
 1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 HANDBOOK

 for the

 Cyber Implementation Language

 (CYBIL)

 Submitted: _ H. A. Wohlwend ___

 Approved: ____________________

 Copyright Control Data Corporation 1983

 2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 REVISION DEFINITION SHEET

 -------+----------+---
 REV | DATE | DESCRIPTION
 -------+----------+---
 | |
 A | 12/15/78 | Original.
 | |
 B | 12/19/79 | Updated to reflect current product status.
 | |
 C | 09/17/80 | Updated to reflect current product status.
 | |
 D | 05/08/81 | Updated to reflect current product status.
 | |
 E | 12/11/81 | Updated to reflect current product status.
 | |
 F | 08/05/82 | Updated to reflect current product status.
 | |
 G | 04/22/83 | Updated to reflect current product status.
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

 1-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170

 --

 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170

 Two methods to access the CYBIL compilers are described in
 this section. The compilers provided through the SES are the
 more stable and more widely used. The compilers available
 through the project catalog (LP3) are considerably more dynamic
 and are updated more frequently.

 1.1 SES PROCEDURE INTERFACE

 An SES procedural interface is available for access to the
 compiler and is described in the SES User's Handbook (ARH1833).

 1.2 THE C170 CYBIL COMMAND

 The CYBIL command calls the compiler, specifies the files to
 be used for input and output, and indicates the type of output to
 be produced. This call statement may be in any one of the
 following forms:

 CYBIL(p1,p2,..,pn) comments

 CYBIL. comments

 CYBIL,p1,p2,..,pn. comments

 CYBIL,p1,p2,..,pn.

 Example:

 CYBIL(I=COMPILE,L=LIST,B=BIN1) COMPILE TEST CASES

 The CYBIL compilers currently reside in the tools catalog SES
 and in the project catalog LP3. To access the CYBIL compiler
 which runs on C170 and generates code for the C170 (CC):

 ATTACH,CYBIL=CYBILC/UN=LP3.

 To access the CYBIL-CC run time library:

 ATTACH,CYBCLIB/UN=LP3.

 1-2

 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.3 C170 COMMAND PARAMETERS
 --

 1.3 C170 COMMAND PARAMETERS

 The optional parameters p1,p2,..,pn must be separated by
 commas and may be in any order. If no parameters are specified,
 CYBIL is followed by a period or right parenthesis. If a
 parameter list is specified, it must conform to the syntax for
 job control statements as defined in the NOS REFERENCE MANUAL
 (Publication number: 60435400), with the added restriction that
 the comma, right parenthesis, and period are the only valid
 parameter delimiters. If comments are specified they are ignored
 by the compiler, but printed in the dayfile. Default values are
 used for omitted parameters.

 In the following description of command parameters, <lfn>
 indicates a file name consisting of one letter followed by 0-6
 letters or digits. <chars> indicates one letter followed by 0-6
 letters. <digit> indicates a single digit.

 PARAMETER DESCRIPTION

 EXIT OPTION (Default: A=0)
 A System searches the control card record for an
 EXIT card at the end of compilation if fatal
 errors have been found. If such an EXIT card is
 not present, the job terminates.

 A=0 System advances to the next control card at the
 end of compilation if fatal errors have been
 found. If the EXIT option parameter is omitted,
 this option is assumed.

 OBJECT FILE (Default: B=LGO)

 B Object code is written on file LGO. If this
 parameter is omitted, this option is assumed.

 B=0 If this parameter is specified, the compiler
 performs a full syntactic and semantic scan of
 the program, but object code will not be
 generated, data will not be mapped, and machine
 dependent errors are not detected.

 B=<lfn> Object code is written on file <lfn>.

 CHECKING MODE (Default: CHK=RST)

 CHK=<chars> Selects a maximum of three of the following

 1-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.3 C170 COMMAND PARAMETERS
 --

 checking modes. Modes unspecified are
 de-selected.

 N Produce compiler generated code to test for
 de-reference of NIL pointer.

 R Produce compiler generated code to test
 ranges. Range checking code is generated for
 assignment to integer subranges, ordinal
 subranges or character variables. All CASE
 statements are checked to ensure that the
 selector corresponds to one of the selection
 specs specified when no ELSE clause has been
 provided. All references to substrings are
 verified. Verify that the offset specified
 on a RESET..TO statement is legitimate for
 the specified sequence.

 S Produce compiler generated code to test
 subscripting of arrays.

 T Produce compiler generated code to verify
 that access to a variant record is consistent
 with the value of its tag field (if the tag
 field is present). This option is not
 currently supported.

 CHK=0 De-selects the compiler's checking modes.

 CHK Same as CHK=NRST.

 DEBUGGING OPTION (Default: D=OFF)

 D=<chars> Selects a combination of the following options.

 DS Debugging Statements. All debugging
 statements will be compiled. A debugging
 statement is a statement in the source which
 is ignored by the product unless this option
 is specified. Such statements are enclosed
 by the NOCOMPILE/COMPILE maintenance control
 pragmats.

 FD Full Debug. Produce the symbolic debug
 information plus stylize the code generated.
 This option is currently supported only with
 the CC compiler.

 SD Symbolic Debug. Produce a symbol table and

 1-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.3 C170 COMMAND PARAMETERS
 --

 line table for interactive debugging.

 When more than one option is desired the format
 is D=DSSD.

 SOURCE INPUT (Default: I=INPUT)
 I CYBIL source text is to be read from file
 COMPILE. If the SOURCE INPUT parameter is
 omitted, the source text is read from file
 INPUT. Source input ends when an end-of-record,
 end-of-file, or end-of-information is
 encountered on the source input file.

 I=<lfn> Source text is read from file <lfn>.

 LIST OUTPUT (Default: L=OUTPUT)
 L Compilation listing is written on file OUTPUT.
 When the LIST OUTPUT parameter is omitted this
 option is assumed.

 L=0 All compile time output is suppressed. List
 control toggles are ignored.

 L=<lfn> Compilation listing is to be written on file
 <lfn>.

 LIST OPTIONS (Default: LO=S)

 LO=<chars> Selects a maximum of six of the following list
 options.

 A Produce an attribute list of source input
 block structure and relative stack. The
 attribute listing is produced following the
 source listing on the file declared by the L
 option or on the file OUTPUT if L is absent.

 F Produce a full listing. This option selects
 options A, S and R.

 O Lists compiler generated object code. When O
 is selected, the listing includes an assembly
 like listing of the generated object code.
 This option has no meaning if the (object
 file) B option has been set to 0.

 R Symbolic cross reference listing showing

 1-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.3 C170 COMMAND PARAMETERS
 --

 location of program entity definition and use
 within a program.

 RA Symbolic cross reference listing of all
 program entities whether referenced or not.

 S Lists the source input file.

 W Lists fatal diagnostics. If this option is
 omitted, informative as well as fatal
 diagnostics are listed.

 X Works in conjunction with the LISTEXT pragmat
 such that LISTings can be EXTernally
 controlled on the compiler call statement.

 LO=0 No list options.

 OPTIMIZATION (Default: OPT=0) (Not supported on all
 processors)

 OPT=<number> 0 Provides for keeping constant values in
 registers.

 1 Provides for keeping local variables in
 registers.

 2 Provides for passing parameters to local
 procedures in registers and for eliminating
 redundant memory references, common
 subexpressions, and jumps to jumps.

 PADDING (Default: PAD=0) (Not supported on all
 processors)

 PAD=<number> Provides for generation of NOOP type
 instructions between live instructions.

 1-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.4 INTERACTIVE CYBIL ON C170
 --

 1.4 INTERACTIVE CYBIL ON C170

 For the programmer using interactive job processing, the
 following illustrates the typical sequence of commands necessary
 to compile and execute a CYBIL program. An alternative to this
 method of operation is detailed in the section "BATCH CYBIL".
 The example below assumes that you know how to use a terminal and
 have some minimal knowledge of the NOS operating system. After
 you have logged in:

 NOS COMMAND DESCRIPTION

 BATCH ENTER BATCH
 GET,SOURCE GET CYBIL SOURCE PROGRAM TEXT
 ATTACH,CYBILC/UN=LP3 ATTACH CYBIL COMPILER
 CYBILC,I=SOURCE,L=LISTING COMPILE CYBIL SOURCE TEXT
 GET,DATA GET DATA FILE
 ATTACH,CYBCLIB/UN=LP3 GET CYBIL RUN TIME LIBRARY
 LGO EXECUTE PROGRAM. ASSUMES THAT THE
 CYBIL PROGRAM REFERENCES FILE NAMED
 "DATA". LGO WAS PRODUCED BY THE
 COMPILATION PROCESS
 (CYBILC,I=SOURCE,L=LISTING).

 1-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.5 BATCH CYBIL ON C170
 --

 1.5 BATCH CYBIL ON C170

 A CYBIL compilation and execution may be run as part of a NOS
 submitted job. In this mode, the terminal is used to start the
 compilation and execution. The programmer may then log off the
 terminal (or do other terminal work) while the job is being
 completed as a NOS batch job. Facilities exist to check on the
 progress of a submitted batch job and to examine the output as
 well as the dayfile from the terminal. A typical file for
 accomplishing either immediate batch or deferred batch job
 submission is shown below. The user number, password, and charge
 card must be changed for successful execution.

 /JOB
 XYZ,CM130000,T100. PROGRAMMER NAME
 USER,USE,PSWRD,FAMILY. SUBSTITUTE APPROPRIATE INFORMATION
 CHARGE,DEPT,PROJECT.
 GET,SOURCE. GET CYBIL SOURCE FILE
 ATTACH,CYBILC/UN=LP3. ATTACH CYBIL-CC COMPILER
 CYBILC,I=SOURCE. COMPILE CYBIL SOURCE
 GET,DATA. GET FILE OF DATA
 ATTACH,CYBCLIB/UN=LP3. GET CYBIL RUN TIME LIBRARY
 LGO. EXECUTE PROGRAM
 DAYFILE,TEMP.
 REWIND,TEMP.
 COPYSBF,TEMP,OUTPUT.
 REPLACE,OUTPUT=LISTING. SAVE LIST
 SES.PRINT OUTPUT PRINT OUTPUT
 DAYFILE,LOOKSEE.
 REPLACE,LOOKSEE. SAVE DAYFILE
 EXIT. EXIT HERE ON ERRORS
 DAYFILE,LOOKSEE.
 REPLACE,LOOKSEE. ERROR DAYFILE

 The control cards should be stored on some file (for example,
 CYBCRUN). To compile and execute a CYBIL program (on file
 SOURCE) simply use the NOS submit command: SUBMIT,CYBCRUN. NOS
 will respond with the time of day (e.g., 10.21.57) and a job name
 (e.g., ABUSF4Y). These two pieces of information should be
 written down for future reference. The programmer can determine
 the status of this submitted job with the NOS command:
 ENQUIRE,JN=F4Y. NOS will reply with the job status (i.e.,
 EXECUTING, JOB IN ROLLOUT QUEUE, INPUT QUEUE, PRINT QUEUE, or JOB
 NOT FOUND). The PRINT QUEUE and JOB NOT FOUND message indicates
 that the job is completed. The file LOOKSEE contains the
 complete dayfile for the job. So, from a terminal the commands:
 GET,LOOKSEE then LIST,F=LOOKSEE lists the contents of the
 dayfile. This will provide an overview of the execution of the

 1-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170
 1.5 BATCH CYBIL ON C170
 --

 job. To obtain a detailed list of the output from the job, the
 commands: GET,LISTING then EDIT,LISTING are used. Text editor
 commands are then used to examine the desired portions of the
 listing.

 Using this approach, the programmer has necessary information
 available to him at the terminal. But, the programmer need not
 sit at (or tie up) a terminal unnecessarily while the program is
 actually compiling and executing.

 2-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180

 --

 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180

 Two methods to access the CYBIL compilers are described in
 this section. The compiler provided through the standard system
 command call is the more stable and more widely used. The
 compilers available through the project catalog (LP3) are
 considerably more dynamic and are updated more frequently. For a
 detailed description of the command syntax see the NOS/VE Command
 Interface ERS.

 2.1 THE CYBIL COMMAND

 The CYBIL command calls the compiler, specifies the files to
 be used for input and output, and indicates the type of output to
 be produced. This call statement has the following positional
 form:

 CYBIL [input=<file reference>]
 [list=<file reference>]
 [binary_object=<file reference>]
 [list_op=<options>]
 [debug=<options>]
 [el=<options>]
 [opt=<options>]
 [pad=<integer>]
 [runtime_checks=<options>]
 [status=<status variable>]

 Example:

 CYBIL I=COMPILE L=LIST B=BIN1 "COMPILE TEST CASES"

 A more dynamic version of the CYBIL compiler resides in the
 project catalog LP3. To access this compiler and its runtime
 library (both of which run on the C180 (II)):

 ATTF .LP3.CYBILII CYF$RUN_TIME_LIBRARY
 SETCL ADD=$LOCAL.CYF$RUN_TIME_LIBRARY

 It should be noted that this library contains a PROGRAM
 DESCRIPTOR (CYBIL) which uses the compiler on this library rather
 than the system version.

 2-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.2 C180 COMMAND PARAMETERS
 --

 2.2 C180 COMMAND PARAMETERS

 The parameter format matches the style indicated by the System
 Interface Standard (S2196).

 PARAMETER
 NAMES PARAMETER DESCRIPTION

 BINARY_OBJECT (Default: B=$LOCAL.LGO)
 B
 If this parameter is omitted object code is
 written to file $LOCAL.LGO.

 If this parameter is specified as B=$null, the
 compiler performs a full syntactic and semantic
 scan of the program, but object code will not be
 generated.

 If the parameter is specified as B=<file
 reference>, object code is written on file <file
 reference>.

 DEBUG (Default: Generate symbol and line tables.)
 D
 Selects a combination of the following debug
 options. If this parameter is omitted the
 symbol and line tables are generated by default.

 DS Debugging Statements. All debugging
 statements will be compiled. A debugging
 statement is a statement in the source which
 is ignored by the product unless this option
 is specified. Such statements are enclosed
 by the NOCOMPILE/COMPILE maintenance control
 pragmats. The symbol table and line table
 for interactive debugging will also be
 generated.

 NT No Tables. Do not generate symbol table and
 line table with the object code. (The
 default is to always generate these tables.)

 ERROR_LEVEL (Default EL=W)
 EL
 F List Fatal Diagnostics. If this option is
 selected only fatal diagnostics will be
 listed.

 2-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.2 C180 COMMAND PARAMETERS
 --

 W List informative as well as fatal
 diagnostics.

 INPUT (Default: I=$INPUT)
 I
 If the parameter is omitted, the source text is
 read from file $INPUT. Source input ends when
 an end-of-partition or end-of-information is
 encountered on the source input file.

 If the parameter is specified as I=<file
 reference>, the source text is read from file
 <file reference>.

 LIST (Default: L=$LIST)
 L
 When the LIST parameter is omitted the
 compilation listing is written on file $LIST.

 If the parameter is specified as L=$null, all
 compile time output is suppressed.

 If the parameter is specified as L=<file
 reference>, the compilation listing is written
 on file <file reference>.

 LIST_OPTIONS (Default: LO=S)
 LO
 Selects a combination of the following list
 options.

 A Produce an attribute list of source input
 block structure and relative stack. The
 attribute listing is produced following the
 source listing on the file declared by the L
 option or on the file $LIST if L is absent.

 F Produce a full listing. This option selects
 options A, S and R.

 O Lists compiler generated object code. When O
 is selected, the listing includes an assembly
 like listing of the generated object code.
 This option has no meaning if the (object
 file) B option has been set to $null.

 R Symbolic cross reference listing showing
 location of program entity definition and use
 within a program.

 2-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.2 C180 COMMAND PARAMETERS
 --

 RA Symbolic cross reference listing of all
 program entities whether referenced or not.

 S Lists the source input file.

 X Works in conjunction with the LISTEXT pragmat
 such that LISTings can be EXTernally
 controlled on the compiler call statement.

 If the parameter is specified as LO=NONE, no
 list options are selected.

 OPTIMIZATION (Default: OPT=DEBUG)
 OPT
 DEBUG Object code is stylized to facilitate
 debugging. Stylized code contains a separate
 packet of instructions for each executable
 source statement, carries no variable values
 across statement boundaries in registers,
 notifies debug each time a beginning of
 statement or procedure is reached.

 LOW Provides for keeping constant values in
 registers.

 HIGH Provides for keeping local variables in
 registers, passing parameters to local
 procedures in registers, eliminates redundant
 memory references, common subexpressions and
 jumps to jumps.

 PAD (Default: PAD=0)

 Provides for generation of NOOP type
 instructions between live instructions.

 RUNTIME_CHECKS (Default: RC=(R,S))
 RC

 Selects a combination of the following options.

 N Produce compiler generated code to test for
 de-reference of NIL pointer.

 R Produce compiler generated code to test
 ranges. Range checking code is generated for
 assignment to integer subranges, ordinal
 subranges or character variables. All CASE
 statements are checked to ensure that the

 2-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.2 C180 COMMAND PARAMETERS
 --

 selector corresponds to one of the selection
 specs specified when no ELSE clause has been
 provided. All references to substrings are
 verified. Verify that the offset specified
 on a RESET..TO statement is legitimate for
 the specified sequence.

 S Produce compiler generated code to test
 subscripting of arrays.

 T Produce compiler generated code to verify
 that access to a variant record is consistent
 with the value of its tag field (if the tag
 field is present). This option is not
 currently supported.

 NONE If this option is specified then no
 runtime checking code will be generated.

 STATUS (DEFAULT: not specified)
 ST
 The compiler will always return a status
 variable indicating whether any FATAL errors
 were found during the compilation just
 completed.

 If a user status variable is specified, SCL will
 pass the compilation status to the user and the
 user can take action if fatal compilations
 occurred by testing this variable.

 If a user status variable is not specified, then
 SCL will terminate the current command sequence
 if status returned from the the compiler is
 abnormal.

 2-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.3 INTERACTIVE CYBIL ON C180
 --

 2.3 INTERACTIVE CYBIL ON C180

 For the programmer using interactive job processing, the
 following illustrates the typical sequence of commands necessary
 to compile and execute a CYBIL program. An alternative to this
 method of operation is detailed in the section "BATCH CYBIL".
 The example below assumes that you know how to use a terminal and
 have some minimal knowledge of the NOS/VE operating system.
 After you have logged in:

 NOS/VE COMMAND DESCRIPTION

 colt group_to_get DEFINE WHAT GROUP TO GET OFF
 include_group widgets THE SCU PL (SCU_PL)
 ** TERMINATE THIS FILE
 scu ba=$user.scu_pl CREATE COMPILE FILE
 expd cr=group_to_get MOVE "WIDGETS" TO COMPILE
 end wl=false TERMINATE SCU
 cybil i=compile l=list COMPILE CYBIL TEXT
 attf $user.data GET DATA FOR PROGRAM JUST COMPILED
 lgo EXECUTE PROGRAM. ASSUMES THAT THE
 CYBIL PROGRAM REFERENCES FILE NAMED
 "DATA". LGO WAS PRODUCED BY THE
 COMPILATION PROCESS ...
 cybil i=compile l=list

 2-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.4 BATCH CYBIL ON C180
 --

 2.4 BATCH CYBIL ON C180

 A CYBIL compilation and execution may be run as part of a
 NOS/VE submitted job. In this mode, the terminal is used to
 start the compilation and execution. The programmer may then log
 off the terminal (or do other terminal work) while the job is
 being completed as a NOS/VE batch job. Facilities exist to check
 on the progress of a submitted batch job and to examine the
 output as well as the log from the terminal. A typical file for
 accomplishing a batch job submission is shown below.

 job job_name=widgets

 when any_fault do TO DO ONLY IF ERRORS OCCUR
 disl all o=$user.job_failed SAVE JOB_LOG FOR REVIEW
 whenend
 colt group_to_get DEFINE WHAT GROUP TO GET OFF
 include_group widgets THE SCU PL (SCU_PL)
 ** TERMINATE THIS FILE
 scu ba=$user.scu_pl CREATE COMPILE FILE
 expd cr=group_to_get MOVE "WIDGETS" TO COMPILE
 end wl=false TERMINATE SCU
 cybil i=compile l=list COMPILE CYBIL TEXT
 attf $user.data GET DATA FOR PROGRAM JUST COMPILED
 lgo EXECUTE THE PROGRAM "WIDGETS"
 disl all o=list.eoi ADD THE JOB_LOG TO "LIST"
 printf list PRINT LIST
 delf $user.job_failed .. IF JOB PASSED DELETE "JOB_FAILED"
 status=ignore_status (IN CASE FILE WAS NOT DEFINED)

 jobend

 The commands should be stored on some file (for example,
 widgets_job). To compile and execute the CYBIL program WIDGETS
 (on SCU_PL) simply use the NOS/VE INCLUDE command:
 include $user.widgets_job

 IF the job fails, then the file JOB_FAILED contains the
 complete log for the job.

 So, from a terminal the user can do the following:

 disjs all FIND OUT IF "WIDGETS" HAS FINISHED
 edif $user.job_failed DETERMINE FAILURE (IF FILE THERE)

 Using this approach, the programmer has necessary information
 available to him at the terminal. But, the programmer need not
 sit at (or tie up) a terminal unnecessarily while the program is

 2-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180
 2.4 BATCH CYBIL ON C180
 --

 actually compiling and executing.

 3-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 3.0 APPLICABLE DOCUMENTS

 --

 3.0 APPLICABLE DOCUMENTS

 The following documents should prove to be helpful in your
 CYBIL development.

 3.1 GENERAL

 o CYBIL User's Guide (60456320-01)

 o CYBIL Language Specification (ARH2298)

 o This CYBIL Handbook (ARH3078)

 o CYBIL Formatter ERS (ARH2619)

 3.2 C170

 o CYBIL I/O ERS (ARH2739)

 o CYBIL Debugger ERS (ARH3142)

 o SES User Handbook (ARH1833)

 o SES Miscellaneous Routines Interface (SESD003)

 3.3 ADVANCED SYSTEM

 o CYBIL Reference Manual (60457310)

 o Debugger ERS (S4024)

 o System Interface Standard (S2196)

 3.4 MC68000

 3.5 PCODE

 o UCSD P-system Internal Architecture Guide
 (SofTech Microsystems, Inc.)

 3.6 C200

 o C200 Standards and Conventions (17329020)

 4-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 4.0 COMMON CYBIL COMPILER FRONT END

 --

 4.0 COMMON CYBIL COMPILER FRONT END

 This section details the characteristics of all CYBIL
 compilers.

 4.1 INLINE PROCEDURES IMPLEMENTATION

 The CYBIL Language Specification lists language considerations
 for inline procedures. Listed below are specific features of the
 inline procedure implementation:

 o Local variable declarations in an inline procedure become
 part of the calling procedure's stack frame.

 o Formal parameters are treated as local variable
 declarations in the inline procedure. At the point of call
 to an inline procedure the actual parameter is assigned to
 the corresponding formal parameter local variable.
 Reference parameters are accessed by assigning a pointer to
 the actual parameter to the formal parameter local
 variable.

 o When the actual parameter for a value parameter is of an
 adaptable type or is a substring then the parameter is
 treated as though it were a read-only reference parameter,
 i.e. a local copy of the parameter is not created. This
 is necessary to allow type-fixing at execution time. A
 restriction is imposed on adaptable array/record value
 parameters that the actual parameter be aligned to a
 machine addressable boundary.

 o Nested calls to inline procedures are arbitrarily limited
 to 5 levels of nesting on the assumption that an
 inappropriate amount of code expansion may be occurring
 when the nesting level becomes too great. Excessive call
 nesting levels and recursive calls are considered errors
 and terminate inline substitution.

 o Source statements in an inline procedure body are not
 listed at the point of call to an inline procedure.

 o Inline procedures may be used with the interactive
 debugger. The debugger considers an inline procedure call
 expansion to be a series of statements on the same line as
 the procedure call. Local variables declared in an inline
 procedure may not be accessible directly by name following

 4-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G
 --
 4.0 COMMON CYBIL COMPILER FRONT END
 4.1 INLINE PROCEDURES IMPLEMENTATION
 --

 an inline procedure call since the substitution process can
 result in the creation of non-unique variable names.
 Variable names in the calling procedure will always take
 precedence for the debugger.

 4.2 SOURCE LAYOUT CONSIDERATIONS

 If a source text line contains non-blank characters beyond the
 column specified for the right source margin then a_'| '
 character string is inserted in the source listing line after the
 right margin. This is done to indicate the end of the compiler's
 scan should a source text line erroneously exceed the designated
 right margin.

 5-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS

 5.0 CYBIL-CC DATA MAPPINGS

 The actual CYBER 60-bit word formats of each of the CYBER 170
 CYBIL data types is described below. This information will provide
 some insight into the amount of storage required for various CYBIL
 data structures. This will allow the user to predict the storage
 efficiency of his program. Unpacked data types provide for more
 efficient data access at the expense of storage efficiency. Packed
 data types provide for more efficient storage utilization at the
 possible expense of access time and extra code. When data (or a
 field of data) is aligned it will be placed on a CYBER 60-bit word
 boundary. Unused fields are not necessarily zeros and should not be
 altered by the (assembly language) programmer.

