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PREFACE

This manual describes the mathematical routines of the FORTRAN Common Library which is part of
FORTRAN Extended Version 4. It is assumed that the reader is familiar with FORTRAN Extended.
FORTRAN. Extended operates under contro!l of the following operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Models 171, 172, 173, 174, 175; CYBER 70
Models 71, 72, 73, 74; and 6000 Series Computer Sytems.

NOS/BE 1 for the cbc® CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems.

SCOPE 2 for the CDC CYBER 170 Model 176; CYBER 70 Model 76; and 7600 Computer
Systems.

CDC manuals can be ordered from Control Data Literature and Distribution
Services, 8100 East Bloomington Freeway, Minneapolis, Minnesota 55420.

This product is intended for use only as described in this document. Control
Data cannot be responsible for the proper functioning of undescribed features
or parameters.
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INTRODUCTION

The Math Library concerns itself with computations upon four
different pnumber typest integery single I[precision floating=-pointl,
doubtle [precision floating-pointl, and comptex (floating-pointl. For

sach nymber type there is a well defined set of yalid forms
frepresentationsl,y each one representing a particutar point on the real
fine or in the complex plare, 1In addition, for each of tha floating-
point forms, there is a weltl-defined set of sepj-yalid forms, none of
which revresent numbers, but which instesad give some indication of the
rature of the lerroneous) computational process that produced them, At}
other bjit configurations in words thought to contain numbers of some one
of these types are termed jnvatid.

For these four number types, the valid, semi-valid, and invalid formnms
are )

1. Integer.,

Vallids The ordinary, onre wordy, right-justified, one®s-
complement binary representations of all intagers
from <-2%841 to 248-1 , Zero may be represented as
either positive zero {all zero bjits)y or negative
zero [alt! one bits]).

Semi=-valid: None

Invalids: Any bit configuration wherein the top 12 bits are not
allt the same,

2. Sinagle.

Valid? The normalizedy, onre word, forms of the jirternal
floatince-point representations. (See corresponding
Computer Systems® Manual.) Zero may be represented
as either positive zero, or nagative zero.

60498200 C 1
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Sami-vatid? The four forms known as positive infinite, negative
intirite, positive indefinite, and negative
indefinijite,

Invatlid: Any non-zeroc and non-semi=-valid bit configuration
wherein bit 47 ard bit 59 are the same, efc,

Doubl e.

Valid:? The forms of the internat, double-precision floating-
point representations wherein the first word is
normalized and the second word either has an exponent
~that (s 48 smatier than the first wordy ory, if that
underflows is zero. The signs of both words must be
the same except when the {ower part underfiows to
Zero,., Zero may be represented as either positive
zero or negative zero.

Semji-valids The forms whereln the first word is a single semi-
valid form. The second word may be anything.

Invalids Sign disagreement between the two words, ftirst word
an invalid singtey, second word with an exponent not
as defired abtove, efc,

Complex,

Vatid? Attt the two-word forms wherein each word is a valid
single number,

Semi-vatid:? Al the two-word forms wherein one word is a semi-
valid single number, and the other is either a wvalid
or a semi-valid singlte number,

Invatid? ALl the tvwo-word forms wherein either word is an
invatid singte number.,

The following two gereral rutfes apply to the wuse of these number

forms In computationat! operations, either within the Math Library or
within FORTRAN compiled code

1.

2

i

Untess specially documented otherwise, if a wvalid form of the
jpproprjiate number type is employed ir a computational operation, a

valid number of the appropriate type will result, The documented
exceptions to this cover such things as computing an answer which
exceeds the 1limits of the vatid forms, or performing a

mathematically invalid onerstion.
Untess specificatiy documented ctherwise, if either?

as a semi-valid or iIinvalid nusber s employed In a computational
operatior, or

60498200 C
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bes the documented limits ir rute 1 above are exceeded,

ther the result iIs undefined [i.e. the program may continue without
warnira, it may terminate abnormally with or without diagnosticy
it may continue for a short period and then terminate, etc.l.
The documented exceptions to this cover some cases wherein
cartain forms of checkirg are done, and also some cases wherein
certain semi-valid forms are produced, etc,

These two rutes define -the 1imits of CDC support in the area, and
also the completeness of CDC supporting documentation, When a resutt is
undafined, there (s pno quarantee that the actual behavior witl be the
same from run to run, or that it will remain constant under normal
product maintenance.

ITI. CLASSIFICATION OF ROUTINES AND CALLS

The FORTRAN Common Library mathematical routines (abbreviated! math
florary routines) compute those mathematical functions explicitly
mentioned in FNRTPAN, These functjions may be divided into two classes -
the intrinsic functions and the exterral functions. Intrinsic functions
are simpler functions whose use speeds exacution of programs and saves
coting effort by occasioning replacement of frequently used sequences of
FOPTRAN statements with efficient in-lire code during an intermediate
assembly, or with calis by name to routines {(when |In traceback mode),
The 1fist of intrinsic functions appears in the Appendix. External
functions are mathematically more sophisticated functions whose routines
require more memory space and execution time, Callis to math tibrary
routines may be of two forms - calls by name and calls by value., When a
routina is calted by nare, a parameter {ist is formad in memory, and the
first=nword=-address of this list is entered Iinto register A1l before a
raturn fump is made *to the routine, HWhen the routine is called by
value, the arguments are entered directly into operand registers
X1s+209X%5 according to certain rules, before a return Jump is made to
the routine, The first word of the ftirst argument (s entered into X1,
the first word of the second argument (s entered into X3 and the first
word of the third argument in X5, If an argument should be double-
precision or compiex and henrnce take two words, the second word is
entered into the next register, viz. X2 or X4, Lastly, the first nord
of a compiex argument is always the reatlt party, and the first word of a
double-precisior argument Is the upper half, For 'calls by name and
calls by value, the result of the computation is returned in registers
Xh and X7s a one-word result being returned in X6, and the second=-word
of a two word result being returned in X71 . {A juxtaposition symbol
{A) is sometimes used in the documentsation ¢ it denotes that a two-word
result occupies the two registers in the order indicated.}

Ive TERMTINOLOGY

Soma conventions have been iIntroduced iIn this documentation.
Symbolic names are always delimited by blanks, and any tatin Jletters
appearing therein are in upper case, A denotes luxtaposition, and is
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used in referring to corplex or double-precision quantities, A1t vatues
given are in decimal, unless otherwise noted, Eccor shatll meant
(computed value - true value)., Relative error shall meant (error/true
valtue). An arayment _set is an ordered n-tupte of arguments (XlseecesXn)e
where x1yees9exn are the arguments in order. For convenience, we
identify arguments with corresponding 1-member argument sets, The ippyt
.can3e of 3 routine is the collection of all argument sets for which that
‘routine has been designed to return a result meaningful to the user.
For example, the input range to SIN is the collection of all fitoating-
point quantities, whereas the irput range to SINCOS= at entry point SIN.
is the coltection of definite In-range floating-point quantities not
exceading pil.2%s in absolute value, POSeINF, abbreviates
2777,0N000,0000,0009, 00008 , NEGsINES 4000,00080,0000,0000,0008 ,
POS L INDEF, abbreviates 1777,0000,0000,0000,00088 4, and NEG,INDEF,
abbreviates 6€00%,0000,0000,0000,00008 , In this document, “poutjipe*
shall mean the source code or the oblect code obtained from programs in
the UPDAYE library mentjioned at the begining of this Introduction.

VY. EPRROR GRAPHS

Oissection of Frror

The errors of 3 routine are composed of +two partst the atgorithm
error, including errors in the coefficierts used in the algorithm? and
machine round-coff errors, A curve representing the error due to the
algorithm and its coefficients is wusually a smooth, wavy curve wWith
discontinuities at breaks in the range reduction technique. The error
of the coefficients involved in range reduction may also show up.
Usuaily, 3 good algorithm with good coefficients will not have an error
bigger than one-hailf in the last bit of the result, Round=off (and’/or
truncation) error is difficult Yo predict or graph. Suppose f(x) were
approximated by x+c¥*x2 and xX>>c¥x? , Ther by anatyzing how an add
instruction would work on x and c*x2 , one finds that a few bits are
dropped off affter the {ast bit in the result, If rounded add is used
then the resulting error is between =1/2 ard 1/2 in the tast bit? the
error Iin computing c¥x2 makes it even worse, A graph of round=-off error
Is so discontinuous that tittle can be done other than showing the
maximum and minimum error over small intervals,

The magritude of a relative error can be analyzed in two ways?
retative error = {routine - exact)’exact; or figuring out how many bits
the routine djiffers from the exact vatue {™bit error”). In the first
casey we are talking about single precisior algorithms accurate to less
than ?2F-1% {(usually) and rourd-off errors less than 10€-1% (usually).
Note?! changing the last bit in a single oprecision number produces a
relative channe of between 3 .,56-15 (for a3 large mantissa) and 7.1E-15
(for a small, but stitl normalized, mantissal., In determining how many
bits off a routine is, the function is evaluated in doubte precision and
this is rounded to single? ther (assuming the exponents are the same)
the mantissas are subtracted and the integer difference is the bit
arror,
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Descrijption of Plots

A typical plot covers one single-argument, single-precision function
over 2 range of araument values (plotted linearly or togarithmicaliy)
with the ordirate rangirg from =-41E-15 to 11F-15 representing refative
error. The saw=-tooth curves represent places at which refative error is
=22 5 =172 4 1/2 4 and 372 bit error, Discontinuities occur where the
routine produces a result that is a power of 2 3 the argument values are
glven (they are found empirically, so only an appropriate number of
digits is orinted}.

Any point that is between the =1/2 and 1/? saw-tooth curves
represents 3 case of the routine being as accurate as possible!? anything
between 1/2 and /2 ls 1 bit hichy etc,

An atagorithm error curve wiggles around through the middie of the
niot. It shows the refative error of the algorithm over the ajiven
argumant range, Its discontinulties are wusually due to the range
reductior nart of the algorithm. For this curve, the algorithm error is
fata =~ exact)/exact where slg is routine rewritten to use double
precision operators instead of single but keeping single precision
coefficients singie, Therefore [t incorporates such thirgs ast 3
polynomial can®t auite equal a transcendental function and pi7Z/? can®t be
represarted exactiye. The coordinates of the highest point are indicsted
rext to jt,

The overat! error is bounded fempirically) by two }aaged curves with
arrnwheads on them, The number c¢f different arguments fed to the
tunction is given on the pliot! each corresponding point is either 3t the
tio of ona of the arrowheads or strictiy betwsen the palr of curves. It
iIs nuite possibie, even likety, that there are points which do not 1je
batween the two curves, However, one could, with reservations, assume
the curves are "close™ to true least upper bound and greatest Jlower
bound curves,

The arguments are chosen randomly as follows. After starting with
the smalitest argument, each argumert is the previous argument plus
PANF(NY*k , where Kk is a constant. On a tonarithmic scale this
afgorithm is appropriately modified so as to get an even distribution on
the resuliting nlot,

Note that "ordinary™ numbers (rational numbers, multiples of iog 2 or
pDise 2atc,.) probably witll not be sampled,

There are usualtly about  25€ points {arrowheads) on each of the
houndirna curves, The aloorithm for finding arrowheads goes as follows.
Given arrowheads x and vy , the last two on the list, point z (formed by
an argument ard the relative error of the routine for that value) is
added to the arrowhead Iist if xyz forms a convex curve or the abscisssa
of x and z are "too far™ apart. Otherwises arrowhead y is deteted from
the tist and the test for inclusion is retried. Points goirg beyond
11F-15 are forced to the boundary. The targest refative error
encountered is labeled with its coordinates., Various statistics are
orinted concerning the distribution of points. The percent within each
bin of width 1£-1% with the percent above 10E-15 (below =10E-15) being
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s?afed between 10F«15 and 11F=-15 (=-11E-15 and -10F-15). B8i?t errors are
simitarty handted (with anything above 3 being put with 3}. ECmpty bins
are not tisted The "MEAN R.E.,™ is the mean of all ordinates. The ™RMS
P,F,." is

SNRT{{sum of RE¥**2) /(number of points) = (MEAN R.E,)**2 ,
iee2ey the standard deviation of relative error,

How %o Pend g Plot

Here are some cause-and=-2ffect statementss by taking the inverse of
the statement ope has a way to look at a plot and deduce what the
atgorithm is doing.

1. If f(x) = 2%*¥n ¥ (x¢3{x) where gi{x) is small compared to x and
rounded add is wused, then the bounding curves will roughly
paralied the afgorithm error and will be 3s far apart as the

irner saw-tooth curves, {Unrounded add would transpose the
curves by 1/2 bit.}

2., If fl{x) = c+g{x}) then the bounds will be transposed by the error
in c.

2, If f(x) = c*a(x) then the distance between the bounds for fi{x)

witl usually be wider than for gi{x) § Iin particufar ft{x) will
probably have bounds at fteast 2 bifts apart.

6e If f{x) = gix)+thi{x)+d{x)) where o, hy, or d may be constant and
one of the additions produces ar unnormaljized result, then the
bound curves may be translated and/or spread farther apart than
for a nearby area where the addition happens to be normaliized.

. If t(x) is broken into nrumerous sub-irtervals (e.g. 16}, then
the atgorithm error curve will be dominated by discontinuous
jumps ir the constants used for table tookup.

VI. MISCELLANEOQOUS FACTS

Arguments of trigonometric functions and results of inverse
trigonometric functions are always measured in radians. Some statistics
concerning the UPDATE library of mathematical routines are given for the
CYRER T7h, There are 128 routines. The central memory required to
UPNDATE all routines is 26309 (octal) words. The central memory required
to assemble all routines is 507008 (octal) words. The time reqguired on a
CYATR 74 to UPDATE atl routines is 4.8 CP seconds, and the time required
to assemble all routines under COMPASS is 28 CP seconds. The average
assambly time for individual routines is .22 CP seconds. These times
wit! be shorter orn the CYBER 76 and tonger on the CYBER 72 and 73.

VI1l. REFERFNCES
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ROUTINE®S FUNCTION.

1«1« Type. FORTRAN external functions. The routine accepts a
floating-point argument, and returns a floating-point resuit,

1.2. Purpose, To accept calts from FTIN compiled code for
computation of the jnverse cosine and inverse sine functions.,

METHOD.

The input range s *tha coilection of altl valid tioating=-point
quantities in the interval {(-1.,1.):. Arguments outslide this range
will initiate error processing.

Formulae ysed in the routine are!

=arcsin{=x}) x€=,5

arcsini{x) =

arcos{x) = pi-arcos(-x) xX€=¢5
arcsin(i) = pir/s?2

arcos(1) = ¢

arcsinix) = pi/s2-arcos{x) «5¢x<a1
arcos{x) =

arcos{l=gi{x,n}))72%*%n ,5<x%1.
nhere

alxy ) = 1-x

gi{xen+1) = Lgl(xen) = 2gixen)2,

arcos{x) = pi/2 - arcsinix) ~e5%x%.5

arcsinix) = x¢x3%*s¥((wez=))®%nwetasr/(e=-x2))

~e5 x5

nhere

W = (X2-c)¥ze4¢k

and

z (X2¢r) X2+ ]

The constants emplioyed are?

2,17317007853713
1.16039462972992
5Nn,.31905%9807983
-2.36958885561288

R, 22646797079917
=25.6294815974555
37.4592309257582
349,719357025144
«7TH6925199235419 * 1(¥*¥=3

ND X ) I3 DY
L LI I T [ O I T { I T
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The approximation to arcsin {-.5,.51 is an economized approximation
within the class obtained by varying reesMyeceesSe The algorithm
emplioyed Is as follows, The argument x is supplied to ACOS. or
ASINs in X1 4 and the result is returned in X6 .

3. If ACOS. entryy, go to step ge

be If Ix12,5, go to step h,

Ce neQ (Loop counter)
qex
yrx!
ue~g it ASIN, entry

epi/72 it ACOS. entry

de 2zelver)®yei

wel(yec) ¥zek
prass*q¥y ¥ ({(wez=-})*nsata/le=-y))
peu=p

Xhep/ 2 ¥pn

es If ASIN. entrye, go to Step ke

fe If x is in (=eSe1e)y return,
X6e2%y= (X6)
Return,

3s If Ixt < 54 go to sStep cCe.

he If x = #14=1 or x is Invalid, 9o to step .
neQ (Loop counter)
vel=-ixly, and normalize vy .

Ie hefSy=28y2
nenel
It 2¥y<€2esart(3) = ,267949192431, y+«h and go to step je.

1 aei-h, and normatiza q.
yeq2
ueplrs2
Go to step de

Ko XbBeu~(X6)y, and normalize X6 .
Affix sign of x to X6 .
Return,

fe If x £#1, or =1, 4 g0 to Step m,
X6epl/72 it x = 1. f
e=epil2 if x = =4,
It ASIN. entrye return,
X6e0 [ x = 1,
epi if x = =1,
Returne.



Me

Ptug AGOS.
Initiate error processinge.
Return through AGCOS,

entry point with ASIN, entry point, 1f ASIN., entry,

entry point,

ERROR ANALYSIS,.

Tha

above to arcsin over [=,54.%]1 is 1.99€%1%*=-15 , A
refative
bounds on the absolute vatue of relative error due to machine

value of retative error of the approximation
graph of the
this approximationrn is given in figure 6, Upper
error

maximum absolute

error of

have been established in the following cases?

arcsin on {(=,5,:,5) = 9,232 ¥ 10¥*%=15
arcos on (= 5,,5) =« 1,673 * 10¥%¥*=-14 )
arcsin on {=1.41.,) - 4,050 * 10%*-14 /
Arcos on {=1.,91.9 = 1.618 * 10%¥~13 //
The corresponding upper bounds on the absolute value of relative
error in the routine aret
arcsin on {(=,55+.5) = 1,123 ¥ 1nN%*.1}
arcos On {=45,34.5) = 1.873 % 10%*=-14
arcsin on (=1.51:) = 4,250 % 10%%-14
Arcos on {«1.51e) = 1,638 * 1(¥%*-13
For groups of 1000 arguments chosen randomly from the following

intervals,

the foltlowing statistics on relative error were observed,

Maximum

EFntry TInterval®®s Interval®s Mean Standard Minumum
Point Lower Upper Deviation
Round Bound
ACOS., -5 5 ~9,435E-16 1.54T7E-15 -5 .781E~-15 . 3.856E~15
-1. -5 wly, 331E=-16 1.74HE=-15 «4.520E=-15 4,.54L6E-15
05 10 '590988‘16 1.8435'15 '7.150E-15 905598’15
ASIN, -5 5 8. 401E-16 1.6668-i5 =5,328E~15 4,916E-15
-1 -5 6e 209E~16 3,268E~15 «7.061E-1%5 1.489E~14
+5 1. 7.311E-16 3.307E-15 -7+160E=15 1.554E~-14
Bs1. ALGORITHM ERROR.

For ASIN (x) 4 x in (=+54.5) the error curve 1is depicted Iin
the ASIN plot between 0 and ,5 « (A1l of the ASIN plot is
symetric about 0.) « The reason for 1t not being batanced
around the axis is because the Chebyshev coefficient for x was
throwr away ard 1.0 implicitly used insteads For ASIN outside
{~+54+.5) and for ACCS s there is range reduction first: this
produces no algorithm error. At the end of the computation,
some wmultiple of pi gets involved: hence, the curves are
offset by an amount dependant on the error in pi. There are
breaks in the algorithm error curve at plus/minus .5 ,
SORT{(3)/2 = .B66925 4, .9665926 , 991445 , ,.9978%9 , etc,

60498200 C
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Each of these is SQRT{{1+previous)72),

6.

N
.

Total Error.

In ASIN for x in {(=¢54+5) the routine boiis down to x¢x3%(...)
s+ hence the total error is dominated by that final addition
and the total error curve closely follows the algorithm error
curve plus/mirus 172 bite For x in (+54.866) the algorithm is
as follows? y=1l-Xx z=(1-Ly)s2y2 , ASIN(x)=pi/2+(pi/2~
{(Z423% (4023072 & y is in (a54134) 4, 2z is in (=549 .
Nothing is tlost in computing y , little is lost with z 4 and
some Is lost in the final part. The big jump when x is in
{5,.540302) is caused by pi/2=(zZ+s+s) being greater thar
2s % eisewhere it is less. This peak shows up at other places
{in ASIN nroticeably in (.866,.878) and ACOS Just below each
peak in the bit error curve) because of folding into (.5,.54},
ASIN gets better near 1.0 because pi/2 predominates the final
value,

ACOS 4 except near 1.0 4 1Is opredominated by pi/Z2 . In
particutlar, for x in {(=1.4.5)y Di/2 is added on twice, first
rounded then unrounded ir order fto gilve 3 near-perfect

distribution. Near x=1.0 3 so much folding goes on that a
rather bad error is built up evern before evaluating the
polynomjal, The graph gives anr indication of the infrequency

0of error but does not show a worst case (iSE-15 retatjve error
has been experienced).

4. FFFECT COF ARGUMENT ERROR,

If 3 small error e occurs in the argument x, the error in the result
is alven approximately by e/(1-x2)**%*,5 for ASIN and by -e/{1-x2)%¢,5
for ACOS .

60498200 C : . |
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PQUYINE s ALQD

1.

2e

ROUTINE®*S FUNCTION,

1.1, Type. 4 FORTRAN external function. It accepts a floating-
point argument and returns a floating=-point result,

1.2 Purpose. To accept calis by name and by value for ALOG (a3t
entry points ALOG , ALOGI10 4 ALOG. and ALOG10,., ) from FORTRAN
programs. ALOG computes the naturat {ogarithm function at
entry points ALOG and ALDGs, » and the common flogarithm
function at entry points ALCG10 and ALOG10. .

METHOD,

The input range to this routline is the coltection of ali definjite
in-range non-negative non-zero floating-point aquantities, Upon
entry, the arcoument x is put in the form x = y ¥ 2 ¥*% n, where n is
an Inteqery, and 1.Sy<2, o Then too x is evaluated fron

fog x = log v + 3/74%n & (log 2 = 2/74)%n,
where fog vy 1is evaluated as follows, The interval (1., 2.} is
divided up into the subintervals

(1. 1.107238769%31}, ,

(1.107238769521, 1.3572387¢9521),

(1.61723877953%1, 1.,3572387F95%31),

{1.357238769531, 1.607238769531), and (1.857238769531, 2.).
“Centre points™ 1.y 1.,225803136513098, 1.4758032392048091,
1.725100002271352, 2. are chosen Within thes2 intervals. If y is
in subinterval (a, b} with centre poirt c, log vy Is computed from

fog vy = 1og ¢ + tog ((1+%)/(1-1})
where

t = {y - c¥/(y + ).
fo3 ((1 + +)7(1 - 1)} is then computed by
fog €(11)/7{1=1)) = 2,%t 3 c(2)*t3 + Cc(5)*tS & c(7)*t7 &+ c{9)*t9 ,

The coefficjents c(2), c(5), c(7) and c{3} are chosen by truncating
the TYaylor serjies for 1og ({1+#1)7(1-t)) after the 1ith term, and
takina a Chebyshev economizatiorn to a 9th degree polynomial over the
tarqgest interval symmetrjic about the origlir which is applicabte,

The constants are

c(3) = .666666666H666105
c{5) = .L0000ONC018947
c{7) = .2857120487

c(9) = ,22330022

I¥f the argument x is invalidy an error message is issued through
SYSAIN= 4 ard POS.INDEF, is returred,

ERRCP ANALYSIS.

{We carry out the error amralysis for computation of ALCOG onty.
Bounds on machine error are the same for ALOG and ALOGA10 here, while

60498200 C



the the graph of algorlthm error for ALOGI® may be obtained from the
graph for ALOG by multiplying by 1og{e)ift,) The maximum absoilute
value of the refative error in the algerithm over the interval (14,
2e) is 1.698 * 10 ** <16, for entry poirts ALOG and ALOG. . The
maximum absotute value error in the algorithm over the interval (1.,
2e) is 1.687 * 1) *¥ «17, A graph of the error in the algorithm
over (1., 2.) is given in figure 8, Arn upper bound has been
establiished for the absoiute value of the error in the routine due
to machine error at 5,045 ¥ {0 ¥* <14 * y, where u Is the greatest
integrat opower of 2. not exceeding the result, Hence an upper
bound on the absofute value of the relative error in the routine is
S.067 % {0 ¥ <14,

For groups of 10000 arguments chosen randomly from the following
intervals at the ertry points tisted, the fotlowing <statistics or
relative error were observed.,

N’

Entry Interval Mean Standard Minimum Maximum
Poirt from to Deviation

ALOG. 1. 2o 1.743E-16 2+286F=~15 «9,040E~1%5 ©.194€-15

5 2 2+ 325E~16 24279E~-15 -1.,058E=-14 B8,665E-15

a5 i. 4,101F~-17 2.488E-15 ~93.,450E-15 8.637€E~15

«N001 igan. 4.522E-16 2.223E~15 =5.562E=1% S,234E-15

10¥*-290 10322 1.228E-15 1.4329€-15 “1.616E=-15 4,001E-15

ALDG10.1. 2e ~2s726E=15 2.723F=145 “1.447E-14 4 B40E-15

- 5 Ce -2+E89E~-15 2,770E-15 =1.,346E-14 6,506E=15

5 1. =-2+.B26E~-15 2,R97F-15 -1.54RE~14 9,353E~15

+00n1 1001, =1 .,795€-1% 2,%26E~-15 -3,208E=15 &5,058F =15

ip¥*-2qQ 10322 =2.015E-1% 2,178E-15

Helse ALGORITHM ERPRCR,

Pange reduction first fotlds arguments into
(.9286194,1,8572371% the unfoldirg involves an approximate
constant involving 1og 2 % hence, the error graoh shows
discrete Jumps a3t 2%¥n*1,857229 in the algorithm error plot.
Further range reduction into the subjintervals described abovs
involves the use of tog ¢c. The vatlues of ¢ were chosen so
that the 48-bit representation of 10g ¢ would be correct to at
feast 59 bits. Hencey no noticeable error is caused by
reducing into the subirtervals. Within each subinterval a
poltynomial is used} the polynomial is accurate enough to show
essentially ro error except pear 1.,107239 ,

£.2, TOTAL ERROR,

The final computation is 1og x = ({{(a+t)+1)+p)+b)+b where
a = 1og 2 = 3/4)*n ,

P = c{I)*1t3+,,. » and

b = (374 * n ¢ tog c) 7?2 .

In generaf p<t<ac<h except that 3 and/or b could be zero. The
order was chosen in order to minimize error accumulation. b

60498200 C 15
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4,

is added in twice in order to cut down on error and etiminate
a normalize., Because of all this adding going ony, the earror
graph Yumps around at odd times and by fairly smalil amounts.
(A fump probably corresponds to a 4 + » 0or one subexpression
moving accross a power of two.) Note the value of b is
effectly exact., For x outside (.9286194,1.857239)y a and b
are non-zero and b dominates 1og x 3 hence, the error bounds
are 1 blt apart. For x in (.9286194,1,107239), 109 x
collapses to 2t4p ,» But t={y=c)/(y*c) where y=c is exact, ysc
may lose hatf a bit, and the quotient involves further error,
So those <combin2 with the acddition in 2t+p to make the total
error. For x Iin {1,107239,1.857239), 109 x={({2t+p)+b with
b={1og c)/72 atmost exactly. *t and b may be of opposite sign,

EFFECT OF ARGUMENT ERROR,

It a small error e®* occurs in the argument x, the error in the
result is given approximately by e*/x.
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ROUTINE 3 ATAN
1. ROUTINE®S FUNCTION.

1e1s Type, A FORTRAN external functior. It accepts a floating~
point argument, and returns a3 floating=point result.

1.2, Purpose, To accept calis for ATAN by name at entry point ATAN
and by vatue at entry point ATAN., . ATAN computes the inverse
tangent functjion.

2. METHON,

The input range to this routine ijs the collection of all definite
in-range normalized floating-point quantitiess The output range of
this routine is inctuded in the set of those floating=point
quantities lying between -pi/72 and poi/’? .
The argumert x is then transformed into an argument y in [0, 1/186)
by the range reduction formul ae
arctan(u) = =arctan(-u), U negative}
arctan (u) pi’ss + (pi7d - arctan(i/u)), u>1t
arctan (u) arctanik/1¢) + arctarfi{f{u - k/716)7(1 + u¥*k/716)1}.,
where (0¢€u<iy and kK is the gareatest integer not
exceeding 16%*u,
Finatly arctar{y} (for v in [0, 1/16])) is computed by the polynomial
approximation?
arctan(y) = y + a{1)¥y3 ¢+ a(2)¥*yS + a(3)*¥y7 + a{4)*y?

[T

where
a(l) = -,33333333233312845,
a({2) = ,19999993958014464,
al(3) = =-.1428541305087450,
af{4) = ,11N02281616126149,

The coefficients of this polynomial are those of the minimax
potynomial approximation of degree I to the function f over [0, 1/4)
nhere

f{u2) = (arctan(u) - u)/us,
{The algorithm and constants are copyright 1970 by Krzysztof
Frankowskl, Computer Information and Controt Science, University of
Minresota, 554565, Coding 1is by ULarry \Lliddiardy, University ot
Minnesota.) :

X ERROR ANALYSIS,

A graph of the relative error of aporoximation of the algorithm over
[n, 17181 is shown in figure 7, The maximum absolute value of this
relative error (s 3.201 * 10%*«16, An upper bound on the absolute
vatue of retatjve error due to machine error has been established at
L ,761 ¥ 1N¥*=13, Hencey, an upper bound on the relative error in the
routine js L,764 * 10%¥-13% ,

For 1000 arquments chosen randomiy from the following intervals, the
following statistics on refative error were observed,

60498200 C , 19 l



Interval Mean Standard Minimum
from to Deviation
-1, 1. «~1.589E~-17 2.,216E-15 ~5,823E~-15
10 i0. =2.348€E=17 1,940E=-15 ~6,627E-15

L. EFFFCT OF ARGUMENT ERRQCR,

If a small error e® occurs in the argument, the error in the resul?

vy is given approximately by e* /{1 + y2),

Maximum

5539%E-15
7.505E-15
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PQUYINE 8 ATANH,
1. ROUTINE®*S FUNCTION,
tels Type, A FORTRAN external function. I* accepts a filoating-
point argument and returns 3 floating=point result.

1.2+ Purpose, To accept calls by value for ATANH from FORTRAN
programs. ATANH computes the inverse hyperbotic tangent,

2. METHON,

Tha irput range [s the coltection of all definite, ir-range

floating=poirt quantitias ir the interval (=1.0,¢1.0).,

The range s reduced to (0,1) usinag the identity
atanh{-x)=-agtarh({x),

From the defirition tanh{x)={etx-et{=x))/{(etrxter/7=x))) one gets
atanh{x)=0.5%iIn{(14x)7(1-x)}

Usina the oroperty inf{a*b)=in(a)l+in(b), we can reduce the arqgument

range of the above (09 to [.754:1.5) by extracting the appropriate

multipte of In(2):
atanh{(x)=0.5¥n*tn{21+0.5%In{22(~n)*{1+x)7(1=-x))

Pewrltina the arqument of tog In the form (1+4y)/7(1-y), and
substituting atanh(y) !

2r(-n)¥{1+x)=(1~x)
3tanh(x)1=1,.5¥n*In{2}+3tanh(=crmceccccncancceca)
22(=-n) *(1+x)+(1-x)

This reduces the range to [=0.2,40,21.

