- CONTROL DATA® 6000 SERIES COMPUTER SYSTEMS

Reference Manual

60100000

Record of Revisions

REVISION

NOTES

This manual obsoletes the 6600 Computer System

Reference Manual, Pub. No, 60045000,

Pub. No. 60100000
July, 1965

©1965, Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue

St, Paul, Minnesota 55112

or use Comment Sheet in back of this
manual,

1. System Description

Introduction
Systems Characteristics Summary
Systems Characteristics

Central Processor
Characteristics

Common Central Processor
Characteristics

Peripheral and Control
Processor Characteristics

Central Memory Characteristics

Display Console Characteristics
Systems Options
Systems Software

SIPROS

FORTRAN 66

ASCENT

ASPER

LIBRIOUS

Additional Software Packages

2. Central Memory

Organization
Address Format
Central Memory Access

Memory Protection

3. Central Processor

Organization

CONTENTS

1-5
1-6
1-17
1-8
1-8
1-9
1-10
1-11
1-11
1-11
1-12

3-1

iii

Central Processor Programming

Functional Units
Instruction Formats
Operating Registers
Exchange Jump

Exit Mode

Floating Point Arithmetic
PFixed Point Arithmetic

Description of Central
Processor Instructions

Program Stop and
No operation

Increment

Fixed Point Arithmetic
Logical

Shift

Floating Point Arithmetic
Branch

Mass Memory
Communication

3-4
3-4
3-4
3-6
3-9
3-11
3-13
3-16

3-17

3-19
3-20
3-24
3-25
3-28
3-33
3-39

4, Peripheral and Control Processors

Organization 4-1

Peripheral Processor

Programming -6
Instruction Formats -6
Address Modes ‘ -
Registers -8
Description of Peripheral ‘
Processor Instructions 4-9

4-10

No Operation

Data Transmission
Arithmetic

Shift

Logical

Replace

Branch

Central Processor and

4-11 Exchange Jump

4-13 Channel and Equipment Status
4-16 Exit Mode

4-16 Software Implementation

4-19 Exchange Jump

4-22 Exit Mode

Channel and Equipment Status

Central Memory 4-24 Real-Time Interrupt Facility
Input/OQutput 4-27
Access to Central Memory 4-32
Input and Output 4-35 6. Manual Control
Real-Time Clock 4-39
Introduction
Dead Start
5. System Interrupt Console
Keyboard Input
Introduction o5-1 Display
Hardware Provisions for Interrupt 5-1 .

Appendix A
Appendix B
Appendix C
’ Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Augmented I/O Buffer and Control (6411)
Powers of Two

Octal-Decimal Integer Conversion Table
Octal-Decimal Fraction Conversion Table
Instruction Execution Times

Indefinite Forms

Decimal/Binary Position Table

Constants

iv

CONTROL DATA 6000 Series
Computer System

Concurrent Operations in the
6000 Series

Block Diagram of 6600 and
6800 Systems

Block Diagram of 6400 System
Memory Map

Central Processor
Instruction Formats

Central Processor Operating
Registers

Central Processor Differences
in 6000 Series

Functional Units

Indefinite Forms

FIGURES

3-3, Exchange Jump Package 3-9
1-1 - Flow Chart: 6000 Series
System 4-1
1-2 4-2 Peripheral and Control
) Processors 4-5
B 5-1 Real-Time Interrupt (ASPER
- Program Controlled) 5~5
- - Dead Start Panel 6-2
6- Display Console 6-3
3-5 -3 Sample Display 6-4
3-1
TABLES
3-4 Central Processor ;
3-1 Instruction Designators 3-18
3-5 4-1 -Addressing Modes for k
3-14 Peripheral Processor ;
Instructions 4-8
4-2 Peripheral Processor

Instruction Designators 4-10

0191

A CONTROL DATA 6000 SERIES COMPUTER SYSTEM

Display console (foreground) - includes a keyboard for manual input and operator
control and two 10-inch display tubes for display of problem status and operator
directives.

Main frame (center) - contains 10 Peripheral and Control Processors, Central Pro-
cessor, Central Memory, some I/O synchronizers. The main frame in this photo
iz that of the 6600 Computer System; main frames for the 6400 or 6800 Systems
vary in physical appearance, depending on options included in the system.
CONTROL DATA 607 Magnetic Tape Transport (left front) ~ 1/2-inch magnetic tape
units for supplementary storage; binary or BCD data handied at 200, 556, or 800 bpi.
CONTROL DATA 626 Magnetic Tape Transport (left rear) - 1-inch magnetic tape '
units for supplementary storage; binary data handled at 800 bpi.

CONTROL, DATA 405 Card Reader (right front) - reads binary or BCD cards at 1200
card per minute rate.

Disk file (right rear) - supplementary mass storage device; holds 500 million bits
of information.

1. SYSTEM DESCRIPTION

INTRODUCTION

The CONTROL DATA* 6000 Series consists of three large-scale, solid-state, general-
purpose digital computing systems: the 6400, 6600, and 6800. The advanced design
techniques incorporated in these systems provide for extremely fast solutions to data
processing, scientific, and control center problems, as well as multiprocessing, time-

sharing, and management information applications.

Each of the computing systems in the 6000 Series has at least eleven independent com-
puters (Figure 1-1). Ten of these, constructed withthe peripheral and operating system
in mind, are Peripheral and Control Processors. Each of these ten has separate mem-

ory and can execute programs independently of each other or the Central Processor.

CENTRAL
PROCESSOR

CENTRAL MEMORY

PERIPHERAL PROCESSORS (10)

P

DATA CHANNELS
(12)

J

Figure 1-1. CONTROL DATA 6000 Series Computer System

*Registered trademark of Control Data Corporation

1-1

The eleventh computer, the Central Processor, is a very high speed arithmetic device.
The common element of the Peripheral and Control Processors and the Central Pro-

cessor is a large Central Memory.

In solving a problem, one of more Peripheral and Control Processors are usedfor high
speed information transfer in and out of the system andto provide operator control. If
the problem requires significant arithmetic speed, the Peripheral and Control Processors
may call on the Central Processor. A number of probiems may operate concurrently by
(To facilitate this,

may operate in Central Memory only within address bounds prescribed by a Peripheral

time-sharing with the Central Processor. the Central Processor
and Control Processor.) Further concurrency is obtained within the Central Processor
by parallel action of various functional segments. Similarly, Central Memory is organ-
ized in 32 logically independent banks of 4096 words (60-bit). Several banks may be in
operation simultaneously, thereby minimizing execution time, The multiple operating
modes of all segments of the computer, in combination with high-speed transistor cir-

cuits, produce a very high over-all computing speed.

Figure 1-2.

1-2

LEVEL #1 LEVEL #2 LEVEL # 3
CONCURRENCY CONCURRENCY CONCURRENCY
N IN IN
PROGRAMS FUNCTIONS % MEMORY BANKS |
DISK PROGRAM A ADD /1_ CONCURRENCY IN MULTIPLE
FUNCTIONS IN 6600 &
TAPE PROGRAM MEMORY BANK A | 805 ONLY; 6400 CON-
DISPLAY PROGRAM READ MEMORY BANK B | cURRENCY AT THIS LEVEL
MEMORY BANK C | IS POSSIBLE FOR ONE
DISK PROGRAM B MULTIPLY COMPUTATIONY ACTIVITY
AND MEMORY OPERATIONS
DISK PROGRAM C ONLY. IN A 6400
NORMALIZE SYSTEM, A SECOND
| CENTRAL PROGRAM CENTRAL PROCESSOR
INCREMENT PROVIDES ADDITIONAL
CENTRAL MONITOR PROGRAM CONCURRENCY.
DISK PROGRAM ADD /L—
MEMORY BANK D
REAL-TIME COMMUNICATIONS PROGR [STore
CARD READERS 8 PRINTERS PROGRAM MEMORY BANK E
REAL-TIME SEQUENCE PROGRAM MULTIPLY \‘—

Concurrent Operations in the 6000 Series

The Peripheral and Control Processor input/output facility provides a flexible arrange-
ment for very high speed communication with a variety of I/O devices. Some of the I/O
devices available with the 6000 Series are listed below. (Refertothe 6000 Series Periph-

eral Equipment Reference Manual for additional external equipment information,)

° CONTROL DATA 6602 Console Display: a display console with
manual keyboard. This program-controlled unit displays problem
status on two cathode ray tubes and handles operator directives
from an alpha-numeric keyboard similar to a standard typewriter

keyboard.

e CONTROL DATA 6603 Disk System: a mass storage disk file

providing nominal storage of 500 million bits,

e CONTROL DATA 626 Magnetic Tape Transports: one-inch
magnetic tape units which handle binary data recording at 800 bpi

on tapes up to 2400 feet long.

e CONTROL DATA 6682 Satellite Coupler: a systems expansion
device which permits direct connection between any two 6000 Series
systems via two standard 12-bit bi-directional data channels; two

6682's are required for this,

e CONTROL DATA 6681 Data Channel Converter: a device which
permits 6000 Series systems to use CONTROL DATA 3000 Series
peripheral equipment. Examples of available 3000 Series peripheral
equipment are: card equipment (readers/punches), magnetic tape

equipment, and line printers.

SYSTEMS CHARACTERISTICS SUMMARY

The following summary lists characteristics of the 6000 Series computer systems. Where
characteristics differ within the systems comprising the 6000 Series, differences are

noted., Otherwise, systems characteristics listed are common to the Series,

1-3

System Characteristics

Large-scale, general-purpose computer system
11 independent computers; 12 in a dual Central Processor 6400 system

1 Central Processor (60-bit); an optional second Central Processor
is available in 6400 systems

10 Peripheral and Control Processors (12-bit)
Central Memory (60-bit)
Display console and keyboard
System communicates with a variety of external equipment
Disk files
Magnetic tapes
Card equipment
Printers
Central Memory common to the system computers

Maximum Central Memory storage capability 131,072 words (60-bit)

6400 & 6600 6800
1000 ns* 250 ns
100 ns 25 ns

Major Cycle
Minor Cycle

nou

Memory organized in 32 banks of 4096 words
Multiphase
Central Processor instructions
Arithmetic, logical, indexing, branch
Peripheral and Control Processor instructions

Add/Subtract, logical, input/output, access to Central Processor
and Central Memory

Each Peripheral and Control Processor has 12-bit 4096 word memory
Solid-state system

Transistor logic

Central Processor Characteristics

6600 & 6800

10 arithmetic and logical units

*ns = nanoseconds

Add Shift
Multiply Branch
Multiply Boolean
Divide Increment
I.ong add Increment

1-4

. 24 operating registers for functional units
8 operand (60-bit)
8 address (18-bit)
8 increment (18-bit)

® 8 transistor registers (60-bit) hold 32 instructions (15-bit) or 16
instructions (30-bit) or combination of two for servicing functional units.

6400

° Unified arithmetic section, operating in sequential manner
] 24 operating registers

8 operand (60-Dbit)

8 address (18-bit)

8 increment (18-bit)
o Instruction Buffer register (60-bit)

Common Central Processor Characteristics

° Floating point arithmetic
Single and double precision
Optional rounding and normalizing
] Format

Integer coefficient - 48 bits
Biased exponent - 11 bits (2
coefficient sign - 1 bit

0
19)

° Pixed point arithmetic (subset of floating point arithmetic)

Full 60-bit add/subtract
] Controlled and started by Peripheral and Control Processors
. Addresses in Central Memory relative ‘
(]

Peripheral and Control Processor Characteristics

° 10 identical processors (characteristics as listed are per processor

except as noted)
° 4096 word magnetic core memory (12-bit)

Random access, coincident - current

65400 & 6600 6800
Major Cycle = 1000 ns - 250 ns
Minor Cycle = 100 ns 25 ns

1-5

° 12 input/output channels
All channels common to all processors
Maximum transfer rate per channel - one word/major cycle
All 12 channels may be active simultaneously
All channels 12-bit bi-directional
Real-time clock (period = 4096 major cycles)
Instructions
Add/Subtract
Logical
Branch
Input/Output
Central Processor access
Central Memory access
Average instruction execution time = two major cycles
] Indirect addressing

] Indexed addressing

Central Memory Characteristics

° 131,072 words (maximum size)
60-bit words

] Memory organized in 32 logically independent banks of 4096 words
with corresponding multiphasing of banks; (32 banks is maximum
memory size)

MULTIPLY

MULTIPLY
<> UPPER
<> ,5 BOUNDARY 5, DIVIDE
>
<> h 24 LONG ADD
< | OPERATING
<> ‘ &E%%L REGISTERS j&—————>[SHIFT |
>
> BOOLEAN
< 2 LOWER
- 3 BOUNDARY
12 INCREMENT
INPUT
OUTPUT INCREMENT
CHANNELS
BRANCH
PERIPHERAL & CONTROL PROCESSORS CENTRAL PROCESSOR

Figure 1-3. Block Diagram of 6600 and 6800 Systems

1-6

Random access, coincident-current, magnetic core
One major cycle for read-write

] Maximum memory reference rate to all banks - one address/minor
cycle

° Maximum rate of data flow to/from memory - one word/minor cycle

Display Console Characteristics

e Two display tubes

° Modes
Character
Dot

® Character size

Large - 16 characters/line
Medium - 32 characters/line
Small - 64 characters/line

° Characters
26 alphabetic

10 numeric

11 special

UPPER
BOUNDARY

24 UNIFIED
=8| OPERATING el ARITHMETIC
REGISTERS SECTION

12
INPUT
OUTPUT
CHANNELS

CENTRAL PROCESSOR

PERIPHERAL & CONTROL PROCESSORS

Figure 1-4. Block Diagram of 6400 System

1-7

SYSTEMS OPTIONS

The foregoing summary of characteristics assumed a standard 6000 Series system
with 10 Peripheral and Control Processors, a Central Processor, and Central

Memory with 131,072 words (60-bit) of magnetic core storage.

Options listed below are available within each system in the 6000 Series unless

otherwise noted;

Central Memory with 65,536 words (60-bit) of magnetic core storage.
Central Memory with 32, 768 words (60-bit) of magnetic core storage.

° Extended Core Storage: Magnetic core storage available in the
following sizes:

131,072 words (60-bit)
262, 144 words (60-bit)
524, 288 words (60-bit)*
1,048,576 words (60-bit)*
2,097, 152 words (60-bit)

° Augmented I/O Buffer and Control (6400 and 6600 systems only):
includes 16, 384 words (60-bit) of magnetic core storage and 10
Peripheral and Control Processors with storage.

e Additional Central Processor (6400 system only): includes arithmetic
and control functions of the 6400 system Central Processor. One such
processor may be added to a 6400 system to provide increased
processing capability.

SYSTEMS SOFTWARE

The basic programming package for the CONTROL DATA 6000 Series Computer Systems

provides a comprehensive operational system which includes:

1) A universal operating system

2) A FORTRAN compiler, compatible with FORTRAN 63
3) An assembly system for the Central Processor

4) An assembly system for the Peripheral Processors
5) A library system including mathematical function

subroutines, input/output routines, and utility programs.

* Only sizes available for 6800 systems; all sizes are available for 6400 and 6600
systems.

1-8

These programming systems have been given abbreviated names derived from the initials

of the descriptions and will be referred to hereafter by the following titles:

SIPROS Simultaneous Processing Operating System
FORTRAN 66 FORTRAN for the 6000 Series

ASCENT Assembly System, Central Processor
ASPER Assembly System, Peripheral Processors
LIBRIOUS Library System of I/O and Utility Systems

Following are brief descriptions of the basic 6000 Series software systems. For more

definitive information of these systems, consult the individual software systems manuals,

SIPROS
The Simultaneous Processing Operating System (SIPROS) is the most vital part of the

6000 Series software, Its designhas been carefully chosento provide a universal system
to fit the wide range of applications for the 6000 Series. The system fully utilizes the con-
currencies possible in the 6000 Series and assumes that the using installation has, at

any one time, a multiplicity of jobs to run.

The major objective of the system is the handling, with a minimum of operator inter-
vention, of a dynamic situation in whichmany jobs such as I/0O operations, computations,
compilations, and debugging operations are proceeding simultaneously. At the same
time, a maximum of choice is left to the using installation on the selection of certain
features and options. Operator manual intervention and override capabilities are pro-
vided which allow simple insertion of new jobs, change in priorities and equipment
assignments, etc., without disrupting operations. Full use of the operating console dis-

play andkeyboardis made for status display and two-way communication with the operator.

Some of the more important features of SIPROS are:
For the users:
e Ease of use for the programmer and operator
e Flexible provisions for operator intervention and override

e Maximum use of console display and keyboard for two- way
communications

e Provision of a comprehensive accounting system for event and
time-use recording for Central and Peripheral Processors and
I/O equipment.

1-9

As a dynamic multi-processing system:

e Provision for automatic batch processing
Multi-processing capabilities using a flexible priority scheme
Dynamic assignment and release of I/O equipment

Ability to handle I/O requests through the system

Provision of a queuing system to handle data for relatively slow
I/0 devices

e Dynamic memory re-assignment during multiple operations

From a systems-programming point of view:

® Maximum exploitation of 6000 Series systems memory protection
features

Integration of a diagnostic system under operating system control

Universal adaptability to special executives for real-time or hybrid
applications

® Orientation around use of a disk file, but not restricted or limited
by the actual configuration

FORTRAN 66

FORTRAN 66 is a compiler system adapting current techniques to the particular capa-
bilities of the 6000 Series computer systems hardware. It is written to operate inde-

pendently on the 6000 Series systems, or under control of SIPROS.

The FORTRAN language used is completely compatible with FORTRAN 63 but provides

additional features to fully exploit 6000 Series characteristics.

Implementation of FORTRAN 66 places heavy emphasis on efficiency, both in compila-
tion and in object code produced. Special emphasis is placed on algorithms and numer-

ical techniques which best exploit the word size and instruction repertoire of the Central

Processor.

Some of the features of FORTRAN 66 are:

e Language includes FORTRAN 63 and hence is compatible with both
FORTRAN 63 and, essentially, with FORTRAN IV,

e Mixed assembly language and FORTRAN statements are allowed.

e Provision is made for automatic I/O buffering.

1-10

Register names can be used as operands.

Object code is optimized by a variety of 6000 Series hardware-oriented
techniques.

® Special numerical methods are used for certain algorithms.

ASCENT

The Central Processor Assembler (ASCENT) is a symbolic machine-oriented language
Which permits direct access to all features of the hardware, but which allows the use of
various functions provided by the operating system. Machine language coding can be gen-
erated very rapidly by usingthe system features for control of I/O, subroutine call, and

macros; yet the programmer is not restricted from using any feature of the Central Pro-
cessor. Principal features of ASCENT are:

Use of all I/O functions in the operating system.

Macro system: use of system macros and programmer-defined macros.
Ability to mix with FORTRAN language.

Subroutine call

Pseudo commands

Peripheral Processor program call

Access to all features of the Central Processor

ASPER

Normally, the Peripheral Processors are not programmed in the course of accomplish-
ing day-to-day work. They are generally assigned the functions of the operating system
and all input/output work. However, situations may arise which require very precise
machine-language programming ofthe Peripheral Processors to obtainthe desired results.
In this event, a symbolic assembly system is provided for the Peripheral Processors.
ASPER includes standard features such as subroutine call, pseudo commands, access to
all features of the Peripheral Processors, a macro system, and access to all I/O
functions provided in the operating system.

LIBRIOUS
The Library System of I/O and Utility Systems (LIBRIOUS) contains a set of programs

available to the user via the programming languages. The library system has the capa-

bilities necessary for updating the library store of routines. This store is composed of

routines used frequently enough to be kept on-line to the operating system, yet not fre-

quently enough to be contained in the resident operating system. Initially, the library

routines are of the following types:

1)

3)

1/0O Routines

System I/O Routines are provided to handle the requirements for
communications between the Central and Peripheral Processors and

all input/output devices. They include routines such as:

® Disk or tape to Central Memory
® Disk or tape to a particular Peripheral Processor memory

2 Central or Peripheral Processor memory to tape or disk

Utility Routines

Utility routines for general operations are provided in the library.
These routines are arranged so that they may be externally called
and used by an operator through the operating system without
interrupting other processing. The routines may also be called
and executed by other programs as part of a total job. These
routines provide such operations as:

-] Card-to-tape, tape-to-cards in various modes

2 Card-to-disk and disk-to-cards with or without conversion

9 Disk-to-printer, cards-to-printer, tape-to-printer
Mathematical Subroutines

The library contains a complete set of standard FORTRAN mathematical
subroutines which have been specially developed to take advantage of the

6000 Series capabilities.

Additional Software Packages

To complement the basic programming package described in the foregoing, Control Data

provides many comprehensive programming packages upon request, including Algol,

Cobol-61 Extended, and Sort/Merge. Information on available software systems may

be obtained from any Control Data sales representative.

2. CENTRAL MEMORY

ORGANIZATION

Central Memory is organized into 32K, 65K, or 131K words (60-bit) in 8, 16, or 32
banks of 4096 words each. The banks are logically independent, and consecutive
addresses go to different banks. Banks may be phased into operation at minor cycle*
intervals, resulting in very high Central Memory operating speed. The Central Memory
address and data control mechanisms permita word to move to or from Central Memory

every minor cycle.

ADDRESS FORMAT

The location of each word in Central Memory is identified by an assigned number
(address), which consists of 18 bits. Address formats are shown below for 8 bank (32K),
16 bank (65K), and 32 bank (131K) systems. Within the address format, the bank portion

specifies one of 8, 16, or 32[b&:a;p\1§ﬁks;’[the 12-bit address defines one of 4096 separate

e ALE !
% ADDRESS [Bank| 8 Bank (32K) Format
7 154 32 O
V] ADDRESS | Bank | 16 Bank (65K) Format
I7 1615 43 o]
z ADDRESS | BANK 1 32 Bank (131K) Format
1716 54 o]

locations within the specified bank. Addresses written or compiled in the conven-
tional manner reference consecutive banks and hence make most efficient use of the

bank phasing feature.

CENTRAL MEMORY ACCESS

References to Central Memory from all areas of the system (Central Processor and
Peripheral and Control Processors) go to a common address clearing house called a
stunt box and are sent from there to all banks in Central Memory. The stunt box

accepts addresses from the various sources under a priority system and at a maxi-

mum rate of one address every minor cycle.

*Minor cycle=100 nsin 6400 and 6600 systems; 25 ns in 6800 system.

2-1

Cho

An address is sent to all banks, and the correct bank, if free, accepts the address
and indicates this to the stunt box. The associated data word is then sent to or stored
from a central data distributor.” The bank ignores the address if it is busy processing
a previous adgg,es—S":"""""';ﬁ;e stunt box issues addresses at a maximum rate of one every

minor cycle.

The stunt box saves, in a hopper mechanism, each address that it sends to Central
Memory and then reissues it (and again saves it) under priority control in the event it
is not accepted because of bank conflict. The address issue-save process repeats
until the address is accgpteﬂfﬁa‘c which time the address is dropped from the hopper
and the read or”_ws,to'f'ﬁeﬁdata word is distributed. A fixed time lapse from address-

issue to Elle—/fﬁémory—accept synchronizes the action taken.

The hopper (i.e., a previously unaccepted address) has highest priority in issuing ad-
dresses to Central Memory. The Central Processor and Peripheral and Control

Processors (all 10 share a common path to the stunt box) follow in that order.

A data distributor which is common to all processors handles all data words to and
from Central Memory (the Peripheral and Control Processors share one read path
and one write path to the distributor). A series of buffer registers in the distri-
butor provides temporary storage for words to be written into storage when the ad-

dresses are not immediately accepted because of bank conflict.

Each group of four banks communicates with the distributor on separate 60-bit read and
write paths, but only one word moves on the data paths at one time. However, words
can move at minor cycle intervals between the distributor and Central Memory or dis-

tributor and address-sender.
Data words and addresses are correlated by control information (tags) entered in the

stunt box with the address. The tags define the address sender, origin/destination

of data, and whether the address is a Read, Write, or Exchange Jump address.

MEMORY PROTECTION

All Central Processor references to Central Memory for new instructions, or to read

and store data, are made relative to the Reference Address. The Reference Ad-

2-2

dress allows easy relocation of a program in Central Memory and also defines the

lower limit of a Central Memory program.

During an Exchange Jump, an 18-bit Reference Address and an 18-bit Field Length
(parts of the Exchange Jump package) are loaded into their respective registers to define

the Central Memory limits of the program initiated by the Exchange Jump.

The relationship between absolute memory address, relative memory address, Refer-
ence Address (RA), and Field Length (FL) is indicated in Figure 2-1,

MEMORY MAP

000 000
FIRST LOCATION
IN PROGRAM AREA
ABSOLUTE RELATIVE
MEMORY MEMORY RA
ADDRESS ADDRESS
RA P=0 NSNONNNNNN
RA+P P<FL NN FL PROGRAM AREA
RA-+FL P=FL NSNSONNN %
SOME ARBITRARY
| LOCATION IN
AN\, PROGRAM AREA
777 777
LAST LOCATION +1

IN PROGRAM AREA
Figure-2-1. Memory Map

The following relationships must be true if the program is to operate withinits bounds:

RA € RA+ P <RA + FL (Absolute Memory Addresses), or
0<P<FL (Relative Memory Addresses)

Note that FL is the number of 60-bit words comprising the program, not an address.
Program restriction: Do not use a Field Length < 108.
An optional exit condition (EM in the Exchange Jump package) allows the Central Proces-
sor to stop on a memory reference outside the limits expressed above. When operating

under STPROS, however, addresses out of range always cause a halt.

3. CENTRAL PROCESSOR

ORGANIZATION

The Central Processor in the 6000 Series is an extremely high-speed arithmetic proces-
sor which communicates only with Central Memory. It consists (functionally) of an
arithmetic unit and a control unit. The arithmetic unit contains all logic necessary to
execute the arithmetic, manipulative and logical operations. The control unit directs
the arithmetic operations and provides the interface between the arithmetic unit and
Central Memory. It also performs instruction fetching, address preparation, memory

protection, and data fetching and storing.

The Central Processoris isolated from the Peripheral and Control Processors and is thus

free to carry on high-speed computation unencumbered by input/output requirements.
The organization of the Central Processor in the 6400 system differs from the 6600 and

6800 Central Processors in two important respects. These differences are tabulated

below.

TABLE 3-1. CENTRAL PROCESSOR DIFFERENCES IN 6000 SERIES

SYSTEM INSTRUCTION REGISTERS ARITHMETIC SECTION
6400 Instruction Buffer Register; Unified Arithmetic Section;
Central holds one 60-bit instruction executes instructions in

Processor word. serial order. Requires no

reservation control.

6600 Instruction Stack; holds eight Ten functional (arithmetic &

1 and 6800 60-bit instruction words. logical) units; operate con-
Central currently on unrelated instruc-
Processor tions. Require reservation

control.

3-1

The following discussion details the operation of the Central Processor in the 6600 and
6800 systems. With the exception of differences noted in the above table (and the inher-
ent effects on Central Processor operation), the 6400 system Central Processor opera-

tion is identical.

Programs for the Central Processor are held in Central Memory. A program is begun
by an Exchange Jump instruction from a Peripheral and Control Processor. This in-
struction also allocates a segment of Central Memory for the central program,specifies
the mode of exit (normal or error) of the program, and sets initial quantities in the X,

B, and A registers.

High speed in the Central Processor depends first on minimizing memory references.
Twenty-four registers are provided to lower the Central Memory requirements for arith-

metic operands and results. These 24 are divided into:

° 8 address registers of 18 bits length
o 8 increment registers of 18 bits length

® 8 operand registers of 60 bits length

Eight 60-bit registers are provided to hold instructions (6600 and 6800), thereby limiting
the number of memory reads for repetitive instructions, especially in inner loops. Mul-
tiple banks of Central Memory are also provided to minimize memory reference time.

References to different banks of memory may be handled without wait.

Speed of operation in a conventional computer is also limited by the serial manner in
which instructions are executed; instructions are executed sequentially in time with little

or no concurrency.

In the 6600 and 6800 Computer Systems, this delay is minimized by providing 10 arith-
metic (functional) units and a reservation control. Unrelated instructions are executed

simultaneously, provided no conflicts exist in the arithmetic units.

The 6400, with its unified arithmetic section, executes instructions serially, with little

concurrency.

Programs are written for the Central Processor in a conventional manner, specifying a
sequence of arithmetic and control operations to be executed. Each instruction in a pro-
gram is brought up in its turn from one of the instruction registers. These registers
are filled from Central Memory in a manner sufficient to keep a reasonable flow of in-
structions available. A branch to another area of the program voids the old instructions
in the registers and brings in new instructions. When a new instruction is brought up, a
test is made on it to determine which of the 10 arithmetic units is needed, if it is busy,
and if reservation conflict is possible. If the unit is free and no conflict is present, the
entire instruction is given to the specified arithmetic unit for further action. Another

instruction may then be brought up for issuance.

