60492600

(@ CONTROL DATA

" COMPASS VERSION 3
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 2
NOS/BE 1
SCOPE 2

REVISION RECORD

Revigion Description
A (11/01/75) Original Release.
B (03/05/76) Manual revised to reflect a new feature and to clarify existing material. The new

feature is: CPLl47, LDSET pseudo instruction. See list of effective Pages.

C (03/25/77) This reflects feature F7340, Model 176 support, feature CP154, Weak Externals, and
feature CPl16l, Fast Dynamic Loader, as well as miscellaneous technical corrections, at
PSR level 446,

D {03/31/78) This revision documents COMPASS Version 3.5. New features include the DEBUG preset
option and 8 lines/inch density on the load map.

g (10/31/78) This revisilon documents COMPASS Version 3,6, PSR level 4B5. HNew features include the PD
and P5 control statemeant parameters and common common decks.

F (06/29/79) This revislon reflects the introduction of SEGLOAD common blocks. An error list
parameter 1s added to the COMPASS cell. Numerous minor technical corrections are made to
section 12.

G (07/07/80) This revision documents support for CYBER 170 Models 720, 730, 740, 750, and 760, An
example program is included. Minor technical corrections are made throughout.

H (04/26/82) Revised at PSR level 552 to document support of the CYBER 170 models 825, 835, and B85S
Computer Systems, and to incorporate minor technical corrections. This ig a complete
reprint.

J (09/24/82) Revised at PSR level 577 to document support of the CYBER 170 models 865 and B75 Computer
Systems and to incorperate minor technical corrections.

K (10/21/83) Revised at PSR level 599 to document support of the CYBER 170 Model 845 Computer System,
support of PR, P5, and PW listing controls, and to incorporate minor technical
corrections.

L (05/25/84) Revised at PSR level 599 to document support of the CYBER 170 Model 815 and the CYBER 180

Computer Systems.

M (07/31/86) Revised at PSR level 650 to document support of the CYBER 180 Models 840, B50, 860, and
990, reflects the introduction of changes to character data generation in l6-bit PP
binaries, and incorporates minor technical and editorial changes.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

C)CDPYRIGHT CONTROL DATA CORPORATION P, 0. BOX 3492

1975, 1976, 1977, 1978, 1979, 1980, 1982, 1983, 1984, 1986 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

if 60492600 M

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page numher 1f the entire page is affectsd. A bar by the page number
indicates pagination rather than content has changed.

Page Revision . Page Revisian
Front Cover - 4=20 thru 4-22 M
Inside Front Caver M 4-22,1/4-22.2 M
Title Page - 4-23 thru 4-25 H
ii M 4=26 M
iii M 4-27 M
iv M 4=28 thru 4-39 H
v M 440 M
vi M 4~4]1 thru 4-47 H
viifvidil M 448 u
ix M 4=49 thru 4-53 H
b4 M 454 J
xi M 4-=55 thru 4-G0 H
xil M 4-H1 L
1=l thru 1-4 G 4-62 thru 4-80 H
2-1 0 5-1 A
2-2 A 5-2 M
2-3 A 5-2.1/5-2.2 M
2-4 D- 53 8
2-5 M 5-4 A
2-6 A 5=5 A
2-7 C 5-t- L
2-8 thru 2-10 H 57 1
z~-11 K 5-8 A
2-12 H 5-9 C
2-13 H 5-10 E
2-14 J 5-11)
2-15 thru 2~18 -4 5-12 A
2-19 K 5-13 A
220 L 5-14 E
2-21 thru 2-26 H 5-13 F
2-27 M 5-16 thru 5-25 A
3-i G 5-26 G
3-2 G 5-27 B
3-3 H 5-28 thru 5-35 A
3-4 M G~1 E
3-5 L 6—2 M
3-6 thru 3-15 G 6-3 A
4~=1 thru 4-3 M b4 L
4=4 G 6-5 A
4-5 A 6-6 A
4-6 M 6-7 B
47 L 6-8 A
4-8 M 6-4 L
4-9 A 6-10 A
4-10 thru 4~12 M 7=l A
4=F2.1/4=12.2 M 72 A
4=13 A 7-3 G
4=14 A =4 b
4-13 thru 4-17 M 7-5 E
4-18 A 7-0 F
4-19 A 7=7 A

60492600 M iii

iv

8-1

B-2

8-3

B-4

B-5

8-6

8-6.1

8-6,2

8-7 thru 8§-1i1

8-12

8-13

814

8—15

8-16 thru 8-22
8-23 thru 8-25
8-26 thru 8-31
8-32

8-33

B-34 thru 8-45
8-46

B-47 thru B-49
8-50

8-51

8-52 thru 8-54
8-35

9-1

9-2

9-12,1/9-12.2
9-13 thru 9-16
9-16.1
9-16.2

9-17

9-18

9-19

Revisinon

o= c e S Juc i<l < - S i Jic g - Fo B R AR RS-l E- - - . N

Page

9-20

9-20.1

§9--20.2

9-21 thru 9-25
10-1 thru 10-4
10-5

10-6

10~7 thru 10-11
11-1 thru l1-4
11-5

11-6

11-7 thru 11-10
11-11

11-12

11-13

11-14

12-1

12-2

12-3

124

12-5 thru 12-8
12-9 thru 12-18
12-19

12-20 thru 12-22
12-23 thru 12-25
12-26 thru 12-34
A-l thru A4

B-1

B=2

B-3

B4

B-5

c-1

b-1

D-2 thru D-8

E~1

E-2 thru E-§

F-1 thru F=3

F—4%

Index—~]1 thru =14

Comment Sheet/Mailer

Summary Card

Inside Back Cover

Back Cover

Revision

R R R R REENr G OO N P I Rl G RN E RO QAE AP OEQE R IZE R T

60492000 M

PREFACE

The CONTROL DATA® COMPASS Version 3.6 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor unit (CPU)or a
peripheral processor (PP or PPU). The assembler executes on the following ecomputer systems and
operating systems:

NOS 2 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

NOS/BE 1 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Com puter Systems

SCOPE 2 for the CDC CYBER 170 Computer System model 176, CYBER 70 Computer System model
768, and 7600 Computer Systems

The CYBER 170 Computer Systems include the following 800 Series models: 815, 825, 835, 845, 855, 8635,
and 875. The CYBER 180 Computer Systems include the following 800 Series models: 810, 830, 835, 840,
845, 850, 855, 860, and 990. The CYBER 170 models 835, 845, and 855 are the same machines as the
CYBER 180 models 835, 845, and 855. References in the text to 800 Series models usually do not
distinguish between CYBER 170 and CYBER 180,

The CDC CYBER 170 Computer System models 720 and 730 have unified processors and use the
instruections noted in this publication for computer models with a Compare/Move Unit (CMU) sueh as the
CYBER 170 Computer System model 172. Models 810, 825, 830, 835, 845, 850, 855, and 860 also support
the compare/move instruetions through simulation.

The CDC CYBER 170 Computer System models 740, 750, 760, 865, 873, and 990 have functional units and
use instruetions noted in this publication for computer models w1th funetional units such as the CYBER 170
Computer System model 175.

The reader is assumed to be familiar with a Control Data computer and operating system, and with
assemblers in general.

NOTE

Avold continued use of COMPASS in creating application programs when
possible. COMPASS and other machine-dependent languapges can comnplicate
migration to future hardware and software systems. Software mobility will be
restricted by continued use of COMPASS for stand-alone programs, COMP ASS
subroutines embedded in programs using higher-ievel languages, and COMPASS
owneode routines used with CDC standard produets.

In this manusl, the acronym ECS refers to all forms of extended memaory unless otherwise noted, except in
the context of a multimainframe environment or distributive data path (DDP) aeeess, in which case, models
1786, 810, B15, 825, 830, B35, 840, 845, 850, 855, 860, 865, 875, and 990 are excluded.

Extended memeory for the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600 is large central

memary (LCM) or large central memory extended (LCME), Extended memory for models 810, 815, 825,
830, 835, 840, 845, 850, 855, 860, 865, 875, and 990 is unified extended inemory (UEM). Extended memory

60492600 M v

for models 865 and 875 can also include extended core storage (ECS) or extended semiconductor memory
(ESM). Extended memary for all other CYBER 170, CYBER 70, and 6000 Series Computer Systems is
extended core storage (ECS) or extended semiconductor memory (ESM).

The CYBER 170 Model 176 supports direet LCM and LCME transfer instructions, as deseribed in chapter 8.
LCM and LCME transfers initiate an error exit, not a half exit, as noted in ECS/UEM Instructions,
chapter 8.

Hardware descriptions and further programming information for the various forms of extended memory can
be found in the appropriate hardware reference manuals,

In this manual, numbers occurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables. The examples assume that assembler numerie mode is decimal and that character mode is
display code unless otherwise noted. In examples, statements generated by the assembler as a result of a
eall or a substitution are shown in shaded print.

General explanations of COMPASS concepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this coneept, instruction indexes have been incliuded
inside the front and back covers.

Additional information essential to programming in the COMPASS environment ean be found in the
publieations listed in this preface. The publieations are listed alphabetically within groupings that indicate
their approximate importance to readers of this manual. Applicable operating systems are also indicated.

The applications programmer will need the CYBER Record Manager Basic Aecess Methods and Advanced
Aceess Methods menuals for information about the maeros needed to define, aceess, and manipulate files.
Information necessary to create and manipulate program structures can be found in the appropriate Loader
reference manual (CYBER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loader for
the SCOPE 2 operating system).

In eddition to the above, the systems programmer will need the appropriate operating system manual,
either the NOS 1 Reference Manual or the NOS 2 Reference Set, Volume 4, Program Interface, to obtain
information about system macros.

The Software Publications Release History serves as a guide to the revision level of software
documentation which corresponds to the Programming System Report (PSR} level of installed site software.

The following manuels are of primary interest:

Publication
Publieation. Number NOS 2 NOS/BE 1 SCOPE 2
COMPASS Version 3 Instant 60492800 X X X
CYBER Leader Version 1
Reference Manual 60429800 X
CYBER Record Manager
Advanced Access Methods
Version 2 Reference Manual 50499300 X X
CYBER Record Manager
Basie Aceess Methods
Version 1.5 Reference Manual 60495700 X X

vi 60492600 M

Publieation

Publieation Number NOS2 NOS/BE1 SCOPE 2
NOS Version 2 Reference Set,
Volume 4 Program Interface 60459690 X
NOS/BE 1 Reference Manual 60493800 X
SCOPE 2 Loader Version 2
Reference Manual 60454780
SCOPE 2 Reference Manual 60342600 X
The following manuals are of secondary interest:
Publieation
Publication Number NOS 2 NOS/BE 1 SCOPE 2
CYBER Interaetive Debug Version 1
Reference Manual 60481400 X
-~ Modify Version 1 Reference Manual 60450100
NOS Version 2 Disgnostic Index 60459390 X
NOS/BE Version 1 Diagnostie Index 60456490 X
NOS Version 2 Manual Abstracts 60485500 X
NOS/BE Version i Manual Abstracts 84000470
Software Publications Release History 60481000 X
Update Version 1 Reference Manual 60449900
CDC manuals ean be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Date Street, 5t. Paul, Minnesota 55103,

This produet is intended for use only as described in this

document. Control Data cannot be responsible for the proper

functioning of undescribed features or parameters,

60492600 M vii/viii @

—

CONTENTS

1 INTROBUCT ION 1-1 3.2.1 Origin Counter 3-3
3.2,2 Location Counter 3-4
3.2.3 Poeition Counter 3-4
1.1 Configuration 1-3 3,2,4 Forcing Upper 3-4
1.2 Assembler Execution 1-3 3,3 Relocatable Program Structure 3-5
1.3 Relocatable Object Program Execution 1-4 A4 Absolute Program Structure 3-6
1. 4 Interactive Program Debugging 1-4 3.4.1 Absolute Overlays 3-d
3. 4.2 Multiple Entry Polnt Overlays 3-12
3. 4.3 Partial Binary 3-12
LANGUAGE STRUCTURE 2-1 .
2.1 Statement Format 2-1 4 PSEUDC INSTRUCTIONS 41
2. 1.1 First Column 2-1
2.1, 2 Locatinn Field 2~1 4.1 Introduction to Pseudo Instructions 4-1
2,1.3 Operation Field 2-1 4,1.1 Types of Pseudo Instructions 4-1
2.1.4 Variable Field 2-2 4.1.2 Required Pseudo Instructions b2
2, L5 Comments Field 2-2 4.1.3 First Statement Group 4-2
2,1.6 Comments Statement 2-2 4.1.4 Permissible Anywhere Instructicns 4=2
2, 1.7 Statement Continuation 2-2
2.1.8 Coding Conventions -3 4,2 Subprogram Identlification 4=
4.2.1 IDENT — Subprogram Identification 4-2
2,2 Statement Editing 2=4 4.2.2 END - End of Subprogram b4
2.2.1 Concatenation 2-4
2,22 Micro Substitution 2=4 4,3 Binary Contrel 4=0
4.3.1 ABS - Absolute CPU Program 4G
2.3 Names 2-4 4.3.2 MACHINE — Declare Object Processor
Type 4-7
2.4 Symbols 2-5 4.3.3 PPU - CYBER 70 Model 76 or 7600
24,1 Linkage Symbols 2~6 PPU Program 4-8
2.4,2 Default Symbols 2-7 4.3. 4 PERIPH - CYBER 180 Series; CYBER 170
2,4,3 Previously Defined Symbols 2-7 Series; CYBER 70 Models 72, 73, 74;
2.4, 4 Upde fined Symbols 2-8 or 6000 Series PPU 12-bit Program 4-10
2.4.5 Qualified Symbols 2-8 4.3.5 CIPPU — Seglect CYBER 1BU Series
PPU 16-bit Program 4=11
2.5 CPF Registers 2-8 4.3.6 IDENT - Identify and Generate Overlay 4-12
4.3.7 SEGMENT -~ Generate Binary Segment 4=13
2.6 Special Elements 2-10 4.3.8 SEG — Write Partial Binary -] b
4.3.9 STEXT - Generate System Text Record 4-17
2,7 Data Notation 2-11 4.3.10 COMENT — Prefix Table Comment 4-20
2.7.1 Pata Items 2-11 4.3.11 NOLABEL - Delete Hgader Tahle 4-20
2.7.2 Constants 2-11 4.3.12 LCC - Loader Directive 4=21
2.7.3 Literals 2-12 4,3.13 MEMSEL - CYBER 180 Series Select
2.7.4 Character Data Notation 2-13 PPU l6-bit Memory Size 4=21
2.7.5 Numeric Data Notatilon 2-17 4.3, 14 LDSET - Generate LDSET Object
2.7.6 Hexadecimal Data Notatilon 2~-22 Directives 4=322
2.8 Expressions 2-23 4,4 Mode Conmtrol 4=14
2,8.1 Types of Expressions 2-24 4o, 1 BASE - Declare Numeric Data Moda 44
2,8.2 Gvaluation of Expressions 2-27 4,4,2 CHAR - Define Other Charascter Data
Code 4=26
4.4.3 CODE - Declare Character Data Code 4=26
3 PROGRAM STRUCTURE el L QUAL — Qualify Symbols 4—28
4.445 Bl=1 and B7=1 - Declare that
3.1 Subprogram Blocks 3-1 8 Register CUontains One 4-130
3. 1.1 Absolute Block 3-2 4.4,6 COL ~ Set Comments Column 4-31
3. 1.2 Zero Block 3-2
3.1,3 Literals Bleck 32 4a 5 Blocl Counter Control 4-32
3. 1.4 User—-Established Local Blocls 3-2 4.5.1 USE - Establish and Use Block 4-32
3.1.5 Labeled Common Blocks 3-2 4,5,2 USELCM - Establish and Use ECS/LCM
3.1.6 Blank Common Blacks 3-3 Block 4=34
3.1.7 Redundant Block HNames 3-3 4.5.3 ORG and ORGC - Set Origin Counter 4-35
) 4.5.4 BSS - Block Storage Reservation 4-37
3.2 Block Control Counters 3-3 4,5,3 LOC - Set Location Counter 4-38

60492600 M ix

PO5 -~ Set ¥Position Counter

Symbol Definition

EQU or = — Equate Symbol Value
SET — Set or Reset Symbol Value
MAX — Set Symbol to Maximum Value
MIN — Set Symbol to Minimum Value
MICCNT - Set Symbel to Micro Size
58T - System Symbol Table

Subprogram Linkage

ENTRY and ENTRYC - Declare Entry
Symbals

EXT - Declare External Symbols

Data Generation

BS5Z and Blank Operatiom Field —
Reserve Zeroed Storage

DATA - Generate Data Words

DIS - Generate Words of Character
Data

LIT — Declare Literal Values

VFD - Variable TField Definition

CON — Generate Constants

R= = Conditional TIncrement
Instruction

REP, REPC, and REPI — Generate Loader
Replication Table

Conditional Assembly

ENDIF - End of IF Range

ELSE - Reverse Effects of IF

IFTYPE -~ Test Dbject Processnr Type

IFOP — Compare Expression Values

IFPL and IFME -~ Test Sign of
Expression

I¥ — Test Symbol or Expression
Abtribute

IFC - Compare Character Strings

SKTIP - Unconditionally Skip Code

Error Control
ERR — Unconditionally Set Error Flag
ERRxx — Conditionally Set Error Flag

Listing Control

LIST -~ Select List Options

EJECT — Eject Page and Begin New
Sub=Subtitle

SPACE — Skip Lines and Begin New
Sub-Bubtitle

TITLE = Assembly Listing Title

TTL - New Assembly Listing Title

NOREF - Omit Symbol References

CTEXT and ENDX — Digable/Enable
Listing of Common Deck Text

XREF - Reference Symbolic Address

DEFINITION OPERATIONS
External Text (XTEXT)

Remote Assembly
FMT - Save Remote Code
HERE - Assemble Remote Code

Code Duplication
DUP -~ Simple Duplication
ECHO — Echoed Duplicatinn

440

4=40
b=t
4=41
=42
5=43
4=b
bt 5

445

4-43
4=47

447

4-48
4-48

449
4-51
4-53
4-54

4-35
4=57

4-59
4~59
4-60
4-60
4-62

4-65
4-68
470

4-71
4-71
4-72

473
4=73

4-76

4-76
477
4-78
4-78

4-79
4-80

5-3
3-3
5-4

5-6
5-6
5-7

P L i R e
-
(V=R w2 R N - B W I O PL R X

(]
.
(¥:]

[=2]

== A N = =

. .

e
-

.
Eo i

o Oy O
h

B b2 R

(L

= ~l
.]
—

. B Bt B
«
MNPN

-
H
W RS

. %
- » .
OO =0 L B S

'--.I‘-J‘--l'--l:--l'--l'--l'--l‘--l'-.-l
WL L L s s WL L
”

8.2.3

mmgnmm
U VT L
-

-
(XL

STOPDUP ~ Stop Muplication
ENDD — End Duplication Sequence

Macros and Opdefs

ENDM - End Macro Definicion

MACRO — Macro Heading

Macro Calls

MACROE — Equivalenced Macro Header
Equivalenced Macro Call

OPDEF - Dafine CPU Operation

Opdef Call

LOCAL - Local Symbols

IRP - Indefinitely Repeated Parameter

System Macro and Opdef Definitlons

OPERATION CODE TABLE MANAGEMENT

Mnemonically Identified Instructions
PPUOF - PPU Operation Code

OPSYN - Synonymous Mnemonic Operation
NIL - Do Nothing Pseudo Instruction
PURGMAC — Purge Macros

Syntactically Identifled Instructions
CPOP - CPU Operation Code

CPSYN - Synonymous CPU Instruction
PURGDEF — Purge CPU GUperation Cede

MICROS
Micro Substitution

Micro Befinition
MICRO =~ Deflne Micro
DECMIC - Decimal Micro
OCTMIC - Octal Micro

Predefined Micro Names
DATE

JDATE

TIME

BASE

CODE

GQUAL

SEQUENCE

MOBLEVEL

PCOMMENT

CPU SYMBOLIC MACHINE INSTRUCTIONS
Machine Instruction Formats

Instruction Execukion

6600/6700 and CYBER 70 Model 74
Execution

CYBER 180 Computer Systems; CYBER 170
Models 171, 172, 173, 174, 720,
730, B15, 825, 835, B45, and 855;
CYBER 70 Models 71, 72, and 73; and
6200, 6400, 6500 Execution

CYBER 170 Models 173, 176, 740,
750, 760, 863, and 875; CYBER 74
Model 76; and 7600 Execution

CYBER 180 Model 990 Execution

Qperating Registers

X Registers

A Registers

B Ragisters

5-13
5=l 4
5-15
5-18
524
5-25
5-27
3-19
5-31
5=33

5-35

B=5
g-0.1

B8-7
8§-7
4-7
8-7

60492600 M

Aﬁgj

»
—

o &R
.
o~

.
-

mmom B moo e
.

P o R S i O
-

g =R BN - IS R U X}

B.4.16

8. 4417
8.4.18
8.4.19
B.4.20
8.4.121
8. 4,22

B.4.23
8.4.24
8.4.25
B.4.26
8.4.27
B.4.28
8.4.29
B. 4. 30
8.4.31

B. 4,32
B.4.33

Symbolic Notation

Program Stop or Exchange Jump
Instruction

Error Exit Instruction

Return Jump Instruction

ECS/UEM Instructions

L Block Copy Instructions

Exchange Jump Instruction

Exchange Exit Instruction

Direct LCM Transfer Instructions

Direct UEM Transfer Instructions

Resat Input Channel Buffer
Instruction

Set Real-Time Clock Instruction

Reset Output Channel Buffer
Instruction

Read Channel Status Instructions

Unconditional Jump Instruction

X-Register Conditional Branch
Instructions

B-Register Conditional Branch
Instructions

Transmit Instruction

Loglcal Product Instruction

Logical Sum Instruction

Logical Difference Instruction

Complement Tnstruction

Logical Product and Complement
Instruction

Complement and Logical Sum
Instruction

Complement and Logilcal Difference
Instruction

Logical Left Shift jk Places
Instruction

Aritlmetic Right Shift jk Places
Instruction

Logical Laft Shift (Bj) Places
Instruction

Arithmetic Right Shift {Bj) Places
Instruction

Normalize Instruction

Round and Wormalize Instrugtion

Unpack Tustruction

Pack Tastruction

Unrounded SP Floating Point Add
Instructions

DP Floating Point Add Instructions

Rounded SP Floating Point Add
Instructions

Long Add (Fixed Point) Instructions

Unrounded SP Floating Point Multiply

Instruction

Rounded SP Floating Point Multiply
Instructien

DP Floating Point Multiply
Instruction

Integer Multiply Instruction

Mask Instruction

Unrounded SP Floating Point Ddvide
Instruction

Rounded 5P Floating Point Divide
Instruction

Pass Instruction

Population Count Instruction

Set A Register Instructions

Direct Read/Write Central Memory

Set B Register Instructions

Set X Register Instructions

CMU Symbolic Machine Instructions
M - Indirect Move
MD — Indirect Move Descriptor Word

60492600 M

8-13
B-14
8-14
B-15
B-16
84-17
B-18
8-19
8-20

8-21
§-21

822
8-22
B~23

8-24
8§-26
§=-27
8-28
8-28
8-29
8-29
B-30
8-30

8-31

9.2.13
9.2.14

9,2.15
9.2.16

9.2.17
9.2,18

9.2.19
9.2.20
9.2.21
9.2.22

10

1.1

10.1.1
1t 1.2
10.1.3
10.51.4
10. 1.5
10. 1.6
10.1.7

10.2

DM — Direct Move
CC - Compare Collated
CU -~ Compare Uncollated

PP S5YMBOLIC MACHINE INSTRUCTIONS

Machine Instruction Formats
(l2-bit Mode)

Machine Instruction Formats
(16-bit Mode)

Symbolic Notation

Branch Instructions

Shift Instruction

No Address Mode Instructions

Constant Mode Instructions

No Operation Instruction

Load and Store R Register
Lostructions

Exchange Jump Instructions

Interrupt Processor

Read Program Address Instruction

6416 PP Instructions

Direct Address Mode Instructions

Indirect Address Mode Instructions

Indexed Direct Address Mode
Instructions

Central Read/Write Instructions
(12-bit Mode)

Central Read/Write Instructions
(16~bit Hode)

L/0 Branch Instructions

1/0 Test and Sat Channel Flag
Instructions

1/0 Branch Instructions

A Register Input/Output
Instructions

Block Input/Output Instructions

Set Output Record Flag Instruction

Channel Function Instructioas

Error Stop Instruction

PROGRAM EXECUT ION

Control Statements

Job Statement

COMPASS Control Statement

LGD Control Statement

Program Call Statement

7/8/9 Card

6/7/8/9 Card

USER Control Statement (NOS L Only)

Sample Decks

LISTING FORMAT

Page Heading

Header Information

Binary Control Card Summary

Block Usage Summary

Entry Point List

External Symbol List

Octal and Source Statement Listing
Literals

Default Symbols

g-52
8-53
B-54

9-1

10-1

10~1
10~1
10-2
0=t
L0-6
10~7
10-7
10-7

10-8

11-1
11-1
11-1
11-1
11-3
11-4
1t=4
11-5
Li~7

11-4

xi

11.6
11.7

11.8

12

12.1

12.2.3

12,2.4
12,2,5

12,2,6
12.2.7
12,2.8
12,2.9

12.2,10
12.2.11
12.2.12
12.2.13
12.2.14
12.2.15
12.2.16

12,2.17

12,2.18
12.2,19
12.2.20
12.2.21

12,2,22
12.2,23
12, 2.24
12, 2,25
12, 2,26

12.2,27
12.2,28
12.2.29
12.2.30

12.2.31
12.2.32
12.2,33
12,3
12.3.1
12, 3.2
12.3.3
12.3.4
12, 3.5

12.3.6
12.3.7

xidl

Assembler Statistics
Error Directory

Symbolic Reference Table

COMMON COMMON DECKS
Access to the Common Common Decks

Description of the Common Common
Decks

COMCARG — Process Arguments

COMCCDD - Convert Integer Constant
to Decimal Display Code

COMCCFD - Convert Constant to
F10.3 Format

COMLCCIO - Process I/0 Operation

COMCCOD — Comvert Constant to Octal
Display Cede

COMCCPT - Extract Comments Field
from PREFLX Table

COMCDXB — Convert Display Code to
Binary

COMCMNS - Move Non-Overlapping
Bit String

COMQMIOS - Move Overlapping Bit
String

COMCMIM - Managed Table Macros

COMMMTP - Managed Table Processots

COMMVE - Move Block of Data

COMCRDC - Read Coded Line, C Tormat

COMCRDH — Read Coded Line, R Format

COMCRDO — Read One Word

COMCRDS — Read Coded Line to String
Buffer

COMCRDW — Read Words to Working
Buffer

COMCRSR - Restore All Reglsters

COMCSFN - Space Fill Name

COMCSRT — Set Record Type

COMCSS8T - Sort Table Using Shell
Sort

COMCSTIT -~ Set Terminal File

COMCSVR - 8ave All Registers

COMCSYS — Process System Request

COMCUPC = Unpack Control Card

COMCWOD ~ Convert Word to Ogtal
Display Code

COMCWIC -~ Write Coded Line, C Format

COMCWTH -~ Write Coded Line, H Format

COMCWTO — Write One Word

COMOWTS — Write Coded Line from
String Buffer

COMCWTIW - Wrlte Words from Working
Buffer

COMCXJR — Restore All Reglsters with
a System XJR Call

COMCZTB - Convert All 00 Characters
to Blanks

Macros That Call the Common Common
Decks

MESBAGE

MOVE

REATIC

REATH

READO

READS

REATHW

12-1

12-3
12-3

12-4

12-4
12-5

12-5

12-6

12-6

127

12-7
12-8
12-9
12~13
12-13
12-14
12-15

12-16

12-16
12-17
12-18
12-18

12-18
12-20
12-20
12-21
12-22

12-23
12-23
12-23
12-24

12-25

12-25

12-26

12-26

12-27
12-28
12-29
12-29
12-30
12-30
12-30
12-31

12,3.8 RECALL 12-31
12.3.% SYSTEM 12-32
12.3.10 WRITEC 12-32
12.3.11 WRITEH 12-33
12.3.12 WRITEQ 12-33
12.3.13 WRITES 12-33
12.3.14 WRITEW 12-34
APPENDIXES
A Character Sets A=l
B Assembly-Time 1/0 B—1
C Binary Card Formats [
D Hints on Using COMPASS D-1
E Dayfile Yessages i—]
¥ Glossary 1
INDEX
FIGURES
2-1 COMPASS Coding Form 2-3
3-1 Relocatable Program Structure 3-0
3-2 Absolute Program Structure 3-7
3-3 Overlay Hierarchy 3-Y
3~4 IDENT-Type Overlay Structure i-11
3-5 SE®IENT-Type Overlay Structure 3-13
36 S5EG Partial Binary I=14
3-7 IDENT Partial Binary Hecords 3-15
-1 CPU 15-bit Instruction Format g=1
B-Z CPU 30-bit Instruction Format g-1
-3 Arrangements of Instructlons in a bO-bit

CPU Word H-2
9-1 PP 12-bit Instruction Format y-1
9-4 PP 24-bhit Instruetion Format g2
9-3 Central Msmory Access Instruction

Address Relocation (Models 810, 815,

825, B30, 835, 840, 845, B850, 855,

860, B&5, 873 and Y90) Y2
9-4 PP 16-bit Instruction Format y=-2.1
9-3 PP 32-bit Instruction Format y-2.2
Il=1 Format of Octal and Scurce Statement

Listing 11-5
11-2 Format of Symbolic Reference Table 11-13
TABLES
8-1 CYBER 70 Model 74 and 6000/7600

Functional Units B3
B8-2 CYBER 170 Model 175, 176, 740, 750, 760,

H65, and 875; CYBER 70 Model 76; and

] 7600 Functional Units 8-p

8-3 CYBER 180 Model 990 Fumctional Units B-6.1
B8-4 CPU Instruction/Machine Model

Correspondence 8-
8-5 CPU Instruction/Tunctional Unit

Correspondence 8-10
9-1 Peripheral Processor Instruction

Deglgnators Y-3
9-2 PP Imstruction/Machine Model

Correspondence Y-y
I1-1 Tatal Errors 11-9
t1-2 TInformative Messages 11-12
12~] Summary of Common Common Dechks 12-2
12-2 Type Codes Returned by COMCSRT 12-19
12-3 Macros That Call Common Common Decks 1227

60492600 M

INTRODUCTION 1

This manual deseribes the features of the COMPASS Version 3 assembly language processor and the
principles, methods, rules, and teehniques of coding a COMPASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed to
be familiar with assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their initial
attention to the following sections of the manual:

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3

Chapter 4 Pseudo Instruetions, seetions 4,1 and 4.2

Chapter 8 or 9 CPU or PP Symboliec Machine Instructions, the ehapter depending upon the
machine language the user requires

Chapter 10 Program Execution

Appendix D Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine- and operating system-dependent. The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifically, the user
should note:

Differences between CPU and PP program environments

Features of COMPASS not supported by a particular operating system
Machine and operating system limitations are outlined in the preface of this manusl. The applicability of
instruction sets is shown in the instruetion indexes (inside front and back eovers), and is addressed as
necessary throughout the manual.
A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output acceptable for loading and execution. The programmer can divide a
- subprogram, whether it is assembled as absolute or reloeatable, into areas called bloeks. Blocks are
assembled independently. Thus, they ean be loaded and executed independently or linked by the system
leader preparatory to exeeution of the program. This capability provides much flexibility in eombining,
segmenting, overlaying, and ordering blocks for execution.
Subprogram blocks consist of two types of source statements:

Symbolic machine instruetions

Pseudo instructions

Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a
means of expressing symbolieally the data manipulation functions of the machine. Each symbolic
instruetion typically generates one machine instruetion.

60492600 G : 1-1

Pseudo instructions do not have a cne-to-one relationship with binary machine instruetions. They are used,
instead, to control aspects of the assembly process, such as:

Storage allocation
Symbol definition
Subprogram linkage

Listing options

Automatie generation of predefined code sequeneces (maeros)

From CPU source langusge subprograms, COMPASS generates absolute or relocatable binary output
sceeptabie for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and exeeuted on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor unit.

Features inherent to COMPASS include:

Free-field source
statement format

Control of local
and commen blocks

Preloaded data

Data notation

Address srithmetic

Symbol equation and
redefinition

Symbol qualification

Binary eontrol

Selective assembly of
code sequences

Mode control

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to faecilitate
interprogram communieation. In CPU programs, commen areas can be
defined in small core memory {CM or SCM) or extended or large core
memory (ECS or LCM).

Data areas may be speecified and loaded in core memory with the source
progrartm.

Data can be designated in integer, floating-point, and charaeter string
notation. It can be introduced into the program as a data item, a constant, or
a literal.

Addresses ean be speeified making extensive use of constants, symbolie
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is globel and can be referred to from within any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
reloecatable. Absolute code can be generated for any PPU or CPU.
Reloecatable code can be generated for any CPU. Binary can be written as
overlays or as partia} records.

Assembly-time tests allow the user to select or alter code sequences.
Ability to specify the base to be used for numeric notation not explieitly
defined as octal or decimal, and to specify the eode conversion to be applied

to character data as either display code, ASCII, internal BCD, or
external BCD. . : '

60492600 G

Listing control Assembly-time control of list econtent.

Micro coding Substitution of sequences of characters defined in the program wnenever the
miero name is referenced. Several mieros are predefinead by the system for
user convenience.

Maecro coding Assembly of sequences of instruetions defined in the program or on the
system library whenever the maero name is referenced. Macro definitions
can be redefined or purged from the operation code table.

Operation code table The programmer can specify or respecify the syntax of a CPU or PPU
instruection. The mssembler generates an entry in the operation code table for
the instruction. Mo macro or opdef definition is associated with the entry.

Cperation code Assembly of sequenees of instruetions defined in the program or on the

definiticn system library whenever an operation code of the specified syntax is
referenced.

Code repetition Sequences of code ean be repeated during assembly or at load time.

Remote assembly Defers assembly of defined coding sequence until later in the assembly.

Library routine calls Routines ean be ealled from the system library.

Diagnosties Diagnosties for source program errors are inciuded on output listing.

1.1 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by 8 COMPASS control statement (chapter 10) or FORTRAN
compiler upon encountering a COMPASS IDENT statement in the souree input file. Parameters on the
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and—go output, The COMPASS assembler executes as a
CPU program.

The operating system alloecetes the input/cutput resources as needed and performs all input/output required
during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and essigns storage.

The funection of the second pass is to assign block origins, locate literals, fill in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamiecally, thus ensuring that central memory requirements for tables
used by the assembler are satisfied. The assembler requests additional eentral memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum available to the job. (COMPASS may use any ECS/LCM spaee assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues a diagnostie message.

60492600 G : 1-3

All nested proeessing of maeros and similar definitions is handled in a single recursive push-down stack.
COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely proeessed the souree deek, a contro] statement (for example, LGO) ean
be used to eall for loading and execution of a CPU object program from the load-and-go file. The loader
links the newly assembled subprogram to any previously assembled subprograms and subroutines referred to
by the new program and to programs on any other files specified by the programmer. After all
subprograms are loaded and linked, the operating system begins program exeecution at a loeation specified
by one of the subprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the CYBER
Interactive Debug (CID) software. CID allows the programmer to correct errors in program logie from a
terminal. Using CID, the COMPASS programmer can:

Suspend prograin execution at a specifie loeation or upon oceurrence of a specifice trap condition, sueh
as execution of a return jump instruetion

Alter location content during program suspension
Resume execution at a specified loeation or at the location where suspension occurred

A complete deseription of CID features and use is given in the CYBER Interactive Debug Reference
Manual listed in the preface. '

1-4 : 60492600 G

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic maehine instruetions, pseudo
instruetions, and comment lines. With the exeeption of the comment lines, each statement consists of a
loeation field, an operation field, a variable field, and a comments field. Each field is terminated by one or
more blank characters. However, a blank embedded in a eharacter date item, parenthesized macro
paremeter, or comments field does not terminate a field. The size of the variable field is restricted by the
maximum statement size only. Statement format is essentially free field.

When punched on cards, each card is considered a line. A single statement may be composed of as many as
ten lines. Information beyond column 72 is not interpreted by COMPASS but does appear on the assembly
listing. Thus, columns 73 through 80 can be used for additional comments or sequencing. Columns 81

' through 90 are used for sequencing by library maintenance programs; they are normally not used by the

programmer. A line that contains two or more consecutive colons may be read and printed as two lines
because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN
The contents of eolumn one designate the type of line, as follows:
' ..,(comma) Designates the line as a econtinuation of the previous line.
*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The locaticn field entry begins in column one or two of a new statement line and is terminated by a blank.

If columns one and two are blank, the location field has no entry. A loeation field entry is usually
optional. It may contain & symbol or name according to the requirements of the operation field, or a plus
sign {+) or a minus sign (-). (See Block Control Counters, chapter 3.)

2.1.3 OPERATION FIELD

If the location field is blank, the operation field ean begin in ecolumn three. I the loeation field is
nenblank, the operation field begins with the first nonblank charecter following the loeation field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank eharacters between

the location field and eolumn 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preeeded by a comma.

Peripheral processor unit mnemonie operation code

60492600 B . 2-1

Pseudo instruction mnemonic operation code
Maecro name

Blank

2.1.4 VARIABLE FIELD
The contents of the operation field determine if any entry is required in the variable field which consists of
one or more subfields separated by commas. The variable field begins with the first nonblank character
following the operation field and is terminated by one ore more blanks. It is blank if there are no nonblank
charascters between the operation field and column 30.
A variable subfield contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank charscter following the variable field or, if the
variable field is missing, begin no earlier than eolumn 30. The beginning comments column can be echanged
through the COL pseudo instruction {chapter 4).

2.1.6 COMMENTS STATEMENT

A eomments statement is designated either by an asterisk in column 1 or by blanks in eoclumns 1-29.
Comments statements are listed in assembler cutput but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4.9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Nermally, column 72 terminates a source statement that has not yet terminated. However, a statement
that eannot be contained in the first 72 eharacters can be eontinued on the next line by placing a comma in
column one and continuing the field in eolumn two. A maximum of nine continuation lines is permitted for
& statement. The break between lines need not coineide with a field or subfield separator; even a symbal
can be split between two lines. Continuation lines beyond the ninth, and continuation lires foilowing &
terminated statement are considered comment lines.

9-2) 60492600 A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column Contents

1 Blank, asterisk,or comma ‘

2-9 Location field entry or plus, or minus left justified
10 Blank

11-i6 Operation field entry left justified

17 Blank

18-29 Variable field entry left justified

30 Beginning of comments

All examples in this manual abide by this convention.

FROGRAM

COMPASS GODING FORM

NAME
ROUTHHE DATE | Pagt OF
LOCATION JOPERATION VARIABLE COMMENTS IDENT.
O CECXTTO Y RN KRE CHOTHOE O] PHEIE) T ,.i.:a, CETLT M T T ML T RS T NN YT TTIT O IS A M (TR TN DD TN TN EYCMC RN

AATTRY REV.N—dfT

!

60492600 A

Figure 2-1. COMPASS Coding Form

4]

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are

saved for editing and interpretation wien the definition is referenced or expanded, ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped, COMPASS perfor ms two types of
editing: concatenation, and micro substitution. '

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r—is superfluous and is removed by editing before the definition is interpreted.

Fach removal of > shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (#) that delimit references to micro
definitions {chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are

shifted left or right, accordingly. If, as a result of micro substitution, colunm 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, heyond which it

discards excess without notification on the listing. No replacement takes place if the miero name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micre marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments cclumn. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines becatse
of operating system conventions for delimiting print lines,

2.3 NAMES

A name is a sequence of characters that identifies one of the following:
Subprogram or overlay

Block

2-4 : : (0492600 D

Maero definition

Remote definition

Duplicated sequence (DUP or ECHO)
IF sequence

Micro

A ecomma or a blank terminates a name. Concatenation marks and pairs or micro marks are removed
before the name is seanned (see Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms, It must begin with a
letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by the operating
system could restrict the use of certain charaeters in names. There is no restriction on the first echaracter
for & PPU subprogram or overlay name, For a CYBER 70 Model 76 or 7600 PPU assembly, the name can be
seven characters, for a CYBER 180 Series the name can be four characters and for a CYBER 170 Series, a
CYBER 170 Model 72, 73, 74, or 6000 Series PPU assembly the name can be three characters. In all cases,
the last character of a subprogram or overlay name cannot be a colon.

Any other type of name ean consist of one to eight characters. A name does not have a value or attributes
and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or & subprogram ean have the same name as a block, ete. :

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first eharacter eannot be a $ or = or: or a number; a symbol can be A maximum of eight
charseters, A symbol eannot include the following characters:

+-%/blank ,Tor A

Other speeial characters must be used with care, especially in ECHO and maero definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters in
symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional restrietions
" (see Linkage Symbols). '

Concatenation marks or pairs of micro mearks are removed before a symbol is examined (see Statement
Editing). In CPU assemblies, to avoid conflict with register designators, a symbol eannot normally be An,
Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.x, or X.x, becase x is
assumed to be a data item by the assembler. However, symbols resembling register designators can be wsed
if each use of the symbol is prefixed by =5 or =X. Register designators are described further under CPU
registers. '

The process of associating a symbol with a value and attributes is known as symbol definition. This can
oceur in five major ways. _ : . . :

80492600 M L : e T T

1. A symbol used in the loeation field of a symbolic machine instruction or certain pseudo instruetions is
defined as an address having the current value of the loeation counter (chapter 3) and having an
attribute defined as follows:

Absolute for the absolute bloek

Common for labeled or blank eemmon blocks (relocatable sssemblies only)
Relocatable for local bloeks other than absolute during pass one

Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the loeation field of definition pseudo instructions (see Symbol Definition, chapter 4)
is defined as having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to & symbol.
Unless a symbol is redefinable, a second attempt to define it with a different value produces a
duplieate definition fatal error flag.

3. An external symbol is defined cutside the bounds of the eurrent subprogram and is declared as external
in the current subprogram or is defined in relation to a symbol declared as external. In either ease it
has the attribute of external. Unlike a systems symbol, the true value definition is not known to the
current subprogram.

4, Definitions of systems symbols that take place outside of the eurrent program can be carried over to
the current program through the SST pseudo instruction. COMPASS uses the true definitions but
assigns the additionsl attiribute of systems symbol.

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =8 and the symbol is
not otherwise defined in the subprogram. This feature is further deseribed under Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:
Legal Symbols Tilegal Symbols
P : B S5A First character numeriec
R3 ABCEDEFGHI Exceeds eight characters

PROGRAM ABE+15 Contains plus sign
2 ' : =11 ' First character equal sign

2.4.1 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linksge symbols. The two types of
linkage symbols are external symbols and entry point symbols. An external or entry point symbol can be a
maximum of seven characters, the first echarseter must be a letter (A-Z}, and the last charaeter must not
be a eolon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the current
subprogram can be declared as an external symbol in the eurrent subprogram. Any symbol declared as an
entry point in the current subprogram ean be declared as an external symbol in some other subprogram.
The symbol hes a zero value and an attribute of external, An external symbol can be declared either
through the EXT pseudo instruetion or through default {a reference to the symbol is preceded by =X or =Y;
see Defgult Symbols).

2-6 _ 60492600 A

An external symbol ean be strong or weak. A strong external symbol reference eauses the londer to try to
find and load a subprogram having & matching entry point symbol. Failure of the loader to satisfy a strong
external in this way is flagged as a non-fatel error by the loader. A weak external does not require the
loader to search for a satisfying subprogram; however if one is loaded for some other reason, the loader
nssociates the matehing linkage symbols in the usual way. At the end of loading, the existence of
unsatisfied weak external symbol references is not an error.

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruetion. This is possible through use of symbol definition instructions that assign the value and
attributes of an expression to a symbol. If the value of the expression reduces to an external symbol + an
integer, the location field symbol is defined as having an integer value and external attribute. Entry point
symbols and external symbols are not qualified (see Qualified Symbols).

2.4.2 DEFAULT SYMBOLS

When & symbol reference is preceded by =8, =X, or =Y and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respectively, at the end
of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero block.
All subsequent references to the symbol, whether preceded by =3 or not, are to the
loeation of the word. A default symbol eannot be used where a previously defined
symbol is required.

If the symbol is defined by a eonventional method, COMPASS does not define it again
but uses the programmer definition.

=Xsymbol This option permits a programmer to define his symbols in & subroutine or link to
them in another subprogram. If the programmer defines the symbol, the assembler
uses the programmed definition. If the programmer does not define the symbol, the
assembler assumes that the symbol is a strong external as though declared in an EXT
pseudo instruction. A symbol prefixed by =X must conform to the requirements for
externsal symbols,

=Ysymbol This option permits a programmer to define symbols in a subroutine or to link to them
in another subprogram that need not be loaded. If the programmer defines the
symbol, the assembler uses the programmed definition. If the programmer does not
define the symbol and if it is not referenced elsewhere with an =X or =8 prefix, or
declared in an EXT pseudo instruction, the essembler assumes that the symbolis a
weak external. A symbol prefixed by =Y must eonform to the requirements for
external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed both by =8 and
=X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default symbols
are qualified by the quelifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instruetions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

60492600 C 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined {not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qusalifier is in effect dliring assembly (see QUAL pseudo instruection,
chapter 4) ean be referred to outside of the qualifier sequence in which it was defined through:

/qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without confliet. An
unqualified symbol i5 global and does not require a qualifier when it is referenced, unless a qualifier is in
effect, and a symbol qualified by the same qualifier has been defined, In this ease, the ungualified symbol
ean be referenced as // symbol.

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified,

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. The registers are deseribed
more fully in chapter 8. The designators are inherent to COMPASS and eannot be changed during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence of
such a symbol is prefixed by =S5, =X, or =Y (see Default Symbols). However, 8 warning message is issued
when such symbols are defined. The prefix cennct be used in the location field of machine instructions and
symbol defining, data generating, BSS pseudo instructions, in the veriable field of ENTRY, EXT, and SST
pseudo instruetions,

Register Type Designator
Address An or A.n
Index ' Bn or B.n
Operand Xn or X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A.n, B.n, X.n, n ean be a symbol or an integer. If the value of n or the value of the symbol
exceeds 7, the assembler truneates it to the least significant 3 bits and issues a warning flag.

Registers designated by Al through A5 or A.l through A.5 are used for addressing to obtain information

from eentral memory. Registers designated by A6, A7, A.6, or A.7 are used for addressing to place
information into central memory.

2-8 | 60492600 H

COl\gPIASS does not recognize registers in PP assemblies; there, the designators are aceeptable as ordinary
symbols.

Exampies:
Al Designates address register 1
Al0 Interpreted as & symbol, not a register
Al Desjgnates address register 1

ANUM If the value of NUM is 6, it designates address register &

A.10 Designates address register 2; however, it produees a warning flag because the two was
derived from the truncation of 12, the octal value for 10.

The following produce equivalent results. A SET pseudo instruction (chapter 4) defines SUM and SUB as
absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same result as if
the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 H 9-9

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 10 I30
60320010040 <83 AZ+ALPHA ;
LOCATION QFERATION | VARIABLE COMMENTS
] i 8 Tao
3 SUM SET 3 i
F4 SuR SET 2 I
6032001800 | $B.SUM|A.SUR+ALPHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as reference to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a value
specified by the element in the expression. The control counters are diseussed further in chapter 3.

Designator Signifieance

* or ¥, The mssembler uses the velue of the location eounter for the bloek in use.
The element i3 relocateble unless the counter in use is for the absolute bloek.

*Q The assembler uses the value of the origin counter for the biock in use. The
element is relocatable unless the ecounter in use is for the absolute block.

$ The assembler uses one less than the absolute value of the position counter
for the block in use.

*p The assembler uses the absolute value of the position counter for the bloek
in use.

*F The assembler uses an absolute value obtained as follows:

¢ COMPASS was called by a COMPASS control statement

1 COMPASS was called by the RUN compiler (no longer supported)

2 COMPASS was called by the FTN4 eompiler

3 COMPASS was called by the FTN5 compiler

*F can be redefined by the COMPASS control statement F parameter

(chapter 10).

These designators are inherent to COMPASS and cannot be altered by the programmer during an assembly.

2-10

60492600 H

Examples:

LOCATION OPERATION | VARIABLE COMMENTS

i i1 18 1

1Y)

*+1+87

Al

X3,%L-1

Q
o

*0-2ES+PPR

£n ¥p/
Fo $/70,1/1

!
|
|
|
|
I
|
|
|
|
|
l

,-1- s el s 8 aCSe & [a o alde = =(,

FEQ | *F,2

2.7 DATA NOTATION

Data notation provides a means of entering values for ealeulation, inerement eounts, operand values, line
counts, control counter values, text for printing out messages, characters for forming symbols, ete,

The two types of data notation are charaeter and numerie. The assembler allows the user to introduce date
in the program in three basic ways:

As a data item
As a constant in an expression

As a literal

2.7.1. DATA ITEMS]

Character and numeric data items ecan be used in subflelds of the DATA and LIT pseudo instruetions or as
spec1flcatlons of field values on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in oetal, decimal, hexadecimal,
or character notatlon It resembles a data item but is restricted by its use as an expression element in two

© ways:

50492600 K - : 2-11

1. The first character must be numerie, prohibiting the delimited type of character string (see Character
Data Notation) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be & maximum of 60 bits
thus prohibiting double preecision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in & subfield of a LIT pseudo instruction or
as an element in an expression.

The method of specifying a literal in an address expression is nearly identieal to that for specifying a data
item in & DATA or a LIT pseudo instruetion. The primary difference is that the literal is prefixed with an
equal sign, which indicates that a litersl follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of the
literal in the literals block rather than the value of the data item. Thus, the literal is considered
reloeatable. (For a diseussion of the literals block, see chapter 3.)

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store the
data in the literals block using as many words as sre required to hold the data. If the binary pattern of the
prefixed type of literal or of sll the literals in a LIT declared sequence matches the binary pattern of words
previously entered in the literals block, an entry is not generated for the data. This process eliminates
duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries can
be referenced symbolically or through use of a prefixed literal. However, to preseve the integrity of the
literals hlock, they should be used as read only locations.

The assembly listing includes a list of the literals bloek when the D list option is selected (see Listing
Control, chapter 4).

Example:

In the following example, using CPU instruetions, the first statement ereates a word in the literals
bloek having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the
statement at the lower part of 101.

The literal in the second statement specifies a right justified eharecter, A, which has a display eode
value of 1, The SB4 creates a one-word literal block entry having the value 00000000006000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block and
does not cause new entries to be assembled.

2-12 60492600 H

Location

Code Generated

100

101

io2

6120005555 +
6130N05555 +
6140005556 +
5555
6120005555 +
6130005556 +

LOCATION CPERATION { VARIABLE COMMENTS
I 18 [10
SRz =1 l
SB3 =1RA
SB4 =1Pn f
L LIT 1,2 [
SB2 L
sA3 E+1 I

CONTENT OF LITERALS BLOCK.

0055565
005556

goodagooraoondonnoonni a
ppoonnacaonantagnonone 8

Continuing the previocus example, a LIT sequence as illustrated below, does not duplicate a sequence in the
literals block and causes entries to be generated in the literals block:

Loecation Code Generated LOCATION OFERATION | VARIADLE COMMENTS
1 n I8 [an

5557 LIT 1y 3,1R0,2 |

|
CONTENT CF LITERALS ELCCK,.
- p0ssss gnnnoaoaocnoNoonNanony A
005556 npgoagnrQoQoonApoNOoO2 a
gnsss7 gogonoponaognannonool A
a65561 nopooogonaaonNtonaaoEe3 r
005561 goongononooonnoooonOG 0
005562 nnanooo0qaaoononegon? 8

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplieates, in part, the most recent entries in the literals block, only the unduplieated part is added to the
block. Thus, if the following LIT sequence had been used in place of the LIT 1,3,1RD,2, the first two words
of the sequence would mateh the last two words of the literals bloek so that only two additional words
would be required to complete the sequence.

Location Code Generated
5565
CONTENT OF
00s55%+% 4nn@naofeo0ononoNnotd
005556 Q00NODQRONOOGTOO0ODGO00?
805557 gnonggoOo0NQOnAgnNnNpOGa
005560 qQ00000NRONONONOONO0NG

2.7.4 CHARACTER DATA NOTATION

LOCATION

QOFERATION

VARIABLE

COMMENTS

8

ET

LIT

B B Jos § -}

1,?11,'4

Character data strings are converted to the code in use at the time the string is evaluated (see CODE

pseudo instruetion, chapter 4), and placed in & field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

60492600 H

2-13

Format:

Example
Data Item I sign | nl typel string I _SRABC_
or

| sign|type|d Istring[d] -R*ABC*
Constant T | n lty'pel string] 3RABC
Literalt . | = |sign] n]type | string] =-3RABC

ar ‘
I = lsig’nl typel d Istringl d I =-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.
sign Optional for data item or literal. A sign with a constant is interpreted as an element operator,
+ or omitted The value is positive

- The complemented {negative) value is formed

n Signifies how the string is determined:
omitted The string is delimited by d. n cannot be omitted for a constant.
0 For data item or literal, the string consists of all characters following type
to:
blank or ,

For a constant, string consists of all characters following type to:
+~*/blank , or A

The A (earet) is in the CDC eharacter set, In the ASCII character set, use
the & (ampersand).

n For a data item or literal, n is an integer count of the number of characters
in the string not counting guaranteed zeros. It is limited only by statement
size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right justified
constant if the most signifieant bit exceeds the field. Truncated zeros do
not ceuse an error in this case. A truneation errcr is flagged for a left
justified constant if the least signifieant bit positions are truncated, even if
they are zero.

The string consists of the n charaeters following type.
Regardless of base, COMPASS assumes that n is deeimal.

TExpressi on element

2-14 60492600 J

- type Character string justification. The characters formed by the data item or constant are right
or left justified into the destination field as follows:

Type Significance
C Left justified with zero fill. For data item or literal, 12 zero bits are

guaranteed at the end of the string even if another word must be
aliocated. For a constant, C is the same as L; the 12 zero bits are not

guaranteed.
H Left justified with blank fill
A Right justified with blank fill
)il Right justified with zero fill
L Left justified with zero fill
Z Left justified with zero fill. For data item or literal, six zero bits are
guaranteed at the end of the string even if another word must be
alloecated. For a constant, Z is the same as L; the six zero bits are not
guaranteed,
d A delimiting character used only when n is omitted. The characters between the first
occurrence of d and the second oceurrence of d form the string, d ean be any character other
than ~or #.

string Charaeters from one of the COMPASS character sets (appendix A), except for those
characters that aet as delimiters (see n and d), the coneatenation character (™), and pairs of
miero marks (%),

Coneatenation marks and pairs of miero marks are removed by editing before & string is
examined. A single micro mark can be used in a string.

An empty or omitted cheracter string is defined under one of the following eonditions:
n is 0 and type is immediately followed by a delimiter, for example, OL.
n is omitted and the two delimiting characters are adiacent, for example, H++.

Omission of a string in a DATA pseudo instruetion is legal and does not cause generation of a
data word.

For a constant, an omission of the string is valid and has & zero value.

An omitted string in a LIT pseudo instruction is legal and does not cause generation of a
literal for that item; however, the LIT must contain at least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an error.

It is not possible to generate empty strings using types C, Z, R, or A.

60492600 H 2-15

Examples of character data:

In these examples, characters are converted to display eode representation; all lines of ecode generated
by DATA are printed only if the D or G list option is selected.

Data Items

Location Code Generated LO;:ATIDN OFERATION | VARIABLE COMMENTS
' 1 n i [
144 0522221722551116655240 NATA L*ERROR IN PDQ ®*sLasylOH

145 90421550n00000000000N
146 S55555555556555555555

Lacation Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 19 [30
-~ 1PPU |
: I
' |
1100 1725 DATA OLOUTPUT I
1101 24210
1102 2524
Constants
Location Code Generated LOCATION OPERATION] VARIABLE COMMENTS
! i 18 [30
4722 7130000047 5X3 1R* |
4723 7140000860 TAG S5Xh 1RrP.+1 |
5110031117 SA1 3RCIO |
L724 6260530000 585 Xa+#1L $ [
1117240155 VFU JO0/4HIUTA,B6/1RA,2L/0AX+1
4725 0155555531 I
1725242025 VFD L2/0L0UTPUT, 10871
4726 2400000001 o
p7oo00000040 VFD 15/0LG.1570L

Note that the cheracter constant in the expression in the second line eonsists of a deeimal point (57 in
display code) to which 01 is added before the value is stored. Similarly, in the third field of the first VFD,
1 is added to the display code representation of X right justified with blank fill (55555530) so that 55555531

is generated,

9.16 60492600 H

Literals

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 0 [ET
100003765 TAGL LIT RA4¢e-*/(A,6LYTE= ,.,00C0,0L
1000683770 LIT PAHLITERALS
2652 51110003772 + <A1 =NCTENCHARTTS
5120003774 + SA”? =H+LFFY JUSTIFY WITH PLANKS+
2653 5130003767 + <A =1L

CONTENT OF LITERALS BLOCK,

003765 00ONNDOO0N0LSLELTS0G]L +-%/(
G0376R 525754555R5700000000 YE= 4.
003767 33a000000N00190000000 1]

003770 14112405220114235555 LITERALS
003771 B555555655555555556655

Q03772 2u0516021N10122032423 TENCHARCTS
002773 40DNNOOODOODOONONOBO

Go3774 14050624551225232411 LEFT JUSTT
Bo03r7% 063155”77112410550214 FY WITH pL

BR3I776 N11R13P2555555555655 ANKS

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty string
and does not produce an entry. The second LIT pseudo instruction generates one two-word entry. The
expressions in the variable fields of the SA1, SA2, and SA3 instructions each consist of a literal element.
The character sirings in the SA1 and SA2 literals do not duplicate former literals block entries so
COMPASS generates new entries. However, since SA3 references an existing entry, COMPASS places the
address of the entry in the address field of the instruetion.

2.7.5 NUMERIC DATA NOTATION

Numerie data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:
Data Item Isign]preradix | value l meodifiers |
Constant |va1ue, modifiers l

Literal I z] signl preradixl value I modifiers |

60492600 H 2-17

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a consiant is interpreted as an element

sign
operator.
+ or omitted The value is positive
- The complemented {negative) value is formed
preradix Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value,
omitted Notation ean be specified by a postradix modifier or can be
assumed from the assembly base, See BASE pseudo instruction.
BorO Octal notation
D Decimal notation
value A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point,
A floating point value (legal in CPU assemblies only) is noted by the oceurrence of
the point.
An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1.15 x 1018 (fixed point) or 7.9 x 1028 (floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.
I value is omitted, it is assumed to be zero.
modifiers Associated with the value are the following optional modifiers specified in any sequence,
A specifie type of modifier can be speeified only once. A duplicate produces an error
fing,
postradix Indicates the notation used for the value, See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.
decimal exponent Defines a power of 10 scale factor
Einor Enor E Single precision
EE+n or EEn or EE Double precision
When the sign is plus or is omitted, the exponent {n} is positive.
When n is omitted, it is assumed to be 0. The value of n cannot exceed
32767 and is always assumed to be a decimal integer. '
A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).
If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.
The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.
2-18 60492600 H

binary scale Defines a power of two scale factor and is specified as follows:

Stn or Sn or 8

When the sign is plus or is omitted, the scale factor (n) is positive. When n
is omitted, it is assumed to be 0. The value of n ecannot exceed 32767 and
is always assumed to be a decimal integer.

The effect of the binary seale is to multiply the value by 2 raised to the n
power,

binary point Applies to floating point values only and is specified as follows:

position

60492600 K

Pin or Pn or P

When the sign is + or omitted, n indicates the number of bit positions the
point is to be shifted to the left of bit §. When the sign is -, n indicates the
number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point oceurs to the
right of the nth bit.

" The exponent is adjusted to a value of - (in)

For example, a value with P-6 will have a biased exponent of 2006g; g
value with P10 will have an exponent of 1765g,

if P i5 not specified for & floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value,

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

Although seale factors can exceed valid ranges, the ranges for numbers are restricted by
the hardware,

Example:

The number 1.0E4005-1200 yields a number that is approximately 5.8 x 1038 and is
in range of the floating point representation.

All caleulations are performed in 144-bit precision. The values are rounded to 96 bits for
double precision and to 48 bits for single preecision floating point numbers and to 60 bits for
integers.

The order in which the assembler acts on the modifiers, regardless of the sequence in which
they are specified, is:

1. Decimal exponent {single or double)
2. Binary sealing

3. Binary point position (CPU assemblies only)

2-19

CPU Numeric Data ltems

Localion Code Generated

5000 TFITITTRITINNVTTINVNTAL
5001 172350500C0C0C0O00C000
5002 1#47300000C000CAC0OGEL
5003 227020000C0G0C0OC00L2
5004 1776ND0000GO00OC0O00002
5005 171%4651TE7€30544264%
5006 1720n3145631463146314
5007 T7ITTIRTITRIVITITINNNY
5008 00207000000000000000

CPU Numeric Constants

Location Code Generated
5001 +
555
5012
5112 20360
43760

715C4 060000

CPU Numeric Literals

Location

5113

nns5151
nos5152
005153
p0s154
N05155
20%156
005157
305160
05161

®2-20

Code Generated

5150005151 +
5130005152 +
5153
5155
5156
5157

LOCATION OPERATIOM | VARIABLE COMMENTS
It 0 | ET
POGL DATA -29 ;
NUB DATA |1.CEF1 :
oaTs {1.0E+1P0 |
DATA [342P1S~5E1
DATA 0.C151F+01 |
DATA |Q0.1P%7,=Es DEES
|
10CATION QPERATION | VARIABLE COMMENTS
n 18 [0
AL PHA EQU POOL +1 !
VAL EOY 5550 !
Bssz |1oom l
LX3 ~148 |
MxX7 48 ’
SX5 1517 f
LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
§A5 =200467550002340000048
SA3 2] 41 |
ARLE LIT 1.CEEL |
LET G.1P47
LIT -D1%
LIT 0.0151E+C1 y~Es DEES

CONTENT OF LITERALS BLOCK,

20046755000234000C04
17720431 4631463146315
1723500€000000000000
16643000C000000000000
17200314631463146314
TI7ITTTTITTITINITTIT77154
17154651T767635544264
TITTIITROITITITINNTY
20006000C000C0C000CO0

PDA B DO
nPBLeLILIN
as¢s
NB

BPCLILILsL
DU
27

s Dw
- " w

¥
-
H

e m N
we P

- H

-
ry

60492600 L

Examples of numeric data {assume default radix is decimal):

PP Data Items

Location Code Generated

300 goos

301 7766

302 013

313 0030

I0 L ggnz

PP Constants

Location Code Generated

3ns gonn

306 0nt1

397 LLLZ
31
101

310 7777

PP Literals

Location Code Generated

311 2000 1103

313 2100 1104

315 2000 1108

CONTENT OF LITERALS BLDCK.

1103 ong2
1104 7776
1105 7T7T

60492600 H

LOCATION OPERATION | VARIABLE COMMEMTS
1 n 1& [0
¥
FPU i
- -
. . |
L] a |
DATA 5,-QD,+513,1#BSI,ZQBE-1
LOCATION OPERATION | VARIABLE COMMENTS
" 19 |30
oM TRE! i
|
raoM |=237y l
Anc = 250
MLV qeY Bt |
non 7Y |
LOCATION OPERATION | YARIABLE COMMENTS
m 18 {30
1
Loc =160 ;
ADC =1 :
LoC =777 |

2-21

2.7.6 HEXADECIMAL DATA NOTATION

Numerie data can be specified in hexadecimal notation. The value is converted to an integer in single

precision.
Formats:

Data Item
Constant

Literal

sign

preradix

value

modifiers

gign | 0 |preradix|value |modifiers

0 |preradix|value| modifiers

=| gign |0 |preradix|value | modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; & sign with a constant is interpreted as an element
operatar.

+ or omitted Value is positive.
- Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for eonstants, so the
preradix will not be taken as the first character of a symbol.

Must be present to indicate that a hexadecimal value follows. The preradix charaeter is =
or # depending on the printer used.

A series of hexadecimal digits. Each hexadeeimal digit represents 4 bits and is either a
decimal digit 0-9 or a letter A~F. The digits 0-9 represent values 0-9 and the letters A-F
represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

"The binary secale (8) modifier is optional and has the same form and meaning as for octal
‘and decimal data (see Numeric Data Notation).

The binary point position (P) modifier is permitted but ignored, since it does not apply to
integer values. o

Examples of hexadecimal data:

LOCATIGN OPERATION | VARIABLE COMMENTS
Location Code Generated
\ " 15 {30
0 00000000000004435274 - . DATA =123ABC,—=,-D=AAAAA,=1234512
1 FePPTTVROITITITIIINIT ; C
2 TIVIIITVITIT7S5252525 :
3 00000000000110640000 o |
4 00000000000053012566 X ¢ CON 0z=AQ01576 : :
5 7130000006 + HEX | SX3 | =-=1234552 !
CONTENT OF LITERALS BLOCK. |
6 TPTP7I77777776671353 PriirINKE }
]
2-22 60492600 H

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a combination of
one or more terms. Each term consists of one or more elements joined by operators. A comma or a blank
terminates the expression,

An expression element can be a:

Symbol * Register designator (CPU only)
Numeric or character constant Literal
Special element

Examples of elemenis:

ALPHA AT JHABC
X3 =16HOUTPUT
*p 77BS3

A term can be a single element or two or more elements joined by the following element operators:

* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
- Subtraction

A Exclusive or

The exclusive or operator is printed as A (carat) in the CDC charecter set or as & (ampersand) in the ASCI
character set. :

Rules:

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example, if
ABLE is a symbol, ABLE*+3 iz interpreted as the value of ABLE times 0 plus 3.

2. Two suecessive elements are illegal. Note, however, that ** is legal because the first asterisk is
interpreted as an element, the second asterisk is interpreted as an operator, and the blank is
interpreted as a nuil element.

3. A term can contain one reloecatable or external element only. Thus, **ABLE, where ABLE is a
reloeatable address, is iilegal because ABLE and * are both relocatable.

4, The element to the left of a divisor must be absolute.

5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted ss having a term of zero
value between them.

7. 1If an expression begins with an additive operator {+ or - or A), COMPASS provides a term with zero
value preceding the operator.

8. Al arithmetic in expression is performed in integer mode, even if an element is a floating point

constant such as 2.3. Resuilts are restricted to 60 bits; that is, if a term or value exceeds 60 bits, the
excess high-order bits are disearded without comment,

60492600 H 2.973

The

operator that immediately precedes a register designator is the register operator, regardless of the

placement of the designator in the expression. The register operator can be:

+-%gr/

Examples of expressions:

ABLE Single term

$-29 Two terms: $ and 29 7

1+=3,14159EE+6 Two terms: a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

*+3 Two terms: value of the loeation counter and numerie constant 3.

ABLE*4-72/NUM Two terms, each consisting of two elements: the value of ABLE times 4,
and 72 divided by the value of NUM.

10B Single term consisting of a numerie constant.

3+A6-NUM The components of the expression are register A6 and 3-NUM.

1R=A1R/ The character constants (= and /) are logieally differenced.

2.8.1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression fo:

An absolute value (absolute address or an integer value)

An external symbol + a 21-bit integer

"+ relocatable value + a 21-bit integer

Register designators and one of the above (CPU assembly only)

Register designators (CPU assembly only)

Absolute Expressions

An expression is absolute if its value is unaffected by program reloeation. An expression can be absolute,
even though it contains relocatable terms, under two conditions:

2-24

The expression contains an even number of relocatable elements.

The reloeatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be canceled by another element {or multiple thereef) in the same block. In
other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression. SR

60492600 H

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute. The
control counters are for the bloek that contains EASY and FOX.

EASY-FOX+MIKE EASY and FOX cancel each other.

FOX-* FOX and the lccation eaunter eancel each other.
MIKE+16 The expression contains no relocatable elements.
*-EASY-FOX*2 EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is reloeatable if its value is affected by program relocation. A reloeatable expression
consists of a single relocatable term or, under the following two conditions, a combination of relocatable
and absolute terms:
The expression does not eontain an even number of relocatable elements
All the relocatable elements but one must be organized in pairs that cancel each other. That is, for all
but one block, each relocatable element (or multiple thereof) in a block must be canceled by ano‘Eher
element (or multiple thereof} in the same block. The elements that form a pair need not be eontiguous
in the expression.
The uncanceled relocatable element can have three kinds of relocation:
~ Positive program
Negative program
Positive common (Negative common reloeation is not permitted by the loader.)
Examples of relocatable expressions:
In the following examples, EASY and FOX are relocatable in the same bloek. MIKE is absolute. LIMA
is relocatable in a different block. The control counters are for the block that contains EASY and
FOX.
LIMA+MIKE-18
FOX-EASY+FOX
J*FOX-2*EASY
EASY-*+FOX
FOX-100B/MIKE
-MIKE*2+LIMA
=10HMESSAGE 33
—¥{)
The pairing of relocatable terms cancels the effeet of relocation because both terms would be relocated by

the same amount. The comparative value of the two terms remains the same regardless of program
relocation, .

60492600 H 2.05

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression econsists of a single positive external term or, under the
following conditions, an external expression may consist of an external term, relocatable terms, and

absolute terms.
The expression contains an even number of relocatable terms.

The relocatable elements must cancel each other. That is, each relocatable element {or muitiple
thereof} in a block must be eancelled by another element {or multiple thereof) in the same block. In
other words, peirs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be eontiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC sare external symbols. EASY and FOX are in the same block.
The control counters are for the bloek that contains LIMA. MIKE is absolute.

XYZ-*+FOX-EASY+LIMA The pairs * and LIMA, and FOX and EASY eancel each other.
FOX-3*EASY+2*¥FOX+XYZ The reloeatable elements all eancel.

ABC+100B+MIKE MIKE and 100B are absolute; no relocatable elements.
XYZ+ABC Illegsl; both are external.

-ABC+*-LIMA Dlegal; ABC is negative.

XYZ+*0 Iegnl; *O is an unpaired relocatabie element.

Register Expressions

An expression is a register expression if, in 8 CPU assembly, it reduces to one or mere register designators
and an operand. The attributes of the operand can be that of an absolute, external, or relocatable
expression. Use of register expressions is generally restrieted to symbolic CPU machine instructions. If

;he:egister designator is the first element in the expression, the operator can be omitted and is assumed to
e T.
Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIMA-10B

LIMA+X3-10B Produce identieal results

-~-10B+LIMA+X3

B1+XYZ

*+A.NUM

Evaluatable Expressions

An evaluatable expression is an expression that does not contain eny symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable. . .

2-26 60492600 H

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character constant

is first right or left adjusted in a field the size of the destination field and then extended to 60 bits. Signs
are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In division, the integral

portion of the gquotient is retained; any remainder is disearded. Thus, 5/2%2 results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it reaches
a+ or-or A operator. It then notes whether or not the newly formed term contains a relocatable or
external symbol or register designators. The value of the symbol is added, subtraected, or differenced from
the cumulative sum of the absolute elements, relocatable elements, or external values, The assembier
continues evaluating the expression until it is reduced to a symbol and/or a value. An error is flagged if
the expression cannot be reduced. The expression value is truncated, if necessary, and placed in the
destination field. If it is too large for the field, the system issues an error flag. The maximum field size
for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram,. It is
the value relative to the external used in defining the symbol if the externsl symbol was defined within the
subprogram. ’

A zero value is used in place of a register designator.

For pass one evaluation, COMPASS uses the value of a relocatable symbol relative to the bloek in which
the symbol was defined. For pass two evaluation, COMPASS uses a value relative to program or common
block origin.

The field size for an expression depends upon the instruetion and is determined as follows:

For a symbol definition pseudo instruction, the expression value (including charaeter constants) is
justified in a 21-bit field.

In a VFD pseudo instruction, the expression is placed in a field of the size specified.

For a CON pseudo instruction, the field size is one word (12 or 16 bits for PP assemblies, 60 bits for
CPU assemblies). -

In B symbolic machine instruetion, values of expressions are placed in address fields (18 or 6 bits for
CPU assemblies; 18, 16, 12, or 6 bits for PP assemblies).

Some reloeatable program loaders may give unexpected results if reloeatable or external address values are
assembled into the same field of the same word more than onee, as a result of ORGing backward over the
word, or by having more than one subprogram preset a common bloek. The ORGC pseudo instructon (see
Block Counter Control, chapter 4) can be used to avoid such problems.

60492600 M o 2-27

PROGRAM STRUCTURE 3

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This discussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed. '

A COMPASS subprogram consists of statements beginning with an IDENT pseudo instruction and ending
with an END pseudo instruetion. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruetion.

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into blocks of binary code. These blocks ean be controlled during the loading process. The first section of
the chapter presents subprogram block concepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief deseription of the counters used to control the blocks.

A subprogram loaded into eentral memory can be either absolute or relocatable. An absolute subprogram is
loaded at the same fixed address every time; a relocatable subprogram can be loaded into different
locations, according to the available central memory at load time. Seections 3.3 and 3.4 discuss the
strueture of absolute and relocatable programs, respectively, and show the differences in block usage for
both types.

Limited available central memory occasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, ean be divided into subprogram areas ealled
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that ocbject
code be generated or that storage be reserved in specific bloeks. By properly assigning eode sequences,
data, or reserved storage areas to blocks through use of QRG or ORGC, USE or USELCM, a programmer
can intersperse instructions for the different blocks. The assembler assigns locations in a bloek
consecutively as it encounters instructions destined for the block. A symbol defined within a bloek is not
local to the bloek. That is, it is giobal and ean be referred to from any other block in the subprogram. To
render a symbol loeal to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

Bloeks established between two [DENT instruetions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 bloeks in a single bloek group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

In pass two all symbols are assigned absolute values, the table of block names is eleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and blogk strueturing restarts. For END, the symbol
table is cleared before the next subprogram is assembled. If the group does not contain & USE instruetion
or if object code is generated (or storage reserved)} before the first USE instruetion, COMPASS places the
code in the nominal block {identified as PROGRAM* on the listing). For an absclute program, the nominal
block is the absolute bloek. For a reloeatable program, the nominal bloek is the zero bloek. The user
controls use of the nominal bloek and any user-established bloeks through USE, USELCM, ORG, and ORGC
pseudo instruetions (section 4.5). Each oceurrence of a non-redundant literal constant eauses an entry in
the literals block; otherwise, the user has no eontrol of this bloek.