The vatue of n such that 2+{-n)*(1+¢xj/(1=-x) is in [.75,1.5) is ¢the
same 35 that such that 280{-P)*(1+x)/7(0.75%{1=-x)) is in (1,2)a If we
write 0.,75%(i-x) as a*2+m, a in (1,234 then 2¢{(=n-m)*{1+x)/a must be
in [1,2}. If (i4¢x}23 then ~n-m=0 and nz=-m, Tf {(1&+x)<a then =-n-n=1
ant n=il-m.

The function atanh (z% on [-0,248.21 is approximated by 2z+z3%p/q
whare p and g are 4th order even polynomials, The coefficients of o
and aq were derived from the (7th order odd)/{4th order even) minimax
{relative error) ratioral form on [(=0.2,40.2) for atanh(z).

60498200 C 21



b,

e 22

ERROR ANALYSIS.

For abs(x}<0«.24n=0 and the form z*,.. is used and the error stays
within the expected bound of &,8E-15.,

For abs{x)2>0,5, the term n*{In(2)/2) dominates, This term |is
computed as n¥lIn{2)/2-,125)=-n*,125-n*,125 because the rounding
error in representing In(2)/2 is larges the above form makes the
rounding error retlatively small, Since n*,125 is exact and the
dominating form, the two adds in {other)+n*,125¢n¥,125 dominate the
error and the expected relative error of 8.,3E=-15 is the maximum
observed error in this region.

For 0.2€abs{x)<0.+5,n=1 and the term Z={0.5%(14x)¥=(1-x))/
(DaS* (L 4x)+(L=x)) may be relatively {arge., For abs{x)<0.2%, the
subtraction 1-x=0.5-x¢+0.5 toses two bits of the original argument.
In additior, 2z is nr2gative ir +this range and some cancellation
occurs Iin the finat combination of terms, costing about one ulip.
the actual upper bound ir the regior 0.2<abs(x}<0,25 is 19.4E-15,
which is the overall upner bound.

The errors aret

Sourge oY error scror *1015
rationat form 242
coefficient rounding <0.1
round-otf 17.1
upper bound 19.4
maximum observed 12.3

FFFECY OF APGUMENT ERROR,

For small errors in the argument x, the amplification of absolute
error is 1/7{1-x2) and that of relztive error is x/{{1-x2)*atanh{x)),
which increases from 1 at 0 and becomes artitrarily large near 1.0,
ey 18,8 at ®N.,99 and 132 at 0.999, or approximately =1/
(ens*in{eps)) where x=1-eps, If x is %Xnown ¢to more than single
nrecision, the foliowing FCRYRAN may be used to get a better result
near 1,03
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nouBLE X

{compute X)
SNGLX=X
SHSNGLX=X=SNGL X
Y=ATANH{SNGLX) ¢SHSNGLX/C (1 +SNGL X) *SNGL (1-X)})

which is 3accurate to singte precision for absi{x) <1-(1E-B) and

accurate above this point, al though stilt - better
ATANH (SNGL (X} ).
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BQUYINE 3 ATJAN2

i« ROUTINE®S FUNCTION.
1.1« Type. A FORTRAN aoxternal function, It accepts an argument
set comprising two floating-point arguments, and returns a
floating=~point resutt,
1.2+« Purpose. To accept calls for ATANZ2 by name at entry point
ATAN? and by value at entry point ATAN2, . ATAN2 computes the
inrverse tanaent function of the ratio of two arguments,
2« METHOD,
The input ranae to this routine is the coltectlion of all pairs (xe.y)
of definite in-range normalized fltoating-point aquantities such that
(X,Y) £ (Uo Nt .
The function ATANZ2{x,y) is defired to be the angle (lying in (-pis
pi)} subtended at tha origir by the point (y.x) and the first
coordinate axis.
The argument (xyy} is ra2duced to the first quadrant by the range
reductions
ATAN2(xyy) = =ATANP{=X,¥), x<0?
ATAN? (xey) = pi = ATANZ2I{xXe~y)y, x>0, v<0,
The arqgqument (xyy)} is then reduced to the sector
{Cluysvit u20 £ v<u § v202
by the rarge reduction
ATANZ2 (xsy) = piZ72 - ATANZ2(yyx)y x>0 or y20,
Then ATAN? (x,vy) is evatuated as arctanf{y’x), using the algorithm
described In the method section of the routine ATAN °s descripotion.
(The algorithm ard constants are copyright 1970 by Krzyztof
Frankowski, Computer Informatior and Control Science, University of
Minresota, 55455, Codira s ©by Larry ULiddiard, University of
Minnesota.)
3. ERPOR ANALYSIS.
See the ercror aralysis of ATAN for properties of the algorithm wused
ir computing arctanly/’x). 2000000 npairs of arguments (x,y) were
randomly generated belonging to sets C{u,v) ¢ tuty, vl < 10%*},
where &k = =100, =99, ,,. v» 100, The maximum absolute vatue of the
refative error in the routine for these arguments was observed to be
3.3%9 ¥ 10¥%¥%=15 for these random arguments,
For 1000 arquments chosen randormiy from the following intervals, the
followirg statistics on retative error were observed.
60498200 C



Interval of x Interval of y Mean Standard Minimum Maximum

from to from to Deviation
-1. 1. o 1. «3.182E+16 2.501E-15 <-=1.001E~-3186 B8,1A1E~-15"
-108. 100. -100., 190, -2.429E-16 2,512E-15 <+=1,012E-14 B8,374E-1%

4, EFFECT OF ARGUMENT ERROR,

If smat! errors elx) and ef{y} occur in x and y respectively, the
error In the resutt is glver approximately by (y*e(x) - x¥ely))7(x2
+ v2),
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BOQUTINE t CABS.

i« ROUTINE®S FUNCTION,

1.1« Type. A FORTRAN axternat function., It accepts a complex
argument and returns a floating=point result.

1.2, Purpose.,. To accept cafls by name and by value from FORTRAN
programs for computation of the complex absolute value
function.

2« METHOD,

The input range is the collection of all valid complex quant;t;es
whose absolute value does not exceed 1.265¥%1()322 ,

Let x # i¥y be the argqument, The algorithm used is?

3. U *« max{ixtu,iyil),
v « min(ixl,iyl).

be If u or v fails a test for infinite or indefinitey, go to
step f.
It u is zero, return zero to the calling program,

Ce I & u/y
W e ler2
t « (33732 & 378)(w - 33732)

= 3/784(r2 &+ 87/32)

{(t is the initiat linear approximation to (1+r2)*%(,5)

d. Heron®s rule is applied in three stages,
(1) « 1720t & w/t)
t(2) o« 1/72(4(1) & w7t (1))
t{3) « 172(t(2) ¢ w/7t{(2))

e, Return with u*t(3) to the caltlting program if it is not
infinite.

f. Call routine SYS=1ST to initiate error processing.

9. Return to the calling program, unless a non-standard or
fatal error recovery has been chosen for this routine,

Note that a number of valid argurents are netted in step b, but
these are returned to normal execution after further testing.

Formufae used are
fx+i¥*yl = SQRY (x+i*y)
= max(ixt,lyl) ¥ (1sr2) %%, 5
where r = min(ixlylyl)/max(Ixtyiyl).

See the timing information in Appendix D for further details.
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ERROR ANALYSIS.,

The maximum absolute value of the error in approximating
+t(3) = SQRT{1+r2) by

t = 33732 ¢« 378(14r2 - 33/32)

(1) = 1/72(F + (1+r2)/1)
T2y = 172(t(1) ¢+ (1+r2)7¢(4))
t(3) = 172¢1(2) + (1+4r2)7¢(2))

is 1.5306*%10*¥*~-16, assumed when r=0. Hence an upper bound on ¢the
absofute value of error in the algorithm is
1.5306*10%¥=-10*%¥max(Ixl,1ytl) ,

where x+iy is the argument, An upper bound on the absolute value of
error ir the routine dus to machine round-off has been established
at B.512%10%%-14 * max{ixi,iyl) . Therefore, an upper bound on the
absolute value of error in the routine is B8.527%10%%14 *
max{ixt,tyl) 4, and an upper bound on the absolute value of relative
error is 8,527 ¥ 10¥*~1y,

For 10000 arguments chosen randomiy from the interval (=1.s1.]1%(-
1.9121y the following statistics on relative error were observed,

Mean Standard Minimum Maximum
Deviation

=2.,296E=15 2,658E=15 «1.093E=-14 S5,.967E=-15
FFFECT OF ARPGUMENT ERROR,
Tf a3 small error ef{2) = e{x)+i*e{y) occurs in the argument z = x+ji*y

o« The error in the result u is given by

e{u) = (xe({x)sryely))/u .
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BQUYINE 2 _CCOS_

1. PRPOUTINE®S FUNCTION.

1.1. Type. A FORTRAN external function. It accepts a complex
argument and returns a compliex result,
1.2. Purpose. To accept by name ftor CCOS from FORTRAN programs.
CCOS computes the complex cosine function.

Z2e METHOD,.

If u and v are reatl numbers, then
coslusti.,v) = cos(ult,coshivi=sin(ul.sinh{v).i .

The argument is checked upon entry, The argument is invalid if
either the real part or the imaginary part 1is infinite or
Indetinite, if the reatl part or the imaginary opart is so targe that
precision will be 1lost during the computation, or if floating
overflows occurs during the computation. It the argument is
invalid, POS,INDEF. + 1.POS.INDEF. 1is returnedy, and a diagnostic
message is issueds If the argument is valid, COS=SIN is catled 3t
entry point COS.SIN for computation of the cosine and sine of the
real part of the argument, and HYPERI. is catled at entry point
HYPERR, for computation of the hyperbolic cosine and sine of the
imaginary part of the argument. The result is calculated according
to the formula above and is returned to the calling program.

2. EPROP ANALYSIS.,
The algorithm used in CCOS Is the same as that used in CCO0Se « See
the description of CCOS., for the error analysis.

4, EFFECT OF APGUMENT ERROR,
If a small argument error appears, then the error in the result is
given approximately by multiplying the argument error by the
negative of the compliex sine of the argument, Hence, {if a small
error occurs iIn the complex argument and the error has absolute
value e*, then the absolute value of the error in the result |is
given approximately by e* ., (sSin(u)2 + sinh{v)2)*¥%1/2 , where u+i.v
is the complex argument.,
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| Rourine : ccos,
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ROUTINE®S FUNCTION,

1.4« Type. A FORTRAN external function. It accepts a complex
argument and returns a complex result,

1.2. Purpose, To accept calls by value for computation of the
complex cosine.

METHOD,

The input range is the coliection of all definite in-range complex
quantities z = x ¢+ j.y where 1yl does rot exceed 741.67 and Ix! does
not exceed 246 , The formula used for computation is
cos{z) = cosi{x + i.y) = cosix).coshi{y) = j.sin{x).sinhly) ,

where x and y are floating-point aquantities. COS=SIN Is caltled for
computation of cos{x) 3and sini{x), and HYPERR= {s called for
computation of cosh{y) and sinh{(y), The result (s returned to the
caliing program - the real part in X6 and the imaginary part ir X7 .

FRRCR ANALYSIS,

{See the descriptions of £OS=SIN anc HYPERB, for details.) If z = x
+ ley iIs the argument, then the modulus of the error in the routine
does not exceed 1,241 , 10%¥(=-13) + 1,241 , 10%*{~-13) . expliyi).

For 17100 arguments chosen randomly from the interval [=1.,1.1%[-
1.91«1y the folloning statistics on relative error were observed,

RQegister Mean Standard Minimum Maximum
Deviation

X6 -3.501E~15 3.827E-15 ~-1,L13E-14 1,182E-14
X7 =7.313E-15 0Q,884LE-15 <-5,.059€~-1% 1.771E-14

EFFECT OF ARGUMENT ERROR,

If a small error e{(z) = e(x) & j,ely) occurs in the argument z = x +
isyy the error in the resutt is given approximately by
-sin(z) .e(z2) .
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BOUYINE 3 CEXP_

1.

ROUTINE*S FUNCTION.
1.1+ Type. A FORTRAN external function, It accepts a complex
argument and returns a complex result,

{.2. Purpose. To accept calls by name for CEXP from FORTRAN
programs. CEXP computes the complex exponential function.

?. METHOD,

If u and v are reatl, then
exp{uti.v) = explulecosi{v) &+ j.explu).siniv) .

The argument jis checked upon entry, It is invatid if the real part
u or .the Imaginary part v is infinite or indefinite, if u is greater
thar 741.67 in absoiute vatue, if v is so larde as to lose accuracy
during the catculatlion (i.e. v exceeds pl.2%*% in absolute value), or
if floating overfiow occurs during the catculation. If the argumrent
is invatid, POS,INDEF, + Jj. POS,INDEF, is returned, and a
disagnostic message is issued. If the argument is valtid, the result
is returned to the calting program,

X. ERROR ANALYSIS.
YThe atqorithm used in CEXP js the same as that used in CEXP, . See
the description of CEXP, for the error analysis.

t, EFFECY OF ARGUMENT ERROR,
ITf a smal!l error e®* occurs in the argument u ¢ j.vs, the error in the
resuft is given approximately by e* e« axplu + l.v)e Hences the
absolute value of the error in the result will be approximately
1e*leexplu)e If the error in the argument is significant, the error
in the result should be determined by substitution of possible
argument values in the function,
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I mourine s cexe,
1. ROUTINE*S FUNCTION,

1.1« Type, A FORTRAN external function. It accepts s complex
argument and returns a complex result.

1.2, Purpose. To accept calls by value for computation of the
complex exponential function.

2. METHOD,

The input range is the collection of all definite in-range complex
quantities z = x + j.y where |y| does not exceed pi.24% and |x| does
not exceed 741.67. ,
The formuia used for computation is

expl{z) = explx + l.y) = expix}.cosly) + i.exp(x)esinty)
where x and y are not floating-point quantities.
COS=SIN is calted for computation of cos{y) and sintly), and EXP. is
calted at entry point EXP, for computation of expi(x). The resul?
is computed according to the formula and is returned to the calling
program,

2, ERPOR ANALYSIS,

{Se2e the descriptions of COS=SIN and HYPERPR, for details.) If 2z = x
¢+ l.y ls the argument, then the modulus of the error in the routine
does rot exceed 1.378 . 10%¥(=13) & 1.378 , 10%+¥(-132) , exp(ixi).
If the real part of the argument is targey, the e2rror in the routine
will be significant.

For 110000 arguments chosen randomly from the following interval, the
foltowing statistics on retfative error of the components of the
results were observed,

Interval x Interval y Register Mean Standard Minimum Maximum

from to from to - Deviation

-1 1. -1. 1. X6 ~3e4hDE-15 3. 784E-15 -1.,428E-14 1.227E-14
X7 =5.831E~15 B8.,853E~-15 -4.165E-14 1.242E-14

-670. 670, ~2.210E1L 2.,2106514 X6 ~8.962E~15 L.669E-14 -2.,176E~-12 2.235E-14
X7 ~1.071E-14 7.948E-14 ~L,977E-12 3.723E-14

L., EFFECT OF ARGUMENT ERROR,

If a small error e(2z) occurs in the argument 2z, the error in the
result w is given approximately by weelz).
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ROUTINE 3 _CLOG

1. ROUTINE®S FUNCTION.
1.1« Type., A FORTRAN axternal function. It accepts a complex

argument and returns a compiex result,
1.2. Purpose. To accept calls by name for CLOG from FORTRAN
programse. CLOG computes the complex logarithm function,

P METHON.,
The argumen?t s checked uponr entry,. The argument is invalid it the
real or complex part ls infinite or irdefinite, or if both the real
part ard the compliex part are zero. T1f the argument (s invalid, 2a
diagnostic message is writter and POSJINDEF, ¢ [¥P0OS.INDEF. is
returnede. Otherwise, CLOGs is called at entry point CLOG. for
computation of the complex logarithm, The result is returned to the
calling program.

X, FRRNR ANALYSIS - see the description of CLOGe .

s Effect of argument error,
If a small error e® occurs in the argument 2z, the error Iin the
result (s given approximately by e*/z. The modulus of this will
give approximately the modutus of the error.
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ROUTINE®S FUNCTYON,

1«1+« Type. A FORTRAN externat function., It accepts a complex
argument and returns a complex result,

1.?. Purpose. To accept callis by vatue for computation of the
compiex logarithm, including converted calls from CLOG .

METHOD.

The input range to this routine is the collection of 3all definite
in-range complex quantities which are non-zero, and whose absofute
values do not exceed the targest floating-point number representable
in the machine.
The formulsa used to compute the complex togarithm is

tog z = 1oglizl) * i.arg(z),
where |zl is the modulus of z. |zl is evaluated by routine CABSe,
and the togarithm is evaluated by ALOGe ., The functior argf{z) is
evaluated by routine ATAN?, 3 arg(z) always ljes in the nterval
{-piy pi) for z nonzero, definite and in-range, The result is
returned to the calling program in X6a%X7 .,

ERRCR ANALYSIS,

Tests on a sample of 100000 random numbers distributed over the
complex plane with distribution the product of two Cauchy
distributions of zero mean returned a maximum absoiute value for the
relative error In the routine of 8.579 ¥* {0%¥(-13),

For 10000 arguments chosen randomly from the interval {=1,y1.1%(-
1e91s1y, the components of the resuits gave the following statistics
on refative error,

Register Mean Standard Minimum Maximum
Deviation

X6 =7.120E=14 §.6093E-12 <~L.435FE-10 4.213E-11
X7 =2.200E-16 2.489E-15 ~1.114E-14 B8,.085E-15

EFFECT OF ARGUMENT ERROR.

If a small error e(z) occurs ir the argument z , the error in the
result Is aiven approximately by elz)’7z.
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ROUTINE 2 COS=SIN

1, ROUTINE®S FUNCTION.

1.1+ Type. An auxilary routine of the math {ibrarys. A floating-
polnt argument is accepted and two floating-point results are
returned.

1.2. Purpose. To accept calls for GCO0S.SIN from other routines,
requiring the simultaneous computatjon of sine and cosine of
the same argument,

2. METHOD,

Potynomials pix) and alx) of degrees 11 and 12 are used to compute

sin(x) andcos(x} over the interval {(-pi/ky pi/W)s to which the

argument Is reduced., Upon entry, the argument x is multiplied by 27/

pis 3and the nearest jinteger n to 2/pi « X is computed by double~

precision addition of 2/pi « x to 2000600000080000008008 , followed
by rounded floating-point addition of the upper and iower halves of
the resulte nr is normalizedy and the argument x will cause a return
of POS. INDEF, it the shift count in this normatlization is zero?}
in other words, it x exceeds Dl.2%6(ji.€ey 22106992975088845ces) in
absotute vatue, Otherwise y = x n.pi/2 is computed in double-
precision as the reduced argument for input to ply) and qiy).
sin{x) and cos(x) are computed from these as Iindicated by the valuye
mod(n,4)s vy ties In the jinrterval {-pi/hypl/L).,. The polynomials
nix) and qi{x} are respectively

s{N)x ¢+ s(1Ix3 + s(2Ix5 + s(2)x7? & s(4)x® ¢+ s(5)xi1
and

c{0) + c{1)Ix2 + cl2Ix“* 4+ Cc(3)IxS + c(4)Ix® + c(5)x20 4+ c(B)x2r2
where the coefficients are given by

s(f) = ,9999999399939972

s{i) = -,166666666665404

s{?2) = ,833333331696029 , 10 *¥ 2

s(X) = -,198412607353790 , 10 ** =3

s{h) = ,275548564509884 ,» 10 *¥* -5

sS(S) = «,247320720952463 , 10 ¥** =7

c(l) = ,99999993999999¢

c(1) = -,.499999399999991%

t(?2) = .0416666666664705

clX) = -.,138888888698153 , 10 ** =2

Cclb) = L248015734673257 « 10 %% =4

c(5) = «,275552187277097 . 10 ** -p

ci{b) = ,20629106347664S , 10 *%* -8,

These coefficients were obtalned as follows. The potynomials of

degrees 15 and 14 obtained by truncation of the Maclaurin series for

sin({x) and cos{x) were telescoped to form the polynomials pi{x) and

q({x) of degrees 11 and 12, The method of telescoping polynomials

{c.f.y for example, C. Lanczos, Apglied Apalysis, 1956) consists of

the (possibly repeated) removal of the teading term of polynomial by

subftraction of an appropriate multiple of T(n)(al(X-x(0))) of the
60498200 C
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same degree n, wuhere 273 jis the 1i1ength of the interval of
approximation, and x(0) is its centre, (TI(n)I{x), the Chebyshev
polynomial of degree n, Is defined by TI{n){x) = costn.arcos{x)) (Ixl
€ 1) and satisfies the recurrence relationt

TIOY)(x) = 1

T(1Y (x) =

Tin+1) (x) 2xT(n){x) = Tin=12(x) (n 2 1), :
T(n) (x) {(for n 2 1) is the unique polynomial 2(n=-1)*x**n t.,.0f
degree np whose maxirum absotute value over (-1, 1) is minimat. This
maximum absolute value is, of course, 1.)

X

The formulae used for range reduction ares
sin(x) = (=1)%¥*n sin(y)
cosix) = (-1)%*n cos(y)
If x =y ¢« n piy n an integer?s
sinix)= cos(x - pirs2)
cos{xy= =-sini{x =-pi/2)
1t pls7asx<nirs2.,
The iInput range is the collection of definite, in-range floating-
point quantities whose absotlute vatues do not exceed pi * 246

ERRCP ANALYSIS.

The maximum absolute error in the approximation of sini{x) by p(x)
over {(=pl/4,pi/4) is 1893 , 10 *%* <14 and in the approximation of
cosi{x) by a(x) is 3687 . 10 ** =1t , Upper bounds on the machine
round=-off and ftruncation  error over the input range (-pi/Z4,pi/Zi)
have been estabtished for pix) at 7.523 « 10 ** =15 and for qi{x) at
1.401 , 1N%¥%=14 , Hence, the maximum absolute error and for ai{x) a
1.401 . 10 ** <14, Hence the maximum absolute error in this
routine®s computatjion of sire over (~pi/t,pi7&) s 9.416 « 10 * =15
and of cosine s 1,770 * 10 ** 14 , '

EFFECT OF ARGUMENT ERROR,

Not applicable, since this routine is not directly called by the
user®s oprooaram, -
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ROUTINE®S FUNCTION,

1.1. Type. A FORTRAN external function. It accepts a complex
argument and returns a2 complex result.

1.2. Purpose. To accept «calls by name for CSIN from FORTRAN
Programs. CSIN computes the sine function for complex
arguments,

METHCD,

If x and y are real, then
sirn{x + i.y} = sintx).coshi(y) + f.cos(x).sinhly)e.

Upon entry, the argument is checked, It is invalid if the real part
x or the imaginary part y is infinite or indefinite, if x or vy is so
targe as to cause Joss of precision iIn the calculation, or if
floating overflow occurs during the catlculation. If the argument |is
invalid, a diagnostic message is issuedy, and POS.INDEF. 3
i +POS,INDEF, is returnad, 1If the argument is valid, the result of
the computation is returned to the calling program.

ERROR ANALYSIS.

The atqorithm used in CSIN iIs the same as that in CSINe . See
section 3 of the description of CSIN, for the error analysis.

EFFECT OF ARGUMENT ERROR,

If a small argument error appears, then the error in the result is
given aoproximately by multipling the argument arror by the complex
cosine of the argument, Hence, I1f 3 smalil error occurs in the
comptlex argument and the error has absolute value e®%, then the
absolute value of the error in the result is given approximately by
e*' * {cos{x)2 + sinhiy)2¥x31/2 ,

where x % (*y s the complex argument. If the argument error is
sigrificant, the error in the result should be be found by
substitution of the possible argument values in the function.



| 2ourine s csine

1

2

b,

38

ROUTINE®S FUNCTION.

1.1. Type. A FORTRAN external function. It accepts 3 complex
aragument and returns a compiex result.

1.2. Purpose, To accept calls by value for computation of the
complex sine.

METHDD.

The input range is the collection of all definite in-range complex
quantities z = x + j.y where 1yl does rot exceed 741.67 and Ix! does
not exceed pi . 2%6 ,

The formula used for computation is .

sinlx * (*y) = sin{x) * cosh(y) +# i * cosi{x) * sinhly) ,

where x and vy are floating-point numbers. COS=SIN is calied for
computation of the cosine and sine of x, and HYPERBe is called for
computation of the hyperbotlic sire and cosine of vy « The result is
returned to the calling program - the real part in X6 and the
imaginary part in X7 .

FRROR ANALYSIS,.

(See the descriptions of HYPERBe and COS=SIN for detalis.) If z = x
+ i.y is the argument, then the modulus of the error in the routine
does not exceed 1,276 , 10*¥*¥{-13) & 1,297 , 10**{=-13) . expiiyld.
The error in the routine is significant if the argument has 3 large
{positive or negative) imaginary part.

For 10000 arguments chosen randomty from the interval [~=1.s1.1%[~
1e911y the following statistics on relative error were observed in
the components of the resul ts.

Register Mean Standard Minimum Maximum
Deviation

X6 =5+592E-1% B.653E-15 =4,030FE~-14 1.228E-14
X7 “5.,970E-15 5,877E-15 <=3,16%5€-14 1,.550E-14

EFFECT OF ARGUMENT ERPOR.

It a small error e(z) = e{x) *+ j.ely) occurs in the arqument z = x +
l.yy the error in the rasult is given approximately by cos(z).el(z).
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POUTINE &t _CSQRY

1. ROUTINE®*S FUNCTTION,

1.1. Tyoe. A FORTRAN external function. It accepts a complex
argument and returns 3 complex resutt,

1.?. Purpose., To accept calls by name for CSQART from FORTRAN
PrOgGrams., CSQRT computes the complex saquare root function
which maps to the right half of the complex ptlane.,

?. METHOD,.

For the algorithm, see the description of CSQRTe . Upon entry, the

compfex argument Is chaecked. The argument is invalid if its real

part or [ts imaginary part is infinite or indefinite, or if fiocating
overfiow occurs during the calcutation. If the argument is invalid,

a diagnostic message is issued, and POS,INDEF. ¢ [¥POS,INDEF, is

returned. If the argument s vatid, CSART. s caltied at antry point

CSQPY. for the computation. The result is returned to the calling

program, For the purpvoses of this computation, values returned by

the routine will tie ir the right halft of the compltex plane,
2., ERROR ANALYSIS - see the description of CSQRTe .
4, EFFFCTY OF ARGUMENT ERROR,

If a small error e* occurs in the argument z. The error in the

result w (s given approximately by e*/{(2.%). The modulus of fthis

Wwill aive 3 aporoximately the modultus of the error.,
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ROUTINE®S FUNCTION,

1.1. Type. A FORTRAN oxternal function. It accepts a complex
argument and returns a3 complex result.

1.7« Purpose, To accept catls by value for CSQRT. from FORTRAN
programs. CSQRTe computes the complex square root functione.

METHOD,

The input range to this routine is the collection of atl definite
in-range non-zero complex aquantities, If the argument is zero, zero
is returned,
I¢f 2 = x ¢+ isy is the argument, then the result is given by w = u #
i« where u and v are datermined as follows.
Let a = (x2 + y2) *% 172,

b = {({a *+ [x{)/2) *+* 172,
and

c = Y/(?ob’a
Then 1If x > 0, U = b and v = ¢y while if x <0y U = € + signly) and v
= b « s iantly) «+ The rasult from this routine will always 1lie in
the first or fourth aquadrant of the complex plane, and complex
quantities 1lying on the axis ot negative reals will be taken by the
routine to the axis of positive iImaginaries.

EPROR ANALYSIS,

The routine was tested against a sample of 1000080 random numbers
distributed over the comptex plane with distribution the product of
two Cauchy distributions. The maximum observed modulus of relative
arror was 1.595% , 1M*¥F(=-14) .,

For 10000 arguments chosen randomly from the following interval, the
following statistics on retlative error of the components of the
resul ts were observed,

Interval x Interval vy Register Mean Standard Minimum Maximum
from to from to Deviation
~100. 100, -100. 100. X6 ~4,790E~16 2.,652E~15 =~9.,774E-15 1.107E-14

X7 ~4.320E-16 2.655E-15 ~9,726E-15 1.032E-14
-10.,100 313,200 -43Q,200 §(,100 X6 ~4,053E-19 2,632E-15 -1.012E-14 1.036E~-14
X7 “4,098E-16 2.637E-15 ~9,520E-15 1.096E-14
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t, EFFECT OF ARGUMENT ERROR,

Tf a small error eflz)
error In the resutlt w

el(x) & j,ely) occurs in the argument, the
U + l.v is given approximately by e{z)7{2.w)

= {e(x) ¢ j.ely))/ 2(u + j.Vv).
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BOUYINE ¢ DASNCS.

1.

2e

42

PNUYINE®S FUNCTION
1:.1. Type., FORTRAN exterral functions. It accepts a double-
"precision argument and returns a double-precision resutlt,

1.2, Purpose. To accept calls by value for computation of the
inverse sine and inverse cosine functions.

METHOD,

The input range is the cotlection of all vatid double precision
quantities ir the (ntervat [-1.0,%+1.0)., Arguments outside this
range will initiate error processing,

The followino identities are used to move fhe' intervatl of
approximation to (0,SORT(.5)1):

arcsin{ex)=z-arcsin{x)

arccos{x)=pj/2=arcsin{x)

arcsini{x)=arccos(sart(1ex2}) x20
arccos {(x)=arcsin(sarft (1=-x2)) x>0
Catl the reduced value vy, If y€.0937%, no further reduction is

performed., If not, the closest entry tfoy in a table of values
(zyarcsin(z)ysart{1-z2) 42=,14,.39,,52, .64) is found, and the formula

arcsin{x)=arcsin{(z)+arcsin(w)
where w=X.sart(1-z2)«z.sqrt(1-x2)

is useds The value 0f W iS in (=.0792,+.0848)

The arcsin of the reduced argument is then found using a 15th order
odd polynomiatlt {(with gquotient):

XEx3(cl3V+x2(c(5) +x2{c(7) +x2(c {11)1+x2{c(13)+x2(c(15)+a/(b=x2)))))))

where all constants and arithmetic before c(11) are in double, and
the rest is in singl2 except the addition of c(11), which has the
form singletsingle=double, The polynomial is derived from a minimax
ratlonal form (denominator is (b-xZ)) for which the critical points
have been perturbed slightly to make c(11) fit in one word.

To this value, arcsin{z) is added (from a table, and only 1f the

1ast reduction above wWas done) and the sum is conditionally negated
and D4=pi/?, #pi/72, or pi is added to complete the untolding.
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« ERROR ANALYSIS,

The maximum relative errros are? DASIN DACOS
minimax rational form error «082E-29 ,L,082E-29
atgorithm error
{doubte precision coeffjcients) +«T6E~-29 + 4 8E=-29
maximum error observed 10.5E-29 12.5E-29

The regions of worst error are (.09375,.1446) for DASIN and
{.9895, .9966) for DACOS. In these reglions the final addition is of
guantities of almost eaual magnitude and opposite sign, and
cancellation of about one bit occurs, the worst case being 1451~
«Nh23, For DASIN, the polynomial range was extended to cover the
regior (,08214.093751, where the norst error occurs. For DACOS, the
extension is not used, sSo that the maximum retlative error for either
routine occurs Iin thz region (.99%6,.99656) [in DACOS. For 10000
points randomly distributed in this region the maximum observed
relative error in DACOS was 12.5E-29.

bke EFFECT OF APGUMFNT ERRQR,

If a smatl error eps occurs in the araument xy the resulting errors
In DASIN and DACOS are aoproximately eps/{1-x2)%%,5 and =-eps/(i-
xX2)¥%,5, The amplification of the relative error is approximately
x/7{f(x)¥{1-x2)*¥*% ,5) where f{x) is DASIN or ODACODS. The error |s
attenuated for DASIN 0f abs{x)<0.75 and for DACOS of x>=,44, but may
become serious for DASIN near -1 or +1 and UACOS near =-1. If the
arqgument is generated a3s 1=y or y-1 then the jdentities

asini{x)=acos({sqrt(i=x2))
acos{x)=asini{sqgrt(1-x2))
asin(=x)==-asin{x)
acos(=x)=pi+asin(x)

may be used to get the full significance of y. When computing (1~
x2) one should use a form such as {(1«x2)=(14x)¥{1l-x)=y¥*(2~y).,
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BQUYINE 3 _DATAN

1.

