~ CONTROL DATA® 6000 SERIES COMPUTER SYSTEMS
. CHIPPEWA LABORATORIES FORTRAN COMPILER RUN

Preliminary Edition

CONTROL DATA CORPORATION

DEVELOPMENT DIVISION - APPLICATIONS

CHIPPEWA LABORATORIES FORTRAN COMPILER

RUN

April 15, 1966

CHIPPEWA FORTRAN COMPILER =~ RUN

Revision 1

Description Add/Insert
Simplified flow charts for the CXP Added to CXP subroutine description
subroutine (pages CXP-4, CXP-5) in section 3
CHAIN subroutine description Inserted alphabetically in section 3
Sample compilation, sheets 1 - 3 Added sheets 1 - 3 at the end of

section 2

CHIPPEWA FORTRAN COMPILER - RUN

TABLE QF CONTENTS

Section
General Description 4 1
Statement Brocessing ' 2
Subroutine Descriptions : 3
Compiler Flow Charts A
Compiler GConstants and Teﬁporaties : B

Execution Time Routines : C

CHIPPEWA FORTRAN COMPILER - RUN

Section 1

GENERAL DESCRIPTION

INTRODUCTION

"RUN", the Chippewa Laboratory's FORTRAN compiler for the 6000 series
computer systeﬁs, generates binary object code directly from FORTRAN II
and FORTRAN IV source programs. The compiler also accepts programs
written in a subset of the ASCENT assembly language, and -in the MACHINE
assembly language. The compiler also accepts certain Control Data 3000
series FORTRAN statements, such as ENCODE, DECODE, BUFFERIN, and BUFFEROUT.

The memory layout of the compiler is shown in Figure 1-1. The combiler
routines are loaded into memory at location RA, and occupy 24,0008
locations. Memory space for the compiler buffers and tables, which
require approximately 63008 locations, is allocated downward from
location FL. The minimum space required by the compiler is therefore
approximately 32,3008 locations. Unless adequate space has been res-
erved for the compiler (by specifying the proper value on the job card),

the compiler will exit without attempting to compile.

The Inﬁut and Output buffers are used by the compiler in conjunction with
the Chippewa Operating System's CIO peripheral package to read in source
cards and to list the source and object programs. The transmittal of
data between the various buffers is illustrated in Figure 1-2. Source
cards from the input file on the disk are read into the Input buffer,
which is 10018 words in length. As source cards are processed they are
transferred, one at a time, into a 108-Word card buffer. Within the
card buffer, the source card is examined to determine if it is a state-
ment card or a comments card. A statement card is transmitted to the
string buffer, where it is initially packed one character per word, and
another card is'brought to the card buffer from the Input buffer, If
the next card is a continuation card, it too is transferred to the

1-1

ONIGvOT INILTIOIENS X&vagl] SNIgna LnoAv] HINUINOD

Figure 1.1

S4344N4 1NN
OGNV '3NIT ‘aavo ‘onidLs
AVI43A0 OL AIAON S3TgVL

: fooor2+vy]
S ang SIIavVL HIUINOI. V Mfmmzt:omm:m AYVHEIT | SINILNOYENS HINWVHO0Md | Wvao0ud 193r80 NIVW | H3TIdWOI 40 AdOS NIVI

LNOAVT H371UdWNOD TVILINI

3774 NIHM

. “AIHIVIH
201 A8 AIONVAQY SI F1GVL V Q2 ONF, NIHM
A3SSIHINOD *gaiom
FSN 40 AININOIYS OL 434 INO AINIvd
INIGY022V LNOo alv1 s318VviL SNOILONYLSNI
—>
4 822211 ool Soie gor So1 Soope (Tvioi FozE) F78VL/SAH0M S0I OL AFZITVILINI
&34-4ng | ¥344n4 Pﬂ%:ﬁ\:\‘ 83408 |¥34ng 834408
indino | Lnani

B —
fooobe vy
1 v
1 | ouvo oz\Emk\,:kmexmqqozqutuumQumquw Amaoumm.zmsou HITNSNOD 40 AJ08 NIV
7YY,
000914

SITEVL HF71dW0D

1-2

string buffer. This process is repeated until an entire statement has
been loaded into the string‘buffer. Since the size of the string buffer,
in which a statement is initially packed one character per word, is

24608 or 132810, the number of continuation cards is limited to 19. All
source cards, including both statement cards and comments cards, are
transmitted directly from the card buffer to the Output buffer for sub-
sequent listing. Depending upon the mode of compilation, object code
instructions may be converted and placed in the line buffer (108 words),

and from there transmitted to the Output buffer for listing.

Once a statement has been transmitted to the string buffer, the first
four characters of the statement are examined to determine the statement
type, and the apprupriate suibcwutine is called to process the statement.
Since the souing buffer is packed one character per word, im most cases
Lie next step is Lo assemble the contents of the string into a sequence
of variables, constants and separators. Since memory assignments

cannot be made until all source statements have been processed, variables
and constants are replaced in the string by various types of tags, and
the variables and constants stored in the compiler tables. (The compiler
tables are expanded as entries are made.) The statement is then analyzed
and the generated object instructions are packed one instruction per
word., In all instructions referencing memory, the K portion of the
instruction will at this point contain a tag. Thus, during the
compilation of a program, the generated object code expands upward from
RA+240008, and the compiler tables expand downward from FL-60008. When
an END card is detected, the generated instructions are packed and memory
assignments made. All tags other than those defining external references
are replaced with addresses, and the compiler tables are reduced
accordingly. Subsequent subprograms are read from the input file and
compiled, the object code for each beginning where the object code of

its predecessor ended. When the end of the input file is reached,
library subroutines are loaded and all subroutine references are replaced
with memory addresses. The compiled program is then written on the disk,
and the compilation procéss terminated., Since the string buffer, card
buffer, and line buffer are not required for the loading of library
routines, the tables are moved up to overlay these buffers before the

library routines are loaded (see Figure 1-2).

In processing MACHINE or ASCENT subprogréms, the compiler transfers source

1-3

4

SOURCE CARDS
FROM DISK

CIO BUFFER FOR
INPUT FILE
STATEMENT CARDS
PACKED ONE CHARAGCTER PER WORD
AND LATER GOMPRESSED
COMPILER CARD BUFFER [h;;:;> STRING BUFFER
T COMPILED
INSTRUGTIONS
ALL
SOURGE
CARDS
SHORT FILE

N . .

CIO BUFFER FOR
OUTPUT FILE

[COMPILER LINE BUFFER]

OUTPUT
LISTING
ON DISK

Figure 1-2

COMPILER BUFFER USAGE

1-4

VVVVVVVVV cards to the string buffer in the manner described earlier. A subroutine
is then called to process the assembly language record., Memory references
are tagged, and the appropriate compiler tables entered. The assembled
instructions are packed in the object program area. During the processing
of the END card, the tags are replaced by memory addresses and constants

are transferred from the appropriate table to the program area.

COMPILER TAGS AND TABLES

As constants, variables, subroutine and function names, and statement
numbers are encountered in the processing of the source language state-
ment in the string buffer, they are entered in one of the compiler tables
and replaced in the string buffer by tags. The tags are entered in
tables also, and their relative position within these tables corresponds
to the table position of the comstnat, variable, external name or state-
ment number which the tag replaced. Many of the compiler tables are

used in pairs: the address-dependent quantity is entered in one table,
and the tag which replaces it in the string buffer is also entered in

the corresponding location in the following table. For example, the
Constant Value Table (Table A) and the Constant Tag Table (Table B)

are paired tables. When a constant is encountered in the source state-
ment, it is converted to its binary equivalent and entered in the Constant
Value Table. A Constant Tag is generated and entered in the string buffer,
and also in the Constant Tag Table. Thus, if the constant was entered in |
location 35 of the Constant Value Table, the tag which replaced it in

the string will be entered in location 35 of the Constant Tag Table.

ihe nine different types of tégs used by the compiler are uniquely
identified by the value of the high-order five bits of the tag. Tags

are advanced as they are assigned: the current value of each tag is
maintained in a temporary (TGA, TGB, etc.). All tags, with the exception
of library tags, are re-initialized prior to the compilation of each
subroutine. Library tags are initialized only when the compiler is

first loaded. Tags are usually advanced by one, although they may be
advanced by two when a double-precision or complex value is entered in

a table. Library tags are advanced by 1008. The types of tags used by
the compiler, and the numeric ranges which these tags may assume, are

listed below.

1-5

Temporary Containing

Listing

Current Tag Value Tag Type Tag Values Indicator
| TGA Program Tag 200000-217777 L
TGI Indirect Tag 220000-237777 I
TGT Temporary Tag 240000-257777 T
TGK Constant Tag 260000-277777 C
TGF Function Tag 300000-317777 F
TGW Array Tag 320000-337777 A
TGV Variable Tag 340000-357777 v
TGH Statement Tag 360000-377777 N
TGL 4900000-600000 S

Library Tag

The listing indicdtor appears on the object code listing preceding the:

tag number as specified in the low-order 15 bits of the tag.

The tag

number as given in the low-order 15 bits may range from 0 to 177778.

Thus, the compiler permits up to 8192 tags of each type.

Constants, variables, subroutine and function references, and statement

numbers are entered in the compiler tables when they are encountered in

the string buffer, as are the tags which replace .these quantities. There

are 26 of these tables.

compiler layout illustration of Figure 1-1.

The location of these tables is shown in the

The size of each table is

initially set at 108 words: as .tables are filled, they are expanded

by lO8 words:

room for the increase.

tables at lower memory locations are moved down to provide

Associated with each table is a temporary which

contains the parameters required to enter, search, and expand the tables.

The format of these temporaries (which are labelled in the compiler as

TBA, TBB, etc.) is shown below.

B parameter
n k\ \ word address

starting
address

next entry
address

Note that this word contains its own address.

36

18

This permits table scanning

routines, which are entered with this word in an X register, to readily

obtain the parameter word for the succeeding table in memory (i.e., para-

meter word address + 1 = parameter word address for the succeeding table).

1-6

TABLE ENTRY FORMATS

TABLE TAG TABLE NAME o 5 8 7 & .5 4 .3 2 |
TBA CONSTANT VALUE < CONSTANT
788 CONSTANT TAG K-TAG L
T8¢ TEMPORARY TAG H-TAG AOUINIIMIM A TN
TBD PERMANENT TAG A-OR K-TAG [A
TBE FUNCTION NAME FUNCTION NAME AN :
TBF FUNCTION TAG F-TAG W] AC]AT /////// M rc-ﬁo:aﬁ:
785G DO NUMBER STATEMENT NUMBER AU VWY - COUNT
TBH DO PARAMETERS INDEX ADDRESS | INCREMENT o uMIT 77 anes
TBK STATEMENT NUMBER STATEMENT NUMBER ALTINI NI ANNNRNY - /v
TBL STATEMENT TAG AH-OR K-TAG r//////////////// I 4
TBM VARIABLE NAME VARIABLE NAME Al
TBN VARIABLE TAG 44 V5 OR W-TAG 1/ /7777777, ////K<\<<<\/\<\ \\(\\
COMMON NAME
TBO COMMON NAME { 7777077 T~
TBP ARRAY TAG 1 a- 0r weras AN o
| 1 TS LeneTn
2ANNNNNNNNNY prmension 1 LENGTH
r8a , 3| DIMENSION 1 | DIMENSION I=2 LENGTH
AR |) NANARN NN SRR
21 aas _A-TAG VARIABLE
I A-TAG A-TAG A-TAG DIMENSIONS
TBR DATA STATEMENT TRANSLATED DATA STATEMENTS
TBX EQUIVALENCE 20 namE SECONDARY NAME LY
TBY EQUIVALENCE 157 NAME PRIMARY NAME BASE ADDRESS
TBZ EQUIVALENCE BIAS AT, 8145
T8S SUBROUTINE NAME SUBROUTINE NAME LENGTH
78T SUBROUTINE TAG L-TAG AWV ¢ | wewo. oF
TBU SUBROUTINE PARAMETER CODE LENGTH TOTAL LENGTH |STARTING ADDRESS| N | “CUMENTS
TBY COMMON BLOCK BLOCK NAME STARTING ADDRESS } 2-WORD
: 0 A it avoress ENTRY
TBW PROGRAM FILE NAME FILE NAME ARGUMENT ADDR, 2-WORD
L 0 A surrer LenaH ENTRY
rer’* ARGUMENT NAME FUNCTION ARGUMENT NAME Al
T* ARGUMENT TAG F-TAG ' /////////////// ////A M i
. 6 6 6
LISTING
TAG BASE VALUE TYPE __ INDICATOR MODE (M) TYPE
mime o omae mmR : e
Eég §§§§§§§ gggégg g%%%‘r::?c g 9: THE I AND Jc::::: ARE USED AS UTILITY TABLES BY
COMPILER TABLES
| Figure 1.3

1-7

The Zormat of the table entries is shown in Figure 1-3. Note that some
tag tables may hold more than one type of tag. Although there are 26
tables, several tables are used as paired tables (see table descriptions)
and so, counting these tables as single multi-word entry tables, we may

consider the compiler tables to be functionally fourteen in number.

The compiler tables, and the manner in which the tags and tables are

used in the compilation process, are briefly described below.

Constant Value Table;

Constant Tag Table: When a constant is encountered in the translation

of a source language statement, it is converted to its equivalent binary
form and entered in the Comstant Value Table. A Constant Tag (K-tag)

is generated, and entered in the corresponding location in the Constant
Tag Table. The Constant Tag replaces the original constant in the string.
The instruction compiled to fetch the constant will be of the form SAi =
K-tag. Constants which are integer or octal in mode, and less than

216

(unless they are subroutine arguments). The instruction compiled for a

-1 in absolute value, are not entered in the Constant Value Table

constant of this type will be of the form SXi = K, where K is the constant
vélue. The Constant Value Table is also used to store format statements
during compilation. The format descriptors are packed in consecutive
words of the Constant Value Table, 10 characters per word, and a Constant
generated and entered in the Constant Tag Table for each word. Sub-
sequent references to the format statement will be compiled with the
Constant Tag associated with the first word of the format statement.

Prior to entering a constant in the Constant Value Table, the table is
scanned to determine if a constant of the desired value has been defined
earlier and, if so, the tag associated with the earlier entry is used

rather than generating a new tag and a new entry.

Temporary Tag Table;

Permanent Tag Table: These tables are most commonly used when a source

program statement references another part of the program which has not
yet been compiled, e.g., a GO TO n statement where statement n has not
yvet been processed. Reference points within the compiled program are
defined by program tags (A-tags). The Temporary Tag Table provides a
means of recording references to points as yet undefined in the program:

The manner in which this is accomplished is illustrated in Figure 1.4.

1-8

— ———

F1dNVX3 :SFTEVL OV ININYNITd 3 JIVEOGIWNIL IO IS

(9vL-v) VL
WV¥00¥d STHL HIIM YHEWNN INIWALVLS HHI OL ONIANOJSTYNOD AWINA
dTIVI OVL INHWALVLIS HHI NI (HVI-H) OVI INIWALVLIS HHI ADVIdTd

dTIVL OVI LNANVRIIJ

JHL NI NOILVDOT ONIANOdSHJI¥0D HHI NI (9V1-V) 9V1 Wvio0ud

HHI ¥AINZ ‘ANNOd NFHM :ITIVLI OVI INIWIIVIS HHL RO¥d QEANIVIEO
(DVL-H) DVI INIWALVIS HHI Y04 TTAVI HVL AIVIOARAL FHL HO¥UVIS

HTEVL OVI INAWILVIS WOYA AMINT ONIANOJSAN™OD 19D ‘annod
NIHM *YEEWON INIWALVLS SIHL ¥0d FTEVI WHIHON ININIIVLS HOJVES

INIRILVLS SIHL

904 QITIJHOD NOIIONYLSNI ISHId ¥Od (9VL-v) 9VL RVIO0¥d FLVIANED e

QHYEINNOONT ST OT INAWHIVIS NHHM

9VL-H 00%0 ‘NOTLONYISNI ATIAW0OD

(@ a14vi) 479vL OVL INAINVWYEd HHI NI A¥INA ONIANOJSIMMOD HANIASTH
$(0 T9VL) ETIVI DVI AYVIOIWHL FHI NI OVL INIRALVLS STHI YdINA

(7 279V1) FT1EvL HVI INAWAIVLIS FHI NI NOTIIVOOT ONIANOJSHII0D
dHL NI LI ¥HINd ANV (OVI-H) DVI INIWAIVIS V FAIVIANIO

(M 479VL) TTEVI IDRNN INIHALVIS FHL NI uwOTu ¥HINI

ONISSED0¥d INIWIALVLS TVILINI

Ol OL @9

1-9

Function Name Table;

Function Tag Table: When an arithmetic statement function is encountered,

the function name is entered in the Function Name Table, and a Function
Tag is generated and entered in the Function Tag Table. Subsequent
references to this function name are replaced in the string by the
Function Tag. When this tag is processed, instructions are compiled to .
'pass the arguments, and then an RJ F-tag is compiled to enter the

coding compiled for the arithmetic statement £function.

DO Number Table;

DO Parameter Table: When a DO statement is encountered, the statement

number which terminates the DO loop is entered in the DO Number Table.
Instructions are then compiled to initialize the DO index. The address
of the SA6 instruction compiled to store the initial value in the index
(i.e., the index store), and the Variable tags (or comnstants) for the
increment and limit values are stored in the DO Parameter_Table; Each
time a statement number is processed, the DO Number Table is scanned to
determine if the statement number terminates a DO loop. If it does,
the entry in the DO Parameter Table corresponding to the statement number
is obtained, and the limit and increment tags (or constants) used to
compile the index incremént and test instructions. When the index
store instruction was compiled, it was tagged with a Program tag (A-
tag). In processing the statement number which terminates the DO,

the address of the index store instruction is obtained from the DO
Parameter Table entry, and a Pﬂ or NG A-tag instruction compiled to

provide the loop return.

Statement Number Table;

Statement Tag Table: Whenever a statement number is encountered in a

source language statement, it is entered in the Statement Number Table
(unless previously entered), and a tag is entered in the corresponding
entry in the Statement Tag Table. This tag may be a Statement Tag, a
Program tag, or a Constant tag. If the first reference to the state-
ment number defines it (i.e., if it is first encountered in the
statement number field), a Program tag (A-tag) is entered in the State-
ment Tag Table. This Program tag will also be used to tag the first
compiled instruction for the statement which had this number. The case

where the statement number is referenced before it is defined was discussed

1-10

earlier (see Figure 1.4). 1In this case, a Statement tag (H-tag) is.
generated and entered in the Statement Tag Table. This tag is later
equated to a Program tag through the use of the Temporary and Permanent
Tag Tables., If the statement number refers to a format statement, a
Constant tag is entered in the Statement Tag Table. This Constant tag
defines the starting location of the format statement in the Constant

Value Table.

Variable Name Table;

Variable Tag Table: When a variable is first encountered in a source

program, the variable name is entered in the Variable Name Table, and

a tag is entered in the éorre5ponding.1ocation in the Vafiable Tag
Table. If the variable is not dimensioned, a Variable tag (V-tag) is
generated and entered in the Variable Tag Table. If the variable is
first encountered in a DIMENSION statement, an Array tag (W-tag) is
generated and entered in the Variable Tag Table. Should the variable

be an argument in a subroutine, a Program tag is entered in the Variable
Tag Table, This Program tag will indicate where this value is located

in the subroutine argument list which follows the subroutine entry point.

Common Name Table: When a COMMON statement is encountered, it is

entered in the Common Name Table to be subsequently processed when the
END statement is encountered. Common block names appear in the lower

42 bits, while common variable names appear in the upper 42 bits.

Array Tag Table;

Array Parameter Table: When a variable is encountered in a DIMENSION

 statement, the variable name is entered in the Variable Name Table, and
an Array tag is entered in the corresponding entry in the Variable Tag
Table. This Array tag is also entered in the Array Tag Table, while the
dimension parameters are entered in the corresponding location in the
Array Parameter Table (see Figure 1.3 for the format for 1, 2, and 3-
dimensional arrays). If the dimensions are variables, the Array
Parameter Table will contain a Program tag (A-tag) for each dimension
parameter.' This program tag will indicate where this value is in the
argument list which follows the subroutine entry point. If the dimensions
are constants, the Array Parameter Table will contain the values of the

dimensions and (for 3-dimensional arrays) dimension product.,

1-11

Data Statement Table: When a DATA statement is encountered, it is

partially translated (i.e., variables are replaced by tags, constants
are converted, etc.) and entered in the Data Statement Table to be

subsequently processed when the END statement is encountered.

Equivalence Second Name Table;

Equivalence First Name Table;

Equivalence Bias Table: When an EQUIVALENCE statement is encountered,

the variable names and bias values specified in the statement are
entered in the equivalence tables. The equivalence tables are processed

when the END statement is encountered.

Subroutine Name Table;

Subroutine Tag Table; _
Subroutine Parameter Table: When a SUBROUTINE, FUNCTION, or CALL

statement is encountered, or when a function subprogram reference is
found, the subprogram name is entered in the Subroutine Name Table.

A Library tag (L-tag) is generated and entered in the corresponding
location in the Subroutine Tag Table. When the subprogram is compiled,
the length of the compiled code, the total length (including compiled
code, constants, local variables, etec.), the starting address, and the
number of arguments are assembled into a single word and this word is
entered in the Subroutine Parameter Table entry which corresponds to the
subroutine name. The first entry made in each of these tables is for

the main program.

Common Block Table: The Common Block Table is one of the tables in which

entries occupy two consecutive locations. When the COMMON statement

is first encountered, the common name and the block name are entered

in the Common Name Table. During the processing. of the END statément,"
the block name, together with the starting and ending address of the
block, is entered in the Common Block Table in the format shown in

Figure 1.3.

Program File Name Table: When a PROGRAM card is encountered, the argu-

ments on the card are ‘'entered in the Program File Name Table in two

consecutive words., The first word contains the file name and the address

of the CIO parameters for the buffer assigned (the CIO parameters
occupy the first lO8 words of the buffer area). Tﬁe second word of
the Program File Name Table contains the buffer length for the file.
If no buffer length is specified, this length entry is set to 20108.
(This includes the space occupied by the CIO parameters.)

Argument Name Table;

Argument Tag Table: Although the nominal purpose of these tables is to

assist in the processing of arithmetic statement functions, the Argument
Name and Argument Tag Tables serve as compiler utility tables, and are
used for a variety of purposes. For example, these tables are used in
processing the EQUIVALENCE statement, in computing array references, and

in processing the END statement.

While most of the compiler tags define quantities appearing in a source
statement, the program tag (A-tag) is used to define locations within

the compiled objéct code. Dufing the compilation process, the generated
instructions are packed in the upper 30 bits of a word, one instruction
per word. °‘All address fields in the generated instructions contain

tags of various types. When the END statement is encountered, these tags
are replaced with addresses and the object code is then compressed.

When instructions are compiled for a statement which has a statement
number, a program tag is entered in the low-order 18 bits of the word

containing the first instruction compiled for this statement. For

example, a statement such as I 0 might be compiled as

SX6 0
SA6 = V-tag;

o

if it were an un-numbered statement. If, however, this statement had

a statement number, it might be compiled as

SX6 = 0 ! A-tag
SA6 V-tagg

This program tag serves two purposes. First, a source program transfer
of control to the numbered statement will result in the compilation of
a jump instruction in which the address field contains this program tag.

When the END statement is processed and the object code is compressed,

1-13

the program tag in instructions referencing the first instruction compiled
for the numbered statement will be replaced with the address of this

first instruction. Seéondly, since the appearance of a program tag in

the low-order bits of a word containing a compiled instruction indicates
that this instruction is referenced elsewhere in the program,‘the
instruction must be forced to the upper parcel(s) of a word when the

object code is compressed.

Program tags are also used to define subroutine parameters. Since all
tags (with the exception of library tags) are initialized at the beginning
of subroutine compilation, there is a fixed relationship between the value

of the program tag and the parameter niumber, as shown below.

Subroutine Word No. - Contents Program Tag
1 Subroutine Name 100002
2 Number of Arguments L00003
3 Parameter 1 L00004
4 Parameter 2 100005
n Parameter m. L0000 (M+3)
n+l Entry Line L00001

Since the first six parameters (i.e., argument addresses) of a subroutine
are also passed in a B register, there is a fixed relationship between
the parameter number, the register in which it appears, and the program

tag assigned to the parameter.

