CID,

CONTROL
DATA

CONTROL DATA BV,

ALGOL 68
VERSION 1
REFERENCE MANUAL

CONTROL DATA®

CYBER 170 SERIES

CYBER 70 SERIES MODELS 72, 73, 74
6000 SERIES COMPUTER SYSTEMS

el

| \
G,

CONTROL
~ DATA

CONTROL DATA BV,

ALGOL 68
VERSION I
REFERENCE MANUAL

CONTROL DATA®

CYBER 170 SERIES

CYBER 70 SERIES MODELS 72, 73, 74
6000 SERIES COMPUTER SYSTEMS =~

REVISION RECORD

REVISION DESCRIPTION
A Original printing.
(9-17-75)
B This revision reflects compiler level 1.1,
- (9-17-76) Changes and corrections result from product

development and document evaluation,

Additional copies of this

manual may be obtained from :

CONTROL DATA SERVICES B.V.
J.C. van Markenlaan 5

P.O. Box 111

RIJSWIJK (Z.H.)

THE NETHERLANDS.

<:>1975,

CONTROL DATA SERVICES B.V.

Address comments concerning

this manual to :

- CONTROL DATA SLCRVICES B.V.

J.C. van Markenlaan 5
P.O. Box 111

RIJSWIJK (Z2.H.)

THE NETHERLANDS.

or use Comment Sheet in the

back of this manual.

o~

CONTENTS

0. INTRODUCTION 0.1
1. ALGOL 68 SYSTEM DESCRIPTION 1.1
1.1. COMPILER FEATURES. .
1.2. COMPILER STRUCTURE.
1.3. RUNTIME LIBRARY. 1.7
1.4. OPERATING SYSTEM INTERFACE. 1.8
1.5. HARDWARE CONFIGURATION. | 1.9
2, DEVIATIONS FROM REVISED REPORT ON ALGOL 68 2.1
2.1. SYNTACTICAL / SEMANTICAL DEVIATIONS. 2.1
2.2. DEVIATIONS IN HARDWARE REPRESENTATION. 2.3
2.3. DEVIATIONS IN STANDARD ENVIRONMENT. 2.4
2.3.1. CONTROL DATA PRELUDES AND POSTLUDES 2.4
2.3.2. TRANSPUT DECLARATIONS. 2.5
3. CONTROL DATA ALGOL'68 LANGUAGE 3.1
3.0. INTRODUCTION. ‘ : 3.1
3.1. HARDWARE REPRESENTATION. 3.2
3.1.1. INTERNAL REPRESENTATION OF SYMBOLS.
3.1.2. EXTERNAL REPRESENTATION OF SYMBOLS.
3.1.2.1. ALGOL 68 SINGLE POSITION REPRESENTATIONS. 3.3
3.1.2.2. ALGOL 68 MULTIPLE-POSITION REPRESENTATIONS.
3.1.2.3. GENERAL IMAGES. - 3.4
3.1.3. EXTERNAL REPRESENTATION OF MODE

INDICATIONS AND OPERATORS. , 3.6
3.2. PRAGMATS. 3.7
3.3. UNDEFINED. ' | 3.8
3.4. CONTROL DATA STANDARD PRELUDE. 3.9
3.4.1. STANDARD ENVIRONMENT ENQUIRIES. 3.9

3.4.2. CONTROL DATA ADDITIONAL ENVIRONMENT ENQUIRIES. 3.10
3.4.3. CONTROL DATA ADDITIONAL OPERATORS AND ROUTINES.3.12

o GO SN

S~ S S SRS | Ol R “E SO R oo
U D W N = = =

ol o Ul
N i

U x> W NN

TRANSPUT DECLARATIONS.
CHANNELS .

MAPPING OF TRANSPUT CONCEPTS INTO RM CONCEPTS.

H-PATTERN.
BINARY TRANSPUT.

COMPILATION

PRAGMATS FOR INPUT TO COMPILATION.
END OF SOURCE TEXT.

STROPPED MODE AND FLAGGED MODE.
SEPARATE COMPILATION.

LIBRARY ADDITION.

INLINE OPERATORS.

PRAGMATS FOR OUTPUT FROM COMPILATION.
CONTROL CARD FOR COMPILATION.
COMPILE-TIME DIAGNOSTICS.

OPERATION CHARACTERISTICS.

EXECUTION

CONTROL CARD FOR EXECUTION.
OBJECT-TIME DIAGNOSTICS.

HINTS FOR EFFICIENCY

~ RUNTIME ORGANIZATION

STORAGE ALLOCATION.
PARAMETER MECHANISM.
REPRESENTATION OF INTERNAL OBJECTS.

INTERFACE WITH OTHER PROGRAMMING LANGUAGES
SAMPLE JOBS

TABLES

3433
3113
3irlid
el L
3.18

4.1
4.1
4.1
4.1
4.3
4.4
4.5
4.6
4.10
4.11

5
S
52

[0¢]
|~

INTRODUCTION,

This reference manual includes information to prepare,
compile and execute programs written in ALGOL 68 for the
CONTROL DATA CYBER, 176 series, CYBER 70 series models
72,73,74, and 6000 series.

The language implemented is described in :

Revised Report on the Algorithmic Language ALGOL 68,
A, van Wijngaarden et al.(Eds), Mathematical Centre
Tracts 50, Mathematisch Centrum, Amsterdam, 1976.

References to this document are made by writing the
mnemonic RR, if necessary followed by a section number,
e.g. RR.1.1.1.a.

Syntactical constructions ("hypernotions") are bracketed
by <and> , e.g. < quote symbol> . 1In the sequel the

mnemonic RM is used to refer to Record Manager.

Chapter 1 presents an overview of the ALGOL 68 system.
Chapter 2 and 3 include information to prepare programs.
Chapter 2 deals with deviations from RR; chapter 3 sum-
marizes implementation-dependant aspects of the language
as they are realized on the CONTROL DATA computer systems.
Compilation and execution of programs is described in
chapter 4 and 5, respectively.

Chapter 6,7 and 8 are useful for those who want to improve
program efficiency.

Some sample jobs are given in chapter 9.

¢ 1. ALGOL 68 SYSTEM DESCRIPTION,

1.1. COMPILER FEATURES.

- Virtually the full language, defined in RR is implemented,
including e.g. parallel processing and binary, formatted
and unformatted transput.

- Routines may be separately compiled and loaded with a
particular program only when explicitly used in that
program.

~ User preludes and postludes may be precompiled to be used

in subsequent compilation of programs, separate routines

or again preludes and postludes. In the last case a new

prelude and postlude is generated combining (in a nested

@m fashion) the definitions in both preludes and postludes.

- Operators may be defined in terms of machine-instructions
by means of intermediate code file macros (ICF macros).
Thus defined operators are compiled into in-line code
rather than calls to routines. ICF macros have been

used to define almost all operators in the Control Data
standard prelude.

- In case of errors in the source text, self-explanatory
error messages are put out, including line number and

severity of the error (warning, error, fatal).

- When during the syntactical scan of the source program
an error is detected, error-recovery procedures are
invoked that guarantee a syntactically correct inter-
mediate output of that pass.

For a following pass then it is possible to detect more
errors and to transform the erroneous program in an execut-
able, even meaningful one. Optionally, programs cohtaining
no compilation errors of severity fatal may be executed.

A source listing is provided, giving on each line the line
number, the source text, the level of parenthesis nesting
and the type of the last object on the line.

(comment, string, tag, mode-indication, operator, denotation)

Optionally, an assembly-like listing of the object program is
provided.

The allocation of data is designed in such a way that scope

checking can be restricted to the checking of routines being
called.

The internal representation of internal objects has been
choSen in such a way that values of mode reference-to-MODE
or row-of-MODE use recognizable bit-patterns and thus no
templates are needed, ailowing a fast and simple garbage
collection.

Some enquiries have been added to the standard set, mainly

for memory allocation statistics.

In case of runtime errors, a self-explanatory diagnostic
message, including the line number and module name,‘is
printed. A

An error trace back of active routines at the time of inter-
ruption will be given.

Optionally, a post-mortem symbolic dump will display all
identifiers in all ranges active at the time of the inter-

ruption.

1020

COMPILER STRUCTURE.

The compiler consists of a main overlay or CRADLE and
six overlays (PASS 1 through PASS 6), each of which per-
forms a complete pass over the program. - Communication

between the overlays is accomplished by means of :

- intermediate files ILl1, IL2, IL3, IL4 (ICF) and IL5
(CF), each representing some intermediate form of
the program ;

- the SYMBOL-TABLE, a comglomerate of all internal tables,
such as Name-table, Identifier-table, etc. ;

’

- common blocks in the CRADLE.

CRADLE:

Controls loading of overlays, contains service routines
and common blocks.

I/0 routines are included in the overlays rather than in
the CRADLE, because different passes require different
I/0 (RM) routines.

PASS 1 :

Lexical scan.

Performs control-card interpretation and SYMBOL-TABLE

initialization. _ ‘ ‘
A SYMBOL-TABLE overlay representing the prelude selected
on the control-card is loaded.

Pags 1 reads the source text of the user program and
produces ILl. Pass 1 creates SYMBOL-TABLE entries for
all identifiers, fields, mode-indications, operators
and most denotations, replacing these in the IL1 by
SYMBOL-TABLE pointers. It translates the hardware
representation into internal values. It determines all
defining occurences of mode-indications and operators
and performs preliminary parenthesis analysis.

Pass 1 also produces the source 1listing.

PASS 2 :

Mode independent parse;

Pass 2 reads IL1 and produces IL2. The parser has been
generated by program from a context-free grammar.

IL2 represents the program in reversed Polish notation.

Appropriate entries for all modes are created in the
SYMBOL-TABLE.

PASS 3 :

Mode-table cleanup, coercion and balancing. These

functions are combined in one overlay, although they
are logically independent.

1. Mode-table cleanup.
This module does not scan the program but operates
on the SYMBOL-TABLE only. It performs mode equiva-

lencing and the ordering of the constituent modes
of the union.

2. Coercion and balancing.
Rgads IL2 and produces IL3. .
IL2 is read backwards and IL3 represents the program
in Polish notation. o
This module performs :

Identifier identification

Operator identification

- Determination of all coercions and balancing of modes

'The ‘coercions are inserted in the IL3 produced.
PASS 4 :

Code-generator 1.

Pass 4 reads IL3 backwards (i.e. in the order of the
source code) and produces IL4. 1IL4 is a modification
of ICF, the input'to the code-generator 2 phase of
the SYMPL compiler.

IL4 is similar to machine code, but it contains no
register indications.

The operands of instructions generated may be SYMBOL-
TABLE pointers or pointers to preceding ICF instruc-
tions.

PASS 5 :

Code-generator 2. ,

Reads IL4 and produces IL5 (or CF). ,

Pass 5 is a slightly modified version of code-gener-
ator 2 of the SYMPL compiler.