 5.1 UNPACKED BASIC TYPES

 5.1.1 UNPACKED INTEGER

 The unpacked integer format consists of one 60-bit word. The
 integer value is limited to the rightmost 48 bits of the word.
 Ones's complement data representation is used. Integer values are
 therefore restricted to -(2**48 - 1) <= INTEGER <= (2**48 - 1) or
 -281474976710655 <= INTEGER <= 281474976710655. In the diagram
 below, SIGN indicates sign extension. This field will be all zero's
 if the integer is positive and all one's if the integer is negative.

 59 47 0
 +------------+---+
 | SIGN | INTEGER VALUE |
 +------------+---+

 5-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.1.2 UNPACKED CHARACTER

 5.1.2 UNPACKED CHARACTER

 The unpacked character format consists of one 8-bit ASCII
 character right justified in the rightmost 12 bits of one 60-bit
 CYBER word. Bit positions 11 through 8 are always zero. The
 remaining 48 bits of the word are unused. This format provides for
 the most efficient data access of characters at the expense of
 storage efficiency. The ASCII data representation is used. For
 example, an unpacked character 'A' would be represented as
 XXXXXXXXXXXXXXXX0101 (octal), 65 (decimal). The X's indicate unused
 bit positions.

 59 11 0
 +---+------------+
 |/ / / / / / / / / / UNDEFINED / / / / / / / / / / /| CHARACTER |
 +---+------------+

 5.1.3 UNPACKED ORDINAL

 An unpacked ordinal is represented as a positive integer value in
 the rightmost bits of a 60-bit word. The integer value designates
 the current ordinal value. The number of bits required to represent
 an ordinal of N elements is: ceiling(log2(N)). For example, an
 ordinal containing 10 decimal elements would require
 ceiling(log2(10)) or 4 bits.

 59 0
 +---+------------+
 |/ / / / / / / / / / UNDEFINED / / / / / / / / / / /| VALUE |
 +---+------------+

 5.1.4 UNPACKED BOOLEAN

 An unpacked boolean type will occupy one 60-bit word. Only one
 bit (the sign bit) is used. The other 59 bits are unused. A sign
 bit of 1 indicates the boolean value true. A sign bit of 0 indicates
 the boolean value false.

 58 0
 +-+--+
 | |/ / / / / / / / / / / / UNDEFINED / / / / / / / / / / / / / |
 +-+--+

 5-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.1.5 UNPACKED SUBRANGE

 5.1.5 UNPACKED SUBRANGE

 An unpacked subrange of any scalar type is represented in the same
 manner as the scalar type of which it is a subrange.

 5.1.6 UNPACKED REAL

 The unpacked real format consists of one 60-bit word. The
 mantissa is located in the right most 48 bits of the word. The sign
 is located in bit 59, and the biased exponent occupies the next 11
 bits. One's complement data representation is used. Real values are
 limited in magnitude to the range of 6.2630*10**(-294) to 1.2650*10**
 322, or zero.

 59 47 0
 +-+----------+---+
 |S|EXPONENT | MANTISSA |
 +-+----------+---+

 5.1.7 UNPACKED LONGREAL

 The unpacked real format consists of two adjacent 60-bit words.
 The format of each word is the same as the format of a real number.
 The first word contains the most-significant half of the mantissa,
 the exponent and the sign of the number. The second word contains
 the least-significant half of the mantissa, an exponent 48 less than
 that in the first word, and the same sign as in the first word.
 Longreal values are limited in magnitude to the range
 6.2630*10**(-294) to 1.2650*10**322, or zero.

 59 47 0
 +-+----------+---+
 |S|EXPONENT1 | UPPER MANTISSA |
 +-+----------+---+

 59 47 0
 +-+----------+---+
 |S|EXPONENT2 | LOWER MANTISSA |
 +-+----------+---+

 5-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.1.8 POINTER TO FIXED TYPES

 5.1.8 POINTER TO FIXED TYPES

 Pointers to fixed types (excluding strings, fixable types,
 procedure types and sequence types) occupy the rightmost 18 bits of a
 60-bit word. For all pointer types, the NIL pointer is represented
 as an 18 bit field with the rightmost 17 bits all ones. In the
 specific example of the direct pointer to fixed types a NIL pointer
 would have the data representation XXXXXXXXXXXXXX377777 octal where
 the X's indicate unused bit positions.

 59 17 0
 +--+-------------------+
 |/ / / / / / / / UNDEFINED / / / / / / / / / | POINTER |
 +--+-------------------+

 5.1.9 POINTER TO STRING

 Pointers to strings are 18 bits long but have an additional 4 bit
 "position" field to indicate which of the ten positions (POS) in a
 CYBER word contains the first character of the string. A string may
 begin on any 12 bit boundary (bit positions 59,47,35,23, or 11). The
 POS field will contain a value (0,2,4,6, or 8) indicating the
 starting position of the string. For example, a POS value of 0
 indicates that the string begins in the leftmost (bit 59) position of
 the word pointed to.

 59 21 17 0
 +--------------------------------------+-----+-------------------+
 |/ / / / / / / UNDEFINED / / / / / / / | POS | POINTER |
 +--------------------------------------+-----+-------------------+

 5.1.10 POINTER TO SEQUENCE

 Pointers to sequences contain the pointer plus an additional
 descriptor word. This descriptor word contains an offset to the next
 available (AVAIL) location in the sequence and an offset to the top
 (LIMIT) of the sequence.

 5-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.1.10 POINTER TO SEQUENCE

 59 17 0
 +--+-------------------+
 |/ / / / / / UNDEFINED / / / / / / / | POINTER |
 +-------------------------+------------------+-------------------+
 |/ / / / UNDEFINED / / / /| LIMIT | AVAIL |
 +-------------------------+------------------+-------------------+
 | | | |
 5.1.11 POINTER TO PROCEDURE

 Pointers to procedures are 36 bits long. Two 18 bit pointers are
 contained in the 36 bit field. One of the pointers points to the
 code and the other pointer points to the environment (stack) of the
 procedure. For the outermost procedures, the ^Environment is equal
 to zero.

 59 35 17 0
 +-------------------------+------------------+-------------------+
 |/ / / / UNDEFINED / / / /| ^ENVIRONMENT | ^CODE |
 +-------------------------+------------------+-------------------+

 5.1.12 UNPACKED SET

 An unpacked set will be left justified in the word or words it
 occupies. One bit is required for each member in the set. A bit set
 to one indicates that the set member is present. A zero bit
 indicates the set member is absent. If all the bits associated with
 a set are zero the representation is of an "empty set". For example,
 a set of 75 members will occupy two 60-bit words (120 bits). The
 leftmost 75 bits of the 120 bit field will be used to represent the
 set. The maximum size allowed for a set is 32,768 elements.

 59 0
 +-+-+---+-+-+--+
 | | |...| | | / / / / / / / / / / UNDEFINED / / / / / / / / / / |
 +-+-+---+-+-+--+

 5.1.13 UNPACKED STRING

 Unpacked strings will be 12 bits per character, five characters
 per word, left justified in the word or words they occupy. The data
 representation is the ASCII encoding (8 bits) right-justified within
 a field of 12 bits.

 5-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.1.13 UNPACKED STRING

 59 47 35 23 11 0
 +------------+------------+------------+------------+------------+
 | CHAR | CHAR | CHAR | CHAR | CHAR |
 +------------+------------+------------+------------+------------+

 5.1.14 UNPACKED ARRAY

 An unpacked array is a contiguous list of aligned instances of its
 component types. A two dimensional array is thought of as a one
 dimensional array of components which are one dimensional arrays.
 This structure is continued for multi-dimensional arrays. Storage
 for the array is mapped such that the right-most (inner-most) array
 is allocated contiguous storage locations. Considering the typical
 two dimensional array consisting of "rows and columns" the data
 mapping would be by rows. The maximum number of elements in an array
 is 262143. In general, there mut be sufficient storage to contain
 the array.

 5.1.15 UNPACKED RECORD

 An unpacked record is a contiguous list of aligned fields.

 5.2 OTHER TYPES

 5.2.1 ADAPTABLE POINTERS

 Pointers to adaptables are identical to pointers to the
 corresponding non-adaptable type with the addition of descriptors
 giving the length of the structures. In order to determine the size
 of an adaptable pointer a scan is made of the target type and all its
 contained types.

 5-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.2.1 ADAPTABLE POINTERS

 59 21 17 0
 +--------------------------------------+-----+-------------------+
 |/ / / / / / / / UNDEFINED / / / / / / | POS | POINTER |
 +--------------------------------------+-----+-------------------+
 | DESCRIPTOR |
 +--+

 The POS field is used only for adaptable strings as described
 above in the discussion on Direct Pointer to String.

 5.2.1.1 Adaptable Array Pointer

 The descriptor for an adaptable array is:

 59 53 35 17 0
 +------+------------------+------------------+-------------------+
 |/ / / | ARRAY SIZE | LOWER BOUND | ELEMENT SIZE |
 +------+------------------+------------------+-------------------+

 The ARRAY and ELEMENT SIZE fields are either both in bits, or both
 in words. The value for the sizes are in bits when the array is
 packed and is in words when the array is unpacked.

 5.2.1.2 Adaptable String Pointer

 A pointer to an adaptable string will have a descriptor word. The
 descriptor will contain the length of the adaptable string in 6 bit
 quantities (i.e., twice the number of characters) as shown below:

 59 11 0
 +---+------------+
 |/ / / / / / / / / / UNDEFINED / / / / / / / / / / | LENGTH |
 +---+------------+

 5.2.1.3 Adaptable Sequence Pointer

 A pointer to an adaptable sequence will have the same format as
 the pointer to a fixed size sequence, as described above.

 5-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.2.1.4 Adaptable Heap Pointer

 5.2.1.4 Adaptable Heap Pointer

 A pointer to an adaptable heap will have one descriptor word.
 This word will contain the total size of the space allocated (in
 words) as shown below:

 59 17 0
 +--+-------------------+
 |/ / / / / / / / UNDEFINED / / / / / / / / / | SIZE |
 +--+-------------------+

 5.2.1.5 Adaptable Record

 An adaptable record may have at most one adaptable field. A
 pointer to an adaptable record requires a descriptor word for the
 adaptable field. Since the adaptable field must be one of the above
 types, the descriptor will be as described above.

 5.2.2 BOUND VARIANT RECORD POINTERS

 A pointer to a bound variant record will consist of a pointer to
 the record followed by a descriptor word which contains the size of
 the particular bound variant record in use.

 59 17 0
 +--+-------------------+
 |/ / / / / / / / UNDEFINED / / / / / / / / / | POINTER |
 +--+-------------------+
 |/ / / / / / / / UNDEFINED / / / / / / / / / | SIZE |
 +--+-------------------+

 5.2.3 STORAGE TYPES

 The amount of storage required for any user declared storage type
 (sequence or heap) may be determined by summing the #SIZE of each
 span plus, in the case of user heaps, some conrol information.

 5.2.3.1 Sequences

 Access to a sequence is through the control information associated

 5-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.2.3.1 Sequences

 with the pointer to sequence. The layout of the sequence is shown
 below:

 59 0
 +--+
 | |
 | STORAGE FOR |
 | |
 | SEQUENCE |
 | |
 | |
 +--+

 5.2.3.2 Heaps

 User declared heap storage must be managed differently than the
 sequence because explicit programmer written ALLOCATE's and FREE's
 may be executed. The heap, in general, consists of 1) a header word,
 2) free areas (blocks) which are linked together (forward and
 backward) and 3) areas in use as a result of explicit ALLOCATE
 statement(s). For the heap data type, one additional header word is
 added for each repetition count for each span specified. The heap
 with its header word is illustrated below:

 59 54 35 17 0
 +------+------------------+------------------+-------------------+
 |/ / / | / / UNDEFINED / /| AVAIL SIZE | ^FREE BLOCK |
 +------+------------------+------------------+-------------------+
 | |
 | STORAGE FOR |
 | FREE BLOCKS |
 | AND USER |
 | ALLOCATED DATA |
 | |
 +--+

 5.2.3.2.1 FREE BLOCKS

 The free blocks are a circular forward and backward linked list.
 Free blocks are condensed each time the user code executes a FREE
 statement referencing this heap. The storage map of a typical free
 block is shown below:

 5-10
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.2.3.2.1 FREE BLOCKS

 59 54 35 17 0
 +------+------------------+------------------+-------------------+
 |/ / / | FORWARD LINK | BACKWARD LINK | BLOCK SIZE |
 +------+------------------+------------------+-------------------+
 | |
 | FREE BLOCK |
 | |
 +--+

 5.2.3.2.2 ALLOCATED BLOCKS

 When the CYBIL program executes an ALLOCATE statement the free
 block chain is re-arranged to make room for the allocated space in
 the heap. For each ALLOCATE a one word header is added to the space
 to maintain the size of the allocated area. This size information is
 used to verify subsequent FREE statements. The format of an
 allocated area in the user declared heap is:

 59 17 0
 +--+-------------------+
 |/ / / / / / / UNDEFINED / / / / / / / / / / | BLOCK SIZE |
 +--+-------------------+
 | |
 | ALLOCATED SPACE |
 | |
 +--+

 5.2.4 CELLS

 A cell is allocated a word and is always aligned.

 5.3 PACKED DATA TYPES

 Packed data types are provided to allow the programmer to conserve
 storage space at the possible expense of access time. The choice is
 easily made by the programmer by simply using the 'PACKED' attribute
 in the declaration of the structured type.

 A packed integer occupies a 60 bit word.

 A packed character is 8 bits (ASCII encoded).

 A packed boolean is 1 bit.

 A packed set occupies as many bits as there are elements in the

 5-11
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.3 PACKED DATA TYPES

 set.

 A packed ordinal of N elements is as long as the packed subrange
 0..N-1.

 A packed subrange of any type except integer is as long as the
 packed type of which it is a subrange.

 A packed subrange of integers a..b has its length computed as
 follows: If a is >= 0, then ceiling(log2(b+1)), else
 1+ceiling(log2(max(abs(a),b)+1)).

 A packed real occupies a 60 bit word.

 A packed longreal occupies two consecutive 60 bit words.

 A packed string is the same as an unpacked string except that it
 is aligned on a 12 bit boundary instead of a word boundary.

 A packed array is a contiguous list of unaligned instances of its
 packed component type with the length of the component type increased
 by the smallest number of bits that will make the new length an even
 divisor of 60 or a multiple of 60 bits; such that the array will fit
 in an integral number of 60 bit words.

 The length of a packed record is dependent upon the length and
 alignment of its fields. The representation of a packed record is
 independent of the context in which the packed record is used. In
 this way, all instances of the packed record will have the same
 length and alignment whether they be variables, fields in a larger
 record, elements of an array, etc. When the ALIGNED clause is used
 on a field within a packed record, the field will be aligned to the
 next word boundary.

 A packed pointer to fixed type requires 18 bits. A packed pointer
 to an adaptable type would require 120 bits. A packed pointer to
 procedure requires 36 bits.

 Storage types (heaps and sequences) require as much space as the
 sum of the space requirements for each span as if it were defined as
 an unpacked array.

 A packed cell is allocated a word and is always aligned.

 5-12
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.0 CYBIL-CC DATA MAPPINGS
 5.4 SUMMARY FOR THE C170

 5.4 SUMMARY FOR THE C170

 | | | ALIGNMENT |
 | | +------------------------+
 | TYPE | SIZE | UNPACKED | PACKED |
 +---------------+------------+----------+-------------+
 | BOOLEAN | bit | LJ word | bit |
 +---------------+------------+----------+-------------+
 | INTEGER | word | word | word |
 +---------------+------------+----------+-------------+
 | SUBRANGE | as needed | RJ word | bit |
 +---------------+------------+----------+-------------+
 | ORDINAL | as needed | RJ word | bit |
 +---------------+------------+----------+-------------+
 | CHARACTER | 12 bits/ | RJ word | bit |
 | | 8 bits | | |
 +---------------+------------+----------+-------------+
 | REAL | word | word | word |
 +---------------+------------+----------+-------------+
 | LONGREAL | 2 words | word | word |
 +---------------+------------+----------+-------------+
 | STRING | n * 12 bits| LJ word | 12 bit |
 +---------------+------------+----------+-------------+
 | SET | as needed | LJ word | bit |
 +---------------+------------+----------+-------------+
 | ARRAY/RECORD | component | word | unaligned |
 | | dependent | | components |
 +---------------+------------+----------+-------------+
 | FIXED POINTER | 18 bits | RJ word | bit |
 +---------------+------------+----------+-------------+
 | CELL | word | word | word |
 +---------------+------------+----------+-------------+

 Note: The abbreviations LJ and RJ in the above table stand for left
 and right justification.

 6-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT

 6.0 CYBIL-CC RUNTIME ENVIRONMENT

 6.1 STORAGE LAYOUT OF A CYBIL-CC PROGRAM

 The first 101(8) words are (as always on CYBER) the job
 communication area, which is described in the appropriate reference
 manual. The following storage area comprises the static part (code
 and static data) of the program. Usually it starts with the modules
 loaded from the load file(s) (in the order of the LOAD requests),
 followed by the modules from the library. The following storage
 area, the dynamic area starts immediately after the static area and
 is controlled by the memory manager. It contains:

 o The stack.
 o Dynamically allocated memory.

 The dynamic area is capable of expanding and, if necessary, the
 memory manager incrementally extends the field length up to the
 system permitted maximum.

 6.2 REGISTER USAGE

 B0 = 0
 B1 = 1
 B2 = dynamic link - callers stack frame pointer (top of stack)
 B3 = stack segment limit
 B4 = static link - set before a nested procedure is called
 B5 = pointer to extended parameter list

 X1
 X2
 X3 last 5 parameters passed to callee, starting with X1
 X4
 X5

 X1 = on return from callee must contain the linkage word
 X7 = linkage word passed to callee

 X6 = The function result if the value is one word or less;
 otherwise it is a pointer to the function value and the
 actual value is built in the callee's stack frame. The
 caller must save it before any other stack activity
 (procedure/function calls, or PUSH statements) takes place.

 6-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.3 LINKAGE WORD

 6.3 LINKAGE WORD

 1 5 18 18 18
 +---------+-----+------------+-------+-------+
 |Exception|/////| Potential |Dynamic|Return |
 | Return |/////|Caller Stack| Link |Address|
 | |/////| Pointer | | |
 +---------+-----+------------+-------+-------+

 The linkage word is identical to the first word of the stack (the
 stack header), which if expressed in CYBIL syntax would be:

 TYPE
 stack_header: PACKED RECORD
 exceptional_return: boolean,
 filler: 0..1F(16),
 potential_caller_stkp: pointer,
 dynamic_link: pointer,
 return_address: address,
 RECEND;

 The meaning of the fields is as follows:

 EXCEPTIONAL_RETURN: This field is set whenever after the
 procedure received control, a new stack
 segment was acquired. It is not used by
 the stack manager, but is meant as an aid
 for post mortem processors and
 programmers. Not normally used.

 POTENTIAL_CALLER_STKP: This field is set to the dynamic
 predecessor's stack frame pointer if the
 dynamic predecessor has multiple stack
 frames. Otherwise, it is zero. Not
 normally used.

 DYNAMIC_LINK: This field contains whatever the current
 procedure found in B2 when it received
 control (pointer to caller's stack
 frame).

 RETURN_ADDRESS: Address to which the epilog will go to.

 6-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.4 STACK FRAME LAYOUT

 6.4 STACK FRAME LAYOUT

 SF + 0 Will contain the linkage word.

 SF + 1 Will normally be the start of the user's data in the
 stack frame if coding a COMPASS subroutine. Internally
 a CYBIL procedure starts the user's data at SF + 5.

 6.5 CALLING SEQUENCES

 The interfaces described in this section are available on common
 deck ZPXIDEF which is availabe through the CYBCCMN parameter on SES
 procedure GENCOMP.

 6.5.1 PROCEDURE ENTRANCE (PROLOG)

 MORE RJ =XCIL#SPE increase field length
 START SX0 B2 caller's stack frame pointer to X0
 LX0 18
 BX6 X7+X0 merge into linkage word
 SB7 size of stack frame needed
 SB2 B2-B7 move stack frame pointer
 GE B3,B2,MORE check if room
 SA6 B2 store linkage info in stack
 .
 .
 .

 6.5.2 PROCEDURE EXIT (EPILOG)

 RETLAB BSS 0
 SA1 B2 load linkage word
 SB7 X1 return address to B7
 SB2 B2+size of stack frame needed
 JP B7

 6.5.3 CALLING A PROCEDURE

 1) Set up parameters in X1...X5 plus B5 if necessary.
 2) Set up linkage word in X7.
 3) Use an EQ instruction to jump to the procedure in mind. Must
 not use a return jump.

 6-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.6 PARAMETER PASSAGE

 6.6 PARAMETER PASSAGE

 6.6.1 REFERENCE PARAMETERS

 In the case of reference parameters a pointer to the actual data
 is generated and the pointer is passed as the parameter.

 6.6.2 VALUE PARAMETERS

 In the case of "big" value parameters (i.e., larger than 1 word in
 length) the parameter list contains a pointer to the actual parameter
 and the callee's prolog copies the parameter to the callee's stack
 frame.

 If the parameter length is less than or equal to a word then it is
 a candidate for passing via one of the 5 X registers as described
 above. If all 5 X registers are all ready in use, passing other
 value parameters, then the parameter is included in the extended
 parameter list entries. In either case it is a copy of the actual
 data.

 Remember that adaptable pointers are bigger than one word in
 length and consequently when they are passed as a value parameter
 they are considered a "big" parameter.

 6.7 RUN TIME LIBRARY

 6.7.1 MEMORY MANAGEMENT

 6.7.1.1 Memory Management Categories

 Three categories of memory management occur for CYBIL programs:

 1) Run Time Stack;
 2) Default Heap; and
 3) User Heap.

 The run time stack and default heap managers use blocks of memory
 obtained through run time library calls to the Common Memory Manager
 (CMM). User heaps occupy memory designated by the CYBIL program and
 are managed entirely by CYBIL run time routines.

 6-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.7.1.2 Stack Management

 6.7.1.2 Stack Management

 Most of the stack management is done in the compiler generated
 code. Only under exceptional conditions will run time library
 routines be invoked. Each procedure activation has associated with
 it a stackframe, which is used to keep local variables, compiler
 generated temporaries, and procedure linkage information. The
 stackframe consists of several fragments:

 1) The base fragment, which is acquired during the prolog, and

 2) The extension fragments, which are acquired during the execution
 of the procedure body through PUSH statements or through space
 required to copy adaptable value parameters. At procedure
 termination, the epilog releases the activation's stack frame,
 possibly to be reused on later procedure activations.

 This dynamic behavior implies that the run time stack must be part
 of the dynamic memory area; i.e., must coexist with the memory
 manager.

 The model used by CYBIL is a compromise between efficiency and
 flexibility. It uses stack segments, each of which accommodates at
 least one, but usually many, fragments. Within a stack segment, the
 acquisition of a new fragment is done by inline code, unless the
 current segment is exhausted where upon a stack management routine is
 called to obtain a new stack segment from the memory manager.
 Registers B2 and B3 are reserved throughout program execution to
 maintain the state of the stack.

 The default stack segment size is 3000(8) words which according to
 our experience, is normally enough. In the case where additional
 memory is required additional stack segments are obtained with an
 incremental size of 2000(8) until adequate memory is obtained.

 6.7.1.3 Default Heap Management

 Memory Management for the default heap is done by calls to CMM
 from a run time routine when an allocate or free request is made. In
 some cases the run time interface for allocate may be able to release
 unused stack segments to become available for the default heap. The
 run time interface allows CMM to increase field length as necessary
 but does not allow CMM to reduce field length, in order to curb the
 potential for a job's field length to change up and down many times
 during execution. Apart from the cases mentioned here, however,

 6-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.7.1.3 Default Heap Management

 default heap management is under the control of CMM and is
 essentially transparent to the CYBIL program.

 6.7.1.4 User Heap Management

 The user heap manager manages contiguous storage areas (heaps)
 which are organized into memory blocks. Each block is either free or
 allocated. The free blocks are linked to form a free block chain,
 whose start is identified by a free chain pointer. Initially, each
 heap contains one free block.

 An allocate request causes the memory manager to search the
 specified heap's free block chain for a block that is sufficiently
 big. Depending on the found block's excess size, either the whole
 block or a sufficiently large part of it is returned to the caller
 (in the latter case the remainder is removed from the block and
 inserted (as a new free block) into the free block chain). If it is
 impossible to allocate a block of the requested size a nil pointer
 value is returned for the request.

 A free request causes a block to be inserted into the free block
 chain of a heap. In order to reduce memory fragementation, it is
 merged immediately with adjacent free blocks (if they exist).

 6.7.1.5 CMM Error Processing

 The CYBIL run time interface to CMM traps any fatal errors
 detected by CMM. If the error condition is no more memory available
 then a nil pointer is returned for the allocate call. For all other
 other error conditions the job step is aborted with the dayfile
 message '- FATAL CMM ERROR'. When the job is aborted register X1
 contains the CMM status word. See the CMM Reference Manual (Pub.
 No. 60499200) section on own-code error processing for a description
 of the CMM status word.