Register Associates

To assist in minimizing the number of fetches generated, the compiler
utilizes 19 temporaries called Register Associates. These temporaries
are associated with registers A0-A5, Bl-B7, and X1-X6. As instructions
are compiled for a source language statement, these Register Associates
are updated to reflect the contents which the X, A, and B registers will
have during the execution of the object program. For example, suppose
an SAZ instruction is compiled to fetch a variable. The address field
of the SA2 instruction will contain a variable tag (V-tag) which will be
replaced by an address during‘the processing of the END statement.. When

this instruction is compiled, this variable tag is entered in the X2 and

1-14

A2 Register Associates, indicating that the X2 register contains the
value of the variable while the A2 register contains its address. Before
compiling a subsequent fetch, the Register Associates are examined to
determine if the value is already available or, failing that, if the
address is available and a 15-bit fetch instruction can be generated
(i.e., in place of a 30-bit fetch imstruction). Should subsequent ‘
instructions be compiled which use the X2 register as a result register,

the X2 Register Associate will be cleared.

Compiler Master Loop

The flow chart for the compiler master loop is shown on pages A-1 and
A-2 of Appendix A. The master loop may be considered as being composed
of an outer loop and an inner loop. The outer loop controls program
and subprogram processing, while the inner loop controls statement pro-
cessing. The main functions of the compiler master loop are described
below.
After clearing the Chain and Error indicators, the
compiler calls the peripheral processor package
"CHK" to determine the status of the QUTPUT file.
This status is subsequently used to determine what,
if any, repositioning of this file is required.
The compiler then picks up the field length from
the AO register and, unless a field length of at
least 320008 words was specified, immediately exits.
If the specified field length was adequate, the
Initialize for Input/Output (II0) routine is called
to set up the compiler buffers and to process the
COMPILER " compiler arguments from the RUN card. These
INITTALIZATION arguments aré passed to the compiler in locations
RA+2, RA+3, etc., during the loading of the compiler.
The order in which these arguments appear, and the
value assigned by the compiler if an argument is
omitted, are shown in Figure 1l-5. 1IIO also enters
the string buffer starting address (FL-6000) in the
AO register, where it will remain for the duration
of compilation. Next, the Read Next Card (RNX)

subroutine is called to bring the first card to the

1-15

VALUE IF NOT

SPECIFED
RA+ 8 | LINE LIMIT 200004
‘RA+ 7 | OUTPUT FILE ‘ouTPUT”
RA+ 6 | INPUT FILE NPUT”
ra+5 | BUFFER LENGTH 20104
RA+4 | COMMON LENGTH AS PER MAIN PROG.
RA+3 | PROGRAM LENGTH JOB LENGTH
RA+ 2 | COMPILE MODE 6"
rA+ /| | O 0
RA 0 . 0

NOTE: THE FIELD LENGTH FROM THE JOB CARD IS IN AgON ENTRY.

Figure 1-5

1-16

Card Buffer. This routine is used throughout the
compiler to transfer a card from the Input Buffer

to the Card Buffer and, if the Input Buffer is empty,
to initiate a CIO call to fill the buffer. The
Initialize Prograﬁ Tables (IPT) subroutine is called
to initialize the Library tag, set the Short File
Start and Long File Start, and to set up the Subroutine
Parameter, Common Block, and Program File Name Tables.
These tables are initialized only at the beginning

of compilation: all other tables, with the exception
of the Argument Name and Argument Tag Tables, are
initialized each time a program or subprogram is
compiled. The Argument Name and Argument Tag Tables

are initialized as required.

The Initialize Subroutine Tables (IST) routine is
called next. This subroutine initializes the
remaining tables and tags, and sets A7 to the Short
File Start address. During compilation, the A7
register will always contain the address of the last
instruction compiled and X7 will be used to store
instructions as they are éompiled. (Note: the
return to compile the next subroutine is made to
this point in the master loop.) RNX brought the
first card into the card buffer: this card is

‘ examined to determine if it contains a + or - in

SUBPROGRAM column 1. If it does, then the following program or

INITIALIZATION subroutine is not a source program but a binary deck,

‘ ~ and control is transferred to the END statement
processor Which will load thé binary object deck,
extract any external réferences, and enter theserin.
theSubroutine Name Table. If the first card does

'not contain a + or - in column 1, the Assemble FORTRAN
Statement (AFS) subroutine is called. This subroutine
transfers source cards from the card buffer to the

String buffer, packing one character from the card

1-17

into one word in the string buffer. AFS also trans-
mits the source card to the Output Buffer (via the
WNX routine) for listing. Next, AFS brings the

next card to the card buffer and examines it to
determine if it is a continuation card. If it is,
is also is loaded in the string buffer. If the next
card i1s a comments card, AFS transmits it to the
Output Buffer. This process is repeated until AFS
finds a non-comments, non-continuation card in the

card buffer.

The first.seven lettexrs of the statement assembled in
the string buffer by AFS are examined to determine if
they are ASCENTF, MACHINE, or FORTRAN. If these

letters are ASCENTF or MACHINE, the subprogram mode
indocator (and subsequently the program mode indicator, .
if this is a main program) is set to -2 or -1,
respectively. If these letters are FORTRAN, the next
two letters are examined to determine if they are I1I,
IV, or VI, and the mode indicator(s) set accordingly.

If the card does not begin with ASCENTF, MACHINE, or
'FORTRAN, a FORTRAN IV compilation is assumed. (This
mode is set by the Initialize Program Tables subroutine.)
If these letters appeared on the first card, they are
blanked out and the next seven letters are assembled.
These letters are compared with entries in the table

of Program Title Types: PROGRAM, SEGMENT, SUBROUT,

DETERMINING FUNCTIO, END, and BLOCKDA. If not found in this
COMPILATION table; the letters are examined to determine if they
MODE are the FUNCTION predecessors DOUBLE PRECISION, DOUBLE,

READ, INTEGER, LOGICAL, or COMPLES. If they are, the
function type iﬁdicator is set adcordingly, these
letters are blanked out, and the next seven letters
assembled and checked. The header card is passed on
to the inner portion of the compiler's master loop

for processing. If the card was a PROGRAM card, the
Program/Subprogram Indicator is set to zero: otherwise,

it is set to a non-zero value, This indicator is

1-18

STATEMENT
PROCESSING
INITIALIZATION

STATEMENT
RECOGNITION

exémined.by the END statement processor to deter-

mine if tags should be replaced by absolute memory
addresses or by memory addresses relative to the start
of the subprogram when subroutines are separately

compiled,

The statement processing portion of the compiler
master loop is now entered. (The program title card,
or header card, is.passed on to this portion of

the compiler master loop for processing.) Various
statement-related flags and indicators are cleared,
and a program tag is generated and saved as the
Current Program Tag. The Get Statement Number (GSN)
routine is called to assemble the statement number,
if any, associated with this statement. Processing
of this statement number will be performed after this

statement has been compiled.

Column 1 of the source card is checked to see if it
contains an F (FORTRAN II external fumction) and,

if it does, the Process Function Name (FUN) sub-
routine is called to process the function. If the
statement is not a FORTRAN II external function, the
first two letters are examined and, if these letters
are DO. If they are, the Sense DO Statement (SDO)
subroutine is called to determine if the statement

is a DO statement and to initiate DO statement
processing. 1If the statement is not a DO statement,
the Sense Formula (SFO) subroutine is called to
determine if the statement is an arithmetic statement
and to initiate arithmetic statement processiﬁg. If
the statement is not a FORTRAN II external functionm,

a DO statement, or an arithmetic statement, the first'

four letters of the statement are assembled and used

to scan a Statement Letter group Table, If the state=-
ment is not found in this table, and the four letters
are not TYPE, a Format Error diagnostic is generated.

If the statement is found in this table, the Current

1-19

Jump and Continue indicators are processed, and a

jump table used to transfer control to the appropriate
statement processing routine. (Note that the

relative location of the statement within the State-
ment Letter group table indicates if the statement

is executable or non-executable.

Statement processing routines generally enter the

Process Statement Number (PSN) subroutine upon com-

RETURN FOR pletion of statement processing, and this routine
NEXT in turn returns control to the compiler master
STATEMENT loop. If the program title card called for a

MACHINE or ASCENTF assembly, the Process Machine/

Ascent Records (MAA) subroutine is called.

1-20

CHIPPEWA FORTRAN COMPILER =~ RUN

Section 2

. STATEMENT PROCESSING

. INTRODUCTION

At the time the statement processing routine .is entered from the compiler
master loop, the source language statement in the string buffer is packed
one character per word. Most statement processing routines call the
Normalize Statement (TAB) subroutine. The TAB subroutine (see TAB
description in Section 3) assembles the contents of the string buffer
into a series of words containing variable, constants (which may occupy
more than one word) and separators. The TAB subroutine also enters the
format statement in the Constant Value Table. Next, the Translate
Individual Quantities (TIQ) subroutine is called. TIQ translates the
contents of the string buffer into avsequenée of tags, separators, and
constants which can easily be manipﬁlated by the statement processing

routines. The TIQ subroutine is discussed in Section 3.

There are two indicators which are tested during the processing of most
executable statements as well as in the compiler master loop. One of
these.is the Current Jump Indicator, which is used in the processing of
arithmetic statement functions and logical IF statements. Since arith-
metic statement functions may occur anyplace within the source program,
it 1s necessary to compile a jump over the code generated for a function,.
Therefore, before compiling the instructions for the function, a
Statement Tag (H-tag) is generated and entered in the Temporary Tag
Table; the corresponding entry in the Permanent Tag Table is reserved,
and an 0400 H-tag instruction is compiled for the jump over the generated
code for the function. The Current Jump Indicator is set to the address
of this jump within the compiled code. Similarly, in ‘the case of the
Logical IF statement, a jump instruction over the coding generated for

the TRUE condition must be compiled. In this case, an 0200 H-tag is

2-1

compiled and the Current Jump Indicator set to the address of this jump
instruction. The Current Jump Indicator is carried along during the
processing of non-executable statements and other arithmetic statement
functions. When an executablé statement is encountered, a Program tag
is used to tag the first instruction compiled for this statement. The
éddress contained in the Current Jump Indicator is used to obtain the
jump instruction, and the Statement tag (H-tag) is extracted from the
jump instruction. The Temporary Tag Table is then searched for the
entry containing this tag, and the Program tag (A-tag) entered in the | i
corresponding location in the Permanent Tag Table, t@us equating the
two tags. The use of the Current Jump Indicator is illustrated in

Figure 2.1.

A second indicator which must be examined when a statement is compiled
is the Continue Indicator. If a CONTINUE statement is encountered which
does not terminate a Db loop, the Continue Indicator is set., This
indicates that the A-tag which otherwise would be generated for the
CONTINUE stétement is instead to be assigned.to the first executable
statement following the CONTINUE statement. This is accomplished by

the compiler master loop which, during the initialization performed for
each statement, geherates a Program tag and enters it in the X7 register,
thus tagging the first instruction compiled for the next statement. If
'the‘Continue Indicator is set, this tag is left in X7 for subsequent
processing. If the Continue Indicator is not set, the X7 register is

cleared before a transfer to the statement processing routine takes place.

HEADER CARDS ‘ 1 _
Five different types of header cards are acceptable to the FORTRAN compiler:

PROGRAM, SEGMENT, FUNCTION, SUBROUTINE, and BLOCKDATA. All but the last

may have formal parameters included on the card. BLOCKDATA is a special

type bf;subprogram which contains only declarative statements. PROGRAM
and SEGMENT are closely related because the name appearing on the card

of éither is the identifying name of file on the disk containing the
object program as the first record. Each of these files may‘contain many

SUBROUTINE and/or FUNCTION subprograms.

2-2

GANT INIT&AD 3AL 30 380

dTdVE OVI LNINVREdd dHL NI

|— sINIREIVLIS ONIQAIOONS
Jod da0D LO0Ifd0 —

OVL-V TXXXXXX |

NOILLONNA
INIWHLVLS OILINHLIVNV
Y04 dA0O AALVIINED

(9vi-H) 0020

SINAWALVLS ONIQHOddd
Y04 da0d 10drdo

NOILVDOT ONIANO4dSHJ¥0D HHI NI QHYILINT SI OVLI-V
dTdVL OVL X¥VIOdWHEL MHL NI dE¥dINI SI OVI-H

NOILVIIdHOO
NOTLONAA INARELVLS DILUWHLII¥V

INIRILVLS
ONIQIIOONS
40 NOILONYISNI
J4dTIdHOD LS¥Id

A

dRAC INTIIND l\ﬂw

INIWELVLS ONIaEddONns J0
NOILONYLSNI QATIJROD LS¥IA

SINIWHLVLIS ODNIAHHDONS
——— ¥0d JAOD 1DO4drdo

ovi-Vv XXXXXX

SNOLLONYISNI TYNOILIANOD
41 TVOI90T

(9v1-H) 00€0

SNOIIOMILSNI TVILINI
4T TVOIO0T

1

SLNIWILVLS ONIQdDHdd
go4d Hdod L1odrdo

NOILVIIdWOO 4T TVvOIDOT

Figure 2.

2-3

PROGRAM and SEGMENT differ in that numbered or blank common and the I/0
buffers are initialized with a PROGRAM declaration but not with SEGMENT.
Both are compiled to be read in from the disk beginning at RA. Any SEGMENT
called will completely overlay the main program and its subroutines, but
the I/0 buffers and common will not be disturbed. A SEGMENT may be called
repeatedly by any other segment or from the main file, and arguments may be
transferred through COMMON. Any SUBROUTINE or FUNCTION referenced within a
SEGMENT must be compiled with it because no portionAof the main program or
previous segment is available for use. The maximum number of I/0 files re-
ferenced by the main program or any segments called must be declared on the
PROGRAM card because only in this way is the buffer reserved for the file,

All segments to be chained must be compiled with the same file names.

If no length is specified on either the RUN card or PROGRAM card for the
buffers, then 20108 words are reserved for each file declared. An individual
buffer length may be specified on the PROGRAM card which will override that
specified on the RUN cérd, but neither length may be less than 10018 words.
Equivalenced files will utilize the same buffer. Instructions are compiled
to initialize buffer parameters, to set unused memory space to indefinites
and blank or numbered common area cleared to zero upon encountering the

PROGRAM card.

The mode of the FUNCTION is set from the preceding type declaration or by
checking the first character of the name. This mode must agree with the

type from a previous reference or the diagnostic "FUNCTION TYPE ERROR"
results. An "ARGUMENT COUNT ERROR" identifies a previous call requiring
more arguments than are béing compiled. All arguments on a SUBROUTINE or
FUNCTION card receive a location tag pointiﬁg to a reserved word beginning at
the third relative word of the subprogram. Since the addresses of the first
six arguments are passed to the subprogram via index registers Bl1-B6, instru-
ctions are compiled to pack the address, three per word, into two temporary
words. Bl and B4 occupy the lower 18 bits of the two words with B2 and B3
packed in the next 18 bit portioms of the first word. B5 and B6 reside in

the second word in the same relation as B2 and B3.

A more detailed discussion of this initialization process is contained
in the Process Name and Arguments (PPG) subroutine description in

Section 3.

2-4

DO STATEMENT PROCESSING

In initialing the processing of a source language statement, the compiler

master loop checks the first two letters of the FORTRAN statement to

" see if they are "DQ". If they are, a routine called Sense DO Statement
(8DO) is called to determine if the statement is actually a DO statement.
The basic steps performed by SDO are tabulated in Figure 2.,2. SDO

scans the first part of the statement to determine if it has the sequence

[DO] [number} [variable] [=]

If this sequence is found, SDO scans the Variable Name Table for the
variable and, if found, examines the cérre3ponding tag from the Variable
Tag Table to determine if the mode indicator for the variable is a 2
(integer mode). If the variable is not in the Variable Name Table, the
first letter of the variable is checked to determine if it is I, J,

K, L, M, or N, If the above sequence is found, and if the variable is
an integer variable, SDO assumes that the statement is a DO statement,

and proceeds with DO initialization processing.

The TAB subroutine is called to normalize the statement. Since executable
instructions will be compiled to initialize the DO loop, the Current Jump
and Continue indicators are processed. If the DO statement itself was
numbered, a Program Tag (A-tag) is entered in X7 to tag the first
executable _ihstruction of the DO statement. Next, the TIQ subroutine

is called to translate the statement into a sequence of separators,

tags, and constants. TIQ will make any necessary entries in the

Variable'Name and Constant Value Tables.

The CDI (Compile DO Initial Iﬁstructions) subroutine is then called to
compile the DO loop initialization instructions. The basic steps
performed by this routine are illustrated in Figure 2.,2. CDI enters
the statement number (of the DO termination statement) in the DO Number
Table (Table G), and then examines the string entry for the initial
value (i.e., nl) to determine if the initial value is a variable or a
constant. If the initial value is a constant, CDI compiles an SX6 = K
instruction to set the initial value. Should the initial value be a

variable (i.e., as indicated by a variable tag in the string) CDI calls

2-5

(H 979V1) FT9VI YHIIRVIVd @¢d THL

NI 93INT : (INVISNOD ¥0) 95VI ILIWIT
AHL ANV ©(INVISNOD ¥0) 9VI INIRIUONI
HHL ‘TY0LS XAANI J0 SSHYAAV ATIRASSV

XdONI FI0LS OL OVL-A = 9VS HTIdWOD

(9X NI FTdVIIVAV wa«mmm< SSA'INA) 9X 01
HNTVA TVILINI ONIY¥d Ol *X = 9Xd9 dTIdHOD

dHLSIONE X NV NI HTdVIIVAV AQVHA'IV
C SSATINN HATVA TVILINI HOIEAL OL
‘g = 'Vs 40 9VI-A = 'VS TTIAROD

SHTIVIYVA V ST Tu d1

XJANI JHL
JZITVILINI Ol NOD = 9XS HTIdROD

1

INVISNOD V ST "U 4T

(9 479vL) FTIVI IITHON
@a NT SIOWNON INIWILVIS MHINH

(SNOIIDOMYLSNI TVILINI ¢a ATIJHOD)

SNIS53008d INIWILVIS Od

SNOTLOMILSNI TVILINI
dTIdWOD OL IadD TIVD

INIWALVLS HLVISNVIL
INIWALVLS HZITVIRION
NOIS TVNDE HSNEIS
HAOW ATEVI¥VA HSNAS

ITdId4 IXIN
NI dTdVI¥VA FSNHS

aTdigd
IXIN NI ¥YI9WON ESNHES

w@du SYALLAT HSNAS

Figure 2.2

(LNIWILVLS OQ dSNAS) 0dS

2-6

P the CIR (Compile Read Instructions) subroutine to compile a fetch instruction
for the initial value. It is possible that the variable used as the

initial value may (at execution time) be available in an X register.

In this case, CIR will not generate a fetch instruction, but will supply

CDI with the number of the X register in which the variable can be found

at execution time. Whether or not a fetch instruction had to be compiled,
CDI next compiles a BX6 = Xi instruction to bring the initial value to a

write register.

CDI next compiles an SA6 = Variable Tag instruction to store the ihitial
value in the index location. A program tag (A-tag) is set in the lower
half of the word in which this compiled instruction is stored, since
this instruction is the return point from the bottom of the DO loop.
Next, CDI examines the string to determine if an increment has been
specified. If an increment has not been specified, the increment value
is set to 1. If there is an increment entry in the string buffer, CDI
examines the entry to determine if it is a variable tag for an integer
variable or a constant. If it is not, an error exit occurs. The limit
field is similarly checked. An example of the initial code compiled

for the DO is shown in Figure 2.3.

Finally, CDI assembles the address of the index store instruction, the
increment tag or constant, and the limit tag or constant into a single
word (see Figure 1-3 for the format), and enters this word in the DO
Parameter Table, (Table H). When the statement number of the statement
which terminates the DO loop is encountered, these parameters will be
used to compile the index test instructions. Processing of the DO

1s now complete, and so CDI jumps to PSN (Process Statement Number) to
process the statement number, 'if any, associated with the DO statement,
and from there control is returned to the compiler master loop for

processing of the next statement.

Each time the compiler master loop processes a source statement, it calls
the GSN (Get Statement Number) to perform the initial statement number
— processing. GSN determines if the statement which is about to be
| processed has a statement number, and, if so, extracts this statement
number from the string buffer. GSN then scans the Statement Number

Table and the DO Number Table for this statement number: if the

2-7

YALSIONT € V.

NI JTHVIIVAV SYM SSHYAAV XIANI 41

INIOd NINLTY JOOT SMUVH
T (9VYL-V) VL WvID0dd

JALSTIOAT d
V NI dTdVIIVAV SS3¥AAv
ANTVA TVILINI ‘ET19VI¥VA

JILSIDHT X NV NI

HTEVIIVAV AQVIITV ATAVIYVA

HTIVIIVA

INVLSNOD

i

i

Tu

oVL-Y g = gvs

7 ,

U.Mwé OVI-A = 9VS
V////// Mx = oxd
00 e s

\\§ fx = oxa
///// FX = oxq
\\\ \\ //ovi-n = Tvs
v e =

J 1

XdaNT
NI HATVA TVILINI HJ0LS

dOTVA TVILINI L3S

3002 NOILYZITVILINI 4001 00

‘¢

1

Figﬁre 2.3

2-8

statement number is found in both tables, the DO termination indicator
is set. The instructions for this statement are then compiled (unless
the statement is a CONTINUE statement) and then the PSN (Process State-

ment Number) is called to process the statement number.

PSN checks the DO termination indicator: if this indicator is not set,
PSN scans the Statement Number Table for the statement number and, if not
found, enters the statement number in the Statement Number Table. The
current program tag (A-tag) is entered in the Statement Tag Table, and
the PDT (Process DO Tables) subroutine is called to compile the index
test instructions. PDT first checks the Continue Indicator and the
Current Jump Indicator, and processes these indicators if they are set.
Next, the DO Number Table is scanned and, when found, the corresponding
entry in the DO Parameter Table is saved. This entry is then deleted
from the DO Number Table. The address of the index store instruction is
then compared with the start of the group of instructions compiled for
this statement (i.e., the DO termination statement) to determine if

this is a one-statement DO. If so, an indicator is set, since one-
statement DO loops are later analyzed to determine if the generated

object code can be improved.

Next, the index store instruction was examined to determine if it was

an SA6 = Bj instruction. If it was, the index address was the parameter
of the subroutine, and so a Program tag can be formed by adding the B
register number to a base tag value of 200003 (see page 1-14). If the
index store was an SA6 = V-tag instruction, the Variable tag (V-tag)

is extracted from the instruction. The Variable tag or Program tag
which defines the location of the index is passed to the Compile Read
Instructions (CIR) subroutine. CIR will generate a fetch instruction

(1f necessary) to fetch the index value. The increment parameter is next
extracted from the DO Parameter Table entry, and examined to determine if‘
it is a Variable tag or a constant. If the increment parameter is a
Variable tag, the Analyze Loop Conditions subroutine is called to
determine register availability, and the CIR subroutine called to
compile a fetch imstruction. This process is repeated for the limit

parameter,

2-9

ONISS3D0¥d ¢ad TVHMON NI

a3ITTVO 39 ATI¥VSSIDAN
JON AVR TIAIT Pug
JH1 dNOA3d S3ANILNOYENS 3¢ IION

NMOHS ION SANILNOYANS
HOS aNV ‘10§ ‘Jav 1 310N

MOT14 INILNOHENS
ONISSFI04d ININFLVIS Od

I TIdNOD NN

sov

Figure 2.4

2-10

When the index, limit, and increment parameters have been processed and

any necessary fetch instructions have been compiled, PDT compiles the

index increment instruction. If the increment parameter is a constant,
— this will be an SX6 = Xj + K iﬁstruction, while if this parameter is a

Variable tag, an SX6 = Xi + Xj instruction is compiled (since a fetch

instruction was compiled to bring the increment to Xi).

Next, the limit parameter is examined to determine what type of index

test instructions must be generated, If the limit parameter is a constant,

an "54{6 = X6 - K, NG X7 A-tag'" sequence is compiled. TIf the limit

parameter is a Variable tag, then an instruction has been compiled to

bring the limit value to an X register, and so an "IX7 = Xi - X6, PL X7 A-tag"
sequence is compiled. In either case, the A-tag is that initially

assigned to the index store instruction.

If this is a one-statement DO loop, the Analyze One-Statement DO sub-
routine is called to atteﬁpt to improve the object code generated for

the statement. The DO Number Table is then scanned again to determine

if this statement appears again (remember that entries in this table are
cleared as they are processed). If this statement number appears again
in this table, then a nested DO loop is indicated, and so PDT repeats:
‘the précess described. When all entries with this statement number in
the DO Number Table have been processed, PDT exits to PSN, and from there

-<control is returned to the compiler master loop.

