CONTROL DATA

1604/1604-A COMPUTER

o080

FORTRAN 63/REFERENCE MANUAL

VOLUME 1 ARITHMETIC AND LOGICAL INFORMATION

. 5. PRELIMINARY

P coxiRGL BATA FEEVE]
¥ LAk 4 L0 A

NI A1

a#

FORTRAN 63/REFERENCE MANUAL

CONTROL DATA CORPORATION
(g 8100 34th Avenve South

Minneapolis 20, Minnesota

| J

March, 1963
’ ©1963, Coritrol Data Corporation Q)

Pub. No. 527
Printed in United States of America

PREFACE

The FORTRAN*-63 language contains all of the features of its predecessor,
FORTRAN-62 and forms an overset of the FORTRAN II language. The FORTRAN-63
compiler adapts current compiler techniques to the particular capabilities of the
Control Data ** 1604 and 3600 computer systems. Emphasis has been placed on pro-

ducing highly efficient object programs while maintaining the efficiency of compi-
lation of FORTRAN-62.

This reference manual was written as a texvt‘ffor FORTRAN-63 classes and as a
reference manual for programmers using the FORTRAN-63 system. The manual

assumes a basic knowledge of the FORTRAN language.

Reference material consists of three volumes:

Volume I Arithmetic and Logical Information
Volume 11 Input - Output
Volume III Will contain programming instructions for type
non-standard arithmetic and instructions for
‘ compilation and execution of FORTRAN-63.

*FORTRAN is an abbreviation for FORmula TRANslation and was originally developed for
Q International Business Machine equipment.

**Registered trademark of Control Data Corporation

™
[Hl

Chapter 1

Chapter 2

Chapter 3

Chapter 4

CONTENTS

Elements of FORTRAN-63
Characters

Operators

Identifiers

Quantities and Word Structure
Constants

Variables

FORTRAN-63 Language Statements

Expressions and Replacement Statements
Arithmetic Expressions

Mode of Arithmetic Expressions

Mixed Mode Conversions

Arithmetic Replacement Statement
Logical Expressions

Logical Replacement Statement

Masking Expressions

Masking Replacement Statement

Multiple Replacement Statement

Type Declarations and Storage Allocation
TYPE Declarations

DIMENSION

COMMON

COMMON Blocks

EQUIVALENCE

DATA

Control Statements
Statement Identifiers

GO TO Statements

IF Statements

FAULT Condition Statements
DO Statement

CONTINUE

PAUSE

STOP

END

Page

w o w NN =

©

12
14
14
16
20
20
21
22

25
25
26
27
28
30
32

37
37
37
38
39
40
42
43
43
43

CONTENTS

Chapter 5 Functions and Subroutines

Statement Functions

Library Functions

Tunction Subprograms

RETURN and END Statements
EXTERNAL Statement
Subroutine Subprograms

Main Program and Subprograms

Variable Dimensions and Subprograms

Appendix Section

A Coding Procedures
B Character Codes
C Statements of FORTRAN-63

D Library Functions

45
45
46
46
48
48
50
52
54

57
58
62
64
66

ELEMENTS OF FORTRAN-63 1

2

This chapter presents the character set used by FORTRAN-63 and demonstrates
how entities within it are used to form the identifier. Arithmetic, relational and
logical operators are listed along with their meanings, and ideas relating to number
are presented in terms of the fundamental definitions of quantity, variable and
constant.

1.1

CHARACTERS FORTRAN-63 uses the following charactergéet; the conventional FORTRAN
definitions apply:

The alphabet A through Z
The Arabic numerals 0 through 9
The special characters +-=/()., % * space

The special character $ is a statement separator which may be used to write more
than one statement to a line.

' 1.2

OPERATORS The operation symbols used in replacement and conditional statements are
tabulated below:

Mathematical ; FORTRAN-63 -
Symbol Meaning Operators Classification

+ Addition o+

- Subtraction -

- Division / Avrithmetic

X Multiplication *

[r Exponentiation *x

= Equal to EQ.

Not equal to .NE.

> Greater than .GT. Relational

= Greater than or equal to .GE.

< Less than LT,

= Less than or equal to .LE.

A Conjunction .AND,

Y/ Disjunction .OR. Logical
9 — Negation .NOT.

1.3
IDENTIFIERS

1.4

QUANTITIES AND
WORD STRUCTURE

Mathematical FORTRAN-63

Symbol Meaning Operators Classification
n Logical product .AND. Y
il
u Logical sum .OR. Masking 4
~ Complement .NOT.
<« Is replaced by = % Replacement

Identifiers in FORTRAN-63 fall into two classes: numeric and alphanumeric. The
numeric identifiers are:

Bank designators in the 3600 system represented by a single octal digit.

Statement numbers represented by a number appearing in card columns or
printer positions 1 through 5. This number is in the range 1=N=99999.

Block COMMON identifiers.

The alphanumeric identifiers which name variables, arrays, subroutines, functions
and the like may be from one to eight alphanumeric characters; the first of which
must be alphabetic. Spaces in any identifier are squeezed out; Ay, 6 is the same
as A6.

Examples
A156 SINEX ;
ALPHA HEGEMONY Q))"
G LUX317Z
HERA A1B2C3D4

FORTRAN-63 manipulates floating point or integer quantities. Floating point

quantities have an exponent and a fractional part. The following classes of numbers

are floating point quantities. y

REAL Exponent and sign 11 bits; fraction and sign 37 bits; range of number
-(in magnitude) 1073 =N = 10°%® and zero; precision approximately
11 decimal digits.

DOUBLE Exponent and sign 11 bits; fraction and sign 85 bits; range of number
(in magnitude) 10798 = N = 10%8 and zero; precision approximately
25 decimal digits. :
COMPLEX Two reals as defined above.

The following classes of numbers are integer quantities:

INTEGER Represented by 48 bits, first bit is the sign; range of number (in
magnitude) 0 =N = 2% _1; precision is up to 15 decimal digits.

1.5
CONSTANTS

1.5.1
INTEGER CONSTANTS

1.5.2
OCTAL CONSTANTS

1.5.3
HOLLERITH CONSTANTS

LOGICAL 1 in bit position 47 represents the value TRUE.
0 in bit position 47 represents the value FALSE.

HOLLERITH Binary coded decimal (BCD) representation treated as an integer
number.

A FORTRAN-63 program may contain any or all of these classes of numbers in the
forms of constants, variables, elements of arrays, evaluated functions and so forth.
Variables, arrays and functions are associated with types assigned by the
programmer. The type of a constant is determined by its form.

To define constants let:

n be a string of decimal digits

s be a scalar with a inaximum of three decimal digits
o be a string of octal digits

h be the length of a Hollerith field

f be a Hollerith field

R be a Real

n denotes an integer whose range, precision, et cetera, is as defined above.

Examples
63 3647631
247 2
314159265 LeLoLolol

Octal constants may consist of up to 16 octal digits. The form of this constant is 0B.

Examples
7777777700000000B 23232323232323238
77777000777778B 77B
7777777777777700B same as .NOT. 77B (section 2.7)

or -778

A Hollerith constant is a string of alphanumeric characters of variable length of the
form hHf, where h is an unsigned decimal integer between 1 and 8 representing the
length of the field f. Spaces are significant in the field f. When h is less than 8,
the representation in the computer word is left-justified with BCD spaces filling
the remainder of the word. An alternate form is hRf. When h is less than 8, the
internal representation is right-justified with zero fill.

Examples

1.5.4

FLOATING POINT

CONSTANTS REAL
Examples
DOUBLE
Examples
COMPLEX
Examples

6HCOGI TO 8RCDC 3600
LHERGO 8R ok _
3HSUM TH))

Real numbers are represented by a string of up to ten digits. A real
constant may be expressed with a decimal point or with a fraction and

an exponent representing a power of ten. The forms of real constants
are:

+ + + +
n.n n. .n nE-s .nE-s nnE-s nE-s

The plus sign may be omitted for positive s. The rangeof sis 0= s
= 308.

3.1415768 31.41592E-001
314, .31415E01
6749162 .31415E001
314159E-05 .31415E+01

Double precision constants are represented by a string of up to
25 digits. A double precision constant has forms analagous to the
forms of reals, with the E replaced by D. The forms are:

o

+ + +
nnD n.D .nD nD-s nnD-s nD-s

The plus sign may be omitted for positive s; the range of s is
0 =s =308. The D designator must always appear.

3.141592653589793238L4626D 31415.D-004
3.1415D 379867524430111D+001
3.1415D0

3141.598D-03

Complex constants are represented by a pair of reals enclosed in
parentheses with the reals separated by a comma: (R,, R,). R,

represents the real part of the complex number and R, represents the
imaginary part.

The complex numbers 1, + 6,551, -14.09 + ,0001654i, 15, + 16.7i, and
-i are represented in FORTRAN-63 as:

(1., 6.55) (-14.09, 1.654E-004)

(15., 16.7) (0., -1.)

1.5.5
WORD STRUCTURE The word structure of the quantities in FORTRAN-63 is shown below:

WORD STRUCTURE of STANDARD TYPES

FLOATING POINT QUANTITIES

SIGNS
- 1

H 10 | 36 J REAL

EXP FRACT.
SIGNS SIGNS
- 1
Izl 10| 36 | H 10 | 36 I COMPLEX
REAL IMAGINARY

SIGNS

H 10 | 36 i 48 DOUBLE

MOST SIGNIFICANT LEAST SIGNIFICANT

INTEGER QUANTITIES

[| 47 | INTEGER
SIGN
” i LOGICAL
W ZUNOSED //////A (UNSUBSCRIPTED
Llsids VARIABLE)
FB|6|6|6|6|6|6|6J HOLLERITH
TYPE A* REMARKS
COMPLEX 2 WORDS CONSECUTIVE MEMORY LOCATIONS
DOUBLE 2 WORDS CONSECUTIVE MEMORY LOCATIONS
REAL 1 WORD
INTEGER 1 WORD
HOLLERITH 1 WORD 6 BITS / CHARACTER; APPENDIX B
LOGICAL 1 BIT (FOR ARRAY STORAGE SEE SECTION 3.2)

*ELEMENT LENGTH

1.6
VARIABLES

AN

FORTRAN-63 recognizes two kinds of variables, each is represented by an
alphanumeric identifier. A simple variable represents a single quantity; a sub-
scripted variable represents a single quantity within an array of quantities. The
identifier appears with a subscript list enclosed in parentheses. The subscript
list has the form (S,) or (S;, Sp) or (S;, Sy, Sg) where S; may be standard or non-

standard.

1.6.1

ARRAY STRUCTURE
AND SUBSCRIPT FORMS

Elements of arrays are stored columnwise in ascending order of storage location.
A 3 by 3 by 3 matrix illustrates the storing process:

1.6.2
SUBSCRIPT RULES

11 *21 P31
a
8211 221 Ye31
a
2311 %321 331
12 *122 P13
812 %222 %232
a a a
312 %322 P332
8113 %123 "33
2913 %293 %233
a a a
313 323 333

The planes are stored in order, starting with the first, as follows:

I+3 ' L+
24t o1 8153 L2
.. +
ay Ll ey, —-Td 8y gy 125
3311——»L+2 a321—>-L+5‘ a333—>L+26

The maximum permissible number of subscripts appearing with a variable is
three. The structure of the subscript is flexible within the classes standard and
non-standard.

SUB1 A standard subscript has one of the following forms:

C
C*m

m -d

+
C*m - d

SuB2

SUB3

SuB4

P

where C, d are unsigned integer constants and m is a simple integer variable.

A non-standard subscript is any arithmetic expression used as a subscript, or a
subscripted subscript.

The location of an array element with respect to the first element of the array is
a function of the array dimension, type (3.1), and the subscripts appearing with the
array identifier. In general, given DIMENSION A(L,M,N) the location of A (i,j,k)
with respect to the first element A of the array is given by

A+{i-1+L@G-1+ME-1))}

The quantity in braces is called the subscript expression. For standard subscripts,
the subscript expression, when evaluated, is an integer. For non-standard sub-

scripts that are arithmetic expressions, the subscript expression is truncated after
evaluation.