 6.7.2 I/O

 The CYBIL I/O utilities are available as part of the run time
 system contained on CYBCLIB. The I/O interfaces are described in
 document ARH2739 and supported via common decks on CYBCCMN in the SES
 catalog.

 6-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.7.3 SYSTEM DEPENDENT ACCESS

 6.7.3 SYSTEM DEPENDENT ACCESS

 A set of CYBIL callable routines are available and described in
 the SES document: ERS for Miscellaneous Routines Interface SESD003.

 6.8 VARIABLES

 6.8.1 VARIABLES IN SECTIONS

 Using the section attribute on a variable has no effect on the
 variable other than to assure its residence with the static
 variables.

 6.8.2 GATED VARIABLES

 The #GATE attribute is ignored on both variables and procedures.

 6.8.3 VARIABLE ALLOCATION

 Space for variables is allocated in the order in which they occur
 in the input stream. No reordering is done. If a variable is not
 referenced, no space is reserved.

 6.8.4 VARIABLE ALIGNMENT

 The <offset> mod <base> alignment feature of the language is
 ignored. Quoting any combination of alignments will always result in
 word alignment.

 6.9 STATEMENTS

 This section describes what may be less than obvious
 implementations of certain CYBIL statements.

 6.9.1 CASE STATEMENTS

 Alternate code is generated for case statements depending on the
 density of selection specs. The "span" of selection values is equal
 to the highest value found in a sellction spec minus the lowest value
 found in a selection spec, plus one. This is the number of words

 6-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 6.0 CYBIL-CC RUNTIME ENVIRONMENT
 6.9.1 CASE STATEMENTS

 that would be needed in a jump table, with one entry per word. A
 series of conditional jumps requires two words per selection spec
 (one test against each bound). The CC code generator picks the
 method that will result in less code: if the span of selection values
 is less than twice the number of selection specs then a jump table is
 generated, otherwise, a series of conditional jumps is generated. If
 a conditional jump sequence is being generated and there is 9 or more
 selection specs present a "midpoint label" is generated to bisect the
 conditional jump sequence.

 6.9.2 INTER-OVERLAY PROCEDURE CALL

 Loading of user overlays must not clobber data residing in the
 calling overlay. This is particularily true of data passed via
 parameters.

 7-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING

 The data mappings described in this section describe the mappings
 as they are implemented today, with an eye toward the future and
 conformance to the SIS (S2196).

 7.1 POINTERS

 A pointer to an object of data is composed of the address of the
 first byte of the object plus any information required to describe
 the data.

 The address field of a pointer is a 6 byte Process Virtual Address
 (PVA) which is always byte aligned and it has the following format:

 PROCESS_VIRTUAL_ADDRESS = PACKED RECORD
 RING_NUMBER: 0 .. 15, { 4 bits, unsigned}
 SEGMENT_NUMBER: 0 .. 4095, { 12 bits, unsigned}
 BYTE_NUMBER: HALF_INTEGER, { 32 bits, signed}
 RECEND.
 The HALF_INTEGER type is defined as the following subrange:

 HALF_INTEGER = -80000000(16) .. 7FFFFFFF(16).

 The NIL pointer is the following constant:

 NIL: PROCESS_VIRTUAL_ADDRESS := [0F(16), 0FFF(16), 80000000(16).

 Pointers to all fixed size objects contain only the PROCESS.
 VIRTUAL ADDRESS. Pointers to adaptable type objects contain the
 PROCESS VIRTUAL ADDRESS (6 bytes) and the descriptor for the
 adaptable type object (the descriptor follows physically the PVA).

 7.1.1 ADAPTABLE POINTERS

 Descriptors for adaptable types are byte aligned and they have the
 following formats:

 7-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.1.1 ADAPTABLE POINTERS

 a) STRING - 2 byte size field indicating the length of the string
 (0..65535) in bytes.

 b) ARRAY - 12 byte descriptor:

 ARRAY_DESCRIPTOR = RECORD
 ARRAY_SIZE: HALF_INTEGER, " in bits or bytes "
 LOWER_BOUND: HALF_INTEGER,
 ELEMENT_SIZE: HALF_INTEGER," in bits or bytes "
 RECEND.

 ARRAY_SIZE and ELEMENT_SIZE are either both in bits, or both in
 bytes. The value for the sizes are in bits when the array is
 packed and is in bytes when the array is unpacked. Note: The
 ELEMENT_SIZE may be dropped in future compiler updates.

 c) USER HEAP - 4 byte size field indicating the maximum length of
 the structure in bytes.

 d) SEQUENCE - The format of a pointer to an adaptable sequence will
 have the same format as the pointer to a fixed size sequence as
 described below.

 e) RECORD - Adaptable records have the descriptor of their adaptable
 field as described above.

 7.1.2 POINTERS TO SEQUENCES

 The 14-byte pointer to sequence (fixed or adaptable has the
 following format:

 SEQUENCE_POINTER = RECORD
 POINTER_SEQUENCE: PROCESS_VIRTUAL_ADDRESS,
 LIMIT: HALF_INTEGER,
 AVAIL: HALF_INTEGER,
 RECEND.

 The LIMIT is an offset to the top of the sequence and the AVAIL is
 an offset to the next available location in the sequence.

 7.1.3 PROCEDURE POINTERS

 The 12-byte pointer to procedure has the following format:

 PROC_POINTER = RECORD

 7-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.1.3 PROCEDURE POINTERS

 POINTER_TO_PROCEDURE_DESCRIPTOR: PROCESS_VIRTUAL_ADDRESS,
 STATIC_LINK_OR_NIL: PROCESS_VIRTUAL_ADDRESS,
 RECEND.

 The first entry of the procedure pointer is a pointer to the
 procedure descriptor in the Binding Section. This procedure
 descriptor consists of two entries: a Code Base Pointer and a Binding
 Section Pointer. This implies that the Code Base Pointer will have
 the External Procedure Flag set for all procedures (including
 internal procedures) which are called via a pointer to procedure.
 This is done to ensure that the Binding Section Pointer is always
 placed in register A3 during a call.

 The second entry of the procedure pointer is the static link. A
 level 0 procedure does not require a static link and, therefore, the
 nil pointer is used. This is done to ensure that pointer comparison
 will always work.

 The nil procedure pointer is the following constant:

 NIL_PROC_POINTER: PROC_POINTER :=
 [POINTER_TO_NIL_PROCEDURE_DESCRIPTOR, NIL]

 where the nil procedure descriptor points to a run time library
 procedure which handles the call through a nil procedure pointer as
 an error.

 7.1.4 BOUND VARIANT RECORD POINTERS

 Pointers to bound variant records consist of a 6 byte PVA followed
 by a 4 byte size descriptor.

 7.1.5 POINTER ALIGNMENT

 Pointer types are always byte aligned.

 Pointer variables which occupy 8 bytes or more are word aligned on
 the left; whereas, smaller pointers are right justified in a word.
 Pointer types are always byte aligned even in packed structures.

 7.2 RELATIVE POINTERS

 A relative pointer is a 4 byte field which gives the byte offset

 7-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.2 RELATIVE POINTERS

 of the object field from the start of the parent:

 RELATIVE_ADDRESS = 0 .. 0FFFFFFFF(16).

 Relative pointers are always byte aligned.

 7.2.1 ADAPTABLE RELATIVE POINTERS

 Relative pointers referencing adaptable type objects consist of
 the 4 byte relative-address plus a descriptor for the adaptable
 object type. This descriptor physically follows the relative-address
 field. Descriptors for adaptable relative pointer types have the
 alignment and formats described above in the section titled Adaptable
 Pointers.

 7.2.2 RELATIVE POINTERS TO SEQUENCES

 The 12-byte relative pointer to sequence (fixed or adaptable) has
 the following format:

 RELATIVE_POINTER_TO_SEQUENCE = RECORD
 RELATIVE_POINTER: RELATIVE_ADDRESS,
 LIMIT: HALF_INTEGER,
 AVAILABLE: HALF_INTEGER,
 RECEND.

 7.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS

 Relative pointers to bound variant records consist of a 4-byte
 relative_address followed by a 4-byte size descriptor.

 7-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.3 INTEGERS

 7.3 INTEGERS

 Integer type variables are allocated 64 bits and are word aligned.

 Unpacked and packed types are byte aligned when within a
 structure.

 7.4 CHARACTERS

 Character type variables are allocated 8 bits. Unpacked character
 types are byte aligned while packed character types are bit aligned.

 A character variable is mapped as an unpacked character type and
 it is right aligned in a word.

 7.5 ORDINALS

 Ordinal types are mapped as the subrange 0 .. n-1, where n is the
 number of elements in the ordinal type.

 7.6 SUBRANGES

 An unpacked subrange type variable is allocated 8 bytes if its
 lower bound is negative; 1 to 8 bytes otherwise (depending on value
 of upper bound). An unpacked subrange type is byte aligned.

 A packed subrange type, a .. b, is bit aligned and it has its
 allocated bit length, L, computed as follows:

 if a >= 0, then L = CEILING (LOG2 (b+1))
 if a < 0, then L = 1 + CEILING (LOG2 (MAX (ABS(a), b+1)))

 A subrange variable is mapped as an unpacked subrange type and it
 is right aligned in a word. A subrange with a negative lower bound
 occupies the entire word.

 7.7 BOOLEANS

 An unpacked boolean type is allocated 1 byte and it is byte
 aligned.

 A packed boolean type is allocated 1 bit and it is bit aligned.

 7-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.7 BOOLEANS

 A boolean variable is mapped as an unpacked boolean type and it is
 right justified in a word.

 The internal value used for FALSE is zero and for TRUE it is one.

 7.8 REALS

 Real type variables are allocated 64 bits and are word aligned.
 Unpacked and packed types are byte aligned when within a structure.
 The magnitude of a real value can range from 4.8*10**(-1234) to
 5.2*10**1232, or it can be zero.

 7.9 LONGREALS

 Longreal type variables are allocated two consecutive 64 bit words
 and are word aligned. Unpacked and packed types are byte aligned
 when within a structure. The magnitude of a longreal value has the
 same range as a type real value, described above.

 7-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.10 SETS

 7.10 SETS

 The number of contiguous bits required to represent a set is the
 number of elements in the base type of the associated set type. The
 leftmost bit in the set representation corresponds to the first
 element of the base type, the next bit corresponds to the second
 element of the base type, etc.

 An unpacked set type is allocated a field of enough bytes to
 contain the set elements and the set field is byte aligned.

 A packed set type which contains more than 57 set elements is
 mapped as an unpacked set type. A packed set type which contains 57
 or less set elements is allocated a field with the number of bits
 necessary to contain the set elements and the set field is bit
 aligned.

 If the set elements occupy a set field which is larger than the
 number of elements in the base type of the set, then the set entries
 are right justified in the field and the filler bits to the left of
 the set elements are always zero.

 A set variable is mapped as an unpacked set type. If the set
 field containing the set elements will fit into a word then it is
 right justified in the word; otherwise, the set field is word aligned
 on the left.

 The maximum size allowed for a set is 32,768 elements.

 7-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.11 STRINGS

 7.11 STRINGS

 A string type is allocated the same number of bytes as there are
 characters in the string.

 String types are always byte aligned.

 A string variable which occupies more than 8 bytes is word aligned
 on the left; whereas, a smaller string is right aligned in a word.

 7.12 ARRAYS

 An unpacked array type is a contiguous list of aligned instances
 of its component type.

 A packed array type is a contiguous list of unaligned instances of
 its component type. The array is aligned on a byte boundary if its
 element type starts on a byte boundary, or if the array is greater
 than 57 bits.

 If the array component type is byte aligned, then it occupies an
 integral number of bytes.

 Array variables are word aligned on the left.

 The size of an array of aligned records will be a multiple of the
 records alignment base.

 In general, the size of arrays are limited by availability of
 sufficient storage.

 7-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.13 RECORDS

 7.13 RECORDS

 An unpacked record type is a contiguous list of aligned fields.
 It is aligned on the boundary of the coarsest alignment of any of its
 fields.

 A packed record type is a contiguous list of unaligned fields. It
 is aligned on the maximum alignment of its component fields subject
 to the rule that it must be at least byte aligned if the record is
 greater than 57 bits.

 The length of a packed record is dependent upon the length and
 alignment of its fields. The representation of a packed record is
 independent of the context in which the packed record is used. In
 this way, all instances of the packed record will have the same
 length and alignment whether they be variables, fields in a larger
 record, elements of an array, etc.

 In an unpacked or packed record, the following field types (they
 must not be the subject of a pointer or a reference parameter) are
 defined as expandable: character, ordinal, subrange, boolean, and
 set. If an expandable field is followed by a field of dead bits
 which extends to the next field of the record (or to the end of the
 record), then the expandable field is expanded to include as many
 bits as possible up to the next field. Character, ordinal, subrange,
 and boolean expansion is restricted to 32 bits. A set which contains
 less than 57 elements can be expanded up to 57 bits, if it can be
 expanded to the next field. A set which contains more than 57
 elements can be expanded to the next byte boundary or to the next
 field, whichever comes first.

 If a record is byte aligned, then it occupies an integral number
 of bytes.

 The fields are allocated consecutively subject to their alignment
 restrictions.

 Record variables which take more than a word are left aligned in
 the first word. Record variables which take less than a word are
 right aligned in the word.

 When the ALIGNED feature is used on a field within a record, the
 algorithm used will attempt to satisfy the offset value first (within
 the word being allocated).

 7-10
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.14 STORAGE TYPES

 7.14 STORAGE TYPES

 The amount of storage required for any user declared storage type
 (sequence or heap) may be determined by summing the #SIZE of each
 span plus, in the case of user heaps, some control information.

 7.14.1 HEAPS

 Both the Default Heap and the User Heap have the following format:

 HEAP = PACKED RECORD
 BLOCK_STATUS: (AVAIL, USED),
 SIZE: 0..7FFFFFFF(16),
 FORWARD_FREE_LINK: 0..0FFFFFFFF(16),
 BACKWARD_LINK: 0..0FFFFFFFF(16),
 FORWARD_LINK: 0..0FFFFFFFF(16),
 DATA_AREA: SPACE,
 RECEND.

 For the heap data type, an additional 16 byte header is added for
 each repetition count for each span specified.

 7.14.2 SEQUENCES

 Sequences have the following format:

 SEQUENCE = RECORD
 DATA_AREA: SPACE,
 RECEND.

 As demonstrated the sequence has the space required to contain the
 span(s) requested by the user.

 7.15 CELLS

 A cell type is allocated a byte and is always byte aligned.

 7.16 SUMMARY

 7-11
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING
 7.16 SUMMARY

 | | | ALIGNMENT |
 | | +------------------------+
 | TYPE | SIZE | UNPACKED | PACKED |
 +---------------+------------+----------+-------------+
 | BOOLEAN | bit | RJ byte | bit |
 +---------------+------------+----------+-------------+
 | INTEGER | 8 bytes | byte | byte |
 +---------------+------------+----------+-------------+
 | SUBRANGE | as needed | RJ byte | bit |
 +---------------+------------+----------+-------------+
 | ORDINAL | as needed | RJ byte | bit |
 +---------------+------------+----------+-------------+
 | CHARACTER | byte | byte | bit |
 +---------------+------------+----------+-------------+
 | REAL | 8 bytes | byte | byte |
 +---------------+------------+----------+-------------+
 | LONGREAL | 16 bytes | byte | byte |
 +---------------+------------+----------+-------------+
 | STRING | n bytes | byte | byte |
 +---------------+------------+----------+-------------+
 | SET | as needed | RJ byte | bit |
 +---------------+------------+----------+-------------+
 | ARRAY/RECORD | component | byte | unaligned |
 | | dependent | | components |
 +---------------+------------+----------+-------------+
 | FIXED POINTER | 6 bytes | byte | byte |
 +---------------+------------+----------+-------------+
 | FIXED REL PTR | 4 bytes | byte | byte |
 +---------------+------------+----------+-------------+
 | CELL | BYTE | BYTE | BYTE |
 +---------------+------------+----------+-------------+

 8-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT

 The run time environment described in this section is as
 implemented today, with an eye toward conformance to the Advanced
 System SYSTEM INTERFACE STANDARD (S2196).

 8.1 REGISTER ASSIGNMENT

 A0 - DYNAMIC SPACE POINTER - DSP
 A1 - CURRENT STACK FRAME POINTER - CSF
 A2 - PREVIOUS SAVE AREA POINTER - PSA
 A3 - BINDING SECTION POINTER - BSP
 A4 - ARGUMENT LIST POINTER - ALP
 A14 - STATIC LINK - SL
 X14 - LINE NUMBER FOR RANGE CHECKING - LN

 The registers A0, A1 and A2 always contain the assigned values.
 Registers A3, A4, A14 and X14 may be assigned other values during the
 execution of the procedure.

 Dynamic Space Pointer indicates the top of the current stack
 frame.

 Current Stack Frame pointer indicates the start of the current
 stack frame.

 Previous Save Area pointer indicates the location of the save area
 for the previous procedure. When the previous procedure issued a
 call for the current procedure, all relevant information for the
 previous procedure was stored in the save area. This save area
 contains the contents of all hardware registers that are required for
 the previous procedure to execute normally when a return is issued by
 the current procedure.

 One of the functions of the hardware call instruction is to save a
 designated set of registers into a save area. The save area is built
 on top of stack frame of the procedure that issued the call. The
 stack frame of the called procedure is built above the save area of
 the calling procedure (Note that a CYBIL-CI/II program executes in
 one ring only). The save area contains the following information:

 8-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.1 REGISTER ASSIGNMENT

 <---------------------------------
 REGISTERS: P,A0,A1,A2 Minimum
 FRAME DESCRIPTION Save
 USER MASK Area Maximum
 <-------------------- Save
 REGISTERS: A3 .. AF Area
 REGISTERS: X0 .. XF
 <---------------------------------

 Binding Section Pointer indicates the binding section of the
 currently executing procedure.

 Argument List Pointer points to the parameter list passed by the
 calling procedure. The number of parameters passed will be contained
 in register X0.

 Static Link Pointer indicates the stack frame of the enclosing
 procedure if the called procedure is an internal procedure of the
 calling procedure and is meaningless otherwise.

 8-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.2 STACK FRAME DEFINITION

 8.2 STACK FRAME DEFINITION

 The stack frame consists of two distinct sections. The first
 section contains all data whose size is known at compile time. The
 other section contains all adaptable structures whose size can only
 be determined at execution time.

 | |
 A2=PSA -> |______________________________|
 | |
 | Previous Save Area |
 | |
 A1=CSF -> |==============================| <-------------------
 | Reserved Condition Handler |
 |------------------------------|
 | Function Result Save Area |
 |------------------------------|
 | Display |
 |------------------------------| C
 | | U
 | Pointers to Adaptable | R
 | Value Parameters & Long | R
 | Fixed Value Parameters | E
 | Automatic Variables | Fixed N
 | | T
 | Short Fixed Value Parameters | Size
 | | S
 | Descriptors and Workspace | Part T
 | | A
 | Parameter List Workspace | C
 | | K
 |------------------------------|
 | | F
 | Register Overflow Area | R
 | | A
 |==============================| <------------ M
 | | Variable E
 | Adaptable Value Parameters & | Size
 | Long Fixed Value Parameters | Part
 A0=DSP -> |==============================| <-------------------

 8-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.2.1 FIXED SIZE PART

 8.2.1 FIXED SIZE PART

 This section contains some data, enough information to provide
 addressability to all other data accessible by the current procedure
 plus an initialized 8 byte field which has been provided for
 condition handling plus a word to be used as a function result save
 area when the function has a non-local exit.

 a) The "display" consists of pointers which enable the procedure to
 access variables that have been declared in all inclosing
 procedures. The format of the "display" is as follows:

 | |
 CSF -> |===================================|
 | Reserved for Condition Handling |
 |-----------------------------------|
 | Function Result Save Area |
 |-----------------------------------| <------------------
 | CSF of Current Level 0 Procedure |
 |-----------------------------------|
 | CSF of Current Level 1 Procedure |
 |-----------------------------------|
 | : : | Copied from the
 | : : | Caller's Display
 |-----------------------------------|
 | CSF of Current Level (n-2) Proc. |
 |-----------------------------------| <------------------
 | CSF of Current Level (n-1) Proc. | Set up
 |-----------------------------------| by the Prolog
 | Argument List Pointer | (only if necessary)
 |-----------------------------------| <------------------
 | |

 The prolog will save the static link (if it was passed in register
 A14) into the display if and only if the procedure is nested. The
 prolog will also save the parameter list pointer (if it was passed in
 register A4) into the display if and only if the procedure contains
 at least one locally defined procedure.

 The static links, current stack frame pointers for each currently
 active procedure, enable the current procedure to access variables
 from containing procedures.

 Each display entry is a six byte pointer which is right justified

 8-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.2.1 FIXED SIZE PART

 in its display word. The total size of the display for a particular
 procedure is based on that procedures nesting level.

 b) Automatic variables or value parameters may be declared such that
 all bounds and size information is known at compile time. In
 this case, this fixed amount of storage required for the variable
 is allocated out of the fixed bound part of the automatic stack.

 c) Adaptable parameters may be declared such that some bounds and
 size information is not known at compile time. In this case we
 must allocate a type descriptor for the type which contains the
 result of the calculation of all variable bounds and a variable
 descriptor which contains information to locate the base address
 of the variable bound part of the automatic stack. These
 descriptors are all allocated in the fixed bound part of the
 automatic stacks. In addition, a workspace may be required in
 the fixed size part to hold temporaries for runtime descriptor
 calculations.

 d) A fixed size area is used to hold the parameter lists for
 procedure calls. If the current procedure calls other
 procedures, then the parameter list must be allocated in its own
 fixed part area. Each actual parameter is represented in the
 parameter list as either a value or a pointer. If the parameter
 is passed by value and its formal parameter length is less than
 or equal to 8 bytes, then the parameter will be represented in
 the list by its value in the least number of bytes required to
 hold the value. All other parameters are represented by 6 byte
 pointers (plus descriptor if required).

 e) The overflow workspace is used to hold the contents of hardware
 registers which are preempted during execution. The size of this
 can be determined at compile time.

 8.2.2 VARIABLE SIZE PART

 This area contains storage for all adaptable value parameters
 whose bounds and size information is not determinable at compile
 time. The descriptors for these variables are contained in the fixed
 size part.

 8-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.3 PARAMETER PASSAGE

 8.3 PARAMETER PASSAGE

 8.3.1 REFERENCE PARAMETER

 In the case of reference parameters a pointer to the actual data
 is generated and the pointer is passed as the parameter. The
 parameter would be on a word boundary and be left aligned.

 8.3.2 VALUE PARAMETERS

 In the case of "big" value parameters (i.e., larger than 1 word in
 length) the parameter list contains a pointer (left aligned and on a
 word boundary) to the actual parameter and the callee's prolog copies
 the parameter to the callee's stack frame. The prolog also generates
 a pointer to the copied data and stores it onto the callee's stack.
 The generation of the pointer to the parameter is done because the
 caller may be executing in a different ring than the callee.

 If the parameter length is less than or equal to a word then a
 copy of the actual parameter is made in the parameter list. The
 parameter would be right aligned but on a word boundary.

 8-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.4 BINDING SECTION DESCRIPTION

 8.4 BINDING SECTION DESCRIPTION

 Binding Section Segments are intended to faciliate software
 linking of both code and data segments from one procedure to another.
 It is created by the system linker. The Binding Section Segments are
 readable, but not writeable in the user ring.

 The binding section for each separately compiled module must
 contain any addressing information required by the procedures within
 the module.

 The following information is required in the binding section:

 i) Addresses of external (XREF and EXTERNAL) data - 1 word each.
 ii) Base addresses of portions of other segments to which code or
 data is allocated - 1 word each.
 iii) Addresses of external (XREF and XDCL) procedures and their
 binding section addresses within the binding segment - 2 words
 each.
 iv) Addresses of any internal procedures which are assigned to
 ^PROCEDURE in an assignment statement, or which appear as actual
 parameters - 1 word each.

 Note that all constant offsets within the binding section, that
 are encoded within the code or initialized data blocks of a module,
 must be marked as such - this will enable a linker to reorder or
 combine binding segments.

 The Binding Section starts on a word boundary and each entry
 occupies a full word. There are three types of Binding Section
 entries:

 1) DATA POINTERS. Each data pointer is a PVA which occupies the
 rightmost 48 bits of the word entry.

 2) INTERNAL PROCEDURE POINTERS. Each internal procedure pointer is
 a 64 bit Code Base Pointer.

 3) EXTERNAL PROCEDURE POINTERS. Each external procedure pointer
 consists of two consecutive entries. The first entry is a 64 bit
 Code Base Pointer. The second entry is a PVA (occupying the
 rightmost 48 bits of the word entry) which is the Binding Section
 Pointer for the external procedure.

 8-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.5 EXECUTION ENVIRONMENT

 8.5 EXECUTION ENVIRONMENT

 The following segments are required in the execution environment
 of a CYBIL-CI/II external procedure:

 1) An extensible stack described by the hardware registers: DSP=A0,
 CSF=A1, PSA=A2.

 2) Binding segment portion described by a base address in the
 binding section of the linked and loaded processes ... address
 passed as parameter in A3 to the procedure when invoked.

 3) Zero or one code segment.

 4) Zero or more data segment portions.

