 @%5§§IﬂWﬂNDL[V“U\;‘ 1

60449900

 UPDATE
VERSION1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:

NOS 1 -
e
NOS/BE 1
SCOPE 2

UPDATE DIRECTIVES INDEX

Directive ' Parameters _ Abbreviation Page —
A ————— e , . T ————EE : : 3
*ARBREV / ‘ ... none . 3-14 ‘
*ADDFILE 1fn,name - ’ - *A¥ 3=5
*BEFQRE - 1ine . ’ ‘ ‘ L - j‘ :' “ ' 3-6
*CALL deck ' ' .. sk 3-11

_ *CHANGE oldid ,newid,...,oldid ,newid - *CH 3-6

.~ *C(MDECK deck,NOPROP , - - *CD 3=5
*COMPILE deckl.deck2 - : . *C 3&11
*COMPILE deckl,deck?2,...,deckn ' , ‘ ' *C 3-11
*COPY deck,line . , *CY . 3-6
*COPY deck,linel,line2 ; - - *CY 36—

*COPY deck,linel,line2,1fn - ‘ *CY 36
*CHEOR level - *CoW 3-11
ADECK deck . e 3-5
*DECLARE deck . - *DC 3-15
*DEFINE namel,name2, ...,namen . : - *DF 3-15
,"fDELETE ‘ linel,line2 . A . . *D 3=-7

. MDELETE line . . - ‘ *D 3-7

_ *D0 . identl,ident?2,...,identn none ' 3-12 i

_ *DONT identl,ident2,...,identn . ; *DT 3-12 : j
*END _ none 3-15]

*ENDIE ~ ‘ *ET 3-12

*ENDTEXT ‘ ; = *ET 3-14

*IDENT idname ,B=num,K=ident ,U=ident - - *ID 3-7

*]F type ,name ,num ‘ none 3-12

*TF . ~type,name ,num , ' ‘ none 3-12

*INSERT line - ‘ .o 3-8

*LIMIT n ; . . oar 345 \
*LIST . V ' - AL 3-14 ; L
*MOVE deckl,deck?2 ‘ M 3-8

*NOABBREV ~ - *NA 3-14

*NOLIST , - WL , 3~14

*PULIMOD ident!],ident2,...,identn , ' ~ *PM ‘ 3-15

*PURDECK deckl,deck2, ...,deckn - ' *PD 3-8

*PURDECK deckl.deck2 . ‘ *PD , - 3-8

*PURGE identl,ident2, ...,identn . , %P , 3-9

*PURGE ident l.ident2 . ; ; - * 3-9

PURGE ident , - , *P‘ 3-9

*READ . i ~ . f _ *RD 3-13 -
*RESTORE line ‘ ~ *R ' 3-9 o
*RESTORE linel,line2 ‘ = . 39

*REWIND 1fn ; . ; *RW 3-13
*SELPURGE deck.ideutl,deckzjidentz,...,deckn;identn . ¥SP 3-9
*SELYANK deckl.identl,degkl.identZ,...,deckn.identn *SY ‘ 3-10
*SEQUENCE deckl,deck2,...,deckn ’ *s 3-10
*SEQUENCE deckl.deck? ; ~ *5 . 3-10
*SKILP 1fn,n ~ - : *SK . 3-14
*TEXT ‘ ~ ‘ ‘ T 3-14
*WEOR level ~ W ‘ 3-13
*WIDTH linelen,idlen - *WI . 3-13
SANK ident1,ident?2, ... identn ‘ - »y 3410
*TANK identl.ident2 , *y 310
*YANKDECK deckl,deck2,...,deckn *YD 3-10
*/ comments ‘ : none 3-16 ~l

60449900 F

60449900

(©D5) CONTROL DATA

UPDATE
VERSION 1
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1
SCOPE 2

Revision

A (12/15/75)

=}

(03/31/78)

]

(10/31/80)

D (11/23/81)

REVISION RECORD

Description

Original printing. This manual is a successor to publication number 60342500 for users
of NOS 1.0, NOS/BE 1.0, and SCOPE 2.1 operating systems.

This revision reflects Version 1.3 of the Update utility at PSR level 472. Update has
been modified to allow up to seven secondary old program libraries to be specified._n?his
revision obsoletes all previous editions.

This revision reflects Version 1.4 of the Update utility at PSR level 528, which adds the
capability to maintain program libraries in ASCII (8-bit) code, and to use text lines
with 256 characters or less.

This revision reflects Version 1.4 of the Update utility at PSR level 552. This revision
supersedes all previous editions.

E (03/25/82) This revision reflects Version l.4 of the Update utility at PSR level 564. It supports
NOS Version 2.0 and includes miscellaneous technical corrections.
F (09/18/84) This revision documents Versiom 1.4 of the Update utility at PSR level 601. It includes
the addition of the END directive and miscellaneous corrections and modifications.
REVISION LETTERS I, 0, Q, AND X ARE NOT USED Address comments concerning this manual to:
CONTROL DATA CORPORATION
Publications and Graphics Division
()COPYRIGHT CONTROL DATA CORPORATION P. 0. Box 3492
1975, 1978, 1980, 1981, 1982, 1984 SUNNYVALE, CALIFORNIA 94088-3492
All Rights Reserved
Printed in the United States of America or use Comment Sheet in the back of this manual
1i 60449900 F

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed. :

Page Revision

Front Cover

Inside Front Cover
Title Page

i1

iii/4v

v
vi
vii
viii
ix

thru 3-3

1
4
=5 thru 3-7
8
9

d&LLd

thru D-4

[} []
Wt = R =~ ~y

&

thru D-8

Ucucu?nmwwm

Index-2

Comment Sheet/Mailer
Inside Back Cover
Back Cover

IS
]
-
|mmuwcmuoumucuwmmuwcumucmuummumocwmwuwuwummwummmmmm|mI

60449900 F iii/div

PREFACE

This manual describes the Update utility for main-
taining and updating decks in compressed symbolic
format on mass storage. As described in this
publication, Update 1.4 operates under the control

of the following operating systems:

NOS 1 and NOS 2 for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Computer Systems;
CYBER 70 Computer System models 71, 72, 73, and
74; and 6000 Computer Systems.

NOS/BE 1 for the CDC® CYBER 180 Computer Sys-
tems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and
6000 Computer Systems.

SCOPE 2 for the CDC CYBER 170 Computer System
model 176; CYBER 70 Computer System model 76;
and 7600 Computer Systems.

The user is -assumed to be familiar with the oper-
ating system and computer system in use.

The following manuals are of primary interest:

The NOS 1, NOS 2, and NOS/BE Manual Abstracts are
pocket-sized manuals containing brief descriptions
of the contents and intended audience of NOS and
NOS/BE and all the product set manuals of these two
operating systems. The manual abstracts can be
useful in determining which manuals are of greatest
interest to a particular user.

The Software Publications Release History serves as
a guide in determining which revision level of
software documentation corresponds to the Program-
ming System Report (PSR) level of installed site
software.

The users of Update can find additiomal pertinent
information in the Control Data Corporation manuals
listed below. The manuals are listed alphabetically
within groupings that indicate relative importance
to readers of this manual. The applicable oper-
ating systems are also indicated.

Publication
Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
NOS Version 1 Reference Manual,
Volume 1 of 2 60435400 X
NOS Version 2 Reference Set, Volume 3
System Commands 60459680 X
NOS/BE Version 1 Reference Manual 60493800 X
SCOPE Version 2 Reference Manual 60342600 X
The following manuals are of secondary interest:
Publication
Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2
NOS Version 1 Diagnostic Index 60455720 X
NOS Version 2 Diagnostic Index 60459390 X
NOS/BE Version | Diagnostic Index 60456490 X
NOS Version 1 Manual Abstracts 84000420 X
NOS Version 2 Manual Abstracts 60485500 X
NOS/BE Version 1 Manual Abstracts 84000470 X
Software Publications Release History 60481000 X X X X

60449900 F

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103.

This product is intended for wuse only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

60449900 E

NOTATIONS

1. INTRODUCTION

File Names

Directives

Creation Run

Correction Run

Copy Run

Deck List and Directory Order
Update Mode

2. UPDATE FILES

Input File

Program Library Files
New Program Library
0ld Program Library

Compile File

Listable Output File

Source File

Merge File

Pullmod File

3. UPDATE DIRECTIVES

Directive Format

Line Identifiers

Deck Identifying Directives
DECK Directive
COMDECK Directive

Correction Directives
ADDFILE Directive
BEFORE Directive
CHANGE Directive
COPY Directive
DELETE Directive
IDENT Directive
INSERT Directive
MOVE Directive
PURDECK Directive
PURGE Directive
RESTORE Directive
SELPURGE Directive
SELYANK Directive
SEQUENCE Directive
YANX Directive
YANKDECK Directive

Compile File Directives
CALL Directive
COMPILE Directive
CWEOR Directive
DO Directive
DONT Directive
ENDIF Directive
IF Directive
WEOR Directive
WIDTH Directive

File Manipulation Directives
READ Directive
REWIND Directive
SKIP Directive

Input Stream Control Directives

60449900 F

CONTENTS

ix

LI

MV NN NN
[
s ww N

w
i
—

W www
t
w

: W W
L T T T T |
o«o\o‘u\\nmm}.\;'\

11 [}
= D D WO 00 0000 NN

(o]

o

———
-~ OO0

3-11
3-11
3-11
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-13
3-14
3-14

ABBREV Directive
ENDTEXT Directive
LIST Directive
NOABBREV Directive
NOLIST Directive
TEXT Directive
Special Directives
DECLARE Directive
DEFINE Directive
END Directive
LIMIT Directive
PULIMOD Directive
/ Comment Directive

4. UPDATE CONTROL STATEMENT

Parameters

Sequential-to~Random Copy
Random—to—-Sequential Copy
Compile File Name

Data Width on Compile File
Edit Old Program Library

Full Update Mode

Pullmod File Name

Character Set Change

Input Stream File Name
Compile File Sequence
Listable Output Options

Merge Program Libraries

New Program Library File Name
Listable Output File Name

0ld Program Library File Name
Quick Update Mode

Rewind Files

Source File Name

Debug Help
Compressed Compile File
Master Control Character

Comment Control Character
UPDATE Control Statement Examples

N ECHOMPOWOZXCrAHTOHEEU O >

5. [EXAMPLES OF UPDATE RUNS

Library File Creation

Alternative Input Files

Inserting, Deleting, and Copying
Purging and Yanking

Selective Yanking

Selective Writing to Compile File
Addition of Decks

Pullimod Option

Program Library as a Permanent File
Sample FORTRAN Program

APPENDIXES

A Character Sets

B Diagnostics

c Glossary

D File Format and Structure

Omit Common Decks From Source File
Sequential New Program Library Format

Line Image Width on Compile File

3-14
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-15 |
3-15
3-15
3-16 |

=
[}
—

[
—_——

TEIREE

1

[} [}
WU B www W ww b -

11

Fo S S Sl S S L G
]

o
=20 A NV RV R]

FrITETEsew
A B B < A = A0« \Os)

v w
[|
—

!
NN

U‘Y\U\U\UIU!U\U‘I
]
o O

vii

INDEX

FIGURES

w ww
UL
W N

i

Pl

U
— kD 00 O U

o

[—

W W W Wl WL W w
'

[
s
= wr

3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42

viii

General Update Directive Format

Full Form of Line Identification

Expansion of Short Forms of Line
Identification

Examples of Line Identifier Expansion

Example of Deck Structure :

DECK Directive Format

COMDECK Directive Format

ADDFILE Directive Format

BEFORE Directive Format

CHANGE Directive Format

COPY Directive Format - Copy to Deck

COPY Directive Fommat - Copy to File

COPY Directive Example

DELETE Directive Format

IDENT Directive Format

INSERT Directive Format

MOVE Directive Format

PURDECK Directive Format

PURGE Directive Format

RESTORE Directive Format

SELPURGE Directive Format

SELYANK Directive Format

SEQUENCE Directive Format

YANK Directive Format

YANKDECK Directive Format

CALL Directive Format

COMPILE Directive Format

CJEOR Directive Format

DO Directive Format

DONT Directive Format

ENDIF Directive Format

IF Directive Format

WEOR Directive Format

WIDTH Directive Format

Fields of Line Image and Identification

READ Directive Format

REWIND Directive Format

SKIP Directive Format

ABBREV Directive Format

ENDTEXT Directive Format

LIST Directive Format

NOABBREV Directive Format

w
L1
s w

| L AU L I I |
OOy e

i
0 W W0 N N O

]
o

uwt;:wwwuuuuwuuwuwwwuwwu
i
o

3-43 NOLIST Directive Format 3-14
3-44 TEXT Directive Format 3-14
3-45 DECLARE Directive Format 3-15
3-46 DEFINE Directive Format 3-15
3-47 END Directive Format 3-15
3-48 LIMIT Directive Fommat 3-15
3-49 PULLMOD Directive Format 3-15
3-50 Comment Directive Format 3-16
4-1 UPDATE Control Statement Format 4-1
5-1 Update Creation Run 5-1
5-2 Creation of Library From Alternate

Input File 5~1
5-3 Creation of Library With Common Decks 5-2
5-4 Input File Not INPUT 5-2
5-5 Program Library Contents 5-2
5~6 Modify Old Program Library - 52
5-7 Compile File Contents 5~-2
5-8 Correction Run 5-3
5~9 Use of YANK 5-3
5-10 Return to Previous Level 5-3
5-11 Use of PURDECK 5-3
5-12 Use of DO and DONT 54
5~13 Sequence of Deck 5~4
5-14 Use of IF and ENDIF 5~4
5~15 Nested IF Directives 5-4
5-16 ADDFILE Input on File INPUT 5-5
5-17 ADDFILE Input on File FNAME 5-5
5-18 ADDFILE Input on Secondary Input Files 5-5
5-19 Correction Run for PULIMOD Example 5-5
5-20 File Contents After Correction Run 5-5
5-21 Pull Modifications 5-5
5-22 Recreated Correction Run 5-5
5-23 Permanent File Under NOS/BE or SCOPE 2 5-6
5-24 Permanent File Under NOS 5-6
5~25 FORTRAN Program Library - 1 5-6
5-26 Correction of SUBROUTINE Statement 5-6
5-27 FORTRAN Program Library - 2 5-7
5-28 Add Deck to FORTRAN Program Library 5-7
TABLES
1-1 Update Mode 1-3
2-1 File Summary 2-1
2~2 File Contents and Update Mode 2-2
2-3 New Program Library Format 2-3
3-1 Summary of Update Directives 3-1
4-1 Summary of UPDATE Control Statement

Parameters 4=-2

60449900 F

NOTATIONS

Throughout this manual, the following conventions

are used to present Update directives:

UPPERCASE Uppercase letters 1indicate
acronyms, or mnemonics

quired by Update or

words,

either re-
produced as .e

output by Update. All words printed
entirely in uppercase letters have a

preassigned meaning
These words include
and keywords.

Update.
command verbs

lowercase Lowercase words identify wvariables A
for which values are supplied by the

60449900 D

Update user or by Update as output.
These words generally indicate the
nature of the information they rep-
resent (numerical value, file or job
name, and so forth).

Ellipsis indicate that omitted
entities repeat the form and func-
tion of the last entity given. An
ellipsis immediately following a
command element indicates it can be
repeated at your option.

The delta symbol represents a blank
used as a separator.

ix @

INTRODUCTION 1

Update is a utility for maintaining and manip-
ulating a mass storage file containing images of
coded punched cards or text lines. Once these
images have been made a part of an Update program
library, physical punched cards or lines can be
eliminated. Update can maintain 6-bit (display
code) line images and 8-bit (ASCII) line images on
the same program library. Line images can be as
long as 256 characters. The length of line images
written to the compile file can be controlled by an
Update directive. The entire line appears in the
output listing.

A file of line images to be manipulated by Update
must be in a special format known as a program
library. Three types of Update runs generate or
manipulate a program library:

° A creation run generates a program library from
the input stream text.

° A correction run manipulates the contents of an
existing program library.

° A copy run changes the format of a program
library from random to sequential or from
sequential to random.

A separate new program library can be created with
a correction run; the changes made during the
correction run are permanently recorded in the new
program library. Changes made during a correction
run never permanently alter the existing program
library. The changes become permanent only through
the creation of a new program library.

As each line 1image is writtem to the program
library, Update assigns it a unique identifier.

Groups of line images within the program library
are known as decks. Each program library must have
at least one deck; the maximum number of decks 1is
262143, Deck grouping is significant in terms of
extracting line images from the program library in
a format suitable for use by a compiler, assembler,
or print routine. While an individual line can be
referenced for purposes such as deletion of that
line or insertion after that 1line, the smallest
unit that can be extracted from the program library
is the deck. Program libraries cam be maintained
either in the display code or ASCII character set.
All ASCII input or output codes are 8-bit charac-
ters, right-justified in a 12-bit byte (ASCII 8/12).

Typically, use of Update involves maintenance of a
group of compiler or assembly language routines.
For convenience, the programmer often specifies
each routine or group of related routines as an
individual deck. One routine can then be changed
or extracted without affecting other routines in
the program library. Because each line image in a
deck has its own identifier (a deck name) and an
Update-supplied sequence number, the line image can
be referenced individually in order to correct or
change a routine. Then, the deck containing the
modified routine can be extracted from the program

60449900 F

library and used as if it had been entered into the
system as a punched deck.

A deck can be composed of punched cards or images
of punched cards. Update makes no assumptions about
contents. While programs are the usual contents
maintained by Update, this wutility is equally
applicable to a set of data cards or any other text.

The programmer controls Update operatiouns through
the following two mechanisms:

° The UPDATE control statement parameters specify
the general operations to be performed. The
file parameters control the files to be manip-
ulated and influence the type of operations
performed.

e The input stream directives specify the detailed
operations to be performed and specify the line
images to be made a part of the program library.
The instructions for Update operation are called
directives; the 1line images for the program
library are called text. The input stream can
be either part of the job deck containing the
UPDATE control statement or a separate file.

FILE NAMES

Files used or generated by Update have generic
names that are related to their default logical
file names. The following names are used in the
remainder of this manual in describing Update
operations:

® Input file - the user-supplied file or part of
the job deck that contains the input stream of
Update directives and text.

° Qutput file = the 1listing file generated by
Update that contains the status information
produced during Update execution. It is in a
format suitable for printing.

° Program library -~ the file generated by an
Update creation rum that contains the decks of
line images. When the file is created, it is
known as the new program library. When the
file 1is corrected, it is known as the old
program library. Line images in the program
library are in a format that can be manipulated
by Update, but the format is meaningless ¢to
most other formats and utilities.

° Compile file - the file generated by Update
that contains line images restored to a format
that is acceptable to a compiler or assembler.
Decks written to the compile file during any
given run are controlled by the Update mode
selected, by control statement parameters, and
by directives in the input stream.

° Source file - the file generated by Update that

contains line images of an input stream that
allows regeneration of the program library.

1-1 §

¢ Merge file - the file that contains a program
library that Update merges with the old program
library to create a new program library.

[Pullmod file - the file that contains
directives and text of recreated correction
sets.

Section 2 contains a detailed discussion of the
files used or generated by Update.

DIRECTIVES

The directives for Update are interspersed with
text in the input stream. They are distinguished
by the presence of a control character contiguous
with a directive keyword. More than 40 directives
exist. The directives can be grouped according to
the following operations:

. Identify decks.

® Control compile file contents.

E) Manipulate primary or secondary input streams.
. Control overall handling of input files.

@ Modify program library contents.

Section 3 contains a detailed discussion of Update
directives.

CREATION RUN

A creation run constructs a program library. It is
the original transfer of punched cards or line
images into Update format. The input file of a
creation run can consist of ASCII 8/12 or display
code characters. ASCII characters must be
right-justified in 12-bit bytes. The new program
library is created in ASCII, if the input file uses
ASCII and if the N or N8 parameter is specified on
the UPDATE control statement.

A creation run exists when the first line read from
the input stream is a DECK or COMDECK directive. A
creation run also exists when one or more of the
following ten directives precedes the first DECK or
COMDECK directive: ’

ABBREV NOABBREV REWIND
DECLARE NOLIST SKIP
LIMIT READ /(comment)
LIST

The presence of any other directive before the
first DECK or COMDECK directive causes Update to
consider the rum to be a correction rum.

