CONTROL DATA

CONTROL DATA®
6000 COMPUTER SYSTEMS

ALGOL 60 REFERENCE MANUAL
VERSION 3

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION
A Original printing.
7 (61871)
B Addition of Object-Time Diagnostics. Pages affected are: 8-16 thru 8-19. Comment Sheet.
(11-22-71)
C Addition of new diagnostics and new Appendix D, “Interactive ALGOL under INTERCOM”, minor
(6-28-72) corrections included. Pages affected: iii, vii; 1-1, 1-2; 2-11; 342; 4-7; 6-1, 6-2; 8-14, 816 thru 8-20; 14-1
A-1 thru A-S; C-1; D-1 thru D-4; Index 1 thru 9; Comment Sheet.
D Technical corrections and to note use under SCOPE 3.4 and KRONOS 2.1. Pages affected: iii, v, ix;
(10-05-73) 1-3; 217, 2-33; 3-1, 3-38, 3-39, 345; 4-3, 44; 5-1; 6-1; 7-1, 74; 8-14; 9-2, 9-6; 10-1; 13-1; 15-3; A-1,

A-2, A-5, A-6; D-1, D-9; Comment sheet

Publication No.
60329000

Additional copies of this manual may be Address comments concerning

obtained from the nearest Control Data this manual to:

Corporation sales office.
CONTROL DATA CORPORATION

Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

971, 1972, 1973 .
Colntrol Dazta %orporation or use Comment Sheet in the

Printed in the United States of America back of this manual

PREFACE

This manual describes the ALGOL-60 language (Version 3) for the CONTROL DATA® CYBER
70/Models 72, 73, T4 or 6000 Series computers. It is assumed that the reader has knowledge of
an existing ALGOL language and the CONTROL DATA 6000 Series computer systems.

ALGOL Version 3.1 operates under control of the SCOPE 3.3 or SCOPE 3.4 operating systems.
Interactive compilation and execution is provided under INTERCOM for SCOPE users.

ALGOL Version 3.0 operates under KRONOS® 2.1.

Related manuals in which the ALGOL user may find additional information are:

Publication No.

SCOPE 3.3 Users Guide 60252700
SCOPE 3.3 Reference Manual 60305200
SCOPE 3.4 Reference Manual 60307200
LOADER Reference Manual 60344200
INTERCOM 3 Reference Manual 60258000
INTERCOM 4 Reference Manual 60307100
KRONOS 2.1 Reference Manual 60407000

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or undefined parameters.

60329000 D

CONTENTS

CHAPTER 1

CHAPTER 2

60329000 D

INTRODUCTION

ALGOL SYSTEM DESCRIPTION

1.1 Compiler Features
Compiler Package
Compiler Structure
Library Subprograms
Operating System Interface
Machine Configuration

O e e e
oG W N

LANGUAGE COMPARISON WITH THE ALGOL-60 REVISED REPORT

2.1 Language Conventions
Revised Report on the Algorithmic Language ALGOL-60
Introduction

1. Structure of the Language
1.1 Formalism for Syntactic Description
2. Basic Symbols, Identifiers, Numbers, and
Strings Basic Concepts
.1 Letters
Digits
Delimiters
Identifiers
Numbers
Strings
Quantities, Kinds and Scopes
Values and Types
ressions
Variables
Function Designators
Arithmetic Expressions
.4 Boolean Expressions
3.5 Designational Expressions
4. Statements
Compound Statements and Blocks
Assignment Statements
Go To Statements
Dummy Statements
Conditional Statements
For Statements
Procedure Statements

NN DNDNNDDNDN
W =10 Ul W

3. Ex

o]

ww w W
PR S

o N ok a
QOGN

DN NN NNDNDNDNNDN
]

I
-
w

)
el o
[3 I

2-17
2-22
2-24
2-25
2-25
2-27
2-28
2-29
2-29
2-31
2-33

CHAPTER 3

CHAPTER 4

vi

5. Declarations
5.1 Type Declarations
5.2 Array Declarations
5.3 Switch Declarations
5.4 Procedure Declarations

Examples of Procedure Declarations

Alphapetic Index of Definitions of Concepts and

Syntactic Units

INPUT-OUTPUT

3.1 Comparison with ACM Proposal for Input-Output
A Proposal for Input-Output Conventions in ALGOL-60

A. Formats

Al

Sl ds
G W N

BEEEEEDE
PR N T R !

7

Numbered Formats

Other Formats

Format Strings

Summary of Format Codes
""Standard' Format

t and Output Procedures

General Characteristics
Horizontal and Vertical Control
Layout Procedures

List Procedures

Input and Output Calls

Control Procedures

Other Procedures

C. Example
D. Machine-dependent Portions

End-of-File
End-of-Tape

O W W W W WL wWwWw

2 Additional Input-Output Procedures
3 Control Procedures

4 Hardware Function Procedures

5 Miscellaneous Procedures

.6 Input-Output Errors
7

8
.9

.1

ECS Procedures
0 Interactive Procedures

INPUT TO COMPILATION

B
(2B B

Source Deck

1 Source Program Definition
Source Procedure Definition
Source Input Restrictions
Language Conventions

Card Conventions

2-36
2-36
2-38
2-39
2-40

2-46

60329000 C

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

60329000 C

OUTPUTS FROM COMPILATION

5.1 Binary Output
5.2 Assembly-Language Object Code
5.3 Source Listing

ALGOL CONTROL CARD

6.1 Input~Output Options
6.2 Compilation and Execution Speed

CHANNEL CARDS

Channel Define Card

Channel Equate Card

Channel End Card

Duplication of Channel Numbers
Duplication of File Names
Standard ALGOL Channel Cards
Typical Channel Cards

R IR IS IR X]
S I N

LGOL DIAGNOSTICS

A
8.1 Compiler Diagnostics -

8.2 Compile-Time and Object-Time I/O Diagnostics
8.3 Object-Time Diagnostics

COMPILER DESCRIPTION

Information Flow

Language Translation

Language Analysis

Identifier (Symbol) Table

Compiler Subprogram Descriptions
Overall Compiler Flow

wowoow
S G W N

OBJECT PROGRAM

10.1 Run-Time Supervisory Program
10.2 Object-Code Structure

10.3 Object-Code Generation

10.4 Library Subprograms

10.5 Address-Field Conventions

OBJECT-TIME STACK

11.1 Stack Structure
11.2 Stack Entries
11.3 Details of Descriptions

5-1
5-1
5-3
5-4

9-5

10-1

10-1
10-1
10-1
10-2
10-2

11-1

11-1
11-4
11-6

vii

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

APPENDIX A

APPENDIX B

APPENDIX C

APPENDKX D

APPENDKX E

INDEX

viii

OBJECT-TIME ABNORMAL TERMINATION DUMP

12.1 Structured Dump
12.2 Global and Environmental Information

EXECUTION TIME OPTIONS

13.1 Stack Statistics (S)

13.2 Debugging Output (D and C)

13.3 Abnormal Termination Dump Formats (E)
13.4 Examples

DEBUGGING FACILITIES

14.1 General

14.2 Debugging Directives

14.3 Trace Directive

14.4 Snap Directive

14.5 Off Directive

14.6 Debugging Output

14.7 Label Monitoring

14.8 Procedure Monitoring

14.9 Simple Variable Monitoring

14.10 Array and Subscripted Variable Monitoring

ALGOL MACROS

15.1 Interface Macros

15.2 Entry-Exit Macros

15.3 Specification Macros
15.4 Formal Handling Macros

STANDARD SCOPE CHARACTER SETS AND
ALGOL CHARACTER SETS

SAMPLE PROGRAM
CHARACTER REPRESENTATION OF ALGOL SYMBOLS
INTERACTIVE ALGOL UNDER INTERCOM

M OPTION STORAGE ALLOCATION

12-1

12-1
12-1

13-2
13-2
13-2
13-3

14-1

14-1
14-1
14-2
14-3
14-3
14-5
14-5
14-6
14-6
14-8

15-1

15-1
15-2
15-4
15-6

Index-1

60329000 C

INTRODUCTION

This reference manual presents the rules and details involved in writing a program in the ALGOL
language; it includes sufficient information to prepare, compile, and execute such a program.

Control Data ALGOL closely conforms to the definition of the international algorithmic language
ALGOL published in The Communications of the ACM, 1963, vol. 6 no. 1, pp. 1-17; "The Revised
Report on the Algorithmic Language, ALGOL-60", and the input-output procedures provided as
additions to the language in "A Proposal for Input-Output Conventions in ALGOL-60" published

in The Communications of the ACM, vol. 7 no. 5, May 1964.

Control Data's input-output procedures incorporate many of the features recommended by the
International Organization for Standardization in its Draft Proposal on the Algorithmic Language
ALGOL, Appendix C "Proposal for Input-Output Procedures for ALGOL-60 (ACM)".

The ALGOL-60 Revised Report is presented in its entirety, and wherever Control Data's imple-
mentation of the language differs from the Report a full explanation of the differences are listed for
all systems. The ALGOL-60 Revised Report is printed in bold type, and the explanation of the
differences are in standard type. The name ALGOL means this implementation of ALGOL, unless

otherwise specified.

The reader is referred to the following representative bibliography:

Baumann, R., Feliciano, M., Bauer, F.L., Samelson, K. Introduction to ALGOL,
Prentice-Hall, Inc., 1964.

Dijkstra, E.W., A Primer of ALGOL-60 Programming, Academic Press, 1962.

Ekman, T., and Froberg, C.E.: Introduction to ALGOL Programming,
Oxford University Press, 1965.

McCracken, Daniel D., A guide to ALGOL Programming, John Wiley & Sons, Inc., 1962.

60329000 D ' ix

ALGOL SYSTEM DESCRIPTION 1

1.1 COMPILER FEATURES

The ALGOL compiler for the 6000 Series computers is based in design on the ALGOL compiler
developed by Regnecentralen, Copenhagen, Denmark, for the GIER computer. This design was
adopted and, to some degree, extended by CONTROL DATA to provide the most generally advan-
tageous features for an ALGOL compiler.

These feafures include:
Implementation of the complete ALGOL-60 revised language (wherever feasible and not in
conflict with other advantages)
Comprehensive input-output procedures
Extensive compile-time and object-time diagnostics
Fast compilation
Wide variety of compilation options, such as the ability to compile both ALGOL programs and
ALGOL procedures
Ability to generate and execute the object program in either segmented or non-segmented form
Interactive compilation option for use with INTERCOM (see appendix D)
Execution Breakpoint facility when executing under INTERCOM

MEMORY USAGE

The compiler attempts to compile every source text entirely within available memory with no refer-
ence to input-output devices. All intermediate information between the passes of the compiler is

first stored in the compiler work areas. If the work areas are too small to contain all the intermediate
information, the information is written onto scratch units and read back in by the next pass.

SOURCE INPUT

Source input is normally the card deck following the control card which calls for the ALGOL com-
piler. The source may also be specified from a different device by a control card option. Source
input can consist of both ALGOL source programs and ALGOL source procedures. More than one
source program and/or source procedure may be compiled with a single call.

60329000 C 1-1

COMPILE-TIME ERROR DETECTION

The compiler detects all source language infringements, and prints a diagnostic for each. The
compiler also incorporates further checking into the object program to detect program errors which
can be found only at execution time. All compilations proceed to the end of the source deck with
normal error checking regardless of the occurrence of a source language error; but object code
generation is suppressed if any errors are detected during compilation.

For the INTERCOM user this facility is combined with the normal editing facilites to provide
line-by-line syntax checking. See Appendix D for more details.

COMPILER OUTPUTS
Compiler output is normally printed on the standard system output file. Output also may be requested

on a different device with a control card option. The programmer may request the object code in
segmented or non-segmented form.

OBJECT PROGRAM EXECUTION
In segmented form, a program can be loaded as part of the same compilation or later by the last
pass of the compiler. In non-segmented form, a program is in standard relocatable binary format

which can be loaded either in the same compilation or later by the system loader.

Execution of the object program, segmented or non-segmented, is controlled by a supervisory
program external to the generated program.

The INTERCOM user can use the H option and get control at selected breakpoints to interactively
monitor the execution of the program. See Appendix D.

OBJECT ERROR DETECTION
The object program includes code which detects errors not detected during compilation. Any

error message is issued, a data map is printed, and the run is terminated. The data map
displays current values of declared variables in a form easily related to the source program.

1.2 COMPILER PACKAGE

Many ALGOL subroutines are present in addition to those described below. For a complete
list of all those included in the system library consult the installation handbook.

1.3 COMPILER STRUCTURE

ALGOL is the internal controller of the compiler and its main function is to load and pass control to
each subpregram as required.

ALGO processes the control card options delivered by the operating system.

1-2 60329000 C

ALG1 through ALG5 each form one pass of the compiler. Each subprogram overlays the previous
one in a separate core-load. Each pass generates an intermediate form of the source text which
is used as input to the next pass.

ALG1, ALG2, and ALG3 perform syntactic and semantic analysis of the source text.

ALG4 produces final output from the compiler, such as the object code in segmented or
non-segmented form.

ALGS5, although nominally part of the compiler, takes no part in the actual translation process;
its only function is to control execution of the object program in segmented form.

1.4 LIBRARY SUBPROGRAMS

The library subprograms contain all standard procedures which can be called without prior declara-
tion in an ALGOL source text. They also contain subprograms to perform object-time control
functions external to the generated object program.

1.5 OPERATING SYSTEM INTERFACE

The compiler is designed to run under control of the SCOPE or KRONOS operating systems.
Compilation is requested by a control card specifying the name ALGOL. This call results in the
loading and execution of the subprogram ALGOL which controls the compilation process.

1.6 MACHINE CONFIGURATION

The basic machine configuration required for compilation consists of the minimum configuration
required by SCOPE. In addition, when the source program generates more intermediate informa-
tion than can be held in available memory, the compiler uses two scratch files to store this
information.

The minimum number of words of available memory required by the compiler and its working areas
is approximately 13K. With the minimum available memory, programs of a reasonable size can be |
compiled with no intermediate input-output. Additional available memory will permit compilation of
larger programs entirely within memory.

60329000 D) 1-3

LANGUAGE COMPARISON WITH THE
ALGOL-60 REVISED REPORT -2

2.1 LANGUAGE CONVENTIONS

In this manual, ALGOL is described in terms of three languages: reference, hardware, and
publication language, as indicated in the introduction to the ALGOL-60 Revised Report.

The reference language is computer independent and uses the basic ALGOL symbols, such as begin
and end, to define the language syntax and semantics.

The hardware language is the representation of ALGOL symbols in characters acceptable to the
computer; this is the language used by the programmer. For example, when the reference language
calls for the basic ALGOL symbol begin, the programmer writes the seven hardware characters
'BEGIN'. The hardware representations of ALGOL symbols are shown in Table 1, Chapter 4.

Unless otherwise stated or implied, the basic ALGOL symbols (reference language) rather than their
character equivalents (hardware language) are used consistently throughout this manual. This con-
vention simplifies the explicit and implicit references to the ALGOL language as defined in the
ALGOL-60 Revised Report.

For publication purposes only, the underlining convention delineates the basic ALGOL symbols.
These symbols have no relation to the individual letters of which they are composed. Other than
this convention, the publication language is not considered in this manual.

All descriptions of language modifications are made at the main reference in the Report; when
feasible, language modifications are also noted at other points of reference. The reader should
assume that modifications apply to all references to the features, noted or otherwise. If no comments
appear at the main reference in the Report regarding language modifications to a particular section

or feature, it is implemented in full accordance with the Report.)

In addition to the language descriptions in this chapter, reserved identifiers which reference input-
output procedure are described in Chapter 3.

The ALGOL-60 Revised Report as published in The Communications of the ACM, vol. 6, no. 1,
pp 1-17 follows. Wherever CONTROL DATA's implementation of the language differs from the
Report, the Report is printed first in boldface and the CONTROL DATA modification follows in
standard type.

60329000 A ' 2-1

REVISED REPORT ON THE ALGORITHMIC LANGUAGE ALGOL-607

Peter Naur (Editor)

J.W.Backus C. Katz H. Rutishauser J. H. Wegstein
F. L. Bauer J. McCarthy K. Samelson A. van Wijngaarden
J. Green A. J. Perlis B. Vauquois M. Woodger

Dedicated to the memory of William Turanski.

SUMMARY

The report gives a complete defining description of the international algorithmic language ALGOL-60. This is a language
suitable for expressing a large class of numerical processes in a form sufficiently concise for direct automatic translation
into the language of programmed automatic computers.

The introduction contains an account of the preparatory work leading up to the final conference, where the language was
defined. In addition, the notions, reference language, publication language and hardware representations are explained.

In the first chapter, a survey of the basic constituents and features of the language is given, and the formal notation, by
which the syntatic structure is defined, is explained.

The second chapter lists all the basic symbols, and the syntatic units known as identifiers, numbers and strings are de-
fined. Further, some important notions such as quantity and value are defined.

The third chapter explains the rules for forming expressions and the meaning of these expressions. Three different types
of expressions exist: arithmetic, Boolean (logical) and designational.

The fourth chapter describes the operational units of the language, known as statements. The basic statements are:
assignment statements (evaluation of a formula), go to statements (explicit break of the sequence of execution of state-
ments), dummy statements, and procedure statements {call for execution of a closed process, defined by a procedure
declaration). The formation of more complex structures, having statement character, is explained. These include: con-
ditional statements, for statements, compound statements, and blocks.

In the fifth chapter, the units known as declarations, serving for defining permanent properties of the units entering
into a process described in the language, are defined.

The report ends with two detailed examples of the use of the language and an alphabetic index of definitions.

tThis report is published in The Communications of the ACM, in Numerische Mathematik, and in the
Computer Journal.

2.2 60329000 A

CONTENTS

Introduction
1. Structure of the Language
1.1 Formalism for syntatic description

2. Basic Symbols, Identifiers, Numbers, and Strings
Basic Concepts

2.1 Letters
2.2 Digits. Logical values
2.3 Delimiters
2.4 Identifiers
2.5 Numbers
2.6 Strings
2.7 Quantities, kinds and scopes
2.8 Values and types
3. Expressions
3.1 Variables
3.2 Function designators
3.3 Arithmetic expressions
3.4 Boolean expressions
3.5 Designational expressions
4. Statements
4.1 Compound statements and blocks
4.2 Assignment statements
4.3 Go to statements
4.4 Dummy statements
4.5 Conditional statements
4.6 For statements
4.7 Procedure statements

5. Declarations

5.1 Type declarations

5.2 Array declarations
5.3 Switch declarations
5.4 Procedure declarations

Examples of Procedure Declarations
Alphabetic Index of Definitions of Concepts and Syntatic Units

60329000 A

INTRODUCTION

Background

After the publication of a preliminary report on the algorithmic language ALGOL*, as prepared at a conference in Zurich
in 1958, much interest in the ALGOL language developed.

As a result of an informal meeting held at Mainz in November 1958, about forty interested persons from several Euro-
pean countries held an ALGOL implementation conference in Copenhagen in February 1959. A “hardware group” was
formed for working cooperatively right down to the.level of the paper tape code. This conference also led to the publi-
cation by Regnecentralen, Copenhagen, of an ALGOL Bulletin, edited by Peter Naur, which served as a forum for further
discussion. During the June 1959 ICIP Conference in Paris several meetings, both formal and informal ones, were held.
These meetings revealed some misunderstandings as to the intent of the group which was primarily responsible for the
formulation of the language, but at the same time made it clear that there exists a wide appreciation of the effort in-
volved. As a result of the discussions it was decided to hold an international meeting in January 1960 for improving the
ALGOL language and preparing a final report. At a European ALGOL Conference in Paris in November 1959 which was
attended by about fifty people, seven European representatives were selected to attend the January 1960 Conference,
and they represented the following organizations: Association Francaise de Calcul, British Computer Society, Gesellschaft
fur Angewandte Mathematik und Mechanik, and Nederlands Rekenmachine Gennotschap. The seven representatives

held a final preparatory meeting at Mainz in December 1959.

Meanwhile, in the United States, anyone who wished to suggest changes or corrections to ALGOL was requested to send
his comments to the Communications of the ACM, where they were published. These comments then became the basis
of consideration for changes in the ALGOL language. Both the SHARE and USE organizations established ALGOL work-
ing groups, and both organizations were represented on the ACM Committee on Programming Languages. The ACM
Committee met in Washington in November 1959 and considered all comments on ALGOL that had been sent to the
ACM Communications. Also, seven representatives were selected to attend the January 1960 international conference.
These seven representatives held a final preparatory meeting in Boston in December 1959.

January 1960 Conference

The thirteen representatives, from Denmark, England, France, Germany, Holland, Switzerland, and the United States,
conferred in Paris from January 11 to 16, 1960. Prior to this meeting a completely new draft report was worked out
from the preliminary report and the recommendations of the preparatory meetings by Peter Naur and the conference
adopted this new form as the basis for its report. The Conference then proceeded to work for agreement on each item of
the report. The present report represents the union of the Committee’s concepts and the intersection of its agreements.

April 1962 Conference (Edited by M. Woodger)

A meeting of some of the authors of ALGOL-60 was held on April 2-3 1962 in Rome, ltaly, through the facilities and
courtesy of the International Computation Centre.

t Preliminary report — International Algebraic Language. Comm ACM1, 12 (1958), 8.
Report on the Algorithmic Language ALGOL by the ACM Committee on Programming Languages,
edited by A.J. Perlis and K. Samelson. Num, Math. 1 (1959), 41-60.

2-4 60329000 A

The following were present:

Authors Advisers Observer

F. L. Bauer M. Paul W. L. van der Poel (Chairman IFIP TC 2.1 Working
J. Green R. Franciotti Group ALGOL)
C. Katz P. Z. Ingerman
R. Kogon

(representing J. W. Backus)
P. Naur
K. Samelson G. Seegmuller
J. H. Wegstein R. E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known errors in, attempt to eliminate apparent ambiguities in, and otherwise
clarify the ALGOL-60 Report. Extensions to the language were not considered at the meeting. Various proposals for
correction and clarification that were submitted by interested parties in response to the Questionnaire in ALGOL Bul-
letin No. 14 were used as a guide.

(This report constitutes a supplement to the ALGOL-60 Report which should resolve a number of difficulties therein).
Not all of the questions raised concerning the original report could be resolved. Rather than risk hastily drawn conclu-
sions on a number of subtle points, which might create new ambiguities, the committee decided to report only those
points which they unanimously felt could be stated in clear and unambiguous fashion.

Questions concerned with the following areas are left for further consideration by Working Group 2.1 of IFIP, in the
expectation that current work on advanced programming languages will lead to better resolution:

1. Side effects of functions

2. The call by name concept

3. own: static or dynamic

4. For statement: static or dynamic

5. Conflict between specification and declaration

The authors of the ALGOL Report present at the Rome Conference, being aware of the formation of a Working Group
on ALGOL by IFIP, accepted that any collective responsibility which they might have with respect to the development,

specification and refinement of the ALGOL language will from now on be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming Languages in August 1962 and has been approved by the
Council of the International Federation for Information Processing.

As with the preliminary ALGOL report, three different levels of language are recognized, namely a Reference Language,
a Publication Language and several Hardware Representations.

REFERENCE LANGUAGE
1. It is the working language of the committee.

2. ltis the defining language.

60329000 A

3. The characters are determined by ease of mutual understanding and not by any computer limitations, coders
notation, or pure mathematical notation.

4. Itis the basic reference and guide for compiler builders.
5. It is the guide for all hardware representations.
6. It is the guide for transliterating from publication language to any locally appropriate hardware representations.

7. The main publications of the ALGOL language itself will use the reference representation.

PUBLICATION LANGUAGE

1. The publication language admits variations of the reference language according to usage of printing and handwrit-
ing (e.g., subscripts, spaces, exponents, Greek letters).

2. It is used for stating and communicating processes.

3. The characters to be used may be different in different countries but univocal correspondence with reference rep-
resentation must be secured.

HARDWARE REPRESENTATIONS

1. Each one of these is a condensation of the reference language enforced by the limited number of characters on
standard input equipment.

2. Each one of these uses the character set of a particular computer and is the language accepted by a translator for
that computer.

3. Each one of these must be accompanied by a special set of rules for transliterating from Publication or Reference
tanguage.

For transliteration between the reference language, and a language suitable for publications, among others, the following
rules are recommended.

Reference Language Publication Language

Subscript bracket [] Lowering of the line between the brackets and removal of the brackets
Exponentiation *t Raising of the exponent

Parentheses () Any form of parentheses, brackets, braces

Basis of ten 10 Raising of the ten and of the following integral number, inserting of the intended

multiplication sign.

2-6 60329000 A

DESCRIPTION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language has three different kinds of representations—reference, hardware,
and publication—and the development described in the sequel is’in terms of the reference representation. This means
that all objects defined within the language are represented by a given set of symbols—and it is only in the choice of
symbols that the other two representations may differ. Structure and content must be the same for all representations.

The purpose of the algorithmic language is to describe computational processes. The basic concept used for the descrip-
tion of calculating rules is the well-known arithimetic expression containing as constituents numbers, variables, and
functions. From such expressions are compounded, by applying rules of arithmetic composition, self-contained units of
the language—explicit formulae—called assignment statements.

To show the flow of computational processes, certain nonarithmetic statements and statement clauses are added which
may describe, e.g., alternatives, or iterative repetitions of computing statements. Since it is necessary for the function of
these statements that one statement refer to another, statements may be provided with labeis. A sequence of statements
may be enclosed between the statement brackets begin and end to form a compound statement.

Statements are supported by declarations which are not themselves computing instructions but inform the translator of
the existence and certain properties of objects appearing in statements, such as the class of numbers taken on as values
by a variable, the dimension of an array of numbers, or even the set of rules defining a function. A sequence of declara-
tions followed by a sequence of statements and enclosed between begin and end constitutes a block. Every declaration
appears in a block in this way and is valid only for that block.

A program is a block or compound statement which is not contained within another statement and which makes no use
of other statements not contained within it.

In the sequel the syntax and semantics of the language will be given I

1.1 Formalism for Syntactic Description

The syntax will be described with the aid of metalinguistic formulae.i Their interpretation is best explained by an
example

<ab>:i=(l[I<ab>(I<ab><d>

Sequences of characters enclosed in the brackets <> represent metalinguistic variables whose values are sequences of
symbols. The mark ::= and | (the latter with the meaning of or) are metalinguistic connectives. Any mark in a formula,
which is not a variable or a connective, denotes itself (or the class of marks which are similar to it). Juxtaposition of
marks and/or variables in a formula signifies juxtaposition of the sequences denoted. Thus the formula above gives a

a recursive rule for the formation of values of the variable < ab >. It indicates that < ab > may have the value {or[or

tWhenever the precision of arithmetic.is stated as being in general not specified, or the outcome of a certain process is
left undefined, or said to be undefined, this is to be interpreted in the sense that a program only fully defines a com-
putational process if the accompanying information specifies the precision assumed, the kind of arithmetic assumed,
and the course of action to be taken in all such cases as may occur during the execution of the computation.

1Cf. J. W. Backus, The syntax and semantics of the proposed international algebraic language of the Zurich ACM-
GAMM conference. Proc. Internat. Conf. Inf. Proc., UNESCO, Paris, June 1959.

60329000 A 2-7

that given some legitimate value of < ab >, another may be formed by following it with the character { or by following
it with some value of the variable < d >. If the values of < d > are the decimal digits, some values of < ab > are:

[(37(
(12345(
(!

[86

In order to facilitate the study, the symbols used for distinguishing the metalinguistic variables (i.e., the sequences of
characters appearing within the brackets < > as ab in the above example) have been chosen to be words describing
approximately the nature of the corresponding variable. Where words which have appeared in this manner are used
elsewhere in the text they will refer to the corresponding syntactic definition. In addition some formulae have been
given in more than one place.
Definition:
< empty > =
(i.e. the null string of symbols).

2. Basic Symbols, Identifiers, Numbers, and Strings, Basic Concepts.

The reference language is built up from the following basic symbols:
< basic symbol > ::= < letter >| < digit >| < logical value >| < delimiter >

2.1 Letters

<letter > =alblcidle!flglhliljlklliminlolpiqirisitiulviwixiylz
AIBICIDIEIFIGIHIINIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
This alphabet may arbitrarily be restricted, or extended with any other distinctive character (i.e., character not coinciding

with any digit, logical value or delimiter). Letters do not have individual meaning. They are used for forming identifiers
and stringst (Cf. sections 2.4 Identifiers, 2.6 Strings).

2.1 Letters

Since there is hardware representation for upper case letters only, lower case letters have no meaning.

2.2.1 Digits
<digit>:=011121314/516171819

Digits are used for forming numbers, identifiers, and strings.

1t should be particularly noted that throughout the reference language underlining is used for defining independen'_t
basic symbols (see sections 2.2.2 and 2.3). These are understood to have no relation to the individual letters of which
they are composed. Within the present report (not including headings) underlining will be used for no other purpose.

2.8 60329000 A

2.2.2 Logical Values

< logical value > ::= w.lﬁ

The logical values have a fixed obvious meaning.

2.3 Delimiters

< delimiter > ::= < operator >| < §eparamr >| < bracket >| < declarator >| < specificator >

< operator > .= < arithmetic operator >| < relational operator >| < logical operator >|
< saquential operator >

< arithmetic operator > ::= +| —| X| /| +{ 1

< relational operator > = <| <| =[=| >| #

< logical operator > ::==| DIVIAI,

< separator > = ,| .| 10} :];l :=|.._.1st-;p|&till_vy_l_1i_lgl comment

< bracket > ::= {|)| [i]1*]*] begin| end

< specificator > ::= string| label | value

Delimiters have a fixed meaning which for the most part is obvious or else will be given at the appropriate place in the
sequel.

Typographical features such as blank space or change to a new line have no significance in the reference language. They
may, however, be used freely for facilitating reading. For the purpose of including text among the symbols of a program
the following “‘comment” conventions hold: .

The sequence of basic symbols: is equivalent to:

: comment < any sequence not containing; > ; :
begin comment < any sequence not containing; > ; begin

end

end < any sequence not containing end or ; or else >

By equivalence is here meant that any of the three structures shown in the left hand column may be replaced, in any
occurrence outside of strings, by the symbol shown on the same line in the right-hand column without any effect on the
action of the program. It is further understood that the comment structure encountered first in the text when reading
from left to right has precedence in being replaced over later structures contained in the sequence.

T@ is used in for statements. It has no relation whatsoever to the do of the preliminary report, which is not included
in ALGOL-60.

60329000 A 2-9

2.3 Delimiters

The symbol code, defined below, is added to the language to permit reference to separately compiled
procedures (Section 5.4.6).

<code procedure body indicator>: : =code

2.4 Identifiers

24.1 Syntax

< identifier > ::= < letter >| < identifier > < letter >| < identifier > < digit >

2.4.2 Examples

q
Soup
V 17a
a34kTM Ns
MARILYN

2.4.3 Semantics

Identifiers have no inherent meaning, but serve for the identification of simple variables, arrays, labels, switches, and
procedures. They may be chosen freely (cf., however, section 3.2.4 Standard Functions).

The same identifier cannot be used to denote two different quantities except when these quantities have disjoint scopes
as defined by the declarations of the program (cf., section 2.7. Quantities, Kinds and Scopes, and section 5. Declarations).

2.4.3 Semantics

The maximum size of an identifier is 256 hardware characters. If a longer identifier is specified, only
the first 256 characters are used.

The maximum number of identifiers which can be handled by the compiler without causing identifier
table overflow depends on the identifier sizes and the amount of memory available to the compiler.

The compiler itself can handle up to 3583 unique identifiers. Identifier table overflow generally occurs
before this number is reached.

2.5 Numbers
25.1 Syntax

< unsigned integer > :: = < digit >| < unsigned integer > < digit >
< integer > :: = < unsigned integer >| + < unsigned integer >|

- < unsigned integer >

2-10 60329000 A

< decimal fraction > :.=. < unsigned integer >

< exponent part > ::= 10 < integer >

< decimal number > :: = < unsigned integer >| < decimal fraction >|
< unsigned integer > < decimal fraction >

< unsigned number > :: = < decimal number >| < exponent part >|
< decimal number > < exponent part >

< pnumber > :: = < unsigned number >| + <unsigned number > |

- < unsigned number >

25.2 Examples
0 -200.084 -.08310 02
177 +07.43108 -107
5384 9.3410+10 10-4
+0.7300 210-4 +10+5

2.5.3 Semantics

Decimal numbers have their conventional meaning. The exponent part is a scale factor expressed as an integral power of 10.

2.5.3 Semantics
A number has the format

d1d2' . dj'dj+1dj+2’ 'dnloiel’ez' e

where the decimal point and the exponent field may or may not be explicit. If the decimal point is not
explicit, it is assumed to follow the digit d_ (j=n). If the exponent field is not explicit, zero value is

assumed. If the sign of the exponent field 1s not explicit, a positive exponent is assumed. Thus, all

numbers are considered to have the same format and are treated identically.

If the magnitude of the exponent field exceeds 9999, the diagnostic NUMBER SIZE is issued.

A number is modified in three steps before it is converted to its final internal representation
(Section 5.1.3).

1. All leading zeros are eliminated, including any following the decimal point.

2. Beginning with the first non-zero digit, the digits following the fourteenth are discarded. The
number of digits discarded is added to the value of the exponent field.

3. The effect of the decimal point is incorporated by subtracting n-j (number of digits to the right of
the point) from the value of the exponent field.

60329000 A , 2-11

These three modifications effectively produce a number of the form did'+1' .. dk e where d, is the first
non-zero digit in the original number. If no non-zero digit is found, the numbér is given tllle internal
value 0. di+1‘di+2’ etc., are the digits (zero or non-zero) immediately following di in the original
number.

The last significant digit, dk, is dn if n<i+l3 or is di+13'
The resultant exponent field value, e, is given by:

e=ee,...e - (n—j) + max (0,n - (i+13).

If e is greater than the maximum allowed decimal exponent, the diagnostic NUMBER SIZE is issued.
If e is smaller than the minimum allowed decimal exponent, the number is given the internal value 0.

254 Types

Integers are of type integer. All other numbers are of type real (cf, section 5.1. Type Declarations).
2.5.4 Types

During compilation, nuymbers are flagged as type real or integer, according to the following rules:
Any number with an explicit decimal point and/or an explicit exponent part is flagged real.

All other numbers are flagged integer.

real and integer numbers are represented internally in the same form as real and integer variables
(Section 5.1.3).

During object code generation, the type and value of a number may be changed depending on the opera-
tion and type of operand with which it is associated in the source program (Sections 3.3.4 and 4.3.4).

2.6 Strings
2.6.1 Syntax
< proper string >::=< any sequence of basic symbols not containing ‘ or '>|< empty >
< open string >::=< proper string >|‘<open string >’|
< open string > < open string >
< string >::= ‘< open string >’
2.6.2 Examples

5k, ~[[['A=/>Tt”
‘.. ThisLiis L a Li‘string”

2-12 60329000 A

2.6.1 Syntax
A proper string is defined as follows:

<proper string>:: =<empty> | <any sequence of basic 6-bit display BCD characters not
containing the symbols * or ’ or the character associated

with external BCD 008>

2.6.3 Semantics

In order to enable the language to handle arbitrary sequences of basic symbols the string quotes * and ’ are introduced.
The symbol LI denotes a space. It has no significance outside strings.

Strings are used as actual parameters of procedures (cf. sections 3.2. Function Designators and 4.7. Procedure Statements).
2.6.3 Semantics

The string quote symbols ‘and * are introduced to enable the language to handle arbitrary sequences

of basic characters (not basic symbols, as defined in the Report). These symbols are represented by

the three-character sequences '(' and ")'. (Table 1, Chapter 4).

2.7 Quantities, Kinds and Scopes

The following kinds of quantities are distinguished: simple variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and expressions in which the declaration of the identifier associated with
that quantity is valid. For labels see section 4.1.3.

2.8 Values and Types

A value is an ordered set of numbers (special case: a single number), an ordered set of logical values (special case: a
single logical value), or a label.

Certain of the syntactic units are said to possess values. These values will in general change during the execution of the
program. The values of expressions and their constituents are defined in section 3. The value of an array identifier is the
ordered set of values of the corresponding array of subscripted variables (cf, section 3.1.4.1). .

The various “types” (integer, real, Boolean) basically denote properties of values. The types associated with syntactic
units refer to the values of these units.

3. Expressions

In the language the primary constituents of the programs describing algorithmic processes are arithmetic, Boolean, and
designational expressions. Constituents of these expressions, except for certain delimiters, are logical values, numbers,
variables, function designators, and elementary arithmetic, relational, logical, and sequential operators. Since the syn-
tactic definition of both variables and function designators contains expressions, the definition of expressions, and their
constituents, is necessarily recursive. .

< expression > :: = < arithmetic expression >| < Boolean expression >| < designational expression >

60329000 A) 2-13

3.1 Variables

3.1.1 Syntax
< variable identifier > :: = < identifier >

< simple variable > .. = < variable identifier >

< subscript expression > .. = < arithmetic expression >

< subscript list > :: = < subscript expression >| < subscript list > , < subscript expression >
< array identifier > :: = < identifier >

< subscripted variable > ::= < array identifier > [< subscript list >]

< variable > :: = < simple variable >| < subscripted variable >

3.1.2 Examples

epsilon

detA

al7

Q (7,2}

x [sin{nXpi/2), Q[3, n, 4]]

3.1.3 Semantics

A variable is a designation given to a single value. This value may be used in expressions for forming other values and may
be changed at will by means of assignment statements (section 4.2). The type of the value of a particular variable is de-
fined in the declaration for the variable itself (cf. section 5.1. Type Declarations) or for the corresponding array identifier
(cf. section 5.2 Array Declarations).

3.1.4 Subscripts

3.1.4.1 Subscripted variables designate values which are components of multidimensional arrays (cf. section 5.2 Array
Declarations). Each arithmetic expression of the subscript list occupies one subscript position of the subscripted variable,
and is called a subscript. The complete list of subscripts is enclosed in the subscript brackets [] . The array component re-
ferred to by a subscripted variable is specified by the actual numerical value of its subscripts (cf. section 3.3 Arithmetic
Expressions).

3.1.4.2 Each subscript position acts like a variable of type integer and the evaluation of the subscript is understood to
be equivalent to an assignment to this fictitious variable (cf. section 4.2.4). The value of the subscripted variable is de-
fined only if the value of the subscript expression is within the subscript bounds of the array (cf. section 5.2 Array

Declarations).

2-14 ‘ 60329000 A

3.1.4.2

No check is made to ensure that the value formed by assigning each subscript expression to a ficti-
tious integer variable (Section 4.2.4) is within the corresponding bounds of the array. However,
the address of the referenced array component (combination of all of the fictitious integer variables)
is checked to ensure that it lies within the bounds of the complete array. This array bounds check
is performed only with the option F (Section 6.1, Chapter). The final address of the referenced
array component is assumed to be a normal machine word address.

3.1.4.3

The Q option (Chapter 6) results in optimization of the code compiled for for loops and array ad-
dressing. Components of a subscript expression containing variables and constants will be com-
piled at the head of the current for loop, rather than within it unless the expression contains a var-
iable which occurs in the current for loop as:

a left part

or an actual parameter in a call (procedure statement or function designator).
If a call within a for loop changes the value of a variable accessible to both procedure and for loop
and that variable is not an actual parameter of the procedure, then subscript expressions in the
for loop which depend on the variable will be evaluated incorrectly unless the variable is subject
to a side effect elsewhere in the for loop as described above.
This restriction applies only to the Q option.
3.2 Function Designators

3.2.1 Syntax
< procedure identifier > :: = < identifier >

< actual parameter > :: = < string >| < expression >| < array identifier >|
< switch identifier >| < procedure identifier >
< letter string > :: = < letter >| < letter string > < letter >
< parameter delimiter > ::= |) <letter string > : (
< actual parameter list > .. = < actual parameter >|
< actual parameter list > < parameter delimiter > < actual parameter >
< actual parameter part > ::= < empty >| (< actual parameter list >)

< function designator > :: = < procedure identifier > < actual parameter part >

3.2.2 Examples
sin (a-b) S(s-5) Temperature: (T) Pressure: (P)
J (v+s,n) Compile(‘ := ’)Stack:(Q)
R

60329000 A 2-15

3.2.3 Semantics

Function designators define single numerical or logical values, which result through the application of given sets of rules
defined by a procedure declaration (cf. section 6.4. Procedure Declarations) to fixed sets of actual parameters. The rules
governing specification of actual parameters are given in section 4.7. Procedure Statements. Not every procedure declara-
tion defines the values of a function designator.

3.2.4 Standard Functions

Certain identifiers should be reserved for the standard functions of analysis, which will be expressed as procedures. It is
recommended that this reserved list should contain:

abs(E) for the modulus (absolute value) of the value of the expression E
sign(E) for the sign of the value of E(+1 for E > 0, 0 for E=0, -1 for E<0)
sqrt(E) for the square root of the value of E

sin(E) for the sine of the value of E

cos{E) for the cosine of the value of E

arctan(E) for the principal value of the arctangent of the value of E
In{E) for the natural logarithm of the value of E
exp(E) for the exponential function of the value of E (eE).

These functions are all understood to operate indifferently on arguments both of type real and integer. They will all
yield values of type real, except for sign(E) which will have values of type integer. In a particular representation these

functions may be available without explicit declarations (cf. section 5. Declarations).

3.2.4 Standard Functions

All input-output functions (Chapter 3) are expressed as calls of standard procedures. The list of
reserved identifiers is expanded to include the names of these and other utility procedures:

INLIST PUTTARAY STRINGELEMENT BACKSPACE
OUTLIST CLOCK CHLENGTH IOLTH
INPUT HLIM ARTHOFLW MODE
OUTPUT VLIM BADDATA CONNECT
INREAL HEND PARITY DUMP
OUTREAL VEND EOF READECS
INARRAY NODATA REWIND WRITEECS
OUTARRAY TABULATION UNLOAD CONNEC
INCHARACTER FORMAT SKIPF DISCON
OUTCHARACTER SYSPARAM SKIPB

GETARRAY EQUIV ENDFILE

60329000 A

Calls to all standard procedures (input-output and function) conform to the syntax of calls to declared

procedures (Section 4.7.1) and in all respects are equivalent to regular procedure calls. This spe-

cifically includes the use of a standard procedure identifier as an actual parameter in a procedure call.

If a standard procedure is not needed throughout a program, its identifier may be declared to have
another meaning at any level; the identifier assumes the new meaning rather than that of a standard

procedure.

Since all standard procedures are contained on the system library, they are available to any

object program (Chapter 5).

3.2.5 Transfer Functions

It is understood that transfer functions between any pair of quantities and expressions may be defined. Among the

standard functions it is recommended that there be one, namely,

entier(E),

which “transfers’’ an expression of real type to one of integer type, and assigns to it the value which is the largest integer

not greater than the value of E.

3.3 Arithmetic Expressions

3.3.1 Syntax
< adding operator > .= +| -
< multiplying operator > ::= X| /| +
< primary > . = < unsigned number >| < variable >|
< function designator >| (< arithmetic expression >)
< factor > :: = < primary >| < factor >1< primary >
< term > :: = < factor >| < term > < multiplying operator > < factor >
< simple arithmetic expression > ! = < term >|
< adding operator > < term >| < simple arithmetic expression >
< adding operator > < term >
< if clause > :: = if < Boolean expression > then
< arithmetic expression > :: = < simple arithmetic expression >|
< if clause > < simple arithmetic expression > else

< arithmetic expression >

60329000 D

3.3.2 Examples

Primaries:

Factors:

Terms:

Simple ari

7.39410-8
sum

w [i+2,8]

cos (y+zX3)
(a-3/y+vut8)

omega
sum 1 cos(y+zX3)
7.39410-8 t w[i+2,8] 1 (a-3/y+vu18)

U
omegaXsum 1 cos(y+zX3)/7.34910-8 t w [i+2,8] 1
(a-3/y+vu18)

thmetic expression:

U-Yut+omegaXsum 1 cos(y+zX3)/7.34910-8 1 w[i+2,8} 1
(a-3/y+vut8)

Arithmetic expressions:

2-18

wXu-Q(S+Cu) 12

if >0 then S+3XQ/A else 2XS+3Xq

if a<0 then U+V else if aXb>17 then U/V else if k+y then V/U else 0
aXsin(omegaXxt)

0.571012Xa[NX(N-1)/2,0]

(AXarctan(y)+Z) 1 (7+Q)

if a then n-1 elsan

if a<0 then A/B else if b = 0 then B/A else z

60329000 A

3.3.3 Semantics

An arithmetic expression is a rule for computing a numerical value. In case of simple arithmetic expressions this value
is obtained by executing the indicated arithmetic operations on the actual numerical values of the primaries of the ex-
pression, as explained in detail in section 3.3.4 below. The actual numerical value of a primary is obvious in the case of
numbers. For variables it is the current value (assigned last in the dynamic sense), and for function designators it is the
value arising from the computing rules defining the procedure {cf. section 5.4.4. Values of Function Designators) when
applied to the current values of the procedure parameters given in the expression. Finally, for arithmetic expressions
enclosed in parentheses the value must through a recursive analysis be expressed in terms of the values of primaries of
the other three kinds.

In the more general arithmetic expressions, which include if clauses, one out of several simple arithmetic expressions is
selected on the basis of the actual values of the Boolean expressions {(cf. section 3.4. Boolean Expressions). This selection
is made as follows: The Boolean expressions of the if clauses are evaluated one by one in sequence from left to right until
one having the value true is found. The value of the arithmetic expression is then the value of the first arithmetic expres-
sion following this Boolean (the largest arithmetic expression found in this position is understood).