 Notes:

 a) Addressability of all static data and code is provided by
 addresses contained in binding section.

 b) Addressability of all enclosing level automatic references is
 provided by addresses contained in the "display" which is located
 in the first few words of the automatic stack frame of the
 current procedure.

 c) Addressability of parameters is provided by the address of the
 parameter list passed in A4 on any call.

 8.5.1 VARIABLES

 8.5.1.1 Variable Attributes

 8.5.1.1.1 READ ATTRIBUTE

 The READ attribute when associated with a variable, will be used
 to control compiler checking access by the user to the variable. As
 such, the space for the variable will be reserved in the static
 working section which has read and write attributes. To include a
 variable in read only memory, the section declaration facility can be
 used.

 8.5.1.1.2 #GATE ATTRIBUTE

 If you have to ask what this feature is used for you probably
 should not be using the facility as it is hardware and O.S.

 8-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.5.1.1.2 #GATE ATTRIBUTE

 dependent. The reader who really wants to know is referred to the
 NOS/VE documentation.

 8.5.1.2 Variable Allocation

 Space for variables is allocated in the order in which they occur
 in the input stream. No reordering is done. If a variable is not
 referenced, no space is reserved.

 8.5.1.3 Variable Alignment

 The ALIGNED feature of the language is implemented in the language
 such that an attempt is made to honor the <offset> field first. If
 the data allocation is all ready beyond the <offset> in the word then
 the <base> is honored first and then the <offset>.

 8.5.2 STATEMENTS

 This section describes what may be less than obvious
 implementations of certain CYBIL statements.

 8.5.2.1 CASE Statement

 The jump table always generated for the CASE statement actually
 resides as a 2 byte entry in a table which resides in the read only
 working storage section. The code generated does a load from this
 table and then does a (BRREL) branch relative instruction to the
 appropriate case selector.

 8.5.2.2 Records

 Per agreement with NOS/VE, when a record value whose size is less
 than or equal to 64 bits is loaded, the entire record value must be
 accessed with a single load instruction. In particular, a single
 instruction must be generated even if one of the fields of the record
 is a pointer value.

 8.6 EXTERNAL REFERENCES

 During the compilation process a hash is computed for each XDCL
 and XREF'ed variable and procedure. The hash is based on an

 8-10
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.6 EXTERNAL REFERENCES

 accumulation of the data typing. In the case of procedures the
 parameter list is included in the process. The loader then checks
 these hash values to assure that the data types for all XDCL's and
 XREF's agree. If they do not agree an appropriate error message is
 generated by the loader.

 8.7 PROCEDURE REFERENCES

 Registers A1, A3, A4 and A14 are used to pass information used by
 a procedure to locate its data:

 a) External Procedure: A1 <---> Current Stack Frame Pointer
 A3 <---> Binding Section Pointer
 A4 <---> Argument List Pointer

 b) Internal Procedure: A1 <---> Current Stack Frame Pointer
 A3 <---> Binding Section Pointer
 A4 <---> Argument List Pointer
 A14 <---> Static Link

 8.8 FUNCTION REFERENCES

 A function is a procedure that returns a value, as such the
 register conventions are identical to procedure references described
 above. The function value is in registers or in memory depending on
 the type of value being returned.

 If the function value is a simple pointer, then the value is
 returned as a PVA in A15.

 If the function value is a scalar of known length less than or
 equal to 64 bits in length, it is returned right aligned in X15.
 Fill (if any) is zero bits.

 If the function value is double precision then the value is
 returned in registers X14 & X15. X15 holds the least significant 64
 bits of the value.

 If the function value is not of a type described above then the
 result is stored left justified as the first element of the parameter
 list. The second element of the parameter list, in this case,
 specifies the first actual parameter.

 8-11
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT
 8.9 RUN TIME LIBRARY

 8.9 RUN TIME LIBRARY

 The procedures described below are available on:

 ATTACH,CYBILIB/UN=LP3.

 8.9.1 HEAP MANAGEMENT

 8.9.2 I/O

 An elementary I/O capability is provided for execution on the
 Advanced Systems Simulator. This procedure will display a string
 expression on OUTPUT.

 PROCEDURE [XREF] PXIO (str: string (*));

 Note: This capability is replaced by the Simulated NOS/VE I/O
 Interface (DAP ARH2735).

 9-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING

 The MC68000 data formats for each of the supported CYBIL data types
 is described in the following sections.

 The MC68000 supports five basic data types as follows:

 o Bits
 o BCD digits (4 bits)
 o Bytes (8 bits)
 o Words (16 bits)
 o Long Words (32 bits)

 CYBIL does not utilize BCD digits.

 Memory addresses are byte addresses. The byte address for a word or
 a long word must be an even number.

 On the MC68000, integers are represented in two's complement form.

 Many packed types are bit aligned and are allocated the number of
 bits necessary to hold the item. However, if the number of bits
 necessary to hold the item exceeds 32, the item is word aligned and
 is allocated an integral number of words.

 9.1 POINTERS

 A pointer consists of an address field of 4 bytes and, for certain
 pointer types, a descriptor. The address field contains a 24-bit
 address of the first byte of the object (data or procedure). The
 24-bit address appears right adjusted in the 4-byte field with upper
 bits zero.

 All pointers are word aligned.

 The address field for a nil data pointer is the following constant:

 00000000 (16)

 The address field for a nil procedure pointer is described in the
 paragraph on procedure pointers.

 With the exception of pointers to sequences, pointers to fixed size

 9-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.1 POINTERS

 data objects consist of the address field only.

 A pointer to a sequence consists of the 4-byte address field followed
 by 2 4-byte fields indicating the size of the sequence in bytes, and
 the byte offset to the next available position in the sequence.

 9.1.1 ADAPTABLE POINTERS

 Adaptable pointers are identical to pointers to the corresponding
 fixed type with the exception that the pointer consists of the
 address field and a descriptor containing information such as the
 size of the structure.

 An adaptable string pointer consists of the 4-byte address field
 followed by a 4-byte size field indicating the length of the string
 in bytes.

 An adaptable array pointer consists of the 4-byte address field
 followed by 2 4-byte fields indicating the array size and the lower
 bound. The value for the array size is in bytes when the array is
 unpacked, and in bits when the array is packed.

 An adaptable sequence pointer consists of the 4-byte address field
 followed by 2 4-byte fields indicating the size of the sequence in
 bytes, and the byte offset to the next available position in the
 sequence.

 An adaptable heap pointer consists of the 4-byte address field
 followed by a 4-byte size field containing the size of the heap in
 bytes.

 An adaptable record pointer consists of the 4-byte address field
 followed by one of the above descriptors depending on the adaptable
 field of the record. Thus, if the adaptable field is a string, the
 adaptable record pointer consists of a 4-byte address field followed
 by a 4-byte size field indicating the length of the string in bytes.

 9.1.2 PROCEDURE POINTERS

 A procedure pointer consists of the 4-byte address field followed by
 a 4-byte field containing the static link.

 The address field contains the address of the procedure code.

 9-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.1.2 PROCEDURE POINTERS

 The static link contains the address of the stack frame of the
 enclosing procedure if the pointer is to an enclosed procedure.

 A level 0 procedure does not require a static link. Therefore, the
 nil data pointer is used.

 For a nil procedure pointer, the address field contains the address
 of a run time library procedure and the static link field contains a
 nil data pointer. The run time library procedure handles the call as
 an error.

 9.1.3 BOUND VARIANT RECORD POINTERS

 A bound variant record pointer consists of the 4-byte address field
 followed by a 4-byte size field, containing the size of the record in
 bytes.

 9.1.4 POINTER ALIGNMENT

 All pointer types are word aligned.

 9.2 INTEGERS

 Integer types are allocated 32 bits.

 An unpacked integer type is word aligned.

 A packed integer type is bit aligned.

 An integer variable is mapped as an unpacked integer type.

 9.3 CHARACTERS

 An unpacked character type is allocated a byte and is byte aligned.

 A packed character type is allocated 8 bits and is bit aligned.

 A character variable is mapped as an unpacked character type.

 9-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.3 CHARACTERS

 9.4 ORDINALS

 Ordinal types are mapped as the integer subrange 0..n-1, where n is
 the number of elements in the ordinal type.

 9.5 SUBRANGES

 An unpacked integer subrange type is allocated a word or a long word
 depending on the values of the lower and upper bounds. An unpacked
 integer subrange type is word aligned.

 A packed subrange type, a..b, is bit aligned. Its allocated bit
 length, L, is computed as follows:

 if a>= 0 then L:= CEILING (LOG2(b+1))
 if a< 0 then L:= 1 + CEILING (LOG2(MAX(ABS(a),b+1)))

 A subrange variable is mapped as an unpacked subrange type.

 The maximum integer subrange is -80000000(16) .. 7fffffff(16).

 9.6 BOOLEANS

 An unpacked boolean is allocated a byte and is byte aligned.

 A packed boolean type is allocated 1 bit and is bit aligned.

 A boolean variable is mapped as an unpacked boolean type.

 The internal value for FALSE is zero. The internal value for TRUE is
 one.

 9.7 REALS

 Real types are allocated 32 bits.

 An unpacked real type is word aligned.

 A packed real type is bit aligned.

 9-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.7 REALS

 A real variable is mapped as an unpacked real type.

 9.8 LONGREALS

 Longreal types are allocated 64 bits.

 An unpacked longreal type is word aligned.

 A packed longreal type is byte aligned.

 A longreal variable is mapped as an unpacked longreal type.

 9.9 SETS

 The number of contiguous bits required to represent a set is the
 number of elements in the base type of the associated set type. The
 leftmost bit represents the first element, the next bit represents
 the second element, etc.

 An unpacked set type is allocated a field of enough words to contain
 the set elements and is word aligned. An unpacked set type is left
 justified in its allocated field.

 A packed set is allocated as follows:

 o If the number of set elements is 32 or fewer, the set is bit
 aligned and is allocated a field of enough bits to contain the
 set elements.

 o If the number of set elements is greater than 32, the set is
 word aligned and is allocated a field of enough words to
 contain the set elements. The set is left justified in the
 field.

 A set variable is mapped as an unpacked set.

 The maximum size allowed for a set is 32768 elements.

 9-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.10 STRINGS

 9.10 STRINGS

 An unpacked string type is word aligned and occupies an integral
 number of words. Any filler byte is undefined.

 A packed string type is byte aligned and occupies an integral number
 of bytes if the string length is 4 (32 bits) or less. Otherwise, a
 packed string type is mapped as an unpacked string type.

 A string variable is mapped as an unpacked string type.

 9.11 ARRAYS

 An unpacked array type is a contiguous list of unpacked instances of
 its component type. The array is aligned on a word boundary and
 occupies an integral number of words.

 A packed array type is a contiguous list of packed instances of its
 component type. The array is allocated as follows:

 o If the array size is 32 bits or less, the array is bit aligned
 and is allocated enough bits to contain the array.

 o If the array size is greater than 32 bits, the array is word
 aligned and is allocated enough words to contain the array.

 An array variable is mapped as an unpacked array type.

 In general, array sizes are limited by storage availability.

 9.12 RECORDS

 An unpacked record type is a contiguous list of unpacked fields. It
 is aligned on a word boundary and occupies an integral number of
 words.

 A packed record type is a contiguous list of packed fields. The
 record is allocated as follows:

 o If the record size is 32 bits or less, the record is bit
 aligned and is allocated enough bits to contain the record.

 9-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.12 RECORDS

 o If the record size is greater than 32 bits, the record is word
 aligned and is allocated enough words to contain the record.

 A record variable is mapped as an unpacked record type.

 9.13 SEQUENCES

 A sequence type consists of the data area required to contain the
 span(s) requested by the user. A sequence type is always word
 aligned, and occupies an integral number of words.

 9.14 HEAPS

 A heap consists of a Free Chain Header and storage for Allocated
 Blocks and Free Blocks.

 An Allocated Block consists of an Allocated Block Header followed by
 storage for user data.

 A Free Block consists of a Free Block Header followed by storage
 which is available for use.

 A common format is used for all 3 headers as follows:

 31 0
 +--+---------------------+
 |S | SIZE |
 +--+---------------------+
 | FORWARD_FREE_LINK |
 +------------------------+
 | BACKWARD_LINK |
 +------------------------+
 | FORWARD_LINK |
 +------------------------+

 The field, S, indicates the status of the block, AVAIL or USED.

 The CYBIL description of the common header format is as follows:

 9-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.14 HEAPS

 BLOCK_HEADER = PACKED RECORD
 BLOCK_STATUS: (AVAIL,USED),
 SIZE: 0..7FFFFFFF(16),
 FORWARD_FREE_LINK: 0..0FFFFFFFF(16),
 BACKWARD_LINK: 0..0FFFFFFFF(16),
 FORWARD_LINK: 0..0FFFFFFFF(16),
 RECEND;

 For the Free Chain Header, the fields are as follows:

 BLOCK_STATUS: Not used
 SIZE: 0
 FORWARD_FREE_LINK: Link to Free Block.
 BACKWARD_LINK: 0
 FORWARD_LINK: 0

 For the Allocated Block Header, the fields are as follows:

 BLOCK_STATUS: Set to USED.
 SIZE: Size of block
 FORWARD_FREE_LINK: Not used
 BACKWARD_LINK: Link to preceeding block
 FORWARD_LINK: Link to succeeding block

 For the Free Block Header, the fields are as follows:

 BLOCK_STATUS: Set to AVAIL
 SIZE: Size of Block
 FORWARD_FREE_LINK: Link to succeeding Free Block.
 BACKWARD_LINK: Link to preceeding block
 FORWARD_LINK: Link to succeeding block

 Initially, a heap consists of the Free Chain Header and a Free Block.
 Typically, an ALLOCATE request is made causing the Free Block to be
 divided into a Free Block and an Allocated Block.

 Adjacent free blocks are always combined as part of FREE request
 processing.

 The amount of storage allocated for a heap is the sum of the
 following:

 o 16 bytes for the Free Chain Header
 o 16 times the repetition count for each span specified (in order
 to provide for block headers)
 o sum of the spans specified

 9-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING
 9.15 CELLS

 9.15 CELLS

 A cell type is allocated a byte and is always byte aligned.

 9.16 SUMMARY FOR THE MC68000

 +-----------+---------------------+-------------------------+
 | | UNPACKED | PACKED |
 +-----------+-----------+---------+-----------+-------------+
 | TYPE | ALIGN | SIZE | ALIGN | SIZE |
 +-----------+-----------+---------+-----------+-------------+
 | BOOLEAN | byte | byte | bit | bit |
 | INTEGER | word | long | bit | bits |
 | SUBRANGE | word | word | bit | bits |
 | | word | long | | |
 | ORDINAL | word | word | bit | bits |
 | CHARACTER | byte | byte | bit | bits |
 | STRING | word | words | byte/word | bytes/words |
 | REAL | word | long | bit | bits |
 | LONGREAL | word | longs | word | longs |
 | SET | word | words | bit/word | bits/words |
 | ARRAY | word | words | bit/word | bits/words |
 | RECORD | word | words | bit/word | bits/words |
 | POINTER | word | words | word | words |
 | CELL | byte | byte | byte | byte |
 +-----------+-----------+---------+-----------+-------------+

 10-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT

 10.1 MEMORY

 With regard to memory, a CYBIL program has the following parts:

 o Code
 o Static Storage
 o Stack
 o Heap

 10.1.1 CODE

 The code section contains the instructions of the program.

 10.1.2 STATIC STORAGE

 The lifetime of static variables is the life of the program
 execution.

 Static storage may contain the following kinds of sections:

 o Read Only Sections
 o Read Write Sections

 10.1.3 STACK

 The storage area for the stack is determined at load time. The stack
 grows from high numbered locations to low.

 10.1.3.1 Stack Frame

 The stack frame consists of the following parts:

 o The Fixed Size Part contains all data whose size is known at
 compile time.

 10-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.1.3.1 Stack Frame

 o The Variable Size Part contains all adaptable structures whose
 size can only be determined at execution time. The Variable
 Size Part also contains storage allocated using PUSH
 statements.

 o The Argument List Part contains the parameters of call to the
 procedure.

 o The P-register Part contains the return address.

 10.1.3.1.1 FIXED SIZE PART

 The Fixed Size Part contains some of the data which the procedure may
 access directly, and addressing information for other data which the
 procedure may access. The Fixed Size Part contains the following:

 o Dynamic Link
 o Display
 o Automatic Variables
 o Value Parameters copied by Prolog
 o Pointers to Adaptable Value Parameters
 o Workspace
 o Register Overflow Area
 o Register Save Area

 The Dynamic Link is the address of the stack frame for the calling
 procedure.

 The Display consists of Current Stack Frame (CSF) pointers for all
 enclosing procedures. These pointers enable the procedure to access
 variables that have been declared in all enclosing procedures. The
 format of the Display is as follows:
 +-----------------------------------+
 low | CSF of Current Level (n-1) Proc |
 +-----------------------------------+
 | CSF of Current Level (n-2) Proc |
 +-----------------------------------+
 | | Copied from
 | | caller's Display
 +-----------------------------------+
 | CSF of Current Level 1 Proc |
 +-----------------------------------+
 high | CSF of Current Level 0 Proc |
 +-----------------------------------+

 If a procedure is nested, its prolog copies the caller's Display to

 10-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.1.3.1.1 FIXED SIZE PART

 its Display. If a nested procedure has enclosed procedures, the
 nested procedure's prolog also saves the Static Link (SL) in its
 Display.

 A Display entry is a 24-bit address which is right adjusted in a long
 word with zero bits on the left.

 Automatic variables and value parameters may be declared such that
 all bounds and size information is known at compile time. In this
 case, the required storage is allocated from the Fixed Size Part of
 the stack frame.

 Adaptable parameters may be declared such that not all bounds and
 size information is known at compile time. In this case the compiler
 allocates a type descriptor which contains the result of the
 calculation of all variable bounds, and a variable descriptor which
 contains information to locate the base address of the variable bound
 part of the automatic stack. These descriptors are in the Fixed Size
 Part of the stack frame. In addition, a workspace may be required in
 the Fixed Size Part to hold temporaries for run time descriptor
 calculations.

 The overflow workspace is used to hold the contents of hardware
 registers which are preempted during execution. The size of this is
 determined at compile time.

 The Register Save Area is used to hold registers saved as part of
 procedure or function call processing. The area consists of two
 parts: one contains caller registers saved on entry to the procedure
 or function; the other contains registers saved prior to calling a
 procedure or function. The specific registers preserved by the
 caller and callee are specified elsewhere in this document.

 10.1.3.1.2 VARIABLE SIZE PART

 This area contains storage for all adaptable value parameters whose
 bounds and size information is not determinable at compile time. The
 Variable Size Part also contains storage allocated using PUSH
 statements.

 10.1.3.1.3 ARGUMENT LIST PART

 The argument list contains the actual parameters of call to a
 procedure.

 The caller pushes parameters onto the stack from right to left.

 10-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.1.3.1.3 ARGUMENT LIST PART

 10.1.3.1.4 P-REGISTER PART

 The P-register Part contains the return address.

 10.1.4 SYSTEM HEAP

 The ALLOCATE statement has the following forms:

 o ALLOCATE <allocation designator> IN <heap variable>;
 o ALLOCATE <allocation designator>;

 If the second form is used, allocation takes place out of the default
 heap. This is done by making an operating system request to obtain
 the memory dynamically to satisfy the ALLOCATE statement.

 The FREE statement has the following forms:

 o FREE <pointer variable> IN <heap variable>;
 o FREE <pointer variable>;

 If the second form is used, an operating system request is made to
 release the memory dynamically to satisfy the FREE statement.

 10.1.5 REGISTERS

 A7 - DYNAMIC SPACE POINTER - DSP
 A6 - CURRENT STACK FRAME POINTER - CSF
 A4 - STATIC LINK - SL

 Registers DSP and CSF always contain the assigned values. Other
 registers may be assigned other values during the execution of the
 procedure.

 The Dynamic Space Pointer indicates the top of the current stack
 frame. Register A7 has special hardware significance as the system
 stack pointer.

 The Current Stack Frame pointer indicates the start of the current
 stack frame.

 The Static Link pointer indicates the stack frame of the enclosing

 10-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.1.5 REGISTERS

 procedure if the called procedure is an internal procedure of the
 calling procedure. The Static Link pointer is meaningless otherwise.

 10.2 PARAMETER PASSAGE

 10.2.1 REFERENCE PARAMETERS

 For a reference parameter, a pointer to the data is passed as the
 parameter.

 10.2.2 VALUE PARAMETERS

 For value parameters, the parameter list contains either a copy of
 the actual parameter or a pointer to the parameter depending on the
 parameter type. If the parameter list contains a pointer to the
 actual parameter, the callee's prolog copies the parameter to the
 callee's stack frame.

 Value parameters appear in the parameter list as follows:

 Copy or Parameter List
 Type Pointer Entry Size

 Pointer copy 2 words for fixed pointer (except sequence).
 6 words for fixed ptr to sequence.
 4 words for adaptable string pointer.
 6 words for adaptable array pointer.
 6 words for adaptable sequence pointer.
 4 words for adaptable heap pointer.
 4-6 words for adaptable record pointer.

 Integer copy 2 words

 Character copy 1 word. The character is in the lower 8 bits
 of the word with upper bits undefined.

 Ordinal copy 1 word

 Integer copy 1 or 2 words
 Subrange

 Boolean copy 1 word. The boolean value is in the lower 8

 10-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.2.2 VALUE PARAMETERS

 bits of the word with upper bits undefined.

 Real copy 2 words

 Longreal copy 4 words

 Set copy 1-2048 words

 String Pointer 2 words for fixed string.
 4 words for adaptable string.

 Array Pointer 2 words for fixed array.
 6 words for adaptable array.

 Record Pointer 2 words for fixed record.
 4-6 words for adaptable record.

 Cell copy 1 word. The cell is in the lower 8 bits of the
 word with the upper 8 bits of the word
 undefined.

 Sequence Pointer 6 words for fixed sequence.
 6 words for adaptable sequence.

 Heap Pointer 4 words

 10.3 VARIABLES

 10.3.1 VARIABLE ATTRIBUTES

 10.3.1.1 Read Attribute

 The READ attribute, when associated with a variable, causes compile
 time checking of access to the variable. No provision for execution
 time checking is made.

 10.3.1.2 #Gate Attributes

 The #GATE attribute is carried forward into the object text.

 10-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.3.2 VARIABLE ALLOCATION

 10.3.2 VARIABLE ALLOCATION

 Space for variables is allocated in the order in which they occur in
 the input stream. No reordering is done other than allocating space
 in the stack from high numbered locations to low.

 If a variable is not referenced, no space is reserved.

 10.3.3 VARIABLE ALIGNMENT

 A subset of the ALIGNED feature of the language is implemented. The
 subset provides for guaranteeing addressability only. Any offset or
 base specification is ignored.

 10.4 EXTERNAL REFERENCES

 During the compilation process a hash is computed for each XDCL and
 XREF variable and procedure. The hash is based on an accumulation of
 data typing. In the case of procedures the parameter list is
 included in the process. A loader may check these hash values to
 assure that the data types for all XDCL and XREF items agree.

 10.5 PROCEDURE REFERENCES

 The following registers are used to pass information on a procedure
 call:

 a) External Procedure: DSP - Dynamic Space Pointer
 CSF - Current Stack Frame Pointer

 b) Internal Procedure: DSP - Dynamic Space Pointer
 CSF - Current Stack Frame Pointer
 SL - Static Link

 10.6 FUNCTION REFERENCE

 A function is a procedure that returns a value. As such, the
 register conventions are identical to those for procedure references.

 10-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.6 FUNCTION REFERENCE

 The function value is returned in a register or in memory depending
 on the type of value being returned.

 The function value is returned right aligned with sign extended or
 zero filler bits on the left as appropriate in D-register RV (D7) if
 the function value is a simple pointer or a scalar.

 For a longreal, the function value is returned in registers D6 and
 D7.

 If the function value is not of a type described above, the result is
 stored left justified as the first element of the parameter list.
 The second element of the parameter list, in this case, specifies the
 first actual parameter. For example, this may occur if a function
 returns a pointer to a non-fixed type such as an adaptable array.
 The pointer does not fit in a register, and therefore the parameter
 list is used.

