CYBER 170 State

System Description
Functional Descriptions
Operating Instructions
Instruction Descriptions
Programming

Hardware Reference

60463560

Central Processor Instruction Index

Code Code Code
Mnemonic Octal Page Mnemonic Octal Page Mnemonic Octal Page
AX 21 4-20 IX 36 4-8 SA 52 4-48
AX 23 4-21 IX 37 4-8 SA 53 4-48
BX 10 4-41 Jp 02 4-38 SA 54 4-49
BX 11 4=24 LT 07 4-14 SA 55 4-49
BX 12 4-22 1X 20 4-18 SA 56 4-50
BX 13 4-23 LX 22 4-19 SA 57 4-50
BX 14 4-41 MX 43 4-63 SB 60 4-51
BX 15 4-25 NE 05 4-14 SB 61 4-51
BX 16 4-23 NG 033 4-11 SB 62 4-51
BX 17 4=24 NO 460 4-60 SB 63 4-52
cC 466 4-h4 NO 461 4-60 SB 64 4-52
CR 660 4~57 NO 462 4-60 SB 65 4-52
CU 467 4-45 NO 463 4-60 SB 66 4-53
CW 670 4-57 NX 24 4-58 SB 67 4-53
cX 47 4-64 NZ 031 4-10 sX 70 4-54
DF 036 4-12 OR 035 4-12 sX 71 4-54
DM 465 4-43 PL 032 4-11 SX 72 4=54
DX 32 4-28 PS 00 4-61 SX 73 4~55
DX 33 4~30 PX 27 4-6 sX 74 4-55
DX 42 4-34 RC 016 4-64 §X 75 4-55
EQ 04 4-13 RE 011 4~-16 sX 76 4-56
FX 30 4-27 RJ 010 4-37 sX 77 4-56
FX 31 4-29 RX 014 4-62 Ux 26 4-7
FX 40 4-32 RX 34 4-28 WX 015 4-62
FX 44 4-35 RX 35 4-31 WE 012 4-17
GE 06 4~14 RX 41 4-33 XJ 013 4-40
D 037 4-13 RX 45 4-36 ZR 030 4-10
M 464 4-43 SA 50 4=47 ZX 25 4-59
IR 034 4-12 SA 51 4=47

Peripheral Processor Instruction index

Code Code Code
Mnemonic Octal Page Mnemonic Octal Page Mnemonlc Octal Page
ACN 74 4-97 IJM 650 4-87 PIN 06 4-86
ADC 21 4-72 KPT 27 4-100 PSN 00 4-100
ADD 31 4-73 LCN 15 4-69 RAD 35 4-80
ADI 41 4-73 LDC 20 4-69 RAI 45 4-80
ADM 51 4-73 LDD 30 4-70 RAM 55 4-81
ADN 16 4-72 LDI 40 4-70 RIM 02 4-84
AJM 640 4-87 LDM 33 4-76 SBD 32 4=74
AOD 36 4-80 LDM 50 4-70 SBI 42 4=74
AOI - 46 4-81 LDN 14 4-69 SBM 52 4=74
AOM 56 4-81 LIM 01 4-83 SBN 17 4=74
CCF 651 4-94 LMC 23 4=76 SCF 641 4-94
CFM 671 4-88 LMD 33 4-76 S5CN 13 4-75
CRD 60 4~-89 LML 43 4-77 SFM 661 4-88
CRM 61 4~90 LMM 53 4=77 SHN 10 4-75
CwD 62 4-91 IMN 11 4-76 S0D 37 4-82
CWM 63 4-92 LEC 22 4~78 SoI 47 4-82
DCN 75 4~98 LPN 12 4-78 SOM 57 4-82
EIM 670 4-88 LRD 24 4-69 SRD 25 4-71
EXN 2600 4-101 MAN 2620 4-101 STD 34 4-71
FAN 76 4-99 MIN 07 4~86 STI 44 4-71
FIM 660 4-87 MXN 2610 4-101 STM 54 4-71
FNC 77 4-99 NJN 05 4-85 UJN 03 4-84
IAM 71 4-95 0AM 73 4-96 ZJN 04 4-85

IAN 70 4-95 QAN 72 4-96

CYBER 170 State

System Description
Functional Descriptions

Operating Instructions
Instruction Descriptions
Programming

Hardware Reference

G2

CONTROL
DATA

\

60463560

Revision Record

L

Revision Description
A Manual released 04-15-86,
B Manual revised 04-30-87, ECO 48575 adds information for CYBER 870A and

DMA-Enhanced CYBER 170 Channel Adapter.

C Manual revised 12-11-87. ECO 49229 adds information for DMA—enhanced
intelligent peripheral interface (IPI) channel adapter.

Address comments concerning this
manual to:

Control Data Corporation

Technology and Publications Division
4201 North Lexington Avenue

5t, Paul, MN 55126-6198

or use Comment Sheet in the back of
this manual.

Revision letters I, 0, Q, S, X, and Z are not used.

© 1986, 1987

by Control Data Corporation

All rights reserved

Printed on the United States of America

2 60463560 C

Preface

This manual contains hardware reference information for the CDC® CYBER 8404,
850A, 860A, and 870A Computer Systems.

The manual describes the functional, operational, and programming
characteristics of the computer system hardware. Additional hardware
reference information is available in the publications listed in the related
publications on the following page.

This manual is for use by customer, marketing, training, programming, and
Engineering Services personnel who operate, program, and maintain the computer
systems.

There are two methods used within this manual to designate bit numbers. In

the majority of the manual, bits are numbered 59 through 0, reading from left
to right.

59 0

However, in the context of the two—port multiplexer and maintenance registers,
bits are numbered O through 63 from left to right.

0 63

60463560 B 3

Preface

Other manuals that are applicable to the CYBER 84(0A, 850A, 860A, and 870A
Computer Systems but are not in the following:

Publication

Control Data Publication Number

NOS Version 2 Operator/Analyst Handbook 60459310
NOS Version 2 Systems Programmer”s Instant 60459370
NOS Version | Operator”s Guide 60457700
NOS Version 1l Systems Programmer”s Instant 60457790
NOS/BE Version | Operator”s Guide 60457380
NOS/BE Version 1 System Programmer”s Reference Manual,

Volume 1 60458480
NOS/BE Version 1 System Programmer”s Reference Manual,

Volume 2 604 58490
Maintenance Register Codes Booklet 60458110
Codes Booklet 60458100
CYBER Initialization Package (CIP) User”s Handbook 60457180
Hardware Operator”s Guide 60463430
CDC 721 Enhanced Display Terminal (CC 634B) HRM 62950102

CYBER B845A, 850A, 860A, 870A Cooling System Hardware Maintenance
Manual 60461610

CYBER 840A, 850A, 860A, 870A Power System Hardware Maintenance
Manual 60461620

4 60463560 B

60463560 A

Preface

Control Data manuals are available through the Control Data sales office or
through Control Data:

Control Data Literature Distribution Services
308 N. Dale Street
St, Paul, MN 55103

WARNING

This equipment generates, uses and can radiate
radio frequency energy, and if not installed
and used in accordance with the instructions
manual, may cause interference to radio commun-
ications., It has been tested and found to
comply with the limits for a Class A computing
device pursuant to Subpart J of Part 15 of the
FCC rules, which are designed to provide reason-
able protection against such interference when
operated in a commercial environment. Opera-
tion of this equipment in a residential area is
likely to cause interference in which case the
user, at his own expense, will be required to
take whatever measures may be requlred to
correct the interference.

5/6

Contents

1. SYSTEM DESCRIPTION

Introduction
Physical Characteristics
Functional Characteristics
Characteristics
Central Processor (CP)
Central Memory
Input /Output Unit
Major System Component Descriptions
Central Processor
Instruction Section
Registers
Execution Section
Cache Memory
Addressing Section
Central Memory Control
Central Memory (CM)
Input /Qutput Unit (IOU)
System Console

2. FUNCTIONAL DESCRIPTIONS

Central Processor
Instruction Section
Instruction Lookahead
Maintenance Access Control
Instruction Control Sequences
Boolean Sequence
Shift Sequence
Floating—-Add Sequence
Floating-Multiply and
Floating-Divide Sequence
Increment Sequence
Compare /Move Sequence
CYBER 170 Exchange
Sequence
Block Copy Sequence
Direct Read/Write
Sequence
Normal Jump Sequence
Return Jump Sequence
Registers
Operating Registers
X Registers
A Registers
B Registers

60463560 B

—
1
—

—

—
{

F———
L L N Y L R |

—_ =W RO NTTOA P W N~
—

o et et b b o o bt bt bt e e et

N>
1
p—

LU L

NN N
B N RO = e e

1)
[« XV S

B NN

[N
[U R L L
~

1

— = = O 0000~
—_—0 O

RRRNRO RSN BN

Support Registers
P Register
RAC Register
FLC Register
EM Register
Flag Register
RAE Register
FLE Register
MA Register
Execution Section
Cache Memory
Addressing Section
Central Memory Control
Central Memory
Address Format
CM Access and Cycle Times
CM Ports and Priorities
SECDED Logic
CM Layout
CM Bounds Register
Central Memory Reconfiguration
Input/Output Unit
Peripheral Processor
Deadstart
Barrel and Slot
PP Registers
R Register
A Register
P Register
Q Register
K Register
PP Numbering
PP Memory
I/0 Channels
Real-Time Clock
Two-Port Multiplexer
Maintenance Channel
Central Memory Access

3, OPERATING INSTRUCTIONS

Controls and Indicators

Deadstart Display/Controls

Central Memory Controls
Power-On and Power-0ff Procedures
Operating Procedures

Control Checks

Deadstart Sequences

I0U Reconfiguration

[I I L
D00~~~ B —

W W W WwWw

Contents

4, INS

TRUCTION DESCRIPTIONS

CP Instruction Formats

Instruction Description Nomenclature

CP Operating Modes
CP Instruction Descriptions

CP

CcP

CP

cp

CP

Cp

Ccp

CP

CP

CP

Cp

cp

Cp

CPE

CP

CP

Integer Arithmetic Instructions

Integer Pack/Unpack
Branch Imstructions
Branch
Block Copy Imstructioms
Block Copy
Shift Instructioms
Left shift
Right Shift
Logical Instructions
Logical Sum
Logical Difference
Logical Product
Floating-Point Arithmetic
Instructions
Floating Sum
Floating Difference
Floating Product
Floating Divide
Jump Instructions
Jump
Exchange Jump Instructions
Exchange Jump
Compare/Move Instructions
Transmit
Compare/Move
Set Instructions
Set Ai
Set Bi
Set Xi
Read/Write
Normalize' Instructions
Normalize
Round Normalize
Pass Instructions
Pass
Illegal Instructions
Error Exit
Illegal Instruction
Illegal Read/Write
Mask Instruction
Form Mask
Pop Count Instruction
Population Count
Read Free Running Counter
Instruction
Read Free—Running Counter

PP Instruction Descriptions

PP
PP
PP
PP

PP

PP

PP

PP

PP

PP

Instruction Formats
Data Format
Relocation Register Format
Load/Store Instructions
Load
Store
Arithmetic Instructions
Arithmetic Add
Arithmetic Subtract
Logical Instructions
Shift
Selective Clear
Logical Difference
Logical Product
Replace Instructions
Replace Add
Replace Subtract
Branch Instructions
Long Jump
Return Jump
Unconditional Jump
Zero/Nonzerc Jump
Plus/Minus Jump
Jump To m
Central Memory Access
Instructions
Central Read
Central Write
Input/Output Instructions
Test/Clear
Input/Output
Activate/Deactivate
Function

Other IQU Instructions

Pass
Exchange Jump

Instruction Execution Timing

5. PROGRAMMING INFORMATION

CP Programming
CYBER 170 Exchange Jump
Executive State
Floating-~Point Arithmetic

Format

Packing

Qverflow

Underflow

Indefinite
Nonstandard Operands
Normalized Numbers
Rounding

| U |

| I T I B |

[so I)

I

U1U1U1UIUIU1T|w v b
0O SN N N U P

60463560 A

Double~Precision Results
Fixed-Point Arithmetic
Integer Arithmetic
Compare/Move Arithmetic
Instruction Lookahead Purge Control
Purge Control
Error Response
Illegal Imnstructions
Hardware Errors
Conditional Software Errors
Memory Programming
Addressing Modes
Direct Read/Write Instructions
(014, 015, 660, 670)
Block Copy Instructions (011,
012)
PP Programming
Central Memory Addressing by PPs
PP Memory Addressing by PPs
Direct 6-Bit Operand
Direct 18-Bit Operand
Direct 6-Bit Address
Direct 12-Bit Address
Indexed 12-Bit Address
Indirect 6-Bit Address
Central Memory Read/Write
Instructions
PP Central Memory Read
Instructions (60, 61)
PP Central Memory Write
Instructions (62, 63)
Input/Qutput Channel
Communications
Inter-PP Communications
PP Program Timing Considerations
Channel Operation
Channel Control Flags
Chamnel Active/Inactive Flag
Register Full/Empty Flag
Channel (Marker) Flag
Instructions (641, 651)
Error Flag Imstructions
(661, 671)
Channel Transfer Timing
Input/Output Transfers
Data Input Sequence
Data Qutput Sequence
System Console Programming
Keyboard
Data Display

60463560 A

5-10
5-12
5~13
5-13
5-14
5-14
5-14
5-20
5-21
5=21
5=22
5-24

5-24

5-24
5~-25
5-25
5-25
5=25
5-25
5-26
5=26
5-26
5-26

5~27
5-27
5=27

5-28
5-30
5-30
5-30
5-30
5-31
5~31

5-32

5-32
5-32
534
5-34
5-36
5-38
5-38
5-38

Character Mode

Dot Mode

Codes
Programming Example

Programming Timing Considerations

Real-Time Clock Programming
Two-Port Multiplexer Programming
Two-Port Multiplexer Operation
Terminal Select (7XXX)
Terminal Deselect (6XXX)
Read Status Summary (00XX)
PP Read Terminal Data (01XX)
Data Set Ready (Bit 52)
Data Set Ready (DSR) and Dat
Carrier Detector (DCD)
Bit 53)
Over Run (Bit 54)
Framing or Parity Error
(Bit 55)
Data Character (Bits 56
Through 63)

PP Write Output Buffer (02XX)

Set QOperation Mode to the
Terminal (03XX)

Contents

5-38
5-41
5-41
5-43
5-43
5-45
5-45
5-46
5-46
5-46
5-47
3-47
5-47
a

5-48
5-48

5-48

5-48
5-48

5-49

Set/Clear Data Terminal Ready

(04%X)
Set/Clear Request to Send
(05%X)
Master Clear (07XX)
Programming Considerations
Qutput Data
Input Data
Request to Send and Data
Terminal Ready
Maintenance Channel Programming
Maintenance Channel
MCH Function Words
MCH Control Words
MCH Programming for
Halt/Start (Opcode 0/1)
MCH Clear LED (Opcode 3)
MCH Programming for
Read/Write (Opcode 4/5)
MCH Programming for Master
Clear/Clear Errors
(Opcode 6/7)
MCH Echo (Opcode 8)
MCE Programming for Read IOU
Status Summary (Opcode C,
I0U Only)

5-49

5-50
5=-50
5-50
5-51
5-51

5-51
5=52
5-52
5-53
5-55

5-55
5-55

5-56

Contents

A.

-l'-‘bJLprL\JIT)NNNN'—"—‘
e S VeI SR W R SR i o]

b-ll-‘l-\
£ N

10

Glossary

Physical Characteristics

System Block Diagram

CYBER 170 Exchange Package

Address Format

CM Layout

Barrel and Slot

Formation of Absolute CM Address

Deadstart Options Display

Initial Deadstart Display

CM Configuration Switches

Reconfiguration Examples

CP Instruction Parcel
Arrangement

PP Instruction Formats

PP Data Format

PP Relocation (R) Register
Format

Appendix

A-1
Index

Figures

5-1 CYBER 170 Exchange Package

Floating-Point Format

5-3 Floating—-Add Result Format

5-4 Multiply Result Format

5=5 Format of Exit Condition
Register at (RAC)

5—-6 Memory Map

5-7 Channel Transfer Timing

5-8 Data Input Sequence Timing

5=-9 Data Qutput Sequence Timing

[
o
U

t
N

I 11

wuwwwr\')wmwa—-o—-
PN NN = O =N
[W I S o)

Code

4-2 5~11 Coordinate Data Word

4=67 5-12 Character Data Word

4-67 5-13 Receive and Display Program
Flowchart

4-68

5-5
5-11
11

5-15
5-23
5-33
5-35
5-37

5-10 Display Station Output Function

5-41
5-42
5-42

5-44

60463560 B

Maximum Request Lockout Time
in Bamk Cycles

SECDED Syndrome Codes/Corrected
Bits

Deadstart Options Display

Deadstart Display Operator
Entries and Functions

Central Memory Reconfiguration

Barrel Numbering Table

PP and Barrel Reconfiguration
Example, RP=0

PP and Barrel Reconfiguration
Example, RP=2

CP Integer Arithmetic
Instructions

CP Branch Instructions

CP Block Copy Instructions

CP Shift Instructions

CP Logical Instructions

CP Floating-Point Instructions

CP Jump Instructions

CP Exchange Jump Instructiomns

CP Compare/Move Instructions

Collate Table

CP Set Instructiomns

CP Normalize Instructions

CP Pass Imstructions

CP Illegal Imstructions

PP Nomenclature

PP Load/Store Instructions

PP Arithmetic Instructions

PP Logical Instructions

60463560 A

Tables
4-19
2-18 4-20
4-21
2-20
3-3 4=22
4=23
3-3 4=-24
3-5 5-1
3-9 5-2
3-10 5-3
3-10 5-4
4-5 5-5
4-9
4=15 5-6
4-18
422 5-7
4-26
4=37 5-8
4-39
4-41 5-9
4=45 5-10
446 5-11
4-57
4-60 5-12
4-61
4-66 5-13
4-68 5-14
472 5=15
4-75

Contents

PP Replace Instructions

PP Branch Instructions

PP Central Memory Access
Instructions

PP Input/Qutput Instructions

Other IOU Instructions

PP Instruction Timing

Bits 58 and 59 Configurations

Xj Plus Xk (30, 32, 34
Instructions)

Xj Minus Xk (31, 33, 35
Instructions)

Xj Multiplied by Xk (40, 41, 42
Instructions)

Xj Divided by Xk (44, 45
Instructions)

Contents of Exit Conditiom
Register at (RAC)

Error Exits in CYBER 170
Monitor Mode (MF=1)

Error Exits in CYBER 170 Job
Mode (MF=0)

Keyboard Character Codes

Display Character Codes

Bit Assignments for MCH Function
Word to CP and CM

Bit Assignments for MCH Function
Word to IOU

CP Internal Address Assignments

CM Internal Address Assignments

IOU Internal Address Assignments

4-79
4-83

4-89
4=-93
4-100
4-103

5-54

5-54
5-58
5-58
3-59

11

1

System Description

System Description 1

This chapter introduces the computer systems, identifies their physical and
functional characteristics, and provides descriptions of major system
compomnents.

introduction

The computer systems are large-scale, high-speed systems for both business and
scientific applications. The systems include the following components.

e Central processor (CP).
® Central memory (CM).

e Input/output unit (IOU).

Physical Characteristics

The mainframe configuration for the computer system (figure 1-1) includes an
interconnected three-section cabinet for the CP, CM, and IOU. System operation
also requires the system console. A second CP, which is contained in an
additional one-bay section is standard on an 870A and optionmal on an 860A. 1In
addition to the standard 10U unit, an optional DMA (direct memory access) 10U
is available with all models.

Each cabinet section contains a logic chassis with plug-in circuit boards. The
CP cabinet section comprises three attached subsections, each with separate
power and cooling facilities. Each cabinet section also contains an ac/dc
control section with voltage margin testing facilities and dc power supplies.

A stand-alone water-cooling unit(s) provides cooling for the CP subsections,
CM, and I0U. For specific cooling configurations, refer to the mainframe site
preparation manual listed in the preface. For additional cooling or power
information, refer to the cooling system and power system manuals listed in the
preface.

60463560 B 1-1

Functional Characteristics

Functional Characteristics

N
| waTER

I COOLING l
UNIT

WATER
COOLING
UNIT

NOTES:

r———"
| |
i |
A |
| cP1 |
| |
| [
INTERBAY cm 10U
SYSTEM
cPo CONSOLE

A CP1OPTIONAL WITH 860A, STANDARD WITH 870A.
A SECOND WATER COOLING UNIT IS REQUIRED

FOR CP1.
& OPTIONAL DMA (DIRECT MEMORY ACCESS) |10U.

C

—_—

014584

Figure 1-1.

Physical Characteristics

To achieve high computation speeds, the computer system uses emitter—coupled
logic (ECL) and large-scale integration (LSI) logic.
objective of
instructions
Accordingly,
be used next

High speed is also the
the CP design, which is based on the assumption that both data and
are, in most cases, accessed from successive memory locations.

the CP prefetches both instructions and data that are expected to
while the current instruction is being processed.

The semiconductor central memory is divided into eight independent banks.
These banks may all be simultaneously in the process of completing read/write
requests that are queued and distributed at ECL speeds.

System input/output

speeds are determined by the capabilities of existing external devices,

60463560 B

CP Characteristics

Characteristics

Central Processor

60463560 A

The CP has the following characteristies.

60~bit intermal word.

Eight 60-bit operand (X) registers.

Eight 18-bit address (A) registers.

Eight 18-bit index (B) registers.

Two registers that isolate each user's central wmemory space (RAC, FLC).
Two registers that isolate each user's extended memory space (RAE, FLE).
Register exchange instructions (exchange jumps) for interrupting programs.

Floating-point arithmetic (10-bit exponent plus sign bit, 48-bit

coefficient plus sign bit). Some FP instructions use 96-bit (double-
precision) coefficients.

Integer arithmetic (60/18-bit operands).

Character string compare/move facilities (6-bit characters).

Packed iastructions (15/30/60-bit instructions in 60-bit words).
Synchronous internal logic.

64~-ns clock period.

2048~word cache buffer memory; option available for 4096-word cache.
Instruction and branch instruction look-ahead.

Microcode control.

Parity checking of all major data and address paths.

Maintenance channel to 10U,

1-3

CM Characteristics

Central Memory

The CM has the following characteristics.

72-bit data word (60 data bits; 8 single-error correction, double-error
detection bits; and 4 unused bits).

2097K words (16 Mbytes) of dynamic random access memory; options available
to 167 76K words (128 Mbytes).

Organization of eight independent banks.

Two memory ports (located in the central processor cabinet).
Bounds register to limit write access.

64-ns clock period.

Maximum data transfer rate of one word every 32 ns.

464-ns read access time.

384-ns read/write cycle time.

768-ns partial write cycle time.

Read and write data queuing capability.

Single—error correction, double~error detection (SECDED) on stored data.
Parity checking of all major data, address and control paths.

Unified extended memory (UEM), which serves as extended memory within CM.

60463560 A

10U Characteristics

Input/Output Unit

The IOU has the following characteristics.

e Twenty peripheral processors (PPs). Each PP has 4K or 8K of independent
memory (PPM) comprised of 16-bit words with the upper 4 bits equal to 0.

e Port to central memory.

® Bounds register to limit writes to central memory,

o Twenty-four 12-bit CYBER 170 channels to external devices.
. Real-time clock (channel l4g),

[Display controller (CYBER 170 channel 10g),

. Two—port multiplexer (chamnel 15g).

e Maintenance channel (channel 17g),

® Parity checking on all major data and address paths.

e Operating speed of 250 ns and a minor cycle of 50 ms.

e Optional concurrent input/output (CIO) PPs and direct memory access (DMA) I
I/0 channel adapters.

60463560 B 1-5

Major System Component Descriptions

Major System Component Descriptions

The major system components include:

Central processor (CP)
Central memory (CM)
Input/output unit (IOU)

System console

The remainder of the chapter provides brief descriptions of the major system

components. The descriptions refer to the computer system block diagram
(figure 1-2),

Central Processor (CP)

The central processor (CP) hardware (figure 1-2) comnsists of the following.

Instruction section.
Registers.

Execution sectiomn.
Cache memory.
Addressing section.

Central memory control.

The CP is isolated from the IOU and, therefore, is able to carry on computation
or character manipulation unencumbered by I/0 requirements.

Instruction Section

The instruction section directs the arithmetic and manipulative functions for
instruction execution. The instruction section prefetches instruction words
from memory and disassembles them into instructions..

60463560 A

Registers

60463560 A

Major System Component Descriptions

Operating registers reduce storage accesses for operands used during the
execution of an instruction. These registers are:

e Eight 60-bit X registers (X0 through X7), which hold operands used for
computation.

e Eight 18-bit A registers (A0 through A7), which use A0 primarily for
indexing and Al through A7 for CM operand addressing.

e Eight 18-bit B registers (B0 through B7), which are primarily indexing

registers to control program execution. The BO register always contains
all 0's,

Eight support registers support the operating registers during program
execution. These registers are:

® 18-bit program address (P) register.

® 21-bit reference address for CM (RAC) register. This is a program's lower
bound.

® 21-bit field length fqr CM (FLC) register. This is a program's upper bound.
® 6-bit exit mode (EM) register.

® 6-bit flag register.

e 21-bit reference address for UEM (RAE) register,

® 24-bit field length for UEM (FLE) register.

e 18-bit monitor address (MA) register.

The reglsters store data and control information, present operands to the
execution section, and store results.

The operating and support registers reside in the operand issue section.

1-7

Major System Component Dascriptions

Execution Section

The execution section combines the operands to achieve the result.

Cache Memory

The cache memory consists of two sets of fast bipolar memory that are capable
of storing 2048 60-bit words., Cache memory can be expanded to four sets of
bipolar memory with a capacity of 4096 words. The memory addressing sections
determine whether a requested word is in the cache memory. If the word is not,
they read four comsecutive words from central memory into the cache menmory.

Addressing Section

The addressing section checks memory addresses against the CP registers RAC,
FLC, RAE, and FLE to ensure isolation of user memory space.

Central Memory Control

Central memory control (CMC) is integrated within the CP. CMC controls the
flow of data between CM and requesting system components.

1-8 60463560 A

Major System Component Descriptions

Central Memory (CM)

60463560 A

The CM (figure 1-2) consists of the following items.
e Eight memory banks.
® Memory ports.

° Distributor.

The CM is a dynamic random access memory organized into eight independent banks.

A portion of CM can be reserved for use as extended memory. This portiom,
which is called unified extended memory (UEM), is referenced by the RAE and FLE
registers., The UEM operates in either 24-bit format standard addressing mode
or 30-bit format expanded addressing mode.

One memory port has a queuing buffer. The ports are located in the central
processor cabinet.

The distributor resolves port conflicts and multiplexes data from ports to the
storage unit. It includes the error correctiom code (ECC) generator, SECDED,

and partlal-write logic. The distributor is located in the central processor
cabinet,

1-9

Major System Component Descriptions

|
| INSTRUCTION I
SECTION |
I
I INSTRUCTIONS :
I
| CACHE " REGISTERS Hmmmm——{ TION |
Tevony [| ——P1 MEMORY > SECTION [
I Y I
| OPERANDS I
|
I ADDRESSING
| SECTION |
| |
CACHE
| INVA:\IDATION '\ I / |
I BUS |
MAINTENANGE |
| ACCESS
CONTROL
| cenTRAL |
PROCESSOR
e e - ___ 4
MAINTENANCE CHANNEL
MAINTENANCE CHANNE L MAINTENANCE
CHANNEL
- - --- - T T 7T 1T j

SYSTEM
‘—4— CONSOLE

TWO-PORT
MULTIPLEXER

CONTROLLER

| , 2 \
| cYBER1701/0 CHANNELS PERIPHERAL
< | PROCESSORS

L

I
I
|
|
I
|
I
|
|
|
|
I

RS 232-C INTERFACE

Figure 1-2., System Block Diagram

1-10 60463560 A

Major System Component Descriptions

Input/Output Unit (10U)

The input/output unit (IOU) consists of:

e Twenty logically independent, non-concurrent input/output (NIO)} peripheral l
processors (PPs). Options are available to increase the total to 25 or 30

PPs.
™ Five or ten optional logically independent, concurrent input/output (CIO) I
PPs and direct-memory access (PMA) channel adapters.

. Internal interface to 24 I/0 channels. Options are available to increase
the total to 34 channels.

° External interfaces to I/0 channels:

11 or 23 CYBER 170 channel interfaces.
- Display controller interface (CYBER 170 chanmnel 10g).
~ Real-time clock interface (channel l4g).
= Two-port multiplexer interface (channel 15g),
- Maintenance chamnel interface (channel 17g).
¢ Interface to central memory.
° Bounds register to limit writes to CM.
The PPs are organized in groups of five, which are called barrels. The PPs in

a barrel time-share common hardware. Each PP has its own 4K or 8K independent
memory and communicates with all I/0 channels and with central memory.

System Console

The system console, which is required for system operation, provides a visual,
alphanumeric readout for the computer. The receipt of symbol and positionm
information from the computer enables displaying program information on a
cathode-ray tube (CRT). The station also contains an alphanumeric keyboard
that enables an operator to send data to the computer. The keyboard and CRT
combination permits the computer operator to monitor and countrol system
operation. Except for programming information in chapter 5, refer to the CDC
721 hardware reference manual listed in the preface for further system console
information.

60463560 B 1-11

2
Functional Descriptions

Functional Descriptions 2

This chapter provides functional descriptions of the central processor (CP),
central memory (CM), and input/output unit (IOU) as shown in the block diagrams
in chapter 1. Functional descriptions for the system display station are in
the CDC 721 hardware reference manual; descriptions of the water-cooling system
are in the cooling system manual; both manuals are listed in the preface.

Central Processor

The CP consists of the instruction section, registers, the execution section,
cache memory, the addressing section, and central memory control.

instruction Section

The instruction section consists of logic for instruction control.

Instruction Lookahead

The instruction lookahead hardware (ILH) prefetches a maximum of 12
instructions to make the next instruction immediately available when the
execution of the previous instruction is completed. This is accomplished by
reading instructions from cache/CM into a series of buffer ranks.

The ILH responds to both negative and positive resolution of a conditional

branch by purging the buffer ranks and reinitializing the instruction fetch
unit.

When ILH detects a conditional branch, it assumes that the branch condition
will be met. ILH computes the branch target address and reads instructions
from cache/CM starting at the target address. If the branch is taken, the
buffer ranks contain the next executable instruction words. If the branch is
not taken, the hardware purges the buffer ranks and resumes prefetching at the
instruction word following the unsatisfied branch instruction.

Maintenance Access Control

The maintenance access control performs initialization and maintenance
operations in the CP.

60463560 B

Instruction Section

Instruction Control Sequences

The instruction control section performs instruction translation and control
sequences. Bach control sequence obtains the necessary instruction operands
from the operating registers and provides the control signals for execution.
Instructions read from CM are 60-bit instruction words that are im four 15-bit
groups, two 30-bit groups, or a combination of 15-bit and 30-bit groups. The
15-bit groups are termed parcels with the first parcel (parcel 0) being the
highest-order 15 bits of a 60-bit CM word. Second, third, and fourth parcels
(parcels 1, 2, and 3) follow in order. The 30-bit groups contain two 15-bit
parcels,

The instruction control sequences control the execution of one or more
instructions of a common type. These sequences and assoclated instructions are
briefly described in this chapter. For further Information, refer to CP
Instruction Descriptions in chapter 4.

Boolean Sequence

The Boolean sequence controls instructions that require bit-by-bit data
manipulation. This includes both the logical and transmissive operations. The
instructions requiring logical operatioms are:

11 Logical product (Xj) and (Xk) to Xi BX1 Xj * Xk
12 Logical sum of (Xj) and (Xk) to Xi BX1i Xj + Xk
13 Logical difference of (Xj) and (Xk) to Xi BXi Xj - Xk

15 Logical product of (Xj) with complement of (Xk) to Xi BXi =Xk * Xj
16 Logical sum of (Xj) with complement of (Xk) to Xi BXi =Xk + Xj

17 Logical difference of (Xj) with complement of
(Xk) to Xi BX1 =Xk - Xj

The instructions requiring transmissive operations are:
10 Transmit (Xj) to Xi BXi Xj

14 Transmit complement of (Xk) to Xi BXi - Xk

60463560 A

Instruction Section

Shift Sequence

60463560 A

The shift sequence controls instructions that require shifting the 60-bit
field of data within the operand word. The shift instructions are:

20 Left shift (Xi) by jk LXi jk
21 Right shift (Xi) by jk AXi jk
22 Left shift (Xk) nominally (Bj) places to Xi IXi Bj, Xk
23 Right shift (Xk) nominally (Bj) places to Xi AXi Bj, Xk
43 Form mask of jk bits to Xi MXi jk

The shift sequence also controls the pack and unpack instructions. In the
packed floating format, the coefficient is contained in.the lower 48 bits.
The sign and biased exponents are contained in the upper 12 bits. The unpack
instruction obtains the packed word from the Xk register, delivers the
coefficient to the Xi register, and delivers the exponent to the Bj register.
The unpack and pack Iinstructions are:

26 Unpack (Xk) to Xi and Bj UXi Bj, Xk

27 Pack (Xk) and (Bj) to Xi PXi Bj, Xk
The shift sequence also controls the normalize operations. The coefficient
portion of the operand is repositioned, and the exponent is adjusted so that
the most significant bit of the coefficient is in the highest-order bit
position of the coefficient, and the exponent is decreased by the number of
bit positions shifted. The normalize instructions are:

24 Normalize (Xk) to Xi and Bj NXi Bj, Xk

25 Round normalize (Xk) to Xi and Bj ZXi Bj, Xk

2-3

Instruction Section

Fioating-Add Sequence

The floating-add sequence controls the operations necessary to form the 48-bit
floating sum with a 12-bit exponent of the floating-point sum or difference of
two floating-point operands. The floating-add imnstructions are:

30 Floating sum of (Xj) and (Xk) to Xi FXi Xj + Xk

31 Floating difference of (Xj) and (Xk) to Xi FXi Xj - Xk

32 Floating double-precision sum of (Xj) and DXi Xj + Xk
(Xk) to Xi

33 Floating double-precision difference of (Xj) and DXi Xj - Xk
(Xk) to Xi

34 Round floating sum of (Xj) and (Xk) to Xi RXi Xj + Xk

35 Round floating difference of (Xj) and (Xk) to Xi RXi Xj - Xk

Floating-Multiply and Floating-Divide Sequence

The floating-multiply and floating-divide sequence controls the operation of
floating-multiply, floating-divide, and population-count instructions,

The multiply instructions are:

40 Floating product of (Xj) and (Xk) to Xi FXi Xj * Xk

41 Round floating product of (Xj) and (Xk) to Xi RXi Xj * Xk

42 Floating double-precision product of (X3j) and DXi Xj * Xk
(Xk) to Xi

The divide instructions are:
44 Floating divide (Xj) by (Xk) to Xi FXi Xj/Xk
45 Round floating divide (Xj) by (Xk) to Xi RXi Xj/Xk

The population-count instruction counts the number of 1 bits in a 60-bit
operand. The instruction is:

47 Population count of (Xk) to Xi CXi Xk

2-4 60463560 A

Increment Sequence

60463560 A

The increment sequence controls the one's complement addition and subtraction
of 18-bit fixed-point operands for increment instructions 50 through 77.
sequence also controls the 60-bit one's complement sum and difference values
for long-add instructions 36 and 37.

The increment instructions are:

50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76

77

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Set

Bi

Bi

Bi

Bi

Bi

Bi

Xi

Xi

Xi

Xi

Xi

Xi

Xi

Xi

to
t.o
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

to

(a3)
(B3)
(X3
X
A
(A3
(B3j)
(31
(A3)
(B3)
(X3)
(X1
(a3
(A3
(B3
(B3)
(A1)
0:5))
(X3
X3
(A3)
(A3)
(B3

(Bj)

+

K
K

K

(Bk)
(Bk)
(Bk)
(Bk)

(Bk)

(Bk)
(Bk)
(Bk)
(Bk)

(Bk)

(Bk)
(Bk)
(Bk)
(Bk)

(Bk)

Instruction Section

SAi

SAi

SAi

SA1

SAi

SAi

SAL

SA1

SBi

SBi

SBi

SBi

SBi

SBi

SBi

SBi

SXi

SXi

SXi

SXi

SXi

SXi

8Xi

SXi

Aj
B3
X3
X3
Aj
A3
Bj
Bj
Aj
Bj
X3
X3
Aj
Aj
Bj
B
Aj
B
X3

XJ

Aj
Bj

Bj

+ Bk

+ Bk

+ Bk

+ Bk

+ Bk

+ Bk

+ Bk

i + Bk

The

2-5

Instruction Section

The long—add instructions are:

36 Integer sum of (Xj)

and (Xk) to Xi IXi X3 + Xk

37 Integer difference of (Xj) and (Xk) to Xi IXi Xj - Xk

Compare/Move Sequence

The compare/move sequence controls data manipulation on a character basis.

The compare/move instructions (also referred to as CMU imstructions) are
60~bit instructions that use six support registers for source and result fileld
CM addresses and character position offsets. The support registers load from
the 60-bit instruction word.

The compare/move instructions are:

464 Move indirect (Bj) + K IM Bj + K

465 Move direct
466 Compare collated

467 Compare uncollated

The support registers are:

DM

cC

cU

An 18-bit K1 register that specifies which relative CM address word
contains the first character of the source data field.

An 18-bit K2 register that specifies which relative CM address word
contains the first character of the result field.

A 4-bit Cl register that
the first CM word of the

A 4-bit C2 register that
the first CM word of the

specifies the character position or offset of
source field.

specifies the character position or offset of
result field.

Two 16-bit L registers (LA and LC) that specify the number of characters
in the data field. The LA register is associated with K1, and the LC
register is associated with K2. Instruction 464 uses 14 register bits.
Instructions 465, 466, and 467 use only the lower 8 register bits.

NOTE

CMU instructions are provided for compatibility
with previous systems. For better performance,

recompile jobs

to avoid use of CMU instructions.

60463560 A

Instruction Section

CYBER 170 Exchange Sequence

The CYBER 170 exchange sequence is the method used to swap jobs in and out of
execution. When a CYBER 170 exchange jump instruction occurs, the CYBER 170
exchange sequence writes the contents of the current job's CP registers
(described later in this chapter) into an area of central memory called a
CYBER 170 exchange package. A CYBER 170 exchange package is associated with
each job. It contains sufficient information to restart a job if the job is
interrupted during execution and swapped out by a CYBER 170 exchange jump. To
complete the sequence, CP registers for another job are read from its CYBER
170 exchange package, and that job begins or resumes execution. For further
information, refer to CYBER 170 Exchange Jump in chapter 5.

Block Copy Sequence

The block copy sequence controls the transfer of data between CM and UEM. The
addition of K to the contents of Bj determines the number of words to be
transferred. The starting address for (M is formed by adding either the AD
register or certain bits of the X0 register to the RAC reference address. The
starting address for UEM is formed by adding certain bits of the X0 register
to the RAE reference address. The block copy instructions are:

011 Block copy Bj + K words from UEM to CM RE Bj + K

012 Block copy Bj + K words from CM to UEM WE Bj + K

Direct Read/Write Sequence

Instructions 014 and 015 perform single-word, direct read and write operations
for UEM, and instructions 660 and 670 perform single~word, direct read and
write operations for central memory.

014 Read one word from UEM at (Xk + RAE) into Xj RXj Xk
015 Write one word from Xj to UEM at (Xk + RAE) WXi Xk
660 Read central memory at (Xk) to Xj CRXj Xk
670 Write Xj into ceantral memory at (Xk) CWX3j Xk

60463560 A 2-7

Instruction Section

Normal Jump Sequence

The normal jump sequence controls the execution of branch instructions 02

through 07.

register address plus K.
instruction is:

02

The branch address is K when i equals 0.

