
CONTROL DATA
CORPORATION

CONTROL DATA®

8092
Te I e Programmer

PROGRAMMING REFERENCE MANUAL

CONTROL DATA
CORPORATION

CONTROL DATA®
8092

TeleProgrammer

PROGRAMMING REFERENCE MANUAL

Pub No. 368 107 01

Rev. Date

A 8/24/64
Chanqe 1 5/21/65

Change 2 8/25/66

5/15/67

RECORD OF REVISIONS

Notes

Reprint with revision.
Revised to reflect ECOs 1163, 1198,
1268, 1291, 1334, TITI, T354, 1401,

1402. 1403. 1411, 1431, 1470, 1505,
and 1585. (Revision packet)
Revised to reflect ECO DP2193.
(Revision packet)

Renrint (includes chrlnae 1 rlnd 2)

C 1967. CONTROL DATA CORPORATION
Print.d in the United States of America

CONTENTS

CHAPTER ONE-PROGRAMMING

General Characteristics
The Central Processor
Basic Concepts in Programming the TeleProgrammer
Instruction Word Format
8092 Instruction Repertoire
Description and Examples of Instructions

Load Instructions
LDN - Load A (No Address Mode)
LDM - Load A (Memory)
LD I Load A {Indirect}
LCM - Load Complement to A (Memory)
LC I Load Complement to A (Indirect)
TTA - Tag Register Contents to A
BER - Contents of BER Register to A

Store Instructions
STM - Store A (Memory)
S T I Store A {Indirect}
ATT - A to Tag Register
ABR - A to B~ffer Entrance Register
ABX - A to Buffer Exit Register

Jump Instructions
ZJP Jump, if Contents of A = 0
NZP - Jump, if Contents of A :f 0
PJP Jump, if Contents of A ~ 0
NJP Jump ,if Contents of A < 0
UJP Unconditional Jump

Shift Instructions
SHA - Shift A Left One Bit

Arithmetic Instructions
AD N - Add (No Address)
ADM - Add (Memory Address)
AD I Add (Indirect Address)
SBN - Subtract (No Address)
SBM - Subtract (Memory Address)
SB I Subtract {Indirect Address}
RAM - Replace Add (Memory Address)
RAO - Replace Add One (Memory Address)

Logical Instructions
LP N - Logical Product (No Address)
LPM - Logical Product (Memory Address)
LP I Logical Product {Indirect Address}
LSN - Logical Sum (No Address)
LSM - Logical Sum (Memory Address)
LS I Logi~al Sum {Indirect Address}

iv

1-1
1-2
1-3
1-6
1-9
1...,10
1-10
1-10
1-10
1-11
1-12
1-12
1-13
1-14
1-15
1-15
1-15
1-16
1-16
1-18
1-20
1-20
1-20
1-21
1-22
1-22
1-23
1-23
1-24
1-24
1-24
1-25
1-26
1-2.6
1-27
1-27
1-28
1-29
1-29
1-30
1-31
1-31
1-32
1-33

Input/O utput
INN

OUT -
I B I
IBO -
INA -
OTN -

Instructions
Input Normal
Output Normal
Initiate Buffer Input
Initiate Buffer Output
Input to A
Outout No Address

Control Instructions
EXF -
CIL
CBC
ERR
HLT

External Function
C lear Interrupt Lockout
Clear Buffer Controls
Error Stop
Halt

CHAPTER TWO = OPERATION

TeleProgrammer Operator's Console
Switches
Displays
Status Indicators

Starting the 8092 TeleProgrammer
Loading A Program or Data
Entering Data From the TeleProgrammer Console
Examining the Storage Contents

CHAPTER THREE

1-34
1-34
1-35
1-37
1-38
1-39
1-39

1-40
1-40
1-42
1-42
1-43
1-43

2-1
2-2
2-4
2-5
2-7
2-7
2-7
2-8

A BRIEF LOGICAL DESCRIPTION OF THE TELEPROGRAMMER

Input/Output Section
Program Step
Arithmetic Section
Storage Section
Control Section

GLOSSARY

APPENDIX

Appendix A - TOSAS - A TeleProgrammer Assembler
Appendix B - Programming Examples
Appendix C - Mathematical Tables

Change 1 v

3-1
3-2
3-3
3-5
3-7

A-1
B-1
C-1

8092 TeleProgrammer

VI

CHAPTER ONE

PROGRAMMING

GENERAL CHARACTERISTICS

The CONTROL DATA~:< 8092 TeleProgrammer IS a highly flexible and

versatile stored program processor specially designed as a high speed

buffer memory system for use in a variety of data communication appli-

cations.

Among the more important features are the following:

stored program
parallel mode of operation
8-bit word length
2048 words of core storage - 4096 (optional)
1 Direct I/O Channel (8 bits)
1 Buffer I/O Channel (8 bits)
versatile instruction repertoire of 42 instructions
3 Auxiliary Tag registers of 4 bits each
indirect and direct addressing and modification
interrupts
12 bit external function address codes
7 internal program registers
physical size: height, 68 inches; width, 34 inches;
depth, 30 inches
storage reference cycle time of 4 microseconds
The ability to use the OSAS . or OSAS-A assembler
for those who have a 160 or 160-A computer.

~:< Registered Trademark of Control Data Corporation

1-1

THE CENTRAL PROCESSOR

The TeleProgrammer is a parallel, single address electronic data

processor. Operations are controlled by an internally stored program

located in sequential addresses. The storage cycle time is 4 mlcro-

seconds. The basic memory may be expanded from 2048 words to

4096 words. Each internal core word contains 8 bits. Instructions

are executed in one to four storage cycle times; with times varying

from 4 to 16 microseconds. The average instruction time is approxi-

mately 10 microseconds.

The Block Diagram indicates the principal functional divisions

ARITHMETIC - CORE
STORAGE

t I

CONTROL

i INPUT/OUTPUT

1- 2

BASIC CONCEPTS IN PROGRAMMING THE TELEPROGRAMMER

The TeIeProgrammer has some Unique features for programming. Most

of these center around the word length of 8 bits. In order to carry

addresses fur 4096 words, 12 bits are required 12 (2 = 4096, where

highest address IS 212 - 1). To provide for 12 bits, the TeleProgram-

mer makes use of three 4-bit Tag registers (Tag registers 1, 2, and 3).

The carryover from 8 bits to 4 additional bits, in the Tag register,

causes a split in the second octal digit from the left. This is indicated

below:

4-bit Tag reg. 8-bit word length

3 1 2 3 3

Split octal digit

In this manual, the 8,.;; bit word length will be represented as two full

octal digits and one quartic digit (the leftmost 2 bits). The Tag registers

will be generally represented as shown above, with one full octal digit

(on the left) and a single bit (0 or 1) on the right. The jagged

(c:J D) ends of the registers indicate the split octal digit.

1-3 Change 1

In addition, this manual will refer to numbers of "three octal digits" being

contained in the 8-bit word length. Actually, this is physically impossible,

since three octal digits occupy 9 bits and there are only 8 bits in the

TeleProgrammer word. However, what IS meant here, is that the

leftmost bit of the three digit octal number IS to be discarded. For

example, show the octal number, 277, in a TeleProgrammer word.

Octal 277 = a 10 111 111 In binary

discard)

1 quartic digit
2 octal digits

This convention of representing the contents of the 8-bit words will be used

many times in this manual. Looking at the above 9-bit configuration,

one can see that to discard the leftmost bit, it must be zero. This means

that the highest quartic digit of the word is 3. This, in turn, indicates

the maximum "octal" of three digits which can be expressed In the 8 .. bit

word length; --it is 377. The octal range 000 through 377 IS equivalent

to 256 registers. Since each Tag register holds 4 bits, there are 16

possible configurations for the 4 bits (0000 through 1111). Thus, 16 times

256 = 4096 total registers available.

1-4

WORD FORMAT

People who work with computers are generally acquainted with the term,

"octal". It is the number base associated with three bits --which In

turn, provides eight possible number states (zero through seven). Since

the 8092 TeleProgrammer has an 8-bit word length and partitioning by

three bits over the complete word is inefficient; the number base of four

with partitioning by two bits is used for the ~ two bits of the word.

The number base of four, is referred to, in this manual, as QUARTIC.

Keep in mind, that only the ~ two bits of the word length is expressed

in Quartic. The lower SIX bits are expressed by two octal digits. The

upper QUAR TIC digit IS represented by bits, as shown below:

Bits
00
01
10
'lii

The Upper QUAR TIC Digit
o
1
2
3

The CONTROL DATA 8092 TeleProgrammer word contains 8 binary

digits. These are shown below with the least significant bit (bo) on the

right. Single Word
Binary Format

I 8 bits I
I b 7 I b 6 I b 5 I b 4 I b 3 1b2 I b 1 I bO I

Any binary digit above can be represented by any combinations of ones

or zeros. Although the 8092 operates in binary, it is more efficient to

consider the word format as containing 2 octal and 1 Quartic digits, as

shown below:

Single Word Format With
Two 0 ctals and 0 ne Quartic

1-Z3
Quartic Digit
(0,1,2, or '3)

1-5

8 bits ~I

c\ ~
Octal Digit Octal Digit

(0 thru 7) (0 thru 7)

INSTRUCTION WORD FORMAT

The TeleProgrammer operates on a two word instructional set. Most

instructions are contained in a set of two sequential storage locations.

The first word contains the Function Code, in the lower 2 octal digits,

and the Tag register designator, T, in the upper quartic digit. The

second word of the instructional set holds: an operand of 2 octals and 1

quartic, or a partial address of 2 octals and 1 quartic. Three modes

of operation are possible in the 8092; NO ADDRESS MODE, MEMORY

ADDRESS MODE, and INDIRECT ADDRESS MODE. Examples are

shown below:

NO ADDRESS MODE

Where T = 0, since there is no
Auxiliary Tag register used in
this mode. The operand must
contain 3 digits in the octal range
of 000 thru 377.

MEMORY ADDRESS MODE

Where T can equal 0, 1, 2, or 3.
The lower 8 bits of the operand
address appear in the second word
and the upper 4 bits of the operand
address appear in the Auxiliary Tag
register designated by T. If T=O,
the address of the operand is fully
contained in the second word of the
instructional set.

1-6

Tag register
Designator

~

T

T

Function Code ~
(2 octals) I

F I

2 Octal Digits

F

INDIRECT ADDRESS MODE

Where T can equal 0, 1, 2, or 3. {
At one of the first 256 core locations, I T F
given in the second word, is the
lower 8 bits of the operand address.-'------------------t\
The upper 4 bits of this operand lOne of First 256 Core Addresse~
address· will be found in the Auxiliary (Octal rang of th dd ~
T " "d" d b T e ese a resses

ag reglster 10 lcate y . is: 000 thru 377

Examples of the Three Operational Modes

Example 1.

Put the octal number, 277, into
the A register.

Solution:

Since no Auxiliary Tag register is
involved, T = o. The octal code
for "LOAD A" in this mode is 20;
thus F = 20. The octal operand,
277, is placed in the second set. as
2 octals (77), and 1 quartic (2).

Example 2.

Load the contents of octal address,
3771, into the A register.

Solution:

The Tag, 2, indicates Auxiliary
Tag register 2 holds the upper
2 quartic digits of the address
whose l()wer 8 bits are given in
the second instruction word. Note,
octal 3771 is contained in the
designated Tag register and the
second word of the instruction
set.

1-7

NO ADDRESS MODE

I Octal
Function Code

! 2 ! 0 I {

Tag
I 0

7 7 I 2

Operand of 3 digits
(2 octals and 1 quartic)

MEMORY ADDRESS MODE

~ I Octal I ".r-T..:...::a::i!g:....--rF:.....::u::.:n=c~ti:.:;o.:.:n:....:C=o-=d:.=:je
I 2 i 2 ! 1 I

Tag reg. 2

\ 3 ! 1~~3 7 1 I
~ Full 12 Bit Address 4
Note: The quartic and 1 bit fit
together to form octal, 7, the
second digit of the address.

Example 3.
Load the operand whose complete
address is in address 0126 and
Tag reg. 1.

Solution:

Octal 126 is the address given
in the second word. At this
address, 0126 ,the lower 8 bits
of the location of the operand are
placed. The upper 4 bits of the
operand location are placed in
Auxiliary Tag register, 1, indi­
cated by the Tag designator of
the first word. Continuing this
example, assume address 0126
and Tag register 1 contain the
quantities shown below, show
what finally is loaded into A.

Assume Tag register 1

INDIRECT ADDRESS MODE

{

Tag
I 1

I Octal
Function Code

I 2 i 2 I

digits

1 quartic digit

1 contai7 Assume address, 0126. conta~

Octal . }~~
Address ___
Formed

Assume address 2546
contains: --;

r--O~-r~7'-ii~6:-1~L-------------~th~ls IS loaded
into A

~
o : 7 ! 6

8 bits

1-8

~I

Functions

LOADS:

Load A (No.)
Load A (Mem.)
Load A (Ind.)

THE 8092 TELEPROGRAMMER
INSTRUCTION REPERTOIRE

Cycle
Rei. Octal Time
Code Code * Functions

A RITHMETICS :

LDN 20 2 Add (No. Adr.)
LDM 21 3 Add (Mem.)
LDI 22 4 Add (Ind.)

Load Comp. (Mem. } LCM 25 3 Subtract (No.)
Load Comp. Und.) LCI 26 4 Subtract (Mem.)
Tag Reg. to A TTA 03 1 Subtract Hnd.)
Clear A CLA 03*** 1 Replace Add (Mem.)
BER to A BER 06 1 Replace Add 1

STORES: LOGICALS:

Store A (Mem.) STM 41 3 Log. Prod. (No.)
Store A (Ind.) STI 42 4 Log. Prod. (Mem.)
A to ·Tag Reg. ATT 02 1 Log. Prod. (Ind.)
A to BER ABR 04 1/2 Log. Sum (No.)
A to BXR ABX 05 1/2 Log. Sum (Mem.)

Log. Sum (Ind.)

JUMPS: **** IN-OUT:

H A = 0 ZJP 60 2 Input Normal
H A f 0 NZP 61 2 Output Normal
H A ~ 0 PJP 62 2 Input Buffer
H A < 0 NJP 63 2 Output Buffer
Unconditional UJP 64 2 Input to A
Do Nothing DON 02*** 1 Output No. Adr.

Sl:IIFIS; QQ~TROL.fi;

A Left 1 bit SHA 01 1 Ext. Function
Clear Interrupt
Clear Buffer
Error Stop
Halt

* Cycle Times; each cycle = 4 microseconds.

Rei.
Code

ADN
ADM
ADI
SBN
SBM
SBI
RA.M
RAO

LPN
LPM
LPI
LSN
LSM
LSI

INN
OUT
IBI
IBO
INA
OTN

EXF
CIL
CBC
ERR
HLT

** 3 + 2 (X = 1) + terminate time. Where X = No. of words.
*** -No tag should be referenced.
**** Jump cycle time is 1 cycle, if jump is not made.

Octal
Code

30
31
32
34
35
36
51
55

10
11
12
14
15
16

12
13
10
11
16
14

15
13
01
00
11

1-9 Change 1

Cycle
Time,.

2
3
4
2
3
4
4
4

2
3
4
2
3
4

.......... .,..,.

...... .,..,.
1/2
1/2

2
2

3
1
1
-
1

DESCRIPTION AND EXAMPLES OF INSTRUCTIONS

LO AD Instructions

Seven LOAD instruction are available. These are:

LDN
LDM
LDI
LCM
LCI
TTA
BER

LOAD A (No Address Mode)
LOAD A (Memory Address Mode)
LOAD A (Indirect Address Mode)
LOAD Complement to A (Memory Address Mode)
LO AD Complement to A (Indirect Address Mode)
Tag Register Contents to A .
Contents of B ER Register to A

LDN - (20) - LOAD A (No Address) 2 Cycles

Load the A register' with the contents of the second word of the instructional

set. Octal numbers 000 through 377 can be entered into A by this instruction.