The construction:

else < simple arithmetic expression >
is equivalent to the construction:

else if true then < simple arithmetic expression >
3.3.3 Semantics

If during the evaluation of an arithmetic expression, a machine arithmetic error condition (overflow,
underflow or division fault) arises, caused for example by an attempt at division by 0, an error condi-
tion exists in the object program. If the procedure ARTHOF LW (Chapter 3) has not been called, or if a
label established by it is no longer accessible, the object program terminates abnormally with the mes-
sage ARITHMETIC OVERFLOW. If an arithmetic overflow label has been established, control passes
to it.

3.3.4 Operators and types

Apart from the Boolean expressions of if clauses, the constituents of simple arithmetic expressions must be of types
real or integer (cf. section 5.1. Type Declarations). The meaning of the basic operators and the types of the expressions
to which they lead are given by the following rules:

3.3.4.1 The operators +, -, and X have the conventional meaning (addition, subtraction, and multiplication). The type
of the expression will be integer if both of the operands are of integer type, otherwise real.

3.3.4.2 The operations < term > /< factor > and < term > + < factor > both denote division, to be understood as a
multiplication of the term by the reciprocal of the factor with due regard to the rules of precedence (cf. section 3.3.5).

- Thus for example

a/bX7/(p-q) Xv/s

60329000 A 2-19

means
((Hax =X IX(p-a) T xvix (™)
The operator / is defined for all four combinations of types real and integer and will yield results of real type in any case.
The operator + is defined only for two operands both of type integer and will yield a result of type integer, mathemati-
cally defined as follows:
a+b=sign(a/b) Xentier(abs(a/b))
(cf. sections 3.2.4 and 3.2.5).

3.3.4 Operators and Types

When the type of an arithmetic expression cannot be determined at compile-time, it is considered real.
For example, the parenthesized expression in the following statement is considered real if one or both
of the arithmetic expressions R and S is real:

P x (if Q then R else S)
If both operands in a simple arithmetic expression are numbers, the transformation (from type real to

integer, or integer to real) and the operation itself are performed at compile-time. The type of the
one resulting number is defined according to the number types and the particular operation involved.

If the result of an expression is assigned to a variable with a different type, the compiler generates
the code to transform the result to the proper type (Section 4. 2.4).

When the final result is a number, transformation is performed at compile-time (as in the assignment
of a simple number to a variable of a different type).

The internal representations of type real and integer values and the transformations between them are
described in Section 5.1.3.

3.3.4.3 The operation < factor > 1 < primary > denotes exponentiation, where the factor is the base and the primary
is the exponent. Thus, for example,

2¢ntk means (2MK
while

2t(ntm) means 2n™

2-20 60329000 A

Writing i for a number of integer type, r for a number of real type, and a for a number of either integer or real type, the
result is given by the following rules: -

ati Ifi>0,aXaX...Xali times), of the same type as a.
If i =0, if a+#0,1, of the same type as a.

if a = 0, undefined.
1 i<0, if a#0,1/(aXaX. . .Xa) (the denominator has ~i factors), of type real.

if a = 0, undefined.
atr If a>0, exp(rXin(a)), of type real.
ifa=0,if r>0,0.0, of type real.
if r<0, undefined.

If a<0, always undefined.
3.3.4.3

The rule for evaluating an expression of the form ali or alr is the same as defined above except when a
is of type integer and i is an integer variable with a positive value. In this case, the result is real,
whereas the Report defines it as integer. (If i is a positive integer number, however, the result is
integer as defined.)

3.3.5 Precedence of operators

The sequence of operations within one expression is generally from left to right, with the following additional rules:
3.3.5.1 According to the syntax given in section 3.3.1 the following rules of precedence hold:
first: 1

second: X/+
third: +-

3.3.5.2 The expression between a left parenthesis and the matching right parenthesis is evaluated by itself and this value
is used in subsequent calculations. Consequently the desired order of execution of operations within an expression can
always be arranged by appropriate positioning of parentheses.

3.3.6 Arithmetics of real quantities

Numbers and variables of type real must be interpreted in the sense of numerical analysis, i.e. as entities defined inher-
aently with only a finite accuracy. Similarly, the possibility of the occurrence of a finite deviation from the mathemati-
cally defined result in any arithmetic expression is explicitly understood. No exact arithmetic will be specified, however,
and it is indeed understood that different hardware representations may evaluate arithmetic expressions differently. The
control of the possible consequences of such differences must be carried out by methods of numerical analysis. This
control must be considered a part of the process to be described, and will therefore be expressed in terms of the lan-

guage itself.

60329000 A 2-21

3.4 Boolean Expressions

3.4.1 Syntax
< relational operator > .= <|<| =| >| >| #

< relation > :: = < simple arithmetic expression >
< relational operator > < simple arithmetic expression >
< Boolean primary > ::= < logical value >| < variable >|
< function designator >| < relation >| (< Boolean expression =)
< Boolean secondary > :: = < Boolean primary >| 71 < Boolean primary >
< Boolean factor > ;.= < Boolean secondary >|
< Boolean factor > A < Boolean secondary >
< Boolean term > . = < Boolean factor >| < Boolean term >
Vv < Boolean factor >
< implication > :: = < Boolean term >| < implication > D < Boolean term >
< simple Boolean > :. = < implication >|
< simple Boolean > = < implication >
< Boolean expression > ::= < simple Boolean >|

< if clause > < simple Boolean > else < Boolean expression >

3.4.2 Examples

x=-2

Y>Vvz<q

atbh>-5Az-d>qt2

PAQVXFY

g=laAbATlevdVeDTf
ifk<1thens>welseh<c

if it if 2 then b else c then d eise f then g olse h <k

2-22

60329000 A

3.4.3 Semantics

A Boolean expression is a rule for computing a logical value. The principles of evaluation are entirely analogous to those
given for arithmetic expressions in section 3.3.3.

3.4.4 Types

Variables and function designators entered as Boolean primaries must be declared Boolean (cf. section 5.1. Type Declara-
tions and section 5.4.4. Values of Function Designators).

3.4.5 The operators

Relatians take on the value true whenever the corresponding relation is satisfied for the expressions involved, otherwise
false.

The meaning of the logical operators “I{not), A (and), \/ (or), D (implies), and = (equivalent), is given by the following
function table.

b1 false falss true true
b2 false true false true
“1b1 true true false false

b1Ab2 false false false true
b1Vb2 false true true true

b1Db2 true true false true
b1=b2 true false false true

3.4.6 Precedence of operators

The sequence of operations within one expression is generally from left to right, with the following additional rules:
3.4.6.1 According to the syntax given in section 3.4.1 the following rules of precedence hold:

first: arithmetic expressions according to section 3.3.5

second: << =2>F ‘

third: 71

fourth: A

fifth: V

60329000 A 2-23

3.4.6.2 The use of parentheses will be interpreted in the sense given in section 3.3.5.2.
3.6 Designational Expressions

3.6.1 Syntax

< label > ::= < identifier >| < unsigned integer >

< switch identifier > .. = < identifier >
< switch designator > :: = < switch identifier > [< subscript expression >]
< simple designational expression > :: = < label >| < switch designator >|
(< designational expression >)
< designational expression > . = < simple designational expression >|
< if clause > < simple designational expression > else

< designational expression >

3.5.2 Examples

17

p9

Choose [n-1]

Town [if y <0 then N eise N+1]

if Ab < c then 17 else q [if w < 0 then 2 else n]

3.5.3 Semantics

A designational expression is a rule for obtaining a label of a statement (cf. section 4. Statements). Again the principle of
the evaluation is entirely analogous to that of arithmetic expressions (section 3.3.3). In the general case the Boolean
expressions of the if clauses will select a simple designational expression. If this is a label the desired result is already
found. A switch designator refers to the corresponding switch declaration (cf. section 5.3 Switch Declarations) and by
the actual numerical value of its subscript expression selects one of the designational expressions listed in the switch
declaration by counting these from left to right. Since the designational expression thus selected may again be a switch
designator this evaluation is obviously a recursive process.

3.5.4 The subscript expression

The evaluation of the subscript expression is analogous to that of subscripted variables (cf. section 3.1.4.2). The value
of a switch designator is defined only if the subscript expression assumes one of the positive values 1,2,3,. . . ,n, where
n is the number of entries in the switch list.

2-24 60329000 A

3.6.5 Unsigned integers as labels

Unsigned integers used as labels have the property that leading zeros do not affect their meaning, e.g. 00217 denotes the
same label as 217.

3.5.5 Unsigned Integers as Labels

Integer labels are not permitted.

4. Statements

The units of operation within the language are called statements. They will normally be executed consecutively as
written. However, this sequence of operations may be broken by go to statements, which define their successor explic-
itly, and shortened by conditional statements, which may cause certain statements to be skipped.

In order to make it possible to define a specific dynamic succession, statements may be provided with labels.

Since sequences of statements may be grouped together into compound statements and blocks the definition of state-

ment must necessarily be recursive. Also since declarations, described in section 5, enter fundamentally into the syntatic
structure, the syntatic definition of statements must suppose declarations to be already defined.

4.1 Compound Statements and Blocks

4.1.1 Syntax

< unlabelled basic statement > :: = < assignment statement >|
< go to statement >| < dummy statement >| < procedure statement >
< basic statement > :: = < unlabelled basic statement >| < label > : < basic statement >
< unconditional statement > ::= < basic statement >|
< compound statement >| < block >
< statement > :: = < unconditional statement >
< conditional statement >| < for statement >
< compound tail > :: = < statement > end|< statement > ;
< compound tail >
< block head > :: = begin < declaration >| <block head > ;
< declaration >
< unlabelled compound > :: = begin < compound tail >

< unlabelied block > :: = < block head > ; < compound tail >

60329000 A 2-25

< compound statement > :: = < unlabelled compound >|
< label > : < compound statement >

< block > ::= < unlabelled block >| < label > : < block >

< program > .. = < block >| < compound statement >

This syntax may be illustrated as follows: Denoting arbitrary statements, declarations, and labels, by the letters S, D,
and L, respectively, the basic syntactic units take the forms:

Compound statement:

L:L:...beginS;S;...8;Send

Block:

L:L:...beginD;D;...D;S$;8;...85;
Send

It should be kept in mind that each of the statements S may again be a complete compound statement or block.

4.1.2 Examples

Basic Statements:

a:=piq
go to Naples
START: CONTINUE:W:=7.993

Compound Statement:

begin x :=0 ;for y:=1 step 1 until n do
x :=x+A [y] ;
if x> q then go to STOP else if x> w-2thengoto §;
Aw:St:W :=x+bob end

Block:

Q: begin integer ik ;real w ;
fori: =1step 1 until m do
for k: = i+1 step 1 until mdo
beginw:=A[ik] ;

A lik] :=Alk,] ;

A [k,i] :=w end for i and k
end block Q

2-26 : . 60329000 A

4.1.1 Syntax
Replace the definition of <program> with:
<program>: ;: = <unlabeled block> | <unlabeled compound>

4.1.3 Semantics

Every block automatically introduces a new level of nomenclature. This is realized as follows: Any identifier occurring
within the block may through a suitable declaration (cf. section 5. Declarations) be specified to be local to the block in
question. This means (a) that the entity represented by this identifier inside the block has no existence outside it, and
(b} that any entity represented by this identifier outside the block is completely inaccessible inside the block.

Identifiers (except those representing labels) occurring within a block and not being declared to this block wiil be non-
local to it, i.e., will represent the same entity inside the block and in the level inmediately outside it. A label separated
by a colon from a statement, i.e., labelling that statement, behaves as though declared in the head of the smallest em-
bracing block, i.e. the smallest block whose brackets begin and end enclose that statement. In this context a procedure
body must be considered as if it were enclosed by begin and end and treated as a block. Since a statement of a block
may again itself be a block the concepts local and nonlocal to a block must be understood recursively. Thus an identi-
fier, which is nonlocal to a block A, may or may not be nonlocal to the block B in which A is one statement.

4.1.3 Semantics

Blocks may be nested to a maximum of 32 levels.
4.2 Assignment Statements

4.2.1 Syntax

< left part > :: = < variable > : = | < procedure identifier > : =

< loft part list > :: = < left part >| < left part list > < left part >
< assignment statement > :: = < left part list > < arithmetic expression >|

< left part list > < Boolean expression >

4.2.2 Examples
s :=p[0]: =n:=n+l4s
n :=n+t
A :=B/Cv-qXS
S [vk+2] : = 3-arctan(sXzeta)
V :=Q>YAZ

60329000 A 2-27

4.2.3 Semantics

Assignment statements serve for assigning the value of an expression to one or several variables or procedure identifiers.
Assignment to a procedure identifier may only occur within the body of a procedure defining the value of a function
designator (cf. section 5.4.4). The process will in the general case be understood to take place in three steps as follows:

4.2.3.1 Any subscript expressions occurring in the left part variables are evaluated in sequence from left to right.
4.2.3.2 The expression of the statement is evaluated.

4.2.3.3 The value of the expression is assigned to all the left part variables, with any subscript expressions having values
as evaluated in step 4.2.3.1.

4.2.4 Types

The type associated with all variables and procedure identifiers of a left part list must be the same. If this type is Boolean,
the expression must likewise be Boolean. If the type is real or integer, the expression must be arithmetic. If the type of
the arithmetic expression differs from that associated with the variables and procedure identifiers, appropriate transfer
functions are understood to be automatically invoked. For transfer from real to integer type, the transfer function is
understood to yield a result equivalent to

antier(E+0.5)

where E is the value of the expression. The type associated with a procedure identifier is given by the declarator which
appears as the first symbol of the corresponding procedure declaration (cf. section 5.4.4).

4.2.4 Types

If the type of an arithmetic expression (Section 3.3.4) is different from that of the variable or procedure
identifier to which it is assigned, the compiler generates the code to perform the transformation from

one type to the other.

If an expression results only in a number (Section 2.5.4), the transformation is done at compile-time,
and the resulting number is flagged according to its new type.

The internal representations of real and integer values and the transformations between them are
described in Section 5.1.3.

4.3 Go To Statements

4.3.1 Syntax
< go to statement > :: = go to < designational expression >

4.3.2 Examples

goto8
go to exit [n+1]

go to Town [if y <0 then N else N+1}
go to if Ab < c then 17 eise q [if w <0 then 2 eise n]

2-28 60329000 A

4.3.3 Semantics

A go to statement interrupts the normal sequence of operations, defined by the write-up of statements, by defining its
successor explicitly by the value of a designational expression. Thus the next statement to be executed will be the one
having this value as its label.

4.3.4 Restriction

Since labels are inherently local, no go to statement can lead from outside into a block. A go to statement may, however,
lead from outside into a compound statement.

4.3.5 Go to an undefined switch designator

A go to statement is equivalent to a dummy statement if the designational expression is a switch designator whose value
is undefined.

4.3.5 Go to Undefined Switch Designator

When a go to statement is executed for a designational expression which is a switch with an undefined
value, the object program terminates abnormally with the message SWITCH BOUNDS ERROR.

4.4 Dummy Statements

44.1 Syntax

< dummy statement > ;. = < empty >
4.4.2 Examples

L:
begin . . . ; John: end

4.4.3 Semantics
A dummy statement executes no operation. It may serve to place a label.

4.5 Conditional Statements

4.5.1 Syntax

< if clause > :: = if < Boolean expression > then

< unconditional statement > .. = < basic statement >|
< compound statement >| < block >

< if statement > :: = < if clause > < unconditional statement >

< conditional statement > :: = < if statement >| < if statement > else
< statement >| < if clause > < for statement >|

< label > : < conditional statement >

60329000 A 2-29

46.2 Examples

if x> 0 then n := n+1

i_fv>u_t_llggv: q:=n+m9ling

if s <0 VP <Qthen AA: begin if g <v then a :=v/s
else y := 2Xa end
el____seﬂv)sthlla:w—qﬁgi!v>s—1

thengo to S

4.5.3 Semantics

Conditional statements cause certain statements to be executed or skipped depending on the running values of specified
Boolean expressions.

4.56.3.1 If statement. The unconditional statement of an if statement will be executed if the Boolean expression of the if
clause is true. Otherwise it will be skipped and the operation will be continued with the next statement.

4.5.3.2 Conditional statement. According to the syntax two different forms of conditional statements are possible.
These may be illustrated as follows:

if B1 then S1 else if B2 then S2 else S3 ; S4
and
if B1 then S1 else if B2 then S2 else if B3 then S3 ; S4

Here B1 to B3 are Boolean expressions, while S1 to S3 are unconditional statements. S4 is the statement following the
complete conditional statement.

The execution of a conditional statement may be described as follows: The Boolean expression of the if clauses are
evaluated one after the other in sequence from left to right until one yielding the value true is found. Then the-uncondi-
tional statement following this Boolean is executed. Unless this statement defines its successor explicitly the next
statement to be executed will be $4, i.e., the statement following the complete conditional statement. Thus the effect
of the delimiter else may be described by saying that it defines the successor of the statement it follows to be the state-
ment following the complete conditional statement.

The construction
else < unconditional statement >
is equivalent to
else if true then < unconditional statement >

If none of the Boolean expressions of the if clause, is true, the effect of the whole conditional statement will be equiva-
lent to that of a dummy statement.

2-30 60329000 A

For further explanation the following picture may be useful:

B1 false B2 false

4.5.4 Go to into a conditional statement

The effect of a go to statement leading into a conditional statement follows directly from the above explanation of the
effect of else.

4.6 For statements

4.6.1 Syntax
< for list element > :: = < arithmetic expression >|
< arithmetic expression > step < arithmetic expression > until
< arithmetic expression >| < arithmetic expression > while
< Boolean expression >
< for list > :: = < for list element >| < for list >, < for list element >
< for clause > :: = for < variable > : = < for list > do
< for statement > .. = < for clause > < statement >|

< label > : < for statement >

¢

4.6.2 Examples

forq:=1stepsuntilndo A [q] : =B [q]
for k : = 1, V1X2 while V1<N do
forj : = I+G,L,1 step 1 until N,C+D do
A [k,j] : =B [k.jl

4.6.3 Semantics

A for clause causes the statement S which it precedes to be repeatedly executed zero or more times. In addition, it per-
forms a sequence of assignments to its controlled variable. The process may be visualized by means of the following

picture:

V ?
Initialize ; test ; statement S ; advance ; successor
t

60329000 A 2-31

In this picture the word initialize means: perform the first assignment of the for clause. Advance means: perform the
next assignment for the for clause. Test determines if the last assignment has been done. If so, the execution continues
with the successor of the for statement. If not, the statement following the for clause is executed.

4.6.3 Semantics

If, in a for statement, the controlled variable is subscripted, the same array element is used as the
control variable throughout the execution of the for statement, regardless of any changes that might
oceur to the value of the subscript expressions during its execution. The element used is the one
referenced by the value of the subscript expressions on entry to the for statement.

4.6.4 The for list elements

The for list gives a rule for obtaining the values which are consecutively assigned to the controlled variable. This sequence
of values is obtained from the for list elements by taking these one by one in the order in which they are written. The
sequence of values generated by each of the three species of for list elements and the corresponding execution of the
statement S are given by the following rules:

4.6.4.1 Arithmatic expression. This element gives rise to one value, namely the value of the given arithmetic expression
as calculated immediately before the corresponding execution of the statement S.

4.6.4.2 Step-until-element. An element of the form A step B until C, where A, B, and C, are arithmetic expressions,
gives rise to an execution which may be described most concisely in terms of additional ALGOL statements as follows:

V:i=A;
L1:if (V-C)Xsign (B) > 0 then go to element exhausted;
statements S ;
V:=V+B ;

gotolLl;

whera V is the controlied variable of the for clause and element exhausted points to the evaluation according to the next
alement in the for list, or if the step-until-element is the last of the list, to the next statement in the program.

4.6.4.3 While-element. The execution governed by a for list element of the form E while F, where E is an arithmetic and

F a Boolean expression, is most concisely described in terms of additional ALGOL statements as follows:

L3:V:=E;
if 1F then go to element exhausted ;
Statement S ;

EtoL:i;

where the notation is the same as in 4.6.4.2 above.

2-32 60329000 A

4.6.5 The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be compound) through a go to statement the value of the controlled
variable will bé the same as it was immediately preceding the execution of the go to statement.

I the exit is due to exhaustion of the for list, on the other hand, the value of the controlled variable is undefined after
the exit.

4.6.6 Go to leading into a for statement

The effect of a go to statement, outside a for statement, which refers to a label within the for statement, is undefined.

4.6.6 Go to Leading into a For Statement

A go to statement, executed from outside a for statement not currently being executed, which refers to
a label within the for statement, causes the object program to terminate abnormally with the message
UNDEFINED FOR LABEL. This will not happen if an exit is made from the for statement prior to its
end. However, no checking will occur in the object program if the source program was compiled

with the Q option. (See paragraph 6.1)

4.7 Procedure Statements

4.7.1 Syntax

< actual parameter > .. = < string >| < expression >|< array identifier >|
< switch identifier >|< procedure identifier >

< letter string > ;1= < letter >|< letter string > < letter >

< parameter delimiter > ::= |} < letter string > :(

< actual parameter list > :: = < actual parameter >|< actual parameter list >
< parameter delimiter > < actual parameter >

< actual parameter part > .= < empty >|
(< actual parameter list >)

< procedure statement > ::= < procedure identifier >

< actual parameter part >

4.7.2 Examples

Spur (A)Order: (7) Result to: (V)
Transpose (W, v+1)

Absmax (A,N,M,Yy,|,K)

Innerproduct (A [t,P,u] ,B [P],10,P,Y)

These examples correspond to examples given in section 5.4.2.

60329000 D 2-33

4.7.3 Semantics

lf procedure statement serves to invoke (call for) the execution of a procedure body (cf. section 5.4 Procedure Declara-
tions). Where the procedure body is a statement written in ALGOL the effect of this execution will be equivalent to the
effect of performing the following operations on the program at the time of execution of the procedure statement:

4.7.3.1 Value assignment (call by value)

All formal parameters quoted in the value part of the procedure declaration heading are assigned the values (cf. sec-

tion 2.8. Values and Types) of the corresponding actual parameters, these assignments being considered as being per-
formed explicitly before entering the procedure body. The effect is as though an additional block embracing the procedure
body were created in which these assignments were made to variables local to this fictitious block with types as given in
the corresponding specifications (cf. section 5.4.5). As a consequence, variables called by value are to be considered as
nonlocal to the body of the procedure, but local to the fictitious block (cf. section 5.4.3).

4.7.3.2 Name replacement (call by name)

Any formal parameter not quoted in the value list is replaced, throughout the procedure body by the corresponding
actual parameter, after enclosing this latter in parentheses wherever syntactically possible. Possible conflicts between
identifiers inserted through this process and other identifiers already present within the procedure body will be avoided
by suitable systematic changes of the formal or local identifiers involved.

4.7.3.3 Body replacement and execution

Finally the procedure body, modified as above, is inserted in place of the procedure statement and executed. If the pro-
cedure is called from a place outside the scope of any nonlocal quantity of the procedure body the conflicts between
the identifiers inserted through this process of body replacement and the identifiers whose declarations are valid at the
place of the procedure statement or function designator will be avoided through suitable systematic changes of the
latter identifiers.

4.7.4 Actual-formal correspondence

The correspondence between the actual parameters of the procedure statement and the formal parameters of the proce-
dure heading is established as follows: The actual parameter list of the procedure statement must have the same number
of entries as the formal parameter list of the procedure declaration heading. The correspondence is obtained by taking
the entries of these two lists in the same order.

4.7.5 Restrictions

For a procedure statement to be defined it is evidently necessary that the operations on the procedure body defined in
sections 4.7.3.1 and 4.7.3.2 lead to a correct ALGOL statement. This imposes the restriction on any procedure state-
ment that the kind and type of each actual parameter be compatible with the kind and type of the corresponding
formal parameter. Some important particular cases of this general rule are the following:

4.75.1 If astring is supplied as an actual parameter in a procedure statement or function designator, whose defining
procedure body is an ALGOL-60 statement (as opposed to non-ALGOL code, cf. section 4.7.8), then this string can
only be used within the procedure body as an actual parameter in further procedure calls. Ultimately it can only be used
by a procedure body expressed in non-ALGOL code.

4.7.5.2 A formal parameter which occurs as a left part variable is an assignment statement within the procedure body
and which is not called by value can only correspond to an actual parameter which is a variable (special case of expression).

9-34 60329000 A

4.7.5.3 A formal parameter which is used within the procedure body as an array identifier can only correspond to an
actual parameter which is an array identifier of an array of the same dimensions. In addition if the formal parameter is
called by value the local array created during the call will have the same subscript bounds as the actual array.

4.75.4 A formal parameter which is called by value cannot in general correspond to a switch identifier or a proce-
dure identifier or a string, because these latter do not possess values (the exception is the procedure identifier of a pro-
cedure declaration which has an empty formal parameter part (cf. Section 5.4.1) and which defines the value of a function
designator (cf. Section 5.4.4). This procedure identifier is in itself a complete expression).

4.75.5 Any formal parameter may have restrictions on the type of the corresponding actual parameter associated with

it (thesa restrictions may, or may not, be given through specifications in the procedure heading). In the procedure state-
ment such restrictions must evidently be observed.

4.7.5 Restrictions

A label cannot be specified by value.

There are no restrictions on the real or integer correspondence between formal and actual parameters.
However, for formal parameters called-by-name, real to integer conversions are checked and per-
formed only if the C option appears on the ALGOL control card. (Section 6.1, Chapter 6).

A maximum of 63 formal parameters may be included in a procedure declaration (Section 5. 4. 3);

therefore, a maximum of 63 actual parameters may be included in a procedure call. No more than
62 constants may be used as actual parameters.

4.7.6 Deleted

4.7.7 Parameter delimiters

All parameter delimiters are understood to be equivalent. No correspondence between the parameter delimiters used in
a procedure statement and those used in the procedure heading is expected beyond their number being the same. Thus

the information conveyed by using the elaborate ones is entirely optional.

4.7.8 Procedure body expressed in code

The restrictions imposed on a procedure statement calling a procedure having its body expressed in non-ALGOL code
evidently can only be derived from the characteristics of the code used and the intent of the user and thus fall outside
the scope of the reference language.

4.7.8 Procedure Body Expressed in Code

The symbol code is included to permit reference to procedures which are compiled separately from
the program or procedure in which they are referenced (Section 5.4.6).

5. Declarations

Declarations serve to define certain properties of the quantities used in the program, and to associate them with identifiers
A declaration of an identifier is valid for one block. Qutside this block the particular identifier may be used for other
purposes (cf. section 4.1.3). Dynamically this implies the following: at the time of an entry into a block (through the
begin, since the labels inside are local and therefore inaccessible from outside) all identifiers declared for the block assume

60329000 A] 2-35

the significance implied by the nature of the declarations given. If these identifiers had already been defined by other
declarations outside they are for the time being given a new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by a go to statement) all identifiers which are declared for the block
lose their local significance.

A declaration may be marked with the additional declarator own. This has the following effect: upon a re-entry into

the block, the values of own quantities will be unchanged from their values at the last exit, while the values of declared
variables which are not marked as own are undefined. Apart from labels and formal parameters of procedure declarations

and with the possible exception of those for standard functions (cf. sections 3.2.4 and 3.2.5), all identifiers of a program
must be declared. No identifier may be declared more than once in any one block head.

Syntax

< declaration > :: = < type declaration >| < array declaration > | < switch declaration >| < procedure
declaration >

5.1 Type Declarations

5.1.1 Syntax

<type list > :: = < simple variable >|

<simple variable >, < type list >
<type>::=real | integer | Boolean
<local or own type>::=<type>|oﬂ<type>

< type declaration > :: = < local or own type > < type list >
5.1.2 Examples
integer p,q,s

own Boolean Acryl,n

5.1.3 Semantics

Type declarations serve to declare certain identifiers to represent simple variables of a given type. Real declared variables
may only assume positive or negative values including zero. Integer declared variables may only assume positive and
negative integral values including zero. Boolean declared variables may only assume the values true and false.

In arithmetic expressions any position which can be occupied by a real declared variable may be occupied by an integer
declared variable.

For the semantics of own, see the fourth paragraph of section 5 above.

2-36 60329000 A

5.1.3 Semantics

Variables of type real and integer are represented internally in a 60-bit floating-point form, with a
48-bit coefficient, sign bit, . and 11-bit biased exponent, so that the range of non-zero real and integer
variables is:

3.1 %101 (-294) = 2 t48 - 1) * 2 t (-1022)
abs(real)
abs (integer)
(2148 -1) *2 $1022=1.3 *10 { 322
Real and integer values with up to 14 (and some with 15) significant decimal digits can be represented.
A zero real or integer value is represented by 60 zero bits in fixed-point form.

Real and integer numbers (Section 2. 5. 4) have the same range of values and are represented in the
same form as real and integer variables. In the evaluation of arithmetic expressions (Section 3.3.4)
and their ass1gnment to variables of different type (Section 4.2.4), conversion from real to integer is
performed by closed subroutines at compile-time and in line code at object-time. No o conversion is
required from integer to real because of their identical internal representations.

This conversion selects from the real value an integer value according to the rule:
ENTIER (real value + 0.5)

Variables of type Boolean are represented in 60-bit fixed-point form; only the high order bit is
significant:

true ::=high-order bit =1
false : :=high-order bit = 0

60329000 A 2-37

5.3.3 Semantics

A switch declaration defines the set of values of the corresponding switch designators. These values are given one by one
as the values of the designational expressions entered in the switch list. With each of these designational expressions
there is associated a positive integer, 1,2, . . ., obtained by counting the items in the list from left to right. The value of
the switch designator corresponding to a given value of the subscript expression (cf. section 3.5. Designational Expres-
sions) is the value of the designational expression in the switch list having this given value as its associated integer.

5.3.4 Evaluation of expressions in the switch list

An expression in the switch list will be evaluated every time the item of the list in which the expression occurs is referred
to, using the current values of all variables involved.

5.3.5 Influence of scopes

If a switch designator occurs outside the scope of a quantity entering into a designational expression in the switch list,
and an evaluation of this switch designator selects this designational expression, then the conflicts between the identifiers
for the quantities in this expression and the identifiers whose declarations are valid at the place of the switch designator
wiil be avoided through suitable systematic changes of the latter identifiers.

5.4 Procedure Declarations

5.4.1 Syntax
< formal parameter > .. = < identifier >
< formal parameter list > ::= < formal parameter >|
< formal parameter list > < parameter delimiter >
< formal parameter >
< formal parameter part > ::= < empty >| { < formal parameter list >)
< identifier list > :: = < identifier >} < identifier list > , < identifier >
< value part > ::= value < identifier list > ; | <empty >
< specifier > 1= string | <type>|m|<type>ml@lﬂv@|
procedure | < type > procedure
< specification part > .. = < empty >| < specifier > < identifier list> ; |
< specification part > < specifier > < identifier list > ;
< procedure heading > :: = < procedure identifier >
< formal parameter part > ; < value part > < specification part >

< procedure body > :: = < statement >| < code >

2-40 60329000 A

< procedure declaration >:.=

procedure < procedure heading >< procedure body >

< type > procedure < procedure heading > < procedure body >
5.4.2 Examples (see also the examples at the end of the report)

procedure Spur (a) Order: (n) Result: (s) ;valuen ;
array a ; integer n ; real s ;

begin integer k ;

s:=0 ;

for k :=1step 1until n do si:=s+a [kkl]

end

procedure Transpose (a) Order:{n) ; valuen ;

array a ; integer n ;
begin real w ; integer ik ;
for i :=1step 1 untilndo
for k :=1+i step 1 until ndo
begin w : = alikl;
alik] :=alk,il ;
alk,i] :=w
end

end Transpose

integer procedure Step (u) ; real u ;
Step :=if 0SuAu<1then 1else 0

procedure Absmax (a) size: (n,m) Result: (y) Subscripts: {i,k) ;

comment The absolute greatest element of the matrix a, of size n by m is transferred to y, and the subscripts of this

element toiand k ;

array a ; integer nm,ik ;realy ;

begin integer p,q ;

y:=0;

for p := 1 step 1 until n do for g := 1 step 1 until m do

if abs (alp,q]) >y then begin y : = abs (alp,ql) ;i:=p ;
k:=q

end end Absmax

procedure Innerproduct(a,b) Order: (k,p)Resuit:(y) ; valuek ;
integer k,p ;real y,a,b ;

begin reals ;

s:=0;

for p :=1step 1untilk dos :=s+aXb ;

y:=ss

end Innerproduct

60329000 A

5.4.1 Syntax
The following definition of <code> is added:

<d> :: = <digit>
<code number> :: = <d> | <d><d> | <d><d><d> | <d><d><d><d> | <d><d> <d> <d> <d>

<code> :: = code <code number>

5.4.3 Semantics

A procedure declaration serves to define the procedure associated with a procedure identifier. The principal constituent
of a procedure declaration is a statement or a piece of code, the procedure body, which through the use of procedure
statements and/or function designators may be activated from other parts of the block in the head of which the proce-
dure declaration appears. Associated with the body is a heading, which specifies certain identifiers occurring within the
body to represent formal parameters. Formal parameters in the procedure body will, whenever the procedure is activated
(cf. section 3.2 Function Designators and section 4.7. Procedure Statements) be assigned the values of or be replaced

by actual parameters. Identifiers in the procedure body which are not formal will be either local or nonlocal to the body
depending on whether they are declared within the body or not. Those of them which are nonlocal to the body may
well be local to the block in the head of which the procedure declaration appears. The procedure body always acts like

a block, whether it has the form of one or not. Consequently the scope of any label labelling a statement within the
body or the body itself can never extend beyond the procedure body. In addition, if the identifier of a formal parameter
is declared anew within the procedure body (including the case of its use as a label as in section 4.1.3), it is thereby given
a local significance and actual parameters which correspond to it are inaccessible throughout the scope of this inner

local quantity.

5.4.3 Semantics

The maximum number of formal parameters permitted in the declaration of a procedure is 63. A
source procedure (Chapter 4) may employ the same features as a procedure declared in a source pro-
gram, except it may not be formally recursive. That is, there may be no occurrence of the procedure
identifier within the body of the procedure other than as a left part in an assignment statement.

5.4.4 Values of function designators

For a procedure declaration to define the value of a function designator there must, within the procedure body, occur
one or more explicit assignment statements with the procedure identifier in a left part; at least one of these must be
executed, and the type associated with the procedure identifier must be declared through the appearance of a type dec-
larator as the very first symbol of the procedure declaration. The last value so assigned is used to continue the evaluation
of the expression in which the function designator occurs. Any occurrence of the procedure identifier within the body
of the procedure other than in a left part in an assignment statement denotes activation of the procedure.

6.4.5 Specifications

In the heading a specification part, giving information about the kinds and types of the formal parameters by means of
an obvious notation, may be included. In this part no formal parameter may occur more than once. Specifications of
formal parameters called by value (cf. section 4.7.3.1) must be supplied and specifications of formal parameters called
by name (cf. section 4.7.3.2) may be omitted.

9-42 60329000 A

5.4.5 Specifications

The last sentence should be changed to read: "...and specifications of all formal parameters, if any,
must be supplied. "

5.4.6 Code as procedure body

It is understood that the procedure body may be expressed in non-ALGOL language. Since it is intended that the use of
this feature should be entirely a question of hardware representation, no further rules concerning this code language can
be given within the reference language.

5.4.6 Code as a Procedure Body

All procedures, unless standard, must be declared in the program in which they are called. In particu-
lar, when a program references a separately compiled procedure, the program must contain a declara-
tion of that procedure. This declaration simply consists of a procedure heading and a code procedure
body.

The procedure heading has the same format as a normal procedure heading (Section 5.4.1), and the
code procedure body (defined as <code> in Section 5.4.1) consists of the symbol code followed by a
number xxxxx in the range 0-99999. This is the same number associated with the procedure when it is
compiled separately as an ALGOL source procedure (Chapter 4) and the compiler uses this number to
link the declaration with the procedure. The procedure is linked to the main program at the object-
program level. The object code does not necessarily have to be produced by the compilation of an
ALGOL source procedure; it may be generated in any way provided that it conforms to the object code
produced by the compilation of an ALGOL source procedure.

The identifying name included in the procedure heading need not be the same as the name declared in a
separately compiled procedure, as linking is done by code number. However, all references in the
program to the procedure must use the name declared in the program rather than the name declared
in the separately declared procedure.

Names of formal parameters need not be the same as those declared when the procedure is compiled
separately. Since the procedure may be capable of receiving a variable number of actual parameters,
the number of formals in the procedure heading need not correspond with the number of actuals
appearing in program references. In the calling program, the declaration containing a code proce-
dure body need not have a value part of a specification part in the procedure heading.

The above rules also apply to a separately compiled procedure which references another separately
compiled procedure. The referencing procedure must contain a declaration for the referenced pro-

cedure as described above.

In the following examples, the procedures AVERAGE and SQUAREAVERAGE may be compiled separately
from the program in which they are referenced.

60329000 A 2-43

The following examples illustrate the use of separately compiled procedures. In the first example, the
procedures AVERAGE and SQUAREAVERAGE are compiled in the original program.

Example 1.
begin
real procedure AVERAGE (LOWER, UPPER);
value LOWER, UPPER;
real LOWER, UPPER;
begin AVERAGE:=(LOWER+UPPER)/2;
end;
real procedure SQUAREAVERAGE (LOW, HIGH);
value LOW, HIGH;
real LOW, HIGH;
begin SQUAREAVERAGE:=SQRT (LOW t2+HIGH 12)/2;
end;
real X, Y, 8, 5Q;
S:=0;
SQ:=0;
for X : =1 step 1 until 100 do
begin
Y:=X+1;
S : =8 + AVERAGE (X, Y);
SQ : = SQ + SQUAREAVERAGE (X, Y);
end;
end

2-44 60329000 A

In the second example the first procedure body is replaced by the symbol code with the identifying
number 129. In the heading, the identifying name AVERAGE has been changed to MEAN, and the
formal parameter names to A and B. References to this procedure are to the name MEAN, The
procedure called AVERAGE should be compiled separately with the code number 129.

The source deck (Chapter 4) for this compilation is:

code 129;

real procedure AVERAGE (LOWER, UPPER);
value LOWER, UPPER;
real LOWER, UPPER;
begin AVERAGE : = (LOWER + UPPER)/2;

end;
followed by the 'EOP"' indication in columns 10 through 14 of the next card.

The second procedure body is replaced by the symbol code and the identifying number 527. The pro-
cedure heading remains the same, except that the value and specification parts are omitted. Since the
identifying name is not changed, the procedure is referenced as before. The procedure called
SQUAREAVERAGE should be compiled separately with the code number 527.

Example 2.
begin
real procedure MEAN (A, B);
value A, B;
real A, B;
code 129;
real procedure SQUAREAVERAGE (LOW, HIGH);
code 527;
real X, Y, S, SQ;
S:=0;
5Q:=0;
for X : =1 step 1 until 100 do
Y: =X+ 1;
S : =8+ MEAN (X, Y);
SQ : = SQ + SQUAREAVERAGE (X, Y);
end;

end

60329000 A 2-45

Examples of Procedure Declarations:
Example 1.
procedure euler (fct, sum, eps, tim) ; value eps, tim ;
integer tim ; real procedure fet ; r;ea_l sum, eps ;
comment euler computes the sum of fct(i) for i from zero up to infinity by means of a suitably refined
euler transformation. The summation is stopped as soon as tim times in succession the absolute value of the
terms of the transformed series are found to be less than eps. Hence, one should provide a function fct with
one integer argument, an upper bound eps, and an integer tim. The output is the sum sum. euler is particularly
efficient in the case of a slowly convergent or divergent alternating series ;

begin integer ikt ; array m [0:15] ; real mnmpds ;

i:=n:=t:=0 ;m[0] : =fct(0) ;sum:=m[0]}/2 ;

nextterm:i: =i+1 ;mn: =fct(i) ;
for k : = 0 step 1 until n do
begin mp : = (mn+m k])/2 ;m[k] :=mn ;
mn :=mpend means ;
if (abs(mn) <abs(m [n])) A (n<15) then
beginds: =mn/2 ; n :=nt+1 ; min] :=
mn end accept
elseds :=mn ;
sum:=sum+ds ;
if abs(ds) <eps then t : =t+1 elset:=0 ;
if t<tim then go to nextterm
end euler
Example 2.t
procedure RK(x,y.n,FKT eps,etaxEyEfi) ; value x,y
integer n ; Boolean fi ;real x,epseta,xE ; array

y.yE ; procedure FKT ;

TThis RK-program contains some new ideas which are related to ideas of S. Gill, A process for the step-by-step integra-
tion of differential equations in an automatic computing machine, [Proc. Camb. Phil. Soc.47 (1951), 96] ; and E. Froberg,
On the solution of ordinary differential equations with digital computing machines, [Fysiograf. Sallsk; Lund, Forhd.
20,11 (1950), 136-152] . It must be clear, however, that with respect to computing time and round-off errors it may
not be optimal, nor has it actually been tested on a computer.

9-46 60329000 A

comment: RK integrates the system Yk'= fkix,yqy2, - - - ,yn) (k =1,2,...,n) of differential equations with the
method of Runge-Kutta with automatic search for appropriate length of integration step. Parameters ate: The
initial values x and y [k] for x and the unknown functions yj (x). The order n of the system. The procedure
FKT({x,y.n,z) which represents the system to be integrated, i.e. the set of functions fi . The tolerance values eps
and eta which govern the accuracy of the numerical integration. The end of the integration internal XE. The output
parameter yE which represents the solution at x = xE. The Boolean variable fi, which must always be given the
value true for an isolated or first entry into RK. If however the functions y must be available at several meshpoints
XQrXqe e -+ Xps then the procedure must be called repeatedly (with x=xk,xE=xk+1 , for k=0,1, . ..,n-1) and then
the later calls may occur with fi=false which saves computing time. The input parameters of FKT must be x,y,n,
the output parameter z represents the set of derivatives z[k] =fi (x,y[1],y [2],...,y[n]}for x and the actual y's.
A procedure comp enters as a nonlocal identifier ;

begin
ﬂyz,y1,y2,y3[1:n] ; real x1,x2x3,H ; Boolean out ;
integer k,j ; own real sHs ;
procedure RK1ST (x,y,h,xe,ye) ;real x,h,xe ;array

y.ye ;

comment: RK1ST integrates one single RUNGE-KUTTA with initial values x,y [k] which yields the output param-
eters xe=x+h and ye[k], the latter being the solution at xe. Important: the parameters n, FKT, z enter RK1ST as
nonlocal entities ;

begin
array w(1:n],a[1:56] ; integerk,j ;
a[1]:=al2]):=a[b]:=h/2 ;al[3]:=al4]:=h ;
xe :=x ;
for k : = 1step 1 until n do yelk] :==wlk]:=y[k] ;
for j:=1 step 1 until 4 do
begin

FKT(xew,n,z) ;

xe :=x+aljl ;

for k : = 1 step 1 until n do

60329000 A 2-47

begin
wlk]: =y[k]l+aljl X z[k] ;
yelk] :=ye[k] +a[j+1] Xz[k]/3
end k
end j
end RK1ST ;
Begin of program:
Efim@i_ﬂH :=xE—x ;s:=0endelseH:=Hs ;
out : = false ;
AA:if(x+2.01XH-xE>0)=(H>0) then
beginHs:=H ; out:=true ;H:=(xE-x)/2
endif ;
RK1ST (x,y,2XH,x1,y1) ;
BB:RK1ST (x,y,H,x2,y2) ; RK1IST (x2,y2,H,x3,y3) ;
for k : = 1 step 1 until n do

if comp(y1[k] ,y3[k] ,eta}>eps then go to CC ;

comment: comp(a,bc,) is a function designator, the value of which is the absolute value of the difference of the
mantissae of a and b, after the exponents of these quantities have been made equal to the largest of the exponents
of the originally given parameters a,b,c ;

x:=x3 ;ifoutthengotoDD ;
fork : = 1step 1 until ndo y[k} : =y3[k] ;

if s=6 then begins: =0 ;H:=2XHendif ;

s:=s+1 ;goto AA ;

60329000 A

CC:H:=05XH ;out:=false ;x1:=x2 ;
fork : = 1step 1 until ndo y1[k]: =y2[k] ;
goto BB ;

DD:_fgrk:=1ﬂe£1u_n_§_iln(_igyE[k]:=y3[k]

end RK

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The references are given in three groups:
def Following the abbreviation “‘def”, reference to the syntactic definition (if any) is given.
synt Following the abbreviation “synt”, references to the occurrences in metalinguistic formulae are given.
References already quoted in the def-group are not repeated.
text Following the word “text”, the references to definitions given in the text are given.
The basic symbols represented by signs other than underlined words have been collected at the beginning.

The examples have been ignored in compiling the index.