In addition to the preceding directives, the
following are the only Update directives that can
be used during a creation rum:

CALL ENDTEXT TEXT WIDTH
CWEOR ENDIF IF WEOR

Each DECK or COMDECK directive defines a deck to be
inserted into the program library that is being
created. All text and directives following a DECK
or COMDECK directive, wuntil the next DECK or

1-2

COMDECK directive, are considered to be part of the
deck. Each line image receives the deck name and a
unique sequence number so that the images can be
referenced individually. The DECK or COMDECK
directive defining the deck itself is assigned the
sequence number one.

Update decks can be one of two types: a regular
deck declared with a DECK directive, or a common
deck declared with a COMDECK directive. DECK and
COMDECK differ im that a common deck can be called
by name so that it is inserted into the text of
another deck when the compile file is being
generated. One copy of the common deck exists on
storage, but multiple copies can be part of a
compile file. -

When the library is created, Update generates a
deck mnamed YANKSSS as the first deck on the
library. The YANKS deck contains all the YANK,
SELYANK, YANKDECK and DEFINE directives that are
encountered during Update runs. (The YANK$$$ deck
is described further in appendix D, File Format and
Structure.) Update also generates a deck list and
directory during a creation run. The deck list
contains the names of all decks in the library and
the location of the first word for each deck
(random library) or the relative order of the decks
(sequential 1library). The directory contains one
entry for each DECK, COMDECK, and IDENT directive
that is used for the library.

CORRECTION RUN

A correction run, which is the most common use of
Update, introduces changes into the existing
program library. These changes exist only for the
duration of the run unless a new program library is
generated. Update recognizes a correction run when
it encounters a directive other than one of the ten
creation runm directives prior to encountering DECK
or COMDECK.

A correction run consists of a read-input-stream
phase and a correction phase. During the first
phase, Update reads directives and text, adds any
new decks, and constructs a table of requested
correction operations. During the second phase,
Update performs the requested modifications on a
deck-by~-deck basis.

The order in which a correction run is processed is
not always the same as specified. During a
correction run using a RESTORE directive and then a
DELETE directive on the same line image or deck,
the DELETE directive is processed first. If the
PURDECK directive is used, it is also processed
first, assuming that one UPDATE directive is used.

The input file of a correction run can be in ASCII
8/12 or display code characters. Update uses ASCII
for the program library, if the character set of
the old program library uses ASCII and the N or N8
parameter is on the UPDATE control statement.

The corrections to the library (the newly inserted
lines, replaced lines, and deleted lines) make up
the correction sets. The IDENT directive assigns a
unique identifier to each line image inserted by
the correction directives. Each inserted line
image is assigned a sequence number beginning with
one for each IDENT name. All line images having
the same correction set identifier comprise a
correction set.

60449900 F

Update permits a user to remove (yank) the effects
of a correction set or deck and later restore the
correction set or deck. This feature is convenient
for testing new code. Requests for yanking are
maintained in the YANK$$$ deck. Before obeying a
correction, Update checks the correction identifier
against the YANK$S$$ deck to see if the correction
has already been yanked. If the correction has
been yanked, an informative message 1is issued and
processing continues. This effect on the YANKS$SS
deck can be selectively controlled through DO and
DONT directives within the decks.

The image of a line, even though deleted through
DELETE or yanking, 1s maintained permanently on the
program library with its current status (active or
inactive) and " a chronological history of
modifications to its status. The images contain
information known as correction history bytes. The
history bytes that are generated by Update contain
the history and status of the line and enable
Update to reverse status. Deletion of a line, for
example, 1s accomplished by the addition of a
correction history byte to the line image rather
than a physical deletion of the image.
Consequently, the line can be reactivated at some
later time.

Update also allows a complete and Iirreversible
purging of correction sets and decks., When a
correction set or deck is purged, 1t is physically
removed from the library.

COPY RUN

A copy run changes the old program library format
from sequential to random or from random to
sequential. Update recognizes a copy run when
either the A or B parameter 1is specified on the
UPDATE control statement. Since Update does not
read the input file on a copy run, no other
operations are performed. The control statements
COPY, COPYBF, COPYCF, COPYBR, or COPYCR should not
be used on random access files since the operating
system might not recognize that the copled file is
a random access file.

DECK LIST AND DIRECTORY
ORDER

Update maintains a deck list and directory for its
internal use. The deck list and directory are only
significant to the user when ranges of decks or
correction sets are specified on Update
directives. The output file (O parameter) lists
the order of the deck names and correction set
identifiers. The deck 1list and directory are
always maintained in display code.

The deck list contains a list of all decks in the
program library. The original entries of the deck
list correspond to the order of the decks when
written during the creation run. Subsequent
entries are added to the end of the list as they
are introduced in the program library. Therefore,
deck list order might not reflect actual deck order
in the program library, since the user determines
deck location within the program library through
directives.

60449900 E

The location of an entry in the deck 1list is
significant in terms of parameters for PURDECK,
SEQUENCE, and COMPILE directives in which a range
of decks can be referenced. The order of names in
a range reference must be the same as the order in
the deck 1list. The decks named and all the decks
between are then processed in accordance with the
directive. An error exists if they are in reverse

. order.

Similarly, as each deck and correction set is
introduced into the program library, Update creates
an entry in an internal directory in chronological
sequence. The location of an entry in the
directory is significant in terms of parameters for
PURGE and YANK directives in -which a range of
correction sets can be referenced. The order of
reference must be the same as the order of the
directory. The identified correction sets and all
the sets between are processed in accordance with
the directive. An error exists when a correction
set range is not referenced in the order the sets
were introduced into the library.

UPDATE MODE

The content of any compile file, source file, or
new program library produced during a correction
run is affected by the Update mode. (Table 2-2 in
section 2 summarizes the effect of mode upon file
content.) The mode of an Update run is determined
by a combination of the omission or specification
of the F and Q parameters on the Update control
statement as summarized in table 1-1.

TABLE 1-1. UPDATE MODE

Parameter
Specified Mode
e -

F Full mode in which all decks
on the old program library are
processed.

Q Quick mode in which only decks

specified on COMPILE directives
and decks added through ADDFILE
directives are processed.

F and Q Quick mode.

F and Q Normal selective mode in which
omitted the only decks processed are
those modified or those specified
on COMPILE directives.

The mode chosen depends on how extensively the user
wishes to modify the program library and its size.
If the library contains many decks and the user
wishes to modify only a few decks, quick mode
should be used. If there are many decks and the
user wants all decks to be processed, full mode
should be used. Normal selective mode should be
used when only those decks modified or specified
are wanted in the compile file.

1-3

UPDATE FILES 2

e oy SR P 1

During its execution, Update manipulates as many as
eight files that can be referenced by the user.
The files involved with any given run depend on the
following:

e The parameters selected by the UPDATE control
statement.,

[] Whether the run is a creation run, correction
run, Or COpy run.

The files that Update generates or wuses are
described in this section. Each of these files has
a default name, but other names can be specified
through the appropriate parameters on the UPDATE
control statement.

File characteristics are summarized in table 2-1.
The ASCII chracter set codes used in a file are
8~bit characters, right-justified, in 12-bit bytes.

Whether or not a file is optional, used, or not
applicable on an Update run depends on the type of
run, as follows:

@ Creation run - the user must supply the input
file. Update generates the new program
library, compile file, and output file by
default. The generation of a source file is
optional. No other files are applicable on a
creation run.

@ Correction run - the user must supply the input
file, the old program library, and the merge
file (if a merge 1is to take place). Updake
generates, by default, the output and compile
files. The creation of a new program library,
source file, and pullmod file is optional on a
correction run.

TABLE 2-1. FILE SUMMARY
File Default Contents Mode Default Position
Name
Input INPUT The input stream. Binary Remains at the end
: of the record (end-
of-section for
SCOPE 2) terminating
Update directives.
If Update aborts,
location of input
file is unpredict-
able.
New program library NEWPL Updated library. Binary Rewound before and
after run.
0l1d program library OLDPL Library to be updated. Binary Rewound before and
after rum.
Secondary old None Library from which common decks Binary Rewinding not
program library can be called. necessary because
file must be
random.
Compile COMPILE Line images for assembly or Binary Rewound before and
compilation. after run.
Output OUTPUT Information for the programmer. Binary Remains in current
: position. File is
not rewound.
Source SOURCE Line images for regeneration of Binary Rewound before and
a new program library. after runm.
Merge MERGE Second library to be merged Binary Rewound before and
into new program library. after run.
Pullmod Source Re-created correction sets. Binary Rewound before and
file after run.

60449900 D

Update initially reads
primary input file specified by the I parameter of
the UPDATE control statement; default file name is
INPUT.
when it encounters a 7/8/9 card or its equivalent,
or end-of-information (EOI).

Copy run - the user must supply the old program
library. Update generates, by default, the new
program library and the output listing file.
No other files are applicable on a copy rum
and, if specified, are ignored.

The contents of any compile file, source file, or
new program library produced during a
affected by the Update mode and the file format of

run are

old program library. The contents of these

files are summarized in table 2-2.

INPUT FILE

The input file contains the input stream; it must
contain coded lines or their equivalent.
stream consists of directives
processing and text to be added
library. The
stream are determined by the type of Update run.

The input
that direct Update
tc the program
directives allowed in the input

input data can be equal to or less than 256

characters.

the input stream from the

Update stops reading directives and text

If Update encounters a READ or ADDFILE directive in
the input stream, it stops reading from the primary
input file and

starts reading from the file

system-logical record (one section for SCOPE 2)
from the secondary input file, then resumes reading
from the primary input file.

The input file can only comsist of ASCII 8/12 or
display code characters during a creation or
correction run. No attempt to input ASCII 6/12
data (on NOS) should be made. The ASCII 6/12 data
must first be converted to ASCII 8/12 data using
the NOS FCOPY control statement. Update uses ASCII
8/12 for the program library if the character set
of the old program library uses ASCII 8/12 and if
the N8 ©parameter 1is on the UPDATE control
statement. The input file character set 1is
determined from the first line of the input file.
If other than ASCII 8/12 character set data is
entered, the invalid code 1is translated into a
blank. See appendix A for the character set tables.

PROGRAM LIBRARY FILES

A program library is created during an Update run
and can be manipulated in later runs. The library
consists of a file of line images and internal
information in a special format that can be
processed only by Update. The line images are
grouped into decks. Each line image is represented

in a compressed format with multiple space
characters removed that adds a 1line identifier.
The format also 1includes history and status

correction history
maintained in

information that 1is known as
bytes. Program libraries can be
display code or ASCII code characters.

FILE CONTENTS AND UPDATE MODE

Quick Mode Contents
(Sequential OLDPL)

Quick Mode Contents
(Random OLDPL)

specified on the directive. Update reads one
TABLE 2-2.
. Normal Selective Mode Full Mode
File
Contents Contents
New Regular decks and Regular decks and
Program common decks after common decks after
Library corrections are made. corrections are made.
Compile Decks corrected or Active decks on old
File on COMPILE direc- program library.
tives and decks
calling a corrected
comnon deck (unless
the calling deck
precedes the common
deck or NOPROP is
specified on
COMDECK) .
Source Active lines and Active lines and
File decks required to decks required to
re-create the re-create the
the library. library.

All decks specified

on COMPILE directives,
any common decks they
call, and any common
decks encountered
prior to all decks of
COMPILE.

Decks on COMPILE

directives and decks
added via ADDFILE
plus called common
decks.

Active lines from
decks specified on
COMPILE directives,
any common decks

they call, and any
common decks encount-
ered prior to all
decks on COMPILE.

Decks specified on
COMPILE directives
and any common decks
they call.

-Decks on COMPILE

directives and decks
added via ADDFILE
plus called common
decks.

Active lines from
decks specified

on COMPILE directives
and any common decks
they call. A common
deck called by a
deleted *CALL
directive.

(3%
§
>

60449900

The program library also contains a deck list and a
directory. The deck list contains the names of all
decks in the library. In addition to deck names,
the directory also contains the names of all
correction sets. Unless changed by the E parameter
of the UPDATE control statement, the names in both
the deck 1list and the directory exist in- the order
they were introduced.

Update can create and maintain program library
files in two distinct formats: random and
sequential. (These formats are described in detail
in appendix D.) A random program library can be
processed substantially faster than a sequential
program library; however it can exist only on disk
and not on tape.

NEW PROGRAM LIBRARY

A new program library is initially generated on a
creation run. It contains directives and text in
an updatable format. File content is determined by
the file format of the old program library and
Update mode as shown in table 2~2. The new program
library name is specified by the N parameter of the
UPDATE control statement; the default file name is
NEWPL. The new program library character set is
the same as the character set used in the input
file during the creation run.

For subsequent correction rums, the previously
generated new program library is identified as the
old program library. A new program library that
incorporates the changes made during the correction
run is generated if requested. If the old program
library 1is in display code, the correction run
character set can be ASCII 8/12 or display code.

A new program library can be in random or
sequential format. In the absence of the W
parameter on the UPDATE control statement, the
format is determined by file residence and record
type as shown in table 2-3.

TABLE 2-3. NEW PROGRAM LIBRARY FORMAT

Format NOS and NOS/BE SCOPE 2
Random File is on mass File is on mass
storage and W storage, record
is not type is W un-~
selected. blocked, and W
is not
selected.

File is on mag- File is staged
netic tape or W or online

is selected. tape; or is on
mass storage as
record type S
or record type
W blocked; or W
is selected, or
R specifies no
rewind.

Sequential

60449900 D

A new program library can be written or appended to
an existing permanent file according to the
permission rules of NOS, NOS/BE, or SCOPE 2.

OLD PROGRAM LIBRARY

The old program 1library 1s the file that was
generated as a new program library in a previous
run. It contains a record of changes made since
the program library was created. The old program
library name is specified by the P parameter of the
UPDATE control statement; the default file name is
OLDPL.

An old program library is required for a correction
run since it is the program library to be updated.
On a copy run, the old program library is not
modified, but 1is copled to a sequential or random
new program library. If an old program library is
specified on a creation run, it is ignored.

In addition to the o0ld program 1library to be
updated, up to seven additional (secondary) old
program libraries can be specified by the P
parameter of the UPDATE control statement. Decks
on the old program library can call common decks
from the old program library or from any of the
other secondary program libraries. No Update
directive other than CALL can be used to reference
common decks on secondary old program libraries.
Common decks on secondary old program libraries can
call common decks that reside on any of the old
program libraries. Program libraries are searched
in the order specified to find the called common
decks. The called common decks that reside on the
secondary old program libraries are not added to a
new program library.

The secondary old program libraries must be random,
have a unique name, and have the same master

control character as the old program library. If
these conditions are not met, a diagnostic message
is issued.

When creating a new program library on a creation
run that contains calls to common decks that reside
on secondary old program libraries, C=0 must be
specified on the UPDATE control statement.

COMRPILE FILE

The compile file contains copies of decks in the
program library restored to a format that can be
processed by a compiler or assembler. The decks
written to the file are determined by Update mode
and the file format of the old program library as
shown in table 2-2. Through the WIDTH directive,
the user can specify whether the text on the file
is to have Update line identifiers on each line of
text.

Compile file name 1is specified by the C or X
parameter of the UPDATE control statement; default
file name 1is COMPILE. If- the K parameter is
specified, then decks are writtem to the compile
file in the order they appear on COMPILE
directives. (Any decks not specified on COMPILE
directives follow those specified.) If the C
parameter is specified, then decks are written on
the compile file in the order they appear in the
deck list.

2-3

The user has control over the decks written to the
compile file through the compile file directives.
Common decks can be called conditionally or
unconditionally according to compile file
directives embedded in the program library decks.
Additional control of compile file format is
afforded the user through directives that cause a
system-logical record (end-of-section for SCOPE 2)
of the specified level to be written at the end of
decks. The compile file directives can be in the
original decks or can be inserted into the program
library decks during correction runms. These
directives are interpreted when the compile file is
written; the directives themselves are not written
on the compile file.

LISTABLE OUTPUT FILE

The listable output file is the print file
containing information for use by the programmer.
Content of the file 1is controlled by the L
parameter of the UPDATE control statement with
options that can select a listing of directives
processed, errors, comments, and a list of line
images in the program library. The locations of
all CWEOR, WEOR, ENDIF, IF, and CALL directives are
listed if a compile file is written. if L=0, all
listable output is suppressed. Output file name 1s
specified by the O parameter of the UPDATE control
statement; default file name is OUTPUT. If the
output file is connected to a terminal, the default
is L=1.

In quick mode only, Update produces an ordered
printout of the deck list of the program library
under the heading DECK LIST AS READ FROM OLDPL PLUS
ADDED NEW DECKS. A quick mode dummy Update run (no
decks added) produces a deck listing of the old
program library.

The output file always defaults to display code
characters unless the 08 option is specified.

SOURCE FILE

The source file is an optional file generated
during a correction or creation run. The source
file consists of the line images of an input stream
that allows generation of a new program library.
Only currently active line images are in
resequenced format during a subsequent creation
run. Only active DECK, COMDECK, WEOR, CWEOR,
WIDTH, CALL, TEXT, IF, ENDIF, and - ENDTEXT
directives, in addition to all active text, are
part of the source file. The line images in the
source file do not contain line identifiers.

The source £file name is specified by the S
parameter of the UPDATE control statement; default
file name is SOURCE., The content of the file is
determined by the T parameter of the UPDATE control
statement and by Update mode and the file format of
the old program library as shown in table 2-2. The
user is responsible for routing the source file to
2 punch or other output device.

If either the S or S6 parameter is specified, the
source file is written in display code. If the S8
parameter 1s specified, it 1s written in ASCII
8/12. The character set of the old program library
has no effect on the S8 parameter.

MERGE FILE

The merge file contains a program library to be
merged with the old program library into a new
program library. Update adds the deck list and
directory from the merge file to the deck list and
directory on the old program library. Any names on
the merge file that duplicate names on the -old
program library are modified to make them unique as
follows:

e The last character of the name is changed by
adding 0l (modulo 55g) until all valid char-
acters have been tried. :

e A character is appended to the name and the
first step 1is repeated. Characters are
appended until the name reaches nine characters.

If no unique name can be generated by this method,
the Update run is abnormally terminated.
Directives that reference these changed names are
modified to agree with the new name. All names
that required modification are listed in the output
file.

Merge file name is specified by the M parameter of
the UPDATE control statement; default name is
MERGE. All Update functions that are valid in a
correction run are valid with the merge parameter.
Care should be exercised when including
modifications in a merge run. Update might change
a name to which correction 1lines have been
applied. In this case, corrections can refer to
the wrong deck or correction set.

Decks from the merge file are added to the new
program library after all decks from the old
program library are added. This sequence of decks
in the new program library can be altered by the
MOVE directive if desired.

PULLMOD FILE

The pullmod file contains directives and text of
recreated correction sets specified on PULLMOD
directives. These re—~created correction sets
produce the same results as the original sets.
This feature permits a wuser to take an earlier
version of the library and apply selected
correction sets. The file has the same format as
an input file.

File name is specified by the G parameter of the
UPDATE control statement. If no file is specified,
pulled modifications are written to the source file
specified by the S or T parameter; if no source
file is specified, the re-created correction sets
are written to a file named SOURCE.

60449900 F

UPDATE DIRECTIVES

Directives allow the user

to create program @

libraries. Directives also extensively control and

direct the correction and modification process. ®

Directives perform the following operations:

@ Identify decks.

® Modify program library contents

Contrecl overall handling of the input file.

31

Manipulate primary or secondary input streams.

® Control compile file contents.

Each directive is summarized in table.3-1.

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES

60449900 D

Directive Keyword
Abbreviation Directive Format Use
none *ABBREV Resume checking for abbreviated directives.
*AF *ADDFILE 1fn,name Read creation directives and text from
named file and insert after specified deck
or line.
*B . *BEFORE line Write subsequent text lines before line
identified.
*CA *#CALL deck Write common deck to compile file.
*CH *CHANGE oldid,newid, « . . ,o0ldid,newid Change correction set identifier.
*CD *#COMDECK deck,NOPROP Define common deck and propagation
parameter.
*C *COMPILE deckl,deck2, . . . ,deckn Write specified decks to compile file,
source file, and new program library.
*COMPILE deckl.deck2 Write inclusive range of decks to compile
file, source file, and new program library.
*CY *COPY deck,line Copy and insert specified line from named
deck.
*COPY deck,linel,line2 Copy and insert specified ramnge of lines
from named deck.
*COPY deck,linel,line2,lfn Copy specified range of lines from named
deck to specified file.
*CW *CWEOR level Conditionally write end-of-record (end-of-
‘]l section for SCOPE 2) or end—of-file.
*DK *DECK deck Define deck to be included in program
library.
*DC *DECLARE deck Restrict corrections to named deck.
*DF *DEFINE namel,name2, . . . ,namen Define names to be tested by IF directive
while compile file is being written.
*D *DELETE line Deactivate specified line and optionally in-
sert text in its place.
*DELETE linel,line2 Deactivate inclusive range of lines and
optionally insert text in their place.