Example: Put the octal number, 177, into A

{i T LDN 8 bit
0 2 i 0 A register y7 i 7

I 1

~
LDM - (21) - LOAD A (Memory) 3 Cycles

Load the A register with the. contents of the memory address whose lower

eight bits are given in the second instruction word and whose upper four bits

are contained in the designated Auxiliary Tag register.

Example: Assume memory address 3573 (in octal) contains the octal
quantity, 033. Load this into. A •

1-10

A register
o 3 3

Memory Address =l...-...;0:::...---L_...::3'---'----'3~__'

LDI - (22) - LOAD A {Indirect} 4 Cycles

Load A with the contents of the address whose lower 8 bits are contained in

one of the first 256 (decimal) addresses, and whose upper 4 bits are con-

tained In a designated Auxiliary Tag register. The location in the core (one

of the first 256 decimal addresses) is given in the second instruction word.

The Auxiliary Tag register is indicated in the first word.

Example: Assume octal address, 3646, contains the octal number, 277.
Load this number to A, using the indirect mode via octal address 0216.

Tag
register

2

Address 3 6 4 6

LDI
2 2

2 bit ~uartic 10

Address 0 2· 1 6 contains

A register
'----=2:..-...J---:.7_"'--_7=-----' --~~I '----=2=----11_7"'----'-1 _7"----'

1-11

LCM - (25) - Load Complement to A (Memory) 3 Cycles

Load the A register with the complement of the contents of the memory

address whose lower 8 bits are given in the second instruction word and

whose upper 4 bits are contained in the designated Auxiliary Tag register.

Example: Assume memory address 2077 (in octal) contains the octal
quantity, 125. Load the complement of this quantity into A.

2

complement

r __ r-:-~~:-~r-I-_______ Of ~25 is 252
207 7 J

Memory Address 1 2 .5

(Note: quartic complements are "three's complement". Thus, the comple­
ment of the quartic digit, 1, above is 2; whereas, the complements of the
octal digits 2 and 5 are respectively 5 and 2.)

LCI - (26) - Load Complement to A (Indirect) 4 Cycles

Load A with the complement of the contents of the address whose lower

8 bits are contained in one of the first 256 (decimal) addresses and whose

upper 4 bits are contained in the designated Auxiliary Tag register. The

location in the core (one of the first 256 decimal addresses) is given in the

second instruction word. The Auxiliary Tag register is indicated in the first

word.

1-12

Example: Assume octal address 3467 contains the octal number, 053. Load
the complement of this number into A, using the indirect mode and via octal
location 0023.

ister
2 4

! 3

7
Address 0 0 2 3 L ~f __ o_ ... i._r6_~~_~ complement

~§ 6 7 L-O~-'-""":5~...L--=3!...-rl--_O_f)3 ~ 324

Note: The 1 bit of Tag register 3 and the quartic digit at address 023, form
the bits, 100, which gives the octal digit, 4. Also note the complement of the
quartic digit, 0, at address 3467 is equal to 3; whereas the complements of the
octal digits 5 and 3 are respectively equal to 2 and 4

TT A - (03) - Tag Register eo A 1 Cycle

Load the contents of the designated Auxiliary Tag register into the A register.
Pack zero's in upper 4 bits.

Example: Load contents of Tag register, 2, into A.

TTA
o 3

" Three bits

Note: The four bits of the Tag register are: 0110. When packed to the right
of A, they give the following: 00 000 110 = 006.

CLA - (03) - Clear A 1 Cycle

This instruction is the same as the preceding instruction (TT A) except that the
TAG is not referenced. The A register is therefore cleared (all zeros).

1-13 Change 1

BER - (06) - Buffer Entrance Register to A 1 Cycle

Load the A register with the lower 8 bits of the Buffer Entrance register.

Example: Load Buffer Entrance register into A

BER Code
o b! (;

Upper quartic digit "'1<=-----8 bits---~~I
'- ~1~-1-0--rl--11--~1-0~0~~1-1-0-'1

Buffer Entrance Register (10 bits)
(Shown in bi~fONnat)

Note: 0 n this instruction, the lower 8 bits (1 quartic and 2 octals) are trans-

ferred into the A register. The upper 2 bits (1 quartic digit) are not transferred.

On the reverse transfer (A to BER), the right 2 bits of Tag register 3 are

sent to the upper 2 bit locations of B ER • This is explained in detail in the

ABR instruction.

Change 1 1-14

S TO R E Instructions

Five S TO R E instructions are available; these are:

STM
STI
ATT
ABR
ABX

STORE A (Memory Address Mode)
STORE A (Indirect Address Mode)
A to Tag Register
A to Buffer Entrance Register
A to Buffer Exit Register

STM - (41) - STORE A (Memory Mode) 3 Cycles

Store the contents of the A register into the location whose address is eqUlva-

lent to the combined contents of the designated Tag register and the second

word of the instruction set.

Example: Assume A contains the octal number, 155. Store this number
at octal address, 2356.

Address 2 3 5 6 1 5

STI - (42) - STORE A (Indirect Mode) 4 Cycles

Store the contents of the A register into the location whose address is equiva-

lent to the combined contents of the designated Tag register and the contents

of one of the first 256 decimal cOre registers. The exact location of one of

these 256 registers is given, through its address, in the second instruction

word.

1-15

Example: Assume the A register contains the octal number, 037. Storethis
number in octal address, J 777, by using octal location 0102, and the indirect
mode.

l'!'~I} C _

~a~reg. 1 I J~ 1 1 1 3 ::C ____

Address 1 02 contains

Address 3 7 7 7 o

ATT - (02) - A to Tag. Register 1 Cycle

Transfer the lower 4 bits of the A register into the designated Auxiliary Tag
register.

Example: Assume the A register
register at Auxiliary Tag register,

ATT
3 ! 0 I 2

Three Bits
101 }

contains the octal number, 073. Store the A
3.

o ! 7 ! 3

Tag reg. 3 Last 4 bits

ILj-*-~: _~J.-Jl+oo:---------::.J0ll

One bit

DON - (02) - Do Nothing 1 Cycle

This ins'tl"Uction is the same as the preceding instruction (A TT), except that the
tag is not referenced. This instruction has no operation. Control goes to the
next instruction set.

ABR - (04) - A to Buffer Entrance Register 1 Cycle, 2 Cycles if jump is
made.

Transfer the contents of A to the lower 8 .bit positions of the Buffer Entrance
register. The rightmost 2 bits of Tag register 3 become the 9th and 10th bits

Change 1 1-16

of the ~uffer Entrance Register (B ER); the upper two bits of Tag register 3

are referenced for bits 11 and 12 of BER. If the buffer is busy, a jump

occurs to the combined address contained in the second word of the instruction

set and the designated Tag register. If the buffer is not busy, control goes

to the next instructional set.

Example: Assume one wants to effectively enter a starting octal address of
2534 into the Buffer Entrance register. Shown are the program steps involved.

To effectively enter a starting address, ·2534 into BER

Tag ILoad A Coda

I 0 I 2 i 0 I

0 0 5 -
Tar IStore A Codel

I i ·0 I 2 I

Tag ILoad A Codel
I 0 i 2 ! 0 I

1 3 4

IA to B ER Code
o 4

If Buffer is busy,
jump goes to address 3 5 7 5

Load octal
number,S,
into A

Store A at
T~ reg .. 3
I Q_ i 01

Tag reg. 3
4 bits

Load octal
number, 134
into A

1-17

8 bit
A register

o 5

. A register

bits----~

8 bit

Buffer
Entrance reg.
Shown in 10 bits

Since BER is a 10-bitregister, there is not room for the full 12-bit address.
The upper 2 bits (1 quartic) are obtained by referencing the left 2 bits of Tag
register 3. In the above example ,the left 2 bits of Tag register 3 and the left­
most bit of BE R give the octal digit, 2.

A B X - { 05} - A to Buffer Exit Register 1 cycle, 2 cycles if jump IS made.

Transfer the contents of Ato the lower 8 bits of the Buffer Exit register (BXR).
The right quartic digit (2 bits) of Tag register 3 fills the 2 upper bits of BXR.
The instruction is used to store the terminating address for buffer transfers. The
left quartic digit of Tag register 3 is referenced by the TeleProgrammer to de­
termine the highest order 2 bits of the address. F or a Buffer Input instruction,
enter the LWA + 1, and for a Buffer Output instruction, enter the LWA + 2.

H the buffer is busy a jump occurs to the combined address contained in the des­
ignated Tag register of the first word and the contents of the second word of the
instruction set. H not busy, control continues to the next instruction set in seq­
uence.

NOTE: The above concept may be clearer, if it is remembered that 12 bits,
rather than 8 bits, are required to cQver the whole possible address range of
4096 registers. As a consequence, it must be possible to perform buffer opera-
tions covering the complete address ra.nge. To accomplish this, the BER or
BXR (of 10 bits) uses the 8 bits of the instruction operand, 2 bits from TAG
register 3 (the lowest order 2 bits). By referencing the highest order 2 bits of
Tag register 3, _ the full 12 bits are available.

The use of a 10 bit BER and ·8XR allows a maximum buffer operation of 20008
words. The first word address and last word address must be identical in the
highest order 2 bits. The highest order 2 bits of Tag 3 must not be altered
during buffer operations.

Change 1 1-18

Example: S how a program which places octal address, 3520 into BXR;
if the buffer is busy, wait until it is not busy.

Location of
Instruction Instructions Explanation of Action which Occurs

3420
3421

3422

3423
3424

020}
007

302

020}
120

If buffer is busy, jump
goes to combined
address of designated
Tag. reg. and contents
of second word. In this
example, jump goes to
3425.

Load A with the octal
number, 007.

S tore lower 4 bits of
A at Tag register, 3.

Load A with the octal
number, 120.

Bits, 0111, go
to Tag reg. 3

A goes to bits 1 thru 8 of BXR, right
quartic 1.3) of Tag reg. 3 goes to bits
9 and 10 of BXR." ... Left quartic digit
of Tag reg. 3 is referenced for upper
2 bits of address.

reg. 3 (in bits)

Upper quartic is
referenced for
leftmost part of
address. . This
combined with
leftmost bit of
BXR gives octal
digit, 3.

1-19

reg.

BXR (10

JUMP INSTRUCTION

Five JUMP instructions are available, they are:

ZJP JUMP, if contents of A=O
NZP JUMP, if contents of Ai'O
PJP JUMP, if contents of ~~ 0 (positive)
NJP JUMP, if contents of A < 0 (negative)
UJP Unconditional JUMP

ZJP - (60) - Zero JUMP 2 Cycles if jump is made; otherwise, 1.

If the contents of A equals zero, jump to the combined address contained In

the designated Tag register and the second word of the instruction set. If

the contents of A are not zero, continue In sequence with next set of

instructions.

Example: Test A for zero, and Jump to octal address, 6254, if A IS zero;
otherwise continue.

ZJP
If A = 0 6 : 0 I} ZJP Jump to : ~::ruction 1

:
2

:
5

: 4)
Address

7

;} Next l
I

~ Instruction
If A i' 0, I Set

continue in sequence

NZP - (61) - Not Zero JUMP 2 Cycles if jump IS made; otherwise, 1.

If contents of A are not zero, jump to the combined address contained in the

designated Tag register and the second word of the instruction set. If the

contents of A are zero, continue in sequence with the next set of instructions.

1-20

Example: Test A, and if not zero, Jump to octal address, 0222. If zero,
continue in sequence.

see ~r-...:iL0--'---6--'---1-----'1} N ZP
If A f= 0, jump to Instruction

address 0 2 :::2=-2_---------l:--=2--'--=2--'---=2-----11 Set --C I} Next
If A = 0, con~t~in~u::e:::--------~ Instruction

in sequenc e =====================1 Set

Note: Since the complete jump address can be expressed in 8 bits, no Tag
register is required. Thus, the Tag designation = 0, in the first instruction
word.

PJP - (62) - Positive JUMP 2 Cycles if jump is made;' 'otherwis~, 1.

If the contents of A are positive (equal or greater than zero), jump to the

combined address contained in the designated Tag register and the second

word of the instruction set. If the contents of A are not positive, continue In

sequence. (If leftmost bit 0, contents of A are positive.)

Example: Test A, and if positive, jump to octal address 4715. Otherwise,
continue in sequence.'

If A is positive
jump to octal
address 47 15

6 2

If A is not positive, ___ ~~ Instruction
I} Next

continue in sequence/" .------.-----.-----.1 Set
with next set of ~----'----........ ----'

instructions

1-21

NJP - (63) - Negative JUMP 2 Cycles if jump is made; otherwise, 1.

If the contents of A are negative, jump to the combined address contained in

the designated Tag register and the second word of the instruction set. If

the contents of A are not negative, continue in sequence with the next set of

instructions.

Example: Test A, and if negative, jump to octal address, 0012. If not
negative, continue in sequence.

If A is negative jump to 0 6 3 I} NJP
address 0012 Instruction
~ _______ --------~C=OZ~~C~~1~~~~~2~~1 Set

If A is not negative, I} Next
continue in sequence----__ » Instruction

:=================1 Set

Since significant portion of the address can be contained In B bits, no Tag

register is required and thus Tag designation of first instruction word is zero.

UJP - (64) - Unconditional JUMP 2 Cycles

Jump to the combined address contained in the designated Tag register and

the second word of the instruction set.

Example: Jump to address, 1323.

r

Jump to address 1 3 2 3 4-----~

Change 1 1-22

SHIFT INSTRUCTION

One shift instruction is available:

SHA = SHIFT A LEFT ONE BIT

SHA - (01) - Shift A Left 1 1 Cycle

Shift the contents of A left--end around--l bit position. Bits coming off the

left end of the A register enter the lowest bit position on the right end of the

register.

Example: Assume A contains the octal number 023. Multiply the contents
of A by 2, using the shift instruction.

A register
Tag Shift Code Tag register Q 2 1 J I before shift

Q a I 1 designation IS

zero on shifts
0 4 6 I after shift

Note: One shift instruction is required to shift A one place (1 bit) to the left.
Each left shift is equivalent to one multiplication by 2. To shift 5 bits left, it
is necessary to give 5 shift instructions, or loop through the single shift
instruction 5 times.

1-23

ARITHMETIC INSTRUCTIONS

There are eight Arithmetic instructions: three adds, three subtracts, and

two replace adds. These are:

ADN
ADM
ADI

SBM
SBM
SBI

AD 0 (No Address)
ADD (Memory Address)
ADD (Indirect Address)

SUBTRACT (No Address)
SUBTRACT (Memory Address)
SUBTRACT (Indirect Address)

RAM
RAO

R.EPLACE ADD (Memory Address)
REPLACE ADD ONE (Memory Address)

ADN - (30) - ADD (No Address) 2 Cycles

Add to the A register the 8 bit number given in the second word of the In-

struction set. The sum is left in A.

Example: Assume A contains the octal number, 122. Add the octal number,
211, to A.

Instruction
Set

Tag Add Code

{
' 0 3! 0

~I -=2~~~1~~1~~r-
/-

Add

ADM - (31)- ADD (Memory Address) 3 Cycles

Initial Contents
of A

122

2 1
3 3

Final Contents
of A

3 3

.. Add to A the contents of the combined address given In the designated Tag

register and the second word of the instruction set.

1-24

Example:
1523 to A.

Assume A contains the octal, 011. Add the contents of address
(Assume contents of address 1523 are 111.)

Add Code Initial A
3 1 0 ! 1 : 1

~I ,. 1 1 1

C;; 1 2

1 5 2 3 1

1 2 2
Final Contents of A

ADI - (32) - ADD (Indirect Address) 4 Cycles

Add to A the contents of the combined address contained In the designated

Tag register and one of the first 256 decimal locations indicated in the second

word of the instruction set.