+, see: plus < array identifier >, def 3.1.1 synt 3.2.1, 4.7.1,
-, see: minus 5.2.1 text 2.8

X, see: multiply < array list >, def 5.2.1

/, +, see: divide < array segment >, def 5.2.1

t, see: exponentiation < assignment statement >, def 4.2.1 synt 4.1.1
<, <, = =, >, #, see: <relational operator> text 1, 4.2.3

=,D,V, A\, -, see: <logical operator>
,, see: comma

., see: decimal point < basic statement >, def 4.1.1 synt 4.5.1

10r S€E: ten < basic symbol >, def 2

:, see: colon begin, synt 2.3, 4.1.1

;. see: semicolon < block >, def 4.1.1 synt 45.1 text 1, 4.1.3,5
:=, see: colon equal < block head >, def 4.1.1

L1, see: space Boolean, synt 2.3, 5.1.1 text 5.1.3

(), see: parentheses
{1, see: subscript brackets
¢* see: string quotes

< Boolean expression >, def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1,
4.6.1 text 3.4.3

< Boolean factor >, def 3.4.1

< Boolean primary >, def 3.4.1

< Boolean secondary >, def 3.4.1

< Boolean term >, def 3.4.1

< bound pair >, def 5.2.1

< bound pair list >, def 5.2.1

< bracket >, def 2.3

< actual parameter >, def 3.2.1, 4.7.1
< actual parameter list >, def 3.2.1, 4.7.1
< actual parameter part >, def 3.2.1, 4.7.1
< adding operator >, def 3.3.1

alphabet, text 2.1

arithmetic, text 3.3.6

< arithmetic expression >, def 3.3.1 synt 3, 3.1.1,
3.3.1,3.4.1,4.2.1, 4.6.1,5.2.1 text 3.3.3 < code >, synt 5.4.1 text 4.7.8, 5.4.6

< arithmetic operator >, def 2.3 text 3.3.4 . colon :,synt2.3,3.2.1,4.1.1,4.56.1,4.6.1,4.7.1,5.2.1
array, synt 2.3, 5.2.1, 5.4.1 colon equal :=, synt 2.3, 4.2.1, 4.6.1, 5.3.1
array, text 3.1.4.1 comma, , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1,5.1.1, 5.2.1,

< array declaration >, def 5.2.1 synt 5 text 5.2.3 5.3.1,5.4.1

60329000 A 2-49

comment, synt 2.3
comment convention, text 2.3
< compound statement >, def 4.1.1 synt 4.5.1 text 1
< compound tail >, def 4.1.1
< conditional statement >, def 4.5.1 synt 4.1.1 text 4.5.3

< decimal fraction >, def 2.5.1
< decimal number >, def 2.5.1 text 2.5.3
decimal point . ,synt 2.3,2.5.1,

label, synt 2.3, 5.4.1
< fabel >, def 3.5.1 synt 4.1.1,4,5.1,4.6.1 text1,4.1.3
< left part >, def 4.2.1
< left part list >, def 4.2.1
< letter >, def 2.1 synt 2, 2.4.1,3.2.1,4.7.1
< letter string >, def 3.2.1, 4.7.1
local, text 4.1.3
< local or own type >, def 5.1.1 synt 5.2.1
< logical operator >, def 2.3 synt 3.4.1 text 3.4.5
< logical value >, def 2.2.2 synt 2, 3.4.1

< declaration >, def 5 synt 4.1.1 text 1, 5 (complete section) < lower bound >, def 5.2.1 text 6.2.4

< declarator >, def 2.3
< deflimiter >, def 2.3 synt 2
< designational expression >, def 3.5.1synt 3, 4.3.1.,5.3.1
text 3.5.3
< digit >, def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / +, synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1
< dummy statement >, def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.65.3.2
< empty >, def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1
end, synt 2.3, 4.1.1
entier, text 3.2.5
exponentiation 1, synt 2.3, 3.3.1 text 3.3.4.3
< exponent part >, def 2.5.1 text 2.5.3
< expression >, def 3 synt 3.2.1, 4.7.1 text 3 (complete
section)

< factor >, def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1
< for clause >, def 4.6.1 text 4.6.3
< for list >, def 4.6.1 text 4.6.4
< for list element >, def 4.6.1 text 4.6.4.1,4.6.4.2,4.6.4.3
< formal parameter >, def 5.4.1 text 5.4.3
< formal parameter list >, def 5.4.1
< formal parameter part >, def 5.4.1
< for statement >, def 4.6.1 synt 4.1.1, 4.5.1 text 4.6
(complete section)
< function designator >, def 3.2.1 synt 3.3.1, 3.4.1
text 3.2.3, 5.4.4

go to, synt 2.3, 4.3.1
< go to statement >, def 4.3.1 synt 4.1.1 text 4.3.3

< identifier >, def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1
text 2.4.3
< identifier list >, def 5.4.1
if, synt 2.3, 3.3.1, 4.5.1
< if clause >, def 3.3.1, 4.6.1 synt 3.4.1, 3.6.1
text 3.3.3, 4.5.3.2
< if statement >, def 4.5.1 text 4.5.3.1
< implication >, def 3.4.1
integer, synt 2.3, 5.1.1 text 5.1.3
< integer >, def 2.5.1 text 2.5.4

2-50

minus -, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1
< multiplying operator >, def 3.3.1

nonlocal, text 4.1.3
< number >, def 2.5.1 text 2.5.3, 2.5.4

< open string >, def 2.6.1
< operator >, def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

< parameter delimiter >, def 3.2.1, 4.7.1 synt5.4.1
text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1,
4.7.1,5.4.1 text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
< primary >, def 3.3.1
procedure, synt 2.3, 5.4.1
< procedure body >, def 5.4.1
< procedure declaration >, def 5.4.1 synt 5 text 5.4.3
< procedure heading >, def 5.4.1 text 5.4.3
< procedure identifier >, def 3.2.1 synt 3.2.1, 4.7.1,
5.4.1 text 4.7.5.4
< procedure statement >, def 4.7.1synt 4.1.1 text 4.7.3
< program >, def 4.1.1 text 1

< proper string >, def 2.6.1
quantity, text 2.7

real, synt 2.3, 5.1.1 text 5.1.3
< relation >, def 3.4.1 text 3.4.5
< relational operator >, def 2.3, 3.4.1

scope, text 2.7
semicolon ;, synt 2.3, 4.1.1, 5.4.1
< separator >, def 2.3
< sequential operator >, def 2.3
< simple arithmetic expression >, def 3.3.1 text 3.3.3
< simple Boolean >, def 3.4.1
< simple designational expression >, def 3.5.1
< simple variable >, def 3.1.1 synt 5.1.1 text 2.4.3
space LI, synt 2.3 text 2.3, 2.6.3
< specification part >, def 5.4.1 text 5.4.5
< specificator >, def 2.3
< specifier >, def 5.4.1
standard function, text 3.2.4, 3.2.5
< statement >, def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4
(complete section)

60329000 A

statement bracket, see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1
< string >, def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes ¢ ’, synt 2.3, 2.6.1, text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets [}, synt 2.3, 3.1.1, 3.5.1, 5.2.1
< subscripted variable >, def 3.1.1 text 3.1.4.1
< subscript expression >, def 3.1.1 synt 3.5.1
< subscript list >, def 3.1.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1
< switch declaration >, def 5.3.1 synt 5 text 5.3.3
< switch designator >, def 3.5.1 text 3.5.3

< switch identifier >, def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1

< switch list >, def 5.3.1

< term >, def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5

true, synt 2.2.2
< type >, def 5.1.1 synt 5.4.1 text 2.8
< type declaration >, def 5.1.1 synt 5 text5.1.3
< type list >, def 5.1.1

< unconditional statement >, def 4.1.1, 4.5.1

< uniabelled basic statement >, def 4.1.1

< unlabelled block >, def 4.1.1

< unlabelled compound >, def 4.1.1

< unsigned integer >, def 2.5.1, 3.5.1

< unsigned number >, def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

< upper bound >, def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3
< value part >, def 5.4.1 text 4.7.3.1

< variable >, def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1

text 3.1.3
< variable identifier >, def 3.1.1

while, synt 2.3, 4.6.1 text 4.6.4.3

END OF THE REPORT

60329000 A

2-51

INPUT-OUTPUT 3

The processes of input and output deal with the mapping of basic characters onto input and output
devices under the control of format rules. Characters are grouped to form lines, and lines are
grouped to form pages. A page consists of printed lines and a line may be a printed line or card
image.

The relation between lines and pages and physical entities (such as records and blocks) depends on
formatting rules, channel specifications (B.1.1), SCOPE input-output, and the physical device
involved in the input-output process. The user need not, in general, be aware of the details of this
relationship, since the input-output process is symmetric. Given the same specifications, a file
output by the system is disassembled into the same lines and pages as input by the system.

3.1 COMPARISON WITH ACM PROPOSAL FOR INPUT-OUTPUT

The following descriptions explain the differences between the input-output procedures included in
ALGOL and the procedures defined in the ACM proposal.T To facilitate cross referencing, the same
numbering system is used in this chapter as in the proposal. The ACM proposal is a continuation of
the ALGOL-60 Revised Report, and should be considered a continuation of Chapter 2 of this manual.

All descriptions of the modifications to the input-output procedures are made at the main reference in
the proposal; and wherever feasible, all other references are noted. The reader should assume, how-
ever, that such modifications apply to all references to the features, noted or otherwise.

A section or feature not mentioned'in this chapter is implemented, in this version of ALGOL, in exact
accordance with the proposal.

This chapter also contains descriptions of additional input-output procedures which are not defined in
the ACM proposal, and a description of the transmission error, end-of-file, and end-of-tape functions
automatically supplied within the framework of the input-output procedures.

Toa Proposal for Input-Output Conventions in ALGOL-60", published in The Communications of the
ACM, vol. 7 no. 5, May 1964.

60329000 A 3-1

A Proposal for input-Output Conventions in ALGOL-60

A Report of the Subcommittee on ALGOL of the ACM Programming Languages Committee

D. E. Knuth, Chairman
L. L.Bumgarner P.Z.Ingerman J.N.Merner
D. E.Hamilton M. P. Lietzke D.T. Ross

The ALGOL-60 language as first defined made no explicit reference to input and output processes. Such processes
appeared to be quite dependent on the computer used, and so it was difficult to obtain agreement on those matters. As
time has passed, a great many ALGOL compilers have come into use, and each compiler has incorporated some input-
output facilities. Experience has shown that such facilities can be introduced in a manner which is compatible and con-
sistent with the ALGOL language, and which {more importantly) is almost completely machine-independent. However,
the existing implementations have taken many different approaches to the subject, and this has hampered the inter-
change of programs between installations. The ACM ALGOL committee has carefully studied the various proposals in

an attempt to define a set of conventions for doing input and output which would be suitable for use on most computers.
The present report constitutes the recommendations of that committee.

The input-output conventions described here do not involve extensions or changes to the ALGOL-60 language. Hence
they can be incorporated into existing processors with a minimum of effort. The conventions take the form of a set of
procedures, ! which are to be written in code for the various machines; this report discusses the function and use of these
procedures. The material contained in this proposal is intended to supplement the procedures in real, out real, in
symbol, out symbol which have been defined by the international ALGOL committee; the procedures described here
could, with trivial exceptions, be expressed in terms of these four.

The first part of this report describes the methods by which formats are represented; then the calls on the input and
output procedures themselves are discussed. The primary objective of the present report is to describe the proposal
concisely and precisely, rather than to give a programmer’s introduction to the input-output conventions. A simpler and
more intuitive (but less exact) description can be written to serve as a teaching tool.

Many useful ideas were suggested by input-output conventions of the compilers listed in the references below. We are
also grateful for the extremely helpful contributions of F. L. Bauer, M. Paul, H. Rutishauser, K. Samelson, G. Seegmuller,
W. L. v.d. Poel, and other members of the European computing community, as well as A. Evans, Jr., R. W. Floyd,

A. G. Grace, J. Green, G. E. Haynam, and W. C. Lynch of the USA. .

A. Formats

In this saction a certain type of string, which specifies the format of quantities to be input or output, is defined, and its
meaning is explained.

A.1 Number Formats (cf. ALGOL Report 2.5)

A.1.1 Syntax
Basic components:

< replicator > :: = < unsigned integer >| X

< insertion > :: = B| < replicator > B| < string >

1 Throughout this report, names of system procedures are in lower case, and names of procedures used in illustrative
examples are in upper case. (NOTE: Additional input-output procedures provided by CONTROL DATA
are in upper case.)

2 Defined at meeting IFIP/WG2.1 - ALGOL in Delft during September, 1963. .

3-2 60329000 A

< insertion sequence > .. = < empty >| < insertion sequence > < insertion >
< Z>:=2Z|<replicator > Z| Z < insertion sequence > C| < replicator >
Z < insertion sequence > C
<Zpart>:=<Z>|<Zpart><Z>|<Zpart><insertion >
<D>: =D |<replicator > D| D < insertion sequence > C|
< replicator > D < insertion sequence > C
<Dpart>:=<D>|<D part > <D>| <D part > < insertion >
< T part > .= < empty >| T < insertion sequence >
< sign part > .= < empty >| < insertion sequence > + |
< insertion sequence > ~
< integer part > .= < Z part >| < D part >| < Z part > < D part >
Format Structures:
< unsigned integer format > :: = < insertion sequence > < integer part >
< decimal fraction format > ::= . < insertion sequence > < D part >
< T part >| V < insertion sequence > < D part > < T part >
< exponent part format > ::= 10 < sign part > < unsigned integer format >
< decimal number format > :: = < unsigned integer format > < T part >|
< insertion sequence > < decimal fraction format >|
< unsigned integer format > < decimal fraction format >
< number format > :: = <sign part > < decimal number format >|
< decimal number format > + < insertion sequence >|
< decimal number format > ~ < insertion sequence >|
< sign part > < decimal number format > < exponent part format >

Note. This syntax could have been described more simply, but the rather awkward constructions here have been for-
mulated so that no syntactic ambiguities (in the sense of formal language theory) will exist.

A.1.2 Examples. Examples of number formats appear in Figure 1.

60329000 A 3-3

The letter C is not implemented. All references to C in the ACM Report should be disregarded, e.g.,

<Z>::=2 |<replicator> Z | Z <insertion sequence>C | <replicator> Z <insertion sequence>C will be

implemented as follows:

<Z>::=Z7 | <replicator> Z

Number format

+2Z2CDDD.DD
+3Z2C3D.2D
—-3D2B3D.2DT
52.5D—
‘integerLipartL)’ —42ZV
¢, ufraction’B3D
—5Dw0+2D". ..
+ZD 1022
+D.DDBDDBDDB 10
+DD
XB.XD 10—DDD

Result from -13.296

-013.30
—013.30
—000 013.29
13.29600—
integer part -13,
fraction 296
—.1329610+02. . .
-13

—1.32 96 00 10+01
(depends on call)

Result from 1007.999

+1,008.00
+1,008.00
001 007.99
1007.99900
integer part 1007,
fraction 999
.1008010+04. . .
+1010 2

+1.00 79 99 10 +03

(depends on call)

Figure 1

Figure 1 (depends on call) - for definition of call see A.1.3.3 Sign and Zero Suppression.
A. Formats

A format string may be a string or an array into which a string has been read, using H format (Sec-
tion A.2.3.3). When a format string can be specified either form can be used.

A.1.3 Semantics. The above syntax defines the allowable strings which can comprise a “‘number format.” We will first
describe the interpretation to be taken during output.

A.1.3.1 Replicators. An unsigned integer n used as replicator means the quantity is repeated n times; thus 3B is equiva-
to BBB. The character X as replicator means a number of times which will be specified when the format is called (see
Section B.3.1).

A.1.3.1 Replicators

A replicator of value 0 (n or X) implies the absence of the quantity to which the replicator refers. The
maximum size of a replicator is 262,142,

A.1.3.2 Insertions. The syntax has been set up so that strings, delimited by string quotes, may be inserted anywhere
within a number format. The corresponding information in the strings (except for the outermost string quotes) will
appear inserted in the same place with respect to the rest of the number. Similarly, the letter B may be inserted anywhere
within a number format, and it stands for a blank space.

A.1.3.3 Sign, zero, and comma suppression. The portion of a number to the left of the decimal point consists of an

optional sign, then a sequence of Z's and a sequence of D’s with possible C’s following a Z or a D, plus possible insertion
characters.

3-4 60329000 A

The convention on signs is the following: (a) if no sign appears, the number is assumed to be positive, and the treatment
of negative numbers is undefined: (b) if a plus sign appears, the sign will appear as + or — on the external medium; and
(c) if a minus sign appears, the sign will appear if minus, and will be suppressed if plus.

The letter Z stands for zero suppression, and the letter D stands for digit printing without zero suppression. Each Z and

D stands for a single digit position; a zero digit specified by Z will be suppressed, i.e., replaced by a blank space, when

all digits to its left are zero. A digit specified by D will always be printed. Note that the number zero printed with all Z's
in the format will give rise to all blank spaces, so at least one D should usually be given somewhere in the format. The
letter C stands for a comma. A comma following a D will always be printed; a comma following a Z will be printed except
when zero suppression takes place at that Z. Whenever zero or comma suppression takes place, the sign (if any) is printed
in place of the rightmost character suppressed.

A.1.3.3 Sign and Zero Suppression

On input, if no sign appears in the format and the number is negative, an error condition exists. If
the procedure BAD DATA (Section 3. 3) has not been called, or if the label established by it is no
longer accessible, an error message is issued and the object program terminates abnormally
(Chapter 8). Otherwise, control is transferred to the BAD DATA label. Output uses the standard
format bounded on either side by an asterisk (Section A.2.3.6). Comma suppression is not
implemented.

A.1.3.4 Decimal points. The position of the decimal point is indicated either by the character “’.”" or by the letter V. In
the former case, the decimal point appears on the external medium; in the latter case, the decimal point is “implied” i.e.,
it takes up no space on the external medium. (This feature is most commonly used to save time and space when preparing
input data). Only D’s (no Z's) may appear to the right of the decimal point.

A.1.3.4 Decimal points. In an exponent part, D's and Z's may appear to the right of the decimal point.

A.1.3.6 Truncation. On output, nonintegral numbers are usually rounded to fit the format specified. If the letter T is
used, however, truncation takes place instead. Rounding and truncation of a number X to d decimal places are defined
as follows:

Rounding 10~dentier(109X +0.5)

Truncation 10'dsign(X) entier (109 abs(X))

A.1.3.5 Truncation

On output, the number of significant digits appearing for a real number will correspond to the storage
of the number in 60-bit floating-point form. Thus 14 or 15 significant digits are output, followed by

trailing zeros, if necessary (Section 5.1.3). The letter T has no meaning when applied to an integer
number and is ignored.

60329000 A 3-5

A.1.3.6 Exponent part. The number following a “ 10" is treated exactly the same as the portion of a number to the left
of a decimal point (Section A.1.3.3), except if the “D” part of the exponent is empty, i.e., no D’s appear, and if the
exponent is zero, the ““ 10" and the sign are deleted.

A.1.3.7 Two types of numeric format. Number formats are of two principal kinds: (a) Decimal number with no expo-
nent. In this case, the number is aligned according to the decimal point with the picture in the format, and it is then
truncated or rounded to the appropriate number of decimal places. The sign may precede or follow the number.

(b) Decimal number with exponent. In this case, the number is transformed into the format of the decimal number
with its most significant digit non-zero; the exponent is adjusted accordingly. If the number is zero, both the decimal
part and the exponent part are output as zero. If in case (a) the number is too large to be output in the specified form,
or if in case (b) the exponent is too large, an overflow error occurs. The action which takes place on overflow is unde-
fined; it is recommended that the number of characters used in the output be the same as if no overflow had occurred,
and that as much significant information as possible be output.

A.1.3.7 Two Types of Numeric Format

A maximum of 24 D's and Z's may appear before the exponent part in a number format; in the exponent
part, the maximum is 4. On output overflow, the standard format bounded on either side by an asterisk
is used (Section A.2, 3. 6).

A.1.3.8 Input. A number input with a particular format specification should in general be the same as the number which
would be output with the same format, except less error checking occurs. The rules are, more precisely:

(a) leading zeros and commas may appear even though Z's are used in the format. Leading spaces may appear even if D’s
are used. In other words, no distinction between Z and D is made on input.

(b) Insertions take the same amount of space in the same positions, but the characters appearing there are ignored on
input. In other words, an insertion specifies only the number of characters to ignore, when it appears in an input format.

{c) If the format specifies a sign at the left, the sign may appear in any Z,D or C position as long as it is to the left of the
number. A sign specified at the right must appear in place.

(d) The foliowing things are checked: The positions of commas, decimal points, ““ 10"’ and the presence of digits in place
of D or Z after the first significant digit. If an error is detected in the data, the result is undefined; it is recommended
that the input procedure attempt to reread the data as if it were in standard format (Section A.5) and also to give some
error indication compatible with the system being used. Such an error indication might be suppressed at the program-
mer’s option if the data became meaningful when it was reread in standard format.

A.1.3.8 Input

If the input data does not conform to the format, an error condition exists. If the procedure BAD DATA
was not called or if the established label is no longer accessible, an error message is issued; and the
object program terminates abnormally. Otherwise, control is transferred to the BAD DATA label. C
is not implemented.

A.2 Other formats
A.2.1 Syntax

< 8> ::=§| <replicator > S
< string format > . = < insertion sequence > < 8 >| < string format > < § >| < string format > < insertion >

3-6 60329000 A

<A>:.=A| <replicator > A

< alpha format > :: = < insertion sequence > < A >| < alpha format > <A >|
< alpha format > < insertion >

<nonformat>::=I|R|L

< Boolean part > .= P|5F| FFFFF| F

< Boolean format > :: = < insertion sequence > < Boolean part >
< insertion sequence >

< title format > :: = < insertion >| < title format > < insertion >

< alignment mark > ::= / |t | <replicator > /| < replicator > 1

< format item 1 > :: = <number format >| < string format >|
< alpha format >|< nonformat >|< Boolean format >|< title format >|
< alignment mark > < format item 1>

< format item > :: = < format item 1 >| < alignment mark >| < format item > < alignment mark >

A.2.2 Examples

162.5D///
3S‘="684B
AA=

R

P
/‘Execution.’t

The following definitions replace the definitions in the ACM Report:
A.2 Other Formats
A.2.1 Syntax

<S>::=8 | <replicator>$8
<string format>: : = <insertion sequence><8> | <string format>

<S> | <string format> <insertion>

60329000 A 3-7

A> =A |<replicator>A
<alpha format> :: = <insertion sequence> <A> | <alpha format> <A> |
<alpha format> <insertion>
<standard format>::=N
<nonformat>::=I|R|L|M|H
<Boolean part>::=P | F
<Boolean format> : : = <insertion sequence> <Boolean part><insertion sequence>
<title format> : : = <insertion> |
<title format> <insertion>
<alignment mark>::=/| 1 [J|
<replicator>/ | <replicator> |
<replicator>J
<format item 1>::=<number format> |
<string format> | <alpha format>
| <nonformat> | <Boolean format> |
<title format> | <alignment mark>
" «format item 1> | <standard format>
<format item>::=<format item 1> |
<alignment mark> | <format item>

<alignment mark>

The characters M and H have been added to the non-format codes.
J has been added to alignment mark (Section B. 3).

A.2.3 Semantics

A.2.3.1 String format. A string format is used for output of string quantities. Each of the S-positions in the format
corresponds to a single character in the string which is output. If the string is longer than the number of S's, the leftmost
characters are transferred: if the string is shorter, LI-symbols are effectively added at the right of the string.

The word ““character” as used in this report refers to one unit of information on the external input or output medium; if
ALGOL basic symbols are used in strings which do not have a single-character representation on the external medium
being used, the result is undefined.

A.2.3 Semantics

The maximum length of a format item, after expanding each quantity in it by the corresponding replica-
tor, is 136 characters; the expanded format item corresponds to the data on the external device.

3-8 60329000 A

A.2.3.1 String Format

Because of the difference in the definition of a string (Section 2.6.1), each of the S-positions in the
format corresponds to a single basic character in the output string rather than a single basic symbol.
If the string exceeds the number of S's, the leftmost basic characters are transferred; if the string is
shorter, blank characters are filled.to the right.

A.2.3.2 Alpha format. Each letter A means one character is to be transmitted; this is the same as S-format except the
ALGOL equivalent of the alphabetics is of type integer rather than a string. The translation between the external and
internal code will vary from one machine to another, and so programmers should refrain from using this feature in a
machine-dependent manner. Each implementor should specify the maximum number of characters which can be used
for a single integer variable. The following operations are undefined for quantities which have been input using alpha
format; arithmetic operations, relations except ‘=" and “#", and output using a different number of A’s in the output
format. If the integer is output using the same number of A’s, the same string will be output as was input.

A programmer may work with these alphabetic quantities in a machine-independent manner by using the transfer func-
tion equiv(S) where S is a string; the value of equiv(S) is of type integer, and it is defined to have exactly the same value
as if the string S had been input using alpha format. For example, one may write

if X = equiv(‘ALPHA") then go to PROCESS ALPHA;

where the value of X has been input using the format “AAAAA".

A.2.3.2 Alpha Format

Because of the difference in the definition of a string (Section 2.6.1), each letter A indicates the
transmission of one basic character rather than one basic symbol. The maximum number of char-
acters which may be used for a single integer variable is defined as 8. Thus the maximum replica-
tion of A within a format item is 8. The A format is the same as S format except that the ALGOL
equivalent of the basic character is of type integer rather than string.

Similarly, the transfer function EQUIV (S) is an integer procedure, the value of which is the internal
representation of the first 8 basic characters in the string S. If the string contains less than 8 char-
acters, blanks are added to the right. Thus the value of EQUIV (S) is the same as if the string char-
acters had been input under A format. The EQUIV function (as well as input under A and H formats)
assigns an internal representation of zero to a blank character to facilitate limited string manipula-
tion by integer arithmetic, as leading blanks are not significant. In the 64 character set, use of
zero for blank means that the character normally assigned to display code zero (colon) cannot be
input or output under A or H format. It can still be input and output under S format or standard

format.

A.2.3.3 Nonformat. An |, R or L is used to indicate that the value of a single variable of integer, real, or Boolean type,
respectively, is to be input or output from or to an external medium, using the internal machine representation. If a
value of type integer is output with R-format or if a value of type real is input with |-format, the appropriate transfer
function is invoked. The precise behavior of this format, and particularly its interaction with other formats, is unde-

fined in general.
A.2.3.3 Nonformat

The M code added to the nonformat codes indicates that the value of a single variable of any type is to
be input or output in the exact form in which it appears on the external device or in memory.

60329000 A 3-9

The nonformat codes I,R, L and M each input or output 20 consecutive (6-bit) display characters, and
map them to or from the 20 consecutive octal (3-bit) digits which constitute one variable internally
(Section 5. 1. 3).

The H code added to the nonformat codes indicates that 8 consecutive display characters are to be
input or output to or from a single integer variable.

A.2.3.4 Boolean format. When Boolean quantities are input or output, the format P, F, 5F or FFFFF must be used.
The correspondence is defined as follows:

Internal to ALGOL P F 5F = FFFEF
true 1 T TRUELI
false 0 F FALSE

On input, anything failing to be in the proper form is undefined.

A.2.3.4 Boolean format. When Boolean quantities are input or output, the format P,F, must be used.
The correspondence is defined as follows (Section A.2.1):

Internal to ALGOL P F
true 1 T

false 0
External representations in F format are t and f rather than true or false.

On input, incorrect forms cause an error condition. If the procedure BAD DATA was not called or if
the established label is no longer accessible, an error message is issued and the object program
terminates abnormally.

A.2.35 Title format. All formats discussed so far have given a correspondence between a single ALGOL real, integer,
Boolean, or string quantity and a number of characters in the input or output. A title format item consists entirely of
insertions and alignment marks, and so it does not require a corresponding ALGOL quantity. On input, it merely causes
skipping of the characters, and on output it causes emission of the insertion characters it contains. (If titles are to be
input, alpha format should be used; see Section A.2.3.2).

A.2.3.6 Alignment marks. The characters “*/* and “‘1" in a format item indicate line and page control actions. The pre-
cise definition of these actions will be given later (see Section B.5); they have the following intuitive interpretation:

(a) “/”" means go to the next line, in a manner similar to the “carriage return” operation on a typewriter. {b) "1’ means
do a /-operation and then skip to the top of the next page.

Two or more alignment marks indicates the number of times the operations are to be performed; for example, /"’ on
output means the current line is completed and the next line is effectively set to all blanks. Alignment marks at the left
of a format item cause actions to take place before the regular format operation, and if they are at the right they take
place afterwards.

Note. On machines which do not have the character 1 in their character set, it is recommended that some convenient
character such as an asterisk be substituted for 1 in format strings.

3-10 60329000 A

A.2.3.6 Alignment marks. The character J has been added to indicate character control action in a
format item. J means skip the character pointer to the next tabulation position; similar to the tab
operation on a typewriter.

An asterisk may be substituted for 4 in format strings.
A.3 Format Strings
The format items mentioned above are combined into format strings according to the rules in this section.
A3.1 Syntax
< format primary > .. = < format item >|
< replicator > (< format secondary >)| (< format secondary >)
< format secondary > ::= < format primary >|
< format secondary > , < format primary >

< format string > :: = * < format secondary >’|*’

A.3.2 Examples

‘4 (152ZD) ,//

KT)

«6D10+D,X (2(20B.8D10+D) ,10S) ’

“, .. This L is LI a LJ peculiar L ‘format LI string’ »

A.3.3 Semantics. A format string is simply a list of format items, which are to be interpreted from left to right. The
construction ~ < replicator > (< format secondary >) ” is simply an abbreviation for “replicator” repetitions of the
parenthesized quantity (see Section A.1.3.1). The construction *’ (< format secondary >} " is used to specify an infinite
repetition of the parenthesized quantity.

All spaces within a format string except those which are part of insertion substrings are irrelevant.

It is recommended that the ALGOL compiler check the syntax of strings which (from their context) are known to be

format strings as the program is compiled. In most cases it will also be possible for the compiler to translate format
strings into an intermediate code designed for highly efficient input-output processing by the other procedures.

A.3.3 Semantics

The infinite repetition of the parenthesized quantity is defined as meaning 262,142 repetitions.

60329000 A 3-11

A.4 Summary of Format Codes

A alphabetic character X arbitrary replicator
represented as integer .
Z zero suppression
B blank space A .
+ print the sign
C comma . L
- print the sign if
D digit it is minus
F Boolean TRUE or FALSE 10 exponent part indicator
| integer untranslated () delimiters of replicated

format secondaries
Boolean untransiated
, separates format items
Boolean bit P
line alignment
real untranslated g

- 0~

page alignment

¢?* delimiters of inserted string

L

P

R

S string character
T truncation
\'

implied decimal point . decimal point
The following items have been added to format codes:

character alignment
standard format

variable of any type

oo oz

integer variable;
and C has been deleted.

A5 “Standard”’ Format
There is a format available without specifications (cf. Section B.5) which has the following characteristics.

(a) On input, any number written according to the ALGOL syntax for < number > is accepted with the conventional
meaning. These are of arbitrary length, and they are delimited at the right by the following conventions: (i) A letter or
character other than a decimal point, sign, digit, or 10" is a delimiter. {ii) A sequence of k or more blank spaces serves

as a delimiter as in (i); a sequence of less than k blank spaces is ignored. This number k >1 is specified by the implementor
(and the implementor may choose to let the programmer specify k on a control card of some sort). {iii) If the number
contains a decimal point, sign, digit, or 10" on the line where the number begins, the right-hand margin of that line
serves as a delimiter of the number. However, if the first line of a field contains no such characters, the number is deter-
mined by reading several lines until finding a delimiter of type (i) or (ii). In other words, a number is not usually split
across more than one line, unless its first line contains nothing but spaces or characters which do not enter into the
number itself. (See Section B.5 for further discussion of standard input format.)

{b) On output, a number is given in the form of a decimal number with an exponent. This decimal number has the
amount of significant figures which the machine can represent; it is suitable for reading by the standard input format.
Standard output format takes a fixed number of characters on the output medium; this size is specified by each ALGOL
installation. Standard output format can also be used for the output of strings, and in this case the number of characters
is equal to the length of the string. :

3-12 60329000 A

A.5 Standard Format

Standard format may be invoked by the format item N, through the exhaustion of the format string, or

by specifying an empty format string. The standard format of both integer and real variables is

+D.13D; +3D. When the given format is incorrect, the modified standard format is ‘*’ +D. 13Dy (+3D*’
(Sections A.1.3.3 and A.1.3.7).

The number of blank characters, k, serving as a delimiter between numbers in standard format may be
specified on the channel card (Chapter 7). If not specified, two is assumed.

String parameters can be output under standard format, nS, where n is the length of the string.

B. Input and Output Procedures

B.1 General Characteristics

The over-all approach to input and output which is provided by the procedures of this report will be introduced here by
means of a few examples, and the precise definition of the procedures will be given later. :

Consider first a typical case, in which we want to print a line containing the values of the integer variables N and M, each
of which is nonnegative, with at most five digits; also the value of X[M], in the form of a signed number with a single
nonzero digit to the left of the decimal point, and with an exponent indicated; and finally the value of cos(t), using a
format with a fixed decimal point and no exponent. The following might be written for this case:

output 4(6,°2(BBBZZZZD) ,38+D.DDDDDD 10+DDD,3B,
-Z2.DDDDBDDDD/*,N,M,X[M] cos (t}).

This example has the following significance. (a) The “4" in output 4 means four values are being output. {b) The
6’ means that output is to go to unit 6.

This is the logical unit number, i.e., the programmer’s number for that unit, and it does not necessarily mean physical
unit number 6. See Section B.1.1, for further discussion of unit numbers. {c) The next parameter,‘2(BBB . . : DDDD/",
is the format string which specifies a format for outputting the four values. (d) The last four parameters are the values
being printed. If N = 500, M = 0, X[0] = 18061579, and t = 3.1415926536, we obtain the line

LUUUU5000 L L LILIULIOU LILI+1.806158 10+007 L1 LILI-1.00001L10000

as output.

Notice the “/ used in the above format; this symbol signifies the end of a line. If it had not been present, more numbers
could have been placed on the same line in a future output statement. The programmer may build the contents of a

line in several steps, as his algorithm proceeds, without automatically starting a new line each time output is called. For

example, the above could have been written

output 1(6,'BBBZZZZD’N);
output 1(6,'BBBZZZZD’M);

60329000 A ’ 3-13

output 2(6,‘3B+D.DDDDDD,1D+DDD,3B,—Z.DDDDBDDDD’,
X{M] cos(t)) ;
output 0(6,°);

with equivalent results.

In the example above a line of 48 characters was output. If for some reason these output statements are used with a
device incapable of printing 48 characters on a single line, the output would actually have been recorded on two or more
lines, according to a rule which automatically keeps from breaking numbers between two consecutive lines wherever
possible. (The exact rule appears in Section B.5)

Now let us go to a slightly more complicated example:

the real array A [1:n,1:n] is to be printed, starting on a new page. Supposing each element is printed with the format
#gB-Z22Z.DD", which uses ten characters per item, we could write the following program:

output 0(6,1’);

for i := 1 step 1 until n do

begin for j := 1 step 1 until n do output 1(6,'BB-2222.DD’,
Alijl); output 0(6,*//’) end.

If 10n characters will fit on one line, this little program will print n lines, double spaced, with n values per line; other-
wise n groups of k lines separated by blank lines are produced, where k lines are necessary for the printing of n values.
For example, if n = 10 and if the printer has 120 character positions, 10 double-spaced lines are produced. If, however,
a 72-character printer is being used, 7 values are printed on the first line, 3 on the next, the third is blank, then 7 more
values are printed, etc.

There is another way to achieve the above output and to obtain more control over the page format as well. The subject
of page format will be discussed further in Section B.2, and we will indicate here the manner in which the above opera-
tion can be done conveniently using a single output statement. The procedures output 0, output 1, etc. mentioned
above provide only for the common cases of output, and they are essentially a special abbreviation for certain calls on
the more general procedure out list. This more general procedure could be used for the above problem in the
following manner:

out list (6,LAYOUT,LIST)
Here LAYOUT and LIST are the names of procedures which appear below. The first parameter of out list is the
logical unit number as described above. The second parameter is the name of a so-called “layout procedure’’; general
layout procedures are discussed in Section B.3. The third parameter of out list is the name of a so-called “list
procedure’’; general list procedures are discussed in Section B.4. In general, a layout procedure specifies the format con-

trol of the input or output. For the case we are considering, we could write a simple layout procedure (named
“LAYOUT") as follows:

procedure LAYOUT; format 1 (*t,(X(BB-2ZZZ.DD) ,//)’ n)
The 1 in format 1 means a format string containing one X is given.
The format string is 1,

(X(BB-2ZZZ.DD),//)

3-14 60329000 A

which means skip to a new page, then repeat the format X(BB-2ZZZ.DD),// until the last value is output. The latter
format means that BB-ZZ2ZZ.DD is to be used X times, then skip to a new line. Finally, format 1 is a procedure
which effectively inserts the value of n for the letter X appearing in the format string.

A list procedure serves to specify a list of quantities. For the problem under consideration, we could write a simple list
procedure {(named “LIST") as follows:

procedure LIST(ITEM);E i : =step 1 until n do
for j : =1 step 1 until n do ITEM(A[ij])

Here “ITEM Ali,j] ” means that Ali,j] is the next item of the list. The procedure ITEM is a formal parameter which
might have been given a different name such as PIECE or CHUNK; list procedures are discussed in more detail in Sec-
tion B.4.

The declarations of LAYOUT and LIST above, together with the procedure statement out list (6,LAYOUT,LIST),
accomplish the desired output of the array A.

Input is done in a manner dual to output, in such a way that it is the exact inverse of the output process wherever
possible. The procedures in list and input n correspond to out list and outputn(n=0,1,...).Two
other procedures, get and put, are introduced to facilitate storage of intermediate data on extemal devices.
For example, the statement put (100,LIST) would cause the values specified in the list procedure named LIST to be
recorded in the external medium with an identification number of 100. The subsequent statement get (100,LIST)
would restore these values. The external medium might be a disk file, a drum, a magnetic tape, etc.; the type of device
and the format in which data is stored there is of no concern to the programmer.

B.1.1 Unit numbers. The first parameter of input and output procedures is the logical unit number, i.e., some number
which the programmer has chosen to identify some input or output device. The connection between logical unit numbers
and the actual physical unit numbers is specified by the programmer outside of the ALGOL language, by means of
“control cards” preceding or following his program, or in some other way. provided by the ALGOL implementor. The
situation which arises if the same physical unit is being used for two different logical numbers, or if the same physical
unit is used both for input and for output, is undefined in general.

It is recommended that the internal computer memory (e.g. the core memory) be available as an “input-output device”,
so that data may be edited by means of input and output statements.

B.1.1 Unit Numbers

Wherever the term unit number appears in the ACM Report, channel number applies. This channel
number is synonymous with unit number in the ACM Report.

A channel is defined as all the specifications the I/0 system needs to perform operations on a particular
data file. A channel may be thought of as the set of descriptive information by which one reaches or
knows of a data file. A channel number is the name of this set of descriptive information as well as the
internal, indirect reference name of the data file accessed via this information.

The channel contains the following specifications about a data file:

1. Physical device description — device name, logical address, read or write mode

2. Status of physical device — binary or BCD, device position, error conditions

60329000 A 3-15

3. Data file description — file name, read or write mode, blocking information

4. Data file status — file position, error conditions

5. Description of formatting area — buffer area from or to which data in a file is moved
6. List of labels to which control will be given if errors occur.

Channels are established by means of channel cards (Chapter 7).

B.2 Horizontal and Vertical Control

This section deals with the way in which the sequence of characters, described by the rules of formats in Section A, is
mapped onto input and output devices. This is done in a manner which is essentially independent of the device being
used, in the sense that with these specifications the programmer can anticipate how the input or output data will appear
on virtually any device. Some of the features of this description will, of course, be more appropriately used on certain
devices than on others.

We will begin by assuming we are doing output to a printer. This is essentially the most difficult case to handle, and we
will discuss the manner in which other devices fit into the same general framework. The page format is controlled by
specifying the horizontal and the vertical layout. Horizontal layout is controlled essentially in the same manner as vertical
layout, and this symmetry between the horizontal and vertical dimensions should be kept in mind for easier understanding
of the concepts of this section.

Refer to Figure 2; the horizontal format is described in terms of three parameters (L,R,P), and the vertical format has
corresponding parameters (L',R’,P'). The parameters L, L' and R, R’ indicate left and right margins, respectively; Fig-
ure 2 shows a case where L = L' = 4 and R = R’ = 12. Only positions L through R of a horizontal line are used, and only
lines L' and R’ of the page are used; we require that 1<<L <R and 1<L'<R'. The parameter P is the number of charac-
ters per line, and P’ is the number of lines per page. Although L, R, L' and R’ are chosen by the programmer, the values
of P and P’ are characteristics of the device and they are usually out of the programmer’s control. For those devices on
which P and P’ can vary (for example, some printers have two settings, one on which there are 66 lines per page, and
another on which there are 88), the values are specified to the system in some manner external to the ALGOL program,
e.g. on control cards. For certain devices, values P or P' might be essentially infinite.

B.2 Horizontal and Vertical Control

The values are specified to the system by a suitable call on the procedure SYSPARAM (Section B.6) or
with channel cards.

The initial value of P on the channel card (Chapter 7) defines the maximum size of the line to be read
or written. P may be changed during program execution, but it may never exceed its initial setting.
The initial value of P’ on the channel card defines the number of lines per page; the value of this
parameter may be changed to exceed its initial setting.

Although Figure 2 shows a case where P=>R and P’'>R/, it is of course quite possible that P<R or P'<R’ (or both) might
occur, since P and P’ are in general unknown to the programmer. In such cases, the algorithm described in Section B.5

is used to break up logical lines which are too wide to fit on a physical line, and to break up logical pages which are too
large to fit a physical page. On the other hand, the conditions L<P and L'<P’ are insured by setting L or L' equal to 1
automatically if they happen to be greater than P or P’, respectively.

3-16 60329000 A

Characters determined by the output values are put onto a horizontal line; there are three conditions which cause a
transfer to the next line: (a) normal line alignment, specified by a ““/*’ in the format; (b) R-overflow, which occurs when
a group of characters is to be transmitted which would pass position R; and (c) P-overflow, which occurs when a group
of characters is to be transmitted which would not cause R-overflow but would pass position P. When any of these three
things occurs, control is transferred to a procedure specified by the programmer in case special action is desired (e.g. a
change of margins in case of overflow; see Section B.3.3).

\r-

L R P

fT72 34567 8 91011121314 15 16 17 18!

-
-QO“ANQMQWN-']

R

R’

- ed b ol
SRR

1®

4 Figure 2.

Similarly, there are three conditions which cause a transfer to the next page: (a’) normal page alignment, specified by a
“4*" in the format; (b’) R’-overflow, which occurs when a group of characters is to be transmitted which would appear
on line R'+1; and (c') P"-overflow, which occurs when a group of characters is to be transmitted which would appear on
line P'+1<R'+1. The programmer may indicate special procedures to be executed at this time if he wishes, e.g. to insert
a page heading, etc.

Further details concerning pages and lines will be given later. Now we will consider how devices other than printers can
be thought of in terms of the ideas above.

A typewriter is, of course, very much like a printer and it requires no further comment.

Punched cards with, say, 80 columns, have P = 80 and P’ = o=, Vertical control would appear to have little meaning for
punched cards, although the implementor might choose to interpret “‘4” to mean the insertion of a coded or blank card.

With paper tape, we might again say that vertical control has little or no meaning; in this case, P could be the number of
characters read or written at a time.

On magnetic tape capable of writing arbitrarily long blocks, we have P = P’ = oo. We might think of each page as being a
“record”’, i.e., an amount of contiguous information on the tape which is read or written at once. The lines are subdivi-
sions of a record, and R’ lines form a record; R characters are in each line. In this way we can specify so-called “blocking
of record.” Other interpretations might be more appropriate for magnetic tapes at certain installations, e.g. a format
which would correspond exactly to printer format for future offline listing, etc.

These examples are given merely to indicate how the concepts described above for printers can be applied to other
devices. Each implementor will decide what method is most appropriate for his particular devices, and if there are

60329000 A

choices to be made they can be given by the programmer by means of control cards. (channel cards) The manner in
which this is done is of no concern in this report; our procedures are defined solely in terms of P and P'.

B.3 Layout Procedures

Whenever input or output is done, certain “standard” operations are assumed to take place, unless otherwise specified
by the programmer. Therefore one of the parameters of the input or output procedure is a so-called “layout” procedure,
which specifies all of the nonstandard operations desired. This is achieved by using any or all of the six “’descriptive
procedures” format, h end, v end, h lim, v lim, no data described in this section.

The precise action of these procedures can be described in terms of the mythical concept of six “hidden variables,”
H1, H2, H3, H4, H5, H6. The effect of each descriptive procedure is to set one of these variables to a certain value; and
as a matter of fact, that may be regarded as the sum total of the effect of a descriptive procedure. The programmer
normally has no other access to these hidden variables (see, however, Section B.7). The hidden variables have a scope
which is local to inlist and to out list.

B.3 A seventh descriptive procedure, TABULATION, has been added with its corresponding hidden
variable H7 (Section B. 3. 3).

Tabulation is controlled by a J in the format. This causes the character pointer to be advanced to the
next "TAB'" position with intermediate positions being filled with blanks. The tabulation spacing for
the device may be specified external to the ALGOL system, or through a suitable call on SYSPARAM
(Section B. 6).

If the tabulation spacing is N, then the first character of tabulation fields would be:
L, L+N, L+2N, ..., L+KN where L+KN =min (P, R).

If any of the procedures FORMAT, H END, V END, H LIM, V LIM, TABULATION, or NO DATA are
called when neither IN LIST nor OUT LIST is active, they have the effect of a dummy procedure; a
procedure call is made and the procedure is exited immediately.

B.3.1 Format Procedures. The descriptive procedure call

format (string)
has the effect of setting the hidden variable H1 to indicate the string parameter. This parameter may either be a string
explicitly written, or a formal parameter; but in any event, the string it refers to must be a format string, which satisfies

the syntax of Section A.3, and it must have no ‘X"’ replicators.

The procedure format s just one of a class of procedures which have the names formatn, (n=0,1,...). The
name format = isequivalentto format O. In general, the procedure formatn s used with format strings
which have exactly n X-replicators. The call is

format n (string, Xq,X2, ... X))

where each X; is an integer parameter called by value. The effect is to replace each X of the format string by one of the
X, with the correspondence defined from left to right. Each X; must be nonnegative.