Examples 2
1. Referring to the matrix in 1.6.1, the location of A (2,2,3) with respect to
A (1,1,1) is
Locn {A(2,2,3)} = Loen {A(L,1,1)} + {2-1+3(1+3(2))}

= L+22
2. Given DIMENSION Z (5,5,5) and I = 1, K = 2, X = 45°, A =7.29, B = 1.62.
The location, z, of Z (I * K, TANF (x), A —B) with respect to Z (1,1,1) is:
z = Loen {Z(1,1,1)} + {2-1+5(1-1+5(4.67))} Integer part
= Loen {Z(1,1,1)} + {117.75} Integer part
= Locn {Z(1,1,1)} + 117

FORTRAN-63 permits the following relaxation on the representation of subscripted
variables:

Given Array A declared with 3 dimensions as in DIMENSION A(Dl,Dz, 3)
where the D; are integer constants.

then A(L,J,K) implies A(,J,K)
A(I,d) implies A(1,d,1)
A®@ implies A(1,1,1)
A implies A(1,1,1)
similarly, for A(D,,Dy):
A(I,J) implies A(L,J)
A@ implies A(I,1)

A implies A(1,1)

The converse does not hold. The elements of a single-dimension array, A(D,),
may not be referred to as A(L,J,K) or A(I,J).

Array allocation is discussed under DIMENSION, (3.2) and array structure (1.6.1).

1.7

FORTRAN-63
LANGUAGE
STATEMENTS

Examples

Simple Subscripted Variable Subscripted Variable
Variable (Standard) (Non Standard)
FRAN ALY A(MAXF(I,J,M))

P B(I+2,J+3,2 ¥K+1) B(J,SINF(J))

714 Q(14) C(I+K)

ESTRUS P(KLIM,J LIM+5) MOTZO(3*K*ILIM+3.5)
MAX3 . SAM(J-6) WOW(I(I(K)))

I B(1,2,3) Q(1,-4,-2)

The FORTRAN-63 elements in this section are combined to form statements, the
basic program element. These statements are either executable or non-executable.
An executable statement performs a calculation or directs control of the program;
a non-executable statement provides the compiler with information regarding
variable structure, array allocation, storage sharing requirements, and so forth.
FORTRAN-63 statements are listed in Appendix C.

2.1

ARITHMETIC
EXPRESSIONS

C 211
RULES OF

FORMATION

At

A2

EXPRESSIONS AND
REPLACEMENT STATEMENTS

There are three kinds of expressions in FORTRAN-63: Arithmetic and masking t
expressions which have numerical values and logical expressions which have truth
values. These expressions may appear in arithmetic, masking or logical replace-
ment statements, in IF statements or in arithmetic function statements.

All expressions are combinations of operators and operands. For the arithmetic
expression, these entities are:

Operators: ** * / + -

Operands: Constants
Variables (Simple or subscripted)
Functions (Chapter V)

Two or more arithmetic expressions can be combined to form another arithmetic
expression and so on. Parentheses are used to direct the order of evaluation of
the expression.

The hierarchy of arithmetic operations is:

** exponentiation class 1

/ division class 2
* multiplication

+ addition class 3
- subtraction

Any variable (with or without subscripts) or constant, or function, is an arithmetic
expression. These entities may be combined by using the arithmetic operators to
form meaningful algebraic arithmetic expressions, subject to the following rules
and definitions:

TCalled Boolean in earlier versions of FORTRAN.

10

1. Let op be an arithmetic operator and X,Y be arithmetic expressions.
The form X op op Y is never legitimate.

2. If X is an expression then (X), ((X)), et cetera, are expressions.

3. If X,Y are expressions, then
X+Y
X-Y
X/Y
X*Y are expressions.

4. Expressions of the form X**Y and X**(-Y) are legitimate. They are
subject to the restrictions in Mode of Arithmetic Expressions (2.2.1).

5. Implied multiplication is permitted, but only in the following four ways:

constant(. . .) implies constant * (. ..)
(v)G implies (. ..) * (...)

(. . .)constant implies (...) * constant
(. . .Jvariable implies (. ..) * variable

A3 In an expression with no parentheses or within a pair of parentheses, in which
unlike classes of operators appear, evaluation proceeds in the order stated in Al.
In these expressions where operators of like classes appear, evaluation proceeds
from left to right.

A4 When an arithmetic expression contains a function, the function is evaluated first.

A5 1In parenthetical expressions within parenthetical expressions, evaluation begins
with the innermost expression.

Examples

Expressions

A

3.141592

B + 16.8946

(A - B@IJ+K))

G * C(J) + 4.1/ (Z(I+J,3*K))*SINF(V)

(Q + V(M,MAXF(A,B)) * Y**2) / (G*H-F(K + 3))
-C + D(L,J) * 13.627

Tn the following examples R indicates an intermediate result in evaluation; it does
not necessarily imply an object language store.

A*¥*B/C+D*E*F-G is evaluated:

A**B R,
R,/C R,
D*E Ry
R, *F R,
R,*R, R,
R;-G Rg evaluation completed

A**B/(C+D)*(E*F-G) is evaluated:

A**B R;
C+D Ro
E*F-G —— Ry
Ri/R; Ry
Rs evaluation completed

Ry *Rs
If the expression contains a function, the function is evaluated first.

H(13)+C(I,J+2)* (COSF(Z))**2 is evaluated:

COSF(R;)— R,
R, *R, R,

R3 *C(I,J+2)-»R4

R, +H(13)— R, evaluation completed
The following is an example of an expression with embedded parentheses.

A*(B+((C/D)-E)) is evaluated:
Cc/D
R,-E —— R,

Ry

Ry, +B — R,
R3*A —— R, evaluation completed

A*(SINF(X)+1.)-Z/(C*(D-(E+F))) is evaluated:
SINF(X) —» R,

R, +1.

R,*A
E+F — R,
-R, R
R,+D — R
R,*C — R
-Z ——R

R,/R,— Rg

Ry+R, Ry evaluation completed
2.1.2
INTEGER
ARITHMETIC,CAUTION In both the 1604 and 3600 computer systems, dividing an integer quantity by an

integer quantity always yields a truncated (least integer) result; thus 11/3 = 3.
For this reason, plus the fact that expressions containing operators of the same
class are evaluated from left to right, the expression I*J/K is not necessarily the
same as J/K*I. For example, 4*3/2 = 6 but 3/2%4 =4,

n

2.2

MODE OF ARITHMETIC

EXPRESSIONS

221

TYPE AND
MODE RULES AM1

AM2

AM3

AM4

12

FORTRAN-63 permits full mixed mode arithmetic which increases flexibility in
combining operand types. The five standard operand types are as follows:

COMPLEX two words per element
DOUBLE two words per element
REAL one word per element
INTEGER one word per element
LOGICAL one bit per element

The programmer may define three non-standard types specifying multi-word
elements or partial word elements, called bytes, whose length in bits is an integral
divisor of 48. The mechanics of the TYPE declaration are covered in section 3.1.

Mixed mode arithmetic is completely general; however, most applications will
probably mix operand types real and integer, real and double, or real and complex.
The following rules establish the relationship between the mode of an evaluated ex-
pression and the types of the operands it contains.

The order of dominance of the standard operand types within an expreésion from
highest to lowest is:

COMPLEX
DOUBLE
REAL
INTEGER
LOGICAL

The mode of an evaluated arithmetic expression is referred to by the name
of the dominant operand type.

In mixed arithmetic expressions containing non-standard types the following
restrictions hold:

1. The non-standard types (types 5, 6, 7) may never be mixed with each other.
2. Any one of the types 5, 6, 7 may be mixed with any or all of the standard
types. When this is done, the non-standard type dominates the hierarchy
established in rule AMI1.
In expressions of the form A**B the following rules apply:
1. Neither A nor B may be type logical or byte (non-standard) type.

2. B may be negative in which case the form is: A**(-B).

3. Tor the standard types (except logical) the mode/type relationships are:

Type A Type B
I|R|D]|C
1 I R D|C
R R| R| D|C o
D DI Dl DlC mode of A**B
C c|c|cicC

For example, if A is real and B is complex, the mode of A**B is complex.

4. If A or B or both are a non-standard multi-word type, the programmer must
provide subroutines for the evaluation of A**B,

222
ﬁ MIXED MODE
EVALUATION Examples
1. Given A, B type real; I, J type integer. The mode of expression A*B-T+J
will be real because the dominant operand is type real. It is evaluated:
A*B—-R, real
Convert Ito real
R,-I— R, real
Convert J to real
R,+J—R; real Evaluation completed
2. The use of parentheses may change the evaluation. A,B,I,J are defined
as above. A*B-(I-J) is evaluated:
I-J — R, integer '
Convert R, to real —R,
A*B — Rj real
Rz3-Rz> Ry real Evaluation completed
3. Given C1,C2 type complex; Al,A2 type real. The mode of expression Al*
(C1/C2)+A2 will be complex because its dominant operand is type complex.
It is evaluated:
C1/C2+R, complex
@ Convert Al to complex

A1*R1-~R2 complex
Convert A2 to complex
Ro+A2 =Ry complex Evaluation completed

4. Consider the expression C1/C2+(A1-A2) where the opei'ands are defined as in
3 above. It is evaluated:

Al1-A2 ~R, real
Convert R; to complex—R,
C1/C2~R, complex

R; +R, - R, complex Evaluation completed

Mixed mode arithmetic with standard types is illustrated by this example.

5. Given: C complex
D double
R real
I integer
L logical

and the expression C*D+R/I-T,

13

The dominant operand type in this expression is type complex; therefore, the
evaluated expression will be of mode complex. Evaluation:

Round D to a real and affix zero imaginary part

C*D —R; ‘ complex

Convert R to complex; convert I to complex
R/I — R, complex

R,+R; >~ R3 complex

Convert L to complex

R3-L - Ry complex Evaluation completed
If the same expression is rewritten with parentheses as C*D+(R/I-1) the
evaluation proceeds:

Convert Ito real

R/I—R, real

Convert Lto real

R,-L—Rs real

Convert R;to complex —R,

Round D to real and affix zero imaginary part

C*D—R, complex
R, tR;— R complex Evaluation completed
2.3
MIXED MODE
CONVERSIONS : Mixed mode arithmetic is accomplished through the special library subroutines.
In the 1604 computer system, these routines include double precision and complex
arithmetic. In the 3600 system, the double precision arithmetic is built into the
hardware; the complex arithmetic is performed by a library subroutine.
2.4
ARITHMETIC
REPLACEMENT
STATEMENT The general form of the arithmetic replacement statement (or simply, arithmetic

statement) is A = F, where F is an arithmetic expression and A is an identifier
representing a variable. The operator = means that the value of the evaluated
expression, F, is assigned to A, with conversion for mode if necessary.

The identifier A is a variable; usually the type is a standard form: complex, double, |
real, integer, or logical.

Non-standard types may also be specified; they may be used as left-hand variables
also.

14

Complex and double precision variables are floating point quantities requiring

two computer words. Real, integer and logical variables are represented by one
word. The mode of an evaluated expression is determined by the type of dominant
operand. However, this does not restrict the types that A may assume. An
expression of complex mode may replace A even if A is of type real. The following

chart shows the A,F relationship for all the standard modes.

ARITHMETIC REPLACEMENT STATEMENT A=F

A is an Identifier

F is an Arithmetic Expression

&(f) is the Evaluated Arithmetic Expression

Mode of
¢ () Complex Double Real Integer
TYPE
of A
Store real & Round ¢(f) to Store ¢(f) in real Convert ¢(f)
imaginary parts real. Store part of A. Store to real & store
Complex of ¢(f) in in real part of zero in imaginary in real part
real & imaginary A. Store zero part of A. of A. Store
parts of A. in imaginary zero in imaginary
part of A. part of A.
Discard imaginary Store ¢(f) If ¢(f) is = affix Convert ¢(f)
part of ¢ (f) (most & least +0 as least to real. If ¢(f)
Double & replace it significant parts) significant part. is %, affix +0 as
with £0 according in A (most & least Store in A, most least significant
to real part of ¢(f). | significant parts). & least significant | part. Store in A,
parts. most & least
significant parts.
Store real part Round ¢(f) to real Store ¢(f) in A. Convert ¢(f) to
Real of ¢(f) in A, & store in A. Least real. Store in A.
Imaginary part significant part of
is lost. ¢ (f) is lost.
Convert real part Round ¢(f) to Convert ¢(f) to Store ¢(f) in A.
of ¢(f) to INTEGER. | real, convert to INTEGER, Store
Integer Store in A. INTEGER & store in A.
Imaginary part is in A. The least
lost. significant part is
lost.
If real part of If ¢(f)#0, Same as for Same as for double
Logical o (£)£0, 1+A, store 1 in A. double at left. at left.
If real part of If ¢(f)=0, store
(=0, 0->A. 0in A.

