w s T

n

P

DAVID LELGH
(o%} £2332 2627

CONTROL DATA CORPORATION

Development Division - Applications

THE DEAD START PROCESS AND THE SYSTEM LOADER

Chippewa Operating System

9/25/65
REV. 1

THE DEAD START PROCESS AND THE SYSTEM LOADER

INTRODUCTION

The dead start process requires that a short program (up to 12 instructions)
be set up on the matrix of toggle switches on the dead start panel. When the
dead start switch is toggled, this dead start program is transmitted to peripheral
processor zero's memory and executed. The dead start program in turn transmits a
bootstrap program to another peripheral processor. This bootstrap program brings
in the system loader from the library tape and transfers control to it., The system
loader transfers a resident program to each peripheral processor, causes the Display
and Monitor programs to be loaded, loads the central memory resident, library, and
tables, and places the remaining library programs on the disk. It then inititates

execution of the Display and Monitor programs.

THE IAM INSTRUCTION

A detailed understanding of the dead start loading process requires some fam-
iliarity with the functioning of the IAM instruction. The IAM instruction is a 24~
bit instruction: the d portion of the instruction holds the channel number and the
m portion of the instruction contains the address in peripheral processor memory
where the first data word is to be stored. The A register is assumed to contain
the number of words to be read. The functioning of the IAM instruction is shown in
figure 1. Note the following points:

® During execution of the ITAM instruction, the contents of the P register
are stored in location O, and the P register used to hold the memory
address for the next wBrd to be stored. At the time the contents of

the P register are stored, P holds the address of the second word (m

wlw

portion) of the IAM instruction. Before exiting the instruction, the
contents of location 0 are read, incremented by one, and placed in the
P register to provide the address of the next instruction.

The IAM instruction tests the word count in the A register to see if it
has b;en reduced to one: if so, (A) is reduced by one and the instruct-
ion exited., Therefore, if the IAM instruction is entered with the con-
tents of the A register equal to zero, the word count is effectively
77777g.

The IAM instruction may be exited in one of two ways: (1) because the
word count has been reduced to zero or (2) because the channel has
become inactive, If the word count has not been reduced to zero and
the channel is active, exit will not take place even though no data is
being read: the processor will idle in trip 4, waiting for the channel

to become full.

THE DEAD START SEQUENCE

When the dead start switch is toggled, the following sequence is initiated:

The Master Clear signal is generated

The A register qf each peripheral processor is set to 10000g: the
P register of each peripheral processor is set to zero

The K register of each peripheral processor is set to 712 (trip 4
of an TAM instruction)

All channels are set to empty and active

All peripheral processors are connected to their respective channels
(i.e., PPO to channel 0, PPl to channel 1, etc.) by setting the
appropriate channel number in each processor's Q register

The first synchronizer on each channel is selected: the first unit
on that synchronizer is selected

The dead start synchronizer is selected on channel 0

The program on the dead start panel is transferred to PPO memory:
first, a zero byte is transmitted (stored in location 0); next, the

12 bytes from the panel switches are transmitted (stored in location

1 - 14); finally, another zero byte is transmitted (stored in location
15)

2=

1 @an314g

JYIISIOFY A ¥vAIO

YALSIOTY 4 NI AOVId ANV 1
aav ‘0000 40 SINIINOD avadyd

€L =

A ¢ dI14l

o7 a1 + (M) f=—

< 1 - (V)

YALSIOIY V

- 1 - (V)

JALSIOdd Vv

‘ofY d w1 + (d)
(d) NOILVO0T LV

SINJINOD *Odd¥
TANNVHO d¥0LS

ruIllI'lIv

JTINA
N \TINNVHO

A

A

LJATIOV
TANNVHO N

¢IL =12

7 dIdl

YHLSIOAY M-e—T1 + (O1)
J4LSIO0dY d dHL NI

40VId NV (d) NOILVOOT WOud
NOILOMYISNI 40 NOIIIOd W Qvdd

I1L =3 ¢ dI4l

YALSIOTT a1 + ()
80000 NOILVOOT IV (d) HA¥0LS

0T1L =13 ¢ dTdL

YILSIodd d-—T1 + (d)
YAISIOTY D =—Pp

YALSIONY Y =-——d

(d) NOILVOOT Wodd

NOIIOMILSNI JO NOIX40d P4 avad

000 =X T 4141

Juno) pIoM YITm 3Iassag 19315180y V
' ssaappy KIowsR g4 = w
Isquny [suury) = p
apony uotievaadp = g
w IHd) -
P El (a)

: LVRIod

NOTIOMYLSNI WVI HHL

(

3=

® The dead start synchronizer disconnects channel 0, initiating the
execution of the dead start program
Peripheral processor zero treats the data sent by the dead start synchronizer as

it would data arriving from any other controller. When the dead start synchronizer

disconnects from channel zero, peripheral processor zero exits from the TAM instruct-

ion. In exiting, the contents of location 0 are incremented by 1 and used as the
address of the next instruction. Since this location was cleared to O by the dead
start process, the address of the next instruction is 000l: this location holds
the first instruction of the program sent by the dead start synchronizer from the

dead start panel.

THE DEAD START PROGRAM

The dead start program is shown in figure 2. The purpose of the dead start
program is to transmit a bootstrap program to peripheral processor xx (PPxx), where
xx is the channel number of the controller on which the system tape is mounted.

The dead start program begins by transmitting a block of 8 words on channel xx.
PPxx is connected to this channel and is idling in trip 4 of an IAM instruction:
it will therefore read in these 8 words and store them in its memory beginning at
location 0. PPxx will not, however, begin execution yet, since the channel is
still active and the word count has not been reduced to zero,

The dead start program next disconnects channel xx: when channel xx becomes
inactive, PPxx exits Ffrom the IAM inst;uction and begins execution of the bootstrap
program. In exiting from the IAM instruction, the contents of location O are read,
incremented by 1, and used as the address of the next instruction. Sincé the first
word of the 8-word block sent by PPQ was equal to zero, this address is equal to
0001, and the instruction at this address is read and executed.

The dead start program then issues an input instruction for channel 13: since

e

7z 2an3t1g

XXdd NI

QELADIXA ANV OL
i ADMITISNVIL TV

SNOLIILONILSNI dSHHL

INVIS AvId ONI¥MNd QIYVAT) ——— | 0000 €100
XXT/L %100

XXt/ €100

0202 2100

XX[[1100

090¢ 0100

XX/ [£000

(TTNd STHODHE €1 TANNVHO TIINA NOTIONISNI 0000 9000

SIHI NI 101 TTIM 0dd :HATIOV ANV AIdWT SI

€T TANNVHD) €1 TENNVHO WOMd INANI OL 0dd I3S €11L 5000

(QIATIOTY SVH LI RVIO0¥d HHI 40 NOILNOAXA
NIDIE GNV NOIIONYISNI WVI FHL WO¥d 1IXd Ol XX

¥40SSID0Yd SITWYAd SIHL) XX TANNVHO IOINNOOSIA XXG/ £000
(0 NOILVDOT IV ONINNIOIA AMOWHW SIT OINI HSTHI
TI0LS TTIIM XX YOSSADO™d) XX TANNVHO NO 9000 €000
9000 NOILVOOT LV ONINNIDIE SCQMOM 8 1Ndino XXg/ Z000
801 01 WAISIONY V HHI IAS 0T%1 1000
NOILVOOT
NOTIIONAA NOTIOMILSNI TIORAN. 044

0dd NI QaINDEXd HYV
SNOTLOMYLSNI dSFHL

QIINNOW SI ddVI WALSAS HOTIHM NO ¥ATIOUINOD ¥0d YITWAN TINNVHD = XX

RAVIo0dd IJvis aviad dHL

) . , A

«5a

channel 13 is empty and active, PPO will idle in trip 4 of this instruction wait-

ing for channel 13 to become full.

THE LOADER BOOTSTRAP

The bootstrap program (figure 3) in PPxx issues the necessary function, activ=
ate, and input instructions to read the first record on the system tape into its
memory beginning at location 0. When this record, which contains the loader prog-
ram, has been read, PPxx will exit the IAM instruction when the controller disconn-
ects the channel upon detecting the end-of-record gap. PPxx, in exiting the IAM
instruction, reads the contents of location 0, adds 1 to it, and uses this as the

address of the next instruction. Location 0 contains the first word of the record

read from tape: thus, this word supplies the address of the first instruction of

the loader program.

THE LOADER PROGRAM

The layout of the loader program in PPxx is shown in figure 4. As mentioned
earlier, the first word of the loader program (location 0) contains the address - 1
of the first instruction of the loader. The loader program also contains a periph-
eral processor resident package in locations 0001 - 0777g. This package is trans-
mitted by the loader to each of the other peripheral processors. The resident
program is contained in locations 0100 - 0777g: locatioms 75, 76, and 77g contain
the values 60, 61, and 62, respectively. These values are the central memory
addresses of the Input Register, the Output Register, and the Message Buffer for
PPl, and must be modified when the resident package is transmitted to processors
other than PPl.,

At the time the loader program begins execution, all channels except the
channel corresponding to the processor containing the loader program (PPxx) are
active and empty: their corresponding processors are idling in an IAM instruction,

waiting for input. Channel xx, however, was disconnected by the tape controller

¢ 2an313

*NOILONYISNI IXAN dHI 40 SSHYAAV IHIL SV adsn ANV
‘1 A9 QIINTHTIONT ‘avdy a9V 0 NOILVOOT 40 SINZINOD HHI ‘NOILONYISNI WVI
UL WOYd IIXI NO 0 NOILVOOT OINI avday d4 TTIM IJVI WOdd @IOM ISYId IHL e

*NOIIONYISNI T/ FHL WO¥d LIXE OL ¥OSSHOOWd FHLI dSNVD SNHL ANV QALOIALIAA ST dVD
@I00HdY~J0~ANI IHIL NIHM TINNVHO FTHIL IDINNOOSIA TTIM YATIOYLNOD AdVL HHL e

(0 SNIVINOD

TIILS ANV dFsSnN NZ9g ION SvH ¥IISIOEY V IHLI) 0000 0000 L000
NOTIVDOT IV ONINNIODAE XX TANNVHO WOud s@ioMm (V) INANI XXTL 9000
(WVY90d9d 0dd A9 JIIOANNOOSIA XX) XX TANNVHO TLVAILOV XX/ G000

020¢ #000

avay XMVNId IOFTAS :FA0D NOIIONNA ANSSI XX/ €000

] 0902 2000

Lo3Td $94a0D NOILLONNA an

aNIMEd S 0 d d40ss1 XX 1000

(NOIIONYISNI IS¥YId 40 T - SSH¥AAV) qIILNDAXT ION . 0000 0000
NOTIVDOT
NOILDNNA NOTLOMNYISNI LHOWAR XXdd

dVILSIO0d ddavol

HVIo0dd 1¥vis avid dHL

-7

when the end-of-gecord gap following the loader program was detected, and is
therefore inacti#g. The loader program searches for an inactive channel in
order to determiné which processor it resides in: it also inserts this channel
number in the appgopriate I/0 instructions.

The loader program then proceeds to determine if the system tape is mounted
on a 607-B unit or a 626-B unit, and modifies the function codes accordingly.
Transfer of the resident package to each of the other processors then takes
place. The loader first outputé a single word to the receiving processor,
which stores it in its memory at location zero. Since the receiving processor is
in trip 4 of an IAM instruction, it will, upon exiting this instruction, use the
contents of location 0 as the address - 1 of the next instruction it is to execute.
For processors 1 - 8, this address is 778: the address - 1 of the first instruction
of the resident program. For processors 0 and 9, this address is 7778: the address
- 1 of the first instruction of the MTR and DSD programs, respectively. After
transmitting this single word, the loader then transmits the resident package,
which the receiving processor stores in its memory beginning at location 000L.

The receiving processor does not exit the IAM instruction at this time, however,
since the conditions for exiting (either word count réduced to zero or channel
inactive) have.not been met. As the transfer of each resident takes place, the
loader program modifies the Input Register, Output Register, and Message Buffer
pointers to the proper values for each processor.

When all processors have been loaded with the resident package, the loader
program then proceeds to load the MTR and DSD programs from the syétem tape into
processors 0 and 9, respectively.

The format of the system tape is illustrated in figure 5. The tape contains
a single file of binary records: a full physical record contains 1000g CM words.

A logical record, such as the MTR program or the CM resident, may be composed of
more than one physical record: the last physical record for a specific program may
be a short record of less than 1000g CM words. The end of a logical record is
indicated when a short physical record is processed or when a zero length record

-8-

7 @2an31yg

(3dvLl WALSAS NO 1 Q¥003Y)

- XXdd NI LNOAVT WVIO0¥d ¥AQAVO'T

RVI90d8d ¥davo'l

NI NOILOMMISNI LS¥IZ 40 T - ssmaav LLLO
b mw“v\

0900

AJONAN TVEINED NI VIV , 1900

SNOTLVOINNWWOD dd Y04 SASSAIAAV mm<mfA

2900

LNAJISHd dd

JIAVO'L

0000

GL00
9400

LL00
0010

0001

LLLt

¢ P

(4 PP words) is detected, except for the disk library routines: the end of each
disk library routine is indicated by a short record only. The end of a library

is indicated by a zero length record.

The loader reads the records comprising the DSD program, transferring each rec-
ord as it is read to PP9: when a short record is processed or a zero length record
is detected, loading of the DSD program is complete. This process is repeated for
the MIR program records.

The CM Resident is loaded next. This resident contains table pointers and
initial values for certain tables, such as the track reservation tables. The
resident subroutine iibrary is loaded using the RSL pointer from the CM Resident
to provide the starting address: the resident peripheral library (RPL) is similiar-
ly loaded. 1In all three cases (CM Resident, RSL, and RPL), records are read and
transferred to central memory until either a zero length record is detected or a
short record is processed.

The loader program then disconnects the channels for each of the other process-
ors, permitting these processors to exit from the IAM instruction and begin execution
of their'programs. Now that MTR is executing, the loader program can utilize the
assistance of MTR in loading the libraries on the disk.

The loader requests a tfack from MTR via its resident, agd picks up thé'Periph-
eral Library Directory pointer from central memory in order to oﬁtain the starting
address of the directory. It then reads a record from the system tape, builds the
PLD entry and writes it in the directory, and transfers the record to the disk.

The next record is then read from tape and written to the disk: this process con=-
tinues until a short record is processed, indicating that a complete program has
been transferred. The next record is read from tape, the directory entry construct-
ed and written in the directory, and the process of reading records from tape and
transferring them to the disk repeated., The end of a library is indicated by the
detection of a zero length record.

When the peripheral library has been transferred to the disk, the transfer of

the central library to the disk is initiated and executed in the same manner.

«10a

¢ 2an31g

AVYWHOS FdVL WILSAS

@I00dY HIONAT O¥HZ V Ad d4IVOIANI
ST A¥VIEIT JHI JO0 aNd HHI :ATINO @¥0Ddd
LIOHS V AL QELVOIANI ST SINILNOY AYVIdLI'T
TVEINTD M0 A¥vEdIT TVYIHJI¥Ed 40 dNE HHL

Qa10313d SI (SEIAL #) @MI00dY HIONAT 0¥dZ
VvV NAHM YO (ASSEO04d SI QU0DHY IMOHS V NIHM
JALVOIANT SI d¥00d¥ 'TVIISOT Vv A0 dNI FHIL

SAY0OT Y TVOISAHd J0 YATWAN V A0 QISOAWOD dd
AV (239 ‘Id¥ ‘YIK f°9°T) QYOOTI TVOIOOT V

SQIOM WO
80001 40 MD07Td V SI QODHY TVOISAHd TINd V

SAYOOdd AYVNI4
A0 dTI4 TTONIS V SNIVLINOD 3dVI WALSAS

T T DRI

JAAGVOT WALSAS

(AV1dSId WALSAS)
asd

(¥OLINOW)
TR

INIATISId WO

AIVIAIT *¥4nS
INAATSTY

AIVadIT
TVddHd TYdd
INIATSHYT

AgvadIiT
TVEIHd T9dd

(4004 HIONAT Q¥dZ

AIvVadI1
TVEINID

8004y HIONAT O¥HZ-

wlle

When a half track is filled during library transfers to the disk, the loader
program requests a new half track from MIR via its (the loader'!'s) resident program.

The resident!'s POSITION DISK routine is used to position the disk to the new half

track position.

-

When the transfer of the central library to the disk is completed, the loader

program exits to the idle loop of its resident.

Notes:

l. For the loading process described, the system tape should be mounted on
unit zero of the first controller on channel xx. If channel xx has both

— 607-B and 626-B controllers, the unused controller's unit zero should be
made not ready. The channel xx may be any channel from 1 to 9.

2. 1In addition to the bootstrap routine described, a variety of others are

in use. Many of these use a one-card loader.

-12-

SYSTEM TAPE LOADER

Y

FIND INACTIVE CHANNEL BE-
TWEEN 1 AND 7 (i.e., THE
NUMBER OF THE PP CONTAIN-
ING THE LOADER

INSERT CHANNEL NUMBER IN
I1/0 INSTRUCTIONS

|

DELAY TO ALLOW TAPE TO
ASSUME READY STATUS

ISSUE STATUS REQUEST TO
626-B CONTROLLER

——-(REQUEST ACCEPTED?)

YES

(g TAPE 0 READY?)-L—
E NO

MODIFY FUNCTION CODES FOR MODIFY FUNCTION CODES
607-B CONTROLLER FOR 626-B CONTROLLER
USE CHANNEL NUMBER TO SET Lﬂ% |

INPUT REGISTER POINTER FOR

THIS PP

_(IS THIS PP1?)

i YES

FER OF RESIDENT TO PPl

SET UP BYPASS OF TRANSFER
QF PP RESIDENT TO PPxx

I SET SWITCH TO BYPASS TRANS-

=13~

%

CHECK TAPE STATUS:

PARITY ERROR?

ENo

SET UP TO TRANSFER PP
RESIDENT TO PPl

TRANSFER PP RESIDENT TO
DESIGNATED PROCESSOR

| MODIFY INPUT REGISTER

(IR), OUTPUT REGISTER
(OR), AND MESSAGE BUFF-
ER (MB) POINTERS FOR
NEXT PROCESSOR

(<D

i

MODIFY RESIDENT TRANS-

FER FOR NEXT PP

(

IS PPxx NEXT PP?

)
J

NO

)

E YES

TRANSFER RESiDENT TO PP9

§ MODIFY IR, OR, AND MB
| _POINTERS FOR

PPO

RJ READ NEXT BLOCK
(DSD PROGRAM RECORDS)

)

i

ZERO LENGTH RECORD?

<:ELESS THAN 5 PP WORDS?)

g NO

TRANSFER RECORD TO PP9

< ORD?

WAS THIS A FULL REC-
(1000g CM WORDS)

)

NO

[N

TRANSFER RESIDENT TO PPQO

o)

«lb-

SET IR, OR, AND MB
POINTERS FOR THIS PP

E

‘ ; RJ READ NEXT BLOCK
(MTR PROGRAM RECORDS)

il

UL

TRANSFER RECORD TO PPQ

%

_(WAS THIS A FULL RECORD?)
e

INO

RJ SET CENTRAL LOCS.
(LOAD AND/OR SET CM
POINTERS AND TABLES: M
LOCATIONS O -~ 4777)

5

RJ SET CENTRAL LOCS.
(LOAD RESIDENT SUBROUTINE

LIBRARY)

f

2

RJ SET CENTRAL LOCS.
(LOAD RESIDENT PERIPHERAL

LIBRARY)

t
i

7

DISCONNECT ALL CHANNELS TO
INITIATE EXECUTION

SET MTR FUNCTION 06

(REQUEST TRACK) :

(PP RES: PROCESS REQUEST)
i

READ PLD POINTER FROM CM

\ (PERTPHERAL LIBRARY)

RJ STORE LIBRARY
(CENTRAL LIBRARY)

g o WA Py e e

EXIT TO PPxx RESIDENT
IDLE LOOP

READ NEXT BLOCK

READ RECORD FROM TAPE I
i
FULL RECORD? (1000g CM -
WORDS?)
NO

COMPUTE SHORT LENGTH

GET TAPE STATUS

!
q FILE MARK?
[
STOP

(PARITY ERROR?

STOP

-16.

STORE LIBRARY

)
i

_-@(RJ READ NEXT BLOCK

)

¥
5

(ZERO LENGTH RECORD?

E NO

INSERT NAME IN DIRECTORY
ENTRY

A !

INSERT HALF TRACK NO. AND
SECTOR NO. IN DIRECTORY
ENTRY

_ L

WRITE ENTRY IN CENTRAL

MEMORY DIRECTORY

|

INITIALIZE BUFFER PARA-:
METERS '

| e

SET CONTROL BYTE EQUAL TO
100g (CM WORD COUNT)

HAVE ALL SECTORS IN THIS
RECORD BEEN PROCESSED?

\ YES:

BN

EXIT

NO

(RJ WRITE DISK SECTOR

)

snmesemees| ADVANCE BUFFER ADDRESS

SET CONTROL BYTE FOR
SHORT SECTOR

PROCESSED

ALL FULL SECTORS ARE

-(WAS THIS A SHORT RECORDa

NO

(RJ READ NEXT BLOCK

D,

J«

QU WRITE DISK SECTOR

)

ADVANCE FOR NEXT DIRECT~
ORY ENTRY

«l7a

WRITE DISK SECTOR

(PP RES: POSITION DISK)

SET UP SECTOR NUMBER FOR
DISK WRITE

READ TRTO POINTER FROM CM
H TO GET SECTOR LIMITS

INCREMENT SECTOR NUMBER &
STORE IN CONTROL BYTE

COMPARE SECTOR NUMBER WITH
INNER/OUTER ZONE SECTOR LIMI

i
—_'(LIMIT REACHED?)
E YES
SET UP MTR FUNCTION 06:
REQUEST TRACK

(PP RES: PROCESS REQ.)

STORE NEW TRACK NO,, SET
NEXT SECTOR NO. TO ZERO

L—,—-@{W’RITE SECTOR TO DISK I

EXIT

~18~

I SET CENTRAL LOCATIONS

. RPL RSL §
| READ RPL POINTER, PICK WHICH SEGMENT? READ RSL POINTER, PICK
UP RPL STARTING ADDRESS \ UP RSL STARTING ADDRESS

ETABLES & i

POINTERS

el

LOCK

x4 RJ READ NEXT B

i
(fERO LENGTH RECORD?