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES (Contd)

Directive Keyword

Abbreviation Directive Format Use
I none *D0 identl,ident2, . . . ,identn Reactivate yanked lines in specified
correction sets until a DONT is encountered.

*DT *DONT identl,ident2, . . . ,identn Terminate the DO for specified correction
sets.

*EL *ENDIF Indicate end of conditional text.

*ET ENDTEXT End delimiter for sequence of lines ~ 7
identifying text.

*ID *IDENT idname,B=num,K=ident,U=ident Define correction set, bias for seqnum, and
whether specified correction sets must be
known or unknown to process this set.

none *IF type,name,num Write specified number of following lines to
the compile file if name of type DECK, IDENT,
or DEF is known.

*IF —type,name,num Write specified number of following lines to
the compile file if name of type DECK, IDENT,
or DEF is unknown.

*1 *INSERT line Write subsequent text lines after line
identified.

*LT *LIMIT n Limit listable output to n linmes.

I *L *LIST Resume listing lines encountered in input

*M

*NA

*NL

*PM

*PD

*P

*RD

*RW

*MOVE deckl,deck2

*NOABBREV

*NOLIST

*PULLMOD identl,ident2, . . . ,identn

*PURDECK deckl,deck2, . . . ,deckn

*PURDECK deckl.deck2

*PURGE identl,ident2, . . . ,identn

*PURGE identl.ident2

PURGE ident,

*READ 1fn

*RESTORE line

*RESTORE linel,line2

*REWIND 1fn

stream.

Place deckl after deck2.

Do not check for abbreviated directives.
Disable list option 4.

Re-create specified correction sets and
write them to file specified by the G

option.

Permanently remove specified decks from
program library.

Permanently remove inclusive range of decks.

Permanently remove specified correction sets
from program library.

Permanently remove inclusive range of
correction sets.

Permanently remove specified correction set
and all sets introduced after it.

Read directives and text from specified file.

Reactivate specified line and optionally
insert text after it.

Reactivate inclusive range of lines and
optionally insert text after them.

Réposition named file to beginning-of-
information.

60449900 D

TABLE 3-1. SUMMARY OF UPDATE DIRECTIVES (Contd)

Use

Directive Keyword
D
Abbreviation irective Format

*SP *SELPURGE deckl.identl,deck2.ident2,
. » « ydeckn.identn

*SY *SELYANK deckl.identl,deck2.ident2,
+« ¢« « ,deckn-identn

*S *SEQUENCE deckl,deck2, . . . ,deckn
*SEQUENCE deckl.deck2

*SK #SKIP 1fn,n

*T *TEXT

*W *WEOR level

*WI *WIDTH linelen,idlen

*Y *YANK identl,ident2, . . . ,identn
*YANK identl.ident2

*YD *YANKDECK deckl,deck2, . . . ,deckn

none */comment

Permanently remove all lines in specified
deck that belong to specified correction set.

Deactivate all lines in specified deck that
belong to specified correction set.

Resequence all active lines and purge all
inactive lines in specified decks.

Resequence all active lines and purge all
inactive lines in inclusive range of decks.

Reposition named file forward the specified
number of logical records.

Beginning delimiter for sequence of lines
identifying text.

Write end-of-record or end-of-file according
" to specified level.

Reset size of line image written to compile
file.

Temporarily remove specified correction sets
from program library.

Temporarily remove inclusive range of
correction sets.

Temporarily deactivate decks specified.

Copy text to listable output file.

DIRECTIVE FORMAT

The general format of Update directives is shown in
figure 3-1. A directive must begin with the master
control character in column one. Comments can be
placed after the last parameter of the directive.
The comment and final parameter mmst be separated
by one or more blanks. Most directives have both a
full keyword and an abbreviated keyword as shown in
table 3-1; when the NOABBREV directive 1is in
effect, Update does mnot recognize the abbreviated
forms of directive names. Any line in the input
stream that cannot be recognized as a directive is
assumed to be text.

The master control chracter 1is recorded in the
program library. Tor a correction run, the master
control character should match the character used
when the program library was created. If the
characters do not match, Update uses the character
specified in the program library.

Since Update scans all 256 columns when interpret-—
ing directives, comments or sequencing information
from a previous run can be interpreted as the
parameter list. Update interprets comments or
sequencing information as the parameter list when a
list is not specified on WEOR, CWEOR, DECLARE, or

60449900 D

*keyword p=list

*

keyword

p=list

Master control character that distin-
guishes a directive from a text Line.
Must appear in column 1. This char-
acter can be changed through the *
parameter of the UPDATE control
statement.

Name of one of the Update directives
or an abbreviation for a directive.

No blanks can occur between the master
control character and the keyword; a
comma or blank terminates the keyword.

Parameters identifying decks, cards,
lines, or files. Some directives have
no parameters. Multiple blanks can
appear between the keyword and param-
eters., Parameters in the list are
separated by commas; embedded blanks
cannot appear in the Llist. A blank
terminates the p-lList.

Notice that several parameters con-
tain a period as part of a single
parameter.

Figure 3-1. General Update Directive Format

ADDFILE directives. To avoid this problem, a null
parameter 1list should be specified on these
directives in the following manner:

*WEOR, , *DECLARE , ,

*CWEOR,, , *ADDFILE, ,,

Specifying a null parameter field ensures that
Update will use the default values as parameters
rather than using the comments or sequencing
information. Errors will occur if Update tries to
use the comment or sequencing information as the
directive parameter list.

LINE IDENTIFIERS

Each line image in a program library 1s uniquely
identified by an identifier and a sequence number.
The identifier 1s the name of the deck or
correction set from which the line image
originated; Update supplies the sequence number.
Line identifiers assigned by Update are wusually
permanent; they can be changed only through the use
of the SEQUENCE and CHANGE directives.

Update recognizes one full form and two short forms
of line identifiers. The full form line identi~-
fiers are shown in figure 3-2. The two short forms
of line identifiers, which can be used on BEFORE,
INSERT, DELETE, RESTORE, and COPY directives, are
expanded.

ident.seqnum

ident. 1~ through 9-character name of a correc-

tion set or deck. A period terminates
the identifier.

seqnum Decimal ordinal (1 through 131071)
representing the sequence number of the
line within the correction set or deck.
Any character other than 0 through 9
terminates the sequence number.

Figure 3-2. Full Form of Line Identification

In the short form (shown in figure 3-3), idname is
assumed to be the last explicitly named identifier
given on a BEFORE, INSERT, DELETE, RESTORE, or COPY
directive, whether or not it is a deck name. The
dname is assumed to be the last explicitly named
identifier given on a BEFORE, 1INSERT, DELETE,
RESTORE, or COPY directive that is known to be a
deck name. Both of these default identifiers are
originally set to YANKSSS; therefore, the first
directive using a line identifier must use the full
form to reset the default.

seqnum Expands to idname.seqnum where ijdname
is a correction set identifier, whether
or not it is also a deck name.

. segnum Expands to dname.seqnum where dname is
a deck name.

Figure 3-3, Expansion of Short Forms
of Line Identification

All deck names are also identifiers (but all
identifiers are not deck names). Thus, if EXAMPLE
is the deck name 1last used, and there is no
subsequent explicit reference to a correction set
identifier, then ©both .281 and 281 expand to
EXAMPLE,.281 as the line identifier. 1f there is an
explicit reference to a correction set identifier
ABC after the explicit reference to the deck name,
then 281 would expand to the line identifier
ABC.281 while .28! would expand to EXAMPLE.28l.

Figure 3-4 shows the differences in identifier
expansion depending on the order of the dir-
ectives. A is a deck name and B is a correction
set identifier on an old program library. .-

*«ID C
*INSERT A.2

data Line
«INSERT B.1

data Line
*D 2, 3 expands to *DELETE B.2,B.3
*D 4, .5 expands to *DELETE B.4,A.5
*D -7, 5 expands to *DELETE A.7,B.5
*D .9, .10 expands to *DELETE A.9,A.1

whereas:

*«ID D
*INSERT B.1

- data Line
*INSERT A.2

data Lline

*D 2, 3 expands to *DELETE A.Z2,A
*D 4, .5 expands to *DELETE A.4,A
*D .7, 5 expands to *=DELETE A.7,A.
*D .9, .10 expands to *DELETE A.%,A

Figure 3-4. Examples of Line
Identifier Expansion

DECK IDENTIFYING
DIRECTIVES

Each deck to be placed on a program library must be
introduced by a DECK or COMDECK directive during a
creation or correction run. When Update encounters
one of these directives in the input stream prior
to any correction directive, the run is considered
to be a creation run. When Update encounters one
of these directives while inserting new text lines,
it terminates the insert and adds the decks to the
program library following the line specified.

When a deck is added through the use of a DECK or
COMDECK directive during a creatiom rum or an
ADDFILE directive during a correction run,
termination of that deck occurs when Update
encounters another DECK or COMDECK directive, or
the end of a system~logical record. Lines within
that deck are identified by the name of the deck or
common deck to which the 1lines belong and are
numerically sequenced beginning with ! for the DECK
or COMDECK directive. When a deck is inserted
during a correction run as if it were text (that
is, through the use of an INSERT, DELETE, BEFORE,
or RESTORE directive), the deck is terminated by
any condition that normally terminates insertion.
The contents of the deck, including the DECK or
COMDECK line, are identified by the correction set
name and are numerically sequenced as if they were
normal insertion text.

60449900 F

Frequently, a DECK or COMDECK directive precedes
each program or subprogram in a given program
library. More than one subprogram, however, can be
included in a deck, as is indicated in figure 3-5.
Normally, two programs are grouped together if
modification of one program requires reassembly of
both programs.

*DECK FIRST
IDENT FIRST
END
IDENT SECOND
END
*COMDECK FDATA
BLOCK DATA
COMMON/J3/A (10)
DATA A/3#0., 7#1.0/
END

Figure 3-5. Example of Deck Structure

Because DECK and COMDECK directives <can be
deactivated by DELETE, YANK, or SELYANK, line
images belonging to one deck at the beginning of an
Update run can belong to a different deck at the
end of the run. When a DECK or COMDECK directive
is deactivated, all line images in the deactivated
deck become members of the preceding deck on the
program library; they retain their original line
identifiers. If there is no preceding deck, then
they become part of the YANKS$SS deck.

DECK DIRECTIVE

The DECK directive establishes a deck in the
program library. It is one of the two directives
that establishes the existence of a creation run.
The directive can also be used in any correction
run to add a deck to the location indicated by a
preceding INSERT, BEFORE, DELETE, or RESTORE
directive. Each deck must have a unique name
within the program library. The DECK directive
itself is part of the program library and has a
sequence number of ome within the name established
by the directive. DECK directive format is shown
in figure 3-6.

*DECK deck

deck Name of deck. Must be 1 through 9 char~
acters. Any character in the CDC display
code character set is allowed, except
blank, period, comma, and colon. Must
not duplicate the name of any other deck
in program library.

Figure 3~6. DECK Directive Format

COMDECK DIRECTIVE ‘

The COMDECK directive establishes a common deck
that can be called from other decks as they are
being written to the compile file. It is one of
the two directives that establishes the existence
of a creation run. The directive can be used in
any correction run to add a common deck to the

60449900 E

location specified by a preceding INSERT, BEFORE,
or RESTORE directive. Each common deck must have a
unique name. The COMDECK directive itself is part
of the program library and has a sequence number of
one within the name established by the directive.
The COMDECK directive format is shown in figure 3-7.

*COMDECK deck,NOPROP

deck Name of deck. Must be 1 through 9
characters. Any character in the CDC
display code character set is allowed,
except blank, period, comma, and colon.
Must not duplicate the name of an
existing deck.

NOPROP Indicates that decks calling this
common deck are not to be considered
as modified when the common deck itself
is modified; that is, the effects of
common deck changes are not to be
propagated during normal Update mode.
Optional.

Figure 3-7. COMDECK Directive Format

The NOPROP parameter of the COMDECK directive
determines whether a deck «calling a corrected
common deck is to be considered as having been
corrected. If NOPROP is specified, only the common
deck is considered to be corrected. On the other
hand, if NOPROP is not specified, the common deck
and the calling decks are considered to be
corrected.

A common deck should be placed before any of the
decks that call it. If the common deck is placed
after a deck that calls 1it, Update might not be
able to fimd it. In addition, decks calling a
corrected common deck are not written to the
compile file if the calling deck precedes the
common deck and the mode is normal selective.

CORRECTION DIRECTIVES

Correction directives control updating of the old
program library. New text 1is assigned a unique
line identifier based on the correction set
identifier. The corrected program library is
written on the new program library; the old program
library 1is not actually changed. Correction
directives are illegal on a creation run.

ADDFILE DIRECTIVE

The ADDFILE directive causes Update to add a file
of decks to the new program library. ADDFILE
differs from the READ directive in that the
contents of the specified file are limited to those
allowed on a creation run. Unless the specified
file is the primary input file, the READ directive
cannot appear in the added file. The first line
image of the specified file must be a DECK or
COMDECK directive. If the INPUT file is specified,
the READ directive can be the first image; a DECK
or COMDECK directive must then be the first line
image on the file specified by the READ directive.
An ADDFILE directive cannot appear among directives
read from the file specified by a READ directive.
The ADDFILE directive format is shown in figure
3-8. If only one parameter is specified, it is
assumed to be 1lfn.

3-5

*ADDFILE Lfn,name

Lfn Name of local file from which decks are
to be added. If Lfn is omitted, the
default is the file specified by the 1
parameter of the Update control state-
ment; the separators are still required.

name Name of deck or identifier line after
which decks are to be placed on the pro-
gram library. If omitted, the addition
is made after the last deck on the pro-
gram library.

If the name parameter is %, it refers to
the ident that is known to be a deck name
most recently mentioned on a BEFORE,
COPY, DELETE, INSERT, or RESTORE direc-
tive. If no such directive precedes the
ADDFILE, the YANKSSS deck is used.

Figure 3-8. ADDFILE Directive Format

When the specified file is not the primary input
file, Update adds directives and text until the end
of one system—logical record 1is encountered.
Update then returns to the file specified by the 1
parameter of the UPDATE control statement and
continues processing the primary input stream. The
specified file must have the same character set as
the primary input file. When the flle specified on
the ADDFILE directive 1is the primary dinput file,
however, Update adds line images until a
noncreation directive or the end of the
system-logical record is encountered.

Update does not reposition the file specified on
the ADDFILE directive. Any repositioning must be
requested by the SKIP or REWIND directive.

BEFORE DIRECTIVE

The BEFORE directive inserts text line images and
compile file directives in the program library
before the specified line image. The line images
inserted are plaged immediately after the
directive. Line images cannot be inserted into the
YANKS$SS deck. The inserted line images receive
line identifiers established by the correction set
name of the preceding IDENT directive. The BEFORE
directive format is shown in figure 3-9.

*BEFORE Line

Line Line identifier of Line before which the
insertion is to be made.

Figure 3-9. BEFORE Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; however,
the directives are not inserted into the deck.

CHANGE DIRECTIVE

The CHANGE directive renames correction set
identifiers. It cannot be used to change deck
names. As a secondary effect, changing the name of
the correction set invalidates any YANK or SELYANK
directives that refer to the set by its previous
name. Since a CHANGE directive goes into effect
immediately, any subsequent references to the
correction set must use the new name. The CHANGE
directive need not be part of a correction set.
CHANGE directive format is shown in figure 3-10.

*CHANGE oldid,newid,...,oldid, newid
oldid Name of correction set to be changed.

newid New correction set name. Must be 1
through 9 characters. Any character in
the CDC display code character set is
allowed, except blank, period, comma,
and colon. Must not duplicate the name
of any other correction set in the pro-
gram library.

Figure 3-10. CHANGE Directive Format

COPY DIRECTIVE

The COPY directive copies active line images from a
deck on the old program library and inserts the
images into another deck as if they are text in an
input stream, or the COPY directive copies active
line images to a specified file. Since Update
copies the line images into a deck before applying
corrections to them, line images can be copied and
original images can be modified in the same rum.
An attempt to c¢opy line images introduced during
the same Update run produces . an informative
message. The COPY directive format for copying
line images to a deck on the program library is
shown in figure 3-11. The COPY directive format
for copying 1line images to a file is shown in
figure 3-12.

A. Copy specified line.
*COPY deck,line

deck Name of deck on old program library
that contains the line to be copied.

Lline Line identifier of Line to be copied.
B. Copy range of lines.
*COPY deck,linel,line2

deck Name of deck on old program library
that contains lines to be copied.

Lline1l, Line identifiers of first and Last
Line2 Lines in sequence of lines to be
copied.

Figure 3-11. COPY Directive Format -
Copy to Deck

60449900 E

*COPY deck,linel,line2,lfn

deck Name of deck on old program Library that
contains Lines to be copied.

line1, Line identifiers of first and last lines
Line2 in sequence of Lines to be copied.

tfn Name of file onto which Lines are to be
copied. The user is responsible for the
disposition of this file since it is not
positioned either before or after the
copy. The file is written as a binary
file that contains 256-column Line images
with one system—logical record (Section
for SCOPE2) for each COPY directive;
sequencing information is not included.

Figure 3-12. COPY Directive Format ~
Copy to File

An INSERT, DELETE, BEFORE, or RESTORE directive
must be in effect to use COPY for copying line
images to a deck. In figure 3-13, example A, the
use of the COPY directive is valid because a
preceding INSERT directive has initiated inser-
tion. Line images BDECK.4 through BDECK.8 are
copied and inserted after the text lines. The
copied 1line images are sequenced as part of
correction set X. The input stream in figure 3-13,
example B, is not valid because insertion is not in
effect to indicate where to write the line image
copies.

A. Valid use of COPY

*IDENT X

*INSERT BLAP.11

(text Llines)

*COPY BDECK,BDECK.4,BDECK.8

B. 1Invalid use of COPY.

*IDENT X
*COPY BDECK,BDECK.4 ,BDECK.8

Figure 3-13. COPY Directive Example

Placement 1in the input stream of a COPY directive
that coples line images to a file 1is not
restricted; COPY can appear anywhere in the primary
input stream. Copying line images to a file is
illegal, however, when a secondary input stream is
being read as a result of a READ directive.

DELETE DIRECTIVE

The DELETE directive deactivates a line image or a
group of line images and optionally inserts text
and directives after the deleted line images. The
line images to be inserted are placed immediately
after the directive. The inserted line images
receive line identifiers established by the
correction set name of the preceding IDENT
directive, The DELETE directive format depends on
whether line images to be deactivated are specified
by line identifier or by a range of lines, as shown
in figure 3-14.

60449900 E

A. Delete specified Line
*DELETE Lline

Line Line identifier for single line
to be deleted.

B. Delete range of Lines
*DELETE Linel,lined

linel, Line identifiers of first and

Line2 last lines, in sequence of lines
to be deleted. Line Linel must
appear before Line2 in the exist-
ing library. The range can in-
clude lines already in a deact-
ivated state.

Figure 3-14, DELETE Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next imsertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; however,
the directives are not inserted into the deck.

IDENT DIRECTIVE

The IDENT directive establishes the name for the
set of corrections being made. Lines added in this
correction set are sequenced within the name
specified. All correction set names must be
unique. If a new program library is not being
generated, a correction set need not begin with an
IDENT directive. In this case, Update uses the
default name of .NO.ID. for new text lines. The
established correction set identifier remains in
effect until Update encounters another IDENT
directive or a PURGE, SELPURGE, PURDECK, ADDFILE,
or SEQUENCE directive. IDENT directive format is
shown in figure 3-15.

*IDENT idname,B=num,K=ident ,U=ident

idname Name to be assigned to this correction
set. Must be 1 through 9 characters.
Any character in the CDC display code
character set is allowed, except blank,
period, comma, and colon. Must not
duplicate the name of another cor-
rection set or deck. This directive
causes a new entry in the directory.

B=num Bias to be added to seguence nhmbers
within deck. Optional; 1 is default.

K=ident Indicator that specified correction
set name must exist in the directory
of the Library before corrections can
be made. Optional.

U=ident Indicator that specified correction
set name must not exist in the direc-
tory of the library. Optional.

Figure 3-15. IDENT Directive Format
3-7

Omitting idname causes a format error. If idname
duplicates a name previously used, Update issues an
error message. Both errors are nonfatal as long as
no new program library is created in the same runm.