Jump to (Bi) + K

The 02 instruction performs an unconditional jump to the Bi

The 02

JP Bi + K

The conditional jump instructioms 03 through 07 branch to address K if the

jump condition is met.

030

031

032

033

034

035

036

037

04

05

06

07

Return Jump Sequence

Branch to K

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

to

to

to

to

to

to

to

to

to

to

to

K

K

if

if

if

if

if

if

if

if

if

if

if

if

The return jump sequence

00

010

013

These
(X1
(X3)
(X3)
(X3)
(£3)
(X1)
(£
(X3
(Bi)
(Bi)
(Bi)

(Bi)

instructions are:

0

0

is

is

is

is

is

is

|v

N

positive
negative

in range

out of range
definite
indefinite
(Bj)

(B

(B3)

(B3

controls the execution of three instructions.

Error exit to MA or program stop

Return jump to K

Central exchange jump to (Bj) + K or monitor
exchange jump to MA

ZR X3, K
NZ &3, K

PL Xj, K

NG Xj, K

IR Xj, K

OR Xj, K

DF %3, K

ID Xj, K

EQ Bi, Bj, K
NE Bi, Bj, K
GE Bi, Bj, K
LT Bi, Bj, K
PS

RJ K

%J Bj + K

60463560 A

Registers

Registers
The CP contains the operating and support registers described in the following
paragraphs. These registers are located in the operand issue section (figure
1-2).
The contents of these registers can be writtem into memnory and reloaded from
memory as a CYBER 170 exchange package by a single CP instruction (CYBER 170
exchange jump). Figure 2-1 shows the CYBER 170 exchange package.
The time a CYBER 170 exchange package resides in CP hardware is called an
execution interval. During this interval, CP instructions can change the
contents of X, A, B, and P registers. The contents of other support registers
change only as a result of a CYBER 170 exchange jump. For further informatiom,
refer to CYBER 170 Exchange Jump in chapter 5.
59 56 53 50 47 4 35 1/7 0
NG ; A9 00000
N+1 / RAC Al 81
N+2 U FLC A2 82
n+3 | EM| FLags |Eem 7777077 A3 B3
N4 [RAE a4 B4
N+5 FLE AS BS
N+6 |) mMa A6 86
o N7 G A7 &7
LOCATIONS N+8 X0
N+8 X1
N +10 X2
N+ X3
N +12 X4
N+13 X5
N +14 X6
N +15 X7
m NO HARDWARE REGISTERS EXIST -
Figure 2-1. CYBER 170 Exchange Package
60463560 A

Registers

Operating Registers

X Registers

2-10

The operating registers consist of operand (X), address (A), and index (B)

registers. These registers minimize memory references for arithmetic operands
and results.

The CP contains eight 60~-bit X registers (X0 through X7). The X0 register is
used in the compare instructions to indicate if two fields of characters are

equal. Also, the X0 register provides the relative UEM starting address in a
block copy operation.

Registers X1 through X7 are primarily data-handling registers for computation.
Registers X1 through X5 are used to input data from CM, and registers X6 and X7
are used to transmit data to CM.

Operands and results transfer between CM and the X registers as a result of
placing CM addresses into corresponding A registers.

60463560 A

A Registers

B Registers

Registers

The CP contains eight 18-bit A registers (A0 through A7). The AD register
serves as an intermediate register for the user's discretion. The AQ register
is used in the compare collate instruction for the collate table address.

Also, the A0 register provides the relative CM starting address in a block copy
operation,

Registers Al through A7 are essentially CM operand address registers associated
one-for-one with the X registers. Placing a quantity into an address register
(Al through A5) causes a CM read reference to that address and transmits the CM
word to the corresponding X register (X1 through X5). Similarly, placing a
quantity into the A6 or A7 register causes the word in the corresponding X6 or
X7 register to be written into that relative address of CM.

The CP contains eight 18-bit B registers (B0 through B7). These registers are
primarily indexing registers to control program execution. Program loop counts
may also be incremented or decremented in these registers.

Program addresses may be modified on the way to an A register by adding or
subtracting B reglster quantities. The B registers also hold shift counts for
the nominal Bj shifts, the resultant exponent for the unpack, the operand
exponent for the pack, and the resultant shift count from a normalize. The B0

register always contains +0, which can be used as an operand. This register
cannot hold results from instructions.

Support Registers

P Register

60463560 A

Eight support registers assist the operating registers during programs
execution. The contents of the support registers are stored in CM, and their
new contents are loaded from CM during a CYBER 170 exchange sequence., With the
exception of the P register, the contents of the support registers cannot be
altered during the execution interval of a CYBER 170 exchange package. When
the execution interval completes, the data in the support registers is sent
back to CM through a CYBER 170 exchange jump.

The 18-bit program address (P) register loads from CM during the first word of
a CYBER 170 exchange sequence and countains the current program execution

address. The register serves as a program address counter and holds the
relative CM address for each program step.

2-11

Registers

RAC Register

FLC Register

EM Register

2-12

The 21-bit CM reference address (RAC) register loads from CM during the second
word of a CYBER 170 exchange sequence. An absolute CM address forms by adding
RAC to a relative address determined by the instruction. The content of the P
register is added to RAC to form the program address in CM. A P-equal-to-zero
condition specifies relative address 0 and, therefore, (RAC). This CM location
is reserved for recording error exit conditions and should not be used to store
data or instructions.

The 21-bit CM field length (FLC) register loads from CM during the third word
of a CYBER 170 exchange sequence. The FLC register defines the size of the
field of the program in execution. Relative CM addresses are compared with FLC
to check that the program is not going out of its allocated memory range.

The 6~bit exit mode (EM) register loads from CM during the fourth word of a
CYBER 170 exchange sequence. The EM register holds six exit mode selection
bits that control individual error conditions for a program. Selected EM
register bits cause the CP to error exit when the corresponding conditions
occur. Any or all of the 6 bits can be set at one time. Clear EM register
bits allow the CP to continue without error processing when most of the
corresponding conditions occur. Refer to the error exit tables under Error
Response in chapter 5 for specific cases. The exit mode selection bits appear
in the exchange package as bits 48 through 50 and bits 57 through 59. The mode
selection bits and their corresponding conditions are:

Bit Significance

48 Address out of range
49 Infinite operand

50 Indefinite operand
57 Hardware error

58 Hardware error

59 Hardware error

60463560 A

Flag Register

60463560 A

Registers

The 6-bit flag register loads from CM during the fourth word of a CYBER 170
exchange sequence. The flag register holds 6 bits that funection as control

flags.

Bits

Condition

51

52

53

54

55

56

Hardware error bit.

Instruction stack (lookahead) purge flag. If set, extended purging
of instruction lookahead registers is enabled. For further
information, refer to Instruction Lookahead Purge Control in
chapter 5.

CMU interrupted flag. If set, one of instructions 464 through 467
has been interrupted. The information necessary to resume
operation 1s saved.

Block copy flag. If set, block copy instructions (011, 012) use
bits 30 through 50 of X0 rather than A0 to determime the CM

address., For further information, refer to the descriptions of the
block copy inmstructions in chapter 4.

Expanded addressing select flag. If set, UEM is operating in
expanded addressing mode; if clear, UEM is operating in 24-bit
standard addressing mode. For further information, refer to
Addressing Modes under Memory Programming in chapter 5.

UEM enable flag. If set, UEM is available. This flag must be set
to allow 011, 012, 014, and 015 instructions to access UEM.

2-13

Registers

RAE Register

FLE Register

MA Register

2-14

The 21-bit UEM reference address (RAE) register loads from CM during the fifth
word of a CYBER 170 exchange sequence. The lower 6 bits of this register are

always 0. An absolute UEM address forms by adding RAE to the relative address,
which is determined by the instructionm.

The 24-bit UEM field length (FLE) register loads from CM during the sixth word
of a CYBER 170 exchange sequence. The lower 6 bits of this register are always
0. The FLE register defines the size of the field in UEM for the program in
execution. Relative UEM addresses are compared with FLE.

The 18-bit monitor address (MA) register loads from CM during the seventh word
of a CYBER 170 exchange sequence. The MA register contains the absolute
starting address of an exchange package that is used when executing a central
exchange jump (013) instruction with the CYBER 170 monitor flag clear or when
honoring a monitor exchange jump to MA (262x) instruction with the CYBER 170

monitor flag clear. For further information, refer to CYBER 170 Exchange Jump
in chapter 5.

60463560 A

Execution Section

Execution Section

The execution section combines the operands into results, providing additiomal
sequencing control where necessary.

Cache Memory

Cache memory is a high~speed buffer memory that is transparent to the user. It
reduces effective CM access time by eliminating unnecessary CM references.

When the CP first reads CM, a block of 4 words from CM (containing the
requested word) is read rapidly into cache memory, These words may be instruc-
tions or data. On subsequent reading of any of these words, CM does not have
to be accessed when these words are in cache memory, Often this is the case
because the same data is read more than once or because a loop of instructions
is repeatedly executed. Cache memory is 2048 words or, optiomally, 4096 words.

Addressing Section

An address adder calculates memory addresses for data and unconditiomal jump
instructions.

Memory management hardware verifies that memory addresses are to access
permitted memory areas. If this is the case, this hardware accesses cache
memory and, if necessary, central memory.

Central Memory Control

60463560 A

Central memory control (CMC) provides an interface to CM for the CP and ICQU.
It is physlcally located in the CP cabinet. CMC includes:

e Ports and distributor.
° SECDED logic.

e Partial-write logic.

e Memory control logic.

) Maintenance registers.

2-15

Central Memory

Central Memory

Address Format

The CM performs the following functiomns.

Figure 2-2 i1llustrates the address format for the computer system.

The eight memory banks store from 2097K to 16 776K of 64~bit words (the

leftmost 4 bits are undefined) and an 8-bit SECDED code.
The two ports make CM accessible to the CP and every PP.

A bounds register limits access to CM from either or both ports.

The SECDED generators generate the SECDED code bits stored with each word.
SECDED checks circuits, corrects single-bit errors, and detects double-bit

errors.

The maintenance channel interface gives a PP in the IOU access to the CM
maintenance registers for system initialization, corrective action, error

reporting and diagnostics, and setting the port bounds register.

23 22 2120 12 11

32

COLUMN ADDRESS
SELECT

ROW ADDRESS
SELECT

[I
I_ CHIP ADDRESS
CHIP SELECT

QUADRANT SELECT

BANK SE LECT‘|

Figure 2-2. Address Format

60463560 A

Central Memory

The following list defines the address fields for figure 2-2.

Quadrant select specifies one of four quadrants (array packs) within a bank.

Chip select, if set, enables the row address select to the upper half (720)
of the 144 chips on memory boards in all eight memory banks. If clear,
chip enable enables the lower half of the 144 chips on memory boards in all
eight banks.

Chip address, which comprises column address select and row address select,
specifies the address of 1 word on a chip for the selected bank and
quadrant.

Row address select specifies the row—select portion of the chip address on
a chip.

Column address select specifies the column-select portion of the chip
address on a chip.

Bank select specifies one of eight banks.

CM Access and Cycle Times

60463560 A

The following paragraphs list CM access and cycle times that operate on an
internal clock period of 64 ns (major cycle).

The CM access time for a read operation is 320 ns (five major cycles).

One bank cycle for a read or write operation is 384 ns (six major cycles).
Cycle time for a partial write (read/modify/write) is 768 ns (12 major cycles).

2-17

Central Memory

CM Ports and Priorities

A priority network resolves access conflicts on a rotating basis, preventing
long-term lockout of any port. In case of simultaneous requests, the CP has
priority.

The CM also has a refresh mechanism that may consume a maximum of 4 percent of
memory time. Refresh requests have priority over port requests. Refer to
table 2-1 for maximum request lockout time.

Table 2-1. Maximum Request Lockout Time in Bank Cycles

Port Read or Write Requests
Refresh 1
Port 0 4
Port 1 5

Note: One bank cycle equals six clock periods, which
equals 384 ns.

2-18 60463560 A

SECDED Logic

60463560 A

Central Memory

The SECDED logic corrects single-bit errors during a CM read, permitting
unimpeded computer operation. The SECDED logic prepares for the error
correction by generating error correction code (ECC) bits for each data word
and by storing these ECC bits in CM with the data word during the CM write.
Table 2-2 lists the hexadecimal codes for all the combinations of syndrome bits
with the number of the data bit assigned to each code or a note categorizing
the code. During a CM read, CM then performs the following SECDED sequence.

Read 1 CM word and generate nmew ECC bits for data portion of CM word.
Compare new ECC bits with CM word ECC bits.

If old and new ECC bits match, no error exists. Send data to the
requesting unit.

If bits do not match, generate syndrome bits from the result of the ECC
compare.

Decode syndrome bits to determine if a single— or multiple-bit failure
occurred.

If a single-bit failure occurred, correct by inverting the failing bit in
the data word. Send the corrected word to the requesting unit.

If a multiple-bit or other uncorrectable error occurred, send the

uncorrectable error response code to the CP or the IOU. A PP in the IO0U
may then analyze the syndrome bits using the maintenance charnnel.

2-19

Central Memory

Table 2-2. SECDED Syndrome Codes/Corrected Bits

Code Bit Code Bit Code Bit Code Bit Code Bit Code Bit Code BLt Code BLt
00 ® 2 % @O 4w 5@ 60 ©) 80 & (D A0 ® o o1 32D
n 1@ a ® = ©) 61 O] 81 ® Al ® o ®» =n ©)
2 70 @ 22 @ w ©) 62 ® 82 ©) a2 ® «c ©® w2 ©)
03 §/7(3) @ ® 63 ® & ® wm ® o @ = %O
o 6 @ u @ « ©) 64 ® & ® OB ® ©)
05 ® = @ s ® 65 ©) 85 @ 5 ® o @ B WD
06 ® 26 ® 4 ® 66 ©) 86 ® A6 ® <6 ® s 31O
o7 24 @D 27 ® w ® 67 30 @D 87 ® a7 9 Q@O o 2 Q@ £7 3
8 o8 @ 28 @ ® 68 @ e ® a8 ® o8 ® e ©
09 ® » ®» w0 ® 69 3 8 ® 49 ® o @ ® »ng
0a G =2 @ ® 6a ® & @ AA ® a ® m O
0 16 (D 28 ® ® 68 2 as ©) a2 a2 @D o 190 s ©)
oc 453 2¢ ® o« @ 6c ®@ 8¢ ® AC ® ® e 35O
o 8 @ 2D ©) o 100 0 14 (D 8D ® w 3@ o 1u@ £D ©)
e 0 Q@ 2 ¢ ® 4 ® 68 6 (D 8E O] g s @O ¢ 3 @ EE ©)
oF ©) 2F ® 4F ® 6F '©) 8F ® AF @ ® v 2@
0 67 Q) 0 2/3@ 50 ©) 70 56 (@D 90 ® B0 48 D b0 w0 @ FO ©)
11 ©) 31 ® 51 ® n ® 91 ® BL ® n ©) F1 O)
12 ©) 32 ® 52 ® 72 o 92 @ B2 ® »m ® ®
13 ® 33 ©) 53 ©) 73 60 Q) 93) B3 52 O m o« @ F3 ©)
14 ©) 3 O] 54 @® 74 ©) 94 ® B4 O ® @
5 @ 35 ©) 55 ® 75 58D 95 ©) 5 50 @O o5 a2 (@ FS ©)
16 ® 3 ® 36 ©) 7% 62 (D 96 ©) B6 54 () o6 46 D F6 ©)
17 ©) 7 280 57 26D 77 ©) 7 25D 87 ® ® 7onQ@
18 ©) 38 ® 58 ® 78 ©) 98 ® 38 & o8 & s &
19 ®@ 39 @ 9 ©) 7 57D 99 ©) B9 4 @ v 4 @ 9 ©)
1a ® 3 ® s ©) 61 (D 9 ® i 53 @D pa 4@ ©)
1B ® B 20 @ 55 18(D 7B ©) 9B 17D BB ® o ® o 23 (D
1 ® 3c @ s ©) 1t 590 9c 3 e 51 @ o 3 @ K @
1D ® 12 55 1@ 7 ©) w3 QD BD & m ® m 5O
1E ® E 4@ sE 2 (D 7E O] % 1@ BE ® o ® = 10
1F ® 3F ©) 5F ©) I N 6Y) 9F ©) BF 55 (O oF 47 (D FF ©)

Notes:

(:) Corrected single-bit error.

(:) Syndrome code bit failed (single code bit get).

@ Double error or multiple errotr (even number of code bits set).

(:) Multiple error reported as a single error.

(:) Double error or wultiple error or forced double error due to a partial write parity error on one of the 2 bytes indicated.
(:) No error detected.

2-20 60463560 A

CM Layout

Central Memory

Central memory contains an area that is reserved for special software called
Virtual State software. Along with the hardware and microcode, this software
handles the operations of Virtual State as described in chapter 5. Virtual
State software is located at the higher end of memory. The remaining memory is
available to the CYBFR 170 State and may be allocated as central memory
(accessible via RAC and FLC) or as unified extended memory (accessible via RAE,
FLE, and the 011, 012, 014, and 015 instructions). Refer to figure 2-3.

Address 0

C™m

UEM

tional
Available CM size (optional)

Virtual State
Actual CM size Software

Figure 2-3. CM Layout

CM Bounds Register

The CM bounds register limits the write access to CM from specified ports. The
ports are limited to the area between an upper and lower bound as specified in
the CM bounds register. Bits in byte 0 specify the port(s) from which the
write access is limited. The CM bounds register is set through the maintenance
channel. For further information, refer to Maintenance Channel Programming in
chapter 5.

Central Memory Reconfiguration

60463560 A

Central memory reconfiguration is a manually performed function that permits
the computer operator to restructure the CM addresses sc that a failing part of
CM can be quickly locked out to provide a continuous block of usable CM. To
accomplish CM reconfiguration, set the switches on the memory unit to
manipulate the upper address bits.

When each configuration switch is set, it inverts a CM address bit. This
inversion effectively moves blocks of bad memory to the highest memory block
and moves blocks of good memory down, thereby, providing a sequentially
addressable block of error-free memory. In case of CM malfunctions, the
remaining good memory can be reconfigured so it is accessible by contiguous
addresses from zero to the maximum remaining addresses. For further
information, refer to chapter 3.

2-21

Input/Output Unit

Input/Out

put Unit

The input/output unit (IOU) performs the functions required to locate, select,
and initialize the external devices connected to the system. The IOU controls
the transfer of data between a selected device and CM. The IOU also performs
system maintenance functions.

The IOU contains the following functional areas.

® Peripheral processor (PP).

® I/0 channels.

® Real-time clock.

® Two-port multiplexer.

® Maintenance channel,

® CM access.

Peripheral Processor

2-22

The basic I0U contains 20 PPs and 24 I/0 channels. Each PP is a logically
independent computer with its own memory. Each 5-PP group is organized into a
multiplexing system that allows the PPs to share common hardware for arithmetic,
logical, and I1/0 operations without losing independence. This multiplexing
system comprises five ranks of registers, which is termed a barrel. FEach rank
contains information related to the instruction being executed by one PP.

Each PP can communicate with the CP by issuing a CYBER 170 exchange request to
a specific CYBER 170 exchange package associated with the issuing PP. In
addition, a PP can also communicate with the CP via CM read and write
operations. PPs can communicate with each other over the I/0 channels and
through CM.,

Each PP executes programs alone or with other PPs to control data transfers
between external devices and CM. These programs are comprised of instructions
from the I0U instruction set and respond to requests issued through CM by the
operating system. The programs translate generalized operating system requests
into control functions for accessing the external devices and may also perform
device scheduling and optimization. The programs use PP memory as a buffer for
the data transfer between external devices and CM to isolate IOU data transfer
from variations in CM transfer rate.

An IOU upgrade is available which is an optional, concurrent input/output (CIO)
subsystem consisting of five or ten PPs. Optional intelligent standard
interface (ISI), intelligent peripheral interface (IPI), and CYBER 170 DMA
(direct memory access) I/0 channel adapters can be installed in the CIO.

60463560 C

Deadstart

Input/Qutput Unit

A deadstart sequence allows the IOU to initialize itself. This deadstart
sequence is initiated by the DEAD START switch on the system console (CC634
system console uses Control G Comtrol R to initiate the deadstart sequence).
The display includes controls for assigning any PPM to PPO. For further
information, refer to chapter 3.

Barrel and Slot

The barrel consists of the R, A, P, Q, and K registers, each of which has five
ranks (0 through 4). Refer to figure 2-4. Information in these registers’
moves from one rank to the next at a uniform 20-MHz rate, providing a
multiplexed system of five PPs, each operating at a 4-MHz rate. The registers
are stationary while the PPs rotate. For example, ramk 4 registers contain
PPO, PPl, PP2, PP3, and PP4 in succession, each of which consumes 50 ns of the
total cycle time of 250 ns.)

Fach time data enters the slot, a portion of the instruction for that data is
executed. The slot performs tasks such as arithmetic and logic operations and
program address manipulation. Complete execution of an instruction may require
the R, A, P, Q, and K register quantities to go more than one trip around the
barrel and through the slot.

The PPM may be referenced once each time the PP passes around the barrel and
through the slot. During its slot time, the PP may also communicate with CM or
with any of the I/0 channels.

PP Registers

60463560 A

The PP registers, which are discussed in the following paragraphs, are:
] R register.
) A register.
] P register.
] Q register,

] K register.

2-23

input/Qutput Unit

PP MEMORIES

o 1 2 3 4
RANK
2
RANK
3 |
{ |
R
(22) ¥
A
(18)
P SLOT sLoT
{16) INPUT
Q (TIME-SHARED
(16) INSTRUCTION
» CONTROL)
RANK ! RANK
a °
A \
1 INSTRUCTION
. IN SLOT
TO OTHER FROM OTHER
BARRELS BARRELS
CENTRAL CENTRAL
MEMORY —- ——5= MEMORY
(64)
64-81T WORD @ 64-BIT WORD @

(16)
'

\
ID | 1] 2 |3 |4 IS lG l7 l'IOlﬁl!Z[l:ilZC}iE{EBEdI_Z{ZS}'IB%I@IBS] 1/0 CHANNELS

(12}

PERIPHERAL
EQUIPMENT

@ O IS THE ADDRESS OF THE FIRST PP WORD

01415-1

2-24

Figure 2-4.

Barrel and Slot

60463560

R Register

A Register

P Register

60463560 A

Input/Qutput Unit

The 22-bit R register, in conjunction with the A register, forms an absolute CM
address for CM read/write instructioms. When bit 17 of the A register is set,
the absolute CM address is formed by appending six 0's to the lower end of the
contents of the R register and adding to the result bits 0 through 16 of the
contents of the A register (refer to figure 2-5).

27 65 0
R 000000

16 0

Figure 2-5. Formation of Absolute CM Address

The 18-bit A register holds ome operand for arithmetic, logic, or selected I/0
operations. The content of A may be an arithmetic or logical operand, CM
address or part of a CM address (depending on bit 17), I/0 function, I/0 data
word, or a word count for block I/0 instructions. Various instructions operate
on 6, 12, 16, or 18 bits of the A register.

When the A reglster is used as the CM address, parity 1s generated for
transmission with the address to memory control. At deadstart, the A register
is set to 10000 (octal). When bit 17 of the A register is clear, the A
register is used as the CM address; however, when bit 17 is set, the R register
is added to the A register (as described in the R register description) to
obtain the absolute CM address for CM read/write imstructions.

The 16~bit P register is the program address register, except during the
execution of instructioms 61, 63, 71, and 73. For these instructions, the P
register contains the PPM address of the data transfer. At deadstart, the P
register is set to 0.

2-25

Input/Qutput Unit

Q Register

K Register

The 16-bit Q register holds data for several functions such as the address of
the operand during direct addressing and indirect addressing, the peripheral
address of data used during l-word central read or write instructions, the
upper 6 bits during constant mode instructioms, the channel number on all 1/0
and channel instructions, the shift count, and the relative jump designator.
At deadstart, each rank of the Q register is set to a corresponding PP number.
Rank 0 is set to PPO, rank 2 is set to PPZ, and so on.

The 7-bit K register is visible to the programmer through the maintenance
channel only. This register holds the operation code field of an instruction
for display on the IOU deadstart comsole and for deadstart console
interrogation. When a PP is halted (idled), this register contains all 1's.

PP Numbering

2-26

PPs are numbered as follows:

Barrel PPs

0 00 to 04

1 05 to 11 (octal)
2 20 to 24 (octal)
3 25 to 31 (octal)

The deadstart sequence 1s used to determine PP numbering within a barrel. The
sequence assigns barrel numbers according to the IOU barrel reconfiguration
parameter. During the first minor cycle after deadstart, the sequence loads a
0 into the Q register in barrel 0. This defines all the data in that rank of
the barrel as belonging to PPO, and since Q is the channel selector, it assigns
PPO to channel 0. During the next minor cycle, Q loads with a 1. This defines
PPl and assigns it to channel 1. This process occurs in parallel in all
barrels until the IOU assigns each rank of each barrel with a PP number and a
channel number. Reassignment can be done only during a deadstart.

60463560 A

PP Memory

Input/Qutput Unit

Each PP has an independent 4K or 8K word memory. Each word contains 16 data
bits, with the upper 4 bits set to 0, and 6 SECDED bits. PPO executes the
deadstart program from the microprocessor RAM during the deadstart operation.
PP memory O, therefore, must be operational. A PP memory reconfiguration
feature allows the user to restore 10U operation if the IOU detects a fault in
the PP memory normally assigned to PPO.

To reconfigure, the operator assigns a good PP memory to PPO and the operating
system removes the failing PP memory. Computer operation can continue without
the failing PP memory, and repairs can be made during scheduled maintenance.
The system must be deadstarted to reconfigure PPMs.

I/0 Channels

60463560 C

The I/0 channels are composed of:

[} An internal interface that allows common hardware and software to control
the external devices, and

. An external interface that allows the IOU to communicate with the external
devices using 12-bit data channels, The internal interface can transfer
16-bit data words between two PPs or between a PP and an external device at
a maximum rate of 1 word every 250 ns.

This rate can be sustained for the maximum practical channel transfer (4096
words). During transfers between PPs, if the PPs are in the slot at the same
time, the transfer rate is 500 ns.

Any PP can access any of the CYBER 170 bidirectional I/0 channels. All PPs
communicate with external devices through the independent I/0 channels., Each
channel may be connected to one or more pieces of external equipment, but only
one piece of equipment can use a channel at one time. All channels can be
active simultaneously. Available channels are:

® Twenty-four CYBER 170 compatible I/0 channels available with a maximum data
transfer rate of 3 Mbytes/second.

® An optional, DMA-enhanced, intelligent standard interface (ISI) channel
adapter, intelligent peripheral interface (IPI) channel adapter or CYBER
170 channel adapter that can be installed in any one of ten channel
locations in the CIO cabinet. The adapters transfer data between the ISI
or CYBER 170 channel and PP memory using standard I/0 instructions. They
also support DMA transfer in which data goes directly between CM and an
external device without going through the PP. There are two types of CYBER
170 DMA transfers, fast and normal. Fast transfers are used with the
Extended Semiconductor Memory-IL (ESM-1L), and normal transfers are used
with other CYBER 170 external devices.

2-27

input/Output Unit

The display station controller (DSC) is attached to CYBER 170 channel 10g.

The DSC is the IOU interface between the PPs and the system console, servicing
both the keyhoard and the cathode-ray tube (CRT). It tramnsmits function words
and digital symbol size/position data to the system console, and receives
digital character codes from the keyboard. It also receives digital symbol
codes from the PPs and converts these to analog signals to the CRT.

Real-Time Clock

The real-time clock is a 12-bit, free-running counter, incrementing at a
1-MHz rate. It is permanently attached to channel 14,. This channel may
be read at any time because its active and full flags are always set.

Two-Port Multiplexer

The two-port multiplexer provides communication capability between a PP and two
attached terminals. One port is reserved for maintenance purposes, and the
other port is reserved for future use. The two—-port multiplexer is permanently
attached to channel 15g.

Maintenance Channel

The maintenance channel is used for initialization of the CP and CM maintenance
registers and monitoring of error status.

The maintenance channel consists of the maintenance channel interface on
channel 17g, a maintenance access control in each system element, and a set
of interconnecting cables.

Central Memory Access

Any PP can access CM., During a write from the IOU to CM, the IOU assembles
five successive 12-bit PP words into a 64~bit CM word with the leftmost 4 bits
undefined., During a CM read, the IOU disassembles the rightmost 60 bits of the
64-bit CM word into five PP words. To find the CM address, a PP reads the A
register, If bit 17 of the A register is clear, the PP uses the contents of
the A register for the CM address. If bit 17 of the A register is set, the PP
adds the relocation address from the R register to the A register to form the
CM address.

A maximum of 20 PPs in various stages of assembly/disassembly can simulta-
neously read CM words, and five PPs can write CM words.

2-28 60463560 B

3

Operating Instructions

Operating Instructions 3

This chapter describes mainframe controls and indicators and the operating
procedures that are hardware-dependent., Software-dependent procedures are in
system software reference manuals listed in the preface.

Controls and Indicators

This chapter describes IOU deadstart controls and indicators and CM
configuration switches that the system operator uses. Other controls that
maintenance personnel use are described in the hardware operator's guide and
the power distribution and warning system, the cooling system, and the CDC 721
manuals, which are listed in the preface.

Deadstart Displays/Controls

60463560 A

Pressing the deadstart pushbutton on the CC545 system console or pressing the
CTRL G and CTRL R keys on the CC634B system console initiates deadstart and an
initial deadstart display appears on the system control screen., The display is
created by an independent microcomputer in the mainframe and does not rely on
any program being operationmal in the PPs. The initial deadstart display is
used to select a l6~word deadstart program for PPO and to initiate the
deadstart sequence for PPQ. The display is also used to reconfigure PPMs and
barrels, and to display error status and maintenance informatiom.

Figure 3-1 shows the format of the deadstart options display, and figure 3-2
shows the deadstart display. Table 3-1 describes the two operator-selectable
options and table 3-2 describes the operator entries and functions for the
deadstart display. Other deadstart displays are available for maintenance

use. Refer to the CYBER Instruction Package (CIP) listed in the preface for
additional informationm.

DEADSTART OPTIONS

S SYSTEM LOAD OPTIONS
M MAINTENANCE OPTIONS
(CR) SYSTEM LOAD OPTIONS

PROGRAM X SELECTED

Figure 3-1. Deadstart Optious Display

Deadstart Displays/Controls

DEADSTART - REV. 01

XX YYYYYY=CHANGE DS PRG PPM CONF = 00
XX+YYYYYY=CHANGE DS PRG INC NIO BRL CONF = 0
S=SHORT DS DLY LOOP = 0

L=LONG DS LDS ADDR = 6000
H=HELP CLK FREQ = NORMAL
NIO MEM SIZE = 4K

PROGRAM 1

01 001402
02 007306
03 000017
04 007546
05 007706
06 000120
07 007406
10 007106
11 007301
12 000710
13 000000
14 000000
15 000000
16 000000
17 000000
20 007112

Figure 3-2. TInitial Deadstart Display

3-2 60463560 A

60463560 A

Deadstart Displays/Controls

Table 3=1. Deadstart Options Display

Option Description

S Selects a short deadstart sequence using the deadstart program
identified at the bottom of the display. Upon completion of the
deadstart sequence a display for loading system software appears.

M Causes the deadstart display to appear on the screen.

Table 3-2, Deadstart Display Operator Entries and Functions

Operator Entry

Function

XX yyyyyy

XX+YYYYYY

Enters a single word in the deadstart program at xx to a new
value yyyyyy (octal).

Changes words in the deadstart program in sequence starting
at xx.

Selects a short deadstart sequence.
Selects a long deadstart sequence.

Brings up a display that lists and explains all available
commands. Refer to the Hardware Operator's Guide for
detailed information about these commands.

3-3

Central Memory Controls

Central Memory Controls

. The CM contains six two-position configuration switches (figure 3-3). These

switches are located along the address interface pak switch in the A section of
the memory cabinet.

The switches are used to eliminate CM sections with malfunctions. Each switeh,
SWO through SW5, inverts the corresponding CM address bit (37 through 42). The
inversion effectively moves blocks of bad memory to the highest memory block
and moves blocks of good memory down, thereby providing a sequentially
addressable block of error-free memory. Refer to table 3-3.

In case of CM malfunctions, the remaining good memory can be reconfigured so it
is accessible by contiguous addresses from zero to the maximum remaining
address. This is accomplished by setting configuration switches (figure 3-3)
as listed in table 3-3. Refer to the hardware operator's guide listed in the
preface for further information.

INV
NOlRM
ADRS
swo 27
W ADRS
§ l 1 38
sSwW2 ADRS
l 39
ADRS
SViB 40
swa ADRS
l 41
ADRS
5\1\’5 42

Figure 3-3. CM Configuration Switches

60463560 A

Central Memory Controls

Table 3-3. Central Memory Reconfiguration

Original CM

Reconfigured CM

Reconfiguration Settings

Size

Words Error-Free SWO SW1 SW2 SW3 SW4 SW5
(MB) Address Range Size ADRS 37 ADRS 38 ADRS 39 ADRS 40 ADRS 41 ADRS 42
2097 X 0-7 777 777 1049 X)] D D U D D
(16 MB) (8 MB)

4195 K 0-17 777 777 2097 K D D U D D D
(32 MB) (16 MB)

8390 K 0=37 777 777 4195 K D U D D D D
(64 MB) (32 MB)

16780 X 0-77 777 777 8390 K U D D D D D
(128 MB) (64 MB)

Notes:

1.

2. U equals up; D equals down.

Normal setting of all switches is down.

CM remaining can be further reconfigured to obtain larger contiguous blocks of error—free

memory by setting additional configuration switches. See examples shown in figure 3-4.

60463560 A

Central Memory Controls

SET SWO UP TO MOVE BLOCK OF MEMORY CONTAINING ERROR TO UPPER HALF OF MEMORY.

64 MBYTES

SWo=up

//64 MBYTES//
//{CONTAINS//
/// ERROR)///

128 MBYTES

//64 MBYTES//
//(CONTAINS//
///ERROR)///
64 MBYTES OF
ERROR-FREE
64 MBYTES MEMORY

ERROR IN LOWER 64-MBYTE BLOCK OF 128-MBYTE MEMORY.

SET SW1 UP TO MOVE 32-MBYTES BLOCK CONTAINING ERROR TO NEXT HIGHER 32 MBYTES.
THEN SET SWO0 UP TO MOVE BLOCK CONTAINING ERROR TO HIGHEST BLOCK OF MEMORY.

SWOo=UP

32 MBYTES SW1=UP 32 MBYTES
32 MBYTES 32 MBYTES
32 MBYTES /32 MBYTES/
UL
/32 MBYTES/ 32 MBYTES
[
128 MBYTES

/32 MBYTES/
[y

32 MBYTES

32 MBYTES

32 MBYTES

ERROR IN LOWEST 32-MBYTE BLOCK OF 128-MBYTE MEMORY,

96-MBYTES OF
ERROR-FREE
MEMORY

SET SW2 UP TO MOVE 16 MBYTE BLOCK CONTAINING ERROR TO NEXT HIGHER BLOCK.
THEN SET SW1 UP TO MOVE 32 MBYTE BLOCK CONTAINING ERROR TO HIGHEST BLOCK

OF MEMORY.

TEMBYTE sw2=up 76 MBYTES
EMEVTES |— = | TEMBYTE
EMBYTES e~ | /I6MBYTE

716 MBYTES] 16 MBYTES |
MBYTES 16 MBYTES
MEVTES || To MBYTE

16 MEYTES 16 MBYTES |

16 MBYTES 16 MBYTE

128 MBYTES

ERROR IN LOWEST 16-MBYTE BLOCK OF UPPER HALF OF 128-MBYTE MEMORY.

SW1=UP

! {
—
! l

//16 MBYTES // |
7

MBYTE

16 MBYTE

16 MBYTES

b MBYTES

6 MBYTES

16 MBYTES

16 MBYTES

112-MBYTES OF
ERROR-FREE
MEMORY

3-6

Figure 3-4.

Reconfiguration Examples

60463560 A

Power-On and Power-Off Procedures

Power-On and Power-Cff Procedures

In case of an emergency, use the system EMERGENCY OFF switch. The power—on and
power—off procedures are described in the hardware operator's guide listed in

the preface.

Improper application or removal of power may
damage system circuits and/or air-conditioning
Power must be turned on/off by
designated personnel only, except for the

system.

system EMERGENCY OFF switch.

Use only for

extreme emergency and not for normal shutdown.

Operating Procedures

Refer to the hardware operator's guide.

The system is initialized by setting

its deadstart display control parameters and then by running either a long or
short deadstart sequence (defined later in this chapter). After initial-
ization, the keyboard is used to instruct the system further under program

control.

Control Checks

Before activating a long or short deadstart sequence, check the deadstart

display parameters against their intended use.

parameters are:

Parameter Value
PPM CONF 00
NIO BRL CONF 0

LDS ADDR 6000
Error messages None

60463560 A

The normal settings of these

Operating Procedures

Deadstart Sequences

In response to a keyboard command (L or S) to the deadstart display, the IOU
performs a deadstart segquence. Depending on the command (L or S), either the
long or the short deadstart sequence is performed. The short deadstart
sequence is used when hardware integrity verification is not required. The
long deadstart sequence performs all the tasks performed by the short deadstart
sequence and some additional tasks. The main additional task is the running of
a diagnostic program, from a read-only memory (ROM) in the IOU on logical PPO.
The diagnostic program takes approximately 15 seconds to rum.

Both deadstart sequences begin with a master clear, which sets up all PPs
except logical PPO, for a 4096~word block input starting at PP location 0. The
input into each PP is from the chaunnel with the same number as the logical
number of the PP concerned., The master clear also resets all externmal devices
and sets maintenance channel connect code bit 52. The individual registers are
set as follows:

Register Initialization Description

K 007100g Instruction display.

P 0077774 Causes block input to
gtart from location 0.

A . 10,000g Count of 4096 words.

Q 0, 1, 2... I/0 channel numbers
(PPO: 0, PPLl: 1, and
so on).

All registers in both barrels are set to these values, except the registers of
PPO.

If the long deadstart sequence is being performed, hardware clears location
7777, in all PP memories and sets the P register of PPO to the value indicated
by tﬁe parameter LDS ADDR = XXXX (normally 6000,). PP0O starts performing a
test program from a read-only memory in IOU. Hardware errors cause the LDS
program to hang before completion., In the absence of errors, execution
proceeds until the test program reaches location 7776,. When this happens,
the unique part of the long deadstart sequence ends with a master clear.

Next, both deadstart sequences clear PPO location 0, write the deadstart
program on the display into PP0 memory locations 1 to 20,, and clear PPO
location 21,. PPO then starts executing the program entered from the
deadstart dgsplay, which 1s normally a bootstrap program to input more data
from an assigned external device.

The short deadstart sequence does not disturb PP memory other thanm PPQ
locatioms 0 to 21,. Both deadstart sequences leave all PPs, except PPO,
waiting for a block input or for action through the maintenance channel. After
the block input is completed, each PP starts executing the program entered from
whatever address was entered into location 0 of that PP.