For example,

format 2 (‘XB . XD 10+DD’, 5,10)

3-18 60329000 A

is equivalent to
format (‘5B . 10D 10+DD’).

B.3.1 Format Procedures

The single procedure with call:

FORMAT (string, Xl’ X2, .o ,Xn)

replaces the n+1 procedures defined in the proposal with call:

FORMAT n (string, X, X

S S &

The number of X; variables included in the call to FORMAT defines the equivalent n+1 procedure
defined in the proposal. For example:

FORMAT (string, X;, Xy) is equivalent to
FORMAT 2 (string, X;, X,) defined in the proposal.
A call to FORMAT may include 0-30 variables. The number depends on the parenthesized structure
of the string.
B.3.2 Limits. The descriptive procedure call
h lim (LR}
has the effect of setting the hidden variable H2 to indicate the two parameters L and R. Similarly,
v lim (L'.R')
sets H3 to indicate L' and R’. These parameters have the significance described in Section B.2.If hlim and vlim
arenotused, L=L'=1and R=R'=00,
B.3.2 Limits

Since the first character of each record is used by the system to control skipping when paging is
requested, the H LIM procedure increases the values of the L and R parameters by 1 to overcome
the loss of this character. Any attempt to set the L and R parameters so that R-L = 21 is ignored.

B.3.3 End Control. The descriptive procedure

h end (PN'PR'PP); v end (PN/,PR',PP’);
have the effect of setting the hidden variables H4 and HS, respectively, to indicate their parameters. The parameters
PN,PR,PP,PNI,PRr;PPr are names of procedures (ordinally dummy statementsif hend and vend arenot

specified) which are activated in case of normal line alignment, R-overflow, P-overflow, normal page alignment,
R'-overflow, and P'-overflow, respectively.

60329000 A 3-19

B.3.3 The descriptive procedure call
TABULATION (n)

has the effect of setting the hidden variable H7 (Section B.3.5) to indicate the parameter n. Heren is
the width of the tabulation field, measured in the number of characters on the external device (Section B.5.1,
Process C). If tabulation is not called then H7 = 1.
B.3.4 End of Data. The descriptive procedure call

no data (L)
has the effect of setting the hidden variable H6 to indicate the parameter L. Here L is a label. End of data as defined
here has meaning only on input, and it does not refer to any specific hardware features; it occurs when data is requested
for input but no more data remains on the corresponding input medium. At this point, a transfer to statement labeled
L will occur. If the procedure no data is not used, transfer will occur to a “|abel” which has effectively been in-

serted just before the final end in the ALGOL program, thus terminating the program. (In this case the implementor may
elect to provide an appropriate error comment.) :

B.3.4 End of Data

End of data is defined as the occurrence of an end-of-file condition on the input device.

If the procedure NO DATA was not called, transfer occurs to the label established for the channel by
the EOF procedure (Section 3.3). If the EOF procedure was not called, or if the established label is
no longer accessible, the object program terminates abnormally with the message UNCHECKED EOF.
B.3.5 Examples. A layout procedure might look as follows:
procedure LAYOUT; begin format (*/);

if B then begin format 1(‘XB’,Y + 10}; no data (L32) end;

h lim (if B then 1 else 10,30) end;

Note that layout procedures never have formal parameters; this procedure, for example, refers to three global quantities,
B, Y and L32. Suppose Y has the value 3; then this layout accomplishes the following:

Hidden

Variable Procedure if B = true if B = false
H1 format ‘138’ A

H2 h lim (1,30) (10,30)

H3 vlim {1,00) (1,%0)

H4 h end () ..

H5 vend (.. G)

H6 no data L32 end program
H7 tabulation 1 1

3-20 60329000 A

As a more useful example, we can take the procedure LAYOUT of Section B.1 and rewrite it so that the horizontal
margins (11,110) are used on the page, except that if P-overflow or R-overflow occurs we wish to use the margins
(16,105) for overfiow lines.

procedure LAYOUT; begin
format 1 (‘t,(X(BB-22ZZ.DD) ,//) ,n);
hlim {11,110); h end (K,L,L) end;
procedure K; h lim {11,110);
procedure L; h lim (16,105);

This causes the limits (16,105) to be set whenever overflow occurs, and the’/’in the format will reinstate the original
margins when it causes procedure K to be called. (If the programmer wishes a more elaborate treatment of the overflow
case, depending on the value of P, he may do this using the procedures of Section B.6).

B.4 List Procedures

B.4.1 General characteristics. The concept of a list procedure is quite important to the input-output conventions de-
scribed in this report, and it may also prove useful in other applications of ALGOL. It represents a specialized application
of the standard features of ALGOL which permit a procedure identifier, L, to be given as an actual parameter of a pro-
cedure, and which permit procedures to be declared within procedures. The purpose of a list procedure is to describe a
sequence of items which is to be transmitted for input or output. A procedure is written in which the name of each

item V is written as the argument of a procedure, say ITEM, thus: ITEM(V). When the list procedure is called by an
input-output system procedure, another procedure (such as the internal system procedure out item) will be “sub-
stituted”’ for ITEM, V will be called by name, and the value of V will be transmitted for input or output. The standard
sequencing of ALGOL statements in the body of the list procedure determines the sequence of items in the list.

A simple form of list procedure might be written as follows:
procedure LIST (ITEM);
begin ITEM(A); ITEM(B); ITEM(C) end
which says that the values of A, B, and C are to be transmitted.
A more typical list procedure might be:
procedure PAIRS (ELT);
for i : = 1step 1 until n do begin ELT(A[i]);
ELT(B[i]) end

This procedure says that the values of the list of items A[1], B[1], A[2],B[2] , ..., Aln].B[n] are to be transmitted,
in that order. Note that if n<<0 no items are transmitted at all.

The parameter of the “item”” procedure (i.e., the parameter of ITEM or ELT in the above examples) is called by name.
It may be an arithmetic expression, a Boolean expression, or a string, in accordance with the format which will be
associated with the item. Any of the ordinary features of ALGOL may be used in a list procedure, so there is great
flexibility.

60329000 A 3-21

Unlike layout procedures which simply run through their statements and set up hidden variables H1 through HB6, a list
procedure is executed step by step with the input or output procedure, with control transferring back and forth. This

is accomplished by special system procedures such as in item and out item which are “interlaced”” with the
list procedure, as described in Sections B.4.2 and B.5. The list procedure is called with in item (or out item) as
actual parameter, and whenever this procedure is called within the list procedure, the actual input or output is taking
place. Through the interlacing, special format control, including the important device-independent overflow procedures,
can take place during the transmission process. Note that a list procedure may change the hidden variables by calling a
descriptive procedure; this can be a valuable characteristic, e.g. when changing the format, based on the value of the
first item which is input.

B.4.2 Other applications. List procedures can actually be used in many ways in ALGOL besides their use with input or
output routines; they are useful for manipulating linear lists of items of a quite general nature. To illustrate this fact,
and to point out how the interlacing of control between list and driver procedures can be accomplished, here is an ex-
ample of a procedure which calculates the sum of all of the elements in a list (assuming all elements are of integer or
real type):

procedure ADD(Y ,Z); begin

procedure A(X); Z:=2Z + X;

Z2:=0; Y(A)end
The call ADD(PAIRS,SUM) will set the value of SUM to be the sum of all of the items in the list PAIRS defined in Sec-
tion B.4.1. The reader should study this example carefully to grasp the essential significance of list procedures. Itis a

simple and instructive exercise to write a procedure which sets all elements of a list to zero.

B.5 Input and Output Calls

Here procedures are described which cause the actual transmission of input or output to take place.

To give a more complete range of input-outputprocedures, the following calls have been added:

IN CHARACTER IN REAL IN ARRAY
OUT CHARACTER OUT REAL OUT ARRAY

Character Transmission

The procedures IN CHARACTER and OUT CHARACTER provide the means of communicating between
input-output devices and the variables of the program in the terms of basic characters.

IN CHARACTER (channel, string, destination)

OUT CHARACTER (channel, string, source)
IN CHARACTER examines the next basic character on the channel; if its value corresponds to the
external BCD value 00g, the integer variable destination is set to -1. If not, the character is compared

for equality with the characters that comprise the string. If a match is found at the Jth character,
destination is set to value J; if no match is found, destination is set to 0.

OUT CHARACTER examines the value of source. If it is negative, the character which corresponds to

external BCD 00g is output. If the value is in the range of 1 to J, where J is the length of the string,
the corresponding character of the string is output; otherwise an object program error results.

3_92 60329000 A

In both IN CHARACTER and OUT CHARACTER embedded string quotes ¢ and ’ are each counted as
three characters, as in the procedure CHLENGTH (Section 3.2.1).

B.5.2 Transmission of Type real

Transmission of information of type real between variables of the program and an external device may
be accomplished by the procedure calls

IN REAL (channel, destination)

OUT REAL (channel, source)
where channel and source are arithmetic expressions and destination is a variable of type real.
The two procedures IN REAL and OUT REAL form a pair. The procedure IN REAL will assign the next
value appearing on the input device to the real type variable given as the second parameter. Similarly,
procedure OUT REAL will transfer the value of the second actual parameter to the output device.
A value which has been transferred by the call OUT REAL is represented in such a way that the same
value, in the sense of numerical analysis (Section 3.3.6), may be transferred back to a variable by means
of procedure IN REAL.
The procedures IN REAL and OUT REAL handle numbers in standard format.

B.5.3 Transmission of Arrays

Arrays may be transferred between input-output devices by means of the procedure calls

IN ARRAY (channel, destination)
OUT ARRAY (channel, source)

where channel must be an arithmetic expression and destination and source are arrays of type real.

Procedures IN ARRAY and OUT ARRAY also form a pair; they transfer the ordered set of numbers
which form the value of the array, given as the second parameter. The array bounds are defined by
the corresponding array declaration rather than by additional parameters (the mechanism for doing
this is already available in ALGOL-60 for the value call of arrays).

The order in which the elements of the array are transferred corresponds to the lexicographic order of
the values of the subscripts as follows:

a[kl,kz, ...k] precedes

alj1.jg, - - - .jm] provided

ki=jj (i=1,2,...,p-1)

and kp<jp (1=p=m)
It should be recognized that the possibly multidimensional structure of the array is not reflected in the

corresponding numbers on the external device where they appear only as a linear sequence as defined
above,

60329000 A 3-23

The representation of the numbers on the external device conforms to the same rules as given for IN
REAL and ouT REAL; in fact it is possible to input numbers by IN REAL which before have been output
by OUT ARRAY.

B.5.1 Output
An output process is initiated by the call:
out list (unit, LAYOUT,LIST)

Here unit is an integer parameter called by value, which is the number of an output device (cf. Section B.1.1). The param-
eter LAYOUT is the name of a layout procedure (Section B.3), and LIST is the name of a list procedure (Section B.4)}.

There is also another class of procedures, named output n, for n =0,1,2, . . ., which is used for output as follows:
output n (unit,format string,eq.ep, ..., en)
B.5.1 Output

The single procedure with call:
OUTPUT (channel, format string, e;,eq,...,ey,)
replaces the n+1 procedures defined with call:

OUTPUT n (channel, format string, €1,€9, ... »€n)

n=0,«°

The number of e; variables included in the call to OUTPUT defines to which of the n+1 procedures
(defined in the proposal) it is equivalent. For example:

OUTPUT (channel, format string, e,)
is equivalent to
OUTPUT 1 (channel, format string, e;)

defined in the proposal.
A call to OUTPUT may include 0-61 variables.

The parameters ej also may be an array identifier or an implied for-loop (these parameters are
explained at the end of Section B.5.1.1, page 3-29).

Each of these latter procedures can be defined in terms of out list as follows:
procedure output n(unit, format string, €189, ... ,en);

begin procedure A; format (format string);

3-24 60329000 A

procedure B(P); begin P(e1); P(ez); ... ;Ple,) end;
out list (unit, A,B) end
We will therefore assume in the following rules that out list has been called.

Let the variables p and p’ indicate the current position in the output for the unit under consideration, i.e., lines 1, 2, . . .
p' of the current page have been completed, as well as character positions 1,2, . . . ,p of the current line (i.e., of line
p'+1). At the beginning of the program, p = p' = 0. The symbols P and P’ denote the line size and page size (see Sec-
tion B.2). Output takes place according to the following algorithm:

Step 1. The hidden variables are set to standard values:
H1 is set to the “’standard” format ‘* .
H2issetso that L =1,R = oo,

H3 is set so that L' = 1,R'= oo,

H4 is set so that Py, Pg, Pp are all effectively equal to the DUMMY procedure defined as follows:
“procedure DUMMY ;;”.

HS is set so that P, P/, Ppr are all effectively equal to DUMMY.
H6 is set to terminate the program in case the data ends (this has meaning only on input).
Step 2. The layout procedure is called; this may change some of the variables H1, H2, H3, H4, H5, H6.

Step 3. The next format item of the format string is examined. (Note. After the format string is exhausted, “‘standard”
format, Section A5, is used from then on until the end of the procedure. In particular, if the format string is ¢’, standard
format is used throughout.) Now if the next format item is a title format, i.e., requires no data item, we proceed directly
to step 4. Otherwise, the list procedure is activated; this is done the first time by calling the list procedure, using as actual
parameter a procedure named out item ;this is done on all subsequent times by merely returning from the proce-
dure out item , which will cause the list procedure to be continued from the latest out item call. (Note: The
identifier out item has scope local to out list , so a programmer may not call this procedure directly). After

the list procedure has been activated in this way, it will either terminate or will call the procedure out item. In the
former case, the output process is completed; in the latter case, continue at step 4.

Step 4. Take the next item from the format string. (Notes. If the list procedure was called in step 3, it may have called
the descriptive procedure format , thereby changing from the format which was examined during step 3.Insucha
case, the new format is used here. But at this point the format item is effectively removed from the format string and
copied elsewhere so that the format string itself, possibly changed by further calis of format , will not be interrogated
until the next occurrence of step 3. If the list procedure has substituted a title format for a nontitie format, the “item”’

it specifies will not be output, since a titie format consists entirely of insertions and alignment marks.)

Set toggle” to false. (This is used to control the breaking of entries between lines.) The alignment marks, if any, at the
left of the format item, now cause process A (below) to be executed for each *“/”, and process B for each 4. 1If the
format item consists entirely of alignment marks, then go immediately to step 3. Otherwise the size of the format (i.e.
the number of characters specified in the output medium) is determined. Let this size be denoted by S. Continue

with step 5.

Step 5. Execute process C, to ensure proper page alignment.

60329000 A 3-25

Step 6. Line alignment: If p < L—1, effectively insert blank spaces so that p = L — 1. Now if toggle = true, go to step 9;
otherwise, test for line overflow as follows: If p + S > R, perform process D, then call P and go to step 8; otherwise, if
p + 8> P, perform process D, call PP, and go to step 8.

Step 7. Evaluate the next output item and output it according to the rules given in Section A; in the case of a title format,
this is simply a transmission of the insertions without the evaluation of an output item. The pointer p is set to p + S. Any
alignment marks at the right of the format item now cause activation of process A for each *’/* and of process B for each
“4", Return to step 3.

Step 8. Set toggle to true. Prepare a formatted output item as in step 7, but do not record it on the output medium yet
(this is done in step 9). Go to step 5. (It is necessary to re-examine page and line alignment, which may have been altered
by the overflow procedure; hence we go to step 5 rather than proceeding immediately to step 9.)

Step 9. Transfer as many characters of the current output item as possible into positions p + 1, . . ., without exceeding
position P or R. Adjust p appropriately. If the output of this item is still unfinished, execute process D again, call Pg

(if R<P)orPp(ifP < R), and return to step 5. The entire item will eventually be output, and then we process align-
ment characters as in step 7, finally returning to step 3.

Process A. {**/”" operation) Check page alignment with process C, then execute process D and call procedure Py.

Process B. (‘1" operation) If p > 0, execute process A. Then execute process E and call procedure Pn'-

Process C. (Page alignment)

If p’ <L' —1and p > 0: execute process D, call procedure Py, and repeat process C.
If p' <L’ — 1 and p = 0: execute process D until p' =L’ — 1.

If p' + 1> R’: execute process E, call procedure Pp, and repeat process C.

If o’ + 1> P': execute process E, call procedure Pp, and repeat process C.

Process D. Skip the output medium to the next line, set p = 0, and set p'=p +1.
Process E. Skip the output medium to the next page, and set p’ = 0.

Steps 1-9 and Process A-E have been implementedlas follows:

Step 1. (Initialization)

The hidden variables are set to standard values:

H1 is set to the standard format ‘o,

H2 is set so that L =1, R = e,

H3 is set sothat L’ =1, R’ = e,

H4 is set so that Py, PR, Pp are all effectively equal to the DUMMY procedure defined as follows:
""procedure DUMMY;;".

H5 is set so that Py, Pg/, Pp’ are all effectively equal to DUMMY.

H7 is set so that TAB = 1.

3-26 60329000 A

Step 2. (Layout)

The layout procedure is called; this may change some of the variables H1,H2,H3,H4,H5,H7. Set T to
false. (T is a Boolean variable used to control the sequencing of data with respect to title formats;
T = true means a value has been transmitted to the procedure which has not yet been output.)

Step 3. (Communication with list procedure)

The next format item of the format string is examined, (Note. After the format string is exhausted,
standard format, Section A.5, is used until the end of the procedure. In particular, if the format string
is ‘’, standard format is used throughout.) If the next format item is a title format (requires no data
item), proceed directly to step 4. If T = true proceed to step 4. Otherwise, the list procedure is
activated; this is initiated by calling the list procedure, using a procedure named OUT ITEM as the
actual parameter. Each subsequent return from the procedure OUT ITEM will cause the list procedure
to be continued from the latest OUT ITEM call. Since the scope of the identifier OUT ITEM is local to

OUT LIST, this procedure cannot be called directly.

After the list procedure has been activated it will either terminate or call the procedure OUT ITEM.

If it terminates the output process is completed. If the procedure OUT ITEM is called, T is set to

true .and any assignments to hidden variables that may have been made by calls on list procedures will
cause adjustment to the variables H1,H2,H3,H4,H5,H7, which are local to OUT ITEM, the procedure will
then continue at step 4.

Step 4. (Alignment marks)

If the next format item includes alignment marks at its left, process A (a subroutine below) is executed
for each /, process B for each ! and process C for each J.

Step 5. (Get within margins)

Process G is executed to ensure proper page and line alignment.

Step 6. (Formatting the output)
The next item is taken from the format string.

In unusual cases, the list procedure or an overflow procedure may have called the descriptive procedure
format, thereby changing the format string. If so, the new format string is examined from the beginning;
and it is conceivable that the format items examined in steps 3, 4, 6 might be three different formats.

At this point, the current format item is effectively removed from the format string and copied elsewhere;
s0 that the format string itself, possibly changed by further calls of format, will not be interrogated until
the next occurrence of step 3.

Alignment marks at the left of the format item are ignored. If the format item is not composed only of
alignment marks and insertions, the value of T is examined. If T = false, action is undefined (a nontitle
format has been substituted for a title format in an overflow procedure, and this is not allowed). Other-
wise, the output item is evaluated and T is set to false. The rules of format are applied and the char-
acters x;Xy...Xg, which represent the formatted output on the external device, are determined.

60329000 A 3-27

Step 7. (Check for overflow)

If p + s <R and p + s <P, where s is the size of the item as determined in step 6, the item will fit on
this line, so step 9 is executed.

Step 8. (Processing of overflow)

Process H (p + s) is performed. Then if p + s<R and p + s =P, step 9 is executed; otherwise K is set
to min (R, P) - p. XjXg...Xx is output, p is set = min R, P), and x1Xg...Xg i tO Xp 4] Xpy9.. Xg. S is
decreased by k and step 8 repeated.

Step 9. (Finish the item)

X1Xg...Xg is output, and p increased by s. Any alignment marks at the right of the format item now
cause activation of process A for each /, process B for each t, and process C for each J. Return to
step 3. ’

Process A (/ operation)

Page alignment is checked with process F, and process D is executed. Procedure Py is called.
Process B (! operation)

If p>0, process A is executed. Process E is then executed and procedure Py called.

Process C (J operation)

Page and line alignment are checked with process G. Then K is set = ((p-L+1) :TAB+1)xTAB+L -1

(the next tab setting for p), where TAB is the tab spacing for this channel. If k =zmin (R, P), process
H(k) is performed; otherwise blanks are inserted until p =k.

Process D (New line)
The output device is skipped to the next line, p is set to 0, and p’ is set to p’ +1.
Process E (New page)

The output device is skipped to the next page, and p is set to 0. Skipping the output device to a new page
involves setting character 1 of the next line to a print control character. On a normal line, character 1
is set to a value which results in single spacing. This character does not appear if the external device
is a printer; on any other device, it is the first character on the external device. When paging is
specified, character 1 is not available for use, regardless of the external device. To overcome the loss
of this character position, the procedure H LIM (Section B.3.2) increases the values of the L and R
parameters by 1.

If no paging is specified, the user may reference character 1; H LIM does not adjust the L and R param-
eter values. However, if the external device is a printer, character 1 of each record is interpreted by
the driver to control page ejection and to control random page and line skipping. The user should set
this character to avoid loss of a significant character.

3.28 60329000 A

Process F (Page alignment)

If p' +1 < L process D is executed until p’ =L’ -1. If p’ + 1> R’: process E is executed, Py is called,
and process F is repeated. If p’ + 1> P’: process E is executed, Ppr is called, and process F repeated.
This process must terminate because 1 <L’ <R’ and 1=L’=P’, (Iif a value L' > P is chosen, L’ is set
equal to 1.)

Process G (Page and line alignment)

Process F is executed. Then, if p + 1<L: blank spaces are output until p+1=L. Iff p+1>R or

p +1>P: process H (p + 1) is performed. This process must terminate because 1 =L =R and 1=L =P,
If a value of L. > P is chosen, L is set equal to 1.

Process H{k) (Line overflow)

Process D is performed. If k > R, PR is called; otherwise Pp is called. Then process G is performed
to ensure page and line alignment. Note: upon return from any of the overflow procedures, any assign-

ments to hidden variables made by calls on descriptive procedures will cause adjustment to the corre-
sponding variables H1,H2,H3,H4,H5,H7 local to OUT ITEM.

B.5.1.1 OUTPUT Parameters ,

The parameter list of variables e; may be of two additional kinds: array identifiers or implied
for-loops.
Array Identifier
An OUTPUT procedure with an array identifier parameter is the same as an OUT ARRAY procedure
(Section B.5.3) except that formatting is performed according to the relevant items of the format
string.
Implied For-Loop
Some terms in the following syntax are new and do not appear on previous pages of this manual in
the ALGOL Report.
Syntax

«or control clause> ::= <loop control> := <initial> : <final> |

<loop control> := <initial> : <final>: <step>

<loop control> ::= <identifier>

<initial> :: = <arithmetic expression>
<final> :: = <arithmetic expression>
<step> :: = <arithmetic expression>
<basic loop> :: = (<actual parameter list>, <for control clause>)

60329000 A 3-29

<loop element> ::= <actual parameter> | <basic loop>
<loop list> ::= <loop element> | <loop list>, <loop element>
<implied for-loop> ::= <basic loop>|

(<loop list>, <for control clause>)

Semantics

The implied for-loop can be considered as a condensed form of the body of the procedure LIST used

in the procedure OUTLIST. The body, in this instance, being a for statement with step-until-elements,
which is interpreted according to the rules of section 4.6.4.2 of the report. This statement may em-
body other for statements to a maximum depth of 6. The initial, final, and step values are evaluated
once only on entry to the loop, and thereafter remain unchanged. When the step is absent, its implied
value is 1. The elements of the loop list are generally (but not necessarily) functions of the control
variable which must be type real or integer.

In the examples below use the function item, which is the name used for the parameter of LIST in
section B.4 describing list procedures.

Some implied for-loops might be:
(§» Bljl, j+=LN)
which implies:

for j:=1 step 1 until N do
begin item (j); item (B[j]) end;

(A [i,j], 1:=1:M), j=1:N)
which implies:

for ji=1 step 1 until N do
for i:=1 step 1 until M do
item (A[i,j]);

(theta, sin (theta), theta:=0:pi/2:104-2)
which implies:

for theta:=0 step 10+-2 until pi/2 do
begin item (theta) ; item (sin (theta)) end;

3-30 60329000 A

B5.2 Input
The input process is initiated by the call:
in list (unit,LAYOUT, LIST)

The parameters have the same significance as they did in the case of output, except that unit is in this case the number
of an input device. There is a class of procedures input n which stand for a call with a particularly simple type of
layout and list, just as discussed in Section B.5.1 for the case of output. In the case of input, the parameters of the “item’
procedure within the list must be variables.

B.5.2 Input
The single procedure with call:
INPUT (channel, format string, e;,€9,... e,)
replaces the n+1 procedures defined in the proposal with call:
INPUT n (channel, format string, ey, eg,...ey)
n=0,«

The number of e; variables included in the call to INPUT defines to which of the n+1 procedures (defined
in the report) it is equivalent, For example:

INPUT (channel, format string. e;.eq.eg)
is equivalent to
INPUT 3 (channel, format string, e;, eg, e3)

defined in the proposal.
A call to INPUT may include 0-61 variables.

The parameter e; also may be an array identifier or an implied for-loop. INPUT procedures with
array identifier or implied for-loop parameters perform in the same way as OUTPUT (Section B.5.1.1).

60329000 A 3-31

The various steps which take place during the execution of in list are very much the same as those in the case of

out list, with obvious changes. Instead of transferring characters of title format, the characters are ignored on input.
If the data is improper, some standard error procedure is used. {cf. Section A.1.3.8). :
The only significant change occurs in the case of standard input format, in which the number S of the above algorithm
cannot be determined in step 4. The tests p + S>R and p + S>P now become a test on whether positionsp +1,0+2,...,
min(R,P) have any numbers in them or not. If so, the first number, up to its delimiter, is used; the R and P positions
serve as delimiters here. If not, however, overflow occurs, and subsequent lines are searched until a number is found
(possibly causing additional overflows). The right boundary min (R,P) will not count as a delimiter in the case of overflow.
This rule has been made so that the process of input is dual to that of output: an input item is not split across more than
one line unless it has overflowed twice. Notice that the programmer has the ability to determine the presence or absence
of data on a card when using standard format, because of the way overflow is defined. The following program, for example,
will count the number n of data items on a single input card and will read them into A[1] ,A[2] ,..., Aln]. (Assume

unit 5 is a card reader.)

procedure LAY; h end (EXIT,EXIT,EXIT);

procedure LISTUTEM); ITEM(A[n+1]);

procedure EXIT; go to L2;

n:=0;L1: inlist(5,LAY,LIST);n:=n+1;goto Lt
L2:; comment mission accomplished;

Steps 1-9 and A - E of input have been implemented as follows:
Step 1. (Initialization)

The hidden variables are set to standard values:
H1 is set to the standard format * °.

H2 is set sothat L =1, R = o,

H3 is set so that L’ =1, R’ = «,

H4 is set so that Py, PR, Ppare all effectively equal to the DUMMY procedure defined as follows:
"procedure DUMMY;;".

HS5 is set so that Py, Pr/, Pp’are all effectively equal to DUMMY.

H6 is set to terminate the program in case the data ends.

H7 is set so that TAB = 1.

Step 2. (Layout)

The layout procedure is called; this may change some of the variables H1,H2,H3,H4, H5,H6, H7. Set T to

false. T is a Boolean variable used to control the sequencing of data with respect to title formats;
T = true means a value has been requested of the procedure which has not yet been input.

3-32 60329000 A

Step 3. (Communication with list procedure)

The next format item of the format string is examined. (After the format string is exhausted, standard
format is used until the end of the procedure. In particular, if the format string is ‘ ’, standard format
is used throughout.) I the next format item is a title format, (requires no data item) step 4 is executed
directly. If T = true step 4 is executed, Otherwise, the list procedure is activated; this is initiated by
calling the list procedure, using a procedure named IN ITEM as the actual parameter. Each subsequent
return from the procedure IN ITEM, will cause the list procedure to be continued from the latest IN
ITEM call, Since the scope of the identifier IN ITEM is local to IN LIST, this procedure cannot be called
directly. After the list procedure has been activated, it will either terminate or it will call the proced-
ure IN ITEM. In the former case, the input process is completed; in the latter case, T is set to true
and any assignments to hidden variables resulting from the list procedure will cause adjustments to
the variables H1, H2, H3, H4, H5, H6, H7 (which are local to IN ITEM) and will then continue at step 4.

Step 4. (Alignment marks)

If the next format item includes alignment marks at its left, process A is executed (a subroutine below)
for each / , process B for each ! , and process C for each J.

Step 5. (Get within margins)
Process G is executed to ensure proper page and line alignment.

Step 6. (Formatting for input)

The next item is taken from the format string. In unusual cases, the list procedure or an overflow pro-
cedure may have called the descriptive procedure format, thereby changing the format string. In such
cases, the new format string is examined from the beginning; it is conceivable that the format items
examined in steps 3,4, 6 might be three different formats. At this point, the current format item is
effectively removed from the format string and copied elsewhere; so that the format string itself, pos-
sibly changed by further calls of format, will not be interrogated until the next occurrence of step 3.

Alignment marks at the left of the format item are ignored. If the format item is not composed only of
alignment marks and insertions, the value of T is examined. If T = false, undefined action takes place
(a nontitle format has been substituted for a title format in an overflow procedure, and this is not
allowed). Otherwise, T is set to false.

Step 7. (Check for overflow)

If the present item uses N format, the character positions p + 1, p + 2,...are examined until either a
delimited number has been found, (in which case p is advanced to the position following the number, and
step 9 is executed) or position min (R, P) has been reached with no sign, digit, decimal point, or 19
encountered, In this case, step 8 is executed with p = min (R, P). If N format is not used, step 8 is
executed if p + s > min R, P), or step 9 if p + s = min R, P).

Step 8. (Processing of overflow)

Process H (p +s) is performed and the following procedure:

N format: Characters are input until a number followed by a delimiter is found and step 9 is executed;
or if position min (R, P) is reached, a partial number may have been examined. Step 8 is repeated until
a number followed by a delimiter has been input:

60329000 A 3-33

Other: If p+s=R and p+s <P, step 9 is executed; otherwise input k = min (R, P) -p characters, set
p =min (R, P) decrease s by k, and repeat this step.

Step 9. (Finish the item)

If any format other than N is being used, s characters are input. The value of the item that was input
here is determined (steps 7 and 8 in the case of N format) using the rules of format. This value is
assigned to the actual parameter of IN ITEM unless a title format was specified. p is increased by s.
Any alignment marks at the right of the format item now cause activation of process A for each /,
process B for each t, and process C for each J. Return to step 3.

Process A (/ operation)

Page alignment is checked with process F, process D is executed and procedure Py called.

Process B (t operation)

If p=0, process A is executed. Then process E is executed and procedure Pyy called.

Process C. (J operation)

Page and line alignment are checked with process G. Then letk = ((p-L+1) < TAB+1)x TAB+L-1
(the next tab setting for p), where TAB is the tab spacing for this channel. If k =min (R, P), process
H(k) is performed; otherwise character positions are skipped until p=k.

Process D. (New line)

The input medium is skipped to the next line, p is set to 0, and p'is setto p’+ 1.

Process E. (New page)

The input medium is skipped to the next page, and p’is set to 0. Skipping the input device to a new page
involves the assumption that the next line on the input device begins the new page (control character in
position 1 which is not accessible by the program) as specified in the corresponding process of output.
Process F. (Page alignment)

H p’+ 1<L’process D is executed until p’= L' - 1. If p’+ 1>R’: process E is executed, Pg/ called, and

process C repeated. If p’ + 1>P: process E is executed, Py called, and process C repeated. This
process must terminate because 1 =L‘=<R’ and 1=L'<P. (If a value of L’ >P is chosen, L' is set equal

to 1.)

Process G. (Page and line alignment)

Process F is executed. Then, if p+1<L: character positions are skipped until p+1=1L. If p+1>R or
p+1>P: process H (p+1) is performed. This process must terminate because 1=L=Rand 1=L=P,
If a value of L>P ischosen, L is set equal to 1.

Process H) (Line overflow)

3-34 60329000 A

Process D is performed. If k>R, PR is called; otherwise Pp is called. Then process G is performed
to ensure page and line alignment. NOTE: Upon return from any of the overflow procedures, any
assignments to hidden variables that have been made by calls on descriptive procedures, will cause
adjustments to the corresponding variables, H1, H2, H3, H4, H5, H6, H7 local to IN ITEM.

B.5.3 Skipping
Two procedures are available which achieve an effect similar to that of the “tab’’ key on a typewriter:

h skip {(position, OVERFLOW)

v skip (position, OVERFLOW)
where position is an integer variable called by value, and OVERFLOW is the name of a procedure. These procedures are
defined only if they are called within a list procedure duringan inlist or outlist operation. For h skip,
if o< position, set p = position; but if o> position, call the procedure OVERFLOW. For v skip, an analogous proce-
dure is carried out: if p’ <position, effectively execute process A of Section B.5.1 (position — p') times; but if p' > position,
call the procedure OVERFLOW.
B.5.3 Skipping

The procedures H SKIP and V SKIP have been replaced by the procedure TABULATION, described in
Section B.3.3.

B.5.4 Intermediate data storage

The procedure call
put (n, LIST)

where n is an integer parameter called by value and LIST is the name of a list procedure {Section B.4), takes the value
specified by the list procedure and stores them, together with the identification number n. Anything previously stored
with the same identification number is lost. The variables entering into the list do not lose their values

The procedure call
get (n, LIST)

where n is an integer parameter called by value and LIST is the name of a list procedure, is used to retrieve the set of
values which has previously been put away with identification number n. The items in LIST must be variables. The
stored values are retrieved in the same order as they were placed, and they must be compatible with the type of the ele-
ments specified by LIST; transfer functions may be invoked to convert from real to integer type or vice versa. If fewer
items are in LIST than are associated with n, only the first are retrieved; if LIST contains more items, the situation is
undefined. The values associated with n in the external storage are not changed by get.

B.5.4 Intermediate Data Storage

The procedures GET and PUT are not implemented; they have been replaced by GET ARRAY and PUT
ARRAY, although these are in no way analogous. The calls are:

GET ARRAY (channel,destination)
PUT ARRAY (channel,source)

60329000 A 335

Destination and source are the names of arrays. These procedures can be used only on channels de-
fined with the character A on the channel card (Chapter 7).

GET ARRAY reads one record of the same length as destination directly from the channel into destina-
tion. The record is not stored first in a format area, and no regard is made for maximum record size
or paging. The record should contain the array arranged by rows (as defined in Transmission of Array).

PUT ARRAY writes one record, equal in length to source, directly from source to the channel. The
record is not stored first in a format area and no regard is made for maximum record size or paging.
The record reflects exactly how the array is stored in memory, by rows.

B.6 Control Procedures

The procedure calls
out control {unit, x1,x2,x3,x4)
in control (unit, x1,x2,x3,x4)

may be used by the programmer to determine the values of normally “hidden’” system parameters, in order to have finer
control over input and output. Here unit is the number of an output or input device, and x1,x2,x3,x4 are variables. The
action of these procedures is to set x1,x2,x3,x4 equal to the current values of p,P, p’,P’, respectively, corresponding to
the device specified.

B.6 Control Procedure

In the input-output system as described up to this point, the physical limits characteristic of the various
devices (P, P’), the number of spaces (k) which serves as a number delimiter in standard format, and the
current value of the character pointers (p, p’), are effectively system parameters which are not directly

accessible to the programmer., These quantities are accessible to, and in many cases modified by, the
several input and output procedures.

To obtain finer control over the input-output processes, the programmer can gain access to these
quantities through the procedure call

SYSPARAM (channel,function,quantity)
Channel is an arithmetic expression called by value specifying the input-output device concerned.

Function is an arithmetic expression called by value specifying the particular quantity to be accessed,
and specifying whether that quantity is to be interrogated or changed.

Quantity is an integer variable called by name which will either represent the new value or be assigned
the present value of the quantity dependent on function.

The following list defines the standard set of quantities accessible through SYSPARAM and the corre-
sponding value of function.

3-36 60329000 A

For the external device associated with channel:

If function = 1, quantity : = p;

If function = 2, p : = quantityt
If function = 3, quantity : = p’;
If function = 4, p’ : = quantityt
If function = 5, quantity : = P;
If function = 6, P : = quantityft
If function = 7, quantity : = P’;
If function = 8, P’ : = quantity tt
If function = 9, quantity : =k;

If function = 10, k : = quantity

p and p’ are the character and line pointers
P and P’ are the physical limits of the device
k is the number of blanks delimiting a standard number format

B.7 Other Procedures

Other procedures which apply to specific input or output devices may be defined at installations, (tape skip and

rewind for controlling magnetic tape, etc.). An installation may also define further descriptive procedures (thus
introducing further hidden variables); for example, a procedure might be added to name a label to go to in case of an
input error. Procedures for obtaining the current values of hidden variables might also be incorporated.

B.7 Other Procedures

The following additional procedures have been implemented. They are described fully in 3.3 and 3.4.

tSince p and p’ represent the actual (physical) positions on the external device, function = 2 or 4 will
generally cause some action to take place for that device. When setting p if quantity > p, insert
blanks until p = quantity. If quantity =<p perform a line advance operation, set p = 0 and insert blanks
until p = quantity. When setting p’ if quantity >p’ perform line advance operations until p’ = quantity.
If quantity <p’ skip to next page, set p’ = 0, and perform line advance operations until p’ = quantity.

ttThese operations change the physical limits for the input-output device where this is possible (e.g.,
block length on magnetic tape). When these limits cannot be changed for the input-output device these
functions are equivalent to a dummy statement.

60329000 A 3-37

CHLENGTH
Primitive Procedures {

STRING ELEMENT
ARTHOFLW (label)
PARITY (channel, label)
EOF (channel, label)
BAD DATA (channel, label)
{ SKIPF (channel)
SKIPB (channel)
ENDFILE (channel)
REWIND (channel)
UNLOAD (channel)
\ BACKSPACE (channel)
r IOLTH (channel)
MODE (channel, type)
CONNECT (channel, array, label)
DUMP (identifying integer)
\. CLOCK

Control Procedures

Hardware Function Procedures <

Miscellaneous Procedures <

{READ ECS (address, array, label)

ECS p rocedu)l:es ¥ WRITE ECS (address, array, label)

Interactive procedures T { CONNEC (ch b

DISCON (channel)

C. An Example

A simple example follows, which is to print the first 20 lines of Pascal’s triangle in triangular form:

These first 20 lines involve numbers which are at most five digits in magnitude. The output is to begin a new page, and it
is to be double-spaced and preceded by the title “PASCALS TRIANGLE". We assume that unit number 3 is a line printer.

Two solutions of the problem are given, each of which uses slightly different portions of the input-output conventions.

fNot available under KRONOS.

3-38 : 60329000 D

Egi_n !LIEE N, K, printer;
integer array A[0:19];
procedure AK (ITEM); ITEM (A[K]);
procedure TRIANGLE; begin format (‘62’); h lim (58 - 3 X N, 63 +3 X N)
comment for values of N less than 3 the h-lim call will be ignored in this implementation. (See B.3.2); I
end;

printer :=3;

output O (printer, ‘t PASCALSUTRIANGLE’//);

for N :=0 step 1 until 19 do
begin A[N] :=1;
for K :=N - 1 step -1 until 1do A[K] :=A[K - 1] + A[K];
for K :=0 step 1 until N do out list (printer, TRIANGLE,AK) ;
output 0 (printer, //’) end end

begin integer N,K, printer;
integer array A[0:19];
procedure LINES;format 2(‘XB,X(6Z),//’,67-3XN,N+1);
procedure LIST(Q); for K :=0 step 1 until N do Q(A[K]);

printer :=3;
output 1 (printer, ‘420S//’,'PASCALSLTRIANGLFE’);
for N :=0 step 1 until 19 do

begin A[N]:=1;
for K :=N - 1 step -1 until 1do A[K] :=A[K - 1] + A[K];
out list (printer,LINES,LIST) end end

D. Machine-dependent Portions

Since input-output processes must be machine-dependent to a certain extent, the portions of this proposal which are
machine-dependent are summarized here.

1. The values of P and P’ for the input and output devices.
2. The treatment of I,L, and R (unformatted) format.

3. The number of characters in standard output format.
4. The internal representation of alpha format.

6. The number of spaces, K, which will serve to delimit standard input format values.

60329000 D 3-39

REFERENCES
Naur, P.(Ed.) Revised report on the algorithmic language ALGOL-60 Comm. ACM 6 (1963), 1-17.
Extended ALGOL reference manual for the Burroughs B-5000. No. 5000-2102, Burroughs Corp., Detroit, 1963.

SHARE ALGOL-60 translator manual. No. 1426,1577 SHARE Distr. Agency. Oak Ridge ALGOL compiler for the Con-
trol Data 1604 computer. Oak Ridge Nat. Lab., Oak Ridge, Tenn.

Duncan, F. G. Input and output for ALGOL-60 on KDF 9. Comp. J. 5 (1963), 341-344.
Hoare, C. A. R. The Elliott ALGOL input/output system. Comp. J. 5 (1963}, 345-348.

McCracken, D. D. Guide to ALGOL programming. Wiley, New York, 1962. AED compiler. Electronic Systems lab.,
MIT, Cambridge, Mass.

Ingerman, P. Z. A syntax-oriented compiler, etc. U of Penn., Moore School of Elect. Engineering, Philadelphia, Pa. 1963.
Ingerman, P. Z., and Merner, J. N. Revised revised ALGOL-60 report. Unpublished.
Perlis, A. J. A format language. Comm. ACM 7 (1964), 89-97.

Baumann, R. ALGOL-Manual der ALCOR-Gruppe. Elektron, Rechen. H.5/6 (1961), H.2 (1962).

3-40 60329000 A

3.2 ADDITIONAL INPUT-OUTPUT PROCEDURES
An additional set of primitive procedures exists without declaration, as follows:

CHLENGTH (string)
STRING ELEMENT (s1,i,s2,x)

3.2.1 CHLENGTH

CHLENGTH is an integer procedure with a string as a parameter. The value of CHLENGTH (string)
is equal to the number of characters of the open string enclosed between the outermost string quotes.
It is introduced to make it possible to calculate the length of a given (actual or formal) string. Each
embedded string quote counts as three characters, because the 48-character representation of the
ALGOL symbol ¢ is '(" and * is ")' (see Table 1, Chapter 4).

3.2.2 STRING ELEMENT

The procedure STRING ELEMENT is introduced to enable the scanning or interpretation of a given
string (actual or formal) in a machine independent manner. It assigns to the integer variable x an
integer corresponding to the ith character of the string sl as encoded by the string s2.

Effectively an OUT CHARACTER (Section B.5) process is performed on the string s1 according to
the integer variable i. An IN CHARACTER process is then performed with the resultant character
on the string s2, producing an integer value to be stored in the integer variable x.

3.3 CONTROL PROCEDURES

Each one of these procedures establishes a label to which control

transfers in the event of an arithmetic error (overflow, under-
tARTHOFLW (label) flow or division fault), irrecoverable parity error, end-of-file
PARITY (channel, label) condition, or mismatch of input data a}nd the corresponding for.mat.

Each procedure can be called as many times as necessary to modify
EOF (channel, label) the label in the course of a program. PARITY, EOF, and BAD DATA

must be called once for each channel for which a label is to be estab-

AD DATA 1

BAD (channel, label) lished. If a procedure has not been called; or if the label is no longer
accessible when the corresponding condition occurs, the object program
terminates abnormally with an error message.

If IN LIST is in operation, a label may be established by the NO DATA
procedure (Section B. 3.4) instead of by the EOF procedure. During
the execution of the IN LIST procedure, any label established by NO
DATA procedure takes precedence over an EOF label.

tAn ARTHOF LW label can be established but control will not transfer to this label.

60329000 A 3-41

3.4 HARDWARE FUNCTION PROCEDURES

A channel is input if last used for a read operation, output if last used for a write operation, and
closed if not previously referenced of if referenced by a closing procedure such as ENDFILE.

If any of the following procedures are called for an external device which cannot perform the opera-
tion, the procedure is treated as a dummy procedure; and at the completion of the procedure, the
channel is considered to be closed. On mass-storage devices the procedures REWIND and UNLOAD
position the external device to the beginning of the information.

SKIPF (channel)

This procedure spaces the external device forward past one end-of-file mark. It is treated as a
dummy procedure on an output channel. If the channel is associated with a mass-storage device,
the procedure is treated as a dummy procedure.

SKIPB (channel)
This procedure spaces the external device backwards past one end-of-file mark. On an output
channel before the spacing occurs, any information in the format area is written out and an end-

of-file mark is written and backspaced over. If the channel is associated with a mass-storage
device, the procedure is treated as a dummy procedure.

ENDFILE (channel)

This procedure writes an end-of-file mark on the external device. It is treated as a dummy proce-
dure on an input channel. Before the end-of-file mark is written, any information in the format
area is written out.

REWIND (channel)

This procedure rewinds the external device to load point. On output before rewind occurs, any
information in the format area is written out; and an end-of-file mark is written and backspaced

over.
UNLOAD (channel)

This procedure unloads the external device. On output before unloading occurs, any information in
the format area is written out; and an end-of-file mark is written and backspaced over.

BACKSPACE (channel)
The procedure backspaces past one line on a non-A type channel and one SCOPE logical record

on an A type channel. On output before the backspace occurs, any information in the format area
is written out; and an end-of-file mark is written and backspaced over.

3-42 60329000 A

3.5 MISCELLANEOUS PROCEDURES
IOLTH (channel)

This procedure can be used only on non-formatted channels (those used for GET ARRAY and PUT
ARRAY). It yields the number of array elements in the last read or write operation on the external
device (the number in the last GET ARRAY or PUT ARRAY operation).