60492600 G . 3-1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominel bloek for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the bloek is absolute. Each address symbol is defined during pass one
as an ebsolute value relative to zero which is bleek origin. The code generated must be loaded and
executed at the origin specified as the absolute bloek origin.

'

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absclute value. The assemblfar
generates text tables specifying absolute block relocation. The loader loeds the absolute text when it
encounters the text table, without manipulating eny addresses. For a relocatable assembly, an absolute
block is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It is a
local bloek; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined defsult symbols at the end of the zero block. The zero block is identified by the
name PROGRAM#* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM®* bloek. The zero block is also
named PROGRAM*,

There is no ECS/LCM zero block.

3.1.3 LITERALS BLOCK

COMPASS generates literal data entries in the literals bloek. It is local to a subprogram. _The literals
bloek is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero bloek. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local bloeks in addition to those
previously deseribed for an absolute or relocateble subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local bloek, in the sequence in which they
are established.

All of the CM/SCM local bloeks are coneatenated to form a single block, which is treated by the loader as
a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM loeal blocks are
concatenated to form a single bloek which is treated by the loader as an ECS/LCM block whose name is
unigue to the subprogram. (SCOPE 2 does not eurrently allow LCM loeal bloeks.)

The length of each ECS/LCM bloek, including the combined loeal bloek, is rounded up, if necessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or ECS/LCM
through the USE and USELCM pseudo instructions respectively, where the name of the block is the name
enclosed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the bloek. Thus, the first subprogram that
names a bloek sets the maximum size of the block. Each subprogram, as it is loaded, can link to allocated
blocks or can cause new blocks to be allocated. The contents of a labeled common block ean be generated
by any of the subprograms having access to it.

3-2 60492600 G

If an gbsolute subprogram attempts to establish a labeled common bloek by using & USE /name/ or USELCM
/name/ pseudo instruction, COMPASS treats the block as a loeal block having the slash-enclosed name.

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that esnnot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common bloeks are allocated space by the
loader after all subprograms are loaded, according to the largest block area declared by any of the
subprograms. A CM/SCM blank common bloek is established through use of the USE pseudo instruetion
(chapter 4). An ECS/LCM blank common: bloek is established through use of the USELCM pseudo
instruction (chapter 4). A blank eommon bloek has no name. A USE // indieates blank common in
CM/SCM; A USELCM // indicates blank common in EC5/LCM.

If no relocatable program declares a blank common bloek, there is none. If an absolute program contains a

~-USE // or USELCM // pseudo instruetion, COMPASS treats the block as a loeal block named // and data can

be stored in this bloek.

The USELCM pseudo instruetion ean oceur only in CPU programs.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two bloeks with the same name and the same memory type if they have
different block types {loeal or common). Furthermore, a CPU subprogram may have tweo bloeks with the
same name and the same block type if they have different memory types (CM/SCM or ECS/LCM). Thus,
altogether, there may be up to four different bloeks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters: an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses the
counters for that bloek. During pass one, the origin and location eounters are initially zero. During pass

two, as the assembler construets the program, it assigns an initial value to each loeal block origin counter
and loeation eounter. Thus, expressions containing relocatable symbols are not necessarily evalusted the

same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the block.
It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or BSS pseudo
instruetions to advance the origin counter; ORG and ORGC also permit the programmer to reset the
counter to some lower location in the block or to change blocks. BSS allows the programmer to decrement
the eounter but not to change blocks. The origin counter is incremented by one for each word assembled or
skipped forward. The origin counter is deeremented by one for each word skipped in the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the eurrent value of the
origin counter for the bloeck in use.

60492600 H 3-3

3.2.2 LOCATION COUNTER

The loeation eounter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is ineremented whenever the origin counter is
incremented. Tt is possible through the LOC pseudo instruction to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one loeation and subsequently moved and exeeuted at another location. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to oeeur, As another example of
its use, the programmer assembling a large table may reset the location eounter to zero so that on the
listing, the addresses alongside each word of the table refleet the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the bloek. {For an
example of these applications, see the LOC pseudo instruction in ehapter 4) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the eurrent value of the location
counter for the block in use. '

3.2.3 POSITION COUNTER

Assume that bits are numbered 59 through 00, from left to right within a 60-bit CPU word, and numbered
11 through 00 within a 12~bit PPU word, and numbered 15 through 00 within a 16-bit PPU word. Then, the
position counter is initially 60, 16 or 12, respectively, and indieates the number of bits remaining in the
word. The position eounter, which is decremented by one for each completed bit of an assembled word,
becomes 00 when the word is completed, and is reset to 60, 16 or 12 when a new operation is started.

For & CPU assembly, the 15-bit and 30-bit CPU instructions cause the position eounter to normally have
values of 6{}, 45, 30, and 15 reflecting the placement in the word for the next instruction or data value to
be generated. For a PPU assembly, the normal value is 12 {16 if CIPPU is specified and the long
instruetion format is used).

The normal pattern of advancement for the position counter ean be altered through use of the VFD and
POS pseudp instruetions,

When the special element *P is used in an expression, the assembler replaces it with the current value of
the position counter.

‘When the speeial element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter {or the block in use; that is, it returns the next availehle bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following eonditions is true, the assembler packs parcels rem gining in &
partiaily completed word with no-operation instruetions (seetion 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles code for the next instruction:

Insuffieient room remains in a partially filled word for the next instruection or data to be generated.

The eurrent statement is a machine instruction, or a VFD pseudo instruetion, with a loeation symbol or
+ in the loeation field.

The eurrent statement is an RE, WE, P8, XJ, CC, CU, DM, or IM (or RL or WL on NOS and NOS/BE)
instruetion for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74, or 8000
Series. (The programmer can negate this force upper by placing a minus sign in the location field of
the instruetion.)

The current statement is an END, BSS, BSS%, DATA, DIS, CON, SEGMENT, S£G, IDENT, ORGC, LOC,
ORG, or MD pseudo instruction.

3-4 c 60492600 M

The assembler forces upper after it assembles code for one of the following:

JP
RJ

Unconditional EQ

Uneonditional ZR

ES (CYBER 70 Model 76 or 7600)

MJ (CYBER 70 Model 76 or 7600) ,

PS5 {CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
IM (CYBER 70 Model 72 and 73)

This post force upper does not oceur immediately, but is deferred until the assembler encounters the next
machine instruction or data generating, storage allocating, or binary control pseudo instruction in the same
USE block. The programmer can negate the force upper following the instruction by placing & minus sign in
the location field of the next instruction. Thus, pseudo instruetions following one of the above machine
instructions and referencing the origin, loeation, or position counter will use the value before the foree
upper.

In a PPU assembly, no foreing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD, A plus or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that ean be assembled separately, either
in the seme job run or in independent runs. The subprograms can ail be written in COMP ASS souree
language, or can be written in any other scurce language available in the product set of the cperating
system as long as the compiler or assembler produces relocatable binary cutput in a form aceceptable to the
loader. A COMP ASS language subprogram is composed of instructions beginning with an IDENT pseudo
instruction and ending with an END pseudo instruetion. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruetion has been written.

When a program is loaded into memary, its subprograms occupy contiguous bloeks of words. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

When a subprogram is relocated, each machine instruction in it that references a specific address must be
adjusted. Because of this necessity, relocatable subprograms are assembled as though they begin at address
zero; they are not assigned specific origins. In this way the loader ean load subprograms independently, yet
contiguously; their origins are relative to RA. Since gll addresses within the subprogram are relative to the
first word address of the subprogram, each address in the program effectively becomes & function of RA.

A nonblank IDENT pseudo instruection that does not speeify a fixed load address indicates a reloeatable
subprogram. Upon completing assembly of & relocatable subprogram, COMP ASS assigns each loeal block an
origin relative to the zero bloek. Each bloek thus becomes an extension of the zero bloek (figure 3-1).

COMPASS also provides for subprogram linkage. Through pseudo instructions such as ENTRY, ENTRYC,
and EXT, subprograms can transfer control to each other and access common storage locations.

The loader is thus able to loed subprogram blocks independently, as required. Program exeeution is not
affected by the relocation process.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the loesl blocks, including the zero bloek and litersals block, but not the absolute bloek. Any
absolute text is simply inserted at the absolute location relative to RA.

COMP ASS binary output for a reloeatable subprogram consists of one seetion for each LCC pseudo
instruetion (if any) in the source program, followed by one seetion eontaining the subprogram loader tables.

60492600 L ' 3-3

Low

Address —~— IDENT Sizes and locations ‘
Subprogram 1 determined by first }{Labeled Common
subprogram declaring Bloeks
~—END them \ ~—IDENT
Subprogram 2 (Program*
{Zero Bloek)
Subprogram 3 LITERALS*
e T TS Local Block 1
P i N Subprogram length <
P N N
Subprogram n = T Y
Size determined by
Blank Common largest block declared
.r by any Subprog'r&m Locsal Block m
High \ -=— END
Address .

Organization of

Map of
Subprogram 1

L.oaded Program

Figure 3-1. Relocatable Program Structure

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Becsguse the loader performs no address manipulation for absolute programs, absolite code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always abscolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the coneern of
only system analysts. Any user can assemble PPU code, but cannot execute it without special system
access privilege,

The programmer has the option of constructing an absolute program as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
Dividing & program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage reguirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading perts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute ploek. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute bloek.

Figure 3-2 illustrates the strueture of an absolute program that is not divided into overlays. The absolute
bloek is the nominal bloek for the program (labeled PROGRAM®* on the listing). The use of default symbols
and literals causes the generation of the zero block and the literals bloek, respectively. Local bloeks A, B,
and C follow the literals block. The transfer symbol in the END pseudo instruction indicates a main
subprogram. In the binary load module the prefix (PRFX or 7700g) tabie and the header table precede

the binary section that is the memory image of the program.

60492600 G

IDENT name

END trasym

Low Address

1
High Address

60492600 G

PROGRAM*

C

Sourece Program
Bloek Strueture

CPU or PPU
Header Table

Origin —m &
(

PROGRAM*

LITERALS*

Binary <
Seetion

A

|

Cc

Crigin

PROGRAM*

LITERALS*

A

C

Map of

Loaded Program

Binary
Load Module

} Zero Block

{Defautt)

Figure 3-2. Absolute Program Structure

Program
Identification

and Loader Control
Information

Zero Bloek
(Default)

3-7

The binary output for the program consists of a section for each overlay. Note that the binary section for
an absolute program that is not divided into overlays has the same format as the main overlay of a program
divided into overlays. The user has the option of writing part of a binary section at a time by using either a
SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable fieid.

An absolute binary load module usually has three parts: a prefix (PRFX or 7700g) table, a header table,
and the binary image of the program or overlay. A header table can be one of the following:

ASCM oar 5000g.
EASCM ar 5100g.
ACPM or 5300g.

EACPM or 5400g.

Tables are shown on 8 COMPASS listing by their octal numbers. The table formats are deseribed in the
Loader reference manual.

The amount of binery written as a result of the binary control instruetion (IDENT, SEGMENT, SET, or END)
is subject to whether or not an entire bloek group is written, as follows:

If a complete block group is being written {everything between an IDENT and an END or between two
IDENT instructions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

If only a porticn of the binsry for the bloek group is being written, it consists of the memory image of
the program or overlay ending with the value of the eurrent origin counter.

END, SEGMENT, and a nonblank IDENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow.

3.4.1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENTT pseudo instruetion or contains SEGMENT
pseudo instruetions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number speecified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77g. The Ffirst
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay {(normally the portion of the program following the first
IDENT). A primsry overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero,

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only

two other overlays ean remain loaded coneurrently: these are usually one primary overlay and one of its
associated secondary overlays.

TIDENT instruetions deseribed in this section are assumed to have nonblank parameters. The specml case
of the blank IDENT is deseribed in section 3.4.3.

3-8 : 60492600 G

The hierarchy of overlay association is depicted by figure 3-3. The primary,overlay 1,0 has three
associated secondary overlays numbered 1,1; 1,2; and 1,3. A primary overlay and all of its associated
secondaries have the same primary level number. The next braneh of overlays {(indicated by level
numbers 77,y) shows that the level numbers of the overlays are not required to be consecutive nor to be
indicative of the order in which they were generated.

1,3 77,2] 23,40)

1,2 77,20 © 23,30 Secondary
> Overlays

1,1 77,7 23,10

Primary
1,0 77,0 23,0 } Overlays

Main
Overlay

Figure 3-3. Overlay Hierarchy

The main overlay can cell both primary and secondary overlays into main memory via the operating system
loader. (For detailed information coneerning loader calls, see the Loader reference manual.) Once a
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for exampie,
egn call overlays 23,10; 23,30; and 23,40 in any order.

The main overlay can have multiple entry points: execution ean begin at any one of them. Usually,
primary and secondary overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primery and in the main overlay. A primary overlay can reference
entry points’in the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten,

- These conventions concerning the numbering, hierarehy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can eall the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in whieh the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instruetions, or data not concurrently in central memory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in ali other
respects. However, a PPU overlay with assembled code in locations 77743 through 7777g may load
incorreetly due to wraparound to location 0000.

Overlays generated by using IDENT pseudo instruetions differ in eertain respects from overlays generated
by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader reference manual.

60492600 G 3-9

IDENT-Type Overlays

An IDENT-type overlay eonsists of the portions of the program from:
One IDENT to (but not including) the next IDENT
The last IDENT in the overlay to the END

IDENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

The first IDENT eauses COMPASS to generate the program or overlay identifieation information that
precedes the absolute section. Upon encountering a second IBENT instruction before an END instruction,
COMPASS generates output consisting of & memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
bloek. An IDENT subsequent to & SEG or SEGMENT, however, generates binary that ends at the location
specified by the current origin eounter. Following the memory image, COMPASS writes an end-of-section
{(or end-of-record) and the overiay identification information specified by the new IDENT for the overlay to
follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals bloek. Block strueturing
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a literals block. The USE table and control counters are all
reinitialized. The crigin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is possible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this beeause the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a seeond IDENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, block usage
alternates between the absolute block (labeled PROGRAM¥ on the listing) and block A, as depieted in the
bloek structure disgram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each bloek. Concatenation also oeeurs in the
primary overlay, OV1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and C.

The oceurrence of literals and default symbols causes the assembler to generate a zero bloek and a literals
bloek, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo instruction (BETA, in the
figure}, as shown in the map of the loaded overlays.

The first IDENT pseudo instruetion assigns the level number 0,0 to the first overlay (MAIN). COMPASS
assigns ievel number 1,0 to overlay OV1 by default.

SEGMENT-Type Overlays

A SEGMENT-type overlay consists of the portions of a program from:
The IDENT that identifies the program to a SEGMENT pseudo instruction
One SEGMENT to the next SEGMENT -

The last SEGMENT to the END pseudo instruction

310 60492600 G

IDENT MAIN,0,0 —
BETA—

ABSOLUTE

IDENT OV1—m>

A

ABSOLUTE

A

ABSOLUTE

ORGC BETA/

AI

B

ABSOLUTE'

c

ABSOLUTE'

B

END —-»

AI

Source Program
Bloek Btrueture

" Loader Control ;
Information 55

Overlaid portion
of MAIN overlay

P N

Information

ABSOLUTE'

ZERO!

LITERALS'

AT

B

C

60492600 G

Map of Loaded
Overlays

AN
™~
~

Low h

Address\

r

Prefix Table

Loader Contro

ABSOLUTE

ZERO

LITERALS

A

>MAIN overlay
0,0

First Binary
Load Module

0OV1 origin

High Address

ABSOLUTE!

ZERO'

LITERALS'

A1

B

C

OV1 overlay
1,0

Second Binary
Load Module

Figure 3-4. IDENT-Type Overlay Structure

3-11

SEGMENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for 8 CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT {or IDENT, for the first
overlay), and ending with the current origin counter value of the bloek in use at the time the SEGMENT
was encountered. Following this, COMPASS writes an end-of-section and overlay identification
information for the overlay to foHow.

SEGMENT does not clear the symbol table or reinitialize the USE table, Thus, when a SEGMENT is
encountered, the bloek in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the bloek in use.

Each new SEGMENT-created overlay must use unique block names because blocks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the bloek group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, OV1. The use of
default symbols causes generation of a zero block. The use of literals causes generation of g literals
block. Both of these blocks oceur in the overlay MAIN, beeause it contains the end of the absolute block.
Block A begins in the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruetion causes the origin of the primary overlay OV1, to be set at load time to TAG, at a
lower address in block A. {Note that the loader control information is loaded at an address lower than the
origin of the overlay.) OV1 establishes new bloeks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instruetions are permitted within an absolute assembly and cause the generation of a 5100g overlay
table. This table consists of a control word and a list of overlay entry points. The ealling program can
examine the list and link to any of the entry points. The 5100g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 5100g
table, refer to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instruetions or IDENT pseudo instruetions for
which the parameters are omitted (blank), COMPASS writes a partial binary section consisting of the
binary generated sinee the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section {or end-of-record) or a new prefix table. A SEGMENT, nonblank IDENT, or END instruetion
completes the binary section.

SEG Partial Binary Record

By writing partiel binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group. When the SEG is encountered, COMPASS writes
binary beginning with the first bloek established in that portion of binary and ending with the final count
specified by the origin ecount for the current bloek. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record. '

The portion of the binary that contains the end of the absolute block contains the literals bloek, if there is
one, The symbol table and USE table are not reinitialized. '

3-12 60492600 G

IDENT MAIN

MAIN

> Qverlay

0,0

ABSOLUTE
ABSOLUTE
ABSOLUTE ZERO
LITERALS
SEGMENTOV1 | é _____
ORG TAG N~ TAG—~] A
C N —
D ™ N First Binary
END Load Medule

Source Program
Block Structure

Low Address

Second Binary
Load Medule

MAIN

ABSOLUTE
ZERO
MAIN{ | LITERALS
A
\
High Address \

Origin

ABSOLUTE

ZERO

LITERALS

A

60452600 G

Map of Loaded

ovil
Overlay
1,0

Overlaid
Portion
of MAIN
Overlay

ovi
Overlay
1,0

Overlays MAIN and OV1

Figure 3-5. SEGMENT-Type Overlay Structure

3-13

Figure 3-6 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of memory required to assemble the program. The resulting absolute section

is loaded and executed &s a single program or overlay.

IDENT PROG
ABS TE
ABSOLUTE oLy
SEG _
(writes partial—a1 - = — - - -~ - — - >Absolute_Bmary
binary) ABSOLUTE LITERALS Section
SEG A A
(writes partigl— - — - — ~ = - —~ - -}
binar
inary). B Largest partial assembly B
determines assembler
c storage requirements C)
END— End-of-section
Source Program Binary Load
Block Structure Module

Figure 3-6. SEG Partial Binary

IDENT Partial Binary

An IDENT with & blank variable field causes all binary accumulated since the previous IDENT, SEG, or
SEGMENT to be written out without an end-of-section (or end-of-record) or a new 7700g prefix table.

The USE table and the block counters are reinitialized. Esech symbol in the symbol table is assigned an
absolute address. The blocks in each partial binary seetion generated in this manner are ailocated as if the
partial binery section were a new subprogram with its own absolute bloek, literals block, and local blocks.
This allows portions of a program to be self-eontained units even though they are not overlays but are
loaded s & single unit. The origin of an absolute block for new portion is the last word address plus one of
the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute bleck and normally ends
with the maximumn origin counter value of the last bloek deelared in the bloek group; that is, it nermally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the eurrent
block.

COMPASS completes all blocks. The literals block is terminated. Block strueturing starts fresh with each
IDENT. Each new pertial binary section ereated by a blank IDENT can use the same bloek names as are
used by the other blank IDENT-created partial binary sections and non-blank IDENT-created overlays and
each IDENT can contain a literals block but the bloeks with the same names are independent of each other.

An attempt to write into or to reset the origin counter to n loeation in a partial binary seetion written
separately causes an assembler range error.

3-14 : ' 60492600 G

Figure 3-7 illustrates how the binary for an overlay can be written in three diserete partial binary sections
to reduce the amount of central memory required to assemble the program and divide the program into
self-contained units. The resulting absolute section is loaded and executed as a single overlay.

IDENT PGM

IDENT

ABSOLUTE

LITERALS

Local Blocks

IDENT

IDENT OVLY

60492600 G

ABSOLUTE'

LITERALS'

Loeal Blocks

ABSOLUTE"

LITERALS"

Local Blocks

Source Program
Block Strueture

IDENT PGM

ABSOLUTE

LITERALS

Local Blocks

ABSOLUTE!

LITERALS

Loerl Blocks

ABSOLUTE"

LITERALS"

Loeal Blocks

IDENT OVILY— " ~__J

Binary Load
Modules

Figure 3-7. IDENT Partial Binary Records

End-of-section

Identification
for OVLY

3-15

PSEUDO INSTRUCTIONS 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

The format of the COMPASS pseudo instruetion is the same as that of the symbolie machine instruetion; it
includes the location field, the operation field, the variable field, and the comments field. The pseudo
instruetion differs from the symbolic maehine instruetion in that itis used to control the actions of the
assembler at assembly time, rather than those of the machine at execuuon time.

The pseudo instructions available in the COMP ASS language are presented in this chapter andin chapters 5,
6, and 7. Programmers withlittle COMPASS experience should give special attention to a few iinportant
pseudo instruetions, which are listed in the following table. It is not poss1b1e to write a COMP ASS program
without using some of them. The table indicates the type of assemblies in which the pseudo instructions
can be wed.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute
IDENT 4.2.1 X X X
ABS 4.3.1 - X -
PPU or PERIPH 4.3.3 or 4.3.4 - - X
ORG 4,5.3 X X X
ENTRY . 4,7.1 X - -
BSS -4,5.4 X X X
CON 4.8.6 X X X
END 4,2,2 X X X

4.1.1 TYPES OF PSEUDQ INSTRUCTIONS
Pseudo irstruetions diseussed in this chapter are classed aceording to application as follows:
Subprogram identification (IDENT and END)

Binary control (ABS, MA CHINE, PERIPH, PPU, CIPPU, IDENT, SEGMENT, SEG, LCC, MEMbEL
LDSET, STEXT, COMMENT, and NOLABEL)

Mode control (BASE, CHAR, CODE, COL, Bl=1, B7=1, and QUAL)

Bloek counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)
Symbol definition (EQU and =, SET, MAX, MIN, MICCNT, and SS')
Subprogram linkage (ENTRY, ENTRYC, and EXT)

Data generation (BSSZ and blank operation code, DATA, DIS, LIT, YFD, CON, R=, REP, REPC, and
REPI)

Assembly control (ELSE, ENDIF, IFtype, [Fop, IF, IFC, IFPL, IFMI, and SKIP)
Error control (ERR and ERRxx)
Listing control {LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

60492600 M 41

Later chapters describe pseudo instructions that involve definition operations, alterations to the operation
code table, and micros. In general, pseudo instruetions can be summarized aceording to where they can be
plaeed in a subprogram.

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly., IDENT must be the first source
statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basie characteristics of the assembly and provide the assembler with
required information. These instruetions make up the first statement group which must precede any
symbol delinition, storage alloeation, or object code generation. The following instruetions, if wsed, must
be in the first statement group:

ABS

MA CHINE

PERIPH

. PPU
CIPPU

’ STEXT
MEMSEL

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group:

BASE _CPSYN ENDM) MACROE OPDEF SKIP

" Bl=1 DECMIC HERE MICCNT © QPSYN SPACE
B7=1 EJECT . irc MICRO PPOP 58T
CHAR - ELSE IRP NIL PURGDEF TITLE
CCDE END LDSET NOLABEL PURGMAC TTL
COMMENT ENDD LIST NORETF - QUAL NREF
CProPR ENDIF "MACRO OCTMIC RMT -)

Comment lines andreferences to maero definitions are also perinitted anywhere.

CPU or PPU symbolie machine instructions and all other pseudo instructions cannot be placedin the first
statement group. The first uise of one of these instruetions terininates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instruetions designate subprogram beginning and end. When two or more
subprograms are assembledin a single COMPASS run ealled through the COMPASS control statement, the
end of the source decks is indicated by an end-of-section, such as a 7/8/9 eard.

4.2.1 IDENT — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruetion of the following forin is the first statement of a subprogram recognized by
the assembler. Usually, any lines preceding the first IDENT or between an END and [DENT are assumed to
be comments. However, when COMP ASS has been called by some other langusge processor such as
FORTRAN, the assembler returns control to the processor when the statement following END is not
IDENT. For arelocatable subprogram, COMPASS flags any subsequent use of [DENT before END as an
error. ‘For an absolute subprogram, a second form of IDENT described under BINARY CONTROL is
available for overlay generation.

4-2 Ny 60492600 M

Th_e format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name

CPU Absoclute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

7600 PPU Absolute Format:

IDENT name, origin, entry,

LOCATION

QPERATION VARIABLE SUBFIELDS

6000 Series PPU Absolute Format:

IDENT name, origin, entry, ppu

LOCATION

OPERATION VARIABLE SUBFIELDS

name

oripin

60492600 M

Name of the subprogram or overlay. The parameter is required. For a CPU relocatable

IDENT name, origin

or absolute assembly, name can be 1 through 7 eharaecters, of which the first must be

alphabetie (A through Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1 through 7 characters.

For CYBER 180 Series or CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000
Series PPU 12-bit assembly, name can be 1 through 3 characters. For CYBER 180

Series PPU 16-bit assembly, name can be 1 through 4 characters. In any case, there is

no restrietion on the first character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or overlay. The
overlay loader table and all code assembled starting at this address and ending with the

next SEGMENT, nonblank IDENT, or END instruetion make up the overlay. For asingle
entry point CPU program, the load address for the overlay is origin-1. The word at

origin-1 is overlaid by the 5000g loader control table. For a multiple entry point CPU

program, the load address for the absolute overlay is origin-we-1, where we is the
number of entry points in the 5100g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are overlaid

by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below origin,

The origin subfield does not serve the same funtion as ORG, nor does it replace ORG

for setting the origin ecounter.

If the origin field is null for an absolute subprogram, the assembler uses address
000000 RA(S) as the origin for 28 CPU program and 0000 as the origin for a PPU progrﬂm.

For a relocatable subprogram, the subfield is ignored. The loader automatlcaﬁy
relocates the first subprogram to be loaded starting at RA{S)+100g, the second
subprogram starting at the first available location following the first subprogram, and so

forth.

entry For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this
subfield contains an expression specifying the subprogram entry address, which can be
symbolie.

£aly Absolute expressions specifying the level numbers of the overlay. 27 is the primary

level {0 through 63) and £ is the secondary level {0-63). When the first IDENT
identifies the main overlay, £1 and £9 can be omitted. If £1 is omitted, it is set
to 00. If £9 is omitted, it is set to 00,

Because the first IDENT precedes any use of the BASE pseudo instruction, the level
numbers on this IDENT are evaluated as decimal unless spec1flca11y desxgnated as octal
by a post radix.

pbu Absolute expression specifying the number of the PPU on which this program is to be

loaded. On the first IDENT, this number is evaluated as decimal unless speeifically
designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is-called from within a FORTRAN compilation rather than by a COMPASS
control statement, IDENT must be in ecolumns 11 through 15.

* When the subprogram does not inelude a TITLE instruetion, COMPASS uses the IDENT variable field entry
as the main subprogram title on the assembly listing.

Example:

LOCATION OQPERATION | VARIABLE COMMENTS

T 1 18 {ae
INENT |CT,CONTROL,CONTROL
ARS JARSOLUTE CPU PROG2AM
ORG 114e |

CONTROL [BSS 1} IDEFTNFS SYMROL CONYPOL
END

Absolute CPU program CT will be loaded at origin address 00110g.

4,22 END — END OF SUBPROGRAM

An END pseudo instruetion must be the last instruetion of each subprogram. It causes the assembler to
terminate all eounters, econditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

4-4 -t 60492600 G

For a relocatable subprogram, the assembler combines all local blocks into a relocatnble subprogram
block, generates the relocatable binary fables and produees the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zera,
combines all blocks into an absolute subprogram or overlay, generates the ahsolute binary section and
produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym END trasym
sym Optional 1ast word address symbol; if present, COMPASS defines it as the
- total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.
trasym A gymbol specifying the entry point to which control transfers for a reloca-
table subprogram. This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the londer
uses the last one encountered, '
For an absolufe assembly, trasym is ignored.
Example:
LOCATION OPERATION | VARIABLE . COMMENTS
1 I 18 [30
IDENT |PROG1 j
ENTRY [REGIN |
RFGIN SR 1 |
END AEGIN l

80492600 A - ' 1o

ot

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler are
summarized below and deseribed fully in this seetion.

ABS Specifies CPU absolute binary output

MACHINE Specifies processor type

PPU Specifies CYBER 70 Model 76 or 7600 PPU binary cutput

PERIPH Specifies CYBER 180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, or 74; or
6000 Series PP 12-bit binary output

CIPPU Specifies CYBER 180 Series PP 16-bit binary cutput.

IDENT Begins absolute overlay or writes partial binary section

SEGMENT Begins absolute overlay

SEG Writes partial binary seection

STEXT Generﬁta system text overlay

COMMENT Eserts comments into the 7700g prefix table

NOLABEL Suppresses header information on binary output

LCC Passes loader control information to the relocatable loader

LDSET Generates loader directive LDSET

MEMSEL CYBER 180 Series PP memory size selection.

4.3.1 ABS — ABSOLUTE CPU PROGRAM
An ABS instruetion declares a CPU program fo be absolute. If used, it must be in the first statement group.

The following instruetions are fllegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol ean be prefixed by =X if it is also defined eonventionelly; in this ease, the =X has no significance
because a conventional definition takes precedence (see Default Symbols in ehapter 2).

Format:

LOCATION OPERATION

ABS

YARIABLE SUBFIELDS

Symbols in the location and variable fields, if present gre ignored. If a program contains both ABS and
PERIPH {or PPU), the PERIPH (or PPU) mstruchon takes precedence,

4-§ 60492600 M

Example:

LOCATION OPERATION | VARIARLE COMMENTS
1 n 18 [0
TOENT [GT,NONTROL,CIONTROL
8BS IQRSOLUTE CPU PROGRAM
NRG 110m l
CONTROL |BSS H EEFINES SYMBOL CONTROL
END |

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruetion specifies the type of computer system on which the object program can
be executed successfully and optionally specifies hardware features needed by the object program. When
the loader loads the objeet program, the required hardware features specified with MACHINE are
reconciled against actual hardware features present; a missing feature causes the Ioader to issue a fatal
diagnostic messsge. I used, MACHINE must be in the first statement group.

Format:

LOCATION

OPERATIO

N VARIABLE SUBFIELDS

MACHINE

type,hfl,hfz,hfg,...,hf

n

A location field symbol, if present, is ignored.

type

60492600 L

Character string designating object processor type. The subfield ean be any length and
may contain any characters other than blank or comma. The first character identifies
processor type, as follows:

6

The object program is restricted to the following computer systems: CYBER
180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, and 74; and 6000
Series. All machine instructions unigue to the CYBER 70 Model 76 or 7600
Computer Systems are undefined.

The object program is restricted to a CYBER 70 Model 76 Computer System or
to a 7600 Computer System. With the exception of the PS instruetion (often
used for subroutine entry points in CPU assemblies), all instructions unigue to
the following computer systems are undefined: CYBER 180 Series; CYBER
170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series.

8 The object program is restricted to a model 810, 815, 825, 830, 8335, 840, 845,
850, 855, 860, 865, 875, or 990 Computer System. All machine instruections
unique to other computer systems are undefined. This pseudo instruction
should not be used if SSAIDTEXT has been specified on the COMPASS control
statement.

In & CPU assembly, if the MACHINE pseudo instruction is omitted, or the type subfield
is blank, or its first character is not 6, 7, or 8, then all CPU instruetions are defined,
and the target and valid fields of the PRFX table in the object program are blanks. If
the type subfield is present and its first character is 6, 7, or 8, the valid field contains
6X, 7X,or 8X. If the type subfield is at least two characters, the first character is 5,
7, or 8, and the second character is a digit {0-9), the target field contains those two
characters.

In & PP assembly, if the MACHINE pseudo instruetion is omitted, or the type subfield is
blank, or its first charaeter is not 6, 7, or 8, them: if the PERIPH pseudo instruetion is
present, MACHINE 6 is assumed; if the PPU pseudo instruetion is present, MACHINE 7
is assumed; if the CIPPU psuedo instruetion is present, MACHINE 8 is assumed. The
target field of the PRFX table contains blanks, and the valid field contains 6P, 7P, or

8P,
hfi Optional subfield, a qharacter stri.ng designal_:ing en optional hardware feature required
for suceessful exeeution of the objeet program. The subfield may be any length and
may contain any characters other than blank or ecomma. It has no effect on assembly of
the program. The first character of the subfield is placed in the -
hardware-instruction-dependencies field in the PRFX table in the object program.
Recommended mnemonie letters are: |
C Compare/dove Unit
b Distributive Data Path
I Integer Multiply Instruction
L ECS8/LCM
R Interloek Register
X Central and Monitor Exehange Jumps
Up to nine hf; subfields are processed; any additional subfields are ignored. If the
hfj subfields are omitted, the comma following type can also be omitted.
Example:
LOCATION OPERATION | VARIABLE COMMENTS

1 I 18 ET
T

MACHINE 6,5MU,LCH,x]
1
|

4.3.3 PPU - CYBER 70 MODEL 76 OR 7600 PFU PROGRAM
A PPU instruction declares a program to be a CYBER 70 Model 76 or 7600 absolute PPU program rather

than a CPU program. If used, PPU must be in the first statement group. For a description of binary
format generated as a result of this instruction, refer to the Loader reference manual.

4-8 ' 60492600 M

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USELCM
EXT R=

LCC Bi=1

REP ‘B7=1
REPC

REPI

SEG

A symbol can be prefixed by = X if it is also defined conventionally.

. If the program contains both o PPU and a PERIPH pseudo instruction, the PPU takes precedence.
PPU programs permit symhols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but ave not applicable in n PFU
assembly:

OPDET
CPOP
CPSYN
PURGDEF
Tormat:
LOCATION OPERATION VARIABLE SUSFIELDS
PPU J
J A character string heginning with J supplied in the variable field alters the way

that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

If Jis not specified, COMPASS first tests the range of the expression ngainst
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second lest, this time using the expression value minus the
location counter value. I the value is now in range, COMPASS azsembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

As a result, COMPASS is able to differentiate bebtween an expression value
that is an absolute address in the short jump range from an expression value

that is a true relative address.

A symbol in the loeation field, if present, is ignoved.

60492600 A +-9

Example:

Location Code Genera.ted LOCATION OPERATION [VARIABLE COMMEMTS
] I 18 [30
PPU I
. i
740 TAG BSS 20a I
76D 0357 uJn TaAG-+ |[EXPRESSION < 378
]
Location Code Geﬂerated LOCATION OPERATION | VYARIABLE COMMENTS
1 n 1B [0
BRI JUMP. :
. |
740D . TAG ASS 20R |
760 0357 UJN TAG |[EXPRESSINN-* < 37R

4.3.4 PERIPH ~ CYBER 180 SERIES; CYBER 170 SERIES; CYBER 70
| MODELS 72, 73, 74; OR 6000 SERIES PPU 12-BIT PROGRAM

- A PERIPH instruction declares a program to be 8 CYBER 180 Series or & CYBER 170 Series or CYBER 70
Model 72, 73, 74, or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must
be in the first statement group. For a deseripton of binary output produced as a result of this instruction,
refer to the Loader Reference Manual. '

Floating point constants and the following instructions are illegal in & PPU assembly:

ENTRY LCC REPI R=
ENTRYC REP SEG B1=1
EXT REPC USELCM B7=1

I A symbol ean be prefixed by =X if it is also defined eonventionally. In this case, the X will be ignored.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special signifieance. The following instructions are legal but are not applicable to PPU
assemblies:

OPDEF

CPOP

CPSYN

PURGDEF

Format:
LOCATION CPERATION YARIABLE SUBFIELDS
PERIPH J

) : A character string beginning with J supplied in the variable field alters the way that
COMPASS assembles the variable field expression on UdN, ZJN, MJN, or PJN
instruetions.

4-10 - 50492600 M

If J is not specified, COMPASS first tests the range of the expression value agamst the
short jump limit (+31). If the value is in range, COMPASS assembles the jump using the
value of the expression. If the value is out of range, COMPASS performs a second test,

this time using the expression value minus the location counter value. If the value is
now in range, COMPASS assembles the instruetion using the expre.ssmn value minus the

location counter velue. However, if it is out of range, a fatal error is fiagged.

Selection of the J option causes COMPASS to always subtraet the value of the location
counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruetion.

A symbol in the loeation field, if present, is ignored.

- 4.3.5 CIPPU - CYBER 180 SERIES PPU 16-BIT PROGRAM

A CIPPU instruction declares a program to be a CYBER 180 Series absolute PPU 16-bit program, rather,
than a CPU program. This instruction is required to allow use of the "Long" or 16-bit wide PPU instruetion
set and to allow selection of PPU memory size (MEMSEL) preater than 4. If wed, CIPPU must be in the

first statement group.

Floating point contants and the following instructions are illegal in a PPU assembly:

ENTRY LCC REPI R=
ENTRYC REP SEG Bl=1
EXT REPC USELCM B7=1

A symbol ecan be prefixed by =X if it is also defined conventionally. In this case, the X will be ignored.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instruetions are legal but are not applicable to PPU
assemblies:

OPDEF

cpor

CPSYN

PURGDEF

Format:
LOCATION OFE}ATION VARIABDLE SUBFIEEDS

CIPPU n)

J A character string beginning with J supplied in the variable field alters the way that
COMPASS assembles the variable field expression on UJIN, ZJN, MJN, or PJN
instructions.

60492600 M 411 @

If J is not specified, COMPASS first tests the range of the expression value against the
short jump limit (+ 31). If the value is in range, COMPASS assembles the jump using the
value of the expression. If the value is out of range, COMPASS performs a second test,
this time using the expression value minus the loeation counter value. If the value is now
inrange, COMPASS asssembles the instruction using the expression value minus the
loecation counter value. However, if it is out of range, a fatel error is flagged.

Selection of the J option causes COMPASS to slways subtract the value of the loeation
counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseude instruetion.

A

A symbol in the location field, if present, is ipnored.

4.3.6 IDENT — IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second and
subsequent IDENT instructions having nonblank varigble fields cause generation of overlays. IDENT differs
from SEGMENT in the way it generates overlays. First,it allows the specification of overlay numnbers.
Second, the USE table and all block eounters are reinitialized. The symbol thble is not cleared; all symbols
are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a previously defined symbol
restarts the absolute block at the symbolic address. The third difference is that normally the end of the
overlay is determined by the last word address, the maximum origin eounter value of the last bloek
established in the overlay. A preceding SEG or SEGMENT can alter this, however (Seetion 3.4).

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The ouput is not
terminated by an end-of-section or a new 77g table. However, the USE table and the bloek counters are
reinitialized and each symbol in the symbol table is assigned an absclute address.

Following an IDENT, COMPASS assumes that all bloeks, ineluding the literals bloek are complete. Block
strueturing starts fresh with the new overlay or portion of binary. Thus, each new overlay or partial can
use the same block names as are sed by other overlays or partial and each can have aliterals bloek.

For a blank IDENT, an attempt to write into or reset the origin counter to alocation in a partial seetion
written separately causes a range error. Following the IDENT, the origin of the new absoalute block is the
next word after the binary written out, that is, it is lwa+1.

The format of the IDENT varies aceording to the type of assembly as follows:

CPU Absolute Format:

LOCATION - |OFERATION VARIABEE SUBFIELDS

IDENT name, origin, entry, pl W 9

4-12 60492600 M

ar

LOCATION

QOPERATION VARIABLE SUBFIELDS

IDENT

7600 PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

OPFERATION VARIABLE SUBFFELDS

name

origin

entry

23,29

60492600 M

IDENT name, origin

Name of the overlay. For a CPU program, 1-7 characters, the first of which must be
alphabetic (A-Z}; for CYBER 180 Series or CYBER 170 Series or a CYBER 70/Model 72,
73, or 74, or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76 or
7600 PPU program, 1-7 characters. In all cases, the last character must not be a

colon. A name is a loader linkage symbel required for overlays.

An expression speeifying the first word address of the overlay. The overlay control
word and all code assembled starting with this address and ending with the next
SEGMENT, nonblank IDENT, or END instruetion comprises the overlay. For a single
entry point CPU program, the load address for the overlay is origin-1. The word at
origin-1 is overlayed by the 50g loader teble. For a multiple entry point CPU
program, the load address for the overlay is crigin-we-1, where we is the number of
entry points listed in the 51g Joader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are
overlayed by the 60-bit loader control table. Deta can be generated in loeations
starting with origin and above, but not below origin. The origin subfield does not serve
the same funetion as ORG nor does it replace ORG for setting the origin counter. The
origin of an overlay can be below the origin speecified on any other IDENT or SEGMENT,

An expression specifying the overlay entry eddress. When the overlay is ealled, eontrol
optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU programs
only. £7 is the primary level (00-77g), £ is the secondary level (00-77g). If

base is 131, £1 and fg are assumed to be octal. If 2y and £9 are not specified,

21 isset to 01 and £4 is set to 00.

4-12.1/4-12.2 I

ppu An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. H base is M, ppu is assumed to be octal.

A 1ocation-ﬁeld symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control statement. END
dumps the last overlay or completes a partially written section,

Examples:

The following program uses IDENT for overlay creation. Symbols T.OVL, O.DMP1, etc. are
defined on a system text overlay.

LOCATION QFERATION | VARIABLE COMMENTS

1 n 18 lae

IDENT DHP.i,T.OUL’F.ani

ABS
DeM BASE |M |
" |COMMENT 1UIBTITU.CPNTRUL CARD CALL.DMP.
LIST |6
SST | OVERLAY
ORG T.0VL DMPL
QUAL [DMP1 |
DMP SX0 B4 |
QUAL [DMPZ |
IDENT DHPE,T.OVL,OrDMPZ 71
DRG T.OVL OVERLAYS DMP2
URW2 SX0 BE+1 | THROUGH DMPA
L] - I
QUAL |DMPa | =
IDENT |DMP.9,T.0OVL,0.0MPQ OVERLAY
ORG T.OVL | oMP9
SX0 o.nnpz+F.MDﬁ
L !
END FND OVERLAY DMPQ]

60492600 A ' 4-13

The following program uses IDENT instructions having blank variable fields.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 10 ET:
IDENT | VVV,110B,ENT T
ARS |
ORG 110R [
ENT XD !
. - I
. : - | First
1617 LIT 152,23 | Partial Binary
TNENT 1
I =
L] -
. . |
3455 LIT 2,3 | Second
. - I Partial Binary
e . |
IDENT |
a - l
7i1le) LIT 1,2] Third
* . _ Partial Binary
FND | N
Origin ABSOLUTE 'I
1617 LITERALS Tirst

Partial Binary
Local Blocks

ABSOLUTE' L

. " Becond
3455 LITERALS! Partial Binary
ABSOLUTE'!
7116 — LITERALS" Third
Partial Binary
Local Blocks]
lwa —
Core Map

-1 60492600 A

4.3,7 'SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It hes many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is intended
for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEGMENT pseudo
instruetion causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be written on the binary

cutput file,

The first SEGMENT eauses all binary accum ulated since the IDENT to be dump as the main (0, 0) overlay.
Each subsequent SEGMENT generates a new overlay with the specified level numbers. END dumps the last
overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the symbol table or
bloek declarations. ANl Hoelks other than the bloek in use must be complete. For 8 CPU assembly, the
literals bloek must be in one overlay only but that overlay can be any overlay.

Format:
LOCATION CFERATION VARIABLE SUBFIELDS

name SEGMENT origin,entry, 21 . E2

name Name of overlay. For & CPU program, 1-7 characters, first of which must be
alphabetie (A-Z); for a PPU subprogram, 1-3 characters. In all eases, the last character
must not be a colon. It is a required loader linkage symbol.

cfrig'in ‘A relocatable expression specifying the first word address of the overlay. It can only an
address in the bloek in use. The overlay loader table and sll code assembled starting at
this address and ending with the next SEGMENT, nonblank IDENT, or END instruetion
ecomprises the overlay.
For a CPU program the load address for the record is origin-1. The word at origin-1 is
overlayed by the 50g loader table. : BRI '
For a PPU subpregram, the load address is origin~5. Five 12-bit PPU words are
overlayed by the 60-bit loader table. Data can be generated in locations starting with
origin and above, but not below origin. The origin subfield does not serve the same
funetion as ORG nor does it replace ORG for setting the origin counter. The origin of
an overlay can be below the origin specified on any other [DENT or SHGMENT.

entry An expression specifying the overlay entry address. It is used for CPU mssemblies only.
When the overlay is ealled, control optionally transfers to this address.

29,8 .Absolute expressions specifying the level numbers of the overlay for CPU programs

: only. £; is the primary level (00-77g), &5 is the secondary level {00-77g). If
base is M, £1 and £9 are assumed to be octal. If £; and £y are not specified,
£ is set to 01 and £g is set o 00.

60452600 M

4-15

Example:

LOCATION OPERATION | VARIABLE CUM'MENTS
1 n 18 |30
INENT [SAM,FNTA I
ARS
0RG 110R |
FENTA ASS n lENTPY POINT
ovLnNe RSS 1 |OVFRLAY LOAD POINT
. - |
SEGL SFGMENT STRT,ENTA |
NRG avLer
RS 1 LOADER TARLE
STRTY PSS n [FIRST WORD OF CVESRLAY
ENTR Pss q IEXECUTION HEGINS HEPE
END ' !END OF OQVEPLAY

SEG1 is loaded as an overlay upon a call for the loader from the program. The first word of the overlay is
loaded at QVL.OC+1, following the loader table. The entry point to the overlay and the first executable
instruetion iz at ENTB. The overlay, when executed oceupies the area of the main program beginning at
OVLOC. o o

4.3.8 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruetion permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file g]l binary information accumulated sinee the
previous IDENT, SEGMENT, or SEG.pseudo instruction. It does not write an end-of-section or begin a new
PRFX table. A SEGMENT, IDENT, or END instruction completes the binary seection.

SEG does not affect the loeation and origin counters. The user cannot resume use of a bloek established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter 50 as to resume a block already written out causes an R error. Also, since the block group is
incomplete and the names of the blocks already written out are still in the USE table, no new blocks can be
established using the same bloeck names as were used prior to the SEG.

The literals bloek is written in the portion that contains the end of the absolute block.

4-16 60492600 M

Fermat:

LOCATION OPERATION VARIABLE SUIBFIFLDS

SEG

Symbols in the location field and variable field, if present, are ignored.

Exam ple:
LOCATIOM OPERATION | YARIABLE COMMENTS
1 It 19 I30

IDENT | NAME,ORIGIN, ENTRY
ARS
USE A |
SEG ’
UsE |s |
) . |
- " I
SEG |
END :

4.3.9 STEXT - GENERATE SYSTEM TEXT RECORD

As aresult of an STEXT pseudo instruetion, binary output for the subprogram consists of all symbols,
mieros, and opeodes (macros, opdefs, and machine and pseude instruetions), written in overlay Format at
the end of pass one. The STEXT instructions must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay
need be processed only onee for all COMPASS programs wsing the same system text. System text overlays
cannot be generated and used in the same assembly bateh; system text overlays generated by one
COMPASS control statement call can be used only by assemblies performed by later COMPASS control
statement ealls.

The symbols included in the system text overlay written are all symbols defined in the assembly except
those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

60492600 M 4-17

The symhol is redefinable (i.e., defined by SE€T, MAX, MIN, or MICCNT).
The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i.e., is a system symbhol input to the present system text assembhbly)

The symbol is 8 characters beginning with 1 |.
All defined micros are included in the system text overlay.

All program-~defined opcodes are also included., Machine an pseudo instructions automatically

defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS con-
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of

each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

A system text overlay on the library is an absolute overlay that has the following control table
48 42 36

59 00
[5000 | o] 01 000000000000

:

Format of Text:

System Symbol
r Table

2 words per entry

W Micro Definitinns

m > Macro/opdef Definitions

m . Operation Table

Entries (2 words per entry)

jzi= Number of words in each part of overlay :

4-18 60492600 A

Formaé:

LOCATION OPERATION VARIABLE SUBFIELDS
‘|lrname STEXT
rpame Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a

letter (A-2) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blanlk, COMPASS uses the name from the IDENT instruction and generates

the system text only. Otherwise, the system fext is generated in addition to the re-
locatable or absolute binary and precedes the binary output on the binary file.

An entry in the variable field, if present, is ignored.

Example:

LOCATION QFERATION | YARIABLE COMMENTS

1 18]

60492600 A

MPRS

TRYS
IXX/X

SYSCOM MACRO (N l

IDENT | SYSTEXT

STEXT
BASE | MIXED
FQu 100 1

I3
F
|
|
|
|

SYSTEM GONSTANTS, SYMBOLS,
|aND COMMUNICATIONS AREAS

EQU |7777 IJ

OPDEF | I,J,K -|1

. . lsysTen-0EFINED MacrOS
. . 'AND OPDEFS

ENDM |

. {_

ENDM I_

MICRO |1410,%¢eo®
|SY STEM~DEFINFD MICROS

END L

| 43.10 COMMENT—PREFIX TABLE COMMENT

The COMMENT pseudo instruetion inserts the character string specified in the variable field into the
eighth through fourteenth words of the PRFX table in the object program. The prefix table, and thus the
comment, is ignored by the loader but identifies the section. If a subprogram contains more than one
COMMENT instruetion, the new comments are appended to the table for the most recent binary eontrol
statement. If the subprogram contains a NOLABEL instruction, the COMMERNT instruetion is meaningless.
COMMENT instruetions following SEG and blank IDENT pseudo instructions are ignered without
notification.

Format:
LOCATION OPERATION VARIASLE SUBFIELDS
COMMENT |string
string COMP ASS searches the columns following the blank that terminates the operation

field. If it does not find a nonblank character before the default comments column (see
COL pseudo instruction), it takes the characters starting with the default comments
eolumn minus one. Otherwise, the character string begins with the first nonblank
“echaracter following the operation field, In either case, the last character of the string

.Is the 1ast nonblank character of the statement. . 1 to 10 blanks are appended on the
right so that the string is followed by at least one blank and the length of the stringis a
multiple of 10 characters. If the variable and eomment fields are all blanks, the string
consists of 10 blanks. If the string lengthis more than 70 eharaeters, all characters
beyond the 70th are lost. ‘ S

A Joeation field symbol, if present, is ignored. Refer to section 4.3.5 for an example.

| 4.3.11 NOLABEL — DELETE HEADER TABLE
The NOLABEL instruetion modifies the format of the binary output produced by COMPASS for an absolute
assembly by optionally suppressing header information. It is partieularly eonvenient for generating
deadstart programs whieh must be loaded at location zero. :

Format:

LOCATION OFPERATION VARIABLE SUBFIELDS

NOLABEL |I

4-20 60492600 M

I Optional; if the variable field contains a character string beginning with an I, COMPASS
suppresses all prefix (7700g) tables, but retains the other prograin header tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (7700g)

Overlay control tables (5000g)
Multiple entry point tables (5100g)
PP header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

43.12 LCC - LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:
LOCATION CPERATION ‘ VARIABLE SUBFIELDS
LCC directive
.d'irecti ve First nonblank character foIlov&ing LCC to the first blank. For directive formats, refer

to the Loader reference manual.

A location field symbol, if present, is ignored. -

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
loader. COMPASS does not edit the direetive; the loader recognizes illegal forms at load time.

4.3.13 MEMSEL - CYBER 180 SERIES SELECT PPU 1.6-.-BIT.ME'MORY SIZE

The MEMSEL pseudo instruction is applicable to CYBER 180 Series PPU 16-bit programs only. Use of this
pseudo instruction controls address field calculation and validation during program assembly. The m field
of the PPU instruction set, when speeifying 8 memory address, varies in the number of bits allowed
dependent upon the variable subfield of the MEMSEL pseudo instruetion. If used, MEMSEL must be used in

the first statement group. '

Format:
LOCATION CHPERATION VARIABLE SUBFIELDS
MEMSEL options
options One of the following, for CYBER 180 Series PPU 16-bit programs only:

blank or 4 all address caleulation and vaelidation checks are based on a 4096
word memaory (0-7777B}.

8 all address caleulation and validation cheeks are based on a 8192
word memory (0-17777B). Applies to CYBER 180 model 990 and
certain model 840, 850, and 860 systems.

60492600 M -1 @

I 4.3.14 LDSET ~ GENERATE LDSET OBJECT DIRECTIVES

The LDSET pseudo instruetion generates loader LDSET directives for a reloeatable program. A program
may contain any number of LDSET instructions. COMPASS collects all LDSET options and writes a single

LDSET (7000g) table in the r

elocatable binary output between the PRFX (7700g) table and the PIDL

(3400g) tables. The LDSET table is not written if LDSET instruetions do not appear in the program.
LDSET is not allowed in a PP or absolute CPU assem bly.

Format:
LOCATION CFERATION YARIABLE SUBFIELDS
LDSET options
options One or mere options separated by commas. See the Loader reference manual

for further information, including applieability to a particular operating
system.

LB Clear local library set. .

LIB=libname Add the specified libraries to the local library set. More than one library can

e : - be specified by seperating library names with a slash, in the form: ;

libnamey /libnam eg/.../libname,
MAP Write load map to file OUTPUT.
' =MAP=p ‘Writeload map to file OUTP.UT.. Map items are selected by p:

I e R R]

422

NOS and NOS/BE SCOPE2
No map. DorO No map.
Statistics. . S .. Statisfics.
Block list, B . .- Statisties and bloek list. '
Entry point list. E Statistics, bloek list, and entry point
: list.
Cross reference map. X Statisties, block list, entry peint list, :

and cross reference map.

60492600 M

MAP=p/lin

MAP=/1fn

PS=p

PD=p

PRESET=p

PRESETA=p

60492600 M

For NOS and NOS/BE, p can be written as N or as any combination of SBEX in
any order.,

Write load map to file named 1fn. p is a3 above.

Write load map to file named ¥n. Installation default determines items on the
map.

Select page size for load map by a specification of number of Hnes. p can be
decimal 10 through 999999. A value outside this range results in the
installation default page size. This option is not supported by SCOPE 2.

Select print density for load map by a specification of decimal number of lines
per inch. This option is not supported by SCOPE 2. p ean be:

6 6 lines per inch.

8 B lines per inch.

other Instaliation default,
Freset memory to the value specified by p. Under NQOS/BE,peanbeal
:l&gcfallj{gh 20 digit octal number with an optional + or - prefix and an optional B

P can also be one of the following key words:

NONE No presetting for ECS {or for LCM and SCM under SCOPE 2);
same as ZERO for CM
ZERO 0000 0000 0000 0000 0000
ONES 7T OTTT O OTTIT O OIN7T NI
INDEF 1777 0000 0000 0000 0000
INF 3777 O000C 0000 0000 0000
NGINDEF 6000 0000 0000 0000 0000
NGINF 4000 0000 0000 QOOG OOD0O

ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252
DEBUG 6000 000C 0004 0040 DOODO

p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24 bits
(ECS/LCM/LCME) of each word eontains its address.

4-22.1/4-22.2 I

ERR=ALL
ERR=FATAL
ERR=NONE

REWIND

NOREWIN

EPT=eptname

NOEPT=eptname

USEP=pname

USE=eptname

COMMON

COMMON=blkname

SUBST=pair

OMIT=eptname

Select loader abort for any loader errors.
Seject loader abort only for fatal loader errors.
Select loader abort only for catastrophic loader errors.

Reset the defauit REWIND/NOREWIN option for load files to REWIND. The
NR parameter on LOAD end SLOAD directives can override this default for
individual files.

Reset the default REWIND/NOREWIN option for load files to NOREWIN.
The R parameter on LOAD and SLOAD directives can override this default
for individual files,

If the symbol eptname is defined, declare it an entry point of the CAPSULE
or OVCAP binary subsequently generated by the loader. This parameter can
be used to specify more than one entry point; entry point names must be
separated by a slash in the form eptname;/eptnames/. .. feptnamey,

Do not declare eptname as an eptry point of the CAPSULE or OVCAP binary
subsequently generated by the loader. This parameter can be used to speecify
more than one entry point. In this case, entry point names must be separated
by a slash in the form eptnamej/eptnames/. .. /eptnamep,

Cause the designated objeet modules to be loaded whether or not they are
needed to satisfy external references. More than one module can be
specified by separating module names by a slash in the form pnamey/
pnames/. .. /pnamey,.

Cause the load of object modules containing the specified entry points
whether or not they are needed to satisfy externsl references. More than one
entry point ean be specified by separating entry peint names by a slash in the
form eptnamey/eptnames/. .. /eptnamep.

Assign all 1sbeled blocks to a segment such that the blocks are available to
all segments that reference them. Valid for segment loads only.

Assign the labeled common bloek named blkname to a segment such that it is
available to all segments that reference it. Valid for segment loads only.

More than one block name can be specified by separating the individual block
names with a slash in the form blkname; /blknames/, . . /blknamep,

Treat external references to eptname;j as though they were references to
eptnames, where the entry point names are specified as a pair in the form
eptname; -eptnames,

More than one pair of entry point names ean be specified by separating the
pairs with a slash in the form pair; /pairg/. . . /pairp.

Omit satisfying external references to the specified externals. More than
one entry point name cen be specified by separating the names with a slash in
the form eptnamej/eptnames/. .. /eptnamep,.

A loeation field symbol, if present, is ignored,

60492600 H

4-23

See the Loader reference manual for details of these parameters, including the operating system to which a
given option applies.

4.4 MODE CONTROL

Mode control pseudo instruetions influence the basic operating characteristies of the assembler.
Specifically, the instructions allow the programmer to alter the way in which the gssernbler:

Interprets binary data

Generates character data

BASE pseudo instruection
CODE pseudo instruction

Interprets the beginning of comments on statements COL pseudo instruetion
Qualifies symbols or does not quelify them QUAL pseudo instruction)
Interprets the R=instruetion B1=1 or B7=1 pseudo instruction

In each ease, the assembler has s default mode which it uses if one of these instruetions is never used.

4,41 BASE — DECLARE NUMERIC DATA MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base radix is
not explicitly defined. Use of the BASE pseudo is optionel; if BASE is not used in a subprogram, COMPASS
evaluates unspecified numeric data as deecimal.

An alternnte application of BASE is to define the previous base as a micro.

In addition, if no program or éystem micro named BASE has been defined, COMPASS changes the
predefined BASE micro to be a single letter D, M, or O, corresponding to the new mode established by this
BASE instruetion.

Format:
LOCATION QPERATION VARIADLE SUBFIELDS

mpame BASE mode

mname Optional 1 through 8 charaeter miero name by which the previous BASE mode can be
referenced in subsequent BASE instructions. If mname is present, the value of the miero
named mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE
mode in effect prior to this BASE instruction. :

mode Blank, in which case the base remains unchanged, or 1 through 8 cheracters, the first of

4-24

which designates the new base as follows:

8]

Octal assembly base; any subsequent use of a date item not specifieally
identified by an O, D, or B prefix or suffix is evaluated as octal. For
example, the constants 15 and 15B are evaluated as 15g; constant 15D is
evaluated as 17g. Any item containing an 8 or 9 without a D radix is
flagged as erronecus. Exceptions are scale fretors, charscter counts, shift
counts (S modifier), and binary point positions, which are always considered
decimal,

Deeimal assembly base; any subseqguent use of & date item not specifically

identified by an O, D, or B prefix or suffix is evaluated as deeimal.

60492600 H

M Mixed assembly base; any subsequent use of a data item not specifically
identified by an O, D, or B is evaluated as decimal if it is one of the
following. Otherwise, it is evaluated as octal.

VFD bit count

I¥, ELSE, or SKIP line count
MICRO, OCTMIC, or DECMIC character count
B, C, or I subfield in REP or REPI
DUP or ECHO line eount
Character count

Shift eounts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count

* Use base in effect prior to current base. The assembler records oceurrences
of BASE pseudo instructions and maintains a table of the most recent 50
occurrences. Each BASE * resumes use of the most recent entry and
removes it from the list. When the subprogram contains more BASE *
instruetions then there are entries in the stack, COMPASS uses a decimal

base.

other If the variable field is not blank and does not contain one of the above,
COMPASS sets an error flag.

Examples:

This example shows the effect of BASE on 2 VFD instruction defining a 48-bit field containing 10g.

Code Generated LOCATION OPRERATION | VARIABLE COMMENTS
] n 18 [0
DrO BASE |0 X
gooueo0nonNoEooonndo VFD O/ !
- -]
L] - l
QeD RASE D |
noaoon VFD LR/A
anovoooNoOGlD I
. .]
DM BASE M |
00008000 VFD |&8/10 |
00000010 |

60492600 H 4-25

The following example illustrates the micro eapability of BASE:

LOCATION OPERATION | VARIABLE COMMENTS
‘ 1 0 18 {30
DM SAVER BASE ISAVE BASE IN USE

I
CODE USING BASE M

STORE SA

VED BASE

|
|
R
|
|
|

‘D \SE:

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruetion defines character data codes to be used when the CODE O {for Other) mode
is in effect.

Format:
LOCATION OPERATION VARIABLE SUEBFIELDS
CHAR expl,exp?
expl Evaluntable absolute expression whose value is 00 to 77g. The value of expl is the
display code value of the character to be redefined.
exp? Evaluatable absolute expression whose value is 00 to 77g. The value of exp2 is the new

code other value of the character designated by expl.

A loeation field symbol, if present, is ignored.

Initially, all ecode other values are the same as display ecode. CHAR need be used only for those characters
whose code other values are different from display code. Characters may be redefined as many times as
desired by subsequent CHAR pseudo instruetions.

Example:
LOCATION OPERATION YARIABLE SUI;IFlELDS
G0r63 CHAR 0,638 INTERCHANGE COLON AND
63700 CHAR 63840 PERCENT FUR CODE UTHER

4.4.3 CODE — DECLARE CHARACTER DATA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Cheracter data can be generated in ASCII (American Standard code for Information Interchange), display,
external BCD, or internal BCD, codes. Use of the CIPPU instruction causes COMPASS to seleet 8-bit
ASCII as the default, all other COMPASS assemblies default to 6-bit display code. Codes are givenin
appendix A.

4-26" 604492600 M

An alternative application of CODE is to define the previous eode as a miero.

In addition, if no program or system micro named CODE has been defined, COMPASS changes the
predefined CODE micro to be a single letter A, D, E, I, N, or O, corresponding to the new mode established |
by this CODE instruction.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname CODE char
mname - Optional 1-8 eheracter miero name by which the previous CODE mode can be
referenced in subsequent CODE instructions. If mname is present, the value of the
micro named mname is (re)defined to be a single letter A, D, E, I, N, or O, I
corresponding to the CODE mode in effect prior to this CODE instruetion.
char The first charaeter of a string indieates the code conversion:
A ASCII six-bit subset
D Display
E External BCD
I Internal BCD
N ASCII eight-bit character set . |
o Other code, defined by CHAR pseudo instructions
* Use code in effect prior to current code, The assembler records oceurrences
.of CODE pseudo instructions and maintains a table of the most recent 50
‘oceurrences. Each CODE * resumes use of the most reeent entry and
removes it from the list. When the subprogram contains more CODE *
instruetions then there are entries in the stack, COMPASS generates display
code. : o Do
Example:
Code Generated LOCATION OPERATICIN | VARIABLE COMMENTS
] N 18 [20
172524202524030000010 : JOATA | OLOUTPUT |
Ded CNDE ASCIT
5765646065640 00utI00 DATA gLOUTPUT |
ApE | CADE EXTERNAL BCD
Lho2423472L6230600000G0 DATA gLouUTPUT |
ErI CODE INTERNAL 8CD
4564634 T7HL4B3Jd0LLLTOU DATA OLOUTPUT]
: IeD CODE DISPLAY
1725242025240000u000 DATA- |OLOUTRUT |
eI Ca7E ¥ I
_1466463476'-063.1014:1130?.1'.4 : S ST DATA [DLOUTPUT |

60492600 M ' 42T

4.44 QUAL — QUALIFY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which ail symbols defined in it
are either qualified or are unqualified (global). If no QUAL is in a subprogram, all symbols are defined as
global.

An alternative application of QUAL is to define the previous qualifier as a miero.

In addition, if no program or system miero named QUAL has been defined, COMPASS changes the
predefined QUAL micro to be the new qualifier name established by this QUAL instruetion.

Within a QUAL sequenece in which a symbol is defined, a symbol reference need not be qualified. Used
outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and a qualifier
become a unique identifier loeal to the sequence in which the symbol was defined. The same symbol used
with a different qualifier is local to a different QUAL sequence, If a symbol is defined with no qualifier as
well as being defined as qualified, a reference to the symbol within the QUAL sequence is assumed to be a
reference to the qualified symbol rather than to the global symbol. In this ease, a reference to the global
symbol must be written as // symbol. However, in 8 NOREF statement when the unqu&hfled symbol is
previously defined and the qualified symbol is not, COMPASS aszumes the reference is to the unqualified
symbol. _

Default symbols and linkage symbols are not qualified.

LOCATION OPERATION VARIABLE SUBFIELDS
mnpame QUAL qualifier
mname Optional 1-8 character miere neme by whieh the previous qualifier ean be referenced in

subsequent QUAL instrueticns or symbol references. If mname is present, the value of
the miero named mname is (re)defined to be the 0-8 characters comprising the qualifier in
effect pmor to this QUAL mstructlons

qualifier A symbol qualifier or * or blank, as follows:

qualifier 1-8 character name, the first character of which eannot be $ or = or : or
numerie. The qualifier cannot eontain the characters

+-%/,0r A _
* A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next QUAL must be
-referenced from outside the QUAL sequence as

' /qualifier/syfnbol '

The current qualifier appears as the third sub-—subtltle on the assembly
listing (seetion 11.1). . g

* The assembler resumes using the qualifier in use prior to the eurrent
- qualifier. The assember records oecurrences of QUAL pseudo instruetions
and maintains a table of the most recent 50 occurrences. FEach QUAL *
resumes use of the most recent entry and removes it from the list. When the
subprogram contains more QUAL * instructions than there are entries in the
stack, COMPASS uses the null (global) qualifer.

4-28 60492600 H

A blank variable field causes any symbols defined up to the next QUAL to be global.

blank
A global symbol does not require a qualifier.
NOTE
The first attempt to redefine a global symbol from within a
QUAL sequence results in A and U errors. The symbol is
defined loeal to the QUAL sequence with & zero value. To
avoid fatal errors, precede any redefinition instruetion (SET,
MAX, MIN, or MICCNT) within a QUAL sequence with a
blank QUAL and follow it with a QUAL*,
Examples:
LOCATION OPERATION [VARIABLE COMMENTS
1 I 18 |30
QUAL | PASS1 |
BCOF <Xe F IRCNE QUALIFIED RBY PASSH
. . I
N Lot I
QUAL | PASS? '
ACQE EQU LoCcz IRCDE QUALIFIED AY PassS?
ouaL [SYMAOLS GLOBAL F20M NOW ON
: : |
L] - i
GLOR ass n EGLCIB IS GLOBAL
. . I
RJ /PBSQLIBCDFNUMD TO PASS1 ROUTENF
. : !
RJ FPASSP/RCOF| JUMP TO PASS? ROUTINE

60432600 H

4-29

Location Code Generated

NNF NNF
SOME

LOCATICN QPERATION | YARIABLE COMMENTS
n 8 l30
T
T ap MArEA | 90K, CWAL i
SE aLarK |
DUAL Kwhl |
TAR RSe 1nn
TaE? ven 65 /-1 :
use | » |
naL | ®
FNnM I
|
|
|

LQCATION OPERATION

COMMENTS

1 1

[20

qQuai
71 BSS

Z1 =

|z1 QUALIFIERD RY 7

EQUATE SYMBOLS SO THAT
Z1 IN Z CAN AY REFERRED

[TO AS Z1 IN R

4.4.5 B1 = 1 AND B7 = 1 — DECLARE THAT B REGISTER CONTAINS ONE

The Bl=1 and B7-=1 pseudo instructions declare that in this CPU subprogram, the contents of the B1

register or the B7 register, respectively, are one.

These instructions do not produce code; they alter

the way in which code is generated by the R= instruction (section 4. 8. 7} and define the symhol Bl -1
or B7=1. If more than one instruction is used, the nssemhbler uses the last one encountered.

4-30

60492600 H

Formats:

LOCATION QPERATION VARIABLE SUBFIELDS

Bl=1
B7=1

A symbol in the location or variable field is ignored.
Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (section 4.8.7).

4,46 COL— SET COMMENTS COLUMN

The COL pseudo instruetion sets the column number at which the comments field ean begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATIDON OPERATION VARIABLE SUBFIELDS
COL n
n An absolute evaluatable expression designating the column number; n 12. When base is M, n

is assumed to be decimal. If n is less than 12, COMPASS sets the column at 12. If n is zero
or blank, COMPASS sets the column to 30, the default column.

if the current operation field extends past the current comments column, COMPASS
substitutes a very large number for n in the current instruetion only; that is, if n is less than
or equal to the last column of the operation field, a variable field must be present if a
comment is present.

A loeation field symbol, if present, is ignored.

Example:
LOCATION OPERATIOM | YARIABLE COMMENTS
1 f 18 [30
" coL 36 |
USE I'RETURN TO BLOCK 0
|
t

In this example, subsequent statements for which the variable field is blank cannot have comments
beginning before column 36.

60492600 H 4-31

4.5 BLOCK COUNTER CONTROL
Counter control pseudo instruetions establish local blocks, labeled common bloeks, and blank common

blocks in addition to the absolute, Zero, and literal blocks established by the assembler; they control use of
all program blocks, and provide the user with e means of changing origin, location, and position counters.

4.5.1 USE — ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The bloek in use is the block
into which code is subsequently assembled. A user may establish up to 252 blocks in a block group.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
USE block
block Identifies block to be used, as follows:
0 or blank Nominal block (absolute or 0).
I Blank ecommon bloek; for a relocatable subprogram, this bloek cannot

contain data. The only storage allocation instructions that ean follow are
BSS and ORG. The BSSZ instruction is illegal because it presets the block
{o zeros.

/name/ Labeled eommon bloek. A name can be & maximum of 7 charaeters and
cannot inelude blank or comma. The first and last characters must not be
colons. Conventions imposed by the loader or other assemblers or
compilers could further restriet the use of names.

name Loes] biock. A name can be 1 through 8 characters, excluding blank or
comma. The first eharacter must not be a colon. Use of this name
enclosed by brackets does not eause the block to become a labeled commeon
bloek. For example, USE A and USE/A/ are different bloeks.

* Bloek in use prior to current USE, USELCM, ORG, or ORGC. See
discussicn following.

A location field symbol, if present, is ignored.
The nominal program block eontains the entire program if no USE or USELCM is encountered.
Redundancy between block names is permitted as follows.

A labeled common bloek designated by /0/ can coexist with the program block designated by 0. Blank
common designated by // can ecexist with a labeled common block designated as ////.

4-32 C 60492600 H

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types {local or common). Furthermore, a CPU subprogram may have two blocks
with the same name and the same block type if they have different memory types (CM/SCM or
ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name.

When a block is first established, its origin and location counters are zero and its position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an

indicator as to whether the next instruction is to be forced upper.

If the most recently assembled

instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for

the origin and position counters. The value of the location counter is nof saved. Upon resumption of
the block, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location eounter to produce the desired results is the responsibility of the programmer,

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
USE * gnd USELCM *) and maintains a USE table of the moat recent 50 cccurrences. Each USE * and
USELCM * resmmes use of the most recent entry and removes it from the table. When the subprogram
contains more USE * or USELCM ¥ instructions than there are entries in the stack, COMPASS uses

the nominal block.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 KT

USE |
1* opiooooooan GAMMA cJ ALPHA 1ALOCK N IN USE

USF DATAL IBLCNK DATAL IN USF
35 17204000000N00000Q00 SAR NATA 1.0 |

USE * |RESUME USF OF BLOCK N
14 5t30000000) SA3 SAM |

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the

block,
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
I I 18 [30
: USE TABLE (USE TABLE LOCAL BLOCK
2615 00 VFD 6/0 |
USE * IRESUME PREVIOUS BLOCK
|
L] [] | L]
SR ;
USE TABLE :RESUHE USING TABLE
30002600 + VFD 6/1RX 418/
use | lResume PREVIOUS BLOCK

Note how separate blocks can be used to facilitate packing of partial-word bytes into a table residing in

& block other than the one primarily being used.

650492600 H

4-33

4.5.2 USELCM - ESTABLISH AND USE ECS/LCM BLOCK

The USELCM pseudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM), For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatable assembly, data generafing instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG,and ORGC) are allowed, The USELCM pseudo instruction is illegal in PPU
assemblies,

Format:
LOCATION QOPERATION VARIABLE SUBFIELDS
USELCM block
block: Identifies block to be used, as follows:
0 or blank Tilegal,
!/ Blank common block. A subprogram can have two blank common

blocks if one of them is in ECS/LCM.

/name/ Labeled common block, The name can be a maximum of 7
- characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

name Local block. t The name can be 1-8 characters, excluding blank or
: comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to hecome a labeled
common block. For example, A and /A/ are different blocks., All
of the Iocal ECS/LCM blocks are concatenated to form a single block,
which is treated by the loader as an ECS/LCM common block whose
name is unique to the subprogram. '

* Block in use prior to current USE, USELCM, ORG, or ORGC.

A location field entry, if present, is ignored.
The length of each ECS/L.CM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words, The maximum =ize of an ECS/LCM block is 1,048, 568

words.