ARTTHMETIC STATEMENT PROCESSING

Prior to searching the table of statement types, the compiler master loop

calls the Sense Formula (SFO) subroutine is called to determine if the
statement is an arithmetic statement'and, if it is, torinitiate statement
processing. SFO determines if the statement is an arithmetic statement
function, in which case the Compile Function Definition (CFF) subroutine
is called, or a replacement type arithmetic statement, in which case

control is passed to the Compile Normal Formula (CNF) subroutine.

Statement evaluation by the CFF subroutine and by the CNF subroutine is
similiar in many respects. The basic steps in the evaluation process are

tabulated in figures 2.5 and 2.6. Both CFF and CNF call the TAB subroutine

2-11

LTINSHE HHL TIOLS OL SNOIIDNYISNI T TIAWOD e

NOISSHddXd YHL 40 AAIS I14AdT FHL NO
WIAL dHL 40 HAOW HHI HLIM FHYOV OL HAOW I1ASHEY HHL IIS e

NOISSHEddXd HHL 40 NOILVATVAT ALITIROD OL udXOu TIVD e
SNOISSHIdXd (IZISHHINTIVA HIVNIWITE OL udNOu TIVD e

SOVL ANV SYOLVIVAHS A0 SHII¥dS V
OILNI INIWHLVLS HHL FIVISNVIL OL udIlu TIVD e

INARILVILS HHL JZITVIRION OL u€Viu TIVD o

5d3LS 2ISvd WINWNNOH TVASON 3 11dN0D - 4N

Figure 2.5

2-12

INIOd A¥INH SiNOILONNA HEHL OL NOILOMYISNI WAL V ATIIWOD

JQOK NOILONNA HHIL HIIM HTIOV Ol HAOKW I'INSTY HHI IAS

NOISSTSdXHE FHI 40 NOILVNTVAH MHMANZOU OL udXDu TIVO

SNOTISSHYdXd QEZISHHINAIV] MH<ZHEHAM‘OH undNfw TTVD

SOVL OGNV SH0LVEVdIS A0 SHI¥AS V OILNI INIWIIVLS HHIL FAILVISNVIL OL udIIu TTVD
INIWELVLS AHL HZITVIION OL ugVLu TIVD

(4 F19VL) FT9VL OVI NOIIONNA
JHL NI AYINZ ONIGNOdSHE®MO0D FHI NI 9VI NOIIONNA V WHINT

(3 479v1L) ITIVLI ENVN NOIIONNA FHI NI FWVYN NOTIONNA HHL JLLNA

LNIWNOYY HOVE ¥0Jd QYOM O¥dZ V HTIAROD

(£ E74VL) FTIVL OVI INIRNOYV FHI NI INIWNOYYV NOTIIONNA HOVI ¥0d OVL V ddINA
(I 319V1) FTEVL ZWYN INIRNOYV HHI NI HZMEDOM4,ZOHHUZDh mu<m Mmﬂzm

dROC INIYEND dHI 40 L3S

Cd31S 2ISvd :NOILINIZ3A NOILONNH FTIdWOD ~ 44D

Figure 2.6

2-13

to assemble the statement in the string buffer into a series of variables,
constants, and separators. CFF enters the function name in the Function
Name Table and replaces it in the string with a Function tag. The function
arguments are entered in the Argument Value Table and replaced in the string
by function tags. The TIQ subroutine is used by both CNF and CFF to trans-
late the constants and variables in the string into a sequence of tags, and
to enter these values in the appropriate tables. 1In processing statements,
the Function Name Table is searched for a variable before the Variable Name
Table is searched. Thus, in processing an arithmetic statement of the
replacement type, the Function Name Table will be empty and so the variables
in the statement are determined to be active variables rather than dummy
arguments. In processing an arithmetic statement function, statement
variables will be found in the Function Name Table, indicating that these

variables are dummy arguments,

Both CNF and CFF call the Unpack Parentheses (UNP) subroutine to eliminate
>array references, function references, and parenthesized expressions from
the statement. A simplified flow chart of the UNP subroutine is shown in
figure 2.7. When UNP finds an array reference, it compiles the instruct-
ions required to fetch the array element after scanning the statement to
determine if this element has previously been referenced and is therefore
available. If the parenthesized quantity is part of a function reference,
UNP calls the CRF (Compile Function Reference) subroutine to construct the
calling sequence for the function. If the parenthesized quantity is an
expression, the Compile Expression (CXP) subroutine is called. CXP deter-
mines the dominant mode of the expression and selects the proper subroutine
to compile instructions for the evaluation of the expression and the con-

version of the result to the dominant mode.

When UNP has eliminated all parenthesized quantities from the statement,
control is returned to CNF or CFF. These routines may call CXP directly

to complete evaluation of the right-hand side of the statement. CNF and
CFF then generate the instructions needed to store the result.. In the case
of CFF, instructions may be compiled to convert the mode of the result to
the mode of the variable on the left-hand side of the statement, and a jump

instruction to the function's entry/exit line is compiled.

When statement compilation is complete, control is transferred to the PSN
subroutine to process the statement number, and from there control is

returned to the master loop.
' 2-14

Y

UNP - UNPACK PARENTHESES

(SIMPLIFIED FLOW QHART)

SEARCH STRING BACKWARDS
FOR A LEFT PARENTHESIS

L

COLUMN 6 REACHED ?

NO

YES "] EXIT

<3— LEFT PARENTHESIS FOUND?

NO

YES

DOES PARENTHESIS PRECEDE
AN ARITHMETIC EXPRESSION?

YES

NO

IS PARENTHESIS PART OF AN
ARRAY REFERENCE ?

YES

NO

COMPILE FUNCTION REFERENCE1

CALL “CXP" TQ EVALUATE
THE EXPRESSION
STORE RESULT

. 1S PARENTHESIS ON THE LEFT

SIDE OF THE STATEMENT ?

YES

NO

SEARCH STRING BACKWARDS
DOES THIS ARRAY REFERENGE
APPEAR ELSEWHERE ?

YES

REPLACE THIS AND THE
IDENTICAL ARRAY REFERENCE
WITH AN INDIRECT TAG

COMPILE ARRAY ADDRESS AND
INSERT IN INDIRECT TAG
COMPRESS STRING BUFFER

>

REPLACE THIS STRING ENTRY
AND ANY IDENTICAL STRING
ENTRIES WITH THIS TAG

| COMPRESS STRING BUFFER

l_

UNP=UNPACK PARENTHESES

Figure 2.7

INPUT/OUTPUT STATEMENTS

Upon encountering an input or output statement, the compiler generates a
calling sequence for use by the execution time subroutines. There is no
format cracking done during compilation, so all format diagnsotics are
produced during execution. Each particular set of I/0 statements, i.e.,
READ, WRITE, ENCODE, BUFFER IN, etc., use an individual execution time
subroutine. - These subroutines do their own processing within themselves
and do not depend on a central or gemeralized routine for the I/0. All
information necessary for the completion of the task is generated by

the compiler and passed to the execution time routine with successive

calls.

In order for a central memory program to communicate with an external
file, all information entering or leaving the program must pass through

a buffer. For every I/0 file, whether it be standard input or output,
scratch tape, or, data tape, used by the FORTRAN program, a declaration of
the file name must be made on the PROGRAM card. Each file name causes

a buffer with a minimum length of 1010 words or normally 2010 words to

be reserved for its use. Any file that is not assigned to a special
equipment via a control card will be assigned to the disk, The execution
time subroutines use the system CIO (Circular Input/Output) for the

physical transfer of data,

All information written on 1" tape or binary data written on %" tape is
recorded in blocks of 1000B words (physical record). The terminating
block of a transfer is called a short block whose size is between 1 and
7778 words., A logical record is defined as containing any number of
physical records and terminated by a short block. Coded one inch tapes
use packed display code with two consecutive characters whose value is
zero terminating the records. These records may not be larger than 136
characters long but are written on 1" tape in the aforementioned logical
record scheme. Therefore, the system makes no distinction between coded
or biﬁary data when a one inch tape is involved. There is a difference
on %" tape. All coded information is tranmslated to BCD and Writteﬁ in

136 character physical records. In this case, a logical record is the

2-16

same as a physical record.

For a disk file, there is no specific record limit. The data is
streamed out on the disk with a short sector (less than 100B words)
being the terminating factor of a logical record. Like the one inch tape,

coded-and binary information appear the same to the system.

The compiler has I/0 statement processors which decide from the form of
. statement which execution time routines are to be called. If a format
statement is required, then the address of it must be avéilable during
exeuction. Since all I/0 has to pass through a buffer, the address of
this buffer must also be known. This information is compiled and sent to
the subroutine in one entry. The I/0 list is processed and one entry
is made for each array or data item., It is during these entries that
the format statement is cracked. A final entry . is made to signal the

end of the list.

The coded input statements (READ n, L; READ (i, n) L; READ INPUT TAPE i,
n, L) call INPUTC. The file specified by "i" is read and the data "L"
returns to the program according to the format '"n". The following
specifications are handled by INPUIC: E, F, D, 0, A, *, I, 1, X, R,

L, P. Only with "F" conversion is a scale factor allowed. The format

cracking utilized in INPUTC is flow charted in Appendix G, pages 1-5,

During compilation, the address of the format statement is set into B3
to be passed to the subroutine. The address of a variable format is
retrieved by assigning a variable tag to the format statement; thereby

fetching the proper address during execution.

Binary data may be read by-READ (1) L or READ TAPE i, L. During

execution, INPUTB is referenced to read file "i" and insert the data

in "L". No special word count is reserved in the data itself. The

number of words defined by L determines the number of physical records

that are read. Binary data may be written on a file by WRITE (i) L or

WRITE TAPE i, L. Either of these statements request OUTPTB to transfer
,,,,, the informaﬁion from "L" to file "i"., The number of words written by

these statements must be greater or equal to the number of words read

by the corresponding READ statement.

2-17

OUTPTC is the execution time subroutine called to write coded data on a
file. The statements PRINT n,L; PUNCH n,L; WRITE (i, n) L; or WRITE
OUTPUT TAPE i, n, L will all cause OUTPTC to be referenced. As with
coded input, the format is cracked during execution. The types of

format specifications allowed on output are: I, X, A, 0, H, /, F, E,

D, R, L, *, P. There is little difference between the procedure of format

cracking used by OUTPTC and INPUIC.

ENCODE and DECODE statements are also implemented. Storage manipulation
to transfer data under a specific FORMAT statement is all that is involved
so no physical data file is referenced. Therefore, the list processor
used by READ/WRITE compiles a calling sequence to the exeéution time
subroutines OUTPTS and INPUTS. These subroutines work on the same

format cracking scheme as OUTPIC and INPUTC.

All the aforementioned statements result in the I/0 being completed by
the execution time subrout ines before control is returned to the

central program. Therefore, the data is immediately available to the
programmer after an I/0 statement has been processed. However, the user
may choose to buffer his own I/0 in which case the BUFFER IN and BUFFER
OUT statements are available. BUFFERI and BUFFEO (execution time sub-
routines) are called, respectively, to initiate the tramsfer of data via
CIO. 1In this case, the central processor is not released by a recall
(RCL) request. Instead control is returned to the central prograi as
soon as CIO has initiated the request. Any block of data, up to normal
central memory restrictions, will be handled by these statements. Before
using the data it is up to the user to check the status of the buffered
unit by an IF (UNIT, i). This statement compiles a calling sequence

to IOCHEK which is the execution time routine used for checking the

status.

‘'The execution time subroutines receive all addresses from the program
via index registers. A cailing sequence is constructed by the compiler
for each statement. Listed on the following page are the calling sequences

compiled to be used during execution.

2-18

CALLING

READ, WRITE, PRINT, PUNCH

First Entry

Intermediate Entries -

Final Entry

ENCODE, DECODE

First Entry

Second Entry

Intermediate Entries

Final Entry

BUFFER IN, BUFFER OUT

~First Entry

Second Entry

Third Entry

Bl

B2

B3

Bl

B2

Bl

Bl
B2
B3

" B4

‘Bl

B2
Bl
B2

Bl

Bl
B2

B7

B7

SEQUENCES

= 0

= address of buffer parameter list or
comp lemented address of variable
tape number

= address of format statement

= address of data item or
beginning address of array
= array length or O

= -1

0

0

address of format statement
character length

i

]

beginning address of packed data
0

i

]

address of data item or
beginning address of array
array length or 0O

= .1

= mode constant

= address of buffer parameter list or
comp lemented address of variable
tape number

= address of first word of data block

= address of last word of data block

2-19

END STATEMENT PROCESSING

Three conditions will cause entry to the END processing routine.
1. An END statement '
2. A plus in column one of the next input card
3. An end of record on input. '
In case one of the following conditons prevail: '
1. The instructions for the last subprogram have been compiled
~ one per central memory word. ‘
2. The location tag, if any is needed, is in the lower 18 bits of
the compiled instfuction.
3. All information'needed to make memory assignments and process
generated tags is contained in the temporary tables.
At this time, the instructions.are packed and the location tags along
with their absolute address are saved. Various routines are then called
to make temporary, common, and unique variable assignments. The tags of

the variables along with their memory addresses are saved.

The routine RAD is then called to replace tags with memory addresses.

It will search the cbmplete short file, that is the last program/sub-
pfogram compiled, and replaée all K portions of 30 bit imstructions that
have tags with memory addresses. If, for some reason, a K tag is found
- that has not been given a memory assignment, some type of diagnostic is
'given. This could be caused by a>missing statement, a dimension
ordering error or could be a system error. '

- The DATA statement is then processed, the variable map written, and a

return is made to the main loep for the next subprogram.

If there is a plus in column one of the next input card, a routine is
entered to read in’binary programs; These programs are positionmed with
the object deck already compiled. The information about each routine
‘read in is extracted from the RA and RA+l of the binary routine and
engered into the subroutine tables. Processing then continues the same

as if an end of record was detected originally on the input file.

2-20

A call is made to the PP routine CLL to load all subroutines not yet
defined. The starting address of subroutines is now equated to memory
addresses, and RAD is called once for each program/subprogram to replace
all subroutine tags with memory addresses., The complete file, if no

errors have been detected, is written on the disk.
Then, depending on the mode of compilation, a return may be made for
another deck, the compiler may terminate, the deck may be punched or_the

EXU may be called to load and execute this compiled program.

A simplified flow of the END processing is found on the next page.

2-21

END - PROCESS END STATEMENT
(SIMPLIFIED)

HAS END OF PROGRAM AND/OR

SUBPROGRAMS TO BE COMPILED

BEEN REAGHED ? YES

NO

RESTORE VARIABLE TABLES
POSITION LIBRARY ROUTINES
SET CLEARING PARAMETERS

IS THIS A FORTRAN PROGRAM

OR SUBPROGRAM 1?7

YES

COMPILE PROGRAM/SUBPROGRAM
TERMINATING INSTRUCTIONS
PRINT INSTRUCTION GROUP

COMPILE NAMELIST SPACE
REPLACE TEMPORARY TAGS

PACK INSTRUCTIONS
POSITION CONSTANTS
PACK VARIABLE TABLES

PROCESS COMMON ASSIGNMENTS
PROCESS UNIQUE ASSIGNMENTS
PROCESS SPECIAL ARRAY TAGS

YES | FORM NAMELIST SPACE
ARE SUBROUTINES ONLY

BEING COMPILED ?
NO

REPLACE VARIABLE TAGS
WITH ADDRESSES

PROCESS SUBROUTINE
PARAMETERS

NO | ARE SUBROUTINES ONLY

BEING COMPILED ?

YES

POSITION LIBRARY ROUTINES
REPLACE TAGS WITH FLAGGED
ADDRESSES

PROCESS DATA STATEMENTS
CHECK MISSING NUMBERS

WRITE VARIABLE MAP
IS MODE OF GOMPILATION
"INCOMPLETE" NO

f———p»{ PROCESS MACHINE/ASCENT END |
NO

REPLACE SUBROUTINE TAGS
WITH ADDRESSES

O

YES

IS MODE OF GOMPILATION
WINGOMPLETE" 17

NO

[§H0RT FIELD LENGTH ERROR

WAS TOO MUCH COMMON OR
UNIQUE STORAGE DECLARED ?

YES

NO

WRITE SUBROUTINE MAP
PROCESS BINARY FILE

IS MODE OF COMPILATION

YES

CPR
MASTER LOOP RE-ENTRY POINT

[INITIALIZE PROGRAM TABLES

NO

MASTER LOOP RE-ENTRY POINT

"CHAIN", "BATCH", OR
"MULTIPLE®r ?

NO

NO

I5 MODE OF COMPILATION
WINCOMPLETE" ?

YES

|

HAS END OF PROGRAM AND/OR
SUBPROGRAMS TO BE COMPILED
BEEN REACHED 1?7 .

YES

REQUEST MTR TO END OR
ABORT COMPILATION

END STATEMENT

I. STOP l

PROCESSING

ARE SUBROUTINES ONLY

BEING COMPILED 7 NO

l YES

YES
1)< -

Cerx D

MASTER LOOP RE-ENTRY POINT

RA+FL

1/0 BUFFERS

NUMBERED AND BLANK COMMON

W

«<}————— PROGRAMMER SUBROUTINES
) L OCAL VARIABLES ' (IF ANY) FOLLOWED BY
* LIBRARY SUBROUTINES

LABELED COMMON

INDIRECT ADDRESSES

TEMPORARIES

CONSTANTS

OBJECT PROGRAM

RA

ARGUMENTS (FILE NAMES, ETC.) FROM PROGRAM
CARD BEGIN AT RA + 2

MAIN PROGRAM ORGANIZATION

2-24

LISTING

INTERPRETATION

ASCENT EQUIVALENT

COMMENTS

000000
000001
000002
000003
00001 -
000005

0000«

000007

000010

000011

000012
000013
000014

000015

000016

000017

000020
000021
000022

000023

000024
000025

000026

000027

PROGRAM TEST(INPUT,TAPEl = INPUT)

0 L00002 L00002 BSSZ 1
0 L00003 LO0003 BSSZ 1 RA, RA + 1 are MTR communications area
] L00004 LO0004 BSSZ 1 File Name and Buffer Address (INPUT)
0 L00005 L0O0005 BSSZ 1 File Name and Buffer Address (TAPEl)
4] Loouol L0000l BSSZ 1 Reserved word (subprogram entry/exit line)
5110 coooo1 SA1 Coo001 C00001 - parameter word set up by END
63110 SBl X1 Extract local length
21122 AX1 22B
63210 SB2 X1 Extract beginning address of COMMON
21122 AX1 22B
63310 SBR3 X1 Extract compiled field length
74200 §X2 AO Pick up field length from AQ
37121 IXI X2-X1
0331 000000 NG XI1,0 Exit 1if insufficient space
7160 001777 5X6 001777B
20660 LX6 60B Set X6 to an indefinite value
56610 L00006 LO0006 SA6 Bl
6111 000001 SBT Bl + 1 Set unused program space (i.e,, from
0712 L0000O6 LT B1,B2,L00006 the end of local to the beginning of
43600 M6 o© COMMON) to indefinite: clear COMMON
56610 L00007 LO0007 SA6 Bl and buffer areas to zero
6111 000001 SB1 Bl + 1
0713 L0O007 LT B1,B3,L00007
5110 C00002 SA1 €00002 Fetch compiled field length
63110 SBl X1
43052 MX0O 52B Set mask for file name
5120 C00004 SAZ C00004 Fetch compiled buffer length
63220 882 X2
67312 SB3 BI1-B2 Compute starting address for 1%t buffer
5130 000002 SA3 000002 Fetch first file name from RA + 2
11730 BX7 X3*X0 Mask out buffer address, store file name
56730 SA7 B3 as 18t buffer parameter
5140 CO0005 SA4 C00005 Fetch compiled file name and buffer
10740 BX7 X4 address, store in BA + 2 (replace
5170 000002 SA7 000002 execution time file name)
7173 000010 SX7 B3 + 10B Initialize circular buffer pointers
5173 000001 SA7 B3+ 1 Set FIRST wn
5173 000002 - SA7 B3 + 2 Set IN
5173 000003 SA7 B3 + 3 Set OUT
76710 5X7 Bl Pick up compiled field length
5173 000004 SA7 B3 + 4 Set LIMIT
43700 M7 a
5173 000005 SA7 B3I+ 5 Set sixth and seventh buffer parameters
5173 000006 SA7 B3 + & to zero
5150 C00003 S5A5 C€00003 Fetch line 1imit
10750 BX7 X5
5173 000007 SA7 B3I+ 7 Set line limit as eighth parameter
67112 SB1 Bl-B2 Set LIMIT for next buffer (unused in
this example)

NAME = 2 Source card, processed by SFO
7160 000002 5X6 000002 Instructions compiled for this atate-
5160 V00001 V00001 ment by CXP .

Header card, processed by PPG

Note: words 0 - 265 were compiled by the PPG (Proceas Name and Arguments) subroutine. When the compiler master
Loop encounters & PROGRAM card, the PGM (Process Program Statement) subroutine is called: PGM checks to
insure that a prior program or segment has not been compiled, and then calls PPG.

LO00On = PROGRAM TAG (A-TAG)
C0000n = CONSTANT TAG (K-~TAG)
V000On = VARIABLE TAG (V-TAG)

SAMPLE COMPILATION: SHEET 1

LISTING INTERPRETATION
ASCENT EQUIVALENT COMMENTS
DO 3 I = 1,NAME Source card, processed by SDO
000030 7160 000001 S5X6 000001 CDI(called by SDO) compiles instructions
000031 5160 V00002 100013 LO0O013 SA6 V00002 to initialize the DO index
3 BAT = ROB Source card, processed by SFO., Statement
1 number processed by PSN, which calls PDT
5150 V00001 SA5 V00001 to compile index increment and test instrs.
000032 5110 V00004 SAl1 V0Ou004 Fetch ROB
10610 BX6 X1
000033 5160 V00003 SA6 V00003 Store (ROB) in BAT
5120 V00002 SA2 V00002 Fetch I compiled
000034 7262 000001 ’ SX6 X2 + 1 I=I+1 by PDT
37756 IX7 X5-Xé NAME - I
000035 0327 LOODL3 PL X7, L0OO0O13 Loop 1f limit not reached
A = 16. Source card, processed by SFO
5110 €c00006 SA1 COO0006 Fetch constant
000036 10610 BX6 X1
5160 V00005 SA6 V00005 Store constant in A
GO TO 1 Source card, processed by 5GO
000037 0400 NOOOOL EQ BO,B0,N000O1 N00OOl1 = statement tag (H-tag)
1 Q= 0. Source card, processed by SFO
000040 43600 L00020 (NOOOOL) LO0020 MX6 ¢ L00020 is equated ta N0OOOOL through the
3160 V00006 SA6 V00006 Temporary and Permanent Tag Tables
CALL BATSUB(A,B,C,D,E,F,G,10) Source card, proceauéd by CLL., CLL calls
PRR to compile argument handling instrs.
000041 6110 V00005 SB1 V00005 o
6120 V00007 SB2 V00007 The addresses of the first aix
000042 6130 V00010 SB3 V00010 argument8 are passed to the
6140 V00011 SB4 V0001l subroutine in registers Bl - B6
000043 6150 V00012 SB5 V00012
6160 V00013 SB6 V00013
000044 7160 V0OOl4 §X6 V00014 Pick up address of seventh argument
5160 s00207 SA6 500207 Store 7th argument addr. in reserved word
000045 7170 C0O0007 SX7 cooo07 Get address of 8th argument - a constant -
5170 s00210 SA7 800210 and store in reserved word
000046 0100 S00200 L0O0022 L00022 RJ 500200
0710 Loo002 Lower half of instruction word contains
argument count and name of caller
END Source card, processed by END
000047 5120 C00010 SA2 CO00010 Zero word passed to execution time
10720 BX7 X2 subroutine END
000050 0100 S00300 RJ 500300 Jump to execution time subroutine END

1:

the instruction in the lower half of word 31 ia the limit fetch instruction for the DO index increment and test,

Do index fincrement and test instructions are compiled by PDT (called by PSN).
(Analyze One-Statement Do) to attempt to place the increment and 1li
instructions compiled for the statement which terminated the DO loo

PDT calls the AOS subroutine

mit fetches (if any) at the beginning of the

SAMPLE COMPILATION: SHEET 2.