The B, K, and U parameters on the IDENT directive
can . appear in any order. If wmore than one B
parameter 1is specified, Update uses the last one
encountered. More than one K or U parameter can be
specified; in this instance, all correction set
names must be known or unknown as specified before
the correction set is processed. (An identifier is
known whether it is active or inactive; an
identifier that has been yanked is still known. To
become unknown, an identifier must be purged.) If
the criteria of these parameters is not met, Update
skips the correction set and resumes processing
with the next IDENT, PURGE, SELPURGE, PURDECK, or
ADDFILE directive.

In the following example, the bias of 100 is added
to all ZAP correction set line sequence numbers:

*IDENT ZAP,B=100,K=ACE,U=NON, U=ARF

The first line image in correction set ZAP has a
sequence number of 101, not 1, Update skips the
correction set if ACE is unknown or either NON or
ARF is known.

INSERT DIRECTIVE

The INSERT directive inserts text line images and
compile file directives in the program Ilibrary
after the specified line image. The line images to
be 1inserted are ©placed immediately after the
directive. Line images cannot be inserted into the
YANKS$SS deck. The inserted line images receive
line identifiers established by the correction set
name of the preceding IDENT directive. The range
of line images cannot be used when inserting. This
causes only the first line image to be processed.
INSERT directive format is shown in figure 3-16.

*INSERT Line

Line Line identifier of line after which in-
sertion is to be made.

Figure 3-16. INSERT Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when i1t encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as if they are text after Update checks
for correct syntax. Update interprets all other
directives without terminating insertion; however,
the directives are not inserted into the text.

MOVE DIRECTIVE

The MOVE directive enables the user to reorder
decks while producing a new program library. The
deck to be repositioned is moved from its position

on the old program library and placed after the
specified deck on the new program library. The
YANK$SS deck cannot be moved. A MOVE referencing a
deck introduced in the same Update run produces an
informative message. This directive does mnot
terminate insertion and need not be part of a
correction set. MOVE directive format is shown in
figure 3-17,

*MOVE deck1,deck2

deckt Deck name on old program Llibrary to be
moved. -

deck2 beck name after which deckl is to be~
placed on new program library.

Figure 3-17. MOVE Directive Format

PURDECK DIRECTIVE

The PURDECK directive permanently removes a deck or
group of decks from the program library. However,
the YANK$SS deck cannot be purged. Every line
image in a deck 1is purged, regardless of the
correction set that contains the line image.
Purging, unlike yanking, cannot be rescinded. A
PURDECK directive can appear anywhere in the input
stream; its appearance terminates the current
correction set. PURDECK directive format depends
on whether decks to be purged are specified
individually by deck name or by a range of deck
names, as shown in figure 3-18.

A. Purge decks listed
*PURDECK deck1,deck2,...deckn

deck Name of deck to be purged.
Names can appear in any order.

B. Purge range of decks
*PURDECK deck1.deck?

deck1.deck2 Names of first and Last decks,
inclusive, to be purged. Names
must appear in the relative
order in which decks exist in
the deck list.

Figure 3-18. PURDECK Directive Format

The name of a purged deck is removed from the deck
list; it can be reused as a deck name, An entry
for the purged deck remains in the directory,
however, until removed through the use of the E
parameter on the UPDATE control statement. The
deck name can also be removed from the directory by
resequencing the library, that is, by creating a
source file in one Update run and then using the
source file as input on a subsequent creation rum.
Until a deck name is removed from the directory, it
cannot be used as a correction set identifier.
(See the PURGE directive.)

60449900 F

PURGE DIRECTIVE

The PURGE directive permanently removes a
correction set or group of correction sets from the
program library. Every line in the correction set

is purged, regardless of its status as active or
inactive. Purging, wunlike yanking, cannot be
rescinded. A new program library written during

the same run treats the purged correction set as if
it had never existed. A PURGE directive can appear
anywhere 1n the input stream; it terminates the
current correction set. PURGE directive format, as
shown in figure 3-19, depends on whether correction
sets to be purged are specified individually by
correction set name, by a range of correction set
names, or by relative time of introduction into the
program library.

A. Purge Llisted correction sets
*PURGE jdent1,ident2,...,identn

Identifier of a correction
set to be purged. Identi-
fiers can appear in any
order.

ident

B. Purge range of correction sets
*PURGE ident?.ident2

Identifiers of first and last
correction sets, inclusive,
to be purged. Identifiers
must appear in the relative
order in which the correction
sets were introduced into the
program library; that is,
they must appear in the order
they exist in the directory.

ident1.ident2

C. Purge later correction sets
PURGE ident,

Identifier of correction set
to be purged along with all
correction sets introduced
after the specified correc-
tion set.

ident

* - Indicator that the program
Library is to return to an
earlier level. Intervening
PURGE directives and SEQUENCE
directives prevent complete
return.

Figure 3-19. PURGE DIRECTIVE Format

-~

If Update cannot locate a specified correction set,
it issues an error message. Purged identifiers can
be reused on subsequent correction sets provided

they do not appear in the YANK$$$ DECK as a YANK

directive parameter.

RESTORE DIRECTIVE

The RESTORE directive reactivates a line image or a
group of line images previously deactivated through

60449900 D

a DELETE directive. Any text line images and
compile file directives immediately following the

RESTORE directive are inserted after the last line I

image identified on the directive. Any inserted
line images receive line identifiers established by
the correction set mname of the preceding IDENT
directive. RESTORE directive format depends on
whether 1line images to be reactivated are specified
by a line identifier or by a range of lines, as
shown in figure 3-20.

A. Restore specified Line.

*RESTORE Line

Line identifier of Line to be re-
stored.

Line

B. Restore range of Lines.
*RESTORE Linel,line2

Line identifiers of first and last
Lines, inclusive, in seguence of
Llines to be restored. Linel must
appear before Line2 in the existing
Library. Any Lines in the sequence
that are already active are not
affected.

tinet,
line2

Figure 3-20. RESTORE Directive Format

Unless a TEXT directive has been encountered,
Update terminates an insertion when it encounters
the next insertion directive or a PURGE, PURDECK,
IDENT, SELPURGE, ADDFILE, or SEQUENCE directive.
On the other hand, compile file directives are
inserted as 1f they are text after Update checks
for correct syntax. Update interprets all other
directives. without terminating insertiom; however,
the directives are not inserted into the deck.

SELPURGE DIRECTIVE

The SELPURGE directive permanently removes the
effects of the specified correction set on the
specified deck. Only the line images belonging to
the specified correction set are purged from the
specified deck. Line images belonging to the
specified correction set that are in other decks
are not purged. Line images in the YANKSS$ deck
can be purged through SELPURGE. A SELPURGE
directive can appear anywhere in the input stream;
it terminates the current correction set. SELPURGE
directive format is shown in figure 3-21.

*SELPURGE deck1.ident1,...,deckn.identn

deck Name of deck from which correction set
is to be removed.
ident Name of correction set to which cards to

be removed belong. It must be separated
from the deck by a period.

Figure 3-21. SELPURGE Directive Format

SELYANK DIRECTIVE

The SELYANK directive temporarily removes the
effects of the specified correction set on the
specified deck. Only the line images belonging to
the specified correction set are yanked from the
specified deck. Line images belonging to the
specified correction set that are in other decks
are not yanked. Line images in the YANKS$S$$ deck
can be yanked through SELYANK. A SELYANK directive
must be part of a correction set; it is placed in
the YANKS$$S deck. The SELYANK directive format is
shown in figure 3-22.

*SELYANK deck?.ident1,...,deckn.identn

deck Name of deck from which correction set
is to be removed.

Name of correction set to which lines to
be removed belong. It must be separated
from deck by a period.

ident

Figure 3-22. SELYANK Directive Format

SEQUENCE DIRECTIVE

The SEQUENCE directive resequences active lines and
purges inactive lines from the specified deck(s).

Only those decks explicitly mentioned on the
SEQUENCE directive are resequenced. Thus, if a
correction set (for example, SET1) affects more

than one deck on a program library (for example,
DECKl and DECK2), and only DECKI has been
subsequently resequenced through SEQUENCE, the
SEQUENCE directive does not affect SETl 1lines
within DECKZ2. The YANKSSS deck
resequenced. SEQUENCE directive format, as shown
in figure 3-23, depends on whether decks to be
resequenced are specified individually by name or
are specified as a range of deck names.

A. Resequence listed decks.

*SEQUENCE deck1,deck2,...>deckn

deck Name of deck to be resequenced.
B. Resequence range of decks.

*SEQUENCE deckq.deck2

deck1.deck2z Name of first and last decks,

inclusive, to be resequenced.
peck1 must appear before deck2
in old program Library.

Figure 3-23. SEQUENCE Directive Format

Update normally allows deck and correction sets
having the same name to coexist on the old program
library. If a deck having the same name as a
correction set is resequenced and lines for the
correction set are in other decks, Update purges
any modifications made by that correction set
outside the resequenced deck to prevent duplicate
identifiers.

The SEQUENCE directive does not result in
identifiers being deleted from the directory even
if, as a result of resequencing, no references to
an identifier are on the. library. This situatiom
arises when all the corrections of a correction set
refer to a deck that is resequenced. Deletion of
the identifier, in this case, requires an edit
(E parameter) or PURGE in a subsequent Update run.

A deck cannot be renamed and resequenced in the
same Update run. (To rename a deck, delete the
first line of the deck and replace it with a new
DECK directive containing the new name.)

YANK DIRECTIVE T

The YANK directive temporarily removes a correction
set or group of correction sets from the program
library. Line images activated by the correction
set are deactivated; line images deactivated by the
correction set are reactivated. If a correction
set has been yanked, it 1s ignored during compile
file or source file generation. The effects of the
YANK directive can be selectively nullified through
the introduction of DO and DONT directives in the
decks. Update places the YANK directive in the
YANKSSS deck. The YANK directive format, as shown
in figure 3-24, depends on whether correction sets
to be yanked are specified individually by
correction set name or by a range of correction set
names.

cannot be

A. Yank Listed correction sets
*YANK ident1,ident2,...,identn

Identifier of a correction
set to be yanked. Identi-
fiers can appear in any
order. '

ident

B. Yank range of correction sets
*YANK ident1.ident2

identifiers of first and last
correction sets, inclusive,
to be yanked. 1Identifiers
must appear in the relative
order in which the correction
sets were introduced into the
program library; that is,
they must appear in the order
they exist in the directory.

identi.ident2

Figure 3-24. YANK Directive Format

The YANK directive differs from PURGE in several
respects: YANK must be part of .a correction set;
YANK does not terminate the current correction set;
and the effects of a YANK directive can be
rescinded.

YANKDECK DIRECTIVE

The YANKDECK directive temporarily removes all
lines within the decks specified. All 1lines are
deactivated, even 1f they belong to a correction
set. YANKDECK differs from PURDECK in several

60449900 D

respects: YANKDECK must be part of a correction
set; it does not terminate the current correction
set; and its effects can be rescinded. The
YANKDECK directive format is shown in figure 3-25.

*YANKDECK deck1,deck2,...,deckn

deck Name of deck to be yanked. Names can
appear in any order.

Figure 3-25. YANKDECK Directive Format

The deck YANKSS cannot be deactivated as a whole.
Individual YANK directives within this deck can be
yanked by a YANK directive, however.

COMPILE FILE DIRECTIVES

Compile file directives provide control over the
compile file. These directives are interpreted
when the program library decks are being corrected
and written onto the compile file. Calls for
common decks result in the common deck being
written on the compile file. Other directives
allow control of file format. None of the compile
file directives are written on the compile file.

The user can prepare the original deck with
embedded compile file directives (except for DO or
DONT) or the user can insert compile file
directives into program library decks as a part of
a correction set. Compile file directives are not
processed when they are encountered in the input
stream (except for COMPILE); they are simply
considered as text lines to be inserted and
sequenced accordingly after update checks for
correct syntax. To be recognized while the compile
file is being written, these directives must have
the same master control character as defined when
the library was created.

CALL DIRECTIVE

The CALL directive causes the active text of a
common deck to be written onto the compile file.
The directive itself 1is stored as part of a deck
and can be referenced by its line identifier. CALL
is effective only within a deck or common deck.
Common decks can call other common decks, but a
common deck must not either call itself or call a
common deck that contains a call to the common
deck. Neither the CALL directive nor the COMDECK
directive which defined the deck is written to the
compile file. The CALL directive format 1is shown
in figure 3-26.

*CALL deck

deck Name of an existing common deck to be
written to the compile file.

Figure 3-26. CALL Directive Format

Common decks can also be called from secondary old
program libraries. If COMDECK names are duplicated
on any secondary old program libraries, Update uses

60449900 E

the first COMDECK encountered according to the
order of the secondary old program libraries as
specified by the P parameter of the UPDATE control
statement.

COMPILE DIRECTIVE

The COMPILE directive indicates which decks are
written to the compile file. During normal mode,
decks specified on COMPILE directives and corrected
decks are written to the compile file. During
quick mode, decks specified on COMPILE directives
and any common decks called by the directives are
written to the compile file. The directive 1is
ignored during a full Update. T

The directive also affects the contents of any new
program. library and source file as shown in
table 2-2 in section 2. The COMPILE directive
format, as shown in figure 3-27, depends on whether
decks to be written are specified individually by
name or are specified as a range of deck names.

A. Compile Llisted decks
*COMPILE deck1,deck2,...,deckn

deck Name of deck to be written to
the compile file, new program
Library file, and source file.

B. Compile range of decks
*COMPILE deck1i.deck2

deckl1.deck? Names of first and last decks
in range, inclusive, to be
written to the compile file.
The name of decki must appear
before the name of deck2 in
the old program Library deck
List.

Figure 3-27. COMPILE Directive Format

Decks are written to the compile file in the order
that the decks exist on the old program library,
unless the K option is selected on the UPDAIE
control statement. If the K option has been
specified, the decks are written in the order they
appear on the COMPILE directive.

When a deck is being introduced in the same run
that contains a COMPILE directive for the deck, the
DECK directive must appear before the COMPILE
directive. Otherwise, COMPILE directives can be
anywhere in the input stream. They do not affect
the current correction set name.

CWEOR DIRECTIVE

The CWEOR directive writes an end of system-logical
record (section for SCOPE 2) on the compile file if
data has been written to the file since the start
of UPDATE or since the last end of system-logical
record was written. The CWEOR directive format is
shown in figure 3-28.

*CWEOR Level
level Level of system-logical record.
For SCOPE 2, the following:

RT=W O thru 14 end-of-section
RT=W 15 end-of-partition
RT=S O thru 15 end-of-record
RT=2 0 thru 15 end-of-section
BY=C 0 thru 15 end-of-section

Figure 3-28. CWEOR Directive Format

DO DIRECTIVE

The DO directive causes Update to rescind a yank of
specified correction sets while writing text to the
compile file. If a line was deactivated as a
result of a YANK or SELYANK, the 1line 1is
reactivated. Likewise, if a line was activated by
a YANK or SELYANK, Update deactivates it. A DO
remains in effect wuntil a DONT directive 1is
encountered. The DO directive can be placed
anywhere in the library. If Update encounters a DO
for an wunyanked correction set, an informative
message is 1ssued and the DO is ignored. The DO
directive format is shown in figure 3-29.

*D0 jdent1,ident2,...,identn

ident Name of correction set for which yanking
is to be rescinded or initiated.

Figure 3-29. DO Directive Format

DONT DIRECTIVE

The DONT directive terminates a DO directive. It
can also be used to initiate a yank of an unyanked
correction set. When Update encounters a DONT for
a correction set that has not been yanked, it yanks
the set until it encounters a DO directive for the
set. If the correction set has already been
yanked, Update issues an informative message and
- ignores the DONT. The DONT directive can be placed
anywhere in the program library. The DONT
directive format is shown in figure 3-30.

*DONT ident1,ident2,...,identn

jdent Name of correction set for which yanking
is to be rescinded or initiated.

directive. Since num takes precedence, the ENDIF
directive 1s included in the count of active lines
and is written on the compile file. The ENDIF
directive format is shown in figure 3-31.

*ENDIF

Figure 3-31. ENDIF Directive Format

IF DIRECTIVE

The IF directive conditionally writes text “on the
compile file. When Update encounters an IF
directive, the text following the directive 1is
written or skipped depending on the condition. The
IF directive format, as shown in figure 3-32,
depends on whether the specified name is to be
known or unknown for the text to be written on the
compile file.

A. Name must be known (on old program Library).
*IF type,name,num

B. Name must be unknown (not on old program
Library).

*IF =type,name, num
type Type of condition name.

DECK Name is deck name. To be
known, it must be in the deck
List on the primary old pro-
gram Library.

IDENT Name is correction set iden-
tifier. To be known, it must
be in the directory on the
primary old program library.

DEF Name is defined through
DEFINE directive on the old
program Library.

When type 1is not preceded by a minus
sign, the name must be known for text
to be written. When type is preceded
by a minus sign, the name must not be
known for text to be written.

name Deck name, correction set identifier,
or defined name, according to type.

num Number of active Lline images to be
skipped if condition is not met.
Optional.

Figure 3-30. DONT Directive Format

ENDIF DIRECTIVE

The ENDIF directive indicates the end of
conditional text. It is used with IF when the num
parameter is omitted from the IF directive. ENDIF
should not be used if num is specified on the IF

Figure 3-32. IF Directive Format

If the num parameter is omitted and the comdition
is not met, Update searches for an ENDIF directive

and resumes processing of the deck at that point;
if ENDIF is not found, then the remainder of the PL

is skipped and the compile file stops at this
point; no error message 1s written. When the
condition is met, no lines are skipped.

60449900 D

When an IF directive is encountered on a secondary
old program library, Update only searches the
directory, deck 1list, and YANK$$$S deck on the
primary old program library in trying to satisfy
the conditional. The deck lists, directories, and
YANKSSS decks of the secondary old program
libraries are not searched.

When both an IF directive 1is encountered as a
result of a CALL and a matching ENDIF directive is
found as the result of a second CALL, the range of
the IF, ENDIF pair is unpredictable.

WEOR DIRECTIVE

The WEOR directive causes the termination of the
current system—logical record on the compile file
with the specified level. The WEOR directive
format is shown in figure 3-33.

*WEOR level
Level Level of system-logical record.
For SCOPE 2, the following:

RT=d 0 thru 14 end-of-section
RT=W 15 . end-of-partition
RT=S O thru 15 end-of~-record
RT=Z 0 thru 15 end-of-section
BT=C 0 thru 17 end~of=-section

Figure 3-33. WEOR Directive Format

WIDTH DIRECTIVE

The WIDTH directive overrides the default compile
file line image width settings, as specified by D
and/or 8 on the UPDATE control statement. WIDTH
directives are 1ignored with compressed compile
files. The format for the WIDTH directive is shown
in figure 3-34.

«HIDTH Linelen,idlen

Linelen Number of characters of Line image
text that is written.

idlen Width of the identification field fol-
Lowing the line image.

Figure 3-34, WIDTH Directive Format

The sum of the length of linelen and idlen must be
equal to or less than 256 characters. If idlen is
set to 0 (zero), the identification field 1is
suppressed. The format of the fields linelen and
idlen are shown in figure 3-35. The sequence data
(S8) is positioned within the identifier name field
(I) by the following procedure:

1. Blanking the field.

2. Putting in the identifier name, left-justified
with truncation on the right as needed.

3. Placing the sequence number over the field,

right-justified with truncation on the left as
needed.

60449900 D

Linelen - Idlen
- e \~\’\
text image 1 S

Figure 3-35. Ffields of Line lImage
and Identification

If *WIDTH is specified with no parameters, the run
default settings are restored. If only the length
of the identification field is specified (*WIDTH
,idlen), then 1linelen is the previous setting
used. If only linelem 1is spécified (*WIDTH
linelen), the previous setting of idlen is used.

FILE MANIPULATION
DIRECTIVES

File manipulation directives coatrol secondary
input files during Update processing. These
directives can only appear in the primary input
stream. They are illegal on a secondary input file.

READ DIRECTIVE

The READ directive temporarily stops reading the
primary input stream and begins reading an input
stream from the specified file. READ differs from
ADDFILE in that the content of the file specified
by READ is not restricted except to prohibit the
appearance of another READ directive or the
ADDFILE, SKIP, and REWIND directives. Update reads
from the specified file one system-logical record
(section for SCOPE 2). Processing then continues
with the main input stream. The READ directive
format is shown in figure 3-36.