Example: Assume A contains octal number, 110. Assume octal address,
4413 contains 302. Add the contents of address 4413 to A, by using the
indirect mode and octal address, 0222.

Tag Add Code

{
I 1 3! 2

. r-I -2-..----2-,----::-2---,~

Initial A Contents
I 1 ! 1 ; 0

3
o

0 2

1 II- 3 (see note)

1 3 o
Tag reg. 1
I 4 1 1

Final A

"'--~----
Address 4 4 1 3 3 2

Note: The addition of 1 and 3 in the rightmost quartic digits overflows the
register and the carryover (1) is added to the rightmost digit.

1-25

SBN - (34) - SUBTRACT (No Address) 2 Cycles

Subtract from the A register, the number contained in the second word of

the instruction set. The difference is left in A register.

Example: Assume A contains 003. Subtract 001.

Initial

Tag Subt l Codel 0 0

f
0 3 1 4 I

Instruction

~o 0 Set
. I 0 Q 1 ~tract 0 0

Final A

SBM - (35) - SUBTRACT (Memory Address) 3 Cycles

Subtract from the contents of A, the contents of the combined address con-

tained in the designated Tag register and the second word of the instruction

set.

Example:
tains 233.

Assume A contains the octal, 113. Assume address, 7622 con­
Subtract the contents of address 7622 from A.

Subt. Code
3 5 Initial A

1 1 1 i 3
2 3 3

reg. 2
1 subtract

) 2 7

Final A

Address 7 6 2 2 = 2 3 3

1-26

SBI - (36) - SUBTRACT {Indirect Address} 4 Cycles

Subtract from the contents of A, the contents of the combined address contained

in the designated Tag register and the location of one of the first 256 decimal

registers, indicated by the second word of the instruction set.

Example: Assume A contains the octal, 333. Assume address 3502 contains
the octal number, 123. Reduce A by the contents of address 3502, using
indirect mode and octal address, 0002.

J Instruction
Set Initial A

0 5! 2 3 ! 3 ! 3

1 2 3

Address 0002 = 1 ! 2

Address 3 5 02

~_1 __ ~ __ 2 __ '-__ 3 __ s~aclL-~2~~F~i~n~al~A~-0~--

RAM - (51) - REPLACE ADD (Memory Addtess) 4 Cycles

Add the contents of the A register to the contents of the memory' address

formed by the contents of the designated Tag register and the second word of

the instruction set. The sum thus formeQ, remains in A, and replaces the

initial contents of the memory address.

1-27

Example: Assume A contains the octal number, 200. Assume address 1000
contains the octal number, 233. Increase the contents of address 1000 by the
contents of A.

o

Ttreg • 1~. I ~ I 0 i
~

Address 1 0 0 0
Memory

Address
Memory

1 00 0

Initial
2

Final
0

} Instruction
Set Ad(

Contents
3 3

Contents
3 4

RAO - (55) - REPLACE ADD ONE 4 Cycles

Initial A
2 ! 0 i 0
2 3 3

\
0

Add 1 to the contents of the memory address indicated by the combined con-

tents of the designated Tag register and the second word of the instruction

set. This sum is performed in A and remains in A at the end of the instruction.

Example: Add 1 to the contents of memory address, 0200.

Tag I Add 1 Code A reg.

f 0 : 5 ! 5 I / ~ 3 i 1 1 3
Instruction goes to (.Set A I 2 0

Add 1

3 1 4
Final A

Address 0200 = 3 1
(Initial contents)

Address 0200 = 3 1 4
(Final contents)

1-28

LOGICAL INSTRUCTIONS

There are six Logical instructions: three of which are Logical products;

three are Logical sums. These are:

LPN LOGICAL PRODUCT (No Address)
LPM LOGICAL PRODUCT (Memory Address)
LPI LOGICAL PRODUCT (Indirect Address)

LSN LOGICAL SUM (No Address)
LSM LOGICAL SUM (Memory Address)
LSI LOGICAL SUM (Indirect Address)

Logical Product is defined as a "bit by bit" multiply which observes the

following rules:

1 times o 0
0 times o 0
0 times 1 0
1 times 1 1

Logical Sum is a "bit by bit" sum without "carries" which observe the

following rules:

1 + 0 1
0+1 1
0+0 0
1 + 1 0

LPN (10) - LOGICAL PRODUCT (No Address) 2 Cycles

Form in A the Logical Product of the contents of A and the contents of the

second word of the instruction set.

1-29 Change 1

Example: Test A for "even". If even, Jump to octal address, 0100.

Instruction
Set

{
I Tag I Log.Pr.Code
. 0 ill 0 I

I 0 0 1

ZJP
6 ! a

Zero {I 0
Jump ~ ____ .-____ ~ ____ ~

l I 1 0

If A = 0, jump to
address, 0100.

a
where X

X

Initial A

where d = octal digit

The Logical Product,
using 001, will give a
zero in A, if A is
initially even.

Final A
0 : 0 ; X

0, if initial A IS ~.

1, if initial A IS odd.

LPM - (11) - LOGICAL PRODUCT (Memory Address) 3 Cycles

Form in A, the Logical Product of the contents of A and the contents of the

memory location whose address is the combined contents of the designated

Tag register, and the second word of the instruction set. The initial contents

of the memory location remains unchanged.

Example: Assume A contains the octal, 222. Assume memory address,
5211, contains 033. Form the Logical Product in A.

Tag Log.Pr.Code
3 1 1 2

Log. Product

o
Final A

Memory Address 5 2 1 1 o 3 3

1-30

LPI - (12) - LOGICAL PRODUCT (Indirect Address) 4 Cycles

Form in A the Logical Product of the contents of A and the contents of the

memory location whose address IS the combined contents of the designated

Tag register and the contents of one of the first 256 decimal locations. The

address of this decimal location is given in the second word of the instruction

set. The initial contents of the memory location remain unchanged.

Example: Use the indirect mode to form the Logical Product of A and
memory location 3700. Use octal location, 0030 in the process. Assume
initial contents of A and location 3700 are respectively: 133 and 012.

2 I 1 2
{

Tag Log.Pr.Code

Address 0030 3 o

Logical
Product

3 700 = ~~0~~~1--~~2~~~

LSN - (14) - LOGICAL SUM (No Address) 2 Cycles

A
3

2

fFiaiI -A

Form in A the Logical Sum of the contents of A and the second word of the

instruction set.

1-31

Example: Assume A contains octal number, 002. Set A to 003.

I a
I Log.Sum Code
i 1 ! 4 I

Initial A
a I a i 2 {

Tag

o LL09~ 0

a 1 (see note)

Add

Note: The bit-by-bit Logical Add
of the above example is:

002 = 00 000 010
001 = 00 000 001

Logical Sum = 00 000 all 003

)
a a 3

Final A

LSM - (15) - LOGICAL SUM (Memory Address) 3 Cycles

Form in A the Logical Sum of the contents of A and the contents of the

memory location whose combined address is given in the designated Tag

register and the second word of the instruction set.

Example: Assume A contains octal number, 111. Form in A the Logical
Sum of the contents of A and the contents of memory location, 6112. Assume
this location contains 333.

Sum Code Initial A
1 5 1 ! 1 ! 1

/
3 3 3 (see note)

{ Log. Sum

3S Final A
Memory 6 1 1 2 3 2 ! 2 : 2
Address

Note: The Logical Sum performed above, is shown below In bit form.

111, 01 001 001
333, 11 all all

Logical Sum 10 010 010 222

1-32

LSI - (16) - LOGICAL SUM (Indirect Address) 4 Cycles

Form in A the Logical Sum of the contents of A and the contents of the

memory location whose address is the combined contents of the designated

Tag register and one of the first 256 (decimal) locations. The location of

one of these 256 locations is given in the second word of the instruction set.

Example: Assume A contains 010. Assume memory location, 1510, contains
301. Using the indirect mode, and location 0300, form in A the Logical Sum
of the contents of A and the contents of address 1510.

: 0 ! 0 I

I Log.8um COd~
I 1 I 6

------~~----------

\

Memory
Location

0300

1 5 1 0 3

Initial A
o ! 1 ! 0
3 0 1

Fir:fU A
3 ill

1

1-33

INPUT-OUTPUT INSTRUCTIONS

There are six instructions directly related to input-output functions. These

are:

INN
OUT -
IBI
IBO
INA
OTN -

INPUT NORMAL
OUTPUT NORMAL
INITIATE BUFFER INPUT
INITIATE BUFFER OUTPUT
INPUT TO A
OUTPUT NO ADDRESS

INN - (72) - INPUT NORMAL (see p. 9 for timing)

Input a number of words to memory starting at the memory address contained

in the designated Tag register and the second word of the instruction. The

ending address plus 1, is contained in a third word immediately following the

second word. Thus, this instruction set is composed of three words. (The

Tag register designation indicated in the first word is automatically assigned

as the Tag register designation for the ending address plus 1, in the third

word.)

Example: Input 80 words to memory starting at octal address, 6577.

1 7 7 I Instruction

6 ~ -iL....--=3--'--O:l--'--7:..--..11 ~S et

Ending Address Plus 1 6717
Starting Address 6577
Difference = 120
120 in octal = 80 decimal

1-34

Input
Memory Locations

I ; ! 16577

6600

6601

I

6716

OUT - (73) - OUTPUT NORMAL

Output a number of words from memory starting at the memory address contained

in the designated Tag register and the second word of the instruction set.

The ending address plus 1, is contained in a third word immediately following.

Thus, this instruction set is composed of three words. (The Tag register

designation, indicated in the first word is automatically assigned as the Tag

register designation for the ending address plus 1, in the third word.)

Example: Output 300 (decimal) words from memory, starting at octal
address, 1200.

Tag reg. 3

~ -4
3 -----t

(see note)

Tag reg. 3

~I 4-4
6 ----?

Tag
3

2

3

Tag
o

o

Tag
3

Tag

J

0

2

IOutput Code
7 3

0 0

7 7

ILoad ACOd~' ! 2 ! 0 I

! 0 ! 3 I

IA to TaS r,}
i 0 I 2 .

IOutput Code

! 1 ! J I
0 0

5 5

First 127 (decimal) words are out­
puted from octal addresses shown:
Ending Address Plus 1 1377
Starting Address 1200
Number of Words 177 = 12710

Load A with 003.

Change Tag register, 3, by storing
A at Tag register 3. Tag register 3
now contains 0011 (in bits).

Next 173 (decimal) words are outputed
from octal addresses shown:
Ending Address Plus 1 = 1655
Starting Address = 1400
Number of Words 255 17310

127 + 173 = total 300 words

1-35

NOTE:

The "ending address plus 1" of 1377 above, resulted in a "gap"--that is, no

output came from this register. The reason is that quartic address, 1377,

falls at a "boundary address" as far as the addressing logic of the Tele-

Programmer is concerned. "Boundary addresses" are those, which when

incremented by 1, cause a change to occur in anyone of the 4 leftmost

address bits. This in turn, requires a change in the Tag register (as

above) . There are 16 such "boundary addresses" in the whole 4096 regis­

ters. This condition is not serious due to the following alternatives:

(a) If output follows input or vice versa such "gaps" would

have existed in the identical places anyway, and thus are

of no consequence.

(b) If one wishes, he can fill the gap location by loading one

word into A and storing at the gap address.

(c) By effective memory allocation, boundary addresses can

often be entirely avoided.

(d) Buffered operations do not have this situation.

The previous example was given to indicate that a change In address which

changes any ~ of the 4 leftmost bits of the 12-bit address, requires a corre­

sponding change in the contents of the Tag register. It should be apparent,

that the maximum transfer without changing the Tag register is 256 (decimal

words.

1-36

IBI - (70) - INITIATE BUFFER INPUT 1 cycle, 2 cycles if jump is made.

Before using this instruction, the starting address of the buffer transfer is

sent to BER, and the ending address plus 1 is sent to BXR (see these

instructions) .

This instruction initiates the input buffer cycle. If the buffer channel is not

busy, control goes to the next instruction following the second word of the

instruction set. If the buffer channel is busy, a jump occurs to the memory

location whose combined address is contained In the designated Tag register

and the second word of the instruction set.

Example: Initiate buffer input, and if busy wait until not busy. Assume the
instruction is given at the location whose octal address is, 1203.

at address, 1203

at next address, 1204

If Buffer IS busy,jump goes to 1 2 0 3 (waiting)

If Buffer IS not busy, control goes to ______

})
'-----'----'---......&1 Next Instruction Set

~======:============~I. in Sequence

1-37 Change 1

IBO - (71) - INITIATE BUFFER OUTPUT 1 cycle, 2 cycles if jump is made.

Before using this instruction, the starting address of the buffer transfer must

be sent to BER, and the ending address plus 1 must be sent to BXR (see

these instructions).

This instruction initiates the output buffer cycle. If the buffer channel is busy,

a jump occurs to the combined memory address given in the designated Tag

register and the second word of the instruction set. If the buffer channel is

not busy, control goes to the next sequential instruction following the instruction

set.

Example: Initiate buffer output and if busy jump to octal address 0010.

Instruction
Set

Change 1

Tag reg. not required here,
T II B f 0 t C d since jump is to octal address,

{

ag u. u 0 e 0010 "f b ff . b

~ @:U · I U ens usy.

1-38

Next set of instructions in
sequence if buffer is not
busy. Control goes here
after buffer output is started.

INA - (76) - INPUT TO A

This instruction inputs one word from a previously selected input device to

the A register.

Example: Assume a previous instruction (see EXF) has selected the paper
tape reader for input. Input one frame (one word) to A.

Tag IINA Code
o ! 7 i 6

Note: This is a single word
instruction, and the Tag register
designation IS always zero.

OTN - (74) - OUTPUT NO ADDRESS

This instruction outputs one word. This word IS the second word of the

instruction set.

Example: Assume a previous instruction has selected the Printer. Output
the number 0102.

Instruction
Set

{

Tag
I 0

IOutput Code
I 7 i 4

LL-.I---=.0_,,--=-2 ---'

CONTROL INSTRUCTIONS

Five Control 'instructions are available:

EXTERNAL FUNCTION

Note: The Tag register
designation is always zero
in this instruction.

EXF
CIL
CBC
ERR
HLT

CLEAR INTERRUPT LOCKOUT
CLEAR BUFFER CONTROLS
ERROR STOP
HALT

1-39

EXF - (75) - EXTERNAL FUNCTION

This instruction is used to select an external input or output device to com-

municate with the TeleProgrammer. The select function is accomplished by

'~ending out on the output lines a 12-bit llfunction code". Each external

device is capable of recognizing and interpreting only its own unique code.

Thus, the programmer by selecting different external function codes can use

this same instruction to select all external devices.

The 12-bit function code is contained in the second and third words of the

three words which make up this instruction set. The format of the three

words are best described by the following:'

Tag IEXF Code where
, I 0 ; 7 I 5 a b The upper 6 bits

Instruction of the function code.
Set 0 a b

c d The lower 6 bits
0 c d of the function code.

a b ·c d
I I I I

The 12-bit Function Code

Note: If the external device cannot be selected the TeleProgrammer halts.

1-40 Change 1

Example: Request the status of the typewriter (ready or not ready) , if busy,
wait; request typewriter input; and input to A.