It inserts load instructions if necessary and performs
register assignment and instruction scheduling.

PASS 6 :

Editor. . ‘ A
Produces error messages from the error-entries in
the SYMBOL-TABLE, created in earlier passes.
Reads IL5 (or CF) and_pfqduces standard SCOPE relo-
catable binary. o

Optionélly, it provideé‘an editéd object-code listing.

L

RUNTIME LIBRARY.

The runtime library is an integral part of the ALGOL 68
compiler system. This library contains a large number
of routines, needed to support different features of

the language.

1. 'Storage'allocation.
Garbage collector

Core request routine

2. Language constructs.
Parallel processing
Generators involving multiples
Assignations involving multiples
Slicing
Selections involving multiples
Subscripting
Row displays involving miltiples

Coercions yielding multiples

3. Standard prelude.
Standard environment enquiries
Control Data additional environment enquiries
Transput (coded in ALGOL 68)
Basic I/O to support transput

4. Diagnostic system.
Error trace back

Post-mortem symbolic dump.

1.4.

OPERATING SYSTEM INTERFACE,

The compiler operates as a user program to the
operating system (SCOPE 3.4 or KRONOS 2.1).

It uses RM for compiler I/O exclusively.

Input and Output have FO = SQ, RT = 7.

Intermediate files have FO = WA, RT = F or RT =

The LGO-file has FO = SQ, RT = U.
System requests are used to load overlays,
obtain the clock reading, etc.

1.8

W'

1.5. HARDWARE CONFIGURATION.

The basic hardware configuration required for com-
pilation consists of the minimum configuration required

by the operating system.

n
L

DEVIATIONS FROM THE REVISED REPORT ON ALGOL 68.

SYNTACTICAL / SEMANTICAL DEVIATIONS.

No transient names.

A name réferring to an element of a flexible row V is
treated as a name referring to an element of a fixed
multiple and does not change or lose its meaning when
an assiénﬁent is made to the name referring to V. Hence
the concept of transientvname is abolished.

E.g. after

FLEX [1:4] INT fris= (1,2,3,4);
REF INT i = fri [2] ;

REF REF INT ii = fri [2] ;

REF [JINT il = fri [2:4] ;
fri:= (7,8);

the following clauses always yield TRUE
i=2; . _
REF INT (ii) IS i;
il [i] 18 i .
No ghost element.
A multiple being an element of a flexible multiple is
flexible. Thus the following declarations are equivalent:
FLEX [1:3] FLEX [4:5] INT £fi;

and

FLEX [1:3] [4:5] CInT ££1;

and the following is legal
££i T2] = (7,8,9) .
This obviates the need for a ghost element.

Scope of generators.
The scope of all generators, including those implied
in variable declarations, is global.

Scope checking.

The scope of a value of mode PROCEDURE is not checked
upon assignation dr when yielded by a range or routine,
but at the time the routine is called.

No VOID in united modes.
VOID is not allowed as constituent of a united mode;
EMPTY can not be used as a void-denotation.

Bold symbols.

The CONTROL DATA implementation accepts "bold letter
ABC symbols" and "bold DIGIT symbols" in operators and
mode indications (see Table 1 and also section 3.1.3).

These symbols are produced by the following additional
rules:

<TAB> :: <BOL> .

< TAD> :: < BOL> .

< TAM> :: <BOL> .

< BOL> :: <bold letter ABC> ;
<BOL, bold letter ABC> ;
< BOL, bold DIGIT> .

2.2 DEVIATIONS IN HARDWARE REPRESENTATION.

A <<style iASub,symbol:> has- the following representa-
tiqni(expreSSed‘innASCIIagrqphics, see Table 1):

/

°

; a <style i bus symbol > has the following representa-
tion:

) e

2.3

2.3.

2.3.1.

DEVIATIONS IN STANDARD ENVIRONMENT.

In this section ALGOL 68 features are summarized
which are not supported by the CONTROL DATA imple-
mentation.

For extra (non-ALGOL 68) features, one is referred

to chapter 3, section 4 and 5.

CONTROL DATA PRELUDES AND POSTLUDES.

This implementation does not follow the concept of

particular-prelude and particular-postlude (see
RR.10.1). '

Instead, this implementation aSsumes the existence

of a "standard-postlude" and a "library-postlude"
in analogy to the concept of standard-prelude and
library-prelude, respectively. '

The CONTROL DATA standard prelude will be available
in three versions:

1.

single precision version: all standard operators
on operands having a size long-LONGSETY are
omitted;

semantic long version: all standard operators on
operands having mode REAL and COMPL with size
long are included;

syntactic long version: the intention of this
standard-prelude is to allow the use of algorithms
containing modes with size long-LONGSETY in a
single precision mode (this version is not imple-
mented yet).

2.3.2. TRANSPUT DECLARATIONS.

-- Format pattern:
Format patterns (RR.10.3.4.9) are not supported
by this implementation.

-= Staticizing of formats:
The entire format is "staticized" at the moment
of attachment to the file.

-- Logical end while writing:
For "sequential access books" a write action sets
"logical end of book" on the character with highest

position in the line to be written.

-— Associate:
The routine "associate" is not supported by this

implementation.

-= Conversion key:
The programmer can not provide his own conversion
key; calling of the routine "make conv" (see

RR.10.3.1.3.j) results in program termination.

3, CONTROL DATA ALGOL 68 LANGUAGE

3.0. INTRODUCTION.
This chapter deals with:
-- specification of what is not defined or partly defined
in RR; what is left to the discretion of the imple-
mentor or can not be specified by RR alone, e.qg.

"undefined";

-- 'specific properties of the CONTROL DATA implementa-

tion, e.g. "environment enquiries";

-- -extra (non-ALGOL .68, nonstandard) features.

HARDWARE REPRESENTATION.

INTERNAL REPRESENTATION OF SYMBOLS.

Internally the compiler uses a 12-bit code, called

ILO-

code, that meets the following requirements:
ILO-code is a superset of ASCII;

there is a one-to-one-mapping of all single-position
(non-composite) representations of symbols mentioned
in RR.9.4.1. into the class of 8-bit ILO-code items;

all 8-bit ILO-code items outside this mappihg have

a map in a "typographical display feature" or in a
<style TALLY monad symbol> or in a < bold LETTER

symbol> or in a < bold style i LETTER symbol >

or in a <bold DIGIT symbol> or in a <style

i LETTER symbol > ;

the rest of the IL(0-code items are mapped into
< other string item> .

A table giving for each ILO-code item the corresponding
ALGOL 68 item, is presented in Table 1.

3.1.2. EXTERNAL REPRESENTATION OF SYMBOLS.

In table 1 relationships between the SCOPE 3.4/KRONOS 2.1
' standard 63-character set, an ASCII subset and a subset
. of ALGOL 68 symbols are given. ' '

3.1.2.1. ALGOL 68 SINGLE-POSITION REPRESENTATIONS.

The ASCII subset corresponding with the SCOPE 3.4/KRONOS 2.1
standard character set (see column 4 of Table 1) does

not contain all single-position representations for

symbols listed in RR.9.4.1. ' C '

Items occurring in both ASCII and ALGOL 68 representa-

tions are < style TALLY monad symbols> .

@M 3.1.2.2. ALGOL 68 MULTIPLE-POSITION REPRESENTATIONS.

- Symbols from ALGOL 68 having a representation which is
a sequence of capital letters (e.g. mode standards, bold
symbols, see RR.9.4.1) are represented by:

< bold glyph > "< letter sequence >
"in flagged mode, or
<bold glyph> <letter sequence> <bold glyph>

in stropped mode, where <bold glyph> is an IL(O-item
having code 27 (see Table 1, column 3), and < letter
3’sequence:>' is the ASCII-code equivalent of the sequence
of capital letters (see sections 4.1.2 and 4.3, also).
All other multiple-position representations are represented
gw by their equivalent ASCII sequences.’

3.1.2.3. GENERAL IMAGES.

Throughout a program one can represent ALGOL 68 symbols,
given in Table 1 column 5, by their corresponding
"general images". A general image corresponding to an
ALGOL 68 symbol S, has in stropped mode the following
format:

< bold glyph> <open symbol> <N> <close symbol>
<bold glyph> '

where <bold glyph> is as specified before, <open symbol>
and <close symbol> are ALGOL 68 symbols, and < N> is
the decimal representation of the IL0-code item corres-
ponding to S, see Table 1 column 3.

In stropped mode general images of a string of ALGOL 68
symbols Sl...Sk may be represented by:

<bold glyph> <open symbol> <N1l,...,Nk> <close symbol >
<bold glyph>

where N1,...Nk are the decimal representations of the
ILO-code items corresponding to S1,...,Sk , respectively.

In flagged mode the representations are the same as the
representations in stropped mode without the last

< bold glyph > . 1In flagged mode one can not represent
a general image close behind a flagged sequence of
letters, e.g., expressed in ASCII-graphics:

== in stropped mode'A(65)P' is equivalent to 'AAP'
and '(65,66,67)"' is equivalent to 'ABC' ;

-- 'BIN(126) in flagged mode is equivalent to 'BIN'
(126) in stropped mode;

-- 'BIN(126) in flagged mode is equivalent to 'BIN'
'SKIP' in stropped mode. |

3.1.3. EXTERNAL REPRESENTATION OF MODE INDICATIONS AND
OPERATORS.

Mode indications and operatgrs are represented by:
<bold glyph> < TAG>

in flagged mode, or by

< bold glyph > <TAG> < bold glyph>

in stropped mode (see sections 4.1.2 and 4.3, also),
where < bold glyph > is as specified before.

Another way to represent mode indications and operators
is to use the (non-ALGOL 68, CONTROL DATA) bold symbols
according to the rules in section 2.1.

@&

3.2. PRAGMATS.

Pragmats are available now for:

Manipulation of source program input and output
(see sections 4.1 and 4.2):
list-pragmat and nolist-pragmat;
eject-pragmat;
flagged-pragmat and stropped-pragmat;
state-pragmat and nostate-pragmat;
stop-pragmat.

Addition of (inline ICF) code to CONTROL DATA
prelude, postlude and standard library (see section
4.1), and interfacing with other programming lang-
uages (see section 8) :

xdef-pragmat and fedx-pragmat;

xref-pragmat;

prog-pragmat;

inline-pragmat.

3.3.

UNDEFINED.

This section specifies what actions are taken in
"undefined" situations. For situations which lead to

an error messagdge, one is referred to section 5.2.

1. If the union or the integer in a conformity—élause
or case-clause has the value SKIP or is not initia-

lized, the out-CASE-clause is elaborated.
2. All values are initialized to SKIP.

3. Assignation to SKIP or NIL and dereferencing of NIL
or SKIP will cause the program to be terminated and
an error message to be put out.

4. Array bound violations in subscripting, slicing,
assignation of multiple values or rowing of multi-
ple values to multiple values of higher dimension
will cause the program to be terminated and an

error message to be put out.