*READ Lfn

Lfn Name of alternate file containing input
streanm.

Figure 3-36. READ Directive Format

The specified file cannot be one of the reserved
files specified by a parameter on the UPDATE
control statement. It can only be a local
secondary input file. Also, the specified file
must have the same character set as the primary
input file.

REWIND DIRECTIVE

The REWIND directive repositions the specified file
to beginning—of-information. The file to be
rewound cannot be one of the reserved files. It
can only be a secondary input file. The REWIND
directive format is shown in figure 3-37.

*REWIND Lfn

Lfn Name of file to be rewound.

Figure 3-37. REWIND Directive Format

SKIP DIRECTIVE

The SKIP directive repositions the named local file
forward one or more system—logical records. A
system—logical record (section for SCOPE 2) of

level 17g or end-of-information terminates skip-
ping. The SKIP directive format is shown in -
figure 3-38.

*SKIP Lfn,n

Lfn Name of file to be positioned.

n Number of logical records (sections for

SCOPE 2) to be skipped in the forward
direction. If n is omitted, Update skips
one record (section).

Figure 3-38. SKIP Directive Format

INPUT STREAM CONTROL
DIRECTIVES

The input stream control directives allow the user
to specify whether or not Update 1s to recognize
abbreviated directives, delimit text, or control
which input stream lines are to be displayed on the
listing file. '

ABBREV DIRECTIVE

The ABBREV directive causes checking for
abbreviated directives to be resumed. It 1is used
in connection with the NOABBREV directive. The
ABBREV directive format is shown in figure 3-39.

*ABBREV

Figure 3-39. ABBREV Directive Format

ENDTEXT DIRECTIVE

The ENDTEXT directive ends the condition
established by a prior text directive. If ENDTEXT
is encountered before TEXT, Update ignores it. The
ENDTEXT directive format is shown in figure 3-40.
Any information in columns 10 through 256 1s taken
as a comment.

*ENDTEXT

Figure 3-40. ENDTEXT Directive Format

LIST DIRECTIVE

The LIST directive causes listing of lines in the
input stream to be resumed. It 1is wused in
connection with NOLIST. The LIST directive format
is shown in figure 3-4l.

*LIST

Figure 3-41. LIST Directive Format

NOABBREV DIRECTIVE

The NOABBREV directive causes Update to stop
checking for the abbreviated forms of the
directives. Update expands the name when it reads
an abbreviated form so that it is a full name. The
user has the option of not using abbreviations and
of turning off the check through the NOABBREV
feature. In this mode, an abbreviated directive is
not recognized but is taken as text. The NOABBREV
directive format is shown in figure 3-42.

*NOABBREV

Figure 3-42. NOABBREV Directive Format

NOLIST DIRECTIVE

The NOLIST directive disables 1list option 4.
Update stops listing lines in the input stream when
it encounters a NOLIST and resumes listing lines
when it encounters a LIST. NOLIST directive format
is shown in figure 3-43.

*NOLIST

Figure 3-43, NOLIST Directive Format

LIST and NOLIST can occur anywhere in the input
stream. They do not terminate insertion or =&
correction set. The LIST/NOLIST directives are
ignored if list option 0 is selected.

TEXT DIRECTIVE

The TEXT directive, used in connection with
ENDTEXT, causes all following line images to be
treated as text, whether or not they begin with the
master control character and would otherwise be
considered as directives. When Update encounters a
TEXT directive, the TEXT directive line image and
all line images following it, up to and including
the ENDTEXT directive, are considered as text and
are written on the program library. A TEXT
directive in the input stream must be either in a
deck or in text being inserted. The TEXT and
ENDTEXT directives are maintained on the program
library as text line images; however, they are not
written on the compile file. The TEXT format is
shown in figure 3-44. Any information in columns
10 through 256 is taken as a comment.

*TEXT

Figure 3~44, TEXT Directive Format

60449900 D

SPECIAL DIRECTIVES

The special directives provide extended features.
With the exception of DEFINE and PULLMOD, they can
appear any place in the input stream for creation
or correction runs.

DECLARE DIRECTIVE

The DECLARE directive protects decks other than the
declared deck from being inadvertently altered.
Subsequent corrections are restricted to the named
deck until Update encounters a DECLARE directive
with no deck name or another DECLARE directive with
a different deck name. This directive can only be
used when the DECLKEY installation option has been
assembled. The DECLARE directive format is shown
in figure 3-45.

*DECLARE deck

deck Name of deck to which following correc-
tions are restricted. Omitting deck
nullifies a previous DECLARE.

Figure 3-45. DECLARE Directive Format

When the DECLARE directive 1s encountered, the
following restrictions go into effect:

e PURGE and YANK directives are illegal.

° INSERT, DELETE, RESTORE, and BEFORE directives
can apply only to lines in the declared deck.
if they do not, the operation 1s not performed
and Update issues an informative message. ’

° Inserting or reactivating a DECK or COMDECK
directive is 1llegal.

New decks inserted via the ADDFILE directive need
not be named in a DECLARE directive.

DEFINE DIRECTIVE

The DEFINE directive establishes a condition to be
tested by the IF directive. The names on a DEFINE
directive are unrelated to correction set
identifiers or deck names. Update places DEFINE
directives in the YANKSSS deck. A DEFINE directive
can be placed anywhere in a correction set. The
DEFINE directive format is shown in figure 3-46.

*DEFINE namel, name2,...,namen

name Name for subsequent testing by IF
directive.

Figure 3~46. DEFINE Directive Format

END DIRECTIVE

The END directive is ignored in the input stream.
Update does not copy it onto the old program
library.

60449900 F

The END directive provides compatibility with the
SCOPE EDITSYM program, The END directive format is
shown in figure 3-47,

*END

Figure 3-47. END Directive Format

LIMIT DIRECTIVE

The LIMIT directive changes the maximum size for
the listable output file from the default value of
6000 lines to the specified number of lines. It
should be one of the first lines encountered in the
input stream. The LIMIT directive will not appear
in the new program library. The LIMIT directive
format is shown in figure 3-48. :

=LIMIT n

n New Line Limit for Llistable output.

Figure 3-48. LIMIT Directive Format

When the specified 1limit is reached, options 3
(line image, deck name, and modification key) and 4
(input stream) are turned off. Errors and direc-
tives are still listed, however, if optioans 1 and 2
were selected. Options 5 through 9 are not
affected. Refer to L parameter in section 4.

PULLMOD DIRECTIVE

The PULIMOD directive causes the program library tc
be searched for all line images belounging to each
specified correction set and reconstructs a set of
directives and text. The reconstructed correction
set produces the same results as the original set.
The search of the library is performed at the end
of the Update run. Therefore, any modificatioms
made by the current run are reflected in the
PULLMOD results. Each reconstructed correction set
is written to the file specified by the G parameter
on the UPDATE control statement, All of the sets
are contained within one system—logical record
(section for SCOPE 2) on the file. The PULLMOD
directive format 1is shown in figure 3-49. The
PULLMOD directive can be used only when the PMODKEY
installation option has been assembled for Update.

*PULLMOD ident1,ident2,...,identn

ident Name of correction set to be re-created.

Figure 3-49. PULLMOD Directive Format

The user is responsible for determining whether or
not the reconstructed correction sets accurately
reflect the original corrections., PULIMOD is
unable to determine 1if line images have been purged
subsequent to the addition of the correction sets
requested.

A pullmod file has the same format as an input
file. This feature permits a user to take an
earlier version of the library and apply selected
correction sets.

/ COMMENT DIRECTIVE

The / directive introduces a comment into the
listable output file. Update ignores this line
except to copy 1t to the listing file. A comment

- can appear at any place in the input stream. The

slash can be redefined as another character through
the / comment directive format as shown in figure
3-50. The slash must appear in column 2. Column 3
mist be a comma or blank.

*/comment

Figure 3-50. Comment Directive Format

60449900 F

UPDATE CONTROL STATEMENT

The Update utility is called by the UPDATE control
statement., Parameters specify options and files
for the run. The format of the call is shown in
figure 4-1. The word UPDATE must begin in column
one. See the operating system reference manual for
additional control statement syntax requirements,

UPDATE (p=-List)

p-list Parameters specifying options. Param-
eters in the list are separated by
commas. A Left parenthesis or a comma
must separate the list from the word
UPDATE. A right parenthesis or a
period terminates the statement.

Figure 4=1. UPDATE Control Statement Format

PARAMETERS

All update parameters are optional and can appear
in any order. The parameters that specify files
(¢, G, I, X, M, N, 0, P, S, T) optionally can be
followed with either the digit 6 or 8, indicating
6-bit display code or 8~bit ASCII.

When using the C, G, K, 0, P, S, or T parameters,
the digit 6 forces the character set of the file to
be 6-bit display code. The digit 8 forces the
character set to be 8-bit ASCII. For example,
C8=FILE specifies that the decks are to be written
to the compile file named FILE wusing the ASCII
character set. The 6 and the 8 cannot both be
specified at once for the same file. These
parameters each have a default of either display
code or ASCII, which can be overridden by using
elther the 6 or B8 digit (6 overrides an ASCII
default and 8 overrides a display code default).

When using the I parameter without the 6 or 8
digit, Update will determine the correct character
set to use, For the N or N8 parameter, Update only
uses ASCII if the old program library or input file
has ASCII data. The N8 parameter does not force
ASCII automatically. When wusing the M and N
parameters, the character set 1is determined from
the library’s internal header.

By using the Update parameters, it is possible to
convert a file of display code data to ASCII, or
visa versa. This capability can be useful when
your operating system does not have a standard
utility to change the character set (such as
SCOPE). The file to be converted must be in a
legal input file format. An example of how a

display code to ASCII conversion can be done 1is

shown in the Update Control Statement Examples
subsection, which appears at the end of this
section.

60449900 D

The Update parameters are summarized in table 4-1
and are described in detail below.

A SEQUENTIAL-TO-RANDOM COPY

This parameter copies a sequential old program
library to a random new program library. No other
Update operations are performed; any I parameter is
ignored. The only other control statement
parameters that can be used with the A parameter
are those specifying files, L=0, R, *, /, and H.
An error results if the old program library is not
sequential or the new program library is not
random. For SCOPE 2, the new program library
cannot be blocked.

® omitted

No copy is made.

The sequential old program library is
copied to a random new program library.

B RANDOM-TO-SEQUENTIAL COPY

This parameter copies a random old program library

to a sequential new program library. No other
Update operations are performed; any I parameter is

ignored. The only other control statement param-
eters that can be used with the B parameter are
those specifying files, L=0, R, *, and /. An error
results if the old program library is not in random
format.

° omitted

No copy 1is made.

The random old program library is copied to
a sequential new program library.

C COMPILE FILE NAME

This parameter specifies the name of the compile
file. The content of the compile file |is
determined by the Update mode as shown in table 2-2
in section 2. The default character set is display
code.
@ omitted or C or Cé6 or C8

Decks are written to the file named COMPILE.
e C=1fn or C6=1lfn or C8=lfn

Decks are written to file named lfn.

@ C=PUNCH . D DATA WIDTH ON COMPILE FILE
Decks are written to file named PUNCH. The This parameter specifies how many columns are to be
D and 8 parameters are implied. used for dats on the COMPILE file. Data width does
not include sequencing informationm.
® c=0 e omitted
Compile file suppressed. 72 columns of data to be used.

The C parameter is ignored if K is also specified.

80 columns of data to be used.

TABLE 4-1 SUMMARY OF UPDATE CONTROL STATEMENT PARAMETERS

ParameterT Function
A Coples a sequential old program library to & new random program library.
B Copies a random old program library to a new sequential old program library.
[Specifies the name of the compile file.
D Defines the compile file line image width, excluding Update sequence information.
E Removes from the directory previously purged identifiers and purge identifiers that exist
simply as directory entries.
F Selects full Update mode.
G Specifies the name of the pullmod file.
B Overrides the old program library character set.
1 Specifies the name of the primary input files.
K Writes decks‘on compile file in order specified on COMPILE directives.
L Selects listable output file contents.
M Merges specified program library with an old program library.
N Specifies the name of the new program library file.
0 Specifies the name of the listable output file; content is determined by L parameter.
P Specifies the names of the old program library and secondary old program libraries.
Q Selects quick update mode.
R Specifies the particular files to rewind.
S Specifies the name of the source file; content includes common decks and is determined by
mode.
T Same as S, but omits common decks.
U Does not terminate execution if fatal error occurs.
W Specifies the sequential new program library file.
X Specifies the compressed format for the compile file.
8 Defines the compile file line image width including Update sequence information.
* Redefines the master control character for directives.
/ Redefines the control character for comments.
TParameters c, G, I, X, M, ﬁ, 0, P, S, and T can be appended with either 6 (for display code) or 8
(for ASCII).

60449900 D

If specified, the WIDTH directive overrides the D
parameter.

E EDIT OLD PROGRAM LIBRARY

This parameter specifies that the old program
library 1s to be edited. During editing, the
directory and deck list are rearranged to reflect
the actual order of decks on the program library;
all previously purged identifiers are removed.
Identifiers that exist simply as entries 1im the
directory and have no lines associated with them
are purged. Any lines other than YANK, SELYANK,
YANKDECK, or DEFINE that exist in the YANK$$$ deck
are also purged.

Two edit runs are required to edit the library
completely. The first edit run removes purged
identifiers and flags unused identifiers as
purged. The second edit run deletes the unused
identifiers from the directory.

] omitted

No editing is done.

The program library is edited.

The E parameter can only be used when the EDITKEY
installation option has been assembled for Update.

F FULL UPDATE MODE

This parameter specifies full Update mode.
] omitted

Normal selective Update mode, as long as Q
is not specified.

Full Update mode.

G PULLMOD FILE NAME

This parameter specifies the name of the pullmod
file. The default character set 1is display code.
The G parameter can only be used when the PMODKEY
installation option has been assembled for Update.

° omitted
Output from PULIMOD directives is appended
to the source file (S parameter).

e G=1fn or G6=1fn or GB=1fn
Output from PULIMOD directives 1s written

on file named 1fn. *The listable output
file (O parameter) cannot be specified.

H CHARACTER SET CHANGE

This parameter allows the user to override the
character set type specification in the old program
library.

60449900 F

[omitted or H

Update treats the old program library
character set as the character set
indicated in the old program library.

e H=3
Update treats the old program library as a
63-character set program library regardless
of the character set specified in the old
program library.

° H=4

Update treats the old program library as a
64~character set program library regardless
of the character set specified in the old
program library.

I INPUT STREAM FILE NAME

This parameter specifies the name of the primary
input file. If the digit 6 or 8 is not specified
(I or 1I=1fn), Update determines the input £file
character set by examining the first line image.
Direct input from terminals, permitted only on NOS
and NOS/BE, defaults to the display code character
set unless I8 4is specified on the UPDATE control
statement, All auxiliary input files must be in
the same character set as the primary input file.
Input lines are read and stored up to 256 char-
acters in length. No special parameter is nec-
essary to use long lines. Lines exceeding 256
characters are truncated and an informative message
is issued.

° omitted or I or 16 or I8

Directives and text are on the file named
INPUT.

° I=1fn or 16=1fn or 18=1fn

Directives and text are on file named lfn.

K COMPILE FILE SEQUENCE

This parameter specifies that decks are to be
written to the compile file in the order in which
the deck names are encountered on COMPILE
directives. If a deck name is mentioned more than
once, its last specification determines the deck’s
place within the compile file. The default
character set 1s display code (K6). This parameter
takes precedence over the C parameter. The K
parameter is ignored if both the K parameter and
the F parameter are specified.

° omitted
Location determined by C parameter.
° K or K6 or K8

Decks to be written to the file named
COMPILE in COMPILE directive sequence.

e K=1fn or Ké6=1fn or K8=lfn

Compile output decks to be written on file
named 1fn in COMPILE directive sequence.

L LISTABLE OUTPUT OPTIONS

This parameter specifies the content of the output

file.

e omitted
For a creation run, selects options A, 1,
and 2.
For a correction rum, selects options A, 1,
2, 3, and 4.
For a copy rum, selects options A and l.
For an output file connected to a terminal,

4-4

selects option 1.

L=c...c

Each character in string c...c selects one

of the following options.
seven
character

Under NOS, up to

options can be
0 overrides any

other optilons

specified and suppresses the entire listing.

A

List known deck mnames and correction
set identifiers (deck names and
correction set identifiers must be on
the primary old program library to be
known), COMDECK directives that were
processed, known definitions (DEFINE
directive), and decks written to the
compile file.

All options except O.
All listing is suppressed.

List lines in error and the associated
error messages. The flag *ERROR*
appears to the left and right of an
erroneous line image.

List all active Update directives
encountered either on the input file or
on the old program 1library. Those
directives encountered in input are
flagged with five asterisks to the left
unless the directive is abbreviated or
the line identifier is in short form.
In this case, the directive is flagged
with five slashes. If the directive
has been encountered on the old program
library, the name of the deck to which
this line belongs is printed in place
of the five asterisks or slashes.

Comment on each line that changed
status during current run. Comments
include the deck name, line image, line
identifier, and an indicator of action
taken for that line.

I Line added.

A Inactive line reactivated.

D Active line deactivated.

P Line purged. If the 1line was
active, ACTIVE also appears.

SEQ Line resequenced.

specified. The

4 List text lines encountered in the
input stream. Lines read as a result
of a READ directive are identified to
the right with the file name. Lines
inserted as a result of an ADDFILE
directive are listed only when option 4
is explicitly selected. Lines inserted
as a result of a COPY directive are
identified to the right by the word

copy .

Option 4 can be turned om by a LIST
directive and off by a NOLIST directive.

5 List all active compile file directiveé.

6 List number of active and inactive
lines by deck name and correction set
identifier.

7 List all active lines; identify to the

right with an A.

8 List all inactive 1lines; identify to

the right with an I.

9 List correction history of all lines
selected by list options 5, 7, and 8.

List options 5 through 9 are provided for auditing

an old program library. These options are
available only when the AUDITKEY installation
option 1s assembled. Output 1is writtem to a

temporary file and appended to the listable output
file at the end of the Update run. When the F
parameter is selected, options 5 through 9 apply to
all decks on the old program library. If.F is mnot
selected, options 5 through 9 apply to decks listed
on COMPILE directives only.

list options 3, 5, 6, 7, 8, and 9 do not apply to
creation runs and are ignored if specified.
However, list option 4 may be used to list creation
run input.

If the A or B parameter is specified, the only list
option honored is L=0.

If the old program library is sequential and F is
not selected, called common decks that precede the
decks that call them must be explicitly named on
COMPILE directives to be audited. A common deck is

"avdited automatically if it follows the deck that

calls it. If the old program library is random,
called common decks are audited automatically.

M MERGE PROGRAM LIBRARIES

This parameter merges two program libraries as omne
new program library. The M parameter is ignored on
a creation run. The two program libraries wmust
have the same master control character. The
default character set is determined from the header.
. omitted

No merge file.

e M or M6 or M8

Program librarybto be merged with the old
program library is on file MERGE.

60449900 F

e M=1lfn

.

Program library to be merged with old
program library on file named 1lfn.

N NEW PROGRAM LIBRARY FILE NAME

This parameter specifies the name of the new
program library. The default character set 1is
ASCII if the P, M, or I file uses ASCII.

® omitted
Suppress new program library generation if
correction run, otherwise write new program
library to file named NEWPL.

[N or N6 or N8

-

Write new program library to file named
NEWPL.

° N=1fn or N6=1fn or N8=1fn

Write new program library to file named 1lfn.

O LISTABLE OUTPUT FILE NAME

This parameter specifies the name of the output

file. Output file content is determined by the L
parameter. The default character set is display
code.

° omitted or O or 06 or 08
Write output to file named OUTPUT.
e O=1fn or 06=1fn or 08=1fn

Write output to file named 1fn.

P OLD PROGRAM LIBRARY FILE NAME
This parameter specifies the name of the old
program library; it 1is ignored on a creation run.

The default character set is determined from the
header.

l e omitted or P or P6 or P8

0ld program library resides on file named
OLDPL.

® P=1fn

0ld program library resides on file named
1fn.

e P=1fn/sl/s2/.../s7
0l1d program library resides on file named
1fn. Secondary old ©program libraries
reside on files sl, s2,...,87.

e P=/sl/82/.../s7
0l1d program library resides on file OLDPL.

Secondary old program libraries reside on
files sl, s2,...,s87.

60449900 F

Q QUICK UPDATE MODE

This parameter specifies quick Update mode. It
takes precedence when both F and Q are specified.