The original sequence of the program is established at the time each instruction is is-
sued. Only those operations which depend on previous steps prevent the issuing of in-
structions, and then only if the steps are incomplete. The reservation control keeps a
running account of the address, increment, and operand registers and of the arithmetic

units in order to preserve the original sequence.

Nearly all Central Memory references for information or instructions are made on an
implicit or secondary basis. Instructions are fetched from memory only if the instruc-
tion registers are nearly empty (or when ordered by a branch). Information is brought
to or from the operandregisters only when appropriate address registers are referenced
during the course of a program. Such references are also accounted for in the reserva-

tion control.

All Central Processor references to Central Memory are made relative to the lower
boundary address assigned by a Peripheral and Control Processor. A Central Processor
program may therefore be relocated in Central Memory by modifying the boundaries
only. Optionally (except whenoperating under SIPROS), any attempt bythe Central Proc-
essor to reference memory outside of its boundaries causes an immediate exit which can
be readily examined by a Peripheral and Control Processor and displayed for the opera-
tor.

The Exchange Jump instruction described on page 3-9 starts a central program. This

instruction starts a sequence of Central Memory references which exchanges 16 words
in memory with the contents of the address, increment, and operand registers of the

Central Processor. Also exchanged are the program address, the Central and Mass

3-3

Memory boundaries, and choice of program exit. This instruction may be executed by
any Peripheral and Control Processcr and acts as an interrupt to an active central pro-
gram as well as a start from an inactive state. The Exchange Jump is used by the oper-
ating system to switch between two central programs, leaving the first program in a

usable state for later re-entry.

CENTRAL PROCESSOR PROGRAMMING

Central Processor program instructions are stored in Central Memory. A 60~bit mem-
ory location may hold 60 data bits, four 15-bit instructions, two 30-bit instructions or a
combination of 15 or 30-bit instructions. Figure 3-1 shows all instruction combinations

in a 60-bit word and the two instruction word formats.

The Central Processor reads 60-bit words. from Central Memory and stores them in an

instruction stack which is capable of holding up to eight 60-bit words.

Each instruction in turn is sent to a series of instruction registers for interpretation and
testing and is then issued to one of 10 functional units for execution. The functional units
obtain the instruction operands from and store results in the 24 operating registers. The
reservation control records active operating registers and functional units to avoid con-

flicts and insure that the original instructions do not get out of order.

Functional Units

The 10 functional units in the 6600 and 6800 systems handle the requirements of the var-
ious instructions. The Multiply and Increment units are duplexed, and an instruction is
sent to the second unit if the first is busy. The general function of each unit is in Table
3-2.

Instruction Formats

Groups of bits in an instruction are identified by the letters f, m, i, j, k, and K (Figure

3-1), All letters represent octal digits except K which is an 18-bit constant.

TABLE 3-2. FUNCTIONAL UNITS

UNIT GENERAL FUNCTION

Branch Handles all jumps or branches from the program.

Boolean Handles the basic logical operations of transfer, logical
product, logical sum, and logical difference.

Shift Handles operations basic to shifting. This includes left
(circular) and right (end-off sign extension) shifting, and
Normalize, Pack, and Unpack floating point operations.
The unit also provides a mask generator.

Add Performs floating point addition and subtraction on floating
point numbers or their rounded representation.

Long add Performs one's complement addition and subtraction of
60-bit fixed point numbers.

Multiply Performs floating point multiplication on floating point
numbers or their rounded representation.

Divide Performs floating point division of floating point quantities
or their rounded representation. Also sums the number of
"1'g" in a 60-bit word.
Performs one's complement addition and subtraction of

Increment

18-Dbit numbers.

, INSTRUCTION FORMATS

INSTRUCTION COMBINATIONS fom i j k
IN CENTRAL MEMORY 3]3[3]s [3] 58S
14 0

OPERATION
CODE

[i5 [15 15] 15 Feomirs
59 0

¢ RESULT
M rEG

(5 [5| {1 OF 8)
I st OPERAND
5 TE REG. (1 OF 8)
2nd OPERAND
REG (I OF 8)
[158] 5] 30 |
[=0 f om0 K
3]3[3[3] 18 |30 BiTS
P11 — 0
OPERATION
CODE
RESULT 2 nd OPERAND
REG.
(L OF 8)
I st OPERAND
REG (I OF 8)

Figure 3-1. Central Processor Instruction Formats

3-9

The f and m digits identify the type of instruction and are the operation code. In a few

instructions the i designator becomes a part of the operation code.

In most 15-bit instructions the i, j, and k digits each specify one of eight operating reg-
isters where operands are found and where the result of the operation is to be stored. In

other 15-bit instructions, the j and k digits provide a 6-bit shift count.

In 30-bit instructions thei andj digits each specify one of eight operating registers where
one operand is found and where the result is to be stored, and K is taken directly as an

18-bit second operand.

Operating Registers

In order to provide a compact symbolic language, the 24 operating registers are identi-

fied by letters and numbers:

A = address register (A0, Al . . . A7)
B = increment register (B0, B1. . . B7)
X = operand register (X0, X1 . . . X7)

The operand registers hold operands and results for servicing the functional units. Five
registers (X1 - X5) hold read operands from Central Memory, and two registers (X6 -
X7) hold results to be sent to Central Memory (Figure 3-2). Operands and results trans-
fer between memory and these registers as a result of placing a quantity into a corre-

sponding address register (Al - A7),

Placing a quantity into an address register Al - A5 produces an immediate memory ref-
erence to that address and reads the operand into the corresponding operand register
X1 - X5. Similarly, placing a quantity into address register A6 or AT stores the word

in the corresponding X6 or X7 operand register in the new address.

X OPERAND
(60 BIT)

X0

Xl
X2

OPERANDS

.

X3

X4

X5

X6
X7 \

A ADDRESS
(18 BIT)

RESULTS

—~

AO

Al
ARITHMETIC

A2 SECTION

OPERAND)
CENTRAL ADDRESSEs) LLA3 (UNIFIED IN 6400;

MEMORY A4 ~| 10 FUNCTIONAL
UNITS IN 6600
AS 8 6800).

AS

RESULT
ADDRESSES

f_)Lﬂr

A7

B INCREMENT
(18 BIT)

BO

Bt

B2

B3

B4 INSTRUCTION
B WORD REGISTER,
(1 IN 6400;

B6 8 WORD STACK
IN 6600 & 6800),

B7

INSTRUCTIONS

Figure 3-2. Central Processor Operating Registers

3-1

The increment instructions place a result in address register Ai (where 'i" = 1-5) in
three ways:

e By adding an 18-bit signed constant K to the contents of any A, B, or X
register.

® By adding the content of any B register to any A, B, or X register.

® By subtracting the content of any B register from any A register or any
other B register.

The AQ and X0 registers are independent and have no connection with Central Memory.
They may be used for scratch pad or intermediate results. Note the special use of AOQ

and X0 when executing Mass Memory communication ingtructions.

The B registers have no connection with Central Memory. The B0 register is fixed to
provide a constant zero (18-bit) which is useful for various tests against zero, providing
an unconditional jump modifier, etc. In general, the B registers provide means for pro-
gram indexing. For example, B4 may store the number of timesa program loop has been

traversed, thereby providing a terminal condition for a program exit.

An Exchange Jump instruction from a Peripheral and Control Processor enters initial
values in the operating registers to start Central Processor operation. Subsequent ad-
dress meodification instructions executed in the increment functional units provide the

addresses required to fetch and store data.

Program Address

An 18-bit P register serves as a program address counter and holds the address for each

program step. P is advanced to the next program step in the following ways:

1) P is advanced by one when all instructions in a 60-bit word have been
extracted and sent to the instruction registers.

2) P is set to the address specified by a Go To ... (branch) instruction.
If the instruction is a Return Jump, (P)+ 1 is stored before the branch to
allow a return to the sequence after the branch.

3) P is set to the address gpecified in the Exchange Jump package.

All branch instructions to a new program start the program with the instruction located

in the highest order position of the 60-bit word.

3-8

Exchange Jump

A Peripheral and Control Processor Exchange Jump instruction starts or interrupts the
Central Processor and provides it with the first address (which is the address in the
Peripheral and Control Processor A register) of a 16-word package in Central Memory.
The Exchange Jump package (Figure 3-3) provides the following information on a program
to be executed.

1) Program address (P)

2) Reference address for Central Memory (RA)

3) Field length of program for Central Memory %\%‘LCM)

4) Reference Address for Mass Memeory (RAECS)

5) Field length of program for Mass Memory (FLECS)

6) Program exit mode (EM)

7) Initial contents of the eight A registers

8) Initial contents of the eight X registers

9) Initial contents of B registers Bl - B7 (B0 is fixed at 0)

CENTRAL MEMORY

PERIPHERAL AND
CONTROL PROCESSOR . 6 18 8 18
A REGISTER Loc. n 7 P A0 -
CENTRAL MEMORY// Loc. n +1 Bl
LoC. N Lot n +2 / B2
i7 o Loc, n +3 % B3 |
RA, BT g, ©
L FL BS
‘ o W B
- / B7
X1
X2
X3
X4
X5
X6
Loc, n+15 ‘ X7
59 - 3
P= PROGRAM ADDRESS A= ADDRESS REGISTERS
RA= REFERENCE ADDRESS B= INCREMENT REGISTERS
FL= FIELD LENGTH X= OPERAND REGISTERS
EM= EXIT MODE = {000000 DISABLE EXIT MODE
010000 ADDRESS OUT OF RANGE
020000 OPERAND OUT OF RANGE
OCTAL 030000 ADDRESS OR OPERAND
CONTENTS OF QuT OF RANGE
BITS S6o53, 1040000 INDEFINITE RESULT
LOCATION S 5+|050000 INDEFINITE RESULT OR ADDRESS
n © QUT OF RANGE
060000 INDEFINITE RESULT OR OPERAND
OUT OF RANGE
070000 INDEFINITE RESULT OR ADDRESS
OUT OF RANGE OR OPERAND OUT
OF RANGE

Figure 3-3. Exchange Jump Package

3-9

The Central Processor enters the information about a new program into the appropriate
registers and stores the corresponding and current informationfrom the interrupted pro-
gram at the same 16 locations in Central Memory. Hence, the controlling information

for two programs is exchanged. A later Exchange Jump may return an interrupted pro-
gram to the Central Processor for completion. The normal relation of the A and X reg-
isters (described earlier) is not active during the Exchange Jump so that the new entries
in A are not reflected into changes in X.

Programming Note

When an Exchange Jump interrupts the Central Processor, several
steps occur to insure leaving the interrupted program in a usable
state for re-entry:

7 1) Issue of instructions halts after issuing all instructions

7
Sk

R4 from the current instruction word in the instruction stack.

2) The Program Address register, P, is set to the address
of the next instruction word to be executed.

3) The issued instructions are executed, and then

4) The two programs are exchanged.

A subsequent Exchange Jump can then re-enter the interrupted pro-
gram at the point it was interrupted, with no loss of program continuity.

To preserve the integrity of an "in-stack'' loop (in the event of an
Exchange Jump), it is illegal to modify the contents of any memory
address which holds an executable instruction (or instruction word)
contained within the loop.

EXAMPLE:

v After executing the
lower instruction at

)| e comens o %Et;;;]Eit

Y+

(from memor ;
Y+3 | x6 = x2 4 x4 | a6 =y 4+ L locations [Y +Y1] 'change. xél.lmp dcomgs
through [Y + 5]) in as indicated, sub-

w77 | e Tl
s .} her o e

loop in its original
Y+6 : un-modified form.

Y+7 \

Assume Exchange JumpX
comes in at this point

3-10

All Central Processor references to Central Memory for new instructions, or to fetch
and store data, are made relative to the reference address. This allows easy relocation
of a program in Central Memory. The Reference Addresgs or beginning address and the
Field Liength define the Central Memory limits of the program. An optional Exit condi-

tion allows the Central Processor to stop on a memory reference outside these limits.

The Program Address register P defines the location of a program step withinthe limits
prescribed. Each reference to memory is made to the address specified by P + RA.

Hence program relocation is conveniently handled through a single change to RA.

A P=0 condition gpecifies address zero and hence RA. This address is reserved for re-

cording program exit (error) conditions.

Exit Mode

The Exit mode feature allows the programmer to select Exit or Stop conditions for the

Central Processor. Exit selections are loaded into bits 36-53 of memory location "nt+3"

of the Exchange Jump package (Figure 3-3). When the Exchange Jump occurs to that

package, the exit selections are stored in the Central Processor and the exit occurs as

soon as the selected condition is sensed. The Exit conditions, as stored in bits 36-53 of

address ''nt+3" in the Exchange Jump package, are shown below in octal format:

EM = 000000 Disable Exit mode - no Exit selections made.
= 010000 Address out of range - an attempt to reference either Central

Memory or Extended Core Storage outside established limits, or
the word count, [(Bj)'I"K:I , in a Mass Memory Communication
instruction, is negative. (For details on action when an address

is out of range, refer to the Increment instructions.)

= 020000 Operand out of range - floating point arithmetic unit received an
infinite operand (see Range Definitions, page 3-14).

= 030000 Address or operand out of range

= 040000 Indefinite operand - floating point arithmetic unit (floating Add,
Multiply, or Divide) attempted to use an indefinite operand
(see Range Definitions, page 3-14)

= 050000 Indefinite operand or address out of range

= 060000 Indefinite operand or operand out of range

= 070000 Indefinite operand or operand or address out of range

3-11

When an error exit is made, the Central Processor records at RA a Stop instruction,
Exit condition (upper 2 octal digits only), and the Program Address at exit time in the

format shown below and jumps to P = 0 (RA), thereby stopping.

59 54 53 48 47 30 29 0
_ —_— {(1
0—0 | 0—X X x| o J—0

I I n
g

STOP EXIT P ZEROS

",

P=(P) +1, AT TIME OF ERROR EXIT.

For error stops the (P)+ 1 gives only an approximate location of the error since the
Central Processor may have issued other instructions to the functional units (one of
which may have been a branch) before the exit was sensed.

When operating under SIPROS, the Peripheral and Control Processor searches for an
unchanging Central Processor P register (any value) to determine if the Central Proces-
sor has stopped. If P=0, an errorstop has occurred; the contents of RA may then be ex-
amined to determine the nature of the error stop. A normal stop does not set P equal to
zero, nor does it cause anything to be stored at RA. The Central Processor stops with

P equal to the Program Address of the word containing the Stop instruction.

3-12

Floating Point Arithmetic

Format

Floating point arithmetictakes advantage of the abilityto express a number with the gen-

eral expression an, where:
k = coefficient
B = base number

n = exponent, or power to which the base number is raised

The base number is constant (2) for binary-coded quantities and is notincluded in the gen-
eral format. The 60-bit floating-point format is shown below. The binary point is con-
sidered to be to the right of the coefficient, therebyproviding a 48-bit integer coefficient,
the equivalent of about 15 decimal digits. The sign of the coefficient is carried in the
highest order bit of the packed word. Negative numbers are represented in one's com-

plement notation.

COEFFICIENT BIASED INTEGER
SIGN EXPONENT COEFFICIENT
l 11 48 s ;
59 58 48 47 0
BINARY
POINT

The 11-bit exponent carries a bias of 210 (20008) when packed in the floating point word
(biased exponent sometimes referred to as characteristic). The bias is removed when
the word is unpacked for computation and restored when a word is packed into floating

format. The bias provides for a signed exponent within the following ranges:

1023

2 = 3777,
20 = 2000 (zero = 00000000000000000000)
9-1023 _ 0000,

Thus, a number with a true exponent of 342 would appear as 2342; a number with a true
exponent of -160 would appear as 1617. Exponent arithmetic is done in one's comple-

ment notation. Floating point numbers can be compared for equality and threshold.

3-13

Normalizing and Rounding

Normalizing a floating point quantity shifts the coefficient left until the most significant
bit is in bit 47. Sign bits are entered in the low-order bits of the coefficient as it is

normalized. Each shift decreases the exponent by one.

A round bit is added (optionally) to the coefficient during an arithmetic process and has
the effect of increasing the absolute value of the operand or result by one-half the value
of the least significant bit. Normalizing and rounding are not automatic during pack or

unpack operations so that operands and results may not be normalized.

Single and Double Precision

The Floating Point Arithmetic instructions generate double precision results. Use of
unrounded operands allows separate recovery of upper and lower half results with proper

exponents; only upper half results can be obtained with rounded operands.

Range Definitions

A result with anexponent so large that it reaches or exceeds the upper limit of octal 3777
(overflow case) is treated as an infinite quantity. A coefficient of all zeros and an expo-
nent of octal 3777 is packed for this case. An optional exit is provided when an infinite
operand is detected in the floating arithmetic units since its use may propagate an indef-
inite result as shown in Table 3-3. No error exit occurs when an infinite or indefinite

result is generated in a functional unit.

TABLE 3-3. INDEFINITE FORMS

o — ® = INDEFINITE ® +- Nz @
® 4+ © = INDEFINITE ® - N =
© e 0 = INDEFINITE @ — N s @
0 +0 = INDEFINITE N + 0 = 0
INDEFINITE +,—,=+, @ (X) = INDEFINITE O + o =0
© + © = ® Oe O0=0
» e = © O+ N-=0
o =0 = o N+ ®=0
WHERE: @ = INFINITY , N = INTEGER,
X = ®,N OR O.

3-14

A result the exponent of which is less than the lower limit of octal 0000 (underflow case)
is treated as a zero quantity., This quantity is packed with a zero exponent and zero co-
efficient. No exit is provided for underflow. A result with an exponent of octal 0000 and
a coefficient which is not zero is a non-zero quantfty and is packed with a zero exponent

and the non-zero coefficient.

Use of either infinity or zero as operands may produce an indefinite result. An exponent
of octal 1777 and a zero coefficient are packed in this case, and an optional exit provided.
Note that zero, infinite, and indefinite results are generated or regenerated in Floating
Arithmetic operations only. The branch instructions test for infinite or indefinite quan-
tities.

In all Floating Arithmetic operations, an attempt to normalize an indefinite quéntity re-
turns the original quantity, e.g., if the number 17770237...were to be normalized, the
result would be the same as the original number.

Tests for infinite and indefinite operands are made only in the Floating Add, Multiply,
and Divide units. Only the twelve most significant bits of each operand are tested for
these special forms.

In the Multiply and Divide units (but not in the Floating Add unit) there is a special test

for zero operands as determined by the twelve most significant bits.

Thus the special operand forms (in octal) are:

37T7T7X...X + @) }

infinite operands

4000X...X (-©)

777X, .. X (+IND)

6000X. .. X (-IND) indefinite operands

0000X...X (+0) :'L zero operands for
_ Multiply and Divide

T7T7TIX. .. X (-0) units only

3-15

Whenever infinite, indefinite, or zero results are generated in accordance with the rules

given in Table 3-3 and Appendix F, only the following octal words can occur as results:

37770...0 =+ © (result)
40000...0 = - ® (result)
17770...0 = +IND (result)
00000...0 =+0 (result)

Note that in these cases the 48 least significant bits of the result are zeros. Indefinite
and zero results generated in accordance with Table 3-3 and Appendix F are always pos-
itive, but the sign of infinite results is determined by the usual algebraic sign conven-

tion. For example:

(+0)/(-0) = +IND = 17770...0
(+N)*(-0) =40 = 00000...0
(-@)/(-0) =+ = 37770...0
(to)/(-0) = - = 40000.,.0

There is no special treatment of zero operands in the Floating Add unit. Zero coeffi-
cients and the forms 0000X...X and 7777X...X are not specially detected, and unstand-

ardized zero results can be produced. (See description of 30 instruction, page 3-33.)

Converting Integers to Floating Format

Conversion of integers to floating point format makes use of the shift unit and the zero
constant in increment register B0. The B0 quantity provides for generation of exponent

bias in this case. For example, the instructions:

e Sum of Bj and Bk to Xi (where i= 2, j=3, k=4)
e Pack Xi from Xk and Bj (wherei=2, j=0, k= 2)

form an 18-bit signed integer in operand register X2 as a result of the addition of the
contents of increment registers B3 and B4. The integer coefficient with its sign, plus
the octal 2000 exponent is then packed into the floating format shown earlier. The coef-

ficient is not normalized but may be with a Normalize instruction.

Fixed Point Arithmetic

Fixed point addition and subtraction of 60-bit numbers are handled in the Long Add Unit

(6600 and 6800). Negative numbers are represented in one's complement notation, and

3-16

overflows are ignored. The sign bit is in the high-order bit position (bit 59) and the bi-
nary point is at the right of the low-order bit position (bit 0).

The Increment Units provide an 18-bit fixed point add and subtractii 11ty Negative -
numbers ar‘é"‘re"pr'vesented in one's complement notation and overflows afveiignored. The
sign bit is in the high-order bit position (bit 17), and the binary point is at the right of
the low-order bit position (bit 0). The Increment Units allow program indexing through

the full range of Central Memory addresses.

Fixed point integer addition and subtraction are possible in the Floating Add Unit provid-
ing the exponents of both operands are zero and no overflow occurs. The unit performs
the one's complement addition (or subtraction) in the upper half of a 98-bit accumulator.

If overflow occurs, the unit shifts the result one place right and adds one to the exponent,
thereby producing a floating point quantity. Thus, care must be used in pefforming fixed

point arithmetic in the Floating Add Unit.

Fixed point integer multiplication is handled in the multiply functional units as a subset
operation of the unrounded Floating Multiply (40, 42) instructions. The multiply is dou-
ble precision (96 bits) and allows separate recovery of upper and lower products. The
multiply requires that one of the integer operands be converted (by program) to floating
format to provide a biased exponent. This insures that results are not sensed as under-

flow conditions. The bias is removed when the result is unpacked.

An integer divide takes several steps and makes use of the Divide and Shift Units. For

example, an integer quotient X1 = X2/X3 is produced by the following steps:

Instructions » Remarks
1) Pack X2 from X2 and B0 © Pack X2
2) Pack X3 from X3 and B0 , , Pack X3
3) Normalize X3 and X0 and B0 Normalize X3 (divisor)
4) Floating quotient of X2 and X0 to X1 - - Divide
5) Unpack X1 to X1 and B7 Unpack quotient
6) Shift X1 nominally left B7 places Shift to integer position

3-17

The divide requires that:
1) both integer (247 maximum) operands be in floating format
and 2) the divisor be shifted 48 places left
or 3) the quotient be shifted 48 places right

or 4) any combination of n left-shifts of the divisor and 48-n right shift
of the quotient be accomplished.

The Normalize X3 instruction shifts the divisor n places left (n 2 0), providinga divisor

exponent of -n. The quotient exponent then is: 0 - (-n) - 48 = n - 48 < 0.

After unpacking and shifting nominally left, the negative (or zero) value in B7 shifts the
quotient 48 - n places right, producing an integer quotient in X1. A remainder may be

obtained by an integer multiply of X1 and X3 and subtracting the result from X2.

Description of Central Processor Instructions

This section describes the Central Processor instructions. Instruction grouping follows

a somewhat pedagogical approach(i.e., simple to complex)and does not necessarily re-.

late instructions to the functional units (in the 6600 and 6800 systems) which execute
them. Central Processor instructions as related to functional units are tabulated in Ap-

pendix E. Instruction Execution Times.

TABLE 3-4. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

DESIGNATOR USE

A Specifies one of eight 18-bit address registers.

B Specifies one of eight 18-bit index registers; B0 is fixed and
equal to zero. e

fm A 6-bit instruction code.

i A 3-bit code specifying one of eight designated registers
(e.g., Ai).

j A 3-bit code specifying one of eight designated registers
(e.g., Bj).

jk A 6-bit constant, indicating the number of shifts to be taken.

k A 3-bit code specifying one of eight designated registers
(e.g., BKk).

K An 18-bit constant, used as an operand or as a branch
destination (address).

X Specifies one of eight 60-bit operand registers.

3-18

Preceding the description of each instruction is the octal code, mnemonic code and ad-
dress field, the instruction name and length. Mnemonic codes and address field mne-

monics are from ASCENT, the Central Processor Assembly language.

EXAMPLE:

12 BXi XijtXk Logical Sum of Xj and Xk to Xi, (15 Bits)
- o~ e \ v 7\ v /
Octal Mnemonic Address Instruction Name Instruction

Code Code Field Length

Instruction formats are also given; hashed lines within a format indicate these bits are

not used in the operation.

Pr’ogram Stop and No Operation

00 PS Program Stop (30 Bits)

LR A/

29 24 23 0

This instruction stops the Central Processor at the current step in the program. An ex-

change Jump is necessary to restart the Central Processor.

46 NO No operation (Pass) (15 Bits)

| LN /A7 /44704777

0

This instruction is a ''do-nothing'" instruction that is typically used to pad the program

between certain program steps.

EXAMPLE:

59

P 30-BIT INST.

15-8BIT INST.

PASS

P+1 30-BIT INST,

30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word

at P. Since the next instruction is 30 bits, it cannot fit in P and must be

placed in P + 1.

Increment
50 SAi Aj + K Set Aito Aj + K (30 Bits)
51 SAi Bj + K Set Aito Bj + K (30 Bits)
52 SAi Xj + K Set Aito Xj + K (30 Bits)
I fm l i l i
29 24232120 18 |7 p o}
,"/~
§362F
53 SAi Xj + Bk Set Ai to Xj + Bk (15 Bits)
54 SAi Aj+ Bk Set Aito Aj + Bk (15 Bits)
55 SAi Aj— Bk Set Aito Aj — Bk (15 Bits)
56 SAi Bj + Bk Set Aito Bj + Bk (15 Bits)
57 SAi Bj — Bk Set Ai to Bj — Bk (15 Bits)
fm : i]
14 9 8 6 o}

These instructions perform one's complement addition and subtraction of 18-bitoperands
and store an 18-bit result in address register i. Overflow, in itself, is ignored, but an

address range fault may result from overflow in this set of instructions.

Operands are obtained from address (A), increment (B), and operand (X) registers as
well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj

operand register are the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is performed to the address specified by the
final content of address registers Al - A7. The operand read from memory address
specified by Al - A5 is sent to the corresponding operand register X1 - X5. When A6 or
A7 is referenced, the operand from the corresponding X6 or X7 operand register is

stored at the address specified by A6 or AT.

NOTE

If, in this category of instructions, the result placed in
address register Ai is an address out of range, the following
occurs: (Note that this action is independent of an Exit selec-
tion on Address Out of Range.)

Ifi = 1-5: Operand register Xi is cleared to all zeros and the
contents of memory location (Ai) are unchanged.

Ifi= 6 or 7: Operand register Xi retains its original contents
and the contents of memory location (Ai) are unchanged.

EXAMPLE: Initial Quantities: -
50 SAi Aj+K i=4 K = 234567, ‘ A
SAy AgtE 38 Ag T 3211104
SA, = 4321004+ 234567 .A6==432100gﬂw P
SA, = 666667, X, = 00, .

Storage location 666667 = 7. .. 753421046008

Final Quantities:

b
n

666667

4 8
& Ag = 4321005
X, = 7...75342104600,

3-21

60 SBi Aj + K Set Bito Aj + K
61 SBi Bj + K Set Bito Bj + K
62 SBi Xj + K Set Bito Xj + K
fm i j
29 24 23 2120 1817 o}

63 SBi Xj+ Bk Set Bi to Xj + Bk
64 SBi Aj + Bk Set Bi to Aj + Bk
65 SBi Aj—Bk Set Bi to Aj — Bk
66 SBi Bj + Bk Set Bi to Bj

66 SBi Bj + Bk Set Bi to Bj + Bk
67 SBi Bj — Bk Set Bi to Bj — Bk

fm i

(30 Bits)
(30 Bits)
(30 Bits)

(15 Bits)
(15 Bits)
(15 Bits)

(15 Bits)
(15 Bits)

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18-bit result in increment register Bi. An overflow condition is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as
well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj

operand register are the truncated lower 18 bits of the 60-bit word.

70 SXi Aj + K Set Xi to Aj + K (30 Bits)
71 SXi Bj + K Set Xi to Bj + K (30 Bits)
72 SXi Xj + K Set Xi to Xj + K (30 Bits)

L tm [i]i] ‘ |

29 2423 2120 1817

o

3-22

73
74
75
76
77

These instructions perform one's complement addition and subtraction of 18-bit oper-
ands and store an 18-bit result into the lower 18 bits of operand register Xi. The sign of

the result is extended to the upper 42 bits of operand register Xi.