Further rules for USELCM are the same as for USE.

T SCOPE 2 does not currently allow local blecks in LCM.,

4-34 : T S 60492600 H

Examples:

I.éCATION OPERATION | VARIABLE COMMENTS
) n 18 l30
BASE 0 ;
1
USELCM| LCH JESTABLISH AND USE LUM BLOUK
LCHC BSS 0 JUEFINE SYMBOL LCMC
8LOC1 8Ss 100 [RESERVE 100 WORDS
BLOG2 BS3 200 |[RESERVE 200 WORDS
USE ¥ |RESUME PREVIOUS BLOLK
N |
ORG 8LOC1+10008]
BLOC3 BSS 20 IRESERVE 20 MORE WORDS
Use | IRESUME PREVIOQUS BLOLK

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set, COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC 1 indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG., In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by

the linking loader if that common block was first declared by a previously loaded subprogram. If two
or more programs in a load sequence preset reloeatable text within the same common block, the ORGC
must be used; otherwise, multiple relocation of those words can occur.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
ORG exp
ORGC exp
exp Expression specifying the address to which the origin and location counters are to be

set. Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

T Not supported by SCOPE 2 Loader.

60492600 H : 4-35

1, If the expression containg a symbolic address, COMPASS uses the block in
which the symbol was defined. ‘

2. COMPASS uses the current block if the value of the expression is *, *L, or
*Q, If the origin and location counters are the same value, and no code has
been asserbled in the current location, the only effect of *, *L, or *O is to
force the next instruction upper., If a word is partially assembled, however,
the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

3. An ahsolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbals
defined in the ahsolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value, It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, iz ignored.
Once an ORGC pseudo instruction has established the conditional loading indication for a given common

block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

LOCATION OPERATION | VARIABLE COMMENTS
1 " 0 [30
USE ALPHA [
. ' | =
[- In
- - I-
ABC DATA 20,100,1000 |LOCATED IN ALPHA
i
L] - |.
. . I
USE BETA |
X¥7 BSS 0 'LDCHTED IN BETA
. . .
. - I o
ORG ABC |SETS ALPHA COUNTERS T0O ABC
. - |AND RESUMES USE OF ALPHA
- L] Il
BSS ia0n '
. . I

4-36 . ' : 60492600 H

LOCATION OPERATION [VARIABLE COMMENTS
i n 18 {30
ORG |s0 ISETS ABSOLUTE BLOCK COUNTER
. . |TO 50 AND BEGINS ITS USE
ORG XYZ+100 ISEYS BETA COUNTERS TO XYZ+1i01
T ;
USE » IRESUNES ABSOLUTE 8LOCK
L] - . I L}
. . I
USE . :RESUHES BLOCK ALPHA
] - I -
- [] []
USE . |RESUMES BLOCK BETA
L - -
L | [] ‘ -
L] - l.
. . l.
USE . jRESUMES BLOCK ALPHA
- - IQ
. . I
USE ¥ :RESUHES NOMINAL BLOCK
USE /DATA/ i
DATA BSS 0 |
0GC | DATA
DATA | 1,2,3 {CONDITTIONALLY PRESET DATA
[
USE anvyBLogk |
£oN 3RXYZ 'UNCONDITIONAL DATA
USE * {
FOUR DATA | & [RETURN T0 /nATA/ STILL
NATA | 5,56 SONDITIONALLY SKIPPING
0]G FOUR
R X1,ERROR | UNGONDITIOMALLY LOADED
RJ SUBY | INSTRUGT LONS
. |
. I

4.5.4 BSS—BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the Mock in use by adjusting the origin and location counters, It
does not generate data to be stored in the reserved area. A primary appliecation is for reserving blank
common storage. It can also be used to reserve an area to receive replicated code {see REP, REPC,
and REPI, section 4. 8. 8).

60492600 H . 4-37

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
Bym BSS aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. It is the beginning symbol for the storage area.
aexp Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp cannot contain external symbols.
The value of the expression can be negative, zero, or poeitive and the value
is added to both the origin counter and the location counter. A BSS € or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.
Example:
LOCATION OPERATION | VARIABLE C.OMM'ENTS
! 1 1 [0
USE 7 J] . .
COMMON BsSs 104468 lFn!ESER\.)‘E 512 WORDS OF BLANK COMMON
USE » | :
SA6 CDHMONFSDUB}
L] L] [L]
TRG ass)] :DEFINE SYMBOL TAG

4.5.5 LOC — SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

field expression.

Format-

LOCATION

CPERATION

VARIABLE SUBFIELDS

4-38

LOC

exp

60492600 H

exp Relocatable expression specifying the address to which the location counter
is to be set. Any symbols in the expression must be already deﬁned in the
assembly and must not result in negative relocation.

A location field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagped.with an L on the listing until & T.OC *0, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A 1L.OC instruction does not affect the origin counter except that it causes the next instruction to be
forced upper. The only effect of LOC * or LOC *L is to force upper. Because COMPASS does not
save the value of the location counter when it switches blocks, a USE, ORG, ORGC, or USELCM for
a different block effectively resets the location counter to the origin counter value. When use of the
block is resumed, it is the responsibility of the user to reset the location counter to produce the desired
results.

Example:

In the following example, the first LOC is used to generate PPU code thal is to he loaded into one
PPU and transmitted to a different PPU for execution. The second L.OC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the
program, LOC *O returns the location counter to the value of the origin counter,

LOCATICN OPERATIOM | VARIABLE COMMENTS

Location Code Generated ; Y 15 |
1 Tt EQU 1 '
0 CH EQU it} I
7100 ORG 71010 ;
7100 RES BSS i
L 100 , Lac 100 l
L 188 2400 PFR PSN 0 i
L 101 24090 PSN 0 |
L 102 2400 PSN D
L 103 6100 0100 EIM PP2,CH |
|
L] [) - l
L 208 PPRA BSS a |
L 0 LOC] i
L i 0100 CON PPR
L 1 o114 CON STM |
L 2 o121 ;0N DPM |
L 3 01322 CON EXR
L 4 0136 : - CON CHS |
L 5 0147 CON pMP |
L 6 0240 CON £ND
L 4 1000 CON 1000 }
S |
L 215 Loc *Q-RES+PPR |
L 215 - a55 240-%
L 240 END BSS |
i 7240 f Loc) I

60492600 H 1-39

4.5.6 POS — SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the bloek in use to the value specified
by the expression in the variable field.

Format:
LOCATION CPERATION VARIABLE SUBFIELDS
POS aexp
aexp An absolute eveluatable expression having a positive value less than or equal to the

assembly word size (60 for CPU, 12 or 16 for PPU). A negative vaue, or a value greater
than the applicable limit, ecauses an error. The value indieates the bit position within
the current word at which the assembler is to assemble the next code generated. Use
caution, because if the new position counter value is greater thaen the old position
counter value, part of the word is reassembled. (New code is ORed with previously
assembled data.) If the new position counter value is less than the old position eounter
value, the assembler generates zero bits to the specified bit position. If the value of
aexp is zero, COMPASS mssembles the next code in the following word,

A location field symbol, if present, is ignored.

NOTE

If the POS instruection is used on a word containing reloeatable or
external addresses, undefined resulis ean oceur with no diagnosties.

The POS instruction does not alter the origin and location counters. The position eounter is never 0 at the
beginning of an instruetion. At the beginning of a new operation, if a data value has been stored into bit 0
{the rightmost bit) of a word, COMPASS increments the origin eounter and the loeation counter and resets
the position counter to the applieable limit.

A POS *P has no effect whereas a POS $ subtraets one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instruction EQU, =, SET, MAX, MIN, and MICCNT permit direct assipnment of 21-bit values to
symbols. The values can be absolute, reloeatable, or external. Register designators are not valid in the
expressions. Subsequent use of the symbol in an expression produces the same result as if the value had
been used as a constant. In the listing of the symbolic reference table, a reference to an EQU, =, SET,
MAX, MIN, or MICCNT instruction is flagged with a D. Smybols defined using EQU and = cannot be
redefined; symbols defined using any of the other symbol definition instructions can be redefined.

4-40 60492600 M

4.61 EQU OR =-EQUATE SYMBOL VALUE

An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:
LOCATION OFERATION VARIABLE SUBFIELDS
sym EQU exp
or
sym = exp
sym A location symbol is required. See section 2. 4 for symbol requirements.
exp . An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external. The expression cannot contain symbols
prefixed by =5, =X, or =Y unless the symbols have also been defined conven-
tionally. If the expression is erroneous, COMPASS does not define the location
symbol but flags an error.
Examples:

20437
74

Th
BL271

LOCATION OPERATION | VARIABLE COMMENTS
I 18 (ET

OPS = 204378 |

LINP = 748 |

CH EQu 3 |

PAGESIZ |= L INP :

LGOPRS EGJ *-0PS |

4.6.2 SET — SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field, A subsequent SET using the same symbol redefines

the symbol fo the new value and attribuies.

MIN, or MICCNT, only.

SET can be used to redefine symbols defined by SET, MAX,

Format:
1LOCATION OPERATION YARIABLE SUBFIELDS
Eym SET exp

60492600 H

4-41

sym

exp

A location symbol is required. See section 2.4 for gymbol requirements.

An evaluatable expression., The expression cannot include symbols as yet undefined
and cannot contaln Bymbols prefixed by =8, =X, or =Y, unlesas the symbols are
also defined conventionally.

If the expression is erroneous, COMPASS does not define the symbol but
1ssues a warning flag.

The symbol in the location field cannot be referred to prior to ite first definition.

Examples:

17
Th
22
76

24

2n

LOCATION QOPERATION | YARIAHLE COMMENTS
N 18 [30
A EQU 15 | A HAS VALUE OF 16
B SEY »p :a HAS VALUE OF POSITION COUNTER
c SET Ae3 :c HAS VALUE A+3 OR 1A
B = B+2 | ILLEGAL, B IS DOUBLY DEFINED
|
c SET C+2 | LEGAL, C CHANGES FROM 18 TO 20
0 SEY F+h :ILLEGBL. F AS YET UNDEFINED
BSS AR | ILLEGAL, REFERENCE PRECEDES
| FIPST DEFINITION
AR SET 16 |

4.6.3 MAX — SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest {most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MAX can be used to redefine symbol= defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MAX BXP; s EXPgs -+ - »8Xp
sym A location field symbhol is required. See section 2. 4 for symbol requirements.
exp, An evaluatable expression. Any symbols in the expression must he previously
defined. The expression cannot contain symbols prefixed by =8, or =X, or =Y
unless the symbols are also defined conventionally.
4-42

60492600 H

The expressions should have similar attributes. No test is made for attributes. The test for maximum

value ie made in passone. In testing for the maximum value in pass one, COMPASS uses values for
relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are

used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag,
The symbol in the location field cannot be referred to prior to its first definition.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 " T [30
5 PT3 EQU 5 1
6 PT31 eQu 6 |
2 PT32 EQU 2 !
6 SYM HAX 973.9131,Pri2

4.6.4 MIN — SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressiens in the variable field, A subsequent
SET, MAX, MIN, or MICCNT using the same symhbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
sym MIN €XPq,8XPgy - . ,€XP
Bym A location symbol is required (section 2.4).
exp, An evaluatable expresgion. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =8, =X, or =Y,
unless the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

650492600 H 4-43

NOTE

During pass two, the expression selected in pass one is
used. The reloecatable symbhols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneocus, COMPASS does not define the symbol hut issues a warning

flag.

The symbol in the location field cannol be referred to prior to its first definition.

4.6.5 MICCNT — SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbo! in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symhbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MICCNT mname
sym A location symhol is required (Section 2.4).
mname Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued,
Txample:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 ET)
MICRO |1y,*¥STRING* iDFFINE 6-CHARACTER MICRO
R K
. . I
B MSIZE MICCNT | MSG IMSIZE EQUALS &
- - 1.
23 MSIZE MICCNT|MSG !MS IZE EQUALS 19

4-44

60492600 H

4.6.6 SST — SYSTEM SYMBOL TABLE

An 88T pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
gsymbols had been defined in the subprogram.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are delined automatically at the start
of each assembly; however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction,

Format:
LOCATION QPERATION VARIAILE SUBFIELDS
55T §ym,, SyM,, ..., 8ym,
aym, One or more symbols on the file that are not to be defined.

1

A location field symbol, if present, is ignored.

Refer to section 10.2 for an example of SST use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symhbols
- defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram.

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points to
the current subprogram. ENTRY is illegal in PPU assemblies.

The ENTRYC T pseudo instruction conditionally specifies which of the symhbolic addresses defined in
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists conditional entry points to the current subprogram, ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemblies, In a relocatable assembly, an entry point
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relafive to a
common block and that common block was first declared by a previously loaded subprogram.

tNot supported by SCOPE 2 Ioader,

60492600 H , 445

Formats:

LOCATION CPERATION VANADLE SUBFIELDS
ENTRY Bym, ,SyMyy ..., 8ym
ENTRYC Byml. symz. ey symu
sym, Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon.

4+~ * /blank , or A

The symbol cannot include the following characters:

Bach symbol must be defined in the subprogram as nonexternal (cannot begin with

unqualified {secticn 2.4.5).

A location symbol, if present, is ignored,

=X or =Y or be listed on an EXT pseudo instruction).

Entry point symbols must be

A list of all entry points declared in the subprogram precedes the assembly listing. An asterisk

appears to the right of each conditional entry point.

Example:
Location Code Generated
111
110
110 5iz20000100
7IT2N
111 5110000002
4-46

LOCATION QOPERATION | VARIABLE COMMENTS
1 1 18 ET
TDENT |CT,CONTROL ,CONTROL
£8S I
ENTRY |MONE i
ENTRY |ONSW
ENTRY |OFFSH l
FNTRY (ROLLNUTY |
ENTRY |[SETPP
ENTRY |[SETTL |
ENTRY |[SWITCH [
DRG 110n
FOMTROL |RSS 0 !
MODE SAZ acTe |
SX7 %2
SAL ? |
. . |
. . I
L] - !

60492600 H

4.7.2 EXT — DECLARE EXTERNAL SYMBOLS

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled or
assembled subprograms for which references can appear in the subprogram being assembled. The
EXT pseudo instruction is illegal in an absolute subprogram. In a relocatable subprogram, EXT
defines symbols as strong externals (section 2.4. 1).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
EXT syml,symz,.. . ,symn
sym, Linkage symbol, 1-7 characters of which the first must be alphabetic {A~2Z) and the

last must not be a colon, The symbol cannot include the following characters;
+ - * / blank , or A

These symbols must not be defined within the subprogram. External symbols
are ungualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listine.

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ Generates zeroed words

hlank operation field Generates one zeroed word

DATA Generates one or more words of data

DIS Generafes ohe or more words of data

LIT Generates literals block entries

VFD Places expression values in user-defined fields

CON Places expression values in full words

R= _ For usé in macros; B~ assumes ﬂmt either (Bl)=1 or (B7)=1 wand

generates increment instructions accordingly

REP, REPC, or REPI Does not actually generate ohject code at assembly time but
causes the relocatalile loader to repeatedly load a sequence of
code into a reserved blank storage area.

60492600 H 4-47

4.8.1 BSSZ AND BLANK OPERATION FIELD - RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the bloek in use. The origin and location ecunters are
adjusted by the requested number of words and the assembler generates data words of zero to be loaded
into the reserved area. An instruction that contains a symbol in the location field but has a blank operation

field has the same effeeci as & BSSZ of one word.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
s5ym |BS8Z aexp
. .
sym If present, sym is defined as the value of the location counter after the foree upper
occurs. The symbol identifies the beginning of the reserved storage area.
aexp Absolute evaluatable expression specifying the number of zeroed words of storage to be

reserved. The expression eannot contain external symbols or result in a relocatable or
negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is reserved.

A BSSZ or group of BSSZ instruections of six or more words produce an REPL table in object code to reduce
the physical size of the object program (appendix B).

For a blank operation field the Héting shows one zero word of data; for 8 BS5Z instruction the listing shows
the word count.

4.8.2 GENERATE DATA WORDS

The DATA pseudo instruetion generates one or mare complete 60-bit, 16-bit, or 12-bit data words in the
current block for each item listed in the variable field.

Format:
LOCATION OFERA'IIOI'; VARIABLE SUBFIELDS
sym DATA itemq,itemg,....,itemy
sym If present, sym is assigned the value of the current location counter after the foree

upper oceurs. It becomes the symbolic address of the first item listed.

4-48 60492600 M

item,
i

A DATA pseudo instruction always forces upper.

PPU assemblies.

Character, octal numerie, or decimal numeric data item, according to

specifications described in section 2.7, TFloating point notation is illegal in

Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

Unless the D list option is selected, only item, appears on the listing.

A blank item does not cause generation of a data word.

Examples:
Location Code Genera_ted LOCATION OPERATION | VARIABLE COMMENTS
1 18 [0
552 1&071790000000000000 OPTH DATA | ALLGO i
553 &0000000080000000000 oPT DATA | 1BSsQa [
554 03171520111405000000 oeTT DATA | OLCOMPILE |
555 17252420252400000000 OPTD DATA | OLOUTPUT,0 |
556 0000000006D0000BO00D i
557 17205146314631463146 OPTY DATA | 1.3EE [
560 16403166314631463146
Location Code Generated LOCATION CPERATION | VARIABLE COMMENTS
1 1 18 130
PERTPH i
De0 BASE |0
i
L |
1250 7070 AT DATA [F070,-7,0,1R1
1251 770 |
1252 0000 [
1253 1034 |
1254 5501 DATA PG A,0LEF
1255 oono I
1256 0506 |
1257 D123 DATA pt23,-4 |
1260 7773
1261 D40t DATA H*DATA™ |
1262 2401

4.8.3 DIS—GENERATE WORDS OF CHARACTER DATA

The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly.
only the first word of character data appears on the listing,

60492600 H

Unless the D list option is selected
The instruction has two formats:

4-49

Format one:

LOCATION OPERATION VARIABLE SUSFIELDS

Eym DIS n, string

If present, sym is assigned the location counter value after the force upper

sym
occurs. It is the symbolic address of the first word containing the character
gtring.

n An absolute evaluatable expression specifying an integer number of words to be
generated. When base is M, COMPASS assumes that n is decimal.

string Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word inte n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks.

Ifnis 0, COMPASS aggsumes the instruction is in format two.

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS »dstringd

sym If present, sym is assigned the location counter value after the force upper
occurs, It is the symbolic address of the first word containing the character
string,

d Delimiting character

string Character string; any character other than delimiting character

In this form, the sitring must be bounded by delimiters. The comma is required. The characters between
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them.
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an
additional word for them. I COMPASS detects the end of the statement before it detects a second

delimiting character, it produces a fatal error.

4-50 . . - 60492600 H

Examples

Location Code Generated LOCATION OFERATION | VARIABLE COMMENTS
] n 18 [30
561 07051605220124055535 ONE DIS 24 GENERATE ﬂ CPU HORDS
562 5503202559271 7220423 |
563 07051605220124055535 THO DIS y¥*GENERATE 2| CPU WORDS*
564 55032025552717220423 |
565 A0000000000000000000)
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 1B ET
FPJ :
DM BASE | M :
1402 07¢5 UIs 10+5ENERATE 1y PP HWORUS
1403 1605 |
1404 2201 1
14405 2405 1
1406 5534 i
1407 3355
1410 2020 |
1411 5527 :
1412 1722 l
1413 4zl t
1414 0705 LTS v *GENERATE 10 #P WURDS*
1415 1605 |
1416 2201
1417 2403 !
1420 5534 t
1421 3355
1422 2020 I
1423 5527 |
1424 1722
1425 023
1420 Qubo

4.8.4 LIT — DECLARE LITERAL VALUES

A LIT pseudo instruction generates data words in the literals block. This instruction and the
= prefix fo a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values. '

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym LIT iteml,itemz, - ,itemn

650492600 H

4-51

sym

item

If present, sym is assigned the value of the literals block location counter.

At least one and not more than 100 words of character, octal numeric, or

decimal numeric data items,
are separated by commas and terminated by a blank. Floating point data

items are illegal in PPU assemblies.

Section 2.7.3 contains specifications. Hems

COMPASS entere data items into the literals block in the order specified.

If the converted binary values for all the data items listed with a single LIT match an existing literal
biock sequence, they are not duplicated.

the block, the entire sequence is generated.

If, however, any item in the list does not match an entry in

A literal item subsecquently referred to through an
= prefix is not duplicated. A null item (e.g. H** or 0L} does not cause a word to be generated.

Examples:
Location Code Generated LOCATION QPERATION | YARIABLE COMMENTS
1 I 18 [3e
611 POOL LIT 3«1531.59265,2.7182182,57.2957795EE1
CONTENT CF LITERALS EBLOCK,
BO06L1 17216146314631463146 0Q{~Y=-Y=Y-
000612 1720627S576441776271 0P12.26351)+
000613 17215337351136014426 DQ#PIZAGY
n0d61% 17314363651450663121 DYBEpLSVYQ
040615 165133330335450576566 N{DDC25 v
Location Code Generated LOCATION OPFERATION | VARIABLE COMMENTS
] T 1 T}
TuL7 N2 LIT 1R1,7070 47400
TL53 LIT 2C A,OLEF
7456 | LIT H*LITERALS* |
CONTENT OF LITFRALS ELOCK. !
Thau? 0034 1
7450 7070 LX)
7651 0007 G
ThS2 ooeon)
T453 5501 A
TSk gooo E
7655 2506 EF
7456 1411 LT
T&ST 24105 TE
7460 2201 RA
Thabil 1423 LS

. 4-52

60492600 H

4.8.5 VFD — VARIABLE FIELD DEFINITION

The VID instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

Bym -

8ym

item,
i

expi

VFD

iteml/expl, itemz/expz. .eugitemy /expn

For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

. Bym

. blank

If a symbol iz provided in the location field, a force upper occurs
and the value of the location counter following the forece upper is
agsigned to the symbol. The symbol identifies the first word of

- data generated by the VFD,

Causes a force upper. Data generation begins in a new word.

COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

COMPASS begins the first field at the current value of the position
counter,

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word, If the location field is blank, the first
field begins at the current value of the position counter,

An unsigned constant or previously defined symbol having a value specifying a
positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant hits for an expression value). When base is M, item,
is assumed to be decimal notation, !

An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by itemj. The expression is evaluated using
the specified field size. Character constants are right or left justified in the
field according to the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Each field is generated as it oceurs., For a CPU assembly, if the next instruction that generntes code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no—

operation instructions.

60492600 H

4-53

When a VFD instruction that does not have & location field entry immediately follows enother VFD in the
same bloek, no padding with zeros or foreing upper oceurs; fields are generated sequentially as they are

specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the last
word in which data was generated by the VFD.

In the first example, the symbol TABLOC has been defined earlier in the program and associated with

Examples:
000551.

Lﬂcahon Code Generated
. 31
566 24010200000023000551
S67 00000005665555555555
5TR 777777774

fgooas00QEco0
571 111724015%0155655531
572 000000150523230107405
573 031117000800033
Location Code Generated

OrM

1310 333%
1311 3536
1312 3740
1313 Liu2
1314 L3344
1315 oni1o0
1316 ao01i1
1317 7765
1320 ar o7

4.8.6 CON — GENERATE CONSTANTS

LOCATION OPERATION | VARIABLE COMMENTS
n 18 (30
ALPHA SFT 25 i
TAALE VED 35/3crna,a/19,1311aaLor
VFN 30/%~1,30/5H yALPHAZ =D
N N
VFD “py i
VEN 30/0HTOTAZE/1RA, 2L /0AX+1
VFD 60/NRMESSAGE,20/3L0IN,15/0R0
]
LOCATION OPERATION | VARIABDLE COMMENTS
n 1 ET)
PPU '
BASE |M !
N VFD 60 /18R0123456789
I
|
I
ALl VFD 12/10,12711,12/7-12,12/-7070

The CON pseudo instruetion generates one or\%r/e full words of binary data in the bloek in use. It differs
from DATA in that it generates expression values rather than data items and differs from VFD in that the
field size is fixed. For relocatable or external addresses, CON generates a 60-bit address constant that is

not appropriate for routines built into capsules or overlay capsules,

Format
] LOCATION QPERATION VAREABLE SUBFIELDY
sym CON expl,expz. . ,expn
sym If present, sym is assign_gd the value of the location counter after the foree upper oceurs.
€Xpy An absolute, relocatable, or external expressicn the value of which will be inserted into a
field having a size of one word. For PPU assembly, ﬂoatmg point is not allowed; for CPU
assembly, double preeisicn is not allowed.
4-54

60452600 J

Examples:

In the first example, the symbols FAIL and PASS have been defined earlier in the program and associaled
with 2204 and 2172, respectively.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 lao
latn nnnn USnG1 CoM] '
1461 nang CAan & : I
1462 non3 catd |8 |
1467 2204 Copt FATL
1464 nNNa4 18 /n !
1468 nnng uSny £ i}
1464 00nA € f [
1467 nnna (ofal ¥ 3
1470 2177 Cn PaSS |
147 nnayg (ofal % 20 |
Location Code Geﬂerated LOCATION QPERATION | VARFABLE COMMENTS
1 18 Tao
574 | [TAD BES i f
L n LOn n]
L 1 000O0N000Q00DN0O0000055 CON iR ||][l
L 1 o0doadooo0vo00no0000062 CON 1] 101
L 2 o0o0gnDaOOoONOnONONO0hL CON 12z 02
L 3 000000OCDOO0OONBNOBD rON 1R= 03
L] - l -
. - I .
L 75 000000000000NO0NDNGE C.ON 19w ' ITS
L 76 qooganoonoOcGnNOOONNATe roN) e |?6
L 77 aoganoonpoononunoass COoM 1?2 : |7?
674 Lon ¥0 .

4.8.7 R=.— CONDITIONAL INCREMENT INSTRUCTION

The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the
variable subfields and on whether or not the subprogram earlier contained a Bl=1 or B7=1 pseudo
instruction (section 4. 4. 4). T .

Use of BR= augments macro definitions and increases optimization of object code. It is illegal in a
PPU pregram.

The A list option controls listing of substituted instructions,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sy R= reg, exp
sym Optional, if present, sym is assigner the value of the location counter after
: the foree upper oceurs. This foree upper occurs whether the R= generates an
instruction or not.
60492600 H

4-55

reg A register designator (4, X, or B) and a digit (0-7) which COMPASS
' concatenates with S to form the instruction operation code.

exp " Operand register or value expression. If'exp is the same two characters
~as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the Bl=1 instruction has heen aszembled priov to this instruction and the
expression value is 1, 2, or -1, the variahle field of the instruction is B1, ~
B1+B1, or -Bl, respectively.

If the B7=1 instruction has heen assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is BY,

B7+B7, or -B7, respectively.

In all other cases, the variable field iz the register or value indicaled by the
expression. :

Examples:

1. BR=used with Bl=1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) I 18 [0

2, R=used with Bl#1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 T T {a0
T
1ran R= XS 4 =1 :

4-58 60492600 H

3. Expression is same as register desipgnator:

LOCATION CQPERATION | VARIABLE COMMENTS
) N 18 |30
I
RFG MIGRO [1,,%05% :
: R 95, 2REGE ,

No instruction is generated; SB5 B3 would be a no operation instruction.

4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immedialely upon encoun-
tering the table; for REP, the replication takes place at the end of loading, For REPCVthe loader
ignoves the REPL table if the destination data address is in o common hlock that was first declared
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon
encountering the tables. '

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables,

Data to be replicated must not contain any external references or commuon block relocatable addresses,
Tor REPC and REPI, data must be inpreviously assembled text.

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
REP .
5/saddr, D/daddr, C/rep, B/bsz, I/inc
REPC ¥ / / /rep, B/bsz, 1/
REPI

A location field symbol, if present, is ignored.
The variable field subfields can be in any order.
S/saddr Relocatable expression specifying {irst word address of code to he copied.
The 5/saddr subfield must be provided. If it is zero, or omitied, the nssembler
flngs the instruction ns erroneous and does not generate an REPL loader tuble.
D/daddr Relocatahble expression specifying the destination of the first wovrd of the first
copy. If D/daddr is omitted, the assembler sete daddy lo zevro, and, when
daddr is zevo, the loader uses saddr plus hsz for the destination address,

Note that room for the repeated data must be reserved in the destination block.

* Not supperted hy SCOPE 2 Loader.

60492600 H 4-57

C/rep

B/bsz

I/inc

Absolute expression specifying the number of times code is to be copied. When

base is M, COMPASS assumes that rep is a decimal value, H C/rep is
omitted, the assembler seis rep to zero.

makes one copy.

When rep is zero or one, the loader

Absolute ekpreséion specifying the number of words to be copied (block size).

When base is M, COMPASS assumes that bsz is decimal,

- ¥ B/bsz is omitted, .the assembler sets bsz to zerc. When bsz is zero or one,
the loader copies one word.

COMPASS assumes that inc is in decimal.

Absolute expression specifying the increment size in words, When base is M,

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses baz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted. '

The origin and location counters for the block containing the daddr are not advanced by a value of
ine x rep. Storage reservation for replicated code is the responsibility of the user.

Rules for replication:

1. The S subfield cannot be omitted
2.
ORG, ORGC, or BSS)
3.
4,
addresses
a.
Example:
Location Code Generated
1o
S017 o00ongooCoOOCOONONNiS
R020 nnpoooannnoNoanNnnnz2n
5021 onoooonnQoOocoRnOoON7ov0
5027 pggnopqaono@oonOonNENOO0d
5023 pgnonaorpnNeoQRoNOnoGs
S024 1?216300000000650[10(1
12

5251

4-58

Room must be reserved for the copies in the destination block (for example, through

REP, REPC, and REPI can be used in relocatable assemblies only

Data to be replicated must not contain any external references or common block relocatable

For REPC and REPI, data must be in previously loaded text

LOCATION OPERATION { VARIABLE COMMENTS
n 18 [30
Pr = 11 !
USE NEWD !
B NATA 15,20,70707,145,3.14
I
|
T FQu F=NA+5 |
use |nnLenk |
na nse RORT
UsSE * I
RFPT S/RB0/NA,R/I=-6,C/RC,I/T

60492600 H

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environment (IFtype)

Compare values of two expressions (IFop)

Compare values of two character strings (IFC)

Test the attribute of a single symbol or an expression (IF}
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the teated condition
iz true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END,

The statement count, when used, is decremented for instruection lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The resulis of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
iz 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4.9.1 ENDIF — END OF {F RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIF is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Skipped instructions such as macro references are not expanded. ‘Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ENDIF
ifname Name of an IF, SKIP, or ELSE sequence; or blank. ifname can be used as any

other type of symbol elsewhere in the program.

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates
skipping of an unnamed seguence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count controi.

60492600 H : 4-59

4.9.2 ELSE - REVERSE EFFECTS OF IF
Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an [T test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Skipping continues until:

1, A statement count specified on the ELSE is exhausted

2, A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
ifname ELSE . |imet
ifname Name of an IF", SKIP, or ELSE sequence, or blank,
fnct Optional absolute evaluatable expression specifying integer number of source

lines to be skipped. It has no effect if the ELSE resumes assembly, When the
base is M, COMPASS assumes that gnct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence

initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macre
references are not expanded; any ELSE that would have resulted from the expaneion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IFtype mot
4-60

60492600 H

ifneme Optional 1-8 character name,
type Mnemonic specifying type of object processor,

Type Condition Causing Assembly

CP Any central processor unit

CP§ Neither PERIPH nor PPU nor MACHINE 7 has been specified. CPU code is
assembled for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71,
72, 73, or 74, or 6000 Series Computer System.

CP7 Neither PERIPH nor PPU nor MACHINE 6 has been specified. That is, CPU
code is assembled for a CYBER 70/Model 76 or a 7600 Computer System.

PP Any peripheral processor unit
PP6 One of the following is true:
1. PERIPH has been specified but MACHINE 7 has not been specified.
2. PPU end MACHINE 6 have both been specified. PPU code is assembled
for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72,
73, or 74, or a 6000 Series Computer System.
PPT One of the following is true:
1. PPU has been specified but MACHINE 6 has not been specified.

2. PERIPH and MACHINE 7 have both been specified. That is, PPU code is
assembled for & CYBER 70/Model 76 or a2 7600 Computer System.

fnet Optional absolute evaluatable expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPASS assumes that fnet is decimal.

The ifname and fnct parameters are related as follows:

1. If a eount is supplied, it takes precedence over any ENDIF but not over an ELSE. The only effect of an
ENDIF in & count controlled sequence is o be included in the count. Skipping terminates when the
count is exhausted or when an ELSE with a matehing or blank name is encountered, whichever oceurs
first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether named or
unnamed, or by a unnamed ELSE, whichever is encountered first. A named ELSE has no effect.

60492600 L 4-61

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with n
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that

does not mateh has no effect.

Example:

Code Generated

0

173 4130000006

LOCATION OP.ERATION VARIABLE COMMENTS
1 n A JET

THENT [xY2]
MACHINE & I
i |
ass 123 |
IFoPs |2 I
XJ i |
ELSE |1
M.J o |

I

4.9.4 IFOP— COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
manemenic specified and assembles instructions in the IF range when the comparison is satisfied.

Format:
LOCATION CPERATION VARIABLE SUBFIELDS
ifname IFop exp, , exp,, mct
ifname Optional 1-8 character name
op Specifies comparative test:

4-62

ap
EQ

NE

GT

Condition ecausing assembly

Equality, the expressions are equal in all respects. That is, they
not only have the same numeric value but have the same attributes
as well. For example, both are names that are common
relocatable, or absolute, or external, ete.

Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.

The first expression is greater in value than the second expression.
No other attributes are tested.

60492600 B

GE

LT

LE

The first expression is greater than or egual in value to the second
expression. No other attributes are tested.

The first expression is less in value than the second expression.
No other attributes are tested.

The first expression is less than or equal in value to the
second expression. No other attributes are tested.

For these tests, positive zero and negative zero are equal.

exp, An expression.
defined symbols and the result can be absolute, relocatable, or external. If an

When the value of exp is tested, exp can include only previously

undefined symbol is used, the expression value is set to zero, the IF instruction
is flapged as erroneous, and assembly continues with the next instruction.

et Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that gnet is decimal. When gnet is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but hot over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count.. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. [If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first, A named ELSE

has no effect.

3. If a name but no count is supplied, the IF range iz terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that

does not match has no effect.

Example:

A demonstiration of one use of IF statements in a PPU program:

1OCATION OPERATION | VARIABLE COMMENTS
1 n 18 [ET
LF DEF,LO0P
IFLT *-L00P,408
ZJN LOuP
ELSE 2
NJN *+3
LJM Louce

This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37, words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJMBare assembled.

60492600 H

4-63

49.5 IFPL AND IFMI —TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION OFERATION VARIABLE SUBFIELDS

ifname IFPL exp, fuct

ifname IFMI exp, {nct

ifname Optional 1-8 character name

exp An expression. It can include only previously defined symbols and the resuit

can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

fnct Optional absolute expression specifying an integer count of the number of

statements to be skipped. When base is M, COMPASS assumes that gnet is
decimal. When ¢nct is blank, the comma can be omitted.

The ifname and gnet parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2, If neither a count nor a name is supplied, the IF range is terminated by an ENDITF, whether
named or unnamed, or by an unnamed EISE, whichever is encountered first, A named ELSE
has no effect.

3, If a2 name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a

matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with n name that does
not match has no effect. - .

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;

the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero, :

4-64

60492600 H

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60,

LOCATION OPERATION | VARIABLE COMMENTS

IFEQ Ayiiy3
IFLE VAL,0,1

1 1 19 |20

HXQ OPDEF | REG, VAL |
LOCAL | A i

A SET vaL [
A SET A-A/63D*60D!
IFPL A, 3 |

|

|

S4Io 1
A SET A+&0D '
vFED 674380y 3/REG,H/A
ENDM i
{
1
Example of call:
Code Generated LOCATION - QPERATION | VARIABLE COMMENTS
] n 18 ETS
MX6 .| -52 |
7777713 +4000001 SET ~52 |
7277713 +4$000001 SET ++(00001-+40000017/60D0%60D
LFPL +4000001.,3
IFEQG +4000001,0.,3
IFLE -52.,0,1
SKIP 1
: 19 ++000001 SET *+000007+600
43610 VFD ‘6743B,3/6,6/+4000001
ENDM |
|

496 If - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instructicon tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

50492600 H 1-65

Format:

The expression in the second subfield does not contain a register

The expression in the second subfield is not a common relocatable

The expression does not reduce to a program relocatable address

LOCATION OPERATION VARIABLE SUBFIELDS
ifname IF att, exp, jnct
ifname Optional 1-8 character name
att Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition. '
att Condition causing assembly
SET The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT . ‘
~-3ET The symi:.ml given in the second subfield was defined other than
by a SET, MAX, MIN, or MICCNT '
ABS The expression in the second subfield reduces to a value that is
not reloeatable or external
-ABS ‘The expression in the second subfield reduces to either a
relocatable or an external address
REL The expression in the second subfield reduces to a loeal or
common relocatable address
~REL The expression in the second subfield does not reduce to a local
or common relocatable address
REG The expression in the second subfield contains one or more
register names
-REG
name
COM _ The expression in the second subfield reduces to a common re-
locatable address (any blank or labeled common hlock)
-COM
address (any blank or labeled common block})
EXT The expression in the second subfield contains one or more
external symbols
-EXT The expression in the second subfield does not contain an
external symbol
LCM The expression reduces to an LCM address
-LCM The expression does not reduce to an LCM address
LocC The expression reduces to a program relocatable address
-LocC
4-66

60492600 H

DEF All the symbols in the expression in the second subfield are
defined :

' -DEF One or more of the symbols in the expression in the second
subfield is undefined

MAC The name in the second subfield is an opcode name
-MAC The name in the' second subfield does not coutaén an opcode name
MIC The name in the second subfield is a micro
-MIC The second subfield does not contain a micro name
88T The second subfield containg a system Bymboi
-S8T The second subfield does not contain a system symbol
exp For SET, SST, ~-SET, and -S8T, exp must be a single defined symbol. For

mot

MIC and -~-MIC, exp must be a name. YFor any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
~-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assemhly continues with the next instruction. Note that if

a symbol is never defined conventionally but only by use of =8 or =X prefix

{see section 2.4.2), COMPASS does not define the symbol until the end of

the assembly, and IF tests will consider the symbol undefined,

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal., When gnct ig blank, the comma can he omitted.

The ifname and nct parameters are related as follows:

1.

2,

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE, The only
effect of an ENDIF in a count controlled sequence is to be included in the count, Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en~
countered, whichever occcurs first.

If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE

has no effect.

If 2 name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE., An ENDIF or ELSE with a name that does
not match has no effect.

60492600 H) 4-67

Examples

I.OCAIIO;I OPERATION | VARIABLE COMMENTS
T n is |30

ABLE BSS 20 :

[] - - I

- - [] l

L] - [] l

TEST IF REL,ABLE+15

L) : - [

. . . !

TEST ENDIF l
IF COM,DTA,2 ERRONEOUS, DTA AS YET UNDEFINED

. . |

L] » I

- s |

USE /7 l

DYA Bss 1 |

i

4.9.7; IFC - COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparisen is satisfied.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFC op, dstring; dstringyd, met

ifname Optional 1-8 character name

d Delimiting character. Characters between the first and second ocecurrence of this
‘character constitute the first character string; characters between the second and
third occurrence constitute the second character string.

op Specifies comparative test:

4-68

op

Condition causing assembly

EQ or -NE sl:ringl has the same value as string2

NE or -EQ stringl does not equal string,

GT or -LE string 1 is greater than stringz

60492600 H

GE or -LT Etringl is greater than or equal to string2
LTor -GE string, is less than stringg

LE or -GT string; is less than or equal to string,

F.II:I‘il:lgi Character string. When IFC is within a macro definition, each character string
can be a formal parameter,

met Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that gnet is
decimal. When fnet is blank, the comma can be omitted.

The ifname and fnet parameters are related as follows:

1. If a count is gupplied, it takes precedence over any ENDIT but not over an ELSE. The only
effect of an ENDI¥ in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2, If neither a count nor a2 name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first., A named ELSE
hes no effect,

"8, I a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect

Each character in string; is compared with the corresponding character in strings progressing from
left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:

LOCATION OPERATION | VARIABLE COMMENTS

! " 18 {30

TEST1L IFC |EQ,$ABCSABCS, ABC EQUALS ARC

TEST2 IFC [LT,*AB*ABC* | AB IS LESS THAN ABC

TEST3 |IFC |GT,XAXX | A IS GREATER THAN NULL
IFC |-GE,*Z*8%,3 [Z IS LESS THAN 8

The IFC in the following example checks for an empty parameter string.

60492600 H 4-59

LOCATIOQ OFERATION | VARIABLE COMMENTS
) . n i fao
XX MAGRO |P1,P2 i
IFC £Q,*¥p2%,1 |
P ERR : FLAG EPROR
. i
. I
i
ENDM |

The following example illustrates a character string terminated incorrectly. When COMPASS reaches
end of statement without finding a third asterisk, the asterisk omitted following P1 causes an error flag.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
IFC EQ,*0N*PL,2%P2

4.9.8 SKIP — UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format
LOCATION OPERATION VARIABLE SUBFIELDS
ifname SKIP mct
ifname Optional 1-8 character name
fnet Optional absohite evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that fnct is
decimal.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count., Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

4-70 . 60492600 H

2. If neither a count nor a name is supplied, ihe SKIP range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has ho effect.

3. If a name but no count is supplied, the SKIP range is terminated by an ENDIF or ELSE with
a matching name or by an unnamed ENDIF or ELSE, An ENDIF or ELSE with a name that
does not match has no effect.

4.10 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.10.1 ERR — UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
based on an assembly time test, One application is to use a test and ERR to detect illegal macro

parameters.
Format:
LOCATION OFERATION VARIABLE SUBFIELDS
flag ERR
flag A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The ﬂag’ can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in

s5ec

tion 11,7, COMPASS uses P,

A variable field entry, if present, is ignored.

Example:
LOCATION OPERATION V..ARIABLE COMMENTS
1 n 18 {30

NNN MACRO | P1,P2,P3,P4]
IFEQ | P1,0 |

A ERR [
. . |
ENDM |
. . _ I
[[] |
- []
NNN DyAsB,sC |

60492600 H 4n

4.10.2 ERRxx — CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pase of the assembler is true,

Format:

LOCATION

CPERATION VARIASLE SUBFIELDS

flag

flag

aexp

Example:

ERRxx aexp

A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denocte a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11.7,
COMPASS uses P.

Defines condition under which aexp value is erroneous.

XX Error Condition

NG or MI Value of expression is negative
NZ Value of expression is nonzero
PL Value of expression is positive

ZR Value of expression is zero

Absolute expression. It cannot contain external symbols or references to blank
common. The test is made in pass two of the assembler, Reloecatable addresses

are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE

ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo insgtruction that ean be used to determine PP1J
overflow if the PPU program has literals and USE
blocks, '

Test for memory overflow in PPU assembly

Location

Th&?
7462

4-72

Code Generated LOCATION OFERATIOM | VARIABLE COMMENTS

) n 18 I30

PERIPH '

LASTTAG |BSS " B
CTTTTLNT R ERRPL |LASTTAG-7777|
FNO I

60492600 H

411 LISTING CONTROL

The instructions deseribed in this seetion permit extensive control of the assembly listing format.

4.11.1 LIST — SELECT LIST OPTIONS

The LIST pseudo instruetion controls the content and format of the assembler listing. LIST instruetions are
. disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control statement (chapter 10) is zero, or

Wgen the list option parameter (L.O) on the COMPASS control statement is used and is other than
L.O=0.

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list output is
according to the L and LO parameters on the COMPASS control statement. If the LO parameter is omitted
or LO=0, the list options are as if L, B, N, and R only are selected and the listing eontains heading
information, assembly text, assembler statisties, an error directory (upon ocecurrence of an error only), and
a symbolie reference table. Formats of this output are deseribed in detail in chapter 11 and brief
summaries are given below.

Heading Information Program length, origin, and length or each block, entry points and
external symbols.

Assembly text ‘Line, and assembly results of each line assembled (not skipped)
from the input device {excludes code generated by RMT, DUP,
ECHO, XTEXT, or a maecro or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce more
than one word of object code, only the first word is listed. For

VFD and CON all words of object code are listed. For R=, only the
pseudo instrueticn listed.

Each cceurrence of the LIST instruetion is listed.

Assembler statisties Amount of storage used, counts of assembled statements, defined
symbaols, invented symbols, and references to symbols.

Error directory List of fatal and nonfatal errors and summary of the causes of each.

Symbolic reference table List of all symbols defined in the program according to symbol

qualifier, if any, followed by an index to every reference to the
symbol, whether in explieit or generated (for example, by MACRO
or MICRO calls) statements,

Formsis:
EOCATION OPERATION VARIABLE SUBFIELDS
LIST 0P} 30Pgs -+« 1 0P,
or
LIST *

60492600 H 4-73

A location field symbol, if present, is ignored.

4-14

op,

1

A list option represented by a single letter or a letter prefixed by a minus sign.
The unprefixed letter selecis the option; the prefixed letter cancels the option.
Options are separated by commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation and milero substi-
tution marks is listed with the marks in it exactly as presented to the
assembler. When the A option is selected, however, the assembler lists
the line before and after the editing takes place. Selecting A also causes
the listing of lines of code resulting from the R= pseudo instruction.

B List binary control statements

When B is selected, the listing includes SEG, SEGMENT, IDENT, and
END pseudo instructions.

C List lieting control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
iz listed as the first line of the new page after the EJECT takes place

‘D Include details

-Belection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DATA and DIS

Code assembled remotely when HERE or END causes its assembly

Literals block
Default symbols

.E Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

F List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE, In addition, the Symbolic Reference
Table contains references to symbols in IF statements,

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L, Instructions listed include symbolie machine
instructions a_,nd BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L Master list control

This option is normally selected. When L is canceled, the long list contains
error flagged lines, an error directory, and LIST and END pseudo instrue-
tions only, regardless of selection of any other options on LIST,

M List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

60492600 H

N List nonreferenced symbols
This option is normally selected, Cancellation of this option causes
any nonsystem symbol for which no reference has been accumulated
{(e.g., all occurrences are in IF statements with the ¥ option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omlitted from the symbolic reference table.

R Accumulate and List references
This opticn is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of -
assembly, no symbolic reference table is produced.

] List systems macros and opdefs
- Selection of § causes all lines generated by calls to systems-defined
macros and opdeis to be listed.

T List nonreferenced system symbois
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated

references,
X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
‘result of an XTEXT pseudo instruction, CTEXT and ENDX provide a
means of alternately turning this external designator off and on,

$ A dollar sign in the variable field selects all options.

* An asterisk in the variable field causes selection of the options in effect prior
to the current selection. The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 oceurrences, Each
LIST * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R},

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, ligting of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion ecaused by an XTEXT within a system macro call is
listed only when both X and S are selected. To obtain a listing showing [~and # marks removed from
external text ingside a DUP range, A, X, and E must all be selected.

Example:
LOCATION QOPERATION | VARIABLE COMMENTS
t n 18
LIsT (A
DATA |1.3sEE
0 17205146314631463146 DATA |1.3EE
DATA |1.30EE
2 17205146314631463146 DATA |1.3EE

I 16403146314631463146
LISTY ~A,-D

|30
!
I
[
LIST |D }
|
|
|
|
I
|
]

L 1L7205146314631463146 bata 1.30EE
. LIST .
DATA 1.3pEE##
b 17205146314631463146 DATA 1.3EE
7. 16403146314631463146

60492600 H . ' 4-75

4.11.2 EJECT—EJECT PAGE AND BEGIN NEW SUB-SUBTITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor-
responding LIST options are not all selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name EJECT
name New program sub-subtitle for the page will be printed in character positions

70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE — SKIP LINES AND BEGIN NEW SUB-SUBTITLE

The SPACE pseudo instruction spaces the assembler listing, When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST opiions are not all selected.

LOCATION OPERATION VARIABLE SUBFIELDS
name SPACE sent, rent
name New subprogram sub-subtitle will be printed in characters 70-7% on the second

line of the next page heading. A blank name clears the sub-subtitle.

scut An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout, If baseis M, scnt is assumed
to be decimal, If scnt is omitted or zero, no line is skipped.

rent * An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rent is assumed to
bhe decimal.

If sent + rent exceeds the number of lines on the page before spacing oceurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards or statements can also be used to space the liating.

4-76 : 60492600 H

4.11.4 TITLE — ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing.

A subsequent TITLE instruction generates a subtitle and causes a page eject, If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title, A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtifle.

A TITLE instruction has no eifect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions
(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option I is deselected.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

name © |TITLE string

name New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page, A blank name clears the sub-subtitle.

string COMPASS searches the columns following the blank that terminates the

operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement, Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end ‘of tlie statement or to
62 characters. Any characters beyond the 62nd are lost, A blank string
produces an untitled listing,

Example:

LOCATION OPERATION | VARIABLE COMMENTS

i it 18 i 4

IUENT |MTD
LIST c
TITLE [MT ORIVER

I
|
1
|
1
|
|
. 1
TITLE |I/0 ROUTINES
f
I

60492600 H . . ‘ 4-17.

First page:

Subsequent pages:

MY DRIVER

HT DRIVER
1/0 ROUTINES

4.11.5 TTL— NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction infroduces a new main title to be printed on each page of the listing, and

clears the subtitle.

Format:
LOCATION ORERATION VARIABLE SUBFIELDS
name TTL string
name New sub-subtitie to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.
string COMPASS searches the columns following the blank that terminates the vperating

field. If it does not find a nonblank character before the default comments column
(see COL paeudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title hegins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.

A blank string produces an untitled listing.

TTL does not cause a page eject,

4.11.6 NOREF — OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOREF By, 5yMg, ... » SYym
symi One or more symbols defined in the subprogram. If a symbol qualifier is in

effect when the NOREF is encountered, the symbols are assumed to be
gnalified by the qualifier in use, unless an unqualified symbol of that name
is defined hefore the NOREF and the gualified symbol is not defined before
the NOREF. Alternatively, sym., can be a nonblank qualifier symbol en-
closed by slant bars, /qualifier/, in which case all symbols qualified by
the specified qualifier are suppressed from the symbolic reference table.

A location field symbol, if present, is ignored.

4-78

60492600 H

4.11.7 CTEXT AND ENDX — DISABLE/ENABLE LISTING OF COMMON DECK TEXT
The CTEXT pseudo instruction sets the XTEXT flag for list control.

NOTE

When the flag is set, external text is listed and symbol
references are recorded, only if the X list option is selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name CTEXT string
name If X list option is selected, name is treated as a sub-subtitle; other-
wige it is ignored.
string’ If the variable field is nonblank and the X list option is selected, 'the CTEXT

is ireated as a subtitle, The CTEXT instruction generates a subtitie and
causes a page eject. If X is not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank character following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues io the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list contrel and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ipnored.

50432600 H 4-79

411.8 XREF—REFERENCE SYMBOLIC ADDRESS

The XREF péeudo instruction provides the options of having the symbolic reference table contain
references to symbols according to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 11, 8.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
XREF string
‘string An optional character string, the first character of which indicates how symbols

are
A
B

to be referenced.
The symbolic reference table lists addresses only. TFlags are not included.

The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

The symbolic reference table lists réferences to symbola according to
page and line numbers. TFlage are included.

A loeation field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
“according to page and line numbers and includes flags, The last XRET encountered in a subprogram
determines the form of the listing for the entire subprogram. . o

4-80

60492600 H

DEFINITION OPERATIONS 5

This chapter describes pseudo instructions that involve definition operations. These pseudo instruetions
cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly ean be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF},
Any instructions other than END, including other definitions or calls, can be in the body of a definition.
Each request for assembly of one of the saved sequences of code, such as a reference to a macro, causes an
entry in the assembler recursion stack. The most recent entry in the stack points to the source of
statements (the definition} to be assembled. When the definition eontains an inner, nested, reference to a
saved definition, the stack pointer is changed so that the source of statements is the innermost definition.
The staclk allows nesting of definitions to a maximum level of 400. When the end of a definition is reached,
the assembler switches to the preceding entry in the stack. When the staclk is empty, the assembly resumes
assembly of the next statement in the input source deck. A nested definition must be wholly eontained by
its next outer definition. .
Definitions are saved compressed but otherwise unedited (with micro and concatenation marks), Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with coded
bytes as follows:

A single space is represented by 55g; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 55554
3 spaces replaced by 0002

4 spaces replaced by 0003

64 spaces replaced by 0077g

65 spaces replaced by 007755g

66 spaces replaced by 00775555g

67 spaces replaced by 00770002g, ete.

Trailing spaces are considered as embedded and are ineluded in the image. The 00 eharacter (colon) is
represented by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

- 60492600 A 51

For XTEXT, DUP, and ECHOQ, assembly oceurs as soon as & definition is saved. Urless the definition
contains a USE, USELCM, or ORG instruetion, code is assembled into the bloek in use when the XTEXT,
DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and assembly take plaee
in two steps. The block in use at definition time does not determine where code in the definition will be
assembled. That is, code is assembled into the block in use when the definition is assembled if the

definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effeet when the pseudo instruetion is encountered
applies to symbols defined in the sequence (assuming the sequence does not contain a QUAL). For RMT,
macros, and opdefs, however, because definition and assembly take place in two steps, the qualifier in use
at definition time does not affect symbols in the definition. The qualifier, if any, in effect when the
definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to bloek names or to the names of DUP, ECHO, RMT,
or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is not possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol, block
name, or syr)nbols to be qualified as substitutable parameters. (For an examble, refer to example 7 under
Maecro Cell.

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruetion provides a means of obtaining source statements from a file other than that
being used for input. COMPASS transfers the text from the external source and assembles it before taking
the next statement from the interrupted source of statements. The file may be a sequential file, a SCOPE
3 indexed file with named records, or an UPDATE or MODIFY T random-acecess program library {ile. A
sequential file is normal text and COMPASS will only read the {irst section. It is necessary to omit
"rname" from sequential file usage, otherwise an error will oceur.

Rendom File Format:

LOCATION OPERATION VARIABLE SUBFIEIDS
file XTEXT Thame
(on)
,XTEXT rmame

TMODIFY is not supported by NOS/BE 1 and SCOPE 2.

5-2 60492600 M

Sequential File Format:

LDCJ.IUON OPERATION VARIABLE SUBFIELDS
file XTEXT rname
(or)
IXTEXT
file Name of a file containing source statements. If file is omitted, COMPASS assumes the [ile

named in the X parameter on the COMPASS control stateme
parameter was specified, COMPASS assumes OLDPL.

nt (seetion 10.1.2). ¥ no X

rname If rname Is blank, COMPASS assumes that the file ig sequential; it rewinds the file and reads
the first seetion. If rname is not biank, the file must be a SCOPE 3 indexed file with named
records, a record indexed file with named records, a random-access program library file in
UPDATE format, or a random-aceess program library file in MODIFY format. The rname

parameter is the name of the seetion to be read.

60492600 M

5-2,1/5-2.2

Text records may be in any of the following formats:
1. Normal text. If the first line contains rname starting in column 1, it is skipped.
2, A common deck in an UPDATE or MODIFYT random-access program library file. If the lile
ig in UPDATE format, the first line (*COMDZIECK rname) is always skipped. If the file is in
MODIFY format, the identification {7700) and modification (7702) tables are skipped. COMPASS
does not recognize UPDATE or MODITY directives such as *IF in the common deck.
3. An UPDATE or MODIF‘YT compressed compite file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction.

3.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of RMT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction direets
COMPASS to agsemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT — SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely. .

Format:
LOCATION QOPERATION VARIABLE SUBFIELDS
rminame RMT
rmtname Optional 1-8 character name identifying the remote sequence. Il is

significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
i expansion of an EMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END,
Similarly, if the assembhly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through 2 HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

1-MODIFY is not supported by NOS/BE 1 and SCQPE 2.

60492600 C 5-3

5.2.2 HERE — ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlaheled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is
encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
rminame HERE
rminame Optional; the name of a previously saved RMT sequence. Only the named

sequence will be assembled at this time,
A variable field entry, if present, is ignored.
If unlabeled remote sequences still remain to be assembled when the END statement signaling the end of
asgembly is encountered, COMPASS assembles them before it terminates assembly. However, any '
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost,

Examples:

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

5-4 : . 60492600 A

Location, Code Generated LOCATION OPERATION | VARIABLE COMMENTS

' n 15 [30

MACRO | TABLEs TNAMsEQLY
IFC EQe#*EQIV#

TNAM EQU #-0RIGINS

0.TNAM CON BUCKET
ELSE 2

TNAM EQu EQIV

0. TNAM EQu O.EQIV
RMT

L.TNAM EQu TNAM+SIZES
RMT

60492600 A i
-

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION | VARIABLE COMMENTS
} 1 18 |30
RMT |
FLD DECMIC| gUF fdUF L~WSA+EMNUS
FRS LIT C“;fFL!_.'J?L :)ECIIMAL REQUIRED.*
|
JLIST ..
bl [.DECMIC]
100005012

5.3 CODE DUPLICATION

This section describes two pseudo instructions (DUP and ECHO) that ecaus=e a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. TFor an ECHO sequence, each asgembly resembhles
a4 macro reference. Actual parameters suppltied in a list are substituted for formal parameters an
each repetition of the codr sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHQO,
or a fatal E error is flagged.

5.3.1T DUP — SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.

The range of the DUP is specified either by a source statement count on the DUP instruction or hy an
ENDD.

Format:
LOCATION QPERATION VARIABLE SUSFIELDS
dupname DUP rep, (nct
dupname Optional name of the DUP sequence; 1-3 characters. When =upplicd, it can e
used in an ENDB, When no name is supplied, the range of the DUP is deteymined
by a statement counl or iy anv unnamed ENDID.
rep Absolute evaluatable expression specifving the integer number of times state-

menfs in the DUP range are to be assembled. If rep is null or zero, the instruce-
tions in the range are not assembied; that is, code is skipped. When base is A,
COMPASS ussumes that rep is decimal,

a-6 o 60452600 E

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can bhe used for indefinite duplication
of code.

fnect An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that fnot is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expanded.

The dupname and gnet parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

2. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed
ENDD.

3. If 2 name but no count is supplied, the DUP range is terminated by an ENDD with a matching

name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the
range.

5.3.2 ECHO — ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions imnmediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the stitements, ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD, The statement count, when used, is decremented for instructions only;
comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ECHO fnct, p1=(list1),p2=(list2), «vesBy =(1istn)
dupname Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any unnamed ENDD,
60492600 E

5-8

fnct

The

1.

Optional absolute evaluatable expression specifying an integer count of the number
of source statements to be assembled repeatedly. If base mode is M, the

count is assumed to be decimal., If fnet is zero or omitted, the comma must

be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flapgped.

dupname and gnct parameters are related.

If a count is supplied, it takes precedence over any ENDD, The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed
ENDD.

If a name but no cousnt is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the seguence,

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic, A name canrnot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name (s ignored. A name that begins with a number is ignored. The substi-
tutable parameter name can occur in any field within a definition.

The separator between p; and (list;) is conventionally an = but can be any of the
following:

+ - * /() $=,o0r.

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ =%/ () % ="Dlank , . # or —~

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e., with
micre and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

60492600 A

The character ~* flags the occurrence of a name not bounded hy any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the + so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
4, ;B, etc. direetly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the

name with the flag. (Example 8, section 5.4. 3 illustrates a similar application
of this technique.)

‘(list,) Actual parameter list in the form a,,a,,...,a_ where a, is substituted for P
i 8 :89 n 1 1
on the first assembly of the ECHO =equence, ag is substituted on the second

assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An aetual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before

substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively slkipping it.

5.3.3 STOPDUP — STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count
is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the

end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A BSTOPDUP outside of a DUP or ECHOQ range has no effect on assembly. 1f a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

60492600 C

7
[i=]

5.3.4 ENDD — END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
dupname ENDD
dupnamg Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO

sequence can be terminated by an ENDD specifying the sequence by name,
.or by any unnamed ENDD, An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.

An ENDD does not terminate a sequence controlled by a statement count.
The ENDD is included in the count but has no other effect,

An ENDD outside the range of a DUP or ECHO has no effect on assembly.

ENDD is part of the definition it terminates; consequently, it is not edited at ECHO definition time.
The following definiticn is in error:

T r—1ECHO
Code
T r~ 1ENDD

In this code, the location field of the edited ECHO statement is T1, but the location field of the un-
edited ENDD statement remains at Tr—~1.

_ Examples:

In the following examples, the statements that result from expansion are shown shaded. They are
listed only when the E list option is selected. Source statements are shown in bold characters,

1. This example illustrates use of a simple DUP instruction.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " s ET
00000= I
NDATA 1
5153 0000000000CO00D00GCUL DaTa 1 #OUP S l
S1%4 Q0000000000000J000G001 NDATA 1 vuUpPe 1
515% 0000G0000NONGO0O00NGTH DATA 1 4P 1
5156 000000000NQO0GO0O0001L DATA 1 P e 1
5157 000COONCO00N000LO000] 1DATA 1 #Nlpe 1

5-10 : ' 60492600 E

2. 'This example illustrates a nested DUP instruction with one of the DUP duplications terminaied
by a STOPDUP,

60492600 D

LOCATION OPERATION VARIIABI.E COMMENTS

1 n ® {30

Go MACRO |

TAG MICRO | NOw+l+/FALPHAKET 2/
IFC ENs/2TAGE/E/ W] ASSEMRLE STOPDUP WHEN TAG=E
STOPLUP

(t SEY NO+1 NO IS5 6 IN LAST ITERATION

&0 ENDM

MCPHARET |MICRO | 1s+/78HCDEFGHLJK/

+i0 SET 1
DuP -1 UNODBTAINAHLE ITERATION COUNT
60
ENDD

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO The ENDD terminates the first level. Notice how COMPARSS assembles each

copy before it begins the next iteration.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 0
PR
L]
STH PPGP DS54]154H

LIST MaDWf

ECHO sCM={¥yYaZl
£CHO 2P 1= (AsBsC)
LON CHM

STH Pl

1505 5415 1524 sTH |Ta6

5-12 ' _ 60492600 A

5.4 MACROS AND OPDEFS

A macro or opdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro hame in the operation field of a statement. It usunlly includes parameters to be substituted

for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An apdef eall differs from a macre call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to he substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition. .

A definition consists of three parts: heading, body, and terminator,

Heading A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the maerc and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDET pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

Body The body begins with the first statement in a definition that is not a LOCAL
- statement or a comment line, A comment line can be either identified by *

in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or 2 local symbol
flag.

The body consists of a series of symboliec instructions. All instructions other
than END, including other macro and opdef definitions and calls are legnl within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot he called hefore
the outer definition is ecalled.

A name of a substitutable parameter or local symbol listed in the heading can
oceur in any field within the body.. A reference to a substitutable parameter or
local symbol is recognized when it is between two of the following characters in
an expression or field:

: + - %/ () $ =Dblank , . # or

The character—flags the occurrence of a name not bounded by any other special

60492600 A 5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the — so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . () :

% and =in symbols, but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls). A symbol
should not hegin with a colon; if it does, the colon is
ignered and no error message is issued,

The macroe body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameterxr value.

An ENDM pseudo instrucfion terminates a macro or opdef definition.

A macre or opdef can be defined anywhere in a subprogram hefore it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef -along with the number of substitutable parameters and local
gymbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local

symbeol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symhol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the maero includes an RMT
sequence which contains local symbols, the loeal symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM — END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:
LOCATION OPERATION YARIABLE SUBFEELDS
mname ENDM
mname Name of 2 maero sequence, syntax of an QPDEF sequence, or blank.

5-14

60492600 E

An ENDM specifying a macro by name terminates the named macro definition and any unterminated
macro or opdef definitions within it. An ENDM that does not specify a macro by name terminates all
unterminated definitions. An ENDM outside the range of any macro sequence has no effect other than
to be included in statement counts.

ENDM is part of the definition it terminates; consequently, it is not edited at MACRO definition time.
The following definition is in error:

T—~1 MACRO
Code
Tr+1 ENDM

In this code, the location field of the edited MACROQ statement is T1, but the loecation field of the
unedited ENDM statement remains at Tr>1.

Example:
lOCATIPN ! OPERATION | VARIAHBLE COMMENTS
1 n 18 |30

JAY MACRO |P1,P2,P3 |
. |
. |
. |

KAY MACRODE PKZ,F’KZ,PKS’,’PKQ-

JPX7XQ OPDEF | OPL,0P2,0P

ol

KAY ENDM - TERMINATFS KAY AMD
' THE OPDEF JEFIMNITINN

|
|
ENDM ; TERHINATES JAY

5.4.2 MACRO — MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
maero in a table of macro definitions for assembly upon call and place the macro name in the operation
code table.

The MACRO pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

mname MACRO parameters

60492600 F . ' 5-15

Format two:

LOCATION

OPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname

parameters

5-16

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must oceur in the macro call.
Each name is 1-8 characters, the first of which must be alphabetic. A name
cannot be END, IRP, LOCAL, ENDD, ENDM, or the same as a local symbol.
A name that begins with a number, or a second or later vccurrence of a para-
meter name in the list is ignored.

Any of the following special characters separate parameters in the list:
- /() B= o, or

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unigue parameter names and loeal symbols must not
exceed 63 for any one macrc definition.

Format one does not require parameters.

Tormat two requires at least one substitutable parameter, This parameter is
termed the location argument because the location field entry in the macro eall
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue afatal error and
ignore the definition.

The assembler ignores a blank parameter produced by two adjacent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

60492600 A

Examples of macro instructions:

1. Legal MACRO instructions:

LOCATION QFPERATION | VARIABLE COMMENTS
1 n 8 |30
ABC MACRO |P1,P2,P3 |
MACRO |DEF*LOC*ONE*TWO*TEN
MESSAGE | HACRO |[A l

2. MACRO instructions having identical parameter lists.

3. Hlepal use of format two:

LOCATION QPERATION | VARIABLE COMMENTS
1 I 18 T30

SUM MACRO |X=Y+Z+X isscoun X PARAMETFR IS IGNORED
SUM MAGRD [X{Y+2) |

SUM MAGCRO | X=Y+Z

SUM. MACRO [X,Y,(Z+X) INULL PARAMETER AND SECOND

Ix ARE IGNORED
RAD MACRO | X l
RAD MACRO | X=X+1 |SECOND X AND NUMERIC

|PARAMETER ARE IGNORED

LOCATION QPERATION | VARIABLE COMMENTS
1 " 18 ET)
MACRO |ABC ; NO SUBSTITUTABLE PARAMETER
MACRO |ABCy,FP | NULL PARAMETER FIELD
MACRO [ABCs164FP ., NUMERIC PARAMETER FIELD
60492600 A

9-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym mname PysPgs---1Pp

sym Optional; depends on definition (see discussion following)

Py Parameter list composed of alphanumeric strings. Parameters are separated

by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MA CRO pseudo instruction.

When the definition MA CRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second =ubstitutable parameter oceurs in the definition, ete. When the definition MACRO
ig in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etec.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters

are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (gection 5.4.9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. "Embedded parenthetical items must be properly paired. A parenthetieal item can contain

blanks and commas.

Example:
LOCATION OFERATION | YARIABLE COMMENTS

1 n 18 [10

MESSAGE| (=C*PROGRAM| ABORT.*)
I

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, }:he comments could be erroneously interpreted as

a variable subfield. .

. 5-18 SR 60492600 A

Processing of a loeation symhbol and foreing upper of the first macro instruction depend on the MACRO
form used for the definition.

I the maero is defined using format one, that is, the maero name is in the foeation field, a location
symbol on the mocro cnll line forces the first word of generated code upper. The lovation field symbol
iz nssigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. 1 the localion field of the maero enll
does not contain a symbol, the location and position counters are nof alfected by the call.

When the macro is defined using format two, that is, the muacro nunte is in the varinble liekl and the

- first parameter is a location argument, the location syvmbol of the eall is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the mncro expansion, In the macro call, the location
field argument cannot he more than 8 characters,

Parentheses are not given the speecial meaning used
in the variable field of a macro call line,

Example:

1. Anillustration of concatenation

Location Code LOCATION OPERATION | VARIABLE COMMENTS
Generated | I 18 ET
MACK HMACKRO &) ,F2

SeP] Pl+jknpy

&4y

60492600 A

a-18

32, An illustration of nested definitions and calls

FEOCATION CPERATION | VARIABLE COMMENTS
1 I 16 |30
NAME 1 MACRO i
[] L] I
a L] |
NAME 2 MAGRC :
* t
. i
. l
NAME 2 ENUM ;
. . |
. 1
. 16T THIS IIME, THIS LIWE
NAMER IT5 PART GF b JEFIWITIOw
. lka1HE# THAW 3EING & CALL.
* |
. t
. |
NAME L ENDM | I
.]
. !
. |
NAMEL INAMEL IS UALLEU ANL EXPAWUED,
|
I
. |
|
* 1
NAMEZ EunLL TO NAME2 IS VALILD
!

3. The following example illustrates two calls to a definition headed by a MACRO in format two
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALUEL, and VALUE2, where TABNAM s the location argument.

. LOCATION OPERATION | YARIABLE COMMENTS
Locakion Code Generated

1 n 1B {30
T

MACRO | TABLE« TARNAMsVALUELyVALUE2
TABNAM VFD bU/VALUElaéP/VALUEE
ENDM

204000000600000000.
000000000000000000:

5-20 60492600 A

4, An illustration of embedded parameters:

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 N i [20
¥ Ap MACRO | Ay4R |
LA A |
LJM 3] |
FNTOM
Call:
LOCATION OPERATION | VARIADLE COMMENTS
] H 18 |30
T
XA (SUML1A97), (SAM,TNNT)
Expansion:
Loecation Code Generated LOCATION OPERATION | VARIABLE COMMENTS

3¢

5. The following example illustrates use of R= in macros:

60492600 A

LEOCATION GPERATION | VARIABLE COMMENTS
] T 12 I
ONSH MACRGC | M ;

R= X1 4N |
SX? 11P |
RJ =X MPM= I
ENOM]
OFFSH MAGRO | M i
R= X1,N i
sx2 12A i
rJ =XrPM= |
FNDH t

=21

6. The following example illustrates a character in o symhbol erroneously being interpreted os u
delimiter for a parameter.

1OCATION OPERATION | VARIABLE COMMENTS
1 1 T [0
ABC MACRO |[Z4+VAL PS5 i
7 SET |vaL f
SA7 ZsALPHA IILLEGAL SYMBOLs TOO [LONG
. . |
[] . |
JEnpM) |
ABC TR
SET A
: l ILLEGAL SYMBOLs TOO LONG
|

ABC
ABC

»1
«1
«1

7. The following example illustrates changing of control blocks and symbol qualifiers through

substitutable parameters in a macro.

change actual parameters.)

ONE 4 ONE

|'ONE

TWO.TWO
TWO:

LOCATION DOPERATION | VARIASLE COMMENTS
1 ¥ 18 |30
TAB MACRO | BLOCK 4 WAL !
USE BLOCK f
QUAL KwAL I
TAG] Bss 10B |
TAGZ VFD 60/-1 |
USE L
ouaL | = l
ENDM |
|
f
|

(The same call could be used by using micros to

60492600 A

8. The following example illustrates a teehnifue that an experienced programmer may wish Lo

use to save thme in processing of definitions, Remember that the assemhber repaces the
first suhstitntable purameter with 7701, the second with 7702, ete. Note thal 7701 i 50 in
display characlers, 7702 is ;B, ete. This meuns that the programmer can use Lhe display
characters dirvectly in place of his substitutable parameter names in the body of the definition
and achieve the same results us If the assembler had made the substitation when it saved the
definition. At the time the definition is assembled, the aszembler repaces cach T7xx with the
actual parameter whether the code was inserted by the axsemblor when il =aved the definition
or by the programmer when he coded the definition.

1OCAYION OFERATION | YARIABLE COMMENTS
) " i ET
CHAR MACRND ASCII«INTERHNAL EXTERNAL «ECl
con INICiRsE
ENOM
D0 HLer G

43 1010430

60492600 A

5.4.4 MACROE — EQUIVALENCED MACRO HEADER

A MACROE.pseudo instruction ean be used instead of a MACRO instruction to notify the assembler fo
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro
call.

The MACROE pseudo instruction has two forms:

Format one:

LOCATION

OPERATION VARIABLE SUBFIELDS

mname

Format two:

MACROE parameters

LOCATION

OPERATION VARIABLE SUBFIELDS

MACROE mname, parameters

The blank location field identifies the second format.

5-24

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM, It ean be

1-8 characters. A name that is identieal to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction, The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds.

Names of substitutable parameters. Unlike MACROQO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.

A name cannot be END, ENDD, LOCAL, IRP, ENDM, or the same as a local
symbol. A name that begins with a number, or a second or later occurrence of
a parameter name in the list is ignored. Any of the following special characters
separate parameters in the list:

+ - ¥ / {) $ =+ OF .
These characters have no meaning other than as separators. A blank terminates
the list of parameters. Also, any of these can be used to separate the mname

from parameters in format two.

The total number of unique parameter names and Iocal symbols must not exceed
63 for any one macro definition.

Format one does not require parameters.

60492600 A

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format twe causes the assembler to issue a falal error flag and
ignore the definition.

The assembler ignores a blank barameter produced by two adjacent separalors
or by 2 separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be cealied by an instruction of the
following format:

LOCATION OPERATION VARIABLE SUBFIELDS
sym mname P1=8y1Py=ag,- - .»P =2
mname Name of MACROE definition
sym Optional symbol. A symbol in the location field causes the location counter

to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in Lhe definilion that generates
code is assigned the same address. If the location field of the maero call does
not contain a symbol, the mamner of the forece upper is a function of the first-
code-generating line in the macro expansion.

An equivalenced parameter. Each p is the name of a substitutable parameter,
The a; is an actual parameter to be substituted for 14 The parameters need not
be listed in the same order as they are listed on the MACROE instruction.
Equivalenced parameters in the list are separated by commas and terminated
by a blanik,

=4,
pl 1

A null value is substituted for nany parameter omitted from the list.

