- Bl
. ORSCOLETE ﬁ
SITE CoPY = CowrRot DATH ENCEERS
L UNIVERS (7Y o7 ADECAIDE |

- 6000 TRAINING SUPPLEMENT

- PRELIMINARY EDITION

6000 TRAINING SUPPLEMENT

PRELIMINARY EDITION

FOR TRAINING PURPOSES ONLY

This book was compiled and
written by members of the
instructional staff of

CONTROL DATA INSTITUTE
CONTROL DATA CORPORATION

Publication No. 011568

January, 1968

Copyright 1968, Control Data Corporation
Printed in the United States of America

FOREWORD

In any technical writing effort, possibilities of errors are always present.
Although Control Data Institute makes a conscious effort to minimize errors in
its publications, errors are nevertheless inevitable. If you would like to

make the existence of errors known, or would like to make comments or suggestions
concerning the manual, you might find the Comments Sheet at the end of the man-
ual to be of help. Forward your comments to the Educational Development Section,

Control Data Institute, 3255 Hennepin Avenue South, Minneapolis, Minnesota.
55408.

iii

DATA
CHANNELS

10

11

12

13

RTC

0 e———

|

1]

]

10

12

T O3 HEWm

! ool

PERIPHERAL
PROCESSORS
i
b
pt
2
g

11

CENTRAL
PROCESSOR
BRANCH
INSTRUCTION RESERVATION
1SSUE Samma CONTROL ﬂ'
CONTROL (SCOREBOARD)
T ADD
LONG ADD
SHIFT
J REGISTER BOOLEAN
CENTRAL E R xB' E
CENTRAL N Eg P, |x MULTIPLY I
MEMORY MEMORY T I o RN ittt
CONTROL S MULTIPLY II
R Te_ T
Y b
CONTROL DIVIDF
INCREMENT 1
INCREMENT 11 [

A GENERAL AND OVERALL 6600 COMPUTER BLOCK DIAGRAM

-

e

WING 2
REFRIGERATION UNIT
X0-X7 INST.
STACK
REG. Uil
236_,%9 INST,
REG.
MULT. | piandl
Fu STUNT
X0-X7 (COEF) BOX
REG. SCORE-
0238 BOARD
ADD NG, |
fu. 80-87 :
REG.
LONG
ON¢ MULT. 2 INCR. 2
FU. Fu. F.u.
Y. (COEF)
AO-AT
SHIFT BRANCH
Fu REG. F.U.
cH. 8 cH. 7 CH.6 CH.8
r=—" =
BANK [| BANK |1 PERIPH. || BANK | [READ | | BANK BANK [WRITE] [8ANK [PERIPH. 11BANK | | BANK
13 12 |1 coNT. || u | |osTR] [o | €H° CH16 | Tya [pisTR| | 35 |} cont. || 36 37
a L (]
E CENTRAL MEMORY CENTRAL MEMORY g
: y -'~
1 BANK | {BANK || PERIPH. ||BANX | |REA) BANK BANK| WRITE] |BANK || PERIPH. || BANK | [BANK |
g 7 16 || CONT. || s DS TR, 14 | CHIO CH.IS [Tyo | prsTr] {3 |} CowT || T2 33 §
g L= INTERCHASSIS CABLES L) 1 WING 4
WING 3 T (37 LOGIC & | POWER/CH. MAX.) = H
0
2 CH. 14 |BANK ITE] |mank || pERISN. HBank | | san N
- 24 TR | 25 | CONT. || 26 27
8 Lo — k
1 CENTRAL MEMORY T
oiseeay | o M oiseuay o |
| PERIPH. | BANK ITE] {BANK [I PERIPH, |f BANK| [BANK
CONSOLE CONSOLE | CH.I2 cH. 13
conTRoLLER || CONTROLLERS || (CONSOLE 20 ™| | 2! CoNT. || 22 23
L _J S——
CH. 1 CH.2 CH.3 CH. 4
BOOL.
o BANK BANK
DIVIDE
Fu. READ |c| READ
DISTR. [E | DISTR,
MULT |]
FuU.EXP) ANk | A1 Bank
J L s
MULT 2 — =
pe FU_Exe)) ffoerion f ¥ (remen |
| Con- | M | cow- |
| TROL | 8| Tro,
STORE Ler Iy Ler
pIsTR | [l L=
BANK BANK
2 .
DEAD
START BANK BANK
3 7
REFRIGERATION UNIT
TITLE
WING | CONTROL DATA |
CORPORATION | CENTRAL PROCESSOR
CHASSIS LAYOUT
o COHPU‘!’ER‘ DIVISION !
1 \
— = = — = = — — ETET

[OPERATING REGISTERS
TNST. STACK INST, CONTROL [SCOREBOARD | E G]

ENTRY EXIT
RESULT REG RESERVED CONTROL rc_om'Rm.

| L RESERVATION LIST —' x° I :
e, = i |
COUNT > X2 | ra6 FrROM H
, 2 [| HOPPER
-y ISSUE b %3 \ |
CONTROL o > " i
LOCATOR 2 2 H x4 H
I Tl s NCR !
D T
E R | | p—d X X }
DISCARD st {a \ - X6 - :
Loy ! [7 o3 }
AR T X |
RESULTS REG] g
ol A |- > Q i . 1
e s e P Ak . SEE
o | Iz : P>)W |
R 0 | 1z 1
2 s M READ | { © X
s FLAG E 1 h
N L] ! , e Dy FUNCTIONAL UNITS |
|
| | |
-~ 2] i | |
] READ !) | wl ! GO STORE -
R’ FLAG : i | g ! OPERANDS
a I | =1 o INCREMENT !
. UNIT I I | w | INCREMENT 2
BUSY 1 I i | o ! BRANCH
! | | r)
—] zl |
] I : 5| -
| 1 | d
K —»TO BRANCH, INCR., | | | E o
FUNCTION UNITS, 1 | i =1
| |) 2 !
— — | i ! 2
INPUT REG, [R L o IS}
STUNT BOX 1
4 GO _STORE ADD
LONG ADD
RA "ET
[RELEASE UNITS) REQUEST RELEASE
'—Q\ { FL . R
E ALL CLEAR
"q\ EM G CONTROL _ DIST. b
N 3 R
3
g : N
x oy
‘i ID T
A S S
€ PRIORITY
NETWORK i
T REG. (1]
— S
] CENTRAL CENTRAL MULTIPLY | | OPERANDS | DIVIDE
INSTRUCTION MEMORY
. - AR CONTROL WRITE READ REG. MULTIPLY 2 BOOLEAN
ADGRESS DIST. DIST. RESULTS
— Mo+ RA 32 BANKS
R| P41 PERIPH
£ “0 — —
G /
INCR. 18 2
— EXCHANGE ADDRESS
! EX 8 PERIPHERAL READ/
cM_ADDRESS | N N WRITE ADDRESS
u "
T EAK MEMORY
" R SEQUENCING
PERIPHERAL (E; E AND ACCEPT
PROCESSOR CONTROL

{ CENTRAL MEMORY]

WRITE DATA

READ DATA

T

CONTROL DATA
CORPORATION | CENTRAL PROCESSOR TRLAA s

BLOCK DIAGRAM 60119300

COMPUTER DIVISION jﬁ?T
as |

3
6601/04

CHAPTER 1

CONCEPT OF THE 6600 CENTRAL PROCESSOR

INTRODUCTION

The CONTROL DATA® 6600 Computer System, through use of high-speed
transistor logic and a design philosophy based on concurrent (or
parallel) processing, is today recognized as the world's fastest

and most powerful computer. The rapid throughput achieved by the
6600 system can be attributed in part to the concurrency that exists
in several areas of the Central Processor.

MEMORY BANK PHASING

The Central Memory is divided into memory banks, each of which
contains 4096(1p) 60-bit central processor words. A 131K central
memory is composed of 32 such banks; a 65K memory has 16 banks.
Since each bank has its own circuitry for the X & Y drive lines,
inhibit lines, sense lines and memory cycle timing, each is capable
of operating independently. This,in turn,permits memory cycles to
be phased (overlapped) by 100 nanoseconds, to effectively reduce
minimum access time to 100 nsec (e.g., a memory cycle is one micro-
second in duration, but ten may be initiated each usec as long as
they are to different banks)., The bank phasing scheme, in addition
to a memory cycle which is in itself extremely fast, elimimates a
great portion of the memory waiting time that is inherent in the

ma jority of computers.

INSTRUCTION STACK

A group of flip-flop registers referred to as the Instruction

Stack 1is provided in the 6600 for the purpose of holding an
iterative sequence of instructions (a program 1loop). The Stack
can hold a loop containing up to 27 instructions (up to 4 instruc-
tions per word) which may then be executed without the need for
instruction word memory references (RNIs).* Initially, the eight
stack registers (I registers) are filled by reading instruction
words from central memory. As each word is read into and executed
from I0 (See Figure 1-1), the preceding words move up in the stack
and a new word is entered into the first I register. When the stack
is filled, the movement of instruction words causes the top word (in

Although 27 instructions may at first appear to limit the program-
mer's capability, it should be considered that the 6600 is designed
primarily as a scientific machine. Consequently, a good many
programs will be of a mathematical nature (i.e., matrix analysis).
Also, each instruction can designate two source operands and one
result destination. When viewed in this light, 27 instructions are,
in most cases, more than adequate.

®Registered trademark of Control Data Corporation.

17) to be discarded. When instructions are being executed in the
stack (looping), no movement occurs and the stack information re-
mains static. In this manner, the necessity of fetching each instruc-
tion from memory is eliminated during short loops. The memory access
time savings should be obvious.

DISCARD
A 17)
16
13
Instruction 14 Issue from
Word 3 > Il - 17 during
Movement I In Stack loops
12
1!
10 J
T Issue from
[INPUT REGISTER }—> 10 when RNI
T is required

From Central Memory

Figure 1-1

Operating Registers

Another property of the Central Processor decreases the number of
memory references required to read and store operands. Twenty-four
operating registers provide a flip-flop storage facility for

60-bit operands and 18-bit addresses and indexing values. Eight
60-bit registers (designated X0 - X7) provide for the storage of
integer and floating point values in a 60-bit format. Eight 18-bit
registers (designated AO - A7) provide storage for central memory
addresses of operands which are read or stored in memory. Eight
18-bit registers (designated BO - B7) provide for storage cof indexing
values, used for modification of addresses and operands. Since most
central processor instructions can designate two source operands
(taken from X, B or A registers) and one result destination (X, B

or A register), considerable operand manipulation can take place by
use of the operating registers, thereby further decreasing the number
of memory accesses needed. Proper use of the instruction stack and
operating registers makes possible, execution of program loops which
require no memory references -- for imstructions, operands or storage
of results.

Functional Units

Another area of concurrency in the 6600 Central Processor is that
of parallel arithmetic (functional) units. Ten logically indepen-
dent functional units are provided to allow several instructions

to be in various stages of execution at the same time. The follow-
ing list describes the functional units and their corresponding
cycle times:

UNIT TIME (nanoseconds)

1) ADD (floating) 400

2) MULTIPLY 1 (floating) 1000

3) MULTIPLY 2 (floating) 1000

4) DIVIDE (floating) 2900

5) BOOLEAN (logical) ‘ 300

6) LONG ADD (integer) 300

7) SHIFT 300 - 400
8) INCREMENT 1 (indexing) 300

9) INCREMENT 2 (indexing) 300
10) BRANCH (branch instructions) 800 - 1400

Each unit is assigned a group of instructions which it, and only
it, processes. For example, the ADD unit processes all single
precision, double precision, rounded and unrounded floating point
add opcodes. The SHIFT unit handles opcodes that require shifting:
left and right shifts, normalize operations, packing, unpacking,
etc.

Separate functional units eliminate the necessity for sequential
execution of program steps, a property which is inherent in most
present-day computers. Instead, unrelated instructions may be
processed out of sequence, causing a considerable decrease in the
over-all execution time of a program. Of course, if a source
operand for one unit is the result operand of another, the first
unit must wait until the second completes its calculation and
returns the result. Also, if two division steps are needed in
sequence, the second must wait until the first completes, since
only one divide unit exists. On the other hand, two multiply
operations may take place at the same time because two multiply
units are provided. The point to be stressed is that in most
operational programs the instructions need nof be executed in
sequence. Instead, the majority of problems are composed of a
series of smaller steps which are only indirectly related. The
following programming comparison should illustrate this point.

The problem that follows is solved first by using a sequential
computer and secondly, by using the 6600 with its functional units.
Individual instruction execution times are assumed to be the same
in both machines. Also, both have the capability of reading two.

source operands and returning one result by use of operating
registers (X, B and A).

THE PROBLEM:

(Agn)-(AZ + B2 + C)

THE OPERATING REGISTER CONTENTS: (where () means '"the contents of'")

(X1) = the value, A
(X2) = the value, B
(X3) = the value, C

THE PROBLEM THUS BECOMES:

[(Xl)('}*{'3§xz):|. l:(x1)2 + (x2)2 + (X3):|

USING THE SEQUENTIAL COMPUTER: (where —» means "replaces')

Instructions Time (nanoseconds)

1., (X1) + (X2) —» (X4) 400
2. (X&) / (X3) —» (X5) 2900
3, (X1) * (X1) =» (X6) 1000
4, (X2) * (X2) —» (X7) 1000
5., (X6) + (X3) —» (X0) 400
6. (X0) + (X7) = (X7) 400
7. (X5) * (X7) ~=» (x6) 1000

TOTAL TIME = 7100

Since the instructions must be executed in sequence, the total
execution time is the sum of the individual execution times, or
7.1 microseconds.

USING THE 6600:

I B
1. (X1) + (X2) —» (X&) | i ! :
2. (X1) * (X1) —» (X6) e : E :
3. (X2) * (X2) —= (X7) i : ‘
4. (X4) / (X3) —» (X5) Vo ! T i
5. (X6) + (X3) —= (X0) : i : : 4.3
6. (X0) + (X7) —= (X7) L : L
7. (X5) * (X7) —= (X6) i 3 : :

(NOTE: Time is shown in microseconds)

)

Using parallel functional units, the program execution time is
only 4.3 microseconds, a reduction of approximately 40%.

Although the same saving will not occur in all programs, the example
illustrates that, through efficient programing, a considerable decrease
in execution time occurs. Even when a program is not optimized, a
time saving will be realized. Details of time implications from

the preceding chart are considered in later topics.

Summary

Several unique features are incorporated in the design of the 6600
central processor, including: 1) thirty-two (or sixteen) 4K, phased
memory banks, 2) an instruction stack containing eight 60-bit
registers, 3) twenty-four operating registers and &) ten indepen-
dent functional units. These provisions work in conjunction with
each other to provide extremely rapid program execution times.
Whenever parallel processing capabilities are provided in a computer,
control circuitry is required to ensure that all features work
together (without calamity) to produce a high-speed processing
system,

BLOCK DIAGRAM ANALYSIS

CENTRAL MEMORY ADDRESS CONTROL

References to Central Memory can be initiated from various sources in the 6600.
Peripheral Processors make central memory references during the central read,
write and exchange jump instructions. The Central Processor uses central
memory to fetch instruction words or to read and store operands. An orderly
means for handling these memory requests and distributing the associated data
must be utilized. This is complicated by the fact that the 6600 memory banks
are phased to allow several memory cycles to be in progress at any one time.
Therefore, it is very possible that a memory reference request be made to a
bank that is already busy processing a memory cycle, so that. the address
must be saved and then re-issued. It is also conceivable that two requests
occur simultaneously, requiring that a decision be made regarding which address
will be issued first. Not only must the address be manipulated methodically,
but the source or destination of the data associated with each address must be
"remembered" by the control logic. These functions are accomplished for the
most part, by the Central Memory Control logic, more often referred to as the
Stunt Box.

Analysis of the Stunt Box takes place in the following sequence:
1) Hopper
2) Priority Network

3) Tag Generation and Distribution

HOPPER

The Hopper is a mechanism used to save conflicting addresses so they may be
re-issued to the memory banks repeatedly, if necessary, until accepted and
processed. Along with addresses, the Hopper saves gating information used to
enable the data corresponding to each address through the memory Data Distri-
bution logic to or from memory.

Physically, the Hopper is four flip-flop registers (designated M1, M2, M3 and
M4) each of which stores an 18-bit address, 6-bit tag and a Full bit (except
M2, which has no Full bit). Refer to Figure 1-2. The registers are connected
to each other in such a manner as to allow information to circulate " through
each of the registers (the concept is similar to the Peripheral Processor
barrel). A 75 nanosecond time interval exists between each register and
produces a total re-circulation time of 300 nsec. For example, an address
entered into M1 at time 00 enters M4 at t75, M3 at t150, M2 at t225 and (if it
must be re-issued) re-enters M1 at t300.

10

11

7 6600

. EXCHANGE , :
- \
INCREMENT
1l or 2
0 MO
+
17 RA
BRANCH - 17
EXCHANGE i P+ 1 MO /
JUMP ™
0 TAG
0 GENERATOR
ADVANCE P
*l £00] 1og
. MO > FL
r{23 17 M1 o——‘f‘?—
17 00 t2s
1 % ‘
P (EXCHANGE
u U WRITE
R w %}-htZS
0) 3 2 1 dzz 17 M3 0
+1
t50 t75
PRIORITY
j23]|17 M4 0 |ee—

L_ACCEW

Figure 1-2

In actuality, only 17 of the 18 availalle addreszs bits are used in a

131K central memory. The 18th bit is tound throughout the memory circuitry.
but is never utilized. The 6-bit tag is generated when an address is first
entered into the hopper (specifically, M1) and it contains all the information
necessary to properly distribute the associated data. Tag generation and
distribution is almost a subject in itself and is treated separatelyv ‘ater in
this section. The Full bits found in M1, M3 and M4 indicate that a meaning-
ful address and tag are contained in the respective register. It is set when
an address and tag are entered into Ml. There is no full bit in M2, since the
Accept signal (explained below) serves a similar purpose.

Approximately 50 nsec after entering an address into M1, the address is
automatically sent to the memory banks, where the lower 5 bits are examined to
select one of the 32 banks. If the desired bank is not in use (PUsy), an
Accept signal is returned to the Stunt Box to indicate that no conflict

exists and the memory cycle has been initiated. The address saved in the Hopper
is then discarded. 1f the desired bank is busy, an Accept will not be re-
turned. Its absence causes the associated address to be re-entered into Ml
(from M2) and subsequently, reissued to the memory banks. The cycle will

recur every 300 nsec wuntil the address is accepted.

Figure 1-3, a timing diagram, verifies that the Accept is returned to the
Stunt Box in time to disable (or if not returned, enable) the transfer of M2
to Ml. 1If an Accept 1is generated, it will be received on Chassis 5 about
175 nsec after entering the associated address into M1 (tl175). This allows
125 nsec of logic delay time before the Accept 1is used to disable the

M2 —» M1 transfer (t300). Since M2 was not transferred to M1, the following
transfer of M3 to M2 will destroy (write over) the contents of M2.

°F

- — - -

ADDRESS Ml M4 M4 = 143
|
to Ml * * (if ACCEPT) +
ADDRESS "ACCEPT" ADDRESS
to OM from CM to CM
from Chas. to Chas. from Chas.
5 5 5

Figure 1-3.

12

PRIORITY NETWORK

Because more than one source exists for addresses entered into M1l (See Figure
1-2) a Stunt Box Priority Network is necessary to ensure organized handling of
simultaneous memory requests. Each address source has a fixed priority, as
follows:

First Hopper (M2 —y M1)
Second Central Processor (M0O—3» M1)
Third Peripheral Processor (ERW—» Ml)

HOPPER PRIORITY

In only one circumstance is re-entry of an address to Ml required: when

an address has been sent to the memory banks and was not accepted due to a bank
conflict. Non-acceptance of an address is indicated by not receiving an

Accept from the memory banks 175 nsec. after issuing an address.before
enabling an M2 —3» Ml transfer it should also be determined that M2 contains a
meaningful address. This is indicated by the presence of a Full bit. Since
M2 does not contain a Full bit, the M3 Full bit is checked. (It is time
delayed to ensure that M3 has been transferred to M2 before the check is made,)
Thus, two conditions must be met to grant first priority:

(M3 Full) (Accept)

CENTRAL PRIORITY

Two sub-priorities exist under Central Priority because central processor
memory references may be originated in two independent operations

1) 1Instruction word fetching (RNI's)

2) Reading and storing operands

In the first case, the address is obtained from the P register and in the
second, from one of the two Increment Functional Units. If requests from both
sources occur simultaneously, the operand address is entered first, then the
instruction address. 1In either case, the address is entered into an 18-bit
register, MO (Figure 1-2). At the same time a control flip-flop called "Enter
Central" is set and indicates that an address is in MO waiting for entry into
Ml. (In a sense, the Enter Central flip-flop requests priority #2). Thus,
one condition required for priority #2 is that Enter Central is set to indicate
that an address is in MO waiting for entry into Ml.

A second condition needed for central priority is that priority #1 does not

exist (i.e.,the address in M2 was accepted or M2 does not contain a meaningful
address).

13

A special circumstance arises which also must be considered in granting central
priority. This is the case when read and store requests are made to the same
memory address. This might occur when an instruction word modification is made
followed by an RNI request for the modified word. 1f the two addresses enter
the hopper in sequence (store location X, then read location X) storing before
reading cannot be guaranteed because a bank conflict may exist with the store
address. The operation (read or store) that is performed first depends strictly
on when the bank goes BUSY. Whichever address is sent to the banks first (after
BUSY) will be accepted and will cause a conflict for the second reference to

the same location. Thus, it would be possible, in the above instance, to read
the unmodified instruction word when actually, the modified word was desired.
The reverse situation might also occur, wherein a location was to be read be-
fore modification.

To resolve the above cases, additional logic is required in the priority #2
circuitry which prevents a Central Read address from being entered into the
Hopper if any (Peripheral or Central) Write address is in the Hopper. Also, if
a Central Write is attempted, no Central Read address may be in the Hopper.
(Prevention of a Central Write and Peripheral Read out of sequence is a soft-
ware responsibility.)

The fourth, and final condition needed for Central Priority, is that the address
being referenced must not be out of the bounds for this particular program.
Memory bounds for a program are defined upon initialization of the routine
(EXCHANGE JUMP) by the RA (Reference Address) and FL (Field Length) values.

RA specifies the lower bound and RA + FL -1, the upper bound. Each central
memory reference adds to the value RA, the content of P (for RNI's) or the
Increment I or II address (for operand references). Thus, the address being
referenced (P, Incr. I or Incr. II) is said to be the "relative"” address.

The absolute CM address is the sum of the relative address and the content of
RA. The relative address is always entered into MO. A special Adder adds MU

to RA and yields the absolute address. Another circuit compares the content of
MO with the content of FL. 1If MO2 FL, the desired reference is "Out of Bounds",
and the memory reference will not take place because Central Priority will not
be granted. Thus, the condition MO<FL is also a condition required for granting
Priority 2.

The following Boolean formula summarizes the conditions required for granting
Central Priority:

(Enter Central) (Priority 1) (MO<FL) (Attempt Read)

(Write in Hopper) + (Attempt Write) (Central Read in Hopper)

PERIPHERAL PRIORITY

Peripheral priority for (M references is granted only if neither Hopper nor
Central priority exists and there is a peripheral processor request for a M
access. Since only one PPU request can occur at a time, no sub-priorities are
required.

14

—

The PPU's request CM references in three situations:
1) Read central memory
2) Write central memory

3) Exchange jump.

In all three cases, a PPU will send an 18-bit address to the Input Address
Register (IAR) of the Stunt Box (See Figure 1-2). To specify the type of
reference being requested, a Read , Write or Exchange pulse accompanies

the address. These are used as a control function, to properly gate information
to and from CM (See Hopper Tag discussion which follows). The presence of
one of the three control pulses results in the Request for Priority #3.

Thus, the Boolean expression for Peripheral Priority is as follows:

(PPU Read + Write + Exchange) (Priority 1) (Priority 2)

During peripheral processor read and write operations in central memory, a new
address is sent to the IAR for every memory reference decired. For exchange
jumps, only the starting address of the exchange jump package (in CM) is

sent. It is the responsibility of the central processor to advance this address
automatically in order to exchange the required information. This is accom-
plished by the Exchange Address Counter (EAK) which is utilized only during
exchange jumps. It increments the exchange address for cach of the 16 locations
referenced.