NO
EXIT

BUILD CM WRITE ADDR.E
|

WRITE RECORD TO CM

E MODIFY CM ADDRESS

s O

FOR NEXT WRITE

‘ WAS THIS A FULL
RECORD?

EXIT

-19-

CONTROL DATA CORPORATION

Development Division - Applications

POOL PROCESSORS AND PERIPHERAL PROCESSOR RESIDENTS

- Chippewa Operating System

10/15/65
REV. 1

POOL PROCESSORS AND PERIPHERAL PROCESSOR RESIDENTS

INTRODUCTION

In the Chippewa Operating System, the System Display program (DSD) and the
Monitor program (MTR) permanently reside in two of the ten peripheral processors.
MTR and DSD reside in processors 0 and 9, respectively. The remaining processors,
1 - 8, form a pool of processors to which MIR may assign tasks as required. These
pool processors have no fixed assignments: any processor may be assigned to the
execution of any systemrroutine, and it is possible that more than one processor
may be executing the same routine at the same time. All ten processors contain
a small resident program which handles the communications between pool processor
programs and the Monitor, and initiates the execution of these programs as direct-

ed by MTR.

POOL PROCESSOR STRUCTURE

The structure of a pool processor is illustrated in figure 1. The resident
program is contained in locations 0100 - 0772: locations 75, 76, and 77 contain
pointers to the Input Register, the Output Register, and Message Buffer in central
memory. When directed to do so by MTR, the resident loads a program into its
memory and executes it: since that program remains in that processor only for
the period of time required to perform its function, it is called a transient
program. Transient programs occupy ‘locations 0773 - 1772, although the first
instruction is at location 1000. Transient programs generally load overlays to
perform specific tasks. For example, CIO, which is a transient program, calls
various overlays depending on the task (read, write, backspace) and the equip-

ment (disk, tape, etc.) specified. Overlays are loaded into memory beginning

~]l-

IN3JISTH dd 3 S80S53008d TOOd

J4LSTOHY
LNINI HHI NI FWVN INILNOY
dHL ONIOVId A9 S¥0SSHD0¥d
TO0d OJ SASVL SNOISSV ¥IN

40SSID04dd

(aIn \\\

JOLINOW

\\

V 4T ININY4Ldd OL ¥YIILSIOIY
1NdL00 JHL SNVOS ATIVINOIY ¥IH

=

AJOWIR TVIINAD

*Od¥ LNANT

*odY LNd.LNO

—

Jda409d
JOVSSIR

e

VIV NOI.LVOINAWWOO

R

INIAISHY A9 qdOVid
49V YIW 0L SIsandhAv

INdIN0 SLI NI

Rv3d0dd INAAISIY dd

dHL VIA 31X HLIIM HIVOINNWWOD

SRAVIO0dd AVIIIAO ANV INIISNVIL

d0SSAd0dd T00d

JALNIOd ¥I

dAINIOd ¥0

~ ¥HINIOd R

INIAISHY dd

//// NN

\

RVI909d \\\

Figure 1

-2a

at location 1773: the first instruction falls at location 2000. Overlays are
generally entered via a return jump. Transient programs have names beginning
with a letter (CIO, EXU) or the numeral 1 (1BJ, 1LT): overlays have names be-
ginning with the numeral 2 (2WD, 2BP, etc.).

Both transient and overlay programs, as well as the resident program, make

extensive use of the low core locations 01l - 74,

THE RESIDENT

The peripheral processor resident program has two main functions to perform:
¢ all communication between MIR and the transient or overlay programs
is handled by the resident;
¢ the resident, when directed by MTR, loads transient programs from
either the RPL or the disk library and initiates the execution of
these programs.
Communication between MIR and the resident programs is carried out through the
use of ten communication éreas in central memory; one for each processor.
(Note: MTR on occasion communicates with itself by this means.) Each commun-
ication area consists of a one-word Input Register, a one~word Output Register,
and a six-word Message Buffer. Pool processors address these areas by means of
pointers in locations 75 - 77.

MIR assigns a task to a pool processor by placing the request in the process-
or's Input Register. The format of the request is shown in figure 2, The name of
the program package which is to be loaded and executed appears in the high-order
18 bits of the Input Register. This name consists of three display code charact-
ers, such as 1AJ, CIO, etc. The number of the control point to which this package
is assigned appears in the low-order three bits of byte 2 of the Input Register,
Package parameters, such as the address of arguments required by the package,
appear in the low-order 36 bits of the Input Register. The request remains in the
Input Register until the task is completed. On completion of a task, the transient

program requests MIR to release the processor: MTR then clears the processor's

-3

MIW OL 1SINOIY INIFJISTY

(NOTIONNA FOVSSHW ATIJAVA € °8°9) WIK OL
SINIANOYV aNAS OL ¥34dNd FOVSSIW HHI TSN SNOIIONNA FWOS

(*239 ‘NOTIONNA
Mo«MB d0da ¥04 SSAIAAV I¥I ANV JIGHAN MOVEl

‘NOILONNA TANNVHD ISHMDIY Y04 ITHAN TANNVHO) INARNOYV

////// —&— YdIHON NOTLONNA

_ls 99V TV ouv ‘..92 "ON NII TA1SToaY INAiio 43
‘ Z1 Z1 ST Z1

4!

ANFJISIY OL LSINOIH YIW

(4vVAddV SAVMTV
ION AVW) YALANVIVd (NODHS =

HYIHWNN INIOd TO¥INOD
(¥4vaddv SAVMTV

(*239 ‘010 ‘rVI) Q0D
ION AVH) JIIAWVIVA ISYId J Allvwﬂmmz NI AWVN IOWVIOVd
T v d \~ ¥ —_—
VAIANVIV] YA LARNVIVI 5 \ IWNVN YILSTOIY LNANI dd
] Fl |
, € 81

Figure 2

Y/

Input Register. The Input Register of a pool processor is thus clear only
when the processor is idle. When MTR needs a pool procegsor to assign to a
task, it searches the communication areas for a cleared Input Register: when
one is found, the corresponding processor is assigned to the task.

All communication between the Monitor and the transient and overlay prog-
rams 1s handled by the resident program. MIR performs a variety of functions,
each of which is identified by a function code of one or two octal digits.

Some of these functions are listed below:

Code Function
1 Process Dayfile Message
2 Request Channel
7 Drop Track
12 Release PP
33 Assign Equipment

To transmit a request to MTR, the resident places the request in its Output
Register, The format of this request is illustrated in figure 2. Byte 1 of
the Output Register contains the function code in the low-order bit positions.
Bytes 2 - 5 are used for arguments: the number of argument bytes depends on
the particular function. Thus, for a Request Channel function (function number
2), the channel number is placed in byte 2. For a Drop Track function, byte 2
contains the address of the Track Reservation Table and byte 3 contains the half
track number. For some functions, the function arguments are placed in the
Message Buffer and only the function code appears in the Output Register.

MIR regularly scans the Output Register of each processor to determine if
a request is present. When the request has been detected, analyzed, and process-
ed, MIR clears the Output Register. The resident, after placing the request in
the Output Register, waits for the Output Register to be cleared before proceed-

ing.

“5a

Some functions require that information be returned by MIR to the request=-
ing program: for example, the Request Track function (function number 6) returns
a half track number to the requestor. MIR places any information to be sent to
the requestor in the Message Buffer. The resident returns control to the request-
ing transient or overlay program when it detects that the Output Register has
been cleared by MTR: the requesting program then reads the Message Buffer to
obtain the required information.

The resident contains a routine called Process Request which handles the
transmission of function requests to MIR. .The Process Request routine uses
locations 10 = 14 in peripheral'processor memory as temporary storage for the
request to be written in the Output Register. A peripheral processor program
may utilize this routine by placing the arguments for the function in bytes
11 and 12, setting the A register with the function number, and executing a
return jump to the Process Request routine at location 761. The Process
Request routine will enter the function number in location 10 and write the
contents of locations 10 - 14 in the Output Register. Control will be returned

to the requesting program upon MTR's clearing the Output Register.

THE RESIDENT PROGRAM

When a pool processor program completes execution, it exits to location
100, which is the address of the resident idle loop. In this idle loop, the
processor's Input Register is scanned at intervals of slightly greater than
125 microseconds until a request is found in the Input Register. The delay
between successive scans avoids unnecessary memory and read pyramid conflicts.
When a request is detected, the resident stores the routine name and the con-
trol point number. It then sends function code 17, Pause for Storage Relocat-
ion, to MIR and waits for MIR to clear the Output Register before continuing.
Should MIR be in the process of relocating the storage assigned to this con-

trol point, the Output Register clear will be delayed unt:.l relocation is

-6=

complete. The resident then searches the RPL for the requested routine: if
found, the package is read from the resident library into the processor's
memory beginning at location 773, and resident turns control over to this routine
by jumping to location 1000. If the routine name was not found in the RPL, res-
ident then initiates a search of the PLD, If the routine is in the disk 1lib-
rary, the resident loads it from the disk into its memory at location 773, and
jumps to it to begin execution. If the routine is not found in the PLD, the
resident enters the message "XXX NOT IN PPLIB" in the dayfile, and requests MIR
to abort the job which called the routine. The resident then returns to its
idle loop.

In loading a program from the disk, resident begins by reserving channel
0 via the appropriate MIR function request., Next, resident compares the track
number of the requested routine with the current position of the disk as con-
tained in the TRT pointer word for disk 0. Repositioning and/or head group
switching is done only if.necessary. Once the disk has been properly position-
ed, the sectors-composing the desired routine are read into peripheral processor
memory. The end of the routine is indicated when a short record (less than
100g central memory words) is read. If a parity error is detected, the sector
in which the error occurred is reread twice, each time at a different clipping
level. Should these reads also fail, the resident enters the message "DISK 0
PARITY ERROR Gx Txxx Sxxx" in the dayfile and then stops (via a UJN 0 instruct-
ion). A dead start load is necessary to renew systems operation.

Several resident routines are used by transient and overlay programs.

These routines are described below.

Address Routine Entry Conditions Description
761 Process Request Function number Enters function number in
in A register location 10, and writes

locations 10 - 14 to the
Output Register. Exits
when the Output Register
has been cleared

Py

Address

Routine

Entry Conditions

Description

741

751

531

701

200

401

Requesﬁ Channel

Drop Channel

Dayfile Message

Position Disk¥*

Disk Parity Error Exit¥*

Read Sector from Disk
Oa‘c

Channel number in
A register

Channel number in
A register

Message address
in A register

Half track num-
ber in A register

Half track num-

ber in location

6, sector number
in location 7

Read address in A
register, half
track number in
location 6, sec~
tor number in loc-
ation 7 u

* Not a MTR function

Stores channel number in
location 11, sets function
code 2 in A register, and
jumps to Process Request

Stores channel number in
location 11, sets function
code 3 in A register, and
jumps to Process Request

Write message (less than 6
CM words, terminated by a
zero byte) in Message
Buffer, sets function code
1 in the A register, and
jumps to Process Request

Repositions heads and/or
switches head groups as
necessary (for disk 0
only)

Enters error message in
the dayfile and halts

Reads one sector from
disk 0 into memory at the
designated address. Jumps
to Disk Parity Error Exit
if an error occurs.

All of the foregoing routines are entered via a return jump instruction to the

specified address except the Disk Parity Error Exit, which is entered via a

long jump instructionm.,

-8

PP RESIDENT: IDLE LOOP

i TRANSIENT PROGRAM

. ' @—— RETURNS HERE
READ INPUT REGISTER WHEN COMPLETED
|

(>INPUT REGISTER = 07 4)-—-—-—-—-—

YES

DELAY

STORE NAME AND CONT=-
ROL POINT NUMBER

SET MTR FUNCTION 17:
PAUSE FOR STORAGE
RELOCATION

< PROCESS REQUEST >

< SEARCH RPL% >

Not in RPL

< SEARCH PLD+* >>

Not in PLD

<£ DISPLAY ERROR MSG

l

SET MTR FUNCTION 13:
ABORT CONTROL POINT

|

<: PROCESS REQUEST :>

xx NOT IN PPLIB

* IF FOUND, LOAD PROGRAM AND JUMP TO IT

«9a

SEARCH RPL

e

PICK UP RPL POINTER
TO GET RPL BASE ADDR.

—————tasi READ RPL ENTRY

|

YES
ENTRY = (7? *\
/ ¢ﬁ:£::2>
EXIT
NO
ENTRY = DESIRED \ YES
ROUTINE NAME?)
NO READ PACKAGE INTO
PP MEMORY AT LOC-
ADD SIZE TO BASE ATION 7738

ADDRESS TO GET NEXT
ENTRY ADDRESS !

JUMP TO PACKAGE
(LOCATION 1000)

SEARCH PLD

~

PICK UP PLD POINTER
TO GET PLD BASE ADDR.
AND LIMIT

=1 READ PLD ENTRY

ENTRY = DESIRED "\ YES
ROUTINE NAME?)

NO STORE TRACK AND
SECTOR NUMBERS
INCREMENT DIRECT- l

ORY ADDRESS
READ PACKAGE FROM
DISK
L_NO DIRECTORY ADDRESS
EQUAL LIMIT ADDR.? E
% YES JUMP TO PACKAGE
(LOCATION 1000)

EXIT

«]l0e

READ PACKAGE FROM DISK

< REQUEST CHANNEL D
1

___—é POSITION DISK >
{

READ SEGTOR
FRCM DISK
]

PICK UP CONTROL BYTE 1

YES
IS NEXT SECTOR IN LIB- ‘
RARY ON THIS TRACK?

NO

GET NEW TRACK NUMBER
FROM CONTROL BYTE,
SET SECTOR TO ZERO

STORE LENGTH FROM CON-
TROL BYTE 2, RESTORE
CONTROL BYTE LOCATIONS

il

SET NEXT READ ADDRESS:
SAVE TWO WORDS FOR:-CON-
TROL BYTE REPLACEMENTS

NO
————(WAS THIS A SHORT SECTOR?

YES

<:. DROP CHANNEL O :>

EXIT

wlla

READ SECTOR FROM DISK

D

CONSTRUCT SECTOR NO.
AND STORE

<L READ SECTOR :>

(PARITY ERROR?

\ o

YES

MODIFY HEAD GROUP
CODE FOR MARGIN 7

SELECT HEAD GROUP

<: READ SECTOR

)

]

(PARITY ERROR?

\
J

NO

EXIT

YES

MODIFY HEAD GROUP
CODE FOR MARGIN 1

SELECT HEAD GROUP

<L READ SECTOR

)

(A PARITY ERROR?

NO

. EXIT

\
J

:E: YES

JUMP TO DISK PARITY
ERROR EXIT ROUTINE

-12-

EXIT

POSITION DISK

~

READ TRT POINTER WORD

YES IS DISK O PRESENTLY AT
THE DESIRED TRACK?

NO

ISSUE TRACK SELECT

IS DISK 0 PRESENTLY AT _YES
THE DESIRED HEAD GROUP?

NO

ISSUE HEAD GROUP SELECT]

UPDATE TRT POINTER WORDjmterm——

.

EXIT

READ SECTOR

~

ISSUE READ

REQUEST STATUS
|

@< PARITY ERROR?)

YES

MODIFY EXIT

EXIT

DISK PARITY ERROR EXIT
Used by transient programs and overlays as well as by PP Resident

~r

CONVERT HEAD GROUP NO.
TO DISPLAY CODE, INSERT
IN ERROR MESSAGE

CONVERT TRACK NUMBER
TO DISPLAY CODE, INSERT
IN ERROR MESSAGE

TRANSLATE HALF TRACK
SECTOR NO. TO PHYSICAL
SECTOR NO., GCONVERT TO
DISPLAY CODE, INSERT
IN ERROR MESSAGE

<: DAYFILE MESSAGE :> DISK 00 PARITY ERROR
Gx Txxx Sxxx

STOP

DISPLAY ERROR MESSAGE

~

PICK UP ROUTINE NAME

(ARE 15t Two CHARACTERS\ NO

LEGAL DISPLAY CODE?)/

YES SET BLANK IN ERROR
MESSAGE

SET CHARACTERS 1, 2 IN
ERROR MESSAGE

SET CHARACTER 3 1IN
ERROR MESSAGE

<(DAYFILE MESSAGE - :>

EXIT

wlba

—1 CLEAR BUFFER (5 BYTES)

DAYFILE MESSAGE

e

STORE MESSAGE ADDRESS
]

gm| PICK UP 1 BYTE OF
MESSAGE
\ YES

<:IS THIS A ZERO BYTE?J/

NO

STORE BYTE IN PP
MEMORY BUFFER

ADVANCE MESSAGE AND
BUFFER ADDRESSES

NO 5 BYTES TRANSFERRED
‘ FROM MSG TO PP BUFFER?

YES

WRITE 5-BYTE MESSAGE
SEGMENT TO CM MESSAGE
BUFFER OF THIS PP

«l5a«

1

WRITE LAST 5 BYTES
TO MESSAGE BUFFER

SET MIR FUNCTION Ol:
PROCESS DAYFILE MSG

|

<(PROCESS REQUEST 4:>

EXIT

REQUEST CHANNEL

Y

STORE CHANNEL NUMBER

SET MTR FUNCTION 02:
REQUEST CHANNEL

<< PROCESS REQUEST j>

PN

EXIT

DROP CHANNEL

Y

STORE CHANNEL NUMBER

SET MIR FUNCTION 03:
DROP CHANNEL

|

< PROCESS REQUEST :>

EXIT

PROCESS REQUEST

"

STORE FUNCTION CODE

WRITE REQUEST IN PP
OUTPUT REGISTER (CM)

READ PP OUTPUT REGISTER

NO

e

(»IS OUTPUT REG. CLEAR j}-—-—-—-

/ :f: YES

EXIT
1A

DELAY

CONTROL DATA CORPORATION

Development Division - Applications

THE SYSTEM MONITOR, MTR

Chippewa Operating System

10/19/65
Rev., 1

THE SYSTEM MONITOR, MTR

CONTENTS

INTRODUCTION v v v 4 4 v 4 o o o o o &

THE CONTROL POINT CONCEPT « &« + o . .

DEAD START HOUSEKEEPING, THE CP IDLE PROGRAM, AND

CONTROL POINT ZERO & o v o o & « o . .
USE OF LOW CORE LOCATIONS
MASTER LOOP + & v & 4 v o o u o o o .
JOB INITIATION + o o v v o o v v u . .
JOB STATUS AND THE CONTROL POINT STACK
EXCHANGE PACKAGE SWITCHING
PP RECALL PROCESSING e e
NORMAL AND ABNORMAL JOB TERMINATION .
STORAGE ALLOCATION AND RELOCATION . .
TIME ACCOUNTING &+ v v v o & o v o o .
DAYFILE v v v o 4 v 4 e o o o o v u

APPENDIX A: MTR FLOW CHARTS

APPENDIX B: STORAGE MOVE PROGRAM

Page

17

19

25

29

31

35

39

44

THE SYSTEM MONITOR, MTR

INTRODUCTION

The monitor, or executive, of the Chippewa Operating System is the MIR
program, which permanently resides in peripheral processor 0. Among the
functions performed by MTR is the allocation of the physical components of
the system to various users. The components controlled by MIR inclu&e:

® pool processors

® peripheral equipment - tapes, printers, card readers, etc.

® data channels

° disk tracks

® central memory
MIR directs the %oading and initiates the execution of central processor
programs, monitogs central processor programs for I/0 requests and assigns
these requests to available peripheral processors, and monitors peripheral
processor programs for function requests. MIR maintains the time accounting

in the system and is responsible for the maintenance of the dayfile.

THE CONTROL POINT CONCEPT

In a multiprogrammed multiprocessor such as the 6600 system, central
memory is shared by a number of users. In addition to the active and inactive
central processor programs residing in central memory, many peripheral process-
or programs require central memory buffers., The allocation of central storage
to these various users is a function which the operating system can handle in
one of two ways:

l. Storage can be allocated to a number of users limited only by

-l

the amount of memory available. This assures the maximum
utilization of central memory, but requires an elaborate
bookkeeping system., In particular, the manipulation of the
variable length tables required, and the relocation of stor-
age to avoid arriving at a "patchquilt" of unallocated memory
locations as jobs complete, present interesting design prob-
lems.

2. Storage can be allocated to a fixed number of users. If the
limit is properly selected, losses in memory utilization
efficiency will be minimal. In this method, control of storage
allocation and relocation is greatly simplified.

For many job mixes, system throughput is not materially affected by the use
of one or the other of the above methods.

The Chippewa Operating System uses the second method described. 1In the
Chippewa Operatimg System, central memory may be simultaneously shared by up
to seven users. For each of the éeven users sharing central memory, there is
an area in the central memory resident called the control point area. As
each user is assigned storage, pertinent information about the user is entered
in the control point area: as execution proceeds, entries are made in the con-
trol point area to reflect the current status of the user.

The seven control point areas are each 200g central memory locations in
length, and occupy a portion of the central memory resident between locations
0200 and 1777. The control point areas are numbered one through seven in
accordance with their relative (to one another) locations in central memory
resident: control point 1 refers to the control point area in locations 0200 -
0377, control point 2 refers to the control point area in locations 0400 -
0577, and so forth. If the information about a user is contained in a given

control point area, the user is said to be assigned to that control point.

-2~

The user assigned to a control point may be a peripheral processor
program, a central processor program, or both: the last case occurs when a
central processor program employs a peripheral processor program to perform
an input-output operation. Control point assignments are required not only
for external users (i.e., jobs) but for many of the operating system programs
as well. Thus, the system program which transfers jobs from the card reader
to the disk (1LJ) must be assigned to a control point, since a central mem-

vy buffer is required.

In many instances, the system packages READ and PRINT will each be
assigned to a control point (usually to control points one and two).b The READ
package loads a job from the card reader and places it on the disk, and the
PRINT package prints the output of a job. Each of these packages requires
central memory space: the total space required by both packages is 10,000g
locations. These two packages plus the central memory resident occupy 24,0008
locations or about 10,20010 locations. This leaves approximately 120,0001g
locations to be shared by users assigned to the remaining five control points,
which should provide ample storage for a wide variéty of jobs. If necessary,
the READ and PRINT packages can be dropped to rpovide more capacity.