When the first character of an actunl paraometer is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parmmeter has been named in an IRP pseudo
instruction (section 5.4.9, IRP). Otherwise, it is an embedded parameter, The -
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

5}
1
b
[51]

604952600 A

After substitution, spacing hetween fields is the =ame ar il was before substitution. One clfeet is that

a null aetual parameter replacing a formal parameter in a vaviable lield effectively moves the comment=
field to the left. Then, when the line is assembled, the comments could be erroncously interpreted as

a variable subfield.

Processing of a location symbol and foreing upper of the {irst macero instroction depend on the AMACROL
form used for the definition.

If the macro is defined using format one, that is, the macro nome is in the loeation field, a loeation
symhbol on the maecro eall line {orces the first word of generated code upper, The location {field symbuol
is assigned the eurrent value of the location counter. A location ficld (if any) on the line in the
definition that generales the code is assigned the same address, 1 the loeation lield of the macro call
does not contain a symbol, the location and poszition counters are not affected by the call.

When the maecro is defined using format two, that is, the maero name is in the variable field and the [irst
parameter is a location argument, the location symbal of the call is substituted for the first parameter or
location argument. The fact that this argument came from the location field rather than the variable field
has no speeial significance in the macro expansion. After substitution, spacing between fields is the same
as it was before substitution.

Example, format one:

Loecation Code Generated LOCATION OFERATION | VARIABLE COMMENTS
1 [H i11:} 30
SAM MACROE |A,B,C
CON A
CON B
CON C

Example, format two:

. COM 1
Location Code Generated LOCATION OPERATION | VARIABLE OMMENTS
1 H 18 e
MAZwE A Axs Ay el
o a
Cai™ 4
C N r
| b .
2 COOCo2DD0ICIZo 20l N AN A=lsp="yC=2

5-26 GO 2600 U

5.4.6 OPDEF — DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon eall and place the instruection syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be hypassed
through redefinition, or disabled through PURGDEF. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
syntax OPDEF parameters
syntax The syntax consists of a mnemoniec operator and variable field descriptors.

60492600 B

The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register designator:
A, B, or X in which case the operation field of the opdef call is recog-
nized as cAn, cXn, or ¢Bn (c is a unique character; n is 0-7); or the second
character can be any other characier, in which case the operation field of
the opdef call is recognized simply by a two-character mnemonic, such as

EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef eall. [t consists of none, one, two, or three of the following 22 subfield
dezcriptors, Q represents an expression, An r represents a register letter
{A, B, or X). A comma separates two descriptors; a blank terminates the

syntax,

void Q

r rQ

-r -rQ

r+r, ry +reQ
Ty +1'2 -rl +r2Q

:L'1 *rz r 1 *er

Ty *r2 -ry *r2Q

ry/ry ry/roQ

-r1/r2 -T; /r2Q

£, T, T, "TyQ

-rl --r2 -rl -er

5-27

parameters

Examples:

For example, -r,*r, would be written as -X*B to describe ~X3*Bl whereas r@
would be written as B@ to deseribe B2+ALPHA. The first descriptor immedi-
ately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax

(and, consequently, in the calling instruction). Each name is 1-9 characters,
the first of which must be alphabetic. A pname cannot be END, ENDD, ENDM,
IRP, LOCAL, or the same as a local symbol. A name that hegins with a num-
ber, or a second or later occurrence of a parameter name in the list is ignored.
Parameters can be separated by any of the characters:

+-*/()$§=, or.

These characters have no meaning other than as separators. A blank terminates
the list of parameters.

The total number of unique parameter names and local symbols must not exceed
63 for any one OPDET definition.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator al the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

1. Listed below are some instruetions that could he defined through OPDEF:

Calling Instruction Opdef

Operation Variable Subfields Syntax

pt kit IPQ

Jpt - Bn#K JPBQ

JP ' BntBn+K JPB+BQ

JP Bn, K JPRB, Q

JP Xn/Xn+K JPX/XQ

NET BEn, Bn, K NEB,EB,Q

LJ Bn-Bn, An-Xn, K LJB-B, A-X,Q

BXnt -Xn*Xn BX-X*X

SBnt Xn+Bn SBX+B

LXnt Bn, Xn LXB, X

Jpt Bj+K JPBQ

NET Bj, Bk, K NEB,B,Q

Bxit ~-Xk*Xj BX-X*X

SBit Xj+Bk SBX+RB

SBiT ' Bj+Xk SBB+X

T Legal COMPASS CPU instructions
T K represents an expression,

5-28

60492600 A

2. 'The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 | ET
JPQ OPDEF | P1 |
EQ P1 |
ENDM |

Each subsequent JP instruction that matehes the syntax JPQ is assembled as an EQ. A JP
instruetion having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 H B [30
;
iaan2 0233000005 + Je AT +ALPHA '

3. The following definition traps all floating point double-precision subtraction instructions
(DXi Xj-Xk) and jumps Lo an error-check routine for debugging. [, J, and K are substitutable
parameters used within the definition.

LOCATION QOPERATION | VARIABLE COMMENTS
) n 18 [30
1
DXY=¥ OPNEF | TydaX :
. |
. {
RrJ cKNT !
ENNM i

4, The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi inetructions involving registers.

LOCATION OPERATION | VARIABLE COMMENTS
1 " 8 I30
RXQ OPNEF |P1,P2 !
AX.P1 |P2 '
ENDH !

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnremonic machine instruction. The mnemonie code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

60492600 A -29

(]

NOTIE

Iif the Q in a descriplor is combined with register leliers,
a plus or minus must precede an expression in the call.

OPDEY Syntax Call

JPQ JP K Not combined
JPBQ JP Bk Combined
JPRB, Q@ JP Bn, K Not eombined
JPX/XQ JP Xn/Xnik Combined

An OPDET call can ocecur any place afier the definition is saved. In substituting parameters, the
assembler uses only the regisier vulues given in the call. [t does not suhbstitute the register designators.

A location symhol on the opdef call line forces the {irst word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper, A location
field on the line in the definition that generates code is assigned the same value. If the loecation field of
the opdef call does not contain a symbol, the manner of the foree upper i= a function of the first code-
generating instruction in the expansion. If the call location field and the code-generniing instruction
field both contain symhbols they are assigned the same value,

Only a line having the correct syntax calls the definition.
Examples:

The following opdef defines an instruction having the syntax IXX/X. On the call, the aszembhler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for P1, P2, and P3, respectively.

Location Code Cenerated LOCATION OPERATION | VARIABLE COMMENTS
1 u n [30
[XX/X OPDEF |H1l+P2+P3

FX.P2 |X.F2

PX.P3 [XaP4

NX.PZ2 [X.PZs+84
NXaF3 [X+P3sbu
FX.PI XeP2/X.P3
UX.FPl [KePlebB4
LALPL [XPlyBa
ENDM

5-30 60492600 A

The following OPDEF selectively traps the SXi Xj+Bk instructions,

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
| n 18

|30
SXX¢B | OPDEF |I,d,X |

|

|
. [
ENOM |

Statements that call the definition:

LOCATION QOPERATION | VARIAHLE COMMENTS
1 n 18 ET)
' 5X3 X1+82 |
. i
- |
SYM SX«NN | X6+Ba XXX i

Statements that do not call the definition:

LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 Tao
SXS X4 ENO R DESIGNATOR DR +,
SX6 [B3+Xy IREGISTEPS INTERCHANGED
SXaY a3 END X DESTGNATOR OR DPFRAND
sY X4+Ry4 - EHNFHONT_C CODE NOT SX.

5.48 LOCAL—LOCAL SYMBOLS

One or more LOCAL instructions that 1ist symbols local to the definition optionally follows the MACRO,

MACROE, or OFDEF pseudo instruction. The only lines that can separate the first header statement
from LOCAL are comment lines.

Format:
LOCATION OFERATION VARIABLE SUBFIELDS
LOCAL symbols
symbols List of local symbols. Each symboel must begin with an alphabetic character.
Bymbols must be separated by and must not inelude the following characters:
+ -/ ()Y $ =, or,
60492600 A

5-31

A blank terminates the list. The assembder isnores a aukl symbol produced by

itwo adjocent separaters or by a separidor at the end of the list, COMEPAKS ignores
the use of a substitwtable parameter niome, another local symbol mime, or i name
beginning with a number in the {ocal svmbollist, A local svimbol eannot he ¥ M1,
ENDD, ENDM, TRP, or LOCAL. The totil number of unique parometer names and
local symbols musi not exceed 63 for any one macro or GPDELF delinition.

A location field symbol, if present, is ignored.

A symbol in the list is considered loeal to the macro; that is, it is known only within the macro definition.
On each expansion of the macro, COMPASS creates a new syvmbol for cach Tocul svmbol and substitutes it
for each occurrence of the local symhol in the definition {sther than in comment lines identified by * in

column 1).

Thus, invented symbols replace LOCA L-aamed svmbols wherever they appear in a macro

definition in a manner similar to the way substitutable porameters are replaced. The chiel difference
belween substitutable parameters and Toeal symbols is that COAMPASS automatically supplies the value C
(character string to be substituted for) a local symhbol so that it is unlgue lor each macro eall.

A user passes a local symbol to inner macro delinitions or inner macvo ealls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, n symbol deelared loeal in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as loeal is accessible from outside the macro delinition. An invenicd symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the

structure of the line.

On the listing, each invented symbol is shown as psym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1.

In the following example, C is local to macro ABC and is passed to inner macro definitions,
In the definition, each occcurrence of formal parameter A is replaced by the parameter mark
7701; each cccurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol
#0000601 to C and veplaces each cccurrence of 7703 in definitions ABC and XY Z.

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 {30
ARC MAGRD | A, B X)
LOCAL | C i
C RSS 108 :
. .) | DEFINITION
. . i OF ABC
XYZ MACRD | D ,
sA1 c {OFFINITION
a i UF X Y Z

{ J

1
1
l 1 EXPANSION
| OF ABC
{DEFINITIDNJ
| OF XYZ

60492600 A

{

2. In the following example, Cis locul to cach level., Note how this example differs from the
preceding one,

1OCATION OPERATION | VARIABLE COMMENTE
l n 18 [0
ACo MACRO | A,R | \
LOCAL | | I
r ass 10R ! ;
L3 » i !
. . ! LosFiwrron
Y . | UQF 3rD
YZa MACRO o '
LocaL | r | |
581 " ¥forFINITInN
. [|OF Yza i
» | I
c 8557 |1 le J
FNAM .

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,
+000002 including the use of the symbol in the LOCAL instruction for macro XYZ..

LOCATION OPERATION | VARIABLE COMMENTS
I " 16 [0

Heo EAPANSTON OF oCu

Finally, on a call to YZA, 11000002 is defined as local and the assembler replaces each
+000002 with another invented symbol. Thus, each reference to C in the source code SA1
instruction does not result in a reference to the BSS in the outer macro.

LOCATION OPERATION | VARIABLE COMMENTS

) n 1B [20
I

EXPANSION OF YZa

5.4,9 IRP — INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition signals the beginning or end of n sequence of code to he
assembled repeatediy with one parameter varied with each repetition.

It has two formals:

EOCATION DPERATION YARIABLE SUBFIELDS
IRP paraneter
IRP

60492600 A §5-33

The {irst forn inlroduces the =cquence and names the subs=tituiable paraumeter; Lhe sceond form
terminates the repeated sequence. In either form, o lecation ficld symbol, il present, is ignored,

The parameter name must he listed as o substitutable parameter on the MACRO or MACROE peudo
instruction for the cdefinition.

On the macto call, the indefinitely vepeated parameter consists of one or more subparameters encloscd
hy parentheses and separated by commas. The assembler ussembles the sequence for cach subparameier;
the number of coples of the sequence depends on the number of subparameters mone at all when the

actunl parameter is null). When the list of subparameters is exhausted, the assembler continues with

the next line in the definition. H the named substitutable parameter dees not oceur hetween the two

IRP instruections, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP outside of the range of n macro has no effect on assembly other than to he included in statement
counts.

[F-skips of IRP sequences should be controlled Iy insiruction hracket numes rather ihan statement
counts hecause IRP expansions are done even when an [F-skip is used and beeausce the nember of
statements generated by IRP is variable.

Anything that can be done with an IRP pair can be done with ECHO and EXDD. [RP is faster at assembly
time but ECHO is more {lexible (it is not expanded during IF-skips, allows multiple arguments, and

can he nested)., IRP should he used when greater speed is desired and the expanded capabilities of
ECHO are not needed,

Examples:

1. Repeat sequence within macro

LCCATION OFERATION | VAKIABLE COMMENTS
1 " 18 [a0
7 88 MACRO |ARG.B :
IRP ARG i
! SA] &RG DEFINITION
e S%4 X1+B FEPEATED OF ZAg
SAA ARG SENUENCE
1RP .
ENDM

5-34 60492600 A

2. Assign symbol at every 100g words of zeroed storage:

LOCATION OFERATION | VARIABLE COMMENTS
I " 18 [10
USE STORAGE
BUF MACRO Pl
IRP Pl
L | BSSZ 1008

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the system text Hle as system macros or can be placed on
a file accessible through an XTEXT pseudo instruetion,

System macros provide for such system functions as reading and writing files and specifying parametet's
for file environment tables, etc. Systems muacro definitions are available to COMPASS for cach
assembly. The programmer can use 2 macro call for o systemi macro at any time in his programn,
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition. An expansion of & call for a

system definition is not normally included on the assembler listing. Use of the § option of the LIST
pseudo instruction{Section 4.11.1) enables listing of expansions of system definitions.

60492600 A

OPERATION CODE TABLE MANAGEMENT 6

The COMPASS operation code teble contains the information that COMPASS requires for interpreting legal
operation field entries for COMPASS instruetions.

When assembly begins, the operation code table contains these entries:
Pseudo instruetions {exeept LOCAL)
CPU symbolie instruetions (chapter 8)
CMU symbolic instructions (chapter 8)
PPU symbolice instruetions (chapter 9)
System macro and opdef definitions
The MACRO, MACROE, and OPDEF pseudo instructions {chapter 5) cause entries to be made in this table.

In addition, the programmer has the capability of creating entries through the following instruections
discussed later in this chapter:

CPOP CPU operation

PPOP PPU operation

OPSYN - Synenymous PPU or pseudo operation or maero
CPSYN Synonymous CPU operation or opdef

If a new entry redefines an instruction already in the table, the obsolete entry is not physiecally removed
from the teble. Instead, it is saved so that the table can be reconstructed between assemblies. COMPASS
reconstructs the operation code table using alt the original system macros, opdefs, pseudo instruetions, and
symbolic machine instruetions. No programmer-created entry is preserved from assembly to assembly.
The number of entries in the table is limited to 4123.

The only pseudo instructions that logieally remove entries from the operation code table are PURGMAC
and PURGDEF,

Entries in the operation code table are in two distinet formats permitting a logical division of the table.
One type of eniry permits identifieation of an instruction by finding a mateh for the contents of the
operation field, thus, it provides mnemonie recognition. The other type of entry is looked at only if the
search for 8 mnemonie operator fails to yield a mateh during a CPU assembly.

This type of entry provides for recognition of an instruetion according to its syntax, COMPASS analyzes

the statement to be interpreted, determines the syntax of the operation and variable subfields, and again
searches the table.

60492600 E 6~1

Instructions are recognized in the mnemonie search and the information provided to the assembler for each
instruction are as follows:

Pseudo instructions The entry contains addresses to routines that perform
pass one and pass two operations.

PPU symbolie instructions The entry describes the format of the instruetions to be
assem bled.

Instruetions described through PPOP The entry deseribes the format of the instruction to be
assem bled.

Macro instructions The entry direets the assembler to the location of the

saved definition.
Instruetions desecribed through OPSYN The entry is a copy of the synonymous entry.

For a PPU assembly, a failure to find an entry for 2 mnemonie operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a mateh, COMPASS
searches the operation code table again for an entry with a matching syntax. Instructions recognized in the
syntactical search and the information provided to the assembler for each instruetion are as follows:

CPU symbolic instructions The entry deseribes the format of the CPU instruction fo
be assembled.

Instructions deseribed through CPOP 'I‘hé entry describes thé format of the CPU instruetion to
be assembled.

Instructions defined through OPDEF The entry direets the assembler to the location of the
definition.

Instructions described through CPSYN The entry is a copy of the synonymous instruction

The action taken depends on the synonymous entry.

If, following the second search of the operation code table, the statement still has not been identified, the
assembler takes the following action:

For a PPU assembly, it generates a 24- or 32-bit instruetion of which the first 12 or 16 bits are zero.
For a CPU assembly, it generates a 30-bit zero instruetion.

Although OPSYN and CPSYN pseudo instruetions provide a means of rendering more than one instruetion
synonymous, only instruetions of the same type ean become synonymous. The logieal division of the table
between the two types of entries prevents mnemonically identified instruetions from being made
synonymous with syntactically identified instruetions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemoenic name that-is already in the
table for a different instruction, the new entry takes precedence over the old entry. Similarly, when a
OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruetion, the new
entry takes precedence over the old entry. As a result, the order of precedence for operation field
recognition is, from highest to lowest:

1. Programmer-created entries for mnemonieally identified instructions.

6-2 60492500 M

2. System macros, pseudo instructions, PPU symbolic maching instructions, and CMU
' instructions other than the IM instruction.

3. Programmer-created entries for syntactically identified instructions
4. CPU symbolic instructions and the CMU IM instruction

Example:

The following example illustrates a special case in which a macro name takes precedence over one
form of a machine instruction, i.e., the form using SB4 as an operation code.

LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 ET
LT MACRO | P1,P2 (DEFINE MACRD NAMED SB4
- [
. I
|
: i
ENOM |
* |
*] i
SAY AL+ABLE EcaLL TD MACRC. NOT CPU INSTRUCTION
. |
. |
. |
sn3 AL+ARLE :HACHINE INSTRUCTIOM
. 1
SHL OPSYN | MIL :DIQABLES MACRC qUT DOFS NOT
. |RESTORE NORMAL USE CF SAas
. |AS AN OPERATINN CODE. FVEM IF
- IT WERE REDEFTNED WITH OPOFF
. | LT WOULD NOT RE RECOGNIZEO,
. | THE MACRO FORM ALMAYS TAKES
. ; | PRECEDENCE .
PURGMAL SRy [RESTORES NORMAL USE OF Sa4

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions inelude all pseudo instructions, macro instruetions, and PPU
gymbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGMAC
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP — PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the inslruction. COMDPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPODP
instruction is used. If the operation code tahle already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issue
a 7-type error flag.

60492600 A G-3

Format:

12-bit instruetion with signed relative address or ebsolute address

24-bit instruetion with 12-bit address and optional indexing {(e.g., LDM)

24-bit instruction with 12-bit address and required second field (e.g.,

LOCATION OPERATICN VARIABLE SUBFIELDS
pame PPOP ctl, val, type
name Mnemonic name, 1 through 8 characters
etl Control of instruetion assembly
etl Signifieance
0 Hiegal; if used, COMPASS ignores the PPOP
1 24-bit instruction with 12-bit address and no indexing
2
(e.g., UJIN)
3 24-bit instruction with 18-bit address (e.g., LDC)
4 12-bit instruction with 6-bit address (e.g., LDN)
5
6 12-bit instruction with signed relative address (e.g., SHN)
7
1AM)
val An evaluatable expression specifying the octal 4-digit operation code value; usually,
only the two leftmost digits are significant. If the assembly base is M, the field is
assumed to be oetal.
type An evaluatable expression speeifying an integer value that COMPASS interprets as

follows:

1]

other or
omitted

Restriet the instruection being defined to the CYBER 180 Series,
CYBER 170 Series, CYBER 70/Models 71, 72, 73, and 74; COMPASS
sets an error flag if the instruetion being defined is used in a CYBER
70/Model 76 PPU assembly.

Restriet the instruction being defined to the CYBER 70/Model 76;
COMPASS sets an error flag if the instruetion being defined is used in
a CYBER 180 Series, CYBER 170 Series, CYBER 70/Models 71, 72, 73,
and 74 PPU assembly.

The instruction is not restricted to either machine type. If the base is
M, type is assumed to be octal. If type is omitted, the ecomma
preceding it can be omitted also.

60492600 L

Example:

Code Cenerated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
°FRTPH ;
NeD _ RASF n |
: [
. |
15 . Fnr) 15 [
40 o) tn 1
S T™ PPOP |5,5400¢LA8
- |
. |
. I
7311 5415 0040 STH r 1

*6.1.2 OPSYN — SYNONYMOUS MNEMONIC OPERATION

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:
LOCATION DPERATION VARIAHLE SUBFIELDS
namey OPSYN names

The name in the variable subfield must be previously defined as a standard instruction code. After an
OPSYN, either name produces equivalent results, If the location field specifies a previously defined
macro or operation code, the new definition takes precedence over the old without notification. Thus,
a macro defined by a name that is subsequently used in an OPSYN location field is not called when
the macro name is used in the operation field. The instruction actually ealled is the instruction
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with PURGMAC.

Example:

1. An operation named CALL is synonymous with RIM.

LOCATION OPERATIONM | YARIABLE COMMEMTS
I I 18 T

CALL OPSYN |[RJM |
. |
- I
. |
CALL | =XSUBR= IPRODUCES SAME RESULTS

' IAS IF IT WERE AN RJM

60492600 A 6-5

2, In the following example, a programmer wishes to use a macro named LJM for part of the

program and use the real LJM for Lhe remainder of the program.

6.1.3 NiL — DO NOTHING PSEUDO INSTRUCTION

lOﬂAT‘ION OPERATION | VARIABLE COMMENTS

1 n 18 lae)

LJM. OPSYN |LJM FAVE ORIGINAL DEFINITION AS LJM.
PURGMAG LJM PURGE ORIGINAL NEFINITION
N |
“ [

L JM MACRO [XX :
. |
. |

LM ENDM i
. .
. X CODE USING LJH MACRO
. I

LM OPSYN [LJM. RESTORES ORIGINAL LJM
. |
. [CODE USING ORIGINAL LJM

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the
assembler, It is primarily designed for disabling a macro; it cannot be used with CPSYN. The

foltowing instruections could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OFPERATION VARIABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 8 {20
MACK OPSYN [NIL '
. !
. |
. |
TAG MACK AyBys6,73 :
. I
|
6-6

60492600 A

The assembler interprets each call to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGMAC—PURGE MACROS

The PURGMAC pseudo instruction provides a means of dizsabling operation code entries for the named
instructions for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGMAC name;,nameg,...,name,
name, Names of mnemonic operation codes for macro definitions, pseudo instructions,
i

or PP1] instructions.

A location field symbol if present is ignored,

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP — CPU CPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbaoliec machine instruction and
creates an operation code table entry for the instruetion, An instruction of the defined {format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPOP and issue an error flag.

Format:
LOCATION OPERATION YARIABEE SUBFIELDS
sytx CPOP cil, val, reg, type
sytx The syntax consists of 2 mnemonic operator and variable field desecriptors.

The mnemonic operator consists of two characters., The first can be any
character except blank. The second character can be a register designator:
A, B, or X, in which cage, the operation field of the instruction is recognized
as cAn, ¢Xn, or cBn, (c is a unique character; n is 0-7); or the second
character can be any other character except blank, in which case the operation
field of the instruction is recognized simply by a two-character mnemonic, such
,as EQ.

60492600 B 6-7

The variable field deseriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the

instruction being desecribed.
following 22 subfield descriptors,

It consists of none, one, two, or three of the
Q represents an expression. An r represents

a register letter (4, B, or X). A comma separates two descriptors; a blank

terminates the syntax.

void

T

-T,-T

For example, to describe -X3*B1, the descriptor,

Q

r)

-rQ
r1+r2Q
TR
r1 *er
..r} *r2Q
rl/ T,Q
Ty /TyQ
rl-er

-rl-er

-ry *ry, would be written as -X*B whereas, to

describe B2+ALPHA, the descriptor rQ would be written as BQ.

ctl

etl

[L N)

Control of instruction assembly.

Significance

15-bit instruction

30-bit instruction

15-bit instruction, force upper before assembly
30-bit instruction, force upper before assembly
15 bit instruction, force upper after assembly

30-hit instruction, force upper after assembly

15-bit instruction, force upper before and after
assembly

30-hit instruction, force upper before and after
assembly

60492600 A

val An evalustable expression specifying a 9-bit operation code; if the base is M, val is
assumed to be octsl.

reg Three octal digits specifying the order from left to right into which register numbers are
to be inserted into the i, j, k portions of a 15-bit instruction, or into the i and j portions
of a 30-bit instruetion. If the assembly base is M, reg is assumed to be octal.

1 Register number obtained from operation field

2 Number of second register or onty register in variable
field

3 Number of first two registers in variable field

¢ Set field to 0

type An evaluatable expression specifying an integer value that COMPASS interprets as
follows:

] Restriet the instruction being defined to the 6000 Series,
CYBER 180 Series, CYBER 170 Series, and CYBER
70/Models 71, 72, 73, and 74; COMP ASS sets an error
flag if the instruction being defined is used when
MACHINE 7 has been specified.

7 Restriet the instruetion being defined to the 7600 or the
CYBER 70/Model 76; COMPASS sets an error flag if the
instruction being defined is used when MACHINE 6 has
been specified.

other

or

omitted The instruetion is not restrieted to a machine type.

If base is M, type is assumed to be octal. If type is omitted, the comma preceding it can
be omitted also.

Example:

CO(]E Generntetl 1OCATION OPERATION | VARIABLE COMMENTS
- 1§ 1 |30
SAX+E LrOK Ge5300,1320 IGCFINES 341 XJ+BK
1
. I .
SXXL Crup 1,72003,4208 WeFINES SXI KJtK
- 1 ‘
. 1
!
* |
53731 Sa7 K3ed1 '
|
146 5x3 K1+3 :

722 7231400003

60492600 L

6..2.2 CPSYN — SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruetion with the syntux given in the location field
synonymous with the instruction having the syntax specified in the variable field. The only limil Lo
the number of CPU inslructions that can be made synonymous is the size of the operation code table

(4123 entries).

Format:
LOCATION QPERATION VARIABLE SUBFIEIDS
sytx; CPSYN ' sytx,
sytx Syntax of n CPU instruction (see C'POP lor legal farms). If this synlax is

1 already in the operation code table, Lhe tahle entry [or sytx, takes precedence
over the old tahle eniry for L-*‘ylx1 without notification.

Syntax of a CPU instruction for which there must he an ealey in the operalion
code tahle. TFollowing the CPSYN, an instruction in either Hytx] or syl
produces an octal instruction of the format deseribed by the entry for syix,.

sytx

6.2.3 PURGDEF—PURGE CPU OPERATION CODE

The PURGDEF pseudo instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly,

Format:
LOCATION OPERATION VARIASLE SUBFIELDS
PURGDEF |sytx
sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

6-10 ' T . 60492600 A

MICROS 7

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseude instructions, micro
strings provide for varied manipulation of character strings -- testing for a parti cular character,
counting characters, concatenation of strings, ete.

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is diseussed first so thai the reader has a helter
understanding of how a definition is used when it is described.

7.1 MICRO SUBSTITUTION

Wherever a micro name hetween micro marks (#) occurs in a statement other than 2 comment
line (* in column 1), the assembler substitutes the micro before it interprets the statement. If

column 7% of the last statement read is exceeded as a result of micro substitution, the assembler creates
up to & maximum of 9 cuntinuation statements, beyond which it discards excess characters without noti-
fication on the listing. No replacement takes place if the miero name is unknown or if one of the micro
marks has been omitted. If the micro name is unknown, the assembler flags a nonfatal assembly error.

If the micro name is null (that is, the two micro marks are adjacent), then
1. Both micro marks are deleted, wund

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:

ADDRESS

A reference to NAM ig in the varlable field of a line:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 110
LocC SAt ENAMZE+ 4

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the
following line:

LOCATION OPERATION | VARIABLE COMMENTS

1 H 18 an

Larc SA1 ADDRESS+L

NOTE
Unless the A option of the LIST pseudo instruction is

enabled, the listing depicts the instruction as it was
before the substitution tock place.

60492600 A \ 7-1

7.2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC.. In addition, the following pseudo instructions optionally define micreos: BASE, CODE, and
QUAL. Also, system or built-in micros are automatically defined by COMPASS at Lhe start of each
subprogram assembly.

, 7.2.1 MICRO — DEFINE MICRO

The MICRO pseudo instruction defines a character slring and assigns a name to that string.

Format:
_l

LOCATION Ol-’ERATION VARIABLE SUBFIELDS

micname MICRO n,; .0, , dstringd

micname Name by which definition is called; 1-8 characters

ny Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n1 is decimal.

n, Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n, is decimal,

dstringd Delimited character string. The delimiter d is a character net used in the

siring.

Counting the first character after d as character 1, the assembler forms the string by extracting n,
characters starting with character n,. If the second delimiting character occurs before count n, is
exhausted, the defined string terminates at that point. I 1, is greater than zero and ny is omittéd, Zero,
or negative, the defined string includes all the characters from n to the closing delimiter {see second
example).

H n; is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, ny and the character string are ignored,

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of ancother (see third example).

A micro ecan combine previously defined micros or can be a subset of another. Also, a micro defined
originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If nqy or ng is negative, the assembler generates a 7-type error.

Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OFERATION | VARIADLE COMMENTS
1 I 18 [30
N AME MICRO {1419,¥ALPHANUMFRIC STRING*

7-2 _ . 60492600 A

2, This example iltustrates a blank churacter count.

terminated by the cloging delimiter.

LOCATION OPERATION | VARIABLE COMMENTS
! " 8 [30
)|
MICKY MICRO | 14,%ALPHANUNERLE ST9ipie

3. Ome micro can be defined as o substring of unothey.

LOCATION OPERATION | VARIABLE COMMENTS
) T 16 [10
1 —_

NAM1L MICRN 1,75,%480472 :ALL;HQNUML—PIC ST2IHGY

- - - l

L] L] M . l

. I . . !
MAMD [MIRSN | 7, ,%2NAML#¥ [SAMF STOTNG AS [W «XAW L €5 1 an7

4, One micro can combine olthers,

LOCATION COPERATION | YARIABLE COMMENTS
I It 18 [0
MaML MICPO | 1,12,58LPHANYM 27T
MAHD MITRY [1474% STRPIMGX
MAMT MICPT |1y +2NAE L2z NAM2 2, DOAALEES MLV 2Nt peD

5, A micro name ean be redefined.

LOCATION OFERATION | VARIABLE COMMENTS
1 0 T [30
T
MSG MICRD |1,6,¥STRINGS
L] - » \
. . . Loiream ysrar FIosT nrgrthircg
. . i J .
MSG MICEN 1 19, FALTANYNMID m pus s
. . L § BOTE USTRL STrour DEETUTTINN,
. ;. . PoFT=s) aceTgtrran 15 INASLETRThLC

6. DMlierov substitution takes place belore o lne is assembled or esamined Tor synias,
the fullowing is possible,

LOCATION OPERATION | VARIABLE COMMENTS
; n E i
NAM MICRg [1,25,* LOC 51 ADDRESG+%*

GO-E2G00 G

The defined string beging with A and ix

Thus=,

-1

7.2.2 DECMIC — DECIMAL MICRO

t~ing a decimal conversion, the DECMIC pseude instruction converts the expression into o characler
<1ving to be saved under the nnme specified.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
micname DECMIC aexp,n
micname Name by which clefinition is calied; 1-8 characters
aexp Ahbsolute evaluatable expression
n Optional absolute evaluatable expression specilying number ol characiers

in the defined string. The delined string is a maximum ol 10 characlers
regardless ol the magnitude of n, When base is M, COMPASS assumes that
n is decimal

I nis omitted or has a zero value, the miere eontaing the number of characters
indicated by the convevsion to n maximum of 14 chartseters, If the converted
gxpression has move than n {or 10) digits, the most significant digits are
truncated. I the value has fewer than n digits, the string is right justified aned
filled with leading zeros. All numbers are treated us positive.

Fxample:

B has the value 1024 decimal or 2000 nctal before conversion.

tOCATION QOPERATION | YARIABLE COMMENTS
i 1 1B 30
v DECMIC |B,6 {

I
MICRO

7.2.3 QCTMIC — OCTAL MICRO

Using an oetal conversion, the OCTMIC pseudo instruetion converts the value of the expression into o
character string to be saved under the name specified, :

7ed G- 2600 1)

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
micname OCTMIC aexp, n
micname Name by which definition is ealled; 1-8 charnecters
aexp Alsolute evaluatable expression
n Optional absolute evaluaiable expression specilving number ol characters

in the string. The defined string is & maximum ol 10 characters regardless
of the magnitude of n. \When hase is M, COMPASS assumes n as a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated hy the conversion to a maximum of 10 charactérs.

If the converted expression has moye than o (or 10) digilz, the most significant digits are truncnted.
If the value has fewer than n digits, the string is right justified and filled with leading zevos, All
numbars are treated as positive.

Example:

B has the value 1024 decimal or 2000 octal hefore conversion.

LGCATIOMN OPERATIOMN | VARIABLE COMMENTS
] T 18 |20
Vi OCTHMIC|[B,6 |
[
|
|
|
i
51 1,,%2V1¢ AODITIONAL STORAGE MESNED*
5 ' :

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS ussembler. They ave aviilable for cvery
assembly. The programmer simply writes the micro reference us desired.

These micros are automatically delined nt the beginning of ench assembly, and have the default values
specified below until they are redefined by the programmer; thereafter, the programmel’s detinition
holds until the start of the next assembly.

7.3.1 DATE

The DATE micro vontains the current date in 10 characters in one of the Tollowing Forms as obiained
from the operating svstem:

Ayr/mofdv. or Amo/dv/vr.

The micro reference is #DATE#,

GO492600 E

-1

7.3.2 JDATE

The automaﬁc value of the JDATE micro is five digits yyddd, where yy is the year and ddd is the day

of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

The micro reference is #JDATE#.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained

from the operating system:

Abr.min, sec,

'

The micro reference is #TIME#,

Example:

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [0
TITLE |PROGRAM ASSEMBLED ON #DATE# AT2TIMER
7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number
base currently in effect({specified by the most recent BASE pseudo instruction); it is initially D.

The micro reference is #BASE#,

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, O, or I, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is

initially D.

The micro reference is ZCODE#.

7.3.6 QUAL

The automatic value of the QUAL micro is 0 to 8 characters comprising the gualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null mltmlly and
whenever the blank qualifier is in effect.

The micro reference is #QUAL#.

7-6

60492600 F

7.3.7 SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequence field

{columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(i.e., part of 2 macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most
recently read from the main source input file.

The micro reference is #SEQUENCE#.

7.3.8 MODLEVEL

The automatic value of the MODLEVEL micro is the value {(up to 9 characters) specified by the ML pa-
rameter on the COMPASS control statement. If no ML parameter is present, the automatic value of the

MODLEVEL micro is equal to that of the JDATE micro, When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler.

The micro reference is ¥MODLEVEL#.

+7.3.9 PCOMMENT

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control statement, with characters truncated from the right or blanks appended to the right, as
necessary, go that the micro's length is exactly 30 characters. If no PC parameter is present, the auto-
matic value of the PCOMMENT micro is 30 blanks. When COMPASS is called by a compiler to process
embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied by the call-
ing compiler, The PCOMMENT micro is intended to be used in a COMMENT pseudo instruction to
specify words 8 through 10 of the PRFX table in the binary output. It may also be used, in conjunection
with the *F special symbol, to determine compiler options (debug mode, rounded arithmetic, etc.) in
effect at the time of assembly. .

The micro reference is #¥PCOMMENT.

60492600 A 7-7

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolic notation for all eentral processor unit (CPU) instruetions for the CYBER
180 Series, CYBER 170 Series, CYBER 70 Series, 7600, and 6000 Series. For COMPASS to recognize the
symbolic notation for models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875, and %90 CPU
instructions, the programmer must ensure that SYSTEXT is available to the assembler.

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830,
835, 840, 845, 850, 855, 860, 865, 875, and 990. To detect these instruetions, the programmer ean specify

S-AIDTEXT in the COMPASS control statement. COMPASS prints a listing of the program, ﬂaggmg the
invalidated instructions with a type O error. S=AIDTEXT should not be specified if the 8 option is chosen

for the MACHINE pseudo instruction.

The assembler identifies each symbolie instruction accordmg to its syntax and generates a one-parcel
15-bit instruetion or a two-parcel 30-bit instruetion. The object code for an instruction is generated in the
block in use when the instruction is encountered.

- 8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

14 8 5 20
fm i i k

Figure 8-1. CPU 15-Bit Instruction Format

29 23 20 17 0
fm i] K

| NN OO SN NN NN ST N TN Y O NN SN N NN NN TN N NN N NN N NN N SN N SR N T

Figure 8-2. CPU 30-Bit Instruetion Format

fm 6-bit instruction code
fmi 9-bit instruetion code
i 3-bit code (0 through 7) specifying one of eight designated registers (for example, Ai)
j 3-bit code (0 through 7) specifying one of eight designated registers {for example, Bj)

3-bit code (0 through 7) specifying one of eight designated registers (for example, Xk)
K 18-bit integer value used as an operand, address of an operand, or braneh destination address
jk G~bit integer value speeifying a shift count or mask ecount
Figure 8-3 illustrates possible arrangements of cne- end two-parcel instructions in a 60-bit CPU instruetion

word. Generally, the assembler does not allow a two-parcel instruction to begin in the fourth parcel of a
word.

60492600 M _ : 8-1

First Second Third Fourth
Parcel (Parcel 0) Parcel (Parcel 1) Parcel (Parcel 2) Parcel (Parcel 3)

15 15 15 15
50 44 29 14 00
30 15 15
59 . 29 14 00
15 : 30 15
59 44 14 00
15 15 30
59 44 29 00
30 30
59 29 6o

Figure 8-3. Arvrrangements of Instructions in a 60-hit CPU Word

When a two-parcel instruetion begins in the last parcel of a word, the CYBER 170 Models 175, 176, 740,
750, and 760; the CYBER 70 Model 76; and the 7600 execute it as if the instruetion word had a fifth parcel
containing all zeros. On the CYBER 180 Computer Systems; the CYBER 170 Models 171, 172, 173, 174,
720, 730, 815, 825, 835, 845, 855, 865, and 875; and the CYBER 70 Models 71, 72, and 73; and the 6400, this
condition eauses an error exit. On the 6600 and the CYBER 70 Model 74, the CPU takes the first parcel of
the eurrent instruetion.

Before it assembles an instruction that must begin in the first parcel (forced upper) and af ter it assembles
an instruction that requires the instruetion following it to be foreed upper, the assembler completes a word
as follows:

‘Lower 15 bits remain They are packed with a one-pareel NO (pass) instruction.
Lower 30 bits remain They are packed with a two-parcel SB0 BO+K instruetion.
Lower 435 bits remain They are packed with a NO instruction and an SB0 B0+K instruetion.

8.2 INSTRUCTION EXECUTION

B8.2,1 6600/ 67001 AND CYBER 70 MODEL 74 EXECUTION

After an exchenge jump start by a peripheral processor {PP) and CPU program, CPU instruetions issue
automatieally in the original sequence, to an 8-word instruction stack. The stack ean hold a program loop
consisting of up to twenty-six 15-bit instruetions and one 30-bit instruction.

Instruections are read from the stack, one at a time, and issued to the functional units {table 8-1) for

execution. A scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

TThe 6700 also includes a 6400-type central processor unit

B-2 ' ’ 60492600 M

TABLE 8-1. CYBER 70 MODEL 74 AND 6000/7600 FUNCTIONAL UNITS

Unit General Funetion
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, logical product,

logieal sum, and logical difference.

Shift Executes operations basiec to shifting. This includes left (eircular)
and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask

generator.
Floating Add Performs single or double precision floating point addition and
subtraction on floating point operands.
Long Add Performes addition and subtraction of two 60-bit fixed point operands
Floating Multiply Performs single or double precision floating point multiplieation on

floating point operands

Floating Divide Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-hit word.

Increment Performs one's complement addition and subtraction of 18-hit operands.

Each functional unit exeeutes several instruetions, but only one at a time. Some branch instructions
require two units; the second unit receives direction from the branch umit.

The rate of issuing instruetions varies from the maximum of one instruction every 100 nanoseconds (one
minor cycle). Sustained issuing at this rate may not be possible because of funetional unit and CM conflict
or beeause of serial rather than simultaneous operation of units. Prograin run time can be decreased by

efficient use of the units. Instruetions that are not dependent on previous steps may be arranged or nested
in program areas where they may be executed concurrently with other operations to eliminate dead spots in

the program and increase the instruetion issue rate.
The following steps summerize instruetion issuing and execution:
An instruetion is issued to a funetion unit when:
Specified functional unit is not reserved,

Specified result register is not reserved for a previous result.

Instructions are issued to funetional units at minor eyele intervals when no reservation confliets are
present.

Instruetion execution starts in a funetional unit when both operands are available. Exeeution is
delayed when an operand is a result of a previous step which is not complete.

No delay oceurs between the end of a first unit and the start of a second unit whieh is waiting for the
results of the first.

60492600 A 8-3

After a branch instruetion is initiated, no further instruetions are issued until the branch has been
executed. In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instruetions that branch to K + Bi and branch to K if Bi...
Long add unit to perform the instruetions that branch to K if Xj...
Time spent in the long add or inecrement units is part of total branch time.

Read central memary access time is computed from the end of inerement unit time to the time an operand
is available in X operand register. Minimum time is 500 nanoseconds assuming no central memory bank
confliet.

8.2.2 CYBER 180 COMPUTER SYSTEMS; CYBER 170
MODELS 171, 172, 173, 174, 720, 730, 815, 825, 835, 845, AND 855;
CYBER 70 MODELS 71, 72, AND 73; AND 6200, 6400, 6500 EXECUTION

The CYBER 180 Computer Systems; the CYBER 170 Models 172, 173, 174, 720, 730, 815, 825, 835, 845, and
855; the CYBER 70 Models 71, 72, and 73; and the 6200, 6400, and 6500 systems CPU has a unified
arithmetie unit, rather than separate functional units &s in the 6600 system. Instructions in the CPU are
executed sequentially.

NOTE

Unless otherwise stated, the remainder of this section applies to all the models
listed ahove, except models 810, 815, 825, 830, 835, 840, 845, 850, and B55.

For efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruetion word to avoid both
the additional time for RNI {read next instruction, 2 minor eycles) end the possibility of & memory
bank conflict with (P + 1).

Where possible, place load/store instruetions in the lower two portions to aveid lengthening execution
times.

Reading the next instruetion words of a program from central memory, RNJ, is partially concurrent with
instruction execution. RNI isinitiated between execution of the first and second instruetions of the word
being processed. Initiating RNI operatmn requu'&s two minor cycl&s the remainder of the RNI1is parallel in
time with executlon of the remaining instruetions in the word:

P 1 2 3

AP NN

RNI Execution of

¥ ﬁl “——instructions ——mm | >

2 and 3

RNI
— | 200 <—\]\—-———-minimum Ofﬁl_b
nsec -

800 nsec

A

Total RNI time

Y

84 60492600 M

In caleulating exeeution times, two minor eyeles are added to each instruetion word in a program to cover
the RNI initiation time, Exceptions are the return jump and the jump instructions (in which the jump
eondition is met) when they oeeupy the upper position of the instruetion word. Since the times for these
instruetions already inelude the time required to read the new instruction word at the jump address, no
additional time is consumed.

Example:
P |Jump to K {met) Pass Pass
K fadd1 -Add 2 Load | Store
Instruction Minor Cycles Required
Jump 13
Add1 5
RNI Initiation 2
Add 2 5
Load 12
Store 10
Total Time 47 minor eycles

After RNI is initiated (between the first and second instruetions of the word), a minimum of eight minor
eycles elapses before the next instruction word is available for execution. Even if the lower order positions
of the word should require less than eight minor eyeles, a minimum of eight minor eyeles is allowed.

Exampie:
Jump to K
P (not met) Pass Pass
P+1
8.2.3 CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 875; I

CYBER 70 MODEL 76; AND 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in the
computation section of the CYBER 170 Models 175, 176, 740, 750, 760, 865, and 875; the CYBER 70 Model l
76; and the 7600 CPU. Eech is a specialized unit with algorithms for a portion of the CPU instruction
execution. Table B-2 lists the general function of each unit. A number of funetional units can be in

operation at the same time. .

60492600 J 8-5

TABLE 8-2. CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 873;
CYBER 70 MODEL 76; AND 7600 FUNCTIONAL UNITS

Unit General Function

Baolean Handles the basic logical operalions of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.

Shift Executes operations basic to shifting. This includes left {circular)
and right (end-off sign extension) shifting, and mask generation.

Normalize Performs the normalize operations,

Floating Add Performs single or double precision floating point addition or subtraction
on fleating point operands.

Long Add Performs integer addition or subtraction of two 60-bit fixed point
operands.

Floating Multiply Performs single or double precision floating point multiplication on
floating point operands.

Floating Divide Performs single precision floating point division of floating point
operands.

Population Count Counts the number of 1 hits in a G0-bit word.

Increment Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from cperating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the funetion. The funetional
units do not retain any information for reference in subsequent instructions. The units operate in

three-address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is eaptured and held in a

new set of registers at the end of every clock period. It is therefore possible fo start a new set of operands
for unrelated ecomputation into a funetional unit each ecloek period even though the unit may require more

than one clock period to complete the calculation, This proeess may be ecompared to a delay line in which
data moves through the unit in segments to arrive at the destination in the proper order but at a later
time. A1l funectional units perform their algorithms in a fixed amount of time. No delays are possible once
the operands have been delivered to the front of the unit.

The floating multiply unit has a two elock period segmentation. Operands may enter the multiply unit in
any clock period providing there was no multiply operation initiated in the preceding clock period.

The fioating divide unit is the only funetional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the heginning of a new
divide operation can follow a previous divide operation by 18 clock pericds for a gain of 2 elock periods.

Instructions involving storage references for operands or program branehing are diffieult to time. Program

branehing within the instruetion staek eauses no storage references and small program loops can therefore
be precisely timed.

8-6 S 60492600 J

8.2.4 CYBER 180 Model 990 Execution

Execution of an arithmetic or logical machine instruction takes place in one of eleven funetional units in
the computation section of the CYBER 180 Model 990. Eachis a specialized unit with algorithms feor a
portion of the CPU instruetion execution. Table 8-3 lists the general function of each unit. A number of
functional units ean be in operation at the same time.

TABLE 8-3. CYBER 180 MODEL 990 FUNCTIONAL UNITS

Unit General Function

Boolean Performs the baslc logical operations of transfer, logical
product, logical sum, and logical difference. It also performs
the unpack floating peint operation.

Shi ft Performs left (circular) and right (end-off) shifting and mask
generation.

Normali ze Performs the normalize operation.

Floating Add Peforms single or double precision floating polnt additien or

subtraction on floating point operands.

Performs integer addition or subtraction of two 60-bit Fixed

Long Add
’ point operands.

Floating Multiply

Floating Divide

Population Count
Compare

Increment

Address Control

Performs single or double precision floating point multiplication
on floating point operands.

Performs single precision floating point division of Eloating
point operands.

Count the number of 1 bits in a 60-bit word.

“

Performs operand comparison for condition branch iastructions.

Performs one”s complément addition and subtraction of 18-bit
operands.

Performs address manipulation for fetching and storing data
from/ to memory.

650492600 M

8-6.14¢

A funetional unit receives one or two operands from operating registers at the beginning of instruetion
execution and delivers the result to the operating registers after performing the funetion, The units
operate in three-address mode with souree and destination addressing limited to the operating registers.

Except for the floating divide, floating point normelize, and boolean units, all functional units have one
clock period segmentation. This means that the information arriving at the unit, or moving within the unit,
is eaptured and heldin a new set of registers at the end of every clock period. It is therefore possible to
start a new set of operands for unrelated computation into a functional unit each cloek period, even though
the unit may require more than one cloek period to complete the ecaleulation. This process can be
compared to a delay line in which data moves through the unit in segments to arrive at the destination in
the proper order but at a later time. All functional units perform their slgorithms in a fixed amount of
time. No delays are possible onee the operands have been delivered to the front of the unit.

The floating divide unit has a twenty-seven period segmentation. A new operand rriay enter the divide unit
twenty-seven clock periods after a previous operand entered.

The floating point normalize unit has a two clock period segmentation, unless the Bj register is BO. In that
ease, it has a one clock period segmentation,

The boolean unit has a one cloek period'segmentation unless executing an unpack instruction where register
Bjis not BQ. Inthis case, it has a two clock pericd segmentation.

Instructions involving stcrage references for operands or program branching are diffieult to time because
of memary conflicts and the 990's predictive branch logie that is based on a previous-history for the branch.

. ® 8-6.2 . 60492600 M

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits 8
Address Registers AD - A7 18 Bits 8
Index Registers BO - B7 18 Bits 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed, A register is free In the elock period (or minor eyele} following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated X0, X1, ...,X7 are the principal

data handling registers for computation. Data flows from these registers to the SCM (CM) and the

LCM/UEM (not ECS). Data also flows from SCM (CM) and LCM/UEM (not ECS) into these registers. All

§0-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM) into

corresponding address registers.

- On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the X registers also serve as address
registers for referencing single words from LCM. On the CYBER 170 Models 810, 815, 825, 830, 835, 840,
845, 850, 855, 860, 865, 875, and 990, the X registers also serve as address registers for refereneing single

words from UEM,. X0 is used as the LCM/UEM relative starting address in a block eopy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as A0, Al,...,AT7, are
essentially SCM (CM) operand address registers. With the exception of AD and X0, A registers are

associated one-for-one with the X registers. Plaecing a quantity into an address register A1 - A5 causes an

immediate SCM (CM) readreference to that relative address and sends the SCM (CM) word to the
corresponding operand register X1 - X5. Similarly, placing & value into address register A6 or A7 ceuses

the word in the corresponding X6 or X7 operand:-register to be written into that relative address of SCM

(CM).

" The AD and X0 registers operate independently of each other and have no connection with SCM {CM). A0 is

used as the relative SCM (CM) startin

intermediate results.

8.3.3 B REGISTERS

g address in a block copy operation and for serateh pad or

Eight 18-bit B registers in the computation section of the CPU designated as B0, B, ...,BT7 are primarily

indexing registers for controlling program exeeution. Program leop eounts can be ineremented and

deeremented in these registers,

60492600 M

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations end the ehannel

number for channel status requests,

B0 always contains positive zero; that is, B0 is held elear. Often asa programming convention, B1 or BY
contains positive 1. See the B1=1, the B7=1, and the R= pseudo instruections.

8.4 SYMBOLIC NOTATION

This section deseribes notation used for coding symbolic CPU machine instructions. Instructions are listed
in groups according to function. Instruetions unique to a eomputer system are identified as sueh in

table 8-4. These instructions can be assembled on any machine but will execute properly on the noted
machine only. Table 8-5 lists the functional unit, if any, in which each instruction executes. For details
and speeial conditions arising during instruction execution, refer to the relevant hardware system reference
manual. '

TABLE 8-4., CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE

Machine Model Number
Mnemomnic 171, 172, 173, 174, 175
810, 815, 825,-830, : ’ : ’ r
Code 835, B40, B45, 850, B5S, 76 and 7600 | 120» 730, 740, 750, and 760; 176
860. 865. 875 4-990 71, 72, 73, and 74; and
' !) an 6000 Series
AXi X - X X X
BXi X X X X
cet
CR b
cut
cW X
cXi X ' X X X
DF X X X X
pmT
DXi X X X X
EQ X X X X
ES X
PXi X X X X
GE X X X X
GT X X X X
183 X X
D X X X X
et
IR X X X X
IXi X X X X
Jp X X X X
LE X X X X
LT X X X X
LXi X X X X

8-8 60492500 M

TABLE 8-4. CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd)

Machine Model Number

Mnemonic
Code

860, 865, 875, and 990

171, 172, 173, 174, 175,

810, 815, 825, 830
» 815, : 720, 730, 740, 750, and 760;
835, 840, 845, 850, B55, | 76 and 7600 71, 72, 73, and 74; and

6000 Series

176

MD
MI X

&
LR

MXi

P

NG
NO

L]
PP P

NZ
0Bj

b
E

PL

PS
PXi

Mo Pe s
P4

»a

RI

R
R

RXi

b

RXj

5Bi
5Xi

POPS b e
L]

TBj
Uxi
WE
WL

P

P b4 M

WXj
X3
ZR
ZX3i

LRl
4

s oPe LT] L]

El-

»PS M

i

L pe e

P

P PSP b

PGPSR P9

PRSP PE P e

CMU instructions through simulaticn.

feMy instruction: Compare/Move Unit avallahle on CYBER 170 Models 172, 173, 174,
720, and 730. Models B10, 815, 825, 830, B35, 840, B45, 850, 855, B60, and 990 support

60492600 M

TABLE 8-5. CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE

Functional Upit
Operation

Mnemonic Code 74, 6600, ;;g, 176,724(.), 50

and 6700 » and 760; ?

76; and 7600
Prm—tt i

AXd Shift Shift Shift
BXi Boolean Boolean Boolean
CR None None None
CcW . None None None
cxXi Divide Pop Pop
DF Branch None None
DXi 321 jk FP Add TP Add FP Add
DXi 33ijk FP Add FFP Add FP Add
DX1i 421k Multiply Multiply Multiply
EQ Branch None Compare
ES i None None
Fii 30414k FP Add FP Add FP Add
X1 3114k FP Add FP Add FP Add
FX4 401ik Multiply Multiply Multiply
FXi 4414k Divide Divide Divide
GE Branch None - Compare
GT Branch None None
IBj T None None
1D Branch None Nomne
IR Branch None None
IXi 36ijk Long Add Long Add Long Add
IXt 371ijk Long Add Long Add Long Add
IXi 4219k Multiply Multiply Multiply
JP Branch None None
LE Branch None Compare
LT Branch None Compare
LXd Shift Shife Shift
ML Branch None None
MJ T None None
MX1 Shife Shift Shift
NE Branch None Compare
NG Branch None Compare
NO None None None
NXi : .. Shifte Normalize Normalize
NZ " Branch None Compare
0Bj T None None
OR Branch None None
PL Branch None None
PS . Branch T T
PXi Shift Boolean Boolean

® 8-10 60492610 M

TABLE 8-5. CEFU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE (Contd)

Functional Unit

. Operation
Mnemonic Code 74, 6600, ;;g’ 172’ Zé?’ 990
and 6700 , and 760;
76: and 7600

RE Branch T T

RI i None) None

R Branch None None

RL T None None

RO T . None None

RXi 341k FP Add FP Add FP Add

RXi 354ijk FP Add FP Add FP Add

RXL 41ijk Multiply Multiply Multiply

RX1 4515k Divide Divide Divide

RXj 0143k T None None

SAi Increment Increment Increment and
Address Control

SBi Increment Increment Increment and

Address Control

SXi Increment Increment Increment and
Address Control

TBj) ' T None

UXd Shift Boolean

WE . Branch None

WL i None None

WXj 01545k T None None

X7 01300 None None None

b Al 013k Branch T t

ZR Branch None Compare
Z2X Shift Nortmalize Normalize

TInstruction not supported for this model.

The location field of a symbolie machine instruction optionally contains a loeation symbol. When the
symbol is present, it is assigned the value of the loeation eounter after the foree upper (if any) cceurs.

The operation field of a symbolie CPU machine instruction eontains a mnemonic operator, the last two
characters of which are often a register designator.

The variable field contains one, two, or three subfields. For 15-bit instructions, subfields take the forms:

r

-r } r is aregister designator

T,y '

FOpT . . 4o

—opr } op is a register operator /

jk jk is an absclute expression specifying a shift count or mask bit ecount. If the

expression value is in the range -80 to -0, inclusive, COMP ASS adds 60 toit. If
it is less than ~60 or greater than 63, COMP ASS sets a warning flag and uses the
low-order 6 bits of the expression velue.

60492600 M g-11®

For a 30-bit instruetion, subfields take the forms:

K The single subfield eontains an absolute, relocatable, or external expression
that does not include a register.

ropK The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+-%

r,K s One subfield eontains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

r,r,K Two subfields contain register designators; & third contains an absolute,
relocatable, or external expression that does not include a register.

in the formats and examples, K reduces to an 18-bit value that represents one of the followiﬁg in pass two:
An absolute address or a2 word count
An external symbol + an integer value
An address that is relocatable relative to the program origin or common block origin.
An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, + K designates that the evaluation of all nonregister elements can result
in a positive or negative value for the expression (see Evaluation of Expressions in chapter 2). Use of + K
to represent the integer portion of the expression does not imply that the first term operator in the
expression is an expression operator. If you consider that a and b are terms in expression K, then +K
indicates that the sum of the values of a and b is positive and -K indicates that the sum of the values is
negative. Thus, -K does not mean that a-b would become -a+b.

In the foliowing example, the symbel XRAY has the value 407g. The first term operator (-) forms the
value 777370g. Subtracting 1 from this results in 777367g or a -K (-410g).

Code CGenerated LOCATION OFERATION | VARIABLE COMMENTS

1 n 1B [30

7212777367 SX1 ¥2-XRAY-1

Unless otherwise noted, subfields can be in eny order. COMPASS also allows an added degree of flexibility
by allowing the variable subfields of an instruetion to be written in the operation field with each subfield
preceded by & comma. For example: '

Code GenerdLed ' LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 ag
26123 Ux1 B2,X3 i

B-12 ' : : ' 60492600 H

can be written

Code Generated LOCATION OFERATION | VARIABLE COMMENTS
i n 1 [20
26123 Ux1,B21x3 l

The instructions are identical to the assembler.

Similarly, the following instructions are regarded as identieal. Use of this feature is optional.

LOCATION QOPERATION | VARIABLE COMMENTS
1 n 18 la0
]
0423010641 EQ B2,B3,K ’
0423010641 EQ,B2 |[B3,K I
0423010641 EQ,B2,B3 K |
0423010641 EQ,B2,B3,K |
I
I
[
|

8.4.1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION

The CEJ/MEJ Panel Switch determines whether this instruction eauses the central processor unit to halt or
to execute an exchange jump. The DISABLE position disables the eentral exchange jump or the monitor
exchange jump. In this case, the instruction is illegal for a CYBER 170 Model 175. For all other systems,
PS halts the central processor unit at the current step in the program. An exchange jump is necessary to
restart the eentral proeessor unit, Thé ENABLE position enables the jump capabilities for all systems. In
this case, PS causes an exchange jump to monitor address (MA) in the exchange package. For the CYBER
18¢ Computer Systems and the CYBER 170 Models 176, 815, 825, 835, 845, 855, 865, and 875 exchange
jumps are always enabled. For 6000 series systems, the CRJ/MEJ switeh is ignored; PS always causes the
central processor unit to halt. The job continues to hold & eontrol point until the time limit is satisfied; at
that time the job aborts.

The contents of the loeation field become a sub-subtitle on the assembler listing. The assembler forces
upper before and after assembling a PS instruetion.

Format:
Operation Variable | Description Size Octul Code
Ps | Program stop or exchange jump to (MA) 30 hits 00000 00000
Ps K Program stop ot exchange jump to (MA) 30 bits 0000K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 a0
0000000000 PS i o

60492600 M 8-13

8.4.2 ERROR EXIT INSTRUCTION

ES execution is treated as an error condition and the machine sets the program range condition flag in the
PSD register. The condition flag then generates an error exit request which eauses an exehange jump to
address (EEA). All instructions issued prior to this instruction are run to completion. Any instruction
following this instruetion in the eurrent instruction word is not executed. When all operands have arrived
at the operating registers as a result of previously issued instruetions, an exchange jump oeeurs to the
exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation seetion, are set to zero by the assembler.
The program address stored in the exchange package on the terminating exchange jump is advanced one
count from the address of the eurrent instruetion word (P=P+1). This is true regardless of which parcel of
the current instruetion word contains the error exit instruetion.

The error exit instruetion is not intended for use in user program code. The program range cendition flag is
set in the PSD register to indieate that the program has jumped to an area of the SCM field which may be
in range but is not valid program code. This should occur when an incorrectly coded program jumps into an
unused area of the SCM field or into a data field. The program range condition flag is also set on the
eondition of a jump to address zero. These conditions ecan be determined on the basis of the register
contents in the exchange package. The existence of an error exit condition resulting from execution of this
instruction can thus be deduced,

The location field of an ES instruetion becomes a sub-subtitle on the assembler listing.

A force upper occurs after the ES instruetion.

Format:
Operation Variable Description Size Octal Code
ES Error exit to EEA 15 hits 00000
ES K Error exit to EEA 15 hils 00000
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

] i 18 [30
0ocag cs :

8.4.3 RETURN JUMP INSTRUCTION

When this instruetion is executed, an unconditional jump to the current address plus one (P}+1 is stored in
the upper half of relative address K in SCM and control then transfers to K+1 for the next instruetion. The
lower half of the stored word is all zeros. The instruction always branches out of the instruction stack and
voids all instructions eurrently in the instruction stack.

After the instruetion is executed the oetal word at K is:

Address K |0 400 P+ 1 | 0000000000
59 25 o0

Bi=Bj

8-14 : 60492600 H

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruetion word. Instruetions appearing after the return jump
instruction in the current instruetion are not executed. The called subroutine must exit at address K in CM

(SCM). A jump to address K of the branch routine returns the program to the original sequence. The
assembler sets the unused j designator to zero.

A foree upper occurs after the instruetion is assembied.

Format:
Operation Variahle Deseription Size Oelal Code
RJ K Return jump fo K 30 hits 0100
Example:
Code Generated LOCATION QOPERATION { VARIABLE COMMENTS
' i 1 18 [30
0100002374 + RJ HELP i

8.4.4 ECS/UEM INSTRUCTIONS

These instructions initiate either m read or write operation to transfer (Bj}+K 60-bit words between
extended memory (ECS or UEM) and ecentral memory (CM). The initial extended memory address is
(X0)+RAg; the initial CM address is (AOMRAG.

For the CYBER 180 Computer Systems and the CYBER 170 Models 815, 825, 835,

NOTE

845, and 855, these instructions are UEM block copy instructions. For the CYBER

170 Models 865 and 875, the selection of the ECS or UEM depends on the state of

the UEM enable flag. This flag is one bit in the 6-bit flag register in the exchange
sequence. If the enable flag is set, transfer is between UEM and CM; if the enable
flag is clear, transfer is between ECS and CM.

The assembler forces upper before assembling an RE or WE instruction.

If no errcr oceurs, the next instruetion executed is the first instruetion in the eurrent addres

(PH1.

s plus one

Three error conditions cause an error exit to the lower-order 30 bits of the instruetion word ecntaining the
RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions are:

Parity errors when reading ECS. If a parity error is detected, the entire block of data is transferred

before the exit is taken.

The ECS bank from/to which data is to be transferred is not available because the bank is in
maintenanee mode, or the bank has lost power. If either of these conditions exists on an attempted
read or write, an immediate error exit is taken.

An attempt to reference a nonexistent address. On an attempted write operation, no data transfer
oceurs and an immediate error exit is taken. If the attempted operation is a read, and addresses are in
range, zeros are transferred to cen{ral memory. This i5 a convenient high-speed methoed of clearing

blocks of central memory.

60482600 L

8-15

On a CYBER 170 Model 178, action in the case of error depends on the operating system being run. Under
SCOPE 2, error processing is just as for the RL and WL instructions (see LCM Block Copy Instructions).
Under NOS, an error causes the job to abort. Under NOS/BE, an error exit to the lower 30 bits of the
instruetion word takes place. This action is provided by the operating system, not by the hardware.

For additional information about ECS instruetions, refer to the 7030 Extended Core Storage Reference
Manual.

Format:
Operation Variable Deseription Size Octal Code
RE Bj Read extended memory 30 bits 011j0 00000
RE K Read extended memory 30 bits 0110K
RE Bj+K Reead extended memory 30 bits 011jK
WE Bj Write extended memory 30 bits 01230 60000
WE K Write extended memory 30 bits 0120K
WE Bj+K Write extended memory 30 bits 012jK
Example:
Code Generated 1OCATION OPERATION | VARIABLE COMMENTS
= 1 I 18 {30
0110002000 RE 20008 !
0117001000 RE BY+1000B :
0125001000 WE 10008485 |

8.4.5 LCM BLOCK COPY INSTRUCTIONS

Biock eopy instructions move quantities of data between LCM and SCM as quickly as possible. All activity
in the CPU other than I/O word requests is stopped during a bloek copy operation. All instructions issued
prior to a bloek ecopy instruction are executed to completion and no further instructions issue until the
bloek eopy is nearly completed. As a result of these restrictions the data flow between LCM and SCM can
proceed at the rate of one 60-bit word each eloek period. When an I/O multiplexer word request for SCM
oecurs during this transfer, the data flow is interrupted for one elock period. The 1/0 word address is
inserted in the stream of addresses to the SAS, and the addresses for the bloek copy are resumed with a
minimum of a one elock period delay. An additional delay will oceur if the I/O reference causes a bank
eonflict in SCM.

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an inerement or decrement. The result is an 18-bit integer whieh is truncated to a
10-bit quantity. Thus, a maximum bloek size is 1777g. (For example, if the result of the add is

003000g, the instruetion transfers 1000g words.) No error indieations are given when thiz oceurs unless

the field length is exceeded causing a block range error. If the bloek length is zero, the instruetion
beeomes a do-nothing instruetion; the condition is not error flagged.

Relative source or destination addresses begin at (A0) in the SCM and at the relative LCM address

determined from the lowest order 1% bits of (X0). If (X0} is negative, the 19 bits sre treated as a positive
integer. If the sum of (X0;g_gg) and the block count exceeds the (FLL), the copy is not executed and the

8-16 60492600 H

LCM bloek range condition flag is set in the PSD register. Similarly, if the sum of (A0) and the bloek
exceeds (FLS), the copy is not executed and the SCM block range condition flag is set in the PSD register.

Under SCOPE 2, COMPASS will truncate a bloek copy instruetion if it begins in the last pareel and its
K field is zero. Under such conditions, a block copy is a 15-bit instruetion.

Under NOS and NOS/BE, COMPASS forees upper after assembling an RL or WL instruction.

Any error condition oceurring during exeeution of a block copy instruction causes & flag to be set in the
PSD register but does not interrupt the bloek copy instruetion. No further instruetions are issued during
block trensfer of data. Instructions already issued are eompleted; all other activity, with the exeeption of
1/0 word requests, stops.

On a CYBER 170 Model 176, if no error takes place, the next instruetion executed is the first instruetion
in the current address plus one (P)+1 . Action in the case of error depends on the operating system being
run. Under SCOPE 2, error processing is just as for any program running cn the CYBER 70 Model 76, as
described in the SCOPE 2 Reference Manual listed in the preface. Under NOS, an error causes the job to
abort. Under NOS/BE, an error exit to the lower 30 bits of the instruction word takes place. This action is
provided by the operating system, not by the hardware.

Format:
Operation Variable Description Sive Octal Code
RL Bj Block copy (Bj) words from LCM to SCA 30 hits 01130 00000
RL : K Block copy (K} words from LCM to SCM 30 hits 0110K
RL Bj+K Block copy (Bj) + K words from LCM to
SCM 30 hits 011jK
WL K Block copy (K} words from SCM to LCM 30 hits 0120K
WL Bj Block copy (Bj) words from SCM to LCM 30 hits 012j0 vooog
WL Bj+K Block copy (Bj) + K words from SCM to
LCM : 30 hits 012jK
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
_ ' ! " T [30
0115001000 RL 1000B+B5 |
0110002000 R 20008 |
|
0124777677 WL B4-100B !

8.4.6 EXCHANGE JUMP INSTRUCTION

This instruetion unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruetion action differs, however, depending on whether the monitor flag bit is set or
clear.

This instruetion is not legal for CYBER 170 Models 175, 740, 750, and 760 if the MEJ/CEJ switeh is in the
DISABLE position or if the instruction does not reside in parcel 0 of the instruetion word.

60492600 H 8-17

QOperation is as follows:

Monitor flag bit elear: The starting address for the exchange is talen from the 18-bit Monitor Address
register. This starting eddress is an absolute address. During the exchange, the monitor flag bit is set.

Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding K to
the contents of register Bj. This starting address is an absolute address. During the exchange, the
monitor flag bit is cleared.

For additional information, refer to the appropriate hardware reference manual.

The assembler forces upper before and after assembling an XJ instruetion.

Format:
Operation Variable Description Size . Octal Code
xXJ Exchange jump to MA if in program maode 30 bits 01300 00000
p.) Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000
XJ K Exchange jump to K; flag set 30 hits 0130K
XJ BjzK Exchange jump to (Bj) + K; flag set 30 bits 013jiK
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 1 18 {30
0130000000 o |xa ;
0130001000 Xd 10008 i
I
0135000600 XJ B5+600B |

8.4.7 EXCHANGE EXIT INSTRUCTION

This instruetion is used for ealling & system monitor program for input/output, monitor ecalls, ete. and has
priority over all other types of exchange jump requests. If an 1/O interrupt request or an error exit request
occurred prior to execution of this instruetion, it is denied and the exchange jump speeified by the MJ is
executed. The rejected interrupt request Is not lost, however. The conditions that caused it are reinstated
when the exchange package enters its next execution interval.

The normal termination for an exchange package execution interval is through execution of an exchange
instruetion (MJ). The MJ instruetion voids the instruction word stack. Any instructions remaining in the
stack are not executed. The exit mode flag in the PSD register determines the source of the exchange
package as follows:

Exit mode flag set: When the exit inode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) + K. An overflow of the Jowest
order 16 bits of this result causes an error condition that is not sensed in the hardware, Should a
program erroneously execute an exchange exit instruetion with an overflow condition, the exchange
jump sequence begins at the absolute SCM address carresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

B-18 60492600 H

Exit mode flag not set: When the exit mode flag is not set, the object program terminates the
execution interval with a 15-bit form of the MJ instruetion. The normal exit address (NEA) is the
absolute address of the exchange package. This is an absolute address in SCM and is generally not in
the SCM field for the ecurrent program. This form of the MJ instruction has a blank variable field; the
assembler sets the j and k designators to zero.

The system makes no protective tests on the exchange jump address.

All operating register values, program addresses, and mode selections are preserved in the exchange
packege for the objeet program so that the objeet program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the instruetion
word containing the exchange exit instruetion. ‘The monitor program normally resumes the objeet program
at this eddress.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA} has more than 16 bits
of significance, the upper bits are discarded and the lower 16 bits are used as the absolute address in SCM
for the exchange jump. A foree upper oceurs after the instruction is assembled.

Format:
Operation Variable Description Size QOctal Code
MJ Exchange exit to NEA if exit flag clear 15 bits 01300
MJ Bj Exchange exit to (Bj) if exit flag set 30 bits 013j0 00000
MJ Bj+K Exchange exit to (Bj) + K if exit flag set 30 bits 013iK
M.J K Exchange exit to K if exit flag set 30 bits 0130K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n T (20
01300 MJ I
|
0134000500 MJ BY4+500B :
D13677TTHTT MJ -300B+B6 |
I
(0130000600 MJ 600B

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register or
writes one 60-bit word direetly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the requested
word already resides in one of the bank operand registers. A read LCM instruetion for a word not eurrently
residing in & bank operand register will require 17 clock periods for delivering a field of eight 60~bit words
to the designated X register. A read LCM instruction for a word already residing in an 1.CM bank operand
register as a result of a previocus instruction will require three elock periods to deliver the requested word
to the designated X register. Thus, although the first 60~bit word will require 17 clock periods, the second
through eighth words in the same LCM word require three cloek periods each. This means that consecutive
LCM operands are available, on an average, every five clock periods as opposed to SCM operands at eight
clock periods.

60492600 H 8-19

The LCM address is determined from the Iow order 19 bits of Xk. Even if (Xk) is negative, the 19 bits are
treated as a positive integer. If the address exceeds the field length (FLL), the word transfer does not take
place and the LCM direct range condition flag is set in the PSD register. Xj is either the source or
destination register.

Instructions are buffered to the extent that each issues in one minor eyele unless a previous LCM reference
is in process. When an RX instruction issues, the LCM busy flag is set and remains set until the requested

word is delivered.

For a write (WX) instruetion, if the word cannot be entered immediately in the proper bank operand
register, it is held in the I,CM write register until the bank operand register is free.

Format:
Operation Variable Description Size Octal Code
RXj Xk Read LCA at (Xk) and set Xj 15 bits 014jk
WXj Xk Write (Xj) into LCM at (Xk) 15 bits 0155k
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 D)
01465 RX6 X5 ’[
01570 WX7 |x0 }

8.4.9 DIRECT UEM TRANSFER INSTRUCTIONS

A single word transfer either reads one 60-bit word from UEM and enters that word into the specified X
register, or writes one word into UEM from the specified X register.

Format:
Operation ¥V ariable Deseription Size Oectal Code
RXj Xk Read UEM at (Xk) + RA, to Xj 15 bits 014jic
WXj Xk Write (Xj) to UEM at (Xk) + RAg 15 bits 015jk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated i " m 30
01412 RX1 X2
01512 Wx1 X2

60492600 H

8.4.10 RESET INPUT CHANNEL BUFFER INSTRUCTION

This instruetion initiates a new record transmission from a PPU to SCM. This instruction prepares the
input ehannel {Bk) buffer for a new record transmission from a PPU to SCM. The instruction clears the
input ehannel buffer address and resets the input channel assembly counter to the first 12-bit position in
the SCM word.

This instruetion is intended to be privileged to an input routine, that is, one thaet terminates a record of
incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruetion to
prepare the buffer for the next incoming record. This instruetion is effective only if the monitor mode flag
is set in the program status register. If the monitor mode flag is eleared, this instruction becomes a pass
instruetion. When this instruetion issues, it will execute the required ehannel functions without regard to
the current status or netivity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruetion. The higher order bits are ignored. If higher
order bits are set in {Bk) the lowest order four bits are masked out and used to determine the ehannel
number. If {(Bk) is zero, this instruction becomes a pass instruetion.

Two or more consecutive RI instruetions referring to different channels will issue in eonsecutive clock
periods with no interference resulting in the multiplexer. If two consecutive instructions refer to the same
channel, they repeatediy perform the same funetion but do not cause interference in the multiplexer.