LISTING

INTERPRETATION

ASCENT EQUIVALENT

COMMERT S

000077
000100
000101
000102
000103
000104
000105
000106
000107
000110
000111
000112

000113

000114

000115

000116

000117

000120

000121

SUBROUTINE BATSUB(W,X,V,D,R,J,M,L)

[=R=RoloNeNoReNoloNeNo]

76710
76120
20122
36717
76230
20244
36727
5170 TO0001
76740
76350
20322
36737
76460
20444
36747
5170 T00002

RETURN
0400 LO00O1

END
5150 €00001

10750
0100 500300

L0002
L00003
LO0004
L0005
L00006
L00007
L00O010
L00011
L00012
L0013
L00001

L00002
L00003
LO0004
L00005
L00006
Lo0oa7
Looolo
L00O1Y
L00012
L0013
L0000t

SAMPLE COMPILATION: SHEET 3

BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
SX7
5X1
LX1
IX7
s$X2
LX2
X7
SA7
§X7
5Xx3
LX3
1X7
SX4
LX4
1X7
SA7

EQ

SAS
BX7

bt et

1
Bl
B2
228
X1 + X7
B3
44B
X2 + X7
TO0001
B4
B3
22B
X3 + X7
B6
448
X4 + X7
T00002

B0O,B0,L0O000L

00001
X5
500300

Header card, processed by PPG
Reserved for subroutine name

Reserved for argumant count

These s8ix words are unused, since the
argumenta to which they correspond are
passed in registers Bl - B&

Reserved for the seventh argument
Reserved for the aighth argument
Entry/exit line

Save addresses of first three arguments
in temporary word 1

Store first three argument addresses

Save addresses of next three arguments
in temporary word 2

T0000n = Temporary Tag (T-Tag)

Store second three argument addressesa
Source card, procecsed by RIN

Jump to entry/exit line

Source card, processed by ERD

Pase a gzero word to the execution time
gubroutine END. These inatructions are
unused in this example: they would be

used if the RETURN atatement was not
presant.

CHIPPEWA FORTRAN COMPILER - RUN

Section 3

SUBROUTINE DESCRIPTIONS

AAR - ANALYZE ARRAY REFERENCE

This routine is called dﬁfiﬁg thewﬁfbééééing of an arithmetic expression
when it has become necessary to bring the address of an array entry to
B7. It is entered in an attémpt td stop the storing of the array address
into an indirect cell. Two conditions will make this routiﬁe"flag that
the store is probably necessary. SRR
1. If there are any more array reférences-to_be processed, the store

must be geherated. , |
2. 1If the mode of the array is integer and if there is a division

~ specified in the expression before this array reference is made,

the address must be saved.

Otherwise, the single array reference count is increased, the next -

indirect tag and index 7 are packed into X6 and the routine exits,

Subroutines Cailéd:*hNone'::‘~-

Temporaries/Flags: ARTI - Array Reference Count

:IGX: = Current:Index Assignment :
»:8AR = :Single ‘Array Reference Count :
IGL = Indirect Tag

fneﬂMF,étStarta&fiArrayfkgference.ui‘,
I+ TMH = :Start-.of Expression

Tables Referenced: None

Entry/Exit Register Conditionsso:oi

Entry: None
Exit: XB::péeEO‘impiiééﬁhb processing done

X6 # zero implies the next indirect tag and B7 have
been packed in X6 and no store of the array
address must be made.

I-A

ABS-1

ABS - PROCESS ABSOLUTE LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters
an ABS declarative, the ABS subroutine (Process Absolute List) is called.
The ABS declarative permits the unsigned number on the right to be
assembled into instructions containing the identifier in their address
field. An example of the ABS declarative together with the basic

steps in processing the list is shown in Figure ABS-l.

.On entering the ABS subroutine, the TAB subroutine is called to normalize
the list. The Variable Name Table (Table M) is scanned to determine if
the variable which has been equated to the sﬁbroutine‘name has been
entered and, if not, the variable is entered in the Variable Name Table.
If the variable has previously been entered in the Variable Name Table,
an error exit (Duplicate Tag Error) occurs. The variable name is also
checked to insure that the first character is alphabeﬁic and that the

name is composed of two or more characters for machine programs.

Next, a check is made for the equal sigp and the CVN (Convert Number)
subroutine is called. If the constant is greater than -216 and less
than 216—1, it is stored in the Variable Tag Table (Table N). If the
constant lies between 216-1 and 217-1, a Statement Tag (H—;ag) is
generated and stored in the corresponding Vériable Tag Table and the

constant is stored in the Argument Tag Table (Table J).

Subroutines Called: TAB - Normalize Statement

SCT =~ Scan Table

CVN -~ Convert Octal or Décimal Number

ADF - Advance Table

Temporaries/Flags: MOD - Subprogram Mode
TGH - Statement Tag (set)

IPS - Program/Subprogram Indicator

ABS-2

nmoomm IXdIN FHI ¥0d ZMDHMM. ‘8

memmHZMM¢m LHOT¥ V ¥Od MDHHO °L

€=1 Lvdday n¢ZZOU.< SI Nmazm.ﬁxmz mmH.hH 9
dTEVL ALVI¥d0¥ddV dHI NI H¥01S)

LNVLSNOD ¥0 9VL V ¥0Jd MOOT 'Y

INVLSNOD HHIL IYIANOD ‘e

NOIS TvndI NV ¥Od MDHAHD A

4TdVL HAVN FTEVIMVA FHL NI (CL€°8°9) IWVN ATIVIYVA THL HI0LS 1

Akkkkﬂu\q q%OO\HMv\ mOO\“\.\V sav 3174 mnWvx 3

INISST208Hd FAILvHVYTIIIA sgVv

Figure ABS-1

ABS-3

Tables Referenced: TBM - Variable Name
TIBN - Variable Tag

TBJ - Argument Tag

Entry/Exit Register Conditions: DNA

Note: Error Lists: EMC - Machine Constant

5

Machine Duplicate Tag Error
EMF ~ Machine Format Error

EMT - Machine Tag Definition Error

ACE-1

ACE - PROCESS ASCENT EQU

When the MAA (Process Ascent and Machine Records) subroutine encounters

an EQU Ascent pseu&o-oPeration instruction, the ACE subroutine is called,

The ACE routine writes a constant of "all fives'" into the output buffer
then transfers to WNX (Write Coded Record) and RNX (Read Coded Record).
Next a call to TAB (Normalize Statement) reorders the string entries to
one variable or separator per word. An equal sign is stored in column 9
and the location variable is stored in column 8. Further processing is

handled with a jump to the ABS (Process Absolute List) subroutine.

Subroutines Called: WNX

Write Coded Record

RNX - Read Coded Record
TAB - Normalize Statement
ASV - Assemble Variable

Temporaries/Flags: CAS - Constant of Blanks

7

Machine Header Card Indicator (set)

Tables Referenced: None

Entry/Exit Register Conditions:

Al string address of first character beyond EQU pséudo-
operation code. '

ACH-1

ACH - PROCESS ASCENT DPC AND BCD

When the MAA (Process Ascent and Machine Records) subroutine encounters
a BCD or DPC pseudo-operation, the ACH subroutine is called. The PST
routine is called to process the location tag and the ARA routine is
called to adjust the address and write the register. Next the fi:st
character of the address field is erased from the string, and the next
ten characters are accumulated. A test is made to insure that the
pseudo-op appeared in the constant section. On exit from the routine,

the code is in X6.

Subroutines Called: PST - Process Statement Tag

ARA - Adjust Running Address and Write Register

Temporaries/Flags: IWC - Instruction Word Count

Tables Referenced: None

Entry/Exit Register Conditions:

Al - Address of first non-blank following opcode.
X6 = Hollerith field

ACK-1

ACK - PROCESS ASCENT CON

When the MAA (Process Ascent and Machine Records) subroutine encounters
a CON Ascent pseudo-operation code, the ACK subroutine is called. The

constant in the address field is moved left beginning in column 7 of the
string buffer. When an end of statement or a blank is encountered, a

zero is written into the string and a transfer back to the main loop of

MAC for further processing occurs.

Subroutines Called: None

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Al string address of last character before the address field

ACR-1

ACR - PROCESS ASCENT BSS AND BSSZ

When the MAA (Process Ascent and Machine Records) subroutine encounters
a BSS or a BSSZ pseudo-operation code, the ACR subroutine is called.

. Column 7 of the string buffer is set to a left parenthesis and the value
of the address field is moved to the left beginning in column 8. Upon
encountering the first blank or end of statement, a right parenthesis
and a zero are stored into the next two columns of the string. Further

processing is done in the Master loop of MAA.

Subroutines Called: None

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Al - String address of the last character before the address
field

_AFS-1

AFS - ASSEMBLE FORTRAN STATEMENT

The AFS subroutine assembles a FORTRAN statement or assembly instruction
from card buffer into the string buffer, If a statement is continued

on one or more succeeding (continuation) cards, all such cards are also

transmitted to the string buffer., Within the string buffer, information
is packed one character per word, right-justified, The string buffer

loading process is illustrated in figures AFS-1 and AFS-2.

On entry, the multiple statement indicator, ICE, is examined to determine
if there were multiple statements on the card previously transmitted to
the string buffer., If ICE is zero, then there were no multiple state=-
ments on the card previously transmitted to the string buffer: otherwise,
ICE contains the address in the string buffer of the dollar sign which
terminated the statement just processed. 1In the latter case, AFS blanks
out the preceding statement and scans the remainder of the card until

,,,,, either a dollar sign oxr the end of the statement (a zero word) is
encountered. If a dollar sign in encountered, the multiple statement
indicator is set to the address of the dollar sign in the string buffer,

Control is then returned to the calling program.

If there were no multiple statements on the previous card, AFS enters

a loop which inputs, examines, and lists cards until a statement or
instruction card is found. AFS calls the RNX subroutine to bring a card
from the input buffer to the card buffer, and calls the WNX subroutine
to transmit the card to the output buffer for listing. As each card is
processed,‘AFS checks to see if the end of file has been reached. If
the previous statement was an END statement, then PNM (program/sub-
program name) will be zero: if PNM = 0 and an end of file is encountered,
AFS transfers control to END (Process End Statement). 1In all other
cases, detection of the end of file will result in an error exit. On
the first entry to the loop, the card already in the card buffer is
examined., 1If column 1 contains a period (page eject card), an asterisk
or a dollar sign (remarks card), or in a FORTRAN program, the letter C
(comments card), the card is listed (i.e., transmitted to the output
bﬁffer) and the next card brought to the card buffer. This process is

repeated until a statement/instruction card is found: i.e., a non-

AFS-2

3NILNOYENS sV

ONIQVOT ¥344N8 ONIN1S

AA4ANT ONTUIS AUL OL
QDIISHVEL OSTY TV ISTHL .
‘STAYO NOILVANIINOD TuV S$5740ayY SIHL OL
JUIHL 41 "quon OWIZ VY 138 §1 (30I) YO1VDIAMI
A2 Q31VOIGNI ‘OuVvO 30 aua INFRILVIS FTJILTNR 9HL

_ _ _ Oy
d3J4Ng SNIFIS NI GHVD 35H310s _

00

Qi [o]

(quoM ¥3d YILOVEVHD
3INO) INILNCYRAS SIV FHL
A® ¥334NE ONIWLS FHI 01

Q31LIRSNVEL FUY STEVI ININ

092 +Ov
~31VLS 30 TL = 1 SHNHNTO0D

d344n8 G&v3 Ni Ggv3 353N0S

0501002V V~——VVV " 0=(2)X$9S" 1 L=V1IGgVIVIVVY

INILNOYANS XNA IHL A9
¥334N9 Q¥VD 3FHL O ¥3Jdang NT
18 V0 ML 0L ¥3dan &333n8 INdNi NI 505v5 358n0s
“SNYYL J¥Y STQUVD IDUN0S

0501232

©0=(2)x§95°11=v138

ATO

T2 iaaa

AFS-3
blank card which is not one of those described above.

Next, column 6 of the card is examined., If column 6 is blank, contains
a zero (FORTRAN program), or does not contain as asterisk, AFS transfers
the card from the card buffer to the string buffer. All 72 characters
on the card (spaces included) are transmitted to the string buffer,
Characters in the string buffer are packed one per word, right-justified.
If a dollar sign is encountered in the transfer process, the multiple
statement indicator is set to the address of the dollar sign in the
string buffer. (Note: this dollar sign is replaced with a zero word

on return to the main loop of RUN.) The end of the card in the string
buffer is then marked by a zero word, This zero word will be overlaid

if this statement is continued on succeeding cards.

After processing a statement or instruction card, AFS inputs another
card into the card buffer to determine if the statement just processed
is continued: if so, the associated continueation cards must also be
transferred to the string buffer. AFS examines the card to determine
if it is a comments card (C in column 1). If it is, it is listed and
AFS brings another card to the card buffer. If a card is found which
is not a comments card, column 6 is examined to determine if it is a
continuation card (non-blank and non-zero in FORTRAN, an asterisk .
in assembly language). If it is not a continuation card, control is
returned to the calling program: the card in the card bﬁffer will be
processed on the next entry to AFS. If the card is a continuaﬁion

card, it is transferred to the string buffer and the process repeated.

If the first statement/instruction card found did not contain a blank
or zero in column 6 (FORTRAN program) or contained an asterisk in
column 6 (assembly program), then it is assumed that an out-of-sequence
continuation card has been found. AFS enters a loop in which cards

are read and listed until a non~continuation, non-comments card is

found, at which point an error exit takes place (continuation error),

AFS=4

LIXH

INILNOHEGNS S4V

SNOILONNS HOrvyw

@IvD IXIN JHL INANI
@IvVD SIHL ISIT

LIXd

“ ON

¢{ AVD NOIIVANIINOD V II SI

SdA

ON

dO¥Yd NOTILVANIINOD

aNAod SI a¥vD NOILVANIINGD
~NON ‘SINIWWOD-NON V TIINN
SA¥VD DNIGIAEDONS ISIT ANV LNANI

Sd&

SHA

& @IVO SINIWWOD V II' ST
da44nd Q¥vO NI Q¥vD IXIN NvDS

QIYIINNOONT SI § ISYTA NAHM
YOLVOIONI INAWHIVIS ATATITON 19S

QITAILSAC-IHOTY ‘QIOM ¥dd YILDVIVHD
ANO ‘¥3J4ANd ONINIS OL QUVD WAASNVIL

ON

INIWELVLS ONH SSED0Y¥Jd

AM

SdA

¢ 9 NWNTOD
NI ¥ILOVIVHD UITVANI NV HYIHI SI

aNNod SI @IVD SINIWWOO-NON “NNVTId
-NON V TIINA SQ¥VO ISIT ANV INANI

ON

($) INIWIIVIS IXAN 40 I¥VIS Ol
d0LVOTIANI INIRALVLIS TTIILIOAN I1dS
Jd44Nd ONIVLS

dHL NI INIWILVLS ISV 10O JNVIg

SHA

¢ UIHOVHY ITIIJ J0 ANI ANV
HZMEMH<Hm\sz¢z< INARALVIS SNOTATYA

ON

¢ LIS YOLVOIANI INIWHALVLIS ATAILTINR

P

Figure AFS-2

AFS =5

Subroutines Called: RNX ~ Read Coded Record
WNX = Write Coded Record

ASM - Assemble Mnemonic Code

END « Process End Statement

Temporaries/Flags: ICE - Multiple Statement Indicator (set)
MHI ~ Machine Heading Indicator (set)

IGS -~ Instruction Group Start (set)
PNM ~ Program/Subprogram Name

MOD - Subprogram Mode Indicator
FST = Long File Start

SIG - Compile Mode Indicator

ICA - Display Coded Rumning Address

Tables Referenced: none

Entry/Exit Register Conditions: n/a

ANK=-1

ANK - ANATYZE ADDRESS GENERATING INSTRUCTIONS FOR RIGHT MEMBER

This routine is called during the processing of an expression when B7

has been used to hold the address of an array entry and there are more
array references in the statement. If AO is still available, the last
compiled instruction is changed to a set A0 instruction and the AO
register associate is set to the next indirect tag which is passed back

to the calling program. It also clears the instruction register X7.

Subroutines Called: None

Temporaries /Flags: TGI - Indirect Tag
VIA - AO Register Associate

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: Nomne
Exit: X6 = zero if AQ was not avallable

X6 # zero if AO was used to hold the address of the
array entry. Actually it would have the next
indirect tag and bit 21 set to say the address
was in AO,

ARA-1

ARA - ADJUST RUNNING ADDRESS AND WRITE REGISTER

When the MAA (Process Ascent and Machine Records) subroutine has packed
as many consecutive instructions into one machine word as possible, the
ARA routine is called to increment the running address by one and write
the previously stored word. Should ARA be entered when the counter has
been reset to zero, blanks are stored into the output buffer, then

current running address is converted and stored. Should the counter be
set to non-zero, the current word is written and the running address is

incremented before the converting and storing of the running address.

Subroutines Called: None

Temporaries/Flags: ICT - Intraword counter

ADM - Current Running Address

Tables Referenced: None

Entry/Exit Register Conditions: N/A

ASL~1

ASL - ASSEMBLE LETTERS

The ASL subroutine assembles a specified number of letters from the
string buffer into an assembly register. On entry to this subroutine,
the B4 register contains the address of the location in the string
buffer where assembly is to begin, and the B2 register contains the
number of letters to be assembled. The assembled letters are returned
to thé calling program in the X6 register (left-justified)., Spaces
are ignored during assembly., If the end of the statement (indicated
by a zero word in theAstring buffer) is encountered, or if a character
is found which is not a letter, the assembly is terminated: the
letters already processed, if any, are left-justified in the assembly

register and control returned to the calling program.

Subroutines Called: none

Temporaries/Flags: none

Tables Referenced: none

Entry/Exit Register Conditions

Entry: B4 = address in string buffer where assembly is to
_begin

B2 = number of letters to be assembled

Exit: X6 = assembled letters, left-jusﬁified (zero if none
assembled)
B2 = difference between number of letters requested

to be assembled and number of letters actually
assembled

B4 = address + 1 in the string buffer of the last
letter assembled .

Note: 1In the case where less than the requested number of letters were
assembled, ASL exits with the non-alphabetic character which

terminated the assembly in the X1 register.

ASM-1

ASM - ASSEMBLE MNEMONIC CODE

The ASM subroutine assembles the mnemonic code for an Ascent or Machiﬁe
statement from the string buffer into the X6 register. First the routine
scans over the leading blanks of thefield being assembled. Then up to
four alphabetic characters are moved into the X6 régister. The first
number or separator will terminate the collecting of letters in the

X6 registef. This character will be left in the X1 register. The result
in X6 will be left justified and the B2 register will contain a flag

(see chart below) to indicate the instruction type.

Subroutines Called: None

Temporéries/Flags: MOD - Subprogram Mode

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: B4 - contains address in the string buffer where
assembly is to begin

Exit: X6 - opcode left justified
X1 - next non-alpha string character

Note: The Ascent mnemonics composed of 2 letter and a number are
split between X6 and X1 (i.e., SX1 X6 = SX and X1 = 34)

B2 Value Assembled Letters Examples
0 4 letters except BSSZ FORTRAN STATEMENTS
1 3 letters ' END
» BSSZ ASCENT PSEUDO-OPS
2 2 letters

2 letters + Number ASCENT MNEMONICS

3 1 letter Machine Mnemonic
0 letters CONSTANT

ASN-1

ASN - ASSEMBLE NUMBERS

The ASN subroutine assembles consecutive numbers from the string buffer -
into the assembly register. The routine attempts to assemble 7 numbers,
On entry to this subroutine, the B4 register contains the address of

the location in the string buffer where assembly is to begin, The
assembled letters are returned to the calling program in the asﬁembly,
register, X6 (left-justified). Spaces are ignored during assembly

and, in the case of statement number assembly (i.e., assembly starting
‘address not greater than column 5), leading zeroes are ignored. Numbers
are transferred to the assembly register until either‘a non-space,
non-numeric character is encountered or seven numbers have been assembled:
The contents of the assembly register are then left-justified.

I1f no numbers wére encountered, the assembly count (B2 register) is set
to zero, and a display code zero is placed, left-justified, in the

assembly register.,

Subroutines Called: none

Temporaries/Flags: none

Tables Referenced: none

Entry/Exit Register Conditions

Entry: 'B4 = address in string buffer where assembly is to begin
Exit: X6 = assembled numbers, left-justified (display code
zero 1f none assembled) :
B2 = 7 - number of numeric characters assembled
(0 if none assembled)
B4 = address + 1 in the string buffer of the last

letter assembled

Note: 1In the case where less than the requested number of digits were
assembled, ASN exits with the non-numeric character which

terminated the assembly in the X1 register.

ASV-1

ASV - ASSEMBLE VARIABLE

The ASV subroutine assembles consecutive alphanumeric characters from
the string buffer into the assembly register. The routine attempts to
assemble 7 such characters., On entry to this subroutine, the B4
register contains the address of the location where assembly is to begin.
The assembled characters are returned to the calling program in the
assembly register, X6 (left-justified). Spaces are ignored during the
assembly, - Characters are transferréd to the assembly register until
either 7 alphanumeric characters have been assembled or a non-space,
non-alphanumeric character is encountered. If 7 consecutive alphanumeric
characters are found, succeeding characters in the string buffer are

read and examined until a non-~space character is found., The contents

of the assembly register are then left-justified.

The last character scanned is then examined to determine if it is an
asterisk. If it is, and if this is an assembly program, it too is
packed in the assembly register. Control is then returned to the

calling program,

Subroutines Called: none

Temporaries/Flags: MOD - Subprogram Mode Indicator

Tables Referenced: none

Entry/Exit Register Conditions

Entry: B4 = éddress in string buffer where assembly is to begin
Exit: X6 = assembled characters, left-justified (0 if none
assembled)
B2 = 7 = number of alphanumeric characters assembled
B4 = address of next non-space, non-alphanumeric

character in the string buffer

Note: 1If an asterisk was packed in the assembly register, X1 is loaded
with the character immediately following the asterisk in the
string buffer. B4 1s not advanced but still contains the address

of this character.

BNX « 1

BNX - BINARY OUTPUT ROUTINE

This routine is called at the end of compilation when the complete
program including library subroutines are all in central memory. If
a binary deck was requested, either the PBS or PBC PP punch routines
are called. PBS is called if the mode of compilation is incomplete as
it gives a status response when the punching is complete which PBC

does not do.

-A request is then made to CIO to write the program as a binary file
whose name is in the same as the program name and the compiler remains
-in recall until the output has been completed. Another CIO request is
sent to rewind the file. If the mode was not compile and execute, |
the routine exits.A Otherwise, if a program was the first routine
compiled, the name of the program is written into the dajfile and the
PP routine EXU is called to read the program back in. AAB is called
to adjust the program field length and BNX exits.

Subroutines Called: AAB

Adjust‘Program Field Length .

Temporarigs/Flags:A BOA
' BOB
BOC

BOD

FST - Long File Start

Binary Buffer Parameters

IcM - Incomplete Compile Mode Indicator
INQ - Name for Dayfile '

iNV - Segment Indicator

IPS - Program/Subprogram Indicator

STG - Compile Mode Indicator

ZAA - Relative Start of Current Program or
Subroutine

Tables Referenced: None

Entry/Exit Register Conditions: None

BRX = 1

BRX - READ BINARY SUBROUTINES

This routine is called to read any subroutines that have been detected
by the presence of a + in column 1 of the next input card. This
routine transfers the binary routines from the input buffer to the
compiled program area. It does its own requests to CIO when it is
necessary, and does not use the RNX routine to‘read cards. When all
routines have been transferred or when there is no room to continue

the transfer, a zero entry is made and the routine exits.

Subroutines Called:; None

Temporaries/Flags: INA - CIO Input Buffer Parameters

Tables Referenced; None

Entry/Exit Register Conditions:

Entry: X7 - address start of tables
X6 - start of the region to transfer routines to

Exit: None .

CDC-1

CDC - CONVERT INSTRUCTION OR CONSTANT TO DISPLAY CODE

The CDC subroutine converts to display code the binary instruction
formed from an Ascent or Machine source card. Upon entry into this
routine, Bl contains a 5, 4 or 24B indicating a short, long or full
word instruction, respectively. Detecting a short instruction, CDGC
will write one word into the output buffer and exit. The long
instruction will call KOT to convert the binary tag to a mnemonic tag
and thereby cause a two word entry imnto the output buffer, A full
word instruction appends a zero word to its entry so that the buffer
has three words stored. The exact form of these entries are shown

in Figure CDC-1.

