The system also disposes of output on the priority basis.

Background programs (card-to-drum, drum-to-printer, drum-to-punch)

prepare the central job input files on the drum and dispose of the output
files.

* Or whatever parameter the installation assigns.

CENTRAL MEMORY DRUM

Resident
Programs Library
(control)
- 3 b Stack
Control | |~ dJob Stac
(user) -7
2
Program
-
(_ \ 6
Output Area
5
Card Read S .
Are Header "1 Background
Programs 7a \
Printer |je—8 - ——=—=———- \
\
_‘__,ﬁ/ _________ __)Work Area
Punch

Figure 1. Information Flow in Drum SCOPE System

INTERRUPT SYSTEM

The 3600 interrupt system transfers control to location 1 of bank 0 when
specified conditions occur. Interrupt conditions are either internal, such
as a time interrupt, or external, such as an I/O interrupt.

External interrupts are used by the system for I/0O control; interrupts are
selected for each I/0 operation. Internal interrupts are used to sense
conditions, such as storage reference faults, to produce time signals, and
to control storage usage. The bounds fault interrupt is used to signal a
request from an executing program to the system. Arithmetic fault
interrupts are not used functionally but are processed by the system for
programs selecting them. All user programs, including interrupt rou-
tines, are executed with interrupt active.

CENTRAL PROCESSING UNIT

In Tape SCOPE, the CPU is used by the executing program or by the system.
The system has higher program priority. This is program priority rather
than job priority.

In Drum SCOPE, there are 64 levels of program priority for the CPU.
System function programs carry a higher priority level than a job or exe-
cuting program. In figure 2, the center circle represents the interrupt
control routine INC. Although a priority level number is not assigned to
INC, it has immediate use of the CPU each time an interrupt occurs. A
new condition does not cause an interrupt while INC is using the CPU.
INC performs such bookkeeping tasks as interpreting interrupts and re-
cording the anticipated CPU usage for the program levels involved.

After these tasks are performed, INC seeks the highest level that can use
the CPU and gives control to the program at that level. Not all levels
are equivalent with respect to the usage a program may make of the CPU.
Levels 63, 62, and 2 comprise a privileged group, the background pro-
grams another group, and levels 0, 1, and 3 the central program group.
The privileged group does not run under monitor protection (it has no
bounds limits); certain requests are allowed in background programs but
not in central programs.

STORAGE

Portions of the system, such as interrupt control, I/0 processing, and
status tables, must be in core storage at all installations.

Background programs declared resident on the system's external library
may vary from installation to installation.

The EXEC portion of the system allocates storage available for the central
program and for non-resident background programs.

INPUT/OUTPUT

All 1/0 channels and devices are scheduled and monitored by the system
program on level 63 as shown in figure 2. Lower-level programs request
this program to assign them the use of a specific device. A device is
reserved for the requesting program until it is released.

CENTRAL PROGRAM

BACKGROUND PROGRAM #58

BACKGROUND PROGRAM #3
BACKGROUND PROGRAM #2

BACKGROUND PROGRAM #1
SUB-SYSTEM

62

60

> Level Number

Figure 2. Priority Level Structure Diagram

A4

CENTRAL PROGRAM INTERRUPT ROUTINES

REQUEST and OPERATOR PROCESSING
63)

Function Name

Associated with the request for most I/0 operations is an interrupt address
to which control is transferred when the operation is completed. For any
one program level, the transfer cannot occur until a RETURN request has
been given by that level. However, in the central program, control
transfers to level 1 at the time the operation is completed. This is the
user's interrupt subroutine.

SYSTEM REQUESTS

Programs communicate with the system through system requests. Certain
requests are not legal for all levels. Abnormal termination procedures are
followed if a request is illegal for the level in which the program resides.
As an example, consider the following request from a background program.

BSPR LUN, RA,IA

The request would appear in storage as the binary equivalent of:

LOC 63 5%8
03 0
00 0
00 LUN
00 RA
00 1A

When CPU attempts to execute the instruction at LOC (the bank return jump
to location 0, bank 0) a bounds interrupt is generated. This interrupt
transfers CPU control to INC which saves the values of the CPU registers
at the time of interrupt, and recognizes the interrupt as a bounds interrupt.
Since the destination address of the transfer is (0) 00000, INC recognizes
the interrupt as a request interrupt. The interrupt is then interpreted
according to the value in the upper address position of the bank jump. INC
records the interrupt as requiring the action of the request processor on
level 63.

INC then transfers control to the request processor where the request and
the status of the logical unit are checked; if they are acceptable, the
backspace operation is initiated. The interrupt address, to which control
is to be transferred after the operation is completed, is saved. If no
other interrupts occur, control is directed through INC back to the program
originally making the request. The registers are restored to their values
at the time the request was executed, and the program continues from the
point of the request. The requested operation is not complete, however,
until the I/O operation is complete and interrupt routine has been entered.
In a background program this may occur only after the program relin-
quishes control with a RETURN statement.

A-5

A6

BACKGROUND PROGRAMS

Drum SCOPE uses the background program facility to:
Place job input information on the drum
Transfer job output information to other media
Perform installation defined tasks

Dump onto magnetic tape

An installation may add its own background programs or replace the
standard background programs provided by the system with its own version
of programs to form and process job input/output strings. The only
requirements are:

The System must be provided with strings of information on the drum
that are declared as IN disposition

Output strings (PR and PU dispositions) should be removed from
the drum

Additional disposition categories may be declared when a new system tape
is prepared. Additional background programs are required to process
newly defined dispositions. Background programs which process output
strings should be named; for instance, BK.xx, where xx is the disposition
mnemonic of the type of string processed by the program. Functions pe-
culiar to an installation may be performed by background programs.
Certain requests such as LIMIT, RDLABEL, etc., are not defined since
background programs are not intended to accomplish objectives similar
to central programs.

Background programs should occupy a small fraction of total CPU time.
This is the situation within standard job I/O processing where the amount of
time taken to initiate an asynchronous I/O is small compared to the time

of the operation. Processing, which may take more time but which is not
often required, might also be performed by background programs.

COMMUNICATION

Background programs communicate with Drum SCOPE, the computer operator,
and other background programs. They communicate with the system through
the requests listed in section III. Communication from system to background
programs is implicit with control transfers and explicit through the A, Q
registers. An example of implicit communication is the transfer of control

to the reject address in response to a READ request. The value of the
registers in response to a DATE request demonstrates explicit communica-
tion.

The console typewriter is used for communication between the system and
the operator. By typing an asterisk followed by the name of the background
program, the operator may request the system to transfer a message to

a background program. This indicates to the system that the message
following is intended for the named background program. However, the
background program receives the message only if it has requested a READ
on a unit assigned to the input comment medium.

With the SYSIO request, a background program can request the system to
write a message on the output comment medium. The message is preceded
by a tab and the name of the background program. The operator communi-
cates with the system by pressing manual interrupt, waiting for the type-in
light, and typing the message.

The communication path is not direct; the system relays the messages to
the proper destination. The INFORM and XFER requests transfer informa-
tion from one background program to another. The XFER request reassigns
logical units of the requesting program to logical units of a designated
program. XFER does not initiate action in the receiving program.

To be prepared to accept the message sent by INFORM, the receiving
program must request a read on a unit assigned to the input comment
medium. Since the message may also be from the operator, the message
source may be determined by the content of the message. A maximum of
10 words of information can be transferred via the INFORM request.

Since the INFORM request is fulfilling a read operation, it initiates the
interrupt routine associated with the read. If the receiving program is on

a higher priority level than the sending program, the transfer to the interrupt
routine takes place immediately after the information is transferred.
However, if the receiving program is on a lower priority level the transfer
to the interrupt address cannot take place until the sending program and

any other programs on higher levels have no further action to be taken,

and have issued RETURNS.

One background program can determine the status of another with the
SIWOH request. SIWOH is used to determine whether a background program
is present, if it is reading the ICM unit, and so forth. In a broad sense,

the INVOKE request is also a background program communication request.

A-7

A-8

PHYSICAL PROGRAM STRUCTURE

The physical structure of background programs can be considered from two
angles: as they appear in storage after loading, and as ready for a
COMPASS assembly. In storage, the program is retained in a continuous
portion of bank 0 memory. The area contains:

1. Program Instructions

2. Program data

3. Tables maintained by system
4.

Buffer areas to contain records for blocked units

The third and fourth sections are used exclusively by the system. In pre-
paring a background program for COMPASS assembly, the area for tables
is indirectly specified by the statement:

IDENT name,n, f

where n is the number of logical units and f is the number of families

used by the program. The buffer areas for blocked records should be
‘specified in the program with either a BSS or . POOL xxx common block
statement. The logic of the program should include BUFFER and FAMILY
requests to properly utilize the areas. Alternately, buffer area 0, common
to all programs, may be used; however, this is not recommended since
inefficiencies would result.

The first location of the background program must be reserved for storing
an EXIT request issued when program execution begins. Likewise, the
location specified as an interrupt address must be reserved for a RETURN
request.

LOADING AND EXECUTING

The loading action is dependent on whether or not the background program is
to remain in storage. A background program can be introduced into the
system only by being added to the external library with LIBEDIT. At the
time the system is initiated, resident background programs, as declared

in PNL, are loaded into memory and non-resident programs are stored

on the drum. Since the loader for background programs does no linking,
entry points and external symbols cannot be handled.