The control point area is illustrated in figure 1. The first sixteen
words of the control point area contain the exchanée jump package. If the
user assigned to the control point is a peripheral processor program, no use
is made of this exchange jump package insofar as this user is concerned. If
the user assigned to this control point is a central processor program, this
package is set with the appropriate values of P, RA, FL and EM when the prog-
ram is initiated: as central processor programs are interrupted and restarted,
the exchange jump packages for other central processor programs appear here.

Regardless of whether the user assigned to this control point is a cent=-

ral processor program or a peripheral processor program, the storage allocated

3~

ecre ws

EEEery Ry A m ey [T
TR S3-1-11 2112 Wrannn
Grvw isiroua| 1 %0 13ove
won 1337 0we V3V LK10d 104INOD | 1aiiheq
Bive G3rowasv pw| 3ivae orromaey | L3vuisev anannd0a S TS ena | 0009 AL ONINIVAL |, %020

W3IMLO

378v1 ~NOISID3

1HYMINOT

(T [

360D FTanvs

ANBWNDOQ 3HYYLI0S

HOILYNOdYOD Y L1¥ 3 I10SLHOD

W3 LSAS ONILVY IIO VM IddIHD

SVIHYV AINIOd TOHLNOD

—
[
O
4 3
o0
ot
. INIO4 T0¥1INOD x4
\\\'/l\ SIHL Ol QINDISSY SI LNIHJ1MDI
. ONTGHO4SIRE0D 31 ulw = LI€
.mNn - % SYAMUN INIRGIMDI
(3000 4v 741G 03310vd) ; : \
GIII0G INFWIIVIS TOHINOD 24 y
ot []
£ 0% 65
JHOM QINDISSY INTFNGIMOI
(3ovss3am 370SN0D 60)
o FOVSSIN FNFAVA LSV LIRIT %OVEL ¥SIQ 7 = OV1d)
NN Qm\/\b\mmq Bzmsﬂ\\:dm dO¥Q ¥01v¥340 :9 = OV1a
92 SLH9IT ‘SIHOLIMS FSNIS HOMT TIVD 445§ = ovid
TIVO53H dd ONIHNG (4 ‘03 TIVOIH dd 1308V 0O iy = OV
93 LNINI ddd SATOH =
254 [CRER) (s038) INIL Ndd 1808Y Nad € = Ovid
[ar=4 {SD3S) (503S) INIL NdD YOW¥I DILIMHIINY 1T = OVId
ez [=w ozmzizsel LINIT SAIL] INNOD Ovel] INNOD 9SW ALl0d JOET 1TRT WIL 1 = ovia)
YISSNG NI INTFWILVLS 12 e L A 2000 AVIdS1d IWVYN SOr
LAIN 0L G3LNIO \\\\\ow é&%m\u\wu\\ 00i /vt | hmeq%Mm_ Wﬁ\d HOMMF| Snivis
I/,
(21 <X] 4
9¢€ gr o
R el 9X FLAG OVIS HJOMHT
) x
28 7x
€l Ex
=4} X
1 1x
=== nao FHL NILIVA SI INIO
I.NO/\V*.UQQ‘ O\ OX AMMVAMU MW“HQW< mwn JHL HM«:M
SONVHIXT / g v SILVOIANI 116 »lu V 4O IONISTUA
9 3g 1% i SAL¥LS T1¥D34 K1 S1 INIO
TO¥IN0D SIHL 1lv €00 3JHL IvHL
S mfm mq S3ILVOIANI 119 ulu ¥V 40 3ONISTUJ
4 142 Vq INIOd TO¥IKOD SIHLI Ol Q3NDISSV
SI 1dd SHNIGNOdSTEH0D IHLI 1VHL
€ Mxm M;q Em —.= SALVIIAKT 119 wlu Vv 30 3ONISTEL
=4 cq =44 14 N
I g Iy v
— S
\© LT ov d - [elelsl4]els] Pl 7 XM
2 e
{21 4 &S
JLA8 sniy: "~
_ ((
/ A)
os 3 e n ? s v

b

is always defined by the values of RA and FL in bytes 4 and 5, respectively,
of location 20g within the control point area. Note that these values are

in hundreds (upper 12 bits of an 18-bit address),

The control point number is often maintained in the low-order three bits
of a byte. On many occasions, the system derives the control point area
address by shiftgng the control point number left 7 places from its Low~crder
bit positions. For example, a routine might pick up a byte containing the

number of control point 2, which would appear as 0002: shifting this left 7

places, we obtain 0400, the beginning address of the control point 2 area,

MTR: DEAD START HOUSEKEEPING, THE CP IDLE PROGRAM, AND CONTROL POINT 0

During the loading of the System tape, the lower portion of the central
memory resident is initialized by reading a series of records totalling 5000g
CM words into central memory beginning at location O. This initialization
process sets the first entry in the FNT/FST with the file name DAYFILE and
the file type COMMON.

When the loader releases peripheral processor zero to MTR, MIR obtains
the next available track number from the Track Reservation Table for disk 0.
This half track number is set in the Beginning Track (byte 2) and Current
Track (byte 3) bytes of the FST entry for the dayfile. Byte 1, the Equipment
Number, is set to zero as is byte &4, the Current Sector byte. The Buffer
Status byte (byte 5) is set to 1, indicating that this file is not reserved.

Once the FNT/FST entry for the dayfile has been éompleted, MIR issues
an exchange jump to the central processor idle program. This idle program
executes a jump to relative location 2, which contains a Stop instruction,
and thus halts the central processor with P # 0. The function of the idle
program is to keep P # 0 in all cases except.in the case of an error exit
from a central processor program.

The idle program is a central processor program, and as such must be

=5«

assigned to a control point. A pseudo control point, called control point
zero, is used for this purpose. Referring to the control point area illus-
tration (figure 1), note that relative locations 21g and 20g contain, respect-
ively, the job name and the job status. The control point area for control
point zero is assumed to start at location 0 in central memory: central mem-
ory locatiéns 21g and 20g (absolute) contain the job name and the job status
for control point zero. These aré the only locations in this portion of the
resident which are actually a part of the control point zero area: the
éxchange jump package for the idle program begins at location 2040. Location
21g contains MONITOR as the job name, Byte 1 of location 20g contains the

job status: the low order bits of this byte are used to indicate the assign-
ment of peripheral processors to a control point, For control point zero,

the status byte contains 0003, indicating that processor O (MTR) and processor
9 (DSD) are assigned to this control point.

The use of the pseudo control point zero is a mechanism simplifying the
manner in which MIR controls the assignment of jbbs to the central processor.
The reason for using location O as the start of the control point area for
control point zero is evident when we remember that the address of a control
point may be obtained from its control point number by shifting the control
point number left seven places.

After initiating the central processor idle program, MIR enters its

master loop.

MTIR: USE OF LOW CORE LOCATIONS

MIR uses low core locations 26 - 77 to maintain various flags, pointers,
and special-purpose buffers: these are illustrated in figure 2. Locations
75 - 77 contain the Input Register, Output Register, and Message Buffer point-

ers for the peripheral processor zero communication area. A five-byte area

NVOS INIOd TOYINOD ONIDNVAAV NI ddsf «<—

4TdVL SALVLIS
TINNVHO ONTLVAAN NI @dasn ‘SayoM dd 61—

SANIINOY ¥IW NAIMLEd SSddaadv
JALSIOHE IAdLA0 dd V LIWSNVYL OL ddsfl NALJAO <t——

d0SSH00¥d TVILINID HHI ¥04
ONILIVM SHWVIO0¥d 40 SHSSHYAAV INIOd TOYINOD <@——

(MOVIS 40 dOL) GANOISSY SI Y0OSSADO¥d TWVIINAD HHL
HOTIHM OL Vvd¥V INIOd TOYINOD OL SINIOJ <~

dTAVIIVAV INON AT O¥HZ - ¥0SSdd0dd :
T00d dddd vV A0 SSHIAAV dHLSTOIY LOAANT egpemme—~

0¢ NOILVOOT WO
WO¥A INIL WHLSAS UHL ¥addnd OL aIsn <t—-

VIV NOTLVOINOKNOD 0dd ¥0d SYHINIOd <3—

FHOD MOT 40 IS HIN

. JHIHAN 40 LXUN

YAINAOD AONVAAY dD

dd4409 SNLVLS TANNVHO

IAVIOdRA L

AIVIOdWIL

9VId dOVIOLS TAOW

OVILS INIOd TOWINOD

e O mee GENE wS mU RS STHR D Sumcd Srome cww Kowek

*¥dav INIOd TOYINCD dATIOV

pry

V14 ATIIAVA TLATIROD

SSEIAAY INANI dd IXAN

INNOD ANOOIS LSVT

OVId dRNd dTI4AVA

dSVHd AD0T1D

INNOD ANODHSITIIH

INNOD dNQODES

JI14Nd ANTT d1vd

JAILNIOd HILSTOHY LNAANT

YHINIO WALSIOHY 10dLNO

JAINIOd ¥3J40d JOVSSEH

92

A

0¢

9%

LY

0§

19

(49

LS

09

19

9

€9

%9

S9

99

L9

0L

7L

SL

9L

LL

Figure 2

Ty

-

consisting of locations 70 through 74 is used to buffer the time line from
the time-date area in central memory locations 30 - 37. This central memory
area contains gﬁe time and, optionally, the date: it is initialized via the
DSD keyboard entry "TIME". The first word of this central resident area con-
tains the time: - this word is read into locations 70 - 74 whenever the time is
to be advanced ot entered in a dayfile message. Locations 63, 65, 66, and 57
contain counts used in advancing the clock and in computing time charges to a
control point.

Location 64 contains the Da;file Dump Flag, which, when set, indicates
that the data in the dayfile buffer is being dumped to the disk, and
also indicates which phase of the dumping process is to be executed next.
Location 61 contains another dayfile related flag, the Complete Dayfile Flag,
which is used in insuring that dayfile messages for a specific job are dumped
to the disk at the.end of a job.

Location 62 contains the address of the Input Register of a free pool
processor: this processor will be assigned by MTR to the next peripheral
processor task. If all pool processors are busy, this location contains
Zero.

Locations 60 and 52 - 57 hold the control point stack. Location 60
represents the top of the stack and contains the address of the control point
area for the program currently being executed by the central processor: if
this location contains zero, the central processor is unassigned (i.e., is
assigned to pseudo control point zero, the control point for the idle program).
Control points representing programs waiting for the central processor are
stacked in locations 52 - 57.

Location 51 contains a Move Storage Flag, used when storage 1s being
reallocated to control points. Location 50 is a temporary storage area: it
is often used to transmit the Output Register address of a peripheral processor

between MTR routines.

-8~

Locations 30 - 46 provide a buffer used by MTIR in updating the Channel
Status -Table, Locations 26 and 27 are used by MTR in advancing the control
point scan: location 27 contains a count used in determining the time inter-
val between successive scans, and location 26 contains the number of the con-
trol point to be processed on the next scan.

The remaining low core locations, 01 - 25, are used for a variety of
temporary storage needs. For example, locations 10 - 14 are used at various
times to hold a peripheral processor's Output Register, the status word from

a control point area, a TRT pointer, and a variety of other quantities,

MIR: MASTER LOOP

The MTR Master Loop is illustrated in figure 3. This loop, from which
all MIR routines are entered (either directly or indirectly), performs the
following four major functions:

® Advances the System clock
® Monitors peripheral processors for function requests
® Monitors the central Processor program currently being executed
for I/0 ?equests and normal or abnormal exit conditions
® Examines one of the Seven control points for PP or CP recall
Status and may initiate another central processor program: if
the control point is inactive, the 1AJ routine is called to
bring a job from the disk to this control point,
The time between Successive scans is prima;ily a function of the number and
type of requests serviced during a scan. In any case, the fourth function
mentioned above (Advance CPU Job Status) is performed at intervals of no less
than 64 milliseconds.
The Advance Clock routine updates the system clock, which is stored in

location 30 in central memory resident. This word generally has the format

“0a

<: ADVANCE CLOCK :>

READ PPl OUTPUT REGISTER:) N0
IS OUTPUT REGISTER CLEAR?

YES { PROCESS PP MESSAGE :>

]

w

I > &= READ OTHER 9 OUTPUT REGISTERS:
i IF NOT CLEAR, PROCESS PP MESSAGE

|
CENTRAL PROCESSOR ASSIGN:)

NO
ED TO A CONTROL POINT?

V=

Q

CONTROL POINT: IS (RA + 1)
CLEARED?
YES <i PROCESS PP CALL :>

READ CPU P REGISTER: IS f
P = 0? /) YES

NO <:SET ERROR FLAG 2 :>

IS THERE A PP AVAILABLE
FOR ASSIGNMENT?

READ (RA + 1) OF THIS 4\\

[

YES <SEARCH FOR FREE PP >
<ADVANCE CPU. JOB STATUS ><:

]
(DAYFILE DUMP FLAG SET? > YES

>

i
NO <éUMP‘DAYFILE NEXT PHASE :>

MTR MASTER LOOP

Figure 3
~10-

"sp HR . MN . SC .", where HR, MN, and SC are each two display code digits
representing, respectively, hours, minutes, and seconds.

On each pass through the loop, MTR reads the Output Register of each
peripheral processor, including its own. All requests to MIR from peripheral
processor programs are transmitted in the form of function codes placed in
the requesting processor!s Qutput Register. When MIR finds a request in an
Output Register (i.e., Output Register not cleared), it performs a table
look-up for the routine corresponding to the function number, and jumps to
that routine. If the request can be executed, the routine clears the Output
Register before exiting back to the master loop: 1if the request cannot be
executed, the routine exits to the master loop without clearing the Output Reg-
ister. In the latter case, MIR will pick up the request again on its next
trip through the master loop, and attempt to execute the request once again.

The functions performed by MIR for peripheral processor programs are
listed below. The flow chart page numbers refer to the attached flow charts:

memory addresses refer to the version of MIR dated 10/15/64.,

Function Starting Flow Chart

Numbex Address Page No. Function
1 1500 A-3 Process Dayfile Message
2 2000 A4 Request Cﬁannel
3 2040 A4 Drop Channel
& 2440 A4 Assign PP Time
5 1560 A-S Monitor Step Control
6 2200 A-5 Request Disk Track
7 2300 A5 Drop Disk Track
10 4300 A-6 Request Storage
11 1300 A=7 Complete Dayfile

~11-

Function Starting Flow Chart

Number Address Page No. " Function
12 3730 A7 Release PP
13 4040 A7 Abort Control Point
14 3600 A-8 Enter New Time Limit
15 2600 A-8 Request Central Processor
16 3760 A-8 Release Central Processor
17 5200 A-9 Pause for Storage Relocation

20 4640 A-9 Request Peripheral Processor

21 2750 A9 Recall Central Processor
22 5600 A-10 Request Equipment
23 5240 A-10 Drop Equipment
24 3240 A-10 Request Priority
25 3630 A-11 Request Exit Mode
26 3030 - ~ Reserved for Future Use
27 3100 A-11 Toggle Simulator
30 2160 A-12 Operator Drop
31 4200 A-12 Ready Tape
32 4240 A-12 Drop Tape
33 6100 A-12 Assign Equipment

34 -~ 37 3030 - Reserved for Future Use

After servicing any peripheral processor requests which may have been
present, MIR proceeds to determine if any action is required by the central
processor. To determine 1f the central processor is executing a program,
MTR looks at the top of the control point stack (location 60 in processor 0O's
memory). If this location contains zero, the central processor is idle: if
the contents of this location are non-zero, then the central processor is

currently executing a program. The entries in the stack are control point

“12a

addresses: thus, location 60 contains the address of the control point area
for the program currently being executed by the central processor. MIR adds
20g to this address to form the address of the Status word in the control
point area (see figure 1), reads the Status word and extracts byte 4, which
contains the reference address in hundreds. MIR then reads the contents of
RA + 1 to determine if the centrél processor program has issued a request.

If the contents of RA + 1 are not zero, MIR jumps to a routine Lo process
the request. If RA 4+ 1 contains END or RCL, another central processor prog-
ram is initiated in place of the current onme: if RA + 1 contains ABT or if
the request in RA 4+ 1 does not begin with a letter, the appropriate error
flag is set in byte 2, location 208, of the control point area. If RA+ 1
contains a legitimate PP call, MTR places the call and the controlApoint
number of the requestor in the Input Register of an available pool processor
and assigns the processor to this control point by setting the appropriate
bit in byte one of the Status word. After processing the call, (RA + 1) is
cleared to inform the central processor that the request has been processed,
and control is then returned to the master loop. If the call was END, ABT,
or illegal, or if the request could not be processed at this time (no free
pool processor), the routine exits to the master loop without clearing RA + 1.
The subroutine which processes central processor requests for peripheral prog-
rams is entitled "Process PP Call". Its starting address is 2700, and it
appears on page A-l4 of the attached flow charts.

After processing the central processor program request, MIR reads the
central processor P register. If P contains zero, it is assumed that an error
exit has occurred, and MTR sets the appropriate error flag in byte 2 of the
Status word in location 20g of the control point area.

MTR then looks at location 62 in its memory to see if it has a pool

processor available for assignment. If this location contains zero (no

-13-

processor available), MTR scans the Input Registers of processors 1 - 8
and writes the address of the first cleared Insut Register in location 62.

MIR next examines one of thé Seven contrc:i points and determines if the
control point is in recall status. If it is, then this program may be re-
initiated by MTR, depending upon its priority. If the control point is in-
active, MTR directs the loading of another job at this control point. MTR
Scans only one control point on each pass through the master loop: the nume-
ber of the control point most recently scanned is maintained in location
26 of MTR!'s memory. The MTR subroutine which performs this processing is
entitled "Advance CPU Job Status' and is shown on page A-13 of the attached
flow charts. This subroutine will be discussed at greater length during the
description of the control point stack,

If dayfile dumping is not in process, MIR returns to the beginning of the
loop and begins its scan once more.,

As a review of CPU - MTR - PP communication, the sequence which takes
place when a central processor program requests that a task be performed by
a peripheral processor program is described below., (Refer to figure 4,)

l. The central processor program requests a peripheral processor
by writing the routine name (three display code characters),
left-justified, in location 1 of its program. The address of
any parameters required are written in the low~order bits of
this location,

2. MTR examines the contents of RA + 1 during its master loop: if
(RA + 1) is non-zero, MIR jumps to a subroutine to process the
call. This subroutine inserts the control point number of the
requesting job in the low-order three bits of byte 2 of the
word read from RA 4+ 1 and then writes this word in the Input
Register of a free pool processor. The routine also sets the
bit corresponding to the processor in byte 1 of word 208 in the

control point area.
-14a

. .A 2 YN WEYL “/\‘v aiva \\\\ ~ a @ wan1o
I TLSAS PAILEYDPSC §M TSI N D OoN vEve I8 e m 37av1 NOISIDIAG
o SRS DD n ~ PERRE T o
P DI LSS 77 4 7 eI IS HLEY WS O0YS IO TS O R T I R AT [m) 3005 3unvs
OyroudY a a1rovany 3 P ForaCrre N INIWNOOG IMYMLIOS
= L3YMIEeY AN3INAD00 2072 5% | Mo1LYH0 440D YAY 0 108 LNOD
SOV, e et = vz -
T e o _CVTOIET S P E?
e — Yo BT IO bkt LS ILITS OSTY)
' " g AU WSS TIY A AV PISNIY L VL e w
H h
. i)
. £
DD LS TS MEITD .
‘DY LPSLPO Tt HTPFD — E—
A PESYITI
1]
- !
DY | Jdo] Iwen] &I
ﬂ DI LI L03T ST &C‘c_ =] i 1 ¢
'
] o g e/o0 O e r—n| 1

L
]

|

a
Aw.kwn,%..\\k Fnoty u@%&&\m,v
e

1]
L]

“ PPN LOSLOD ST TETY

voow

IS SIS

VY PLEIPIY LOI

- oSS N PTSP FPCPS
FIE A O S AYIESY
Lo

T\N\ SIPPY LRALO %&vw.u'n\/

FOSLVOD 0L S FI/SEY

1]
4 ¢
A S PTG IUNY ST v

T

N3

’
»
]

Hﬁnw\kb.\.) —

A SOIFE7 72 (1+) Tol.

s

2| i P IN

Toer FOGS TIPS TEILNTD

&
[+ &

/ M«é\w

umum Y

)
239 | Jos[Zoen
QI{ ocLloo
X [7oron

=4 /lq\

&

yo
ow TN

CITY LOSLAD 4
D NOILPNDS SLES

WIYI0YS
LIVTI SN L
LroNS LIXT

2

P

N

‘DOMS @PLSTIOIY
PLOOFXT F o807

PN

Mrw SN L SrIPy LodlnO
X
YO e |
f=7 %4
DI AOSLOO
LI VOILINVAS LY
-4
il \I/ //Li Vid
| & TINLITI
A, HTLEI2TY L0

G TS 1OILY DI AN OD S

o1

-15-

When the pe;ipheral processor resident finds the routine

name in its Input Register, it asks MTR if the storage
assigned to this control point 1s to be relocated by

issuing the appropriate function request (function code 17).
If the storage assigned to this control point is to be reloc-
ated, MTR will delay the execution of the requested transient
program by not clearing the Output Register of the peripaeral
processor until relocation is completed. If no storage
relocation is to be done, MTR clears the Output Register
immediately upon recognizing the function request.

When the Output Register has been cleared by MIR, the resid-
ent proceeds to load the requested program either from the
resident library or the disk library, and then transfers
control to it.

The transient program and any overlays it may use may also
communicate with MIR by using the resident subroutines to
transmit function requests to MTR. These programs may also
communicate directly with the central program by adding the
parameter address (held in the Input Register) to the value
of RA from the control point area in order to obtain the
absolute address of information within the central processor
program.

When the transient program completes execution, it sends (via
peripheral resident) a Release PP function request (function
code 12) to MTR. MTR clears the processor!s Input Register
and Output Register, and clears the bit in byte 1 of the
Status word (control point area, location 208) cérresponding

to this processor.

16~

MTR: JOB INITIATION

Once the system loader has released control of the peripheral processors
to their respective programs, the pool processors begin spinning in their idle
loops while MTR and DSD, after performing some initial housekeeping, enter
their master loops. To initiate job loading and execution in the system, the
operator may use the DSD keyboard entry "AUTO.". This assigns routines to

control points as follows:

Control Point Routine
1 1LJ (READ)
2 1DJ (PRINT)
3 1BJ (NEXT)
4 1BJ (NEXT)
5 1BJ (NEXT)
6 1BJ (NEXT)

DSD accomplishes.this assignment by placing the routine name and control

point number in the first two bytés of its Message Buffer and (via peripheral
resident) issuing a Request PP function (function code 20) to MTR. MIR assigns
a processor to the control point by writing the routine name and control point
number in the Input Register of a free pool processor, and then setting the
appropriate bit in byte one of the control point area status word.

