FORTRAN COMMON LIBRARY MATHEMATICAL ROUTINES REFERENCE MANUAL

CDC® OPERATING SYSTEMS: NOS 1 NOS/BE 1 SCOPE 2

					7	
		f Control Data's continuing quality importance on the control of t				vite you to complete this questionnain
ası	rate	this manual for each general and indiv	vidual categor	v on a	scale	e of 1 through 5 as follows:
	Jiqio				4 - P	
		1 - Excellent 2 - Good	3 - Fai	r	4 - P	Poor 5 - Unacceptable
	Writi	ing Quality	·		D.	I am interested primarily in user guides designed to teach
	Α.	Technical accuracy				the user about a product or
	В.	Completeness				certain capabilities of a product.
	C. D.	Audience defined properly Readability	<u> </u>			
	D. E.	Understandability		VI.		recognize that we have a wide
	F.	Organization				iety of users. Please identify your mary area of interest or activity:
	Exan	nples			Α.	Student
	Α.	Quantity			B.	Applications programmer
	B.	Placement	. 		C. D.	Systems programmer How many years programming
	C.	Applicability			J.	experience do you have?
	D.	Quality			Ε.	
	E.	Instructiveness				1. Algol
						2. Basic
	Form	naτ				3. Cobol
	Α.	Type size				4. Compass
	В.	Page density	- 			5. Fortran 6. PL/I
	C.	Art work				7. Other
	D.	Legibility				Alle Alle et al la
	E.	Printing/Reproduction			F.	Have you ever worked on non-CDC equipment?
	Misce	ellaneous				non-coc equipment:
						1. If yes, approximately
	Α.	Index				what percent of your
	В.,	Glossary				experience is on non-
	Pleas	e provide a yes or no answer		9 - 1 - 2		CDC equipment?
		ding manuals in general:				2. How do you rate CDC
						manuals against other
	Α.	I prefer that a manual on a software				similar manuals using
		product be as comprehensive as				the 1-5 ratings.
		possible; physical size is of little				(Example: XYZ Corp. 2
		importance.	·			means XYZ manuals are good as compared to CDC manuals
	В.	I prefer that information on a				Burroughs
	ω.	software product be covered in				DEC
		several small manuals, each				Hewlett-Packard
		covering a certain aspect of the				Honeywell
		product. Smaller manuals with				IBM
		limited subject matter are easier				NCR
		to work with.				Univac Other
	C.	I am interested primarily in				Other
	J .	reference manuals designed for				And the second of the second o
		ease of locating specific				
		information.				

FORTRAN COMMON LIBRARY MATHEMATICAL ROUTINES REFERENCE MANUAL

CDC® OPERATING SYSTEMS: NOS 1 NOS/BE 1

SCOPE 2

	REVISION RECORD
REVISION	DESCRIPTION
A	Original release.
(11-01-75)	
В	This revision documents Phase III of feature 79 for FORTRAN Extended Version 4.6: DSINH,
(03-01-76)	DCOSH, and DTANH routines have been added plus minor revisions to the existing routines.
С	This revision documents feature 191 for FORTRAN Extended Version 4.7 and PL/I Version 1.0
(03-31-78)	at PSR level 472. The following routines have been added: DTAN, DASIN, DACOS, ERF, ERFC,
	ATANH, SIND, COSD, and TAND. TANH, SQRT, DSQRT, and TAN have been modified to
	improve accuracy and error checking.
· .	
ablication No.	

REVISION LETTERS I, O, Q AND X ARE NOT USED

© 1975, 1976, 1978 Control Data Corporation Printed in the United States of America Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

Page	Revision
C over Title Page ii iii/iv v/vi vii/viii 1 thru 208 Comment Sheet Mailer Back Cover	Revision

Page	Revision
·	
	:
_	

Page	Revision
:	
•	

PREFACE

This manual describes the mathematical routines of the FORTRAN Common Library which is part of FORTRAN Extended Version 4. It is assumed that the reader is familiar with FORTRAN Extended. FORTRAN Extended operates under control of the following operating systems:

NOS 1 for the CONTROL DATA[®] CYBER 170 Models 171, 172, 173, 174, 175; CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Sytems.

NOS/BE 1 for the CDC^{\circledR} CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000 Series Computer Systems.

SCOPE 2 for the CDC CYBER 170 Model 176; CYBER 70 Model 76; and 7600 Computer Systems.

CDC manuals can be ordered from Control Data Literature and Distribution Services, 8100 East Bloomington Freeway, Minneapolis, Minnesota 55420.

This product is intended for use only as described in this document. Control Data cannot be responsible for the proper functioning of undescribed features or parameters.

CONTENTS

INTRODUCTION	1	ROUTINE : DTOI*	95
ROUTINE: ACOSIN	8	ROUTINE: DTOI	96
ROUTINE : ALOG	14	ROUTINE: DTOX*	98
ROUTINE: ATAN	19	ROUTINE: DTOX.	99
ROUTINE: ATANH.	21	ROUTINE : DTOZ*	100
ROUTINE: ATAN2	25	ROUTINE : DTOZ.	101
ROUTINE : CABS	27	ROUTINE : ERF.	102
ROUTINE : CCOS	29	ROUTINE : EXP	106
ROUTINE: CCOS.	30	ROUTINE: HYP. (SINH & COSH)	108
ROUTINE: CEXP	31	ROUTINE: HYPERB.	111
ROUTINE : CEXP.	32	ROUTINE: ITOD*	112
ROUTINE : CLOG	33	ROUTINE: ITOD.	113
ROUTINE : CLOG.	34	ROUTINE: ITOJ*	114
ROUTINE : COS= SIN	35	ROUTINE: ITOJ.	115
ROUTINE : CSIN	37	ROUTINE: ITOX*	116
ROUTINE : CSIN.	38	ROUTINE : ITOX.	117
ROUTINE : CSQRT	39	ROUTINE: ITOZ*	118
ROUTINE : CSQRT.	40	ROUTINE : ITOZ.	119
ROUTINE : DASNCS.	42	ROUTINE: RANF	120
ROUTINE : DATAN	46	ROUTINE: RANSET	121
ROUTINE : DATAN.	47	ROUTINE : SINCOS.	122
ROUTINE: DATAN2	50	ROUTINE : SINCSD.	124
ROUTINE : DATAN2	51	ROUTINE: SQRT	128
ROUTINE : DATCOM.	53	ROUTINE : SQRT.	130
ROUTINE : DCOS	55	ROUTINE: SYS=AID	132
ROUTINE : DCOSH	56	ROUTINE : SYS=1ST	133
ROUTINE : DEULER.	57 57	ROUTINE: TAN	134
ROUTINE : DEXP	59	ROUTINE : TAN.	135
ROUTINE : DEXP.	60	ROUTINE : TAND.	138
ROUTINE : DHYP.	63	ROUTINE : TANH	141
ROUTINE : DLOG	69	ROUTINE : TANH.	142
ROUTINE : DLOG. (= DLNLO		ROUTINE: XTOD*	145
ROUTINE: DLOG10	72	ROUTINE: XTOD.	146
ROUTINE: DMOD	73	ROUTINE: XTOI*	147
ROUTINE: DMOD.	74	ROUTINE: XTOI	148
ROUTINE : DSIN	75	ROUTINE: XTOY*	149
ROUTINE: DSINH	76	ROUTINE: XTOY.	150
ROUTINE: DSNCOS.	77	ROUTINE: XTOZ*	151
ROUTINE: DSQRT	79	ROUTINE : XTOZ.	153
ROUTINE : DSQRT.	81	ROUTINE: ZTOI*	154
ROUTINE: DTAN	83	ROUTINE: ZTOI.	155
ROUTINE : DTAN.	86	APPENDIX A – Classification of Routines	156
ROUTINE : DTANH	88	APPENDIX B - Error Recovery	160
ROUTINE : DTANH.	89	APPENDIX C - Timing of Routines	162
ROUTINE: DTOD*	93	FIGURES INDEX	191
ROUTINE : DTOD.	94		

60498200 C

INTRODUCTION

The Math Library concerns itself with computations upon four different number types: integer, single [precision floating-point], doubte [precision floating-point], and complex [floating-point]. For each number type there is a well defined set of <u>valid</u> forms [representations], each one representing a particular point on the real line or in the complex plane. In addition, for each of the floating-point forms, there is a well-defined set of <u>semi-valid</u> forms, none of which represent numbers, but which instead give some indication of the nature of the [erroneous] computational process that produced them. All other bit configurations in words thought to contain numbers of some one of these types are termed <u>invalid</u>.

For these four number types, the valid, semi-valid, and invalid forms are

1. Integer.

Valid:

The ordinary, one word, right-justified, one*s-complement binary representations of all integers from -2**+1 to 2**-1. Zero may be represented as either positive zero [all zero bits], or negative zero [all one bits].

Semi-valid:

None

Invalid:

Any bit configuration wherein the top 12 bits are not all the same.

2. Single.

Valid:

The normalized, one word, forms of the internal floating-point representations. (See corresponding Computer Systems* Manual.) Zero may be represented as either positive zero, or negative zero.

Semi-valid:

The four forms known as positive infinite, negative infinite, positive indefinite, and negative indefinite.

Invalid:

Any non-zero and non-semi-valid bit configuration wherein bit 47 and bit 59 are the same, etc.

3. Double.

Valid:

The forms of the internat, double-precision floating-point representations wherein the first word is normalized and the second word either has an exponent that is 48 smaller than the first word, or, if that underflows is zero. The signs of both words must be the same except when the lower part underflows to zero. Zero may be represented as either positive zero or negative zero.

Semi-valid:

The forms wherein the first word is a single semivalid form. The second word may be anything.

Invalid:

Sign disagreement between the two words, first word an invalid single, second word with an exponent not as defined above, etc.

4. Complex.

Valid:

All the two-word forms wherein each word is a valid single number.

Semi-valid:

All the two-word forms wherein one word is a semivalid single number, and the other is either a valid or a semi-valid single number.

Invalid:

All the two-word forms wherein either word is an invalid single number.

The following two general rules apply to the use of these number forms in computational operations, either within the Math Library or within FORTRAN compiled code

- 1. Unless specially documented otherwise, if a valid form of the appropriate number type is employed in a computational operation, a valid number of the appropriate type will result. The documented exceptions to this cover such things as computing an answer which exceeds the limits of the valid forms, or performing a mathematically invalid operation.
- 2. Unless specifically documented otherwise, if either:
 a. a semi-valid or invalid number is employed in a computational operation, or

b. the documented limits in rule 1 above are exceeded, then the result is undefined [i.e. the program may continue without warning, it may terminate abnormally with or without diagnostic, it may continue for a short period and then terminate, etc.l. The documented exceptions to this cover some cases wherein certain forms of checking are done, and also some cases wherein certain semi-valid forms are produced, etc.

These two rules define the limits of CDC support in the area, and also the completeness of CDC supporting documentation. When a result is undefined, there is <u>no</u> guarantee that the actual behavior will be the same from run to run, or that it will remain constant under normal product maintenance.

III. CLASSIFICATION OF ROUTINES AND CALLS

FORTRAN Common Library mathematical routines (abbreviated: math routines) compute those mathematical functions explicitly library mentioned in FORTPAN. These functions may be divided into two classes the intrinsic functions and the external functions. Intrinsic functions functions whose use speeds execution of programs and saves simpler coding effort by occasioning replacement of frequently used sequences of FORTRAN statements with efficient in-line code during an intermediate assembly, or with calls by name to routines (when in traceback mode). list of intrinsic functions appears in the Appendix. External functions are mathematically more sophisticated functions whose routines require more memory space and execution time. Calls to math library routines may be of two forms - calls by name and calls by value. routing is called by name, a parameter list is formed in memory, and the first-word-address of this list is entered into register. All before a made to the routine. When the routine is called by are entered directly into operand the arguments registers value, X1,...,X5 according to certain rules, before a return jump is made to The first word of the first argument is entered the routine. into X1. first word of the second argument is entered into X3 and the first word of the third argument in X5. If an argument should be doubleprecision or complex and hence take two words, the second word is X2 or X4. Lastly, the first entered into the next register, viz. of a complex argument is always the real part, and the first word of a double-precision argument is the upper half. For calls by name and calls by value, the result of the computation is returned in registers X6 and X7, a one-word result being returned in X6, and the second-word two word result being returned in X71 . (A juxtaposition symbol (A) is sometimes used in the documentation : it denotes that a two-word result occupies the two registers in the order indicated.)

IV. TERMINOLOGY

Some conventions have been introduced in this documentation. Symbolic names are always delimited by blanks, and any latin letters appearing therein are in upper case. A denotes <u>luxtaposition</u>, and is

60498200 C

used in referring to complex or double-precision quantities. All values given are in decimal, unless otherwise noted. Error shall mean: (computed value - true value). Relative error shall mean: (error/true value). An argument set is an ordered n-tuple of arguments (x1,...,xn). where x1,...,xn are the arguments in order. For convenience, we identify arguments with corresponding 1-member argument sets. The input range of a routine is the collection of all argument sets for which that routine has been designed to return a result meaningful to the user. For example, the input range to SIN is the collection of all floatingpoint quantities, whereas the input range to SINCOS= at entry point SIN. is the collection of definite in-range floating-point quantities exceeding p1.246 POS.INE. in absolute value. abbreviates 3777,0000,0000,0000,00008 , NEG.INF. 4000,0000,0000,0000,0008 , abbreviates 1777,0000,0000,0000,0000, and NEG. INDEF. abbreviates 6000,0000,0000,00000,000000 . In this document, "routine" shall mean the source code or the object code obtained from programs in the UPDATE library mentioned at the begining of this Introduction.

V. ERROR GRAPHS

Dissection of Frror

The errors of a routine are composed of two parts: the algorithm error, including errors in the coefficients used in the algorithm; and machine round-off errors. A curve representing the error due to the algorithm and its coefficients is usually a smooth, wavy curve with discontinuities at breaks in the range reduction technique. The error of the coefficients involved in range reduction may also show up. Usually, a good algorithm with good coefficients will not have an bigger than one-half in the last bit of the result. Round-off (and/or truncation) error is difficult to predict or graph. Suppose f(x)approximated by x+c+x2 and x>>c+x2. Then by analyzing how an add instruction would work on x and c+x2, one finds that a few bits are dropped off after the last bit in the result. If rounded add is used then the resulting error is between -1/2 and 1/2 in the last error in computing c*x2 makes it even worse. A graph of round-off error is so discontinuous that little can be done other than showing the maximum and minimum error over small intervals.

The magnitude of a relative error can be analyzed in two wayst relative error = (routine - exact)/exact; or figuring out how many bits the routine differs from the exact value ("bit error"). In the first case, we are talking about single precision algorithms accurate to less than 2E-15 (usually) and round-off errors less than 10E-15 (usually). Note: changing the last bit in a single precision number produces a relative change of between 3.5E-15 (for a large mantissa) and 7.1E-15 (for a small, but still normalized, mantissa). In determining how many bits off a routine is, the function is evaluated in double precision and this is rounded to single; then (assuming the exponents are the same) the mantissas are subtracted and the integer difference is the bit error.

Description of Plots

A typical plot covers one single-argument, single-precision function over a range of argument values (plotted linearly or logarithmically) with the ordinate ranging from -11E-15 to 11E-15 representing relative error. The saw-tooth curves represent places at which relative error is -3/2, -1/2, 1/2, and 3/2 bit error. Discontinuities occur where the routine produces a result that is a power of 2; the argument values are given (they are found empirically, so only an appropriate number of digits is printed).

Any point that is between the -1/2 and 1/2 saw-tooth curves represents a case of the routine being as accurate as possible; anything between 1/2 and 3/2 is 1 bit high; etc.

An algorithm error curve wiggles around through the middle of the plot. It shows the relative error of the algorithm over the given argument range. Its discontinuities are usually due to the range reduction part of the algorithm. For this curve, the algorithm error is (ata = exact)/exact where atg is routine rewritten to use doubte precision operators instead of single but keeping single precision coefficients single. Therefore it incorporates such things as: a polynomial can't quite equal a transcendental function and pi/2 can't be represented exactly. The coordinates of the highest point are indicated next to it.

The overall error is bounded (empirically) by two jagged curves with arrowheads on them. The number of different arguments fed to the function is given on the plot; each corresponding point is either at the tip of one of the arrowheads or strictly between the pair of curves. It is quite possible, even likely, that there are points which do not lie between the two curves. However, one could, with reservations, assume the curves are "close" to true least upper bound and greatest lower bound curves.

The arguments are chosen randomly as follows. After starting with the smallest argument, each argument is the previous argument plus PANF(0)*k, where k is a constant. On a logarithmic scale this algorithm is appropriately modified so as to get an even distribution on the resulting plot.

Note that "ordinary" numbers (rational numbers, multiples of log 2 or pi. etc.) probably will not be sampled.

There are usually about 250 points (arrowheads) on each of hounding curves. The algorithm for finding arrowheads goes as follows. Given arrowheads x and y, the last two on the list, point z (formed by argument and the relative error of the routine for that value) is added to the arrowhead list if xyz forms a convex curve or the abscissa of x and z are "too far" apart. Otherwise, arrowhead y is deleted from the list and the test for inclusion is retried. Points going forced to the boundary. 115-15 are The largest relative encountered is labeled with its coordinates. Various statistics are printed concerning the distribution of points. The percent within each bin of width 1E-15 with the percent above 10E-15 (below -10E-15)

stated between 10E-15 and 11E-15 (-11E-15 and -10E-15). Bit errors are similarly handled (with anything above 3 being put with 3). Empty bins are not listed The "MEAN R.E." is the mean of all ordinates. The "RMS P.E." is

SORT((sum of RE**2)/(number of points) - (MEAN R.E.)**2 , i.e., the standard deviation of relative error.

How to Read a Plot

Here are some cause-and-effect statements; by taking the inverse of the statement one has a way to look at a plot and deduce what the algorithm is doing.

- 1. If f(x) = 2**n * (x*g(x)) where g(x) is small compared to x and rounded add is used, then the bounding curves will roughly paralled the algorithm error and will be as far apart as the inner saw-tooth curves. (Unrounded add would transpose the curves by 1/2 bit.)
- 2. If f(x) = c+g(x) then the bounds will be transposed by the error in c.
- 3. If f(x) = c*g(x) then the distance between the bounds for f(x) will usually be wider than for g(x); in particular f(x) will probably have bounds at least 2 bits apart.
- 4. If f(x) = g(x) + (h(x) + d(x)) where g, h, or d may be constant and one of the additions produces an unnormalized result, then the bound curves may be translated and/or spread farther apart than for a nearby area where the addition happens to be normalized.
- 5. If f(x) is broken into numerous sub-intervals (e.g. 16), then the algorithm error curve will be dominated by discontinuous jumps in the constants used for table lookup.

VI. MISCELLANEOUS FACTS

Arguments of trigonometric functions and results of inverse trigonometric functions are always measured in radians. Some statistics concerning the UPDATE library of mathematical routines are given for the CYMER 74. There are 128 routines. The central memory required to UPDATE all routines is 36300 (octal) words. The central memory required to assemble all routines is 50700 (octal) words. The time required on a CYMER 74 to UPDATE all routines is 4.8 CP seconds, and the time required to assemble all routines under COMPASS is 28 CP seconds. The average assembly time for individual routines is .22 CP seconds. These times will be shorter on the CYBER 76 and longer on the CYBER 72 and 73.

VII. REFERENCES

The following references were helpful during the preparation of this document.

1. A. Abramowitz and I. Stegun, <u>Handbook of Mathematical Functions</u>, AMS 55.

- 2. Control Bata Technical Report, number 52.
- 3. J. Hart, E. Cheney et al, <u>Computer Approximations</u>, John Wiley and Sons, 1968.
- 4. Hastings, <u>Approximations For Digital Computers</u>, Princeton University Press, 1955.
- 5. F. B. Hildebrand, <u>Introduction To Numerical Analysis</u>, McGraw-Hill, 1956.
- 6. C. Lanczos, <u>Applied Analysis</u>, Prentice-Hall
- 7. H. J. Maehly, "Methods for Fitting Rational Approximations", Part I (J. Assoc. Comp. Mach. 7, pp. 150-162) and Parts II & III (J. Assoc. Comp. Mach. 11, pp. 257-277).
- 8. H. S. Wall, <u>Analytic Theory Of Continued Fractions</u>, D. Van Nostrand Co. Inc., 1948.
- 9. J. H. Wilkinson, <u>Rounding Errors In Algebraic Processes</u>, Prentice-Hall, 1963.
- 10. N. E. Knuth, <u>The Art of Computer Programming</u>, Vol. 2.

ROUTINE : ACOSIN.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. FORTRAN external functions. The routine accepts a floating-point argument, and returns a floating-point result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the inverse cosine and inverse sine functions.
- 2. METHOD.

The input range is the collection of all valid floating-point quantities in the interval [-1.,1.]. Arguments outside this range will initiate error processing.

Formulae used in the routine are:

arcsin(x) = -arcsin(-x)
$$x \le -.5$$

arcos(x) = pi-arcos(-x) $x \le -.5$
arcsin(1) = pi/2
arcos(1) = 0
arcsin(x) = pi/2-arcos(x) $.5 \le x \le .1$
arcos(x) = arcos(1-g(x,n))/2**n $.5 \le x \le 1$

where

$$g(x,0) = 1-x$$

 $g(x,n+1) = 4g(x,n) - 2g(x,n)^2$
 $arcos(x) = pi/2 - arcsin(x) - .5 $\le x \le .5$$
 $arcsin(x) = x+x^{3\mp}S^{\mp}(\{w+z-\})^{\mp}w+a+m/(e-x^2)\}$
 $-.5 \le x \le .5$

where

$$M = (X_5 - C) + Z + k$$

bne

$$z = (x^2+r)x^2+i$$

The constants employed are:

```
r = 3.17317007853713
e = 1.16039462973902
m = 50.3190559607983
c = -2.36958885561288
i = 8.22646797079917
j = -35.6294815974555
k = 37.4592309257582
a = 349.319357025144
s = .746926199335419 * 10**-3
```

The approximation to arcsin [-.5,.5] is an economized approximation within the class obtained by varying r,e,m,...,s. The algorithm employed is as follows. The argument x is supplied to ACOS. or ASIN. in X1, and the result is returned in X6.

- a. If ACOS. entry, go to step g.
- b. If Ix12.5, go to step h.
- c. n+0 (Loop counter)
 q+x
 y+x²
 u+0 if ASIN. entry
 +pi/2 if ACOS. entry
- e. If ASIN. entry, go to step k.
- f. If x is in (-.5,1.), return.
 X6+2*u-(X6)
 Return.
- g. If Ixi < .5, go to step c.
- h. If x = +1,-1 or x is invalid, go to step 1.
 n+0 (Loop counter)
 y+1-1x1, and normalize y .
- i. $h+4*y-2*y^2$ n+n+1If $2*y\le 2-sqrt(3) = .267949192431$, y+h and go to step i.
- 1. q+1-h, and normalize q.
 y+q²
 u+pi/2
 Go to step d.
- K. X6+u-(X6), and normalize X6. Affix sign of x to X6. Return.
- 1. If x #+1. or -1. , go to step m.
 X6+pi/2 if x = 1.
 +-pi/2 if x = -1.
 If ASIN. entry. return.
 X6+0 if x = 1.
 +pi if x = -1.
 Return.

m. Plug AGOS. entry point with ASIN. entry point, if ASIN. entry. Initiate error processing. Return through AGOS. entry point.

3. ERROR ANALYSIS.

The maximum absolute value of relative error of the approximation above to arcsin over [-.5,.5] is 1.996*10**-15. A graph of the relative error of this approximation is given in figure 6. Upper bounds on the absolute value of relative error due to machine error have been established in the following cases:

```
arcsin on (-.5,.5) - 9.232 * 10**-15 arcs on (-5,.5) - 1.673 * 10**-14 arcsin on (-1.,1.) - 4.050 * 10**-14 arcs on (-1.,1.) - 1.618 * 10**-13
```

The corresponding upper bounds on the absolute value of relative error in the routine are:

```
arcsin on (-.5,.5) - 1.123 * 10**-14 arcsin on (-.5,.5) - 1.873 * 10**-14 arcsin on (-1.,1.) - 4.250 * 10**-14 arcs on (-1.,1.) - 1.638 * 10**-13
```

For groups of 1000 arguments chosen randomly from the following intervals, the following statistics on relative error were observed.

Entry Point	Interval*s Lower Bound	Interval*s Upper Bound	Mean	Standard Deviation	Minumum	Maximum
ACOS.	- • 5	•5	-9.435E-16	1.547E-15	-5.781E-15	. 3.856E-15
	-1.	 5	-4.331E-16	1.746E-15	-4.520E-15	4.546E-15
•	•5	1.	-5.098E-16	1.843E-15	-7.150E-15	9.559E-15
ASIN.	~ . 5	•5	8.401E-16	1.666E-15	-5.328E-15	4.916E-15
	-1.	5	6.209E-16	3.268E-15	-7.061E-15	1.489E-14
	•5	1.	7.311E-16	3.307E-15	-7.160E-15	1.554E-14

6.1. ALGORITHM ERROR.

For ASIN (x) , x in (-.5,.5) the error curve is depicted in the ASIN plot between 0 and .5 . (All of the ASIN plot is symetric about 0.) . The reason for it not being balanced around the axis is because the Chebyshev coefficient for x was thrown away and 1.0 implicitly used instead. For ASIN outside (-.5,.5) and for ACOS , there is range reduction first; this produces no algorithm error. At the end of the computation, some multiple of pi gets involved; hence, the curves are offset by an amount dependant on the error in pi. There are breaks in the algorithm error curve at plus/minus .5, SORT(3)/2 = .866025, .9665926, .991445, .997859, etc.

Each of these is SQRT((1+previous)/2).

6.2. Total Error.

In ASIN for x in (-.5,.5) the routine boils down to $x+x^{3}+(...)$, hence the total error is dominated by that final addition and the total error curve closely follows the algorithm error curve plus/mirus 1/2 bit. For x in (.5, .866) the algorithm is y=1-x , $z=(1-4y)+2y^2$, ASIN(x)=pi/2+(pi/2follows: $(z+z^3+(...)))/2$. y is in (.5,.134), z is in (-.5,.5). Nothing is lost in computing y, little is lost with z, and some is lost in the final part. The big lump when x is in (.5,.540302) is caused by pi/2-(z+...) being greater than 2. : elsewhere it is tess. This peak shows up at other places (in ASIN noticeably in (.866,.878) and ACOS just below each peak in the bit error curve) because of folding into (.5,.54). ASIN gets better near 1.0 because pi/2 predominates the final value.

ACOS, except near 1.0, is predominated by pi/2. In particular, for x in (-1...5), pi/2 is added on twice, first rounded then unrounded in order to give a near-perfect distribution. Near x=1.0, so much folding goes on that a rather bad error is built up even before evaluating the polynomial. The graph gives an indication of the infrequency of error but does not show a worst case (15E-15 relative error has been experienced).

4. EFFECT OF ARGUMENT ERROR.

If a small error e occurs in the argument x, the error in the result is given approximately by $e/(1-x^2)^{++}.5$ for ASIN and by $-e/(1-x^2)^{++}.5$ for ACOS .

ROUTINE : ALOG

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name and by value for ALOG (at entry points ALOG, ALOG10, ALOG. and ALOG10.) from FORTRAN programs. ALOG computes the natural logarithm function at entry points ALOG and ALOG., and the common logarithm function at entry points ALOG10 and ALOG10.
- 2. METHOD.

The input range to this routine is the collection of all definite in-range non-negative non-zero floating-point quantities. Upon entry, the argument x is put in the form x = y * 2 * * n, where n is an integer, and 1. $\leq y \leq 2$. Then log x is evaluated from

log x = log y + 3/4*n + (log 2 - 3/4)*n, where log y is evaluated as follows. The interval (1., 2.) is divided up into the subintervals

(1., 1.107238769531),

(1.107238769531, 1.357238769531),

(1.637238769531, 1.857238769531),

(1.357238769531, 1.607238769531), and (1.857238769531, 2.).
"Centre points" 1., 1.225803196513098, 1.475803239208091,
1.735100002271352, 2. are chosen within these intervals. If y is
in subinterval (a, b) with centre point c, log y is computed from

 $\log y = \log c + \log ((1+t)/(1-t))$

er e

t = (y - c)/(y + c).

log ((1 + t)/(1 - t)) is then computed by

 $\log \{(1+t)/(1-t)\} = 2.4t + c(3)4t^3 + c(5)4t^5 + c(7)4t^7 + c(9)4t^9$.

The coefficients c(3), c(5), c(7) and c(9) are chosen by truncating the Taylor series for log ((1+t)/(1-t)) after the 11th term, and taking a Chebyshev economization to a 9th degree polynomial over the targest interval symmetric about the origin which is applicable. The constants are

c(3) = .666666666666105

c(5) = .4000000018947

c(7) = .2857120487

c(9) = .22330022

If the argument x is invalid, an error message is issued through SYSAID= , and POS.INDEF. is returned.

3. ERROP ANALYSIS.

(We carry out the error analysis for computation of ALOG only. Bounds on machine error are the same for ALOG and ALOG10 here, while

the the graph of algorithm error for ALOG10 may be obtained from the graph for ALOG by multiplying by log(e)10.) The maximum absolute value of the relative error in the algorithm over the interval 1.698 * 10 ** -16, for entry points ALOG and ALOG. . 2.1 maximum absolute value error in the algorithm over the interval (1.. 1.667 * 10 ** -17. A graph of the error in the algorithm is over (1., 2.) is given in figure 8. An upper bound has been established for the absolute value of the error in the routine due to machine error at 5.045 * 10 ** -14 * u, where u is the greatest power of 2. not exceeding the result. Hence an upper bound on the absolute value of the relative error in the routine is 5.062 * 10 ** -14.

For groups of 10000 arguments chosen randomly from the following intervals at the entry points listed, the following statistics or relative error were observed.

Entry	Interv	al	Meari	Standard	Minimum	Maximum
Point	from	to		Deviation		
ALOG.	1.	2.	1.743E-16	2.286E-15	-9.040E-15	6.194E-15
	•5	2.	2.325E-16	2.279E-15	-1.058E-14	8.665E-15
	•5	1.	4.101E-17	2.488E-15	-9.45 DE-15	8.637E-15
	.0001	1000.	4.522E-16	2.223E-15	-5.562E-15	5.234E-15
	10**-290	10322	1.228E-15	1.439E-15	-1.616E-15	4.001E-15
ALOG10	.1.	2.	-2.726E-15	2.723E-15	-1.447E-14	4.640E-15
	•5	2.	-2.689E-15	2.770E-15	-1.346E-14	6.506E-15
	•5	1.	-2.826E-15	2.897E-15	-1.546E-14	9.353E-15
	.0001	1000.	-1.795E-15	2.526E-15	-9.208E-15	5.058E-15
	10**-290	10322	-2.015E-15	2.178E-15	-7.389E-15	3.453E-15

6.1. ALGORITHM ERROR.

reduction first folds arguments into (.9286194,1.857239); the unfolding involves an approximate: involving log 2; hence, the error graph shows discrete jumps at 2**n*1.857239 in the algorithm error Further range reduction into the subintervals described above involves the use of log c. The values of c were chosen that the 48-bit representation of log c would be correct to at least 59 bits. Hence, no noticeable error is caused by the subintervals. reducing into Within each subinterval a polynomial is used; the polynomial is accurate enough to show essentially no error except near 1.187239 .