Background programs can be initiated in three ways if the loading operation
is included and if the program is not present in storage:

1. EXEC looks for strings with a disposition code. When strings are
available, EXEC loads the background program specified by
BK. xx where xx is the disposition code. For example, if a PR
string is available BK. PR will be loaded.

2. The operator may initiate a background program with a LOAD
message on the console typewriter.

3. One background program may initiate another with the INVOKE
request.

A loading operation is performed immediately only when initiation originates
in EXEC. EXEC loads background programs only when storage is available
for reassignment. Loading cannot occur during central program execution,
and background program loading is dependent upon the central program
status. Background programs can be loaded at phase or job breaks. When
a background program is loaded, it is assigned the next lower priority level.

Eifective background programming depends on an understanding of the
external equipment, knowledge of the drivers used in the system, and
familiarity with Drum SCOPE implementation techniques. Detailed
information for coding drivers is contained in the Drum SCOPE reference
manual and the maintenance documentation.

ENTRY

A background program is initiated by placing an EXIT request at relative
location 0 and transferring control to 1. On entry, the A register indicates
whether the background is resident or non-resident.

A negative, non-resident A positive, resident

The loser address portion of Q contains the location of the program control
table for the background program.

Q(14 - 00): Location of PCT

Il SYSTEM REQUESTS

Most system requests may be used by background programs. Requests such

as READ and WRITE have their usual meaning with the restriction that the in-
terrupt subroutine is not entered until the background program has relinquished
control with a RETURN request.

A9

A-10

SYSIO f,k,fwa,wdct

f function; unindexed digit, 0 or 1
0, write message to operator
1, accounting information.

k digit 0-7; relevant only if £ = 0.
fwa 18-bit unindexed address.
wdct 15-bit word count, unindexed; with fwa, this

parameter defines a buffer area.

With this request the user may write accounting data or a message to the
operator on OCM.

The message beginning at location fwa, containing wdct words, will be
written on the unit specified by f. If f = 0, the output can be conditioned
with stop keys.
k= message appears always
if stop key 1 is set
if stop key 2 is set
if stop keys 1 or 2 are set
if stop key 3'is set
if stop keys 1 or 3 are set
if stop keys 2 or 3 are set
if stop keys 1, 2, or 3 are set

SO WN O

Example:

SYSIO 0, 5, MSG, 3

The 3-word message beginning at location MSG will be output on the type-
writer if stop keys 1 or 3 are set. The message is in internal BCD mode.

The write on OCM is controlled by the selective stop switch settings to
permit the installation to govern the volume of output on the typewriter.
The request is not buffered. When control is returned, the message has
been transferred to systems buffer when the octal 1/0 occurs. Further
SYSIO requests are rejected until the previous transmission is complete.
To receive a message from the operator, the ASSIGN (ICM) request and
READ request on the unit must be used. (See ASSIGN request.)

Accounting records are written on the drum; they are given a disposition of
AC and released when the operator types AUDIT. A background program,

BK.AC, processes the AC string. A simple version is supplied by Control
Data Corporation; a more sophisticated version may be written by the user,

ASSIGN uu, y

Background programs may make logical unit assignments with the ASSIGN
request. The number of logical units must be specified on the program
IDENT card.

y = DR

Unit y is assigned to the drum. The sequence number assigned to

the string is the one belonging to the current job being run. This may
be changed by the PRISEQ request. Subsequent WRITEs will create

a string in the INP area of the drum. The installation determines
how much of the drum is reserved for this use by specifying LINP
when defining PARAMS on the external library. If the installation
expects considerable string generation and manipulation by back-
ground programs, this area should be expanded.

An ASSIGN may not be necessary when data is to be placed on the
drum, since a WRITE given on an unassigned unit causes the unit
to be assigned automatically to the drum. However, since only a
limited number of drum strings can exist at any one time, the
system will terminate the program issuing the WRITE in the event
that there is no room for the new string. ASSIGN un DR permits
the background program to detect this situation.

y = disposition mnemonic

This method locates and assigns particular strings on the drum. For
example, BK.PR performs ASSIGN uu, PR when a print string is
required. All strings on the drum have an associated disposition.
When the request is honored the string with the highest priority and
lowest sequence number is assigned. On return, the Q register
contains information which may be used by the background program.

The sequence number Q(14-00) and priority Q(17-15) may be used
for accounting purposes. The ID (Q23-18), may be used as a
security classification or as a further indication of the disposition.
For example, a print string, PR, which is to be transmitted to a
particular remote site, "A", would have an ID of "A" (assigned
through PRISEQ by a special background program when the job was
introduced to the system). The printing background program would
be able to distinguish this string and send it to remote site "A".

Disposition of the unit is set to 0 following a successful ASSIGN.

A-11

A-12

y = hardware mnemonic

This method locates an available piece of hardware. A write assign-
ment for the hardware is attempted. For instance, the printing
background program performs ASSIGN uu, LP when it requires a line
printer. The hardware designate of the form HHnn (HH = hardware
mnemonic, nn = ordinal) is returned in Q(23-00) upon return from a
successful ASSIGN. Hardware may be reserved for background
program assignment in the AET routine in the systems file of the
external library.

y = hardware designate

This obtains a specified piece of hardware. The physical unit must
be unassigned and not down. As an example, this method could be
used to assign remote terminal "A" as a result of receiving the PR
string with ID "A" as mentioned above. If RT were the hardware type
and "A'" were the first RT, the background program performs
ASSIGN uu, RTO01.

y = ICM

With this method, the background program can receive meussages from
the operator by performing a subsequent READ request on the unit.
After performing ASSIGN uu, ICM, a READ request on uu is stacked
until the operator directs a message to the background program. When
the operator types in *name of background program, the message is
stored as specified by the control words and the interrupt subroutine
is entered. If no interrupt address is specified, the READ request is
meaningless. To receive additional messages, additional READ uu
requests must be issued. A RETURN request must be given before
the interrupt subroutine can be entered. Ten words is the maximum
message length.

When control returns to the program, the A register indicates the result of
the request as follows:

A > 0 Assignment was honored

A =+0 Assignment was not made because no hardware or drum unit
was available

A= -0 Assignment was not made because it requires a driver which
cannot be loaded at present

A < 0 Assignment was not made because y was not recognized by
the system

Following successful ASSIGN requests, units which are not needed should
be released. For example, if a PR string is assigned but no printer is
available, the disposition of the string should be reset to PR via DISPOSE
and the unit released; similarly, if a printer is assigned and no PR string
is available, the printer can be released for use by another program in
the system. The WAIT or BYNBY request can be used for a delay before
repeating the assignment request. Following an unsuccessful ASSIGN re-
quest for hardware requiring a driver which cannot be loaded, the system
will load the driver at the next opportunity (job or phase break).

PRISEQ u, p, seq, id

u logical unit number, must be a blocked unit assigned to the
background program.

o) priority 0-7 with 7 being the most urgent, p cannot be indexed.

seq sequence number which will be assigned to the unit. If zero,
Drum SCOPE will assign a number. In either case, the A
register contains the sequence number assigned in bits 14-00
and priority in bits 17-15.

id a one-character identifier to be associated with a drum unit
available later in the ASSIGN request. This could be used, for
example, for security classifications.

The PRISEQ request gives priority sequence and ID information to the
system concerning blocked units. A unit assigned to the drum, either
through ASSIGN uu, DR or a WRITE request, is given the same priority,

ID, and sequence number as the currently executing central program so that
all units associated with a job have the same priority, ID, and sequence
number. This allows a background program to determine which job is
being run.

If other values are necessary, the background program must set them
through the use of PRISEQ. If no sequence number is specified, the system
assigns the next highest number. The first sequence number assigned is 1,
the second 2, etc.

For example, CRP, the card reader processor, uses PRISEQ following
assignment of a string for a job. Priority is taken from the priority card
if there is one, otherwise zero is assigned by CRP; the sequence number
is zero and the ID is zero.

The ID field is unused by the system; the installation may make any desired
use of it.

A-13

A-14

The ID is passed along, unaltered, with all information associated with
the job. A sequence number may be assigned if SEQUENCE cards are
used by an installation and CRP is modified to accept and process the
cards. (The standard version of CRP has an assembly option to ignore
sequence cards.)

DISPOSE u,dd,ea

u logical unit number belonging to the background program. If the
unit is not a drum, disposition is ignored.

dd disposition mnemonic; cannot be indexed.

The dispositions IN, PR, PU, AC, HT, TP have well defined
meanings - an IN string is assumed to be available for processing
as a central program job. PR and PU are print and punch strings.
AC is the accounting string. HT and HU are used by EXEC for
DEMAND card processing. TP is a string to be written on tape.

ea error address; if the specified disposition is not recognized, an
exit to the error address is taken.

Example:;
DISPOSE 2, PR, ERROR

Logical unit 2 is to be printed when released.

The DISPOSE request declares a disposition for a drum string when it is
released. Judicious use of DISPOSE and the disposition codes can increase
the capability of the system. Files (strings) may be written on the drum,
given dispositions, and processed independently of other system operations.
The unit is not released when DISPOSE is issued. Since DISPOSE is illegal
on a unit declared as FO, DISPOSE should be issued before declaring a
unit FO. Restrictions are:

The strings are not labeled and are identifiable only through
disposition, ID, sequence number, and priority. A request

cannot be made for a particular string within a disposition class.