HOPPER TAG GENERATION AND DISTRIBUTION

As previously mentioned, when an address is entered iatc !il, a 6-bit tag is
also entered. It is used to properly gate data into an. out of Central Memory.
The tag bit positions are named as follows:

25 24 23 22 21 20

\
REGISTER
NUMBER

CENTRAL (EXCEPT EXCHANGE JUMP)

EXCHANGE JUMP

WRITE

15

Th« bit (25) will be set any time the associated address i: that of fatermation

to be stored (written) into Central Memory.

The bit (2%) is set only during exchange jumps to indicate that the associated
data is to be exchanged with registers in the CPU.

The bit (23) is set any time a memory reference is initiated by the Central
Processor (Priority 2) and allows information to be gated to or from the CPU,
as opposed to a PPU. During exchange jumps, the bit is set to indicate that
an X register is to be exchanged, or cleared to indicate that A, B and Control
Registers (P, RA, FL, etc.) are to be exchanged.

The bits (29 - 22) indicate (when applicable) which X, B, or A register number
is to be stored, read into, or exchanged. Table 1-1 lists all legal tag num-
bers (in octal) and their meaning. Decoding circuitry exists only for those
tags listed. Any other bit combination will either not be decoded, or will

be decoded as one of the legal tags.

TABLE 1-1. HOPPER TAGS

00 Peripheral Read 63 Exchange EM, A3, B3

10 CP RNI 64 Exchange RA(ecs) A4, B4
11 CP Read ¥ X1 65 Exchange FL(ecs) AS5,BS
12 CP Read 4 X2 66 Exchange A6,B6

13 CP Read —pp» X3 67 Exchange A7,B7

14 CP Read —pp X4 70 Exchange X0

15 | CP Read - X5 71 Exchange X1

40 Peripheral Write 72 Exchange X2

50 Return Jump 4 Error Stop 73 Exchange X3

56 CP Write X6 74 Exchange X4

57 CP Write X7 75 Exchange X5

60 Exchange P, AO 76 Exchange X6

61 Exchange RA(cm) Al,Bl 77 Exchange X7

62 Exchange FL(cm) A2,B2

le

A tag = 00 indicates a Peripheral Read address since all bits equal zero.
This is interpreted as meaning:

(WRITE) (EXCHANGE) (CENTRAL) or Peripheral Read.

In this case the register bits (2O - 22) have no meaning and 3re not translated.

A tag = 10 indicates a Central Read Next Instruction (RNI) since the Central
bit (23) is set and all other bits are cleared. Since a Central Read of
Memory to X0 is not possible, the clear state of bits 20 - 22 in this case
indicate that an instruction word is to be read from Memory.

A tag = 11 indicates that a Central Read to X1 is to be performed. Bits 20 - 22
in this case indicate the X register number. Tags 12-15 are also Central Reads
to X registers, but to X2 - X5, respectively.

A tag = 40 indicates a Peripheral Write operation, since the write bit (22) is
set and the Central and Exchange bits (23 & 2%4) are both cleared.

A tag = 50 indicates a Central Return Jump or Error Mode Stop memory reference.
Bits 20 - 22 are meaningless in this case since a Central Write (tag = 5X) of
X0 is not possible. Since storage of information in central memory is required
in the above cases, the 50 tag is reserved for this purpose.

Tags = 56 & 57 are generated when storage of X6 or X7, respectively, is
desired. Bits 20 - 22 again indicate the register number.

Tags 60 - 77 are all generated during an Exchange Jump operation. Bit 23 =
indicates that A, B or Control registers are to be exchanged. Bit 23 =1
indicates that an X register is to be exchanged. Bits 20 - 22 specify the
operating register number (i.e.,X, B or A) or the control register (i.e. P, RA,
FL, or EM) to be exchanged. Note that these are the only catses when bit 2%
(the Exchange bit) is set.

After a memory reference is initiated, the associated tag is decoded and will
enable the gating of the desired information into and/or out of Central Memory,
to or from the desired location (XBA registers, control registers, read or
write pyramids, etc.).

CENTRAL MEMORY

The 6€00 Central Memory is ccmposed of 60-bit worde {ocated in 16 or 32 memory
banks each of which contains 4K words. This results in 65K or 131K memory
sizes, respectively. 1In either case, 4 banks are contained on a chassis.

Selections of bank and chassis are made by decoding the lower &4 (for 65K memories)
or 5 bits (for 131K memories) of the address. For example, in 131K system,

17

bits 20 and 2! select one of 4 banks on a chassis, while bits 22, 23 & 24
select one of 8 chassis. The address is sent i{rom Chassis 5 to all memory
chassis of a system and all chassis decode the lower bits of the address. Only
one chassis will recognize its bit configuration (22 - 24). By decoding bits
20 and 21, the bank selection is made. 1If the selected bank is free (i.e.,a
memory cycle is not already in progress) the Accept signal is returned to the
stunt box and a Go signal is sent to the selected Storage Sequence Control
circuit (SSC). The SSC is a simple flip-flop timing chain which generates the
read/write memory cycle.

The selected address within the selected bank is determined by decoding the
remaining 12-bits of the 17-bit address (16 bits for a 65K system). While a
memory cycle is in progress, the bank busy signal (bank not free) disables
initiation of other memory cycles within that bank. It also disables the re-
turn of the Accept signal to Chassis 5, which causes the address to be
retried at the 300 nsec stunt box rate.

The information being read from or stored into central memory is gated by a
circuit called the Read/Write distributor. 1It, in essence, distributes infor-
mation to and from the 4 Chassis connected to central memory as shown in
Figure 1-4.

CHASSIS 1 CHASSIS 1
(WRITE (READ
PYRAMID) PYRAMID)
CHASSIS 5 * WRITE CENTRAL READ CHASSIS 5
(CONTROL — —— —= (CONTROL
REGISTERS) DISTRIBUTOR MEMORY DISTRIBUTOR REGISTERS)
CHASSIS 748 CHASSIS 7&8
(OPERATING (OPERATING
REGISTERS) REGISTERS)

Figure 1-4.

18

—

19

0¢

ADDRESSING

The CP programs are stored in CM, and all PPs may use CM for
supplementary storage or inter-communication control. Thus CM
addresses are generated by the CP and all PPs.

Each processor sends a CM address to a common address clearing
house, or stunt box, from where they are sent on to CM. The stunt
box can accept addresses from the several sources at 100-nsec
intervals (maximum rate) on a priority basis and in turn issue one
address every 100 nsec to CM.

An address goes to all banks of CM for decoding, and the referenced
bank returns an accept signal to the stunt box if the bank is not busy
(free) with a previous reference. The stunt box saves each address
that it sends to CM in a hopper mechanism, and, if the address is
not accepted, it is recovered from the hopper and re-issued to CM
and again gaved. The issue-save cycle repeats until an accept is
received to void the hopper address. Up to three addresses can be
saved in the hopper. However, an address is always accepted within
2000 nsec (worst case because of bank conflict) of the first time it is
issued.

DATA DISTRIBUTION

Data to and from CM is distributed from a data distributor. The word
from a read reference goes from CM to the data distributor and then
to the requesting processor. A word to be stored during a write
reference goes from the processor to the data distributor to CM. The
distributor can transfer a word to or from CM every 100 nsec. A
store word goes to all banks of CM, but separate storage control
mechanisms for each bank insure that the word is stored in the proper
bank.

The distributor routes data to and from proper origins and destinations
as directed by control information or tags received from the stunt box.

CENTRAL MEMORY

The tags are entered in the stunt box along with each address and serve

to identify the address sender, origin or destination of data, and
nature of the address, e.g., read, write, or PP exchange jump. The
stunt box sends the tags to the data distributor (and to destinations in
the processors for read references) when an address is accepted, and
the distributor accomplishes the data transmission. For write
references, the data source sends the word to the distributor, where
it is held temporarily before it is stored.

STORAGE

The many banks of storage in CM are evenly distributed on 8 chassis
in the computer. There are four banks per chassis.

The circuit organization allows the four banks to operate independently
and be phased into operation at 100-nsec intervals, which corresponds
to the maximum rate at which the stunt box issues addresses. A
chassis input register receives the 17-bit address from the stunt box
and distributes the 12-bit address to 1 of 4 storage address registers
associated with the four banks. Hence 32 consecutive addresses
referencing 32 separate banks may be accepted at 32 consecutive
minor cycle intervals and result in a data word flowing to or from

CM in 32 consecutive minor cycle intervals. The independent
controls for each bank and treatment of the address and data word
insure that only one bank is in a given time segment of its 1000 nsec
storage cycle at any one time. At least one minor cycle separates the
storage cycle of all banks.

A word read from any bank is sent to a common temporary storage
register and to the data distributor by a common path. A word to be
restored is then sent to a write register by way of a buffer register.
The write register sends the word to 1 or 4 restoration registers for
restoring in the proper bank.

A word from the data distributor during a write reference goes to the
temporary storage register on all chassis and then follows the restore
path for writing in memory. Only one of the many banks is in the
proper time spot in its storage cycle to store the word received, and
this bank is the one associated with the write address.

A go signal with each address from the stunt box allows a group of
four banks (one chassis) to recognize and translate the bank bits. The
referenced bank, if not busy, sends an accept to the stunt box and
starts 1 of 4 storage sequence control circuits, which in turn direct
the 1000 nsec storage cycle for the selected address.

A write signal may also accompany each address from the stunt box.
It distinguishes read and write references and controls the path to
the restoration registers. The CM uses the same 12-bit storage
module as used in the PPs, but five are driven in parallel to hold
the 60-bit word.

6601 Central Memory
Pub. No. 60119300
Rev. C ii

1¢

RA FL P EM

P—> s—’s? l l l
+1
S REGISTER
Pl P+
18_BIT INSTRUCTION
ADDRESS 2
[
ADDRESS
18_BIT OPERAND ADDRESS RARGE st
CENTRAL
PROCESSOR DISABLE INCR P->MO
ADV. P »>M0
GATE
MO + Ra
CP > CM —» HOPPER S
CENTRAL CONTROL ENTER CENTRAL
INCR. —» C. M.
ISSUE
PRIORITY
NETWORK
&,
644_ EXCH./WRITE/READ
&
EXCHANGE
CENTRAL
FULL BIT MEMORY
PRIORITY
ADV. ETK / EXCH/WRITE
READ ETK: 16
WRITE PERIPHERAL CONTROL TAG GT':(';T
EXCHANGE JuUMP e
- GENERATOR 18 BIT ADDRESS
EXCHANGE RESUME ADV._EAK a
ITRANSLATOR ACCERT
PERIPHERAL 1
6-8IT
PROCESSORS PRIGRITY Tag
ce
PP ADDR
| EXCHANGE /
18 BIT_ADDRESS N READ / PP ADDR. HOPPER
P WRITE s INPUT m!
¥ REGISTER NETWORK ADDRESS B TAG
HOPPER
HOPPER
M2 !
TITLE PROMCT
CONTROL DATA
-
CORPORATION CENTRAL PROCESSOR M?GOI/O?‘
STUNT BOX ¢ | 60119300
COMPUTER DIVISION BLOCK DIAGRAM l‘““[""75
201

(44

BANKS 00-—03

CH 3
STORAGE ADDRESS
REGISTER ({SAR)

BANK STORAGE MODULE

STORAGE REGISTER (Z}

ss O3 03 03 p;
- 02 02 02
m ol e f ol
DATA 1 3 f %0 '_lﬁ_
T T ! 4096 L,
| STORAGE_SEQUENCE CONTROL o
HQ,TD,TC READ
CENTRAL
PROCESSOR
IADDRESS |ADDRESS GO
STUNT ™ conTRoL [ACCEPT RESTORE
PERIPHERAL sc WRITE
PROCESSOR o o0 o l
ADDRESS 0 (—> WRITE
60 60)
oATA D;TAIL
BLOCK DIAGRAM / J
WRITE
CENTRAL PROCESSOR READ| DATA |WRITE PERIPHERAL &
CH.S TH 4 CONTROL
oETAIL A PROCESSORS
04-07 Ha READ/WRITE _} CH.}
RESUME
cH.9 controL—— READ/WRITE
PERIPHERAL & |ADDRESS STUNT BOX | > PYRAMIDS
CONTROL CENTRAL PROCESSOR 10-13
PROCESSORS ADDRESS & TAGS &
CH.10
CH. t READ
A OUTPUT ":!PE%T EXCHANGE / / 14-17 CENTRAL PROCESSOR
REG NETWORK | WRITE READ / WRITE
REGISTER CH.I3 SF N 0 CH.7,8
S~] DATA A OPERATING
—(— \\"‘ 20-23 oisTRIBUTOR [T~ REGISTERS ~N
EXCHANGE €H.3,49,10,3-18 R _A
CH 14
EXCHANGE EXCHANGE C
[—RFsUNE | ADORESS CH.5
COUNTER 24-27
(EAK) || conTROL o
CH.I5
Ion
30-33
EXCHANGE B/ T
Joup | CONTROL FU¥ counTER P> CH. 16
/ + 3437
L PB
VOID M2->m!
SEND TAGS L ACCEPT
NOTES
TAGS) y

|. ADDRESSES SENT TO CM FROM M' AT MINOR CYCLE RATE,

2. DATA MOVES TO/FROM CM AT MINOR CYCLE RATE.

3. ADDRESS TAGS DEFINE ORiIGIN / DESTINATION OF DATA.

4. TIME FROM M!-»CM TO RESPONSE TO CM ACCEPT IS 200 aSEC.
o.Ml STORED IN M4 AT ISSUE TIME ANO MOVES TO M2 IN TIME SEQUENCE.
b. ACCEPT VOIDS RE-ISSUE OF ADDRESS FROM HOPPER.

I* CONTROL DATA
CORPORATION

COMPUTER DIVISION

G
CENTRAL MEMORY
ADDRESS ~DATA FLOW

FROM PER!IPH. P)‘ROCESSOR CH.I

FROM CENTRALAPROCESSOR CH. 5

r A\ ! \
a ol w|ldelcls s s |- 0|
] I SRR E S o il £l
E|o @ ‘é al | = - f T Qe Zol®
olo wl & 21 a ; Q =o
| = | X| S| w] a < a
. : al © > by a
Q x x| Q = 2
a O aq| < «
S | & &
& a
o
PP INPUT
nao—ae Ll DISABLE
IN PERIPHERAL CENTRAL INCR.—’LQ%
CONTROL EXCH. CONTROL 0
+1 P—M

EXCH.” READ/

WRITE - REG. eoi»06{ MO | RA
QI5-I17 MO+ R
RI4—19 ROI-3

+i
P
5 & g
Jf 3 w|
~Z > g
ol 3 wl £
nu| x| © =l 2z
st B B | w
Oyl N~ = (&
“81 5 3| &
oj W w S E
2| 3 &S| &
I
TAG-GEN.
HOPPER PRIORITY
INPUT PRIORITY | PRIORITY
NET WORK
NETWORK
FULL BIT
ADDRESS |ADDRESS TAG
18 BIT 18 BIT 6 BIT
M GO TO C.M.
M2
HOPPER FULL-
M3 ACCEPT
M4
TAG T
6 BIT ACCEPT
FROM CM. +
TO TAG TO CM.
TRANSLATORS 17 BIT
ADDRESS
Figure 2-1. Stunt Box Block Diagram

23

READ cM STORE CH. 3,4,9,
DISTR. DISTR. 10,13,14,
: 15,16.
OPERATING e
REGISTER
ENTRY EXIT 1450
— CONTROL CONTROL
X _0'\
PO | ¥ x
~ N X X ~
% P 1 o<
>] ‘a Y 3 CH.7
R 6X ;ex N l
R E
G T
L] A b
teaol &% t330] X
ol
I) P (18 BIT) 0
N 60 0 | s
P t580 1400
f RA (I8 BIT) R
T ¢ 6l 61 £
CH. 5
R FL (18 BIT) s0—] 6.
E [62 [62
6 EM (3BIT)
| 63 63
NOTE:
ALL TIMES SHOWN REFER TO THE
FIRST EXCHANGE JUMP ADDRESS (N).
ﬁ P+l
ADDER
FULL BIT
TAG ' ETK
MO <FL —(‘k;f CP>M
I
EXCH. —> M PRIORITY
ACCEPT—>
ADDRESS , _
Tl . T =
=M te3s gl o }
1200 wile o
” l M! J’ﬁ \——\,—/ .z
TAG TRANS. PacCP _
1425 S
ACCEPT &
TAG TRANS 150
- 1350 EXSHMRIGTE EAK ADV.
READ/WRITE
ACCEPT [[[w3 | CONT-
BIT 0-3 |
| 1275 150
T Twe | [nPuT REG |
t TFIRST EXCH. ADDRESS

FROM P& CP

Figure 2-10A. Exchange Jump

24

¥4

_@ NOTE:
CH. 13-16 RETAIN THEIR 15-BIT
e CH.3 CH.9 CHIO PORTION OF A STORE WORD AND
o~ SEND IT TO ALL OTHER CHASSIS.
THE PORTION RETAINED IS SENT
45-59 READ PERIPHERAL ON AN INTERNAL CHASSIS COAX
[READ' D|STRIBUTORJ e 2 | CABLE AT THE SAME TIME IT IS
RESUME SENT TO THE OTHER CHASSIS.
CH.16 CH.10 READ WORD CH.4 HENCE, ALL BITS ARE RECEIVED
45-59 NOTE ' ' ¥ AND STORED IN THE PROPER
2 ALL LINES ARE COAXIAL CABLE. NS o READ CHASSIS AT THE SAME TIME.
PERIPHERAL
' & | ADDRESS 8 BANK TO 8 CM
| CHASSIS. | OF 8 CHASSIS®
N\ (_ﬁ'\ po— RESPOND TO READ OR STORE.
BANKS 34 -37 = w (BANKS 14-17 A
w t T)
R 1, STACK -
A (E; [~ CONTROL E
) s
A S | ¥
- E:
L - 230744 (CONTROL) | T
15 18
A s 236-53
CH. I T
\@_. CH. IS s T STORE PP
: - CH. 8 236-44 STORE CP CONTROL
230-44 45) 9 STORE CP REGISTERS
30-36
2 5Lt piipd
0
N PERIPHERAL @
BANKS 30-33 N BANKS 10-13 CONTROL 20-89
|5 — PROCESSORS
STORE WORD cH.2
./ STORE
CH. 8
@ 1 36-59 WORD
N a7 o] 2
\ N\ 215-29 [mad Y
N 8 T b
A R X7l ¥
E
N
'S &| operarion [€
CH.14 CH. 4 ?SgIPSETRERS -
15-29 A5 15 ' 2a BITS) —] NOTE :
2 O‘“) EACH CM CHASSIS SENDS I5-81T
) PORTIONS OF IT'S 60-BIT WORD
TO CH.3,8,9,10 FOR DISTRIBUTION.
. 7] CH.7 CH.3,4,9,10 SEND THEIR (5-8IT
- N o1 PORTION OF A READ WORD ON AN
BANKS 24-27 = J BANKS 04-07 P07 U INTERNAL COAX CABLE AT THE
Tx g SAME TIME AS THE REWAINING
R KO T U 48 BITS ARE SENT TO THE OTHER
E v CHASSIS OF THE DISTRIBUTOR.
. J/ 6 N ALL BITS ARE THUS SENT TO
\ OPERATION E CH.1,5,7 OR B AT THE SAME TIME.
—, 20-14 - (Lg:E:”s) DATA WORDS TRANSMITTED ON
\ r COAX CABLES IN I5-BIT GROUPS.
\ NOTE:
READ WORD GOES UNCONDITIONALLY
CHI3 oM. 3 TO CH.5,7,8 BUT TO CH.| ONLY
\ WHEN READ PERIPHERAL TAG SENT
,0-14 L
BANKS 20-23 / / BANKS 00-03
™ TiTee Troney
g °§;‘,I,:‘§;,$",f CENTRAL MEMORY €60l
WRITE DISTRIBUTORJ 10{ T77E Jorawine no 1]
DATA DISTRIBUTOR C] 60119300 8
COMPUTER DIVISION SWELT
42l 9

(

chaasis.

z
3

4
9
ic

9¢

READ DISTRIBUTOR

The read distribvtor accepis read words from the 8 CM chassis and

routes them to the several destinations.

The distributor is organized on chassis 3, 4, 9, and 10, each of which
handles 15 bits of the 50-bit word.

the organization. The ligting below shows the bits handled by each

Chagsis cable limitations dictate

CHASSIS

Chassis 13-16 each send the same 15-bit group to chassis 3, 4, 9, and
10. A read word from chassis 3 reiaine bits 0-14 but sends remaining
bits in three groups to chassis 4, 9, and 10. Read words from chassis

4, 9, and 10 are handled gimilarly. Intra-chassis coaxial cables are

used on chassis 3, 4, 9, and 10 for their 15-bit portions so that timing

is consistent with the chassis receiving the data.

Each read word is sent unconditionally from chassis 3, 4, 9, and 10
to chassis 5 (CP control) and chagsis 7 and 8 (CP registers). A read
peripheral tag from the stunt box is sent to chassis 4 and then on to
chassis 3, 9, and 10, The tag gates the read word to the C5 register
in the read pyramid on PP chassis 1.

The read peripheral tag also enters a time delay chain and is returned
to the PP as a resume signal. The resume sels the C5 full FF in the
PP (after data word is in Cs) to signzal the presence of the read word.
The same resume also clears the central busy FF to indicate to PP
control that the address has been accepted by the stunt box and CM
has delivered the word. This allows the PPs to proceed and send

another address to the stunt box.

6601 Central Memory
Pub. No. 60119300
Rev. C Page 10

LT

cH 7,8
@
DATA TRUNK 4
OPERAND 2
O;
=S
DATA TRUNK 3
_,~__ OPERAND 1
H &)
o
®
EX\T -
CONTROL z OPERAND 2
: ©
3 DATA TRUNK 2
3 (o OPERAND |
&
/) OPERAND 2
&
DATA TRUNK |
=\ OPERAND | OPERAND |
{60)
OPERAND 2
CH CH s STORE DISTR
o z
a - w < - ~
e S < = S u e | = cu
OPERATING e . : 5 2 = =
REGISTER « z z 3 g z 2
-
READ DISTR
RESULT RESULT
®
DATA TRUNK I’
e nEsuLT
A\
RESULT
L3
: —®-
ENTRY [DATA TRUNK 2
CONTROL :
w
-4
[
;) RESULT
= DATA TRUNK §' e
DATA TRUNK 4

Figure 6-5.

Data Trunks

Data Trunk 2 connects the output network of the XBA-Registers
to the Divide, Boolean, Multiply 1 and Multiply 2 functional
units. The lower 48-bits of the operands go via chassis 6
(Multiply 1 and 2) to chassis 2 (Divide and Boolean). The
upper 12-bits go directly to chassis 2 from EXIT Control and
are not sent to chassis 6 (except bit 259) which contains
only the Multiply coefficient logic.

The results coming from the functional units and the data
coming from Central Memory will be transmitted by Data Trunks
1', 2' 3', and 4' to the Input Register of the Entry Control
network.

28

Determination of which information is to be gated is made by decoding of the
Hopper tag associated with each address and ANDing the decoded signal with the
Accept for that address.

Information is gated from the Write Pyramid on Chassis 1 to CM via the write
distributor during PPU central memory write operations (tag = 40).

Information is gated from Chassis 5 during return jumps and Error Mode Stops
(tag = 50).

Information is gated from Chassis 7 and 8 during Exchange Jumps (tags = 60 - 77)
and central processor store operand operations (tags = 56 or 57).

Information is sent from C.M. via the Read distributor to Chassis 1 during PPU
central memory read operations (tag = 00).

Information is sent to Chassis 5 during Exchange Jumps (tags = 60 - 65) and RNI
(tag = 10) operations.

Information is sent to Chassis 7 and 8 during Exchange Jumps (tags = 60 - 77)
and central processor operand read (tags = 11 - 15) operations.

It is re-emphasized that in all cases of gating the Read/Write distributor the

Accept signal is necessary. This ensures that the information desired is
properly timed for entry to or exit from memory.

29

INSTRUCTION CONTROL

Instructions in the Central processor are executed from the
Instruction Stack (shown in Figure 1-1). Each 60 bit Stack register
can contain up to four instructions, since the Central processor
employs both a 15 bit and a 30 bit instruction format, and as few
as two. The responsibility of Instruction Control is to determine
that a 60 bit Instruction word has become available to the stack,
sort out the 15 or 30 bit instructions within that word, and then
deliver the instructions to Reservation Control so they can be
executed.