5. The use of infinite or indefinite real values causes
the program to be terminated and an error message
to be put out.

6. An attempt to backspace a file with c OF cpos equal
to 1 will not change cpos.

7. All undefined transput situations, except the one

mentioned above, lead to an error message.

@%

3.4.

3.4.1.

CONTROL DATA STANDARD PRELUDE.

STANDARD ENVIRONMENT ENQUIRIES.

The CONTROL DATA standard prelude contains the following

standard enquiries (see RR.10.2.1):

INT int lengths =1,

INT int shorths =1,

INT ‘int width =15,

INT max int = 2x=x48-1,

INT real lengths =1,

INT real shorths =1,

INT real width = 16,

REAL max real = 2%%1022x%(2%x%48-1),

REAL small real = 2#%(-47),
~ INT exp width = 3,

INT bits lengths =1,

INT bits shorts =1,

INT bits width = 48,

INT bytes lengths =1,

INT bytes shorths =1,

INT bytes width = 4,

INT max abs char = 4095,

CHAR null character = REPR 0,

CHAR flip = #T#,

CHAR flop = #F#,

CHAR errorchar = #u#,

CHAR blank = # #.

Note: the above given denotations are represented

by CDC-graphics, see Table 1.

3.4.2.

CONTROL DATA ADDITIONAL ENVIRONMENT ENQUIRIES.

In the CONTROL DATA standard prelude the mode
"LONGBYTES" is declared as

MODE LONGBYTES = STRUCT (BYTES bl, b2).

In addition to those specified in section 3.4.1, the
CONTROL DATA standard prelude includes the following

environment enquiries:

INT

progsize

maxprog

compiler level

PROC INT

stacksize

allocated stack
max allocated stack
heapsize

available

time limit

C size of the program in
words C,
C the maximum storage in
words available to this
job C,
XXXYYZZ2
CO xxx is the compiler level,
yy is the year of creation,
zzz is the day of creation.
co,

C size of the currently active
stack in words C,

C size of the currently allocat-
ed stack in words C,

C maximum of allocated stack in
this program execution C,

C size of the heap in words C,

aQ

number of free words C,
C CP time in seconds allowed
for this job C,

PROC REAL

clock = C

PROC LONGBYTES

wall clock =C

date = C

INT
collections :=0
garbage :=0
REAL
collect seconds =0

CP time in seconds used in
this job C,

time in the format hh.mm.ss,
hh is hours,

mm is minutes,

ss is seconds C,

date in the format dd.mm.yy,
dd is the day,

mm is the month,

yy is the year C,

CO one is added for each gar-
bage collector execution

co,

CO the garbage collector adds
the number of words of gar-
bage faced every time it is
executed

co,

CO garbage collector adds the
CP time spend for every
execution

co.

3.4.3. CONTROL DATA ADDITIONAL OPERATORS AND ROUTINES.
One operator is added to the standard environment:

OP MODIV = (REF INT i, INT k)INT:
(INT r= i+k; INT s= i-k=zr; i:= r; s).

A different version of MODIV is x/:= .

Three routines are added to the standard environment:

PROC (INT) INT memory=
C if the parameter value is larger than the
current field length, then increase the
field length to the parameter value with-
out, however, exceeding the maximum field
length C,
PROC VOID collect gargabe =
C invoke the garbage collector C,
PROC VOID error =
C causes normal termination; triggers

trace-back and symbolic dump C.

3.12

3.5. TRANSPUT DECLARATIONS.

Transput is performed via Record Manager}

3.5.1. CHANNELS.

The channels included in the CONTROL DATA standard

environment are given in the following table.

*sSTaUURYD TT® UO aNI3 ST qe3lss

{sTouueryd TTIe UO SSTeF ST JpTox

‘onI3=31‘9sTey=3'1L0TET = Xeuw

¢ SO©30N

pojusweTdwT 30U (3)

IIDSY 3T9-8 33 (3| 3]| 3|3 (3) Touueyd TTIOSE
auou (00G L1 ‘xeuw’xeu) I 3 3 3 I 23 T2uueyo ssazdwodououIryd
auou (005 LT *xew’xeu) 3 I 3 3 I 3 Touuryd ssaxdwodIaeyd
auou (00G€ ‘ xew’ xew) 3 3 3 3 F 3 Tauueryo Teriusnbesiieurq

apoD Ae1dstd (000g€‘ xew’ xeu) ¥ F 3 3 F 3 Touueyo adi3z

spoD AeTdstd (9€1/ 09" xeu) 3| F |3 F| |3 Tauueyd Inopuels

suou (Xew’1'1) J 3 3 3 3 3 Tauueyd oeqpuels

opoD Aeldsta (0g’‘xew’T) J J s 3 J 3 Tsuueyd uTpuels
(*xeyo auty ‘sbed) | *ad 39s

Auoopuels sodxeu wod {utq [3nd|39b|39s |-aa sweu Tauueryod

3.14

3.5.2. MAPPING OF TRANSPUT CONCEPTS INTO RM CONCEPTS.

The following'table shows the mapping of ALGOL 68 Transput

concepts into RM concepts.

ALGOL 68 entity

RM entity

book;

logical end
of a book.

idf

of a book.

line.

page end.

open.

establish.

lock.

scratch.

sequential (SQ) file, except for a book of
standback channel, which is mapped on word
addressable (WA) file.

End-of-Information (EOI).

logical file name.

RM record having record type (RT):

Z for standin channel, standout channel,
ztype channel and ascii channel;

W for binary sequential channel, char
compress channel and char noncompress
channel;

F for standback channel.

End-of-Section (EOS), only for channels
having lines mapped on RM records with
RT = W.

RM open, the book must be in chainbfile.

RM open, the book should not be in

chainbfile, but may exist in the job.
RM close.

RM close and unload.

Note, that because "idf of book" is identical to the
"logical file name" of the operating system, one is
subject to the restrictions for logical file names.
The ALGOL 68 system does not support the use of the
FILE control card.

gm

3.5.30

THE H-PATTERN.

The H-pattern (not defined in RR) may occur at positions

where a <literal> is legal, see RR.10.3.4.1.i.
An H-pattern is defined as
<:letter’h symbol, enclosed clause > ,

where the enclosed clause yields a < strong row of
character NEST coercee > .

The H-pattern is & means to specify dynamically a

row-of-character in a format in positions where a

literal is allowed.

3.5.4.

BINARY TRANSPUT.

The routines putbin (RR.10.3.6.1.a) and getbin
(RR.10.3.6.2.a) will accept parameters of the mode

procedure-with—reference-to-file-parameteréyieldingﬂ

void.

4, COMPILATION

Compilation can be directed by control card options and
pragmats.

Several pragmats are available to control compiler input
and output and source text interpretation. They will be

described in the appropriate sections of this chapter.
4.1. PRAGMATS FOR INPUT TO COMPILATION.
4.1.1. END OF SOURCE TEXT.

The end of the text of a particular-program to be com-
piled or a routine to be seperately compiled is marked
by the pragmat PR stop PR.
However, the end of the last particular-program or

@m routine in a sequence of compilations should be marked
with an End-of-Record (EOR).
This pragmat is useful when the text to be compiled is
interactively given to the compiler via a connected
input file.

4.1.2. STROPPED MODE AND FLAGGED MODE.

Stropped mode and flagged mode can be controlled by the
use of pragmats (see section 4.3, also).

The pragmat PR flagged PR causes switching to flagged mode.
The pragmat PR stropped PR causes switching to stropped
mode.

4.1.3. SEPARATE COMPILATION.

A routine text may be separately compiled by enclosing
WM its unit in the pragmats PR naming xdef PR and PR fedx PR,
where "naming" is the entry-point name that will be

generated for the routine.

The text to be separately compiled consists of one or
more identity-declarations or operation-declarations with
a routine-text on the right-hand side, the unit of which
is surrounded by the above pragmats.

The last declaration is followed by SKIP.

An operator or identifier having a mode PROCEDURE may
be defined as external by a declaration of the form:

OP operator = formal part :
PR xref naming PR SKIP

or

PROC identifier = formal part :
PR xref naming PR SKIP,

respectively. Here "formal part" consists of formal-
parameters, if any, followed by formal-declarer, while
"naming“ is the entry point for the routine (see section
9, sample 1). v
If the routine is entered via an interface routine, the
format of the xref-pragmat is different (see section 8,
no.2).

There are some restrictions for the name naming:

- a semicolon in naming will be skipped;

- a colon in naming will cause an error message,
but the colon will appear in the entry name
(such an entry name is illegal for the loader);

- all other symbols in naming are accepted, except
those with IL0-code less or equal 31 (decimal)
and greater or equal 96 (decimal) (see Table 1);
these symbols are replaced by a period-symbol.

g®

4.1.4.

LIBRARY ADDITION.

The pragmat PR prog PR is used to add code to the library-
prelude and the (non-ALGOL 68) library-postlude (see
section 2.1, point 7).

The source text of the code to be added is given to the
compiler, operating in "library addition mode" (see

section 4.1, N-option), in the following format:

naming :

< STYLE begin symbol >
prelude addition ;
PR prog PR
postlude addition

< STYLE end symbol > .

The compiler generates an overlay module in binary form,
containing the CONTROL DATA prelude and postlude including
the additional code.

A thus created overlay module, when placed in a library,
can be used in subsequent compilations by referring to

it with the name "naming" (see section 4.1, P-option).

The items "prelude addition" and "postlude addition"

stand for serial-clauses to be added to the library-
prelude and library-postlude, respectively.

Here are two examples:

example 1: plot:

(PROC plot = C...C ;
PR prog PR
SKIP) H

example 2: file :

BEGIN FILE nonstand; open(nonstand,...) ;

PR prog PR
stop: close(nonstand)
END

Example 2 redefines a.o. the label stop. Another example

is given in section 9, sample 1.

4.1.5. INLINE OPERATORS.

Operators expressed in ICF macros can be compiled inline.

Therefore the inline-pragmat must be used in the following

way:

OP formal part operator =
PR inline

icf-macros.

PR SKIP

Here "formal part" stands for formal-parameters followed

by formal-declarer, "operator" stands for a TAO-symbol,

"icf-macros" is a sequence of ICF macros, while the other

items stand for themselves.

For examples, see section 9, sample 1.

The use of ICF macros is described in the IMS (Internal

Maintenance Specification) of this compiler.

PRAGMATS FOR OUTPUT FROM COMPILATION.

The following pragmats may be used to control the output
of the source listing:

-- PR list PR, which turns on output of source listing;
PR nolist PR, which turns off output of source

listing;

-- PR eject PR, which causes the line which contains
this pragmat to be put out on the first line of the

next page.

-- PR state PR, which turns on output of parenthesis
level and construct type on the source listing;
PR nostate PR, which turns off output of parenthesis
level and construct type on the source listing; '
The S-option does not prevail over these two prag-

mats (see section 4.3).