3-8 60463560 A

10U Reconfiguration

10U Reconfiguration

60463560 A

The logical PP numbers and hardware are assigned to physical PPs circularly
from the settings of IQU deadstart display PPM CONF and BRL CONF parameters,
specifying which physical barrel and PPM is PPO, Maximum values for these
parameters depend on the number of PPs installed (table 3-4). Illegal values
entered in RB X and RP XX commands are rejected by the deadstart display and
cause error messages to appear on the screen (refer to the hardware operator's
gulde). Reconfiguration is discussed in detail in the hardware operator's
guide. Tables 3-5 and 3-6 show allowable values for the PPM CONF and BRL CONF
parameters and reconfiguration examples,

Table 3-4. Barrel Numbering Table

Logical PPs in Physical Barrel With
BARREL RECONFIGURATION Switch Values

Barrels Installed Physical Barrel 0 1 2 3
Four Barrels 0 0-4 25-31 20~24 5-11
(20 pPs)
1 5-11 0-4 25-31 20~24
2 20-24 5-11 0-4 25-31
3 25-31 20-24 5-11 0-4

10U Reconfiguration

Table 3-5., PP and Barrel Reconfiguration Example, RP=(0

Physical Logical PP Logical PP ~ Logical PP Logical PP
No, PPMs RB=0 RB=1 RB=2 RB=3
of in Each

PPs Barrel BARO BARL BAR2? BAR3 BAR) BAR1 BARZ BAR3 BAR0 BAR1 BAR2 BAR3 BAR0 BAR1 BAR2 BAR3

20 00 00 E] 20 25 25 00 03 20 20 25 00 05 05 20 25 00
01 01 06 21 26 26 01 06 21 21 26 01 06 06 21 26 01
02 02 07 22 27 27 02 07 22 22 27 02 07 07 22 27 02
03 03 10 23 30 30 03 10 23 23 30 03 10 10 23 30 03
04 04 11 24 31 31 04 11 24 24 31 04 11 11 24 31 04
Notes:

1. RP = PP Configuration.
2. RB = NIOQ Barrel Configuration only.
3. BAR 0-3 are the physical barrels.

Table 3-6. PP and Barrel Reconfiguration Example, RP=2

Physical Logical PP Logical PP Logical PP Logical PP

No. PPMs RB=0 RB=1 RB=2 RB=3

of in Each

PPs Barrel BARO BAR1 BAR2 BAR3 BARO BAR1 BAR2 BAR3 BARO BAR1 PRAR2 BAR3 BARO BAR1 BARZ BAR3

20 00 03 10 23 30 30 03 10 23 23 30 03 10 10 23 30 03
01 04 11 24 31 31 04 11 24 24 31 04 11 11 24 31 04
02 00 05 20 25 25 00 05 20 20 25 00 05 05 20 25 oo}
03 01 06 21 26 26 01 06 21 21 26 01 06 06 21 26 01
04 02 07 22 27 27 02 07 22 22 27 02 07 07 22 27 02

Notes:

RP = PP Configuration.
RB = IOU Barrel Configuration only.
BAR 0~3 are the physical barrels.

[PPINIR

3-10 60463560 A

4

Instruction Descriptions

Instruction Descriptions 4

This chapter contains the CYBER 170 State CP instruction descriptions and PP
instruction descriptions.

CP Instruction Formats

60463560 A

NOTE

CYBER 170 CP instructions use the rightmost 60
bits in the 64-bit word. The leftmost 4 bits
are undefined. For these instructions, the
most-significant bit is bit 59 and the least-
significant bit 1s bit 0.

Program instruction words are divided into 15-bit fields called parcels. The
first parcel (parcel 0) is the highest-order 15 bits of the 60-bit word. The
second, third, and fourth parcels (parcels 1, 2, and 3) follow in order.

Figure 4-1 shows possible parcel arrangements for instructions within a program
instruction word.

An instruction may occupy one, two, or four parcels. This arrangement depends
on the instruction format. When an instruction occupies two parcels, it must
occupy two parcels within the same program word. A program word may be filled
with a one-parcel pass instruction or an instruction acting as a two-parcel
pass instruction. These instructions are used to fill a program word when
necessary to place a particular instruction in the first parcel of a program
word or to avoid starting a two-parcel instruction in the fourth parcel of a
program word. Pass instructions may also be used for branch entry points
because a branch instruction destination address must begin with a new word.
One-parcel pass instructions are 460xx through 463xx. Instructions 60xxzx
through 62xxx may be used as two-parcel pass instructions by setting the 1
instruction designator to 0. Refer to table 4~1 for CP instruction designators.

CP instructions 011 and 012 have special properties. They are 60-bit double
instructions that must start at parcel 0. The programmer has the option of

providing a branch instruction at parcels 2 and 3 in the same instruction word
(to an error-handling software routine) or filling this space with pass
instructions. Refer to instructions 011 and 012.

Instructions 013 and 464 through 467 are 60-bit instructions which must start
at parcel 0. They ignore any information in parcels 2 and 3; however, these
parcels are normally set to all 0's.

CP Instruction Formats

INSTRUCTION COMBINATIONS

 ttant Sl mh A
59 a4 29 14 0 IOPCODE | | i_i |
15 15 15 15 |60 BIT§h==m==-bedd
wora——— re——— 14 8 5 20
PAR:EL PAF\;CEL s 13lzlzlisers
59 29 14 0
30 15 16 ‘Y_
2nd OPERAND REGISTER (1 of 8)
1st OPERAND REGISTER (1 of 8)
59 44 14 0 RESULT REGISTER (1 of 8)
15 30 15 OPERAT!ON CODE
59 a4 29 0
15 15 30
foeemm e mpem——— e e ————,
. 2 o {OPCODEl i1 j ! K H
30 30 (SR S S -

\29 23 20 17 0
6 30BITS
59 0

3|3 18
50 AN
2nd OPERAND
1st OPERAND REGISTER (1 of 8)
RESULT REGISTER (1 of 8)

OPERATION CODE

Figure 4-1. CP Instruction Parcel Arrangement

60463560 A

Instruction Description Nomenciature

Instruction Description Nomenclature

60463560 A

The instruction descriptions in this chapter use the following instruction

designators.

Designator Description

Opcode 6~bit/9-bit field specifying instruction operation code.

1,3,k 3-bit code specifying one of eight registers.

jk 6~bit code specifying amount of shift or mask.

K 18-bit operand or addresss.

X Unused designator.

A One of eight 18-bit address reglsters.

B gne of eight 18-bit index registers; BO is fixed and equal to

X One of eight 60-bit operand registers.

Q) Content of the word at a central memory address.

c1t Offset (character address) of the first character in the
first word of the source field.

ca¥ Character address of the first character in the first word of
the result field.

K1t 18-bit address indicating the central memory location of the
first (leftmost) character of the source field.

K2t 18-bit address indicating the central memory locatiom of the
first (leftmost) character of the result field.

LLY Lower 4 bits of the field length (character count) for a move
or compare instruction; used with LU to specify field length.

Lot Upper 9 bits of the field length; (character count) for

indirect move instruction or the upper 3 bits for direct
instructions; used with LL to specify field length.

t Applicable to compare/move instructions only.

CP Operating Modes

CP Operating Modes

4-4

The CP executes instructions in CYBER 170 job mode, CYBER 170 monitor mode, and
executive state. Changes between CYBER 170 job mode and CYBER 170 monitor mode
are caused by CYBER 170 exchange jumps (CP instruction 013 and PP instructions
2600, 2610, and 2620). A hardware flag called the CYBER 170 monitor flag (MF)

indicates whether the CP is in CYBER 170 job mode (flag is clear) or in CYBER
170 monitor mode (flag is set).

The executive state is invisible to the applications programmer. It sets up
the CYBER 170 environment during initialization, executes certain imstructions,
and handles hardware-detected error conditions. Hardware-caused exchanges are
called error exits. Most of these can be enabled or disabled by setting or
clearing bits in the CYBER 170 exchange package. For further information on CP
operating modes, refer to CYBER 170 Exchange Jump, Executive State, and Error
Response in chapter 5.

60463560 A

CP integer Arithmestic Instructions

CP Instruction Descriptions

The CP general instructions are divided into 16 subgroups as follows:

] Integer Arithmetic

. Branch

® Block Copy
® Shift
e Logical

e Floating Point

e Jump

® Exchange/Jump

e Compar

° Set

e/Move

. Normalize

[) Pass

® Illegal Instruction

. Mask

[] Pop Co

unt

® Read Free Running Counter

CP Integer Arithmetic Instructions

60463560 A

The integer arithmetic instructions (table 4-1) perform integer arithmetic on
signed two's complement words or half words in Xk or XkR.

0 for full-word integers or bit 32 for half-word integers.

The sign bit is bit

Table 4-1. CP Integer Arithmetic Instructions

Opcode Format Instruction Mnemonic
27 1ijk Pack (Xk) and (Bj) to Xi PXi Bj Xk
26 ijk Unpack (Xk) to Xi and Bj UX1i Bj Xk
36 ijk Integer sum of (Xj) and (Xk) to Xi IXi Xj+Xk
37 1jk Integer difference of (Xj) and (Xk) to Xi IX1 Xj~Xk

CP Integer Arithmetic Instructions

Integer Pack/Unpack

2713k Pack (Xk) and (Bj) to Xi PXi Bj, Xk

14 98 65 32 0
27 i i k

This instruction reads the contents of Xk and Bj, packs them into a single word
in floating-point format, and delivers thig result to Xi. The coefficient for
the value in Xi is obtained from the content of Xk, which is treated as a
signed integer. The exponent for the value in Xi is obtained from the content
of Bj, which is treated as a signed integer.

The lowest—order 48 bits in X1 are copied directly from the lowest-order 48
bits in Xk. The sign bit in Xi is copied directly from the sign bit in Xk.
The exponent field in Xi is derived from the value in Bj by extracting the
lowest—order 11 bits in Bj and modifying this quantity for exponent bias and
coefficient sign.

Four sample sets of operands and packed results are listed in octal notation to
illustrate the operation performed. These examples contain the four combina-
tions of coefficient sign and exponent sign.

(Xk) = 0000 4500 3333 2000 0077
(Bj) = 00 0034

(X1) = 2034 4500 3333 2000 0077
(Xk) = 0000 4500 3333 2000 0077
(Bi) = 77 7743

(Xi) = 1743 4500 3333 2000 0077
(Xk) = 7777 3277 4444 5777 7700
(Bj) = 00 0034

(Xi) = 5743 3277 4444 5777 7700
(Xk) = 7777 3277 4h44 5777 7700

(B3) = 77 7743

]

(Xi) = 6034 3277 4444 5777 7700

This instruction converts a number in fixed-point format to floating-point

format. For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

60463560 A

60463560 A

CP Integer Arithmetic Instructions

261jk Unpack (Xk) to Xi and Bj UXi Bj, Xk

14 98 65 32 O
26 i j k

This instruction reads one operand from Xk, unpacks this word from floating-—
point format, and delivers the coefficient and exponents to Xi and Bj,
respectively. The 60-bit word delivered to Xi consists of the lowest 48 bits
unaltered from the original operand plus the upper 12 bits, each equal to the
original sign bit. This is a signed integer equal to the value of the
coefficient in the original operand. The 18-bit quantity delivered to Bj is a
signed integer equal to the value of the exponent in the original operand. The
11-bit exponent field in the operand is altered to remove the bias and then
sign-extended to fill out the 18-bit quantity. The sign of the coefficient is
removed in this process. '

Four sample sets of operands and unpacked results are listed in octal notation
to illustrate the operation performed. These examples contain the four
combinations of coefficient sign and exponent sign.

(Xk) = 2034 4500 3333 2000 0077

[}

(Xi) = 0000 4500 3333 2000 0077
(B3j) = 00 0034
(Xk) = 1743 4500 3333 2000 0077
(X1i) = 0000 4500 3333 2000 0077
(Bj) = 77 7743
(Xk) = 5743 3277 4444 5777 7700
(Xi) = 7777 3277 4444 5777 7700
(B3) = 00 0034
(Xk) = 6034 3277 4444 5777 7700

(X1) = 7777 3277 4444 5777 7700

(B3) = 77 7743

This instruction converts a number from floating—point format to fixed-point
format. For further informatiom, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

47

CP Integer Arithmaetic Instructions

361ijk Integer sum of (X3j) and (Xk) to Xi IX1 Xj + Xk

14 98 65 32 0
36 i j k

This instruction reads operands from two X registers, operates on them to form
a 60-bit integer sum, and delivers this result to a third X register. The
operands for this instruction are in Xj and Xk. These operands are signed
integers. The resulting integer sum is delivered to Xi. Overflow is not
detected.

This instruction adds integers too large for handling by 50 through 77
instructions. The instruction also merges and compares data fields during data
processing.

For further information, refer to Integer Arithmetic under CP Programming in
chapter 5.

37ijk Integer difference of (Xj) and IXi Xj - Xk
(Xk) to Xi
14 98 65 32 O
37 i i k

This instruction reads operands from two X registers, operates on them to form
a 60-bit integer difference, and delivers this result to a third X register.
The operands for this instruction are in Xj and Xk. These operands are signed
integers. The result of subtracting the quantity in Xk from the quantity in Xj
is delivered to Xi. Overflow is not detected.

This instruction subtracts integers too large for handling by 50 through 77
instructions. The instruction also compares data fields during data processing.

For further information, refer to Integer Arithmetic under CP Programming in
chapter 5.

60463560 A

CP Branch Instructions

60463560 A

CP Branch Instructions

The branch instructions (table 4-2) consist of both conditional and

unconditional branch instructions.

Each conditional branch instruction

compares the contents of two general registers to determine whether a normal or
a branch exit is taken.

Table 4-2. CP Branch Instructions

Opcode Format Instruction Mnemonic
030 ik Branch to K if (Xj) = O ZR
031 jK Branch to K if (Xj) # O NZ
032 jK Branch to K if (Xj) is positive PL
033 jK Branch to K if (Xj) is negative NG
034 jK Branch to K if (Xj) is in range IR
035 jK Branch to K if (Xj) is out of range OR
036 jK Branch to K if (Xj) is definite DF
037 jK Branch to K if (Xj) is indefinite ID
044 jX Branch to K if (Bi) = (Bj) EQ
051 jK Branch to K 1if (Bi) # (Bj) NE
061 jK Branch to K if (Bi) > (Bj) GE
071 jK Branch to K if (Bi) < (Bj) LT

49

CP Branch Instructions

Branch

4-10

0303K Branch to K 1f (Xj) = 0

29 21201817

ZR Xj, K

030

}

This two-parcel instruction uses the lower-order 18 bits as operand K.

Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,

The branch to address K occurs only on the
following conditions. The current program sequence continues for all other

depending on the content of Xj.

cases.

Jump to K 1f: (Xj)
(Xj)

This instruction branches
floating-point operatiom.

= Q000 0000 0000 0000 000C (positive zero)
7777 7777 7777 7777 7777 (negative zero)

on a zero result from either a fixed-point or a

0313k Branch to K if (Xj) = 0 NZ Xj, K

031

29 21201817

|

This two-parcel instruction uses the lower—order 18 bits as operand K.

Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,

The program sequence continues only on the
following conditions. The branch to address K occurs for all other cases.

depending on the content of Xj.

Continue 1f: (Xj)
(X3)

0000 0000 0000 0000 0000 (positive zero)
7777 7777 7777 7777 7777 (negative zero)

This instruction branches on a nonzero result from either a fixed-point or a

floating-point operation.

60463560 A

60463560 A

CP Branch Instructions

0323K Branch to K if (Xj) is Positive PL Xj, K

29 21201817 0
032 j K

This two-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
Jump to address K in CM or to continue with the current program sequence,
depending on the content of Xj. The branch decision for this instruction is
based on the value of the sign bit in Xj.

Jump to K if: Bit 59 of Xj = 0 (positive)
Continue if: Bit 59 of Xj = 1 (negative)

This instruction branches on a positive result from either a fixed-point or a
floating~-point operation.

0333K Branch to K if (Xj) is Negative NG Xj, K
29 21201817 0
033 i K

This two-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on the content of Xj. The branch decision for this instruction is
based on the value of the sign bit 1n Xj.

Jump to K if: Bit 59 of Xj = 1 (negative)
Continue if: Bit 59 of Xj = 0 (positive)

This instruction branches on a negative result from elther a fixed-point or a
floating-point operation.

4-11

CP Branch Instructions

4-12

0343K Branch to K 1f (Xj) is in range

IR Xj, K

29 21201817
034)

This two-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this ingtruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on the content of Xj. The program sequence continues only on the
following conditions. The branch to address K occurs for all other cases.

Continue if: (XJj) = 3777 xxxx xxxx x¥xxx xxxX (positive overflow)
(X3j) = 4000 xxxx xxxx xxxx xxxx {(negative overflow)

This instruction branches on a floating-point quantity within the floating-
polnt range. The value of the coefficient is ignored in making this branch
test. An underflow quantity is cousidered in range for purposes of this test.

035 3K Branch to K if (Xj) is out of range OR Xj, K
29 21201817 0
035 i K

This two-parcel instruction uses the lower-order 18 bits as eperand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on the content of Xj. The branch to address K occurs only on the
following conditions. The current program sequence continues for all other

cases.

Jump to K 1f: (Xj) = 3777 xxxx xxxx XxXX x¥xxx (positive overflow)
(Xj) = 4000 xxxx xxxx ¥xxX xxxxX (negative overflow)

036 jK Branch to K if (Xj) 1is definite

DF Xj, K

0

29 21201817
036 i

This two-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on the content of Xj. The program sequence continues only on the
following conditions. The branch to address K occurs for all other cases.

Continue if: (XJ) = 1777 xxxx xxxx xxxx xxxx (positive indefinite)
(X3j) = 6000 xxxx xxxx xxxx xxxx (negative indefinite)

This instruction branches on a floating-~point quantity that may be out of range
but is still defined. The value of the coefficient is ignored in making this
branch test. An overflow quantity or an underflow quantity is considered

defined for purposes of this test.

60463560 A

CP Branch Instructions

0373iK Branch to K if (Xj) is indefinite ID Xj, K
29 21201817 0
037 i K

This two-parcel instruction uses the lower-order 18 bits as operand XK.
Execution of this instruction causes the program sequence to terminate with a
Jjump to address K in CM or to continue with the current program sequence,
depending on the content of the Xj register. The branch to address K occurs

only on the following conditions. The current program sequence continues for
all other cases.

Jump to K if: (Xj) = 1777 xxxx xxxX xXXX xxxX (positive indefinite)
(Xj) = 6000 xxx=x xxxx xxxx xxxx (negative indefinite)

This instruction branches on a floating-point quantity that is not defined.
The value of the coefficient is ignored im making this branch test. An

overflow quantity or an underflow quantity is considered defined for purposes
of this test.

041 jK Branch to K if (Bi) = (Bj) EQ Bi, Bj, K
29 242321201817 0
04 i i K

This two—-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on a comparison of the contents of the Bi and Bj registers. The
branch to address K occurs only if the two quantitles are identical om a

bit-by-bit comparison basis. The current program sequence continues for all
other cases.

This instruction branches on an index equality test. A quantity consisting of
all 0's and a quantity consisting of all 1's are not equal for this test.

60463560 A 4-13

CP Branch instructions

05i jK Branch to K if (Bi) # (Bj) NE Bi, Bj, K
29 242321201817 0
05 i i K

This two-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on a comparison of the contents of the Bi and Bj registers. The
program sequence continues only if the two quantities are identical on a

bit-by-bit comparison basis. The branch to address K occurs for all other
cases.

This instruction branches on an index inequality test. A quantity consisting
of all 0”s and a quantity consisting of all 1°s are not equal for this test.

061 jK Branch to K if (Bi) > (Bj) GE Bi, Bj, K

29 2423 21201817 0
06 i i K

This two-parcel instruction uses the lower—order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on a comparison of the contents of Bi and Bj. Both quantities are
treated as signed integers. The branch to address K occurs if the content of
Bi is greater than or equal to the content of Bj. The current program sequence
continues 1f the content of Bi is less than Bj.

This instruction branches on an index threshold test. A +0 quantity is
considered greater tham a -0 quantity.

071 jK Branch to K if (Bi) < (Bj) LT Bi, Bj, K
29 2423 21201817 0
07 i i K

This two-parcel instruction uses the lower-order 18 bits as operand K.
Execution of this instruction causes the program sequence to terminate with a
jump to address K in CM or to continue with the current program sequence,
depending on a comparison of the contents of Bi and Bj. Both quantities are
treated as signed integers. The branch to address K occurs if the content of
Bi is less than the content of Bj. The current program sequence continues if
the content of Bi is greater than or equal to the content of Bj.

This instruction branches on an index threshold test. A +0 quantity is
considered greater than a -0 quantity.

60463560 A

CP Block Copy Instructions

CP Block Copy Instructions

60463560 A

The block copy instructions (table 4-3) tramsfer 60-bit words between fields in
CM and UEM.

Table 4-3. CP Block Copy Instructiomns

Opcode Format Imstruction Mnemonic
011 jK Block copy (Bj + K) words from UEM to CM RE Bj+K
012 jK Block copy (Bj + K) words from CM to UEM WE Bj+K

4-15

CP Block Copy Instructions

Block Copy

4-16

011 3K Block copy (Bj + K) words from UEM to CM RE Bj + K

59 51 47 30 29 0
011 {|i K INST, FOR HALF EXIT

This instruction coples a block of Bj plus K consecutive words from unified
extended memory (UEM) to CM. The source UEM address is X0 plus RAE where the
bits used depend on the setting of the expanded addressing select flag in the
CYBER 170 exchange package., If the flag is clear (UEM is in standard
addressing mode), the UEM address is calculated using bits 0 through 22 of XO;
bits 24 through 59 are ignored. If the flag is set (UEM is in expanded

addressing mode), the UEM address is calculated using bits O through 28 of XO0;
bits 30 through 59 are ignored.

The destination CM address is either A0 plus RAC, or X0 plus RAC, depending on
the setting of the block copy flag in the CYBER 170 exchange package. When the
block copy flag is clear, the CM address is A0 plus RAC. When the block copy
flag is set, the CM address is calculated using bits 30 through 50 of X0. Bits
51 through 59 must be set to 0; results are undefined if these bits are not 0.

The operation leaves Bj, X0, and AQ unchanged. Bj and K are both signed 18-bit
one's complement numbers, making it possible to transfer a maximum of 131 071
60-bit words. If Bj plus K is 0O, the instruction acts as a 60-bit pass
instruction.

If bit 21 or 22 of the result of X0 plus RAE is a 1, 0's are transferred, and
the next instruction is taken from parcel 2 of the same instruction word. If
this is not the case, the next instruction is taken from parcel 0 of the next
instruction word. If execution of the 0113jK instruction is interrupted, it is
restarted from the beginning.

This finstruction is illegal if it does not start In parcel (or the UEM enable
flag in the CYBER 170 exchange package 1s clear.

In standard addressing mode, 24 bits of X0 are checked against 23 bits of FLE
with bit 23 of FLE equal to 0. In expanded addressing mode, 30 bits of X0 are
checked against 29 bits of FLE with bit 29 equal to 0, If the X0 bits are

greater than or equal to FLE, an ad@ress-out—of—range condition is detected.
If Bj plus K is negative, an address range error exit takes place. If the
source field and the destination field overlap in physical memory, the final
contents of the destination field are undefined.

For further information, refer to Block Copy Instructions in chapter 5.

60463560 A

CP Block Copy Instructions

0123K Block copy (Bj + K) words from CM to UEM WE Bj + K

59 51 47 30 29 0
012 {i K INST. FOR HALF EXIT

This instruction copies a block of Bj plus K consecutive words from CM to UEM.
The source CM address is either A0 plus RAC or XO plus RAC, depending on the
setting of the block copy flag in the CYBER 170 exchange package. When the
block copy flag is clear, the CM address is A0 plus RAC. When the block copy
flag is set, the CM address is calculated using bits 30 through 50 of X0. Bits
51 through 59 must be set to 0; results are undefined if these bits are not 0.

The destination UEM address is XO plus RAE where the bits used depend on the
setting of the expanded addressing select flag in the CYBER 170 exchange
package. If the flag is clear (UEM is in standard addressing mode), the UEM
address is calculated using bits 0 through 22 of X0; bits 24 through 59 are
ignored. If the flag is set (UEM is in expanded addressing mode), the UEM
address is calculated using bits 0 through 28 of X0; bits 30 through 59 are
ignored.

The operation leaves Bj, X0, and AO unchanged. Bj and K are both signed 18-bit
one's complement numbers, making it poseible to transfer a maximum of 131 071

60-bit words. If Bj plus K is 0, the instruction acts as a 60-bit pass
instruction.

If bit 21 or 22 of the result of X0 plus RAE is a 1, 0's are transferred and
the next instruction is taken from parcel 2 of the same instruction word. If
this is not the case, the next instruction is taken from parcel 0 of the next
instruction word. If execution of the 012jK instruction is interrupted, it is
restarted from the beginning.

This imstruction is illegal if it does not start in parcel 0 or the UEM enmable
flag in the CYBER 170 exchange package is clear.

In standard addressing mode, 24 bits of X0 are checked against 23 bits of FLE
with bit 23 of FLE equal to 0. In expanded addressing mode, 30 bits of X0 are
checked against 29 bits of FLE with bit 29 equal to 0. If the X0 bits are
greater than or equal to FLE, an address—out-of-range condition is detected.

If Bj plus K is negative, an address range error exit takes place. If the
source field and the destination field overlap in physical memory, the final
contents of the destination field are undefined.

For further information, refer to Block Copy Instructions in chapter 5.

60463560 A 4-17

CP Shift Instructions

CP Shift Instructions

The shift instructions (table 4-4) shift the Xi 60-bit word through the number
of bit positions determined from a computed shift count.

Table 4=4. CP Shift Imstructions

Opcode Format Instruction Mnemonic
20 ijk Left shift (Xi) by jk LXi jk

22 ijk Left shift (Xk) nominally (Bj) places to Xi LXi Bj Xk
21 i3k Right shift (X1) by jk AXL jk
23 ik Right shift (Xk) nominally (Bj) places to Xi AXi Bj Xk

Left Shift
201iik Left shift (Xi) by jk LXi jk
14 98 65 0
20 i jk

This instruction reads one operand from Xi, shifts the 60-bit word left
circularly by jk bit positions, and writes the resulting 60-bit word back into
the same Xi register. The j and k designators are treated as a single 6-bit
positive integer operand in this instructiom.

A left-circular shift implies that the bit pattern in the 60-bit word is
displaced towards the highest-order bit positions. The bits shifted off the
upper end of the 60-bit word are inserted in the lowest-order bit positions in
the same sequence. The resulting 60-bit word has the same quantity of bits
with values of 1 and 0 as in the original operand.

A sample computation is listed in octal notation to illustrate the operation
performed.

Initial (X1) = 2323 6600 0000 0000 0111
jk = 12 (octal)
Final (X1) = 7540 0000 0000 0022 2464
This instruction, together with instruction 21, may be used whenever a data

word is to be shifted by a predetermined amount. If the amount of shift is
derived in the execution of the program, use Ilmstruction 22 or 23.

4-18 60463560 4

60463560 A

CP Shift instructions

221 ik Left shift (Xk) nominally (Bj) IXi Bj, Xk
places to Xi

14 98 65 32 0
22 i] k

This instruction reads a 60-bit operand from Xk, shifts the data either left or
right as specified by Bj, and writes the resulting 60-bit word into Xi. If the
value in Bj 1s positive, the data is left-~shifted circularly the number of bit
positions designated by the value in Bj. If the value in Bj is negative, the
data is right-shifted with sign extension the number of bit positiomns
designated by the value in Bj. Bj bit 17 determines the sign of Bj.

A left-circular shift implies that the bit pattern in the 60-bit word is
displaced towards the highest-order bit positions. The bits shifted off the
upper end are inserted in the lowest-order bit positioms in the same sequence.
The resulting 60-bit word has the same quantity of bits with values of 1 and 0
as in the origimal operand.

A right shift with sign extension implies that the bit pattern in the 60-bit
word is displaced towards the lowest-order positions. The bits shifted off the
lower end are discarded. The highest-order bit positions are filled with
coples of the original sign bit.
Two sample computations are listed in octal notation to illustrate the
operation performed. An example of a positive shift count resulting in a left-
circular shift is as follows:

(Xk) = 2323 6600 0000 0000 0111

(Bj) = 00 0012

(X1) = 7540 0000 0000 0022 2464
An example of the right shift with sign extension 1s as follows:

(Xk) = 1327 6000 0000 3333 2422

(Bj) = 77 7771

(X1i) = 0013 2760 0000 0033 3324
If Bj bits 6 through 10 are different from Bj bit 17 and Bj bit 17 is set, the
shift count is greater than 63 (decimal) places right, and a result of +0 is
returned to Xi. Bj bits 11 through 16 are not tested by this inmstructiom.
This instruction is used when the amount of shift is derived in the

computation. The inmstruction is also used for correcting the coefficlent of a
floating-point number when the exponent has been unpacked into a B register.

4-19

CP Shitt Instructions

Right Shift
2113k Right shift (Xi) by ik AXi 3k

14 98 65 0
21 i ik

This instruction reads one operand from Xi, shifts the 60-bit word right with
sign extension by jk bit positions, and writes the resulting 60-bit word back
into the same Xi register. The j and k designators are treated as a single
6-bit positive integer operand in this instructionm.

A right shift with sign extension implies that the bit pattern in the 60-bit
word is displaced toward the lowest—order bit positions., The bits shifted off
the lower end of the word are discarded., The highest—order bit positions are
filled with copies of the original sign bit.

Two sample computations are listed in octal notation to illustrate the
operation performed. An example of a positive operand i1s as follows:

Initial (Xi) = 2004 7655 0002 3400 0004
jk = 30 (octal)
Final (Xi) = 0000 0000 2004 7655 0002
An example of a negative operand is as follows:
Initial (Xi) = 6000 4420 2222 (0000 5643
jk = 10 (octal)
Final (X1) = 7774 0011 0404 4440 0013
This instruction, together with instruction 20, may be used whenever a data

word is to be shifted by a predetermined amount. If the amount of shift is
derived in the execution of the program, use instruction 22 or 23.

4=20 ' 60463560 A

60463560 A

CP Shift instructions

23ijk Right shift (Xk) nominally (Bj) AX{ Bj, Xk
places to Xi

14 98 65 32 0
23 i J k

This instruction reads a 60-bit operand from Xk, shifts the data either left or
right as specified by the content of Bj, and writes the resulting 60-bit word
into Xi. 1If the value in Bj is positive, the data is right-shifted with sign
extension the number of bit positions designated by the value in Bj. If the
value in Bj is negative, the data is left-shifted circularly the number of bit
positions designated by the value in Bj. Bj bit 17 determines the sign of Bj.

A left-circular shift implies that the bit pattern in the 60-bit word is
displaced towards the highest-order bit positioms. The bits shifted off the
upper end are inserted in the lowest-order bit positions in the same sequence.
The resulting 60-bit word has the same quantity of bits with values of 1 and 0
as in the original operand.

A right shift with sign extension implies that the bit pattern in the 60-bit
words is displaced towards the lowest-order bit positions. The bits shifted
off the lower end of the word are discarded. The highest—order bit positions
are filled with copies of the original sign bit.

Two sample computations are listed in octal notationm to illustrate the
operation performed. The following example contains a positive shift count
resulting in a right shift with sign extension.

(Xk) = 1327 6000 0000 3333 2422
(Bj> = 00 0006
(Xi) = 0013 2760 0000 0033 3324

The following example contains a negative shift count resulting in a left-
c¢ircular shift,

(Xk) = 2323 6600 0000 0000 0111
(Bj) = 77 7765
(Xi) = 7540 0000 0000 0022 2464

If Bj bits 6 through 10 are different from Bj bit 17, and Bj bit 17 is clear,
the shift count is greater than 63 (decimal) places right, and a result of +0
is returned to Xi. This instruction does not test Bj bits 11 through 16.

This instruction is used when the amount of shift is derived in the

computation. The instruction is also used for correcting the coefficient of a
floating-point number when the exponent has been unpacked into a B register.

4-21

CP Logical instructions

CP Logical Instructions

4-22

The logical instructions (table 4-5) perform logical (Boolean) operations in
the X registers.

Table 4-5.

CP Logical Imstructilons

Opcode Format Instruction Mnemonic
12 ijk Logical sum of (Xj) and (Xk) to Xi BXi Xj+Xk
16 iik Logical sum of (Xj) with complement

of (Xk) to X4 BXi -Xk+Xj
13 ijk Logical difference of (Xj) and (Xk) to Xi BXi Xj-Xk
17 ijk Logical difference of (Xj) with

complement of (Xk) to Xi BXi -Xk~Xj
11 iik Logical product of (Xj) and (Xk) to Xi BX1 Xji*Xk
15 ijk Logical product of (Xj) with complement

of (Xk) to Xi BX1 -Xj*Xj

60463560 A

Logical Sum

60463560 A

CP Logical Instructions

1243k Logical sum of (Xj) and (Xk) to Xi BXi Xj + Xk

14 98 65 32 0
12 i i k

This instruction reads operands from two X registers, operates on them to form
a result, and delivers this result to a third X register. The operands for
this instruction are in Xj and Xk. The result delivered to Xi is the
bit-by-bit logical sum of the two operands. Each of the 60 bits in Xj is
compared with the corresponding bit in Xk to form a single bit im Xi. A sample
computation is listed in octal notation to 1llustrate the operation performed
and includes the four possible bit combinations that may occur.

(X3j) = 0000 7777 0123 4567 1010
(Xk) = 0123 4567 7777 0000 1100
(X1) = 0123 7777 7777 4567 1110
This instruction merges portions of a 60-bit word into a composite word during

data processing.

161 jk Logical sum of (Xj) with complement BX1 -Xk + Xj
of (Xk) to Xi

14 98 65 32 0
16 i j k

This instruction reads operands from two X registers, operates on them to form
a result, and delivers this result to a third X register. The operands for
this instruction are in Xj and Xk. The result delivered to Xi is the
bit-by-bit logical sum of the value in Xj and the complement of the value in
Xk. Each of the 60 bits in Xj is compared with the corresponding bit in Xk to
form a single bit in Xi. A sample computation is listed in octal notatiom to
illustrate the operation performed and includes the four possible bit
combinations that may occur,

(Xj) = 0000 7777 0123 4567 1010
(Xk) = 0123 4567 7777 0000 1100
(Xi) = 7654 7777 0123 7777 7677

This instruction merges portions of a 60-bit word into a composite word during
data processing.

4-23

CP Logical Instructions

Logical Difference

4-24

1313k Logical difference of (Xj) and BXi Xj ~Xk
(Xk) to Xi

14 98 65 32 0
13 i j k

This instruction reads operands from two X registers, operates on them to form
a result, and delivers this result to a third X register. The operands for
this instruction are in Xj and Xk. The result delivered to Xi is the
bit-by-bit logical difference of the two operands. Each of the 60 bits in Xj
is compared with the corresponding bit in Xk to form a single bit inmn Xi. A
sample computation is listed in octal notation to illustrate the operation
performed and includes the four possible bit combinations that may occur.

(Xj) = 0123 7777 0123 4567 1010
(Xk) = 0123 4567 7777 3210 1100
(X1) = 0000 3210 7654 7777 0110

This instruction compares bit patterns or complements bit patterns during data
processing.,

1713k Logical difference of (X3j) with BXi -Xk - Xj
complement of (Xk) to Xi

14 98 65 32 0
17 i i k

This instruction reads operands from two X registers, operates on them to form
a result, and delivers this result to a third X register. The operands for
this instruction are in Xj and Xk. The result delivered to Xi is the bit-by-
bit logical difference of the value in Xj and the complement of the value in
Xk. Each of the 60 bits in Xj is compared with the corresponding bit in Xk to
form a single bit in Xi. A sample computation is listed in octal notation to

1llustrate the operation performed and includes the four possible combinations
that may occur.

(Xj) = 0123 7777 0123 4567 1010
(Xk) = 0123 4567 7777 3210 1100
- (X1) = 7777 4567 0123 0000 7667

This instruction compares bit patterns or complements bit patterns during data
processing.

60463560 A

CP Logical Instructions

Logical Product

11ijk Logical product of (Xj) and (Xk) to Xi BXi Xj * Xk

14 98 65 32 O
" i i k

This instruction reads operands from two X registers, operates on them to form
a result, and delivers this result to a third X register. The operands for
this instruction are in Xj and Xk. The result delivered to Xi is the bit-by-
bit logical product of the two operands. Each of the 60 bits in Xj is compared
with the corresponding bit in Xk to form a single bit in Xi. A sample
computation is listed in octal notation to illustrate the operation performed
and includes the four possible bit combinations that may occur.

(Xj) = 7777 7000 0123 4567 1010
(Xk) = 0123 4567 0077 7700 1100
(X1) = 0123 4000 0023 4500 1000
This instruction extracts portions of a 60-bit word during data processing.

151jk Logical product of (Xj) with BXi -Xk * Xj
complement of (Xk) to Xi

14 98 65 32 0
B | ifi] k

This instruction reads operands from two X registers, operates on them to form
a result, and dellvers this result to a third X register. The operands for
this instruction are in Xj and Xk. The result delivered to Xi is the bit-by-
bit logical product of the value in Xj and the complement of the value in Xk.
Each of the 60 bits in Xj is cowpared with the corresponding bit in Xk to form
a single bit in Xi. A sample computation is listed in octal notation to

illustrate the operation performed and includes the four possible bit
combinations that may occur.

(X3j) = 7777 7000 0123 4567 1010
(Xk) = 0123 4567 0007 7700 1100
(X1) = 7654 3000 0120 0067 0010

This instruction extracts_portions of a 60-bit word during data processing.

60463560 A 4~25

CP Fioating-Point Arithmetic Instructions

CP Floating-Point Arithmetic Instructions

4-26

The floating-point instructions (table 4-6) perform arithmetic operations on
floating—-point numbers.

Table 4~6. CP Floating-Point Instructions
Opcode Format Instruction Mnemonic
30 ijk Floating sum of (Xj) and (Xk) to Xi FXi Xj+xXk
32 ijk Floating double-precision sum of (Xj)

and (Xk) to Xi DXi Xj+Xk
34 ijk Round floating sum of (Xj) and (Xk) to Xi RXi Xj+Xk
31 ijk Floating difference of (Xj) and (Xk) FXi Xj-Xk

to Xi
33 ijk Floating double-precision difference of

(Xj) and (Xk) to Xi DXi Xj-Xk
35 ijk Round floating difference of (Xj)

and (Xk) to Xi RX1 Xj-Xk
40 ijk Floating product of (Xj) and (Xk) to Xi FXi Xj*Xk
41 ijk Round floating product of (Xj) and (Xk)

to Xi RXi Xj*Xk
42 ijk Floating double-precision product of

(Xj) and (Xk) to Xi DXi Xj*Xk
44 ijk Floating divide (Xj) by (Xk) to Xi FXi X3j/Xk
45 iijk Round floating divide (Xj) by (Xk) to Xi RXi Xj/Xk

60463560 A

CP Fioating-Point Arithmetic Instructions

Floating Sum

60463560 A

301ijk- Floating sum of (Xj) and (Xk) to Xi FXi Xj + Xk

14 98 65 32 O
30 i i k

This instruction reads operands from two X registers, operates on them to form
a floating-point sum, and delivers this result to a third X register. The
operands for this instruction are in Xj and Xk. These operands are in
floating~point format and are not necessarily normalized. The sum of the
quantities in Xj and Xk is delivered to Xi in floating-point format and is not
necessarily normalized.

The two operands are unpacked from floating-point format, and the exponents are
compared. The coefficient with the smaller exponent is right-shifted by the
difference of the two exponents such that both coefficients are the same
significance. The two coefficients are then added to form a 96-~bit result.

The upper half of the result is then selected as a coefficient and packed along
with the larger exponent to form the result sent to Xi. If coefficient
overflow occurs, the sum is right-shifted one place, and the exponent is
increased by omne.