Subroutines Called: KOT =~ Convert Binary Tag to a Mnemonic Tag

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Bl 24B, 5, &

X1 binary instruction left-justified

CDC-2

1-00D ®an81g

S1IDIA TVIDO Myo-Tup

OVL OTNORENH ——— uuuugy

¥ALSIOTY ONVIEIO ANODES — A

¥ILSIOAY ANVYEO IS¥IL- e

YHISIONY INVITASTY —_— 1

400D NOTLVHAO — XX

[0 ooo %o uy _HE.O AR 5] NOILONYISNI @IOM TINd
Qooo00000T [BuuugyriIxgix NOIIOMYISNI OHNO'T
DooooxrIxx] NOTLONEISNI IMOHS

SIIYINT HFH4Nd LNHLNO 20D

CFF=-1

CFF - COMPILE FUNCTION DEFINITION

This routine controls the processing of all arithmetic statement
functions after they are detected by the SFO routine. These functions
are handled in the same manner as a function subprogram except that
they may only contain one statement while a function subprogram may
contain many. The function is a closed subrohtine, entered via a
return jump and exited from via the entry point. A zero word is
compiled for each function argument plus one zero word for the entry/
exit line. Since these functions are allowed to appear anyplace in the
program, it is necessary to compile a jump over the closed subroutime that
the arithmetic statement function generated. When such a jump is
generated, the address of the jump is saved in "CJP" - current jump

address,

On entry, the current jump address is examined to see if there is a
current jump pending. If there is, a check is made to see that it was
generated by an ASF rather than a logical if statement and a diagnostic
given if not. 1If there is no current jump pending, a jump instruction
is compiled to a statement or H tag and the address of this compiled

jump is entered into CJP for later use.

The arguments to the function are then processed one at a time. The
argument name is entered into the Argument Name Table and a Function
Tag is generated, grouped'with the mode and index assignment of the
argument (if any) and entered into the Argument Tag Table., The function
name is then entered into the Function Name Table and its tag and a mode
indicator are entered into the Function Tag Table. This tag also
replaces the name of the function in the string, and then the list of

arguments are squeezed out of the string.

TAB is called to normalize the statement and TIQ is then called to
translate the rest of the string entries into appropriate tags. If

the dominant mode of the expression is double or complex or if the
expression references other subroutines, the string is searched and for

each function argument that has an index register associated with it,

CFF-2

the argument reference count is decreased by one and the index designation

for the argument in the string is deleted.

UNP is then called to generate instructions to evaluate all expressions
within parenthesis and replace these expressions with tags. An attempt
is made to delete an unnecessary store if the function is a very simple
one. Otherwise, CXP is called to compile the final answer and bring it
to X6. An attempt is then made to have the answer end up in X6 and thus
eliminate any unnecessary 10 instructions. Instructions are generated
to convert the expression to the mode of the function and finally a

jump instruction is compiled to exit through the function's ent oint,
Jump p g ry p

Subroutines Called: ADF - Advance Table

CLT - Clear Temporary Tables
CXP - Compile Expression
SCT - Scan Table
. TAB - Normalize Statement
TIQ - Translate Individual Quantities

UNP - Unpack Parenthesis .

Temporaries/Flags: ARF - Argument Reference Count .

ARG - Argument Count

CJP -~ Current Jump Address

IGX - Current Index Assignment
INO - Dominant Mode Indicator
MOD - Subprogram Mode

STN - Statement Number

TBE - E TABLE PARAMETERS
TBF - F TABLE PARAMETERS
TBI - I TABLE PARAMETERS
TBI - J TABLE PARAMETERS
TEM - M TABLE PARAMETERS

TGF - Function Tag
TGH - Temporary or Statement Tag

Tables Referenced: Function Name (E)

Function Tag F)

CFF-3

Argument Name (1)
Argument Tag (@D)]
Variable Name 1459)

Entry/Exit Register Conditions: Nome

CHAIN - 1

CHAIN

The method of chaining employed within the Fortran compiler, RUN,
1s a complete overlaying process. No portion of the main program'is
available to any segment; likewise, no portion of one segment is avail-
able to another., Only the main program or one segment resides in
central memory at a time. Arguments may be passed between the main
program and a segment or between segments only through blank or numbered
common. A segment may be called for execution more than once but the
m@in program should not be recalled since it clears common and the buffers.
The maximum amount of numbered or blank common used by any segment must
either be declared within the main program or on the RUN card. No diag-
nostic will result if a segment declares more common than has been
previously reserved. A portion of the segment would in that case be
overlayed with common.

A job that requires segmentation must have a main program. Initiali=-
zation code for a program clears common and the I/0 buffers. For each file
designated on the PROGRAM card a buffer,is‘allocated and the‘némea, number,
and order of these files musﬁ agree for each SEGMENT cgrd. The segments
are separated in the job deck by end-of-record (7-8-9) cards. These
records are compiled and writtén on the disk as individual named files.
The name'of which is the word following segment on the SEGMENT card.
Therefore, if the job deck consisted of a main program and five segments
(each separated by an end-of-record card), there would be six named files

on the disk for this job.

CHAIN - 2

Segments are called for execution by the statement CALL CHAIN (seg),
where seg is the name appearing on the SEGMENT card. During compilation
a calling sequence which passes the address of the segment name in.Bl
to the subroutine CHAIN'is generated. The subroutine fetches the segmeﬁt
name at execution time and sends a request to CIO (circular input/output)
to rewind the file before it is loaded into central memory. Certain
parameters must be initialized before calling CIO so CHAIN sets them in
the first five executable words of the calling routine. That is, the
CIO buffer parameters are stored in the calling routine beginning at
RA+2+n where n is the number of I/0 files declared.

A dayfile message informing the user of which segment is next to
be executed is made by MSG (peripheral package). A limit of 100B
messages is standard so if many segments are called and the MESSAGE LIMIT
error ig reached with of two system changes will solve the problema

a) increase the limit in MSG.

b) remove the call to MSG in CHAIN so that no segment calls
are entered into the dayfile.

Another peripheral package EXU (executed compiled program) is used to
locate phe file with the requestea segment name on thé disk and read it
into central memory. The file is loaded beginning at relative zero (RA)
so that there is no linkage of segments. Only one segment (that portion
of the job deck between two end-of-record cards) resides in central
memory at a time. EXU also requests the central processor to begin

executing the new file in central memory.

CIR

CIR is called to compile read instructions. The tag of the desired
read along with a mode indicator and an index assignment, if any,
are specified in X6 upon entry in the following format:

4

(2 V7 V7770

e!

M indicates the mode of the tag and can range in value from one to
seven, It is examined and directs the processing in the following
order and essentially controls the type of instructions compiled.

M=7 This implies that the tag portion of X6 is a value rather than
a tag. If the value is zero, a MXi O instruction is compiled
to set the value of Xi to zero, while if the value of the tag is
minus zero, a MXi 60 is compiled to set the value of Xi to

minus zero. CIR then exits.

M=5, 6 This indicates that the tag portion of X6 is a double or complex
tag and thus requires the fetching of two central memory words.
If the address of the tag is assigned to an index register

(B will be the index register the address is in) a SAi Bj

is compiled. If B is zero, the A register associates are searched

to see if the address is associated with an address register.

If so, a SAi Aj is compiled. 1If not, a SAi TAG is compiled.

The tag itself is examined to see if it is an indirect or location

tag. If so the instruction just compiled will be reading an
address and a SAi Xi is compiled to bring the desired value to

Xi., Then a SA Ai+l is compiled to fetch the second part

(i+1)
of the double or complex number. The Xi and Ai register

associates are set to this tag.

M=3 This indicates that the tag portion of X6 is a number whose value

is less than 216. The X register associates are searched to see

if this value is already in an X register. If it is, a BXi Xj is

compiled and if not a SXi CONSTANT is compiled. In either case,

the Xi register associate is set to this value before CIR exits.

CIRa1

If the mode of the tag was not one of the above, it is assumed

to be a tag for a logical, integer, or real value and will

require the fetching of one central memory word.
method of determining the type of instruction to be compiled is
employed as when the mode was double or complex (5,6) except
that the final SA(1+1) Ai+]l 1s not compiled,

‘Subroutines Called:; AIX

Temporaries/Flags:

Tables Referenced:

Entry/Exit Register Conditions:

ANI
ANR

BIT
INL .
INN

" RGX

VTA
VIY

None

- Assign Long Register

- Bypass Interregister Transfer Indicator

The same

Analyze Possible Index Read

Analyze Read Tag

Logical If Indicator

Mode Indicator for Read

- Long Register Assignment

A Register Associates

X Register Associates

Entry:

Exit:

X6 =

X6

42 18
[TAc | [B] M|
B - Index Assignment
M - Mode Indicator
3
{ [R 1 |

Register Assignment

CIR-2

CKD - 1

CKD - CHECK MISSING DO NUMBERS

The DO Number Table is searched to see if there are any entries left that
are not pseudo DO numbers., If there are, this indicates missing DO

numbers and these are listed,

Subroutines Called:; WST - Write Special Tag

Temporaries/Flags: None

Tables Referenced: DO Number (G)

Entry/Exit Register Conditions: None

CKL - 1

CKL - CHECK MISSING SUBROUTINES

The list of subroutines requested via the CLL call is examined to see if
there are any missing. This will be noted because of the fact that none
of the missing ones will have a starting address and those missing sub-

routines will be listed.

Subroutines Called: WST - Write Special Tag

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: Bl - start of the list of routines requested via CLL

Exit: None

. CLL-1

CLL - PROCESS CALL STATEMENT

A CALL statement transfers control to a subroutine. Actual parameters may be
exchanged between the calling program and the subroutine. No more than 60
parameter may be passed and successive calls to the same routine do not have

to agree in the number of parameters used. Calling a subroutine with more actual
parameters than formal parameters specified causes a diagnostic during compila-
tion. A function call is compiled in the same manner as a subroutine call

except that a value is returned in X6 from the function which must be saved

upon reentry to the calling program.

A full word is reserved for each parameter on a SUBROUTINE or FUNCTION card.

Each of these words receive a location tag during compilation. The first six
arguments in a call are passed through index registers Bl-B6 and the remaining
addresses are compiled to be stored via extermal tags in their corresponding
reserved word, which has a location tag, in the subroutine. Imnitial instructionms
in the subprogram pack the addresses,‘three per word, from the index registers

in two temporary cells. Bl is saved in the lowest 18 bits of the first word
with B2 and B3 packed in the next two 18 bit portioms. The next temporary

cell holds B4~B6 with the address in B4 residing in the lowest 18 bits. When
one of these packed addresses is needed and is not avéilable in the index

register, then the proper temporary cell is read and the address is unpacked.

Two Fortran subroutines CHAIN and DUMP/PDUMP are specifically processed by CLL.
The name of the segment called by CHAIN is replaced by a constant tag and the
name is entered into the constant value table. A DUMP/PDUMP indicator is set
for calls to these subroutines. After these initial checks and replacements
are made, a call to CHAIN or DUMP/PDUMP is processed as any other subprogram

request.

Only a routine with an external or a location tag may be called. The subroutine
name is entered in the subroutine name table and may have the same name as the
program. There will be no conflict because the program name is the first entry
in the subroutine name table, so another entry is made for a subroutine name
that is the same, When an actual parameter is the name of a functiom or sub-
routine, that name must also appear in an EXTERNAL statement in the calling

program. This statement causes an external or library tag to be generated for

CLL-2

the subprogram name. This name will have a location tag in the subprogram
called which used the name as an argument. Therefore, the name of the sub-

program being called may have only a library or location tag.

A call that has arguments allows an arithmetic statement function as an argument.
TIQ translates the individual arguments into appropriate tags, or constants,

The segment called by CHAIN has already been given a constant tag. Any
arithmetic expression or subscripted variable will not be evaluated but each
portion of the expression will be replaced with the tag generated by a

previous definition or assigned a tag at this point.

UNP directs the processing of expressions imbedded within parenthesis and
function references. The outermost set of parentheses are removed and temporary
tags are generated to save fhe information. A call is compiled to the function
referencéd whether it be an arithmetic function or a functiom subprogram and

the answer which is returned in X6 is saved. (CRF is called by UNP for this

purpose).

Upon return from TIQ and UNP, all the arguments have been replaced with tags,
the function references processed, and the arithmetic expressions simplified by
removing the imbedded parenthesis. PRR (process function/subprogram reference)
is called to'pass the addresses of the arguments to the subprogram. Any sub-

- scripted variable has the variable and subscript replaced with one tag when the
array address is determined in the SAD (sense and process single array address)
routine. The arithmetic expression partially processed by UNP is completely
evaluated by CXP (compile expression). The expression is replaced in the string
buffer by a temporary tag which saves the result of the expression. When all
the arguments have been evaluated, the addresses of the first six are set into
index registers Bl-B6, and-the remaining ones are to be stored in their
corresponding reserved word via an external tag. A DUMP/PDUMP call causes the

number of arguments to be passed in B7 and the field length to be set in XO.

If the subprogram called was not an argument to the subroutine, then a return
jump to the subprogram is compiled. The return jump instruction is forced to

the upper portion of the word. The lower 30 bits contain the number of

CLL-3

arguments in the reference to the subroutine and a tag corresponding to the
location of the first word of the calling program or subroutine., The contents
of the word has the subroutineb name in the left adjusted display code if the
reference is from a subroutine; otherwise, the location is actually RA, which
will be zero, if the call is made from a program or segment. Example =

0100 500600

0715 100002

where 500600 is location of the entry/exit word of the subroutine
15 is the number of arguments in the call '
100002 is the location of the name of the subroutine.

A subroutine used as an argument is a special case, Instead of entering the sub-
routine via a return jump, instructions are compiled to insert the proper return
address in the entry/exit line and generate an unconditional jump to the first
executable instruction of the subroutine. 1In this way a subprogram may call any
one of many subroutines depending upon the argument passed from the main program,
Each of the subroutines used as an argument to the subprogram must have been
declared external to the main program - otherwise the argument is assumed to be

a simple variable,

When the call to the subroutine has been generated, then instructions are compiled
to restore the argument addresses to index registers if the called subroutine

was used as an argument to this subprogram or a function was used as an argument
in this call. PSN is called to process the next statement when the call statement

processor has completed.

SUBROUTINES CALLED: ADF Advance Table _
CLT Clear Temporary Table
CRI Compile Restore Instruction
PPR Process Function/Subprogram Reference
SCT Scan Table
TAB Normalize Statement

TIQ Translate Individual Quantities

UNP Unpack Parenthesis
TEMPORARIES/FLAGS ARF Argument Reference Count

FAG Function Argument Use

FSR Function Statement Reference Count

ICE Multiple Statement Count

TABLES REFERENCED:

INF

SIR
TBA
TBB
TBM
TBS
TBU
TGK
TGL
TML
™M
TMN

DUMP/PDUMP Indicator
Return Jump Count
Subroutine Reference Count
A Table parameters

B Table parameters
M Table parameters

S Table parameters
U Table parameters
Constant Tag
Library Tag

Argument Count
Subroutine Name

Subroutine Tag

Constant Name (A)

Constant Tag (B)
Variable Name (M)
Variable TAG (N)
Array Tag (P)

Subroutine Name (S)

Subroutine Tag (T)

Subroutine Parameter (U)

CLL=4

CNF-1

CNF -~ COMPILE NORMAT, FORMULA

CNF is entered when SFO detects an arithmetic replacement statement, It
controls the processing of the statement, the conversion of the expression

evaluation to that of the answer, and the storing of the answer.

‘Upon entry, the last statement is checked to see if it was a conditional
statement and if so, the expression is cracked immediately. If it
wasn't the current jump cell (CJP) is exahined. If there was a current
jump, the cell is cleared and the expression is cracked. If there was
no current jump, but there was a statement number, the expression is
cracked. Otherwise, the continue indicator is cleared and if the

last statement was not a CONTINUE, X7 is cleared to wipe out any program

tag.

In order to evaluate the statement, TAB is called first to normalize
the statement, TIQ is called to change the variables and constants to
tags and then UNP is to control the compilation of instructions to
evaluate and save all portions of the expressions that were imbedded
in parentheses. Upon return from UNP, all expressions that were in

parentheses are replaced with temporary tags.

.A check is then made to see if the expression was a simple one. If so,
and the right side is a constant, an instruction is compiled to set
X6 to this constant and then go to the portion of the routine that

takes care of converting and storing the answer.

If the right side was not a constant, but rather represented by a
temporary tag, an attempt is made to delete a store. If the store

is deleted, an attempt is made to delete a 106 imstruction if there

was one. Then the answer is converted and stored. If the right side was
not represented by a temporary and was not a constant, or if it was a
temporary but the last imstruction did not store the

answer into this temporary, CXP is called to compile instructions to

evaluate what is left of the arithmetic expressiomn.

CNF=2

Thus, CXP is the routine that finally compiles the last of the statement
and brings the answer to X6 (and X7 if mode of expression is double or
complex). An attempt is made to delete an extra 106 instruction by
making the result of the last arithmetic operation X6, Instructions are
then generated to convert the mode of the calculated answer to that of

the left number of the statement if they are necessary.

The answer is now in X6 (and X7) and is ready to be stored in memory.

If the address that the answer should be stored in is in an index
register or if the address does not have to be calculated CIW is called
to compile the proper write instruction and CNF exits to PSN (Process
Statement Number).b Otherwise, a search backwards of the compiled
instructions is made to see if there is a register free between the
present location and that of the temporary store of the address for the
énswer. If there is, an attempt is made to delete this address store
and use the address as it is in the register. Otherwise, CIW is again
called to compile the proper store instructions and then an exit is made

to PSN.

Subroutines Called: AILX - Assign Long Register

CIW - Compile Write Instructions

CXP - Compile Expression

TAB - Normalize Statement

TIQ - Translate Individual Quantities

UNP - Unpack Parenthesis

Temporaries/Flags: CJP = Current Jump Indicator

INK - Continue Indicator
RGX - Long Register Assignment
SIN - Statement Number

Tables Referenced:; None

Entry/Exit Register Conditions

Entry: B6 # zero if this is part of a conditional statement

Exit: None

COM-1

COM - PROCESS COMMON LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters
a COM declarative, the COM subroutine (Process Common List) is called.
The COM declarative permits the programmer to allocate blank common
~ storage by indicating the number of words and an identifier for the
first word of the array. An example of the COM declarative together

with the basic steps in processing the list is shown in Figure COM-1.

On entering the COM subroutine, the TAB subroutime is called to normalize
the list. If the mode indicator shows anythiﬁg other than FORTRAN II,

a zero block name is entered into the Common Name Table (Table 0). The
Variable Name Table (Table M) is scanned to determine if the identifier
has been previously entered and, if not, the identifier is entered into
the Variable Name Table. If the variable has previously been.entered in
the Variable Name Table, an error exit (Duplicate Tag Error) occurs.

The variable name is also checked to insure that the first character iﬁﬂ

alphabetic and that the name is composed of two or more characters.

Next, a check is made for the equal sign, and the CVN (Convert Number)
subroutine is called. A machine constant error exit is taken if the

17-l. If the constant is in the

constant is negative or greater than 2
proper range it is stored in the Array Parameter Table (Table Q). An
Array Tag (W-tag) is generated and stored in the corresponding Array

Tag Table (Table P) and Variable Tag Table (Table N).

Processing of the list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: ADF - Advance Tables

CVN - Convert Octal and Decimal Numbers
SCT Scan Table

TAB - Normalize Statement

COM-2

ayvd EDYNOS IXIAN HHI ¥O0d zm:amm
SISHHINZYVd IHOIY V ¥0d ADEHD

¢ = 1 LVEdTY ‘VWWOD V SI WEIOVIVHD IXAN 4T
ATEVL YULEAVEVd AVNEY NI INVISNOD ZMOILS
INVLSNOD IMEANOD

NOIS Tvndd ¥Od MOHHD

ATIVL JWVN dTIVIYVA NI ZWVN dTEVINVA HYOLS

(e=£q*2=2g%=18)W03 :37dNVxT

ONISSTO0dd FAILYHVTIIA WPD

"L

‘9

'S

"1

Figure COM-1

COM-3

Temporaries/Flags: MOE - Program Mode (set)

Tables Referenced; TBM Variable Name

&
=

Variable Tag

g

Common Name

TBP =~ Array Tag

&
o

Array Parameter

'

Entry/Exit Register Conditions

CON-1

CON -~ PROCESS CONSTANT LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters

a CON declarative, the CON subroutine (Process Constant List) is called,
The CON declarative stores the constant in the list and tags the storage
location with the identifier in the list. An.example of the CON
declarative together with the basic steps in processing the list is

shown in Figure CON-1.

On entering the CON subroutine, the TAB subroutine is called to normalize
the list., The Variable Name Table (Table M) is scanned to determine if
the variable which has been equated to the constant has been entered, and,
if not, the variable is entered in the Variable Name Table. If the
variable has previously been entered in the Variable Name Table, an

‘error exit (Duplicate Tag Error) occurs. The variable name is also
checked to insure that the first character is alphabetic and that the

name is composed of two or more characters.

Next, a check is made for the equal sign, and the CVN (Convert Number)
subroutine is called. The constant is stored in the Hollerith Word
Table (Table A), and a Constant Tag (K-tag) is generated and stored
into the corresponding Hollerith Tag Table (Table B) and Variable Tag
Table (Table N).

Processing of list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: TAB - Normalize Statement
SCT =~ Scan Table
ADF - Advance Table
CVN - Convert Octal and Decimal Numbers

Temporaries/Flags: TGK - Comstant Tag (set)

CON-2

@IVD 3D¥NO0S IXAN ¥0d NINLTA
SISHHINZVd IHOTI¥ ¥O4 MOHHD

= 1 LVEd® ‘VAWOD V SI ANINF IXAN 4T
479V ANTVA INVISNOD NI INVISNOD H¥OLS
INVLSNOD IN¥IANOD

NOIS TVNDE Y04 MOFHD

ATEVL AWVN
HTEVIIVA NI (10 “"3°9) HWVYN ATAVINVA HHOLS

(2-3+5°9=€0 ‘g/22=20 52 = ID)NPD :FTdWVXT

L

1

ONISST204d FAILVYEVYTO3A NYD

Figure Con-1

CON.3

Tables Referenced; TBM - Variable Name Table
TBA

TBB - Constant Tag

Constant Table

TBN - Variable Tag

Entry/Exit Register Condition: DNA

Note: Error Exits: EMT - Machine Tag Definition Error
EMD - Machine Duplicates Tag Error
EMF - 1 Format Error

CRF - COMPILE FUNCTION REFERENCE

CRF is called to control the processing of a subroutine
reference. Upon entry, the string entry containing the
function is specified. Control will be routed to three

depending upon the type of subroutine reference. If it

CRF=-1

or function
tag for the
routines

is a built~-in

function, PBR is called to evaluate it; for an arithmetic statement

function, PFR is called while PRR is called for a function/subprogram

reference. Upon return from these routines, CRF will exit.

Subroutines Called: PBR - Process Built-in Function

PFR - Process Statement Function

PRR

Temporaries/Flags: TML - Argument Count for Call
TMM - Name Tag for Call
TMN

Argument Tag for Call

Tables Referenced: None

Entry/Exit Register Conditions:

Process Function-Subprogram

Entry: B5 + address of start of subroutine reference

Exit: X7 = zero

CVN-1

CVN - CONVERT OCTAL OR DECIMAL NUMBER

The CVN subroutine converts an octal or decimal number, It is used for
constants in the address field of either a Machine or Ascent instructionm.
The unsigned constant is sent to DEC (Convert Decimal Number) and if the
mode is Ascent, the sign is restored and a return to the calling program
with the value in the X6 register occurs. However, if the mode is
Machine, the B6 register is set to one and X6 contains the signed
converted constant. Also leading blanks of the address field are com-

pressed for machine instructions.

Subroutines Called: " DEC - Convert Decimal Number

Temporaries/Flags: MHI - Machine Instruction

Tables Referenced: None

Entry/Exit Register Conditions:

X6 - Converted Constant

B6 - if Machine =1

CXP=1

CXP - COMPILE EXPRESSION

CXP controls the evaluation of all arithmetic expressions, whether the
expression is part of an arithmetic replacement statement, in an argument
list, or the arithmetic expression of an IF statement. The starting
address of the expression is specified upon entry and instructions will
be compiled to evaluate the expression until a left parenthesis or comma v
is found that is not part of an array reference, or until end of state-

ment has been reached.

Instructions are first compiled to calculate the address of all array
entries within the expression. CSR (Compile Subscripted Referencea)

is called to compile these instructions and it will bring the address

of the array entry to a specified index register. As each array address
is calculated, the actual entry in the string is changed to an indirect
tag along with an indication of which index register the address in in,
and the rest of the array entry is squeézed out of the string. After
index register 6 has been used, AO is used to hold the next array address,
B7 is used to hold the address of the lasf array entry and all addresses

in between are saved in indirect cells.

It is assumed that by the time CXP is entered, all addresses for array
entfies that appear more than once in the statement have already been
calculated and saved in an indirect cell and CXP makes no check to see
if this has been done., After instructions have been compiledvto
determine the address of all array entries in the expression and the
entries have been replaced by tags, the expression is ready to be
evaluated. The HEX routine is called first to evaluate any exponentials
within the statement, It will compile instructions to evaluate these
exponentials, and store the answer into a temporary cell. The string
entry for the exponential will be replaced by this temporary tag and

the expression will be squeezed down. Since HEX has to examine every
éntry in the expression, it will also determine the dominant mode of the
expression and, if there are any logical relations, it will set the

logical relation flag.