° omitted

When F is also omitted, normal selective
Update mode.

Quick mode.

Corrections other than ADDFILE that reference lines
in decks not specified on COMPILE directives are
not processed in quick mode and Update abmormally
terminates after printing the unprocessed correc-
tions.

In Q mode, using a random old program library, a
single correction set «containing corrections to
both a DECK and a COMDECK might cause trouble if
the COMDECK logically precedes the DECK on the old
program library. No errors will be detected, but
if the same run is repeated with the N parameter
specified on the UPDATE control statement and/or
the old program library is sequential, the sequence
numbers assigned to the text lines in the
correction set will not be the same as they were in
the Q mode run. This situation cannot be prevented
without sacrificing the speed for which Q mode was
designed. The correct sequence numbers are those
assigned when N 1is specified or the old prograw
library is sequential.

R REWIND FILES

This parameter specifies files to be rewound before
and after an Update run.

° omitted
Rewind the o0ld program library, the new

program library, the compile file, the
source file, and the pullmod file.

Do not rewind any files. The new program
library and the o0ld program 1library are
positioned before the end-of-file mark.
] R=c,...c

Each character in the string indicates a
file to be rewound. The characters also
apply to corresponding two~character
control statement options.

c Compile
N New program library
P 01d program library and merge library

S Source and pullmod

S SOURCE FILE NAME

This parameter specifies the name of the source
file. The content of the source file is determined
by the mode in which Update 1is operating, by the
decks named on COMPILE directives, and by the
format of the old program library in use (random or
sequential).

¢ omitted

Suppress source output fille unless it is
selected by the T parameter.

e S or S6 or S8

Source output file to be written on file
named SOURCE.

@ S=1fn or S6=1fn or S8=1fn

Source output file to be written on file
named lfn.

T OMIT COMMON DECKS FROM SOURCE FILE

This parameter specifies that common decks are to
be excluded from the source file. It takes
precedence over the S parameter.

@ omitted

Suppress source file unless it is selected
by the S parameter.

@ T or T6 or T8

Source output to be written on file named
SOURCE, with common decks excluded.

e T=1fn or T6=1fn or T8=1lfn

Source output to be written on file named
1fn, with common decks excluded.

U DEBUG HELP

The U parameter allows Update to proceed to pass 2
(correction phase) 1if errors are encountered in
pass 1 (read-input-stream phase). The user should
be aware that because of the method in which Update
works, pass 1 errors could conceivably cause the
flagging of pass 2 items which are not errors.

P omitted

Update execution terminates when a fatal
error is encountered.

Update execution 1s not terminated by a
fatal error.

W SEQUENTIAL NEW PROGRAM LIBRARY FORMAT

This parameter specifies that the new program
library is to have sequential format.

PY omitted

New program library format is determined by
file residence as shown in table 2-3 in
section 2,

New program library is a sequential file.

X COMPRESSED COMPILE FILE

This parameter specifies that the compile file is
to be compressed.

e omitted

Compile file is not written in compressed
format.

Compile file 1is written in compressed
format (appendix D).

8 LINE iMAGE WIDTH ON COMPILE FILE

This parameter specifies total line image width on
the compile file including sequencing information
(appendix D).

e omitted

Compile file output is composed of
90-column line images.

Compile file output is composed of
80~column line images.

If specified, the WIDTH directive overrides the 8
parameter.

* MASTER CONTROL CHARACTER

This parameter specifies the master control
character. If the character specified for a
correction run is not the same as the character
used when the old program library was created, the
old program library character is used.

e omitted
The first character of each directive is *.
® ¥e=p
The first character of each directive for
this Update run 1is ¢; ¢ can be any
character A through Z, 0 through 9, or + -

* / ¢ or =. (The $ character should be
specified as *=$§35S.)

60449900 D

/ COMMENT CONTROL CHARACTER

This parameter specifies the comment control
character.

® omitted
Comment control character is /.

e /=c
The comment control character is ¢; c can
be any character A through Z, 0 through 9,
or + - * / § or =, (The § character should
be specified as /=$$$$.) Note, however,
that the character should not be changed to

one of the abbreviated forms of a directive
unless NOABBREV is in effect.

UPDATE CONTROL
STATEMENT EXAMPLES

The Update control statement
UPDATE (C=0,I=IN,L=F,N=TEST2,P=TEST1,S,*=+)

selects the following options in addition to
default values for the omitted parameters:

e C=0

A compile file 1is not generated.

The input stream is on the file named IN,
@ L=F

A full output listing is generated.

@ N=TEST2
A new program library named TEST2 is
generated.

e P=TESTI
The old program library 1is on the file
named TEST!.

Py S
A source flle is generated on file named
SOURCE.

e *=t

The master control character is +,

The Update control statement
UPDATE (P=0LDPL8,S8,I,0,N6=NUPL6)
selects the following values:
e P=0LDPL8
Modify the program library named OLDPLS;

the program library 1s assumed to be in
ASCII.

40449900 D

Generates an ASCII source file named

SOURCE.

. I
The input is in ASCII or display code on
the file named INPUT. Update automatically
determines the character set of the input
file.

e O
The output is in display code (the default)
on the file named OUTPUT.. _

® N6=NUPL6

Causes Update to generate a new program
library in display <code from the old
program library in ASCII code on the file
named NUPL6.

The Update control statement
UPDATE(C=0,I=0,N8=NUPLS,S)

selects the following options:

Y N8=NUPL8

“~ An 8-bit (ASCII) NEWPL is generated if an
ASCII old program library is input,

[C=0

A compile file is not generated.

The 0 is an empty file; no correctioms are
applied. ’

A source file in display code named SOURCE
is generated.
The Update control statement
UPDATE (A, N=RAN,P=SEQ)
causes Update to copy the sequential old program
library, SEQ, to a random new program library named
RAN. The L, O, R, *, and / parameters assume
their default wvalues. No other parameters are
applicable when A is specified.
The Update control statement
UPDATE
selects the following default values:

e C=COMPILE

@ G=SOURCE (correction run)

I=INPUT

L=A12 (creation run)
L=A1234 (correction runm)
L=Al (copy run)

N=NEWPL (creation runm)
O0=0UTFUT

R=CNPS

P=OLDPL (correction run)

L2 2

/=/

In addition, the following defaults apply:

The compile file has 90 columns with 72 columns
for data.

No editing is performed.

Update mode is normal selective.

The character set used is that specified in the
library header. However, if there is ASCII
data in INPUT, ASCII will be used in creating
NEWPL.

No merging is performed.

Execution is terminated 1f a fatal error occurs.

New program library file format is determined
by file residence.

The compile file is not in compressed format.

The Update control statement

UPDATE (C8=C812,F, I=F64,L=1,N=0,0=0UT,58=5812,U)

causes Update to convert display code data in file

F64 to ASCII data in file C8l12.

The statement [

selects the following options:

C8=CB12

A compile file is generated in ASCIIL.

F
Full Update mode is used. o
I=F64
The input stream is on the file named Fb4.
A *DECK directive must be the first line in
the file.
L=1
The output file will contain lines in error
and the associated error messages.
N=0
A new program library is not generated.
0=0UT
The output is written to the file named OUT.
S8=5812
An ASCiI source file is generated on file
named S812.
U

The Update execution will not be terminated
by a fatal error.

60449900 F

EXAMPLES OF UPDATE RUNS 3

This section contains several examples of Update
runs under NOS. The directives illustrated include
PURGE, YANK, ADDFILE, and PULLMOD. Examples also
show how to save or store a program library as a
permanent file under the various operating
systems. Also included in this section 1s an
example of a FORTRAN program maintained as a
program library.

LIBRARY FILE CREATION

Figure 5-1 shows an example of an Update creation
run in which several COMPASS and FORTRAN routines
become a program library. The UPDATE control
statement indicates a new library is to be created
with the name PL. Since no other parameters are
specified, Update uses default values.

job statement

UPDATE (N=PL)

/EOR

*DECK COMGROUP
COMPASS program

*DECK COMGROUP1
COMPASS program

«WEOR

*DECK FORGROUP
FORTRAN program

*DECK FORGROUP1
FORTRAN program

/EOL

Figure 5-1. Update Creation Run

Since the first directive encountered is DECK,
Update recognizes a creation run and Dbegins
constructiron of a new program library. All lines
following the first DECK directive, up until the
second DECK directive, are written as a deck with
the name COMGROUP. The first line is assigned the
identifier COMGROUP.2, the next COMGROUP.3, and so
forth. (The DECK directive itself is also a part
of the library and has the identifier COMGROUP.1.)

A new deck, with line identifiers in the form
COMGROUPl.n, begins when Update encounters the
second DECK directive. In this example
(figure 5~1), two COMPASS programs form the first
two decks; COMGROUP and COMGROUPLl; and two FORTRAN
programs make up the last two decks (FORGROUP and
FORGROUP1). At the end of the Update run, a
program library exists with four decks.

60449900 D

The compile file produced by the run in figure 5-1
contains two system—logical records as a result of
the WEOR directive. All four decks are written to
the compile file. It has the default name of
COMPILE.

The example in figure 5-2 shows a creation run in
which directives are read from the alternate input
file REMTAPE. Update reads text and directives
from REMIAPE until the end of the system-logical
record (end-of=-section for SCOPE 2) is encoun-
tered. Update then resumes reading from the main
input file, INPUT. The resulting new program
library contains decks A, B, C, and LOCAL.

A. Update Job Deck.

job statement

UPDATE (N)

/EOR

*READ REMTAPE

*#DECK LOCAL
text of LOCAL

/EOI

B. Contents of REMTAPE

*DECK A
text of A

*DECK B
text of B

*DECK C
text of C

Figure 5-2. Creation of Library
From Alternate Input File

The program library, NEWPL, created by the example
in figure 5-3 contains four decks; two of them are
common decks. The compile file that is produced by
default contains decks XA and XB in that order.
Deck XB is expanded by Update to contain common
deck D2 on the compile file.

ALTERNATIVE INPUT FILES

Text and directives do not have to be part of the
job deck. They can be in a file specified by the I
parameter of the UPDATE control statement. In
figure 5-4, Update creates a program library from
information contained in file Al. The library that
is produced contains three decks having lines
identified by their deck name and sequence number
as shown in figure 5-5.

job

<t

t
*DE
t
*DE
t
*CA
] /€0

statement

UPDATE (N)

i /EOR
#COMDECK D1

ext of D1

*COMDECK D2

ext of D2
CK XA

ext of XA
CK XB

ext of XB
LL b2

1

Figure 5-3.

Creation of Library

With Common Decks

| 7E0I

*DECK

c

*DECK

A. Update Job Deck

job statement

UPDATE(I=A1,N)

B. Contents of A1l

*COMDECK CSET

COMMON A,B,C
SET1
PROGRAM ZIP

A DO-NOTHING JOB

STOP

END

SET2
SUBROUTINE JIM
A =B - SIN(C)
RETURN

END

Figure 5«4, 1Input File Not INPUT

*COMDECK CSET
COMMON A,B,C

SUBROUTINE JIM
A =B = SIN(D
RETURN

END

*DECK SET1
PROGRAM ZIP

¢ A DO-NOTHING JOB
STOP
END

*DECK SETZ

CSET.1
CSET.2
SET1.1
SET1.2
SET1.3
SET1.4
SET1.5
SET2.1
SET2.2
SET2.3
SET2.4
SETZ.5

Figure 5-5. Program Library Contents

INSERTING, DELETING,
AND COPYING

The Update run illustrated in figure 5-6 modifies
the decks SETl and SET2 of the program library
created by the run in figure 5-4. As a result of
the correction run, SETl appears in the compile
file as shown in figure 5-7.

job statement

UPDATE(N,F)

/EOR
*IDENT ADD1
*DELETE SET1.3,SET2.5
*CALL CSET

B8=1.0

€=3.14159

CALL JIM
*COPY SET1,SET1.4,SET1.5
*COPY SETZ2,SET2.2
*CALL CSET
*COPY SETZ,SET2.3,SET2.5
/€01

Figure 5-6. Modify Old Program Library

PROGRAM ZIP SET1 2
COMMON A,B,C CSET 2
B=1.0 ADD1 2
€=3.14159 ADD1 3
CALL JIM ADD1 &
STOP ADD1 5
END ADD1 6
SUBROUTINE JIM ADD1 7
COMMON A,B,C CSET 2
A =B - SIN(C) ADD1 9
RETURN , ADD1 10
END ADbDT 11

Figure 5-7. Compile File Contents

Figure 5-8 shows the modification of an old program
library named FN and the production of an assembly
listing. The compile file that is read by COMPASS
contains deck XA after that deck was modified by
Update.

PURGING AND YANKING

The purge directives differ from the yank
directives in that yank operations are temporary;
lines yanked from the program library are tem-
porarily deactivated. The lines can be reactivated
by a subsequent yank of the yank directive that
deactivated the line images.

In contrast, any change made to a program library
through a purge directive is permanent. A reversal
of a purge operation is possible only through the
reintroduction of the lines into the library as if
they had not previously existed.

60449900 D

job statement

UPDATE (P=FN)

COMPASS (I=COMPILE)

/EOR

*IDENT CS1

*INSERT XA.1
Insertions

*DELETE XA.20,XA.23

/EOI

Figure 5-8, Correction Run

The YANK directive in figure 5-9 becomes the first
line on the new program library. The identifier
for this line is NEGATE.l. The effects of the YANK
can be nullified in future runs (consequently the
effects of the correction set GOTTOGO are restored)
by specifying the following:

*IDENT RESTORE
*DELETE NEGATE.l
or
*IDENT RESTORE
*YANK NEGATE
or
*PURGE NEGATE

job statement

UPDATE (P=L1B,N=NEWLIB)

/EOR
*IDENT NEGATE
*YANK GOTTOGO
/EQI

Figure 5-9. Use of YANK

If the correction set NEGATE contained other
corrections as well as the YANK, the YANK could be
permanently removed by specifying the following:

*SELPURGE YANKSSS$.NEGATE
or it could be temporarily removed by specifying:

*SELYANK YANKS$S$$.NEGATE

The Update run in figure 5-10 returns a program
library to a previous level. The program library
LIBAUG was modified periodically over a number of
months. LIBAUG is the most recent (August) version
of the program library. This run re-creates a

60449900 D

job statement

UPDATE (N=LIBMAY,P=LIBAUG,C=0)

/EOR
#PURGE JUNMOD1 ,*
/E0L

Figure 5-10. Return to Previous Level

library wodified only through May. The run purges

all modifications made after May (beginning with
JUNMOD! in the directory).

The run in figure 5~11 permanently removes deck BAD
from the library. LIB is the most recent program
library. NEWBAD i{s the new program library with
BAD purged. *PURDECK BAD operates so that any
lines having the identifier BAD but physically
located outside of the deck BAD are not purged.

job statement

UPDATE (P=L1B,N=NEWBAD ,C=0)

/EOR
. *PURDECK BAD
/€01

Figure 5=11. Use of PURDECK

As a means of comparing the effects of YANK,
SELYANK, and YANKDECK, consider the following:

@ *YANK OLDMOD

This directive causes all effects of the
correction set OLDMOD on the entire library to
be nullified. Line images introduced by OLDMOD
are deactivated; line images deactivated by
OLDMOD are reactivated.

@ *SELYANK OLDDECK.OLDMOD
This directive accomplishes the same effect as
the *YANK OLDMOD directive except its effect is
limited to line images within the deck OLDDECK.
@ *YANKDECK OLDDECK

This directive affects all Lline images in
OLDDECK, without regard to which correction set
they belong.

The effects of the purge directives PURGE,
SELPURGE, and PURDECK work the same as the yank
directives except the results are permanent.

5-3

SELECTIVE YANKING

The text stream in figure 5~12 illustrates the use
of the DO and DONT directives. The deck ZOTS had
contained lines introduced by the correction set
DART; a later correction set contained a YANK
directive that yanked correction set DART. The
user wishes to mnullify a portion of the YANK
directive that affects the lines following ZOTS.19
through ZOTS.244; all other lines belonging to the
correction set DART are to remain yanked.
Inserting a DO at ZOTS.19 and a DONT at Z0TS.244
causes Update to rescind the YANK directive while
writing the deck Z0TS to the compile file.

*IDENT REST
*INSERT 70TS.19
*DO DART
*INSERT Z0TS.244
*DONT DART

Figure 5-12. Use of DO and DONT

SELECTIVE WRITING TO
COMPILE FILE

During the correction phase Update processes the
following directive:

*DEFINE ABC

It is automatically placed in the YANKSSS deck
(*INSERT is not needed). PROG2, a deck to be
written on the compile file, contains the sequence
shown in figure 5-13.

*DECK PROGZ

*IF DEF,ABC

*ENDIF

Figure 5-13. Sequence of Deck

Since ABC is defined, all active lines between the
IF and ENDIF pair are written as part of PROG2.
Removing the DEFINE from the YANK$$S deck would
cause these text lines to be skipped.

The input stream 1in figure 5-14 has mutually
exclusive requirements depending on the avail-
ability of correction set IDC. If IDC is known,
the first 15 active lines after the first IF are
written to the compile file. If IDC is not known,
the lines following the second IF through the ENDIF
are written to the compile file.

*DECK DECKA

*IF IDENT,IDC,15
*IF = IDENT,IDC

active text lines I
*ENDIF
Figure 5~14, Use of IF and ENDIF [

Nesting of IF directives is illustrated in
figure 5-15. The deck ROCK has an IF-controlled I
sequence containing a second IF-controlled
sequence. The text following the first IF is
written if PEBBLE is known (on the old program
library); the text following the second IF 1is
written if both PEBBLE and STONE are known. The
ENDIF terminates both IF-controlled sequences.

*DECK ROCK

*IF IDENT,PEBBLE

*IF IDENT,STONE

*ENDIF

Figure 5-15. Nested IF Directives i

ADDITION OF DECKS

A new program library, NEWPL, is constructed from
the old program library, OLDPL, with the addition
of one new common deck and two new decks. The new
common deck, DIA, is the first deck after the
YANK$SS deck; the new deck XC follows deck SX; and
the new deck SYSTEXT 1s the last deck on the new
program library. No compile file is produced. All
three of the ADDFILEs in figure 5-16 are to be read
from the main input file INPUT. The ADDFILEs in I
figure 5~17 are to be read from the Update inmput
file FNAME. In both these cases, the input file
need not be specified but the two separators must
be included (either space and comma or two
commas). Each of the ADDFILE directives in
figure 5-18 causes Update to read from a separate §
file that is not the main input file. Common deck
D1A and its text are on FILEA; deck SYSTEXT and its
text are on FILEB; deck XC and its text are on
FILEC. :

PULLMOD OPTION

The program -library created by the example in
figure 5-4 (Input File Not INPUT) has been altered
by the correction run in figure 5-19. As a con~-
sequence of the run, the deck SETl contains the
lines shown in figure 5-20.

60449900 D

job statement

UPDATE (N, C=0)

/EOR
*ADDFILE INPUT,YANKS$S or *ADDFILE,, YANK$$S
*COMDECK D1A

*ADDFILE INPUT or *ADDFILE
*DECK SYSTEXT

*ADDFILE INPUT,XB or *ADDFILE, XB
*DECK XC ‘

7e01

job statement

UPDATE (N ,C=0)

/EOR

*ADDFILE FILEA,YANKSSS
*ADDFILE FILEB
#ADDFILE FILEC,XB

/€01

Figure 5~18. ADDFILE Input on
Secondary Input Files

Figure 5-16. ADDFILE Input on File INPUT

A. Update Run
job statement

UPDATE (N, C=0, I=FNAME)

/EOI

B. Contents of file FNAME
#ADDFILE FNAME,YANKSSS or *ADDFILE,,YANKSSS
*COMDECK D1A

*ADDFILE FNAME or *ADDFILE
#*DECK SYSTEXT

*ADDFILE FNAME_XB or *ADDFILE, XB
#DECK XC

job statement

UPDATE (N=PL2)

/EOR

*IDENT PHEX

*DELETE SET1.3

c THIS IS FOR PULLMOD EXAMPLE
#COMPILE SET1

/EOI

Figure 5-19. Correction Run
for PULLMOD Example

#DECK SET1
PROGRAM ZIP

c THIS IS FOR PULLMOD EXAMPLE
sTOP
END

Figure 5-20. File Contents After
Correction Run

job statement

UPDATE (6=PMFILE ,P=PL2)
/EOR

*PULLMOD PHMEX

/€01

Figure 5-17. ADDFILE Input on File FNAME

The Update run in figure 5-21 recreates the
correction set that changed SET1; the file PMFILE
contains the recreated correction set shown in
figure 5-22.