2e

be

RCUTINE®S FUNCTION,.

1.1. Type. A FORTRAN external function, It accepts a3 double-
precision argument and returns a double-precision result,

1.2« Purpose. To accept calls fTrom FTN compiled code for
computation of the inverse tangent function. :

METHON,

The input range js the coltection of 31V wvalid double-precision
guantities. Dther arguments will initiate error processirg from
DATAN= ., Upon entry, the argument is toaded into registers X1 and
X2 » and routine DATAN= js entered for all remaining computations.
See thils routine®s HETHON description for further details.

ERROR ANALYSIS.,

Se2 section 6 of the description of routine DATAN, for the error
analysis,

EFFECYT OF ARGUMENT ERROR,

See saction 7 of the description of routine DATAN,
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ROUTINE 3 DATAN,

ROUTINE® FUNCTION.

1.1« Type. FORTPAN external function., The routine accepts a
double=-precision argument and returns 3 double=precision
result,.

142+ Purpose, To accept calls from FTN compiler code for
- computation of tha inverse tangent function.

?« METHOD.

Th2 input range Is the cotflection of allt valid double-precision

quantities. )

Computation is performed wmainty In routine DATCOMe 4 anrd the

constants used are listed there.,

. Transfer raturn address from entry point word into B6& .

be Test first word of arqument for infinite or indefinite, If
ajther, go to step i.

Ce BIe(, (B3 hotlds a3 mask MI,)

B7«0, (B? will hold ctosest multipie of pi72 to absotute value
of result,.)

de B4 « sign mask for argument,. {84 hrotds MS , a mask for result®s
sign.)

e, X7 XX+ absotute value of argument.

f« If absolute value of argument < 1. , Jump to routine DATCOM, at
entry point DTN, to complete processing.

Jo X5 XX+ absolute valtue of argument,

X4 Xiel,
BRe=
B7«1

he Jump to routine DATCOM. at entry point DATCOM. to complete
processing.

i« Pick wup parameter for error precessors Call error processor,
supplying given argument and parameters,

Je 1If error processor returns cortrol, return pi/2, with sign that
stored in B4 , pi’/2 is picked up by doubling an entry in a table
starting at entry point ATN. In routine DATCOM. .

60498200 C 47



4,

I s

ERROR ANALYSIS.

10000 random arguments were genérated in the interval {17200.,200.1,
and the resulting graph of reflative error versus argument is shown
in the figure following this routine®s description. In this sample,
the - maximum absolute value of relative error is 7.183%10%%(=-29) ,
Groups of 40 double=-precision arguments were chosen randomly in each

of the following intervals, and the following statistics on relative
error mere observed.

Interval®s Interval®s Mean Standard Minimum Maximum
Lower Upper Deviation
Bound Bound
-8 8a -109955’30 10109E°29 -ZQ 0635"29 3:205E'2g
+ 01 10. =1.505E=-30 1.124E-29 =~2,907E-29 2,745E-29

The maximum absofute value of relative error iIin the altgorithm is
1.622€-29, and this occurs at 1.069781471095183.

2,1, ALGORITHM ERROR.

Up to 1/16, the plot shows the error in the economized
polynomiats it is not centered because the first coefficient
was forced to be 1, The interval between (2n-1)716 and
(2n+1)/16 is repeated twice (once reflected), but the waviness
is damped because of adding atani{n/8) ., The descrete Jumps at
{2n-13/16 are caused by the inaccuracies in atan(n/8) . Above
1.0, the subranges are delimited by 167(2n-1) .

3.2. TOTAL ERROR

Most of the errors car be traced back, with difficulty, to
aulirks in doubte precision addition. Note that the lower
parts of the constants for pi and some of the atan{n/8)°s are
negative. While it aflows the constant to be precise to an
extra bit or two, the unpredictable sign wreaks havoc on the
addition process.

EFFECT OF ARGUMENY ERROR,

If a small error e occurs in the argument x, the error in the result
is aiven by e/{i+x2),
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EQUIINE t DATAN2

i,

)

b o

50

ROUTINE*®*S FUNCTION.

i.1. Type, A FORTRAN external function. The routine accepts a
double-precision argument and returns 2a double-precision
resuit.

1.2. Purpose, To accept calls from FTN compiled code for
computation of the inverse tangent function with two
arguments, '

METHOD,

The input range is the collection of all pairs of valid double~
precision quantities which are not both zero. Other arguments wil}
initlate error processing from DATAN2s . Upon entry, the arguments
are {toaded into registers X1, X2, X3, and X4 and routine DATAN?., is
entered for alt remaining computation. See this routine®s METHOD
descrintion for further detszitis.

ERROR ANALYSIS.,

See section 6 of the description of routine DATAN2, for the error
analysiss

EFFECT OF ARGUMENT ERROR,

See section 7 of the description of routine DATAN2., for the effect
of argument error.,
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BOUYINE &t DATANZ,

i

ROUTINE®S FUNCTION.

1.1, Type. A FORTRAN externatl function. The routine accepts an
argument vector comprising two double-precision arguments, and
raturns a double-precision resuit,

1.?s Purpose. To accept caills from FTN compiled code for
computation of the inverse tangent function with ¢%two
arguments,

2 METHOD.

The input domain is the collection of alt pairs of valid double-

pracision quantities nhich are rot both zero,

Computation is performed mainly in routine DATCOMey and the

constants used are listed there.,

3. Tast first words of both arguments to see if either is Infinite

or indefirite, If so, go to step }.

be Normalize first words of both arguments,

Ce Of first words of both arguments are zeros 90 to step i.

de B4 « sign mask of first word of first argument,

B2 « complement o0f sign mask of first word of second argument,
Bt ¢ return address in calting routine.
B7? « 1 .
@s X5 XI + absolute value of first argument,
X4 X1 + absolute value of second argument.

fo X5 > X4 jump to routine DATCOM, at enfry point DATCCM, to

complete processing.

Je X5 <=> X4

X2 <=> X1

Comptement contents of B3.

B?7 « 01, it first word of second argument is positive
« 2y it first word of second argument is negative,

he Jump to routine DATCOM. at entry point DATCOM. to complete

processing.,

i« Supply message for *“ARGUMENT VECTOP D,0" .

}J» Plick up parameters for error processor, Call error processor,

supplying given arquments and parameters,
60498200 C 51



bha

kK« If controt returns from the error processor, return +INDEFINITE,
to the calling orogram,

ERROR ANALYSIS,

A group of 48 random double-precision arguments was chosen in
{408,104 x {.01510.1y and the following statistics on rejative
error nere observede.

Me an Standard Minimum Maximum
Deviation
=2+640E=30 2,161E-29 <=6.188FE=29 3I,115F=29
The maximum absolute value of retative error in the algorithm is
10622F‘290
EFFECT OF ARGUMENTY ERROR,
If smatll errors e® and e™ occur in the arguments x and vy

respectively, the error in the result is given approximately by

(x ¥ e¥ = y ¥ e%*)/({x2 % y2),
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ROUTINE 3 OATCOM,.

i.

2

ROUTINE®S FUNCTION,

1.1. Type. An auxiliary routine containing common code for DATAN,
and DATANZ. O

1.2. Purpose., Common code for computation of DATAN and DATAN? .

METHOOD,

On entryy a3t both entry points DATCOM, and DTN,

33 = mask MI ,

Bt = mask MS = sign of final result,

A6 = returr address after processing is complete.

B? = closest multipte of pi72 to absolute value of result,

In addition, at entry point DATCOM. »
X4 X1 = 0U
X6 XT = DV

and at entry point DTN,
¥7 X3 = DU

Entry poirt ATN, is the start of an eighteen-word table containing
tan-1(n/8) (0<n<8) in doubte=precision,. Entry point DATCOM,.
corresponds to step a.y and entry point DTN. corresponds to step
bee Constants used in the 3algorithm are:

43 -¢323 333 333 333 333 332 332 332 285 915
d5 «199 999 999 999 999 999 999 £73 046 526
47 =.142 857 142 857 142 856 281 180 055 289
49 «111 111 111 111 109 972 932 035 508 119

cl1 = -,090 9092 090 908 247 503
c1 = ,001 351 201 845 778 152
a = -.08% HR6E 7T4LI 757 5933 089
b = «1,133 579 709 202 919 6

d3, 15, d7, d9 are doubte-precision constantsy c1ty, ¢ci13y a3, b are
singte=-precision constants., Arjithmetic operations with d subscripts
ara done in double-precisiony, those with u subscripts are done in
singte=praecision, Boolean operations have B subscripts.,

a. DQ « DU/DV in double-precisior. Carry DQ in X7 X3 .

b (DQ DA=-DU at DTN. ) {Note that 0<NN<1,)

Ce N « nearest multipte of 178 to DQ « DLeD .

de If n=0 , go to step f.

es DAe(DQ=N/B8)7{1+N/78*DA)Y , computed in double-precision.
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2.

L,

fo If (DAYlU)=0 4, go to step h.
XX «(DAY(ud) *{u) (DAY (W)
X eXX¥%¥(Q,5 (DAY {uwd CCUNAN LW *(1) (DAY LW 74(DAYY (W)
+{r) (DAY{uUI))

Ge DC « XX ¥(d) (d3 s(d) XX ¥(d) (dS ¢{d) XX *(d) (d7 +(d) XX
¥(d) (d9 +(d) XX *(d) (di1 +(d) XX *(u) {c13 +(u) aszilb =(u)
XX3INmmn

he v = (DAY(U) +(d) DC *{d) ((DA)(u) =-(d) (DAY {(u) *(i) (DA){ud/
(DAY (u) #(r) (DAY(UWI)I) w « v +0d) ((DAI(I) - X*¥({DAI({1) +
(DAY(u) * (DAY LW/
({0AY (u) *+(r) (DAY (WD)

ie b +« (B7 * pj/2) =-(R) 83 (upper and lower)

1 ¢+ §H +{(d) tan=32{n/s8)., tan=1(n/8) is obtained as a double-
precision quantity from the look-up table.

Ke p ¢ 1g +{d) w) =(B) (B3 =-() BY)
X6 X7 « p 4, cleaned up.
Return to address B6 by direct jJump.

ERROR ANALYSIS.

Coefficients 43, d5, 47, d9, c11, ¢c13, a, b were obtained by making
the expression using these coefficierts a minimax approximation to
inverse tangent over [~1/164,1716), within the cliass of expressions
obtained by varying these coefficientse. (See descriptions of
routines NATAN, and DATANZ2. for error snalyses.)

EFFECT CF ARGUMENT ERROR,

Se2 descriptions of routines DATAN. and DATANZ2, for effect of
arqument error.
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BOUTINE & _DCOS

1.

2e

60498200 C

ROUTINE®S FUNCTION,.

11, Type, A FORTRAN external furction., It accepts a double-
precision argument ard returns a double-praecision result.

1.2. Purpose. To accept calis by name for 0DCOS from FORTRAN
programs. DCOS computes the cosine function.

METHON,

Sea the description of DSNCOGSe for the algorithm wused in the
computatior. The argumsant is checked upon entry. It is invalid if
infinite or indefinite or so laroe as to lose precision during the
calculation. If the argument js invalid, P0S. INDEF., is returned,
and a diagnostic message is issued, If the argument is valid,
ISNCOSe is catlied at entry point DCOS. for the computation. The
resutt is returned to the ¢atling program,

ERROR ANALYSIS - see tha description of DSNCOSe o

EFFECTY OF ARPGUMENT ERPROR - see the descriontion of DSNCOSe .



PQUYINE 2 DCOSH

1.

Za

Xe

L

s

ROUTINE®S FUNCTION.

1.1, Type, A FORTRAN external functions, The routine sccepts a
double-precision argument, and returns a doublee-precision
results.

1.2. Purpose, To accept calls from FTN compited code for
computation of the hyperbolic cosine functione.

METHOD,

The input domain is the coifection of all wvalid double=-precision
quantities whose absolute value is 1ess than 1071%10g9(2). Arguments
not in the domain will initiate error processing in routine DHYP. .
Upon ertry the argument s 1oaded into X1 X2 before routine DHYP. is
atlled, {see the description of routine DHYF, for further details.)

ERRQOP ANALYSTS.,

(See the description of routine DHYP, for error analysis.)

EFFECT OF ARGUMENT ERROR,

(See the description of routine DHYP, for effect of argument error.)
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BOUTINE 3 DEULER,

1.

2

ROUTINE®*S FUNCTION.

1.1« Type. An auxiliary rcutine,

142+ Purpose. Common code for
DTANH .
METHOD.,

Constants used in the routine aret

1. 710g(2)
togf2) (in double=precision}

d3 = .166 6566 EHG 666 666 €66
ds = 833 333 333 333 333 333
d7 = .,198 412 698 &H12 €98 412
49 = ,27% 572 192 239 858 897
pc .= =-,474 970 830 178 988E~-1
pa = 566 228 284 357 B1i1E-7
pb = 272.110 6322 943 710

€11 = +250 521 08X 8Sk 43OE~-7

Tha afgorithm is

0

routines DEXPe ¢ DHYP, » and

666 666 666 709

2333 331 234 953E-~-2
700 466 386 658E-3
408 325 908 796E-5

a. N & nearest integer to x/tog 2 .
y « x = n * {og(2) . (Then y Is ir [-172%10g9{2)4172%1090(2)1 )

be 3 + {({y¥lu) *(u) (yiI(u))**0,5
aqa « (y){u) ¥ (y)(u)

Ce D + g ¥(d) (d2 +(d) q ¥(d) (d5 +(d)} g *(I)

(y)r(uw)

(d9 +(d4) g *(d) (ci11 +{d) q *(d)

de S +« {y)u) +(d) (y){u) *{(d) p

es f{compute hm = SQRT{1+s¥¥%2) )
hi &« 3*qg+((s)(ud)2 in single

hi « hi ¢ hi

hk « 2 * (1.,+4h})

ht « ({y) (W) *tu} (y) (u) = h}])/hk=-hi
hm « hY +(u) C(hk =(u) hl) *(u) (hi/hk)

(=(y) (ud *(1)

(d7 +{(d) q *(d)

(pa/(pb=a)+pc)))I M)

{hm now carries cosh=1., in sinate-precision)

f. DS & 5 #4d) (((y? (1) +(r) (y) (1) *(u) hm) +(r)
({s) (1) +4(r) ((y)Bu) =(1) (pY{u) +(r) (y)(u) ¥*(r)
(DS now contains sinh{y) iIn double-precision)

ge DC « hm +(d) (DS*¥*DS=-2Fhm-hm*hm) /7 (2{1.¢+hm))

L3

PN

evaluated in double

60498200 C
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Te

Jss

he DX + DS+DC

ie Clean up DS, DC, g with
X6 X7 « DS
X0 X1 « DC
X4 X5 « DX
I en

1« Direct jump to B4
ERRPOR ANALYSIS.
Not apptlicable.

EFFECT CF ARGUMENT ERROR,

Not applicable,
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ROUYINE 3 DEXP_
1. ROUTINE®S FUNCTION.

2e

3.

LY

60498200 C

1.1 Type. A FORTRAN external function. It accepts a doubtle-
precision argument and returns a double=-precision result,

1.7« Purpose, Jo accept calls from FTN compited <code for
computation of the exponential function.

METHOD.

Tha input domain is the collection of all wvalid double=precision
guantities lying in the interva!

[=975%10g (2} y1070%109(2) ]y ie2ey [~675.84L,741.67] .
Arquments outside this range witl initiate error processing from
DEXPy « Upon entry, the argument is toaded into . registers X1 X2,
and routine DEXP, is entered for the remaining computation. (See
the description of routine DEXP, for further detajils.)

FRROR ANALYSIS - see the description of DEXP, .

EFFECT OF ARGUMENT ERROR - see the description of DEXP, .



I eourine : oexe.

1+
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ROUTINE®S FUNCTION,

1.1. Type., A FORTRAN external functione. It accepts a double-
precision argument and returns a double-precision result,

1.2, Purpose, Yo accept calls ftrom FIN compiled code for
computation of the exponential function.

METHON,

The input domain is the collectiorn of all wvalid double=precision
guantities tying in the interval (=975%i0g(2)4,1070%10g1{2) . ’

The argument reduction performed in routine DEULER, is
X <cargument>
y x - n ¥ tog(2)

where y = <reduced argument> js in [-1/2 log 2,1/2 log 21
n is an integer.,

Most of the computation Is performed in routine DEULER. 4, and the
constants used are 1isted there,

On input, the argument is Iin X1 X2 , and on output, the result is in
X6 X7

a. Let x = <argument>, Save x in core. If
F{x)Y(u)t 2 172156400000000000008 o, go to step g.

be Jump to routine DNEULER, at entry point DEULER. with 34 =
address for step cy X7 = upper part of x, X6 = {ower part of x,
X5 = packed sign mask of x.
On return from DEULER, 3 83 = n 4 X4 = (DX){ud), X5 = (DX){1), XN
= DCYCury X1 = (DCYU1)y X6 = (DCYILUWYy X7 = (DS) (1), Here, n =
nearest muitiple of 10g 2 to x4 y = x=-n¥logl(2), and DS
Ssinh(y), DC coshily)-1, DX expl{yl)l=-1i, all in double=-precision.,

Cs W+ 1. #+(d) {DC +{(d) DS). Unpack w 4 iIncrease exponents by n ,
and repack into X6‘X7 .

d. It upper word®s exponent overflons, go to step g,
e, If lower word®s exponent underflows, go to step i.
fe Returny, with result in X6 x7 ,

gs Set parameters, Ltosd up originatl argument, Call error
Drocessor.

ha If error processor returns control, reaturn,

60498200 C
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60498200 C

i« Set parameters. Load up origirat argument. Cali error
processor,

1« Tf error processor returns control, return 0, 0, in X6 X7 .
ERRDOR ANALYSIS.

171980 random arguments were generated in the intervatl [-1/2 log 2,
37?2 tog 2}y and the resulting graph of relative error versus
argument is shown in the figure followina this routine®s
description. In this sample, the largest absolute vatue of relative
error is 3.8%8E=-29 . Groups of 100 double=precision arguments uwere
chosen randomly iIir each of tha following Iintervals, and fthe
folfowing statistics on retative error were observed,

Intervai®s Interval®s Mean Standard Minimum Maximum
Lower Upper Deviation
Qound Bound
- 2 J.461E-31 B.25hE~30 =2,632E-29 2.086E£-29
-c00. 7800. -8.631E-31 7e310F=30 <-1.818E~-29 1.446E-29

The approximation {described in the section on error analtysis of
routine DEULER. ¥ is a3 nmimimax approximation within the ciass
obtairned by varying the coefficienrts,

3.1, ALGORITHM ERRCR.

The curve for the atgorithm error is baretly distinguicshabtle.
It peaks at odd multiples of 1og 272 with a wvatue of about
«4E~29 , The algorithm error has essentially no effect on
the totatl error.

3.2. TOTAL ERROR.

Except for fiddling with the exponent, DEXP ends with 1.0+s
where [s]<,3536 3 this addition is easy to do exactly when s
is smatl and positive (see the plot Just 3bove 0 and 1icg 2).
For s negativey, the sum is less than 1y i.@.y it crosses a
band boundary, and it becomes difficult to produce an exact
result (the plot shows exact or one bit tow)e HWhen s 25
(€eGes ¢35<x<€.45), it becomes even more difficult to prevent
bits from dropping off irnr the low precision when lower sums
overflow.

EFFECT OF ARGUMENT ERROR,

If a smalfl error e® occurs in the argument the error in the resuit vy
is given aporoximately by y¥e* .,
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BOUTINE 2 DHYP,

1.

2. METHOD,
The input domain is the coitection of all wvatid double=-precision
auantities tying In the iIinterval (-1071%t0g(2),1071*%i0g(2)).,
Most ot the computation is performed in routine DEULER. 5 and the
constants used are listed there. The argument reduction performed
In routine NEULER. is
X = <argument>
y = «<reduced argumant>
y = x=-r¥togl(?)
where n is an integer, and vy is in [-172%109(2),172%10g(2)]) « The
re-combination formuia is?
cosh{y+n¥*¥tog 2?2)
= (coshiyl+ssinh(y)I2*%(n-1) ¢+ {coshly)-sinh{y))2%*(=-n-1)
sinh{ytn¥*log 2)
= (coshiy)+sinh{y) 12¥*¥(n-1) = (coshlyl-sinh{y))2*¥(-n-1)
At entry points DSINH. and DCOSH. 5, the argument is in X1 X2 4 and
on exity, X6 X7 tholds the result. DSINH. corresponds to entry at
step 3.4 and DCOSHe. corresponds to entry at step me
3. Let a3 = <argument> = X1 X2
b « ja] Store b in X7 X€& ,
RS « sion of a
be BS & packed zero
B4 + a3ddress of step g
B1 « 1
ce If (b)(u) < xmax{u), jump to routine DFULER, at entry opoint
NFULER. & 1¢ (b {u) > xmax{uly go to step e, xmax is
1071%10g(2) »
d.,. TF (bY(1) < xmax{1), Tump to routine DFULER. at entry point
DEULER. &
e, X1 X2 + 3
Set up Dparameters for error processor call with message
TARGUMENT TO0O LARGE®*, If calt was to entry point DOCOSH. o
60498200 C 63

ROUTINE®S FUNCTION,

1.1. Type. FORTRAN axternal functions. The routine accents a
doubte-precision argument at ejither entry pointy and returns a
double-precision result,

12 Purpose. To accept calls from FTN compiled code for
computation of the hyperbolic sine and cosine functions.
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Me

transfer contents of DCOSH. to DSINH. .

Catll error processor,

It (3){u) is indefinitey, return through entry point DSINH. with
SHh X7 = +INDEFINITE « Othernise, return through DSINH., with S#
X7 = +=INFINITE , the sign determined by BS ,

(Return from DEULER, with parameters

B3 =n

X4 = (DX} u}
X5 = (DX)Y{Y)
xXe = (DCYLWY
X1 = (DCHY(Y)
X6 = {(DSYLud
X7 = {0SY(Y)

nhere, if v = 1=-n tog(2),
ox exp (y)=-1
De coshiy) -1
0SS = sinh{y) .3}

I¥f n=9 4, go to step .

If n248 , go to step k,

U = 2%¥¥%¥{n-1) (OC+0S) in double

v + 2¥%%¥(en-1) {(DOC+DSY in double

W e 2¥%[n=1) + u in doubtle

If n>24% 4, go to sten h,

WO+ W $48 (2%F(~-n-1V+v)} (1) in doubley, sign $¢3 determined by
8% .

W e W B¢3 (2¥%%(-n=-1)2+v)u) in double, sign $+% determined by
gs ,

X6 X7 « w with sign same as sign of 85 .,
Return through entry point used to call routine.

w o+ {1.,#DC+DS) * 2¥¥(n-1)
Go to step 1.

If DSIMNHe. entry, return through DSINH, . {Note that X6 X7 = DS
o)

X6 X7 « $, ¢+ DC in double,

Return through DGOSH,

Let a « X1 S2 = <argument>
b e |al Store b in X7 X& .
BS « 1§

Go to step b,

FRPOR ANALYSIS,

10009 random arguments nere generated in the interval

60498200 C
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(=172 tog 24,32 tlog 21}

for each of NSINH and DCOSH , and the resulting graphs of relative
error versus argument are shown iIin the figures following this

routine®s description. In these samplesy, the maximum absolute
vatues of relative error were 8.,026E-29 for DSINH 4 and L4.4L0N5E-29
for NCOSH . The following statistics on relative error were
observed In random samptes of arguments in the intervals described,
Entry Interval®s Interval®s Mean Standard Minimum Maximun
Point Lower Upper Deviation
Bound Bound
DSINH, -2 2e 8.516E-31 1.086E-29 =-2.73BE-29 3I.238E-29
-600. 700. ~3.,27TLE~31 7.907E-30 =-2.645E~-29 1.651E-29
DCOSH. -2 2e -2.055€-30 1.217E-29 -3.071E-29 3,.706E-29
=600, 700. -~1.096E-30 9.645E~-30 <2.733E-29 1.904E-29

Xets ALGORITHM ERROR,

The curve for the algorithm error is barely distinguishable,
Tt opeaks at odd wmultiples of log 2/72 with a value of about
«BLE-29 4 The atgorithm error has essentially no effect on
the total error.

DSINH

The peaks are at odd multiples of 1og 272 below 33, « At
47.5%10g 2 , the algorithm error has a sudden peak} the reason
is that [t (s at this point that the atgorithm switches to
NSINH(x)Y=exp(x}/72 » This point was chosen because 2*¥*¥{n-1{)
can be done correctly using an IX instruction to add n to the
top of N.,5. {48 would produce Indefinjte,) Anywayy, expix}/?
is accurate enough.

X.2. TOTAL ERROR,
DCOSH

The total error curves should be symmetric about the x=0 .
The pattern shown should repeat until 47.%5%¥log 2 (about 33,)
at which point It wilt start tooking tike the DSINH and DCOSH
curves. 3Between % and log 272 (=.3466), DCOSH (s computed as
1+c- where 0<¢c<,75*%SORT(2)-1=,06066 3 this 1Iis done fairly
accurately, but the addition sometimes drops a bit in the iow
words Above tog 2/2 4 the formula ends with a 1ot of addition
ard subtraction?! for exampie DCOSH{L.7443)=(L+1/716)-4% ,2¢small
stuff, where ¢the I is abvout what the sinh polynomiatl
produced, Notice that the subtraction crosses a band and the
exponent on L*,3 Is only one less than the resulti these facts
make it difficult to keep from dropping bits,

DSINH

Up to Yog 272 4y the error is predominated by the final add in
the sinh opolynomial. Just above Jog 2/2 the error is

60498200 C
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especially bad because of cancellation. Near flog 2/2 » ODSINH
is catculated via (1-1/4)=-s+1/74% nhere s is greater than 2%¥.
2 ard the result js 1ess than 2%%~1 . The parts of the curve
in the two ranges (.35,16.) and (16.433.) have different
shapes because of the shortcut taken in the {atter range,
(The split s at 23.5%10g 2 «) Above 33, (47 .5%109 2), the
error curve is the same as for DEXP ,

EFFECT OF ARGUMENT ERROR,

It a3 small error e® occurs in the argument x, the error in sinh(x)
is approximatety coshi{xi*e®, and the error in cosh(x) is
approximately sinh({x)*e* ,

60498200 C
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ROUYINE 2 DLOG

i.

ROUTINE®S FUNCTION,
1.1, TYype. A FORTRAN external function. It accepts a double-
precision argument and returns a double=-precision result.

1+s2. Purpose. To accept calls by name for DLOG from FORTRAN
pPrograms.,. DLOG computes the natural togarithm function,

2+ METHOD.
The afgorithm used is given in the description of DLOG. ., Upon
entry, the argument is checked. The argument is invalid if it is
infinite or indefinite, or is not greater than 2zero. If the
argument 1s infinite, indefinite or negative, POS. INDEF. is
returned, T1f the argument jis zero, NEG, INF. is returned. 1In any
casey (if the argument is Invalid, a diagnostic message is issued.
It the argument is validy DLOG. is calted at entry point DLOG. for
the computations. The rasult Is returned to the calfing program.

2s FRROR ANALYSIS - see tha description of DLOGe

4, EFFECT OF ARGUMENT ERRORP = see the description of DLOG. .

60498200 C
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ROUTINE®S FUNCTION.

1.1, Type. A FORTRAN external function. It accepts a double~
precision arg ument and returns a double-precision result,.

1.2+ Purpose, To accept calls by value for DLNLOGe , <calls
generated by tha wuse of DLOG or DLOGLIO within FORTRAN
programse.  OLNLOGe computes the natural and common logarithm
functions,

METHOND,

The input range is the collection of all definite in-range double-
precision quantities which are greater than zero.
Upon entry, the argument x is put into the form x = 2%¥%« * 4 , where
K is an integer, and 2%%=1/2 < yw € 2%%1/2, Then 109 x is computed
from

tog x =k « {09 2 # 109 W
K « loa?2 is computed in double-precisiony, white log w is evaluated
as follows., A potynomial approximation u is first evatuated in
singte=precision by

U = cll)et +# C(I)at3 4+ Cc(5) 15 ¢ c(7)t?

t = (w = 1Y/781 + W)
where the coefficients c(1), c(2), c(5) and c(7) are

c(1) = 1.999999993734000,
c(3) = 0.6666694865638944,
c(s) = 0.,399657811051126,
cl(?7) = 0.,301005922238712.,

This approximates tog with a relative error of absotute value at
most 3.133 ., 10%¥%=8 over (2%%¥-1/?2 , 2¥%%1/2). Newnton®s rute for
finding roots is then applied in two stages to the function exp(x) -
w to vyield the final approximation to 1og we The two stages are
ataehraically combined Yo yield the final approximation v!

vV = U = {1-xe.exp({=u))

- (1 - x s+ oxp (=0 = (1 - x » exp(-udid)) .

Writing z = 1 - x » expl~u) 4, z is much 1tess than 1, and v is
computed by

v = u = 2{u) = z{1) - (zWud12 , (.5 ¢ z{u)73)
where 2z = z{ul&¢z(1) , This formula is obtained by neglecting terms
which are not sijignificant for double-precision. exp {=-u) is
evaluated in double-pracision by the polynomial of degree 17 which
is described In section 5 of the description of routine DEXPe. .
If entry was made at DLOG10. 4 affter Kk « 103 2 & 10g W has been
evaluated, the result is multipltied by 109(10) e in double=~
precisions, The result is returned to the calliing program,

ERRCR ANALYSIS.

The maximum absolute value of the error of approximation of the
algorithm to 109 x 1S 1.555 , 10%%=-29 ogver the interval [2%%-172,
2%¥*¥31/21. A graph of the error in the aigorithm versus argument is
giver in figure 16. Arn upper bound on the absolute value of the

60498200 C
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machine round-off and truncation error (for arguments lying in [2%%-

172, 2¥%1/721)
absotlute vatlue
172, 2%¥%1/72)

absctute value
atgorithm fo

upper bound on
and round-off
an upper bound

has been established at 5,146 . 10**-28, Hence the
of the error in the routine over the interv atl (P*%a
Is not greater than 5.302 . 10%*¥=-28, The maximum
of the refatjve error of approximation of the
log x over [2%%-1/2, 2%%1/2] |5 2.266 . 10%*%-28, An
the absolute value of the relative machine truncation
error has been established at 1.486 « 10%¥*%*=27, Hence
cn the absofute vatue of the refative error in the

routine over the [nterval [2%%=1/2, 2¥%i/2] (s 1.713 . 10%¥%=27,

4, EFFECT OF ARGUMENY ERPOQOR,
If a smat! error e* occurs in the argument x, the error in the
result jis gjiven approximately by e*/x .