(0010)

(0011)

(0012)

(0013)

(0014)

(0015)

(0016)

(0017)

(0020)

(0021)

Tag IEXF Code
I 0 7! 5

Request status of the typewriter.
o

is 42 40
4 2 ~The octal function code for this

:=:0=====4~=====O===~

I 0 {
Tag

{

Tag
I 0

I 0

Tag
I 0

0

0

{ Tag I (5

Ilnp'ut to A
! 7 ! 6 Input status response to A

INon Zero Jump
! 6 ! 1 I

If A = 0, typewriter is ready,
continue. If A f 0, it is not
ready, jump back to address
0010 (wait). (see note) 1 0

IEXF Code
! 7 I 5

Request typewriter to input a

~ 2 ~aracter to A. The octal

2 0
~ code for th,g 's:

IlnEut to A

I 7 ! b Input the character to A

Note: In the jump back to address 0010 above, no Tag register is required
since the octal address is one whose significant bits can be expressed in
8 bits.

1-41

CIL - (13) - CLEAR INTERRUPT LOCKOUT

NOTE

A do nothing (02) instruction should be
used at interrupt locations 10, 20, 30
and 40 when such interrupt levels 'are
used; then use the 013 or 113 instruction.

This instruction clears the interrupt lockout flip flop (F F). This instruction

must be programmed at the end of every routine which is initiated by the

interrupt. This instruction returns control to the main program.

Example: Assume an interrupt has occurred and a routine entered. At the
end of this routine show the instruction required to clear the Interrupt Lockout
and return control to the Main Program.

Tag
1

I CIL Code
: 1 ! 3

Note: In this instruction, the Tag
designation becomes a part of the
function code itself. It c an only be
o or 1. Thus, to return to main
program after clearing interrupt
lockout, the Tag designation must
be- 1. If zero, control continues in
sequence.

CSC - (07) - CLEAR SUFFER CONTROLS

This instruction has the effect of sending a zero to buffer control and thus

putting that device in a "ready state". If this instruction is used during a

buffer operation, it will stop the buffer.

Example: C lear buffer control.

I 0
Tag lesc Code

i 0 ! 7

Change 2

A Tag register designation IS

ignored in this single word
instruction.

1-42

Two S TO P S are available; these are:

ERR =

HLT =

ERR - (000) - ERROR STOP

ERROR STOP
HALT STOP

This is an illegal instruction -- as such, it can be used as an Error Stop.

Example: Use the Error Stop instruction.

o o o Error Stop

HLT - (77) - PROGRAM STOP

This instruction is used to bring the program to a halt.

Example: Use the S TO P instruction.

Tag
I 0 I 7 I 7 Program Stop

1-43

CHAPTER TWO

OPERATION

TAG ~EGISTER P REGISTER

II '10 , 9 , 8 , 7 I 6 , 5 I 4 I 3 ' 2 , I I 0 ---,- --I- • -I- •• o
CLEARP

TAG REGISTER SELECT

1 I : 2 : 3 1

I- - -I
RUN,ERR,SEL, IN ,OUTIIaA,OBA
-- + -- .. - - 't-- - ... --+---+--

A I a I C 10' I I

~z(jIP~EN~~;-
MANUAL aXR SWEEP MASTER STEP

INTERRUPT CLEAR

A REGISTER

7 I .6 I 5 , 4 , 3 I 2 , I I 0

CLEA9 AL..·~....;:·;.... I.~....;:-:-.;:::;.....&I...:::-:-_-=---=.:....I
Z REGISTER

17;6:5:4:3:2:1 :01
CLE~zl- -I- --I- • -I

NON- LOCK ~'I' LOCK
RUN ~ RUN

Figure 2-1 8092 Operatorls Panel

TeleProgrammer OPERATORl s CONSOLE

The 8092 TeleProgrammer Operatorls Panel consists of several displays

and switches necessary for the operation of the TeleProgrammer. The

panel (see figure 2-1) contains six display windows, six switches, and

a lock switch. Four of the display windows can display in binary the

contents of nine 8092 registers. Buttons beneath these displays clear

and enter data into the P, A, Z, and Tag registers (the only registers

into which data may be entered or cleared). A fifth window contains

information as to which Tag register has been selected. The sixth

window contains the operating lights which indicate the status of operation

2-1

of the TeleProgrammer. At the bottom of the panel are located all the operat­

ing and mode switches. The operation of these switches is explained below:

SWITCHES

Manual Interrupt

BFR.Z

BER. P. BXR

Change 1

-Momentary depression causes the Tele­

Programmer to enter an interrupt routine

to determine the nature of the interrupt.

- This 3-position switch chooses the regis­

ter that is to be displayed in the a-bit Z

register display.

-Y.P.. - Displays the last word processed

during the last buffer ope ration (B FR register)

Center - Shows the current contents of the

Z register (Z register).

Down - Not assigned.

- This 3-position switch chooses the regis­

ter to be displayed in the 12-bit P register

display .

.Y..e.. - Displays the lowest-order 10 bits of

the address of the last word transferred

out, or the next word to be transferred in

on the buffer channel (BE R) register.

Tag 3 must be referenced for the highest­

order 2 bits of the address.

2-2

ENTER/SWEEP

LOAD/MASTER CLgAR

RUN/STEP

Center - Displays the address of the

current instruction (P register).

Down - Displays the lowest-order 10 bits

of the LWA + 1 of the buffer area (BXR)

register. Tag 3 must be referenced for

the highest-order 2 bits of the address.

-Sweep is used to display the contents of

core storage locations. Enter is used

for entering information into core storage

from the console.

- LOAD position allows speciallyprepared

paper tapes to be read into storage by the

paper tape reader.

Master CLEAR performs a TeleProgram­

mer clear which:

a. Clears the registers

b. Clears the control flip-flops

c. Clears all waiting interrupts and
~emoves interrupt lockout.

Note: The master clear does not alter

core storage.

.Y.!L - In RUN position, a program 1S

executed at high speed starting at the loca­

tion specified by the P register.

2-3 Change 1

NON-RUN LOCK
RUN LOCK

DISPLAYS

Z REGISTER

A Register

Center - C enter position stops the computer

program. If the switch is in RUN and an

ERR or HL T instruction is executed, the

switch must be returned to neutral and

then placed in RUN to continue computation.

Down - In STEP position, one storage

cycle of an instruction IS executed each

time the switch is set; a program may be

executed one instruction at a time for de-

bugging.

In the Lock position all other switches are

disabled and the TeleProgrammer is locked

In the RUN position.

In the non-lock position, the console switches

are enabled and the TeleProgrammer pro-

grams can be operated and modified from

the console.

- This display known as the Z register

group displays the Z and B FR registers

In accordance with the setting of the B FR ,

Z switch.

-Displays the current contents of the A

register.

2-4

P Resister

TAG REGISTER

STATUS INDICATORS

RUN

ERR

SEL

- This display known WI the P regis&.r

gr"up di.plays the BER. p. and BXR

registers in accordance with the setting

of the B ER. P, BXR switch.

- This display indicates the Tag register

currently being referenced by an inatruclion.

The contents of any Tag register m oIllY be

displayed by depressing one 01 the buMons

directly below the .elect indioa6Drs. Oe­

pressing one 01 the .eIect bulk»n. alao

enabl .. the Tag regi to be manually

set or cleared.

-Indicates &hai the Tei.P!"OfIjJr..,m.r i. in

RUN stalus. This does not necessarily

indicate that instructions are being executed.

-Indicate. that a timing fault haa occurred.

-Displayed each tim. 8ft EXF ilUltruction

is ex.:utad; remain. until •• I.tion i.

completed. A con display of BEL

with no apparent il!l)ut./ output _Doa usually

indie" the TeleProgrammer has Mhmp'-<l

an illegal selection.

2-5

IBA

OBA

A. B. C. or D

-Displayed during all normal input opera­

tions. A constant display of IN with no

apparent input action usually indicates that

input was attempted without proper unit

selection. IN is also displayed when the

TeleProgrammer is waiting for an external

device to supply data.

Displayed during all normal output opera­

tions. A constant display of 0 U T with no

apparent output action usually indicates that

output was attempted without proper unit

selection.

Displayed during all buffer input operations.

Displayed during all buffer output operations.

Indicates which storage reference cycle will

be executed at the next operation of the

Run/Step switch. When a master clear

is performed, D is displayed indicating

that the next operation to be executed,

when the Run/Step switch is operated,

will be to fetch the instruction from memory

at the address indicated by the P register.

2-6

STARTING THE 8092 TeleProgrammer

1) Be sure the TeleProgrammer is plugged into proper power
source and 'room temperature is within the prescribed limits.

2) Turn on the cabinet power, then turn on the power supply.

3) Master clear by momentarily pressing Load/Clear switch to
Clear.

4) When the ERR light goes out, the TeleProgrammer is ready to
operate. If repeated master clears do not turn the Red ERR
light off, turn off the 8092 and call maintenance.

LOADING A PROGRAM OR DATA

Paper Tape Load Format

1) Master Clear

2) Turn on reader

3) Insert paper tape an reader

4) Set P to starting location

5) Set Load/Clear switch to LOAD

6) Set Run/Step switch to RUN. Paper tape will load and
TeleProgrammer will stop.

ENTERING DATA FROM THE TeleProgrammer CONSOLE

1) Master clear. Set Enter/Sweep switch to ENTER.

2) Set P to location into which data is to be entered.

3) Enter one word of data into the A register.

4) Set Run/Step switch to STEP, once. At this point A IS

clear and the data word is in storage and in Z.

5) If data is to be entered into consecutive locations, go to step 3
and P will be advanced by one on step 4. If data is to be
entered into non-consecutive locations, clear P. Go to &tap 2.

2-7 Change 1

EXAMINING THE STORAGE CONTENTS

1) Master clear. Set Enter/Sweep switch on SWEEP

2) Set P to loc ation to be examined.

3) Press Run/Step switch to STEP, once. The contents of the
location specified by P will appear In Z.

4) To examine consecutive locations, go to step 3 and P will be
advanced by one on step 3. To examine non-consecutive
loc ation, clear P, go to step 2.

2-8

CHAPTER THREE

A BRIEF LOGICAL DESCRIPTION OF THE TELEPROGRAMMER

Input/O utput Section

The input/output 0/0) Section contains one normal (or direct) channel and

one buffered channel. Each channel can communicate with five units of peri­

pheral equipment.

The normal channel communicates with external equipment under program

control only. There are no provisions for the external equipment to initiate a

data transfer except under program control.

The buffered channel communicates with external equipment asynchronously to

the main program. It can transfer data in one direction only until changed by

program control. In other words, the buffer channel can input to main storage

or output from main storage while not under main program control. However,

it cannot input and output alternately without having been so instructed by the

main program. Once an input buffering or an output buffering operation is

initiated, it continues until completed or until cleared by the main program .

. The buffer I/O channel has three registers associated with it. These are the

Buffer Entrance Register (B ER register), the Buffer Exit Register (BXR

register), and the Buffer Data Register (BFR register). The BER register

holds the buffer starting address and is advanced by one for each buffer cycle .

The BXR register holds the buffer ending address, and when BER = BXR

the. buffer operation is complete. The B FR . register holds the input or output

3-1

word for transfer to or from external equipment.

The buffer channel may also be used as a normal channel whenever the buffer

is not busy.

Interface control is maintained by the control section on a Ready-Resume

basis. Within the control section is a separate buffer control section which

controls the buffering operations on the same Ready-Resume basis.

Program Step

A program step In the TeleProgrammer is one storage reference cycle. Nor­

mally the steps proceed as: 1) Read instruction into control section, 2) Read

address of operand (one or two steps) and 3) Perform indicated instruction.

The TeleProgrammer instruction is basically a 2-word instruction contained in

2 sequential storage locations. The first word of the instruction contains: the

instruction in the lower 6 bits and the tag bits (TAG register reference bits)

in the upper 2 bits. The second word of the instruction contains: the operand

(no address mode), the lower 8 bits of a 12-bit address (memory address

mode) or the address of one of the first 256 storage locations (indirect

address mode).

3-2

Arithmetic Section

The arithmetic section of the TeleProgrammer consists of 3 registers and a

borrow pyramid. The three registers are the A register, the AI register

(which is the accumulator register) and the Z register.

All arithmetic functions (add, subtract and logical operations) are performed

by the borrow pyramid which is integrated with the AI register. Inputs to

the borrow pyramid ar~ from the A register and the Z register.

Shifting of the A register is accomplished via the borrow pyramid and is con-

fined to a left shift one bit, in the "(eleP rogrammer. This shifting is a

circular shift where the highest order bit is shifted into the lowest order bit

position.

The borrow pyramid forms the results of arithmetic operations in a subtractive

manner; so that, addition is performed by complementing the Z register and

subtracting. Subtraction is a direct process, and logical operations are per-

formed similarly to addition.

Interrupt

The interrupt feature gives the TeleProgrammer four unique interrupt levels

which can be utilized in the programming of the TeleProgrammer. The four

interrupt levels in order of priority are:

1) Manual Interrupt 10
2) Buffer Interrupt 20
3) External Interrupt 30
4) External "Interrupt 40

3-3

Recognition of an interrupt by the TeleProgrammer forces the TeleProgrammer

to start an Interrupt recognition routine which starts at memory location 10 or

20 Or 30 or 40 depending on the interrupt activated.

Interruption of the main program can only occur on a '0' cycle and the occur­

rence of an interrupt causes the TeleProgrammer to store the address at

which it was interrupted and jump to locations 10 or 20 or 30 or 40. At

these locations must be the start of a routine which determines the nature of

the interrupt. At the end of this routine must be a Clear-Interrupt Lock-out

instruction which causes the TeleProgrammer to jump back into the main pro­

gram at the same address it was at when interrupted. If the interrupt feature

is to be used, memory locations 10, 20, 30 or 40 should not be used for the

main program or storage.

Interface Control

At the interface of the TeleProgrammer are the same basic control lines and

data lines as in the CONTROL DATA 160-A computer.

3-4

Storage Section

The storage section of the TeleProgrammer is a high-speed magnetic-core

storage system providing non-volatile, random-access storage for 2048 or

4096 8-bit words. Transfer of the words into and out of storage is under

control of the control section. For each storage reference cycle, the program-

address register (P register) is advanced by 1 to form the address of the

next storage location. This address is then entered into the storage access

register (S register) where it is translated to a unique selection of one verti-

cal line and one horizontal line selecting 1 core in each of the 8 planes.

After translation, the selected lines are pulsed simultaneously by Read/Write

drivers to give a coincident current through the selected core. Normally

this would write a "1" in the selected core. If that plane is "inhibited" how-

ever, an "0" will be written in that core. The inhibit effectively cancels the

effect of the vertical write pulse so that only a half-write current will exist in

the core.

Storage Sequence

The storage sequence IS divided into four basic portions which

accomplish the Read/Write control of the storage section. Every

storage sequence is as follows:

1) Divert - select one of eight vertical and one of eight
horizontal lines from the Read/Write drivers.

2) Read - select one of eight vertical and 'one of eight
horizontal Read/Write drivers in the read mode which
drives the core to its "0" state~

3-5

3) Inhibit - cancel the effect of the write pulse and allow
the core to remain in the "0" state.

4) Write - select the same Read/Write driver as on read,
and drive the core to its "1" state if the inhibit pulse
IS absent.

There are two basic registers associated directly with the

storage section. These are the storage address register

(S register) and the transfer register . (Z register).

The S register is a 12-bit register that holds the storage address during the

storage reference cycle. This register has storage capabilities only and IS

set from the P register, the Buffer Entrance Register (BER register), the

A register or the Z register, depending on the instruction being performed.

The Z register is the mam transfer and data handling register in the Tele-

Programmer. All outputs from the core storage enter the Z or B FR registers,

and all inputs to the core storage come from the Z or BFR registers. The

Z register also has inputs from the A register, the normal input channel and

the buffer input channel in the normal mode. Outputs from the Z register

feed the borrow pyramid, the S register, the F register, the norm al output

channel, and the buffer output channel in the normal mode.

3-6

Control Section

The control section of the TeleProgrammer consists of the timing controls,

the function translation, and the TAG registers.