60449900 D

Figure 5-21. Pull Modifications

*IDENT PMEX
*DELETE SET1.3,SET1.3
¢ THIS IS FOR PULLMOD EXAMPLE

Figure 5-22. Recreated Correction Run

PROGRAM LIBRARY AS A
PERMANENT FILE

l The job deck in figure 5-23 {llustrates the
creation and saving of a program 1library as a
permanent file under NOS/BE and SCOPE 2; the deck
in figure 5~24 saves a program library as an in-
direct access file under NOS. See the appropriate
operating system reference manual for additiomnal
details.)

job statement

accounting statements
REQUEST(PL ,*PF)
UPDATE (N=PL ,W,L=1234)
CATALOG(PL ,PLIB,ID=JONES)
/EOR

*DECK ONE

/EOI

Figure 5-23, Permanent File Under
NOS/BE or SCOPE 2

job statement
accounting statements
UPDATE (N=PL ,W,L=1234)
SAVE (PL=UPLIB)

/EOR

*DECK ONE

/EOI

Figure 5-24, Permanent File Under NOS

SAMPLE FORTRAN PROGRAM

This set of Update examples i1llustrates how Update
can be used for maintaining a FORTRAN program in
program library format. The FORTRAN program
calculates the area of a ‘triangle obtaining the
base and height from the data record.

The job in figure 5-25 places the FORTRAN program
and subroutine as a single deck (ONE) on the new
program library (NEWPL) and on the compile file
(COMPILE). Following Update execution, FIN5 is
called to compile the program; the source is on the
COMPILE file. LGO calls for execution of the
compiled program. This program does not execute
because of an error in the SUBROUTINE statement.
The name of the subroutine should be MSG, not MSA.

Examination of update output from the creation job
reveals that the erroneous SUBROUTINE statement has
line identifier ONE.20. The 3job in figure 5~26
corrects the error and generates a new program
library.

job statement

UPDATE (N, F)
FTNS (I=COMPILE)
LGO.
/EOR
*DECK ONE
PROGRAM ONE
PRINT §
5 FORMAT (TH1) -
10 READ (*,100,END=120)BASE,HEIGHT

100 FORMAT (BZ,2F10.2,11)
IF (BASE.LE.0) 60 TO 105
IF (HEIGHT.LE.0) G0 TO 105
60 TO 106
105 CALL MSG
106 AREA = .5 * BASE * HEIGHT
PRINT 110, BASE,HEIGHT,AREA
110 FORMAT (///,'BASE=',F20.5,"HEIGHT="
c ,F18.5," AREA=" ,F20.5)
WRITE (1) AREA
6o T0 10
120 sTop
END
SUBROUTINE MSA
PRINT 400
400 FORMAT (///,'FOLLOWING INPUT DATA
€ NEGATIVE OR ZERO")

RETURN
END
/EOR
data
/EOI

Figure 5-25. FORTRAN Program Library - 1

job statement

ATTACH (OLDPL=MYLIB)
UPDATE(N,F)

FTN5 (I=COMPILE)
LGO.

/EOR

*IDENT MOD1 .

*DELETE ONE.20
SUBROUTINE MSG

JEOR

data

/EOI

Figure 5-26, Correction of
SUBROUTINE Statement

60449900 D

The job in figure 5-27 uses the same input as the
job in figure 5-25. However, the program in
figure 5-27 is divided into two decks, MSG and
ONE. Deck MSG is a common deck. A CALL directive
is inserted into deck ONE to assure that whenever
deck ONE is written on the compile file, MSG is
also written on the compile file.

job statement

UPDATE (N, F)
FTNS (I=COMPILE)
LGO.

1E0R
*COMDECK MSG
SUBROUTINE MSG
PRINT 400
400 FORMAT (///,'FOLLOWING INPUT DATA
C NEGATIVE OR ZERO')
RETURN
END
*DECK ONE
PROGRAM ONE
PRINT 5
5 FORMAT (1H1)
10 READ (*,100,END=120)BASE,HEIGHT
100 FORMAT (BZ,2F10.2,I1)
IF (BASE.LE.Q) GO TO 105
IF (HEIGHT.LE.0) GO TO 10S
60 TO 106
105 CALL MSG
106 AREA = ,5 % BASE * HEIGHT
PRINT 110,BASE,HEIGHT AREA
110 FORMAT (///,'BASE=',F20.5,"HEIGHT="
¢ ,F18.5,'AREA=',F20.5)
WRITE (1) AREA

G0 TO 10
120 STOP
END
/EOR
data
/EOL

Figure 5-27. FORTRAN Prograam Library = 2

60449900 D

The example in figure 5-28 adds a deck to the
library created in the previous example
(figure 5-27). Since no unew program library 1is
generated (N is omitted from Update call), the .
addition is temporary.

job statement

ATTACH (OLDPL=MYLIB)
UPDATE.

FTN5 (I=COMPILE)
LGO.

/EOR
*IDENT MOD2
#INSERT ONE.20
*DECK THWO
PROGRAM TWO
END
*CALL MSG
#DELETE MSG.3
400 FORMAT (///,'FOLLOWING INPUT DATA
[+ POSITIVE")
/EOR
data
/E01

Figure 5-28. Add Deck to FORTRAN
Program Library

CHARACTER SETS » A

m

This appendix describes the code and character sets
used by host computer operating system local batch
device drivers, magnetic tape drivers, and terminal
comnunication products. Some software products
assume that certain graphic or control characters
are associated with specific binary code values for
collating or syntax processing purposes. This
appendix does not describe those associations for
all products.

All references within this manual to the ASCII
character set or the ASCII code set refer to the
character set and code set defined in the American
National Standard Code for Information Interchange
(ASCII, ANSI Standard X3.4-1977). References in
this manual to the ASCII character set do not
necessarily apply to the ASCII code set.

CHARACTER SETS AND CODE SETS

A character set differs from a code set. A
character set is a set of graphic and/or control
characters. A code set is a set of codes used to
represent each character within a character set.
Characters exist outside the computer system and
communication network; codes are received, stored,
retrieved, and transmitted within the computer
system and network.

GRAPHIC AND CONTROL CHARACTERS

A graphic character can be displayed at a terminal
or printed by 4 line printer. Examples of graphic
characters are the characters A through Z, a blank,
and the digits O through 9. A control character
initiates, modifies, or stops a control operation.
An example of a control character is the backspace
character, which moves the terminal carriage or
cursor back one space. Although a control
character 1is not a graphic character, some ter=-
minals can produce a graphic representation when
they receive a control character.

CODED AND BINARY CHARACTER DATA

Character codes can be interpreted as coded
character data or as binary character data. Coded
character data 1is converted from one code set
representation to another as it enters or leaves
the computer system; for example, data received
from a terminal or sent to a magnetic tape unit is
converted. Binary character data is not converted
as it enters or leaves the system. Character codes
are not converted when moved within the system; for
example, data transferred to or from mass storage
is not converted.

60449900 D

The distinction between coded character data and
binary character data is important when reading or
punching cards and when reading or writing magnetic
tape. Only coded character data can be properly
reproduced as characters on a line printer. Only
binary character data can properly represent
characters on a punched card when the data cannot
be stored as display code.

The distinction between binary character data and
characters represented by binary data (such as
peripheral equipment instruction codes) is also
important. Only such binary noncharacter data can
properly reproduce characters on a plotter.

FORMATTED AND UNFORMATTED
CHARACTER DATA

Character codes can be interpreted by a product as
formatted character data or as unformatted char-
acter data. Formatted data can be stored or
retrieved by a product In the form of the codes
described for coded character data in the remainder
of this appendix, or formatted data can be altered
to another form during storage or retrieval; for
example, 1l can be stored as a character code or as
an integer value. Treatment of unformatted data by
a product includes both coded character data and
binary character data as described in this appendix.

NETWORK OPERATING SYSTEMS

The Network Operating System (NOS) and the Network
Operating System/Batch Environment (NOS/BE) support
the following character sets:

® CDC graphic 64~character set
@ CDC graphic 63—character set
® ASCII graphic 64-character set
® ASCII graphic 63-character set
® ASCII graphic 95-character set

In addition, NOS supports the ASCII 128-character
graphic and control set.

Each installation must select either a 64-character
set or a 63-character set. The differences between
the codes of a 63-character set and the codes of a
64—character set are described under Character Set
Anomalies. Any reference in this appendix to a
b4-character set implies either a 63— or 64—
character set unless otherwise stated.

To represent its six listed character sets in
central memory, NOS supports the following code
sets:

Y 6~bit display code
e 12-bit ASCII code (ASCII 8/12)

e 6/12-bit display code (ASCII 6/12)

Update only utilizes ASCII 8/12 or display code
characters. No attempt to input ASCII 6/12 data
(on NOS) should be made. The ASCII 6/12 data must
first be converted to ASCII 8/12 data using the NOS
FCOPY control statement.

To represent its five listed character sets in
central memory, NOS/BE supports the following code
sets:

e 6-bit display code

@ 12-bit ASCII code (ASCII 8/12)

Under both NOS and NOS/BE, the 6-bit display code
is a set of 6-bit codes from 00g to 77g.

Under both NOS and NOS/BE, the 12-bit ASCII code is
the ASCII 7-bit code (as defined by ANSI Standard
¥3.4-1977) rtight-justified in a 12-bit Dbyte.
Assuming that the bits are numbered from the right
starting with O, bits O through 6 contain the ASCII
code, bits 7 through 10 contain zeros, and bit 1l
distinguishes the 12-bit ASCII 0000g code from
the end-of-line byte. The 12-bit codes are 000lg
through 0177g and 4000g.

Under NOS, the 6/12-bit display «code 1s a
combination of 6-bit codes and 12-bit codes. The
6-bit codes are 00g through 77g, excluding
74g and 76g. (The interpretation of the 00g
and 63g codes is described under Character Set
Anomalies later in this appendix.) The 12-bit
codes begin with either 74g or 76g and are
followed by a 6~bit code. Thus, 748 and 76g
are considered escape codes and are never used as
6-bit codes within the 6/12-bit display code set.
The 12-bit codes are 740lg, 7402g, 7404,
7407g, and 760l1g through 7677g. All other
12-bit codes (74xxg and 7600g) are undefined.

CHARACTER SET ANOMALIES

The operating system input/output software and some
products interpret two codes differently when the
installation selects a 63—character set rather than
a bH4-character set. If an installation uses a
63-character set, the colon graphic character is
always represented by a 63g code, display code
00g is undefined (it has no associated graphlc or
punched card code), and the 2% graphic does not
exist.

A-2

However, under NOS, 1f the installation uses a
64-character set, output of a 7404g 6/12-bit
display code or a O00g display code produces a
colon. A colon can be input only as a 7404g
6/12-bit display code. The use of undefined
6/12-bit display codes in output files produces
unpredictable results and should be avoided.

Under NOS/BE, if the installation uses a
64—-character set, output of a 00g display code
produces a colon. Display code 63g is the colon
when a 63-character set is used. The X graphic and
related card codes do not exist on the 63-character
set system and translations yield & blank (55g).

Under both NOS and NOS/BE, two consecutive 00g
codes can be confused with an end—of-line byte and
should be avoided.

CHARACTER SET TABLES

The character set tables A-l and A-2 are designed
so that the user can find the character represented
by a code (such as in a dump) or find the code that
represents a character. To find the character
represented by a code, the user looks up the code
in the column listing the appropriate code set and
then finds the character on that line in the column
listing the appropriate character set. To find the
code that represents a character, the user looks up
the character and then finds the code on the same
line in the appropriate column.

Conversational Terminal Users

Table A-1 shows the character sets and code sets
available to an Interactive Facility (IAF) user at
an ASCII code terminal using an ASCII character
set. (Under NOS using network product software,
certain Terminal Interface Program commands require
specification of an ASCII code.)

IAF Usage

When in normal time-sharing mode (specified by the
IAF NORMAL command), IAF assumes the ASCII graphic
64-character set is used and translates all input
and output to or from display code. When in ASCII
time-sharing mode (specified by the IAF ASCII
command), IAF assumes the ASCII: 128-character set
is used and translates all input and output to or
from 6/12-bit display code.

Update does not support 6/12-bit display code. The
IAF user can convert & 6/12-bit code file to a
12-bit ASCII code file using the NOS FCOPY comtrol
statement. The resulting 12-bit ASCII file can be
routed to a line printer but cannot be output
through IAF.

60449900 D

TABLE A-1. CONVERSATIONAL TERMINAL CHARACTER SETS

ASCII ASCII Octal Octal Octal ASCII ASCII Octal Octal Octal
Graphic Character 6-Bit 6/12-8it | 12-Bit Graphic Character 6-Bit 6/12-8it | 12-Bit
(64=Char- (128~Char=- Display | Display ASCII (64~Char- (128-Char- Display Display ASCII

acter Set) acter Set) Code Code' Code acter Set) | acter Set) Code Code! Code
: colon'’ oott “ circumflex 7402 0136
A A 01 0 0101 : colon't 740411 | 0072
B 8 02 02 0102 * grave accent 7407 0140
c c 03 03 0103 a 7601 0141
D D 04 04 0104 b 7602 0142
E E 05 s 0105 c 7603 0143
F F 06 06 0106 d 7604 0144
G G 07 a7 0107 e 7605 0145
H H 10 10 0110 f 76U6 0146
I 1 1 1 0111 g 7607 1047
J J 12 12 0112 h 7610 0150
X K 13 13 0113 i 7611 0151
L L 14 14 0114 j 7612 0152
] M 15 15 0115 k 7613 0153
N N 16 16 0116 L 7614 0154
0 0 17 17 0117 m 7615 0155
P P 20 20 0120 n 7616 0156
Q Q 21 21 o121 o 7617 0157
R R 22 22 0122 p 7620 0160
S S 23 23 0123 q 7621 0161
T T 24 24 0124 r 7622 0162
u u 25 25 0125 s 7623 0163
v v 26 26 0126 t 7624 0164
W L] 27 27 0127 u 7625 0165
X X 30 30 0130 v 7626 0166
Y Y 31 31 0131 w 7627 0167
z)3 32 32 0132 x 7630 0170
0 0 33 33 0060 y 7631 0171
1 1 34 34 0061 z 7632 0172
2 2 35 35 0062 { Left brace 7633 0173
3 3 34 36 0063 | vert. Lline 7634 0174
4 4 37 37 0064 } right brace 7635 0175
S 5 40 40 0065 ~ tilde 7636 0176
6 6 41 41 0066 NUL 7640 4000
7 7 42 42 0067 SOH 7641 0001
8 8 43 43 0070 STX 7642 0002
9 9 4dy [0071 ETX 7643 0003
+ plus + plus 45 45 0053 EOT 7644 0004
- minus - minus 46 L) 0055 ENG 7645 0005
* asterisk * asterisk 47 &7 0052 ACK 7646 0006
/ slash / slash 50 50 0057 BEL 7647 0007
(L. paren. (L. paren. 51 51 0050 BS 7650 0010
) r. paren.) r. paren. 52 52 0051 HT 7651 0011
$ dollar $ doltar 53 S3 0044 LF 7652 0012
= equal to = equal to 54 54 0075 vT 7653 0013
space space 55 55 0040 FF 7654 0014

, comma , comma 56 56 0054 CR 7655 0015
. period . period 57 57 0056 SO 7656 0016
number # number 60 60 0043 SI 7657 0017
I L. bracket | [L. bracket| 61 61 0133 DEL 7637 0177
1 r. bracket |] r. bracket| 62 62 0135 DLE 7660 0020
% percent'’ % percent'! 631! 631! 0045 pc1 7661 0021
" guote " quote 64 64 0042 pc2 7662 0022
_ undertine | _ underline 65 65 0137 bC3 7663 0023
! exclam. ! exclam. 66 66 0041 DC4 7664 0024
& ampersand 8§ ampersand 67 67 0046 NAK 7665 0025
' apostrophe | ' apostrophe| 70 70 0047 SYN 7666 0026
7 question 7 question 71 71 0077 ETB 7667 0027
< less than < less than 72 72 0074 CAN 7670 0030
> grtr, than} > grtr. than| 73 3 0076 EM 7671 0031
@ coml. at T4 suB 7672 0032
\ rev. slant | \ rev. slant| 75 75 0134 ESC 7673 0033
- circumflex 76 FS 7674 0034
; semicolon ; semicolon 77 77 0073 GS 7675 0035
8 coml. at 7401 0100 RS 7676 0036

us 7677 0037

rGeneraLLy available only on NOS, or through BASIC on NOS/BE.
" The interpretation of this character or code depends on its context. Refer to Character Set Anomalies in
the text.

60449900 D

A-3 @

TABLE A-2.

LOCAL BATCH DEVICE CHARACTER SETS

cbe ASCII ASCII Octal Octal Octal Card Keypunch Code
Graphic Graphic Graphic 6-Bit 6/12-Bit 12-Bit
(64=Character (64~Character (95-Character Display Display ASCII 026 029
Set) Set) Set) Code Code! Code
: cotonT? : colon'! oott 8-2 8-2
A A A 01 01 0101 12-1 12-1
B B B 02 02 0102 12~2 12-2
C o c o3 03 0103 12-3 12-3
D D D 04 04 0104 12-4 12=4
E E E 0s 0s 0105 12-5 12-5
F F F 06 06 0106 12-6 12-6
G G G o7 07 0107 12-7 12-7
H H H 10 10 0110 12-8 12-8
1 1 1 1" " 0111 12-9 12-9
J J J 12 12 0112 11-1 11-1
K K K 13 13 0113 11=-2 11-2
L L L 14 14 0114 11-3 11-3
" M M 15 15 0115 11-4 11-4
N N N 16 16 0116 11-5 11-5
0 0 0 17 17 0117 11=-6 11=-6
P P P 20 20 0120 11-7 11=7
Q Q Q 21 21 0121 11-8 11-8
R R R 22 22 0122 11-9 11-9
S S S 23 23 0123 0-2 0-2
T T T 24 24 0124 0-3 0-3
u u u 25 25 0125 O=~4 0-4
v v v 26 26 0126 0-5 0-5
W] W 27 27 0127 0-6 0-6
X X X 30 30 0130 0-7 0-7
Y Y Y 3 31 0131 0-8 0-8
z z z 32 32 0132 0-9 0-9
0 1] 0 13 33 0060 0 0
1 1 1 34 34 0061 1 1
2 2 2 35 35 0062 2 2
3 3 3 36 36 0063 3 3
4 4 & 37 37 0064 4 4
5 5 5 40 40 0065 S 5
[6 6 41 41 0066 [} 6
7 7 7 42 42 0067 7 7
8 8 8 43 43 0070 8 8
9 9 9 &L &4 0071 9 9
+ plus + plus + plus 45 45 0053 12 12~8-6
- minus - minus - minus 46 46 0055 1 11
* asterisk * asterisk * asterisk 47 47 0052 11~8-4 11-8-4
/ slash / slash / slash S0 50 0057 0-1 0-1
(left paren. (left paren. (lLeft paren. 51 51 0050 0-8-4 12-8-5
) right paren.) right paren.) right paren. 52 52 0051 12-8-4 11-8-5
$ dollar $ doltar $ dollar 53 53 0044 11-8-3 11-8-3
= equal to = equal ‘o = equal to 54 54 0075 8-3 8-6
space space space 55 55 0040 no punch | no punch
, comma , comma , comma 56 56 0054 0-8-3 0-8-3
. period . period . period 57 57 0056 12-8-3 12-8-3
= equivalence # number # number 60 60 0043 0-8-6 8=-3
[teft bracket [Left bracket [L. bracket 61 61 0133 8-7 12-8-2
or 12-0'"
1 right bracket 1 right bracket 1 r. bracket 62 62 0135 0-8-2 11-8-2
or 11-0ft!
X percent’! %X percenttt % percentf? 63 63 0045 8-6 0-8-4
60449900 D

® A-4

TABLE A-2. LOCAL BATCH DEVICE CHARACTER SETS (Contd)
cocC ASCII ASCII Octal Octal Octal Card Keypunch Code
Graphic Graphic Graphic 6-Bit 6/12-Bit 12-Bit
(64-Character (64=-Character (95-Character Display Display ASCII 026 029
Set) Set) set) Code Code’ Code

not equal " quote " quote 64 64 0042 8-4 8-7
reconcat. _ underline _ underline 65 65 0137 0-8-5 0-8-5
v Logical OR ! exclamation ! exclamation 66 66 0041 11-0 12-8-7
A logical AND & ampersand & ampersand 67 67 0046 0-8-7 12
$ superscript ' apostrophe ' apostrophe 70 70 0047 11-8-5 8-5
4 subscript ? question ? question 71 71 0077 11-8-6 0-8-7
< less than < Less than < less than 72 72 0074 12-0 | 12-8-4
> greater than > greater than > greater than 73 73 0076 11-8-7 0-8-6
< less/equal @ commercial at 74 8-5 8-4
> greater/equal \ reverse slant \ rev. slant 75 75 0134 12-8-5 0-8-2
- Logical NOT - circumflex 76 12-8-6 11-8-7
; semicolon ; semicolon ; semicolon 77 77 0073 12-8-7 11-8-6

2 combl. at 7401 0100

A circumflex 7402 0136

: colon'? 740477 o072

' grave accent 7407 0140

a 7601 0141

b 7602 0142

c 7603 0143

d 7604 0144

e 7605 0145

f 7606 0146

g 7607 0147

h 7610 0150

i 7611 0151

j 7612 0152

k 7613 0153

L 7614 0154

m 7615 0155

n 7616 0156

o 7617 0157

p 7620 0160

q 7621 0161

r 7622 0162

s 7623 0163

t 7624 0164

u 7625 0165

v 7626 0166

W 7627 0167

X 7630 0170

y 7631 0171

z 7632 0172

{ Left brace 7633 0173

| vert. Line 7634 0174

} right brace 7635 0175

“ tilde 7636 0176

TGeneraLly available only on NOS, or through BASIC on NOS/BE.

in the text.