CXP=2

When HEX returns to the CXP routine, the logical relation flag is checked
and the HLR routine to handle logical relations is entered if any have
been detected. Depending upon the dominant mode of the expression, CXP
will then branch off to a routine to handle each mode. Generally, these
routines are responsible for compiling instructions to evaluate the rest
of the expression, converting all entries in the expression to the
dominant mode if they. are not in that mode already, and finally bringing
the result of the expression to X6 and X7 if the dominant mode is double
or complex. CXP will then change the last string entry of the expression

to flag the dominant mode of the expression and exit.

Subroutines Called: AAR - Analyze Array Reference

ANK - Analyze Address Generating Instructions
for Right Number

ALX - Assign Long Register

BEX - Compile Simple Boolean Expression
CSR =~ Compile Subscripted Reference

FEX - Compile Simple Floating Expression
HEX - Handie Exponentials

HLR - Handle Logical Relations

JEX - Compile Simple Integer Expression
KEX - Compile Simple Complex Expression
LEX - Compile Simple Logical Relation
MEX - Compile Simple Double Expression

Temporaries/Flags: ARI - Array Reference Count

BIT - Bypass Interregister Transfer Indicator
HIC - Highest Index Couﬁt
ICL - Simple Logical Relation Indicator
ICU - Index Tag
ICV - Upcoming Statement and Unpack Indicator
IGX - Current Index Assignment
INM - Logical Relation Indicator
INO - Dominant Mode Indicator
INX - Upcoming Statement Indicator
.'INY - Complete Unpack Indicator

CXP-3

SAR
TGI - Indirect Tag

Single Array Reference Count

TGT - Temporary Tag

IMEF - Start of Array Reference

MG - Expression of Index Assignment
TMH - Start of Expression

VIA - A Register Associate ‘

VIY - X Register Associate

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: B5 - Address of the start of expression

Exit: None

CXP=4

NOISS3ddX3 T TIdWOI-dXD

NOILVDOT
LOTIIANI NI SSTEaav
INIRETE LXdIN H30LS

ON

A

SEX

¢ a1avIIvav Ov s1

Oy o1 ssmyaqv
INIWETE IXAN ONIHE

ON

SdA

{ (ISSHO0Ud NJIdId SHONH
-“9dd9d AVIYV TIV dAVH

(9 0L SSTYAAV INIWITA
ONI¥Y Ol SNOIIDMIISNI

TTIdROD) FONTITITH
ga1414908s4dns ATIJHOD [y

ONIY1S SSIYIN0D :(ANV JI)
INJRNDISSV XEANI ANV OV1
HLIM XYINJ ONI¥IS HOVI4EY

(*e o1 ssmaav INIRITH
ONI¥E OL SNOIIONWISNI

TTIAR0D) FONIHIATA
@3I4I¥DSANS TTIAROD [

\

SIX

ON

¢ YILSIDHY XUANI
JTEVIIVAV NV F¥EHL SI

Sdx

¢ u)u V XAMINI ONI¥NIS SI

ON

ON _

SdA

& ufu ¥0 u(u XMINA SI

ON

{QIHOVAY INAWALVLS J0 aNd
A4INT ¥3A4NE ONIVIS dvdy

ON

¢ 0¥3Z INNOD
AONIEAANY AVIYV FHI ST

(QITIITARIS) NOISSHNAXT ATIJHOD - dXO

CXP-5

¥O¥¥d LVWIOd NOISSHUdXE |

ON

_ NOTISSHdd XA SEX XATdR0D 01l 13S

X4TdNOD TIHIS FTIJROD [¥ [F———1 yor1yDIANT FAOK INVNIROQ FHL SI
ON

NOISSaYdXd F'I14N0d SHA ¢ NOISIDI¥A d479n0d Ol LIS

479000 FTIRIS TTIAHOD 4 [<9 YOLVOIANI FAOW INVNIWOd FHL ST
ON

NOISSHYdXH SaX ¢ INIOd-9NILVOTd Ol I13S

ONILVOTd FTARIS TTIW0D ¥ [YOLVOIANI FAOW INVNIWOQ FHL SI
ON

NOISSHUIXH six | ¢ 9IOAINI Ol 13§

WIDTINT FTAWIS TTIJHOD [[YOLVDIANI F4OW INVNIWOd FHI SI
ON

NOISSTYIXH Sdx | - ¢ TVOIDOT OL i3S

TVO190T ATARIS ATIINOD [|9 YOILVOIANI HAOW INVNIWOQ FHI SI
NOISSTHAXH Sax ON

NVETOO0E HTAWIS FTTIdHOD [d Aa;||||||||*‘ (NOISSTUIXT NVAT00d V SIHI SI

[P ON
SAX ¢ SNOILVTIZY 'TVOISDOT ANV
_wz0H9<qmm T¥OI201 ITANVH [E NIVINOD NOISSE¥AXd THI aid

(MOLVOIANI
400W INVNIWOQ 13S)
STVILNINOAXE FTANVH Y

\

d49Vd SNOIATMd WO¥d °

DEC-1

DEC - CONVERT DECIMAL NUMBER

The DEC subroutine converts a decimal constant to its binary equivalent:
it also checks for octal constants of the form nnn....nB. (Note: octal
constants of the form pfonn....n which appear in arithmetic statements
are recognized by the Translate Variable subroutine.) DEC is called
when a numeric entry is recognized in a DATA statement or arithmetic
statement. On entering DEC, the string buffer address of the numeric
entry is contained in the B5 register. When the TAB subroutine
normalized the statement, it employed the ASN subroutine to pack digits
into words., The ASN subroutines assembles up to seven digits per word,
so numbers in the string buffer may occupy several entries. For
example, a 20 digit octal constant would appear in the string buffer

as shown in figure DEC-la., Similarly, decimal constants may occupy
several words, For ekample. a floating=-point number such as 37,84625184E=40

would appear in the string buffer as shown in figure DEC=-1b.

DEC searches the next three entries following the numeric entry to
determine if the number is followed by a "B". If it is, the Convert
Octal Constant (OCT) routine is called to convert the number. TIf the
numeric entry was not followed by a B, this and succeeding entries are
read, converted to binary, and packed in an assembly register. Con-
version continues until a non-numeric entry is encountered or until more
than 18 digits have been processed. The latter condition results in

an error exit, The non-numeric¢ which terminated this part- of the con-
versation is examined to see if it is a period (i.e., a decimal point):
if it is not, then the constant is an integer constant. If the non~
numeric is a decimal point, then the entries following the decimal

point are read, converted to binary, and packed in the assembly register.
Conversion again continues until a non-numeric entry is encountered or
until more than 18 digits have been processed., The number of digits

in the fractional part are saved to be used later in computing the proper
exponent value, and the assembled binary number is converted to

floating=point and n:rmalized,

DEC~-2

¥344ANd ONINIS AHL NI ‘O%~T%81GZ9+8°LE

‘INVISNOD INIOd-ONIIVOTI V 40 Ivid0d :9q1-DEd 21n31g

L PIoM

9 pIopm

¢ pioM

LIDIg-0Z V 40 1viy0d

d344N9 ONIYLS
dHL NI ¥d9HON TVIDO

Y paoy € piop Z paoy T prop
0% - 3 v| 815z9v8 . L€

% PIoM € pIoM 7 pIop 1 piopm

ieT-0dg 2an8tg g uuuuuu uuuuuuy uuuuuuyu

DEC=3

The non-numeric entry which terminated the conversion of the fractional
part of the number is then examined: if it is a D or an E, the sign
of the exponent is stored and the exponent converted to binary. This
exponent is then combined with the number of digits in the fractional

part of the number, and converted to the appropriate powers of two.

Subroutines Called: OCT -~ Comvert Octal Qonstant

Temporaries/Flags: none

n
Tables Referenced; Table of Powers of 102 (REG)

Entry/Exit Register Conditions

Entry: B5 = address of numeric entry in string buffer
Exit: BS = address + 1 of last entry processed (i.e., the
string buffer address of the entry following
the number)
X6 = number
X2 = 0 (second word of a double precision conversion)
B6 = Mode Indicator

Note: The mode indicator is set as follows:

Mode Constant
1 Octal

2 Integer
4 Floating Point
5

Double Precision

FIN-1

FIN - FORM INSTRUCTION

In the processing of Ascent or Machine records, an intermediate language
is éenerated and stored in the string buffer. The FIN subroutine forms .
the octal instruction by examining the string buffer which has been
flagged by the RDA rputiﬁes. FIN first determines if the instruction

is a long (30-bit) instruction. An equal sign in column 8 and either a
positive result in the TOS Table 1ook-u§ or entries 0-3 of the TOI Table
look-up (see Appendix B) are 30-bit instructions. For these long
instrﬁctions, FIN can determine the instruction by examining columns 7,
12 and 13. 1If column 7 is a P or R and column 12 is a period, then
column 13 defines which 03 instruétion.should be formed. The X, A and

B registers are always indicated by an A, C or B respectively, and a

K address is flagged with a G. If column 7 is a P or R and column 12

is not a period, then column 12 describes instructions 04-07.

If column 7 is an A, C or B, it describes the resultant or "i" register

and a table look-up provides the exact instruction. The tables searched
are TOI for instructions 50-77, TOP for instructions 11-13, 15-17,

30-42, 44-45 and TOS for 10, 14, 20-27, 43, 47 and certain long instructions
with implied XO registers (see Figure RDA-1 for the flags corresponding

to given instructions). Once the instruction is selected, a jump to

FSI (Form Short Instruction) or FLI (Form Long Instruction) is taken.

Entry conditions are the flagged string, III, JJJ and KKK register
constants. X5 contains the K value where applicable and X7 contains
the current word address. Calls to further routines combine the opcode

and registers,

Subroutines Called: SCS - Special Search

FSI - Form Long Imstruction

FLI - From Short Instruction

Temporaries/Flags:

Tables Referenced:

III
JJJ

TOI
TOP
TOS

FIN-2

i Portion of Machine Word
j Portion of Machine Word

k Portion of Machine Word

Table of Format Checks on Instructions 50-77
Table of Identifying Characters

Table of Special Formats

FLI - ASSEMBLE LONG INSTRUCTION

When the FIN (Form Instruction) subroutine encounters a 30-bit Ascent
or Machine instruction, the FLI subroutine is called. The FLI routine
assembles these instructions as a 6-bit opcode, a 3-bit resultant
register, a 3-bit operand register and a 15-bit address. Then it
arranges these instructions-in the parcels of a 60-bit machine word,

If an RJ instruction is found, a full word is indicated. Upon entry,
X0 contains the opcode right-justified, Bl and B2 contain the resultant
and operand registers respectively, FLI calls the CDC (Convert
Instruction or Constant Tag to Display Code) subroutine to form and
insert in the output buffer the display code equivalent for this
instruction. Next, the routine checks the intraword count and if the
30~bit instruction cahnot be inserted, a call to the ARA (Adjust Address
and Write Registers) subroutine is made and the 30-bit instruction goes
to parcels 0 and 1 of the next word. If the 30-bit inmstruction can fit,
a test is made to properly place this instruction and the intraword
counter is incremented by 2., Upon exit from this routine, both the

display code and binary forms have been recorded.

Subroutines Called: CDC - Convert to Display Code
ARA - Adjust Address and Write Register

Temporaries/Flags: ICT - Intraword Imstruction Counter - (set)

Tables Referenced: None

Entry/Exit Register Conditions:

X0 opcode (binary)
Bl - i portion of instruction else 0
B2 =~ j portion of instruction

X7 - current instruction word address

FSI-1

FSI - ASSEMBLE SHORT INSTRUCTION

When the FIN (Form Instruction) subroutine encounters a fifteem bit
Ascent or Machine imstruction, the FSI subroutine is called. The FSI
subroutine assembles a six bit opcode, three bit resultant register (1)
and two three bit operand registers (j, k), then stores the display code
equivalent in the output buffer. Upon entry into this routine, XO
contains a table (TOP, TOS or TOI) entry, If bit 18 of X0 is set then

a test is made on bits 6-11, if 6-11 are zero, Bl, B2 and B3 contain
the correct ijk register respectively. If bits 6-11 are equal to one,
then X5 contains the corrected values for the-i; j and k registers and
if bits 6-11 equal two, the j and k registers must be interchanged.
These bits may contain another value only if the i and j registers are.
equivalent. If bit 18 is not set, then Bl, B2 and B3 contain the i,

j and k registers and X0 contains the octal op code. A call is made

to CDC (Convert Instruction or Comstant Tag to Display Code) then a
check is made as to the correct parcel in the current word. Since

only one fifteen bit instruction is assembled, the intraword counter

is incremented by one. Upon exit from this routine, both the display

code and binary forms of the instruction have been recorded.

Subroutines Called: CDC - Convert Instruction or Constant Tag to
Display Code

Temerafies/Flags: ICT - Intraword Counter (set)

Tables Referenced: None

Entry/Exit Register Conditions:

Bl resultant register

B2 first operand register

B3 second operand register

X0 opcode

X5 register values under certain conditions

X7 current instruction word address

HOL-1

HOL - PROCESS HOLLERITH LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters

an HOL declarative, the HOL subroutine (Process Hollerith List) is
called. The HOL declarative allows a ten character group to be stored

in display code and tagged with an identifier. An example of the HOL
declarative together with the basic steps in processing the list is shown

in Figure HOL-1.

On entering the HOL subroutine a jump is taken to ASV (Assemble Variable)
_to~isolaté the identifier, If the identifier is not followed by an

equal sign an error exit (Machine Format Error) is taken. The identifier
is also checked to insure that the fifst character is alphabetic and

that the 1dent1f1er is composed of two or more characters. Then the
Variable Name Table (Table M) is scanned to determine if the identifier
had been previously entered, cand, if not, the identifier is entered into
the Variable Name Table. If the identifier had previously been entered

in the Variable Name Table, an error exit (Duplicate Tag Error) occurs.

Next, ten characters are assembled from the string. These ten characters
are entered into the Hollerith Word Table (Table A). A Constant Tag
(K-tag) is generated and stored into the corresponding Hollerith Tag
Table (Table B) and Variable Tag Table (Table N).

Processing of the list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: ASV -~ Assemble Variable
SCT Scan Table
ADF

Advance Table

Temporaries/Flags: TGK - Constant Tag (set)

HOL-2

- Q¥00H¥ IXAIN HHI Y04 N¥ALA™

SISEHINDNVA IHOTY V ¥04 MOTHD

¢ -1 1Lvda¥ ‘VWWOD V ST AMINZ IXIN HHI 41

479Vl NI TOLS ANV SVI INVISNOD V HLVANED

TGV ez<ewzou‘mmy NI mAMHmrnyHmmuuom L HIOLS
SYALOVMVHO NAL HTIWRESSY

TIAVL VN TTAVINVA GHL NI (TH®*3°9) FHVN TIEVIEVA BHOLS

NOIS TVvNOHT NV 04 MDIHD

A@mmxom\wmm\umm “r1M94309GV=IH) 10H * 31dNVvX 3

ONISSII0HL FAILYHVYTIIFd TOH

"L

‘9

‘g

‘Y

‘e

4

1

Figure Hol-1

HOL=-3

Tables Referenced: TBM - Variable Name Table
‘ TBA - Hollerith Word Table
IBB - Hollerith Tag
IBN - Variable Tag

Entry/Exit Register Conditions: DNA

Note: Error Exits: EMT - Machine Tag Definition Error
EMF - Machine Format Error
EMD - Machine Duplicate Tag Error

IFH

IFH - PROCESS IF SENSE STATEMENT

IFH is called from IFS when it is determined that the IF might be a

SENSE SWITCH or SENSE LIGHT type IF. After some initial checking to

see that the format of the statement is correct, and detemining which
type sense it is, the two branches of the statement are changed to tags.
Instructions are then generated to read RA of the program, to mask off

the declared switch or light (actually these are the same), and a zero
jump is compiled to the second branch., If the statement was a SENSE LIGHT
IF,‘instructions are compiled to turn this light on. Finaily, ingtructions
are compiled to jump to the other branch of the statement if it is not

the same as the upcoming statement number, and control is transferred to

PSN to process the statement number.

Subroutines Called: ASL - Assemble Letters

ASN - Assemble Numbers
ISN ~ Identify Statement Number
CUN - Tag Upcoming Statement Number

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Conditions:

Entry: None

Exit: None

IFL=-1

IFL - PROCESS LOGICAL IF STATEMENT

IFt is entered once the IFS routine determines that the statement is not
an I/0 type IF and that the first entry past the right parenthésis is not
a statement number. At this time, the last parenthesis is replaced by a
zero entry to flag the end of the statement and the statement is normalized
starting with the second parenthesis. The first parenthesis is replaced
by an equals sign in order to simulate an arithmetic expression and the
individual entries in the statement are translated to proper tags. UNP

is called to control the evaluation of all portions of the expression that
are imbedded in parenthesis. CXP is then called to complete the eval-
uation of the expression. An instruction is compiled to count the number
of ones in X6 and a zero jump instruction over the coding that will be
generated by the evaluation of the rest of the logical IF statement is
compiled. An attempt is made here to eliminate a BX6 Xi instruction if
it was the last one compiled in the evaluation of the expression, The
processed portion of the IF statement is changed to blanks, the address

of the zero jump instruction is saved as the current jump and a return to
the main routine is made at CPQ which is the return for a conditional

statement,

Subroutines Called: CXP - Compile Expression

TAB - Normalize Statement
TIQ - Translate Individual Quantities

UNP - Unpack Parenthesis

Temporaries/Flags: CJP - Current Jump

IGH - Statement Tag
TMO ~ Start of Conditional Statement

Tables Referenced: None

IFL-2

Entry/Exit Register Conditions

Entry: B3 = address of first left parenthesis in string

B4 = address plus one of last right parenthesis

Exit: B5 = 24B to flag a conditional statement next

IFS-1

IFS - PROCESS IF STATEMENT

The IFS routine controls the evaluation of an IF statement. The system
allows four types of IF including the I/0 checks, the SENSE SWITCH AND
SENSE LIGHT checks, the logical type IF, and the normal arithmetic

expression with two or three branches. The first seven characters past

the first left parenthesis are extracted and a check is made tc see if

this might be a SENSE type IF. If so, control is passed to the IFH

routine. If not a check is made to see if it is some type of I/0 check,

and if it is, it is evaluated within this routine. If it is not an I/O

type IF, the first entry after the last right parenthesis is examined. If

it is not a number, a logical type IF is assumed and control is trans-

ferred to the IFL routine.

I/0 type IF:

Normal IF:

After extracting the tape number and determining which type
of I/0 check is being made, the routine to compile tape
handling instructions (PMT) is called. After returning
from this routine, the callnto the proper routine will have
been compiled and then the proper tests will have to be
generated, For an "IF(UNIT, """ I/0 check, tests are
generated to jump to each one of the branches. The upcoming
statement number i:s checked for the restfofAthe I/0 checis

and one of the test jumps is eliminated if possible.

When it has been determined that it is a normal IF, the
statement has been normalized and the first entry past the
last right'parenthesis is a number. In order to use the
existing arithmetic statement procéssing,column seven is
changed to an equals sign, and the routine called UNP is
called to control the processing of all portions of the
statement embedded in parenthesis. CXP is then called to
complete the evaluation of the expression and the appropriate
test jumps are then generated with checking for equal
branches and branches the same as the upcoming statement
number. Any unnecessary test jumps are thus eliminated.
Control is fhen given to the PSN routine to process the

statement number,

Subroutines Called: ASL - Assemble letters

ASN - Assemble numbers

ASV - Assemble variable

CUN -~ Tag upcoming statement numbers
CXP - Compile expression

ISN - Identify statement number

PMT - Compile tape handling instructions
TAB - Normalize statement

TIQ - Translate quantities

UNP .- Unpack parenthesis

Temporaries/Flags: TMI - First statement number

TMJ - Second statement number
TMK - Third statement number

Tables Referenced: None

Entry/Exit Register Conditions

" Entry: B4 = First left parenthesis of statement
Exit: None .

IFS-2

ISL-1

ISL - TIDENTIFY SYMBOLIC TAG

The ISL subroutine is called when a symbolic tag is being processed by
PIC (Process Tag and Constant). ISL checks the tag length; it must be
less than six alphanumeric characters, then the Argument Name Table
(Table I) is scanned and if the variable is found to be there, a normal
return is taken. If the variable does not yet appear in the table, a
statement tag is generated and both the tag and name are sent to the

Variable Name Table. The generated tag is returned in the X6 register.

Subroutines Called: SCM - Scan With Masking
ADF - Advance Tables

Temporaries/Flags: TGH - Statement Tag

Tables Referenced: TBI - Argument Name Table

Entry/Exit Register Conditions:

Entry: X6 - Variable Name

Exit: X6 - Generated Statement Tag

ISN - IDENTIFY STATEMENT NUMBER

The ISN subroutine searches the Statement Number Table (Table K) for a
specified statement number and, if not found, enters it in the Statement
Number Table. On entering the ISN subroutine, leading zeroes are
deleted from the statement number, and the number checked to see if it
is composed of more than five digits. 1If the number contains more than
five digits, or contains a non-numeric character, an error exit (State-
ment Number Error) occurs., If the number is a valid statement number,
the Statement Number Table is searched: if the number is found in this
table, control is returned to the calling program. If the number is

not found in the Statement Number Table, it is entered in this table,
and a statement tag (H tag) is genérated and stored in the corresponding
entry in the Statement Tag Table (Table L). Control is then returned

to the calling program,

Subroutines Called: SCT = Scan Tables
’ ADF =~ Advance Tables

Temporaries/Flags: TGH - Statement Tag (set)

Tables Referenced: Statement Number Table (Table K)
Statement Tag Table (Table 1)

Entry/Exit Register Conditions

Entry: X6 = Statement number

Exit: X6 = corresponding tag from Statement Tag Table

KOT-1

XKOT - CONVERT BINARY TAG TO MNEMONIC TAG

The KOT subroutine converts the binary tag associated with the instruction
to a mnemonic tag which is printed with a compiled listing. Input to

the routine is from CDC (Convert Instruction or Constant Tag to Display
Code) which places the binary tag left-justified in the X1 register.
Output is the alphanumeric tag in display code. Tags in the range of
200000 to 600000 are converted by examining the upper 5 bits and

selecting a letter (L, I, T, C, F, A, V, N or S) for this configuration.
The sixth bit, if set, generates a 1 as the second character and if

unset, generates a zero. The remaining four digits are merely converted
to their display code equivalent. The program tag description given

in the appendix shows the exact letter given above for any given numeric
tag.

Subroutines Called: None

Temporaries/Flags: MOD - Machine/Ascent Indicator.

Tables Referenced: None

Entry/Exit Register Conditions:

X1 binary tag left-justified
X6 mnemonic tag left-justified

LST - PROCESS INPUT/OUTPUT LIST

The calling sequence to the execution time I/0 routines is constructed
by LST. The statement processor, RIT (READ), WOT (WRITE), PNC (PUNCH),
etc., decldes from the form of the statement which execution time
routine is to be referenced. Also, the file name from the logical unit
parameter has been constructed and B3 contains the address of the format

statement.

At least three calls are made to the I/0 subroutines - 1) initialization
2) intermediate 3) termination. There will be an intermediate entry
for each array or data item to be transferred. WNaturally, an I/0
statement without a list would have only two entries made to the sub-
routine. The ENCODE/DECODE statements have a different initialization
entry for their subroutines but the intermediate and termination entries

are the same., The subroutines that will be referenced are:

INPUTC £for coded reading

INPUTB for binary reading
INPUTS £for DECODE

OUTIPTC for coded writing

OUTPTB for binary writing
OUTPTS for ENCODE

The calling sequence for these subroutines, except INPUTS and OUTPTS is:

Inifialization: BL =20

B2 = address of parameter or complemented
address of variable tape number

B3 = address of format statement

Intermediate: Bl = address of data item or beginning
address of array

B2 = array length or 0

Termination: Bl -1

LST-1

LST=-2

For INPUIS and OUTPTS:

Initialization I Bl1 =20
B2 =0
B3 = address of format statement
B4 = number of coded characters
Initialization II Bl = address of packed data -
B2 =0

All files to be referenced within a program must be declared on the
PROGRAM card. Each name is entered into the File Name Table. When-
even a reference is made to a file, the location of the buffer parameter
list may be retrieved from this table if the logical unit number is not
a variable. The address is then set in B2 to be sent to the subroutine.
In the case that the logical unit number may vary, PMD (Process Tape
Medium for Input/Output) will pass the address of the variable in
complemented form to the subroutine. The initialization entry to the
subroutine is then made with Bl, B2, and B3 set accordingly. TSF

(Tag Special Function) finds the tag associated with the subroutine to

be called and this tag is used in the return jump instruction.