 10.7 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

 In the code sequences, symbols will be used to designate registers as
 follows:

 A7 - DYNAMIC SPACE POINTER - DSP
 A6 - CURRENT STACK FRAME POINTER - CSF
 A4 - STATIC LINK - SL
 D7 - RETURNED VALUE - RV

 Except for a function return value in D7 (and D6 for longreals), the
 condition codes and the following registers are undefined on return
 from a function:

 D0-D2/D6-D7/A0-A1/A5

 Thus, the responsibilities for preserving registers are as follows:

 caller: D0-D2/D6-D7/A0-A1/A5
 callee: D3-D5/A2-A4/A6

 10.7.1 PROCEDURE CALL

 The following illustrate instruction sequences for procedure calls:

 10-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.7.1 PROCEDURE CALL

 External Procedure without Parameters

 MOVEM.L reglist,own_regs(CSF) Save Caller Resp Regs
 JSR external_procedure Call Procedure
 MOVEM.L own_regs(CSF),reglist Restore Caller Resp Regs

 Internal Procedure and Static Link (SL)

 MOVEA.L CSF,SL Static Link
 MOVEM.L reglist,own_regs(CSF) Save Caller Resp Regs
 BSR internal_proc Call Procedure
 MOVEM.L own_regs(CSF),reglist Restore Caller Resp Regs

 Pointer to Procedure

 MOVEM.L proc_ptr(base),A0/SL Proc Addr & Static Link
 MOVEM.L reglist,own_regs(CSF) Save Caller Resp Regs
 JSR (A0) Call Procedure
 MOVEM.L own_regs(CSF),reglist Restore Caller Resp Regs

 Setup Argument List on Procedure Call

 internal_proc(A,B,C,D) CYBIL statement

 LEA -args_len(DSP),DSP Adv Top of Stack
 MOVEA.L DSP,A0 Argument List Base
 CLR.W (A0)+ 1-byte parameter
 MOVE.B A(CSF),-2(A0)
 MOVE.W B(CSF),(A0)+ 1-word parameter
 MOVE.L C(CSF),(A0)+ 2-word parameter
 MOVE.L D(CSF),(A0)+ 3-word parameter
 MOVE.W D+4(CSF),(A0)+
 MOVEM.L reglist,own_regs(CSF) Save Caller Resp Regs
 BSR internal_proc Call Procedure
 MOVEM.L own_regs(CSF),reglist Restore Caller Resp Regs
 LEA args_len(DSP),DSP Pop Parameters

 10.8 PROLOG

 The basic instruction sequence for the prolog is as follows:

 10-10
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.8 PROLOG

 prolog:
 LINK CSF,#-frame_size Form Dyn Link & Update DSP
 MOVEM.L reglist,callers(CSF) Save Callee Resp Regs

 If the frame_size is greater than 15 bits, the following instruction
 sequence is used instead of the LINK instruction:

 LINK CSF,#-32766 Form Dynamic Link
 SUBA.L #frame_size-32766,DSP Update DSP

 If the display must be copied, the prolog is as follows:

 prolog:
 LINK CSF,#-frame_size Dynamic Link & Update DSP
 MOVEM.L reglist,callers(CSF) Save Callee Resp Regs

 LEA display(SL),A0 Address to copy display from
 LEA display(CSF),A1 Address to copy display to
 MOVE.W #lex_level-1,D0 Number of entries to copy - 1

 copy_display:
 MOVE.L -(A0),-(A1)
 DBF D0,copy_display

 MOVE.L SL,-(A1) Add Static Link to display

 If the number of display entries to be copied is small, a loop will
 not be used.

 For a value parameter, if the parameter list contains a pointer to
 the actual parameter, the prolog must copy the parameter to the Fixed
 Size Part of the stack frame, e.g.,

 MOVE.L arg_n(CSF),A0 Address to copy from
 LEA fixed_place(CSF),A1 Address to copy to
 MOVE.W #arg_size-1,D0

 copy_arg:
 MOVE.W (A0)+,(A1)+
 DBF D0,copy_arg

 10.9 EPILOG

 The basic instruction sequence for the epilog is as follows:

 10-11
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.9 EPILOG

 epilog:
 MOVEM.L callers(CSF),reglist Restore Callee Resp Regs
 UNLK CSF DSP := CSF
 DSP := DSP + 4
 CSF := (DSP)
 RTS Return

 10.10 RUN TIME LIBRARY

 The run time library consists of a set of modules containing object
 code which generated code may reference. With the exception of the
 arithmetic routines, run time library routines use normal calling
 conventions.

 The run time library contains the following modules:

 o CYM$ALLOCATE - Contains procedure CYP$ALLOCATE for allocating a
 block in the system heap or in a user heap.

 o CYM$FREE - Contains procedure CYP$FREE for freeing a block in
 the system heap or in a user heap.

 o CYM$NILERR - Contains procedure CYP$NIL to process calls to a
 NIL pointer to procedure, and contains procedure CYP$ERROR to
 process CYBIL run time detected errors.

 o CYM$STRINGREP - Contains procedure CYP$STRINGREP for the
 STRINGREP built-in procedure.

 o CYM$MPY - Contains procedure CYP$MPY_4_BYTES_BY_4_BYTES for
 integer multiplication.

 o CYM$DIV - Contains procedure CYP$DIV_4_BYTES_BY_4_BYTES for
 integer division.

 o CYM$MOD - Contains procedure CYP$MOD_4_BYTES_BY_4_BYTES for
 integer remainder.

 In addition to the above, there may be other compiler-related
 modules. Also, the run time library may contain other miscellaneous
 utility modules, which are not compiler-related.

 10-12
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT
 10.11 HEAP MANAGEMENT

 10.11 HEAP MANAGEMENT

 The system heap is managed by making calls to the operating system to
 dynamically allocate and free memory.

 User heaps are managed using run time routines. These run time
 routines provide for allocating and freeing blocks of storage within
 a storage area, along with combining adjacent free blocks.

 11-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING

 The Pcode data formats for each of the supported CYBIL data types is
 described in the following sections. These data mappings are
 compatible with the UCSD version IV.0 format.

 The Pcode interpreter supports three basic data types as follows:

 o Bits
 o Bytes (8 bits)
 o Words (16 bits)

 Integers are represented in two's complement form.

 Quoting any combination of the CYBIL alignment attribute will result
 in word alignment.

 11.1 POINTERS

 A pointer consists of an address field of 2 bytes and, for certain
 pointer types, a descriptor. The address field contains a 16-bit
 address of the first byte of the object (data or procedure).

 The value of the nil data pointer is constructed via the LDCN pcode
 instruction whose normal value is:

 0001 (16)

 The address field for a nil procedure pointer is described in the
 paragraph on procedure pointers.

 With the exception of pointers to string and pointers to sequences,
 pointers to fixed size data objects consist of the address field
 only.

 A pointer to string consists of an even, 2-byte address field
 followed by a 2-byte field indicating the starting byte offset of the
 possible substring. A value of zero indicates the first character
 position of the string and the bytes are numbered consecutively.

 A pointer to a sequence consists of the 2-byte address field followed
 by 2 2-byte fields indicating the size of the sequence in words, and
 the word offset to the next available position in the sequence.

 11-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.1.1 ADAPTABLE POINTERS

 11.1.1 ADAPTABLE POINTERS

 Adaptable pointers are identical to pointers to the corresponding
 fixed type with the exception that the pointer consists of the
 address field and a descriptor containing information such as the
 size of the structure.

 An adaptable string pointer consists of the 2-byte address field,
 followed by a 2-byte position indicator, followed by a 2-byte size
 field indicating the length of the string in bytes.

 An adaptable array pointer consists of the 2-byte address field
 followed by 3 2-byte fields indicating the array size, the lower
 bound and the upper bound. The value for the array size is in words
 independent of packing.

 An adaptable sequence pointer consists of the 2-byte address field
 followed by 2 2-byte fields indicating the size of the sequence in
 words, and the word offset to the next available position in the
 sequence.

 An adaptable heap pointer consists of the 2-byte address field
 followed by a 2-byte size field containing the size of the heap in
 words.

 An adaptable record pointer consists of the 2-byte address field
 followed by one of the above descriptors depending on the adaptable
 field of the record. Thus, if the adaptable field is a string, the
 adaptable record pointer consists of a 2-byte address field, followed
 by a 2-byte position indicator, followed by a 2-byte size field
 indicating the length of the string in bytes.

 11.1.2 PROCEDURE POINTERS

 A procedure pointer consists of a 2-byte field containing the
 procedure number, followed by a 2-byte pointer to E_rec field,
 followed by a 2-byte static link.

 A level 0 procedure does not require a static link. Therefore, the
 nil data pointer is used.

 For a nil procedure pointer, the address field contains the address
 of a run time library procedure which handles the call as an error,
 and the static link field contains a nil data pointer.

 11-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.1.3 BOUND VARIANT RECORD POINTERS

 11.1.3 BOUND VARIANT RECORD POINTERS

 A bound variant record pointer consists of the 2-byte address field
 followed by a 2-byte size field, containing the size of the record in
 words.

 11.1.4 POINTER ALIGNMENT

 All pointer types are word aligned.

 11.2 INTEGERS

 Integer types are allocated 16 bits.

 An unpacked integer type is word aligned.

 A packed integer type is word aligned.

 An integer variable is mapped as an unpacked integer type.

 11.3 CHARACTERS

 An unpacked character type is allocated 16 bits and is right
 justified on a word boundary.

 A packed character type is allocated 8 bits and is bit aligned.

 A character variable is mapped as an unpacked character type.

 11.4 ORDINALS

 Ordinal types are mapped as the integer subrange 0..n-1, where n is
 the number of elements in the ordinal type.

 11.5 SUBRANGES

 11.5.1 WITHIN INTEGER DOMAIN

 An unpacked integer subrange type is allocated a word (16 bits) and
 is word aligned.

 A packed subrange type, a..b, with a negative is allocated and

 11-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.5.1 WITHIN INTEGER DOMAIN

 aligned as an unpacked integer subrange type. If a is non-negative
 then it is bit aligned and it has its allocated bit length, L,
 computed as follows:

 L:= CEILING (LOG2(b+1))

 A subrange variable is mapped as an unpacked subrange type.

 11.5.2 OUTSIDE INTEGER DOMAIN

 Subranges of integer type can encompass the range -32768 .. 32767.
 For these large subranges, the implementation for packed will be the
 same as that for unpacked. This requires a minimum of 3 words, the
 first reserved for sign, the remaining to contain four digits per
 word, four bits per digit.

 For the subrange a .. b, let
 n := number_of_digits (max (abs (a), abs (b)))
 then the number of data words required, would be:
 n #words
 5..8 3
 9..12 4
 13..16 5

 The internal representation of long subranges is as binary integers.

 11.6 BOOLEANS

 An unpacked boolean type is allocated 16 bits right justified on a
 word boundary.

 A packed boolean type is allocated 1 bit and is bit aligned.

 A boolean variable is mapped as an unpacked boolean type.

 The internal value used for FALSE is zero and for TRUE is one.

 11.7 REALS

 Real types are allocated 32 bits.

 An unpacked real type is word aligned.

 A packed real type is word aligned.

 A real variable is mapped as an unpacked real type.

 11-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.7 REALS

 See the UCSD P-system Internal Architecture Guide, page 14, for the
 internal representation of real numbers.

 11.8 LONGREALS

 Treated the same as reals.

 11.9 SETS

 The number of contiguous bits required to represent a set is the
 number of elements in the base type of the associated set type. The
 rightmost bit represents the first element, the next bit represents
 the second element, etc.

 An unpacked set type is allocated a field of enough words to contain
 the set elements. The set field is word aligned.

 Example -
 TYPE
 S1 = SET OF 150..156;
 VAR
 A: S1;

 Set A resides as follows:

 15 0
 +---+
 n+0| |156|155|154|153|152|151|150|
 +---+

 A packed set type is mapped as an unpacked set type.

 A set variable is mapped as an unpacked set type.

 The maximum size allowed for a set is 4079 elements.

 11.10 STRINGS

 A string type is allocated the same number of bytes as there are
 characters in the string.

 An unpacked string type is word aligned and occupies an integral

 11-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.10 STRINGS

 number of words. Any filler byte is zero.

 A packed string type is word aligned and occupies an integral number
 of words.

 A string variable is mapped as an unpacked string type.

 The maximum length of a string is limited to 32767 characters.

 In many respects a string is represented as a packed array of
 character. String constants reside in the constant pool with the odd
 character positions occupying the lower portion of each word. The
 even character positions occupy the upper portion of each word.

 11.11 ARRAYS

 An unpacked array type is a contiguous list of aligned instances of
 its component type. The array is aligned on a word boundary and
 occupies an integral number of words.

 A packed array type is a contiguous list of unaligned instances of
 its component type with the restriction that the component type can
 not cross word boundaries. The array is aligned on its first element
 and occupies as many bits as needed.

 An array variable is mapped as an unpacked array type.

 In general, array sizes are limited by storage availability.

 11.12 RECORDS

 An unpacked record type is a contiguous list of aligned fields. It
 is aligned on a word boundary, and occupies an integral number of
 words.

 A packed record type is a contiguous list of unaligned fields with
 the restriction that a component field can not cross word boundaries.
 It is aligned on its first field, and occupies as many bits as
 needed.

 A record variable is mapped as an unpacked record type.

 11-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.13 SEQUENCES

 11.13 SEQUENCES

 A sequence type consists of the data area required to contain the
 span(s) requested by the user. A sequence type is always word
 aligned, and occupies an integral number of words.

 11.14 HEAPS

 11.14.1 SYSTEM HEAP

 The system heap is as described in the UCSD manuals.

 11.14.2 USER HEAPS

 A user heap consists of a Free Chain Header and storage for Allocated
 Blocks and Free Blocks.

 An Allocated Block consists of an Allocated Block Header followed by
 storage for user data.

 A Free Block consists of a Free Block Header followed by storage
 which is available for use.

 A common format is used for all 3 headers as follows:

 15 0
 +--+---------------------+
 |S | SIZE |
 +--+---------------------+
 | FORWARD_FREE_LINK |
 +------------------------+
 | BACKWARD_LINK |
 +------------------------+
 | FORWARD_LINK |
 +------------------------+

 The field, S, indicates the status of the block, AVAILABLE or USED.

 The CYBIL description of the common header format is as follows:

 11-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.14.2 USER HEAPS

 BLOCK_HEADER = PACKED RECORD
 BLOCK_STATUS: (AVAILABLE,USED),
 SIZE: 0..7FFF(16),
 FORWARD_FREE_LINK: 0..0FFFF(16),
 BACKWARD_LINK: 0..0FFFF(16),
 FORWARD_LINK: 0..0FFFF(16),
 RECEND;

 For the Free Chain Header, the fields are as follows:

 BLOCK_STATUS: Set to AVAILABLE
 SIZE: Size of heap
 FORWARD_FREE_LINK: Link to Free Block.
 BACKWARD_LINK: 0
 FORWARD_LINK: 0

 For the Allocated Block Header, the fields are as follows:

 BLOCK_STATUS: Set to USED.
 SIZE: Size of block
 FORWARD_FREE_LINK: Not used
 BACKWARD_LINK: Link to preceeding block
 FORWARD_LINK: Link to succeeding block

 For the Free Block Header, the fields are as follows:

 BLOCK_STATUS: Set to AVAILABLE
 SIZE: Size of Block
 FORWARD_FREE_LINK: Link to succeeding Free Block.
 BACKWARD_LINK: Link to preceeding block
 FORWARD_LINK: Link to succeeding block

 Initially, a user heap consists of the Free Chain Header and a Free
 Block. Typically, an ALLOCATE request is made causing the Free Block
 to be divided into a Free Block and an Allocated Block.

 Adjacent free blocks are always combined as part of FREE request
 processing.

 The amount of storage allocated for a user heap is the sum of the
 following:

 o 8 bytes for the Free Chain Header
 o 8 times the repetition count for each span specified (in order
 to provide for block headers)
 o sum of the spans specified

 11-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING
 11.15 CELLS

 11.15 CELLS

 A cell type is allocated 16 bits and is always word aligned.

 11.16 SUMMARY FOR THE PCODE GENERATOR

 +-----------+---------------------+-------------------+
 | | UNPACKED | PACKED |
 +-----------+-----------+---------+-----------+-------+
 | TYPE | ALIGN | SIZE | ALIGN | SIZE |
 +-----------+-----------+---------+-----------+-------+
 | BOOLEAN | word | word | bit | bit |
 | INTEGER | word | word | word | word |
 | SUBRANGE | word | word | bit | bits |
 | | word | long | | |
 | ORDINAL | word | word | bit | bits |
 | CHARACTER | word | word | bit | byte |
 | STRING | word | words | word | bytes |
 | SET | word | words | word | words |
 | ARRAY | word | words | word | words |
 | RECORD | word | words | word | words |
 | POINTER | word | words | word | words |
 | CELL | word | word | word | word |
 +-----------+-----------+---------+-----------+-------+

 12-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT

 The instructions generated by the CYBIL Pcode generator are per the
 UCSD version IV.0 P-system.

 12.1 MEMORY

 With regard to memory, a CYBIL program has the following parts:

 o Code and Literals
 o Static Storage
 o Stack Heap Area

 12.1.1 CODE AND LITERALS

 Program counter relative addressing is used to refer to code and
 literals except for the following:

 o Pointers to procedures
 o Calls to external procedures

 For the above, full 16-bit addresses are used.

 12.1.2 STATIC STORAGE

 The lifetime of static variables is the life of the program
 execution.

 12.1.3 STACK HEAP AREA

 The Stack Heap area is a storage area for the stack and the system
 heap. The stack grows from high numbered locations to low. The
 system heap grows from low numbered locations to high. If a
 collision occurs, the program aborts.

 12.1.3.1 STACK FRAMES

 The stack frame consists of four parts ordered from high addresses to
 low:

 - Function return value (optional)

 12-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.1.3.1 STACK FRAMES

 - Argument list (optional)

 - Fixed sized part containing all automatic and implied, local
 variables and fixed local copies of non-scalar, value
 parameters (optional)

 - Mark Stack Control Word (MSCW) provided and manipulated by the
 Pcode interpreter during call and RPU Pcode interpretations.

 The first two parts are pushed onto the operand stack as the call is
 being formed. The next part and the MSCW is placed onto the stack by
 the interpreter as part of the call interpretation. The RPU (return)
 instruction causes the discarding of all but the optional return
 value.

 12.1.3.1.1 FUNCTION RETURN VALUE

 A scalar size operand normally. For functions that provide a pointer
 value requiring a descriptor (adaptable, bound variant), the Pcode
 calling/returning sequence may have as many as three words of
 returning value. For functions returning large integer subranges,
 the value may require four to six words.

 12.1.3.2 ARGUMENT LIST

 Each actual parameter is represented in the parameter list as a value
 or a pointer. The pointer may include descriptor information for
 adaptable and bound variant formal parameters.

 Adaptable parameters may be declared such that not all bounds and
 size information is known at compile time. In this case the compiler
 allocates a type descriptor which contains the result of the
 calculation of all variable bounds, and a variable descriptor which
 contains information to locate the base address of the variable bound
 part of the automatic stack. These descriptors are in the argument
 list of the stack frame.

 12.1.3.2.1 FIXED SIZE PART

 The Fixed Size Part contains data which the procedure may access
 directly. The Fixed Size Part contains the following:

 - Automatic Variables

 - Value Parameters

 12-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.1.3.2.1 FIXED SIZE PART

 - Workspace

 Automatic variables and value parameters may be declared such that
 all bounds and size information is known at compile time. In this
 case, the required storage is allocated from the Fixed Size Part of
 the stack frame.

 12.1.3.2.2 MARK STACK CONTROL WORD

 Five full words providing:

 - MSSTAT - pointer to the activation record of the lexical
 parent.

 - MSDYN - pointer to the activation record of the caller.

 - MSIPC - seg-relative byte pointer to point of call in the
 caller.

 - MSENV - E_Rec pointer of the caller.

 - MSPROC - procedure number of caller.

 12.1.4 HEAP

 Memory management for the system heap and user heaps is done via
 calls to standard run time routines.

 12.1.4.1 System Heap

 To allocate space on the system heap a procedure call of the form:

 SYSALLOC (pointer_to_type, number_of_words)

 is generated. To de-allocate space on the system heap a call of the
 form:

 VARDISPOSE (pointer_to_type, number_of_words)

 is generated. The value of NIL is assigned to the variable
 pointer_to_type.

 12-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.1.4.2 User Heap

 12.1.4.2 User Heap

 To allocate space on the user heap a call of the form:

 CYP$ALLOCATE_IN_USER_HEAP(pointer_to_type,number_of_words,
 pointer_to_user_heap)

 is generated. The result of the call is a pointer that has the
 address of the first location allocated in the user heap.

 To de-allocate space on a user heap a call of the form:

 CYP$FREE_IN_USER_HEAP(pointer_to_type,pointer_to_user_heap)

 is generated. The value of NIL is assigned to the reference
 parameter pointer_to_type.

 To reset a user heap a call of the form:

 CYP$RESET_USER_HEAP(pointer_to_user_heap: ^HEAP(*))

 is generated.

 12.2 PARAMETER PASSAGE

 12.2.1 REFERENCE PARAMETERS

 For a reference parameter, a pointer to the data is passed as the
 parameter.

 12.2.2 VALUE PARAMETERS

 There are two styles of passing value parameters. Scalar types and
 sets are passed by copying the value of the variable onto the stack.

 Other structured types are passed by pushing the address of the
 structure. In the prolog of the called procedure, the structure is
 copied into the local data area.

 In order to preserve the string pointer structure (pointer/offset),
 string constants, when appearing as the actual parameter will be
 copied into the caller's local storage as part of the call.

 Adaptable value parameters are passed as if they were reference
 parameters. This is done because there is no mechanism to "PUSH"

 12-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.2.2 VALUE PARAMETERS

 stack space.

 12.3 VARIABLES

 12.3.1 VARIABLE ATTRIBUTES

 12.3.1.1 Variables in Sections

 Using the section attribute on a variable has no effect on the
 variable other than to assure its residence with the static
 variables.

 12.3.1.2 Read Attribute

 The READ attribute, when associated with a variable, causes compile
 time checking of access to the variable. No provision for execution
 time checking is made.

 12.3.1.3 #Gate Attributes

 The #GATE attribute is ignored.

 12.3.2 VARIABLE ALLOCATION

 Space for variables is allocated in the order in which they occur in
 the input stream. No reordering is done other than allocating space
 in the stack from high numbered locations to low.

 If a variable is not referenced, no space is reserved.

 12.3.3 VARIABLE ALIGNMENT

 A subset of the ALIGNED feature of the language is implemented. The
 subset provides for guaranteeing addressability only. Any offset or
 base specification is ignored.

 12.4 EXTERNAL REFERENCES

 During the compilation process a hash is computed for each XDCL and
 XREF variable and procedure. The hash is based on an accumulation of
 data typing. In the case of procedures the parameter list is
 included in the process. A loader may check these hash values to

 12-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.4 EXTERNAL REFERENCES

 assure that the data types for all XDCL and XREF items agree.

 12.5 EXTERNAL NAMES

 The external/entry point names are limited by the UCSD system to be
 the first 8 characters.

 12.6 PROCEDURE REFERENCE

 12.7 FUNCTION REFERENCE

 A function is a procedure that returns a value. The function value
 is returned via the RPU pcode instruction.

 12.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

 12.8.1 PROCEDURE CALL

 A procedure/function call can be separated into several subsequences.
 If the called procedure is a function, then the initial Pcode
 sequence causes room for the function return value, e.g.,

 SLDC 0

 would be appropriate for an integer function call.

 Because of the high to low allocation mechanism of UCSD stack frames,
 the procedure body of the called function will reference the function
 return value in the last allocated space of its stack frame.

 Should the called procedure have parameters, then the parameter
 values or addresses are pushed onto the stack in the normal left to
 right order. If the formal parameter is of reference type, then the
 address of the actual parameter is pushed. Otherwise, if the
 parameter is of scalar type then its value is pushed, else the
 address is pushed and the procedure's prolog will make a local copy.

 In some cases above where "the address is pushed" is used, if the
 formal parameter requires a descriptor (adaptables and bound variant
 records), then the description is pushed along with the address.

 Within the called procedure, because of the high to low nature of the
 stack frame, the first formal parameter will be allocated the highest
 offset in the frame (just lower than the optional function return
 value). This repeats with the last parameter having the lowest

 12-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.8.1 PROCEDURE CALL

 offset of all parameters.

 Summarizing, a procedures stack frame is allocated beginning at word
 offset 1 in the following order:

 - Automatic variables and local copies for value, non-scalar
 parameters.

 - Parameter value and address/descriptors in a right to left
 order.

 - Function return value.

 The procedure call Pcode instruction is selected from a set of
 several depending upon the lexicgraphical distance between caller
 and callee. All calls contain the called procedures ordinal. This
 ordinal is a Pcode Generator assigned value assigned from 2 (except
 for PROGRAM declarations which will be given ordinal number 1)
 upwards (p-ord in examples below).

 Examples:

 CPL p-ord Used to call local (child) procedures to the calling
 procedure and its body (i.e., LEX = +1).

 SCPI 1 p-ord Used to call sibling procedures of the calling
 procedure (LEX = 0).

 SCPI 2 p-ord Used to call parent procedures of the calling
 procedure (LEX = -1).

 CPI n p-ord Used to call intermediate, but non-global procedures
 (LEX < -1).

 CPG p-ord Used to call outer level procedures local to this
 module.

 CXG seq p-ord Used to call XREF procedures that are located in
 other compilation units.

 CPF Used to call formal procedures that have been
 introduced in CYBIL text as pointers to procedures.

 12-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.9 PROLOG

 12.9 PROLOG

 All non-scalar, value parameters have an area for a local copy of the
 actual parameter. The prolog for a procedure will contain Pcodes to
 move the data into this local area.

 Parameters of adaptable type are loaded by the calling mechanism in
 reverse order (because of the downward growing operand stack).
 Prolog code appears to reverse this order.

 Implicit within the interpretation of the procedure call Pcodes are
 several functions that classically have been the explicit jobs of
 prolog in Pcode machines.