Timing Controls

Timing of the operations of the TeleProgrammer is controlled
by the timing chain and the primary timing controls. The tim­
ing chain is an 8-stage ring counter which recirculates three
times for every storage reference cycle to produce a chain
of 24, successive, unique pulses. A resynchronizing circuit
is employed to insure the timing chain starting on the same
clock phase each storage reference cycle.

Function Translation

The instruction control or function control of the TeleProgram­
mer is achieved by the F register and- the function translators.
The F register is translated to determine the control and data
transfer sequence for any given instruction. The translators
are carefully integrated with the timing controls to insure
proper operation of the TeleProgrammer.

Address- Tag Registers

Also in the control section are three address- Tag registers
each of 4 bits length. These registers are _ referenced by
the tag bits of the instruction word (which are also trans­
lated) •

The Tag registers are capable of modification at any point
in the program from the A register. The upper two bits
of the Tag register 3 are used as the buffer channel Tag
register. Also, if Tag register 0 is referenced, the
address will automatically be one of the first 256 storage
locations since Tag register 0 is non-existent.

3-7

APPENDIX

APPENDIX A

TOSAS -- A TELEPROGRAMMER ASSEMBLER

Preface

The TeleProgrammer is easily programmed in machine language

using the previous descriptions and references of this manual. Those

Control Data Customers and analysts who have recourse to either a

160 or 160-A Computer, can also use "TOSAS" - the IeleProgrammer

Qne §ixty ~ssembler §ystem. TOSAS is easily implemented by

adopting very slight modifications of the OSAS or OSAS-A assembly

language. These modifications are described in this Appendix. Full

descriptive manuals of OSAS or OSAS-A are available and can be

obtained by writing to:

Industrial Data Processing Division
Control Data Corporation
9549 Penn Ave. South
Minneapolis, Minnesota

A-l

Description of TOSAS

TOSAS uses all the rules of OSAS or OSAS-A. With the

exception of minor changes in the coding forms used, along with the

adoption of one or two limitations, the two assemblers are the same.

The differences are listed in detail below and followed with an example

program to indicate the changes.

Providing for Different Function Codes:

The 160 and 160-A Computers employ 6-bit function codes. The

TeleProgrammer also uses 6-bit function codes. However, the octal

codes are different. To overcome this difference, TOSAS requires

a "function Code Identification Listing" as part of the TOSAS program.

This identification simply lists the mnemonic codes of the TeleProgrammer

under "LOCATION" (epl:so' 2 - 8 in OSAS coding form); the pseudo

OP Code, EOU, under "OP" (cols. 10 - 13); and the TeleProgrammer

octal Function Codes under "ADDITIVE" (cols. 23 - 29). "COMMENTS"

can appear as usual. . A sample of identification listing IS shown on page A-6.

(The octal addresses in the leftmost column on page A-6 were assigned by

the assembler for the problem of which this listing is an example.

A-2

Use of "CON"

In OSAS, the pseudo OP, "CON" is used to set aside the

first 64 registers (octal address, 0000 through 0077) for constants

which follow the code, "CON". In TOSAS, this pseudo OP .ill!!!

be used exactly the same way. However, the TeIeProgrammer

provides for 256 low core address (octal addresses 0000 through

0377). This means that if' the programmer desires to reserve low

core area beyond the first 64 locations, he must use separate symbolic

tags under "LOCATION" preceeded by the pseudo OP, "PRG" .Or 'by

using the E G U
Example:

pseudo 0 P as shown.
Assume one wants to store octal constants:
5, 27, 31 and LG at respective octal locations
0076, 0077, 0100 and 0101.

LOCATION OP ADDRESS ADDITIVE COMMENTS

CON 76
5

27
PRG 100

31
LG EQU 101

Size of Numerics Under ADDITIVE Column

Since the TeleProgrammer involves an 8-bit word length instead

of 12 bits, the size of the octal numbers (quantities and addresses)

must not exceed ~ bits. Thus, the effective range is 000 through 377.

In addition, 100, 200, or 300, must appear in the ADDITIVE column

opposite the mnemonic code to indicate respectively the use of Tag registers

1, 2, or 3. (See examples.)

A-3

Difference in Coding

The same coding forms, as used in OSAS or OSAS-A, can be used

In TOSAS. The difference is in the placement of mnemonic OP codes. In

TOSAS, all TeleProgrammer mnemonic OP codes are placed under the , .

"ADDRESS" column rather than the "OP" column. Symbolic addresses

can be placed urider the mnemonic, in the "ADDRESS" column, or in the

"ADDITIVE" column. Octal numerics or decimal numerics (with letter "D")

can be placed under- "ADDITIVE". Also, 100, 200, or 300 must appear

in the ADDITIVE column directly opposite the mnemonic code of the

ADDRESS column to respectively indicate use of Tag register 1, 2, or 3.

Thus in the example on the next page the third line of coding LDM 200
106

indicates that Tag register 2 is used with LDM, and contains the upper 4

bits of address 106 which follows.

To aid the reader in the TOSAS concept, a sample example is pro-

grammed, using TOSAS. A few sheets of the routine, on OSAS coding

form, and the corresponding TO SAS listing are shown on pages A-7 through

A-12. (Since this example used the lower 256 core memory locations, the

reader should note that the use of 100, 200, or 300 opposite the mnemonic

codes is reserved for the occasions when jumps or references beyond the

first 256 registers are made. In such instances, Tag registers are required.

A-4

Example: Assume octal address 3106 and 3107 contain unknown
numerics. If anyone of these numerics is zero, jump
to address, 3255; otherwise, jump to T1 (where T1 =
Adr. 3333).

Flow Chart

Is anyone of
the 2 numerics

zero?

Yes

Jump to
Adr.
3333

No

Jump to
Adr. 3333

TeleProgrammer Octal Code

{ OLDN} o 06

2ATT

{ 2LDM}
1 06

{ 2ZJP }
2 55

{ 2LDM}
1 07

{ 2ZJP }
2 55

2UJP }
333

Store octal, 3,
in three left bits
of Tag Reg. 2

Contents of Adr.
3106 to A

If zero, jump to
Adr. 3255

Contents of Adr.
3107 to A

If zero, jum p to
Adr. 3255

Jump to Adr.
3333

TOSAS Coding (using OSAP Coding Form)

LOCATION OP ADDRESS ADDITIVE COMMENTS

LDN Octal 3 to Tag
6

ATT 200

Reg. 2

LDM 200 Contents of Adr. 3106 to A
1.06

ZJP 200 If zero, jump to 3255
255

LDM 200 Contents of Adr. 3107 to A
107

ZJP 200 If zero, to Adr. 3255
255

UJP Jump to T1
T1*

.. * Where Tl must be previously identified in the program by a statement
such as: LOCATION OP ADDRESS

Tl EQU 3333

A-5

Location OP

0000 EAR
000' SHA
0002 ATT
OOOl iTA
000.. ABR
0005 ABX
0006 BER
0007 CBC
0080 LPN
00 09 LPt1
0082 LPI
0083 Cil
0084 LSN
0005 LS"
0086 LSD
0020 LON
0028 LOI1
0022 LOX
0025 LCI1
0026 lCI
DOlO AON
0038 ADM
0032 AD!
003ij SeN
0035 6SI1
0036 1581
004. STH
0042 STI
DOS I RAM
0055 RAO
0060 zJs
0060 NlP
0062 PJP
0063 NJP
006.. UJP
0070 181
007. 1 eo
0072 INN
0013 OUT
0074 aTN
0015 Ext
007& INA
DOn RLT
0000

EDU
EoU
EQU
EOU
EoU
EgU
EoU
EOU
EOU
EOU
ECU
EOU
Eau
EDU
EOU
EOU
ECu
ECU
EQU
IECU
EQU
EQU
EDU
ECU
Eau
EOU
EOU
ECU
£QU
EOU
tau
ECU
EOU
EOU
EOU
EOU
EOU
EDU
EOU
ECU
EDU
ECU
EOU
END

IDENTIFICA TIO N LIS TINGS

Additive

o
I
2
3

" S
6
7
10
81
.2
13

I " .s
16
2U
2.
22
25
26
30
3.
32
34
35
36
4 I
42
SI
55
60 6.
62
63
64
70
71
72
73
74
7S
76
77

Comments

ERROR STOP
SHIFT A LEFT ONE BIT
A TO TAG REGISTER
TAG REGISTER CONTENTS TO A
A TO BUFFER ENTRANCE REGISTER
A TO SUFFER EXIST ~EGISTER
CONTENTS OF BER REGISTER TO A
CLEAR SUFFER CONTROLS
lOGICAL PRODUCT NO ADDRESS
lOGICAL PRODUCT MEMORY ADDRESS
LOGICAL PRODUCT INOl~ECT AOoRESS
CLEAR INTER~uPT LOCKOUT
lOGICAL SUM NO ADDRESS
LOGICAL SUM ME"ORY ADDRESS
lOGICAL SUM INDI~ECT ADDRESS
LOAD A NO ADDRESS "ODE
LOAD A HE"ORY
LOAD A INDIRECT
LOAD COI1PLEMENT TO A MEMORY
lOAD COMPLEMENT TO A INDIRECT
ADO NO ADDHESS
AOD MEMORY ADDRESS
ADO INDIRECT ADDijESS
SUBTRACT NO ADDRESS
SUa TRACT MEMoRy loDRESS
SU8TRACT INDIRECT ADDRESS
STORE A HEMoRY
STORE A INDIRECT
REplACE ADO HEMORY ADDRESS
REpLACE ADO ONE MEMORY ADDRESS
JU"Pt If CONTENTS Of A • 0
JUMP, IF CONTENts OF A (0
JUHPp IF CONTENTS OF A 0 POSlllVE
JUMP, IF CONTENTS OF A a NEGATIVE
UNCONDITIONAL JUHP
INITIATE BUffER INPUT
INITIATE BUttER oUlPU1
INPUT NORMAL
OUTPUT NORMAL
OUTPUT. NO ADDRESS
EXTERNAL FUNCTION
INPUT TO A
HALT
COMPLETE ASSEMBLY

A-6

CONTROL DATA

_vr, .. -A CODING FORM
PAGE NO. ____ _
DATE __________________ _

PROGRAMMER

»
I

OD

CONTROL DATA

OSAS/OSAS·A CODING FORM
PAGE NO. ____ _
DATE ______ _

PROGRAMMER

e

CONTROL DATA

OSAS/OSAS-A CODING FORM
CORPORATIUN

PAGE NO. _____ _
DATE ______ _

PROGRAMMER

ADDRESS

Listing From Previous TeleProgrammer "XLATE" Routine

~•
0 30 0021 INPUTA LD" ROUTINE HIT INPUTA '
0 31 0060 P FLAG.
0 32 0060 ZJI:t TEST FLAG IF 1ST UHf
0 33 0173 . I NPUTI NO JUMP
0 34 0020 LON
0 l5 0000 0
0 36 00(41 5TH
0 37 0060 FLAGI
0 40 0075 INPUT7 EXF TAKE STATUS Of TAPE
0 41 0011 II
0 42 0002 2
0 43 0076 INA
0 44 00141 5TH SAVE STATUS
0 45 0066 TE"4
0 166 00'0 LPN SAVE NOT READY BIT
0 117 0002 2
0 50 0061 NZP TAPE NOT READY
0 51 0237 INPUT2
0 52 0021 LO" BRING STATUS BACK
0 53 0066 TEH4
0 54 0010 LPN IS IT BUSY
0 55 0200 . 200
0 56 0068 NZP YES TRY AGAIN
0 57 0140 INPUT1
0 60 0021 LDM
0 61 0066 TEH4 BRING STATuS BACR
0 62 00346 SBN CHECK LOAD POINT
0 63 00 •• 41
0 64 0060 ZJB GO ON TO READY
0 65 0203 INPUf6
0 66 0075 EXF HEwlND TAPE TO LOAD POINT
0 67 ooDl II
0 70 0022 22
0 ,. 0064 uJP GO lAKE SIA1US AGAIN
o 72 0140 INPUT7
0173 007S INPUfI Elf rlR STATUS
0174 0011 I I RSI
Oil'S 0002 2
0176 0076 INA
0177 0010 LPN SAVE aUSY BIT
0200 0202 202
020' 0061 NlP
0202 0873 INPUT! TRY AGAIN

A-l0

TelePrograrnmer IIXLATEII Routine Listing (Con't)

0203 007S INPUTS EXF
020'1 0011 II
0205 0032 32 READ BCD LOW
0206 0312 INN 300
0207 0000 0 FWA
0210 0120 120 LWA
0211 007S INPUT3 EXF TAKE STATUS OF
0212 0011 II READ
0213 0002 2
02.1 ~ 0076 INA
021S 0041 6TM STORE STATUS
0216 OOS" TEM2
0217 0010 LPN
0220 0200 200
0221 006. NZP

- 0222 0211 INPUTJ
0223 0021 LDM LOAD STATUS
0224 006" TEM2 , BACK IN
0225 0010 LPN
0226 002" 2" SAVE EOF AND PARITY
0227 OISO ZJB 100
0230 1213 wORK JUMP TO WORK ROUTINE
0231 0010 LPN
0232 000 .. " SAVE PARITY BIT
0233 0061 NZP
023~ 0251 INPUT ..
0235 036" UJP 300 JUMP TO EOM ROUTINE
0236 0676 EOM
0237 0020 INPUT2 LON' SET RETURN
02~0 0063 63 JUMP FOR
02~1 0341 STH 300 LOtXC TROUBLE
0242 0652 RETURN
0243 0020 LON
02"" 0173 I NPUTI
02-'5 03~1 STM 300
0246 0653 JUMP
024' 036 .. UJP 300 JUMP 10 LOCAL IROOBLE
0250 0636 . LOTROU ROUTINE
025. 0015 INPUT" EXF PARlf, ON READ
0252 0011 ..
0253 0025 2S BACK SPACE ONE RECORD
0254 0028 LOM
0255 0115 TRYJ
0256 0063 NJP
0257 0265 INPUTS
0260 0001 SHA
0261 0041 5TH STORE BACK At
0262 a 115 TRY3 TRY3

:A-'ll

TeleProgrammer "XLATE" Routine Listing (Con't)

0263 0064 UJP
026" 0173 INPUT. HEAD AGAIN
0265 0020 INPUTS LON
0266 0021 21
02&7 00'81 5TH SET TRY 3
0270 OilS THY3
0211 0020 LON
0272 0063 63
0273 03 •• STH 300
027" 0672 RETUR,
027S 0020 LON
0276 0173 INPUTI
0277 0311. STI1 300
0300 0&73 JU"PI
0301 036" UJP 300
0302 06S6 TI"E

The previous listing is I!f!rl of a Magnetic Tape input routine. As such,

the reader should be aware of the fact that several symbolic tags are used

(for example, FLAG 1, TEM 2, TEM 4, WO RK, etc.) which were identi-

fied by "EQU" statements on other parts of the total program. Likewise,

notes, page number, etc. refer to the total program from which the example

was taken.

A-12

APPENDIX B

PROGRAMMING EXAMPLES

Example 1
Servicing the Interface

A small message switching system is composed of ten full duplex lines

operating at rates of 100 words per minute. Each time the input inter-

face is serviced (once each 100 milliseconds) each of the ten input

terminal units (TTU) supplies one 8 bit character, where each charac-

ter contains 7 bits of data and 1 parity bit).

The octal select codes of the ten TTU units are identical to the octal

memory addresses that are used to store the inputs. These addresses

are:

0420
0421
0422
0423"
0424

0425
0426
0427
0430
0431

Each time the input interface is serviced, ~ character from each of

the ten TTU locations is read into a corr:-esponding Raw Data Register

(RDR) in the TeleProgrammer memory. Assuming the- Raw Data

registers start at octal address, 0600, the program follows:

B-1

Program Instructions
Location Tagl Codes Cycles Action Performed

0460 o I LON } 2 Load A with 1
0461 0 I 01

0462 1 I ATT } 1
I

Bits, 001, go to Tag reg. I

0463 0 I EXF } S elect the TTU, starting with the
0464 0 04 3 first TTU.
0465 0 I 20

0466 o I INA } 2 Input the character from the selected
I TTU to the A register.