If the two operands have unlike signs, the result coefficlent may have leading
zeros., No normalize operation is built into this instruction to correct this

situation. A separate normalize instruction must be programmed if the result
is to be kept in a normalized form.

When the difference between the exponents is greater than 128 (decimal), the
shifted sign bit is extended to the entire shifted operand. Infinite
(3777xxx...x or 4000xxx...x) or indefinite (1777xxx...x or 6000xxx...x)

operands cause corresponding exit conditioms to set in the CP for exit mode
action.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

4-27

CP Floating-Point Arithmetic Instructions

4-28

32ijk Floating double-precision sum of DXi Xj + Xk
(X3j) and (Xk) to Xi

14 98 65 32 0
32 i i k

This instruction reads operands from two X registers, operates on them to form
a double-precision, floating—point sum, and delivers the lower half of this
result to a third X register. The operands for this instruction are in Xj and
Xk. These operands are in floating-point format and are not necessarily
normalized. The sum of the quantities in Xj and Xk is delivered to Xi in
floating-point format and is not necessarily normalized.

The two operands are unpacked from floating-point format, and the exponents are
compared. The coefficient with the smaller exponent is right-shifted by the
difference of the two exponents such that both coefficlents are the same
significance. The two coefficients are then added to form a 96-bit result.

The lower half of the result is then selected and packed along with the larger
exponent minus 48 (decimal) to form the result sent to Xi, If coefficient
overflow occurs, the result is right-shifted by one place, and the expoment is
increased by 1. Infinite (3777xxx...x or 4000xxx...x) or indefinite
(1777xxx...x or 6000xxx...x) operands cause corresponding exit conditions to
set in the CP for exit mode actionm,

For further information, refer to Floating-Point Arithmetic under CP Programming
in chapter 5.

341k Round floating sum of (Xj) and RXi Xj + Xk
(Xk) to Xi
14 98 65 32 O
34 i i k

This instruction reads operands from two X registers, operates on them to form
a rounded floating-point sum, and delivers this result to a third X register.
The operands for this instruction are in Xj and Xk. These operands are in
floating-point format and are not necessarily normalized. The result is
delivered to Xi in floating-point format and is not necessarily normalized.

The round floating-point sum is a single-precision floating-point sum with a
round bit (or bits) inserted before the add operation takes place. A round bit
is always inserted in the coefficient with the larger expoment. If the two
exponents are equal, the round bit is inserted in the coefficient for Xk. The
round bit is equal to the complement of the sign bit and is inserted lmmedi-
ately to the right of the lowest-order bit in the coefficient. This has the
effect of increasing the magnitude of the coefficlent by one-half of the least-
significant bit. A second round bit is inserted in a corresponding manner to
the other coefficient if both operands are normalized or have unlike signs.

The second round bit is inserted before the coefficient is shifted by the
difference of the exponents. Infinite (3777xxx...x or 4000x%x...x) or
indefinite (1777xxx...x or 6000xxx...x) operands cause corresponding exit
conditions to set in the CP for exit mode action.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

60463560 A

CP Floating-Point Arithmetic Instructions

Fioating Difference

60463560 B

31ijk Floating difference of (Xj) and FXi Xj - Xk
(Xk) to Xi
14 98 65 32 0
31 O T ™

This instruction reads operands from two X registers, operates on them to form
a floating-point difference, and delivers this result to a third X register.
The operands for this instruction are in Xj and Xk. These operands are in
floating—-point format and are not necessarily normalized. The result of
subtracting the quantity im Xk from the quantity in Xj is delivered to Xi in
floating—-point format and is not necessarily normalized.

The two operands are unpacked from floating-point format, and the exponents are
compared. The coefficient with the smaller exponent is right-shifted by the
difference of the two exponents such that both coefficients are the same
significance, The Xk coefficient is then subtracted from the Xj coefficient to
form a 96-bit result. The upper half of the result is then selected and packed
along with the larger exponent to form the result sent to Xi. If coefficient
overflow occurs, the result is right-shifted one place, and the exponent is
increased by one.

If the two operands have like signs, the result coefficient may have leading
zeros. No normalize operation is built into this instruction to correct this
situation, A separate normalize instruction must be programmed if the result
is to be kept in a normalized form. Infinite (3777xxX...Xx 0or 4000xxX...x) O
indefinite (1777xxX...x or 6000xxx...x) operands cause corresponding exit
conditions to set in the CP for exit mode action.

For further information, refer to Floating-Point Arithmetic under CP Programming
in chapter 5.

CP Floating-Point Arithmetic Instructions

4-30

33ijk Floating double-precision DXi Xj - Xk
difference of (Xj) and (Xk) to Xi

14 98 65 32 0
33 i] k

This instruction reads operands from two X registers, operates on them to form
a double-precision, floating-point difference, and delivers the lower half of
this result to a third X register. The operands for this instruction are in Xj
and Xk. These operands are in floating-point format and are not necessarily
normalized. The result of subtracting the quantity in Xk from the quantity in
Xj is delivered to Xi in floating-point format and is not necessarily
normalized.

The two operands are unpacked from floating-point format, and the exponents are
compared. The coefficient with the smaller exponent 1is right-shifted by the
difference of the two exponents such that both coefficients are the same
significance. The Xk coefficient is then subtracted from the Xj coefficient to
form a 96-bit result. The lower half of the result is then selected and packed
along with the larger exponent minus 48 (decimal) to form the result sent to
Xi. If coefficient overflow occurs, the result is right-shifted one place, and
the exponent is increased by one.

Infinite (3777xxx...x or 4000xxx...x) or indefinite (1777xxx...x or
6000xxx...x) operands cause corresponding exit conditions to set in the CP for
exit mode actionm.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

60463560 A

60463560 A

CP Floating-Point Arithmetic Instructions

3513k Round floating difference of RXi Xj - Xk
(X3j) and (Xk) to Xi

14 98 65 32 0
35 i i k

This instruction reads operands from two X registers, operates on them to form
a rounded floating-point difference, and delivers this result to a third X
register. The operands for this instruction are in Xj and Xk. These operands
are in floating-point format and are not necessarily normalized. The result of
subtracting the gquantity in Xk from the quantity in Xj is delivered to Xi in
floating-point format and is not necessarily normalized.

The round floating-point difference is a single-precision, floating-point
difference with a round bit (or bits) inserted before the subtract operation
takes place. A round bit is always inserted in the coefficient with the larger
exponent. If the two expoments are equal, the round bit is added to the
coefficient for Xk. The round bit is equal to the complement of the sign bit
and is inserted immediately to the right of the lowest-order bit im the
coefficient. This has the effect of increasing the magnitude of the
coefficient by one-half of the least-significant bit. A second round bit is
inserted in a corresponding manner to the other coefficient if both operands
are normalized or have like signs. The second round bit is inserted before the
coefficlent is shifted by the difference of the exponents. Infinite
(3777xxx...x or 4000xxx...x) or indefinite (1777xxz...x or 6000xxx...X)

operands cause corresponding exit conditions to set in the CP for exit mode
action.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

4-31

CP Floating-Point Arithmetic Instructions

Floating Product

4-32

4013k Floating product of (Xj) and (Xk) to Xi FXi Xj * Xk

14 98 65 32 0
40 i i k

This instruction reads operands from two X registers, operates on them to form
a floating-point product, and delivers this result to a third X register. The
operands for this instruction are in Xj and Xk. These operands are in
floating-point format and are not necessarily normalized. The result is
delivered to Xi in floating-point format. If both operands are normalized, the
result is also normalized. If both operands are not normalized, the result is
not normalized.

The two operands are unpacked from floating-~point format. The exponents are
added with a correction factor to determine the exponent for the result. The
coefficients are multiplied as signed integers to form a 96-bit integer
product. The upper half of this product is extracted to form the coefficient
for the result. If the original operands are normalized and the product has
only 95 significant bits, a 1l-bit left shift is done to normalize the result
coefficient. The resulting exponent is reduced by one count in this case.

If both operands are not normalized, the resulting double-precision product has
less than 96 significant bits. No test is made for the position of the most-
significant bit. The upper 48 bits are read from the double-precision product
register. Leading zeros occur in this result coefficient.

This instruction is used in floating-point calculations where rounding of
operands is not desired, such as in multiple-precision arithmetic and in
calculations involving error analysis. Infinite (3777%xx...x or 4000xxx...x)
or indefinite (1777xxx...x or 6000xxx...x) operands cause corresponding exit
conditions to set in the CP for exit mode actionm.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

60463560 A

60463560 A

CP Flpating-Paoint Arithmetic Instructions

411 jk Round floating product of (XJj) and RXi Xj * Xk
{(Xk) to Xi
14 98 65 32 0
41 [i k

This instruction reads operands from two X registers, operates on them to form
a rounded floating-point product, and delivers this result to a third X

register. The operands for this instruction are in Xj and Xk. These operands
are in floating-point format and are not necessarily normalized. The result is
delivered to Xi in floating-point format. If both operands are normalized, the

result 1s also normalized. If both operands are not normalized, the result is
not normalized.

The two operands are unpacked from floating-point format. The exponents are
added with a correction factor to determine the expoment for the result. The
coefficients are multiplied as signed integers to form a 96-bit integer
product, A rounding bit is added to bit position 46 of this product. The
upper half of this product is extracted to form the coefficient for the
result. If the original operands are normalized and the product has only 95
significant bits, a 1-bit left shift is done to normalize the result
coefficient. The resulting exponent 1s reduced by one count in this case.

If both operands are not normalized, the resulting double-precision product has
less than 96 significant bits. No test is made for the position of the most-
significant bit. The upper 48 bits are read from the double-precision product
register. Leading zeros occur in this result coefficient.

This instruction is used in single—precision, floating—point calculations. For
multiple-precision calculations, the 40 and 42 instructions must be used.
Infinite (3777xxx...xX or 4000xxx...x) or indefinite (1777xxx...xX or
6000xxx...x) operands cause corresponding exit conditioms to set in the CP for
exit mode action.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

4-33

CP Floating-Point Arithmetic Instructions

4215k Floating double-precision product DX1 Xj * Xk
of (Xj) and (Xk) to Xi

14 98 65 32 0
42 i i Kk

This instruction reads operands from two X registers, operates on them to form
a double-precision, floating-point product, and delivers the lower half of this
result to a third X register. The operands for this instruction are in Xj and
Xk. These operands are in floating~point format and are not necessarily
normalized. The lower half of the double-precision product is delivered to Xi
in floating-point format and is not necessarily normalized.

The operands are not rounded in this operation. The two operands are unpacked

~from floating-point format, The exponents are added to determine the exponent

for the result., The result exponent is exactly 48 less than the exponent for a
40 instruction. The coefficients are multiplied as signed integers to form a
96-bit integer product. The lower half of this product is extracted to form
the coefficient for the result. If the original operands are normalized and
the double-precision product has only 95 significant bits, a 1-bit left shift
is done to normalize the result coefficient. The resulting exponent is reduced
by one count in this case.

If both operands are not normalized, the resulting double~precision product has
less than 96 significant bits. No test is made for the position of the most-
significant bit. The lower 48 bits are always read from the 96-bit product
register.

This instruction is used in multiple-precision, floating-point calculations.
This instruction also provides for integer multiplication capabilities where
both operands have an exponent value of plus or minus zero, and neither
coefficient has been normalized. The integer result sent to Xi is 48 bits with
60-bit sign extension. If the result exceeds 48 bits, the hardware does not
detect an overflow. An overflow check can be made by executing a 40
instruction using the same two operands. If the result is nonzero, overflow is
then indicated. An integer multiply operation is not intended for use with
normalized operands. Infinite (3777xxx...x and 4000xxx...x) or indefinite
(1777xxx...x or 6000xxx...x) operands cause corresponding exit conditions to
set in the CP for exit mode action.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

60463560 A

CP Floating-Point Arithmaetic Instructions

Floating Divide

60463560 A

4413k Floating divide (Xj) by (Xk) to Xi FXi X3j/Xk

14 98 65 32 0
44 i i k

This instruction reads operands from two X registers, operates on them to form
a floating-point quotient, and delivers this result to a third X register. The
operands for thils instruction are in Xj and Xk. These operands are in
floating-point format. The result of dividing the content of Xj by the content
of Xk is delivered to Xi. If both operands are normalized, the quotient is
also normalized. The remainder from the division process is discarded.

The two operands are unpacked from floating-point format. The exponents are
subtracted with a correction factor to determine the exponent for the result.
The coefficient from Xj is positioned in a dividend register. The coefficient
from Xk is trial-subtracted repeatedly from the dividend. The quotient bits
are assembled in a quotient register. When 48 bits of the quotient are
assembled, they are packed with the result exponent into floating-point format
and delivered to Xi.

If the expoment subtraction causes an underflow or overflow, an underflow or
overflow result is returned even with the occurrence of a divide fault.

If the dividend is not normalized, the quotient cannot be normalized. However,
the quotient is correct even though there may be leading zeros in the
coefficient. If the divisor is not normalized, the quotient may be incorrect.
If the coefficient for the content of Xj is larger than the coefficient for the
content of Xk by a factor of two or more, a divide fault causes an indefinite
result to be returned to Xi. .

This instruction is used in floating-point calculations where rounding of
operands is not desired. In multiple-precision division, this imstruction must
be followed by a multiplication of the quotient by the divisor and subtracted
from the dividend to reconstruct the remainder.

I1f infinite (3777xxx...x or 4000xxx...x) or indefinite (1777xxx...x or
6000xxx...x) operands are used, corresponding exit conditions are set in the CP
for exit mode action.

For further information, refer to Floating-Point Arithmetic under CP
Programming in chapter 5.

4-35

CP Floating-Point Arithmetic Instructions

4-36

451 ik Round floating divide (Xj) by RXi Xj/Xk
(Xk) to Xi

14 98 65 32 0
45 i| ik

This instruction reads operands from two X registers, operates on them to form
a rounded floating-point quotient, and delivers this result to a third X
register. The operands for this instruction are in Xj and Xk. These operands
are in floating-point format. The result of dividing the content of Xj by the
content of Xk is delivered to Xi. If both operands are normalized, the

quotient is also normalized. The remainder from the division process is
discarded.

The two operands are unpacked from floating-point format in this operation.

The exponents are subtracted with a correction factor to determine the exponent
for the result. The coefficient from Xj is positioned in a dividend register.
The Xj quantity 1s modified by inserting a 2525...25 round pattern below the
lowest—order bit of the dividend coefficient. The coefficient from Xk is
trial-subtracted repeatedly from the dividend. The quotient bits are assembled
in a quotient register. When 48 bits of the quotient are assembled, they are
packed with the result expoment into floating-point format and delivered to Xi.

If the dividend is not normalized, the quotient cannot be normalized. However,
the quotient is correct even though there may be leading zeros in the
coefficient. If the divisor is not normalized, the quotient may be incorrect.
If the coefficient for the content of X3j is larger than the coefficient for the
content of Xk by a factor of two or more, a divide fault occurs. A divide
fault causes an indefinite result to be returned to Xi.

This instruction 1is used in single-precision, floating-point calculations where
rounding of operands is desired to reduce truncation errors.

If infinite (3777xxx...x or 4000xxx...x) or indefinite (1777xxx...X or

6000xxx...x) operands are used, corresponding exit conditions are set in the CP
for exit mode action.

For further information, refer to Floating=-Point Arithmetic under CP
Programming in chapter 5.

60463560 A

CP Jump Instructions

CP Jump Instructions

The jump instructions (table 4-7) allow departure from sequential instruction
execution.

Table 4-7, CP Jump Instructions

Opcode Format Instruction Mnemonic
010 xK Return jump to K RJ
02 ixK Jump to (Bi) + K JP
Jump
010xK Return jump to K RJ K
29 21201817 0

010 K

This two-parcel instruction uses the lower—order 18 bits as operand K. This
instruction writes a special word into CM at relative address K. The current
program sequence then terminates by a jump to address K plus 1. The word
stored in memory contains a jump instruction which causes an unconditional jump
to the address of this return jump instruction plus 1.

This instruction calls a subroutine and inserts execution of the subroutine
between execution of this instruction word and the following instructiom word.
Instructions appearing after the return jump instruction in the instruction
word are not executed. The called subroutine exit must be at address K. The
called subroutine entrance address must be K plus 1.

This instructlon stores a 60-bit word at address K in memory. The upper half
of this word contains an unconditional jump (0400) instruction with an address
that is equal to the current program address plus 1. The lower half of the
stored word is all Q's. The octal digits in the stored word then appear as
illustrated with the x field indicating the location of the current program
address plus 1.

K 0400x xxxxX 00000 00000 Subroutine exit

K+1 yYYyy yyyyy YYyyy YYYyVvy Subroutine entrance

60463560 A 4-37

CP Jump Instructions

02ixK Jump to (Bi) + K JP Bi + K

29 24 23 21201817 0
CHE

This two-parcel instruction uses the lower—order 18 bits as operand K. The
instruction causes the current program sequence to terminate with a jump to
address Bi plus K in CM.

This instruction allows computed branch point destinations. This is the only
instruction in which a computed parameter can specify a program branch

destination address. All other jump instructions have preassigned destination
addresses.

The quantities in Bi and operand K are added in an 18-bit one's complement
mode. The result is treated as an 18-bit positive integer that specifles the
beginning address in CM for the new program sequence. The remaining
instructions, if any, in the instruction word do not execute.

4-38 60463560 A

CP Exchange Jump Instructions

CP Exchange Jump Instructions

60463560 A

The exchange jump instructions (table 4-8) exchange the current process

registers (formatted as an exchange package) with another set stored in CM, and
do the following:

#® Yhen executed with CP in Virtual State monitor mode, the processor switches
from monitor to job mode.

® VWhen executed in Virtual State job mode, the processor switches from mob to

monitor mode and the system call bit sets in the monitor condition register
(MCR 10).

In either case, the P register stored in the outgoing exchange package points
to the next instruction that would have executed if the exchange had not
occurred.

This instruction can cause the following exzception conditions.
® Environment specification error.
e System call.

Refer to chapter 5 for programming information.

Table 4-8. CP Exchange Jump Instructions

Opcode Format Instruction Mnemonic
013 jK Central exchange jump to (Bj) +K

(CYBER 170 monitor flag set) XJ Bj+K
013 xX Monitor exchange jump to MA

(CYBER 170 monitor flag clear) XJ

4-39

CP Exchange Jump Instructions

Exchange Jump

0133K Central exchange jump to (Bj) +K XJ Bj + K
when CYBER 170 MF set

013xx Monitor exchange jump to MA when XJ
CYBER 170 MF clear

59 51 47 30 29 0

013 .

This instruction must start at parcel 0. Also, a CYBER 170 exchange package
must be ready at address Bj plus K or at address MA.

F

This Imnstruction stores P plus 1 into the outgoing CYBER 170 exchange package
in hardware and then exchanges this CYBER 170 exchange package with the CYBER
170 exchange package stored in memory. If the CYBER 170 MF is set at the
beginning of the instruction, the incoming CYBER 170 exchange package starts at
absolute address Bj plus K. 1If the CYBER 170 MF is clear at the beginning,
then the j and K fields of the instruction are ignored, and the incoming CYBER
170 exchange package starts at absolute address MA, which 1s obtained from the
outgoing CYBER 170 exchange package. In either case, the CYBER 170 MF is
toggled, and the outgoing CYBER 170 exchange package is stored begimning at the
same CM address from where the incoming CYBER 170 exchange package is

obtained. Also, the jump is always to relative address P, parcel 0, from the
new CYBER 170 exchange package. Refer to CYBER 170 Exchange Jump in chapter 5.

60463560 A

CP Compare/Move Instructions

CP Compare/Move Instructions

Transmit

60463560 A

The compare/move instructions (table 4~9) move characters from one CM location
to another and compare flelds of characters either directly or through a

collate table. The transmit instructions move words from one CM register to
another.

Table 4-9. CP Compare/Move Instructions

Opcode Format Instruction Mnemonic
10 ijx Transmit (Xj) to Xi BXi Xj
14 ixk Transmit complement of (Xk) to Xi BXi -Xk

464 K Move indirect M

465 Move direct DM

466 Compare collated cc

467 : Compare uncollated cu

104jx Transmit (Xj) to Xi BX1 Xj

14 98 65 32 0

T

This instruction tramsfers a 60-bit word from Xj into Xi.

This instruction moves data from one X register to amother X register. No
logical function is performed on the data.

14ixk Transmit complement of (Xk) to Xi BXi -Xk

14 98 65 32 0

This instruction reads a 60-bit word from Xk, complements the word, and writes
the result into Xi.

This instruction changes the sign of a fixed-point or floating-point quantity.
The instruction also inverts an entire 60-bit field during data processing.

4-41

CP Compare/Move Instructions

Compare/Move

4—42

The compare/move instructions (also referred to as CMU instructions) are
provided for compatibility with previous systems. For better performance,
recompile jobs to avoid use of CMU instructiomns.

CMU instructions must appear in parcel 0 or they are treated as illegal
instructions.

Data fields comsisting of 6-bit characters may start or end with any character
position (offset) of the ten 6-bit positions in each word. The character
positions are designated as follows:

59 0

0 1 2 3 4 5 6 7 8 9

For move instructions, a Kl designator specifies which CM word contains the
first character of the source data field, and a Cl designator specifies the
character position (offset) of the flrst character. The K2 designator
specifies the CM location in which the first character of the result data field
is placed, and the C2 designator specifies the first character position. For
compare instructioms, both data field addresses specify source fields.

Example:

If the instruction is K1=1000 and C1=3, the first character of the source
field is in position 3 of location 1000.

0 1

71172173174 | 7576 | 77
3 4 5 6 7 8 9

Therefore, the first character of the source field is 71.

An address i1s out of range if Cl or C2 is greater than 9, Kl plus N1 is greater
than the program field length for CM (FLC), or K2 plus N2 is greater than FLC.
N1 equals the number of CM references made to the source data field starting at
K1, and N2 equals the number of CM references made to the result data field
starting at K2. When an address-—out-of-range condition occurs, the CMU
instruction is not executed.

LL is the lower 4 bits, and LU is the upper 9 bits of the field length
designator in numbers of characters, The maximum length of the data fields for
the move direct and the compare instructions is 127 (177,) characters. The
maximum data field length for the move indirect instructgon is 8191 (l77778)
characters. If L (LU and LL combined) is 0, the instruction becomes a pass.

For overlapping move instructions, the address of the source field (specified
by K1) must be greater than the address of the result field (specified by K2)
to provide proper field overlap. If K1 is less than K2, part of the source
field is changed during execution. The amount of change is determined by the
number of CM conflicts encountered. Overlapping fields should not contain more
than 377 (octal) characters because an exchange jump interrupts any compare/
move operation having a decremented field length greater than 377 (octal).

60463560 A

60463560 A

CP Compare/Move Instructions

464 3K Move indirect IM Bj + X

59 51504847 30 29 a

464 | j K %/////////////////////%

Any instructions located in the lower two parcels of the instruction word do
not execute.

Bj plus K specifies a relative address in CM for the following descriptor word.

The descriptor word specifies the movement of the source field to the result
field. The movement is from left to right through the field. Register X0
clears at the end of the execution.

465 Move direct DM

59 5756 4847 3029 2625 2221 1817 0

%:LU Ki LL]| CI | c2 K2

This instruction moves the source field to the result field as specified by the
60-bit instruction word. The field length is limited to a 7-bit count.

4-43

CP Compare/Move Instructions

466 Compare collated cC
59 5756 4847 3029 2625 2221 1817 0
465| LU K1 LL] c1 | c2 K2

This instruction compares the field designated by K1,Cl with the field
designated by K2,C2 as specified by the 60-bit imstruction word.

The compare is from left to right through the fields until two unequal
characters are found. These two characters are then collated and referenced in
the collate table beginning at address A0 (table 4-10). If the table values
found for the two umequal characters are equal, the compare continues until
another pair of characters 1is unequal or until the field length is exhausted.
If the table values found for the two unequal characters are unequal, X0 is set
prior to instruction termination as follows:

. If fleld K1 is greater than field K2, set X0 to 0000 0000 0000 0000 Oxxx.
e If field Kl is equal to field K2, set X0 to 0000 0000 0000 0000 0000.

® If field Kl is less than field K2, set X0 to 7777 7777 7777 7777 7yyy where
yyy 1s the complement of xxx.

The value of the three octal numbers xxx that are stored in X0 is determined by
the equation L minus N equals xxx (L is the length of the field, and N is the
number of pairs of characters that were collated equal prior to instruction
termination). In other words, xxx is the number of pairs of characters not yet
compared plus 1.

The A0 register contains the starting word address of an 8-word, 64-character
collate table (table 4-10). This table must have been previously stored in
consecutive CM locatioms.

The collated value of a character is found by examining the collate table. The
upper 3 bits of the character to be collated are added to A0 to obtain the
relative address of the word containing the collated value. The lower 3 bits

of the character to be collated specify the character address of the collated
value.

Example:
Suppose the character under examination is an octal 63. The 6 is added to

the A0 to form the word address. The 3 is used to pick the correct
character from that word. The value of 63 is 63 in the collate table,

4-bd 60463560 A

60463560 A

CP Compare/Move Instructions

Table 4-10. Collate Table
Address Collating Character Locatious
A0 00 01 02 03 04 05 06 07 XX XX
AO+1 10 11 12 13 14 15 16 17 XX XX
AQ+2 20 21 22 23 24 25 26 27 XX XX
AQ+3 30 31 32 33 34 35 36 37 XX X
AO+4 40 41 42 43 44 45 46 47 XX XX
AO+5 50 51 52 53 54 55 56 57 XX XX
AD+6 60 61 62 63 64 65 66 67 XX XX
AO+7 70 71 72 73 74 75 76 77 XX XX
467 Compare uncollated CU

59 5150 4847 3029 2625 2221 1817 0

466 LU K1 LL] Ct jc2 K2

This instruction is similar to the 466 instruction except that the collate
The X0 register is set when the first pair of unequal
characters is encountered or when the field length is exhausted.

table is not used.

4-45

CP Set Instructions

CP Set Instructions

4-46

Table 4-11 lists the CP set instructions.

operands from CM for computation and deliver the results back into CM.
remaining opcodes operate on B or X registers only.

Opcodes 50 through 57 obtain

The

Table 4=11., CP Set Imstructions

Opcode Format Instruction Mnemonic
50 ijK Set Al to (Aj) + K SAL Aj+K
51 ijK Set Al to (Bj) + K SAL1 Bj+K
52 ijK Set Ai to (Xj) + K SAL Xj+K
53 ijK Set Al to (Xj) + (Bk) SAL Xj+Bk
54 13K Set A1 to (Aj) + (Bk) SAL Aj+Bk
55 ijK Set AL to (Aj) - (Bk) SAi Aj-Bk
56 ijK Set Ai to (Bj) + (Bk) Sal Bj+Bk
57 ijK Set Ai to (Bj) - (Bk) SA1 Bj-Bk
60 ijK Set Bi to (Aj) + K SBi Aj+K
61 ijK Set Bi to (Bj) + K SBi Bj+K
62 1jK Set Bi to (XJj) + K SBi Xj+K
63 13jK Set Bi to (Xj) + (Bk) SBi Xj+Bk
64 ijK Set Bi to (Aj) + (Bk) SBi Aj+Bk
65 ijK Set Bi to (Aj) - (Bk) SB1 Aj-Bk
66 13K Set Bi to (Bj) + (Bk) SBi Bj+Bk
67 1jK Set BL to (Bj) - (Bk) SBi Bj-Bk
70 ijK Set X1 to (Aj) + K SXi Aj+K
71 ijK Set Xi to (Bj) + K SXi Bj+K
72 ijK Set Xi to (Xj) +K SXi Xj+K
73 ijK Set Xi to (Xj) + (Bk) SX1i Xj+Bk
74 ijK Set X1 to (Aj) + (Bk) SXi Aj+Bk
75 ijK Set X1 to (Aj) - (Bk) SXi Aj-Bk
76 ijK Set Xi to (Bj) + (Bk) SXi Bj+Bk
77 13jK Set Xi to (Bj) - (Bk) SXi Bj-Bk
660 jK Read CM at (Xk) to Xj CRXj XK
670 jK Write Xj into CM at (Xk) CWXj Xk

60463560 A

Set Ai

60463560 A

CP Set Instructions

5013K Set Ai to (Aj) + K SAi Aj + K
29 242321201817 0
50 il K

This two-parcel instruction uses the lower-order 18 bits as operand K. This
instruction reads an operand from Aj, forms the sum of the operand plus K, and
delivers the result to Ai. If the i designator is nonzero, a reference 1s made
to CM, using the result as the relative address. The type of reference is a
function of the i designator value,

i=0 No CM reference

i=1,2,3,4,5 Read from CM to Xi

i=26,7 Write.iuto CM from Xi

This instruction obtains operands from CM for computation and delivers the
result back into CM.

511jK Set Af to (Bj) + K SAi Bj + K
29 242321201817 0
51 i i K

This two-parcel instruction uses the lower—order 18 bits as operand K. This
instruction reads an operand from Bj, forms the sum of the operand plus K, and
delivers the result to Ai. If the i designator is nonzero, a reference is made
to CM, using the result as the relative address. The type of reference is a
function of the i designator value.

i=0 No CM reference

i 1,2,3,4,5 Read from CM to Xi

i 6,7 Write into CM from Xi

This instruction obtains operands from CM for computation and delivers the
result back into CM.

4-47

CP Set Instructions

4-48

521jK Set Al to (Xj) + K SAi Xj + K

29 242321201817 0
52 i i K

This two-parcel instruction uses the lower-order 18 bits as operand K. This
instruction reads an operand from Xj, forms the sum.of the operand plus X, and
delivers the result to Ai. If the i designator 1s nonzero, a reference is made
to CM, using the result as the relative address. The type of reference is a
function of the i designator value.

1i=20 No CM reference

[}

i 1,2,3,4,5 Read from CM to Xi

i=6,7 Write into CM from Xi
This instruction obtains operands from CM for computation and delivers the
result back into CM.

53ijk Set Ai to (Xj) + (Bk) SAi Xj + Bk

14 98 65 32 0
53 i j k

This instruction reads operands from Xj and Bk, forms the sum of the operands,
and delivers the result to Ai. If the 1 designator is nonzero, a reference is
made to CM, using the result as the relative address. The type of reference is
a function of the i designator value.

i=20 No CM reference

i=1,2,3,4,5 Read from CM to Xi

i=6,7 Write into CM from Xi

This instruction obtains operands from CM for computation and delivers the
result back into CM.

60463560 A

60463560 A

CP Set Instructions

541jk Set Ai to (Aj) + (Bk) SA1 Aj + Bk

14 98 65 32 0
54 i j k

This instruction reads operands from Aj and Bk, forms the sum of the operands,

and delivers the result to Ai. If the i designator is nonzero, a reference is

made to CM, using the result as the relative address. The type of reference is
a function of the i designator value.

i=20 No CM reference

i=1,2,3,4,5 Read from CM to Xi
i=26,7 Write into CM from Xi

This instruction obtains operands from CM for computation and delivers the
result back into CM.

551jk Set Ai to (Aj) - (Bk) SAi Aj - Bk

14 98 65 32 0O
55 i i k

This instruction reads operands from Aj and Bk, subtracts the Bk operand from
the Aj operand, and delivers the result to Ai, If the i designator is nonzero,
a reference is made to CM, using the result as the relative address. The type
of reference is a function of the i designator value.

i=0 No CM reference

i=1,2,3,4,5 Read from CM to Xi

i 6,7 Write into CM from Xi

This instruction obtains operands from CM for computation and delivers the
results back into CM.

4-49

CP Set Instructions

4-50

561k Set A1 to (Bj) + (Bk) SAi Bj + Bk

14 98 65 32 0
56 i 1 k

This instruction reads operands from Bj and Bk, forms the sum of the operands,
and delivers the result to Ai. If the i designator is nonzero, a reference is
made to CM, using the result as the relative address. The type of reference is
a function of the i designator value.

i=90 No CM reference

i=1,2,3,4,5 Read from CM to Xi

i=e6,7 Write into CM from Xi
This instruction obtains operands from CM for computation and delivers the
results back into CM. :

571ijk Set Al to (Bj) - (Bk) SAi Bj - Bk

14 98 65 32 0
87 i j k

This instruction reads operands from Bj and Bk, subtracts the Bk operand from
the Bj operand, and delivers the result to Ai. If the 1 designator is nonzero,
a reference is made to CM, using the result as the relative address. The type
of reference is a function of the i designator value.

1i=0 No CM reference

i 1,2,3,4,5 Read from CM to Xi

i 6,7 Write into CM from Xi

This instruction obtains operands from CM for computation and delivers the
result back into CM.

60463560 A

Set Bi

60463560 A

CP Set Instructions

601jK Set Bi to (Aj) + K SBi Aj + K

29 242321201817 0
60 i i K

This two-parcel instruction uses the lower—order 18 bits as operand K. This
instruction reads an operand from Aj, forms the sum of the operand plus K and
delivers the result to Bi. The sum is formed in an 18-bit one's complement
mode. This instruction is for address modification in the increment registers.

611ijK Set Bi to (Bj) + K SBi Bj + K

29 242321201817 0
61 i i K

This two-parcel imstruction uses the lower—order 18 bits as operand K. This
instruction reads an operand from Bj, forms the sum of the operand plus K, and

delivers the result to Bi. The sum is formed in an 18-bit one's complement
mode.

621jK Set Bi to (Xj) + K SBL Xj + K

29 242321201817 0
62 j i K

This two-parcel instruction uses the lower—order 18 bits as operand XK. This
instruction reads an operand from Xj, forms the sum of the operand plus K, and
delivers the result to Bi. The sum is formed in an 18-bit one's complement
mode.

4-51

CP Set Instructions

6313k Set Bi to (Xj) + (Bk) SB1 Xj + Bk

14 98 65 32 0
63 il o«

This instruction reads operands from Xj and Bk, adds the operands, and delivers
the result to Bi. The sum is formed in an 18-bit one's complement mode.

641k Set Bi to (Aj) + (Bk) SBi Aj + Bk

14 98 65 32 0
64 i § k

This instruction reads operands from Aj and Bk, adds the operands, and delivers
the result to Bi. The sum is formed in an 18-bit omne's complement mode.

6513k Set Bi to (Aj) - (Bk) SBi Aj - Bk

14 98 65 32 0
65 i j k

This instruction reads operands from Aj and Bk, subtracts the Bk operand from
the Aj operand, and delivers the result to Bi. The difference is formed in an

18-bit one's complement mode. If the i designator is 0, this becomes a pass
instruction. ‘

60463560 A

60463560 A

CP Set Instructions

661 jk Set Bi to (Bj) + (Bk) SBi Bj + Bk

14 g8 65 32 0
66 i j k

This instruction reads operands from Bj and Bk, adds the operands, and delivers
the result to Bi. The sum is formed in an 18-bit one's complement mode. If
the i designator is 0, this becomes a read central memory instruction.

671ik Set Bi to (Bj) - (Bk) SBi Bj - Bk

14 98 65 32 0
67 i i k

This instruction reads operands from Bj and Bk, subtracts the Bk operand from
the Bj operand, and delivers the result to Bi. The difference is formed in an

18-bit one's complement mode. If the i designator is 0, this becomes a write
central memory instruction.

4-53

CP Set Instructions

Set Xi

701K Set Xi to (Aj) + K SXi Aj + K

29 242321201817 0
70 i i K

This two-parcel instruction uses the lower-order 18 bits as operand K. This
instruction reads an operand from Aj, forms the sum of the operand plus K, and
delivers the result to Xi. The sum is formed in an 18-bit one's complement
mode., The 18-bit result is sign-extended by copylng the highest-order bit of
the result into the upper 42 bit positioms in Xi.

711jK Set Xi to (Bj) + K §X1 Bj + K

29 242321201817 0
71 i i K

This two-parcel instruction uses the lower-order 18 bits as operand K. This
instruction reads an operand from Bj, forms the sum of the operand plus K, and
delivers the result to Xi. The sum i1s formed in an 18-bit one's complement
mode. The 18-bit result is sign-extended by copying the highest—order bit of
the result into the upper 42 bit positions in Xi.

7213jK Set Xi to (Xj) + K SXi Xj + K

29 242321201817 0
72 i i K

This two-parcel instruction uses the lower—order 18 bits as operand K. This
instruction reads an operand from Xj, forms the sum of the operand plus K, and
delivers the result to Xi. The sum is formed in an 18-bit one's complement
mode, The 18-bit result is sign-extended by copying the highest-order bit of
the result into the upper 42 bit positions in Xi.

4~54 60463560 A

60463560 A

CP Set Instructions

7313k Set Xi to (Xj) + (Bk) SXi Xj + Bk

14 98 65 32 0
73 i i k

This instruction reads operands from Xj and Bk, adds the operands, and delivers
the result to Xi. The sum is formed in an 18-bit one's complement mode. The

18-bit result is sign-extended by copying the highest-order bit of the result
into the upper 42 bit positions in Xi.

7413k Set Xi to (Aj) + (Bk) SXi Aj + Bk

14 98 65 32 0
74 i i k

This instruction reads operands from Aj and Bk, adds the operands, and delivers
the result to Xi. The sum is formed in an 18-bit one's complement mode. The
18-bit result is sign-extended by copying the highest-order bit of the result
into the upper 42 bit positions im Xi.

751ijk Set X{ to (Aj) - (Bk) SXi Aj - Bk

14 98 65 32 0
75 i j k

This instruction reads operands from Aj and Bk, subtracts the Bk operand from
the Aj operand, and delivers the result to Xi. The difference is formed in an
18-bit one's complement mode. The 18-bit result is sign-extended by copying
the highest-order bit of the result into the upper 42 bit positions im Xi.

4-55

CP Set instructions

7613k Set Xi to (Bj) + (Bk) SXi Bj + Bk

14 98 65 32 0
76 i i K

This instruction reads operands from Bj and Bk, adds the operands, and delivers
the result to Xi. The sum is formed in an 18-bit one's complement mode. The

18-bit result is sign-extended by copying the highest-order bit of the result
into the upper 42 bit positions im Xi.

771ijk Set Xi to (Bj) - (Bk) SXi Bj - Bk

14 98 65 32 0
77 i i k

This instruction reads operands from Bj and Bk, subtracts the Bk operand from
the Bj operand, and delivers the result to Xi. The difference is formed in an
18-bit one's complement mode. The 18-bit result is sign-extended by copying
the highest—order bit of the result into the upper 42 bit positions in Xi.

4-56 60463560 A

CP Normalize Instructions

Read/Write

660 ik Read central memory at (Xk) to Xj CR Xj, Xk

14 65 32 0
660 i k

This instruction loads into Xj the word at location (Xk), where Xk is a
right-justified 21-bit relative word address. Bits 21 through 59 of Xk are

ignored. 1If the 21 bits of Xk are greater than or equal to FLC, an
address—out-of-range condition is detected.

6703k Write Xj into central memory at (Xk) CW Xj, Xk

14 65 32 0
670 il x

This instruction stores X3j in location (Xk), where Xk is a 21-bit relative word
address. Bits 21 through 59 of Xk are ignored., If the 21 bits of Xk are
greater than or equal to FLC, an address—out-of-range condition is detected.

CP Normalize instructions
The normalize instructions (table 4-12) perform normalizing operations in

floating~point format and deliver the normalized result to Xi.

Table 4-12, CP Normalize Instructions

Opcode Format Instruction Mnemonic
24 ijk Normalize (Xk) to X1 and Bj NXi Bj Xk
. 25 ijk Round normalize (Xk) to Xi and Bj ZXi Bj Xk

60463560 A 4=-57

CP Normalize Instructions

Normalize

4-58

.