S$Xi
SXi
SXi
SXi
SXi

is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant).

Xj+ Bk Set Xi to Xj + Bk
Aj+ Bk Set Xi to Aj + Bk
Aj — Bk Set Xi to Aj — Bk
Bj + Bk Set Xi to Bj + Bk
Bj — Bk Set Xi to Bj — Bk
fm K j k
14 9 8 5 3 2 0

operand register are the truncated lower 18 bits of the 60-bit word.

0... 06522243108 + 511245

1

It

i

y

[N
1}

8

7...7777735555

EXAMPLE: 73
173 8SXi Xj+ Bk
SX, Xg+ B
5X, =
5X,, =

8

3-23

Initial Quantities:

~
it

0...0745321402

2 8
XS =0... 06522243108
B1 = 5112458

Final Quantities:

Nd
N
1

7...7T777735555

2 8
X3 =0... 06522243108
B1 = 5112458

(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)

An overflow condition

Operands obtained from an Xj

Fixed Point Arithmetic

36 IXi Xj + Xk Integer sum of Xj and Xk to Xi (15 Bits)

ER R R R

This instruction forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in operand register Xi. An overflow condition
is ignored.

37 IXi Xj— Xk Integer difference of Xj and Xk to Xi (15 Bits)

mo | i | G |

This instruction forms the 60-bit one's complement difference of the quantities from op-
erand registers Xj (minuend) and Xk (subtrahend) and stores the result in operand regis-

ter Xi. An overflow condition is ignored.

47 CXi Xk Count the number of “I’s” in Xk to Xi (15 Bits)
\)«\f.wc;w LA
I fm | /IR
14 9 8 6 5 3 2 (o}

This instruction counts the number of ''1's" in operand register Xk and stores the count

in the lower order six bits of operand register Xi.

3-24

EXAMPLE: Initial Quantities:

47 CXi Xk 1i=4 Xl =0 ... 0543321

8

4 1 X, = 23420... 00055474
Xy-11y
Final Quantities:
X1 =0 ... 05433218
X4 =0 ... 00000118
Liogical
10 BXi Xj Transmit Xj to Xi (15 Bits)

fm i 2777

i4 9 8 6 5

This instruction transfers a 60-bit word from operand register Xj to operand register
Xi.

11 BXi Xj * Xk Logical Product of Xj and Xk to Xi (15 Bits)

fm|i|j|k

This instruction forms the logical product (AND function) of 60-bit words from operand
registers Xj and Xk and places the product in operand register Xi. Bits of register Xi

are set to "'1" when the corresponding bits of the Xj and Xk registers are '"1" as in the
following example:

Xj = 0101
Xk =1100
Xi= 0100

3-25

12 BXi Xj + Xk Logical sum of Xj and Xk to Xi (15 Bits)

I N R

14 9 8 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand reg-
isters Xj and Xk and places the sum in operand register Xi. Bits of register Xi are set

to ""1"if the correspondingbit of the Xjor Xk registeris a ""1" as in the following example:

Xj = 0101
Xk = 1100
Xi = 1101

13 BXi Xj — Xk Logical difference of Xj and Xk to Xi (15 Bits)

L om T T i [«]

14 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand
registers Xj and Xk and places the difference in operand register Xi. Bits of register Xi
are set to "1'" if the corresponding bits in the Xj and Xk registers are unlike as in the

following example:

Xj = 0101
Xk= 1100
Xi = 1001

14 BXi —Xk Transmit the complement of Xk to Xi (15 Bits)

L w [i« V20 «]

14 9 8 3 2 0

3-26

This instruction extracts the 60-bit word from operand register Xk, complements it, and

transmits this complemented quantity to operand register Xi.

15 BXi —Xk * Xj Logical product of Xj and complement of Xkto Xi (15 Bits)

im0 0 | k]

This instruction forms the logical product (AND function) of the 60-bit quantity from op-
erand register Xj and the complement of the 60-bit quantity from operand register XXk,
and places the result in operand register Xi. Thus, bits of Xi are set to ""1'" when the
corresponding bits of the Xj register and the complement of the Xk register are "1'" as in

the following example:

Xj= 0101
Complemented Xk= 0011

Xj = 0001

16 BXi —Xk + Xj Logical sum of Xj and complement of Xk to Xi (15 Bits)

[@ T 7 T]

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand
register Xj and the complement of the 60-bit word from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to ''1" if the corresponding

bit of the Xjregister or complement of the Xk register is a ''1"' as in the following exam-

ple.
Xj = 0101
Complemented Xk = 0011
Xi =

= 0111

17 BXi —Xk — Xj Logical difference of Xj and complement of Xk to Xi (15 Bits)

[m T v T v T «]

This instruction forms the logical difference (exclusive OR) of the quantity from operand
register Xj and the complement of the 60-bit word from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to ''1" if the corresponding

bits of register Xjand the complement of register Xk are unlike as in the following exam-

ple.
Xj = 0101
Complemented Xk = 0011
Xi = 0110
Shift
20 LXi jk Left shift Xi, jk places (15 Bits)

fm I ik —|

14 9 8 6 5 0

This instruction shifts the 60-bit word inoperand register Xi left circular jk places. Bits

shifted off the left end of operand register Xi replace those from the right end.

The 6-bit shift count jk allows a complete circular shift of register Xi.

21 AXi ik Arithmetic right shift Xi, jk places (15 Bits)

This instruction shifts the 60-bit word in operand register Xi right jk places. The right-

most bits of Xi are discarded and the sign bit is extended.

22 LXi Bj Xk Left shift Xk nominally Bj places to Xi (15 Bits)

L om0 T T k]

This instruction shifts the 60-bit quantity from operand register Xk the number of places
specified by the quantity in increment register Bj and places the result in operand regis-
ter Xi.

1) If Bj is positive, the quantity from Xk is shifted left-circular. (The low order
six bits of Bj specify the shift count.)

2) If Bj is negative, the quantity from Xk is shifted right (end off with sign
extension). The one's complement of the low order eleven bits of Bj specify
the ghift count.) If any of bits 26—210

shift is not performed and the result register Xi is cleared to all zeros.

, after complementing, are '"1's", the

23 AXi Bj Xk Arithmetic right shift Xk nominally Bj places to Xi (15 Bits)

fm |i[j|k

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand regis-
ter Xi.

1) If Bj is positive, the quantity from register Xk is shifted right (end-off with

3-29

sign extension), (The low order eleven bits of Bj specify the shift count.) If
any of bits 96910 4re "1's", the shift is not performed and the result register

Xi is cleared to all zeros.

2) If Bj is negative, the quantity from register Xk is shifted left circular. (The
complement of the low order six bits of Bj specify the shift count.)

24 NXi Bj Xk Normalize Xk in Xi and Bj (15 Bits)

mo | 0 | 0]

This instruction normalizes the floating point quantity from operand register Xk and
places it in operand register Xi. The number of left shifts necessarytonormalize the
guantity is entered in increment register Bj. A Normalize operation may cause under-
flow which will clear Xi to all zeros regardless of the original sign of Xk. Normalizing

either a plus or minus zero coefficient sets the shift count (Bj) to 4810 and clears Xi to

all zeros.

If Xk contains an infinite quantity (3777X...X or 4000X...X) or an indefinite quantity
(1777X...X or 6000X...X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do not occur.

25 ZXi Bj Xk Round and normalize Xk in Xi and Bj (15 Bits)

fm i j k

from operand register Xk is rounded before it is normalized. Normalizing a zero coef-

ficient places the round bitin bit 47 and reduces the exponent by 48. Note that the same

rules apply for underflow.

If Xk contains an infinite quantity (3777X...X or 4000X...X) or anindefinite quantity
(1777X...X or 6000X...X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do not occur.

26 UXi Bj Xk Unpack Xk to Xi and Bj (15 Bits)

[fm N

This instruction unpacks the floating point quantity from operand register Xk and sends
the 48-bit coefficienttooperand register Xiand the 11-bit exponentto increment register
Bj. The exponent bias is removed during Unpack so that the quantity in Bj is the true

one's complement representation of the exponent,

The exponent and coefficient are sent to the low-order bits of the respective registers as

shown below:

SIGN BIASED EXPONENT COEFFICIENT
PACKED QUANTITY [] ¥ | a8 Xk
59 58 8 47 o
UNBIASED
EXPONENT
EXPONENT SIGN COEFFICIENT
EXTENDED SIGN_EXTENDED
wenckeo &2, W% xi
17 109 o 59 48 47 o

3-31

27 PXi Bj Xk Pack Xi from Xk and Bj (15 Bits)

L T T 5 T %]

This instruction packs a floating point number in operand register Xi. The coefficient of
the number is obtained from operand register Xk and the exponent from increment regis-
ter Bj. Bias is added to the exponent during the Pack operation. The instruction does

not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective
registers and packed as shown in the illustration for the Unpack (26) instruction. Thus,
bits 48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow or

underflow.
Note that if Xk is positive, the packed exponent occupying positions 48 to 58 of Xi is ob-

tained from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, the complement

of this 11-bit quantity is packed.

43 MXi jk Form mask in Xi, jk bits (15 Bits)

| fm i ik |

14 9 B8 6 5 0

This instruction forms a mask in operand register Xi. The 6~bit quantity jk defines the

number of '1's" in the mask as counted from the highest order bit in Xi.

The contents of operand register i = 0 when jk = 0.

R4
L Ot o d,
A

: 17 [[A R o
Floating Point Arithmetic
.30 FXi Xj + Xk Floating sum of Xj and Xk to Xi (15 Bits)
Teew s EREGE
3 3
[fm I
14 9 8 6 5 3 2 o]

This instruction forms the sum of the floating point quantities from operand registers
Xj and Xk and packs the result in operand register Xi. The packed result is the upper

half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the

smaller exponent is entered intothe upper half of a 98-bit accumulator. The coefficient
is shifted right by the difference of the exponents. The other coefficient is then added
into the upper half of the accumulator. If overflow occurs, the sum is right-shifted one
place and the exponent of the resultincreased by one. Theupper half of the accumulator
holds the coefficient of the sum, which is notnecessarily in normalized form. The ex-

ponent and upper coefficient are then repacked in operand register Xi.
If both exponents are zero* and no overflow occurs, the instruction effects an ordinary

integer addition. For treatment of special operands and/or indefinite forms, referto
Table 3-3 and Appendix F.

31 FXi Xj — Xk Floating difference Xj and Xk to Xi (15 Bits)

w1 T]
14 9 8 6 5 3 2 0

This instrustion forms the difference of the floating point quantities from operand reg-
isters Xj and Xk packs the result in operand register Xi. Alignment and overflow oper-
ations are similartothe Floating Sum (30) instruction, and the difference is not neces-

sarily normalized. The packed result is the upper halfof a double precision difference.

An ordinary integer subtraction is performed when the exponents are zero. For treat-

ment of special operands and/or indefinite forms, refer to Table 3-3 and Appendix F.

*A zero exponent is 20008.

3-33

32 DXi Xj + Xk Floating DP sum of Xj and Xk to Xi } (15 Bits)

fmliljlkl

This instructionformsthe sum oftwo floating point numbers as in the Floating Sum (30)
instruction, but packs thelowerhalf of the double precision sum with an exponent 48less

than the upper sum. For treatment of special operands and/or indefinite forms, refer

to Table 3-3 and Appendix F.

33 DXi Xj - Xk Floating DP difference of Xj and Xk to Xi (15 Bits)

m i] 0 T

This instruction forms the difference of two floating point numbers as in the Floating
Difference (31) instruction, but packs the lower half of the double precision difference

with an exponent of 48 less than the upper sum. Fortreatment of special operands and/

or indefinite forms, refer to Table 3-3 and Appendix F.

3¢ RXi Xj + Xk Round floating sum of Xj and Xk to Xi (15 Bits)

LN T N

This instruction formsthe round sum of the floating point quantities from operand regis-
ters Xjand Xk and packs the upper sum of the double precision result in operand regis -

ter Xi. The sum is formed in the same manner as the Floating Sum instruction but the

3-34

operands are rounded before the addition, as shown below, to produce a round sum.
1) A round bit is attached at the right end of both operands if:

a) Dboth operands are normalized, or

b) the operands have unlike signs.

2) A round bit is attached at the right end of the operand with the larger exponent

for all other cases.

For treatment of special operands and/or indefinite forms, refer to Table 3-3 and

Appendix F.

35 RXi Xj — Xk Round floating difference of Xj and Xk to Xi (15 Bits)

fm | j k

This instruction forms the round difference of the floating point quantities from operand
registers Xj and Xk and packs the upper difference of the double precision result in op-
erand register Xi. The difference is formed in the same manner as the Floating Dif-
ference (31) instruction but the operands are rounded before the subtraction, as shown

below, to produce a round difference.
1} A round bit is attached at the right end of both operands if:

a) Dboth operands are normalized, or

b) the operands have like signs.

2) A round bit is attached at the right end of the operand with the larger exponent

for all other cases.

For treatment of special operands and/or indefinite forms, refer to Table 3-3 and

Appendix F.

40 FXi Xj * Xk Floating product of Xj and Xk to Xi (15 Bits)

fm i | k

This instruction multiplies two floating point quantities obtained from operand registers
Xj (multiplier) and Xk (multiplicand) and packs the upper product result in operand

register Xi.

The result is a normalized quantity only when both operands are normalized;the exponent

in this case is the sum of the exponents plus 47 (or 48).
The result is unnormalized when either or both operands are unnormalized; the exponent

in this case isthe sum of the exponents plus 48. Fortreatment of special operands and/

or indefinite forms, refer to Table 3-3 and Appendix F.

41 RXi Xj * Xk Round floating product of Xj and Xk to Xi (15 Bits)

mo | 0 | 0 |

This instruction multiplies the floating point number from operand register Xk (multi-

plicand), by the floating point number from operand register Xj, and packs the upper

product result in operand register Xi. (No lower product available.) During the first

iteration of the multiply step, a partial carry is forced in bit 47. At the conclusion of

the multiply step, rounding is accomplished by adding one to the upper product if the
portion of the product to the right of the binary point is = one-half.

The result is a normalized quantity only when both operands are normalized; the expo-

nent in this case is the sum of the exponents plus 47 (or 48).

3-36

The result is unnormalized when either or both operands are unnormalized; the exponent
in this case is the sum ofthe exponents plus 48. Fortreatment of special operands and/

or indefinite forms, refer to Table 3-3 and Appendix F.

42 DXi Xj * Xk Floating DP product of Xj and Xk to Xi (15 Bits)

fm il 0 |«

This instruction multiplies two floating point quantities obtained from operand registers
Xj and Xk and packs the lower product in operand register Xi. The result is not neces-
sarily a normalized quantity. The exponent of this result is 48 less than the exponent
resulting from a 40 instruction using the same operands. For treatment of special op-

erands and/or indefinite forms, refer to Table 3-3 and Appendix F.

44 FXi Xj / Xk Floating divide Xj by Xk to Xi (15 Bits)

[w T T 7 T v

14 9 8 6 5 3 2 4]

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi.

The exponent of the result in a no~overflow case is the difference of the dividend and

divisor exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
quotient one place. In this case the exponent isthe difference of the dividend and divisor

exponents minus 47.

3-37

The result is a normalized quantity when both the dividend and the divisor are normal-
ized. Note that the machine makes no note of divide faults, i.e., when the dividend >
two times the divisor. To avoid possible incorrect results from using unnormalized
operands, the operands in this instruction should be normalized. For treatment of

special operands and/or indefinite forms, refer to Table 3-3 and Appendix F.

45 RXi Xj | Xk Round floating divide Xj by Xk to Xi (15 Bits)

This instruction divides the floating quantity from operand register j (dividend) by the
floating point quantity from operand register Xk (divisor) and packs the round quotient in
operand register Xi. A one-third round bit is added to the least significant bit of the
dividend before division starts. (Rounding on a divide operationforces bit 0 of the orig-
inal dividend Xj to a''1'" and makes the portion of the dividend to the right of the binary

point equal to one-third (.2525. .. 258).

The result exponent in a no-overflow case is the difference of the dividend and divisor

exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
guotient one place; in this casethe exponent is the difference of the dividend and divisor

exponents minus 47.

The resultis anormalized quantity whenboth the dividend and the divisor are normalized.
Note that the machine makes no note of divide faults, i.e., whenthedividend 2two times
the divisor. To avoid possible incorrect results from using unnormalized operands, the
operands in this instruction should be normalized. For treatment of special operands

and/or indefinite forms, refer to Table 3-3 and Appendix F,

3-38

Branch

01 RJ K Return jump to K (30 Bits)

m V7 : l

29 24 23 18 17 0

The instruction stores an 04 unconditional jump and the current address plus one (P +
1) in the upper halfofaddress K, then branches to K + 1 for the next instruction. Note
that this instruction is always out of the instruction stack, thus voiding the stack.

The octal word at K after the instruction appears as follows:

UNCONDITIONAL

JUMP P41
—_— A
4 / \
KI 0 4 0 o C XXXXXX |ooo /‘f o|
59 N 3029 0
Bi = Bj

A jump to address Kat the end of the branch routine returns the program tothe original

sequence.,

02 JP Bi + K Jump to Bi +K (30 Bits)

fm ! i }//A K

29 24 23 21201817 0

This instruction adds the contents of increment register Bi to K and branches to the
address specified by the sum. The branch address is K when i = 0. Addition is per-

formed modulo 2 18_ 1.

3-39

Note that this instruction is always out of the instruction stack, thus voiding the stack.
For anunindexed, unconditional jump, the 04 instructionwith i = Jj = 0 is a better choice.
Thus, if this instruction is contained in a tight loop, the instruction at K can be obtained

from the stack, if possible.

030 ZR Xj K Jump to K if Xj =0 (30 Bits)
031 NZ Xj K Jump to Kif Xj # 0 (30 Bits)
032 PL Xj K Jump to K if Xj = plus (positive) (30 Bits)
033 NG Xj K Jump to K if Xj = negative (30 Bits)
034 IR Xj K Jump to K if Xj is in range (30 Bits)
035 OR Xj K Jump to K if Xj is out of range (30 Bits)
036 DF Xj K Jump to K if Xj is definite (30 Bits)
037 ID Xj K Jump to K if Xj is indefinite (30 Bits)

L[] X Bl

29 21201817

These instructions branch to K when the 60-bit word in operand register Xj meets the
condition specified by thei digit. The instruction allows zero, sign, and magnitude tests

for fixed or floating point words.

The following applies to tests made in this instruction group:
a) The 030 (ZR) and 031 (NZ) operations test the full 60-bit word in Xj. The

words 000... 000 and 777... 777 are treated as zero. All other words are

non-zero.

by The 032 (PL) and 033 (NG) operations examine only the sign bit (259) of Xj. If
the sign bit is zero, the word is positive; if the sign bit is one, the word is
negative. Thus, the sign test is valid for fixed point words or for coefficients

in floating point words.

3-40

¢) The 034 (IR) and 035 (OR) operations examine the upper-order 12 bits of Xj.

Both plus and minus infinity are detected:

3777XX... XX and 4000XX...XX are out of range; all other words

are in range.

d) The 036 (DF) and 037 (ID) operations examine the upper-order 12 bits of Xj.

Both plus and minus indefinite forms are detected:

1777XX. .. XX and 6000XX...XX are indefinite; all other words are

definite.
04 EQ Bi Bj K Jump to K if Bi=Bj (30 Bits)
05 NE Bi Bj K Jump to K if Bj = Bj (30 Bits)
06 GE BiBj K Jump to K if Bi = Bj (30 Bits)
07 LT Bi Bj K Jump to K if Bi < Bj (30 Bits)
L ofm i]i] K H
29 24 23 2| 20 18 17 ‘ (o}

These instructions test an 18-bit word from register Biagainst an 18-bitword from reg-
ister Bj (both words signed quantities) for the condition specified and branch to address

K on a successful test. All tests against zero (all zeros) can be made by setting Bj = BO.

The following rules apply in the tests made by these instructions:
a) Positive zero is recognized as unequal to negative zero, and
b) Positive zero is recognized as greater than negative zero, and

¢) A positive number is recognized as greater than a negative number.

Mass Memory Communication

This category of instructions provides the ability to communicate with Extended Core
Storage. To avoid cumbersome nomenclature, this description uses the term Mass
Memory, rather than the term Extended Core Storage. Mass Memory communication

instructions as related to the 6411 are described in Appendix A.

3-41

This section describes Mass Memory Communication instructions {and ramifications)

only; information on Mass Memory itself is available in separate literature.

011* REC Bj + K Read Extended Core Storage (30 Bits)

w11 K]

29 21 20 1817 0

This instruction initiates a Read operation to transfer [(Bj) + K] 60-bit words from Mass

Memory to Central Memory. The initial Mass Memory address is [(XO) + RAECS]; the
initial Central Memory address is [(AO) + RACM].
012* WEC Bj + K Write Extended Core Storage (30 Bits)

fmi [7] K]

29 2120 18 17

o

This instruction initiates a Write operation to iransfer [(Bj) + K] 60-bit words from
Central Memory to Mass Memory. The initial Central Memory address is [(AO) +

RACM]; the initial Mass Memory address is [(XO) + RAECS]'

Address Formation: The starting address in Mass Memory is formed by taking the trun-

cated lower-order 24 bits of operand register X0 and adding this quantity to RAECS' In
the addition, both quantities are taken as positive with the upper-order 36 sign bits (zeros)
extended.

RAECS is the Reference Address within Mass Memory, and FLECS is the allotted Field
Length within Mass Memory. Both are 24-bit quantities contained in the Exchange Jump
package; when the program specified by this package is being executed, these gquantities

are held in registers in the Central Processor.

*This instruction must be located in the upper order position of the instruction word.

3-42

The starting address in Central Memory is formed by a similar process; the contents
of address register A0 are added to RACM' RACM is the Reference Address within
Central Memory, and FLCM is the allotted Field Length within Central Memory. Both

are 18-bit quantities contained in the Exchange Jump package.

Note that adding the Reference Addresses to (A0) and (X0) is accomplished automatically
when the Read or Write instructions are executed. The absolute addresses in A0 and
X0, however, must be placed there by the program prior to executing the Mass Memory

Communication instructions.

Address Range Faults: Three address range fault conditions can arise when executing

the Mass Memory Communication instructisig:

Word count fault
Central Memory address out oi range

® Mass Memory address out of range
a) Word Count

If, in forming the word count [(B}) - K], the result is negative, an
address range fault occurs. If the Address Out of Range bit is set in the
Exit Mode register, an error stop occurs; if this bit is clear, the Central

Processor passes to the next instruction.

b) Central Memory Address

Central Memory address out of range is checked by comparing FLCM
with the sum [(A0) + (B)) + K |. FL

or an address range fault occurs. If the Address Out of Range bit is set

must be greater than this sum

in the Exit Mode register, an error stop occurs; if this bit is clear, the

Central Processor passes to the next instruction.
c) Mass Memory Address

Mass Memory address out -of range is checked by comparing FLECS
with the sum [(XO) + (Bj) +'K] . In the comparison, FLECS is a
24-bit quantity with 36 upper-order bits of sign extended; X0 holds

the 24-bit address quantity with 36 zeros occupying the upper-order bit
positions. The result of this subtraction should always be negative;

if positive, an address range fault occurs. If the Address Out of Range
bit is set in the Exit Mode register, an error stop occurs; if this

bit is clear, the Central Processor passes to the next instruction.

3-43

Note that address range checks are made on the entire block of both Mass and Central
Memory addresses before the transfer (Read or Write) is begun. If any address in the
block to be transferred is out of range, either in Central or Mass Memory, no datais

transferred.

Exchange Jump During Mass Memory Communication: If an Exchange Jump occurs while

a Mass Memory transfer is occurring, the transfer is truncated at the next record gap
(the Extended Core Storage Coupler transmits a fake End of Transfer signal to the
Central Processor) and the exchange takes place. The contents of P, the initial mem-
ory addresses, and associated information are stored into the Exchange Jump package
in Central Memory. This permits a return Exchange Jump to begin with the Mass Mem-
ory Communication instructionand restart the Mass Memorytransfer. Note that the
transfer does not resume at the point it was truncated; the entire transfer must be re-

i

peated.

3-44

4. PERIPHERAL AND CONTROL PROCESSORS

ORGANIZATION

The ten Peripheral and Control Processors (for simplicity sometimes simply called
Peripheral Processors) are identical and operate independently and simultaneouslyas
stored-program computers. Thus ten programs may be running at one time. A
combination of processors can be involved in one problem, the solution of which may
require a variety of I/O tasks plus use of Central Memory and Central Processor.

Figure 4-1 shows data flow between 1/O devices, the processors, and Central Mem-

ory.

The Peripheral and Control Processors act as system control computers and I/0
processors. This permits the Central Processor to continue high-speed computations

while the Peripheral and Control Processors do the slower I/O and supervisory

operations.

) CENTRAL PROCESSOR
INPUT ~— —————— OUTPUT —>
6600 B 6800|6400
START =il | 10 FUNCTIONS, =z
INCLUDING? =
«2 ADDERS frd
o0
+2 MULTIPLIERS | @
« | DIVIDER w2
REAL +2 INCREMENTORS| = &
TIME L 1 SHIFT 7=
cLock 10. 0 aoo:.EAN 3 i0
CHANNEL PERIPHERAL | BRANGH E PERIPHERAL
8 CoNTROL CENT = CENTRAL 8 CONTROL
PROCESSORS RAL PROCESSORS
MEMORY OPERATING FROM MEMORY
12 24 REGISTERS 12
z/0 —! =1 » I/0
CHANNELS EACH 131,072 . BRQgFSRTEEsRss 131,072 EACH CHANNELS
PERIPHERAL 60-BIT 60-BIT PERIPHERAL
t 8 CONTROL WORDS + 8 INCREMENT WORDS 8 CONTROL ‘
PROCESSOR REGISTERS PROCESSOR
HAS A 4096 . HAS A 4096
PERIPHERAL WORD CORE BR‘;ZFSRTA?RDS WORD CORE PERIPHERAL
EQUIPMENT MEMORY MEMORY EQUIPMENT
FROM A3
+ 32 INSTRUCTION
DISK FILES ETACK (8800 8 6800) DISK FILES
MAGNETIC oR MAGNETIC
TAPES TAPES
« I INSTRUCTION enn
CARD REGISTER (6400 D
READERS ’ ! PUNCHES
CONSOLES CONSOLES
LINE
ETC. PRINTERS
ETC:

Figure 4-1. Flow Chart: 6000 Series System

4-1

Each processor has a 12-bit, 4096 word random-access memory (not a part of Central
Memory) with a cycle time of 1000 ns (major cycle*). Execution time of processor
instructions is based on memory cycle time. A minor cycle is 1/10 of a major cycle

and ig another basic time interval.

All processors communicate with external equipment and each other on 12 independent,
bi-directional I/O channels. All channels are 12-bit (plus control) and each may be
connected to one or more external devices. Only one external equipment can com-
municate on one channel at one time, but all 12 channels can be active at one time.

Data is transferred into or out of the system in 12-bit words; each channel has a single
register which holds the data word being transferred in or out. Each channel operates

at a maximum rate of one word per major cycle.

Data flows between a processor memory and the external device in blocks of words
(a block may be as small as one word). A single word may be transferred between

an external device and the A register of a processor.

The I/O instructions direct all activity with external equipment. These instructions
determine the status of and select an equipment on any channel and transfer data to or
from the selected device. Two channel conditions are made available toall processors

as an aid to orderly use of channeis.

® Each channel has an active/inactive flag to signal that it has been

selected for use and is busy with an external device.

] Each channel has a full/empty flag to signal that a word (function or data)

is available in the register associated with the channel.

Either state of both flags can be sensed. In general, I/O operation involves the
following steps:

1) Determine channel inactive
2) Determine equipment ready
3) Select equipment
4) Activate channel
5) Input/Output data

6) Disconnect channel

* Major cycle = 1000 ns in 6400 and 6600; 250 ns in 6800
4-2

One processor may communicate with another over a channel which is selected as
output by one and input by the other. A common channel can be reserved for inter-

processor communication and order preserved by determining equipment and channel

status.

A real-time clock reading is available on a channel which is separate from the twelve
I/O channels. The clock period is 4096 major cycles. The clock starts with power
on and runs continuously and cannot be preset or altered. The clock may be used

to determine program running time or other functions such as time-of-day, as required.
Programs operating under SIPROS can specify running time limits for both Central
Processor and Peripheral and Control Processor use. The operating system then

monitors the real-time clock to insure limits are not exceeded.