0467 1
I

STM } Store character in A at desired I 3
0470 2 00 memory location

0471 1 I RAO } 4 Add 1 to memory location where
0472 o I 70 characters are stored. I
0473 1 I RAO } 4 Add 1 to TTU select address.
0474 o I 65 This also tests last TTU address.

0475 o I SBN } 2 Subtract one more than number of
0476 0 I 32 lines being serviced.

0477 1 I NJP } 2 If not last servicing, jump back to
0500 o I 63 servIce next TTU.

I
0501 Continue

>:< Note: The above instructions contain mnemonic function codes in
order to indicate the type of instruction being performed. Before
program execution, these must be replaced by their equivalent
numeric codes.

B-2

Example 2
Assuring Transmission Validity

Several techniques have evolved to assure message content validity.

One such technique is a form of the Fire code which is described In

the following problem. By this method, specific words of the data to

be transmitted are added into eight "Check Sum" (S) words. After

computing each of the eight sum words, at both origin and destination

locations, comparisons of the corresponding sums indicate message

validity. This technique provides the advantage of being able to use all

bits of a message character as jnformation bits. Thus the presence of

a parity bit is not mandatory. However, the presence of a parity bit·

does not affect or degrade the method.

Assume a block of 240 words of 1 character per word is to be trans­
mitted. This block is preceded by an 8 word header, and followed by
8 Check Sum words. Using a Fire code, the data in the header and
information portions are to be checked through comparisons of the accumu­
lated sums in the 8 C-heck Sum (S) wopds. The accumulated sums
of the sum words are determined by the following algorithm:

8 1 W. + W. + W + ----------
1 J k + Wn

S2 Wi+1 + Wj +1 + Wk+1 + + Wn+1

S3 Wi +2 + Wj +2 + Wk+2 + + Wn+2

8 8 Wi+7 + Wj +7 + Wk+7 ------ + Wn+7

where i ,j ,k, --- n are the computer addresses
contb,ining the data words which are to be trans­
mitted.

W = data words, thus W· = data word at address J
J

81' S2' --- 88 =·Check 8um words

B-3

In order to implement this method, a matrix of 32 words is used. Each
of the 32 words contains 8 bits which indicate the computer addresses of
the words which are to be added in the first Check Sum word, S 1.
Thus the bit locations within the matrix indicate: i, j, k, ---n addresses
of the preceding algorithm.

The technique is indicated by the flow chart and diagram of TeleProgram­
mel" areas below:

1

8ave previous contents of 81' 8 2---8 8
Zeroize: 81,8 2---8 8

Address, A o ' (see sketch) - M

Zeroize B, (B = bit counter)

iE-----------(2

Wt + 81- 8 1

WtH + 8 2--82

B-4

where:
Al = 0334

A32 = 0373

(0374)
(0375)
(0376)
(0377)

1000 --

Octal
Addresses

j
1367- -
1370--

I
1377-

Ao __

Al

A2

A 32--

Temp M
B

Data
Block

8
Header
Words

1
240

Data
Words

8 8um
Words

B· 1M . It atrlx
32 Words

j

THE PROGRAM

Location
I

Cycles Action Performed TI Code

2000 0 1 LON } 1 Preset Tag register 1 to 0010 ,
2001 o 1 02 (in bits)

1 } 2002 1 I ATT 1

I

2003 1 I LOM } 3
2004 3 170 S ave the contents of the· check sum
2005 o I STM } 3 words by storing initial contents at
2006 3 24 following . addresses:
2007 21 RAO } 4 Sl-+ 0324
2010 0104
2011 2\ RAO } 4 S2 ~0325
2012 01 06
2013 °ISBN } 2

'2014 3 34
2015 21 NZP } 2 Sa -+0333
2016 0

1
03

2017 0 1 LON } 2
2020 0100 This loop presets each of the eight
2021 11 STM } 3 check stirn words to zero.
2022 31 70 .

I
2023 21 RAO } 4
2024 01 22
2025 2, NZP } 2
2026 o 17

1

2027 OISTM } 3 Set Bit Counier, B, to zero.
2030 3 77 (B is loc~ted at octal address ,377 •)

1

B-5

THE PROGRAM

Location T Code Cycles Action Performed

2031 0 LON } 2 Store first address minus 1 of Bit
2032 3 33 Matrix at M; where M is at address
2033 0 STM } 3 0376.
2034 3 76

2035 0 RAO } 4 M + l~M
2036 3 76

2037 0 S8N } 2 Test address at M, and jump if
2040 3 74 last Matrix Word has been serviced.
2041 2 ZJP } 2
2042 1 12

2043 0 LOI } 4 Load next Matrix Word into A
2044 3 76

2045 0 SHA } 1 Shift Matrix Word left 1

2046 0 STM } 3 Store shifted Matrix Word at tempo-
2047 3 75 rary register (at address 0375) .

2050 0 LPN } 2 Look at what previously had been
2051 0 001 the leftmost bit of Matrix Word.

2052 2 NZP } 2 If bit -I 0, jump; otherwise, con-
2053 0 66 tinue.

2054 0 RAO } 4 8 + 1--8 (Increase bit count
2055 3 77 by 1.)

2056 0 LPN } 2
Look at last three bit positions of

2057 0 07 count at B.

8-6

THE PROGRAM

I
Location TI Code Cycles Action Performed

2060 21 ZJP } 2 If next Matrix Word is required,
2061 0135 Jump. Otherwise, continue.

I

2062 01 LDM } 3 Return the current Matrix Word to
2063 3 75 A and jump back to look at next
2064 21 UJP } 2 bit.
2065 °1 45

I
I

2066 01 LDM } 3 Bit Count t, where t is at address
2067 31 77 0374.
2070 o STM } 3
2071 3 1 74

1

2072 1 1 LDI } " 2073 3 I 74
2074 11 RAD } 3 Wt + Sl---j. S 1
2075 3 1 70

2076 01 RAO } 4 Update parameters In above equation.
2077 3 I 74
2100 2 RAO } .
2101 o I 75

3

I
I

2102 21 NZP } 2 Loop back to lac ation , 2072, if not
2103 0172 zero.

I
I

2104 1 I LDI } 4 Store into last. Check Sum Word at
2105 3 174 address 0777.
2106 1 I RAD } 4 2107 3 177 .

2110 21 UJP } 2 Loop back for next iteration.
2111 o I 54

2112 OIHLT } 1 Stop

B-7·

APPENPIX C - MATHEMATICAL T~BLES

TABLE OF POWERS OF TWO

o 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 OD01 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 06.1 035 156 25
32 768 15 QOOO 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20
2 097 152 21
4 194 304 22
8 388 608 23

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 ~OOO 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
073 741 824 30 0.000 000 000 931 322 574 615 478 515 625

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

C-l

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

.0.0.0.0 .0.0.0.0 .0.0.0.0 .0.00.0 .0.001 .00.02 .0.0.03 .0.0.04 .0.0.05 .0.0.06 .0.0.07 .040.0 .0256 .0257 .0258 .0259 .026.0 .0261 .0262 .0263
to to .0.010 .0.008 .0.0.09 .0.010 .0.011 0.012 .0.013 .0.014 .0.015 .0410 .0264 .0265 .0266 .0267 .0268 .0269 .027.0 .0271

.0777 .0511 .0.02.0 .0.016 .0.017 .0.018 .0.019 .0.02.0 .0021 .0.022 .0023 .042.0 .0272 .0273 .0274 .0275 .0276 .0277 .0278 .0279

(.octal) (Decimal) .0.03.0 .0.024 . .0.025 .0.026 .0.027 .0.028 .0029 .0.03.0 .0.031 .043.0 .028.0 .0281 .0282 .0283 .0284 .0285 .0286 .0287
.0.04.0 .0032 .0.033 .0.034 .0.035 0.036 .0037 .0.038 .0.039 .044.0 .0288 .0289 .029.0 .0291 .0292 .0293 .0294 .0295
.0.05.0 .0.04.0 .0.041 .0.042 .0.043 .0.044 .0.045 .0.046 .0.047 .045.0 .0296 .0297 .0298 .0299 .03.0.0 .03.01 .03.02 .03.03
.0.06.0 .0.048 .0.049 .0.05.0 .0051 .0.052 .0053 .0.054 .0.055 .046.0 .03.04 .03.05 .03.06 .03.07 .03.08 .03.09 .031.0 .0311

.octal Decimal .0.07.0 .0056 .0.057 .0.058 .0.059 .0.06.0 .0.061 .0.062 .0.063 .047.0 .0312 .0313 .0314 .0315 .0316 .0317 .0318 .0319
100.0.0 - 4.096
2.0.0.0.0 - 8192 .0100 .0.064 .0.065 .0.066 0.067 .0.068 .0.069 .0.07.0 .0.071 .05.0.0 .0320 .0321 .0322 .0323 .0324 .0325 .0326 .0327

3.0.0.0.0 - 12288 .0110 .0.072 .0.073 .0.074 .0.075 .0.076 .0.077 .0.078 .0.079 051.0 .0328 .0329 .033.0 .0331 .0332 .0333 .0334 .0335

4.0.0.0.0 - 16384
.0120 .0.08.0 .0.081 .0.082 .0.083 .0.084 .0.085 .0.086 .0.087 052.0 .0336 .0337 .0338 .0339 .034.0 0341 .0342 .0343
.013.0 .0.088 .0.089 .0.09.0 .0.091 .0.092 .0.093 .0.094 .0.095 .0530 .0344 .0345 .0346 0347 0348 0349 .0350 .0351

50000 - 2.048.0 0140 0096 0097 .0.098 .0.099 .01.0.0 .0101 .01.02 .01.03 .054.0 .0352 .0353 .0354 .0355 .0356 .0357 .0358 .0359
6.0.0.0.0 - 24576 .015.0 .01.04 .01.05 .01.06 .01.07 .0108 .01.09 .011.0 DIll .055.0 .036.0 .0361 .0362 .0363 .0364 .0365 .0366 .0367
7.0.0.0.0 - 28672 .016.0 .0112 .0113 .0114 .0115 .0116 .0117 .0118 .0119 .056.0 .0368 .0369 .037.0 .0371 .0372 .0373 .0374 .0375

.017.0 .012.0 .0121 .0122 .om .0124 .0125 .0126 .0127 .057.0 .0376 .0377 .0378 .0379 .038.0 .0381 .0382 .0383

.02.0.0 .0128 .0129 .013.0 .0131 0132 0133 0134 0135 060.0 .0384 .0385 .0386 .0387 .0388 .0389 .039.0 .0391

.021.0 .0136 .0137 .0138 .0139 .014.0 .0141 .0142 .0143 .0610 0392 .0393 .0394 .0395 .0396 .0397 .0398 .0399

.022.0 .0144 .0145 .0146 .0147 .0148 .0149 .015.0 .0151 .062.0 .04.0.0 .04.01 .04.02 .04.03 .04.04 .04.05 .04.06 .04.07

.023.0 .0152 .0153 .0154 .0155 0156 .0157 .0158 0159 .063.0 .04.08 .04.09 .041.0 .0411 .0412 .0413 .0414 .0415

.024.0 .0160 .0161 .0162 .0163 .0164 .0165 0166 .0167 .064.0 .0416 .0417 .0418 .0419 .042.0 .0421 .0422 .0423

.025.0 .0168 .0169 .017.0 .0171 .0172 .0173 .0174 .om .065.0 .0424 .0425 .0426 .0427 .0428 .0429 .043.0 .0431

.026.0 .0176 .0177 .0178 .0179 .018.0 .0181 .0182 .0183 .066.0 .0432 .0433 .0434 .0435 .0436 .0437 .0438 .0439

.027.0 .0184 .0185 .0186 .0187 .0188 .0189 .019.0 .0191 .067.0 .044.0 .0441 .0442 .0443 .0444 .0445 .0446 .0447

.03.0.0 .0192 .0193 .0194 .0195 .0196 .0197 .0198 .0199 .07.0.0 .0448 .0449 .045.0 .0451 .0452 .0453 .0454 .0455

.031.0 .02.0.0 .02.01 .02.02 .02.03 .02.04 .02.05 .02.06 .02.07 .071.0 .0456 .0457 .0458 .0459 .046.0 .0461 .0462 .0463

.032.0 .02.08 .02.09 .0210 .0211 0212 .0213 .0214 .0215 .072.0 .0464 .0465 .0466 .0467 .0468 .0469 .047.0 .0471

.033.0 .0216 .0217 .0218 .0219 .022.0 .0221 .0222 .0223 .073.0 .0472 .0473 .0474 .0475 .0476 .0477 .0478 .0479

.034.0. .0224 .0225 .0226 .0227 .0228 .0229 .023.0 .0231 .074.0 .048.0 .0481 .0482 .0483 .0484 .0485 .0486 .0487

.035.0 .0232 .0233 .0234 .0235 .0236 .0237 .0238 .0239 .075.0 .0488 .0489 .049.0 .0491 .0492 .0493 .0494 .0495

.036.0 .0240 .0241 .0242 .0243 .0244 .0245 .0246 .0247 .076.0 .0496 .0497 .0498 .0499 .05.0.0 .05.01 .05.02 .05.03

.037.0 .0248 .0249 .025.0 .0251 .0252 .0253 .0254 .0255 .077.0 .05.04 .05.05 .05.06 .05.07 .05.08 .05.09 .051.0 .0511

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

10.0.0 .0512 10.0.0 .0512 .0513 .0514 .0515 .0516 .0517 .0518 .0519 14.0.0 .0768 .0769 .077.0 .0771 .0772 .0773 .0774 .0775
to to 1010 .052.0 .0521 .0522 .0523 .0524 .0525 .0526 .0527 141.0 .0776 .0777 .0778 .0779 .078.0 .0781 .0782 .0783

1777 1.023 102.0 .0528 .0529 .053.0 .0531 .0532 .0533 .0534 .0535 142.0 .0784 .0785 .0786 .0787 .0788 .0789 .079.0 .0791

(.octal) (Decimal) 103.0 .0536 .0537 .0538 .0539 .054.0 .0541 .0542 .0543 143.0 .0792 .0793 .0794 .0795 .0796 .0797 .0798 .0799
1.04.0 .0544 .0545 .0546 .0547 .0548 .0549 .055.0 .0551 144.0 .08.0.0 .08.01 .08.02 .08.03 .08.04 .08.05 .08.06 .08.07
105.0 .0552 .0553 .0554 .0555 .0556 .0557 .0558 .0559 145.0 .08.08 .08.09 .081.0 .0811 .0812 .0813 .0814 .0815
1.06.0 .056.0 .0561 .0562 .0563 .0564 .0565 .0566 .0567 146.0 .0816 .0817 .0818 .0819 .082.0 .0821 .0822 .0823
1.07.0 .0568 .0569 .057.0 .0571 .0572 .0573 .0574 .0575 147.0 .0824 .0825 .0826 .0827 .0828 .0829 .083.0 .0831

liDO .0576 .0577 .0578 .0579 .058.0 .0581 .0582 .0583 15.0.0 .0832 .0833 .0834 .0835 .0836 0837 .0838 .0839
1110 .0584 .0585 .0586 .0587 .0588 .0589 .059.0 .0591 151.0 .084.0 .0841 .0842 .0843 .0844 .0845 .0846 .0847
112.0 .0592 .0593 .0594 .0595 .0596 .0597 .0598 .0599 152.0 .0848 .0849 .085.0 .0851 .0852 .0853 .0854 .0855
113.0 .06.0.0 .06.01 .06.02 .06.03 .06.04 .06.05 .06.06 .06.07 153.0 .0856 .0857 .0858 .0859 .086.0 .0861 .0862 .0863
114.0 .06.08 .06.09 .061.0 .0611 .0612 .0613 .0614 .0615 154.0 .0864 .0865 .0866 .0867 .0868 .0869 .087.0 .0871
115.0 .0616 .0617 .0618 .0619 .062.0 .0621 .0622 .0623 155.0 .0872 .0873 .0874 .0875 .0876 .0877 .0878 .0879
116.0 .0624 .0625 .0626 .0627 .0628 .0629 .063.0 .0631 156.0 .088.0 .0881 .0882 .0883 .0884 .0885 .0886 .0887
117.0 .0632 .0633 .0634 .0635 .0636 .0637 .0638 .0639 157.0 .0888 .0889 .089.0 .0891 .0892 .0893 .0894 .0895