 Since these will not be present in the PROLOG, but assumed the
 responsibility of the interpreter, it is worthwhile to list them:

 - Stack frame creation - each procedure has a fixed stack frame
 size; the interpreter must "push" this area onto the dynamic
 stack; this size is the datasize word at the head of the
 procedure's code.

 - Mark Stack Control Word (MSCW) located at the head of the stack
 frame.

 12.10 EPILOG

 The epilogue contains only the following:

 RPU size

 Size is the number of words to release from the stack. It is based
 on the two fixed sizes for:

 - Automatic variables and local parameter storage.

 - Actual parameters.

 The value of size for RPU is not necessarily the same as the datasize
 value used by the interpreter in the prolog. It differs by and
 includes the additional size of the actual parameters.

 12-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT
 12.11 RUN TIME LIBRARY

 12.11 RUN TIME LIBRARY

 12.11.1 UNKNOWN AND/OR UNEQUAL LENGTH STRINGS

 Support for unknown and/or unequal length strings is provided by
 calls to standard run time routines.

 12.11.1.1 String Assignment

 For string assignments a call of the following form is provided:

 CYP$MOVE_STRING(pointer_to_left_string,left_string_length,
 pointer_to_right_string,right_string_length).

 12.11.1.2 String Comparison

 For string comparison a function call of the following form is
 provided:

 CYP$COMPARE_STRING (operation, pointer_to_left_string,
 left_string_length, pointer_to_right_string,
 right_string_length) : boolean.

 The boolean function value indicates the result of applying one of
 the six relational operators on the specified strings. The
 relational operators are represented as: equal = 1, not equal = 2,
 greater than or equal = 3, less than = 4, less than or equal = 5, and
 greater than = 6.

 13-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING

 13.1 POINTERS

 For this document the term address means a bit address.

 A pointer to an object of data is composed of the address of the
 first byte of the object plus any information required to describe
 the data.

 The NIL pointer is the following constant:

 NIL: ADDRESS := 000000000000(16).

 Pointers to all fixed size objects contain only the ADDRESS.
 Pointers to adaptable type objects contain the ADDRESS (6 bytes) and
 the descriptor for the adaptable type object (the descriptor
 physically follows the Address).

 13.1.1 ADAPTABLE POINTERS

 Descriptors for adaptable types are word aligned and they have the
 following formats:

 a) STRING - 2 byte size field indicating the length of the string
 (0..65535) in bytes.

 b) ARRAY descriptor:

 ARRAY_DESCRIPTOR = RECORD
 ARRAY_SIZE: INTEGER, " in bits or bytes "
 LOWER_BOUND: INTEGER,
 UPPER_BOUND: INTEGER,
 RECEND.

 The value for the ARRAY_SIZE field is in bits when the array is
 packed and is in bytes when the array is unpacked.

 c) USER HEAP - 6 byte size field indicating the maximum length of
 the structure in bytes.

 d) SEQUENCE - The format of a pointer to an adaptable sequence will
 have the same format as the pointer to a fixed size sequence as
 described below.

 13-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.1.1 ADAPTABLE POINTERS

 e) RECORD - Adaptable records have the descriptor of their adaptable
 field as described above.

 13.1.2 POINTERS TO SEQUENCES

 The 3 word pointer to sequence (fixed or adaptable) has the
 following format:

 SEQUENCE_POINTER = RECORD
 POINTER_SEQUENCE: ADDRESS,
 LIMIT: INTEGER,
 AVAIL: INTEGER,
 RECEND.

 The LIMIT is an offset to the top of the sequence and the AVAIL is
 an offset to the next available location in the sequence.

 13.1.3 PROCEDURE POINTERS

 The 2 word pointer to procedure has the following format:

 PROC_POINTER = RECORD
 ADDRESS_OF_THE_ENTRY_POINT: ADDRESS,
 ADDRESS_OF_MODULE_DATA_BASE: ADDRESS,
 RECEND.

 The second entry of the procedure pointer is the address of the
 data base for the module which contains the entry point.

 The nil procedure pointer is the following constant:

 NIL_PROC_POINTER: PROC_POINTER :=
 [NIL, undefined].

 13.1.4 BOUND VARIANT RECORD POINTERS

 Pointers to bound variant records consist of a 6 byte Address
 right justified in the first word followed by a 6 byte size
 descriptor right justified in the second word.

 13-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.1.5 POINTER ALIGNMENT

 13.1.5 POINTER ALIGNMENT

 Pointer variables occupy a word and are right justified in a word.
 Pointers with descriptors have each field of the descriptor word
 aligned and right justified. Pointer types have this same mapping,
 even in packed structures.

 13.2 RELATIVE POINTERS

 A relative pointer is a 4 byte field which gives the byte offset
 of the object field from the start of the parent:

 RELATIVE_ADDRESS = 0 .. 0FFFFFFFF(16).

 Relative pointers are always byte aligned. The relative pointer
 is constrained to never cross a word boundary.

 13.2.1 ADAPTABLE RELATIVE POINTERS

 Relative pointers referencing adaptable type objects consist of
 the 4 byte relative-address plus a descriptor for the adaptable
 object type. This descriptor physically follows the relative-address
 field. Descriptors for adaptable relative pointer types have the
 alignment and formats described above in the section titled Adaptable
 Pointers.

 13.2.2 RELATIVE POINTERS TO SEQUENCES

 The 3 word relative pointer to sequence (fixed or adaptable) has
 the following format:

 RELATIVE_POINTER_TO_SEQUENCE = RECORD
 RELATIVE_POINTER: RELATIVE_ADDRESS,
 LIMIT: INTEGER,
 AVAILABLE: INTEGER,
 RECEND.

 13.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS

 Relative pointers to bound variant records consist of a 4-byte
 relative_address right justified in the first word followed by a
 6-byte size descriptor right justified in the second word.

 13-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.3 INTEGERS

 13.3 INTEGERS

 Integer type variables are allocated 64 bits and are word aligned.
 The integer value is limited to the rightmost 48 bits of the word.

 Unpacked and packed types are also word aligned even when within a
 structure and never cross a word boundary.

 An integer value is represented by a two's complement binary
 representation in the range of +(2**47-1) to -(2**47).

 13.4 CHARACTERS

 Character types are allocated 8 bits. Unpacked character types
 are right justified in a word. Packed character types are byte
 aligned.

 A character variable is mapped as an unpacked character type and
 it is right aligned in a word.

 13.5 ORDINALS

 Ordinal types are mapped as the subrange 0 .. n-1, where n is the
 number of elements in the ordinal type.

 13-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.6 SUBRANGES

 13.6 SUBRANGES

 An unpacked subrange type is allocated 8 bytes if its lower bound
 is negative; 1 to 8 bytes otherwise (depending on value of upper
 bound). An unpacked subrange type is byte aligned. The subrange is
 constrained to never cross a word boundary.

 A packed subrange type, a .. b, is bit aligned and it has its
 allocated bit length, L, computed as follows:

 if a >= 0, then L = CEILING (LOG2 (b+1))
 if a < 0, then L = 1 + CEILING (LOG2 (MAX (ABS(a), b+1)))

 A subrange variable is mapped as an unpacked subrange type and it
 is right aligned in a word. A subrange with a negative lower bound
 occupies the entire word.

 13.7 BOOLEANS

 An unpacked boolean type is allocated 1 word and it is word
 aligned.

 A packed boolean type is allocated 1 bit and it is bit aligned.

 A boolean variable is mapped as an unpacked boolean type and it is
 right justified in a word.

 The internal value used for FALSE is zero and for TRUE it is one.

 13.8 REALS

 Real type variables are allocated 64 bits and are word aligned.

 Unpacked and packed types are also word aligned when within a
 structure and never cross a word boundary.

 The magnitude of a real value can range from (2**(-28672+47)) to
 (2**(28671+48)).

 13.9 LONGREALS

 Longreal type variables are handled identical to real type
 variables.

 13-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.10 SETS

 13.10 SETS

 The number of contiguous bits required to represent a set is the
 number of elements in the base type of the associated set type. The
 leftmost bit in the set representation corresponds to the first
 element of the base type, the next bit corresponds to the second
 element of the base type, etc.

 An unpacked set type is allocated a field of enough bytes to
 contain the set elements and the set field is byte aligned.

 A packed set type is allocated a field with the number of bits
 necessary to contain the set elements and the set field is bit
 aligned.

 Packed and unpacked set types are left justified in their
 allocated field.

 A set variable is mapped as an unpacked set type.

 The maximum size allowed for a set is 32,768 elements.

 13-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.11 STRINGS

 13.11 STRINGS

 A string type is allocated the same number of bytes as there are
 characters in the string.

 String types are always byte aligned.

 A string variable is word aligned and left justified.

 13.12 ARRAYS

 An unpacked array type is a contiguous list of aligned instances
 of its component type. The array is aligned on a word boundary and
 occupies an integral number of words.

 A packed array type is a contiguous list of unaligned instances of
 its component type. The array is aligned on a byte boundary if its
 element type starts on a byte boundary.

 If the array component type is byte aligned, then it occupies an
 integral number of bytes.

 Array variables are word aligned on the left.

 The size of an array of aligned records will be a multiple of the
 records alignment base.

 In general, the size of arrays are limited by availability of
 sufficient storage.

 13-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.13 RECORDS

 13.13 RECORDS

 An unpacked record type is a contiguous list of aligned fields.
 It is aligned on the boundary of the coarsest alignment of any of its
 fields.

 A packed record type is a contiguous list of unaligned fields. It
 is aligned on the maximum alignment of its component fields.

 The length of a packed record is dependent upon the length and
 alignment of its fields. The representation of a packed record is
 independent of the context in which the packed record is used. In
 this way, all instances of the packed record will have the same
 length and alignment whether they be variables, fields in a larger
 record, elements of an array, etc.

 In an unpacked or packed record, the following field types are
 defined as expandable: character, ordinal, subrange, boolean, and
 set. If an expandable field is followed by a field of dead bits
 which extends to the next field of the record (or to the end of the
 record), then the expandable field is expanded to include as many
 bits as possible up to the next field.

 If a record is byte aligned, then it occupies an integral number
 of bytes.

 The fields are allocated consecutively subject to their alignment
 restrictions.

 Record variables are left aligned in the first word.

 When the ALIGNED feature is used on a field within a record, the
 algorithm used will attempt to satisfy the offset value first (within
 the word being allocated).

 13-9
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.14 STORAGE TYPES

 13.14 STORAGE TYPES

 The amount of storage required for any user declared storage type
 (sequence or heap) may be determined by summing the #SIZE of each
 span plus, in the case of user heaps, some control information.

 13.14.1 HEAPS

 Data in both the default Heap and the User Heap have the following
 format:

 ADDRESS = -1 .. 7FFFFFFFFFFF(16)

 BLOCK_HEADER = PACKED RECORD
 BLOCK_STATUS: (FILLER, AVAIL, USED, INTERNAL),
 FILLER: 0 .. 7FFF(16),
 SIZE: 0..7FFFFFFFFFFF(16),
 FORWARD_FREE_LINK: ALIGNED [2 MOD 8] ADDRESS,
 BACKWARD_LINK: ALIGNED [2 MOD 8] ADDRESS,
 FORWARD_LINK: ALIGNED [2 MOD 8] ADDRESS,
 DATA_AREA: SPACE,
 RECEND.

 For the heap data type, an additional 24 byte header is added for
 each repetition count for each span specified.

 13.14.2 SEQUENCES

 Sequences have the following format:

 SEQUENCE = RECORD
 DATA_AREA: SPACE,
 RECEND.

 As demonstrated the sequence has the space required to contain the
 span(s) requested by the user.

 13.15 CELLS

 A cell type is allocated a byte and is always byte aligned.

 13-10
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING
 13.16 SUMMARY FOR THE CYBER 200

 13.16 SUMMARY FOR THE CYBER 200

 | | | ALIGNMENT |
 | | +----------------------------------+
 | TYPE | SIZE | UNPACKED | PACKED | VARIABLE |
 +---------------+------------+----------+------------+----------+
 | BOOLEAN | bit | RJ word | bit | RJ word |
 +---------------+------------+----------+------------+----------+
 | INTEGER | word | RJ word | RJ word | RJ word |
 +---------------+------------+----------+------------+----------+
 | SUBRANGE | as needed | RJ word | bit | RJ word |
 +---------------+------------+----------+------------+----------+
 | ORDINAL | as needed | RJ word | bit | RJ word |
 +---------------+------------+----------+------------+----------+
 | CHARACTER | byte | RJ word | byte | RJ word |
 +---------------+------------+----------+------------+----------+
 | REAL | word | word | word | word |
 +---------------+------------+----------+------------+----------+
 | LONGREAL | word | word | word | word |
 +---------------+------------+----------+------------+----------+
 | STRING | n bytes | LJ word | byte | LJ word |
 +---------------+------------+----------+------------+----------+
 | SET | as needed | LJ word | bit | LJ word |
 +---------------+------------+----------+------------+----------+
 | ARRAY/RECORD | component | field | unaligned | LJ word |
 | | dependent | alignment| components | |
 +---------------+------------+----------+------------+----------+
 | FIXED POINTER | 6 bytes | RJ word | RJ word | RJ word |
 +---------------+------------+----------+------------+----------+
 | FIXED REL PTR | 4 bytes | RJ word | byte | RJ word |
 +---------------+------------+----------+------------+----------+
 | CELL | byte | LJ word | byte | LJ word |
 +---------------+------------+----------+------------+----------+

 Note: The abbreviations LJ and RJ in the above table stand for left
 and right justification.

 14-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT

 14.1 RUN TIME LIBRARY

 The following interfaces are implicitly callable during the
 execution of any C200 CYBIL program.

 To allocate space in the heap:

 CYP$ALLOCATE
 (VAR alloc_ptr: ^block_header;
 length: half_word {in bytes};
 heap_ptr: ^ARRAY[index_range] OF cell;
 base: 0 .. 0ffffffff(16));

 heap_ptr = NIL => pointer to system heap

 To free an allocated block in a specified heap:

 CYP$FREE (VAR user_space_to_be_freed: ^CELL;
 heap_ptr: ^ARRAY [index_range] OF cell);

 heap_ptr = NIL => pointer to system heap

 To reset a user heap:

 CYP$RESET
 (heap_ptr: ^array [index_range] OF CELL;
 heap_size: 0 .. max_heap_size);

 To determine the string representation of a given type:

 CYP$STRINGREP (VAR dest_size: INTEGER;
 VAR dest: STRING(*);
 elem_list: ARRARY [*] OF put_elem_description_type);

 To process CYBIL runtime detected errors:

 CYP$ERROR (error_number: INTEGER;
 line_number: INTEGER;
 module_name_ptr: ^mod_name);

 To process calls to a NIL pointer to procedure:

 CYP$NIL;

 14-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1 RUN TIME LIBRARY

 To terminate execution gracefully call:

 CYP$TERMINATE;

 14.1.1 RUNTIME ERROR MESSAGES

 0...unequal_string_length 1...adaptable_length_error
 2...subscript_error 3...range_error
 4...undefined_case 5...reset_to_error
 6...stack_size_error 7...tag_fixer_error
 8...span_fixer_error 9...length_fixer_error
 10..subrange_fixer_error 11..division_by_zero
 12..mantissa_error 13..exponent_error
 14..substring_start_error 15..substring_length_error
 16..translate_length_error 17..translate_table_overflow
 18..negative_allocation 19..wrong_size_expr_for_REP
 20..nil_pointer 21..unselected_CASE
 22..free_of_unalloc._block 23..lower_merge_error
 24..upper_merge_error 25..err_no outside msg array

 14.1.2 CYBIL ERROR HANDLER INTERFACE TO VSOS

 Any runtime detected error needs to be communicated to the user
 and then the task terminated. the following VSOS SIL interfaces will
 be used to do this:

 Q5SNDMJC (ptr_to_len_msg, ptr_to_len_of_msg{in bytes},
 ptr_to_msg_msg, ptr_to_msg_to_be_sent,
 ptr_to_status_msg, ptr_to_status,
 ptr_to_errmsg_msg, ptr_to_errmsg);

 After the runtime error message is sent, the task is terminated:

 Q5TERM (termination_state, system_return_code);

 termination_state => ptr to 'ABORT' message

 system_return_code => ptr to 'FATAL' message

 The following comment has been added so that the problem it
 addresses will not be overlooked but the problem itself does not
 affect the CYBIL implementation:

 If the job monitor is to be rewritten in CYBIL, a means must be
 found to allow that task to send a runtime message. Under the
 current mechanism this is not possible.

 14-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1.3 HEAP MANAGEMENT

 14.1.3 HEAP MANAGEMENT

 The basic approach is that within the heap sufficient information
 will be maintained that a chain of free and used space is available.
 On an ALLOCATE, a scan is done from the start of the heap to find
 space sufficient for what is requested; upon finding such a spot it
 is marked as used. Once a space is "allocated", it stays in the same
 place for the life of the data.

 On a FREE request, the space is marked as available and combined
 (if possible) with other adjacent free areas to reduce memory
 fragmentation and, hence, becomes reusable memory. There is no
 attempt made at garbage collection.

 If the programmer has not specified a user heap on the ALLOCATE
 and FREE statements, the compiler assumes the system heap is intended
 to be used.

 Alignment specified on the first field of a record to be allocated
 will be honored by the allocation processor.

 14.1.4 ADDITIONAL DESIGN CONSIDERATIONS

 The following crieria were used in designing the HEAP MANAGEMENT
 MODEL:

 (a) Space that has been FREE'D must be potentially reuseable.

 (b) Space for the SYSTEM HEAP must be obtained thru standard
 VSOS linkages.

 (c) Linkage must be provided so that it is possible to get to
 STATIC space allocated for the SYSTEM HEAP that is not
 necessarily contiguous.

 14.1.5 ALLOCATE

 If the user specifies a non-zero allignment base, ALLOCATE
 performs alignment processing as described in the following section.
 Normal allocation starts on a two word boundary and proceeds as
 follows.

 14-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1.5.1 The Unaligned Allocate

 14.1.5.1 The Unaligned Allocate

 (1) Starting with the forward_free_link in the first heap word,
 search for a block whose size is greater than or equal to
 length requested +24 bytes.

 (2) If the block's size is 40 or more bytes larger than the amount
 needed, split it into two blocks. Allocate the lower block
 to the user, and return the second to the free chain. (A
 lagging pointer points to previous free block.) Return to
 caller.

 Otherwise: Remove the block from the free chain and allocate
 entire block to the user. Return to caller.

 IFEND.

 (3) If the search failed, set alloc_ptr to NIL and return.

 14.1.5.2 The Aligned Allocate

 (4) If alignment_base < 8, go to (1).

 (5) Starting with the forward_free_link in the first heap word,
 search for a block whose size is greater than or equal to space
 requested +24 bytes.
 Compute L = (block offset+24) MOD alignment_base.
 If L=0,
 If block size > (length requested +40),
 Put upper part of block on free chain
 Allocate length requested to user
 Return to caller
 Otherwise:
 Allocate entire block to user
 Return to caller
 ifend
 Otherwise:
 Compute loc_difference = alignment_base-L.
 If length_requested+40 <= block size - loc_difference,
 Put upper part of block on free chain
 Allocate length requested to user
 Otherwise:
 Allocate entire block to user
 ifend

 14-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1.5.2 The Aligned Allocate

 if loc_difference>= 24
 Put block of loc_difference bytes on free chain
 Otherwise:
 Put loc_difference bytes into previous block
 ifend
 ifend
 Return to caller.

 (6) If search failed, set alloc_ptr to NIL and return to caller.

 14.1.6 FREE

 FREE processing inserts the specified block of memory back into
 the free chain. In addition, if the previous or next block, or both,
 are free, they are combined with the current block, as described
 below. FREE processing proceeds as follows.

 (1) If the current block's block_status is not USED, issue an error
 message and abort.
 Otherwise:
 Set combined to false.
 ifend

 (2) If the block below current bock is AVAIL,
 combine current block with previous block by revising its
 size and forward_link. Revise the next blocks backward_link
 and make the lower previous block the current block. Revise
 the forward_free_link in previous free block. Set combined
 to true.
 ifend

 (3) If the block above current block is AVAIL,
 combine current block with the next block by revising the
 current block's size and forward_link. Set the current
 block's block_status to AVAIL. Return to caller.
 Otherwise:
 If combined is true, return to caller.
 Otherwise:
 Put the current block at the head of the free chain in the
 first word of the heap and set its block_status to AVAIL.
 Return to caller
 ifend
 ifend

 14-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1.7 RESET A USER HEAP

 14.1.7 RESET A USER HEAP

 RESET initializes the free-chain header by storing a descriptor in
 the first word of the heap. The word indicates the size of the heap
 and the first usable byte in the heap. The second word is
 initialized by the ALLOCATE procedure. The code necessary to
 accomplish this task is done by a call to a run time routine.

 14.1.8 ESTABLISHING THE SYSTEM HEAP

 The system heap is initialized at run time for the first ALLOCATE
 by calling the VSOS system interface (to obtain memory space):

 Q5MEMORY(ptr_to_space_req_msg,ptr_to_space_req{in words},
 ptr_to_space_acq_msg,ptr_to_space_acq{bit addr})

 This space is then initialized by setting up 3 block_headers:

 (1) block_header (STATUS = USED, SIZE = 0)
 (2) block_header (STATUS = AVAIL, SIZE = space-3*24)
 (3) block_header (STATUS = USED, SIZE = 0)

 If more space is required than is available in the current memory
 space, Q5MEMORY is called again to get more space and then
 block_header (3) of the old space and block_header (1) of the new
 space are linked together so there is always a path from one static
 space to the next.

 The default size requested of Q5MEMORY will be 16384 (32*512)
 words. In the case where the user requests space greater than the
 default the actaul size requested will be passed along to Q5MEMORY.

 14-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1.9 POSSIBLE (HEAP) BLOCK_HEADER SETTINGS

 14.1.9 POSSIBLE (HEAP) BLOCK_HEADER SETTINGS

 BLOCK_HEADER (CYBIL description in STORAGE TYPES sec.):

 | 01 | 48 |
 +----+-----------------------------------+
 | S | SIZE |
 +--+
 | FORWARD_FREE_LINK |
 +--+
 | BACKWARD_LINK |
 +--+
 | FORWARD_LINK |
 +--+
 | |
 | FREE SPACE (OR DATA AREA) | SIZE-24 BYTES
 | |
 | |
 +--+

 Free Block Format:

 S=BLOCK_STATUS: Designates whether block is available or
 used. avail in this case.
 SIZE: Size of block in bytes, limited to 2**47-1.
 FORWARD_FREE_LINK: Offset in bytes to next free block.
 BACKWARD_LINK: Offset to prev. block (alloc. or free).
 FORWARD_LINK: Offset to next block (alloc. or free).

 Allocated Block Format:

 S=BLOCK_STATUS: Set to used in this case.
 Remaining fields are as described above.

 Free Chain Header Format:

 S=BLOCK_STATUS: Set to avail.
 SIZE: Size of heap initially
 FORWARD_FREE_LINK: Set to 24

 14.1.10 RESTRICTIONS

 (1) Allocation occurs on a word boundary. If other than a word

 14-8
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT
 14.1.10 RESTRICTIONS

 boundary is desired, set alignment_base to the desired
 alignment.

 (2) If a Free is done referencing a heap after a RESET of that heap
 (and before the appropriate ALLOCATE), the results are
 undefined.

 (3) Specification of a very large alignment_base value may result
 in no block being allocated even in an empty heap and the value
 NIL returned.

 (4) If any block header information is altered by the user, further
 results are undefined when allocating or freeing in that heap.

 15-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 15.0 PROCEDURE INTERFACE CONVENTIONS

 15.0 PROCEDURE INTERFACE CONVENTIONS

 15.1 INTRODUCTION

 The purpose of this section is to describe the conventions that
 should generally be used by designers of procedural interfaces.

 15.2 PURPOSE

 The purpose of the following conventions is to achieve a software
 system which exhibits the beneficial characteristics of being
 understandable, reliable, efficient, maintainable, etc.

 15.3 GENERAL PHILOSPHY

 o Select simple straightforward interfaces. Complex interfaces,
 those whose description contain 'and', 'or', and conditional
 clauses, impair understanding of the function. If there is not an
 evident choice between a single complex interface and multiple
 simple interfaces, choose the simple interfaces.

 - A single interface encompassing multiple intrinsic functions,
 which cannot be performed in conjunction with one another,
 unduly increases validation overhead. A simple interface for
 each intrinsic function is preferred.

 - If the intrinsic functions encompassed by a single interface
 require different degrees of user privilege, each intrinsic
 function should be a single simple interface.

 - The combination of multiple intrinsic functions into a single
 interface is practical when the functions can logically be
 performed in conjuction with one another.

 o Input parameters should be validated early in the processing when
 the correlation between the potential error and the actual
 parameter is readily identifiable. This aids in ensuring that
 diagnostics accurately reflect the cause of the error.

 o Wherever feasible, delegate the error prognosis to the requestor
 (i.e., return control to the requestor with accurate information
 when an error is detected).

 15-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 15.0 PROCEDURE INTERFACE CONVENTIONS
 15.3 GENERAL PHILOSPHY

 o Refrain from exposing internal structures or concepts via
 externalized interfaces. Before externalizing internal structures
 or concepts rate the probability of change and the user
 consequences (re-code, re-compilation, etc.) if in fact the
 externalization changes.