Fach processor exchanges data with Central Memory in blocks of n words. Five
successive 12-bit processor words are assembled into a 60-bit word and sent to
Central Memory. Conversely, a 60-bit Central Memory word is disassembled into
five 12-bit words and sent to successive locations in a processor memory. = Separate
assembly (write) and disagssembly (read) paths to Central Memory are shared by all
ten processors. . Up to four processors may be writing in Central Memory while

another four are simultaneously reading from Central Memory.

The processors generally do not solve complex arithmetic and logical problems but
call on the Central Processor for solutions. The processors organize problem data
(operands, addresses, constants, length of program, relative starting address, exit
mode), and store it in Central Memory. Then, an Exchange Jump instruction starts
(or interrupts) the Central Processor and provides it with the starting address of a
problem on file in Central Memory. At the next convenient breakpoint, the Central
Processor exchanges the contents of its A, B, and X registers, program address,
relative starting address, length of program, Exit mode and Mass Memory para-
meters with the same information for the new program. A later Exchange Jump may

return to complete the interrupted program.

The Simultaneous Processing Operating System (SIPROS) provides an orderly scheme
for supervising I/O and Central Processor activity. SIPROS uses one Peripheral Pro-
cessor as an executive /monitor to direct channel assignments, provide file protection
in Central Memory, handle Central Processor requests for all processors, assign spec-
ific I/O jobs to the processors, and assign other tasks as necessary.

4-3

Programs for the ten processors are written in the conventional manner and are exe-
cuted in a multiplexing arrangement which uses the principle of time-sharing. Thus,
the ten programs operate from separate memories, but all sharea common facility for
add/subtract, I/0O, data transfer to/from Central Memory, and other necessary instruc-
tion control facilities. The multiplex consists of a 10-position barrel, which stores in-
formation (in parallel) about the current instruction in each of 10 programs, and a com-
mon instruction control device, or slot (Figure 4-2). The 10 program steps move
around the barrel in series, and each step is presented in turn to the slot. A portion
of or all of the instruction steps are performed in one pass through the slot, and the al-
tered instruction (or next instruction in a program) is reentered in the barrel for the
next excursion. One or more trips around the barrel complete execution of an instruc-
tion. Thus, up to 10 programs are in operation at one time, and each program is acted

upon once every 1000 ns, *

One cycle of the multiplex is 1000 ns, with 900 ns consumed in the barrel and 100 ns
(minor cycle) in the slot. Instructions in the barrel are interpreted at critical time
intervals so that information is available in the slot at the time the instruction is ready
to enter the slot. Hence, a reference to memory for data is determined ahead of time
so that the data word is available in the slot when the instruction arrives. Similarly,
instructions are interpreted before they reach the slot so that control paths in the slot

are established when the instruction arrives.

The slot contains two adders as part of the instruction control. One adder is 12 bits,

and the other is 18 bits. Both adders treat all quantities as one's complement.

For I/O instructions or communication with Central Memory, one pass through the
slot transfers one 12-bit word to or from a peripheral memory. Thus, block transfer

of data requires a number of trips around the barrel.

The barrel network holds four quantities which pertain to the current instruction in
each of the programs. The quantities are held in registers which require a total of
51 bits. (The barrel can be considered as a 51 x 10 shifting matrix which is closed
by the slot.) The barrel registers are referred to implicitly in the instruction steps

and are discussed under Registers, page 4-8.

* in 6400 and 6600; 250 ns in 6800

4-4

10 MEMORIES, 4096 WORDS EACH, 12 BIT

| 2 3| 4 5] 6 711011

10 PROGRAMS/I/

IN BARREL

sLoT
(TIME- SHARED
INSTRUCTION
CONTROL)
READ WRITE
PYRAMID PYRAMID _
[@]

CENTRAL__ |5 |2 CENTRAL
MEMORY o3 |~ MEMORY
(60) = (60}
(12) J/ \ (12)

J(IZ)

_>REAL TIME
o|lr|2]3]afls|e]7]iofufiz]fiz|mn
I/0 CHANNELS
(12}
EXTERNAL EQUIPMENT
Figure 4-2.

Peripheral and Control Processors

PERIPHERAL PROCESSOR PROGRAMMING

Instruction Formats

An instruction may have a 12-bit or a 24-bit format. The 12-bit format has a 6-bit

operation code f and a 6-bit operand or operand address d.

OPERATION OPERAND OR
CODE OPERAND ADDRESS
f d
- O
I 6 5 0

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program

address (P + 1), with d to form an 18-bit operand or operand address.

OPERAND OR OPERAND ADDRESS

OPERATION
CODE r A \

f d m
6 6 2 j

T o Il 0

FANEN J

' V

(P) (P+1)

/ Address Modes

Program indexing is accomplished and operands manipulated in several modes. The
two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-

bit addresses.

No Address

In this mode d or dm is taken directly as an operand. This mode eliminates the need
for storing many constants in storage. The d quantity is considered as a 12-bit num-
ber the upper six bits of which are zero. The dm quantity has d as the upper six bits

and m as the lower 12 bits.

Direct Address

In thismode d or (m + (d)) is used as the address of the operand. The d quantity specifies
one of the first 64 addresses in memory (0000-0077,). The (m +(d)) quantity generates
a 12-bit address for referencing all possible peripheral memory locations (0000-77778).
If d # 0, the content of address d is added to m to produce an operand address (indexed

addressing). If d = 0, m is taken as the operand address.

EXAMPLE: Address Modes

Given : d =25
m = 100

contents of location 25 = 0150

contents of location 150 = 7776

contents of location 250 = 1234

Then:
MODE INSTRUCTION A REGISTER

No Address LLDN d 000025
LDC dm 250100

Direct Address LDD (d) 000150
L.DM (m + (d)) ; 001234

Indirect Address LDI ((d)) 007776

Indirect Address

In this mode, d specifies an address the content of which is the address of the desired
operand. Thus, d specifies the operand address indirectly. Indirect addressing and in-

dexed addressing require an additional memory reference over direct addressing.

The Description of Instructions section, page 4-9, uses the expression (d)to define the
contents of memory location d. An expressionwith double parentheses ((d)) refers to
indirect addressing. The expression (m + (d)) refers to direct addressing whend =0
and to indexed direct addressing when d # 0. Table 4-1 summarizes the addressing

modes used for the various Peripheral Processor instructions.

TABLE 4-1. ADDRESSING MODES FOR PERIPHERAL PROCESSOR INSTRUCTIONS

ADDRESSING MODE
INSTRUCTION

TYPE DIRECT INDIRECT | NO ADDRESS
Load 30, 50 40 14, 20
Add 31, 51 41 16, 21
Subtract 32, 52 42 17
Logical Difference 33, 53 43 11, 23
Store 34, 54 44 ///////////////////

Replace Add 35, 55 45 ////////////////%
Replace Add One 36, 56 46 7/////////////////A
Replace Subtract One 37, 57 47 :///////////////////
Long Jump o1 Da/777/7/7#
Return Jump / // ///////////////////////
Unconditional Jump ////////// ///////////// 03

Non-Zero Jump WW 05

Positive Jump /////////////7////////////// 06
Minus Jump 7
Shit 777777 O
Logical Product //////////////////////////A 12, 22
Selective Clear ///// // // / 13

Load Complement ////////// ////////// 15

Registers

The four registers in the barrel are A, P, Q, and K. Each plays an important part in

the execution of processor instructions.

A Register (18 bits)

The Arithmetic or A registeris an adder. Quantities are treated as positive and over-
flows are ignored. No sign extension is provided for 6-bit or 12-bit quantities which

are entered in the low order bits. However, the unused high-order bits are cleared to

zero. Zero is represented by all zeros. The A register holds an 18-bit Central Mem-
ory address during several instructions. A also participates in shift, logical, and some

I/0 instructions.

P Register (12 bits)

The Program Address register or P register holds the address of the current instruc-
tion. At the beginning of each instruction, the contents of P are advanced by one to pro-
vide the address of the next instruction in the program. If a jump is called for, the

jump address is entered in P.

@ Register (12 bits)

The Q register holds the lower sixbits of a 12-bit instruction Wbrd, or, when the six bits
specify an address, Q holds the 12-bit word which is read from that address. @Q is an

adder which may add +1 or -1 to its content.

K Register (2 bits)

The Kregister holds the upper six bits (operation code) of an instruction and a 3-bit trip
count designator. The trip count is the number of times the instruction has beenaround

the barrel and lends control to the sequential execution of an instruction.

There are other registers which provide indirect or transient control during execution

of instructions. These include registers associated with the I/O channels, the registers
in the read and write pyramids which assemble successive 12-bit words into 60-bitwords
or vice versa, and registers which hold the storage address and the wordatthataddress

for each peripheral memory.

Description of Peripheral Processor Instructions

This section describes the Peripheral Processor instructions. Table 4-2 lists designa-

tors used throughout the section.

TABLE 4-2. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use
A The Peripheral Processor A register.
d A 6-bit operand or operand address.
f A 6-bit instruction code.
m A 12-bit quantity used with d to form an 18-bit operand
or operand address.
P The Peripheral Processor Program Address register.
Q The Peripheral Processor Q register.
() Contents of a register or location
(0O) Refers to indirect addressing.

Preceding the description of each instruction isthe octal code, mnemonic code and ad-
dress field, the instruction name and instruction length. Mnemonic codes and address

field mnemonics are from ASPER, the Peripheral Processor Assembly language.

EXAMPLE:
52 SBM Jnd, \ Subtra%t (m + (d)) | (24 Bits)
Octal Mnemonic Address Instruction Instruction
Code Code Field Name Length

Instruction formats are also given; hashedlines within a format indicate these bits are

not used in the operation.

No Operation

00 PSN Pass (12 Bits)
24 PSN Pass (12 Bits)
25 PSN Pass (12 Bits)
f A,
1 6 5 0

These instructions specify that no operation be performed. They provide a means of

padding out a program.

4-10

Data Transmission

14 LDN d Load d (12 Bits)

This instruction clears the A register and loads d. The upper 12 bits of A are zero.

15 LCN d Load Complement d (12 Bits)

This instruction clears the A register andloads the complementof d. The upper 12 bits
of A are set to one.

30 LDD d Load (d) (12 Bits)

This instruction clears the A register andloads the contents of location d. Theupper
six bits of A are zero.

34 STD d Store(d) (12 Bits)

| f | d
bl 6 5 0

This instruction stores the lower 12 bits of A in location d.

4-11

40 LDI d Load ((d)) (12 Bits)

This instruction clears the A register and loadsa 12~bit quantity thatis obtained by in-
direct addressing. The upper six bits of A are zero. Location d is read out of mem-

ory, and the word obtained is used as the operand address.,

44 STI d Store ((d)) (12 Bits)

This instruction stores the lower 12 bits of A in the location specified by the contents of

location d.
20 LDC dm Load dm (24 Bits)
f d m
23 18 17 12 11 0]
— ~ /\ — /
(P} (P+1)

This instruction clears the A register and loads an 18-bit quantity consisting of d as
the higher six bits and m as the lower 12 bits. The contents of the location following

the present program address are read out to provide m.,

50 LDM md Load (m + (d)) (24 Bits)

f I d I m
23 18 17 12 1 (o}
\ v I\ y /
(P) (P+1)

This instruction clears the A register and loads a 12-bit quantity. The upper six bits
of A are zero. The 12-bit operand is obtained by indexed direct addressing. The

quantity "m", read out of memory location P + 1 serves as the base operand address
to which (d) is added. If d = 0, the operand address is simple m, butif d # 0, then

m + (d) is the operand address. Thus location d may be used for an index quantityto

modify operand addresses.

54 STM md Store (m + (d)) (24 Bits)
£ | 4 | m
23 I8 I7 12 1l 8]
\ n /
Vv Vv
(P} (P41

This instruction stores the lower 12 bits of A in the location determined by indexed ad-

dressing (see instruction 50).

Arithmetic

16 ADN d Addd (12 Bits)

This instructionadds d (treated as a 6-bit positive quantity)to the content of the A reg-

ister.

4-13

17 SBN d Subtract d (12 Bits)

This instruction subtracts d (treated as a 6-bit positive quantity) from the content of the

A register,

31 ADD d Add (d) (12 Bits)

This instruction adds to the A register the contents of location d (treated as a 12-bit
positive quantity).

32 SBD d Subtract (d) (12 Bits)

L | d]

I 6 5 o]

This instruction subtracts from the A register the contents of location d (treated as a

12-bit positive quantity).

41 ADI - d Add((d)) (12 Bits)

L | d]

1 6 5 o]

This instruction addsto the content of A a 12-bit operand (treated asa positive quantity)
obtained by indirect addressing. Location d is read out of memory, and the word ob-

tained is used as the operand address.

4-14

42 SBI d Subtract ((d)) : (12 Bits)

This instruction subtracts from the A register a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

21 ADC dm Add dm (24 Bits)

f d m
23 18 17 12 11 0
\ 7\ /
V \'
(P (P+1

This instruction adds to the A register the 18-bit quantity consisting of d as the higher
six bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m.

51 ADM md Add (m + (d)) (24 Bits)
L | ¢ | m
23 18 17 12 11 0
\ N J
Y Vv
(P} (P+1)

This instruction addsto the content of A al2-bit operand (treated as a positive quantity)

obtained by indexed direct addressing (see instruction 50).

4-15

52 SBM md Subtract (m +.(d)) (24 Bits)

| [¢ | m
23 18 17 12 1 0
\ /\ J
\'/ A
(P) (P+D

This instruction subtracts from the A register a 12-bit operand (treated as a positive

quantity) obtained by indexed direct addressing (see instruction 50).

Shift

10 SHN d Shiftd (12 Bits)

This instruction shifts the contents of A right or left d places. If d is positive (00-37)

the shift is left circular; if d is negative (40-77) A is shifted right (end off with no sign
extension). Thus, d = 06 requires a left shift of six places. A right shift of six places
results when d = 71,

Logical

11 LMN d Logical difference d (12 Bits)

This instruction forms in A the bit-by-bit logical difference of d and the lower six bits
of A, This is equivalent to complementing individual bits of A that correspond to bits

of d that are one. The upper 12 bits of A are not altered.

12 LPN d Logical product d (12 Bits)

This instruction forms the bit—by?bit logical product of d andthe lower six bits of the A
register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are
Zero.

13 SCN d Selective clear d (12 Bits)

This instruction clears any of the lower six bits of the A register where there are corres-

ponding bits of d that are one. The upper 12 bits of A are not altered.

33 LMD d Logical difference (d) (12 Bits)

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and the contents of location d. This is equivalent to complementing individual bits of

A which correspond to bits of (d) that are one. The upper six bits of A are not altered.

43 LMI d Logical difference ((d)) (12 Bits)

A

I 6 5 0

This instruction forms in A the bit~-by-bit logical difference of the lower 12 bits of A
and the 12-bit operand obtained by indirect addressing. Location d is read out of mem-
ory, and the word obtained is used as the operand address. The upper six bits of A

are not altered.

22 LPC dm Logical product dm (24 Bits)
f | d | m
23 I8 17 12 1)
\ N /
v Y
(P) {(P+1)

This instruction forms in the A register the bit-by-bit logical product of the contents
of A and the 18-bit quantity dm. The upper six bits of this quantity consist of d and

the lower 12 bits are the content of the location following the present program address.

23 LMC dm Logical difference dm : (24 Bits)
| ¢+ | 4 | m
23 18 17 12 Il 0
\ A J
v v
(P) (P+1)

This instruction forms in A the bit-by-bit logical difference of the contents of A and
the 18-bit quantity dm. This is equivalent to complementing individual bits of A which
correspond to bits of dm that are one. 'The upper six bits of the quantity consist of d,
and the lower 12 bits are the content of the location following the present program ad-

dress.

4-18

53 LMM md Logical difference (m +(d)) (24 Bits)

f d m J
o/

23 18 17 12 1

\ \
(P} (P+1)

This instruction forms in A the bit-by-bit logical difference of the lower 12-bits of A
and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A

are not altered.

Replace
35 RAD d Replace add (d) (12 Bits)

This instruction adds the quantity in location d to the contents of A and stores the lower
12 bits of the result at location d> The resultant sum is left in A at the end of the oper-

ation and the original contents of A are destroyed.

36 AOD d Replace add one (d) (12 Bits)

The quantity in location d is replaced by its original value plus one. The resultant sum

is left in A at the end of the operation, and the original contents of A are destroyed.

4-19

37 SOD d Replace subtract one (d) (12 Bits)

L+ [«]

| 6 5 0

The quantity in location d is replaced by its original value minus one. The resultant
difference is left in A at the end of the operation, and the original contents of A are

destroyed.

45 RAI d Replace add ((d)) (12 Bits)

The operand which is obtained from the location specified by the contents of location d,
is added to the contents of A, and the lower 12 bits of the sum replace the original oper-

and. The resultant sum is also left in A at the end of the operation.

46 AOI d Replace add one ((d)) (12 Bits)

The operand, which is obtained from the location specified by the contents of location

d, is replaced by its original value plus one. The resultant sum is also left in A at

the end of the operation, and the original contents of A are destroyed.

4-20

47 SO1 d Replace subtract one ((d)) (12 Bits)

f | d |
| 6 5 o}

The operand, which ig obtained from the location specified by the contents of location
d, is replaced by its original value minus one. The resultant difference is also left

in A at the end of the operation, and the original contents of A are destroyed.

55 RAM md Replace add (m + (d)) (24 Bits)
Lt 1 4 | m
23 ig 17 i2 11l 8]
\ 0 /
Vv v
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct ad-
dressing, is added to the contents of A, and the lower 12 bits of the sum replace the
original operand in memory. The resultant sum is also left in A at the end of the oper-

ation, and the original contents of A are destroyed.

56 AOM md " Replace add one (m + (d)) (24 Bits)
f d l m l
23 18 17 12 11 0
\ I\ /
v V
{(P) (P+1)

The operand, which is obtained from the location determined by indexed direct address-
ing, is replaced by its original value plus one (see instruction 50, page 4-13 for explana-
tion of addressing). The resultant sum is also left in A at the end of the operation, and

the original contents of A are destroyed.

4-21

57 SOM md Replace subtract one (m + (d)) (24 Bits)

L ¢ | ¢ | m l

23 18 17 12 i 0

\ v /\ v /
(P} (P+1)

The operand, which is obtained from the location determined by indexed direct address-
ing, is replaced by its original value minus one (see instruction 50, page 4-13 for ex-
planation of addressing). The resultant difference is also left in A at the end of the op-

eration, and the original contents of A are destroyed.

'~ Branch

03 UJN d Unconditional jump d (12 Bits)

f d B

I 6 5 0

This instruction provides an unconditional jump toany instruction up to 31 steps forward
or backward from the current program address. The value of d is added to the current
program address. If d is positive (01 - 37), then 0001 (+1)—0037 (+31) is added and the
jump is forward. If d is negative (40 - 76) then 7740 (-31)— 7776 ('/—1) is added and the

jump is backward. The program stops when d = 00 or 77.

04 ZJN d : Zero jump d (12 Bits)

f d |

Il 6 5 i 0o

=

This instruction provides a conditional jump toany instructionup to 31:éteps forward or

backward from the current program address. If the content of the A register is zero,

the jump is taken. If the content of A is non-zero, the next instruction is executed. Neg-

ative zero (777777) is treated as non-zero. For interpretation of d see instruction 03.

4-22

05 NJN d Nonzero jump d (12 Bits)

It 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
nonzero, the jump is taken. If A is zero, the next instruction is executed. Negative

zero (777777) is treated as nonzero. For interpretation of d see instruction 03.

06 PJN d Plus jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
positive, the jump is taken. If A is negative, the next instruction is executed. Pos-
itive zero is treated as a positive quantity; negative zero is treated as a negative quan-

tity. For interpretation of d see instruction 03.

07 MJN d Minus jump d (12 Bits)

It 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is

negative, the jump is taken. If A is positive, the next instruction is executed. Pos-
itive zero is treated as a positive quantity; negative zero is treated as a negative quan-

tity. For interpretaytion of d see instruction 03.

4-23

01 LM md Long jump to m + (d) (24 Bits)

f d | m
23 I8 17 12 11 o]

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0, then m is not modified.

02 RIM md Return jump to m + (d) (24 Bits)
Lt 1 ¢] m |
23 18 17 12 11 0
\ N /
vV Vv
(P) (P+1)

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0 then m is not modified. The current program address (P) plus two is stored at
the jump address. The new program commences at the jump address plus one. This
program should end with a long jump to, or normal sequencing into, the jump address
minus one, which should in turn contain a long jump, 0100. The latter returns the or-

iginal program address plus two to the P register.

Central Processor and Central Memory

26 EXN Exchange jump (12 Bits)

——77/ S

This instruction transmits an 18-bit address (only 17 bits are used) from the A register
to the Central Processor with a signal which tells the Central Processor to perform an
Exchange Jump, with the address in A as the starting location of a file of 16 words con-
taining information about the Centrél Processor program to be executed. The 18-bit in-
itial address must be entered in A before this instruction is executed. The Central Pro-
cessor replaces the file with similar information from the interrupted Central Process-

or program. The Peripheral Processor is not interrupted.

In a 6400 system with dual Central Processors, the lowest order bit of the instruction
format specifies which Central Processor the Exchange Jump will interrupt. In 6600

and 6800 systems, this bit'is not interpreted.

27 RPN Read program address (12 Bits)

f L] T

(DUAL CP BIT)

This instruction transfers the content of the Central Processor Program Address regis-
ter, P, to the Peripheral Processor A register; thisallows the Peripheral Pi‘ocessor to
determine whether the Central Processor is running. In a 6400 system with dual Central
Processors, the lowest orderbit of the instruction format specifies which Central Pro-
cessor P register is to be examined. In 6600 and 6800 systems, this bit is not inter-

preted.

60 CRD d Central read from (A) to d (12 Bits)

This instruction transfers a 60-bit word from Central Memory to five consecutive lo-
cations in the processor memory. The 18-bit address of the Central Memory location
must be loaded into A prior to executing this instruction. The 60-bit word is disassem-
bled into five 12-bit words beginning at the left. Location d receives the first 12-bit

word. The remaining 12-bit words go to succeeding locations.

61 CRM md Central read (d) wor, from (A) tom (24 Bits)
_ //\‘}5_ > = Efft An L 5 [
f a | m]
23 18 |7 12 1l o]
\ N /
Vv v
(P) (P+1)

This instruction reads a block of 60-bit words from Central Memory. The contents of

location d gives the block length. The 18-bit address of the first central word must be

4-25

loaded into A prior to executing this instruction. During the execution of the instruction,
(P) goes to processor address 0 and P holdsm. Also, (d) goes to the Q register where
it is reduced by one as each central word is processed. The original content of P is

restored at the end of the instruction.

Each central word is disassembled into five 12-bit words beginning with the high-order 12
bits. The first word is stored at processor memory location m. The content of P (which

is holding m) is advanced by one to provide the nextaddress in the processor memory as
each 12-bit word is stored.

The content of A is advanced by one to provide the next Central Memory address after
each 60-bit word is disassembledandstored. Also, the contents of the Q register are
reduced by one. The blocktransfer is complete when@ = 0. The block of Central Mem-
ory locations goes from address (A) to address (A) + (d) -1. The block of processor

memory locations goes from address m to m + 5(d) -1.

62 CWD d Central write to (A) from d (12 Bits)

I 6 5 0

This instruction assembles five successive 12-bit words into a 60-bit word and stores
the word in Central Memory. The 18-bitaddress worddesignating the Central Memory

location must be in A prior to execution of the instruction.

Location d holds the first word to be read out of the processor memory. This word
appears as the higher order 12 bits of the 60-bit word to be stored in Central Memory.

The remaining words are taken from successive addresses.

63 CWM md Central write (d) words to (A) from m (24 Bits)

f | ¢ | m |
23 18 17 12 11 0

This instruction assembles a block of 60-bit words and writes them in Central Memory.
The contents of location d gives the number of 60-bit words. The content of the A reg-

ister gives the beginning Central Memory address. During the execution of this instruc-
tion (P) goes to processor address 0 and P holds m. Also, (d) goes to the @ register,
where it is reduced by one as each central word is assembled. The original content of

P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word
to be read out of the processor memory. This word appears as the higher order 12 bits

of the first 60-bit word to be stored in Central Memory.

The content of P is advanced by one to provide the nextaddress in the processor memory

as each 12-bit word is read.

The content of A is advanced by one to provide the next Central Memory address after
each 60-bit word is assembled. Also, Qis reduced by one. The blocktransferis com-
plete when Q = 0.

Input/Output

64 AJM md Jump to m if channel d active (24 Bits)

Lt | ¢« [w]

23 18 17 12 1l 0

(U I\ i
—V Vv

(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by the contents of m. The jump is taken if the channel specified by d is

active. The current program sequence continues if the channel is inactive.

4-27

65 M md Jump to m if channel d inactive (24 Bits)

Lt [¢ | m]

23 18 17 12 1)

\ /\ /
\' \'

(P) (P+1

This instruction provides a conditional jump to a new program sequence beginning at
an address given by m. The jump is taken if the channel specified by dis inactive. The

current program sequence continues if the channel is active.

66 FJM md Jump to m if channel d full (24 Bits)
[+ [¢ | m |
23 18 17 12 1 0
\ N\
'a vV
(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by m. The jump is taken if the channel designated by disfull. The pres-

ent program sequence continues if the channel is empty.

An input channel is full when the input equipment has placed a word on the channel and
that word has not yet been sampled by a processor. The channel is empty when a word
has been accepted. An output channel is full when a processor places a word on the

channel. The channel is empty when the output equipment has sampled the word.

67 EJM md Jump to m if channel d empty (24 Bits)
[+ [¢ | m
23 18 17 12 1l o
\ J\ J
v vV
(P) (P41}

This instruction provides a conditional jump to a new program sequence beginning at an
address specified by m. The jump is taken if the channel specified by d is empty. The
current program sequence continues if the channel is full. (See instruction 66 for ex-

planation of full and empty.)

4-28

70 IAN d Input to A from channel d (12 Bits)

L | d

I 6 5 o]

This instruction transfers a word from input channel dtothe lower 12 bits of the A reg-

ister.
NOTE
This instruction will hang up the Peripheral
Processor if executed when the channel is
inactive.
71 IAM md Input (A) words to m from channel d (24 Bits)
Lt] ¢] m |
23 18 17 12 11 0
\ A /
V Vv
(P) {(P+1}

This instruction transfers a block of 12-bit words from input channel d to the processor
memory. The content of A gives the block length. The contents of location m specifies
the processor address which is to receive the first word. The content of A is reduced

by one as each word is read. The input operation is complete when A = 0,

During this instruction address 0000 temporarily holds P, while m is held in the P reg-
ister. The content of P advances by one to give the address for the next word as each

word is stored.

NOTE

If this instruction is executed when the data
channel is inactive, no input operation is
accomplished and the program continues at
P+ 2.

72 OAN d Output from A on channel d (12 Bits)

This instruction transfers a word from A (lower 12 bits) to output channel d.

NOTE

This instruction will hang up the Peripheral
Processor if executed when the channel is

inactive.
73 OAM md Output (A) words from m on channel d (24 Bits)
f d m
23 18 17 12 11 0
\ N J
v v
(P) (P+1)

This instruction transfers a block of words from the processor memorytiochanneld. The
first word comes from the address specified by m. The content of A specifies the num-
ber of words to be sent out. The content of A is reduced by one as eachwordis readout.

The output operation is complete when A = 0.

During this instruction address 0000 temporarily holds P, while m is held in the P reg-
ister. The content of P advances by one to give the address of the next word as each

word is stored.

NOTE

If this instruction is executed when the data
channel is inactive, no output operation is
accomplished and the program continues at
P+ 2.

4-30

74 ACN d Activate channel d (12 Bits)

This instruction activates the channel specified by d. Activating a channel (must pre-
cede a 70 - 73 instruction) alerts and prepares the I/O equipment for the exchange of
data.

NOTE

Activating an already active channel causes
the Peripheral Processor to hang up.

75 DCN d Disconnect channel d (12 Bits)

r f d

I 6 5 o]

This instruction deactivates the channel specified by d. As a result, the I/O equipment

stops and the buffer terminates.

NOTE

1) Do not deactivate an already inactive
channel or the Peripheral Processor will
hang up.

2) Do not disconnect the channel before first
sensing for Channel Empty.

3) Do not deactivate a channel before stopping
the associated processor.

4) Do not deactivate a channel before putting
a useful program in the associated pro-
cessor. Processors after Dead Start are
hung up on an Input. Deactivating a channel
causes an exit to address 0001 and execution
of program.

76 FAN d Function (A) on channel d (12 Bits)

1 6 5 0

The external function code in the lower 12 bits of A is sent out on channel d.
NOTE

Do not execute this instruction when the
channel is Active or the Peripheral Processor
will hang up.