6.2. TOTAL ERROR.

The final computation is $\log x = (((a+t)+t)+p)+b)+b$ where $a = \log 2 - 3/4) + n$, $p = c(3) + t^3 + \dots$, and $b = (3/4 + n + \log c)/2$.

In general p<t<a<b except that a and/or b could be zero. The order was chosen in order to minimize error accumulation. b

is added in twice in order to cut down on error and eliminate a normalize. Because of all this adding going on, the error graph jumps around at odd times and by fairly small amounts. (A jump probably corresponds to a , t , or one subexpression moving accross a power of two.) Note the value of b is effectly exact. For x outside (.9286194,1.857239), a and b are non-zero and b dominates log x ; hence, the error bounds are 1 bit apart. For x in (.9286194,1.107239), log x collapses to 2t+p. But t=(y-c)/(y+c) where y-c is exact, y+c may lose half a bit, and the quotient involves further error. So those combine with the addition in 2t+p to make the total error. For x in (1.107239,1.857239), log x=((2t+p)+b) with $b=(\log c)/2$ almost exactly. t and t may be of opposite sign.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* , the error in the result is given approximately by e^*/x_*

POUTINE : ATAN

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floatingpoint argument, and returns a floating-point result.
 - 1.2. Purpose. To accept calls for ATAN by name at entry point ATAN and by value at entry point ATAN. . ATAN computes the inverse tangent function.

2. METHOD.

The input range to this routine is the collection of all definite in-range normalized floating-point quantities. The output range of this routine is included in the set of those floating-point quantities lying between -pi/2 and pi/? .

The argument x is then transformed into an argument y in [0, 1/16] by the range reduction formulae

arctan(u) = -arctan(-u), u negative;

 $\arctan(u) = pi/4 + (pi/4 - \arctan(1/u)), u \ge 1$

arctan(u) = arctan(k/16) + arctan((u - k/16)/(1 + u*k/16)).

where 0≤u≤1, and k is the greatest integer not exceeding 16*u.

Finally arctar(y) (for y in [0, 1/16]) is computed by the polynomial approximation:

 $arctan(y) = y + a(1)*y^3 + a(2)*y^5 + a(3)*y^7 + a(4)*y^9$

where

a(1) = -.33333333333312845.

a(2) = .1999999958014464,

a(3) = -.1428541305087450

a(4) = .1102281616126149.

The coefficients of this polynomial are those of the minimax polynomial approximation of degree 3 to the function f over [0, 1/4] where

 $f(u^2) = (arctan(u) - u)/u^3$.

(The algorithm and constants are copyright 1970 by Krzysztof Frankowski, Computer Information and Control Science, University of Minnesota, 55455. Coding is by Larry Liddiard, University of Minnesota.)

3. ERROR ANALYSIS.

A graph of the relative error of approximation of the algorithm over $[0,\ 1/16]$ is shown in figure 7. The maximum absolute value of this relative error is 3.201 * 10**-16. An upper bound on the absolute value of relative error due to machine error has been established at 4.761 * 10**-13. Hence, an upper bound on the relative error in the routine is 4.764 * 10**-13.

For 1000 arguments chosen randomly from the following intervals, the following statistics on relative error were observed.

Inte	rval	Mean	Standard	Minimum	Maximum	
from	to		Deviation			
-1.	1.	-1.589E-17	2.216E-15	-6.823E-15	5.539E-15	
-10.	10.	-2.348E-17	1.940E-15	-6.637E-15	7.505E-15	

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument, the error in the result y is given approximately by $e^*/(1 + y^2)$.

ROUTINE : ATANH.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
- 1.2. Purpose. To accept calls by value for ATANH from FORTRAN programs. ATANH computes the inverse hyperbolic tangent.

2. METHOD.

The imput range is the collection of all definite, in-range floating-point quantities in the interval (-1.0,+1.0).

The range is reduced to [0,1) using the identity

atanh(-x) = -atarh(x).

From the definition tanh(x)=(e+x-e+(-x))/(e+x+e+/-x)) one gets

atanh(x)= $0.5*in\{(1+x)/(1-x)\}$

Using the property ln(a*b)=ln(a)+ln(b), we can reduce the argument range of the above log to [.75,1.5) by extracting the appropriate multiple of ln(2):

atanh(x) = 0.5*n*In(2) + 0.5*In(2+(-n)*(1+x)/(1-x))

Pewriting the argument of log in the form (1+y)/(1+y), and substituting atanh(y):

This reduces the range to I-0.2,+0.21.

The value of n such that 2+(-n)+(1+x)/(1-x) is in [.75,1.5) is the same as that such that 2+(-n)+(1+x)/(0.75+(1-x)) is in [1,2). If we write 0.75+(1-x) as a+2+m, a in [1,2], then 2+(-n-m)+(1+x)/a must be in [1,2). If $(1+x)\geq a$ then -n-m=0 and n=-m. If (1+x)< a then -n-m=1 and n=1-m.

The function atanh (z) on [-0.2+0.2] is approximated by $z+z^{3}$ p/q where p and q are 4th order even polynomials. The coefficients of p and q were derived from the (7th order odd)/(4th order even) minimax (relative error) rational form on [-0.2,+0.2] for atanh(z).

3. EPROR ANALYSIS.

For abs(x)<0.2,n=0 and the form z+... is used and the error stays within the expected bound of 4.8E-15.

For abs(x) \geq 0.5, the term n*(ln(2)/2) dominates. This term is computed as n*(ln(2)/2-.125)-n*.125-n*.125 because the rounding error in representing ln(2)/2 is large; the above form makes the rounding error relatively small. Since n*.125 is exact and the dominating form, the two adds in (other)+n*.125+n*.125 dominate the error and the expected relative error of 8.3E-15 is the maximum observed error in this region.

For $0.2 \le abs(x) < 0.5$, n=1 and the term z = (0.5*(1+x)-(1-x))/(0.5*(1+x)+(1-x)) may be relatively large. For abs(x) < 0.25, the subtraction 1-x=0.5-x+0.5 toses two bits of the original argument. In addition, z is negative in this range and some cancellation occurs in the final combination of terms, costing about one ulp. the actual upper bound in the region 0.2 < abs(x) < 0.25 is 19.4E-15, which is the overall upper bound.

The errors are:

source of error	error *1015		
rational form	2.?		
coefficient rounding	<0.1		
round-off	17.1		
upper bound	19.4		
maximum obs erv ed	12.3		

4. EFFECT OF APGUMENT ERROR.

For small errors in the argument x, the amplification of absolute error is $1/(1-x^2)$ and that of relative error is $x/((1-x^2)^2 a t anh(x))$, which increases from 1 at 8 and becomes arbitrarily large near 1.0, e.g., 18.8 at 0.99 and 132 at 0.999, or approximately -1/(eps*in(eps)) where x=1-eps. If x is known to more than single precision, the following FCRTRAN may be used to get a better result near 1.0:

DOUBLE X

(compute X)
SNGLX=X
SHSNGLX=X-SNGLX
Y=ATANH(SNGLX)+SHSNGLX/((1+SNGLX)*SNGL(1-X)))

which is accurate to single precision for abs(x) <1-(1E-8) and less accurate above this point, although still better than ATANH(SNGL(X)).

ROUTINE : ATANZ

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts an argument set comprising two floating-point arguments, and returns a floating-point result.
 - 1.2. Purpose. To accept calls for ATAN2 by name at entry point ATAN2 and by value at entry point ATAN2. ATAN2 computes the inverse tangent function of the ratio of two arguments.

2. METHOD.

The input range to this routine is the collection of all pairs (x,y) of definite in-range normalized floating-point quantities such that $(x,y) \neq (0,0)$.

The function ATAN2(x,y) is defined to be the angle (lying in (-pi, pi)) subtended at the origin by the point (y,x) and the first coordinate axis.

The argument (x_1y) is reduced to the first quadrant by the range reductions.

ATAN2(x,y) = -ATAN2(-x,y), x<0:

ATAN2(x,y) = pi - ATAN2(x,-y), x>0, y<0.

The argument (x,y) is then reduced to the sector

€(u,v): u≥0 & v≤u & v≥03

by the range reduction

ATAN2(x,y) = pi/2 - ATAN2(y,x), $x \ge 0$ or $y \ge 0$.

Then ATAN2(x,y) is evaluated as arctan(y/x), using the algorithm described in the method section of the routine ATAN 's description. (The algorithm and constants are copyright 1970 by Krzyztof Frankowski, Computer Information and Control Science, University of Minnesota, 55455. Coding is by Larry Liddiard, University of Minnesota.)

3. ERPOR ANALYSIS.

See the error analysis of ATAN for properties of the algorithm used in computing arctan(y/x). 2000000 pairs of arguments (x,y) were randomly generated belonging to sets $\{(u,v): |u|, |v| \le 10**k\}$, where $k=-100, -99, \ldots, 100$. The maximum absolute value of the relative error in the routine for these arguments was observed to be 9.339 * 10**-15 for these random arguments.

For 1000 arguments chosen randomly from the following intervals, the following statistics on relative error were observed.

4. EFFECT OF ARGUMENT ERROR.

If small errors e(x) and e(y) occur in x and y respectively, the error in the result is given approximately by $(y + e(x) - x + e(y))/(x^2 + y^2)$.

ROUTINE : CABS.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name and by value from FORTRAN programs for computation of the complex absolute value function.
- 2. METHOD.

The input range is the collection of all valid complex quantities whose absolute value does not exceed 1.265*10³²².

Let x + i * y be the argument. The algorithm used is:

- a. u + max(!x1,!y!).
 v + min(!x!,!y!).
- b. If u or v fails a test for infinite or indefinite, go to step f.

If u is zero, return zero to the calling program.

- c. r + u/v
 - W + 1+r2
 - t + (33/32 + 3/8)(w 33/32)= $3/8(r^2 + 87/32)$

(t is the initial linear approximation to (1+r2)**0.5)

- d. Heron's rule is applied in three stages.
 - t(1) + 1/2(t + w/t)
 - t(2) + 1/2(t(1) + w/t(1))
 - t(3) + 1/2(t(2) + w/t(2))
- e. Return with u*t(3) to the calling program if it is not infinite.
- f. Call routine SYS=1ST to initiate error processing.
- g. Return to the calling program, unless a non-standard or fatal error recovery has been chosen for this routine.

Note that a number of valid arguments are netted in step by but these are returned to normal execution after further testing.

Formulae used are

|x+i+y| = SQRT(x+i+y)= $max(|x|,|y|)+(1+r^2)++.5$, where r = min(|x|,|y|)/max(|x|,|y|).

See the timing information in Appendix D for further details.

3. ERROR ANALYSIS.

The maximum absolute value of the error in approximating $t(3) = SQRT(1+r^2)$ by

 $t = 33/32 + 3/8(1+r^2 - 33/32)$

 $t(1) = 1/2(t + (1+r^2)/t)$

 $t(2) = 1/2(t(1) + (1+r^2)/t(1))$

 $t(3) = 1/2(t(2) + (1+r^2)/t(2))$

is 1.5306*10**-16, assumed when r=0. Hence an upper bound on the absolute value of error in the algorithm is

1.5306*10**-16*max(!x!,!y!) ,

where x+iy is the argument. An upper bound on the absolute value of error in the routine due to machine round-off has been established at 8.512*10**-14* max(ixi,iyi). Therefore, an upper bound on the absolute value of error in the routine is 8.527*10**14* max(ixi,iyi), and an upper bound on the absolute value of relative error is 8.527*10**-14*.

For 10000 arguments chosen randomly from the interval [-1.,1.]*[-1.,1.], the following statistics on relative error were observed.

Mean Standard Minimum Maximum
Deviation

-2.295E-15 2.658E-15 -1.093E-14 5.967E-15

4. EFFECT OF APGUMENT ERROR.

If a small error e(z) = e(x)+i+e(y) occurs in the argument z = x+i+y. The error in the result u is given by

e(u) = (xe(x)+ye(y))/u.

ROUTINE : CCOS

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept by name for CCOS from FORTRAN programs. CCOS computes the complex cosine function.

2. METHOD.

If u and v are real numbers, then

cos(u+i.v) = cos(u1.cosh(v)-sin(u).sinh(v).i . The argument is checked upon entry. The argument is invalid if the real part or the imaginary part is infinite Indefinite, if the reat part or the imaginary part is so large that precision will be lost during the computation, or if floating overflows occurs during the computation. If the argument invalid, POS.INDEF. + i.POS.INDEF. is returned, and a diagnostic message is issued. If the argument is valid, COS=SIN is called at entry point COS.SIN for computation of the cosine and sine of the real part of the argument, and HYPERB. is called at entry point for computation of the hyperbolic cosine and sine of the HYPERB. imaginary part of the argument. The result is calculated according to the formula above and is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in CCOS is the same as that used in CCOS. . See the description of CCOS. for the error analysis.

4. EFFECT OF APGUMENT ERROR.

If a small argument error appears, then the error in the result is given approximately by multiplying the argument error by the negative of the complex sine of the argument. Hence, if a small error occurs in the complex argument and the error has absolute value e*, then the absolute value of the error in the result is given approximately by e* . $(\sin(u)^2 + \sinh(v)^2)^{**}1/2$, where u+i.v is the complex argument.

ROUTINE : CCOS.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept calls by value for computation of the complex cosine.
- 2. METHOD.

The input range is the collection of all definite in-range complex quantities z=x+i.y where tyl does not exceed 741.67 and 1x1 does not exceed 2^{46} . The formula used for computation is

cos(z) = cos(x + i.y) = cos(x).cosh(y) - i.sin(x).sinh(y) , where x and y are floating-point quantities. COS=SIN is called for computation of cos(x) and sin(x), and HYPERB= is called for computation of cosh(y) and sinh(y). The result is returned to the calling program - the real part in X6 and the imaginary part in X7 .

3. ERROR ANALYSIS.

(See the descriptions of COS=SIN and HYPERB, for details.) If z=x+1, is the argument, then the modulus of the error in the routine does not exceed 1.241 . $10^{++}(-13) + 1.241 \cdot 10^{++}(-13) \cdot \exp(|y|)$.

For 19900 arguments chosen randomly from the interval [-1.,1.]*[-1.,1.], the following statistics on relative error were observed.

Register	Mean	Standard Deviation	Minimum	Maximum	
Хб	-3.501E-15	3.827E-15	-1.413E-14	1.182E-14	
X7	-7.313E-15	9.884E-15	-5.059F-14	1.771E-14	

4. EFFECT OF ARGUMENT ERROR.

If a small error $e(z) = e(x) + i \cdot e(y)$ occurs in the argument $z = x + i \cdot y$, the error in the result is given approximately by $-\sin(z) \cdot e(z)$.

POUTINE : CEXP

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept calls by name for CEXP from FORTRAN programs. CEXP computes the complex exponential function.
- 2. METHOD.

If u and v are real, then exp(u+i.v) = exp(u).cos(v) + i.exp(u).sin(v).

The argument is checked upon entry. It is invalid if the real part u or the imaginary part v is infinite or indefinite, if u is greater than 741.67 in absolute value, if v is so large as to lose accuracy during the calculation (i.e. v exceeds pi.246 in absolute value), or if floating overflow occurs during the calculation. If the argument is invalid, POS.INDEF. + i. POS.INDEF. is returned, and a diagnostic message is issued. If the argument is valid, the result is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in CEXP is the same as that used in CEXP. . See the description of CEXP. for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the argument u + i.v, the error in the result is given approximately by e* . exp(u + i.v). Hence, the absolute value of the error in the result will be approximately | e*|.exp(u). If the error in the argument is significant, the error in the result should be determined by substitution of possible argument values in the function.

ROUTINE : CEXP.

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept calls by value for computation of the complex exponential function.

2. METHOD.

The input range is the collection of all definite in-range complex quantities $z = x + i \cdot y$ where |y| does not exceed pi.246 and |x| does not exceed 741.67.

The formula used for computation is

 $\exp(z) = \exp(x + i \cdot y) = \exp(x) \cdot \cos(y) + i \cdot \exp(x) \cdot \sin(y)$ where x and y are not floating-point quantities.

COS=SIN is called for computation of $\cos(y)$ and $\sin(y)$, and EXP. is called at entry point EXP. for computation of $\exp(x)$. The result is computed according to the formula and is returned to the calling program.

3. ERPOR ANALYSIS.

(See the descriptions of COS=SIN and HYPERB, for details.) If z=x+i, y is the argument, then the modulus of the error in the routine does not exceed 1.378 . 10**(-13) + 1.378 . 10**(-13) . exp(|x|). If the real part of the argument is large, the error in the routine will be significant.

For 10000 arguments chosen randomly from the following interval, the following statistics on relative error of the components of the results were observed.

	nI x tev	terval y from	Re to	gister	Mean	Standard Deviation	Minimum	Maximum
-1.	1.	-1.	1.	ХБ	-3.440E-15	3.784E-15	-1.428E-14	1.227E-14
				X7			-4.165E-14	
-670.	670.	-2.210E14	2.2106E14	X6	-8.962E-15	4.669E-14	-3.176E-12	2.235E-14
				X7	-1.071E-14	7.948E-14	-4.977E-12	3.723E-14

4. EFFECT OF ARGUMENT ERROR.

If a small error e(z) occurs in the argument z, the error in the result w is given approximately by $w \cdot e(z)$.

ROUTINE : CLOG

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept calls by name for CLOG from FORTRAN programs. CLOG computes the complex logarithm function.
- 2. METHOD.

The argument is checked upon entry. The argument is invalid if the real or complex part is infinite or indefinite, or if both the real part and the complex part are zero. If the argument is invalid, a diagnostic message is written and POS.INDEF. + 1*POS.INDEF. is returned. Otherwise, CLOG. is called at entry point CLOG. for computation of the complex logarithm. The result is returned to the calling program.

- 3. ERROR ANALYSIS see the description of CLOG. .
- 4. Effect of argument error.

If a small error e^* occurs in the argument z_* the error in the result is given approximately by e^*/z_* . The modulus of this will give approximately the modulus of the error.

ROUTINE : CLOG.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
- 1.2. Purpose. To accept calls by value for computation of the complex logarithm, including converted calls from CLOG.

2. METHOD.

The input range to this routine is the collection of all definite in-range complex quantities which are non-zero, and whose absolute values do not exceed the largest floating-point number representable in the machine.

The formula used to compute the complex logarithm is $log z = log(|z|) + i \cdot arg(z)$,

where |z| is the modulus of z. |z| is evaluated by routine CABS., and the logarithm is evaluated by ALOG. The function $\arg(z)$ is evaluated by routine ATAN2.; $\arg(z)$ always lies in the interval (-pi, pi) for z nonzero, definite and in-range. The result is returned to the calling program in X6AX7.

3. ERROR ANALYSIS.

Tests on a sample of 100000 random numbers distributed over the complex plane with distribution the product of two Cauchy distributions of zero mean returned a maximum absolute value for the relative error in the routine of $8.579 \pm 10 \pm (-13)$.

For 10000 arguments chosen randomly from the interval [-1.,1.]*[-1.,1.], the components of the results gave the following statistics on relative error.

Register	Mean	Standard Deviation	Minimum	Maximum	
X6	-7.120E-14	4.603E-12	-4.435E-10	4.213E-11	
X 7	-2.200E-16	2.489E-15	-1-114F-14	8-085F-15	

4. EFFECT OF ARGUMENT ERROR.

If a small error e(z) occurs in the argument z, the error in the result is given approximately by e(z)/z.

ROUTINE : COS=SIN

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. An auxilary routine of the math library. A floating-point argument is accepted and two floating-point results are returned.
 - 1.2. Purpose. To accept calls for GOS.SIN from other routines, requiring the simultaneous computation of sine and cosine of the same argument.
- 2. METHOD.

Polynomials p(x) and q(x) of degrees 11 and 12 are used to compute sin(x) andcos(x) over the interval (-pi/4, pi/4), to which the argument is reduced. Upon entry, the argument x is multiplied by 2/ pi, and the nearest integer n to 2/pi . x is computed by double-by rounded floating-point addition of the upper and lower halves of the result. In is normalized, and the argument x will cause a return INDEF. if the shift count in this normalization is zero; o f POS. in other words, if x exceeds pi.2*6(i.e., 221069929750888.5...) absolute value. Otherwise $y = x n \cdot pi/2$ is computed in doubleprecision as the reduced argument for input to p(y) and q(y). sin(x) and cos(x) are computed from these as indicated by the value mod(n,4). y lies in the interval (-pi/4,pl/4). The polynomials n(x) and q(x) are respectively

 $s(0)x + s(1)x^3 + s(2)x^5 + s(3)x^7 + s(4)x^9 + s(5)x^{11}$ and

 $c(0)+c(1)x^2+c(2)x^4+c(3)x^6+c(4)x^6+c(5)x^{10}+c(6)x^{12}$ where the coefficients are given by

s(0) = .99999999999972

s(1) = -.166666666665404

s(2) = .8333333331696029 . 10 ** -2

s(3) = -.198412607353790 . 10 ** -3

s(4) = .275548564509884 . 10 ** -5

s(5) = -.247320720952463 . 10 ** -7

c(0) = .999999999999999

c(2) = .0416666666664705

c(3) = -.1388888888698159 . 10 ++ -2

c(4) = .248015784673257 . 10 ** -4

c(5) = -.275552187277097 . 10 ** -6

c(6) = .206291063476645 . 10 ** -8.

These coefficients were obtained as follows. The polynomials of degrees 15 and 14 obtained by truncation of the MacLaurin series for $\sin(x)$ and $\cos(x)$ were telescoped to form the polynomials p(x) and q(x) of degrees 11 and 12. The method of telescoping polynomials (c.f., for example, C. Lanczos, <u>Aprlied Analysis</u>, 1956) consists of the (possibly repeated) removal of the leading term of polynomial by subtraction of an appropriate multiple of T(n)(a(X-x(0))) of the

same degree n, where 2/a is the length of the interval of approximation, and x(0) is its centre. (T(n)(x), the Chebyshev polynomial of degree n, is defined by T(n)(x) = $\cos(n \cdot \arccos(x))$ (|x| ≤ 1) and satisfies the recurrence relation:

T(0)(x) = 1T(1)(x) = x

 $T(n+1)(x) = 2xT(n)(x) - T(n-1)(x) (n \ge 1).$

T(n)(x) (for $n \ge 1$) is the unique polynomial $2(n-1)*x**n + \cdots of$ degree n whose maximum absolute value over $\{-1, 1\}$ is minimal. This maximum absolute value is, of course, 1.)

The formulae used for range reduction are:

sin(x) = (-1)**n sin(y)cos(x) = (-1)**n cos(y)

If x = y + n pi, n an integer;

sin(x) = cos(x - p1/2)

cos(x) = -sin(x -pi/2)

if pi/45x5pi/2.

The input range is the collection of definite, in-range floatingpoint quantities whose absolute values do not exceed pi * 246.

B. ERROR ANALYSIS.

The maximum absolute error in the approximation of $\sin(x)$ by p(x) over $\{-pi/4,pi/4\}$ is .1893 . 10 ** -14 and in the approximation of $\cos(x)$ by q(x) is .3687 . 10 ** -14 . Upper bounds on the machine round-off and truncation error over the input range $\{-pi/4,pi/4\}$ have been established for p(x) at 7.523 . 10 ** -15 and for q(x) at 1.401 . 10 ** -14 . Hence, the maximum absolute error and for q(x) a 1.401 . 10 ** -14. Hence the maximum absolute error in this routine's computation of sine over $\{-pi/4,pi/4\}$ is 9.416 . 10 * -15 and of cosine is 1.770 * 10 ** -14 .

4. EFFECT OF ARGUMENT ERROR.

Not applicable, since this routine is not directly called by the user's program.

POUTINE : CSIN

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept calls by name for CSIN from FORTRAN programs. CSIN computes the sine function for complex arguments.
- 2. METHOD.

If x and y are real, then

sin(x + i.y) = sin(x).cosh(y) + i.cos(x).sinh(y).

Upon entry, the argument is checked. It is invalid if the real part x or the imaginary part y is infinite or indefinite, if x or y is so large as to cause loss of precision in the calculation, or if floating overflow occurs during the calculation. If the argument is invalid, a diagnostic message is issued, and POS.INDEF. + i.POS.INDEF. is returned. If the argument is valid, the result of the computation is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in CSIN is the same as that in CSIN. . See section 3 of the description of CSIN. for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small argument error appears, then the error in the result is given approximately by multipling the argument error by the complex cosine of the argument. Hence, if a small error occurs in the complex argument and the error has absolute value e*, then the absolute value of the error in the result is given approximately by

e* * $(\cos(x)^2 + \sinh(y)^2 * 1/2$, where x * i*y is the complex argument. If the argument error is significant, the error in the result should be be found by substitution of the possible argument values in the function.

ROUTINE : CSIN.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
- 1.2. Purpose. To accept calls by value for computation of the complex sine.

2. METHOD.

The input range is the collection of all definite in-range complex quantities $z = x + i \cdot y$ where lyl does not exceed 741.67 and lxl does not exceed pi . 246 .

The formula used for computation is

 $\sin(x+i^*y)=\sin(x)*\cosh(y)+i*\cos(x)*\sinh(y)$, where x and y are floating-point numbers. COS=SIN is called for computation of the cosine and sine of x, and HYPERB, is called for computation of the hyperbolic sine and cosine of y. The result is returned to the calling program - the real part in X6 and the imaginary part in X7.

3. ERROR ANALYSIS.

(See the descriptions of HYPERB. and COS=SIN for details.) If z=x+i.v is the argument, then the modulus of the error in the routine does not exceed 1.276 . $10**(-13) + 1.297 \cdot 10**(-13) \cdot \exp(|y|)$. The error in the routine is significant if the argument has a large (positive or negative) imaginary part.

For 10000 arguments chosen randomly from the interval [-1.,1.]*[-1.,1.], the following statistics on relative error were observed in the components of the results.

Register	Mean	Standard Deviation	Minimum	Maximum	
X6 X7	-5.592E-15			1.228E-14	

4. EFFECT OF ARGUMENT ERPOR.

If a small error $e(z) = e(x) + i \cdot e(y)$ occurs in the argument $z = x + i \cdot y$, the error in the result is given approximately by $cos(z) \cdot e(z)$.

ROUTINE : CSORT

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
 - 1.2. Purpose. To accept calls by name for CSQRT from FORTRAN programs. CSQRT computes the complex square root function which maps to the right half of the complex plane.
- 2. METHOD.

For the algorithm, see the description of CSQRT. Upon entry, the complex argument is checked. The argument is invalid if its real part or its imaginary part is infinite or indefinite, or if floating overflow occurs during the calculation. If the argument is invalid, a diagnostic message is issued, and POS.INDEF. I*POS.INDEF. is returned. If the argument is valid, CSQRT. Is called at entry point CSQPT. for the computation. The result is returned to the calling program. For the purposes of this computation, values returned by the routine will lie in the right half of the complex plane.

- 3. ERROR ANALYSIS see the description of CSQRT. .
- 4. EFFFCT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument z. The error in the result w is given approximately by $e^*/(2.w)$. The modulus of this will give a approximately the modulus of the error.

ROUTINE : CSORI.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts a complex argument and returns a complex result.
- 1.2. Purpose. To accept calls by value for CSQRT. from FORTRAN programs. CSQRT. computes the complex square root function.

2. METHOD.

The input range to this routine is the collection of all definite in-range non-zero complex quantities. If the argument is zero, zero is returned.

If $z = x + i \cdot y$ is the argument, then the result is given by $w = u + i \cdot v$ where u and v are determined as follows. Let $a = (x^2 + y^2) + 1/2$,

b = ((a + |x|)/2) ** 1/2.

and

c = y/(2.b).

Then if $x \ge 0$, u = b and v = c, while if x < 0, u = c, sign(y) and v = b, sign(y). The result from this routine will always lie in the first or fourth quadrant of the complex plane, and complex quantities lying on the axis of negative reals will be taken by the routine to the axis of positive imaginaries.

B. ERROR ANALYSIS.

The routine was tested against a sample of 100000 random numbers distributed over the complex plane with distribution the product of two Cauchy distributions. The maximum observed modulus of relative error was 1.595 . $10^{++}(-14)$.

For 10000 arguments chosen randomly from the following interval, the following statistics on relative error of the components of the results were observed.

Interva from	l x to	Interval from	y to	Register	Mean	Standard Deviation	Minimum	Maximum
-100.	190.	-100.	100.	X6	-4.790E-16	2.652E-15	-9.774E-15	1.107E-14
				X7	-4.320E-16	2.655E-15	-9.726E-15	1.032E-14
-10.100	10.100	-10.100	10.100	X 6	-4.053E-19	2.632E-15	-1.012E-14	1.036E-14
				X7	-4.098E-16	2.637E-15	-9.520E-15	1.096E-14

4. EFFECT OF ARGUMENT ERROR.

If a small error $e(z) = e(x) + i \cdot e(y)$ occurs in the argument, the error in the result $w = u + i \cdot v$ is given approximately by $e(z)/(2 \cdot w) = (e(x) + i \cdot e(y))/(2(u + i \cdot v))$.

ROUTINE : DASNCS.

1. ROUTINE'S FUNCTION

- 1.1. Type. FORTRAN external functions. It accepts a double-precision argument and returns a double-precision result.
- 1.2. Purpose. To accept calls by value for computation of the inverse sine and inverse cosine functions.

2. METHOD.

The input range is the collection of all valid double precision quantities in the interval [-1.0,+1.0]. Arguments outside this range will initiate error processing.

The following identities are used to move the interval of approximation to [8,SQRT(.5)]:

arcsin(-x)=-arcsin(x)

arccos(x)=pi/2-arcsin(x)

 $arcsin(x) = arccos(sqrt(1-x^2))$ $x \ge 0$

 $\arccos(x) = \arcsin(\operatorname{sqrt}(1-x^2))$ $x \ge 0$

Call the reduced value y. If $y \le .09375$, no further reduction is performed. If not, the closest entry to y in a table of values $(z, \arcsin(z), \gcd(1-z^2), z=.14, .39, .52, .64)$ is found, and the formula

arcsin(x) = arcsin(z) + arcsin(w)
where w=x.sqrt(1-z²)-z.sqrt(1-x²)

is used. The value of w is in (-.0792,+.0848)

The arcsin of the reduced argument is then found using a 15th order odd polynomial (with quotient):

 $x+x^3(c(3)+x^2(c(5)+x^2(c(7)+x^2(c(11)+x^2(c(13)+x^2(c(15)+a/(b-x^2))))))$

where all constants and arithmetic before c(11) are in double, and the rest is in single except the addition of c(11), which has the form single+single=double. The polynomial is derived from a minimax rational form (denominator is $(b-x^2)$) for which the critical points have been perturbed slightly to make c(11) fit in one word.

To this value, arcsin(z) is added (from a table, and only if the last reduction above was done) and the sum is conditionally negated and 0,-pi/2, +pi/2, or pi is added to complete the unfolding.