241 ik Normalize (Xk) to Xi and Bj NXi Bj, Xk

14 98 65 32 0
24 i i k

This instruction reads one operand from Xk, performs a normalizing operation on
this word in floating-point format, and delivers the normalized result to Xi.
In addition, a positive integer shift count is sent to Bj. This shift count is
the number of bit positions of shift required to normalize the original operand
coefficient.

The normalizing operation consists of repositioning the coefficient portion of
the operand and then adjusting the exponent portion of the operand to leave the
value of the result unaltered. The coefficient is shifted towards the
higher-order bit positions of the word. The coefficient is shifted the minimum
number of bit positions required to make bit 47 different from sign bit 59.
This places the most-significant bit of the coefficient in the highest-order
position. The exponent is then decreased by the number of bit positiomns
shifted.

Two sample computations are listed in octal notation to illustrate the
operation performed. The following example involves a positive floating-point
number.

(Xk) = 2034 0047 6500 0000 2262
(X1i) = 2026 4765 0000 0022 6200
(Bj) = 00 0006

The following example involves a negative floating-point number.

(Xk) = 5743 7730 1277 7777 5515
(Xi) = 5751 3012 7777 7755 1577
(Bj) = 00 0006

Normalizing a number with either a +0 or a -0 coefficient sets a shift count in
Bj to 48 (decimal) and enters X1 with +0. If Xk contains an infinite quantity
(3777xxx...x or 4000xxx...x) or an indefinite quantity (1777xxx...x or
6000xxx...x), no shift takes place. The content of Xk is copied to Xi, and Bj
is set to 0. Corresponding infinite and indefinite exit conditions are also
set in the CP for exit mode action. If the exponent is less than negative 1777
with a zero coefficient, the contents of Xi and Bj are set to 0. For further
information, refer to Floating-Point Arithmetic under CP Programming in

chapter 5.

60463560 A

CP Normalize Instructions

Round Normalize

60463560 A

25iik Round normalize (Xk) to Xi and Bj ZXi Bj, Xk

14 98 65 32 0
25 i j k

This instruction reads one operand from Xk, performs a rounding and then a
normalizing operation in floating-point format, and delivers the round
normalized result to Xi. In addition, a positive integer shift count is sent
to Bj. This shift count is the number of bit pesitions of shift required to
normalize the original operand coefficient.

The rounding operation consists of adding a bit to the coefficient portion of
the operand in a bit position immediately below the least-significant bit
position. This round bit has a value equal to the complement of the operand
sign bit. The result increases the magnitude of the coefficient by one-~half
the value of the least-significant bit.

The normalizing operation consists of repositioning the coefficient and
adjusting the exponent to leave the value of the resulting floating-point
quantity unaltered. The coefficient is shifted towards the higher-order bit
positions. The round bit is shifted along with the coefficient. The
displacement is the minimum number of bit positions required to make bit 47
different from sign bit 59. This places the most-significant bit of the
coefficient in the highest-order bit position. The exponent is decreased by
the number of bit positions shifted.

Two sample computations are listed in octal notation to illustrate the
normalizing operation performed.

An example that involves a positive floating-point number is as follows.

(Xk) = 2034 0047 6500 0000 2262
(Xi) = 2026 4765 0000 0022 6420
(Bj) = 00 0006

The following example involves a negative number.

(Xk) = 5743 7730 1277 7777 5515
(Xi) = 5751 3012 7777 7755 1537
(Bj) = 00 0006

If Xk contains either an infinite quantity (3777xxx...x or 4000xxx...x) or an
indefinite quantity (1777xxx...X or 6000xxx...x), no shift takes place. The
content of Xk is copied to Xi, and Bj is set to 0. Corresponding infinite and
indefinite exit conditions are also set in the CP for exit mode actiomn.

Refer to Floating-Point Arithmetic under CP Programming in chapter 5.

4-~59

CP Pass Instructions

CP Pass Instructions

Pass

4~-60

The pass instructions (table 4-13) perform no operation and are used for

filling words to get the next instruction properly positioned.

Table 4~13. CP Pass Instructions

Opcode Format Instruction Mnemonic
460 XX Pass NO
461 XX Pass
462 TXX Pass
463 XX Pass
460xx Pass NO
thru 463xx
14 98 65 0

46 i %/////%

These instructions £ill program instruction words where necessary to match jump
destinations with word boundaries. The j and k designators are ignored, and a

nonzero value has no effect in this instruction.

60463560 A

CP lllegal Instructions

CP lllegal Instructions

The illegal instructions (table 4-14) cause an exchange to CYBER 170 monitor

mode, when in CYBER 170 job mode, and cause a jump to executive state when in
CYBER 170 monitor mode.

Table 4-14., CP Illegal Instructions

Opcode Format Instruction Mnemonic
00xxx Error exit to MA or interrupt to
executive mode
017 iK Illegal instruction (Trap 180) RT
014 X Read one word from UEM to Xj RXj Xk
015 K Write one word from Xj to UEM WXj Xk
Error Exit
00xxx Error exit to MA when CYBER 17 Ps
MF clear

Interrupt to executive
mode when CYBER 170 MF set

14 9 0
P

= V)

This instruction causes an illegal instruction error exit. CYBER 170 MF is the
hardware monitor flag. Refer to Illegal Instructions ian chapter 5.

Illegal Instruction

017 jk * Illegal Imstruction

Refer to Illegal Instructions in chapter 5.

60463560 A 4-61

CP lilegal Instructions

Illegal Read/Write

4-62

014 jk Read one word from (Xk + RAE) to Xj RXj Xk

14 65 32 0
014 i k

This instruction is illegal if the UEM enable flag in the CYBER 170 exchange
package is clear. This instruction reads the 60-bit word from UEM location Xk
plus RAE into Xj. Xk is less than FLE.

The number of bits checked for an address-out-of-range condition varies,
depending on the addressing mode of UEM. 1In standard addressing mode, 24 bits
of Xk are checked agalnst 23 bits of FLE with bit 23 of FLE equal to 0. In
expanded addressing mode, 30 bits of Xk are checked against 29 bits of FLE with
bit 29 of FLE equal to 0. If Xk is greater than or equal to FLE, an address-
out—-of-range condition 1is detected.

0153k Write one word from Xj to WXj Xk
(Xk + RAE)
14 65 32 0
015 i |k

This instruction is illegal if the UEM enable flag in the CYBER 170 exchange
package is clear. This instruction writes the 60-bit word from Xj into the UEM
location Xk plus RAE. Xk is less than FLE.

The number of bits checked for an addregss—out-of-range condition varies,
depending on the addressing mode of UEM. In standard addressing mode, 24 bits
of Xk are checked against 23 bits of FLE with bit 23 of FLE equal to 0. In
expanded addressing mode, 30 bits of Xk are checked against 29 bits of FLE with
bit 29 of FLE equal to 0. If Xk 1is greater than or equal to FLE, an
address—out-of-range condition is detected.

60463560 A

CP Mask instruction

CP Mask Instruction

Form Mask

60463560 A

431k Form mask of jk bits to Xi MXi jk

14 98 65 32 0
43 I I

This instruction generates a masking word using the j and k designators as
parameters, No operands are read from operating registers. The j and k
designators are treated as a single, 6-bit octal quantity to designate the
width of the masking field. A field of 1l's, beginning at the highest-order end
of the word, is extended downward on a background of 0's. The completed
masking word comsists of 1 bits in the highest-~order jk bit positions and 0
bits in the remainder of the word. This masking word is then delivered to Xi.
The following are sample parameters.

i=2
k = 4
Xi = 7777 7760 0000 0000 0000
This instruction generates variable width masks for logical operations. This

instruction, together with a shift instruction, generally creates an arbitrary
field mask faster than reading a pregenerated mask from CM.

4-63

CP Pop Count Instruction

CP Pop Count Instruction

Population Count

47ixk

Population count of (Xk) to Xi CXi Xk

14

98 65 32 0

47

3 E

This instruction reads one operand from Xk, counts the number of one bits in

the operand, and stores the count in Xi.

positive integer.

delivered to Xi.

The count delivered to Xi is a

If the operand is all 1l's, a count of 60 (decimal) is
If operand is all zeros, a 0's word is delivered to Xi.

CP Read Free Running Counter Instruction

Read Free-Running Counter

4—64

016 jk

Read free running counter RC Xj

14

016

]

65 32 ¢

k

This instruction transfers the current contents of the 48-bit free running
counter to the Xj register.
field is ignored.

The leftmost 12 bits of Xj are set to 0.

The k

This instruction is a single parcel instruction that can be located in any

parcel.

60463560 A

PP Instruction Descriptions

60463560 A

The peripheral processor (PP) instruction set

subgroups.

e Load/Store.

e Arithmetic.

. Logical.'

* Replace.

. Branch.

. Central Memory Access.

Input/Qutput.

Other.

PP Instruction Descriptions

comprises the following eight

4-65

PP Instruction Descriptions

PP Instruction Formats

Figure 4-~2 shows PP instruction formats. PP instructions are 16 or 32 bits
long. In instruction descriptions, the operation code is given either by two
or three octal digits. The third digit, when used, indicates the state of the
s~bit (0 or 1) in I/O instructions (refer to table 4-15).

The upper 4 bits of the PP instructions must be 0 to ensure that the
instructions operate as defined in this chapter.

Table 4-15. PP Nomenclature

Ternm Description

Opcode Specifies instruction operation code.

s Specifies I/0 instruction subcode.

c Specifies channel number.

A Refers to the A register (arithmetic register) or the content of

the A register.

(4) Refers to the content of the word at the CM address specified by
the A reglster.)

P Refers to the P register or to the content of the P register
(program address register).

R Refers to the R register or to the content of the R register
(relocation register).

(d) Refers to the content of the word at the PP memory address
specified by the d field (direct mode).

((a)) Refers to the content of the word at the PP memory address
specified by the content of the word at the PP memory address
specified by the d field (indirect mode).

m + (d) Refers to the PP memory address specified by the m field indexed by

the content of the word at the PP memory addressed specified by the
d field.

(m + (d)) Refers to the content of the word at the PP memory address
specified by the m field indexed by the content of the word at the
PP memory address specified by the d field (memory mode).

4-66 60463560 A

PP Instruction Descriptions

15 1211 65 0
ZEROS| OPCODE d

31 2827 22214 1615 12 11 0
ZEROS| OPCODE d ZEROS m
- /\ -/
v NV
(P) (P+1)
15 1211 6654 0

ZEROS|{ OPCODE |s c

31 2827 22 20 1615 1211 , 0
ZEROS]| OPCODE |s c ZEROS m
N AN J/
v '
(P) {P+1)

Figure 4-2. PP Instruction Formats

PP Data Format

Figure 4~3 shows PP data format and how 12-bit data is packed into 64-bit CM
words or unpacked from 64-bit CM words.

63 59 48 47 36 35 24 23 1211 0

1
ZEROS
64 - BIT DATA WORD IN CENTRAL MEMORY

LOCATION 15 1211 0
d ZEROS a
d+1 ZEROS b
d+2 ZEROS c
d+3 ZEROS d
d+4 ZEROS

64 - BIT DATA WORD IN PP MEMORY

Figure 4-3. PP Data Format

60463560 A 4-67

PP Load/Store Instructions

PP Relocation Register Format

Figure 4~4 shows PP relocation (R) register format. This register is loaded-
from/stored-into PP memory by instructions 24 and 25 (load/store R register).

27 18 17 65 0
a b ZEROS

RELOCATION REGISTER IN PP HARDWARE

LOCATION 15 12 9 0
d ZEROS| 00 a
d+1 ZEROS b

RELOCATION REGISTER IN PP MEMORY

Figure 4=4. PP Relocation (R) Register Format

PP Load/Store Instructions

Load and store instructions (table 4-16) transfer 6-, 10-, 12-, and 18-bit
quantities between the PP A register and the PP memory.

Table 4-16. PP Load/Store Instructioms

Opcode Format Instruction Mnemonic
14 4 Load d : LDN d
15 d Load complement d LCH d
20 dm Load dm LDC m,d
24 d Load R LRD d
30 d Load (4) LDD d
40 d Load ((d)) LDI d
50 dm Load (m+(d)) LDM m,d
25 d Store R SRD d
34 d Store (d) STD d
44 d Store ((4)) STI d
54 dm Store (m+(d)) STM m,d

4-68 60463560 A

Load

60463560 A

PP Load/Store Instructions

144d Load d IDN d

1% 121 65 0

00 14 d

This instruction clears the A register and loads 4. The upper 12 bits of A

are 0.
154 Load complement d LCN d
15 121 65 0
00 15 d

This instruction clears the A -register and loads the complement of d. The
upper 12 bits of A are 1.

20dm Load dm LDC dm
31 28 27 22 21 1615 1211 0
(1]4] 20 d 00 m
L VAN J
v N
(P) (P+1)

This instruction clears the A register and loads an 18-blt quantity consisting
of d as the upper 6 bits and m as the lower 12 bits. The content of the
location (P plus 1) which follows the present program address (P) is read to
provide m.

244 Load R register LRD d
1B 121 65 0
00 24 d

Figure 4-4 shows R register format. If d is not equal to 0, this instruction
loads the upper 10 bits of the R register (bits 18-27) from the rightmost 10
bits of PP memory location d. The 12 bits contained in PP memory location d
plus 1 are loaded into the next 12 bits of the R register (bits 6 through 17).
If d equals 0, the instruction is a pass.

4-69

PP Load/Store Instructions

30d Load (d) Lpp d

15 1211 65 0

00 30 d

This instruction clears the A register and loads the content at location 4.
The upper 6 bits of A are 0.

40d Load ((d)) ILDI d

15 1211 65 0

00 40 d

This instruction clears the A register and loads a 12-bit quantity that is
obtained by indirect addressing. The upper 6 bits of A are 0. Location d is
read from PPM, and the word read is used as the operand address.

50dm Load (m + (d)) . LDM m,d
31 2827 22 1615 1211 0
00 50 d 00 m
. AN J/
hd '
(P) (P+1)

This instruction clears the A register and loads a 12-bit quantity. The upper

6 bits of A are 0's. The 12-bit operand is obtained by indexed direct
addressing.

In indexed direct addressing, the quantity m, which is read from PPM.location P
plus 1, serves as the base operand address to which the content of d 1s added.
If d equals 0, the operand address is m, but if d is not equal to 0, m plus the

content in d is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

4-70 60463560 A

Store

60463560 A

PP Load/Store Instructions

254 Store R register SRD d
15 1211 65 0
00 25 d

Figure 4-4 shows R register format. If d 1s not equal to 0, this instruction
stores the upper 10 bits of the R register (bits 18 through 27) into the
rightmost 10 bits of PP memory location d. The 12 bits contained in PP memory
location d plus 1 are stored into the mext 12 bits of the R register (bits 6
through 17). If d equals 0, the instruction is a pass.

34d Store (d) STD d

15 121 65 0
00 34 d

This instruction stores the lower 12 bits of the A register at location d.

44d Store ((d4)) STI d
1% 1211 65 0

00 44 d

This imstruction stores the lower 12 bits of the A register at the location
specified by the content of locatiom d.

54dm Store (m + (d)) STM m,d
31 28 27 22 21 1615 1211 0
00 54 d 00 m
\ VAN J/
v '
(P) (P+1)

This instruction stores the lower 12 bits of the A register in the location
determined by indexed direct addressing.

In indexed direct addressing, the quantity m, which is read from PPM locatiom P
plus 1, serves as the base operand address to which the coantent of d is added.
If d equals 0, the operand address is m, but if d is not equal to 0, m plus the
content in d is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

4=71

PP Arithmetic Instructions

PP Arithmetic Instructions

The PP arithmetic instructions (table 4-17) perform integer arithmetic using
the PP A register contents as one operand, with the other operand specified by
the instruction. The result replaces the original contents of A. The PP

considers the operands as one's complement integers and performs the arithmetic
in one's complement.

Table 4-17. PP Arithmetic Instructions

Opcode Format Instruction Mnemonic
16 d Add d ADN d
21 dm Add dm ADC m,d
31 d Add (4) ADD d
41 d Add ((d)) ADI d
51 dm Add (m+(d)) ADM m,d
17 d Subtract 4 SBN d
32 d Subtract (d) SBD 4
42 d Subtract ({(d)) SBI d
52 dm Subtract (m+(d)) SBM m,d

Arithmetic Add

led Add 4 ADN d

15 1211 65 0

00 16 d

This instruction adds d (treated as a 6-bit positive quantity) to the content
of the A register,

2ldm Add dm ADC dm
31 2827 2221 1615 121 0
00 21 d 00 m
\ VAN —
' 7
P (P+1)

This instruction adds to the A register the 18-bit quantity consisting of d as
the upper 6 bits and m as the lower 12 bits. The content of the location (P
plus 1) which follows the present program address (P) is read to provide m.

4-72 60463560 A

60463560 A

PP Arithmetic Instructions

31d Add (d) ADD d

15 1211 65 0

00 31 d

This instruction adds the content at location d (treated as a 12-bit positive
quantity) to the A register.

41d Add ((@)) ADI d

1B 1211 65 0

00 41 d

This instruction adds to the content of the A register a 12-bit operand
(treated as a positive quantity) obtained by indirect addressing. Locatiom d
is read from PPM, and the word read is used as the operand address.

5ldm . Add (m + (d)) ADM m,d
31 2827 22 16156 1211 0 .
00 51 d 00 m
\ VAN /
A '
{P) (P+1)

This instruction adds the 12-bit operand (treated as a positive quantity) read
by indexed direct addressing to the A register,

In indexed direct addressing, the quantity m, which is read from PPM locatiomn P
plus 1, serves as the base operand address to which the content of d is added.
If d equals 0, the operand address is m, but if d is not equal to 0, m plus the
content in d is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

4-73

PP Arithmetic Instructions

Arithmetic Subtract

17d. Subtract 4 SBN d

1% 121 65 0

00 17 d

This instruction subtracts d (treated as a 6-bit positive quantity) from the
content of the A register.
32d Subtract (d) SBD d

1% 121N 65 0
00 32 d

This instruction subtracts the content at location d (treated as a 12-bit
positive quantity) from the A register.

424 Subtract ((d)) SBI d
15 1211 65 0 ’
00 42 d

This instruction subtracts from the A register a 12-bit operand (treated as a
positive quantity) obtained by indirect addressing. Location d is read from
PPM, and the word read is used as the operand address.

52dm Subtract (m + (4)) SBM m,d
31 28 27 2221 1615 121 0
00 52 d 00 m
- VAN /
N v -
(P} (P+1)

This instruction subtracts the 12-bit operand (treated as a positive quantity)
read by indexed direct addressing from the A register.

In indexed direct addressing, the quantity m, which is read from PPM location P
plus 1, serves as the base operand address to which the content of d is added.
If d equals 0, the operand address i1s m, but if d is not equal to O, m plus the
content in d is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

4=74 60463560 A

PP Logical Instructions

PP Logical Instructions

The logical instructions (table 4-18) perform operations with ome operand as
the PP A register contents, and the other as specified by the imstruction. The
result replaces the original contents of A. -

Table 4-18. PP Logical Instructions

Opcode Format Imstruction Mnemonic
10 d Shift d SHN d
13 d Selective clear d SCN d
11 d Loglical difference d IMN d
23 dm Logical difference dm LMC m,d
33 d Logical difference (d) ™MD d
43 d Logical difference ((d)) IMI 4
53 dm Logical difference (m+(d)) IMM m,d
12 d Logical product d LPN d
22 dm Logical product dm LPC m,d
Shift
104 Shift d SHN d
15 121 65 0
00 10 d

This instruction shifts the content of the A register right or left d places.
If d4 is positive (00 through 37), the shift is left circular, If d is negative
(40 through 77), the shift is right circular (end~off with no sign extensiom).

Thus, d equal to 06 requires a left-shift of six places; d equal to 71 requires
a right-shift of six places.

Selective Clear

13d Selective clear d SCN d
15 1211 65 0
00 13 d

This instruction clears any of the lower 6 bits of the A register where
corresponding bits of d are 1. The upper 12 bits of A are not altered.

60463560 A 4-75

PP Lagical Instructions

Logical Difference

4-76

1id Logical difference d IMN d
1% 1211 65 0
00 11 d

This instruction forms the bit-by-bit logical difference of d and the lower 6
bits of A in the register in A. This is equivalent to complementing individual

bits of A that correspond to bits of 4 that are 1. The upper 12 bits of A are
not altered.

23dm Logical difference dm IMC dm
31 2827 2221 1615 1211 0
00 23 d 00 m
. AN J
v h'd
(P) {P+1)

This instruction forms the bit-by-bit logical difference of the content of the
A reglster and the 18-bit quantity dm in A. Thls is equivalent to complement-
ing individual bits of A which correspond to bits of dm that are 1. The upper
6 bits of the quantity comsist of 4, and the lower 12 bits are the content of
the location (P plus 1), which follows the present program address (P).

/

33d Logical difference (d) IMD d
15 121 65 0
00 33 d

This instruction forms in the A register the bit-by-bit logical difference of
the lower 12 bits of the A register and the content at location d. This is
equivalent to complementing individual bits of A that correspond to bits in
location d that are 1's. The upper 6 bits are not altered.

60463560 A

60463560 A

PP Logical Instructions

43d Logical difference ((d)) IMI d
15 1211 65 0
00 43 d

This instruction forms in the A register the bit-by-bit logical difference of
the lower 12 bits of the A register and the 12-bit operand read by indirect
addregsing. Location d is read from PPM, and the word read is used as the
operand address. The upper 6 bits of A are not altered.

53dm Logical difference (m + (d)) IMM m,d
31 2827 2221 1615 12 1 0
00 53 d 00 m
. VAN J
v Y

P) {(P+1)

This instruction forms the bit-by-bit logical difference of the lower 12 bits
of the A reglister and a 12-bit operand obtained by indexed direct addressing in
the A register. The upper 6 bits of A are not altered.

In indexed direct addressing, the quantity m, which is read from PPM location P
plus 1, serves as the base operand address to which the content of d is added.
If d equals 0, the operand address is m, but if d is not equal to 0, m plus the
content in d is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

4-77

PP Logical Instructions

Logical Product

4-78

124 Logical product d LEN d
1B 1211 65 0
00 12 d

This instruction forms the bit-by-bit logical product of d and the lower 6 bits
of the A register and leaves this quantity in the lower 6 bits of A.

The upper
12 bits of A are Q. .
22dm Logical product dm LPC dm
31 2827 22 1615 1211 0
00 22 d 00 m
\— AN /
' v
P {P+1)

This iastruction forms the bit-by=-bit logical product of the content of the A
register and the 18-bit quantity dm in A. The upper 6 bits of this quantity

consist of d, and the lower 12 bits are the content of the location (P plus 1),
which follows the present program address (P).

60463560 A

PP Replace Instructions

60463560 A

PP Replace Instructions

The replace instructions (table 4-19) perform integer arithmetic with one
operand as the contents of A and the other as specified by the instruction.
The result replaces the orlginal contents of A and the contents of the other
The result stored in location d is either the rightmost 12
bits (for the normal imstructions) or the rightmost 16 bits (for the long

operands location.

instructions) of the A register.

Therefore, since A contains 18 bits, the

value remaining in A cannot equal the value stored in PP memory location d.
The PP considers the operands as one's complement integers and performs ome's
complement arithmetic.

Table 4-19. PP Replace Instructions

Opcode Format Instruction Mnemonic
35 d Replace add (d) RAD 4
36 d Replace add 1 (d) AOD d
45 d Replace add ((d)) RAI d
46 d Replace add 1 ((d)) AOI d
55 dm Replace add (m+(d)) RAM m,d
56 dm Replace add 1 (m+(d)) AOM m,d
57 dm Replace subtract 1 (m+(d)) SOM m,d
37 d Replace subtract 1 (d) SOoD d
47 d Replace subtract 1 ((d)) soI 4

4-79

- PP Replace Instructions

Replace Add
354 Replace add (d) RAD 4d
15 121 65 0
00 35 d

This instruction adds the quantity at location d to the content of the A
register and stores the lower 12 bits of the result at location d. The result
remains in A at the end of the operation, and the original content of A is
destroyed.

36d Replace add 1 (d) - AOD d
15 12N 65 a
00 36 d

This instruction replaces the quantity at location d with its origimal value
plus 1. The result remains in the A register at the end of the operation, and
the original contemt of A is destroyed.

45d Replace add ((d)) RAI d
15 1211 65 0
00 45 d

This instruction adds the operand, which is obtained from the location
specified by the content at location d, to the content of the A register. The
lower 12 bits of the sum replace the original operand. The result remains in A
at the end of the operation.

4-80 60463560 A

60463560 A

PP Replace Instructions

46d Replace add 1 ((d)) AOI d
15 1211 65 0
00 46 d

This instruction replaces the operand, which is obtained from the location
specified by the content at location d, by its original value plus 1. The
result remains in the A register at the end of the operatiom, and the original
content of A is destroyed.

55dm Replace add (m + (d)) RAM m,d
31 2827 22 21 1615 1211 0
00 55 d 00 m
e : AN J
e NV
(P) {P+1)

This instruction adds the operand, which is obtained from the location
determined by indexed direct addressing, to the A register, The lower 12 bits
of the sum replace the original operand in PPM. The result remains in A at the
end of the operation, and the original content of A is destroyed.

In indexed direct addressing, the quantity m, which is read from PPM location P
plus 1, serves as the base operand address to which the content of d is added.
If 4 equals 0, the operand address is m, but 1f d is not equal to 0, m plus the
content in d is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

56dm Replace add 1 (m + (d)) AOM m,d
31 2827 2221 1615 1211 0
00 56 d 00 m
— VAN /
Vo '
- (P) (P+1)

This instruction replaces the operand, which is obtained from the location
determined by indexed direct addressing, by its original value plus 1. The
result remains in the A register at the end of the operation, and the oxiginal
content of A is destroyed.

In indexed direct addressing, the quantity m, which is read from PPM location P
plus 1, serves as the base operand address to which the content of d is added.
If d equals 0, the operand address is m, but if d is not equal to 0, m plus the
content in 4 is the operand address. Therefore, location d may be used as an
index quantity to modify operand addresses.

4-81

2

PP Replace Instructions

Replace Subtract

4-82

37d Replace subtract 1 (d) SOD d
15 121 65 0
00 37 d

This instruction replaces the quantity at location d with its original value

minus 1. The result remalns in the A register at the end of the operation, and
the original content of A is destroyed.

474 Replace subtract 1 ((d)) S0I 4d
15 1211 65 0
00 47 d

This instruction replaces the operand, which is obtained from the location
gpecified by the content at location d, by its original value minus 1. The

result remains in the A register at the end of the operation, and the original
content of A is destroyed.

57dm Replace subtract 1 (m + (d)) SOM m,d
31 2827 22 21 1615 1211 0
00 57 d 00 m
\ /. /
v A4
(P {P+1)

This instruction replaces the operand, which is obtained from the location
determined by indexed direct addressing, by its original value minus 1. The

result remains in the A register at the end of the operation, and the original
content of A is destroyed.

In indexed direct addressing, the quantity m, which 1s read ffom PPM location P
plus 1, serves as the hase operand address to which the content of d is added.
If d equals 0, the operand address is m, but if d is not equal to 0, m plus the

content in d is the operand address, Therefore, location d may be used as an
index quantity to modify operand addresses.

60463560 A

PP Branch Instructions

PP Branch Instructions

The branch instructions (table 4-20) allow departure from sequential
iastruction execution.

Table 4-20. PP Branch Instructions

Opcode Format Instruction Mnemonic

01 dm Long jump to m + (&) LJM m,d

02 dm Return jump to m + (d) RJM m,d

03 d Unconditional junmp d UJN d

04 4 Zero jump d ZJN d

05 d Nonzero jump d NJN d

06 d Plus jump d PIN d

07 d Minus jump d MJIN d

640 cm Jump to m if channel c¢ active AIM m,c

650 cm Jump to m if channel c inactive IJM m,c

660 cm Jump to m if chamnel c¢ full FJM m,c

661 cm Jump to m if channel ¢ error flag set SFM m,40B+c
670 cm Jump to m if channel c empty EIM m,c

671 cm Jump to m if channel c error flag clear - CFM m,40B+c

Long Jump
01dm long jump to m + (d) LIM m,d
31 28 27 2221 1615 12 11 0
00 01 d 00 m
N AN /
' hd
(P) (P+1)

This instruction jumps to the address given by m plus the content of location
d. If d equals 0, m is not modified.

60463560 A 4-83

PP Branch Instructions

Return Jump

. address plus l.

02dm Return jump to m + (d) RIM m,d
31 28 27 22 1615 1211 0
00 02 d 00 m
. /\o /
' v

This imstruction jumps to the address given by m plus the content of location
d. If d equals zero, m is not wmodified. The current program address (P) plus
2 is stored at the jump address. The next instruction starts at the jump

The subprogram exits with a long jump or normal sequencing to
the jump address minus 1, which in turn contains a long jump, 0100. This
returns the original program address plus 2 to the P register.

Unconditional Jump

4-84

03d Unconditional jump d . UJN d
B 121 65 0
00 03 d

This instruction provides an unconditional jump to any address up to 31
(decimal) locations forward or backward from the current program address. The
value of d is added to the current program address. If d is positive (01
through 37), 0001 through 0037 is added, and the jump is forward. If d is
negative (40 through 76), 7740 through 7776 is added, and the jump is

backward. When d equals 00 or 77, the PP hangs. A deadstart is required to
restart the PP.

60463560 A

PP Branch Instructions

Zero/Nonzero Jump

60463560 A

04d Zero jump d ZIN d
15 1211 65 0
00 04 d

This instruction provides a conditiomal jump to any address up to 31 (decimal)
locations forward or backward from the current program address. If the content
of the A register is 0, the jump is taken. If the content of A is nonzero, the
next instruction executes from P plus 1. A -0 (777777) is treated as nonzero.
For interpretation of d, refer to the 03 instruction.

054 Nonzero jump d NJN d
1% 1211 65 0
00 05 d

This instruction provides a conditional jump to any address up to 31 (decimal)
locations forward or backward from the current program address. If the content
of the A register is nonzero, the jump is taken. If the content of A is 0, the
next instruction executes from P plus 1., A -0 (777777) is treated as nonzero,
If d is positive (01l through 37), 0001 through 0037 is added, and the jump is
forward., If d is negative (40 through 76), 7740 through 7776 is added, and the
jump is backward. When d equals 00 or 77, the PP hangs. A deadstart is
required to restart the PP,

4-85

PP Branch Instructions

Plus/Minus Jump

4-86

06d Plus jump d PJN d
5 1211 65 o]
00 06 d

This instruction provides a conditional jump to any address up to 31 (decimal)
locations forward or backward from the current program address. If the sign of
the A register is positive, the jump is taken. If the sign of A is negative,
the next imstruction executes from P plus 1. A +0 is treated as a positive
quantity. A -0 is treated as a negative quantity. If d is positive (01
through 37), 0001 through 0037 is added, and the jump is forward. If d is
negative (40 through 76), 7740 through 7776 is added, and the jump is

backward. When d equals 00 or 77, the PP hangs. A deadstart is required to
restart the PP,

07d Minus jump d MIN d

1% 121 65 0
00 07 d

This instruction provides a conditional jump to any address up to 31 (decimal)
locations forward or backward from the current program address. If the content
of the A register is negative, the jump is taken. If the content of A is
positive, the next instruction executes from P plus 1. A +0 is treated as a
positive quantity. A -0 is treated as a negative quantity. If d is positive
(01 through 37), 0001 through 0037 is added, and the jump is forward. If d is
negative (40 through 76), 7740 through 7776 1s added, and the jump is

backward. When 4 equals 00 or 77, the PP hangs., A deadstart is required to
restart the PP,

60463560 A

Jump Tom

60463560 A

PP Branch Instructions

640cm Jump to m if channel ¢ active AJM m,c
31 2827 22 20 1615 121 0
00 64 0] ¢ 00 m
— J\ J
' N
(P)

(P+1)

If channel ¢ is active, this instruction causes a jump to m; otherwise, it is a

pass.
650cm Jump to m if channel ¢ inactive IJM m,c
31 28 27 22 20 1615 1211 0
00 65 0] ¢ 00 m
. VAN J/
4 v
(P) (P+1)

This instruction provides a conditiomal jump to a new address specified by m.
The jump is taken if the channel specified by ¢ is ipactive. The next

instruction is at P plus 2 if the channel is active.

660cm Jump to m if channel c full

FJM m,c
31 2827 22 20 1615 121 0
00 66 0} ¢ 00 m
— VN ' J
v '
(P} (P+1)

This instruction provides a conditional jump to a new address specified by m.
The jump is taken 1f the channel designated by ¢ is full. The next imstruction
is at P plus 2 if the channel is empty.

An input channel is full when the input equipment places a word in the channel

The channel is empty when a word has been
accepted. An output channel is full when a PP places a word on the channel.

The channel is empty when the output equipment accepts the word.

and no PP has accepted that word.

PP Branch Instructions

66lcm Jump to m if channel ¢ error flag set SFM m,c
31 28 27 22 20 1615 121 0
00 66 1 ¢ 00 m
. AN J/
2 '
(P) (P+1)

If the channel c error flag is set, this instruction clears the error flag and
causes a jump to m. If this error flag is clear, the instructiom is a pass.
When m is set to P plus 2, the channel error flag is unconditionally cleared
when the program reaches P plus 2.

670cm Jump to m if channel c empty EJM m,c
31 28 27 22 20 1615 1211 0
00 67 0} ¢ 00 m
. AN J
~ Ve
(P) (P+1)

This instruction provides a conditional jump to a new address specified by m.
The jump is taken if the channel specified by c is empty. The next instruction
is at P plus 2 if the chamnel is full. An input channel is full when the input
equipment places a word in the channel and no PP has accepted that word. The
channel is empty when a word has been accepted. An output channel is full when
a PP places a word on the channel. The channel is empty when the output
equipment accepts the word.

67 lcm Jump to m if chamnnel ¢ error flag clear CFM m,c
31 2827 22 20 1615 121 , 0
00 67 1 ¢ 00 m
\. VAN J
' '
(P) (P+1)

If the channel c error flag is clear, this instruction causes a jump to m. If
this error flag is set, the instruction clears the error flag and proceeds with
the next instruction. When m is set to P plus 2, the chammel error flag is
unconditionally cleared when the program reaches P plus 2.

4-88 60463560 B

PP Central Memory Access instructions

PP Central Memory Access Instructions

The PP central memory access instructions (table 4-21) provide the capability
to read and write CM words to and from PP memory. The PPs have read access to
all CM storage locations, while the 0S bounds register controls write and
exchange accesses. The IOU performs CM addressing with real memory woxd
addresses. To address all locations in the larger CM sizes available, the IOQU
uses address relocation to modify the CM address in the A register of the PP.
If bit 46 in A is 1 during a PP central memory read or write instruction, the
IOU adds the R register contents to A register bits 47 through 63 to produce
the CM address. If bit 46 of A is 0, the IOU does not perform address
relocation but uses the A address. The R register contains an absolute 64-word
starting boundary within CM. When relocation is desired, an absolute CM
address is formed by concatenating six 0's to the rightmost end of the R
contents and adding bits 47 through 63 of A.

Table 4-21, PP Central Memory Access Instructions

Central Read

60463560 A

Opcode Format Instruction Mnemonic
60 4 Central read from (A) to d CRD d

61 dm Central read (d) words from (A) to m CRM m,d
62 d Central write to (A) from d CWD 4

63 dm Central write (d) words to (A) from m CWM m,d
604 Central read from (A) to d CRD d

15 1211 65 0
00 60 d

This instruction disassembles one 60~bit word from central memory into five
12-bit words and stores these in five consecutive PP memory locatiomns,
beginning with the leftmost 12 bits of the 60-bit word. .
The parameters of the transfer are as follows: If bit 17 of A is 0, A bits O
through 16 contain the absolute address of the 60-bit word transferred. If bit
17 of A is 1, hardware adds relocation register R to zero—-extended A bits O
through 16 to obtain the absolute address of the 60-bit word transferred. For
further information, refer to R Register under Imput/Output Unit in chapter 2,
and PP Relocation Register Format at the beginning of this section om PP
Instruction Descriptions. Field d gives the PP location that recelves the
first 12-bit word transferred. PP memory addressing is cyclic, and location
0000 follows location 7777.

4-89

PP Central Memory Access Instructions

4-90

61ldm Central read (d) words from (A) to m CRM d,m
31 2827 221 1615 1211 (1]
00 61 d 00 m
\. J\ J
v v
(P) (P+1)

PP location 0000 is used by hardware. This instruction disassembles 60-bit
words from central memory into 12-bit words, and places these in consecutive PP
memory locations, beginning with the leftmost 12 bits of the first 60-bit word.

The parameters of the transfer are as follows: If bit 17 of A is 0, A bits 0
through 16 contain the absolute address of the first 60-bit word transferred.
If bit 17 of A is 1, hardware adds relocation register R to zero-extended A
bits 0 through 16 to obtain the absolute address of the first 60-bit word
transferred. For further information, refer to R Register umder Input/Output
Unit in chapter 2, and PP Relocation Register Format under PP Instruction
Descriptions. PP location d must contain the number of 60-bit words
transferred. Field m gives the PP location into which the first 12-bit word is
placed.

This imstruction stores P plus 1 into PP location 0000 before beginning the
transfer. After the transfer is completed, the next instruction is taken from
1 plus whatever address is stored in location 0000. If the transfer overwrites
location 0000, execution resumes at the location specified by (0000) plus 1 and
results are undefined. (PP memory addressing is cyclic, and location 0000
follows location 7777.)

The A register is incremented by 1 after each 60-bit word is read from central
memory., If the incrementing changes A bit 17, the central memory addressing is
switched between direct address and relocation address modes. Refer to Central
Memory Addressing by PPs in chapter 5.

After the transfer is completed, the A register contains either the address of
the last word transferred plus 1 (direct addressing) or the same address less
the contents of the relacation address register (relocation addressing), except
as follows: If the last word transferred is from a relative address 377776g
and relocation is in effect, then the A register 1s cleared, and the value
returned in A may not point to the last word transferred plus 1.

60463560 A

PP Central Memory Access Instructions

Central Write

60463560 A

62d Central write to (A) from d CWD d
1% 121 65 0
00 62 d

This instruction assembles five 12-bit words from consecutive PP memory
locations into one 60-bit word and stores the 60-bit word im central memory.
The first 1l2-bit word is stored in the leftmost 12 bits of the 60-bit word.
(PP memory addressing is cyclic, and location 0000 follows location 7777.)

The parameters of the transfer are as follows: If bit 17 of A is 0, A bits O
through 16 contain the absolute address of the 60-bit word stored. If bit 17
of A is 1, hardware adds relocation register R to zero—extended A bits 0
through 16 to obtain the absolute address of the 60-bit word stored. For
further information, refer to R Register under Input/Output Unit in chapter 2,
and PP Relocation Register Format under PP Instruction Descriptions. Field d
gives the PP location of the first 12-bit word transferred. The transfer is
subject to the CM bounds test.

4-91

PP Central Memory Access Instructions

4-92

63dm Central write (d) words to (A) from m CWM m,d
31 2827 2221 1615 12 11 0
00 63 d 00 m
— IN P
h'd] h'd
®) (P+1)

Hardware uses PP location 0000, This instruction assembles 12-bit words from
consecutive PP memory locations into 60-bit words and stores these in central
memory. The first 12-bit word is stored in the leftmost 12 bits of the 60-bit

word, (PP memory addressing is cyclic, and location 0000 follows location
7777.)