60498200 C



BOUTINE_ 1 DLOGIE

1.

2
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4,

ROUTINE®S FUNCTIONS

1.1. Type. A FORTRAN external function. It accepts a double-
precision argumert and returns a3 doublee-precision resutt.

1.2+ Purpose, To accept calls by name for DLOG1O from FORTRAN
' programs. DOLOGID computes the common logarithm function.

METHOD.

Upon entry, the aragument s checked., It is invalid if it is
infinite or indefinite, or if it is not greater than zero. If the
argument jis intinite or indefinite or negative, POS.INDEF, is
returned., If the argument is zero, NFG., INF, is returned. In any
casesy if the argument (s invalid, a diagnostic message is issued.
If the argument is valid, DLNLOG= s called at entry poirt DLOG10D.
for the computation. The result is returned to the calling program,

ERRPCR ANALYSIS - see the description of DLNLOG .

EFFECT OF ARGUMENT ERROR - see the description of DLNLOG .

60498200 C
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ROUYINE 3 _0OMOD
1. ROUTINE®"S FUNCTION,
1.1. Type. A FORTRAN external function. It accepts two doubte=-
precision arguments ard returns a double=precision result.
{¢2. Purpose. To accept calls by name from ODOMOD from FORTRAN

Programsa DMOD computes the modulus of an argument relative
to a second argument,

7. METHON,

The argument range is all valid double precision (x,y) such that [x/
yl<2+496 and vy#0, After argument checking, DMOO. s calted to
compute the result, The comparison [x/y1:21956 is done by comparing
exponents and, if necessary, coefficienrts,

Re ERRNR ANALYSIS = not applicable,

4, EFFECT OF ARPGUMENT ERROR -« not applicabte.
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1.

)
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ROUTINE®S FUNCTION,

1.1, Type, A FORTRAN external function. It accepts argument sets
comprising two doubte-precision arguments, and returns double-
precision results,

1.2« Purpose. To accept calls by value for DMOD. , calls generated
by the use of DMOD within FCRTRAN oprograms. DMODe computes
the remainder of an argument relative to a second argument,

METHOD.

The argument range is atl valid doublte-precision (x/y] such that {x/
y1<2+1070 and y#0. The function computed by DMOD {x,.y) is

x={x/yl*y

where fu] denotes truncation. The vatue of x is repeatedly reduced
by &45-bit approximations to [(x/y) until the reduced value ties in
the range [Pysigni{y,x)). Since the result does not exceed 96 bits
(see AMON), the intermediate value of x does not exceed 98 bits and
the reduction is done in triple oprecisiony, the result is always
exact.

FRROR ANALYSIS.,

Not applicable,. Note that the onty double-precision operations
concerned In a determination of error are doubtle-precision
multiotication and double=precision subtraction. 4, EFFECT OF
ARGUMENT EPRPPOR - not applicable,

60498200 C
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BOUTINE 8 DOSIN

i.

3.

L

60498200 C

ROUTINE®S FUNCTION.

1.1. Type. A FORTRAN external function. It accepts a double-
preclsion argument and returns a double-precision result.

1.2 Purpose, Yo accept calls by name for DSIN from FORTRAN
programs. DSIN computes the sine function.

METHOD.

The argument is checked upon entry. It is invatid if it is infinite
or Indefinite or s so 1large as to lose accuracy during the
computation, If the argument is invalid, P0OS. 1INDEF. is returned
and a diagnostic message is Issueds An argument will lose accuracy
if it exceeds pi * 2%€ jn absolute value., TIf the argument is valid,
DSNCODSe is catlfed at entry poirt DSIN, for the computation. The
result is returned to the calling program,

FRROR ANALYSIS - see the description of DSNCOS. «

EFFECT OF ARGUMENT ERROR - see the description of DSNCOSe



ROUYINE 3 _DSINH

1.

2

L

|76

ROUTINE*S FUNCTION,.

1:1.. Type. A FORTRAN externatl function, The routine accepts a
double=-precision argument, and returns a double=precision
result,

1.2 Purpose. To accept calls frem FIN compiled code for
computation of the2 hyperbolic sine function.

METHOD,

The input range is the collection of all vatid double=precision
quarntities whose absolute value is tess than 10171%109(2)s Arguments
outside this range will initiate error processing In routine DHYP, .
Upon entry, the argument is toaded into X1 X2 , and routine DHYP, is
called to complete the processing. (See the description of routine
DHYP= for further detajllis.)

ERPROR ANALYSIS.
See the descriotion of routine DHYP, for the error analysis.
EFFECT OF ARGUMENT ERROR,.

See the description of routine DHYP. for the effect of argument
error.,
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POUTINE t DSNCOS,

1.

2

ROUTINF*S FUNCTION.

fels Types. FORTRAN external functions. The routine accepts a
double=-precision argument and returns a double=-precisicn
result,

1.2, Purpose, To accept calfls by valye for DSNCOS. 4 calils

generated by the use of OSIN or DCOS within FORTRAN programs.
NSNCOSe computes the trigonometric sine and cosine functions,

The input range is the collection of all definite (in-range double-
precisionquantities which are tess than pi.2%% in absolute value.
Upon entry, the argument x is made positive and is multiplied by

2/0i in double-precision, and the nearest integer n to x .+ 2/pi is

computed. At this stange, Ix.2/pi| is checked to see that it does
not excead 247 , If it does, POS.INDEf., will be returned in X6 and
3 zero word in X7 . ODtherwise, ¥ = ¥ = n ., pi/2 is computed in

4oubta-precision as the reduced argumertt y tles In {~pi/bypl/b4).,
The value of modfins4), the entry point calied and the original sign
of x determinae whather a sine polynomial approximation pix) or 3
cosire potynomial aporoximation qix} is to be used, and also a flag
to indicate the sign of the final result,
The sine potynomiat apporoximation is
p{x) = a{1)x + a(3Ix3 + a(S5)Ix5 + a(?¥Ix? + a(9)x® + af{i11)x11 +
a(13Ix23 ¢+ a{15¥Ix2S + a(17¥Ix2? + a(19)x1? + a(21)x21
and the cosine polyromial approximatior is
al{x) = b(d) + b(2)Ix2 + b(L)x* + b(AIX® ¢+ b(B)x® + b(10)Ix20 +
b(12)x12 + bHl14Ix1l% & D(16Ix26 & L{18)x28 + H{(20)x20
for x in the interval (-pi/4, pi/Z4).
The coeffjicients are

af{1) = .9999399999999999999999939399999
3(3) = -,1660666FREHEHE66H66HE66666652
a(b%) = 833333322333333333333233270957 . 10 ¥* =2
al7) = =-,19841269841269841269829134478 - 10 *¥* -3
a{9) = ,275573192239858906334406844L01 . 10 *%* -5
a(11) = -.250521083854L441710313807647325 , 10 ¥** -7
a{13) = 1605904383681 794417271194L4064561 , 10 *¥* -0
3(15) = «=,764L71637307988608475534874L83) . 10 ** -12
3(17) = +281145706930018 . 10 *¥ =14
a{19) = -,8220642461317923 ., 10 **% =17
a{21y = ,194362013130226 , 10 ** =19
and
bi(d) = ,999999933999999993339393939999
b(?2) = =,49999999993999999999999999319
bl{s) = L16BH6HEOHLEHHECELHBEHERE13002
b(6) = -,1388883388RARABRRBB88875543628 . 10*¥(~-2)
b(8) = ,248015873041587301560992273730 . 10¥¥(=-4)
p{10) = =-,.2755721922398%877555866995711 , 10*%*%{-5)
b{1?) = ,20876756987861921489874746135 . 10%*¥{-8)
b{iL) = ~.11470745595858431549585076575 ., 10¥*%(=-10)
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4,

bl16) = ,47794769682239311593310626721 ., 10**(-13)
b{18) = =.,156187668345316 . 10%¥*(-15)
b(28) = .408023947777860 . 10¥¥(=-18) .

These polynomlals are evaluated fronm right to 1teft in double-
precision using an in=stack 1oop. The slgr flag is used to give the
resutlt the correct sign, before return to the calling program,

FRROR ANALYSIS.

Graphs of the errors in approximating sin(x) and cos(x) by pi{x) and
a{x) over the interval (-pi/4,pi’b4) are given In figures 13 and 14.
The maximum absolute value of the error of approximation of p{x) to
sinlx) over (=pifb,pi74) is .2570 . 10%¥¥(-28)y 3and of g{x) to cosix)
is 42786 . 10%%(-28), Upper bounds on the machine round=-off and
truncation error over {(-pi/4,pi/&4) have been established for pix) at
1.763 ., 10*¥(-27} and for q(x) at 1.364L , 10¥%(-27) o Hence an
upper bound for the absolute value of error on this routine®*s
computation of sine over (-pi/& , pi/4) is 1.769 » 10%¥¥(~27) and of
cosine js 1.402 , 10%%(-27),

EFFECT OF ARPGUMENT ERROR,

If a small error e® occurs in the argument x, the resulting error in
sin is given approximately by e* . cosi{x) . The resulting error in
cos is given aoproximately by -e® , sin{x). It the error e* becomes
significant, the addition formulae for sin and cos should be used to
compute the error in the result.,
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BOUYINE & QDSORT

i« ROUTINE®™S FUNCTION,.
1.1« Type., A FORTRAN axternat function. Tt accepts a doubte=-
precision argument and returns a doublee~precision resutt,
1.2, Purposes. To accept callis by name for DOSQRT from FORTRAN
programs. DSQGRT computes the square=-root function,
7.  METHON.
The argument is checked upon entry.,. It is invalid if it is
Infinite, Indefinite or negative. If the argument is invalid, POS.
INNEF., is returned, and a diagnostic message is issued. Otherwise,
NSNPT= Is calted at entry pcint DSQRT, for the computation. The
result s returned to the calling prooram,
2, FERPNR ANALYSIS - see the description of DSORT. .
4, EFFECT OF ARGUMENT ERRQOR - see the description of DSQRT. .
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RQUYINE ¢ D3QRI.

1.

2o

ROUTINE®*S FUNCTION.

1.1« Type. A FORTRAN external function. It accepts a double-
precision argument, and returns a doubte=-precision result,

1%« Purpose., To accept calis by value for DSQRTe 4 caltls
- cgenerated by fthe use of DSART within FORTRAN programs, 0DSQRT,
computes the square rcot furction,

METHOD,

The input range ijs the colliection of 3tl double-precision quantities
which are zero or positive, and are (in=-ranga and definite. Upon
entry, the argument x is checked for a zero value, TIf it is zero,
zero Is returred. Otherwise the arcument (s put into the form

x = 2 %% (2.e) . Ye
where e Is an integer, and .25<y<1.00. The result returned is 2%%e
* {y)*¥{1/2), and y¥*¥{(1/72) s calcutated as follous. A fourth-order
Chebyshevy approximation ply) is evatluated to obtain a singlte-
precision initial approximatjion to y¥¥1/?2 , where y is the upper
hatf of the double-precision argumert., Heron®*s rule (z(n+1)=(z(n) =+
yfz{nY)7?2) is applied in two stages in single-precision to give 3
single-precision approximation, and this is followed by an
anplication of Heron®s rule in double-precision to glve the final
double=-precision aporoximatione.
Tha polynomial ply} is

ply) «182481R34043495
1.5462934655996 , vy
1.4758658070997 ., y=2
1.06285€525839999 , y3
«323987345020001 . y*.
This is evaluated as
ply) = cll(y + 12 ¢+ {y +# 2) ¢+ DI((y & )2 % 3) ¢+ )
whare

+ 1+ N

-1,070137377460206
=1.39159384712534¢64L
2.286166868052419
-.00601995587532198
€ = =,22398734502000%
The final result is packed with the correct exponent e, and returned
to the caltlinc program,

Lalliol ' 1]

ERROR ANALYSIS.

Tha algorithm error is 3t most 2.05E=31 (atways positive)l. The
round=-off error in computing the single-precision approximation x is
exactly 1/? ulp.

Incliuding algorithm error, % may have Just over 172 ulp errors so x2
may have Just over 1 ulp errors$ since x is an approximation to the
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single part only, the total error in x2 may exceed 2 ulp when
y>x2{maxs 7.55E-15)s Then y-x2 may contain 50 significant bits, and
the error range for y-x2 is (~1.78E-15,4¢3.55E-15), and that for (y-
x2)7{2%x) is (~8.,88E-15,+3,55E-15), Relative to xy this error is (-
B.71E-23442.68E-29), In order to get this error, the error in x
must be at {east 7.11E-15, so the resulting error after the 1last
Heron step is ir (2.52E-29,2.,85E-29), The total error is in (-
4.18€-29,45,55€~-29), The maximum observed error in 100000 points
randomiy chosen in [1,4) was 3,19E-29% the maximum in 200000 points
randomly chosen in [1.0+,1+.5) was 3.89E-249,

FFFECT OF ARGUMENT ERROR.

It a small error e® occurs in the argument x, the error in the
result y is given approximately by e*/(2.v}.,

60498200 C
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BOUTINE &t DJAN

1.

2e

&,

ROUTINE®S FUNCTION,
1.3 Type. A FORTRAN external function. It accepts a double-
preclision argument and returns a double-precision result,

1.2+ Purpose, To accept calls by name for OTAN from FORTRAN
o programs. .. DTAN computes the trignonmetric tangent function.

MEYHON,
The -argument jis checked upon entry, It is - invatid if it is
infinite, Indefinite or negative. If the argument is invalid,.

POS. INDEF. is returned, and 'a diagnostic message is issued,
Otherwise, DVTAN= [s called at entry point OTAN, for the computaticn.
The resu!? is returned to the calling program. )

-ERPRPQOR. ANALYSIS - see the description of DTAN, »

'EFFECT OF ARGUMENT ERRDR « see the description of DTANe «
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BOUYINE 2 DIAN,

1.

Ze

ply)

ROUTINE®S FUNCTION,

1e1i. Type. A FORTRAN external functior. It accepts a double-
precision argument, and returns a double-precision resuilt.

1.7« Purpose, To accept calls by value for DTANe 4 calls generated
by the wuse of DTAN within FORTRAN programs. DTAN, computeaes
the trigonometric tangent function.

METHQOD,

The jinput rance is the collection of all double-precision gquarntities
which are zero or positive, ard are in-range and definite. Upon
entry, the argument x is checked for. a zero value. If it is zero,
zero s returnead, Ctherwise the argument is put into the form

X = 2 %% {2.e) o+ Va

where e is an integer, and .25<y<1.,00, The result returned js 2%%e
* {y) **(1/2), and y**(1/2) is calculated as follows. A fourth-order
Chabyshev approximation oply) is evaluated to obtain 3 sirgle-
precision initiat approximatiorn to y**1/2, where y is the upper halt
of the double-precision argument. Heron®s rule (z{n+1)¥=(z4{r) + y7
zin)Y/2) is appltied in two stages in sinole~precision to give 3
sinule-precision approximation, and this is followed by an
application of Heron®s rule in double-precision to give the final
double=-precision approximation.
The poiynomial ply} is
ply) «18248183404349%

1.546293465%99¢6 , y
1.4758658070997 , y=2
1.06285652589999 , y3

- »323987345020001 . vy*,
This is evaluated as

= cl{{ly + e )2 + (y + 2 ) ¢ DIy » )2 s+ 3) &+ c))

where

&b+ H

e = =1,070137377450206
a = =1.391599471253464
b = 2,28616686805241¢9
¢ = =,00601995587532198
€ = =,372398775020001

The final result is packed with the correct exponent e, and returned
to the calling program,.

A graph of the relative error in the algorithm of approximation +to
square root in double~precisior over (.25, 1.09) is given in figure
12. The maximum absotute vatue of the refative error of
approximation of the afgorithm is 1,230, 10%¥*(=-31), An upper bound
for the retatjive error dye to pachire round-off and truncation
arrors has been established at 2.524 o 197%¥%{-28) , Hence the
absoiute value o0f the relative error ir the routine is tess than or
equal to 2.524 , 10%%{-28) .
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X, FERROR ANALYSIS.

4, EFFECT OF ARPGUMENT ERROR,
If a smalt error e®* occurs in the argument x,
result v is given approximately by e*7(2.y).

60498200 C
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ROUYINE_ 3 OIANH

1.

2e

b,

ROUTINE®S FUNCTION,

1.1, Type. A FORTRAN external function. The routine accepts a
doubte=-precision argument, and returns a double=precision
resut?t,

1.2, Purpose. To accept calls from FIN compiled code for
computation of the hyperbolic targent function.

METHOD,

The (irput domain is the collection of all valid double=precision
quantities. Arguments outside the domain will initiate error
processing in routine DYANHe . Upon entry, the argument is loaded
into X1 X2 4 and routine DTANHe is entered to complete the
computation, (See the description of routine DTANHe for further
detajlis,)

ERPOR ANALYSIS,

See the descrintion of routine DTANH. for the error analysis.

EFFECT OF ARGUMENT ERROR,

See the description of routine DTANHe for the effect of argument
error,

60498200 C
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BOUYINE s DIYANH,

1.

ROUTINE®S FUNCTION.

1.1. Type. A FORTRAN external functions The routinae accepts 3
doubfe-precision argument, and returns a doubte-precision
result,

1.2 Purpose, To accept catlls from FTN compiled code for

computation of the hyperbolic targent functione.

2. METHOD,
The input domain is the collection of all valid double=-precision
quantities, Arguments outside the domain which are indefinite will
initiate error processing. Most of the computation is performed in
routine DEULERs , and the constants used are listed there. The
argument reduction performed is?
i) argument in (~47%10og 2,47*10g 2) but not in
(=17%log 241/2%10qg 2)
X = <argument>
y = <reduced argument>
Y = 2x = n ¥ {jog 2
where n is an integer, and vy is in [=-1/*109 2+1/2%10g 2]}
tanhi{x) = u/v where
U= 1 = 2%%an = 2%%apn ¥ (DC=-DS)
V=1 = 2%%epn & 2%%apn * (NC-DS)
(ii} argument in (-1/2%1og 2,12%10g ?)
X T <argument>
y = <reduced argument>
Yy = X
tanh{x) = DS/(2.+DC)
(iii) argument outside (-47*%1og 2+47%109g 2)
X = <argument>
Yy = <reduced argument>
tanh(x) = 1 = 2((14¢DC=0S) * 2%¥%epn <« ((1¢DC=-DS) * 2%¥.p)2)
Te (i)y (ii)y and (iiid)y DC cosh(y)=1 and DS sinh{y),
On entry to OTANH., , 1 X2 hotds the argument, and on exit, X6 X7
hotds the resuit.
a, Let 3 = X1 X2 = <argument>
X7 X6 « b « |al
BS ¢« sign mask of a
X% & packed zero
Rl « 1
B4 + address of step e
If exponent of tirst word of a is <-49, direct Jump to routine
60498200 C 89



DEULER, at entry point DEULER. .

X7 & X7 * 2

X6 « X * 2

B4 + 3ddress of step ¢

It exponent of first word of a is <«-42, direct Jump to routine
DEULERs at entry point DEULER, .

bse X6 X7 « $+%1. with sign obtained from B85
If 3 is definitey, return.
Set parameters for a call t0 error processor.
Catl error processor.
It control returns from error processor, return.

Coe {On return from DEULER, ,

B = n = [nteger offset in argument reduction,
X7 X6 = n*¥log?2 &+ y

Xt = (OX){W)

X8 = {(BXY (1)

X0 = (DCHY (W)

X1 = (OCY()

X6 = (DS) (W)

X7 = (DS

where

123§ exply)=-1

oc coshiy) =1

ns sinh(y) )

Tf n > 47 , go to step f.

U * 1,=2%%en - 2%%epn (DC-DY)
V & 1,32%%en ¢ 2%%=-pn (DC-DS)

de W * Uu/v 5 in double
Go to step g.

- 2P u « DS
v & 1.4DC 4, in double
Go to step d.

fs. W e 2, -« 2% ({1,4DC=-DS) % 2%%apn = ({1.¢DC~DS) * 2%¥apn)2)
{evaluated in double, although only second word of 1, is
affected)

9. Clean up w 4 atfix sign in BS , and leave in X6 X7 .
Return,
ERROR ANALYSIS.
190890 random arguments were generated in the interval
[=172% oq 2, 3,2"09 2]'
and the resulting graph of relative error versus argument Is shoun
in the figure following this routine®s description. In this sampfey

the maximum absolute vajue of the relative error is 8.581F-29 ,
Random samples of 100 arguments were generated in the intervals

60498200 C
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tisted, and the following statistics on relative error were

observed,
Interval®s Interval®s Mean Stardard Minimum Maximum
Loner Upper PDeviation
Bound 8ound
-2 2 3,011E-30 1.7353-29 <=6,675E=29 7,.436E-29
-1, 30. 1.640E=30 9.,7603-30 «3,692E~29 2,.,54L4E=29

3.1, ALGORITHM ERROR

The atgorithm error is insignificant. It is predominated by
the error in the sinh expression in DEULFR, 5 but by various
folding actions, the error is damped even further.

3.2 TOTAL ERROR

The error ptot should be symmetric about the origin. In the
range (D,+5) the error is dominated by the code %0 divide s/
(1+#c)? secondarily are ¢the errors in s and in adding 1¢c .
Just above % , several factors conspire to create errors: an
additior of numbers of opposite sign in the numerator, an
addition in the denominator, and a divisione. (The errors i{n
evafuating sinh are partially damped and fairly insignificant
in corparisons) Up to 16.5 to 1.5 (23.75%1og 2}, the result
is stightiy tess than 1.0 and the error is almost totally due
to imprecise division of stightty imprecise arguments, From
16.5 to 6L.0 (26}, the result s perfect because it is t-
(lower praecision stuff} wheire the was computed in double-
preclsion, Above 64,0 (nct shown)y the error will taper off
to zero because the arswer will be 1,0 while the true value is
closer to 1.0 than 2*%%-3g¢g ,

4. EFFFECT OF ARGUMENT ERROR,

It a smalt error e®* occurs in the argument x, the error in the
result is ajven approximately by e* * sech2(x) .
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BOUTINE & DIOD¥

1.

ROUTINE®S FUNCTION,.

1.1. Type. A FORTRAN exponentiating routine. It accepts an
argument set comprising two double-precision arguments, and
returrs a double-precision result,

1.2. Purpose, To accept calls by name for OTOD* , generated by
FORTRAN programs which raise double-precision quantities to
doubfe~precision exponents,

2« MFYHON,

The result is calcutated byt
result = exp{ exponent ., logtbasel).,

Upon entry, the argument set is checked., It is invatid if either
argument [s iInfinite or indefinite, if the base is negative, or it
the base is zero and the axponent is not greater than 2zero, or if
fioating overtliow occurs during the computation. If the argument
set Is invatid, POS.INDEF., is returnedy and a diagnostic message is
issued. Othernwise, DTOD*¥ computes the result according to the
equation above, The result is returned to the calling program.

T, ERROR ANALYSIS.
The atlgorithm used in routire DTOD* (s the same as that wused in
routine OT0D, 4 the call=-by=-value counterpart. See section 3 of the
description of DT0ODe. for the error analysise

4, EFFECT OF ARGUMENT ERROR,
It 3 small error e® occurs in the base b and a small error e**"
occurs in the exponent op, the error in the result is given
approximately by

h ** n , (p/b.e*® & logib).e*").

The absolute error is approximately the absolute value of this
expression. If +the errors in the arguments are significant, the
error in the result shoulid be found by substitution of the possible
argument values in the expressjion b *% p,

6049800 C
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1.

2

b,

94

ROUTINE®S FUNCTION,

1.1« Type. A FORTRAN exponentiating routine. It accepts an
argument set comprising two double-precision arguments, and
returns a doublie-precision resuilt,

1.2, Purpose., To accept calls by value for DT0D, , calls generated
by FORTRAN programs which raise double-precision bases to
double=-precision esxponents,

METHOD,

The input range is the collection of atl argument sets (byp) for
which b and p are definite in-range double-precision quantities, b
is positivey, if b is zero then p is greater than zero, and b**¥p is
in=range.,
The formuia used is?

b*¥p = expi{p * log b)
where b > N, Upon entry, DLNLOG. computes log by and DEXP, computes
exp{p.log b) » The result is returned to the calling program.

ERROR ANALYSIS.

10,700 pairs of double-precision random numbers were generated, with
distribution the product of uniform distributions over (.5, 1.5) and
(-10, 1M. The error in the routine®s computation of b**p was
determined for each of these pairs. The maximum absolute value of
the retlative error in this routine for these 10,000 pairs was found
to be 2,977 * 10**{=-2%), :

EFFFCY OF ARGUMENT ERROR,
It a small error e(b) occurs in the base b and a small error e(p)
occurs in the exponent p, the error in the result r is given

approximately by?
r * {1log b ¥ e(p) + np ¥ a(b) /) ,
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ROUYTINE 2 DIQOI¥®

i.

ROUTINE®S FUNCTION,

1.1 Type. A FORTRAN exponentiating routine. It accepts an
argument set consisting of a doublee-precision argument and a
tfixed=-point argument, and returns a double=precision result,

1«2« Purpose, To accept callis by name for ODOTOI¥* from FORTRAN
programs, generated when the programs rajse double=precision
quantities to fixed-point exponents, ‘

2. MFTHOD,
The argument set js checked upon entry, It is invalid if ejither
arqument s iInfinite or indefinite, or It the base is zero and the
exoonent is not greater thar zero. If the arqgument set is invatid,
a diagnostic message is Issued, and POS. INDEF. is returned.
Otherwise, DT0I, is called at entry point DTO0I. for the
computation, The result is returned tc the calling programe.

Xs ERRCR ANALYSIS - not appticabtle.

4. EFFECT OF ARGUMENTY ERROR.
It a smatl error e* opccurs in the base b, the error in the result
witl bhe given approximately by r ¥ b¥*(n-1) * e*, where n is the
exponent given to the routine,

60498200 C



I mourine_: pioI,

1.

2e

96

ROUTINE®S FUNCTION.

1.1 Type, A FORTRAN exponentiating routine. It accepts an
argument set comprising a double-precision base and a fixed=
point exponent, and returns 3 double-precision result.

1.?. Purpose, To accept calls by value for DTOIe. + generated by
FORTRAN programs which raise double-precision guantities to
fixed-point exponents,

METHOOD,

Ltet b be the base and p (20 the exponent. TIf p has binary
represertation 000.++0ilN)it(n-1)eesi(1)i(0) where each 101Y(0<1<n)
is 0 or 1, then

D = i(0y.20 & i(1) 2% &,,,.,+ ifn) .2 *% n
and n = [tog(2)p] = greatest integer not exceeding 10g{(2)p. Then

b *¥ p = Prod {b *% 2 ¥* 1 3 90 € 1 < n g i()) = 1) ,
The numbers b = #% 2 =¥ g , p2, h%,,,,5 b ** 2 ¥* n are generated by
successive sSaquarings, and the coefficients Pi(0)yeensiln) are
obtained a3s the sign bits of successive circular right shifts of o
within the computer, A  running preduct (s formed during the
computation, so that smalier powers of b and earlier coefficients
i{1}) may be discarded. Thus, the computation becomes an iteration
of the algorlthm

b ** p = 41 jft p = 8
b ¥ p = (b2) *¥ /2 ¥ p > 8 and p is even
b ¥ p = b, {(b2) *% (p-1)/2 it p > 9 and p is odd.

Upon entry, if the exponent p is negative, p is replaced by =p and b
is replaced by 1/b. b is doublte=precisions say b = x(u)*x{l). i/b
= {1/D¥{U)*(1/D) (1) is given in terms of x{u) and x{1) by the
formulae below, where n is the normalization operation and the
subscript 1 on one of the operatjons ¢, -, and . indicates that the
coefficlent of the result js taken from the lower 4B bits of the 96
bit result register, and the exponenrt 1s 48 less than the single-
precision coeffient®s exponent,

(1701 {u) = n{17x(u) + (({nUl=(17x{u)) . x{u)

{1 ~11) W/x(uw)extul)) = (L/x(u) 1) x{w))

(17x(u) « x{1}7x(ud M)
(1/7x(u) #{1) {({(n{1-(1/xu)) . x(u))
(1 =(1) (1/7x(u)) & x{u)d)) = (1/xCu)) (1) x(uw)
(L/7x{ud) o x(1¥1)/x(u))

t+ &

and

{(170)€1) = nlaa.e) +01) (oe0e) &
In the routine, doubleepreclision' quantities x = x{u)*x(1) and y =
y(u)*y(1) are multiplied according to

ey = {xoy) (UI¥{xey) (1)
whare

{xey)(u) = (CIx{u)ey(1I) + (x(1)oylul))

+ Ixfu) L1 ytud)d)) + (xtud.ylu))
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and
{xsey) 1) = ({x{u) +» YUY ¢ (x(1) . yu)))
¢ (x(u) (1) y(u))) +(1) (x(ule.ylu)) .
The [nput range is the collection of pairs of arguments b, p for
which p20 if b is zeros, all quartities are definite and in-range,
and the result (s in-range.

2, ERROR ANALYSIS - not apolicable.

6, EFFECY OF ARGUMENTY ERROR,
If -a. smal! error e® occurs in the base by then the error in the
resuft is given approximately by p * b*¥¥(p-1) * e®, where p is the
exponent, If the error 2* is significant, the absolute error in the
result Is bounded above by

tp! ¥ max(ibt 4 b & e®{)*¥(p=-1) * {e*}|.,
60498200.C



ROQUYINE 2 DTOX*®

1.

P

b,

ROUTINE®S FUNCTION.

1.4. Type. A FORTRAN exponentiating routine, It accepts an
argument set consisting of a doubleeprecision argument and a
floating point argument, and returns a double-precision
resul t, ‘

12+ Purpose. To accept calls by name for DTOX* generated by
FORTRAN oproorams raising double-precision quantities to
floating~- point exponents,

METHON,

The argument set is checked upon entry. It is invalid if either
argument is infinite or indefinitey, if the base is zero and the
exponent is not greater than zero, if the base is negative, or if
arithmetic overfiow occurs during computation. The result s
calculated from
base ** exponent = explexponent ¥ l|ogi{base)).

I¥ the argument set is invalid, P0S. INDEF., is returned and a
diagnostic message is issued, TIf the argument set is valid, the
computed result is returned to the catting program,

ERROR ANALYSIS,

The algorithm used In DTOX* js the same as that used in DTOXe o See
section 3 of the description of routine DTOXe for an error analysis.

EFFECT OF ARGUMENT ERROR,

If a smaltl error £°* occurs in the base b and a smaltl error e**
occurs in the exponent py, the error in the result is given
approximately by
b¥¥p ¥ (p/b ¥ e* ¢ 1ogib) * e**).