Format:
Operztion Variable Description Size Octal Code
RI Bk Reset input channel (Bk) bhuffer 15 hits 0160k
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 [30
01607 RI BT 1

8.4.11 SET REAL-TIME CLOCK INSTRUCTION

This instruetion reads the contents of the CPU cloek period counter (real-time clock) and places them

in Bj. The 18-bit clock counter sdvances one count in two's complement mode for each elock period. The
217 pit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt is
handled, the bit is cleared, It permits measurement of CPU exeecution.

Format:

Operation Variable Description Size - Octal Code
TBj Set Bj to current cloek time 15 bits 016j0

TBj K Set Bj to current clock time; K is ignored. 15 hits 01630

60492600 H 8-21

Example:

Code GCenerated LOCATION OFERATION | VARIABLE COMMENTS

1 " 18 [30
T

01670 TB7 j

8.4.12 RESET OUTPUT CHANNEL BUFFER INSTRUCTION

This instruetion initiates a new record transmission from SCM to PPU. It clears the output channel (Bk)
buffer eddress and disassembly eounter, transmits a record pulse over. the output channel data path to the
PPU, and initiates an SCM reference for the first word to be transmitied.

This instruetion is intended for execution in an output routine to initiate a new record transmission over an
output channel data path. The output channel buffer is normally inactive when this instruetion is
executed. The output channel buffer is loaded with the data for the next record, and this instruetion is
executed to initiate the transmission. The record pulse is transmitted along with the word pulse as soon as
the first word of data from the SCM iz entered in the output channel disassembly register.

This instruetion is effective only if the monitor made flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruetion. When this instruetion issues, it
will execute the required channel funetions without regard to the current status or activity at the output
channel.

The lowest order four bits of (Bk) are used in this instruetion. The higher order bits are ignored. If higher
order bits are set in (Bk), the lowest order four bits are masked out and used to determine the channel
number. If {BK) is zere, this instruction becomes a pass instruetion.

Normally, the output channel buffer is inaetive when this instruetion is executed, the program having
checked for completion of the previous record before issuing an RO. The program can deteet the end of
record in two ways. First, it can compare the output channel buffer address with a known record length.
The alternative is to obtain a response from the peripheral unit over the corresponding input channel data
path. If data is moving over the output channel data path when an RO is issued, the RO instruetion takes
priority, with a resulting loss of data in the previous record. Two or mere consecutive RO instruetions
referring to different channels will issue in consecutive elock periods with no interference resulting in the
multiplexer. If two consecutive instructions refer to the same channel, they transmit a record pulse over
the output path and restart the buffer repeatedly. A data word may or may not be transmitted depending
on the timing of the instruetions and confliets that oceur.

Format:
Operation Variable Deseription Size Octal Code
RO Bk Reset outpul channel (Bk) buifer 15 bits 0170k
Example:
CDdE Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1] 1] 30
01705 RO B5S :

8.4.13 READ CHANNEL STATUS INSTRUCTIONS

These instructions copy the contents of the input or output channel buffer address register indieated by
masking the low order 4 bits of Bk and enter the value in Bj. The instruetions are used for monitoring the
progress of an input channel buffer or an output ehannel buffer.

8-22 650492600 H

A chennel buffer area is divided into fields by the threshold testing mechanism. The first half of the buffer
area constitutes one field and the last half of the buffer area the other field. An I/O multiplexer interrupt
request is generated by the threshold testing meehanism whenever the channel buffer address is advaneed
across a field boundary. This occurs at the eenter of the buffer area and at the end of the buffer area.

The IBj instruetion is the only vehiele for a program to determine whether an [/O multiplexer interrupt
request was generated by & buffer threshold test or by a record flag. The program must retain the input
channel buffer address from one interrupt period to the next. If the buffer address is in the same field as

for the previous interrupt, the interrupt request was from a record flag. If the buffer address is in the
opposite field from the previous interrupt, the interrupt request was from & threshold test.

The lowest order four bits of (Bk) are used in these instruetions. The higher order bits are ignored. If
higher order bits are set in (BK) the lowest order four bits sre masked out and used to determine the
ehannel number. If (Bk) = 0, the IBj instruetion reads the contents of the CPU eclock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instruetions or OBj instructions may oceur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in eonsecutive elock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multiplexer
in these situations.

If correet results are to be obtained, an IBj instruction must not immediately follow an R{ instruetion nor
may an OBj instruetion immediately follow an RO instruction. A deiay of one elock period is suffieient.

Format:
Operation Variable | Description T sive Octal Code
IBj Bk Bj =~Read inpul channel (Blk) status 15 hits 01Gjk
OBj Bk Bj —Read output channel (Bk) status 15 hits 017jic
Example:

Code Generated LOCATION OPERATION | VARIASLE COMMENTS

' I 1 18 fa0
01664 IB6 BY :
H 1
01756 os5 Igs !

8.4.14 UNCONDITIONAL JUMP INSTRUCTION

This instruetion adds the contents of index register Bi to K and branches to the relative CM (SCM) address
specified by the sum. The remaining instruetions, if any, in the current instruetion word are not executed.
The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On the CYBER 180 Series, the CYBER 170
Series (except Model 176), the CYBER 70 Models 71, 72, 73, and 74, and 6000 Series systems, this I
instruetion voids the stack. On the CYBER 70 Model 76, the 7600, and the CYBER 170 Model 1786, the
instruetion word staek is not altered by execution of this instruetion. The instruetion is intended to allow
computed branch point destinations. It is the only CPU instruetion in which a computed parameter can
specify a program branch destination address. All other jump instructions have preassigned destination
addresses at execution time.

The assembler sets the unused j designator to the same value as the i designator. A force upper oceurs
after the instruetion is assembled.

60492600 L g-23

Format:

Operation Variable Description Size Octnl Code
JP BizK Jump to (Bi)zK 30 bits 02iiK
JP Bi Jump to (Bi) 30 bils 02ii0 00000
Jp K Jump o K ' 30 hits 0200KK
Example:

Code Generated LOCATION OPERATICIN | VARIABLE COMMENTS

1 1t 7] [30
0255002373 + JP B5+GOTO |
I

0277000000 JP BY i

8.4.15 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions eguse the program sequence to branch to K or to continue with the eurrent program
sequence depending on the contents of operand register Xj. The decision is not made until the Xj register
is free. These instructions do not void the stack.

The

8-24

foliowing rules apply to tests made in this instruetion group:

The ZR and NZ operations test the full 60-bit word in Xj. The words 00..... 00 and 77..... 77g are

treated as zero. All other words are non-zero. Thus, these instructions are not a valid test for
floating point zero coefficients. However, they can be used for underflow of floating point quantities,

The PL and NG operations examine only the sign bit (bit 59) of Xj. If the sign bit is zero, the word is
positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for fixed point words

or for coefficients in floating point words.
The TR and OR operations examine the upper-order 12 bits of Xj.

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the following octal quantities
are detected as being out of range:

377x.....x (positive overflow)
4000x..... % (negative overflow)
177X . eess x {positive indefinite)
6000x.....x (negative indefinite)}

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

On CYBER 70 Models 71, 72, 73, and 74; CYBER 180 Series; CYBER 170 Series (exeept Model 176);
and 6000 Series computer systems, the octal quantities 3777x .. .x and 4000x .. .x are out of range; all
other words are in range.

The DF and 1D operations examine the upper-order 12 bits of Xj. Both positive and negative indefinite
forms are detected:

17T7T7X e snns x and 6000%..... x are indefinite.

All other words are definite. The value of the coefficient is ignored in making this test.

60492600 L

An errar exit occurs on 65000 Series; CYBER 180 Series; CYBER 170 Series; and CYBER 70 Models 71,
72, 73 and 74 systems when an indefinite or out of range value is used as an operand of an arithmetie
instruetion. Such error exits can be avoided by using DF, ID, IR, or OR instructions to test for such

values befere using them es operands.

On a 7600 or CYBER 70 Model 76 system, an errar exit occurs as soon ss an indefinite or out of range
velue is produced as the result of an arithmetie instruction. The DF, ID, IR and OR instruetions are
useful only when a MODE control statement is used to suppress such error exits.

Format:
Operation Variable Description Size Oectal Code
ZR Xj, K Branch to K if (Xj) = 0 30 hits 030j 1K
NZ X, K Branch to K if (Xj) # 0 30 hits 031jK
PL X, K Branch to K if (X]) sign is plus 30 hits 032K
NG Xj, K Branch to K if (Xj) sign is minus 30 hits © 033K
ME Xj, K Branch to K if (Xj) sign is minus 30 bits 03351
R Xj, K Branch to K if (Xj) in range 30 bits . 034jK
OR Xj, K Branch to K if (Xj) out of range 30 hits ' 035jK
DF Xj,K Branch to K if (Xj} definite 30 bits 036jKK
D X, K Branch to K if (Xj) indefinite 30 bits 1 037jIX
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
I u 18 ET

0305002363 ZR X5,ZERO r:

0313002364 NZ X3,NONZERO :

0324002365 PL X4,PLUS !

0331002366 NG X1,NEG j

0331002366 MI X1,NEG ;

0340002367 IR XC,INRANGE E

0351002370 OR X1,0UTRNGE !

0365002371 DF X5,DEFINT

0377002372 iD X7,INDEFNT :
60492600 L 8-25

8.4.16 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS
The following rules apply in the tests made by these instruetions:
Positive zero is recopnized as unequal to negative zero.
Positive zero is recognized as greater than negative zero.
A positive number is recognized as greater than a negative number.

The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in a
19-bit one's complement mode. The (Bi} and the (Bj} are sign extended one bit to prevent erroneous results

caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the (Bi). The
branch decision is based on the sign bit in the 19-bit result,
For these instructions; Bi and Bj must be specified in the order indicated below,

These instructions do not void the instruction stack.

Format:

Operation Variable Description Size QOctal Code
ZR K Branch to K 30 hits 0400K
ZR Bi, K Branch to K if (Bi) = 0 30 bits | 04i0K
EQ K Branch to K 30 bits V400K
EQ Bi,K Branch to K if (Bi) = 0 30 hits 04i0K
EQ Bi, Bj,K Branch to K if {Bi) = (Bj) 30 hits 04ijK
NE Bi, K Branch to K if (Bi) # 0 30 bits 0510K
NE Bi, Bj,K Branch to K if (Bi) # (Bj) 30 hits 05ijK
NZ Bi,K Branch to K if (Bi) # 0 30 bits 05101
PL Bi,K Branch to K if (Bi) > 0 30 hits 06i0K
GE Bi, K Branch to K if (Bi) > 0 30 bits 0610K
GE Bi, Bj, K Branch to K if (Bi} > (B} 30 bits 061jK
LE Bj, Bi, X Branch to K if (Bj) < (Bi) 30 bits 06§ K
LE Bj,K Branch to K if (Bj) < 0 30 bits 060K
NG Bi, K Branch to K if (Bi)< 0 30 bits 07i0K
M1 rBi, K Branch to K if (Bi)< 0 30 bits 07i0K
GT . Bj, Bi, K Branch to K if (Bj) > (Bi) 30 bits 073K
GT Bj,K Branch to K if (Bj) >0 30 bits 070jK
LT . Bi,K Branch to K if (Bi) <0 . 30 bits 0710K
LT Bi, Bj,K Branch to K if (Bi) < (Bj) 30 bits 07ijiK

8-26 60492600 H

Example:

Code Generated | [1ocanion QPERATION | VARIABLE COMMENTS
) " 18 T
0450005221 + ZR B5,BZERO |
0405005222 + EQ | BD,BS,EQUAL:
0453005223 + EQ B5,B3, JUMP :
0400005223 + EQ JUMP !
0515005224 + NE B],BS,NOTEQ:
0560005225 + NZ | B6,BNOTZR |
0620005226 + PL B2, BPLUS :
0645005227 + GE B4 ,B5,GEQ :
0650005230 + GE '|B5,GEBO :
0676005231 + LE B6,B7,LTHAN |
0770005232 + NG BT, BNEG f
0730005233 + MI B3,B3LTO |
0767005234 + GT BT,B6,B7GT é
0705005235 + GT B5,B5GTO |
0712005236 + | LT B1,B2,BLTB :

8.4.17 TRANSMIT INSTRUCTION

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a copy
instruetion intended for moving data from X register to X register as quiekly as possible. No Iogieal
funetion oceurs. The assembier sets the k designator to the value speeified for j.

Format:
Operation Variable Description : Size Octal Code
BXi Xj Transmit (Xj) to Xi 15 hits 10ij}
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
10622 BX6 1X2 |

60492600 H 8-27

8.4.18 LOGICAL PRODUCT INSTRUCTION

This instruetion forms the logical produet (AND funetion) of 60-bit words from operand registers Xj and Xk
and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding bits
of the Xj and Xk registers are 1 as in the following example:

(X)) =010
(Xk) =1100
{Xi) = 0100

This instruction is intended for extracting portions of a 60-bit word during date processing. If the j and k
designators have the same value, the instruction becomes a transmit instruetion,

Format:
Operation Variable Description Size Octal Code
BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bits 11ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 Y 18 T30

11553 BX5 X5%X3 i

8.4.19 LOGICAL SUM INSTRUCTION

This instruetion forms the logien! sum {inciusive OR) of 60-bit words from operand registers Xj and Xk and
places the sum in operand register Xi. A bit of register Xi is set to 1 if the eorresponding bit of the Xj or
Xk register is a 1, as in the following example:

(Xj) =011
(Xk) =1100
{Xi) =1101

This instruetion is intended for merging portions of a 60-bit word into a composite word during data
proeessing. If the j and k designators have the same value, the instruction degenerates into a transmit
instruction.

Format:

Operation Variable Description Size Octal Code
BXi Xj+Xk Logieal sum of (Xj) and (Xk) to Xi 15 bits 12ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 T [0
12767 BX7 X6+X7 ‘
8-28 60492600 H

8.4.20 LOGICAL DIFFERENCE INSTRUCTION

This instruetion forms the logical difference (exelusive OR) of 60-bit words from operand registers Xj and
Xk and places the difference in operand register Xi. A bit in register Xi is set to 1 if the corresponding
bits in the Xj and Xk registers are unlike, as in the following example:

(Xj) =o0101
{(Xk) =1100
(Xi) =T71001

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, the result will be a word of all zeros written
into register Xi.

Format:
Operation Variable Description Size Octal Code
BXi Xj-Xik Logical difference of (Xj) and Xk) to Xi 15 hits 13ijk
Example:

Cﬁde Generated LOCATION ORERATION [VARIABLE COMMENTS

13601

I l iB

a0

BX6 X0-X1

8.4.21 COMPLEMENT INSTRUCTION

This instruetion extraets the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi, It is intended for echanging the sign of a fixed point or
fleating point quantity as quiekly as possible.

The assembler sets the unused j designator of the instruetion to k.

Format:
Operation Variahle Description Size Octal Code
BXi -Xk Transmit complement of (Xk) to Xi 15 bhits 14iklk
Example:

Code Cenerated LOCATION OPERATION | VARIABLE COMMENTS

431

60492600 H

1] 18

[20

BX3 ° |-X1

- 8-29

8.4.22 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical produet (AND funetion) of the 60-bit quantity from operand register X
and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the
complement of the Xk register are 1, as in the following example:

(Xj) =0101
Complemented (Xk) = 0011
(Xi) = 0001

This instruetion is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, a logical product is formed between two complementary quantities. The
result will be a word of all zeros.

Format:
Operation Variable Description Size Octrl Code
BXi -Xk*Xj Logical product of (Xj} and complement
of (Xk) to Xi 15 hits 15ijk

Example:

Code Generated LOCATION QPERATION | VARIABLE COMMENTS

1 n 8 [30
15432 BX4 -X2%X3 i

8.4.23 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruetion forms the logieal sum (inclusive OR} of the 60-bit quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the corresponding bit of the
Xk register is & 0, as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) =01

This instruetion is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the result is a word of all ones.

Format:
Operation Variable Description Size Octal Code
BXi -Xk+Xj Logical sum of (Xj} and complement of
(Xk) to Xi 15 bits 16ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 T10

16654 BX6 -X4+X5 i

8-30 60492600 H

8.4.24 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruetion forms the logical difference (exelusive OR) of the quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike, a5 in the following
example:

(Xj) =o0101
(XK) =1100
(Xi) =0110

This instruetion is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and'k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

Format:
Operation Variable Description ‘ Size Octal Code
BXi -Xie-Xj Logical difference of (Xj) nnd complement
of (Xk) to Xi 15 hits 17ijk

Exaemple:

Code Generated LOCATION OFERATION | VARIABLE COMMENTS

1 n ta kL]
17731 BXT -X1-X3 1

8.4.25 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruetion shifts the 60-bit word in operand register Xi left eireular jk places if expression jk is
positive or left eireular 60+jk places if jk is negative. Bits shifted off the left end of operand register Xi
replace those shifted from the right end.

The 6-bit shift count jk allows a complete circular shift of (Xi).

In COMPASS notetion, jk is an absolute expression. If it is positive, COMPASS places the lower & bits of
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.
Thus, a negative value effectively designates a logical right shift. A positive value designates a left shift.

H the negative shift count is less than -60, the assembler generates a type 7 error.

Format:
Operation Variable Description Size Octal Code i
LXi jk Logical shift (Xi) by + jk places 15 hits 20ijk

60492600 H 8-31

Example:

LOCATION OPERATION | VARIABLE COMMENTS
Code Generated) T 18 !Ju
20325 LX3 258 |
|
20362 LX3 -12B |
: !

8.4.26 ARITHMETIC RIGHT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive and
right 60+l places if expression jk is negative. The rightmost bits of Xi are discarded and the sign bit is
extended.

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If the
operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of
the value in the jk fields, If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.
Thus, a negative value effectively designates the number of high order bits of the operand that are to be
retained. If the negative shift count is less than ~60, a type 7 error is generated.

Format:
Operation Variable Description Size Octal Code
AXi jk Arithmetic shift (Xi) by 2 jk places 15 hits 21ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 1] kD]
21537 AXS 37B i

8.4.27 LOGICAL LEFT SHIFT (Bj) PLACES INSTRUCYTION

This instruetion shif ts the §0-bit quantity from operand register Xk the number of places specified by the
quantity in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

If {Bj) is positive {that is, bit 17 of Bi=0), the quantity from Xk is shifted left cireular. The low order 6
bits of (Bj) specify the shift count, The higher order bits are ignored.

If (Bj) is negative (that is, bit 17 of Bj=1), the quantity from Xk is shif ted right (end off with sign
extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70
Series Models 71, 72, 73, and 74; and the 6000 Series, the one's complement of the low order 11 bits of
(Bj) specify the shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal),
the result stored in the Xi register consists of 60 copies of the operand sign bit. If the shift count is 64
{deeimal) or greater, the result register Xi is cleared to 60 zeros. For the CYBER 170 Model 178,
CYBER 70 Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj) specifies the
shift count. The higher order bits are ignored. If the shift count is 59 (decimal) or greater, the result
stored in the Xi register consists of 60 copies of the operand sign bit.

8-32 60492600 L

If -Bj is specified, the assembler converts the instruetion to an arithmetic right shift. The (Bj) might be
the result of an unpack instruetion, in which ease it is the unbiased exponent and (Xi) is the coefficient.
This instruetion is used for shifting a coefficient from a floating point number to the integer position after

an unpack operation.

Format:
Operation Variable Description . Size Octal Code
LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 hits 22ijk
LXi Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bils 22ijk
LXi Xk Transmit (Xk} to Xi 15 bits 22i0k
LXi Bj Logically shift (Xi) by (B} places to Xi 13 hits 22iji
LXi ~-Bj, Xk Arithmetic right shift (Xk) by (Bj)
places to Xi 15 hits 21ijk
LXi Xk,~Bj Arithmetic right shift (X} hy (Bj)
places to Xi 15 bits 23ijk
LXi -Bj Arithmetic right shift (Xi) by (Bj) i
places to Xi | 15 bits 23iji I
Example:
Code Generated LOCATION OFERATION [VARIABLE COMMENTS T
‘ 1 il 1A T30
22675 LX6 X5, BT i
22534 LX5 B3, X4 ll
22302 LX3 X2 }

8.4.28 ARITHMETIC RIGHT SHIFT (Bj) PLACES INSTRUCTION

This instruction shif ts the §0-bit quantity from operand register Xk the number of places specified by the
guantity in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

If (Bj) is positive (that is, bit 17 of Bj=0), the quantity from register Xk is shifted right {end off with

sign extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70
Models 71, 72, 73, and 74; and the 6000 Series computer systems, the low order 11 bits of (Bj) specify E
the shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal), the Xi

register contains 60 copies of the (Xk)sign bit. If the shift count is 64 (decimal) or more, the Xi

register is zeroed. For the CYBER 170 Model 176, CYBER 70 Mode! 76, or 7600 computer systems,

the low order 12 bits of (Bj} specify the shift count. The higher order bits are ignored. If the shift

count is 59 (decimal) or more, the Xi register contains 60 copies of the sign of the operand.

If (Bj) is negative (that is, bit 17 of Bj=1), the quantity from register Xk is shif ted left cireular. The
complement of the lower order 6 bits of Bj specify the shift count. The higher order bits are ignored.

60492600 L 8-33

If -B is specified, the assembler converts the instruction to a logical left shift. This instruetion ifs intended
for use in data processing where the amount of shift is derived in the computation. This instruction is also
useful for adjusting the coefficient of a floating point number while it is in its unpacked form.

Format:
Operation Variable Deseription Size Octal Cuole
AXi Xk, Bj Arithmelic shill of (Xk) by (B places to Ni 15 hits 23ijk
AXi Bj, Xk Arithmetic shift ol {NK) by {I3)) places Lo Xi 15 hils 23iik
AXi Xk Transmit (Xk) to XNi 15 hits 2300k
AXi Bj Arithmetic shift of (Xi) by (Bj) places o Xi 15 hits 231ji
AXi -Bj, Xk Logically shift (Xky by (Bj) places to Ni 13 bils a3ijk
AXi Xk, -Bj Logically shift (Xk) hy (Bj) places to Xi 15 hits 221k
AXi ~-Bj Logicully shill (Xi) by (Bj) places Lo Xi 15 bhils 22iji
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I W ET
23764 AXT X4,B6 !
[
23211 AX2 B1,X1 |
]
23502 | AX5 X2 |
i l
23424 f AXY B2 |

8.4.29 NORMALIZE INSTRUCTION

This instruetion normalizes the floating tpr::int quantity from operand register Xk and places it in operand

register Xi. Normalizing consists of shi

ting the eoefficient the minimum number of positions required to

make bit 47 different from bit 59. This places the most significant bit of the coefficient in the highest

order position of the coefficient portion of the word. The exponent portion of the word is then decreased
by the number of bit positions shifted. The number of shifts required to normalize the quantity is entered
in index register Bj.

Format:
Operation Variable Description Size Octal Code
NXi Xk Normalize (Xk) to Xi 15 hils 2010k
NXi Bj, Xk Normualize (Xk) to Ni; shift count to Bj 15 hits 24ijk
NXi Xk, Bj Normalize (Xk) to Xi; shift count to Bj 15 hits 2-1ijk
NXi Normalize (Xi) to Xi 13 hits 24101
NXi Bj Normalize (Xi) Lo Xi; shilt count to 13} 15 hits 24iji
8-34 60492600 H

Example:

Code Generated

24575
24505
au552

LOCATION

QFERATIONM

VARIABLE

COMMENTS

18

NX5
NX5
NX5,B5

8.4.30 ROUND AND NORMALIZE INSTRUCTION

X5,B7
X5

X2

[0
i |
I
|
|
|
|

This instruetion performs the same operation as the NXi instruction with the exception that the quantity
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a 1 round
bit immediately to the right of the least significant coefficient bit. The resulting coefficient is increased
by one-half the value of the least significant bit., Normalizing a zero coefficient places the round bit in bit
47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow, infinite, and

indefinite results,

If (Xk) is an infinite quantity (3777x...xg or 4000x . ..xg) or an indefinite quantity (1777x. . .xg or
6000x .. .xg), no shift takes place. The contents of Xk are copied into Xi, and Bj 1s set to zero.

Format:
Operation Variable Description Size Octul Code
ZXi Xk Round and normalize (Xk) to Ni 15 hits 2510k
ZXi Bj, Xk Round and normalize (Xk) Lo Xi; shift
count to Bj 15 bits 25ijk
ZXi Xk, Bj Round and normalize (NK) to Xi; shift
count to Bj 15 bits 25ijk
ZXi Bj Round and normalize (Xi) to Xi; shift
count to Bj 15 hits 25iji
ZXi Round and normalize (Xi) to Xi 15 hits 25101
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] I 18 |30
25474 ZX4y X4,B7 :
|
25404 ZXY I
i
25361 ZX3,B6 X1 |

8.4.31 UNPACK INSTRUCTION

This instruetion unpaeks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing is
remaoved during unpack so that the quantity in Bj is the true one's complement representation of the
exponent. The contents of Xk need not be normalized,

60492600 H

B-35

The exponent and coefficient are sent to the low-order bits of the respective registers, as shown below:

Sign Packed Exponent Coefficient
Packed Quantity l_L I Xk
5958 48 0o
Unpacked
Exponent
Exponent Sign Coefficient
Extended Sign Extended
unpacked & YN, | v x
17 10 9 00 59 48 47 00
Special operand formats are treated in the same manner as normal operands.
Format:
Operation Variable Description Size Qctal Code
UXi Xk Unpack (Xk) to Xi 15 bits 26i0k
UXi Bj, Xk Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Xk, Bj Unpack (Xk) to Xi and Bj 15 bits 26ifk
UXi Unpack (Xi) to Xi 15 hits 26101
UXi Bj Unpack (¥Xi) to Xi and Bj 15 bits 26iji
Example:
Code Generated LOCATION OFERATION | VARIABLE COMMENTS
] n 1 [10

26777 UX7 X7,B7 i

26342 UX3,X2 |B4 1

26707 Ux7y | |

L
26777)44 BT |
|

8.4.32 PACK INSTRUCTION

This instruetion packs a floating point number in operand register xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by reversing the setting of bit 10 of the exponent during the pack operation. The pack instruction
does not normalize the coefficient.

Exponent and coefficient are obteined from the proper low-order bits of the respective registers and
packed in reverse order as shown in the illustration for the unpack instruetion. Thus, bits 58 through 48 of
Xk and bits 17 through 11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in
the PSD register by this instruetion.

8-36 60492600 H

Note that if (XK) is positive, the packed exponent occupying bits 58 through 48 of Xi is obtained from bits
10 through 00 of Bj by complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09
through 00 are complemented.

The j designator ean be set to zero in this instruction to pack a fixed point integer into floating point
format without using one of the active B registers (exponent=0}.

Format:
Operation Variable Description Size Octal Corle
PXi Xk Pack (Xk) fo Xi 15 hits 2710k
PXi Xk, Bj Pacle (Xk) and (Bj) to Xi 15 hits 27ijk
PXi Bj, Xk Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Pack (Xi) to Xi 15 bits 27101
PXi Bj Pack (Xi) and (Bj) to Xi 15 bits 27iji
Example:
Code CGenerated LOCATION QPERATION | VARIABLE COMMENTS
1 T 18 [10
27565 FX5 X5,B4 !
|
27671 PX6,B7 X1 ;
{ | '
27505 \PX5 ; |
27565 PX5 |B6 |

8.4.33 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the unrounded sum or difference of the floating point quantities from operand

registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of a
double precision sum or difference.

At the start both arguments are unpacked, and the eoefficient of the argument with the smaller exponent
is entered into the upper half of the aeccumulator. The coefficient is shifted right by the difference of the
exponents. The other coefficient is then added to or subtracted from the upper half of the aceumulator. If
overflow oeccurs, the result is right-shifted one place and the exponent of the result inereased by one. The
upper helf of the accumulator holds the coefficient of the result, which is not necessarily in normalized
form. The exponent and upper coefficient are then repacked in operand register Xi.

Format:
Operation Variable Description Bize Octal Code
FXi Xj+Xk Floating point sum of (Xj) and (¥Xk) to Xi 15 hits 30ijlk
FXi Xj-Xk Floating point difference of (Xj} minus
(Xk) to Xi : 15 hits 31ijk
—

60492600 H ' 8-37

Example:

Code Generated

30345
31213

LOCATION OPERATION | VARIABLE

COMMENTS

1 n 8

FX3 X8+X5

FX2 X1-X3

8.4.34 DP FLOATING POINT ADD INSTRUCTIONS

[30
f
|
|
t

These instructions form the sum or difference of two floating point numbers as in the single precision
instruetions, but pack the lower half of the double precision result with an exponent 48 less than the upper
sum. The result is not necessarily nermalized.

Format:
Operation Variable Description Size Octal Code
DXi Xj+Xk Fioating DP sum of (Xj} and (Xk) to Xi 15 bits 32ijk
DX Xj-Xk Floating DP difference of (Xj) and (Xk)
to Xi 15 bits 33ijk
Example:
LOCATION OPERATIOMN | YARFABLE COMMENTS

Code Generated

32323
33414

1 n 18

DX3 X2+X3

DX4 X1-X4

8.4.35 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

[30
t
|
|
!
1

These instructions form the rounded sum or difference of the floating point quentities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi. These
instructions are intended for use in floating point ealeulations involving single precision accuracy.

Format:
Operation Variable Description Size Octal Code
RXi Xj+ Xk Rounded floating sum of (Xj) and Xk}
to Xi 15 hits 34ijk
RX{ Xj-Xk Rounded floating difference of (¥j) minus
Xl to Xi 15 bits 35ijk
8-38 650492600 H

Example:
Code Generated

LOCATION . OPERATION | VARIABLE COMMENTS
1 n 18 J30
34534 RX5 |X3+X4 |
35653 RX6 |X5-X3 }
1

8.4.36 LONG ADD (FIXED POINT) INSTRUCTIONS

These instruetions form the 60-bit one's complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow eondition is ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the increment
unit, They are also useful for merging and comparing data fields during data proeessing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero (all

zeros), the result is a positive zero quantity. If both operands are minus zero {all ones), the result is a
negative zero quantity.

Format:
Operation Variable Description Size Octal Code
IXi Xj+Xk Inteper sum of (Xj) and (Xk) to Xi 15 hits 36ijk
IXi Xj-Xk Integer difference of (Xj) minus (Xk}
to Xi 15 bits 37ijk
Example;
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 0] 18 |30
: I
36545 IX5 X4+X5 I
|
37631 1X6 X3-X1 i

8.4.37 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruetion multiplies two floating point quantities obtained from operand registers Xj (multiplier) and
Xk (multiplieand) and packs the upper produet result in operand register Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and ere
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
&s signed integers to form a 96-bit integer product. The upper half of this produet is then extracted to
form the coefficient of the result. The result is & normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus 47 {or 48). The result is not
normelized when either or both operands are not normalized.-

60492600 H 8-39

Format:

Operation Variable Description Size Octal Code
FXi Xj*Xk Floating point product of (Xj} and
(Xk) to Xi 15 bits 401l
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 {30
40011 FXO |X1¥X1 |
|

8.4.38 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruetion multiplies the floating point number from operand register Xk (multiplicand}, by the
floating point number from operand register Xj. The upper product result is packed in cperand

register Xi. (No lower product is available.) The multiply operation is identieal to that of the single
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit produet. The upper
half of the produet is then extraeted to form the eoeffieient for the result. An alternate cutput path is
provided with a left shift of one bit position to normalize the result coefficient if the ecriginal operands
were normalized and the double precision product has only 95 bits of significance. The exponent for the
result is decremented by one count in this ease.

Format:
Operation Variable Description Size Octal Code
RXi Xj*Xk Rounded floating point product of (Xj)
and (¥k} to Xi 15 bits 41ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
: 1 " 18 fao
51232 RX2 X3%X2 |
]

8.4.39 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk and
packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together to
form a 96-bit product. The lower order 48 bits of the product (bits 47 through 0) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is 48 less
than the exponent resulting from an unrounded single preeision instruction using the same operands.

8-40 60492600 H

This instruction is intended for use in multiple precision floating point ealeulations. It may also be used to
form the product of two integers providing the resulting produet does not exceed 48 bits of significance..
The operands must be packed in floating point format before executing this instruetion. The results must
be unpacked to obtain the integer produet.

Format:
Operation Variable Description . Size Octal Code
DXi Xj*Xlc Floating point DP product of (Xj) and
. (Xk) to Xi 15 bits 42ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
I I 18 Tae
42345 DX3 xuxys |
I

8.4.40 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating point
multiply instruetion. Regardless of how it is written in COMPASS, the 42ijk instruetion is executed as
follows: If esch operand register haes all zeros or all cnes in its leftmost 12 bits, the 47-bit integer product
is formed in Xi with sign extension in its leftmost 12 bits, (Exception: if each operand has bit 47 different
from its sign bit, the result is shifted left one bit position.) Otherwise, a double precision floating point
multiplication is performed. Thus, there is no need to pack exponents into the operands, and unpack the
result, for an integer multiply, COMP ASS provides the alternate symbolie representations IXi Xj*Xk and
DXi Xj*Xk for the 42ijk instruction as an aid to program readability, so the programmer ean indicate
whether or not the instruetion is being used for integer multiplication.

Format:
COperation Variable Description Size QOctal Cude
IXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits | 42ijk
Example:
Code Geuerated LOCATION OFERATION | VARIABLE COMMENTS
] n I [30
I
L2234 IX2 X3*XY I
1

60492600 H 8-41

8.4.41 MASK INSTRUCTION

This instruction clears register Xi and forms a mask in it. A positive value for expression jk defines the
number of ones in the mask as counted from the highest order bit in Xi. A negative value for expression jk
defines the number of 0 bits {unmasked) counted from the low order bit in Xi. The completed masking
word consists of ones in the high order bit positions of the word and zeros in the remainder of the word.-

The eontents of operand register { are zero when jk is zero. The contents of operand register i are all ones

when jk is 60.

This instruction is intended for generating masks for logical operations. Used with the shift instruction,
this instruction creates an arbitrary field mask faster than by reading & previously generated mask from

storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into the jk
field of the assembled instruction. If the value of absolute expression jk is negative, the assembler adds 60
to the expression value and places the sum in the jik field of the assembled instruetion, -

A nepgative jk value less than -60 results in a type 7 assembly error.

Format:
COperation Variable Description Size Oclal Code
MXi jk Form mask in Xi, + jk bits 15 bits 43ijk
Example:
. LOQCATIOM OPERATION | VARIABLE COMMENTS
Code Generated
1 H 18 [20
43042 X0 428 i
I
43360 MX3 -lad I

8.4.42 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruetion divides two normalized floating point quantities obtained from operand registers Xj

(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

Format:
Operation Variahle Description Size Octal Code
FXi Xj/ Xk Floating point divide of {Xj) by (Xk)
to Xi 15 hits ddijlk

Example:

COdE Generated LOCATION OPERATION | VARIABLE COMMENTS

' 1 N 18 Tap

LLEF] Fxe X3/ |

8-42 60492600 H

8.4.43 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

Format:
Operation Variable Description ' Sive Getnl Cuode
RXi Xj/ Xk Rounded floating point division of (Xj)
by (Xk) to Xi 15 bits 4815k

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 I 18 [20
45724 RX7 X2/X%4 }

8.4.44 PASS INSTRUCTION

The no-operation (pass) instruction is not associated with a functional unit. This instruetion is a do-nothing
instruction used typically to pad the program between steps. An integer value in the variable field
(optional) is inserted into the lower 8 bits of the instruetion. The assembler automatieally pads the
remainder of a word whenever a force upper oeeurs; in this ease, the programmer is not required to insert
the NO. .

On a machine with a Compare/Move Unit (CMU), a value of n greater than or equal to 400g causes the
instruetion to be interpreted as a CMU instruetion.

On CYBER 170 Models 175, 740, 750, and 760, a value of n greater than or equal to 400y is illegal.

Format:
Operation Varinble Description Size Octal Code
NG Pass 15 hits 46000
NO n Pass 15 bits 46n
Example:

Code Generated LOCATION OPERATION | VARtABLE COMMENTS

; I 18 [3n
46000 NO |

8.4.45 POPULATION COUNT INSTRUCTION

This instruetion counts the number of 1 bits in operand register Xl and stores the count in the lower order
6 bits of operand register Xi. Bits 59 through 06 are cleared.

60492600 H 8-43

If Xk is a word of all ones, a eount of 60 (deeimal) is delivered to the Xi register. If Xk is a word of all
zeros, a zero word is delivered to the Xi register.

The assembler sets the unused j designator to k.

Format:
Operation Variable BDescription Size Octal Code
CXi Xk Count of number of 1's in (Xk) to Xi 15 hits 47ikk
Example:
Code Generaled LOCATION OPERATION | VARIABLE COMMENTS
1 n \E I30
57700 CX7 X0 J

8.4.46 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instruetions have two destination registers: the Ai register, which receives
the address formed from the operands, and either the Xi register or a CM (SCM) storage location.

" Operands are obtained from address (A), index (B}, and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 80-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the resulting
sum or difference as the relative storage address depending on maechine size. The upper bits are ignored,
The type of storage reference is s function of the i designator value, as follows:

i = 0; no storage reference

i=1,2,3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

—
il

BorT; conteﬁt_s of register Xi stored at CM (SCM) relative address (Ai)

8-44 60492600 H

Operation Variable Description Size Octal Code
SAi Aj+K Set Al to (A} + K 10 hits 50ijKK
SAi K Set Ai to K 30 hits 31i0Ix
SAi Bj+K Set Ai to (Bj) 1 K 30 bits 511jK
SAi Xj+K Set Ai to (Xj} + K 30 bits 52ijK
SAi Xj Set Al to (Xj) 15 bits 531j0
SAL Xj+Bk Set Al to (Xj) + (BKk) 15 hits 53ijk
SAi Bl +Xj Set Al to (Xj) ' (Bl 15 hits 53ijk
SAl Aj Set Al to (A]) 15 hits 54ijo
SAi Aj+Bk Set Ai to (Aj) + (BK) 15 bits 54ijk
SAL Bl +Aj Set Al to (A]) + (BK) 15 hits 3dijk
SAi Aj-Bk Set Ai to (Aj) - (Bk) 15 bits 55ijk
SAQ -Blk+Aj Set Ai to (Aj) - (Bk) 15 hits 55ijk
SAi Bj Set Ai to (Bj) 15 bits 56ij0
SAi Bj+Bk Set Ai to (Bj) + (Bk) 15 hits 561jk
SAi ~Bk Set Ai to (BO) - (Bk) 15 bits 3710k
SAL Bj-Bk Set Al to (Bj) - (Bk) 15 biis 57ijk
SAi ~Blk+ Bj Set Ai to (Bj) - (Bk) 15 bits 571jk
Example:
Code Generated LOCATION OPERATION | VARIABLF COMMENTS
I it T [10

5010000001 SA1 AD+1 E

S100777TTH SAQ -3]I

5121000003 SAZ 3+B1 ;

5231777771 A3 |X1-6 ;

53411 SAY X14B1 |

54541 SAS | Al4+B1 :

54641 | SA6 Al+B1 l

54540 SA5 Ay :

55641 SA6 |-B1+A4 !

56711 SAT |B1+B1 |

57721 SA7T |B2-B1 !
60492600 H 8-45

8.4.47 DIRECT READ/WRITE CENTRAL MEMORY

These instruetions permit information to be stored into central memory from the specified X register or to
be loaded from central memory into the X register. The lower 21 bits of Xk specify the central memory
address relative to RAg. The other bits of Xk are unused.

Format:
Operation Variable Description Size Octal Code
CR Xj, Xk Read CM at (Xk) to Xj 15 bits 660k
CwW Xj, Xk Write Xj to CM at (Xk) 15 bits 6705k
Example:
LOCATION QOFERATION VAilABlE' COMMENTS
Code Generated 1 n 18 30
66012 CR X1,.X%X2
67012 CW A1,%2

8.4.48 SET B REGISTER INSTRUCTIONS

These instructions perform one's ecomplement addition and subtraetion of 18-bit operands and store an
18-bit result in index register Bi. Note the result will never be negative zero (all ones) unless negative
zero is added to negative zero.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruetion itself (K = 18-bit operand}., Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

830, 835, 845, 855, 865, and 875 for which two forms of the SBO instruetion (SB0 Bj+Bk and SB0 Bj-Bk)
are invalid. On models 810, 815, 825, 830, 835, B45, 855, 865, and 875 the octal operation codes 660 and
670 are interpreted as the CR and CW instruetions, respectively.

E If the i designator is a zero, the instruetion is & do-nothing instruction, exeept on the models 810, 815, 825,

) 8-46 60492600 L

Format:

Operation Variab_le Description Size Octal Code
SBi AjK Set Bi to {(Aj) + K 30 bits GOijKK

SBI K Set Bi to K 30 hits 6110K

SBi Bj+K Set Bi to (Bj) + K 30 hits BlijK

SBi Xj+K Set Bi to (Xj) + K 30 bits 621jI5

SBi Xj Set Bi to (Xj) 15 hits 63ij0

SBi Xj+Bk Set Bi to (Xj) + (Bk) 15 hits 6aijk

SBi Bl+Xj Set Bi to (Xj) + (Bk) 15 hits 63ijk

SBi Aj Set Bi to (Aj) 15 hits G4ijo

SBi Aj+Bk Set Bi to {Aj) + (Bk) 15 hits G4ijk

SBi Bl+Aj Set Bi to (Aj) + (Bk) 15 hits B4ijlk

SBi Aj-Bk Set Bi to {Aj} - (Bk) 15 hits Gaijlk

SBi -Ble+Aj Set Bi to (A]) - {Bk) 15 bits 651k

SBi Bj Set Bi to (Bj) 15 hits 66ij0

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits GGijk

SBi ~-Bk Set Bi to (BO) - (Bk) 15 bits 6710k

SBi Bj-Bk Set Bi to (Bj) - {Bk) 15 hits 67ijk

SBi -Bk+Bj Set Bi to (Bj) - (Bl 15 hits G7ijk
60492600 H 8-47

Example:

Code Generated LOCATION

OPERATIONM

VARIABLE

COMMEMNTS

1t

6011777772
6110777772
6121000011
6231000100
63427
64541
64540
65641
65643
66711

67751

8.4.49 SET X REGISTER INSTRUCTIONS

SB1
SB1
SB2
SB3
SBY
SB5
SBS
SB6
SB6
SBT
SBT

A1-5
-5
3+B1+6
X1+100B
X2+B7
AlUd+B1
Ay
-B1+Al
A4-B3
B1+B1
B5-B1

ET
|
|
|
f
|
I
|
l
]
|
l
I
|
I
i
F
|

The SXi instruetions perform one's complement addition and subtraetion of 18-bit operands and store an

18-bit result into the lower 18 bits of operand register Xi. The si

42 bits of operand register Xi. An overflow condition is ignored.

gn of the result is extended to the upper

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit operand). Operands obtained from an Xj register are the truncated lower 18 bits of the

60-bit word. The highest order bits are ignored.

8-48

60492600 H

Format:

Operation Variable Descriptic'm Size Qctnl Code
SXi AlK Set Xi to (Aj) + K 30 bits T0ijK
SXi K Set Xi to K 30 bits 71i0K
SXi Bj:K Set Xi to (Bj) = K 30 bits 71ijK
SXi }-(j+K Set Xi to (Xj) £ K 30 bits 72ijK
SXi Xj Set Xi to (X)) 15 bits 731j0
SXi Xj+Bk Bet Xi to (Xj) + (Bk) 15 bits 73ijk
SXi Bk Xj Set Xi to (X1) + (Bk) 15 bits 7305k’
sxi Aj Set Xi to (Aj) 15 bits | 74ij0
SXi Aj*Bk Set Xi to (Aj) + (Bk) 15 bits | 74ijk
SXi Bk-Aj Set Xi to {Aj) + (Bk) 15 bits 74ijk
SXi Aj-Bk Set Xi to (Aj) = (BK) 15 bits 75ijk
SXi -Bk=Aj Set Xi ta (Aj) - (Bk) 15 bits 75ijk
SXi Bj Set Xi to (Bj) 15 hits 76ij0
SXi Bj<Bk Set Xi to (Bj} + (Bk) 15 hite 76ijk
SXi -Bk Set Xi to (B0) - (Bk) 15 bits 77i0k
SNi Bj-Bk Set Xi to (Bj) - (Bk) 15 bits 77ijk
SXi -Bk-Bj Set Xi to (Bf) - (Bk) 15 bits T7ijk
Example:

Code Generated LOCATION OPERATION | VAREABLE COMMENTS

1 i 1 ilm

7000005233 + SXO |BNEG+AD+1 |

7110775755 5X1 -2022B :

7121000005 sX2 B1+5 |

7233777744 SX3 X3-33B ;

73442 SX4 |X4+B2 :

74553 i SX5 |A5+B3 |

T4540 | SX5 |AY |

75604 SX6 |AD-BA4 '

75641 SX6 -B1+Al !

76776 SX7 BT+B6 1

77751 SX7 B5-B1 i
60492600 H 8-49

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Medels 72 and
73, and the CYBER 170 Models 172, 173, 174, 720, and 730. The models 810, 8135, 825, 830, 835, 840, 845,
850, 855, 860, and 990 support compare/move instruetions through simulation. These central processor
instruetions sre used for moving and comparing data fields that consist of strings of 6-bit characters. Data
fields ean span word boundaries and can begin and end at any character position within a word. A data
field is specified by its length in characters and the location of its leftmost charaeter (according to word
address and character position). Data fields cannot be in the operating registers nor in ECS.

Each 60-bit word of a data field contains 10 character positions numbered 0 to 9 from left to right (high
order to low order).

COMPASS provides symbolic forms of the four CMU instruetions plus a pseudo instruetion used to generate
a deseriptor word to be referenced by the indirect move instruetion. Of the four instructions, the indirect
move (IM) instruction is the only one that syntactically resembles other CPU instruetions. The other three
instruetions have formats dissimilar to CPU instructions and are generated through COMPASS pseudo
instructions. All of these instructions must begin at the top of & 60-bit word; COMPASS automatically
foreces upper before each of them unless the loeation field contains a minus sign. All but IM are 60 bits in
length. IM is 30 bits, but the hardware requires that the instruetion be in the upper half of its word. The
lower haelf of the word is not executed. COMPASS automatlcally forees upper followmg IM, unless the next
instruetion has a minus sign in its location field.

8-50 60492600 M

8.5.1

IM - INDIRECT MOVE

r'he indireet move instruction moves the contents of a data field to another location. It is a 30-bit
instruction that specifies the address of a descriptor word which, in turn, contains the length and address of
the data fields.

The assembler forees upper before and after the IM instruetion.

The deseriptor word is fetehed from storage loeation (Bj)+K. If the data field lengtn is zero, the
instruetion is executed as a pass but the execution time is longer. Otherwise, the contents of the source
field are moved to the destination field. If the two fields overlap, the results are undefined. ‘I'he X0
register is used for intermediate storage during execution of the instruction, and is cleared upon
completion of the instruction.

Operation Variable Description Octa! Code
M K Move data acecording to word at K 464015
IM BjzK Move data according to word at (Bjj+ K 464jK
M Bj Move data according to word at (Bj) 464j 000000

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD

The MD pseudo instruction generates a deseriptor word for use by the indireet move (IM) instruetion.

Format:

5ym

60492600 G

LOCATION OPERATION VARIABLE SUBFIELDS

sym MD Lk ek, c

s d d

If present, sy is assigned the value of the location ecounter after the force upper oceurs. It
becomes the symbolic address of the descriptor word.

Absolute address expression specifying the field length in characters (0 through 8191). The
upper 9 bits () are placed in bits 56 through 48 of the deseriptor word; the lower 4 bits (£) are
pleced in bits 29 through 26.

An expression specifying the first word address of the source field in CM.

An absolute expression (0 through 9) specifying the starting character position of the source
field within the word at location kg Characters are numbered from left to right.

An expression specifying the first word address of the destination field in CM.

An absolute expression (0 through 9) specifying the starting charaecter position of the
destination field within the word at location kg.

Indirect Move Descriptor Word format:

Example:

4640010665

59 48 30 26 22 18 00
o source src |des destination
£12-4 address ﬂa-olch ch address
Code Generated
LOCATION OPERATION | VARIABLE COMMENTS
! I " faa
1
f
Du7606050ub4005u07600 NHORD M1 1001 ,3UFFA,i,BUFFR,5
. . |
. I
14 DL Rskde! !

BUFFA is at address 2560; BUFFB is at address 3584.

'8.5.3 DM - DIRECT MOVE

The direct move (DM) symbolie instruction generates a CMU instruction that moves the contents of a data
field to another data field. The machine instruction oeeupies one full word. The instruetion ipeludes its
own data field deseriptor.

The assembler forces upper bef e a DM instruction.

If the data field Iength is zero, the instruetion is executed as a pass, but the execution time is longer.
Otherwise, the contents of the souree field are moved to the destination field. If the two fields overlap,
the results are undefined. The X0 register is used for intermediate storage during execution of the

instruetion and is cleared upon completion of the instruction.

Format:

€q

8-52

LOCATION QPRERATION

VARIABLE SUBFIELDS

sym DM

ﬁ:ksl cB'kd, cd

If present, sym is assigned the value of the location counter after the foree upper oceurs. It
becomes the symbolie address of the instruction word.

Absolute address expression speeifying the field length in characters (0 through 127).

An expression specifying the first word address of the source field in CM.

An absolute expression (0 through 9) specifying the starting eharacter position of the source
field within the word at location kg,

An expression specifying the first word address of the destination field in CM.

An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at loeation k4. Characters are numbered from left fo right.

60492600 X

Octal format of instruetion:

59 51 48 30 26 22 18 00
465 A source address 13-0 STe des destination
ch ch address
Example:
Code Generated LOCATION |OPERATION |vARIABLE COMMENTS
1 11 18 130
46570050007405007000 DM 127,BUFFA,0,BUFFB,5
I
I

854 CC - COMPARE COLLATED

The compare collated (CC) symbolic instruction generates a CMU instruction that compares the contents !
of two data fields, one character at a time, from left to right, until a pair of corresponding characters is
found to have unequal collating values or until the data fields are exhausted. It is & 60-bit instruction that
occupies one full word. It cannot be split between two words. The instruction includes its own data field
descriptor. Register AQ contains the first word address of a table in storage that contains the collating
values to be used in comparing characters. The result of the comparison is placed in register X0.

The first word address of the eollating table is obtained from register AD. The contents of the data fields
are compared from left to right, one character at a time from each field, until two unequal characters are
found. The collating value of each character is obtained from the collating table. If these values are
equal, the compare continues until another eharaeter pair is unequal or until all characters have been
compared. If the collating values are unequal, the two data fields are unequal and the field with a larger
collating value is the greater of the two fields. The collating values are treated as 6-bit unsigned integers.
Note that two unequal characters could have the same collating value and would compare equal.

Upon instruction eompletion, register X0 contains a 60-bit signed integer as follows:

(Field A)}>(Field B) (X0)=L-n; (X0)>0
(Field A)=(Field B) {X0)=0
(Field A)<(Field B) (X0)=n-£; (X0)<0

n is the number of pairs of characters that compared equal. If £ =0, then (X0) is 0.

The format of the collating table for 6-bit characters is:

59 53 47 41 35 29 23 17
(A0) (o] 01 02 03 04 05 06 a7
(AQ)+1 10 11 12 13 14 15 16 17
. 1 3 1 % 2 3 3 3
(AD)Y+7 70 71 72 73 74 15 | 76 77

604926800 K B-53

Format:

LOCATION OPERATION |VARIABLE SUBFIELDS

sym cC R, karcarkpscp

Sym If present, sym is assigned the value of the location counter after the foree upper oceurs. It
becomes the symbolic address of the instruetion.

£ Absolute address expression specifying the field length in charaeters (0 through 127).

kg An expression specifying the first word address of the first data field in CM.

Gy An absolute expression specifying the starting character position of the first data field within
the word at loeation k;. Charaecters sre numbered from left to right.

kp An expression specifying the first word address of the second data field in CM.

Cp An absolute expression {0 through 9) s?(eclfylng the starting character position of the second
data field within the word at location

Octal format of instruction:

59 51 48 30 26 22 18 00
_ first string B fs S8 second string
466 R6-4 address £3-0 ch ch address
Example:
Code Generated LOCATION [OPERATION |vARIABLE COMMENTS
1 IE 18 130
i
5100003120 SAD TABLE i
46670050007405007000 cC 127 ,BUF FA,U,BIUF FB,5
[}

8.5.5 CU - COMPARE UNCOLLATED

f The compare uncollated (CU) symbolie instruetion generates a CMU instruetion that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters are
found to have unequal values or until the data fields are exhausted. The machine instruetion is a 60-bit
instruetion that occupies one full word and eannot be split between two words. It 1nc1udes its own data
field descriptor. The result of the comparison is placed in register X0.

Execution resembles the CC instruetion except that A0 and the collating table are not used. Instead, the

characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register X0 is set in the same manner as by the CC instruetion.

8-54 : ' 60492600 K

Format:

sym

Ky

G

LOCATION QOFERATION VAREABLE SUBFIELDS

Eym Ccu ﬂlkaa calkb’ cb

I present, sym is assigned the value of the iccation counter after the forece upper occurs. [t
becomes the symbolic address of the instruction.

Absolute address expression (0 through 127) specifying the field length in characters.

An expression specifying the first word address of the first data field in CM.

An absolute expression (0 through 9) specifying the starting character position of the first data i
field within the word at location ky. Characters are numbered from left to right. ‘
An expression speeifying the first word address of the second data field in CM.

An absolute expression (0 through 9) specifying the starting charaeter position of the second
data field within the word at loeation k.

Octal format of instruction:

59 51 48 30 26 22 18 00
first string fs| ss| second string
467 ﬂﬁ'f" address 23'(} ch | ch | address
Example:
Code Generated LOCATION OPERATION [VARIABLE COMMENTS
1 n 18 B
Ge67T73050007405007000 Ccu 127.BUFFA,U,;RUFF8,5
|
[
60492600 G 8-55

PP SYMBOLIC MACHINE INSTRUCTIONS 9

The COMPASS assembler recognizes symbolie notation for periphersl processor {PP or PPU) instruetions.
For COMPASS to recognize symbolie logie for models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865
875, and 990 PP instruections, the NOS programmer must ensure that NOSTEXT is available to the
assembler. When a PPU, CIPPU, or PERIPH pseudo instruction is in the first statement group, the
assembler identifies each symbolie instruetion by name and generates a one word or two word objeet code
machine instruetion under control of the current origin, loeation, and position counters. All PP code is
absolute. Numerie data must be in integer notation. Floating point notation is illegal.

’

NOTE

No special job validation is required to assemble peripheral proeessor programs, but to be
executed, such programs require system origin privileges.

Some instruetions in existing COMPASS programs are not valid for execution on models 81 0, 815, 825, B30
835, 840, 845, 850, 855, 860, 865, 875, and 930. To detect these instruetions, the programmer can specify
S=AIDTEXT in the COMPASS control statement. COMPASS prints alisting of the program, flagging the
invalidated instruetions with a type O error, S=AIDTEXT should not be specified if the 8 option is chosen
for the MA CHINE pseudo instruction.

b

9.1 MACHINE INSTRUCTION FORMATS (12-BIT MODE)

An assembled instruetion has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code [and
a 6-bit operand d. A PP accomplishes program indexing and manipulates operands in several modes. The
12-bit end 24-bit instruetion formats provide for 6-bit, 12-bit, or 18-bit operands and 6-bit or 12-bit
addresses. Figures 9-1and 9-2 illustrate the 12-bit instruetion format and the 24-bit instruetion format s
respeectively.

Direct Mode:

d = memory address of operand

operation Indirect Mode:
code
11 5 o d = memory address of the address of the
(P) f d | operand

No Address Mode:

d = 6-bit operand, shift count, or relative
address '

Other:

d = special value; for example, channel
designator

Figure 9-1, PP 12-bit Instruction Format

60492600 M g-1

Indexed Mode:

f = operation code (7 bitsfor
CCF, CFM, SCF, SFM; 6 bits

operation for all others)
code
. N d = address of the index for
i modifying the address of the
11 34 0 operand
(P) f i d
H m = base address of the operand
(@) + m = address of operand
11 0
(P+1) m Constant Mode:

dm = 18-bit operand

Other;

dm = specisl values; for
example, d = ehannel
designator and m = 12-bit
address of word count on
IAM and OAM instructions

Figure 9-2. PP 24-bit Instruction Format

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of dto form an 18-bit operand or a 12-bit operand address.

The central memory aceess instructions for models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865,
875, and 990 provide the capability of reading and writing central memory words to and from the PP
memory.

The R register is a 22-bit register wsed to aecomplish address reloeation during eentral memory read and
write instructions. This relocation occurs only if bit 17 of the A register is set to one.

When relocation is to be done, the absolute centrel memory address is formed by appending six zeros to the
lower end of the contents of the R register and adding to the result bits 0 through 16 of the contents of the
A register. Figure 9-3 illustrates this process.

21 0

R I 000000 I Relocati-on register with
6 zero bits concatenated
plus
16 ¢ Low order 17 bits of A
A | register

r

Figure 9-3. Central Memory Access Instruetion Address Reloeation
l (Models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875, and 990)

1 9-2 60492600

9.1.1 MACHINE INSTRUCTION FORMATS (16-BIT MODE)

An assembled instruetion has a 12-bit, 16-bit, 24-bit, or 32-bit format. The specific format is determined
by the use of the Psuedo Ops PERIPH and PPU (12-bit and 24-bit) and CIPPU (12-bit, 16-bit, 24-bit, and
32-bit combined}. In 16-bit mode, an assembled instruction has a 16-bit or 32-bit format. The operation
code, f, is 10 bits, and d is a 6-bit operand. In the 32-bit format m is usually treated as a 16-bit operand
but in eonstant mode addressing only the lower 12-bits are used. The additions of the character L to the
COMPASS opeode, where supported, sets the upper-most bit of f. When this bit is not set, the instruction
isidentical to the corresponding 12-bit or 24-bit instruetion. When it is set, the instruetion uses all 16-bits
of a PP word whether it is specified by d,m or a combination of the two. Figures 9-4 and 8-5 illustrate the
16-bit and 32-bit formats.

Direct Mode:

f = 10XX, identifies the instruction
as CY180 16-bit
d = memory address of a 16-bit

operand

Indireet Mode:

f = 10XX, identifies the instruetion
15 5 0 as CY180 16-hit
(P) f d d = memory address of a 16-bit
operand

No Address Mode:

f = identical to CY170 mode

d = identical to CY170 mode
Other:

d = special value; for example,

channel designator

Figure 9-4. PP 16-bit Instruetion Format

60492600 M 5-2.1 0

Indexed Mode:

f = 0D0XX; 11 bits for CCF, CFM,
SCF, 8FM; 10 bits for all others

f = 10XX; identifies the instruction
as 8 CY180 PP

d = address of the index for
modifying the address of the
operandt

m = base address of the operand T

{d)}tm = address of an operand{T

Constant Mode:

18-bit operand. The upper 4
bits of m are not used.

dm
13 5]

(P) f d Other:

dm = special values; for example,
d = channel designator and
' m = 16-bit address on AJM,
55 0 ~ 13M, FJM and EJM
instruetions, or d = channel
{P+1) m designator and m = 16-bit
address of data buffer on IAM
and OAM instruetions.

Special Formats:

The FNCL instruetion will support a
16-bit m field. However, the f
portion will still be (077B. This-
compensates for a CY180 PP
hardware difference wherein the
1077 op code is used to "idle" a PP,

TThe contents of the index operand (d)
are taken as a 12-bit value if
f = D0XX and as a 16-bit value if
E=10XX.

T1The contents of m are taken &s a

12-bit value if f = 00XX and as g
16-bit value if £ = 10XX.

Figure 9-5. PP 32-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section deseribes notation used for coding symbolic PP machine instructions. Instructions are
deseribed in octal operation code sequence which generally reflects the mode of addressing.
Instruetions unique to a computer system are identified as sueh.

9-2.2 60492600 M

The location field of a symbolie PP machine instruetion optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location eounter,

The operation field of & symboliec PP machine instruction contains a three- or four—character name. '

The variable field contains one or two subfields. Each subfield contains an absclute or relocatable
expression that reduces to a 6-bit, 12-bit, 16-bit, or 18-bit value, I

Designators used in this section are listed in table 9-1.

TABLE 9-1, PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A 18-bit A register.

c An expression that reduces to an 18-bit operand value.

d A 6~bit operand or operand address expraession. This field is 5
bits long for the SCF, CCF, SFM, and CFM instructions.

m A 12-bit or 16-bit expression value used with d or (d)} to form I
an 18-bit operand or an operand address.

P 12-bit Program Address register,

) ' 12-bit Q register.

r An expression that reduces to a 6~bit value (-37B £r 5_378)
specifying relative address or shift count.

R 22-bit R register.

() Contents of a register or locatiom.

() Refers to indirect addressing.

Generally, the third eharacter of the instruction mnemonie (N, D, M, C, or I} indiestes the mode of
addressing:

N No operand address reference

D Direet operand address: d contsins operand

M Memory address m or m + (d) eontains operand
C 1B8-bit constant

I Indirect; operand address is (d)

Some PP instructions can be executed only on specific machine models. Table 9-2 lists each instruction
and the machine models to which it corresponds.

60492600 M 9-3

TABLE 9-2. PP INSTRUGTION/MACHINE MODEL CORRESPONDENCE

Machine Model Number
¥ 2 ’ 1 3 ¥ ’ r
Mngggzic 810, 815, 825, 830, 723717357 7407 75%743né7?60'
835, 840, 845, B50, B8535, 76 and 7600 71720 73 and vh: and 176
860, 865, B75, and 990 2 f%y 72, 81 3 an
! ! * 6000 Series

ACN X X X
ADC % X X X
ADD X X X X
ADDL X
ADI X X X X
ADIL X
ADM X X X X
ADML X
ADN X X X X
ATM X X X
AOD X X X X
AODL X
A0T b4 X X X
AOTL X
AOM X X X X
AOML X
CCF X
CFM X
CRD X X X
CRDL X
CEM X X X
CRML X
CuD X X X
CWDL X
CWML X
DCN X X X
EIM X
EJM X X X
EOM X
ERNT
ESN _ X
Ernt
EXN X X X
FAN X X X
FIM %
FIM X X X
FNC X X X
FOM X
TCIM X

- @94 : 60492600 M

TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE {Contd)

Machine Model Number
Mnemonic 810, 815, B25, B30, 72é71;3172,4173, 174, 175, .
Code 835, B40, B45, 850, 855, | 76 and 7600 » 730, 740, 750, and 7605 | (44
860, 865, 875, and 990 71, 72, 73, and 74; and
N ’ ’ 6000 Series

FSIM X

IAM X X X X
TAPM X

IAN X X X X
I X X X
INPN X

IRM X

LCN X X X X
LDC X X X X
LDD X X X X
LDDL X

DI X X X X
LDIL X

LDM X X X X
LDML X

LDN X X X X
LIJM X X X X
LMC X X X X
LMD X X X X
LMDL X

LMI X X X X
LMIL X

LMM X X X X
LMML, X

LMN X X X X
LPC X X X X
LPDL X

LPTIL X

LPML X

LPN X X X X
LRD X

MAN X Xt X
MIN X X X X
MXN X

NIM X

NJIN X X X X
NOM X

0AM X X X X
0APM X

OAN X X X X
ORM X

PIN X X X X
PSN X X X X
RAD X X X X
RADL X

60492600 M 9-4.1/9.4.2 @

TABLE 9-2, PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd)

Machine Model Number

e oan 810, B3, 825, 830, 72371"’13&17254(1:7355;74' & 760,

ode 835, B840, 845, 850, 855, 76 and 7600 ? ’ » » 20 3 176
860, 865, 875, and 990 1, 72, 73, and 74; and
’ ' * 6000 Series

RAI X X X X
RAIL X
RAM X X X X
RAMIL, X
RDCL X
RDSL X
REN X
RJM X X X X
REN X X
SBD X X X X
SBDL X
SBL X X X X
SBIL X
SBM X X X X
SBML X
SBN X X X X
SCF X
SCN X X X X
SFM X
S0D X X X X
SODL X
SHN X X X X
501 X X X X
S0IL X
SOM X X X X
SOML X
SED X
STD X X X X
STDL X
ST X X X X
STIL X
STM X X X X
STML X
UJN X X X X
ZJN X X X X

tesls only.

TiNot supported for 6000 Series.

60492600 M 9-5 @

Some of the instructions provide similar functions using different modes of addressing. They can be
grouped according to function as shown below:

Funetion Description
Data The following instruetions either load data into the A register or

transmission store data from it. A load instruction loads & 8-bits 12-bit, 16-bit,
or 18-bit value as indieated by the instruction; any remaining upper hits of A are
zeroerl, except for the LCON instruetion, for which remaining bits are set to one.

A store instruetion stores the lower 12 bit, or 16 bits of the A register contents into a
memory location indieated by the instruetion.

The contents of A are not altered.

Instruetion Octal Code Instruetion Octal Code
LDN 14 STM 54
LCN 15 LDDL 1030
LDC 20 STDL 1034
LDD 30 LDIL 1040
3TD 34 -BTIL 1044
L.DI 40 LD ML 1050
STI 44 STML 1054
LDM 50
Arithmetie A PP arithmetie instruetion adds or subtraets a 6-bit, 12-bit, 16-hit, or 18-bit
quantity from the contents of the A register and enters the result in A.
Instruction Octal Code Instruetion QOctal Code
ADN 16 SBM 52
SBN 17 ADDIL 1031
ADC 21 SBDL 1032
ADD 31 ADIL 1041
SBD 32 SBIL 1042
ADI 41 ADML 1051
SBI 42 SBML 1052
ADM 51
Loegieal A logical instruction forms a logieal velue in A using the contents of A as one of the

operands and a 6-bit, 12-bit, 16-bit, or 18-bit value indieated by the instruetion as
the second operand. When the second operand is fewer than 18 bits, the remaining
upper bits of A are unaltered, exeept for the LPN instruction for whieh the upper 12
bits are zeroed.

Farmation of a logical difference is equivalent to setting each bit in A that is unlike
the corresponding bit in the second operand. For example:

Initial (A) =0101
Operand = 1100
Final {A) = 1001

Formation of alogical product is equivalent to setting a bit in A when the original
setting of the bitin A and the corresponding bit in the second operand are both ones.

9-6 . 60492600 M

For example:

Initial {A) = 0101
Operand =1100
Final (A) = 0100

A selective clear sets a bit zero in the A register wherever a bit is set in the second
operand. For example:

Initial (A) = 0101
Operand =1104
Final {A) = 0001

Logical instruetions inelude the following:

Instruction Octal Code Instruction Octal Code
LMN 11 LMM 53

LPN 12 LPDL 1022

SCN 13 LPI, 1023

LPC 22 LPML 1024

LMC 23 LMDL 1033

LMD 33 LMIL 1043

LMI 43 LMML 1053

Replace A replace instruction performs an arithmetic operation and returns the results to

the A register and the memory location from which one operand was obtained. The
lower 12 bits or 16 bits of the resulf replaces the operand obtained from a memory
location. Replace instruetions include the following:

Instruection Qectal Code Instruction Qetal Code
RAD 35 RADL 1035
AOD 38 AODL 10386
S0D 37 SODL 1037
RAI - 45 RAIL 1045
A0l 46 AQIL 1046
801 47 SOIL 1047
RAM 55 RAML 1055
AOM 26 AQML 1056
SOM 57 SOML 1057

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is 2 numeric value that indieates the number of locations to be
jumped {(meximum 31). When r is positive {01 through 37g), the jump is forward r loeations. Whenr is
negative (-76g through ~40g), the jump is backward 77g-r locations. In the following tests, negative
zero {T77777) is nonzero. For conditional instruetions, when the test condition is true, the jump takes
place. When the condition is not met, execution continues with the next instruetion.

NOTE

The jump count must not be 00 or 77. If it is, execution
loops on the jump instruection.

60492600 M : 9-7

The J option of the PPU instruetion and the PERIPH instruetion (ehapter 4) cause the value of the location
eounter to be subtracted from the value of the symbolic address (tag) before it is placed in the d field of

the objeet code instruetion.

Format:
Operation Variable ~ Descriplion Size Octal Code
e |

LJM m,d Long jump to m+{l); if d ~ O, m is not 24 op

modified 32 bits 01cim
RIM m,d Return jump to m+{d); Store P+2 at m+(d) 24 or

and jum)p to m+{d}+1. 32 bits 02cdm
UJIN rt Unconditional jump to P r loentions 12 hils 03¢l
UJN tag Unconditional jump Lo tag 12 hits 03d
ZJIN rt Zero jump; jump to Pir loecations if

{A)y=20 12 hits 0dd
ZIN tag Zero jump to log 12 hits 0dd
NJN r¥ Nonzeruv jump; jump lo P r locations if

(A)#£0 12 hits 0ad
NIN tag Nonzero jump to tag 12 hits 05d
PIN rt- Pasitive jump; jump to P:r loeations if

(A)>0 12 hits 0G4
bPJN tag Positive jump lo tag 12 bits 0t
MJIN rt RMinus jump; jump to P:r loeations if

(A)¥<0 A 12 hits 07d
MJN tag Minus jump to tag 12 hits 07
T3¢ PPU J or PERIPH J option has been selected, r is not valid. The contents of the variable

field must be a symbolic address (tag).

60492600 M

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 1B [30
100 1362 ' LJM START i
0271 000D P UM 0,070 :
8171 UJM TAGY-% |
Dung 7JN | HI II
0525 NJN TART I
0667 PN TAGD =% :
n726 HUN TAGL !

In the sbove example, the LIM instruction is at address 0014g. TAG1 is address0012g, TAG2 hes a
value of 13g, TAG3 has a value of 25g, and TAG4 has a value of 26g.

Code Generated LOCATION CPERATION | VARIABLE COMMENTS
t] i3 0
PPL) J

Ia

}

i

f

' |

0347 UJN TAG1 |
| In this example, the UJN is at

J

I

I

I

I

n JN TAG? : ‘

0% _4 ? address 0040, TAGI i= address

05%6 NJM TARZ2+1N 0010, TAGEZ is 0011, TAG3 is
address 0045, and TAG4 is

gen? : PJUN =1+TAGY address 0046.

o743 MM TAGL

9.2.2 SHIFT INSTRUCTION

The SHN instruction shifts the eontents of the A register right or left r places. If r is positive +1 to +31),
the shift is left eireular r places; if r is negative (-31 1o ~1), the shift is end off r places to the right with no
sign extension. No shift takes place when ris + 0. The assembler places the value of the r expression in
the d field. If -31>r>31, the assembler generates an address error.

Format:
Operation Variable Description Size Octal Code
SHN T Shift (A) by + (teft) or - (right) r bits 12 bits jod

60492600 H 9-9

Example:

1. Shift contents of A left eircular 6 places

Code Generated

1006

2. Bhift contents of A right end off 6 places

Code Generated

1071

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit positive
operand., This mode eliminates the need for storing many constants in memory.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 1 BT
SHN |6 !
LOCATION OPERATION | VARIABLE COMMENTS
1 n 16 [30
;i
SCNT SET. 6 !
SHN -SCNT }

Format:
Operation Variable Description Size Octal Code A
LMN d Logical difference (A)-d—A 12 bits 1ld
LPN d Logieal product (A)*d —A 12 bits 12d
SCN d Selective clear (A) 12 bits 13d
LDN d Load d—A 12 bits 14d
I.CN d Load complement d—A 12 bits i5d
ADN d Add (A)+d— A 12 bits 16d
58BN d Subtract (A})-d—A 12 hits 17d
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
1112 LM 128 i
1207 LPN 7 |
12371 SGN 21n :
15 A A SFT 158 |
1415 LNN Aa l
1514 LCN AA-1 |
1601 ADN |1 1
1702 SAN 2 i
9-10 60492600 H

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruetion execution, the contents of the d and m fields are taken directly as an
operand, This mode also eliminates the need for storing many constants. The assembler reduces absolute
or relocatable expression e to an 18-bit velue and stores the upper six bits in d and the lower 12 bits in m.

Format:

Operation Variable Description Size Octal Code
LDC c Load ¢ —A 24 hits 20dm

ADC c Add (Ayc —A 24 hits 21dm

LPC [Logical product (A)*c —A 24 hits 22dm

LMC c Logical difference (A)-c —A 24 hits 23dm
Example:

Code Generated

2070 7070

0
2177 7776
2207 n707
, 70707
2207 0797

9.2.5 NO OPERATION INSTRUCTION

LOCATION QPERATION | VARIABLE COMMENTS
) H 18 [30
I
Lne 7n7n7aa :
|
WAL = 0 :
anre VAL -1 |
!
Lo n7ZA7TO7M I
I
MASK SFT G70?ryv |
LMG MBASK l

The PSN instruetion specifies that no operation is to be performed. It provides a means of padding a

program.

For the models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875, and 990 the variable field of the
PSN instruetion must be blank., Otherwise it is interpreted as an LRD instruection.

Format:
Operation Variable Description Size Octal Code
|PSN No operation (Pass) 12 hits 2400
Example:
Code Generated LOCATION OFERATION | YARIABLE COMMENTS

2400

60492600 M

i 1 18

a0

PSN

9-11

Other octal operation codes {(not generated by COMP ASS) that aet as pass instructions

CYBER 180 Series; CYBER 170 Serles;
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series

00

25 (2500 for Models 810, 815, 825, 830, 835, 840, 845, 850, 855,
860, 865, 875, and 990)

2700 (Models 810, B15, 825, 830, 835, 840, 845, B850, 853, 860, 865,

B75, and 990 only)

9.2.6 LOAD AND STORE R REGISTER INSTRUCTIONS

are:

CYBER 70
Model 76 and 7600

25
27

76

The LRD instruction loads the R register. Bits 0 through 11 of the R register are loaded from d+1; bits 12

through 21 of R are loaded from bits 0 through 9 of d.

SRD stores the contents of the R register into d and d4+1. Bits 0 through 11 of R are stored into d+1; bits

12 through 21 of R are storedinto bits 0 through 9 of d.