TAB (Normalize Statement).removes unnecessary blanks, and packs the
variables and constants into one-word string buffer entries. Replacing
the variables with tags is done by TIQ (Translate Individual Quantities).
A simple variable address is set in Bl and B2 is zero unless the

variable is double or complex in which case B2 = 2,

An implied DO-loop transfer makes an entry into the subroutine for

each item in the array. Example: READ (25, 10) (T(I), I=1, 8) causes
the subroutine to be referenced eight times. However, if T had been
dimensioned then READ (25, 10) T would transfer the whole array with only
one entryvbecuase the array length is retrieved from the Array Parameter
Table and set in B2, The implied DO-loop code is generated by HBL
(Process Left Parenthesis) and HCL (Process Equal Sign).

An array variable which is subscripted in the list requires CSR (Compile
Subscripted Reference) to fetch the address of the word within the array.

This address is sent in Bl and B2 will be zero since only one word of

LST-3

the array is being transferred.

If the variable was an argument to the routine, then it would have a
location tag. If this tag is not in the Array Tag Table, then it must
not have been dimensioned. GAT (Compile Argument Address Pick) gets the

address that was passed to the routine and sets it into Bl.

A variable with a location tag that was found in the Array Tag Table
may '
1) be followed by a subscript
2) have had fixed dimensions and the entire array is to be transferred

3) have variable dimensions and the entire array is to be transferred

In the first case, the subscript is handled in the same way as an array
that was not passed to the routine as an argument. CSR (Compile
Subscripted Reference) compiled instructions to fetch the proper word

within the array and this address is set in B1.

An array variable used as an argument which appears in a DIMENSION
statement may have the dimensions as constants or variables. A variable
dimension also enters the routine as an argument. If the dimensions are
constants, then the array length of the variable is read from the Array
Tag Table and saved in the Constant Value Table. CIR (Compile Read
Instructions) is called to fetch this value as a different argument is
passed to the routine. B2 is them set to this array length and the
beginning address of the array is found by GAT (Compile Argument Address
Pick). ' '

Variable dimensioned arrays have an entry in the Array Tag Table but

the array parameters are given location tags instead of constant values,
By scanning the Array Tag Table and checking the 216 bit of the corres-
poinding entry, it can be determined whether or not the dimensions have
location tags. Instructions are compiled to construct the length of the
array. If it is a single dimensioned array, then just the address of
the one variable is sent in B2. A two dimensioned array must use the
product of these two variables as a length. So with three dimensions,

another product of the third dimension and the first two necessary for

the length. 1In all cases-the beginning address of the array is sent to

LST-5

the subroutine in Bl and the length is set in B2. A double or complex
‘variable always has an array length twice the size available from the

Array Parameter Table set in B2.

When the last data item has been processed, then a final entry with B1 =1
is compiled to the subroutine. CRI (Compile Restore Instruction) is called
to restore the addresses of the arguments to index registers if there

were any arguments passed to the routine.

Advance Table

Assemble Variable

Subroutines Called: ADF
' ASV
CLA - Clear All Registers
CIR - Compile Read Imstructions
CRI - Compile Restore Instructions

CSR - Compile Subscripted Reference
GAT - Compile Argument Address Pick
HCL ~ Process Equal Sign

HBL ~ Process Left Parenthesis

PMD -~ Process Tape Medium

SCM - Scan Table With Mask

SCT - Scan Table

TAB - Normalize Statement

TIQ - Translate Individual

TSF - Tag _'Spec:lal Function

ngém;iesglags: T™MA - Pseudo Statement Number
TMD - Subroutine Tag

Tables Referenced: Constant Value (A)
Constant Tag (B)
Array Tag (®)
Arxray Parameter (Q)

Entry/Exit Register Conditions:

Entry: X4 - Subroutine Name
X5 - Filename
B6 - NZ if ENCODE/DECODE

Exit: None

MAA-1

MAA - PROCESSING MACHINE OR ASCENT RECORDS

When the Run compiler interprets an Ascent or Machine header card, all sub-
sequeﬁt records, without an % in column 1 until the next END card, are
processed by the MAA subroutine. MAA first concerns itself with the

- operation field of the current record. Examining this field determines

one of four types for this record (referemce Figure MAA-1): 1) a constant . R

or Machine register notation, 2) an Ascent mnemonic, 3) an Ascent pseudo-op or -

4) a Machine declarative or FORTRAN non-executable.

The first group is processed in the MAA routihe while the other three are B
linked with a series of subroutines. Upon determining a Machine

operation or constant, MAA calls the PST (Pfocess Location Tag) sub-
routine to store and tag the statement label or suppresé any leading
blanks. Next, a check is made for a left parenthesis indicating a

block reservation request. Several checks are made for the correct

form for this instruction. if there is a positive decimal or octal 5
number enclosed within parenthesis, followed by an end of statement, and a
core overflow will mot occur, then MAA allocates and initializes to
zero the given number of cells, and a jump to a common return area
occurs. (reference Figure MAA-2). Should the type one processing encounter
a.constant, a jump is taken to ARA (Adjust Address and Write Register). |
to write the previous word. Thewa jump to TAB (Normalize Statement)
reoxrders the stfing buffer and a jump to CVN (ConVért Constant) stores

the octal equivalent to the FORTRAN acqeptab1e'constant. If this section
has been entered from another type processing a check is made on the‘
‘constants range. In any event, the common return area is entered.
(reference Figure MAA-3). Sensing a dollar sign in the instruction

field transfers control to thé type 2 processing of a NO instruction.
Another acceptable form for type 1 is the constant section header card.
This card will cause a call to ARA (Adjust Address and Write Register)
subroutine, set the instruction word counter, write blanks into the

output buffer,write the record, read the next record, check for an

end of file which is illegal at this point, then return to the main

Run loop.(reference Figure MAA-4).

Type 1 processing of a Machine register notation calls the PAF (Process

MAA-2

S3IdAL @73/4 3JOI NOILVHILO

SINIRALVLS , - ‘ !
NVIIN0d e :
TOH e ZSSE
HOD e NOD e
ST e aod e
ans e 0dd e $TA0D40 EANTHOVR
‘ SA00d0
SAV e I e 11910 + WALLAT T e
SINVISNOD e
NOD e ~ gsd e SAA00d0 WALIIT Z e A |
A | Q4vD IAVIH e
SEAIIVIVIOIA SNOIIVEEdO0 SOTHONANK INADSY
ANTHOVH -0Q3Nsd AINADSY _ ¥ILITT OML SYALIIT ON

A SdAL I 341 TEELY BEETY

Figure MAA-1

MAA-2-2

Additive Field) subroutine. This routine flags the string buffer with
an intermediate language identical to RDA's processing of Ascent
instructions (reference Figure RDA-1). If a tag or constant has not
been processed, the PTC (Process Tag and Constant) subroutine is called,
then FIN (Form Instruction) is called and the processing is continued

as in type 2,

The common return section 1nd1cates a full word has been processed, calls
CDC (Convert to Display Code) for the output listing, writes the record
into the buffer area, reads the next record, checks for an illegal end
of file, then returns for processing this record. The return calls

AFS (Assemble FORTRAN Statement) and if an * is found, the next record
is read and checked; if not, MAA iSvre-entered from the Run main loop.
The processing of type 2 Ascent mnemonics also calls the PST (Process
Location Tag) subroutine then calls the RDA (Reduce Ascent Format)
subroutine to flag the string buffer with an 1ntermed1ate_1anguage
(reference Figure RDA-1). A test is made to determine if the Ascent
“instruction had a constant or tag in the address field, or a literal

in the instructioh field. If the latter condition exists, control is
transferred to type 1 processing described above. If the former
condition exists, a call to PTC (Process Tag and Constant) will convert
thesevfields before calling the FIN routine. If neither of the above
conditions exist, then a direct transfer to FIN (Form Instruction)
routine which interprets the string buffer and generates the 15 or 30
bit instruétion. These routines also store the binary word.v Then

the buffer is written and the next record read, checked for an end of

file, and control returns to the Run main loop.

Type 3 proceséing is’mérely a table look-up resulting in an tnconditional
transfer to an open routine which generally returns to the common return
area of the type 1 proceséing (reference MAA-5). These open routines are
ACE (Process Ascent EQU), ACH (Process Ascent BCD and DPC), and ACR, ACK
(Process Ascent CON). A transfer to this section without a find results

in an error exit.

The processing of type 4 instructions checks the relative position of
the declarative or FORTRAN statement. These instructions must appear

at the beginning of the program. If a FORTRAN statement is detected,

MAA-3

ONISSHD0¥d Y04 N¥NIJIY QNV Qmoowm IXdIN THL LNANI .
da4409 0L INdino .

4000 AVIdSIa OL HMmbzoo .

VEIIV ZOVI0LlS HHL HZITVILINI .

HLONAT ATAId TVIOL dHL MDHHD ’

SSHYQAV HAILVTAY ONINNNY FHL INIWAYONI .
INVLSNOD HHI I9FANOD N

LVRE0A HHIL YMDEHD ’

| Aoo\v X718t FT1dNYX3

ONISSI)0Hd NOILVAIISIH 32078

Figure MAA.2

MAA-4

ONISSHED0¥d ¥0d N¥NLAY ‘FTIA 40 QNI Nv ION JI .
qQ¥0ddy IXEN. IHT avdy .

di44nd LOdINC OX mwmm2¢ma, .

4002 AVIdSIA OL IL¥EANOD .

NOTIDMYLSNI @¥0OM TINd HLVOIANI .

qa44n9d HmmHDO OINI INVISNOD d¥0LS .

LNVLISNOD HNL JIIEANOD .

LNERALVLS HZITVION .

£039°S1 INO)D . J7dNVvx3

ONISSID0&8dd NOIL DTS INVLSNO D

Figure MAA-3

MAA-S

ONISSEDONd ¥Od NINLEN ‘TTTL 40 axg NV ION 41 .
| QMOOWY IXIN THL QVEM .

¥E4NE 1NdINO HHI OINI SINVIE ZITEH

OVId NOILDES INVISNOD IAS o

qiv) ¥gdaviH LSYId FHL ¥04 MDIHD .

** 8-/ NAVNI10J - LYNYOS

ONISSII0HA AHV) H3AVIH LNVIS NG

Figure MAA-4

MAA-6

Additive Field) subroutine. This routine flags the string buffer with
an intermediate language identical to RDA's processing of Ascent
instructions (reference Figure RDA-1). If a tag or comstant has not
been processed, the PTC (Process Tag and Constant) subroutine is called,
then FIN (Form Instruction) is called and the processing is continued
as in type 2.(reference MAA-6). The common return section indicates a
full word has been processed, calls CDC (Convert to Display Code) for

the output listing, writes the record into the buffer area, reads the next

record, checks for an illegal end of file, then returns for processing this

record. The return calls AFS (Assemble FORTRAN Statement) and if an *
is found, the next record is read and checked; if not, MAA is re-entered

from the Run main loop.

The processiné of type 2 Ascent mnemonics also calls the PST (Process
Location Tag) subroutine then calls the RDA (Reduce Ascent Format)
subroutine to flag the string buffer with an intermediate language
(reference Figure RDA-1). A test is made to determine if the Ascent
instruction has a constant or tag in the address field, or a literal

in the instruction field. If the latter condition exists, control is
transferred to type 1 constant processing described above. If the former
condition exists, a call to PTC (Process Tag and Constant) will convert
these fields before calling the FIN routine. If neither of the above
conditions exist, then a direct transfer to FIN (Form Instruction)
routine which interprets the string buffer and generates either a 15-bit
or 30-bit instruction. The routines called by FIN store the binary word.
Then the buffer is written and the next record is read, checked for an
end of file which is illegal at this point and then transferred to the

main loop of Run.

Type 3 processing is merely a table look-up resulting in an unconditional
transfer to an open routine which generally returns to the common return
area of the type 1 processing (reference MAA-5). These open routines are

ACE (Process Ascent EQU), ACH (Process Ascent BCD and DPC), ACR (Process

BSS and BSSZ, ACK (Process Ascent CON). A transfer to this section without -

a find results in an error exit.

The processing of type 4 instructions checks the relative position within the

program of the declarative or FORTRAN statement. These instructions must

appear at the beginning of the program. If a FORTRAN statement is detected,

MAA=-7

UszmMUOMm I 34AL OL 09 °*g

NOILDHES INVLISNOO NI ION 4I IIXH 40994 na
NOLLDHS INVISNOD NI 4I IIXA TVRION ‘€
SYHLOVIVHO NAL HLVINWNOOV °g

OVL NOILVDOT SSHDOMd -1

%%y wx odg J9vi

VY GG a9vL f3TdAvX3

ONISSHD0¥d I FJAL 0L 09 ‘¥

ONTYIS dHI NI SISHHINIIVA

ONISSEDO¥d (S4V) AI IdAL OL 09 ‘¢ IHOI¥ V H¥MOLS :2SS4/sSd 41 ‘¢
NOIS TviDE INASNI °g ANVIE ISYI4 1V ONI¥IS GNE ‘g
OVI NOTIVOOT SSA0Md °T ONI¥LS HHL 40 L NWII0D 0L HA0DdO FAOH °T
£°9 NOD
£ 7554
£4Z NOF FoVL :37dWvX3 § S5 WOVL :FIdWNVXT

INISSID08d NOILVHIJO 0dINsd

Figure MAA-5

MAA-8

OszmmUOMm.MOh N¥NLIY ‘ETId4 40 GNE NV ION dI .

Y004y IXIN avid o

MIODEY QIA0D FLTEM
NOIIOMYISNI WH0d
ANV 41 ‘INVISNOD ¥O OVI SSED0¥d o

@TdId FAILIAAY SSADO¥d

Auﬂb.ruvﬂh s 374X 3

INIS5300&ld NOILDONHLSNI 3INTHOVI

Figure MAA-6

NAaA -11

auvd aNZ
STV INVISNOD

Q¥VD YHAVAH INVLSNOD

STEVD NOILOMILSNI

Q¥VD ¥AQVEH ENTHOVA 41 ‘SQUVD NOILVAVIDAQ
ANV A1 “SQ¥VD NVIINO4

Q4vD ¥daviEH

¥ IdN0 /NWYHOI08d

MAA-1Z

2

QYOOTE . 1A IHI ¥Od NYAITE °C

¥AIANG OL Q00 AVIASIA INdIN0 4
NOIIONYISNI L1IS-ST 0 IIg-0€ FHL W04 '€
4000 INEDSV THI EONAM °Z

QTHI4 NOILVOOT HHI NI 9VI SSID0¥d '1

9VL +2X = IXS - 31dWVYx3

ONISSTD0eld JJINOWINW 1 NITISVY

then a transfer back to the RUN compiler is

MAA-13

initiated to complete the

processing. If a declarative is encountered, then a table look-up and

jumps similar to type 3 processing occurs.

unconditional transfer to the Run compiler.

These routines return to an

The routines involved in

the six declarative processing are CON, COM, ABS, HOL, RES, and SUB.

The common error exit for the MAA subroutine sets the buffer to a string

of * and sets several flags. The next record is read and checked for an

END card or a second END card which is processed by ENO; a single END

card is processed by MND, and all other cards return to the Run compiler

and AFS then returns to MAA.

Subroutines Called: Reference Figure MAA-7

Temporaries/Flags: ADM - Running Relative Address

ICE - Dollar Sign Pointer (set)

INJ - Continue Indicator (set)

ICT - Intraword Instruction Counter (set)

FLH - Subprogram Error Flag (set)
FLF. - Job Error Flag (set)

PNM - Program/Subprogram Name

IWC - Number of Imstruction Words (set)

ZAA - Relative Start of Current Program or

Subroutine

Tables Referenced: MIB - Table of Tag-defining Operation Codes

MTA - Table of Ascent Pseudo Operations

TBJ =- Argument Tag Table

Entry/Exit Register Conditions: N/A

MAA-14

RUN COMPILER
ASCENT-MACHINE ASSEMBLY

MAIN SUBROUTINE CALLS

D oren
A Decrosen

MCA=-1

MCA - MAKE RELATIVE COMMON ASSIGNMENTS FOR FORTRAN IV

This routine is called during the processing of the END card to make

the common assignments. Upon entry, CTY (Common Block Type Indicator)
is set to zero if blank common is to be processed, and set to ome if labeled
common is to be processed. After blank common is processed, the

routine processes numbered common and then exits. The PCA routine
(Process Common Assignments) calls this routine to make numbered and
blank common assignments while the PUA (Process Unique Assignments)
routine calls this routine to process labeled common. In the processing
of common, the Common Name Table is searched until a non-eliminated
block name is found. If the block has not yet been declared in a
previous program or subroutine, the current common block relative address
(in the case of blank common) or the base address of the variables (in
the case of labeled common) is entered, along with the block name or
number, into the Common Block Name Table. If the block was declared,
its starting address is extracted from the Common Block Name Table.

Each succeeding variable tag is examined and assigned memory location(s)
until another block name is found or until the end of the table is
detected., Each variable whose tag is not an address tag is entered

into the J Table along with its relative address. 1If the variable has
an address tag, it is not entered into Table J. The Primary Name Table
is then searched to see if any variables were declared equivalent to
this one., If there are some, these entries in the Primary Name Table‘
and Secondary Name Table are cleared. If the secondary'tag is in the
Variable Tag Table; the tag and address are entered into the J Table.
Whether or not the tag is in the Variable Name Table, the block length

is extended if the equivalences make it necessary.

When all variables belonging to the block are processed, the limit
address of the block is entered into the Common Block Name Table unless
the block was previously defined. 1If it was previously defined, the
limit address is compared to the previous limit address to make sure
this address is not greater. If it is a diagnostic is given. The

routine then exits.

Subroutines Called: ADF - Advance Table

SCT. - Scan

Temporaries/Flags: BAV - Base Address of Variables

CBA - Current Common Block Relative Address

Table

CTY - Common Block Type Indicator

TBJ -
TBO -
TBP -
TBV -
TMC - Free

IMP - Current Extended Common Block Length
IMQ - Current Common Block Name

IMR - Base Address for Equivalence Group

Tables Referenced: Argument Na

Common Name

Array Tag

Common Block Name and Address

Entry/Exit Register Conditions:

Table Parameters

Temporary

me

‘None

@
(0)
(P)
4

MCA=-2

MTU=-1

MIU - MOVE TABLES UP

This routine is responsible for relocating the 26 temporary tables and
adjusting the TBn parameters to reflect this change. It is called
prior to processing of library subroutines and usually overlays the input

buffer to make more room available for the loading of library subroutines.

Subroutines Called: None

Temporaries/Flags: None

Tables Referenced: Argument Name (1)
(Referenced because it is the first table)

Program File Name (W)
(Referenced because it is the last table)

Entry/Exit Register Conditions:

Entry: Bl - how much the tables should be moved

Exit: None

PAF-1

PAF - PROCESS ADDITIVE FIELD

Whén the MAA (Process Ascent and Machine Records) subroutine encounters
a Machine instruction, PAF is called to examine this instruction,

This routine collects the terms, stores the register values in constants
IIT, JJJ, and KKK, then converts the register notation to the notation
used by RDA for the Ascent instructions (reference Figure RDA-1). The
string buffer is flagged identically to the way RDA flags it so that FIN
(Form Instruction) can be called to further process these Machine
instructions. PAT uses the RCD Table look-up to convert the letters to
the conventional A, B, and X registers. Error exits are taken if too

many terms or a blank within the address field occurred.

Subroutines Called: TAB - Normalize Statements

CVN - Convert Number
ADF - Advance Tables
ASN - Assemble Number
ASV - Assemble Variable

Temporaries/Flags: III - i Portion of Machine Word

TGK - Comnstant Tag)
JJJ - j Portion of Machine Word
KKK’ - k Portion of Machine Word

Tables Referenced: RCD - Table of Operational-Register Codes
TBA - Constant Value Table

TBB - Constant Tag

Entry/Exit Register Conditions:

B6 - non-zero if a tag or constant has not been processed

PAT~1

PAT -~ PROCESS ADDITIVE ADDRESS

————— When the MND (Process Machine or Ascent End) subroutine encounters a
tag plus a constant in the address field, the PAT Subroutine is called.
The Variable Tag (V-tag) is in the upper 18 bits of the Argument Tag
Table (Table J) and the Constant tag is in the lower 18 bits. These
tags are merged together so that upon exit the X6 register contains

the address of the location of the V-tag plus the constant.

Subroutines Called: SCM - Scan With Masking

Temporaries /Flags: BAK - Base Address for Constants

Tables Referenced: TBJ -~ Argument Tag

Entry/Exit Register Conditions:

X6 - Combined tag

PBR-1-

PBR - PROCESS BUILT-IN-FUNCTION REFERENCE

PBR is entered when a built-in function has been detected. It merely
routes the processing to one of the other routines depending upon the
number of arguments the built=-in function has and whether or not it is

a logical function,

Subroutines Called: CMA - Compile Multiple Argument Function

COA - Compile One Argument Function

CTA - Compile Two Argument Functioms
KMA ~ Compile Multiple Double Argument Functions
KSF - Compile Special Logical Function

Temporaries/Flags: FIV - Start of the last of library functions

Tables Referenced: None

Entry/Exit Register Conditions:

Entry:. B4 ~ address of string entry of function

Exit: None

PCA-1

PCA_ - PROCESS COMMON VARIABLE ASSIGNMENTS

This routine is called during the processing of an END card after the
instructions have been packed and the constants moved into the program
area. If any variables were declared common, the equivalence tables
are searched to process variables which were declared equivalent to a
variable in common. If the mode is FORTRAN IV, the secondary name is
removed from the common table and replaced by the primary name. If
the mode is FORTRAN II the secondary name is replaced by the primary
name and all equal primary names in the Primary Name Table are changed

to the secondary name.

After the equivalence tables have been processed, the relative common
assignments are made by calling either the FORTRAN II routine (MKA)

or the FORTRAN IV routine (MCA). The FORTRAN IV routine will first
make blank common and then numbered common block assignments. When the
memory assignment has been made the variable tags and starting address
will be entered into the J Table by MKA or MCA. This routine will then
set bit 16 of the address to flag them relocatable to the start of

common .,

Subroutines Called: ADF - Advance Tables
MCA - Make FORTRAN IV Relative Assignments
CKA - Make FORTRAN II Relative Assignments
SCT - Scan Table

Temporaries/Flags: CBA "= Current Common Block Relative Address

CSA - Common Starting Address

FLC - Program Common Field Length
IPS - Program/Subprogram Indicator
LBA - Latest Buffer Address

MOD - Subprogram Mode

MOE - Program Mode

TBJ -

IBO - | Table Parameters

TBV -

TBX -
TBY - Table Parameters
TBZ -

Tables Referenced: Argument Name Table

Common Name Table

Common . Block Name and Address
Equivalence Secondary Name
Equivalence Primary Name

Equivalence Bias

Entry/Exit Register Conditions: None

&)
(0)
)

X

(¥)

@)

PCA-2

PCT-1

PCT - PROCESS SPECIAL ARRAY TAGS

PCT is entered during the processing of the END statement to process

any temporary array tags in the Temporary Tag Table. For each array

tag in this table, Table J is searched to find the starting address

of the array. The array address increment is added to the starting

address of the array, incorporated with the corresponding permanent

tag in Table C and then entered into the J Table.

This type of entry is made when calculating array addresses such as

A(I+10)=.

Subroutines Called:

Temporaries/Flags:

Tables Referenced:

ADF - Advance Tables
SCM - Scan With Masking
TBC - Table Parameters
TBD -

Temporary Tag (C)
Permanent Tag (D)

Entry/Exit Register Conditions: None

PFR~1

PFR - PROCESS STATEMENT FUNCTION REFERENCE

PFR compiles instructions to transfer arguments to an arithmetic state-
ment function and a return jump to the function. Two methods are employed
in the passing of arguments. If the function does not reference any
subroutines, the actual argument itself rather than the address is
transferred to the space reserved for it at the start of the function.
If the function does reference subroutines, the number of arguments is
‘saved, the addresses of the first N arguments are transferred via

index registers and the value of the remaining arguments are transferred
to the reserved space. N will equal five minus the number of arguments
and the first index used will be the number of arguments plus one. For
example, if the function had four arguments, the address of the first
two would be passed‘in B5 and B6 while the values of the last two would

be transferred to the corresponding cells at the beginning of the functiom.