The parameters of the transfer are as follows: If bit 17 of A is 0, A bits 0
through 16 contain the absolute address of the first 60-bit word transferred,.
If bit 17 of A is 1, hardware adds relocation register R to zero-extended A
bits O through 16 to obtain the absolute address of the first 60-bit word
transferred. For further information, refer to R Register under Input/Output
Unit in chapter 2 and in PP Relocation Register Format at the beginning of this
section on PP Instruction Descriptions. PP location d must contain the number
of 60-bit words transferred. Field m gives the PP location from where the
first 12-bit word is obtained. The transfer is subject to the CM bounds test.
This instruction stores P plus 1 into PP location 0000 before beginning the
transfer. After the transfer is completed, the next instruction is taken from
1 plus whatever address is stored in location 0000.

The A register is incremented by 1 after each 60-bit word is written into
central memory. If the incrementing changes A bit 17, the central memory
addressing 1s switched between direct address and relocation address modes.
Refer to Central Memory Addressing by PPs in chapter 5.

After the transfer is completed, the A register contains either the address of
the last word transferred plus 1 (direct addressing) or the same address less
the contents of the relocation address register (relocation addressing), except
as follows: 1If the last word transferred is from a relative address 377776g
and relocation is in effect, then the A register is cleared, and the value
returned in A may not point to the last word transferred plus 1.

60463560 A

PP Input/Qutput Instructions

PP input/Output Instructions

The PP input/output instructions (table 4-22) direct activity on the I/0
channels. They select an external device and transfer data to or from that
device. The instructions also determine whether a channel or external device
is available and ready to transfer data. The preparatory steps ensure that the
channels carry out an orderly data transfer. Each external device has a set of
external function codes that the PP uses to establish operation modes, and to
start and stop data transfer. The devices can also detect certain errors that
are indicated to the controlling PP.

Table 4-22. PP Input/Qutput Instructions

Opcode Format Instruction Mnemonic
641 cm Test and set channel ¢ flag SCF m,40B+c
651 cm Clear channel ¢ flag CCF ¢

70 d Input to A from channel d IAN d

71 dm Input A words to m from chanmel d IAM m,d
72 d Output from A on channel d OAN d

73 dm Output (A) words from m on channel d OAM m,d
74 d Activate channel 4 ACN d

75 d Deactivate chaunnel d DCN d

76 d Function A on channel d FAN d

77 dm Function m on channel d FNC m,d

60463560 A 4-93

PP Input/Output Instructions

Test/Clear

4-94

641lcm Test and set chamnel ¢ flag SCF m,c¢
31 28 27 22 20 1615 1211 0
00 64 1] ¢ 00 m
\ VAN J/
hd g
P} (P+1)

If the channel ¢ flag 1s set, this instruction causes a jump to m, If the
channel ¢ flag is clear, it sets this flag and continues with the next
instruction. When m is set to P plus 2, the channel flag is unconditiomally
set when the program reaches P plus 2.

If two or more PPs simultaneously issue this instruction for the same chanmnel,
the conflict is resolved as follows:

If one of the competing chanmnels is channel 17 (maintenance chanmnel), the PP in
the lowest physical level sees the true condition of the flag; the other
conflicting PPs see the flag set {(and hence take a jump). If the competing
channel is any other channel, software must resolve the conflict. Any five
consecutively numbered PPs (in the same barrel) issue instructions at different
times.

651cm Clear channel ¢ flag CCF m,c
31 2827 22 20 1615 1211 0
00 65 1| ¢ 00 m
- \ J/
v hd
(P) (P+1)

This instruction clears the channel ¢ flag., The m field is required but is not
used.

60463560 A

PP Input/Output Instructions

Input/Output
70d Input to A from channel d IAN d
15 1211 65 0
00 70 d

60463560 A

This instruction transfers a word from input channel d to the lower 12 bits of
the A register. The upper 6 bits of A are cleared to 0.

NOTE

If bit 5 of d 1s clear and the channel is
inactive, this instruction hangs the PP,
waiting for the channel to go active and full,
1f executed. If bit 5 of d is set and the
channel is inactive or is deactivated before a
full is received, the instruction exits. The
word is not accepted, and the A register clears.

71dm Input A words to m from channel d IAM m,d
31 2827 22 1615 121 0
00 71 d 00 m
- AN J
' Vo
3] {P+1)

This instruction transfers a block of 12-bit words from input channel d to
PPM. The first word goes to the PPM address specified by m. The A register
holds the block length. A reduces by 1 as each word is read. The input
operation completes when A equals 0 or the data channel becomes inactive. If
the operation terminates by the channel becoming inactive, the next storage
location in PPM is set to 0. However, the word count is not affected by this

empty word. Therefore, A holds the block length minus the number of real data
words read.

During this instruction, address 0000 temporarily holds P while m is held in

the P register. P advances by 1 to hold the address for the next word as each
word is stored.

NOTE

If this instruction executes when the data
channel 1s inactive, no input operation is
accomplished, and the program continues at P

plus 2, However, the location specified by m
is set to 0.

4-95

PP Input/Qutput Instructions

72d Output from A on channel d OAN d
15 121 65 0
00 72 d

This instruction transfers a word from the A register (lower 12 bits) to output
channel 4. -

NOTE

If bit 5 of d is clear and the channel is
inactive, this instruction hangs the PP,
waiting for the channel to go active and full,
if executed. If bit 5 of d is set and the

~ channel is inactive, the program continues at
P plus 1. The word is not transferred.

73dm Qutput A words from m on channel d 0AM wm,d
31 28 27 221 1615 12 11 0
- 00 73 d 00 m
\. \ J/
vV '
{P) (P+1)

This instruction transfers a block of words from PPM to channel d. The first
word is read from the address specified by m. The A register holds the number
of words to be sent. A reduces by 1 as each word is read. The output
operation completes when A equals 0 or the channel becomes inactive.

During this imstruction, address 0000 temporarily holds P while m is held in

the P register. P advances by 1 to give the address of the next word as each
word is read from the PPM.

NOTE

I1f this instruction executes when the data
channel is inactive, no output operation is
accomplished, and the program continues at P
plus 2,

4-96 60463560 A

PP Input/Output Instructions

Activate/Deactivate

60463560 A

744 Activate channel d ACN d
15 12 11 65 0
00 74 d

This instruction activates the channel specified by d and sends the active
signal on the channel to equipment comnected to the channel. Activating a

channel, which must precede a 70 through 73 instruction, prepares I/0 equipment
for the exchange of data.

NOTE
If this instruction executes when the data
channel is already active and if bit 5 of d is
set, the program continues at P plus 1.
Otherwise, activating an already active
channel causes the PP to wait until the

channel goes inactive. The PP hangs 1f the
channel does not go inactive.

4~-97

PP Input/Qutput Instructions

75d Deactivate channel d DCN d
1% 1211 65 0
00 75 d

This instruction deactivates the channel specified by d. As a result, the I/O
data transfer stops.

NOTES

If this instruction executes when the data
channel is already inactive and bit 5 of d is
set, the program continues at P plus 1. The
channel remains inactive, and no inactive
signal is sent to the I/0 equipment. Deacti-
vating an already inactive channel causes the
PP to hang until the channel becomes active.

I1f an output instruction is followed by a
disconnect instruction without first estab-
lishing that the input device (check for
channel empty) has accepted the informationm,
the last word transmitted may be lost.

Do not deactivate a channel before putting a
useful program in the associated PP. PPs

other than 0 are hung on an input instruction
(71) after deadstart. Deactivating a channel
after deadstart causes an exit to the address
specified by the content of location 0000 plus
1 and execution of that program. If the chan-
nel 1s deactivated without a valid program in
that PP, the PP executes whatever program was
left in PPM. Therefore, the PP could run wild.

4-98 60463560 A

PP Input/Qutput instructions

Function
76d Function A on channel d FAN d
15 121 65 0
00 76 d

This instruction sends the external function code in the lower 12 bits of the A
register on channel 4.

NOTE

If this instruction executes with bit 5 of d
clear and the channel active, PP execution
gtops until a deadstart or another PP causes
the channel to become inactive. If bit 5 of d
is set and the channel is active, the program
continues at P plus 1. Neither the function
signal nor the function word transmits. The
channel remains active, and execution continues.

77dm Function m on chanmel d FNC m,d
31 2827 22 21 1615 1211 0
00 77 d 00 m
o VAN J/
7 v
P (P+1)

This instruction sends the external function code specified by m on chammel d.

NOTE

If this instruction executes with bit 5 of d
clear and the channel active, PP execution
stops until a deadstart or another PP causes
the channel to become inactive, If bit 5 of d
is set and the channel is active, the progranm
continues at P plus 2. Neither the function
signal nor the function word transmits. The
channel remains active, and executlon countinues.

60463560 A 4-99

Other QU Instructions

Other 10U Instructions

Table 4~23 lists the other IQU instructions.

Table 4-23. Other IOU Instructiomns

Opcode Format Instruction Mnemonic
00 XX Pass | -
27 d Pass
260 X Exchange Jump EXN
261 X Monitor exchange jump MXN
262 X Monitor exchange jump to MA MAN
Pass
00xx Pass PSN
15 1211 65 0
00 00 d

This instruction specifies that no operation is to be performed. The
ingtruction provides a means of padding out a program.

274 Pass KPT d

15 1211 65 0

00 27 d

This instruction 1s not an operation., However, it generates a pulse to a
testpoint (keypolnt) for optional monitoring by external equipment,

4-100 60463560 A

Other IOV Instructions

Exchange Jump

60463560 A

2600 Exchange jump EXN

15 1211 65 0

00 26 00

This instruction causes an unconditional exchange jump in the CP, leaving the
CP CYBER 170 monitor flag unaltered. The new CYBER 170 exchange package begins
at central memory location R plus A when the leftmost bit in A is set. When
this bit is clear, A specifies the address. The PP waits until the exchange is
completed before proceeding with the next instruction.

2610 Monitor exchange jump MXN
1B 121 65 0
0o 26 10

If the CP is in the CYBER 170 monitor mode, this Instruction is a pass. If the
CP is in the CYBER 170 job mode, it causes a CYBER 170 exchange jump in the CP,
switching the CP to the CYBER 170 monitor mode (MF equals 1). The new CYBER
170 exchange package begins at central memory location R plus A when the
leftmost bit in A is set. When this bit is clear, A specifies the address.

The PP waits until the exchange is completed before proceeding with the next
instruction.

2620 Monitor exchange jump to MA MAN
15 121 65 0
00 26 20

If the CP is in CYBER 170 monitor mode, this instruction is a pass. If the CP
is in CYBER 170 job mode, it causes a CYBER 170 exchange jump in the CP,
switching the CP to CYBER 170 monitor mode (MF equals 1). The new CYBER 170
exchange package begins at the absolute address given in the MA field of the
outgoing CYBER 170 exchange package. The PP waits until the exchange is
completed before proceeding with the next instruction.

4-101

instruction Execution Timing

Instruction Execution Timing

4~-102

Table 4-24 lists approximate execution times for the PP instructions.

These
times are listed with the assumption that no conflicts occur. The numbers in
the timing notes column refer to the notes at the end of the table. Execution

times are given in 250-ns major cycles.

NOTE

These execution times are approximations only
and are subject to change without notice.
Accurate timings can come only from benchmark
tests. Control Data Corporation is not

responsible for assumptions made based on the
times listed here.

60463560 A

Instruction Execution Timing

Table 4-24. PP Instruction Timing

Execution Time

Instruction Code Description in 250-ns Cycles Timing Notes
00xx Pass : 1 -
0ldm Long jump to m + (d) _ 3 -
02dm Return jump to m + {(d) 4 -
03d Unconditional jump 4 1 -
04d Zero jump d . 1 | -
054 Nonzero jump d 1 -
06d Plus jump d 1 -
074 Minus jump d 1 -
10d Shift d 1 -
11d Logical difference d 1) -
124 - Logical product d 1 -
13d Selective clear d 1 -~
14d Load 4 1 -
15d Load complement d 1 -
16d Add d 1 -
174 Subtract d 1 -
20dm Load dm 2 -
21dm Add dm 2 -
22dm Logical product dm 2 -
23dm Logical difference dm 2 -
244 Load R register from (d) and (4d) + 1 3 -
25d Store R register at (d) and (d) + 1 4 -
(Continued)

60463560 A 4-103

Instruction Execution Timing

Table 4=-24. PP Instruction Timing (Continued)

Executlion Time

Instruction Code Description in 250-ns Cycles Timing Notes
260x Exchange jump ° 2 1
261x Monitor exchange jump 2 1
262x Monitor exchange jump to MA 2 1
27d Pass 1 -
30d Load (d). | 2 -
31d Add (d) 2 -
32d Subtract (d) 2 -
334 Logical difference (d) 2 -
34d Store (d) 2 -
35d Replace add (d) . 4 -
36d Replace add one (d) 5 -
374 Replace subtract one (d) 5 -
40d Load ((d)) 3 -
41d Add ({d)) 3 -
42d Subtract ((d)) 3 -
43d Logical difference ((d)) 3 ~
44d Store ((d)) 3 -
45d Replace add ((d)) 5 -
46d Replace add one ((d)) 6 -

Timing Notes:

1. No assembly-disassembly unit (ADU) conflicts and no outstanding CYBER 170 exchange
jump request in the ADU.

(Continued)

4-104 60463560 A

instruction Execution Timing

Table 4-24, PP Instruction Timing (Continued)

Execution Time

Instruction Code Description in 250-ns Cycles Timing Notes
474 Replace subtract one ((d)) 6 -
50dm Load (m + (d)) 4 -
51dm Add (m + (d)) 4 -
52dm Subtract (m + (d)) 4 -
53dm Logical difference (m + (d)) 4 -
54dm Store (m + (d)) 4 -
55dm Replace add (m + d)) 6 : -
56dm Replace add one (m + (d)) 7 -
57dm Replace subtract ome (m + (d)) 7 -
60d Central read from (A) to d 12 2
61dm Central read (d) words from (A)
tom - 2,3
62d Central write to (A) from 4 i 6 2
63dm Central write (d) words to (A)
from m - 2,4

640cm Jump to m if channel c active 2 -
641lcm Test and set channel c¢ flag 2 -
650cm Jump to m if channel ¢ inactive 2 -
651cm Clear channel ¢ flag 2 -
660cm Jump to m if chanmel ¢ full 2 -

Timing Notes:

2. No ADU conflicts. No central memory conflicts. Add a possible trip due to
resynchronization (CM read instructions only).

3. Seven major cycles for instruction set—up and instruction exit. Five major cycles
for every CM word.

4, Six major cycles for instructiomn set-up and instruction exit. Five major cycles
for every CM word.

(Continued)

60463560 A 4-105

Instruction Execution Timing

Table 4-24,

PP Instruction Timing (Continued)

Execution Time

Instruction Code Description in 250-ns Cycles Timing Notes
661lcm Jump to m if channel ¢ error flag
set 2 -
670cm Jump to m if channel ¢ empty 2 -
671lcm Jump to m if channel c error flag
clear 2 -
70d Input to A from channel d 2 -
71dm Input A words to m from channel d - 5
72d Output from A on channel d 2 -
73dm Output (A) words from m on
channel d - 5
74d Activate channel d 2 -
75d Deactivate channel d 2 -
76d Function A on channel d 2 -
77dm Function m on channel d 2 -
Timing Notes:
5. Five major cycles for instruction set-up and exit. One major cycle per word
(nonconflict case) or two major cycles per word (conflict case).
Nonconflict case occurs when two PPs communicating to each other are not in the
slot at the same time.
Conflict case occurs when two PPs communicating with each other are in the slot at
the same time,
4-106

60463560 A

5

Programming Information

Programming Information

This chapter contains special programming information about the CP, CM, PPs,
system console, real-time clock, two-port multiplexer, and maintenance channel.

CP Programming

CYBER 170 Exchange Jump

60463560 A

The CP operates in either CYBER 170 job mode, which is interruptable, or CYBER
170 monitor mode, which is not interruptable. A hardware flag called the CYBER
170 monitor flag (MF) indicates the mode in which the CP is executing a job.

The CP uses a CYBER 170 exchange jump operation to switch from CYBER 170 job
mode to CYBER 170 monitor mode and back again. The execution of a CYBER 170
exchange jump permits the CP to send pertinent information from the operating
and control registers to CM and permits CM to send new information to the same
registers. The information that flows from and into the operating and control
registers during a CYBER 170 exchange jump is called a CYBER 170 exchange
package (figure 5-1).

The CP 013 instruction and the PP 2600, 2610, and 2620 instructions initiate a
CYBER 170 exchange jump operation. A CYBER 170 exchange jump instruction
starts or interrupts the CP and provides CM with the first address of a 1l6-word
exchange package. For the 013 instruction with MF set (CP in monitor mode),
the starting address of the CYBER 170 exchange package is Bj plus K. With MF
clear (CP in job mode), the address is the monitor address (MA). For the 2600
instruction, the CYBER 170 exchange package address is A plus R when bit 17 of
the A register is set. When this bit is clear, the address is A. For the 2610
instruction with MF set, the instruction is a pass. With MF clear, the CYBER
170 exchange package address is A plus R when bit 17 of the A register is set,
When this bit is clear, the address is A, For the 2620 instruction with MF
set, the instruction is a pass. With MF clear, the CYBER 170 exchange package
address is MA of the outgoing CYBER 170 exchange package.

CP Programming

59 56 53 50 47 41 35 17 0
Ny P a0 A 700

N+1 RAC At B1

N+2 7// FLC A2 B2

n+3 | em| Fuaas [em 2000000 A3 B3

N+a /// RAE A4 B4

N+5 FLE A5 85

N+6 | / A MA A6 86

o NI A7 B7
LOCATIONS |y + g X0
N+9 X1
N +10 X2
N +11 X3
N +12 X4
N +13 X5
N +14 X6
N +15 X7

m NO HARDWARE REGISTERS EXIST
Figure 5-1. CYBER 170 Exchange Package
5-2 60463560 A

CP Programming

The CYBER 170 exchange package contains the following registers which provide
information for program execution.

18-~bit program address (P) register.

21-bit reference address for CM (RAC) register.

21-bit field length for CM (FLC) register.

6~bit exit mode (EM) register.

6-bit flag register.

21- or 24-bit reference address for UEM (RAE); 21 bits with lower 6 bits

assumed to be 0 in standard addressing mode; 24 bits right-shifted with 6
bits assumed to be 0's in expanded addressing mode.

21~ or 24-bit field length for UEM (FLE); 21 bits in standard addressing

mode and 24 bits in expanded addressing mode; lower 6 bits are assumed to
be 0.

18-bit monitor address (MA) register.

Initial contents of eight 60-bit X registers.

Initial contents of eight 18-bit A registers.

Initial contents of 18-bit B registers Bl through B7; B0 contains a
constant O.

The time that a particular CYBER 170 exchange package resides in the CP
hardware registers is the execution interval. The execution interval begins
with a CYBER 170 exchange jump that swaps the CYBER 170 exchange package
information in CM with the information contained in the CP registers. The
execution interval ends with the nmext CYBER 170 exchange jump.

60463560 A

CP Programming

Executive State

The executive state uses a combination of hardware, software, and microcode to
handle the following items.

System initialization.
Compare/move instructions.

Software errors and unimplemented instructioms that occur in CYBER 170
monitor mode.

Processor—~detected hardware errors.

Hardware integrity verification (diagnostics).

In general, executive state determines the cause of an interrupt and decides
whether to return the CP to the interrupted mode, to halt the CP, or to
simulate a CYBER 170 exchange and return control to CYBER 170 monitor mode.
Refer to Error Response in this chapter.

Floating-Point Arithmetic

Format

5-4

Floating—-point arithmetic expresses a number in the form kBn,

k Coefficient

B Base number

n = Exponent or power to which the base number is raised

B is assumed to be 2 for binary-coded quantities. In the 60-bit, floating-
point format (figure 5-2), the binary point is considered to be to the right of
the coefficient. The lower 48 bits express the integer coefficient, which is
the equivalent of 15 decimal digits. The sign of the coefficient is separated
from the rest of the coefficient and appears in the highest-order bit of the
packed word. Negative numbers are represented im one's complement notation.
The exponent is biased by complementing the exponent sign bit.

60463560 A

Packing

60463560 A

CP Programming

BIAS
LEXPONENT INTEGER CgEFFlClENT
59 58 57 48 47 0
1)1 '

Figure 5-2. Floating-Point Format

Table 5-1 summarizes the configurations of bits 58 and 59 and the implicatioms
regarding signs of the possible combinatioms.

Table 5-1, Bits 58 and 59 Configurations

Bit 59 Bit 58 Coefficient Sign Exponent Sign

0 1 Positive Positive
0 0 Positive Negative
1 0 Negative Positive
1 1 Negative Negative

Packing refers to the conversion of numbers in the form kBB to floating-point
format. A shortcut method of packing exponents can be derived by considering
the representation of -0 and +0 exponents, Assuming a positive coefficient, O
exponents are packed as follows:

+0 exponent: 2000x,...,x

-0 exponent: 1777%,...,X
Since positive exponents are expressed in true form, begin with a bias of 2000
(+0) and add the magnitude of the exponent. The range of positive exponents is

0000 through 1777. In packed form, the range is 2000 through 3777.

When the coefficient 1s negative, the packed positive exponent is complemented
to become 5777 through 4000.

CP Programming

Negative exponents are expressed ino complement form by beginning with a bias of
1777 (=0) and then subtracting the magnitude of the expoment. The range of
negative exponents is negative 0000 through negative 1777. 1In packed form, the
range is 1777 through 0000.

When the coefficient is negative, the packed negative exponent is complemented
to become 6000 through 7777.

Examples of packed and unpacked floating-point numbers are shown in octal
notation to illustrate the packing process. Examples 'l and 2 are different
forms of the integer positive 1. Example 3 is positive 100 (decimal), and
example 4 is negative 100 (decimal). Examples 5 and 6 are large and small
positive numbers. The unpacked values are shown as they might appear in the X
and B registers prior to a pack operation.

The packed -0 exponent is not used for normal operation. Instead, 1777 is used
to indicate the special error condition of Indefinite.

1. Unpacked coefficient 0000 0000 0000 0000 0001

Unpacked exponent 00 0000

Packed format 2000 0000 0000 0000 0001
2. Unpacked coefficient (000 4000 0000 0000 0000

Unpacked exponent 77 7720

Packed format 1720 4000 0000 0000 0000
3. Unpacked coefficient 0000 6200 0000 0000 0000

Unpacked exponent 77 7726

Packed format 1726 6200 0000 Q000 0000
4., Unpacked coefficient 7777 1577 7777 7777 7777

Unpacked exponent 77 7726

Packed format 6051 177 7777 7777 7777
5. Unpacked coefficient 0000 4771 3000 0044 7021

Unpacked exponent 00 1363

Packed format 3363 4771 3000 0044 7021
6. Unpacked coefficient 0000 6301 0277 4315 6033

Unpacked exponent 77 6210

Packed format 0210 6301 0277 4315 6033

60463560 A

Overflow

Underflow

Indefinite

60463560 A

CP Programming

Overflow of the floating-point range is indicated by an exponment value of
positive 1777 (3777 or 4000 in packed form). This is the largest exponent
value that can be represented in the floating-point format. This exponent
value may result from the calculation in which this exponent value, together
with the computed coefficient value, is a correct representation of the
result. This situation is called a partial overflow. However, further
computation using this result generates an overflow.

A complete overflow occurs whenever a result requires an exponent larger than
positive 1777. In this case, a complete overflow value results. This result
has a positive 1777 expoment and a zero coefficient. The sign of the
coefficient is the same as that which generates if the result had not
overflowed the floating-point range.

Underflow of the floating-point range is indicated by an exponment value of
negative 1777 (0000 or 7777 in packed form). This is the smallest exponent
value that can be represented in the floating-point format. This exponent
value may result from the calculation in which this exponent value, together
with the computed coefficlent value, 1s a correct representation of the
result. This situation is called a partial underflow. Further computation
using this result may be detected as an underflow.

A complete underflow occurs whenever a result requires an exponent smaller than
negative 1777. In this case, a complete underflow value results. This result
has a negative 1777 exponent and a zero coefficient. The complete underflow
indicator is a word of all 0's, and it is the same as a zero word in integer
format.

An indefinite result indicator generates whenever the calculation is
unresolvable. An example is division when the divisor is 0 and the dividend is
also 0. Another example is multiplication of an overflow number times an
underflow number. The indefinite result indicator is a value that cannot occur
in normal floating-point calculations. This indicator corresponds to a -0
exponent and a 0 coefficient (177770,...,0 in packed form).

Any indefinite indicator used as an operand generates an indefinite result no

matter what the other operand value is. Although indefinite indicators always
generate wlth a positive sign, they may occur as operands with a negative sign.

5-7

CP Programming

Nonstandard Operands

In summary, the special operand forms in octal are:

Positive overflow (+ &) 3777%,...,%

Negative overflow (- o) 4000x,...,x

Positive indefinite (+IND) 1777%,444,%

Negative indefinite (-IND) 6000x,...,x

Positive underflow (+0) 0000x,...,x

Negative underflow (-0) 7777%,444,X
Tables 5-2 through 5~5 indicate the resulting forms when various combinations
of underflow, overflow, and indefinite forms are used in floating-point

operations. The designations W and N are defined as follows:

W Any word except + and + IND

N Any word except + ® s, + IND, and + 0

Table 5-2. Xj Plus Xk (30, 32, 34 Instructions)

Xk
W + = - @ +IND
W + @ - ® IND
+ e + o + o IND IND
Xj
- ® - @ IND - @ IND
+IND IND IND IND IND

5-8 60463560 A

60463560 A

CP Programming

Table 5-3. Xj Minus Xk (31, 33, 35 Instructions)
Xk
W + @ - @ +IND
W - ® + o IND
+ @ + @ IND + @ IND
Xj
- ® - ® - @ IND IND
+IND IND IND IND IND
Table 5-4., Xj Multiplied by Xk (40, 41, 42 Instructions)
Xk
+N -N +0 -0 + ® - o +IND
+N / 0 0 +® - oo IND
-N / 0 0 - @ + IND
+0 0 0 Integer IND IND IND
Xj -0 -0 0 multiply ¥ 1Np IND IND
+ o + @ - @ IND IND + @ - ® IND
-0 |- + @ IND IND - @ + o IND
+IND IND IND IND IND IND IND IND

11f both operands used in the integer multiply are normalized,
an underflow results.

CP Programming

Table 5-5. Xj Divided by Xk (44, 45 Instructiomns)

Xk

+N -N +0 -0 + ® ~ o +IND

+N / +® =-® 0 0 IND

-N / - +® 0 0 IND

+ 0 0 IND IND 0 0 IND

Xj -0 0 0 IND IND 0 0 IND
4+ ® + @ - ® + & - @ IND IND IND

- - @ + o - & + @ IND IND IND

+IND IND IND IND IND IND IND IND

Normalized Numbers

Rounding

A normalized floating-point number has as large a coefficient and as small an
exponent as possible. A floating—point number in packed format is normalized
if the coefficient sign bit is different from bit 47. This condition indicates
that the coefficient has been left-shifted until bit 47 contains the most-
significant bit in the coefficlent; therefore, the floating-point number has no
leading sign bits in the coefficient. The normalized instructions perform the
coefficient shift. The floating-multiply and floating-divide instructions
deliver normalized results when provided with normalized operands. The
floating—-add instructions may deliver unnormalized results even when both
operands are normalized. Therefore, it 1s necessary to perform the normalize
operation after each sequence of floating-add or floating-subtract operations
if the result is to be kept in a normalized form.

Floating-point instructions round the results in single-~precision computation.
These instructlions execute in the same amount of time as the unrounded
versions. The operands are modified to accomplish the rounding function. The
amount of bias introduced by the rounding operation varies and is affected by
the coefficient value in the operands. The descriptions of the round
instructions define the effects of rounding in detail.

Double-Precision Results

5-10

The floating—-point arithmetic instructions generate double~precision results.
Use of unrounded instructions allows separate recovery of upper- and lower-half
results with proper exponents. Rounded instructions allow only upper-half
results to be obtained. TIwo instructions, one single-precision and one
double-precision, are required to retrieve an entire double~precision result.

60463560 A

60463560 A

CP Programming

To add or subtract two floating-point numbers, the coefficiemt with the smaller
exponent enters the upper half of an accumulator and is right-shifted by the
difference of the exponents. The other coefficient 1is then added into the
upper half of the accumuylator, The result is a double-length register

(figure 5-3).

BINARY POINT —

UPPER HALF RESULT LOWER HALF RESULT
MOST SIGNIFICANT BITS | LEAST SIGNIFICANT BITS
I\ "\

r N N\
95 481 47 0

Figure 5-3. Floating—-Add Result Format

If single precision is selected, the upper 48 bits of the 96~bit result and the
larger exponent are returned as the result. Selecting double precision causes
only the lower 48 bits of the 96-bit result and the larger exponent minus 60
(octal) to be returned as the result. The subtraction of 60 (octal) is
necessary because the binary point is effectively moved from the right of bit
48 to the right of bit 0. A 96-bit product generates from two 48-bit
coefficients. The result of a multiply is a double-length register

(figure 5-4).

BINARY POINT

UPPER HALF RESULT LOWER HALF RESULT
MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS
N\ A

” N T~

95 48 47 0

Figure 5-4, Multiply Result Format

If single precision is selected, the upper 48 bits of the product and the sum
of the exponents plus 60 (octal) are returned as the result. The addition of
60 (octal) is necessary because the binary point effectively moves from the
right of bit 0 to the right of bit 48 when the upper half of the 96-bit result
is selected. If double precision is selected, the result is the lower 48 bits
of the product and the sum of the exponents.

5-11

CP Programming

Fixed-Point Arithmetic

Fixed-point addition and subtraction of 60-bit numbers are handled by the
long-add instructions (36 and 37). Negative numbers are represented in omne's
complement notation, and overflows are ignored. The sign bit is in the
high-order bit position (bit 59), and the binary point is to the right of the
low~order bit position (bit 0).

The increment instructions (50 through 77) handle fixed-point addition and
subtraction of 18-bit numbers. Negative numbers are represented in omne's
complement notation, and overflows are ignored. The sign bit is in the
high-order bit position (bit 17), and the binary point is to the right of the
‘low-order position (bit 0).

Integer multiplication is handled as a subset operation of the
floating-multiply (42) instruction. The integer multiply requires ‘that both
47-bit integer operands have zero exponents and are not normalized. The result
is 48 bits with sign extension. Normalized operands cause underflow results to
be reported. If the results exceed 48 bits, overflow is not detected.

An integer divide takes several steps. For example, an integer quotient X1
equal to X2/X3 is produced by the following steps.

Instructions Remarks

1.. Pack XZ from X2 and BO Pack X2

2. Pack X3 from X3 and BO Pack X3

3. Normalize X3 in X0 and BO Normalize X3 (divisor)

4. Normalize X2 in X2 and BO Normalize X2 (dividend)
5. Floating quotient of X2 and X0 to Xi Divide

6. Unpack X1 to X1 and B7 Unpack quotient

7. Shift X1 nominally left B7 places Shift to integer position

The divide requires that both integer (247 maximum) operands must be in
floating-point format, and the dividend coefficient must be less than two
times the divisor coefficient. The normalize X3 instruction ensures this
condition.

The normalize X3 instruction left-shifts the divisor n places (n>0), providing
a divisor exponent of negative n. The quotient exponent is then O minus (-n)
minus 48 equals n minus 48<0,

After unpacking and left-shifting nominally, the negative (or zero) value in
B7 right-shifts the quotient 48 minus n places, producing an integer quotient
in X1. A remainder may be obtained by an integer multiply of X1 and X3 and
subtracting the result from X2.

5-12 60463560 A

CP Programming

integer Arithmetic

Integer divide packs the integers into floating-point format, using the pack
instruction with a zero-exponent value.

In integer multiplication, a 48-bit product can be formed by using the
double-precision multiply instruction. Both operands must have an exponent
value of +0, and the coefficients camnot both be normalized. The result is
sign-extended to 60 bits and sent to an X register.

In integer division, the divisor must be normalized, but the dividend does not
have to be normalized. The resulting quotient must be unpacked and the
coefficient must be shifted by the amount of the unpacked exponent using the
left-shift (22) instruction to obtain the integer quotient.

Compare/Move Arithmetic

60463560 A

The compare/move arithmetic provides multiple-character manipulation. The
characters are 6 bits long. Characters can be moved from one CM location to

another, and fields of characters can be compared either directly or through a
collate table.

The move direct instruction moves a field of up to 127 characters from one
location to another location as specified in the instruction. The move
indirect instruction performs the same kind of move, but a CM reference is used

to obtain the parameters. The move indirect instruction moves a field of up to
8181 characters.

The compare collated instruction compares two fields of up to 127 characters.
When two characters are unequal, the characters are referenced in a collate
table, and the values are compared. If those values are unequal, the field
with the larger character 1s indicated. The compare uncollated instruction
compares two fields of up to 127 characters and indicates the larger of the
first character pair that is found to be unequal.

CMU instructions are provided for compatibility with previous systems. For
better performance, recompile jobs to avoid use of CMU instructiouns.

5-13

Instruction Lookahead Purge Control

Instruction Lookahead Purge Control

Prefetching of instructions at a branch target address by instruction lookahead
hardware can lead to program failures if a program modifies its own code
dynamically, Under normal conditions, the lookahead registers are purged by
execution of a return jump instruction (010), UEM read imstruction (011),
exchange jump instruction (013), or unconditional branch instruction (02).
Selecting extended purge control extends these conditions. When extended purge
control is in effect, lookahead registers are also purged by execution of any
conditional jump imstruction (03 through 07) or any CM store instruction (50
through 57 when 1 equals 6 or 7). To enable extended purge control, the system
sets bit 52 of the flag register in the CYBER 170 exchange package. When
self-modifying code is present, it may be helpful to set extended purge
control; however, the additional purging causes a degradation in execution and
does not cover all cases of code modification.

Purge Control

If normal purge conditions are in effect, a store instruction that modifies a
sequential instruction must modify at least P plus 6 words ahead to ensure
execution of the modified code. In addition, a store instruction followed by a
branch to a modified instruction executes the modified code only if there are
at least 12 executed instructions between the store and the modified code.

If the extended purge option is selected, a store instruction can modify the
next sequential instruction and be assured of executing the modified
instruction. Likewise, a store instruction followed by a branch to a modified .
instruction always executes the modified code.

Error Response

5-14

When the CP detects or is informed of an error, it records the error.
Depending on the type of error and the exit mode selection bits set in the EM
register, the program in execution may be interrupted. If the error is an
illegal instruction or an address-range error on an RNI or branch, the program
interruption 1s unconditional. For other types of errors, the exit mode
selection bits determine whether or not the program is interrupted. If the
exit mode selection bit is set and the corresponding condition is detected, the
program is interrupted. The exlit mode selection bits are contained in word N
plus 3 of the exchange package. Figure 5-5 shows the format of the exit
condition register at (RAC). Table 5-6 describes the possible contents of the
register. Tables 5-7 and 5-8 list CP error responses.

The CP has the following error conditioms: illegal instructions, hardware
errors, and conditional software errors.

60463560 A

60463560 A

Instruction Lookahead Purge Controf

CONTENT OF P
EXIT REGISTER WHEN
CONDITION ERROR 1S DETECTED

—— ——————in e,

59 54 53 48 47 . 30 29 0
ZEROS| ec P ERROR STATUS

Figure 5-5, Format of Exit Condition Register at (RAC)

Table 5-6. Contents of Exit Condition Register at (RAC)

Field Description

ec 6-bit exit condition code:
Code Condition
00g Illegal instruction.
O1g Address-range error (bit 48).
02g Floating-point infinite (bit 49).
O4g Floating-point indefinite (bit 50).
20g Processor—-detected malfunction.
67g Hardware malfunction.
P When an error exit occurs, the conteat of the P register may not

correspond to the address of the instruction that caused the error
exit. The P register may have been incremented prior to the
execution of the instruction.

ERROR Nonzero information in bits 0 through 29 is error status for customer
STATUS engineering and maintenance.

5-15

instruction Lookahead Purge Control

Table 5-7. Error Exits in CYBER 170 Monitor Mode (MF=1)

Error Response

Error Condition Exit Mode Selected Exit Mode Not Selected
Illegal imstruction or 00 1. The instruction is not executed. 1. N/A (exit mode is always
instruction. selected).

2. Store P and exit condition bits (00)
at location RAC. P equals address
of illegal instruction.

3. Interrupt to executive state.

4. CP stops in executive state.

Exit condition bit 48 set by 1., The X register is unchanged. 1. 1Inhibit read, X unchanged.

an incremental read with an

address out of range (AOR). 2. The A register contains the AOR 2. Continue execution.
address.

3, Store P and exit condition bits (01)
at location RAC. P equals address
of increment instruction or address
of instruction following the increment.

4, Interrupt to executive state.

5. CP stops in executive state.

Exit condition bit 48 set by 1. Block write operation; content of CM 1. Inhibit write, CM unchanged.
an incremental write with an is unchanged.
address out of range (AOR). 2. Continue execution.
2. The A register contains the AOR
address.

3. Store P and exit condition bits (01)
at location RAC. P equals address
of instruction or address of
instruction following the increment.

4, Interrupt to executive state.

5. CP stops in executive state.

Exit condition bit 48 set by 1. Inhibit execution. 1. N/A (exit mode 1is always
an RNI or branch address selected regardless of status
out nf range. 2. Store P and exit conditiom bits of EM register bit 48).

(01) at location RAC. P equals
address of instruction required
by RNI or address of branch
destination lnstruction.

3. Interrupt to executive state.

4. CP stops in executive state.

(Continued)

5-16 60463560 A

Table 5-7.

Instruction Lookahead Purge Control

Error Exits in CYBFR 170 Monitor Mode (MF=1) (Continued)

Error Condition

Error Response

. Exit Mode Selected

Exit Mode Not Selected

Exit condition bit 48 set on

1. Detected by executive state during the 1. Detected by executive state during
CMU instruction. execution of compare/move instruction. the execution of compare/move
instruction.
1. ¢l or C2 greater than 9. 2. Condition 1 omits reading/writing;
CM is unchanged. Condition 2 causes 2. Condition 1 omits reading/writing;
2. Kl or K2 address out of the inatruction to go unexecuted. CM is unchanged. Condition 2 causes
range. the instruction to go unexecuted.
3. Store P and exit bits (01) at RAC. 3. Continue with next instruction.
4. CP stops in executive state.
Exit condition bit 48 sget by 1. Execute instruction as a pass. 1. Execute instruction as a pass.
a UEM address range check
for instructions 011 and 012. 2. Store P and exit bits (0l1) at RAC. 2. Exit to next 60-bit word and
continue execution.
3. Interrupt to executive state.
4. CP stops in executive state.
Exit condition bit 48 set by 1. Execute instruction as a pass. 1. Execute instruction as a pass.
a UEM address range check
for instructions 014 and 015. 2. Store P and exit condition bits (01) 2. Exit to next parcel and continue
at RAC. P equals address of follow— execution.
ing instruction.
3. Interrupt to executive state.
4, CP stops in executive state.
Exit condition bit 49 set by 1. Store P and exit condition bits (02 1. Continue execution.
infinite condition, or bit for infinite or 04 for indefinite).
50 set by indefinite P equals address of arithmetic
condition. instruction or address of instrue-
tion following.
2. Interrupt to executive state.
3. CP stops in executive state.
Any hardware parity error or 1. Interrupt to executive state. 1. Interrupt to executive state.
double SECDED error.
2. Executive state stores P and exit 2. Executive state stores P and
condition bits (20) at RAC. exit condition bits (20) at RAC.
3. CP stops in executive state. 3. CP stops in executive state.