If the variable field is set to zero, LRD and SRD execute as pass instruetions.

Formgt:
Operation Variable Deseription Size Octal Code
LRD d Load (R) from d and d+1 12 bits 244
SRD d Store (R) into d and d+1 12 bits 25d
Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS
- 1 1] 18 30
2400 LRD i PASS INSTRUCTION
2500 SRD ;PASS INSTRUCTION
2412 LRD 128 :
2512 SRD 128 :
]

9-12

60492600 M

9.2.7 EXCHANGE JUMP INSTRUCTIONS

The EXN instruetion transmits an 18-bit (absolute) address from the A register to the CPU with a signal
notifying the CPU to execute an exchange jump. The address in A is the starting loeation of the 16-word
exchange packape which contains information about the CPU program to be executed. The 18-bit initial
address must be entered in A before the EXN instruetion is executed. The CPU replaces the file with
similar information from the interrupted CPU program. The PP is not interrupted. The EXN instruection
does not affect the monitor flag bit.

The MXN instruction econditionally exehange jumps to the CPU and initiates CPU monitor activity. If the

monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor flag bit is
set, this instruction acts as a pass instruetion. The starting address for this exchange is the 18-bit address
in the PP A register. This address must be entered in A before the M XN instruction is executed,

Execution of MAN resembles MXN. However, the exchange packape address is taken from the 18-bit
Monitor Address (MA) register in CPU d, rather than from the PP A register.

In asystem with dual eentrel processors, d can be { or 1 and specifies which CPU the exchange jump will
interrupt. In single processor systems, this value is not interpreted.

Format:
Operation Variahle Description Size Octal Code
EXN d Exchange jump CPU d to (A} 12 bits 260
MXN d Monitor exchange jump CPU d to (A} 12 hits 261
MAN d Monitor exchange jump CPU d to (MA) 12 hits 262
Example;
Code Generated LOCATION CPERATION [VARIABLE COMMENTS
| T 18 [20
2601 EXN 1 {
l
2610 MX N C E ’
2623 MM K !
|

60452600 M ' : S 7 9-12.1/9-12.2 I

9.2.7.1 INTERRUPT PROCESSOR

The INPN instruction transmits an interrupt signal for the CPU on the memory port specified by d. The
interrupt signal is transmitted by the memory port interface provided to transmit interrupts between
processors. This interrupt signal eauses the External Interrupt bit to be set in the CPU Monitor Condition
Repister, Execution of this instruction is delayed until all previous central memory accesses made by the
interrupting processor are complete.

Format:
Operation Variable Desecription Size Octal Code
INPN d Interrupt 4 16-bits 1026d

9.2.8 READ PROGRAM ADDRESS INSTRUCTION

This instruetion transfers the contents of the CPU P register to the PP A register; this allows the PP to
determine whether the CPU is in execution. In a dual central proeessor system, the lowest order bit of the
instruetion format specifies which CPU P register is to be examined., This bit is not interpreted for a
single central processor system.

Format:
Operation Variable Description Bize Octal Code
RPN d Read program address CPUd -~ A 12 bits 270d
Examples
LOCATION QPERATION | VARIABLE COMMENTS

Code Generated

27C00L

60492600 M

RPN

9-13

For the 6000 and CYBER 70 Series, the largest value that (P} ean be is 17 bits. An ECS transfer is in
progress when bit 17 of the A register is set. For the CYBER 170 series, the P register is 18 bits.

The RPN instruction is not valid for the models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, and 990.
The 2700 oectal code executes as a pass instruetion.

9.2.9 6416 PP INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The ETN
instruetion initiates memory transfer operations by transmitting an 18-bit address from the PP A register
to the 6416 16K memory. This address points to a word having the following format:

59 35 17)
Xo A I
A — AN v A ~ A
Slarting Address Starting Address Word Count
in EC8 in 16 K Memory

Expression d of this instruction speeifies the transfer to be performed:
o Idis 0, K words are transferred from ECS to 16K memory.
e [Ifdis1, K words are transferred from 16K memory to ECS.

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation {adding RA to an address) and field length testing, e.g., Is address + RA>FL? The Exchange
Jump package contains RA and FL values for central memory and for extended memory. The 6416 has no
hardware for automatic reloeation and field length testing; it is therefore incumbent upon the program to
perform these funetions whenever required by an operating system.

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d portion of
this instruetion is ignored.

After execution of this instruction the program would typically test the A register for a sign before
exeeuting an instruction that initiates an ECS operation. '

Format:
Operation Variahle Deseription Size Cetal Code
TN d Extended core transfer 12 hits 260d
ERN d Read extended core coupler status 12 hits 270d
Example:
Code Generated LOCATION QFERATION | VARIABLE COMMENTS
t " 18 {30
2600 FTN ;
I
2700 Ey !

9-14 60492600 M

9.2.10 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction exeeution, the contents of the d field specify the address of the operand.
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies
one of the first 100g addresses in memory (0000 through 0077g). During instruction execution, (d) is
treated as a positive 12-bit quantity.

Format:
Operation Variable Description Size Octal Code
= —-—]
LDD d Load {d)—~A 12 bits 30d
ADD d Add (A) + (d)—A 12 bits 31d
SBD d Subtrect (A) - (d}—~A 12 bits dad
LMD d Logical difference (A) and (d)—A 12 bits 33d
STD d Store {(A)—d 12 bits 34d
RAD d Replace add .(d) +(A)—~dand A 12 bits 35d
AQD d Replaee add {d) + 1—d and A 12 bits 36d
S0D d Replace subtract one {d)- i—~d end A 12 bits 37d
LPDL d Logieal product of (A) ¥ d—A 16 bits 10224
LDDL d Load (d)—~A 16 bits 10304
ADDL d Add (A) +{d)—~A 16 bits 1031d
SBDL d Subtract {(A) - (d)—~A 16 bits 1032d
LMDL d Logieal difference {A) and (d) —A 16 bits 1033d
STDL d Store (A)—~d 16 bits 1034
RADL d Replace add (d) + (A)—~d and A 16 bits 1035d
AODL d Replace add (d) + L—~d and A 16 bits 1036d
500L d Replace subtract one (d)-1—d and A 16 bits 16374
$0492600 M 5-15 ®

Example:

Cod;a Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0

3012 : LoD TAG1 E
3103 £D0 TAG2-10B |
3240 San [B2 Il
3377 LHn TAR1+165A8 :
3401 STO 1 :
1565 RAN 55A I
3p12 ~[p0n TAGY :
3713 <nn TAG2 i

[

- 9.2.11 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruetion exeeution, d specifies an address, the contents of which specify the address
~ of the desired operand. Thus, d specifies the operand address indirectly.

. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies
~one of the first 100g addresses in memory (0000 through 0077g).

On the 7600 {or CYBER 70 Model 76), the address formed permits referencing of memory locations 0000
through 7776g. Location 7777g cannot be referenced.

- On & 6000 Series Computer System (as well as CYBER 180 Series or CYBER 170 Series or CYBER 70 Model
I 71, 72, 73, or 74) PP, the address formed in indirect address mode permits referencing of all memory
loeations. : : .

9-16 60492600 M

Format:

Operation Variable Description . Size ___ Octal Code
LDI d Load {{d))—-A — 12 bits 40d
ADI d Add (A) + ((d)—A 12 bits 41d
8ni d Subtreet (A)=- ({d)}—A 12 bits 42d
LMI d Logieal difference (A} - {(d))—A 12 bits 43d
STI d Store (A} —~ (d) 12 bits 44d
RAI d Replace add {(d)) + (A} - (d) and A 12 bits 45d
AQI d Replace add one ((d@)) + 1 — (dyand A 12 bits 46d
S0L d Replace subtract one ((d)) - 1 —-(d)and A 12 bits 47d
LPIL d Logieal product of (A) * d—A 16 bits 1023d
LDIL d Load ({d))—~A 16 bits 1040d
[ADIL d Add (A) + (@) —A 186 bits 1041d
SBIL d Subtraet (A) - {((d))—-A 16 bits 1042d
LML d Logical difference (A)~ (@)-+-A 16 bits 1043d
STIL d Store (A) - (d) 16 bits 1044d
RAIL d Replace add ((d)) + (A) - (d) and A 16 bits 1045d
AOQIL d Replace add one ((d)) +1 -~ {d)and A 16 bits 10464
SOIL d Replace subtraet one {(d)) - 1 — (d) and A 16 bits 10474
-Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
:) 1 18 {30
wN12 LNt TASGL i
4103 AT TAG2-11 }
4260 snT L !
4377 LMT TAGI+15P I
440y <TT 1 :
4555 RAT 55R :
4h12 AnT TAGH :
4713 sor1 TAGP |l
60492600 M 9-16.1 ®

.2.12 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruetion execution, The value formed by m + (d) is used as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 100g addresses in memory (0000 through 0077g). The value of absolute or
reloeatable expression m is a base address.

NOTE

For all PPs except CYBER 180 model 990 and certain
maodel 840, 850, and 860 systems, the address formed in
indexed addressing permits referencing of all memary
locations but one (0000 through 7776g), Although m
and/or {d) ean have a value of 7777g, the eomputer
system does not permit m + (d) to reference address
77773,

When in indexed direet address mode, if d is nonzero the contents of address d are added to m to produce a
12-bit operand address (indexed addressing). If dis zero, m is taken as the operand address.

Format:
Operation Variable Deseription Size Octal Code
LDM m,d Load (m + (d))—A] 24 bits 20dm
ADM m,d Add (A) +(m + (@) —A 24 bits 51dm
SBM m,d Subtraet (A)- (m + {d)}—A 24 bits 52dm
LMM m,d Logical difference (A}~ (m + (d))—A 24 bits 53dm
STM m,d Store (A) — m + (d) 24 bits 54dm
RAM _ m,d Replace add {m + (d)) + (A) ~m + (d) and A 24 bits 55dm
AOM m,d Replace addone (m +{(d)) +1~ m +{d) and A 24 bits 56dm
SoM m,d Replace subtract one {m +{d))- 1—m + (d) and A 24 bits 57dm
LPML m,d Logieal produet (m + {d)—A 32 bits |1024dm
LDML m,d Load (m + (d)—~A _ : 32 bits 1050dm
ADML m ,d Add(A)+(m +@)—~A | 32bits [1051dm
SBML m,d Subtract (A) - (m + (d))—A 32 bits 1052dm
LMML m,d Logieal difference (A)- (m + (d)}—~A 32 pits 1053dm
STML m,d Store (A) —-m + (d) .1 32 bits 1054dm
RAML m,d Replace add (m + (@) +(A)—m + (d) and A 32 bits 1055dm
AOML m,d Replace add one {m + {(d)) + 1 —m + {(d) and A 32 bits 1056dm
SOML m,d Replaee subtract one (m + (d))-1—m + (d) and A 32 bits 1057dm

® 9-16.2 60492600 M

Example:

LOCATION OPERATION | VARIABLE COMMENTS
Code Generated : - . -
5077 0203 , LOM TAGG, 778 f
5106 0202 ADM | TAGS5,b !
5200 0202 SHM | TAGS !
5315 7000 | LM 700084158 |
5410 0272 STy Tnss+?ns,rné1-a
5500 0342 RAM 1qua+1ncs.n:
5600 0173 AOM ! -108+TALE |
.
5712 0203 SoM | TAGH, 1AG1 [

9.2.13 CENTRAL READ/WRITE INSTRUCTIONS (12-BIT MODE)

The CRD instruction transfers a 60-bit word from centra! memory to five consecutive PP loecations. The
18-bit address of the central memory location must be loaded into A prior to exeeuting this instruetion.
(Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit words beginning at
the left. Location d receives the first 12-bit word. The remaining 12-bit words go to suceessive loeations.
The contents of A are not altered,

The CRM instruetion reads a block of 60-bit words from central memory. The contents of loeation d give
the bloek length. The 18-bit address of the first eentral word must be loaded into A prior to executing this
instruction. (Note that this is an absclute address.) During the execution of the instruetion, the contents
of P go to processor address 0 and P holds m. Also, the bloek length (from d) goes to the Q register where

50492600 M 9-17

it is reduced by one as each central word is processed. The original content of P is restored at the end of
the instruetion. The new contents of P are fetched from word 0. If the read operation overwrote the
contents of word 0, the restored value of P will be different from the original contents.

The contents of A are incremented by one to provide the next central memory address after each 60-bit
word is disassembled and stored. The contents of the Q register are also reduced by one. The bloek
transfer is complete when (Q)=0. The bloeck of central memory locations proeeeds from address (A) to
address (A)Hd)-1. The bloek of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The First
word is stored at processor memory location m. The content of P (whieh is holding m) is advanced by one
to provide the next address in the processor memory as each 12-bit word is stored. If P overflows,
operation continues as P is advanced from 7777g to 0000g. These locations will be written into as if
they were consecutive.

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word in
eentral memory. The 18-bit address word designating the central memory location must be in A prior to
exeecution of the instruction. {Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the higher
order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken from
suceessive addresses.

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
of location d gives the number of 60-bit words. The content of the A register gives the beginning central
memory address. (Note that this is an absolute address.) During the execution of this instruction (P) goes
to processor address 0, and P holds m. Also, (d) goes to the Q register, where it is reduced by one as each
central word is assembled. The original content of P is restored at the end of the instruetion.

The content of P (the m portion of the instruction) gives the address of the first word to be read out of the
processor memory., This word appears as the higher order 12 bits of the first 60-bit word to be stored in
central memory.

The content of P is advanced by one to provide the next address in the processor memory as each 12-bit
word is read. If P overflows, operation continues as P is advanced from 7777g to 0000g. These
locations will be read from as if they were consecutive,

(A) is advanced by one to provide the next eentral memory address after each 60-bit word is assembled.
Also, Q is reduced by one. The block transfer is complete when (Q)=0.

Format:
Operation Variable Deseription Size Octal Code
CRD d Central read from (A) to d 12 bits 60d
CRM m.d.r Central read (d) CM words beginning
at CM(A)—»~ PP m 24 bits t1ldm
CWD d Central write from d to (A) 12 bits 62d
CWM m,(:iT Central write (d) words beginning
at PP m—+CM (A) 24 bits Gddm

Expression d is required.

9-18 60492600 H

Example:

LOCATION OPERATION | VARIABLE COMMENTS
Code Generated ; n 16 [0
6015 CRD_ [158 |
6125 0012 CRM |TAGL,258
6232 cwo |32P |
6350 0012 cum |TAGL,508 |
. |

9.2.14 CENTRAL READ/WRITE INSTRUCTIONS (16-BIT MODE)

The CRIM: instruetion transfers a 64-bit word from central memory to four consecutive PP loeations. The
absolute address of the ecentral memory word to be transferred must be loaded in the A and R registers
prior to exeecuting this instruetion, The 64-bit word is disassembled into four 16-bit words beginning at the
left. Loecation dreceives the first 16-bit word. The remaining 16-bit words go to successive loeations.
The contents of the A and R registers are not altered. :

The CRML instruction reads a bloek of 64-bit words from central memory. The contents of location d give
the bloek length. The absolute address of the first central memory word of the bloek must be loaded into
the A and R registers pricr to executing this instruction. During the execution of this instruetion the
contents of P go to processor address 0, and P holds m. Also, the bloek length (from d) goes to the @
register where it is reduced by one as each central word is processed. The original contents of P are
restored at the end of the instruetion. The new eontents of P are fetehed from word 0. If the read
operation overwrote the contents of word 0, the restored value of P will be different from the original
contents of P. ' ' :

The contents of the A register are incremented by one to provide the next centrel memory address after
each 64-bit word is disassembled and stored (note that the R register is not automatieally ineremented).

" The contents of the Q register are also reduced by one. The bloek transfer is ecomplete when (Q) =0. The
bloek of central memory locations proeeeds from address (A) + (R) to address (A) + (R} + (d) - 1. The block
of PP memory locations proceeds from address m to address m + 4 {d) - 1.

The R register is not automatically updated, which places a limitation on the eentral memory word count
and address ranges that can be used with this instruetion. A eentral memory transfer must pe within any
given 131,072 64-bit word bloek from address (R) + 0 to (R) + 377777 (octal). The A register is used to
establish the address of the next ecentral memory word, and the upper-most bit of A enables the addition of
(R) +(A) to form the address. If (A) are ineremented through 777777 to 0, the addition of (R) to (A) for the
address is disabled. This may result in the transfer of the wrong eentral memory words.

Each central word is disassembled into four 16-bit words beginning with the high-order bits. The first word
is stored at PP loeation m. The content of P {(which is holding m) is advaneed by one to provide the next
address in PP memory as each 16-bit word is stored. If P overflows, the operation continues as P is
advanced through the last-word-address in PP memory to 0000. The last~-word-address in PP memory and
address 0000 are treated as if they are consecutive.

The CWDL instruetion transfers four consecutive PP memory words to one eentral memory word. The

address of the first PP word is specified by d. The address of the eentral memory word is specified by the
A and R registers.

60492600 M ' g-19 @

The CWML instruetion assembles a bloek of 64-bit words and writes them in eentral memory. The content
of loeation d gives the number of 64-bit words. The eontent of the A and R registers give the beginning
absolute central memory address (refer to transfer restrietions above). During execution of this instruetion
(P) goes to PP loeation 0 and P holds m. Also, (d) goes to Q where it is reduced by one as each central word
is assembled. The original content of P is restored at the end of the instruetion. ’

The content of P (the m portion of the instruction) gives the address of the first word to be read out of PP
- memory. This word appears as the high-order 16 bits of the first 64-bit word to be stored in eentral
M Eemory.

The content of P is advanced by one to provide the next address in PP memory as each 16-bit word is read.
If P overflows, the operation continues as P is advanced through the last-word-address of PP memory to
address 0000. These loeations will be read as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 64-bit word is assembled.
Also, Q is reduced by one. The bloek transfers is complete when (Q) = 0.

The RDCL instruetion performs a logical "AND" function between four consecutive PP memory words and

one central memory word with the result replacing the central memory word. The original contents of the
central memory word replaces the four PP memory words. The address of the first PP word is speeified by
d. The address of the centrel memory word is specified by the A register.

The RDSL instruetion performs a logieal "ORY funection between four econsecutive PP memory words and
one central memory word with the result replacing the central memory word. The original eontents of the
eentral memory word replaces the four PP memory words. The address of the first PP word is specified by
d. The address of the central memory word is speeified by the A register.

Format:
Operation Variable Desecription Size Octal Code
CRDL d Central read from (A) to d. T 16 bits 1060d |
CRML m,d Central read (d) CM words beginning at 32 bits 1061dm
CM (A} to PP m. :
CWj)L d Central write from d to (A). 16 bits 10624
CWML md Central write (d) words from PP m to 32 bits 1063dm
CM (A).
RDCL d - | Central read and clear loek from d to (A). 16 bits 1001d
RDSL d Central read and set loek from d to (A). 16 bits 1000d

® 9-20 60492600 M

9.2.15 1/0 BRANCH INSTRUCTIONS

The following instructions are conditional long jump instruetions, each of which tests for a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not met,
execution continues with the next instruction. The d expression is required.

For the FIM instruetion, an input channel is full when the input equipment has sent & word to the channel
register and sets the full flag. The channel remains full until the PP accepts the word and clears the flag.
An output channel remains full when a PP sends a word to the channel register and sets the full flag. The
channel is empty when the output equipment accepts the word and notifies the PP.

On the models 810, 815, 825, 830, 835, 840, 845, 850, 855, 860, 865, 875,and 990, d must be less than 40g,

Format:
Operation Variable Descriplion Size Octal Code
AJM m,d Jump to m if channel d active 24 hits Gddm
ITM m,d Jump to m if channel d innctive 24 bits G5dm
FIM m,d Jump to m if channel d full 24 hils GGAm
EIM m,d Jump to m if channel d empty 24 hits G67dm
Example:
Code Generated EQCATION OPERATION | YARJABLE COMMENTS
u 8 [0
64Nz 90912’ a4 m TAGL,2 |
!
6502 N3173 TJH TAGZ yCHAN=-2 |
|
ah04 NNR2S FJM TAG3 s 4 |
|
ATT4 0076 F™ TAGHL CHAN [
|
60492600 M 9-20.1

f 9.2.16 1/0 TEST AND SET CHANNEL FLAG INSTRUCTIONS

The SCF instruetion branches to the location specified by m if the channel d flag is set; otherwise, it sets
the channel flag and exits. The programmer ean unconditionally set the channel flag by setting m to P+2.

The CCF instruction clears the flag in the channel specified by d. The m field is required, but not used.

The SFM instruction branches to the location specified by m if the channel d error flag is set, and elears

the error flag.

e

The CFM instruetion branches to the location specified by m if the channel d error flag is clear; otherwise,
it elears the error flag.

Format:
Operation Variablet Description Size Octal Codeft
SCF m,d Branech to m if channel d flag set 24 bits 644dm
CCF m,d Clenr channel d flag 24 bits 654dm
‘SFM m,d Braneh to m if ehannel d error flag set 24 bits 664dm
CFM m,d Braneh to m if channel d error flag clear 24 bits 674dm
F3JM m,e Jump to m if channel e flag set 24 bits 1064X
FCIM m,ce Jump to m if channel e flag clear 24 bits 1065X
TThe variable d is a 5-bit field containing the channel number.
TiThe operation code oceupies 7 bits.
Examples;
LOCATION OPERATION VARIASLE COMMENTS
Code Generated | 0 - T
6445 0100 SCF 1008B,5 |
|
6545 0100 CCF 1008,5 I
|
6645 0100. SFM 1008,5 l
|
6745 0100 CFM 1008,5 '
|
6453 0100 SCF 1008,13B i
|
6553 0100 CCF 100B,13B i
|
6653 0100 SFM 100B,13B !
!
6753 D100 CFi 1008,138 !
|
- 9-20,2 60492600 M

9.2.17 1/0 BRANCH INSTRUCTIONS

The following instructions are conditional long jump instructions, each of whieh tests & eondition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not met,
execution continues with the next instruetion. ' These instruetions are exelusively 7600 PPU instruections.

The d expression is required.

Format:
Operation Variable Description Size Octal Code
FIM m,d Jump to m on channel d input word flag 24 hits 60dm
EIM m,d Jump to m if no input word flag on channel d} 24 hits 61ldm
IRM m,d Jump o m on channel d input record flng 24 bits G2cm
NIM m,d Jumyp to m if no inputl record flag on
channel d 24 bits G3dm
FOM m,d Jump to m on channel d output word flag 24 hits G4cdm
EOM m,d Jump to m if no output word flag on
channel d) 24 hits G5dm
ORM m,d Jum) to m on channel d output record fiag 24 hits GGclim
NOM m,d Jump to m if no ouiput record flag on
channel d 24 hits G7dm
Example:
Code Generated LOCATION OPERATION [VARIABLE COMMENTS
_ 1 I 18 [30
RNOOS 13A6 FTv TAGR,& I:
6102 17”6 FIH TAGS,2 :
62Nl 4 36F IR TAGF .1 :
& CHEN Y=h) L }
6204 13R6HR M TAGE,CGHEN :
6415 7000 FOM 70a00,158 |
AEND 1525 E DM L6NA+TARR, 1 :
BHCT 12RA o= —mnnnn@a.rlHnm-J
67N% 1356 NNH TAGR ,(‘.HAN+1 E
60492600 M 9-21

I 9.2.18 A REGISTER INPUT/OUTPUT INSTRUCTIONS

The following instruetions transfer a word to or from channel d and the lower 12 bits of the A register.

On the CYBER 70 Model 76 and the 7600, the IAN instruetion is not executed until the input ehannel d
word flag is set. If the flag is not set when the instruetion is read, execution halts until an external signal
sets the flag. The input channel d reeord flag does not affeet the IAN execution. The IAN instruction
clears the input channel d word [lag and record flag and transmits a resume signal over the input cable
after the word is entered in the A register.

On the CYBER 70 Model 76 and the 7600, the OAN instruetion is not executed while the output ehannel d
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag. This
instruction sets the output channel d word flag and transmits a work pulse over the output channel cable.

On a CYBER 180 Series; a CYBER 170 Series; CYBER 70 Model 71, 72, 73, 74; or 6000 Series machine,
executing either of these instructions when the channel is inactive causes the peripheral processor to
become inoperative until some other peripheral processor activates the channel or the system is
deadstarted.

I On a CYBER 180 Series, executing either of these instructions causes 16 bits of data to be transferred.

Format:
Operation | Varinble Description Size Octal Code
IAN d Input: channel d to A 12 bits T0d
QAN d Output: (A) to channel d 12 hits Tad
Example:
. LOCATION OPERATION | VARIABLE COMMENTS

Code Generated | " 1 5

7003 16N 2 :

7204 0AN CHAN |

I 9.2.19 BLOCK INPUT/OUTPUT INSTRUCTIONS

The following instruetions transfer a bloek of 12-bit or 16-bit words on channel d to or from a starting PP
memory loeation specified by m. The number of words transferred is specified by the econtents of the A
register which is reduced by one as each word is transferred. The operation is completed when (A)=0 or the

J channel b;aeomes inactive (CYBER 180 Series; CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and
6000 only).

On the CYBER 180 Series; the CYBER 170 Series; CYBER 70 Models 71, 74, 73, and 74; and 6000 Series
machines, the input operation is complete when the contents of A equal 0 or the data channel becomes
inaetive. If the operation is terminated by the channel becoming inaetive, the next location in the

- processor memory is set to all zeros. The word count is not affected by this empty word. Therefore, the
contents of the A register give the bloek length minus the number of real data words actually read in.

9-22 60492600 M

During execution of either of these instructons, address 0000 temporarily holds P, while the P register
holds m. The contents of P advance by one to give the rddress for the next word as each word is
transferred.

If a read operation overwrites word 0 {address 0000), the restored value of P may be different from the
contents of P before the operation.

NOTE

If this instruetion is executed on & CYBER 180 Series;
CYBER 170 Series; a CYBER 70 Model 71, 72, 73, or T4;
or 6000 Series machine when the data channel is
inactive, no operation is accomplished and the program
continues at P + 2. However, the loeation specified by m
is set to all zeros for the IAM instruetion.

On a CYBER 70 Model 76 or & 7600, the IAM instruction is not executed until the input channel d word flag
is set. If the flag is not set when the instruection is read, execution halts until an external signal sets the
flag. The presence of an input channel d record flag is ignored for the first word of the bloek but
terminates the bloek input at any word after the first. In this case, the next loeation in the PP bloek input
storage area contains a noise word; any remaining loeations are unaltered. Note that the storage loeation
can be ineremented through location 7776g to 000g on a 7600 (or CYBER 70 Model 76), or location -

7777g through 0000 on a 6000 Series machine (or & CYBER 170 Series; CYBER 70 Model 71, 72, 73, or

74), or location 17777g to 0000 on & CYBER 180 Series model 990 and certain 840, 850 and 860 system
which could destroy existing data or a program. : _

Cna CYBER 70 Model 76 or & 7600, the OAM instruction is not executed until the output channel d word
flag is cleared. If the flag is set when the instruetion is read, execution halts until a resume pulse clears
the flag. An output channel d record fiag does not affect OAM execution.

Format:

Operation Varighle Description Size Octal Code
IAM m,dT Input: {A)words to m from channel d 24 bits 71dm

OAM m,dt Output: (A) words to channel d from m 24 bits 73dm

TExpression dis required.

These instruetions allow the transfer of 16-bit PP words to a CYBER 170 12-bit channel {OAPM) or the
transfer from a CYBER 170 12-bit channel to 16-bit PP words. The data is packed on input from 12-bit
words to 16-bit words and unpacked on output. Three 16-bit words are assembled from {input) or

disassembled te (output) four 12-bit words.

Format:
Operation Variable Description Size Octal Code
— — —— —— s
IAPM m,dt Input: (A) words to m from channel d 32 bits 1071dm
OAPM m,d ¥ Output: (A) words to channel d from m 32 bits 1073dm
TExpression d is reguired.
60492600 M 89-23

Example:

COdE Generated l LOCATION lC:FERA“ON IEVARIABLE EEMMENTS
7103 1364 IAM TAG,3 |
7306 1364 0AN TAG, 4 :
107101 1364 TAPM TAG,1 :
107301 1364 - |oapm TAG,2 :
:

9.2.20 SET OUTPUT RECORD FLAG INSTRUCTION

The RFN instruction sets the output channel d record flag and transmits a record pulse over the eable. The
instruction ipnores the previous status of the channel d flags; the instruetion is executed even if the output
channel d record flag is set.

Format:
Operation Vaviable Déscription Size Octal Code
RFN d Set output record flag on chnanel d 12 hits T-Lek
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Ge d
Code Generate + . — -
7406] RFN 6 |
|

9.2.21 CHANNEL FUNCTION INSTRUCTIONS

The ACN irstruction activates the channel specified by d. This instruetion must precede the JAN, IAM,
OAM, or OAN instructions. Aectivating a channel elerts the input/output equipment for the exchange of
data. Activating an already active channel causes the PP to become inoperative until another PP or an
external equipment denctivates the channel, or the system is deadstarted.

The DCN instruction deactivates the channel specified by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel eauses the PP to become
inoperative until deadstart or until the channel is activated. Avoid disconnecting the channel before first

- sensing for channel empty, deactivating a channel before stopping the associated processor, or deactivating
a channel before placing a useful program into the associated processor. After deadstart, PPs wait on an
input channel. Deactivating a channel after deadstart eauses an exit to address 0001 and execution of the
program. : : '

9-24 60492600 M

The FAN instruetion sends the external function code from the lower 12 bits of the A register on channel d.

The FNC instruetion sends the external funetion code specified by m on channel d. For this instruetion,
expression d is required.

Execution of a FAN or FNC irstruction when the channel is active causes the PP to become inoperative
until another PP or an external equipment deactivates the channel, or the system is deadstarted.

Format:
Operation Variable Description Size Octal Code
ACN d Activate channel d 12 hits 74d
DCN d Disconnect channel d 12 bits Tad
FAN d TFunction (A) on channel d 12 bhits 76d
FNC c,d Function ¢ on channel d 24 bits 77dm
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
' n 18 [E
7495 ACN 5 ;
7504 LCN CHAN i
7605 FAMN CHAMEL :
7705 0020 FNG 26 F,5 :

9.2.22 ERROR STOP INSTRUCTION

The ESN instruetion halts execution of the peripheral processor program and indicates a program error
eondition to the moniter control unit. The PPU must be restarted by a deadstart sequence from the MCU,
only.

Format:
Operation Variable Description Size Octal Code
ESN d Error Stop 12 hits 7700
Example:
_Code Generated LOCATION OFERATION | VARIABLE COMMENTS
] i 1 fie
f7o0 ESN !

650492600 M ' 9-25

PROGRAM EXECUTION 10

COMPASS can be called from the library and placed in execution through & COMPASS compiler eall
statement or through an IDENT statement (section 4) in 8 FORTRAN source deck. Ordinarily, when
COMPASS is called through FORTRAN, the parameters specified on the statement apply also to COMPASS,

10.1 CONTROL STATEMENTS

Normally, assembly of COMPASS source programs or the execution of CPU binary object decks is done
from a job file. A file is usually submitted in the form of card decks or eard images. The first section of
the file must contain the control statements deseribed in this seetion. Other optional statements are
described in the operating system reference manual. Following the control statement section are one or
more sections econtaining source statements and data.

A control statement begins with the first nonblank character. A comma or a left parenthesis or blank
marks the beginning of a parameter string. Parameters in the string are separated by commas. A period or
right parenthesis terminates a parameter string. Comments optionally follow the terminator. Within the
parameter strings, blanks are ignored. Ordinarily, a parameter ean contain only letters and digits. When a
parameter is enclosed between dollar signs, all characters are permitted and blanks are not ignored. Within
such & dollar-sign delimited parameter, two consecutive dollar signs represent a single dollar sign.

10.1.1 JOB STATEMENT

A job statement of the following format must be the first statement in the deck. The parameters following
name can be in any order or ean be omitted. For any omitted field, a default value is supplied which is an
installation option.

Format:

(name, Tt,E Clem.

name 1 through 7 letters or digits by which the job is identified.
The first character must be a letter.

Tt CPU time limit in seconds'(NOS/BE i, SCOPE 2: 1 through 77777g; NOS 1: 1 through
3276071p). Must be sufficient to process all eontrol statements for the job, including
assembly and execution.

" EClem {NOS/BE 1, SCOPE 2 only). Estimate of maximum amount of LCM or ECS in octal
thousands, required for assembly or execution (1 through 1400g).

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be decreased
accordingly.

60492600 H 10-1

Examples:

(JOB], T100, EC30.

(‘TE STER.

10.1.2 COMPASS CONTROL STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters speeify modes and files.

Format:

(COMPASS(pl, Byrees .Pn)

The opticnal parameters, p, may be in any order within the parentheses. A parameter can be omitted or
ean be in one of the following forms:

mode
mode=0
mode=1fn

Mode is one or two characters as described below; 1fn is a 1 through 7 character name of a file or a
character string.

Mode Significance

A -~ Abort mode.
A Abort job step at end of run if any assembly errors oceurred.
omitted Do not abort job step for assembly errors.

B - Binary output.

omitted or B Binary on the load-and-go file (L.GO).
B=0 No binary output.
B=1fn Binary on the named file.

BL - Burstable listing.
BL Generates output listing easily separable into components:

] Issues page ejects between listing segments (storage allocation map,
souree code, and eross reference table).

o Assures an even number of pages (page parity) for each program unit
listing, issuing a blank page at end if necessary.

omitted or BL=0 Generates listings in compaet format. Page parity and listing segment page
ejects are suppressed.

10-2 60452600 H

D - Debug mode,
D

omitted

Binary is generated on the file indicated by B parameter in spite of assembly
errors and regardless of the abort mode {A parameter}). The A parameter is
ignored when the D parameter is selected.

D is ignored if B=0.

Assembly errors inhibit binary output. In abort mode (A parameter present),
no binary output is written at all for a subprogram containing assembly errors.
Otherwise (A parameter omitted), the message ERRORS IN ASSEMBLY is
written to the file indieated by the B parameter for each subprogram
eontaining assembly errors.

E - Error list. Suppressed if full list is directed to the same file or if no assembly errors ocecur.
However, if the full list and error list are on different files (for example, the full list is written to
OUTPUT and the error list is written on the named file), the error list will contain all statements
having error flags. If an error line was generated by a macro call, the macro eall can also appear in
the error list. Specification of both the E and the O parameter results in a control statement error.

omitted
E

E=lfn
E=0

F - FORTRAN mode.

" omitted or F

F=number

F=name

G- Getsystem text.

omitted or G=0

Error list on file QUTPUT.
Error list on file ERRS.
Error list on named file.

No error list is generated (equivalent to directing error list to the same file as
full list).

Establishes value of special element *F.
*F is 0,
*F is number {one decimal digit).

*F iz 8 number corresponding to name as follows:

COMPASS = 0

RUN =1 (The RUN compiler is no longer supported.)
FTN4d =2

FTN5 =3

Load no system text from 8 sequential binary file.

G Load the first system text overlay, if any, from file named SYSTEXT.

G=1fn Load the first system text overlay, if any, in the specified sequential binary
file.

G=1fn/ovi Search the specified sequential binary file for a system text overlay whose
name is ovl and lord the first such overlay.

I- Source of assembler input.

omitted Source deck is on INPUT file.

I Sourece deck is on COMPILE file in either compressed {see the UPDATE
control statement X option, in the Update reference manual) or expanded
format.

60492600 H 10-3

LO -

ML -

10-4

1=0

I=lfn

Full Hst.
omitted or L

L=1fn

L=0

List optioﬁs. Selects
R,5, T, or X,

omitted or LO=0
LO

LO=ejeq...cp

LO=$$$4%

Ilegal.

Source deck is on named file.

List output on OUTPUT file,

List output on named file. When the full list is on a different file than the
short list (see O option) and the P option is not specified, the listing for each
subprogram is a separate section beginning with a one-word header consisting

of an asterisk and the first six characters of the subprogram name. This
header identifies the subprogram as a convenience for sorting and cataloging.

No full list will be generated.

or deseleets o maximum of nine of the list options A, B, G,), E, F, G, L, M, N,

Same as selecting B, L, N, and R only.

Seleets list options C, F, G, and X, and deselects R.

A list of up to nine characters. Inelusion of B, L, N, or R deseleets the
eorresponding option. Otherwise, inclusion of a character selects the aption.
For options, refer to LIST pseudo instruetion, chapter 4,

Seleects all list options.

Initial Value of MODLEVEL Miero.

omitted or ML

ML=string

No eject.
omitted

N

MODLEVEL is defined equal to JDATE (chapter 7) at the start of each
assembly.

MODLEVEL is defined as string (nine characters maximum) at the start of
each assembly.

Explieit ejects are honored.

Explicit ejeets (from TITLE or EJECT pseudo instruction) are suppressed.

Short list. Suppressed if full list is directed to the same file or if no assembly errors oceur.
However, if the full list and short list are on different files (for example, the full list is written on
OUTPUT and the short list is written on the named file), the short list will contain all statements
having error flags., If an error line was generated by a maero call, the macro eall may also be in the
short list. Specifieation of both the O parameter and the E parameter results in a control statement

error.
omitted or O
O=1fn

0=0

List output on OUTPUT file.
List output on named file.

No short list will be generated {(equivalent to directing short list te the same
file as full list).

60492600 H

PC -

PD -

P8 -

Continue page.
P

omitted

Page numbering continues from subprogram to subprogram, ereating a single
continuous listing file, End-of-record is also suppressed between routines on
the L file.

Page numbering begins with 1 at the start of each subprogram.

Initial Value of PCOMMENT Miecro.

omitted or PC

PC=string

PCOMMENT is defined g5 30 blanks at the start of each assembly.

PCOMMENT is defined as string at the start of each assembly. Characters are
truneated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 cheracters.

Print Density. Job default print density is assumed upon entry. This option affeects only the listing I

files.
PD=6
PD=8 or PD

PD=cther or
omitted

Page Size.

PS=x

PS=other or
omitted

System Text Natne,

omitted

S5=0
5

S=ovl

S=1lib/ovl

Print density is six lines per inch.
Print density is eight lines per inch.

Print density defaults to job default {an installation parameter, user
changeable) lines per inch.

Page size is x lines per page. Acceptable values of x are 4<x <99,
If PD is not specified, page size defaults to job default lines per page.

If PD is speeified, page size defaults to PS=(PD*job default page size)/job
default print density.

If there are no G parameters other than G=0, load the overlay named
SYSTEXT from the job's current global library set.

Load no system text from a library.
Load system text overlay named SYSTEXT from job's current global library set.

Load the system text overlay named ovl from the job's ecurrent global library
set.

Load the system text overlay named ovl from the library named lib, which may
be a user library file or a system library.

Source of external text (XTEXT) when location field of XTEXT pseudo instruection is blank.

omitted
X=1fn
X=0

X

60492600 K

External text OLDPL file.
External text on named file.
legal.

Externa! text on OPL file.

10-5

Example:

Reads source from INPUT, writes the binary output to LGO,
and the listing to OUTPUT. Assemble in debug mode with

I COMPASS(B, D, 5=0VI)
system text from overlay OVI in the global library set.

Disables LIST pseudo instruction and sets LIST oplions

(COMPASS(LO=ASGXD) A,S, G, X, and D

(COMPASS. Uses the siandard default options.

MULTIPLE SYSTEM TEXT OVERLAYS

COMPASS allows up to seven system text overlays to be used for an assembler run. They are specified by
G and 5 parameters on the COMPASS control statement. Eech G parameter (except G=0) specifies loading
of a system text overlay from a sequential binary file, and each S parameter (except $S=0) specifies loading
of a system text overlay from a user library file or a system library. The G and S parameters can be used
in any eombination and in any order, and can be intermixed freely with other parameters, provided the
total number of system text overlays specified does not exceed seven. COMPASS loads the system text
overlays in the order in which the G and § parameters oecur on the COMPASS statement. If a system
macro, miero, or symbol is defined by more than one system text, only the last definition is used. S=0 has
no effect if there are any other S or G parameters.

Example:

Reads source from file COMPILE and gets system
text from overlays SYSTEXT and PFMTEXT ia the
global library set, and from the local file MYTEXT.

(COMPASS(I, §8,5=PFMTEXT,G=MYTEXT)

: Get system text from overlay SCPTEXT
COMPASS(@FILE/SCPTEXT, S-_-MYLIB/TEXT) on the file FILE, and from overlay TEXT

in library MYLIB.

10.1.3 LGO CONTROL STATEMENT

An LGO control statement eglls for the loading and exeecution of CPU binary output produced by the
assembler unless the B option on the COMPASS control statement is set to 0 or to some other file name.
When binary output is on some file other than LGOQ, the statement is replaced by a program call statement
for that file. The file is automatically rewound before loading. The LGO file is temporary; it is released

at job termination.

NOTE

A peripheral processor program ean be executed only by the operating system. This type of
program execution requires system origin privileges.

Format:

(LGO(pl,pz,pB'--n ,Pn) or LGO.

10.1.4 PROGRAM CALL STATEMENT

The program call statement direets the operating system to search for a file or CPYU program that has the
speeified name, load it into ecentral memory (CM or SCM), and execute it as & CPU program.

10-6 60492600 H

Formats:

(name(pl.pz, cenrB)
r name,
name Program name.
P Parameters in a format aceeptable to the program being called.

When the operating system locates the file, it rewinds and loads the file. When loading is complete, it
executes the program as a CPU program.

10.1.5 7/8/9 CARD

A card withrows 7, 8, and 9 punched in ecclumn cne separates seetions in the job deek. The level is
assumed Zero unless columns 2 and 3 eontain an octal level number punched in Hollerith code. The
remaining columns optionally contain comments.

As an example, a deck consisting of a control statement section and a COMPASS source input seetion
would include two 7/8/8 cards. The first terminates the control statements and the seeond terminates
COMPASS input. A 7/8/9 card of level 17 is interpreted by the operating system as a 6/7/8/9 card.
.10.1.6 6/7/8/9 CARD

A card with rows 6, 7, 8, and 9 punched in column one signals the end of the job deck. Columns 2 through
80 optionally contain comments.

10.1.7 USER CONTROL STATEMENT {NOS 1 ONLY)

The user control statement format is:

(USER, usernam, passwrd, famname,

usernam User number or name
passwrd User password
famname Name of user permanent file device family name

The USER statement, required by NOS 1, follows the job control statement and specifies user access
information. The user name is used in system bookkeeping and defines the user's file catalog area. The
user can specify a different permanent f{ile catalog during job processing by issuing another USER control
statement.

60492600 G 10-7

10.2 SAMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly. The USER control statement (for NOS 1 only) provides required user access
information. COMPASS reads source statements from file INPUT, writes the listing on OUTPUT, and
writes a binery object deck on file LGO. Control statement LGO calls for execution of the binary object

program, which obtains its data from file INPUT.

Data for (

Fxecution l .

7
8
9

FND TEST
Subprogram P,

Test Z

il

P

yd
(IDENT TEST

(7
8

9
LGO.
Control ‘/
Seetion /COMPASS.

/CHARGE statement.

/USEB statement.
\ ' SAMPLE, T100.

10-8

0492600 G

In the following job, the COMPASS assembler is called twice. During the first assembly, binary object

decks for subprograms TEST1 and TEST2 are written on file LGFILE1l. The source decks for these
subprograms are in the second section of the INPUT file. During the second assembly, COMPASS writes a

binary objeet deck for subprogram CDA on file LGFILE2Z. Each assembler run produces a full listing.

Following the second assembly, LGFILE?2 is repositioned to the beginning of the file. Then, the COPYBR

program is called to copy the contents of LGFILE2 to & punch file (PUNCHB). The LGFILEL statement

then calls for the loading and execution of subprograms TEST1 and TEST2 from LGFILELl. Following
suceessful execution of the subprograms, the file is rewound and copied to the punch file, after which the
job terminates. ’

(END CDA |

} Data for execution

Vs

-

(IDENT CDA

650492600 G

END TEST2 |

} Subprogram CDA

Fa

-

-’

IDENT TESTZ

II } Subprogram TESTZ2

END TEST?

s

IDENT TESTL

| } Subprogram TEST1
| IH

Sy

{COPYBR(LGI‘ILE]., PUN CHB)

{ REWIND (LG FILE1)

(LGFILEL.

(COPYBR(LG FILE2, PUNCHB)

Control

(REWIND(LGFILEZ)

— Section

{ cCOMPASS (B=LGFILE2)

(COMPASS(B=LGFILEL)

SAMPLE, T500, EC50.

10-9

In the following example, the IDENT statement causes FTN to call COMPASS to process the COMPASS
source deck. If the COMPASS END statement is not followed by another IDENT statement, then
COMPASS returns control to the compiler that called it.

oo~

~

/ Datsa

'/7
8
]

QND

(COMPASS Source Deck

IDENT begins in IDENT

column 11—

/ FORTRAN Source Deck

7
8
(4

(FTN.

JOB,EC100,

The following sample programs illustrate how to assemble and use a system text overlay.

IDENT
STEXT

tQu
£Qu

1 ONE
36 HALF
SHIFT MACRO

IFC
Saz

IFC
SH2

LX&
ENDM

END

10-10

MYTEXT

1 CONSTANT ONE

30 PUS CONSTANT
ALPHABETA POSITIONING MACRO
NE » BALPHASXZ2%s 1

AlLPHA

NE+ BBETARB2S e]

dETA

X2sH2

60452600 G

6110000001
5120060004 +

6120000036

5160000006 +
Ti6tZ2aTU2)

2
1

The deck for this job eould be set up as follows:

60492600 G

CONSTANT ONE FROM TEKT
PICK UP VALUE FROM STORAGE
POSITION . WORD 1IN X6

RETURN NEW WORD TO STORAGE

IDENT TEST
ENTRY TEST
$ST
TEST S5K1 ONE
5A2 INBUF
SHIFT X2sHALF
SA6 OUTHUF
ENDRUN
INBUF HSS 2
OUTBUF BSS 1
END TEST
6
7 /
8 ”
9 r-
{ IDENT TEST
7
8 r
3 o~
(IDENT MYTEXT
7 |
9 (COMPASS (G=MYTEXT, §)

(COMPASS (8=0, B=MYTEXT)

TEXT, T17,

16-11

LISTING FORMAT 1

This section describes assembly listing format. Control of the contents of the listing is deseribed in
seetion 4.11 Listing Control, and in section 10.1.2 COMPASS Control Statement.

1.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title COMPASBS Version date time PAGE x
o,
subtitle sub-sub bloclk symbol %
title name gual
title Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction
date Date of assembly
time Time of assembly in hours, minutes and seconds
PAGE x Page number of listing. Pagination begins with 1 for each END instruction

unless the P option is selected on the COMPASS control statement

subtitle Up to 62 characters taken from second and subsequent TITLE pseudo
instruections or a CTEX'T pseudo instruction

sub-subtitle Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction Immediately follows the heading (assuming the C list option is
also selected).

hlock name Name of the block in use at beginning of page

symbol qual Qualifier in use (see QUAL pseudo instruction)

N.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols.

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each IDENT instruction when the

60492600 H 11-1

COMPASS control statement or the LIST instruction selects the B list option:

ADDRESS LENGTH BINARY CONTROL CARDS
addr:l 21 binary r:.arlzi1
addrz 22 binary carl:!2
addry 2, binary card,
ecp {teop) END card or blank
binary mau:'di The binary card that caused generation of the binary for the overlay, partial
: binary, or subprogram. The list includes SEG, SEGMENT, and IDENT instruc—
tions. .
addri The central memory or peripheral processor memory origin address for the
subprogram, overlay, or partial binary written out as a result of the binary
card.
£ The octal length of the subprogram, overlay or partial binary, in central

memory words for a central processor assembly, or in peripheral processor
words for a peripheral processor assembly.

. eop The octal central memory or peripheral processor address for the end of the
4 program unit begun by the previous IDENT.
feop The octal length in central memory words of a peripheral assembly; not present

in a listing of a central processor assembly.

Examples:

ANDRESS LENGTH RTYNARY (CONT20L nrArpS,
101 271 TNENT FOMPASS,LOVER,CMP
7?5241 SEG
56332 1242 €EG
7075 4145 SFG

13242 5179 <EG
204737 1352 SER
22011 FMD COMPASS
ADDRESS LENGTH BINARY CONTRIL CARDS.
] 7761 IDEMT DSDs0
T761 (1462})

11-2 : 60492600 H

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under control of the

B list option:

BLOCKS

name
1

name
2

name
n

name

type

baddr i
leng';t:hi

Examples:

BLOCKS

PROGRAM®
LITERALS*®
TONTROL

PSEUDN
SuUBSs

BUFFERS

60492600 H

TYPE

t
n

Name of the block

PROGRAM*

ABSOLUTE*

LITERALS*
other

ADDRESS LENGTH
baddrl b!l
baddr 9 bﬂz
baddrn b.!n

used in the subprogram, as follows:

For a relocatable assembly, indicates the zero bloek. For an
absolute assembly, the first PROGRAM* indicates the absolute
block, the second indicates the default symbols bloclk.

Appears in a relocatable assembly only and indicates the use
of an absolute bloclk.

Identifies the literals blpck.

Identifies a local, labeled common, or blank common block,

The type of the block as follows:

ABSOLUTE

+LOCAL

+COMMON

All addresses in the block are relative to absolute zero.
an absolute asembly, all blocks are ABSOLUTE.

Addresses in the block are relative to the origin assigned to
block zern. The + is present for an ECS/LCM block.

Addresees in the block are relative to the origin of the common
block. The + is present for an ECS/LCM block.

For

Beginning address of the block according to type.
Number of words in the block,

TYPF APNRESS

ARSCGLUTE n
ARSOLUTF 541k
ARSOLUTF 56732
ARSNLUTF 7075
ABSOLUTF 13242
ARSCLUTF 20%37

LENGTH

5416
215
1242
4145
S17%
111480

11-3

FLOCKS TYPE ADORESS LENGTH '

A3SOLUTE™ AISOLUTE J 62
PROGRAM® LOCAL 4 35
DATAL LJ3CAL 35 1
LCOM +LNGAL U 5
TABLE +LOCAL 5 s
TARLE +COMMON V] 123
TABLE LOCAL 36 1
TABLE OMMON J 1
r’ COMMON 1] 1..13

11.2.3 ENTRY POINT LIST

If the subprogram declares entry points, a list of entry point symbols in the following format follows the
block usage summary.

ENTRY POINTS.

* * * i

sym, +addr1+block1 sym .4 +addrn +1+blockn a SyMg, g -i-addrml +1+b10ck2n +1
* * *

Bym,, +addr2+bluck2 Sym ..o -I-a.ddrn 42 ~I~b10clcn " Symg .o +addr2n _I_z-fhlockz +9
* * *

sym, +addrn+blockn sym, +addr2n+block2 symg +addr3n+blc|ci4:atl

Where n is one-third the number of entry points. The asterisk to the right of sym, is present if sym, is a
conditional entry point (declared by ENTRYC), The + to the left of addr, is presen]t if block, is an ECS/LCM
block. The + to the right of addr, is present if addr (s relocatable, Block, is blank or a common black
name surrounded by slashes. 1

If the symbol is undefined, addri ig FEEAEEE

Example:
ENTRY POINTS.

SNAPL 1345+ CALL 72+ 2FQROER 2375+

SNAPZ2 1352+ GOTO 150+ IPF 2431+

SNAP3 1357+ IF 224+ RPH 2he 34
JUMPVEC * 0+/JUMPVECY LABEL 372+ LCH + L+

BEGIN a+ READ 435+ LMY 4+ log+/LuMAS
BYTESIZ B RECORD 24+/NATA/

11.2.4 EXTERNAL SYMBOL LIST

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMBOILS.

Bym, sym ., Symg 4 SyMg g+ o - Bymg. 1

sym gym

2 n+2

11-4 - ' 60492600 H

symg

symn

sym

sym

n+3

2n

Where n is one-eighth the number of external gymbols. If a symbol is a weak external it is
followed by an asterisk.

Example.

FXTYERNAL SYMBOLS.

FRMSG

CONEXTT YNRFrReY

syYMaor roGoTvo

11.3 OCTAL AND SOURCE STATEMENT LISTING

cer

The contents of the octal and source statement listing depends on the options selected,

The list i5s 130 characters wide with fields assigned as shown in figure 11-1,

Title Line

Bubtitle Line

Error Loeation Octal Source Lines Sequence
Flags Addresses Code

Figure 11-1, Format of Octal and Source Statement Listing
60492600 C 11-5

11-6

Error Flags

Location
Addresses

Octal Code

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on opticns selected, the
listing shows just the first word or all words generated for data generation
instructions, The field does not include NO instruetions (46000;) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

If the word contains an address, the octal code is flagged as follows:

Negative relocatable address
Positive relocatable address

Common relocatable address
External address

MO+

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

Tor a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number,

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,
this field contains the octal value of the symbol right justified with leading
zeros suppressed.

For an inetruction resulting in a change of base, the notation by=b, is right
justified in the field. b indicates the old base and by indicates the new base.

For an instruction resulting in a change of code conversion, the notation
€ ~¢Cy is right justified in the field. ¢, indicates the old code and Cy
indicates the new code.

For a DUP instruction, the field contains the repeat count.

For a BSS or BSSZ instruction, the field contains the octal value of the word
count right justified with leading zeros suppressed, If the word count is
zero the field is blank,

For a DECMIC or OCTMIC instruction, the field contains the octal value of
the expression right justified with leading zeros suppressed,

60492600 A

Source Code

Source statement image {columns 1 through 72)

Sequence Columns 73 through 90 of the card image or an identifier for an expansion of a

definition operation as follows:
Maecro macro name
Remote ecode *RMT*
Duplicated code *DUP*
Echoed code *ECHO*
XTEXT file name
OFPDEF Operation field of opdef eall, such as SB1

The recursion level is indieated in the right half of the field.

Example:

CONPASS 3.71210 - CYRER 794 COMPREHEMSEVE ASSEMALER.
COMHOK AMD UTILITY SUSHOUTTMES.

CaMPasy I.71214 L V55 SN | TN L0 T TAGF L4
ALT .

et ALC - TABLE HAKRAGF® AWD REL{iDGATOR, £IH2455 10AC
. ALLOCATOR HILL rOVE TAOLES T4 ACTHILIPT PON~. ALE0 HaY Jumpe CI4TAGT 153E
v IHTERMEDIATE 03 RAMIF-FEMT JeNu0rS OITa SCIATEW FILF, CO4-25% L&a7
- E4TAY {A3) = TAQLLE THOFX, COMTALE R
. (Y1} = CHAKGE (+ 02 -} I0 TASLF SI76. « COMTAR~ tr3n
. EdIr (¥2) = 0JILTH OF TAOLE, CyMmar =
* (X3) = HEW LELGTW OF TAALE.
RhER 5020003462 [INA] gaz DRTGIMS+AS PETLAYTM VALUES FOP EXIT 3rnLy '
5030003516 . 51 STZES A
5067 Gododddoac ALY Hy ariuey LeTT
5470 B12000COAY ALCL 512 NTAQLES aneryEy [RIEY FLATSTERS
5020403462 547 DETSTHSHAS AU2ryT QALY
BLT1 S4J22 541 426712 PURIFUT LERGT™
Sku2y 5A4 A2+ MEYT FAILE PRASIN
3EALT 145 x10¥d WH RT7F
. 37aLz 141 xh-x2 TIGE IT 240y P Fraanntad
5472 37406 Ita ¥0=t5
13330056 03 XusdLER JUHP TR AL-ALLAGATE AnaT
54631 G5 Al T uow ni2e
5473 DLuluDSLGA [] ALnt Fryt
- HIYE TAALTS.
Sufh 5123033172 ALC2 5A2 ST7R0ORE qTE IF #ualRH enfx
LhLll AL Xt
67721 s17 a1amy
GATT BTTTL ALY 51r nr-9L
515703516 ga5 SI7I5+0T
B4 3 Xhe XS
G676 572005475 hI n7,AL33 Laae
5130003305 343 PASS
5477 &1730 S1r *1
aTazs Ivl LS L]
3440 514 x4 [N4) = TOTAL LEYGTH
)4 N7 -07
4005533

1.4 LITERALS

When the D list option has been selected, the assembly listing includes a listing of the literals block
following the default symbols listing. Following each literal address are the octal contents of the word and
& display eode conversion of the econtents of the word.

60492600 G 117

Examples:

CONTENT OF LITERALS BLOCK.
gAndz1L 174655773752 090000000 O+.>>X
piniz2> 1665000000000 000Q00N Np
01912 15052327 010705553636 MESSARE 23
010124 S50405031115011L5522 PECTIMAL R
010125 05212511220604570N000 ENUIRFN,
01012h 55272015241°5112205040N RFAUTREN
aip127 AanQnoGpoOonoo000QBOOON
gi013n 2g02°i7n72P0115550102 PROGRAM AR
DANLXL 17272457N0NnGOoN0O0COND0 orTY,

CONTENT OF LITERALS BLOCK.

7315 onaY 1
73146 7aQ7n +e
7317 gony p]
T3z onno

7321 s55nq A
7322 anoa

r3z3 g5n6 FE
TI24L 1411 LT
7325] TF
7325 22n1 RA
7327 1473 LS

L5 DEFAULT SYMBOLS

When the D list option is selected, a list of default symbols immediately precedes the literals block.

Example:
DEFAULT SYMBOLS NEFINED BY COMPASS
g00000 X MSG=
IHETT-EE TaG1
poRLB”? TARZ
BPS LA™ anr
TNELE. SYM

1.6 ASSEMBLER STATISTICS

Assembler statistics are printed at the end of the oetal and source statement listing or, 1f the D list option
is selected, following the default symbols. Information ineludes the following:

Amount of storage used (octal)

Number of source statements

Number of symbols defined

Number of invented symbols

Number of symbol references

CPU type in which COMPASS executed and assembly time
Number of errors encountered during assembly

Number of lost references, that is, references to symbols that have been omitted from the symbolie
reference table

i1-8 60492600 G

11.7 ERROR DIRECTORY

The assembly listing ineludes an error directory if any errors are detected during assembly. The
directory begins a new page identified with the subtitle ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

X TYPE ERROR description
OCCURRED ON PAGES P> DBy By -oe By

Types and descriptions are given in Tables 11-1 and 11-2. Errors flagged with an alphabetic character
are fatal. A fatal error causes suppression of binary output, Nonfatal warning flags are numeric; they
are informative only.

TABLE 11-1. FATAL ERRORS

Type Message Significance Action
A ADDRESS FIELD An error exists im a variable subfield Refer to the
BAD. entry. The following is a list of manual for the
possible errors: correct address
' field format
The CODE character is not A, D, E, I, for the opera-
0, or *, tion code
_specified.

The symbol or name is greater than 8
characters.

The expression does not reduce to one
external term.

The relocatable terms do not cancel
properly.

The instruction requires an absolute
expression.

The instruction disallows register
designators.

A data error; 8 or 9 is encountered in
octal data and the modifier is not §,
P, 0, E, D, or B.

No data is found in the variable field
of a LIT instruction.

No symbol is following an =§, =X, or
=Y prefix.

The relative jump is out of range
(-31>r>31) on a PPU instruction.

The BASE character is not 0, M, D,
or *,

60492600 G 11-9

TABLE 11-1, FATAL ERRORS (Contd)

Type Message Significance Action
A ADDRESS FIELD A register is illegal in a CON

BAD. {(Contd} instruction.

A synomymous instruction for OPSYN or
CPSYN cannot be located,

The micro count is less than zerc or
greater than temn.

The NOLABEL character is mot I.

A negative relocation is specified on
ORG or ORGC.

The POS value is less than 0 or
greater than word size.

The OPDEF reference is erronepus.

No comma is following the DIS word
count.

An illegal entry is in the variable
field of IDENT.

D DOUBLY A symbol has been previously defined Rename the
DEFINED or declared external. duplicate
SYMBOL.) symbol in the
THE FIRST program.
DEFINITION
HOLDS.

E ECHD, DUP, The definition of ECHO, DUP, RMT, or Correct the
RMT, COR MACRO is not entirely within the next program.
MACRD outer definition.
ILLEGALLY
NESTED.

F NUMBER OF One of the following error conditions Correct error
ENTRIES exists: condition and
EXCEEDS rerun the job.
PERMISSIEBLE LIT generates more than 100 words.
AMOUNT .

Data is missing or erromeous on XTEXT
file.

More than 63 formal parameters and
local names are in a macre definition.

There are more than 255 blocks.

There are more than 511 external

symbols.

11-10 60492600 G

TABLE 11-1., FATAL ERRORS (Contd)
Type Hessape Significance Action
L LOCATION The required location field entry is Correct the
FIELD BAD. erroneocus. The format two macro defi- location field
nition has no substitutable parameters. entry.
N NEGATIVE An entry point may not be negatively Change Lo use
RELOCATION ON relocated. positive or
ENTRY POINT. absolute
relocation for
entry polints.
Rerun job.
0 OPERATION One of the following error conditions Correct the
FIELD BAD. exists in the operation field: operation
field.
The instruction is unrecognilzable.
The instruction is out of sequence,
such as ABS or PPU not in the first
statement group.
The instruction is illegal for binary
mode.
The relational mnemonic on the IF
statement is erroneous.
AIDTEXT has determined that the instruc- Replace
tion has changed or is not valid for the instruction.
models B10, 815, 825, 830, 835, 845,
and B855.
P CONSULT A user—-generated error flag from an Action to be
LISTING FOR ERR or ERBxx instruction has been taken depends
REASON BEHIND encountered. ’ upon scurce of
P-ERROR error.
R DATA ORIGIN An attempt was made to set data into Use labeled
QOUTSIDE BLOCK blank common or beyond block limits. common or
OR IN BLANK increase block
COMMON. gize and rerun
job.
i} UNDEF INED There 1s a reference to a symbol that Define the
SYMBOL. is not defined; for example, an IF symbol.
VALUE statement line count, a DIS word
ASSUMED 0. count, an unrecognizable attribute on
an IF statement, or an undefined
qualifier.)
v BIT COUNT The VFD field size is erroneous. Correct the
ERROR ON VFD slze of the VFD
(MUST BE field.
0 COUNT 60).

60492600 L

11-11

TABLE 11-2., INFORMATIVE MESSAGES
Type Mesgsage Significance Action

1 LOCATION SYMBOL The location field is erroneous. The in- Define or
BAD. SYMBOL NOT struction does not require an entry. eliminate the
DEFINED. symbol in the

location field.

2 ADPDRESS ERROR The variable field entry is erroneous. Correct the sym-
ON SYMBOL The location field symbol is not defined. bol definition.
DEFINITION.

3 DUPLICATE MAGRO The macro, opdef, or synonymous operation Rename the
DEFINITION. HNEW redefines the operation code. duplicate macro
ONE OVERRIDES. name.

4 BAD FORMAL The macro or ECHO formal parameter name is Correct the
PARAMETER NAME repeated or illegal. formal pa-
IGNORED. rameter name.

5 CPU OPERATICON The QPDEF, CPOP, CPSYN, or PURGDEF speci- Correct the
SYNTAX INCOR- fies an illegal syntax. syntax of the
RECTLY SPECIFIED. pseudo

instruction.

6 LOCATION FIELD The entry in the location field is Correct the
MEANINGLESS. erroneocus} it is ignored. location field.

7 ADDRESS VALUE The value of the address is erroneousj Check the
EXCEEDS FIELD one of the following conditions exists: possible values
SIZE, RESULT of the variable
TRUNCATED. The value of the expression exceeds the subfield.

size of the destination field.

The BSS address expression value is
negative.

The MICRO starting character position
or character count is negative.

8 MISSING OR EXTRA The variable subfield entry is missing Correct the
ADDRESS SUBFIELD. or superfluous. variable

subfield.

9 MIGRO SUBSTITU- The micro reference is unrecognizable. Correct the
TION ERROR. NO micro reference.
SUBSTITUTION.

1.8 SYMBOLIC REFERENCE TABLE

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of
assembly. The table is not complete if the option was turned off at any time during the assembly. The
table lists symbols according to the qualifier, if any, under which they were defined. The global symbols
are listed first. A new heading of the following form introduces each new list of qualified symbols.

11-12

SYMBOL QUALIFIER = qualifier

60492600 H

The qualifiers are in the order declared in the subprogram. Symbols are listed alphabeticailly.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notifieation in the form n LOST REFERENCES.

Format 1 reflects the XREF P effect; P is the default for the XREF pseudo instruction. Formats 2 and 3
reflect the effects of XREF B and XREF A, respectively.

Title Line H
SYMBOLIC REFERENCE TABLE. //
Format 1 (XREF P):
. bo . o . bo R . tn
symbol value block | page/line | & | page/line | 2 | page/line |2 apge/line g page/line q.E_':‘
Format 2 (XREF B):
bo to &o
symbol value block | pege/line IS address, page/line |= address,| page/line E
Format 3 (XREF A):
symbol value block address, address, address, address, address,
Figure 11-2. Format of Symbolic Reference Table
symbol Alphabetical list of symbols defined under the qualifier.
value Absolute value of the symbol or the address assigned fo this symbol relative to
the block named.
block If the symhol was defined by the SST pseudo instruction, block is the system
text file or overlay name. Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it contains the name of the block containing the
symbol.
page/line From left to right and from top to bottom, a list of indices sequenced according
to page number, Each index points to a statement containing references to the
symbol or defining the symbol, Present when XRET B or P is in effect.
address The location counter address of the instruction containing the reference. Pres-

60492600 G

ent when XREF A or B is in effect.

11-13

flag

Identifies page/line index to a statement that defines the symbol or uses it in an

IF statement as follows:

= H

Lo |

X

Definition statement; EQU, =, SET, MAX, MIN, or MICCNT

ENTRY or ENTRYC pseudo instruction

Symbol uged in conditional test

Symbol used for indirect storage (applies only to PPU or PERIPH
assemblies)

Symbol used in location field of the statement

‘Symbol used for storage

EXT pseudo instruection

When XREF A is in effect, the table does not include the flags,

Example:

11-14

COMPASS J.7121] = GYAER FO/ COWPPEHENSIVL ASSEHALER.
SYMOOLIC AEFERFNCE TADLE.

SHIENP

SHWL I
SHHLINL
SHWLINZ
SNY

5519
Su2t
Gkl
5421
5425
ELEL
5134

6740

7ar12
7i/08
LR
7ir2n
75/16
79/13
120186
72732

L1530
132/404
137s%2
135730
117732
117725
1177429
11T/17
117711
L177-8
L1759
1357462
115234
115437
115756
11521
116735
116753
LLB2ST
115727
122422
1165/21
115719
1154460
13274
134738
134732
13ui4t
136/bi
1L /4
1terkb
116753
135702

125764 .

117715

-

ar -

Tusny
Tutul
TRivt
Frrel
7014
1T

Aaar

ThiG¥
Thri2
78756
Tafeh

Thifld
Thilt

SYHA0L QUALIFITR =

L

tatalat o ol

Lih/ub
1311747
13w/5L
tie/21
1212321
12171
121714
P2t
12tran
12L445
IS EXaY
111745
12e/35
115746
12-72%
1adrel
121735
121451
LIzsil

128704
123743
12./435
13%/u3
1331/84
134737
134729
RELTLLY
1346s43
136254
11a/53
13us55
115411
12R/S55
LT/ 2w

~

w o

L
L
L
L
L

121437

133218

117721
1324140
122767
ey Ve
114757
L2329
11771n

13us2.
115/3%
Ledsun
126711
122204
122407
12271

133427
122749
135717
133721

135715
117430

[l alalaladal

CoupPAsSS
DTHYS

7627
T

Thsald

TT 1N

Tre,
CATA

15125
17300t

117771

1267135
127236
17/

234
1285749
12575

123507

L334Ty

112706

J.7T1213

5}

TheTh
Tu/L?

-yBLR

IT/T
T3

L3219
133744

Lireny

13./19
taurav
127755
[T
126718
LTS LN

1IIFNT

-

AS2u/T7L

T5/lala

THLE 1

t12227
17420

147232

1327:€
127747

i1es10
138441

13/LS

Tha @3, bk,

75761

TasLy

135768 L

151733 4

131701
142s.8

TN

144719 b

L
HES 233 121706 121459 21712 121715 121718 121728 132705 1
27

60492600 D

COMMON COMMON DECKS 12

The common common decks are a set of COMPASS subroutines which are powerful tools for use by
COMPASS programmers, The common common decks perform funetions such as:

Data conversion
Dynamie table management
Saving/restoring registers
" Providing an input/output interface at the CIO and FET level

All of the eommon common decks run under NOS and NOS/BE; a subset of them run under SCOPE 2,
Table 12-1 shows each deck name, relocatable program name, entry point names, and the deeks supported -
under SCOPE 2.

12.1 ACCESS TO THE COMMON COMMON DECKS

The eommon ecommeon decks are available in two forms:
As relocatable subroutines
In source code form as a set of common decks
Both methods of accessing the common common decks are illustrated in the sample program in appendix D.

All the eommon common decks except the table management decks COMCMTM and COMCMTP are
available as relocatable subroutines that reside on the system library SYSLIB. In this form the ecommon

commeoen decks are easy to use; relocatable COMPASS programs need only include external references io
entry point names in the common common deecks. These external references are satisfied from SYSLIB at

load time. {The CYBER loader searches SYSLIB by default when satisfying external references, but the
SCOPE 2 Loader does not; under SCOPE 2, SYSLIB must be explicitly included in the library set.)

Occasionally, the programmer may need to access the source code of the commen common deeks. That
source code resides on the COMCPL old program library as a set of commeon decks (see the Update
reference manual). The source code of these common decks can be made available to 8 COMPASS program

in three ways:

Update-based procedures ean use the COMCPL old program library as a secondary old program library
{see the Update reference manual). The decks are ealled just as one would eail a common deck from
one's own old program library. :

Modify-based produets ean convert the COMCPL old program library to an OPL via the UPMOD
statement (see the NOS reference manual); the OPL is then used as the source for the common
common deeks. i

The programmer can use the COMPASS XTEXT pseudo-instruetion in the program te obtain the source
code from either an old program library or an OPL (see the X file option of the COMPASS control

statement).

The system texts required to assemble the common ecommon decks residing on the COMCPL old program
library are IPTEXT and CPUTEXT. These texts can be made available to the program via the 5 parameter
on the COMPASS control statement. '

60492600 H : 12-1

TABLE 12-1. SUMMARY OF COMMON COMMON DECKS
Co ok Homa Feograr Nou Entry Points oz
COMCARG CPU. ARG ARG= Yes
COMCCDD CPU.CDD Chb= Yes
COMCCFD CPU. CFD CFD= Yes
coMcetof CPU.CIO CID= No
COMCCOD CPU.COD cob= Yes
COMCCPT CPU.CPT cPr= Yes
coMcDXBT CPU. DXB DXB= Yes
COMCMNS CPU.MNS MNS= Yes
COMCMOS CPU.MOS MO5= Yes
COMCMTM Yes
COMCMTE Yes
COMCMVE CPU.MVE MVE= Yes
COMCRDG CPU. RDC RDC= No
COMCRDH CPU.RDH RDH= No
COMCRDO CPU.RDO RDO= No
COMCRDS CPU.RDS RDS= _ No
coMcrDW T CPU. RDW RDW= RDX= LCB= No
COMCRSR CPU.RSR RSR= Yes
COMGSFN CPU. SFN SFN= Yes
COMCSRT CPU. SRT SRT= Yes
COMCSST CPU. 55T 58T= Yes
COMCSTF CPU. STF STF= No
COMCSVR CPU. SVR SVR= Yes
COMCSYS' CPU.5YS SYS= RCL= WNB= MSG= No
COMCUPC CPU, UPC UPC=) Yes
COMCWOD CPU.WOD WoD= Yes
COMGHTCT CPU, WIC WTC= No
coMcwTH T CPU.WTH WIH= No
coMewTo T CPU.WTO WT0= No
comcwTs T CPU.WTS WrS= No
coMCHTWT CPU.WTW WIW= WIX= DCB= Ho
COMCXJR CPU. XJR XIR= No
COMCZTB . CPU.ZTB ZTB= Yes

THave user defined options

60492600 M

12.2 DESCRIPTION OF THE COMMON COMMON DECKS

A detailed external reference description of each common common deck follows. The decks are deseribed

in alphabetical order. Each deseription lists entry and exit conditions, registers used, and routines
explicitly called.

The following rules apply to the use of all common common decks:

Any input/output buffers, string buffers, exchange package save areas, and so forth, to be used by any

of the common common decks should not be located with the last 10g words of the field length.

Some feteh loops, move loops, and so forth, may encounter a hardware fault (out of range address) if

the above restrietion is not adhered to.

Registers that are not used by the common ecommon decks are not modified.

Entfy and exit conditions are only those listed in the deseriptions below.

i2.2.1 COMCARG — PROCESS ARGUMENTS

COMCARG processes a list of arguments (in the format generated by COMCUPC) by the use of an
equivalence table. The equivalence table must be terminated by a word of all zeros and must be in the
following format:

12/op,18/asv,12/st,18/addr

op One or two character keywords (left justified, zero filled)
asv Address of assumed value
st Status

addr Address where argument is placed

This format is generated by the COMPASS VFD pseudo instruetion. ARG= is the only eniry point for
COMCARG.

Entry conditions:

(B1) 1

(B4) Argument count

(A1) Address of first argument
(X4) First argument

(B5) Address of equivalence table

Exit conditions:

(X1)#0

1 Option not found in table
2 Single argument equivalenced
3 Nlegal re-entry of argument

Registers used:
A2, A3, A4, A7

B2, B3, B4
X0, X1, X2, X3, X4, X6, X7

60492600 H

12-3

The following conditions apply to the use of COMCARG:

If a keyword=value form is found in the argument list, addr is set to the upper 42 bits of the argument
value (in bits 59-18) and the lower 18 bits of asv (in bits 17-0).

If only a keyword is found in the argument list, addr is set to the full 60 bits of amsv.
If asv 0, the argument cannot be equivalenced.

If status=4000g, a zero value is retained as a display code zero. Otherwise, a value of zero {full
word) is stored at addr.

If asv=addr, only one entry of that argument is allowed and op is set to -0.