 15.3.1 INPUT PARAMETER CONVENTIONS

 Input parameters in the following conventions are formal
 parameters in the Xref procedure declaration.

 o Declare all input parameters to be <value params>.

 - If for any reason input parameters are declared as <reference
 params>, the actual parameters must be moved to local automatic
 variables prior to validity check and subsequent usage.
 Further, all input parameters declared as <reference params>
 must be moved before any validation or usage occurs.

 o All input parameters must be checked for validity with explicit
 language statements prior to use. In fact all input parameters
 should be validated before any parameter is used.

 o Input parameters which specify subfunction or function option
 should be discrete parameters (i.e., should not be a field of a
 record).

 15.3.2 PARAMETER TYPING - CYBIL USAGE

 Parameter types are declared in terms of the CYBIL pre-defined
 types or type identifiers which resolve to the pre-defined types.

 o The first inclination should be to declare parameter types as type
 identifiers, declaring their ultimate types with type declarations.

 - The language and general ease of use dictates that ordinal,
 array, and record parameter types be declared as type
 identifiers.

 - For parameter types other than pointer and cell, before
 selecting the pre-defined types consider the following: 1) if
 the concept of the parameter is used by more than one external
 interface, use a type identifier; 2) if the parameter type has
 any significant probability of change, use a type identifier;
 and 3) if the parameter identifier cannot accurately convey the

 15-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 15.0 PROCEDURE INTERFACE CONVENTIONS
 15.3.2 PARAMETER TYPING - CYBIL USAGE

 purpose and intent, use a supportive type identifier.

 o Ordinal or boolean parameter types are preferred over integer or
 integer subrange when declaring subfunction or option parameters.
 If the scope of a boolean parameter type has any significant
 probability of exceeding binary, that parameter type should be
 declared as an ordinal type.

 o Take advantage of the self documenting aspect of ordinals by using
 descriptive ordinal type identifiers and ordinal constant
 identifiers on parameters.

 o An ordinal type should be consistent within itself, that is, there
 should be an evident relationship among the ordinal type identifier
 and the ordinal constant identifiers.

 o An ordinal type should support only one concept.

 o Before utilizing an ordinal subrange in an interface, consider
 defining a new ordinal type. If an ordinal subrange is the
 appropriate choice, declare that subrange as a type identifier.

 o Integer subrange is preferred over integer when declaring numeric
 parameters. Further, the integer subrange should be declared as a
 type identifier and the bounds of the subrange should be specified
 with descriptive constant (CONST) declarations. The low bounds, if
 zero or one, need not be specified with constant declarations.

 o Use a constant (CONST) declaration to specify length of string type
 parameters.

 o Set type provides a mechanism by which multiple subfunctions or
 options may be discretely specified with a single parameter. This
 use of set type is preferred over the use of codes each of which
 specifies a combination of subfunctions or options.

 o Array type parameters will provide a convenient, useful, efficient
 interface in the bounds of the convention objectives if the
 following criteria is achieved

 - The function can be logically performed on multiple arguments
 of the same type (array components) with one request; or the
 function can logically generate multiple values of the same
 type with one request.

 - Each array component can be acted upon (or generated) in
 absence of all other components.

 15-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 15.0 PROCEDURE INTERFACE CONVENTIONS
 15.3.2 PARAMETER TYPING - CYBIL USAGE

 - The result of the function relative to one component has no
 effect on the result of the function for any other component.

 - The order of the components has no bearing on the individual
 results.

 o Record type parameters provide a convenient, useful interface in
 the bounds of the convention objectives if the record can be
 thought of (in the user's sense) as a single unified entity (i.e.,
 no field of the record has particular significance in absence of
 any other field). If a field does not meet this criteria, it
 should be a discrete parameter.

 - A record parameter type will simplify interfaces and be
 convenient when the record is also a parameter of other
 external interface procedures and does not require user
 intialization or manipulation of contents - the user need only
 be concerned with the concept of the parameter, its structure
 and contents are transparent.

 - Each field should have an evident consistent relationship with
 the other fields of the record. Merely being parameters of a
 function does not establish the unified relationship.

 - If a field by itself has particular significance, that field
 should be a discrete parameter. Fields which are subfunction
 or option parameters to a function have such significance and
 should be discrete parameters.

 - A record type parameter should not contain fields which are
 superfluous to the execution of a function. Each field of an
 input parameter record should be essential to the execution of
 the function (i.e., each field should be a required argument).
 Each field of an output parameter record should contain a value
 returned by the function.

 - Record type parameters may contain superfluous fields if the
 fields are present for symmetry with other functions
 supporting the same concept. Use of this direction to
 justify superfluous fields should be minimized - superfluous
 fields will impair user understanding and result in excessive
 re-work at maintenance and extension time.

 - System architecture may dictate that some seemingly
 superfluous fields appear in a record to reserve space for
 data used internally by a function in support of other
 functions relating to the same concept - this is justifiable.

 15-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 15.0 PROCEDURE INTERFACE CONVENTIONS
 15.3.2 PARAMETER TYPING - CYBIL USAGE

 - A record type parameter should be solely an input parameter or
 solely an output parameter (i.e., a record should not contain
 some fields which are input parameters and other fields which
 are output parameters).

 o Input parameters should not be pointers (CYBIL pointer type) to
 internal objects - validation of the pointer object would be
 virtually impossible.

 o Pointers to internal objects (output parameters of CYBIL pointer
 type) must not be returned to the user - unnecessary exposure of
 internal data will result if such pointers are returned.

 o Pointer type formal parameters should be declared only when the
 pointer object of the actual parameter can take one of several
 types (i.e., the pointer object type is not known at compile-time,
 but is resolved at execution-time). The formal parameter pointer
 type should ultimately resolve to '^cell'.

 o Packed structures, adaptable types, and bound variant records have
 some applicability in external interfaces, but their use should be
 the exception rather than the norm.

 16-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 16.0 PROGRAM LIBRARY CONVENTIONS

 16.0 PROGRAM LIBRARY CONVENTIONS

 16.1 DECK NAMING CONVENTIONS

 Deck names have the following format:

 PPCZZZZ
 where

 PP = two character product identifier
 C = one character indicating deck class
 ZZZZ = one to four character mnemonic for uniqueness
 within product

 Allowable codes for deck type are as follows:

 M = CYBIL code module
 X = CYBIL xref declaration (common deck)
 D = CYBIL type and const declarations (common deck)
 H = Documentation header (common deck)
 I = CYBIL internal in-line procedure (common deck)

 Note that decks of type M must consist of exactly one module
 (compilation unit).

 When converting to the source code utility (SCU) all XREF
 declarations, documentation headers and module decks can be renamed.
 The new deck name will have the same three character prefix but the
 suffix (ZZZZ) can be the full name (up to 28 characters) of the item
 contained in the deck.

 16.2 COMMON DECK USAGE

 Common decks are restricted to four classes of usage:

 - XREF declarations to be used by modules accessing procedures or
 variables defined in another module.

 - TYPE and CONST declarations to be shared by modules dealing
 with the same data types or constants.

 - Documentation header text describing an interface. A common
 deck of this type must be called from the module which contains
 the XDCL definition of the interface being described.

 16-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 16.0 PROGRAM LIBRARY CONVENTIONS
 16.2 COMMON DECK USAGE

 - Procedure declarations which may be expanded in-line as part of
 calling modules; as opposed to being called through an
 XDCL/XREF interface. Internal in-line procedures may
 occasionally be the most practical way to implement a "module"
 (in the Structured Design sense) due to performance and/or
 scope considerations. All common decks of this type are
 considered internal interfaces and must be documented
 accordingly. A procedure implemented in this fashion must not
 be dependent on the static chain, i.e. it must be completely
 self-contained.

 16.3 COMMON DECK CONTENT

 16.3.1 DOCUMENTATION HEADER

 16.3.1.1 Procedures

 The procedure documentation header consists of CYBIL comments
 which describe the procedure, its calling sequence and parameters.
 The general format for the procedure documentation header is as
 follows:

 123456789012345...
 1){}
 2){ The purpose of this request is to ...
 3){ whatever this request does.
 4){}
 5){ XXP$REQUEST_NAME (FIRST_PARAM, ...,
 6){ LAST_PARAM)
 7){}
 8){ FIRST_PARAM: (input) This parameter specifies ...
 9){ whatever this parameter specifies.
 10){}
 11){ LAST_PARAM: (output) This parameter specifies ...
 12){ whatever this parameter specifies.
 13){}

 where:
 line 1: blank comment line
 line 2: indent 4: describe the purpose of the request
 line 3: indent 2: for purpose continuation, if necessary
 line 4: blank comment line
 line 5: indent 8: request calling sequence; use all capital
 letters; parameter names must be the same and must be
 in the same order as in the XREFed procedure
 declaration

 16-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 16.0 PROGRAM LIBRARY CONVENTIONS
 16.3.1.1 Procedures

 line 6: indent 10 for parameter continuation if necessary
 line 7: blank comment line
 line 8: indent 1: describe first parameter; specify whether it
 is input, input-output, or output
 line 9: indent 8: for parameter description continuation, if
 necessary
 line 10: blank comment line separates each parameter
 line 13: blank comment line

 Also, when listing parameters one should strive to list all input
 parameters first followed by input-output parameters followed by all
 output parameters unless there is an obvious symmetry with other
 requests that would be violated. The status parameter, if present
 should always be the last parameter on every request.

 16.3.1.2 Data Structures

 Each data structure will include a documentation header consisting
 of CYBIL comments which describe what the structure is for and how it
 is used. The general format is as described for the "purpose"
 section of the procedure header.

 16.3.2 XREF DECLARATION COMMON DECK

 The XREF declaration common deck contains a CYBIL XREF declaration
 followed by a *callc to all of the TYPE or CONST declaration common
 decks ("D" decks) necessary to compile this declaration in isolation
 (assume a CYBIL module only calls one XREF declaration common deck).

 It is very important that all XREF declaration common decks
 perform *callc's (instead of *call) to necessary decks. This
 prevents duplicate definitions of identifiers in the caller's CYBIL
 module.

 Example:

 AMXREWD
 COMMON

 PROCEDURE [XREF] amp$rewind(file_identifier:
 amt$file_identifier;
 wait:ost$wait;
 VAR status:ost$status);

 ?? PUSH (LIST := OFF, LISTEXT:=ON) ??

 16-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 16.0 PROGRAM LIBRARY CONVENTIONS
 16.3.2 XREF DECLARATION COMMON DECK

 *callc amdfid
 *callc osdwnw
 *callc osdstat
 ?? POP ??

 16.3.3 TYPE / CONST DECLARATION COMMON DECK

 The TYPE / CONST declaration common deck contains CYBIL TYPE
 and/or CONST declarations followed by a *callc to all of the
 declaration common decks necessary to compile this common deck in
 isolation.

 It is very important that the declaration common decks perform
 *callc's (instead of *call) to common decks. This prevents duplicate
 definitions of identifiers in the caller's CYBIL module.

 Example:

 AMDNAME
 COMMON

 TYPE
 amt$local_file_name = ost$name;

 *callc osdname

 16.3.4 EXAMPLE DECK

 In order to be certain that interfaces provided for the end-user
 or other functional areas are specified accurately and consistently,
 each contributor should produce an example compilation unit that
 includes references to all type and procedure declarations he/she is
 responsible for and an example of the usage of each interface. By
 compiling all declarations, the checking logic of the compilers will
 aid accuracy and consistency; by trying examples of the interface,
 the contributor will gain a feeling for the efficacy of the
 interface.

 17-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 17.0 CYBIL CODING CONVENTIONS

 17.0 CYBIL CODING CONVENTIONS

 This document specifies the CYBIL coding conventions suggested for
 the CYBIL users. There are several general aims of coding
 conventions which underlie all of the specific proposals that follow:

 1. There are a variety of routine, mundane aspects associated with
 writing programs: a set of coding conventions remove from the
 programmer trivial decisions relating to module format, name
 generation, etc. thereby leaving more time to concentrate on
 important matters.

 2. The primary purpose of documentation and the readability of
 source code is to help someone other than the developer
 understand what is going on.

 3. During the lifetime of a large software product like an operating
 system or a compiler, the average developer will come in contact
 with a large number of modules written by and maintained by many
 other programmers. A consistent set of coding conventions helps
 the programmer "feel at home" with a new module and therefore is
 able to begin doing useful work sooner.

 4. To as great an extent as reasonable, all coding conventions
 should be generated and reinforced by automated methods.

 5. Source code is the ultimate documentation of any program,
 particularly a program written in a higher level language such as
 CYBIL. Therefore, in all CYBIL programming, a consistent
 emphasis should be placed on producing lucid, readable, self-
 documenting code.

 6. All commentary in the source code should be written so that it:
 a) only provides information not readily apparent from reading
 the code and b) is of a sufficiently algorithmic nature such that
 it rarely, if ever, becomes obsolete as changes are made to the
 code.

 17.1 USAGE OF A SOURCE CODE FORMATTER

 The major software tool for generating and enforcing CYBIL coding
 conventions should be the source code formatter (CYBFORM).

 17-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 17.0 CYBIL CODING CONVENTIONS
 17.2 USE OF CYBIL

 17.2 USE OF CYBIL

 . Use block structure to articulate program structure: a declaration
 should always be declared at the "lowest" level possible.

 . Do not use the static chain: in general a procedure should only
 reference arguments, its own automatic variables and static
 variables.

 . In general, interfaces between modules should be procedures or
 functions, not XDCL/XREF variables.

 . Always use label names that describe the process being performed
 by the structured statement to which the label refers.

 . Always repeat the label in the terminating statement of a
 structured statement (the formatter will do this): e.g.:

 /search_symbol_table/
 for i := 1 to 10 do
 ...
 forend /search_symbol_table/;

 . In general avoid the use of type INTEGER; few variables require
 subranges that large.

 . In declarations of procedure parameter lists, always separate each
 formal parameter with a semicolon marking each with a VAR or
 "absence of VAR" as appropriate.

 . Always declare all input parameters before all output parameters
 unless there is an obvious symmetry that would be disturbed.

 . Cover all end cases. CASE statements should cover all statements
 with ELSE being used to cover "unplanned" cases.

 . Procedures and functions should be used for two purposes: 1)
 "subroutines", 2) to "structure" the program thereby making the
 function of the program obvious at a high level.

 . Arguments to procedures should also be used for two purposes: 1)
 "subroutine parameters", 2) as documentation which allows the
 reader to see all data referenced by the procedure by looking at
 the procedure call statement. In the latter case, the formal and
 actual parameter names should be the same.

 17-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 17.0 CYBIL CODING CONVENTIONS
 17.2 USE OF CYBIL

 . Trailing comment delimiter of '}' should be used whenever
 reasonable: i.e., use of EOL as a comment delimiter is
 discouraged.

 . In compound arithmetic, conditional or relational expressions, use
 parenthesis to denote precedence. Do not depend on the language
 operator precedence rules.

 . Avoid the #LOC function like the plague.

 17.3 USE OF THE ENGLISH LANGUAGE

 The key to making programs readable is the usage of meaningful,
 non-cryptic English names for all CYBIL constructs; specifically:

 . When naming type identifiers and record fields, particularly
 fields, consider the way the name will look in the code, not the
 declaration; e.g.:

 TYPE
 program_descriptor = record
 load_map; load_map_options,
 recend,
 load_map_options = record
 file_name : file_name,
 options : (all,nothing),
 recend;
 VAR
 my_program : program_descriptor;
 ...
 my_program.load_map.file_name := "LOADMAP";

 . Procedure and function names should describe the process the
 procedure performs.

 . Labels should always describe the function being performed by the
 structured statement to which they refer; e.g.:

 /search_symbol_table/ {instead of}
 /l1/

 Labels are a powerful documentary aide and their usage is
 encouraged.

 . Booleans should always describe the TRUE condition; e.g.:

 17-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 17.0 CYBIL CODING CONVENTIONS
 17.3 USE OF THE ENGLISH LANGUAGE

 if file_is_open then {instead of}

 if file_switch then

 17.4 CYBIL NAMING CONVENTION

 It cannot be emphasized too strongly that names should be chosen
 for how they will read in the code body of a procedure, not how they
 look in the data declaration. This is particularly true of variables
 and field names in type declarations.

 The system naming convention for the user interfaces is described
 in the System Interface Standard (SIS). That is also the convention
 for linkage (entry-point or external) names. However, local names
 should use no convention other than English. For convenience,
 selected portions of the SIS naming conventions are reproduced below:

 System global names will be generated according to the following
 convention:

 PPC$XXX...

 where:
 PP = is a two character product identifier for the owner of
 this name.
 C = identifies the class of the name.
 $ = is the special character '$'.
 XXX = a meaningful English expression or abbreviation that
 describes or denotes the purpose of the item being named.

 Class of Names:

 C - constant
 E - exception condition name
 F - file
 M - module
 P - procedure
 S - section
 T - type
 V - variable

 17.5 MODULE AND PROCEDURE DOCUMENTATION

 Standard documentation for each module and each XDCLed procedure
 or function within a module should be provided. The procedure

 17-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 17.0 CYBIL CODING CONVENTIONS
 17.5 MODULE AND PROCEDURE DOCUMENTATION

 documentation is also encouraged for local procedures and functions
 as well. Care should be taken to minimize commentary becoming
 outdated as changes are made to the code.

 MODULE <module identifier>;

 { PURPOSE:
 { This should contain the purpose of the module and the
 { reasons for grouping these declarations in the module rather
 { than the purpose of each procedure.
 { DESIGN:
 { This should contain an overview of the module design; i.e.,
 { an outline of how it works in general terms. Usage of
 { specific variables or procedure names is discouraged in this
 { description.

 <procedure or function declaration>;

 { PURPOSE:
 { This should describe the process the procedure or
 { function performs rather than the method used.
 { NOTE:
 { This should contain information of interest to the
 { user or maintainer.

 17.6 TITLE PRAGMATS

 Each module should be titled in the following way:

 <major product identifier>[:<component identifier>...]
 <sp><sp>[[XDCL]]<procedure identifier>|<section identifier>

 for example:
 NOS : task establisher
 [XDCL] pmp$establish_task

 17.7 COMMENTING CONVENTIONS AND GUIDELINES

 In general, comments should be standalone blocks describing why or
 what a series of CYBIL statements are doing. Care should be taken
 not to use comments that will become outdated by detailed changes to
 the code. The basic concept behind comments should be to provide
 nonredundant information. Comments should be preceded and followed
 by a blank line and start in the first available source character on

 17-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 17.0 CYBIL CODING CONVENTIONS
 17.7 COMMENTING CONVENTIONS AND GUIDELINES

 the line. Again, remember that the purpose of comments is to help
 someone other than the original developer of the module understand
 what the module is doing.

 17.8 PROCEDURE AND DATA ATTRIBUTE COMMENT CONVENTIONS

 Comments should also be used to convey software or system
 attributes which are not discernable from CYBIL declarations. These
 comments should be concise and abut CYBIL declaration constructs
 rather than being standalone blocks.

 18-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES

 18.0 EFFICIENCIES

 This section lists a group of programming tips to help the user
 make better utilization of the CYBIL development environment. As
 such, it is not an exhaustive list and will be added to as additional
 hints become known. The CYBIL Project would appreciate any other
 information which may assist the usage of CYBIL.

 These ideas are guidelines, they should be followed only when
 clarity of code is not compromised.

 18.1 SOURCE LEVEL EFFICIENCIES

 18.1.1 GENERAL

 o There is a significant amount of overhead associated with any
 procedure call. If a procedure is being called in a looping
 construct, it may pay to call the procedure once and put the loop
 tests inside the called procedure.

 o References to variables via the static chain in nested procedures
 cause an overhead associated with that reference. In general, a
 procedure should only reference static variables, arguments and
 its own automatic variables.

 o A copy is currently being made of all value parameters. This
 implementation is subject to change.

 o Assignment of records is done with one large move, while record
 comparison is done field by field.

 o Move structures rather than lots of elementary items. This may
 require structuring the elements together especially for this
 purpose.

 o Reference to adaptable structures are slower than references to
 fixed structures because the adaptable has a descriptor field
 which must be accessed.

 o References to fields within a record require no execution penalty.

 o Repeated references to complex data structured (via pointers or
 indexing operations) can be made more efficient by pointing a
 local pointer at the structure and use it to replace the complex

 18-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES
 18.1.1 GENERAL

 references.

 o Inappropriate use of the null string facility can be an expensive
 NOOP.

 o Initialization of static variables incurs no run time overhead.

 o If a record is being initialized with constants at run time it is
 often more efficient to define a statically initialized variable
 of the same type and do record assignment.

 o A packed structure will generally require less space at the
 possible cost of greater overhead associated with access to its
 components. This is because elements of packed structures are not
 guaranteed to lie on addressable memory units.

 o When organizing data within a packed structure it is more space
 efficient to group bit aligned elements together.

 o The STRING data type is a more efficient declaration than a PACKED
 ARRAY OF CHAR.

 o When considering alternative data structures for homogenous data
 the user should first consider ARRAYs, then SEQuences and finally
 HEAPs.

 o When considering alternatives between the HEAP and SEQuence
 storage types, the following should be considered. The HEAP is
 the more inefficient mechanism requiring the greatest overhead in
 terms of space requirements and the more execution overhead.
 SEQuences are the more efficient in terms of both storage and
 execution overhead.

 o The NEXT and RESET statements as used on sequences and user heaps
 are implemented as inline code. Whereas the implementation for
 ALLOCATE and FREE is a procedure call to run time library
 routines.

 o Space in a heap is consumed only when an ALLOCATE statement is
 executed. In addition to the space ALLOCATEed by the CYBIL
 program, a header is added to maintain certain chaining
 information. For this reason, ALLOCATEing small types incurs a
 large percentage overhead.

 o Code for the PUSH statement is generated inline and, as such, is
 considerably faster than an ALLOCATE and FREE combination.

 18-3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES
 18.1.1 GENERAL

 o When a definition contains a number of 'flags' or attributes, the
 following should be considered when chosing between BOOLEANs or a
 SET type:

 o If the record is not packed the SET will reduce the size of the
 definition
 o Any sub-set of the attributes of a SET can be tested at once.
 o If a single element test is desired an unpacked BOOLEAN is
 slightly more efficient than a SET.

 o Usage of boolean expressions is more efficient than IF statements.
 For example, use:

 equality := (a=b);

 Do not use:

 IF a=b THEN
 equality := TRUE;
 ELSE
 equality := FALSE;
 IFEND;

 o Rather than coding long IF sequences a CASE statement should be
 considered when using a proper selector.

 o Compound boolean expressions should be ordered such that the first
 condition is the one which has the highest probability of
 terminating the condition evaluation for the nominal case.

 o Compile time evaluation of expressions involving constants
 produces better object code if all constants (at the same level)
 in the expression are grouped together. For example, the
 expression:

 X := 5 * Y * C * 2 ;

 will produce object code using two constants (5 and 2) and two
 variables (Y and C). If the expression is rewritten:

 X := 5 * 2 * Y * C;

 with the constants together, the compiler (at compile time) will
 combine the expression "5 * 2" into the constant "10" and produce
 object code to evaluate the expression using only one constant
 (the ten) and two variables (Y and C).

 18-4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES
 18.1.1 GENERAL

 o Range checking code requires additional storage space and is time
 consuming. One can eliminate all generated range checking code by
 setting "CHK=0" on the call statement (or ??SET(CHKRNG:=OFF)?? n
 the source program). Setting CHK=0 on the call statement, while
 debugging programs, is not recommended since legitimate program
 errors may not be diagnosed. A better approach is to request
 range checking on the call statement (or in the source program)
 and then minimize, using good programming practice, the amount of
 checking code generated. Consider the following program segment:

 TYPE
 a = 0..10;
 VAR
 index,y: a,
 x: array [a] of integer;
 .
 y:=5;.
 index:=y:
 x[index] :=3;

 Since variables "index" and "y" are defined to be of type "a" (the
 subrange 0..10) the assignment "index :=y;" will not (and need
 not) be checked for proper range even if range checking is
 requested. Similarly, the statement "x[index] :=3;" will not (and
 need not) contain range checking code. If variables "y" and
 "index" were declared to be INTEGER (or some type other than the
 subrange 0..10) range checking code would be required.

 o Any timed executions should be run after the CYBIL code has been
 built with checking code turned off.

 o Certain conversion functions (i.e.,0RD,CHR,etc.) require no
 execution time overhead.

 o The code generated for STRINGREP is a call to a run time library
 routine.

 o A file should not be opened before it is needed. As soon as a
 file is no longer needed, it should be closed. An overhead is
 involved in opening & closing files. Therefore, unnecessary opens
 & closes should be avoided.

 18.1.2 CC EFFICIENCIES

 o Pointers to strings are inefficient because the string may, in
 general, begin at any character boundary. These pointers may be

 18-5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES
 18.1.2 CC EFFICIENCIES

 created explicitly by assignment statements or implicitly by
 supplying a string as an actual parameter for a call by reference
 formal parameter. If possible, align strings so that they begin
 on a word boundary.

 o Run time routines are called for the string operations of
 assignment & comparison when:

 1) Neither string is aligned or,
 2) Lengths are known and unequal or,
 3) Either or both lengths are unknown at compile time.