3. ERROR ANALYSIS.

The maximum relative erros are:	DASIN	DACOS
minimax rational form error algorithm error	.082E-29	•082E-29
(double precision coefficients) maximum error observed	.76E-29 10.5E-29	

The regions of worst error are (.09375,.1446) for DASIN and (.9895,.9966) for DACOS. In these regions the final addition is of quantities of almost equal magnitude and opposite sign, and cancellation of about one bit occurs, the worst case being .1451-.0629. For DASIN, the polynomial range was extended to cover the region (.0821,.09375], where the worst error occurs. For DACOS, the extension is not used, so that the maximum relative error for either routine occurs in the region (.9956,.9966) in DACOS. For 10000 points randomly distributed in this region the maximum observed relative error in DACOS was 12.5E-29.

4. EFFECT OF APGUMENT ERROR.

If a small error eps occurs in the argument x, the resulting errors in DASIN and DACOS are approximately eps/ $(1-x^2)$ **.5 and -eps/ $(1-x^2)$ **.5. The amplification of the relative error is approximately x/(f(x)* $(1-x^2)$ **.5) where f(x) is DASIN or DACOS. The error is attenuated for DASIN of abs(x)<0.75 and for DACOS of x>-.44, but may become serious for DASIN near -1 or +1 and DACOS near -1. If the argument is generated as 1-y or y-1 then the identities

```
asin(x)=acos(sqrf(1-x2))
acos(x)=asin(sqrf(1-x2))
asin(-x)=-asin(x)
acos(-x)=pi+asin(x)
```

may be used to get the full significance of y. When computing $(1-x^2)$ one should use a form such as $(1-x^2)=(1+x)^*(1-x)=y^*(2-y)$.

ROUTINE 1 DATAN

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts a double-precision argument and returns a double-precision result.
- 1.2. Purpose. To accept calls from FTN compiled code for computation of the inverse tangent function.

2. METHOD.

The input range is the collection of all valid double-precision quantities. Other arguments will initiate error processing from DATAN=. Upon entry, the argument is loaded into registers X1 and X2, and routine DATAN= is entered for all remaining computations. See this routine's METHOD description for further details.

3. ERROR ANALYSIS.

See section 6 of the description of routine DATAN, for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

See section 7 of the description of routine DATAN.

POUTINE : DATAN.

- 1. ROUTINE * FUNCTION.
 - 1.1. Type. FORTRAN external function. The routine accepts a double-precision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiler code for computation of the inverse tangent function.

2. METHOD.

The input range is the collection of all valid double-precision quantities.

Computation is performed mainly in routine DATCOM., and the constants used are listed there.

- a. Transfer return address from entry point word into 86.
- b. Test first word of argument for infinite or indefinite. If either, go to step i.
- c. B3+0. (B3 holds a mask MI.) B7+0. (B7 will hold closest multiple of pi/2 to absolute value of result.)
- d. 84 + sign mask for argument. (84 holds MS , a mask for result*s sign.)
- e. X7 X3+ absolute value of argument.
- f. If absolute value of argument < 1. , jump to routine DATCOM. at entry point DTN. to complete processing.
- 9. X5 X3+ absolute value of argument. X4 X1+1. B3++0 B7+1
- h. Jump to routine DATCOM. at entry point DATCOM. to complete processing.
- i. Pick up parameter for error precessor. Call error processor, supplying given argument and parameters.
- J. If error processor returns control, return pi/2, with sign that stored in B4 . pi/2 is picked up by doubling an entry in a table starting at entry point ATN. in routine DATCOM. .

60498200 C

3. ERROR ANALYSIS.

10000 random arguments were generated in the interval [1/200.,200.], and the resulting graph of relative error versus argument is shown in the figure following this routine's description. In this sample, the maximum absolute value of relative error is 7.183*10**(-29). Groups of 40 double-precision arguments were chosen randomly in each of the following intervals, and the following statistics on relative error were observed.

Interval's Lower	Interval*s Upper	Kean	Standard Deviation	Minimum	Maximum
Bound	Bound				
-8.	8.	-1.995E-30	1.109E-29	-2.063E-29	3-208F-29
• 01	10.	-1.505E-30	1.124E-29	-2.907E-29	2.745E-29

The maximum absolute value of relative error in the algorithm is 1.622E-29, and this occurs at 1.069781471095183.

3.1. ALGORITHM ERROR.

Up to 1/16, the plot shows the error in the economized polynomial; it is not centered because the first coefficient was forced to be 1. The interval between (2n-1)/16 and (2n+1)/16 is repeated twice (once reflected), but the waviness is damped because of adding atan(n/8). The descrete jumps at (2n-1)/16 are caused by the inaccuracies in atan(n/8). Above 1.0, the subranges are delimited by 16/(2n-1).

3.2. TOTAL ERROR

Most of the errors can be traced back, with difficulty, to quirks in double precision addition. Note that the lower parts of the constants for pi and some of the atan(n/8)*s are negative. While it allows the constant to be precise to an extra bit or two, the unpredictable sign wreaks havoc on the addition process.

4. EFFECT OF ARGUMENT ERROR.

If a small error e occurs in the argument x, the error in the result is given by $e/(1+x^2)$.

POUTINE : DATAN2

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. The routine accepts a double-precision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the inverse tangent function with two arguments.

2. METHOD.

The input range is the collection of all pairs of valid double-precision quantities which are not both zero. Other arguments will initiate error processing from DATAN2. Upon entry, the arguments are loaded into registers X1, X2, X3, and X4 and routine DATAN2. is entered for all remaining computation. See this routine's METHOD description for further detaits.

3. ERROR ANALYSIS.

See section 6 of the description of routine DATAN2. for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

See section 7 of the description of routine DATAN2. for the effect of argument error.

ROUTINE : DATAN2.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. The routine accepts an argument vector comprising two double-precision arguments, and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the inverse tangent function with two arguments.
- 2. METHOD.

The input domain is the collection of all pairs of valid doubleprecision quantities which are not both zero.

Computation is performed mainly in routine DATCOM., and the constants used are listed there.

- a. Test first words of both arguments to see if either is infinite or indefinite. If so, go to step].
- b. Normalize first words of both arguments.
- c. Of first words of both arguments are zero, go to step i.
- d. 84 + sign mask of first word of first argument. 83 + complement of sign mask of first word of second argument. 86 + return address in calling routine. 87 + 1 .
- e. X5 X3 ← absolute value of first argument.
 X4 X1 ← absolute value of second argument.
- f. X5 > X4, jump to routine DATCOM. at entry point DATCOM. to complete processing.
- g. X5 <-> X4
 X3 <-> X1
 Complement contents of B3.
 B7 + 0, if first word of second argument is positive
 + 2, if first word of second argument is negative.
- h. Jump to routine DATCOM. at entry point DATCOM. to complete processing.
- i. Supply message for "ARGUMENT VECTOR 0.0".
- Pick up parameters for error processor. Call error processor, supplying given arguments and parameters.

60498200 C

- k. If control returns from the error processor, return +INDEFINITE. to the calling program.
- 3. ERROR ANALYSIS.

A group of 40 random double-precision arguments was chosen in [.01,10.] \times [.01,10.], and the following statistics on relative error were observed.

Mean Standard Minimum Maximum Deviation -2.649E-30 2.161E-29 -6.188E-29 3.115E-29

The maximum absolute value of relative error in the algorithm is 1.622F-29.

4. EFFECT OF ARGUMENT ERROR.

If small errors e^* and e^* occur in the arguments x and y respectively, the error in the result is given approximately by

 $(x + e^{-1} - y + e^{-1})/(x^2 + y^2).$

ROUTINE : DATCOM.

- ROUTINE'S FUNCTION.
 - 1.1. Type. An auxiliary routine containing common code for DATAN, and DATAN2.
 - 1.2. Purpose. Common code for computation of DATAN and DATAN2.
- 2. METHOD.

On entry, at both entry points DATCOM. and DTN. ,

B3 = mask MI .

B4 = mask MS = sign of final result.

B6 = return address after processing is complete.

B7 = closest multiple of pi/2 to absolute value of result.

In addition, at entry point DATCOM. ,

X4 X1 = DU

X5 X3 = DV .

and at entry point DTN. ,

X7 X3 = DU •

Entry point ATN. is the start of an eighteen-word table containing tan-1(n/8) ($0\le n\le 8$) in double-precision. Entry point DATCOM. corresponds to step a., and entry point DTN. corresponds to step b.. Constants used in the algorithm are:

d3 -.333 333 333 333 333 333 333 285 915

d5 .199 999 999 999 999 999 673 046 526

d7 -.142 857 142 857 142 856 280 180 055 289

d9 .111 111 111 111 109 972 932 035 508 119

c11 = -.090 909 090 908 247 503

c13 = .001 351 201 845 778 152

a = -.085 666 743 757 593 089

b = -1.133 579 709 202 919 6

d3, d5, d7, d9 are double-precision constants, c11, c13, a, b are single-precision constants. Arithmetic operations with d subscripts are done in double-precision, those with u subscripts are done in single-precision. Boolean operations have B subscripts.

- a. DQ + DU/DV in double-precision. Carry DQ in X7 X3 .
- b. (DQ DA-DU at DTN.) (Note that 0≤DQ≤1.)
- c. n + nearest multiple of 1/8 to DQ . DL+0 .
- d. If n=0, go to step f.
- e. DA+(DQ-N/8)/(1+N/8 \pm DA) , computed in double-precision.

60498200 C

- f. If (DA)(u)=0, go to step h. $XX \leftarrow (DA)(u) + (u) (DA)(u)$ $X \leftarrow XX + x0.5 (DA)(u) (((DA)(u) + x0.5) (DA)(u)) (((DA)(u)) (((DA)(u)))$
- h. V + (DA)(u) + (d) DC * (d) ((DA)(u) (d) (DA)(u) * (i) (DA)(u) / ((DA)(u) + (r) (DA)(u))) w + <math>V + (d) ((DA)(1) X*((DA)(1)) + (DA)(u) * (DA)(u) / ((DA)(u)))
- i. b + (87 * pi/2) (8) 83 (upper and lower)
- 1. $C \rightarrow b + (d)$ tan-1(n/8). tan-1(n/8) is obtained as a double-precision quantity from the look-up table.
- k. p + (c + (d) w) (B) (B3 (B4))X6 X7 + p , cleaned up. Return to address B6 by direct jump.

3. ERROR ANALYSIS.

Coefficients d3, d5, d7, d9, c11, c13, a, b were obtained by making the expression using these coefficients a minimax approximation to inverse tangent over [-1/16,1/16], within the class of expressions obtained by varying these coefficients. (See descriptions of routines NATAN, and DATAN2, for error analyses.)

4. EFFECT OF ARGUMENT ERROR.

See descriptions of routines DATAN. and DATAN2. for effect of argument error.

POUTINE : DCOS

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a double-precision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DCOS from FORTRAN programs. DCOS computes the cosine function.
- 2. METHOD.

See the description of DSNCOS. for the algorithm used in the computation. The argument is checked upon entry. It is invalid if infinite or indefinite or so large as to lose precision during the calculation. If the argument is invalid, POS. INDEF. is returned, and a diagnostic message is issued. If the argument is valid, DSNCOS. is called at entry point DCOS. for the computation. The result is returned to the calling program.

- 3. ERROR ANALYSIS see the description of DSNCOS. .
- 4. EFFECT OF ARGUMENT ERROR see the description of DSNCOS. .

POUTINE : DCOSH

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. The routine accepts a double-precision argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the hyperbolic cosine function.
- 2. METHOD.

The input domain is the collection of all valid double-precision quantities whose absolute value is less than 1071*log(2). Arguments not in the domain will initiate error processing in routine DHYP. . Upon entry the argument is loaded into X1 X2 before routine DHYP. is alled. (see the description of routine DHYF, for further details.)

3. ERROP ANALYSIS.

(See the description of routine DHYP. for error analysis.)

4. EFFECT OF ARGUMENT ERROR.

(See the description of routine DHYP. for effect of argument error.)

ROUTINE : DEULER.

- 1. ROUTINE'S FUNCTION.
 - i.i. Type. An auxiliary routine.
 - 1.2. Purpose. Common code for routines DEXP., DHYP,, and DTANH.
- 2. METHOD.

Constants used in the routine are:

```
1./log(2)
log(2) (in double-precision)
d3 = .166 666 666 666 666 666 666 666 666 709
d5 = .833 333 333 333 333 333 333 331 234 953E-2
d7 = .198 412 698 412 698 412 700 466 386 658E-3
d9 = .275 573 192 239 858 897 408 325 908 796E-5
pc = -.474 970 880 178 988E-10
pa = .566 228 284 957 811E-7
pb = 272.110 632 903 710
c11 = .250 521 083 854 439E-7
```

The algorithm is

- a. n + nearest integer to x/log 2. y + x - n * log(2) . (Then y is in [-1/2*log(2),1/2*log(2)])
- b. $a + ({y}(u) *{u} {y}(u))**0.5 = {y}(u) (-{y}(u) *{1}) q + {y}(u) *{u} {y}(u)$
- c. p + q *(d) (d3 + (d) q *(d) (d5 + (d) q *(d) (d7 + (d) q *(d) (d9 + (d) q *(d) (c11 + (d) q *(d) (pa/(pb-q)+pc))))))
- d. $s + \{y\}\{u\} + \{d\} \{y\}\{u\} * \{d\} p$
- f. DS + s +(d) (((y)(1) + (r) (y)(1) *(u) hm) + (r) ((s)(1) + (r) ((y)8u) *(1) (p)(u) + (r) (y)(u) *(r) (p)(1))))(DS now contains sinh(y) in double-precision)
- g. DC + hm +(d) (DS*DS-2*hm-hm*hm)/(2(1.+hm))

 + +

 evaluated in double

- h. DX + DS+DC
- i. Clean up DS, DC, g with
 X6 X7 + DS
 X1 X1 + DC
 X4 X5 + DX
 3 + n
- 1. Direct jump to 84
- 3. ERROR ANALYSIS.

Not applicable.

4. EFFECT OF ARGUMENT ERROR.

Not applicable.

ROUTINE : DEXP

- ROUTINE'S FUNCTION.
 - 1.1. Type: A FORTRAN external function. It accepts a doubleprecision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the exponential function.
- 2. METHOD.

The input domain is the collection of all valid double-precision quantities lying in the interval

[-975*log(2),1070*log(2)], i.e., [-675.84,741.67].
Arguments outside this range will initiate error processing from DEXP... Upon entry, the argument is loaded into registers X1 X2, and routine DEXP. is entered for the remaining computation. (See the description of routine DEXP. for further details.)

- 3. ERROR ANALYSIS see the description of DEXP. .
- 4. EFFECT OF ARGUMENT ERROR see the description of DEXP. .

POUTINE : DEXP.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a doubleprecision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the exponential function.

2. METHOD.

The input domain is the collection of all valid double-precision quantities: lying in the interval (-975*log(2),1070*log(2).

The argument reduction performed in routine DEULER. is

 $x = \langle argument \rangle$

 $y = x - n + \log(2)$

where y = <reduced argument> is in [-1/2 log 2,1/2 log 2]
n is an integer.

Most of the computation is performed in routine DEULER., and the constants used are listed there.

On input, the argument is in $X1\ X2$, and on output, the result is in $X6\ X7$.

- a. Let x = <argument>. Save x in core. If I(x)(u)! ≥ 1731564000000000000, go to step g.
- b. Jump to routine DEULER. at entry point DEULER. with 84 = address for step c, X7 = upper part of x, X6 = fower part of x, X5 = packed sign mask of x.

On return from DEULER., 83 = n, X4 = (DX)(u), X5 = (DX)(1), X0 = DC)(u), X1 = (DC)(1), X6 = (DC)(u), X7 = (DS)(1). Here, n = n nearest multiple of log 2 to x, y = x-n*log(2), and DS Ssinh(y), DC cosh(y)-1, DX exp(y)-1, all in double-precision.

- c. w + 1. +(d) (DC +(d) DS). Unpack w, increase exponents by n, and repack into X6 X7.
- d. If upper word's exponent overflows, go to step g.
- e. If lower word's exponent underflows, go to step i.
- f. Return, with result in X6 X7.
- g. Set parameters. Load up original argument. Call error processor.
- h. If error processor returns control, return.

- i. Set parameters. Load up original argument. Call error processor.
- 1. If error processor returns control, return 0. 0. in X6 X7.

3. ERROR ANALYSIS.

1990 random arguments were generated in the interval [-1/2 log 2, 3/2 log 2], and the resulting graph of relative error versus argument is shown in the figure following this routine's description. In this sample, the largest absolute value of relative error is 3.858E-29. Groups of 100 double-precision arguments were chosen randomly in each of the following intervals, and the following statistics on relative error were observed.

Interval*s	Interval*s	Mean	Standard	Minimum	Maximum
Lower	Upper		Deviation		
Round	Bound				
-2.	?∙	3.461E-31	8.256E-30	-2.632E-29	2.086E-29
-600.	700.	-8.631E-31	7.310E-30	-1.818E-29	1.446E-29

The approximation (described in the section on error analysis of routine DEULER.) is a mimimax approximation within the class obtained by varying the coefficients.

3.1. ALGORITHM ERROR.

The curve for the algorithm error is barely distinguishable. It peaks at odd multiples of log 2/2 with a value of about .04E-29. The algorithm error has essentially no effect on the total error.

3.2. TOTAL ERROR.

Except for fiddling with the exponent, DEXP ends with 1.0+s where $|s| \le .3536$; this addition is easy to do exactly when s is small and positive (see the plot just above 0 and log 2). For s negative, the sum is less than 1, i.e., it crosses a band boundary, and it becomes difficult to produce an exact result (the plot shows exact or one bit low). When $s \le .25$ (e.g., .35 < x < .45), it becomes even more difficult to prevent bits from dropping off in the low precision when lower sums overflow.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument the error in the result y is given approximately by y^*e^* .

POUTINE : DHYP.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. FORTRAN external functions. The routine accepts a double-precision argument at either entry point, and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the hyperbolic sine and cosine functions.
- 2. METHOD.

The input domain is the collection of all valid double-precision quantities lying in the interval (-1071*log(2),1071*log(2)).

Most of the computation is performed in routine DEULER., and the constants used are listed there. The argument reduction performed in routine DEULER. is

 $x = \langle argument \rangle$

y = <reduced argument>

y = x-r + log(2)

where n is an integer, and y is in [-1/2*log(2),1/2*log(2)] . The re-combination formula is:

cosh(y+n*log 2)

= $(\cosh(y)+\sinh(y))2^*(n-1) + (\cosh(y)-\sinh(y))2^*(-n-1)$ $\sinh(y+n^*\log 2)$ = $(\cosh(y)+\sinh(y))2^*(n-1) - (\cosh(y)-\sinh(y))2^*(-n-1)$

At entry points DSINH. and DCOSH., the argument is in X1 X2, and on exit, $\times 6$ X7 holds the result. DSINH. corresponds to entry at step a., and DCOSH. corresponds to entry at step m.

- a. Let a = <argument> = X1 X2
 b + |a| Store b in X7 X6 .
 85 + sign of a
- b. B5 + packed zero
 B4 + address of step g
 B1 + 1
- c. If (b)(u) < xmax(u), jump to routine DEULER, at entry point DEULER, . If (b)(u) > xmax(u), go to step e, xmax is 1071*log(2).
- d. If (b)(1) < xmax(1), jump to routine DEULER. at entry point
 DEULER..</pre>
- e. X1 X2 \leftarrow a Set up parameters for error processor call with message "ARGUMENT TOO LARGE". If call was to entry point DCOSH. ,

60498200 C

transfer contents of DCOSH. to DSINH. .

- f. Call error processor.

 If (a)(u) is indefinite, return through entry point DSINH. with S6 X7 = +INDEFINITE . Otherwise, return through DSINH. with S6 X7 = +-INFINITE, the sign determined by 85 .
- g. (Return from DEULER, with parameters

B3 = n

 $X4 = \{DX\}\{u\}$

X5 = (DX)(1)

X0 = (DC)(u)

X1 = (DC)(1)

X6 = (DS)(u)

 $X7 = \{DS\}\{1\}$

where, if $y = 1-n \log(2)$,

 $0X = \exp(y) - 1$

DC = cosh(y) -1

 $DS = sinh(y) \cdot 1$

If n=0 , go to step 1.

If n≥48 , go to step k.

u + 2**(n-1) (0C+0S) in double v + 2**(-n-1) (0C+0S) in double

w + 2**(n-1) + u in double

If n≥24 , go to step h.

W + W + S+S = (2**(-n-1)+v)(I) in double, sign \$+\$ determined by B5 .

- h. $w \leftarrow w$ %+\$ (2**(-n-1)+v)(u) in double, sign \$+\$ determined by 85 .
- i. X6 X7 + w with sign same as sign of B5 .
- 1. Return through entry point used to call routine.
- k. w + (1.+DC+DS) * 2**(n-1)
 Go to step 1.
- 1. If DSINH. entry, return through DSINH... (Note that X6 X7 = DS
 .)
 X6 X7 + 1. + DC in double.
 Return through DCOSH.
- m. Let a + X1 S2 = <argument>
 b + |a| Store b in X7 X6 .
 85 + 1
 Go to step b.
- 3. ERROR ANALYSIS.

10000 random arguments were generated in the interval

[-1/2 log 2,32 log 2]

for each of DSINH and DCOSH, and the resulting graphs of relative error versus argument are shown in the figures following this routine's description. In these samples, the maximum absolute values of relative error were 8.026E-29 for DSINH, and 4.405E-29 for DCOSH. The following statistics on relative error were observed in random samples of arguments in the intervals described.

Entry Point	Interval*s Lower Bound	Interval*s Upper Bound	Mean	Standard Deviation	Minimum	RumixeM
DSINH.	-2.	2.	8.516E-31	1.086E-29	-2.738E-29	3.238E-29
	-600.	700.	-3.274E-31	7.907E-30	-2.645E-29	1.651E-29
DCOSH.	-2.	2.	-2.055E-30	1.217E-29	-3.071E-29	3.706E-29
	-600.	700.	-1.096E-30	9.645E-30	-2.733E-29	1.904E-29

3.1. ALGORITHM ERROR.

The curve for the algorithm error is barely distinguishable. It peaks at odd multiples of log 2/2 with a value of about .04E-29. The algorithm error has essentially no effect on the total error.

DSINH

The peaks are at odd multiples of log 2/2 below 33. . At $47.5\%\log 2$, the algorithm error has a sudden peak; the reason is that it is at this point that the algorithm switches to DSINH(x)=exp(x)/2. This point was chosen because 2%%(n-1) can be done correctly using an IX instruction to add n to the top of 0.5. (48 would produce Indefinite.) Anyway, exp(x)/2 is accurate enough.

3.2. TOTAL ERROR.

DCOSH

The total error curves should be symmetric about the x=0. The pattern shown should repeat until 47.5*log 2 (about 33.) at which point it will start looking like the DSINH and DCOSH curves. Between 0 and log 2/2 (=.3466), DCOSH is computed as 1+c where $0 \le c < .75 \times SQRT(2) = 1 = .06066$; this is done fairly accurately, but the addition sometimes drops a bit in the low word. Above log 2/2, the formula ends with a lot of addition and subtraction; for example DCOSH(1.7443)=(4+1/16)-4*.3+small stuff, where the .3 is about what the sinh polynomial produced. Notice that the subtraction crosses a band and the exponent on 4*.3 is only one less than the result; these facts make it difficult to keep from dropping bits.

DSINH

Up to log 2/2, the error is predominated by the final add in the sinh polynomial. Just above log 2/2 the error is

especially bad because of cancellation. Near log 2/2, DSINH is calculated via (1-1/4)-s+1/4+s where s is greater than 2++-2 and the result is less than 2++-1. The parts of the curve in the two ranges (.35,16.) and (16.,33.) have different shapes because of the shortcut taken in the latter range. (The split is at 23.5+10g 2.) Above 33. (47.5+10g 2), the error curve is the same as for DEXP.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x, the error in sinh(x) is approximately $cosh(x) + e^*$, and the error in cosh(x) is approximately $sinh(x) + e^*$.

ROUTINE : DLOG

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a doubleprecision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DLOG from FORTRAN programs. DLOG computes the natural logarithm function.
- 2. METHOD.

The algorithm used is given in the description of DLOG. Upon entry, the argument is checked. The argument is invalid if it is infinite or indefinite, or is not greater than zero. If the argument is infinite, indefinite or negative, POS. INDEF. is returned. If the argument is zero, NEG. INF. is returned. In any case, if the argument is invalid, a diagnostic message is issued. If the argument is valid, DLOG. is called at entry point DLOG. for the computation. The result is returned to the calling program.

- 3. ERROR ANALYSIS see the description of DLOG. .
- 4. EFFECT OF ARGUMENT ERROR see the description of DLOG. .

ROUTINE : DLOG. 1 = DLNLOG. 1

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a double-precision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by value for DLNLOG., calls generated by the use of DLOG or DLOG10 within FORTRAN programs. DLNLOG. computes the natural and common logarithm functions.

2. METHOD.

The input range is the collection of all definite in-range doubte-precision quantities which are greater than zero. Upon entry, the argument x is put into the form x=2**k*w, where k is an integer, and $2**-1/2 \le w \le 2**1/2$. Then log x is computed from

 $\log x = k \cdot \log 2 + \log w \cdot$

k · log2 is computed in double-precision, while log w is evaluated as follows. A polynomial approximation u is first evaluated in single-precision by

 $u = c(1) \cdot t + c(3) \cdot t^3 + c(5) \cdot t^5 + c(7) \cdot t^7$

t = (w - 1)/(1 + w)

where the coefficients c(1), c(3), c(5) and c(7) are

c(1) = 1.99999993734000,

c(3) = 0.666669486638944

c(5) = 0.399657811051126,

c(7) = 0.301005922238712.

This approximates log with a relative error of absolute value at most 3.133. 10^{+} *-8 over $(2^{+}$ *-1/2, 2^{+} *1/2). Newton*s rule for finding roots is then applied in two stages to the function $\exp(x)$ - w to yield the final approximation to log w. The two stages are algebraically combined to yield the final approximation v:

 $v = u - (1-x \cdot exp(-u))$

 $-(1 - x \cdot exp(-u - (1 - x \cdot exp(-u))))$.

Writing z = 1 - x, exp(-u), z is much less than 1, and v is computed by

 $v = u - z(u) - z(1) - (z(u))^2 \cdot (.5 + z(u)/3)$

where z=z(u)+z(1). This formula is obtained by neglecting terms which are not significant for double-precision. $\exp(-u)$ is evaluated in double-precision by the polynomial of degree 17 which is described in section 5 of the description of routine DEXP. If entry was made at DLOG10., after k. log 2 + log w has been evaluated, the result is multiplied by log(10) e in double-precision. The result is returned to the calling program.

3. ERROR ANALYSIS.

The maximum absolute value of the error of approximation of the algorithm to tog x is 1.555 . $10^{++}-29$ over the interval [$2^{++}-1/2$, $2^{++}1/2$]. A graph of the error in the algorithm versus argument is given in figure 16. An upper bound on the absolute value of the

machine round-off and truncation error (for arguments lying in [2**-1/2, 2**1/2]) has been established at 5.146 . 10**-28. Hence the absolute value of the error in the routine over the interval [2**-1/2, 2**1/2] is not greater than 5.302 . 10**-28. The maximum absolute value of the relative error of approximation of the algorithm to log x over [2**-1/2, 2**1/2] is 2.266 . 10**-28. An upper bound on the absolute value of the relative machine truncation and round-off error has been established at 1.486 . 10**-27. Hence an upper bound on the absolute value of the relative error in the routine over the interval [2**-1/2, 2**1/2] is 1.713 . 10**-27.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* the error in the result is given approximately by e^*/x_* .

ROUTINE : DLOG10

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a doubleprecision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DLOGIO from FORTRAN programs. DLOGIO computes the common logarithm function.
- 2. METHOD.

Upon entry, the argument is checked. It is invalid if it is infinite or indefinite, or if it is not greater than zero. If the argument is infinite or indefinite or negative, POS.INDEF. is returned. If the argument is zero, NEG. INF. is returned. In any case, if the argument is invalid, a diagnostic message is issued. If the argument is valid, DLNLOG= is called at entry point DLOGIO. for the computation. The result is returned to the calling program.

- 3. ERPOR ANALYSIS see the description of DLNLOG .
- 4. EFFECT OF ARGUMENT ERROR see the description of DLNLOG .

ROUTINE : DMOD

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts two double-precision arguments and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name from DMOD from FORTRAN programs. DMOD computes the modulus of an argument relative to a second argument.
- 2. METHOD.

The argument range is all valid double precision (x,y) such that [x/y]<2+96 and $y\ne0$. After argument checking, DMOD, is called to compute the result. The comparison [x/y]:2+96 is done by comparing exponents and, if necessary, coefficients.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR not applicable.

ROUTINE : DMOD.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts argument sets comprising two double-precision arguments, and returns doubleprecision results.
- 1.2. Purpose. To accept calls by value for DMOD., calls generated by the use of DMOD within FORTRAN programs. DMOD. computes the remainder of an argument relative to a second argument.

2. METHOD.

The argument range is all valid double-precision (x/y) such that (x/y)<2+1070 and $y\neq0$. The function computed by DMOD (x+y) is

$$x-[x/y]*y$$

where [u] denotes truncation. The value of x is repeatedly reduced by 45-bit approximations to [x/y] until the reduced value lies in the range [0,sign(y,x)). Since the result does not exceed 96 bits (see AMOO), the intermediate value of x does not exceed 98 bits and the reduction is done in triple precision, the result is always exact.

3. ERROR ANALYSIS.

Not applicable. Note that the only double-precision operations concerned in a determination of error are double-precision multiplication and double-precision subtraction. 4. EFFECT OF ARGUMENT ERROR - not applicable.

ROUTINE : DSIN

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a doubleprecision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DSIN from FORTRAN programs. DSIN computes the sine function.
- 2. METHOD.

The argument is checked upon entry. It is invalid if it is infinite or indefinite or is so large as to lose accuracy during the computation. If the argument is invalid, POS. INDEF. is returned and a diagnostic message is issued. An argument will lose accuracy if it exceeds pi * 2*6 in absolute value. If the argument is valid, DSNCOS. is called at entry point DSIN. for the computation. The result is returned to the calling program.

- 3. ERROR ANALYSIS see the description of DSNCOS. .
- 4. EFFECT OF ARGUMENT ERROR see the description of DSNCOS. .

ROUTINE : DSINH

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. The routine accepts a double-precision argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the hyperbolic sine function.
- 2. METHOD.

The input range is the collection of all valid double-precision quantities whose absolute value is less than 1071*log(2). Arguments outside this range will initiate error processing in routine DHYP. . Upon entry, the argument is loaded into X1 X2, and routine DHYP. is called to complete the processing. (See the description of routine DHYP= for further details.)

3. ERROR ANALYSIS.

See the description of routine DHYP. for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

See the description of routine DHYP. for the effect of argument error.

ROUTINE : DSNCOS.

1. ROUTINE'S FUNCTION.

- 1.1. Type. FORTRAN external functions. The routine accepts a double-precision argument and returns a double-precision result.
- 1.2. Purpose. To accept calls by value for DSNCOS., calls generated by the use of DSIN or DCOS within FORTRAN programs. DSNCOS. computes the trigonometric sine and cosine functions.