When all of the operands in the expression F are of type logical, the expression

is evaluated as if all the logical operands were integers.

Let L,,L,, Ly, Ly

be logical variables, let R be a real variable and I an integer variable.

15

I=L,*Lo+Ls-Ly,

will be evaluated as if the L; were all integers (0 or 1) and the resulting value
will be stored, as an integer, in I.

R= Ll *Lg +L3-L4

is evaluated as stated above, but the result is converted to a real (a floating point
quantity) before it is stored in R.

Examples

Given: C;, A; complex
D;, A, double
R;, A; real
I , A, integer
L;, A; logical

1. A =C *G,-C5/C,
The mode of the expression is complex. Therefore the result of the expres-
sion is a two-word, floating point quantity. A, is type complex and the result
replaces A,.

2. A,=C,

The mode of the expression is complex. The type of A, is real; therefore
the real part of C, replaces A, .

3. A3=Cl*(0.,-‘1.)

The mode of the expression is complex. The type of A, is real; the
imaginary part of C, replaces Aj.

4. Ay =R;/Rp*(R3-Ry)+; (I *Rs)
The mode of the expression is real. The type of A, is integer; the result
of the expression evaluation, a real, will be converted to an integer replacing
Ay
5. Ay =D **2*(Dy+(D3*Dy) JH(D2 *Ry *Rp)

The mode of the expression is double. The type of A, is double; the result
of the expression evaluation, a double precision floating quantity replaces A, .

6. A.5 = Cl*Rl —R2+Il

The mode of the expression is complex. Since A, is type logical, an integer
1 will replace Aj if the real part of the evaluated expression is not zero. If
the real part is zero, zero replaces A;.

25

LOGICAL AND
RELATIONAL
EXPR ESSIONS A logical expression has the general form

O, opOg0op O3 ...o0p

where O, are arithmetic expressions, relations, or variables of type logical,
and op is one of the logical operators .NOT. .AND. .OR. The value of a

16

logical expression is either true or false. A / relational expression has the form
g, P 9y where at least one of d,, 4, is an arithmetic expression; the other q may
be either an arithmetic expression or a single logical variable. p is an operator
belonging to the set

.EQ. .NE. .GT. .GE. .LT. .LE.

A relation is true if q, stands in the relation p to q,- A relation is false if a,
does not stand in the relationp to q, .

Within the compiler, relations are evaluated as illustrated in the following example.
Consider the relation p = g.

This is equivalent to the question, does p-q =07?

The compiler computes the difference and tests it for zero. If the difference is
zero, the relation is true. If the difference is not zero, the relation is false.

Relational expressions are converted internally to arithmetic expressions accord-
ing to the rules of mixed mode arithmetic# These expressions are evaluated and
compared with zero to determine the truth value of the corresponding relational
expression. When expressions of mode complex are tested for zero, only the

real part is used in the comparison.

2.5.1
RULES GOVERNING
RELATIONS REL1 The only permissible forms of a relation are:
q,Pq,
q by itself, in which case a non-zero value is true and
a zero value is false.
REL2 q,p a,p q, - - is not permissible.
REL3 The evaluation of a relation of the form a,p 4, is from left to right. The
relations q,p 4,4, p qz) (q pa, @)p (]) are equivalent.
Examples
A .GT. 16. R() .GE. R(I-1)
R-Q(M*Z .LE. 3.141592 K .LT. 16
B-C .NE. D+E I .EQ. J(K)
252
LOGICAL
EXPRESSION
RULES LOG1 The hierarchy of logical operations is:
First .NOT.
then .AND.
then .OR.

LOG2 A logical variable or a relational expression is, in itself, a logical expression.
If £y, <£,are logical expressions, then

.NOT. ., , I
<1 AND. £
1 OR. 2o

17

18

are logical expressions. If « is a logical expression, (<), ((X)) are logical
expressions.

LOG3 If DZ’I,,[’Z are logical expressions and op is .AND. or .OR. then, a(fl op op.Ly
is never legitimate.

LOG4 .NOT. may appear in combination with .AND. or .OR. only as follows:
.AND,.NOT.
.OR..NOT.
.AND.(.NOT. - -)
.OR.(.NOT. - -)
.NOT. may appear with itself only in the form .NOT.(.NOT.(.NOT. - - -

LOG5 If b(’l, Z5 are logical expressions, the logical operators are defined as follows:

.NOT. <, is false if £, is true

oy .AND. o, is true if and only if « 1, are both true
L1 .0OR .o is false if and only if .%1,.°s are both false

Examples

Logical Expressions

{ The product A*B greater than 16.} .AND. {C equals 3.141519)
A*B .GT. 16. .AND. C .EQ. 3.141519

BEGIN

AxB-16.— L,

C-3.141519 » 1,

Is 1,507 RO
YES

Is Ly =0? NO
YES

{A(D greater than 0} .OR. {B(J) less than 0}
A .GT. 0 .OR. B({J) .LT. 0

ES
Is A(i)>07? X

NO

Is B(j)<0?

In the two examples below, all L, are of TYPE LOGICAL
(L2 .OR. .NOT. L3)

NO NO
Is L, #0? Is Lgs=0?

YES YES

L2 .OR. NOT. L3 .AND. (.NOT. L6 .OR. Lb)

Is L,#0?

NO

NO
Is Ly=0? |

YES

YES
Is 1g=07?

NO

YES NO

Is Ls#0?

19

Incorrect Usages

A.GT.(B.AND.C)

10.LE.N.LE.100
Q.NOT. .OR.R
C.AND. .NOT. .NOT.B

The last expression is permissible in the form C.AND. .NOT.(.NOT.B)

2.6
LOGICAL
REPLACEMENT
STATEMENT The general form of the logical replacement statement is L=E, where L
is a variable of type logical and E may be a logical expression or relation, or
an arithmetic expression.
When an arithmetic expression appears in a logical replacement statement, that
expression is examined for being zero or non-zero. If the expression is non-zero,
the left hand variable, L has the value TRUE. If the expression is equal to zero,
the left hand variable L has the value FALSE. Thus the treatment of arithmetic
expressions in logical replacement statements is consistent with that given to
logical expressions in logical replacement statements.
27
MASKING ~
EXPRESSIONS In FORTRAN-63, a masking expression is one in which 48-bit arithmetic is
performed bit-by-bit on the operands within the expression. These operands
must be of types real and integer only. Type integer includes octal and
Hollerith constants.
The masking operators are: .NOT. .AND. .OR. Although these operators are
identical in appearance to the logical operators, their meanings are different. For
masking operators the following definitions apply:
.NOT. means complement the operand
.AND. means form the bit-by-bit logical product of two operands
.OR. means form the bit-by-bit logical sum of two operands
The operations are described below.
p|l v|p .AND. v|p .OR. Vv .NOT. p
1 1 1 1 0
1(0 0 1 0
0 1 (U 1 1
0 0 0 0 1
2.71
MASKING
EXPRESSION
RULES ME1 The hierarchy of operation is: first .NOT., then .AND., then .OR.

20

2.8

MASKING
REPLACEMENT
STATEMENT

ME2 Let B,,B, be variables or constants whose types are real or integer. Then
the following are masking expressions.

.NOT. B,
B, .AND. B,
B, .OR. B,

ME3 If B is a masking expression, then (B), ((B)), are masking expressions.

ME4 .NOT. may appear with .AND. or .OR. only as follows:

.AND..NOT.
.OR..NOT.

.AND. (.NOT. - - +)
.OR. (.NOT.:--)

MES Masking expressions of the following forms are evaluated from.left to right.

A _AND. B .AND. C ...

A OR. B .OR. C .,

Examples

Given:

A, 7777000000000000
A, 0000000077777777
B 0000000000001763

C 2004500000000000

.NOT. A,
A, .AND. C

A, .AND. .NOT. C
B .OR. .NOT. A,

octal constant
octal constant
octal form of integer constant

octal form of real

0000777777777777
2004000000000000

5773000000000000
7777777700001763

The general form of the masking replacement statement is E = M. The masking
statement is distinguished from the logical statement in the following ways.

1. The type of E must be real or integer.

2. All operands in the expression M must be type real or integer. M may
contain parenthetical arithmetic subexpressions whose mode is real or

integer.

21

Examples

Given: All variables of type real or integer.

A = B .OR. .NOT. C(I+2,J*K)
B = D .AND. Q
C(LJ) = .NOT. Z(K) .AND. (Ql .OR. .NOT. Q2)
TEST = CELESTE .AND. THECLIPSE
AB =D .OR. (S+T)
2.9
MULTIPLE
REPLACEMENT
STATEMENTS The multiple replacement statement is a generalization of the replacement state-

ments discussed earlier in this chapter, and its form is:
¥ =¥ _1=...=V¥:= V1= expression

The expression may be arithmetic, logical or masking. The ¥, are variables
subject to the following restrictions:

Arithmetic or Logical Statement: ¥, = EXP
If EXP is logical or arithmetic, then

If the variable ¥, is type complex, double, real, or integer,
then ¥, = EXP is an arithmetic statement.

If the variable ¥, is type logical, then y, = EXP is a logical statement.
Masking Statement: ¥, = EXP

If EXP is a masking expression, ‘//1 must be a type real or integer variable
only.

The remaining n-1 ¥; may be variables of any type, and the multiple replacement
statement replaces each of the variables ¥,, . . ., %, withthe valueof ¥;in a manner
analogous to that employed in mixed mode arithmetic statements.

Examples

Given: A,B,C,D real The numbers in the examples
EF complex represent the evaluations of
G,H double expressions.
ILJ integer
K,L logical

22

I =A=46

I =A=E=(10.2,3.0)

|
i
>
i

I=E =(13.4,16.2)

K=1 =-14.6

I =K=-14.6

4 —1

4 — T

4.0— A

10.2—E
3.0 —E
10.2—A
100 —1

13.4—E
16.2——E
13 —1I
13.0— A
13.0—F
0.0—F

-14 —— 1

1 —K

F2a

1—K

1—1

real
imaginary

real
imaginary

real
imaginary

23

TYPE DECLARATIONS
AND STORAGE ALLOCATION

This chapter discusses how FORTRAN-63 allocates storage. The relation between
word structure (TYPE) and array length (DIMENSION, COMMON) is explained. The
methods for sharing storage (EQUIVALENCE) and the DATA statement is explained.

3.1

TYPE DECLARATIONS The TYPE declaration provides the compiler with information regarding the
structure of the identifiers that name variables (1.6) and functions (5.1). The
discussion that follows describes how type.information is passed to the compiler
from source language statements.

There are five standard variable types (non-standard types are explained in
Volume IIT). Identifiers are declared of a given type by one of the following
declarative statements:

TYPE COMPLEX List
TYPE DOUBLE List
TYPE REAL List
TYPE INTEGER List
TYPE LOGICAL List

A list, as used here, is a string of identifiers, in which each identifier is separated
from the succeeding one by a comma. Subscripts are not permitted. An example
of a list is:

A,B1,CAT,D36F, EUPHORIA

The characteristics of the standard variable types are:

Type Element Definition Quantification
Complex 2 words/Element Floating point
Double 2 words/Element Floating point
Real 1 word /Element Floating point
Integer 1 word /Element Tnteger
Logical 1bit /Element Logical
3.1.1
TYPE DECLARATION
RULES TD1 The TYPE statement is non-executable and must precede the first executable state-

ment in a given program.

TD2 If a variable is declared differently in two or more TYPE statements, its TYPE
will be determined from the last TYPE statement in which it appears.

25

3.2
DIMENSION

26

TD3 A variable not declared in a TYPE statement will be interpreted as TYPE REAL

if the first letter of its identifier is A, .. .,Hor O, . . .Z. It will be interpreted
as TYPE INTEGER if the first letter of the identifier is I, J, K, L, M, N,

Examples
TYPE COMPLEX A147, RIGGISH, AT1LIL2
TYPE DOUBLE TEEPEE, B2BAZ
TYPE REAL EL, CAMINO, REAL, IDEG3
TYPE INTEGER QUID, PRO, QUO
TYPE LOGICAL GEORGEG

A subscripted variable represents an element of an array of variables. Storage
may be reserved for arrays by the non-executable statements DIMENSION or
COMMON.,

The standard form of the DIMENSION statement is:
DIMENSION V,; ,Vo, ...