Initially all instruction words (a 60 bit memory word fetched by

an RNI request) move into the bottom rank of the stack (10) when
Instruction Control receives the RNI tag (TAG = 10g and accept)

from the Stunt Box. The RNI tag also signals Instruction Control

to begin the process of sorting instructions within that word and
transfering them to Reservation Control. The total process is called
Instruction Issue, and the sorting of instructions is referred to as
Parcelling.

INSTRUCTION ISSUE

Instructions can be issued from any rank of the stack, however if we
were to assume an initial condition such as at the end of an Exchange
Jump sequence we would see issue beginning with the upper instruction
in I0. Once a program is in execution, program control can be
transferred to some higher rank of the stack by a Branch instruction.
This situation forces Instruction control to keep track of which rank
of the gtack the Program address is currently indicating. The
"Locator" (L) register and counter perform this function. Control of
the L count would be very similar to control of the Program Address.
However, L refers to a particular rank of the gtack so it would only
vary between 0g through 7g. Example: L count = Og indicates program
control is currently in I0. L count = 7g indicates program control
in I7. An initial Master Clear would set the L count to 0g, so we
can see that Instruction Issue would start from the bottom rank of the
stack.

NOTE: The L register contains the complement of the L count.

Now that we have selected a particular rank of the stack, we must
concern ourselves with sorting out the instructions within that rank.
In other words we must parcel the instructions from the selected
rank of the stack. Each rank is considered to have four overlapping
30-bit Parcels.

30

These are: parcel 0 - bits 30 through 59

parcel 1 - bits 15 through 44
parcel 2 - bits 00 through 29
parcel 3 - bits 44 through 14 (end around)

PARCEL 3 (PK=3)
p AL
PARCEL 2 (PK=2),
r
PARCEL | (PK=1),
PARCEL O (PK=0)

r B}

~

)

A}

N |
259 20

Figure 1-5 Instruction Word Parcels

By examining each word with the 30 bit parcels we guarantee the
detection of any possible combination of instructions within that
word. If the instruction contained within the parcel happens to
be a 15 bit instruction the lower 15 bits of the parcel are
discarded and the next sequential parcel is extracted. However,
if a 30 bit instruction is encountered, the entire parcel would be
used and the next sequential parcel would be skipped.

Example:

In | 15 15 15 15

259 20

Here each parcel would be extracted in sequence with the lower 15
bits of each parcel being discarded.

ml 15 30 15

259 20

31

[A3

9-1 2an31d

193Un0) [3d1ed

1',13,1517
{
DELAYED Uy ISSUE
+ SKIP
Ul
PK=0 Na
7% PK=! &l
L=00D ;% PK=2 p
%(PK=
=3
7;(% >
L COUNT =
EVEN
u@ m
PK=
%ii(PK=I ' DELAYED U,
L= EVEN % = ISSUE
PK - SSUE
%’ PK=
%i \
—*r——\ 0 12 {46
— A
PARCEL 3 - PARCEL 3 IV, 15,10, 15
‘ PARCEL 2 '
——
f PARCEL |
A
" PARCEL O
N P
59——45 44 3029 5 14 0

TRANSLATE

ISlS'hJE

+ SKIP

ISSUE
+ SKIP

ISSUE
+ SKiIP

[
[0S

UNIT SEL

RESERVATION
CONTROL

In this example parcel O and 1 would be extracted in sequence all
30 bits of parcel 1 would be used, so parcel 2 would be skipped.

Instruction Control uses a two bit Parcel Counter (PK) to keep
track of the current parcel and will generally advance the parcel
counter after each parcel is extracted. An initial PK =0
condition would be set by Master Clear.

Initial Instruction issue begins with the L count = 0 (10),

PK = 0 (bits 30 through 59), and,as previously mentioned,the
first Instruction word after an Exchange Jump comes from Central
Memory to I0 as a result of the RNI tag. The tag also starts the
Issue operation, so the rest of our analysis can now be concerned
with moving the instructions to Reservation Control. Figure 1-B
shows the path each parcel will take.

Issue Control, geherates two types of issue pulses. These are:

Ul issue-- A pulse that gates the selected parcel to the Ul and
U2 instruction registers and advances PK. This pulse
occurs at a minor cycle rate during the issue sequence.

Scoreboard

Issue - A pulse that gates the parcel from the U2 instruction
register to Reservation Control. This 1issue can also
occur at a minor cycle rate.

With eight different L counts and four different Parcel counts,it

is easy to see that 32)g different parcels must move through the

Ul and U2 registers. Sixteen of these parcels(PK =0, 1, 2, 3

L count = 0, 2, 4, 6) move from the even-numbered ranks of the stack
to UO before Ul issue would move then to Ul. It is not necessary to
have an issue pulse to move parcels to U0, so we would see the
selected parcel from the selected even rank of the stack move into
UO automatically. 1In our initial case Parcel 0 of I0 would be the
first parcel extracted to UO and the first Ul issue pulse would move
the parcel to Ul.

Notice that at this time there have not been meaningful parcels in
Ul or U2, so as far as the U2 register is concerned it receives
"Trash" on the first Ul issue. Also, no scoreboard issue should be
generated until after the first meaningful parcel has moved into
U2. The PK being advanced to 1 by Ul issue would cause parcel 1 of
I0 to be extracted to U0, so on the next Ul issue parcel 1 would
move to Ul, parcel 0 would enter U2, and PK would advance to 2.

One more Ul issue would move parcel 2 to Ul, parcel 1 from Ul to
U2, so at this time the first Scoreboard issue must occur to issue
parcel O to Reservation Control. From this point both Ul and
Scoreboard issue can continue at a minor cycle rate until parcel 3
is issued to Reservation Control (three more issue pulses).

All of the possible instructions in 10 have now been put into

33

execution, and issue must stop until the next 60-bit Instruction
word becomes available from Central Memory. This is called a
"Pause''.

The Pause could be quite lengthy if Instruction Control had not
had the foresight to request another RNI from Central Memory.
This request is made any time L count = 0, PK = 0, and Ul issue.
It is easy to see why the request is made under those conditions,
once it is realized that I0 is the bottom rank of the gtack and
after issuing from I0 there wouldn't be any place to go for the
next instruction. There is one other operation that comes into
play at this time, and it is the process of moving the current
instruction words of the stack up to make room for the next
instruction word from Central Memory (Inching).

Inch is also started whenLcount = 0, PK = 0, and Ul issue. During
the Inch process each rank of the stack is shifted up starting
with an I6 to I7 transfer and continuing with I5 to 16, I4 to IS5,
13 to 14, 12 to I3, I1 to I2, and I0 to Il in that sequence.

Four minor cycles (400 nsecs) are necessary to complete the Inch,

and it becomes necessary to advance the L count to 1, since the last
Inch transfer moves the current Instruction word from I0 (L count = 0)
to I1 (L count = 1). An important point to realize here is the 16 to

17 transfer destroys the Instruction word that was in I7. Consequently,
a program loop that is to be executed within the Stack must fit in the
stack between Il and I7. A quick examination of the stack reveals a
maximum in Stack Program length of 273 instructions.

17 15 15 15 15
16 15 15 15 15
15 15 15 15 15
I4 15 15 15 15
13 15 15 15 15
I2 15 15 15 15
I1 15 15 30 Bit Branch
10

Figure 1-7 Maximum In Stack Loop

34

The analysis of Instruction Issue to this point has assumed straight line pro-
gram execution with no complications. There are, however, many special situa-
tions which may be encountered. Whenever a 30-bit Instruction is encountered
in a parcel, Instruction Control must cause the next sequential parcel to be
skipped. The skipping is accomplished merely by not generating a Scoreboard
issue when the unwanted parcel is in U2.

Example: TP 15 | 30 JIE
259 20
Too

Ul Issue

Parcel O Parcel 1 Parcel 2 Parcel 3

To U2 To U2 To U2 To U2

Skip
SCBD Issue ? i i T
Parcel O Parcel 1 Parcel 3

To Reservation To Reservation To Reservation
Control Control Control

There is also the possibility that Issue may have to be stopped if either the
Functional Unit or the Result register (required by the parcel) are Busy. This
is accomplished by Instruction control translating the parcel when it is in Ug
and setting a Unit Request FF and Result Register Select FF when the parcel
enters U2. Each Unit Request FF interrogates the corresponding Unit Busy FF

in Reservation Control, and, if the Unit is busy, a signal is generated which
blocks all Issue pulses un il the Unit becomes not busy.

A similar operation occurs with the Result register except the Result Register
Select FF must be ANDed with a translation for the "i" portion of the Parcel
to determine which portion of the Reservation List should be examined for a
Reservation. The Reservation List (XBA) is where all Result register reserva-
tions are held by Reservation Control.

35

Probably the most involved operation in Instruction Control oc-

curs when a Branch Instruction is encountered, and,even though

the Branch Unit will execute the instruction,Issue Control must

set itself up for proper operation. The reason for the complication
of course, is that a Branch Instruction can do one of the following
three:

Loop - a conditional Branch, condition met, and In Stack.

Jump - an unconditional Branch or a conditional branch, condition
met, and not In Stack.

No Branch - a conditional Branch, condition not met.

Instruction Control will set itself up for the No Branch Condition
by setting the Parcel Count equal to the parcel count of the next
parcel to be issued,and then stopping Issue after issuing the
Branch.

Example: 1, 30 Bit Branch 15 15
Parcel O Parcel O .
In U In U

UL Issue Issue Stopped B

SCBD Issue l

Parcel O
to Reservation
Control

By controlling the Parcel count in this manner it is possible to
restart issue the same as if it were starting after an RNI. Once
the Branch has been issued,the Branch Unit makes a series of tests
to determine whether the branch is to an instruction word already
in the Stack.

The test results are only enabled on the Conditional Branch
instructions 03g through 07, and enable these instructions to Loop.
The first test is made by subtracting the current Program Address
(P) from the Jump Address (R), and if the difference (T) is +7 or
less the Branch may be In Stack.

36

However, a further test must be made to see if a jump of T places can be made
relative to the current position in the Stack which is reflected by L. This is
the L-T test and, if there is not an end-around borrow from the test, the
branch still may be In Stack.

If R-P gave a positive result, the jump was forward and the L-T test being made
successfully would say In Stack, but if R-P was negative, the branch was bLack-
ward and a further test must be made to see if there is a usable instruction

in the rank of the stack to which the jump is being made. Conveniently, the
result of the L-T test would be the new L setting if the Branch is to be made,
and this is subtracted from the Stack Depth Counter register (D). The D-(L-T)
test is only necessary on the backward jumps (R-P negative) and, if it is
successfully made, the branch would be In Stack. The Branch unit uses the Long
Add unit to make the Branch Condition test for the 03g instructions, and the
Increment units to test the 04g through 07¢ instructions. If the condition is
met, a Go Branch signal is generated. If the R-P, L-T, D-(L-T) have all been
successful, a Loop Proceed is generated.

If Go Branch occurs and R-P, L-T, and D-(L-7) were not successful, a Jump is
generated. If Go Branch does not occur, a No Branch Proceed is generated. On
a Loop Proceed, the Jump Address (R) is transferred to P, the result of the

L-T test is gated to L, the Parcel Count is set to Og, and Issue is restarted.
On the Jump an R to P transfer is also accomplished, but L is set to 7

(L count = 08), the Parcel count is cleared, and an RNI request is made to the
Stunt Box. (Issue would restart as a result of the RNI.) The No Branch Proceed
merely restarts Issue, since this is why Instruction Control has been set up.
There are many special cases that affect Instruction Control during branch
instructions, but these will be covered in Section 4 along with a more detailed
explanation of the other Instruction Control operations.

37

RESERVATION CONTROL
(SCOREBOARD)

The need for reservation control logic in the 6600 Central Processor arises due —
to the parallel processing concept of the CPU. This capability necessitates an

orderly means of utilizing the functional units, operating registers and memory
circuitry, since it is possible that several instructions require the same

functional unit, operating register, etc. The scoreboard , then, makes the

required reservations of each instruction and provides a means for the orderly

handling of conflicts which may occur between instructions.

Conflicts are categorized into three groups - first, second and third order.
The types of conflicts are defined as follows:

1) FIRST ORDER: A conflict between two instructions that require
the same functional unit or the same result
registers.

EXAMPLE 1: Functional Unit Conflict

X1 @ x2
X3 @ X4

X6
FXS5

Il

Both instructions need the Floating Add functional unit
for their calculation. Since only one such unit exists,
the second instruction must wait until the first is
finished, before it can be executed. Note that if two
Multiply instructions are coded in sequence, no
functional unit conflict occurs since two multiply
units are provided.

EXAMPLE 2: Result Register Conflict

F X6 = X1 + X2
F X6 = X4 * X5 -

Both instructions require X6 for their result. 1In
this case, the Floating Add result would be returned
to X6 before the Multiply result was desired.

There are then, two types of First Order Conflicts - functional unit
and result register. In all cases of first order conflicts, issuance
of instructions stops until the conflict is resolved. In other words,
no further instructions are initiated (including the one which "sees'
the conflict) until the first of the conflicting instructions has
completed. In conclusion, first order conflicts temporarily stop
issuance of instructions at the point of conflict.

2) SECOND ORDER: A conflict that occurs when an instruction requires

the result register of a previously initiated instruction
as a source operand.

38 -

EXAMPLE :

F{;?==Xl + X2

F X =5 /(%9

In this case, the Divide unit needs X6, which is the
result of the Add instruction, as one of its source
operands. The Divide Unit must obviously wait for

the Add unit to time out, but instruction issue will
not stop. Instead, the Scoreboard will delay the start
of the Divide instruction until the Add unit has

stored its result. Subsequent instructions may be
issued as long as no First Order conflicts exist.

The result of a Second Order Conflict is to delay the execution
of the conflicting instruction only.

3) THIRD ORDER: A conflict that occurs when one instruction must store
its result in a register which is to be used as a
source operand for a previously issued instruction.

EXAMPLE
FX3=2Xl/ X2
F x5 =(X4) * X3
F(29==X0 + X6

In this example, due to the relatively long execution
times of the Divide and Multiply op. codes and the
second order conflict (X3) of these units, the Add
instruction will complete its calculation before the
Multiply unit has read its operands (both operands
are always read at the same time; therefore, all
second order conflicts must be resolved). Since

the Multiply instruction is intended to read X&
before it is changed by the Add instruction, storage
of the Add result must be delayed until the Multiply
Unit begins its calculation. Thus, third order
conflicts do not delay issue or calculation, but
rather the storage of a result operand.

The following discussion explains, at the block diagram level, how these conflicts
are handled by the scoreboard. Figure 1-8 should be used in following the
explanation.

FIRST-ORDER CONFLICTS

First-order conflicts are defined as either functional unit or result register
conflicts. If either type exists, no issues can be generated.

Functional unit conflicts are determined by checking the Unit Request flip-flops
against the Unit Busy flip-flops. Recall that Unit Requests are set at the

39

o

RF}

UNIT
BUSY
* »*
(7 T | XLATE =0
Q4
X Q*0
0
7 RELEASE
ﬁ B & FROM ALL
F. U's
o ——)
7 *
) [m
*
XLATE __--._.+
. 0] J

RF§

B“-—-' "GO FILL"

UNIT REQUEST BUBY
1
LE
b SCBD
SCED
£ FUNCTIONAL
m UNIT CODE
T GENERATOR
: S
17 | k
K
0
SELECT
RESULT

* DUPLICATED FOR ALL
FUNCTIONAL UNITS

SCBD

"GO READ"
/’/ .
TO EXIT
/o—ij CONTROL
=
O—PiFic O
—
| TO ENTRY
Fy CONTROL
]

=2z_ "GO STORE"

"TRANSMIT"

REQUEST ﬂ RELEASE
RELEASE ALL CLEAR

SCOREBOARD BLOCK DIAGRAM
Figure 1

time an instruction is transferred from Ul to U2. The Unit Request flip-flop sets
depending upon the op.code that is translated (from Ul fmi portion). When
an instruction is issued to the scoreboard, among other things, a Unit Busy
flip-flop will be set. This in effect, reserves a functional unit for a parti-
cular op.code - it will remain reserved until the given instruction has com-
pleted execution, at which time the Unit Busy flip-flop is cleared to allow a
subsequent instruction to use that functional unit. Thus, when a given unit is
needed (as determined by a set Unit Request flip-flop) it can be used only if
the associated Unit Busy flip-flop is cleared. If the Unit Busy is set, a
functional unit conflict exists and generation of issues is disabled until the
unit is freed.

In determining the existance of result register conflicts, a comparison of the
request and reservation logic is also made. Upon issuing an instruction to U2,
Result flip-flops are set according to the op.code translation. Four such
flip-flops exist and specify a result register group (i.e. Xi, Bi, Ai or Bj).
The specific register within a group is determined by translating the i or j
octals (as specified by the Result flip-flops). For example, if the Xi flip-
flop is set and the U2 i digit = 3, X3 is the result register desired.

The result register reservations are placed in the "XBA reservation list" when
an instruction is issued to the scoreboard. This list is composed of 24 "slots",
where-in codes are placed to specify which functional unit has reserved each of
the 24 operating registers. For example, a code of 16 in the X4 slot of the
reservation list indicates that X4 is reserved for the résult of the LONG ADD
functional Unit. The complete list of possible codes follows:

UNIT CODE
Increment 1 01
Increment 2 02¢
Shift 03
Boolean 04
Divide 05
Multiply 1 06
Multiply 2 07
Read Memory, Channel 1 11
Read Memory, Channel 2 12
Read Memory, Channel 3 13
Read Memory, Channel &4 14
Read Memory, Channel 5 15
Long Add 16
Add 17

41

Any slot that contains an all-zero code indicates that the associated operating
register is not reserved. Any non-zero code indicates that the associated
register is reserved for a result. Thus, if translation of U2 indicates that
X4 is specified as a result register and the X4 slot of the reservation list is

zero , no conflict occurs. If the X4 slot is not equal to zero, the register
is reserved. Thus, a conflict exists and issues are disabled until the conflict
is resolved.

Notice from the list of codes that 5 are named Read Memory, Channel X . These
are necessary for the 5 X 1 - 5 X 5 instructions. They return results from
Memory to X 1 - X 5 and must make a result register reservation. In this sense,
Memory acts like a functional unit.

In summary, both cases of first-order conflicts are handled similarly in that
requests for units or result regsiters (made at U2 time) are checked against
reservations existing in the Scoreboard. If a conflict exists, issues are
disabled until the conflict is resolved.

SECOND-ORDER CONFLICTS

Second-order conflicts occur when a functional unit requires as a source operand,
the result of another functional unit. The source operands are defined by the

j and k octals of U2 in conjunction with the select flip-flops which are set
with a U2 transfer. The select flip-flops define the source register group as
well as the octal digit specifying the register within that group (i.e. Xj, Bj,
Aj, Bk or Xk). By ANDing select flip-flops with the j and k octal digit trans-
lations, specific registers are selected.

Determination of whether or not the desired registers are reserved is made by
looking at the content of the XBA reservation list, but not directly. Each
functional unit has 4-bit Q designators which, when an instruction is issued

to the scoreboard, receive the contents of the XBA slot associated with the de-
sired source operand registers. For example, the following instruction sequence
causes a second order conflict:

X 5=1X3 * X2
X 6

F
F X2 + X5

The Multiply I unit reserves X5 by placing a code of 06,5y in the X5 slot of the
reservation list. Assuming that no other instructions ha¥e been issued, no
other reservations exist when the Add instruction is issued. Since the Add

unit wished to read X2 and X5, it transfers to its Qj and Qk designators the
content of the X2 and X5 slots, respectively. At this point, the Add Q desig-
nator equals 00(g) and Qk equals 06(8 . In essence, this tells the Add unit
that its j operand (X2) is not reserved by the Multiply I unit. Since a func-
tional unit does not begin calculation until after it can read both operands,
the Add unit must wait until Multiply I returns its result to X5.

Associated with each functional unit are flip-flops, called Read Flags , which
when set, indicate that the desired operand (s) can be read. The Add unit has
two Read Flags, one for the Xj operand and one for Xk. Read Flags can be set in
two ways, both of which result from translating the Q designators.

42

1) 1If Q = 00(g), @ Read Flag can be set since the desired operand is not
reserved.

2) 1f Q # 00(g), 2 Read Flag cannot be set until the functional unit,
whose code is in Q, has completed its calculation and returned its
result to the result register. Completion of a functional unit's
operation is indicated by a signal called Release (discussed in
detail under third order conflicts)

In the above example, the Add unit's Xj Read Flag is set immediately, since

Qj = 0. The Xk Read Flag is set when the Release for Multiply 1 occurs, since
Qk translates as 06.gy. Each possible non-zero Q translation is tied to the
"Release" signal for the associated functional unit, so it is possible to set

a Read Flag by any translation of Q, ANDed with the associated '"Release"

signal or, by Q = 00(g)-

Once both Read Flags are set, it is necessary to send the functional unit its
operands and to send a Go signal to the unit, allowing it to begin its calcu-
lation. The Go F.U. signal is sent as soon as both Read Flags are set. This
signal starts the functional unit timing chain. At the same time, the source
register selection codes are sent (by a Go Read signal) to Register Exit
Control to gate the proper operands to the unit. These codes are obtained from
the F designators associated with each unit. These are 3-bit designators which
are used to remember the source and result operand register numbers. They also
are set when the scoreboard is issuing an instruction. In the above example,
once both Read Flags are set, the content of the Fj and Fk designators of the
Add unit are sent to Register Exit Control and will allow X2 and X5 to be gated
to the Add unit. The Read Flags are cleared during the minor cycle after both
are set. Set Read Flags then, indicate that an operand is waiting to be read.

Thus, the general second-order conflict case delays the start of a functional
unit until both source operands can be read. Some special cases exist, which
are discussed in detail in the logic analysis sections of this manual. At this
point, it is appropriate to understand the general case.

THIRD-ORDER CONFLICTS

The possibility of third-order conflicts occurs when a functional unit has
generated a result and wishes to store in an operating register. 1If the desired
result register is waiting to be read, the unit must wait to store until after
the read has occurred.

Whether or not a register is waiting to read is determined by checking the Fj

and Fk designators against the associated Read Flags in all the functional units.
The result register of a unit is given by the Fi (and, in some cases, Fj)
designator of that unit. When a unit requests to store a result, its result
register number is checked against the Read Flags and F designators of all other
units. If any Read Flag is set AND the associated Fj or Fk designator trans-
lation is the same as the Fi designator of the storing unit, a third-order
conflict exists. The unit will therefore be prevented from storing until the
conflicting unit's Read Flag is cleared. This, of course, occurs once a unit

has set both of its Read Flags.

43

The general sequence in handling third-order conflicts is as follows. First, a
unit desiring to store a result sends a Request Release signal to the score-
board near the end of its calculate time. This signal is then ANDed with an

All Clear signal to generate the Release gate, which allows storage of the
result. The All Clear 1is the result of checking all Read Flags with the
associated Fj and Fk designators and comparing with the Fi (or Fj) designator
(for the result) of the unit requesting release. The Release signal accomplishes
several necessary tasks in the scoreboard. It sends a transmit signal to the -
functional unit to gate the result to the data trunk. It also generates a

Go store signal which gates the Fi (or Fj) designator to Register Entry Control
to select the desired result register. Release also clears reservations in
the scoreboard (i.e. XBA designators, Unit busy flip-flops, etc.) and checks

all Q designator translations in the event that a unit is waiting to use this
result as a source operand. The Release then, indicates final termination of

an instruction, and in essence, removes that instruction from the scoreboard.

REGISTER EXIT/ENTRY CONTROL -

As the name implies, Register Exit/Entry Control is the control logic used for

gating data into and out of the 24 operating registers. It is in essence, a

large translating network which decodes tags sent from the Stunt Box or Score-

board to enable the transfer of data to and from central memory or the functional -
units. Figure 1-9 is a block diagram which should be used during the following

discussion.

ENTRY CONTROL

Entry Control is shown on the left half of Figure 1-9. To the extreme left are
the four general sources of information for the X, B and A registers:

1) Central Memory

2) Data Trunk #1 (Shift, Add and L. Add)

3) Data Trunk #2 (Boolean, Divide, Multiply 1 and Multiply 2)
4) Data Trunk #3 (Increment 1 and 2)

Data is entered into the operating registers from Central Memory during Exchange -
Jumps and during the central read operand instructions (5 X 1 - 5 X 5). Since
memory references are involved, all of the gating tags are sent from the Stunt
Box and are composed of the lower four bits (20 - 23) of the Hopper Tag ANDed
with the Accept signal for the associated address. In other words, when an
Exchange Jump or a Read Operand address is accepted, the four-bit tag is sent
from the tag timing chain to Entry Control where it enables the information
from Central Memory to the proper X, B, or A register.