12.0.0 .064.0 .0641 .0642 .0643 .0644 .0645 .0646 .0647 16.0.0 .0896 .0897 .0898 .0899 .09.0.0 .09.01 .09.02 .09.03
121.0 .0648 .0649 .065.0 .0651 .0652 .0653 .0654 .0655 161.0 .0904 09.05 .0906 0907 .0908 .0909 0910 0911
1220 0656 0657 0658 0659 .066.0 .0661 0662 .0663 1620 0912 0913 .0914 0915 0916 0917 .0918 .0919
1230 0664 0665 0666 0667 0668 0669 067.0 .0671 1630 0920 0921 0922 0923 0924 0925 0926 0927
1240 .0672 0673 0674 .0675 0676 .0677 .0678 .0679 1640 .0928 .0929 093.0 .0931 .0932 .0933 .0934 .0935
125.0 .068.0 0681 0682 0683 .0684 .0685 .0686 0687 165.0 0936 0937 0938 0939 094.0 0941 .0942 .0943
1260 0688 .0689 .069.0 .0691 0692 .0693 .0694 .0695 166.0 .0944 .0945 .0946 .0947 .0948 .0949 .095.0 .0951
127.0 .0696 .0697 .0698 .0699 .07.0.0 .07.01 .07.02 .07.03 167.0 .0952 .0953 .0954 .0955 .0956 .0957 .0958 .0959

13.0.0 .07.04 .07.05 .07.06 .07.07 .07.08 07.09 .071.0 .0711 17.0.0 .096.0 .0961 .0962 .0963 .0964 .0965 .0966 .0967
131.0 .0712 .0713 .0714 .0715 .0716 .0717 .0718 .0719 1710 .0968 .0969 .097.0 .0971 .0972 .0973 .0974 .0975
132.0 .072.0 .0721 .0722 .0723 .0724 .0725 .0726 .0727 172.0 .0976 .0977 .0978 .0979 .098.0 .0981 .0982 .0983
133.0 .0728 .0729 .073.0 .0731 0732 .0733 .0734 .0735 173.0 .0984 .0985 .0986 .0987 .0988 .0989 .0990 .0991
134.0 .0736 .0737 .0738 .0739 .0740 .0741 .0742 .0743 174.0 .0992 .0993 .0994 .0995 .0996 .0997 .0998 .0999
135.0 .0744 .0745 .0746 .0747 .0748 .0749 .075.0 .0751 175.0 10.0.0 1.0.01 10.02 1.0.03 1.0.04 1.0.05 1.0.06 10.07
136.0 .0752 .0753 .0754 .0755 0756 .0757 .0758 .0759 176.0 10.08 10.09 1.010 1.011 1.012 1.013 1014 1.015
137.0 .076.0 .0761 .0762 .0763 .0764 .0765 .0766 .0767 177.0 1.016 1017 1.018 1.019 1.02.0 1.021 1022 1023

C-2

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 1280 1281 1282 1283 1284 1285 1286 1287 2000 1024
20)0 1032 1033 1034 1035 1036 1037 1038 1039 2410 1288 1289 1290 1291 1292 1293 1294 1295 to to
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 1296 1297 1298 1299 1300 1301 1302 1303 2777 1535 2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 1304 1305 1306 1307 1308 1309 1310 1311 10ctaii IDecimal1 2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 1312 1313 1314 1315 1316 1317 1318 1319
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 1320 1321 1322 1323 1324 1325 1326 1327
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 1328 1329 1330 1331 1332 1333 1334 1335
2070 1080 1081 1082 1083 1094 1085 1086 1087 2470 1336 1337 1338 1339 1340 1341 1342 1343 Octal Decimal

10000 - 4096
2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 1344 1345 1346 1347 1348 1349 1350 1351 20000 - 8192
2100 1096 1097 1098 1099 1100 1101 1102 1103 2510 1352 1353 1354 1355 1356 1357 1358 1359 30000 - 12288 2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 1360 1361 1362 1363 1364 1385 1366 1367 40000 - 16384 2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 1368 1369 1370 1371 1372 1373 1374 1375

50000 - 20480 2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 1376 1377 1378 1379 1380 1381 1382 1383
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 1384 1385 1386 1387 1388 1389 1390 1391 60000 - 24576
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398 1399 70000 - 28672
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570 1400 1401 1402 1403 1404 1405 1406 1407

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 1408 1409 1410 1411 1412 1413 1414 1415
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 1416 1417 1418 1419 1420 1421 1422 ;423
2220 1168 1169 1170 1171 '1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630 1432 1433 1434 1435 1436 1437 1438 1439
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454 1455
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 1456 1457 1458 1459 1460 1461 1462 1463
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 1464 1465 1466 1467 1468 1469 1470 1471

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1479
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 1480 1481 1482 1483 1484 1485 1486 1487
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 1488 1489 1490 1491 1492 1493 1494 1495
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 1496 1497 1498 1499 1500 1501 1502 1503
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 1504 1505 1506 1507 1508 1519 1510 1511
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 1512 1513 1514 1515 1516 1517 1518 1519
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760 1520 1521 1522 1523 1524 1525 1526 1527
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 1528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 1792 1793 1794 1795 1796 1797 1798 1799 3000 1536
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 1800 1801 1802 1803 1804 1805 1806 1807 to to
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 1808 1809 1810 1811 1812 1813 1814 1815 3777 2047 3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 1816 1817 1818 1819 1820 1821 1822 1823 10ctaii 10ecimaii 3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 1824 1825 1826 1827 1828 1829 1830 1831
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 1832 1833 1834 1835 1836 1837 1838 1839
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 1840 1841 1842 1843 1844 1845 1946 1847
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 1848 i849 1850 1851 1852 1853 1854 1855

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 1856 1857 1858 1859 1860 1861 1862 1863
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1867 1868 1869 1870 1871
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 1872 1873 1874 1875 1876 1877 1878 1879
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886 1887
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 1888 1889 1890 1891 1892 1893 1894 1895
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 1896 1897 1898 1899 1900 1901 1902 1903
:i160 1648 1649 1650 1651 1652 1653 1654 1655 3560 1904 1905 1906 1907 1908 1909 1910 1911
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 1917 1918 1919

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 1920 1921 1922 1923 1924 1925 1926 1927
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 1928 1929 1930 1931 1932 1933 1934 1935
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 1936 1937 1938 1939 1940 1941 1942 1943
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 1944 1945 1946 1947 1948 1949 1950 1951
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 1952 1953 1954 1955 1956 1957 1958 1959
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 1960 1961 1962 1963 1964 1965 1966 1967
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 1968 1969 1970 1971 1972 1973 1974 1975
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 1976 1977 1978 1979 1980 1981 1982 1983

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 1984 1985 1986 1987 1988 1989 1990 1991
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 1992 1993 1994 1995 1996 1997 1998 1999
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 2000 2001 2002 2003 2004 2005 2006 2007
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 2008 2009 2010 2011 2012 2013 2014 2015
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 2016 2017 2018 2019 2020 2021 2022 2023
3350 1768 1769 1770 .1771 1772 1773 1774 1775 3750 2024 2025 2026 2027 2028 2029 2030 2031
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 2032 2033 2034 2035 2036 2037 2038 2039
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044 2045 2046 2047

..

C-3

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

4000 2048 4000 2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
10 10 4010 2056 2057 2058 2059 2060 2061 2062 2063 4410 2312 2313 2314 2315 2316 2317 2318 2319

4777 2559 4020 2064 2065 2066 2067 2068 2069 2070 2071 4420 2320 2321 2322 2323 2324 2325 2326 2327

10clal) 10ecimal) 4030 2072 2073 2074 2075 2076 2077 2078 2079 4430 2328 2329 2330 2331 2332 2333 2334 2335
4040 2080 2081 2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2339 2340 2341 2342 2343
4050 2088 2089 2090 2091 2092 2093 2094 2095 4450 2344 2345 2346 2347 2348 2349 2350 2351
4060 2096 2097 2098 2099 2100 2101 2102 2103 4460 2352 2353 2354 2355 2356 2357 2358 2359

Oclal Decimal 4070 2104 2105 2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367
10000 - 4096
20000- 8192 4100 2112 2113 2114 2115 2116 2117 2118 2119 4500 2368 2369 2370 2371 2372 2373 2374 2375
30000 - 12288 4110 2120 2121 2122 2123 2124 2125 2126 2127 4510 2376 2377 2378 2379 2380 2381 2382 2383

40000 - 16384 4120 2128 2129 2130 ·2131 2132 2133 2134 2135 4520 2384 2385 2386 2387 2388 2389 2390 2391
4130 2136 2137 2138 2139 2140 2141 2142 2143 4530 2392 2393 2394 2395 2396 2397 2398 2399

50000 - 20480 4140 2144 2145 2146 2147 2148 2149 2150 2151 4540 2400 2401 2402 2403 2404 2405 2406 2407
60000 - 24576 4150 2152 2153 2154 2155 2156 2157 2158 2159 4550 2408 2409 2410 2411 2412 2413 2414 2415
70000 - 28672 4160 2160 2161 2162 2163 2164 2165 2166 2167 4560 2416 2417 2418 2419 2420 2421 2422 2423

4170 2168 2169 2170 2171 2172 2173 2174 2175 4570 2424 2425 2426 2427 2428 2429 2430 2431

4200 2176 2177 2178 2179 2180 2181 2182 2183 4600 2432 2433 2434 2435 2436 2437 2438 2439
4210 2184 2185 2186 2187 2188 2189 2190 2191 4610 2440 2441 2442 2443 2444 2445 2446 2447
4220 2192 2193 2194 2195 2196 2197 2198 2199 4620 2448 2449 2450 2451 2452 2453 2454 2455
4230 22M 2201 2202 2203 2204 2205 2206 2207 4630 2456 2457 2458 2459 2460 2461 2462 2463
4240 2208 2209 2210 2211 2212 2213 2214 2215 4640 2464 2465 2466 2467 2468 2469 2470 2471
4250 2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2477 2478 2479
4260 2224 2225 2226 2227 2228 2229 2230 2231 4660 2480 2481 2482 2483 2484 2485 2486 2487
4270 2232 2233 2234 2235 2236 2237 2238 2239 4670 2488 2489 2490 2491 2492 2493 2494 2495

4300 2240 2241 2242 2243 2244 2245 2246 2247 4700 2496 2497 2498 2499 2500 2501 2502 2503
4310 2248 2249 2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2509 2510 2511
4320 2256 2257 2258 2259 2260 2261 2262 2263 4720 2512 2513 2514 2515 2516 2517 2518 2519
4330 2264 2265 2266 2267 2268 2269 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
4340 2272 2273 2274 2275 2276 2277 2278 2279 4740 2528 2529 2530 2531 2532 2533 2534 2535
4350 2280 2281 2282 2283 2284 2285 2286 2287 4750 2536 2537 2538 2539 2540 2541 2542 2543
4360 2288 2289 2290 2291 2292 2293 2294 2295 4760 2544 2545 2546 2547 2548 2549 2550 2551
4370 2296 2297 2298 2299 2300 2301 2302 2303 4770 2552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

5000 2560 5000 2560 2561 2562 2563 2564 2565 2566 2567 5400 2816 2817 2818 2819 2820 2821 2822 2823
10 10 5010 2568 2569 2570 2571 2572 2573 2574 2575 5410 2824 2825 2826 2827 2828 2829 2830 2831

5777 3071 5020 2576 2577 2578 2579 2580 2581 2582 2583 5420 2832 2833 2834 2835 2836 2837 2838 2839

(Oecimal)
5030 2584 2585 2586 2587 2588 2589 2590 2591 5430 2840 2841 2842 2843 2844 2845 2846 2847

10clal) 5040 2592 2593 2594 2595 2596 2597 2598 2599 5440 2848 2849 2850 2851 2852 2853 2854 2855
5050 2600 2601 2602 2603 2604 2605 2606 2607 5450 2856 2857 2858 2859 2860 2861 2862 2863
5060 2608 2609 2610 2611 2612 2613 2614 2615 5460 2864 2865 2866 2867 2868 2869 2870 2871
5070 2616 2617 2618 2619 2620 2621 2622 2623 5470 2872 2873 2874 2875 2876 2877 2878 2879

5100 2624 2625 2626 2627 2628 2629 2630 2631 5500 2880 2881 2882 2883 2884 2885 2886 2887
5110 2632 2633 2634 2635 2636 2637 2638 2639 5510 2888 2889 2890 2891 2892 2893 2894 2895
5i20 2640 2641 2642 2643 21i44 2645 2646 2647 5520 2896 2897 2898 2899 2900 2901 2902 2903

. 5130 2648 2649 2650 2651 2652 2653 2654 2655 5530 2904 2905 2906 2907 2908 2909 2910 2911
. 5140 2656 2657 2658 2659 2660 2661 2662 2663 5540 2912 2913 2914 2915 2916 2917 2918 2919

5150 2664 2665 2666 2667 2668 2669 2670 2671 5550 2920 2921 2922 2923 2924 2925 2926 2927
5160 2672 2673 2674 2675 2676 2677 2678 2679 5560 2928 2929 2930 2931 2932 2933 2934 2935
5170 2680 2681 2682 2683 2684 2685 2686 2687 5570 2936 2937 2938 2939 2940 2941 2942 . 2943

5200 2688 2689 2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2949 2950 2951
5210 2696 2697 2698 2699 2700 2701 2702 2703 5610 2952 2953 2954 2955 2956 2957 2958 2959
5220 2704 2705 2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2967
5230 2712 2713 2714 2715 2716 2717 2718 2719 5630 2968 2969 2970 2971 2972 2973 2974 2975
5240 2720 2721 2722 2723 2724 2725 2726 2727 5640 2976 2977 2978 2979 2980 2981 2982 2983
5250 2728 2729 2730 2731 2732 2733 2734 2735 5650 2984 2985 2986 2987 2988 2989 2990 2991
5260 2736 2737 2738 2739 2740 2741 2742 2743 5660 2992 2993 2994 2995 2996 2997 2998 2999
5270 2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007

5300 2752 2753 2754 2755 2756 2757 2758 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015
5310 2760 2761 2762 . 2763 2764 2765 2766 2767 5710 3016 3017 3018 3019 3020 3021 3022 3023
5320 2768 2769 2770· 2771 2772 2773 2774 2775 5720 3024 3025 3026 3027 3028 3029 3030 3031
5330 2776 2777 2778 2779 2780 2781 2782 2783 5730 3032 3033 3034 3035 3036 3037 3038 3039
5340 2784 2785 2786 2787 2788 2789 2790 2791 5740 3040 3041 3042 3043 3044 3045 3046 3047
5350 2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
5360 2800 2801 2802 2803 2804 2805 2806 2807 5760 3056 3057 3058 3059 3060 3061 3062 3063
5370 2808 2809 2810 2811 2812 2813 2814 2815 5770 3064 3065 3066 3067 3068 3069 3070 3071