V; have the form: Identifier (subscript string). The subscript string may have up
to 3 unsigned constants separated by commas, as in SPACE(5,5,5). Under certain
conditions within subprograms only, the subscripts may be integer variables.
(Variable Dimensions 5.8)

The number of computer words reserved for a given array is a function of the
product of the subscripts in the subscript string, and the type of the variable. In
the statements

TYPE COMPLEX HERCULES
DIMENSION HERCULES (10,20),

the number of elements in the array HERCULES is 200. The TYPE statement,
however, specifies two words per element ; therefore, the number of computer words
reserved is 400. The argument is the same for TYPE DOUBLE. For REAL and
INTEGER the number of words in an array equals the number of elements in the
array.

For subscripted logical variables, up to 32 bits of a computer word are used; each
bit represents an element of the logical variable array. The elements are stored
left to right in a computer word starting with the most significant bit position. In
the statements

TYPE LOGICAL XERXES
DIMENSION XERXES (5,5,5),

there are 125 elements in the array XERXES and these elements will occupy four
sequential words as shown below.

[

3.21
VARIABLE DIMENSIONS

33
COMMON

'4——32B1Ts——-—l
woro 2227777778

WORD+L A
worns2 7777772777770

woRD+3 |]

2
‘—(»—— 29 BITS ——»—l

When an array identifier and its dimensions appear as formal parameters in a
function or subroutine, the dimensions may be assigned through the actual param-
eter list accompanying the function reference or subroutine call. The dimensions
so assigned must not exceed the maximum array size specified by the DIMENSION
statement in the calling program. See seciion 5.8, Variable Dimensions and
Subprograms for details and examples.

Just as an expression may contain sub-expressions, a program may contain, or
call upon, subprograms (Chapter V). Such programs must be able to communicate,
and they frequently require access to areas of information that they use in common.
These areas are specified by the statement COMMON, The general form of this
statement is:

COMMON / (B)1,/ List / (B) I, / List . . .

B is a bank designator and has meaning only in the 3600 computer system. It is an
unsigned integer constant between 0 and 7, and is ignored in a FORTRAN-63 program
executed in the 1604 computer system. When B is omitted in 3600 programs, it is
assumed to be the same as B = 0.

Iis a COMMON block identifier and it may be up to eight characters in length. It
designates either labeled or numbered COMMON blocks and has the form:

Clcg...C 15p$8

If C; is alphabetic the identifier denotes a labeled COMMON block; the remaining
characters may be alphabetic or numeric. If all the C; are numeric, the identifier
denotes a numbered COMMON block. If C; is numeric, the remaining characters
must be numeric.

Examples

Labeled COMMON Identifiers Numbered COMMON Identiﬁérs

AZ13 1
MAXIMUS 146
Z 3600

27

3.4

COMMON BLOCKS

3.41
COMMON RULES

342

COM1

CcOom2

COM3

COM4

COMS5

COM6

COMMON BLOCK LENGTH

.I.

28

List has the form V; ,Vy . . ., where V; is of the form identifier (subscript string)..

COMMON A,B,CJr +

COMMON/ /A,B,C,D
COMMON/BLOCK1/A,B/1234/C(10),D(10,10),E(10,10,10)
COMMON/ (1)BLOCKA/D(15),F(3,3),GOSH(2,3,4),Q1

The primary purpose of the COMMON block is to provide the programmer with a
means of using, in subprograms, certain COMMON areas specified in the main
program by referring only to the block desired. Both numbered and labeled blocks
may be used for this purpose. Data stored in labeled COMMON blocks by the DATA
statement are available to any subprogram using the appropriate labeled block.

COMMON is non-executable and must precede the first executable statement in the
program.

If TYPE, DIMENSION or COMMON appear together, the order is immaterial.

The identifiers of labeled COMMON blocks are used only for block identification
within the compiler; they may be used elsewhere in the program as other kinds of
identifiers.

For any given dimensioned variable, the dimensions may be declared either in a
COMMON statement or in a DIMENSION statement. If declared in both, those of
the DIMENSION statement override those declared in the COMMON statement.

At the beginning of program execution, the contents of the COMMON area are
undefined unless specified by a DATA statement.

An identifier in one COMMON block may not appear in another COMMON block. If
it does, the identifier is doubly defined.

The length of a COMMON block, in computer words, is determined from the type
of the list identifier and the dimension (if any) associated with that identifier.)

Given COMMON/A/Q(4),R(4),5(2)
TYPE COMPLEX S

the length of the COMMON block A is 12 computer words. The origin of the
COMMON block is Q(1).

These forms are sometimes called blank COMMON.

block A

origin Q(1)
Q(2)
Q(3)
Q(4)
R(1)
R(2)
R(3)
R(4)
S(1) real part

S(1) imaginary part
S(2) real part

S(2) imaginary part

Examples

MAIN PROG TYPE COMPLEX C
COMMON/TEST/C(20)/36/A,B,Z

The length of TEST is 40 computer words.
The subprogram may re-arrange the allocation of words as in:

SUBPROG1 COMMON /TEST/A(10),G(10),K(10)
TYPE COMPLEX A

The length of TEST is 40 words. The first 10 elements (20 words) of the block,
represented by A, are complex elements. Array G is the next 10 words, and array
K is the last 10 words. Within the subprogram, elements of G will be treated as
floating point quantities; elements of K will be treated as integer quantities.

The length of the COMMON block must not be changed by the subprograms using the
block. The identifiers used within the block may differ as shown above.

The following arrangements are equivalent:

f TYPE DOUBLE A f TYPE DOUBLE A

1 DIMENSION A(10) COMMON, A
COMMON A l DIMENSION A(10)
DIMENSION A(10) { TYPE DOUBLE A
TYPE DOUBLE A COMMON A(10)
COMMON A

(COMMON A

DIMENSION A(10)
l TYPE DOUBLE A

The label of 2 COMMON block is used only for block identification. The following
is not erroneous:

COMMON /A/A(10)/B/B(5,5) /C/C (5,5,5)

29

3.5

E Q UIVALENCE The EQUIVALENCE statement permits variables to share locations in storage.
The general form of this statement is:

EQUIVALENCE (A,B ...), (AL,BL, ...),...

where the A, B, ... are simple or singly subscripted variable identifiers. A
multiply subscripted variable can be represented by a singly subscripted variable.
The correspondence is:

A (i,j.k) =2 A (the value of (i+(-1)*I + (k-1)=IxJ))
where 1,j,k are integer constants and I and J are the integer constants appearing

in DIMENSION A (1,J,K). For example, given DIMENSION A(2,3,4), the element
A(1,1,2) is represented by A(7).

3.5.1

EQUIVALENCE RULES EQU! EQUIVALENCE is non-executable and must precede the first executable statement
in the program or subprogram in which it appears.

EQU2 If TYPE, DIMENSION, COMMON, or EQUIVALENCE appear together, the order
is immaterial.

EQU3 The following may be made equivalent

COMPLEX / COMPLEX

COMPLEX / DOUBLE

COMPLEX or DOUBLE / REAL with or without
COMPLEX or DOUBLE / INTEGER subscript

REAL / REAL

REAL / INTEGER

DOUBLE / DOUBLE

INTEGER / INTEGER

LOGICAL / LOGICAL

TYPE 5 / TYPE 5 (non-~standard) ,
unsubscripted only

TYPE 6 / TYPE 6 (non-standard) |

TYPE 7 / TYPE 7 (non-standard)

Any variable of TYPE LOGICAL,5, 6, or 7 may be made equivalent to one of the
standard types, but they must not be subscripted.

EQU4 The EQUIVALENCE statement does not rearrange COMMON, but arrays may be
defined as equivalent so that the length of the COMMON block is changed. The
origin of the COMMON block must not be changed by the EQUIVALENCE statement.

The following simple cases illustrate changes in block lengths caused by the
EQUIVALENCE statement.

Given: Arrays A and B
S, = subscript of A
Sy subscript of B

It

30

)

CASE I A, B both in COMMON

If A appears before B in the COMMON statement:

Sa = Sh is a permissible subscript arrangement
Sa < Sbis not

If B appears before A in the COMMON statement

Sa = Sh is a permissible subscript arrangement
Sa > Sb is not

Block 1
origin—= A (1) COMMON/1/ A(5), B (7)
A (2) B (1) EQUIVALENCE (A(4), B(3))
A (3) B (2)
A (4) B (3)
A (5) B (4)
B (5)
B (6)
B (7)

Statement EQUIVALENCE (A(3), B(4)) changes the origin of block 1. This is not
permitted.

B(1)~«—origin changed

origin—s- A(1) B(2)
A(2) B(3)
A3) B(4)
A(4) B(5)

CASE II A in COMMON, B not in COMMON (corresponds to CASE Ia)

Sb = Sa is a permissible subscript arrangement
Sb > Sa is not

Block 1
origin— A(1) COMMON /1/A(4)
A(2) B(1) DIMENSION B(5)
A(3) B(2) EQUIVALENCE (A(3), B(2))
A(4) B(3)
B(4)
B(5)

CASE III B in COMMON, A not in COMMON (corresponds to CASE Ib)

Sa = Sb is a permissible subscript
Sa > Sb is not

Block 1
origin — B(1) COMMON/1/ B (4)
B(2) A1) DIMENSION A (5)
B(3) A(2) EQUIVALENCE (B(2), A(1))
B(4) A(3)
A4)
A(5)

CASE IV _A, B, not in COMMON

No subscript arrangement restrictions.

31

352
GENERAL RULE

3.6
DATA

32

Regarding EQUIVALENCE and COMMON - Consider the statement
EQUIVALENCE (A(6),B(4),C(3),D(8))

The base of the equivalence is the identifier with the largest subscript. The base
is D(8); A(6),B(4), and C(3) will be made equivalent to it.

If any, or all, of A, B, C, D occur in a COMMON statement, the order, from left to
right, is by descending subscripts in the EQUIVALENCE statement. Since the

subscript of D is greater than the subscript of A, et cetera, the following COMMON
statement is permissible:

COMMON/1/D(10),A(8),B(5),C(10)
The combined statements

EQUIVALENCE (A(6),B(4),C(3),D(8))
COMMON/1/D(10),A(8),B(5),C (10)

yield the storage arrangement:

Block 1
origin D(1)
D(2)
D(3) A(1)
D(4) A(2)
D(5) A(3) B(1)
D(6) A(4) B(2) c@)
D(7) A(5) B(@3) C(@) -
equivalence base D(8) A(6) B(4) C(3)
D(9) A(T) B(5) C(4)
D(10) A(8) C(5)
C(6)
C(7)
C(8)
C)
C(10)

Within the EQUIVALENCE statement, the order is immaterial. EQUIVALENCE
(A(6),B(4),C(3),D(8))
is the same as EQUIVALENCE(A(6),D(8),C(3),B(4)).

The programmer may assign constant values to variables in the program by using
the DATA statement either by itself or with a DIMENSION statement. It may be
used to store constant values in variables contained in a labeled COMMON blockK.

.The form of the DATA statement is:

DATA(I, =List),(I; =List),
List contains constants only and has the form

a; ,az, ... Kby ,ba, .. .),0; 0,
where K is an integer constant repetition factor that causes the parenthetical list
following it to be repeated K times. I is an identifier representing a simple

variable, a variable with integer constant subscripts, an array, or an array with
integer variable subscripts.

3.6.1

DATA RULES DAT1 DATA is non-executable and must precede the first executable statement in any
program or subprogram in which it appears.

DAT2 When DATA appears with TYPE, DIMENSION, COMMON or EQUIVALENCE state—
ments, the order is immaterial. V

DAT3 DO loop-implying notation is permissible with the restriction that m, cannot appear.
Short notation may be used for storing constant values in arrays.

DAT4 No array name declared in blank or numbered COMMON or in a variable DIMENSION
can belong to a DATA statement.

DATS5 When a signed constant appears in a DATA list, that sign is unary; in DATA
(A = -2.), the negative value of the floating point number 2 replaces A. Negative
octal constants are prefixed with minus signs. The operator.NOT.may not
be used.

DAT6 With identifiers of types real or integer, the corresponding constant in the list must
be the same type; in DATA (A =2). The type of A is not checked, and an integer 2
will replace A. i

DAT7 There must be a one-one correspondence between the identifier and the list. This
is particularly important in arrays.

Consider COMMON /BLK/ A(3), B
DATA (A = 1.,2.,3.,4.)

The constants 1.,2.,3., are stored in array locations A, A+1, A+2; the constant 4, is
stored in location B. If this occurs unintentionally, erroneous results may occur
when B is referred to elsewhere in the program.