Installations may define as many as 62 dispositions.

MODE

The MODE request is discussed here because drum units declared FO
(forward only) have special significance. Background programs should
declare as FO all units assigned to the drum if no backward operations will
be performed on the units. REWIND, BSPF, UNLOAD are illegal on FO
units. A limited number of BSPR requests may be given on a FO unit.
BLSIZE words are always available to be backspaced over.

During reading, the blocks of the string are released after they have been
read. During writing, the blocks of the string which have previously been
written are made available for release. For example, the OUT string (with
disposition PR) being generated in the central program, is declared FO.
When a background program requests a PR string through ASSIGN, the
system will release the previously written blocks comprising OUT when

the next write is given on OUT, before OUT is released at end of job. The
ASSIGN request will not be honored at this initial request, but by the time
another ASSIGN is given some blocks may have been released. The ASSIGN
request can, therefore, be honored before the string has been completed.

WAIT

The WAIT request relinquishes control to the system so that lower level
programs can be executed. Interrupt subroutines for the program are not
entered. Control is returned to the program after a time delay of less
than one minute specified by an assembly parameter in RESIDENT.

WAIT is used whenever the background program has no task to perform,
and no 1/0 operation is currently going on. If a RETURN request is used,
the program is not re-entered.

WAIT can be used when attempts to assign units with ASSIGN are un-
successful. WAIT can be used in conjunction with DYSTAT to simulate
a READY request if other tasks may be performed.

BYNBY interrupt address

The BYNBY request is similar to WAIT. The program will be entered at the
interrupt address following the same delay as for WAIT. BYNBY permits
other interrupt subroutines to be processed, whereas WAIT delays processing
until the WAIT is satisfied. BYNBY may be used by a program which handles
more than one operation. For example, BK.PR (printing background pro-
gram) would use BYNBY when waiting for another printer to become avail -
able. Otherwise, several flags would need to be set and checked before
returning control to SCOPE in the reading/printing cycle.

A-15

RETURN

This request returns control to the system. The RETURN request should be
issued whenever further execution awaits completion of an I/O operation.

It should not be issued unless the program expects an interrupt (either 1/0
or BYNBY) to occur; otherwise the program will not be re-entered.

RETURN enables a program for an interrupt entry and gives control to the
next lower level.

Two paths of control can be taken:

If an interrupt has occurred for an 1I/O operation on a unit
belonging to this background program, the interrupt subroutine
will be entered.

Control will be given to a program at a lower level.

Unless a background program releases control (RETURN, WAIT) no lower
level program is executed. Since background programs can be introduced
only through the external library, the installation must verify that every
background will eventually release control.

EXIT

The EXIT request is issued only when the program has completed its
functions and is to be terminated. A program that is not a resident back-
ground program is removed from core after all lower level background
programs have been removed. Removal takes place only at job or phase
breaks. A resident background program remains in core but cannot be
re-entered until the LOAD statement is issued by the operator.

ABORT (diagnostic key)

The ABORT request is used only if the program is to terminate itself
abnormally. A resident background program should not issue an ABORT

as it will not be re-entered and there is no copy of the program on the
drum. If trouble occurs SYSIO (OCM) and/or WRITE (on a unit with PR
disposition) may be used. If a background program is aborted the memory
occupied by the background program will be written on the drum and a dump
produced later.

A-16

SIWOH In

In location containing the name of a background program, left
justified with blank fill.

This request enables a background program to determine the status of another
background program. Upon return, the A register specifies the status as
follows:

A=0 No background program of this name is known to the system,

either in memory or on the drum.

1 The program is known to exist, but it is neither in memory nor
awaiting loading.

2 The program exists, but is awaiting loading.

3 This program is present in memory, but is not currently read-
ing ICM; that is, an INFORM will be rejected.

4 This program is present in memory and is currently reading
ICM.

5 Same as 3 except the program is of equal or higher level.,

6 Same as 4 except the program is of equal or higher level.

SIWOH may be used to detect the presence of a background program and its
capability of receiving messages via INFORM.

INVOKE In, ea, ia

In address of the name of the background program to be loaded.
The name must be left justified with blank fill.

ea address to which control is transferred if the loading tables
are full,
ia address to which control is transferred when the program has

been loaded.

With INVOKE, a background program requests loading and initiation of another
background program. If the program is in core, an interrupt will be posted
for the calling program and on return, the A register will contain a 3 or 4
depending on whether or not the invoked program was reading ICM (3 if not,

4 if so). If the invoked program has an equal or higher priority a 5 or 6 will
be returned in A. A SIWOH should be given at this point to obtain a more cur-
rent status. The calling program will be terminated if the background program
is not in the directory. If the program is in the directory but not in core, it
will be put on the invoke list to be loaded and initiated as soon as possible.

In this case, the A register will contain a 2 on return.

A-17

INVOKE may be used by a small controller background program to load larger
programs to perform specific tasks, or (via some particular signal) to load
special background programs.

Only INFORM and XFER requests may be used to communicate with the loaded

background program. If the named program is not known to the system, the
background program will be terminated.

INFORM In, fwa, wdct, ra

In location containing the name of a background program, left
justified with blank fill.

fwa first word address of a buffer area.

wdct size of the buffer area, less than or equal to 10 words.

ra reject address.

When this request is encountered the message defined by fwa, wdct is trans-
mitted to the background program whose name is In. If wdct is greater than
10 words, the first 10 words will be transmitted. If the background program
is present but not reading a unit assigned to ICM (Input Comment Medium),
control will be transferred to ra.

The INFORM request transmits a message from one background program to
another if the receiving program has performed a read on ICM (see ASSIGN).
INFORM can be used to signal other background programs to begin a task.
Statements from the operator are transmitted in the same manner. Since the
background program receiving the message must interpret the source, the
message must be intelligible to the receiving background program.

A-18

XFER u, In, lun, ra

u logical unit number

In location containing the left justified name of
the receiver program

lun logical unit number

ra reject address

This request permits the transfer of a logical unit assignment from one
program to another. The current assignment of the unit specified by u of
the sending program will be assigned as logical unit lun of the receiver
program. Ifu is busy, or if the old assignment of unit lun in the receiver
program is busy, the request will be rejected. If lun is out of range to
the receiver program, or if In specifies a program not currently present,
the program is abandoned.

XFER may be used when a card reading program encounters a control card
which requires special handling, such as, transmittal to a remote station.
The remote station background program is loaded and notified about the
sending XFER. The card reader assignment is given to the new background
program which can then read cards directly. When the task is completed

a new XFER must be issued so that the unit assigned to the card reader may
resume normal operation.

Due to the lengthy procedures required - INVOKE, SIWOH, INFORM, XFER,
INFORM, etc., - other methods of handling this type of operation may be
superior. For example, the data could be written on the drum with a

specific disposition to be processed by another background program at a

later time, or the entire capability could be written into the original program.

READY u,ra,ia

With this request, the background program may sense a ready condition on
a unit; the interrupt subroutine is entered when the unit is ready (ready for
an operation). Actual definition of READY is determined by the I/O equip-
ment driver. Normally, drivers which deal with special equipment are
written in conjunction with the background programs.

The READY request is used in the normal manner. For instance:
After establishing a link with a remote terminal or station, the
READY request is followed by a RETURN. When the terminal

is ready (as defined by the I/O driver) the background program
is re-entered and data transmission is initiated.

A-19

A-20

This request loads background program overlays.

LOADBO

In location of the name of the background overlay to be loaded.
The name must be left justified, with trailing blanks, from 5
to 8 characters,

fwa 15-bit address of the beginning of the area to be used to load the
overlay.

ra reject address. Control transfers to ra with A = -0 if the name
is not found in the system directories. Control transfers to ra
with A = +0 if the area specified is too small to contain the
requested overlay.

ia interrupt address entered when loading is completed.

Background program overlays must be loaded within the bounds of the calling
background program. No entry points or external symbols may be defined in
the overlays.

EXPANSION OF REQUESTS B

All systems requests are expanded into a BRTJ command with a possible parameter list. The BRTJ
is coded:

630 ccecO 030 00000

ccce is the call code for the request. Call codes 0-3777 are reserved for the system; call codes
4000-7777 are for installation use. The entry 'tpoint, SENTRY, is defined by the loader to be 0
00000. This permits Tape SCOPE compatibility. Each request is specified by the request name, the
call code value and the parameter list. If the expansions of two requests differ only in the call code
value, a reference to another expansion will be given.

In the following expansions, parameters are used as follows:
pi denotes a parameter whose effective value is calculated with indexing. The index
registers are those which were set at the time the request is issued. If indirect

addressing is used, all references are within the bank of request.

b)p denotes that the index field contains a bank term.