Y

INPUT
REGISTERS

CENT,
MEWM

€0 BITS

INC |
INC 2
'8 BITS

[BOOLEAN
DIVIOE
MULT
MULY 2

60 BITS

SHIFT
ADD
L ADD

€0 B|TS

SHIFT
10 BITS

—
'
—_—

QuUTPUT

NETWORKS

_—

SIGN EXT

4\1/@

T

l|= ENTRY CONTROL TAGS ;]J [EXIT CONTROL TAGS
STUNT BOX SCOREBOARD STUNT BOX
60 G0 6o 60 60 G0 60 EXCH
MEM>0| D—sx | Gomr | Suan | Sump sTore | sToRe | sTORE | sTORE | STORE stoonz/ REap | READ | READ | READ | READ | READ | READ | READ | READ JUMP [XMEM
A B X Al B‘ x‘ X, X, Bl / xk BJ x))(k)(J Bk A’ sl xi A-B
A
OPERATING
REGISTERS
x0 1o
R S S
DI Xt e]
o o b
D2 [SRy b \\
- 5 \
| \
> = g il BN ™
1) P ///.Cb/ \B\‘ B /
e L~
— SR —
7 / T

//

Figure

I

|

B4

8BS

a7

(CHASSIS 7 & 8)

CENT,
MFE M

60 BITS

INC 1
INC 2

18 BITS

INC ¢
INC 2

18 BITS

O{VIDE
MULT
MULT 2
BOOLEAN

60 8ITS

o

DIVIDE
MULT
MULT 2
BOOLEAN

sOBITS

ADD
SHIFT
L ADD

60 BITS

(k}

i)

ADD
SHIFT
L AOD

60 8ITS

Notice that during Read Operand references, the 60-bit operand is first sent
into the D register (1 - 5) associated with the X register (1 - 5) which will
ultimately receive the information. This is enabled by the Mem —>»D signal
which results from the simple translation: (tag 11 - 15) (Accept). The
operand will be temporarily stored in D, until any third order conflict which
may exist is resolved. (A Read Flag may be set for the X register which is to -
receive the operand from memory). Thus, when the All Clear signal occurs,

the D—>X signal is generated and completes the transfer to X.

During Exchange Jumps, new information is entered into A, B and X registers by

Hopper tags in the range, 60 - 77. Recall, that tags 60 - 67 enable the exchange

of A and B registers, while tags 70 - 77 enable exchanging X registers. The

Entry Control Tags, Exchange Jump A, Exchange Jump B and Exchange Jump X refer -
to the hopper tage 60 - 77 accepted.

A result generated by the Increment units may be entered into X, B or A regi-
sters, depending upon the instruction being processed (5X, 6X, or 7X). Thus,
three Entry Control Tags are shown for the Increment Data trunk, namely, Go
Store Ai, Go Store Bi and Go Store Xi. Recall that Go Store occurs after a
functional unit has been released and enables the Fi designator content to Entry
Control. Thus, the Go Store tags are generated by the Scoreboard at the
completion of an instruction sequence. Note also, that Sign Extension occurs
when storing an Increment result (18 bits) in an X register (60 bits).

Results generated by the Boolean, Divide, Multiply 1 or Multiply 2 units are
always 60 bits in length and the result register of these functional units is
always an X register. Therefore, one Entry Control Tag, namely Go Store Xi
1s shown for Data Trunk #2. The tag is also generated from the Fi designators
of the units on this trunk when the unit is Released by the Scoreboard.

The units on Data Trunk #1, Shift, Add, and Long Add all generate a 60-bit
result for X registers, but in addition, the Shift unit may generate an 18-bit
result for a Bj register. (For example, during normalize or unpack operations.)
Thus two Entry Control Tags are shown for this trunk: Go Store Xi and Go
Store Bj. These are also generated by the Scoreboard when a unit releases from
the F1 (or Fj in the special shift case) designators. '
EXIT CONTROL

Similar to Entry Control, Exit Control has four general destinations for data
from the operating registers:

1) Central Memory _
2) Data Trunk #1
3) Data Trunk #2

4) Data Trunk #3

46

The Exit Control Tags are also generated similarly, that is, from the Stunt
Box or the Scoreboard.

The Stunt Box generates tags for information to be sent to central memory,
specifically, during Exchange Jumps or Central Store Operand instructions

(5X 6 or 5X 7). During these operations, the lower four bits of the Hopper

Tag are sent to Exit Control when the associated address has been Accepted (is

not in conflict). The data, which may be A and B register or X register contents,
are sent on the memory trunk and will be stored during the write portion of the
memory cycle.

For the Increment Data Trunk, four Exit Control Tags are shown in Figure 1-9
since the Increment units may specify an A, B or X register with the j octal
and only a B register with the k octal. Thus the four tags, Go Read Xj ,

Go Read Bj , Go Read Aj , and Go Read Bk are used to gate operands on this
trunk.

For Data Trunk #2, all functionmal units specify only X registers as source oper-
ands. Therefore, only Go Read Xj and "Go Read Xk" tags are required.

For Trunk #1, the Add, and L. Add units may specify an Xj or an Xk source
register (or both) while the shift unit may specify an Xj or Bk register (or
both). Thus the three tags, Go Read Xj , Go Read Bj and Go Read Xk are
required for this data trunk.

All Go Read tags are generated by the Scoreboard when both Read Flags for a
unit have been set. This enables the Fj or Fk designator to exit control and
gates the proper register to the proper trunk.

47

8y

[}
SHIFT CONTR JL OUTPUT
481078 10T LARGE ARITHMET |
c®Ro &0 48_-,‘ 2} ETIC 86-71 ~54-59 [ss[re 59050
D ADOER D LEFT 1) |
14 BITS 48-53 ARE HELD {ADD C TO D} +{ADD C TO DMRIGHT 1)+ (ADD C 7O D}) gr-65 oa2-53 T g 667107 18759
AT CONSTANT ZERO Rhees /FL 06-23 54—7| _———(:)——# ———.—w
DURING Flgrg/RAgcg ECS /TLECS . ___@
00-17 36-53 | 16 36-53 3653 18-59 18-59 | pata
TRANSFER 96-107 ;~ 96-107 Y 17 P2 G0 0
¢ sLaves (12— 8 a2 XMTRS WRITE
66-95 ,~66-95] ° l 10 20°17 (§)36-23, (882 :”5 13 207 (G20 '8'35 BITS 60 €05 isTRIBUTOR
(C) NORM, NET. =" —(30)~——> (DLS! +D RSI+C) BITS (CM8)
R 108 BITS
cT0 14 48-50 /7\48-50
00-17 48-65 EM/EE
(F, Fexp, +C) I8 y I O
ADDER 00-17 /=\30-47 18
00-47 00—47 00-47 08 BITS 4@——_”8 77"
@ 108 f 00-17
8ITS 00-58,107 a8 | GENERATE 04 Iz oo
— — — __\
ve ECS 0
60, {00 48-7) 00-23 xmn_@_, g;;EENDED
COMPLEMENT ~ 00-17 » STORAGE
ao— co— — —— — — — CONTROL ™ __-__@k COUPLER
INPUT or-'oemn'mc;-1 | [BLTs |
00-59 AND CONTROL g e 15 |es-107 @1 ¢ las-7) O,A
FROM READ REGISTERS I NETWORK @ > . > READ
DISTRIBUTOR co-17 | P .
(YIRLELE) 96- 107 %6-107) | P XMTRS To PPU'S
X0-X7 el?'ras —4—3:2-@ 8
- BITS
00- 47 43-95 108 _ 96-105
60 BITS @8) 8 !VZ pivs 128198 ——(o— | v
EE CONDITION _ —_ — -—]) © 1§|cg . s c .
BIT TO I4 - -1
2 [ew] 48-95 L, [28-196)00=Ml o 1y texp. w/SX) 00-16 ,~00-16 |ADOR.
48-50 /— 48-50 a8- 50 . (a8) 14 Vv _@———,mms_—@—» To CMC
3)— EM/EE I 15 €sl96-106 ~96-1 7
3 BiTs |—> ERROR EXIT FF | i sllgrs 14 (ViA P INPUT) \BITS
Rl os-23 NE TWORK (o0 48-65 (C)
42-59 .os-za FLECS | foe" BITS ! (8 e e | —— — — —— —
(NORMALIZE
18 BITS F ADDER CONSTANTS
18 Bits 14 NORMALIZE _D .-.—» 11 (via P
60 BITS I @ 1 NETWORK l uk| 4 (8) (vi INPUT)
142-59 06-23 RAECS l 7 48 BITS @
00-29] 30-44 45- 59 06-23 sK (s) ADDR.RANGE TEST
18_BITS - SK (VIA P INPUT)
I 00~ 16 READ P -
(F118—(8)——> w0} (D> xures - | 8)—~F
P ik REDUCE SK '8 18
36-53 00-17 J
3 18 BITS {60g - NORM. COUNT) e Onta
RNI - - -
HOLD | ooot? a I2 PATH
36-53 -1
20 &S e Ol —_— —_— —
pc3|pcz | Pt Pco i8 BITS
2} \ l - 18
7 ¢ SLAVES BITS
15y (5) (s) (s] 36-53 .oo 7| wa ® 18 (F) ADDR,
(VIA P INPUT) () —nance Sy00- =
18 BITS TEST W/SX DATA
16 | —(e) 18 2 XMTRS —®&—
pi}—(8)— 16)
vz 36-53 ~\00-17 BITS ——-.——' T
15 BITS $282% ey FL{WU . Q) - ||
uz I 18 BITS '8 tvia P xNPUT)IB—.——b F ()
i 5) XLTRS 18 () >
' P BITS Q = 8 BITS
(fmi) e v
vz N I COMPLEMENT F o
SLAVES RA K
15 BITS 10 CONTROL 1 ADDER
18 BITS
(fF,m,i,j, k) Rl 7 WA 18 18 VH 18)- 18
HUARN . ___.___; BITS 16 - BITS 18 vu
B A0~ AT € ®
(E)—({)———] 18 B1TS 18 — (&) —— I3 (8)»T017 BiTS
U3 . CONSTANTS
o5 (foTRS' " 00-17 — (8] BiTs
u3 BuNSH o B0 N A+ B 18 SMALL ARITHMETIC
19 80 -B7 {18)— REGISTERS
15 BITS 3
©) 18 8ITS
(x) |_ —— /
) 517 —_— e — —— — . /
00- 14 00-17__(K) /
i

INSTRUCTION
iTRO’

6400 CENTRAL PROCESSOR BLOCK DIAGRAM

60146100

REY

‘ \

PAGE 3-|
i ! ;

))))))))) |] ! ! 1 :)
i
Enter 00 Lal Enter 01, 02
| o i
v‘f'_l Time
' *Read P 33'&:‘ *Read P N (Major
Trip 1 P }DF:; 1 i’ P) - P+1—+P ‘ ‘ Code Name Cycles)
= Inst —_— =
| (Fa-nsth |, ., [PSN 00 |Pass | 1
: ! & 1 d—+Q ol LJM 01 |Long jump to m + (@) 2-3
0 L Exit Trip 1 RJM 02 |Return jump to m + (d) 3-4
/"/‘,r;r) K <
i ‘
g o L ((d=07 }XE5{ agv. Kk A ¢ . * = Memory Ref
~ o /:I,»j——l i</
=) ‘%lk I |
— R AT No A
o0
‘4—4{/ o
O—2 |
*Read Q
N 9 (Fd = Index) |
5 puee @ raeq oL
NP Adv K P
O -
01 fe
(011) A\ (021)
*Read P~ ,.6/'; *Read P
Clear K~ |« ! P+1—-P
3 (Fd = m = 3 Adv K
Base Addr) (Fd=m =
Q+ Fd—P Base Addr)
Q+rFd— Q
L 029
Exit
*Read Q
| 4 P — Y (Core)
| Q+1—P
/ Clear K
; Rev. C
Exit Page 3

CENTRAL MEMORY CONTROL CENTRAL MEMORY BANKS ~TYPICAL MEMORY CHASSIS

EXAMPLE — CHASSIS 3, BANX 00

®

U V| YG E JH
CPU-0 —((8)—»f CATCHING MAR MEMORY MAR
ADLRESS REG O GATE ADDRESS XMTRS

© REG.
I—_.—’ (CRO) b (MAR)

I
!
1
[}
]
]
!
|
1
!
fe
© O 18 i8 !
@ care '
GO ! BANK 00 [ﬂ BANK 00 Ips)
oeN | ! g::csﬁ::c STORAGE MAGNETIC _{} BANK Co
| i
S ! REG. (CCR) ADDRESS CORE 50> i
@ cucmncL ! AND GO _®—. REGISTER ——@_. STORAGE :i';'s; cns
REG. | . . CONTROL (SAR) (Mcs) LI
CPU -1 —'—’- (CRI) i
ADORESS © 1 w“‘;l %
1 ©1,02,0 i
[| 1| Stonace :
ACCEPT
| contRoL . 1 SEQUENCE i
col ;
PT F’_-' . [‘_’E PA : {ssc) i
CATCHING PERIPHERAL ADDRESS !
‘__ REG. 2 ___‘_, ADDRESS __.’_, AIR . o] INCREMENT .
AooREss O (9 f2°* D1 eare Ope A eyt | !
{CR2) (PAR) _l (AIR) : f
N, cPu-0 1
Ay . '
6{) ! =
1 BANK 00
K READ/WRIT! @__, STORAGE
e e - ADDRESS b col:mtm.sE ;:c;ﬂ:':ct ! RESTORATION & &
EXCHANGE EXR EXCHANGE o ' | manks REG. BANKS
ADvANCE ———=1 counter () GATE ()] counter MENTE! | 002,03 o 08 03
(€x) REGISTER (AD) 3 AL walre :
) 0 PPU '
RESUME TO PPU WRITE]
READ ;
RESUME ! | !
ADVANCE o PPY
rru ;T :
: - | manx | mestore WRITE BANK
CPU-0 ~——>1 SCANNER |—» REQUEST EXCHANGE CPU-0 ‘ ::‘37”‘ ::;"5" (&) :::‘ MERGE
cPU -1 AND . . .
cos REQUEST |—= REQUEST EXCHANGE CPU-| ‘ N s tvz2) vy
']
OK EXCHANGE : ' :
J
P v o e e e v e e e e e e e e e am e s e e e e e e e e em o e e~y
]
READ
DATA DISTRIBUTOR i ! XuTRS
e 5 :
€Pu-0 —§0)+{ wmre wnrg . r
oisTR TR ; ‘
.CPU-1 =)o cn ENTRS 1 ID NENORYICMASMS : @ 9
tes —G , ' . :
’} L-_-_--.‘.--_-----_----...........___._-..;‘
\ .
i
PPy (80 T
. 63 H
CPU -0 =R mae | nese
oisTR orsTe
cru-1 - ! bl
€S - l L l

snsovsr
6404/14/08/15/13
49 8. .

omedt vné.‘

[57

16

Trip 1

)) | }) } \] ! | ! !
Time
(Major
Code Name Cycles)
SHN 10 [Shift d 1
LMN 11 Logical difference d 1
LPN 12 Logical product d 1
SCN 13 Selective clear d 1
LDN 14 Lioad d 1
LCN 15 Load complement d 1
ADN 16 | Addd 1
SBN 17 Subtract d 1
Enter110-17 * = Memory Ref.
*Read P
P+1—+-P
(Fd = Inst)
10 11 12 13 14 15 16 17
—— | Shift (A) 1A wa~a d-A |A-T+A| d-A | -d-A |A+d=-A|A-d~aA
places

Exit

Page 5

[4]

Time
(Major
Code Name Cycles)
LDC 20 L.oad dm 2
ADC 21 Add dm 2
TLPC 22 Logical product dm 2
Enter 20-23 LMC 23 Iﬂical difference dm 2
*Read P * = Memory Ref
_ P+1-P
Trip 1 Fd = Inst
F—-K
d— Q
Read P
P+1—-P
Clear K
(Fd = m = oper.)
2
20 21 22 23
L QFd—~ A A+ QFd— A A- QFd—~ A AV QFd— A
(dm - A) (dm + A = A) (A - dm -~ A) (A ¥dm -~ A)
v
Exit

Page 6

39

Trip 1

Enter 24, 25

!

*“Read P
P+1—-P
(Fd = Inst)

J

Exit

Exchange Pulse

and 18-bit
address to
Stunt Box

Tri

Time
(Major
Code Name Cycles)
PSN 24 | Pass 1
PSN 25 | Pass 1
EXN 26 | Exchange jump min. 2.0
RPN 27 | Read program address 1
* = Memory Ref.
Enter 26
Enter 27
X = Central *Read P
*Read P Proc P+1—+P .
(Fd = Inst) (P) reg (Fd = Inst) | TTP1
X+ A
N Exit
pl (Central Busy? >__O_
Yes
y
A - Cent.Mem
P+1->P
v
Exit
Rev. C

Page 7

29

Trip 2

Time
(Major
Code Name Cycles)
LDD 30 |Load (d) 2
ADD 31 |Add (d) 2
Enter 30-37 SBD 32 |[Subtract (d) 2
J LMD 33 |Logical difference (d) 2
STD 34 |Store (d) 2
*Read P RAD 35 |Replace add (d) 3
P+1—-P AOD 36 |Replace add one {d) 3
Trip 1 %Fd =KInSt) SOD 37 |[Replace subtract one (d)| 3
D-~Q
* = Memory Ref.
*Read Q
(Fd = Oper)

30 31 32 33 34 35 '36 37
Fd— A A+ Fd—- A A-Fd— A A¥Fd— A A—- Z(Core) | A+ Fd— A Fd+1-+ A Fd-1—- A
Clear K Clear K Clear K Clear K Clear K Set K = 340 Set K = 340 | Set K = 340

*Read Q
3 | A= Z (Core)
Clear K
Exit

Page 8

199

]] oo b)) 1))) |
Enter 40-47
l Time
*Read P (Major
P+1—-P Code Name Cycles)
Trip 1 (Fd = Inst)
F—-K LDI 40 Load ((d)) 3
d— Q ADI 41 Add ((d)) 3
SBI 42 Subtract ({(d)) 3
LMI 43 Logical difference ((d)) 3
STI 44 Store ((d)) 3
RAI 45 | Replace add ({(d)) 4
*Read_ Q AOI 46 Replace add one ((d)) 4
9 (Fl’;d —éddr) SOI 47 | Replace subtract one ((d)) 4
Adv K
* = Memory Ref
4X1
*Read Q
(Fd = Oper)
40 41 42 43 44 45 46 47
Y
Fd—- A A+ Fd—- AJA-Fd—~ A[A¥Fd—~ A|JA =~ Z(Core]A+ Fd—=~ A|Fd+ 1+~ A|Fd-1—- A
Clear K |Clear K Clear K Clear K Clear K t K = 340|Set K = 340|Set K = 340
*Read Q
4 A - Y (Core)
Clear K
v
Exit
Rev. C

Page 9

96

Enter 50-57
l Time
*Read P)
P+1~P (Major
Fd = Inst Code Name Cycles)
F~K LDM 50 |Load (m + (d)) 3-4
_ d—~ Q ADM 51 |Add (m + (d) 3-4
Trip 1 SBM 52 | Subtract (m + (d)) 3-4
Yes LMM 53 | Logical Difference (m + (d)) 3-4
d=07? Adv. K STM 54 |Store (m + (d)) 3-4
RAM 55 | Replace add (m + (d)) 4-5
AOM 56 |Replace add one (m + (d)) 4-5
SOM 57 |Replace subtract one (m + (d)) | 4-5
No
5X1 * = Memory Ref.
*Read Q *Read P
(Fd=Addr) | S| BEt1+F
2 Fd - Q (Fd = Addr)
Adv K 5X1 | Q+ Fd— Q
Adv K
*Read Q 5X2
(Fd = Oper)

] .
50 151 452 §53 154 55 1§56 157

Fd— A A+ Fd—~ A A-Fd— A Av¥Fd—- A A~ Z(Core) | A+ Fd— A Fd+ 1—+~ A Fd-1—~ A
Clear K Clear K Clear K Clear K Clear K Set K = 340\ Set K = 340 Set K = 340
AR R
*Read Q
5 A -~ Y (Core)
Clear K

Rev, C
Exit ~ Page 10

Enter 60

Trip

Address and Tag

*Read P
Fd = Inst
d-Q

To CP Stunt Box

LS

Central
Busy
Sem

yes

clicicdict) no

Empty?
yes AlSO:
@ Set Cent
P+1 - P Busy
F- K ® "Read"
A~ CenMe Pulse to
Central

CS —+Y (core)
c? -ct

Time
Code Name (Major
Cycles)
CRD 60 [Central read from|{min. 6
(A) to d
601 * Memory Ref.
*Read @
' 603
_ *Read Q
C3 Empty? o
yes
T A
.~ Y (core) cl Empty? no
4 3 5
CL - C
yes
Q+1-Q
Adv. K 9
C” > Y {core)
u
— 2 1
602 ¢, ~¢C
+ 1 -
“Read Q gdv. Ko
604
*Read Q

yes

Q+1-Q
Adv K

Cg =Y (core)
cj~c?

Q+1-Q
Adv. K

e
[

Clear K

C1 - Y (core)

l

Tixit

Rev. C
Page 11

8¢

Trip 1

Enter 61

*Read P
P+1—-~P
Fd = Inst
F =K
d—=>Q

611

*Read @
Fd = Block Length
Adv. K Fd—- Q

Tag and 18-Rit
address to stunt
box

! s11

*Read 0000g(Z) |
P —~ Y (core)
Adv. K

Next Page

C5 Full and
C” Empty?

[612

*Read P
Fd=m-=start addr

Central
Empty?

5 no

C” = Y(core)

5
u
5_, ~4
CL C
P+1-P
Adv. K

clic?rc3+ct\ no |

no

Code

Name

Time
(Major
cycles)

CRM 61

Central read (d)

words from (A)
tom

5 plus
5/word

614

*Read P

C3 Empty?

yes

~Cen Menl—y
Also:

Set Cent Busy

C~ —~Y (core)

C -’CB
P+1—+P
A+1-A
Adv. K

4
u
4
L.

no

* = Memory Ref,

@®
@ Sent "'Read' Pulse - Cent

615

“Read P

C2 Empty?

yes

o3
u
c3 - 2

— L

P+1-+~P
Q-1-Q
Adv. K

—. Y (core)

616

“Read P

yes

S C2—~C1

P+1—~P
Adv. K

C2 - Y (core)
u

Continued
—> on next

page

Rev. C

Page 12

66

Continue 61

from preceding page

| 617

Tri
5 P

10

*Read P

cl- v
Set K = 713

1
¥

* Read 0000g

Fd =P
Fd+1 - P
Clear K

l

Exit

Central Busy \ po
and C5 Empty?

yes

C1 - Y (core)
A- Stunt Box
P+1—-P

Set K = 613

Word transfer not complete -
return to preceding page.

Rev. C
Page 13

09

Enter 62

'

* Read P
P+1—-P

Trip 1 Fd = Inst

F—=K

d -Q (loc)

* Read Q
Fd = word 1

no

D1 Empty?

yes

Fd—-D!
—— [Q+1=Q
Adv K

y 621

* Read Q
Fd = word 2

D? Empty? }-

yes

Fd - D?

622

* Read Q
Fd =

word 3

D3 Empty? 1o

yes

D

Fd—~ D3

Q+1~Q
Adv. K

623

* Read Q
= word 4

Fd

RF1-+Q
Adv. K

4

D Empty? |10

yes

Fd-»D4
D3 . p4
R 1-+Q
Adv. K

Time
Code Name (Major
Cycles)
CWD 62 |Central write to | min 6
(A) from d
* = Memory Ref.
624
*Read Q
—— Fd = word 5
6 Central

Empty?

yes

Transfer to
D% sends D®
to Central
Memory

Fd - DO
D% -~ DO
Clear K

A—-Cen, Mem

.

Also:
@D Send "Write"

to Central

@ Set Cent Busy

Rev. C
Page 14

19

This page left blank intentionally.