Consider COMMON / TUP/ C(3)
DATA (C = 1.,2.)

The constants 1., 2. are stored in array locations C and C+1, the contents of C(3),
that is, location C+2 are not defined.

DAT8 Use of DATA with a TYPE LOGICAL variable constitutes a special case (the last
example below).

Examples
DATA (LEDA=15), (CASTOR=16.0), (POLLUX=84.0)

LEDA 15
CASTOR 16.0
POLLUX 84.0

DATA (A(1,3) = 16.239)
ARRAY A

A(1,3) 16.239

33

34

DIMENSION B(10)
DATA (B = 7T7B, -T7B, 4(776B, ~774B))

ARRAY B 7B
-77TB
776B

~774B
776B [
-774B
776B
-174B
776B
~774B

COMMON /HERA/ C(4)
DATA (C = 3.6, 3(10.5))

ARRAY C 3.6
10.5
10.5
10.5

TYPE COMPLEX PROTEUS
DIMENSION PROTEUS (4)
DATA (PROTEUS = 4((1.0, 2.0)))

ARRAY PROTEUS 1.0
2.0
1.0
2.0
1.0
2.0
1.0
2.0

DIMENSION MESSAGE (3)
DATA (MESSAGE = 3HWHO, 2HIS, 6HSYLVIA)

ARRAY MESSAGE WHO
1S
SYLVIA

This example illustrates how elements of a logical array are stored by the DATA
statement.

Given: TYPE LOGICAL L
COMMON / NETWORK / L (4,8)

Store the following matrix of logical elements:

[l
o - o R
I
S)
c oo
oo+ o
e =N
o= o

Arrays are stored columnwise.

Elements of logical arrays are stored 32 bits to the word, left to right, left jus-
tified with zero fill.

The matrix fits into one computer word as follows:

111 110 101 111 o011 010 000 100 101 110 100 0... O
and its octal equivalent is

7657320456400000

Therefore, the appropriate DATA statement is:

DATA (L = 76573204564000008)

,Ji

35

CONTROL STATEMENTS

Program execution normally proceeds from one statement to the statement
immediately following it in the program. Control statements can be used to alter
this sequence or cause a number of iterations of a program section.

Control may be transferred to an executable statement only; a transfer to a
non-executable statement will result in a program error. During compilation,
however, no error will be indicated.

Tteration control provided by the DO statement causes a predetermined sequence
of instructions to be repeated any number of_{times with the stepping of a simple
integer variable after each iteration. i’

4.1

STATEMENT

IDENTIFIERS Statements are identified by numbers which can be referred to from other
sections of the program. A statement number used as a label or tag, appears
in columns 1 through 5 on the same line as the statement on the coding form.
The statement number N may lie in the range 1 =N=99999. An N of fewer than
5 digits may occupy any of the first five columns; blanks are squeezed out and
leading zeros are ignored, 1=01=001=0001, (Appendix A).

42

GO TO STATEM ENTS unconditional transfer of control is provided by GO TO statements.

421
UNCONDITIONAL GO TO GOTOn

This statement causes an unconditional transfer to the statement labeled n;
n is a statement number.

4.2.2

ASSIGNED GO TO GO TO m, (n;,0y, .+« Om)
This statement acts as a many-branch GO TO.
m is an integer variable assigned an integer value n; in a preceding ASSIGN
Statement. The n; are statement numbers. The parenthetical list need not
be present.

37

4.2.3
ASSIGN STATEMENT

4.2.4
COMPUTED GO TO

43
IF STATEMENTS

4.3.1

THREE BRANCH IF
(ARITHMETIC)

38

ASSIGN 4 TO m
This statement is used with the Assigned GO TO statement.
4-is a statement number, m is a simple integer variable.

ASSIGN 10 TO LSWTCH

GO TO LSWTCH,(5,10,15,20)

Control would transfer to statement 10.

GO TO (ny5hp, .. .,0p4),1

This statement acts as a many-branch GO TO where i is preset or computed
prior to its use in the GO TO.

The n; are statement numbers and i is a simple integer variable. If i=1, a
transfer to n, occurs; if iZm, a transfer to n, occurs.

ISWITCH =1
GO TO (10,20,30),ISWITCH

10 JSWITCH = ISWITCH +1
GO TO (11,21,31),JSWITCH

Control would transfer to statement 21.

Conditional transfer of control is provided by the two~ and three-branch IF
statements, the status of sense lights or switches, or the status of an arithmetic
overflow indicator. :

IF (A) n,,ny,n0,

A is an arithmetic expression and the n; are statement numbers.

This statement tests the evaluated quantity A and jumps according to the
following criteria:

A <0 jump to statement n,
A =0 jump to statement n,
A >0 jump to statement ng

In the test for zero, +0 = -0. When the mode of the evaluated expression is
complex, only the real part is tested for zero.

IF(A*B-C*SINF(X))10,10,20
IF(1)5,6,7
IF(A/B**2)3,6,6

4.3.2
TWO BRANCH IF
(LOGICAL)

4.3.3
SENSE LIGHT

43.4
SENSE SWITCH

4.4

FAULT CONDITION
STATEMENTS

IF(L) ny,n,

‘L is a logical or an arithmetic expression. The n; are statement numbers.

The evaluated expression is tested for true (non-zero) or false (zero). I L is
true jump to statement n,. If L is false jump to statement n,.

IF(A GT. 16. .OR.I EQ. 0)5,10

IF(I)1,2 (L is TYPE LOGICAL)
IF(A*B-C)1,2 (A*B-C is arithmetic)
IF(A*B/C .LE. 14.32)4,6

In the statement IF (A) 2,3,4,
A is tested as shown in 4.3.1. In the statement IF (A) 4,3
if A is not zero, jump to statement 4; if A is zero, jump to statement 3.

IF(SENSE LIGHT i)n,,n,

The statement tests sense light i. If it is on, it is turned off and a jump occurs
to statement n,. If it is off, a jump occurs to statement n,.

i is a sense light and the n; are statement niimbers. 1 may be a simple integer
variable or constant.

IF(SENSE LIGHT 4)10,20

IF(SENSE SWITCH 1)1, ,np

If sense switch i is set (ON) a jump occurs to statement n; . If it is not set (OFF)
a jump occurs to statement np ; i may be a simple integer variable or constant.
In the 3600 1 =1i= 6 (physical console switches)

In the 1604 1= 1i= 6 (CO OP Monitor function. Appendix E)

N =25
IF(SENSE SWITCH N)5,10

At execute time the computer is set to interrupt on divide, overflow or exponent
fault.

IF DIVIDE CHECK n,,n,
IF DIVIDE FAULT n,,n,

A divide fault occurs following division by zero. The statement checks for this
fault; if it has occurred, the indicator is turned off and a jump to statement n, takes
place. I no fault exists, a jump to statement n, takes place.

IF EXPONENT FAULT n,,n,

An exponent fault occurs when the result of a real or double or complex arithmetic
operation exceeds the upper limits specified for these types. Results that are less
than the lower limits are set to zero without indication. This statement is therefore
a test for floating-point overflow only. If the fault has occurred, the indicator is
turned off, and a jump to statement n, takes place. If no fault exists a jump to
statement n, takes place.

39

45
DO STATEMENT

451
DO INDEX VARIABLE: i

40

IF OVERFLOW FAULT n,,n,

An overflow fault occurs when the magnitude of the result of an integer sum or
difference exceeds 2*7 -1. This fault does not occur in division and it is not
indicated in multiplication. If the fault occurs, the indicator is turned off and a jump
to statement n, takes place. If no fault exists, a jump to statement n, takes place.

DOn i=m,,m,,mg

The DO Statement provides FORTRAN-63 with a recursive property.

n is a statement number; i is the index variable. It is a simple integer variable.
m; are the indexing parameters; they may be unsigned integer constants or simple
integer variables. If m, does not appear, it is construed to be 1.

The DO Statement, the statement labeled n, and any intermediate statements
constitute a DO loop. Statement n may not be an IF or GO TO statement or
another DO statement. The statement immediately following the DO statement
must be executable (Appendix C).

The initial value of i is m;. This value is compared with m, before executing the
DO loop and, if it does not exceed m,, the loop is executed. After this step, i is
increased by m; and control passes to the top of the loop where i is again compared
with m, ; this process continues until i exceeds m, as shown below. Control then
passes to the statement immediately following n, and the DO loop is said to be
satisfied. Should m, exceed m, on the initial entry to the loop, the loop is not
executed and control passes to the next statement.

START

m; — 1

Is i5m2 ?

EXECUTE STATE-
MENTS IN LOOP
INCLUDING
STATEMENT N.

\

(e

When the DO loop is satisfied, the index variable i is no longer well defined. If a
transfer out of the DO loop occurs before the DO is satisfied, the value of i is
preserved and may be used in subsequent statements.

452

DO NESTS When a DO loop contains another DO loop the grouping is called a DO nest. I
D,,D,, ...D, represent DO statements, where the subscripts indicate that D, appears
before D, appears before D,, et cetera, and n, ,n,, ... 0, represent the cor;esponding
limits of the D;, then n,, must appear beforen, _, ... n, must appear before n

L
D,
D,
[Ds
ng
o
ny
DO loops may be nested in common with other DO loops:
- D,y Dy D,
D, D, ———D,
Djy [Dy
[w |
ng n,=n,=ng
n, [Ds
D4 n3
Ny
-1,
Examples
DO 11=1,10,2 DO 100 L=2,LIMIT DO5I=1,5
DO 5 J=1,10
DO 5 K=J,15
DO 2 J=1,5 DO 10 I=1,10
DO 10 J=1,10 .
5 CONTINUE
DO 3 K=2,8 .
10 CONTINUE
3 CONTINUE

DO 20 K=K1,K2

2 CONTINUE

20 CONTINUE
DO 4 1=1,3 ;
100 CONTINUE
4 CONTINUE
: /@ 1 CONTINUE
{

4]

453
DO LOOP TRANSFER

454
DO PROPERTIES

4.6
CONTINUE

42

In a DO nest, a transfer may be made from one DO loop into a DO loop that contains
it; and a transfer out of a DO nest is permissible. The special case is transferring
out of a nested DO loop and then transferring back to the nest.

In a DO nest:

If the range of i includes the range of j and a transfer out of the range of j ocecurs,
then a transfer into the range of i or j is permissible.

In the following diagram, EXTR represents a portion of the program outside of the
DO nest. EXTR must not change the indexing variable or the indexing parameters.

in

1) The indexing parameters m,, m,, m,; are either integer constants or simple
integer variables.

2) The values of the indexing parameters are assumed to remain constant until the
DO is satisfied.

3) The indexing parameters should assume positive values only.ﬁ1
4) ¥ m, > m, initially, the loop is not executed.

5) The identity and value of the indexing variable is local to the statements in the
range of the DO statement when

(a) it is not used as an operand
(b) No transfers out of the range of the DO exist
Otherwise, the identity and value of i is global.

6) DO-loops may be nested 50 deep.

CONTINUE

The CONTINUE statement is most frequently used as the last statement of a DO loop
to provide a transfer address for IF and GO TO instructions that are intended to
begin another repetition of the loop. If CONTINUE is used elsewhere in the source
program, it acts as a do-nothing instruction and control passes to the next sequential
program statement.

47
PAUSE PAUSE

PAUSE n

n is an octal number such that 1 < n =247 -1, PAUSE n halts the computer with n
displayed in the accumulator register on the console. When the START key on the
console is pressed, program execution proceeds starting with the statement
immediately following PAUSE.

4.8

STOP STOP
STOP n
n is an octal number such that 1 <=n < 247 -1, STOP n halts the computer with n
in the accumulator register displayed on the console. When the START key on the
console is pressed, an exit will be made to the COOP MONITOR (1604) or SCOPE
(3600). STOP (n omitted) causes immediate Sxit to MONITOR or SCOPE.

4.9

END END

END marks the physical end of a program or subprogram; if executed, it acts as a
RETURN.

43

5.1

STATEMENT
FUNCTIONS

5.11

STATEMENT
FUNCTION RULES

SF1

SF2

FUNCTIONS AND SUBROUTINES

FORTRAN-63 functions and subroutines, range from single source language state-
ments to independently compilable subprograms.

A function name is constructed in the same way as a variable identifier and has a
type determined by the conventions established for variables. A function together
with its arguments may be used at any place in an expression that a variable
identifier may be used.