P denotes a value expressed in one field. Call Code
EXIT C=
+ 63 0*8
03 0

READ u,cwa,ra,ia

+ 63 1*8 c=1

03 0

00 cwa, i

00 u,i

00 ra,i

00 ia,i
WRITE u,cwa,ra,ia like READ CcC=2
REOT u,cwa,ra,ia like READ Cc=3
WEOT u,cwa,ra,ia like READ CcC=4

B-1

BSPR u,ra,ia

BSPF u,ra,ia
REWIND u,ra,ia

UNLOAD u,ra,ia,p

SKIP u,ra,ia
ERASE u,ra,ia

MARKEF u,ra,ia

MODE u,ra,pl,p2,p3,p4,p5

(A zero pj is ignored)

63 5*8
03 0
00 0
00 u,i
00 ra,i
00 ia,i
like BSPR
like BSPR
63 8%*8
03 0
00 p,i
00 u,i
00 ra,i
00 ia,i
like BSPR
like BSPR
like BSPR
63 12*8
03 0
00 ra,i
00 u,i

VFD A23/,A5/P1,A5/P2.A5/P3,A5/P+.A5/P5

where p; have the following values:

BIN 6 OoP
BCD 7 LO
HI

HY

B-2

10B

11B

12B

13B

RF

RO

BY

wO

RW

20B ND
21B RV
22B
23B
24B

30B

31B

C =

@]
1l

Call Code

5

10

11

STATUS u

LABEL u,addr, ed, rl, rtn or crd

SAVE u

UNSAVE u

SELECT m,ia

m occupies positions 23-18.

SHIFT

DIVIDE

EXOV

EXUN

OVER

SELECT l,ia

1

2

Call Code

CcC=13
+ 63 13*8
03 0
00 0
00 u,i
C=14
+ 63 14%*8
03 0
00 addr, i
00 u,i
VFD A24/crd
VFD Al2/ed,Al12/rtn
C=15
+ 63 15%8
03 0
00 0
00 0
like SAVE C=15
Direct Select C =16
+ 63 16*8
03 0
00 ** Saved old selection
m ia, 1
The codes are:
ADDR 12B
TRACE 14B
INST 16B
MANUAL 20B
ABNORM 21B
Indirect Select C =16
+ 63 16*8
03 0
10 ** Saved old selection
00 ia,i

B-3

REMOVE m

m codes as in SELECT

LIMIT du, ra,ia

If dy is compound, the parameter is:

+

FREE
TIME

BOUND lb,ub, ra,ia

UNBOUND
DATE
LOADER

LIBRARY In;ea

B-4

63 17*8

03 0

00 ** Saved old selection
m 0

63 18*8
03 0
IOSW du

00 ra,i

00 ia,i

00 milliseconds
00 seconds
like EXIT
like EXIT

63 21*8

03 0

00 (b)1b

00 (b)yub

00 ra,i

00 ia,i
like EXIT
like EXIT
like EXIT

63 25%*8

03 0

00 ea,i

00 In,i

Call Code

C=17
C=18
Cc=19
Cc=20
c=21
C =22
C =23
C=24
C=25

MEMORY b, 1, u

HERESAQ

RELEASE u, ra, s

P occupies bit 47

RDLABEL u, ba, ra, ia

WRLABEL
RDBLOCK u, cwa, ra, ia
WRBLOCK u, cwa, ra, ia

SWAP In, ea, ia

JOB.ID

63 26*8
03 0
00 (byu
00 1
like EXIT
63 28%*8
03 0
P ra,i
00 u,i
63 29*8
03 0
00 ba,i
00 u,i
00 ra,i
00 ia,i

like RDLABEL

like READ
like READ
63 34*8
03 0
00 In,i
00 0
00 ra,i
00 ia,.i
like EXIT

Call Code

C =26
C =27
C =28
Cc =29
C =30
C =32
C =33
C =34
C =35

B-5

SETUPT lun,f

GETUPT lun

SYSIO f, k, fwa, wdect

f occupies bit 21.

f=0: OCM
f=1: ACC
RETURN

RETURNM p, a, ob

if p = U (upper)

if p = L (lower)

CHECK u

ASSIGN u, q

B-6

+ 63 36*8
03 0
00 f,i
00 lun, i
like STATUS

+ 63 39*8
03 0
00 wdct
fk (b)fwa

K occupies 20-18

like EXIT

+ 63 41*8
03 0

UBJP (b)a,,ob

+ 63 41*8

03 0
BJPL (b)a,,ob

+ 63 42%8
03 0
00 0
00 u,i

+ 63 43*8
03 0
VFD H24/q
00 u,i

Call Code

C =36
C =37
C =39
C =40
C =41
C =42
C =43

PRISEQ u, p, seq, id

LOCATE u,lra,ra

DISPOSE u,dd, ea

INFORM In, fwa,wdct, ra

ABORT k

WAIT

LOVER u,f,n

X occupies bit 47:

+ 63 44 %8
03 0
VFD
00 u,i

+ 63 45%8
03 0
00 1ra,i
00 u,i
00 ra,i
00 0

+ 63 46*8
03 0
00 ea,i
00 u,i
BCD 1,dd

+ 63 47*8
03 0
00 In,i
00 wdct
00 ra,i
00 fwa

+ 63 48*8
03 0
VFD H48/k
like EXIT

+ 63 50%*8
03 0
x0 n,i
00 u,i

x= 0 Overlay, x=1

A6/id, A3/P, Al5/seq

Call Code

C=44

o]
n

47

MEMBER u

BUFFER u,a,c

ENTER u,ra

FAMILY u, f

INVOKE In,ea,ia

WHERE
DYSTAT u

READY u,ra,ia

XFER u,In,lun, ra

SIWOH In

like STATUS
63 52*8
03 0
00 0
00 u,i
00 (b)a
00 (b)c
like CHECK
63 54%*8
03 0
00 f,i
00 u,i
63 55%*8
03 0
00 0
00 In,i
00 ea,i
00 ia,i
like EXIT
like STATUS
like BSPR
63 61*8
03 0
00 In,i
00 u,i
00 ra,i
00 u,i
63 62%*8
03 0
00 In,i
00 00

Call Code

C =51
C =52
C =53
C =54
C =55
C =56
C =57
C =58
C =61
C =62

CLBCD bufa, bufb

BYNBY ia

BINBCD

LOADBO In, fwa, ra, ia

like

63
03
00
00

63
03
00
00

EXIT

63
03
00
00
00
00

63*8

bufa, i
bufb, i

64*8

00
ia, 1

67*8
00
fwa,i

In,i

ra,i
ia,i

Call Code

C =63
C =64
C =65
C = 67

B-9

TAPE SCOPE COMPATIBILITY C

BACKSPACING INP

BOUND and
UNBOUND REQUESTS

CONTROL WORD
ADDRESS

CONTROL WORD

CHAINS

DATE REQUEST

DEFAULT
HARDWARE

EOF on INP

EQUIP, U=SV

Most programs written for the Tape SCOPE operating system will operate under
Drum SCOPE. Points of incompatibility are discussed below; a knowledge of
Tape SCOPE is assumed.

Backspacing INP (to correct parity errors, for example) is permitted in Tape
SCOPE. Drum SCOPE guarantees only one backspace on INP.

In Tape SCOPE, BOUND requests are stacked by the system such that an UN-
BOUND request restores a previously selected bounds limit. In Drum SCOPE
no such stacking is done. UNBOUND removes the programmer selected bounds.

A control word address of 0 or -0 is legal in Drum SCOPE if it is within the
program bounds.

Control word chains in Tape SCOPE are unrestricted; the programmer is re-
quired to guarantee their correctness. Under Drum SCOPE, all chains are
checked to afford system protection and are of restricted length. Control words
currently directing data transmission should not be modified until the trans-
mission is complete.

The Q register is used as well as the A in Drum SCOPE.

In Tape SCOPE, any logical unit not declared otherwise is assumed to be mag-
netic tape. In Drum SCOPE, any unit not declared otherwise is automatically
assigned to the drum. All programmer input units and nondrum output units
must be declared in EQUIP statements.

Although reading past an end-of-file on standard input is illegal in Tape SCOPE,
it is permitted in Drum SCOPE.

The SV declaration on and EQUIP card is ignored in Drum SCOPE.

FILE OF SCOPE
CONTROL CARDS

ICM, OCM

JOB AND RUN
TIME LIMITS

LIBRARY REQUEST

LIBRARY
STATEMENT

LOAD CARD

LOADER CALLS

LOCATION OF
EQUIP CARDS

LOCATION ZERO

MACHINE
INTERRUPT MODE

SCOPE control cards may be included in the range of a FILE card in Drum
SCOPE.

In Tape SCOPE when ICM = OCM, each RHT entry refers to the AET entry.
In Drum SCOPE, one RHT entry refers to the other RHT entry which in turn
refers to the AET entry.

In Drum SCOPE, the time limit is specified as M. S. (minutes and seconds).
If the specification is blank or zero, installation standard time limits are
used.

The LIBRARY request has a different meaning in Drum SCOPE because of the
revised library format. All such requests must be modified.

The form and usage of the LIBRARY statement are changed in Drum SCOPE.

In Drum SCOPE, the unit is rewound the first time it is mentioned in a phase;
thereafter loading starts from the current position. In Tape SCOPE, a back-
space file occurs before each load.

The parameters passed to/from the loader are changed in Drum SCOPE.

In Drum SCOPE, EQUIP cards may not be intermingled with phase control
cards.

In Tape SCOPE, when an interrupt subroutine is entered, location zero con-
tains the location of the interrupt. In Drum SCOPE, this information is ob-
tained with the WHERE request.