Page 15

79

+
Trip 1| (Fd

634

* Read Q
(Fd = word count)

Fd—+~Q
Adv K

B3
Read P
Fd = word 2

| s31

* Read 00008
P —~ Y (Core)
Adv K

l 632

*Read P

(Fd = m = addr
first word)
Fd—~P

Adv K

—— P+1—- P

633

*Read P
(Fd = word 1)

D1 Empty?

yes

Fd-DI1

no

D2 Empty ?

yes

Fd ~D°
P+1~—P
Adv. K

no

635

*Read P

Fd = word 3

D3 Empty?

yes

Fd— DS

no

P+1-—-P
Q-1-Q
Adv K

Adv K

Time
Code Name (Major
cycles)
CWM 63| Central write 5 plus
(d) words to (A)| 5/word
from m
* = Memory Ref,
636
*Read P -
Fd = word 4
8
yes
Fd ~D*
P+1-P
Adv K
Next Rev. C
Page * Page 16

€9

63
From preceding page

637
*Read P

10

Fd = word 5

Central
Busy?

yes

A—->Cen. Mem Set Central Busy
Fg -~ Dg "Write'" to Central
D> D
A+1-A)
P+1- P

Set K = 733 Set K = 633

*Read 0000g e
(Fd = P)
Fd+1—~P
Clear k.
[Block Count not depleted
l repeat sequence on
Exit preceeding page

Rev. C
Page 17

%9

Time
Enter 64-67 Code Name (Major
J Cycles)
*Read P AJM 64 |Jump to m if
. P+1-—-P channel d active 2
Trip | (kg - Inst) IJM 65 |Jump to m if
F-K channel dinactive 2
d -Q FIM 66 |Jump to m if
channel d full 2
| EJM 67 {Jump to m if
channel d empty 2
* Read P
Fd = m = jump * = Memory Ref,
addr
64 65 66 67
2 yes Chan y Chan yes Chan (o)
Active ? Inactive® Full?
Jump
' Fd- P P+1-+-P] Fd- P P+1-P Fd-— p! P+1->p| Fd—- P P+ 1—- P
Clear K Clear K Clear K Clear K Clear K Clear K Clear K Clear K
NOTE: Exit
FD- P+ () Fd- H
® Q- Q(Clears Q)
® Q Adder—~ P
Rev. C

Page 18

<9

- Clear K

Enter 70

l

“Read P
P+1—-P
(Fd = Inst)
F ~K
d=-Q

Trip 1

Time

* Read P
R = A (data
from chan d)

Chan.
Full?

yes

l

Exit

no

Code Name (Major
Cycles)
IAN 70 Input to A from 2
channel d
* = Memory Ref

Page 19

99

Trip 1

Enter 71
¥
*Read P
P+1—- P
(Fd = Inst)
F-K

d-Q

*Read 0000g

Adv K

P—~ Z (core)

1711

*Read P

(Fd = m = addr

first word)
Fd- P
Adv K

Code

Name

Time
(Major
cycles)

IAM 71

input (A) words
to m from chand

4 plus
1 /word

* = Memory Ref.

712

*Read P

Chan.

yes

no

Inactive ? |~

Adv K

Chan.
Full?

yes

no

R — Y (data)
P+1—- P

A-1—-A

| 713

*Read 0000g
Fd+1- P
Clear K

—>» Fxit

A-1-A

Rev, C
Page 20

L9

Enter 72

l

*Read P
P+1 =P
Fd = Inst
F-K
d—-Q

Trip 1

*Read P

Chan. Empty\no
and Active?

yes

A - M (output
data)
Clear K

l

Exit

Time
Code Name {(Major
Cycles)
OAN 72 | Output from A 2
on channel d
*Memory Ref.
Rev. C

Page 21

89

Trip 1

Enter 73

4

*Read P
P+1- P
(Fd = Inst)
F-K '
d—- Q

*Read 0000
P~Y (c01§e)
Adv K

| 731

*Read P

(Fd = m = addr

first word),
¥Fd - P
Adv K

Code

Name

Time
(Major
cycles)

OAM 73

Output (A) words
from m on
channel d

4 plus
1/word

732

*Read P

Chan.

Inactive? /

yes

Chan.
and A

yes

Fd - R (output

data)
P+1—-P

Adv K

A-1-A

V733

*Read 0000
Fd+1- P
Clear K

—— Fxit

* = Memory Ref.

A-1-A

Rev. C
Page 22

69

Time
Code Name (Major
cycles)
ACN 74 |Activate channel d 2
DCN 75 |Disconnect channel d 2
FAN 76 |Function(A)onchanneld 2
FNC 77 |Functionm onchanneld 2
Enter 74 - 77 * = Memory Ref
*Read P
P+1-+P
Trip 1 Fd = Inst
F +-K
d -Q
+“Read P
74, 76, 77
Chan Chan
Inactive? Active?
yes yes
74 76 77
Activate Chand| A-—-=~M{(output Fd - M(output Disconnect Chan
Clear K Function code function code d
and Function and Function Clear K
signal) signal)
Clear K P+1+P
Activate Clear K
Channel Activate Channel
l [— 1 I
Rev. K

Exit

Page 23

1L

Page

W -3 N Db W N e

W W W W NN N N N N = e e e e e s e
D W e O g W N e DR - U W= O ©

PERIPHERAL AND CONTROL PROCESSORS

CONTENTS

Title Page Title
Peripheral and Control Processors, Introduction 37 A Adder
Overall Block Diagram 39 A Register Gates
Equation Lists 41 B Gates
Detail Block Diagram 43 @ Adder Block Diagram
Timing, Master Clock 45 Q Adder
Central Processor Master Clock (Chassis 1), Serials 1-7 47 Q and H Register Gates
Central Processor Master Clock (Chassis 1), Serials 8 and up 49 H Gates
Barrel, A Register, P Register, Q Register 50 Shift Network
A, P, Q Typical Barrel Paths 51 Shift Network, 18-Bit
K Register 52 Communication with Central Memory and Central
K Barrel and Slot Paths, and Typical Translations f]’:;(;essor, Cenfral Program Monitor, Exchange
Slot 53 Central Read Control
Barrel Timing 54 Central Read
Barrel Map 55 Central Read Pyramid
Storage Sequence Control, Memory 56 Central Write
Storage Sequence Control 57 Central Write Pyramid
Storage Sequence Control Timing 58 Input/Output, Master Clear, Disconnect (75).
Memory Cycle Path Function (76 or 77), Activate (74)
Typical Memory Cycle Path 59 Input/Output Paths
P~G Q-G 60 Data Input Sequence. Status Request
K Register Data Output Sequence,
K Translations, General 61 Dead Start
Adv. K 62 Dead Start, Load. Sweep. Dump
K —~ K Gate 63 712, 732, 505 > K (Dead Start)
Cir. Kg, Set Kg 65 Set Q, Dead Start
Set K = 340, F - K Gates 67 Dead Start Controller

P Register Gates
A Adder, Overall Block Diagram
A Adder

Pub. No.

60119300
Rev. M

(44

PERIPHERAL AND CONTROL PROCESSORS

INTRODUCTION

The CONTROL DATA 6601 Central Computer consists of ten peripheral
and control processors, a central processor, central memory, and
peripheral equipment controllers. Each peripheral and control
processor is an independent computer with 4096 words of core storage
and a repertoire of 64 instructions. The peripheral and control
processors share access to central memory and to 12 bi-directional

input-output channels.

The ten peripheral and control processors are combined in a multiplexing
arrangement which allows them to share common hardware for arithmetic,
logical, 1/O, and other operations without sacrificing speed or independence.
This multiplexing arrangement consists of the barrel, the slot, and common

paths to storage and I/O channels.

The barrel is a matrix of FFs used to hold the quantities in the operating
registers of the ten processors and to give each a turn to use the
execution hardware in the slot (adders, shift network, etc.). The
quantities in the barrel are shifted from slot output to slot input. Fach
time a processor's data enters the slot, a portion of the instruction is
executed. A trip around the barrel requires 1000 nsec (one major cycle),
of which each processor's data spends 900 nsec in the barrel and 100 nsec
in the slot. FEach processor has its own independent 4096 word memory
which may be referenced once each major cycle (once each trip around

the barrel).

The peripheral and control processors read data from input devices,
perform preliminary arithmetic and logical operations, send data and
programs to central memory, assign tasks to the central processor, read
central processor results from central memory, and send results to
external storage (magnetic tape, disc file, etc.) or to output devices

(line printer, display console, etc.).

Characteristics of the peripheral and control processors are:

-~ 4096 word magnetic core storage (12-bits)
Random access, coincident current
Major cycle - 1000 ns
Minor cycle - 100 ns

-- 12 bi-directional input-output channels
All channels available to all processors
Maximum transfer rate per channel - one word/major cycle
-- Real-time clock (period 4096 major cycles)
-- Instructions
Arithmetic
Logical
Input-output
Central memory read/write
¥ xchange jump
-- Average instruction execution time - two major cyveles

-- Indirect addressing

-- Indexed addressing

Pub. No. 60119300

Roev, C

Peripheral and Control Processors

£l

PERIPHERAL @
CONTROL

PROCESSOR
INPUT/QUTPUT
EQUIPMENY
WING
2
8 7 6 S
4800
WING
3
PERIPHERAL 8
CONTROL d
PROCESSOR
CHASSIS
P2 3 4

'lNG'

WING ¢ ON 680) ONLY.

4096-WORD
STORAGE
MODULE

(
A

STORAGE
SEQUENCE
CONTROL

READ WRITE
Fd K A
/ WRITE PYRAMID
READ PYRAMID / 59 59 89 59 59
()
5] tf 2| 3| o]
/ o fo o |o
SET
BARREL [+7] l
- 13¢)
* /
DATA DATA
v -1 L,
(€0 | 24 €07
23]
T / L
CENTRAL s| of 3| 2| 1 / CENTRAL
MEMORY cefe e [¢ / ° MEMORY
0 0 0 0 O -
READ TAG WRITE TAG

DEAD
START

CENTRAL ADDRESS FOR READ,

EXCHANGE JUNP TAG

WRITE, AND EXCHANGE JUMP

CHAN O R°

CHAN. O

12
SIMILAR
CHANNELS

12
SIMILAR

TTT r

1)

[INPUT/OUTPUT EQUIPMENT

CHAN. 13g J.
T ‘/CNANEL!

o DATA (I2-8IT,EXCEPT FOR CENTRAL PROCESSOR)
CONTROL

A i0-BIT, ADOER

P 12-BIT, PROSRAM ADDRESS

Qs 12-BIT, ADDRESS OR OPERAND STORAGE
Kz 9—BIT, INSTRUCTION CODE ODESIONATOR

ALL SLOT INPUTS & OUTPUTS TIME-ORIENTED WITH BARREL.

b CONTROL DATA
CORPORATION

TiTLE

COMPUTER DIVISION

PERIPHERAL AND CONTROL
PROCESSOR
OVER-ALL BLOCK DIAGRAM

osawiue 80

60119300

| S

24

EQUATION

P Register and P Incrementer

P Incr. = P=Q*P
Q Adder = P=011+022+(64X. active)+(65X . inactive}+{(66X. ful)+{67X. empty)+

Adv.

P

Fd—~P

Zero ~

*QL
@

-

P

(03+(04, A=0)+(05. A=0}+(06. A pos)+(07. A neg)). (K=00X)
(K=00X). (26+60)+5X5+(26. central busy. K=00X)+021+5XX+2XX+
64X+65X+66X+67X+713+733+(637. central busy)+(617. Q#0. central
Busy. C°)+613.C.cO+614.T%615. C2+616. Tlee33. Dl+634. DP+635. O+
636, I—)4¢712 .full +(732. empty. active)+(77X. inactive)+central busy. 65,
(@82 E3EY. (K=00X). (F=60)
612. central busy. C°. (C1+C2+&34TY)+6324 711+ 731+ 733+713
= dead start. (clock=7777)

A Register and A Adder

A = dead.start: (clock=7777)

=27 (K=00X)

= 3TX+471+572+436X+461+562

= TAX+15X+20X+27X+30X+ 36X +37X+401+461+471+502+562+ 572+ 70X

= 70X

X+ 461+562+(637, central busy)+614, &>

- 712, full + 37X+471+572+(732. active. empty)

L 04124144 16+20X 421 X+22XHILX+35 K441 1 £4514552+30X+401+502

= 11413+ 15+17+23X+33X+4314532+32X+4214522

= 20X+21X422K+30X+31X+35X +401+4114451+502+512+552

= 23X+33X+431+532+32X+421+522

= 10+12+14+16+36X+461+562+(614. T)+(637, central Busy)

= 30X+31X+35X+36X+401+411+4451+46145024512+5524562+10+12+14+
16+(614. C3)+(637. central busy)

= 20X+21X+22X

B| = 23X

Q Adder Controls

Q7 Q Adder = 0T0+020+4X0+5X 0+ 630+ 64X+ 65X+ 66X+ 67X 1610+ K- 00%

P~ Q Adder= (U3 +04 +05 +06 +07) (K=00X)
SR 0224060%. 0 T Kexxoyso1, 834602, T 60, Tlesao. B

H00 = H = ((

! P —
621, DE+622. D623, DY

d~— Hl = 00X40104020+0214011+4X0+5X0+5X 1 +2XX+64X +65X+66X+67X+

610+630

F = H 7 0114021+ 5X 142X X+ 010+020+610+630+64X+ 65K+ 66X+ BTX+4X 04
5X0

-1~ H, = 615. 524635, D°

3+04+05+06+07).d)} (K=00X)

G Register

PG = (Q>G)HTI3+ T334+ T10+730+611+631)
Q™G = 0104020+022+4X X+ 6104630+60X+62X+ 3X0+5X0+5X 2

LISTS
K Register
K=K = 2XX+(70X.clock select) /(70X ful){72X. active. empty)+(74X.
inactive}+(75X. active)+(76X. inactive)+3XX+4X1+5X2 +H}11+022
+B4X+65X+66X+67X+713+733+4604+(624) (central busy)+(77X.
inactive)
340 =K = 35X e36X+37X+451+461+4471+552+4562+572
F*K = 01+02+420421+2242343X+4X+3X+(F5 G)+(60. central busy. 7. (Cl+
CL+T34TH)
712 K = load.dead start. (clock=7777
732 *K = dump. dead start. (clock=777T)
505 *K = sweep. dead start. {clock=7777)
Adv K = 010+020+4610+4630+ 021+5X1+4X0+5X0+632+711+731+
{(712+732). inacnve)ﬂil1+6310710+73()+((61+02+5x), d=0. K=00X}+
(600,05 THH601.Te(602. T2)4(603. TH4(613.T4. C5)4(614. T+
(615.C2)e(816. Ty r(620. DL+(621. D2)+(622. DI)+(623. D)+
(633. DDI+(634. D2) +(635. DI +(636. DHHT12. full. A= 1)+(T32.
empty. A=1)+(612. central busv. > (Cl+C2+T3 T4y)
cir k2 = 617.Q=04617. central Busy, C5.
Q=0+¢A37, central busy
setk® - 617.Q=0+637. central busy. Q=0
A Adder Control
Add = 10+11+12+13+22X+23X+33X+431+532
Selective = 11412+13422X+23X+33X+431+532
Logical Prod. = 12+13+22X
Shift = 10
Q Register and Q Adder
000 000 OX XXX *Q = dead start (clock=T777)
1+Ql = dead start (clock=7777
Minor cycle 8:9+4+5
1 "'Q2 = dead start (clock=777D
Minor cvele 647849
=@ = dead start (vlock= 777D
Minor cvele 0+1
1-Q" = dead start (clock=7777
Minor cyele 143354749
Q Adder =@ = Unconditional

PPeripheral and Control
Processors

b, No. Bol189300
Rev, K P2

1A

r_— PRE-SLOT

sLoT

| SARREL
CENTRAL
grocEsson —»f X e ———————————— SHIFT_NETWORK
b4 CENTRAL
hu s 4 n I
REOIETER
sor @ a7 [a0 | a @ 2 |
ors 430 s2s €00 €75 s2s %00
18=BIT ADDER BARREL A
XLATE @
As)
As0
d 1)
REAL-TIME
cLOCK
A->u
CHAN
Fd—>u| u —(D—-— REGS & "
! conTROL
50
o
STORE 1/0
170 €aure.
CHAN
x T o x x I SELECTS
s 4) e—wq X
o reow | @)
st | ° ® att ot (2 b
P—>Q Q
ors 300 523 €00) s 00
BARREL O
12 £1oan —{ 12-:17 acoen SARREL P
o>H
Fd—>H
Fawp T3
o bod b 4 m n T L
B Fnom D 7 3] 3] et pl2 (2 < :r—- P4t BAAREL P
] [
o7s 525 00 .7 30 2 oy 900 \Fs
aov. p
INST
ALA-
Tions =
73 s U SET K340
m o n ™ m I I —
K->k
X FROM 2 0 12 3)~
X D x x X 3 w1 OC
sLoT e (D> sanmeL «
030 128 s2s 800 615 70 825 200 L
975 Fax
Rey ADV. K
A—sv wRITE
1 Py w X
< T Fd—y Y2
.
4 b+ v ——()——é———+ ©
- CENTRAL
. ‘ f 0 (DATA TO CENTRAL Memory) SENTRA
300 550 75 DATA T T
CT»Y
ILE PRODUC T
NOTE: CONTROL DATA 6601704
ALL PERIPHERAL AND CONTROL PROCESSOR MODULES ON CHASSIS 1 I{- CORPORATION PERIPHERAL AND CONTROL

THIS SHEET (S IDENTICAL TO APPENDIX A PAGE 2.,

PROCESSOR

COMPUTER DVISION| DETAIL BLOCK DIAGRAM

Y LI

9L

TIMING

Timing in the 6600 is controlled by a four-phase master clock located
on the peripheral and contrel processor chassis (chassis 1). Four
25 nsec pulses are issued each minor cycle to control movement of
data and in#tructions. A storage sequence control system, timed by
the four-phase clock, controls storage references and defines the

ten peripheral and control processors.

fo-25spe—— 75—

-
—
R
SRS

|
E\-E

CLOCK
OSCILLATOR

CHASSIS 1

Peripheral and Control Processors

CLOCK

MASTER CLOCK

The master clock oscillator consists of a TD module and a TI module.
To form the 25 usec clock pulses, a pulse from the TD i8 ANDed with a
similar pulse which has been delayed and inverted by the TI. The result
is a series of pulses (primary clock) which are fanned out through TC
modules to be used as timing control. In addition to forming the clock
pulses on chassis 1, the master clock sends pulses to chassis 5 and
from there to all the other chagsis. On each chassis, the incoming
clock pulses are used to form a clock system similar to chassis 1. The
clocks on all chassis are synchronized so that time 00 on any chassis

is the same as time 00 on any other chassis.

Pub. No. 60119300
Rev. ¢ Page 4

LL

I(—5O NSEC —)t‘—SO NSEC—P]

HO2-TPI

MASTER CLOCK

r——75 NSEC“—‘] r—25 NSEC

HO3-Tp2 _—l I——I [——‘_

620
3 TC 3 TC m
457 83 !_1 43")% s3 A El H03-P03
> .

POT7 P24

HO3-POS5S ——] I———J l__

" Tc TC TC EXAMPLE OF PRIMARY CLOCK
3 3 3
“% A 49/“%’ 88 A\ L{w‘;gf 88 A\ L‘J
=~ d

______________ e

234 M--R36

608 Q2! MIR3e
o e i |4 rc TC
b e gt wa B owa B G
4 Q €LOCK

----—=zz=zZ-z-~_____-__ —ag’ RIS TO CHASSIS 12
—~ ao7 pia 4T N (12 CHANNELS)
]
49 i4 TC 14 TC
3 na Mg sa
2
—_— T = 49" [ia Tc
T = ST 13
cig 907 A&
T o e
ES 3 02
‘+ 13A L—Ios“}% 134 "
- ; ’
= ‘9’
sl -~ _ T _____7
c27 Los N1g

49"
s fia e) Tc 14 e
S 3 A 49" e) o 38 A\
- ~) ’ ~ S 4
N

NO6

~
-~
N
o — - TIT T - —
N 807 POT7 JI5
N
14 e 14 Tc 14 TC
~ : \\{ Y/ L:l 49,"’{ 1Y H 49, 388
A N
N — o e o — o e = = — ~

NO

~ 49"
S~ 3 [TC 14 TC 130
L Y S
~ —

TE

ADJUST OUTPUT OF 1130 TP3 TO MAKE OUTPUT S5I22 TP2
READ THE SAME AS THE OUTPUT OF IHO4 TP6 BOTH SHOULD
READ 120 (1T30 TP3 SHOULD READ ABOUT t78.)

~ cLocK
s TO CHASSIS §
NOTE: 49 K32 fj N c27
~ N
WIRE LENGTHS SHOWN ARE 3 < .13 Te 3 TC
TYPICAL AND MAY VARY RN \(% 38 A H ‘f‘% 38 A | + se A\
WITH COMPUTERS. R — THIS SHEET IS IDENTICAL TO 6601/04 CLOCK PAGE 3
R _”2“\ 620 TITE -
. 122 N = s CONTROL DATA | pERIPHERAL AND CONTROL 6601/04
\? 18 A\ H MEEPYN g CORPORATION | PROCESSOR O COO w5
MASTER CLOCK C |60119300 M
COMPUTER DIVISION| CHASSIS | SERIALS I-7 Il:;a.v[s

3L

6L

NOTES :

|. WIRE AS SHOWN FOR SYSTEMS WITHOUT ECS.
WITH ECS COUPLER DRIVING THE CLOCK , RUN
I16-16 TO HOi -6 AND GROUND HOI-3.

2.TURN TO PAGE 3 FOR COMPLETE CLOCK FAN-OUT
ON CHASSIS |.

HO3
lid
a5
3
) TO FAN-OUT
5
70
16
TO FAN-0UT
HO4
l‘E
95
5
) TO FAN-OUT
3
20
16
f'ro FAN-OUT
"
HOS
2 [
s
TO FAN-OUT

THIS SHEET IS IDENTICAL TO 6601/04/13/14 CENTRAL PROCESSOR CLOCK P 4.1

CONTROL DATA
CORPORATION

COMPUTER DIVISION

TITLE
PERIPHERAL AND CONTROL
PROCESSOR
MASTER CLOCK

PROSUCT
6601/04/13/14

CHASSIS | ,SERIALS 8-UP

08

BARREL

The barrel contains the A, P, Q, and K registers for each of the ten
processors. The functions of these four registers in the barrel are:

A (18 bits) A holds one operand for add, shift, logical and selective
operations. The 18-bit quantity in A may be an arith-
metic operand, central memory address, or an I/O
function or data word.

P (12 bits) P is the program address register. (P) is also used

as a data address in certain I/O and central instructions.

Q (12 bits) Q holds the d portion of instructions or may hold a
data word when d is an address.

K (9 bits) K holds the F portion of an instruction word and the
trip count (the number of times an instruction has been
around the barrel).

A REGISTER

The A register in the barrel receives the result of add, shift, logical
or selective operations in the slot. This quantity may be stored,
returned to the slot unaltered or used to condition other operations. A
is always tested to determine its sign and whether it is zero, non-zero,
or one. The result of these tests may be used to condition jump or
other instructions. The quantity in A may be a full 18-bit central
address or a12-bit peripheraliword (in Suhich case the'upper 6:bits’
will be zero).

The connections to A in the barrel are:

Outputs

A~M - (A) may be sent as a data or function word on one of the 1/O
channels.

A - Central Address Register - (A) is the central memory address in

central read and write and exchange jump instructions.

Peripheral and Control Processors

A ~Y - For a store instruction, (A) is sent to Y and then to storage.

A - Translation Networks

Inputs

X - A - The content of the central program address register is gent to
the peripheral X register every minor cycle. A 27 instruction
gends (X) to A and enables a peripheral and control processor
to monitor the progress of the central program.

R~A - Aninputto A instruction gates a word from an I/O channel
into A. -

Fd -A- A data word from storage is entered into A by the Fd -~ A path.

A - A - When the quantity in A is to be returned to the slot unaltered,
the A ~ A gate is enabled.

P REGISTER

P holds the program address and is not changed in the barrel (except
by Dead Start). (P) is sent to a storage unit from stage 6 in the barrel.
This allows time to read a word from storage and make it available at
slot time. (P) is sent to the G register which feeds all ten storage
address or S registers. When a jump is called for, P is sent to Q from
barrel stage 12. Q is then altered by the Q adder in the slot and the
new address returned to P at the first stage of the barrel.

Q REGISTER

Q holds the d portion of an instruction and has several outputs to
translation networks which make channel selections for I/O instructions.
When d is an address, (Q) is sent from the slot to P in the barrel

and the word obtained from that address is entered into Q in the slot.
When a jump is called for, the quantity in Q is added to or subtracted
from (P) in the Q adder and the result sent to P. When an instruction
calls for an 18-bit operand, the lower six bits of Q are sent to the upper
six bits of A to form the 18-bit quantity dim.