A reference to a function is a call upon a computational procedure for the return of
a single value, identified by and associated with the function identifier. This
procedure may be defined in a single statement within the program (statement
function) ; it may be defined within the compiler (library function) or it may be
defined in a multi-statement subprogram either compiled with a main program or
compiled independently (function subroutine).

A reference to a subroutine is also a call upon a computation procedure. This
procedure may return one or more values or it may return none. No value is
associated with the name of the subroutine, and the subroutine must be called by a
CALL statement.

5

Any function reference must supply the function with a set of arguments or parameters.

This set must contain at least one argument and may contain up to 63 arguments.
The forms of the arguments differ somewhat in each of the three kinds of functions.
The form of the function reference is:

F (PsP2s - - -Pn) 1 =n =63

where F is the function name and the p; are function arguments or actual parameters.
The corresponding arguments appearing with the function name in a function
definition are called formal parameters.

Statement functions are defined by a single arithmetic or logical statement in the
source program and apply only to the particular program or subprogram in which
the definition appears. They have the form

F (ypg- - Pa) = E

where T is the function name and E is an expression.

The type of the function is determined from the naming conventions specified for
variables in Chapter 3, Type Declarations.

The function name must not appear in a DIMENSION, EQUIVALENCE or COMMON
statement.

45

5.2

SF3

SF4

SF5

SF6

SF7

LIBRARY FUNCTIONS

53

FUNCTION
SUBPROGRAMS

46

The formal parameters will usually appear in the expression E. When the state-
ment function is executed, the formal parameters are replaced by the corresponding
actual parameters of the function reference. Each of the formal parameters may be
TYPE REAL or INTEGER only, but they may not be declared in a TYPE statement.
(3.1.1, rule TD3) Each of the actual parameters may be any arithmetic expression,
but there must be agreement in order, number and type between the actual and
formal parameters.

E may be arithmetic or logical.
E cannot contain subscripted variables.

The expression E may refer to library functions, previously defined statement
functions and function subprograms.

All statement functions must precede the first executable statement of the program
or subprogram, but they must follow all declarative statements (DIMENSION, TYPE,
et cetera).

Examples
TYPE COMPLEX Z

7.(X,Y)=(1.,0.)*EXPF (X) *COSF (Y)+(0.,1.) *EXPF (X) *SINF (Y)

This arithmetic statement function computes the complex exponential Z(x,y) =
ex+iy .

FORTRAN-63 contains the standard library functions available in earlier versions
of FORTRAN. A list of these functions is in Appendix D. The identifying names
have not been changed. When one appears in the source program, a special part of
the compiler identifies it as a library function and takes appropriate action as
explained below.

In Chapter 3, specific rules are given for declaring the types of identifiers. In the
absence of a TYPE declaration, a variable type is determined by its first identifier
letter. As stated in rule ST1, this convention applies to function identifiers. In the
standard library function for obtaining the natural logarithm of a number (LOGF)
the first identifier letter, L, would cause that function to return an integer result.
In this case the result is contrary to established FORTRAN usage. To avoid
inconsistency, the compiler recognizes the standard library functions and permits
the programmer to use such functions in the usual manner.

Function subprograms are FORTRAN source language programs that cannot be
defined by one statement and that are not used frequently enough to be included in
the library.

Function subprograms may be compiled independently, and the first statement of
such a subprogram must have the form:

FUNCTION F (9D, - -Pa) 1 =n =63

5.3.1

FUNCTION SUBPROGRAM

RULES

5.3.2

FUNCTION TYPE
AND MODE

FS1

FS2

FS3

FS3A

FS4

FS4A

FS5

where F is the function name, and the p; are formal parameters. These parameters
may be array names, non-subscripted variables, or names of other function or
subroutine subprograms.

The type of the function is determined from the naming conventions specified for
variables in Chapter 3, Type Declarations.

The name of a function must not appear in a DIMENSION statement. The name
must appear, however, at least once as any of the following:

The left-hand identifier of a replacement statement

An element of an input list

An actual parameter of a subprogram call

No element of a formal parameter list may appear in a COMMON or EQUIVALENCE
statement within the function subprogram.

When a formal parameter represents an array, it should be declared in a
DIMENSION statement within the function subprogram. If it is not declared, only
the first element of the array will be available to the function subprogram.

In referring to a function subprogram the following forms of the actual parameters
are permissible:

a. arithmetic expression

b. constant or variable, simple or subscripted

c. array name

d. function reference

e. subroutine

In form d, if only the name of the function appears, it must also appear in an
EXTERNAL statement in the calling program. See example 2 following 5.5.

In form e, the subroutine may appear as a subroutine name alone or as a subroutine
name with a parameter bit:

These cases are illustrated in examples 3 and 4 following 5.5.
Logical expressions may not be actual parameters.

Actual and formal parameters must agree in order, number and type.

The compiler distinguishes between array names and functions as follows: Given
an identifier followed by a left parenthesis, Z(, if the identifier Z occurs in a
DIMENSION statement, it represents an array. If not, Z(represents a function.
To determine the mode of the function (statement, subprogram, or library), the
compiler goes through the following process of elimination:

1. If the identifier is not in the compiler's table of library functions, or is

not declared in a TYPE statement, the mode of the evaluated function is
according to the identifier first-letter criterion (3.1.1).

47

5.4

RETURN AND
END STATEMENTS

55

EXTERNAL
STATEMENT

48

2. If the identifier is in the compiler's table of library functions, but not in
a TYPE statement, the mode of the evaluated function is given by the
library function (Appendix D).

3. If the name is declared in a TYPE statement, the mode of the evaluated
function is defined by the TYPE statement (3.1.1).

A subprogram normally contains one or several RETURN statements that indicate
the end of logic flow within the subprogram, and return control to the calling pro-
gram. In function references, control returns to the statement in which the function
is imbedded. In subroutine subprograms, control returns to the next executable
statement immediately following the CALL statement in the calling program. The
form of this statement is RETURN.

The END statement marks the physical end of a program, subroutine subprogram
or function subprogram. I the RETURN statement is omitted, END acts as a
return to the calling program.

When the actual parameter list of a given function reference contains a function or
subroutine name, that name must be declared in an EXTERNAL statement. Its
form is:

EXTERNAL identifier,, identifierz, .
where identifier is the name of a function or subroutine. The EXTERNAL statement

must precede the first executable statement of any program in which it appears.
When it is used, EXTERNAL always appears in the calling program.

Examples
1. Function Subprogram

FUNCTION GREATER (A,B)
IF (A .GT. B) 1,2
1 GREATER = A-B
RETURN
2 GREATER = A+B
END

Calling Program Reference

7(1,J) = F1+F2-GREATER (C-D,3.*I/J)

2. Function Subprogram

FUNCTION PHI (ALFA, PHI2)
PHI = PHI2(ALFA)
END

Calling Program Reference

EXTERNAL SINF

C=D-PHI (Q(K),SINF)
From its call in the main program, the formal parameter ALFA is
replaced by Q(K), and the formal parameter PHI2 is replaced by SINF.
PHI will be replaced by the sine of Q(K).

3. Function Subprogram

FUNCTION PSYCHE (A,B,X)
CALL X

PSYCHE = A/B*2*(A-B)
END

Function Subprogram Reference

EXTERNAL EROS

R = S - PSYCHE (TLIM,ULIM,EROS)

In the function subprogram, TLIM, ULIM replaces A,B. The CALL X is
a call to a subroutine named EROS. EROS appears in an EXTERNAL
statement so that the compiler recognizes it as a subroutine name rather
than a variable identifier.

4. Function Subprogram

FUNCTION AL(W,X,Y,Z)
CALL W(X,Y,Z)

AL = Z*%4

RETURN

Function Subprogram Reference

EXTERNAL SUM

G = AL(SUM,E,V,H)

In the function subprogram the name of the subroutine (SUM) and its
parameters (E,V,H) replace W and X,Y,Z. SUM appears in the EXTERNAL
statement so that the compiler will treat it as a subroutine name rather
than a variable identifier.

49

5.6
SUBROUTINE
SUBPROGRAMS : Subroutine subprograms may be compiled independently; the first statement of
such a program must have the form:
SUBROUTINE S
or
SUBROUTINE S (p;sP,, .. .Py) 1 =n =63
where S is the subroutine name, and the p; are the formal parameters which may
be array names, non-subscripted variables, or names of other function or sub-
routine subprograms.
5.6.1

SUBROUTINE RULES SS1 The name of the subroutine may not appear in any declarative statement (TYPE,
DIMENSION) in the subroutine.

SS2 The name of the subroutine must never appear within the subroutine as an
identifier in a replacement statement, in an input-output list, or as an argument
of another CALL.

SS3 No element of a formal parameter list may appear in a COMMON or EQUIVALENCE
statement within the subroutine subprogram.

SS3A When a formal parameter represents an array, it should be declared in a
DIMENSION statement within the subroutine. If it is not declared, only the first
element of the array will be available to the subroutine.

The executable statement in the calling program for referring to a subroutine
subprogram is of the form:

CALL S
or

CALL S (P2 -+ .Pn) 1 =n=63

where S is the subprogram name, and the p; are the actual parameters.

5.6.2
SUBROUTINE REFERENCE
RULES SS4 The subroutine returns values through parameters or COMMON variables. No

value is associated with its name.

SS5 The subroutine name may not appear in any declarative statement (TYPE,
DIMENSION et cetera).

SS6 In the subroutine call, the following forms of actual parameters are permissible:

a. arithmetic expression

b. constant or variable, simple or subscripted

c. array name

d. function reference

e. subroutine
In form d, if only the name of the function appears, it must also appear in an
EXTERNAL statement in the calling program (example 2, 5.5). In form e. the

subroutine may appear as a subroutine name alone or as a subroutine name with
a parameter list.

50

SS6A Logical expressions may not be actual parameters.

SS7 Actual and formal parameters must agree in order, number and type.

Examples

1. Subroutine Subprogram

SUBROUTINE BLVDLDR (A,B,W)
W = 2. *B/A
END

Calling Program References

CALL BLVDLDR (X(I),Y (I),W)
CALL BLVDLDR (X(1)+H/2.,{k1)+c(1)/2.,W)

CALL BLVDLDR (X(I)+H,Y(1)+C(3),%)

2. Subroutine Subprogram (Matrix Multiply)

SUBROUTINE MATMULT
COMMON/BLK1/X(20,20),Y(20,20),Z(20,20)

{,7 DO 10 I=1,20

i

DO 10 J=1,20
Z(1,J) = 0.
DO 10 K=1,20

10 Z(LJ) = Z(L,J) + X(L,K) *Y (K,J)
RETURN
END

Calling Program Reference

COMMON/BLK1/A (20,20),B(20,20),C(20,20)

CALL MATMULT

51

57

MAIN PROGRAM
AND SUBPROGRAMS

52

3. Subroutine Subprogram

SUBROUTINE ISHTAR (Y,Z)
COMMON/1/X(100)
Z = 0.
DO 5 1=1,100
5 7 = Z+X(I)
CALL Y
RETURN
END

Calling Program Reference

COMMON/1/A(100)
EXTERNAL PRNTIT

CALL ISHTAR (PRNTIT,SUM)

A program may be written without references to subprograms or functions. On the
other hand, it may refer to subroutines or functions or both. If so, the program is

known as the main program. In either instance the first statement must be of the
form:

PROGRAM name
where name is an alphanumeric identifier.

A main program may refer to a variety of subroutines and functions. The sub-
programs so referred to may be compiled with the main program or independently
of the main program. Subprograms compiled with the program are called internal
subprograms and give rise to the new terms global and local.

An internal subprogram may be compiled with a main program, a subroutine sub-
program, or a function subprogram. The first statement in the respective cases
must be PROGRAM, SUBROUTINE S or SUBROUTINE S (p;, .. .p), or FUNCTION
F (P15 - . . sPn)s where the elements of the statement have established definitions.
The method of reference to function or subroutine subprograms is the same as
stated earlier in this chapter..

FORTRAN-63 assumes that all statements appearing between a PROGRAM,
SUBROUTINE or FUNCTION statement and an END statement belong to one program.
A typical arrangement of a set of programs and subprograms follows.

S PROGRAM SOMTHING

?

~ END

9 571

ENTRY STATEMENT

S' SUBROUTINE S1

Z END

g SUBROUTINE 52
(END

FUNCTION F1 (. . .)

FUNCTION F2 (. . .)

B
-
)
ZEl\iD

Identifiers that are available to the entire set of programs are called global
identifiers. Identifiers that are available only to a particular internal subprogram
are called local identifiers.