The control card option L=0 prevails over the above

pragmats (see section 4.3).

CONTROL CARD FOR COMPILATION.

The following control card formats can be used to
invoke the ALGOL 68 ¢ompiler:

A68(pl,p2,...,pk) or A68,pl,p2,...,pk. ;

none of the parameters pl through pk is mandatory.

A parameter is either of the format

XY=sequence or Xy .

The various parameters are specified below.

I:

source input:

omitted : source input from file INPUT;
I : source input from file COMPILE;)
I=1fn ¢ source input from file "1lfn".

the number of significant characters on source input

line:

omitted : 72 significant characters on source
input line;

Cc : 72 significant characters;

C=n ¢t "n" significant characters (n must

be less or equal 130).

stropped mode and flagged mode (see section 3.1,also):
omitted : the compiler operates in stropped
mode, i.e. a "bold word" is repre-
sented by its characters, surrounded
by < bold glyphs>> ;
F : the compiler operates in flagged mode,
i.e. a bold word is represented by its»@§

characters, preceded by a

< bold glyph >. Note,

that a

bold word must be followed by a

character that can not
a bold word.

(relocatable) binary output:

omitted :
B :
B=1fn :
B=0 :

source listing:
omitted

iy
i
O

occur in

binary output on file LGO;

binary output on file LGO;

binary output on file

lllfnll ;

binary output is suppressed.

source listing and diagnostics on

file OUTPUT;

source listing and diagnostics on

file OUTPUT;

source listing and diagnostics on

file "1fn";

diagnostics on file OUTPUT, source

listing and object listing are

suppressed.

suppression of parenthesis level and construct type:

omitted :

no suppression of parenthesis level

and construct type:;

parenthesis level and construct type

are suppressed.

object code listing in COMPASS-like form:

omitted :
o :
O=1fn :
0=0 :

no object code listing
object code listing on
object code listing on

no object code listing

is produced;
file OUTPUT;
file "1fn";

is produced.

X:

A

combined use of L-,S- and O-option (X stands
for a combination of L,S and O):

omitted

: source listing and diagnostics
on file OUTPUT; no Suppression
of parenthesis level and con-
struct type;

diagnostics on file OUTPUT;

if X contains L, then source
listing on file OUTPUT;

if X contains S, then parenthesis
level and construct type are
suppressed;

if X contains O, then object code

listing on file OUTPUT;

OUTPUT the file "1fn" is taken;

listing and object code listing

are .suppressed.

inline subscription:

omitted

A

overlay module
taken from the
omitted

P=naming

P=1lib/naming

: subscripting is done by a bound-
checking runtime routine;

subscripting is done by inline-

code; no bound-checking is pre-
formed. |

containing prelude and postlude is
runtime library:

: default module is taken from
library A68LIB;

default module is taken from
library A68LIB;

module having name "naming" is
taken from library A68LIB;

module having name "naming" is

taken from library named "lib";

the same as X, but instead of file

diagnostics on file OUTPUT; source

b}
i
o

no prelude is used; the definitions
of PLAIN modes are internally gen-

erated.

-- N: library addition mode (see section 4.1.4):

omitted : the compiler operates in normal
mode;
N : the compiler operates in library

addition mode.

-- D: a symbolic dump is produced at a runtime error:
omitted : no symbolic dump is produced;
D : a symbolic dump is produced.

-- T: object code is produced if there are no errors of
severity fatal (see section 4.4):
omitted : if there are errors of severity E
or F, no object code is produced;
T : if there are errors of severity F,

no object code is produced.

-- Z: scheduling of instructions to reduce runtime:
omitted

.

no scheduling of instructions;
Z. - : the compiler does scheduling of

instructions.

.COMPILE—TIME DIAGNOSTICS.

Errors are detected in the following phases of the
compiler: lexical scan, syntactical scan, mode
equivalencing and mode checking.

The output of diagnostics is presented per phase,
ordered by line-number within that phase; it is
written behind the source listing.

There are three categories of severity for errors:

W : warning, object code is produced, if required
(see section 4.3, B-option);

E : error, object code is produced optionally (see
section 4.3, T-option);

F : fatal, no object code is produced.

Abortion of compilation can only be triggered in a
phase after the syntactical scan.

4.5.

OPERATION CHARACTERISTICS.

For a program consisting of ten lines of code, the
compiler needs 52K when no "long modes" are specified.

& 5. EXECUTION.

5.1. CONTROL CARD FOR EXECUTION.

The control card for execution (program control card)
has the following three options:

-- R: recovery from abnormal job termination (see
SCOPE Reference manual, RECOVR function):
omitted : recovery from abnormal conditions

specified by 77 (octal);
R : recovery from abnormal conditions
specified by 77 (octal);

R= DD recovery from abnormal conditions

specified by "DD" (octal);

-- M: specification of maximum field length:

omitted : maximum field length is 131071
(decimal) ;
M : maximum field length to be used is

the current field length;
maximum field length is "DDDDDD"
(octal).

M= DDDDDD

-=— I: specification of increment for memory request:
omitted : increment is 2000 (octal);
. _
I= DDDDDD

increment is 2000 (octal);
increment is "DDDDDD" (octal).

e

The ALGOL 68 system guarantees after each garbage collec-
tion a free space of the number of words specified by the
I-option. If necessary, memory requests are issued up to

the maximum, specified by the M-option.

OBJECT-TIME DIAGNOSTICS.

Upon detection of errors during program execution the

ALGOL 68 run-time system will perform the following

actions:

send an error message to the output file (see also
section 3.4, L-option), specifying the type of error,
erroneous data (if applicable), line number and
relevant identifier;

give on the output file a trace-back of all active
routines, optionally interspersed with a symbolic
dump of all identifiers, except labels, contained
in these routines;

terminate execution of the program.

following errors are diagnosed:

procedures called out of scope;

invalid arguments of standard functions;

core overflow;

time-out;

undefined situations as described in section 3.3.

@h

b.

HINTS FOR EFFICIENCY,

Use identity-declaration for a value, not having
a mode ROWS-0f-MODE, whenever that value is used

more than once.

Use contracted declarations to dec¢lare several
names having the same mode.
E.g. :

REAL x,VY:
rather than

REAL x, REAL y;
and

[1:5] INT x,y;

rather than

[1:5] INT x, [1:5] INT y;

Write the actual declarer in the declaration
rather than defining and using a mode indication.
E.g. :
[1:7] INT j1;
rather than
MODE A = [1:7] INT; A jl;.

In defining the fields of a structured value, do
begin with the fields having plain modes and place
the fields having modes REF-to-MODE at the end.

This will save some time during garbage collection.

Avoid accessing of identifiers defined in a routine,
that is not the current routine, because indirect
addressing is needed for such identifiers.

Use collateral elaboration.

In formula's, try to place function calls before
identifiers in order to avoid storing of intermediate
results.

Avoid rowing.

E.g. after [1:1] INT i; use
i [1] t= 7;

rather than

i = 7;.

Avoid slicing, if the resulting slice does not occupy
consecutive storage locations.
The "holes" are not recovered by the garbage collector

and assignation is faster for compact multiples.

Avoid staticizing the same format more than once.
Use the sequence

printf (format) ;

DO printf (data) OD;
rather than

DO printf ((format, data)) OD; .

7. RUNTIME ORGANIZATION.

7.1. STORAGE ALLOCATION.

The storage allocated to a value always consists of a
"static direct part"; depending on the mode of the value,
a "static indirect part" or a "dynamic part" may be a
constituent.

For a value having a mode PLAIN, PROCEDURE or UNITED
there is only a static direct part; for a value of the
mode REF-to-MODE, the reference is the static direct
part, and the value referred to is the static indirect
part.

For a value of the mode ROWS-of-MODE, the descriptor is
the static direct part, the elements constitute the
dynamic part.

For a value of the mode REF-to-ROWS-of-MODE, the refer-
ence is the static direct part, the descriptor is the
static indirect part and the elements constitute the
dynamic part.

In this implementation only the static direct part of
identifiers and intermediate results are allocated on
the stack.

The storage allocated to the static parts of all identi-
fiers in a range is the SID or static identifier stack
of that range and the storage used for the static parts
of intermediate results is the SWO or static working
stack of that range.

For each active range the stack contains a SID and a
SWO.

For each active routine the stack contains the return-
information, followed by the entries for the active

ranges.

7.2

The outer range of a routineihas a different type of
header word, called proéedure header; the SID of that
range represents the actual parameters of the routine.
The layout of the stack segment allocated for routine
elaboration is completely determined at compile-time;
all addressing in the stack is performed using fixed
offsets relative to the procedure-header of the rele-
vant routine-activation.

PARAMETER MECHANISM.

The call to a routine with parameters is carried out

in the following steps :

l'

elaborate the PLAIN to be called yielding a

procedure-word (see section 7.3., no. 5) ;

place the procedure-word on top of the stack;

place a zero on top of the stack;

elaborate the parameters and place these on top

of the stack; _b

call the runtime routine G;CALL with register X1

set to the address of the procedure-word in the

stack;

G;CALL sets the following registers :

Al : address of procedure-word;

B7 : stack pointer of calling procedure (i.e.
old Bl);

Bl : link-address field of procedure word (see 7.3.5)
B5 : address of the entry point of the routine

being called;
B6 : copy of Al, i.e. address of the procedure

word;
and transfers control to the routine.
Scope chécking is also performed in G;CALL;
the routine called, when compiled by ALGOL 68,
calls the runtime subroutine G;PROL with a
parameter word (called routine-info) in register
Al, X1. (for contents of routine-info, see section
7.3., no.9);
G;PROL replaces the procedure-word and the zero-word
in the stack with the return-information and proce-
dure header;
the routine-text is elaborated, where parameters are

accessed just as normal identifiers;

7.4

10.

11.

the value

follows :

a. if it

b. if it
X7;

c. 1if it
where

yielded by the routine is transmitted as

is a one word value: in register X6;

is a two word value: in register X6 and

is a multiple word value: on the stack,

the first word overwrites the return-

information (see section 7.3., no. 10);

using the
case c of

return-information (fetched earlier in
step 9), control is transferred to the -

calling routine;

the calling routine resets stack-pointer register

Bl to the

procedure header of the calling routine

by means of subtraction of a compiler determined

constant offset.

REPRESENTATION OF INTERNAL OBJECTS.

As may be seen in the sequel, the internal representa-
tion of objects is such, that values of mode REF-to—MODE
and ROW-of-MODE can be recognized and therefore no
templates are needed for garbage .collection.

1. ©Non-long PLAIN modes.

INT:

sign ones complement integral value

59 48 ‘ ‘ 0

The sign bits are equal to bit 47, the sign of the
integral value.