The READ package (1LJ and its overlays) brings jobs in from the card
reader and places them on the disk. It enters the job name as the file name
in the FNT/FST table, inserts the priority from the job card in the FNT entry,
and sets the file type to INPUT.

The NEXT package (1BJ and its overlays) loads a job from the disk to the
control point to which it (NEXT) is assigned. 1BJ searches the FNT for the
highest priority unassigned file of type INPUT. The file name (job name from
the job card) is entered as the job name in the control point area. The file
name is changed to INPUT, the file type changed to LOCAL, and the file assigned

to this control point. The priority is placed in the control point area by

2 17- e

1BJ via an MIR function request (function code 24)., 1BJ then calls overlays

to read the first record from the file into the control statement buffer in

the control point area. This record, which may be up to 95 words in length,
contains the control cards for this jobs, The Next Control Statement pointer in
the control point area is then initialized.

An overlay is called to complete job card translation., The time and the
field length from the job card are inserted in the control point area by 1BJ
via MTR function requests 10 and 14, respectively. (When 1BJ was initiated,
it requested storage from MIR, who set the values of RA and FL in the control
point area. Central storage is used by 1BJ for a buffer area: when the job
is brought from the disk to the control point, the storage required by the
job is requested by 1BJ. This storage is considered by MIR to be a replace-
ment for, and not an addition to, the storage originally assigned to the con-
trol point.) In processing the storage request, MIR may have to relocate
storage assigned to other (higher) control points. After this relocation is
performed, MTR sets the value of FL in the control point area, both in byte
4 of location 20 and in the exchange jump package.

When 1BJ has completed its function, it requests MIR to release the
peripheral processor. MIR then clears the processor's Input and Output Reg-
isters, and clears the appropriate bit in byte 1 of the status word in the
control point area. This byte then contains zero. The processing performed
by 1BJ has resulted in the control point area being set as follows:

® the job name, time limit, priority, and field length have been
set.
¢ the pointer to the next control statement has been set to address
whatever control card followed the job card.
— ® byte 1 of the Status word (location 20g of the control point
area is zero.
| (Note; the control point areas are cleared during loading of the system and

are also cleared each time a job is dropped from a control point.)

o 18 - S

Once 1BJ has brought a job to a control point, further action concerning
that job is initiated by MTR. This action will be described shortly: £first

we shall discuss the status of a job relative to the central processor.

MTR: JOB STATUS AND THE CONTROL POINT STACK

211 210

The status of a job is defined by the setting of bits and in

byte one of the control point status word, and by the presence or absence in
the control point stack of the control point address for the job. The 210 pie
is the X, or recall, flag. This flag is set when MTR detects RCL in RA + 1

of the program being executed by the central processor. The 211 pit is the W,
or wait, flag. This flag is set by various MIR routines toc indicate that the
job at the associated control point is waiting for the central processor. We
may have two queues of jobs waiting for the central processor: one queue con-
sists of jobs in the control point stack, and the other consists of jobs in W
status. The top of the control point stack (location 60 in PPO memory) repres-
ents the job currently being executed by the central processor. The remaining
entries in the stack represent jobs interrupted becauée of the entry of a higher
priority job into the system.

Whenever MTR sets the W flag for a job at a control point, a subroutine
called Search for CP Priority is called., The flow chart for this subroutine
appears on page A-16 of the attached flow chérts. This subroutine checks the
status of control points beginning with control point one., If the W flag at a
control point is set, MIR compares the priority of this job with the priority
of the job currently being executed by the central processor. If the job at
the control point with the W flag set (i.e., the first control point found in
wait status) has a higher priority than the job currently being executed, the

routine pushes down the stack and inserts the control point address of the new

job at the top of the stack, clears the W flag in the control point area, and

-19-

MOVIS INIOd TOYINOD

SOVIH SALVLS 4D

J055HO0Ud
TTvodd HHL OL JUNOISSV dd OVIS INIOd TOYINOD YOSSID0Yd TVIINID TVIINID HHI aALSANDAY
ONILIVMY ST INIOJ OL ONILIVM SI .LNIOd JHL NI ST INIOd IUYN ION SH0d LNIOd LIX ION SVH INIOd
TOYINOD STHL IV 40r TOUINOD STHL LV 40l TOYLNCD SIHL LV 40l TOYLNOD SIHL Lv d0r TOYINOD STIHL LV €0f
0 =M T =M 0=*M
INIOd TOYINOOD SIHL OL SINIZWNDISSV dd
A
~ 0687L9GCH 7T XM VA4V d0 NI @@oA SALVLIS A0 dNO HIA4
OviId TIVOdY OVTId LIVHM

Figure 5

~20-

issues an exchange jump to interrupt the current program and initiate the

new job. If the priority of the job currenfly being executed is higher than
the priorities of any job which is in wait status (W flag set), then the
routine leaves the flag set. This priority search is repeated on an aperiodic
basis,

When a central processor program issues a recall request (by placing
RCL in RA + 1), MTR processes this by interrupting this program and initiat=
ing the next program in the stack, and then setting the X flag in the control
point area of the interrupted program. At an interval of time after the X
flag is set, MIR will switch the control point from X status to W status and
call the Search for CP Priority routine to re-initiate the job.

If the X flag is set, then, the job at the associated control point is
awaiting recall. 1If the W flag is set, the job is waiting to enter the
stack. The stack is always entered at the top: a job always enters the stack
by taking control of the central processor. Note that the W flag and the X
flag are never both set at the same time. If the W and X flags are both
cleared, there are three possibilities:

© the job at the associated control point is in the stack
© the job at the associated control point does not require the
central processor
@ the job at the associated control point is inactive or has not
yet requested the central processor
The interpretation of the X and W flag settings is charted in figure 5.

The status of each control point is examined by a MTR subroutine called
Advance CPU Job Status. This routine is called each time MTR makes a pass
through its master loop: however, unless 64 milliseconds or longer has passed
since the routine was last entered, control is immediately returned to the

master loop. This routine examines only one control point on each entry:

-2l

thus, a minimum interval of 7 X 64 = 448 milliseconds elapses between
successive scans of the same control point. The Advance CPU Job Status
subroutine and its relationship ﬁo the MTR master loop are illustrated in
figure 6. (See page A-13 of the attaéhed flow charts for a more detailed
flow chart of this routine.)

Upon entering the routine (if the 64 ms. interval has elapsed) the
pointer for the control point to be scanned is advanced. This pointer is
maintained in location 26 of peripheral processor zero's memory. The X flag
for the control point is then examined: if this flag is set, the W flag is
set and the X flag cleared. The subroutine Search for CP Priority is then
called to re-initiate the program. If this program's priority is higher than
the priority of the program currently being executed, the running program will
be interrupted and its control point address pushed down in the stack: the
higher priority program will be initiated, its control point address placed
at the top of the stack, and its W flag cleared.

After processing the central processor recall flag, the Advance CPU Job
Status routine examines the PP recall word in location 258 of the control
point area. If this word is non-zero, a peripheral processor is assigned to
complete execution of the recalled task.

The routine next examines byte one of location 20g in the control point
area: if this byte is non-zero, then the W flag or the X flag at this control
point is set, and/or a peripheral processor is performing a task for the job
at this control point. If - this byte is non-~zero, then, the job at this con-
trol point is active (although perhaps not in execution at the moment): the
routine therefore exits back to the master loop.

If the storage move flag in byte three of location 20g in the control
point area is set, the storage assigned to this control point is to be or is
being relocated. The routine exits back to the master loop, thus delaying

further action until this relocation is completed.

22

~~

ill-lllllulllwv.

INIOd TOYINODS OL [VI TIVO

D CRMITTEIND ECTTNITTI 4T T I e

SAUVLS Or Nd2 JONVAQY

ON

dwxoﬁwm dHL NI 40 SIHL mHI

ON

ey ©

d00T YALSYH MIR

ﬁmtwmm OvVId JAOW dOVIOLS ST

ON

(,0qAZ~NON TLXL SNLVLS)

1AS OVId aWnd
(IATIOV INIO TOMINOD ST

AL ITIJAVA SSADONd

TIVOdd dd HIVILINI

waxs mu AMMDH«Hm q0r Ndo uoz<>o<uv
ON N .
IIIL LUVETO @IOM TIVOHN dd mHv <
- .

I

”v ATAVILVAY ANON A1

s

A%HHMOHM& dO d04 HOYVIS

_

OVId M 14S ‘OVId X WVATD j TIVO

SSAd30dd WVID0dd
SHA 40 40 T + vd avdd

||.A ¢ LIS OvVid X dHIL mHv 1111‘11341414_

S1sdNdbIY mmmoomm z
*SOTY INAINO dd NVDS
o it A e e
¢ AWYN 40f V FAVH N _
INIOd TOYINOD SIHI SI0d

&m mmmm mo_m HO¥UViS

MOOAO moz<>m<

SHaX =

o auINg ISV)
TONIS QUSAVIE S v9 GAvil)

AdINT _~ ~~

—

Figure 6

23~

It is possible for byte one of the status word (control point area,
location 208) to be zero and for the program at that control point neverthe-
less to be active., For example, the non-executing programs in the stack will
have zero status (i.e., byte one of the status word = 0), and the running
program will also have zero status if it is not using a peripheral processor.
Therefore, in addition to determining that the program has zero status, the
routine must also determine if the job is in the control point stack before
it can be ascertained that all activity associated with the control point
has stopped. T1If it is found that this is the case, the routine assigns a
peripheral processor to the control point and calls the 1AJ routine to that
processor. The 1lAJ routine promptly calls the statement translator, 2TS, to
interpret the next control statement. (Note: although not shown in the simp-
lified flow chart of figure 6, the Advance CPU Job Status routine also checks
to see if the running program has exceeded its time limit; if so, the
appropriate error flag is set.)

Now let us return for a moment to an earlier point in our discussion.
After 1BJ has brought a job to its control point, the job name, time limit,
priority, and field length have been set in the control point area. Also, byte
one of the status word is zero. Further action involving the control point is
initiated by the MIR subroutine Advance CPU Job Status. When this routine
scans the control point to which the job was brought by 1BJ, it finds that the
job has zero status (byte one of location 20g = 0) and that the job's control
point address is not listed in the stack. Thus, there is no activity at this
control point. The Advance CPU Job Status routine therefore assigns a pool
processor to this control point and calls 1AJ to that processor (by setting
the name in the processor's Input Register). 1AJ in turn calls an overlay,
2TS, to process the next control statement from the control statement buffer.
If this is a staéement such as ASSIGN, RELEASE, COMMON, etc., the statement
translator, 2TS, processes the control statement, moves the next control

statement pointer (byte 5 of location 2lg in the control point area) to point

“24a

to the next control statement in the buffe;i and releases the processor.

This ends the activity at the control point temporarily: the Advance CPU

Job Status routine will recognize this inactivity, and call 1AJ to advance

the job at this control point again. This process repeats until a statement
not recognized as a control point statement - a program card -~ is processed

by 2TS. When 2TS processes a program card, it searches the FNT, the CLD, and
the PLD, in that order, for the program. If the program is found in the FNT,
2TS proceeds to read the program from disk 0 into central memory beginning

at location RA. Upon reaching the end of record (or upon detecting the end

of the storage assigned to the job), 2TS sets the proper value of P in the
exchange area, sets the field length in Ap, transfers the arguments from the
program card to the program area beginning at RA + 2, and clears RA and RA + 1.
The value of P is obtained by adding 3 to the number of arguments: the latter
quanﬁity is supplied by the low-order six bits of the second word in the prog-
ram record. The field length is set in Ap so that the program can determine
the upper limit of its memory area. The remainder of the exchange area is
cleared.

When 2TS has completed setting up the control point area and the program
area, it requests the central processor for the job by sending function code
15 (Request Central Processor) to MTR. MIR sets the W flag in the control
point area, and calls the Search for CP Priority subroutine to initiate the
job. This subroutine will compare the priority of the new job with the prior-
ity of the running job, initiating the execution of the new job if it is high-

er in priority.

-

MTR: EXCHANGE PACKAGE SWITCHING

As jobs are brought into the system or are recalled from X status, the
running program may be interrupted to permit a higher priority program to
take the central processor: when this occurs, an exchange jump is issued

which results in the exchange package of the interrupted job being stored in

-25-

tlie control point area of the newly initiated job. Also, the stack isvpush-
ed down and the control point address of the newly initiated job is placed at
the top of the stack. Each control point in the stack contains the exchange
package for the control point immediately below it in the stack, An example
will help to illustrate how this comes about. Assume that 1BJ routines at
contrel points 3, 4, and 5 bring jobs C, B, and A, respectively, to their
control points, Job C has a priority of 1, job B has a priority of 2, and
job A has a priority of 3., At the time the jobs are loaded, the central
processor is executing the idle program. Figure 7 illustrates a poséible
sequence of events involving these jobs:
(:) 1BJ has brought jobs C, B, and A to control points 3, 4, and
5. The central processor is executing the idle program and
thus the top of the stack contains zero - the address of the
control point area for pseudo control point zero.
<:> The Advance CPU Job Status routine has recognized the presence
of the job at control point 3 and called 1AJ to advance the
job. 1AJ's overlay, 2TS, has loaded the program into memory
and, via a MIR request, requested that the job be executed.
The MTR subroutine which processed this request called the
Search for CP Priority routine. Since job C has a higher
priority than the running program, the latter routine issued
an exchange jump to job C which resulted in the idle program's
exchange package being stored in control point three!s exchange
area, and then, after pushing down the stack, placed the
address of control point three at the top of the stack.
<:> When the process described above was performed for control
point 4, the Search for CP Priority routine recognized that job
B had a higher priority than job C. It therefore issued an

exchange jump to start job B, thus storing C's exchange package

-26-

MOVIS d9

v el

JOVLS 4D

J0VLS 42

......

Figure 7

VAIV ¢ LNIOd TOYLNOO

Y i
Vi

\\\\ VA

HOVIOVd
JONVHOXH
J1dT

ALTIOTYd A0 dSNvodd QIVI
-LINI dNV dQUZI

®

ViIgV ¢ INIOd TOYINOD

wa
- &\ 0 400

\\\\\\\\\\ Y4

JOVAOVd
HONVHOXH
dTdT

NoOoOaY v dor

ALTAOTAd 40 dSNvOdEd dILVI
~LINI NV Q4ZINSODEY 4 dOor

©

VIdV ¢ INIOd TO¥INOD

= XL1Y0 Em“

700002 500

JOVA0Vd
JONVHOXH
47dT

B g)
H O AmA

dNV dd7Z1

Q4LVILINI

®

NOOOdY D 4of

O&U R A R Ve
cdn €do - , 049
VIV ¢ INIOd TOMINOD VANV S INTOd TOMINOD VINY ¢ INIOd TOMINOO VMY ¢ INIOd TOMINOD
Yz) 707 W
= XILIMOTNd / € = ALTNOTN / ' ¢ = ALTMOTNd | . ¢ = EEOH%“
\\ v i) | \\\\\\\\\,\\wovn\ \ sy 39 S a .\\\\\\\\\w\m\o\n 4
OOV | AOVIOVd HOVIOVA vV v OOV
TONVHOXH ! TONVHOKH i TONVHOXE T0 HONVIOXH
q v v T v
VIV % INTOd TO¥INOD . VEIV % INIO TIOMINOD | VIRV % INIOd TOYINOD VIV % INTOd TOMINOD
07777 VY, 7770777 Ve
= KITIOTHA 7 \ 7 = anémw Z = ALTNOTNA/ aa 7 = ?Hmozmw
(P9 Y L or BB, Nu 7,8 800
AV AOVIOVL OOV 0 a OOV
T ONVHOX AONVHOXA TONVHOX T 0V TONVHOXA
0 0 qd M m. q

e

Vaddy ¢ INIOd 'TOMINOD

\\\\\.\\\\N\m

T = ALTY0TIYd,

0 00,0,500]
HOVADO VA

JONVHOXH
3

o

ONTLODHXH WNVIO0¥d d71dI

*A4LVILS TVILINI

©

=27~

in B's exchange area in control point four. The stack was
pushed down and the address of control point 4 placed at the
top of the stack.
<::> The process is repeated again for control point 5: job A takes
over the central processor, and the address of control point 5
is placed at the top of the stack after the stack has been
pushed down.
Should job A complete execution or enter recall status, an exchange jump is
issued in which the address specified for the exchange package is the address
at the top of the stack. The stack is then pushed up. This would cause the
exchange package for job A to be stored in control point five!s exchange area:
the stack and.control point areas would then appear as shown in (::) .

The use of the central processor by a job may be suspended by means of a
"DCP" keyboard entry to tﬁe'DIS package assigned to the job's control point.
When.DIS encounters this entry, it transmits the control point number and
function code 16 (Release Central Processor) to MTR. The MIR subroutine
which processes this request determines whether or not the control point is
in the stack. If the control point is not in the stack, the W and X flag
bits are set to zero, an& the routine exits. Although the job's control
point is not in the stack and neither the W flag nor the X flag is now set,
the Advance CPU Job Status routine will not consider this job inactive, since
byte one of the status word is non-zero by virtue of the fact that a bit is
set corresponding to the number of the peripheral processor containing the
DIS package.

If the MIR subroutine which processes this request finds that the con-
trol point acdress of the job to be suspended is contained in the stack, it
must push the control point address of the job up out of the stack and reorder

the exchange packages so that the control point area of the suspended job con-

28~

tains its own exchange package. To accomplish this, MTR exchanges the
running program with the program immediately below it in the stack, and
pushes up the st;ck. If the program exchanged (i.e., the former running
program) was not that of the job to be suspended, MIR sets the W flag for
this job and repeats the above process. When the job to be suspended has
been exchanged, MIR calls the Search for CP Priority routine to reconstruct
the stack. The W flag for the suspended job is not set.

Many of the DIS entries which modify program parameters utilize this
function to halt the running program so that parameters can be changed.

To re-initiate execution of the suspended job, the DIS keyboard entry
"RCP." 1s used. On detecting this entry, DIS sends function code 15 (Request
Central Processor) to MTR. MTR then sets the W flag for this job and calls
the Search for CP Priority routine to re-initiate execution.

Several MTR subroutines are required to push up the stack to extract
a control point address: these routines call the Search for CP Priority
routine to reconstruct the stack. The latter routine is the only routine
which pushes down the stack and adds new entries to it.

Whenever a routine pushes the stack up or down, a copy of the stack is
written in locations 56 ;nd 57 of central memory resident for use by DSD.
DSD uses an alphabetic code to indicate the position of a control point in
the stack. ?he control point at the top of the stack (i.e., the running
program) is displayed as having program status "A", the next control point
in the stack is displayed as having program status "B", and so forth. The

W and X flags are also displayed for control points not in the stack.

MTR: PP RECALL PROCESSING

When certain transient programs find they cannot immediately continue
to perform their functions, they enter a process called PP Recall. Some

of the instances where this takes place are:

~20a

®© 1BJ - while waiting for storage to be assigned

@ 1DJ - while waiting for an output file

-

©

1LY - while waiting for a card reader to become ready

To enter PP Recall, a routine simply copies the contents of its Input Register
in the PP Recall register for the control point (location 25g of the control
point area), requests MIR to release the processor, and exits to the resident
idle loop.

The PP Recall register in the control point area is examined by the
Advance CPU Job Status routine. When this routine finds that the contents of
the PP Recall register are non-zero, it recalls the task by copying the con-
tents of the PP Recall register into the Input Register of an available pool
processoxr, clearing the PP Recall register, and assigning the processor to the
control point (by setting the appropriate bit in byte one of the status word).
The design of the transient programs is such that no internal modifications
or special flags are required for recall: a recall entry is treated just like
an initial entry.

The recall process is also utilized in the loading of peripheral processor
programs. When the statement translator, 2TS, processes a program card, it
first assumes that the program requested is a central processor program, and
searches the FNT and the CLD for the program. If the program is not found in
either the FNT or the CLD, the statement translator then assumes that the re-
quest is for a peripheral processor program, and so searches the PLD. If the
routine is found in the PLD, the statement translator places the routine name
and control point number in the PP Recall register for the control point.

MTR's Advance CPU Job Status routine treats this as if it were a recall
entry. It assigns a processor to the control point and copies the PP Recall

register into the processor's Input Register. The processor's resident prog-

ram then proceeds to load the program from the disk library and execute it.

-30-

MTR: NORMAL AND ABNORMAL JOB TERMINATION

In normal termination of a central processor job, the central processor
program initiates this termination by writing "END" in RA + 1. When MIR
detects this request during its master loop, it exchanges this program with
the program at the control point below it in the stack, and pushes up the
stack. If all peripheral processor activity associated with this control
point has ceased, then byte one of the status word in the control point area
will be zero. When the Advance CPU Job Status routine detects that this
control point is inactive, it will call the 1AJ routine to the control point.
If all control statements in the control statement buffer have been processed,
1AJ will wrap up the job.

When a job at a control point involves only peripheral processors and
does not use the central processor, normal termination involves a process
similiar to that described above. When a peripheral processor program com-
pletes execution, it requests MTR to release the processor (function code 12).
MTR does this by clearing the processor's Input and Output Registers and
clearing the appropriate bit in byte one of the control point's status word.
When all processors associated with this control point have been released,
the job will have zerc status. This will be detected by MIR!'s Advance CPU
Job Status routine, which will call 1AJ to the control point.

Abnormal termination of a job may be initiated by a central processor
program, a peripheral processor program, or by MITR. Regardless of who
initiates abnormal termination, the general procedure followed by MIR is to
set an error flag in byte two of the status word at the control point and
cause the job to assume zero status by clearing the W or X flag, releasing
peripheral processor assignments, and/or pushing the job's control point out
of the stack. When the Advance CPU Job Status routine detects that the job

at this control point has zero status, it will call 1AJ to advance the job.

lAJ senses that the error flag is set and calls an overlay to process the

~31l-

remaining control statements in the control statement buffer. This overlay,
2EF, searches the control statement buffer for an EXIT statement: if none is
found, control i; returned to lAJ to wrap up the job. If an EXIT statement is
found, the control statement immediately following it is picked up for trans-
lation and processing.