When an interrupt subroutine in Tape SCOPE is entered, the computer is in
interrupt mode. In Drum SCOPE, the machine interrupt system is active at
all times.

MAGNETIC TAPE
ASSIGNMENT

MEMORY REQUEST

MODE REQUEST

NAMED ENTRY

CARDS

NORMAL
TERMINATION

OPERATOR
COMMUNICATION

OVERLAYS

PAUSE STATEMENT

POOLxxxCOMMON
BLOCK

REQUESTS FROM
INTERRUPT MODE

Magnetic tapes declared on EQUIP cards are not assigned until they are re-
ferenced under Drum SCOPE. In Tape SCOPE, EQUIP 11=MT causes a write
assignment when the card is encountered.

A request in Drum SCOPE for memory below the program limits is illegal.
In Tape SCOPE, a default limit is set.

Recording mode selections are made on the master logical unit in Drum SCO PE.
In Tape SCOPE, the selection is made on the called logical unit.

The SCOPE parameters have been removed from the entry point card.

As part of normal program termination, Tape SCOPE permits the active in-
terrupt subroutine after the EXIT request. In Drum SCOPE, the EXIT request
will lock out such interrupt entries.

Procedures and messages involving operator intervention and communication
differ from Tape SCOPE.

The overlay tape format has been altered. The MAIN card is required in
Drum SCOPE.

In Tape SCOPE, PAUSE is executed at the beginning of the specified job. In
Drum SCOPE, PAUSE is executed whenever the statement is encountered.

Drum SCOPE requires a reserved word of the form . POOLxxx, where xxx are
arbitrary characters. The user-specified common block name with this form
must be changed. This feature is used to allocate system size buffers.

Drum SCOPE does not provide the facility of holding requests; if the unit is
busy, the request is rejected.

C-3

RUN-PHASE

SAVE REQUEST

SELECT

SEQUENCE
STATEMENT

STATUS REQUEST

SYSTEM UNITS

C-4

The definition of a RUN is new in Drum SCOPE.

The SAVE, UNSAVE requests are recognized but ignored in Drum SCOPE.

Drum SCOPE does not permit the SELECT features OPER and M1604.

The Tape SCOPE Sequence statement has been eliminated. A PRIORITY
statement provides an equivalent function.

The format of the reply to the STATUS Request differs in Drum SCOPE.

The Tape SCOPE systems units 60-80 have been redefined in Drum SCOPE.
Units 60-62 are job units; units 65-68, 80 are reserved by the system with-
out specifying actual usage.

INSTALLATION PARAMETERS D

The second routine of the Systems File is a BCD routine called PARAMS
which contains the systems parameters. Each parameter is represented on
a card as follows starting in column 1:

parameter name = value

The parameter name is one of those listed below. An equals sign is used as

a separator; a comma may also be used. The value is expressed as a decimal
number (0-32767) or an octal number with a B suffix. Embedded blanks are
not permitted. The routine ends with a blank card.

The range of permissible values is given with each parameter; suggested
values are also provided. It is the responsibility of the installation to use
only permissible values for the parameters. The size of RESIDENT is de-
pendent upon the parameter value shown as follows:

R = f (parameter)

This expression is correct to within a constant independent of the parameter
value., The total size of RESIDENT cannot exceed 32767.

BISIZE

Block size for all blocked units.

Range: 129 - 511
Suggested: 256
Size: R = 2*BLSIZE + 218*D/(3*BISIZE)

where D is the number of drums in AET

. CWORDS

The number of control words permitted in control word chains for unblocked
units.

Range: 4 - 16383
Suggested: 4
Size: R = .CWORDS*CHANS

where CHANS is one greater than the maximum channel
mentioned in AET

DRFUDGE

In selecting an optimum of several drum requests, DRFUDGE allows for the
system time before the drum can be accessed.

Range: 0 - 32767

Suggested: 5000B

Size: R=0
FUDGE

Provides a space between the high point of the minimum system and the origin
of numbered common for production programs. This allows space for system
expansion at the same time that a production program is called. This space
must be large enough to accommodate the following items:

non-resident drivers for resident background programs

non-resident drivers required by central program via equip cards
expansion of central program logical unit block if specified by job card
label area as required by the central program via equip cards

Additional space is desirable for the following items, but if space is short
these last two items are removed. Background programs are sacrificed in
deference to buffers.

important non-resident background programs and their non-resident

buffers for families 1 and 2

Range: 9 - 32767

Suggested: 4*BISIZE + 1024

Size: R = FUDGE
JTIME

Job time, in seconds, supplied in the absence of the t field on the job card.

Range: 0 - 32766

Suggested: 300

Size: R=0
LABTERM

Number of seconds allotted to an ABNORMAL subroutine.
Range: 0 - 2236
Suggested: 120
Size: R=0

LINP
The quantity LINP/(LSCR + LINP + LPOOL) defines the proportion of the
drum area to be reserved for background program output.

Range: 0 - 32767

Suggested: 2

Size: R=0

LPOOL
The quantity LPOOL/(LSCR + LINP + LPOOL) defines the proportion of the
drum area to be reserved for the library and central program output.
Range: 0 - 32767
Suggested: 13
Size: R=0
LSCR
The quantity LSCR/(LSCR + LINP + LPOOL) defines the proportion of the

drum area to be allocated for scratch and random access area, subject to the
restriction that no more than one entire drum can be allocated.

Range: 0 - 32767

Suggested: 1

Size: R=0
NCPFAMS

The number of families permitted to a central program in addition to family 0,
that is, the highest permissible family designate.

Range: 0 -63
Suggested: 7
Size: R = 6*NCPFAMS

NCPLUNS

The number of logical unit designations permitted to a central program unless
overridden by a JOB card. The units INP, OUT, ICM, OCM, and LIB are included.
Range: 2 -75
Suggested: 10
Size: R = 5*NCPLUNS

D-3

NSEG

Defines the average number of segments per file where 3 is one segment.

Range: 3 -511
Suggested: 6
Size: R = (NSEG - 3) * NF

NF = number of files declared on a MASSFILE card.

RLINES

Print limit, in request count, supplied in the absence of the p field on the RUN
or LOADMAIN cards.

Range: 0 - 32767

Suggested: 1000

Size: R=0
RTIME

Run time in seconds supplied in the absence of the t field on the RUN or LOAD-
MAIN cards.

Range: 0 - 32766

Suggested: 300

Size: R=0
STDENS

The standard tape density; 3 = HI, 4 = 1O, 6 = HY.

Range: 3,4, 0ré6
Suggested: 3
Size: R=0

. TIMES

The number of concurrent TIME selections.

Range: 2 - 16383
Suggested: 5
Size: R = 2*,TIMES

BOT GROUP

SID GROUP

EOS GROUP

BLOCKED TAPE FORMAT E

Drum SCOPE blocks and buffers user information on the drum. This facility
is also available on magnetic tapes; however, the user may not write blocked
tape under system control. Preparation and handling of blocked tape outside
the Drum SCOPE system is described here.

Information on tape is organized into groups, separated by file marks. The
BOT and EOS groups mark the beginning and end of the reel of tape and are
not part of the data. The SID group identifies the data contained in the DATA
group.

Data on blocked tape is formatted in strings; when a tape is introduced into
the system, each string is processed according to its type. The tape may
contain several data strings; but each must be complete; that is, a data
string may not begin on one reel and continue on another.

The first physical record on each reel of the file is the BOT group. It con-
tains one record, the label, followed by an end-of-file mark. The label must
be in the standard label format, given in Chapter 5, and the file name must
begin with an asterisk in column 9. The reel number corresponds to the
physical reel sequence number.

This group follows the BOT group and may also follow a DATA group. It
identifies the data string which follows, and consists of a 10-word BCD re-
cord followed by an end-of-file.
Positions 1-3 SID
4-3 (blank)

9-10 mnemonic which classifies the disposition of the following
data string

11-80 irrelevant
The EOS group follows the last data group on the tape. It consists of a 10-
word BCD record followed by a file mark.

Positions 1-3 EOS
4-8 (blank)

9-80 irrelevant

E-1

DATA GROUP

This group immediately follows the SID group which identifies it. It consists
of one or more binary records in constant length blocks. The length of a
block is determined by the installation, between 129 and 511 words, inclusive.

The first word of each block is a block control word:

Bit position Contents
47-45 zero
44-30 sequence number
29-15 predecessor block sequence number
14-00 successor block sequence number

The first block of data contains a sequence number of 1, predecessor block
sequence number of 0, and successor block sequence number of 2; these
numbers are incremented by 1 for each successive block. The last block
contains a successor block number of 0. The data group is terminated with
a file mark.

Spanning blocks are records. Record control words appear at the beginning
of each record and also at the beginning of each block immediately following
the block control word. This record control word contains:

Bit position Contents

47 file flag

46 continuation flag

44 BCD flag

38-24 number of truncated trailing blanks

in BCD, number of zeros in binary.

14-00 segment length

The continuation flag is 0 for the first record control word of each record. If
a record cannot be stored entirely within the block which contains the initial
record control word, the second and sebsequent segments of the record are
preceded by a record control word with continuation flag 1. The actual data
record is composed of all the segments; thus, any length record may be re-
presented.