The absolute error is approximately the absolute value 0f this
expression., If the errors in the arguments are significant, the
2rror in the result shoulid be found by substitution of the possible
argument values in the expressjion b ¥*% p,
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ROUTINE 3 _DIOX,
1« ROUTINE®S FUNCTION.
1.1. Type. A FORTRAN exponentiating routine, It accepts an
‘ argument set comprising a doublee-precision aquantity and a
ftoating-point quantity, and returns a doublee~precision
result,
1s2+. Purpose, To accept calls by vatue for DTOXe , calls generated
by FORTPAN programs which raise double-precision bases to
floatino-point exponents.,
?« METHON,
The jinput range is the coltlectior of argument sets (b,p) for whicht
h is a defirnite in=range double=preclsion aquantity, p is 3 definite
in-range floating=-point quantity, b is positive, if b is zero then p
Is areater than zero, and b¥¥p [s [n-range.
The formuta used st
b**¥p = expi{p * tog b}
whare b > 1, Upon entry, DLNLOGe is calied to compute {og by and p
* foa b is then computed in doubtle-precision. DEXPe is called to
compute expi{p ¥ log bly, and the result is returnad ¢to the calling
procram,
2. ERROR ANALYSIS.
10,000 pairs {bsyp) of random numbers were generated { where b is
double-preclsi on and p Is singlie-precision) with distribution the
product of uniform distributions on (45, 1.5) and (8, 1). The
maximum absolute value of the relative error In the routine for
these pairs was found to be 6.405 * 10¥*(=-29),
4, EFFECT OF ARGUMENT ERROR,
If a smalli error el(b) occurs ir the base b and a small error e{p})
occurs In the exponent p, the error Iin the result r (s gliven
approximatetly by
r * {e(p) ¥ tog b + D ¥ e(b)’/b).
60498200 C 99
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ROUTINE*S FUNCTION,

1.1, Type. A FORTRAN exponentiating routine, It accepts an
argument set consisting of a double-precision argument and a
compliex argument, and returns a complex result.

1.?+ Purpose. To accept <calls by name generated by FORTRAN
programs raising double-precision quantities to complex
guantities,

METHOUD,

If the base is real and the exponent is complex, then
base ** exponent = X + l.Y,

where
X

explre{exponent) . 1og{base)).cos{im{exponent),.iogi{base))
and

Y = exp{re{exponent).log(base)).sinl{imlexponent).logl{basel),
Upor entry the double-precision base i< rounded to single-precision,
and the resulting argument set is checked. The argument set |s
invalid if either number jis infinite or indefinite, if the base is
zero and the real part of the exponent is not positive, if the base
is negative, 1if arithmetic overfiow cccurs during any stage of the
computation, or If precision is tost through the arguments® being
too 1large. 1If the argument set is invalidy a diagnostic message is
issued and POSL.INDEF, is returned. Otherwise, the result of the
computation is returned to the callinog program.

ERROR ANALYSIS,

The atgorithm used in DTOZ* js the same 3s that used in DT0Z. » See
the description of 0T0Z, for an error analysis.

EFFECT COF ARGUMENT ERROR,

If e* and e** are small errors in ¢the base b and exponent z
resvectlively, then the corresponding error in b ¥% 7 g
approximately ({(z/b) * e® 4+ e** ¥ (og (b)) * Dbx¥z, The absolute
error will be approximately the absolute vajua of this. If e®* or
e** becomes significant, the error in the result should be
catculated by substitution of the possible values of the arguments
in the expression b ** z,
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BOQUYINE ¢ DY0Z,

1.

ROUTINE®S FUNCTION,

1.1. Type. A FORTRAN exponentiatirg routine, It accepts an
argument set comprising a double-precision and a comotlex
argument, and returns a complex result,

1.2. Purpose. To accept calls by value for DT0Zs 4 calls generated
by FORTRAN programs which ralse doubte-precision bases to
complex exponents.

2. METHOD,
The input range is the collection of argument sets (b,z) wheret! b is
a definite in-range double-precision quantity, z iIs a definite In-
range complexquantity, b is greater than zero, and b ** 7z and (b *¥
zl are in-range.
The formula used Is?

b¥*{uti*v) = exp(u*tog b) ¥ cos{v¥log b)
¢+ i « expluslog b) .+ sinlv.l03 b)Y

where b > 0 . Upon entry, the lower hatf of the double~precision
base b is discarded, and ALOGe is callied to compute 1o b « EXPe is
catted to compute exp {u.fog b), and COS=SIN is called to compute
cos{v.iog b} and sin (v.log b)Y, where u ¢ i.v is the exponent, The
result is computed from the formufa, and is returned to the calling
nrogram,

X, FRRDR ANALYSIS.
10,007 pairs (byz) (where b is doubte=precision and 2z is complex)
were aenerated with distribution the product of wuniform
distributions over (.5, 1.5) and {-10,10) and (-2.pis2.pi)d. The
maximum modulus of the retative error in the routine was found to be
5.6N5 ¥ 10¥¥{~-14),

4, EFFECY OF ARGUMENT ERROR,
If a small error el(b}) occurs in the base b and a small error e(2z)
occurs in the —exponent 2z, the error In the result w is given
approximately by

W e {e(z2) . log b ¢ z . e{b) 7/b) .
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ROUTINE®S FUNCTION,

1.1. Type. A FORTRAN external! function., It accepts a floating-
point argument and returns a floating=point result,

1.?+ Purpose, To accept <calis by wvalue for ERF and ERFC from
FORTRAN programs, ERF. computes the error function?
ERFC. computes the compliementary error functjion, 1-ERF.

METHOD,.

The input range is the collection of all definite ftoating-point
aquantities {includirg out-of-range valtues INF) except the range
(P?5.,9227751502785L,¢INF) for ERFC, which underflons. :

The routine calculates the smaller of erflabs(x)), erfclabsi{x)), and
uses the identities

erfl{ex)z-erfix)
arfi{x)=l-erfc(x)

to compute the final value, which is the sum of a signed function
and a constant,

The forms used aret {y=abs{x))
\
‘ cange ERE EREC
\\ f’INF,-‘S.G?S] 1.0 . +2.0
(=5:F254=477) =1.,04p2(y) +2.0=p2{y)
(=477, 0) -p1{y) +1.0¢pity)
[Q0y%.477) spl1ly) +1.0-pliy)
(s07745.H625) +1.0=-p2{y} p2ly)
[5.625,8.“’ +1.8 p2iy)
[8.0425,9] +1,.,0 underflow
+INF +1.0 +0.0
where the constants 477 and 25.9 are inverse erf{.5) and inverse
erfc{2-975), which are approximately 0.47693627620447 = and
25.92277515027854,

The function pl is a (5th order odd)/{8th order even) rational form.
Tha functions p2yp2 are exp(=x2)* (rational form), where p2 is {(7th
order)/{8th order} and p3 is (4th order)/{(5th order)., Since exp{-
x2¥ is jl1t-conditiored for large x, exp(~=x2) s calculated by
exp(useps)=explul+eps¥exp(u), wnhere uz==-x2 upper and eps=-x2 f{ower.,

The coefficients for p2 and p3 are from Hart, Cheney, Lawson et al.,

Computer Approximations.
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X, ERROR ANALYSIS.,

The 1arge error in p2 and p3 is due to the 1large sjze of the
rational forms and the additional error iIin exp(=x2),. The
polynomials in p2 and p3y  white stable, do not enjoy the high
accuracy of most exponential-type approximationss, which, when
evaluated wusing Horner®s rule, <sum the smallest terms first,
Inverting x and reversing coefficients does not help due to the high
error in divide.

The maximum error in the aporoximations pis P2y P33y Scaled by 1025,

ist
3MLCe _Qr _eCror pl p2 3
rationat form 1.1 4,9 1.7
coefficient rounding 0.5 g.8 1.4
round-off 14,7 1190 68
upprer bound 16,2 116 71
maximum observed 12.8 27.9 28.3

In regions where a constant is added, that constant dominates and
the error is tess than that showne.

4, EFFECT OF ARGUMENY ERROR,

For smalt errors in the argument xy, the ampljification of absotute
error is {(2/sarti{pi))*exp(=x2) and that of retative error is (2/
sarti{pi)) *x*exp{=x2)/f(x) where f js erf or erfc,. The relatjive
error |s attenuated for ERF everywhere and for ERFC of x<0.53. For
x>N .53 the retatjive error for ERFC is amplified by approximately 2x.

It the wvatue of x (is knoun to more than singlfe precision, the
following sequence of FORTRAN may be used to compute a good value of
FRFC when x is targe?

DOUBLE X
DATA SQRTPI /7<2/sartlpiV>7/

*
(compute X)
SNGLX=SNGL (X)
SHSMGLX=SNGL (X=-SNGL{X))
Y=ERFO (SNGL XY ¢ SHSNGL X+ SQRTPI*EXP (=SNGLX¥*¥2)

(Y is ERFC(X))
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ROUTINE .LY. TRUE VALUE

ROUTINE .BT. TRUE VALUE

nagz-.

N

S1-3¥0°€ *3°¥ SWY

S1-3681°- -3°Y¥ NU3IUW

"SIN10d 06666

nagl-

nagy-

nay1-

nagy-

g1

nag-

nag-

nay_ 8

neg-

nag

8002

.4

S1-3§1°61-

nay

"<

napy

"n-21

n-291

n-gy

n02

na33

n-I22-

nag2-

preagy -

291 -

n-291

n-1g1

n-302

nazy

-3np

.67

-y

20.7%

EXMCT

60.12

>l

17.12

*2ne

1.47

~Inr

<07

-0%

—’
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S1-3LE°S *3°¥ SWY S1-3868°~ *3°¥ NU3U

noagg-
n-30g -
"z
L mrez-
Lol wgg-
n-agl-
nagy-

na2]-

+LT. TRUE VALUE

n-ag -

ROUTINE

niag

n-39

<8T. TRUE VALUE

"1

ROUTINE

nagtf

nagy

g

"y

"Lz

nI0gt

n-sgg

$1-382°82-

i

1.709

1.5231

1.3171 >

LT

.oluaﬂi
0"
preag -
%0°
-2y 2-
%0°
o212
%2
pe-3g -
19’
n-2g1-
%
921
6§
nag-
219
n29-
%L gl
”n-ag-
X6° 62
0
xL-12
.-l-ﬂ
%86
n-3g
218
I-l.-m
152
131
211
:-.md
z
Jn-1g
IAR
nz
20°
nayz
%0°
.-l-FN
20
sa0g

n-1gg

CBNS 2N slme  EXACT  -lme  ~2me  -dmp -dwe -BWr -Swr Owmr
1.4% 4.87 14.47% 44.52 24.82 7.4% 1.92 .12 .02

bur

+Sur

*T0r S

.02

-4

.0% <12 .32

0%
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ROUTINE®S FUNCTION,

1.1. Type. A FORTRAN external function. It accepts a floating-
point argument and returns 3 floating=point result,

1.2. Purpose. To accept calls by name and by value for EXP from
FORTRAN programs. EXP computes the exponential function.

METHOD,

The input range ‘o this routine is the collection of all definite
in-range floating-point quantjities 1ying in the interval (-
675484, 741.H67)» Upon entry, the argument x is multipltied by 16.7
fogle)?, 1ir double-precision, and the integral (n) and fractional
(u) parts computeds The range reduction formula used here is

exp{x) 2 ¥* {x/1092) '
(2 *% 1/16) ** (1% % x / log 2)
(2 *% 17486) ¥¥ pn ¥ (2 ¥% {/716) *¥* ,
It n = 1 * q *+ r where g and r are integers such that 0<r<€i6,
exp{x) is finally given by '

axpl{x} = 2 ¥%¥ g ¥ (2 %% {/16) *¥% r * (2 *% 1/16) ** y ,

qQ will be added to the exponent of the result. (2 *¥* 1/16) *¥ r |is
obtained from a look-up table, and (2 ** 1716) ** u js obtained from
the foliowing approximation

(2 %% 1/716) ¥%% gy =

Hnowou

u + 2 ¥ u ¥ {p(0D) ¢+ p(01) * u2)

{q(00) ¢ u2) = u * (p(00) + p(01) * y2)

where the constants are given by

alf0) = 20.8137711965230361973 * 256
p{ngy = 7.21350341084L48192083 * 1f
o(01) = .057761135831801928 / 16 .

This approximation is described in Hart, Cheney, Lawson et ala.,
$Computer Approximationsg (New York) 1968, John Hiley & Sons,
DDs G6=-104, ‘

ERROR ANALYSIS,

The maximum absolute value of the error of approximation of the
algorjithm s 5,000 o 10 ** =17 over the interval (~{10g2) /16,
{(log2)/7163. A araph of the error of approximation in the atgorithm
is oiven in figure 9, An upper bound for the absolute value of the
error due to machine round-off js 1.863 * 10 *%¥ =14 over the
interval ([((-10g 2}/716,{(10g 2)/16]. Hence an upper bound on the
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absolute value of the error In the routine over this interval

is

1.873 * 410 **¥ «i4, A bound on the routine®s error for any given
argument x may be obtajned by employing the multiplication

for exp
expi{x + v) = exp(x)

exp(y) .

formyula

The maximum absolute value of the relative error ot approximation of'

the algorithm over (-10g2/716 ,
upper bound on the absolute

1092716)
va lue

is 5.838 o« 10%%=-17 ,

An

of the relative error due to

machine round-off and truncation s 6,890 * 10 *¥¥ =15 over

2)7164,(10g 2)/161. So an upper bound on the
relative error is 6,938 ¥ {0 ** 15 over

16, (log 2)/1861),

[(=-10g
absolute value of the

the interval {(=-10g 2}/

For 10000 arguments chosen randomty from the following intervals,
the fotlowing statistics on relative error were observed,

Interval Mean
from to

-673, Thi. -3, UIZE“!.G
-1, 1. -3.100E-16

L. EFFECT OF ARGUMENT ERROR,

Standard
Deviation

2+181E-15
2.223E-15

Minimum Maximum

-6+ 887€E-15 5,193E-15
-6.769E-15 5,028E-15

If a small error e® occurs in the argument, the error in the
y is aiven approximately by vy ¥ e"
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| eourIne_s Hyp, ( SINH £ COSH )
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ROUTINE®S FUNCTION,

1.1. Type, FORTRAN external functions. The routine accepts a

floating=-poinrt argument, and returns a floating-point result,
1«?. Purpose, To accept calls from FTN compiled code for
comoutation of the hyperbolic cosine and sine functions.
MFTH(OND,
The jinput range is the collection of all definite in=range,
fioating=point quantitiaes lying within the interval
[(-1071%109(2) ,1071%10g(2)) = [-742.35606303797,742,3606303797).

Tha formulae used to compute sinhix) and cosi{x) are!

X = n¥log 2 + a, 1al<i/2*%jog 2,
coshi{x) = 2¥%{n~1) * cosh(a) + 2%*¥(-n=-1) * coshi{a) + 2¥¥{(n-1) *»
sSinh(a) « 2%%¥ {(=n-1) * sinrh{a)
Sinhix) = 2¥¥{n=1) * sinh{a) ¢ 2%¥%{=-n=1) * sinh(a) + 2¥*(n-1) *
cosh(a) = 2*¥{=-n=1) * cosh{a)
coshi{a) = 1 &+ d(a)
sinh(a} = a3+a3%(s(3)1+a2%(s(5)¢+h/7(3-32)))
d(a) = a2*#{1/2+32%(c(h)+32¥%(c(6)+a2%(c(8)+a2)*c(10))))
vhere
s{?) = ,166666RA666H33558
s(5) = -,00597299%6656%2368
P = 1,0315399211561
3 = 72.10374€70722
cly) = L,0416666066666488081
cl(g) = ,00138888889%23213045
c(8) = B89,75473897315022
c{10) = 2.7632508058403 * 1N%**.7
In the foliowing description of +the algorithm used, (X1) = x

argument on ertrys entry (s at SINH., or COSH. ? and on exit, {(X6)
resutlt.

- P I¥ Ix121071%109{(2)y g0 to step ).
be u & Ixi
v « #0 if x>0
-3 if x<0
de n + [U/10g?2+.5] = nearest integer to u/10g?2

W e+ u=- n¥log 2y where the right-hand expression\ls evaluated in
double=precision.,
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X.

WeN3(s(3)+m2(s{5)+p/7(a-n2}))
N2(172+m2(c ) +w2{ciB)+w2(c{8)+w2) ¥cl10))))
{1¢d=s)¥2%¥%{=n=1)

de+s

-2

o an

L B

fe If COSH., entry, go to step he

ge € * (174 & (1/744D)1V¥2%¥%(n=1) + (2¥¥(Nn=3) ¢ (2%¥(n-3) - a))
X6 « ¢ with the sign stored in v,
Go to step 1.

Nhe € & {14D)*2¥%%(n-1) & 3
X6 & ¢

ie Return.
j. If infinite or lnde'lhlfe argument, go to step .

%, Normatize argument,
g e ITxt
v « &9 jif x20
- -0 if x<9
TIf Ixt < 1971%jog 24 go to Step d.

fe Injitiate error processinge.

Me XA ¢« +IND, if x is indefinite.
« #INF., if x is infinite or too bigy, and positive, or COSH .
« «INF, If x is Infirite or too bigy, and negative, and SINH .,

ne Go to step i.
FRROR ANALYSIS.

The maximum absotute value of relative error in the approximation of
sinh over [-10g2/2,10g2/2) is 1.282 * 10%*=-15 and of cosh over
[-1092/24y1092/2} is 2.421 * 10%¥-16 , Computed upper bounds on the
absolute value of relative error due to machine error in the
computation of sinh is 2.392 * 10*¥-14, and of cosh is 1.024 * 10%¥*-
14, Hence, upper bounds on the absolute vatue of relative error in
the routine is 2520 * 10%%<«14 for sinh, and 1,048 ¥ 10%¥=-14 for
cosh, Graphs of the relative errors In the alogrithms used to
approximate sinh and cosh over (-1og 2/2, log 2/2] are given in
figures 17 and 18,

EFFECT OF ARGUMENT ERROR,

Graphs of the rejative eorrors in the aflgorithms used to approximate
sinh and c¢osh over [(-l0o9 272,109 2/21 are given in figures 17 and
18. Tf a small error u occurs in the argument x . the resulting
error in sinhi{x) is 9given approximately by coshi{x)*u , and the
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resulting error in coshix) is given approximately by sinhi{x) *u. 1f

the error u
should be used

sinh(x+y)
cosh{x+y)

is not small, the addition formulae for sinh and cosh
to find the resulting error?

= sinhi{x)cosh{u)+coshix)Isinh(u)
= coshi{x)coshlu)+sinhix)Isinh{u)
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RQUYINE 3 _HYPERBs
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o
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ROUTINE®S FUNCTION,

1{eis Type, Auxiliary functions from the FORTRAN Common Library.,
The routine accepts a tloating=point argument and returns two
floating-point results,

1.?. Purpose. Yo accept calis by value from CCOS* , CC0OS, , CSIN*
and CSINe. for incidental computation of cosh and sinh,

METHON,

Tha input range Is the coltlectlion of all definite in-range floating-
point quantities which lie in the interval (741,67, T41.67%,
The hyrerbolic cosire |s computed by -
coshix) = .5 o, (exp{x) ¢+ exp(=x)).
It ix{ 2> +224 the hyperbotic sinh is computed by
sinhi{x) = .5 {exp{x) - exp(=x)}).,
For Ixt < .22, the Maclaurin serjes for sinh is truncated after .the
term x9/9¢' and the resulting potynomial is taken as approximation?
sinhi(x) = x & x3/3¢ & xS/51 & x?7/7% & x?/9¢

ERPOR ANALYSIS,

The maximum absolute vatue of the error of approximation for coshix)
is 5.000, 10%¥¥{=-17) and for sirhi{x) is 1.464 , 10%*¥(~15), over the
intervat (~-t092, 1092). See the description of EXPe for details
concerning the 2arror of approximation to exp., An upper bound for
the error due to machine round=-off and truncation [s computation of
the Mactaurin polynomjial is 8.198 . 10¥*(-16),., A graph of the error
of approximation in the polynomiat for sinh is given in figure 10,
An upper bound for the routine®s error in the computation of cosh(x)
is 7.184% . 10%%¥{-14) and in the computation of sinhf{x) is 7.148
e 1N*%¥({(-14) over {-10g?,y 10g2).,

EFFECT OF ARGUMENT ERROQOR,

If a small error e® occurs in the argument x, the resulting error in
coshi(x)is given approximately by sinh{x}.e*y, and the resulting error
In sinh(x) is given approximately by cosh{x}.e”.
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ROUTINE®S FUNCTION.

1.1, Type. A  FORTRAN exponentiating routine, It accepts an
argument set consisting of a fixed-point and a double-
precision argument, and returns a double-precision result,

1.2, Purpose. To accept calis by name for ITOD¥ generated by
FORTRAN programs raising fixede-point bases to double-precision
auantities,

METHOND,

The computation uses
base ** exponent = explexponent * log{basel).

Upon entry, the  fixed-point argument |{is converted +t0 double-~
precision and the resulting argument set is checkeds The argument
set is invalid if the base is zero and the exponent s not greater
than zero, if the base is negative, if either argument is irfinite
or indefinite, or ([if floating overflon occurs during the
computation, If the base is zero and the exponent is negative, NEG,
INFs 1is returned. If the argument set is otherwise invatid, POS,.
INDEF. is returned. In all cases, it the argument set is invalid,
a diagnostic message is issued. 1If the argument set is valids the
resul?t is computed and returned to the calling program,

N

FRROR ANALYSISe \

!

The algorithm used in ITOD¥*¥ js the same as that used in ITODe o See

the description of routine "ITOD. for the error analysise.

EFFECT OF ARGUMENT ERROR,

1f a small error occurs in the double precision exponent, the
resulting error in the result is given approximately by multiplying
the argument error by the resuit, and then by the natural logarithm
of the base,. Thusy if the result is large, the effect of an
aragument error wiil be large. If the error in the argument becomes
significanty the error jin the result should not be calculated by
this rule, but shoutd be calculated from the function values.
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BOQUYINE 2 1700,

1, ROUTINE®*S FUNCTION,

1.1. Type. A FORTRAN  exponentiating routine, It accepts an
argument set comprising a fixed-point argument and a double-~
precision argument, and returns a double-precision result,

1.2. Purpose. To accent callis by value for ITODe 4, calls generated
by FORTRAN oprograms which raise fixed-point bases to double-
preclision exponents,

2« METHOD,

The input range is the collection of all argument sets (by,p) wheret

b Is a3 definjte in-range fixed-point guantity, p Is a definite in-

range double-precision aguantity, b is greater than zero, and b¥¥p |is

in~range. Upon entry b is floated, normatized and converted to
double-precision.

The formula used to compute the result is

h¥¥p = expi{p « 10g b)Y .

DLOG. iIs called to compute tlog b, then p.f0og b [is computed Iin

doubte=-precision « DEXPe is calited to compute expi{psliog b)y and the

result is returned to the caltirg program.
Xe ERROR ANALYSIS.

10,000 random argument sets (byp) were generated, with distribution

the oproduct of a discrete uriform distribution over the integers

1129e3443 and 3 unjform distribution over (~-1,1). The relative
error in the routine was computed for each of the argument sets.,

The maximum absotute value of the retative error in the routine was

found to be 2,466 ¥ 10*¥{-28},

4, EFFECT OF ARGUMENT ERROR,
Tf a small error e® occurs in the exponent, the error in the result
r is given approximately by r.e*.109 by where b js the base. :
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1.

2e

ROUTINE®S FUNCTION.

1.1. Type, A FORTRAN exponentiating routine. It accepts an
argument set consisting of two fixed-point arguments, and
returns a fixed-point result.

1.2. Purpose, To accept cails by name for ITOJ* from FORTRAN
programs which raise fixed-point quantities to fixed-point
exponents,

METHOD,

Let b be the base and p the exponent. It »p has binary
representation 000eeeeDB0itlNYitn=2)eaeilidilD) where each i(})
(0<1€n) is 0 or 1, then

D P(D)e?29 ¢ (11422 #o0et i(N),2 ** p,

and

n [1oa(2)¥p] = greatest integer not exceeding 10g9(2)p.
Then

b ¥¥ = Prod {b¥*(2%*]) ¢t 0%)1<n & i)Y = 13,
The numbers 1 = bo, h= bl, H2, Hh¥,,,,, bHF¥ (2 *¥% [109(2)p)) are
generated during the computation by successive squarings, and the
coefficients i{N),...5i(n) are generated by sign tests of successive
right shifts of p within the computer. A running product is formed

during the computation, so fthat smalier powers of b may be

discarded, The computatior then becomes an iteration of the
algorithme
b *¥% p b if p =1

(beb) ** (p72) it p is even ;
={b.b) ** ((p=-1)/2).b if p is odd.

Upon entry, the base is converted to fioating-point, and the resutt
of the computation will be 11ater converted to fixed=-point for
return. The argument set is jinvalid if the base is zero and the
exponent is zero or negative, or if integer overfiow occurs during
the computation. If the argument set is invalid, zero is returned
and a diagnostic message is issued. If the base is non~=zero and the
exponen?t is negative, 1, =1 or 0 will be returned according as the
base is 1 (or =1 with the exponent even), -1 (With the exponent
odd}s or other. The result of the computation is returned to the
calting program,

ERRNOR ANALYSIS = not apolicable,

EFFFCT OF ARGUMENT ERROR - nof applicable.
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ROUTINE®S FUNCTION.

1.1« Type. A FORTRAN exponentiating routine, It accepts two
fixed=point arguments, and returns a fixed-point result,

1e2¢ Purpose. To accept calis bvrvalue for 1IT70Je. generated by

FORTRPAN programs which raise fixed=point quantities to fixed-
proint exponents,

METHOD.

Specla' case

4,

1 %+ 0 = error
i ¥% §J = error 1if J<O
-f] ¥% § = &ﬂ
1 ¥ g = 1
-1 *F J = +1 or «1(J even or odd)
I #% 0 =1
T %% J = 0 if J<0
I % 2 = I*1
I ¥% § = error it 122 and J264
I %% J = error if I221%6 gnd J23

Let b be the hase and p (20} the exponent, If o has binary
rapresentation 000.,+00i{n)ii{n=1)eesi(1}i(D) where each i(]){(0<¢)<n)
is 0 or 1, then

p = i(0),20 & j(1).,22 & j(2).22 #,,.% j(n).2 *%
White p is even do

b = b2, p = p/2,
Let r = b,
White p » 1 do

r = sz

if p is odd then r = r * b,

D = p/2e

Now r contains the resuit. Floating point was used for r so that
the remaining overfiows could be caught by fooking at the final
exponent., .

FRPOR AMALYSIS - not applicable,

EFFECT OF ARGUMENT ERROR - not appticable.
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ROUTINE®S FUNCTION

1.1. Type, A FORTRAN ' exponentiating routine. I+ accepts an
argument set consisting of a fixed-point base and a floating-
point exponent, and returns a floating-point result,

1.2« Purpose. To accept calis by name for ITOX* from FOFRTRAN
proarams which are generatec¢ when fixedepoint bases are raised
to ftoating=-point exponents,

METHOD.

Upon entry, the base is converted to floating=-pointy, and the
argument set is checked, The argument set is invalid if either
argument is infinite or indefinite, if the base is negative, if the
base s zero and the exponent s not greater thar zero, or i|if
ftoating overflionw occurs during the calcuiation, If the base Is
zero and the exponent is negative, or if floating overflow occurs,
P0S. INF., jis returned.,. If the argument set is otherwise invalid,
P0S. INDEF., is returred, In any casey, if the argument set is
invalid, an approprijate diagnostic message Is 1ssued. If the
argument set is valid, the result is returned to the calling
program,.

ERRCR ANALYSIS,

The atagorithm used in ITOX* js the same as that used in ITOXe » See
the description of ITOXe for an error analysis.

EFFECT OF ARGUMENT ERROR,

If a small error occurs in the floating-point exponent, the error in
the result is giver approximately by muitiplying the argument error
by the result and then by the nstural logarithm of the base. Thus
if the result is large, the effect of an error in the exponent witl
be large.

60498200 C



ROUTINE 2 _ITOX,
1. ROUTINE®'S FUNCTION.

1¢1. Type, A FORTRAN exponentiation routine, It accepts an

araument set {(nyx) comprising a fixedepoint argument n and a

fioating=-point argument xy and returns a floating-point
result,

1¢?« Purpose. To actept calts by value for ITOX., 4 calls which are
generated by FORTRAN grograms which raise ftixed=-point bases to
floating-point exponents,

2« METHOND,

The input ranae is the collection of atl argument sets (ny,x) such
that n iIs aftixed-point quantity, x is a definite in-range floating-
point quantity, x is positive and non-zero whenever n is zero, and
n¥¥yx js in-ranrge.
Tha formuta used [s?

n*¥yxy = expi{x ¥ (09 n) ,
where n > 1,
Upon entry, n is packed and normalized, Zero is returned if the
base is zero. Otherwise, ALOG. is calted to compute fog n, and EXP,
is catled to compute exp { x «+ logn } + The result is returned to
the callirqg program,

X. ERROR ANALYSIS,

509,100 pairs (nysx? of random numbers were generated nith
distribution the product of a discrete form of the right half of a
Cauchy distribution, and a Cauchy distribution. n¥*¥x was computed
for each of these pairsey first usingthe routine, and then using the
doubte-precision routine. The maximum absolutevalue of the relative
error in the routine nas 3,929 % 10¥%{-12) for the 500,008 pairs.

4, EFFECT OF ARGUMENT ERROR.
If a small error e® occurs in the exponent x, the error in the

result r is glven aporoximately by r * e®* ¥ fog ny where n [s the
base. f
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ROUTINE®S FUNCTION,.

f1.1. Type. -A° FORTRAN exponentiatirg routine, It accepts an
argument set comprising a reat ard a compltex argument, and
returns a floating-point resutlt,

1+2. Purpose, Yo accept calls by name for ITY0OZ¥* gererated by
"FORPTRAN programs vhich raise  fixed=point bases to complex
exponents, ' :

METHOD,

If n is 3 positive integer, and x and y are real, then
N *F (x 3 - il.y) = expix.log(n)).cosi{y.login))
+ leexpixeslogintde.esiniy.togind)

Upoor entry, the argument set is checked., Tt is invalid if the first
arqument [s negative, or zero, if elther argument is infinite or
intefinite, or if floating overflow occurs during the calculation,
or if x¥log r is g¢reater than 7441.67. If the argument set is
invatidy ther a diagnostic message is issu=sdy and POS., INDEF, is
returnped, Otherw]se, the computation proceeds as outljined above and
the resuit s returned to the calling program.

ERROR ANALYSIS.,

The algorithm used in IT0Z* ijs the same as that used in ITO0Ze « See
the descriotion of 1IT0Z, for an error analysisS.

EFFECT OF ARGUMENY ERROR,

If a small error cccurs In the argument, the error in the result |is
given approximatefs by the product of the argument errors the result
and the naturatl lcvgarithm of the base. The absotute value of the
error in- the result witt be given approximately by the product of
the corresponding absotute vatues, If the argument error |s
significant, the error in the resutt should be found from
substitution of the possible argument values in the function.
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YINE 3 1102,
ROUTINE®S FUNCTION.

1.1« Type, A FORTRAN exponentiation routine. It accepts an
argument set comprising a fixed-point quantity and a3 complex
quantity, and returns a compiex result,

1.?. Purpose. To accept caltls by value for IT0Ze 5 generated by
FORTRAN programs which raise fixed-point bases to complax
expornents,

METHON,.

The input range to this routine is the collection of alt argument
sets (nyz} comprising a fixed-point quantity n. and a complex
quantity 7z such that z is definite and in-range, and such thatt jif n
is zero then z is a positlve non-zero real, im(z) . 109 n does not
axceed pi.?%6 (where n>0 and im(z) is the imaginary part of z), and
the real number n ** re(z) is in-range.

Uoon entry, the fixed-point argument Is packed and normatized, and
then routine XT0Ze is called at entry XT0Z. to compute the result,
‘The result is returned to the caltling program.

ERROR ANALYSIS.