2. METHOD.

The input range is the collection of all definite in-range double-precision quantities which are less than pi.246 in absolute value. Upon entry, the argument x is made positive and is multiplied by 2/bi in double-precision, and the nearest integer n to x . 2/bi is computed. At this stage, |x.2/pi| is checked to see that it does not exceed 247. If it does, POS.INDEF. will be returned in X6 and a zero word in X7. Otherwise, y = x + n. pi/2 is computed in double-precision as the reduced argument: y lies in (-pi/4,pi/4). The value of mod(n,4), the entry point called and the original sign of x determine whether a sine polynomial approximation p(x) or a cosine polynomial approximation q(x) is to be used, and also a flag to indicate the sign of the final result.

The sine polynomial approximation is

```
o(x) = a(1)x + a(3)x^3 + a(5)x^5 + a(7)x^7 + a(9)x^9 + a(11)x^{11} + a(13)x^{13} + a(15)x^{15} + a(17)x^{17} + a(19)x^{19} + a(21)x^{21}
```

and the cosine polynomial approximation is

```
a(x) = b(0) + b(2)x^{2} + b(4)x^{4} + b(6)x^{5} + b(8)x^{5} + b(10)x^{10} + b(12)x^{12} + b(14)x^{14} + b(16)x^{15} + b(18)x^{15} + b(20)x^{20}
```

for x in the interval (-pi/4, pi/4).

The coefficients are

$$a(7) = -.19841269841269841269829134478 . 10 ** -3$$

and

 $a(5) = .83333333333333333333333270957 \cdot 10 ** -2$

a(9) = .27557319223985890639440684401 . 10 ** -5

a(11) = -.25052108385441710113807647325 . 10 ** -7

a(13) = .16059043836817941727119406461 . 10 ** -9

 $a(15) = -.76471637307988608475534874891 \cdot 10 ** -12$

 $a(17) = .281145706930018 \cdot 10 ** -14$

 $a(19) = -.822042461317923 \cdot 10 ** -17$

 $a(21) = .194362013130224 \cdot 10 ** -19$

b(6) = -.1388888888888888888888875543628 . 10**(-2)

b(8) = .24801587301587301569992273730 . 10**(-4)

b(10) = -.27557319223985877555866995711 . 10**(-6)

b(12) = .20876756987861921489874746135 . 10**(-8)

b(14) = -.11470745595858431549595076575 . 10**(-10)

b(16) = .47794769682239311593310626721 . 10**(-13)

b(18) = -.156187668345316 . 10**(-15)

 $b(20) = .408023947777860 \cdot 10**(-18) .$

These polynomials are evaluated from right to left in double-precision using an in-stack loop. The sign flag is used to give the result the correct sign, before return to the calling program.

3. ERPOR ANALYSIS.

Graphs of the errors in approximating $\sin(x)$ and $\cos(x)$ by p(x) and q(x) over the interval (-pi/4,pi/4) are given in figures 13 and 14. The maximum absolute value of the error of approximation of p(x) to $\sin(x)$ over (-pi/4,pi/4) is .2570 . $10^{++}(-28)$, and of q(x) to $\cos(x)$ is .7786 . $10^{++}(-28)$. Upper bounds on the machine round-off and truncation error over (-pi/4,pi/4) have been established for p(x) at 1.743 . $10^{++}(-27)$ and for q(x) at 1.364 . $10^{++}(-27)$. Hence an upper bound for the absolute value of error on this routine's computation of sine over (-pi/4, pi/4) is 1.769 . $10^{++}(-27)$ and of cosine is 1.402 . $10^{++}(-27)$.

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the argument x, the resulting error in \sin is given approximately by e* $\cos(x)$. The resulting error in \cos is given approximately by -e* $\sin(x)$. If the error e* becomes significant, the addition formulae for \sin and \cos should be used to compute the error in the result.

ROUTINE 1 DSORT

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a double-precision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DSQRT from FORTRAN programs. DSQRT computes the square-root function.
- 2. METHOD.

The argument is checked upon entry. It is invalid if it is infinite, indefinite or negative. If the argument is invalid, POS. INDEF. is returned, and a diagnostic message is issued. Otherwise, DSQRT= is called at entry point DSQRT. for the computation. The result is returned to the calling program.

- 3. ERROR ANALYSIS see the description of DSORT. .
- 4. EFFECT OF ARGUMENT ERROR see the description of DSQRT. .

ROUTINE : DSQRI.

- ROUTINE'S FUNCTION.
 - Type. A FORTRAN external function. It accepts a doubleprecision argument, and returns a double-precision result.
 - 1.2. To accept calls by value for DSQRT. . generated by the use of DSQRT within FORTRAN programs. DSQRT. computes the square root function.

METHOD. 2.

The input range is the collection of all double-precision quantities which are zero or positive, and are in-range and definite. entry, the argument x is checked for a zero value. If it is zero, zero is returned. Otherwise the argument is put into the form

x = 2 ** (2.e) . y.where e is an integer, and .25≤y≤1.00. The result returned is * $\{y\}$ ** $\{1/2\}$, and y** $\{1/2\}$ is calculated as follows. A fourth-order Chebyshev approximation p(y) is evaluated to obtain a singleprecision initial approximation to y**1/2, where y is the upper half of the double-precision argument. Heron's rule (z(n+1)=(z(n) +y/z(n))/2) is applied in two stages in single-precision to give a single-precision approximation, and this is followed bv application of Heron's rule in double-precision to give the final double-precision approximation. The polynomial p(y) is

p(v) = .182481834943495

+ 1.5462934655996 . y

- 1.4758658070997 . y2

+ 1.06285652589999 . y3

- .323987345020001 . y*.

This is evaluated as

 $p(y) = c\{(y + e)^2 + (y + e) + b\}\{(y + e)^2 + a\} + c\}$ where

e = -1.070137377460206

a = -1.391599471253464

b = 2.286166868052419

c = -.00601995587532198

c = -.323987345020001

The final result is packed with the correct exponent e, and returned to the calling program.

ERROR ANALYSIS.

The algorithm error is at most 2.05E-31 (always positive). The round-off error in computing the single-precision approximation x is exactly 1/2 ulp.

Including algorithm error, x may have just over 1/2 ulp error, so x2 may have just over 1 ulp error; since x is an approximation to the single part only, the total error in x^2 may exceed 2 ulp when $y>x^2$ (max. 7.55E-15). Then $y-x^2$ may contain 50 significant bits, and the error range for $y-x^2$ is (-1.78E-15,+3.55E-15), and that for $(y-x^2)/(2^2x)$ is (-8.88E-15,+3.55E-15). Relative to x, this error is (-6.71E-29,+2.68E-29). In order to get this error, the error in x must be at least 7.11E-15, so the resulting error after the last Heron step is in (2.52E-29,2.85E-29). The total error is in (-4.18E-29,+5.55E-29). The maximum observed error in 100000 points randomly chosen in [1,4) was 3.19E-29; the maximum in 200000 points randomly chosen in [1.0.1.5) was 3.89E-29.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* , the error in the result y is given approximately by $e^*/(2.y)$.

POUTINE : DIAN

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a doubleprecision argument and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DTAN from FORTRAN programs. DTAN computes the trignonmetric tangent function.
- 2. METHOD.

The margument is checked upon entry. It is invalid if it is infinite, indefinite or negative. If the argument is invalid, POS.—INDEF. is returned, and a diagnostic message is issued. Otherwise, DTAN= is called at entry point DTAN, for the computation. The result is returned to the calling program.

- 3. ERROR ANALYSIS see the description of DTAN. .
- 4. EFFECT OF ARGUMENT ERROR see the description of DTAN. .

ROUTINE : DIAN.

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a double-precision argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by value for DTAN., calls generated by the use of DTAN within FORTRAN programs. DTAN. computes the trigonometric tangent function.

2. METHOD.

The input range is the collection of all double-precision quantities which are zero or positive, and are in-range and definite. Upon entry, the argument x is checked for a zero value. If it is zero, zero is returned. Otherwise the argument is put into the form

$$x = 2 ** (2.e) . y,$$

where e is an integer, and .25 \le y \le 1.00. The result returned is 2**e * (y) **(1/2), and y**(1/2) is calculated as follows. A fourth-order Chebyshev approximation p(y) is evaluated to obtain a single-precision initial approximation to y**1/2, where y is the upper half of the double-precision argument. Heron's rule (z(n+1)=(z(n) + y/z(n))/2) is applied in two stages in single-precision to give a single-precision approximation, and this is followed by an application of Heron's rule in double-precision to give the final double-precision approximation.

The polynomial p(y) is

- D(y) = .182481834043495
 - + 1.5462934655996 . y
 - 1.4758658070997 . y2
 - + 1.06285652589999 . ys
 - .323987345020001 . y*.

This is evaluated as

 $p(y) = c(((y + e)^2 + (y + e) + b)((y + e)^2 + a) + c)$ where

- e = -1.070137377460206
- a = -1.391599471253464
- b = 2.286166868052419
- c = -.00601995587532198
- c = -.323987345020001

The final result is packed with the correct exponent e, and returned to the calling program.

A graph of the relative error in the algorithm of approximation to square root in double-precision over (.25, 1.00) is given in figure 12. The maximum absolute value of the relative error of approximation of the algorithm is 1.230. $10^{++}(-31)$. An upper bound for the relative error due to machine round-off and truncation errors has been established at 2.524. $10^{++}(-28)$. Hence the absolute value of the relative error in the routine is less than or equal to 2.524. $10^{++}(-28)$.

- 3. ERROR ANALYSIS.
- 4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* the error in the result y is given approximately by $e^*/(2.y)_*$

ROUTINE : DIANH

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. The routine accepts a double-precision argument, and returns a double-precision result.
- 1.2. Purpose. To accept calls from FTN compiled code for computation of the hyperbolic tangent function.

2. METHOD.

The input domain is the collection of all valid double-precision quantities. Arguments outside the domain will initiate error processing in routine DTANH. Upon entry, the argument is loaded into X1 X2, and routine DTANH. is entered to complete the computation. (See the description of routine DTANH. for further details.)

3. ERPOR ANALYSIS.

See the description of routine DTANH. for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

See the description of routine DTANH. for the effect of argument error.

ROUTINE : DIANH.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. The routine accepts a double-precision argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the hyperbolic tangent function.
- 2. METHOD.

The input domain is the collection of all valid double-precision quantities. Arguments outside the domain which are indefinite will initiate error processing. Most of the computation is performed in routine DEULER, and the constants used are listed there. The argument reduction performed is:

(i) argument in (-47*log 2,47*log 2) but not in
 (-1/*log 2,1/2*log 2)
 x = <argument>
 y = <reduced argument>
 y = 2x - n * log 2
where n is an integer, and y is in [-1/*log 2,1/2*log 2]
 tanh(x) = u/v where
 u = 1 - 2**-n - 2**-n * (DC-DS)
 v = 1 - 2**-n + 2**-n * (DC-DS)

(ii) argument in (-1/2*log 2,12*log 2)
 x = <argument>
 y = <reduced argument>
 y = x
 tanh(x) = DS/(2.+DC)

(iii) argument outside (-47*log 2,47*log 2) x = <argument> y = <reduced argument> $tanh(x) = 1 - 2((1+DC-DS) + 2**-n)^2)$

Ir (i), (ii), and (iii), DC cosh(y)-1 and DS sinh(y).

On entry to DTANH. , 1 \times 2 holds the argument, and on exit, \times 6 \times 7 holds the result.

a. Let a = X1 X2 = <argument>
 X7 X6 + b + |a|
 B5 + sign mask of a
 X5 + packed zero
 B1 + 1
 B4 + address of step e
 If exponent of first word of a is <-49, direct jump to routine</pre>

DEULER. at entry point DEULER. .

X7 + X7 + 2

X6 + X6 + 2

B4 + address of step c

If exponent of first word of a is <-42, direct jump to routine

DEULER. at entry point DEULER. .

- X6 X7 + \$+\$1. with sign obtained from 85
 If a is definite, return.
 Set parameters for a call to error processor.
 Call error processor.
 If control returns from error processor, return.

where

DX exp(y)-1

DC cosh(y)-1

DS sinh(y))

If n > 47 , go to step f.

u + 1.-2**-n - 2**-n (DC-DS)

v + 1.+2**-n + 2**-n (DC-DS)

- d. w + u/v , in double Go to step g.
- e. u + DS
 v + 1.+DC , in double
 Go to step d.
- f. $w + 1. 2 * ((1.+DC-DS) * 2**-n ((1.+DC-DS) * 2**-n)^2)$ (evaluated in double, although only second word of 1. is affected)
- g. Clean up w , affix sign in B5 , and teave in X6 X7 . Return.
- 3. ERROR ANALYSIS.

10000 random arguments were generated in the interval [-1/2*log 2,3/2*log 2],

and the resulting graph of relative error versus argument is shown in the figure following this routine's description. In this sample, the maximum absolute value of the relative error is 8.581E-29. Random samples of 100 arguments were generated in the intervals

listed, and the following statistics on relative error were observed.

Interval*s Lower Bound	Interval*s Upper Bound	Mean	Standard Deviation	Minimum	Maximum
-2.	2.	3.011E-30		-6.675E-29	7.436E-29
-30.	30.	1.640E-30		-3.692E-29	2.544E-29

3.1. ALGORITHM ERROR

The algorithm error is insignificant. It is predominated by the error in the sinh expression in DEULER. , but by various folding actions, the error is damped even further.

3.2 TOTAL ERROR

The error plot should be symmetric about the origin. In the range (0,.5) the error is dominated by the code to divide s/ (1+c): secondarily are the errors in s and in adding 1+c. Just above .5, several factors conspire to create errors: an addition of numbers of opposite sign in the numerator, an addition in the denominator, and a division. (The errors in evaluating sinh are partially damped and fairly insignificant in comparison.) Up to 16.5 to 16.5 (23.75*tog 2), the result is slightly less than 1.0 and the error is almost totally due to imprecise division of slightly imprecise arguments. From 16.5 to 64.0 (26), the result is perfect because it is 1-(lower precision stuff) where the was computed in double-precision. Above 64.0 (not shown), the error will taper off to zero because the answer will be 1.0 while the true value is closer to 1.0 than 2**-96.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* the error in the result is given approximately by e^* * sech²(x) .

POUTINE : DIOD*

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising two double-precision arguments, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DTOD*, generated by FORTRAN programs which raise double-precision quantities to double-precision exponents.
- 2. METHOD.

The result is calculated by:

result = exp(exponent . log(base)).

Upon entry, the argument set is checked. It is invalid if either argument is infinite or indefinite, if the base is negative, or if the base is zero and the exponent is not greater than zero, or if floating overflow occurs during the computation. If the argument set is invalid, POS.INDEF. is returned, and a diagnostic message is issued. Otherwise, DTOD* computes the result according to the equation above. The result is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in routine DTOD* is the same as that used in routine DTOD., the call-by-value counterpart. See section 3 of the description of DTOD. for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the base b and a small error e** occurs in the exponent p, the error in the result is given approximately by

b ** p . (p/b.e* + log(b).e**).
The absolute error is approximately the absolute value of this expression. If the errors in the arguments are significant, the error in the result should be found by substitution of the possible argument values in the expression b ** p.

ROUTINE : DIOD.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising two double-precision arguments, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by value for DTOD, , calls generated by FORTRAN programs which raise double-precision bases to double-precision exponents.

2. METHOD.

The input range is the collection of all argument sets (b,p) for which b and p are definite in-range double-precision quantities, b is positive, if b is zero then p is greater than zero, and b**p is in-range.

The formula used is:

 $b^{**p} = exp(p * log b)$

where b > 0. Upon entry, DLNLOG, computes log b, and DEXP, computes exp(p,log b). The result is returned to the calling program.

3. ERROR ANALYSIS.

10,000 pairs of double-precision random numbers were generated, with distribution the product of uniform distributions over (.5, 1.5) and (-10, 10). The error in the routine's computation of b**p was determined for each of these pairs. The maximum absolute value of the relative error in this routine for these 10,000 pairs was found to be 2.977 * 10**(-25).

4. EFFECT OF ARGUMENT ERROR.

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent p_{\bullet} the error in the result r is given approximately by:

r + (log b + e(p) + p + e(b)/b).

ROUTINE : DTOI*

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a double-precision argument and a fixed-point argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DTOI* from FORTRAN programs, generated when the programs raise double-precision quantities to fixed-point exponents.
- 2. METHOD.

The argument set is checked upon entry. It is invalid if either argument is infinite or indefinite, or if the base is zero and the exponent is not greater than zero. If the argument set is invalid, a diagnostic message is issued, and POS. INDEF. is returned. Otherwise, DTOI. is called at entry point DTOI. for the computation. The result is returned to the calling program.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the base b, the error in the result will be given approximately by $n * b * * (n-1) * e^*$, where n is the exponent given to the routine.

ROUTINE : DIOI.

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a double-precision base and a fixed-point exponent, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by value for DTOI., generated by FORTRAN programs which raise double-precision guantities to fixed-point exponents.
- 2. METHOD.

Let b be the base and p (≥ 0) the exponent. If p has binary representation 000...0i(n)i(n-1)...i(1)i(0) where each $i(j)(0\leq j\leq n)$ is 0 or 1, then

 $p = i(0) \cdot 20 + i(1) \cdot 21 + \dots + i(n) \cdot 2 + n$ $p = i(0) \cdot 20 + i(1) \cdot 21 + \dots + i(n) \cdot 2 + n$

and n = $[\log(2)p]$ = greatest integer not exceeding $\log(2)p$. Then $b \neq p = \Pr{od(b \neq 2 \neq 1): 0 \leq j \leq n \& i(j) = 1}$. The numbers $b = \neq 2 \neq 0$, b^2 , b^4 ,..., $b \neq 2 \neq n$ are generated by successive squarings, and the coefficients i(0),...,i(n) are obtained as the sign bits of successive circular right shifts of p within the computer. A running product is formed during the computation, so that smaller powers of b and earlier coefficients i(1) may be discarded. Thus, the computation becomes an iteration of the algorithm

b + p = 1 if p = 0

 $b + p = (b^2) + p/2$ If p > 0 and p is even

b ** p = b . (b²) ** (p-1)/2 if p > 0 and p is odd. Upon entry, if the exponent p is negative, p is replaced by -p and b

Upon entry, if the exponent p is negative, p is replaced by -p and b is replaced by 1/b. b is doubte-precision, say b = x(u)*x(1). 1/b = (1/b)(u)*(1/b)(1) is given in terms of x(u) and x(1) by the formulae below, where n is the normalization operation and the subscript 1 on one of the operations +, -, and \cdot indicates that the coefficient of the result is taken from the lower 48 bits of the 96 bit result register, and the exponent is 48 less than the single-precision coefficient's exponent.

and

(1/b)(1) = n(...) +(1) (...). In the routine, double-precision quantities x = x(u) + x(1) and y = y(u) + y(1) are multiplied according to

 $x \cdot y = (x \cdot y)(u) * (x \cdot y)(1)$

where

 $(x \cdot y)(u) = (((x(u) \cdot y(1)) + (x(1) \cdot y(u))) + (x(u) \cdot (1) y(u))) + (x(u) \cdot y(u)) .$

and

(x,y)(1) = (((x(u) + y(1)) + (x(1) + y(u))) + (x(u) + (1) y(u))) + (1) (x(u) + y(u)) + (1) (x(u) + y(u))

The input range is the collection of pairs of arguments b, p for which $p\geq 0$ if b is zero, all quantities are definite and in-range, and the result is in-range.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the base b, then the error in the result is given approximately by p^* b**(p-1) * e^* , where p is the exponent. If the error e^* is significant, the absolute error in the result is bounded above by p^* by p^* max(||b||, ||b||+||e^*||) * ||e^*||.

ROUTINE : DIOX*

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a double-precision argument and a floating point argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for DTOX* generated by FORTRAN programs raising double-precision quantities to floating- point exponents.

2. METHOD.

The argument set is checked upon entry. It is invalid if either argument is infinite or indefinite, if the base is zero and the exponent is not greater than zero, if the base is negative, or if arithmetic overflow occurs during computation. The result is calculated from

base ** exponent = exp(exponent * log(base)).

If the argument set is invalid, POS. INDEF. is returned and a diagnostic message is issued. If the argument set is valid, the computed result is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in DTOX* is the same as that used in DTOX*. See section 3 of the description of routine DTOX* for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the base b and a small error e** occurs in the exponent p, the error in the result is given approximately by

 $b^{**p} * (p/b * e^* + log(b) * e^*).$

The absolute error is approximately the absolute value of this expression. If the errors in the arguments are significant, the error in the result should be found by substitution of the possible argument values in the expression b ** p.

ROUTINE : DIOX.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a double-precision quantity and a floating-point quantity, and returns a double-precision result.
- 1.2. Purpose. To accept calls by value for DTOX., calls generated by FORTPAN programs which raise double-precision bases to floating-point exponents.

2. METHOD.

The input range is the collection of argument sets (b,p) for which to is a definite in-range double-precision quantity, p is a definite in-range floating-point quantity, b is positive, if b is zero then p is greater than zero, and b**p is in-range.

The formula used is:

 $b^{**}p = exp(p * log b)$ where b > 0. Upon entry, DLNLOG. is called to compute log b, and p
* log b is then computed in double-precision. DEXP. is called to
compute exp(p * log b), and the result is returned to the calling
program.

3. ERROR ANALYSIS.

10,000 pairs (b,p) of random numbers were generated (where b is double-precision and p is single-precision) with distribution the product of uniform distributions on (.5, 1.5) and (0, 1). The maximum absolute value of the relative error in the routine for these pairs was found to be 6.405 * 10**(-29).

4. EFFECT OF ARGUMENT ERROR.

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent p_{\bullet} the error in the result r is given approximately by

r * (e(p) * log b + p * e(b)/b).

ROUTINE : DTOZ*

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a double-precision argument and a complex argument, and returns a complex result.
- 1.2. Purpose. To accept calls by name generated by FORTRAN programs raising double-precision quantities to complex quantities.

2. METHOD.

If the base is real and the exponent is complex, then base ** exponent = X + 1.Y,
where

X = exp(re(exponent).log(base)).cos(im(exponent).log(base))
and

Y = exp(re(exponent).log(base)).sin(im(exponent).log(base)).
Upon entry the double-precision base is rounded to single-precision, and the resulting argument set is checked. The argument set is invalid if either number is infinite or indefinite, if the base is zero and the real part of the exponent is not positive, if the base is negative, if arithmetic overflow occurs during any stage of the computation, or if precision is lost through the arguments being too large. If the argument set is invalid, a diagnostic message is issued and POS.INDEF. is returned. Otherwise, the result of the computation is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in DTOZ* is the same as that used in DTOZ. . See the description of DTOZ. for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If e° and e°° are small errors in the base b and exponent z respectively, then the corresponding error in b ** z is approximately ((z/b) * e° + e°° * log (b)) * b**z. The absolute error will be approximately the absolute value of this. If e° or e°° becomes significant, the error in the result should be calculated by substitution of the possible values of the arguments in the expression b ** z.

POUTINE : DTOZ.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a double-precision and a complex argument, and returns a complex result.
- 1.2. Purpose. To accept calls by value for DTOZ., calls generated by FORTRAN programs which raise double-precision bases to complex exponents.

2. HETHOD.

The input range is the collection of argument sets (b,z) wheret b is a definite in-range double-precision quantity, z is a definite in-range complexquantity, b is greater than zero, and b ** z and |b ** z| are in-range.

The formula used is:

 $b^{++}(u+i^+v) = \exp(u^+log b) + \cos(v^+log b)$

+ i . exp(u.log b) . sin(v.log b)

where b > 0 . Upon entry, the lower half of the double-precision base b is discarded, and ALOG. is called to compute log b . EXP. is called to compute exp (u.log b), and COS=SIN is called to compute cos(v.log b) and sin (v.log b), where u + i.v is the exponent. The result is computed from the formula, and is returned to the calling program.

3. ERROR ANALYSIS.

10,000 pairs (b,z) (where b is doubte-precision and z is complex) were generated with distribution the product of uniform distributions over (.5, 1.5) and $\{-10,10\}$ and $\{-2,pi,2,pi\}$. The maximum modulus of the relative error in the routine was found to be 5.605 * $10^{++}(-14)$.

4. EFFECT OF ARGUMENT ERROR.

If a small error e(b) occurs in the base b and a small error e(z) occurs in the exponent z_{\bullet} the error in the result w is given approximately by

 $w \cdot (e(z) \cdot \log b + z \cdot e(b)/b) \cdot$

POUTINE : ERF.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
- 1.2. Purpose. To accept calls by value for ERF and ERFC from FORTRAN programs. ERF. computes the error function: ERFC. computes the complementary error function, 1-ERF.

2. METHOD.

The input range is the collection of all definite floating-point quantities (including out-of-range values INF) except the range (25.92277515027854,+INF) for ERFC, which underflows.

The routine calculates the smaller of erf(abs(x)), erfc(abs(x)), and uses the identities

erf(-x)=-erf(x) erf(x)=1-erfc(x)

to compute the final value, which is the sum of a signed function and a constant.

The forms used are: (y=abs(x))

range	ERF	EREC	
[-INF,-5.625]	-1.0	+2.0	
(-5.625,477)	-1.0+p2(y)	+2.0-p2(y)	
[477,0)	-p1(y)	+1.0+p1(y)	
[0,+.477]	*p1(y)	+1.0-p1(y)	
(.477.5.625)	+1.0-p2(y)	p2(y)	
(5.625, 8.0)	+1.0	p2(y)	
[8.0,25.9]	+1.0	underflow	
+INF	+1.0	+ f) _ f)	

where the constants .477 and 25.9 are inverse erf(0.5) and inverse erfc(2-975), which are approximately 0.47693627620447 and 25.92277515027854.

The function p1 is a (5th order odd)/(8th order even) rational form. The functions p2,p3 are $\exp(-x^2)$ * (rational form), where p2 is (7th order)/(8th order) and p3 is (4th order)/(5th order). Since $\exp(-x^2)$ is ill-conditioned for large x, $\exp(-x^2)$ is calculated by $\exp(u+\exp s) = \exp(u) + \exp s = \exp(u)$, where $u=-x^2$ upper and $\exp s = -x^2$ lower.

The coefficients for p2 and p3 are from Hart, Cheney, Lawson et al., Computer Approximations.

3. ERROR ANALYSIS.

The large error in p2 and p3 is due to the large size of the rational forms and the additional error in $\exp(-x^2)$. The polynomials in p2 and p3, while stable, do not enjoy the high accuracy of most exponential-type approximations, which, when evaluated using Horner's rule, sum the smallest terms first. Inverting x and reversing coefficients does not help due to the high error in divide.

The maximum error in the approximations p1, p2, p3, scaled by 10^{15} , is:

Source or error	<u>p1</u>	02	<u>p3</u>	
rational form	1.1	4.9	1.7	
coefficient rounding	0.5	0.8	1.4	
round-off	14.7	110	68	
upper bound	16.3	116	71	
maximum observed	12.8	27.9	28.3	

In regions where a constant is added, that constant dominates and the error is less than that shown.

4. EFFECT OF ARGUMENT ERROR.

For small errors in the argument x, the amplification of absolute error is $(2/\sqrt{pi}) + \exp(-x^2)$ and that of relative error is $(2/\sqrt{pi}) + x + \exp(-x^2) / f(x)$ where f is erf or erfc. The relative error is attenuated for ERF everywhere and for ERFC of x<0.53. For x>0.53 the relative error for ERFC is amplified by approximately 2x.

If the value of x is known to more than single precision, the following sequence of FORTRAN may be used to compute a good value of ERFC when x is large:

DOUBLE X
DATA SORTPI /<2/sqrt(pi)>/

(compute X)
SNGLX=SNGL(X)
SHSNGLX=SNGL(X-SNGL(X))
Y=ERFC(SNGLX)+SHSNGLX+SQRTPI*EXP(-SNGLX**2)

(Y is ERFC(X))

POUTINE : EXP

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name and by value for EXP from FORTRAN programs. EXP computes the exponential function.
- 2. METHOD.

The input range to this routine is the collection of all definite in-range floating-point quantities tying in the interval (-675.84,741.67). Upon entry, the argument x is multiplied by 16./log(e)?. In double-precision, and the integral (n) and fractional (u) parts computed. The range reduction formula used here is

exp(x) = 2 ** (x/log2)= (2 ** 1/16) ** (16 * x / log 2) = (2 ** 1/16) ** n * (2 ** 1/16) ** u.

If n = 16 * q + r where q and r are integers such that $0 \le r \le 16$, exp(x) is finally given by

 $\exp(x) = 2 + q + (2 + 1/16) + r + (2 + 1/16) + u$. q will be added to the exponent of the result. (2 + 1/16) + r is obtained from a look-up table, and (2 + 1/16) + u is obtained from the following approximation

(2 ** 1/16) ** u =

$$u + 2 *$$
 $u * (p(00) + p(01) * u^2)$

$$(q(00) + u^2) - u * (p(00) + p(01) * u^2)$$

where the constants are given by

q(00) = 20.8137711965230361973 * 256 p(00) = 7.2135034108448192083 * 16p(01) = .057761135831801928 / 16

This approximation is described in Hart, Cheney, Lawson et al., \$Computer Approximations\$ (New York) 1968, John Wiley & Sons, pp. 96-184.

3. ERROR ANALYSIS.

The maximum absolute value of the error of approximation of the algorithm is $5.000 \cdot 10^{-4}$ -17 over the interval (-(log2)/16, (log2)/16). A graph of the error of approximation in the algorithm is given in figure 9. An upper bound for the absolute value of the error due to machine round-off is $1.868 \times 10^{-4} - 14$ over the interval [(-log 2)/16,(log 2)/16]. Hence an upper bound on the

absolute value of the error in the routine over this interval is $1.873 \pm 10 \pm -14$. A bound on the routine's error for any given argument x may be obtained by employing the multiplication formula for exp

 $exp(x + y) = exp(x) \cdot exp(y)$.

The maximum absolute value of the relative error of approximation of the algorithm over (- $\log 2/16$, $\log 2/16$) is $4.838 \cdot 10^{++}-17 \cdot$ An upper bound on the absolute value of the relative error due to machine round-off and truncation is $6.890 \times 10^{++}-15^{-}$ over [(- $\log 2$)/16,($\log 2$)/16]. So an upper bound on the absolute value of the relative error is $6.938 \times 10^{++}-15^{-}$ over the interval [(- $\log 2$)/16,($\log 2$)/16].

For 10000 arguments chosen randomly from the following intervals, the following statistics on relative error were observed.

Inter	rval	Mean	Standard	Minimum	Maximum
from	to		Deviation		
-673.	741.	-3.012E-16	2.181E-15	-6.887E-15	5.193E-15
-1.	1.	-3.100E-16	2.223E-15	-6.769E-15	5.028E-15

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument, the error in the result y is given approximately by y * e^* .

POUTINE : HYP. (SINH & COSH)

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. FORTRAN external functions. The routine accepts a floating-point argument, and returns a floating-point result.
 - 1.2. Purpose. To accept calls from FTN compiled code for computation of the hyperbolic cosine and sine functions.
- 2. METHOD.