77 FNC md Function m on channel d (24 Bits)

23 18 17 12 i o]

The external function code specified by m is sent out on channel d.

Access to Central Memory

The Peripheral and Control Processors have access to all Central Memory storage lo-
cations. Four of the instructions (60, 61, 82, 683 - described previously) transfer one
word or a block of words from a peripheral memory to Central Memory or vice versa.
Data from an external equipment is read into a peripheral memory ahd, with separate
instructions, transferred from there to Central Memory where it may be used by the

Central Processor. Conversely, data is transferred from Central Memory to a peri-

pheral memory and then transferred by separate instructions to external equipment.

Read Central Memory

The 60 and 61 instructions read one word or a block of 60-bit Central Memory words.
The Central Memory words are delivered to a five stage read pyramid where they are

disassembled into five 12-bit words, beginning with the high-order word. Successive

4-32

stages of the pyramid contain 60, 48, 36, 24 and 12 bits. The upper 12 bits of the word
are removed and sent to a peripheral memory as the word is transferred through each

stage. Thus, a 60-bit word is disassembled into five 12-bit words.

Words move through the pyramid when the stage ahead is clear. One pass through the
slot determines that the next stage is clear, sends 12 bits of the word to a peripheral
memory, and moves the word ahead to the cleared stage. The pyramid is a part of the
slot and may be time shared by up to four processors. Thusfour Central Memory words
may be in the pyramid at one time in varying stages of disassembly. Withafull pyramid,
Read instructions from other processors are partially executed (housekeeping) and cir-
culated unchanged in the barrel until the number of pyramidusersdrop below four. Wait-
ing processors are serviced in the order in which they appear at the slot. Other instruc-

tion control provides address incrementing and keeps the word count.

The Central Memory starting address mustbe enteredin Abefore a Read instruction is
executed. A Load dm (20) instruction may be used for this. For a one word transfer,

the d portion of the Read (60) instruction specifies the following:

d = peripheral address (0000 —00778) of first 12-bit word; remaining words
gotod+ 1, d+ 2, etc.

For a block transfer, d and m of the read (61) instruction specify the following:

(d) = number of Central Memory words to be transferred; reduced by one

for each word transferred.

m = peripheral starting address; increased by one to provide locations for
successive words. (A) is increased by one to locate consecutive Central

Memory words.

Write Central Memory

The 62 and 63 instructions assemble 12-bit peripheral words into 60-bit words and write
them in Central Memory. Peripheral words are assembledin a write pyramid and de-
livered from there to Central Memory. As in Read Central Memory, the pyramid is a
part of the slot.and is time-shared by up to four processors. Write pyramid action is

similar to Read pyramid action except for the assembly.

4-33

The starting address in Central Memory is entered in A before the Write instruction is

executed. For a one word transfer, the d portion of the Write (62) instruction specifies
the following:

d = peripheral address (0000 —00778) of first 12-bit word; remaining words
are taken from d+ 1, d + 2, etc.

For block transfer, d and m of the Write (63) instruction specify the following:

(d) = number of Central Memory words to be transferred; reduced by one

for each word transferred.

m = peripheral starting address; increased by one to locate each successive

peripheral word. (A) is increased by one to provide consecutive Central
Memory locations.

Access to the Central Processor

The Peripheral and Control Processors use two instructions to communicate with the
Central Processor. One instruction starts a program running in the Central Processor

and the other instruction monitors the progress of the program.

Exchange Jump

The 26 instruction (described previously) starts a program running in the Central Pro-
cessor or interruptis a current program and starts a new program running. In either
case, the Central Processor is directed to a Central Memory file of 16 words which
stores information about the new program to be executed (see Exchange Jump section,
page 3-9). The 18-bit starting address of this file must be entered in A before the Ex-
change Jump instruction is executed. The Central Processor replaces the file with
similar but current information from the interrupted program. A later Exchange Jump
instruction referencing this file returns the interrupted program to the Central Pro-
cessor for completion. This exchange feature permits the Peripheral Processors to

time-share the Central Processor.

Read Program Address

The 27 instruction (described previously) transfers the content of the Central Processor
P register into a peripheral A register. The peripheral program tests the A register
content to determine the condition of the Central Processor. If A # 0, the Central Pro-
cessor is running a program or may have come to a normal (instruction) stop. If A = 0,
the Central Processor has stopped in an Exit mode; the reference address for the Cen-
tral Processor program is then examined to determine which error condition exists. A
Stop instruction (008) in the upper six bits of the reference address signals a stop; the

next lower six bits define the nature of the exit (see Exchange Jump section, page 3-9).

Input and Output

There are 12 instructions to direct activity on the I/O channels. These instructions se-
lect a unit of external equipment and transfer data to or from the equipment. The instruc-
tions also determine whether a channel or external equipment is available and ready to

transfer data. The preparatory steps insure that the data transfer is carried out in an

orderly fashion.

Each external equipment has a set of external function codes which are usedby the pro-
cessors to establish modes of operation and to start or stop data transfer. Also, the
devices are capable of detecting certain errors (e.g., parity error) and provide an in-
dication of these errors to the controlling processor. The external error conditions can
be read into a processor for interpretation and further action. Details of mode selec-
tion and error flags in external devices such as card readers and magnetic tape systems

are presented in the 6000 Series Peripheral Equipment Reference manual.

Data Channels

Each channel has a 12-bit bi-directional data register and two control flags which indi-
cate:)

® The channel is active or inactive

e The channel register is full or empty

The 64 and 65 instructions determine the state of the channel, andthe 66 and 67 instruc-
tions determine the state of the register. The flags provide housekeeping information
for the processors so that channels can be monitored and processed in an orderly way.

The flags also provide control for the I/O operation.

4-35

Word Rate: Each processor is serviced by the slot once every major cycle. This sets
the maximum word rate on a channel at one word each 1000% ns, a 1 megacycle word
rate. Up to 10 processors can be communicating with I/O equipment over separate

channels at this rate since each processor is regularly serviced at major cycle intervals.

Channel Active/Inactive Flag: A channel is made active by a Function (76, 77) instruc-

tion or an Activate Channel (74) instruction.

The Function instruction selects a mode of operation in the external equipment. The
instruction places a 12-bit function wordinthe channel register and activates the channel.
The external equipment accepts the function word, and its response to the processor
clears the register and drops the channel active flag. The latter action produces the

channel inactive flag.

The activate channel imstruction prepares a channelfor data transfer. Subsequent input
or output instructions transfer the data. A disconnect channel instruction after data

transfer is complete returns the channel to the inactive state.

Register Full/Empty Flag: A register is full when it contains a function or data word

for an external equipment or contains a wordreceivedfrom anexternal equipment. The
register is empty when it is cleared. The flags are turned on or off as the register

changes state.

On data output, the processor placesa wordinthe Channel register and sets the full flag.

The external device accepts the word, clears the register, and setsthe emptyflag. The
empty flag and channel active flag signal the processor to send another word to the reg-

ister to repeat the sequence.

On input, the external device places a word in the register and sets the full flag. The
processor stores the word, clears the register, and sets the empty flag. The empty

flag and channel active flag signal the external device to deliver another word.

*6400 and 6600; 6800 is one word each 250 ns.

4-36

Data Input

Several instructions are necessary totransfer data from external equipmentinto a pro-
cessor. The instructions prepare the channel and equipment for the transfer and then
start the transfer. Some external equipment, when once started, send a series of words
(record) spaced at equal time intervals and then stops automatically between records.
Magnetic tape equipment is an example of this type of transfer. The processor canread
all or a part of the record and then disconnect the channel to end the operation. The
latter step makes the channel inactive. Other equipment, such as the display console,
can send one word (or character) and then stop. The input instructions allow the input

transfer to vary from one word to the capacity of the processor.

An input transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A Jump to m on channel d
Inactive (65) instruction does this. Here, m can be a function

instruction to select Read mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)
instruction followed by an Activate channel d (74) followed by an Input to A
from Channel d (70) instruction loads A with the status response of the
desired equipment. Here, m is a status request code, and the status response

in A can be tested to determine the course of action.

3) Select Read mode in the equipment. A Function m on Channel d (77)
instruction or Function (A) on Channel d (78) instruction will send a code

word to the desired device to prepare it for data transfer.

4) Enter the number of words to be transferred in A. A Load d (14) or Load

(d) (30) instruction will accomplish this.

5) Activate the channel. An Activate Channel d (74) instruction sets the

channel active flag and prepares for the impending data transfer.

6) Start input data transfer. An Input (A) Words to m on Channel d (71)
instruction or an Input to A from Channel d (70) instruction starts data
transfer. The 71 instruction transfers one word or up to the capacity

of the processor memory. The 70 instruction transfers one word only.

7) Disconnect the channel. A Disconnect Channel d (75) instruction makes

the channel inactive and stops the flow of input information.

4-37

The design of some external equipment requires timing considerations in issuing function,
activate, and input instructions. The timing consideration may be based on motion in the
equipment, i.e., the equipment must attain a given speedbefore sending data (e.g., mag-
netic tape). In general, timing considerations can be resolved by issuing the necessary

instructions without an intervening time gap. The external equipment literature lists

timing considerations to be taken into account.

Data Output

The data output operation is similar to data input in that the channel and equipment

must be ready before the data transfer is started by an output instruction.

An output transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A Jump to m on Channel d
Inactive (65) instruction does this. Here, m can be a function instruction

to select Write mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)
followed by an Activate channel d (74) followed by an Input to A from Channel
d (70) instruction loads A with the status response of the desired equipment.
Here, m is a status request code, and the status response in A can be

tested to determine the course of action.

3) Select Write mode in the equipment. A Function m on Channel d (77)
instruction or Function (A) on Channel d (76) instruction will send a code

word to the desired device to prepare it for data transfer.

4) Enter the number of words to be transferred in A. A Load d (14) or Load d

(30) instruction will accomplish this.

5) Activate the channel. An Activate Channel d (74) instruction signals an

active channel and prepares for the impending data transfer.

6) Start data transfer. An Output (A) Words from m on Channel d (73) instruction
or an Output from A on Channel d (72) instruction starts data transfer. The
73 instruction can transfer one or more words while the 72 instruction

transfers only one word,

7) Test for channel empty. A Jump to m if Channel d Full (66) instruction

where m = current address, provides this test. The instruction exits to

4-38

itself until the channel is empty. When the channel is empty, the processor
goes on to the next instruction which generally disconnects the channel. The
instruction acts to idle the program briefly to insure successful transfer of

the last output word to the recording device.

8) Disconnect the channel. A Disconnect Channel d (75) instruction makes
the channel inactive. Data flow in this case terminates automatically when

the correct number of words is sent out.

Instruction timing considerations, as in a data input operation, areafunction of the ex-

ternal device.

Real-Time Clock

The real-time clock runs continuously; its period is 4096 cycles (4. 096 ms)*, The clock
may be sampled by any Peripheral and Control Processor with anInputto A (70) instruc-
tion from channel 148. The clock is advanced by the storage sequence control and can-

not be cleared or preset.

*6400 and 6600; its period in the 6800 is 1.024 ms.

4-39

5. SYSTEM INTERRUPT

INTRODUCTION

Essentially, detecting and handling interruptible conditions in the 6000 Series computer
systems involves both hardware and software. This section describes hardware pro-
visions for detecting and handling interrupt, and outlines the salient features of the op-

erating system (SIPROS) for implementing interrupt handling in the software.

'HARDWARE PROVISIONS FOR INTERRUPT

Exchange Jump

Within a Peripheral Processor, execution of an Exchange Jump instruction initiates hard-
ware action in the Central Processor to interrupt the current Central Processor program

and substitute a program, the parametfers of which are defined in the Exchange Jump
package. Note that the Exchange Jump is also used to start the Central Processor from

a Stop condition. (Refer to the Exchange Jump section, page 3-9.)

Channel and Equipment Status

Within the Peripheral Processors, hardware flags indicate the state of various conditions
in the data channels, e.g., Full/Empty, and Active/Inactive. FExternal equipmentsare
capableof detecting certain errors (e. g., parity error) and hold status information reflect-
ing their operating conditions (e. g., Ready, End of File, ete.). Channel and equipment
status information may be examined by instructions in the Peripheral Processors. The
Input/Ouput sectiondescribes these instructions. For detailed status information on ex-
ternal devices suchasmagnetic tape units and card readers, refertoliterature associated

with these devices.

Exit Mode

Central Processor hardware provides forthree types of error halt conditions (Exit mode):

e Address out of range (i.e., out of bounds)
o Operand out of range (i.e., exponent overflow)
° Indefinite result

Detecting the occurrence of one or more of these conditions is accomplished by the
hardware and causes an error halt. Note that halting on any of these conditions is
selectable;selection is performed by setting appropriate flags in the Exit mode portion

of the Exchange Jump package. (Refer to Exit mode, page 3-10.)

SOFTWARE IMPLEMENTATION

The Simultaneous Processing Operating System (SIPROS), through the Peripheral Pro-
cessor which it has designated as an executive/monitor, provides for implementing in-
terrupt handling. Following is an examination of software implementation of hardware

provisions for interrupt:

Exchange Jump

The executive and monitor Peripheral Processor is permanently assigned the duties of
activities-director and operations-monitor. In scheduling the activity of the Central Pro-
cessor, the Executive setsupall jobs in Central Memory in a priority sequence and pre-
pares a list for the Monitor. As the Monitor cycles through the list of jobs and finds
Wait conditions, for example, it exchange-jumps to the next job in the priority sequence.
Thus, the executive/monitor Peripheral Processor uses the Exchange Jump facilityto

interrupt operating Central Processor programs and to begin new programs.

Exit Mode

The 6000 Series Operating System (SIPROS) sets Error Halt{Exit mode) selections inthe
job to be executed and periodically checks for an error halt.

The address out of range selection is monitored throughout job execution and an error

halt always occurs when an address lies outside the defined parameters forthe job. As

5-2

an aid to debugging programs, SIPROS allows the programmer to ignore two of these
conditions, operand out of range and indefinite result, through the use of control cards,
When one or both of these error halt conditions occurs, and an IGNORE (Control card)
entry has been specified, SIPROS continues to process the job. (Refer to Control Card
Specifications, Operating System Reference Manual Pub. No. 60101800.)

Whether or not the error halt condition is ignored, the occurrence of the condition is
logged in a job log on the disk along with other information. The job accounting infor-
mation for each program is automatically printed out from the disk on the last page of
output for the job. (Job control cards provide for printing out other information as well,
e.g., memory dump, memory map.) Operating personnel may also make requests

throughthe console keyboard for all or portions of the job accounting log to be displayed.

Channel and Equipment Status

System macro instructionstothe operating system provide communicationlinks between
a Peripheral Processor or Central Processor program and system Peripheral Processors.
While most of these macros direct the operating system to perform input/output op-
erations, others request equipment assignment, checkthe status of external operations,
use system Peripheral Processors in conjunction with Peripheral dr Central Processor
programs, etc. Further, whenever applicable, system macros provide a bufferedand a

non-buffered mode. (Referto System Macros section, Operating System Reference Manual.)

The system macros provide a means for obtaining equipment and channel status infor-
mation. For example, a system macro request for magnetic tape operations provides

return to the Central Processor program full status information as to the success in
carryingout the request. Examples of status information (returnedtoanaddress specified
in the macro address field) are:

End of file

Read length error

Device not ready

Request aborted

The Central Processor program can then examine the address holding this status infor-

mation and respond as desired for a particular condition.

REAL-TIME INTERRUPT FACILITY

Typically, a real-time program to be executed in the Central Processor might use a
Peripheral Processor for controlling and transferring real-time information for this
program. For example, a Peripheral Processor might monitor some external equip-
ment. On occurrence of a specified external condition, the Central Processor pro-
gram is to be interrupted and an interrupt subroutine executed. Uponleavingthe inter-

rupt subroutine, control is to return to the interrupted Central Processor program.

Within the 6000 Series Operating System, (SIPROS), two methods currently exist for
handling real-time interrupt situations. Both methods of providing a real-time inter-
rupt facility employ special user programs written in the ASPER(Periphefal Processor
assembler) language. One method uses the Executive/Monitor Peripheral Processor for
transferring control to and from the interrupt subroutine, the other method uses more

direct means.

Prior to loading the job, the necessary control cards for the job are prepared. These

control cards specify, for example:

a) job name

b) external equipment requirements
c¢) Central Memory estimate

d) Peripheral Processor assignment

e) priorities assignedto the job and to I/O operations

For additional information on control card specifications, refer to the Operating System

Reference Manual.

Included in the job deck is a system macro assigning the special ASPER program tothe
assigned Peripheral Processor. When the job is loaded, the Central Processor pro-
gram and the ASPER program are placed in Central Memory. During execution of the
job, the system macro assigning the ASPER program to the designated Peripheral Pro-
cessor is interpreted. The ASPER program is then transferred to the Peripheral Pro-
cessor and execution begins with the first ASPER instruction. The operating system
provides the ability to communicate between the ASCENT and ASPER programs.

The Executive/Monitor Peripheral Processor, through a system scan cycle, examines
the status of operations throughout the system. This scan cycle occurs approximately
once every 200 microseconds, with an "average wait for a scan' time of approximately
100 microseconds. When the special Peripheral Rrocessor detects an interruptible con-
dition, it sets a flag in a control portion of Central Memory. The Executive/Monitor,

in its scan cycle, examines this control area for flags. Upon interpretation of the flag,
it exchange jumps (i. e., interrupts) the running Central Processor program and trans-
fers control to an interrupt subroutine. Upon completion of the interrupt subroutine,

control is returned to the interrupted Central Processor program.

The second method for handling real-time interrupt situations also employs a special
ASPER program as described. However, action upon receiving an Interrupt signalis
not dependent on Executive/Monitor action; hence, entry into the interrupt subroutine

is faster. Figure 5-1, with the accompanying text, illustrates this method.

)
RA
‘A FL
// EM
RAgcs
Flges|'
X

?

EXCHANGE
JUMP
PACKAGES

¥
BAI

REAL TIME
CP PROGRAM

BAI

(BEGINNING ADDRESS OF
INTERRUPT SUBROUTINE)

EXCHANGE
JUMP TO

INTERRUPTIBLE CENTRAL MEMORY
CONDITION

Figure 5-1. Real-Time Interrupt (ASPER Program Controlled)

5-5

When an interruptible condition is detected by the speciallyassigned Peripheral Proces-
sor (with its special ASPER program), the ASPER program itself initiates an Exchange
Jump. The Exchange Jump is to a special (pre-stored) Exchange Jump package beginning
at address "y'". Within this package, RA and FL are identical to RA and FL for the
running Central Processor program: X, B, and A are set to values desired upon entry
into the interrupt subroutine. The portion of the package normally holding a P value
holds BAI (the beginning address of the interrupt subroutine). Thus, upon completion
of the Exchange Jump, control is transferred from the Central Processor program to
an interrupt subroutine beginning at BAI. The average time required to enter an inter-

rupt subroutine using this method is approximately 5-10 microseconds.

Using this method, the Peripheral Processor which interrupted the Central Processor

program also returns control to that program by thé following means:

a) the interrupt subroutine indicates that it is complete to a
common control area in Central Memory, and
b) the Peripheral Processor examines this control area and responds
LA A

by exchange jumping to "y to return control to the interrupted

Central Processor program.

NOTE

To preserve Executive/Monitor integrity (and
other jobs that might be in Central Memory),
the user of this latter method should:

1) ensure that RA and FL in the interrupt
entry exchange package are identical to
RA and FL for the running program.

2) upon completion of the interrupt sub-
routine, return control to the interrupted
Central Processor program.

The Central Processor program, in this real-time interrupt processing case, is also
afforded protection from reallocation. SIPROS does not permit reallocation of Central
Memory if the Central Processor programto be relocated has a special Peripheral Pro-

cessor program in operation.

5-6

6. MANUAL CONTROL

INTRODUCTION

Manual control of 6000 Series systems operation is provided through 1) the dead start
panel and 2) the console keyboard. The Dead Start circuit is a means of manually en-
tering a 12-word program (normally a load routine)to start operation. The console key -

board provides for the manual entry of data or instructions under program control.
DEAD START

The dead start panel (Figure 6-1) contains a 12 x 12 matrix of toggle switches which
may be set manually and read by processor 0 as fwelve 12-bit words. With the MODE
switch in LOAD position, turning on the DEAD START switch* initiates the Dead Start
operations: :

1) Load the 12 words from the toggle switches into mémbry

locations 0001 - 0014;3 of processor 0. .
2) Assign processors 0 - 118 to corresponding data channels.
3) Set all processors to input instruction 71.

4) Set all channels to active and empty (ready for input).

After the program is read from the dead start panel, the panel‘ is automatically discon-
nected and processor 0 begins executing the program. The program from the dead start

panel isnormallya load routine used to load alarger programfrom an input device such

as a disk file or magnetic tape.
CONSOLE

The display console (Figure 6 -2) consistsof two cathoderay tubedisplays andakeyboard
for manual entry of data. A typical 6000 Series system may have several display con-

soles for controlling independent programs simultaneously.

*#*The DEAD START switch is turned on momentarily, then off,

6-1

g z’;' P Sl

-000 00

~000 00

‘ nn@@ @ @ :I @
‘ .

O
©
®

“HO0 06O
_W@@@?@
000 006

“000 QO
'ﬂ%@@é@
-060 00

5
©
®
o
®
@
P ®

mGH

NORMAL

CENTRAL" S PERI

Law,

IPHERAL

MEMORY MEMORY:
¥ :

Figure'6-1.

6-2

"DEAD START Pnnnn/w'
¥ T 2 2h
066

®@00

000
0006

@00
@60
660
000
060

@@fn}

SWEEP

LaAD

DUMP,

“MODE "

666
©eo
@00
©CoOo

0O

©eQo
eeO
@ee6

Dead Start Panel

1371

{

[
{
|
|
‘l
H
|
i
By

Figure 6-2. Display Console

Keyboard Input

The console may be selected for input to allow manual entry of data or instructions to
the computer. The first part of anoperating system program may select keyboard in-
put to allow the programmer to manually select a routine from the operating system.
Data entered via the keyboard may be displayed on one of the display tubes if desired.
Assembly and display of keyboard entries is done by a routine in the operating system.

Display

The console may be selected to display(Figure 6-3)ineither the Character or Dot mode.

In the Character mode, two alphanumeric characters may be displayed for each 12-bit

6-3

9851

Figure 6-3. Sample Display

word sent from- a processor. Character sizes are:

Small - 64 characters/line
Medium - 32 characters/line
Large - 16 characters/line

In Dot mode, a pattern of dots (graph, figures, etc.)may be displayed. Each dot is lo-

cated by two 12-bit words: a vertical coordinate and a horizontal coordinate.

A display program must repeat a display periodically in order to maintain persistence

on the display tube.

6-4

Appendix A

AUGMENTED I/O BUFFER AND CONTROL
(6411)

CONTROL DATA 6411

AUGMENTED I/O BUFFER AND CONTROL

The CONTROL DATA 6411 Augmented I/O Buffer and Control unit is a large-scale,
solid state device for communication with the Central Processor of 6400 and 6600 Com-

puter Systems.

DESCRIPTION

The 6411 is comprised of ten Peripheral and Control Processors anda Central Memory.

A summary of characteristics for the 6411 is tabulated below.

PERIPHERAL AND CONTROL PROCESSORS

e 10 identical processors
Each processor has a 4096 word magnetic core memory (12-bit)
Random access, coincident current

Major cycle = 1000 ns; Minor cycle = 100 ns

e 12 input/output channels
All channels common to all processors ,
Maximum transfer rate per channel - one word/major cycle
All channels may be active simultaneously
All channels 12-bit bi-directional

Real-time clock (period = 4096 major cycles)
Instructions

Logical

Branch

Add/Subtract

Input/Output

Central Memory Access

Extended Core Storage (Mass Memory) Access

e Average instruction execution time = two major cycles
) Indirect addressing

® Indexed addressing

CENTRAL MEMORY

® 16, 384 words (60-bit)

e Memory organized into four logically independent banks of 4096 words with
corresponding multiphasing of banks

e Random-access, coincident-current, magnetic core

e One major cycle for read-write

® Maximum memory reference rate to all banks; four addresses/major cycle

e Maximum rate of data flow to/from memory; four words/major cycle

The 6411 has no Central Processor; otherwise, the 6411 is identical to the 6400 and
6600 Computer Systems. The discussion which follows assumes use of the 6411 ina 6000

Series system; the 6411, however, is a computer capable of operating alone.

SYSTEMS CONFIGURATIONS

The 6411, in typical systems configurations, provides an extremely useful and powerful
6000 Series system expansion. For installations with multiple on-line users, the 6411
provides additional data channels facilitating additional external equipments. The 10
Peripheral and Control Processors, each capable of independently executing programs,
and the 16, 384 60 -bit Central Memory significantly increase the multiprogramming and

batch job processing capabilities of the 6400 and 6600 Computer Systems.

A typical configuration diagrammed in Figure A-1illustrates the orientation of a 6411
with a 6400 or 6600 Computer System. The 6411 is attached to the 6400 or 6600 system

via one of the Peripheral Processor Data Channels.

The 6682 Satellite Coupler accepts and relays control signals and data to provide smooth

information flow throughout the system.

In this configuration, the 6411 may be thought of as a batching terminal, where batch jobs
may enter the system, be assembled and placed in the 16K distributive memory. Access
to the 6400 or 6600 Central Processor for job execution is then under operating system

control.

CENTRAL
PROCESSOR

!

60 BITS

i
|
s
|
|
¥ |
|
|
|
|
|
|

CENTRAL MEMORY

T

60 BITS

)

60 BITS

L

PERIPHERAL PROCESSORS (10)

|
|
I
| MEMORY (16K)
l
|

PERIPHERAL PROCESSORS (10)

P bl e T TTTTTTTTT

DATA CHANNELS DATA CHANNELS
(12) 12
Lo — 2 _ _| L i A

6400 OR 6600 SYSTEM 6411

Figure A-1. Typical Configuration: 6411 with 6400 or 6600 System

Another possible systems configuration (Figure A-2) incorporates a Mass Memory be-
tween the 6400 or 6600 Central Memory and the 6411 16K memory. This configuration

implies a hierarchy of memories as follows:

1) Mass Memory as a system Central Memory
2) 6400 or 6600 Central Memory as a system Central Processor memory

3) 6411 16K memory as a distributive memory

Communication with Mass Memory (Figure A-2) is accomplished as follows:

1) Read and Write instructions in the 6400/6600 Central Processor
initiate transfers between Mass Memory and the 6400/6600 Central

Memory.

2) An Exchange Jump instruction in the 6411 Peripheral Processor
initiates Read and Write operations between Mass Memory and the
6411 16K memory. (Refer to the instruction descriptions which

follow.)

| |
CENTRAL |
PROCESSOR | |
i
1 sysTEM |
PROCESSOR g5 g(ts | CENTRAL DISTRIBUTIVE
MEMORY MEMORY | MEMORY
J : | N
CENTRAL MEMORY SO BITS ,lmass MeEMORYle—S0 BITS MEMORY (I6K)
60 BITS

|

PERIPHERAL PROCESSORS (i0)

I
|
60 BITS [
|
|
I PERIPHERAL PROGESSORS (10)

|
|
|
| y
|
l

T T T T R oy oy TTTTTTTTIT

DATA CHANNELS] i DATA CHANNELS
(12) (12
L - 2% J L - - - 2 _ J
6400 OR 6600 SYSTEM 6411

Figure A-2. Typical Configuration with Mass Memory.

6411 INSTRUCTIONS

Within the 6411, Peripheral Processor instructions areidenticaltothose of the 6400 and
6600 systems with two exceptions. Note that these two instructions (the exceptions) are

meaningful only when Mass Memory is attached to the system.

27 d Read Program Address

27 AN,

\ J /
Vv Vv
OPERATION d
CODE

This instruction examines the status of the data trunk between the 6411 16K memory
and Mass Memory. If this data trunk is busy (a Read or a Write is in progress), a ''1"
(Busy) flag is placed in the Peripheral Processor A register. If the trunk is free (Not

Busy), the A register remains cleared. The "d" portion of this instruction is ignored.

NOTE

If this instruction is executed without mass memory in the sys-
tem configuration, it acts as a Pass (Do-Nothing) instruction.

After executing this instruction, the program typically tests the A register for zero and

transfers control to an instruction which initiates memory operations.