MODE (channel, type).

This procedure sets density or parity for the subsequent reading or writing of the external device.
Density and parity are initialized on a channel card and depend on the value of TYPE, as follows:
No density or parity selection required

Do not change density, set parity to odd (binary)

Do not change density, set parity to even (BCD)

No density selection required, do not change parity

Set density to low (200 bpi), do not change parity

Set density to medium (556 bpi), do not change parity

S O W N = O

Set density to high (800 bpi), do not change parity.

CONNECT (channel, array, label)

This procedure is used to connect the array ARRAY to the channel specified by CHANNEL, so that
the array may be used as the formatting area of the channel (Chapter 7). If, for any reason, the
connection cannot be made (e. g., the array size is too small to encompass the desired formatting
area) an exit to the label LABEL is taken.

Upon exiting the block in which the array ARRAY is declared, the channel CHANNEL is returned to
its closed state. On output, any information in the formatting area is written out and an end-of-file
mark is written and backspaced over.

DUMP (identifying integer)
This procedure may be used to obtain output of the local (and formal) variables in the currently
active block (procedure body). The format is that of the object-time abnormal termination dump
(Chapter 12). The dump is entitled:

THIS IS DUMP NUMBER <identifying integer> AT LINE <line number>

Identifying integer is an integer type variable, and the number is modulo 8192. The line number is
the source line number from which DUMP was called.

CLOCK

This is a real procedure whose value at any instant is the elapsed CPU time in seconds at the control
point at which the ALGOL program is executing. The value is accurate to one millisecond.

60329000 A 3-43

3.6 INPUT-OUTPUT ERRORS

At object-time, two types of errors not directly concerned with programming are detected: illegal
input-output operation requests and invalid transmission of data (Chapter 8).

3.6.1 ILLEGAL INPUT-OUTPUT OPERATIONS
The object program terminates abnormally with a diagnostic if:

An input (output) operation is requested on a channel associated with a device which cannot
read (write), or on a device which is prevented by the operating system from reading (writing).

If the last operation on the channel was neither an input (output) nor a closing operation (such as
REWIND for input).

3.6.2 TRANSMISSION ERRORS

Transmission errors are first treated by standard recovery procedures. If an error persists, it is
irrecoverable.

On an irrecoverable parity error, control transfers to the label established for the channel by the
PARITY procedure. If the PARITY procedure was not called or if the established label is no longer
accessible, the object program terminates abnormally with the diagnostic UNCHECKED PARITY.

3.7 END-OF-FILE

When an end-of-file is encountered on an external input device, control transfers to the label
established for the channel by the NO DATA procedure (within IN LIST only) or the EOF procedure.
If neither procedure has been called and if a label established by either is no longer accessible, the
object program terminates abnormally with the message UNCHECKED EOF. During execution of
the IN LIST procedure, any label established by NO DATA takes precedence over a label established
by EOF.

3.8 END-OF-TAPE

If an end-of-tape is detected during writing, the standard system end of tape procedure is executed.

3-44 60329000 A

39 ECS PROCEDURES '

WRITE ECS (ADDRESS, ARRAY, LABEL)

This procedure transfers the contents of array, ARRAY, to the user direct access area of ECS
beginning at the first word address given by the value of the integer expression, ADDRESS. Con-

trol transfers to the label, LABEL, if an irrecoverable parity error occurs. If the parameter,
LABEL, is omitted, irrecoverable parity error will cause an abnormal termination dump.

READ ECS (ADDRESS, ARRAY, LABEL)
This procedure transfers the contents of successive locations from the user direct access area of
ECS addressed by the integer expression, ADDRESS, into the array, ARRAY, in central memory.

Control transfers to the label, LABEL, if an irrecoverable parity error occurs. If the parameter,
LABEL, is omitted, irrecoverable parity error will cause an abnormal termination dump.

3.10 INTERACTIVE PROCEDURES T

When an ALGOL-60 program is submitted under INTERCOM, the program and the terminal may
communicate through the following input-output procedures:

INPUT, OUTPUT, INREAL, OUTREAL, INARRAY, OUTARRAY, INCHARACTER,
OUTCHARACTER, INLIST and OUTLIST.

If the RUN command (INTERCOM) was used to initiate ALGOL execution, channels 60 and 61 are
connected automatically to the terminal and any of the above procedures may be used. If, however,
input is required on a file which has not been connected to the terminal, either by the CONNECT
command (INTERCOM) or by the RUN command as for INPUT and OUTPUT, the following proce-
dures must be used to initiate and terminate program-terminal communications.

CONNEC (CHANNEL)

The channel indicated by the value of the integer expression, CHANNEL, is connected to the ter-
minal initiating the current program. Channel definition must conform to the following rules:

The device type of the file must be allocatable.

The channel must be R type (records on the channel must be delimited by a low order zero-
byte record mark).

For output to the terminal, the channel should be PP type (paged).
For input from the terminal, the channel must be non-paged or specified as PPO.

The channel may not be A type (it must have a formatting area).

¥Not available under KRONOS.

60329000 D 3-45

If the program is not running at an INTERCOM control point, CONNEC has no effect.

DISCON (CHANNEL)

The channel indicated by the value of the integer expression, CHANNEL, is disconnected from the
terminal initiating the current program. No further program-terminal interaction may take place
on this channel which will revert to an allocatable device type. If the program is not running at an
INTERCOM control point, DISCON has no effect.

Notes: A user logical record (line) may be the subject of several input-output functions within an
ALGOL program, and since terminal transactions are performed on a line-by-line basis the effects
will be as follows:

An output procedure will cause terminal output only upon a line action either by overflow of the
specified terminal line length or by means of an explicit format item.

The program will not wait for the terminal user when an input procedure is executed unless the
last terminal input exhausted all the data entered from the terminal on that occasion.

Before control is transferred to an ALGOL program for which channels 60 and 61 are connected,
the terminal user must enter channel definitions (CHANNEL cards) or execution time options
(OPTIONS cards) from the terminal. Execution will not begin until the user signifies the end of
these items.

3-46 60329000 A

INPUT TO COMPILATION 4

Input to the compiler may be an ALGOL source program or an ALGOL source procedure. More
than one source program or source procedure may be compiled with a single call of the compiler.

In the following definitions, the symbol eop indicates a card which contains only the characters
'EOP', in columns 10-14.
4.1 SOURCE PROGRAM DEFINITION

The following definition for an ALGOL source program is based on the definition of an ALGOL
program (Section 4.1.1, Chapter 2).

Syntax
<pre> ::= <empty> <any sequence of symbols except
begin, code or procedure>
<post> :: = <empty> <any sequence of symbols except eop>
< source program> :: = <pre> <program> <post> eop
Semantics

A source program must contain declarations for all variables referenced in it. It must contain
declarations for all procedures (except standard) it calls, including procedures that are compiled
separately from the main program as an ALGOL source procedure (Section 5.4.6, Chapter 2).

Compilation of an ALGOL source program (generation of object code) starts with the first ALGOL
symbol 'BEGIN' in the source deck and terminates with the end symbol which causes the number
of begin and end symbols to be equal, or the eop card, whichever occurs first. If the eop card
occurs first, however, a diagnostic is issued.

- Any information in the source deck prior to the first begin or between the final end and the eop is
treated as a commentary, printed as part of the source listing and included in the line count.

A program name is generated from the characters in columns 1-7 of the first source deck card,
provided the character in column 1 is alphabetic. This name is terminated with the seventh charac-
ter or by the first non-alphanumeric character encountered. If the character in column 1 is not
alphabetic, the name generated is XXALGOL. The generated name is assigned to the subprogram
output from the source program (Chapter 5) and is printed on the page headings of the source
listing.

60329000 A 4-1

4.2 SOURCE PROCEDURE DEFINITION

The following definition of an ALGOL source procedure is based on the definition of a procedure
declaration in the ALGOL-60 Revised Report (Section 5.4.1).

Syntax
<pre> ::= <empty> I < any sequence of symbols except
begin, code or procedure>
<mid> :: = <empty> | <any sequence of symbols except procedure>
<post> = <empty> I <any sequence of symbols except eop>
<d> = <digit>
<code number> :: = <d> I <d><d> I <d> <d> <d>] <d><d><d><d> |
<d><d><d><d><d>
<code head> :: = <pre> code <code number>; <mid>
<code tail> ::= eop | ; <post> eop
< source procedure> :: = <code head>
< procedure declaration>
<code tail>
Semantics

A source procedure must contain declarations for all variables referenced in it. It must contain
declarations for all procedures (except standard) it calls, including procedures which are compiled
separately as ALGOL source procedures (Section 5.4.6, Chapter 2).

A source procedure may employ the same language features as a procedure declared in a source
program, except it may not be formally recursive. That is, the procedure identifier may not occur
within the body of the procedure other than in a left part in an assignment statement (Section 5. 4. 3,
Chapter 2).

Compilation of an ALGOL source procedure is initiated by the ALGOL symbol code ('CODE'). This
symbol must be followed immediately by a number in the range 0-99999, and then by a semi-colon
(.,). The same code number is included in the body of the declaration for this procedure in the
source program or source procedure referencing it (Section 5.4.6, Chapter 2).

Compilation of an ALGOL source procedure starts with the symbol procedure ('PROCEDURE') which

may be preceded by one of the type declarators real ('REAL'), integer ('INTEGER'), or Boolean
("BOOLEAN').

4-2 60329000 A

If the procedure symbol is encountered before the code symbol, compilation of the procedure starts
normally, but an error message is issued, and the code number 00000 is supplied.

Compilation of an ALGOL source procedure ends at the normal end of the procedure declaration.

If the body of the procedure is a single statement, the end is at the semi-colon (.,) terminating that
statement. If the body is a compound statement or block, the end is at the semi-colon following the
balance of begin and end symbols.

The semi-colon in both cases may be replaced by the eop card. If the eop card occurs before the
single statement is complete or before begin and end symbols balance, a diagnostic is issued.

Information in the source deck prior to the code symbol, between the code number and the procedure
symbol, and between the end of the procedure and the eop card is treated as commentary. Commen-
taries are printed as part of the source listing and included in the line count.

The name generated for the procedure is always CPxxxxx where Xxxxx is the code number. If five
digits are not specified, the number is zero-filled on the left. For example, 20 becomes 00020.
Any error in the specification of the code number results in 00000. The generated name is assigned
to the subprogram output from the source procedure and is also printed on the page headings of the
source listing.

4.3 SOURCE INPUT RESTRICTIONS

A single source program or single source procedure, or any combination of these, may be compiled
with one call of the compiler. Whether the resulting output constitutes an acceptable object program
for execution depends on the mode (segmented or non-segmented) of the output, and any special binary
subprogram input (Chapter 5).

The object program resulting from the compilation of a single source program in either mode, with
no special binary subprogram input, is always executable, provided there are no compilation errors.

Source input for compilation must be in the form of cards or card images, described here only as
cards.

Various control cards are required to request an ALGOL compilation. Included in these is the
ALGOL control card (Chapter 6).

4.4 LANGUAGE CONVENTIONS

The input cards contain the character representations for the ALGOL symbols shown in Table 1.
For example, to include the ALGOL symbol begin, the user punches the characters 'BEGIN'.

60329000 D 4-3

A blank character has no effect on the compilation process, except in strings (Chapter 2). Blanks
may be freely used elsewhere to facilitate reading. For example, MEAN UPPER BOUND, MEAN
UPPERBOUND, and MEANUPPERBOUND are treated as being identical (the same name). Similarly,
blanks may be included in the character representation of the ALGOL symbols. The ALGOL symbol
real may be punched as '"REA L' instead of the normal 'REAL'.

4.5 CARD CONVENTIONS

Only columns 1-72 of each card are interpreted by the compiler. No syntactic meaning is attached
to these boundaries; any language structure may appear across the boundaries of two or more cards.

At compile-time, each card is counted and assigned a line count (beginning at 0) for reference by
error messages. This line count is included in all source language listings as are columns 73-80
of each card.

4.6 SOURCE DECK

A source deck consists of the cards which constitute one ALGOL source program or one
ALGOL source procedure. The source deck must be followed by a card containing only the
characters 'EOP' (eop) in columns 10-14.

The source decks to be compiled are stacked consecutively, following the SCOPE or KRONOS
control cards. The stack may contain any number of source programs or source procedures
in any order within the restrictions described above. The 'EOP' card following the last source
deck must be followed by a card containing only FINIS in columns 10-14. The source stack
appears as one logical record on the input file. The ALGOL compiler may be called for two
purposes in which no compilation of a source stack occurs:

Preparation of a segmented object program exclusively from relocatable binary subprogram
input (G option)

Execution of a segmented object program which already exists from a previous compilation
(R option only)

In these two cases, the source input stack and the FINIS card must be absent.

4-4 ' 60329000 D

60329000 A

PROGRAM SOURCE DECK

rBEGIN‘ source code

r initial commentaryT

program name’

t Optional

4-5

4-6

PROCEDURE SOURCE DECK

)

'EOP'
—
L
e
terminal commentary’

source code

N\

(END!
pa

-
pa
/~

initial commentaryt

1 Optional

'code' nnnnn. , followed by
‘real' 'procedure' or
'integer' 'proeedure' or
'procedure’

60329000 A

Table 1. Character Representation of ALGOL Symbols

(The additional representations shown are all available with the CONTROL DATA character set,
however some of the corresponding graphics do not exist in the ASCII character set. See Ap-

pendix A for differences and for the corresponding punch card codes.

ALGOL 48-Character Additional ALGOL 48-Character
Symbol Representation Representation Symbol Representation

A-Z A-Z true '"TRUE'

a-z (none) false 'FALSE'
0-9 0-9 go to 'GO TO'

+ + if 1F!

- - then "THEN'

x * else 'ELSE'

/ / for 'FOR!

tf "POWER' **or ¢ do 'DO!

+ /1 or 'DIV' Ves step. 'STEP'

> '"GREATER' > until "UNTIL!

B 'NOT LESS' = while 'WHILE'

= =or 'EQUAL' comment 'COMMENT'

'NOT EQUAL' = begin 'BEGIN'

= 'NOT GREATER' = end 'END'

< '"LESS' < own 'OWN'

A 'AND' A Boolean 'BOOLEAN'

v 'OR’' % integer 'INTEGER'

= 'EQUIV' = real 'REAL'

A 'NOT' - arra; 'ARRAY'

) 'IMPL! switch 'SWITCH'

procedure '"PROCEDURE'

s s string 'STRING'

: . : label 'LABEL'

H .y H value 'VALUE'

10 t — code t7 'CODE'

U L1 (space) eop T7 'EOP!

((

= .=0or ..= =

))

{ / [

] /) 1

‘ |(|

. I)V

TIn a format string, t may be represented by an asterisk.

t1Not defined in the ALGOL-60 Revised Report; code is defined in Section 5.4.1, Chapter 2;
eop in Chapter 4.

60329000 C

OUTPUTS FROM COMPILATION 5

5.1 BINARY OUTPUT

The binary output (machine code) generated from one ALGOL compilation (one library call of the
ALGOL compiler) may be requested in non-segmented or segmented form by a control card option.

The maximum size of the binary output generated from a single source program or source procedure
deck is 131,072 words.

The non-segmented mode generates an object program which can be loaded for execution by the system
loader. This mode may be requested also when the output is to be used as supplemental input to a
subsequent ALGOL compilation which calls for segmented output.

When the object program and its data requirement will not fit as a whole into available memory,
the segmented mode should be requested. The object program is divided into 512-word segments
to be loaded by a special loader routine contained in the run-time supervisory subprogram ALGS.

5.1.1 NON-SEGMENTED OUTPUT

For each source program or source procedure deck in the source input stack (Chapter 4), the
compiler generates a relocatable subprogram. These subprograms are written out on the load-
and-go and/or the punch unit as specified.

After compilation, the load-and-go file also contains any subprograms written on it in the same job
prior to the compilation. These subprograms may be written in any way — by an assembly, copy,
or another ALGOL compilation.

An object program to be loaded for execution must contain only one subprogram generated from a
source program, but it may contain the subprograms for any number of separately compiled source
procedures. Any attempt to load an object program which is not legal in this sense may result in a
system loader error or unpredictable execution.

Since the output from compilation need not be executed (for example, may be used only as supple-
mentary input to another compilation), there are no compiler restrictions on the number and order

of source program and source procedure decks in a source input stack (Chapter 4).

Each subprogram output by the compiler is a multiple of 512 words long and is assigned the name
generated when the source deck is read.

60329000 D 5-1

Each subprogram contains an external name for any standard library subprograms or separately
compiled source procedures called in that subprogram, and also the external name ALGORUN (the
library subprogram which contains all of the global routines controlling object program execution).

Thus, a legal object program causes the loading of the object program itself, the standard library
subprograms and separately compiled source procedures called, and the controlling program
ALGORUN.

5.1.2 SEGMENTED OUTPUT

For an ALGOL compilation requesting segmented output, the compiler generates a segment file
which contains the binary form of the object code in 512-word segments. The segmented form of
the object code can be the subprograms (multiples of 512-words) of the non-segmented form, divided
into individual 512-word segments. The segment file contains the subprograms for:

1. Each source program deck in the source stack

2. Each source procedure in the source stack

In addition, if supplementary user binary subprogram input is specified on the control card (U option),
the file contains:

3. Each of the user's subprograms, which must be compiled in segmented mode or be coded
in assembly language.

Also incorporated in the segment file are:

4. The subprograms for each of the standard library procedures called from the subprograms
inl, 2, 3or4

5. All remaining subprograms for each separately compiled source procedure called from the
subprograms in 1, 2, 3 or 4 which are not yet incorporated

In the mode which calls for compilation from user binary subprograms (G option), the segment file
does not contain the subprograms created from steps 1 and 2, since the source stack is empty.

A segment file must contain only one subprogram generated from a source program and may contain
the subprograms for not more than 50 separately compiled source procedures.

A segment file may contain no more than 511 segments (261,632 words).

Since a segment file can be used only for execution under compiler control, the compiler diagnoses
any infringement of these rules.

5-2 60329000 A

Loading and execution of an object program on a segment file is controlled by the ALG5 routine, the
last pass of the compiler. Thus, a segment file can be executed immediately in the same compilation
process in which it was created. Execution occurs after all source decks in the stack have been
compiled and their outputs incorporated into the segment file.

A segment file may also be saved for later execution in a completely separate process. (In this
case, ALG5 is called immediately, and the preceding passes of the compiler are omitted.)

ALGS5 contains the global routines which control object program execution plus the segment loading
routine. The segment loading routine keeps a record of each segment currently in memory. If a
segment is required for execution and it is already in memory, control passes to it immediately.
If not, the routine loads it from the segment file. Segments loaded are retained until available
memory is full and further space is required for another segment or for the object-time stack of
variables.

Segments are freely relocatable so that they may be overlaid when memory space is required. If
needed again, a segment is read back into memory (though not necessarily into the same locations
as previously occupied).

Object program execution requires space for at least two segments, otherwise execution cannot begin
or continue normally.

Conversion of the object code from relocatable binary format (non-segmented) to segments on
the segment file involves partial or total relocation of instructions before recording them on the
file. This relocation takes into account the memory situation at compile-time.

5.2 ASSEMBLY-LANGUAGE OBJECT CODE

The compiler generates the object code directly into binary form, with no intermediate assembly
language form. If an assembly language form of the object code is requested, the compiler encodes
the binary form into COMPASST format which may be listed or punched. The listing has the same
format as a COMPASS listing, with each COMPASS instruction appearing on one line. The punch
form results in a legal COMPASS assembly deck, with one COMPASS insiruction punched in the
proper positions in one card.

16000 COMPASS Reference Manual Pub. No. 60190900

60329000 A 5-3

53 SOURCE LISTING

The user may request a printed listing of any source program or source procedure compiled. Each
line in the listing corresponds to one card in the source deck (one line on the ALGOL coding sheet).
The lines appear in the same order as the cards in the source deck. Each line contains an exact
image of the corresponding card, right shifted for readability.

Each source card in a deck is assigned a line number by the compiler, beginning at 0. Every tenth
line of the listing contains the line number assigned to the corresponding card.

Diagnostics generated during compilation are printed following the source listing. Each consists
of a summary of the error condition and the approximate source line number on which the error was

detected.

Diagnostics are printed even if the source listing is suppressed. Chapter 8 contains a complete
description of system diagnostics.

5-4 60329000 A

ALGOL CONTROL CARD 6

The ALGOL compiler is called from the library by the ALGOL control card.

The name ALGOL in columns 1-5 is followed by a parameter list which specifies input-output options.
The parameter list is enclosed in parentheses or preceded by a comma and terminated by a period.

If no parameters are specified, ALGOL must be followed by a period. The card columns following
the right parenthesis or the period may be used for comments; they are ignored by ALGOL. The
parameters are separated by commas and may appear in any order. Blank columns used for reada-
bility are ignored. All parameters must be fully contained on one card. The general formats of

the card are:

ALGOL (cl, CZ’ c3,...,cn)

ALGOL, cl, cz, c3, . ,cn.

Each installation may select default parameters which are assumed to be present when no conflic-
ting parameters are given on the control card. If a control card parameter is incompatible with a
default parameter setting, the default is discarded without diagnostic. If a default parameter
setting needs to be de-selected, it must be done explicitly with an appropriate control card para-
meter, as defined below.

6.1 INPUT-OUTPUT OPTION

Each c; has the form ¢ or c=fn where c is any sequence of 1-7 characters beginning with one of the
parameter letters defined below. For example, L and LIST are equally acceptable for the list
parameter. If =fn is not specified, the standard file name associated with each parameter is used;
otherwise the file name fn is used.

Except for the I parameter, the absence of any parameter suppresses the corresponding option.
If I is omitted, source input is on the standard input device.

Specification of certain parameters precludes specification of others; conflicting file names are
illegal. Illegal, meaningless, or contradictory combinations of parameters and/or file names are
diagnosed by the compiler, which makes a legal selection, outputs the following diagnostic to the
dayfile, and continues compilation normally:

ALGOL CON-CARD ERROR

v, W, X, ¥, 2 DELETED

60329000 D 6-1

Since any of the parameters may be pre-set as installation defaults without selection from the con-
trol card, there exists an additional form of ¢; for the purpose of removing an unwanted default
selection. Thus the parameter c= o has the effect of removing a possible default selection of c.
As mentioned above, a default selection will automatically be removed with no diagnostic if a con-
flicting parameter appears on the control card.

Acceptable parameter letters are defined below.

I
L
X

Source input (same as absence of I unless =fn is included). Standard file name is INPUT.
List source input; if suppressed, only diagnostics are printed. Standard file name is OUTPUT.

Object program in standard relocatable binary (non-segmented) load-and-go form. Standard
file name is LGO.

Object program in standard relocatable binary (non-segmented) punched form. Standard
file name is PUNCHB.

Object program in segmented form. Suppresses any X option but not P option form of the
object program. Standard file name is SEGMENT. This file must be a disk file. The S
option must be used when subprograms are compiled to be used subsequently by the U and G
options.

Execute the object program in segmented form. If the S option is included also, the seg-

mented program compiled is executed. If the S option is not included, the segmented pro-
gram is assumed to exist already, and all options (I, U, G in particular) are suppressed.

The source stack must be completely empty. Standard file name is SEGMENT. This file

must be a disk file.

User subprogram input supplementary to I. May be included only when the S option is in-
cluded. The source stack must be empty. Standard file name is LGO. Only one of the options
U and G may be included.

User subprogram input exclusively. May be included only when the S option. is included.
Suppresses any explicit or implicit I option. The source stack must be empty. Standard
file name is LGO. Only one of the options U and G may be included.

List the assembly language encoded form of the object code in standard assembly language
listing format. Standard file name is OUTPUT.

Punch the assembly language encoded form of the object code in standard assembly language
card format. Standard file name is PUNCH.

(Significant only when Q selected.) Perform checks on actual parameters in object program
to ensure correspondence with number and kind of formals. Also perform real to integer
transformations on call-by-name parameters. These checks are performed in the absence
of C option except when Q is selected.

Compile with full checking of array bounds, formal parameter specifications and real to
integer transformations, if necessary, on call-by-name parameters. Absence of F implies
F. This parameter is not necessary; it is supplied only for compatibility with ALGOL 2.0.
It may possibly be useful protection against installation default selection of Q option for
programs containing a side-effect undetectable by Q option (Chapter 2, 3.1.4.3), but this
should be handled by Q = 0.

Compile to be executed interactively, if omitted the BRKPTI statements will be ignored. (See
Appendix D) The H option is not compatible with the S and R options, and it cannot be used in
segmented mode. When the H option is specified, the M option also must be specified.

60329000 C

Produce a map, at compile time, of source input block structure and relative stack loca-
tions of identifiers and descriptors. The map is produced, following the source listing,
on the file declared by the L option or on the OUTPUT file if L is absent. Appendix E lists
storage allocation requirements for this option.

Perform optimization of code produced for for loops and array addressing (Chapter 2,
Section 3.1.4.3). Do not check array bounds in the object program. Do not check corres-
pondence of actual parameters with formal specifications in the object program.

Suppress array bounds checking in the object program (Chapter 2, 3.1.4.2). N option may
be selected with F option.

Optimization of generated code. The code which would be generated in absence of this
option is optimized by eliminating duplicate fetches and stores and by scheduling instruc-
tions. Provides maximum utilization of X registers (all 6000 series CPU) and functional
units (6600 CPU only).

Debugging mode. Examine source program for debugging directives and install debugging
code where required. If D is omitted, debugging directives in source program are ignored.
(Chapter 14).

Z Syntax errors only. Compile according to other options selected unless the program has
syntax errors (detected by PASS 1). I syntax errors are detected compilation terminates
when the end of program is read and syntax diagnostics are listed. This provides a pre-
processing mode of compilation for debugging purposes which may overcome error recovery

problems.

Some typical control cards are listed below (assuming no installation defaults to be set).

ALGOL.
ALGOL, L, M, X.

ALGOL, L, X, Q.

ALGOL, L, X, 0.

ALGOL,L,Z,X.

ALGOL, L, S, R.

ALGOL, L, D, X.

Compile source text from INPUT, list diagnostics only. No other output.

Compile source text from INPUT, list source text and identifier map on
OUTPUT. Produce relocatable object program on file LGO.

Compile source text from INPUT, list source text on OUTPUT. Produce
object program, optimized for for loops and array handling, on LGO.

Compile source text from INPUT, list source text on OUTPUT. Produce
normal object code but optimized for 6000 series CPU.

Compile source text from INPUT, list source text on OUTPUT. I syntax
errors occur then list diagnostics on OUTPUT and terminate after one pass.
Otherwise continue and in absence of any other errors create relocatable
object program on LGO.

Compile source text from INPUT, list source text on OUTPUT, create
object program in segmented form on file SEGMENT and execute the pro-
gram in segmented mode.

Compile source text from INPUT, list source text on OUTPUT, and create
relocatable object program, including debugging code, on file LGO.

The files INTERM1, INTERM2, and LIBRARY are created by the compiler for internal use.
These file names may not be used only for production programs.

60329000 A

6.2 COMPILATION AND EXECUTION SPEED
Compile Time
The O option increases compile time and should be used only for production programs.

The D option increases compile time and should not be used if the source program does not con-
tain debugging directives.

The M option produces a very slight increase in compile time.

The Q option decreases compile time, particularly on programs with many for loops and subscripted
variables.

Execution Time

The S option increases execution time by continually establishing the presence of program segment
regardless of available field length. This option should be used only where memory requirements
would not permit the whole program to be loaded.

The D option increases execution time, even when output is restored to normal by use of execution
time options to suppress monitoring messages. Debugging directives should be removed as they
become unnecessary. This entails recompilation.

The N option decreases execution time by removing array bounds checking.

The Ooption decreases execution time by eliminating superfluous instructions and rearranging code.
Although intended mainly for the 6600 CPU, the modified code should execute more quickly on all
6000 series CPU's.

The Q option significantly decreases execution time. This option should be used on all production
programs. Wherever possible, programs should be compiled under the Q option. Programs which
cause ill behaved side effects (Chapter 2, Section 3.1.4.3) should be improved, to take advantage
of the superior execution speed. If necessary the C option should be selected in addition to the Q
option, and although this will reduce execution speed, the resultant reduction in execution time is
still substantial.

6-4 60329000 A

CHANNEL CARDS 7

All input-output statements (Chapter 3) specify a channel on which the operation is to be performed
and each channel is referenced by an identification number called a channel number (Section B.1. 1).
Each channel is associated with a set of characteristics, some of which are defined on channel cards.
Channel cards appear as the first or only cards of the object-time data on the standard input device;

they are interpreted by the controlling routine before the object program is entered. The three
types are: channel define, channel equate, and channel end; all must contain the characters

CHANNEL, in columns 1-8.
The relationship between the structure of a file created by the input-output statements of a pro-

gram and its physical representation as a file is defined by the channel card. The restrictions
imposed by the operating system must be considered in creating a channel card.

7.1 CHANNEL DEFINE CARD

This card describes the characteristics to be associated with one channel number.

CHANNEL, cn=file name, Pr, PPs, Kb, Rt, M, A, Dd, B

The eight characters CHANNEL, appear in columns 1-8 followed by a list of parameters.

Each parameter describes a different characteristic. Parameters are separated by commas, and
blanks may appear anywhere. The last parameter has no delimiter, but the information for one
channel must be contained on a single card. Only the cn=file name parameter is required; the
others are optional and may be specified in any order.

cn channel number, unsigned integer, maximum 14 decimal digits.

file name File name is referenced by 1/0.

60329000 D

Pr r indicates maximum line width (r = 24 characters); when omitted, P136 is assumed. If
the Rt parameter has the form RnP (see below), r may be increased if necessary, from its
specified value, to an exact multiple of 10 characters (whole machine words).

PPs s indicates maximum page (s lines) length. If PPO is specified or if the parameter is
omitted, no paging operations are performed. If the user defines page width or page
length beyond the capabilities of the corresponding external device, data may be lost.

Kb b determines the number of consecutive blanks that serves as a delimiter for a number read
or written in standard format. Omission of this parameter is equivalent to K2, The number
specified must be in the range 1 = K = R.

Rt Defines the way in which information is recorded on the external device: in this definition
t can take two forms, nP and ¢. n and c are unsigned integers. The value r used in the
following paragraph is the maximum line width specified by the Pr parameter described
above. If the R parameter is omitted, R1P is assumed.

RnP Physical records consist of n lines. FEach line is r characters in length as defined
in Pr,

Rc Physical records consist of as many lines as can be wholly contained in ¢ characters;
¢ is increased, if necessary, from its specified value to an exact multiple of 10
characters (whole machine words). In each line trailing blanks are removed; each
line ends with a record mark.

R If t is omitted, recording characteristics are the same as for Rc form, except that
the logical record length (c) has no upper bound. The end of a logical record may be
defined by returning the channel to its closed state (e.g., hardware function). In this
case, on input, the end of the logical record is treated as an end of file.

M Indicates input-output transmission overlap (buffering). If M is included the formatting area
size (which is a function of the R parameter) is modified to allow effective overlap of the
input-output transmission and the formatting processes.

A Channel is constructed without a formatting area, regardless of the inclusion of other
parameters. Such a channel is usable only with the procedures GET ARRAY and PUT ARRAY.
An A-type channel may be changed at object-time with the procedure CONNECT to allow it
to be used with other input-output procedures.

-2 60329000 A

D Meaningful only for magnetic tape. D2 sets the density to 200 bpi, D5 to 556 bpi, D8 to
800 bpi, and when DO is used or the parameter is omitted, density is dependent on operator
or installation control.

B Indicates reading or writing in binary (odd) parity; absence of this parameter sets BCD
(even) parity.

7.2 CHANNEL EQUATE CARD

Channel equate cards permit the user to reference the same channel with more than one channel
number:

CHANNEL, cn:L = cn2

cn) and cny are unsigned integers with a maximum of 14 decimal digits each. Either cny, or a
number to which cny is linked by other channel equate cards, must appear on a channel define card
elsewhere (though not necesarily earlier) in the set of channel cards. The channel defined on that
card can be referenced by the number cn, as well as cng. Any number of channel numbers may be
equated in this way with the same channel.

7.3 CHANNEL END CARD
A set of CHANNEL cards may be terminated with the following card:
CHANNEL, END

This card signifies the end of channel information as well as execution time options information,
(Chapter 13). The card may be omitted except when it is necessary to separate channel information
from any data appearing immediately after it on the standard input device. In the absence of this
card, end-of-record, end-of-file, or non-channel information will terminate the processing of
channel information. When the standard input device is a terminal, typing CHANNEL, END signi-
fies that program execution may begin.

7.4 DUPLICATION OF CHANNEL NUMBERS

Although a channel may be associated with more than one channel number, a channel number must
refer to only one channel. Therefore, the same channel number may not appear in more than one
channel define card in a set. Similarly, a channel number which appears on a channel define card
may not be included on the left-hand side of a channel equate card, since this is equivalent to
associating that number with more than one channel.

60329000 A 7-3

7.5 DUPLICATION OF FILE NAMES

The following rule applies to both user-defined channels and those automatically supplied by ALGOL.
A file name may appear on any number of channel define cards; although the channels remain
independent of each other, all input-output operations specifying any of the different channel
numbers refer to the same file.
The same logical unit number may appear on any number of channel define cards; although the
channels remain independent of each other, all input-output operations specifying any of the
different channel numbers refer to the same logical unit.

7.6 STANDARD ALGOL CHANNEL CARDS

Two channel cards with standard channel numbers and characteristics are automatically supplied
by the ALGOL system for the standard input and output devices as follows:

CHANNEL, 60 = INPUT, P80,R
CHANNEL, 61 = OUTPUT, P136, PP60,R

The two standard files may be referenced by the channel numbers 60 and 61 and do not require
channel cards; however, these two cards are printed as part of the channel card listing as if they
were specified by the user. :

7.7 TYPICAL CHANNEL CARDS

Some typical channel cards are:

CHANNEL, 35 = NUCLEAR, P120
CHANNEL, 47 = UNCLEAR, P400
CHANNEL, 29= 35

7-4 60329000 D

ALGOL DIAGNOSTICS 8

Three types of diagnostics are associated with the ALGOL compiler system: compiler diagnostics,
compile-time and object-time I/O diagnostics, and object-time diagnostics.

8.1 COMPILER DIAGNOSTICS

Every error detected during compilation causes a diagnostic to be printed following the source
listing. If the source listing is suppressed, the diagnostics are output to the standard output device.
Each card of the source deck is assigned a line count, which is printed as part of the source listing,
and each compiler diagnostic includes the line count of the source card in error and a brief summary
of the error condition.

Compiler diagnostics are either alarms or messages; alarms cause the suppression of object code
generation but messages do not.

8.1.1 COMPILER MESSAGES

The following compiler messages do not necessarily indicate the presence of an error in the source
text; they provide information which may be useful in detecting errors which do not show up as
language infringements:

DELIMITER IN COMMENT
LONG IDENTIFIER
NON-FORMAT STRING
PROGRAM BEGINS
PROGRAM ENDS

SOURCE DECK ENDS

PROGRAM BEGINS, PROGRAM ENDS and SOURCE DECK ENDS are output with every compilation
regardless of errors.

If the line count on the PROGRAM BEGINS message is not 0, the programmer should make certain

that the beginning of the program has not been treated as commentary because of a missing or mis-
spelled delimiter (such as begin). Similarly, if the line counts on the PROGRAM ENDS and SOURCE
DECK ENDS message differ, the end of the program may have been treated as terminal commentary.

60329000 A 8-1

8.1.2 COMPILER ALARMS

A compiler alarm indicates a serious error in the source text and suppresses object code genera-
tion regardless of user request; normal compilation and error checking continue until the end of
the source text. Some errors will cause otherwise legitimate text to become invalid, but the com-
piler will attempt to localize the effect of each individual error. Certain errors prevent meaning-
ful recovery and produce a secondary alarm, STOP COMPILATION; this terminates compilation,
and some errors previously detected may be lost.

Some diagnostics are variations upon a fixed format and provide more information concerning the
error. These diagnostics are recognized below by the appearance of one of the following structures
in the message description:

<operand>
<delimiter>

< in syntax>

< line number>

< first character>
< identifier>

When such a diagnostic appears the above structure will be substituted by relevant information con-
cerning the error, as follows:

<operand> Replaced by an identifier name (possibly truncated to nine characters), or the
words A STRING or A LITERAL. If absent, operand's identity has been lost, or
it is an expression containing several identifiers.

<delimiter> Replaced by an ALGOL-60 delimiter. Diagnostic representation in certain cases
will be a 48-character representation so that it will be legible regardless of
output medium. Hence 'NOTGR..' will represent £. The special parameter
delimiter (viz Report 3.2.1.) represented by)XXX..(is included in this classi-
fication. .

<in syntax> Replaced by a prepositional phrase indicating syntax expected at point of error.
The following phrases may occur (numbers in parentheses indicate the relevant
syntax definition as it appears in the comparison with the Revised Report in
Chapter 2 of this manual):

IN EXPRESSION (3.3.1,3.5.1.)
IN ELSE EXPRESSION (3.3.1,3.5.1.)
AFTER ASSIGN (4.2.1.)
IN THEN EXPRESSION (3.3.1,3.5.1.)
AFTER ARRAY ELEMENT (3.3.1.)
IN BOOLEAN EXPRESSION (3.4.1.)
IN THEN STATEMENT (4.5.1.)
IN ELSE STATEMENT (4.5.1.)
AFTER PROCEDURE END (5.4.1.)
AT START OF STATEMENT (4.1.1.)

8-2 60329000 A.

IN VALUE PART (5.4.1.)
IN ARRAY SEGMENT (5.4.1.)
AFTER SPECIFIER (5.2.1.)
IN PROCEDURE HEADING (5.4.1.)
IN TYPE LIST (5.1.1.)
AFTER END OF FORMALS (5.4.1.)
IN DECLARATION (5.1.1,5.2.1.)
AFTER END OR A CALL (4.1.1.)
IN FORMAL PARAMETERS (5.4.1.)
IN FOR VARIABLE (4.6.1.)
AFTER SWITCH (5.3.1.)
IN ARRAY DECLARATION (5.2.1.)
AFTER OWN (5.1.1.)
AFTER FOR VARIABLE (4.6.1.)
IN STATEMENT/DECL.. (4.1.1.)
IN SPECIFICATIONS/BODY (5.4.1.)
IN SPECIFICATIONS (5.4.1.)
IN OWN DECLARATION (5.1.1.)
IN CODE NUMBER (5.4.6.)
<line number> Replaced by a line number when the number of the line where error was detec-

ted needs to be supplemented by line number where error probably originated.

<character> Replaced by a single initial character of an unrecognizable compound delimiter.
Thus, the character Q would appear for the misspelling - 'QOMMENT"'.

< identifier> Replaced by first nine characters of appropriate identifier in source text.

In the following list of compilation time diagnostics corrective action is suggested. Otherwise the
error is classified as implementation or field length (FL) dependent, or the programmer is re-
ferred to Chapter 2.

ARITHMETIC OVERFLOW OF NUMBER/EXPRESSION

Source text contains out-of-range number, or compiler encountered out-of-range intermediate
result when evaluating an expression involving constants. (implementation restriction)

BAD PARAMETER, STANDARD PROC.. <identifier>

Compiler detected illegal parameter in call to standard procedure (procedure available without
declaration). Procedure name is given. (source text error)

60329000 A 8-3

BLOCK REQUIRES EXCESSIVE TEMPORARIES

Too many working storage locations needed within one block. Re-order expressions, create
more declared variables, or segment the block. (implementation restriction)

BYPASS OVERFLOW

Compiler capacity to stack pending forward references has been exceeded. Simplify source
program. (implementation restriction)

'CODE' INTEGER REQUIRED FOR.. <identifier>

Procedure contains code body with no code integer specified. (syntax error, 5.4.6)

'CODE' LITERAL NOT INTEGER, OR BAD VALUE

Code number on this line is non-numeric, or not 0-99999 (source text error)

'COMMENT' IN ILLEGAL POSITION IN TEXT

Error in use of comment. (syntax error, 2.3)

COMMON NAME
First two characters of second COMMON not OW, for own variables. (source text for G or
U option)

COMMON PRESETTING

Attempt to preset COMMON outside of defined length. (source text G or U option)

COMMON TABLE LENGTH

Length of Program Identification Table not 2 or 3. (source text for G or U option)
COMMON TEXT

Attempt to preset common area not mentioned in Program Identification Table. (source text
for G or U option)

8-4 60329000 A

COMPILER FAILURE (PASS 2)

This diagnostic should not appear; indicates an internal inconsistency in Pass 2 of compiler.

COMPILER STACK FAILURE (PASS 3)

This diagnostic should not appear; indicates an internal inconsistency in Pass 3 of compiler.

DATA NAME/LENGTH
First COMMON name is not DATA or length is not consistent with previous DATA length.
(source text for G or U options)

DECLARATION MISSING FOR.. <identifier>

Specified identifier is undeclared. (source text error)

DECLARATION AND/OR FOR-LOOPS EXCEED FL

Increase field length to permit processing of nested blocks and for-loops.

DEFERRED CODE CAPACITY EXCEEDED
In optimizing mode, compiler stacks invariant code to move to less frequently executed areas.
Capacity of stack has been reached by continual deferment of such code. Disable optimization
or restructure program. (implementation restriction)

DELIMITER REQUIRED PROCEEDING <operand>
Specified operand is second of two consecutive operands with no intervening delimiter. (syntax
error)

DOUBLE DECLARATION OF.. <identifier>
Specified identifier, which appears in a declaration on this line, has been declared subsequent-
ly in same block. (source text error)

DOUBLE DEFINED

Two or more separately compiled procedures with same name found during preparation of
segment file. (source input for S option)

60329000 A 8-5

DOUBLE SPECIFICATION OF.. <identifier>

Formal parameter appeared in more than one specification in this procedure heading. (source
text error, 5.4.5)

DYNAMIC BOUNDS ILLEGAL FOR 'OWN' ARRAY

Dynamic own arrays are not implemented. (implementation restriction)

'END'S MISSING

More begin than end symbols found when eop encountered. (source text error 4.1.1)

EXCESSIVE NESTING OF 'BEGIN' STRUCTURES

Compiler allows combined nesting of blocks and compound statements to depth of 96. Limit
has been exceeded. Simplify program structure (implementation restriction.)

EXCESSIVE NUMBER OF UNIQUE IDENTIFIERS

Compiler allows 3583 unique identifiers. Limit has been exceeded. Use same spelling for
identifiers in different blocks. (implementation restriction)

EXTERNAL REFERENCE ADDRESS

Address of external reference outside current segment. (source text for G or U option)

EXTERNAL REFERENCE RELOCATION

External references may occur only from program part. (source text for G or U option)
EXTERNAL STACK OVERFLOW

More than 50 separately compiled procedures occurred during preparation of segment file.

Disable S-mode or combine pre~compiled procedures. (implementation restriction)

FILL ADDRESS

Address of common reference outside of current segment. (source text for G or U option)

8-6 60329000 A

FILL RELOCATION

Attempt to make common reference from negative program relocatable part or from COMMON
not mentioned in Program Identification Table. (source text for G or U option) .

<delimiter> FOLLOWS AN INCORRECT OPERAND

Illegal operand preceeds delimiter. (syntax error)

<delimiter> ILLEGAL < in syntax>

Delimiter is illegal in stated context. Check list of possible contexts for syntax references.
(syntax error)

ILLEGAL ACTUAL PARAMETER TO.. <identifier>

Procedure is called on this line with an undeclared or untyped actual parameter.

[LLEGAL CONTROL VARIABLE IN IMPLIED-FOR
Control-variable of implied-for loop is not identifier. (syntax error)
ILLEGAL LOCAL ARRAY-BOUND.. <identifier>
Identifier appears in bounds of an array and is declared in same block. (source text error,

5.2.4.2)

ILLEGAL 'VALUE' SPECIFICATION.. <identifier>

Formal parameter specification does not permit a value. (source text error, 4.7.3.1)

INCOMPLETE ENTRY TABLE

Incorrect Entry Point Table. (source text input to G. or U option)

INCOMPLETE LINK TABLE

Incorrect Linkage Table. (source text input to G or U option)

60329000 A 8-7

INCOMPLETE REPLICATION TABLE

Incorrect Replication Table. (source text input to G or U option)

INCOMPLETE TRANSFER TABLE

Incorrect Transfer Table. (source text input to G or U option)

INCONSISTENT CONDITIONAL-EXPRESSION TYPE

Expressions following then and else in if expression differ in type. (source text error)

INCONSISTENT SUBSCRIPT COUNT.. <identifier>

Array appears in reference in which subscript count differs from number of subscripts in
declaration, or, for formal array, from previous subscript count. (source text error)

INCONSISTENT TYPES WITHIN AN EXPRESSION

Variation in types of component elements of general expression on this line. (source text
error)

INCORRECT EXPRESSION TYPE IN '"WHILE'

In for list element containing while, preceeding expression is not arithmetic, or following
expression is not Boolean. (source text error, 4.6.1)

INCORRECT LABEL USAGE OF.. <identifier>

Identifier used as label has been declared differently. (source text error)

INSUFFICIENT FLFOR COMPLEX STATEMENT
Compiler requires more memory to generate code for this statement at this point. Request
more FL, or simplify statement or program nesting. (implementation restriction)
INSUFFICIENT MEMORY TO SAVE DECLARATIONS
Program structure exceeds compiler's capacity to stack declarations of outer block to process

new declarations. Request more FL or ensure that procedure declarations occur as late as
possible in a block head. (implementation restriction)

8-8 60329000 A

INSTRUCTION/CONSTANT OVERLAP

This diagnostic should not occur; it is a double check to ensure generated code will fit into
a segment. It indicates a compiler failure in Pass 4.