The input range is the collection of all definite in-range, floating-point quantities lying within the interval

[-1071*log(2), 1071*log(2)] = [-742.3606303797, 742.3606303797].

The formulae used to compute sinh(x) and cos(x) are:

where

```
s(3) = .16666666666693558

s(5) = -.005972995665652368

<u>b</u> = 1.031539921161

<u>a</u> = 72.10374670722

c(4) = .041666666666488081

c(6) = .0013888888952318045

c(8) = 89.75473897315022

c(10) = 2.763250805803 * 10**-7
```

In the following description of the algorithm used, (X1) = x = argument on entry; entry is at SINH. or COSH.; and on exit, (X6) = result.

- a. If lxl≥1071*log(2), go to step).
- b. u + 1x1 v + +0 if x≥0 +0 if x<0
- d. n + [u/log2+.5] = nearest integer to u/log2
 w + u n*log 2, where the right-hand expression is evaluated in
 double-precision.

- e. $s \leftarrow w + w^3(s(3) + w^2(s(5) + b/(a w^2)))$ $d \leftarrow w^2(1/2 + w^2(c(4) + w^2(c(6) + w^2(c(8) + w^2) + c(10))))$ $a \leftarrow (1 + d - s) + 2 + (-n - 1)$ $b \leftarrow d + s$
- f. If COSH. entry, go to step h.
- g. c + (1/4 + (1/4+b))*2**(n-1) + (2**(n-3) + (2**(n-3) a))X6 + c with the sign stored in v. Go to step i.
- h. c + (1+b) *2**(n-1) + a
 X6 + c
- i. Return.
- j. If infinite or indefinite argument, go to step 1.
- k. Normalize argument.
 u + 1x1
 v + +0 if x≥0
 -0 if x<0
 If 1x1 < 1071*log 2, go to step d.</pre>
- 1. Initiate error processing.
- n. Go to step i.
- 3. ERROR ANALYSIS.

The maximum absolute value of relative error in the approximation of sinh over [-10g2/2,10g2/2] is 1.282 * 10**-15 and of cosh over [-10g2/2,10g2/2] is 2.421 * 10**-16. Computed upper bounds on the absolute value of relative error due to machine error in the computation of sinh is 2.392 * 10**-14, and of cosh is 1.024 * 10**-14. Hence, upper bounds on the absolute value of relative error in the routine is 2.520 * 10**-14 for sinh, and 1.048 * 10**-14 for cosh. Graphs of the relative errors in the alognithms used to approximate sinh and cosh over [-10g2/2, 10g2/2] are given in figures 17 and 18.

4. EFFECT OF ARGUMENT ERROR.

Graphs of the relative errors in the algorithms used to approximate sinh and cosh over $[-\log 2/2, \log 2/2]$ are given in figures 17 and 18. If a small error u occurs in the argument x, the resulting error in $\sinh(x)$ is given approximately by $\cosh(x) + u$, and the

resulting error in $\cosh(x)$ is given approximately by $\sinh(x)^*u$. If the error u is not small, the addition formulae for sinh and \cosh should be used to find the resulting error:

sinh(x+u) = sinh(x)cosh(u)+cosh(x)sinh(u)cosh(x+u) = cosh(x)cosh(u)+sinh(x)sinh(u)

ROUTINE : HYPERB.

1. ROUTINE'S FUNCTION.

- 1.1. Type. Auxiliary functions from the FORTRAN Common Library. The routine accepts a floating-point argument and returns two floating-point results.
- i.2. Purpose. To accept calls by value from CCOS*, CCOS., CSIN* and CSIN. for incidental computation of cosh and sinh.

2. METHOD.

The input range is the collection of all definite in-range floating-point quantities which lie in the interval (-741.67, 741.67). The hyperbolic cosine is computed by

 $cosh(x) = .5 \cdot (exp(x) + exp(-x)).$

If $|x| \ge .22$, the hyperbolic sinh is computed by $\sinh(x) = .5$. $(\exp(x) - \exp(-x))$.

For $1 \times 1 < .22$, the MacLaurin series for sinh is truncated after the term $x^9/9!$ and the resulting polynomial is taken as approximation: $\sinh(x) \equiv x + x^3/3! + x^5/5! + x^7/7! + x^9/9!$

3. ERROR ANALYSIS.

The maximum absolute value of the error of approximation for $\cosh(x)$ is 5.000. $10^{++}(-17)$ and for $\sinh(x)$ is 1.464 . $10^{++}(-15)$, over the interval (-log2, log2). See the description of EXP. for details concerning the error of approximation to exp. An upper bound for the error due to machine round-off and truncation is computation of the MacLaurin polynomial is 8.198 . $10^{++}(-16)$. A graph of the error of approximation in the polynomial for \sinh is given in figure 10. An upper bound for the routine's error in the computation of $\cosh(x)$ is 7.184 . $10^{++}(-14)$ and in the computation of $\sinh(x)$ is 7.148 . $10^{++}(-14)$ over $\{-\log 2, \log 2\}$.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* the resulting error in $\cosh(x)$ is given approximately by $\sinh(x) \cdot e^*$, and the resulting error in $\sinh(x)$ is given approximately by $\cosh(x) \cdot e^*$.

60498200 C

ROUTINE : ITOD*

- 1. POUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a fixed-point and a double-precision argument, and returns a double-precision result.
 - 1.?. Purpose. To accept calls by name for ITOD* generated by FORTRAN programs raising fixed-point bases to double-precision quantities.

2. METHOD.

The computation uses

base ** exponent = exp(exponent * log(base)).

Upon entry, the fixed-point argument is converted to doubleprecision and the resulting argument set is checked. The argument
set is invalid if the base is zero and the exponent is not greater
than zero, if the base is negative, if either argument is infinite
or indefinite, or if floating overflow occurs during the
computation. If the base is zero and the exponent is negative, NEG.
INF. is returned. If the argument set is otherwise invalid,
POS.
INDEF. is returned. In all cases, if the argument set is invalid,
a diagnostic message is issued. If the argument set is valid, the
result is computed and returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in ITOD* is the same as that used in ITOD* . See the description of routine ITOD* for the error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error occurs in the double precision exponent, the resulting error in the result is given approximately by multiplying the argument error by the result, and then by the natural logarithm of the base. Thus, if the result is large, the effect of an argument error will be large. If the error in the argument becomes significant, the error in the result should not be calculated by this rule, but should be calculated from the function values.

ROUTINE : ITOD.

ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a fixed-point argument and a double-precision argument, and returns a double-precision result.
- 1.2. Purpose. To accept calls by value for ITOD., calls generated by FORTRAN programs which raise fixed-point bases to double-precision exponents.

2. METHOD.

The input range is the collection of all argument sets (b,p) where to is a definite in-range fixed-point quantity, p is a definite in-range double-precision quantity, b is greater than zero, and b**p is in-range. Upon entry b is floated, normalized and converted to double-precision.

The formula used to compute the result is

 $b^{**p} = exp(p \cdot log b) \cdot$

DLOG. is called to compute log b, then p.log b is computed in double-precision. DEXP. is called to compute exp(p.log b), and the result is returned to the calling program.

3. ERROR ANALYSIS.

10,000 random argument sets (b,p) were generated, with distribution the product of a discrete uniform distribution over the integers 1,2,...,9 and a uniform distribution over (-1,1). The relative error in the routine was computed for each of the argument sets. The maximum absolute value of the relative error in the routine was found to be $2.466 \pm 10 \pm (-28)$.

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the exponent, the error in the result r is given approximately by r.e*.log b, where b is the base.

POULINE : IIOJ*

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of two fixed-point arguments, and returns a fixed-point result.
 - 1.2. Purpose. To accept calls by name for ITOJ* from FORTRAN programs which raise fixed-point quantities to fixed-point exponents.
- 2. METHOD.

Let b be the base and p the exponent. If p has binary representation 000...000i(n)i(n-1)...i(i)i(0) where each i(j)(05)5n is 0 or 1, then

p = i(0).20 + i(1).21 + ... + i(n).2 ** n

n = [log(2)p] = greatest integer not exceeding log(2)p.Then

b ** = Prod $\{b^{**}(2^{**})\}$: $0 \le j \le n$ & $i(j) = 1\}$. The numbers $i = b^0$, $b = b^1$, b^2 , b^4 ,..., b^{**} (2 ** [log(2)p]) are generated during the computation by successive squarings, and the coefficients i(0),...,i(n) are generated by sign tests of successive right shifts of p within the computer. A running product is formed during the computation, so that smaller powers of b may be discarded. The computation then becomes an iteration of the algorithm:

b ** p = b if p = 1 =(b.b) ** (p/2) if p is even =(b.b) ** ((p-1)/2).b if p is odd.

Upon entry, the base is converted to floating-point, and the result of the computation will be later converted to fixed-point for return. The argument set is invalid if the base is zero and the exponent is zero or negative, or if integer overflow occurs during the computation. If the argument set is invalid, zero is returned and a diagnostic message is issued. If the base is non-zero and the exponent is negative, 1, -1 or 0 will be returned according as the base is 1 (or -1 with the exponent even), -1 (with the exponent odd), or other. The result of the computation is returned to the calling program.

- 3. ERROR ANALYSIS not apolicable.
- 4. EFFECT OF ARGUMENT ERROR not applicable.

ROUTINE : IIOJ.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts two fixed-point arguments, and returns a fixed-point result.
 - 1.2. Purpose. To accept calls by value for ITOJ. generated by FORTRAN programs which raise fixed-point quantities to fixedpoint exponents.
- 2. METHOD.

Special case

```
0 ** 0 = error
0 ** J = error if J<0
-0 ** 1 = +0
1 ** J = 1
-1 ** J = +1 or -1(J even or odd)
I ** 0 = 1
I ** J = 0 if J<0
I ** 2 = I*I
I ** J = error if I≥2 and J≥64
I ** J = error if I≥216 and J≥3</pre>
```

Let b be the base and p (≥ 0) the exponent. If p has binary representation 000...00i(n)i(n-1)...i(1)i(0) where each $i(j)(0\le j\le n)$ is 0 or 1, then

 $p = i(0) \cdot 2^{\circ} + i(1) \cdot 2^{1} + i(2) \cdot 2^{2} + \dots + i(n) \cdot 2^{++} n$

While p is even do $b = b^2$, p = p/2

 $b = b^2$, p = p/2. Let r = b.

While p > 1 do

 $r = r^2$, if p is odd then r = r + b, p = p/2.

Now r contains the result. Floating point was used for r so that the remaining overflows could be caught by looking at the final exponent.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR not applicable.

ROUTINE : ITOX*

1. ROUTINE'S FUNCTION

- 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a fixed-point base and a floating-point exponent, and returns a floating-point result.
- 1.2. Purpose. To accept calls by name for ITOX* from FORTRAN programs which are generated when fixed-point bases are raised to floating-point exponents.

2. METHOD.

Upon entry, the base is converted to floating-point, and the argument set is checked. The argument set is invalid if either argument is infinite or indefinite, if the base is negative, if the base is zero and the exponent is not greater than zero, or if floating overflow occurs during the calculation. If the base is zero and the exponent is negative, or if floating overflow occurs, POS. INF. is returned. If the argument set is otherwise invalid, POS.INDEF. is returned. In any case, if the argument set is invalid, an appropriate diagnostic message is issued. If the argument set is valid, the result is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in ITOX* is the same as that used in ITOX* . See the description of ITOX* for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error occurs in the floating-point exponent, the error in the result is given approximately by multiplying the argument error by the result and then by the natural logarithm of the base. Thus if the result is large, the effect of an error in the exponent will be large.

ROUTINE : ITOX.

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN exponentiation routine. It accepts an argument set (n,x) comprising a fixed-point argument n and a floating-point argument x, and returns a floating-point result.
- 1.2. Purpose. To accept calls by value for ITOX., calls which are generated by FORTRAN programs which raise fixed-point bases to floating-point exponents.

2. METHOD.

The input range is the collection of all argument sets (n,x) such that n is affixed-point quantity, x is a definite in-range floating-point quantity, x is positive and non-zero whenever n is zero, and n^*x is in-range.

The formula used is:

 $n^{**}x = exp(x * log n)$.

where n ≥ 1.

Upon entry, n is packed and normalized. Zero is returned if the base is zero. Otherwise, ALOG. is called to compute log n, and EXP. is called to compute exp (x. log n). The result is returned to the calling program.

3. ERROR ANALYSIS.

509,000 pairs (n,x) of random numbers were generated with distribution the product of a discrete form of the right half of a Cauchy distribution, and a Cauchy distribution. $n^{++}x$ was computed for each of these pairs, first using the routine, and then using the double-precision routine. The maximum absolutevalue of the relative error in the routine was 3.929 * 10**(-12) for the 500,000 pairs.

4. EFFECT OF ARGUMENT ERROR.

If a small error e° occurs in the exponent x, the error in the result r is given approximately by r * e° * log n, where n is the base.

POUTINE : ITOZ*

1. ROUTINE'S FUNCTION.

- 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a real and a complex argument, and returns a floating-point result.
- 1.2. Purpose. To accept calls by name for ITOZ* generated by FORTRAN programs which raise fixed-point bases to complex exponents.

2. METHOD.

Upon entry, the argument set is checked. It is invalid if the first argument is negative, or zero, if either argument is infinite or indefinite, or if floating overflow occurs during the calculation, or if x*log r is greater than 741.67. If the argument set is invalid, then a diagnostic message is issued, and POS. INDEF. is returned. Otherwise, the computation proceeds as outlined above and the result is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in ITOZ* is the same as that used in ITOZ. . See the description of ITOZ. for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error occurs in the argument, the error in the result is given approximately by the product of the argument error, the result and the natural logarithm of the base. The absolute value of the error in the result will be given approximately by the product of the corresponding absolute values. If the argument error is significant, the error in the result should be found from substitution of the possible argument values in the function.

ROUTINE : ITOZ.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiation routine. It accepts an argument set comprising a fixed-point quantity and a complex quantity, and returns a complex result.
 - 1.2. Purpose. To accept calls by value for ITOZ., generated by FORTRAN programs which raise fixed-point bases to complex exponents.

2. METHOD.

The input range to this routine is the collection of all argument sets (n,z) comprising a fixed-point quantity n and a complex quantity z such that z is definite and in-range, and such that: if n is zero then z is a positive non-zero real, im(z). log n does not exceed pi.2.6 (where n>0 and im(z) is the imaginary part of z), and the real number n ** re(z) is in-range. Upon entry, the fixed-point argument is packed and normalized, and then routine XTOZ, is called at entry XTOZ, to compute the result. The result is returned to the calling program.

3. ERROR ANALYSIS.

300,000 pairs (n,z) of random numbers were generated with distribution the product of a discrete form of the right half of a Cauchy distribution, and the product of two Cauchy distributions. n**z was computed for each of these pairs, first using the routine, and second using double-precision operations. The maximum absolute value of the relative error in the routine was found to be 3.054 * 10**(-10) for these pairs.

4. EFFECT OF ARGUMENT ERROR.

If a small error $e(z) = e(x) + i \cdot e(y)$ occurs in the exponent z, the error in the result w is given approximately by w * log n * e(z) .

POUTINE : RANE

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a dummy argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name for RANF and RANGET from FORTRAN programs. RANF computes pseudo-random numbers.
- 2. METHOD.

RANF uses the multiplicative congruential method modulo 246, i.e. x(n+1) = a * x(n) (mod 246)

The library holds a random seed RANDOM. and a multiplier RANMLT. The random seed can be changed to any value prior to calling RANF by use of the routine RANSET. Upon entry at RANF, the random seed is multiplied by the multiplier to generate a 96 bit product, and the lower 48 bits become the new random seed and is used to generate subsequent random numbers. RANDOM. has a default initial value of 1717 1274 3214 7741 3155B (241463 mod 247). This new random seed is normalized and is returned as the random number.

The multiplier RANMLT. is constant, and has a value of 2000 1207 2642 7173 0565B. This multiplier can be shown to pass the Coveyou-Macpherson test as well as other statistical tests for randomness, including the auto-correlation test with lag≤100 and the pair triplet test (Reference: D. E. Knuth, <u>The Art of Computer Programming</u>, vol. 2).

If PANF is called by name at entry point RANGET, the current seed of the random number generator is returned in the variable whose address is in X1.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR not applicable.

ROUTINE : RANSET

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external routine. It accepts a floatingpoint argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name for RANSET from FORTRAN programs. RANSET resets the seed of the random number generator.
- 2. METHOD.

The call supplied the new address of a (suggested) new seed value in X1. If the new seed is 8., the new seed value is made 17171274321477413155B (= .17099839404402317200). Otherwise, the coefficient of the new seed is made odd if necessary (by adding 18), and the exponent of the new seed value is set equal to -48 (1717(8)).

- 3. FRROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR not applicable.

ROUTINE : SINCOS.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name and by value for SIN (at entry points SIN and SIN. respectively), and to accept calls by name and by value for COS (at entry points COS and COS. respectively). SINCOS. computes the trigonometric sine and cosine functions.

2. METHOD.

The input range to this routine is the collection of all definite in-range normalized floating-point quantities whose absolute values do not exceed pi * 246.

Upon entry, the range reduction

$$y = 2/pi*x - n$$

is performed in double-precision, where x is the argument, and n is an integer, and y is in [-1/2, 1/2]. Depending upon the sign of x and n(mod 4), the result will be complemented or not, and a polynomial approximation (p(y) or q(y)) will be chosen to give the result. The polynomial approximations p(y) and q(y) are

 $p(y) = pi/2*y - y^3*(s(0) + s(1)*y^2 + s(2)*y^4 + s(3)*y^6 + s(4)*y^6)^2$ and $q(y) = 1 - y^2*(c(0) + c(1)*y^2 + c(2)*y^4 + c(3)*y^6 + c(4)*y^6)^2$

The coefficients are

s(0) = 8.03718916976708 * 10**-1

s(1) = -4.95774235001375 * 10**-2

s(2) = 1.38346449783347 * 10**-3

s(3) = -1.44725130681196 + 10**-5

s(4) = 1.54733311005155 + 10**-7

c(0) = 1.110720734539535

c(1) = 1.14191398434002 * 10**-1

c(2) = -3.521949713998275 * 10**-3

c(3) = 5.172606069276518 * 10**-5

c(4) = -4.413282528387191 * 10**-7.

The polynomial approximations p(y) and q(y) are minimax approximations to their corresponding functions over [-pi/4,pi/4]. (The algorithm and constants are copyright 1970 by Krzysztof Frankowski, Computer Information and Control Science, University of Minnesota, 55455, and are employed under licence. Coding is by Larry Liddiard, University of Minnesota.)

3. ERROR ANALYSIS.

A graph of the error of approximation in the atgorithm for $\sin(x)$ over [-pi/4, pi/4] is given in figure 3, and for $\cos(x)$ over [-pi/4, pi/4] in figure 4. The maximum absolute value of the error of approximation in the algorithm for $\sin(x)$ over [-pi/4, pi/4] is 5.670 * 10**-16, and for $\cos(x)$ is 2.972 * 10**-15. Upper bounds for the error due to machine error in the computation of $\sin(x)$ and $\cos(x)$ were established at 2.898 * 10**-14 and 4.444 * 10**-14 respectively. Hence upper bounds on the error in the routine are 2.955 * 10**-14 and 4.741 * 10**-14 for $\sin(x)$ and $\cos(x)$, respectively.

The maximum absolute value of the relative error of approximation in the algorithm for $\sin(x)$ over [-pi/4, pi/4] is 4.098 * 10^{++} -14 and for $\cos(x)$ is 6.285 * 10^{++} -14. Upper bounds for the absolute value of the relative error due to machine error in the computation of $\sin(x)$ and $\cos(x)$ were established at 8.049 * 10^{++} -16 and 4.204 * 10^{++} -15 respectively. Hence upper bounds on the absolute value of the relative error in the routine were established at 4.178 * 10^{++} -14 and 6.705 * 10^{++} -14 for $\sin(x)$ and $\cos(x)$ respectively.

For 1000 arguments chosen randomly from the following intervals for the entry points shown, the associated statistics on absolute or relative error were observed.

Entry	Error	Interval		Mean	Standard	Minimum	Maximum
Point		from	to		Deviation		
005.	Relative	7854	.7854	-5933E-17	1.596E-15	-7.346E-15	6.962E-15
	Absolute	-3.1416	3.1416	-7.524E-18	1.317E-15	-4.674E-15	4.809E-15
		-1912	lûrs	8.138E-19	1.248E-15	-5.443E-15	4.843E-15
SIN.	Relative	7854	.7854	3.035E-16	1.984E-15	-6.448E-15	6.739E-15
	Absolete	-3.1416	3.1416	-2.504E-18	1.133E-15	-5.648E-15	5.174E-15
		-1012	1012	-6.872E-18	1.254E-15	-4.187E-15	5.353E-15

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the argument x_* , the error in the result is given approximately by e^* * cos(x) for sin(x), and $-e^*$ * sin(x) for cos(x).

ROUTINE : SINCSD.

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by value for SIND and COSD, the trigonometric sine and cosine function with argument in degrees.
- 2. METHOD.

Argument range: (-246, +248).

Routine DEGCOM. Is called to subtract the necessary multiple of 90 from the argument to put the result in [-45, +45] and multiply the reduced value by pi/180. The appropriate sign is copied to the value of the appropriate function (sine, cosine) as determined by these identities:

 $sin(X\pm360^\circ) = sin(X)$ $sin(X\pm180^\circ) = -sin(X)$ $sin(X+90^\circ) = cos(X)$ $cos(X\pm360^\circ) = cos(X)$ $cos(X\pm180^\circ) = -cos(X)$ $cos(X\pm180^\circ) = -sin(X)$ $cos(X+90^\circ) = sin(X)$

3. ERROR ANALYSIS.

The reduction to [-45, +45) is exact; the constant pi/180 has relative error 1.37E-15, and the multiply by this constant has relative error 5.33E-15, for a total error of 6.7E-15. Since errors in the argument of SIN and COS contribute only (pi/4) of their value to the result, the error due to the reduction and conversion is at most 5.26E-15. The total error in SIND and COSD is at most this value plus the maximum error in SINCOS. on [-pi/4, +pi4), namely 7,31E-15, for a total of 12.57E-15. The maximum observed error in 100000 points in the interval [0,360) was 9.96E-15 for SIND and 9.95E-15 for COSD.

4. EFFECT OF ARGUMENT ERROR.

Errors in the argument X are amplified by $X/\tan(X)$ for SIND and $X^*\tan(X)$ for COSD. These functions have a maximum value of pi/4 in [-45°, +45°] but have poles at even (SIND) or odd (COSD) multiples.

of 98°, and are large between multiples of 98° if X is large. When X is known to double precision the following code may be used:

FUNCTION SINDD(X) DOUBLE X NINT(X)=X+SIGN(0.5,X) K=0 GO TO 1 ENTRY COSDD K=1 1 N=NINT(SNGL(X)/90) Z=X-N+90 IF (K.NE.MOD(IABS(B),2)) GO TO 2 Y=SIND(Z) GO TO 3 2 Y=COSD(Z) 3 IF (K+2-1.EQ. MOD(N, 2)) Y=-Y IF (MOD (IABS (N) .4) .GE .2)Y=-Y SINDD=Y RE TURN END

ROUTINE : SORT

1. ROUTINE'S FUNCTION

- 1.1. Type. A FORTRAN external function. It accepts a real argument and returns a real result.
- 1.2. Purpose. To accept calls by reference for SQRT from FORTRAN programs. SQRT computes the square root function.
- 2. METHOD.

The argument is loaded into X1 and the call is converted to a SQRT. call.

- 3. ERROR ANALYSIS see SQRT.
- 4. EFFECT OF ARGUMENT ERROR see SQRT.

ROUTINE : SQRT.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a real argument and returns a real result.
 - 1.2. Purpose. To accept calls by value for SQRT. from FORTRAN programs. SQRT. computes the square root function.

2. METHOD.

The argument range is the set of all positive or zero floating point numbers. The identity

sqrt(y+2+p) = sqrt(y)+2+(p/2)

is used to reduce the range to [0.5,1) with p having an integral value. An initial approximation is made using one of eight linear approximations to sort on this interval, giving at least 12 bits of accuracy. Two Heron's rule iterations are made to obtain 48 bits.

If p is even, the normal Heron's rule is used:

compute x0, an approximation to x=sqrt(y) x1=0.5*(x0+y/x0)x2=0.5*(x1+y/x1)

If p is odd, scaling is done between steps so as not to affect the accuracy of the final result:

compute x0 x1=0.5*(x0+y/x0) x1*=x1*sqrt(2) x2=0.5*(x1*+(2*y)/x1*)

which accomplishes the multiply by 2+(1/2)=sqrt(2).

The scaling by 2+[p/2] ([u] denotes truncation) is done by packing the appropriate exponent with the coefficient of (2*x2). The square root of a number one ulp below an even power of 2 is explicitly forced to one ulp below the square root of that power of 2 to make packing work, e.g., sqrt (4-eps) would be 1.0 but is forced to 2-eps.

The sqrt (2) scaling is fudged slightly so that the error is centered after this scaling, picking up one bit at that point.

3. ERROR ANALYSIS.

The maximum error in the Initial approximation is .000218. Since

the effect of a Heron's Iteration is to square and halve the relative error, the algorithm error is 7.08E-17.

Round-off error is insignificant until the last Heron's rule step, which has the form x+y/x, where the quantities being summed are almost equal. Since the error in Heron's rule is always positive, x is too large, so y/x is too small, i.e., x>y/x. The error in the divide is in (-7.1E-15,0) and in the rounded odd is in (0.43.55E-15), so the total round-off error is less than 3.55E-15 in absolute value. (Error in divide is halved because x=y/x approx.)

The upper bound on relative error is then 3.62E-15. The maximum observed relative error in 100000 randomly chosen point in the interval [0.5,2] was 3.59E-15.

4. EFFECT OF ARGUMENT ERPOR.

For small error in the argument y the amplification of absolute error is 1/(2*sqrt(y)) and that of relative error is 0.5.

60498200 C

ROUTINE : SYS=AID

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. An auxiliary routine.
 - 1.2. Purpose. To provide a link between routines in the math library, and the system error processor.
- 2. METHOD.

Execution proceeds as follows.

- a. Enter SYS=AID and additionally save registers X3 and X4.
- h. Read up entry point SYSAID. and store it at entry point SYS1ST. .
- c. Long Jump to MORGUE. .

See the method description of SYS=1ST for further details.

3. ERROR ANALYSIS.

Not applicable.

4. EFFECT OF ARGUMENT ERROR.

Not applicable.

ROUTINE : SYS=1SI

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. An auxiliary routine.
 - 1.2. Purpose. To provide a link between routines in the math library and a system error processor.
- 2. METHOD.

Execution proceeds as follows at MORGUE. :

- a. Enter SYS1ST and save registers X1 , X2 , X6 and A0 , B5 , B6 and B7.
- b. Read the return jump word used to enter the routine which called SYS=1ST or SYS=AID . If this word has the format:
 - + RJ <entry point>
 - VFD 30/1

then go to f. below.

- c. Read the communication cell SYSAID. . Insert in its lower 18 bits the address of the trace word in routine SYS=1ST. Store the result in cell RJERR which will be executed at step e.
- d. Test the argument in the register indicated by the contents of B2. Set X2 to the first word address of an error message as follows:

Condition Message

Infinite ARGUMENT INFINITE Indefinite ARGUMENT INDEFINITE

Other ARGUMENT <partial message from address supplied in B2 >

Set X1 to the error number, and AN to the first word address of the parameter list for non-standard error recovery.

- e. Execute word RJERR . This will link the routine to the system error processor.
- f. Restore registers X1 , X2 , A0 , B5 , B6 , B7 . Move the entering contents of X6 into register X5 .
- g. Set X6 and X7 to +IND. .
- h. Return to the calling program.
- 3. ERROR ANALYSIS.

Not applicable.

4. EFFECT OF ARGUMENT ERROR.

Not applicable.

ROUTINE : TAN

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floatingpoint argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by value for TAN computes the trigonometric tangent.
- 2. NAMES.
 - 2.1. Ident name TAN
 - 2.2. UPDATE deck name TAN
 - 2.3. Entry point name TAN
- 3. CALLS.
 - 3.1. Source of calls. From FTN compiled code mentioning TAN and compiled under control card option T, D, or OPT=0 or mentioning TAN in an EXTERNAL statement.
 - 3.2. Format of calls. Call by reference. Entry is made by return jump to TAN.
 - 3.3. Format of return. The result is returned in X6.
- 4. CALLED ROUTINES.

TAN. at entry point TAN. to compute the result.

- 5. METHOD.
- 2. METHOD.

The argument is loaded into X1 and the call is converted to a TAN. call.

- 3. ERROR ANALYSIS see TAN.
- 4. EFFECT OF ARGUMENT ERROR see TAN.

ROUTINE : TAN.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name for TAN. from FORTRAN programs. TAN. computes the trigonometric tangent functions.
- 2. METHOD.

The input range is the collection of all definite, in-range floating-point quantities in the interval (-247, +247).

The identities

- i) tan(x)=tan(x+k+p1/2) k even
- ii) tan(x)=-1.0/tan(x+pi/2)

are used in the form

- iii) tan(x)=tan((pi/2)*(x*2/pi*k)) k even
- iv) tan(x)=-1.0/tan((pi/2)*(x*2/pi+1))

to reduce the evaluation to the interval [-0.5,+0.5] using an approximation for tan((pi/2*y)). The reduction is done by multiplying x by 2/pi and subtracting the nearest integer, rounding the result to single.

The function $\tan((pi/2)*y)$ is approximated with a rational form, (7th order odd)/(6th order even), which has minimax relative error on the interval [-0.5,+0.5]. The rational form is normalized to make the last numerator coefficient (1+eps) where eps is chosen to minimize rounding error in the leading coefficients.

If identity (iv) is used, i.e., if the integer subtracted is odd, the result is negated and inverted by dividing -Q/P instead of P/Q.

3. ERROR ANALYSIS.

The range reduction, the final add in each part of the rational form, the final multiply in P and the divide dominate the error. Each of these operations contributes directly to the final error, and each is accurate to about 1/2 ulp (unit in the last place). The maximum relative errors are

\$source of error\$	*amount-10*=*
range reduction	3.6
rational form	•02
coefficient rounding	<.08
round-off	14.2
upper bound	18.0
maximum observed	14.5

4. EFFECT OF ARGUMENT ERROR.

For small errors in the argument x, the amplification of absolute error is $\sec^2(x)$ and that of relative error is $x/(\sin(x) + \cos(x))$, which is at least 2x and may be arbitrarily large near a multiple of pi/2. If x is known to more than double precision, the tangent addition formula may be used if x is less than 3E7:

DOUBLE X

(compute X)

T=TAN(SNGL(X))

S=SNGL (X-SNGL (X))

Y=T+S*(1+T**2)/(1-S*T)

(S=TAN(S) if X<3E7). This approximation may give less than single precision when S*T is near 1.0, where it is more accurate than TAN(SNGL(X)) but less accurate than SNGL(DTAN(X)).