26 d Exchange Jump

f 26 0 y]

V-
OPERATION
CODE

Execution of the Exchange Jump instruction initiates memory operations bytransmitting

=9

an 18-bit address, ''n'', from the Peripheral Processor A register to the 6411 16K

memory. Address "'n' holds a word, the format of which is as follows:

Xo l Ag K
59 36 35 8 17 0
\ I\ /\ /
v \'4 Vv
STARTING ADDRESS (N STARTING ADDRESS IN WORD COUNT
MASS MEMORY 16 K MEMORY

The ''d" portion of this instruction specifies the storage operation to be performed:

It ”y" = 0, Read "K' words from Mass Memory into 16K memory.

If "y'"' =1, Write "K' words from 16K memory into Mass Memory.

NOTE

If this instruction is executed without mass memory in the sys-
tem configuration, it acts as a Pass (Do-Nothing) instruction.

Note that addresses contained in the word at address '"'n'" are absolute addresses. Oper-

ating systems such as SIPROS may require relocation (adding RA to an address)and Field
Length testing, e.g., is ""address + RA" > FL? (The Exchange Jump package contains
RA and FL values for Central Memory and for Mass Memory.) The 6411 has no hard-
ware for automatic relocation and Field Length testing; it is therefore incumbent upon

the program to perform these functions whenever required by an operating system.

SOFTWARE

The 6411, in a 6400 or 6600 system configuration, operates under control of the Simul~-

taneous Processing Operating System (SIPROS).

Under SIPROS control, one of the 6411 Peripheral Processors is designated as an Exe-
cutive/Monitor which cooperates with (and is subservient to) the 6400/6600 system Ex-
ecutive/Monitor in assigning and monitoring systems tasks. Thus, I/O functions (for
example) in support of operational and system programs can be agsigned to 6400/6600

Peripheral Processors or to 6411 Peripheral Processors.

For additional, more definitive information on systems software, consult the software

manuals.

Appendix B

POWERS OF TWO

TABLE OF POWERS OF TWO

057

460
921

-
N N

34

68
137
274
549

099
199
398
796

592
184
368
737

474
949
899
799

599
199
398
797

594
188
376
752

504

359

719
438
877
755

511
023
046
093

186
372
744
488

976
963
906
813

627
254
509
018

037
075
151
303

606

oA N

16

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627
255
511
022

044
088
177
355

710
421
842
685

370
740
481
963

927
855
711
423

846

128

256
512
024
048

096
192
384
768

536
072
144
288

576
162
304
608

216
432
864
728

458
912
824
648

296
592
184
368

736
472

888

776
5582
104
208

416
832
664
328

656
312
624
248

496
992
984
968

936
872
744
488

976

b]

=0V NOUhLA WN=O

-

2n

1.0
0.5
0.25
0.125

0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.00C
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

25
625
812

906
953
976
488

244
122
061

030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000
000
000
000

000
000
000
000
000
000
000
000

000
000
000
000

000
000
000
000

000

125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909
454
227
113

056
028
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494
747
373
686

843
421
210
105

552
776
888
444

222
111
055
027

013
006
003
001

000

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701
350
675
837

418
709
854
427

713
356
178
089

044
022
511

755

877
938
469
734

867

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772
886
443
721

860
430
715
357

678
839
419
209

604
302
151

575

787
893
446
723

361

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928
464
232
616

808
404
202
601

800
400
700
850

925
462
231
615

807
903
951
475

737

5
25
625
812

906
453
226
613

806
203
9561
475

237
118
059
029

014
007
003
001

500
250
1256
062

031
515
257
628

814
907
953
976

988

25

125
562
281

640
320
660
830

915
957
478
739

869
434
717
858

929
464
232
616

308
654
827
913

456
228
614
807

403

25

625
312
156
078

038
519
759
379

689
844
422
711

355
677
338
168

084
042
021
510

755
377
188
094

547

25
125

062
531
765
882

941
970
485
242

621
810
905
452

726
363
181
590

295
647
823
411

205

25
625
812

406
703
351
675

337
668
334
667

333
166
583
791

395
697
848
924

962

25

125
562
781

890
945
472
236

618
809
404
702

861
925
962
481

240

25

625
312
656
328

164
082
541

270

135
567
783
391

695

25
125

062
031
015
507

253
626
813
906

963

5
25
625
812

906
9563
476
738

369

5

25
125
562 5
281 25

140 625

Appendix C

OCTAL-DECIMAL INTEGER
CONVERSION TABLE

OCTAL-DECIMAL INTEGER

CONVERSION TABLE

0 1 2 3 4 5 6 7 0o 1 2 3 4 5 6 7
0000 | COCO 00O 0002 0003 O0O0D4 0005 Q006 OOO7 0400| 0256 0257 0258 0269 0260 0261 0262 0263
0010 0OCB 00D 0010 0011 0012 0013 0014 0015 0410| 0264 0265 0266 0267 0268 0269 0270 0271
0020 | o016 0017 0018 0019 0020 0021 0022 0023 04201 0272 0273 0274 0275 0276 0277 0278 0279
0030] 0024 0025 0026 0027 0028 0029 (0030 0031 0430 0280 0281 0282 0283 0284 0285 0286 (0287
0040 | 0032 0033 0034 0035 0036 0037 0038 {039 0440| 0288 0283 0290 0291 0292 (0293 0294 0285
0050 | 0040 0041 0042 0043 0044 0045 0048 0047 0450{ 0296 0297 0298 0293 0300 0301 0302 0303
0060 | 0048 0049 0050 0051 0052 0053 0054 0055 0460| 0304 0305 0306 0307 0308 0309 0310 03N
0070 | 0056 0057 0058 0059 0060 0061 Q062 0063 0470| 0312 0313 0314 0315 0316 0317 0318 0318
0100 | 0064 0065 0066 0067 0068 006 0070 0071 0500| 0320 0321 0322 0323 0324 0325 0326 0327
0110] 0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334 0335
0120 | 008D 0081 0082 (Q0B3 0084 0085 0086 0087 0520| 0336 0337 0338 0339 0340 0341 0342 0343
0130 | 0088 0089 00SO 0091 Q032 0093 0094 0095 0530| 0344 0345 0346 0347 0348 0349 0350 0351
0140 | 0096 0097 0098 0039 0100- 0101 0102 0103 0540] 0352 0353 0354 0355 0356 0357 0358 0359
0150y D104 0105 0106 0107 0108 0109 0110 0N 0550| 0360 0361 0362 0363 0364 0365 0366 0367
0160 0112 0113 0114 0115 0116 0117 0118 0118 0560/ 0368 0369 0370 0371 0372 0373 0374 0375
0170 | 0120 0121 0122 0123 0124 0126 0126 0127 0570/ 0376 0377 0378 0379 0380 0381 0382 0383
0200 0128 0128 0130 0131 0132 0133 0134 D135 0600| 0384 0385 0386 0387 0388 0389 0330 0391
02104 0136 0137 0138 0133 0140 0141 0142 0143 0610] 0392 0393 0394 0385 0396 0397 0398 0389
0220 | 0144 0145 0146 0147 0148 0148 0160 0151 0620{ 0400 0401 0402 0403 0404 0405 0406 0407
0230 | 0152 0153 0154 0155 0156 0157 0158 0159 0630| 0408 0409 0410 0411 0412 0413 0414 0415
0240 | 0160 D161 0162 0163 0164 0165 01668 0167 0640| 0416 0417 0418 0418 0420 0421 0422 0423
0250 | D168 0169 0170 0171 072 0173 0174 0175 0650| 0424 0425 0426 0427 0428 0429 0430 0431
0260 | 0176 0177 0178 0179 0180 0181 0182 0183 0660; 0432 0433 0434 0435 0436 0437 0438 0439
0270 0184 0185 0186 0187 0188 0189 0190 D191 0670 0440 0441 0442 0443 0444 0445 0446 0447
0300 | 0192 0183 0184 0195 0196 0197 0198 0189 0700{ 0448 0449 (0450 0451 0452 0453 0454 0455
0310] 0200 0201 0202 0203 0204 0205 0206 0207 0710 0456 0457 0458 0459 0460 0461 0462 0463
0320 | 0208 0209 0210 O0211 0212 0213 0214 Q215 0720| 0464 0465 0466 0467 0468 0468 0470 0471
0330 | 0216 0217 0218 0219 0220 0221 0222 0223 0730| 0472 0473 0474 0475 0476 0477 0478 0479
0340 | 0224 0225 0226 0227 0228 0229 0230 0231 0740 0480 0481 0482 0483 0484 0485 0486 (487
0350 | 0232 0233 0234 0235 0236 0237 0238 0239 (750 0488 0483 0480 0491 0492 0493 0494 0485
0360 | 0240 0241 0242 0243 0244 0245 0246 0247 0760| 0496 0497 0498 0489 0500 0501 0502 0503
0370] 0248 0248 0250 0251 0252 0253 0254 0255 0770{ 0504 0505 0506 0507 0508 0509 0510 0611
v} 1 2 3 4 5 6 7 0 1 2 3 4 [6 7
1000 | 0512 0813 0514 0515 0516 0517 0518 0518 1400| 0768 0768 0770 0771 0772 0773 0774 0775
1010 | D520 0521 0522 0523 0524 0525 0826 0527 1410 0776 0777 0778 0779 0780 0781 0782 0783
1020 | 0528 0529 0530 0531 0532 0533 0534 0535 1420 0784 0785 (0786 0787 0788 0788 0790 0791
1030 | 0536 0837 0538 0539 0540 0541 0542 D543 1430 0792 0783 0794 0795 0796 0797 0798 0799
1040 | 0544 0845 0546 0547 0548 0549 0550 0851 1440 0800 0801 0802 0803 0804 (0BO5 0BO6 0807
1050 | 0552 0553 0554 0555 0556 0557 0558 0558 1450 | 0808 0BO9 0810 0811 0812 0813 0814 0815
1060 | 0560 0561 0562 0563 0564 0565 0566 0567 1460 | 0816 0817 0818 0819 0820 0821 0822 0823
1070 | 0568 0569 0570 0571 0572 0673 0574 0575 1470| 0824 0825 0826 0827 0828 0823 0830 0831
1100 | 0576 0577 0578 0579 0580 0581 0582 0583 1500 | 0832 0833 0834 0835 0836 0837 0838 0839
1110 | 0584 0585 D586 0587 0588 0589 0580 0591 1510 | 084D 0841 0842 0843 0B44 0B84 0846 0847
1120 | 0592 0593 0594 0595 0596 0587 0598 0599 1520 | 0848 0843 0850 0851 0852 0853 (0854 0855
1130 | 0600 0601 0602 0B03 0604 0605 0606 0607 1530 | 0856 0857 0858 0859 0860 0861 0862 0863
1140 | D60B 0603 0610 0611 0612 0613 0614 0615 1540 | 0864 0865 0866 0867 0868 0869 0870 0871
1150 | 0616 0817 0618 0619 0620 0621 0622 0623 1550 | 0872 0873 0874 0875 0876 0877 0878 0879
1160 | 0624 0625 0626 0627 0628 0629 0630 0631 1560 | 0880 0881 0882 0883 0884 0885 0886 0887
1170 | 0632 0833 0634 0635 0636 0637 0638 0633 1570 | 0888 0883 0830 0891 0892 0893 0834 0835
1200 | 0640 0641 0642 0643 0644 0645 0646 0647 1600 | 0896 0897 0898 0899 0900 0901 0902 0903
1210 | 0648 0649 0650 0651 0652 0653 0654 0655 1610 | 0904 0905 0906 0307 0908 0909 0810 0811
1220 | 0656 0657 0658 0659 0660 0661 0662 0663 1620 | 0912 0913 (0914 0915 0916 0917 0918 0919
1230 [0664 0665 0666 0667 0668 0668 0670 0671 1630 | 0920 0921 0822 0823 0924 0925 0826 (0927
1240 | 0672 0673 0674 0675 0676 0677 0678 0679 1640 | 0928 0929 0930 0931 0932 0933 0934 0835
1250 | 0680 0681 0682 0683 0B84 0B85 0686 0687 1650 | D936 0937 0938 0933 0940 0941 0942 0943
1260 | 0688 (0683 0690 0B91 0692 0693 0694 0685 1660 | 0944 0945 0946 0947 0948 0948 0950 0951
1270 | 0896 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0955 D956 0957 0958 0958
1300 | O704 0705 0706 €707 @708 0708 0710 0711 1700 | 0960 (0961 0962 0963 0964 0965 0966 0967
1310 | 0712 0713 (0714 0715 0716 0717 0718 0719 1710| 0968 0969 0970 03971 0972 0973 0874 0975
1320 | 0720 0721 Q722 0723 0724 0725 0726 0727 1720| 0976 0977 0978 0979 0980 0981 0982 0983
1330 [0728 0729 0730 0731 0732 0733 0734 0735 1730| 0984 0985 0986 0987 0988 0983 0990 0931
1340 | 0736 0737 0738 0739 0740 0741 0742 0743 1740 0992 0993 0934 0995 0996 0987 0898 (999
1350 | 0744 0745 0746 0747 0748 0749 Q750 Q751 1750{ 1000 1001 1002 1003 1004 1005 1006 1007
1360 | 0752 0753 0754 0755 0756 0757 0758 0759 1760} 1008 1009 1010 1011 1012 1013 1014 1015
1370 | 0760 0761 0762 0763 0764 0765 0766 0767 1770 1016 1017 1018 1018 1020 71021 1022 1023

0000
to
0777
{Qctal)

Octal
10000 -
20000 -

0000
1o
0511
{Decimal)

Decimal
4096
8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

1000
to
1777
{Octal)

0512
to
1023
{Decimal)

OCTAL-DECIMAL INTEGER

CONVERSION TABLE (Cont'd)

2000 1024
o to
2177 1535
{Octal) {Decimal)
Octal Decimal
10000 - 40896

20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28872

3000 1536
to to

n 2047

{Octal) {Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
2000 | 1024 1025 1026 1027 1028 1029 1030 1031 2400 | 1280 1281 1282 1283 1284 1285 1286 1287
2010 | 1032 1033 1034 1035 1036 .1037 1038 1033 2470 1 1288 1289 1290 1291 1292 1293 1294 1295
2020 | 1040 1041 1042 1043 1044 1045 1048 1047 2420 | 1296 1297 1298 1299 1300 1301 1302 1303
2030 | 1048 1049 1050 1051 1052 1053 1054 1055 2430 | 1304 1305 1306 1307 1308 1309 1310 1311
2040 | 1056 1057 1058 1059 1060 1061 1062 1083 2440 | 1312 1313 1314 1315 1316 1317 1318 1313
2050 | 1064 1065 1066 1067 1088 1069 1070 1071 2450 | 1320 1321 1322 1323 1324 1325 1326 1327
2080 {1072 1073 1074 1075 1076 1077 1078 1079 2460 | 1328 1328 1330 1331 1332 1333 1334 1335
2070 |1080 1081 1082 1083 1084 1085 1086 1087 2470 | 1336 1337 1338 1339 1340 1341 1342 1343
2100 }.1088 1089 1090 1091 1092 1093 1094 1095 2500 | 1344 1345 1346 1347 1348 1349 1350 1351
2100 [1096 1097 1088 1089 1100 1101 1102 1103 2510 | 1362 13563 1354 1355 1356 1357 1358 1359
2120 | 1104 1106 1106 1107 1108 1108 1110 1111 2520 | 1360 1361 1362 1363 1364 1365 1366 1367
2130 (1112 113 1114 1118 1N 1117 118 1119 2530 | 1368 1369 1370 1371 1372 1373 1374 1315
2140 | 11200 1121 1122 1123 1124 1125 1126 1127 2540 | 1376 1377 1378 1379 1380 1381 1382 1383
2150 | 1128 1128 1130 1131 1132 1133 1134 1135 2550 | 1384 1386 1386 1387 1388 1383 1330 1391
2160 {1136 1137 1138 1139 1140 1141 1142 1143 2560 | 1392 1393 1394 1395 1396 1397 1398 1389
2170 | 1144 1145 1146 1147 1148 1143 1150 1151 2570 | 1400 1401 1402 1403 1404 1405 1406 1407
2200 | 1152 1153 1154 1165 1156 1157 1158 1159 2600 | 1408 1408 1410 1411 1412 1413 1414 1415
2210 | 1160 1161 1162 1163 1164 1165 1166 1167 2610 | 1416 1417 1418 1419 1420 1421 1422 1423
2220 | 1168 1168 1170 1171 1172 1173 1174 1175 2620 | 1424 1425 1426 1427 1428 1429 1430 1431
2230 |1176 1177 1178 1179 1180 1181 1182 1183 2630 | 1432 1433 1434 1435 1436 1437 1438 1439
2240 11184 1185 1186 1187 1188 1183 1190 M191 2640 | 1440 1441 1442 1443 1444 1445 1446 1847
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 | 1448 1448 1450 1451 1452 1453 1454 1455
2260 |1200 1201 1202 1203 1204 1205 1206 1207 2660 | 1456 1457 1458 1459 1460 1461 1462 1463
2270 | 1208 1208 1210 1211 1212 1213 1214 1215 2670 | 1464 1465 1466 1467 1468 1469 1470 1471
2300 (1216 1217 1218 1219 1220 1221 1222 1223 2700 1472 1473 1474 1475 1476 1477 1478 1478
2310 (1224 1225 1226 1227 1228 1229 1230 . 1231 2710 | 1480 1481 1482 1483 1484 1485 1488 1487
2320 (1232 1233 1234 1235 1236 1237 1238 - 1239 2720 | 1488 1489 1480 1491 1492 1493 1494 1495
2330 (1240 1241 1242 1243 1244 1245 1246 1247 2730 | 1496 1497 1498 1489 1500 1501 1502 1503
2340 (1248 1248 1250 © 1251 1252 1253 1264 1255 2740 | 1504 1505 1506 1507 1508 1513 1510 1511
2350 (1256 1257 1268 1259 1260 1261 1262 1263 2750 { 1512 1613 1514 1515 1516 1517 1518 1519
2360 {1264 12656 1266 1267 1268 1269 1270 1271 2760 | 1520 1521 1522 1523 1524 1525 1526 1527
2370 (1272 1273 1274 1215 1276 1277 1218 1279 2770 | 1528 1528 1530 1531 1532 1533 1534 1535
i
0 1 2 3 4 [6 7 0 1 2 3 4 5 6 7
3000 | 1536 1537 1538 1539 1540 1541 1542 1543 3400 | 1792 1793 1794 1795 1796 1797 1798 1799
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 | 1800 18071 1802 1803 1804 1805 1806 1807
3020 (1552 1553 1564 1585 1556 1557 1658 1559 3420 | 1808 1809 1810 1811 1812 1813 1814 1815
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 | 1816 1817 1818 1819 1820 1821 1822 1823
3040 1568 1568 1570 1571 1572 1573 1574 1575 34401 1824 1825 1826 1827 1828 1829 1830 1831
3060 ;1576 1577 1578 1579 1580 1581 1582 1583 3450 (1832 1833 1834 1835 1836 1837 1838 1839
3060 | 1584 1585 1586 1587 1588 1589 1590 1591 3460 | 1840 1841 1842 1843 1844 1845 1846 1847
3070 | 1592 1593 1594 1595 1596 1597 1598 1599 3470 | 1848 1849 1850 1851 1852 1853 1854 1855
3100 | 1600 1601 1802 1603 1604 1605 1606 1607 3500 | 1866 1857 1858 1859 1860 1861 1862 1863
3110 | 1608 1608 1610 1611 1612 1613 1614 1615 3510 1864 1865 1B66 1867 1868 1863 1870 1871
3120 {1616 1617 1818 1619 1620 1621 1622 1623 3520 | 1872 1873 1874 1875 1876 1877 1878 1879
3130 [1624 16825 1626 1627 1628 1629 1630 1631 3530 | 1880 1881 1882 1883 1884 1885 1886 1887
3140 | 1632 1633 1634 1635 1636 1637 1638 1639 3540 | 1888 1883 1880 1891 1892 1883 1834 1895
3150 (1640 1641 1642 1643 1844 1645 1646 1647 3550 | 1896 1887 1898 1899 1900 1901 1902 1903
3160 [1648 1648 1650 1651 1852 1653 1654 1655 3560 | 1904 1905 18068 1907 1908 1909 1910 1911
3170 |1656 1657 1658 1658 1660 1661 1662 1663 3570 | 1912 1913 1914 1915 1916 1917 1918 1919
3200 {1664 1665 1666 1667 1668 1669 1670 1671 3600 | 1920 1921 1922 1923 1924 1925 1926 1927
3210 (1672 1673 1674 1675 1676 1877 1678 1679 3610) 1928 1929 1930 1931 1932 1933 1934 1935
3220 |1680 1681 1682 1683 1684 1685 1686 1687 3620 | 1936 1937 1938 1339 1940 1941 1942 1943
3230 (1688 1688 1690 1691 1692 1693 1694 1695 3630) 1944 1945 1946 1947 1948 1949 1850 1951
3240 |1696 1697 1698 1693 1700 1701 1702 1703 3640 | 1952 1963 1954 1955 1956 1957 1958 1959
3250 (1704 1705 1706 1707 1708 1709 1710 1711 3650 | 1960 1961 1962 1963 1964 1965 1966 1967
3260 (1712 1713 1714 11§ 1716 1717 1718 118 3660 | 1968 1969 1970 1971 1972 1873 1974 1975
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 | 1976 1877 1978 1979 1980 1981 1982 1983
3300 (1728 1729 1730 1731 1732 1733 1734 1735 3700 | 1984 1985 1986 1987 1988 1989 1930 1991
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710| 1992 1993 1994 1935 1996 1937 1998 1999
3320 (1744 1745 1746 1747 1748 1743 1750 1751 3720 | 2000 2001 2002 2003 2004 2005 2006 2007
3330 |1752 1753 1754 1756 1756 1757 1758 1758 3730 | 2008 2009 2010 2011 2012 2013 2014 2015
3340 (1760 1761 1762 1763 1764 1765 1766 1767 3740 | 2076 2017 2018 2018 2020 2021 2022 2023
3350 (1768 1769 1770 1771 1772 1773 1714 775 3750 | 2024 2025 2026 2027 2028 2029 2030 2031
3360 |1776 1777 1778 1779 1780 1781 1782 1783 3760 | 2032 2033 2034 2035 2036 2037 2038 2039
3370 (1784 1785 1786 1787 1788 1783 1780 1791 3770 | 2040 2041 2042 2043 2044 2045 2046 2047

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd)

4000 2048
to to

4777 2559

{Octal) {Decimal)

Octal Decimat
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

s} 1 2 3 4 5 6 7 V] 1 2 3 4 5 6 7
4000 | 2048 2049 2050 2051 2052 2053 2054 2055 4400 | 2304 2305 2306 2307 2308 2309 2310 2311
4010 | 2056 2057 2058 2059 2080 2061 2062 2083 4410} 2312 2313 2314 2316 2316 2317 2318 2319
4020 | 2064 2065 2066 2067 2068 2069 2070 2071 4420 | 2320 2321 2322 2323 2324 2325 2326 2327
4030 {2072 2073 2074 2075 2076 2077 2078 2079 4430 2328 2328 2330 2331 2332 2333 2334 2335
4040 | 2080 2081 2082 2083 2084 2085 2086 2087 4440 2336 2337 2338 2333 2340 2341 2342 2343
4050 | 2088 2088 2090 2091 2082 2093 2094 2085 4450 | 2344 2345 2346 2347 2348 2348 2350 2351
4060 | 2096 2097 2098 2093 2100 2101 2102 2103 4460) 2352 2353 2354 2355 2356 2357 2358 2388
4070 | 2104 2106 2106 2107 2108 2109 2110 2111 4470 2360 2361 2362 2363 2364 2365 2366 2367
400 ;2112 2113 2114 2116 2116 2117 2118 2119 4500 | 2368 2368 2370 2371 2372 2373 23714 2375
4110 | 2120 2121 2122 2123 2124 2125 2126 2127 4510| 2376 2377 2378 2379 2380 2381 2382 2383
4120 | 2128 2128 2130 2131- 2132 2133 2134 2135 45201 2384 2385 2386 2387 2388 2389 2350 2391
4130 | 2136 2137 2138 2139 2140 2141 2142 2143 4530 | 2392 2393 2394 2395 2396 2397 2396 2399
4140 | 2144 2145 2146 2147 2148 2149 2150 2151 4540} 2400 2401 2402 2403 2404 2405 24068 2407
4150 1 2152 2183 2154 2155 2166 2157 2158 2159 4550 | 2408 2409 2410 211 2412 2413 2414 2415
4160 | 2160 21681 2162 2183 2184 2185 2166 2167 4560 | 2416 2417 2418 2419 2420 2421 2422 2423
4170 | 2168 2188 2170 0171 2172 2173 2174 2175 4570 | 2424 2425 2426 2427 2428 2429 2430 2431
4200 j 2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4210 | 2184 2185 2186 2187 2188 2188 2190 2191 4610 | 2440 2441 2442 2443 2444 2445 2446 2447
4220 (2182 2183 2184 2185 2186 2187 2198 2199 4620 | 2448 2443 2450 2451 2452 2453 2454 2455
4230 | 2200 2201 2202 2203 2204 2205 2206 2207 4530 | 2456 2457 2458 2459 2460 2461 2462 2463
4240 | 2208 2208 2210 2211 2212 2213 2214 2215 4640 | 2484 2465 2466 2467 2468 2469 2470 24N
4250 | 2216 2217 2218 2219 2220 2221 2222 2223 4650 2472 2473 2474 2475 2476 2471 2478 2478
4260 | 2224 2225 2226 2227 2228 2229 2230 2231 4860 | 2480 2481 2482 2483 2484 2485 2486 2487
4270 | 2232 7233 2234 2235 2236 2237 2238 2239 4570 | 2488 2483 2490 2491 2492 2493 2494 2495
4300 | 2240 2241 2242 2243 2244 2245 2246 2247 4700 | 2488 2487 2498 2493 2500 2501 2502 2503
4310 | 2248 2249 2250 2251 2252 2253 2254 2255 4710 | 2504 2505 2506 2507 2508 2509 2510 2511
4320 | 2256 2257 2258 2259 2260 : 2261 2262 2263 4720 2512 © 2513 2514 2515 2516 2517 2518 2519
4330 | 2264 2265 2266 2267 2268 2269 2270 2271 4730} 2520 2521 2522 2523 2524 25265 2526 2527
4340 | 2272 2273 2274 2275 2276 2277 22718 2279 4740 | 2528 2528 2630 2531 2532 2533 2534 2535
4350 | 2280 2281 2282 2283 2284 2285 2286 2287 4750 | 2536 25637 2538 2639 2540 2541 2542 2643
4360 | 2288 2289 2280 2231 2292 2293 2294 2295 47601 2544 2545 2546 2547 2548 2549 2550 2551
4370 | 2296 2297 2298 2299 2300 2301 2302 2303 4770 | 2652 2583 2554 2555 2556 2557 2568 2559
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
5000 | 2560 2561 2562 -2563 2564 2566 2566 2567 5400 § 2816 2817 2818 2819 -2820 2821 2822 2823
5010 | 2568 2568 2570 2571 2572 2573 2574 2575 6410 | 2824 2825 2826 2827 2828 28289 2830 2831
6020 | 2576 2577 2678 2679 2580 2581 2582 2583 5420 | 2832 2833 2834 2835 2836 2837 2838 2838
5030 | 2584 2585 2586 2587 2588 2589 2590 2591 5430 | 2840 2841 2842 2843 2844 2845 2846 2847
5040 | 2592 2593 2594 2595 2596° 2597 2598 2599 5440 | 2848 2848 2850 2851 2852 2863 2854 2855
5050 | 2600 2601 2602 2603 2604 2605 2606 2607 5450 (2856 2857 2858 - 2B59 2860 2861 2B62 2863
5060 | 2608 2609 2610 2611 2612 2613 2614 2615 6460 | 2864 2865 2866 2867 2868 2869 - 2870 2871
5070 } 2616 2617 2618 2619 2620 2621 2622 2623 8470 | 2872 2873 2874 2875 -2B76 2877 2878 2879
5100 | 2624 2625 2626 2627 2628 2629 2630 2631 5500 { 2880 2881 2882 2883 2884 2885 2886 2887
5110 | 2632 2633 2634 2636 2636 2637 2638 2639 5510 | 2888 2889 2850 2891 2892 2893 2894 2895
5120 | 2640 2641 2642 2643 2644 2645 2646 2647 5520 | 2886 2897 2898 2889 2900 2801 2902 2903
5130 | 2648 2648 2650 2651 2652 2653 2654 2655 5530 [2904 2905 2906 2907 2908 2908 2910 2911
5140 | 2656 2657 2658 2659 2660 2661 2662 2663 5540 (2912 2913 2914 2915 2916 2917 2318 2919
5150 | 2664 26656 2666 2667 2668 2669 2670 2671 5550 | 2920 2921 2922 2923 2924 2925 2926 2927
5160 | 2672 2673 2674 2675 2676 2677 2678 2679 6560 | 2928 2929 2930 2831 2932 2933 2934 2935
5170 | 2680 2681 2682 2683 2684 2685 2686 2687 5570 2836 2937 2938 2939 2940 2941 2942 2943
5200 | 2688 2689 2680 2691 2692 2693 2694 2695 5600| 2944 2945 2946 2947 2948 2949 2950 2951
5210 | 2696 2697 2698 2699 2700 2701 2702 2703 5610} 2952 2953 2954 2955 2956 2957 2958 2959
5220 f 2704 2705 2706 2707 2708 2709 2710 2N 5620 | 2960 2861 2962 2963 2964 2965 2966 2967
5230 | 2712 2713 274 2715 2716 2717 2718 2719 6630 | 2968 2969 2970 2971 2972 2973 2974 2975
5240 | 2720 2721 2722 2723 2724 2125 2726 2727 5640 2876 2877 2878 2979 2980 2981 2982 2983
6250 | 2728 2729 2730 2731 2732 2733 2734 2735 5650| 2984 2985 2986 2987 2988 2989 2930 2991
5260 | 2736 2737 2738 2738 2740 27141 2742 2743 5660} 2992 2983 2984 2895 2996 2987 2998 2999
8270 | 2744 2745 2746 2747 2748 2749 2750 2751 5670 3000 3001 3002 3003 3004 3005 3006 3007
5300 | 2752 2753 2754 2756 2756 2757 2758 2759 57007 3008 3009 3010 3011 3012 3013 3014 3015
5310 | 2760 2761 2762 2763 2764 2765 2756 2767 5710] 3016 3017 3018 3019 3020 3021 3022 3023
6320 | 2768 2769 2770 2771 2772 2773 2774 12115 5720 3024 3025 3026 3027 3028 3029 3030 3031
5330 | 2776 2777 2778 2779 2780 2781 2782 2783 5730} 3032 3033 3034 3035 3036 3037 3038 3039
5340 | 2784 2785 2786 2787 2788 2789 2790 2791 57401 3040 3041 3042 3043 3044 3045 3046 3047
6360 | 2792 2793 2794 2795 2796 2797 2798 2799 5750 3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760 | 3056 3057 3058 3053 3060 3061 3062 3063
5370 | 2808 2803 2810 2811 2812 2813 2814 2815 5770| 3084 3065 3066 3067 3068 3068 3070 3071