60463560 A

5-17

instruction Lookahead Purge Control

Table 5-8.

Error Exits in CYBER 170 Job Mode (MF=0)

Error Condition

Error Response

Exit Mode Selected

Exit Mode Not Selected

Illegal instruction or 00
instruction.

1.

2.

The instruction is not executed.

Store P and exit condition bits (00)

at location RAC. P equals address
of 1llegal instruction.

Exchange jump to MA and set CYBER
170 MF.

1.

N/A (exit mode is always
gelected).

Exit condition bit 48 set by
an incremental read with an
address out of range (AOR).

The X register is unchanged.

The A register contains the AOR
address.

Store P and exit condition bits
(01) at location RAC. P equals
address of increment instruction
or address of instruction
following the increment.

Exchange jump to MA and set CYBER
170 MF.

Inhibit read, X unchanged.

Continue execution.

Exit condirion bit 48 set by
an incremental write with an
address out of range (ACR).

Block write operation; content of
CM 1s unchanged.

The A reglster contains the AOR
address.

Store P and exit condition blts
(01) at location RAC. P equals
address of imstruction or address
of instruction following the
increment.

Exchange jump to MA and set
CYBER 170 MF.

Inhibit write, CM unchanged.

Continue execution.

Exit condition bit 48 set by
an RNI or branch address
out of range.

Inhibit executlon.

Store P and exit condition bits
(01) at location RAC. P equals
address of instruction required by

RNI or address of branch destination

instruction.

Exchange jump to MA and set
CYBER 170 MF.

N/A (exit mode 1s always
selected regardless of status
of EM register bit 48).

5-18

(Continued)

60463560 A

Table 5-8.

Error Exits in CYBER 170 Job Mode (MF=0) (Continued)

Instruction Lookahead Purge Control

Error Condition

Error Response

Exit Mode Selected

Exit Mode Not Selected

Exit condition bit 48 set on
CMU instruction.

1. Cl or C2 greater than 9.

2. K1 or K2 address out of
range.

1.

Datected by executive state during
the execution of compare/move
instruction.

Condition 1 omits reading/writing;
CM is unchanged. Conditon 2 causes
the instruction to go unexecuted.

Store P and exit bits (01) at RAC.

Exchange jump to MA and set CYBER
170 MF.

1.

Detected by executive state
during the execution of
compare/move instruction.

Condition 1 omits reading/
writing; CM is unchanged.

Condition 2 causes the
instruction to go unexecuted.

Continue with next instruction.

Exit condition bit 48 set by
a UEM address range check
for instructions 011 and 012.

Execute instruction as a pass.

Store P and exit bits (0l) at RAC,
continue execution.

Exchange jump to MA and set CYBER
170 MF.

2,

Execute instructlon as a pass.

Exit to next 60-bit word and

Exit condition bit 48 set by
a UEM address range check
for instructions 014 and 015.

Execute instruction as a pass.

Stop CP.

Store P and exit condition bits (01)

at location RAC.

Exchange jump to MA and set CYBER
170 MF.

Execute instruction as a pass.

Exit to next parcel and
continue execution.

Exit conditiom bit 49 set by
infinite condition, or

bit 50 set by indefinite
condition.

Store P and exit condition bits
(02 for infinite or 04 for
indefinite). P equals address of
arithmetic instruction or address
of instruction following.

Exchange jump to MA and set CYBER
170 MF.

Continue execution.

Any hardware parity error
or double SECDED error.

Interrupt to executive state.

Executive state stores P and exit
condition bits (20) at RAC.

Exchange jump to MA and set CYBER
170 MF.

Interrupt to executive state..

Executive state stores P and
exit condition bits (20) at
RAC.

Exchange jump to MA and set
CYBER 170 MF.

60463560 A

5-1%

Instruction Lookahead Purge Control

Illegal Instructions

An instruction is illegal when it has an illegal operating code, an illegal
operating parameter, or when it is positioned so that it begins in one
instruction word and extends into the next instruction word. In the CYBER 170
job mode, illegal instructions cause an exchange to the CYBER 170 monitor
mode. In the CYBER 170 monitor mode, illegal instructions cause a jump to
executive state. The CP stops. CP illegal instructions are:

o 017.
e 011, 012, 013, 464, 465, 466, 467 if they do not begin at parcel 0.

e 011, 012, 014, 015 if the UEM enable flag in the flag register of the CYBER
170 exchange package is clear.

e Any 30-bit instruction that begins at parcel 3.

5-20 60463560 A

Instruction Lookahead Purge Contro!

Hardware Errors

CP/CM hardware errors are: data parity errors, address parity errors, and
double-bit errors. If the CP is in CYBER 170 job mode, a hardware error causes
a jump to executive state, which returns to CYBER 170 monitor mode. If the CP
is in CYBER 170 monitor mode, a hardware error causes a jump to executive

state. The CP halts. The instruction being executed when such a fault is
detected is not necessarily connected with the fault.

Conditional Software Errors

60463560 A

Conditional software errors are caused by address-range errors and floating-
point infinite/indefinite operands or results. A conditiomal software error
causes action, depending on bits set in the EM field in the current CYBER 170
exchange package. If the bit reserved for use with the specific type of error
is clear, the error is lgnored in both CYBER 170 job and CYBER 170 monitor
modes. If the bit is set and the error occurs in the CYBER 170 job mode, it
causes an exchange to the CYBER 170 monitor mode.,

If the bit is set and the error occurs in the CYBER 170 monitor mode, it causes
an interrupt to executive state.

5-21

Memory Programming

Memory Programming

5-22

All references to CM by the CP for instructions or read/write data are made
relative to RAC. The RAC defines the lower limit of the addresses of a program
in CM. The upper limit of the program addresses is definmed by FLC added to RAC.

All references to UEM by the CP for instructions or read/write data are made
relative to RAE. The RAE defines the lower limit of the addresses of a

program/data in UEM. The upper limit of the addresses is defined by FLE added
to RAE.

The field length is a number of 60-bit words established by the operating
system prior to program execution. All references to CM or UEM for a
program/data must be within the fleld established for that program.
During a CYBER 170 exchange jump, RAC and FLC are loaded into respective
registers to define the CM limits of the program that is initiated by the CYBER
170 exchange jump. RAE and FLE are loaded to define the UEM limits of a
program.
Figure 5-6 shows the absolute and relative memory addresses, RAC, FLC, RAE, and
FLE register relationships. For a program to operate within the established
limits, the following conditions must exist.
° For absolute memory addresses:

RAC < (RAC + P) < (RAC + FLC)

. For relative memory addresses:

0 < P < FLC

60463560 A

Memory Programming

FIRST LOCATION

LAST LOCATION

FIRST LOCATION

LAST LOCATION

CENTRAL

MEMORY

MONITOR

CYBER 170

000

ABSOLUTE
ADDRESS

RELATIVE
ADDRESS

JOB A

RAC+0

RACH+FLC-1

RAE+0

RAE+FLE-1

0

FLC

FLE-1

-~

Jos B

PROGRAM'S
CENTRALMI\)IIEMOR Y

),

|
|
|
' —
| Y < |

JOoBC

JOB'S
PORTION
OF
UEM

S

|
PROGRAM'S
UEM

i
|
|
]

EXECU-
TIVE
STATE

60463560 A

Figure 5-6.

Memory Map

5-23

Memory Programming

Addressing Modes

UEM can be used in either of two addressing modes: standard or expanded.
Standard addressing mode provides addressing up to 21 bits in a 24-bit format.
Expanded addressing mode provides addressing up to 24 bits in a 30-bit format.
Addressing mode is determined by the expanded addressing select flag, bit 55 of
word 3, in the CYBER 170 exchange package.

Direct Read/Write Instructions (014, 015, 660, 670)

These instructions transfer one 60-bit word between the selected X register and
a memory locationm, using a 21-bit relative address. Instructions 660 and 670
use the memory address Xk (21 bits) plus RAC (21 bits) to address CM.

Instructions 014 and 015 use the memory address Xk (21 bits) plus RAE (21 bits)
to address UEM.

Block Copy Instructions (011, 012)

5-24

These instructions transfer up to 131 071 60-bit words between fields in CM and
UEM. The UEM address is X0 plus RAE (bits 0 through 22 in standard addressing
mode; bits 0 through 28 in expanded addressing mode). The CM address is A0
plus RAC (if the block copy flag is clear in the CYBER 170 exchange package) or
X0 (bits 30 through 50) plus RAC (if the block copy flag is set).

The transfers occur in blocks of up to 64 words, during which other CP
activities are suspended,

These instructions are 30-bit instructions that must start at parcel 0. If the
UEM address has bit 21 or bit 22 set in standard addressing mode (bit 28 if in
expanded addressing mode), 0's are transferred to CM and the next instruction
is taken from parcel 2 of the same instruction word. If this {is not the case
on a block read, the next instruction is taken from parcel 0 of the next
instruction word. A transfer of all 0's can be made to central memory using
the 011 instruction and setting bit 21 or 22 {or bit 28) of the address

(X0 + RAE) when FLE is sufficiently large.

60463560 A

PP Programming

PP Programming

The PPs have access to all CM storage locatioms. One 64-bit word or a block of
64-bit words can be transferred from a peripheral processor memory (PPM) to CM
or from CM to PPM. (Five 12-bit PP words equal one 64-bit CM word, with the
leftmost 4 bits undefined.) Data from external devices is read into a PPM, and
with additional instructions, is transferred to CM. Conversely, data is
transferred from CM to a PPM and is then transferred by additional instructions

to external devices. Addresses sent to CM from PPs are absolute or relocation
addresses.

Central Memory Addressing by PPs

PPs address central memory using either absolute or relocation addressing.
Every PP can read all central memory locations without restriction. Every PP

has write access to central memory, The bounds register in central memory may
also be set to limit write access from the IOU.

Instructions 24/25 load/store the relocation (R) register, If bit 17 of the A
register is 0, bits 0 through 16 of A specify an absolute central memory
address 0 through 377 777,. If bit 17 of A is 1, bits O through 16 of A are
added to the 28-bit R reglster to specify an absolute central memory address 0
through 0 007 777 7778. If bit 17 of A changes during a transfer, the address-
ing mode also changes accordingly. The leftmost 7 bits of R represent unused
extra addressing capacity. The rightmost 6 bits of R are appended 0's.
Instruction 24 loads R from two consecutive PP memory locations. Instruction
25 stores R into two PP memory locations. Figure 4-4 shows how R is stored in
PP memory.

PP Memory Addressing by PPs

PP instructlons use 6-bit or 18-bit direct operands or access PP memory through
direct, indirect, or indexed addressing.

Direct 6-Bit Operand

PP instructions in this category are no-address imnstructions. They have the

format OPCODEd. The d field is used as a 6-bit direct operand, zero-extended
to 18 bits in calculations.

Direct 18-Bit Operand

60463560 A

PP instructioms in this category are constant address instructions. They have
the format OPCODEdm. The combined d and m fields are used as an 18-bit operand.

525

PP Programming

Direct 6-Bit Address

PP instructions in this category are direct-address instructions. They have

the format OPCODEd. The d field is used as a 6-bit direct address, accessing
PP memory locations 0 to 77g,

Direct 12-Bit Address

PP instructions in this category are indexed direct-address instructions with
zero index. They have the format OPCODEdm where d equals 0. The m field is
used as a 12-bit direct address that accesses PP memory locatioms O through
7777g.

Indexed 12-Bit Address

PP instructions in this category are indexed direct-address instructions. They
have the format OPCODEdm where d equals 0. The m field is used as a 12-bit
direct address (base address). The d field specifies a PP memory location from
1 to 77,, the contents of which is a 12-bit one's complement number index.

The indgxed direct address is formed by adding the index to the base address as
signed one's complement numbers. Overflow is ignored. When m plus (d) equals
7777, the result is set to 0000, except as follows: adding 7777 plus 7777
equals 7777. In general, adding 0000 or 7777 leaves the other number
unchanged, except when the other number is also 0000 or 7777.

Indirect 6-Bit Address

526

PP instructions in this category are indirect-address instructions. They have
the format OPCODEd. The 6-bit d field is used to read a 12-bit number from PP
locations O through 77,. This number is used as a 12-bit address to access

PP memory locatioms O %hrough 77778-

60463560 A

PP Programming

Central Memory Read/Write Instructions

PP instructions can read and write to central memory either single words or
blocks of words.

PP Central Memory Read Instructions (60, 61)

Instruction 60 transfers one CM word into five 12-bit PP memory words.
Instruction 61 transfers a block of 1 through 811 CM words into 5 through 4095
12~bit PP words. It is possible to transfer up to 4096 CM words overwriting PP
memory cyclically; location O, however, has gspecial properties. The Central
Read description in chapter 4 has more information om instruction 61.

PP Central Memory Write Instructions (62, 63)

Instruction 62 transfers five 12-bit PP memory words into 1 CM word.
Instruction 63 transfers 5 through 4095 PP memory words into 1 through 811 CM
words. It 1s possible to transfer up to 20 480 PP memory words, repeating
information from PP memory cyclically.

60463560 A 5-27

PP Programming

Input/Output Channel Communications

Data transfers to and from external devices are controlled by PP instructions

64 through 77.

The assignment of PPs, transfer priorities, and resolution of
conflicts are software responsibilities. .

Channel parity and reservation must be provided for, using the channel marker
flag and/or software interlocks in central memory. After any conflicts have
been resolved, proceed as follows:

Action Typical Instruction
1. Clear the error flag. Jump if the error flag is set,
and clear the flag (661).
2. Verify inactive status. Jump if active (640).
3. Verify read status:
Prepare for reading the summary status. Function m (77).
Verify that the device responded. Jump if active (640).
Activate the channel. Activate (74).
Read the summary status. Input to A (70).
Verify the error flag is clear. Jump if the error flag is set
(661).
Analyze the summary status. Logical product (12). Zero jump
(04).
4, Enter the number of words to A, Load d (14).
5. Prepare for input/output:

Verify inactive status.
Prepare for read/write.

Verify that the device responded.

Jump if active (640).
Function m (77).

Jump if active (640).

60463560

60463560 A

Action

Typical Instruction

PP Programming

6.

Read/write data:

Activate the channel.
Read/write data.

If write, loop untlil empty.
Disconnect the channel.
Verify inactive status.
Verify transfer integrity:

Verify A words were transferred
(refer to note).

Verify the error flag is clear.
Verify inactive status.

Prepare for reading device status.
Verify that the device responded.
Activate the channel.

Read the device status.

Verify the error flag is clear.

Analyze device status.

Disconnect the channel.

NOTES

Activate (74).
Input/output A words
Jump if full (660).
Deactivate (75).

Jump 1if active (640).

Nonzero jump (05).

(71/73).

Jump if error flag set (661).

Jump if active (640).
Function m (77).

Jump if active (640).
Activate (74).

Input to A (70).

Jump 1f error flag set (661).

Logical product (12).
jump (05).

Deactivate (75).

If A equals the original value, no words were

transferred.

If A is not equal to 0, the device or another

PP ended the transfer.

Nonzero

PP Programming

Inter-PP Communications

Any PP can communicate with any other PP using any channel (except the
real-time clock) by omitting the conditioning of the external devices of that
channel for a data transfer. Both single-word and block transfers can be

used. Either the sending or the receiving PP can activate the chanmel used,
after which the sending PP outputs data into the channel register of the
channel concerned and the receiving PP inputs data from the same register. The
transfer rate is 1 word every 250 ns, except when the transfer is between PPs
in different barrels but in the same time slot. In such a case, the transfer
rate is 1 word every 500 ns. PPs that use the same time slots are as follows:

Slot PP Number

5, 20, 25
6, 21, 26
7, 22, 27
10, 23, 30
11, 24, 31

v P~ LN =
SO
. v v e e

Software resolves priority and reservation problems arising in inter-PP
communications by interlocks stored in CM or by other means.

~ PP Program Timing Considerations

Some external equipment may require timing considerations in issuing function,
activate, and input imstructioms. Refer to the applicable external equipment
reference manual. Such timing considerations may, for example, be required to
ensure that the equipment attains a proper speed before data is sent (required
by some magnetic tape equipment). Also, equipment that terminates a data
transfer by resetting the active flag to inactive often requires timing
considerations 1n issuing the next function instruction.

Channel Operation

Channel Control Flags

Channel operation is affected by the channel active/inactive and full/empty
flags and, depending on the status of these two flags, the chanmmnel is said to
be active, inactive, full, or empty. Each channel also has a marker flag for
software use and an error flag for indicating transmission parity errors.

5-30 60463560

PP Programming

Channel Active/Inactive Flag

A channel is normally activated by a function (76 or 77) imstruction or by an

activate chammel (74) instruction. An external device can also activate the
channel.

A function instruction conditions the external device for a coming data or
status information transfer. The imstruction places a 12-bit function word
plus parity in the channel register and sets the active and full flags. The
function word and a function signal are sent to the external device. No active
or full signals are sent during a function instruction. The external device
accepts the function word and sends an inactive signal, which clears the
channel active and full flags, clearing the channel register.

An activate channel instruction prepares a channel for data transfer and sends
an active signal to the external device. Subsequent input or output
instructions transfer data. A disconnect channel (75) instruction after a data

transfer returns the channel to an inactive state, and an inactive signal is
sent to the external device.

Register Full/Empty Flag

60463560 A

A register is full when it contains a function or data word for am extermal
device or contains a word received from the external device. The register is
empty when the flag clears. The flag is turned on or off as the register
changes state. A channel can only be full when it is active.

On data output, the processor places a word in the channel register (the
channel should be active and empty) and sets a full flag. The data word plus
parity and a full signal are sent to the externmal device. The external device
accepts the word and sends an empty signal to the channel, which clears the
full flag, clearing the channel register. The active and empty status of the
channel signals the PP to send the next word to the register.

On data input, the external device sends a word and a full signal to the data
channel. The word is placed in the channel register, and the full flag sets.
The PP stores the word and clears the full flag, clearing the data register.

An empty signal is sent to the external device, signaling it to send the next
data word.

5-31

PP Programming

Channel (Marker) Flag Instructions (641, 651)

Software uses this flag software as a marker. This flag does not affect
hardware operation. When PPs in the same time slot use this flag, priority

. conflicts exist. For channel 17, (maintenance channel) marker flag, hardware
resolves priority problems. For other channels, software must resolve such
conflicts. Any five comsecutively numbered PPs are not in the same time slot.

Error Flag Instructions (661, 671)

This flag indicates an input data parity error on the specific channel being
tested. The flag also indicates an output data parity error on channels that
have the capability of sending an error signal to the IOU in case of such an
error. The status register of the device concerned must be read to verify
output data integrity.

Channel Transfer Timing

Figure 5-7 shows channel transfer timing. All signal pulses are 25 +5 ns in-
width and occur 25 +5 ns following the 10-MHz clock.

To maintain the fastest possible cycle time (500 ns), a function/full/empty
pulse from the PP must be answered with an inactive/empty/full pulse,
respectively, within 310 +35 ns. If the maximum speed is not required, this
regponse time may be increased by multiples of 100 ns.

The PP master clock frequency can be varied by +2 percent. The peripheral
devices used must tolerate this frequency variation.

5-32 60463560 A

PP Programming

10 MHz CLOCK - lr“25i5"’®
TRANSMITTED - ,
ON CHANNEL | L L LJ ;U L J
= ;

- e 26 ns , I
MASTER CLEAR ~ 25150(1) : l
TRANSMITTED ' i _
ON CHANNEL L L L L [L] L] L]

{

- - 25+5ns
TRANSMITTED Vo @ ‘

FUNCTION |ON CHANNEL ! @ |
Eﬂt#v RECEIVED AT ' T
EXTERNAL DEVICE ; | :
SENT BY !) 35nsi35 ns .
EXTERNAL DEVICE] : l i- * ! —
|) !
RECEIVED AT PP . . ; i
I
'Eh':":,ﬁ,.UVE ’r-» 135ns = - 135 ns -a-; !
G \CABLE DELAY, /CABLE DELAY'
L | (APPROX) ——— (APPROX.) !
| EXTERNAL DEVICE ‘
I RESPONSE TIME !
- VY al
- G) T

NOTES:

@ ALL TRANSMISSION PULSE WIDTHS (INCLUDING DATA, FULL, EMPTY, ETC.) ARE 26+ 5 ns

@ TO AVOID LOST DATA, ALL INPUTS FROM THE CHANNEL TO THE PP MUST ARRIVE WITHIN
THE 70 ns. INPUTS MAY BE EARLIER OR LATER BY 100 ns MULTIPLES.

@ TOTAL TURNAROUND TIME BETWEEN FUNCTION AND INACTIVE 1S MEASURED AT PP.
THIS TIME VARIES DUE TO EXTERNAL DEVICE RESPONSE TIME BUT MUST BE WITHIN
310 + 35 ns TO MAINTAIN THE 500 ns CYCLE TIME.

Figure 5-7. Channel Transfer Timing

60463560 A 5-33

PP Programming

Input/Output Transters

The following paragraphs discuss input/output transfers with the PP.

Data Input Sequence

5-34

The external device sends data (figure 5-8) to the PP via the controller as
follows:

1.

The PP places a function word in the channel register and sets the full
flag and the chanmnel active flag. At the same time, the PP sends the first
of a group of words and function signals to all controllers. The function
signals cause all controllers to sample the words and identify the words as
function codes rather than data words. Comnect codes select controllers
and modes of operation and clear nonselected controllers. Only selected
controllers are connected.

The controller sends an inactive signal to the PP, indicating acceptance of
the function code. The signal drops the chanmel active flag, which in
turn, drops the full flag and clears the channel register.

The PP sets the channel active flag and sends an active signal to the
controller, which signals the input equipment to start sending data.

The input equipment reads a 12-bit data word plus 1 parity bit and then
sends the word with parity to the channel register with a full signal,
which sets the channel full flag (10 to 15 nanoseconds after the data
arrives).

The PP stores the word, drops the full flag, and returns an empty signal,
indicating acceptance of the word. The input equipment clears its data
register and prepares to send the next word,

Steps 4 and 5 repeat for each word transferred.

At the end of the transfer, the controller clears its active condition and
sends an inactive signal to the PP to indicate the end of the data. The
signal clears the chanmel active flag to discomnect the controller and the
PP from the channel.

As an alternative, the PP may choose to disconnect from the channel before
the input equipment has sent all its data. The PP does this by dropping
the active flag and sending an inactive signal to the controller, which
immediately clears its active condition and sends no more data, although
the input equipment may continue to the end of its record or cycle (for

example, a magnetic tape unit would continue to end-of-record and stop in
the record gap).

60463560

PP Programming

PP INSTRUCTIONS
76 AND 77

PP INSTRUCTION
74

PP INSTRUCTIONS
70 AND 71

CHANNEL !NACTIVE @ @

STATUS | ACTIVE I]
OA—D— D@D B O]

SIGNAL ORIGIN

i

i

— - i
FUNCTION PP ——[_\—;
H 1

'
'
'
)
'
'
|
'

FUNCTION CODE

12--BIT WORD PP
+1BIT PARITY

INACTIVE ED

?‘;P,

ACTIVE PP

12-BITWORD ED
+1 BIT PARITY

FULL ED [_‘

)
)
|
1
'
|
I
'
'
1
'
'
'
'
'
A
'
'
I
'
«
'
1

|
|
'
)
'
1
)
3
i
)
!
)
|
3
1
«
[
[l
1
|
i
[
1
|
0
1
3
)
1
|
EMPTY PP [

.

'
¢
i
'
‘
'
'
|
'

INACTIVE EO

DISCONNECT [

REPEATS FOR EACH WORD

DISCONNECT (END OF DATA)

PP INSTRUCTION INACTIVE PP
75 (ALTERNATE)
NOTES:

@ TIME IS A FUNCTION OF EXTERNAL DEVIGE (ED). PP RECOGNIZES INACTIVE 1 MAJOR
CYCLE (OR A MULTIPLE OF MAJOR CYCLES) AFTER FUNCTION. THE PP MUST PREVIOUSLY
RECEIVE INACTIVE.

@ TIME IS A FUNCTION OF PERIPHERAL PROCESSOR (PP). MINIMUM TIME IS 1 MINOR CYCLE.
ACTUAL TIME 1S A FUNCTION OF THE PP PROGRAM.

@ TIME 1S A FUNCTION OF ED.

(4) TIME IS A FUNCTION OF PP. MINIMUM TIME IS 1 MINOR CYCLE. MAXIMUM TIME IS UP
TO 4 MINOR CYCLES TO ALLOW OPERATION WITHIN 1 MAJOR CYCLE.

@ TIME IS A FUNCTION OF PP. MINIMUM TIME IS 2 MAJOR CYCLES. MAXIMUM TIME 1§
AN INTEGRAL MULTIPLE OF MAJOR CYCLES.

@ TIME IS A FUNCTION OF ED.

7. MAJOR CYCLE TIME IS 250 NS.
8. MINOR CYCLE IS 50 NS.

@ TIME 1S A FUNCTION OF ED. FULL SHOULD PROCEED THE DATA BY A MINIMUM OF 5 NS
{15 NS MAXIMUM} TO REMOVE THE CLEAR ON THE INPUT DATA RECEIVERS.

PP MAY DISCONNECT AFTER EMPTY SIGNAL OF ANY ED WORD. STATUS REQUEST
DISCONNECTS IN THIS MANNER.

@ CHANNEL MUST BE PREVIOUSLY INACTIVE.

CHANNEL REMAINS ACTIVE UNTIL ED SENDS INACTIVE.

@ CHANNEL MUST BE PREVIOUSLY INACTIVE.

Figure 5-8. Data Input Sequence Timing
60463560 A 5=35

PP Programming

Data Output Sequence

The PP sends data (figure 5-9) to the external device as follows.

1. The PP places a function word in the channel register and sets the full
flag and the channel active flag. The function signal causes all
controllers to sample the word and identify the word as a function code
rather than a data word. Connect codes select controllers and modes of
operation and clear nonselected controllers. Only selected controllers are
connected,

2. The controller sends an inactive signal to the PP, indicating acceptance of
the function code. The signal drops the channel active flag, which in
turn, drops the full flag and clears the channel register.

3. The PP sets the channel active flag and sends an active signal to the
controller, which signals the output equipment that data flow 1s starting.

4. The PP places a 12-bit data word plus 1 parity bit in the channel register
and sets the full flag. Coincldently, the PP sends a word with parity and
a full signal to the controller.

5. The controller accepts the word and sends an empty signal to the PP where
the signal clears the channel register and drops the full flag.

6. Steps 4 and 5 repeat for each PP word.
7. After the last word is transferred and acknowledged by the controller empty

signal, the PP drops the channel active flag and turns off the controller
with an inactive signal.

5-36 60463560 A

PP Programming

CHANNEL INACTIVE @

STATUS
SIGNAL
FUNCTION
PP
INSTRUCTIONS | r-BiT
76 AND 77
INACTIVE
PP
INSTRUCTION ACTIVE
74
13-BIT
WORD
(4
INSTRUCTIONS FULL
72 AND 73
EMPTY
pp
INSTRUCTION INACTIVE

75

le 5 j
! ! | f &]
O—F-O+-O+—@ o
ORIGIN | | . : | ! !
i | i | |
PP _,—.‘_ | |) ! I | |
| | | } ! | }
PP FUNCTION CODE, [I i | :
i | ! I | ! |
I I ' | r |
€D] i
' 1 ' ' ' I
N I ! | ! ,
[| | | | |
PP [! [- ’
! | | | i
I ! | | REPEATS
PP FOR EACH
h ! I | DATA WORD
!
ED
o DISCONNECT
op {END OF DATA)
NOTES:

EeE® @ ® O © O

©
active [|

] t | !
! | |

TIME 1S A FUNCTION OF EXTERNAL DEVICE (ED). PP RECOGNIZES INACTIVE 1 MAJOR
CYCLE {OR A MULTIPLE OF MAJOR CYCLES) AFTER FUNCTION. THE PP MUST PREVIOUSLY
RECEIVE INACTIVE.

TIME IS A FUNCTION OF PERIPHERAL PROCESSOR (PP).
ACTUAL TIME IS A FUNCTION OF THE PP PROGRAM.

MINIMUM TIME 1S 1 MINOR CYCLE.

TIME IS A FUNCTION OF ED.

TIME 1S A FUNCTION OF PP. MINIMUM TIME 1S 1 MINOR CYCLE. MAXIMUM TIME (5 UP
TO 4 MINOR CYCLES TO ALLOW OPERATION WITHIN 1 MAJOR CYCLE.

TIME IS A FUNCTION OF PP. MINIMUM TIME §$S 2 MAJOR CYCLES. MAXIMUM TIME IS
AN INTEGRAL MULTIPLE OF MAJOR CYCLES.

TIME IS A FUNCTION OF ED.

MAJOR CYCLE TIME IS 250 NS.

MINOR CYCLE IS 50 NS.

CHANNEL MUST BE PREVIOUSLY INACTIVE.

CHANNEL REMAINS ACTIVE UNTIL ED SENDS INACTIVE.

CHANNEL MUST BE PREVIOUSLY INACTIVE.

60463560 A

Figure 5-9. Data Output Sequence Timing

System Console Programming

System Console Programming

Keyboard

A PP transmits function code 70208 to request data from the keyboard of the
system console. The PP then activates the input channel and inputs omne
character from the keyboard. This character enters as the lower 6 bits of the
word; the upper bits are cleared. There 13 no status report by the keyboard.
Table 5-9 lists the keyboard character codes.

Data Display

Data is displayed within an 8- by ll-inch area of a cathode-ray tube (CRT).

The display can be in character mode (alphanumeric) and/or dot mode (graphic).
Two presentation areas (left and right) are displayed. Each is made up of 262
144 dot locations arranged in a 512- by 512-dot format. Each dot position is
determined by the intersection of X and Y coordinates. The lower left corner
dot 1s octal address X=6000 and Y=7000, and the upper right corner dot 1s octal
address X=6777 and Y=7777. An optional CC 634B system console 1s available.
Refer to the hardware reference manual listed in the preface for additiomal
information regarding this terminal.

Character Mode

5~38

In character mode, three sizes are provided. Large characters are arranged in
a 32~ by 32-dot format with 16 characters per line. Medium characters are
arranged in a 16— by 16-dot format with 32 characters per line. Small

characters are arranged in an 8- by 8-dot format with 64 characters per line.
Table 5-10 lists the display character codes.

60463560 A

60463560 A

System Console Programming

Table 5-9. Keyboard Character Codes

Character Code Character Code
No data 00 0 33
A 01 1 34
B 02 2 35
c 03 3 36
D 04 4 37
E 05 5 40
F 06 6 41
G 07 7 42
H 10 8 43
I 11 9 44
J 12 + 45
K 13 - 46
L 14 * 47
M 15 / 50
N 16 (“51
0 17) 52
P 20 Left blank key 53
Q 21 = 54
R 22 Right blank key 55
8 23 s 56
T 24 . 57
U 25 Carriage return 60
v 26 Backspace 61
W 27 Space 62
X 30

Y 31

z 32

5-39

System Console Programming

Table 5-10. Display Character Codes

Character Code Character Code
A 01 1 34
B 02 2 35
c 03 3 36
D 04 4 37
E 05 5 40
F 06 6 41
G 07 7 42
H 10 8 43
I 1 9 44
J 12 + 45
K 13 - 46
L 14 * 47
M 15 / 50
N 16 (51
0 17) 52
P 20 | Space 53
Q 21 = 54
R 22 Space 35
S 23 , 56
T 24 . 57 .
U 25 |

v 26

W 27

X 30

Y 31

b/ 32

5~40 60463560 A

System Console Programming

Dot Mode
In dot mode, display dots are positioned by the X and Y coordinates. The X
coordinates position the dots horizontally. The Y coordinates position the
dots vertically and unblank the CRT for each dot. A series of X and Y
coordinates form horizontal lines. A single X coordinate and a series of Y
coordinates form vertical lines.

Codes

A single function word is transmitted to select the presentation, mode, and
character size (character mode only). Figure 5-10 illustrates the function
word format. The word following the function word specifies the starting
coordinates for the display (for either mode). Figure 5-11 illustrates the
coordinate data word. In character mode, the words that follow are display
character codes. Figure 5-12 illustrates the character data word.

0=CHARACTER MODE
1=DOT MODE
2= KEYBOARD INPUT

0= LEFT PRESENTATION
1= RIGHT PRESENTATION

NOT
USED 0 = SMALL CHARACTERS
7 = EQUIPMENT 1= MEDIUM CHARACTERS
SELECT 2 = LARGE CHARACTERS
1 987 65 32 0

Figure 5-10. Display Station Output Function Code

60463560 A 5-41

System Console Programming

COORDINATE
ADDRESS

1 98 0

N
non
<X

NOTE:

IN DOT MODE, EACH Y COORDINATE TRANSMITTED FORCES
A DOT DISPLAY.

Figure 5-11. Coordinate Data Word

FIRST SECOND
CHARACTER CHARACTER
S\ N\
7 N 7)
11 65 0

Figure 5-12. Character Data Word

When the display operation has started, the controller regulates character
spacing on the line. A new coordinate data word must be sent to start each
line. If new coordinates are not specified, data is written on the line
specified by the active coordinate word, and information already on that line
is overwritten. Character sizes can be mixed by sending a new function word
and coordinate word for each size change. Spacing on a line can be varied by
sending a coordinate word for the character that is to be spaced differently.

5-42 60463560 A

System Console Programming

Programming Example i

The following programming example (figure 5-13) requests an input of one line

of data from the system console and displays this data on the CRT as it is
being typed.

Programming Timing Considerations

When performing an output operation, the computer must wait at the end of the
output for a channel-empty condition to prevent a loss of coordinates or data.
A full jump at the end of the output ensures that the channel is empty and the

display controller accepts the last word of the output before discomnecting
from the channel.

60463560 A 5-43

System Console Programming

START

INPUT ONE

DATA WORD

STORE
DATA

v

ASSEMBLE
DATA IN
CHARACTER
MODE FORMAT

NO

v
OUTPUT
ASSEMBLED DATA
PLUS INITIAL
COORDPINATES

DISPLAY LINE
BEEN FILLED

CONTINUE
DISPLAY

END

5-44

Figure 5-13.

Receive and Display Program Flowchart

60463560 A

Real-Time Clock Programming

Real-Time Clock Programming

Channel 14_ is reserved for the real-time clock. This channel, which is always
active and full, and may be read at any time. The real-time clock is a 12-bit,
free-running counter incrementing at a 1-MHertz rate from O through 40957,

Two-Port Muitiplexer Programming

NOTE

For two-port multiplexer programming, bit
numbering within words is 0 through 63 from
left to right.

Channel 15, is reserved for communications with one or two external devices
through thé two-port multiplexer. One port is reserved for maintenance
purposes, and the other is reserved for future use. The two-port multiplexer
can communicate with all external devices that use EIA standard RS232C serial
interface. The multiplexer can accommodate data with odd/even parity, 5 to 8
bits per character and 1 or 2 stop bits. Issuing appropriate function codes
sets the format. The rate is switch selectable for each channel for operation
between 110 and 9600 baud. These switches are located internally om the
two-port multiplexer.

60463560 A 5-45

Two-Port Multiplexer Programming

Two-Port Multiplexer Operation

The two-port multiplexer uses the rightmost 12 bits on chammel 15,. A 12-bit
(octal) function word from the PP is translated to specify the foﬁlowing
operating conditions.

Code Function

. IXXX Terminal select.
6XXX Terminal deselect.
00XX Read status summary.
01xXX Read terminal data.
02XX Write output buffer.
03XX Set operation mode to terminal.
04XX Set/clear terminal control signal, data terminal ready (DTR).‘
05XX Set/clear terminal control signal, request to send (RTS).
06X Not used.

07XX Master clear selected port.

Terminal Select (7XXX)

The PP sends this select code to specify the terminal to which the function
codes and data transmissions apply. Code 7000 selects port 0 (for future use),
and code 7001 selects port 1 (maintenance console).

Terminal Deselect (6XXX)

The PP sends this code, which deselects the two-port multiplexer from channel
lS8 so the 16-bit channel is available for inter~PP communicatiouns.

5-46 60463560 A

Two-Port Multiplexer Programming

Read Status Surﬁmary (00XX)

This code permits the PP to input status from the selected terminal. One-word
input must follow to read the status respomse. The response is 12 bits, which
are defined as follows.

Bit Status

52-58 Not used.

59 Qutput buffer not full.

60 Input ready.

61 Data carrier detect or carrier omn.
62 Data set ready.

63 Ring indication.

PP Read Terminal Data (01XX)

This code permits the PP to input the terminal data from the selected terminal.
Channel 15, must be activated, and a 1-word input must follow to read in the
terminal data. The data word is 12 bits, which are defined as follows.

Bit Status

52 Data set ready.

53 Data set ready and data carrier detector.
54 Over rumn.

55 Framing or parity error.

56-63 8-bit data.

Data Set Ready (Bit 52)

When the data set ready signal is active, this bit sets.

60463560 A 5-47

Two-Port Multiplexer Programming

Data Set Ready (DSR) and Data Carrier Detector (DCD) (Bit 53)

When both data set ready and data carrier detector signals are active, this bit
sets.

Over Run (Bit 54)

When the previously received character is not read by the PP before the present
character is transferred to the data holding register, the overrun bit sets.

Framing or Parity Error (Bit 55)

When the received character does not have a valid stop bit (framing error) or
when this bit sets, the received character parity does not agree with the
gselect parity (parity error).

Data Character (Bits 56 Through 63)

The lower 8 bits of the input word form the data character. The multiplexer
forms this character directly from the Universal Asynchronous Receiver and
Transmitter (UART).

PP Write Output Buffer (02XX)

This code prepares the multiplexer for an output operation to the 64-character
output buffer memory. Before an output operation can proceed, channel 15g

must be activated. The output operation is terminated when the multiplexer
receives an inactive signal from the PP or when no more locations are available
in the output buffer. 1In the latter case, an inactive (instead of empty) signal
is sent back to the chanmel, which in turn, terminates the output operations.

5-48 60463560 A

Two-Port Multiplexer Programming

Set Operation Mode to the Terminal (03XX)

This code permits the PP to set the terminal operation mode register. A 12-bit
function code word from the PP specifies the operation of the terminal. This.

word is decoded in the function register. Segments of the word define the mode
as follows:

Bit Status
58 Not used.
59 No parity.

When this bit is set, it eliminates the parity bit from the
transmitted and received characters. The stop bit(s) immediately
follow the last data bit.

60 Number of stop bits.
This bit selects the number of stop bits, 1 or 2, to be appended
immediately after the parity bit. When this bit is clear, it
inserts 1 stop bit and when set, it inserts 2 stop bits.

61-62 Number of bits per character.

These 2 bits are internally decoded to select 5, 6, 7, or 8 data
bits per character.

Bit 61 Bit 62 Bits Per Character

=Moo
HOHO
®~ O W

63 0dd/even parity select.

This bit selects the type of parity that will be appended
immediately after the data bits. It also determines the parity
that will be checked on read data.

Set/Clear Data Terminal Ready (04XX)

This code permits the PP to set or clear the terminal control signal, data

terminal ready (DTR). When bit 63 is set, DIR is active, and when bit 63 is
clear, DIR is inactive.

60463560 A 5-49

Two-Port Multiplexer Programming

Set/Clear Request to Send (05XX)

This code permits the PP to set or clear the terminal control signal, request
to send (RTS). When bit 63 is set, RTS is active, and when bit 63 is clear,
RTS is inactive.

Master Clear (07XX)

This code permits the PP to master clear the selected port including its output

buffer memory and UART. The terminal operation mode register and terminal
control signals are not cleared.