LITERAL AFTER 'CODE' IS NOT AN INTEGER

Non-numeric character found after code in the code head part of source text. (source text
error)

LOAD ADDRESS

Load address in text table is out of range. (source input to G or U option)

MAXIMUM LEVEL OF BLOCK-NESTING EXCEEDED
A block nested to a level greater than 32. Simplify block structure. (implementation restric-
tion)

MISSING PROGRAM OR 'BEGIN' UNDETECTED

End-of-record or 'EOP' encountered before appearance of program. Check hardware repre-
sentation of delimiters. (source text error)

MORE THAN ONE PROGRAM
More than one main program occurred during preparation of segment file. (error in input to

S-mode)

NEGATIVE, OR ZERO, ARRAY SIZE IMPLIED

Array size compiled from constant bounds is negative or less than zero. (source text error)

NEW SEGMENT WITHIN TEXT TABLE

Text Table overlaps two segments. (error in input to G or U option)

NO ARRAY/SWITCH DECLARATION. . <identifier>

Identifier used as array or switch without being declared as such. (source text error)

60329000 A 8-9

NO MAIN PROGRAM

Only code procedures occurred during segmentation. (error in input to S-mode)

NO PROCEDURE DECLARATION FOR.. <identifier>

Identifier used as procedure without being declared as such. (source text error)

NON-ARITHMETIC ARRAY-BOUND EXPRESSION

(source text error)

NON-ARITHMETIC 'FOR' CONTROL VARIABLE

For control variable on this line not a simple or subscripted arithmetic variable. (source
text error)

NON-ARITHMETIC SIMPLE 'FOR' LIST ELEMENT

(source text error, 4.6.1)

NON-ARITHMETIC 'STEP' ELEMENT

(source text error, 4.6.1)

NON-ARITHMETIC SUBSCRIPT FOR. . <identifier>

Array has non-arithmetic subscript. (source text error)

NON-BOOLEAN EXPRESSION IN AN 'IF' -CLAUSE

Expression following if symbol not Boolean. (source text error)

NON-DESIGNATIONAL EXPRESSION IN SWITCH

Element in switch list on this line not a label or a designational expression. (source text
error)

8-10 60329000 A

NUMBER OF UNIQUE IDENTIFIERS EXCEEDS FL

Symbol table overflowed available memory. Request more FL or use same spelling for
identifiers in different blocks. (implementation restriction)

NUMBER SYNTAX ERROR

Number in source text is incorrectly formed. (syntax error, 2.5.1)

OPERAND OVERFLOW IN COMPLEX STATEMENT

Complicated statement exceeded capacity of compiler to stack operands. Re-order expres-
sions or split into intermediate statements. (implementation restriction)

OPERATOR OVERFLOW IN COMPLEX STRUCTURE

Complex program structure exceeded capacity of compiler to stack operators. Simplify
immediate statements or surrounding program structure. (implementation restriction)

PARAMETER COMMENT INCORRECTLY FORMED

Incorrect special parameter delimiter replaces comma in parameter list. (syntax error, 4.7.1)
PARAMETER COUNT ERROR IN.. <identifier>

Number of actual parameters in call to procedure does not equal number of formal parameters

in declaration. (source text error)

RECURSIVE PRE-COMPILED PROCEDURE

Separately compiled procedure may not be recursive. (implementation restriction)

REFERENCE OUTSIDE SEGMENT

Invalid addressing encountered during preparation of segment file. (error in input to S-option)

REPLICATION ADDRESS

Attempt to perform replication outside current segment. (error in input to G or U option)

60329000 A 8-11

REPLICATION RELOCATION

Replication may occur only within program part. (error in inputto G or U option)

<delimiter> REQUIRES A PRECEDING OPERAND

Delimiter is second of two consecutive operators with no intervening operand. (syntax error)

SEQUENCE

Binary input out of sequence. (error in input to G or U option)

SPECIFICATION REQUIRED FOR.. <identifier>
Above format mentioned in specification. Omission of specifications not permitted.
(implementation restriction, 5.4.5)

SPECIFIED FORMAL MISSING. . <identifier>
Identifier appeared in specification part but not in formal parameter part of procedure dec-
laration. (source text error)

STACK OVERFLOW IN OPTIMIZING FOR LOOPS
Optimizing process which moves invariant code to less frequently executed parts of program
has reached capacity. Disable optimization mode or perform source optimization (e.g.
centralization of subscript expressions) by hand.

STOP COM PILA TION

Fatal error occurred; (e.g. a stack overflow) no further diagnosis will take place.

STRING LENGTH ERROR, ORIGIN AT LINE <line number>
Number of characters in string exceeded maximum at line number. Line number in message

indicates where string started. Ensure string quotes are correctly represented. (source
text error)

8-12 60329000 A

<delimiter> STRUCTURE ENDED BY <delimiter>
Second delimiter has been encountered without prior occurrence of a pairing delimiter.
Either might be in error, e.g. A(B] (syntax error)

SUBPROGRAM SIZE
Size of current subprogram exceeds maximum size of target machines. (implementation
restriction)

THIS IS SECOND DECLARATION OF.. <identifier>
Identifiér appeared in previous declaration at line number given in corresponding DOUBLE
DECLARATION diagnostic. (source text error)

TOO MANY ACTUAL PARAMETERS IN <identifier>

Procedure called with more than 63 actual parameters. (implementation restriction)

TOO MANY LOCAL VARIABLES IN THIS BLOCK
Maximum number of local variables allowed in single block exceeded; declare variables in
different blocks. (implementation restriction)

TOO MANY SUBSCRIPTS/ELEMENTS. . <identifier>

Array or switch has more than 63 subscripts or elements. (implementation restriction)

UNDEFINED

No external name found during preparation of segment file. (error in inputto G or U option)

UNRECOGNIZABLE COMPOUND DELIMITER ' <character> ...
Structure with escape and specified character as first two characters not recognizable as

compound delimiter. Check spelling of delimiter or incorrect usage of escape character.
(source text error)

60329000 A 8-13

UNTERMINATED STRING STARTS AT LINE <line number>

End of record or 'EOP' encountered before terminal string quote of string starting at
specified line. Check for incorrect representation of string quote. (source text error)

X-REGISTER ASSIGNMENT FAILURE

8.2

Pass 4 code optimizer is unable to proceed with register allocation in a complex program
structure. Simplify complex statements at the point of failure (e.g. multi-line statements
with calls to standard procedures) or remove the O-option.

COMPILE-TIME AND OBJECT-TIME 1/0 DIAGNOSTICS

System diagnostics concerning input-output usage at compile-time and object-time appear in
DAYFILE:

8-14

ALGOL-I/O-ERROR yyy ON FILE file-name

yyy values:
P 1 Record length error in GETARRAY
P3 Attempt to close OUTPUT, PUNCH object-time only

or PUNCHB files

P 4 Attempt to close INPUT file

In general, the following values of yyy result from system error, improper use of 1/0 sys-
tem in a handwritten procedure, or wrong segment file:

yyvy
FC1 Illegal function code to I/O
FC2 Error on call for open formatted
FC3 Error on call for close formatted
ile-ti]
FC4 Error on call for read or write formatted cofnpl e' ume or
object-time
FC5 Error on call for function non-formatted
FCé6 Error on call for read or write non-formatted
FC7 Illegal status returned after physical 1/O
SG1 Error in the segment file
object-time only
SG2 Library routine missing from segment file
INT Error in compiler inter-pass 1/0 compile-time only

60329000 D

8.3 OBJECT-TIME DIAGNOSTICS

Upon normal exit from an object program, the contents of all non-empty format areas are output.
The following message printed on the standard output device indicates a successful execution:

END OF ALGOL RUN

Upon abnormal termination, a diagnostic is printed on the standard output device to indicate the
nature of the error, and the contents of all non-empty format areas are output. Information which
traces the execution path through the currently active block structure is then printed on the standard
output device as follows:

THIS ERROR OCCURRED AFTER LINE xxxx
IN THE BLOCK ENTERED AT LINE xxxx
(global stack information)
(local stack information)
THIS BLOCK WAS CALLED FROM LINE xxxx
IN THE BLOCK ENTERED AT LINE xxxx
(local stack information)
THIS BLOCK WAS CALLED FROM LINE xxxx

Stack information for each block is printed following the corresponding BLOCK ENTERED line.

60329000 A 8-15

Object-Time Diagnostics

ALPHA FORMAT ERROR
Output value is too large.

ARITHMETIC OVERFLOW

Evaluation of an expression results in arithmetic overflow (e.g., division
by zero) for which no provision has been made with ARTHOFLW procedure.

ARRAY BOUNDS ERROR

Computed element address in an array is not within total array boundaries.

ARRAY DECLARE ERROR

Computed array size is negative or zero.

ARRAY DIMENSION ERROR

Number of dimensions in actual parameter array in procedure call differs
from number in formal parameter array.

ARRAY HAS MORE THAN 20 SUBSCRIPTS

Excess subscripts are not accepted.

ARRAY xxx HAS nnn DIMENSION(S)

Subscript count is incorrect.

BLOCK LEVEL OUT OF RANGE
Occurs after a B = n option; the block level n is either negative or greater
than 32, Check n against the block level in the map.

BOOLEAN INPUT ERROR
In Boolean formats F or P, input character is not F or T, or 0 or 1
respectively.

CHANNEL XXXXXXXXXXKXXX

Defines channel on which preceding error occurred.

CHN XXXXXXXXXXXXXX

Defines channel on which preceding error occurred.

8-16 60329000 C

CHANNEL CARD SYNTAX - CIRCULAR - PARITY - EOF

Syntax of channel card is wrong or define and equate cards result in a
circular definition of a channel; or an irrecoverable parity error or EOF
card occurred during reading of channel cards. Incorrect card is output
before program terminates.

DISPLAY EXCEEDED

Block structure is nested to more than 32 levels; this error can occur
only becuase of calls to separately compiled procedures.

ELEMENT OF xxx OUT OF BOUNDS

Subscript values indicate an element outside of the array bounds.

EXPONENTIAL ERROR
Argument of EXP procedure is too large.

FORMAT ITEM ERROR

More characters in expanded format item than permitted in INPUT,
OUTPUT, IN LIST and OUT LIST.

FORMAT MISMATCH

Syntactically correct format string appears incorrect (probable machine or
system malfunction).

FORMAT REPLICATOR
Replicator in call to FORMAT procedure out of range.

FORMAT STRING ERROR

Incorrect format string.

GET/PUT ARRAY ERROR

GET ARRAY and PUT ARRAY may not be used when formatting and format
area have been specified for channel.

'GO' MUST BE FOLLOWED BY CR

Anything following 'GO' is ignored; retype 'GO' to restart program execution.

H/V LIM ERROR
H LIM and V LIM arguments L, R and L', R' out of range.

IDENTIFIER...NOT DECLARED

This identifier never has been declared in this program.

60329000 C 8-17

INCORRECT NUMBER FORMAT AFTER
after B = or X = the number must be an integer.
In an assignment to a variable, the number format must correspond to the
variable type since there is no type conversion.
ILLEGAL IN-OUT
Illegal operation requested for equipment selected.

ILLEGAL MODE CALL

T parameter in call to MODE procedure out of range.

ILLEGAL STRING INPUT
Attempt to read into a string parameter during a call of INPUT or IN LIST,

1/0 CHANNEL ERROR
Normal input-output procedures, except GET ARRAY and PUT ARRAY,
cannot be performed on non-formatted channels.

xxx IS NOT AN ARRAY IDENTIFIER

Identifier before [is not an array identifier.

xxx IS NOT A BOOLEAN VALUE
A Boolean variable will accept only 'TRUE' or 'FALSE'

LAYOUT CALL ERROR

Procedures established by H END, V END, and label set by NODATA are
not accessible after return from layout procedure called by IN LIST or
OUT LIST. ’ ’

LOGARITHM ERROR

Argument to LN procedure may not be negative or zero.

NO VALUE GIVEN FOR

This identifier appears in the program, but it has no value accessible at
this point: it may be a formal parameter; it is not an arithmetic or Boolean
variable; or it is not accessible from the current block.

NON-FORMAT INPUT ERROR
In non-formats, I, R, L, or M, input field contains non-octal characters.

8-18 60329000 C

NUMBER SYNTAX ERROR

Number input in standard format does not conform to proper syntax,

NUMERIC INPUT ERROR

Data input under format control does not conform to numeric input format.

OUT CHARACTER ERROR
Parameter OUT CHARACTER call is not in proper range.

PARAMETER COUNT ERROR

Number of actual parameters in procedure call incorrect.

PARAMETER KIND ERROR

Kind of actual parameter in procedure call does not correspond to kind of
associated formal parameter.

PARAMETER TYPE ERROR

Types of actual and formal parameters in procedure call do not correspond.

PROCEDURE SELECTION EXCEEDS LIMIT

No more than 10 procedure names can be selected through the option P = .

S-UNIT ILL. ON CHANCARD

Unit defined on channel card is same as unit containing segment file.

SIN - COS ERROR
Argument to SIN or COS procedure is too large.

SQUARE ROOT ERROR

Argument to the SQRT procedure may not be negative.

STACK OVERFLOW

Data requirements of program exceed available memory.

STANDARD OUTPUT ERROR
Standard output can be used only for numeric and string formats.

STRING ELEMENT ERROR
Rules of STRING ELEMENT violated.

60329000 C 8-19

SWITCH BOUNDS ERROR

Value of switch designator out of range.

SYNTAX ERR AFTER P =
If the given name has more than ten characters, the tenth character must
be replaced by an arrow (—=).

SYSPARAM-CHANNEL
SYSPARAM procedure can be called only for formatted channels.

SYSPARAM - WRONG F
SYSPARAM called with incorrect F parameter.

SYSPARAM - WRONG Q
SYSPARAM called with incorrect Q parameter,

TABULATION ERROR
Argument of TABULATION not in proper range.

THIS PROCEDURE NAME IS ON THE LIST

Warning message; the procedure was requested more than once.

UNASSIGNED CHANNEL

No channel defined for channel number used in program.

UNCHECKED EOF
End-of-file mark detected, but no provision made with EOF procedure.

UNCHECKED PARITY
No PARITY procedure for parity error detected.

UNDEFINED DSI
A file is not opened for the specified dsi.

UNDEFINED FOR LABEL
Attempt to jump into middle of for statement.

xxxxx UNRECOGNIZABLE. ALL THAT FOLLOWS HAS BEEN IGNORED.

x probably is followed by a wrong separator character or the identifier x
has more than 10 characters.

8-20 6032900 C

COMPILER DESCRIPTION 9

The compiler consists of the subprograms ALGOL, ALG0, ALG1, ALG2, ALG3, ALG4, and ALGS.
Only ALGI1 through ALG4 take part in the actual translation of a source text into object code.
ALGOL controls the compilation process, ALGO handles the control card, and ALG5 controls seg-
mented object program execution.

ALGl, ALG2, ALG3 and ALG4, each perform a separate function in the translation process as
described below.

9.1 INFORMATION FLOW

The output from each pass of the compiler is in the form of bytes representing an internal form of
the source text. The output stream of bytes from one pass serves as the input stream to the next
pass.

The bytes generated by each pass are first stored in available memory. If the entire stream fits
there, it is retained for processing by the next pass. Otherwise, it is written out as a scratch file
which is read back in by the next pass and the output from that pass is written onto a second scratch
file.

Each pass processes the stream of bytes in a direction opposite to the one in which they were
generated by the previous pass: ALG1 and ALG3 process the bytes in the source text order; ALG2
and ALG4 process them in the reverse order.

9.2 LANGUAGE TRANSLATION

Each pass uses one or more internal pre-set tables; the value of each byte input to a pass is an index
into a table in that pass. The table entry thus referenced either yields an output byte value for the
next pass or it directs control to an action which will generate an output byte value. One or more
input byte values may generate one or more output byte values.

9.3 LANGUAGE ANALYSIS

The syntactic analysis in ALG1 uses a state/delimiter method. The delimiter is the current input

byte which represents an element in the language. The state is the current syntactic situation, as
established by previous delimiters; each delimiter causes a change in state.

60329000 A 9-1

A pre-set table in ALG1 contains the syntactic rules of the ALGOL language. This table is refer-
enced by the two dimensions state and delimiter. Each entry in the table, referenced in this
manner, indicates whether or not the current delimiter is legal in the current state, the new state
to be established, and any further actions required.

Similar table actions are performed in other passes to check different aspects of a program for
legality.

9.4 IDENTIFIER (SYMBOL) TABLE

The identifier table is established by ALG1 as it reads the source text. The table contains only one
version of each distinct identifier regardless of the number of times that identifier occurs in the
source.

Each identifier in the table is linked to the next identifier with the same classification. The classi-
fication of an identifier is derived from the hash-total of the characters comprising the identifier.
Whenever the identifier table is searched, only those identifiers on the classification chain corre-
sponding to the one being considered are examined.

Each distinct identifier is associated with an integer from 513 to 4095 assigned sequentially as
distinct identifiers are encountered. The integer values are output as the byte values for the
identifier for processing by subsequent passes. The identifier table is not used after the first pass
of compilation.

9.5 COMPILER SUBPROGRAM DESCRIPTIONS

ALGOL

The ALGOL subprogram is the internal controller of the compiler. It is loaded from the library
as a result of a control card specifying the name ALGOL. Its main function is to load and pass
control to each pass of the compiler as required. At the end of each pass, control is returned to
ALGOL for loading the next pass. At the end of compilation, ALGOL returns control to the oper-
ating system. ALGOL resides in memory throughout the compilation process.

ALGO

ALGO processes the control card parameters. It checks specified options for legality and sets the
appropriate information for these options for later use.

9-2 60329000 D

ALG1

ALG1 reads the source code and translates it into an internal form of the ALGOL-60 reference
language. It performs all syntax analysis on the source program, generates the output stream of
intermediate information for processing by ALG2, and prints the source text in parallel with the
processing.

ALG1 consists of various control routines plus the three routines TASK1, TASK2, and TASK3 which
perform the principal functions. TASKS3 is immediately called on entry to ALG1; TASK3 references
TASK2 to perform subsidiary functions; TASK2 itself calls TASK1 for functions subsidiary to it.

TASK1 analyzes and checks the hardware representation of the source text, and converts it to the
internal form of ALGOL symbols. All comment structures are removed.

TASK1 also assembles strings and transmits these and any diagnostic alarm indications directly
to the output stream for later processing by ALG2. TASKI1 is called by TASK2 whenever the latter
requires another ALGOL symbol.

TASK2 processes the intermediate bytes from TASK1. It assembles identifiers into a table, and for
each distinct identifier, it outputs a unique integer value byte to TASK3. TASK2 also assembles
numeric constants and outputs a byte for each to TASK3. It transfers information concerning each
constant and any alarm indications directly to the output stream. TASK2 is called by TASK3 when
the latter requires the intermediate byte describing the next source text element.

TASK3, using the bytes furnished by TASK2, examines the entire program for syntactic correctness.
It also rearranges the procedure headings for more convenient processing in later passes and
further classifies certain delimiters, such as the comma and semi-colon, into more exact contextual
meanings. The results of this processing are transferred to the output stream for processing by
ALG2.

If an error is found in a structure, TASK3 suppresses the remainder of the structure up to the
terminating delimiter (such as ; , end, then, else, etc.) replacing it with the special byte which-
indicates trouble and bytes indicating the nature of the error. (ALG2 processes this information
in reverse order; it encounters the trouble byte and then removes that part of the structure which
was already in the output stream before TASKS3 detected the error.)

ALG2

ALG2 performs two principal tasks:
It detects each declaration or declaration-like entity, and develops a systematic representation
for them. This representation is output for processing by ALG3 directly behind the begin
of the appropriate block.

It totally removes from the output stream statements marked by the trouble byte. In
general, this ensures syntactic correctness of the remaining code.

60329000 A 9-3

ALG2 processes the input stream of bytes in the reverse of the source text order (opposite
direction to ALG1 output). ALG2 consists of various control routines plus the routine TASK4
which performs the two principal functions.

ALG3
ALG3 performs the following major functions:

Generates relative addresses of all variables in the stack.

Checks kinds and types to ensure consistency between the declaration of a given variable
and its use in the statements and expressions of the program.

Generates machine code in a macro-like format which is convenient for ALG4 to use in the
final generation of program addresses.

ALGS3 processes the input stream of bytes in the source text order (opposite order to ALG2 output).
ALG3 consists of various control routines plus the three routines TASK5, TASK6, and TASKT7 which
perform the principal functions.

TASKS5 processes the declarations of a block; it sets up a declaration table which contains descriptions
of all currently accessible variables. Each description includes the kind, type, block level, and
block relative address of the associated variable. This table is referenced by TASKS6.

TASK6 checks the types and kinds of all variables for consistency between declaration and use in
the program; and it sets up the reverse Polish notation of the source text, calling upon TASK7
for each element of this Polish string. An error-free program is assumed in TASK6 (as far as
delimiter structure is concerned), this situation having been achieved by TASK3 and TASK4.

TASK6 contains three sections: it handles operands as they are.encountered from the input; it
handles incoming operators and stacks them if necessary; and it handles the priority processing of
stacked operators.

TASKY7 is called by TASK6 for each element of a Polish string. Each operand element is stacked by
TASK? until it encounters an operator element. At this time, it generates the object code (in

macro-like format) for the operator and the corresponding stacked operands.

After each call to TASK7 (for either an operand or operator), control returns to TASK6 for the
next element in the Polish string.

ALG4

ALG4 generates all output from the compiler. The major outputs are: assembly form of object
program (options A and B), relocatable binary form of object program (options X and P), and

segmented form of object program (option §).

ALG4 processes the input stream of bytes in the reverse of the source text order (opposite direction
to ALG3 output).

9-4 60329000 A

ALG4 consists of various control routines plus the three routines TASK8, TASK9, and TASK10
which perform the principal functions. TASKS8 handles the input bytes from ALG3; TASK9 handles
binary relocatable input, and TASK10 generates all of the compiler outputs (except for the source
listing) from information furnished by TASK8 and TASKS.

TASKS8 generates units of 512 machine instructions and constants from the macro-like bytes output
by ALG3. TASKS scans backwards through the translated program, generating code from the last
end to the first begin, filling in final program point addresses.

TASKS builds up each unit in a 512-word area, stacking instructions from the end with higher
address towards the end with lower address, and stacking constants from the other end. When
the two meet, TASKS calls TASK10 to output the unit.

TASK9 converts subprograms from a relocatable binary form into units of 512 words as described
for TASKS8. Like TASKS, it calls TASK10 for every such unit prepared.

TASKI10 is called by both TASK8 and TASK9 when either has a complete unit of 512 instructions and
constants to output. The three main sections of TASK10 handle assembly language output (A and

B options), relocatable binary output (X and P options), and segmented output (S option). Depending
on the outputs requested, any or all of these sections are executed for any one unit.

9.6 OVERALL COMPILER FLOW
Not all of the passes ALG1 through ALGS5 are loaded and executed for every compilation requested.
The selection of passes is based on the compilation and object-code output options specified on the

control card (Chapter 6). Each pass sets information indicating the next pass to be loaded.

The following diagram illustrates the overall flow of the compiler passes based on the control card
options specified. . .

60329000 A 9-5

OVERALL FLOW DIAGRAM OF ALGOL COMPILER

end process : =
false
Entry multiple :=
true
next : =1
next :=4
- multiple
next 5 : = false
ALGOL
end \ yes Exit to oper-
process ating system
no
Load and
call
ALG (next)
ALG1 ALG2 /ALG3 \ ALG4 ALG5
next :=2 next :=3 next :=4 next :=1 end proc=
ess : = true
no
yes
multiple
: = false
end proc-
next := ess := true
60329000 D

OBJECT PROGRAM 10

10.1 RUN-TIME SUPERVISORY PROGRAM

A run-time supervisory program, called ALGORUN for non-segmented execution and ALG5 for
segmented execution, controls object program execution in either segmented or non-segmented
form. The supervisory program consists of controlling routines which handle the dynamic stack
of variables and the segment structure. ALG5 and ALGORUN are functionally identical except
that ALG5 additionally contains the segment loading and controlling routine.

All calls to the separate global routines are generated within the object program as machine jumps
to different positions in a data vector. Each position of the data vector contains the address of one
particular routine at execution time. The contents of the data vector are defined by the supervisory

program.

10.2 OBJECT-CODE STRUCTURE

Regardless of the final form of the output requested, the object code is generated in segments of 512
machine words. Each segment consists of instructions and any constants referenced by these in-
structions. The object code is generated backward (from the last to the first begin).

Within each segment, the constants are stacked above the instructions and are given lower addresses
than the instructions. The instructions are sequenced so that execution within each segment proceeds
normally from low address to high. The last instruction in each segment is a system jump to the
first instruction of the next logical segment (the one physically preceding). The program is entered
at the last segment generated (the logical beginning of the program).

10.3 OBJECT-CODE GENERATION

The object code is generated first in an internal representation of the final code in segments of

512 words as described above. The non-segmented output is obtained directly from this represen-
tation; the segments collectively form a relocatable binary subprogram. The segmented output

is obtained by modifying the address fields of instructions so that each segment is individually
relocatable; each modified segment is output separately to the segment file. (A binary subprogram
which already physically exists is incorporated into a segment file by first converting it to the
internal representation.) It, therefore, follows that the two forms of the object code are structurally
identical,

60329000 D 10-1

10.4 LIBRARY SUBPROGRAMS

The library subprograms obey the same structural rules as a binary subprogram generated by the
compiler. Each subprogram consists of one or more segments, and each contains one or more of
the standard procedures. The standard procedures are organized logically, so that functionally
similar procedures (such as SIN and COS, and IN REAL and IN ARRAY) are contained in the same
subprogram.

10.5 ADDRESS-FIELD CONVENTIONS

Three basic types of references can be made in an object program: a reference to the stack, and a
reference from one instruction to a point in the same segment, or to a point in a different segment.
Correspondingly, three types of address fields are generated. In addition, except for stack refer-
ences, the forms of the address fields are different in the non-segmented and segmented output,
though at execution time (after loading), they are essentially the same.

Reference to the Stack

Every variable in the stack is referenced relative to a stack reference address (Chapter 11), which
is the beginning address of the stack area reserved for the block in which the variable is declared.
Such references are therefore generated as the relative number (position) of the variable in its
block plus an index register which contains the appropriate stack reference address.

Reference to the Same Segment

Such a reference can be either a reference to a constant in the segment or a compiler-generated
jump to a point in the same segment (such as a bypass in an if statement).

In the non-segmented form, the address field is a normal subprogram address, relative to the
beginning of the whole subprogram. In the binary form, this field is flagged to indicate that it
requires positive program relocation by the system loader, which results in the desired absolute
address.

In the segmented form, the address field is changed to the relative position of the desired location
within the segment itself (000YYY). This field is flagged in the segment file to indicate that it
requires segment relocation when the segment is loaded, which results in the desired absolute
address. :

Program jumps (as opposed to compiler-generated jumps), such as those generated from go to

statements, are generated in the form of a reference to a different segment even if the destination
address is in the same segment.

10-2 60329000 A

Reference to a Different Segment

Such a reference can result only from a transfer of control requirement (which may necessitate a
jump out of the segment). Because of this, all such transfers are performed through the run-time
supervisory subprogram, in both the segmented and non-segmented forms.

This transfer of control is generated as a call to one of the routines in the supervisory subprogram,
with the destination address as a parameter to call.

In the non-segmented form, the address field is the complement of the normal subprogram address
in relation to the beginning of the whole subprogram. In the binary form, this field is flagged to
indicate that it requires negative program relocation by the system loader, which results in the
complement of the desired absolute address.

In the segmented form, the address field is changed to MMMYYY where MMM is the segment number
of the referenced segment on the segment file. This is interpreted by the controlling routine as
relative location 000YYY within the segment MMM (which is loaded if not already available).

A reference from the program to a library or separately compiled procedure has exactly the same
form as a reference to a different segment, except for the form of the destination address in the
actual program. This always has the form 000YYY where YYY is a constant which is used as a
relative address into a table which contains the addresses of all such procedures.

60329000 A

OBJECT-TIME STACK n

11.1 STACK STRUCTURE

According to the rules of the ALGOL language, a variable is active (available for reference) in any
block to which it is local or global. A variable is local to the block in which it is declared and global
to the sub-blocks within the block in which it is declared.

Depending on the block structure and the variables declared at each level, not all variables are active
at the same time. The object programs produced by ALGOL overlay variables which are not simulta-
neously active. The overlay process is described below.

During execution of an object program, all variables are contained in a variable-length memory stack
consisting of 60-bit entries, one or more pertaining to each active variable. Since the stack includes
only active entries, the size fluctuates.

The compiler assigns to each variable an address relative to the stack reference for the block in which
that variable is declared in the reverse order of their declarations. The stack reference for each block
is the position in the stack where the entries for that block are assigned at object-time. It is derived
as follows:

When a new block is entered which is nested in the last block entered, the stack reference for the new
block is assigned to the first available (inactive) position in the stack. Certain preliminary information,
including the stack reference of the next outermost block, is set into the stack, beginning at this
reference point,

The compiler assigns a block level number to each block in the program, and the object program main-
tains 32 display entries each of which contains the stack reference for blocks at the corresponding level.
The display entry corresponding to the new block is set to contain the new stack reference. Since there
are 32 display entries, a program may contain a block structure in which blocks are nested up to a depth
of 32 levels.

When a block is exited, the space in the stack occupied by its local variables is released as the variables
become inactive. The display entry corresponding to the block being exited necessarily contains the
stack reference for this block (the point up to which the stack can be released).

A go to reference from one block in a nest to an outer one results in an exit from that block and from
all of the blocks up to but not including the referenced block. Thus, the effect is to change the environ-
ment of the active variables to be only those local or global to the referenced block.

When a procedure call is made, the current environment (or record of it) is preserved, since a return
must be made to it at the completion of this call. The environment in which the procedure is declared
is established, and the procedure entered. This results in a change of the display, but no stack is
released. The procedure is executed with the corresponding variables available to it, and the original
environment is re-established.

60329000 A 11-1

Consider the following program outline:

begin
procedure R
begin
begin
R
S
— begin end end
begin
P X R
A
end
begin
Y goto L
end end
L:
begin
B
end
end

Block P is the program itself; blocks A and B and procedure R are at the same level within P; block S
is contained in procedure R; blocks X and Y are at the same level within block A. Block X contains a
call to procedure R; block Y contains a jump to label L within the outermost block (the program itself).
The changes in the stack and display entries can be visualized as follows:

11-2 60329000 A

pesn jou = fHdwral

1] ;
1€
1 . 10 . [1
“ i b N » i X N X H /] _
| 1l \ _ 1 (I I h I P! | | | i
| il) Ll L1 11 Iy I 11 i L i
£ X s X €
q e ® e I X I ® ® 2
d d d d d d d d d d d d 1
AIay
Kfeidsta
+mmuﬂm aweg oy} je sonep Anuy Aeidsiq
s s
q q a
I
qg X X X X X X £ pue x
v v \4 v v \4 v v
q pue e
d d d d d d d d d d d - d d
SS0IppY:
g woaxy qg o0 X woy X0 X W0y ¥ Wod] g WoIy s 0 y 0} X 0} v o1 d o1 sousIoIOY
X3 Layus X9 Kxyua NXS 1NX8 X L1jua Lxyud Axyua Axjus Axyua somg

Iy IOV Iy IV Iy IV Iy IV oYV sy I8V Iayy

TWOTMOoXy WBIZ0IJ JulInp So5elS JUSISHI(J Je SJUuauo) HuBls

11-3

60329000 A

Following the call to procedure R, the information for blocks A and X remains in the stack; however it
is not accessible, since the corresponding display entries are overwritten (and re-established when R
is exited). The information for block P also remains in the stack; but this is accessib:e, since its
display entry is not changed. This exactly follows the rules described in the ALGOL-60 Revised Report
concerning the accessibility of variables during and after return from a procedure call.

11.1.1 OWN VARIABLES

All own variables are assigned entries in the stack prior to the entries assigned to the outermost block
of the program, Thus, own variables are treated as global in definition (local to the whole program),
though they are only local in scope to the block in which they are declared, just like other variables.

For an own array, the stack entries for each element in the array appear prior to the entries for the
outermost block; the other entries for the array appear in the normal position in the declaration block.

11.1.2 STACK LISTING

The object program controlling system includes a routine which produces the active contents of the stack
in a meaningful format upon abnormal object program termination. This structured dump may also be
called by the procedure DUMP. Own variables do not appear in such a dump.

11.2 STACK ENTRIES

11.2.1 VALUE OF VARIABLES

Simple local variables and simple formal parameters called by value are represented in the stack as
follows:

Real

60-bit entry in standard floating-point form (Section 5. 1.3, Chapter 2).

Integer
60-bit entry in standard floating-point form (Section 5.1.3, Chapter 2).

Boolean

60-bit entry in which bits 58-0 are always set to 0. Bit 59 is set to 1 for true and 0 for false.

11-4 . 60329000 A

11.2.2 DESCRIPTION OF VARIABLES

All descriptions of variables in the stack have the following general form:

XXXX XXXXXX XXXX XXXXXX
{ x=0: <y <'1>1 <o>, <.k>4 <t>3 } address 1 <s>1 <o>ll address 2
x=1: <x>1 <i>1 <’7>3 <k>4 <l“,>3

x=0 Transformation required

x=1 No transformation required

Depending on the value of x, the remaining 11 bits of the upper 12 are either their true values or their
one's complement values, as shown above.

t is the type of the variable

Integer -real-integer
f 1 onl
Real-integer-real ormat onty

t Type Possible Use

0 No type

1 Integer |

2 Real formal and local
3 Boolean

4 Integer-real

5

6

7

Real-integer

s is the sign of address 1, wherever applicable '

60329000 A 11-5

K Kind Possible Use
00 Switch

01 String

02 Label of designational expression

03 No-type procedure formal and local
04 Typed procedure

05 Array

06 Constant

07 Expression

10 Simple variable formal only
11 Subscripted variable

The interpretation of address 1 and address 2 depends on the kind (k) of the description as explained
below. :

A stack entry representing an arithmetic value may have a structure which makes it appear to be a
description,

11.3 DETAILS OF DESCRIPTIONS

The following detailed explanations of the descriptions are ordered according to the kind, k. Return
information for a procedure call does not have a kind; it is described first.

11.3.1 TERMINOLOGY
All references to the stack in the object program are relative to the beginning of the stack area for a

particular block. When a block is entered at execution time, the base address of the corresponding
stack area is assigned. This absolute base address is the stack reference, RRRRRR of the block.

The term segment location, SSSSSS, means an address pointing to a position in the object program. In
non-segmented execution, it is the 18-bit complement of an absolute address. In segmented execution,
it is interpreted as a 9-bit segment number followed by a 9-bit segment relative address.

The term stack address, AAAAAA, means an absolute address pointing to a particular stack entry.

11-6 60329000 A

11.3.2 DESCRIPTION

XXX XKXKKX XXXX XXXXXX
Return
Information Number of formals | SSSSSS | <s>, <Appetite> | | RRRRRR
s - sign of SSSSSS
Appetite = No. of formals + No. of constants + 1.
SS5SS8SS Segment location of next sequential instruction
following the procedure call.
RRRRRR Stack reference of the block in which the
procedure call is made.
XXXX XXXKKK XXXX XXXKXK
00 Switch
5777 | AAAAAA | 0000 NNNNNN

AAAAAA Stack address of the description of the first
element of the switch list.

NNNNNN Number of elements in the switch list.

In a switch declaration, this description is immediately preceded in the stack by the descriptions of the
labels or designational expressions (see kind 02, below) which constitute the switch list, as follows:

< Designational expression of the nth switch element> 60

<Designational expression of the (n—l)th switch element> 60

aaaaaa <Designational expression of the 1st switch element>g
<5777 aaaaaa 0000 n>go

.

XXXX XXXXXX XXXX XXXXXX

01 String
5767 | SSSSSS | 4000 | <c>p <0>1 <X>g<N>jg

¢ Format string flag
¢ =1 string has been analyzed and can be used
as a format string.

c =0 string must be analyzed to see if it can be
used as a format string.

60329000 A

X X replicator count in the string.
N Number of characters in string.

The string itself is stored in-line in the object program,

SSSSSS Segment location of the first word address of the string.

XXXX XXXXXX XXXX XXXXXX

02 Label
5757 | SSSSSS | 4000 | RRRRRR

SSSSSS Segment location of the point in the object program
corresponding to the label.

RRRRRR Stack reference of the block containing the label.

For each for statement, the compiler generates an artificial label with the same description as a
normal label. This label is used to return from the end of the for statement to the control at the
beginning. Whenever the for statement is not in execution, the segment location, SSSSSS, of this label
is set to point to a special system entry segment location 000011, in order to detect abnormal use of the
statement. In addition, bit 59 of the description is preset to 1 before entry to each step-until element,
and set to 0 after this element has been entered.

XXXX | XXXXXX | XXXX XXXXXX
02 Designational

Expression 5757 | SSSSSS | 4000 | RRRRRR

SSSSSS Segment location of the code which evaluates the
expression and jumps to the resulting address.

RRRRRR Stack reference of the block containing this code.

XXXX | XXXXXX | 3¢ XXXXXK
03 No-type
Procedure 7747 | SSSSSS | 4000 | RRRRRR
SSSSSS Segment location of the procedure.
RRRRRR Stack reference of the block containing the procedure.
XXX | xxxxxx | xxxx XXXXXX
04 Typed
Procedure
roe {23‘;,;} $SSsSS | 4000 | RRRRRR

SSSSSS Segment location of the procedure.
RRRRRR Stack reference of the block containing the procedure.

11-8 60329000 A

XXXX | XXXXXX | XXXX | XXXXXX

05 Array {205t}

579% AAAAAA | 0000 | DDDDDD

AAAAAA Base address of the array elements in the stack.

DDDDDD Base address of the dope vector in the stack. The
dope vector is used to calculate the addresses of the
array elements (see below).

The elements of an array are assigned above the last working location of the particular block.

own arrays are handled in the same way, except that their elements are assigned among the own
variables,

The elements of an array called by value are copied (and transformed, if necessary) to a position above
the working locations of the block of the procedure.

In an array declaration, the dope vector of the corresponding bound-pair list precedes the descriptions
for all array identifiers of an array segment.

The dope vector for the array declaration

array A [£): uy, 29:ug,... 2n:uplis:
< Cp>60
< Cp-1%*Cn>60
<Co*C3*.... ...l e *Cpo1"Cp> 60
< Length of array >60
DDDDDD <« Lower bound effect >60
< n = No. of dimensions >60

where Cj =u; - £; +1

Length of array = C; *C5*Cj3.....%Cy
Lower bound effect = (((.. (81 *Cg + £2) *C3 + £3)*...)*Cpy + #y

The address of any element is referenced by the base address of the array plus
(((-- iy *Cgq +1i9)*Cg +i3)*....)*Cy + iy, - lower bound effect.

60329000 A 11-9

For example, the description of the declaration

array A, B [1:3,2:5] is:

<

<

dddddd <
<
<5725
<5725
06 Constant

07 Expression

10 Simple
Variable

11 Subscripted
Variable

11-10

4> 60
12> 60
6> 60
2> 60

bbbbbb 0000 dddddd> 60
aaaaaa 0000 dddddd> 60

Segment location of the code which evaluates the

Stack reference of the block containing this code.

Segment location of the code to evaluate the address

XXXX | Xxxxxx | xxxx XXXXXX
206t
{5715} 000000 | 0000 | AAAAAA
AAAAAA Address of the constant in the stack.
XXXX | XXXXXX | Xxxx XXXXXX
007t
{77 Of} SSSSSS | 4000 | RRRRRR
SSSSSS
expression,
RRRRRR
XXXX | xxxxxx | xxxx XXXXXX
f 2102}
\567% 000000 { 0000 | AAAAAA
AAAAAA Address of the simple variable in the stack.
XxXxx | xxooox | xxxx XXXXXX
011t
{766?} SSSSSS | 4000 | RRRRRR
SSSSss
of the subscript variable.
RRRRRR

Stack reference of the block containing this code.

60329000 A

OBJECT-TIME ABNORMAL TERMINATION DUMP 12

Upon detection of fatal error during program execution the ALGOL control routines perform the
following actions:

1. Empty all output format areas onto associated files.
2. Print diagnostic on standard output file, channel 61.
3. Print a structured dump.

Chapter 8 describes object-time diagnostics.

The amount of information given by the dump may be changed, from its default, by the execution
time option parameter E (chapter 13).

E =0 Error message only

E=T Error message and traceback

E=V Error message, traceback, local and formal variables
E=W Error message, traceback, local and formal variables

The arrays may be dumped and decimal translation obtained if either of the last two options is
selected.

12.1 STRUCTURED DUMP

The structured dump traces back the execution path from the point where the error occurred,
through the block structure, to the entry point of the program. Information relevant to the pro-
gram will be selected from store in accordance to the E option. The dump has the following for-
mat:

THIS ERROR OCCURRED AFTER LINE XXXX
IN THE BLOCK ENTERED AT LINE XXXX IN YYYYYY

(global information)
(environmental information)

THIS BLOCK WAS CALLED FROM LINE XXXX
IN THE BLOCK ENTERED AT LINE XXXX INYYYYYY

(environmental information)

60329000 A . 12-1

THIS BLLOCK WAS CALLED FROM LINE XXXX
IN THE BLOCK ENTERED AT LINE XXXX IN YYYYYY

(environmental information)

(environmental information)

LINE XXXX refers to the line number counted, from zero for the first card, in the program or
code procedure deck. It is printed for every tenth line on the source listing (L-option on the ALGOL
card control, Chapter 6).

If the block entered is a standard procedure (3.2.4) then.... appears instead of the line number.

YYYYYY refers to the deck in which this block was declared. It will be either the program name
default XXALGOL, the code procedure identifier (e.g. CP00001 for 'code' 1), or if the block is a
standard procedure, it will be the procedure name.

12.2 GLOBAL AND ENVIRONMENTAL INFORMATION

Each item of the global and environmental field consists of an address, A, printed as 6 octal digits
and the contents C of that address printed as 20 octal digits in fields of 4,6,4, and 6. The layout
is as follows:
Address Field Information Field
XKXXXXX XXX XXXXXX XXXX XXXXXX
When decimal translation is required, the contents, C, are checked. A floating point number is
printed in standard format (Chapter 3.1, Section A.5), otherwise it appears in octal. Occasionally

a floating point number with a very small negative or large positive exponent will not be translated.
When converted the layout is as follows:

Address Field Information Field
KAXXXXX £2:99.9.9.9.9.9.0.9.0.0.9.0.9.40).0.9.¢

For environmental information, the address A also is printed as an increment on the stack refer-
ence, making the layout as follows:

Stack Reference Address Information Field
Index Field
XXXXXX XXXXXX XXXX XXXXXX XXXX XXXXXX

12-2 60329000 A

12.2.1 GLOBAL INFORMATION

The global information applies to the running program as a whole, without regard to the currently
active block structure. It has the following format:

THE GLOBAL VARIABLES ARE:
UA, VALUE
uv } information items.
LASTUSED
UA, UV and LASTUSED name variables internal to the ALGOL system.
The information item for UA is the address and value of the last accessed of the following:
a format parameter
a typed procedure

an array element

UV is used only to contain either the value of the last accessed formal parameter (if it does not
appear in the stack) or the value of a typed procedure. The address of UV is always zero.

LASTUSED contains the address and value of the top stack element. It is the current top stack
entry and will not necessarily be the highest entry so far, as some blocks may have been exited.

12.2.2 ENVIRONMENTAL INFORMATION

Environmental information consists of descriptors or values of formal and/or local variables
belonging to the block currently being dumped. Arrays being dumped appear after the local varia-
bles. Formal variables appear only if the particular block is a procedure.

Simple local variables and simple formal parameters called by value are represented by their
values; all other variables are represented by a descriptor. The values are always stored in
floating point; the descriptors are as described in Chapter 11.

On the extreme left-hand side of the dump of formals, locals, and arrays, appears the index on the
stack reference for the first variable on that line. This index is a negative increment on the current
stack reference for formal parameters and a positive one for local and array variables. It is the
same as REF on the identifier table obtained under compilation with the M-option (Chapter 6).

60329000 A 12-3

Formal Variables
Formal variables are dumped in the following structure.

THE FORMAL VARIABLES ARE. .

1st line : last constant used as actual parameter
n+l 1st constant used as actual parameter
n last formal parameter
000001 1st formal parameter
000000 Return information

Local Variables

Local variables are dumped up to 4 items per line. If the contents of one is repeated in consecu-
tive variables,the first one is printed, followed by:

. UNTIL. XXXXXX ZZ7Z7ZZZ

where XXXXXX is the stack reference index and ZZZZZZ is the address of the first item with a
different value. Entries in the stack are stored in the reverse order to their declaration in the
source program, and they are dumped in this order. One stack entry is generated for each of the
following:

Every declared variable, whether real, integer, Boolean, procedure, label, array, etc.

Each for statement generates an artificial label.

Each designational expression in a switch list generates a dope vector of length n+2.
The working storage includes the local variables of standard procedures, partial results in the
computation of long expressions, and any space allotted by the compiler for optimization. If
requested by the presence of the W option, the working storage is dumped as a continuation of the

local variables.

If requested by the presence of the A option, the arrays are dumped after the local variables for
that block. The layout is as follows:

THE ARRAY ELEMENTS ARE..
DESCR. .. XXXXXX
(elements of 1st array)

DESCR... XXXXXX

12-4 60329000 A

(elements of 2nd array)

XXXXXX is the index on the stack reference for the descriptor of array that follows. The name
of a particular array may be found by reference to XXXXXX in the dump of the local variables or
in the cross reference map produced by the M option on the ALGOL card. Elements of arrays
are dumped in the order of storage (Chapter 11.3). The stack reference index for the elements

of an array is the index on array element zero; e.g. A [0,0].