This statement provides alternate entry points to a function or subroutine
subprogram. Its form is

ENTRY name

where name is an alphanumeric identifier, and may appear within the subprogram
only in the ENTRY statement. Up to 19 entries are permitted to a given subprogram
by use of this statement, but each entry identifier must appear in a separate ENTRY
statement. The formal parameters, if any, appearing with the FUNCTION or
SUBROUTINE statement do not appear with the ENTRY statement. The ENTRY
statement may appear anywhere within the subprogram.

In the calling program, the reference to the entry name is made just as if reference
was being made to the FUNCTION or SUBROUTINE in which the ENTRY is imbedded.
Rules FS4 and FS4A of 5.3.1 apply.

Examples

FUNCTION JOE(X,Y)
10 JOE = X+Y

RETURN

ENTRY SAM

IF (X .GR.Y) 10,20
20 JOE = X-Y

END

53

57.2

NON-RECURSIVENESS

OF SUBPROGRAMS

5.8

VARIABLE
DIMENSIONS AND
SUBPROGRAMS

5.8.1

VARIABLE DIMENSION

RULES

54

VARI1

VAR2

VAR3

This could be called from the main program as follows:

7 = A+B-JOE (3.*P,Q-1.)

R=S+SAM(Q,2.*P)

Subprograms may be called from a main program or from cother subprograms. Any
subprogram called, however, may not call the calling program. That is, if program
A calls subprogram B, subprogram B may not call program A. Furthermore, a
program or subprogram may not call itself.

In many subprograms, especially those performing matrix manipulation, the
programmer may wish to vary the dimension of the arrays each time the sub-
program is called. This is accomplished by specifying the array identifier and

its dimensions as formal parameters in the function or subroutine statement heading
a function or subroutine subprogram. In the subroutine call from the calling
program, the corresponding actual parameters are specified, and these values are
used by the called subprogram.

The formal parameters representing the array dimensions must be simple integer
variables in a DIMENSION statement within the subprogram. The array identifier
must also be a formal parameter.

The actual parameters representing the array dimensions may be integer constants,
integer variables, or integer arithmetic expressions.

If the total number of elements of a given array in the calling program is N, then
the total number of elements of the corresponding array in the subprogram should
not exceed N.

Example

1. Consider a simple matrix add routine written as a subroutine subprogram:

SUBROUTINE MATADD (X,Y,Z,M,N)
DIMENSION X (M,N), Y(M,N), Z (M,N)
DO 10 =1,M
DO 10 J=1,N

10 Z@,J) = X(I,J) + Y(I,J)
RETURN
END

The arrays X, Y, Z and the variable dimensions M, N must all appear as formal
parameters in the SUBROUTINE statement and also appear in the DIMENSION
statement as shown. If the calling program contains the array allocation
declaration:

DIMENSION A(10,10), B(10,10), C(10,10)

the program may call the subroutine MATADD from several places within the main
program, varying the array dimension within MATADD each time as follows.

CALL MATADD (A, B,C,3,6)
CALL MATADD (A, B,C,4,8)
CALL MATADD (A, B,C,3,12)

CALL MATADD (A, B,C,4*LIM, LIM2+3)
When the actual parameters representing the array dimensions are integer ex-
pressions, the limits of the array established by the DIMENSION statement in the

main program may be exceeded. This condition is not checked by the compiler.

2. Consider the 4 by n matrix:

Yiu - -+ Via
Y = Yor - - - y2,n
Va1« - - Yan
Yaa - - - Yan

Its transpose Y! is:
Yun Yer Ya1 Ya

Yl

Yin ¥Y2n Y3n Y4n
The following FORTRAN-63 program permits variation of n from call to call:

SUBROUTINE MATRAN (Y, YPRIME, N)
DIMENSION Y (4, N), YPRIME (N, 4)
DO 7 1=1, 4
DO 7 J=1,N
7 YPRIME (I, J) = Y (J,1)
END

55

U

APPENDIX SECTION

()

R

e

57

CODING FORM

STATEMENTS

STATEMENT SEPARATOR $

COMMENT CARD

STATEMENT IDENTIFIERS

58

APPENDIX A

CODING PROCEDURES

FORTRAN -63 forms contain 80 columns in which the characters of the language
are written, one character per column.

The statements of FORTRAN-63 are written in columns 7 through 72. Statements
longer than 66 columns may be carried to the next line by using a continuation
designator. - Statements may be compacted, several to a given line. Blanks may
be used freely in FORTRAN statements to provide readability. Blanks are
significant, however, in H fields.

The special character $ may be used to write more than one statement on a line.
Statements so written may also use the CONTINUATION feature.

These statements are equivalent:

I =10 I1 =10 $ JLIM =1 $ K = K+1 § GOTO10
JLIM = 1
K = K+l
GO TO 10

Also:

DO 1 I=1, 10 DO 1 I=1, 10 $ A(D)=BI)+C(D)
A@=BO)+CO) 1 CONTINUE $ I=3

1 CONTINUE
1=3

Comment information is designated by a C in column 1 of a statement. Comment
information will appear in the source program, but it is not translated into
object code. Columns 2 through 80 may be used. Continuation is not permitted;
that is, each line of comments must be preceded by the column 1 C designator.

All comment cards belonging to a specific program, or subprogram, should
appear between the PROGRAM, SUBROUTINE, or FUNCTION statement and the
END statement.

Any statement may have an identifier (tag, label, number) but only statements
referred to elsewhere in the program require identifiers. A statement identifier
is a string of from 1 to 5 digits occupying any column positions 1 through 5.

- o
—-
-— oo N
—- o= BmER

0008680 0C00000O RO gREMOBOQO00000C000000000060GU00000000060G000000000000000000090
12345 109112 13 141516 17 16 19 20 20 22123 24 25 26 27 28 22 30 31 32 33 34 55 36 37 38 30 40 41 42 43 44 45 46 47 40 49 50 51 52 53 54 55 56 57 50 53 60 6162 63 64 65°66 67 60 63 70 71 7273 74 75 76 71 78 79 80
111 RR R L B

2292222222222222222222222222222
3333333333333 33333 3 RANOH033
0444404444444 444444444444404400400040008444444442044044408004004844084444444444
555555555 555555[0555
666666666666F66666666H666666666666666666666666666566666666666666666666666666668
VT T I RI1117300170971900919191919111751111171177711111111171717117117111717111
88808308068888688888 8 oHc6B38888880306888R8888888880088836888808068886688886888888

99999009999999999990999[999099999999999999399998995056949899959999039599909589999¢9
V2345878 810111213 4151617181920 2122232425 2627 28 22 30 31 32.33 34 35 35 57 36 39 40 41 42 43 44 45 45 47 48 48 50 51 52 53 54'S5 55 57 50 59 60 61 62 63 64 65 65 67 69 69 70 71 1273 74 75 16 77 78 79 80
e wane. DO 81
S

-

Hollerith Card

1604 FORTRAN CODING FORM NAME

PROGRAM ©| |Em PAGE
ROUTINE DATE
FORTRAN STATEMENT
T 3
v |STATE~|o
P | MENT Y 0= ZERO { - ONE - Two SERIAL
No. | NUMBER
N @ = ALPHA © I = ALPHA I Z = ALPHA Z

21314|5]|6]|7(@8)|9)I10|1|I2)i3|14]15)16]17(18)19)20|21 (22|23 |24]25|26|27|28[29]30|31{32]33|34]35|36]37| 38 39}40(414243 |44 {45|46] 47| 48}4950|51 [52[53|54]55 | 56(57]58]55 |60 | 61.| 62]63 |64 65 |66 |67 68|69} 70]{ 71 |72|73|74) 75|76 | 77| 78(79(80] °

FORTRAN Coding Form

co | FUNGT TGN (CTAC G2 M0y i i
L | {DYPE (COMPTIER) 2 Wi, T CFEC L 10 i
L1y T|Y1P1E1|R|E|A|L||I-|¢|G|R|||||||||||||||‘||r||i|||||||;||||||||1|||||||1||1|l||||||||
Lo | IDATA GPTi=10517:07:96,3216800 1 (L= egtLo st M) 11 1
L [ASZ 08 BETEZ S G 08 DE & ittt e
L VDB GAD 20000 100 3 vy e e b i1
10, 4 Pr=By g 08 DHETASPD 00 801G TG 31001 10 e
2000, | [THETA=ATANGB/AAN e e i i
L0 L RSSQRTE GARARBEBIN 4 0 1 00 b b L Lt
3Olll L|¢WG|R|=IL|¢|G|R!(IR‘)|I||IIII||lllllll]ll|||(I|S|||l!||f|||||||\|||I|I|l|f| I S I
L [1CT 8,6 1= EXPFCCHLGGR = DI*EEETIAY*(CIGS FICDIMLIAGR 1+ (CIRTIHETA DL A 1 1000 | i
| *SII|N1F1(|D|*|L1¢1GIR| '+I ICI*|TIHIE|’J‘“A])I*|I[)YIIIII\||I||lIIIIlfll||III[|I|I|||||I|||| I I
Lo VIRETORNG b6 L i
Lo L END e
L1t I N O T O T T Y S O T T T T O O O T Y U T T N T OO N Y O A O
L AT O OO0 N O 0 O 0 S N T W N SO T SO T 0 0 A AV B B 0 A B AR O
[T Y S 0 N T T O A T W T OB A N O O
L I N N S R Y N O Y T T Y T Y T N T T N N N T A O N O S N N S O I |
I | S T N Y S N R N N A O T N O T T T T T T S O I (N S N O T N S s |
L1y R O T T Y T T S T S TN S T S T T 0 U O T N S Y A OO G A B
11 T N Y T T T O N O O T N T T T O A R0 PO YT S N T U YOO N Y U N N S T A
1123185 (6|7 81910)11)12)13)1915)18 17)18 19120 2112223, 26128 | 26/ 27 20)20) 30| 31 13233 34 38,36 37)38139 40,41 14243144 145 46{47 | 481 49,50,81 | 52153 156159160 61 |62 (53|64 {6556 |67|68 |69 70|71 |72|73174 175|76{77178]73] 60
Fonm 282-a

CONTINUATION

IDENTIFICATION FIELD

PUNCHED CARDS

MAGNETIC TAPE

60

1f Iis such an identifier, 1= I = 99999; lead zeros are ignored, 101220012 0001.
Zero is not a statement identifier. In any given program or subprogram each
statement identifier must be unique. If the statement identifier is followed by a
character other than zero in column 6 the statement identifier is ignored.

The first line of every statement must have a blank in column 6. If statements
occupy more than one line, all subsequent lines must have a FORTRAN character
other than blank or zero in column 6. A FORTRAN-63 statement may have up to
600 alphanumeric characters, operators, delimiters (commas or parentheses)
and identifiers within it; blanks are not included in this count. In general, up to
20 continuations may appear after a first statement.

Columns 73 through 80 are always ignored in the translation process. These
columns, therefore, may be used for identification when the program is to be
punched on cards. Usually these columns contain sequencing information
provided by the programmer.

Each line of the coding form corresponds to one 80-column card, and the terms
line and card are often used interchangeably. Source programs and data can be
read into the computer from cards; an object program memory map, or data,
can be punched directly onto cards. Usually, however, cards are used in the
off-line preparation of input or output magnetic tapes.

Blank cards appearing within the input card deck are treated as follows:

a) If a blank card appears between a statement and its continuation, the
continuation and other continuations following it are lost. Compilation
continues.

b) If a blank card appears between two statements, it is ignored.

When cards are being used as a data medium rather than as statements, all 80
columns may be used.

Magnetic tapes are the most commonly used input-output media. Tape charac-
teristics are described in the Control Data Corporation hardware manuals. The
record structure resulting from the READ/WRITE or BUFFER 1/0 control ‘
statements is described in Chapter 2 of Volume II.

Compilation of FORTRAN-63 programs requires the following tapes:

Master tape

Standard i.put unit

Standard output unit

FORTRAN scratch tape not used for very
Assembler scratch tape} small programs
Standard punch unit

CARRIAGE CONTROL The first character of the printer record is a control character for providing line
spacing control. This character is not printed but will cause the following actions:

Character Action

Blank Single space before printing
0 Double space before printing
1 Eject page before printing

These codes are standard on all printers used with the 1604. Some printers
provide additional codes which are given in the specific manuals.