REAL:
s | exponent mantissa
59 48 0

This is the standard floating point representation,
where s is the sign of the mantissa (one bit), and the

exponent is biased by 2000 (octal) and inverted for a
negative mantissa.

CHAR:

char

59

12

Here char is the 12-bits character with the same
representation as the internal representation‘in
ILO used in the compiler (see table 1, column 3).

BOOL:

sign bits

59

When TRUE, sign bits consists of 60 one-bits.
When FALSE, sign bits consists of 60 zero-bits.

Long PLAIN modes.

Values having a mode PLAIN with size long occupy
two words in storage each of which has the format

of the corresponding "non-long" PLAIN mode.
Only REAL with size long is supported..

Structures.

Values of mode STRUCT (MODEl idenl,...,MODEn
are represented by the concatenation of the
representations of the fields idenl through
mode MODEl through MODEn.

idenn)
internal

idenn of

4, Unions.

Values of mode UNION(MODEl,MODE2,...,MODEn)
occupy the number of words required for the
longest object of the set of modes (MODE1l,
MODE2,...,MODEn), plus one word for the so called
union-word :

59 48 36 18 0

number of
0 size-1 0 '
actual value

representation of actual value

P
\> residue, filled with SKIPs <%

The first word in an internal representation of
a union is the union-word, where size is the

number of words occupied by this representation.

BITS:

0 48 BOOLs of one bit each

59 48

The BOOLs are numbered from left to right :
when TRUE : 1;
when FALSE : 0.

BYTES:

0 charl char?2 char3 char4

59 48 36 24 12

Here charl, char2, char3, and char4 are the
"significant" bits of values of the mode CHAR;
the characters are numbered from left to right.

5.

ROUTINES.

a. A value of the mode PROCEDURE not requiring

scope checking occupies one word in storage :

. entry addr.
0 link address| npar

of routine

59 54 36 18 0

This word is called procedure-word (or proc-word).

Depending on the type of routine represented, the
link address-field is :

Routine text : the link address is the stack-
pointer of the routine contain-
ing the range that is the scope
of this routine; it is also
called static link;

Label the link address is the stack-

pointer of the routine contain-
ing the label;

Other language
routine

the link address is the entry
address of the routine written
in the other language; the rou-
tine is indirectly called via
the interface routine.

npar is zero, except in the last case, where it
is the number of parameters.

b. Values of the mode PROCEDURE that require

scope checking are represented by the following

word:

4000 entry address

(octal) 0 of routine scope-word
>9 48 36 18 0

Scope-word is the address of a scope control
word on the heap, generated at range-entry
of the range having the scope of the routine

(see also 12, range-header).

6. References.

Values of the mode REF-to-MODE occupy one word in

storage :
4000 . address of
size-1 P 0)
(octal) object
59 48 36 18 0

Here, size is the number of words allocated to the
static indirect part, while :
p=1 : when the object contains references or
multiples, i.e. must be traced in garbage
collection;
7.10

p=0 : otherwise.
Multiples.

Values of the mode ROWS-of-MODE are represented by
a descriptor, consisting of a two-word header and
one two-word triple for each dimension, and by the
elements.

The header has the following layout :

59 48 36 24 18 0
3777 base
size-1 P dim fis
(octal) address
cdim span

The items size and p are the same as specified
under references, see 6. above. Further :

dim = the number of dimensions;
£ = 1 for a flexible multiple, and
= 0 for a fixed multiple;
s = reserved;
base address = the address of the first element
of the multiple;
cdim = a number 0 < cdim < dim, indicat-

ing the "compactness" of the multiple,

viz. one less than the number of
nested loops needed to access all
elements of the multiple.

The layout of a triple is as follows.
For a non-empty multiple :

lower bound

width

stride

59

24 0

and for an empty multiple :

lower bound

indef upper bound
59 48 0
width = upper bound - lower bound + 1;
stride = the distance in memory locations of
two elements, the subscripts of which
differ by one in the dimension selected;
indef = an indefinite exponent :

1777 (octal) for positive upper bound,
6000 (octal) for negative upper bound.

MODULE DESCRIPTOR.

Each relocatable module generated contains a
four-word area including data and'parameters
used mainly for object-time diagnostics.

The layout of this area is :

line table
name of program address
relative address of code start of
in the module module
0 address of

range table

0 E; SYMDP

59

18 0

The meaning of the various fields is :

- name of module :
a name consisting of seven Display Code
characters;

- line table address :
the line table serves to determine the line
number of the source text from a relative
address in the code;

- relative address of code in ,the program :
is used to convert an absolute address into
a relative address in the code;

- start of program :
physical start of module;

7.13

address of range table :

the range table is used for symbolic dump only.
It allows to determine the nesting of ranges
and the identifiers defined within these ranges.
This field is set to zero when the D-option
(see section 4.3) is not selected;

E;SYMDP :

is the address of the runtime routine for a
symbolic dump; this field is zero when the
D-option (see section 4.3) is not selected.
Thus, the symbolic-dump routine is not loaded
when no module in the load is compiled with
the D-option selected.

9. ROUTINE-INFO.
The routine-info (or procedure-info) is a
two-word entry associated with a routine text:
59 54 36 18 0
length of length of size of
result parameters stack~-segment
source line no.| . address of
index
of routine prog.-header

7.14

length of result

the length of the result;

length of = the length of the para-

parameters meters;

size of the = the maximum length of the

stack-segment SWO plus the SID;

source line no. = the line number in the source

of routine text where the routine is
defined;

‘)

index = the index in the range-table

for the range of the parameters

of the routine;

address of
program header

10. RETURN-INFORMATION.
This is a word in the stack used to return
from anroutine. The subroutine G;PROL stores
this word in the stack.
Jp 0 return allocated
address stack
59 54 48 30 18 0
The left half (30 bits) is the jump-instruction
generated in G;CALL by the hardware for the
return-jump instruction.
The allocated stack field is the maximum
allocated stack for its routine and all the
dynamically surrounding routines.
11. PROCEDURE-HEADER.
Each active routine has a procedure-header
generated in G;PROL :
address of
routine-info 0 static link
59 54 36 18 0

the address of the program header

The routine-info is used as parameter to a

runtime routine for exit from a routine yield-
ing a result having a size iong, It is also
used for trace back and symbolic dump.

The static link field is used to access identi-
fiers, operators and modes from surrounding
routines.

For routines with global scopé the static link
field is set to zero, because some register is
always pointing to the global stack-segment.

12. RANGE-HEADER.
For each active range being the scope of some
routine a one word entry is placed in the stack.
4000
0 scope-word
(octal)

59 48 18 0
The item scope-word is the address of a scope
control word on the heap.

For each range-entry a unique word is provided
in the format.
scope static

59 36 18 0

scope = the address of the range-header in
the stack;
static = the address of the procedure-header of

the routine containing the range.

8. INTERFACE WITH OTHER PROGRAMMING LANGUAGES.

Routines written in other languages may be called

from ALGOL 68 in either of the following ways :

1.

By defining an operator written in ICF (see
section 1) which calls the routine directly
(RJ-instruction) .

Parameters must be passed in the X-registers
and ICF-instructions to load them must be
explicitly stated in the operator definition.
This method is normally reasonable only when
the routine is written in COMPASS.

By defining an identifier or operator with an
xref-pragmat.

The routine is entered directly from G;CALL

(see section 7.2.) or via an interface-routine.

In the first case control is passed to the
entry-point by a JP-instruction. The parameters
can be found on the stack. For the contents of
registers, see section 7.2.6. no. 6.

If an interface-routine is used, both the entry-
point of the interface-routine and the entry-point
of the actual routine must be mentioned in the xref-
pragmat. The interface-routine can find the address
of the actual routine in‘Bl or in the procedure-word.
The number of parameters can also be found in the
procedure-word (see section 7.3. no.5.).

If the registers Bl, B2, B3, B4 are used by the
called routine, they must be saved either by the
actual routine or by the interface-routine.

In the runtime library one interface-routine is

provided for calling subroutines or functions

written in FORTRAN(FTN). This routine is called
A68FTN. It saves the B-régistérs. o

The correspondence between the AﬁGOL‘GB paramefers
and the FORTRAN parameters is : .

ALGOL 68 ' FORTRAN

REF INT ' INTEGER

REF REAL REAL

REF LONG REAL DOUBLE PRECISION

REF COMPLEX © COMPLEX

REF LONG COMPLEX ~ array with 2 elements
o ' DOUBLE PRECISION

REF CHAR, REF BITS, . INTEGER

REF BYTES SR

Other parameters are not.allode.‘ If the FORTRAN
routine is a FUNCTION, the result mode in ALGOL 68
and the function type in FORTRAN have the same
relation as the parameters, except for the REF.

It is obvious that LONG COMPLEX is not possible

as a result mode. B - -

If the FORTRAN routine is a SUBROUTINE, the ALGOL 68
result mode is VOID. P

A sample job is given in sectibp(Q;

9, SAMPLE JOBS,

LYkovad
LYHovYd
lvinoved
LyhSyud

AVWOYXa
Lanuydd
LYRoYY

lvrovad

1yWovyd
ivwovad
Lynwovdd
lrrhovyd
iywevaed
L¥nyvVEd

UVNOW

L= R e I T TN I T e R R I L e I B o T R e I N~

39vd

= NOILONNJ Nv¥LY¥04 =

L 3IN3N3TdWOD OML SLI8 2E€ 40 NOISYIANOD ¥04 d0Lvyid0

S NOILVIINGILINK d80123A

S Sy¥01dl¥3S30 40 S3ISSINAY

°62°62°01 9L/60/S1 9€29L 0°i°1 89V

Z °A°A ONV +INI¢ 01 (¢S1Ig+ NI} Sd38WNN

N SNOILld0 Q314103dS

*23S 19s°

SQ¥0om 8€20000

+ON3¢
+dINSe +8d+ 90¥d vide

$4dINSe +ddv NNI*NLIBIY J3UYX +dde

$¢TIWAYY (X +IWIHE $438¢) = INNYS +D0dd+
‘9 = a+ +0lyde

’ CediiSe +idv

0000000849 1=¢T~»

¥ox1 1Y
=00000008491=¢1/ aagvi
142 UV3H

3NIINT +dd+
= ¢821¢ +SLIIE ($UINT+) 440+
*+diNnSe +¥d¢

=00000008Y9 1= T1~« 8nsl
=00000008491=51/ S0xX
12 Qv3H

3NIIND +3dv
= +128% ¢INI+ (+SLIGEe) +dO+

$3dINSe +dde TNWIIA 438X +ide

= $eV3Ye() (8¢V +W3Ye(])) = o 3dO+
CIdINSe vide¢
9 . A¥Q T
0ddI3AS Ivdd
gees AYS
241/ AY¥S
1¢o Qv 3H

moxz~h43mwm.mx.mxznm
¢SSVAWOD NI N3LLIYM ¢12NC0Hd H3INNI =
= ge $TYIUY (WY I44VIYIL]) +dOs
+N1938+
S NOILIQQVY AY¥VYBIT 40 3TdWVX3 = 3d¥0LJ3A