 Otherwise the faster inline code is generated.

 o It is possible to modify the buffer size used by the CYBIL I/O
 package. For an explanation see the ERS for CYBIL I/O (ARH2739).
 If there are very few accesses to a file, it may be best to select
 a small buffer, since overall field length will be reduced,
 thereby increasing total system throughput by decreasing swap
 rates, allowing more jobs to run concurrently, etc.

 18.1.3 CI/II EFFICIENCIES

 o The adaptable string bound construct should be quoted whenever
 possible to give the compiler a clue as to the maximum length.
 This will often result in more efficient code being generated for
 adaptable strings.

 o References to XDCL variables and variables declared within a
 SECTION will be made via the binding section and, consequently, an
 overhead is associated.

 o The code generator does not move invariant code out of loops.
 Consequently, access to variables through the binding section
 within a loop would be more efficient if the initial access to the
 variable is outside the loop.

 o The reach of the load & store instructions on the Advanced System
 is limited to 2**16. When using large variables the offset may
 become greater than this threshold and result in an extra
 instruction being generated to handle the large offset. This
 would indicate organizing the more frequently used variables first
 in very large user stacks.

 18-6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES
 18.1.4 CM EFFICIENCIES

 18.1.4 CM EFFICIENCIES

 18.1.5 CP EFFICIENCIES

 o The UCSD p-system does not have an exclusive or instruction.
 Therefore, set references using the XOR operator generates a lot
 of code.

 o Using long integer subranges results in less efficient code.

 o The most commonly used variables should be entered first in the
 list of variables for a procedure. The first n variables in a
 procedure are accessed by a 1 byte instruction, the others by 2
 bytes. Arrays should be the last variables in the list.

 o Using global variables in other modules should be avoided.

 o Avoid FOR statements in favor of WHILE or REPEAT. They are faster
 and produce less code.

 o Nested IF statements are more efficient than a single IF with AND
 connectors. e.g. use:

 IF condition1 THEN
 IF condition2 THEN
 statements...
 IFEND;
 IFEND;

 o Use base 0 for arrays rather than 1. E.g. use "ARRAY [0 .. n-1
]" instead of "ARRAY [1 .. n]".

 18.2 COMPILATION EFFICIENCIES

 If compilation time is a factor the following items could be
 considered as they do affect the compilation rate.

 o The generation of information to interface to the symbolic
 debuggers slows the compilation process.

 o The generation of stylized code slows the compilation process.

 o The generation of range checking code slows the compilation
 process.

 18-7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 18.0 EFFICIENCIES
 18.2 COMPILATION EFFICIENCIES

 o The selection of listings slows the compilation process. This
 includes the source listing, the cross reference listing and the
 attribute list.

 o Generating a source listing with the generated code included is
 slower than if just the source listing is being obtained.

 o Actually, for the normal CYBIL user very little can be done to
 improve the compilation rate. However, rest assure that
 considerable effort has been expended to reduce the number of
 recompilations necessary to produce a debugged program.

 19-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 19.0 IMPLEMENTATION LIMITATIONS

 19.0 IMPLEMENTATION LIMITATIONS

 19.1 GENERAL

 o Maximum number of lines in a single compilation unit is 65535.

 o Maximum number of unique identifiers allowed in a single
 compilation unit is 16383.

 o Maximum number of procedures in a single compilation unit is 999.

 o Procedures can only be nested 255 levels deep.

 o Maximum number of compile time variables used in conditional
 compilations is limited to 1023.

 o Maximum number of error messages printed per module is 2000.

 o Maximum number of elements defined in a single ordinal list is
 limited to 16384.

 o Integer constants are restricted to 48 bits.

 19.2 CC LIMITATIONS

 o Case selector values limited to less than 2**17.

 o Pointer fields within initialized packed records must be aligned
 for use within C170 capsules or overlay capsules.

 19.3 CI/II LIMITATIONS

 o Maximum number of lines in a single compilation unit is 32767 when
 run time error checking is selected.

 o Nesting level of structured statements is limited to 63 levels
 deep.

 o FOR statements can only be nested 15 levels deep.

 o Procedures may only be nested 50 levels deep.

 o Number of parameters passed to an xrefed procedure is 127, while

 19-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 19.0 IMPLEMENTATION LIMITATIONS
 19.3 CI/II LIMITATIONS

 an xrefed function is limited to 126.

 o The reach of jump instructions is limited to 2**16 so the size of
 compilation units should be appropriately controlled.

 o The stack size of a single procedure is limited to 2**15 bytes.

 19.4 CM LIMITATIONS

 19.5 CP LIMITATIONS

 o In general the size of arrays and strings should be limited to
 less than 2**15 bytes.

 o Maximum number of procedures in a single module is limited to 254.

 o The maximum nesting level of procedures is 30.

 o The use of long integer subranges is not allowed in the following
 areas:
 o Array subscripts,
 o As the <first char> or as the <substring length> on any
 string reference,
 o As the selector on a case statement,
 o As a actual parameter to a formal reference parameter of
 type integer.

 o The result of a Stringrep operation on a floating point number is
 limited to 6 digits.

 19.6 CS LIMITATIONS

 20-1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 20.0 COMPILER AND SPECIFICATION DEVIATIONS

 20.0 COMPILER AND SPECIFICATION DEVIATIONS

 This section is intended to provide sufficient detail to be able
 to understand those features where the compiler implementation lags
 the language specification.

 **Indicates plans do not include the implementation of that feature
 in the R1 timeframe.

 20.1 GENERAL

 CYBIL Implementation - Deviations

 o Support for $CHAR. **
 o Support adaptable arrays of zero dimension. **
 o Double Precision Floating Point. **
 o Initialization of static pointers to NIL and zeroing the adaptable
 descriptor fields is not done. **
 o #SIZE of adaptable types. **
 o Run time checking on accessing fields of variant records not
 supported. **
 o Restricting pointers to not point to data with less scope. **

 o Pre-defined identifiers are implemented as reserved words. **

 20.2 CC DEVIATIONS

 o Relative Pointer Types. **
 o General Intrinsics. **
 o Partial condition evaluation on OR operator not supported. **
 o Actual value parameters > 1 word must be addressable. **

 20.3 CI/II DEVIATIONS

 20.4 CM DEVIATIONS

 o Relative Pointers. **
 o General Intrinsics. **

 20-2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 20.0 COMPILER AND SPECIFICATION DEVIATIONS
 20.5 CP DEVIATIONS

 20.5 CP DEVIATIONS

 o Static initialization. **
 o PUSH statement is not supported. **
 o Relative Pointers. **
 o General Intrinsics. **

 20.6 CS DEVIATIONS

 1
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 Table of Contents

 1.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C170 . . . 1-1
 1.1 SES PROCEDURE INTERFACE 1-1
 1.2 THE C170 CYBIL COMMAND 1-1
 1.3 C170 COMMAND PARAMETERS 1-2
 1.4 INTERACTIVE CYBIL ON C170 1-6
 1.5 BATCH CYBIL ON C170 1-7

 2.0 COMPILING AND EXECUTING CYBIL PROGRAMS ON THE C180 . . . 2-1
 2.1 THE CYBIL COMMAND . 2-1
 2.2 C180 COMMAND PARAMETERS 2-2
 2.3 INTERACTIVE CYBIL ON C180 2-6
 2.4 BATCH CYBIL ON C180 2-7

 3.0 APPLICABLE DOCUMENTS 3-1
 3.1 GENERAL . 3-1
 3.2 C170 . 3-1
 3.3 ADVANCED SYSTEM . 3-1
 3.4 MC68000 . 3-1
 3.5 PCODE . 3-1
 3.6 C200 . 3-1

 4.0 COMMON CYBIL COMPILER FRONT END 4-1
 4.1 INLINE PROCEDURES IMPLEMENTATION 4-1
 4.2 SOURCE LAYOUT CONSIDERATIONS 4-2

 5.0 CYBIL-CC DATA MAPPINGS 5-1
 5.1 UNPACKED BASIC TYPES 5-1
 5.1.1 UNPACKED INTEGER 5-1
 5.1.2 UNPACKED CHARACTER 5-2
 5.1.3 UNPACKED ORDINAL 5-2
 5.1.4 UNPACKED BOOLEAN 5-2
 5.1.5 UNPACKED SUBRANGE 5-3
 5.1.6 UNPACKED REAL . 5-3
 5.1.7 UNPACKED LONGREAL 5-3
 5.1.8 POINTER TO FIXED TYPES 5-4
 5.1.9 POINTER TO STRING 5-4
 5.1.10 POINTER TO SEQUENCE 5-4
 5.1.11 POINTER TO PROCEDURE 5-5
 5.1.12 UNPACKED SET . 5-5
 5.1.13 UNPACKED STRING 5-5
 5.1.14 UNPACKED ARRAY 5-6
 5.1.15 UNPACKED RECORD 5-6
 5.2 OTHER TYPES . 5-6
 5.2.1 ADAPTABLE POINTERS 5-6
 5.2.1.1 Adaptable Array Pointer 5-7
 5.2.1.2 Adaptable String Pointer 5-7
 5.2.1.3 Adaptable Sequence Pointer 5-7
 5.2.1.4 Adaptable Heap Pointer 5-8

 2
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 5.2.1.5 Adaptable Record 5-8
 5.2.2 BOUND VARIANT RECORD POINTERS 5-8
 5.2.3 STORAGE TYPES . 5-8
 5.2.3.1 Sequences . 5-8
 5.2.3.2 Heaps . 5-9
 5.2.3.2.1 FREE BLOCKS 5-9
 5.2.3.2.2 ALLOCATED BLOCKS 5-10
 5.2.4 CELLS . 5-10
 5.3 PACKED DATA TYPES . 5-10
 5.4 SUMMARY FOR THE C170 5-12

 6.0 CYBIL-CC RUNTIME ENVIRONMENT 6-1
 6.1 STORAGE LAYOUT OF A CYBIL-CC PROGRAM 6-1
 6.2 REGISTER USAGE . 6-1
 6.3 LINKAGE WORD . 6-2
 6.4 STACK FRAME LAYOUT 6-3
 6.5 CALLING SEQUENCES . 6-3
 6.5.1 PROCEDURE ENTRANCE (PROLOG) 6-3
 6.5.2 PROCEDURE EXIT (EPILOG) 6-3
 6.5.3 CALLING A PROCEDURE 6-3
 6.6 PARAMETER PASSAGE . 6-4
 6.6.1 REFERENCE PARAMETERS 6-4
 6.6.2 VALUE PARAMETERS 6-4
 6.7 RUN TIME LIBRARY . 6-4
 6.7.1 MEMORY MANAGEMENT 6-4
 6.7.1.1 Memory Management Categories 6-4
 6.7.1.2 Stack Management 6-5
 6.7.1.3 Default Heap Management 6-5
 6.7.1.4 User Heap Management 6-6
 6.7.1.5 CMM Error Processing 6-6
 6.7.2 I/O . 6-6
 6.7.3 SYSTEM DEPENDENT ACCESS 6-7
 6.8 VARIABLES . 6-7
 6.8.1 VARIABLES IN SECTIONS 6-7
 6.8.2 GATED VARIABLES 6-7
 6.8.3 VARIABLE ALLOCATION 6-7
 6.8.4 VARIABLE ALIGNMENT 6-7
 6.9 STATEMENTS . 6-7
 6.9.1 CASE STATEMENTS 6-7
 6.9.2 INTER-OVERLAY PROCEDURE CALL 6-8

 7.0 CYBIL-CI/II TYPE AND VARIABLE MAPPING 7-1
 7.1 POINTERS . 7-1
 7.1.1 ADAPTABLE POINTERS 7-1
 7.1.2 POINTERS TO SEQUENCES 7-2
 7.1.3 PROCEDURE POINTERS 7-2
 7.1.4 BOUND VARIANT RECORD POINTERS 7-3
 7.1.5 POINTER ALIGNMENT 7-3
 7.2 RELATIVE POINTERS . 7-3
 7.2.1 ADAPTABLE RELATIVE POINTERS 7-4
 7.2.2 RELATIVE POINTERS TO SEQUENCES 7-4

 3
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 7.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS 7-4
 7.3 INTEGERS . 7-5
 7.4 CHARACTERS . 7-5
 7.5 ORDINALS . 7-5
 7.6 SUBRANGES . 7-5
 7.7 BOOLEANS . 7-5
 7.8 REALS . 7-6
 7.9 LONGREALS . 7-6
 7.10 SETS . 7-7
 7.11 STRINGS . 7-8
 7.12 ARRAYS . 7-8
 7.13 RECORDS . 7-9
 7.14 STORAGE TYPES . 7-10
 7.14.1 HEAPS . 7-10
 7.14.2 SEQUENCES . 7-10
 7.15 CELLS . 7-10
 7.16 SUMMARY . 7-10

 8.0 CYBIL-CI/II RUN TIME ENVIRONMENT 8-1
 8.1 REGISTER ASSIGNMENT 8-1
 8.2 STACK FRAME DEFINITION 8-3
 8.2.1 FIXED SIZE PART 8-4
 8.2.2 VARIABLE SIZE PART 8-5
 8.3 PARAMETER PASSAGE . 8-6
 8.3.1 REFERENCE PARAMETER 8-6
 8.3.2 VALUE PARAMETERS 8-6
 8.4 BINDING SECTION DESCRIPTION 8-7
 8.5 EXECUTION ENVIRONMENT 8-8
 8.5.1 VARIABLES . 8-8
 8.5.1.1 Variable Attributes 8-8
 8.5.1.1.1 READ ATTRIBUTE 8-8
 8.5.1.1.2 #GATE ATTRIBUTE 8-8
 8.5.1.2 Variable Allocation 8-9
 8.5.1.3 Variable Alignment 8-9
 8.5.2 STATEMENTS . 8-9
 8.5.2.1 CASE Statement 8-9
 8.5.2.2 Records . 8-9
 8.6 EXTERNAL REFERENCES 8-9
 8.7 PROCEDURE REFERENCES 8-10
 8.8 FUNCTION REFERENCES 8-10
 8.9 RUN TIME LIBRARY . 8-11
 8.9.1 HEAP MANAGEMENT 8-11
 8.9.2 I/O . 8-11

 9.0 CYBIL-CM/IM TYPE AND VARIABLE MAPPING 9-1
 9.1 POINTERS . 9-1
 9.1.1 ADAPTABLE POINTERS 9-2
 9.1.2 PROCEDURE POINTERS 9-2
 9.1.3 BOUND VARIANT RECORD POINTERS 9-3
 9.1.4 POINTER ALIGNMENT 9-3
 9.2 INTEGERS . 9-3

 4
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 9.3 CHARACTERS . 9-3
 9.4 ORDINALS . 9-4
 9.5 SUBRANGES . 9-4
 9.6 BOOLEANS . 9-4
 9.7 REALS . 9-4
 9.8 LONGREALS . 9-5
 9.9 SETS . 9-5
 9.10 STRINGS . 9-6
 9.11 ARRAYS . 9-6
 9.12 RECORDS . 9-6
 9.13 SEQUENCES . 9-7
 9.14 HEAPS . 9-7
 9.15 CELLS . 9-9
 9.16 SUMMARY FOR THE MC68000 9-9

 10.0 CYBIL-CM/IM RUN TIME ENVIRONMENT 10-1
 10.1 MEMORY . 10-1
 10.1.1 CODE . 10-1
 10.1.2 STATIC STORAGE 10-1
 10.1.3 STACK . 10-1
 10.1.3.1 Stack Frame 10-1
 10.1.3.1.1 FIXED SIZE PART 10-2
 10.1.3.1.2 VARIABLE SIZE PART 10-3
 10.1.3.1.3 ARGUMENT LIST PART 10-3
 10.1.3.1.4 P-REGISTER PART 10-4
 10.1.4 SYSTEM HEAP . 10-4
 10.1.5 REGISTERS . 10-4
 10.2 PARAMETER PASSAGE 10-5
 10.2.1 REFERENCE PARAMETERS 10-5
 10.2.2 VALUE PARAMETERS 10-5
 10.3 VARIABLES . 10-6
 10.3.1 VARIABLE ATTRIBUTES 10-6
 10.3.1.1 Read Attribute 10-6
 10.3.1.2 #Gate Attributes 10-6
 10.3.2 VARIABLE ALLOCATION 10-7
 10.3.3 VARIABLE ALIGNMENT 10-7
 10.4 EXTERNAL REFERENCES 10-7
 10.5 PROCEDURE REFERENCES 10-7
 10.6 FUNCTION REFERENCE 10-7
 10.7 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES 10-8
 10.7.1 PROCEDURE CALL 10-8
 10.8 PROLOG . 10-9
 10.9 EPILOG . 10-10
 10.10 RUN TIME LIBRARY 10-11
 10.11 HEAP MANAGEMENT . 10-12

 11.0 CYBIL-CP/IP TYPE AND VARIABLE MAPPING 11-1
 11.1 POINTERS . 11-1
 11.1.1 ADAPTABLE POINTERS 11-2
 11.1.2 PROCEDURE POINTERS 11-2
 11.1.3 BOUND VARIANT RECORD POINTERS 11-3

 5
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 11.1.4 POINTER ALIGNMENT 11-3
 11.2 INTEGERS . 11-3
 11.3 CHARACTERS . 11-3
 11.4 ORDINALS . 11-3
 11.5 SUBRANGES . 11-3
 11.5.1 WITHIN INTEGER DOMAIN 11-3
 11.5.2 OUTSIDE INTEGER DOMAIN 11-4
 11.6 BOOLEANS . 11-4
 11.7 REALS . 11-4
 11.8 LONGREALS . 11-5
 11.9 SETS . 11-5
 11.10 STRINGS . 11-5
 11.11 ARRAYS . 11-6
 11.12 RECORDS . 11-6
 11.13 SEQUENCES . 11-7
 11.14 HEAPS . 11-7
 11.14.1 SYSTEM HEAP . 11-7
 11.14.2 USER HEAPS . 11-7
 11.15 CELLS . 11-9
 11.16 SUMMARY FOR THE PCODE GENERATOR 11-9

 12.0 CYBIL-CP/IP RUN TIME ENVIRONMENT 12-1
 12.1 MEMORY . 12-1
 12.1.1 CODE AND LITERALS 12-1
 12.1.2 STATIC STORAGE 12-1
 12.1.3 STACK HEAP AREA 12-1
 12.1.3.1 STACK FRAMES 12-1
 12.1.3.1.1 FUNCTION RETURN VALUE 12-2
 12.1.3.2 ARGUMENT LIST 12-2
 12.1.3.2.1 FIXED SIZE PART 12-2
 12.1.3.2.2 MARK STACK CONTROL WORD 12-3
 12.1.4 HEAP . 12-3
 12.1.4.1 System Heap 12-3
 12.1.4.2 User Heap 12-4
 12.2 PARAMETER PASSAGE 12-4
 12.2.1 REFERENCE PARAMETERS 12-4
 12.2.2 VALUE PARAMETERS 12-4
 12.3 VARIABLES . 12-5
 12.3.1 VARIABLE ATTRIBUTES 12-5
 12.3.1.1 Variables in Sections 12-5
 12.3.1.2 Read Attribute 12-5
 12.3.1.3 #Gate Attributes 12-5
 12.3.2 VARIABLE ALLOCATION 12-5
 12.3.3 VARIABLE ALIGNMENT 12-5
 12.4 EXTERNAL REFERENCES 12-5
 12.5 EXTERNAL NAMES . 12-6
 12.6 PROCEDURE REFERENCE 12-6
 12.7 FUNCTION REFERENCE 12-6
 12.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES 12-6
 12.8.1 PROCEDURE CALL 12-6
 12.9 PROLOG . 12-8

 6
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 12.10 EPILOG . 12-8
 12.11 RUN TIME LIBRARY 12-9
 12.11.1 UNKNOWN AND/OR UNEQUAL LENGTH STRINGS 12-9
 12.11.1.1 String Assignment 12-9
 12.11.1.2 String Comparison 12-9

 13.0 CYBIL-CS/SS TYPE AND VARIABLE MAPPING 13-1
 13.1 POINTERS . 13-1
 13.1.1 ADAPTABLE POINTERS 13-1
 13.1.2 POINTERS TO SEQUENCES 13-2
 13.1.3 PROCEDURE POINTERS 13-2
 13.1.4 BOUND VARIANT RECORD POINTERS 13-2
 13.1.5 POINTER ALIGNMENT 13-3
 13.2 RELATIVE POINTERS 13-3
 13.2.1 ADAPTABLE RELATIVE POINTERS 13-3
 13.2.2 RELATIVE POINTERS TO SEQUENCES 13-3
 13.2.3 RELATIVE POINTERS TO BOUND VARIANT RECORDS 13-3
 13.3 INTEGERS . 13-4
 13.4 CHARACTERS . 13-4
 13.5 ORDINALS . 13-4
 13.6 SUBRANGES . 13-5
 13.7 BOOLEANS . 13-5
 13.8 REALS . 13-5
 13.9 LONGREALS . 13-5
 13.10 SETS . 13-6
 13.11 STRINGS . 13-7
 13.12 ARRAYS . 13-7
 13.13 RECORDS . 13-8
 13.14 STORAGE TYPES . 13-9
 13.14.1 HEAPS . 13-9
 13.14.2 SEQUENCES . 13-9
 13.15 CELLS . 13-9
 13.16 SUMMARY FOR THE CYBER 200 13-10

 14.0 CYBIL-CS/SS RUN TIME ENVIRONMENT 14-1
 14.1 RUN TIME LIBRARY . 14-1
 14.1.1 RUNTIME ERROR MESSAGES 14-2
 14.1.2 CYBIL ERROR HANDLER INTERFACE TO VSOS 14-2
 14.1.3 HEAP MANAGEMENT 14-3
 14.1.4 ADDITIONAL DESIGN CONSIDERATIONS 14-3
 14.1.5 ALLOCATE . 14-3
 14.1.5.1 The Unaligned Allocate 14-4
 14.1.5.2 The Aligned Allocate 14-4
 14.1.6 FREE . 14-5
 14.1.7 RESET A USER HEAP 14-6
 14.1.8 ESTABLISHING THE SYSTEM HEAP 14-6
 14.1.9 POSSIBLE (HEAP) BLOCK_HEADER SETTINGS 14-7
 14.1.10 RESTRICTIONS 14-7

 15.0 PROCEDURE INTERFACE CONVENTIONS 15-1
 15.1 INTRODUCTION . 15-1

 7
 CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT
 83/07/06
 CYBIL Handbook REV: G

 15.2 PURPOSE . 15-1
 15.3 GENERAL PHILOSPHY 15-1
 15.3.1 INPUT PARAMETER CONVENTIONS 15-2
 15.3.2 PARAMETER TYPING - CYBIL USAGE 15-2

 16.0 PROGRAM LIBRARY CONVENTIONS 16-1
 16.1 DECK NAMING CONVENTIONS 16-1
 16.2 COMMON DECK USAGE 16-1
 16.3 COMMON DECK CONTENT 16-2
 16.3.1 DOCUMENTATION HEADER 16-2
 16.3.1.1 Procedures 16-2
 16.3.1.2 Data Structures 16-3
 16.3.2 XREF DECLARATION COMMON DECK 16-3
 16.3.3 TYPE / CONST DECLARATION COMMON DECK 16-4
 16.3.4 EXAMPLE DECK . 16-4

 17.0 CYBIL CODING CONVENTIONS 17-1
 17.1 USAGE OF A SOURCE CODE FORMATTER 17-1
 17.2 USE OF CYBIL . 17-2
 17.3 USE OF THE ENGLISH LANGUAGE 17-3
 17.4 CYBIL NAMING CONVENTION 17-4
 17.5 MODULE AND PROCEDURE DOCUMENTATION 17-4
 17.6 TITLE PRAGMATS . 17-5
 17.7 COMMENTING CONVENTIONS AND GUIDELINES 17-5
 17.8 PROCEDURE AND DATA ATTRIBUTE COMMENT CONVENTIONS 17-6

 18.0 EFFICIENCIES . 18-1
 18.1 SOURCE LEVEL EFFICIENCIES 18-1
 18.1.1 GENERAL . 18-1
 18.1.2 CC EFFICIENCIES 18-4
 18.1.3 CI/II EFFICIENCIES 18-5
 18.1.4 CM EFFICIENCIES 18-6
 18.1.5 CP EFFICIENCIES 18-6
 18.2 COMPILATION EFFICIENCIES 18-6

 19.0 IMPLEMENTATION LIMITATIONS 19-1
 19.1 GENERAL . 19-1
 19.2 CC LIMITATIONS . 19-1
 19.3 CI/II LIMITATIONS 19-1
 19.4 CM LIMITATIONS . 19-2
 19.5 CP LIMITATIONS . 19-2
 19.6 CS LIMITATIONS . 19-2

 20.0 COMPILER AND SPECIFICATION DEVIATIONS 20-1
 20.1 GENERAL . 20-1
 20.2 CC DEVIATIONS . 20-1
 20.3 CI/II DEVIATIONS . 20-1
 20.4 CM DEVIATIONS . 20-1
 20.5 CP DEVIATIONS . 20-2
 20.6 CS DEVIATIONS . 20-2