The file flag is 1 if the record consists of an end-of-file. It is relevant only
in the first record control word. If the record length is non-zero, the data
contained within the record will be transmitted. Drum SCOPE will write a
one-word record consisting of 1717 0000 0000 0000, and will set the binary
flag to 0.

The BCD flag contains a 1 if the record is BCD. It is relevant only on the
first record control word. Drum SCOPE writes an end-of-file mark in BCD
when the BCD flag is 0.

The binary flag contains a 1 if the record is binary. It is relevant only on the
first record control word. Drum SCOPE writes an end-of-file mark in BCD
when the binary flag is 0.

The segment length defines the number of words of the record immediately
following the record control word. If a record control word occupies the last
word in a block, the segment length is zero.

E-3

DIAGNOSTICS F

LOADER DIAGNOSTICS
All loader diagnostics are written on OUT in the following format:

LOADER ERROR pl p2 p3

p1» Py, Pg are eight-character designators specifying information concerning
the detected error.

When the loader detects an error, the diagnostic is written on OUT, and the
loading continues as though the error had not been encountered. For example,
after writing, the checksum error is processed as though the checksum were
correct. The only exception is the memory overflow error which causes the
loading operation to be terminated. When errors are encountered during the
loading operation, no library subroutines are loaded.

Following is a list of errors and values for py and pg for each error; p; will
be the first subprogram name encountered by the loader, or p; will be blank.

p2 p3 Condition
BAD LAT suppressed LAT string looping (more than
77776B entries in string.)
BANK BANK card con- BANK card format error.
tains format
error
CARD SEQ column 1 and 2 Card out of sequence, i.e., LAT

of current card card followed by EXT card.

CHKSUM column 1 and 2 Checksum error; punched checksum
of current card on a binary card does not agree
with computed checksum.

COM LNG name of common Common block length error; attempt
block made to define labeled common
blocks with different lengths or mul-
tiple numbered common blocks in
one bank having various lengths.

CD TERM

EOT

FEW BRT

FEW LAT

ILL BYTE

ILLEQUIV

ILL CHAR

ILL EOF

ILL PNCH

LAT OV

LAT RNG

LOAD ADD

Ps

column 1 and 2
of current card

suppressed

suppressed

suppressed

column 1 and 2
of current card

column 1 thru 8
of OCC card

column 1 thru 8
of OCC card

suppressed

column 1 thru 8
of OCC'card

LAT(T)

Condition

Previous card not terminated. When
a name continues to the next EPT
or EXT card, the second card was
not found.

End-of-tape encountered in writing
an overlay tape.

Either the T portion of a BRT has
made a reference past the end of
the BRT table or there are fewer
BRT's than EXT's.

Either the T portion of an LAT has
made a reference past the end of
the LAT table or there are fewer
LAT's than EXT's.

Illegal byte value in R field of the
RBD card. Byte 10...0, which is
not used, was encountered.

EQUIP,xx = yy EQUIP,yy = xx is
illegal.

A character which is not octal or
blank appears in a correction or an
illegal relocation designator is used.

End-of-file read from an INPUT
UNIT does not immediately follow
a TRA card.

Illegal punch configuration appears
on a OCC.

Computed value of T, when entering
an LAT into the permanent loader
tables is greater than 4095.

address of attempt- LAT range error. An attempt

ed reference

column 1 and 2
of RBD card or
column 1 thru

8 or OCC card

was made to reference SCOPE in a
LAT string.

Illegal load address on RBD card or
OCC card. The byte for the load
address specified either a fixed or
decremented address on RBD card,
An OCC load error may be one of
the following:

MAIN C
MD BANK

MD C BK

MD EPT

MD P.N.

MD TRA

OVERLAY

OV MEM

OVvT MEM

PARAM

suppressed

EPT name

name of common
block

entry point name

suppressed

illegal transfer
name

overlay number

column 1 and 2
of current card

column 1 and 2
of current card
or 1-8 of OCC

A register para-
meter for cur-
rent loader call

Condition

Blank load address.

Relocation designator specifies:
decremented address
fixed address
numbered common

No main card in overlay processing.

Multiply defined bank for EPT.
Bank specified for EPT on bank
statement does not agree with the
bank assigned to the entry point.

Multiply defined common bank.
Common block assigned to two or
more banks of memory by BANK
statements or automatic assignment
of block followed by a BANK state-
ment.

Multiply defined entry point. Same
entry point name defined at two ad-
dresses.

Multiply defined program name.
Same subprogram name encountered
more than once.

Multiply defined transfer name.
More than two TRA cards containing
a name encountered.

Current overlay card violated over-"
lay rule.

Memory overflow. Not enough
memory available to assign block

of common, subprogram, or program
extension.

Memory overflow. Not enough
memory available for construction
of loader tables.

Parameter error. An illegal call
has been made to the loader:

S = 11 call after loader has com-
pleted previous load request.

S = 10 or 00 call before loader has
completed previous load
request.

S = 10 or 00 and QU = 0.

F-3

PARITY

ROOMLOAD

SEC LIM

SEGMENT

SEQ NO

TAPE NO

UN COM

UN EXT

UN TRA

127 BLK

F-4

suppressed

column 1 thru 8
of OCC card

overlay number
followed by seg-
ment number

column 1 and 2
of current card

requested tape
number

column 1 and 2
RBD card or col-
amn 1-8 of OCC

external symbol

transfer name

column 1 and 2
of current card

Condition

Non-recoverable parity error en-
countered on loading unit or overlay
tape.

No room in core for loader after
loader request.

Current value of load address lies
outside program section being cor-
rected. Program section is defined
as a portion of the program refer-
enced by a relocation designator of
+ or 1-9, 0 on OCC.

Current segment card violated one
rule.

The sequence number on an EPT,
BCT, EXT, LAT or BRT was out
of sequence.

Logical unit on LCC is out of range.

Undefined common block reference.
No common block was declared for
a byte value on the RBD card or a
relocation field on an OCC card.
Or the associated common block
resulted in a COM LNG error.

Undefined external symbol. A ref-
erence has been encountered to an

external symbol that is not defined
as an entry point to any of the sub-
programs loaded or to any library

subroutines.

Undefined transfer name. The sym-
bolic transfer name contained on one
of the TRA cards was never defined
as an entry point to a subprogram.

Too many common blocks. More
than 126 common block name have
been encountered in a subprogram,

SNAP/TRACE CARD DIAGNOSTICS

If an error occurs while processing SNAP or TRACE cards, the following
message is written on OUT, followed by the card image:

CARD yyy E'Srl;]{i?}s) ERROR at Column XXX mmmmm
yyy Number of card
XXX Column being processed when error was detected
mmmmm Diagnostic listed below
BIG NUM Octal value more than 6 digits
BIG PAR Parameter was greater than 4096
EXC CARD Required field missing
FWA FWA exceeds LWA
ILL MODE Illegal character in mode field
ILL OCT Illegal character in octal field
ILL PAR Illegal character in parameter field (non-nuineric)
ILL SLSH Slash appears illegally
LOC1 OCT Initial location is absolute octal
LOC1 REL Initial location ‘is relative
LOC2 OCT Location is absolute octal
NO LOC2 No LOC2 on TRACE card
NO LWA No last word address
NO ROOM Not enough available memory in program bank for
tables
NOT LOAD Name not loaded
REL ERR Relative address with no preceding name
LOC1, BIG LOC1 greater than/equal to LOC2 on TRACE card

F-5

F-6

JOB ABANDONMENT

When a job is terminated abnormally, a diagnostic and an optional dump will
be written on OUT in the form:

ABORT, mmmmmmmm, MESS

mmmmmmmm is a diagnostic key and MESS is the message in the routine
DIAGNO corresponding to the diagnostic (search) key.

The messages may be modified by changing DIAGNO. If more than one card
in DIAGNO has the same key, the second and all subsequent cards will be listed
without the diagnostic key.

If the job is terminated because of an illegal 1/O request or operation an addi-
tional diagnostic line will follow, in the form:

LUN = mn

nn is the logical unit number.

If an abnormal subroutine is used which aborts, a diagnostic of the same form
will appear preceded by ABNORMAL INTERRUPT ROUTINE ABORTED. The
diagnostics that follow appear on the listings in full capitals. They are shown
here in upper and lower case for readability.