ROUTINE 1 TAND.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type.A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by value for TAND, the trigonometric tangent function with argument in degrees.
- 2. METHOD.

Argument range: (-245, +245) except odd multiples of 90.

Routine DEGCOM. is called to subtract the necessary multiple of 90 from the argument to put the result in [-45, +45) and multiply the reduced value by pi/180. Routine TAN. is called to compute the tangent, and the result is negated and inverted if the multiple was odd, using these identities:

 $tan(X\pm 180^{\circ}) = tan(X)$ $tan(X\pm 90^{\circ}) = -1/tan(X)$

3. ERROR ANALYSIS.

The reduction to [-45, +45) is exact: the constant pi/180 has relative error 1.37E-15, and the multiply by this constant has relative error 5.33E-15, for a total error of 6.7E-15. Since errors in the argument of TAN are amplified by at most pi/2, the error due to reduction and conversion is at most 10.52E-15. The error in the final divide is at most 7.11E-15, and the error in TAN. is at most 14.54E-15, so an upper bound on error in TAND is 32.17E-15. The maximum observed error in 100000 points in the interval [0,360) was 17.72E-15.

4. EFFECT OF ARGUMENT ERROR.

Errors in the argument X are amplified by at most $X/(\sin(X) \cdot \cos(X))$. This function has a maximum of pi/2 within [-45° +45°] but has poles at all multiples of 90° except zero and is at least 2*X elsewhere. When X is known to double precision and one of the above problems exists, the following code may be used:

(compute X in double)

N=NINT(SNGL(X)/90) Y=TAND(SNGL(X-N*90)) IF (NOD(N,2).EQ.0) GO TO 1
IF (Y.EQ.0) <error>
Y=-1.0/Y
1 CONTINUE

which always returns an accurate value since the range reduction is exact. (Note: NINT(X) = IFIX(X+SIGN(0.5,X)), the nearest integer.)

139 •

ROUTINE : IANH

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating -point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by value for TANH from FORTRAN programs. TANH computes the hyperbolic tangent function.
- 2. METHOD.

The argument is loaded into X1 and the call is converted to a TANH. call.

- 3. ERROR ANALYSIS see TANH.
- 4. EFFECT OF ARGUMENT ERROR see TANH.

ROUTINE : IANH.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts a floating-point argument and returns a floating-point result.
 - 1.2. Purpose. To accept calls by value for computation of the hyperbolic tangent, including converted calls from TANH.

2. METHOD.

The input range is the collection of all definite floating-point quantities in the range [-INF,+INF].

The identity tanh(-x) = -tanh(x) is used to reduce the range to [0,+INF]. For abs(x)>17.50, the best machine representation of tanh(x) is sign(1.0,x), so the range is further reduced to [0,17.50).

The identities

tanh(x)=p(x)/a(x) approximately, on [0,0.55] tanh(x)=1-2/(exp(2+x)+1) exp(2+x)=(1+tanh(x))/(1-tanh(x))exp(2+x)=2+n+exp(2+(x-n+in(2)/2))

may be combined to get

tanh(x)=1-2*(q-p)/((q-p)+2+n*(q+p))

where n is chosen to be nint(x*2/ln(2)) and p,q are evaluated on x*n*ln(2)/2. This choice of n minimizes abs(x*n*ln(2)/2).

When x<0.55 the approximation p(x)/q(x) is used. Since tanh(x<0.55)<0.5, the form 1-r would suffer from cancellation in this range.

The approximation p/q is a minimax (relative error) rational form, i.e., (5th order odd)/(6th order even). The coefficients are scaled so that $(x^2/\ln(2)-n)$ may be used instead of $(x^n+\ln(2)/2)$, simplifying the range reduction. The coefficients are further scaled by an amount sufficient to reduce truncation error in the leading coefficients without otherwise affecting accuracy.

3. ERROR ANALYSIS.

(a0+small) dominate the error. The upper bound on the error here is 18.0E-15; the maximum observed was 13.0E-15.

For abs(x)>1.25 the final subtract, 1.0-small, dominates and an upper bound on the error is 4.2E-15; the maximum observed was 3.8E-15.

For $0.55\le$ abs(x) \le 1.25 the final operation is 1-R where R becomes smaller as x approaches 1.25, so the worst relative error is near 0.55, ramely (contribution from R)+(error in final sum), where R=2*(q-p)/((q-p)+4*(q+p)). An upper bound: 16.7E-15; maximum observed: 10.0E-15.

Relative Error:

\$source of error\$	\$error*1015
rational form	0.5
coefficient rounding	1.2
round-off	16.5
upper bound	18.2
maximum observed	13.0

4. EFFECT OF ARGUMENT ERROR.

For small errors in the argument x, the amplification of the absolute error is $1/\cosh^2(x)$ and of relative error is $x/(\sinh(x)^*\cosh(x))$. Both have maximum values of 1.0 at 0 and approach 0 as x gets large.

ROUTINE : XTOD*

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a floating-point and a double-precision argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by name for XTOD* generated by FORTRAN programs which raise floating-point bases to doubte-precision exponents.
- 2. METHOD.

The formula used is:

base ** exponent = exp(exponent * log(base)).

Upon entry, the argument set is checked. It is invalid if either argument is infinite or indefinite, if the base is negative, if the base is zero and the exponent is not greater than zero, or if floating overflow will occur during the computation. If the argument set is invalid, a diagnostic message is issued and POS.INDEF. is returned. If the argument set is valid, the result is returned to the calling program.

3. EPROR ANALYSIS.

The algorithm used in XTOD* is the same as that used in XTOD. . See the description of routine XTOD, for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the base b and a small error e** occurs in the exponent p, the error in the result is given approximately by

b**p * (p/b * e* + log(b) * e**) . The absolute error is approximately the absolute value of this expression. If the errors in the argument are significant, the error in the result should be found by substitution of the possible argument values in the expression b ** p.

POUTINE : XTOD.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN external function. It accepts an argument set comprising a floating-point and a double-precision argument, and returns a double-precision result.
 - 1.2. Purpose. To accept calls by value for XTOD., calls generated by FORTRAN programs which raise floating-point bases to double-precision exponents.

2. METHOD.

The input range is the collection of argument sets (b,p) wheret b is a definite in-range floating-point quantity, p is a definite in-range double-precision quantity, b is greater than zero, and b**p is in-range. The result is computed according to b**p = exp(p.tog b), where b is converted to double-precision upon entry, and all operations are carried out in double-precision. The result is returned to the catting program.

3. ERROR ANALYSIS.

10,000 argument sets (b,p) were randomly generated, with distribution a product of uniform distribution on (.5,1.5) and (\pm 10,10). The relative error in the routine was computed for each of the argument sets. The maximum absolute value of the relative error was found to be 1.163 . \pm 10**(\pm 25).

4. EFFECT OF ARGUMENT ERROR.

If a small error e(b) occurs in the base b and a small error e(p) occurs in the exponent p, the error in the result r is given approximately by

 $r \cdot (e(p) \cdot log b + p \cdot e(b)/b)$.

ROUTINE : XIOI+

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a floating-point and a fixed-point argument, and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name for XTOI* generated by FORTRAN programs which raise floating-point bases to fixed-point exponents.
- 2. METHOD.

Load arguments and call XTOI.

3. ERROR ANALYSIS.

Not applicable, since the only errors are round-off errors. See the description of XTOI. .

4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the base p, the error in the result is given approximately by

b**(p-1) * p * e*, where p is the exponent.

If the error in the base becomes significant, the error in the result must be found from substitution of the possible values of the base b into the expression b ** p.

ROUTINE : XIOI.

- ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a floating-point quantity and a fixed-point quantity, and returns a floating-point result.
 - 1.2. Purpose. To accept calls by value for XTOI., generated by FORTRAN programs which raise floating-point guantities to fixed-point exponents.
- 2. METHOD.

Special case

Quick version: Walk through the binary representation of I, starting with the most significant bit. For each bit, square the result (which was initialized to X); if the next bit is on, also multiply by X_{\bullet}

Careful version: Scale X to be between 0.75 and 1.5, remembering the exponent. Walk through 10 bits of I in the quick-version way. Then repeat (scale+walk) until I is used up. Invert if necessary. Carefully decide if the exponent is too big. If OK, exit.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR.

If a small error e" occurs in the base b, then the error in the result is given approximately by p * b**(p-1) * e", where p is the exponent. If the error e" becomes significant, we can only say that the absolute error in the result is bounded above by $\{p\} = \{p\} = \{p\}$

ROUTINE : XTOY*

- ROUTINE*S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of two floating-point arguments and returns a floating-point result.
 - 1.2. Purpose. To accept calls by name for XTOY* generated by FORTRAN programs which raise floating-point bases to floating-point exponents.
- 2. METHOD.

The formula used is

base ** exponent = exp (exponent.log(base)).

The argument set is checked upon entry. It is invalid if either base or exponent is infinite or indefinite, if the base is negative, if the base is zero and the exponent is not greater than zero, or if floating overflow occurs during the computation. If the argument set is invalid, POS.INDEF. is returned and a diagnostic message is issued. Otherwise, the result of the computation is returned.

3. ERROR ANALYSIS.

The algorithm used in XTOY* is the same as that used in XTOY. . See the description of routine XTOY. for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error e° occurs in the base b and a small error e°° occurs in the exponent p, the error in the result is given approximately by

 $b^{**p} * (p/b * e^* + log(b) * e^**).$

The absolute error is approximately the absolute value of this expression. If the errors in the arguments are significant, the error in the result should be found by substitution of the possible argument values in the expression b ** p.

ROUTINE : XIOY.

- ROUTINE'S FUNCTION.
 - Type. A FORTRAN exponentiation routine. 1.1. It accepts an argument set comprising two floating-point arguments, and returns a floating-point result.
 - Purpose. To accept calls by value for XTOY, , generated by 1.2. FORTRAN programs which raise floating-point bases to floatingpoint exponents.

2. METHOD.

The input range is the collection of all argument sets (b,e) for which: b and e are definite in-range floating-point quantities. b is positive and non-zero, and b**e is in-range.

The formula used is:

 $b^**p = exp(p * log b),$

where b > 0.

Upon entry, ALOG, computes log b, and then EXP, computes exp(p * log b).

The result is returned.

ERROR ANALYSTS. 3.

500,000 pairs (b,p) of random numbers were generated with distribution the product of the right half of a Cauchy distribution. and a Cauchy distribution.b ** p was computed for each of the pairs, first using the routine, and then using the double-precision routine. The maximum absolute value of the error in the routine was 4.583 * 10**(-12) for these 500,000 pairs.

4. EFFECT OF ARGUMENT ERROR.

If a small error e(b) occurs in the base b, and a small error e(p) occurs in the exponent p, the error in the result r is given approximately by

r * (log b * e**p + p * (e(b))/b).

ROUTINE 1 XTOZ*

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a floating-point base and a complex exponent, and returns a complex result.
 - 1.2. Purpose. To accept calls by name for XTOZ* generated by FORTRAN programs raising floating-point quantities to complex exponents.
- 2. METHOD.

If the base b is real and the exponent z = x + i + y where x and y are real, then

b + z = u + i + v

where

u = exp(x + log(b)) + cos(y + log(b))

and

 $v = \exp (x + \log(b)) + \sin (y + \log(b)).$

ALOG., EXP. and COS=SIN are called to evaluate these expressions. The argument set is checked upon entry. It is invalid if either base or exponent is infinite or indefinite, if the base b is negative, if the base is zero and the real part of exponent z greater than zero, if y * log (b) is so large that precision is lost in the computation, or if floating overflow occurs during the computation. If the base b is zero, y is zero and x is less than zero, POS. INF. is returned. If the argument set is otherwise is returned. In either case, a diagnostic INDEF. invalid, POS. message is issued. If the argument set is valid, ALOG. , EXP. and COS=SIN are called during computation. The result is returned to the calling program.

3. ERROR ANALYSIS.

The algorithm used in XTOZ* is the same as that used in XTOZ. . See the description of routine XTOZ. for an error analysis.

4. EFFECT OF ARGUMENT ERROR.

If a small error e(b) occurs in the base b, and small errors e(x) and e(y) occur in the real and imaginary parts x and y (respectively) of the exponent z, then the error e(r) in the result is given approximately by $e(r) = b^*z + \log(b)^*z^*((e(x) + i^*e(y))/z + e(b)/(b^*\log(b)))$.

The absolute error in the result is approximately the absolute value

of this expression. If the error in an argument becomes significant, the error in the result should be found from substitution of possible argument values in the expression b ** z.

ROUTINE : XTOZ.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set (x,z) where x is a floating-point quantity and z a complex quantity, and returns a complex result.
 - 1.2. Purpose. To accept calls by value for XTOZ., calls which are generated by FORTRAN programs which raise floating-point bases to complex exponents.
- 2. METHOD.

The input range is the collection of all argument sets (x,z) (= x, u + i*v)

such that: x is positive, if x is zero then u=0 and v is positive and non-zero, both x and z are definite and in-range, floating overflow does not occur during the computation of x ** u (i.e., $|u.log(x)| \le 741.67$, and $|v.log(x)| \le pi.246$. The formula used is:

 $x^{**}(u+i^*v) = e^{**}(u^*log(x) + cos(v^*log(x)) + i + e^{**}(u^*log(x) + sin(v^*log(x)).$

Upon entry, the base is checked. If it is zero, zero is immediately returned to the calling program. Otherwise, ALOG. is called for computation of $\log x$, and then COS=SIN is called for computation of $\cos(v \cdot \log(x))$ and $\sin(v \cdot \log(x))$. Then EXP. is called for computation of $\exp(u \cdot \log(x))$. The result is calculated according to the formula and is returned to the calling program.

3. ERROR ANALYSIS.

40%,00% pairs (x,z) of random numbers were generated with distribution the product of a right half of a Cauchy distribution, and the product of two Cauchy distributions. x**z was computed for each of these pairs, first using the routine, and then using double-precision operations. The maximum absolute value of the relative error in the routine was found to be 7.196 * 10**(-10) for these pairs.

4. EFFECT OF APGUMENT ERROR.

If a small error e(x) occurs in the base x, and a small error e(z) (= $e^*(x)$ + $i \cdot e^*(y)$) occurs in the exponent z, the error in the result w is given approximately by $w + (\log x + e(z) + z + e(x)/x)$.

ROUTINE : ZTOI*

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set consisting of a complex base and a fixed-point exponent, and returns a complex result.
 - 1.2. Purpose. To accept calls by name for ZTOI* generated by FORTRAN programs raising complex quantities to fixed-point exponents.

2. METHOD.

See the description of ZTOI. for the algorithm. The argument set is checked upon entry. It is invalid if either argument is infinite or indefinite, or if the base is zero and the exponent is not greater than zero. In these cases, POS. INDEF. is returned and a diagnostic message is issued. Otherwise the result of the computation is returned to the calling program.

3. ERROR ANALYSIS.

Not applicable, since the only errors are round-off errors.

4. EFFECT OF ARGUMENT ERROR.

If a small error e^* occurs in the base b, the error in the result is given approximately by $n * b ** (n-1) * e^*$, where n is the exponent. The absolute value of this expression is approximately the absolute error. If the error e^* is significant, the error in the result should be found by substitution of the possible argument values in the expression b ** n.

ROUTINE : ZIOI.

- 1. ROUTINE'S FUNCTION.
 - 1.1. Type. A FORTRAN exponentiating routine. It accepts an argument set comprising a complex and a fixed-point argument, and returns a complex result.
 - 1.2. Purpose. To accept calls by value for ZTOI., generated by FORTRAN programs which raise complex quantities to fixed-point exponents.
- 2. METHOD.

Let b be the base and $p(\ge 0)$ the exponent. If p has a binary representation 000...0i(n)i(n-1)...i(1)i(0) where each $i(j)(n\le j\le n)$ is 0 or 1, then

 $p = i(0) \cdot 2^{o} + i(1) \cdot 2^{1} + \dots + i(n) \cdot 2^{**} n$ and n = [log(2)p] = greatest integer not exceeding log(2)p. Then $<math>b ** p = Prod (b ** 2 **) : 0 \le j \le n & i(j) = 1} .$

The numbers $b=b^2**0$, b^2 , b^4 ,..., b^**2**n are generated by successive squarings, and the coefficients i(0),..., i(n) are obtained as sign bits of successive circular right shifts of p within the computer. A running product is formed during the computation, so that smaller powers of b may be discarded. Thus, the computation becomes an iteration of the algorithm

b + p = 1 if p = 0

 $b + p = (b^2) + p/2$ if $p \ge 0$ and p is even

 $b + p = b \cdot (b^2) + (p-1)/2 \text{ if } p \ge 0 \text{ and } p \text{ is odd}$

Upon entry, if the exponent p is negative, p is replaced by -p and a sign flag is set. b**p is computed according to this algorithm, and if the sign flag was set, the result is reciprocated, before being returned to the calling program.

The input range is the collection of pairs of bases b and exponents p such that b is non-zero if p is negative, both arguments are definite and in-range, and the result is in-range.

- 3. ERROR ANALYSIS not applicable.
- 4. EFFECT OF ARGUMENT ERROR.

If a small error e* occurs in the complex base b, the error in the result is given approximately by p * b**(p-1) * e*. If e* is significant, the absolute value of the error in the result is less than or equal to

 $1p1 * (1b1 + 1b + e^{*}1)**(p-1) * 1e^{*}1$

APPENDIX A - CLASSIFICATION OF ROUTINES.

The Nathematical Library routines are classified according to the following criteria.

Routine: the name of the SCCPE deck concerned. Entry: the name of the routine's entry point.

Calls: by name or by value.

Checking: of arguments by the routine.

Argument: the type of arguments to the routine.

FL = floating-point

FI = fixed-point

D = double-precision

C = complex

A = any

Result: the type of the result (or results).

Function: whether an external (Ext) or intrinsic (Int) function.

Routine. ALOG	Entry. ALOG	<u>Calls.</u> Name	Checking. Yes	<u>Argument.</u> FL	<u>Result.</u> FL	Eunction. Ext
	ALOG10	Name	Yes	FL	FL	Ext
ATAN	ATAN	Name	Yes	FL	FL	Ext
ATANZ	ATANZ	Name	Yes	(FL,FL)	FL	Ext
	ATAN2.	Value	Yes	(FL,FL)	FL	Ext
ATANH	ATANH	Name	Yes	FL	FL	Ext
ccos	ccos	Name	Yes	c	Ċ	Ext
CEXP	CEXP	Name	Yes	Č	Č	Ext
CLOG	CLOG	Name	Yes	Č	C	Ext
cos	COS	Name	Yes	FL	FL	Ext
COSD	COSD	Name	Yes	FL	FL	Ext
COSH	COSH	Name	Yes	FL	FL	
CSIN	CSIN	Name	Yes			Ext
CSORT				C	C	Ext
U3U#1	CSQRT	Name	Yes	Ն	U	Ext
DACOS	DACOS	Name	Yes	D	n	Ext
DASIN	DASIN	Name	Yes	0	Ď	Ext
DATAN	DATAN	Name	Yes	ס	Ö	Ext
DATANE	DATANZ	Name	Yes	(D, D)	Ď	Ext
DCOSH	DCOSH	Name	Yes	D	D	Ext
DEXP	DEXP	Name	Yes	D	Ö	Ext
DLOG	DLOG	Name	Yes	Ö	Ö	Ext
DLOGIO	DLOG10	Name	Yes	ס	D	Ext
DMOD	DMOD	Name	Yes	(0,0)	D	Ext
DMOD.	DMOD.	Value	No	(0,0)	D	Ext
ncos	DCOS	Name	Yes	0	Ö	Ext

<u> </u>	Poutine.	Entry.	Calls.	Checking.	Argument.	Result.	Eunction.
	DSIN	DSIN	Name	Yes	ס	D	Ext
\bigcirc	DSINH	DSINH	Name	Yes	D	O ·	Ext
	DSQRT	DSQRT	Name	Yes	ם	D	Ext
	DTAN	DTAN	Name	Yes	D	O	Ext
$\overline{}$	DTANH	DTANH	Name	Yes	0	D	Ext
1.	OTOn*	DTOD\$	Name	Yes	(D, D)	D e	•
	DTOI*	DTOIS	Name	Yes	(D,FI)	D	•
	DTOX*	DTOX\$	Name	Yes	(D,FL)	D	•
	DTOZ*	DTOZ\$	Name	Yes	(D,C)	C	-
	ERF	ERF	Name	Yes	FL	FL	Ext
	ERFC	ERFC	Name	Yes	FL	FL	Ext
	EXP	EXP	Name	Yes	FL	FL	Ext
	ITOD*	ITOD\$	Name	Yes	(FI,D)	O	•
	ITOJ*	ITOJ\$	Name	Yes	(FI,FI)	FI	•
	ITOX*	ITOX\$	Name	Yes	(FI,FL)	FL	-
	ITOZ*	I TOZ\$	Name	Yes	(FI,C)	C	-
$\overline{}$	SINCOS.	SIN	Name	Yes	FL	FL	Ext
		COS	Name	Yes	FL	FL	Ext
		SIN.	Value	Yes	FL	FL	Ext
		cos.	Value	Yes	FL	FL	Ext
	SIND	SIND	Name	Yes	FL	FL	Ext
	SINH	SINH	Name	Yes	FL	FL	Ext
\smile	SQRT	SQRT	Name	Yes	FL	FL	Ext
		SORT.	Value	Yes	FL	FL	Ext
	TAN	TAN	Name	Yes	FL	FL	Ext
	TAND	TAND	Name	Yes	FL	FL	Ext
	TANH	TANH	Name	Yes	FL	FL	Ext
	XTOD*	XTOD\$	Name	Yes	(FL,D)	0	•
\mathcal{L}	XTOI*	XTOI\$	Name	Yes	(FL,FI)	FL	•
	XTOY*	XTOY\$	Name	Yes	(FL,FL)	FL	•
	XTOZ*	XTOZ\$	Name	Yes	(FL,C)	C	•
\bigcirc	ZTOI*	ZTOI\$	Name	Yes	(C,FI)	C	-
	RANF	RANF	Name	No	A	FL	Ext
		RANGET		No	FL	•	Subroutine
\smile	RANSET	RANSET	Name	No	FL	•	Subroutine
	ANT	AND	Name	No	(A,A,)	A	Int
	COMPL	COMPL	Name	No	Α	Α	Int
$\overline{}$	LOCF	LOCF	Name	No	Δ	FI	Int
	MASK	MASK	Name	Yes	FI	A	Int
	OR	OR	Name	No	(A, A,)	A	Int
\sim	SHIFT	SHIFT	Name	No	(A,FI)	A	Int
	XOR	XOR	Name	No	(A, A,)	A	Ext
	COUNT	COUNT	Name	No	A	FI	Int
	ABS	ABS IABS	Name	No	FL FI	FL FI	Int

Routine.	Entry.	Calls.	Checking.	Argument.	Result.	Eunction.
AIMAG	AIMAG	Name	No	C	FL	Int
AINT	AINT	Name	No	FL	FL	Int
A MA X O	AMAXO	Name	No	(FI,FI,)	FL	Int
AMAX1	AMAX1	Name	No	(FL,FL,)	FL	Int
AMINO	AMINO	Name	No		FL	Int
AMIN1	AMIN1	Name	No	(FL, FL,)	FL	Int
AMOD	AMOD	Name	No	(FL,FL)	FL	Int
CMPLX	CMPLX	Name	No	(FL,FL)	C	Int
CONJG	CONJG	Name	No	C	C	Int
DABS	DABS	Name	No	0	D	Int
DBLE	DBLE	Name	No	FL SI	0	Int
DIM	DIM	Name	No	(FL,FL)	FL	Int
DMAX1 DMIN1	DMAX1	Name Name	No	(0,0,)	D	Int Int
DSIGN	DMIN1 DSIGN	Name	No No	(D,D,) (D,D)	D D	Int
FLOAT	FLOAT	Name	No	FI	FL	Int
IDIM	IDIM	Name	No	(FI,FI)	FI	Int
INT	INT	Name	No	FL	FĪ	Int
2.44	IFIX	, rom c	.,,	•	•	***
	IDINT					
ISIGN	ISIGN	Name	No	(FI,FI)	FI	Int
	SIGN		-	(FL,FL)	FL	
MAXO	DXAM	Name	No	(FI,FI,)	FI	Int
MAX1	MAX1	Name	No	(FL,FL,)	FI	Int
MINO	MINO	Name	No	(FI,FI,)	FI	Int
MIN1	MIN1	Name	No	(FL,FL,)	FI	Int
MOD	моп	Name	No	(FI,FI)	FI	Int
REAL	REAL	Name	No	C	FL	Int
	SNGL			D	FL	
ACOSIN.	ACOS	Name	Yes	FL	FL	Ext
	ASIN	Name	Yes	FL	FL	Ext
	ACOS.	Value	Yes	FL	FL	Ext
** • •	ASIN.	Value	Yes	FL	FL	Ext
ALOG.	ALOG.	Value	Yes	FL	FL	Ext
ATAM	ALOGID.	Value	Yes	FL	FL FL	Ext
ATAN.	ATAN.	Value	Yes	FL FL	FL	Ext
ATANH. Cabs.	ATANH. Cabs	Value Name	Yes Yes	C	FL	Ext Ext
UADS.	CABS.	Value	Yes	C	FL	Ext
ccos.	CCOS.	Value	Yes	Č	C	Ext
CEXP.	CEXP.	Value	Yes	C	C	Ext
CLOG.	CLOG.	Value	No	Č	Č	Ext
COS=SIN	COS.SIN		No	FL	(FL,FL)	Helper
CSIN.	CSIN.	Value	Yes	C	C	Ext
CSORT.	CSQRT.	Value	No	c	Č	Ext

Routine.	Entry.	Calls.	Checking.	Argument.	Result.	Eunction.
DASNCS.	DACOS.	Value	Yes	D	D	Ext
	DASIN.	Value	Yes	מ	D	Ext
DATAN.	DATAN.	Value	Yes	D	D	Ext
DATAN2.	DATAN2.	Value	Yes	(D, D)	D	Ext
DEXP.	DEXP.	Value	Yes	D	D	Ext
DHYP.	DCOSH.	Value	Yes	D	D	Ext
	DSINH.	Value	Yes	ם	D	Ext
DENLOG.	DLOG.	Value	No	0	D	Ext
	DLOGIT.	Value	No	D	D	Ext
DSNCOS.	DSIN.	Value	No	0	D	Ext
	DCOS.	Value	No	D	D	Ext
DSQRT.	DSQRT.	Value	Yes	D	D	Ext
DTAN.	DTAN.	Value	Yes	D	D	Ext
DTANH.	DTANH.	Value	Yes	D	D	Ext
סדחם.	DTOD.	Value	No	(D, D)	D	•
DTOI.	DTOI.	Value	No	(D,FI)	ָ מ	•
DTOX.	DTOX.	Value	No	(0,FL)	D	•
DTOZ.	DTOZ.	Value	No	(D,C)	C	•
FRF.	ERF	Value	Yes	FL	FL	Ext
	ERFC.	Value	Yes	FL	FL	Ext
EXP.	EXP.	Value	Yes	FL	FL	Ext
HYP.	COSH.	Value	Yes	FL	FL	Ext
	SINH.	Value	Yes	FL	FL	Ext
HYPERB.	HYPERB.	Value	No	FL	(FL,FL)	Helper
ITOD.	ITOD.	Value	No	(FI,D)	D	•
ITOJ.	ITOJ.	Value	Yes	(FI,FI)	FI	•
ITOX.	ITOX.	Value	No	(FI,FL)	FL	•
ITOZ.	ITOZ.	Value	No	(FI,C)	C	-
SINCSO.	COSD.	Value	Yes	FL	FL	Ext
	SIND.	Value	Yes	FL	FL	Ext
TAN.	TAN.	Value	Yes	FL	FL	Ext
TAND.	TAND.	Value	Yes	FL	FL	Ext
TANH.	TANH.	Value	Yes	FL	FL	Ext
xTOD.	XTOD.	Value	No	(FL,D)	0	•
XTOI.	XTOI.	Value	Yes	(FL,FI)	FL	•
XTOY.	XTOY.	Value	No	(FL,FL)	FL	•
XTOZ.	XTOZ.	Value	No	(FL,C)	C	•
ZTOI.	ZTOI.	Value	No	(C.FI)	C	

APPENDIX B - ERROR RECOVERY.

All routines in the FORTRAN common library checking arguments and issuing error messages allow for standard and non-standard error recovery, as described in the FORTRAN Extended Version 4 Reference Manual. Routine: the name of the loader deck concerned. The structure of these routines satisfies:

Word 1: VFD 42/, <routine*s name>, 18/< relative position of entry point>

When executing under traceback mode, register AO holds the field length when in the main program, and the first word address of the parameter list in the previous call, otherwise. In normal execution each routine must save the contents of AO before using this register, and before calling any other routine. AO's contents must be restored upon return to the calling routine.

The symbols SYSARG. and SYSERR. are two entry points in the FORTRAN common library utility package FORSYS. . A call at SYSARG. with a "bad" argument (i.e., negative, zero, infinite or indefinite) in X1 will return with X2 holding the address of the text of an appropriate error message. A call to SYSERR. with an error number in X1 and the address of a diagnostic message in X2 will result in the printing of the diagnostic message and a traceback listing, provided that the first two words of each routine are as above, the return jump to SYSERR. Is in the upper half of a word, and the lower 18 bits contains a pointer from word 1 to the return jump.

The sequence of events on executing math library routines which issue diagnostic messages is:

- (a.) Enter routine.
- (b.) Check arguments. If valid, compute result and return through entry point. (Some routines also check the result before return.) If invalid, go to (c.).
- (c.) Enter contents of register AO in TEMPAO. and enter the FWA of the parameter list (now in A1) into AO.
- (d.) Call SYSARG. to obtain the address of an error message in X2, if the argument is infinite or indefinite (or zero or negative); in this case, go to (f.).
- (e.) Otherwise, enter the address of an appropriate error message directly into register X2 .
- (f.) Enter the error number into X1. (See the FORTRAN Extended Reference Manual.) (Step (f.) may precede step (d.).)
- (g.) Return jump to SYSERR. to initiate error actions. (Lower part of RJ word = trace pointer.) If non-standard error recovery is specified through a previous call to SYSTEMC, transfer will return to the supplied recovery routine. If standard error was inhibited, the job aborts. Otherwise, control will return to the calling routine, at step (h.).
- (h.) The appropriate indefinite or infinite quantity is entered into x6, and the contents of A0 are restored from TEMPAO. .
- (1.) Return through the entry point.

A list of error numbers and diagnostic messages is given in the FORTRAN Extended Reference Manual.