ONILSIT 324N0S «

*uotjeTTdwoo S3eriadss pur UOTI3ITPpPpe AIieidqrl

dd °00£2S0 WO Q3¥iNO3Y

H19N3 WYN90¥d
*€E00
$2€00
‘1g00
$0€00
*6200
€g200
$L200
$9200
€5200
$%200
¢g200
¢2200
‘1200
£0200
$6100
$8100
$,.100
%9100
25100
‘%100
*c100
€2100
1100
‘0100
#6000
48000
4,000
“9000
$5000
$9000
°€000
$2000
‘1000

1T o1dwes

v SNOI1d0 Q314123dS
°J3S ste6° d) °00S2SQ WO Q3¥IN0O3Y

: SQHOM 8E92000 H19N31 Wvd9o0dd
0 ¢ *6100
1 +dINS *g100
1 tedc+ XQ33 +¥de (41100
2vl k4 5 $9100
2 1400+ [I)A2(I)> =z [I]S +0Q+ N +0i+ I +¥0J+ 45100
c £S ¢ IVIYHIN] 5100
2 $e1de °€100
ovl ¥ d0.is 42100
9 $CCINITHINOHEN $1100
9 4238V SHLON3T ¢ONIHOLVH LON SHOLI3A#¢INITHIN)) INI¥d +N3HLe %0100
ovi £ N =/ N +dle $6000
4 tA +8dNe = W *X +8dN¢ = N +INIs $8000
4 tE1 vivelg = A ST ¢Llvely = X ¢W3adel] 1000
4) 49000
I *¥dé INWIIA 430X +¥de $5000
1 $eIV3IPH[] (g4 vVIHHL)) = o +dOv *4000
1) $€000
0 €2000
0 S NOILVIIJWC) 3lv¥vd3ds 40 3TdHvX3 = $1000
1 39vd *EH°62°0T 9L/60/S1 9€29L 0°1°1 89V » ONILSIT 30HN0S «

¢

1

39vd

%5°62°01

9L/60/51

0lH+S°% NLJ

*NNYON3

*HSINIJ

(097 w) QQV

(MINCBIT) AYVYeIT
ON3

NiN13y 0x
S=NN4
3NNILNOD 61
deS=§
I/Xnd=4
0te2=I 01 0@ S
0°Tlex=s
X=4
(X)dX3 31ndW0l I
(X)NNJ NOLLONNI 1

l=lde wL/9L NNJ4 NOILONNI

C

d 'SNOI1dO Q313193dS
.oum:!m.—au.oocnmozooua_:cwm

SQ¥OM 8110190 H19N3T WvdO0¥d

0 « *2200

1 400+ ((INITM3NC ((IIVIDXI((IIVIONNSS(TIV))INIEd +O0+ ®1200

*10N3d { 2+¥3A0¢N +04+ 1 +804s %0200
i £ C(INIIMINS#(X) dX3 ¢ *6100

INIYLS £ #(XI)NN4 X - #)) INIYd 49100
1 $4Q0¢ 41100

2 ((5v128+ +NIge*Ne1)) JINIyd *9100

2 t1 821+ = N +SLI8e *5100

2 t(T=TEon24962¢140 5100

Y $1=¢2=¢0= ¢[EaaZ=1*(IEau2)=A M) = I +INI+ fc100

2 +00+ $2100

*10N33 { 0T 401+ © +¥04e ‘1100
i 1 (3708932 X2°02C¥2X2*98) 4ANIdd *0t100

1 $ ((INITMIN¢#INIWI VWO - T # *6000

ONI¥LS € #1NIN31dNOI=2 ¥3934NI #)) INI¥d $8000
_ 1 £ ((INITMINBr+VEINITMINS 280V NI THINCGaV e INT IHINS 280V 2 %1000

€ SINIIMIN*BINITMINC #82* INITMINC VO INTTMINC #V#)) NI Ud £9000

1 1 ((8¢V))Qv3y *5000

T £80V ¢ IVIYGINIT) 45000

1 £ (N)UV3Y $€000

i tN vINIe) $2000

0 11831 21000

1 39vd °12°0€°0T 9L/60/S1 9€29L 0°1°1 89V 2 ONILSIT 32HNOS «

O«
Te

O
O«

O«
O«

TTTUT R e euereeeneitine00000000000000000
0071000000000000000600000000000000000000000000000
0r¢000000000090000000000000000900000000000000000
1000C¢090C€0000099200000000000000000000000000000000
000000000000920000000000000000000000000000000000
orTrITITITII LI LI I LI I LI I eIttt
LS R RN R R R R R RS R AR R ARG A R R AR RN G RS RS R R R ARG A
1R SRR RS RS ERRE AS G G S A R RN A AR R N R A RS R AR RRRRRY
0000000000000000000000000000000TTTT FTLTITTLTILLL
rrrrrrrnrrnrrrnr oo nnerenrotrrr it

3V00000000000000° %~
3000000V000000000°1T

300006000G0000000° %
3U00000v00000000°5~

3000000000000000°1~
3v00000000000000°2~

1
O«

O»
Qe

O+
Qe

2-
{=
1=
1+
(X3
[/R3

ANINITEW0D-T

3000000000000008° 1~
3000000000000000°%«

3000000000000000°g-
3000000002000000° %~

3000000000000000°¢»
3000000000000000° 1~

Te
Te,

Qe
O+

O
Oe

C

398E98LYEBO0LIL6 v
3€€199E<ERZSEESE T
326E9TLTIT796L8L9°E-
369.81£469€55800°2+
301{50£686095068c° L+
31%06S%ue81ly2BIL 2
(X)dXx3

3000000000000000°1-
3000000000000008°1+

3000000000000003° =
3000000000000000°9s

3000000000000000°2+
3000000000000000°¢+

N'
{=-
{=
1+
O«
[\ R3

10000000

1+
0«
1o

({23
O
0

0+
O«
/X3

3820S1,.58268S2€EE°S
3€€2S21L8816LESE T
3TL0LS82499%648EL9°€E+
3960.58L15996L00°2«
320946680L%6686E°Le
3CEEIHTTO8TIBLBIL 2
(X)NNJ

ININITdWOI=-¢

3000000000000008° [~
3000000000000000° %=
3000000000000000° T+

3000000£0000000°9+
3000000000000000° 4=
3000000000000000° g+

3000000000000000°€~
3000000000000000°1»
3000000000000000°2«

O«
Qe
Qe
Qe
['X3
O+

18285880000 0000020080 0000 RRRR RN
00100000000000000000000002000000
0100000000000000002000000£000000
10000000000000000000000009000000 1+
000000000000000000000000050200400
1288800000000 0 000000000 RRARARAEN!
RS0 0RR0S A0SR0 4020200
oorrrrrIITIYLLITIYITTLRLLITTRLITITILILLL
400000000000000005900001
00000000000CC00000000000064000601

Ce
e
Te
(‘X3

O
0«
O«

Qe
0
[X3

5000000000000000°¢~
3000000004000000°2~
3000000099000000°t~
3000000099000000°¢€+
30000000¢0000000%2+
mooooooooooooooo._.

hconmah¢—~o
e
e

Oe
| £
2=
Q-
L99€BY 912~
8H9¢BY . 912~
d393INI
300000009¢000000%0+
ooV
3000000009000000°1-
300000000500000g° 1+
meoooooooooooooo’¢o
8aV
3000000009000000°s.
3000000090000000°9~-
woooocooooooocooaqo
8
3000000000000000%2~
woooooooeooo00000m1
300000004g000000% 1+
v

C

@2 480r 40 QN3 3%#n%0c0t
8000SS0 AY¥VWWNS 1SV 3INIS Tdnewyeocsaf

9L/60/51 31v@ °23S % 6°1IE - ddtvveoecol
Tt C T sséueptoceol

%935 ~Tdv % *SMM L1€°08 soSwendoceol
*33S 2€L°E oI%nvsoceol

*23S °rav ¢ *23S 219°9 dasyue0e 0l

0% 00 ¢ 1NdIN0 34 = SQUOM 84020000 dofvhtocool
Q35N SAONOJ3IS d2 96E£°0 -d01s9v9toccol
9€29L 0°1°% gov = 1531%19%0¢c°01

*091fuetoe ol

*30N0344»£20€%01

*33S TLS°T d2 *00%€S0 nd *uge0c*0l
S40H¥3 ON - 1S31- .¢n. oc*ol

(40123A/811=d) 89viet0c 0l
(000SS) 1dd%s1°0€°01
*0971¢NENLINSSI%0E 0T

(X) 48544028 T40€°0
(X)aNIn3gfztroceol
(X¢LNdNI) ¥uAdoIsZT1roc 0l
(1NdNI) udINstzrrocof
(AWWNQ= N 6171103%65%62%01

3INIL zo-<qunzoo SAN0D3S d2 L80° nom.om.oa
(0=¥)N1d%tcs®e2%0l

*30nU3a8¢€s*62°01

°03S SE6° d) °005250 WO tev*ezcol

SY0¥d3 ON = INKI3A- .m«.om.o.
(Zsv) 89y Tn®ezeol

*33S 195° g *00€£2S0 WD .~¢.o~.o~

Sy0¥¥3 ON - 40123A- $1vv62%01
(Z*N)89V*12%62%0%

(000ss) V14u%22%62%08

*3WI1 ATBW3SSY SON0DJ3S NdD 20£°Q gr2%2%01
°Q3SN WO 80009€ °3137dWOJ ATHWISSY $12%62%%
(1x3189V/81189V=54027) SSVAN0I#92%62%01
*NIxnJ07f92%62°0(

109 = °*ON 3734 dd*sz*w2*0l

gI1189vEs2ez ol

SI zuaamw.xw.oﬁ
*1=yWs89V0I=0l 481 189V HIVLIIVES2 82 0]

10§ = °*ON 37JAD Jdfsz®ezeol

goveszezol

SI Nid¥s2%82%01

° I=¥N*BIVAI=QI *89VeHIVLLY2G2%82%0T
*30na34%v2te2 0l
*006¢064001610¢ LNNOJIVF 4298201
*0%1400009nD*89VAdYLT*8201