ASSEMERS Library phase errors so loading not attempted

BAD FAM Attempt to declare buffers for FAMILY 0

BAD FEAT Select feature invalid

BAD UNIT 1/0 equipment failure

BADDECLR Illegal declaration on EQUIP card

BADDEM Error on demand card

BADEQUIV Illegal equivalence on EQUIP card

BADFAMCD Error on FAMILY card; the FAMILY card has two
BADFAMCD forms, (1) FAMILY (N), F=U, U,U--- (2) FAMILY,
BADFAMCD F=U, U, U---in form (1) there may be no) otherwise
BADFAMCD The error is one of the following:

BADFAMCD No comma preceding F or no = after F

BADFAMCD F greater than maximum number of families (NCPFAMS)
BADFAMCD U=63-68, 70, 80 = infinity

BADLABEL Illegal label on EQUIP card

BADLIBCD
BADMODHD
BADMODHD
BADMODHD
BIG FAM
BIGXDIR
BIGXDIR
BOU CWD
BOUNDS
BSR FO
CHAIN L
COREUSED
CORNONAME
COSYCARD
ENDLESS
EXT EPT
FORCDUMP
ILBINBIN
ILL FO

ILL INP
ILL INST
ILL IOCM
ILL LIB
ILL INAME
ILL LUN
ILL REQ
ILL SCR
ILL UNIT
INSUF EQ
JOBCDBAD
JOBCDBAD
JOBCDBAD

Library card not proper

The first card of a module on the library file is
illegal either it was a BCD ward or a control card
Other than *BIN or *BCD

FAMILY number too large

Not enough space to make auxillary library

Either directory too large or *BIN module too large
Input control word out of bounds

Bounds fault

Too long a backspace on a FO unit

Control word chain too long

UC card preceded by loading operations

No 7/9NAME card to execute a correct sequence
Improper control card

Endless control word chain

EPT card came after UC cards in program module
Dump asked for on UC card

An illegal binary card in *BIN module (24~-36) card
Illegal request on FO unit

Illegal request on INP (60)

Illegal instruction

Illegal request on ICM/OCM

Illegal request on LIB

Invalid format for library name

Illegal logical unit number on UC card

Illegal systems request

Illegal request on scratch unit (50-59)

Invalid unit

Insufficient equipment

Improper JOB card. Probably one of the following:
JOB) JOB (and no) JOB (N)X where X #,

JOB, C, I, MX or JOB, C, I, M, SX where X #,

F-7

F-8

JTIMESUP
LAB FUL
LAB NBOT
LAB TEXT
LCWBAD
LCWBAD
LINCT
LMEML
LNOOV
ILNOPART
LNOSEG
LOADERER
LOADILL
LONGEPT
LONGJT
LONGJT
LOVLIB
LPARITY
LUB BIG
MODE BAD
NO 7-9

NO DR

NO ENT
NO .U=
NOCOMMA
NOCORE
NOEQUIP
NOHTL MT
NOIDC
NOIDC
NOIDC
NOJOBCRD

Job time limit exceeded

Label ordinals used up

Label request issued on unit not at BOV
Incorrect label text

Control word on overlay tape was improper
LWA exceeded 77777 in specified bank

Line count exceeded

Bank zero memory limit exceeded on overlay tape
Specified overlay could not be located
Specified partition could not be located
Specified segment does not exist in current file
Errors in loading

Attempt to load following a SNAP or TRACE card
Name on EPT card longer than 8 characters
The time requested on the job card is

Greater than or equal to 99900 seconds
Library overlay not coded yet

Irrecoverable parity error detected on overlay tape
Not enough space for logical unit block

Illegal feature in mode

Control card with no 7-9 punch

No DR in hardware type list

No entry point specified

EQUIP, U= not proper

Field not terminated by a comma

Not enough core available for demands

Not enough equipment in system for demands
No MT in hardware type list

IDC (31) card out of place. Either there

Were two IDC (31) cards or some card

Other than LCC (30) cards preceded it

No job card on in string

NOLOAD
NONAME
NONAMLD
NONBCD
NONBIN
NONBINPR
NONE
NORASPAC
NOSPACE
NOXLIB
OPSAYNO
OPTERM
PAR BNDS
REOV
RTIMESUP
SELIA=0
SMALCARD
SMALRA
SREF CWD
STO REF
TIMESUP
TIMESUP
TOO MANY
UN UNIT

UNEXEOI
UNL LAB
UNLOAD
UNLOADM
USAGE
W-R SEQ
WRONGEN

Nothing loaded before RUN card

No name on CORRECT card

This name was not loaded

Non-BCD card in *BCD module

Nin-binary card in *BIN module

Non-binary card in program module

Operator typed in none. Not enough equipment
No random access area left

Not enough space for program

The auxiliary library file asked for was not on the unit
Operator said not enough equipment for demands
Operator termination

Parameter address out of bounds

Read attempt beyond end of information

Run time limit exceeded

Select interrupt address = 0

Control card had less than 20 words

Not enough random access area for RA declaration
Storage reference fault in control word

Storage reference fault

Time allowed for abnormal termination
Clean-up has elapsed (LABTERM)

Too many I/0 units referenced

Read attempt on unassigned unit must have EQUIP dec-
laration

Premature end of input information

Label request on unlabeled unit

Illegal logical unit number on LOAD card
Illegal logical unit number on LOADMAIN card
Request incompatible with define usage

Write followed by read

This name does not correspond to a loaded entry point

CONSOLE SCOOP

A console scoop will be given in the following form:

REGISTERS LOGICAL UNITS
ENABLE DISABLED LU HD F A STATUS Q STATUS MODES
(ZERO) XXXXXXXXXX XXXXXXXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX
TCONTENTS OF X XXXXX XXXXXXXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX,XX
A XXXXXXXXXX XXRXXXXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX, XX
Q XXXXXXXXXX XXXXXXXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX
D XXXXXXXXXX XXXXXXXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX
BR XXXXXXXXXX XXXXXXXXXX XX XX MASTER (if equivalenced)
B1 XXXXX XXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX
B2 XXXXX XXXXX XX XX XX XXXXXXXXXX XXXXXXXXXX XXX,XX
B3 XXXXX XXXXX
B4 XXXXX XXXXX
B5 XXXXX XXXXX
B6 XXXXX XXXXX
sc XXXXX KXXXX
FAULTS
FAULT MASK SELECT
SHIFT XXX XXX XX
DIVIDE XXX XXX XX
EXOV XXX XXX XX
EXUN XXX XXX XX
OVER XXX XXX XX
ADDR XXX XXX XX
TRACE XXX XXX XX
INST XXX XXX XX
ABNORM XXX XXX XX
CONSOLE
TWOS XXX
Ss1 XXX
Ss2 XXX
SS3 XXX
S84 XXX
SS5 XXX
SS6 XXX
JK1 XXX
JK2 XXX
JK3 XXX

fContents of location pointed to by (zero).

F-10

REGISTERS Contents of registers at last interrupt in the program
ENABLED and DISABLED, registers corresponding to the
mode. An * appears next to the mode in execution when the
job is aborted. (ZERO) contents of zero at last interrupt in
the program. A, Q, D, BR, B1-B6, SC contents of A, Q,
bounds register, B-boxes and shift count register.

Logical Units Status of each logical unit used by the program:

LU logical unit number
HD hardware type
F family number

A, Q Status status

MODE mode of unit; BIN, BCD, FO, RO, WO, RV
FAULTS ON or OFF

MASK ON or OFF

SELECT NO or YES (fault selected) or HELD
CONSOLE status of console, OFF or ON

F-11

SUPPORT PROGRAMS G

Support programs are library routines available to the central program user.
Included in this catagory are LIBEDIT (chapter 9) FILE, and file manipula-
tion.

FILE

The file program transfers data for INP (Unit 60) to some other unit. Output
for FILE is copies of the cards, no listings will result.

This program is called by a named entry card in the format:

[;FILE,u

u is a unit number 1-49, 69, 71-79

The FILE control card immediately precedes the data cards to be filed on the
unit specified. The data cards must be binary cards. The data deck is ter-
minated by an end-of-file mark or by a binary card containing:

(gFILE END

Control is then returned to the system for job continuation.

gFILE END

/
ya

(data deck

;FILE, 71

G-1

File Manipulation

The file manipulation program performs indicated functions on the specified
unit. If an invalid request is issued, the system terminates the job. The fol-
lowing functions may be performed:

REWIND,u Rewind tape

BSPF,u Backspace to end-of-file
SKIP,u Skip to end-of-file
UNLOAD,u Unload tape

BSPR,u Backspace one record
MARKEF,u Write end-of-file
RELEASE,u Release assignment

INDEX

Abnormal termination 3-2
ABORT request 4-23
*ABS 9-11
AC 1-6
Accounting information 1-6
ALDAP 2-20
ALGO 2-20
ALGOL 2-20
ASSIGN request A-11
Assignment 5-2
labeled device 5-3
unlabeled device 5-3
Autoload file 9-1

Background files 9-3
Background programs 1-2; A-1
program structure A-8
input/output A-3
Bank assignment 7-1
BANK statement 7-17
*BCD 9-10
BCT card 7-6
*BIN 9-10
Binary cards
BCT 7-6
BRT 7-10
EPT 7-5
EXT 7-8
IDC 7-4; 9-6
LAT 7-9
Lcec 7-17
occ 17-12
RBD 7-7
TRA 7-16
Blocked tape format E-1
BOUND request 4-19
BRT card 7-10
BSPF 4-7
*BSPF 9-6
BSPR 4-7
BUFFER request 4-16
BYNBY request 4-25

Central programs 1-2
processing 1-2; A-2
Charge number 2-2
CHECK request 4-14
CLBCD request 4-24
COBOL 2-20
COMMENT statement 2-18
COMPASS 2-20
Compatibility, tape-drum SCOPE C-1
Console scoop F-10
Control statements
COMMENT 2-18
CORRECT 2-14
DEMAND 2-2
entry point name 2-14
EQUIP 2-3
execution 2-15
FAMILY 2-12
JOB 2-1
LIBRARY 2-17
LOAD 2-14
loading 2-13
LOADMAIN 2-17
MASSFILE 2-19
OVERLAY 8-2
PAUSE 2-18
phase control 2-13
PRIORITY 2-1
RUN 2-15
Control statements, LIBEDIT
PREPARE 9-5
EDIT 9-5
*COPY 9-7, 8
CORRECT statement 2-14