Pub. No. 60119300
Rev. M Page 6.2

18

LOCATIONS OF PROCESSORS WHEN STORAGE SEQUENCE CONTROL ENABLES 6 -5, STORAGE O

PROCESSOR 5 (S IN THE SLOT
A
L] B +8V) &
A
/ \ 0 o
TRANSLATION
Qi
O Re

L %4

12,
sLov

CENTRAL | x
aboRess Y
REGISTER

CHANNEL
TRANSLATIONS

TRANSLATIONS

T T
hm CONTROL DATA | 'PERIPHERAL AND CONTROL €601
CORPORATION | PROCESSOR Tt [omaee v
A, P,Q TYPICAL BARREL c|e0lig300 (D
COMPUTER DIvisioN| PATHS 7] 7

K REGISTER

K holds the F portion of an instruction word and a 3-bit trip count translations from Fd in the storage cycle path to be used in place of
which gequences the execution of an instruction. K is translated at K translations. This eliminates the need for a separate ''Read Next
two different times during a trip around the barrel; first, to determine Instruction’ trip through the barrel and allows certain instructions
if a storage reference is needed, and second, to provide the proper to be read from storage and executed all in one trip. The K = 00X
commands at the slot. During the barrel trip in which a new translation arises from the fact that K is cleared at the end of each
instruction is.being read from storage, a translation of K = 00X enables instruction.

o]

N

Peripheral and Control Processors Pub. No. 60119300

Rev. C Page 8

€8

—

INSTRUCTION

TRANSLATION

(—» INSTRUCTION

T

/

> FANOUT TO §

N

K—> K
F—ox
X REGISTER
(9 81TS)
TRIP COUNTER
K=340
ADVANCE K
BARREL - sLoT > BARREL

XOX XX1 XXO +
XOX XIX XXO

FROM $LOT —(

11X 0X1 0XX

5—» INHIBIT P-»G

DEAD START

ADYANCE K J
TRIP COUNT SLOT -
0 F
L]
I*Cg::::: DAvA "PERIPHERAL AND CONTROL '6601/04
ATION | pROCESSOR T ™
3 : Ko BARREL AND SLOT PATHS, c 119300
y COMPUTER DIVISION| AND TYPICAL TRANSLATIONS e] o

4
a c €
20,
ADVANCE K >
25 €

TO BARREL (08 - 7)

48

The sleot contains the execution hardware for A, P, Q, and K. Each

processor is allowed one minor cycle in the slot every major cycle.

Included in the slot are:

A Adder
Shift Network
Logical Circuits
Selective Circuits

P Incrementor
Inputs from P or Q in the barrel

sLoT
BARREL BARREL
SHIFT NETWORK -
; A 1 A
™~ A ADDER L
K P INCREMENTER P \
K Q ADDER Q \
K TRIP COUNTER K
BITS 0-2
K TRANSLATIONS T

SLOT

Q Adder
Input Path from Fd

K 3-bit Trip Counter
Input from F
K = 340 Gate

As A, P, Q, and K enter the slot, K translations (started earlier in the

barrel) become available and a portion (or all) of an instruction is

executed, The results are gated back into the barrel to be stored,

used again, or sent to I/O equipment.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. C Page 10

G8

—

200

NSEC

BARREL

TRAMSLATE K

P>»04+Q—>6

M

[.

_ 1

PP o>

6—>S (READ}

CLEAR Z

1

Fd—> Y Y>Z (WRITE)

(BARREL SHIFTS
RISHT AT LEADING
EDBE OF TIME
INCREMENTS SHOWN)

SLOT TO BARREL —»

A
18 MTS
P
12 DITS
RE—~ENTEN
BARREL
AT LEFT
Q
12 BITS
K
® BITS
TITE RoIeT
' CONTROL DATA | pER |PHERAL AND CONTROL 6601/04
CORPORATION | pPROCESSOR 317¢ Jomawine N]
C | 60119300

COMPUTER DIVISION

BARREL TIMING

T

9 H

2&

L8

™ o b hed g i 1 g m hatd 1 GATES w
Ag ol PB | 4] P PB I a Ql PB 1 4 R PC i RrR8 PD 1{Ni PD | K€ TG] Kl QA 1
LYl 24 .“.,,,‘ZL R 7?7R7 R 1 2 5 2 2 2 2 2
Az 3 6 3 3 3 6 5 5 s [5
Ay cez PB ! - P2 PB 4 Q2 PB I 4 6 6 6 6]l x2 qa)
Aa 2 s B T s Rz PC 1| Re PD 1| Nz PD 1| K7 TG 2
as [3 6 1 6 2 2 2 2 5
Ag 03 pPA | 4 P3 PB 4 5 5 5 5| x3 aa |
A7 2 s o 5 6 6 6 6 2
as | T 6) 6 R3 ec 1| R0 p0 (N3 PD 1| xi8 TE s
Ag 04 PB 4 Pa PB 4 4 2 2 2 2| ke QA I
Ao 2 s 5 5 s s s 5 2
I 3 6 6 6 3 5) 6 5
A |03 PB a Ps PB !) as PB | 4 Ra pc 1| Rt pD ([Na PD 1[Ki9 TE t|KS QA 1
as | 2 - LH,, o 2 s 2] I 2 2 2 2 2
ala 3 6 3 6 6 s 5 5 3 5
as |08 PB 1 4 [4 a6 PB | 4 6 6 6 4l ke oA |
As 2 5 [B 5| 2 5 RS PC 1fRI2 PO (| N5 PO 1 5 2
a7 3 6 3 [3 [3 2 2 2 6 5

m puy a 1 hr g m pss 1 Jus m o I vy
pg |Nis pc 1]|oir pe 4 os pa 1) pis pa 1| Pz PR 4 aig pc 1o pa]l e po M opco
Py 2 2 s 2 2 2 3 2 2 2 2 LOCATION TEST POINT
P2 s 3 6 3 3 ES 6 s 3 s 5
P3 6{omw pB) 4 4 4l P8 PB 4 [3 4 6 6
Pa NiS PC 1 2 s 5 s 2 B Q19 PC | 5| NI PD +f M2 PC | c4 pB
[2 3 [6 [3 s 2 6 2 2
Pe 5| ois PR) 4 016 PA | Pi& PA] P19 PB | 4 s| Q17 PA 5 5
er [6 T2 s 2 2 2| TS 6 2 € 6 MODULE TYPE
Pg | NI7 PC i 3 6 3 3 3 6 Q20 PC | HETE N EEC
Pe 2| 020 fe 4 4 4l P20 PB 4 2 4 2 2
Pro 5 2 5 s s 2 s 5 5 H B
Pt 6 3 6 6 6 3 6 [[€ 3
o m u X prg m 13 1 o m a T GATES p's

9 |22 PA 1]022 PB 1 4 P24 PA 1| P26 PA 1| Q22 PB | 4 RI9 PC 1| R22 PO (| N22 PD 1| M0 TE 1| LI QA I
a, 2 2 s 2 2 2 sl - 2 2 2 2 2
a2 3 3 6 3 3 3 s s 5 s| 3 s
o3 alo2a pe a T T Talaes e 4 6 6 6 alie aa 1
Qs s 2 s s 5 2 5 R20 PC 1| R23 PD 1| N23 PD | 5 2
9s [3 3 [6 3 6 2 2 2 € s
ag | P23 pa 1jo24 PB 4 P25 PA || P27 PA 1| Q24 PB | 4 5 5 sl mi T 1Lz a1t
a7 2 2 D 2 H 2 5 6 6 6 2 2
Qs 3 3 o 3 3 3 6 r21 PC || R24 PO 1| N2a PO 4 3 5
Q9 alo2s P8) 4 a{Q25 PB 1 4 2 2 2 a[e ea
Qo s 2 T s s 2 5 - 5 5 5 5 2
oy 6 3 6 6 [3 6 [[6 6 5

I 1 prg 1S m 1 v pug 3 ™
ko |08 re 1 4 N7 Pa 4| N PA (fPu Pp 1] P8 Pa 4| a8 pB 4 RS PC gl RI2Z PO 6| P8 PA 1| N7 PA
X 2 s s 2 2 5 2 5 rRe PC t|RI3 PO) 2 2
K2 3 & 6 3 5 6 3 6 2 2 3 3
K3 09 PB | 4 N8 PA 4 4 6| P9 PA alq9 Pe a4 B s|pe PA 1| NB PA |
' 2 5 5 s| ez PO 1 s 2 5 6 6 2 2
Ks 3 6 6 B 2 6 3 6 R? pc (| Ria PD | 3 3
ke |oto P8 4 N9 PA 4| N1 PA s[rio pa 4| a0 PB 1 4 2 2iri0 pa 1l Ne Pa
133 2 5 s 2 6 5 2 s 5 5 2 2
' 3 3 6 3P P06 6 3) s e 3 3

TTLE
o aos | PERIPHERAL AND CONTROL
PROCESSOR Tzt [orawine WG v
BARREL MAP ¢'[88iis300 [T
COMPUTER DIVISION InEET
Io| 13

88

STORAGE SEQUENCE CONTROL

Timing for memory references is controlled by the Storage Sequence
Control, which is a timing chain of FFs gated by clock pulses. As a 1"
passes down the chain, each FF is set for one minor cycle during which
it issues commands to the storage logic. This chain reinitiates itself
after each cycle and runs continuously. One memory reference is
initiated each minor cycle. The Storage Sequence Control overlaps
the references as shown in the typical stage "'a".
The stages of storage sequence control are numbered according to
the processor for which they initiate a memory reference. The
commands issued by the first half of a typical stage are:

G =S, Storage a

Clear Z, Storage a + 1

Set Z, Storage a + 5
Enable Sense, Storagea+ 7

The second half of state "a' issues the commands:
Read, a
Write, a+ 5

Stop Read, a + 6
Stop Write, a + 1

These commands and other signals from storage sequence control

define and separate the peripheral and control processors.

The reset circuit which reinitiates storage sequence control senses
whether stages 0-8 are set; if not, stage 0 is reinitiated just after

stage 9 has issued its commands.

A memory reference is initiated from stage 6 in the barrel, so that
information from memory is available at slot time. Thus, a memory
reference for processor 0 (storage 0) is initiated while processor 5

is in the slot.

MEMORY

Each of the ten peripheral and control processors has its own independent
core-storage unit with a capacity of 4096 12-bit words. Fach has its own
address register (S), sense amplifiers, and restoration register (Z).
However, the ten storage units share a common memory cycle path and

common paths to and from the barrel.

Fach peripheral and control processor makes one memory reference
each major cycle. When no memory reference is called for by the

current instruction, address 0000 is read and restored.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. C Page 14

68

NSEC 00 100 200 300 aolo ul)o so]o
| |
G >3 |
| STORAGE O
| 1
6l ! READ DRIVE
; O STORAGE O
f
ot m LOCATION OF TEST POINT
I ! s —>3 PD WODULE ON PO
10 STORAGE !
I &1 |
!] \
O
|
RESET) T
(SEE I cams cis 1-2
-
insean) | 1 -0 STORAGE 2
| |
LOCATION OF TEST POINTS
! | TC MODULE ON TC
| ! @ KEY
> 1 o m or ::;:L‘:"s%ns:
PROCESSOR 5 e
|'_ w stor ———* () STOMAGE 3
m
¢ —»s
IO sTomacE 4
62 1
O
@17 -2
m SEY Z
STORAGE ©
s—>s
-0 STORASE 3
TYP(CAL STAGE @
O
0 ox
STOP READ a +6 1O
STOP WRITE 0+
TO NEXT
STAGE
READ @
WRITE a+5
TO RESET
n
)
c—»s
STORAGE o
CLEAR 2
STORAGE a+ |
SET 2
STORAGE a+$
T

EMABLE SENSE
STORAGE a +7

al Wl N

RESET

RESTART STORAGE
SEQUENCE

WRITE DRIVE
STORAGE O

e —»S
STORAGE &

0

O
m

e—»S
STORAGE 7

. i
m
G—»S
L0 sromaet o
3 |
O
630

ADVANCE REAL -
TIME cLOCK

CLEAR Z
STORAGE O
>3

STORAGE »

m

CONTROL DATA |'bF RIPHERAL AND CONTROL "6601
CORPORATION PROCE SSOR Site [oRawine WG 3

COMPUTER DIVISION

STORAGE SEQUENCE CONTROL

C 60119300 c

il 15

16

—

STABE 0 <

STAGE 1 <«

RESET

CLEAR/SET PULSE I

CLEAR/SET PULSE IO

RANK | (GT7) OUTPUT TO RANK 2

6—> s

RANK 2 (G4) TO RESET

RANK 2 TO STAGE |

MANK | TO RAMK 2

¢ -—>s

RANK 2 TO RESET

RANK 2 TO SYAGE 2

100 NSEC

200 NSEC

|
|
1 |
I
|

1

1

|
|
|
|
{
|
|
|
|
|
|
|
I
|
|
|
|
I
[

T

I
I
I
|
|
I
I
i
I
I
I
|
i
|

]]
|
I
f
|
!
|
|
i
)
|
|
I
|
|

|
!
I
[
!
|
|

b CONTROL DATA
CORPORAT ION

COMPUTER DIVISION

TitLe

PERIPHERAL AND CONTROL

PROCESSOR
STORAGE SEQUENCE
CONTROL TIMING

Trweeuct

6601
T [Sarene wo T

300

| 7

[44

MEMORY CYCLE PATH

The common memory cycle path used by all processors receives data
from the memories via the sense merge. Inputs to the sense merge
from the sense amplifiers are a logical ""1" (0.2v) when sense is not
enabled. When a processor's sense amplifiers are enabled, the

outputs of the PS modules are allowed to go to +1.2v for a sensed

"Q" . If the core switches, the sense amplifier output goes to +0.2v
"1". The AND combination of logical "1's" from unselected processors,
even or odd sense enable, and ''1" bits from the selected processor's
sense amplifiers sets the word from memory into the Fd register in

the memory cycle path.

The memory cycle path sends information to the barrel, I/O channels,
translators and central write pyramid and receives information from the
barrel, central read pyramid, and 1/O channels. Outputs from Fd in
the memory cycle path are translated and used to form commands

when K = 00X (read next instruction trip).

Information in the memory-cycle path {(either the read word or a new
word) is fanned out from the Y register to the ten Z registers. The set
Z signal from storage sequence control gates the complement of the
word to be stored into the proper Z register.

Peripheral and Control
Processors

Pub. No. 60119300
Rev, C Page 18

£6

p—
—
et
—
et

DOUBLE - ENDED
)
SENSE LINES gprs oF 2

SENSE AMPLS. C3

P’
b1
E
=]

o
N

TO d=0
TRANSLATION

FAN-OUT TO Sy

Fd SET AT .
START OF PRESLOT .~
.

K20-4 (INUT TO \‘
A ADDER}

Ki6- 6 (A ADDER}

MB-4 (Q ADDER)

1 7-3(SHIFT COUNT

NOTES:
| SENSE AMPL. GOES TO

Y REG. 627 G621

“I" WHEN CORE SWITCHES.

2.7 HOLDS COMPLEMENT OF WORD.
3. SET STAGES OF X ENABLE INHIBITS

| OF {0
1 REGISTERS ce

FAN-0UT TO ZN

Y SET AT
START OF SLOT

K2U-2 [INPUT TO A ADDER)

\

) 027-6 {M REGISTER)

MI-7 (INPUT TO P}

) 17-23 {SHIFT COUNT)

T SET AT
START OF BARREL

T
w CONTROL DATA | pEgRipHERAL AND CONTROL 6601/04
CORPORAT ION PROCESSOR T O D e
TYPICAL MEMORY CYCLE PATH | ©]60119300 |h
COMPUTER DIVISION I"i'i'l 19

76

G6

Kz KyKsK7 Kg

610 + 630

&OX + 62X

G REGISTER

—» TO MEMORY VIA | OF 10
$ REGISTERS

STORAGE
ADDRESS

wm CONTROL DATA | pER|pHERAL AND CONTROL 6601/04
CORPORATION PROCESSOR 3iZe [SRAWING WO wev
c lsousaoo lK
COMPUTER DIviston|P—>6, Q—>§ Tl "

96

K REGISTER

K in the slet consists of a 3-bit trip counter for the lower three bits and a
fan-in for the upper six bits. The advance K signal to the trip counter is
enabled by instructien translations. For some instructions, the advance
K signal is controlled by signals which indicate statu.s‘ i.e., the 5X0

trip is skipped by all 5X instructiens if d = 0, and when K = 732, K is
advanced only if the I/O channel is empty and active and A = 1.

The three-bit trip count controls the sequence of operations for each
ingtruction and is sometimes changed by gates other than the trip counter.
For instance, for a central write instruction (63), K is changed from 637

to 633 to repeat the sequence of commands and send another word.
When a 63 instruction is completed, K is changed from 637 to 733

to finalize the instruction and obtain the next instruction from storage.

The fan-in to the upper six bits of K allows the instruction code F
to be entered into K from storage. The K - K path allows another
trip around the barrel for the present instruction. The path K = 340
is used by replace instructions which automatically use the store
instruction 34 to accomplish the store portion of the replace

instructions.

Peripheral and Control
Processors

Pub. No. 60118300
Rev. D Page 22

L6

OEAD
START
TIME —» I o = pu'g
FAN-OUT
STORE TRANSLATION INSTRUCTION
BARREL STORE TRANSLATIONS TRANSLATIONS SLAVES TRANSLATIONS sLOT
[nn-rn ola—Tx 19— PD M2T—TC
TXX
TXX TXX
s M24 —TD
—» .
XX
Mz0—TC
a4xx
$X X
L34
M18—PD
—
quo—vc
N
KB T
oxx oxx Mz3—TC
— —
oB3—TK [un—vn
Ks xTX xTX M24—TD
— | —
I xex
] — —> —_—
RI3—PD
> xax
Ke llll—PB Tuu—w
x3x x3x
M2z —TC
x2x
Ks — —>
M23—TC
x0X x0x
X1x
[onz-rx]II!—PB [Mzz=1c
X Xx? xX7 xox
I
XX 4
—
Xy
[uu—vn
X3 M27—TC
R12~—PD xx2
— —> —
M2s—TC
Xo Xx0 xXX0 xx1
xx0
m
TIME —> ™
T ENTER BARREL
ADV X P9 —PA NB— PA NI3--TE 09-—PB
I L ™~ . —re
Pe—PA NT—PA Il|2—TE [oa——ws
— —>
ADV
1
TIME ——>» I o s
TRANSLATIONS SLAVES G
Q18 —11] Qi —Te 1226
X% 0 — s
K TRANSLATIONS — V"A"SL""’"’/

FOM READ
MEMORY

PI2—PD

—
Qi2—TB
l

Fli— PD

/’

P——>s
TRANSLATIONS

—
Ql4a—TIL 116 —TH
—~ s ‘ __! .

420 —PG|

ha CONTROL DATA
CORPORATION

COMPUTER DIVISION

Tiree

PERIPHERAL AND CONTROL

PROCESSOR
K TRANSLATIONS, GENERAL

Trwoouc
660!

T e [v
C [601i9300 C

Ts'] 23

86

oN
o! EMPTY
02 EMPTY

=
~
>

1

6XX

T0
XX + X3X K6l +631+T10 730

H
|

TI0+730
9

[
I
|
__________________________ = _J

X1 X 4+ X3X
XX0

Ta=0l (712 FULL+

732 EMPTY-ACTIVE)

5_(R=ozws.x‘$- ¥
F=01+02+5x)(d=0) (K:00X)

K=4X0 + 5X0 ___J

TTee Trwoevcr

m CONTROL DATA | peppipHERAL AND CONTROL [660!

CORPORATION T [oriwive u 0y
PROCE SSOR ‘& |€5iiss00 [

[
T WVISI ADV K TETT
COMPUTER DIVISION I |é l 25

66

N27

ACTIVE

FuLL

3
X4x

I

10
X5%

[

B
xex (22

1

]
x7x L

1

E{

L9

(CHAN. 14)
Henan-m_

L20

(K=2XX) + (K=70X)
.|

L7 N2

) [

‘)__..(K—>K

e Treomey
ha CONTROL DATA 660!
CORPORATION PERIPHERAL AND CONTROL Tzt [oRawine wo eV
PROCESSOR C | 60119300 1
K-> K GATE -

COMPUTER DIVISION

il

27

001

CENTRAL BUSY (

L24

SET CENTRAL BusY

b4—> 03 (SEND CENTRAL
WRITE TAS)

CENTRAL BUSY

e |
(6171(CZ)(CENT, BUSY (@ #0)

)
|
|
|
]
!
|

CLR Kp

STAGE i3

STAGE 3
IN BARREL
BT 8

Lig STAGE 14 N7

E

STAGE |4 NS

SET K6 _<

™

m CONTROL DATA
CORPORATION

COMPUTER DIVISION

TiTee

PERIPHERAL AND CONTROL
PROCESSOR

CLR Kp, SET Kg

PRODUC T

6601

&Teo118300 |7

["a’] 29

I .

o= |- ‘

101

cl+c2+cB+ct enpry O

CENTRAL BUSY()

K= 00X)(F=60)

J24

Fr0X

KaXS5X +
X6X +XTX

Kx3X X

K= 5XX

Kz Xx2

Ka XX1

K 4XX

K:00X

(K200 X){F z 60)

H29

CORPORATION

COMPUTER DIVISION

PROCESSOR
SET K=340,F » K GATES

SET X:340
F-»K
F—»K 3 d ‘s
p }———{% F oo K
B
A
rr
w CONTROL DATA | pER|PHERAL AND CONTROL 6601

302K [oRawine ma

g

C 160119300 9]

e]

3l

¢01

K=XX2

c'+c24c3ect EmpTy

CENT. BUSY

{

200X} {F:07)(A NE

L29
@311 FULOct eweTe it
®s1(c? empTY) 2
(8141(c3 EMPTY)
(818)(CT EWPTY)
L30
(633)(D' EMPTY) b
(634)(D% EMPTY) 2

(835)(D3 EMPTY)
1636)(D* EMPT Y}

(712){FULL)

{732) (EMPTY){ACTIVE)
(77X} (INACTIVE)

OX){F=03)

{K=00X} (F - 04) (A=0)

{(K=z00X}{Fz03}(A0O)
(K200X)(Fz06) (A POS.)

Ks TI3 4 733
K=G4X+ 65X + 66X + 67X
K= 021 +5XX + 2XX

6) (CENT. BUSY)
(K=00X){F= 26+ 8D)
K= 5X5

O

Fd— 7
L21
[
-] ENABLE
P ADV P
RIS
TC
——— 3 12
DEAD START O—»P
e R T

. CONTROL DATA
CORPORATION

COMPUTER DIVISION

PERIPHERAL AND CONTROL
PROCESSOR

6601

8 GO oy
c (60119300 |D

P REGISTER GATES

55] >

Hll $3¥3%323 i3 O

(x) [e-%a1%3832345
ooﬂ.a Alwu "u Mu 23
oy s3wvy [0303 52
dnows [e— 3 %3
| S-S
4 L) 0Og+ O
te— Og+ Ov
oL e og oy
, AnHvD
o v
N z 1ie [e— a0y
o [%8+ 0v
le— laly
2y AMNYD fg g4 iy
ér
axn
(3]
orr
o
ke
)
zix
zr
[
s
)
Sin
ve

¥3834%)

€323 1303 %
1303 §5
€323 130393 %

m .

*3%323 1303 %3
231303 %)
¥3€323 1305

o .

$3%38323 15
€123 19
S3¥3€323 130y
£3231303

21T
0353 ¥a€32)
*3€32)
0353%3€323 Ip
*3€323 19
1139
0383
owvw _uowmu
$3¥3%
13038393832
$3%38327
i3 03
%3'3
23 120383%
036ary
23130383938
0363938y SIT
03

47

oy

5

I
|

>

|
LN

~

o
5

b

"
3

-

-

I
|
\
|

P
A

j}iii‘
o
.

.