300,000 pairs  (nsyZ) of random numbers were generated with
distribution the product of a discrete form of the right hatf of a
Cauchy distribution, and the product of two Cauchy distributions.
n¥¥z was computed for each of these pairs, first using the routine,
and second using double-precision operations. The maximum absolute
vatue of the refative error in the routine was found to be 3.054 ¥
10¥¥{-10) for these pairs.

EFFECY OF ARGUMENT ERROR.

It a smatl error e(z) = el(x) ¢ j.ely) occurs in the exponent 2z, the
error in the result w is given approximately by w * log n & e(2z2) .
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1,

I

RNUTINE*S FUNCTION,

1.1. Type. A FORTRAN external function. It accepts. a dummy
argument and returns a floating-point result, '

1.2. Purpose. To accept calis by name for RANF and/&ANGET from
FORYRAN programs. RANF computes pseudo-random numbers,

METHOD.

RANF uses the multiplicative congruential method modulo 248, j.e,
x{ntt) = a * xin) (mod 2%8)

The tibrary hoids a random seed RANDOM. and a multiplier RANMLT, .
The random seed can be changed to any value prior to calling RANF by
use of the routine RANSET , Upon entry at RANF , the random seed is
multiotijed by the multiptier to generate 3 96 bit product, and the
lower 48 bits become the new random seed and 1Is wused to generate
subsedguent random numbers., RANDOM, has a default initiat value of
1717 1274 2214 7741 31553 (241963 mod 2*7) . This new random seed
is normalized and is returned as the random number,

The multipliler RANMLT, is corstant, and has a value of 2000 1287
2642 7173 05658 . This multiplier can be shown to pass the Coveyou-
Macpharson test as well as other statistical tests for randomness,
inctuding the auto-correlation test with 139<i00 ard the pair
tripfet test {(References? D. E. Knuth, Jhe _Art__of _Compyter

Programmings vole. 2,
If PANF is called by name at entry point RANGET 3 the current seed

of the random number generator is returned in the variable whose

address is in X1 .

ERROR ANALYSIS - not applicable.

EFFECT OF ARGUMENT ERROR - not appticable.
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ROUTINE 8 RANSEY
1. ROUTINE®S FUNCTION.

1.i. Type, A FORTRAN external routine, It accepts a floating-
point argument and returns a floating=-point resutt,

1.7« Purpose, To accept calls by name for RANSET from FORTRAN
programse. RANSEYT resets the seed of the random number.
generator,

2 METHOD,

The catlt suppliied the new address of a (suggested) new Seed value In

X1 . If the new seed s %. ’ the new seed value {is made

171712743214774131558B (= «170998394044023172010) ., Otherwisey, the

coafficient of the new seed is made odd if necessary (by adding 18},

and the exponent of the new seed vatue is set equal to =48

(17178, :

2. FRROR ANALYSIS - not applicable.
4, EFFECT OF ARGUMENT ERROR - not applicable,
60498200 C
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ROUTINE®S FUNGTION,

~1.1. Type. A FORTRAN external function. It accepts a floating-

point argument and returns a floating~point resutt.

1.2, Purpose, To accept calls by name and by value for SIN (at
entry points SIN and SIN, respectively), and to accept calis
by name and by value for CO0S {at entry points CO0S and
C0S. respectively), SINCOS, computes the trigonometric sine
and cosine functions.

METHOD,

The Input range to this routine is the collection of all definite
in-ranae normalized floating=-point quantities whose absolute values
d0 not exceed pi * 248,
Upon entry, the range reduction

y = 2/pi*¥x = n
is performed in doublie-precision, where x is the argument, and n is
an integer, and y {s in {-172, 172). Depending upon the sign of x
ant nlmod &}, the result will be complemented or not, and a
polynomial approximation (ply) or a(y)) will be chosen to give the
result, The polynomial approximations pfly) and aly) are

ply)
an+d
aly) = 1 = y2¥{(c(0) ¢+ cl{1)*y2 &+ c(2)%y% + Cc(3)1*y6 ¢ cll)*y8)2

Pi/72%y = y3¥({s(0) + sS{1)¥y2 &+ S{2)*%y™ + sS(3)*y6 ¢+ s(4L)*ys)2

The coefficients are

s{0) = 8,N371831697670¢F ¥ 10¥%¥*%=q

SU1)] = =L ,95774235001375 * 1(0%%=2

S{?2) = 1.38346449733347 * 10¥%*=3

S(2) = «1,44725130681196 * 10¥%*=5

s{4} = 1,5473331100515% * 10%*%-7

c{l) = 1.,110720734%39535

c(1) = 1,14191398434002 * 10%%=

cl(2) = =3,521949717398275 * 10¥*%=-2

c(2) = S5,17260E069276%18 * 10*¥*=5

c{i) = =4,4137282528387191 * 10**.7,
Tha volynomia! approximations ply) and qly)d are wminimax
approximations to their cor-ocwponding functions over f-=pi/4.pi’41.

{The algorithm and cons?. . are  copyright 1978 by Krzysztof
Frankowski, Computer Inform tio: and Control Science, University of
Minresota, S%545%, and ar: esployed under licence. Coding is by
Larry Liddiard, Unjiversity of Minnasota.)
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A graoh of the error of approximation in the
over f{=-pl/ty, pi/4) jis given in figure 3,
The maximum

atgorithm
G670 ¥ 10%*=1H5, and for cosix) is 2.972 #
the error due to machine error in the computation of sini{x) and
cosi{x) were established at 2,898 ¥
Ye- Hence
10%%-14

piz4d) in fi
approximati

for
respectivel

2,955 %
respectivel

ERROR ANALYSIS.

gure 4.
on in

Ys

the

upper
and 4,741

for

absolute

10%%¥=-14

algorithm

for

sinix)

and for cos{x) over [=-pi/L,

value

and G.lbh ¥

the

Upper

error
sini{x) over [=-pi/Z&, pi/4) is
10"'15'

of

bounds

10%%-14

bounds on the error In the routine are

¥ O10%%=14

for

sin{x)

and

cosi{x?,

The maximum absolute value of the relative error of approximatijion in

the algorithm for sin(x) over [=pi/i,
cosix) is H.285 * {0%%=-14,
of the relative error due to machine error
and
10%*¥=-15 respectively.

for

sin{x}

the

cos(x}

pi’7tY is 4.098 ¥
Upper bourds for the absotute value
computation

in

the

10%%=14

and

of

were established at 8,049 * 10¥*¥-16 and 4.204 *

Hence upper bounds on the absolute
retlative error in the routine were established at 4,178 ¥ (%%~

14 and 6.70% ¥ 10%*%=14 for sini{x) and cos{x) respectively.,

For 1000 arguments chosen randomly from the following intervals
the associated statistics on absolute or

tha entry

Fntry fTrror

Point
C0S. Relative
Absolute

SIN, Relative

Absotlete

points

shoun,
relative error were observed.

Interval

from

°.785“
-3.1416
-i0nt2

-.785%4
-3.1416
-10t2

to

+ 7854
2. 1416
1012

« 7854

3.1416
1012

4, EFFECT COF ARGUMENT ERROR,

If a small
result is
sini{x) for

60498200 C

error e®" occurs in the
given approximately by e*

cosix).

Mean

-5933E-17
-7.524E-18
8.138E~-19

3.035E~16
-2:504E~-18
~6.872E~-18

argument
* cosix)

Standard
Deviation

1.596E-15
1.317E-15
1.2L8E~-15

1,984E-15

1.133E~-15
1.254E-15

Xy

the
for sin(x),

Minimum

~7.346E-15
L ,67LE~1S
=-5.443E-15

-5 448E~15

~5.,6L8E-15
-4,187€~-15

error

vaiue

in
and =-eo" ¥

of

for

Maximum

6.962E-1%
4.809E-15
4.843E-15

6.739E-15
5.174E-15
5.353E-15

the
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ROUTINE®S FUNCTION,

1.1 Type., A FORTRAN external func?ionQ It accepts a floating=-
point argument and returns a floating-point result,

1.2. Purpose, To accept calls by vatue for SIND and COSO, the
trigonometric sine and cosine Ffunction with argument in
degrees,

METHOO.

Argument range?! (=248, a2a8),

Routine DEGCOM, Is <cailted to subtract the necessary multiple of ap0
from the argument to put the result in [~45, *45) and multiply the
reduced value by pi/Z180. The appropriate sign is copied to the
value of the appropriate function (sine, cosine) as determined by
these jdentities?

Sin(X2360°) = sin(X)
3in{X+1800) = -sin{(X)
sin(X+909) cos {X)

Sin({X=909) = -cos(X)
cos{X23680) = cos(X)
cos{X£1800) = =-cos{(X)
cos(X+909) = -s5in{X)
cos{X=-90%) = sin{X)

ERROR ANALYSIS.,

The reduction +to ([-45, +45) is exact: the constant pi/i80 has
relative error 1,37E-15, and the nmultiply by this constant has
retative error 5,33E~-15, for a total error ot H.7E-15,., Since errors
in the argument of SIN and CDS contribute only (pi/4) of their value
to the result, the error due to the reduction and conversion is at
most 5,26E-15, The totat -error in SIND and COSD is at most this
value oplus the maximum  error in SINCOS, on [(-pi/&, *pilk), namely
7+31€-15, ftor a total of 12.576-15., The maximum observed error in
190000 points in *the interval {0,360) was 9,96E-15 for SIND and
9.95€-15 for C0SD. ‘

EFFECY OF ARGUMENT ERROR,

Errors in the argument X are amplified by X/tan()) for SIND and
X*tan(X) for COSD. These2 functions have a maximum value of pi/4 in

[-450, #450] but have poles at even (SIND) or odd (£0SD) multiples
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of 999, and are large betweer multiples of 90% if X is large. HWhen
X is known to double precision the following code may be used:?

FUNCYION SINOD({X)
pousLE X
NINT(X)=X+SIGNID.5,X)
K=0
GC YO ¢
ENTRY COSOD
K=1
1 N=NINT(SNGL{I{X)/930)
2=X=N*90 :
IFIK NE.MOD(IABS(B),2)) GO YO 2
¥Y=SIND(2Z)
G0 YO 3
Y=COSD(2Y :
IF(K*2<1 ., FEQa MODINg2)) Y==Y
IF(MOD(IABSIND 4&) .GE.2)Y==Y
SINDD=Y
RE TURN
END

N
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ROUIINE & SQRY
ROUTINE®S FUNCTION

1.

2

b,

§ 128

Tvype. A FORTRAN external ftunction. It accepts a real

1.1.
- argument and returns 3 real result.
1.2+ Purpose,. To accepf.calls by reference for SQRT from FORTRAN
programs. SQRT computes the square root function,
METHOD,

The argument is foaded into X1 and the <c¢all is convearted to 23
SORT, calil, :

ERROR ANALYSIS - see SQRT,

EFFECY OF ARPGUMENT ERROR - see SQRT,
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ROUTINE 3 _SORY,

1.

2e

3.

® 130

ROUTINE®S FUNCTION.

1.1+ Type. A FORTRAN external function. It accepts a real
argument and returns a real result,

1.2+ Purpose., To accept calls by value for SQRT, from FORTRAN
programsS. SQRT. computes the square root functions

METHOD,

The argument range is the set of atl positive or zero floating point
numbers. The identity

sart{y*2+p)issartly)*2+{p72)

is used to reduce the range to [(0.541) with p having an integral
vatue, An initjial approximation is made using one of ejght linear
approximations to sart on this interval, giving at feast 12 bits of
accuracys Two Heron®s rule jterations are made to obtain 48 bits,

If p is eveny, the normal Heron®s rule is used?

compute x0, an approximation to x=sqgrtiy)
X1=0,5%(x0+y/x1)
x2=0.5%{x1+y/x1)

If p 1is oddy, scaling is done between steps so as not to affect the
accuracy of the final result!

compute x0
x1=0.5%(x0+y/x0)
xi*=x1*sart(2)
x2=0.5%{x1*+(2%y)/x1"*)

which accomplishes the multiply by 2+(172)=sqrt{(2).

The scatling by 24({p72]1 (Tul) denotes truncation) is done by packing
the aporopriate exponent with the coefficient of (2*%¥x2), The square
root of a number one ulp below an even power of 2 is explicitly
torced to one ulp below ttre square root of that power of 2 to make
packing work, 2.g.y sart (4-eps) vould be 1,0 but (s forced *to 2~
epsS .

The sagrt (2) scalting is fudged slightly so that the error is
centered after this scaling, picking up one bit at that point.

ERROR ANALYSIS.

The maximum error in the initial approximation is .000218, Since
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the effect of a Heron®s lteratior is to square and halve the
relative errory, the algorithm error is 7.08E-17.

Round=-off error is insignificant until! the last Heron®™s rule step,
which has the form xty/X, where the quantities being summed are
atmost equals Since the error in Heron®s rule is always positive, x
is too targey SO y/x isS too smally {s@es X>PY/Xe The error in the
divide is irn {(=7.1E-15,1) and in the rounded odd is in ([(0,+43.,55¢~-
15)y so the total! round-off error is less than 3,55E-15 in absolute
value. {Error in divide is halved because x=y/x approx.)

The upper bound on relative error is then 3J.H2E-15, The maximum
observed relative error in 100000 randomly chosen point in the
interval [D.542) was 3.59E-15,

4L, EFFECY OF ARGUMENT ERPQOR,
For smatl error in the argument y the amplification of absolute
error is 17(2*¥sartl{y)) and that of retative error s 0.5,
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BOUTINE 3 _SYS=AI0_

1.

2e

L

j 2

ROUTINE®S FUNCTION.

1.1. Type. An auxiliary routine.

1.2+ Purpose. Yo provide a 1ink between routines in the math
{ibraryy, and the system error processor.

METHOD,

Execution proceeds as follows.
a. Enter SYS=ATID and additionally save registers X3 and X&.

hs, Read up entry opoint SYSAID. and store (it at entry point
SYS1ST.

cs Long lump to MORGUE. .

See the method description of SYS=1ST for further details.
ERROR ANALYSIS.

Not applicable.

EFFFCY OF ARGUMENTY ERROR,

Not applicable,.
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RQUYIINE & SYS=i1SY_

1.

ROUTINE®S FUNCTION.

1.1. TYype. An auxiliary routine.

1.2« Purpose, To orovide a 1link between routines in the math
tibrary and a system error processor,

2« METHOD,
Exacution proceeds as follows at MORGUE,., ¢
ds Enter SYSIST and save registers X1 x2‘. X6 and A0 4 85 4 36
and 87.
bs Read the return jump word used to enter the routine which catted
SYS=1SYT or SYS=AI0 . If this word has the format?
+ RJ <entry point>
- VFOD 3071
then go to f. belowe
Ccs Read the communjication cefl SYSAIDe » Insert in its {ower 18
bits the address of the trace word in routine SYS=1ST . Store
the result in cefl RJIERR which will be executed at step e.
d, Test the argument in the register indicated by the contents of
B2 . Set X2 to the first word address of an error message as
follons?
Condition Message
Infinite ARGUMENT INFINITE
Indefinite ARGUMENT INDEFINITE
Other ARGUMENT <partial message from address supplied
in B2 >
Set X1 to the error number, and AN to the first word address of
the parameter 1ist for nori~standard error recovery.
e, Execute word RJERR , This will 1ink the routine to the system
error processor.
f. Restore registers Xt o X2 o A0 o BS 4 86 3 37 « Move the
entering contents of X& into register X% ,
ge. Set Xb and X7 to +IND. .
he, Return to the calling program.
3. ERRNOR ANALYSIS,
Not appticable,
e EFFECT OF ARGUMENTY ERROP,
Not applicatle,
60498200 C
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BOUTINE 3 TAN
1. ROUTINE®S FUNCTION,

L,

Se

2e

5,

l 134

1.1, Type. A FORTRAN external function., It accepts a floating~-
point argument and returns a floating=-point result,

1.2« Purpose, Yo accept calls by value for TAN computes the
trigonometric tangent.

NAMES,

Pele Ident name - TAN
2+.2. UPDATF deck name - TAN

2.3. Entry point name - TAN
CALLS.,

3.1« Source of cé!ls. From FTN compited code mentioning TAN and
compiled under control card option T, Oy or O0OPT=0 or
mentloning TAN in an EXTERNAL statement.

3.2. Format of catlis, Call by reference. Entry is made by return
jump to TAN.

3.3, Format of returnes The result is returned Iin Xb.

CALLED ROUTINES.

TAN, at entry point TAN. to compute the result,

METHOD,

METHOD.

The arqument is loaded IiInto X1 and the catl is converted to a
TAN. calt,

ERROR ANALYSIS - see TAN,

EFFECT OF ARGUMENT ERROR - see TAN,
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BOUYINE & TAN,

1.

2e

ROUTINE®S FUNCTION.

1.1, Type. A FORTRAN externat function. It accepts a3 floating-
point argument and returns a floating-point result,

1.2« Purpose, TJo accept calls by name for TAN. from FORTRAN
programs. TAN, computes the trigonometric tangent functions.

METHOD.

The input range (s the coltlection of all definite, in-range
floating-point quantities in the interval (=2%7, +2%7),

The jdentitijes

i) tani{x)=tan(x+k*pi/2) Kk even
I1) tan({x)=-=1,07tanxspirz2)

ara used in the form

tani{x)=tan{(pi/72¥*(x*2/pi*tk)) Kk even
tan{x)==1.0%tan((pi/2)Y*¥{(x*¥2/pi+1))

to reduce the evaluatjon to +the jnterval ([(-3.55¢0.5] wusing an
approximation for tant{(pi/72%y). The reduction s done by
multiptiying x by 2/7pl and subtracting the nearest integer, rounding
the result to single,

The function tan{ipizZ2)*y} is approximated with a rational form,
{7th order odd)/(6th order even), which has minimax relatjve error
on the jinterval [-N.5,4+0,5]). The ratjonat form (s normalized to
make the 1ast numerator coefficient (1%*eps) where eps is chosen to
minimize rounding error in the teading coefficlients,

It ididentity {(iv) is usedy iseay if the integer subtracted is odd,
the result |is negated and inverted by dividing -Q/P instead of P/Q.

ERROR ANALYSIS,

The range reductiony, the final add in each part of the rational
form, the final multiply in P and the divide dominate the error.
Fach of <these operations contributes directly to the final error,
and each is accurate to about 1/2 ulp (unit in the fast ptace), The
maximum relative errors are
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tsource of errorsg

range reduction
rationat fornm
coefficient rounding
round-off

upper bound

maximum observed

EFFECT OF ARGUMENY ERROR,

$amount¥®1015¢

3.6
«02
<,08
14.2
18.0
14.5

For smafl errors iIin the argument x, the amptification of absotute

error is sec2({x) and that of
nhich is at teast 2x and may
Di/2» If x is known to more
addition formula may be used
NOUBLE X
(compute X)
T=TAN(SNGL(X))
S=SNGL {X~=SNGL (X))

Y=TeS*¥(1+T**2) 7(1-S¥*T)

retlative error

is x7(sin{x)*cos(x) )«

be arbitrarily targe near a3 multiple of

than double

precision, the tangent

it x is less than 3E7!

(S=TAN(S) 1f X<ZE7). This approximation may aive ftess than single
precision when S*7T s near 1.0, where |t
TAN{SNGL{X)) but less accurate than SNGLIDTAN(X)).

is more accurate than
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ROUYINE 3 TVAND, _

1.

2o

L

® 138

ROUTINE®S FUNCTION,

1.1. Type.A FORTRAN externatl function. It accepts a floating=pgoint
argqument and returns a floating=point result.

1.2« Purpose, To 3accept calls by value for TAND, the trigonometric
tangent function with argument in degrees.,

{

METHODND,

Argument ranget (=298, +2%8) axcep? odd multiples of 90,

Routine TNEGCOM, is called to subtract the necessary multipte of 90
from the argument tco put the result in [-45, #+45) and multiply the
reduced wvalue by pis1880. Routine TAN, is called to compute the
tanocent, and the result is negated and inverted if the multiple was
odd, using these identities:

tan(X£1809) = tan(X)

tani{X2900) = =-1/tan(X)
ERROP ANALYSIS.,

The reduction to [=45, +45) is exact?t the constant pi’Z718% has
refiastive error 1,37€-1%, ard the nmultiply by this constant has
refative error 5,33E~15, for a total error of $,7E-15., Since errors
in the arqgument of TAN 3are amplified by at most pi/2y the error due
to reduction and conversion is at most 10,.52€-15, The error in the
final divide is at most 7.11€E-15, and the error in TAN, is at most
14.54F-15, S0 an upper bound on error in TAND is 32.17E-15. The
maximum observed error in 100000 points in the interval [0,360) was
17.72€=15,

EFFECT OF ARPGUMENT ERPROR,

Errors in the argument X are amplified by at most X/{(sin{X)¥cos{X)).
This function has a maximum of pi/2 within [~%4590 +459°) byt has poles
at atl multiples of 9739 except zero and is at least 2*%X elsewhere,
Whar X is known to double precision and one of the asbove problems
exists,; the following code may be used?

{compute X irn double)
N=NINT {SNGL (X) 797)
Y=TAND (SNGL { X=N¥*90))
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IF {NOOD{(N,2).EQ.0) GO YO
IF(Y.EQs.0) <error>

Y='1.U/Y
1 CONTINUE
which always returns an accurate vatue since the range reduction Is
exacts
{Note? NINT(X) = IFIX(X+SIGN{(0.54X)), the nearest integer.)
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BOUTINE 3 TANH_
1. ROUTINF®S FUNCTION,

Typee A FORTRAN external function,. It accepts a floating
=-point argument and returns a floating=-point result,

Purpose. To accept calls by value for TANH from FORTRAN
proarams. TANH computes the hyperbolic tangent functione.

2« METHOD.

The argument is i{oaded into X1 and the call is converted to 3

TANH,.

cattie.

+ FERROR ANALYSIS - see TANH.

4, EFFECY OF ARGUMENT ERROR - see TANH,
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| ROUIINE : TANH,

i,

2.

142

ROUTINE®S FUNCTION.

1.1+ Type, A FORTRAN external function. It accepts a floating-
point argument and returns a floating=-point result,

1.2« Purpose., To accept callis by value for computation of the.
hyperbolic tangent, including converted calls from TANH .

METHOD,

The input range 1Is the coltlection of all definite floating-point
gquantities in the range [-INF,+INF],

Tha jdentity tanh{=x)==tanh(x) is used *to reduce the range fto
[N, ¢+INF], For abs({xi>17.50, the best machine reprasentation of
tanh(x) is signi{i.0,x), so the range is further reduced to
{0,17.50}),

The jdentities

tanh(x)=pi{x) 7a{x) approximately, on [0,0.,55])
tanh{x)=1=27{exp(2¥%x) +1)
exp{2*x)=(1+tanhix))/7(t=-tanhi{x))
exp(2¥x)=2*n¥exp {2*¥(x-n*iIn(2)/2))

may be combined to get?t
tanh{x)=1=-2%{ag=-pV/7((g=-p)+2n*(a*p))

where n is chosen to be nint(x*2/in(2)) and pyq are evaluated on x-
n*in(2)72. This choice of n ainimizes abs{x-n*In(2)/72).

When x<8,5% the approximation p{x) 7gix} is used.s Since
tanh {x<B+55)1<0.5, the form 1-r would suffer from cancellation in
this range.

Tha approximation p/q is a wminimax (relative error) rational form,
ie22y (5th order o0dc)/(Hhth order even). The coefficients are scaled
so that (x*2/in{2)=-n) may be wused Instead of {(x=n®*in(2)72),
simpltifying the range reduction., The co=fficients are further
scaled by an amount sufficient to reduce ftruncation error in the
teading coefficients without otherwise aftfecting accuracy.

ERROR ANALYSIS,

The atgorithm error (due to finlte approximation, coefficient
truncation) is 1.7E=15, For abs{x)<0.55 the form pi{x)/gl{x) is used,
and the finat orerations z«x¥2/in{(2) and tanhe{z¥{pOl+small))/
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(afe¢small) dominate the error. The upprer bound on the error here is
18.,0E=-15% the maximum observed was 13.0£-15,

For abs(x)>1.25 the final subtract, 1.0-small, dominates and an
upper bound on the error s 4.2E-157 the maximum observed was 3.8F-

15.

For 0.5%<abs{x1<1.25 the final operation is 1-R where R becomes
smaller as x approaches 1.2%, so the norst relative error 1is near
1.55, ramely {contribution from R)¢lerror in final sum), where
R=2%*(a=-p) /((a-p)+4¥*(q+p)) ., An upper bound? 16.,7E-153% maximum
observed! 10,0E-15,

Refative Error:?

$source of error$g terror*1015g
rational form 0.5
coefficient rounding 1.2
round-off 16.5
upper bound 18.2
maximum observed 13.0

4, FEFFECT OF APGUMENY ERROR,
For smatl errors in the argument X, the amplification of the
absolute error is 1/7/cosh2(x) and of relatjve error is x/
(sinh{x}¥*cosh{x}). Roth have maximum wvalues of 1.0 at 0 and
approach 0 as x gets targe.,
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BOUTINE 3 XTIQD*

i.

ROUTINE®S FUNCTTION,

1.1, Type, A FORTRAN .exponentiating routine. It accepts an
argument set comprising a floating=-point and a double-
precision argument, and returns a double-precision result.

1.2. Purposes To accept calls by name for XTOD* generated by
FORTRAN programs which raise floating-point bases to double-
precision exponents,

?. METHOD,.

The formuta used jis?
base ** exponent = expl(exponent ¥ {og(base)).

Upon entry, the argument set [Is checked, It is invalid if either
argument is infinite or indefinite, it the base is negative, if the
base js zero and the exponent is not greater than zero, or |f
fioatirg overftow will occur durinoc the computation, If ¢the
argument set is invalidy, a diagnostic message is issued and
POS.INDEF, is returnad. 1If the argument set is valid, the result
is refurned to the catting program.

2, EPPOR ANALYSIS.
The algorithm used in XTOD¥* is the same as that used in XT0De » See
the descriotion of routine XT0D, for ar error analysis.

4, EFFECT OF ARGUMENT ERROQOR.
It a smaltl error e* occurs In the base b and 2 smalil error e**
occurs in the exponent p, the error jin the result is given
approximately by

b*¥p * {(p/7/b * e* 4+ 1o0glb) * e**) .,

The absolute error |is approximately ¢the absolute valtue of this
expression, If the errors in the argument are significant, the
error in the result should be found by substitution of *he possible
argument values in the expression b ** p,
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| eourine_: x100,
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2
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ROUTINE®S FUNCTION,

1.1. Type. A FORTPAN external function. It accepts an argument
set comprising a ftloating=-point and a doubleeprecision
argument, and returns a double=precision result,

1.2, Purpose, To accept calls by value ftor XT0D. 4 calls generated
by FORTRAN oprograms which raise floating=point bases ¢to
double-precision exponents,

METHOD.

The input range is the coltection of argument sets {(by,p) wheret! b is
a2 definite in-range floating-point gquantity, p is a definite in-
range double-precision quantity, b Is greater than zero,y, and b¥%p is
in-range, The result is computed according to b**p = explp.fog b,
where b is converted to doublie-precisiorn upon entry, and ati
operations are carried out in double=precision. The result is
returned to the catling program,

FRROR ANALYSIS,

10,000 argument sets {byp) were randomtly generated, wWith
distribution a product of uniform distribution on (.541.5) and (-
10,10)e The relative error in the routine was computed for each of
the argument sets, The maximum absofute value of the retatjive error
was found to be 1,163 . 10¥* (=25),

EFFECT OF ARGUMENT ERROR,

If a smal! error e(by) occurs in the base b and a <small error ef{p)
occurs in the exponent p, the error In the result r is given
approximately by

r « {e(p) « 109 b+ p . elb)/b) .
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PQUIINE 3 _XTIDI*

i1« ROUTINE®S FUNCTION,

1+ Type, A - FORTRAN exponentiating routine. It accepts an

: argument set consisting of a floating=point and a fixed=point
argument, and returns a floating-point result. ’

1.2, Purpose, To accept calls by name for XTOI* generated by
FORTRAN programs which raise floating-point bases to fixed- .
point exponents, :

e METHON.
Load arguments and ta!l XY01.
X, FERRAOR ANALYSIS.
Not applicable, Since the only errors are round-off errorse. ‘Seé the
descriotion of XT0Y.
4, EFFECT OF ARGUMENT ERROR,
- It a smatl error e® occurs In the base py the error In the result is
given approximately by
b*%®{(p=1) * p * e, where p is the exponent. :

If the error in the base becomes significant, the error in ‘the

result must be found from substitution of the possible values of the .

base b into the expression b ¢ pe ‘
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ROUTINE®S FUNCTION.

1.1. Type, A FORTRAN exponentiating routine, It accepts an
argument set consisting of a floating-point gquantity and a
fixed=-point quantity, and returns a tloating-point result,

1.2. Purpose., To accepnt calls by value. for XT0Il, , generated by
FORTRAN oprograms wWhich raise floating-point guanrtities to
fixed=-point exponents,

METHOD,

Special case

X indefinjte t error

X infipite ¢ error

0. **¥ 0 3 error

X #% 0 = 1.0

(number of bits in I)#{number of bits in scale of X)>8 ¢ wuse
careful code

X *¥% 1T = 4,0 7(X *%{T)) if I<O

Nuick versiont Watk through the binary representation of I,
starting with the most significant blt., For each bit, square the
result (which was initiatized ¢to X)3 if the next bit is on, also
multipty by X,

Careful versjiont! Scate X to be between 0,75 and 1.5, remembering the
exponent, Walk through 10 bits of I Ir the quick-version way. Then
repeat (scaleswalk) until I is wused up. Invert if necessarvy.
Carefully Adecide if the exponent is too big.. It 0K, exit.,

ERROR ANALYSIS - not applicable.

EFFECT OF ARGUMENT ERROR,

It a small error e" occurs in the base b, then the error in the
result is given approximatetly by p ¥ b¥¥(p=1) * e* , where p is the
exponent, If the error e® becomes sigrificant, we can only say that
the absolute error in the result is bounded above by

1ol ¥ max(ibl , 1b & e"1))*¥*¥(p~-1) * fe*] ,

60498200 C
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BQUIINE 3 XTOY*_

1. ROUTINE®S FUNCTION,

1.4 Type, A FORTRAN exponentiating routine. It accepts an
argument set consisting of two floating=-point arguments and
returns a floating-point result.

1.2. Purposes To accept calls by name tor XTOY* generated by
FORTRAN programs which raise floating=point bases to floating-
point exponents. i

Pe MFTHOD.
Tha formuta used s
base ** exponent = exp (exponant.loglbasei).

The argument set is checked upon entry. It i< invalid if elther

base or expcnent s infinite or indefinite, it the tase is negative,

i¥ the base [s zero and the exponent [Is not gre¢ater than zero, or |(f
fioating overflow occurs during the computation. If the argument
set Is invatid, POS.INDEF, is returned and a diagnuestic message is
issued, Otherwisey the result of the computation is returned.

2. FRROR ANALYSIS.
The altgorithm used In XTOY¥* js the same as that used in XTOYe « See
the description of routine XTOYe for an error analysise.