00 20 ¢ INdNI 3713 - SQHOM 2ST10000 dISsT*82%0%
ao/ WOd3d NLB9IVAISLT°82%0(

L1°60 G°Y 90%/€°9°€ N3ILLId WNYLNIONINIY NO¥

€

L6ENT Lo Sv1°501 5902 8
622L 6°LC 912°92 1201 L
S%9€ 2 y¢ %15°9 60§ 9

€atl €°8¢ L29°l €S2 s

156 s*L€ L8E°C g2l Y
605 0°s€ Sgg*0 19 €
3ZIS YOVIS XYR®TIWD &3d IWIL INIL IWLOL® (W*E)NNVRYINOV W

°03S 008°T1 dd *000£S0 WD Q3HINO3IY

SQu0M 8919090 HL19N3 WVH904d
0 t *1200
i +Q0+ €0200
2 (h=2alN*C=3aM) 46100
2 £ ((3IV1S Q3LVI0TIW XVn 48100
v S (LE+1a6+MoST=TNa21S)/(14-21)2000000E¢TL=2L¢ *])) JLINI NI *L100
2 £X0070=:21 %9100
2 t (ISEINNVYRYINIY =21 *s100
2 £50070=: 11 *5100
2 +00+ €100
*1ON3Q 1 8 0L+ € +WOH3e 1 <804+ %2100
1 t($I0ZIXE ¢XCQ°UZSXESX2QE*AZ2XE*QZETX*0Z<S) JINIYd °1100
1 8 ((3NITIMIN *0100
€ $#3Z1S XOVLIS XVW®IIVO ¥3d IWIL®3IWIL IVIOL® (RCCINNVHYINIOVW #)) INIYd 6000
1 191=3TX *hy=iX ¢f INIv 2111l +Iv3ue *8000
i *vlde €1000
v (CT=N*W)NNVWYINOV* T=H)NNVHEINIV 3513+ €9000
Y (Lo T=W)NNVNYINIV +N3IHL+ 0=N +4173¢ *s000
*1ON3a € TeN ¢N3IHL¢ 0 = W vdI+ *%000
1 SYANIS (NS®W ¢INI+) = NNVWeIXOV +20dde *c000
1) $2000
0 S (N*EINNVRYIXOV S3LVINDTVIY = :NNYWYINIV *1000
1 3ovd *LI*8%° 1T 9L/eNn/ST 9C29L 1°1°1 89V & ONILSIT 32u4N0S o

*UOTIOUNF UUBWIADNOY :¢ ordues

C C | N &

*23S el d) 001250 WO 03¥IN03Y

SINIWNOYVY 40 8N ONOSM HLIM 33NQA0¥d OL I wae
NOILYNOISSV NI yOu¥3-3Q0NW LYY

Q34V1030 N338 L1ON SVH W 431411IN30I one
NOTLVNOISSVY NI d0Ody43-3QO0NW YY)

©39%NvY SIHL NI X 304 NOILVIVHVIOIQ 24ILTNNW ena
*39NVY SIKL NI X d04 NOILvaVEVII3Q 3TdILTNKW aao

Witclh Wi
NS

ONINJI3H)D 30OW 3IHL 9NI¥NG Q3403130 SHOBY3I
Y3GR3N IN3ITVAINO3 ATINO HLIM NOINN 3 o1 ace
ONION3TVALINO3 300W 3HL ONI¥NG 03103130 SHO¥H3

(3303438 Q31d3SNI +AldnW3e

3SNVID WVI¥3IS NI ¥OLV¥VA3S ONIMOTITI04 LINM ¥0 138V °NOILVYYIO30Q ON : S2 40343 XVINAS 3 01 eno
Q3RNSSY SI ALIY0IY¥d LS3HOIHW
ALIg0Ide LNOHLIIM ¥0LVY¥3dO J1AVAQ SV Q3ISN SI wdv 39 LYY
1 340438 C314¥3SNI ¢
YOLv¥vd3aS A" Q3IM0TN04 LON LINN & o% a0y83 XVINAS 3s #no
¢14¢ 380439 QILAIISNI +Q0+ wALdW3Ie
3SNV) IVIY3S NI yOLVYV.4IS ONIMOTTC4 LINN 30 38V *NOILVyVIIIU ON : &2 H0Yd3 XVINAS 3s one
¢ 3J¥0438 QILY3ISNI YY3ISNOJ: = :
NOILvav 1030 ALILN3AGL NI ONISSIW T08AAS SV=U314IIN3QI ¢ 0Ll 40483 XVINAS 422 *ne

ONIMI3IHD XVINAS 3HL ONIYNCG Q3103130 SyOYH3

34N101d MI 3Invyd INILSISNOONI 30833 LVWHO04 G

AINIRNOYY ON SVH ¥OLVIId3Y :¥08¥3 LVWHO4 Q

38N10Id NI 2WvH4 AINILSISNOONI 240833 LVWdOd «

Q3HSINI4 L1354 LON SIN3IINOD LAN8 ¢08WAS ONISUID LIN3¥uND 3HL ONIHOLVA ONNO4 TOHWAS +JI+
ONISSIW TOUAAS +I4dv

ONISSINW 0HWAS +Q0+

(X 4.4
.22 4
one
L2 2]
Sne
.2 2.}

Wwwwww
nunnes~~

NVIS vJdIX37 3HL 9NI¥NG 03103130 Sy0O¥Y3

0 (°1100
1 t(+8464V+) «NOINN® =4J¢ €0100
S SV WV $43Y4) $LONYLSY =vHEe *6000
i S (V ¢8+ +43¥+)$LINYLSY =V $30Q0NWV °8000
1 $(re[4SQL+QUE QZLS) JINT YD . €L000
1 tX vdv I €9000
1 $I4% 2T1ef=l 400+ W ¢0Llv W +804¢ ¢NIMl¥ =T +dle 5000
1 $+QI0A¢ (X ¢UINIV) = +dv +dO+ *4%000
1 $A=: $X*I¢l WINIw €£000
1 tASYLE = X +v3Hv °2000
1) 21000
39vd CHI*9E 1Tl 9L/60/81 9E29L 0°1°1 89V @ ONILSIT 324NOS «

*sx0xx® Y3 TM weaboad :¢ o1dwes

¢ ¢

)

10. TABLES

I —

)

(I

*uUOTO0O 3yl ST
*juaoaad 9yl ST

00 @poD Aetdsta ‘3es otydeab-y9 DAD UuI (33)
€9 opoD Aerdstqg ‘3°@s otrydeab-y9 OaAd ul (3)

Toquis auT3Inox
‘1oquis Taqel ‘ToquiAs o3 dn ‘Todquis uUOTOD (uoToo) : vE (33) €9
ToquAs sutu 3THIP - Toquiks oaaz 3ITHTP 6 -0 - 6€£-0€ 6 -0 Fv-€¢
Toquis Aq papTATP / Jz / .09
Toquis 3utod (potaad) gz : LS
Toquis snutuw - az - 9%
TOoquAs euUMIOD (eururoo) 4 oY4 ! 9¢
Toquis sntd | + a2 + 157
ToquAs STIDISE (*x93se)x \ 44 ¥ LY
Toquis pue 3FO9TIq ‘TOqWAS 3SOTD (6C (Zs
Toquis utbaq I9Taq ‘Toquis uado) 8¢) 18
ydA1b6 p1og (*x3sode) _ LT ¥ oL
Toquis puesaadue 3 9¢ v L9
Toquis 3jusoxad % %4 (3)
10quis I933°WIOF $ ve $ €9
Toquiks 3jusumod om3 9TX3sS £ €T = 09
Toquis @30nb (230mnb) ,, A4 # p9
Toquis peuow XTIVL 9TA3s i 12
Toquis adeds Juelq 0¢ Juelq QS
sanjeay Aerdstp TeoTydeabodi3 T10I13U0D AT1-00
orudeas | (TZE00 | opuaess | | opoo
apoo -0ad KAetdsta
us3T 89 TODTY woat 208
21T :
(xrosw) oo — ot | 'IoRoies PITIES

W\.mq,mma

€

10.%

C C C
‘ . Toquis xamod
9Uy3 03 ua3 sawrl ‘Toquwiks 8 I9339T U0 STA3S G9
Toquis p
193391 Suo 91&k3s - Toquis ® umuumﬁ 2uo aT&3s $9-19
| Toquis peuow ATIVL 9TA3S 09
Toquis peuow XTIVI oT&3s| (°Taspun) as < S9
Toquis peuow XTIVL 9TA3s |(° TJWNOITO) a5 = 9L
Toquis snqg 3oTiaq C as [z9
ToquiAs Jamod 9yl 03 uS3} SaUWT] /. oS M SL
ToquAs qns 39Taq] g5] 19
Toquis z 193397 - Toquis 3J 193397 zZ - 4 VG-L¥ 72 - d z€-90
Toquis zamod 9Yy3z 03 ua31 sawWTF ‘Toquis o I933197 c SP T S0
ToquAs p X93397 - TOoquAs e 193397 a-v Pr-1% a-v ¥0-10
Toquis 3e @ (137 > VL
Toquis peuow XTIVIL 9T4&3s b J€ 4 1L
Toquis uryl ao93eaab < q¢ < €L
TJoquAS S® PaBUTISOP ST ‘Toquis sTenba = as = ¥S
Toquis ueyl ssaT > o€ > L
ToquiAs uo ob| (°TooTwss) ! - daeg H LL
otydeab AHWMMMM% otydex Aamwwww
-IIDSY spoo -0ad Ke1dsta
wo3lT 89 TOOIV
. we3lT 219S

(II0SVY) ®pod - 01I

*Ieyd-£9 paepuels
SONOYM /¥ ° € AJODS

(penuT3uoD) T * T T 9 V¥ 1L

10.2

Toquis sawT3 68
Toquis 10 88
Toquis pue L8
Toquis BUTTT®D 98
Toquis IOOTJ G8
ToquAs umop ¥8
Toquis dn €8
TOquwAs wox3 SISFITP Z8
Toquis xamod oyl 03 ua3 SoUWTI 18
Toquis JFO 08
2anjea3 Aerdstp TeoTudeabodAl Tada L
Toquis opT1T3 ‘Toquis drys aL
Toquis peuow XTIVI 9T4L3s at
ToquiAs 3no JFJOoTaq ‘Toquwiks UT JoSTI]
‘Toquis asT® 3ISTaq ‘Toquis usayi FoTIq | oL A 99
Toquis peuow XTIVL 9T4&3s gL
Toquis
Z 193397 9uo 9T43s - Toquiks I 193397 Suo 9TLA3IS YL-99
otydeab AHWMMMM% otydeab Aamwwww
-IIDSY apoo -2ad KeTds1q
we3T 89 TOOIVY
— uwe3T 39S

(IID08¥Y) ®pod - 0TI

*Ieyo-£9 pIepuels
SONOY¥M /¥ € dEd0DS

(ponut3juod)

¢ ¢

T °dT1T49dVY L

e

10.3

*STOqWAS 89 TOOTY-UON (3)

. wolT mcﬁnuw Iay3o III-00T
Toquis peuow XTIVI 9TX3S Jdd-94
. T0qwAs z I93138T 9uUO

9T143s p1oq - Toquis e 193397 LU0 o1kas proq (3) Vd-14
- Toquis peuow XTIVL oTA3s | 03-2a
ToquAs z 383387 PTOG - TOoqUAS © X3339T PIOA. | - (3) ¥a-10
Toquis peuow XTIVL STA3s 00-vd
Toquis sutu 3THTP PTOq - Toquiks oisz 3ITHTP PO (3) 69-08
Toquis peuow XTTVL STA3s IV-26

Toquis 3j0u 16

Toquis 3seal 3e ST 06

Toquis 3sow 3B ST a8

ToquASs JUSUMIOD JFSTI] as

Toquis HHQ om,
Toquis sawtl T sntd g8
Toquis IaA0 8
gl IR e
‘9poo Aetdstq
wa3lT 89 TOOIVY
we3T wa3T 39S

(II0SV) ®poo - qu

*1eYo-£9 pIepuels
SONOJM /¥ "€ AJODS

(pSnuUT3UOD) T ° & T € ¥V &

10.4

A

ALGOL 68 multiple-position representation
ALGOL 68 single-position representation
ALGOL 68 system description

ASCII

Assembly-like listing
Assignation of multiple
Assignation to SKIP or NIL
Associate

A68FTN

B

Backspace

Balancing

Binary transput

Binary, relocatable
BITS

Bold DIGIT symbol

Bold letter ABC symbols
Bold letter symbol

Bold style i LETTER symbol
Bold symbols

Book

BOOL

Bound-checking

BYTES

C

Case-clause

CDC ALGOL 68 language

CDC preludes and postludes
CF

INDEX

3-2

2.2,

1.