1078
¥3ILNI
0 dnoys
™
1 dNOYS
2
]
Z dNoEy
(]
13
£ dNONY
(]
L2}
» dNOH9
B il
£ dnous

~

el & o
*|<)

_mCﬁ
o
o
.
: =iN
iof—
~i®
s0 2
Hs
Fudl Eled
J
=] b3
£ 3
z]
o <
© o
o x
z 3]
« =1

a
J
Ix .,
€ Qe
WA
T 08
[=1
2o
o O uw
we >
ao0<g<o
s
x
:

x
2z| ©
22| g

= 3
a8l 8
28| «
T" w
28| £
8%l &

S
el S

(*)

103

%01

A ADDER

The A adder is used to execute add, subtract, selective clear, logical Subtract

product, and logical difference instructions. Parts of the A adder For subtract instructions, the minuend, (A) is complemented
are also used to enter a word into the shift network and gate the result as it enters the adder. The subtrahend is entered into B
back to the barrel. The quantity in A in the barrel is always complemented without being complemented and the two quantities are added
when it enters the slot. When no operation on A is called for, (A) is as in an add instruction.

complemented, enters the A adder, is added to zero, and the result is

Selective Clear

recomplemented at the output. The Add gate on the QD modules is For selective clear, the complement of A and the true value of

always enabled except when Selective Clear, Logical Product, or d are entered into the adder and both the selective and the
Shift commands are enabled. logical product gates are enabled,
Add Logical Product

For an add instruction (A) is complemented and entered For logical product instructions, both A and d (or dm) are

into the A input register. The second operand is also complemented before entering the adder and both the logical

complemented and entered into the B input register. The product and the selective gates are enabled.

two quantities in the input registers, taken as positive,

are added and the sum is re-complemented as it is gated Logical Difference -

out of the QD modules to the barrel. For logical difference instructions, the complement of A and

the true value of the second operand enter the adder and only
the selective gate is enabled.

Peripheral and Control
Processors

Pub, No. 60119300
Rev. C Page 36

S01

SLOT

SHIFT
BARREL BARREL
NETWORK

A
\ ADDER /

IEX +481+ 362+
(637){CENT. _
EMPTY) +614(C3)

NOTES:
1. "A" AND "B" OPERANDS ARE COMPLEMENTS
OF THE TRUE BARREL QUANTITIES.
2. THE OUTPUT OF THE QD MODULES IS THE TRUE SUM.
3. CALL-OUTS REFER TO OPERANDS IN THE BARREL

FROM SHIFT
NETWORK

37X +4TI 4872+
712 (FULL) + 732
{ACTIVE}EMPTY)

GROUP O
>_cumv
-

PO w104 11412413+ 22K+ 23X + 431 + 532 + 33X
Pig = (1 412+ (3 + 22X + 23X + 431 + 532 + 33X
P23=i2 + (3 + 22X

PI3=10

CONTROL DATA |"™" "660
CORPORATION | PERIPHERAL AND CONTRoL [6601
PROCESSOR ¢ le0iio300 |

COMPUTER DIVISION A ADDER l’-z—n_sz 37

901

K= 38X + 461 + 562 Fd —» A x 37X +471 +572 +

36X +461 4 562
K:ITX F471+872

i %14
CLOCK BIT © v1
cLOCK BIT |
cLOCK BIT 2 K= 7XX
cLoCK BIT 3 !
y 2 - = R—> A = 70X
CLOCK BT 4
DEAD START e XOX

I29

Kz 00X

Fl
—_— X—» A127X
Fa2

(K= QOX)(F2 2T}

L20 127
x: Fox t2 i) !
Lo — - =
ks 37X + 4T+ 872
12 Xz 36X + 461 + 562

- — = A—> A = STX 4+ ATI+572 +
3EXT A8 + 362 +

AX IS + 30K+
¥
X+ 27X

_1 14415
| K= 30X + 401 + 502
L _X:=70X+20X

10000 —> A =(DEAD START)

O
{CLOCK:=T777)

. —
{_ CONTROL DATA | "eec

CORPORATION PERIPHERAL AND CONTROL :?0,::,,?4“ o
PROCESSOR C | 60119300 K

COMPUTER DIVISION| A REGISTER GATES I'Eg] 39

—
et
—

—
——
——
—————

p—
—
—
——t

L01

K21
TE
5
+F—>B
‘E m
% _r_-)am
K20
TE
- _d—’al
XOX + XX+
XSX + X6X
- +d—>8
[!
T
: K22
| TE
5
L +a—>8,
‘E v
21
TE
o “ 00 —> B
‘u
K22
TE
—_— — 14
(637)(CENT. BUSY) ﬂ *E 00 —» 8y
+1 —,Bl
-1 —>8
CONTROL DATA |"™ vy
6601
e O o - CORPORATION PERIPHERAL AND CONTROL e -
PROCESSOR € 160119300 C
COMPUTER DIVISION B GATES llé:ivl a

801

FEEDER
REGISTER L4 Ly [1
S lee] —)
(O o
______ GROUP 3 CARRY &
NOT SATISFY
a0 /@/
GROUP 3 — : }—»
Hio
P23
L —CO)— 4]
as ay
Mg (W]
Q0
ac '
Q9
CARRY INTO GROUP 3 N L
L3
Os
Tor NOTE:
ae = NS e B OPERANDS ARE COMPLEMENTED BEFORE
e ay ENTERING ADDER AND RESULT 18
e CARRY INTO oROUP Y AN - COMPLEMENTED AT THE OUTPUT.
an NOTATIONS SUCH AS Qg +Hg REFER
______ 9 TO CONTENT OF THE GA MODULES
. (AFTER ENTRY FROM BARREL).
7
GROUP 2 " \6_ ADDERS Li3
7 T
GROUP 2 CARRY 8 l_
b — NOT SATISFY @
= Lo
He — : 1
L2 L7 —@-——0{
P22
QA
[loe] {
ay ra
T — ®
g F——— -
R GROUP | CARRY B ay
NOT SATISFY b E
o /®/ Lo q
GROUP | Wa ac - ? ——
pr———— 1 — Sz
CARRY INTO GROUP 2 b — N
@3
9
My b — g
99
CARRY INTO GROUP O appERS Li2
IL‘_ FIRST STAGE
v _@_- IN BARREL
‘QA o cARRY
Q '; G.o::‘,_"ﬂ.
e
" % Le I O W
= Qs
______ _{ ‘s
o g —=TF FOR_Q1 :
EnaBLE FO
h — b
w B »/—”/‘4
------ - W
o L
ag —_— P CARRY |
0 H // DTLE *RODUCT
CONTROL DATA PERIPHERAL AND CONTROL 6601
CORPORATION PROCESSOR T07E [oRavine w5 oy
Q ADDER BLOCK DIAGRAM |C | 60119300 |¢
COMPUTER DIVISION T4
25 43

ADDERS

Lis

FEEDER REGISTER Lt Le ADDERS Liz

Gz FROW
BARREL

T FROM
BARREL

CARRY: ENABLE +
CARRY « ENABLE

601

L

To FROM

BARREL
NOTE:
OPERANDS ARE COMPLEMENTED BEFORE
ENTERING THE ADDER AND RESULTS
\
N

COMPLEMENTED AT THE OQUTPUT NOTATIONS,
SUCH AS Qo + Hg REFER TO CONTENT OF
FIRST STAGE IN BARREL THE QA MODULES (AFTER ENTRY FROM

. F BARREL).

GROUP | SATISFY

GROUP |

GROUP 3 GROUP 2 Ty Py T3y Wy Ty TGaHy TsWg 9 3
CONTROL DAT‘ AR 4% IMEV
CORPORATION | PERIPHERAL AND CONTROL 660l
S11€ [pRAwInG 90 "y
ZR(;%%:::OR c|eolie300 |1
COMPUTER DIVISION TZe] -

011

r ! A *agie
|]
1 |
1 I
t |
| L}
1 \‘
4
1 \
i \
. \
\
\
e \
K2 OIO+ 020+ 610+ \
0 \
x: WEFIT \
x:30% \
Kr84X T e5X + 08X + A
Tx \
\
\
\
\
\
\
\
\
\
\
\
\
| W

UPPER 6 BITS Ls

X PT

Tg FROM Q IN
PRESLOT

K 00X

K1 4&X0 + 5X0

K= 011

K= 021+ BXI+ 2XX

Xt 64X+ 68X +66X +67X

m

LOWER & BITS

{_ CONTROL DATA
CORPORATION

COMPUTER DIVISION

Tt

PERIPHERAL AND CONTROL
PROCESSOR
Q AND H REGISTER GATES

Treooucr

6601/04

S$11€ [PRAWINS RO gy
C | 60119300 K

I'27] a7

111

0% EMPTY (823)

03 EwPTY (622)

©F EMPTY) (621)
© EMPTY) (ON) (820}

xx3 (

129
(CHEMPTYIK=XXO) b‘_

(sox) (3 FuLL)

(¢3 EMPTYI(601)

(603) (¢! EMPTY)
(602} (CZ EMPTY)

€2 gmeTY

X

L30

xxs

‘::

3x
6 # D C 7
o3 EmpTY

+1—»H

-1 —>H

Ll

m CONTROL DATA | pERIPHERAL AND CONTROL 660
CORPORATION it

COMPUTER DIVISION

PROCESSOR
H GATES

=
Soi5300 €

C | 60119300

Iweny

28

49

SHIFT NETWORK

The shift instruction (10) provides for shifting the number in A up to 31
places left or right. Left ghift is circular with the high order bits
re-entering A at the low-order end. Right shift is end-off with low-order
bits discarded as they shift out of the A register and with no sign extention.
Thus, a lLeft shift of 18 is equivalent to no shift, and a right shift of 18

clears the A register.

The shift network is a static network. The content of A enters the

register at time IV, each bit follows a path established by static tranalations
of the 6-bit shift count in d, and the result re-enters A in the barrel at the
next time IV. The input to the shift network comes from the A input

register in the A adder (the content of that register, which is the complement
of A, is re-complemented before entering the shift register). The output of

4!

the shift network is gated back to the barrel by way of the output
modules (QD) of the A adder. Note that the quantity in A is always
shifted but the result is gated to the barrel only when the current
instruction is a shift.

If d is positive (00-378) the shift is left and the shift count is the
content of d. If d is negative (40- 778) the shift is right and the
shift count is the complement of the number in d.

At the first stage of the shift network, d4 and d5 are tested to
determine whether the shift is greater or less than 16 and whether
it is right or left. If the shift is 16 or greater, a shift of 16 is made
at thig point and the result then enters the rest of the shift network.

Bits do—d3 are tested with d5 to set up paths through the rest of the network.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. C Page 50

) > TO BARREL

OUTPUT STAGE
OF A ADDER

SHIFT RIGHT 16

A FROM
BARREL

T)V
51

60119300

128 [oAAwINe NG

Trwoouer
6601
C

29

AND CONTROL

PERIPHERAL
PROCESSOR

TiTLE

SHIFT NETWORK, {8 BIT

CONTROL DATA
CORPORATION

L3

COMPUTER DIVISION

RIGHT SHIFT

113

711

COMMUNICATION WITH CENTRAL MEMORY

CENTRAL PROCESSOR

The peripheral and control processors may communicate with the central
processor and central memory in several ways. They may read the
central processor's program address, tell the central processor to
jump to given central memory address for its next instruction, or read

from or write into central memory.

CENTRAL PROGRAM MONITOR

The 18-hit central processor program address is sent to the central
program monitor register on chassis 1 every minor cycle. A Read
Program Address instruction (27) sends the central address to the A
register. Thus the progress of a central program may be monitored
by any peripheral and control processor.

Exchange Jump, Central Read, and Central Write instructions all use
the content of A as a central memory address. (A) is unconditionally
sent to address control in the central processor every minor cycle.
This quantity is recognized and used as a central memory address
only if accompanied by a Central Read, Central Write, or Exchange

Jump signal.

The Central Busy FF indicates when a reference to central is in
progress. A central Busy condition prevents initiating a central

reference until one in progress is completed.

EXCHANGE JUMP

An exchange jump instruction is used to command the central
processor to stop the program it is executing and go to a central
memory location specified by the instruction. An exchange jump

may be issued by any peripheral and control processor so long as the
Central Busy FF is clear. The instruction sends an Exchange Jump
signal to the central processor and sets the Central Busy FF. The
Exchange Jump signal tells the central processor to recognize the
18-bit address sent from the peripheral processor and to perform an
exchange jump. After the central processor has performed the
exchange jump and started a new program it sends a Resume signal
which clears the Central Busy FF to allow another central reference.
If a peripheral and control processor tries to issue an Exchange Jump
instruction while the Central Busy FF is set, the processor must wait until
the previous central reference is completed and the Central Busy FF is
cleared.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. C Page 52

611

K2Xx2

XXXl

KxXAe

Kz XX6

K=XX3

K*XN0

L29

H30 J29

(602 +615HC2 EMPTY) | PW

¢ FuLe

A

+I>H 20,
[}

L abv.e 2
I:] 8 AOV. K %E

L29-2i

129

(624)(CENT. BUSY) +
1637)(CENT. BUSY)

SET CENT. BUSY
SEND CENT. READ

TIME
START OF
SLOT TIME

130

CENT READ

b‘

27

©

F40

%
e

[l

g”,

(cLr ¢t FuLL

TiTie Troovuct
CONTROL DATA TR 6601
" CORPORATION PERIPHERAL AND CONTROL LA -

PROCESSOR

COMPUTER DIVISION

CENTRAL READ CONTROL

C | 60119300 D

E 53

911

CENTRAL READ

The Central Read instruction allows a peripheral and control processor
to obtain one word (60-bits) or a block of words from Central Memory.
The instruction sends a Central Read signal to central address control
enabling it to use the 18 bit quantity from A as a central memory address.
At the same time, the Central Busy FF is set to inhibit other references
to central until the read word is received. When a 60-bit word is sent

by centra}lioltk)‘e‘(iin.tnrgl Read Pyramid, it is accompanied by two control
signals; Resd Resume which clears the Central Busy FF and a signal which
sets the C5 Full FF. Each rank of the Central Read Pyramid CI-C5 has
an associated Full/Empty FF used to control the flow of data through the
pyramid. C5 Full and C4 Empty enables the processor doing the read
instruction to send the upper 12 bits of C5 to memory and the lower 48
bits to C4. Subsequent steps in the Central Read instruction step the
central word down through the pyramid and store the rest of the central
word as 12-bit peripheral words. Each step in this storage procedure

requires that the next lower rank in the pyramid be empty before a transfer
is made. No Central Read instruction may be issued until the C5 Full FF
and Central Busy FF are clear. However, as many as four central
memory words, in different stages of disassembly, may be in the Central
Read Pyramid at one time. A read instruction for which the proper full
and empty conditions are not met must wait until previous instructions

progress further and conditions are met.

A 60 instruction reads only one central memory word and stores it as five
peripheral words. A 61 instruction reads a block of words specified by
{d). In either instruction the first central memory address is specified
by (A). For a 60 instruction, d specifies the peripheral address at

which the upper 12 bits of the peripheral word are stored; the next lower
12 bits goto d + 1, etc. For a 61 instruction, (d) gives the number of
central words to be read and m is the address for the upper 12 bits of

the first central word.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. C Page 54

L11

—
—

—

——
=

—

CENT. READ
a BusY

8C-BIT WORD FROM
CENTRAL MEMORY
READ DIST,

G42
BITS S4-59

Gat

PI

aITS 48-53

BITS 6-11

H26

Y REGISTER

BiTS 0-5
ON TP (-8

G40
I BITS 42-47] L BITS 42-47
e39
[BITS 36-41 I oIS 38-41 € 8D SATES WAVE
CONSTANY 0.2V OUTPUT
638 c_t e o y Via € MoDULE GRD N
[8ITS 30-33 l I BITS 30-38 [8ITS 30-35 [r
L 1
637 H39 14) L o_ _ _ L |
oITS 24-29 _] L 8iTS 24-29 L BITS 24-29 -4 o | ;go'zuzzicussms
[nes | 8ITS 6-11 | —» VIA SEPARATE
G368 H3E 140 I36 bt To H22 = ON TP I-6 :ic:ogt'JYLzs FOR
[8iTS 18-23 } [BITS 18-23 _] BITS 18-23 ‘I L!”s . - =) I'_G.
O
633 H3? 139 133 [i %
, BITS 12-17 l 8ITS 1217] l BITS 1217 L BITS 1217 'Q} ! n n
|
634 H36 138 I3e t ﬂ n
‘ 8ITS 6-11 ["TS 6-11 ‘] [0ITS 6-11 T BITS &-11 — _ _ - FoLLow ASCENDING BT ORDER
T wse | H28 Hz7
TG
8iTS 0-5 81Ts 0-8
W jﬁ
ctec3
c5, ¢4 ¢3,c2,c! :
HAVE TP -6 FOR
ASCENDING BIT ORDER
c4 c3 c2 c!
) YTrwoouc
q_ CONTROL DATA {"™ 6601 /04
CORPORATION PERIPHERAL AND CONTROL = =
PROCESSOR 300 K
COMPUTER DIVISION CENTRAL READ PYRAMID I'gi' 55

811

CENTRAL WRITE

Central Write instructions send one 60-bit word or a block of 60-bit
words to Central Memory. Each 60-bit word sent to Central Memory
is assembled in the Central Write Pyramid from five 12-bit peripheral
words. A Central Write instruction assembles a 60-bit word and
sends the word and a Central Write signal to central address control
and sets the Central Busy FF. The Central Write signal enables
central address control to accept the 60-bit word and store it at the

address specified by (A). When the word has been stored, an accept
signal is sent back to clear the Central Busy FF. Up to four Central
Write instructions may be in progress at one time with portions of
four different words in Dl—D . D5 is an output network only and
cannot store a word. The first 12-bit word goes to D1 and will be the
upper 12 bits of the 60-bit word. When a second 12-bit word goes

to DZ, D1 is also sent to DZ. When the fifth word goes to DS, the

48 bits in D4 are also sent to D5 and the 60-bit word is sent to

central.

Peripheral and Control

Processors

Pub. No. 60119300
Rev. C Page 56

611

)3T

TRAL ADOR A

woRD—#{12
24
2NC wono

3RO worp

36

aTH woro—»

L

sTH 'ORHL

L1hg
59

e

PT

TO CENTRAL
MEMORY

CENTRAL WRITE
RESUME (CH. 2)

130
]
20 28
e P) CENTRAL WRITE
™

b3S QUTPUTS GO TO CEMTRAL
MEMORY DATA DISTAIBUTOR

.ngggg;ﬁl‘m PERIPHERAL AND CONTROL 6601/04
PROCESSOR l&! -énv'--|§u300 -;(-

COMPUTER DIVISION

CENTRAL WRITE PYRAMID

|
B

0zt

INPUT/OUTPUT

Each of the 12 independent data channels can handle 12-bit words at a
maximum rate of one word every major cycle (equivalent to a 1 megacycle
rate). Each channel has an Active/Inactive FF and a Full/Empty FF
which indicate channel status te the processors. Any channel may be
used by any processor, but the external equipment assigned to a channel
is wired in and may be assigned to another channel only by changing

cable connectiens.

The lines of a data channel are:

Input Output
Data or Status Reply (12 bits) Data or Function word (12 bits)
Active Active
Inactive (Disconnect) Inactive
Full Full
Empty Empty
MC

In additien, two clock signals are available to external equipment: a 1 mc
clock and a 10 mc clock. The clock pulses are 25 nsec wide, as are all
data and control signals (except master clear). Controllers for each
external equipment (or group) perform the conversion between the 6600

pulse signals and the signals required by I/O devices.

A data channel may be used for communication between processors if it is
selected for input by one processor and for output by another. The status
of data channels may be sensed by instructions 64-67: jump to m if

channel d active, etc.

MASTER CLEAR

A Master Clear (MC) signal is generated only by the Dead Start circuit.
MC removes all equipment selections (except Dead Start) and sets all
channels to the Active and Empty condition (ready for input). MCis a

1 usec pulse which is repeated every 4096.usec while the Dead Start

switch is on.

DISCONNECT (75)

A disconnect instruction clears the channel Active FF if it is set

and sends an inactive pulse to the equipment on that channel. If a
digconnect instruction is given for a channel which is already inactive,
the processor which issued the disconnect will "hang up'’ and will not
be able to continue until the channel is activated by another processor
(or by MC).

FUNCTION (76 or 77)

A function instruction sends a 12-bit function code (from A or Fd)

on the data lines and sends a Function signal. It also sets the Active
and Full FFs for the channel but does not send Active and Full pulses.
Upon receipt of the function code, the external equipment sends an
Inactive {(disconnect) signal, clearing the Active FF in the data channel
which in turn clears the Full FF. If a Function instruction is given for
an active channel, the processor will hang up until the channel is

deactivated.

ACTIVATE (74)

An Activate instruction sends an Active signal on the channel and sets the
Active FF if the channel is inactive. If an Activate instruction is given
for a channel which is already active, the processor which issued the
instruction will "hang up'" until the channel is inactivated by another
processor or by an Inactive (disconnect) signal from an external equipment

on the channel.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. K Puage 58

P
-
et

171

R27

[:9_

1L
R2% w
T0
x0 %
8 Lxo i 1 6
£ <>Q-{§PO—D<P<
[
A
ox
R28 .
B L .
m(®) /
’
’

CLEARED & RESET
EACH BARREL TRIP

[re]
Ox
"
m
1 1
X 1
CHAK. O
M35 -38

CHAN, |
m30-a2

CHAN. 2
N35- 38

CHAN. 3
N39S - 42

VAV aAVA

CTHAN 4

Fd —»

A —s

VNN NN
VN NN

038 - 38

VNN

CHAN, 8
039 - 42

CHANMEL

\
!
!

DATA

i

CHAN. &
P35 -38

!

i

777 TTIAN

CHAN 7

3

P39 - 42

CHAN 10
Q38 - 38

/77T VAN

A AAN
S0 7
Ll L

CNAN. 11
Q39 - 42

NN

CHAN 12
R3S - 38

CHAN. 13
R39-42

REAL-TIME
cLoCcK

/S S S

!

SONNN A

NN\

~

CHANNEL
DATA

ez

NNV /S

NN\\\ S
NN\ 2777

~

BLOCK DIAGRAM

oUTPUT
DATA

PERIPHERAL
EQUIPMENT

INPUT

DATA

&

TOCACTIVE- EMPTY
76X - INACTIVE

732 ACTIVE-EMPTY
TTX- INACTIVE

I QF 12
R REGISTERS

A M36
PR

CHAN,
CHAN.

CHAN,
CHAN,
CHAN,
cHaN,
CHAN,
CHAN.
CHAN.
CHAN.
CHAN,

CHaN.

CHAN O EMPTY

PS: (76X + 77) INACTIVE

PE: (72X 4 T32)- ACTIVE EWPTY
Pl2: 74X - TNACTIVE

PIT=(TOX 4 712} - FuLL

P23 1 DEAD START

P27 TSX-ACTIVE

., CONTROL DATA
CORPORATION

COMPUTER DiVISION

nitLe

PERIPHERAL AND CONTROL
PROCESSOR
INPUT /OQUTPUT PATHS

Traoovet
6601/04

0 COED

60119300

[33]

59

s

[4A!

1

DATA INPUT SEQUENCE

An external device sends data to the processor by way of the controller
in the following manner:

The proceasor places a function word in the channel register
and sets the full flag and the channel active flag. Coincidently,
it sends the word and a function signal to all controllers. The
function signal tells all controllers to sample the word and
identifies the word as a function code rather than a data word.
The code selects a controller and a mode of operation. Non-
selected controllers clear, leaving only the selected one turned
on.

The controller sends an inactive signal to the processor in-
dicating acceptance of the function code. The signal drops
the channel active flag which in turn drops the full flag and
clears the channel register.

The processor sets the channel active flag and sends an active
signal to the controller which signals the device to start
sending data.

The device reads a word and then sends the word to the channel
register with a full signal which sets the channel full flag.

The processor stores the word, drops the full flag, and
returns an empty signal indicating acceptance of the word.
The device clears its data register and prepares to send the
next word. ’

Steps 4 and 5 repeat for each word transferred.

At the end of the transfer, the controller clears its active
condition and sends an inactive signal to the processor to indicate
end of data. The signal clears the channel active flag to dis-
connect the contreller and the processor from the channel.

Ag an alternative, the processor may choose to disconnect from

the channel before the device has sent all of its data. The processor
does this by dropping the active flag and sending an inactive signal
to the contreller which immediately clears its active condition and
sends no more data, although the device may continue to the end of
its data record or cycle (e.g., a magnetic tape unit would continue
to end of record and stop in the record gap).

STATUS REQUEST

A status request is a special one word data input transfer in which an external

device indicates a ready or error condition to a processor.