For certain of the error flag conditions, the 2EF overlay inserts (via
a MIR request) an error message in the dayfile. Error messages for other flags
are placed in the dayfile by the initiating routine.

The setting and processing of the various error flags is described below.

Error Flag 1: Time Limit. Byte four of location 22 in the control

point area contains the central processor time limit for the job.
Bytes three and four of location 23 in the control point area con-
tain the central processor running time in seconds for the job.

Each time the Advance CPU Job Status routine is entered, the running
time of the active central processor program is incremented. The
running time (bytes 3 and 4 of location 23 in the control point area)
is then compared with the time limit (byte 4 of location 22). If the
time limit has been exceeded, a subroutine called Set Error Flag
(page A-15 of attached flow charts) is called. This subroutine drops
the job from the central processor either by clearing the W/X flag or
by ekchanging the program with the next one in the stack and pushing
up the stack. It then sets the error flag bit in byte two of the
control point's status word. In the case of a time limit error, the
error message is later inserted by lAJ's overlay, 2EF.

Error Flag 2: Arithmetic Error. On each pass through its master loop,

MTR reads the central processor P register. If (P) is zero, it is
assumed that an error exit due to an infinite/indefinite operand

or bounds error has occurred. MIR then calls the Set Error Flag

subroutine to drop the job from the central processor and set the

-32-

flag in byte two of the control point!s status word. The error

message is later inserted by 2EF.

Error Flag 3. PP Abort. There are several instances in which a

peripheral processor program finds it necessary to abandon a task.
Some of these are:
© a peripheral resident is unable to locate a package in
the resident or peripheral libraries
@ (IO!s overlay, 2BP, finds an error in the buffer parameters
specified in a call
© a parity error is encountered when backspacing (after three
attempts)
In these instances, the peripheral processor program sends an
error message to the dayfile and then requests MTR to abort the
control point (function code 13), MIR releases the processor (thus
clearing the corresponding bit in byte one of the status word) and
then calls the Set Error Flag subroutine to set the flag in the
status word and to drop the job from the central processor,

Error Flag &: CPU Abort. When a central processor program finds it

necessary to abort execution, it writes "ABT" in RA + 1. When MIR

detects this during its master loop, it calls the Set Error Flag

Sub?outine to set the flag in byte 2 of the status word and to

drop the central processor.

The central processor program may abort because of some com-

putational condition, or because of a problem in the execution of a

peripheral processor program associated with the job. For example,

if a tape read operation encounters a parity error, after the third
—_ unsuccessful read it sets the 20 bit in byte four of RA and pauses

(function code 17: Pause for Storage Relocation). The central

processor program presumably monitors this location: when it detects

-33-

that this bit is set, it must decide whethér to abort execution

or to ignore the error., To ignore the error, the central processor
program clears this bit: the peripheral processor program will
sense when the bit is cleared and proceed with its execution. To
abort execution, the central processor program places "ABT" in

RA + 1, which results in an error flag being set. The peripheral
processor program senses this error flag and, when it finds that
the error flag is set, it requests MTIR to release the processor.

In either case, the peripheral processor program wiil place a
message in the dayfile.

Error Flag 5: PP Call Error. When MIR senses, during its master

loop, that the contents of RA + 1 are non-zero, it calls a sub-
routine to process the request. If the contents of RA + 1 are not
END, RCL, or ABT, then it is assumed that a peripheral program is
being called. The subroutine checks the first character of the
call to see if it is a letter. If it is, the request is issued to
a free pool processor. If it is not, the Set Error Flag subroutine
is called to set the flag in byte two of the control point!'s

status word and to drop-the central processor. The 2EF overlay

later inserts an error message in the dayfile.

ErrarFlag 6: Operator Drop. When DSD detects the keyboard entry

"n,DROP." (n = control point number), it transmits the control point
number and function code 30 (Operator Drop) to MIR. MIR calls the

Set ErrarFlag subroutine to set the error flag in byte two of the con-
trol point's status word and to drop the central processore

Error Flag 7: Track Limit. The number of half tracks on disk 0

requested by peripheral processor programs assigned to a control
point is maintained in byte 3 of location 22 in the control point
area. This quantity is incremented as tracks are requested and
decremented as tracks are dropped. Each time a track is requésted,

~3ba

MTR checks to see if more than 7778 half tracks have been assigned
to this control point: if so, the Set Error Flag subroutine is
called to set the flag in byte 2 of the control point's status word
and to drop the job from the central processor. The 2EF overlay
later inserts the error message in the dayfile.

If a routine requests a half track assignment from MTR, and MIR,
in searching the Track Reservation Table, reaches the end of the table
before an available half track is found, a zero byte is returned to
the requestor in byte one of the first word in the Message Buffer.

The requestor then aborts the control point via an MIR request,

resulting in the setting of error flag 3.

The error message "TRACK LIMIT" indicates that a control point
has requested the assignment of more than 777g half tracks on disk
0. The error message '"DISK X TRACK LIMIT" indicates that disk X

has overflowed.

MTR: STORAGE ALLOCATION AND RELOCATION

The blocks of central memory storage assigned to the various control
points always occupy positions in central memory relative to the number of the
control point to which they are assigned. Thus, the storage assigned to con-
trol point 2 appears immediately above the storage assigned to control point l;
the storage assigned to control point 3 appears immediately above that assigned
to control point 2, and so forth. As the jobs at control points request and
release storage, the storage assigned to higher control points is relocated up
or dewn so that no gaps of unassignea Storage appear between the storage blocks
of consecutive control points. All unassigned storage appears at the high end
of memory.

Peripheral processor programs request storage from MIR via a Request

Storage function (function code 10). Whenever 1BJ brings a job to a control

-35-

point, it requests MIR to assign the storage specified on the job card. In
addition, many peripﬁeral processor programs request storage for their own
use, primarily for buffers. Thus, 1BJ requests 300g words of storage to use
as a buffer in reading the record containing the control statements, 1LJ
requests 4000g words of storage to use in buffering jobs from the card reader
to the disk, and so forth.

The MIR Request Storage subroutine is shown on page A-6 of the attached
flow charts. Upon entry, a storage move flag is set in location 51 of peri-
pheral processor zero's memory. This flag is the Output Register address of
the requesting processor. The difference between the amount of storage req-

‘uested and the amount currently assigned to the control point is then computed.
For example, when 1BJ requests that storage be assigned for the job to be loaded,
MTR computes the difference between the requested storage (from the job card)
and the storage already assigned to the control point (the 300g locations used
as a buffer). If the requested storage represents an increase, MIR ascertains
if there is enough unassigned memory available to provide room for the increase.
It does this by subtracting (RA + FL) for control point 7 from 400000g to
determine the amount of unassigned storage. The storage increase requested is
then compared with the amount of unassigned storage. If there is insufficient
unassigned storage available to meet the request, MTR clears the requesting
processor's Output Register, clears the storage move flag in location 50, and
exits. The requesting routine senses if the storage requested has been
assigned by reading the value of FL in byte 5 of location 20 in its control
point area and comparing this value with the amount of storage requested.

If there is room for the storage increase, or if the request represents
a decrease, MIR sets a storage move flag in each control point above the
requesting control point. This flag is the 20 bit in byte 3 of location 20
in the control point area. Thus, if the requesting processor is assigned to

control point 4, storage move flags would be set in control points 5, 6, and 7.

=36~

- After setting the storage move flags, MIR determines if there is any
peripheral processor activity at the flagged control points. It does this by
first examining byte one of the control point status word. If bits 2 - 9 of
this byte are cleared, then there is no peripheral processor activity at this
control point. If one of these bits is set, then MIR reads the Output Register
of the corresponding processor.‘ If this Output Register contains anything but
a 17 function code, MTR exits from the Request Storage routine. Only when all
control points whose storage is to be relocated either have no peripheral
processor assignments or have paused for storage relocation by issuing a 17
function code does MTR proceed to relocate storage.

To relocate storage, MTR sets up the exchange package for the storage
move program with the parameters required to effect the relocation. This
exchange package begins at location 2000g of the central memory resident. MIR
then proceeds to push up the stack, exchanging each program in turn and setting
the W flag for the control point, until control point 0 is at the top of the
stack. The storage move program is then exchanged for the idle program. When
the storage move program completes execution, it stops with P = 0. The Request
Storage subroutine monitors P and, when it becomes zero, exchanges the idle
program for the storage move program. The RA value in each of the flagged
control point areas (both in byte five of location 20 and in the exchange
package) is then updated by adding the increase to the original value, and
the storagé move flags cleared. The FL value is then set in the exchange pack-
age and status word of the control point area for the requesting processor.
Finally, the Search for CP Priority routine is called to reconstruct the stack,
the storage move flag in location 50 is cleared, and the Output Register of the
requesting processor is cleared.

Mary peripheral processor programs, such as 1BJ, 1DJ, and 1LJ, enter PP
Recall if a storage request cannot be immediately satisfied because of lack of

space. In this case (insufficient unassigned storage), the Request Storage

37~

routine clears the requesting processor's Output Register and the storage

move flag in location 50 prior to exiting. Even though sufficient unassigned
storage is available, storage relocation can be initiated only when all
peripheral processor activity has ceased for the control points whose storage
is to be relocated. Should one or more control points have active peripheral
processors, the Request Storage routine exits without clearing the requesting
processor's Output Register. This does two things; it inhibits the requesting
processor's resident from exiting the Process Request subroutine, and it causes
MTR to re-enter the Request Storage subroutine on every pass through its master
loop, since the request remains in the processor's Output Register. Requests
for storage from other processors are ignored while this request is in process.
Effectively, then, MIR checks, on every pass through its master loop, the
peripheral processor activity at the flagged control points to see if relocation
can be initiated.

Cessation of peripheral processor activity may come about because a process-
or has completed its assigned task and requested MTR to release it (in which
case it may immediately be assigned to another task), or because the processor
has paused by sending function code 17, Pause for Storage Relocation, to MTR.
When MTR detects this function request, it examines the storage move flag in
the associated control point area: if set, MTR returns to its master loop
without clearing :tie processor's Output Register, thus effectively stopping
the processor. Wiaen all processors assigned to the flagged control points
have paused, storage relocation can begin.

The peripheral processor residents all pause for storage relocation
immediately upon recognizing a request in their Input Registers. In addition,
many peripheral processor programs pause for storage relocation when delayed
in their execution. For example, tape drivers pause for storage relocation

when the tape unit is not ready or when a tape error occurs.

~-38-

The READ package (1LJ and its overlays) pauses for storage relocation only
when the card reader is not ready. Similiarly, the PRINT package (1DJ and its
overlays) pauses for storage relocation only when the line printer is not ready.
It is therefore important that these packages should be assigned to control
points one and two., Should they be assigned to higher control points, they
could hold up the allocation of storage for jobs at lower control points for
considerable periods of time.

The coding for the storage move program is shown on page B-l, together
with the 6600 central processor timing for the loop used in moving storage up.
Storage relocation requires approximately 7.2 microseconds for an increase of

10,0008 words.

MTR: TIME ACCOUNTING

Location 30 of the central memory resident contains the system time in
hours, minutes, and seconds. This location may be initialized to real time via
the DSD keyboard entry "TIME". 1If not initialized, this location reflects the
elapsed time since the system was loaded. This time is updated by the Advance
Clock subroutine. This routine is shown on page A-2 of the attached flow charts.

In additicn to maintaining the system time in location 30 of central mem-
ory resident, cthe subroutine also maintains a current second count and a current
millisecond count in locations 67 and 66, respectively, of PPO's memory. Upon
entering the Advance Clock subroutine, MTR reads the real time clock on channel
14 and extracts the high-order two bits. These two bits are interpreted as
follows:

00: real time clock has advanced 0 milliseconds

high-order bits
high~order bits = 0l: real time clock has advanced 1 millisecond
high~crder bits = 10: real time clock has advanced 2 milliseconds

high-order bits = 1l: real time clock has advanced 3 milliseconds

high-order bits = 00: real time clock has advanced 4 milliseconds

-39~

These two bits are compared with the clock phase in location 65 of PPO's memory.
This clock phase is the value of these two bits on the last entry to the sub-
routine: if these two bits are unequal to the clock phase, then a millisecond
has elapsed since the last entry, and so the millisecond count in location 66

is incremented.

As the real time clock runs through a full period, the millisecond count
is advanced by 4. Actually, a full period represents 4.096 milliseconds: there-
fore, rather than waiting for the millisecond count to reach 1000 before advanc-
ing the second count, MTR advances the second count when the millisecond count
reaches 976. This represents 244 full periods of the real time clock, or an
actual elapsed time of 999+ milliseconds.

If the second count was not advanced, the real time clock is read again
before exiting to determine if a millisecond advance has taken place while the
computations described above were taking place. If no advance has occurred, the
subroutine is exited. If the second count was advanced, MIR reads the system
time from location 30 of central memory resident, updates it, and writes it back
in central memory. The realltime clock is then read again to determine if an
advance has occurred: if no advance has occurred, the subroutine is exited.

In order for the system time to be properly maintained, MIR must, on the
average, enter this subroutine every millisecond. Therefore, entry to this
subroutine is made from several points in MIR. The MTR routines which call the
Advance Clock subroutine are:

& MTR master loop

© Process PP Message Routine

¢ Request Storage (function 10)

© Release Central Processor (function 16)
© Request Exit Mode (function 25)

¢ Set Error Flag Routine

-40-

The system time in location 30 of central memory resident is inserted by MIR
in each dayfile message and is displayed by DSD. This time is not, however,
used in computing time charges to control points.

Location 23g in the control point area holds the central processor time
charged to the job at the control point, while location 248 contains the peri-
pheral processor time charged to the job. These times are maintained in sec-
onds and milliseconds, and are entered in the dayfile by 1AJ upon completion of
the job. Peripheral processor time charges are accumulated by the Assién Time
Increment for PP subroutine. This subroutine maintains a starting time for
each pool processor in central memory locations 41 - 50g. This starting time
represents the time at which the peripheral processor most recently became idle
or active and is maintained in seconds and milliseconds. The Assign Time

liustrated in figure 8. This subroutine is

e

Increment for PP subroutine is
entered with the number of the pool processor and with the control point address.
On entry, the starting time for this processor is read from central memory
(location 408 + PP number) and subtracted from the current time in seconds and
milliseconds niintained in locations 67 and 66 of PPO's memory. The difference
is added to the conzents of word 24g in the specified control point area. The
starting time for the processor is' then reset to the current time in seconds and
milliseconds.

When MTR assigns & pool processor to a task, it enters this subroutine
with thc anumber of the proc.zsor and with the address oi control point zero.
The diiference between the starting time and the current time is the length of
time which the processor has been idle. The new starting time represents the
time at waich the processor began execution of the task assigned to it by MTR.
On completicn of the task, MIR agains enters the subroutine - this time with
the number of the processor and the address of the control point to which the

processor was assigned. The difference between the current time and the starting

~41a

(EINDISSY SVM dd dUL HOIHM OL
J0 SSHUdav QZ< HATIHAN dd
ANILAOY AHL “¥0SSHO0¥d T00d V J0 ASVHTIY NO o

INIOd TO¥LINOD dHL
dHIL HITM JdE4INd ST

0 INIOd 'IOYINOD 40 SSHYddV Ml ANV 3 dRAN
dd 9HL HIIM QIING ST ANILOOM HHI ‘INIOd

TOYINOD V OL ¥OSSIOOMd TOO0d VvV ONINDISSY NO 5

<

AR qzmmm:o oL
TVIDI THLL ONTIAVES dd HAN s

z w,-.u.‘d&ﬂ:,. ,n., LA e

N . PR — J—

VIEV INIOd ‘'tud. Qo Q ;_qum
J0 %7 @I0H 0L SC /OuHmHAAqE
ANy mQZOQHm NT Aaqumzm_a QQ<

SRR Znnm gy - e

! Ao@ mo mchH<ooH oggv ;HH ozH
\ :Hm<ﬂm - JHIL Mzgmx:o qﬂ:m?oo

P

LT e T T e e L TR

T I L S L BRI S T AM: SIS S e

#dd + 0% 7orﬁ<ooq INTATSHT WO
quﬁ oéHﬂm<em dd avayg

LR T e Tmmas i TR LT

J4 90 INAHAUONT AHIL NOISSY

ONILNIIQDOV IANIL dd

INAAISHY AYOWIH TVILINID

IWNTL ONIIYVIS NdD

dWIL ONIIYVLIS Tdd

dWIL ONILYVLS Zdd

;V dWIL ONILYVIS €dad

dANIL OZHHH<Hm Fdd

JWIL ONIIUVLIS Gad

ARLL ONILYVIS 9dd

dWIL ONLJIUVIS Ldd

JHIL DONIIYUVIS 8dd

0%
1%
Y
(]
e/
1N
9%
LY

9

Figure 8

-42.

time is the length of time the processor was assigned to the control point:
the new starting time is the time at which the processor becomes idle. This
subroutine accumulates all PP usage times for a job in word 24 of the control
point area., All the idle time for the pool processors is accumulated is con-
trol point zero'!s area - location 24 of central memory resident.
The Assign Time Increment for PP subroutine is called by the following

MTR routines:

© Assign PP Time to CP (function &)

© Release PPU (function 12)

© Abort Control Point (function 13)

©® Request PPU (function 20)

O Process PP Call

© Advance CPU Job Status
Routines processing jobs ﬁot associated with' the control point, such as the
READ and PRINT packages, must handle their own time charges. When these
routines begin processing a file, they send function request 4 to MTR. MIR
assigns the idle time .to control point zero and sets a new starting time for
the processor in which the routine resides. The routines then sets location
24 in the control point area to zero. When processing of the file is completed,
these routines again send function request 4 to MIR, and MTR computes the
processing time and stores it in location 24 of the control point area. The
routines then read this time from the control point area, convert it toc decimal,
and write it in the dayfile via an MTR request. MIR inserts the job name in
the dayfile message: it is to provide this job name that these routines change
the job name iIn the control point area from READ or PRINT to the file name
when processing of the file is initiated.

Time cherges for the central processor are accumulated in a similiar

manner, There is, however, one exception: since central processor programs

have a time limit, the central processor time charges to a control point are

~43~

advanced every second. Location 40 in central memory resident contains the
central processor starting time. At interv;ls of one second or less, this time
is read and subtracted from the current time in seconds and milliseconds main-
tained by MIR in locations 67 and 66 of PPO's memory. The difference is added
to the contents of word 23 in the specified control point area, and a new
starting time is set in location 40 in central memory. (Note: the control
point area 1s cleared at dead start time and whenever 1AJ drops a job from

a control point.) Central processor time charges are updated by the Advance
CPU Job Status routine, and whenever the control point stack is pushed up or
down (i.e., whenever the running progrem is exchanged).

The Advance CPU Job Status routine m;intains & Last Second count in loc-
ation 63 of PPO's memory. Each time the Advance CPU Job Status routine is
entered, the Last Second count is compared with the current second count in
location 67 of PPO's memory. If these two quantities are not equal, the Last
Second count is uplated, the central processor time charges are accumulated
for the job currently using the centra. processor, and a test is made to

determine if the time limit hzs been exceeded,

MTR: THE DAYFILE

The dayfile is a combination of a time accounting medium and a job log.
The contents of the dayfile include:
@ all control cards
© all diagnostic messages
© Jjob loading times, job execution times (both for the central
processor and the peripheral processors), and job printing times
® messages to the operator
The dayfile is maintained as a COMMON file on the disk. 1Ia addition, a number

of the most recent dayfile entries are displayed on the console by DSD. At the

bl

end of a job, all dayfile entries for that job are printed as part of that
job'!s output.

Messages are entered in the dayfile by peripheral processors via a request
to MTR. A central processor program may enter a message in the dayfile by
calling the MSG peripheral package. A peripheral processor program initiates
the entry of a message in the dayfile by placing the message in its Message
Buffer and then placing function code 1 (Process Dayfile Message) in byte one

of

its Cutput Register. The message may be up to six central memory words in
length and is terminated by a zero byte in byte five of the last word of the
message.

When MTR processes this request, it first checks the dayfile dump flag
in location 64 of PPO!'s memory. If this flag is set, then dumping of the
dayfile to the disk is in process, and so MTR returns to its master loop, de-
laying the processing of this message to later. If the dayfile dump flag is
not set (i.e., location 64 contains zero), MTR proceeds with the processing of
the message. The contents of the Message Buffer are copied into words 30 - 35
of the control point area for the control point to which the requesting process-
or is assigned. These locations (words 30 - 35), together with the control
point status, the next control statement, and the exchange area, are displayed
on the console by the DIS "B" display.

The dayfile message, together with the system time and the job name from
the control point to which the requesting processor is assigned, is placed in
the dayfile buffer. The dayfile buffer (see figure 9) is an area of central
memory resident used to buffer dayfile messages to the disk. 1Its starting
(i.e., FIRST) address and LIMIT address (last entry address plus one) are
specified by bytes one and four, respectively, of the dayfile buffer (DFB)
pointer word in central memory location 3. Bytes two and three of the DFB

pointer contain the IN and OUT addresses for the buffer. In inserting the

-45-

e

7970 T

dIN A9 QEIYISNI MNIL WILSXS ANV dAWVN 4Ol
SMIOM AUOWHW TVALNAD

XIS OL dN J0 ISTISNOO AVH HOVSSIW J0 X009

LYRIOA OVSSIN HTILAVA

or i W oy P A T

r0s”’

72 M:: n

RIS

AZHw 2@9 SAS

qA05 “AVIASIA :meHFmDh Hmhq LZ<Z mOh

e tavuu'i.?aﬁiv%rnu

T e T e,

. . ey

R AR T e %Lf T T L e O S R T Y 2 T T

3 (114 ping

R, T T Bt s T T v ey IR T
% TR A B T T pp——

Lr AR IR T AT e AT A e
R A o 5 - = o -

AIAL O¥dZ V Ad QUIVNIINIAL d9VSSAH

Am 7o_ﬂ«wm

P T

LINIT

sz (NOM JIINIOA dJd

100

| NI

JddA0d HTLAAVA

T T S R

Figure 9

ASIA HHL OL NHILIYM
ATSNOTAEYd VIVA STHL

g e e A e e P

Q 7

MSIA HHL 0L GEAWAd 44 0L /)

\\\\\\\\\\\QQ

ER:ICHEN

HOVSSHH LXIN SIMHESNI ¥IW

~46-

message in the dayfile buffer, MTR first copies the system time from location
30 of central memory resident into the buffer. Next, MIR reads the job name
from word 21 of the requestor's control point area and copies it into the
dayfile buffer. 1In doing so, MTR changes spaces in the job name to blanks,
and inserts a period at the end qf the job name. Next, MTR copies the body
of the message from the requestor’s Message Buffer into the dayfile buffer,
copying word after word until a word ending with a zero byte (byte five) is
copied.