As the first routines to be rewritten in a project to implement full error checking in all routines, some routines (listed in Appendix A) now detect errors and issue messages for all bad arguments passed to them. These routines call new routines SYS=AID or SYS=1ST (at entry points SYSAID. or SYS1ST., respectively) for error processing. The sequence of events on executing these routines is:

- (a.) Enter routine.
- (b.) Check arguments. If valid, compute result and return through entry point. (Some routines also check the result before return.) If invalid, go to (c.).
- (c.) Set B2 with pointers indicating error number, partial message, and register residence of bad argument. The format is given in the method description of routine SYS=1ST. The partial message will be ignored if the argument is infinite or indefinite.
- (d.) Set up the arguments in registers X1 , X2 , X3 and X4 (or just X1 , X2 if one argument) according to the rules in section III of the Introduction.
- (e.) Peturn jump to SYS1ST. or SYSAID. to initiate error processing. SYSAID must be chosen if there is more than one argument. The return jump must be in the upper 30 bits of a word. The next 12 bits are zero, and the next 18 bits must include a pointer to a trace word, as described above.
- (f.) Testing commences. A parameter list is built up from values in X1, X2, X3, X4 to allow non-standard error recovery. If the routine calling the routine calling SYS=AID made this call in the format
 - + RJ =X<routine>
 - VFD 30/1

go to step g below. Otherwise, set AB to point to the reconstructed parameter list, set X1 to the error number, set X2 to the first word address of the constructed message, then execute the communication cell SYSAID., after traceback linkage information has been inserted in its lower 18 bits.

(g.) Return +IND. in registers X6 and X7, and restore registers A0, X1, X2 (and X3 and X4, if entry was to SYS=AID). s = .746926199335419 * 10**-3

The times listed below were determined empirically, and arguments to routines were chosen as many as practicable to cover all the possibilities for times to each routine. CYBER 76 times were obtained through the machine instruction 016]0 which accesses a hardware clock, while CYBER 72, 73 and 74 times were obtained by observing variations in speed of two equivalent loops in central memory, one of which called the routine being timed. These variations in speed were obtained through use of a system-maintained real-time clock which is synchronized with a hardware clock on one of the data channels. These times do not include time for setting up arguments and parameter lists, but measure from the time a return-jump to the routine is issued, to the time that the next instruction in sequence is issued. All times given are in minor cycles (or clock-periods). On CYBER 72, 73 and 74, 1 minor cycle = 100 nanoseconds, while on CYBER 76, 1 clock-period = 27.5 nanoseconds. On CYBER 171, 172 and 173, 1 minor cycle = 50 nanoseconds.

Certain facts should be noted. On CYBER 76, a return jump may be delayed in execution if the instruction stack control has requested one or more instruction words that have not arrived at the instruction stack. Thus, CYBER 76 routine times depend on how the routine is called. On CYBER 72 and 73, a floating instruction executes at least 48 minor cycles faster if either of the operands is zero, infinite or indefinite. If in the course of evaluating an algorithm for computation of a function, a routine happens to produce an intermediate zero result, it will execute faster by at least 48 minor cycles if this intermediate result is combined arithmetically with anything else. The number of possibilities for this case is too large for enumeration in this appendix.

Some routines will naturally call others, but the time listed under each routine <u>only the time spent in that routine</u>, and does not include time spent in return jumps to and execution of other routines. To find total execution time in a routine, one must add times for execution at entry points with arguments listed after an "%".

Timings are supplied here for valid argument sets only. Take the time for the first atternative listed which covers the argument concerned.

Routine Entry Points						
Arguments			T:	6 a a C	V DC D	
RTimes at Entry Points	targumer			73		

400						
ABS (Any valid)			400	70	* •	
HOS CHITY VALLEY			100	79	58	
ACOSIN.						
ACOS (x)						
x valld				56	35	
& ACOS. (x)				· ·		
ASIN (x)						
x valid				59	35	
& ASIN. (x)						
ACOS. (x)					* .	
x valid and:	4	a in edikibi ka				
x = 0.		812		741	159	1
x = 1.		306		234	127	
x = -1.		307	,	237	127	
x in (55)	~	950		897	159	1
x not in (5,.5), time						
= a+b*n where n is the loop count, as defined						
in the ACOSIN. description.						
9 =				1138	207	1
b =	1.7			114	18	4
x in (-1.,5),						
add to x time:				1.0	5	
ASIN. (x)						
x valid and:						
x = 0		823		763	153	1
x = 1.		292		220	120	
x = -1.		293		219	120	
x in (5,.5)		958		904	152	1
x in (.5.1.), time						
= a+b*n, where n is						
defined in the ACOSIN.						
description.				_		
a =				1170	226	1
b =				115	15	
AIMAG						
AIMAG (Any valid)			101	81	54	
AINT						
AINT (Any valid)			121	98	66	

Rou	Ţ	ı	ne
		_	1.0

Entry Points Arguments Times for CYBER &Times at Entry Points (argument) ALOG ALOGIO (x) & ALOG10. (x) ALOG (x) & ALOG. (x) ALOGIO. (x) x infinite or indefinite & SYSAID. (Append. & SYSAID. (Append. x valid, x<0. & SYSAID. (Append. B) x valid, $x = y^2 = y^2$ n integral, 15y<2, and 1≤y<1.1072 1.10725y<1.3572 1.35725y<1.6072 1.6072 y< 1.8572 1.85725y<2 ALOG. (x) x infinite or indefinite & SYSAID. (Append. 0. & SYSAID. (Append. x valid, x>0& SYSAID. (Append. B) x valid, x= y*2**n, n integral 1.5y<1.8572 1.8572<2

	oints guments								
	-	at Entry	Points	(ar gumen	†)	Times	for C	YBFR	
						72		74	

DXAMA									
	x(1),,	x(n))							
U=						240	178	121	
· n=	_		•*			338	250	159	
ea	ch add.		•			99	73	42	
AMAXI									
	x(1),	x(n))							
n=						232	178	104	
e a	ch add.					110	83	45	
AMIND									
AMINO ((x(1))								
	., x(n)								
n=		we are				237	179	112	
n=						338	252	148	
ea	ch add.					100	72	43	
AMIN1									
	x(1),,	x(n))					•		
n=						227	179	108	
n=	-					333	252	163	
n=						436	328	189	-
	ch add.					105	78	44	
AMOD									
AMOD (x	. v.1								
אַלעט עא אַל י≱ל						248	207	111	
·	_						, - • •		
AND									
	L),, x(.n33.				_			
n=:						217	163		
n=:					$\mu^{(i,j)} = \mu^{(i,j)}$	282	212		•
n=	•					347	262	133	
ea	ch add.					65	49	22	

Arguments	Routine Entry Points)
ATAN (x) ATAN. (x) ATAN. (x) x valid x <1. 1059 756 187 141 x valid x <1. 1092 784 203 201 ATAN? ATAN? (y,x) & ATAN2. (x) ATAN2. (y,x) (y,x) valid and x=0,y≠0. 881 850 246 190 x≠0,y=0 981 835 276 187 x > y >0 1167 1885 249 161 y ≥ x >0 1165 1077 241 172 ATANH. ATANH.(x) x valid and: x=0 .75≤x<1.5 988 202 x≥1.5 CARS. CARS. (z) CARS. (x+1*y) x+1*y valid and x=y=0. x≠0. or y≠0., special case. (See routine*s description) and otherwise valid 715 684 283 181 CCOS CCOS (z) z valid % HYPERB. (im(z) % COSSIN (re(z)) im(z) > 746. 67 468 348 363 131					76)
ATAN (x) ATAN. (x) ATAN. (x) x valid x <1. 1059 756 187 141 x valid x <1. 1092 784 203 201 ATAN? ATAN? (y,x) & ATAN2. (x) ATAN2. (y,x) (y,x) valid and x=0,y≠0. 881 850 246 190 x≠0,y=0 981 835 276 187 x > y >0 1167 1885 249 161 y ≥ x >0 1165 1077 241 172 ATANH. ATANH.(x) x valid and: x=0 .75≤x<1.5 988 202 x≥1.5 CARS. CARS. (z) CARS. (x+1*y) x+1*y valid and x=y=0. x≠0. or y≠0., special case. (See routine*s description) and otherwise valid 715 684 283 181 CCOS CCOS (z) z valid % HYPERB. (im(z) % COSSIN (re(z)) im(z) > 746. 67 468 348 363 131	ATAN					_
ATAN. (x) ATAN. (x) x vaild x <1			66	32	53	
x valid x <1. x valid x <1. x valid x ≥1. x valid x ≥1. ATAN2 ATAN2. (y,x)			1			_
X valid x 21. 1092	ATAN. (x)					
ATAN2 ATAN2 (y,x) & ATAN2. (x) ATAN2. (y,x) (y,x) valid and x=0,y≠0. ATANH. (x) x valid and x x=0 .755x<1.5 x21.5 CABS. (x) CABS. (xi*y) x+i*y valid and x=y=0. x≠0.or y≠0. special case. (See routine*s description) and otherwise valid £ HYPERB. (im(z) 1 (y,x) ATANH. ATANH. (x) x valid and x=y=0. x≠0.or y≠0. x valid x x=0 x≠0.or y≠0. x yalid x x=0 x≠0.or y≠0. x yalid x x=0 x≠0.or y≠0. x yalid x x=0 x x		1059	756	187	141	
ATAN2 (y,x)	x valid x ≥1.	1092	784	203	201	<u></u>
ATAN2 (y,x)	ATAN2			n e		
R ATAN2. (x) ATAN2. (y,x) (y,x) valid and x=0,y≠0. x≠0,y=0 y81 835 246 190 x≠0,y=0 y81 835 276 187 [x > y >0 1167 1085 249 161 [y ≥ x >0 1165 1077 241 172 ATANH. ATANH.(x) x valid and: x=0 .75≤x<1.5 y808 202 x≥1.5 CABS. CABS. (z) z valid			78	53	78	
ATAN2. (y,x)						
x=0,y≠0. x≠0,y=0 981 835 276 187 x y y 0 1167 1085 249 161 y 2 x >0 1165 1077 241 172 ATANH. ATANH.(x) x valid and: x=0 682 203 .755x<1.5 908 202 x≥1.5 CABS. CABS (z) z valid 8 CABS. (z) CABS. (x+i+y) x+1*y valid and x=y=0. x≠0. or y≠0. , special case. (See routine*s description) 715 786 283 197 and otherwise valid 715 684 283 181 CCOS CCOS (z) z valid 546 436 180 119 £ HYPERB. (im(z) £ COS.SIN (re(z)) im(z) > 741.67 468 348 363 131						
X # 0, y = 0	(y,x) valid and					<u>_</u>
0						
ATANH. (x) x valid and: x=0 .75 \(\) 75 \(\)						<u></u>
ATANH.(x) x valid and: x=0		1165	1077	241	172	
ATANH.(x) x valid and: x=0	ATANH.					
x valid and: x=0 .755x<1.5						***
x=0 .75≤x<1.5 x≥1.5 CABS. CABS (z) z valid & CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0. x≠0. or y≠0., special case. (See routine*s description) and otherwise valid CCOS CCOS (z) z valid & HYPERB. (im(z) & COS.SIN (re(z)) im(z) > 741.67 682 105 38 43 43 276 225 138 85 276 225 138 85 276 225 138 85 276 283 197 684 283 181 546 436 180 119 468 348 363 131						
.755x<1.5 x≥1.5 CABS. CABS (z) z valid 8 CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0. x≠0. or y≠0. special case. (See routine*s description) and otherwise valid CCOS (cos (z) z valid 8 HYPERB. (im(z) 8 COS.SIN (re(z)) im(z) > 741.67 908 202 202 202 202 202 202 202 202 202 202 203		682		203		
CABS (z) z valid & CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0. x**\frac{2}{2} \frac{1}{3} \frac{8}{3} \frac{8}{3} \frac{1}{3} \frac{8}{3} \frac{1}{3} \frac{8}{3} \frac{1}{3} \frac{8}{3} \frac{1}{3} \frac{8}{3} \frac{1}{3} \frac{1}{3} \frac{8}{3} \frac{1}{3}	.755x<1.5					
CABS (z) z valid & CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0. x*0. or y*0., special case. (See routine*s description) and otherwise valid CCOS CCOS (z) z valid & HYPERB. (im(z) & COS.SIN (re(z)) im(z) > 741.67 105 38 43 28 43 45 468 348 363 131	x≥1•5					
CABS (z) z valid & CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0. x*0. or y*0., special case. (See routine*s description) and otherwise valid CCOS CCOS (z) z valid & HYPERB. (im(z) & COS.SIN (re(z)) im(z) > 741.67 105 38 43 28 43 45 468 348 363 131						-
Z valid & CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0. x*0. or y*0., special case. (See routine*s description) and otherwise valid CCOS CCOS (z) Z valid & HYPERB. (im(z) & COS.SIN (re(z)) im(z) > 741.67 105 38 43 276 225 138 85 776 283 197 786 283 197 786 283 197 786 283 197 787 684 283 181 546 436 180 119 468 348 363 131						
<pre>% CABS. (z) CABS. (x+i*y) x+i*y valid and x=y=0.</pre>			405			
CABS. (x*i*y) x+i*y valid and x=y=0.			100	. 30	43	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
and x=y=0.	· · · · · · · · · · · · · · · · · · ·					,_
x≠0. or y≠0., special case. (See routine*s description) 715 786 283 197 and otherwise valid 715 684 283 181 CCOS CCOS (z) z valid		276	225	138	85	_
special case. (See routine's description) 715 786 283 197 and otherwise valid 715 684 283 181 CCOS CCOS (z) z valid & HYPERB. (im(z) & COS.SIN (re(z)) im(z) > 741.67 468 348 363 131						
and otherwise valid 715 684 283 181 CCOS CCOS (z) z valid % HYPERB. (im(z) % COS.SIN (re(z)) lim(z)!> 741.67 468 348 363 131						
CCOS (z) z valid 546 436 180 119 & HYPERB. (im(z) & COS.SIN (re(z)) im(z) > 741.67 468 348 363 131	routine's description)	715	786	283	197	
CCOS (z) z valid 546 436 180 119 % HYPERB. (im(z) % COS.SIN (re(z)) im(z) > 741.67 468 348 363 131	and otherwise valid	715	684	283	181	
CCOS (z) z valid 546 436 180 119 % HYPERB. (im(z) % COS.SIN (re(z)) im(z) > 741.67 468 348 363 131	ccos					\
z valid % HYPERB. (im(z) % COS.SIN (re(z)) im(z) > 741.67						
<pre>% HYPERB. (im(z) % COS.SIN (re(z)) lim(z) > 741.67 468 348 363 131</pre>		546	436	180	119	_
im(z) > 741.67 468 348 363 131 \						
& SYSERR. (Append. B)			348	363	131	_
	& SYSERR. (Append.	8)				

	Routine Entry	y Points	1. V.			
		Arguments & Times at Entry Points (argument)			YBER 74	76
			173 72	73		76
$\overline{}$	0000					
	CCOS.	(z)				
$\overline{}$	0005	z valid	327	279	78	71
<u>.</u>	. 7	& HYPERB. (im(z))			7 ()	•
i	* . *	& COS.SIN (re(z))				
$\overline{}$	0540					
	CEXP	(m)				
\bigcup	CEXP	1re(z)1> 741.67	356	273	158	120
		& SYSERP. (Append. B)	350	213	150	TCU
		z valid	487	403	155	115
\bigcirc		& EXP. (re(z)) & COS.SIN (im(z))			V.	
	CEXP.					
\mathcal{L}		(z)				
		z valid	262	225	74	60
		<pre>% EXP. (re(z)) % COS.SIN (im(z))</pre>				
	01.05					
	CLOG CLOG	(-)				
	0200	Z=0.	291	213	118	76
		% SYSARG= SYSERR. (Append. B)	291	210	110	, 0
		z valid	163	131	102	69
\mathcal{L}		& CLOG. (z)				
X 2	CLOG.	4-8				
	CEO6.	(z)	257	4.00	. 05	E 0
		z valid & ATAN2. ((im(z), re(z)))	253	199	95	50
\smile		& CABS. (z) & ALOG. (121)				
	CMPLX					
		((x,y)				
		x,y valid	126	103	64	84
	COMPL					
	COMPL	. (x)	83	69	55	54

60498200 C

Routine Entry Points					
Arguments & Times at Entry Poir		Times 72	for C		76
CONJG					
CONJG (z)					
z valid		128	101	58	68
•					
COS see SINCOS.					
•					
COSH see HYP.					
2.00 0.TM				1 12	
COS=SIN					
COS.SIN (x)		307	244	108	91
x > pi * 2* 6		387	244	100	71
1x1Ey(mod2pi),	1463	1561	1380	242	219
0 <y<2pi 0≤y≤pi="" 4<="" td=""><td>1715</td><td>1880</td><td>1649</td><td>269</td><td>230</td></y<2pi>	1715	1880	1649	269	230
pi/4≤y≤pi/2	-	1879	1649	269	23
pi/2 <y≤3pi 4<="" td=""><td>1716 1734</td><td>1885</td><td>1655</td><td>282</td><td>24!</td></y≤3pi>	1716 1734	1885	1655	282	24!
3pi/4 <y≤pi< td=""><td>1734</td><td>1884</td><td>1657</td><td>323</td><td>245</td></y≤pi<>	1734	1884	1657	323	245
pi <y≤5pi 4<="" td=""><td>ty a section of the section of</td><td></td><td>1659</td><td>319</td><td>244</td></y≤5pi>	ty a section of the section of		1659	319	244
5pi/4 <y≤3pi 2<="" td=""><td></td><td>1886 1887</td><td>1658</td><td>319</td><td>241</td></y≤3pi>		1886 1887	1658	319	241
3pi/2 <y≤7pi 4<="" td=""><td>4.007</td><td>·</td><td></td><td>267</td><td>232</td></y≤7pi>	4.007	· 		267	232
7pi/4 <y≤2pi< td=""><td>1693</td><td>1885</td><td>1635</td><td>_ ८ छ (</td><td>232</td></y≤2pi<>	1693	1885	1635	_ ८ छ (232

	Routine Entry Points				
\mathcal{L}	Arguments & Times at Entry Points (argument)	Times 173 72		BE R 74	76
	**************************			****	
	COUNT				
	COUNT (x)	148	133	49	52
i.	CSIN				
4	CSIN (z)				
	re(z) > pi*2*6 % COS.SIN (re(z))	386	295	162	121
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	& SYSERR. (Append. B)		-		
. '	<pre>[im(z)] > 741.67</pre>	470	362	221	136
	<pre>% SYSERR. (Append. B) z valid</pre>	551	436	181	427
,	& COS.SIN (re(z))	991	400	101	123
	& HYPERB. (im(z))				
$\overline{}$	0.574				
	CSIN.				
\bigcirc	CSIN. (z) z valid	315	248	77	79
	<pre>% COS.SIN (re(z)) % HYPERB. (im(z))</pre>			• •	, ,
	CSORT				
	CSQRT (z)				
	z valid & CSQRT. (z)	153	115	93	67
$\overline{}$	CSORT.				
	CSQRT. (z)				
	z=0.	287	219	103	58
\bigcirc	% CABS. (0.) % SQRT. (0.)				
	z valid, z≠0	477	376	265	90
	<pre>& CABS. (z) & SQRT. (1/2(z + re(z)))</pre>				
	DARS				
	DABS (x)				
	x valid	144	111	70	72
\ .					

Entry Points		s for CYBER
	173 72	73 74 76
	3344	529
		853
	4823	841
	4228	756
	3260	492
	4756	814
	4779	820
	4197	736
	Entry Points	3344 4844 4823 4228 3260 4756 4779

\bigcup	Routine Entry Points Arguments				
\bigcup	&Times at Entry Points (argument) 173		for CY 73	BE P 74	76
\bigcirc	DATAN				
	DATAN (x)				
	x valid		130	42	143
	& DATAN. (x)		130	76	143
\bigcirc	DATAN.				
	DATAN.				
	x valid, and:				
$\overline{}$	x < 1.	144	74	40	
	R DTN. (see routine* description)	700	474		
<u>. </u>	<pre> x ≥ 1.</pre>	320	134	73	
	DATANZ				
$\overline{}$	DATAN? (y.x)				4 (5)
	y, x valid, and (y, x) ≠ (0, 0) & DATAN2. ((y, x))	124	46	66	
	DATAN2.				
	DATAN2 (y,x)				
	where both are valid, and		•		
	$(y,x)\neq(0,0)$, and:	<u> </u>			
	tyl ≤ 1x1	276	144	65	
	& DATCOM. (see routine description)	007	4.75	9.4	
	<pre>1y1 > 1x1</pre>	283	175	71	
\bigcirc	DAT COM.				
	DATCOM. (y,x) (from DATAN2.)				
\bigcup	argument set validated. If n				
	is nearest integer to				
	8*min(x , y)/max(x , y),				
\smile	then:				
	n=0	3150		337	
	$n\neq 0$ and $min(x , y)-n/8*max(x , y)\neq 0$	3735	664	417	
\bigcirc	otherwise DTN.	3725	663	417	
	y (from DATAN.), valid.				
\ /	If n is nearest integer to				
$\overline{}$	8*y, then:				
	n=0	2736	451	287	
	n#11 and (y - n/8)#1	3356	587	367	
	otherwise	1212	307	200	

Routine Entry Points Arguments					1
&Times at Entry Points (argument)					<u>_</u>
173	72	73 	74	76	
DOL E				*)
DBLE (x)					
x valid	98	78	52	54)
			_	- •	
DCOS					
DCOS (x)	4 1. 4.	404	-	<i>-</i>	<u></u>
x valid & DCOS. (x)	144	121	71	67	
a DUUSS KAY					_
DCOSH	100				
DCOSH (X)					
x valid		130	52	45)
& DCOSH. (x)					
DEULER.		-			_
DEULER.					
(See description of routine DEULER•)		3719	623	361	
					٠,
DEXP (x)					
x valid		117	45	49	
& DEXP.(x)		11,	40	70	
DEXP.					<i>Y</i> -
DEXP. (x)					
x valld and: x<-643.240583559629247139191409:		515	163	407	
8 DEULER.		212	103	107	~
x otherwise:		378	147	100	
& DEULER.			•		$\overline{)}$

$\overline{}$	Routine						
	Entry Points		A Company of the Comp				
	Arguments	. Fm4m Data4					
	gitmes at	Entry Points (ar	gument) 173	72	for C'	/BER 74	76
, , , , , , , , , , , , , , , , , , ,							
$\overline{}$	DHYP						
	DCOSH. (x)						
$\overline{\mathcal{C}}$	x valid and:						
		30379701426385855	602079:		560	215	127
	& DEULER.						
	abs(x)/log 2 ≥	48:			546	182	101
	& DEULER.						
	abs(x)/tog 2 ≥			.*	658	503	125
	& DEULER.						
	x in [-1/2 log & DEULER.	2,1/2 109 211			233	136	86
	x otherwise				740	000	4 70
_	& DEULER.				719	559	132
	DSTNH. (x)						
\bigcirc	x valid and:						
		303797014263858556	502079:		575	202	119
	& DEULER.						
\bigcup	abs(x)/log 2 ≥	481			515	160	93
	& DEULER.						
	abs(x)/log 2 ≥	24:			625	206	136
	& DEULER.	2 4 /2 1 - 2 2 2 2			455	•	
	x in [-1/2 log & DEULER.	2,1/2 log 2];			155	94	64
	x otherwise				720	226	134
	& DEULER.				120	220	134
\bigcup	DIM						
	DIM (x,y)						
	x,y valid			191	150	84	96
\bigcup							

Entry Points Arguments						
&Times at Entry Points (arg	umen			for C	YBER	
		173	72	73	74	76
DNLOG. DLOG10. (x)						
x={2**n}*y						
1/2≤y< 1/2**.5		7104	7931	6946	1220	761
1/2**.5 <y<1< td=""><td></td><td>6962</td><td>7799</td><td></td><td>1221</td><td>762</td></y<1<>		6962	7799		1221	762
BLOG. (x)						
x=(2**n) *y			$\{ x_i \in \mathcal{X}_i \mid x_i \in \mathcal{X}_i \}$			
1/25y< 1/2**.5		6797	7576			731
1/2**.5≤y<1		6636	7444	6487	1144	731
DLOG						
DLOG (x)						
x=0.			284	215	136	83
& SYSARG. SYSERR. (Append.	B)					
x<0			332	251	142	105
& SYSARG. SYSERR. (Append.	B) :					
x valid			150	96	101	58
& DLOG. (x)						
DL0610						
DL0G14 (x)						
x=0.			284	216	130	89
& SYSARG. SYSERR. (Append.	8)					
x, x<0			333	255	216	105
& SYSARG. SYSERR. (Append.	B)				_	_
x valid			177	144	97	58
& DLOG10. (x)						
DMAX1				*		
DMAX1 (x(1),x(2))			989	675	320	1 35
DMIN1						
DMIN1 (x(1),x(2))			863	644	310	134
DIVERSE CHARLES AND COMMENTS OF THE COMMENTS O			000	044	0.10	*04
DMOD						
DMOD (x,y)						
x valid, y=0			332	243	137	77
& SYSARG. SYSERR. (Append.	B)					
(x,y) valid			266	203	34	97
% DMOD. (x,y)						
омов.						
DMOD. (x,y)						
x,y valid,y≠0 1x/y1≥296		2007			582	
1x/y12248		1426			431	
1x/y1<246		841			281	

Arguments						
&Times at Entry	Points			for C		
		17	3 72	73	74	
OSIGN						
DSIGN (x,y)						
x, y any			205	157	81	
OSIN						
DSIN (x)						
x valid			162	102	83	
& DSIN. (x)						
DSINH						
DSINH (x)						
x valld				124	52	
& DSINH. (x)				-,		
DSNCOS.						
DCOS. (x)				4		
1x1>pi.294			605	501	181	
x∃y(mod2pi), 0≤y≤2pi						
9≤y <p1 4,<="" td=""><td></td><td>4671</td><td>5129</td><td>4475</td><td>778</td><td>ţ</td></p1>		4671	5129	4475	778	ţ
pi/4≤y <pi 2,<="" td=""><td></td><td>5140</td><td>5703</td><td>4971</td><td>844</td><td>1</td></pi>		5140	5703	4971	844	1
pi/2≤v<3pi/4,		5140		4971	846	1
3pi/4≤y <pi,< td=""><td></td><td>5059</td><td></td><td>4904</td><td>851</td><td></td></pi,<>		5059		4904	851	
piśy<5pi/4,			5658	4923	920	
5pi/4≤y< 3pi/2,			5703	4980	908	1
3pi/2≤y< 7pi/4			5722	4971	909	•
7pi/4≤y<2pi		5063	5677	4904	850	1
OSIN. (x)						
1x1>pi.294			624	511	181	
x∃y(mod2pi), 0≤y≤2pi 0≤y <pi 4,<="" td=""><td>•</td><td>4.7EA</td><td>5007</td><td>1.2.1.0</td><td>700</td><td></td></pi>	•	4.7EA	5007	1.2.1.0	700	
pi/45y <pi 2,<="" td=""><td></td><td>4750 5079</td><td>5093 5605</td><td>4446</td><td>786</td><td>1</td></pi>		4750 5079	5093 5605	4446	786	1
pi/45y<5pi/2,		5078 5083	5695 5689	4933	867 864	
3pi/4≤y <pi,< td=""><td></td><td>5139</td><td></td><td>4904 4971</td><td>856</td><td>1</td></pi,<>		5139		4904 4971	856	1
pi{y<5pi/4,		2133	5715	4971	924	Ţ
5pi/45y< 3pi/2,			5689	4933	934	
3pi/25y< 7pi/4			568 7	4904	935	5
7pi/45y<2pi		5141		マフリヤ	フリン	

Routine Entry Points						\sim
Arguments &Times at Entry Points (argumen	nt) 173		for C 73	YBER 74	76	\smile
						$\overline{}$
DSORT						
DSQRT (x)						
X<0.		282	234	125	85	
& SYSARG. SYSERR. (Append. 8) x valid		140	107	93	60	
& DSQRT. (x)		140	101	93	Ou	
			•			
DSQRT.						
DSQRT. (x)						\smile
x=0.						
x=y*2**n			÷			
n odd	745			228		\smile
n even	746			231		
DTAN.						
DTAN.						
x valid and: x=0	0774			579		
pi/4 <x<pl 4<="" td=""><td>2371 3247</td><td></td><td></td><td>579</td><td></td><td>\ /</td></x<pl>	2371 3247			579		\ /
pi/4 <x<3pi 4<="" td=""><td>3663</td><td></td><td></td><td>639</td><td></td><td></td></x<3pi>	3663			639		
3pi/4 <x<5pi 4,="" etc.<="" td=""><td>3474</td><td></td><td></td><td>633</td><td></td><td></td></x<5pi>	3474			633		
5pi/4 <x<7pi 4,="" etc.<="" td=""><td>3666</td><td></td><td></td><td>638</td><td></td><td></td></x<7pi>	3666			638		
DTANH						
DTANH (x)						$\overline{}$
x valid			124	120	42	
& DTANH. (x)						
DTANH.						\sim
DTANH. (x)						
x valid and:			765	217	134	\
x <1/8:						
& DEULER. (x)						
1x12 321			214	103	62	
If x (or 2x)=y+n+log(2), n>47;			619	163	122	
& DEULER. (2x)						
otherwise:			1055	311	171	\smile
& DEULER. (2x)						

	Routine Entry Points Arguments				
\sim	&Times at Entry Points (argument)	Times	for C	YBER	
	17.	3 72		74	76
\ /	******************				
$\overline{}$	DTOD*				
	DTOD\$ (x,y)				
\bigcup	(0.,0.)	1. 1. 4	74.4	4.02	450
	& SYSERR. (Append. B)	441	341	192	158
	(0,y), to y>0	352	387	153	298
$\overline{}$	(0,y), to y<0	439	340	195	152
	& SYSERR. (Append. B)	405	370	1 30	192
	x<0	410	318	169	130
\bigcirc	& SYSERR. (Append. B)		-	20,	200
	(x,y) valid	863	740	236	138
	% DLOG. (x)				
$\overline{}$	& DEXP. (y*iog x)				
i.	DTOD.				
$\overline{}$	DTOD. (x,y)				
	(0,y), y>0	114		66	62
	x>0, x,y valid	517	466	113	79
_	& DLOG. (x) & DEXP. (y*log x)				
	a DEAP (Y'109 X)				
	DTOI*				
	DTOIS (x,n)				
	(0.,0)	404	312	189	136
	& SYSERR.				
	(0.,n),n<0	418	311	195	142
	& SYSERR. (Append. B)				
\bigcup	(0.,n),n>0	230	188	123	192
	x>0	264	231	110	69
	& DTOI. (x.n)				
\bigcirc					
	DTOI.				
\ .	DTOI. (x,n)				
$\overline{}$	if n<0, add, and replace n with -n	467	415	114	73
	(x+0)	83	65	51	E 4
< <i>/</i>	(x,1)	364	301	126	51
$\overline{}$	(x,2)	672	575	190	90 128
	if n>2, time=t, a(1)+b(1)≤	0,2	717	150	120
	log(2)n≤t≤a(2)/+b(2)log(2)n			*	
	a(1)=	380	316	227.9	94.3
	a(2)=	69.3	14.5	111.6	105
\smile	b(1)=	292.	257.	38.8	24.2
	b(2)=	530	489	41.9	33.6