4, EFFECY COF ARGUMENT ERROR,

It a small error e® occurs in the base b and a small error e°*"

occurs in the exponent p, the error in the result is given

approximately by
b*¥p * (p/b ¥ e® 4+ log(b) * e**),

The absolute error is approximately the absolute value of +this

expression. If the errors in tte arguments are significant, the

error in the result should be found by substitution of the possible

argqument vatlues in the expression b *¥¥% p,

60498200 C
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ROUTINE®S FUNCTION,

1.1. Type. A FORTRAN exponentiation routine. It accepts an
argument set comprising two floating-point arguments, and
returns a floating-point result,

1.2« Purpose, To accept calls by value for XTQY, , generated by
FORTRAN programs which raise floating-point bases to floating-
point exponents,

METHOD,

The input range s the collection of all argument sets (b,e) for
whicht b and e are definite in-range tloating-point gquantities, b is
positive and non-zero, and b¥*¥%¥e is inerange.
The formula used is?
b*¥¥y = exp(p * 1og b),
where b > 0,
Upon entry, ALOG. computes tog be and then EXP, computes
explp * 1og b,
The result is returned.

FERROR AMALYSIS,

500,000 pairs {byp) of random numbers were generated with
distribution the product of the right half of 3 Cauchy distribution,
and a Cauchy distribution.b ** p vas computed for each of the pairs,
first wusing +the routine, and then using the double-precision
routine., The maximum absolute value of the error in the routine was
4.583 ¥ 10¥¥(-12) for these 500,000 pairse.

EFFECT OF ARGUMENT ERROR,

If a small error e(b) occurs in the base by, and a smatll error el(p)
occurs in the exponent p, the error in the result r is given

approximatety by
r ® (tog b * e**p ¢+ p % (efb))/7/b)

60498200 C
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BOUYINE 3 _XTOZ%

i.

ROUTINE®S FUNCTION.

1.1. Type, A FORTRAN exponentiating routine. It accepts an
argument set comprising a floating-point base and a complex
exponent, and returns a compiex result,

1+?« Purpose. To accep?t calis by name fYfor XTOZI¥ generated by
FORTRAN oprograms raising floating-point aquantities to complex

exponentse.
2+ METHOD,
It the base b is real and the exponent z = x +# | ¥ y where x and vy
are realy then
b ¥ 7z = u + i * v,
where
u = exp (x * 1og(b)} * cos (y * tog(b))
and
v = exp {x * Jog(b)) * sin (y * fog(b)).
ALOGe, EXPe and COS=SIN are called to evaluate these expressions.
The argument set is checked upon entry. It 1is invatid if either
base or exponent (s Iinfinite or indefjinite, If the base b is
negative, if the base is zero and the real part of exponent 2z |is
greater than zero, if y * 1og (b)) is so targe that precision is lost
in the computations, or 1f floating overflow occurs during the
computation, It the base b is zerosy y is zero and x is less than
zern, P0OS. INF, is returneds If the argument set is otherwise
invatids PCS. TINDEF. is returned. In either case, a diagnostic
message is issued. If the argument set is vatlid, ALOGs 5, EXPe 3and
C0S=SIN are callted during computation. The result [s returned to
the calting program.
X, ERROR ANALYSIS.
Tha algorithm used in XT0Z* is the same as that used in XT0Z. . See
the description of routine XT0Z. for an error analysis.
4, EFFECT OF ARGUMENT ERROR,
If a smatt error ef({b) occurs in the base b, and small errors e{x)
and ef{y) occur in the real and imaginary parts x and y
{respectivety) of the sxponent z, then the error el{r}) in the resuilt
is given approximately by
el(r) = b¥¥z * 1og(b)*z*¥{{e(x) + i%el(yd))/z &+ e(b)/(b*log(b))) .
Tha absolute error in the result is approximately the absolute value
60498200 C
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of this expression. If the error in an argument becaomes
significanty, the error in the result should be found from
substitution of possiblie argumert values in the expression b *% 2,
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—  ROUTINE 3 XT0Zs
1. ROUTINE®S FUNCTION.

1.1. Type, A FORTRAN exponentiating routine. It accepts an
N argument set (xyZ) where x is a floating-point quantity and z
- a complex quantity, ard returns a complex result.

N 1.2. Purpose, To accept calls by vatue for XT0Z., calls which are
generated by FORTRAN programs which raise floating-point bases
to complex exponents.,

2. METHON,.

N—’

The input range is the coltectjion of at! argument sets
{xes2) { = x4y u ¢+ j*v))

N such thatt x is positive, if x is zero then u = 0 and v is positive
and non-zero, both x and z are definite and In-range, floating overs-
flow does not occur during the computation of x  *% 4 (ie€as

— fuslogixt| € 741.67 5 and jvelogix)| € pi.2%s ,

The formula used ist
xFE{U+i¥v) = e**{y¥logix) * cos{v¥iogix))
N i ¥ a¥¥F(u¥logix) ¥ sin(v*iog(x)),
Upon entry, the base is checked, 1If it is zero, zero is immediately
returned to the calling program., Otherwise, ALOGs. is called for
computation of 10g xs and then COS=SIN is calied for computation of
cos{ve.tog{x)) and sin{v.iogix)) . Then EXP. is caltled for
computation of explus.iogx)) . The result is calculated according
o to the formula and ls returned to the calling programe.

407,000 pairs {xy2) of random numbers were generated with
— distribution the product of a right half of a Cauchy distribution,
and the product of two Cauchy distributions. x**z was computed for
each of these pairs, first using the routine, and then using double~

— precision operations, The maximum absolute value of the relatjive
error in the routine was found to be 7.196 % 1{0*¥(=-10) for these
pairs.

N’

4. EFFECY OF APGUMENT ERROR,

If a small error el(x) occurs in the base x, and a small error e{z) (
= a*{x)+ i.e2*(y)) occurs in the exponent z, the error in the result
A w is given approximately by

w * (log x * e{z) ¢+ z2 * e(x)/x) .
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1.

2

Xe

4,

ROUTINE®S FUNCTYION.

1.1. Type, A FORTRAN exponentiating routine., I+ accepts an
argument set consisting of a complex base and a fixed=point
exponent, and returns a complex result,

1.?. Purpose, To accept calls by name for ZTOI* generated by
FORTRAN programs raising complex aquantities to fixed-point
exponents,

METHOD,

See the description of ZT0I. for the atgorithm. The argument set is
checked upon entry, It is invalid it either argument is infirite or
indefinite, or if the base |[s zero and the exponent is not greater
than zero. In these casesy POS, INDEF, is returned and a
diagnostic message is issued, Otherwise the result of the
computation is returned to the calling program.

FERROR ANALYSIS.
Not applicable, sinc2 the only errors are round-off arrorse.
EFFECY OF ARGUMENT ERROR,

If a small error e® occurs in the base b, the error in the result ls
given approximately by n * b ¥% (n=-1) * e*, where n is the exponent.
The absolute value of this expression is approximately the absolute
error., If the error e* |s significant, the error in the result
should be found by substitution of the possible argument values in
the expression b ** n,

60498200 C
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BOUTINE 3 ZJ0I.

1.

ROUTINE®S FUNCTION.

1.1« Type. A FORTRAN exponentiating routine, It accepts an
argument set comprising a complex and a fixed=point argument,
and returns a compiex result,

1.2, Purpose. To accept calis by value for 2T70I., , generated by
FORTRAN programs which raise complex quantities to fixed=point

exponents,
2« MFTHOD,
Let b be the base and p(20) the exponent, If p has a binary
representation 000.,:0iln)iln=-1).+.i0(1)i(0) where each {i(})(n<)<n)
is 0 or 1, then
p = ((0) « 29 & j(1%e 2% #,.,..%jln) , 2 **¥ pn ,
and n = [109(2)p] = greatest integer not exceeding t0g(2)¥p. Then
b ¥F¥ n = Prod (b *% 2 %% 1 3 Q0€)1<r K i€()) = 13 .
The numbers b = b2%¥X0  , (H2 , DY ,,.09 D¥¥2¥¥n 3re generated by
successive squaringsy and the coefficlents ((0)ye.e9 iln) are
obtained as sign bits of successive circutlar right shifts of p
Wwithin the computer, A running product (s formed during the
computation, sSo that smaller powers of b may be discarded. Thus,
the computation becomes an jteration of the atgorithm
b ¥%¥ p = 1 if p=0
b ¥ p = (b2) *¥ p/?2 [f p20 and p is even
b ¥ p = b.(b2) ** (p-1)/2 if p20 and p is odd
Upen entry, if the exponent p is necativey, p is replaced by =p and a
sign flag is set, b¥%*p is computed according to this atgorithm, and
if the sign flag was set, the result is reciprocatedy, before being
returned to the catling program,
The input range is the collection of pairs of bases b and exponents
p such that b is non-zero if p Is negative, both arguments are
definite and in-range, and the result is in-range.,
3. ERROR ANALYSIS - not applicable,
&, EFFECT OF ARGUMENY ERROR,
If a small error e® occurs in the complex base by the error in the
result is given approximately by p ¥ b¥¥{p=1) * e°*, If e* s
significant, the absolute vatue of the error in the result is less
than or equat to
Ipl ¥ (Ibl & Ib + e®()*¥({p=1) * je*) .
60498200 C
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APPENDIX A = CLASSIFICATION OF ROUTINESS

The Mathematical
fotlowing criteria.
the name of the SCCPE deck conrcerned.

the name ot the routine®s entry point.

Routinet
Fntry?
Caltse
Checking?
Argument?

Pesul t?
‘Functlion?

ALOG

ATAN
ATAN?

ATANH
ccos
CEXP
CLOG
cos
Coso
cosH
CSIN
CSQRY

DACOS
DASIN
DATAN
DATAN?
DCOSH
DEXP
nLOG
LOG1D
DMOD
DMOD.
neos

- 156

by name or by value,

Library

routines

are classified

of arguments by the routine,
the type of arguments to the routine,

the type of the result (or results),
whether an ext2rnal (Ext) or

Lotry,
ALOG

ALOGIN
ATAN
ATAN?
ATAN?,
ATANH
CCOS
CEXP
CLOG
cos
cOSD
COSH
CSIN
CSQRY

TACOS
DASIN
DATAN
DATANZ2
DCOSH
DEXP
DLOG
DLOGLN
DMOD
DMOD,
BCOS

FL
FI
D
c
A

(U I LI T

floating=-point
fixed=point

doubie=-precision

complex

any

Calis. Checking. Argurent,
Name Yas FL

Name Yes FL

Name Yes FL

Name Yas {(FLyFL)
Vatlue Yes (FLLFL)
Name Yes FL

Name Yes c

Name Yes C

Name Yes C

Name Yes FL

Name Yes FL

Name Yes FL

Name Yes C

Name Yes C

Name Yes 0

Name Yes 0

Name Yes D

Name Yes (D, D)
Name Yes D

Name Yes D

Name Yes 0

Nanme Yes D

Name Yes (0, D)
Value No D,
Name Yes D

Result.,
FL

FL

FL

FL

FL

FL

c

c

c
FL

"
r

(=R leNoleRoNeNeNeRo e Oﬁr‘!

according

to the

intrinsic (Int) function.

Eunction,

Ext
Ext
Ext
Ext
Ext

Ext

Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext

Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ex?t
Ext
Ext
Ext
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Poytines, Epiry.

DSIN
DSINH
NSQRT
DTAN
DYANH
DTON*
DYoI*
nToxX*
DTNnZ*
ERF
ERFC
EXP
ITOD*
IToJ®
ITOX*
ITOZ*
SINCOS.

SIND
SINH
SARTY

TAN
TAND
TANH
XTOD¥*
XTOI*
XToy#*
XYoz*
Zrni+
RANF

RANSET
AND
CoMPL
LOCF
MASK
COR
SHIFY
XOR
COUNT
ARS

60498200 C

DSIN
DSINH
DSQRY
DTAN
DTANH
DT0D%
DTOI¢
nDTOXS
0T0Z¢
ERF
ERFC
EXP
ITOD®
IT0J%
ITOXS
ITOZ%
SIN
cos
SIN.
€O0S.
SIND
S INH
SQRT
SORT,
TAN
TAND
TANH
XT0D%
XTO0T¢
XYOVg
XTOZ$
ZT0I%
RANF
RANGET
RANSET
AND
coMPL
LOCF
MASK
OR
SHIFTY
XO0rR
COUNT
ABS
TABS

Calis,

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Vatue
Vatue
Name
Name
Name
Vatue
Name
Name
Name
Name
Name
Name
Name
Name
Name

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name

Checkipng. Argument.

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yeas
Yes
Yas
Yes
Yes
Yas
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yas
Yes
Yes
Yes
No

No

No

No

No

No

Yes
No

No

No

No

No

QOO

(D, D)
(D, FI
(D,FL)
(D, C)
FL

FL

FL
(FI,D?
(FI,FI)
(FI\FL)
(FI,C)
FL

FL

FL

FL

FL

FL

FL

FL

FL

FL

FL
(FL,D)
(FL,FI)
(FLFUL)
{FL,C)
(CH,FI)
A

FL

FL
(A’A’oo-’
A

A

FI
(A,A’i..,
(A,FT)
(A’Agooo’
A

FL

FI

Result., Eunctions
D Ext
D Ext
3] Ext
0 Ext
D Ext
D -

D -

D -

c -
FL Ext
FL Ext
FL Ext
D -
FI -
FL -

C -
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
FL Ext
D -
FL -
FL -

C -
c -
FL Ext
- Subroutine
- Subroutine
A Int
A Int
FI Int
A Int
A Int
A Int
A Ext
FI Int
FL Int
FY
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Roytines

ATIMAG
AINT
AMAXD
AMAXL
AMING
AMING
AMOD
CMPLX
CONJG
DABS
DALE
DAR,!
DMAXY
DMINL
DSIGN
FLOAT
IDIM
INY

ISIGN

MAXD
MAX 1
MIND
MINL
MON
REAL

ACOSIN.

ALOG.

ATAN,
ATANH,
CA8S,

CCOS.
CEXP,
CLOG.
CO0S=SIN
CSINe
CSNRT.,

J 158

Enicys

ATMAG
AINT
AMAXO
AMAX1
AMIND
AMTIN1
AMOD
CMPLX
CONJG
DABS
DBLE
OIM
DMA XY
OMING
DSIGN
FLOAT
IDIM
INT
IFIX
IDINT
ISIGN
SIGN
MAX9
MAX1
MIND
MINt
MOD
REAL
SNGL
ACOS
ASIN
ACOS.
ASIN,
ALOG.
ALOG1D.
ATAN,
ATANH,
CABS
CABS,
CCOS.
CEXP.
GCLOG.
COS.SIN
CSIN.
CSQRT,

Gallsa

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name

Name

Name
Name
Name
Name
Name
Name

Name

Name

Value
Vatue
Vaiue
Vafue
Vatue
Value
Name

Vatue
Value
Valtlue
Vatue
Vatue
Value
Vatlue

Checkings Argument,

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

No

N>
No
No
No
No
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yas
Yes
No

No

Yas
No

C

FL
(FIgFTyses)
(FLyFLyosa)
(FIsFTreesd
(FLeFLyono)
{FLLFL)
(FLyFL)

C

D

FL

(FLoFL)
(D’D’ooo’
(ByDy o)
{0,D)

FI

(FILFD)

FL

(FILFI)
(FL,FL)
(FIgFIgeeo!?
(FLyFLyseo)
(FIyFIynesed
(FLeaFLyone)
(FIL,FI)

C

0

FL

FL

FL

FL

FL

FL

FL

FL

HOMNOOOOOOOO

Resull, Euncliopa

F1
FL
FI
FI
FI
FI
FI
FL
FL
FL
FL
FL
FL
FL
FL
FL
FL
FL
FL
c
c
c
(FL,FL)
c
c

Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Int
Iint
Int

Int

Int
Int
Int
Int
Int
Int

Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext
Ext
Helper
Ext
Ext.
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Boutine.
DASNCS,

DATAN.
DAY ANZ2,
NEXP,
DHY®P,

DLNLOG.
DSNCOS,

DSQRT.
DYAN,
DTANH,
nron,
DT0I.
DTOX.
nYoZz,
FRF,

EXP.
HYP,

HYPERS,
IToD,
IT0J.
ITOX,.
ITDZ,.
SINCSD.

TAN,

TAND,
TANH,.
XY00,
XTO0TI,
XTO0VY,
XT07e
2T01.
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Entry,

DACOS.
DASIN,
DATAN.,
DATANZ,
DEXP,
NCOSH.
DSINH,
DLOG,
DLOGL N,
DSIN.
DCOoS.
DSQRT,
DYAN,
DTANH,
0YO0D,
DT0I.
DTOX.
DY0Z.
ERF
ERFC,
EXP.
COSH.
SINH.
HYPERB.
IT00.
IT0J.
ITOX.
IT0Z,.
cosSD.
SIND.
TAN,
TAND.
TANH.
XTOD,
XTO0TI.
XYOovY,
XT0Z.
ZY0T.

Calls,

Vatue
Vatue
Vatue
Value
Vatue
Vatue
Vatue
Vatue
Vatue
Vajue
Vatue
Vatue
Value
Value
Vatlue
Value
Vatue
Vatue
Value
Value
Vatue
Vatue
Vatue
Vatue
Vatue
Vatue
Vatue
Vatue
Value
Vatue
Vatue
Vatue
Vatue
Vatue
Vatue
Vatue
Vatlue
Vatue

Checkings Acaument,

Yas
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
Yes
Yes
Yes
No
No
No
No
Yeas
Yes
Yes
Yes
Yas
No
No
Yes
No
No
Yas
Yas
Yes
Yes
Yes
No
Yes
No
No
No

(D, D)

o B B oo B vl e R M e N

{D,0)
(D,FI)
(D, FL)
(D, C)
FL

FL

FL

FL

FL

FL
(FI,D)
(FI,FI)
(FI,FL)
(FI,CY
FL

FL

FL

FL

FL
(FL,D)
(FLL,FT)
(FL,FL)
(FL,C)
{CyFI)

GUUOOUODODUUDUDUDOD O E
[

FL
(FL,FL)
D
FI
FL
c
FL
FL
FL
FL
FL
0
FL
FL
c
c
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APPENDIX 8 = ERROR_RECOVERY. _

A1t routines In the FORTRAN common. library checking arguments and
issuing error messages allow for standard and non-standard error
recovery, as described in the FORTRAN Extended Version 4 Reference
Manuatl. Routinet the name of the 1oader deck concerned, The
structure of these routines satisflest

Word 1% VFD 42/74.<routine®s name>, 18/< relative position of entry

point>

When executing under ftraceback mode, register A0 holds the field
fength when in the main program, and the first word address of the
parameter 1ist In the previous call, otherwise. In normal execution
each routine must save the contents of Al before using this register,
and before catlling any other routine, AD*s contents must be restored
upon return to the calting routine,

The symbols SYSARG, and SYSERR, are two entry points in the FORTRAN
common tibrary utility package FORSYSs « A calt at  SYSARGe with a
“pbad™ argument (j.e.s negative, zero, infinite or indefinite) in X1
witl return with X2 holding the address of the text of an apopropriate
error message. A calt to SYSERR. with an error number In X1 and the
addrass of a diagnostic message in X2 will resuit in the printing of

"the diagnostic message and a traceback 1listing, provided that the
first two words of each routine are as above, the return Jump to
SYSERR, Is in the upper half of a word, and the lower 18 bits contains
a pointer from word i1 to the return jump.

The sequence of events on executing math (tibrary routines which
issue diagnostic messages [s?

{a.) Enter routine.

(b.}? Check arguments. If¥ wvatids compute resul?t and return
through entry point, {Some routines also check the result
before return.?y 1t invalidy go to (cCa).

(c.) Enter contents of register A0 in TEMPAO, and enter the FWA
of the parameter 1list (now in Al) into AD .

{de) Call SYSARGe to obtain the address of an error message In
X2 3 1if the argument is infinite or indefinite (or zero or
negative)? in this casey, go to {f.).

{es) Otherwise, enter ¢the address of an appropriate error
message directly into register X2 .

(t.,) Enter the error number into X1 . (See the FORTRAN Extended
Reference Manuatl.,) (Step (f.) may precede step (del,)

{9.) Return Jump to SYSERR, to initiate error actions. (Lower
part of RJ word = trace pointer.) If non-standard error
recovery is specified through a previous call to SYSTEMC ,
transfer will return to the supplied recovery routine. If
standard error was inhibited, the job aborts. Otheruise,
control will return to the catiing routine, at step (h.).

(h.) The appropriate indefinite or infinite gquantity is entereaed
into X6 4, and the contents of A0 are restored from
TEMPAD, .

{le) Return through the entry point.
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A 1ist

of error numbers and diagnostic messages is given in the

FORTRAN Extended Reference Manual,

As the first routines to be rewritten in a oproject to implement
fut!l error checking in all routines, some routines (fisted in Appendix
A) now detect errors and issue messages for aill bad arguments passed

to them,

These routines call new routines SYS=AID or SYS=1ST {(at

entry points SYSAID. or SYS1ST. , respectively) for error processing,
The sequence of events on executing these routines is?

{3.)
{b.)

{c.)

(de)

{e.}

(.

(g.)

Enter routine,
Check arguments. If wvatlids compute result and return
through entry point, (Some routines also check the result
before return.) If invalid, go to (c.),
Set B2 with pointers indicating error number, partial
message, and register residence of bad argument, The
format is given in the method description of routine
SYS=1ST . The partial message will be ignored if the
argument is inftinite or indefjinjte,
Set wup the arguments in registers X1 , X2 » X3 and X& {or
fust X1 , X2 if one argument) according to the rules in
section III of the Introduction.
Peturn Y ump to SYS1ST. or SYSAID, to initiate error
processing. SYSAID must be chosen if there is more than
one argument, The return Jump must be in the upper 30 bits
of a words The next 12 bits are zero, and the next 18 bits
must include a pointer to a trace word, as described above,
Testing commences, A parameter list is built up from
valtues n X1 , X2 ¢ X3 5 X4 to atlow non-standard error
recovery., If the routine catling the routine calling
SYS=ATIN made this call in the format

+ RJ =X<routine>

- VFD 3071
go to sStep g9 below. Otherwise, set A0 to point to the
reconstructed parameter list, set X1 to the error number,
sat X2 to the first word address of the constructed
message, then execute the communication cell SYSAID.
after traceback linkage information has been insertad in
its tower 18 bits,
Return #IN0, in registers X6 and X7 o and restore registers
AD 4 X1 4, X2 tand X3 and X4 4, if entry was to SYS=AID).

S = J746976199335419 ¥ 10%¥a3

60498200 C



APPENDIX G = JIMING OF ROUTINES.

The times 11isted below were determined empirically, and arguments to
routines were chosen as many as practicable to cover all the possibilities
for times to each routine. CYBER 76 times were obtained through the machine
instruction 01610 which accesses a hardware clock, while CYBER 724 73 and 74
times were obtained by observing variations in speed of two equivatent 1oops
in central memory, one of which catlied the routine being timed. These
variations in speed mnere obtained through use of a system=-maintained real-
time ctock which is synchronized with a harduare clock on one of the data
channets, These times do not include time for setting up arguments and
parameter 1jsts, but measure from the time a return-jump to the routine is
issued, to the time that the next instruction in sequence is issued. AR
times given are in minor cycles (or ctock-periods). On CYBER 72, 73 and 7%,
1 minor cycle = 100 nanoseconds, while on CYBER 76, 1 clock=-period = 27.5
nanoseconds. On CYBER 171, 172 and 173, 1 minor cycle = 50 nanosecondsS.

Certain facts shoulid be noteds. On CYBER 76, a return jump may be delayed
in exacution if the instruction stack control has requested one or more
instruction words that have not arrjved at the Instruction stack. Thus,
CYRE? 76 routine times depend on how the routine is calted, On CY3ER 72 and
73, a floating instruction executes at teast 48 minor cycles faster [f either
of the operands is zeros infinite or jndefinite. If in the course of
evatuating an algorithm for computation of a function, a routine happens *to
produce an intermediate zero result, it will execute faster by at least kS8
minor cycles if this intermediate resulit 1is combined arithmetically with
anything else. The number of possibilities for this case is too large for
enumeration in this appendix.

Some routines will naturally cali others, but the time tisted under each

routine gonly the time spent ip that routipes and does not include time spent
in return Jumps to and execution of other routines. To find total execution
time ir a routine, one must add tires for execution at entry points with

araquments listed after an "%,

Timings are supplied here for valid argument sets onty. Take the time for
the first aljternative listed which covers the argument concerned.

] 60498200 C
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Routine
Entry Points
Argquments

KTimes at Entry Points {argument)

Times for CYBER

173 (£ 73

ThL

76

M U S AR WIS A A A AN R AP R A YD D G AP AP D D D D A A D S Gn A G GG N TS AR D R D WA WS AR D A RN W WD » S

ABS
A3s (Any vatlid)

ACOSIN,
ACOS (x)
x vatld
£ ACOS. (x)
ASIN (x) ‘
x vallid
: L ASIN. €x}
ACOS. (x)
valld and?
= 0. )
= 1.
= '1.
in {(=.54.5)
not in (‘05,05” time
asb*n where n is
the loop count, as defined
in the ACOSIN, description.
a =
b =
x in (‘1.9"5)’
add to {ix] timet
ASIN, (x)
valid andt
0.
1.
-1
in (‘05’-5’
Ix! in (05910" time
= a*b¥*n,y, where n is
defined in the ACOSIN,
description,
a =
b =

X X x X X X

X X X X X
Wouon

AIMAG
AIMAG (Any vatid)

AINT
AINT (Any valid)

60498200 C

100 79

56

59

812 761

306 234

307 237
9540 897

1138
114

10

- 823 763

292 220
293 219
958 904

1170

115

10} 81

121 98

58

35

159
127
127
159

207
18

153
120
120
152

226

15

54

€6

66

&7

&1

119
8%
87

116

147
12

123
87
90

126

168
12

62

60

163



' Rout

ine

Entry Points

Arquments ,
LTimes at Entry Poirits (argument)
‘ 173

Times for CYBER

72

73

4

76

ALOG

- ALOGLIN (x)

164

ALOG

L ALOG10. (Xx)
(x) ,
L ALOG. tx)

ALOG10. (x)

x infinite or indefinite

L SYSAID. (Append. B)
8.

8% SYSA1D. (Append. B)
x vatidyx<0, '

£ SYSAID., (Append. B)

- x validy x = y¥2%%n,
n Integral, 1€y<2, and

1€y<1.1072 . 880

 1.1077<y<1,3572 860

ALOG.

1.3572<y<1.6072 ' 861

1.6072%y<1.8572 , 860
148572¢y<?2 ‘ 999
(x) '

x intinite or indefinite

L SYSAID. (Append. B)
0.

£ SYSAID. (Append. 8)
x vatidex>0

L SYSAID. (Append. B8)
X validex= y*2%¥*n, n integral
1.€y<1.8572 9% 1
1.8572«2 , 1072

67
67

253
266
285

892
892

891

892

1012

298
311

330

814
933

42

40

192
199
212

179
176
177
179
212

176

183

192

197
218

46
L9

110

120

129

129
129
128
129
141

97

112

117

119
143

60498200 C

S



N

ETimes at Entry Points (argument)

72

73

Times for CYBER

T4

76

x{n))

x{n})

x{nl)

Routine
Entry Points
Arguments
AMA XY
AMAXS 'X(i,vooo!
n=2
n=3
€ach add,
AMaxs
AMAXY (x(1Vsceee
n=2
each add.
AMING
AMING ((x(1))
ceosy xX(N)
n=2
n=3 .
each add.
AMING
AMINY (X(I’vooo'
n=2
n=2
n=4
each add.
AMOD
v£0
AND
AND (X(i”ooo’ x{n))
n=2
r=3
n=4
each add.

60498200 C

240
338
99

232
110

237
338
100

227
332
436
105

2438

217
282
347

65

178
250
73

178
83

179
252
72

179
252
328

78

247

163
212
262

49

121
159

&2

106
L3

112
148
.3

108
163
189

44

111

193
112
133

22

112
1490
32

106

34

105
1123
32

105
142
172

34

103
118
161

19

165



Routine
Entry Points
Arguments

£Times at Entry Points (argument)

173

72

73

Times for CYBER

D DA WD AP AP AR G A AN YD WS AR AN A AD WD AD D A A B D AP VDA W AW WD AD W WD UR AP AR AR D D WS DU WSS AP A WD WP D WD A APPSR DA WD AP D AD WR W W W W an

ATAN
ATAN {x)
_ £ ATAN. (x)
ATAN, (x}
x vatld {x]<1i.
x valid Ixi21.