Programming Considerations

Channel 153 communicates with the terminals connected to the external
interface, one at a.time. To establish communications between a PP and the
terminal, the PP issues a function for select. The function word for select is
formed by the least-significant 12 bits, which are sent to channel 158, and
specifies the following information.

® A select code to select the multiplexer (7XXX).

e The terminal with which the PP would like to establish communicatiom (7XXX).
When the connect is established, the two-port multiplexer routes all data to

the terminal desigpated by the select code. The multiplexer responds with the
inactive signal to acknowledge the receipt of the function code of 7XXX for

select, 6XXX for deselect, and OXXX for operation. Otherwise, the multiplexer
ignores the function.

60463560 A

Qutput Data

input Data

Two-Port Multiplexer Programming

The multiplexer accepts a maximum data block length of 64 characters per
terminal. During the block data transfer, the multiplexer terminates the
output operation either when it receives an inactive signal from the channel or
when the output buffer is full. When the output buffer is full, the multi-
plexer sends back an inactive signal instead of an empty signal to the channel
on the last output word. The signal indicates the output buffer accepts the
last output word and it cannot receive anymore data from the PP. The multi-
plexer does not allow output to a full buffer. The multiplexer sends back an
inactive signal to deactivate channel 15, after the multiplexer decodes the
previous function code, which is 02XX (Pg write output buffer), and receives an
activate signal from the PP.

The multiplexer does not store the input data from the terminal. A lost data
condition exists if the PP does not input the previous data before the new data

arrives from the terminal. The multiplexer allows input from an empty input
buffer.

Request to Send and Data Terminal Ready

60463560 A

The hardware brings up request to send and data terminal ready automatically
under the following conditions regardless of the software RTS and DTR bits.

° Data in the UART output register.
° Data in the FIFQ output register.

When no data is in the FIFQ or UART, the software bit determines RTS and DTR.

5-51

Maintenance Channe! Programming

Maintenance Channel Programming

NOTE

Maintenance registers are numbered 0 through
63 from left to right.

Maintenance Channel

A PP in the IOU can perform any or all of the following operatioms through the
maintenance channel (MCH) to each system element, such as the CP, 10U, and CM.

e Initializing registers, controls, and memories.
e Monitoring and recording error informatiomn.
o Verifying error-detection and correction hardware.

The maintenance chamnel consists of the maintenance channel interface on

channel 17,, a maintenance channel interface in each system element, and a
set of iutgrconnecting cables,

The IOU maintenance channel interface contains a selector that connects to one
of up to seven system elements. The IQU is element 0, and its maintenance
access control is internally connected to the selector, All other system
elements are assigned arbitrary element numbers. A single cable comnects each
maintenance access control to the selector. This arrangement results in a
radial conmnection that allows any system element to be shut down or removed
without affecting communication with the other elements.

5-52 60463560 A

Maintenance Channel Programming

MCH Function Words

The MCH function word consists of the connect, opcode, and type fields, which
are used as described in- the next three paragraphs and tables 5-11 and 5-12.

The connect field specifies the unit to which the MCH is commected (CP, CM, or
I0U), controlling selection within the IOU omly. The unit remains connected
until another connect code selects a different unit. Connect codes 10, to

178 leave the MCH unconnected; in this state, the interface can be used for

PP to PP communications.

The OPCODE field controls the unit selected by the connect code, preparing the
unit for a coming read/write/echo operation or causing the unit to halt, start,
clear, or deadstart.

The use of the TYPE field depends on the connected unit. When the CP is the
connected unit, type codes 1 through 7 specify the data type in the operation
to be performed. Also, for the CP, type code 0 specifies that the internal
address of the CP register to be connected is specified in a control word,
which is sent as 2 data words ilmmediately following the function word. When
IOU is the connected unit, type codes 0 through 7 specify the starting byte
number for read/write operations. The exceptions are reading the options
installed and element identifier registers. CM uses A16 to access the
maintenance registers.

60463560 A 5-53

Maintenance Channel Programming

Table 5-11. Bit Assignments for MCH Function Word to CP and CM

Field : MCH Funetion Word to CP and CM
TYPE (bits 0-3) Code 075 = CP and CP registers.
OPCODE (bits 4-7) Code 034 = Halt processor.
116 = Start processor.
416 - Prepare for read.
516 = Prepare for write.
616 = Master clear.
716 = Clear errors.
TYPE (bits 0~3) Code 1lj¢ = Control store memory.

OPCODE (bits 4-7) Code 4714 = Prepare for read.
516 = Prepare for write.

TYPE (bits 0-3) Code 3-716 = Internal memories.

OPCODE (bits 4-7) Code 414 = Prepare for read.
316 = Prepare to write.

TYPE (bits 0-3) Code Aj¢ = CM and CM registers.
OPCODE (bits 4-7) Code 43¢ = Prepare for read.)
316 = Prepare for write.
616 = Master clear.
716 = Clear errors.

Table 5-12. Bit Assignments for MCH Function Word to IOU

Field MCH Function Word to IOQU

CONNECT (bits 8-11) Code 034 = Connect IOU maintenance registers.

OPCODE (bits 4-7) Code 41 = Prepare for read (control word required).
516 = Prepare for write (control word
required).
61 = Master clear.
716 = Clear fault status registers.

Cig = Read IOU status summary (reads 1 byte,
control word not required).

TYPE (bits 0-3) Codes 0-714

I0U registers are read circularly (byte 0
follows byte 7) from the byte specified
by the TYPE field.

5-54 60463560 A

Maintenance Channel Programming

MCH Control Words

Some function words must be followed by two 8-bit control words, which specify
the internal address of the register to be accessed. This is accomplished by
transmitting two PP words where the rightmost 8 bits in each word are used.
Control words are required for the following.

e Function words to CP with opcodes 4/5.

e TFunction words to CM and IOU with opcodes 4/5.

o Function words to CP, CM, and IOU with opcode 8 (echo).

Refer to tables 5-13 through 5-15 for CP, CM, and IQOU internal address
assignments.

MCH Programming for Halt/Start (Opcode 0/1)

These operations comnsist of the output of a function word. A halt opcode halts
the processor without damaging the process being executed, ‘including the
integrity of the interunit communication of the halted processor such as CDC
CYBER 170 exchange Trequest communication, central memory communications, and
the process state. If the process is subsequently restarted without performing
any other MCH operations or after performing read/write with certain
precautions, the process continues without damage.

MCH Clear LED (Opcode 3)

60463560 A

This operation clears all LEDs associated with pak errors and is intended, but
not required, for use at system initialization. For malntenance reasons, this
operation can also clear LEDs without initializing and master-clearing.

3=-55

Maintenance Channel Programming

MCH Programming for Read/Write (Opcode 4/5)

Refer to Programming for PP Data Input/Output in this chapter for a more
complete procedure, In general terms, proceed as follows:

1. 1Issue the function with opcode 4/5.

2. Qutput the first control word.

3. Verify the error flag is clear.

4. Output the second control word.

5. Verify the error flag is clear.

6. Input/output the required number of data words.

7. Verify the error flag is clear.

Reading a nonexistent register returns all 0's. Writing to a read-only
register or to a nonexistent register does not alter any register. Most
registers are read/write as 64-bit (8-byte) registers, requiring the input/
output of 8 MCH data words. Most registers that are physically smaller than
8 bytes are right-justified with zero-~fill. Exceptions are as follows:

¢ Reading a status summary register repeats the status information in each
byte.

e The IOU may disconnect the MCH without affecting subsequent MCH operations
in the following cases:

= After reading 1 to 8 bytes from any maintenance register.
- After writing 1 byte to a corrected error log register.
- After writing 1 byte to an uncorrected error log register,

The following MCH operations om CP registers can be performed with the CP
running or halted.

® Read CP status summary register.

o ‘Read CP fault status register,

° Read CP corrected error log registers.

e Read CP options installed registers.

° Read CP element identifier register.

o Read/write CP dependent environmental control register.
e Read/write test mode control registers.

. Clear errors.

To read/write other CP-registers, the CP must be running since these registers
are accessed by microcode. Refer to the Maintenance Register Codes Booklet
listed in the preface for register bit assignments.

5-56 60463560 A

Maintenance Channel Programming

MCH Programming for Master Clear/Clear Errors (Opcode 6/7)

These operations consist of the output of a single function word. The master
clear immediately and arbitrarily clears the connected unit without regard to
possible information loss. Clear errors clears the error indicators in the
connected unit. To avoid loss of error information while the errors are
cleared, the unit concerned should be halted.

MCH Echo (Opcode 8)

This operation checks the data path between the MCH and the IOU MAC. Following
the operation MCH is activated and 2 bytes are sent to IOU MAC. IOU lgnores
the first byte and latches the second byte in the Address Holding Register in
any data pattern. MCH is deactivated after the second byte is accepted in 10U
MAC, and the channel is activated followed by an input sequence. IOU MAC sends
data (contents of Address Holding Register) upon receiving the Active signal

and subsequent Empty signals. There is no restriction on the number of data
words read.

MCH Programming for Read 10U Status Summary (Opcode C, IOU Only)

60463560 A

This operation 1s an alternayive, faster means of reading the IOU status
summary register.

1. Issue function with opcode C.

2. Input status summary byte.

5-57

Maintenance Channel Programming

5-58

Table 5~13, CP Internal Address Assignments

Internal Address (1)

Type
Hex Octal (2) (3) Description
00 000 R A Status summary register.
10 020 R A Element identifier register.
30 060 R A Dependent environment control register.
42 082 R M Monitor condition register.
80-89 200-211 R A Processor fault status registers 1 through 9.

Notes:

(1) The internal address is the second byte of two 8-bit control words, which
must be supplied after a function word output with OPCODE = 4/5. The
first byte is discarded.

(2) R = read, W = write.

(3) A = always éccessible, M = microcode accessible.

Table 5-14. CM Internal Address Assignments

Internal Address (1)

Hex Octal Type (2) Description

00 000 R Status summary register.

10 020 R Element identifler register.

12 022 R Options installed regilster.

AQ 240 R/W Corrected error log register.

Ab 244 R/W Uncorrected error log 1 register.
A8 250 R/W Uncorrected error log 2 register.
Notes:

(1) The internal address is the second byte of two 8-bit control words, which

must be issued after a fumnction word output with OPCODE = 4/5. The first
byte is discarded.

(2) R = read, W = write.

60463560

Maintenance Channe! Programming

Table 5-15, IOU Internal Address Assignments

Internal Address (1)

Hex Octal Type (2) Description

00 000 R Status summary regilster.

10 020 R . Element ideuntifier register.
12 022 R Options installed register,
18 030 R/W Fault status mask register.
40 100 R Status register,

80 200 R/W Fault status 1 register.

81 201 R/W Fault status 2 register,

AO 240 R/W Test mode.

Notes:

(1) The internal address is the second byte of two 8-bit control words, which

must be issued after a function word output with OPCODE = 4/5. The first
byte is discarded.

(2) R = read, W = write.

60463560 A 5-59

Appendix

Glossary A

M

A

ADU Assembly-disassembly unit

AOR Address out of range

C

CEL Corrected error log

CIF CMU interrupted flag

CcIo Concurrent input/output

CM Central memory

CMU Compare/move unit

CP Central processor

CRT Cathode-ray tube

CTI Common Test and Initialization
D

DMA Direct-memory access

DSC Display station

DTIR Data terminal ready

E

ECC Error correction code

ECL Emitter—coupled logic

EDS Extended deadstart

EIA Electronic Industries Association
EM, EMS Exit mode selection

EC Exit condition code field at (RAC)
60463560 B

Glossary

F

F1FO First in, first out

FLC Field length, central memory
FLE Field length, extended memory
H

HIVS Hardware Initialization and Verification Software
|

TLH Instruction lookahead hardware
1/0 Input/output

Tou Input/output unit

1P1 Intelligent peripheral interface
15t Intelligent standard interface
M

MA Monitor address

MCH Maintenance channel

MF Monitor flag

MOS Metal oxide semiconductor

MUX Multiplexer, selector

N

NIO Nonconcurrent input/output

O

0Ss Operating system

A-2 60463560 C

PE
PP

PPM

RAC

RAM

RNI

ROM

RTS

S

SECDED

UART

UEM

60463560 C

Parity error
Peripheral processor

Peripheral processor memory

Reference address, central memory
Reference address, extended memory
Random access (read-write) memory
Read next instruction

Read-only memory

Request to send

Single—error correction double-error detection

Universal Asynchronous Recelver and Transmitter

Unified extended memory

Glossary

a3]

Index

Index

A Central read words from instruction 4-90
Central write to instruetion 4-91
A register 2-11,25 Central write words to instruction 4-92
Access and cyecle times 2-17 Channel active/inactive flag 5-31
Activate instruction 4-97 Channel control flag 5-30
Add instruction 4-72,73 Channel, 1/0, see IOU
Addition and subtraction 5-12 Channel , maintenance, see maintenance channel
Address out of range error 2-12 Channel marker flag instructions 5-32
Address registers, see A registers Channel operation
Addressing section in CP 1-8 Channel active/inactive flag 5-31
Addressing mode Channel control flag 5-30
Expanded 5-24 Channel marker flag instructions 5-32
Standard 5-24 Channel transfer timing 5-32
Addressing section 2-15 Error flag instructions 5-32

Register full/empty flag 5-31
Channel transfer timing 5-32

Character data word 5-41

B Character mode 5-38
Characteristics

B register 2-11 CM 14
Bank select 2-17 CP 1-3
Barrel and PP reconfiguration example - Functional 1-2

(RP=0) 3-12 00 1-5
Barrel and PP reconfiguration example Physical 1-1)

(RP=2) 3-13 Chassis configuration
Barrel and slot 2-23 Dual CP 1-2
Barrel numbering table 3-9) Single CP 1-2
Bit numbering 5 Chip address 2-17
Block copy flag 2-13 Chip select 2~17
Block copy from UEM to CM imstruction 4-16,17 €10 1-11j 2-22,27
Block copy instruction 2-7 Clear channel flag instruction 4-94
Block copy instructions 2-13; 5-24 M 4-17 _
Block copy sequence 2-7 Access and cycle times 2-17
Boolean sequence 2=-2 . Address format 2-16
Bounds register 2-16,21 Address formation 2-13
Branch instruction 2-8 Addressing mode 5-24
Branch to K instruction 4-10,11,12,13,14 Bank select 2-17

Block copy instructions 5-24
Bounds register 2-21
Characteristics 1-4

C Chip address 2-~17
Chip select 2-17
Cache memory 2-15 Column address select 2-17
Cache Memory 1-8 Configuration switches 3-3
Cathode ray tube, see CRT Direct read/write instructions 5-24
CC634 system console 2-23 Extenqed, see UE¥ '
Central exchange jump instruction 2~8; 4~40 Functional descriptions 2-16
Central memory control, see CMC 1-8 Internal address assignments 5-58
Central memory, see CM : Layout 2-21 o
Central processor, see CP 1-3 Major system component descriptions 1-9

Central read from instruction 4-89

Index

Ports and priorities 2-18
Programming 5-22
Quadrant select 2-17
Queuing buffer 1-9
Reconfiguration 2-21; 3-5
Reference address register, see
RAC register
Row address select 2-17
SECDED 2-19
UEM 1-9
CM access 2-28
CM coufiguration switches 3=3
CM controls 3-3
.CM internal address assignments 5-58
CM map 5-24
CM read/write instructions
PP CM read instructions 5-27
PP CM write instructions 5-27
CM reconfiguration 3-5
cMC 2~15
CMU instructions, see compare/move
instruction seqeunce
CMU interrupted flag 2-13
Codes 5-41
Column address select 2-17
Compare collated
Compare/move arithmetic 5-13

Compare collated instruction 2-6; 4~44

Compare/move arithmetic
Compare collated 5-13
Compare uncollated 5-13
Move direct 5-13
Move indirect 5-13
Compare/move instruction sequence 2-6
Compare uncollated
Compare/move arithmetic 5-13
Compare uncollated instruction 2-6
Conditional Software errors 5-21
Configuration, mainframe 1-1
Configuration switches
cM 3-3
Configuration switches, CM 3-1
Continue if instruction 4-10,11,12
Control checks 3«7
Controls and indicators 3-1
CP
Addressing section 1-8; 2-15
Cache memory 2-15
Characteristics 1-3
CMC 1-8; 2-15
Execution section 2-15
Functional descriptions 2-1
Instruction descriptions 4-1,5
Instruction designators 4-3
Instruction formats 4-1
Instruction section 1-6; 2-1

Index-2

Internal address assignments 5-58
Major system component descriptions
Operating modes 4-4

Operating Reglsters 1=-7
Programming 5-1

Registers 2-9

Support Registers 1-7

CP Programming

Compare/move arithmetic 5-13
CYBER 170 exchange jump 5-1

Error response 5-14

Ezxecutive state 5-4

Fixed-point arithmetic 5-12
Floating-point arithmetic 5-4
Instruction lookahead purge control
Integer arithmetic 5-13

CRT 2-27
CYBER 170 exchange jump 2-14; 5-1,3
CYBER 170 exchange package 2-22; 4-62;

5~-1,3,14

CYBER 170 exchange package address 5-2
CYBER 170 exchange request 2-22

CYBER 170 job mode 5-1,15,21

CYBER 170 momitor flag 5-1

CYBER 170 monitor flag clear 2-14
CYBER 170 monitor mode 5-1,15,21

Cl register 2-6

C2 register 2-6

D

Data character (bits 56 - 63) 5-48
Data display

Character mode 5-38
Codes 5~41
Dot mode 5-38

Data input sequence 5-34

Data output sequence 5-36

Data set ready (bit 52) 5-47

Data set ready (DSR) and data carrier

detector (DCD) (bit 53) 5-48

DCD, see Data set ready (DSR) and data

carriler detector

Deactivate instruction 4-98
Deadstart 2-23

Display operator entries and
functions 3-4

Displays and controls 3-1

Initial display 3-2

Options display 3-4

Sequences 3-8

Switches 3-1

Description, major system component 1-6
Direct read/write instruction sequence

1-6

5-13

2-7

60463560 A

Direct read/write instructions

CM 5-24
Direct read/write instructions
UEM 5-24

Direct 12-bit address 5-26

Direct 18-bit operand 5-25

Direct 6-bit address 5-26

Direct 6-bit operand 5-25

Display character codes 5-38

Display station controller (DSC) 2-27
DMA 1-11; 2-22,27

Dot mode 5-41

Double-precision results 5-11

pDsC 2-27

DSC, see Display station controller
DSR, see Data set ready

DTR, see Set/Clear data terminal ready

E

ECL 1-2

EM register 2-12; 5-3

EMC 5-14,15,16,17,18

Emitter coupled logic, see ECL

EMS bits, see Exit mode selection bits

Error exit instruction 2-8

Error exit to MA instruction 4-61

Error flag instructions 5-32

Error response 5-14 -
Conditional software errors 5-21
Hardware errors 5-21
Illegal instructions 5-l4
Software errors 5-21

Exchange jump instruction 4-101

Exchange jump, see CYBER 170 exchange jump
Exchange package, see CYBER 170 exchange

package request

Exchange sequence, see CYBER 170 exchange

sequence request
Execution section 1-8; 2-15
Execution timing 4-102
Executive state 5-4
Exit mode register, see EM register
Exit mode selection bits 5-14
Expanded addressing mode 5-24
Expanded addressing select flag 2-13

Extended purge control, see instruction

lookahead purge control

F

Field length for CM register, see FLC
register

60463560 B

Field length for UEM register, see FLE
register

Final instruction 4-18,20

Fixed-point arithmetic
Addition and subtraction 5-12
Integer divide 5-12
Integer multiplication 5-12

Flag registers 2-13

FLC register 2-12,21; 5-3

FLE register 2-14,21

Floating-add instruction sequence 2-4

Index

Floating difference instruction 2-4; 4-29

Floating divide instruction 2-4; 4-35
Floating divide instruction sequence
Floating double-precision difference
instruction 2-4; 4-30
Floating double-precision product
instruction 2-4; 4-34
Floating double—precision sum
instruction 2-4; 4-28
Floating=-multiply instruction sequence
Floating~point arithmetic
Double-precision results 5-11
Format 5-4
Indefinite 5-7
Nonstandard operands 5-8
Normalized numbers 5-10
Overflow '5-7
Packing 5-5
Rounding 5-10
Underflow 5-7

Floating product instruction 2-4; 4-32

Floating sum instruction 2-4; 4-27
Form mask instruction 2~-3; 4-63
Format 5-4

Framing or parity error (bit 55) 5-48
Function instruction 4-99

Functional Characteristics 1-2
Functional descriptions

CM 2-16
cp 2-1
I0U 2-22

G

Glossary A-1

H

Hardware errors 5-=21

2-4

Index-3

Index

Instruction word format, CP 4-1

Instructions
I/0 channel communications 5-28 ' Activate 4-97
I/0 transfers Add 4-72,73
Data input sequence 5-34 Block copy 2-7
Data output sequence 5-36 Block copy from CM to UEM 4-17
ILH, see Instruction lookahead Block copy from UEM to CM 4-16
Illegal instruction 5-20 Branch 2-8
Increment sequence instruction 2-5 Branch to K 4-10,11,12,13,14
Indefinite 5-7 Central exchange jump 2-8; 4-40
Indefinite operand error 2-12 Central read from 4-89
Index registers, see B register Central read words from 4-90
Indirect 6-bit address 5-26 Central write to 4-91
Infinite operand error 2-12 Central write words to 4-92
Initial instruction 4-18,20 Clear channel flag 4-94
Initialization 2-1 Compare collated 2-6; 4-44
Input data 5-51 Compare uncollated 2-6
Input instruction 4-95 Continue 1f 4-10,11,12
Input/output channel, see I/0 channel Deactivate 498
communications Error exit 2-8
Input/output unit, see I0U Error exit to MA 4-61
Instruction Exchange jump 4-101
Increment sequence 2-5 Final 4-18,20
Instruction control sequences Floating difference 2-4; 4-29
Block copy sequence 2-7 Floating divide 2=4; 4-35
Boolean sequence 2-2 Floating double-precision
Compare/move sequence 2-6 difference 2-4; 4-30
CYBER 170 exchange sequence 2-7 Floating double-precision
Direct read/write sequence 2-7 product 2-4; 4-34
Floating—add sequence 2-4 Floating double~precision sum 2-4; 4-28
Floating divide sequence 2-4 Floating product 2-4; 4-32
Foating-multiply sequence 2-4 Floating sum 2-4; 4-27
Increment sequence 2=5 Form mask 2-3; 4-63
Normal jump sequence 2-8 Function 4-99
Population count 2-~4 Illegal 5-20
Return jump sequence 2-8 Initial 4-18,20
Shift sequence 2-3 Input 4-95
Instruction descriptions Integer difference 4-8
CP 4-1,5 Integer sum 4-8
Instruction designators, CP 4-3 Jump 2-8; 4-87,88
Instruction execution timing 4-102 Jump to B 4-38
Instruction formats Jump to K 4-10,11,12,13
CP 4-1 . Left shift 2-3; 4-18,19
Instruction lookahead 2~1 Left shift nominally 2-3
Purge control 5-14 Load 4-69,70
Instruction lookahead purge Load complement 4-69
control 2-13; 5-14 Load R register 4-69
Instruction lookahead purge flag 2-13 Loglical difference 2-2; 4-23,76,77
Instruction prefetch, see Instruction Logical difference of X with
lookahead complement of X 4-24
Instruction section 2-1 Logical product 2-2; 4-24,25,78
CPp 1-6 Logical sum 2-2; 4-22
Instruction control sequences 2-2 Logical sum of X with complement
Instruction lookahead 2-1 of X 4-23
Maintenance access control 2-1 Long=-add 2-6
Instruction word designators, CP 4-3 Long jump 4-83

Index-4 60463560 A

Lookahead 2-1

Minus jump 4-86

Monitor exchange jump 4-40,101

Monitor exchange jump to MA 4-101

Move direct 2-6; 4-43

Move indirect 2-6; 4-43

Nonzero jump 4-85

Normalize 2=-3; 4-58

Normalize operations 2-3
Instructions

Qutput 4-96

Pack 2-3; 4-6

Pass 4-60,100

Plus jump 4-86

Population count 2-4; 4-64

Read CM 2~7; 4-57

Read free running counter 4-64

Read one word 4~62

Read one word from UEM 2-7

Replace add 4~80,81

Replace add one 4-80,81

Replace subtract one 4-82

Return jump 2-8; 4-37,84

Right shift 2-3; 4-20,21

Right shift nominally 2~-3

Round floating difference 2-4; 4-31

Round floating divide 2-4; 4-36

Round floating product 2-4; 4-33

Round floating sum 2-4; 4-28

Round normalize 2-3; 4-59

Selective clear 4-75

Set A 4-47,48,49,50

Set A1l 2-5

Set B 4-51,52,53

Set Bi 2-5

Set X 4-54,55,56

Set Xi 2-5

Shift 4=75

Store 4-71

Store R register 4-71

Subtract 4-74

Test and set flag 4-94

Transmissive operation 2-2

Transmit 2-2

Transmit complement 2-2

Transmit complement of 4-41

Transmit X 4-41

Unconditional jump 4-84

Unpack 2-3; 4-7

Write CM 4-57

Write into CM 2-7

Write one word 4-62

Write one word to UEM 2-7

Zero jump 4-85

Instructions, CP (see also inside front cover)

Block copy from CM 4-17; 5-24

60463560 A

Index

Block copy from UEM 4-16; 5-24

Branch 4-10,11,12,13,14

Central exchange jump 4-40

Compare collated 4-44; 5~13

Compare uncollated 4-45; 5-13

Direct read/write of CM 5-25

Direct read/write of UEM 5-25

Error exit 4-61

Final 4-18,20

Fixed point addition 5-10

Floating difference 4-29

Floating divide 4-35

Floating double-precision difference
4~30

Floating double-precision product 4-34

Floating double-precision sum 4-28

Floating point 5-10

Floating product 4-32

Floating sum 4-27

Form mask 4-63

Increment 5«12

Initial 4-18,20

Integer difference 4-8

Integer divide 5-12,13

Integer multiplication 5-12,13

Integer sum 4-8

Jump 4-38

Left shifr 4-18,19

Logical difference 4-24

Logical product 4-25

Loglcal sum 4-23

Move direct 4-43; 5-13

Move indirect 4-43; 5-13

Normalize 4-58; 5-12,13

Pack 4-6

Packing 5-12

Pass 4-60

Population count 4-64

Read free running counter 4-64

Read one word 4-62

Read word from CM 4&-57; 5-27

Return jump 4-37

Right shift 4-20,21

Round floating difference 4-31

Round floating divide 4-36

Round floating product 4-43

Round floating sum 4-28

Round normalize 4-59

Rounding 5-10

Set A1 4-47,48,49,50

Set Bi 4-51,52,53

Set XL 4~54,55,56

Transmit complement &-—41

Transmit word 4-41

Unpack 4-7

Unpacking 5~12

Index-5

index

Write one word 4-62
Write word to CM 5-27
Write X into CM 4-=57
Activate channel 4-97
Add 4-72,73

Central read 4-89,90
Central write 4-91,92
Channel flag 5-30
Clear chanmnel flag 4-94
CM read 5-27

Deactivate channel 4-98
Error flag 5-30

Instructions, PP (see also inside front cover)

Exchange jump 4-101

Function on channel 4-99

Input from channel 4-95

Jump if channel active 4-87
Jump if channel empty 4-88

Jump if channel error flag clear

Jump if channel error flag set 4-88

Jump if channel flag 4-94
Jump 1if channel full 4-87
Jump if channel inactive 4-87
Load 4-69,70
Load complement 4-69
Load/store R register 5-27
Logical difference 4-75,76,77
Logical product 4-78
Long jump 4-83
Minus jump 4-86
Monitor exchange jump 4-101
Monitor exchange jump to MA 4-101
Nonzero jump 4—85
Output from channel 4-96
Pass 4-100
Plus jump 4-86
Replace add 4-80,81
Replace add one 4-80,81
Replace subtract one 4-82
Return jump 4-84
Selective clear 4~75
Store 4-71
Store R register 5-27
Subtract 4-74
Unconditional jump 4-84
Zero jump 4-85
Integer arithmetic
Integer divide 5-13
Integer multiplication 5-13
Integer difference instruction 4~8
Integer divide 5-12,13
Integer multiplication 5-12,13
Integer sum instruction 4-8
Inter PP communications 5-28
Introduction 1-1
10U

Index—6

Characteristics 1-5

CM access 2-28

Functional descriptions 2-22

I/0 channels 2-27

Internal address assignments 5-59
Maintenance channel 2-28

Major system component descriptions

Peripheral processor (PP) 2-22
Peripheral processors, see PPs
Real-time clock 2-27
Reconfiguration 3-9
Two—port multiplexer 2-28

ISI 2-22,27

J

Job mode, see CYBER 170 job mode
Jump instruction 2-8; 4-87,88

Jump to B instruction 4-38

Jump to K instruction 4-10,11,12,13

K

K Register 2-26

Keyboard 5-38

Keyboard character codes 5-38
Kl register 2-6

K2 register 2-6

L

L register 2-6

Large scale integration, see LSI 1-2

Left shift instruction 2-3; 4-18,19

Left shift nominally instruction 2-3

Load complement instruction 4-69

Load instruction 4-69,70

Load R register instruction 4-69

Logical difference instruction 2-2;
4-23,76,77

Logical difference of X with complement

of X instruction 4=24

Logical product instruction 2-2; 4-24,25,78

Logical sum instruction 2-2; 4-22

Logical sum of X with complement of
X instruction 4-23

Long-add instruction 2-6

Long jump instruction 4-83

Lookahead purge control 5-13

LSI 1-1

60463560 B

M

MA register 2-14

MAC, see Maintenance access control
Mainframe configuration 1-1
Maintenance access c¢ontrol 2-1
Maintenance channel 2-28; 5-52
Maintenance channel generator 2-16
Maintenance channel programming 2-21

Maintenance channel 5=52
MCH control words 5-=55
MCH function words 5=53

Major system component descriptions

cM 1-9

CP 1-6

IoU 1-11

System console 1-11
Master clear (07XX) 5-50

MCH clear LED (Opcode 3)
MCH control words 5-55
MCH clear LED (Opcode 3)
MCH echo (Opcode 8) 5-=57
MCH programming for halt/start
(Opcode 0/1) 5-55
MCH programming for master clear/clear
errors (Opcode 6/7) 5~57
MCH programming for read IOU
status summary (Opcode C, IOU only)
5-57
MCH programming for read/write

5-55

5-55

(Opcode 4/5) 5-56
MCH echo (Opcode 8) 5-57
MCH function words 5-53

MCH programming for halt/start
(Opcode 0/1) 5-55
MCH programming for master clear/clear errors
(Opcode 6/7) 5=57
MCH programming for read IOU status summary
(Opecode €, 10U only) 5-57
MCH progr:mming for read/write
(Opcode 4/5) 5-56
MCH, see Miaintenance channel
Memory, see CM
MF, see CYBER 170 monitor flag
Minus jump instruction 4-86
Monitor address register, see MA register
Monitor exchange jump instruction 4-40,101
Monitor exchange jump to MA instruction 4-101
Monitor flag, see CYBER 170 monitor flag
Monitor mode, see CYBER 170 monitor mode
Move direct
Compare/move arithmetic 5-13
Move direct instruction 2-6; 4=43
Move indirect
Compare/move arithmetic 5-13
Move indirect instruction 2-6; 4-43

60463560 B

Index

N

NIO 1-11; 2-22,27

Nonstandard operands 5-8

Nonzero jump instruction 4-85

Normal jump instruction sequence 2-8
Normalize ianstruction 2-3; 4-58
Normalized numbers 5-10

o)

Operand registers, see X register

. Operating instructions 3-1

Operating modes

CP 4-4
Operating procedures 3-7
Operating Registers

A 2-11
B 2-11
X 2-9

Qutput data 5-51

Output instruction 4-96
Over run (bit 54) 5-48
Overflow 5-7

P

P register 2-11,13,25; 5-3

Pack instruction 2-3; 4-6

Packing 5-5

Pass instruction 4-60,100

Peripheral processor (PP) 2-22

Peripheral processors, see PPs

Physical characteristics 1-1

Plus jump instruction 4-86

Population count instruction 2-4; 4-64

Port bounds register, see CM, Bounds register

Ports and priorities 2-18

Power-on and power—off procedures 3-7

PP 2-22

PP and barrel reconfiguration example
(RP=0) 3~12

PP and barrel reconfiguration example

(RP=2) 3-13
PP CM read instructions 5-27
PP CM write instructions 5-27

PP data format 4=67
PP instruction descriptions
PP instruction formats 4-66
PP instructions
PP data format 4-67
PP instruction descriptions
PP instruction formats 4+-66

4-68

4=68

Index~7

Index

PP relocation register format 4-68
PP memory 2-27
PP memory addressing by PPs
Direct 12-bit address 5-26
Direct 18=bit operand 5-25
Direct 6-bit address 5-26
Direct 6-bit operand 5-25
Indirect 6-bit address 5-26
PP numbering 2-26
PP programming 5~25
Channel operation 5-30
CM addressing by PPs 5-25

CM read/write instructions 5-27
I/0 channel communications 5-28
I/0 transfers 5-34

Inter PP communications 5-28

‘PP memory addressing by PPs 5-25

PP programming timing consideratioms

PP programming timing considerations 5-30
PP read terminal data (01XX)
Data character (bits 56 - 63) 5-48

Data set ready (bit 52) 5-47
Data set ready (DSR) and data carrier
detector (DCD) (bit 53) 5-48
Framing or parity error (bit 55) 5-48
Over run (bit 54) 5-48
PP registers
A 2-25
K 2-26
P 2-25
Q 2-26
R 2-25
PP relocation register format 4-68
PP write output buffer (02XX) 5-48
Prefetch of instructions, see Imstruction
lookahead
Program address register, see P reglsters
Programming
cr 5-1
Real~-time clock 5-45
Two—-port multiplexer
Programming considerations
Input data 5-51
Output data 5-51
Programming example 5-41
Programming information 5-1
Programming timing considerations
Publication index 6

5-45
550

5-43

Q

Q Register 2-26

Quadrant select 2-17

Index—8

5-30

R

R Register 2-25

RAC register 2-12,21; 5-3
RAE register 2-14,21; 5-3
Read CM instruction 2-7; 4-57

Read free running counter instruction 4-64

Read one word from UEM instruction 2-7
Read one word instruction 4-62
Read status summary (00XX) 5-47
Real-time clock 2-27
Real-time clock programming 5-45
Reconfiguration examples 2-21; 3-6
Reconfiguration switches 3-3
Reference address for CM register,
see RAC register
Reference address for UEM register,
see RAE regilster

Register full/empty flag 5-31
Registers

A 2-11,25

B 2-11

cP 2-9

CP Operating 1-7

CP Support 1-7

Cl 2-6

c2 2-6

EM 2-12; 5-3

Exit mode, see Registers, EM

Field length, see Registers, FLC and FLE

Flag 2-13

FLC 2-12,21; 5-3

FLE 2-14,21

K 2-26

Kl 2-6

K 2-6

L 2-6

MA 2-14

Monitor address register, see Register,

MA

Operating 2-9

P 2-11,25; 5-3

Program address, see Register, P

Q 2-26

R 2-25

RAC 2-12,21; 5~3

RAE 2-14,21; 5-3

Reference address, see Registers, RAC

and RAE

Support

X 2-9
Relocation register, see Register, R
Replace add instruction 4-80,81
Replace add one instruction 4-80,81
Replace subtract one instruction 4-82

2-6,11

60463560 A

Request to send and data terminal ready 5-51
Return jump instruction 2-8; 4-37,84
Return jump instruction sequence 2-8
Right shift instruction 2-3; 4-20,21
Right shift nominally instruction 2-3
Round floating difference

instruction 2-4; 4-31
Round floating divide instruction 2-4; 4-36
Round floating product instructiomn 2-4; 4-33
Round floating sum instruction 2-4; 4-28
Round normalize instruction 2-3; 4-59
Rounding 5«10
Row address select 2-17
RTS, see Request to send

S

SECDED 2-19
SECDED generator 2-16
Selective clear instruction 4-75
Set A lnstruction 4-47,48,49,50
Set Ai instruction 2-5
Set B instruction 4-51,52,53
Set Bl instruction 2-5
Set/clear data terminal ready (04XX) 5-49
Set/clear request to send (05XX) 5=50
Set operation mode to termimal (03XX) 5-49
Set X instruction 4-54,55,56
Set Xi instruction 2-5
Shift instruction 4-75
Shift sequence 2-3
Single error correction/double error
detection, see SECDED
Slot, see Barrel and slot
Software errors 5-21
Standard addressing mode 5-24
Store imnstruction 4-71
Store R register instruction 4-71
Subtract instruction 4-74
Support registers 2-6
Cl register 2-6
C2 register 2-6

EM 2-12
FLC 2-12
FLE 2-14

Kl register 2-6

K2 register 2-6

L register 2-6

MA 2-14

P 2-11

RAC 2-12

RAE 2-14
Switches

Deadstart 3-1

60463560 A

Index

CM reconfiguration 3-3
System conscle 1-11

Keyboard 5-38

Ma jor system component descriptions 1-11
System console programming 5-38

Data display 5-38

Programming example 5-43

Programming timing comsiderations 5-43
System publication index 6

T

Terminal deselect (6xxx) 5~46
Terminal select (7xxx) 5-46
Test and set flag instruction 4-94
Timing considerations instruction, see
Execution timing
Transmit complement instruction 2-2
Transmit complement of instruction 4-41
Transmit imstruction 2-2
Transmit X instruction 4-41
Two~port multiplexer 2-28
Two-~port multiplexer operation
Master clear (07XX) 5-50
PP read terminal data (Q01lXX) 5-47
PP write output buffer (02XX) 5-48
Read status summary (00XX) 5-47
Set/clear data terminal ready (04XX)
5-49
Set/clear request to send (05XX) 5-50
Set operatlon mode to terminal
(03XX) 5-49
Terminal deselect (6XXX) 5-46
Terminal select (7XXX) 5-46
Two-port multiplexer programming
Programming considerations 5-50
Request to send and data terminal
ready 5-51

U

UEM 2-7,14; 4-16,17
Description 1-4
Field length register, see FLE register
Reference address register, see RAE
register
UEM address 4-17
UEM enable flag 4-16
Unconditional jump instruction 4-84
Underflow 5-7
Unified extended memory, see UEM description
Unpack instruction 2-3; 4-7

Index-9

Index

W

Word
Bit numbering 5
Write CM instruction 4~57
Write into CM instruction 2-7
Write ome word instruction 4-62
Write one word to UEM imstructiom 2=7

Index-10

X

X register 2-9

zZ

Zero jump instruction 4-85

60463560 A

CUT ALONG UINE

REV. 5/86 PRINTED IN U.S.A.

COMMENT SHEET

CYBER 840A, 850A, 860A, 870A Computer Systems
MANUAL TITLE: CYBER 170 State Hardware Reference Manual

PUBLICATION NO.: 60463560 REVISION: C

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please

include page number references).

[J Please Reply 0 No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.5.A.
FOLD GN DOTTED LINES AND TAPE

FOLD

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN

POSTAGE WILL BE PAID BY ADDRESSEE

(G D) CONTROL DATA

Technology and Publications Division
ARH219

4201 North Lexington Avenue

Saint Paul, MN 55126-6198

NO POSTAGE |
NECESSARY

IF MAILED
IN THE
UNITED STATES

FOLD

FOLD

CUT ALONG LINE

	Front Cover
	Central Processor Instruction Index
	Revision Record
	Preface
	Contents
	1-System Description
	2-Functional Descriptions
	3-Operating Instructions
	4-Instruction Descriptions
	5-Programming Information
	A-Glossary
	Index
	Comment Sheet