Within the dayfile buffer, a message comprises three to eight werds: one
word contains the system time, one word contains the job name, and one to six
words contain the body of the message. When the entire message has been copied
into the dayfile buffer, MTR increments the dayfile message count in byte two
of word 22 in the requestor's control point area. Although this count is
incremented each time a message is entered in the dayfile, it is tested against
a limit only by the peripheral package MSG.

As MIR enters each word in the dayfile buffer, it advances the IN address
and compares it with the LIMIT address. When IN = LIMIT, MTR resets IN to the
value of FIRST. After the message has been entered in the dayfile, MTR com-
pares the IN and OUT adcresses to determine if the dayfile buffer contains a
full sector of data: if it does, the dayfile dump flag is set to initiate the
dumping of this data to the disk. MTR dumps the dayfile to the disk in a
series of phases: after each phase has been executed, MTR\returns to its master
loop to process requests from the central processor or from peripheral process-
ors. In this manner, MIR avoids being tied up in a disk operation for a pro-
longed period of time. The dayfile dump flag, when set, contains the address
of the subroutine to be called to perform the next phase of dumping.

Although the nominal size of the dayfile buffer is 1000g words, dumping

is initiated whenever messages totalling 100g words have accumulated. From

47~

the standpoint of buffering messages to the disk, the dayfile buffer need be
be no longer than 107g words (since it is possible that entry of the last
message increased the total to over 100 words), since no entries can be made
while dumping is in process. By increasing the buffer size to several times
its minimum requirements, however, the size of the dayfile display on the
console is increased.

The six subroutines corresponding to the dayfile dump phases are shown
on pages A-16, A-17, and A-18 of the attached flow charts. hese subroutines
are described below.

Phase 1. In phase one, MTR requests channel 0 and sets the dump

flag to the address of the phase 2 subroutine. It is interesting

to note ‘that in this case MIR transmits a request to itself: the
channel number and the appropriate function number are placed in
PPO's Output Register to be processecd by MIR when it returns to

its master loop.

Phase 2. One entering phase two, MIR reads its Output Register to
determine if its reservation request has been accepted. If the
channel has been reserved for MTR, then positioning is initiated.

All other disk users maintain the current half track address for a
file in the FST entry for that file. Although MTR sets the Beginning
Half Track byte in the FST entry, ‘it does not update the Current Half
Track byte as sections of the dayfile are written to the disk.
Instead, the current half track address is maintained by modifying

N

tne appropriate instructions within the dumping subroutines. To
position the disk, MTR uses the Position Disk subroutine in peripheral
processor resident. After initiating repositioning, the dump flag is
set to the address of the phase 3 subroutine.

Phase 3. 1In phase three, MIR writes the full sector in the dayfile

buffer and a record mark to the disk. Since this write is directed

b8

to a specified sector, it is conceivable that up to 66 milliseconds
could elapse between the time at which this subroutine was entered
and the time at which this sector came under the heads. In order
to avoid this delay, MTR issues a status request to obtain the
number of the sector currently passing under the heads and, unless
the disk is positioned two sectors before the desired sector, MIR
returns to its master loop. A sector may pass under the heads in
as little as 490 microseconds. The minimum time required for MIR
to make a pass through its master loop is approximately 150 micro-
seconds (assuming an active CPU program but no requéest processing
required) and may be several Zimes longer. It is not impossible,
then, that a revolution or more may be required before the desired
coincidence is found.

Once coincidence has been obtained, MIR writes the full sector
from the dayfile buffer to the disk, and advances the buffer's OUT
address accordingly. If this sector was the last sector on this
half track, the subroutine coding is modified for the spare half
track, (MTR maintains a spare half track for the dayfile: this is
picked up in the phase four subroutine whenever required.)

It is probable that the message which completed a full sector
in the dayfile buffer resulted in the buffer's containing something
more than 100g words of data. If so, MIR will include these extra
words, which are part of the last message entered in the dayfile

5

buffer, .in the short sector written as an end-of-record after each
full szector is written. '(The dayfile is a single logical record
on the disk and is not terminated by a file mark sector.)

The phase two subroutine is called again to position the disk,

and the short sector is then written by the phase three subroutine.

-494

Although this sector may include a few words of data from the buffer,
the OUT pointer is not advanced to reflect the transfer of these
words: also, the coding is not modified to reflect the writing of
this sector. The next full sector written to the disk will also
include these few words and will be written over this end-of-record
sector.

After the end-of-record sector has been written, MIR constructs a
release channel reservation reguest by placing the channel number

and the appropriate function code in PPO!s Output Register. It thaen
sets the dump flag to either the address of the phase four subroutine
(if another spare half track is required) or the phase six subroutine
(if the spare half track was not used during this dump operation).

Phases 4, 5, 6. The phase four subroutine requests a spare half track

from MIR and sets the dump flag to the address of the phase five
subroutine. The phase five subrcutine store: che spare half track
number anc .. iro Toe cump flag.

If iv . not necessary to pick up the spare half track, the
phase three subroutine sets the dump flag for phase six. The phase
83ix subroutine clears the dump flag.

The dayfile buffer is dumped whenever messages totalling a full sector
have accumulated, * It is also dumped, even though a full sector has not been

job. As part of a job's output, all dayfile

-

accumulated, at the end of each
messages for that job are printed. In order to simplify searching of the dayfile
for the job's messages, the dayfile is dumped to the disk so theat only the disk
has to be searched, The PRINT package (1DJ and its overlays) and the DUMP

package (.TD and its overlays) initiate this dumping by sending function reg-

(=2

o

uest 11, Complete Dayfile, to MTR: MIR in turn sets the dayfile dump flag to

phase one.

~50-

The PRINT (or DUMP) package calls 2RD to load a central memory buffer with

data from the dayfile, and then calls the Search Dayfile overlay (2SD) to
extract the messages for the specified job. 2SD sezrches each word in the
buffer for the specified job name. When a word is read which dces not contain
the job name, it is copied into a peripheral processor memory area, but the
address in this area is not advanced. Thus, when a word con:aQning the job
name is found, the peripheral processor memory area already contains the

system time associated with the message. The remainder of the message is then
transferred to the peripheral processor memory area: word after word is trans-
ferred until & word ending in a zero byte is found. The sectors comprising

the dayfile are searched until a short sector has been processed. When 2SD
recognizes that the end of the»dayfile has been reached, it requests MIR to
compute the time required to process this job'!s output. MIR stores this time
in word 24 cf the control point area: 28D reads it, convercs it to decimal
seconds, and writes it in a central memory buifer. The PRINT (or DUMP) package
then copies the contents of the peripheral processor memory area which contains
the dayfile messages Zor the job to this central memory buffer. The PRINT pack-
age then . calls the 2LP overlay to print che contents of this buffer as the last

page of a job's output.

~-51a

MTR PACKAGE
SYSTEM MONITOR

ASSIGN DISK FILE O TRACK FOR DAYFILE
ENTER CAYFILE STATUS IN FST

v
EXCHANGE JUMP TO IDLE ROUTINE

Jl RJ ADVANCE CLOCK l

READ PPU | OUTPUT REGISTER | NO N = "
IS REGISTER EMPTY 7 1 RJ PROCESS U MESSAGE

YES

READ PPU 2 OUTPUT REGISTER
IS REGISTER EMPTY ? NO

YES

Y

RJ PROCESS PPU MESSAGEJ

READ PPU 3 QUTPUT REGISTER
Is REGISTER EMPTY ? NO

YES

a2

RJ PROCESS PPU MESSAGEJ

READ PPU 4 OUTPUT REGISTER
IS REGISTER EMPTY ? NO . RJ PROCESS PPU MESSAGE J
YES

READ PPU 5 OUTPUT REGISTER
15 REGISTER EMPTY ? NO
I YES

v

READ PPU 6 OUTPUT REGISTER
15 REGISTER EMPTY P NG

Y

RJ PROCESS PPU MESSAGL‘

Y

RJ PROCESS PPU MESSAGEJ
YES i
‘ |
READ PPU 7 CSUTPUT REGISTER <

IS REGISTER EMPTY ? NO > RJ PROCESS PPU MESSAGE
YES

READ PPU & CCTPUT REGISTER

) N
IS REGISTER EmMHTY ? 0 RJ PRGCESS PPU MESSAGE J
YES

|
Y

REAZ PPU 9 QUTPUT REGISTER
1S REGISTER EMPTY ? NO
YES

Y

RJ PROCESS PPU MESSAGL]

<

READ PPU O 2uTPUT REGISTER
. N
R EMPTY 7 Q 5> RJ PROCESS PPU MESSAGE]

I3 P
m
(8]

ENTRAL PROCESSOR ASS.GN

O

TO 4 CONTROL POINT ? | NO @

(NEXT PAGE)

~<
m
"

REAS {Ra+i) 50 CINTROL POINT | YES
IS WORD CLEAKED ?
NO

rRJ PROCESS PP cnujf \Cv)

(NEXT PAGE}

(MTR PACKAGE CONTINUED)

®

IS SIMULATOR OPERATING 7 }ﬁ_——ﬁ{ READ P FROM SIMULATOR

NO

-

{ READ P FROM CENTRAL PROCESSOR JI

[RJ SET ERROR FLAG 2

(:) - ; IS A PPU AVAILABLE FOR ASSIGNMENT ?]—H RJ SEARCH FOR FREE PPU—]

YES

[RJ ADVANCE CPU JOB STATUS }

LIS DUMP FLAG SET 7 }'YES—-ﬁ{ RJ DUMP DAYFILE NEXT PHASE]

NO

o

MTR SUBROUTINE
ADVANCE CLOCK

34 READ CURRENT CLOCK VALUE NO
[HAS WNEXT MILLISECOND BEEN REACHED 7
YES

ADVANCE CLOCK PHASE TO NEXT MILLISECOND
ADVANCE MILLISECOND COUNT
HAS COUNT REACHED 1000 MILLISECONDS ?

YES

NO

ADVANCE SECOND COUNT
UPDATE DATE LINE ONE SECOND IN DISPLAY CODE

MTR SUBROUTINE
PROCESS PPU MESSAGE

,

YES
rls MONITOR IN STEP MOOE ? }————9(SET WAIT STEP FLAG AT CENTRAL ADDRESS 0014J

NO

———-‘>’ RJ ADVANCE CLOCK J

Y

NO
——-rHAs OPERATOR STEPPED MONITOR 7

YES

READ FUNCTION FROM REQUESTING
PPU OUTPUT REGISTER 1 EP FLAG

RJ TO CORRESPONDING MTR SUBROUTINE

[RJ ADVANCE CLOCK J

ExIT

MTR FUNCTION QI
PROCESS DAYFILE MESSAGE

1S OUMP FLAG SET ? PES 5] ExIT

NO

rcovv MESSAGE FROM PPU MESSAGE BUFFER TO CONTROL POINT AREA }

ENTER TIME IN DAYFILE BUFFER
ENTER JOB NAME IN DAYFILE BUFFER .
COPY MESSAGE FROM PPU MESSAGE BUFFER TO DAYFILE BUFFER

NO | CLEAR PPU OUTPUT REGISTER
DOES DAYFILE BUFFER CONTAIN A FULL DISK SECTOR OF DATA ?

YES

Y

i SET PHASE ONE DUMP FLAG

| ExIT

A-3

P

MTR FUNCTION 02
REQUEST CHANNEL

Y
READ CHANNEL STATUS TABLE YES
IS REQUESTED CHANNEL BUSY ?

NO

ExiT

ASSIGN CHANNEL TO REQUESTING PPU
UPDATE CHANNEL STATUS TABLE
CLEAR PPU QUTPUT REGISTER

MTR FUNCTION 03
DROP CHANNEL

READ CHANNEL STATUS TABLE

' CLEAR REQUESTED CHANNEL ASSIGNMENT
UPDATE CHANNEL STATUS TABLE
Exir

MTR FUNCTION 04
ASSIGN PP TIME

READ STARTING TIME FOR REQUESTING PPU

SUBTRACT FROM CURRENT TIME IN SECONDS AND MILLISECONDS
ADD TO ACCUMULATED TIME CHARGE IN CONTROL POINT AREA
STORE NEW PPU STARTING TIME

CLEAR PPU OUTPUT REGISTER

ExiT

' A4

MTR FUNCTION 05
MONITOR STEP CONTROL

ExiT

SET MONITOR STEP CONTROL FLAG
CLEAR PPU OUTPUT REGISTER

MTR FUNCTION 06
REQUEST DISK TRACK

SEARCH REQUESTED TRT FOR AN UNASSIGNED TRACK

1S THERE A TRACK AVAILABLE 7

NO

YES

Y

ENTER TRACK NUMBER iN PPU MESSAGE BUFFER
UPDATE TRT FOR ASSIGNED TRACK

CLEAR PPU OUTPUT REGISTER

IS TRACK ON DISK FiLE O ?

CLEAR FIRST WORD OF PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER
ExiT

NO

YES

ADVANCE TRACK COUNT IN CONTROL POINT AREA] YES

HAS TRACK LIMIT BEEN REACHED 7

NO

r
> RJ SET ERROR FLAG 7

exr

MTR FUNCTION O7
OROP DISK TRACK

ExiT

CLEAR TRACK ASSIGNMENT IN REQUESTED TRT
REOQUCE TRACK COUNT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

A.5

MTR FUNCTION 10

REQUEST STORAGE

CLEAR PPU OUTPUT REGISTER

Y
[IS STORAGE MOVE FLAG SET ? }ES————-%[IS FLAG FOR REQUESTING PPU ? No > EXIT

NO YES

Y
leT STORAGE MOVE FLAG FOR REQUESTING PPU]

[IS REQUESTED STORAGE AN INCREASE ? } NO
YES
YE ROL POINT
IS THERE ROOM FOR THE STORAGE INCREASE ? }L) SET MOVE FLAGS IN ALL CONTROL POINTS
AFTER REQUESTING CONTROL POINT

NO

CLEAR STORAGE M FLA YE
E MOVE FLAG [IS THERE ANY PPU ACTIVITY AT CONTROL POINTS WITH MOVE FLAGS ?]%

7o . CLEAR PPU OUTPUT REGISTER
EXIT NO

EXCHANGE ALL RUNNING CPU PROGRAMS IN CP STACK AND SET W FLAGS
EXCHANGE JUMP TO STORAGE MOVE PROGRAM WITH PROPER PARAMETERS
SENSE P=0 FOR END OF STORAGE MOVE PROGRAM

kemomemy NO [
“1 RJ ADVANCE CLOCK
1

UPDATE RA AND FL IN EACH EXCHANGE PACKAGE
CLEAR STORAGE MOVE FLAGS

RJ SEARCH FOR CP PRIORITY]

CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION |
COMPLETE ODAYFILE

Y
[IS A DUMP FLAG SET ? [LES >]] EXiT

NO
Y vES CLEAR COMPLETE DAYFILE FLAG
Lls THE COMPLETE DAYFILE FLAG sETM CLEAR PPU OUTPUT REGISTER
NO EXIT

SET COMPLETE DAYFILE FLAG
SET DUMP FLAG PHASE ONE
ExiT

MTR FUNCTION 12

RELEASE PPU I

CLEAR PPU ASSIGNMENT AT CONTROL POINT
COMPUTE PPU RUNNING TiME AND ADD TO ACCUMULATED PP TiME
UPDATE PPU STARTING TIME
Y
[clear PPU INPUT REGISTER
CLEAR PPU OUTPUT REGISTER
EXiT
" MTR FUNCTION |3
| ABORT CONTROL POINT
.
CLEAR PPU ASSIGNMENT AT CONTROL POINT
COMPUTE PPU RUNNING TIME AND AGD TO ACCUMULATED PP TIME
UPDATE PPU STARTING TIME
SET ERROR FLAG 3
CLEAR PPU INPUT REGISTER
7 CLEAR PPU OUTPUT REGISTER
' EXIT

A-7

’ : . MTR FUNCTION |4
ENTER NEW TIME LIMIT

ENTER NEW TIME LIMIT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION I5
REQUEST CENTRAL PROCESSOR

1 YES
IS AN ERROR FLAG SET ? T

NO

YES CLEAR PPU OUTPUT REGISTER
rooss (RA + 1) CONTAIN END ? J'———) ExiT

NO

7~ YES
! rls CONTROL POINT LISTED IN CPU STACK ? 1r

NO

SET W FLAG FOR CONTROL POINT
RJ SEARCH FOR CP PRIORITY
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION 16
RELEASE CENTRAL PROCESSOR

CLEAR W AND X FLAGS AT CONTROL POINT

NO
IS CONTROL POINT LISTED IN STACK ?J————‘a’ CLEAR PPU OUTPUT REGISTER

YES ExiT
Y RJ SEARCH FOR CP PRIORITY
EXCRANGE RUNNING PROGRAM AND PUSH UP STACK YES RJ ADVANCE CLOCK
WAS XEQUESTING CONTROL POINT EXCHANGED 7 CLEAR PPU OUTPUT REGISTER
NO EXiT

/\ ——-‘{7 SET W FLAG FOR EXCHANGED CONTROL POINT

v
o

MTR FUNCTION 17
PAUSE FOR STORAGE RELOCATION

YES
Fls MOVE FLAG SET FOR CONTROL POINT ?

NO

CLEAR PPYU OUTPUT REGISTER
EXIT

MTR FUNCTION 20
REQUEST PPU

1 NO
IS THERE A PPU AVAILABLE 7 |

CLEAR PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER

ExiT

YES

ENTER FIRST WORD OF MESSAGE BUFFER iN PPU INPUT REGISTER
ASSIGN PPU TO CONTROL POINT

ASSIGN PPU 10LE TIME TO CONTROL POINT ZERO

UPDATE PPU STARTING TIME

-

ENTER NEW PPU INPUT REGISTER ADORESS IN FIRST BYTE OF REQUESTING PPU MESSAGE BUFFER
CLEAR PPU OQUTPUT REGISTER

RJ SEARCH FOR FREE PPU

ExiT

MTR FUNCTION 21

RECALL CPU
] YES
Is AN ERROR FLAG SET ?
NO
NO CLEAR PPU OUTPUT REGISTER
IS THE X FLAG SET ? Jl
EXIT
YES
N, .
1 YES
IS REQUESTING CONTROL POINT IN CPU STACK? |
NO
SET W FLAG
CLEAR X FLAG
RJ SEARCH FOR CP PRIORITY
CLEAR PPU OUTPUT REGISTER
ExIT
A-9

MTR FUNCTION 22
REGUEST EQUIPMENT

NO
IS REQUEST A NUMBER ? }

YES

N
——o{ IS CORRESPONDING EQUIPMENT BUSY ?
YES

Y
CLEAR PPU MESSAGE BUFFER
CLEAR PPU QUTPUT REGISTER
ExiT

NO | SEARCH EST FOR AN EQUIPMENT OF REQUESTED TYPE
IS THERE A PROPER TYPE FREE 7
YES

/

YES
[S EQUIPMENT A DISK FILE ?

NO

1S EQUIPMENT 015K FILE ? NO ASSIGN EQUIPMENT TO CONTROL POINT
——%{ NT A 01 IWE 7 }_——ﬁ
s SET EQUIPMENT ASSIGNMENT N CONTROL POINT AREA

YES

ENTER EQUIPMENT NUMBER IN PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER
EXiT

MTR FUNCTION 23
RELEASE EQUIPMENT

RELEASE EQUIPMENT ASSIGNMENT IN EST

CLEAR EQUIPMENT ASSIGNMENT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

EXiT

MTR FUNCTION 24
REQUEST PRIORITY

ENTER NEW PRIORITY IN CONTROL POINT AREA
RJ SEARCH FOR CP PRIORITY

CLEAR PPU OUTPUT REGISTER

Exit

A-10

MTR FUNCTION 25
REQUEST EXiT MODE

NO
IS CONTROL POINT IN CPU STACK 7 }-—9{7CLEAR W FLAG AND X FLAG FOR CONTROL POINT}———

YES

. EXCHANGE CURRENT CPU PROGRAM
PUSKH UP CPU STACK

YES
(WAS REQUESTING CONTROL POINT EXCHANGED ?]—————‘———'—9{ RJ SEARCH FOR CP PRIORITY

NO

/
—‘{ SET W FLAG FOR EXCHANGED CONTROL POINT RJ ADVANCE CLOCK

ENTER NEW EXIT MODE IN EXCHANGE PACKAGE
CLEAR PPU OUTPUT REGISTER
EXiT

MTR FUNCTION 27
TOGGLE SIMULATOR STATUS

[1S THERE A PPU AVAILABLE ? J NO EXIT

YES

EXCHANGE SIMULATOR TO IDLE PROGRAM
CLEAR INPUT REGISTER FOR SIMULATOR PPU
WAIT FOR SIMULATOR TO FINISH

RESET EXCHANGE AREA FOR {DLE PROGRAM | YES
1o SIMULATOR CURRENTLY OPERATING ?

NO

EXCHANGE TO IDLE PROGRAM

EXCHANGE CPU TO IDLE PROGRAM
\ ENTER SIMULATOR CALL IN PPU INPUT REGISTER

MODIFY MONITOR PROGRAM TO TOGGLE SIMULATOR REFERENCES
CLEAR MONITOR FLAG

CLEAR PPU OUTPUT REGISTER

ExiT

RJ SEARCH FOR FREE PPU

MUODIFY MONITOR PROGRAM TO TOGGLE -ALL SIMULATOR REFERENCES
SET MONITOR FLAG

CLEAR PPU OUTPUT REGISTER

ExiT

A-11

ATR FUNCTION 30
QOPERATOR DROP

RJ SET ERROR FLAG 6
CLEAR PPU QUTPUT REGISTER
ExiT

MTR FUNCTION 3)
READY TAPE

MODIFY EST ENTRY TO CLEAR EQUIPMENT LOCKOUT 8IT
CLEAR PPU OUTPUT REGISTER
EXiT

MTR FUNCTION 32
DROP TAPE

MODIFY EST ENTRY TO SET EQUIPMENT LOCKOUT BIT
CLEAR PPU OUTPUT REGISTER
EXiT

MTR FUNCTION 33
ASSIGN EQUIPMENT

T
i
T
i
i
)

Y

IS EQUIPMENT ALREADY ASSIGNED ?