5000 2560
to to

5777 3071

{Octal) {Decimal}

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont'd)

6000 3072
to to
6777 3583
{Octal} {Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000
to
mn
{Octal)

3584
to
4095
{Decimal)

0 1 2 3 4 5 6 7 (o} 1 2 3 4 5 6 7
6000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400 | 3328 3329 3330 3331 3332 3333 3334 3335
6010 | 3080 3081 3082 23083 3084 3085 23086 3087 6410 | 3336 3337 3338 3333 3340 3341 3342 3343
6020 | 3088 3088 3090 3091 3092 3093 3094 30895 6420 | 3344 3345 3346 3347 3348 3349 3350 3351
6030 | 3096 3097 3098 3099 3100 3101 3102 3103 6430 | 3352 3353 3354 3355 3356 3357 3358 3359
6040 | 3104 3105 3106 3107 3108 3103 3110 311 6440 | 3360 3361 3362 3363 3364 3365 3366 3367
6050 { 3112 3113 3114 3118 3116 3117 3118 3119 6450 | 3368 3369 3370 3371 3372 3373 3374 3375
6060 | 3120 3121 3122 3123 3124 3125 3126 3127 6460 | 3376 3377 3378 3379 3380 3381 3382 3383
6070 | 3128 3129 3130 3131 3132 3133 3134 3135 6470 | 3384 3385 3386 3387 3388 3389 3390 3391
6100 | 3136 3137 3138 3138 3140 3141 3142 3143 6500 | 3332 3393 3394 3395 3396 3397 3398 3399
6110 | 3144 3145 31468 3147 3148 3148 3150 315] 6510 | 3400 3401 3402 3403 3404 3405 3406 3407
6120 | 3152 31583 3154 3165 3156 3157 3158 3159 6520 | 3408 3408 3410 3411 3412 3413 3414 3415
6130 | 3160 3161 3162 3163 3164 3165 3166 3167 6530 | 3416 3417 3418 3419 3420 3421 3422 3423
6140 | 3168 3163 3170 3171 3172 3173 3174 3175 6540 | 3424 3425 3426 3427 3428 3429 3430 3431
6150 | 3176 3177 3178 3179 3180 3181 3182 3183 6560 | 3432 3433 3434 3435 3436 3437 3438 3439
6160 { 3184 3185 3186 3187 3188 3189 3180 31N 6560 | 3440 3441 3442 3443 3444 3445 3446 3447
6170 | 3192 3193 3194 3185 3196 3197 3198 3199 6570 | 3448 3449 3450 3451 3452 3453 3454 3455
6200 | 3200 3201 3202 3203 3204 3205 3208 3207 6600 | 3456 3457 3458 3459 3460 3461 3462 3463
6210 | 3208 3209 3210 3211 3212 3213 3214 3215 B610 | 3464 3465 3466 3467 3468 3463 3470 3471
6220 | 3216 3217 3218 3218 3220 3221 3222 3223 6620 | 3472 3473. 3474 3475 3476 3477 3478 3479
6230 | 3224 3225 3226 3227 3228 3229 3230 323 6630 | 3480 3481 3482 3483 3484 3485 3486 3487
6240 | 3232 3233 3234 3235 3236 3237 3238 3239 6640-| 3488 3489 3480 3491 3492 3493 3494 3495
6250 | 3240 3241 3242 3243 3244 3245 3246 3247 6650 | 3496 3497 3498 3493 3500 3501 3502 3503
6260 | 3248 3249 3250 3251 3252 3253 3264 3285 6660 | 3504 3505 3506 3507 3508 3508 3510 3511
6270 | 3256 3257 3258 3259 3260 3261 3262 3283 6670 | 3512 3513 3514 3515 3516 3517 3518 3519
6300 | 3264 3265 3266 3267 3268 3269 3270 3271 6700 | 3520 3521 3522 3523 3524 3525 3526 3527
6310 | 3272 3273 3274 3275 3216 3277 3278 3279 6710 | 3528 3529 3530 3531 3532 3533 3534 3535
6320 | 3280 3281 3282 3283 3284 3285 3286 3287 6720 | 3536 3537 3538 3533 3540 3541 3542 3543
6330 | 3288 3289 3290 3291 3292 3293 3294 3295 6730 | 3544 3545 3546 3547 3548 3549 3550 3551
6340 | 3296 3297 3298 3289 3300 3301 3302 3303 6740 | 3552 3553 3554 3555 3556 3557 3558 3559
6350 | 3304 3305 3306 3307 3308 3308 3310 3311 6750 | 3560 3561 3562 3563 3564 3665 3666 3567
6360 | 3312 3313 3314 3315 3316 3317 3318 3319 6760 | 356B 3569 3570 357) 3572 3573 3574 3575
6370 | 3320 3321 3322 3323 3324 3325 3326 3327 6770 [3576 3577 3578 3579 3580 3581 3582 3583
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
7000 | 3584 3585 3586 3587 3588 3589 3590 3591 7400 |3840 3841 3842 3843 3844 3845 3846 3847
7010 | 3592 3593 3534 3595 3496 3497 3598 3599 7410 | 3848 3849 3850 3851 3852 3853 3854 3855
7020 | 3600 3601 3602 3603 3604 3605 3606 3607 7420 | 3856 3857 3858 3859 3860 3861 3862 3863
7030 | 3608 3803 3610 3611 3612 3613 3614 3615 7430 | 3864 3865 3866 3867 3868 3869 3870 3871
7040 | 3616 3617 3618 3619 3620 3621 3622 3623 7440 | 3872 3873 3874 3875 3876 3877 3878 3879
7050 | 3624 3625 3626 3627 3628 36289 3630 3631 7450 (3880 3881 3882 3883 3884 38B5 3886 3887
7060 | 3632 3633 3634 3635 3636 3637 3638 3638 7480 |3888 3889 3890 38391 3892 3893 3834 3895
7070 | 3640 3641 3642 3643 3644 3645 3646 3647 7470 {3896 3897 3898 3899 3500 3901 3302 3903
7100 | 3648 3643 3650 3651 3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 391
7110 | 3656 3657 3658 3659 3660 3661 3662 3663 7510 {3912 3913 3914 3915 3916 3917 3918 3919
7120 | 3664 3665 3666 3667 3668 3669 3670 3671 7520 (3920 3921 3922 3923 3924 3925 3926 3927
7130 | 3672 3673 3674 3675 3676 3677 3678 3679 7530 }3928 3929 3930 3931 3932 3933 3934 3935
7140 | 3680 3681 3682 3683 3684 3685 3686 3687 7540 {3936 3937 3938 3939 3940 3941 3942 3943
7150 | 3688 3689 3690 3691 3692 3693 3694 3695 7550 | 3944 3945 3946 3947 3948 3949 3950 3951
7160 | 3696 3697 '3698 3693 3700 3701 3702 3703 7560 [3952 3953 3954 3955 3956 3957 3958 3959
7170 3704 3705 3706 3707 3708 3709 3710 31N 7570 (3980 3961 3962 3963 3964 3965 3966 3967
7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 {3968 3969 3970 3971 3972 3973 3974 3875
7210 (3720 3721 3722 3723 3724 3725 3726 3727 7610 | 3976 3977 3978 3979 3980 3981 3382 3983
7220 (3728 3729 3730 3731 3732 3733 3734 3735 7620 (3984 3985 3986 3987 3988 3989 3990 3991
7230 | 3736 3737 3738 3739 3740 3741 3742 3743 7630 {3982 3993 3994 3995 3996 3997 3998, 3999
7240 | 3744 3745 3746 3747 3748 3749 3750 3751 7640 | 4000 4001 4002 4003 4004 4005 4006 4007
7250 {3752 - 3753 3754 37556 3756 3757 3758 3789 7650 4008 4008 4010 4011 4012 4013 4014 4015
7260 | 3760 3761 3762 3763 3764 3765 3766 3767 7660 {4016 4017 4018 4019 4020 4021 4022 4023
7270 | 3788 3769 3770 3771 3772 3713 3174 3715 7670 {4024 4025 4026 4027 4028 4029 4030 4031
7300 {3776 3777 3778 3779 3780 3781 3782 3783 7700 (4032 4033 4034 4035 4036 4037 4038 4039
7310 [3784 3785 3786 3787 3788 3788 3790 37N 7710 14040 4041 4042 4043 4044 4045 4046 4047
7320 13792 3793 3794 3795 3796 3797 3798 3799 7720 (4048 4049 4050 4051 4052 4053 4054 4055
7330 | 3800 3801 3802 3803 3804 3805 3806 3807 7730 [4056 4057 4058 4059 4060 4061 4062 4063
7340 | 3808 3809 3810 3811 3812 3813 3814 3815 7740 (4064 4065 4066 4067 4068 4069 4070 4071
7350 | 3816 3817 3818 3813 3820 3821 3822 3823 7750 (4072 4073 4074 4075 4076 4077 4078 4079
7360 | 3824 3825 3826 3827 3828 3829 3830 3831 7760 (4080 4081 4082 4083 4084 4085 40856 4087
7370 | 3832 3833 3834 3835 3836 3837 3838 3839 7770 |4088 4083 4090 4091 4092 4093 4094 4085

C-4

Appendix D

OCTAL-DECIMAL FRACTION
CONVERSION TABLE

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC
.000 .000000 .100 .125000 .200 250000 .300 .375000
.001 .001953 101 .126953 201 .251953 301 .376953
.002 003906 102 .128906 202 253906 .302 .378906
.003 0056859 .103 .130859 .203 255859 .303 .3808569
.004 007812 .104 .132812 204 .257812 .304 .382812
.005 .008765 .105 .134765 .205 .258765 .305 384765
.006 .011718 .1086 .136718 206 .261718 .306 .386718
.007 .013671 .107 .138671 .207 .263671 307 .388671
.010 015625 110 .140625 .210 265625 .310 390625
011 .017578 111 .142578 21 .267578 311 .392578
012 019531 112 .144531 212 2695631 312 394531
.013 .021484 113 .146484 213 271484 313 396484
.014 .023437 114 .148437 214 273437 .314 .398437
.0156 .025390 115 .1650380 2158 .275390 315 400390
.016 027343 116 .152343 2186 277343 316 402343
.017 029296 117 .154296 217 279296 317 404296
.020 .031250 120 156250 220 281250 .320 1406250
.021 .033203 121 .158203 221 .283203 321 1408203
.022 .035156 122 160156 222 .285156 322 410156
.023 .037109 123 .162109 223 287109 .323 412109
.024 .039062 124 .164062 224 .289062 .324 414062
.025 041015 126 .1660156 225 2910156 325 416015
.026 .042968 126 .167968 226 .292968 .326 417968
.027 044921 127 .169921 227 .294921 .327 418921
.030 .046875 .130 .171875 .230 296875 .330 421875
031 .048828 131 .173828 231 .298828 .331 423828
.032 050781 132 .175781 .232 .300781 332 425781
.033 052734 133 177734 .233 .302734 .333 427734
.034 054687 134 .179687 .234 .304687 334 429687
.035 .0566640 .135 .181640 .235 .306640 335 431640
.036 .058583 .136 .183593 .236 .308593 .336 433593
.037 .060546 137 .185546 237 .310546 .337 435546
.040 062500 .140 .187500 240 .312500 .340 437500
041 064453 141 .189453 241 314453 341 439453
.042 .066406 142 191406 242 .3164086 342 4414086
.043 .068358 .143 .193359 243 .318359 .343 443359
.044 .070312 144 .1956312 244 320312 344 445312
.045 .072265 .145 197265 245 322265 .345 447265
.046 .074218 146 .199218 246 324218 346 449218
.047 076171 147 201171 247 326171 .347 451171
.050 078125 .150 2031256 .250 .328125 .350 453125
051 080078 161 .205078 .251 .330078 .361 455078
.062 .082031 162 207031 .252 332031 .352 457031
.053 .083984 163 .208984 .253 .333984 .363 458984
.054 .085937 .154 .210937 254 335937 .354 460937
.055 .0878890 .155 .212890 255 .337890 .3556 462890
.056 .089843 .156 214843 .256 .339843 .356 464843
.057 091796 1567 216796 .257 341796 .357 466796
.060 .093750 .160 .218750 .260 .343750 .360 468750
.061 .095703 161 .220703 .261 345703 .361 470703
.062 .097656 .162 222656 .262 .347656 .362 472656
.063 .099609 .163 .224609 263 349609 .363 474609
.064 .101562 .164 226562 .264 .351562 .364 476562
.065 .103515 ..165 .228515 265 .353515 .366 478515
.066 .105468 .166 .230468 .266 .355468 .366 480468
.067 107421 167 232421 .267 357421 .367 482421
.070 .109375 170 234375 .270 .359375 370 484375
071 .111328 171 .236328 271 .361328 371 486328
.072 .113281 172 .238281 272 .363281 372 488281
.073 115234 173 240234 273 .365234 373 490234
.074 117187 174 242187 274 .367187 374 492187
075 .119140 1756 244140 .275 .369140 375 494140
076 .121093 176 2460893 276 371093 376 496093
077 .123046 177 248046 277 .373046 377 498046

OCTAL~-DECIMAL FRACTION CONVERSION TABLE (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000000 .000000 000100 000244 000200 000488 .000300 .000732
.000001 .000003 .000101 .000247 000201 .000492 .000301 000736
.000002 .000007 .000102 .000251 .000202 .000485 .000302 .000740
.000003 .000011 000103 .0002565 .000203 .000499 .000303 .000743
.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747
.000005 000019 .000105 .000263 000205 .000507 .000305 .000751
.000006 000022 .000106 .000267 .000206 000511 .000306 000755
.000007 000026 000107 .000270 .000207 .000514 000307 .000759
.000010 .000030 .000110 000274 .000210 000518 .000310 000762
.000011 .000034 000111 .000278 000211 .000522 000311 .000766
.000012 .000038 .000112 .000282 .000212 .000526 000312 .000770
.000013 .000041 .000113 000286 .000213 .000530 .000313 000774
000014 .000045 000114 .000289 .000214 .000534 .000314 .000778
.000016 .000049 .000115 .000293 .000215 .000537 .000315 .000782
.000016 .000053 000116 .000297 .000216 .000541 .000316 000785
000017 000057 .000117 000301 000217 000545 .000317 .000789
.000020 000061 .000120 000305 .000220 000549 .000320 .000793
.000021 000064 .000121 .000308 .000221 .000553 .000321 .000797
.000022 .000068 .000122 .000312 000222 .000556 .000322 .000801
.000023 000072 .000123 .000316 .000223 .000560 .000323 .000805
.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808
.000025 .000080 .000125 .000324 000225 .000568 000325 .000812
.000026 000083 000126 000328 .000226 .000572 000326 .000816
.000027 .000087 .000127 .000331 000227 .000576 .000327 .000820
.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823
.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827
.000032 000099 .000132 .000343 000232 .000587 .000332 .000831
.000033 000102 .000133 .000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839
.000035 000110 .000135 .000354 .000235 .000598 .000335 .000843
.000036 .000114 000136 .000358 .000236 .000602 .000336 .0008486
.000037 .000118 .000137 000362 .000237 000606 .000337 .000850
.000040 .000122 .000140 .000366 000240 .000610 .000340 .000854
.000041 .000125 1000141 .000370 000241 000614 .000341 .000858
.000042 .000129 .000142 .000373 000242 .000617 .000342 .000862
.000043 .000133 .000143 .000377 .000243 .000621 000343 .000865
.000044 .000137 .000144 .000381 000244 .000625 .000344 .000869
.000045 .000141 000145 .000385 000245 .000629 .000345 000873
000046 000144 .000146 .000389 .000246 .000633 .000346 .000877
.000047 .000148 .000147 .000392 000247 000637 .000347 .000881
.000050 000152 .000150 .000396 .000250 .000640 .000350 .000885
.000051 .000156 .000151 .000400 000251 .000644 .000351 .000888
000052 .000160 0001562 .000404 .000252 .000648 .000352 000892
.000053 .000164 0001563 .000408 .000253 .000652 .000353 .000896
000054 000167 000154 .000411 .000254 .000656 .000354 .000900
.000055 000171 .0001556 .000415 .000255 .000659 000355 .000904
.0000566 000175 000156 .000419 .0002586 000663 .000356 .000907
.000057 .000179 .000157 .000423 .000257 000667 .000357 000811
000060 .000183 .000160 000427 .0002860 .000671 .000360 .000915
.000061 000186 000161 .000431 .000261 .000675 .000361 000919
.000062 000190 .000162 .000434 .000262 .000679 .000362 000923
.000063 000194 000163 000438 .000263 000682 .000363 .000926
.000064 .000198 000164 .000442 .000264 000686 .000364 .000930
.000065 000202 000165 .000446 .000265 000690 .000365 .000934
000066 .000205 .000166 .000450 .000266 .000694 000366 .000938
.000067 .000209 .000167 .000453 .0002867 000698 .000367 000942
.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946
.000071 .000217 .000171 000461 000271 000705 .000371 .000949
.000072 .000221 000172 000465 .000272 .000709 000372 .000963
.000073 .000225 .000173 .000469 .000273 000713 .000373 0008567
000074 .000228 .000174 .000473 .000274 .000717 000374 .000961
000075 000232 000175 .000476 .000275 .000720 .000375 .000965
.000076 .000236 000176 .000480 .000276 000724 .000376 .000968
.000077 .000240 000177 000484 .000277 .000728 .000377 .000972

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont'd)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
000400 .000976 .000500 .001220 .000600 001464 .000700 .001708
.000401 .000980 .000501 .001224 000601 .001468 .000701 001712
.000402 .000984 .000502 .001228 .000602 .001472 .000702 001716
.000403 .000988 .000503 .001232 .000603 .0014786 .000703 .001720
.000404 .000991 000504 001235 .000604 .001480 .000704 .001724
.000405 000995 000505 001238 .000605 .001483 .000705 .001728
.000406 .000999 000506 .001243 .000606 .001487 .000706 001731
.000407 001003 .000507 .001247 .000607 001491 .000707 .001735
000410 001007 .000510 001251 000610 001495 .000710 .001739
.000411 .001010 .000511 001255 000611 .00149% 000711 .001743
.000412 .001014 000512 .001258 .000612 .001502 000712 001747
.000413 001018 .000513 .001262 .000613 .001506 .000713 001750
.000414 001022 .000514 .001266 000614 .001510 .000714 001754
.000415 .001026 000515 .001270 000615 .001514 .000715 001758
.0004186 .001029 .000516 001274 .000616 .001518 .000716 001762
000417 .001033 .000517 001277 .000617 .001522 .000717 .001766
000420 .001037 .000620 .001281 .000620 .001625 .000720 .001770
000421 .001041 .000521 .001285 .000621 .001529 000721 001773
.000422 .001045 .000522 .001289 .000622 .001533 .000722 001777
.000423 001049 .000523 .001293 .000623 .001537 000723 001781
000424 .0010562 .0005624 001296 000624 .001541 000724 .001785
.000425 .001056 000625 .001300 .000625 .001544 .000725 001789
.000426 .001060 .000526 001304 .000626 .001548 .000726 001792
.000427 001064 .000527 .001308 .000627 .001562 .000727 .001796
.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800
.000431 .001071 000531 0013186 000631 .001560 .000731 .001804
.000432 001075 .0005632 001319 .000632 001564 .000732 .001808
.000433 .001079 .000633 001323 .000633 001567 .000733 001811
.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815
.000435 .001087 .000535 .001331 000635 001575 000735 001818
.000436 .001081 .000536 001335 .000636 .001579 .000736 .001823
.000437 .001094 .000537 .001338 .000637 001583 .000737 .001827
.000440 001098 .000540 001342 .000640 .001586 000740 .001831
.000441 001102 .0005641 .001346 .000641 .001580 .000741 .001834
.000442 001106 000542 001350 .000642 001594 .000742 .001838
.000443 .001110 .000543 .001354 000643 .001598 .000743 001842
.000444 001113 .000544 .001358 .000644 .001602 000744 .001846
.000445 .001117 000545 .001361 .000645 001605 .000745 .001850
0004486 001121 000546 .001365 .000646 .001609 .000746 .001853
.000447 001125 .000547 001369 .000647 .001613 000747 001857
.000450 .001128 .000550 .001373 .000650 001617 .000750 .001861
.000451 001132 .000551 001377 000651 .001621 .000751 001865
000452 001136 000552 .001380 .000652 .001625 .000752 001869
000453 001140 .000653 .001384 .000653 .001628 .000753 .001873
.000454 001144 000554 .001388 000654 001632 .000754 .001876
.000455 001148 .000555 .001392 .000655 .001636 .000755 .001880
.000456 .001162 .000556 .001396 .000656 001640 000756 001884
.000457 .001155 000557 001399 000657 .001644 .000757 .001888
.000460 001159 .000560 001403 .000660 .001647 .000760 .001892
.000461 .001163 .000561 .001407 .000661 .001651 000761 .001895
000462 .001167 .000562 001411 .000662 0016565 .000762 001899
.000463 001171 .000563 .001415 000663 .001659 .000763 .001903
000464 001174 .000564 001419 .000664 .001663 .000764 .001907
000465 001178 .000565 001422 .000665 .001667 000765 .001911
000466 001182 000566 001426 .000666 001670 .000766 .001914
.000467 .001186 .000567 .001430 .000667 001674 .000767 .001918
.000470 .001190 .000570 .001434 .000670 .001678 .000770 001922
.000471 001194 .000571 .001438 .000671 .001682 000771 0019286
000472 .001197 0005672 .001441 .000672 001686 .000772 .001930
000473 .001201 .000573 001445 .000673 .001689 .000773 .001934
000474 .001205 .000574 001449 000674 .001693 000774 .001937
000475 .001209 0005875 .001453 .000675 .001697 .000775 001941
.000476 001213 .000576 .001457 .000676 001701 .000776 .001945
000477 .001216 .000577 001461 000677 .001705 .000777 001948

Appendix E

INSTRUCTION EXECUTION TIMES

INSTRUCTION EXECUTION TIMES

The execution times for Central and Peripheral and Control Processor instructions are
given in the following paragraphs. Factors which influence instruction execution time

and hence program running time are also given.

CENTRAL PROCESSOR (6600 and 6800 SYSTEMS)

The execution time of Central Processor instructions is given in minor cycles, * and in-
structions are grouped under the functional unit (6600 and 6800) which executes the in-
struction. Time is counted from the time the unit has both input operands to when the
instruction result is available in the specified result register. Central Memory access
time is not considered in those increment instructions which result in memory refer-

ences to read operands or store results.

The following paragraphs give some general statements about Central Processor instruc-
tion execution and summarize the statements into a list which may be used as a guide to

efficient use of the Central Processor functional units.

Central Processor programs are written in the conventional manner and are stored in
Central Memory under direction of a Peripheral and Controli Processor. After an Ex-
change Jump start by a Peripheral and Control Processor program, Central Processor
instructions are sent automatically, and in the original sequence, tothe instruction stack,

which holds up to 32 instructions.

Instructions are read from the stack one at a time and issued to the functional units for
execution. A scoreboard reservation system in Central Processor control keeps a cur-
rent log of which units are busy (reserved) and which operating registers are reserved

for results of computation in functional units.

Each unit executes several instructions, but only one at a time. Some branch instruc-

tions require two units, but the second unit receives its direction from the branch unit.

*A minor cycle is 100 nanoseconds in the 6400 and 6600 systems; 25 nanoseconds in the
6800 system.

BE-1

The instruction issue rate may vary from a theoretical maximum rate of one instruction
every minor cycle (sustained issuing at this rate may not be possible because of unit and
Central Memory conflict) and resulting parallel operation of many units to a slow issue
rate and serial operation of units. The latter results when successive operations de-
pend on results of previous steps. Thus, program running time can be decreased by
efficient use of the many units. Instructions which are not dependent on previous steps
may be arranged or nested in areas of the program where they may be executed during
operation time of other units. Effectively, this eliminates dead spots in the program

and steps up the instruction issue rate.

The following steps summarize instruction issuing and execution:

1) An instruction is issued to a functional unit when
] the specified functional unit is not reserved

e the specified result register is not reserved for a previous result.

2) Instructions are issued to functional units at minor cycle intervals when no

reservation conflicts (see above) are present.

3) Instruction execution starts in a functional unit when both operands are
available (execution is delayed when an operand(s) is a result of a previous

step which is not complete.

4) No delay occurs between the end of a first unit and the start of a second unit

which is waiting for the resulis of the first.

5) No instructions are issued after a Branch instruction until the Branch
instruction has been executed. The Branch Unit uses

e an Increment Unit to form the go to k + Bi and go to k if Bi .
instructions, or

e the Long Add unit to perform the go to k if Xj . . . instructions
in the execution of a Branch instruction. The time spent in the Long

Add or Increment Units is part of the total branch time.

6) Read Central Memory access time is computed from the end of Increment
Unit time to the time operand is available in X operand register. Minimum

time is 500 ns, assuming no Central Memory bank conflict.

CENTRAL PROCESSOR (6400 SYSTEM)
The 6400 system Central Processor has a unified Arithmetic unit, rather than separate

E-2

functional units as in the 6600 and 6800 systems. Instructions in the 6400 Central Pro-

cessor, therefore, are executed in sequential fashion with little concurrency.

All execution times for instructions listed in Table E-1 include readyingthe next instruc-
tion for execution. For the Return Jump instruction and the Jump instructions (in which
the jump condition is met), Table E-1 lists times which include obtaining the new instruc-
tion word from storage and readying it for execution. Times listed, then, are complete
times except for possible additional time due to hardware limitations or memory bank
conflicts. Factors which may add to the stated times in Table E-1 are summarized be-

low.

1) Reading the next instruction word of a program from Central Memory (termed
an RNI - Read Next Instruction) is in part concurrent withinstruction execution.
The RNI is initiated between execution of the first and second instructions ofthe
instruction word being processed. Initiating the RNIoperation requires 2 minor
cycles; the remainder of the RNI time is in time parallel with the execution of
the remaining instructions in the instruction word. (Refer to the example in
Figure E-1.)

INIT!ATE \ w

EXECUTION OF
RNI { f INSTRUCTIONS { F
! 2 AND 3

RNI
——>| 200 NSEC { f MINIMUM OF { f
800 NSEC

TOTAL RNI TIME

Figure E-1. RNI Timing Example

In the example diagrammed in Figure E-1, execution of instruction 2 is de-

layed 2 minor cycles until RNI initiation is complete.