Routine Fotov Points					
&T	imes at Entry Points (argume			YBER	
		173	72 73	74	76
DTOX*					
		•	96 227	4.00	406
	SYSEPP. (Annand. R)	*	20 331	199	104
	· · · · · · · · · · · · · · · · · · ·	,	00 270	245	228
		*	20 005	T 17 F	1,0
x<0		3	83 299	176	145
8	SYSERR. (Append. B)				• • •
(x,y) v		7	08 606	236	158
8,	DLOG. (x)				
% .	DEXP. (y*log 2)				
nto.v					
		ı	05 <i>71</i> ,	50	c.
	alid				
		••••••••••••••••••••••••••••••••••••••	00 419	07	03
•	Entry Points Arguments				
DTO Z*					
DTOZ\$ (x,z)					
		4	03 311	189	148
	SYSERR. (Append. B)				
		31	42 263	168	117
				4.00	470
		2	// 211	102	136
			70 740	004	4.76
		• • • • • • • • • • • • • • • • • • •	35 315	221	130
		.	29 719	223	176
		•	JE JIE	220	100
	· ·	7:	62 636	231	98
		•	J E	LUI	,
DTOZ.					
		· .			
	id uda				
		4	00 426	149	おう
•	COSTOLIN (ERICE) TOU AT				

Arguments	
ERF. (x) x<-5.625 or -inf -5.625 <x<477 230<="" 30944775x<0="" 904="" th="" x="0"><th></th></x<477>	
ERF. (x) x<-5.625 or -inf -5.625 <x<477 1172="" 230<="" 234="" 30944775x<0="" 904="" th="" x="0"><th></th></x<477>	
ERF. (x) x<-5.625 or -inf -5.625 <x<477 1172="" 230<="" 234="" 30944775x<0="" 904="" th="" x="0"><th>76</th></x<477>	76
ERF. (x) x<-5.625 or -inf -5.625 <x<477 1172="" 230<="" 234="" 30944775x<0="" 904="" td="" x="0"><td>*</td></x<477>	*
ERF. (x) x<-5.625 or -inf -5.625 <x<477 1172="" 230<="" 234="" 30944775x<0="" 904="" td="" x="0"><td></td></x<477>	
x<-5.625 or -inf 526 189 -5.625 <x<477 3094="" 489<br="">477≤x<0 1172 234 x=0 904 230</x<477>	
-5.625 <x<477 3094="" 489<br="">477≤x<0 1172 234 x=0 904 230</x<477>	
477≤x<0 1172 234 ×=0 904 230	
x=0 904 230	
· ·	
.477 <x<5.625 3090="" 495<="" td=""><td></td></x<5.625>	
x>5.625 or +inf 527 185	
ERFC. (x)	
x<-5.625 or -inf 588 213	
-5.625 <x<477 3155="" 518<="" td=""><td></td></x<477>	
-•477 <x<0 1234="" 255<="" td=""><td></td></x<0>	
x=0 965 252	
○ 0 <x≤.477 1234="" 253<="" td=""><td></td></x≤.477>	
•477 <x≤8 3154="" 513<="" td=""><td></td></x≤8>	
x>8	
x infinite	

	try Points Arguments						
	&Times at Entry Poi	nts	(argument)		for C	YBER 74	76
		-	<u>.</u> 70			, 4 	
EXP							
EXF	P (x)				34	57	38
***	& EXP. (x)						
EXF	· (x)						
	x infinite				268	140	89
	& SYSAID. (Append.	8)					
	x Indefinite & SYSAID. (Append.				201	103	58
	x valid,x>741.67	B)			701	455	
	& SYSAID. (Append.	8)			304	155	97
	x valid x2512.	.,	932		864	184	470
	x valid.x<-675.84		302		298	157	130 119
	& SYSAID. (Append.	8)			C 30	191	117
	x valid, x<-512		931		865	182	140
	x valid		843		804	145	112
FLOAT							
FLO	AT (x)						
	x valid			102	82	65	56
HYP.					*		
COS	H. (x)						
	x valid						
	x <1/2 log 2		1296		1313	233	164
	x otherwise valid		1385		1426	233	167
SIN	H• (x)						
	x valid						
	1x1<1/2 log 2		1325		1351	250	178
0.00	x otherwise valid		1457		1498	257	177
602	H (x) x valld						
C TA	H (x)				1495	283	500
3 1 14	x valld				1559	306	214
YPERB.	•						
	ERB. (x)						
	x valid, x <.22		1649	1772	1540	347	265
	x valid. x 2.22		2017	398	311	136	95
	& EXP. (x)					200	,,,
MIG							
IOI	M (x,y)						
	(x,y) valid			163	127	85	103

	Routine Entry Points Arguments					
\sim	RTimes at Entry Points (argument	173		for C	18ER 74	76
$\overline{}$						
	INT					•.
	IFIX (x)					
\bigcup_{i}	x valid		101	81	59	56
	INT					
	IDINT					
	ISIGN					
	ISIGN (x,y)		161	125	75	96
\bigvee			20,2		, ,	,,,
	ITOD*					
	ITOD\$ (n,x)					
\bigcirc	(0.,0.)	4 4	365	337	164	132
	& SYSERR. (Append. B)		500		4.00	407
	{0,x),x<0 & SYSERR. (Append. B)		582	483	166	123
	(0,x),x>0		496	451	109	173
	n<0		322	153	128	92
\bigcup	& SYSERR. (Append. B)		72.2		200	, ,
	n>0, x*log n overflows		695	584	238	914
	8 SYSERR. (Append. B)					
	§ DLOG. (n)		500		261	4.05
	(n,x) valid, n>0 % DLOG. (n)		598	613	264	125
\bigcup	& DEXP. (x*log n)					
	1709.					
\bigcup	ITOD. (n,x)				4	
	(0.,x)		146	110	78	64
	(n,x) valid, n>0		457	397	98	80
\bigcup	& DLOG. (n)					-
	<pre>8 DEXP. (x*log n)</pre>					

Routine Entry Points Arguments & Times at Entry Points (argument) Times 173 72	
ITOJ*		
ITOUS (m,n)		
& ITOJ. (m,n)		
ITOJ.		
ITOJ. (m,n)		
m++n <2+8		
(m,0),m valid	181	95
(m,1), m valld	218	131
(m,2), m valid	283	139
if n>2,m>1, look at n in binary:	ž.	
for each 1 bit, add		
for each 0 bit, add		

\sim	Routine				
	Entry Points				
	Arguments				
$\overline{}$	RTimes at Entry Points (argument)			BER	
		173 72	73	74	76
_	TTOVE				
	TTOX#				
	ITOX\$ (n,x)	300			450
	(0,0.)	389	267	175	158
	& SYSERR. (Append. B)	750	747	441	000
	(0,x),x>0	352	313	114	
	(0,x),x<0 & SYSERR. (Append. B)	346	258	178	149
	n<0	200	227	476	4.02
0		289	223	136	102
	% SYSERR. (Append. B) n>0, x*logn ≥741.67	459	354	246	122
	8 ALOG. (n)	479	374	240	122
	& SYSERR. (Append. B)	•			
	(n,x) valid	315	237	245	95
	& ALOG. (n)	919	201	249	77
	& EXP. (x*log n)				
	d Late (X 109 II)				
	ITOX.				
	ITOX. (n,x)				
	(0,x)	113	85	66	62
	(n,x) valid n>0	215	185	00	64
	& ALOG. (n)		- 0,5		٠.
	(n,z) valid				
	R ALOG. (n)	113	85	175	
\bigcup	& EXP. (x*log n)				
	ITOZ*				
\bigcup	ITOZ\$ (n,z)				
	(0,0.+i0.)	376	291	165	129
	<pre>\$ SYSERR. (Append. B)</pre>				
\bigcirc	(0,z), re(z) <0,im(z)=0	395	287	199	120
	& SYSERR. (Append. B)				
	(0,z),re(z)>0	238	187	210	91
$\overline{}$	im(z)=0 (0,z),im(z) ±0,	376	291	165	120
	<pre>& SYSERR. (Append. B)</pre>				
	re(z)<0 (n,z),n<0	316	241	144	104
$\overline{}$	& SYSERR. (Append. B)				
	(n,z) valid	632	515	211	139
1	& ALOG. (n)				
\bigcup	<pre>8 COS.SIN (im(z)*log n)</pre>				
•	<pre>& EXP. (re(z)*log n)</pre>				
X /	****				
	ITOZ.		O 2.	4.0	~ 1:
	ITOX. (n,z) & XTOZ. (n,z)		84	42	24
	a AIULD SITULE				
_					

outine Entry	/ Points Arguments &Times at Entry Poin	its (argument)		Times	for CY	'BER	
			173		73	74	76
OCF							
LOCE	(x)			72	60	46	49
Axŋ					-		
	(x(1),, x(n))						
	n=2	. •		222	168	105	113
	n=3			324	240	148	134
	n=4			422	314	191	166
	each additional argument			100	73	43	31
AX 1							
MAX1	(x(1),,x(n))						
	n=2			249	187	111	111
	n=3			357	270	157	141
	n=4			467	355	202	175
	each additional argument			110	83	45	34
ASK							
MASK	(n)						
	n>60			263	207	111	91
	& SYSERR. (Append.	B)					
	n<0			274	210	127	83
	& SYSERR. (Append.	8)					
	n valld			181	133	103	87

MASK					
MASK	(n)				
	n>60	263	207	111	91
	& SYSERR. (Append. B)	· ·	_		
	n<0	274	210	127	83
	% SYSERR. (Append. B)				
	n vaild	181	133	103	87
MINO					
MINO	{x{1},, x{n})				
	n=2	228	169	105	102
	n=3	328	241	148	130
	n=4	429	312	191	162
	each additional argument	100	72	43	28
MIN1					
MIN1	(x(1),, x(n))				
	n=2	242	182	110	107
	n=3	347	259	155	137
	n=4	454	337	199	171
	each additional argument	105	77	44	38
MOD					
MOD ((x,y)				
	(x,y) valid	316	268	114	133

$\overline{}$	Poutine				
	Entry Points Arguments & Times at Entry Points (argument)				
	173	72	73	74	76
$\overline{}$					
	OR				
¥ .	OR (x(1),, x(n))				
	n=2	209	161	103	88
	n=3 n=4	274 335	210 258	124 145	105 130
	each additional argument	53°	270 48	21	20
	each additional angument	0.0	40	€.1	<i></i> 0
	RANF				
$\overline{}$	RANF (anything)	189	165	63	80
	RANGET (x)	96	79	67	- 66
X .	x will be modified				
	RANSET				
	RANSET (x)	176	134	89	82
	WHATE I TAN	1.0	104	0,	0.2
	REAL				
	REAL (u)				*.
$\overline{}$	SNGL (u)	83	69	55	54
	u valid				
	SHIFT				
	SHIFT (u,n)				
	n valid	128	104	60	86
\mathcal{L}					
	SINCOS.				
1	SIN (x)		64	34	42
$\overline{}$	& SIN. (x)		c 1.	34	42
	COS (x) & COS. (x)		64	. 04	42
	SIN. (x)				
	x infinite or indefinite		169	115	75
	<pre>§ SYSAID. (Append. B)</pre>				
	x=0.		821	193	141
	x valid, x >pi*2*6		166	109	79
	R SYSAID. (Append. B)		1056	4.04	4 5 4
$\overline{}$	x valid, x <pi*2*6 (x)<="" 1283="" cos.="" td=""><td></td><td>1256</td><td>194</td><td>141</td></pi*2*6>		1256	194	141
	x infinite or indefinite		169	115	75
$\overline{}$	\$ SYSAID. (Append. B)			* 4 7	, ,
Ę	0. 831		757	188	165
	x valid x ≤pi*2*6 1190		1230	188	178
\sim	x valid [x]>pi*2*6			220	165
~	& SYSAID. (Append. B)				

Poutine					
	y Points				
	Arguments				
	&Times at Entry Points (argu	ment) Tim	es for C	YBER	
		173 7	2 73	74	76
SORT					
SORT	(x)		78	40	37
	& SQRT. (x)		, 3	7.0	.,,
SORT	• (x)				
	x infinite, indefinite or negativ	e	222	180	279
	& SYSAID. (Append. B)				
	x valid,x≠0	527	523	119	101
	0.	244	393	196	97
SYS=AID					
	70				
, SYSA			750		
	(1 in lower half of RJ word) & SYSERR. (Append. 8)		359		133
	Cother than 1 in lower half of RJ	wondl	986	423	267
	8 SYSERR. (Append. B)	MOL (1)	900	423	267
	a discinite trapported by				
SYS=1ST					
	SYS1ST.				
	(1 in lower half				
	of RJ word		299		106
	& SYSERR. (Append. B)				
	(other than 1 in				
	lower half of RJ word)		892	377	239
	<pre>8 SYSERR. (Append. B)</pre>				
TAN					
TAN	(x)				
• ~ •	x valid, not an odd mutiple of pi	/2 21	6 175	142	109
	8 TAN. (x)			176	109
TAN.					
TAN.	(x)				
	x=0	617		155	
	1x1<247, $x=n(pi/2)+y$, $pi/4< x< pi/4$				

n = 0

n odd n even

$\overline{}$	Routine					
	Entry Points					
	Arguments					
	&Times at Entry Points (argument)					70
		173	72	73	74	76
$\overline{}$						
	TANH					
	TANH (x)					. ** *
$\overline{}$	x valid	٠.,	98	75	65	58
. ·	& TANH. (x)					
$\overline{}$	TANH.					
	TANH. (x)					
	x valid and:					
$\overline{}$		812			153	
	·	970	* 14 P		210	
	1×1>17•1	388			126	
$\overline{}$	V OD					
	XOR YOU ANALY WATER					
	XOR (x(1),, x(n))		043	400	0.0	400
_	n=2 n = 3		213 276	164	96	100
	n = 4		340	213 262	117 139	118 144
	n = 5		404	309	160	156
	each additional argument		64	49	21	19
	addit adda fadildi di gametit		٠.	• • •		
	XTOD*					
	XTOD\$ (x,y)					
	(0.,0.)		445	341	197	147
	<pre>§ SYSERR. (Append. B)</pre>					
	(0.,x),x valid x>0		476	389	158	204
	x<0		454	343	199	147
	8 SYSERR. (Append. B)					
	(x,y)x<0, x valid		403	304	167	132
\ ;	<pre>& SYSERR. (Append. B)</pre>					
$\overline{}$	x,y valid,x<0, y*logx>741.67		753	606	280	188
	& DLOG. (x)					
\	& SYSERR. (Append. B)		C 0 I.	EE O	270	44.0
	y*fogx<741.67 % DLOG. (x)		684	558	239	149
	& EXP. (y*log x)					
	a LAFA TYTTOG XY					
	XTOD.					
	XTOD. (x,y)					
	x=0.		129	99	66	62
`	(x,y) valid, x≠0		406	352	120	79
	& DLOG. (x)					• •
\bigcirc	& DEXP. (y*log x)					
g.	· · · · · · ·					

```
Routine
   Entry Points
        Arguments
            &Times at Entry Points (argument) Times for CYBER
173 72 73 74 76
*TOI*
  XTOIS (x.n)
& XTOI. ((x,n))
XTOI.
   XT01. (x,n)
        x valid n valid, n>0 when x=0
        n=0
        n<0,replace n by -n and
        x by 1/x, add:
        n=1
        n=2
        n=3
        n=4
```

	Routine Entry Points					
$\overline{}$	Arguments		•••	:		
	&Times at Entry Points (argument)	173		tor C	YBER 74	76
\bigcup						
	XTOY*					
	XTOYS (x,y)					
\sim	(0.,0.)		283	179	186	155
	& SYSERR. (Append. B)	100	200	113	100	199
	(0.,x),x valid,x>0		396	330	92	198
	(0.,x), x valid,x<0		368	284	189	155
	& SYSERR. (Append. B)		900		103	1,7,7
	x,y valid, x<0		309	243	157	114
$\overline{}$	& SYSERR. (Append. B)		000	L 40	T 21	***
	x,y valid, x>0 valid, x≠0		399	315	201	141
	& ALOG. (x)		0,5,5	0.0		* * *
$\overline{}$	& EXP. (y*log x)					
	XTOY.					
\bigcirc						
	XTOY. (x,z) (0,x) valid, x>0			- à		
	(x,y) valid, x≠0		80	62	58	53
$\overline{}$	& ALOG. (x)		174	150	45	53
	& EXP. (y*log x)					
	XTOZ*					
	XTOZ\$ (x,z)					
	(0,,z) z valid,re(z)>0					
_			401	341	135	178
	z valid, re(z)<0 & SYSERR. (Append. B)		398	296	212	121
	& SYSERR. (Append. B) z valid.re(z)=0					
			355	294	180	121
	<pre>% SYSERR. (Append. B) x.z valid, x<0</pre>					
$\overline{}$			312	240	156	104
	& SYSERR. (Append. B)					
	x,z valid, x>0 re(z)*log x >741.67		670			
	& ALOG. (x)		632	469	251	130
	% SYSERR. (Append. B) (x,z) valid. x≠0		705	r 7 7	224	
	& ALOG. (x)		705	573	221	85
	<pre>& COS.SIN (im(z)*log x) & EXP. (re(z)*log x)</pre>					
	<pre>& EXP. (re(z)*log x)</pre>					
_	XTOZ.					
	XT0Z. (x,z)					
	(0., z)					
	z valid, re(z)>0		82	341	58	5 5
	(x,z) valid, $x>0$		476	422	94	91
\smile	& ALOG. (X)		. TTU	766	7*	71
	<pre>8 EXP. (re(z)*log x)</pre>					
	& COS.SIN (im(z)*log x)					
$\overline{}$	···································					

Rou	t	i	n	e	
		F	n	ŧ	~

Entry Points					
Arguments					
&Times at Entry Points (argument)					
	173 72	73	74	76	
ZTOI*					
ZTOIS (z,n)					
(0.,0.)	379	303	189	140	
& SYSERR. (Append. B)					
(0,x), x>0	232	178	137	111	
(0.,x),x<0	369	287	182	61	
<pre>\$ SYSERR. (Append. B)</pre>					
z≠0, z,n valid	204	181	113	99	
& ZTOI. (z.n)					
ZTOI.					
ZTOI. (z,n)					
(z,n) valid $n=0$	85	66	51	54	
n = 1	233	230	115	85	
n = 2	710	602	179	125	
n = 3	725	614	178	122	
n = +1	656	571	151	118	
n = -2	1036	899		156	
n = -3	1101	955	214	160	
If n<0, replace n by -n, and add	1101	377	614	100	
n odd	374	337	46	32	
n even	327	291	36	32	
If n>3, t=time a(1)+b(1)*log(2)n≤t≤	321	C 2T	20	32	
a(2)+b(2)*log(2))n, where					
a(1) =	1.77	205	440 5	05 0	
	477.		142.5		
b(1) =	233.		-		
a(2) =	162.		87.9		
b(2) =	390.	337.	62.3	28.1	

FIGURES INDEX

p	age
Figure 1 - Relative error in SQRT algorithm over [45, 1.]	.87
Figure ? - Error of algorithm for x+i*y relative to min(x , y)/max(x , y)	.88
Figure 3 - Error in the algorithm used to approximate sin(x) over [-pi/4, pi/4]	.89
Figure 4 - Error in the algorithm used to approximate cos(x) over (-pi/4, pi/4)	.90
Figure 6 - Graph of error in the algorithm used in ACOSIN. for arcsin	.91
Figure 7 - Graph of relative error in the algorithm used for ATAN. over (0, 1/16)	.92
Figure 8 - Error in the algorithm used in ALOG over [1., 2.]	.93
Figure 9 - Error in the algorithm used in EXP. over (-log 2/16, log 2/16)	.94
Figure 10 - Error of approximation in the series (truncated) for sinh over (22, .22)	.95
Figure 11 - Error in the polynomial approximation to tanh, over (-12, .12)	.96
Figure 12 - Relative error in the approximation of double square root over (.25, 1.0)	97
Figure 13 - Absolute error in the algorithm used in DSNCOS. for the computation of sine	.98
Figure 14 - Absolute error in the algorithm used In DSNCOS. for the cosine	99
Figure 15 - Relative error in the algorithm used for approximation of EXP in DEXP	0 0
Figure 16 - Graph of the error of approximation of the algorithm used in DLOG	01
Figure 17 - Graph of relative error in approximation to sinh(x) over [-(log 2)/2,(log 2)/2]	:0 2
Figure 18 - Graph of relative error in approximation	

60498200 C

Figure 1
Relative Error in SQRT Algorithm over [.5, 1.]

phoss section	NOS C- 10 BQUARES T	910 Масн		ie		Relative Er	novi j
						7 1	- 1
	1						
pagan yan yan a masa sa in sa manna masa sa in sa man sa in sa	4 11 mg m. 114 mg 242						***
-							
<u> </u>							
							•
	l	<u> </u>	·				
		ļ					
1.3		lajaria ja					
		111				-,	* * * *
		1-1-1-1-1-1-1					
	<u> </u>						
		H	H-H-H-H-	H :			
							manajana arrana
<u> </u>	<u> </u>						andria and a comme
				Littiti			
		┠┆ ┆┼┼┼┼	┠┋╇╬╃	 			
\		 		 - - - - - - - - - -			
<i>)</i>		┠┋┋	H+i- - - - - -				*******
				[
		1					4
9	 	44-4-1-4-					
	1					-	
		 - - - - -	<u> </u>				
	 						
				موكنات سايانا			
			, L				
	1						
1		1					
u kanta an	initian er	Interior			1	1111111111111111	i mr.
e de la companya della companya dell							
				ļ	lanının, r		
						, ,	
		1		11.			_

FIGURE 2

CROSS SEC	IAP ION LINET NO TION TO SQUARES	NCH	4	, 1	Relatives	Error	* h
	,	1				· · · · · · · · · · · · · · · · · · ·	i
					H:		
		Tanan ai					i
						** * * * * * * * * * * * * * * * * * * *	1
· : · · . +							i ·
	**						ļ.
	**************************************	e de la companiona de l			and the second of the second		i
							
				1			
			 	 			
		-					1
			 				
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	- <u></u>	1					
++	▎ ┽╂┼┼┼┼┼┼┼	 	1 	-			
							[· · · · · · · · · · · · · · · · · · ·
		I	 				
			l				
+						<u></u>	
 		h +++++++		+++++	+		l
		 	╏┑╞╍┋ ┼┼┦╇		++	 	,
		 	! 				
1		 	l				
1	+++++++	- 			+	- - - 	h
11			┃ ╗╫ ┡╏┆ ╬╗	- -		┝┽╌╀╌╅╌┩╌╃╼┼╌┼╌╌	
1							
+1	 - - - - - - - - - - - - - - - - - -	 	 -				**********
	╌╂┞┸╾╌┼┼┼	│		├ ┼ ┼┼			
+:1							
							* ,
	-1-1	 	┠┾┾┝╍╁┼╌╌	- - - - - - - 		++++	
+	++		·	-,- 	· ; · · · · · · · · · · · · · · · · · ·	+	
				- 			
						-1-1-1-1-	
		بالمراجع فسنستم والمراوري					
		1					
·			; ; ; · · · · · · · · · · · · · · · · ·		<u>-</u>		
I., -,							
· [·		 			. :		
		1					-
1							
		<u> </u>					
							
B	a dama da a da a da a da a da a da a da						*
		• • • • • •				•• • • • • • •	

Error in the algorithm used to approximate sin(x) over [-p1/4, p1/4]

FIGURE 3

.	·				Error		·
		ļ i				la de la seconda	
		1.:				1	
	.,						
		1					
	Fr	i :	4	ئد			*
				410			
-A		<u> </u>		100		 	
4 1 1 1 1							
17.1	i						
+1 -1 -				المتع عالمت بالما		;	
· 1 /- · · · · 1 · · ·							
V							
							
		!					
1						ļ	
	سوالت بميضيما والم					.]	
, -1-			 - - - 		··	· · · · · · · · · · · · · · · · · · ·	
1		L::-		<u> </u>			
4 					41		
 			 				
		<u> </u>		2.40			
<u> </u>		 	 		4444444		
		f-i	[++++++	l † i			
 		· · · · · · · · · · · · · · · · · · ·	┠╻╧┋┋┋ ┋	 		·[
	\	<u> </u>	 		+++++		•
		X	1.4	10			
<u> </u>		\		 	+1-+++++	h	
 	· · · · · · · · · · · · · · · · · · ·		!	<mark>┃╴┡┈╒┈┾╼┾╼┼</mark> ╾┊╌╪╸	┼┟┈┝┝┈┝ ╃┱┰	 	
	L	1 1		<u> </u>			
		1					-
 	 			 	┆ ┠╘╛╾┼╾┼┼┼	· ╽ ╡ ╸ ┼╡╸┝╌╬╡╌	
+		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
\$	Z	L					٠.
		7			- 7	- T	,
<u> </u>							A
				}		· • - · - · - · - · - · - · - · - · - ·	
		[-				internation () is a
							
				1,5-16			
				,, ,, 16.			
				1.415			
				1, X/E -16			
				1. 10-16			
				1, 110-16		\sim	
				3.415-16			
), <u>XII</u> -16			
				1, <u>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>			
				1.415-16			
				1. ktr-16 2-45			
				1. kit16 2-4:5-14			
				1, <u>1, 16</u>			
				11 x 12 - 14 - 12 - 14 - 14 - 14 - 14 - 14 -			
				1. kir. 16 1. kir. 216 2. 4. 4			
			! <u></u>	1. XIE 16			
	to an analysis of the second		3	×15			
			3	× 12			1. 1
			3	×15			
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
			3	×15		alla de la compressión de la c	
				×15		alla de la compressión de la c	
				×15		alla de la compressión de la c	
				×15		alla de la compressión de la c	
				×15		alla de la compressión de la c	

FIGURE 4

Error in the algorithm used to approximate cos(x)

over (-pi/4, pi/4)

FIGURE 6
Graph of error in the algorithm used in ARCSIN. for arcsin

FIGURE 7
Graph of Relative Error in the Algorithm Used For ATAN. over [8, 1/16]

FIGURE 8
Error in the Algorithm Used in ALOG over [1., 2.]

			,	1			
				5	2		
T-72							
				(- - 1 ,			
				2.5			
				*		/	
			·			المطم شيونيس وسد	
- 	 			<u> </u>			
				Y			• •
						· · · · · · · · · · · · · · · · · · ·	
+++++							***
┤ ┼┼┼┼┼				├ - - - - - - - - - 			
		I		1			
- - - - 	 	<u> </u>					
++++	 						
							i ;
++++++		<u> </u>	- 				
	 	 		7		├ }	
							T
·	 	┠╍┼╍┼┊┼╁┼╌		│ │ │ │		 - - - - - - - - - - - - - 	
					the same of the same of the same is a second	l	
 	 						
3							
	, (
	'						
	1						
				•			
			3				

FIGURE 9 Error in the algorithm used in EXP. over (-log 2/16, log 2/16)

FIGURE 10
Error of approximation in the series (truncated)
for sinh over (+22,.22)

							·
A	1						
.প							
ر الناب المالية							
_•	İ			 			
7							
<i>[</i>				4			
4		,					
		3					
							j- · ·
Y 1				; -	1		
						المتعاشد شدا	
┈┤┧┋ ┼┼╌					 		-i
1	L						
6							
7)							
HHHH			 -	I			· · · · · · · · · · · · · · · · · · ·
<u> </u>							
		H-H	l				
A							17
3	!			<u> </u>		[
· Li						I	
4				┠╩╬┼┼┼┼	 	╏ ┽╬╫┼	
·							
					 	┨╌╎╌┆╶┼┼┼┼┈┌┼┼	<u> </u>
	d			1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			 	┞┊ ┪┪┩			
	3			╿┊┩┩ ┪┼┼┼┼			
							3
							3
							3
							34
							3
8							
ě.							
& · · · ·				5 ,			
& ·							
& · · · ·				5 ,			
8				5 ,			
&				5 ,			
8				5 ,			
8				5 ,			
8				5 ,			
8				5 ,			
8				5 ,			
				5 ,			
8				5 ,			.)
				5 ,			
				5 ,			
				5 ,			
4				5 ,			
4				5 ,			
				5 ,			
				5 ,			
				5 ,			

FIGURE 11
Error in the polynomial approximation to tanh, over (-12,.12)

7								
Ň.							<u> </u>	
. Y:								
• • • •	·					*******		
					1			
4	المستعد سيسترسو							
*	· · · · · · · ·							! •
							i	
								! · · · · · · · · · · · · · · · · · · ·
<i>[</i> [l
/					 			
4								
3	 - - - - - - - - - 					}		
7			L					
Äľ			., <u>.</u>			1		<u>.</u> .
·	 			·	l			
÷Ŀ	┞╁╄╇┖╤┾╏						 	
À								
9 !					1			.
ٽن	++		 		 	 - 	 -	
. 7								
1-1-	╎┤┤┿ ╌┿╏				 	 + -+ - 	:-	l :
!								
\Box		 		I				
1-	╽╸╽╸┞┈┼╍┞ ╌┼ ╸ ┆╼┃				┠╒┇┋┋	 		···
								1
Щ.					 			
4	 - - - - - 							
								[
	Ĭ╶┇╌┋╌┋╌ ╸╸			ĬŢĬ ĠŢŢ	╏┾┋╅ ╅┼┼┼		╏┿┈┤┼ ┿┿┿┼	
								<u> </u>
++					3		1	
+								<u> </u>
) :			<u> </u>
						<u> </u>		
								34
								34
								3
			***					3
B								
B								
8								
Š 4								
61								
3								
6								
81								

201 ●

FIGURE 12
Relative error in the approximation to double square root over (.25,1.0)

FIGURE 13
Absolute error in the algorithm used in DSNCOS.
for the computation of sine

FIGURE 14
Absolute error in the algorithm used in DSNCOS.
for the cosine

FIGURE 15
Relative error in the algorithm used for approximation of exp in DEXP.

FIGURE 16 Graph of the error of approximation of the algorithm used in DLOG.

FIGURE 17
Graph of relative error in approximation to sinh(x)
over [-(log 2)/2, (log 2)/2]

FIGURE 18
Graph of relative error in approximation to cosh(x)
over [-(log 2)/2,(log 2)/2]

TITLE: Mathem	RAN Common Library natical Routines Referen	nce Manual				
PUBLICATION	NO. 60498200	REVISION	1 C			
This form is not in manual with a vie	ntended to be used as ar w to improving its usefu	n order blank. Contro Ilness in later editior	ol Data Corpora	ation solicits yo	ur comments	about this
Applications for v	which you use this manu	ıal.				
			÷			
Do you find it ad	equate for your purpose	·?				
What improvemen	nts to this manual do yo	u recommend to be	tter serve vour	nurnose?		1 1
Wild Child Carrie	its to this mandar do yo					
-14					• 1 %	
the section of the se	***					
	en e			t.		
Note specific erro	ors discovered (please inc	clude page number r	eference).			
and a first transfer of the second of the se	entrales	and the second of the second of the second				
				and the second s		
ATTACAMENT						
	The Control of the Section (Section)		erita in esta a la composition de la composition			
i Arrigidador de la composição de la com						
		10.654 16.	n Markata (n. 1812) eta erregila			
EREST PREMI						
		ger de e	w e e e e e e e e e e e e e e e e e e e			
General commen	ts:					
			POSITION: _			
FROM NAME	:		000171011			

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. FOLD ON DOTTED LINES AND STAPLE

ADDRESS:_

STAPLE

FOLD

FOLD

CUT ON THIS LINE

FIRST CLASS PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

215 Moffett Park Drive Sunnyvale, California 94086

FOLD

FOLD