60329000 A

EXECUTION TIME OPTIONS 13

Execution time options, which control the running of an ALGOL-60 object program, may be speci-
fied either by control cards or by directives on the standard input device. The latter method is
provided so that programs executing in segmented mode can select run time options.

(Nomenclature: <name> means that name is a description of the indicated field rather than the
literal contents thereof. The two characters <> are used only in this way and do not appear in
any fields. { <contents>} means that contents may be supplied or omitted. The separator |
between fields means that a choice must be made between the alternative formats thus separated.)

Control card options are provided as parameters on the control card (such as program call card)
which initiates execution of the ALGOL program, for example:

LGO (<options>)

The run time directives are supplied, along with any CHANNEL cards, as the first data on the
standard input device. Such directives must appear before the first data card, an OPTIONS, END
card, or a CHANNEL, END card. The card format is:

OPTIONS, <options>

The eight characters, OPTIONS, appear in columns 1-8. OPTIONS, END may be employed to
terminate recognition of OPTIONS cards; it may be omitted.

Since it is functionally identical to a CHANNEL, END card, it should not be used if CHANNEL
definitions remain to be processed. Conversely, a CHANNEL, END card will also suffice to ter-
minate input of OPTIONS cards, if required.

v

If both program call card and OPTIONS card directives appear,the OPTIONS card definitions take
precedence.

Each installation will have its own default values for these parameters.

The format of the options field follows:

<options> may be <option-1> { ... <option-k>}
option-i iss {0=}
or D {=0|=n}
or C {=n}

or E {=0| = <character string>}

60329000 D 13-1

13.1 STACK STATISTICS (S)

The S option takes the form S=O or S. The former selects no production of statistics. S alone
will result in the monitoring of the size of the stack during program execution, and upon abnormal
termination, the maximum address reached by the stack will be recorded on the standard output

device. Absence of the S option will cause the installation default to hold. Default of S=O is recom-
mended since monitoring will degrade performance in a program with large block activity.

13.2 DEBUGGING OUTPUT (D AND C)

These options are relevant only when the program has been compiled in D mode (debugging) to
activate debugging directives in the source code.

D option form:
D=0
D
D=n n is a positive integer

C option form:

C
C=n n is a positive integer

D=0 suppresses any debugging output resulting from D mode compilation. These outputs however,
will be computed in the object code; otherwise the debugging output will appear on the channel
specified by C, C=n or by default.

D overrides a possible default option of D=0. It will cause all debugging output to appear with no
limit on the number of messages.

D=n is similar to D except that output will be suppressed after the number of debugging messages
specified by n have appeared. Program execution will continue.

C selects the standard output device as the recipient for debugging outputs.
C=n selects channel specified by n as the recipient for debugging outputs. This channel must be
defined by channel card, unless n is 61; channel 61 is defined automatically for all ALGOL runs.
13.3 ABNORMAL TERMINATION DUMP FORMATS (E)
E option forms:

E=0

E
E = < character string>

13-2 60329000 A

When E = O, upon abnormal termination of execution, the abnormal dump is truncated; it provides
only the error message and the point of error.

E overrides a possible default of E = O, and results in a dump of the active stack with scalars and
descriptors. It is equal to E = V as defined below.

The other E options provide varying degrees of detail in the abnormal termination dump according
to the combination of the following character codes to form <character string. >

include traceback (flow from block-to-block)

include local and formal variables

include working storage (temporaries)

include arrays

X > g < =

provide decimal translation (X) of stack values

The codes T, V, W are progressively more inclusive each being implied by the following one.
Since A refers to a particular form of local variables and X refers to translation of the contents of
stack locations they are meaningful only in combination with V and W. Thus, the set of all options
is:

T, V, W, VX, WX, VA, WA, VAX, WAX.

13.4 EXAMPLES
LGO (E=VX, 8,D=0)

This control card initiates execution with no debugging output. Upon normal termination, the
highest stack address is output. On abnormal termination, the dump is a translation of active
stack with locals and formals; but arrays and working storage are not dumped.

OPTIONS, E=VX, D=0
CHANNEL, 5=60
OPTIONS, S
OPTIONS, END

These directives (intervening channel card shown) have identical effect to the preceding example.
This method of specifying execution time options is convenient if a program is executing in seg-
mented mode or from a terminal in interactive mode.

LGO (E=WA, D=2000, C)
The object program will produce debugging outputs on channel 61 normally until 2000 calls to the
debugging procedure have taken place. Thereafter, the debugging procedure will produce no out~

put. In event of abnormal termination, a complete stack dump will ensue, including array elements
and working storage areas. This dump will be in octal.

60329000 A 13-3

OPTIONS, E=WA, D=2000, C=4
CHANNEL, 4=61
CHANNEL, END

The effect of these directives is identical to that of the preceding example.

13-4 60329000 A

DEBUGGING FACILITIES 14

A source program may contain debugging directives designed to detect faults during subsequent
program execution. Under the normal mode of compilation, such directives are ignored by the
compiler and thus have no effect during execution of the resultant object code. However, if the
debugging option (compile time D option) is selected, any debugging directives present are detected
by the compiler and cause debugging code to be inserted into the object program. Since these
debugging directives are acceptable ALGOL~60 character sequences, it is unnecessary to remove
them from a source program submitted to an ALGOL compiler in which the directives are not re-
cognizable.

14.1 GENERAL

The debugging directives, trace and snap are keyed to identifiers in the source program. Trace
monitors the flow of control through a program; snap monitors changes in the values of program
variables. The trace directives apply to identifiers which represent labels and procedures, and

the snap directives apply to identifiers which represent simple variables or arrays. An identifier
which is the object of a snap directive may be monitored in certain specified areas of the source
program by judicious placing of the snap directive and by use of the off directive to return the ident-
ifier to normal status. However, a trace directive causes an associated identifier to retain that
attribute permanently, so that it is monitored throughout program execution.

The debugging directives affect the object code only when the debugging option has been specified
on the compiler control card. The object program will include code which performs monitoring
during subsequent execution by producing messages either on the standard output file or on any
other channel selected, at execution time, to receive debugging messages (C option). If an object
program has been compiled under the debugging option, debugging output can be suppressed or
limited by the D option. The source program should be recompiled in non-debugging mode to
obtain an efficient object program.

14.2 DEBUGGING DIRECTIVES

Debugging directives may be present in the source program at all stages of its development whether
or not they are to be activated. This is achieved by requiring debugging directives to be included
only within commentary sequences. By this means, it is possible to maintain debugging directives

in a source program which is compatible with several other compilers.

A debugging directive takes the form of <debugging directive> in the following definition:

60329000 A 14-1

< identifier list> < identifier> | < identifier>, <identifier list>

<directive> = trace| snap |off
<debugging directive> : := <directive> <identifier list>

e.g. snap a,b,marilyn
trace L1
off b

(trace, snap, off have the same hardware representation as compound delimiters)

The debugging directives are inserted in a source program within commentary sequences according
to the following rules. A commentary sequence may contain only one debugging directive. Any
commentary sequence may be expanded to contain a debugging directive by inserting it after the
last symbol in the sequence immediately before the semicolon which terminates the sequence. For
example:

; comment *** snap a,b;

begin comment first of all trace L1, Failure;

; comment off a ;
(Directives will not be recognized in text following end.)

In the absence of the debugging option at compile time, the previous examples would be equivalent
to semicolon, begin, semicolon respectively. However, in debugging mode (D option), all comment
structures are examined to detect the presence of trace, snap, or off. A syntax error will result

if the remainder of the commentary sequence does not conform to the above definition. Erroneously
constructed debugging directives will not be recognized as such in the absence of the D option. The
following sections assume that a syntactically correct debugging directive of the appropriate type
has been encountered and that the debugging option is enabled.

14.3 TRACE DIRECTIVE
This directive monitors the flow of control within an object program.

trace id-1,....,.,id-n

The identifier list must contain at least one identifier; order within the list is irrelevant, and any
member of the list will be referred to as a trace-identifier. A trace directive may appear any-
where in a block, but the identifiers in the list each mustbe declared in the same block as labels,
typed procedures, or no-type procedures. The trace directive does not refer to any previous dec-
laration of a trace identifier in an outer block or in a disjoint block. Nor can the trace directive
refer to some subsequent declaration of a trace identifier in an inner block (this will cause a nor-
mal re-declaration of the identifier).

14-2 60329000 A

Any transfer or reference to or call of a trace-identifier while its associated declaration is within
scope, or by means of an actual-formal correspondence, will be monitored throughout program
execution. It is not pt_)ssible to suppress monitoring within specific areas of the source program.

The format of the messages produced by trace monitoring at execution time is described in the
following sections. '

144 SNAP DIRECTIVE

This directive monitors changes in value of specified program variables during object program
execution.

snap id-1,..... ,id-n

The identifier list contains at least one identifier. The order within the list is irrelevant, and
any member of the list will be referred to as a snap-identifier. The snap directive does not re-
quire the associated identifiers to be declared in the same block. The snap directive can appear
anywhere in any block depending on the specific areas of the source program in which monitoring
of snap-identifiers is required.

A snap-identifier must be declared as a simple variable or as an array. It may be declared in a
block contained in that in which the snap directive occurred or in a block which embraces the block
in which the snap directive is to occur.

In the former case, the snap-identifier is monitored throughout the scope of its declaration (until
re-declared or until the declaration block is left). In the latter case, the snap-identifier is moni-
tored only in statements between the occurrence of the snap-directive and the end of the block in
which the snap-directive occurred, including statements in inner blocks.

Since the snap-directive is not itself executable, the interpretation being made at compile-time
only, the above definitions of the range of a snap-directive are static (lexicographic) and refer to
the physical program sequence rather than to the sequence in which the program is executed.
The statements which cause monitoring of a snap-identifier to take place at execution time are

dependent upon the kind of variable represented by the identifier; therefore a list of statements and
corresponding message formats is given in the following sections.

14.5 OFF DIRECTIVE

This directive provides additional control over the monitoring process initiated by a snap directive.
off id-1,...... , id-n

The identifier list contains at least one identifier; order within the list is irrelevant. If any ident-

ifier in the list is a snap-identifier at the point at which the off directive is encountered, monitor-
ing of that identifier will not occur in succeeding statements unless the identifier appears in a

60329000 A 14-3

subsequent snap directive. The off directive is thus the logical opposite of the snap directive;
since it can appear in any part of the source program, it provides statement-by-statement control
of the monitoring of snap-identifiers. Upon exit from the block in which a snap directive occurred,
the effect of the directive terminates just as if a corresponding off directive had appeared at the
end of the block. The off directive cannot be used to terminate monitoring of trace-identifiers.

The above definitions of monitoring ranges are physical and not logical, since the debugging direc-
tives are interpreted at compile time only. Thus, if an off directive is specified in a condition-
ally executed area of the source program, no monitoring code will be assembled for subsequent
references to the associated identifiers irrespective of the actual flow of control at execution time.

A snap-identifier will be subject to monitoring in the statement subsequent to:

the occurrence of the snap directive, or

the first declaration of the identifier,

whichever occurs the later; and in all lexicographically subsequent statements until the occurrence
of an off directive for that identifier, or exit from the block in which the snap directive occurred,
or entry to a block in which the identifier is redeclared, whichever occurs the earliest. If moni-
toring is suspended by the last named event above, it will be resumed upon exit from the block in
which the redeclaration occurred.

If a snap-identifier occurs in a snap directive in a block in which the snap-identifier is undeclared,
monitoring will occur for any subsequent disjoint declarations (of suitable kind) in inner blocks.

To monitor usage of an identifier not only in a certain block but within a procedure declared in
that block which may modify the identifier, it is necessary to insert the snap directive ahead of
the procedure body (among declarations in that block).

Examples:

begin
integer i ;
comment snap i;
procedure p(x); integer x ;
begin i :=i+x; comment i is monitored;

if i = j then
begin comment snap i ;
i : = complicated (x,y,2);
comment off i; j : =i+ 1 end else

14-4 60329000 A

14.6 DEBUGGING OUTPUT

The format and content of debugging output depends both upon the kind of variable being monitored
and upon the context. Information that may be obtained through debug directives is described in
the following sections categorized according to the kind of the monitored variable; a summary of
the general formats is given in this section.

A single item of debugging output is referred to as a monitoring message. In the following list of
monitoring messages the portions in lower case are replaced during execution by the line number,
identifier, or value. The identifier produced will correspond to that used in the debugging direc-
tive; but if the original identifier contained more than ten characters, only the first nine will appear
in the monitoring message.

** LINE linenumber (GO TO) identifier
.. produced for labels trace

** LINE linenumber (INVOKE) identifier
.. produced for procedures, functions trace

** LINE linenumber (USAGE) identifier
... produced for arrays, simple variables, subscripted variables snap

** LINE linenumber identifiers: = value
... produced for simple variables snap

** LINE linenumber (EXIT) identifier = value
... produced for simple variables snap

** LINE linenumber identifier [*] : = value
... produced for subscripted variables snap

Examples appear in the following sections.

14.7 LABEL MONITORING

When applied to a label identifier, the trace directive produces monitoring messages which indi-
cate when and from where a transfer to that label occurred. A trace directive referring to the
label identifier must be inserted at some point in the block in which the label is declared (just
before the label, or in the block head, for example).

The flow of program control may pass through a label either by a go to statement or sequentially
after completion of a preceding non-transfer statement. No monitoring message will be produced
for sequential execution, but all transfers of control by go to statements will be monitored.
Included are cases where the designated label is obtained as a switch element, as the value of a
designational expression, or by use of a corresponding formal parameter label identifier.

60329000 A 14-5

The monitoring message produced during execution contains the line number from which the
transfer occurred:

**LINE 231 (GO TO) INFEAS

A transfer to the label, INFEAS, occurred at line number 231 in the source program. This
is not the line number at which INFEAS occurs, that line number is given in the identifier
map produced by the M option.

14.8 PROCEDURE MONITORING

When applied to a procedure identifier, the trace directive produces monitoring messages during
execution which indicate when and from where that procedure has been invoked. A trace directive
must be inserted at some point in the block in which the procedure is declared (prior to the pro-
cedure declaration in the block head, for example).

Procedures may be invoked either by a procedure statement (no type procedure) or by the appear-
ance of a function designator (typed procedure) in an arithmetic or Boolean expression. Monitor-
ing will be produced unless it is a code-bodied procedure or represents a standard procedure or
standard function. Use of this latter class of procedures as trace identifiers is not permitted.

The monitoring message produced during execution contains the line number from which the pro-
cedure was invoked. The following example:

** LINE 235 (INVOKE) PRODUCT

Procedure, PRODUCT, was invoked from a statement on line number 235.

149 SIMPLE VARIABLE MONITORING

The snap directive permits monitoring of arrays and simple variables. For simple variables, ’
the snap directive monitors changes, or possible changes, in the value of integer, real or Boolean
variables.

To monitor a variable, the associated identifier must be specified as a snap-identifier according
to the rules given in section 14.4. Monitoring can be terminated on a statement-by-statement
basis through the off directive.

The value of a simple variable may be changed if it is:

one of the left parts in an assignment statement
the controlled variable of a for clause

used as a call-by-name actual parameter corresponding to a formal which undergoes a
change of value

14-6 60329000 A

The monitoring message for a direct assignment to a monitored variable takes the following for-
mat:

** LINE 71 INDEX :=9

This message contains the new value of the variable in addition to the line number and the
identifier, INDEX. The type of the monitored variable is integer. If the variable type is
real, the value is output in decimal standard format. If the variable type is Boolean, the
output representation is '"TRUE' or 'FALSE'.

Monitoring of changes in value caused by actual/formal correspondence is more complicated. If
the variable appears in the actual parameter list of a procedure statement or a function designator
and is not specified as call-by-value, its value will change whenever the corresponding formal
variable is altered. Since the monitoring process should indicate all possible changes in the
value of a snap-identifier variable, and since the bodies of procedures and function designators
are not necessarily available at compilation time, it is assumed for debugging purposes that a
variable may be altered whenever it appears by itself as an actual parameter. All such usages

of the snap identifier will result in a monitoring message at execution time.

The format of the messages produced depends upon the context of the usage of the snap-identifier
as a parameter, since it is not always certain that control will be returned to the code that will
monitor the final value of the variable. Thus, the following example of a monitored variable as
an actual parameter in a procedure statement may produce one or two messages depending upon
the behavior of the procedure:

comment check the determinant, snap DET;
INVERT (array, DET);
comment DET is the determinant of array, off DET;

The following type of message always will be produced:
** LINE 102 (USAGE) DET

A second type of monitoring message may be output also:
** LINE 102 (EXIT) DET = 17294

However, if the procedure INVERT does not return control directly to the calling block, only the
first message is produced. Although the monitoring process cannot always provide the (EXIT)
message giving the final value of the monitored variable, the value of the variable cannot change
without being indicated by the appearance of a (USAGE) message.

The use of a monitored variable as an actual parameter of a function designator poses similar
problems, but it is assumed here - for debugging purposes - that a function designator will always
return control to the expression or statement from which it is invoked. Therefore, it is possible
to record the value of the variable upon exit from the function; and upon termination of the invok-
ing statement, such as an assignment statement, an (EXIT) type monitoring message is produced.
For example, the source code:

60329000 A 14-7

comment snap M, N;
M : = 2* unstack (N) + 1;

would produce the following messages

** LINE 115 M : =11

** LINE 115 (EXIT) N=5
However, under the following circumstances, the exit value cannot be directly monitored. In
such cases, the function designator occurs in a designational expression, in a then or else expres-
sion of a conditional expression, or in the if clause of a conditional statement. In these circum-

stances the (USAGE) type of message indicates the possibility of a change in the value of the moni-
tored variable. For example the following source code:

comment snap N;

go to if j = 0 then L1 else switch [unstack (N)];
would produce the message

** LINE 116 (USAGE) N

14.10 ARRAY AND SUBSCRIPTED VARIABLE MONITORING

The snap directive applied to array identifiers is used to monitor occasions on which the elements
of the array may have been altered. Since the elements are dependent on the execution time value
of one or more subscript expressions, monitoring supplies only the point of usage.

One exception is direct assignment to the array element as a result of its appearance as a left
part in an assignment statement. The following source text:

comment snap A;
A}, 3%j-2] :=2%5;

would produce the following message:
** LINE 127 A[*] : = 32

The monitoring message contains the new value of the subscripted variable, integer, real, or Boo-
lean but does not supply the values of the subscript expressions.

Apart from direct assignment, the values of an array may change either if it is the controlled
variable of a for clause or if it or one of its elements is used as a call-by-name parameter of
kind array or subscripted variables. Use of an array or subscripted variable is considered to be
capable of changing the array values if the actual parameter consists of the array identifier or a
single subscripted variable. Thus the following source text:

14-8 60329000 A

comment snap A, B, C;
ifi=0Othenp (A, B[jl+1, C[jl);

where A, B, C are array identifiers, would cause the following type of message to appear if i
were zero:

** LINE 53 (USAGE) A
** LINE 53 (USAGE) C

Use of a subscripted variable or an array as an actual parameter of a function designator is
treated as in the case of simple variable parameters. Normally, such usage would result in the
following type of message on termination of the invoking statement:

** LINE 62 (EXIT) B

indicating that elements of the monitored array, B, may have new values on exit from the body
of the function designator. Use of arrays or subscripted variables as parameters of function
designators in the if clause of a conditional statement, in the "then' or "else' expression of a
conditional expression, or in a designational expression will produce the (USAGE) message; for
example:

i:=if j = 0 then manip (A) else j;

would produce a message of the type;
** LINE 85 (USAGE) A
showing that the typed procedure, manip, could have altered any of the elements of the array, A.

Finally, a subscripted variable as the controlled variable as the controlled variable of a for clause
is also monitored by a USAGE message if the array identifier is a snap-identifier at that point in
the program. Thus each assignment to the controlled variable, A [i, j] for instance, would be
accompanied by a message of the type:

** LINE 87 (USAGE) A

No attempt is made to record the values of an array in the monitoring messages, as the elements

altered are not easily established at compilation time. The monitoring process is primarily con-
cerned with identifying critical usages of array identifiers rather than the detailed results of those
usages. The only exception is the direct assignment to an element in which case the new value is

provided.

If preliminary use of the snap directive on an array identifier is not sufficiently detailed or too
indiscriminate, a more selective monitoring should be attempted by using snap directive on a tem-
porary variable introduced to sample critical array elements at the points indicated by the original
monitoring of the array itself.

60329000 A 14-9

ALGOL MACROS 15

A number of COMPASS coded macros are provided to expand the areas of application of ALGOL-60
programs. This may be achieved either by enabling ALGOL programs to make use of subprograms
coded in a different language or by providing special purpose COMPASS coded procedures to permit
ALGOL programs to perform tasks which require the compactness of extreme code efficiency.

Macros which serve the former purpose of providing linkage to subprograms coded in another lan-
guage will be referred to as interface macros. Macros which facilitate the production of special
purpose COMPASS procedures will be referred to as utility macros. Utility macros are further
subdivided into entry-exit macros, specification macros and formal-handling macros.

15.1 INTERFACE MACROS

Each macro provides a closed COMPASS subroutine that may be called directly from an ALGOL main
program. The expansion invokes an existing external procedure (written in a specified language),
provides the actual parameters given in the originating ALGOL procedure statement or function
designator, and returns control to the appropriate point in the ALGOL main program.

ALGOL actual parameters will be checked to ensure they are meaningful to the language in which
the external procedure is written; but consistency of internal data representation is not checked
(e.g., an ALGOL integer array stores its elements ''row-wise'' and each cell contains a normal-
ized floating point integer). Certain operations in the external procedure, notably input/output,
may be possible only if the main program was of the same language, which generally will not be
the case.

The macro can be used as the only statement in the body of a COMPASS interface deck, which after
assembly, must be loaded with the ALGOL main program and the external procedure. If more
than one external procedure is to be linked to the ALGOL program, however, several macros
should be combined into one interface deck.

15.1.1 FTNLINK

The following macro interfaces a FORTRAN Extended subroutine or function to an ALGOL main
program. The ALGOL program must invoke a code declared procedure to execute the FORTRAN
Extended subprogram. The name of this procedure is arbitrary; only its code number is required
by the interface macro.

name FTNLINK number

name: {location field} entry point of FORTRAN Extended subroutine or function.

mnnnnnnn & 15-1

number: {up to 5 digits} the code number used in the declaration of the associated procedure in
the ALGOL main program.

ALGOL parameters switch, label, string, or procedure will result in the diagnostic PARAMETER
KIND ERROR. All other parameter kinds will be passed to the subprogram in a suitable form for
FORTRAN processing.

Example:
ALGOL usage: ftnsub (x, y, z);
ALGOL declaration: procedure ftnsub (a, b, c); code 73;
Interface macro: PGM1 FTNLINK 73
FORTRAN definition: SUBROUTINE PGM1 (P, Q, R)

15.1.2 RUNLINK

The following macro interfaces a RUN subroutine or function to an ALGOL main program. The

ALGOL program must invoke a code declared procedure to execute the RUN subprogram. The

name of this procedure is arbitrary; only its code number is required by the interface macro.
name RUNLINK number, nopars

name: {location field} entry point of RUN subroutine or function.

number: {up to 5 digits} the code number used in the declaration of the associated procedure in
the ALGOL main program.

nopars: {absolute address expression} the number of formal parameters in the RUN subprogram.
ALGOL parameters switch, label, string, or procedure will result in the diagnostic PARAMETER

KIND ERROR. If the number of actual parameters differ from the value of nopars the diagnosiic,
PARAMETER COUNT ERROR will be produced.

Example:
ALGOL usage: t : = arcsine (x) ;
ALGOL declaration: real procedure arcsine (z) ; code 153;
interface macro: ASIN RUNLINK 153, 1

152 ENTRY/EXIT MACROS

The following macros are intended for use within special purpose COMPASS subprograms. They
provide entry from a procedure statement or function designator in an ALGOL main program, and
return, with a value in the latter case, to the appropriate point in the invoking program.

15-2 60329000 A

15.2.1 CODE

This macro provides linkage between the code declaration of an external procedure in an ALGOL
main program and the corresponding COMPASS subprogram. Control will transfer to the CODE
macro expansion and the statements which immediately follow the macro will constitute the first
executable code in the procedure. The macro expansion creates a new block level in the stack and
establishes the environment for the formal handling and specification macros to be described in

the following sections.
name CODE number

name: {optional location field parameter, up to 7 characters} an arbitrary name for the COM-
PASS subprogram initiated at this point. This name will be used during traceback in

event of an execution time error. I omitted, it is assumed to be CP—number.

number: {up to 5 digits} the code number used in the declaration of the associated procedure in
the ALGOL main program.

Example:
ALGOL usage: i : = extract (p, n) ;
ALGOL declaration: integer procedure extract (position, word); code 52;
entry macro: UNPACK CODE 52.

Since this macro name duplicates the name of a COMPASS pseudo operation, the latter has been
renamed CODE. so that it is still available whenever the ALGOL text is used.

15.2.2 RETURN

This macro causes a normal return from a COMPASS coded procedure. Although the procedure
may terminate in other ways (e.g., GOTO macro) this will be the normal point of exit, and will
return control to the point in the main program from which the CODE macro was entered. If -
invocation was by a function designator, the value of the function must be present in an X register

at this stage.

RETURN xreg

xreg: (optional X register designator) x register contains the floating point value of the function
designator represented by the preceding code. If xreg is omitted, it is assumed the
code was executed from a procedure statement.

Examples:
RETURN . from procedure statement
RETURN X4 . within expression

60329000 D 15-3

15.3 SPECIFICATION MACROS

The following macros are used within a COMPASS coded procedure to assist in establishing the
number and kinds of actual parameters in the current invocation of the procedure. Contents of
B4 must always be saved and restored before calling any macro.

15.3.1 PARAMS

The following macro provides the number of actual parameters in the current invocation of the
COMPASS procedures. No check is performed on the parameter count.

PARAMS Xreg

Xreg: (X-register designator) X register will receive the number (in binary fixed point) of
actual parameters transmitted in the current call.

Example: PARAMS X5

15.3.2 KIND

This macro provides a numerical representation of the kind of an actual parameter. To relax the
normal restriction that ALGOL actual parameters are checked against a fixed specification, this
macro does not produce any execution-time diagnostics. No check is made that the parameter has
been supplied in the current invocation.

KIND param, xreg

param: (absolute address expression, or X register designator) the value or contents of param
is the ordinal of the actual parameter to be examined, e.g., 2 indicates the second
parameter.

xreg: (X register designator) designated X register will receive numerical kind code of the
specified actual parameter. The codes corresponding to each kind of actual parameter
are:

switch

string

label

no type procedure
typed procedure
array

constant

expression

simple variable
subscripted variable

[2-JR- SRS I N I AR SR

15-4 60329000 A

examples:

KIND 3,X1
KIND FORMAT, X6
KIND X2, X3

15.3.3 SPEC

This macro permits the programmer to restrict the kinds of an actual parameter. Since allow-
able kinds for a given parameter may be run-time dependent, this check occurs in-line; it is
assembled at the location of the macro call rather than in centralized specification checking code.
This macro may produce abnormal termination with a diagnostic, and does not provide direct
information about the kind of the actual parameter:

SPEC param, spcodes

param: (absolute address expression, or X register designator) the value, or contents, of
param is the ordinal of the actual parameter to be examined.

spcodes: (string of up to 10 alphabetic characters) a string of one or more single character spec
codes, where each is an alphabetic character representing an allowable kind. Only
spec codes may appear in the string and none more than once. The string defines all
allowable kinds for this parameter. The spec codes for each kind of actual parameter

are:
switch w sWitch
string G strinG
label L Label
no type procedure P Procedure
typed procedure F Function
array A Array
constant C Constant
expression X eXpression
simple variable \'4 Variable
subscripted variable S Subscripted

If the actual parameter is not of the allowable kind, the diagnostic PARAMETER KIND ERROR
is produced.

examples:
SPEC FORMAT, GA . format items
SPEC X3, FCXVS . right hand side

60329000 A 15-5

154 FORMAL HANDLING MACROS

Any kind of actual parameter may be passed to the COMPASS subprogram, and subsequent hand-
ling of them as formals is the responsibility of the subprogram. None of the macros in this sec-
tion is applicable to all kinds of parameters. The most efficient way to ensure correct execution
is by use of the macros, KIND and SPEC. An alternative method is provided by optional checking
within the macro itself to ensure that the parameter kind is consistent with the specified operation.
This automatic checking is less efficient since it must be processed in line to maintain flexibility,
and a single check may be repeated several times on the same parameter. All macros assume that
the contents of register B4 are unchanged after entry to the subprogram.

15.4.1 VALUE

This macro is applicable to the following parameters only: typed procedure, constant, expres-
sion, simple variable, or subscripted variable. The parameter may be checked for kind, and
the macro will cause the current value of the parameter to be computed.

VALUE param, xreg, kind, check

param: {absolute address expression, or X register designator} indicates ordinal of required
actual parameter.

Xreg: {X register designator} the designated X register will contain the normalized floating
point value of the indicated actual.

kind: (optional, absolute address expression) numerical kind code of the actual, if known;
this parameter may be omitted. It will be ignored if its value cannot be ascertained at
assembly time. The presence of this parameter will produce a more efficient expansion.

check: (optional) if this parameter is present (non-blank) the actual will be tested for kind.
Abnormal termination with a PARAMETER KIND ERROR diagnostic may occur at
execution time.

Examples:
VALUE 3, X1,, CHECK evaluate third parameter
VALUE X1, X2, 6 a constant
VALUE B, X6

15.4.2 ASSIGN

This macro is applicable only to a parameter which is either a simple variable or a subscripted
variable, and it will optionally check for these kinds. It assigns the normalized contents of an
X register to a specified parameter.

15-6 60329000 A

ASSIGN param, xreg, kind, check
param: (absolute address expression, or X register designator) see 15.4.1

Xreg: (X-register designator) X register contains the normalized floating point value to be
assigned to specified actual.

kind: (optional, absolute address expression) see 15.4.1

check: (optional) see 15.4.1

Examples:
ASSIGN ANSWER, X1, 8
ASSIGN 3, X7,, CHECK
ASSIGN A, X0

15.4.3 ADDRESS
This macro is applicable to the following parameters only: a string, an array, a constant, a
simple variable, or a subscripted variable. I will optionally check for these kinds. It calculates
the address, or first word address, of the specified parameter.

ADDRESS param, xreg, kind, check

param: (absolute address expression, or X register designator) see 15.4.1

X-reg: (X-register designator) X register will receive the address of a constant or variable,
or the first word address of an array or string.

kind: (optional, absolute address expression) see 15.4.1

check: (optional) see 15.4.1

Examples:
ADDRESS 3, X1, 1 string
ADDRESS A, X5,, CHECK
ADDRESS X1, X2, 9 subscripted variable

1544 LENGTH

This macro is applicable only to an array or a string parameter. Optionally it will check kind.
It will calculate the number of elements in the array or the number of characters in a string.

60329000 A 15-7

LENGTH param, xreg, kind, check
param: (absolute address expression, or X-register designator) see 15.4.1

Xreg: (X register designator) X register will receive the appropriate length of the actual
parameter calculated in fixed point binary

kind: (optional, absolute address expression) see 15.4.1
check: (optional) see 15.4.1

A string is stored in the coefficient part of a word with zero exponent, eight characters per word,
and the count will include at least six characters for the initial and terminal string quotes.

Examples:
LENGTH X, X2, 1 string
LENGTH X3, X4, 5 array
154.5 FWA

This macro provides the address of a parameter; it applies only to an array or a string, giving
the first word address of the elements thereof. The expansion is more efficient than that of the
ADDRESS macro.

FWA param, xreg, check
param: (absolute address expression, or X-register designator) see 15.4.1
Xreg: (X register designator) X register will receive the first word address of the array or
string .
check: (optional) see 15.4.1.
Example:
FWA 4, X3, CHECK
FWA X1, X2
15.4.6 ORDER .

This macro operates only an array parameters. It returns the order, or dimensionality of the
array (the number of subscripts required to address the array in its original declaration).

15-8 60329000 A

ORDER param, xreg, check
param: {absolute address expression, or X register designator} see 15.4.1.

xreg: {x register designator} the X register will receive, in fixed point binary, the order
of the specified actual array parameter

check: {optional} see 15.4.1.
Example:

ORDER A, X2, CHECK
ORDER X3, X7

1547 GOTO

This macro applies only to a switch or a label parameter (or a designational expression), and will
optionally check kind. It causes a transfer to a label outside the COMPASS subprogram in accor-
dance with the rules applying to the ALGOL go to statement, and it can be used on the occurrence
of abnormal conditions within the COMPASS procedure. If the actual parameter is a switch (not

a switch element), the value of the index for the required switch element must be supplied in the
macro call,

GOTO param, index, check

param: (absolute address expression, or X-register designator) see 15.4.1.
index: (optional, absolute address expression or X-register designator) if omitted, actual

is assumed to be a label; and control will be transferred to that point. If present, the
actual is assumed to be a switch; and the value or contents of index must be the sub-
script of the required switch element. It will be evaluated and transferred to accord-

ingly.

check: (optional) the specified actual will be checked to ascertain whether it is a label or a
switch depending on the absence or presence of index. In addition, if index is present
a check will be performed to ascertain that its value does not produce an undefined
switch designator. If check is omitted no checking code will be assembled.

15.4.8 DOPE

This macro operates only on array parameters. It translates the ALGOL array descriptor and
information into a form which permits array access by positive integer subscripts. A new dope
vector is produced in the form of a table giving the order of the array and its absolute dimensions.
This information may be used to pass the array as a parameter to a FORTRAN coded subroutine.

60329000 A 15-9

Example:

(optional, relocatable address expression, or special) up to 6 parameters of this
form are permitted. If the first character of p, is an asterisk (e.g., *3) p, is inter-
preted as a special formal. Otherwise p. must be a relocatable address expression.
It is assumed to be the address of a variable local to the COMPASS subprogram which
provides an input value to the formal procedure or expects to receive a result from
the procedure. This variable is passed with specification, real, as the ith parameter
to the formal procedure. If p. is a special formal, the leading asterisk is discarded
and the remainder must constitute an absolute address expression, or X-register
designator, the value of which is interpreted as a parameter ordinal indexing the
original parameters of the COMPASS subprogram (exactly as param). The resulting
actual parameter is transmitted directly to the formal procedure as the ith parameter
thereof.

XEQ PROC, 2, PARAM, *1

The PROC parameter of the COMPASS subprogram must be a 2-parameter procedure. It is
invoked with the variable stored at location PARAM as its first, real, parameter; its second
parameter is the first parameter (*1) of the COMPASS subprogram.

60329000 A

15-11

STANDARD CHARACTER SETS A
AND ALGOL CHARACTER SETS

Shading denotes additional characters referred to in Appendix C.

The character set selected when the system is installed should be compatible with the printers.

With an installation parameter, the installation keypunch format standard can be selected as 026
or 029; the installation parameter can also allow a user to override the standard: a user may
select a keypunch mode for his input deck by punching 26 or 29 in columns 79 and 80 of his JOB
card or any 7/8/9 end-of-record card. The mode remains set for the remainder of the job or
until it is reset by a different mode selection on another 7/8/9 card.

The sample program in appendix B may be punched in the ALGOL Extended 62-character set
(appendix C) as follows:

'BEGIN' 'INTEGER' I;

L:

:=10;
[:=1+1;
OUTPUT(61,'C'/,3D")', 1);
'BEGIN' 'ARRAY' A[-3%I:-I, I:2%I]; 'INTEGER'P,Q;
'"FOR' P:=-3%1 'STEP' 1 'UNTIL' -I 'DO'
'FOR' Q:=I 'STEP' 1 'UNTIL' 2%I 'DO'
A[P,Q] :=-P+100%Q;

A[-2%1, 1+2] :=A[-2%1, 1+2] + 10000;

NOTE:

TFOR' P:=-3%] 'STEP' 1 'UNTIL' -1 'DO'
TFOR' Q:=I 'STEP' 1 'UNTIL' 2%I 'DO'
"IF' A[P,Q]N= 100%Q-P 'THEN'
"BEGIN' OUTPUT (61,'C'/,5D')',A[P,Q]) 'END';
'GOTO' L
TEND'
'END'.,
'EOP!'

wherever ' is used, the character intended is:

CDC 63 or 64 character set # (8-4 punch)
CDC ASCII subset ' (8-4 punch)

The character ' is not in the ALGOL character set.

60329000 D

ALGOL 48-CHARACTER SET'

Character Card Punch Character Card Punch
A 12-1 Y 0-8
B 12-2 Z 0-9
C 12-3 0 0
D 12-4 1 1
E 12-5 2 2
F 12-6 3 3
G 12-7 4 4
H 12-8 5 5
I 12-9 6 6
J 11-1 7 7
K 11-2 8 8
L 11-3 9 9
M 11-4 + 12
N 11-5 B 11
o 11-6 * 11-8-4
P 11-7 / 0-1
Q 11-8 = 8-3
R 11-9 (0-8-4
S 0-2) 12-8-4
T 0-3 . 12-8-3
U 0-4 , 0-8-3
v 0-5 ' 8-4
w 0-6 $ 11-8-3
X 0-17 U (space) utt

tStandard character sets follow.

TtBlank column

A2 60329000 D

‘(0482 JaquInu)
£€ 3po0 Aejdsip 01 pajejsuesl aq ||1m 31 ‘Indul UQ “Z| QD O3 P8IIAAUOD $))i ‘adel dnlaubew uo pajussaidal aq 10uUUED QP OIS,

-adey onjaubew Allied uaAa uo 1s0| s J31eIBYD SIY | |

LL 9-8-l1 £-8-CL (uojooias): LL
9L L-8-LL 9-8-¢l - 9L
SL ¢-8-0 g-8-¢l < SL
5L v-8-2l 5-8 > ve vo v v v Le
T 980 £-8-11 < €L €0 ¢ ¢ ¢ %
20 4 4 4 Sg
¢-8-Cl Z-8-Cl 10 1 L 1 $e
L 10 0-CL 10 021 V (44 2zl 0 0 0 £
i} -8 S-8-1iL o 0L e 8-0 80 A e
e cl £80 b v o 9 lz -0 -0 X og
81l T8l o 9 90 9-0 M Lz
4] 10 011 10 0-L1L L 99 14 §-0 S-0 A 9z
1 G-8-0 §-8-0 59 174 -0 -0 n 14
142 L-8 -8 ¥9 €C €-0 €-0 1 ve
9l ¥-8-0 9-8 €9 [44 ¢0 0 S €z
€ £-8-CL 2-8-0 . 29 1S 6-LL 6-L1L o [44
Ll S8 L-8 -l 19 0S 8-l 8-l o] (¥4
9€ €-8 9-8-0 B 09 A4 -1 oL d (674
€L €-8-ClL €-8-¢tL (polsad) - LS 14 9-1l 9Ll (o} Ll
€€ €-8-0 €-8-0 (ewwoo) * 99 14 G-il G-l N 9l
0z yound ou yound ou Aueq §S 24 p-Ll vl W Si
€l 9-8 £-8 = vS %4 €Ll el 1 14"
€5 €-8-ll €-8-1lL $ €9 [A4 -t L A €l
12 G-8-11 8-l (4] (574 =Ll L=l r Zl
Ve G-8-¢l v¥-8-0) 19 LL 6-Cl 6-Cl [L
(¥4 1-0 1-0 / 0§ 0L 8-l 8-ClL H oL
vS -8t v-8-LL * A4 L9 Lzl -zt 9 L0
ov Ll L - 9 99 9-cl 9-¢Ci E| 90
09 9-8-¢L ZL + Sy 99 S-ZL S-Ct 3 S0
L 6 6 6 144 9 -zl v-ClL a 0
oL 8 8 8 %4 €9 £-2l £-CL o} €0
L0 L L L 144 9 Z-cl z-cl a 20
90 9 9 9 (374 19 1-zL 1-cL v L0
S0 S S § ov +00 -8 -8 4: 00
ao8 (620) (920) J0ereyd apo) aona {620) (920) Jajoeieyn 3apoy
{eusaixy Yis|joH yiuajloH Aejdsig {euIa1x3 yla)joH Y119||0H Aejdsig

13S H3.LOVHVHO-¥9 20D
€€ 3d00S

A-3

60329000 C

-13s Jaoeleyd-yg JJ2 Yl 10 se aes ay3 si 30udpuodsailod
apod Ae|dsip/@Od (2190 8yl ‘ased siyl uj "ade anaubew Aliied usAs UO PaPI0D3l S| BIED UBYM Pasn st uoneluasasdas QOg.