ATAN?
' ATANZ (yex)
"% ATAN2. (x)
ATANZ., (yex)
{yeyx) valid and <see
X=E’Y¢U.
x£0,y=0
{x{>i{yi>0
Iyi2ixi>0

ATANH,
ATANH, (x)
x valid andt
x=0 :
2+ 75€x<1.5
x21e%

CARS,
CABS (2)
z valid
£ CA3S. (2)
CABS. (x*j¥y)
x+i*y valid
and x=y=0,
Xx£t0s Or y£0s o
special case. (See
routine®s description)
and otherwise vatid

CCosS
CCos (z)
z valid
£ HYPERB. (im(2)
£ COS.SIN (re{(z))
lim(2) > 741.67
£ SYSERR., (Append.
166

8)

1059
1092

8938
981
1167
1165

682
qus

27%

715
715

‘546

468

66

756
784

78

850
835

1085 -

1077

105

225

786
684

436

348

74 76

32 53
187 181
203 201

53 78
266 190
276 187
249 161
281 172
203

202

38 43
138 85
283 197
283 181
180 119
363 131
60498200 C
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N’

N

N

r2

327

356

La7

262

291
163

253

73

279

273
403

225

213
131

199

Times for CYBER

74

78

158

155

74

118

102

95

1
1

76

71

20
15

60

76
69

50

Routlne
Entry Points
Arguments :
8Times at Entry Points (argument)
CrosS.
CC0S. (2)
z valid :
& HYPERB., (im(z))
& COS.SIN (ref{z))
CEXP
CEXP (2)
fre(z)i> T41.67
' £ SYSERR, (Append, 8)
z vatid . ,
§ EXP, (re(z)) & COS.SIN (im(2))
CEXP,
CEXP. (2}
z valid
8 EXP, (re(z)) 8 GCOS.SIN (im(z))
CcLOG
CLOG (z2)
z=0.
£ SYSARG= SYSERR, (Append. B)
z valid
£ CLOG. (2V
CLOG,.
CLOG, (z)
z valid
£ ATAN2, (Uim(z), re(z)))
£ CABS. (z) & ALO%G., (i1z1)
CMPLX

CMPLY (xXsv)
Xsy valid

COMPL
COMPL (x)

60498200 C

126

83

103

69

o4

55

167

84

54



Routine
Entry Points
Arquments

£Times a3t Entry Points (argusent)

173

Times for CYBER

72

73

D AN WS AR WS A W W D WD S S D D R D YD R A R A R D D AR D W G D G A W G AR D WS D D AR AP D DA DA DD W W WP A WP AP ED WD AP

CONJG
CONJG ()
z valid

G0S. == see SINCOSe
CNSHe == see HYP,

COS=SIN
COS.SIN (x)

Ixt > pi*2%s
Ix1zy{mod?pi),
0<y<?2pi B<y<pi/L
pi/bsy<pi/?
0i/2<y<3pi/tL
IpiZu<cyspi
pi<y<Spi/b
Spi/hecy€3pi/?
Ipir2<y<?pirsL
ToiZb<y<2pi

168

1463
1715
1716
1734

1693

128

307

1561
1880
1879
1885
1884
1886
1887
1885

101

244

1380
1649

1649

1655
1657
1659
1658
1635

74 76
58 68
igs8 an
242 215
2869 234
269 234
282 245
323 245
319 24h
319 244
267 232
60498200 C
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Routine
Entry Points

Arguments
LTimes at Entry Points (argument) Times for CYBER
: 173 72 73 (47 76
COUNT
COUNT (x) V 148 133 49 62
CSIN
CSIN (2)
jret(z)}] > pj*2ss 386 295 162 12%
£ COS.SIN (ref(z))
£ SYSERR. (Append. B8)
fim(2)) > 741,67 470 362 221 136
& COS.SIN (re(z))
£ SYSERR. (Append., 8)
z valid ‘ 561 436 181 123
§ COS.SIN (ref(z))
E HYPERB. (im(2))
CSIN.
CSIN. (2}
z vatid 315 268 77 79
£ COS.SIN (re(z))
% HYPERB. (im(z))
CSORY
CSQARY (z2?
z vatid 153 115 93 67
& CSARYT. (z2V
CSORT,
CSQRrRT. (2
z=0,. 287 219 103 58
§ CABS. (0.)
€ SORT, (0,)
z valid, 2z%0 477 276 265 99
£ CABS, (2)
£ SORT, (1/72C1z1 ¢ jre(2¥1V)
QARS
DABS (x)

x valid 144 111 70 72

60498200 C 169



~ Routine
Entry Points

Arguments
LTimes at Entry Points largument) Times for CYBER
173 72 73 T4 76
DASNCS.
NACDS.
N<x<. 09375 3344 29
«10275¢x< , 7071 4844 853
«701<¢<x<¢,9G56 4323 841
+2956< x<1 4228 756
DASTIN,
N<x<,N3375 2260 49?2
«N9375<x<,7071 4756 814
+701<x<4,9895% 4779 g82g

«935H<x<y 4197 736

170 : 60498200 C



DATAN? (y.x}
, vox valide, and {y,x)#£(8,0)
& DATANZ2, ((ysx))

NATANZ.
DATAN? (yex)
where both are vatid, and
{yex¥2(0,0)y and?
fvl € 1Ix]
L DATCOM. (see routine® description)
Tyl > Ixi
& DATCOM, {see routine® description)

DATYCOM,
DATCOMs (ysx) (from DATAN?,. )

argument set vsfidated.s If nr
is nearest integer to
8*min(Ix]ylylV/max{ixlislyl)s
thent
n=0
nt0 and min{ixlyly!V-n/8*max(ix},iyid%0
otharwise

D TN ]

y {from DATAN, ), vatid.
If n is nearest integer to
¥y, thent
n=9
n¥N and {y - n/8:#D
otherwise

60498200 C

72

144

320

124

276

283

3150
27325
3725

2736
3356
1212

73

130

74

134

46

146

175

521
664
663

451
587
307

Times for CYBEP

T4

L2

&0

73

66

65

71

337
417
417

287
367
200

171

76

143

Routine
EFntry Points
Arguments
L£Times at Entry Points {argument)
173
DATAN
DATAN (x)
x valid
£ DATAN., (x)
NDAT AN,
OATAN,
x validy andt
tx] < 1.
£ DTN, (see routine® description)
'X' > 1.
& DATCOM., (see routine® description)
DATAN2



CYBER

Routine
Entry Points
Arguments
LTimes at Entry Points {argument) Times for
172 72 73
naLE
DBLE {x)
x valid 938 78
Decos
DCOS {(x)
x valid 144 121
£ DCOS, (x) '
DCOSH
DCOSH (X) ,
x valid 130
£ DCOSH. (x)
DEULER.,
DEULER,
(See description of routine DEULER. ) 3719
DEXP
NEXP (x)
x valid 117
£ DEXPe{x)
NEXP,
DEXP., (x}
x valld and?
x<=H43 ,2405835596293247133191409 515
8 DEULER,
x otherwiset ’ 378
£ DEULER,

172

74 76
52 54
71 87
52 %5
623 361
45 49
163 107
147 180
60498200 C
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N

Entry Points (argument)

72

73

Times for CYBER

T4

76

Routine
Fntry Points
Argumants
£Times at
DHYP

DCOSH.,. )
x valid ands

abs{x)>42,360630379701426385855602079¢

& DEULER.,
abs{x)¥/10g 2 2
L DEULER,
abs{xY/tlog 2 2>
R DEULER.
x in [-1/72 log
£ DEULER.
x otherwise
& DEULER.
DSTNH, (x}
x valid and?

482
241

29172 log 21t

3absi{x)>42.360630379701426385855602079¢

£ DEULER.
abs(x)/tog 2 2

& DEULER.,
abs{x)/log 2 2

& DEULER,
x in [=-1/2 log

L DEULER,
x otherwise

& DEULER,

NIM

DIM (xyy)
xey valid

60498200 C

48t
264¢

24172 l1og 213

191

560
546
658
233

719

575
515
625
155

720

150

215
182
203
136

229

202
160
206

94

226

84

127
101
125

86

132

119
93
136

54

134

96

173



Routine
Entry Points
Arguments

ETimes at Entry Points (argument)

173

Times for CYBER

72

73

D Ay AR DA R AR W D AP RS AR D NS AP AR A D ED AR DD AD AR G R AR R AR AR D A W e AP D M A W G DD R G ED WR AP A WD SR WD G DD MDA AD AL G AR Wh WD D D W D W Ay S us

DNLOG .

DLOGLIN, 1{x)
x={2%%¥n) *y
1/72%y< 1/72%%,5
172%% ,B5cy<y

DLOG. (x)
X=(2%¥n) ¥y
1728y<c 1/72%%,5
172%%,5<y<1

DLOG
DLOG (x)
x=0.
L& SYSARGe SYSERR,
x<0
£ SYSARGe SYSERR,
x valid
£ DLOG. {(x)
pLOG1Y
DLOGLI® (x)
x=0,
L SYSARGe SYSERR,
Xy x<D :
8 SYSARGe SYSERR,.
x valid
L DLOG10. (x)
DMAX1
DMAXL (x(1),x(2))
DMINY
DMINL (x(1),x(2)}
DMOD
DMOD (x,vy)
X va!ld, y=0
£ SYSARGe SYSERR,
{xyy) valid
£ DOMO0D., (X,V’
DMON,

DMON, (X'V’

Xey Vvalidyy#0 Ix/yi>298

Ix/yi2288
Ix/ylc?ns

174

(Append.

fAppend,

(Append.

{Append.

(Append.

B)

B) .

o))
B)

8)

7104
6962

6797
£636

2007

1426

841

7931
77939

7576
7444

284
332
150

284
333
177
989
863

332

266

63456
6802

6631
6487

215
251

96

216

255

144

675

64b

243

203

74 76
1220 761
1221 762
1158 731
1144 731

136 B3
142 105
101 - 58
13290 89
2186 105
a7 68
328 135
311 134
137 77
3 97
582
431
281
60498200 C
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Rou tine
Entry Points
Arguments

ETimes at Entry Points (argument)

173

Times for CYBER

72

73

T4

76

NSIGN
NSIGN (xey)
Xe Yy any

OSIN
NSTN (x)
x valid
£ DSINe (x)

DSINH
DSINH (x)
x valld
& DSINH. (x)}

DSNCOS.,

NCOS. {x)
Ix|>0] .29%
x=y{mod2pidy 0<y<2ni
05y<pl 74,
Di/bSy<pir/2,
pi/’2<y<3Ipi’h,
Ipi/L<y<piy
pi<y<Spirst,
Spifa<€y< 3pir2,
Ipi/2<yc Tpi/k
Toi7k€y<?2pi

DSIN. ()
Ix{>pi .29

x=y{mod?pi), 0<y<?pi,

0<y<pli 74,
pi/Zu<y<pi’2,
pL/2€y<3pill,
Ipi/Zucy<piy
0ify<Spi/l,
SpiZu€yc 3pi/2,.
Ioir2€y<c Toi/h
Tepi/7t<y<2pi

60498200 C

4671
5140
5140
5059

5063

£750
5078
5083
5139

51414

205

162

605

5129
5703
5703
5679
5658
5703
5722
5677

624

5093
5695
5689
5715
5715
5689
5687
5718

157

102

124

501

4475
4971
4971
4904
4923
4988
4371
4904

511

446
5933
4904
4971
49890
4933
4904
4989

81

83

52

181

778
8LG
846
851
920
908
999
8590

181

786
867
864
856
924
934
935
853

101

76

%3

129
516
563
563
558
558
563

563
563

137

520
566
571
575
571
566
566
571

175



282

140

73

234

107

124

Times for CYBER
72

Routine
Entry Points
Arqguments
£Times at Entry Points (argument)
' 173
nNSNRY
DSART (x)
%<0,
& SYSARG, SYSERR. (Appenrd.
x vatlid }
£ DSQRT., {(x)
NSORY.
DSART, (x)
x=0s
X=y¥2¥¥n
n odd 745
n even 746
DTAN,
NTAN,
x valid and!?
x=0 2371
pi/h<x<pi/sn 2247
pi/b<x<3pi/h 3663
Api74<x<S5pi/L, etc., 3474
Spi/he<x<Tpnilb, etc., 3666
DYANM
DTANH (x)
x valid
£ DTANH, (x)
NDTANH,

DTANH, (x)
x valid and?
Ix)<1782
8 DEULER, (x)
Ix§2 321
“If x (or 2x)=y+n*logl(2)y NO>4T?
8 DEULER. {2X)
otherwise?
£ DEULER, (2x)

176

765

214
619

1055

74 76
125 85
92 60
228
231
579
579
639
633
638
129 42
217 134
103 62
163 122
311 171
60498200 C
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Routine
Entry Points
Arguments
E£Times at Entry Points {(argument)

173

Times for CYBER

72

73

B 2 A L L R A R A A b A B A & & L E A A & L X I 2 1 2 R X 2 R R T ¥ R T ¥ W F R PP P E T PR Y AP R R AR Y N R gy

A

pYOO*
DTODS (xsvy)
(Bey0e)
L SYSERR. (Append. 8B)
(0,y)y to y>0
N~ (0ev)y to vy<i
£ SYSERR. (Append. B)

x<0
N~ & SYSERR. (Append. B)
(xy,y) vatid
£ OLOG. (x)
~— £ DEXP. (v*i10g x}
DYON,.
N DT0OD. (X'V’
(Dyydy y>10
x>0y xoy valid
~—r £ DLOG. (x)
£ DEXP., (y*log x)
DT01*
DTOI$ (xyn)
' (00'0,
N £ SYSERR,
(Neoen) yn<h :
£ SYSERR, (Append. B)
~— (Ceen)en>0 ‘
x>0
£ OT0I. (x¢n)
N
nTol.
DTNI. (xon?
~— if n<0, add, and replace
n with =-n
(XQU’
N (xe1)
(XQZ’
if n>25time=t, atlid+b (1)<
R 10g{2In€t€a(2)7+b(2)10g(2)n
' a(l)=
a(2y=
N b(1)=
b(2)=
-
\/

" 60498200 C

114
517

4o
418

230
264

467

82
364
672

380
69.3
292.

5380

341

387
340

318

740

63
466

312
311

188
231

415

65
301
575

316
14,5
257.

489

74 76
192 158
153 2n8
195 152
169 130
236 13x8

66 62
112 79
189 136
19% 142
123 192
119 69
114 73

51 51
126 90
190 - 128

227.9 94.3
111.6 195
38.8 2&.2
41.9 33.6
177



Routine
Entry Points
Arquments

ETimes at Entry Points (argument)

72

73

Times for CYBER

YD AR D A D M U A D AR AP D R AR P AR S AR D AR WD WA N D Y W A R b OB D D D AR WD YR A WD IS A W W AP G WS WD WD D A WD D AP W uR W W W

NTOX*
DYOXS (xyy)
0oy )
& SYSERR., (Append. B8}
(Desy) yy<«<O
lﬂ.,y) sy<l
£ SYSERR,
x<0
£ TSYSERR, (Appends. B)
{xsvy} valid,y, x>0
£ DLOG., (x)
8§ DEXP, (y¥*log 2)

NDTOX.
ODTOX. (X'Y,
(ﬂo’V’
(xevy) valid
£ DLOG. 1)
£ DEXP, (y¥log 2)

nroz»
NT02¢ (xs2)

(NegNatioled

£ SYSERR. (Append. 8)
x<{

£ SYSFERR, {Append. B)
{0.92)y RPel{z)20D

£ SYSERR. (Append. B)
(Ne92)y re{z)<0 inm(z) 20

& SYSERR. {Apprend. B8)
(0e92)y rel(z)<0 im{z)=D

L SYSERR, (Append. B)
{xs2) valid ~

£ ALOG. (X)

8 EXP, (ret(2z)*109 x)

L COS.SIN (im(z)*¥10og9 x)

nTNZ.
DTNZ. (x42)
xX=0,
X9z valid, x#0

L ALOG, (Xx)
L EXP, (ret(2)*lo09 x)
X CO0S.SIN (im(z)*109 x)

178

426

299
426

383

708

95

4560

403
342

277

- 432

632

762

103
480

337

239
335

299

606

T4
415

311
263
211
312
312

636

81
k26

7 76
199 184
245 228
in7 178
176 145
236 158

59 54

8% 63
189 148
‘168 117
102 136
221 136
223 136 -
231 990

63 59
149 85
60498200 C
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N

Routine

Entry Points

- am D W w @

ERFC.

60498200 C

Arguments

ETimes at Entry Points {(argument)

Times for CYBER
72 73 74

76

S @ WA W WD B G G0 D A AT R AT AR N D W W WD 25 MD W NS WD TR G0 LD G AR S D WD 4 D T W 0D T OB OD R TR U AD KD A UD W A AR e A W ST

(x)
x€=5,625 or -jinf
=5 eH625¢x<=, 477
- 477<x< 0
x=0
Nex< 477
2UT7<x<5,625
x>5+625 or +¢inft

{x)

x€=5,625 or =inf
~GeH25<x<= o 477
- 4T7<x<h
x=0
Ne<x€, 477

b4 77<x%8
x> 8
x infinite

528
2094
1172

934
1172
30990

527

588
3155
1234

965
1234
3154

189
489
234
220
235
495
185

213
518
255
252
253
513

179



LTimes at Entry Points (argument)

Routine
Entry Points
Arguments
EXp
EXP (x)
£ EXP, (x)
EXP. (x,
x Infinite
§ SYSAID. (Append.
X Indefinite
£ SYSAID. (Append.
X Vvalidex>741,.,67
§ SYSAID. (Append,
x valid x2512.
x validyx<=675,84
£ SYSAID, (Append.
X vatidyx<=-512
x valid
FLOAT
FLOAT (x)
x valid
HYP,
COSH, {x)
x valid
Ix{<172 tog 2
x otherwise valid
SINH, {x)
x valid
Ix1<172 tog 2
x otherwise valid
COSH (x)
x valld
STNH (x)
x valid
HYPERB.

HYPERA3, {(x)
x validy {x]<.22
x vatide IX12.22
.S EXP. 1Ix)

IDIM

IDIM (x,vy?
(xyy) valid

180

89
B)

8)

8)

932

931
843

1296
1385

1325
1457

1649

Yimes for CYBER

72

D WS D AD G ER U AR WS WD R AR DA AP 4R T D

102

1772
398

163

73

34

268
201
304

864
2938

865
804

82

1313
1426

1351
1498
1495

1559

1540
311

127

7h 76
57 38
1490 89
103 58
155 97
184 130
157 119
182 1490
145 112
65 56
233 164
233 167
250 178
257 177
283 200
306 214
347 2865
136 95
85 193
60498200 C
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72

101

161

365
582

49%
322

695

598

146
457

73

81

125

337
483

451
163

584

£13

110
397

Times for CYBER

T4

59

75

164
166

109
128

238

264

78
98

76

56

96

132
123

173
92

914

125

b4
80

Routine
Entry Points
Arauments
KTimes at Entry Points (argument)
INT
IFIX (x)
x valld
INT
IDINT
ISIGN
ISIGN (x,y}
ITOD®
ITODS (nex)
(Ney0s)
& SYSERR. (Append,. 8)
{09xhsx<l
& SYSERR, (Appnend. B)
(Dex)eyx>0
n<{
% SYSERR. (Append. B8)
n>l, x*ltog n overflows
£ SYSERR. {(Append. B)
£ DLOG. (n}
(n.x) validy, n>0
£ DLOG. (n)
£ DEXP. (x*log n)
IY0D,
ITOD. {nyx)
(0e9x)
(neyx) vatidy, n>0
£ DLOG. (n)
8 DEXP, (x*1og n)
60498200 C

181



Routine
Entry Points
Arguments
tTimes at Entry Points {argument) Times for CYBER
172 72 73 74 76
ITOJ*
ITOJ4S (men)
£ IT0Je (myn)
IT0J.
1703, {men)
m¥en <2%8
(meDIym valid 181 95
(mey1dym valid 218 131
(ms2dem valid 283 139
if n>2,m>1, look at n in binary?s ’
for each %1 bit, add
for each 0 bit, add
182 60498200 C

N



Routine
Entry Points
Arguments

RTimes at Entry Points {argument)

72

73

Times for CYBER

T4h

76

P U ED D D AL IR D ARG AR UL AR D AR YD R D A D WD AR ND U R SRR D AR AR D WS AR R D ED UL R P S G A UL A A W R S WD AP Gh 4D D A AR UD WS G WD W W WS DD S A 4D W

ITOX*
ITOXS (nyx)

(0,0.)

8 SYSERR. (Append. B)
(Bexd)yx>0
(Byx)yx<0

£ SYSERR. (Append. B)
n<(

& SYSERR. (Append. B)
n>0, Ix*¥logn|2741.67

% ALOG. (n)

£ SYSERR., (Append. B)
(nex) vatid

2 ALOG. (n)

8 EXP, (x®*log n)

ITOX.
ITOX. (n,x'

181} QX,

(nsx} vatlid n>0
£ ALOG. (n)

{n,2) valid
& ALOG. (n)
£ EXP. (x*log n)

IY07Z¥*
ITDZ¢ (ny2)
(0e0.4i0.)
§ SYSERP., (Append. B)
(042)y ref(z) <0yim(z)=0
£ SYSERR. (Append. B)
(042)ere(z)>D
im(29=0 (0,2)4im(Zz)20,
£ SYSERR., (Append. B8)
re(z)<l (nygz)yn<g
£ SYSERR., (Append. B)
{ny2z) vatid
& ALOG, (n)
£ COS.SIN (im(z)*109 n)
£ EXP. (re(z)*loa n)

IT0Z.
ITOX. {nez)
£ XT0Ze (ny2)

60498200 C

389

352
346

289

459

315

113
215

113

376
395

238
376

316

632

267

313
268

223

354

237

85
185

85

291
287

187
291

241

515

84

175

114
178

126

2456

2u5

656

175

165
199

210
1865

164

211

42

158

208
149

102
122

95

62
64

129
120

91
120
104

139

24

183



Poutine
Entry Points
Arquments
L§Times at Entry Points {(argument) Times for CYBER
173 72 73 74 76
LOCF
LOCF (x) 72 69 46 49
MAX D
MAXD (X(i"'oto x{nl1)
ns2 ' 222 168 105 113
n=3 324 240 148 134
n=b 22 314 191 166
2ach sdditionat! argument 100 73 43 31
MAX 1
MNAX1 (x{1)a0ssy x{n))
n=2 249 187 111 111
r=3 357 270 157 161
n=& Le7 355 202 175
each additioral argument 110 83 L5 34
MASK
MASK (n) :
n>69 263 207 111 91
£ SYSERR,., (Append. B)
neQ 274 210 127 83
£ SYSERR. {(Append. B)
n valld 181 133 103 87
MIND
MING (X(i,voco' xin)} ’
n=2 228 169 105 192
n=3 328 2Lt 148 130
n=4 429 312 191 162
each additional argument 100 72 43 28
MIN1
MIN1 ‘X(l"ooay x{in))
n=2 262 182 110 197
n=3 3Iu7 259 155 137
n=h 454 337 199 171
each additionat argument 105 77 44 38
Mon
MOD (x,vy)
(xey) vwalid 3186 268 114 133

184 60498200 C
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Poutine
Fntry Points
Arguments
N fTimes at Entry Points (argument) Times for CYBER
173 72 73 T4 76
—
OR
‘ OP (X{1Vsesey xin))
N~ n=2 209 161 103 a8
: r=3 274 210 124 106
nz=h 335 258 145 130
N~ each additional! argument 53 48 21 20
RANF
S~ RANF {(anything) 189 165 63 89
RANGET (x) 96 79 67 66
x will be modifled
N’
RANSET
, RANSET (x) 176 138 89 82
N
REAL
REAL (u) »
N SNGL (u) 83 59 55 54
u valid
SHIFT
SHIFT (uyn)
n vatld - 128 104 60 86
N’
SINCOS,.
SIN x) 64 24 42
N £ SIN. ()
cos (x) 64 24 42
£ CO0S. (x)
N— SIN. (x)
x Infinite or indefinjite 169 115 75
£ SYSAID. {(Append., B)
~— x=0, 888 821 193 141
x validy ix}>pi*2%s 166 109 79
L SYSAID. (Append. B8)
— x valid, |x{<€pi*2%se 1283 1256 194 141
C0S.  (x)
x Infinite or indefinjte 169 115 75
N £ SYSAID. (Append. B)
= 0. 831 757 188 165
x valid {x|<pi¥2%s 1190 1230 188 178
N x valid {x|>pi*2es6 220 165
% SYSAID. f{Append,. B)
“
U
' 60498200 C 185



216

73

78

222

523
393

359

986

175

Times for CYBER
72

74

40

130

119
196

423

377

142

155

156
147
157

76

37

279

191
97

133

267

116

239

199

Routine
Entry Points
Arguments
LTimes at Entry Points f{argument)
173
SORY
SART (x)
£ SORT. (x)
SNPT,.  (x)
x infinite, indefinite or negative
§ SYSAID. (Append. B)
x valide.x#0 527
3. 244
SYS=AID
, SYSAID,
{1 in lonwer half of RJ word)
8§ SYSERR. (Append. 3)
{other than 1 in {ower haif of RJ word)
£ SYSERR. ({Append, B)
SYS=1ST
SYS1ST.
{1 in lower hatt
of RJ word
§ SYSERR. (Append. 8)
(other than 1 in
tower half of RJ word)
& SYSERR, (Append. 8)
TAN
TAN (x)
x valid, not an odd mutiple of pi7z2
§ TAN, (x)
TAN,
TAN. (x)
x=0 617
Ix]e227, x=n{pi/2Vsy, pi/b<x<pi/L
n=0 1065
n odd 1061
n even 1961
186

60498200 C
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(xsy¥x<0, x valid

£ SYSERR. (Append. B)
N~ X9y valid.x<0,y y¥logx>741.67

§ DLOG, (x)

% SYSERR. (Append. B)
~ y*logx<741.67

£ NLOG. ()

§ EXP. (y*log x)

SN’
XT0N,.
xXTon, {xXsv)
N~ x=0,
- (xyvy) valid, x#0
£ DLOG. 0
N & DEXP, (y*log x)

~—" 60498200 C

72

98

213
276
340
404

64

445

476
454

403

753

684

129
406

Times for

73

75

164
213
262
309

49

341

389
343

304

606

558

99
352

CYBER

T4

65

153

210

126

96
117
139
160

21

197

158
199

167

280

66
120

76

58

100
118
1y
156

19

147

204
147

Routine
Entry Points
Arguments
~ 8Times at Entry Points {argument)
173
N’
TANH
; TANH (x)
~ x valid
' £ TANH., 1x)
~ TANH,
TANH, {x)
x valid and?
~— Ix1<e55 - 812
«55¢|x{<17.1 373
‘ Ix{>17.1 388
S’
X0oR
XOR (X(1)4eees xX(n)}
~ n=2
n =3
‘ n =4
N n =5
each additional argument
XTON*
XTODE (xoy)
(Nay0.)
N % SYSERR. (Append. B8)
(Be9x) 9yx vatlid x>0
x<{
~— g SYSERR. (AD'OEndo 89

132

188

149

62
79

187



Routine

Entry Points
Arguments
£Times at Entry Points (argument)

173

Times for CYBEPR

72

73

74

76

XTO1®

XTOI$ (xen)
L XT0I, (txyn))

XT0I.

188

XTO0TY. (xyn)
x valid n vatide, n>0 when x=8
n=0 , ‘
n<0y,replace n by =-n and
x by 1/x, add?
n=1
n=2
n=3
n=k

60498200 C
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N’

Routine
Entry Points
Argquments

LiTimes at Entry Points (argument)

72

73

Times for CYBER

74

76

XYOov#
XTOYE (xev)
(0ey04)
& SYSERR. (Append. B)
(Dagx)yx valid,x>0
{(Basx)y X validyx<D
£ SYSERR. (Append. B)
Xey vatlid, x<0
£ SYSERR. (Apnend. B)
Xyy valid, x>0 valid, xz38
& ALOG, (x)
R EXP, (y*log x)

XTOY,
XTOY. (X'Z,
(0,yx) validy x>0
(xsy) validex#0
8 ALOG. (x)
& EXP, (y¥*log x)

XTQ7+*
XTOZE (xy2)
(0072’
z validyre(z)>0
z validy refz) <o
& SYSERR,. (Appaend. B8)
z validyre(z)=0
8 SYSERR. (Append. B8)
xXez valid, x<0
% SYSERR. (Append. B)
XeZ vatid,
x>0 re(z)*1og x »741.67
£ ALOG. (x)
£ SYSERR. (Append. B)
{xs2) valid, x20
& ALOG. (x)
§ COS.SIN (im(z)*109 x)
£ EXP, {re(z)*1og x)

XT07Z,
XT0Z. (Xyz’

‘009 z)

z validy re(z)>0

{x,2) valid, x>0
£ ALOG. (X)
& EXP. (re(z)*1og x)
£ COSL.SIN (im(z)*tog x)

60498200 C

283

3986
368

309
399

a9
174

401
398

35%

312

632

705

82
476

179

330
284

243

315

62
150

341
296

294

r4 31

469

573

341
422

185

92
189

157

201

58
45

135
212

180

156

251

221

58
94

155

198
155

114

161

53
53

178
121

124

104

130

8%

55
91

189



Routine

Entry Points

Arguments

LTimes at Entry Points {(argument)

Times for CYBER

72

73

2Y01*

ZTOIS (z4n)

ZT01.

2701,

190

( !3 9 l! . ’

& SYSERR, (Append. B)
(0sx)y x>0
(00,X’9X<0

£ SYSERR., {(Append. B)
220y ZzZ9n valid

§ 2701« (zyn)

(zen)
(zyn) vatlid n = 0
1
2
3
-1
-2
-3
If n<?, repltace n by =-n, and add
n odd
n even
It n>3, t=time a(1)tb(1)*109(2)nsts
a(2)+b (2 *109(2))In, where
a({i)
b(1)
a{?2)
b{2)

W wwun

333332

oo

379

232
369

204

85
233
710
725
656

10386
1101

374
327

477.
233.
162.
39n.

303

178
287

181

66
230
602
614
571
899
953

337
291

29%5.
222.
127,
337.

T4 76
139 140
137 111
182 61
113 99

51 54
115 85
179 125
178 122
151 118
215 156
214 160

456 32

26 32

142.5 86.9
36.8 55.0
87+3 74.5
62.3 28.1
60498200 C



page #
S~ Figure 1 = Pelative error ir SQRT atgorithm

over (453 14] sesvnsssesssnssesssancessnsoensssesnscsassessssnssssenssiB7

~— Figure 2 - Error of algorithm for [x*i*¥y{] relative
to min(‘X‘)'Y"/MB!(‘X"‘Y‘, esssesenssssssssnsesensssasvscsencesiBB

N Figure 3 =« Error in the algorithm used to approximate
Sini{x) over [=pi/ly PIi/7%) ecscssssssnsssnssenssassnsssnssnsasssiBO

N Fiqure 4 - frror in the algorithm used to approximate
coS({x) over {~pi/Zhy Di/%) ecseccessssnsssssannssssssnssnesssnsiOO

N’ Figure &6 = Graph of error in the algorithm used in
ACOSIN, fOr ArCSIiN sescssssssssssssssssssssnsscsassssnsssnsesslfl

N Finure 7 =« Grapoh of relative error in the algorithm used
for ATAN, over (0, 1716) csevsesscssssssssensnsncssnsssnnssssesil?

N Fiqure 8 = Frror in the algorithm used in ALOG

over [1.' 2.) l...._’..I..OQ.'.0...."D......O...Q..O'.-.QQiiigz

e Fligure 9 = Error in the altgorithm used in EXP,
over {(-iog 2/16, 10g 27/18) esevessssensessasnsnscssnenssnsenssesiOl

Figure 10 - Error of approximation in the serles
{truncated) for sinh over (=422y 222) esosssensessessanssesnese«i95

e Figure 11 - Error irn the polynomial! apoproximation to
tanh, over (=129 212) ceevessoscsssssscssnsnsansessesnnoenssnecesidb

S Figure 12 - Retlative error in the approximation
of double sguare root over (+25y 1:0) sesessssssssssnnssnsacild?

s Figqure 13 - Absolute error In the algorithm used In DSNCOS.
for the computation O0f SIiNE€ cssesssnvesssesssnsssssssansssnss»ifaf

- Figure 14 - Absolute error in the algorithm used
in DSNCCS, for the COSIiNe sevecvscsvssssncssnscssnssnscessseslqn

" Fiaure 15 - Retfative error in the algorithm used for
approximation of EXP in DEXP, esssssessssassesssssessssnseaslll

e Fiqure 16 - Graph of tha error of approximation of the
a'gOPi?hm used in DLOG. s ssensssessssssnssessessssnssssssseil

N Flqure 17 - Graph of relative error in approximation
to sinh{x) over [-('Og 2)/2,(!09 2172 ecsvssnssisnsessessvane 2l

L Figure 18 - Graph of relative error In approximation
to coshi{x) over [=-{l0g 2”21('09 2Y72) cecesssssssssnssreensesl2(3

N 60498200 C 191 ®



Figure 1
Relative Error in SQRTY Algorithm over [.5,

1.1
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FIGURE 2
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FIGURE 3

Error in the atgorithm used to approximate

sini{x) over {(-pl/7&4, pi/&4]
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FIGURE &

Error in the algorithm used to approximate cosix)

over {-pl/7&4, pli/&]
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FIGURE 6

Graph of error in the atgorithm used in ARCSIN.

for arcsin
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over [0, 17161}

FIGURE 7
Graph. of Relative Error in the Algorithm Used For

ATAN.
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FIGURE 8
Error in the Algorithm Used in ALOG over [1., 2.]
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FIGURE 9
Error in the algorithm used in EXP.

over (-tog 2716, log 2716)
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FIGURE 10
Error of approximation In the series (truncated)

for sinh over (=22,.22)
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FIGURE 11
in the polynomial approximation to tanh, over (-12,.12)
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FIGURE 12
Relative error in the approximation

t0o double square root over {(+25451.0)
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FIGURE 13
Absolute error in the algorithm used in DSNCOS.

N

for the computation of sine
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FIGURE 14
_Absolute error in the algorithm used in DSNCOS.

e

for the cosine
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FIGURE 15
Relative error in the algorithm used for approximation of exp in
DEXPe.
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FIGURE 16
Graph of the error of approximation of the algorithm used In DLOG,

N
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FIGURE 17

Graph of retative error

in approximation to sinhix)

over [=(10og 2}/72,(100 2}72)
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FIGURE 18

in approximation to coshix)

over I~{1og 2)/72.1{10g 2)/2)

Graph of relative error
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