12.2.2 COMCCDD - CONVERT INTEGER CONSTANT TO DECIMAL DISPLAY CODE

COMCCDD converts an integer constant to decimal display code. Up to ten digits are converted with
leading zero suppression. The converted integer contains space fill. One register eontains the display code
right justified; another register contains it left justified. CDD= is the only entry point for COMCCDD.

Entry conditions:

(B1) 1
(X1) Number to be converted

Exit conditions:

(B2) 6*(count of digits converted)
(X4) Conversion left justified
{xX6) Conversion right justified

Registers used:

A2, A3, A4
B2, B3, B4
X1, X2, X3, X4, X6, X7

12.2.3 COMCCFD - CONVERT CONSTANT TO F10.3 FORMAT

COMCCFD converts a 30 bit integer to display code in FORTRAN F10.3 format. The value returned is
equal to the input value divided by 1000. The result is returned in two forms: left justified and right
justified.- Leading zeros in the integer portion of the result are suppressed. If the 30-bit input value
exceeds 999999.999(7346544777g), the result iseeseessoes . An input value greater than 30 bits is
truneated to the lower 30 bits. CFD= is the only entry point for COMCCFD.

Entry conditions:

(B1) 1
{X1) Integer to be converted

Exit econditions:
{B3) - {(number of blank fill bits in result)
(X4) Conversion left justified
{X6) Conversion right justified
Registers used:
Al, A2, A3, A4
B2, B3, B4, B5
X1, X2, X3, X4, X6, X7

12-4 60492600 H

12.2.4 COMCCIO - PROCESS I/0 OPERATION

COMCCIO performs input/output operations via the peripheral processor program CIO. An operation is
performed when the buffer iz not busy. If the file-status-word is zero, the operation is not processed and
IN and OUT are set to FIRST. CIO= is the only entry point for COMCCIO.

Entry conditions:

(x2) 24/unused, 18/skip count to CIO, 18/FET address for file
xn Funetion eode; if 0, X7 is the complement of the request and auto recall is requested

Exit conditions:

(X2) FET address
XN]

If ERP$ is defined by the user:

(x2) FET address
(X7) FET error code:

0 No error, operation performed, normal exit
other Error code from FET; operation not performed, exit to ERP$

If ERP1% is defined by the user:

(X2) FET address
(X7 FET error code:

0 No error, operation performed, normal exit
other Error code from FET; operation not performed, normal exit

Registers used:

Al, AB, A7

X1, X2, X6, X7
12.2.5 COMCCQOD — CONVERT CONSTANT TO OCTAL DISPLAY CODE
COMCCOD converts an integer constant to octal display code with leading zero suppression. Up to ten
digits ean be converted. The converted integer contains space fill. One register contains the display code
_right justified, another register contains it left justified. COD= is the only entry point for COMCCOD.

Entry conditions:

(B1} 1 »
(X1) Number to be converted

Exit conditions:
(B2} 6*(eount of digits converted)
(X4) Conversion left justified
(X86) Conversion right justified
Registers used:
A4

B2, B3, B4
X1, X3, X3, X4, X6, X7

60492600 M 19-5

12.2.6 COMCCPT — EXTRACT COMMENTS FIELD FROM PREFIX TABLE

COMCCPT copies the comments field of & prefix (7700g) table to a working storage area. Either the old
or new forms of the prefix table can be used. COMCCPT differentiates between the forms by cheeking
word FWA+3 of the table to see if it looks like & time-of-day word. The copy terminates on end-of-table,
zero byte, or COPYRIGHT. The working storage area is terminated by a zero word. CPT= is the only
entry point for COMCCPT.

Entry conditions:

(A1) Prefix table address

(AB) Address of working storage ~ 1
(B1) 1

(X1) Control word

Repgisters used:

AZ, A3, A4, AB

‘B3, B4

X1, X2, X3, X4, X6
12.2.7 COMCDXB — CONVERT DISPLAY CODE TO BINARY
COMCDXB converts a string of display code digits up to one word in length (left-justified and zero-filled)
into internal integer format. Either a base 10 or a base 8 string of digits can be converted as specified in
the ecall. This specifieation, however, is overridden if an explicit B {oetal) or D (deeimal) is the last
charaeter of the value to be converted. DXB= is the only entry point for COMCDXB.
The assembly option DXB1% controls the proeessing of an 8 or 9 when octal is specified for the display code
value and no explicit B or D appears in the velue. If DXB1% is not defined by the user an error occurs. If
DXB1% is defined, the value is eonsidered to be decimal.
Entry conditions:

(B1) 1

(B7) Base; if 0, decimal base; if 0, octal base.

(X5) Word to be converted (left justified, zero filled)
"~ Exit conditions:

(X6) Converted digits
(X4) Error code:

] No error
other Error in assembly

Registers used:

B2, B3, B4, B5
X0, X1, X2, X3, X4, X5, X6, X7

The presence of one or more of the following always eauses an errors
A non-digit in the word to be converted
A character after the post radix

An B or 9 with the post radix equal to B

12-6 60492600 M

12.2.8 COMCMNS — MOVE NON-OVERLAPPING BIT STRING

COMCMNS moves a specified source string from one loeation to another in ecentral memory., The only bits
disturbed in the destination field are those extracted to accept the sourece string. The destination field
must not overlap the source field in any way; results are undefined if overlapping oceurs; COMCMOS ean
be used for overlapping moves, MNS= is the only entry point for COMCMNS.

Entry conditions:

(B1) 1

(B2) Source first bit (numbered left to right- 0, 1,..., 59)

(B4) Destination first bit (numbered left to right- 0, 1,..., 59)
(X0) Number of bits to move

(X2) Source first word address

(X4) Destination first word address

Exit conditions:

(B1) 1

{B2) Source next bit {numbered left to right- 0, 1,..., 59)

(B4) Destination next bit (numbered left to right- 0, 1,..., 59)
(X2) Source next word address

(X4) Destination next word address

Registers used:

Al, A2, A3, A5, AG
B2, B3, B4, B5, B6
X0, X1, X2, X3, X4, X5, X6, X7

12.2.9 COMCMOS — MOVE OVERLAPPING BIT STRING

COMCMOS moves a specified source string from one loeation to another in central memory. The only bits
disturbed in the destination field are those extracted to aceept the source string. COMCMOS allows the
user to move strings where the destination field overlaps (lies partly or completely within) the source

field. If the move is not an overlap move, COMCMOS calls the faster common common deck COMCMNS to
do the move. For this reason, COMCMNS should always be called whenever COMCMOS is, MOS= is the
only entry point for COMCMOS.

Entry eonditions:

(B1) 1

(B2) Souree first bit (numbered left to right- 0, 1,..., 59)

(B4) Destination first bit (numbered left to right- 0, 1,..., 59)
(X0) Number of bits to move

(X2) Source first word address

(X4) Destination first word address

Exit conditions:

(B1) 1

(B2) Source next bit (numbered left to right- 0, 1,..., 59)

{B4) Destination next bit (numbered 1eft to right- 0, 1,..., 59)
(X2) Source next word address

(X4) Destination next word address

60492600 M 12-7

Registers used:

Al, A2, A3, A5, AB, AT

B2, B3, B4, B3, B

X0, X1, X2, X3, X4, X5, X6, X7
Calls:

MNS=

12.2.10 COMCMTM — MANAGED TABLE MACROS

COMCMTM contains four macros, ADDWRD, ALLOC, SEARCH, and TABLE, for generation, alloeation,
and proeessing of managed tables. COMCMTM is intended to be used with COMCMTP.

ADDWRD - ADD WORD TO TABLE
ADDWRD adds a word to a managed table. ADDWRD calls ADW and uses AD and X1.

Formaeat:

LOCATION OPERATION VARIABLE SUBFIELDS

ADDWRD table, reg

table Table number

reg Register name or expression for word to be added
ALLOC - ALLOCATE TABLE SPACE
ALLOC sllocates table space. ALLOC ealls ATS and uses AD and X1.

Format:

LOCATION QOPERATION VARIABLE SURFIELDS

ALLOC table, words

table Table number
words Word count (+ or -) to be added
SEARCH - SEARCH MANAGED TABLE
SEARCH searches for a specified entry. SEARCH calls EQS or MES and uses A0, B7, and X6,

Format:

LOCATION OFPERATION VARIABLE SUBFIELDS

SEARCH tname, entry, mask

tname Table name
entry Eniry to be searched for
mask Search mask in X0; if not present, defaults to all bits.

12-8 60452600

TABLE - GENERATED MANAGED TABLE
TABLE generates a managed table.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

TABLE tname, count, equiv

tname Table name

count Word count per entry (1 if not specified)

equiv Equivalent table name; allows certain tables to be used by different processors
After the table is generated:

F.tname is the name of the word eontaining the table FWA.

L.tneme is the name of the word containing the table length.

C.tname is the word count per entry.

12.2.11 COMCMTP — MANAGED TABLE PROCESSORS
COMCMTP contains the following routines for processing managed tables:
ADW Adds a word to the table.
AMU Returns the total memory used by the tables.
ATS Allocates table space.
EQS Searches table for equal entries.
MES Searches a table for equal entries using a mask.
MTD Moves the table down.
MTU Moves the table up.
Maeros for ealling these routines and for table generation are contained in COMCMTM.
The managed table processors allow the partitioning of eentral memory into variable regions called tables.

These tables are referenced by pointers that indieate the first word address of the table and the table

length. Memory is alloeated to each table as it is required; the user ean delete spaee from the tables.
Each table is allowed at least one word of expansion space to allow & dummy word between each table, thus
ensuring efficient search methods.

The caller of the table processors is expeeted to provide certain constants for use by the processors. Other
data is provided by COMCMTM.

Data provided by the caller:
MEML Lowest address of managed memory

TOV Address of the table overflow processor

60492600 H ' 12-9

Data provided by COMCMTM:
NTAB Number of managed tables
FTAB Start of table addresses
LTAB Start of table lengths
F.tnam Address pointer for table tnam
L.tnem Length pointer for table tnam

Date dynamically changeable:

TN Number of managed tables. Set to NTAB by COMCMTM. TN must be less than NTAB
during use.

TO Table overflow processor. Set to TOV by COMCMTM.

LM Low memory limit. Set to MEML by COMCMTM. If this value is increased, MTU should be

called to aliow room for change.

F.TEND High memory limit. F.TEND must be initialized by the user. If this value is decreased,
MTD should be called to allow room for ehange.

TOVT TOYV threshold. I the word is defined, it should contain the threshold for ealling TOV; ATS
calls TOV when the tables must be moved and less than TOVT free words remain., If TOVT is
not defined, an effective value of zero is used.

ADW - ADD WORD TO TABLE
ADW adds a word to & managed table.
Entry conditions:

(AD) Table number
(X1) Word to be added

Fxit conditions:
(AB) Address of added word
(X1) Added word
(x2) FWA of table
(X3) Length of table
(X6) Added word
Registers used:

Al, A2, A3, A4, AB, AT
X1, X2, X3, X4, X6, X7

Calls:

ATS
AMU - ACCUMULATE MEMORY USED

AMU returns the emount of memory used by the manapged tables or the current length, whichever is the
largest. The variable MU is set to this value.

12-10 60492600 H

Exit eonditions:
MU MAX(memory used, current assigned length)
Registers used:
Al, A2, A6
B2
X1, X2, X3, X6
ATS - ALLOCATE TABLE SPACE
ATS allocates table space. The table length can be inereased 6:‘ decreased as specified.
Entry conditions:

(A0) Table number
(X1) Change (*+ or -) to the table size

Exit econditicns:
{X1) Change made to the table size
{x2) FWA of table
(X3) New length of table
X7 Less than 0 if tables moved
Registers used if tables are not moved.

A2, A3, A4, A6
X2, X3, X4, X6, X7

Registers used if tables are moved:
Al, A2, A3, A4, A6, AT
B2, B3, B4, B5, B6, B7
X0, X1, X2, X3, X4, X5, X6, X7

Registers restored:

B2, B3, B4, BS, B6, B7 (except -0 restored as +0)
X0, X1, X5

Calls:
AMU, MVE=, TOV
TOV, the user provided table overflow processor, is deseribed below,

Entry eonditions:

(B1) 1
{BS5) Complement of number of words required
(B6) Return address to continue processing

The location TOV must contain executable code, TOV.is entered via a8 JP instruction.

Exit from TOV via a JP B6 instruction.

60492600 H 12-11

Exit conditions:
Only Bl must be preserved.
A pointer word must be ineremented by the number of words newly available. If TN has not been
altered during execution, the address of the pointer word is F.TEND. If TN has changed, the address
of the pointer word is FTAB-1 plus the contents of TN,
EQS - EQUALITY SEARCH TABLE
EQS searches for a specified entry.
Entry conditions:
(AD) Table number
(BT) Word count per entry
(X6) Entry for search

Exit eonditions:

(X2) = 0 if entry not found
(X2} = entry, if found
(A2} = address of entry found

Registers used:

Al, A2, A6
X1, X2, X3, X7

MES - MASKED EQUALITY SEARCH TABLE
MES searches for a specified entry using & mask,
Entry conditions:

(AD) Table number

(B7) Word eount per entry

(X0) Mask

(X8) Entry for search
Exit eonditions:

(X2)

(X2)
(A2)

0 if entry not found
entry, if found
address of entry found

inoon

Registers used:

Al, A2, A6
X1, X2, X3, X4, X7

MTD - MOVE TABLES DOWN
MTD moves the tables down (away from RA) to eliminate unused memory.
Exit eonditions:

(B2) Number of tables

1212 60492600 H

Registers used:

Al, A2, A3, AT

B2, B3

X0, X1, X2, X3, X4, X7
Calls:
MVE=
MTU - MOVE TABLES UP
MTU moves the tables up (toward RA} to eliminate unused memory.
Registers used:

Al, A2, AT

B3

X0, X1, X2, X3, X7
Calls:

MVE=

12.2.12 COMCMVE — MOVE BLOCK OF DATA

COMCMVE moves a block of data to a specified location. COMCMVE moves the data from the source
address through the source address plus the word count minus one to the destination address through the
destination address plus the word count minus one. The move can be in either direction. MVE= is the only
entry point for COMCMVE.

Entry conditions:

(B1) 1

(X1) Word count

(X2) Source address

(xX3) Destination address
Registers used:

A2, A4, AG, AT
B7
X1, X2, X3, X4, X6, X7

12.2.13 COMCRDC — READ CODED LINE, C FORMAT

Before a data transfer routine is ealled, a CIO read funetion maero (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is ealled,

‘When an EOR or EOF is sensed while performing the data transfer, the CIO read funetion maero must be

called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description
of the CIO maeros.

COMCRDC reads a coded line terminated by a zero byte from a CIO buffer to a working buffer. RDC= is
the only entry point for COMCRDC.

60492600 H 12-13

Entry conditions:

(B8) FWA of working buffer
(B7) Word count of working buffer
{(x2) Address of FET for file

H B7 is less than zero, then the complement of BY7 is the word count of the working buffer; COMCRDC
will not read and discard words until an end-of-line for lines longer than the working buffer.

Exit conditions:

(B1) 1
{B6) Address of last word transferred to working buffer plus one
(X1) Status of transfer:
0 Transfer completed

-1 EOF detected on file

-2 EOI deteeted on file

B6 EOR detected on file before transfer completed
(xX2) Address of FET for file
(X4) Contents of last data word transferred before EOL guaranteed
(XN Level number of EOR

Registers used:
Al, A2, A3, A4, AG, AT
B1, B2, B3, B4, B5, B6, BY
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=

12.2.14 COMCRDH — READ CODED LINE, H FORMAT

Before a data transfer routine is called, a CIO reed function macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is ealled.

When en EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a deseription
of the CIO maecros.

COMCRDH reads a coded line terminated by a zero byte from a CIO buffer to a working buffer with
trailing space fill. RDH= is the only entry point for COMCRDH.

Entry conditions:
(B6) FWA of working buffer
(B7) Word count of working buffer
(x2) Address of FET for file

Exit conditions:

(B1) 1
(B6} Address of last word transferred to working buffer plus one

12-14 . 60492600 H

(X1) Status of transfer:
0 Transfer completed
-1 EOF detected on file

-2 EOI detected on file
B6 EOR detected on file before transfer completed

(X2) Address of FET for file
{xn Level number of EOR

Registers used:
Al, A2, A3, A4, A6
B1, B2, B3, B4, B5, B6, BT
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=
12.2.15 COMCRDO — READ ONE WORD

Before a data transfer routine is ealled, a CIO read function macro {(READ, READW, and so forth} must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO funetion is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is ealled.

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be
called again to eontinue reading the file, Refer to the NOS or NOS/BE reference manual for a deseription

of the CIO macros.

COMCRDO reads one word from a CIO buffer into X6, RDO= is the only entry point for COMCRDO.
Entry conditions:

(A1) Address of IN pointer
(X1) N

Exit conditions:

. (B1) 1

(x1) Status of transfer:
0 Transfer compieted
1 EOR detected on file
-1 EOF detected on file
-2 EQI detected on file

(X2) Address of FET for file

(Xs6) Word read

Registers used:
Al, A2, A3, A4, AB, AT
B1
X1, X2, X3, X4, X8, X7
Calls:

ClOo=

60492600 H 12-15

12.2.16 COMCRDS — READ CODED LINE TO STRING BUFFER

Before a data transfer routine is ealled, a CIO read funetion maero (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is ealled.

When an EOR or ECF is sensed while performing the data transfer, the CIO read function macro must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a deseription
of the CIO macros,

COMCRDS reads a coded line from & CIO buffer to a working buffer. Words in the eircular buffer are
unpaeked and stored one character per word in the working buffer. This process is continued until the
end-of-line byte is detected, If the coded line terminates before the working buffer is filled, the working
buffer is padded with spaces; the buffer is not padded if the ecomplement of the word count of the buffer is
used. If the coded line exceeds the size of the working buffer, the excess characters are ignored, RDS= is
the only entry point for COMCRDS.

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
{(X2) Address of FET for file

If B7 is less than 0, B7 is the complement of the buffer length and the string buffer will not be space
filled.

Exit conditions:

{B1) 1
(B&) Address of the last character from the coded line in the working buffer plus one
(X1) Status of transfer:

0 Transfer completed

-1 EOF detected on file

-2 EOQI detected on file

B6 EOR detected on file before transfer completed

(X2) Address of FET for file
(X7) Level number of EOR
Registers used:
AT, A2, A3, A4, A6, AT
B1, B2, B3, B4, B5, Bf, B7
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=

12.2.17 COMCRDW — READ WORDS TO WORKING BUFFER

Before a data transfer routine is called, & CIO read funetion macro (READ, READW, and so forth) must be
used to establish the type of read and initialize the type of transfer required.

If eny other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to
reestablish the type of read/transfer before another data transfer routine is ealled.

12-16 60492600 H

When an EOR or EOF is sensed while performing the data transfer, the CIO read funetion maero must be
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a deseription
of the CIO macros. ‘

COMCRDW reeds a specified number of words from a CIO buffer to a working buffer. COMCRDW &also
eontains the load CIO buffer and read exit routines required by COMCRDC, COMCRDH, and COMCRDS.
RDW=, LCB=, and RDX= are the entry points for COMCRDW. The RDX$ assembly option controls
read-ahead. The programmer can prevent read-sheed by defining the symbol RDX$§.

Entry conditions:
(B&) FWA of working buffer
(B7) Word count of working buffer
(xX2) Address of FET for file

Exit eonditions:

(B1) 1

(B8) Address of last word transferred to the working buffer plus one
(B7) Word count remaining to be transferred

(x1) Status of transfer:

0 Transfer completed
-1 EOF detected on file
-2 EOI detected on file
-3 CIO= was called to read more data and returned an error status
B6 EOR was detected on file before transfer was compieted
(x2) Address of FET for file

X7 Error status if X1 is -3, otherwise level number of EOR

Registers used:
Al, A2, A3, A4, AB, AT
B1, B2, B3, B4, BS, B6, BY
X1, X2, X3, X4, X6, X7
Calls:

CIO=

12.2,18 COMCRSR — RESTORE ALL REGISTERS
COMCRSR restores the B, A, and X registers from a specified register save area. The format of the
registers in the save area is B0, B1,..., B7, A0, Al,..., AT, X0, X1,..., X7. Each register occupies a full
word with the B and A register values in bits 17 through 0. RSR=is the only entry point for COMCRSR.
Entry eonditions:

(X1) Address of register save area
Exit conditions:

All registers are set to the content of the register save area.
Registers used:

AD, Al, A2, A3, A4, A5, A6, AT

B1, B2, B3, B4, B5, B6, B7
X0, X1, X2,X3, X4, X5, X6, X7

60492600 H 12-17

12.2.19 COMCSFN — SPACE FILL NAME
COMCSFN converts trailing 00 characters in a word to blanks. SFN= is the only entry point for COMCSFN,

Entry eonditions:

(X1) Name left justified, zero fill
{B1) 1

Exit conditions:

(X6) Name space filled
(X7) Final character mask

Registers used:
A3
B2
- X3, X6, X7
12.2.20 COMCSRT — SET RECORD TYPE
COMCSRT attempts to identify the format of a record, given the initial part of that record (64 words are

usually sufficient) in a working buffer. The type codes returned are listed in table 12-2. SRT= is the only
entry point for COMCSRT.

Entry conditions:
(B1} 1
(X1) LWA+1 of block
(X2) FWA of eurrent record

Exit eonditions:

(X6) 42/0Lr>name, 12/0, 6/type number
X7 Record name in L format

If type number and record name are zero, the record is zero length.
Registers used:

Al, A2, A3, A7

B2, B3

X0, X1, X2, X3, X4, X8, X7
12.2.21 COMCSST — SORT TABLE USING SHELL SORT

COMCSST sorts a table of one word entries into ascending order using a shell sort. All of the entries
should be of the same sign. SST= is the only entry point for COMCSST.

Entry conditions:
(B1) 1
(B7) Address of table to be sorted
{X1) Number of elemerits in the table

Exit conditions:

The table is sorted.

12-18 60492600 H

TABLE 12-2. TYPE CODES RETURNED BY COMCSRT
Type Number Format Determined by
TEXT 0 Text record No 7700g table and first word with
all zereos in bits 0 through 17
6PP 1 6000-series peripheral processor 7700g table with three-character
overlay name in header word
OVCAP 2 Overlay Capsule 7700g table followed by 6000g
table with bit 18=1
REL 3 Relocatable subprogram 34005 table
ovL 4 Central processer overlay 5000g table, 3300g table with bit
17=0, or 5400g table with non-(0,0)
overlays
ULIB 5 NOS user library 76005 table
OPL i Modify program library deck 7001g table with 0 word count
CPLC 7 Modify program library common 70025 table with 0 word count
deck
OPLD 8 Modify program library directory 7000g table with 0 word count
ABS 9 Multiple entry point overlay 5100g table, 5300g table with bit
17=1, or 5400g table with (0,0)
overlays
7PP 10 7000-series peripheral processor 5200g table
overlay
UPLX 11 Update sequential program No 7700g table and characters CHECK
library with X master control in bits 30 through 59 (econtrol
character character obtained from bits 0
through 5)
UCF 12 Update compressed compile file 7700g table with 0 word count
ACF 13 Modify compressed compile file Bits 0 through 17 in second word of
7700g table are non-zero
CAP 14 Fast dynamic load capsule 77005 table followed by 6000g
table
DATA 15 Arbitrary data Uprecognizable by criteria defined
in these tables
PROC 16 Procedure record PROC followed by delimiter
17 CDC reserved
SDR 18 Special deadstart record NOS/BE 1 deadstart tape positionm
UPLR 19 Update random program library 7700g table followed by 6000g table
followed by COMDECE, YANK, or DECK
60492600 J 12-19

Registers used:

Al, A2, A6, AT
B2, B3, B4, BS
X1, X2, X3, X4, X6, X7

12.2.22 COMCSTF — SET TERMINAL FILE

COMCSTF detects if a file is assigned to an interactive terminal. STF= is the only entry point for

COMCSTF.
Entry conditions:

(B1) 1
(X2) Address of FET

The FET must be greater than five words in length.

Exit conditions:

{(X2) Address of FET
{X6) 0 if file is assigned to a terminal

‘Registers used:

Al, A4, A6
X1, X3, X4, X6

Calis:
Cl0=

12.2.23 COMCSVR — SAVE ALL REGISTERS

COMCSVR saves the B, A, and X registers in a specified register save area. The registers are saved in the

following order:

B0, B1, ..., BY, AD, Al,..., A7, X0, X1,..., X7

Each register oceupies a full word with the B and A register values in bits 17 through 0. B and A registers

are sign extended. SVR= is the only entry point for COMCSVR.

Entry conditions:

Bits 17 through 0 of the word from which SVR= was ealled contain the address of the register save

area.

Exit conditions:

{save thru save+T7) B registers
(save+8 thru save+15) A registers
(save+16 thru save+23) X registers

Registers used:
AQ, Al, A2, A3, A4, A5, A6, AT

B1, B2, B3, B4, BS, B6, BY
X0, X1, X2, X3, X4, X5, X6, X7

12-20

60492600 H

12.2,.24 COMCSYS — PROCESS SYSTEM REQUEST

COMCSYS issues a system monitor request through RA+1, 8YS=, RCL=, WNB=, and M3G= are the entry
points for COMCSYS.

SYS= - PROCESS SYSTEM REQUEST

SYS= waits for RA+1 to elear before issuing the desired request. Central exchange jump hardware is used
if it is available. If the hardware is not available and the auto-recall bit is set, SYS= waits for the monitor
to process the call before returning.

Entry conditions:
{X6) System request
Exit conditions:

Request aceepted by monitor

Registers used:
Al, A6
X6 (Contents restored upon exit)

RCL= - PLACE PROGRAM ON RECALL
RCL= issues a single system request for periodic recall. If RA+1 is busy, no request is issued.
Exit conditions:
Request processed.
Registers used:

Al
X1, X8

WNB= - WAIT NOT BUSY
WNB= waits for a specified status word, bit 0, to be set. If the word is initially 0, WNB= returns.
Entry conditions:
{X2) Address of status word
Exit conditions:
Returns when bit 0 of status word is set.
Registers used:

Al
X1, X6

MSG= - SEND MESSAGE
M3G= formats and issues a system request to send a message (80 characters or less) to the job dayfile. The

message appears in the dayfile as two lines (if necessary) of 40 characters each. Messages exceeding
80 characters are truncated. :

60492600 H 12-21

Entry conditions:

(X1) Address of first word of data (date must be packed in sequential loeations, and should not
exceed 80 characters)
(X6} Message options:
bit 16 - Auto reeall if on
bits 11 through 0 -~ Message option eode {(see MESSAGE maero in operating system
reference manual)
Exit conditions:
Returns when operation is complete,
Registers used:

Al, A6
X1, X6

12.2.25 COMCUPC — UNPACK CONTROL CARD

COMCUPC unpacks a control statement into the keyword and individual psrameters. The following
eonditions apply to the use of COMCUPC:

If BY is negative on entry, a blank after the keyword is considered to be a separator; otherwise, blanks
are ignored.

The characters) and . sre considered as the termination of the control statement.
Cheracters with display code values 0 or 60g through 77g are illegal before the terminator.
The parameter must contain 7 or fewer characters,

The parameters are stored left-justified with zero fill.

The separator character is placed in the lower 18 bits of the parameter unless it is a *,* in which
case the lower 18 bits are zero.

Two successive separators or a separator followed by a terminator results in a parameter of all zeros.
UPC= is the only entry point for COMCUPC,

Entry conditions:

{A5) Address of first word of control statement

(B1) 1

(BT) First word address of bhuffer containing parameter information
(X5) First word of control statement

if B7 is negative, BT contains the complement of the first word address of the parameter buffer.
Exit conditions:

(B6) Parameter count
(X6) 0 if no error during unpacking

Registers used:
Al, A2, A5, AB, A7

B2, B3, B4, BS, B6
X0, X1, X2, X3, X4, X5, X6, X7

12-22 60492600 H

12.2.26 COMCWOQD — CONVERT WORD TO OCTAL DISPLAY CODE
COMCWOD converts a word into octsl display eode. WOD= is the only entry point for COMCWOD.
Entry eonditions:
{X1) Word te be converted
Exit conditions:

{B1) 1
(X6, XT) Conversion

Registers used:

A2, A3, A4, A5
X0, X1, X2, X3, X4, X5, X6, X7

12.2.27 COMCWTC — WRITE CODED LINE, C FORMAT

COMCWTC writes a zero byte delimited line from a working buffer to a CIO buffer, If the CIO buffer
beeomes sufficiently full to require writing or if the deviee type indicates a NOS/BE terminal, COMCWTC
pecforms a WRITE funetion unless the symbol WRIF$ is defined by the user. In this case, the CIO funetion |
that is in the FET is reissued. WTC= is the only entry point for COMCWTC.

When the data transfer is completed, a call to the WRITER or WRITEF CIO funetion is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:

(B6) FWA of working buffer
(X2) Address of FET for file

Exit conditions:

(B1) 1
{(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, AB, AT
B1, B2, B3, B4, B5, B6
X1, X2, X3, X4, X6, X7
Calls:

DCB=, WTX=

12.2.28 COMCWTH — WRITE CODED LINE, H FORMAT

COMCWTH writes & eoded line in H format from a working buffer to a CIO buffer. Trailing spaces are
deleted. If the buffer becomes sufficiently full to require writing, or the device type indicates a NOS/BE
terminal, COMCWTH performs a WRITE funection unless the user defines the symbol WRIF$. In this case, |
the CIO funetion that is in the FET is reissued. If the line to be written terminates with 6 bits of zero, a
.word eontaining a blank byte is appended to preserve the 00 character as a colon. If the line terminates on
an end-of-line, it is written as is. WTH= is the only entry point for COMCWTH.

60492600 M 12-23

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain

the final contents of (to flush) the working buffer.

Entry conditions:

(B6) FWA of working buffer

(B7) Word count of working buffer

(X2) Address of FET for file

If B7 is 0, no trensfer is performed.

Exit eonditions:

{(B1) 1
(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, AG, AT
Bi, B2, B3, B4, BS, B6, BT
X1, X2, X3, X4, X6, X7
Calls:

© DCB=, WTX=

12.2.29 COMCWTO — WRITE ONE WORD

COMCWTO writes one word to a CIO buffer from X6. If the buffer becomes suffieiently full fo require
writing, COMCWTO performs a WRITE function unless the symbol WRIF$ is defined by the user. In this
case, the CIO function that is in the FET is reissued. WTO= is the only entry point for COMCWTO.

When the data transfer is completed, a eall to the WRITER or WRITEF CIO function is necessary to obtain

the final contents of (to flush) the working buffer.

Entry conditions:
(A1) Address of IN pointer

(X1) IN
(X86) Word to write

Exit conditions:

(B1} 1
(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, Ad, AT

Bl
X1, X2, X3, X4, X6, X7

12-24

60492600 M

12.2.30 COMCWTS — WRITE CODED LINE FROM STRING BUFFER

COMCWTS writes a coded line from a working buffer to a CIO buffer with trailing space suppression.
Characters in the working bufier are packed and stored in the cireular buffer. If the buffer becomes
suffieiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTS performs

a WRITE function unless the symbol WRIF$ is defined by the user. In this ease, the CIO funetion that is in |
the FET is reissued. WTS= is the only entry point for COMCWTS.

When the data transfer is completed, a cgll to the WRITER or WRITEF CIO function is necessary to obtain
the finel eontents of (to flush) the working buffer.

Entry conditions:
(B6) FWA of working buffer
{(B7) Word count of working buffer
(X2) Address of FET for file
If B7 is 0, no transfer is performed.
Exit eonditions:
{B1) 1

{B6) Word count of data written
(X2) Address of FET for file

Registers used:
Al, A2, A3, A4, AB, AT
B1, B2, B3, B4, B5, B6, BT
X1, X2, X3, X4, X6, X7
Calls:

DCB=, WTX=

12.2.31 COMCWTW — WRITE WORDS FROM WORKING BUFFER

COMCWTW writes data from a working buffer to a CIO buffer. If the buffer becomes sufficiently full to
require writing or if the deviee type indicates a NOS/BE terminal, COMCWTW performs 8 WRITE function
unless the user defines the symbol WRIF$, The WTX$ assembly option eontrols write-behind., The
programmier ean prevent write-behind by defining the symbol W1'X$. In this ease, the CIO function that is
in the FET is reissued. WI'W=, DCB=, and WTX= are the entry points for COMCWTW.

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain
the final contents of (to flush) the working buffer.

Entry conditions:
(B8) FWA worldng buffer
(B7) Word count of working buffer
{X2) Address of FET for {ile

If B7 is 0, no transfer is performed.

60492600 M 12-25

Exit conditions:

(B1) 1 :
(B6) Address of next word to be transferred from working buffer
(87 Status of transfer:
0 Transfer completed
other Remaining word count if CIO= was called to write data and returned an error
status

(X2) Address of FET for file
(X7) Error status if B7is 0

Registers used:
Al, A2, A3, A4, As, AT
B1, B2, B3, B4, B5, Bg, B7
X1, X2, X3, X4, X6, X7
Calis:

CIO=

12.2.32 COMCXJR — RESTORE ALL F{EG'ISTEF{S WITH A SYSTEM XJR CALL
COMCXJR restores all registers from a register save area with a system XJR ecall. The format of the
registers in the save area is B0, B1,..., B7, A0, Al,..., A7, X0, X1,..., X7. Each register cccupies a full
word with the B and A register values in bits 17-0, XJR= is the only entry point for COMCXJR.
Entry conditions:

{x1) Address of the register save area.
Exit conditions:

All registers are set to the contents of the register save area.
Registers used:

AD, A1, A2, A3, A4, A5, AS, AT

B0, B1, B2, B3, B4, B5, B6, B7

X0, X1, X2, X3, X4, X5, X6, X7
12.2.33 COMCZTB — CONVERT ALL 00 CHARACTERS TO BLANKS
COMCZTB converts all 00 charaeters in a word to blanks. ZTB= is the only entry point for COMCZTB.

Entry eonditions:

(B1) 1
(X1) Word to be eonverted

Exit conditions:

(X6) Converted word
(X7 Final character mask

Registers used:

A3
X3, X6, X7

12-26 60492600 H

12.3 MACROS THAT CALL THE COMMON COMMON DECKS

Entry points in the common common decks can be called by using system maeros, Table 12-3 shows whieh
macros eall entry points in the common common deeks. All of the maeros are supported under NOS and

NOS/BE. Only the MO VE macro is supported under SCOPE 2. All macros applicable to a given operating
system exist in the system text CPUTEXT. Each macro is deseribed in detail in the following paragraphs.

TABLE 12-3. MACROS THAT CALL COMMON COMMON DECKS
Entry Points Description
Macro Called P

MESSAGE MSG= Displays a message on the system
console and enters it in a dayfile.

MOVE MVE= Moves a block of dala from one
address to another.

READC RDC= Reads one coded line from the input/output
buffer to the working buffer.

READH RDH= Reads one coded line with space fill from
the input/output buffer to the working
buffer.

READO RDO= Reads one word from the input/output
buffer to X6.

READS RDS= Reads a line image to a character
buffer.

READW RDW= Fills the working buffer from an
input/output buffer.

RECALL RCL= Relinguishes the CPU until a

WNB= function is completed or the CPU
recall time has elapsed.

SYSTEM 5YS8= Requests the system to process
any three-character request.

WRITEC WTIC= Writes a coded line image from the working
buffer to the input/output buffer.

WRITEH WTH= Writes a coded line, deleting all
trailing spaces, from the working
buffer to the input/output buffer.

WRITEO WTO= Writes one word from X6 to the
input/output buffer.

WRITES WTS= Writes a line image from the
character buffer.

WRITEW WIW= Writes data from the working
buffer to the input/output buffer.

60492600 H

12-27

12.3.1 MESSAGE

MESSAGE displays a message on the system console display and enters it into a dayfile. If the job is of
system origin, the message can be flashed on the B display by ineluding a dollar sign as the first character
of the message. MESSAGE requires the common common deck COMCSYS.

The meximum length that a message can be is 80 characters; up to 40 characters per line are displayed.
The message ends with either the first word containing 12 bits of zeros in any byte or at the eightieth
character. The user must pack the display code message in sequential locations before ealling MESSAGE.
The format of the RA+1 eall for this maero is:

29 40 35 23 17 0
RA#L MSG o | x| o | addr]

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

MESSAGE addr,x, T

addr Beginning address of the message. If the upper 12 bits of the location speecified by this
address are zero, then the next 18 bits (47 thru 30) of this loeation are assumed to contain
the beginning address of the message.

X Message routing option:

0 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

1 Messsge is displayed at line 1 of the control point.

2 Message is displayed at line 2 of the control point.

d Message is placed in the user dayfile and displayed at line 1 of the control point.

4 Message is placed in the error log dayfile if the job is a special system job (that is, has
an SS8J=entry point) or is of system origin; otherwise, the message is placed in the user

dayfile.

5 Message is placed in the account dayfile if the job is a special system job or is of
system origin; otherwise, the message is placed in the user dayfile.

6 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the eontrol point.

7 Message is placed in the user dayfile and displayed at line 1 of the eontrol point.

If x is not specified or is an illegal value, x=0 is assumed. If x is not defined, x=1 is
assumed. If x is the character string LOCAL, x=3 is used.

r -If r is speeified, control is not returned until the cperation is compiete.

12-28 60492600 H

The control point message areas (lines 1 and 2) provide the user with the ability to display
coneurrently messages that enter the deyfile and those that require operator action. Line 2 is
normally used to display information about the eurrent status of the executing program.

Only messages that do not refer to the job, such as the control statements processed and compilers
used, should be placed in the system dayfile (x=0). All messages that refer to the job, such as the
path taken by the programs and the number of records copied, should be pleced only in the user
dayfile (x=3). All messages placed in the user dayfile (x=0 and x=6) are counted by the system. If
the number of messages issued by the job exceeds the limit for whieh the user is validated, the error
message MESSAGE LIMIT; is issued to the user dayfile and the job is aborted.

12.3.2 MOVE

MOVE moves a block of data from one address to another. MO VE requires the common common deck
COMCMVE for sbsolute assemblies.

Maecro format:

LOCATION OPERATION VARIABLE SUBFIELDS

MOVE count, addr1, addr2

count Number of words in the block to be moved
addrl Address of the first word of the bloek to be moved
addr2 Address of the first word of the destination

MOVE allows overlap in data moves (addr2 ean be less than addrl plus count).

12.3.3 READC

READC reads one eoded line from the input/output buffer to the working buffer. Data is transferred until
the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of words are
transferred., READC requires the common common deck COMCRDC,

Maecro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READC addr, buf,n

addr FET address
buf Working buffer address

n Working buffer word count

60492600 H ‘ 12-29

12.3.4 READH

READI reads a coded line with space fill from the input/output buffer to the working buffer. Data is

transferred until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of
words are transferred. READH requires the commeon common deck COMCRDH,

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READH addr,buf,n

addr FET address

buf Working buffer address

n Working buffer word count
12.3.5 READO
READO reads one word from the input/output buffer to X6. READO requires the common eommon deck
COMCRDO.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READO addr

addr FET address

12.3.6 READS

READS reads a line image to a character buffer. The words are unpacked and stored in the working buffer
right justified, one character per word, until the end-of-byte (0000) is detected. If the coded line
terminates before the specified number of characters are stored, the working buffer is blank filled.
READS requires the common common deck COMCRDS,

Maero format:

LOCATION OPERATION VARIABLE SUBFIELDS

READS addr,buf,n

addr FET address
buf Working buffer address

n Working buffer word count

12-30 60492600 H

12.3.7 READW

READW filis the working buffer from an input/output eireular buffer. READW reads ahead in the
input/output buffer. This could cause the program to abort if the last word address of the input/output
buffer is within four words of the FL. If the word count is greater than the length of the working buffer,
READW writes beyond the end of the worlcing buffer. READW requires the common ecommon deck
COMCRDW.

Maecro format:

LOCATION OFERATION VARIABLE SUBFIELDS

READW adde,buf, n

addr FET address
buf Working buffer address

n Working buffer word count

12.3.8 RECALL

RECALL enables the user to relinquish the CPU until a funetion is completed or the CPU recall time has
elapsed (delay time depends on the operating system and the site), If the stat parameter is included in the
cell, control is not returned to the program until bit 0 of the word specified by stat is set. If stat is not
included in the meacro cell, the program relinquishes the CPU only until the next pass through the reeall
icop. RECALL requires the common common deck COMCSYS.

The format of the RA+1 call for this maero is:

59 40 17 0
RA+1 RCL iy 0 stat

Maero format:

LOCATION OPERATION VARIABLE SUBFIELDS

RECALL stat

stat If this parameter is present, control is returned to the program when bit 0 of the word specified
by the address stat is set.

60492600 H 12-31

12.3.9 SYSTEM

SYSTEM processes a three-letter request, The request can be either the functions that MTR performs or a
PP program. A PP program can be ealled from a CPU program if the first eharacter of the name is
alphabetie. SYSTEM requires the eommon common deck COMCSYS.

The format of the RA+1 eall for this macro is;

59 40 35 17

RA+1 Al p2 pl]

Maero format:

[==]

LOCATION QFERATION VARIABLE SUBFIELDS

SYSTEM req, r,pl, p2

regq Three-character system request

r If specified, control is returned only after the request is completed

pl Bits 17 through 0 of the request

p2 Bits 35 through 18 of the request

12.3.10 WRITEC

WRITEC writes a coded line image from the working buffer to the input/output buffer. Data is transferred

until the end of the line (0000 in bits 11 through 0) is sensed. WRITEC requires the common eommon deck
COMCWTC.

Maecro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEC addr,buf

addr FET address

buf Working buffer address

12-32 60492600 H

12.3.11 WRITEH

WRITEH writes a coded line, deleting all trailing spaces, from the working buffer to the input/output
buffer. WRITEH requires the common common deck COMCWTH.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEH addr,buf, n

addr FET address
buf Working buffer address

n Working buffer word count

12.3.12 WRITEO

WRITEO writes one word from X6 to the input/output buffer. WRITEO requires the common eommon deck
COMCWTO.,

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEO addr

addr FET address

12.3.13 WRITES

WRITES writes a line image from the working buffer. Characters are packed ten characters per word.

glgliv}igﬁngaces are deleted before the characters are packed. WRITES reguires the commen common deek

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITES addr,buf,n

addr FET address
buf Working buffer address

n Working buffer word count

60492600 H 12-33

12.3.14 WRITEW

WRITEW writes data from the working buffer to the input/output cireular buffer. WRITEW writes ahead in
the input/output buffer. This eould esuse the program to abort if the last word address of the input/output
buffer is within four words of the FL. If the word count is greater than the length of the working buffer,

WRITEW reads heyond the end of the working buffer, WRITEW requires the common eommon deck
COMCWTW.

Maero format:

LOCATION OPERATION VARIABLE SUBFIERDS

WRITEW addr, buf, n

addr FET address
buf Working buffer address

n Working buffer word count

12-34 60492600 H

CHARACTER SETS A

1.

6.

7.

9.

10.

11.

i2.

13.

NOTES

The terms upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case.

When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

All ASCOH and EBCDIC codes not listed are translated to display code 55 (space).

Where two display code graphics are shown for = single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP CSET
set to C64.1), and the rightmost graphic corresponds to the CDC G4-character
ASCII subset (system assembled with IP CSET set to C64.2).

In a 63-character set system, the display code for the : graphic is 63. The %
character does not exist, and translations from ASCI/ERCDIC % or ENQ yield
blank (558). The display code value 00 is undefined in 63-character set systems,

Twelve or more zero bits at the end of a 60-hit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading,

This cede iz changed to 12 when written on a 7-track magnetic tape in even
parity {(coded) mode.

11-0 and 11-8-2 are equivalent on input. The character will be punched as
11-0 on output.

12-0 and 12-8-2 are equivalent on input. The character will be punched as
12-0 on output.

12-8-7 and 11-0 are equivalent on input, The character will be punched as
12-8-7 on oufput.

12-8-4 and 12-0 are equivalent on input. The character will be punched as
12-8-4 on output.

CODE pseudo selects 6-bit octal code as follows:

ASCIT

Display Code (default)
External BCD
Internal BCD

il

60482600 A “A-1

CODE E

CODiS D (default) CODE lCODE A
Display Hollerith BCD ASCH EBCDIC
Code Punch Upper Case Lower Case Upper Lower
(026} 6-Dit .
Octal | Char. Ext. | Int, | Ocinl | Hex. | Char, | Punch | Hex. | Char. Punch Hex. | Char. [Nex, | Char.
3G (029)

00 Q s2 (0@ 2] 32 | aa| - 82 | 1A | SUB 9-8-7 TA | E sUB
1)} A 12-1 13 21 41 41 A 12-1 61 a 12-0~-1 cl A a1 a
02 B i2-2 62 22 42 42 B 12-2 62 b 12~0-2 cz B B2 b
03 C 12-3 &3 23 43 43 c 12-3 63 c 12-0-3 C3 [E3 ;e
04 D 12-4 64 24 44 44 D 12-4 64 d 12~0-4 C4 D B4 o
05 E 12-5 65 25 45 45 E 12-5 65 e 12-0~5 C5 E 85 I e
06 F 12-6 66 26 46 46 F 12-6 GG f 12-0-6 Ccs F 86 {
07 G 12-1 &7 27 19 47 G 12~7 67 4 12-0-7 c7 G 87 g
10 H 12-8 70 ao 50 48 H 12-§ GB h 12-0-8 ca H 8e h
11 1 12-9 71 31 61 49 1 12-9 69 i 12-0~9 ca I 89 i
12 J 11-1 41 41 b2 4A J 11~1 GA] 12-11~1 DL - J 91 j
13 K 11~2 42 42 53 4B K 11-2 6B k 12-11-2 D2 K 92 k
14 L 11-3 ‘iS 43 54 4C L 13-3 6C 1 12-11-3 D3 | L a3 1
15 M 11-4 44 44 55 4D M 11-4 6D m 12-11-4 o4 M 84 m
16 N 11-56 45 45 &6 4B N 11-5 6E n 12-11-5 s N 95 n
17 0] 11-6 46 46 87 4F o) 11-6 6F o . 12-11-6 D6 [a] 96 [}
20 P 11-7 47 47 a0 50 P 11~7 70 p 12~11-7 D7 P a7 p
21 (] 11-8 50 60 61 61 Q 11-8 71 q 12-11-8 D8 Q 88 q
22 R 11-9 51 51 62 b2 R 11-9 72 r 12-11-8 Do R 98 r
23 8 0-2 22 62 63 83 8 0=-2 3 8 11-6-2 E2 8 A2 8
24 T 0-3 23 63 64 64 T 0-3 74 k 11-0-3 E3 T Al t
256 u 0-4 24 64 65 55 U 0-4 15 u 11-0-4 Ed U Ad u
26 v 0-5 25 66 66 56 v 0-5 76 v 11-0-5 E5 v A5 v
27 w o-8 26 66 87 a7 w 0-6 7 w 11-0-6 E& w A6 w
a0 X -7 27 67 | 70 58 X 0-7 78 x 11-0-7 E7 X AT %
a1 Y 0-8 a0 70 71 59 Y -8 79 ¥ 11~0-8 EB Y AB Yy
32 A 0-8 31 T 72 GA z 0-9 TA z 11-0-8 ES Z AB 2
ik 0 [12 0o 20 30 0 ¢ 10 DLE |13-11-9-8-1 Fo 0 10 DLE
34 1 1 01 01 21 a1 1 1 11 DCl 11-8-1 F1 1 11 DC1
35 2 2 0z 02 22 32 2 2 12 Dec2 11-9-2 F2 2 12 nc2
kL] i 3 03 03 23 3 3 3 13 DCa 11-9-3 F3 3 13 T™
a7 4 4 04 04 24 34 4 4 14 DC4 - 11-9-4 F4 4 3C | bC4

60492600 A

CODE E

CODE D (default) CODE I ono
.
Displny Hellerith BCD ASCH EBCDIC
Code Punch Upper Case Lower Case Upper Lower
(026} 6-Bit ‘
Octal | Char. Ext. | Int. | Octpl | Hex. | Char. Punch |Hex. [Char. Punch | Hex. | Char.| Hex,| Char.
a3 (029)
40 5 5 05 05 25 35 5 5 5 NAK 9-§-5 F5 5 3D NAK
41 6 6 06 06 26 a6 6 6 16 SYN 9-2 F8 & 3z S5YN
42 7 7 o7 o7 27 kX T 7 17 ETB 0-9-6 F? ki 26 ETB
43 B 8 10 10 30 38 a B 18 CAN 11-9-8 r8 8 18 CAN
44 9 9 11 11 31 39 9 9 19 EM 11-9-8-1 | F9 9 19 EM
45 + 12 60 20 13 2B + 12-8-6 0B VT 12-9-B-3 | 4E + 0B vT
46 - 1 40 40 15 20 - 11 oD CR 12-9-8-5 | 60 - oD CR
47 *- 11-8-4 b4 &4 12 2A * 11-8-4 DA LF 0-9-5 5C * 25 LF
50 / 0-1 21 61 17 Zr / 0-1 oF SI 12-9-8-7 | 61 7 oF 8I
ol { 0-8-4 34 T4 10 28 { 12-8-5 08 BS 11-9-6 4D { 16 RS
82 }) 12-B-4 74 34 11 29 } 11-8-5 09 HT 12-8-5 5D H 05 HT
53 3 11-8-3 53‘ 53 04 24 § 11-8-3 04 EOT 9-7 5B 3 37 EQT
54 = 8-3 13 13 35 3D = 8-6 1D | GS 11-8-8-5 | TE = 1D IG5
55 | space space 20 60 { 00 20 spece space 00 | NUL |12-0-3-8-1| 40 spoce | OO NUL
b6 f 0-8-3 33 73 14 2C ' 0-8-3 oC FF 12-9-8-4 | 6B f ocC FF
57 . 12-8-3 173 a3 16 2E . 12-8-3 gE | SO 12-9-8-6 | 4B . 0E 50
80 = #® 0-8-6 36 78 03 23 # B-3 03 ETX 12-9-3 B # 03 ETX
61 { B8~7 17 17 73 3B [12-8-2 1C F8 11-9-B-4 | 4A ¢ 1C IFS
62] 0-8-2 az 72 76 5D] 11-8-2 01 SOH 12-8-1 SA { 01 50H
63 %@ B8-8 16 16 05 a5 % 0-8-4 0'5 ENQ 0-9-8-5 6C % 2D ENGQ
64 #n B-4 14 14 02 22 " 8-7 02 [8TX 12-9-2 7F " 02 STX
85 — 0-8-5 a5 5 ™ &F _ D-8-5 TF _ DEL 12-9-7 6D - 07 DEL
&6 AV 11-0® a2 52 01 21 ! 12-8-7 TD l 11-0 4F Do }
67 AR 6-8-7 a7 7 086 26 & 12 06 ACK 0-5-8-8 | 50 & 2E ACK
70 ' ' 11-8-5 55 55 07 27 ' B-5 o7 BEL D-9-8-7 | 7D ' ar BEL .
71 l ? 11-8-6 56 b6 a7 3F ? 0-8-7 1F | US 11-9-8-7 | 6F ? 1F U8
T2 < 12-0 T2 a2 34 3C < 12-8-4 7B [12-0 4C < Co [
73 > 11-8-7 57 a7 a6 3E > 0-8-6 1E | RS 11-9-8-6 | 6E > 1E IRS
" |c@ B-5 15 (16 | 40 | 40 a 8-4 | 60 ‘I 81 |7¢C @ |1 s
76 |» \ | 12-B-6 75 | 35 | 74 5C ™~ 0-8-2 | 7¢ | I 12-11 | E0 N | 8a {
76 -1 A | 12-8-6 16 36 76 SE A 11-8-7 TE n 11-0-1 BF "_l Al n
7m | ; iz | {sv |83 a8 | ; |m-se 1B |msc| oo |sE | : |2 | Esc
60492600 A A-3

HEXADECIMAL—OCTAL CONVERSION TABLE

First Hexadecimal Digit
o 1]l2 3}a s|le 7|8 e|la Blec ol|lEe r
Second 000 | 020 | 040 | OG0 | 100 | 120 | 140 | 160 | 200 220 | 240 | 260 | 300 | 320 | 340 | 360
Hexadecimal
Digit 001 | 021 | 041 [061 [101 | 127 | 141 | 161 | 2071 | 221 | 241 | 261 | 301 { 321 | 341 | 361
002 | 022] 042 | 062 | 102 | 122 | 142 | 162 | 202 | 222 | 242 { 262 | 302 | 322 | 342 | 362
003 023 | 043 | 063 | 103 | 123 [143 | 162 [203 | 223] 243 { 263 | 303 | 323 | 343 | 3623
004 § 024 | 044 | 064 {104 | 124 | 144 | 164 | 204 | 224 | 244 | 264 { 304 | 324 | 344 | 364
005 {025 | 045 | 065 | 105 | 125 [145 | 165 | 205 | 2256 | 245 | 265 | 305 | 325 | 345 | 365
006 | 026 | 046 {066 | 106 126 | 146 | 166 | 206 | 226 | 246 | 266 | 306 | 326 | 346 | 366
007 | 027 [047 | 067 | 107 | 127 (147 | 167 | 207 | 227 | 247 | 267 | 307 | 327 | 347 | 387
010 | 020 | 05C | 070 | 110 | 130 | 150 | 170 | 210 | 230 [250 | 270 | 310{ 330 | 350 | 370
011 | oA Q51 071 [111 J131 Ji61 | 171 1211 | 231 | 251 [271 | 311 { 331 | 351 | 371
012 1 Q32 | 052 | 072 | 112 {132 }152 | 172 [212 | 232 {1 252 | 272 | 312 | 332 | 352 | 372
013 | 033 | 063 | 073 | 113 | 133 | 163 | 173 } 213] 233 | 263 | 273} 313] 333 | 353 | 373
014 | 034 | 054 | 074 ' 114 1134 j1b4 | 174 {214 | 234 | 264 | 274 | 314 | 334 | 354 | 374
015 1 035 ;055 [076 | 115 | 135 | 1656 | 175 | 2156 | 235 | 255 | 275 | 315 | 335 | 356 | 375
016 | 036 | 056 | 076 | 116 | 136 | 1656 | 176 | 216 | 236 | 256 | 276 | 316 | 336 | 356 | 376
017 | 037] 067 | 077 Y117 | 137 | 187 | 177 | 217 | 237 1 257 | 277 | 317 | 337 | 357 | 377
Octal 000 — 040 — 160 — 140 — 200 — 240 ~ 300 - 340 -
037 077 137 177 . 237 277 337 377
A-4 60492600 A

ASSEMBLY-TIME 1/0 : B

SCOPE 2

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its I/0 operations. Thus, COMPASS 3 can
read and write files with a variety of external formats. For each of the files used by COMPASS, the
default format, and the eombinations of file format deseription parameters that may be specified in FILE
control statements to override the defaults, are given below.

Main Souree Input File

The main source input file may be a normal source input file or a compressed eompile file; COMPASS
determines whieh it is by inspecting the data in the file. A normal source input file under SCOPE 2

comprises the following:

File Organization (FO) sequential (SQ)
Block Type (BT) unblocked
Maximum Bloek Length (MBL) none

Record Type (RT) control word (W)
Maximum Record Length (MRL) 160 characters
Conversion Mode (CM) NO

Label Type (LT) unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X means allowed):

Block Record Type
Type F w Z
unblocked X X
C X X X
I X

File Organization (FO) must be sequential (SQ).
Maximum Record Length (MRL) must not exceed 160 characters,

Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 charaeters, only the first 80 characters of
each reeord are reproduced in the listing output files,

60492600 H B-1

If the file is a compressed compile file (written by UPDATE in X mode or MODIFY in A mode), COMPASS
sets the file format deseription parameters to resemble normal input; however, MRL = 5120 eharacters.
Modify is not available on SCOPE 2.

Listing Output Files

The default format under SCOPE 2 comprises the following:

" File Organization (FO)

Block Type (BT)

Maximum Block Length (MBL)

Record Type (RT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

sequeﬁtial (sQ)
unbloeked

none

control word (W)
137 characters
NO

Unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X means allowed):

Block Record Type
Type o w Z
unblocked X X
C X X X
1 X

File Orgenization (FO) must be sequential (SQ).

Maximum Record Length (MRL) must not exeeed 137 eharacters.

Label Type (LT} may be any velue supported by the operating system.

Binary Output File

FILE control statements can be used under SCOPE 2 to specify the format of binary output files for any of
the operating systems, such that a program can be assembled under SCOPE 2 and the object program

executed under a different system if so desired.

B-2

60492600 H

File Characteristics 3COPE 2 NOS and NOS/BE 1

File Organization (FO) sequential (SQ) sequential (5Q)

Block Type (BT) unblocked character count (C)
Maximum Block Length (MBL) none 5120 chars.

Record Type (RT) - control word (W) system-logical-record (S)
Maximum Record Length (MRL) 1,310,710 chars. none

Conversion Mode (CM) NO _ NO

Label Type (LT} Unlaheled (UL) ANY

No other formats are allowed, except that the label type (LT) ean be any value supported by the operating
system used for assembly. The format shown above under SCOPE 2 is the default binary output file format
under that system.
Scratch Files
COMPASS uses two scratceh files named ZZZZZR1L and ZZZZZRM, when table storage space overflows.
Regardless of what is specified by FILE control statements, COMPASS sets the file format description
parameters for these files under SCOPE 2 as follows:

File Organization (FO) = sequential (SQ).

Conversion Mode (CM) = NO.
For file ZZZZZR1:

Block Type (BT) = unblocked.

Maximum Block Length = 5120 characeters.

Record Type (RT) = undefined (U) Maximum Record Length = 2550 characters,
For file ZZZZZRM:

Block Type (BT) = character count {C), Maximum Bloek Length = 5120 charaeters.

Record Type (RT) = SCOPE logieal (8), no Maximum Record. Length,

ALL OPERATING SYSTEMS

System Text Input Files

A user library file designated by an S parameter on the COMPASS control statement must have the
standard library file format for the system on which COMPASS is being used.f COMPASS uses the
operating system overlay loader to access these files,

For a sequential binary (non-~library} file designated by a G parameter on the COMPASS control statement,
the default and permitted formats are the same as those given above for the COMPASS binary output file.

*Overlay residence in user libraries is not currently supported by NOS,

60492600 G B-3

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruction can have any of several formats.
COMPASS determines the file format (a} by whether the XTEXT pseudo instruetion variable field is empty
and (b) by inspecting the data in the file.

If the variabie field is empty, the File Organization (FO) must be sequential (3Q). COMPASS rewinds the
file and reads until end of section or 8 COMPASS END statement is encountered, whichever comes first.

The default and permitted formats under SCOPE 2 are the same as those given above for the main source
input file,

If the XTEXT variable field is non-empty, the file organization can be any of three non-standard types:
Record indexed with name index (under SCOPE 2 only).
SCOPE 3.3 style random file with name index (not supported under SCOPE 2).
Update or Modify'r random program library file.

In each case, COMPASS sets the file format deseription perameters to the appropriate values; no FILE
control statement is needed.

The record indexed file organization is actually the word addressable (WA) file organization with a set of
format conventions superimposed on it. Suech a file can be ereated by 8 FORTRAN program by using the
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL program
specifying ORGANIZATION IS WORD-ADDRESS, WORD-ADDRESS IS data-name. When COMPASS detects
such a ;‘ile under SCOPE 2, it sets the file format deseription parameters as follows (no FILE eard is
needed):

File Organization (FO) = word addressable (WA).

Bloek Type (BT) = unblocked.

Record Type (RT) = control word (W); Maximum Record Length (MRL) = 160 characters.

Conversion Mode {CM) = NO.

COMPASS positions the file at the record pointed to by the index entry containing the name given in

the XTEXT statement variable field, and then reads records sequentially until end of section or a

COMPASS END statement is encountered, whichever comes first.
The SCOPE 3.3 style random file with name index is permitted for compatibility with previous versions of
COMPASS. When COMPASS deteets such & file, it searches the file index and positions the file at the
beginning of the specified section, and then reads sequentially until end of seetion or a COMPASS END
statement is encountered, whichever comes first. Such files eannot be used with SCOPE 2.
An Update or Modify* random program library file is processed similarly. The name in the variable field of

the XTEXT statement must be the name of a common deck. When COMPASS deteets such a file under
SCOPE 2, it sets the file format deseription parameters as follows (no FILE control statement is needed):

TModify is not available under SCOPE 2 or NOS/BE 1.

B-4 60492600 G

File Organization (FO) = word addressable (WA},

Block Type (B'T) = unblocked

Record Type (RT) = control word (W), Maximum Record Length (MRL) = 5120 characters
Conversion Mode (CM) = NO

COMPASS positions the file at the firat card image of the designated section {common deck). For
an UPDATE program library, the first active card image (the *COMDECK card) is skipped.
COMPASS then reads card images sequentially, ignoring inactive card images, until end of section
or a COMPASS END statement is encountered, whichever comes [irst.

66492600 A B-5

BINARY CARD FORMATS

Column 1

8,9 levels 0 to 16
7,9
7,8,%90r7,8,9 level 17

9
and 9 not both in column 1

End-of-gection
End-of-partition (NOS only)
End-of-information

Binary card

Coded card

12 3 4 5
12|
1] | LN
18| gle Column Binary Information »| |3
2]
13| 5
2|82 hy
8|2 a
4 K =
s g g
o g 8| &
19 o =
6] 13 T g
ey O o @
7 o
8 <<
o

A binary card can contain up to 15 60-bit CPU words starting at column 3. Column 1 also contains
a count of 60-bit words in rows 0, 1, 2, and 3plus a check indicator in row 4. If row 4 of column 1 is
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on

input.

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number., Ifa
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80,
which sequences it within the logical record. :

60492600 A

HINTS ON USING COMPASS D

1. Within a maero definition:

Use comment statements having * in eolumn one. These are not saved, whereas other types of
comments are saved.

Whenever possible, minimize the number of lines of code.

IRP is faster than either ECHO or DUP.

Use the substitute parameter flags ;A, ;B, and so forth, for macros, to aveid a second line.
Within maeros, use symbols sueh as .1, .2, and 5o forth, instead of local symbols.

If possible, avoid recursive macro structure to inerease assembly speed.

If & maero call is the cause of an error, direet full list output to a file other than OUTPUT
(L=filename) to obtain a list of the erroneous macro eall with the error listing.

2. In IF sequences:
Use line counts rather than ENDIF to terminate sequences.
Use SKIP rather than IFPP to skip code.
3. Mieros:
Miero replacement is time-consuming.
Avoid using local symbols for miecros.
Use ## for a null substitution. ' I
4. Minimize SYSTEXT size.
5. To reduce core requirements, use SEG statements in absolute programs.
6. Use NOREF for symbols for which listing is not required.
1. Use QUAL for all overlays.
The program EXAMPLE (figures D~1 and D-2) presents fundamental program organization. It also
demonstrates some COMPASS coding conventions and illustrates efficient coding praetice. The program

obtains numbers from six suceessive locations, adding the numbers one at a time to the running sum. The
total is then printed with a label. ‘

60492600 J D-1

(44/80N pus SON) weIdodd §EVINQD o1dwexy *1-q 2indig

12 ST YAASNY 3HL pe
$3IN3¥343Y8 62 SANDJI3S 912°0 AT8GW3SSY NdI 3dAL-009L §95S94pPY
STOBWAS 8¢ SINIWILYLS €4y Q3Sn 39YN¥0LS WD 800216 Uo[IHROT (8300
g,
WY¥O0¥d 30 GN3 NI93g ON3 26y £e
002JKOD AX34X 14 INY 0%y ue
0I2JW02 1X3LX 1dINY 524 18
HIRDWOD 1X31X 14 INY 2LE 0g
SASOWDY 1X3LX 1d INY ZEE 82
AILAT Do) A=) *
STI0BHAS W3ILSAS 3INI43Q 01 15§ . R 8%
*1%31 IYNYILXT DL SS323y » 3p0D 18190
» - L -
SOHDA-# nea N3 3 Lz
1 558 SNY 1 1€€ 9z
* SI ¥IMNSNY 3IHL #H VLva SQu0n G0LZE291T065500T%266 L Z€ £z
*
&
9 vivg 90000000000000000000 92€ £
§ YivO £0000000000000000000 &2¢€ 1A
*7vi01 0L b ¥ylvg %0000000000000000000 42€ 44
SH3EWNAN 3HIL £ viva £0000000000000000000 €2€ 1%
34y 3S3HI 2 ¥yiva €0000000000000000000 22€ 0%
————————————— 1 viva 3ievl 100000600000000000000 12¢ BT
*
3G00 378V1iN33X3 30 ON3 NNNAN3 120442091 LIE 81
¥3d43N8 INdIND 40 SINILNDD SANI2d 1NdIND ¥3LT UM + TOEOO002TL G1€ 91
¥344NE INJAND 3HL DL S3LI¥M N3ITSQEOMCINdLIND HILI M + L2€0000919 8T
SNY NI ¥3IANNN 0300) AV14SI10 3HL 3s04S SNY 9vs + TEE00009T¢ 21E BT
3002 AV14SIQ D) HIGWAN AYYNIS L¥3ANDD 003x= ry + £%%0000010 £1
*
(€8) # BIND SS3IHGAY 4] 40071 dODTEQ2E an + 0TE000€260 TI1f 21
HNS ONINNNY¥ DL 438WNN M3N QOV Ix+2X 193 1219¢€ I
¥ILNNDD SS3IUOAV 3HL LNIWIUINI 18426 zes 12299]
$S3400Y A¥OWIW LX3IN 139 28+318VL 2vs 4081 + 12€0002215 OIE &
*
D37 0L WNS ONINNNY 3ZITVILINI () IXH 00TEY 8
LIWIY dOD1 ¥ SV 3SN 304 L3S 9 £85 9000000€19 LOE L
Dd3Z D1 ¥ALNNOD SS3IWOCY FZITVILINI o8 26S 00299 9
- 1 185§ NIS3g 1000000119 90F g
810€44n80 931714 1NdLND 10000000%256202%926241 TOE b
¥344n8 LR4lno g1o¢ $S8 N80 10€ 0 g
NISIE A¥LN3 H
I1dW¥x3 LIN3CI 1

60492600 H

D-2

(2 2d00S) weaSedd SSVAWOD ardwexy *g-q sandig

12

SI d43MSNV 3Jdl

¥E

WVdo0dd 40 GN3 NLO34
0d2240Y

ST08HAS WALS5AS 3INIJ30 0L

*1X31 TYNHEFLIXT Q4 SSIIIV

SQd0M—=
T
% SI HIMSNY 3HL #H

9
s
"IVi0L 01 ¥
SHIEHNN 3H1 £
Jdy I53HL e
T
3602 378vLin23x3 40 aN3
3344N8 LNdin0 40 SINILNOD SINIdd indino
4333nNd LN4LND 3HL 01 S3ILIak NITISQUOMeLNdLNO
indino
SHY NI 438WAN 03000 A¥I4SIA 3JFHLI 3A401S SHY
3002 AVI4SIO 0L 4IGHON AXVNIE Ld43ANDD gaaxs=
{ed) # ¥IND 5S3¥0QY 41 40071 dO0NE8“TE
WS ONINNNY 0L d3"Wnih M3IN gav X+2x
43AINN0D 553400V 3HL ININIFYINI 18+2d
$S3440V A¥0HIW LX3N 139 28+378vl
0d32 01 WAS ONINNOY FZIAVILINI Q
LIHWIT 4007 ¥ SY 3Sa 404 L3S 9
0¥32 01 43LNN0Y S53400v 3IZIWILINI 0d
1
lAdinD=0d *N=3)SN=30LET=THH H= L5 4= 18 “0SaD3¥1Nd1lN0=N41
NID38
3TdHYX3I

aNd
LX3ix

158

Nno3
S58
Yiva

viva
viva
vivd
vivd
Yiva
viva

LI ELE]
H2S012
Mind
WNIdO
9¥sS

-

N
X1
2es
Vs

TXMW
EGS
288§
148
ERDE]
AdLN3I
LN3Q1

* =

N3
SNY
SQYOM
*
*

374vl

d00%

RI938
indino

+
+
+

+

SIEEIPRY
HonBsaoT 18100
13
4]
paIquassy
9poD 18300
-~ s o
£
T 7
GOL2E2ITTONGS5D0THESE LE
90¢00000000000020000 9t
S0030000000000020000 &€
*000000000000092003) +HE
£C020322000050020020 €€
200000000000900C30000 ZE
T0000600000000020203 TE
GOQ00000CO4DTIANICETD DE
0900009N0C029000008T0 L2
S607220NCOEDDID00ETO 92
$600000000TI33200I0 &2
+ THI00909157 %2
5400000010
+ 2200023250 €2
1219¢
12299
+ TEQQODZ21S &2
00TEY
3000000c1e 12
00299
1000020119 02
0

113
6¢

8e

LZ
9z

b4
44
44
12
0z
61

i & = T O b= 00

D-3

60492600 H

One

of the main considerations in assembly language programming is the reduction of execution time. The

instruetion repertoire of COMPASS often allows an operation to be coded in several ways. The
programmer, therefore, should give careful consideration to the instructions used in the program to
perform specifie functions.

Tine 1. The IDENT pseudo instruetion is always the first instruction in a program, It specifies a
program name (EXAMPLE, in this case) to identify the program to the assembler.

Line 2. The ENTRY pseudo instruction declares the point in the program at which execution is to
begin. The main entry point in 8 program is the control transfer address.

Line 3. NOS end NOS/BE - figure B-1. The BSS instruction establishes the output buffer OBUF. The
programmer has allocated 301g words of storage for the buffer, as shown in the assembled octal

code listed to the left of the source code. Note that the octal code format for the pseudo instruetions
will differ from the format for the symbolic machine instructions because pseudo instruetions do not
have single machine instruction equivalents.

Line 4. NOS and NOS/BE - figure D-1. The operating system maero FILEC is called to create a file

environment table (FET) for the output buffer. Only the first word of the FET is shown in the oetal
code, but examination of the location addresses reveals that the table is setually five words in length

(the minimum length of & FET), For more information about FETs, see the appropriate operating
system reference manual.

SCOPE 2 - figure D-2. The FILE macro is used to establish a file information table {FIT) for the
output buffer.

Line 5. The first executable line of eode has been designated the main entry point for the program.
Inerementing by one oecurs so often within a program that it has become s COMPASS coding

~~convention for register Bl to always be initialized to one, and-to remain one throughout the entire -~

program. This is particularly important during the use of the common ecommon decks (chapter 12), and
can be a factor in execution time (see B1=1 pseudo instruection) as well as in assembly time.

Line 6. A counter is initialized to zero by setting the contents of a B register (chapter 8) equal to the
contents of the BO register. B0 is hard-wired to zero, thereby avoiding the need for repeated
processing of the literal or constant zero.

Line 7. Comparing the octal code for lines 6 and 7, the programmer can see the difference between
two forms of register-setting instruetions. The 15-bit form of the instruetion is used in line 6, where
only three bits are required to represent the B0 register as the source of an operand. The 30-bit form
of set B register instruetion is required for line 7, where the constant 6 is represented by the lower 18
bits of the instruetion.

Line 8. The mask instruction is normally used to extraet fields from a register. Here, it is used
instead of the slower set X register instruetion to initialize an X register.

Another important feature of COMPASS is illustrated here. The octal code seems to indicate that the
lower 15 bits of the current word in memory have been left blank. This is the result of a foree upper.
The next instruction is too large to fit in the remaining 15-bit parcel, so COMPASS packs that parcel
with a no—o)peration instruction. The next instruetion is placed at the beginning of the next word (see
section 8.1).

Line 9. The use of the set A register instruetion to obtain a word of data is demonstrated here. As
seen in the octal code, the address of the word (3218) is placed in the specified A register. The data
itself is placed in the corresponding X register (X2 in this instanece). (See Set A Register Instruetions,
chapter 8.)

The plus sign (+} after the oetal code indieates that the address or K portion of the instruction {the
lower 18 bits in this case) is reloeatabie.

60492600 H

Line 10. The 15-bit format of the set B instruetion ig illustrated here. The first six bits contain the
operation code for the instruction (664 in this instance). The next three bits designate the
destination register (B2) for the results of the instruetion. The next three bits indieate the register
conteining the first source operand (B2). The final three bits indicate the source register for the
seeond source operand (B1).

Line 11. The number obtained in the previous instruction is added to the running sum kept in X1. This
is a 60-bit add instruction, as opposed to the SXi instruction, whieh adds only 18-bit operands.

Line 12. The NE instruetion shows another use of the B registers in testing for a eonditional branch.
In each iteration of the loop, the source operands mre compared. While they are unequal, eontrol is
transferred from this instruction back to LOOP. When the operands become equal, econtrol passes to
the next instruction.

Line 13. The return jump (RJ) instruetion is used here to access a commen common deck,

COMCCDD, as a relocatable subroutine. The programmer has taken advantage of the COMPASS
default method of defining external symbols. The =X indicates to the assembler that CDD, the entry

point to the subroutine, is external to EXAMPLE.

The use of common common decks is important to the programmer. Note that the decks require
eertain entry conditions. Speeific arguments are expected to be in certain registers, for example,

upon enfry to the routines. An effieient program will establish these conditions with a minimum of
data transfers by using the registers judiciously prior to the eall. COMCCDD, for example, eonverts

an octal word to decimal display code; that word is expected to be in register X1. For this reason, the
running total has been kept in X1, avoiding the need for extra data transfers.

Line 14, The method of storing an operand in memory is illustrated here, Setting register A6 or A7
te a valid address causes the contents of X6 or X7, respectively, to be stored in the address specified.
When COMCCDD has converted the word, it places the result in register X6, ready for storage upon

return to the calling routine.

Line 15. NOS and NOS/BE - figure D-1. Another method of accessing a common common deek is
shown here. A call is made to a system macro, WRITEH, which utilizes the ecmmon common deck
COMCWTH to write a line from a working buffer to an output buffer.

SCOFPE 2 - figure D-2, The Record Manager maero OPENM is used to open the output buffer in
preparation for processing.