61

62

APPENDIX B

CHARACTER CODES 1604 COMPUTER

Source Language
Character

|+\®m<!0301yl>~wl.\')l—ioN»—dxg<qqmm@rﬂongmc_{)—lmmwmdowtp

blank

* R~

[

BCD (Magnetic
Tape & Internal)

61
62
63
64
65
66
67
70
71
41
42
43
44
45
46
47
50
51
22
23
24
25
26
27
30
31
12
01
02
03
04
05
06
07
10
11
21
60
40,14
20
73
74
53
54
33
34
13

Punch Positions in a
Hollerith Card Column

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9

. T
[
o G w N

1
-3

OO O O O oo
| |

W N O W

o oo O

]
o
[\

CHARACTER CODES 3600 COMPUTER

Source Language BCD (Internal Punch position in a
Character ‘ only)* Hollerith Card Column
A 21 12-1
B 22 12-2
C 23 12-3
D 24 12-4
E 25 12-5
F 26 12-6
G 27 ~ 12-7
H 30 12-8
I 31 12-9
J 41 11-1
K 42 11-2
L 43 11-3
M 44 11-4
N 45 11-5
(0] 46 11-6
P 47 11-7
Q 50 11-8
R 51 11-9
S 62 0-2
T 63 0-3
U 64 0-4
A\ 65 0-5
W 66 0-6
X 67 0-7
Y 70 0-8
Z 71 0-9
0 00 0
1 01 1
2 02 2
3 03 3
4 04 4
5 05 5
6 06 6
7 07 7
8 10 8
9 11 9
/ 61 0-1
+ 20 12
- 40 11-8-4
blank 60 space

33 12-8-3
) 34 12-8-4
$ 53 11-8-3
* 54 11-8-4
s 73 0-8-3
(74 0-8-4
= 13 8-3

*Magnetic Tape Codes same as 1604.

63

APPENDIX C

STATEMENTS OF FORTRAN-63

Page
REPLACEMENT A=E Arithmetic o 14 Volumel
=L, Logical E 20
A=M Masking E 21
A_=. ..=A,=E Multiple E 22
CONTROL GO TOn E 37"
GO TO n,(n,, . . Np) E 37
GO TO (0y, . . . ip),i E 38
ASSIGN i to n E 37
TF(A)n, ,ng ,ng E 38
IF(2)n; ,ng E 39
SENSE LIGHT i E 39
IF(SENSE LIGHT i)n, ,nz E 39
IF(SENSE SWITCH i)n, ,ng E 39
IF DIVIDE { gggg;lg‘ } n, Mg B 39
IF EXPONENT FAULT n, ,ny E 39
IF OVERFLOW FAULT n, ,ng E 40
DO n i=m, ,m, ,m, E 40
CONTINUE E 42
PAUSE E 43
STOP E 43
END N/E 43
TYPE TYPE COMPLEX List N 25
DECLARATION TYPE DOUBLE List N 25
TYPE REAL List N 25
TYPE INTEGER List N - 25
TYPE LOGICAL List N 25
TYPE named (W/f) List N 25
dis 5, 6,0r 7
*E = Executable N = Non-executable
64

Statements of FORTRAN-63 (Continued)
Page
STORAGE DIMENSION V,,V,, ... N 3z VolumeI A
N !
ALLOCATIO COMMON/B(I)/ List N 27 H
EQUIVALENCE(a,b,c. . .)(Dg. . .) N 30
DATA DATA(I=List),(I=List), N 32
STATEMENT
SUBPROGRAM FUNCTION name(p, ,pps ---) N 45
STATEMENT;
M S SUBROUTINE name(p, ,0z5 - - -) N 46
PROGRAM name N 47
EXTERNAL name, ,name,, . - . N 48
ENTRY name N 53
CALL name E 48
RETURN # E 48
I/0 FORMAT FORMAT(spec, ,specy, . . .) N Volume 1T
1I/0 READ/WRITE READ n,T E 25
PRINT n,L E 21
PUNCH n,L E 21
READ(i,n)L E E 21
READ INPUT TAPE in,L
WRITE(i,n)L % . 21
WRITE OUTPUT TAPE i,n,L
READ(i)L E . 25
READ TAPE i,L
WRITE(i)L E E 25
WRITE TAPE i,L
I/0 TAPE END FILE i E 26
HANDLING REWIND i E 26
BACKSPACE i E 26
1I/0 STATUS IF (EOF,i)n, ,n, E 28
CHECKING IF (IOCHECK,i)n, ,n, E 28
IF (UNIT,i)n, ,np,ng,0, E 28
I/O0 BUFFERING BUFFER IN(i,p)(A,B) E 26
BUFFER OUT (i,p)(A,B)
@ INTERNAL DATA ENCODE (c,n,V)L E 29
MANIPUATION DECODE (c,n,V)L E 29
65

”

66

Form

ABSF(X) l
XABSF (i)INTF (X) 5
INTF(X) l
XINTF (X) f
MODF (X, X,)
XMODF (i, i)
MAXOF (g, iy + - -)
MAXIF (X}, Xg « . -)
XMAXOF (ig,igy « » .)
SMAX1F(X;, X5, o » -
MINOF (iy,155 - » .)
MIN1F (X, Xp, « « -)
XMINOF (g, 1y, « -+)

XMINIF(X,, Xy« « -) 7

SINF (X)
COSF (X)
TANF(X)
ASINF(X)
ACOSF(X)
ATANF(X)
TANHF (X)
SQRTF(X)
LOGF(X)
EXPF(X)
SIGNF(X;,Xz)
XSIGNF (i ,iz)
DIMF (X, ,Xz)

XDIMF(iy ,i2)

APPENDIX D

LIBRARY FUNCTIONS

Definition

Absolute Value

Truncation, integer

X, modulo X,

i; modulo i,

Determine maximum argument

Determine minimum argument

Sine X radians
Cosine X radians
Tangent X radians
Arcsine X radians
Arccos X radians
Arctangent X radians
Hyperbolic tangent X radians
Square root of X
Natural log of X

e to xth power

Sign of X, times X
Sign of ip times i;
X, >Xp: X,-Xp

If X1=X;: 0

fi,> ip: ij-iz

i, <iz: O

Actual Para-
meter type

Real
Integer
Real
Real
Real
Integer
Integer
Real
Integer
Real
Integer
Real
Integer
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

Integer

Real

Integer

Mode of

Result

Real
Integer
Real
Integer
Integer
Integer
Real
Real
Integer
Integer
Real
Real
Integer
Integer
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

Integer

Real

Integer

Form

CUBERTF (X)
FLOATF(])

RANTF(N)

XFIXF
POWERF(X,,X,)
ITOJ(L,J)
XTOI(X,T)

ITOX(I, X)

Definition

Cube root of X

Integer of Real Conversion
Generate Random Number

(Repeated Executions give
uniformly distributed numbers)

Real to Integer Conversion

Actual Para-
meter Type
Real
Integer

-Real
-Integer

e

+Real %
+Integer

Real

Real, Real
Integer, Integer
Real, Integer

Integer, Real

Mode of
_Result

Real
Real

Real

Integer
Integer
Real
kInteger
Real

Real

67

INDEX - Volume I

Arithmetic Expressions
Arithmetic Replacement Statement
Array Structure and Subscripts
ASSIGN Statements

Assigned GO TO

Characters

Codes
1604 Character
3600 Character

Coding Procedures

s

Comments
COMMON
COMMON Blocks
Computed GO TO
Constants

Hollerith

Integer

Octal
CONTINUE
Control Statements

Conversions, Mixed Mode

DATA

DIMENSION

Divide Check/Fault
DO Statement

END
ENTRY
EQUIVALENCE
Exponent Fault, If
Expressions

Arithmetic

Logical

Masking

Mode of Arithmetic
EXTERNAL

Page

14

38
37

62
62
63
58
58
27
28
38

42
37
14

32
26
39
40

43, 48
53
30
39

16
20
12
48

69

70

INDEX - Volume I

Fault Condition Statements
If Divide Check/
If Exponent
If Overflow
FORTRAN-63 Language Statements
Function Subprograms
Functions
Library

Statement

GO TO Statements
Assigned
Computed

Unconditional

Hollerith Constants

Identifiers
Statement

IF Statements
Divide Check/Fault
Exponent Fault
Overflow Fault
(SENSE LIGHT i)
(SENSE SWITCH i)
Three Branch
Two Branch

Integer Constants

Library Functions

Logical Expressions

Logical Replacement Statement
Main Program and Subprograms
Masking Expressions

Masking Replacement Statement
Mode of Arithmetic Expressions

Multiple Replacement Statement

Page
39

39
39
40

46
45
46,66
45

37
37
38
37

37,58
38
39
39
40
39
39
38
39

46
16
20
52
20
21
12
22

Octal Constants
Operators

Overflow Fault

PAUSE

Quantities Structure

Replacement Statement

Arithmetic
Logical
Masking
Multiple
RETURN

Statement Functions
Statement Identifiers

Statement Separator

INDEX - Volume I

P

Statements of FORTRAN-63

STOP
Storage Allocation
Subroutines

Subprograms
Type Declaration
Variables

Dimensions

Subprograms

Word Structure

Page

40

43

21
14
20
21
22
48

45
37, 58
58
64
43
25
45
50

25

71

Errata Sheet

FORTRAN-63/Reference Manual - Volume I continued - Publication Number 527

Page Article

59 Appendix A
63 Appendix B
66 Appendix D

Remarks

FORTRAN Coding Form, Statement 30 should read
"LOGR = LOGF(R)"

Punch position for minus is 11,8-4

SMAX1F should be XMAXI1F

Errata Sheet

FORTRAN-63/Reference Manual Volume 1 ©Publication #527

Page Article

17 2.5 First line: strike the character "/,

27 3.3 Last paragraph before examples. Add the sentence ''Leading
zeros in numeric identifiers are ignored."

32 3.5.2 Second paragraph; change "If any, or all," to "If all",

33 3.6.1 Rule DAT6, 2nd line should read in part:

", ..DATA (A=2), the type ..."

39 4.3.3 The F63 statement SENSE LIGHT is omitted. It reads:
"SENSE LIGHT i)
The statement turns on the i-th sense light. SENSE LIGHT O
turns off all sense lights. 1 may be a simple integer
variable or constant. :
In the 3600, 14 i'£ 48
In the 1604, 14 i & 4."

39 4.3.4 Strike the words "Appendix E",

40 4.5 Strike out the last sentence of the last paragraph, Strike
out the sentence "The DO statement provides FORTRAN-63, etc.'
46 5.1 Rule SF3. Add: "Formal parameters must be simple variables"

Rule SF5., Change to: "E may contain subscriptéd variables,
but the subscripts are restricted to integer constants.

47 5.3.1 Rule FS4, next to last sentence--last word should be "list",
not "bit",
49 5.5 Example 4:

"END" follows 'RETURN"

53 5.7.1 In the Example:
Change "ENTRY SAM" to "ENTRY JAM"
Change "IF (X.GR.Y)10,20" to "IF(X.GL,Y)10,20",

54 5.7.1 Change 'S + SAM(Q,2.%P)" to "S + JAM(Q,2.*P)"
54 5.8.1 Add to rule VARI:

"The formal parameters must not appear in a COMMON or
EQUIVALENCE statement in the subprogram'.

55 5.8.1 Example 2
Change '""DO 7 I=1,4 to "DO 7 I=1,N
po 7 J=1,N" DO 7 J=1,4"

CONTROL DATA SALES OFFICES

INTERNATIONAL OFFICES

Pub. Ne. 527

-

ALBUQUERQUE » BEVERLY HILLS « BIRMINGHAM « BOSTON

CHICAGO » CLEVELAND « DALLAS » DAYTON

DENVER +« DETROIT « HONOLULU » HOUSTON

HUNTSVILLE « ITHACA « KANSAS CITY, KAN. « LOS ALTOS » MINNEAPOLIS - NEWARK
NEW YORK CITY « OMAHA « ORLANDO « PALO ALTO « PHILADELPHIA « PITTSBURGH

SAN DIEGO « SAN FRANCISCO » SEATTLE « WASHINGTON, D.C.

BAD HOMBURG, GERMANY « MELBOURNE, AUSTRALIA » LUCERNE, SWITZERLAND

STOCKHOLM, SWEDEN » ZURICH, SWITZERLAND » PARIS, FRANCE . OSLO, NORWAY

CONTROL DATA

CORPORATION '

8100 34th AVENUE SOUTH, MINNEAPOLIS 20, MINNESOTA