1

The processor places a function word in the channel register and
sets the full flag and the channel active flag. Coincidently, it
sends the word and a function signal to all controllers. The
function signal tells all controllers to sample the word and defines

the word as a function code rather than a data word. The
code selects a controller and places it in status mode. Non-
selected controllers clear, leaving only the selected one
turned on.

The controller sends an inactive signal to the processor
indicating acceptance of the status function code. The signal
drops the channel active flag which in turn drops the full flag
and clears the channel register.

The processor sets the channel active flag and sends an active
signal to the controller which signals the device to send the
status word.

The controller sends the status word to the channel register
with a full signal which gets the channel full flag.

The processor stores the word, dropsithe full flag, and returns
an empty signal indicating acceptance of the word.

The processor drops the channel active flag to disconnect the
channel and sends an inactive signal to the controller to
disconnect it.

DATA OUTPUT SEQUENCE

The processor sends data to an external device in the following manner:

1

~

The processor places a function word in the channel register
and sets the full flag and the channel active flag. Coincidently,
it sends the word and a function signal to all devices. The
function signal tells all controllers to sample the word and
identifies the word as a function code rather than a data word.
The code selects a controller and a mode of operation. Non-
selected controllers clear, leaving only the selected one turned
on.

The controller sends an inactive signal to the processor, in-
dicating acceptance of the function code. The signal drops the
channel active flag which in turn drops the full flag and clears
the channel register.

The processor sets the channel active flag and sends an active
signal to the controller which signals the device that data flow
is starting.

The processor places a data word in the channel register and sets
the full flag. Coincidently, it sends the word and a full signal to
the controller.

The controller accepts the word and sends an empty signal to
the processor where it clears the channel register and drops the
full flag.

Steps 4 and 5 repeat for each processor word.

After the last word is transferred and acknowledged by the
controller empty signal, the processor drops the channel active
signal to the controller to turn it off.

Peripheral and Control
Processors

Pub. No. 60119300
Rev. C Page 60

€Tl

—

DEAD
START

o

o— DuMP

12 X 12 SWITCH MATAIX

° L @ DEAD START
SYNCHRONIZER

MASTER CLEAR
ASSIGN CHANNELS

IN X REGISTERS
SWEEP X: 308
LOAD K= 712
DUMP x=732

SWEEP "
T INSTRUCT
LoAD s INSTRUCTION

CONTROL

SYNCHRONIZERS

ON CHANNMEL O
READ

¥ ¥
|

FROM I/0 DEVICES

DEAD START PANEL

GATES AT Jis AND IIS
ENABLED EVERY 4096 uSEC
BY REAL-TIME CLOCK

DEAD START LOSIC ON CHASSIS I

MASTER CLEAR SET ALL LOAD 12 WORDS
PROCESSORS FROM DEAD START
ALL CHANNELS To 712 PANEL INTO

AND PROCESSORS MEMORY ZERO

EXECUTE PROGRAM
FROM DEAD START
PAI

{PROCESSOR ZERO)

$LOT

Q2013
——* Pa, 9,00,

> Ajg A7 Ko

OUTPUTS OF RIS SET Avi0000,
P:0, Q= CHANNEL SELECTION,

CORPORATION

COMPUTER DIVISION

PROCESSOR
DEAD START

R4 —13 Kz 508 + 7i2 + 732
> MC ALL = A2,13, 14,18
CHANNELS CHANNEL ASSIGNMENTS
3—13 CHANNEL PROCESSOR
MC CHANNEL ==> Ag,ni0,n [0
CONTROLS X X
MC CENTRAL .|'_-l -] 2 2
> R/W PYRAMIDS 0.h2,3 3 3
R21 -3 M N
by s s
——-#0Qq,9,10,11
-< 6 L]
———— T T
QIe—13
——=>P4s.6,7 10 o
" n
> Ke,7,8 R —I3 2 -
— > Ao,1,2,3 13 -
RE — 13
> K| 2,34
R20-13
> Q5,67
Q8-
2R o, 123
RZ2 ~13
T Aa56,7
TITLE Treoouer
{. CONTROL DATA | 'PERIPHERAL AND CONTROL 6601/04

c|60| 19300 lp.

3% 8!

Z4!

DEAD START

Dead Start is a system used to initially start the computer, dump the
contents of the peripheral and control processor memories to a
printer or other output device, or sweep memory without executing

instructions.

The Dead Start panel contains a 12x12 matrix of toggle switches, a
Sweep-Load-Dump switch and a Dead Start switch. It also contains
memory margin switches which are used for maintenance checks.

. LOAD

To initially load programs and date, the Sweep-Load-Dump switch is
put in the Load position., The matrix of toggle switches is set to a 12-
word program (up = ''1", down = "'0"). When the Dead Start switch is
turned on, a 1 usec Dead Start pulse:

1 Assigns to each peripheral and control processor the
corresponding 1/O channel.

2 Sets all channels to Active and Empty

3 Sets K for all processors to 712 (Input)
4 Sends a MC on all channels
5 Sets P for all processors to zero. (A is then set to 10000,

in the barrel)

The Dead Start pulse is repeated every 'iog?iusec while the Dead Start
switch is on. To start the machine, the DS switch is normally turned
on momentarily, then off. Recycling of the DS pulse is controlled by
the Real Time Clock; the pulse is formed by ANDing DS switch in the
ON position with 10 bits of Real Time Clock.

When the Dead Start controller on channel 0 receives the MC sent by
Dead Start, it sends a Full pulse but no data. When processor 0
receives the Full, it stores the content of the channel 0 input register
(All zeros) in location 0000 and sends an Empty pulse to the Dead Start
controller. The Dead Start controller then acts like an input device,

sending twelve 12-bit words from the switch matrix which processor 0
stores in locations 0001-00148. After the last word, the Dead Start

controller sends a disconnect which causes processor 0 to exit from the
712 instruction. Processor 0 reads location 0000, adds one to its con-
tents and goes to 0001 for its next instruction. It then executes the
12-word (or less) program which normally is a control program to load
information and begin operation. The other processors are still set to
712 (waiting to input when their channels become full) and may receive

data from processor 0 via their assigned I/O channels,

SWEEP

If the DS switch is operated with the Sweep-Load-Dump switch in the
Sweep position, all processors are set to a 505 instruction and P registers
set to 0000. Since the 50 instruction doesn't require 5 trips around the
barrel there is no logic to clear or advance K from 505. The 50X trans-
lation of K, causes all processors to sweep through their memories; read-
ing and restoring without executing instructions. This is a maintenance

routine and may be used to check the operation of memory logic.

DUMP

Dead Start with the Sweep-Load-Dump switch in the Dump position:

1 Sets all processors to 732.

2 Sends MC on all channels.

3 Holds channel 0 Active and Empty.

4 Assigns each processor to its corresponding 1/O channel.
5 Sets all A and P registers to 0.

All processors sense the Empty and Active condition of their assigned
channels, output the content of their address 0000, set their I/O channels
to Full, and wait for an Empty. All processors advance P by one and
reduce A by one (A = 77768). Channel 0, which is assigned to processor 0,
is held by Empty by the Dump switch. Processor 0 therefore cycles
through the 732 instruction until A = 1 and then goes to memory location
0001 for its next instruction. Processor 0 has sent its entire memory
content on channel 0 although no I/O device was selected to receive it.
Processor 0 is now free to execute a dump program which must have been

previously stored in memory 0 (beginning at location 0001).

Pub, No. 60119300
Peripheral and Control Rev. C Page 62
Processors

GZ1

DEAD START

SWEEP
WODE
DEAD START PANEL
SWITCNES
DUMP

-
T8

18
T?
1o

K IN SARREL
STAGE 10

K IN BARREL
(STAGE 11}

DEAD START K,

MC ALL CHANNELS
MC CHANNEL CONTROLS

MC CENTRAL R/W PYRAMIDS

P, CONTROL DATA
CORPORATION

COMPUTER DIVISION

Titee

PERIPHERAL AND CONTROL

PROCESSOR

712, 732, 505> K (DEAD START)

660 1/04
BITE |bRAWIRG RO

C 160119300

wev |

K

['35]

63

921

Q REGISTER

[
[

SSC 4+5+0+9 1L)4-)

|

$5C 6474849 IIi4-2

000 100 200 300 400 500 600 700 800 900 000 100 200 300
| ! ! ! t [[t | ! : ' !
' | ! | | [| | ‘ ! | | .
$SC 9 (UPDATE RTC) m | ! NOTE:
[! [! | !) ! | ! | ! | BITS 4-11 OF Q HELD CLEAR DURING DEAD START,
| 1 ! | |) [i | | | [|
! | I_I—L | \ X | . X . , m THIS SEQUENCE IS REPEATED EVERY 4096 uSEC
$3C:0 ! ! ! WHILE “DEAD START" SWITCH IS ON.
| ! ! ! I 1 ! [| i ' | I
| | ! | |) | | ! | | o RTC:0000 |
DSI FF, iGO6-3) | ! | | ! ! 1 | ! ! !
(GATE ENABLED WHEN 1 | | y , 1
RTC :77779) | [| | | i i t
| I | I | I [| | | i i i
| [|) ! i !
0S2 FF, 1603-6 ! | l ! ! !
| [| t | | | | t | !
I ! | I ' I [| i | | I
,
$SC EVEN 1603-3 ! | | [J
| ! t 1 t t [|
| | ! | | | i |
i | |
t ' i |
$SC O+ 1 I114-6
| { | !
| | | !
! | [|
| § I |
[‘ |
! []
T | I
| | |
| | {

BIT 3, Q REGISTER IRI9—6

|

|

|

|

|

|

J

|

|

[

!

1

|

|

|

|

|

|

| | !

|

e B
| i
| |
1

!

1
SSC =4 +5+849 2z

!
[}
|
|
| |
| |
' | | 1 | SSC = 041
i | | I I
BIT 0, O REGISTER IR19 -1 : l I I ‘ | L :] ; L l__I—J ! 1._—___
| | i | [
| ! ! I | ' I | ! |
| O \
BIT 1, Q REGISTER IRI9-2 : : : m 1
\ | | ! | |) |] | 28 o 02
| | | | | \ I ’ | ssc-s47+e+9ﬁ
BIT 2, Q REGISTER IRI9-S | ; ; ; | I
\ | | ! ' °
| | I I c
' 1 | | |
| l | !
1) 1 |

j
S
.

|

|

l
N _m J—-l

STAGE 10 TO STAGE

BARREL
COUNT IN @ g 0 | 2 3
PPU 8 PPU O
SETTING CHANNEL NUMBER IN Q REGISTER ON DEAD START
co7

T
FROM ssc | 3
RANK 2 5 - o
FFS - - — .
T RANK 2
¥ $8C EVEN

STAGE 10 (N BARREL

o
m:;: REAL TIME CLOCK CONTROL DATA | '™ Trwooucr
S$5C = STORAGE SEQUENCE CONTROL " CORPORATION PERIPHERAL AND CONTROL 6601/04

PROCESSOR "ETeoris300 |

COMPUTER DIVISION SET Q, DEAD START T
36 65

L71

WORD COUNTER

COUNTER STAYS AT 1101
UNTIL NEXT MASTER CLEAR

|

.

:: A 5
[LO—Q-—:—O" "

I

|

TYPICAL WC
TRANSLATION

I
|
1
{
|
I 3 €
! Y |
] | :
| |
i I :
: IL o) 3 _ +5 |
| 17 i
I r !
1 | | : [
| | 9 8
: i > |/(S () LITHN
1 [DISC. (W #1101} sl
7
! ! STOP (WC ¥ 1100) | =
| 1
|
: Lo - o - -~ i 10
| | E
P |
[} Cl5
| To|
\ -
|]
— 5 il [
' ———— — CHASS{S 2 >_ C P)I“”NE
} ——
— — WwC=1100
| Y E
! DEAD START =
1 PANEL
lapvance wc
|) |
| | |
! J | NOTE
| ALL MODULES ON CHASS!S 2
I
e e I e J
I
' CONTROL DATA "™ P
{' PERIPHERAL AND CONTRoL [660i704/13 /14
, CORPORATION Yite [oRiwine WG L
1 PROCESSOR ¢ | 60119300 4=
Lo o e i e e e e = = — = = — = = - it COMPUTER DIVISION DEAD START CONTROLLER :g; 67

\ 1%

STUDENT EXERCISE
INTRODUCTION

It is the intention of Control Data Institute to give as much effective train-
ing to the trainee as possible in time allotted. The exercise was written to
implement the training presentation and to increase the effectiveness of
course material. The purpose of the exercise is threefold:

l. To provide a method of self study and self testing for the trainee

to find weaknesses and guide his understanding of the presented
material,

2, To provide helpful information sheets and drawings of material that
is not presented in other reference sources.

3. To provide a good review source for the trainee, both while in the
training situation and later in his respective assignment.

The student is to be cautioned that the exercise is an auxiliary reference

source and is to be used for problem solving and is not a primary source of

information.

129

EXERCISES: BUILDING BLOCK

REFERENCES: 1., Control Data Institute 6600 Training Manual - Appendix B

2, Printed Circuits Manual, Volume 3

PROBLEMS:

1. The logic levels for the 6000 Logic circuits are:

Hlll =
HOH =

2., Draw a logic circuit that will form the "and" of A and B

s B e

3. Draw a logic circuit that will form the "OR" of A and B

4, Draw a logic circuit that will output a "1" if A and B are
equivalent.

: = i

|
Ty §

; o “
1 L . !
,/#W ol |
»,v,?, w"’%]

.
. <
7 . [N e /
\

130

ADVANCE C

a) Translate the previous module for 1l's out of pins 1, 2, &3

1 = 'f/i"f) s e & . ‘.2 A g (A V- g{’)
s

o
‘,."h-_—
g R
T — N o T . oL
2 :'? - /’,3 SR f72 ‘! i o= 9 € ANuuLpsc €

o=
—_— rd

= 1 -
= = 2 e Al

E A — = =
3= (o) e 7-} T ALVALE 4D 5% e 2
-

b) 1f K= 1 what is the function of the circuit? /£ . -~

i J
e oA

¢) If K = 0 what is the function of the circuit?

d) 1f inverter D is ban and always outputs a 1 what will the
module output if 0112 is fed into it?

K=1 /o . 2

K=20 o ;,' ;

131

iy

LS 63084200 |

ASSY REV
-
SUM OUT
P3 ' s
{ A J
3 7
0 2
Pse—1 |e s P2 I
P6
.
2
°
32
13 { Pa K P
CARRY 15
33h s 0 1Y~
M N K I H J Pl
[}) 12
2 /F
Pi8 P7 18 €
26
SUM 30
P8
N
29
27
23
28
H
2 PIO N
u. 32
G M P9
24
39 3
D P, F]
fl
8
P
[
20 e A
a8
P26 47
o3
P
D [.1]
83 P22 A
a0 CARRY
¢ 57 o P24
1)
c P27 % 56 a3
64 A 8 c
r{ 50
CARRY
LEFT wy
P28 & P25
133

'|Bitxre

pp—

loa—é:

"

12

1

14

15

16

-1 -

17

18

19

n|gi |

2 BH’X*&!
1

24

5|55

e |

L 8.4 X
28, '

'‘ACK
CIRCUIT S SCIFICATION
€ 1127

PN G
"LIVECD

5« Translate the following terms for "1's" on the MC Module with the given
inputs:

A=
B =
C=
D=
Em=
F
G =
H=
I =
J=
K=
L ==
o=
A=
Pin 28 =
Pin 24 =
Pin 20 =
Pin 9 =
Pin 4 =
Pin 7 =
Pil;ll‘
Pin 18 =
Pin 2 =

Pin $ =

134

EXERCISE: PPU INSTRUCTIONS

REFERENCES: 6600 Reference Manual

PROBLEMS:

4.

5.

The PPU instruction that monitors the progress of the C.P. is?

During a

N

an

63 central write instruction, which register holds

the block length?

During a
a)
b)
c)

N

d)

63 instruction after Trip 3 through the slot
A is checked for being equal to 1

The 73 Instruction is at location 0000

The 73 Instruction location +1 is at 0000

None of the above

During Trip 1 through the slot of A 35 inst.

—2)
b)
c)

d)

During a
a)
~b)
c)

d)

The 6 bit address goes to Q
The 6 bit address goes to P
The 6 bit address goes to K

None of the above

Trip 1 through the slot of A23 inst.

The logical product of Qfd goes to A

F goes to K

Q holds the lower 6 bits of the second operand

Fd holds the second operand

135

6. After Trip 3 through the slot on a 02 inst.
a) P contains the contents of M
~b) K has been advanced twice
c) P contains Q + 1

d) Q contains M + (d)

7. During a 06 instruction, if A is negative
a) P+ d is transferred to P
b) The instruction requires two trips
c) P+ 1 is transferred to P
d) The instruction hangs up

8. During a PPU output instruction (73XX) Memory location
0000, is read when the K count equals

8

a) 73.5

b) 732
- €) 733

d) 734

136

EXERCISE

REFERENCES:

PROBLEMS:

Storage Sequence Control & Memory Cycle

1. 6600 Customer Engineering Diagrams Vol. 1
Pages 14-21

2. Chassis 1 Tabs

1. Each PPU Memory is always referenced each minor cycle.
(True or False)

2, During the restoration cycle in the PPU the correct sequence
15- a) mem—PFd—8Y —8Z —»Men
b) Mem—#Y —Fd—#-Z —PMen
¢) mem—®Fd —Z —p-Y —pMen
d) mem —9Fd—p ¥ —p Men

3. What is read by the PPU from its memory when no storage
reference is required? Q

4, 1If storage 9 is just bringing up read drive
a) Storage 5 will set write immediately
0‘5ﬂ/3¢<—a—
_.b) Storage 5 will set Z 50 Jwew: later ff
¢) Storage 7 has just enabled sense

d) Storage 5 has set Z

5. Processor 6 is gated to rank 6 in the barrel at Time III.
What is the relationship of the remaining processors in the

barrel?

a) 0 d): g)_ D2
b) 1 e). h)

c) 2 £) i) ~

Which ranks are duplicated?

137

6. A PPU executes the following program

0010 = 5012
0011 = 3003
0012 = 0302
0013 = 1407
0014 = 1406
0015 = 0300 T !
TP2 on 120 is a constant 1 output T I

a) What will A equal when the program hangs up?&¢ o .-

b) What will P = when the program hangs up? 2 /

7. 1Is there any time that an instruction that will not effect
a P-GoraQ-G transfer? If there is, which one (s)
and why?

€ o

o r\‘ b) PR A * ./ » "“91\'"

138

EXERCISE

REFERENCES:

PROG L

PROBLEMS:

A,

1.

1.

2.

P, Q & K in the Barrel

6600 Customer Engineering Diagrams

What is the function of the Set K = 340 gate in the PPU?

LT CeT T e
RS P
i -

What is the function of the F-—® K Transfer and at what
time does it occur?

R 15

At the end of an RNI sequence (K = 00X) The contents of K
will always contain the F portion of the next instruction.
(True or False)

Lo ———

139

[;) <, . - e S PR

=

EXERCISE : A & Q ADDERS

REFERENCES: 6600 Customer Engineering Diagrams

)
A\
PROBLEMS : 1. A one output from inverter E of L10 on the & Adder indicates
what condition of the adder? . —
Nt 2000 fe o e S Sy

\ -

2. During the execution of a LDC (20) instruction, the 18
bit final contents of A are formed, using which of the
following gating conditions?

a) +Q—%Bu, Fd—® A, 00— Ba and finally A adder to A
in the barrel.

-~ b) +Q—»Bu, +tF—eB, +d—#B and finally A adder to A
in the barrel.

¢) +Q—»Bu, -F—»B, -d—®B and finally A adder to A
in the barrel.

d) +Q—®Bu, A—9 A, 0O—® Bm and finally A adder to A
in the barrel

140

EXERCISE : SHIFT NETWORK

REFERENCES: 6600 Customer Engineering Diagrams

PROBLEMS

c)

d)

Il

000007. After executing a 1015 shift instruction
070000, A possible cause of this trouble is

16 inverter B is a constant 1
17 -TP3 is a constant 1
16 inverter C is a constant 0O

I7 - TPl is a constant 0

;g‘;,,

141

EXERCISE

REFERENCES:

PROBLEMS:

READ/WRITE PYRAMIDS

6600 Customer Engineering Diagrams

l.

What is the function of pin 20 on module L29 in the central
read control

a)
b)

c)

- d.

e)

Advances K from G12—®G13

Controls the number of words in a block read inst.
Advance the address of the next word from CM
Advance the address of the PPU memory

Blocks a 1 input to Q, to get Q = 0 needed to store the
program count in memory location 0000,

How many processors may share the read pyramid from central
memory at the same time.

yf

142

EXERCISE

REFERENCES:

PROBLEMS:

DATA CHANNEL

6600 Customer Engineering Diagrams

l. When is the first empty signal sent from the data channel
to the I/0 Device on a read operation.

S R e IR ¢

/

143

EXERCISE : DEAD START

REFERENCES: 6600 Reference Manual
Chapter 6

PROBLEMS: 1. During a head start "dump" operation, which of the following
is always true

a) The contents of all the processors are dumped on the disc

b) Processor 0 dumps its core contents onto the 1/0 device
on Channel 0

c) The dead start panel holds a constant empty on channel 0
until its contents are received by the I/0 device.

—d) The program in Processor 0 is executed beginning at address

0001
Figure 1
0 0000
1 1410
2 7307 ‘ ‘
3 0005 g
4 7507
5 0000
6 7707
7 3060
10 7707
11 3020
12 7407
13 7107 -
14 0000.

2, 1If the program in Figure 1 is in the dead start panel, the
maximum record length that can be read from tape 0 into
processor 7 is

_-a) 10000 words
b) 7770 words
c) 7776 words

d) 7777 words

144

a)

b)

c)

d)

Figure 1, address 5 is
A pass instruction is

Processor O must halt
Processor 7

Because the output to
address 0O

Processor 7 must know
memory contents after

.

145

0000 because
required after a disconnect

after transferring data to

Processor 7 must be stored in

where to begin executing its
Processor 0 disconnects it

b

FROM: Name:

Address:

COMMENTS :

COMMENT SHEET

ool LENE~-PRINTER .EQUIPMENT TRAINING MANUAL

Publication Number 011568

(Describe errors, suggested additions or deletions, and include
page numbers, etc.)

47

CONTROL DATA INSTITUTES

3255 Hennebin Avenue So.
MINNEAPOLIS, MINNESOTA
55408

5630 Arbor Vitae Street
LOS*ANGELES, CALIFORNIA
90045

3717 Columbia Pike
ARLINGTON, VIRGINIA
22204

CONTROL DATA

COMPUTER TRAINING SCHOOL
66 West 12th Street

NEW YORK, NEW YORK

1001

60 Hickory Drive

Bear Hill [ndustrial Park
WALTHAM, MASSACHUSETTS
02154

- Exchange Park Garden Mall
DALLAS, TEXAS
75235

23775 Northwestern Highway
SOUTHFIELD, MICHIGAN
48075 '

Bockenheimer Landstr. 10
6000 FRANKFURT /M.
GERMAN FEDERAL REPUBLIC

CONTROL DATA

PR AT N

L e o

	Cover
	Overall Block Diagram
	Chassis layout
	CPU Block Diagram
	Centrral Processor
	CPU Concept Introduction
	CM Address Control
	Stunt Box Diagram
	CM
	Stunt Box Block Diagram
	Exchange Jump
	Data Distributor
	Instruction Control
	Scoreboard
	Conflicts

	6400 CPU Block Diagram
	CM Block Diagram (page out of order)
	PP Instruction Flow Charts
	Instruction Flow 00-02
	Instruction Flow 10-17
	Instruction Flow 20-23
	Instruction Flow 24-27
	Instruction Flow 30-37
	Instruction Flow 40-47
	Instruction Flow 50-57
	Instruction Flows 60, 61, 62, 63
	Instruction Flow 64-67
	Instruction Flows 70, 71, 72, 73
	Instruction Flow 74-77

	Peripheral and Control Processors
	Introduction
	Overall Block Diagram
	Equation Lists
	PP Detail Block Diagram (timing)
	Master Clock (serial 1-7)
	Master Clock (serial 8-up)
	Barrel A, P, Q registers
	Barrel K register
	Slot
	Barrel Timings
	Barrel Map (chassis)
	Storage Sequence Control
	Memory Cycle Path
	K register
	P Register
	A Adder Block Diagram
	B Gates
	Q Adder Block diagram
	H Gates
	Shift Network

	CM ands CPU communication
	Central Read
	Central Write

	Input/Output
	PP Dead Start

	Student Exercises
	Comment Sheet