Line 16. NOS and NOS/BE - figure D-1. A eall is made to the operating system macro WRITER to

write the contents of the buffer OBUF (with which the system commumiecates through the FET
QOUTPUT) to the system default output file, also named OUTPUT. (For more information about

operating system maeros, see the appropriate operating system reference manual.)

SCOPE 2 - figure D-2. The Record Manager maero PUTW is used to transfer data into the output
buffer.

Line 17. SCOPE 2 - figure D-2. The Record Manager maero CLOSEM is used to close the output
buffer and to print its contents. .

Line 18. The operating system maero ENDRUN is ealled to terminate program execution.

Lines 19 through 24. DATA pseudo instruetions are used here to establish & table comprising six
consecutive words in memory, starting at loecation TABLE. The default base mode is base 10 in

COMPASS (see Mode Control, chapter 4).

Line 25. DATA is used here to set in memory & display-coded image of the charaeters specified, for
use in the output line, Ten 6-bit characters can be stored per word in this fashion. Therefore, more
then one word is required here, as seen from the location address on the next line.

60492600 H D-5

Line 26. One word of memory is reserved for the final sum. This word is labeled ANS. Note that this
word is not initialized by the BSS instruction.

Line 27. The symbol LEN is equated with the value of the origin counter minus the address of
WORDS. This yields the length of the output line specified in Jine 15.

Line 28. The SST instruction ensures that symbols from the system texts used by the program are
defined.

Lines 29 through 32. These XTEXT pseudo instructions tell COMPASS to search the system-defined
program library OPL for the common eommon decks named. Deeclarations of this type are normally
grouped together after the end of the executable code for easy reference.

Line 33, The END instruction signifies the end of the program. Control is released through the
transfer address at BEGIN. .

The dayfile for the prograim EXAMPLE as run on NOS is shown in figure D-3.
The dayfile for the program EXAMPLE as run on NOS/BE is shown in figure D-4.
The dayfile for the program EXAMPLE as run on SCOPE 2 is shown in figure D-5.

15.18.00.EXAMPLE,
15.18.0GC.UCCRs 7641, 0.048KCDS.
15.18.00. USER statement.

15.18:01. CHARGE statement.
15:18.01.ATTACH, COMCPL JUN= XXX.
15.18.02.COMPASSISeS=IPTEXTsS=CPUTEXT X=COHCPL)
15.18.09. ASSEMBLY COMPLETE. 523008 CHM USED.
15.18.09. 0.24%4 CPU SECONDS ASSEHBLY TIME,

15.18.09.150.

15.18.1C.UEAD» 0 .002KUNS.
15:.18.10. UEPF» Us014KUNS.
15418:10.UEMS, 0.784KUNS.
15.18.10.UECP, 042525ECS.,
15.18.10. AESR» 2o622UNTS.
15222418, UCLPs 7645, 0o 256KLNS,.

The parameter xxx is the site~defined NOS user name.

Figure D-3. Dayfile of EXAMPLE under NOS

-6 : 60492600 H

60492600 H

09.17.2C.EXAMP2P FPROM ' :
09.17.2C.IP COCCB3I2C WORDS - FILE INPUT ,» DC (4
068.17.20.EXAMPLE.

09.17.2C.ACCITUNT statement,
09.17.23.ATTACH:COMCPL»ID= yyy.

09.17.23,PFN IS

09.17.23,CONMCPL

09.17.24.AT CY= 001 SN=PFOSFT

09.1R 34, COMPASSISSuIPTEXTSaCPUTEXT, ¥X=COMCPL)
09.18.51, ASSEMBLY COMPLETE. £E7600B CH™ USED,
09.1P.51. 3,462 CPU SECONNS ASSEMARLY TIME,.
09.16.51.1G0.

C9.18,51.,0P CCCC1l024 WORDS - FILE OUTPUT s DC 4C

09.18451.M5 ABR4 WLRPS 7168 MAX USED)
C9.18.52.CPA . 1e497 SEC. 1.497 ADJ.
C9:.18.52.CPR 2.761 SEC. . 2.261 AR,
09.18.52.,10 «495 SEC, ‘ 495 ADJ.
09.18.52.CH 1214287 KWS, T.402 ADJ.
09.18.52455 ' ' 11.656

" 09.18452.PP 4.B49 SEC, DATE 02/0F/8B1

09.16452,E4 END OF J0N8, *%

The value yyy is the site-defined ID under which COMCPL has
been catalogued.

Figure D-4. Dayfile of EXAMPLE under NOS/BE

D-7

15.50.32
15.50,32
15.50.33
15.50.33
15.50.33
15.50.33
15.50.34
15.50.34
15.50.34
15.50.34%
15.50.34
15.5C.35
15.50.35
15.50.35
15.50.35
15.50.35
15.50.35
15.50.35
15.50.35
1550435
15450435
15.50435
15.50.35
15.50.35
15.50.35
15.56.35
15.50.35
15.50.35
15450435

00000.003
00C0C. 004
00000.039
00600.,039
00000.043
00000.043
G0000,306
00000C. 306
GO00G. 206
0000C.320
Q0000.321
€0800.223
00000.324
00L0C.224
00600,324
G0C00.324
C0000.324
00G00.325
4QCg0.328
00000.32F
00000.325
00000.325
00000.32%
C000C.326
00C00. 22k
00000.326
00000.326
00C00.326
00C00.326

MFZ. -EXAMPLE, STSC 2.
JOR, =ACCOUNT/statement,
J08. -~ATTACHsCONCPLy ID= zzz,
MFZ. PF053 - LFN IS CaOMCPL
MFZ. PF254 — CYCLE 1 ATTACHED FROM SN=SYSTEM
L.0OD. ~COMPASS(S»S5=IPTEXT»S=CPUTEXT,, X=COMCPL)
USR. ASSEMBLY COMPLETE. 560008 SCM USED.
USR. 0.249 CPU SEC. 34100B LCH USED.
Lon. -1LG0.
HFZ. LD€10 - FLS REQUIRED TD LODAD - 0007771 OU.CDG
MFZ. LDB03 — EXECUTION INITIATED OS.EXP
MFT. JH166 = MAXIMUM USER SCM 705008 WORDS
MFZ. JM167 - MAXIMUM USER LCHM 400008 WORDS
MFZ. JH1TG - MAXIMUM JS+I0 LCM 358 BUFFERS
MFZ. RMT70 = HMAYIMUM ACTTVE FILES 2
MFZ. RMT71 - OPEN/CLDSE CALLS 19
MFZ, RM772 - DATA TRANSFER CALLS 374
MFZ,. RMT7?73 = CONTROL/PDSITIONING CALLS A
MFZ. RMT74 — BM DATA TRANSFER CALLS 258
MFZ. RMTT5 =~ BM CONTROL/POSYITIONING CALLS 67
MFZ. RHT7T6 — QUEUE MANAGER CALLS 62
MEZ, RMTTT = RECALL CALLS 61
MF 7, SCH 7aC4B KWS
MFET. LCH Je463 KWS
MFZ. 170 0.004 MW
BFZ. RMS 0.003 MusS
MFZ. USER 0.198 SEC
ME7. J08 : 0.328 SEC
MFZ. SC050 - 000015 SC/LC SWAPS
The value 2zzz is the site-defined ID under which COMCPL has been catalogued.
Figure D-5. Dayfile of EXAMPLE under SCOPE 2
60492600 B

‘D8

DAYFILE MESSAGES E

The dayfile messages that can be issued by COMPASS are listed in table E-1.

The following message, with xxxxxxx denoting the name of the subprogram being assembled, is displayed at
the system operator's console only; it is not written to the dayfile. COMPASS updates the display when-
ever it processes an IDENT statement with a non-blank variable field.

ASSEMBLING XXXXXXX

TABLE E-1. DAYFILE MESSAGES

Message Significance Action
ASSEMBELY ABORTED - ECS READ ERROR, This message can occur only Rerun job., TIf
when the Job has an ECS field | condition persists,
leogth and is used on a CYBER | contact a system I
180 or a CYBER 170 or CYBER analyst.

70 Model 71, 72, 73, or 74.
COMPASS may store some of
its internal tables in ECS.
When an ECS error persists
through four attempts to
read the data, the message
is issued, and the job is
aborted. For the CYBER 70
HModel 76, LCM errors are
handled by the operating

system.

ASSEMBLY ABORTED - ECS WRITE ERROR. This message can occur only Rerun job. If
when the job has an ECS field | condition persists,
length and is used on a CYBER { contact a system I
180 or a CYBER 170 or CYBER analyst.

70 Model 71, 72, 73, 74.
COMPASS may store some of

its internal tables im ECS.
When an error occurs in
writing data to ECS, mo retry
attempt is made. The message
is issued, and the job is
aborted. For the CYBER 70
Model 76, LCH errors are
handled by the operating
system.

60492600 L ' E-1

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

=

ASSEMBLY ABORTED - PASS n TABLE
OVERFLOW ASSEMBLING XHXXXXXX

While processing the program
indicated by ®xxxw¥xxx, an
irrecoverable table overflow
condition has occcurred in
assembly pass n (1 or 2).
COMPASS allocates memory
space dynamically to all of
its internal tables. If one
table overflows, they all do.
When the tables do mot f£it in
the available SCM space,
COMPASS will request addi-
tional central memory up to a
threshold at which time the
intermediate file and cross—
references are dumped to mass
storage scratch files. If
table space is still inade—
quate, COMPASS will request
additional central memory up
to the maximum available to
the job. When insufficient
SCM exists after all such
possibilities have been
exhausted, COMPASS issues the
message and aborts the job.

Rerun job inserting
an RFL statement
specifying suffi-
cient field length
to assemble.

ASSEMBLY COMPLETE. nnnnnnB{

ECS

xxxx, xxx CPU {
LCM

SEC.nnnnnnB {

cM
SCM
SECONDS ASSEMBLY TIME.
}USED.

}USED.

|

If COMPASS did not detect any
fatal errors during assembly,
this message is issued at the
completion of processing of
all source programs on the
input file. The minimum
field length needed to per-
form the assemblies success—
fully is the octal number of
SCM words, nononnu. If this
number is larger than the
actual field length, it is
the minimum field length
needed to avoid lost refer-
ences. The second line of
the message can be suppressed
by an installation parameter;
AXXK.XXX represents the total
central processor time, in
seconds, used by COMPASS.

If any EGCS/LCM space was
assigned to the job, nnnnuon
is the octal number of words
used.

No action required.

60492600 H

TABLE E-1. DAYFILE MESSAGES (Contd)
Message Significance Action
. cM If COMPASS detected at least | Correct the fatal
ASbEMBLY ERRORS. nnnnnnB {SCM}'USED' one fatal error during assem— | errors and

xxxx.xxx CPU
SEC.nnnannB {

ECS
LCM

SECONDS ASSEMBLY TIME.

}USBD.

|

bly, this message is issued
at the completion of proces-
sing of all source programs
on the input file. If the A
option was specified on the
COMPASS control statement,
the job is aborted after this
message is issued. The mini-
mum field length needed to
perform the assemblies suc-
cessfully is the octal number
of S8CM words, nonnnnn. The
second line of the message
can be suppressed by an
installation parameter;
XKXX.XXX represents the total
central processor time, in
seconds, used by COMPASS.

If any ECS/LCM space was
assigned te the job, nnonnnn
is the octal number of words
used.

reassemble.

BAD CONTROL STATEMENT ARGUMENT - xx

The COMPASS control statement
contains an unrecognized or
invalid argument. The
offending argument is named
in the message.

Refer to chapter 10
of this manual to
correct the COMPASS
control statement.

CANT LOAD COMP3$

| The operating system loader

reported a fatal error when
COMPASS attempted teo load its
primary overlay. This mes—
sage should be preceded by an
explanatory message from the
loader.

Refer to the loader
diagnostics in the
loader reference
manual for informa-
tion about the
specific loader
error.

COMPASS NEEDS AT LEAST nnnnnB SCM.

The SCH field length for the
job is too small for COMPASS.
The number of octal words
needed by COMPASS before it
can begin processing is
nnnonn. This number varies
depending on the versiom of
COMPASS used and the listing
and binary output options
specified on the control
statement. It is an absolute
minimum number of words; it
does not inelude whatever
space may be required for
system text, local macro and
micro definitions, and so
forth.

Rerun job inserting
an RFL statement
specifying sufFi-
cient fiald length.

60492600 H

E-3

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

nonnnnnnn ERRORS IN xxxxxxx

COMPASS issues this message
for each source program in
which fatal errors are de-
tected; nannnnnon is the
number of errors and xtxxxx
is the sub-program name.

Correct the fatal
errors and
teassemble.

FILE USE CONTRADICTION.

Control statement specifies
the same file name for two or
more of the following:

Source input

List output (full or shert
list)

Binary output

XTEXT source

Correct contra-
diction.

IDENT STATEMENT MISSIKG,

COMPASS issues this message
for each source program in
which an END statement is
encountered before an IDENT
statement is found. This is
a fatal error.

Correct the source
program to include
an IDENT and END
statement for each
subprogram.

IMPROPER SYSTEM TEXT FORMAT,
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

A system text overlay does
not have the internal format
required by this version of
COMPASS. This may be caused
by a system error. COMPASS
ignores the bad overlay but
does not abort the job. The

expression, x=yyyyyyy/
zzzzzzz, identifies the

offending overlay in the same
form in which it is specified
in the COMPASS control state—
ment; it may be any of the
following:

G=filename
G=filename/overlay
S=pverlay
§=library/overlay

Correct the internal
format of the system
text overlay.

INPUT F1ILE EMPTY OR MISPOSITIONED.

When attempting to read the
first line from the source
input file, COMPASS encoun—
tered end of data and
aborted.

Correct the name of
the source input
file or reposition
the file.

INPUT FILE RECORD TYPE NOT ALLOWED.

The record type of the
source input file is not
allowed. COMPASS aborts
the job step.

Convert source input
to acceptable record
type.

E-4

60492600 H

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Significance

Action

INSUFFICIENT STORAGE FOR SYSTEM TEXT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

When an irrecoverable table
overflow occurs, COMPASS
issues this message before
the first assembly is begun.
It does not abort the job
step. The expression,
x=yyyyyyy/zzzzzzz, identifies
the system text being loaded
at the time.

Increase the SCM
field length for the
job.

nnnnnB LCY NEEDED TO CONTINUE.

The specified amount of

Increase the LCM

printed. If the table does
not fit in the job's S5CM
field length for sorting,
COMPASS discards some of the
references. A message is
issued; nnonnnnnn is the num-
ber of references discarded,
and xxxxxxx is the subprogram
name. The job step is not
aborted. The ASSEMELY
COMPLETE message gives
field length needed to
lost references.

the
avoid

memory (nonnnB) is required field length for the
for the job to complete. The | job.
job step is aborted.

nnannnonn LOST REFERENCES IN xxxwxcx The symbolic cross-reference | Increase the SCM
table is sorted before it is | field length for the

job.

MORE THAN 7 SYSTEM TEXTS SPECIFIED.

COMPASS issues this message
and aboxts the job step, when

the G and S parameters on the
COMPASS control statement

specify a total of more than
seven system text overlays.

Restructure the job
to reduce the number
of system text over—
lays required.

NO CONTROL STATEMENT TERMINATOR.

Before finding a parenthesis
or period not in a $~delimi-
ted string, COMPASS read con-
tinuation control statements
and encountered an end-of-
section. This is not a fatal
EITOL.

Correct the control
statement.

60492600 H

TABLE E-1.

DAYFILE MESSAGES (Contd)

Message

Bignificance

Action

RECURSION DEPTH EXCEEDED 400.

GOMPASS maintains a pushdown
stack for source input con-
trol. This stack has one
entry for each active DUP,
ECHO, HERE, XTEXT, or macro
call. The maximum depth of
the stack is set by an
installation parameter; it is
400 in the released system.
When this limit is exceeded,
COMPASS sats a fatal error
and clears the stack. The
next statement can themn be
read from the source input
file. The job step is not
aborted. This error is usu-
ally caused by a source pro-
gram in which a macro calls
itself indefinitely.

Correct the macro
call program error.

SYSTEM TEXT NOT FOUND.

BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

When it cannot load the sys-—
tem text overlay identified
by x=yyyyyyy/zzzzzzz, COMPASS
issues this message. It does
not abort the job step. For
an overlay loaded from a
library file (5 parameter),
this message should be pre-
ceded by an explanatory
message from the operating
system loader. For an over-
lay loaded from a non—library
file (G parameter), COMPASS

could not find the overlay on
the file.

For an overlay
loaded from a
library file, refer
to the diagnostics
in the loader refer-
ence manual. For an
overlay loaded from
a non—library file,
check that the over-
lay name is speci-
fied correctly and
that the overlay is
located on the file.

nonnunnnn WARNING MESSAGES IN xxaxxxx

COMPASS issues this message
for each source program in
which nonfatal errors are
detected; nnnannann is the
mumber of errors, and KxXXxXX
is the subprogram name.

Correct the non-
fatal errors and
reassemble.

60492600 H

GLOSSARY ~ F

Absolute Bloek -~
A bloek of object code generated in an absolute assembly. The ABS pseudo instruetion is used to

deeclare a program absolute,

Assembler -
A computer languege that prepares an executable program from a source language program by
substituting machine operation codes for symbolic operation codes and absolute or reloeatable
addresses for symbolic addresses.

Blank Common Block -
A eommon block into which no data is stored at Joad time. The first deelaration of a blank common
bleek need not be the largest declaration for the eommon block.

Block -
A grouping of words of object code or storage within a subprogram for a specifie purpose.

Capsule -
A relocatable eollection of one or more programs bound together in & speeial format that allows the
programs to be loaded and unloaded dynamically to form an executing program by the Fast Dynamie

Loading faeility.

Central Processor Unit (CPU) -
The high-speed arithmetic unit that performs the addition, subtraetion, multiplieation, division,
inerementing, logieal operations, and branching instructions needed to execute programs.

Comment Line -
A statement prowdmg documentary information for a seetion of code. Comment lines are mdlcated
by either an asterisk in eolumn 1 or blanks in columns 1 through 29, and are listed but not otherwise
processed by the assembler.

Comments Field -
The field in a COMPASS statement providing documentary information for the statement. It is listed
but not otherwise processed by the assembler, This field begins with the first nonblank character
following the variable field, or in column 30 if the variable field is blank,

Common Block -
An area of memory that ean be declared by more than one subprogram and used for storage of shared

data.

Constant -
An expression element consisting of a value represented in octal, decimal, hexadecimal, or charseter

notation.

Data tem -
A type of character or numerie value that ean be used in subfields of the DATA and LIT instructions,

and as specifications of field lengths on VF¥D pseudo instructions.
Entry Point -

A location within a subprogram that ean be referenced from other subprograms. Each entry point has
a name with whieh it is associated.

60492600 H F-1

External Reference -
A reference in one subprogram to an entry point in another subprogram.

Force Upper -
To guarantee that an instruction begins on a word boundary by packing the parcels remaining ina
partially completed word with no-op instructions and beginning to assemble the specified instruetion in
the next word. The assembler automatieally forces upper in some cases, and the user program can
specify that a given instruction be foreed upper.

Labeled Common Bloek -
A eommon block into which data can be stored at load time. The first program declaring a labeled

common block determines the amount of memory allocated.

Linking -
The process of matehing external references to entry peints of the same names and inserting the
addresses of the entry points into the external references.

Literal -
A read-only constant. Conventionally, it is the only element in an expression. Literals are stored in
the program's literals block to avoid duplication of read-only data.

Literals Block -
A block of literal data entries local to a subprogram.

Loged Sequence -
One or more consecutive control statements processed by the loader as a unit. A load sequence can be
a single name call statement, or it can consist of loader statements (such as LOAD and LDSET) that
are terminated by NOGO, EXECUTE, or a name call statement.

Loeal Block -
A storege area defined by & USE or USELCM pseudo instruction.

Loeation Counter -
Normally the same as the origin counter. Can be reset by the programmer to relocate code or data
without affecting relative positions within the block.

Location Field -
The first field in & COMPASS statement, usually providing a name for the address of the instruetion or
for the entity defined by the statement. The loeation field begins in eolumn 1 or 2.

Machine Instruction -
A string of bits capable of being interpreted directly by a eentral processor or peripheral processor as

an instruetion to perform some operation.

Macro -
A sequence of source statements that are saved and then assembled whenever needed through & macro
eall,

Miero -
A cheracter string identified by a symbolic neme. Wherever the name is encountered in the program,
the character string is substituted.

OPDEF -
A sequence of source statements that are saved and then assembled whenever needed through an opdef
call. Differs from a maero in that the assembler interprets the call by examining the format or syntax
of the instruction rather than the contents of the operation field alone.

F-2 : 60492600 H

Operation Code -
A mnemonie operator, used in the operator field of A COMPASS statement, to indicate a specific

machine instruetion.

Operation Field -
The field in a COMPASS statement indieating the operation to be performed. It begins with the first
nonblenk character following the loecation field; or, if the location field is blank, it begins with the
first nonblank character after column 2.

Origin Counter -
A pointer indieating the relative location of the next word to be assembled or reserved in a given block.

Overlay -
One or more relocatsble programs that were relocated and linked together into a single absolute

program.

Parcel -
One of the 15-bit seetions of a central memory word. A CPU machine instruction ocecupies one, two,
or four pareels.

~ Peripheral Processor Unit (PP or PPU) -
An individual computer with its own memory, used for high-speed transfer of information {(input and
output) between peripheral devices and central memory.

Position Counter -
A pointer indicating the bit position within the word of the next item to be assembled in a given block.

Program -
One or more subprograms capable of being executed as a unit.

Pseudo Instruetion -
An assembler-defined instruetion appearing in the operation field of a statement. It normally does not
specify the assembly of a single machine instruction, but instead specifies some other assembly
~ process (such as symbol definition, listing control, and so forth).

Qualified Symbol -
A symbel defined when & qualifier is in effect during assembly. Through qualification, the same
symbol can be referred to in different subprograms without confliet.

Reference Address (RAg) and (RAg) -
‘RA, is the absolute central memory address that is the starting or zero relative address assigned fo
a program. Addresses within the program are relative to RA. RA, is the absolute extended memory
starting address assigned to a program.

Register -
A unit within the eentral processor used to hold operands. The A registers eontain the addresses of
words within central memory; the X registers contain operands used in celculations; the B registers
are used for inerementing and indexing.

Relocation - _
Placement of object code into central memory in locations that are not predetermined, and adjusting
the addresses accordingly.

Remote Assembly -
An operation in which code is assembled, saved, and then inserted into the object code when specified.

Strong External -
An external reference whose satisfaction is obligatory for program loading.

60492600 H E-3

Subprogram -
A group of COMPASS statements beginning with an IDENT pseudo instruetion end ending with an END
pseudo instruection.

Symbol -
A set of characters that identifies a value and its associated attributes.

Symbolie Instruetion -
An assembler-defined instruction appearing in the operation field of a statement. It provides a means
of expressing symbolieally the data manipulation funetions of the machine. Each symbolie instruction
typieally generates one machine instruetion.

System Text -
A set of tables eontaining symbel, miero, maero, and opdef definiticns that ean be saved on a file to be
accessed by other programs.

Transfer Address -
The address of the entry point to which the loader jumps to begin program execution.

Variable Field -
The field in a COMPASS statement identifying operands for the statement. It eonsists of one or more
subfields, and begins with the first nonblank character after the operation field.

Weak External -
An external reference that is ignored by the loader during library searching and cannot eause any other
program fto be loaded. A weak external is linked, however, if the corresponding entiry point is loaded
for any other reason.

Zero Block -

The nominal central memory bloek for a relocatable assembly. It is loeal to a sub-program. Also, a
zero block is ereated for an absolute assembly if default symbols are used.

F-4 L 60492600 K

INDEX

A abort mode 10-2
A code option 4-27
A error 11-9
A list option 4-74
A reference table option 4-80
A register
| Description 8-7, 8-22
Designators 2-8
Setting 8-44
Used for CM relocation 9-2
ABS attribute 4-66
ABS pseudo
Deseription 4-8 :
Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17
First statement group 4-2
Absolute block
Absolute program 3-6
Deseription 3-2
Establishment 4-32
Relocatable program 35
Using 4-32, 4-33
l Absolute CPU Program 4-6
Absolute program
Declaration 4-6
Struecture 3-6
Absolute text 3-5
ACN instruction 9-24
ADC instruetion
Arithmetic function 9-6
Deseription 8-11
Example 2-20, 9-11
ADD instruction
Arithmetie function 9-6
Deseription $§-15
Add unit
Floating point 8-3, 8-6
Long 8-3
Address
Absolute 4-4
Direet 8-15
Entry point 4-4, 4-5, 4-45
External 4-6, 4-9, 4-47
Indexed direct %16
Indirect 815
Address modes, PP 91
ADI instruction
Arithmetic function 9-8
Description 8-15
ADM instruction
Arithmetic function 9-6
Description 9-16
ADN instruction
Arithmetie function 9-8
Description %10
AIDTEXT 8-1, 9-1, 11-11
AJM instruetion 9-19
AOQD instruetion
Description 9-15
Replace funetion 9-7
AOI instruction
Deseription 9-15
Replace funetion 9-7
AOQOM instruction
Description §-16
Replace funetion 9-7
Arithmetie funetions, PP 9-6
Arithmetic shift 8-33

60492600 M

Arrow
Parameter separator 5-8, 5-13
Special character 2-4

ASCII code

Character set A-1
Option 4-27
Assembler 1-1
Central memory requirements 1-3, 10-1
Statisties 4-73, 11-8
Assembly environment test 4-60
Assembly listing
Detailed deseription 11-1
General description 4-73
Generation 1-3
Assembly, remote code 5-3
Assembly time 11-8
Asterisk
BASE instruction 4-25
Element operator 2-22
First colunn 2-1, 2-2
Loeal symbol separator §-31
Location counter 2-9, 3-4
Parameter separator 5-8, 5-1d, 5-16, 5-24, 5-28
Special element 2-9, 2-32, 3-4
USE instruction 4-32
USELCW instruction 4-34
Attribute, symbol 2-3
Attribute test 4-66
AXi instruction 8-32, 8-34

B base 2-17, 2-18§, 4-22
B binary mode 10-2
B list option 4-74
B reference table option 4-80
B register
Conditional junps 8-26
Contents of 4-30
Description 8-7
Designators 2-8
Setting 8-186
Base, assembly 4-23
COL eolumn count 4-31
DIS word count 4-49
DUP count 5-6
ECHO count 5-T
Line count 4-60, 4-61, 4-63, 4-64, 4-67,
4-649, 4-70
Micro count 7-2, 74
Numeric value 2-16
Overlay level numbers 4-4
PP nunber 4-4
REP counts 4-57
Setting through BASE 4-24
SPACE line count 4-76
String count 2-13
VFD count 4-53
BASE micro T-6
BASE pseudo
Description 4-24
Example 4-13, 4-19, 4-26, 4-49, 4-51
Permissible anywhere 4-2
Binary card formats C-1
Binary Control 4-6
Binary control statements 4-1, 4-74, 11-1
Binary load module 3-8
Binary mode 10-2

[ndex-

Binary output generation 1-3, 3-7, 3-9, 3-11,
3-13, 10-2
Binary write 3-8
Blank
Compressed 5-1
Embedded 2-1
Expression terminator 2-1
Name terminator 2-5
Operation field 2-1, 4-48
Parameter separator 5-8, 5-13
Statement terminator 2-1
String terminator 2-14
Use in character data 2-14
Variable field 2-2, 2-3, 3-8
Blank eard 4-76
Blank eemmon
CM 4-32
Deseription 3-3
EC5 4-34
Establishment 4-32, 4-34
Example 4-38
LCM 4-34
S5CM 4-32
Blank fill 2-14
DIS 4-49
Biank operation field 4-47
Bloek
Absolute 3-1, 4-34, 4-38
Blanlk common -3, 4-34, 4-36
Input %22 ’
Labeled common 3-2, 4-32
Literals 2-11, 3-2, 3-5 thru 3-15
Local 3-2, 4-32
Maximum number 3-1, 4-32
Output 9-22
Origin assigned 1-2, 3-5, 3-7
Subprogram 3-1
Used for definition operation 52
User established 3-2, 4-32, 4-34
Zero 3-2, 4-32, 4-34
Block eopy instruction 8-16
Block group 3-1, 3-12, 3-14°
Block group listing 11-2
Block name 3-3, 4-32, 4-34
Block name listed 11-1
Block origin 1-2, 3-5
Block usage summary 11-2
Boolean unit
Bescription 8-3, 8-6
Instructions 8-27 thru 8-31, 8-35, 8-36
Branch instruetions
CPU 8-13, 8-14, B-17, B-23, B-24, 8~-26
PP 9-7
Braneh unit
Description 8-3
Instruections 8-10, 8-14, 8-17, 8-23, 8-24, 8-26
BS5 Pseudo
Descripticn 4-37
Effect on origin counter 3-3
Example 4-4, 4-7, 4-10, 4-16, 4-30, 4-35,
4-38, 4-39, 4-42, 4-48,
5-22, 5-32
Force upper 3-4
BSSZ pseudo
Description 4-48
Dumped by SEGMENT 4-16
Example 2-19, 5-33, 5-35
Force upper 3-4
BXi instruction B8-27 thru 8-31
Byte, guaranteed zero 2-14, 4-5{
Bl=1 or B7-1 pseudo instruction
Description 4-30
Effect on R= 4-55
Example 4-536
Illegal for PP 4-9, 4-10

index-2

C hardware feature code 4-8
C list option 4-74
C on octal listing 11i-6
Call
Equivalenced inacre 5-25
Mgero 5-18
Opdef 5-29
CC instruetion 8-53
CCF instruction 9-20
Central read/write instructions 9-17, 9-1y
Central memory
Read instruction B8-46
Requirements 1-3, 16-1
Write instruction 8-46
Aceess instruetions, PP 4-2
Central processor unit
Functional units B8-3, 8-6, 8-8
Instructions 8-1
Registers B8-7
CFM instruction 9-20
Channel buffer instruction
Read status 8-22
Reset input 8-21
Reset output 8-22
Channel [lag instructions 9-20
Channel [unction 9-24
CHAR
Define other character 4-26
Churacter sets A-1
Character data 2-13
Code conversion 4-26
Evatuation 2-27
Examples 2-12, 2-15

CIPPU 4-11
CMU B-30
Code

CPU operation §-7, 8-1
Duplieation 5-6
Code other 4-26
PP operation 6-3, 9-1
Remote assembly 5-3 ,
Replication 4-57
CODE micro 7-8
CODE pseudo
Deeclare eharacter data code 4-26
Deseription 4-26
Effect on character duta 2-13, 4-49
Example 4-27
Perinissible anywhere 4-2
Coding form 2-3
COL pseudo
Deseription 4-9
Octal listing 11-6
Column one 2-1
COM attribute 4-66
Comma
Charaeter string 2-13
Columnone -1
Continuation 2-1
Expression terminator 2-21
Loeal symbol separator 5-31
Name terminator 2-5
Parameter separator 5-8, 5-14, 5-16, 5-24, 5-28
String terminator 2-13
Subfield delimiter 2-1
COMMENT pseudo
Description 4~20
Example 4-13
First statemnent group 4-2
Comments eolunn eontrol 4-31
Comments {ield 2-2, 2-3, 4-31

- Comments, preflix table 4-20

Comments statement 2-2
Heading of definition 35-13
Micros not substituted 7-1

60492600 M

Comments statement (Contd)
Not eounted 4-59, 5-7, 5-8
Permissible anywhere 4-2

Common common deeks
COMCARG 12-3
COMCCDD 12-4
COMCCFD 12-4
COMCCIO 12-5
COMCCOD 12-5
COMCCPT 12-6
COMCDXB 12-6
COMCMNS 12-7
coMCMOsS 12-7
COMCMTM 12-8
COMCMTP 12-9
COMCMVE 12-13
COMCRDC 12-13
COMCRDH 12-14
COMCRDO 12-15
COMCRDS 12-16
COMCRDW 12-16
COMCRSR 12-17
COMCSFN 12-18
COMCSRT 12-18
COMCSST 12-18
COMCSTF 12-20
COMCSVR 12-20
COMCSYS 12-21
COMCUPC 12-22
COMCWCD 12-23
COMCWTC 12-23
COMCWTH 12-23
COMCWTO 1%-24
COMCWTS 12-25
COMCWTW 12-25
COMCXJR 12-25
COMCZTB 12-25

Compare character strings 4-68

Compare expression values 4-62

Compare/Move unit 8-50

COMPASS control statement
Description 10-2
Eifect on LIST 4-79

Compile file 10-4

Complement and logicsl difference instruetion

Complement and logical sum instruetion 8-30

Complement instruetion 8-29

Compressed code 5-1

CON pseudo
Description 4-54
Example 2-22, 4-535, 5-5, 5-23, 5-26
Force upper 3-4 :

Conecatenation 2-4

Concatenation mark 2-4
Example of use 5-19
In definition 5-1

Conditional assembly 4-59

Conditional jump
B register 8-26
PP 9-7
X register 8-24

Configuration 1-3

Constant
Character 2-14
Description 2-11
Expression element 2-21, 2-26
Field size 2-12
Generated by pseudo 4-54
Mode instructiors 811
Numerie 2-18
Readonly 2-11

Continuation, statement 2-2
Generation of lines 2-4, 7-1

Control statements
COMPASS 10-2

60492600 M

8-31

Control statements (Contd)
Job statement 10-1
Counter control
BSS 4-37
Foreing upper 3-4
LOC 4-38
ORG 4-35
ORGC 4-35
POS 4-40
USE 4-32
USELCM 4-34
Counters, block contrel 3-3, 3-10, 3-12
CPOP pseudo 6-7
CPSYN pseudo
Description 6-10
Permissible anywhere 4-2
CPU instructions
Bloek copy 8-16
Boolean 8-27 thru 831, B-35, B~36

" Branching 8-10, 8-14, 8-17, 8-23, 8-24, 8-26

Channel buffer B8-21, 8-22
Channel status 8-22
Complement 8-29, 8-31
Conditional 8-24, 8-26
Direct LCM transfer 8-19
Pivide 8-42
Double precision 8-38, 8-40
ECS B-156
Error exit B8-14
Exchange exit B-18
Exchange jump 8-17
Fixed point 8-3%
Floating peint 8-34 thru 8-40
Increment 8-44, 8-46, 8-48
Left shift B8-31, B-32
Logical 8-28 thru 8-32
Long add 8-39
Mask 8-42
Multiply 8-39, 8-40, B-41
No operation 8-43
Normalize 8-34
Pack B-36
Pass §-43
Population B8-43
Program stop 8-13
Real-time cloek 8-21
Return jump 8-14
Right shift 8-32, 8-33
Set register B8-44, 8-46, 8-48
Set time 8-21
Shift 8-31 thru 8-33
Single preeision 8-37 thru 8-40, 8-42, 8-43
Table 8-8
Transimit 8-27
Unconditional jump B8-23
Unpack 8-15
CPU program execution 1-3, 10-1
CPU register designators 2-8, 8-11
CPU symbolic machine instruetions 8-1
CRD instruetion 8-17
Created symbol 5-31, 11-8
CRM instruction 9-18
Cross reference table
{(see symbolie reference table)
CTEXT pseudo 4-7%
CR Instruction B8-46
CU Instruction 8-54
CW Instruction B8-48
CWD Instruction 9-18
CWM Instruetion 9-18
CXiInstruetion 8-43

D base 2-17, 4-24
D code option 4-28

Index-

D debug mode 10-3
D definition flag 11-14
D error 11-10
D hardware feature code 4-7
I list option 4-74
Data generation 4-47
Date item
Character format 2-13
DATA pseudo 4-49
General deseription 2-10
LIT pseudo 4-51
Numeric format 2-17
VFD pseudo 4-53
Data notation
Charaeter 2-13
Constant 2-11, 2-13, 2-18
Deeimal 2-17
Element 2-10,2-21
Fixed point 2-17
Floating peint 2-17
Hexadecimal 2-22
Item 2-11, 2-13, 2-16
Litersl 2-12, 2-13, 2-16
Numerie 2-17
Octal 2-17
DATA pseudo
Description 4-48
Example 2-15, 2-18, 2-20, 4-27, 4-33,
4-37, 4-49
Forcee upper 3-4
Data transmission, PP 9-8
DATE micero 7-5
Date of listing 11-1
Dayfile messapges E-1
DCN instruction 9-24
Debug, interactive 1-4
Debug mode 10-3
Decimal exponent 2-17
Deecimal notation 2-17
DECMIC pseudo
Desecription 7-4
Example 5-6, T-1
Permissible anywhere 4-2
DEF attribute 4-67
Default symbols
Definition 2-7
Listing 11-9
Unqualified 4-27
Zero bloeck 3-2
Deferred symbols
(see defnult symbols)
Definition
Equivalenced macro 5-24
Macro 513, 5-15, 5-24
Miero T7-2
Opdel 5-13, 5-27
Processing 5-13
Purging 6-9
Heference 5-18, 5-25, 5-30
Symbal 2-6, 4-44
System 5-35
Definition operation
Duplicated eode 5-6
Equivalenced maero 313
External text 5-2
Maero 5-13
Qperation code 5-13
Processing 5-14
Recursionlevel 5-1
Remote text 5-3
Delete header table 4-20
Delimiter
Actual parameter 5-18, 5-26
Data item 2-135, 2-16

Index-4

[

Delimiter (Contd)
Expression element 2-21
Fleld 2-1, 2-2
Substitutable parameter 5-8, 5-13, 5-16
Term 2-22
Deseriptor, variable field 5-27
Destination field 2-26
Detailed listing 4-74
DF instruction 8-24
Direet address mode Y-135
Directives, loader 4-21
Directory, error 11-8
DIS pseudo
Description 4-47
Example 4-19, 4-51
Force upper 34
Display eode option
Chargeter set A-1
Default mode 2-13
Option 4-27
Divide instructions 8-42, 8-43
DM instruction 8-52
Dallar sign
Lioeal symbeol separator 5-31
Parameter separator 5-8, 513, 5-16, 5-24, 5-28
Special element 2-3
Double precision instructions 8-38, 8-40
DUP pseudo
Deseription 56
Example 5-10, 5-11
Listing of count 11-§
Duplication
Code 5-6
Echoed 5-7
Indefinite 35-7, 5-9
DXi instructions
Add 8-38
Multiply 8-40

E code option 4-27

E entry point flag 1I1-14

E error 11-10

E list option 4-74

E numeric data modifier 2-17

ECHO pseudo
Deseription 5-T
Example 5-12

ECS bloeks 4-34

Editing 24

EE numeric data nodifier 2-17

EIM instruction 8-21

LEJECT pseudo 4-T6
Permnissible anywhere 4-2

Eject suppression 10-4

EJM instruction 9-19

Element
Absolute 2-24
Data 2-11

Expression 2-23, 2-26
External 2-26
Operator 2-23
Repister 2-26
Reloeatable 2-9, 2-25
Special 2-9, 2-23
ELSE pseudo
Deseription 4-60
Example 5-5
Perinissible anywhere 4-2
END pseudo
Assembly of remote code 5-3
Binary generation 3-8
Desecription 4-4
Lffect on bloeks 3-1, 3-6, 3-8, 3-10, 3-12

60492600 M

END pseudo {Contd)

Exemple 4-4, 5-7, 5-13, 5-14, 5-16

External text use 5-3

Force upper 3-4

Mlegal definitions 5-1

Permissible anywhere 4-2
ENDD pseudo

Acting as nil G-6

Deseription 5-10

Example 5-11

Permissible anywhere 4-2

Used with DUE 5-7

Used with ECHO 5-8
ENDIF pseudo

Acting as nil 6-6

Description 4-59

Permissible anywhere 4-2
ENDV pseudo

Acting as nit 6-6

Deseription 5-14

Example 4-31, 5-11, 5-15, 5-19, 5-20, 5-21

Permissible anywhere 4-2
End-of-line mark 51
ENDX pseudo 4-79
Entry address

Absclute 4-3

Declaration 4-45

Multiple 3-12

Relocatable 4-4
ENTRY pseudo

Deseription 4-45

Example 4-5, 4-46
Entry point list 11-4
ENTRYC pseudo 4-45
Environment test 4-80
EOM instruetion 8-21
EQ IF operator 4-62

IFC operator 4-68
EQ instruction

Description 8-26

Example 8-27

Force upper 3-4
EQU pseudo

Description 4-41

Example 2-18, 2-21, 4-19, 4-39, 4-11, 4-64, 5-6

Listing 11-6

Equal sign
Default symbol prefix 2-7
Instruction 4-41

Literals prefix 2-11, 2-13, 2-17
Loeal symbol separator 5-31
Parameter separator 5-8, 5-13, 5186, 5-25, 5-28

ERN instruetion 8-14
ERR pseudo
Description 4-71
Error, assembly
Fatal 11-9
Informative 11-12

Programmer controller 4-71, 4-72

Error directory
Detailed description 11-9
General description 4-73
Error exit instruction B8-14
Error {lags
Conditionally set 4-71
Fatal 11-9
Informative 11-12
Unconditionally set 4-72
Where on listing 11-6
ERRxx pseudo 4-72
Error stop 9-25
ES instruetion 8-14
ESN instruction 9-25
ETN instruction 9-14
Evaluation of expression 2-28

60452600 M

Exchange exit instruction 8-18
Exchange jump instruetion 8-13, 8-17, 8-12.1

Execution, CPU prograin 1-3
EXN instruetion 9-12
Exponent 2-17
Expression
Absolute 2-24
Attribute 4-86
Comparison 4-62
CON wse 4-54
Description 2-23
Evaluatable 2-26
Evaluation 2-21, 2-27, 3-3
Examples 2-24, 2-55
External 2-26
Maximum size 2-27
Operators 2-23
Pass one value 2-27, 3-3
Pass two value 2-27, 3-3
Register 2-26, 8-9
Relocatable 2-25
Rules 2-22
Size 2-26
Types 2-24
Yalue 2-23, 2-%26, 3-3, 8-5
VFD 4-53
EXT attribute 4-68
EXT pseudo
Description 4-47

Illegal in absolute code 4-6, 4-9, 4-10

External BCL
Charaecter set A-1
Option 4-27
External syinbot
Declaration 4-47
Deseription 2-5
Strong 2-7
Weak 2-7
External symbol list 11-4
External text
Assembly 5-2
File declaration 10-3
Listing 4-74

F conditional flag 11-14
F error 11-10
F FORTRAN mode 10-3
F list option 4-74
FAN instruction 9-24
Fatal error flag 11-9
Features of COMPASS 1-2
Field
Comments 2-2, 4-31
Conventional 2-3
Delimiter 2-1, 2-2
Destination 2-25, 4-53
Free 2-1
Length, threshold 1-3
Loeation 2-1
Operation 2-1
Size 2-1
Sublield 2-2
Terminator 2-1
Variable 2-2
File
COMPILE 10-3
INPUT 10-3
LGO 10-2
List gutput 16-3
Load and go 10-2
OLDPL 10-5
OPL 10-5
OUTPUT 10-3

Index-<

File {Contd)
Source 10-3
SYSTEXT 4-17, 10-3, 10-4, 10-5
System text overlay 10-9
Fill
Blank 2-14
Zero 2-14
FIM instruetion 9-21
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-39, B-41
FJM instruction 9-19
Flag, error
Listing 11-6
Setting 4-71
Type 11-14
Floating point data notation 2-16
Floating point unit 8-3, 8-6, 8-6.1
Add 8-37, 8-38
Divide 8-43
Multiply 8-39, 8-40
FNC instruetion 9-24
FOM instruetion 9-21
Foreing upper 3-4
BSS 4-37
Counter 3-4
CPU instructions 8-2
LOC 4-38
Macro ecall 5-18, 5-25
Opdef eall §5-27
ORG 4-35
ORGC 4-35
R= 4-55
USE 4-32
USELCM 4-34
VFD 4-53
Form, COMPASS cading 2-3
Format
Control statement 10-1
CPU instruction B8-1
Line 2-1
Listing 11-1
PP instruction 8-t
FORTRAN 4-4, 10-3
Full list 10-3
Functional units 8-3, 8-6, 8-f.1, 8-6.2, 8-10
Functions, PP
Arithmetic 96
Data transmission 9-8
Logieal 96
Replace 9-7
FXi instruetion
Add 8-37
Divide B8-42
Multiply 8-39

G assembly mode 10-3
G list option 4-74
GE IF operator 4-62

IFC operator 4-68
GE instructions 8-286
Generate binary segment 4-15
Generate system text record 4-17
Generate LDSET object directives 4-22
Generate data words 4-48
Generated code listing 4-74
Generation, data 4-48
Get text mode 10-3
Glossary F-1
GT IF operator 4-6%

IFC operator 4-T4
GT instruction 8-26
Guaranteed zero 2-14, 4-50

Index-6

Hardware configuration 1-3
Hardware feature dependency 4-7
Heading
Informatinn 11-1
Listing 4-73, 11-1
Macro 5-13
Opdef 5-13
Page 11-1
HERE pseudo
Description 54
Permissible anywhere 4-2
Hexadecimal data 2-22

1 code option 4-21

I hardware feature code 4-8

linput mode 10 3

1 NOLABEL option 4-21

1AM instruetion 9-22

IAN ipstruetion 9-22

IBj instruction 8-22

1D instruetion 8-24

IDENT pseudo
Binary generation 3-8 thru 3-10
Blank variable field 3-14, 4-11
Deseription 4-2, 4-11

Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17, -1y

Foree upper J-4
Identily 4-12
Overlay generation 3-8, 3-9, 3-10, 4-12
Progra:n identifieation 4-2
Subprogram identification 4-2
IF pseudo 4-65
1P skipped lines listed 4-74
1FC pseudo
Desecription 4-68
Example 5-5, 5-11
Permissible anywhere {-2
IFCP pseudos 4-61
1FOP pseuda 4-62
IFPP pseudo 4-61
IFtype pseudo 4-61
1JM instruetion 9-19
I8 instruction 8-51 .
Inerement unit 8-3, 8-6, B—14, 8-46, 8-18
Index register 8-7
Indexed address, PP %16, 9-16.2
Indirect address, PP 9-135
Indireet address inode 9$-16
INPN 9-13
Input, assembler 10-3
Instruetions
Coding of 2-1
CMU 8-30
CPU 8-1
Execution 8-2, 8-4
Mnemonically identi{ied 6-3
Nil 6-6
No-operation 8-43, 9-11
PP %1
Pseudo 4-1
Redefinition 5-16, 5-25
synonymous 6-5, §-10
Syntactically identilied 6-7
Integer add B8-39
Integer subtract 8-39
Integer multiply 8-41
Integer value 2-17
Interactive debugging 1-4

* Internal BCD

Charaecter set D-1
Option 4-27
Interrupt Processor 9-13
Invented symbol 5-3%, 11-8
1/0 braneh instructions 4-20.1

604892600

I/0 test and set channel flag 9-20.2
1/0 branch instruetions 9-21
IR instruction 8-24
IRM instruction 9-21
IRP pseudo
Acting as nil 6-6
Description 5-33
Example 5-34, 5-35
Permissible anywhere 4-2
iXi instruections 8-39, 8-41
J option 4-9, 4-10, 9-8
JDATE micro 7-6
Job statement 10-1
JP instruetion
Description 8-23
Force upper 3-5

L control statement option
Description 10-3
Related to LIST 4-74

L error 11-11

L hardware feature code 4-8

L list option 4-74

L loeation flag 4-38, 11-14

Labeled common
Deseription 3-2
Establishment 4-32, 4-34

LCC pseudo
Description 4-21, 4-23

lMegal if absolute 4-6, 4-9, 4-10

LCM attribute 4-66
LCM blocks 3-2, 4-34

LCM transfer instructions 8-16, 8-19

1 Lcv/UEM 87

LCN instruetion
Data transmission 9-6
Description 9-10
LDC instruetion
Data transmission 9-6
Description 9-11
Example 2-20
LDD instruefon
Data transmission 9-6
Deseription 9-15
LDI instruction
Data transmission 9-6
Description 8-15
LDM instruetion
Data transmission 9-6
Description 9-16
Example 5-21
LDN instruction
Data transmission 9-6
Description 8-10
Example 3512, 9-10
LDSET pseudo
Description 4-22
Permissible anywhere 4-2
LE IF operator 4-62
IFC operator 4-68
LE instruction B8-26
Left shift instruetion 8-31, 8-32
LGO control statement 10-6
Library maintenance programs 2-1
Linkage symbols 2-6, 4-43
List, full 10-3
List, parameter
ECHO 3-8
Equivalenced macro 525
Macro 5-18B
LIST pseudo
Description 4-73
Example 4-13, 5-6, 5-12
Permissible anywhere 4-2

60492600 M

List, short 10-4
Listable output
Assembled code 11-5
Assembler statisties 11-8
Binary control eards 11-1
Block usage 11-2
Control statement 10-3
Default symbols 11-8
Entry point symbols 11-4
Error directory 11-§
Error flags 11-9 thru 11-12
External symbols 11-4
Header information 11-1
Literals 11-7
Qctal 11-5
Source statements 11-5
Statisties 11-8
Subtitles 11-1
Symbolie reference table 11-12
Titles 11-1
User control 4-79, 10-3, 10-4
Listing cantrol
Control statement 10-3, 10-4
Pseudo 4-73
LIT pseudo
Deseription 4-51

Example 2-12, 2-17, 2-21, 4-15, 4-58, 5-6

Listing 11-6, 11-7
Literals

Absolute program 3-6, 3-7, 3-10, 3-11

Description of block 3-1, 3-2
IDENT 3-10, 3-14
Listing 11-7
Loeation 1-3, J-1, 3-2
Notation 2-12
Protection 4-35
SEGMENT overlay 3-10
SEG partial ninary 3-12
Symbol (default) 2-7
LJM instruction
Deseription 9-6
Example 5-21
LMC instruetion
Deseription 9-11
Logieal function 9-4
LMD instruetion
Description 8-15
Logical function 8-6
LM instruction
Description 3-15
Logical funetion 9§
LMM instruetion
Description 8-16
Logieal function 9-6
LMN instruetion
Pescription 9-10
Logiesl function $-6
L0 control statement option 10-4
Load address 4-3
Load and store 9-12
Load-and-go file 1-3, 10-2
Loader control stateinent 4-21
Loader directive 4-21
LOC attribute 4-66
LOC pseudo
" Deseription 4-38
Example 4-39, 4-55
Location counter changed 3-4
Loeal bloeks 3-2
Absolute program 3-6
Description 3-2
Establishment 4-32, 4-34
Reloeatable program 3-5

LOCAL statement
Description 5-31
Example 5-32
Heading 5-13

Local symbol
Maero body 5-13
Subprogram 3-1, 4-29

Location counter
BSS 4-37
Control 4-38
Description 3-4
Forced upper 3-4
Position 3-4
ORG 4-35
ORGC 4-35
Special element 2-9, 3-4
USE 4-32
USELCM 4-34

Location field
Listing 11-6-
Statement 2-1

LO control card option
Description 10-4
Related to LIST 4-73

Logical difference instruction 8-29

Logical functions, PP 9-6

Logical minus 2-22

Logieal product and eomplement instruetion 8-30

Logieal product instruetion 8-28
Logieal shift instruction 8-31, 8-32
Logieal sum instruetion 8-28
Long add unit
Description 8-3, 8-4, 8-6, 8-6.1
Instructiors 8-39
LPC instruetion
Description 9-11
Logiedl funetion 9-6
LPN instruetion
Deseription 9-10
Logical function 9-6
LRD instruetion 9-12
LT IF operator 4-62
IFC operator 4-66
LT instruction 8-26
LXi imstrueton
Description 8-31, 8-32
Example 2-19

M basc option 4-25
M list option 4-74
MACHINE pseudo 4-7
Machine instruetion formats 8-1, 9-1, 9-2.1
Machine model correspondence 8-8
Machine test 4-60
Macro
Body 5-13
Call 5-18, 5-25
Equivalenced 35-24
Definition 5-13
Header 5-14
List control 4-74
Name 2-%, 5-15, 5~18, 5~25, -1
Permissible anywhere 4-2
Processing 5-1, 5-14
System defined 4-75, 5-35
Terminator 5-14
MACRO pseudo
Desecription 5-1%
Example 4-31, 4-76, 5-5, 5-19 thru 5-22,
5-32 thru 5-34
IRP related 5-33
Operation code table entry 6-1
Permissible anywhere 4-2

index-8

MACROE pseudo
Description 5-24
Example 5-26
IRP related 5-33
Operation code table entry 6-1
Permissible anywhere 4-2
MAN instruction 9-12
Mask instruetion 8-42
Mass storage, system 1-3
Master list control 4-73
MAX pseudo
Description 4-42
Listing 11-6
MD instruction B8-51
MEMSEL 4-21
MESSAGE maecro 12-25
MI instruction B8-24, 8-26
MIC attribute 4-87
MICCNT pseudo
Deseription 4-44
Example 4-44
Listing 11-6
Perimissible anywhere 4-2
Micro
Decinal 7-4
Definition 4-24, 4-27, 4-28, 7-2
Editing 2-4
Mark 2-4, 3-1
Octal 7-4
Predelined names T7-5
Reference T7-1
Size 4-44, 72
Substitution 7-1
Syslein delined 4-17, 7-3, 7-5
Test for . 4-87
MICRO pseudo
Deseription 7-2
Example 4-14, 5-11, 7-2, 73
Permissible anywhere 4-2
MIN pseudo
Description 4-13
Listing 11-6
Minus as loeal symbol separator 5-31
Minus as parameter separator 5-8, 5-13, 5-184,
5-24, 5-28
Minus on listing 11-6 :
Minus operator 2-21, 2-22, 8-11, 8-12
Minus sign in location field
CPU instruction 3-4, 3-5, 4-53
PP instruction 3-4, 4-33
VFD instruetion 4-53
Md instruetion 8-18
Foree upper 3-4
MJN instruction
Deseription 9-5
Lifect of J 4-8, 4-11
ML control statement option 10~}
Mnemonic operation code
Legal operation {ield entry 2-1
OPDEF defined 5-27
Search for 6-1
Modifliers, numeric duta 2-17
MODIFY common aecks 5-2
MODLEVEL miero 7-7
MOVE maero 12-28
Multiple entry point table
Suppression 4-20
Used for overlays 3-12
MXi instruction
Description 8-42
Example 2-19, 842
MXN instruction 9-12

N eject mode 104

60492600 M

N error 11-11
N list option 4-75
Name
Bloek 4-32, 4-34
Different types 2-4
Duplicate code 5-7, 5-8
General description 2-4
IF sequence 4-59
Macro 5-16
Micro 4-24, 4-27, 4-28, 7-2, 7-4, 7-5
Mnemonic operation 6-1
Overlay 4-11, 4-15
Parameter 5-8
Remote ende 5-3
NE IF operator 4-62
IFC operator 4-§8
NE instruction 8-26
Nesting, level of 1-3
NG instruction 8-24, 8-26
NIL pseudo 6-6
Permissible anywhere 4-2
NIM instruetion 9-21
NJIN instruction
Description 9-7
Effect of J 4-9, 4-10
NO eject option 10-4
NO instruction 8-43
No operation instruetion 9-11
NOLABEL pseudo
Description 1-20
Permissible anywhere 4-2
NOM instruection 9-21
NOREF pseuda 4-78
Permissible anywhere 4-2
Normalize instruetion B-34
Normalize unit
Deseription 8-6, 8-6.1, 8-6.2
Instructions 8-34, 8-35
Not equal sign
Paremeter separator 5-8, 5-13
Special character 2-4
Numerie data 2-17
NXi instruetion B8-34
NZ instruetion B8-24, 8-26

O base 2-18, 4-24
O error
Deseription 11-11
With AIDTEXT 8-1, %1
0O mode 10-4
OAM instruetion 9-22
OAN instruetion 9-22
0OBj instruction 8-22
Octal listing 11-5
Octal notation 2-16
OCTMIC pseudo T7-4
Permissible anywhere 4-2
OLDPL file 10-3

Opdef
Body 5-13
Call 5-29

Definition 5-13

Heading 5-13

List control 4-72, 4-73

Processing 5-14

System defined 4-17, 4-33
QP DEF pseudo

Deseription 5-27

Example 5-28 thru 5-32

Operation code table entry 6-1

Permissible anywhere 4-2
Operand register 8-7
Operation code table 6-1

60492600 M

Operation code value
CPU 6-7,8-1
PP 6-3, 5-1
Cperation, definition
Comnpressed 5-1
Duplicated text 56
External text 5-2
General deseription 5-1
Macro definition 5-13
Opdef delinition 3-13
Remote text 5-3
System 5-35
Operation {ield
Blank 4-48
Deseription 2-1
Seareh 6-1
Operater
Element 2-22
Mnemonic 5-27, 6-3
Register 2-21, 5-28, 6-7
Term 2-22
Operator with constant 2-13, 2-16
OPL file 5-2, 10-3, 12-1
OPSYN pseudo
Deseription 6-5
Perinissible anywhere 4-2
OR instruction B8-24
ORG pseudo
Description 4-35
Determine blocls 3-1
Establish ubsolute bloeks 3-2, 4-35
Example 4-4, 4-7, 4-14, 4-14, 4-16
Location counter changed 4-35
Origin counter changed 3-3, 4-35
ORGC pseudo 4-35
Origin
Multiply entry point 4-3
Overlay 4-12, 4-15
Program 4-3
Origin counter
B3S 4-37
Control 3-3, 4-33, 4-37
Description 3-3
Final value, absolute 3-6
Final value, relocatable 3-5
Forced upper 3-4
ORG 4-35
ORGC 4-35
Special element 2-9, 3-3
UsE 4-32
ORM instruetion 8-21
Overflow error 2-17
Overlay
Absolute 3-8
Control tables 4-21
Entry point 4-12, 4-15
Gieneral description 3-8, 3-8
[.evel numbers 4-4, 4-12, 4-15
Multipie entry point 3-12
Name 4-12, 4-15
Origin 4-12, 4-15
PP 3-7, 3-9
Primary 3-8, 3-9, 3-11, 3-13, 4-12, 4-15
Secondary 3-8, 3-8, 3-9, 4-12, 4-15

P error 11-11

P numeric data modifier 2-17

P pagination mode 10-4

Pack instruction 8-36

Padding of CPU word 3-4, 4-53, 8-2
Page heading 11-1

Page number 11-1

Index-9

Pagination control 10-4 PP instructions (Contd)

Parameter Branch §-7
Aectual 5-7, 5-18, 5-25 Central read/write 9-18
Embedded 5-18, 525 Channel function 9-24
Formal 5-8, 5-13 Constant mode 9-11
Indefinitely repeated 5-34 Designators 9-3
Iterative 5-18, 5-25, 5-34 Direct address 5-15
Substitutable 5-8, 5-13, 5-16, 5-25, 5-28, 5-34 Error stop 9-25
Parameter mark 5-9, 5-13 Exchange jump 8-12
Parameter, null 5-9, 518, 5-25 Format 9-1
Parameter separator Funetions 9-6
Actual 5-18, 5-25 Indexed direct address 9-16
Formal 5-8, 5-13, 5-16 Indirect address 9-15
Parcel B8-1 Machine model correspondence 9-4
Parentheses No address 9-10
Loceal symbol separator 5-31 No eperation 9-11
Nested 5-9 Output recoed flag 9-23.
Parameter separator 5-8, 5-13, 5-16, 5-25, 528 Shift @-9
Partial binary Symbolic machine §-1
_ IDENT type 3-14 PPOP
5EG type 3-12 Deseription 6-3
Pass instruction Example 5-12, 6-5
CPU B8-43 Permissible anywhere 4-2
PP 9-8 PPU pseuda
Pass one Deseription 4-8
Expression evaluation 2-23, 2-26, 2-28, 3-3 Effect on branch Y-8
Genersal deseription 1-3 Example 4-10, 4-54
Maximum test 4-42 First statement group 4-2
Minimum test 4-43 PPU memory size J-21
Symbol definition 2-6 : Prefix table
Pass two Coinments 4-20
Expression evaluation 2-22, 2-26, 3-3 Generation 3-6 thru 3-8
General deseription 1-3) Suppression 3-21
Symbol definition 2-5 Preradix 2-17
Value for MAX 4-42 Program, absolute 3-8, 4-6
Value for MIN 4-43 Program example 0D-1 thru D-8
PC control statement option 10-4 Program execution 10-5
PCOMMENT micro 7-7 . Program identification 4-2
PD control statement option 10-4 Program origin 4-3
PERIPH pseudo Program, reloeatable 3-5
Deseription 4-10 Program stop instruction 8-13
Effect on branch instructions 9-8 : Program structure 3-1
Example 4-49, 6-5 PS5 control statement option 10-4
First statement group 4-2 ’ PS instruction
PJN instruetion Desecription 8-13
Description 9-7 Foree upper 3-4
Effect of 7 4-9, 4-10 Pseudo instructions
PL instruetion 8-24, 8-26 Binary control 4-8
Plus as local neme separator 5-31 Block counter control 4-32
Plus as parameter separator 5-8, 5-13, 5-16, Conditional assembly 4-59
525, 5-28 Data generation 4-47
Plus in loeation field Definition operation 5-1
CPU instruction 3-4 Error control 4-71
PP instruetion 3-5 : : First statement group 4-2
VFD instruetion 4-53 Introduction 4-1
Plus on listing 11-6, D-2, D-3 Listing control 4-73
Plus operator 2-21, 2-23, 8-11 Micro 7-1
Point Mode control 4-24
Binary 2-18,2-19 . Operation code table management 6-1
Decimal 2-18, 2-19 Operation field entry 2-2
Qctal 2-18, 2-19 ' Permissible anywhere 4-2
Pargmeter separator 5-8, 5-13, 5-16, 5-25, 5-28 Required 4-2
Register designator 2-8 Subprogram identification 4-2
Population unit 8-43 Subprogram linkage 4-4%
POS pseude 4-40 Symbol definition 4-40
Position ecounter Types 4-1
- Control 4-40, 4-53 PSN instruetion 9-11
Description 3-4 PURGDEF pseudo
Special element 2-9, 3-4 : Deseription 6-10
Post radix 2-17 Permissible anywhere 4-2
PP instructions 91 PURGMAC pseudo
A-register I/0 9-22 Deseription 6-7
Bloek I/0 8-22 Example 6-6
Braneh I/0 9-19, 9-21 Permissible anywhere 4-2

Index-10 ’ 60492600 M

Push down stack 1-3
PXi instruetion 8-36

Q to represent expression 35-27, 6-8
QUAL micro 7-6
QUAL pseudo
Description 4-2B
Example 4-13, 4-30, 5-22
Permissible anywhere 4-2
Qualifier, symbol 4-28
Used for definition operations 5-2

R error 11-11
R hardware feature code 4-8
R list option 4-75
R register 9-2, 9-3
RAD instruetion

Description 8-15

Replace function 9-7
Radix 2-17
RAI instruction

Deseription 8-15

Replace funetion 9-7
RAM instruction

Description 9-16

Replace function 87
RE instruetion

Description 8-13

Foree upper J3-4
Read central memory instruetion 8-46, 8-17
Read program address %13
Real-time clock set instruction 8-21
Record name, external text 5-3
Recursion level 1-4, 5-1
Recursion stack 1-4, 51
Reference

Macro 5-18

Macroe 5-24

Nested 5-1

Opdef 5-27
Reference table, symbolie 11-13
Register designators

CPOP 6-7

Description 2-8, 8-7

Not symbols 2-3

OPDEF 35-27

OPSYN 6-5

PURGDEF 6-10
Registers, CPU 2-8, 8-7
READC macro 12-28
READH maero 12-28
READO maero 12-29
READS maero 12-29
READW maero 12-29
RECALL macro 12-30
REL attribute 4-66
Relacatable program structure 3-5
Relocatable test 4-66
Relocation, CM access 92
Relocation register

Deseription 8-2, 9-3

Load and store instruetions $12
Remote assembly 5-3
REP pseudo 4-57
REPC pseudo 4-57
Repeat count

DUP 5-7

Replication 4-57

60492600 M

REPI pseudo
Example 4-57
Deseription 4-57
Illegal if absolute 4-6, 4-9, 4-10
REPL table
Result of BSSZ 4-48 .
Result of REP, REPC, or REPI 4-57
Written by SEGMENT 4-15
Replace functions, PP 9-7
Replication of code 4-57
Reserve zeroed sterage 4-48
Retuen jump, CPU 8-14
RFN instruetion 9-23
RI instruction 8-21
Right shift 8-32, 8-33
RJ instruetion
Description 8-14
Example 4-33, 5-21, 8-15
Foree upper 3-5
RJIM instruetion 9-7
RL instruction B8-16
RMT pseudo
Deseription $-3
Example 55, -6
Permissible anywhere 4-2
RO instruction 8-22
Round and normalize instruction B8-35
RPN instructions 9-13
RXi instructions
Add 8-38
Divide 8-43
Multiply 8-40
RXj instruction 8-20
R= pseudo
Description 4-55
Example 4-56, 3-21
Illegal in PP program 4-9, 4-10

S list option 4-75
S numerie data modifier 2-18
5 storage flag 1i-14
5 system text mode 10-3
SAf instruetions
Description 8-44

Example 2-15, 2-16, 2-19, 4-33, 4-38, §-23,

33, 8-45
SBD instruction
Arithmetie funetion Y-6
Desecription 9-15
SBI instruction
Arithmetie funetion Y-6
Desecription 9-15
SBi instructions
Description B-46
Example 2-8, 2-12, 8-47
SBM instruetion
Arithmetie funetion 9-6
Description 8-16
3BN instruetion
Arithmetie funetion 9-6
Description 9-10
Scale, binary 2-18
SCF instruction 9-20
SCM blank common 3-3
SCM lgbeled common 3-2
SCN instruetion
Deseription 4-10
Logical function 8-6

Index-11

SEG pseudo
Binary generation 3-12, 4-18
Description 4-15
Example 4-18
Force upper 3-4
Miegalin PP program 4-9, 4-10
Write partial binary 4-18
SEGMENT pseudo
Binary generation 3-8 thru 3-10, 3-12, 4-15
Description 4-16
Example 4-17
Force upper 3-4
Dlegal in PP program 4-8, 4-10
Overlay strueture 3-10, 312
Semicolon in definition 5-8, 513
SEQUENCE micro 7-7
Sequencing
Listing 11-7
Statement 2-1
SET attribute 4-66
Set output record flag 9-24
Set position counter 4-40
Set register instruetions £-44 thru 8-49
SET pseudn
Description 4-41
Example 2-9, 2-20, 5-11, 5-22
Listing 11-6
SFM instruection 9-20
Shift
Desecription of unit 8-3, 8-6
CPU instructions 8-31 thru 8-33
PP instruction 9-9
SHN instruetion 9-9
Short jump limit 4-9, 4-11
Short list 10-4
Single precision instruetions
Add rounded B8-38
Add unrounded 8-37
Divide rounded B8-43
Divide unrounded B8-42
Multiply rounded 8-40
Multiply unrounded 8-38
SKIP pseudo
Description 4-70
Permissible anywhere 4-2
Slant bar i
Local symbol separator 5-31
Operator 2-22
Pgrameter separator 5-8, 5-13, 5-16, 5-24, 5-28
80D instruetion . : -
Description 815
Replace function 97
801 instruetion
Description %13
Replace function 9-7
SOM instruction
Description 9-16
_ Replace function &7
Space, embedded (see blank)
SPACE pseudo
Description 4-76
Permissible anywhere 4-2
Special elements
FORTRAN-call 2-8
General deseription 2-9
In variable field 2-2
Location counter 3-4
Origin counter 3-3
- Position counter 3-4
SRD instruction 9-12
SST attribute 4-67

Index-12

85T pseudo 4-45

Example 4-13

Permissible anywhere 4-2
Stack, recursion 1-4, 5-1
Statement

Coding conventions 2-3

Comments 2-2

Compressed 51

Continuation 2-2

External source 5-2

First eolumn 2-1

First group 4-1

Format 2-1

Listing 11-5

Number assembied 11-8

Size 2-1

Source of 5-1, 10-3
Statistics, assembler 11-8
STD instruetion

Data transmission funetion 9-6

DPeseription 8-15
STEXT pseudo

Description 4-17

Example 4-19

First statement group 4-2
ST instruetion

Data transmission function 4-6

Deseription 8-15
STM instruetion

Data transmission funetion 9-6

Description 89-16
STOPDUP pseudo

Deseription 3-89

Example 5&-11%
Storage reservation 4-37, 4-48
String, character

Comparison 4-68

Data generntion 4-4Y

Delimited 2-11, 2-14

Empty 2-14

Miero 2-4

Notation 2-13
Strong external 2-7
Subprogram length 3-5
Substitution, miero 7-1
Subsubtitle

CTEXT 4-7%

EJECT 4-T6

Listing of 11-1

QUAL 4-28

SPACE 4-78

TITLE 4-77

TTL 4-78
Subtitle

CTEXT 4-7%

Listing of 11-1

TITLE 4-77
SXi instruction

Deseription 8-48

Example 2-15, 2-18, 5-21, 5-31, B-49

Symbol
Attribute 2-6, 4-40, 4-66
Created 5-32
Default 2-7
Definition 2-5, 4-40
Duplieate 2-6
Entry point 2-6
External 2-7
Invented 5-32, 11-8
Literals 2-6
Loecal to macro 5-13, 5-31

60492600 M

Symbel (Contd)
Local to QUAL 3-1
Location field 2-6
Lost 11-8, 11-13
Number defined 11-8
Number referenced 11-8
Previously defined 2-7
Qualified 2-7, 4-27
Redefinition 4-29, 4-41
System-~defined 2-6, 4-45
Undefined 2-7
Value 2-6,4-39
Symbol qualifier listed 11-1
Symbol table
Clearing 3-10, 3-12
System text 4-17
Symbolic notation 8-1, 8-8, 9-1, 9-2.2
Symbolic reference table
Address reference 4-80
Detailed description 11-12
General description 4-73
Generation 1-3
List eontrol 4-73, 10-3
Omit symbol 4-78
Synonymous operation
CPU 6-10
Mnemonie 6-5
PP 6-5
Syntactic 6-7
Syntax definition 5-27, 6-7, 6-10
Syntax search 6-1
SYSTEM maero 12-30
System text 4-19
SYSTEXT option 10-4
Related to G maode 10-4
Related to STEXT 4-17

T list option 4-73
Table
Operation code 6-1
Symbolic reference 11-12
USE 4-32
THj instruction 8-21
Term 2-22
Term operator 2-22
Terminator, maero 5-13
Test symbel attribute 4-66
Time limit 10-1
TIME micro 7-6
Time of assembly 11-1
Title
ES 8-14
IDENT 4-3
Listing of 11-1
PS 8-13
TITLE 4-77
TITLE pseudo 4-7T7
Permissible anywhere 4-2
Transfer symbol 4-4
Transmit instruction 8-27
Truneation, character date 2-13
Expression value 2-26
TTL pseude 4-78
Permissible anywhere 4-2

60482600 M

U error 11-11
UEM
Block copy instructions 8-15
Direect transfer instruetions 8-20
UJIN instruction
Effect of J 4-%, 4-10
Deseription 8-7
Uncenditional jump
CPU 8-23
PP 97
Underflow ercor 2-18
Unpack instruetion 8-35
USE pseudo

Change blocks 3-1 thru 3- 4, 3-35, 4-32

Deseription 4-32

Establish common blocks 3-2, 3-3, 4-42

Establish local blocks 3-2, 4-32

Example 4-17, 4-30, 4-31, 4-33, 4-16, 4-38

USE table
Entry 4-32, 4-34, 4-35
Reinitialization 3-10, 3-12, 4-11
USELCM pseudo
Description 4-34
Establish common blocks 3-2, 3-3
Example 4-35
Iegal in PP program 4-8, 4-10
USER control statement 10-7
UXi instruction 8-35

Verror 11-11
VYalue, numerie 2-17
VYariable field 2-2
Variable field definition 4-53
YFD pseudo

Description 4-53

Example 2-13, 4-25, 4-30, 4-33, 4-54, 5-22

WE instruetion
Description 8-15
Force upper 3-4

Weak external 2-7

WL instruction 8-16

Write central memory instruction 8-46

Write partial binary 4-16

WRITEC maero 12-31

WRITEH macro 12-31

WRITEO maero 12-31

WRITES macro 12-32

WRITEW macro 12-32

WX} instruction 8-20

X external flag 4-47, 11-6
X external text mode 10-5
X [ile option
Deseription 10-5
XTEXT default 5-3
X hardware feature code 4-8
X list option 4-73
X register
Conditional instructions 8-24
Deseription 8-7
Designator 2-8
Setting 8-48

Index-13

XJ instruetion
Description 8-17
Foree upper 3-4
XREF pseudo
Description 4-80
Permissible anywhere 4-2
| XTEXT pseudo 5-2
Related to CTEXT/ENDX 4-79
XTEXT souree 10-5

Zero block
Absolute progrem 3-2, 3-6, 3-7
Description 3-2
Relocatable program 3-5

Index-14

Zero fill 2-14, 4-53
Zero puaranteed
Date item 2-14
DIS item 4-50
Zeroed words 4-48
ZJN instruction
Desecription 9-8
Effectof J 4-9, 4-10
ZR instruetion
Description 8-24, 8-26
Foree upper 3-4
ZXi Instruction 8-35

6416 PP instructions 9-14

60492600 M

3NN DNOTY 1ND

COMMENT SHEET

MANUAL TITLE: COMPASS Version 3 Reference Manual

PUBLICATION NO.: 60492600

REVISION: M

This form is not intended to be used as an order blank. Control Data Corporatic
welcomes vyour evaluation of this manual. Please indicate any errors, suggeste

additions or deletions, or general comments on the hack (please include page numbe
references).

Please reply No reply necessary

I || Il I NO POSTAGE
NECESSARY

IF MAILED

MINNEAPOLIS, MN.

FIRST CLASS PERMIT NO. 8241

POSTAGE WILL BE PAID BY ADDRESSEE

@5 CONTROL DATA

Publications and Graphics Division

Mail Stop: SVL104

£.0. Box 3492 .
Sunnyvale, California 94088-3492

FOLD F¢

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A,
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY :
STREET ADDRESS:

CLTY/STATE/ZIP:

TAPE : TAP