READ EST ENTRY YES

NOC

Y.

ENTER EQUIPMENT NUMBER IN CONTROL POINT AREA AS OPERATOR ASSIGNMENT | YES

IS EQUIPMENT A DISK FILE P

NO

ASSIGN EQUIPMENT

EXiT

TO CONTROL POINT
SET EQUIPMENT ASSIGNMENT BIT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

A-12

CLEAR PPU OUTPUT REGISTER
EXIT

MTR SUBROUTINE
RJ ADVANCE CPU J0B STATUS

T
I
v

/{ ExiT

ADD TIME INCREMENT TO CONTROL POINT CPU ACCUMULATED TIME
HAS TIME LIMIT BEEN REACHED ?

[NO YES

s NO
L:As 64 MILLISECONDS ELAPSED SINCE LAST REFERENCE ? }
[ves
NO T Y
—'-—-L.Has CNE SECOND ELAPSED SINCE LAST SECOND ADVANCE ?~]
YES
ADVANCE SECOND COUNT NO
IS CPU IN IDLE PROGRAM ?
YES
\ i

.|

1 1S A PPU AVAILABLE ? }’

YES | NO

' |
RJ SET ERROR FLAG |
L

‘[MUDIFY SUBROUTINE TO
{
L

ADVANCE TO NEXT CONTROL POINT {MODULUS 7)

UOES CONTHOL POINT HAVE A JOB NAME ?

EXiT

NC

YES

Y

I THE RECALL

EXiT

gLl
Lo]

FLAG (X) SET FOR THE CONTROL POINT ?jl YES

NO

NO T

13 PP RECALL WORD FILLED AT CONTROL POINT 7 j]

SET W FLAG

YES

Y

SET PPU ASS

|
i
i
L UPDATE PPU

ASSIGN PPU TO PP RECALL FUNCTION
SLEAR PP RECALL WORD AT CONTROL POINT
ASSIGN PPU TO CONTROL POINT

ASSIGN PP IDLE TIME TC CONTROL POINT ZERO

IGNMENT BIT IN CONTROL PCINT AREA

STARTING TiME

]
|
v

IL RJ SEARCH FOR FREE PPU

|
4

=

Y
-—:—-1 IS THERE ANY ACTIVITY AT THE CONTROL POINT ?‘}é

CLEAR X FLAG
RJ SEARCH FOR CP PRIORITY

NO

Y

[Is ™

E STORAGE MOVE FLAG SET ?

] YES
j

NO

Y

DS THE CONTROL POINT LISTED IN THE CPU STACK ?

P X

— YEs
J

NO

ENTER 1AJ N
ASSIGN PPU T
SET PPU AsSI

K-\ UPDATE PPU §

RJ SEARCH FO

ASSIGN PPU IDLE TIME TO CONTROL POINT ZERO

PPU INPUT REGISTER
O CONTROL POINT
GNMENT BIT IN CONTROL POINT AREA

TARTING TIME
R FREE PPU

ExiT

A-13

MTR SUBROUTINE
RJ PROCESS PP CALL

Y

{ DCES (RA +1) CONTAIN END ?

1 YES

NO

[—————-—>

EXCHANGE CURRENT CPU PROGRAM
PusH UP CPU STACK
EXIT

EXCHANGE CURRENT CPU PROGRAM
PUSH UP CPU STACK

SET X FLAG AT CONTROL POINT
CLEAR (RA+1)

EXiT

~,] RJ SET ERROR FLAG &

DOES (RA+|) CONTAIN RCL ? TES
NO

DOES (RA+1) CONTAIN ABT ? } YES
NO

1 NO

IS THERE A PPU AVAILABLE ? !

EXIT

YES

Y

1S FIRST CHARACTER IN PP CALL A LETTER ?

YES

Y

ENTER PP CALL IN PPU INPUT REGISTER

ASSIGN PPU TO CONTROL POINT

ASSIGN PPU IDLE TIME TO CONTROL POINT ZEROC
UPDATE PPU STARTING TIME

EXIT

RJ SEARCH FOR FREE PPU
CLEAR (RA+1)

A-l4

NO

exiT

RJ SET ERROR FLAG 5
EXiT

MTR SUBROUTINE
RJ SET ERROR FLAG

STORE ERRGR EXIT FLAG NUMBER IN CONTROL POINT AREA
(1) = TiME LiviY
(2) = ARITH ERROR
(3) = PPU ABORT
{4) = CPU ABORT
(5} = PP CALL ERROR
(6) = OPERATGR DROP
(7)* DISK TRACK LIMIT

Y
NO
[IS CONTROL POINT IN CPU STACK ? } \{ CLEAR W FLAG AND X FLAG }———%Ex-w

YES

EXCHANGE CURRENT CPU PROGRAM
PusH UP CPU STAGK
WAS THE CONTROL POINT EXCHANGED 7

NO

YES RJ SEARCH FOR CP PRIORITY
RJ ADVANCE CLOCK

_{7 SET W FLAG FOR EXCHANGED CONTROL POINT

MTR SUBROUTINE
RJ SEARCH FOR FREE PPU

SEARCH PPU NUMBERS ONE THROUGH EIGHT FOR AN EMPTY INPUT REGISTER | NO. CLEAR NEXT PPU INPUT REGISTER ADORESS
IS THERE A FREE PPU ? 1 OExIT

YES

STORE PPU INPUT REGISTER ADDRESS FOR NEXT ASSIGNMENT
exir

MTR SUBROUTINE
RJ SEARCH FOR CP PRIORITY

H INDEX TO CONTROL POINT ONE

PRESET CONTROL POINT SEARC

Y
READ CONTROL POINT sTATUs | YES
IS W FLAG SET ?
NO
. WV
NO | ADVANCE CONTROL POINT SEARCH ADDRESS NO) v oF Py PROCRAM 7 J
WAS THIS THE LAST CONTROL POINT 7 <—-————————-{ IS CONTROL POINT PRIORITY HIGHER THAN PRIORITY CURRENT ?
YEs YES
Al
ASSWGN ACCumu-ATED CPU TIME TO CURRENT CPU PROGRAM
PUSH DOwWN CPU STACK
EXCHANGE JUMP TO NEW CONTROL POINT

ExIT

CLEAR W FLAG AT NEW CONTROL POINT

ExiT

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE ONE

ENTER REQUEST CHANNEL O IN MONITOR PPU OUTPUT REGISTER
SET PHASE TWO DUMP FLAG

EXIT

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE TWO

NO

B
!
UT REGISTER CLEAR ?

YES

Il

I 1B MONITOR PPU oUTP

/

¢

;
7
POSITION CHANNEL O DISK FILE TO NEXT DAYFILE TRACK

SET #HASE THREE DUMP FLAG

/\
ExiT

Faiig

A-16

Y

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE THREE

‘ Y.
| READ CHANNEL O 0ISK FILE STATUS ~1.NO
| IS LiSK POSITIONED TO WRITE NEXT DAYFILE SECTOR ?
YES) ‘
Y . NO WRITE A SHORY SECTOR ON DISK FiLE
[DOES DAYFILE BUFFER CONTAIN A FULL SECTOR OF DATA ? } 34 DO NOT UPDATE DAYFILE BUFFER PARAMETERS
YES DO NOT ADVANCE DAYFILE SECTOR
WHITE ONE SECTOR ON DISK FILE A 1 NO
NC | UPDATE DAYFILE BUFFER PARAMETERS (Is THERE A SPARE DISK TRACK ASSIGNED ? r——
ADVANCE DAYFILE SECTOR NUMBER YES
WAS ThIS THE LAST SECTOR ON THIS TRACK ? ,
YES

ENTER RELEASE CHANNEL O IN MONITOR PPU QUTPUT REGISTER
SET PHASE SIX DUMP FLAG

NO
IS A SPARE TRACK AVAILABLE ? SToP PPU EXIT

YES .
ASSIGN FIRST SECTOR OF SPARE TRACK . ENTER RELEASE CHANNEL O IN MONITOR PPU OUTPUT REGISTER
CLEAR SPARE TRACK INDICATOR SET PHASE FOUR DUMP FLAG
EXIT

. SET PHASE TWO OUMP FLAG
EXiT

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE FOUR

NO
rxs MONITOR PPU OUTPUT REGISTER EMPTY H

YES

ENTER REQUEST DISK TRACK IN MONITOR PPU OUTPUT REGISTER
SET PHASE FIVE DUMP FLAG
EXIT

A-17

7=

MTR SYBROUTINE
RJ DUMP DAYFILE PHASE FIVE

NO
1S MONITOR PPU OUTPUT REGISTER EMPTY ? } EXIT
YES
Y
[IS MESSAGE BUFFER EMPTY ? NO SET SPARE DISK TRACK INDICATOR

j

YES

CLEAR DUMP FLAG

EXIT

MTR SUBROUTI
RJ DUMP DAYF!

NE
LE PHASE sSIX

[Is MONITOR PPU OUTP

UT REGISTER EMPTY ? }L—>-

YES

EXIT

- CLEAR DUMP FLAG

A-18

STORAGE MOVE PROGRAM

1. The exchange:package for the storage move program is set by MIR as
follows: ‘

P = 2022
E RA =0
‘ FL = 400000
Bl = RA + FL for requesting control point

RA + FL for control point 7

? B2
; Increase or decrease

B3

ion

2. The coding fof the storage move program is shown below.

Location Instruction Remarks
2020 CON 0O
2021 CPN 0O
2022 SB7 = 1
EQ Bl, B2, 0 Exit if control point 7 is the requestor
2023 LT B3,B0,2027 Jump if decrease (B3 negative)
. N Pass
: Ng Pass
2024 SAl = B2 ~ B7 "Shuttle up” loop
‘ SA2 = Al - B7
BX6 = X1
: " BX7 = X2
= 2025 SA6 = Al + B3
. SA7 = A2 + B3
SB2 = B2 - 2
2026 NE B2,Bl,2024
' JP 0 . Go to stop with P = 0
2027 . SAl1 = Bl "Shuttle down! loop
SA2 = Bl + B7?
BX6 = X1
BX7 = X2
2030 SA6 = Al + B3
SA7 = A2 + B3
SBL = Bl + 2
2031 NE B2,B1,2027
Jrp 0 Go to stop with P =0

3. Timing for the "Shuttle up'" loop of the storage move program is as follows:

Location Instruction Issue Begin Execution Result Avail. Unit Avail.
2024 SAl1 =.B2 - B7 0 0 3(4) 8(X) 4
SA2 = Al ~ B7 2 3 6(A) 11(X) 7
BX6 = X1 3 8 11 12
BX7 = X2 12 12 15 16
2025 SA6 = Al + B3 13 13 16 17
SA7 = A2 4+ B3 15 15 18 19
SB2 = B2 -~ 2 17 17 20 21
7 2026 NE B2,Bl, 2024 19 20 28 -

Note: timing is in minor cycles - loop time approximately 2.8 microseconds
for transfer of two words.

CONTROL DATA CORPORATION

Development Division - Applications

CENTRAL MEMORY RESIDENT

Chippewa Operating System

10/1/65
REV. 1

CENTRAL MEMORY RESIDENT

INTRODUCTION

The Chippewa Operating System uses a portion of central memory to store
various types of libraries, tables, and flags: storing these tables and lib-
raries in central memory allows them to be readily accessed by any peripheral
processor., The central memory resident is illustrated in figure 1. Generally,
the resident occupies central memory locations 0 - 13777g. Resident elements
between locations 0 and 2077g are directly addressed: ' resident elements above
location 2077g are addressed via pointers contained in central memory locations
1l - 123, Since the major portion of the resident is relatively addressed, the
size of the resident can readily be reduced or expanded to met installation

requirements.

CM RESIDENT: LOCATIONS 0 - 57

Central memory location 0 always contains a full word of zeroes: a per-
ipheral processor may read this location in order to clear a 5-byte area in its
memory. Central memory locations 1 - 12g contain pointers to various 1ibrari§s,
tables, and pointers.,

The Channel Status Table, illustrated in figure 2, occupies locations 15, 16,
and 17. Each of the 12 data channels is represented by a byte in this table. If
a data channel is not in use, the corresponding byte is cleared: if a data channel
is being used by a peripheral processor program, the processor number (in display
code) is entered in the byte for that channel. The channel number for a particular

equipment is obtained by a peripheral processor program from the Equipment Status

-l-

(Tv2IdAL) LNIAISTH AHOWNIN TVHINFD

0 00000000
Tdd

L7 aqd

0
1
[
‘WIT{ InOo| NI q4a | ¢
7
S
9

LIWI7) INJ S
LIWt7 189 M
. LiwrZ) TISY v L
1 L2470 @10 | L w
o I 7 e L
01 | *7ees| 1AL | 1T
v

OVId dALlS 4IW

bl T

TTIVL SOLVLS TANNVHD

SALVLS O¥3Z INIOd T0YINOD
HIOLINCHn dWVN d0f 04D

- [S]

PR M 5

SSEYAAV X YOLVIAWIS

SOVId ANV S¥HINIOd

SVHIV NOTIIVOINNWROO dd

SVA¥V INIOd TOYINOD

SINAAISHY ¥0SSAD0Ud TVIINAD

4T9VL SNIVLS INARIINODA

(a1)
XI0LOTIIA AMVELIT TVIINED

(a1a)
X¥0LDTITA AYVILIT TVIHHATIYEL

0 dTdVI NOILVA¥ASAY MOVIL

-1 dT4VI NOIIVA¥ISTY MOVil

¢ d'T9VI NOILVA¥ISHY MOVIl

(18d/1Nd)
I19VL SNLVLS ATIA/AWYN dTTd

(2aq)
dd4409 ITIJAVA

SSHYAAV 4 YOLVINWIS

dLva ANV IRIL

(11s¥)
XIVIGIT ¥9nS INIAISTY

SEWIL ONIJIJVIS ¥0SSID0¥d
TVILNID NV TVYIHdI¥3ad

-

AR o Tt R e e il

(1a¥)
AIVLIT TVIIHAINAd INIAISTY

0000

0900

0020

000¢
001¢

0oze

00%¢

0042
009¢

00.2
00o¢

000%

0009

000L

SYOLVOIANI MOVIS dO

Figure 1

Table (EST) entry for that equipment. The program transmits its request for
that channel to MTR via its resident: if the table byte correspbnding to that
channel is cleared, MIR enters the number of the requesting processor in that
byte and notifies the requestor that the channel has been assigned. When the
requesting processor completes its operation on that channel, it requests MIR
to drop the channel assignment, and MTR clears the corresponding byte in the
table,

The first 12 bytes in the Channel Status Table correspond to the 12 data
channels: the next two bytes refer to pseudo-channels 14 and 15. These two
pseudo-channels serve as an interlock to the File Name Table/File Status Table.
Pseudo-channel 15 controls access to File Name Table (FNT) entries: pseudo-
channel 14 controls access to File Status Table (FST) entries. Peripheral
! processor programs request these pseudo-channel assignments in the same manner
Dl
;as data channel a§signments are requested. Not all accesses to the FNT/FST
ntries require cLannel reservation: the function of the interlock scheme is

to prevent two (or more) processors from attempting to modify the same entry at
the same time. Pseudo-channel reservations are required in the following cases:
® whenever an entry is added to the FNT/FST
® whenever a file is assigned to a control point (FNT entry modified)
® whenever the buffer status byte is initialized at the beginning of
an operation (FST entry modified)
Once the appropriate pseudo-channel reservation has been acknowledged by MIR,
the requesting program may proceed to perform the desired modification: upon
completion, the pseudo-channel reservation should be dropped by issuing the
appropriate request to MIR.

The remaining locations in this portion of the central memory resident are

used by MIR for flags, indicators, and temporary storage.

-3

JFI1GVL SNLvLS TINNVHD

JIEWAN dd 9dSn SNIVINOD HIA9 ONIANOASHTIOD :dSN NI TINNVHO ,.

0¥dZ SNIVINOD HIA€ dT9VI ONIANOJSHYYOD :dSN NI ION TANNVHD ¢

Al Z1 21 Z1 Al
f € A 1 0
TANNVHD TANNVHO TANNVHO TANNVHD TANNVHO
11 01 L 9 S
TINNVHD TENNVHD TTANNVHO TANNVHO TANNVHD

§ Amszmo Amzmwmo AMZMWmO T4 zmmo

TOYINOD SSHIIOV INA Y04 TINNVHO-0ANISd All\\

TOYINOD SSHOOV IS4 ¥04 TINNVHO-0ANISd

ST NOILVOOT WO

91 NOILVOOT WD

LT NOTILVOOT WO

Figure 2

CM RESIDENT: LOCATIONS 60 - 177 ; PP COMMUNICATIONS AREAS

These centrél memory locations contain ten peripheral processor communic=
ation areas, one f;r each processor. The communication areas are illustrated
in figure 3. There are gight words in each communication area:

word 1 .« & o .« . « « o Input Register (IR)

word 2 4 4 ¢ o o o o o Output Register (OR)

words 3 ~ 8 Message Buffer (MB)
Each peripheral pro%essor contains pointers to its Input Register, Output Reg-
ister, and Message;buffer in peripheral processor memory locations 75, 76, and
77, respectively. The communication areas are used to provide a means of comm-
. unication between MTR and peripheral processor programs. When a peripheral
f processor is iéle, its resident program continuously scans its Input Register.
When MTR has a task for that processor, it sets the name of the appropriate
routine in the Input Register of the idle processor, which, when it recognizes
; the request, loads the routine and executes it. MIR regularly scans the Output
Register of each peripheral processor. When a peripheral processor program
requires MTR assistance (such as, for example, reserving a data channel), it
places a code in its Output Register. MTR detects the request during its scan
of the output registers and processes it, When the request has been processed,
MIR clears the requesting processor's Output Register: this informs the request-
ing processor that the request has been processed.

The six~word Message Buffer is used to pass parameters and messages between

MTR and the peripheral processor resident programs.

CM RESIDENT LOCATIONS 200 - 1777; CONTROL POINT AREAS

Central memory locations 200 - 1777g contain seven control point areas,
one for each control point. Each control point area occupies 200g locations,
The first 20g words of a control point area contain the exchange jump package
for the central processor program which may be associated with this control

point. The next 10g words contain various flags, status indicators, counters,

S5

SVIHV NOILVIININWOD dd

INHAISHY dd A9 HAVA SHIYINA
“Y4IX X9 QENNVOS ¥ALSIOAY LNdINO ')

dIW A9 HAVA SHIYINA
‘INAQISEY dd A9 QANNVOS WILSIOAY INJNI °

Do .

Tdd

¢dd

€dd

dd

L NOILVOOT dd NI ¥AINIO | “¥HISIOFN INdNI

-

9L NOILVDOT dd NI ¥HINIOL d41STOEY LNdLno

LL NOILVOOT dd NI ¥IINIOJ

I 934404
\ AOVSSAN =

ﬁ

09

19

9

€9

%9

<9

i gl

99

L9

Gdd

9dd

Ldd

8dd

VddV NOILVOINAWWOD 1dd

6dd

044

09"

0L

001

011

0zt

o€l

0%t

0s1

091

0L1

SvaAgv
NOTILVOINIWNOD
J08sd004d
TVIdHdI¥3Ad

Figure 3

b=

etc., which pertain to this particular job. Another 108 words are used to
store the most recent console or dayfile message. The remaining 1408 locations
are used to hold the control statements for the job assigned to this control

point.

CM RESIDENT: LOCATIONS 2000 - 2077; CP RESIDENT

There are two resident central processor programs: a storage move program
of some 24 instructions, and a two-instruction idle program. These two programs,
together with their exchange jump packages, occupy locations 2000 = 2077g of

the central memory resident.

CM RESIDENT: THE EQUIPMENT STATUS TABLE

The Equipment Status Table (EST) contains a one-word entry for each peri-
pheral device. The table occupies 6410 locations: its base address is provided
to the system by the EST pointer in central memory location 5. The format of
the EST entry is shown in figure 4. The first (leftmost) byte contains zero if
the equipment is not assigned: if the equipment is assigned to a job at a given
control point, this byte contains the control point address (in hundreds). The
second byte contains the channel number for this equipment, while the third byte
'icontains the controller and unit number in thelform required by the function codes
for this equipment. Byte 4 contains the equipment type in display code: each

type of equipment is assigned a two-letter code, as shown below.

DADisk O CR... .. Card Reader
DB . .« s« « Disk 1. CP« Card Punch
DC Disk 2 MT Magnetic Tape (607)
DS Display WL s Magnetic Tape (626)

LP . + « « « o Printer
The 21! bit in byte 4 of the EST entry is used as an operator controlled inter-

lock for equipment availability. If this bit is zero, the equipment defined by

-

ASINT LSTF

dTIVL NI A¥INT 40 NOILVOOT SANIAAQ WAIWAN INIWAIMDIA ®

dDIAEQ TVIIHAI¥Ad HOVH ¥O4 AYINI ISA ANO ¢

dTIVIIVAY *dIndT = uOu
ATIVIIVAV ION *dIndd = ulu
10sd VIA ¥OIVIEJd0 X9

JITTOYINOD LI9 MDOTHAINT =g

‘014 ‘0 MSIA = wa
$300D AVIISIA
NI HdAl INIRJINDT <+

1899 HHLI HIIM
dsNl 904 qIA¥ISHY

d000

NOTIIONNA NI NOILYISNI
d0d LVWIOd NI YIIHAN

> LINN ANV ¥3TT0YINOD

(QardIrsne IHO9IY) TVINO
—&> NI YIGHAN TINNVHD

5849aav

*ON LINO ®

“m\ 4000 YAIRON ssTIaav
\«&m carnda | waTTodINOD TANNVHO an
Z1 11 1 Z1 Z1 z1

-

SQIIANNH NI
INIOd TOYINOD

~8a

Figure 4

by this entry is available for assignment. If this bit is one, the equipment
is not available. This bit is set or cleared by use of the DSD keyboard entries
OFF and ON? Byte 5 of the EST entry is reserved for use with equipments connect-
ed via the 668l data channel converter.