-ade) o13aubew Allied uaAa uo 1s0| S1 Jaloeieyd Siy]}

£L0 9-8-LL L-8-Cl {uojodnwas) ! Lt

g€l (-8l 9-8-Z1 |(xalywnau) 9L
o o - I I I S O I R "
o _ €90 € £ € 9€
9.0 9-8-0 L8l < eL 200 ; 2 2 ot
Z-8-C1 ¢-8-¢lL 190 i L 1 e
£EL 10 0-ZL 10 0-z1] zL 090 0 0 0 €€
LLO L-8-0 9-8-11 I L Zel 6-0 6-0 Z ¢
oot -8 G811] (014 (K48 8-0 8-0 A 1€
9v0 4} L-8-0 R L9 ocL [0 /-0 X oe
-8l 8Ll Lzl 9-0 9-0 M Lz
sel 10 0-11 10 0-11 L _ 99 9zl S0 5-0 A 9z
LEL 5-8-0 6-8-0 (sutsspun) 59 Gzl ¥-0 ¥-0 n 74
Zv0 (-8 v-8 (aionby) , ¥9 174! €0 €-0 1 vz
) ¥-8-0 9-8 % €9 £zl z-0 z-0 S €2
10 L-8-CL z-8-0 i 29 zel 6-LL 6711 H e
L¥0 58 [-8 (sydosnsode), 19 1zl 8Ll 8Ll 0 1z
€0 £-8 9-8-0 # 09 ozl L1 1L d (114
950 £-8-21 £-8-cl (powsad) - LS LLL 9-LL 9-tL (o} i
50 £-8-0 €-8-0 (ewwod) * 96 oLl G-iL g1l N 9l
oo yound ou yound ou jue|q g GlLi poLL v-LL W Gl
GL0 9-8 €-8 = S vLL €Ll el il vl
vv0 €-g-1l €-8-11 $] gLl Ll L | €l
150 G-8-11 v-8-2lL (FAS] zLl -1l -1l r 4]
050 §-8-ZL ¥-8-0) 1S LLL 62l 6-Cl I L
L90 1-0 10 / 0% oLl 8-zl XA H oL
¢s0 8-l v-8-LL . Ly L0l 1-21 LTl 9 L0
G50 i Ll - 9t 90L 9-Z1 9-ZL 4 90
€50 9-8-2l zL + St S0t G-ZL G-zl 3 S0
LL0 6 6 6 44]! -zl y-zlL a ¥0
0.0 8 8 8 £v €0l £zl £zl o) €0
£90 L L L FA 7 2ol A z-zl 8 20
950 9 9 9 [R7 1oL -2t L1-Z1 v 10
990 S S S ov zL0 z-8 z-8 4 00

3po) (620) (920) 18108440 apo) 3pod (620) (920) 9108104 3po)
1SV yiajjoH Yu3y|0H Aejdsig 1108V Yua|IoH yua||oH Aeidsig

»1358NS H3LIOVHVHO-¥9 HISV
€€ 3d00S

60329000 C

A4

-Ad) 620) ydsund pied p-g-0 ay1 pue (youndAay 920) yound pieds g-

€€ 8pod Aeidsip 01 peiejsuess aq |m 11

‘(0402 saquinu)

ndul uO “ZL QOE 01 PaLIBAUOD S| 3 ‘adey anaubew uo pejuasaidas aq 10uued OO aduig,

"Indu} uo ue|q se pajea.y ase 13 48108104 D-£9 Y1 ut (Yound

829yl "yound pieds Aue y1im pajeioosse Jou S! pue 195 Jaldeleyd-gg ayl
M paleIoosse 5| z-8 8pod yound ay) ‘pssn s) 18S Ja10eIRYD-EQ BYY UBYM L

Ul papnjaul Jou s| moo 8poo Aejdsiq "u0j0d 3yl ‘£Q apoa Aeidsip y

L 81l L-8-21 o)t [/

9L L-8-11 9-8-CL il | 9L
i | ven | se | S | B | w v v v e
- G €0 € € € 9
LS 9-8-0 -8 g €L 20 z z z e
Z-8-tl z-8-¢Cl 10 ! L 1 ve
L 10 0-¢L 10 0-¢l L zl 0 0 0 €e
95 L-8-0 9-8-11 LL [6-0 6-0 Z ze
i) -8 G-8-il 0L 0¢ 80 8-0 A Le
LE 4} (*8-0 L9 174 10 -0 X oe
-8 1L 8-l 9z 9-0 9-0 M LZ
] 10 0-LL 10 0-11 99 14 S0 S0 A 9z
se S-8-0 S-8-0 <9 ve -0 -0 n 14
vi L8 -8 9 X4 €-0 €-0 1 ve
«00 -8 -8 €9 az Z-0 ¢0 S €c
ce L-8-CL ¢-8-0 29 1S 6-LL 6-L1L d [44
Ll S-8 (-8 19 0s 8-l 8Ll 0 ¥4
9€ €-8 9-8-0 09 24 oL (AN} d 0c
€L €-8-2l €-8-2L (powsad) - LS 14 9-11 911 0] Ll
€€ €-8-0 £-8-0 (ewwod) 99 14 G-l G-l N 9l
(V4 yound ou yound ou JAuejq SS 144 vl Y’ [} 1
€1 9-8 €8 = 2] [24 €-il €Ll 1 vl
€9 €-8-11 €-8-L1 $ 2] (44 Z-L L A €l
L G-8-Li -8-CL (2s (84 -t 1-li r ¢l
ve G-8-ClL ¥-8-0) 1S (¥4 6-ClL 6-cl | [
1z -0 -0 / 09 0L 8-l 8-zl H ot
14} v-8-11L v-8-LL » A4 L9 L-CL -zl 9 L0
oy L Ll - 14 99 9-2L 9-Cl El 90
09 9-8-CL ZL + 14 S9 G-zt Al 3 S0
L 6 6 6 144 9 -ci v-ci a v0
ol 8 8 8 {24 €9 €-CL €Tl o] €0
L0 L L L fa4 29 -2l fard} <] 20
] 9 9 9 (54 19 1-zL -t v 10
S0 S] S oy 9l 1(auou) 00

aos (620) (920) Ja10eleYy) apo) aoss (620) (920) Ja108204D apo)
leusayxy YiajjoH yisjjo4 Aejdsig leusaixy yisjjon Yia|j0H Aeidsig

135 H31OVHVYHO-£9 20D

€€ 3d00S

A-S

60329000 D

"SONOYN 10} plepuels si jas diydesb-g9 0a0§
‘Ajuo Indul 1oy pardadoe a.e sayound (6Z0) 110SV PUe (9Z0) Yilia||OH dleuldlje ay| +44
"(yound g-g) uo|0d 3yl ! £9 30D Aejdsip :8p0d Y1LI3||OH 10 ojydeJB pajeloosse ou sey QQ apod Aejdsip ‘3as dlydesb-g9 D@D ays Buisn suonejjeIsul uj 4L

. "2€91 Q049 |eulaixs

01 P3liaAu0d SI 3JBW BUl|-}0-pUT “SUOJOD OM] UBYL JaYIe] JIBW BUl|-§O-PUB SE Palaidialul aie piom 1g-09 & JO pua ay) 1e siiq 0Jaz 9J0W 10 BAlOM] 4

ae 981l L 821 L {uojooiuses) 1 | (uojodiwes) -1 S S0 S ov] S
35 gLt 9L 98zl 9L (xaywnda)~ - ve 12 ¥0 {2 LE v v
fol-] 80 St 324} SL \ 2 €€ € €0 € 9€ € €
ov v-8 Sl S8 vL ® > 4% z z0 4 GE z z
€ 980 LS 8Ll €L < < 1€ L 10 1 ve i L
0z T8zt : [0 4] 0 £g 0 0
o€ 10 $-8-TL zL 1002t [42 > > VS 6-0 K> 60 z€ z z
E 1-80 95 981l 72 ¢) [80 ('3 80 1€ A A
L2 S8 =1} S8l oL {aydossode) , y 86 L0 Lz L0 ot X X
9z zL LE L-80 L9 B v LS 90 9 90 Lz M M
1oL 1z8LL : 9g S0 [:14 S0 9 A A
1z 10 £-8Z1 z5 0011 99 i A [-1-] 0 vz ¥0 74 n n
4s 580 se 580 59 (surpsapun) < L4 €0 fora €0 14 1 1
[44 L8 vt v8 v9 (aronb) |, #* €S z0 zz z0 14 S S
14 7-8-0 9L 98 €9 % 1% [4:] 6lL X 6L1 44 d E]
as [4: 308 ze z-80 29 Sl [1S 8il 05 8l 1z] 0
a9 8Tl L1 L8 19 - } 0g L1y Ly L1l (174 d d
€T €8 9¢ 980 09 # & El4 oLl [°14 gLl L o} o}
3z €8Tl €L £82CL LS (poriad) - (potiad * ay SLL St gLl 9l N N
fo74 €80 €€ £80 95 (ewwod) ! (ewwod) * ay [an 124 il St W W
114 ydpund ou 74 yound ou [+1:] Jue|q jueiq oY et %4 el vl 1 1
ae 98 €l €8 vS = = av Al v Tl €l Nl b
\4 €81l €5 €81l €S $ $ vy 1Lt 84 Lt zL r r
62 S8l vL v-8-ZL zs { (6v x4} Y2 6Tl L | 1
8z 5-8-Z1 ve v-8-0])) 8y 8zl oL 8zl ol H H
E14 -0 1z -0 0S / / Ly Lzl L9 Lz L0 9 3}
ve 8l ¥S v8lL Ly > . ov 9zl 99 9zl 90 4 E|
az 1L oy [n o - - 14 5Z1 S9 gL S0 3 3
az 98l 09 4} St + + 144 -zt v9 vzt ¥0 a a
6€ 6 1L 6 144 6 6 157 £zl €9 €21 €0 o] 2
8t 8 oL 8 24 8 8 [47 44} z9 el 20 g - a
LE L Lo L [44 L L T4 (&4 19 1zt 10 v v
9¢ 9 90 9 Ly 9 9 ve z8 00 z8 100 : Iy
apo) (620) 3po) (920} apo)d 195ang Jwydesg ap0d | (620) apo) (920) apo) 195qng diydein
110SV young aosg Yyoungd Aedsiq aydergy 200 11OSV | ydung Qaosg young Aeidsig | owydes 0ad
ISV feusaix3 | winajioH 110SV HOSV | lewaix3 | yuaioH 110SY

$13S HILOVHVHO GHVANVLS

§1°C SONOWI/P'E 3d0DS

60329000 D

A6

SAMPLE PROGRAM B

The following program is in the exact form that is punched into the cards that comprise the source
deck (the hardware language).

2-DIMENS IONAL ARRAY.
THIS PROGRAM DECLARES A SERIES OF ARRAYS OF EVER-INCREASING
DIMENSION. THE ARRAY IS THEN FILLED WITH COMPUTED VALUES, ONE
OF WHICH IS ALTERED. THE ALTERED VALUE 1S THEN SEARCHED FOR
AND PRINTED.
THE PROGRAM HALTS WHEN THE DECLARED ARRAY SIZE EXCEEDS THE
AVAILABLE MEMORY. WHEN THIS OCCURS, THE PROGRAM EXITS WITH
THE MESSAGE STACK OVERFLOW ON THE STANDARD
OUTPUT UNIT.
'BEGIN' 'INTEGER' 1.,
1..=10.,
Looloo=I41,,
ouUTPUT(61, 'C'/,3D")',1D.,
'BEGIN' "ARRAY' A(/-3%I,.-I,1..2%¥1/)., 'INTEGER' P,Q.,
'FOR' P,.=-3%1 'STEP' 1 'UNTIL' -1 'DO'
'FOR' Q..=I 'STEP' 1 'UNTIL' 2¥I 'DO'
AC/P,Q/)..=-P+100%Q.,
AC/-2%1,142/)..=AC/-2%1, 1+2/)+10000.,
'FOR' P,.==-3%1 'STEP' 1 'UNTIL' -I 'DO'
'FOR' Q..=I 'STEP' 1 'UNTIL' 2%I 'pO!
'IF' AC/P,Q/) 'NOT EQUAL' 100%Q-P 'THEN'
"BEGIN' OUTPUT(61,'C'/,5D')',AC/P,Q/)) 'END'.,
'GOTO' L
'END!
'END'.,
'EOP'

60329000 A B-1

CHARACTER REPRESENTATION OF ALGOL SYMBOLS C

Table 1. Character Representation of ALGOL Symbols

(The additional representations shown are all available with the CONTROL DATA character set,
however some of the corresponding graphics do not exist in the ASCII character set, See Ap-
pendix A for differences and for the corresponding punch card codes.

ALGOL 48-Character Additional ALGOL 48-Character
Symbol Representation Representation Symbol Representation
A-Z A-Z true 'TRUE'

a-z (none) false 'FALSE'
0-9 0-9 go to 'GO TO'

+ + if 'IF'

- - then "THEN'

x * else 'ELSE'

/ / for 'FOR!

+f '"POWER' **or ¢ do DO’

+ '/ or 'DIV' // step 'STEP'

> 'GREATER' > until '"UNTIL!

= 'NOT LESS' = while 'WHILE'

= =or 'EQUAL' comment 'COMMENT'
'NOT EQUAL' = begin 'BEGIN'

< 'NOT GREATER! = end 'END'

< 'LESS' < own 'OWN'

A 'AND' A Boolean 'BOOLEAN'

v 'OR' \% integer 'INTEGER'
= 'EQUIV' = real 'REAL'

A 'NOT' - array 'ARRAY'

b} 'IMPL! switch 'SWITCH'

. . procedure '"PROCEDURE'

, string 'STRING'

: .. : label 'LABEL!

; - ; value '"VALUE!

10 ' - code T1 'CODE!

W} L (space) eop T 'EOP'

((

= .=or..= =

))

[/ [

] /)]

. l(l

b I)Y

TIn a format string, t may be i‘epresented by an asterisk.

TTNot defined in the ALGOL-60 Revised Report; code is defined in Section 5. 4.1, Chapter 2;
eop in Chapter 4.

60329000 A C-1

INTERACTIVE ALGOL UNDER INTERCOM' D
SCOPE OPERATING SYSTEM

With terminal access provided by INTERCOM, the ALGOL user has a debugging facility available
in two distinct parts: a syntax analyzer, which is used before the program is compiled, and a
breakpoint facility, which is used after compilation while the program is being executed.

While the source program is being typed in or modified, the syntax analyzer checks each line
and responds with a diagnostic message when an error is detected. Syntax checking can be
turned off and on dynamically, so that several statements may be diagnosed at one time.

To select the breakpoint facility, the user compiles with the H option and then executes his
program interactively. Execution can be suspended and control given to the user so that he can
check intermediate values, make decisions, and then resume execution until the next breakpoint
is reached.

The user controls where execution is suspended by placing BRKPTI statements in his source
program and specifying, at execution time, the class of breakpoints he wants the system to
honor. After the program is debugged, the user can execute the program, having the break-
points ignored; or he can recompile, having the compiler ignore the BRKPTI statements. In
addition to breakpoints explictly specified in the source program, breakpoints can be activated
at procedure calls, and at the beginning of each block.

ENTERING AND MODIFYING FILE: ALGEDIT

The command ALGEDIT is used to get line-by-line syntax checking when a program is being
entered or modified.

Execept for the addition of three commands, ALGEDIT has all the features of EDITOR, as
described in the INTERCOM Manual. Underlined characters indicate acceptable abreviations
of these ALGEDIT commands:

ANALYZE

CHECK

NOCHECK

The default FORMAT parameters for ALGEDIT are:

Character count = 72
Tab character = §

Tab columns = 7 10 13 16 19

tThe interactive features described in this appendix are not available under KRONOS. I

60329000 D D-1

If the character count is set to a value greater than 72, or a line of greater than 72 characters
is encountered by ALGEDIT, the following message will be printed and any excess characters
will be ignored:

LINE LENGTH RESET TO 72

The ALGOL diagnostics given by ALGEDIT are the same as those provided by the ALGOL
compiler when the Z option is specified. A list of the possible diagnostics appears at the
end of this appendix.

ANALYZE

This command turns off the CHECK mode and causes an immediate syntax check beginning at
the first statement and proceeding through the last. The list of any diagnostic messages is
followed by the standard EDITOR pair of dots.

If the Edit file is empty, this message is printed:

ERR- NO INFORMATION IN EDIT FILE

CHECK

This command activates line-by-line syntax checking which remains effective until an ANALYZE
or NOCHECK command is received. Checking resumes from where it last was performed. As
a line is sent from the terminal, the text is analyzed and checked for consistency with the lines
previously entered. If the line number is greater than or equal to the previous one, analysis
is performed on that line. If the line number is smaller than the previous one, analysis will
be reinitialized from the first entered statement and continue through the last new line.

NOCHECK
This command stops the line-by-line syntax checking activated by the previous CHECK command.

The CHECK or NOCHECK status is not altered by the use of LIST, SAVE, RESEQ, RUN, or
EDIT, commands.

D-2 60329000 C

COMPILATION AND EXECUTION IN INTERACTIVE MODE

Compile Time Option

On the ALGOL control card the H option and the M option are needed when execution is to be inter-
active. The H option is not compatible with the § and R options, and it cannot be used in segmented
mode. The following message will appear if R and S options are used with H.

ALGOL CON-CARD ERROR
H DELETED

Execution Time Option

To execute with interactive debugging, option H is required on one of the following SCOPE
control cards; LGO, EXECUTE, or program name, This option is switched off when the
program is run in batch mode or when the program was compiled without the H option.

Also, this option can be specified along with any CHANNEL cards as the first data on the
standard input device. The format is:

OPTIONS,H

If a request is made to run a program with the H option when this option has not been given
at compile time, the program will be terminated and the following message will be displayed:

RECOMPILE PROGRAM WITH H OPTION.
The H option is switch off when the program execution is in batch mode or when the user
explicitly turns it off when he gets control at a breakpoint. In either case, it is impossible
to return to the interactive debugging mode of operation during the current execution,

When the user's program starts executing, the following messages will be displayed:

YOU ARE IN INTERACTIVE DEBUGGING MODE FOR EXECUTION OF YOUR PROGRAM
INDICATE WHERE YOU WANT CONTROL

The user's response should indicate the breakpoints at which he chooses to stop execution.

60329000 C D-3

The user can select one or more of the options listed below. When several active breakpoints are
selected, the options are separated by commas.

ALL All breakpoints both implicit and explicit
AB Abort
BB Block by block
~EE From end block to end block
II From BRKPTI to BRKPTI
PP Procedure by procedure
NB Next block
NE Next end block
NI Next BRKPTI
NP Next procedure
PP From call procedure to call procedure
B=xx xx is the numberic level of the block selected.
P=xx xx is the mnemonic name of the procedure selected.
X=yy yy is the integer control value.
OFF Checking off (ignore all breakpoints)

To begin or resume program execution, the user must send the 'GO' command. Initially the
default values are ALL and X=0.

D-4 60329000 C

User Actions at Interrupt

During execution, one of the following message will inform the user that a breakpoint occurred
(xx is the static blcok level number rather than the dynamic level number):

AT START OF BLOCK
AT END OF BLOCK

YOU NOW HAVE CONTROL xx LINE yy
AT END OF PROCEDURE

AT CALL OF PROCEDURE

Requested Data

The user can send the following commands:

'ALL'

or name of a specific variable

Values are requested by specifying variable names either on one line separated by commas or

on separate lines. To reference a specific element of the array, the user can enter the

array name with subscript values as integer constants within parentheses. However, all elements
of a row, column, plane ... of an array can be requested by using an asterisk(*) for the
corresponding subscript. The upper and lower bounds are obtained by sending only the array
name, The response will be the variable name with its value. However, if the number of

variables should exceed the capacity of a CRT screen, the user must request the screen to be
reloaded by typing the send key.

The user can terminate dumping of values by sending 'END'. This command returns the usual
breakpoint message to the user. For a program check, the user will not get an automatic
dump; but he will get control at the next requested breakpoint. Then, the normal procedure
will apply, except the program will be terminated after the 'GO' request has been sent.
The following restrictions apply:

No data can be requested by name

No function procedures

No switches

No labels

No strings

60329000 C D-5

The user can modify the value of any variable by typing the name of the variable followed by
the assign (: =) and the value to be assigned, The value must be a legal ALGOL constant for

the variable type.

Example:
A := 3.4
I := 1
B = 'TRUE'
AR [2,3):= -4.5
'SET'

This command allows the user to modify the breakpoint status or the control value by bringing
back the display:

INDICATE WHERE YOU WANT CONTROL

'LIST'

This command produces a list of the breakpoint options.

'TIME'
This command provides the current time and date in the following format:

TIME = XX:XX:XX DATE = XX:XX:XX

'F1.!

With this command, the user obtains the field length at the time the command is used.
The format is:

FL USED = value in octal UNUSED = value in octal

D-6 60329000 C

'CLOCK'

With this command, the user obtains the CPU time he has used for the currently executing
ALGOL programs, The format is:

CPU = decimal value SECONDS

VGO'

This command restarts program execution.

'END'

This command stops the display of data when several screens or lines are involved., If the
user sends a message that is not correct, the following messages will appear:

I DON'T UNDERSTAND, TRY AGAIN.

If the user requests data that is either unknown or outside the block range of his ALGOL program:

NAME UNKNOWN. TRY AGAIN.

When several commands appear on the same line, they must be separated with commas; and
the following restrictions must be observed:

'GO' must not be followed by another command.

'LIST' must not be followed by another command,

If more than 15 data values are requested, the remaining commands will
be ignored. After the 15 data values are printed, the user must enter either
'END' or a carriage return.

|ST'

This command provides a list of currently active breakpoints.

60329000 C D-7

SETTING BREAKPOINTS IN SOURCE PROGRAM

A breakpoint can be created in the source text by inserting the BRKPTI standard procedure.
In batch mode or without the H execution option, this procedure is not effective; when active,
it returns control to the user at the breakpoints. BRKPTI is made active if the user has
selected at least one of the following breakpoint control parameters:

ALL II NI
PP NP

The BRKPTI procedure is written into the source program as:

; BRKPTI (n) ;

n is an integer parameter whose value is to be displayed at the
remote terminal when the breakpoint occurs.

The n parameter of the BRKPTI procedure is compared to a control value X.
If X =< n the breakpoint is active; if X > n the breakpoint is inactive. At the
beginning of run time, the control value X is set to zero; but the user can
change this value when he sets the breakpoint status.

60329000 C

Sample ALGOL compilation and execution at a TTY terminal:

It illustrates typical use of the interactive features of ALGOL 3. 1.
example assume the knowledge of ALGOL 60 Version 3. The INTERCOM 3 Reference Manual,
Publication No. 60258000, should be consulted for more information regarding the use of

The descriptions with the

INTERCOM. This example is only one of many ways the user may choose to use the interactive
facility provided through INTERCOM and ALGOL. Under SCOPE 3.4, the ' must be used in place

of the '.

CONTROL DATA INTERCOM 5.0
DATE 03/18/72
TIME 08.12.22,

o
MUS!R WAME- SVLDOC
BOURINSEED TNTER PASSVORD- Log in

05/18/72 LOGGED 1w AT 08.13.10.
VITH USER-1D AJ
EQUIP/PORT 31717

COMMAND- ASSETS eggq————————— Verify that available field length is approximately

oot My 5380 70000 octal words.
FILE quoTa 20
FILES 1w USE 1
MAX FL a77700
TIME LImIT 0300
CP TIN <044

PP TINME 2.83%
conmno. Eiets ~e— Verify no existing files that might cause problems

soutPur because of duplicate file names
commnd- aLaznit. ~g—— Call ALGEDIT

::E:%h<———lnteractively CHECK each line

100:=3 ‘BLGIN" "IWTEGER® IJ., REAL’ X,Y., “BOOLEAN’ B.,

11028 "PROCEDURE " P(P1,P2)., ‘VALUE® P2., ‘INTEGER’ P1,P2.,

120:33 ‘8Ealn’
130388 “ARRAY ‘M) /1..P1,1..P2/).,
LINE 130) ILLEGAL I¥ ARRAY DECLARATION —g——— ALGEDIT diagnostic

140=2130=883 "ARRAY ‘AC/1..P1,1..P2/)., «4——— Reenter line 130 Co"ec[]y
140:388 “INTEGER" X, ¥,

150238301, . 2PIe1.,

1602388 "FOR” x..21 “STEP® 1 ‘untIL’ P2~ “po’

LINE 160 UNRECOGNIZABLE COMPOUND DELIMETER *°

170221602838 'FOR” x..z1 “sTEP* 1 ‘wetiL’ P2 ‘00’ =¢——— Reenter line 160 correctly

1702888 FOR* ¥ .,= 1 "STEP’ | UNTIL® P2 ‘DO AC/X,Y/) ..: X+Y/10.,

1BOZSSSBRAPTICIS. ,

190:$8°END” P,

2002$1..20., Jo.zt., X.o32., Ye.z3., Bo.z "TRUEC .,

210:3$88L., BRKPTICO).
220:=$388P(J,%) .,

2302838370010 L.,
24023 LAd°
25023838 “KOP”

260:: —gq—— Exit CREATE mode

..gavE 1esT <¢—— Save program as private file with name of
TEST

..amivze -4—— Check syntax for entrie program

60329000 D

Enter ALGOL program
using $ to set tabs at
locations 7, 10, 13, and 16

"

Ling 2% FINIS GEN, BY EOR-CARD

14E i i i

He 400 Paoanan ecoies (messasty ¢ These lines are informative only and do not

LIsE 230 SOURCE DECX ENDS (MESSAOL) indicate errors
«-sve,ove ~¢—— Exit CREATE mode

commawo- revuce orr ~¢—— REDUCE,OFF is necessary since ALGOL
requires certain locations for execu-
tion of object programs.

CONMAND- CONWECT INPUT,OVTPUT. wg— . [nput and output of compi]e:
is directed to terminal
commun- aLeenit. -g——— Reentering to COMPILE from ALGEDIT

--eo11 1es1 ~———— Define file TEST to be edited

+-2UN 1001 ~g—— Try compiling to test a complete compilation

JOB COMPILING
[186

cru asort —¢——— Compilation was not successful
-.ernors arco. ~¢——— Use ERRORS to get diagnostics printout. Listing of ALGOL
diagnostics and related source line. ALGEDIT line num-

ber is with the source line; and the LINE is the compiler
generated line number

ALAOL €0 PROGRAM XXALGOL

000100 “SEGIN "INTEGER™ 1J., °REAL® X,Y., ‘BOOLEARN” B,,
LINE ¢ PROGRAM BEGINS (MESSAQGE)
000240 il
Line 14 PROGRAM ENDS {MESSAQL)
1
000230 “gop”
' Liet 13 SOURCE DECK ENDS (MESSAGE)
‘Eor” . . X
¢ UM S DECLARATION WISSING FOR.. | g——— Comma missing between I and J in first line
000200 1o.z0, e ., of program caused error. Other diagnostics

O YT T Tr. T WO
Lineg 10 ECLARATION MISSING FOR., J Would resu". ffom same error

~a——On detection of error, user aborts ERRORS
program

USER ABORT

410058 "BEGIN" "IWTEQER” I, J., REAL’ X,Y., ‘BOOLEAN" B., —g———— Enter correct line.

xz —-e— Operator was confused and typed a couple
carriage-returns then XYZ

x;:“-:v In PP LIS
<87 s —a——List new version. Note that $’s have been
replaced by correct indentation

60329000 C

BEGIN’ INTEGER’ 1,J., ‘REAL” X,Y., °BOOLEAN" B,
PROCEDURE® PCPI,P25,, ‘VALUE® P2.,” "INTEGER™ F1 2.,
(11

P, 1.P27),,

STEP” | “UNTIL® P2 “D
‘FOR° Y ..z 1 "STEP” 1| “UNTIL™ P2 “DO° AC/X,Y/) ..z X
+Y/10.
18 BRKPTICD).,
190= WD" P ; R
200 . . o, Bauz CTRUET .,
210=
220= PCJ,5) .,
230: ‘goto” L.,
240: “END .
2503 £oP

«+SAVE TEST OVERWRITE

< BYE,BYE

command- COWmECT INPUT,0uTPUT. ~g——— Reconnect INPUT and OUTPUT because ERRORS ALGOL
was aborted. This routine normally disconnects
OUTPUT on entry and then resets it on exit

command- REVIND,LG0. ¢—— Ensure a fresh start
CommaND- ALAOL,S=0,R=0,L K, ¥, 1:76sT. ~¢——— Compile the file TEST, with H option. This example explicitly

sets parameters to produce complete listings. (parameters
available are discussed in section 6)

ALAOL-60 3.1 s/
12/72 08.29 KRS PAGE 1
0% "BEGIN CINTEGER™ 1, J., “REAL” X,Y., “BOOLEAN B,
00100
‘PROCEDURE” P(P1,P2)., °VALUE® P2,, "INTEGER’ P P2,,
000110 | .
BEGIN
000120 . ,
ARRAY “AC/1..PI,1..P2/).,
000130 . .
INTEGER ™ X,Y.,
000140
000130 ’ nn 5 PP
co01en 1 STEPT 1 CUNTIL® P2 ‘DO Compiler generated listing of program. Because TTY has
Y10, 000170 FOR Y ..z 1 STEP” 1 ‘uNTIL” P2 “po” ausx,v/» ..z) only 72 print positions in a line, longer lines from
000180 BRXPTICD., ALGOL compiler are folded onto a second line
END’ P,
000190
0., J ‘TRUE® .,
000200
L.. BRXPTI(O).,
000210
PSS,
000220
‘6oto” L.,
000230,
000240
“EoP”
000250
FINIS GEN,BY EOR-CARD
ALBOL-60 3.1) XXALGOL 057
1’772 08.29 HRS PAGE 1
TDENTIFIER TABLE
LEVEL LINE NAME TYPE DWP LINE REF
MAME TYPE DM/P LINE REF
BEGIN BLOCK o 0
B B o §
1 1 o 12
J 1 [0
L L 1 4
4 P 2 1 5
x R 0 10 . .
Y R o 7 Compiler generated MAP on a 72-character line
END OF BLOCK 0 14
PROC., P 1 1
P1 1 s -4
P2 1 v -9
L) R A 2 3 14
4] 1 s -4
P2 1 v -5
X 1 a
Y 1 4 €
#FOR LABEL» [s
*«FOR LABEL= 7 4
END OF P 1 9

NORMAL END OF MAP

60329000 C D-11

ALGOL-60 3.1 XXALGOL 03/
1

18772 08.29 HRS PAGE
LINE 0 PROGRAM BEGINS (MESSASE)
‘ LINE 14 PROGRAM ENDS (MESSAGE) Compiler summary.
LINe 13 SOURCE DECK ENDS (MESSASE)
THE FOLLOVING CONTROL CARD OPTIONS ARE ACTIVE ¥,

H,1,L,M,X
543
ILLESAL 170 REQUEST
FILE MANE OUTPUT
FET ADDRESS 002037

CIO CODE NOT DEFINED OW DEVICE

COMMAND- REWIND, LGO,

commno- ries ~¢—— List files generated by compiler

==PRIVATE FILES--
SETFILE LGo $212209 $OUTPUT
SINPUT TEST

commaND- L30. eg——— Execute program just compiled

Default channel number associations typed
out by ALGOL

CHANNEL 60z INPUT, PBO .
} orriows,n ~e———User wants breakpoints honored

CMAINEL 61 DU'IPU'f nic PP60,R

CRANREL, END cHAMNEL, END —g———Terminator for object time parameters to
ALGOL system

YOU ARE 1IN INTERACTIVE DEBUGGING MODE, FOR EXECUTION OF YOUR PROGRAM
INDICATE WHERE YOU WANT CONTROL ‘LIST®

‘List' «a———— Use ‘LIST’ to obtain a list of the available

commands
ALL ALL IWPLICIT AND EXPLICIT BREAXPOINTS
AB ABORT CURRENT EXECUTION
BB FROM START OF BLOCK TO START OF BLOCK
£E FOR BLOCX OR PROC,FROM END TO END
11 FROM BRXPTI TO BRKPTI
- NEXT START OF BLOCK
NE WNEXT END OF BLOCX OR PROCEDURE
al NEXT CALL OF BRXPTI
w NEXT CALL OF PROCEDURE
PP FROM CALL PROCEDURE TO CALL PROCEDURE

OFF MXES ALL BREAKPOINTS INACTIVE
Bz XX BLOCK XX

e ‘Ewp” or sLawk + cr —¢———— User typed blank and then a carriage-return

Pz YYYY PROCEDURE YYYY
X= 12 RESET VALUE OF X TO ZZ
JCLOCK" PROVIDES CPU TINE USED

t!D STOPS TME CURRENT OUTPUT

I’L PROVIDES USED/UNUSED FIELD LENGTH

‘a0’ . RESUME PROGRAM EXECUTION

‘LlS‘[PROVIDES THIS LI§!

SET SELECTS CONTROL M

st PROVIDES LIST OF sn.scm: BREAKPOINTS . . i)
pedLIET PROVIDES TINE AWD DATE ‘status” «g———— User attempts to obtain status by entering

DEAD? UNRECOGNIZABLE. ALL THAT FOLLOVWS HAS BEEW 1GNORED full Word ‘STA’I‘US‘

TRY AGAIN

STATUS ®

“STATUS® UNRECOGWIZABLE. ALL THAT FOLLOWS NAS BEEN IGNORED

Ty Aoatn ‘s1* -¢———— Abbreviation ‘ST’ must be used to obtain status
S

::Eﬁ;:x-“ oFF, 88, ‘0" —-a——— User sets breakpoint parameters
D-12

60329000 C

%OW HAVE CONTROL AT START OF BLOCK
REQUESTED DATA 1,J,X,Y,B

XY,

13 -3,9604470688300 -008
J = +2.7957679633036 "
X = +4.3355657992231 "-27
Y = +6.8532147615436 "-202
B : ‘TRUE

REQUESTED DATA sE1”

SET”

lIDlCA'I'! WHERE YOU WANT COITROL
OFF

XXALGOL LINE

o

DECLARED LINE
DECLARED LINE
DECLARED LINE
DECLARED LINE
DECLARED LINE

coocoo

orF, 11

YOU NOW HAVE CONTROL AT CALL OF PROCEDURE BRKPTI LINE 1

Xz0_ w0
REQUESTED DATA oI S M—
cLock” -

CPU_TINE = 0.413
REQUESTED DATA TIME®
Tine —_—

TIME: 08.43.42. , DATE =
REQUESTED DATA
L

FL USED =015636

03/18/72

UNUSED 022142

REQUESTED DATA 1,4,%,Y,8

1,4,X,Y,B ——
1= 0 DECLARED LINE 0
Jz 1 B DECLARED LINE 0
X = +2.0000000000000 “+000 DECLARED LINE O
Y = +3.0000000000000 “+000 DECLARED LINE 0
8 = "TRUE’ DECLARED LINE 0

REQUESTED DATA LP

NO VALUE GIVEN FOR L

NO VALUE GIVEN FOR P

REQUESTED DATA A

A

NO VALUE GIVEW FOR A

REQUESTED DATA RICK

RICK

IDENTIFIER TRICK NOT DECLARED OR INVALID IDENTIFIER STRING

REQUESTED DATA ‘SET

SET

INDICATE WHERE YOU WANT CONTROL PP

Pzp 80

a0

YOU MOV MAVE CONTROL AT CALL OF PROCEDURE P LINE 12

REQUESTED DATA

Mo vALUE arvew For A

REQUESTED DATA B,X

)

= “TRUE .
: -2.3282996362617°-010
60

= ®

REQUESTED DATA
60

DECLARED LINE 0
DECLARED LINE 4

Since values have not been given to these

variables, they are of no value

—Sample use of ‘CLOCK’ ‘TIME’ and ‘FL’

Variables now have values

ARRAY BouNDS ERROR -¢——— (Object time error causes the following stack
information to be printed (section 11)

THIS ERROR OCCURRED AFTER LINE 1

THE GLOBM. VAFH!LES ARE .
lh ,VALUE 5725 OI565! 0000 015646
0 0000 000000 0000 000000
I.AS'II.ISED 0I5657 1720 600000 0000 000000

IN THE BLOCX ENTERED AT LINE 1

THE FORMAL VIIIADLES ARE ..
26 72

000003 0156 2 500000 0000 000000
000002 015627 1722 500000 0000 000000
000001 015630 2101 000000 0000 015624
000000 013631 0002 776151 4004 015613

THE LOCAL WIIA!LES ARE
000001 015640 75
1720 400000 0000 000000
0000]0 0]964‘ 300000 0000 000000
722 600000 0000 000000 0000 00

0000“ 015‘50 5 015633 0000 013646

THIS BLOCK WAS CALLED FROM LINE 12
IN THE BLOCK ENTERED AT LINE 0

7"!8250 4000 015634

<

THE LOCAL VARIABLES Alt
000001 015617

4000 000000 0000 000000

0000!0 015623 1721 400000 0000 000000
0000 000000 0000 000000

7 776173 4000 013613
0

THIS BLOCX WAS CALLED FROM LINE L]

CPU ABORT

COMMARD- LOGOUT,

CP TIME L34

PP TIME 61.218

CONNECT TIME 0 HRS, ml
05/18/72 LOGGED OUT l'! 08. 52 42«

60329000 C

nPp

1757 776263 4000 015

1721 400000 0000 000000

+UNTIL. 000012 015
0000 OOOD 000002

IN XXALGOL
IN XXALGOL

7747 776351 4000 015

1721 600000 0000 000000

<UNTIL., 000012 013

IN ALGORUN

D-13

M OPTION STORAGE ALLOCATION

Under the M option, the number of identifiers that can be handled successfully is relative to the
field length selected. The normal field length provides adequate space for most programs to be
compiled successfully under the M option. However, for programs containing an exceptionally
large number of unique identifiers, the user should consult the following table of recommended

field lengths.

Compilation field lengths Max. No. of Identifiers
(octal) (decimal)
30000 512
40000 1024
50000 1536
60000 2048
70000 2560
100000 3072
110000 3584

60329000 A

INDEX

Active

'ST' Status of Active Breakpoints D-7
Aids

Debugging Aids TRACE, SNAP, OFF 14-1
ALGEDIT

Editing a File using ALGEDIT D-1
ALGEDIT Tab Characters $§ D-1
ALGOL
ALGOL Character Representation C-1, 4-7
ALGOL Control Cards and Options 6-1
ALGOL 48 Character Set A-1
ALGOL-60
ALGOL-60 Revised Report 2-2
Alpha
String and Alpha Formats 3-9
Alphabetic
Alphabetic Index of Definitions of Concepts and Syntactic Units 2-49
ANALYZE
ANALYZE Command for Syntax Checking D-2
Arithmetic
Arithmetic, Boolean, and Designational Expressions 2-13
Aritnmetic Expression Syntax 2-17

Array

Array Declarations and Dimensions 2-38
Arrays

Variables, Arrays, and Subscripts 2-14
Assignment

Assignment Statements 2-27

Basic

Basic Symbols, Letter, Digit, Logical Value, Delimiter 2-8
Backus

Backus Metalinguistic Notation for Syntax Description 2-7
Blank

Comments and Blank Space 2-9
Blocks

Compound Statements and Blocks 2-25
Boolean

Arithmetic, Boolean, and Designational Expressions 2-13

Boolean Expression Syntax 2-22
Bracket

Delimiter Operator, Separator, Bracket, Declarator, Specificator 2-9
Breakpoint

Breakpoint Selection D-4

'SET' Breakpoints D-6

'LIST' Breakpoint Options D-6

'ST' Status of Active Breakpoints D-7

Setting Breakpoints in Source Program BRKPTI(n) D-8

60329000 C Index-1

BRKPTI(n)
Setting Breakpoints in Source Program BRKPTI(n) D-8

Channel

Unit or Channel Numbers 3-15

Input-Output Channel Definition 7-1
Character

Character Strings 2-12

ALGOL Character Representation C-1, 4-7

ALGOL 48 Character Set A-1

Character Codes A-1
CHECK

CHECK Command for Interactive Syntax Checking D-2
Code

Non-ALGOL Code as Procedure Body 2-43
Coded

Linking Non-ALGOL Coded Subprograms or Procedures 15-1
Codes

Format Codes Summary 3-12

Character Codes A-1

Comments

Comments and Blank Space 2-9
COMPASS

COMPASS Coded Utility Macros 15-1
Compilation

Compilation and Source Program Definition 4-1
Interactive Compilation and Execution D-3
Compiler
Compiler and System Description 1-1
Compiler Output 5-1
Compiler Diagnostics and Error Messages 8-1
Compiler Description 9-1
Compound
Compound Statements and Blocks 2-25
Concepts
Alphabetic Index of Definitions of Concepts and Syntactic Units 2-49
Conditional
Conditional or If Statements 2-29

Control

ALGOL Control Cards and Options 6-1
Conventions

Reference Manual Language Conventions and Notation 2-1
CPU

'CLOCK' CPU Time D-7

Date
'TIME' and Date D-6
Debugging
Debugging and Execution-Time Options 13-1
Debugging Aids TRACE, SNAP, OFF 14-1
Debugging Output 14-5
Interactive Debugging under INTERCOM D-1
Decimal
Numbers Integer, Decimal, and Exponent Parts 2-10
Deck
Source Deck Structures 4-4

Index-2 60329000 C

Declarations

Type Declarations 2-36

Array Declarations and Dimensions 2-38

Switch Declarations 2-39

Procedure Declarations 2-40
Declarator

Delimiter Operator, Separator, Bracket, Declarator, Specificator 2-9
Definitions

Alphabetic Index of Definitions of Concepts and Syntactic Units 2-49
Delimiter

Basic Symbols, Letter, Digit, Logical Value, Delimiter 2-8

Delimiter Operator, Separator, Bracket, Declarator, Specificator 2-9
Description

Compiler Description 9-1
Designational

Arithmetic, Boolean, and Designational Expressions 2-13

Designational Expression Syntax 2-24
Diagnostics

Compiler Diagnostics and Error Messages 8-1

Object-Time Diagnostics 8-9
Digit

Basic Symbols, Letter, Digit, Logical Value, Delimiter 2-8
Dimensions

Array Declarations and Dimensions 2-38

Display

'END' Interruption or Terminating Display of Data D-7
Dummy

Dummy Statements 2-29
Dump

Object-Time Dump 12-1

Editing

Editing a File using ALGEDIT D-1
End-of-file

Input-Output Errors, End-of-file End-of-Tape 3-44
End-of-Tape

Input-Output Errors, End-of-file End-of-Tape 3-44
ENTIER

Transfer Function ENTIER 2-17
Error

Compiler Diagnostics and Error Messages 8-1
Errors

Input-Output Errors, End-of-file End-of-Tape 3-44
Example

Sample Interactive Example under INTERCOM D-9
Execution

Interactive Compilation and Execution D-3

'GO' Resume Execution D-7

Debugging and Execution-Time Options 13-1
Exponent

Numbers Integer, Decimal, and Exponent Parts 2-10
Expressions

Arithmetic, Boolean, and Designational Expressions 2-13

Arithmetic Expression Syntax 2-17 .

Boolean Expression Syntax 2-22

Designational Expression Syntax 2-24

Extended
FORTRAN Extended and RUN Interface Macros 15-1

60329000 C ¢ Index-3

Field
'FL' Field Length D-6
File
Editing a File using ALGEDIT D-1
For
For Statement 2-31
Format
Format Strings 3-11
Format Codes Summary 3-12
Standard Format 3-12
Formats
Number Formats 3-2
String and Alpha Formats 3-9

FORTRAN

FORTRAN Extended and RUN Interface Macros 15-1
For-Loop

Implied For-Loop 3-29
Function

Function and Procedure Identifiers 2-15
Transfer Function ENTIER 2-17

Functions
Standard Functions 2-16

Get

Get and Put 3-35
Go-To

Go-To Statements 2-28

H

H Option D-3
Hardware

Hardware Representations 2-6
Hidden

Hidden Variables 3-18
Horizontal
Horizontal and Vertical Page Control 3-16

Identifiers
Identifiers or Names 2-10
Function and Procedure Identifiers 2-15

If

Conditional or If Statements 2-29
Implied

Implied For-Loop 3-29
Index

Alphabetic Index of Definitions of Concepts and Syntactic Units
Input

Input Output 3-1

Input and Output Calls 3-22

Input Output Procedures 3-37, 3-41
Input-Output

Input-Output Errors, End-of-file End-of-Tape 3-44

Input-Output Channel Definition 7-1

Index-4

2-49

60329000 C

Integer
Numbers Integer, Decimal, and Exponent Parts 2-10
Real and Integer Types 2-12
Interactive
Interactive Debugging under INTERCOM D-1
CHECK Command for Interactive Syntax Checking D-2
Interactive Compilation and Execution D-3
Sample Interactive Example under INTERCOM D-9
INTERCOM
Interactive Debugging under INTERCOM D-1
Sample Interactive Example under INTERCOM D-9
Interface
FORTRAN Extended and RUN Interface Macros 15-1

Interruption
'END' Interruption or Terminating Display of Data D-7

Language
Reference Manual Language Conventions and Notation 2-1
Publication Language 2-6
Reference Language Description 2-7
Letter
Basic Symbols, Letter, Digit, Logical Value, Delimiter 2-8
Linking
Linking Non-ALGOL Coded Subprograms or Procedures 15-1
List
List Procedures 3-21
Logical
Basic Symbols, Letter, Digit, Logical Value, Delimiter 2-8

Macros

COMPASS Coded Utility Macros 15-1

FORTRAN Extended and RUN Interface Macros 15-1
Messages

Compiler Diagnostics and Error Messages 8-1
Metalinguistic

Backus Metalinguistic Notation for Syntax Description 2-7

Names

Identifiers or Names 2-10
NOCHECK

NOCHECK Command D-2
Non-ALGOL

Non-ALGOL Code as Procedure Body 2-43

Linking Non-ALGOL Coded Subprograms or Procedures 15-1
Notation

Reference Manual Language Conventions and Notation 2-1

Backus Metalinguistic Notation for Syntax Description 2-7
Number

Number Formats 3-2

Numbers
Numbers Integer, Decimal, and Exponent Parts 2-10

Object-Code
Object-Code 10-1

60329000 C

Index-5

Object-Time
Object-Time Diagnostics 8-9
Object-Time Stack 11-1
Object-Time Dump 12-1
OFF
Debugging Aids TRACE, SNAP, OFF 14-1
Operator

Delimiter Operator, Separator, Bracket, Declarator, Specificator 2-9

Operators

Precedence of Operators 2-23
Option

H Option D-3
Options

ALGOL Control Cards and Options 6-1

Debugging and Execution-Time Options 13-1
Output

Input Output 3-1

Input and Output Calls 3-22

Input Output Procedures 3-37, 3-41

Compiler Output 5-1

Debugging Output 14-5

Page
Horizontal and Vertical Page Control 3-16
Precedence
Precedence of Operators 2-23
Procedure
Function and Procedure Identifiers 2-15
Procedure Statements 2-23
Procedure Declarations 2-40
Non-ALGOL Code as Procedure Body 2-43
Input Output Procedures 3-37, 3-41
Linking Non-ALGOL Coded Subprograms or Procedures
Program
Compilation and Source Program Definition 4-1
Sample Program B-1
Publication
Publication Language 2-6
Put
Get and Put 3-35

Real

Real and Integer Types 2-12
Reference

Reference Language Description 2-7
Report

ALGOL-60 Revised Report 2-2
Resume

'GO' Resume Execution D-7
RUN

FORTRAN Extended and RUN Interface Macros 15-1

Sample
Sample Program B-1
Sample Interactive Example under INTERCOM D-9

Index-6

15-1

60329000 C

Separator
Delimiter Operator, Separator, Bracket, Declarator, Specificator

Skipping

Skipping or Tabulating 3-35
SNAP

Debugging Aids TRACE, SNAP, OFF 14-1
Source

Compilation and Source Program Definition 4-1
Source Deck Structures 4-4
Space
Comments and Blank Space 2-9
Specificator
s Dilimiter Operator, Separator, Bracket, Declarator, Specificator
tac
Object-Time Stack 11-1
Standard
Standard Functions 2-16
Standard Format 3-12
Statements
Compound Statements and Blocks 2-25
Status
'ST' Status of Active Breakpoints D-7
String
String and Alpha Formats 3-9
Strings
Character Strings 2-12
Format Strings 3-11

Structures

Source Deck Structures 4-4
Subprograms

Linking Non-ALGOL Coded Subprograms or Procedures 15-1
Subscripts

Variables, Arrays, and Subscripts 2-14
Switch

Switch Declarations 2-39
Symbols

Basic Symbols, Letter, Digit, Logical Value, Delimiter 2-8
Syntactic

Alphabetic Index of Definitions of Concepts and Syntactic Units
Syntax

Backus Metalinguistic Notation for Syntax Description 2-7
ANALYZE Command for Syntax Checking D-2
CHECK Command for Interactive Syntax Checking D-2
System
Compiler and System Description 1-1

Tab

ALGEDIT Tab Characters § A-1
Tabulating

Skipping or Tabulating 3-35
Terminating

'END' Interruption or Terminating Display of Data D-7
Time
'CLOCK' CPU Time D-7

TRACE
Debugging Aids TRACE, SNAP, OFF 14-1

Transfer
Transfer Function ENTIER 2-17

60329000 C

2-9
2-9
2-49
AR
4.,
Index-7

PN

Type

Type Declarations 2-36
Types

Real and Integer Types 2-12

Unit

Unit or Channel Numbers 3-15
Utility

COMPASS Coded Utility Macros 15-1

Variables
Variables, Arrays, and Subscripts 2-14
Hidden Variables 3-18

Vertical
Horizontal and Vertical Page Control 3-16

ALGEDIT Tab Characters $ D-1

'ALL'
'ALL' D-5
'CLOCK'
'CLOCK' CPU Time D-7
'END'
'END' Interruption or Terminating Display of Data D-7
IFLI
'FL' Field Length D-6
'GOI
'GO' Resume Execution D-7
'LIST!
'LIST' Breakpoint Options D-6
'SET!
'SET' Breakpoints D-6
IST'
'ST' Status of Active Breakpoints D-7
'TIME'

'TIME' and Date D-6

Index-8] 60329000 C

1974 Funky Winkerbean cartoon: The computer is having problems with a student's
class schedule, and the administrator's solution isto expel the student. Don't ask me why
| pasted this here.

CUT ON THIS LINE

_—e e e e e e e e e e — e — e — e o — o — et s

TITLE: ALGOL 60 Version 3 Reference Manual

PUBLICATION NO. 60329000 REVISION D

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department

215 Moffett Park Drive

Sunnyvale, California 94086