In calculating execution times for a program, add 2 minor cycles to each in-

struction word in a program to cover the RNI initiation time. Exceptions to

E-3

this rule are the Return Jump and the Jump instructions (in which the jump condition is
met) when these occupy the upper position of the instruction word. Since the stated times

for these instructions in Table E-1include thetime required toread up the new instruc-

tion word at the jump address, no additional time is required.

2)

Example:

P JUMP TO K (MET)

PASS

PASS

K ADD | ADD 2

LOAD

STORE

Instruction Time Required
Jump 13 Minor Cycles
Add 1 5 Minor Cycles
RNI Initiation 2 Minor Cycles
Add 2 5 Minor Cycles
Load 12 Minor Cycles
Store 10 Minor Cycles
Total Time Required = 47 Minor Cycles

After RNI has been initiated (between the first and second instructions of the

instruction word), a minimum of 8 minor cycles elapse beforethe next instruc-

tion word is available for execution.

in the lower order positions of the word is less than 8 minor cycles, allow a

minimum of 8 minor cycles, regardless of the execution times stated in Table

E-1.

Example:

If the total time required by instructions

P | JUMP TO K (NOT MET)

PASS

PASS

P+

3)

4)

5)

Instruction Time Required

Jump (not met) 5 Minor Cycles

'RNI Initiation 2 Minor Cycles

Pass = 3 | 6, but RNI

P _ Minimum = 8 Minor Cycles
ass = 3

Minimum time before

instruction word at

P + 1 is available for

execution = 15 Minor Cycles

The Return Jump instruction, all Jump instructions in which the jump conditior.
is met, and Load/Store Memory instructions always require additional time
when located in the second instruction position of an instruction word. This
additional time is caused by hardware limitations and is not due to memory

bank conflicts.

Additional Time Required
If Used As Second Instruction

Instruction in Word
a) Jumps (02 - 07) in which
the jump condition is met 1 Minor Cycle
b) Return Jump (010) 2 Minor Cycles

¢) Load/Store (56X instructions
with i # 0) 2 Minor Cycles

An additional 3 minor cycles due to bank conflict are required if the second in-

struction of a word references the memory bank in which (P+1) i‘s located.

A Store (not Load) as the first instruction of a word can cause a bank conflict

with (P + 1). If this occurs, 3 minor cycles are added to the execution time.

Summary of guidelines for efficient coding in the 6400 Central Processor:

Always attempt to place Jump instructions in the upper parcel
of the instruction word. In most cases, this avoids both the
additional time for RNI (2 mimor cycles) and the possibility of a

memory bank conflict with (P + 1).

Where possible, place TL.oad/Store instructions in the lower order

two parcels to avoid lengthening execution times as outlined above.

E-5

Central Processor instruction execution times for the 6400, 6600 and 6800 systems are
tabulated in Table E-1,

which they are executed; this functional unit designation, of course,

CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES

Instructions are tabulated according to the functional units in

the 6400 system; its Central Processor has a unified arithmetic section.

Instruction executiontimes are listed in minor cycles. A minor cycleis 100 nanoseconds
in the 6400 and 6600 systems and 25 nanoseconds in the 6800 system. Atime listed as 4

minor cycles for the 6600 and 6800 systems means, therefore, an execution time of 400

nanoseconds (6600) and 100 nanoseconds (6800).

TABLE E-1. INSTRUCTION EXECUTION TIMES: CENTRAL PROCESSOR
Octal BRANCH UNIT 68400 6600
Code and

6800
00 STOP - -
01 RETURN JUMP to K 21 13
011 READ EXTENDED CORE STORAGE Ak ek
012 WRITE EXTENDED CORE STORAGE 3k
02 GO TOK+Bif 13 14
030 GO TO K if Xj = zero 3 13 SRS
031 GO TO K if Xj # zero 13 9
032 GO TO K if Xj = positive 13 g
033 GO TO K if Xj = negative 13 9«
034 GO TO K if Xj is in range S 13 9
035 GO TO K if Xj is out of range J 13 E:
03¢ GO TO K if Xj is definite 13 9%
037 GO TO K if Xj is indefinite | 13 9k
04 GO TO K if Bi = Bj 13 8
05 GO TOK if Bi = Bjt 13 8
06 GO TOK if Bi >Bjt 13 8
07 GO TO K if Bi <Bj ¥t 13 8

the stack.

T GO TO K + Bi and GO TO K if Bi
- - - tests made in Increment Unit

T GO TO Kif Xj - - - tests made in
Long Add Unit
*Add 6 minor cycles to branch time for
a branch to an instruction which is out
of the stack (no memory conflict con-
sidered); add 2 minor cycles to branch
time for a no branch condition in the

stack. Add 5 minor cycles to branch ##Jumps in which the jump condition
time for a no branch condition out of

*#Execution times for Extended Core
Storage operations are dependent
upon several factors; refer to Ex-
tended Core Storage literature for
timing information.

is not met require 5 minor cycles

does not apply to

TABLE E-1. (Cont'd)

Octal BOOLEAN UNIT 6600
Code 6400 6800
10 TRANSMIT Xj to Xi 5 3
11 LOGICAL PRODUCT of Xj and Xk to Xi 5 3
12 LOGICAL SUM of Xj and Xk to Xi 5 3
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 5 3
14 TRANSMIT Xk COMP. to Xi*] 3
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 5 3
16 LOGICAL SUM of Xj and Xk COMP. to Xi 5 3
17 LOGICAL DIFFERENCE of Xj and Xk COMP, to Xi 5 3
Octal SHIFT UNIT 6600
Code 6400 6800
20 SHIFT Xi LEFT jk places 6 3
21 SHIFT Xi RIGHT jk places 6 3
22 SHIFT Xk NOMINALLY LEFT Bj places to Xi 6 3
23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi 6 3
24 NORMALIZE Xk in Xi and Bj 7 4
25 ROUND AND NORMALIZE Xk in Xi and Bj 7 4
26 UNPACK Xk to Xi and Bj 7 3
27 PACK Xi from Xk and Bj 7 3
43 FORM jk MASK in Xi 6 3
Octal ADD UNIT 6600
Code 6400 6800
30 FLOATING SUM of Xj and Xk to Xi 11 4
31 FLOATING DIFFERENCE of Xj and Xk to Xi 11 4
32 FLOATING DP SUM of Xj and Xk to Xi* 11 4
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi 11 4
34 ROUND FLOATING SUM of Xj and Xk to Xi 11 4
35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 11 4
Octal L.ONG ADD UNIT 6600
Code 6400 6800
36 INTEGER SUM of Xj and Xk to Xi 6 3
37 INTEGER DIFFERENCE of Xj and Xk to Xi 6 3
Octal MULTIPLY UNIT#* 6600
Code 6400 6800
40 FLOATING PRODUCT of Xj and Xk to Xi 57 10
41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 57 10
42 FLOATING DP PRODUCT of Xj and Xk to Xi 57 10

#*Comp. = Complement; DP = Double Precision

E-7

TABLE E-1. (Cont'd)

Octal DIVIDE UNIT 6600
Code 6400 6800
44 FLOATING DIVIDE Xj by Xk to Xi 56 29
45 ROUND FLOATING DIVIDE Xj by Xk to Xi 56 29
47 SUM of 1's in Xk to Xi 68 8
46 PASS 3 1
Octal INCREMENT UNIT* 6600
Code 6400 6800
50 SUM of Aj and K to Ai *%k 3
51 SUM of Bj and K to Ai ek 3
52 SUM of Xj and K to Ai ok 3
53 SUM of Xj and Bk to Ai ok 3
54 SUM of Aj and Bk to Ai ek 3
55 DIFFERENCE of Aj and Bk to Ai ek 3
56 SUM of Bj and Bk to Ai : K 3
57 DIFFERENCE of Bj and Bk to Ai ik 3
60 SUM of Aj and K to Bi 5 3
61 SUM of Bj and K to Bi 5 3
62 SUM of Xj and K to Bi 5 3
63 SUM of Xj and Bk to Bi 5 3
64 SUM of Aj and Bk to Bi 5 3
65 DIFFERENCE of Aj and Bk to Bi 5 3
66 SUM of Bj-and Bk to Bi 5 3
67 DIFFERENCE of Bj and Bk to Bi 5 3
70 SUM of Aj and K to Xi 6 3
71 SUM of Bj and K to Xi 6 3
72 SUM of Xj and K to Xi 6 3
73 SUM of Xj and Bk to Xi 6 3
74 SUM of Aj and Bk to Xi 4] 3
75 DIFFERENCE of Aj and Bk to Xi 6 3
76 SUM of Bj and Bk to Xi 6 3
77 DIFFERENCE of Bj and Bk to Xi 6 3

:‘:Duplexed units - instruction goes to free unit

*% When:

0 the execution time is 6 minor cycles
1-5 the execution time is 12 minor cycles
6 or 7 the execution time is 10 minor cycles

i

nowon

i

PERIPHERAL AND CONTROL PROCESSOR

The execution time of Peripheral and Control Processor instructions is influenced by

the following factors:

e Number of memory references - indirect addressing and indexed
addressing require an extra memory reference. Instructions in

24-bit format require an extra reference to read m.

® Number of words to be transferred - in I/O instructions and in
references to Central Memory the execution times vary with the
number of words to be transferred. The maximum theoretical
rate of flow is one word/major cycle. I/O word rates depend
upon the speed of external equipments which are normally much

slower than the computer.

e References to Central Memory may be delayed if there is conflict

with Central Processor memory requests.

° Following an Exchange Jump instruction, no memory references
(nor other Exchange Jump instructions) may be made until the

Central Processor has completed the Exchange Jump.

TABLE E-2. PERIPHERAL AND CONTROL PROCESSOR
N INSTRUCTION EXECUTION TIMES

(6400, 6600, and 6800)

OCTAL TIME*
CODE NAME ' (MAJOR
CYCLES
00 Pass 1
01 Long jump to m + (d) 2-3
02 Return jump to m + (d) 3-4
03 Unconditional jump d 1
04 Zero jump d 1
05 Nonzero jump d 1
06 Plus jump d 1
07 Minus jump d 1
10 Shift d 1
11 Logical difference d 1
12 Logical product d 1
13 Selective clear d 1
14 Load d 1

*Note tnat a major cycle is 1000 nanoseconds in the 6400
and 6600 systems, and 250 nanoseconds in the 8800
system. -9

TABLE E-2. (Cont'd)

OCTAL TIME >
CODE NAME (MAJOR
CYCIL.ES
15 Load complement d 1
16 Add d 1
17 Subtract d 1
20 Lioad dm 2
21 Add dm 2
22 Logical product dm 2
23 Logical difference dm 2
24 Pass 1
25 Pass 1
26 Exchange jump min. 2
217 Read program address 1
30 Load (d) 2
31 Add (d) 2
32 Subtract (d) 2
33 Logical difference (d) 2
34 Store (d) 2
35 Replace add (d) 3
36 Replace add one (d) 3
37 Replace subtract one (d) 3
40 Load ({d})) 3
41 Add ((d)) 3
42 Subtract ((d)) 3
43 Logical difference ((d)) 3
44 Store ((d)) 3
45 Replace add ((d)) 4
46 Replace add one ({d)) 4
47 Replace subtract one ((d)) 4
50 Load (m + ((4)) 3-4
51 Add (m + (d)) 3-4
52 Subtract (m + (d)) 3-4
53 Logical difference (m + (d)) 3-4
54 Store (m + (d)) 3-4
55 Replace add (m + (d)) 4-5
56 Replace add one (m + (d)) 4-5
57 Replace subtract one (m + (d)) 4-5
60 Central read from (A) to d min. 6
61 Central read (d) words 5 plus
from (A) tom 5/word

"Note that a major cycle is 1000 nanoseconds in the 6400 and
6600 systems, and 250 nanoseconds in the 6800 system. Note
also that the shorter time is taken in certain instructions
when d = 0.

E-10

TABLE E-2. (Cont'd)

OCTAL TIME:
CODE NAME (MAJOR
' CYCLES
62 Central write to (A) from d min. 6
63 Central write (d) words 5 plus
to (A) from m 5/word
64 Jump to m if channel d active 2
65 Jump to m if channel d inactive 2
66 Jump to m if channel d full 2
67 Jump to m if channel d empty 2
70 Input to A from channel d 2
71 Input (A) words to m 4 plus
from channel d 1 /word
72 Output from A on channel d 2
73 Output (A) words from m 4 plus
on channel d 1/word
74 1 Activate channel d 2
75 Disconnect channel d 2
76 Function (A) on channel d 2
77 Function m on channel d 2

Note that a major. cycle is 1000 nanoseconds in the 6400 and
6600 systems, and 250 nanoseconds in the 6800 systems. Note
also that the shorter time is taken in certain instructions

when d = 0.

Appendix F

INDEFINITE FORMS

FLOATING ADD

o)+ (+
(o) + (-
(-©)+ (-
(o) +
(o) -
(o) - (-
(o) - (+
(-o) - (-

o) =
o) =
o) =
) =
) =
) =
) =

o) =

Fo)x @& N)-=

(o) &

N) =

377700. ..
177700. ..
400000. ..
177700. ..

177700. .

377700. ..
400000. ..
177700. ..
377700. ..
400000.

(+ Indef.)+ (£ N) = 1777
(£ Indef.)+ (= ®) =177700...00
(+ Indef.)+ (+ 0) = 177700...00

Underflow =
Overflow on right shift one = 3777XXX. ..XX (coefficient positive)

MULTIPLY

+o) - (+o)=377700..

(+ o) - (-o)=400000...
o). (0)=177700...
(+0) - 0)=000000...
& 0) - (£ N) = 000000.

INDEFINITE FORMS

00
00
00
00
.00
00
00
00
00
.00
00...00

. 00
0o
00
00
00

0000 (coefficient = coefficient Xj + coefficient Xk)

4000XXX...XX (coefficient negative)

(& Indef.) - (+ N) = 177700...00
(+ Indef.) - (+ @) ="177700...00
(£ Indef.) - (- 0) = 177700...00

Underflow: (no left shift one)

(left shift one
& sign record)

(left shift one

& no sign record)

Overflow:# (sign record)

(no sign record)
Left shift one

#

000000...00

7777 (coefficient = coefficient Xj coefficient Xk)

= 0000 (coefficient = coefficient Xj coefficient Xk)

40000...00
= 37700...00 *

does not take the exponent out of overflow

F-1

DIVIDE
o)+ (to)=177700...
(o)+ (N)=2377700...
(©): (-N) = 400000...
(-o)+ (N)=400000...
(0)+ (& ®)=000000...
(+0): (£ N)=000000...
(+ N) = (+ ®)=000000...
(N):(0)=2377700...
(-N)+ (0)=400000...
(N)=(-0)=400000...
(-N) =+ (-0)=377700.

Underflow: #
Overflow: (right shift

00
00
00
00
00
00
00
00
00
00

.. 00
(t Indef.) * (+ N) = 177700...
(+ Indef.) 3 (= ®©)= 177700...
(+ Indef.) * (+ 0)= 177700...

& sign record)

(right shift

& sign record)
Right shift one

NORMALIZE
(tw)=377T7XX...XX
(-o) = 4000XX...XX
(+ Indef.) = 1777XX...XX

Underflow = 0000... 00

W W w W

[N

[SOUPRR SN BN

00

00

1

it

I

1

000000...00
4000 (coefficient

3777 (coefficient

does not take the

000000
000000
000000

Shift count

= coefficient Xj coefficient Xk)
= coefficient Xj coefficient Xk)

exponent out of underflow

SUPPLEMENT TO TABLE OF INDEFINITE FORMS
(Coefficient Fields for Indefinite Operands in Xj
and/or X; May Be Any Value in Any Flt. Pt. Unit)

FLOATING ADD UNIT USING 30, 31, 34 or 35 INSTRUCTION

X,
J

37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
400000060000000000000
40000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
177700000000600000000

+ + o+ +

4+ 4+

+ o+

Xy

37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
377770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
17206000000000000000
605TLTTTTTTTCTINITN
17206000000000000000
6057TL7TTTTTI7TTIT7TTT
17257000000000000000
60520777 TTTTTTTTINCT
17257000000000000000
60520777TTTTTTITVTNT
16204500000000000000
61573277TTTTINITITNT
16204500000000000000
61573277TTTTTTTTNTNTT
16204500000000000000
61573277TTTTVTININTY
16204500000000000000
61573277T7TTI77T77777
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000

X.
i

37770000000000000000
17770000000000000000
400000000060000000000
17770000000000000000
17770000000000000000
37770000000000000000
40000000000000000000
17770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
40000000000000000000
40000000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
177'70000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17'770000000000000000
17770000000000000000

FLOATING ADD (Cont'd)

X.
J

60000000000000000000
60000000000000000000

37765400000000000000
40012377770TTTTITTT

FLOATING ADD UNIT

00574320000000000000
T72034577T7TTTTTTITTTT
00564320000000000000
772134577TTTTTTTTITTT

+

Xy

37770000000000000000
40000000000000000000

37764000000000000000
40013777TTTTTTTIITNT

USING 32 or 33 INSTRUCTION

+ + + +

00575400000000000000
7720237777V
00555400000000000000
T7222377TTT0TNTNNNN

Xy

17770000000000000000
17770000000000000000

37774600000000000000
400031777 TTTTTTINNNT

00004750000000000000
TTTT3027°0TTTTINNUNNT
00000000000000000000
00000000000000000000

MULTIPLY UNIT USING 40 or 41 INSTRUCTION

X,
J

37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
00000000000000000000
TNV
00000000000000000000
TNV
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
00305000000000000000
00305000000000000000
TT4727TTTTVTITITINTTT
TTAT2TTTTTTTUITITT77
07214000000000000000
70563777TTT7T7TTT7777
30007000000000000000
30007000000000000000

Xk
BTTT31777717717T1T77
20004600000000000000
20004600000000000000
5777317 77TTTN0CNTTT
37770000000000000000
40000000000000000000
00000000000000000000
TR0
00000000000000000000
TTTVTNNTTVNN000°0
17154370000000000000
17154370000000000000
6062340777 7TTTTTICVT
6062340777TTTTIITTT
20606543000000000000
5717123477 777T7TT77T
20606543000000000000
571712347777 777TTTVT
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
16277000000000000000
61500777TTNTTTITIVNT
16277000000000000000
61500777TTTTNTTVIUNT
07777000000000000000
07777000000000000000
27174000000000000000
50603770TTTITTTTI7T7

X,
i

40000000000000000000
37770000000000000000

40000000000000000000
37770000000000000000
377'70000000000000000
40000000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
17770000000000000000
17770000000000000000
177'70000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00007000000000000000
TTTTOTTTNTININN0I0N
37770000000000000000
40000000000000000000

DIVIDE UNIT USING 44 OR 45 INSTRUCTION

X,
J

00000000000000000000
00000000000000000000
TTTTTTTTTNNNT0N0007
CTTTTTTTTTNTNNNN
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
00000000000000000000
00000000000000000000
TTTTTTTTNTTTNNNNNC0Y
TTTTTTTTTNTTNNNNNNNT
00000000000000000000
00000000000000000000
TNV
TTTTTTTTNNTTNIN0NN0N
16717400000000000000
16717400000000000000
610603777777 T7TTTTTT
61060377TTTTTTIINNUT
32044540000000000000
45733237TTTTTTTITTVT
20615567000000000000
571622107777 7TTITTT
17770000000000000000
17770000000000000000
60000000000000000000
60000000000000000000
17770000000000000000

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Xy

00000000000000000000
TNV
00000000000000000000
TN
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
20424321000000000000
5735345677777 TT77T777
20424321000000000000
5735345677T77TTTTTITT
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
17347560000000000000
60430217TTTTTITIITNT
17347560000000000000
6043021777777V
37770000000000000000
40000000000000000000
37770000000000000000
40000000000000000000
00000000000000000000
00000000000000000000
TUTTTCTTTTTNTTT00 0N
CTTTTVTTVNTNTNIN01
17367540000000000000
60410237000000000000
17756677000000000000
6002110077777 7TTTTTT
37770000000000000000

Xi
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
37770000000000000000
40000000000000000000
40000000000000000000
37770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000
17770000000000000000

DIVIDE (Cont'd)

X,
J

17770000000000000000
60000000000000000000
60000000000000000000
07776000000000000000
30006000000000000000
477NN

NORMALIZE

Xy

37770043200000000000
4000773457770
17770002100000000000
600077756 7TTTITITI0T
00000000000000000000
*00000000000000000000
00040006000000000000
TTTTTTNNNON0I0I0
RATTTTTTUTT0T001777777
TOT3TTNCTNN0NI70I0
20000000000000000000
*20000000000000000000
STTTTTTTTCTTT7777777
*STTTTT0TTT7777777777

— T e e e e

Xy

40000000000000000000
37770000000000000000
40000000000000000000
27204000000000000000
07214000000000000000
07214000000000000000

B.
J

000000
000000
000000
000000
000060
000060
000011
000060
000060
000011
000060
000060
000060
000060

* Results due to rounded normalize

X,
i

177'70000000000000000
17770000000000000000
17770000000000000000
00000000000000000000
37776000000000000000
4000177TTTTTTTCTTIN

X.
i

37770043200000000000
4000773457700
17770002100000000000
6000777H8TTTTTTITITTT
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
000006000000000000000
000000000060000000000
17174000000000000000
000000000000000000C00
60603777TTTTTITTITIVT

Appendix G

DECIMAL/BINARY POSITION TABLE

DECIMAL/BINARY POSITION TABLE

Largest Decimal Decimal Nur:fber
glnteger R[;ig'i;i Binary Largest Decimal Fraction
a Digits
1 1 5
3 2 75
7 3 875
15 1 4 937 5
31 5 .968 75
63 6 .84 375
127 2 7 992 187 5
255 8 .996 093 75
511 9 .998 046 875
1 023 3 10 .899 023 437 5
2 047 11 999 511 718 75
4 095 12 999 755 859 375
8 191 13 999 877 929 687 &
16 383 4 14 .999 938 964 843 75
32 767 15 .899 969 482 421 875
65 535 16 .899 984 741 210 937 5
131 071 5 17 .999 992 370 605 468 75
262 143 18 999 996 185 302 734 375
524 287 19 999 998 092 651 367 187 5
1 048 575 6 20 .999 999 046 325 683 533 75
2 097 151 21 899 999 523 162 841 796 875
4 194 303 22 .999 999 761 581 420 898 437 5
8 388 607 23 .999 999 880 790 710 449 218 75
16 777 215 7 24 .999 999 940 395 355 244 609 375
33 h54 431 25 .998 999 870 197 677 612 304 687 5
67 108 863 26 .999 999 985 098 838 806 152 343 75
134 217 7271 8 27 .999 999 992 549 419 403 076 171 875
268 435 455 28 .999 999 936 274 709 707 538 085 937 b
536 870 911 29 999 999 998 137 354 850 769 042 968 75
1 073 741 823 9 30 .999 999 998 068 677 425 384 521 484 375
2 147 483 647 31 .999 999 999 534 338 712 692 260 742 187 5
4 294 967 295 32 .889 999 939 767 169 356 346 130 371 093 75
8 589 934 591 33 .399 999 939 883 584 678 173 065 185 546 875
17 179 869 183 10 34 .999 999 999 941 792 339 086 532 592 773 437 5
34 359 738 367 35 .999 999 999 970 896 169 543 266 296 386 718 75
68 719 476 735 36 .999 999 999 985 448 034 771 633 148 193 359 375
137 438 853 471 11 37 .999 999 999 992 724 042 385 816 574 096 679 687 5
274 877 906 943 38 .999 999 999 996 362 021 192 308 287 048 339 843 75
549 755 813 887 39 .999 999 999 998 181 010 596 454 143 524 169 921 875
1 099 511 627 775 12 40 .999 993 999 999 080 505 298 227 071 762 084 960 937 5
2 199 023 255 551 41 .999 999 999 999 545 252 649 113 535 881 D42 480 468 75
4 398 046 511 103 42 .999 999 999 999 772 626 324 556 767 940 521 240 234 375
8 796 093 022 207 43 .899 999 999 999 886 313 162 278 383 970 260 620 117 187 &
17 592 186 044 415 13 44 999 999 999 999 943 156 581 139 191 985 130 310 058 593 75
35 184 372 088 831 45 .999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46 .999 999 999 999 585 789 145 284 797 996 282 577 514 648 437 &
140 737 488 355 327 14 47 .999 999 999 999 992 894 572 642 398 998 141 288 757 324 218 75

*Larger numbers within a digit group should be checked for exact number of decimal
digits required.

Examples of use:

Q. What is the largest decimal value that can be expressed by 36 binary digits?
A, 68,719,476,735.

Q. How many decimal digits will be required to express a 22-bit number?
A, 7 decimal digits.

G-1

Appendix H

CONSTANTS

g
V3
v 10
e

In 2

i'n 10

logio 2
logio e
logio logio e
logio m

1 degree

1 radian
logo(5)

7!
8!

N

[

Cd

]

EEEEE

S

Nla Nl ol N
=Y = = = [} o
w N - o

ES

(Y E R RN B

I

I

I

I

I

Il

CONSTANTS

3.14159
1.732 06
3.162 27
2.71828
0.69314
2.30258
0.30102
0.43429
9.63778
0.49714
0.01745
57.29577
0.69897

5040
40320
362,880
3,628,800
39.916.800
479,001,60

26535

0 807

7 660
18284
71805
50929
99956
44819
43113
98726
32925
95131
00043

(0]

6,227.020,800

87,178,291

1.307,674,368.000

.200

89793 23846 26433 83279 50
569

1683

59045 23536

599453

"94045 68402

63981
03251 82765
00537
94133 85435
11943 radians
degrees
36019

20,922,789,888,000

0.01745 32925

19943 29576 92369 07684 9

2.4674 01100 27233 96

3.8757

6.0880

9.5631

15.0217

23.5960

37.0645

58.2208

91.4531

143.6543

2256516

354.4527

556.7731

84585

68189

15149

06149

40842

72481

97135

71363

05651

55645

91822

43417

03747 74

62515 20

54004 49

61413 07

00618 62

52567 57

63712 59

36231 53

31374 95

350

91051 47

624

CONSTANTS (Cont'd)

2 = 9.86960 44010 89358 61883 43909 9988
272 = 19.73920 88021 78717 23766 87819 9976
372 = 29.60881 32032 68075 85680 31729 9964
472 = 39.47841 76043 57434 47533 75639 9952
572 = 49.34802 20054 46793 09417 19549 9940
672 = 59.21762 64065 36151 71300 63459.9928
772 = 69.08723 08076 25510 33184 07369 9916
872 = 78.95683 52087 14868 95067 51279 9904
g2 = B88.82643 96098 04227 56950 95189 9892
VZ = 1.414 213 562 373 095 048 801 688
14+ 2 = 2.414 213 562 373 095 048 801 688
(1 + 42)2 = 5.828 427 124 746 18

(1 4+ +/2)% = 33.970 562 748 477 08

(1 + /2)8 = 197.994 949 366 116 30

(1 + /28 = 1153.999 133 448 220 72

(1 + /2)10 = 6725.999 851 323 208 02

(1 + 4/2)2 = 39201.999 974 491 027 40

{1 4+ +/2)¢ = 228485999 995 622 956 38
{1 4 4/2)8 = 1331713.999 999 246 711
(1 4+ 4/2)'8 = 7761797.999 999 884 751

Sin .5 = 047942 55386 04203
Cos .b = 0.87758 25618 90373
Tan b = 0.564630 24898 43790
Sin 1 = 0.84147 09848 07896
Cos 1 = 0.54030 23058 68140
Tan 1 = 1.66740 77246 5490
Sin 1.5 = 0.89749 49866 04054
Cos 1.5 = 0.07073 72016 67708
Tan 1.5 = 14.10141 99471 707

CUT AL.ONG LINE

COMMENT SHEET

6000 SERIES COMPUTER SYSTEM
Reference Manual
Pub. No. 60100000

COMMENTS: (pDEscrIBE ERRORS, SUGGESTED ADDITION OR

DELETION AND INCLUDE PAGE NUMBER, ETC.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A,

FOLD ON DOTTED LINES AND STAPLE

,,

STAPLE STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

BT

[«

o

T

POSTAGE WILL BE PAID BY _—

CONTROL DATA CORPORATION —
8100 34TH AVENUE SOUTH —

MINNEAPOLIS 20, MINNESOTA ARG

RN

R

o]

R

ATTN: TECHNICAL PUBLICATIONS DEPT,
COMPUTER DIVISION
PLANT TWO

CUT ALONG LINE -