As an example of an EST entry, suppose 607-B unit 3 on the first controller
on channel six is available and not assigned to a control point: the EST entry

would appear as follows:

0000 |0006 | 2003 | 5524%* | 0000

*Display Code for MT

Within the system, equipments are identified by an equipment number. The equip~
ment number for a given device is the relative address in the Equipment Status
Table of the entry for that @gvice.

To iliustrat; the use of the Equipment Status Table, consider the processing
of the control statement

4 ASSIGN MT, INFILE

Ry
gl

vhen the statement translator (2TS overlay) processes this statement, it requests
TR to assign an equipment of this type. MTR searches the EST until an entry
rith the equipment type (byte 4) equal to MT is found. If this equipment is not
assigned (byte 1 = 0), MIR enters the control point address in byte 1 and returns
the relative location of this entry in the Equipment Status Table to the state-
ment translator, This relative location is the equipment number: the statement
translator inserts this number in byte 1 of the FST entry for this file. The
routines called to process this file at some later time will use this equipment
number to obtain the EST entry from the table, and from the EST entry will obtain

in turn the channel number and the controller and unit number.

* The interlock bit is set to "1" at load time for equipment types MT and WT.

s P

CM RESIDENT: DISK LIBRARY DIRECTORIES

The central memory resident contains two disk library directories: the
Peripheral Library Directory (PLD) for the library of peripheral processor
programs on the disk, and the Central Library Directory (CLD) for the library
of central processor programs on the disk. The location and size of the Peri-
pheral Library Directory is defined by the PLD pointer word in central memory
location 2, and the location and size of the Central Library Directory is de-
fined by the CLD pointer word in central memory location 7. The nominal size
of the CLD is 2008 locations, while that of the PLD is 100g locationms.

The directory format is the same for both the PLD and the CLD, and is
illustrated in figure 5. The high~order 42 bits of the directory entry contain
the program name in display code, left-justified. The next six bits contain the

- sector number of éhe first disk sector for this program, while the low-order 12
'7%bits give the hal% track number for this program., The program may occupy one
— ‘ »

)Y more sectors oﬁ the disk: the end of the program is indicated by a short
-ector (a sector of less than 100g central memory words).

Byte one (the leftmost byte) of the pointer word supplies the base address
of the directory: byte two supplies the directory limit address, which is the
address + 1 of the last directory entry. When the directory is being searched,
exit from the search occurs (in the non-hit case) when the limit is reached or,
in some cases, when an entry with byte one equal to zero is detected. If it is
desired to delete an entry temporarily for some reason, then, the entry should
be set to something other than zero.

The PLD is searched by the peripheral processor resident programs and by
certain of the transient programs and overlays. When a peripheral processor
resident is directed by MIR to load and execute a peripheral processor program,

— it first searches the central memory Resident Peripheral Library (RPL) for that

program: if the program is not found in the resident library, the peripheral

~10=~

d72 3 Gd - SIIHOLOFHIA AGVEGIT MSIa

L NOIIVOOT WO NI ¥WHINIOL QI0 e - YAGHAN MOVAL dTVH

: (SKVI90¥d

7 NOIIWOOT RO NI WHINIOL Q1d e YIAWRNN ¥OIDIS dd ¥od

XINO SIIg 8T1)
@4Id4Iisnt 14dn
LVWI0d QIOM ¥AINIOL ‘3000 AVIasid
mwma&wwv\ /ﬂﬂwwme“mmwmmw“\ - SoTy NI HWVN Rv¥950dd

IRIT
\Aﬂmwux 7 qsve | -
/// &1 21 |9 A

LVWI04d A¥OLOEIIA

T + SSI¥aav A¥INI ISVI = LIWIT

Figure 5

wlle

processor resident proceeds to search PLD. It is thus possible to reduce the
size of the resident library by placing some of the periphegal processor proge
rams on the disk,: Some.peripheral processor transient programs follow the same
procedure in loading their overlays: others, however, search only the resident
library. It is therefore not possible to move all peripheral processor programs
from the resident 1ibrary to the di§k library.

The CLD is searched by two programs: the Central Library Loader (CLL) and
the control statement translator (2TS). The function of the Central Library
Loader 1s to load overlays into central memory when called by a central processor
program. CLL first searches the central memory Resident Subroutine Library (RSL)
for the requested overlay: if not found, the CLD is then searched. If the over-
lay is not found in either the resident library or the disk library, CLL then
searches the File Name Table (FNT) for a file with thié name. The control state-
ment translator, 2TS, searches CLD when processing program cards, When the
statement translator finds a program card, it first searches the File Name Table
for a file with that name: if not found, CLD is searched next. If the progranm
is not found in either the FNT or the CLD, a search is made of the Peripheral

Library Directory.

CM RESIDENT: THE TRACK RESERVATION TABLES

The Chippewa Operating System is designed to permit the use of up to three
6603 diskfiles with the system: these diskfiles are identified as Disk 0, Disk
1, and Disk 2, Both the system and the user may store data on Disk 0, while
Disk 1 and Disk 2 are reserved soley for the user. The utilization of space on
a given diskfile is recorded in a table called the Track Reservation Table (TRT).
There is a Track Reservation Table for Disk 0, for Disk 1, and for Disk 2: the
locations of these tables are given by the TRT pointer words in central memory
locations 10, 11, and 12g, respectively. The tables are identical and are ident-

ically manipulated.

«l2-

Since a single peripheral processor cannot maintain a continuous flow of
data between a diskfile and central memory, the Chippewa Operating System
employs an interlacing scheme in which data is recorded on only the odd-numbered
sectors or only the even-numbered sectors in a track during a revolution over
that track. From a hardware standpoint, a track contains either 128 or 100
sectors, depending upon whether the track lies in the two outer zones or the
two inner zones. The Chippewa Operating System considers a physical track to
be composed of two half tracks; one consisting of the odd-numbered sectors on
the physical track, the other consisting of the even-numbered sectors on that
track. A half track, then, contains either 6410 or 50;4 sectors, depending
upon its location. Since a diskfile contains 128 tracks at each of 8 head
group selections (1024 tracks), a diskfile contains 2048 (3777g) half tracks.

A given half track is never used for records of more than a single file:
should a file consist of only a single sector, an entire half track would be
reserved for that file.

The Track Reservation Table is illustrated in figure 6. The table is made
up of 64 words: only the rightmost 32 bits in a word are used. The table thus
contains 2048 bits, one bit for each half track on a diskfile. If a bit is
zero, the corresponding half track is not in use, If a bit is one, the corres=-
ponding half track has been assigned, Should a section of the diskfile become
defective, the corresponding bit or bits in the TRT may be permanently set to
one (by modifying the library tape) in order to avoid accessing the defective
areas.,,

Half track assignments are handled by MTR, When MIR receives a track req-
uest from a peripheral processor program, it searches the TRT until the first
zero bit is found. The coordinates of this bit are then assembled to form a

half track number: the bit position in the word (0 - 37g) comprises the low

~13-

Vive Ltz i€ waveo
Ee A i W [
...... HY w3onnn { 37@vd wosioao
Imen 133rous Yo avve O LwvHOMOYS

300D 2anvs
HITE ¥ STY NOEIL E A e o

.........................

NIMND0Q0 IWYMLIOS
Oooo I5AE D VAViENL 2, whIn

Tev
in3mn3o0

NOILYHOJ¥ODVLIYQ TO¥LINDD

S FPLEAS IN/LYY PSSO UMIPSSIN2

ONIS ST T ;P NOILENYTSIY HOYYL

ALSET S/ NIESL STER 218

TS0 NI St XIWSL ITEH (218 1, X SIT SIHL “_

MOKEIt APV YDA LI INO
2(8LLLE ~O) SF/ALND SHOE » 8 x5

NSO HPAS FTOL INVNO @

AQ HNSIT &os B0t “207 W)

LN YOS OO S TLNIOS LSL

oy
«

SO LHL OL S TLN/OS
#Ov

NOILESTAO LNFOFS kwms_ -

O HAOY MHO¥FL S2KH
[4

SSISOTY NIEXL
FIEN FO fomO LIS

SINIO L1T O9P2
_v s/ HO HPOLINAN

O OE WS/ d— FTTE NOGHL S7EH —

Brers~0) ON WO L G

F7GEL NOILEATTSTY MOVSL

owy (Bza) &smws

sswvoz (8oos) &sr7100
Cssrsvr? 0O

]

& [HOWPL) " TOs
ORSNHND — g9 —, QQ_ LSEYT LSL

SOLITS NINF[/TTO

Bz -0) ‘on crowrs ossH

1

R XX XXXXX XXXXF
2 V "

SSFYPOY MHOYYL

v S HO /S SLIST
SO ON CYON ;_

£

Figure 6

order five bits, while the word position in the table (0 = 778) pfovides the
next six bits. MTR returns this half track number to the requesting processor
and sets the bit in the table to one. Dropping of track assignments takes place
in a reverse fashion. To drop a half track assignment, the requesting processor
sends MTR the number of the half track to be dropped. MTR disassembles the half
track number into table coordinates and clears the bit in the table.

The low-order three bits of the half track number specify the head group;
the next bit (23) specifies whether this half track uses the odd-numbered
sectors (23 = 1) or the even-numbered sectors (23 = 0); the next seven bits
specify the track number. Since the lower portion of the half track number
comes from the bit position in a table word, the order of selection is such that
the even~numbered half tracks at head groups 0 - 7 are selected first, and the
odd~-numbered half tracks at head groups 0 - 7.are selected next. Only when all
the half tracks at a given physical position of the heads have been assigned is
a half track number selected which requires repositioning. Thus, the layout of
the table eliminates unnecessary repositioning.,

Byte 1 of the TRT pointer word contains the base address of the table.

Byte 2 contains the last half track used by this diskfile, and thus reflects
the current physical position of the heads and the currently selected head
group. Whenever a disk operation is initiated, the half track number for the
operation is compared with the contents of byte 2, and repositioning or head
group selection performed only if necessary. This byte is updated at the end
of each disk operation.

Bytes 4 and 5 of the pointer word always contain the constants 100g and
64g, respectively. These constants are the sector limits for tracks in the outer
zones (hig-order bit of the head group number = b) and the inner zones (high-~order

bit of the head group number = 1), The disk routines compare the sector number

=15~

for the current operation with the appropriate one of these two constants in

order to determine when the end of a half track has been reached.

CM RESIDENT: FILE NAME TABLE/FILE STATUS TABLE

The various types of files currently being controlled by the system are
defined by entries in the File Name Table/File Status Table. These two tables
are interleaved such that the File Name Table (FNT) entry and the File Status
Table (FST) entry for a specific file occupy successive central memory locations.
The base address and limit aédress (last entry address + 1) of the FNT/FST are
contained in bytes 1 and 2, respectively, of the FNT/FST pointer word in central
memory location 4., The nominal size of the FNT/FST is 1000g central memory
words, permitting up to 2561g files to be defiped at any one time.

The format of the FNT/FST entry is shown in figure 7. The FNT entry con-
tains the file name in display code in the leftmost 42 bits of the word. The
next six bits contain the priority, if any, associated with this file, The
low-order six bits of the entry contain a File Type indicator (3 bits) and the
Control Point Number (3 bits) to which this file is assigned: if unassigned,
the Control Point Number is zero. The File Type indicator may take on the values
0, 1, 2, or 3, indicating that this file is, respectively, an INPUT file, an
OUTPUT file, a COMMON file, or a LOCAL file.

When a job enters the system (either from a card reader or from a tape
unit), the File Type indicator is set to 0 (INPUT file), the file name is set
to the job name as given on the job card, and the priority is entered from the
job card. Unassigned (Control Point Number = 0) files on the disk of type INPUT,
then, constitute a job stack, and the FNT serves as a job table., When the system
is ready to bring in the next job from the disk, it searches the FNT table for
the highest pribrity unassigned INPUT file., When this file is assigned to a
control point, the number of this control point is set in the low-order three
bits of the FNT entry, and the File Type indicator is set to LOCAL. The job

name (file name of an INPUT file) and priority are placed in the control point

~l6=

AYLINT LSH[INF

™~
(]
5
5VId aTId aNd WOIDHAS INMWIND oo
fry
NOVHI INTRIND
@I00TY STHL .
. 904 INNOOD Anunhmmwwooqm 1SVT MOVAL oszszwwnuuv
wmwwwmw“vﬂmwumwmwwm“\w, ovid INNOD am<u_ .mmmmmmmm NET) 10 19 |
N % 404 bt B /) R | e
TT1d J4INTId ATLd QUVD . AT1d AdVL ITId ¥SIA
W
]
™~
—
[}
o SNLVLS *ON N
TIATIROD ST qAAANG *q1NOA (1sd) ¢ @uoM
NOTIVYEO0 NAHM G4IJICON :NOILVIAdO o1 BT - - -

mommNHMH<UHQZHOHmZOHH¢MmmO \
0/1 ONT4NA FA00 SNIVIS V HIIM 1dS

P

=

. . . .
(QIANOISSYNN 41 0) QINDISSV : (3000 AVIdSIA) FWVYN ITId (INd) T aqUoM
SI 47114 SIHLI HOIHM Ol INIOd TO4LNOD R ; ,]
Al

dTId4 Tvo0T ° ° * ¢
dTTId NOWWOD * *° * ¢
4714 Indino * * ° 1
dTI4 LNANI * * *° 0

‘AdAL d711Id

(Ss47114 INdIN0 ANV LNANI) XITHOTIAd

T

area. The file name is then set to INPUT, and the priority field cleared.
Files may be initiated by a job: if a CIO call specifies a file name which

is not contained in the FNT, a new entry is added to the FNT which contains the
specified file name, has the file type LOCAL, and is assigned to the disk.

Data to be printed at the end of a job is written by the job to a LOCAL
file on the disk with the file name OUTPUT. At the end of the job, all LOCAL
files except the LOCAL file named OQUTPUT are dropped. The system routine which
closes out a job (1AJ) changes the name of this file from OUTPUT to the job
name, changes the type from LOCAL to OUTPUT, and enters the priority from the
control point area. Effectively, then, files on the disk of type OUTPUT con-
stitute a job stack for the print package. Thehprint package selects the next
file to be printed by searching the FNT for the file of type OUTPUT with the
highest priority.

If it is desired to retain a file at thé end of a job forAuse with some
subsequent job, the file must be declared type COMMON by means of a COMMON con-~
trol cafd. At the end of a job, a file of type COMMON will not be dropped: the
control point assignment will simply be cleared. COMMON type files may be dropped
when desired by use of a RELEASE control card.

The format of the FST entry varies, depending upon the type of equipment
assigned for the file. Files are assigned to disk 0 unless another equipment
is specified by means of an ASSIGN control card., Byte 1 of the FST entry always
contains the equipment number, which gives the relative location in the Equip-
ment Status Table of the equipment type for this file, This byte is either set
by the statement translator (2TS) when an ASSIGN control card is processed or,
if no ASSIGN card appears for this file, is set to correspond to disk O when the
first reference to this file is made (by the 2BP overlay). Byte 5 of the FST
entry contains the buffer status: this is obtained from the CIO call and insert-
ed in the FST entry (by 2BP) for use by the various I/0 routines: this status

indicates the type of operation to be performed (read, write, rewind, etc.). If

-18-

the 20 bit of this byte is zero, an operation involving this file is in process:
if the 20 bit is one, this file is not reserved.

Bytes 2, 3, and 4 of the FST entry vary according to the equipment type.
In the case of the printer, these bytes are not used. In the case of the card
reader, bytes 2 and 3 are used to maintain a count of the number of cards pro-
cessed in a record, and byte 4 is set when an end-of-file card (6~7-8-9 card)
is processed. For tape files, bytes 2 and 3 are used to maintain a count of
the number of blocks recorded for this file.

For disk files, byte 2 holds the beginning half track number for the file,
byte 3 holds the current half track number (i.e., the half track on which the
most recent operation involving this file took place) for this file, and byte
4 holds the current sector number. The next read or write to this file will
be to the sector supplied by byte 4 on the half track supplied by byte 3, When
housekeeping for this read or write is performed, the current half track number
in byte 3 will be compared with the last half track byte in the TRT pointer
word to determine if repositioning and/or head group selection is necessarye

When a file assigned to the disk is rewound, the current half track byte
is set equal to the beginning half track byte and the current sector number is
set to zero. Disk files which are COMMON type files are not rewound at the end

of the job.

CM RESIDENT: DAYFILE BUFFER

The dayfile contains a variety of information concerning the status and
progress of jobs in the system, such as start and finish times, peripheral and
central processor usage, diagnostics, etc. Dayfile messages may be issued by
any of the system peripheral processor programs and may also be issued by a
user'!s central processor program via the MSG routine,

The dayfile is maintained on the disk: dayfile entries are buffered through

a portion of the central memory resident area called the Dayfile Buffer. The

=19«

base address and limit address (last word address + 1) of this buffer are
supplied by the DFB pointer word in central memory location 3. The nominal
size of the Dayfile Buffer is 10008 locations.

The Dayfile Buffer and its pointer word are illustrated in figure 8. The
first four bytes in the pointer word contain the base address, IN pointer; ouT
pointer, and the limit address: these quantities are analogous to the FIRST,

IN, OUT, and LIMIT pointers used in CIO, and the Dayfile buffer is handled in
much the same manner as a CIO processed buffer.

When a peripheral processor program wishes to insert a message in the day-
file, it places the message in its Message Buffer and iésues the appropriate
request to MTR. MTR copies the message from the Message Buffer into the Last
Dayfile Message area in the control point area of the job to which the request-
ing processor is assigned. MTR then enters the message, together with the job
name and the time, in the Dayfile Buffer begiﬂning at the location specified by
the IN pointer byte of the DFB pointer word.

Whenever MIR enters a message in the Dayfile Buffer, a test is made to
determine if the buffer contains a full sector of data. (It is possible that
the message just entered resulted in the buffer's containing slightly more than
a full sector.) 1If it does, a flag is set which causes the full sector and the
partial sector, if any, to bg dumped to the disk. Dumping is done by MIR in six
phases in order to avoid tying up MIR for an extended pefiod of time. After each
phase has been executed, MTR returns to its master loop to perform any functions
required by other peripheral processors or ﬁhe central processor. As data is
transferred from the buffer to the disk, the OUT pointer is adjusted accordingly.
Insofar as maintaining the dayfile on the disk is concerned, only slightly more
than 1008 words are required. The nominal size of the Dayfile Buffer is set at
1000g words to permit DSD to display as much dayfile activity as possible. Thus,
if the buffer size is reduced to about 110g words, the sole effect is to reduce

the size of the dayfile console display.

-20-

Y I44N9 F714Avd

(€ NOILWOOT WD) (qYOM ¥dLNIOd d4d

Eadh

T qaav
LIRIT HDO; : NI qsvd 94d

Jad4nd ATIAAvd

2IS1Id HHL
0L NEIITUM ATSNOIAHEdL
NOII¥0d SIHL 40 SILNAINOOD

d9dH
ONINNIDIY SHOVSSHW dTIJAVA

ONIWOONI SIVESNI 41N

Figure 8

«2]la

CM RESIDENT: RESIDENT LIBRARIES

The central memory resident contains two libraries: the Resident Peripheral
Library (RPL), which contains peripheral processof programs such as 1AJ, 2RD, and
CIO, and the Resident Subroutine Library, which contains central programs such as
ACOS and TIME. The starting addresses of the Resident Peripheral Library and the
Resident Subroutine Library are defined by the RPL and RSL pointer words in central
memory locations 1 and 6, respectively. |

The library format is the same for both RSL and RPL, and is illustrated in
figure 9. The first word of a library program contains.the name in display code
in the leftmost 42 bits. The low-order 18 bits of the word contain the package
size in central memory words. In searching the library, the searching routine
reads the program name of the first package and tests to see if this is the
desired routine: if it is not, the size of the routine is added to the base
address to form the address of the first word of the next program. It is import-
ant then, that the size value be correct., The end of each library is indicated
by a word of zeroes,

The RPL is searched by the peripheral processor resident programs and by
most of the transient programs. If the peripheral processor resident does not
find a routine in the RPL, it proceeds to search the PLD., Transient programs
such as 1AJ, 1BJ, CIO, etc., are loaded into peripheral processor memory beginn-
ing at location 773g: the first executable instruction, which is in the first
byte of the second central memory word in tbe package, is thus at location 1000g.
Overlay programs, such as 2RD, 2BP, etc., are loaded into peripheral processor
memory beginning at location 1773g. Since these programs are entered via a
return jump (to location 200lg), the first executable instruction is at location
2002g, with location 2000g containing the LJM order code for the exit point,

The RSL is searched by the CLL (Central Library Loader) routine. Programs

in the RSL are assembled to execute beginning at location 0, and so must be

22~

 (SHV¥90¥d dd

SIIYVHG!T LNIJISTH 404 ATINO SIIE 81)

QITATISNC IAAT “HAOD
AVIISIQ NI FWVN FOVNOVd

Figure 9

JOV0vd STHL NI STIoM

LIOWHW TVILNID JO dHHWNAN J
81 , A
\l

dZ1S HRVN Wvdo0dd

SSHYaav Isvd v

OL HZIS dOWVIOVd aav T Rv49504d

INILNOY ON
avoT Ol LIXH

_
OA'..A $ANNOd FANILNOYU v
11XT ON ?QAA%

. (| azis ARVN RVE00¥d
0 = XNINA .

_ N\
AMINT avay Pa—
I U RVIO0dd A
SSMIAAY ASVE AIVIEIT
dn MOId OL YIINIOd AVl Fy/
0

XIvadIT 40 AN —» 0000

=23~

HOUVIS 1S4/1d¥ LViI0d A¥Va491i1

relocated by the user to the desired location.

The size of the RSL and RPL can be reduced by transferring programs to the
disk libraries. Certain programs, however, may not be transferred, since not
all peripheral processor transient programs search the PLD if a routine is not
found in the RPL. For example, system programs such as 1AJ, 1BJ, and 1DJ search
only the RPL for their overlays (the transient programs themselves, however,
could be transferred to the disk library). Other transient programs, such as

CIO, search both RPL and PLD for overlays.

=24-

	Chippewa Operating System.Part 1
	Dead Start and System Loader
	Tape Loader Flowchart

	Pool and Peripheral Processor Resident
	PP Resident flowcharts

	System Monitor MTR
	Master Loop
	MTR Flowcharts
	Storage Move Program

	Central Memory Resident