Data fields 7-14
DATE request 4-22
DCODES 9-2
Debugging aids 6-1
Deck examples 2-23

Index-1

Declarations
data organization 2-11
deferred assignment 2-12
density 2-6; 4-12
disposition 2-6
equivalence 2-6
hardware 2-4
label 2-7
labeled tape 2-7
logical unit number 2-8
non-standard label 2-9
usage 2-5; 4-11
*DELETE 9-8
DEMAND statement 2-2
Density declarations 2-6; 4-12
Density types 2-6; 4-12
DIAGNO 9-4
Diagnostics F-1
loader F-1
SNAP/TRACE card F-5
job abandonment F-6
console scoop F-10
registers F-11
Directive card, LIBEDIT
*BIN 9-10
*BCD 9-10
*BSPF 9-6
*COPY 9-7
*DELETE 9-8
*EXTRACT 9-6
*FILE 9-9
IDC card 9-10
*INSERT 9-9
*MACRO 9-11
*MODIFY 9-7
*PATCH 9-8
*PROGRAM 9-10
*REWIND 9-6
*SKIP 9-6
DISABLE request 3-3
Disabled mode 3-3
DISPOSE request 4-3; A-14
Disposition codes 9-2
Dump parameters 2-1, 16
post-mortem 6-5
SNAP 6-1
TRACE 6-4
DYSTAT request 4-10

Index-2

EDIT control statement 9-5
ENABLE request 3-3

Enabled mode 3-3

ENTER request A-3

Entry point name statement 2-14
EPT card 7-5

Equipment configuration viii

assignment declarations 2-3; 4-2

EQUIP statement 2-3
Equivalence declarations 2-6
ERASE request 4-9

EXIT request 4-23; A-16
Expansion of requests B-1
EXT card 7-8

*EXTRACT 9-6

FAMILY request 4-16
FAMILY statement 2-12
FILE G-1

*FILE 9-9

FILE END G-1

File manipulation G-2
*FINISH 9-11
FORTRAN 2-18

FREE request 4-21

GETUPT request 4-15

Hardware declarations 2-4
types 2-4
HERESAQ request 4-24

ICM 1-5

IDC card 7-4; 9-10
IDENT 9-3

INFORM request A-4
INP 1-4

Input comment 1-5
Input/output requests 4-1
*INSERT 9-9

Installation parameters D-1
Interrupts 3-1; A-2
INFORM request A-18
INVOKE request A-17

JOB. ID request 4-25
Jobs 1-1

JOB statement 2-1
Job time limit 2-2

LAT card 7-9
LABEL request 4-2
Label
format 5-1
processing 2-7; 5-4
LCC cards 7-16
LGO 1-4
LIB 1-5
LIBEDIT 9-4
control cards 9-5
directive cards 9-5
input 9-9
input 9-4
listing library 9-12
output 9-4

special control cards 9-11

LIBRARY request 4-24
LIBRARY statement 2-17
Library maintenance 9-1
files 9-4
format 9-1
preparation 9-1
production files 9-4
request 4-24
LIMIT request 4-21

Listing external library 9-12

LISTLIB 9-12
LOADER request 4-24
LOAD statement 2-14
Loader calls 7-20
card format 7-2
operations T7-1
request 4-22

Loading from standard input 2-14
object programs 2-15

Loading overlays 8-2, 3
Load-and-go unit 1-4
LOADBO request A-20

LOADMAIN statement 2-17

LOCATE request 4-9

Logical units 1-3
master 2-7

number declaration 2-8

LOVER request 4-23
Lower bound 4-20

*MACRO 9-11
MAIN 8-2
Map, memory 6-6
MARKEF request 4-9
MASSFILE 2-19
Master logical unit 2-7
MEMBER request 4-17
MEMORY 4-20
Memory

map 6-6

request 4-18

MODE request 4-13; A-15

*MODIFY 9-7

Normal termination 3-1

Object programs, executing 2-15, 25

loading 2-14
OCC card 7-12
OCM 1-5

Octal correction cards 7-12

ouT 1-4

Output comment 1-5

Output limit 2-15

Overlay loading 8-3
data format 8-4

loading statement 8-2

processing 8-1
rules 8-3

debugging 6-1
loader 7-20
systems 9-2
installation D-1
PARAMS 9-2

Parameters, dump 2-1, 16; 6-1, 4

Index-3

Partitions 8-1
data cards 8-4

identification card 8-3

*PATCH 9-8

PAUSE statement 2-18
Post-mortem dump 6-5

. POOLxxx 7-2
PREDRUM 9-2

PRELIB processing 7-1
input/output 7-6

PREPARE 9-5
Priority levels A-4

PRISEQ request A-13
Production files 9-4

*PROGRAM 9-10

Programmer identification 2-2

requests 4-1
units 1-4
PUN 1-4

RBD card 7-7

RDLABEL request 4-5

RDBLOCK 4-6
READ requests 4-4
READY 4-15; A-19
Registers F-11
Register saving 3-2
Release 5-5

RELEASE request 4-3
Relocation factors 7-13

REMOVE 4-19

REOT requests 4-5

Requests
ABORT 4-23
ASSIGN A-2
BOUND 4-19
BSPF 4-7
BSPR 4-7
BUFFER 4-16
BYNBY 4-25
CHECK 4-14
CLBCD 4-24
DATE 4-22
DISPOSE 4-3
DYSTAT 4-10
ERASE 4-9
EXIT 4-23

Index-4

FAMILY 4-16
FREE 4-21
GETUPT 4-15
HERESAQ 4-24
input/output 4-1
JOB.ID 4-25
LABEL 4-2
LIBRARY 4-24
LIMIT 4-21
LOADER 4-24
LOCATE 4-9
LOVER 4-23
MARKEF 4-9
MEMBER 4-17
MEMORY 4-20
MODE 4-13
RDLABEL 4-5
RDBLOCK 4-6
READ 4-4
READY 4-15
RELEASE 4-3
REMOVE 4-15
REOT 4-5
RETURN 4-21
RETURNM 4-21
REWIND 4-8
SAVE 4-4
SELECT 4-18
SETUPT 4-15
SKIP 4-9
STATUS 4-9
SWAP 4-25
SYSIO 4-7
TIME 4-22
UNBOUND 4-20
UNLOAD 4-9
UNSAVE 4-4
WAIT A-4
WEOT 4-5
WHERE 4-22
WRITE 4-4
WRBLOCK 4-6
WRLABEL 4-6

Request expansion B-1
Requests, background

ASSIGN A-11
DISPOSE A-14
EXIT A-16

INFORM A-18
INVOKE A-17
LOADBO A-20
MODE A-15
PRISEQ A-13
READY A-19
RETURN A-16
SIWOH A-17
SYSIO A-10
WAIT A-15
XFER A-19
RETURN 4-21; A-16
RETURNM request 4-21
REWIND request 4-8
*REWIND 9-6
RUN statement 2-15
Run time limit 2-15

SAVE request 4-4
Scratch units 1-5
Segment processing 8-1
SEGMENT 8-3
SELECT requests 4-18
SETUPT 4-15
SIWOH request A-17
SKIP request 4-9
*SKIP 9-6
SNAP card 6-1
dump 6-1
source deck structure 2-18
Special control cards, LIBEDIT
*ABS 9-11
*FINISH 9-11
Standard input 1-4
Standard label 5-1
Standard output 1-4
Standard punch output 1-4

Statements — see Control statements

STATUS request 4-9
Storage allocation 3-4
Storage diagram 3-5
SWAP 4-25
Support programs G-1
FILE G-1
FILE END G-1
File manipulation G-2

SYSIO request 4-7; A-10
System library file 9-2
System requests A-5, 9
System units 1-5

Tape labels 5-1
Tape SCOPE C-1
Termination, abnormal 3-2
Time limit
job 2-2, 15
TIME request 4-22
TRA card 7-16
TRACE card 6-4
dump 6-4

UNBOUND request 4-20
UNLOAD request 4-9
UNSAVE request 4-4
Upper bound 4-17

Usage declarations 2-5; 4-11

Usage types 4-11

WAIT request A-15
WEOT request 4-5
WHERE request 4-2%
WRBLOCK request 4-6
WRITE request 4-4
WRLABEL request 4-6

XFER request A-19

Index-5

CUT ALONG LINE

PRINTED IN USA

FROM

CONTROL DATA

CORPORATION

COMMENT AND EVALUATION SHEET
3600/3800 COMPUTER SYSTEM
Drum SCOPE Reference Manual

Pub. No. 60059200B Revised - July, 1967

THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

NAME ;

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Software Documentation

4201 North Lexington Avenue

St. Paul, Minnesota 55112

STAPLE STAPLE

CUT ALONG LINE

ONTROL DATA

> » CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

Pub. No. 60059200

CONTROL DATA
[co=roration]

CORPORATION

CORPORATE HEAURUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

IVANVIN 3ON3H343Y 3d0OOS WNYA 008e/009€E

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	G-01
	G-02
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	replyA
	replyB
	xBack