Index

3.3
3.3
1.1
: 14
1.2
3.8
3.8
2.5
8.2

2.2
3.2
3.2
3.6
3.15
7.6
4.8
7.8

3.8
3.1
2.4
5, 6

.1

Chainbfile

Channels

CHAR

Character set

Code-generator 1
Code-generator 2

Coercion

Compilation

Compilation, control card for
Compilation, pragmats for input to
Compilation, pragmats for output from
Compile-time diagnostics
Compiler features

.Compiler structure
Conformity-clause

Control card for compilation
Control card for execution
Control card formats

Control card options
Control-card interpretation
Conversion key

Cradle

D

D-option

Declarations, transput
Dereferencing of NIL or SKIP
Descriptor

Deviations form RR

Deviations in hardware representation
Deviations in standard environment
Deviations, semantical

Deviations, syntactical

Diaénostic system

Diagnostics

Diagnostics, compile-time

Diagnostics, runtime

Index .2

3.15
3.13
7.6
3.3
1.5
1.5
1.4
4.1
4.6
4.1
4.5
4.10
1.1
1.3
3.8
4.6
5.1
4.6
4.1
1.3
2.5
1.3

7.14
2.5, 3.13
3.8

7.11

2.1

2.3

2.4

2.1

2.1

1.8

4.7, 8
4.10
5.2, 7.13

Display code

Dynamic part

E

Editor

EMPTY

End of source text
End-of-information (EOI)
End-of-record
End-of-section (EOS)
Environment enquiries, CDC
Environment enquiries, standard
Error trace back
Error-recovery

Errors, compile-time
Errors, runtime

Establish

Execution

Execution, control card for

External

E

Fatal

Field length, specification
File control card

File, sequential

File, word addressable
Files, intermediate
Flagged mode

Flexible multiple
Format pattern

Formats, staticizing of
FORTRAN (FTN)

G ;CALL
G ;PROL

3.14
S8 &

4 .10

5r 1l

3216

35

35

15807

3.3, 4, 6, 4.1,

o NN N
(5 NG SIS S) IR W =)

T35 155 Bl
734,715

Index.3

Garbage collection
General images
Generators, scope

Ghost element

H

H-pattern

Hardware configuration
Hardware representation

Hints for efficiency

I

I/0 routines

ICF

ICF instructions
ICF macros
Identification
TDE of a book
ILO-code

IL1

L2

IL.3

IL4

ILS

Incdef

Indefinite
Infinite

Inline operators
Inline pragmat
Inline subscription
Input
Instruction scheduling
INT

Interfacing with other programming languages

Interface~routine

Index.4

0
1:4°9
32

e w
(o F B [T 5 (NG ol SR \CRNS BTG) IR OB |) e T

1555,
T2

3.8
4.4
4.4
4.8
17%7
1%:5
7 w5

By Ol
4.2, 8.1

Intermediate files P38
Internal objects T&2

Internal representation of symbols 3.2

K
Kronos 2.1 15458

L

Language constructs
Lexical scan

LGO

Library addition

N
‘

Library addition mode 4.3
Library A68LIB
Library postlude
Library prelude 2.4;
Library, CDC standard-

Library, runtime 1.

W B

~
= e . . o . . . o
(37 G o o AR I U R U I o o IRV T 7 RERE o' oSl U1 TR 0 o]

Line

Line table

W

~
-
w

Listing, assembly-like

[
N

Listing, object-code 156" 40
Listing, source La2y by A2y 08
Lock 3.15
Logical end of book 205 3% 15
Logical file name _ Bl 5

Long plain 76

M

Manipulation of source program
Memory request, specification
Mode equivalencing

Mode independent parse’

Mode indications

H W = = oUW

Mode-table cleanup

W & O b d

Module descriptor ’ Tk

Index.5

Multiple, flexible
Multiples

N

Names, transient
Nesting of ranges
NIL, assignation

NIL, derefencing

0

Object code

Object-code listing
Object-time diagnostics
Open

Operating system interface
Operation characteristics
Operators

Operators, CDC

Operators, inline

Other string item

Output

15

Page end

Parameter mechanism
Parse, mode independent
Particular postlude
Particular prelude
Particular-program

Pass 1

Pass 2
Pass 3
Pass 4
Pass 5
Pass 6
Postlude
Postlude, CDC

Index.6

1.6,
5.2,

].ol,

Zhs

il

T 1l

2

1

7.14

372
3.

4

4.

8
8

+9

7

753
3515

1.8
4.11

Bt

6

B 12

4.
33

4
2

1::8

W H & U1 U1 b B W H & B & W U

Postlude, library 2.4
Postlude, loading 4.8
Postlude, particular 2.4
Postlude, standard 2.4
Pragmat PR eject PR 4.5
Pragmat PR fedx PR 4.1
Pragmat PR flagged PR 4.1
Pragmat PR list PR 4.5
Pragmat PR naming xdef PR 4.1
Pragmat PR nolist PR 4.5
Pragmat PR nostate PR 4.5
Pragmat PR prog PR 4.3
Pragmat PR state PR 4.5
Pragmat PR stop PR 4.1
Pragmat PR stropped PR 4.1
Pragmat, inline 4.4
Pragmat, xref 8.1
Pragmats 3.7
Pragmats for input to compilation 4.1
Pragmats for output from compilation 4.5
Prelude 1.1
Prelude, CDC 3.7, 4.3
Prelude, CDC standard 3.9, 10
Prelude, library 2.4
Prelude, loading 4.8
Prelude, particular . 2.4
Prelude, standard 1.7, 2.4
Proc-word ' 7.9
PROCEDURE 7.9, 10
Procedure-header 7.2, 15
Procedure-info 7.14
Procedure-word 7.9
Program control card 5.1
- Program, particualr 4.1
Programming, hints 6.1

-Index.7

R

Range

Range table

Range-header

REAL

Record manager

Record type RT

Recovery

References

Register assignment

Relocatable binary

Relocatable module

Representation of internal object
Representation of symbols, external
Representation of symbols, internal
Representation, hardware
Representations, ALGOL 68 multiple-position
Representations, ALGOL 68 single-position
Return-information

Revised Report '

RM .

Routine-info

Routines

Routines, CDC

RR

Runtime Diagnostics

Runtime errors

Runtime library

Runtime organization

S

Scheduling of instructions
Scope

Scope checking

Scope of generators

SCOPE 3.4

Scratch

Index.8

7.1, 16
7.14
7.16

7.5

0.1, 3.13
3.15

5.1

7.10

1.5

1.6, 4.7
7.13

7.5

3.3

3.2

3.2

3.3

3.3

7.1, 15
0.1

0.1, 1.8 3.15
7.14

7.9

3.12

0.1

5.2

1.2‘

1.7, 4.8
7.1

4.9

7.16
1.2, 2.2
2.2

1.8

3.15

)

Semantical deviations
Separate compilation
Sequential (SQ) file
Severity for errors
SID

SKIP, assignation
SKIP, derefencing
Slicing

Source input

Source listing

Source program, manipulation of

- Span
Stack, static identifier

Stack, static working

Standard environment enquiries

Standard postlude
Standard prelude

Static direct part
Static identifier stack
Static indirect part
Static link

Static working stack
Staticizing of formats
Storage allocation
Stride

Stropped mode
Structures

Style i LETTER symbol
Style TALLY monad symbol
Subscripting
Subscription, inline
SWO

Symbol-table
Symbol-table entries
Symbol, bold DIGIT
Symbol, bold LETTER
Symbol, bold style i LETTER

1.2,

3.3,

4,

2.1

4.1

3.15
4.10
7.1

3.8

3.8

3.8

4.6

4, 4.7, 8
3.7

7.11

7.1

7.1

3.9

2.4

1.7, 2.4
7.1

7.1

7.1

7.15

7.1

2.5

1.7, 7.1
7.12

6, 4.1, 6
7.6

3.2

3.2

3.8

4.8

7.1

1.3

1.4

3.2

3.2

3.2

Index.9

Symbol, style i LETTER

Symbol, style TALLY monad
Symbolic dump

Symbols, bold

Symbols, bold prgIiT

Symbols, bold letter ABC
Symbols, internal representation
Syntactical constructions
Syntactical deviations

System, ALGOL 68

T

Trace-back

Transient names

Transput concepts

Transput declarations
Transput, binary

Triple

Typographical display feature

U

Undefined

Undefined situations
Undefined transput situations
Union-word

Unions

\Y
Values
VOID in United modes

W
Warning

Word addressable(WA) file

X
XREF pragmat

Index.10

3.2

3.2

1.2, 4.9, 5.2, 7.14
2.2, 3.6

2.2

2.2

3.2

0.1

2.1

1.1

5.2

2.1

3.15

2.5, 3.13
3.18
7.11, 12
3.2

4.10
3.15

4.2, 8.1

COMMENT SHEET <E§:=§E>

CONTROL
DATA

J.C. van Markenlaan 5
P.O. Box 111

RIJSWIJK (Z.H.)

THE NETHERLANDS.

TITLE : ALGOL 68 version 1 Reference Manual

PRODUCT NO. : HOLHNL - 01 REVISION B

This form is not intended to be used as an order blank.
Control Data Services b.v. solicits your comments about
this manual with a view to improving its usefulness in

later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to

better serve your purpose?

Note specific errors discovered (please include page
number reference).

General comments :

FROM NAGME : ..ttt tieeetenensonnanonns position

COMPANY NAME I «oveeeesoesosososnnnceenncsennsens .

address : .c.cieen.. e et e e s s et eceeneeen .o

‘D