Subroutines Called: ADF - Advance Tables
CIR - Compile Re
CLA - Clear Index and Address and Input Tags

CXP - Compile Expression
GAT - Compile Argument Address Pick
SAD - Sense and Process Single Array Address

SCT - Scan Table

Temporaries/Flags: ARG - Argument Count

IGX - Index Assignment

TBA - Constant Name Table Parameters
TBB - Constant Tag Table Parameters
TGK - Constant Tag Table Parameters
IGL - Argument Count for Call

TMM - Name Tag For Call

TMN - Argument Tag for Call

VIY - X6 Register Associate

Tables Referenced: Constant Name (A)
Constant Tag (B)

PGP-1

PGP _- PROCESS SUBPROGRAM PARAMETERS

1f the compilation mode is incomplete, the first part of the program
is changed to the following format, with the needed information
extracted from the table entries for each subroutine. The format of the

first N+2 words where N is the number of parameters is as follows:

'Name v 47 total lengthlg.

ibuffer addr., of base addr. | no. of

[start ;gfirst inst.|4 of temps.({¢| arguments [

base addr. of | base addr. addr. of modq'

constant [3 of indirecﬁg local var.lg. L

If the compilation mode is not incomplete, the name of the routine and

the total length are entered into the first program location, the instruction
word count entered into the Subroutine Parameters Table and also the

total length. The start of the new short file is set and the unused

space indicator is updated if need be.

Subroutines Called: SCT - Scan Table

Temporaries/Flags: BAI - Base Address for Indirects

‘BAK - Base Address for Constants

BAT - Base Address for Temporaries
FST - Long File Start

ICB - Argument Count

ICM - Incomplete Compile Mode Indicator
ICO - Base Address for Variables
INT - First Instruction Address
INV - Unused Compiler Space

IWC - Number of Imnstruction Words
MOD - Subprogram Mode

PNM - Program/Subprogram Name

TBI -

PGP-2

TBI -
TBJ - Table Parameters
TBS -
ZAA - Relative Start of Current Program or
Subroutine
ZAB - Short File Start
Tables Referenced: Argument Name (1)
Argument Tag)
Subroutine Name (s)

Subroutine Parameters (U)

PIG-1

PIG - PRINT INSTRUCTION GROUP

This routine is called during the processing of the statement number
and during the processing of the END card. It is responsible for
listing all object code compiled for the last statement along with the
current running address. The listing will correspond exactly to the
actual program that is loaded into core for execution except that the
K portions of the 30 bit instructions will necessarily contain tags
rather than absolute addresses as the assignment of variables and

temporary cells is not made until the subprogram is completely compiled.

If no object listing is required, this routine merely calls PJG to process

the group ending address and then exits.

Otherwise, the instructions are examined one at a time. The current
running address is updated and listed when it is detected that the
examined instruction will not fit into the word that is presently being
processed. The method of forcing instructions to start a new word is
exactly the same that is used when the instructions are packed during

the processing of the END statement. .The 15 bit instructions are
converted to display code and listed. If the K portion of the 30 bit
instruction is a tag, the first two numbers of the tag, which describe
which type of tag it is, are replaced by a letter and then the instruction
is converted to display code and listed. If there is an address tag
associated with the instruction, it is also listed. After all instructions
have been examined, the execution address of the next instruction group

is saved, a line of blanks is written and the routine exits.

Subroutines Called: KOT - Convert Binary Tag to Mnemonic Tag
" PJG - Process Group Ending Address
WNX - Write Coded Record

Temporaries/Flags: ADM - Running Relative Address

ICT - Intraword Instruction Counter
- IGE - Instruction Group End

'1GS - Instruction Group End
"INU - Unused Compiler Space

PIG-2

Tables Referenced: TBC - Temporary Tag Table

TBD - Permanent Tag Table
TBI - Argument Name Table

Entry/Exit Register Conditions; None

PKI-1

PKI - PACK INSTRUCTIONS

In processing the END statement, the instructions are packed. PKI is called
after the temporary tags have been replaced with permanent tags, but

before the variable tags are replaced by addresses., The 15 and 30 bit
instructions are shifted into consecutive words with the unused portions
filled with pass (46000) instructions. An instruction with an operation
code of 01, 02, or 04 does not allow any more instructions packed into

the word with the exce?tion that an 07 instruction following an 01

may occupy the lower bits of the word. All tagged instructions (locatiom
tags) are saved along with their corresponding addresses in the J Table.
These addresses are relocatable to the beginning of the program or
subprogram if, in this case, the subroutines are being compiled separately.
Bit 17 is set to indicate that the address is relocatable from the beginning

of the subroutine.

When the end of the instructions is found, the number of words of instru-

ctions is saved,.

Subroutines Called: ADF - Advance Tables

Temporaries/Flags: ICM - Incomplete Gompile Mode Indicator

IGE - Instruction Group End
- IPS -~ Program-Subprogram Indicator
INC - Number of Instruction Words

ZAA - Relative Start of Current Program or
Subprogram

ZAB - Short File Start

Tables Referenced: Argument Tag Table (Table J)

(not used as such at this time)

Entry/Exit Register‘Conditions: None Used

PLR - POSTITION LIBRARY SUBROUTINES AND EQUATE TAGS WITH ADDRESSES

This routine is responsible for reading in binary decks that appear in
the input file, making a call to CLL (PP routine) to bring in any sub-
" routines that have not yet been defined, and then to relocate the

flagged addresses within these routines to absolute memory addresses.

The routine is called after it has been detected that all source input
has been compiled. It first calls MTU to move the 26 temporary tables
up over the string and over the input file buffer if no binary decks
appear in the file in order to make more room to load in library
subroutines. BRX is called to read in the binary routines appearing in
the input file if any. CLL.is called to read in the routines that

have not yet been defined, and the compiler enters RECALL until CLL

has terminated. Each routine is then checked to make sure that it was
not called with more parameters than the routine just read in was
assembled to handle. Eachsubroutine is examined one word at a time and
all addresses that were flagged as program relocatable are relocated

as are all locations that were flagged common relocatable. The Sub-
routine Tag Table is then searched and all tags along with the address
of their entry/exit line are entered into the J Table. . Each argument

is given a tag and address in the J Table also.

Subroutines Called:; ADF - Advance Table

BRX - Read Binary Subroutines
CKL - Check Missing Subroutines
MIU - Name Tables Up

SCT - Scan Table

WNX - Write Coded Record

Temporaries/Flags: CAS - Word of Blank Display Codes

CSA - Common Starting Address

ICM - Incomplete Compile Mode Indicator
TBI - '

IBS - Table Parameters

TBT -

PLR-1

PLR-2

ZAA - Relative Start of Current Program or
Subprogram

ZAB - Short File Start

Tables Referenced: Argument Name (1)
. Subroutine Name (s)
Subroutine Tag (T)

Subroutine Parameters (U)

Entry/Exit Register Conditions: None

PPG-1

PPG - PROCESS NAME AND ARGUMENTS

Upon encountering a header card, PROGRAM, SEGMENT, SUBROUTINE, FUNCTION, or
BLOCKDATA, PPG is called to compile initialization instructions. Whether

or noé the routine being compiled is Fortran, the arguments are counted,

the name is saved, and the relative start of the routine is saved. Incon-
sistancies in the calling of a subprogram with more arguments than specified
or declaring a function a different type than a previous call are checked

in this routine,

In the case of a Fortran program card entry, the name of the program is
saved. Each I/0 file declared has a word reserved for it beginning at RA+2,
The first two words, RA and RA+l, are system communication words and are
given location tags. For every file designated an I/0 buffer is reserved
except for equivalenced files., The file appearing on right side of the
equals for equivalencing must have already been defined because the file
being equated to it must share the buffer, Also a buffer may be given an
individual length which would appear on the right side of an equals sign.
Each file is given a béginning address which will point to the parameter
list of its own buffer or its equivalenced file buffer. This beginning
address along with the file name is eutered into the file name table (W).

A buffer length of 20108 is assigned to each file if no length was
specified on the "RUN'" card or the file was not equated to a number.

Either of these speéified lengths must be greater than 10018 or that amount
of space is saved anyway., Eight buffer parameters are saved for each
buffer. These are used by CIOl(circular input/output). The first of
these paraﬁeters contains the name of the file (in left adjusted display
code) onto which the transfer of data is to be made. This name will
always correspond to the file on which reading or writing is to be done

for this execution. The names may be changed on the program call card,
used to call a compiled program for another execution, to transfer the data

to a file different than the one named in the compilation.

A word is saved in the constant value table for use during initializatiom.
When a record has been compiled, the END processor fills this word with
the.field length, the beginning address of blank or numbered common (or the

beginning address of the buffers is no common has been defined) and the

1. Chippewa Operating System, Internal Reference, E012, November 1965.

PPG-~2

local length of the program. Instructions are generated to initialize,
Bl - local length
B2 - beginning address of common or buffers
B3
X2 - requested field length

compiled field length

The field length requested for this execution of the program may not be less
than the compiled field length or an error exit is taken, The area reserved.
for common and the buffers is cleared to zero and the unused program space

(area between the local length and common) is set to indefinites.

When a program is ready for execution, the names of the files requested appear in
RA+2 through RA+n+2. The names may change from one execution to another so

the originally compiled fi1e name along with the beginning address of its

buffer is saved in a tagged location. The name from RA+2 is transferred to

the first word of the buffer parameters and the compiled file name replaces

it at RA+2. Whenever an I/0 request is made on an original file, the

information will be transferred to the corresponding file named on the

program call card. For example: If a program was compiled with the data

entering it via INPUT, the program card would look like PROGRAM BIG (INPUT).
All read reqﬁests would be compiled to take the data from the input file,

If the compiled program is called for execution again and the data is to be
read from an input tape, the call could be BIG(TAPE5)., The name, TAPE5,
would be set in RA+2, but the program initialization instructions would
transfer the name to the buffer parameter list and set the name INPUT and
the beginning address pointing to TAPES5 in RA+2. Whenever CIO is called

to make a transfer, the file name in the parameter list identifies the. file.
Tﬁe remaining I/0 parameters are initialized. The line limit which is the
seventh argument on the RUN card is transferred to the eighth word of the
parameter list. This limit applies to the number of lines of listable output.
and is set to 200008 if no special allotment is made, Instructions to set

up the buffer parameters in this way are repeated for each file designated,

- The SEGMENT card processing saves two words for system communication before

the reserved words for the arguments, Each file name along with a beginning
address for the buffer is entered into the file name table (W), Changing
the file names on the SEGMENT card will have the same effect as calling a

PPG-3

(92avi‘gadvi) v
:paed T1ed weaBoxd yjtm pepwoy

Bureq x93je pajnooxe weiloxrg

—

[0LL€€0 LnaNi]
09TZ€0 . 1ndino
052420 S2HIV]
0~---- memmm——— —m—m-- ======-0

' SINIANDISSY 54978 J1d

(93aV1°CEavl) V
ipied 1o
weiload y3jtm papeo] weafoag

CaavL]
9FIVL |
0SLL20 $ZdavL

lllllll.l-lll|l|||||.ll-|l|l.llo

a—— —
—

-

sd GZUdVL

—

s4q GIdVL

($Z3dVL* LN4LOO* LANI) V RVID0¥d
- :PIBD I9pBOY YITM
pa3Inoexa pue pajjdwod - weidoig

0LLEED INANT
09.1€0 1N4100]
05LL20° SZAdVL
Q=-====m=mmmmememmneaeeaan(

[uorioniisur syqeinoexe 3sSAry

s GZHAVL
sd 10100
s LOdNT

T+vd
¢+vd
€+
Uant:|
G+vy
9+vy

0s.420

09L1¢€0

04L€€0

T4

PPG=4

program with different file names as was previously described, ©No buffer

space 1s relinquished from segment to segment. All of the files used by the
program and the segments must be declared o; the PROGRAM card. An entry/exit
word‘is reserved with a 200001'tag after all the arguments have been processed, -
Instructions are generated to set the index registers Bl-B3 to the same values
as the PROGRAM initializatiﬁn. No memory is cleared or set to indefinites

and the I/0 buffers are not initialized.

Two system communication words are reserved when a Fortran SUBROUTINE card is
encountered. One word for each argument is also saved and each argument is
given a location tag (A). An argument list error is generated whenever a
variable is used more than once for an argument. The entry/exit word is

given a 200001 tag (first location tag). An entry is made into the subroutine
néme table (S), subroutine tag table (T) and subroutine parameter table (U)

if the name has not already been entered. The relative start of the subroutine
along with the number of arguments are set in the subroutine parameter entry.
If the name appears in the-subroutine name table, that is the subroutine that
has previously been called, then the number of arguments used by the call

must be equal to or less than the number of arguments being compiled or an
argument count diagnostic results. Instructions are generated to pack the
addresses of the arguments passed to the subroutine in index registers into

ten temporary tagged words. B1-B3 aré set into the first word and B4-B6 into the

second.

The only difference between processing a FUNCTION card and a SUBROUTINE card
is that the mode of the function must be checked., If the compiled type is .
different from the called type, a function type error results. The function
name is entered into the variable name table and it is given a V-type tag.
This tag along with the mode is entered into the variable tag table. An
entry of the same type is made into the subroutine name table except a L-tag
is inserted in the subroutine tag téble.. Since there is no difference in
compiling a subroutine or a function, the RETURN statement processor checks
the name of the routine for an entry in the variable name table. If this
entry is formed, then the subprogram must be a function and the answer will

be set into X6,

PPG-~5
A BLOCKDATA statement causes three system communication words to be reserved

and tagged. The name BLKDAT is entered into the subroutine name table and

given an L-type tag. No other processing of this statement is done.

The arguments defined on an ascent or machine subprogram header card are
entered into the variable name table but no word is reserved for it. The
name is entered into the subroutine name table and the number of arguments
are checked. No special initialization instructions are generated, Table
entries are made so that subroutine linkage between the Fortran program and

"the coded routine can be made.

SUBROUTINES CALLED: ADF Advance Tables
' ALX Get Register Assignment
KON Convert Octal Argument
SCM Scan Tables with Mask
SCT Scan Table
© TAB Normalize Statement
TRV Translate Variable
TEMPORARIES/FLAGS . ARG Argument Count
CAS Space Codes
FIY Function Type
ICB Argument Count
ICK Block-Data indicator
ICY Line Limit
INQ Name for Dayfile
INT - First Instruction Address
INV Segment Indicator
INW Chain-mode Indicator
IPS Program Indicator
JPS Current Subprogram A
LBA Latest Indicator Buffer Address
PNM. Program/Subprogram name
STG Compile mode Indicator
: TJP Subprogram Type
TABLES REFERENCES: ~ Constant Name (A)

Constant Tag (B)
Variable Name (M)
Variable Tag (N)
Subroutine Name (S)

Subroutine Tag (T)

PPG-6

Subroutine Parameter (U)

File name (W)

PRR-1

PRR - PROCESS FUNCTION/SUBPROGRAM REFERENCE

When a FUNCTION or SUBROUTINE is called, PRR handles the passing of the
arguments between the calling program and the subprogram. All arithmetic
expressions have been stripped of their outermost parenthesis so that

a somewhat simplified expression is evaluated in PRR. Each argument
except constants have been replaced with appropriate tags. Further
processing is required for a subscripted variable or an arithmetic

expression.

Any argument that is not followed by either a comma or a right parenthesis
must be a subscripted variable or an arithmetic expression. SAD (Sense
and Process Single Array Address) makes the decision as to which it

is. An array will have as its second character a left parenthesis and
also a comma-right parenthesis or two right parentheses sequence
following it. CSR (Compile Array Address) gets the address of the word
within the array and returns it to SAD. The variable and its subscript
are replaced with a new tag in the string buffer. If SAD did not
locate a subscripted vafiable, then a zero in B6 is returned to PRR.
CXP (Compile Expression) will evaluate the expression with the result
in X6. Upon return to PRR, the result is stored jin a temporary tagged

location.

If the argument in the string has a mode indicator of 3 in the lower
six bits, then the argument is a constant whose value is less than
216-1. This value is entered into the Constant Value Table (A) and is
given a constant tag. A simple variable argument remains in tle sfring

buffer with no operations being performed on it.

All of the arguments in the call have now been processed, so the next
step is to generate instructions to pass them to the subprogram. Any
argument in the call that was péssed to the routine as an argument has

a location tag. Therefore, the address in the location tag must be used
as the address of the argument. In this case, GAT (Compile‘Argument
Address Pick) retrieves the address from the location tag and returns
it to PRR. The addresses of the first six arguments are set into B1-B6.

When the index registers are exhausted, the addresses of the remaining

PRR-2

arguments are stored in the reserved word of the subprogram via external
" tags. Instructions are generated to set the tag in X6 or X7 and then it

is stored by an external tag (400000)., This tag will be linked with the
word reserved in the subprogram for the argument.

When the arguments have been set in either index registers or external
tags, then a return jump will pass control to the subprogram. A call to-
DUMP/PDUMP ‘also causes the number of arguments to be set in B7 and the
program total field length to be sent in X0. If the subroutine being
called was used as an argument to this routine, then it will not be
entered by a return jump. Into the entry/exit line of the subprogram is
.stored a jump back to the calling routine and the subprogram is entered

by a jump to the word after the entry/exit line.

A subprogram which is being called but was not used as an argument is
‘entered with a return jump. The return jump instruction will be forced
upper and the lower 18 bits will contain the number of arguments in the

call and a location tag pointing to the name of the calling routine.

Example: 0100 s00600
0715 100002

where S00600 is the locatiom of the entry/exit word of the

subroutine
15 is the number of arguments
L00002 is the location of the name of the subroutine

' No more than 60 parameters may be passed to a subroutine. If the number
of arguments in this call--to the subprogram is greater than the number
. of any previous call, then the new number is saved in the argument count

byte of the Subroutine Parameter Table.

CRI (Compile Restore Instructions) is called if the subprogram being
referenced had been previouély used as an argument. The location to which
control is returned by this called subprogram is given a location tag.
This tag will be the same one that was stored in the entry/exit line of

the called subprogram.

PRR is called by CLL (Process Call Statement) and CRF (Compile Function

Reference),

Subroutines Called:

Temporaries/Flags:

Tables Referenced:

PRR-3

ADF - Advance Table

AIX - Get Long Register Assignment
CLA - Clear Tables I and J |
CRI - Compile Restore Instruction
CXP - Compile Expression

GAT ~ Compile Argument Address Pick
SAD - Process Single Array Address
SCT - Scan Table

ARF - Argument Reference Count

FLT - Program Total Field Length
FSR - Function Statement Reference Count
"IGX - Current Index Register

INF - DUMP/PDUMP Indicator

SRI - Subroutine Reference Count
TML - Argument Count

TMM - Subprogram Name

IMN - Subprogram Tag

Constant Value ‘ @)

Constant Tag (B)
Subroutine Name (s)

Subroutine Parameter (U)

PSC-]

PSC ~ POSITION CONSTANTS

PSC is called to position the comstants into the program after the
instructions have been packed. It first sets the base address for the
constants (BAK) to the short file start (ZAA) + the number of instruction
words (IWC). It then sets the base address for the temporaries (BAT) to
the constants base address plus the number of constants. If there is

room for the constants, the base address for indirects is set to. the base
address of temporaries plus the number of temporaries and the base address
for variables (BAV, ICO) is set to t he base address for indirects plus

the aumber of indirects.

The constants are then transferred to the program area and the program

is set up as follows:

PROGRAM CONSTANT | INDIRECT | TEMPORARY | VARIABLE
(PACKED SECTION SECTION SECTION SECTION *° ° °
INSTRUCTIONS)

BAK BAI BAT BAV

Subroutines Called: None

Temporaries/Flags: BAK -~ Base Address for Constants
BAI - Base Address for Indirects

BAT - Base Address for Temporaries
BAV - Base Address for Variables
FST - File Start

ICO . Baee Address for Variables
Iwe -‘Instruction Word Count

IGL - Indirect Tag

TGK - Constant Tag

IGT - Temporary Tag
ZAA’;VShort‘File Start

PST-1

PST - PRCCESS LOCATION TAG

-The PST subroutine processes the location tag for all Ascent or Machine
records. The Location Tag is assembled by the ASV (Assemble Variable)
subroutine and if the tag is non-alphabetic, the only acceptable value is
a plus sign. The PST Subroutine will also process the blank location
field if parcel 3 of the current word is not full. The running address
is set to blanks. When a plus sign has been detected, the running
address is stored and incremented by one. The check for an alphabetic
tag involves a search in the Argument Name Table (Table I) and a find in
this table causes a search of the Argument Tag Table (Table J) to see if
the variable has been doubly defined., If the variable was not in the
Argument Name Table, it is stored there and a Statement Tag (H-tag) is
generated and stored in the corresponding tag table. In generating the -
entry for the tag table, a check is made for common relocation and a bit
is set if necessary. Once the location tag has been processed, the PST
subroutine moves the machine operation field if the string buffer had
blanks beginning in cblumn 7 and tags as the end of the string at the
first blank, thus the machine instructions must not have blanks in the

address field.

Subrout ines Called: 'ASV - Assemble Variable

~ARA - Adjust Running Address and Write Register -
SCM - Scan Tables With Maskihg ‘
ADF - Advance Tables

Temporaries/Flags: ICT - Intraword Counter
ADM - Current Running Address
IPS - Program Mode
STG - Compile Mode
TGH - Statement Tag (set)

Tables Referenced: TBI - Argument Name

TBJ - Argument Tag

Entry/Exit Register Conditions: n/a

PTC-1

PTC - PROCESS TAG AND CONSTANT

The PTC subroutine processes tags and constants in the Ascent or Machine
coded routines. Upon entry into the routine from MAA, X5 contains the
tag and/or X4 contains the constant. If a tag does not existe and the

16-1, the number is left-

constant is in the range‘of -216-1 to 2
justified and placed in the X5 register. If the constant is greater than
216-1 and less than 217-1, a Statement Tag (H~tag) is generated and the
constant and tag are stored in the Argument Tag Table (Table J). Then

the tag is returned in the X5 register.

If there is a tag in the X5 register upon entry, the Variable Name
Table (Table M), Common Name Table (Table 0), and the Equivalence Name
Tables (Table X and Y) are scanned. Should the name not appear in any
of the tables, a jump to ISL (Identify Symbolic Tag) for a tag is
executed, and the tag is returned in the X5 register and the constant,
if itexists, is processed as above, but is returned in the X& register,
If the variable is in the common or equivalence tables, the variable
and a Variable Tag (V-tag) are stored in the Variable Name Table and
the V-tag is returned in the X5 register. If the variable is already
in the Variable Name Table (Table M) the previously stored tag is

returned in the X5 register.

Subroutines Called: ADF - Advance Tables
ISL
SCT

Identify Symbolic Tag
Scan Table

Temporaries/Flags: IPS
TGH
TGV

Program Type

Statement Tag (set)

Variable Tag (set)

Tables Referenced: ~TBJ - Argument Tag

TBN - Variable Tag

TBM - Variable Name

TRY - Equivalence Primary Name
TBX - Equivalence Secondary Name
TBO - Common Name

Entry/Exit Register Conditions:

Entry:

Exit:

X4 - constant or zero

X5 - tag or zero

if X5 = 0 on entry
X5 = constant —216-1 - 216-1,*0
= H-tag 216—1 - 217-1

if X5 # 0, X4 = 0
X5

1

Variable Tag

if X5 #0, X4 =0
X5
X4

Variable Tag

constant

Statement Tag (H-tag)

PTC-2

PUA-1

PUA - PROCESS UNIQUE VARIABLE ASSIGNMENTS

After all blank and numbgred common locations have been assigned, PUA is
entered to make unique agsignments. If the mode of compilation is
FORTRAN IV, the MCA routine is called to make labeled common assignments.
The equivalence tables are then examined and the PXG routine which
processes equivalence groups is called for each primary name that has
not yet been processed. After all equivalences have been handled, the
Variable Name Table is searched to assign core locations for all
variables that have not yet been assigned. The tag for the variable along
ﬁith the starting address is entered into Table J. The length of the
array or variable is added to the starting address in order to determine
the starting address of the next array or variable. When all variables
have been assigned, the starting address for the next one is set as the

relative start of the next program and the routine exits.

Subroutines Called:; ADF - Advance Tables
MCA - Make FORTRAN IV Relative Assignments
SCT -~ Scan Table

Temporaries/Flags: .BAV - Base Address for Variables

CTY - Cormon Block Type Indicator
IPS - Program/Subprogram Indicator
MOD - Subprogram Mode

MOE - Program Mode

TBN -

TBP -

TBX - Table Parameters

TBY -

TBZ -

TMC - Free Temporary

+

ZAA - Relative Start of Current Program or
Subroutine

Tables Referenced: Variable Tag

Array Tag
Equivalence Secondary Name
Equivalence Primary Name

Equivalence Bias

Entry/FExit Register Conditions: None

()
(®)
X)
@9
(2)

PUA-2