C-4

--

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 , 2 3 4 5 6 7 0 , 2 3 4 5 6 7

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335 6000 3072
6010 3080 3081 3082 3083 3084 3085 3086 3087 6410 3336 3337 3338 3339 3340 3341 3342 3343 to to
6020 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350 3351 6777 3583
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359 10ctal) 10ecimal) 6040 3104 3105 3106 3107 3108 3109 3110 3111 6440 3360 3361 3362 3363 3364 3365 3366 3367
6050 3112 3113 3114 3115 3i16 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375
6060 3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382 3383
6070 3128 3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391 Octal Oecimal

10000 - 4096
6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 3392 3393 3394 3395 3396 3397 3398 3399 20000 - 8192
6110 3144 3145 3146 3147 3148 3149 3150 3151 6510 3400 3401 3402 3403 3404 3405 3406 3407 30000 - 12288
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 3408 3409 3410 3411 3412 3413 3414 3415 40000 - 16384
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 3416 3417 3418 3419 3420 3421 3422 3423
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431 50000 - 20480

6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438 3439 60000 - 24576
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 3440 3441 3442 3443 3444 3445 3446 3447 70000 - 28672
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570 3448 3449 3450 3451 3452 3453 3454 3455

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600 3456 3457 3458 3459 3460 3461 3462 3463
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610 3464 3465 3466 3467 3468 3469 3470 3471
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
6230 3224 3225 3226 3227 , 3228 3229 3230 3231 6630 3480 3481 3482 3483 3484 3485 3486 3487
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 3488 3489 3490 3491 3492 3493 3494 3495
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650 3496 3497 3498 3499 3500 3501 3502 3503
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
6270 3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710 3528 3529 3530 3531 3532 3533 3534 3535
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 3552 3553 3554 3555 3556 3557 3558 3559
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 3560 3561 3562 3563 3564 3565 3566 3567
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770 3576 3577 3578 3579 3580 3581 3582 3583

0 , 2 3 4 5 6 7 0 , 2 3 4 5 6 7

7000 3584 3585 3586 3587 3588 3589 3590 3591 7400 3840 3841 3842 3843 3844 3845 3846 3847 7000 3584
7010 3592 3593 3594 3595 3496 3497 3598 3599 7410 3848 3849 3850 3851 3852 3853 3854 3855 to to
7020 3600 3601 3602 3603 3604 3605 3606 3607 7420 3856 3857 3858 3859 3860 3861 3862 3863 7777 4095
7030 3608 3609 3610 3611 3612 3613 3614 3615 7430 3864 3865 3866 3867 3868 3869 3870 3871 10ctal) 10ecimal)
7040 3616 3617 3618 3619 3620 3621 3622 3623 7440 3872 3873 3874 3875 3876 3877 3878 3879
7050 3624 3625 3626 3627 3628 3629 3630 3631 7450 38&0 3881 3882 3883 3884 3885 3886 3887
7060 3632 3633 3634 3635 3636 3637 3638 3639 7460 3888 3889 3890 3891 3892 3893 3894 3895
7070 3640 3641 3642 3643 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 3901 3902 3903

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 3904 3905 3906 3907 3908 3909 3910 3911
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918 3919
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 3920 3921 3922 3923 3924 3925 3926 3927
7130 3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934 3935
7140 3680 3681 3682 3683 3684 3685 3686 3687 7540 3936 3937 3938 3939 3940 3941 3942 3943
7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951
7160 3696 3697 3698 3699 3700 3701 3702 3703 7560 3952 3953 3954 3955 3956 3957 3958 3959
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570 3960 3961 3962 3963 3964 3965 3966 3967

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3969 3970 3971 3972 3973 3974 3975
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 3976 3977 3978 3979 3980 3981 3982 3983
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 3984 3985 3986 3987 3988 3989 3990 3991
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630 3992 3993 3994 3995 3996 3997 3998 3999
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 4000 4001 4002 4003 4004 4005 4006 4007
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650 4008 4009 4010 4011 4012 4013 4014 4015
7260 3760 3761 3762 3763 3764 3765 3766 3767 7660 4016 4017 4018 4019 4020 4021 4022 4023
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 4024 4025 4026 4027 4028 4029 4030 4031

7300 3776 3777 3778 3779 3780 3781 3782 3783 7700 4032 4033 4034 4035 4036 4037 4038 4039
7310 3784 3785 3786 3787 3788 3789 3790 3791 7710 4040 4041 4042 4043 4044 4045 4046 4047
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720 4048 4049 4050 4051 4052 4053 4054 4055
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 4062 4063
7340 3808 3809 3810 3811 3812 3813 3814 3815 7740 4064 4065 4066 4067 4068 4069 4070 4071
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 4072 4073 4074 4075 4076 4077 4078 4079
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 4080 4081 4082 4083 4084 4085 4086 4087
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770 4088 4089 4090 4091 4092 4093 4094 4095

c-s

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .201 .251953 .301 .376953

.002 .003906 .102 .128906 .202 .253906 .302 .378906

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 .257812 .304 .382812

.005 .009765 .105 .134765 .205 .259765 .305 .384765

.006 .011718 .106 .136718 .206 .261718 .306 .386718

.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .425781

.033 .052734 .133 .177734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.035 .056640 .135 .181640 .235 .306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062500 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 .191406 .242 .316406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .195312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .201171 .247 .326171 .347 .451171

.050 .078125 .150 .203125 .250 .328125 .350 .453125

.051 .080078 .151 .205078 .251 .330078 .351 .455078

.052 .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 .460937

.055 .087890 .155 .212890 .255 .337890 .355 .462890

.056 .089843 .156 .214843 .256 .339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .357 .466796

.060 .093750 .160 .218750 .260 .343750 .360 .468750

.061 .095703 .161 .220703 .261 .345703 .361 .470703

.062 .097656 .162 .222656 .262 .347656 .362 .472656

.063 .099609 .163 .224609 .263 .349609 .363 .474609

.064 .101562 .164 .226562 .264 .351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 .355468 .366 .480468

.067 .107421 .167 .232421 .267 .357421 .367 .482421

.070 .109375 .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .231)328 .271 .361328 .371 .486328

.072 .113281 .172 .238281 .272 .363281 .372 .488281

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.074 .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .275 .369140 .375 .494140

.076 .121093 .176 .246093 .276 .371093 .376 .496093

.077 .123046 .177 .248046 .277 .373046 .377 .498046

C-6

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .. 000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .. 000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 . 000156 .000151 • .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000.273 .000713 .000373 .000957

.000074 .000228 .000174 .000473 .0002"74 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968

.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

C-7

-

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716

.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750

.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754

.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758

.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766

.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777

.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781

.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789

.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796

.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811

.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819

.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838

.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846

.000445 .001117 . 000545 .001361 .000645 . .001605 .000745 .001850

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857

.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869

.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873

.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876

.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880

.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884

.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907

.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911

.000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914

.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922

.000471 .001194 .000571 .001438 .000671 .001682 .000771 .001926

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930

.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934

.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945

.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949

C-8

GLOSSARY

GLOSSARY OF TeleProgramming TERMS

The following glossary gives the meaning of terms that are used In a
relatively specialized sense in this manual.

ADDER

ADDRESS

In general, a device used to add two quantities.
Specifically, the borrow structure in the subject
computer.

The number designating a storage location; also
the storage location itself.

NO ADDRESS MODE The TeleProgrammer permits the perfor-
mance of arithmetic and logical operations by an
a-bit constant associated with the instruction and
using the memory location immediately following
the instruction as an. a-bit operand.

MEMORY ADDRESS MODE A mode of addressing wherein an
a-bit operand in any storage location is addressed
by the memory location (immediately following the
instruction). and the contents of the Tag register .
as referenced by T.

INDIRECT ADDRESS MODE Instructions employing indirect
addressing use the memory location immediately
following the instruction to refer to one of the
first 256 storage locations. The contents of

BIT

BORROW

BUFFER

this location are used along with the contents of
the Tag register to form the address of the operand.

Binary digit; may be either "1" or "0".

In a subtractive counter or accumulator, a signal
indicating that in stage n, a "1" was subtracted

. from a "0".

Noun: A device in which data are stored tem­
porarily in the' course of transmission from one
point to another. Verb: -To store data temporarily.

jl Change 1

BUFFERED
INPUT/OUTPUT

CARRY

CHANNEL

CLEAR

COMMAND

COMPLEMENT

CONTENT

CORE

COUNTER

END-AROUND
BORROW

ENTER

FUNCTION CODE

Change 1

A term indicating that the computer may carry
on high speed computation at the same time it is
exchanging data with a peripheral device. In
the TeleProgrammer, this term must be distin­
guished from normal I/O, during which the
computer cannot engage in computation.

In an additive counter or accumulator, a signal
indicating that in stage n, a "1" was added to a
"1".

A transmission path that connects the computer
to a given external equipment.

A command that removes a quantity from a
register by placing every stage in the "0"
state.

A signal that performs a unit operation, such as
transmitting contents of one register to another,
shifting a register, setting a flip-flop.

Noun: See One's Complement to Two's Comple­
ment. Verb: A command which produces the
one's complement of a given quantity.

The quantity or word held in a register or
storage location.

A small ferromagnetic toroid used as the bistable
device for storing a bit in a memory plane.

A register with provisions for increasing or
decreasing its content by 1 upon receiving the
appropriate command.

A borrow that is generated in the highest order
of an accumulator or counter, and is sent directly
to the lowest order stage.

To manually place in a register a quantity that
is not from storage. In the TeleProgrammer,
quantities may be entered in only the Tag A, P,
and Z registers.

The lower 2 octal digits of the first word in the
instruction set.

-2

INPUT
DISCONNECT

INPUT REQUEST

INTERRUPT

JUMP

LOAD

LOCKOUT

LOGICAL
PRODUCT

LOGICAL SUM

MASK

During an input instruction, a signal sent to the
computer by the external device to indicate that
the device has completed all available transmis­
sions to the computer.

A request, by the computer, for information
from an external device. Occurs during input
instruction only. (See Resume.)

A signal (or class thereof) which, when received
and recognized by the computer, forces the com­
puter to forestall its current operation and jump
to a subroutine, the starting address of which is
determined by the class of the interrupt. A
subroutine may have any number of options. It
may merely stop the computer, it may determine
the nature of the interrupt in order to take
corrective measures, or it may retur1\ the com­
puter to another phase of the main program.

An instruction that jumps from one sequence of
instructions to a second, and makes no prepara­
tion for returning to the first sequence.

To place a quantity from storage in the A register.

Any function (usually of machine logic) that
inhibits an action which would normally occur
were the lockout not imposed.

In Boolean algebra, the AND function of several
terms. The product is 11111 only when all the
terms are "1 11 ; otherwise it is 110". Sometimes
referred to as the result of "bit-by-bit" multipli­
cation.

In Boolean algebra, the OR function of several
terms. The sum is "1" when any or all of the
terms are 11111; it is 1'0" only when all are "0".

In the information of the logical products of two
quantities, one of them may be used as a mask
for the other. The mask determines what part
of the other quantity is to be considered. Wher­
ever the mask is "0", that part of the other
quantity is cleared, but wherever the mask IS a
111", the other quantity is left unaltered.

MASTER CLEAR
(MC)

MODULUS

ONE'S
COMPLEMENT

OPERAND

OPERATION CODE

OVERFLOW

PARTIAL ADD

PROGRAM

Change 1

A general command produced by placing the
Load/ C lear switch in the down (C LEAR)
position. An MC clears all of the crucial
registers and control FFs to prepare for a new
mode of operation.

An integer which describes certain arithmetic
characteristics of registers, especially counters
and accumulators, within a digital computer. The
modulus of a device is defined by rn for an open
ended device and rn-l for a closed (end- around)
device, where r is the base of the number
system used and n is the number of digit posi­
tions (stages) in the device. Generally, devices
with modulus rn use two's complement arithmetic
procedures, and devices with modulus rn-l use
one's complement procedures.

With reference to a binary number, that number
which results from subtracting each bit of the
given number from the bit "1". A negative
number is expressed by the one's complement
of the corresponding positive number.

The quantity sl1ecified by the 8 _ bits of
the second word of the instruction set. This
quantity is operated upon in the execution of the
instruction.

Th~ low&r 2 octill digits of the first word in the
instruction set also called Function Code and
identified by the letter, F. After the code is
translated, it conditions the computer for execu­
tion of the specified instruction.

The condition in which the capacity of a register
is exceeded.

An addition without carries. Accomplished by
toggling each bit of the' augend where the corre­
sponding bit of addend is a "1".

A' precise sequence of instructions that accom­
plishes a computer routine; a plan for the solution
of a problem.

QUARTIC

READ

READY

RELATIVE
ADDRESSING

REPLACE

RESUME

ROUTINE

SHIFT

SIGN BIT

SIGN EXTENSION

A number system with a base of four. These
numbers are normally partitioned into groups of
two for ease of reading.

To place a quantity from a storage location into
a register. The quantity in storage remains
unchanged.

The input/output control signal sent by either the
computer or an external equipment to alert the
device that is to receive a transmission. The
ready signal indicates that the word or character
has been transmitted .

. A mode of addressing wherein the address of
the operand is determined by adding (or subtract­
ing) the contents of the execution address portion
of the instruction word to (or from) the instruction
address.

In the title of an instruction, the result of the
execution of the instruction is stored in the loca­
tion from which the initial operand was obtained.

The output control signal sent by an external
equipment to indicate that it is prepared to receive
another word or character. The resume· signal
is thus a request for data. (See Input Request.)

The sequence of operations which the computer
performs under the direction of a program.

To move the bits of a quantity right or left.

The bit in the highest-order stage of the register
(in registers where a quantity is treated as
signed by use of one's complement notation).
If the bit is "1", the quantity is negative;. if the
bit is "0", the quantity is positive.'

The duplication of the . sign bit an the highest-order
stages of a register.

5

STATUS

TRANSMISSION
FORCED

TRANS LA TIO N

TWO's
COMPLEMENT

WORD

WRITE

1) The condition of an external device, as
reflected in the response given to a status request
interrogation by the computer.
2) The condition of the computer as shown by
the Status Mode indicator on the console. May
variously indicate what it is presently doing, why
it stopped, or what it will do when it next starts.

A transmission where both set and clear inputs,
only one of which will be a "1", are simultane­
ously gated into a F F which has not been
cleared previously.

An indication of the content of a group of bit
registers. A complete translation gives the
exact content, while a partial translation indicates
only that the content is within certain limits.

That number which results from subtracting each
bit of a number from "0". The two's comple­
ment may be formed by complementing each bit
of the given number and then adding one to the
result, performing the required carries.

A unit of information which has been coded for
use in the computer as a series of bits. The
normal word length is 8 bits.

To enter a quantity into a storage location.

6

:·1
"-

::1
~ I
i I
~ I

COMMENT SHEET

MANUAL TITLE _...;;8;.;;0;.;;9;.;;2;;.....;T;;,..e;;.:1;.;e;;.:P;:...r;;;...;:;,o,cg...;..r.;;.;a...;..m_m_e.;...r ________________ _

Programming Reference Manual

PUBLICATION NO. _...;;.3_6_8....;.1_07_0_1 ___ _ REVISION _______ _

FROM: NAME: _________________________ ___

BUSINESS ADDRESS: _______________________________ ___

COMMENTS.:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A .
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD I
---~

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Technical Publications
4201 N. Lexington Ave.
St. Paul, Minnesota 55112

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

FOLD

w
Z
:::;
(!)
z o «
~
~
u

..... ~

~~.lli, 1111"", . ~
»> CUT OUT FOR USE AS LOOSE -LEAF BINDER TITLE TAB

CONTROL DATA
CORPORATION

8100 34th AVE. SO .. MINNEAPOLIS. MINN. 55440

LITHO IN U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	G-00
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	replyA
	replyB
	xBack