TTTAvaitable for input only, on NOS.

Mrhe interpretation of this character or code depends on its context.

Refer to Character Set Anomalies

60449900 D

IAF supports both character mode and transparent
mode transmissions through the network. These
transmission modes are described under Network
Access Method Terminal Transmission Code Sets in
the Remote Batch Facility (RBF) reference manual.
IAF treats character mode transmissions as coded
character data; IAF converts these transmissions to
or from either 6-bit or 6/12~bit display code. IAF
treats transparent mode transmissions as binary
character data; transparent mode communication
between IAF and ASCII terminals using any parity
setting occurs in the 12-bit ASCII code shown in
table A-1l.

Local Batch Users

Table A-2 1lists the CDC graphic 64-character set,
the ASCII graphic 6é4-character set, and the ASCII
graphic 95-character set. This table also lists
the code sets and card keypunch codes (026 and 029)
that represent the characters.

The 64-character sets use display code as their
code set; the 95-character set uses 12-bit ASCII
code. The 95~character set is composed of all the
characters in the ASCII 128-character set that can
be printed at a line printer (refer to Line Printer
Output). Only 12-bit ASCII code files can be
printed using the ASCII graphic 95-character set.
To print a 6/12-bit display code file (usually
created in IAF ASCII mode), the user must convert
the file to 12-bit ASCII code. To do this, the NOS
FCOPY control statement must be issued. The
95~character set is represented by the 12-bit ASCII
codes 00408 through 0176g.

Line Printer OQutput

The batch character set printed depends on the
print train used on the line printer to which the
file is sent. The following are the print trains
corresponding to each of the batch character sets:

Print
Character Set Train
CDC graphic 64-character set 596-1
ASCI! graphic 64-character set 596-5
ASCII graphic 95-character set 596-6

The characters of the default 596-1 print train are
listed in the table A-2 column labeled CDC Graphic
(64-Character); the 596-5 print train characters
are listed in the table A-2 column labeled ASCII
Graphic (64-Character); and the 596-6 print train
characters are listed in the table A-2 column
labeled ASCII Graphic (95~Character).

If a transmission error occurs during the printing
of a line, NOS prints the line again. The CDC
graphic print train prints a concatenation
symbol () in the first printable column of a
line containing errors. The ASCI1 print trains
print an underline instead of the concatenation
symbol.

If an unprintable character exists in a line (that
is, a 12-bit ASCII code outside of the range
0040g through 0176g), the number sign (#)
appears in the first printable column of a print
line and a space replaces the unprintable character.

Punched Card Input and Output

Under NOS, coded character data 1is exchanged with
local batch card readers or card punches according
to the translations shown in table A-2. As
indicated in the table, additiomal card keypunch
codes are available for input of the ASCII and CDC
characters] and {. The 95-character set cannot be
read or punched as coded character data.

Depending on an installation or deadstart option,
NOS assumes an input deck has been punched either
in 026 or 029 keypunch code (regardless of the
character set in use). The alternate keypunch
codes can be specified by a 26 or 29 punched in
columns 79 and 80 of any 6/7/9 card or 7/8/9 card.
The specified code translation remains in effect
throughout the job unless it is reset by
specification of the alternate code translation on
a subsequent 6/7/9 card or 7/8/9 card.

NOS keypunch code tramslation can also be changed
by a card containing a 5/7/9 punch in column l. A
blank (no punch) in «column 2 indicates 026
conversion mode; a 9 punch in column 2 indicates
029 conversion mode. The conversion change remains
in effect until another change card is encountered
or the job ends.

The 5/7/9 card also allows 1literal input when
4/5/6/7/8/9 is punched in column 2, Literal input
can be used to read 80-column binary character data
within a punched card deck of coded character data.

Literal cards are stored with each column in a
12-bit byte (a row 12 punch is represented by a 1
in bit 11, row 11 by bit 10, row O by bit 9, and
rows 1 through 9 by bits 8 through O of the byte),
16 central memory words per card. Literal input
cards are read until a card identical to the
previous 5/7/9 card (4/5/6/7/8/9 in column 2) is
read. The next card can specify a new conversion
mode.

60449900 F

Remote Batch Users

When card decks are read from remote batch devices,
the ability to select alternate keypunch code
translations depends wupon the remote terminal
equipment.

NOS Usage

Remote batch terminal 1line printer, punched card,
and plotter character set support is described
under Input Deck Structure in the Remote Batch
Facility reference manual. RBF supports only
character mode transmission to and from consoles
through the network. Character mode is described
under Network Access Method Terminal Transmission
Code Sets in the Remote Batch Facility reference
manual.

NOS/BE Usage

Remote batch terminal line printer and punched card
character set support 1s described in the INTERCOM
reference manual.

Magnetic Tape Users

Coded character data to be copied from mass storage
to magnetic tape is assumed to be represented in

display code. NOS converts the data to external

BCD code when writing a coded 7-track tape and to
ASCIT or EBCDIC code (as specified on the tape
assignment statement) when writing a coded 9~track
tape.

Because only 63 characters can be represented in
7-track even parity, one of the 64 display codes is
lost in conversion to and from external BCD code.
Figure A-1 shows the differences in conversion that
depend on which character set (63 or 64) the system
usese. The ASCII character for the specified
character code is shown in parentheses. The output
arrow shows how the display code changes when it is
written on tape in external BCD. The input arrow
shows how the external BCD code changes when the
tape i1s read and converted to display code.

60449900 D

63-Character Set

Display Code External BCD Display Code

00 16 (%) 00

33 (0) Output 12 Input 33
63 () T 120 T 33w

64-Character Set

Display Code External BCD Display Code

00 (2 12 @ 33 (D

33 O Output 12 (O Input 33
63 (%) TP 16 (W) T 63 ()

Figure A=1. Magnetic Tape Code Conversions

Tables A-3 and A-4 show the character set
conversions for nine-track tapes. Table A-3 lists
the conversions to and from 7-bit ASCII character
code and 6-bit display code. Table A-4 lists the
conversions between B8-bit EBCDIC character code and
6-bit display code. Table A-5 shows the character
set conversions between 6-bit external BCD and
6~bit display code for seven—-track tapes.

If a lowercase ASCII or EBCDIC code is read from a
9-track coded tape, it 1is converted to its
uppercase 6-bit display code equivalent. To read
and write lowercase ASCII or EBCDIC characters, the
user must assign the tape in binary mode and then
convert the binary character data.

During binary character data transfers to or from
9-track magnetic tape, the 7-bit ASCII codes shown
in table A-3 are read or written unchanged; the
8-bit hexadecimal EBCDIC codes shown in table A-4
also can be read or written unchanged. ASCII and
EBCDIC codes cannot be read or written to 7-track
magnetic tape as binary character data.

Tables A-6 and A-7 list the magnetic tape codes and
their punch code equivalents on IBM host computers.

Two CDC utility products, FORM (not supported on
SCOPE 2) and the 8-Bit Subroutines, can be used to
convert to and from EBCDIC data. Table A-7
contains the octal values of each EBCDIC code
right-justified in a 12-bit byte with zero fill.
This 12-bit EBCDIC code can also be produced using
FORM and the 8-Bit Subroutines.

A-7 @

TABLE A-3.

ASCII 9-TRACK CODED TAPE CONVERSION

ASCII ASCI1
Display Display
Code Character and Code'™t Code Character and Codelft
Conversion Code Conversion Conversion Code Conversion
Code Char Code Char ASCII Code Code Char Code Char ASCII Code
(Hex) (Hex) Char (Octal) (Hex) (Hex) Char (Octal)
20 space 00 NUL space 55 40] &0 a3 74
21 ! 70 } ' 66 41 A 61 a A 01
22 " 02 STX " 64 42 B 62 b B 02
23 # 03 ETX # 60 43 c 63 c ¢ 03
24 - 04 EOT s 53 23 D 64 d D i
25 X 05 ENQ % 63 45 E 65 e E 05
25 4 0s ENQ space 55 46 F 66 f F 06
26 & 06 ACK & 67 47 G 67 g G 07
27 ' o7 BEL ¢ 70 48 H 68 h H 10
28 (08 BS (51 49 1 69 i 1 11
29) 09 HT) 52 LA J 6A j J 12
2A * o].8 LF * 47 4B K 68 k K 13
28 + 0B vT + 45 4c L 6C L L 14
2c , 0c FF , 56 4b M 6D m M 15
2b - op CR - 46 4E N 6E n N 16
2E . OE S0 - 57 4F 0 6F 2] 0 17
2F / OF SI / 50 50 P 70 p P 20
30 0 10 DLE 0 33 51 Q 71 q Q 21
31 1 1" pet 1 34 52 R 72 r R 22
32 2 12 D2 2 35 53 S 73 s S 23
33 3 13 DC3 3 36 54 T 74 t T 24
34 4 14 bCd 4 37 S5 u 75 u u 25
35) 15 NAK 5 40 56) 76 v v 26
36) 16 SYN 6 41 57 L] 7 o W 27
37 7 17 ETB 7 42 58 X 78 X X 30
38 8 18 CAN 8 43 59 Y 79 y Y 31
39 9 19 EM 9 44 SA z 7A 2 b4 32
3A H 1A suB H 00 58 C 1C FS C 61
Display code 00 is undefined at sites using the 5C \ 7c | \ 75
63~character set. 5b C 01 SOH] 62
3A H 1A suB : 63 SE -~ 7E - -~ 76
B ; 1B ESC H 77 5F _ 7F DEL _ 65
3¢ < 7B { < 72
3b = 1’ GS = 54
3E > 1E RS > 73
3F ? 1F us ? 71

Example:

T These characters do not exist in display code.
character is changed to an alternate display code character.
When the system copies a lowercase a, 6144, from tape, it writes an uppercase A, 01g.

LARF display code space always translates to an ASCII space.

Twhen these characters are copied from or to a tape, the characters remain the same and the code changes
from/to ASCII to/from display code.

when the characters are copied from a tape, each ASCII

The corresponding codes are also changed.

& A-8

60449900 D

TABLE A-4,

EBCDIC 9-TRACK CODED TAPE CONVERSION

EBCDIC EBCDIC
Code Character and Dgsglié Code Character and Dgszlié

Conversion' Code Conversion'! oae tonversion' Code Conversion'! ode
Code Code ASCII Code Code Code ASCII Code
(Hex) | CPar (Hex | Char Char | (octald (Hex) | €T (Hex) | ©har Char | (Octald
40 space 00 NUL space 55 cé F 86 f F 06
LA ¢ 1c IFS C 61 c7 G 87 g G 07
48 . 0E S0 . 57 c8 H 88 h H 10
4C < co { < 72 co 1 89 i I 11
4d (16 BS ¢ 51 D1 J 91 j J 12
4E + 08 vT + 45 p2 K 92 k - K 13
4F] 1] b 4 ! 66 D3 L 93 L L 14
50 & 2E ACK & 67 D4 M 94 m M 15
5A ! 01 SOH] 62 D5 N 95 n N 16
5B 3 37 EOT $ 53 D6 0 96 o 0 17
5C * 25 LF * 47 g P 97 p P 20
50) 05 HT) 52 D8 Q 98 q Q 21
5E ; 27 ESC H 77 D9 R 99 r R 22
SF = Al - / 76 EQ \ 6A] \ 75
60 - oo CR - 46 E2 S A2 s S 23
61 ' OF SI ' 50 E3 T A3 t T 24
68 , oc FF , 56 E4 u A4 u 1] 25
6C b4 2D ENG x 63 ES . v A5 v v 26
6C X 2D ENQ space 55 E6 L] A6 "] W 27
6D 07 DEL 65 E7 X A7 X X 30
6E > 1E IRS > 73 E8 Y A8 y Y 31
6F ? 1F IUS ? 71 E9 7 A9 z z 32
7A : 3F sus : 00 FO [¢] 10 DLE 0 33
Display code 00 is undefined at sites using the F1 1 1 pC1 1 34
63-character set. F2 2 12 DC2 2 35
7A : 3F suB : 63 F3 3 13 TH 3 36
78 # 03 ETX # 60 Fé4 4 3c DC4 4 37
7¢ ‘a 79 \ a 74 FS) 3p NAK 5 40
70 ' 2F BEL ' 70 Fé 6 32 SYN é 41
7€ = 10 1GS = 54 F7 7 26 ETB 7 42
7F " 02 STX " 64 F8 8 18 CAN 8 43
c1 A 81 a A 01 F9 9 19 EM 9 4h
c2 B 82 b B 02

c3 o a3 c o 03

c4 D 84 d D 04

cS E 85 e E 0s

TALL EBCDIC codes not Listed translate to display code 55g (space). A display code space always
translates to an EBCDIC space.

YThese characters do not exist in display code. When the characters are copied from a tape, each EBCDIC
character is changed to an alternate display code character. The corresponding codes are also changed.
Example: When the system copies a lowercase a, 814¢, from tape, it writes an uppercase A, 01g.

"when these characters are copied from or to a tape, the characters remain the same (except EBCDIC codes
4A1s, 4F96, 5Aq4, and 5F14) and the code changes from/to EBCDIC to/from display code.

60449900 D

A-9 ©

TABLE A-5. 7~TRACK CODED TAPE CONVERSIONS

External ASCII Octal Display External ASCII Octal Display
BCD Character Code BCD Character Code
o1 1 34 40 - 46
02 2 35 49 J 12
03 3 36 L2 K 13
04 4 37 43 L 14
05 5 40 bl M 15
06 6 A 45 N 16
07 7 42 46 0 17
10 8 43 47 P 20
11 9 44 S0 Q 21 .
12t 0 33 51 R 22
13 = 54 52 ' 66
14 " 64 s3 s 53
15 2 74 S4 * 47
16! b3 63 55 ' 70
17 C 61 56 ? 7
20 space 55 57 > 73
21 / 50 &40 + 45
22 S 23 6 A 01
23 T 24 62 B 02
24 U 25 63 c 03
25 v 26 64 D 04
26 '] 27 65 E 05
27 X 30 66 F 06
30 Y 31 67 (] 114
31 z 32 70 H 10
32] 62 71 1 11
23 , 56 72 < 72
34 (51 73 . 57
35 65 74) 52
36 ¥ 60 75 \ 75
37 & 67 76 PN 76

77 ; 77

TAs explained in the text of this appendix, conversion of these codes depends on whether the tape is

being read or written.

@ A-10

60449900 D

FRUNIGpER AR} B0 JI0D8) S Yy 1+ ~S—— 3riey) 310283
LHL —
¥
\ ' apud Py — l\ { -_‘lll weey) J1ISY [IYEDER]
44 (-] 4] 36 1] 1 13 a1 N> o0 13096 olas " |e00}39 |18 AEL sni | 30 1S o
(-8-6-0-1)~TL | C-8-6-11-L0 -0-11-21 9-8-1t-2t | s-6-0-11-t1 | 1-6-1t-21 1-6-0-11 €-8-6-11 | £-6-Z1|9-1i-Li1 }5-8-0 |9-11L} ¢-8-0 1-0 (-8-6-11 L-8-6-21 1 [N S T |
03 13a o o] ¢ ! sn S E .
34 va 98 a6 vt a5 It vo WWS|Ilv ~ 66 v|l4s ofsanN|39 <|ar 31 sH | 30 [a]3 3
9-8-6-0-11-Z4 | L-8-6-14-C4 9-0-11-L¢ S-8-1i-Z1 | ¥6-0-t1-21 | 9-6-14-11 9-8-6 Z-8-6-ZL | t-0-ti|S-ui-21 [t fs-tL g 9-8-0| €-8-21 9-8-6-11 9-g-6-Z1 ot 11
- u ~ N < Sy [0 v
[«F} 43 [1:} 26 €t 11 " S34 | 60 474 | 00 {Ive wiws sjvawlar -jo09 - jat s | a0 [le] @
G-8-6-0-11-21 | (-8-6-0-T¢ S-0-41-T1 8420 J€-6-0-h1-Z8 | §-6-41-T0 6\l -B-6-Ct a.:A A AN F4: ST Y] 9-8 1} $-8-6-11 5-8-6-Z1 Tl t oo
w ! W - $9 uo
24 30 & | rve a6 143 s (] 14 | 2 veg | |cs 1{o3 vico|or >je9 a1 s41 {20 EF] o
r8-6-0-11-Z1 | 9-8-6-0-l o= £-g- 121 | =601ty f r6-11-Tt v-6-Z1 r8-6-0 =g fe-ti-zL [2-8-0 jE€-i1 | v-8-01 £€-8-0 r8-6-11 r-8-6-Z1 o o0 4 1
H ! \ b > ' Sd EE]
84 <o) %] v6 73 %] ac [Xgle N 14 nd | 02 HEA Ajvr PlZON]IS |3 [N4 253 (80 A @
€-8-6-0-t1~Z1 | S-8-6-0-T1 E-0-1i-Z1 T-g- ki1 -6-0-1 k-1 | e-6- 11T £-8-6 860 c.:v -z N.m.aﬂ -1 {9-g-1i | 9-8-Zi -6-0 £-8-6-Z1 T 1t 1 01
L]]) + 353 1A
v4 WA | 00 J| e 06 oL P41 ve vi WS | 67 11186 163 zj1ar|wt 5 . i ans | 6z N)
-B-6-0-11-Z1 | v@6-0-I} r-0-11-Z1 18- 1-z o-1t-2t { Z-6-11-24 t-8-6 c-a-6 0] 6-0-11 _.._-NJ 6-0 |t-t1 -8 ve-ti (-8-6 $-6~0 o1 01 0 1
4 2 f . ans Pl
43 [:}+] 18 49 69 15 6L 62 av Al s8 1183 Aled 1les 6] as t 81 w3 | so 1K
t-g-6-0-ty | C-8-6-0-It 1-0-1t-Zt L-8-0-Z1 1-8-0 | 1-6-11-Zt 1-8-6 1-8-6-01 8-0-11] 6-0-C) g9-0 |6-2t 6 S-8-1t 1-B-6-11 $-6-71 6 1 00 1
A ' A 1 6 { w3 1H
33 v L] a8 89 13 8t 8z v x| B8 ulia xleowies 8loy [BED NvD | oL S8
9-8-6-0-11] I-8-6-0-Z1] i-8-0-k(-LL 9-8-0-Li 8-6-0-11 1-8-21 8-6 g-6-0} (-0-t1 | B-0-Zt -0 | 8-zt 8 5-8-24 B-6-14 9-6-11 8 0 00
* u X H]) NV sa
a3 48 v [e]:] 9 17 80 nl o Mjov M| ¢8B 6193 Mm|{oled | o ez 813) 3z 138
G5-8-6-0-14| L-80-Li-TL £-8-0-4 1 5-8-0-Z1 (-6-0-1i| 86-0-71 8-6-2t 6L | 9-0-41| t-0-4 9-0 | -2 [4 5-8 9-6-0 1-8-6-0 ¢ 11 10
~] M [} [. 413 138
E] Fiase v o8 99 r [o an | so 21| sv ~| 98 t{s3 Aj9Daf091 9]o0s 5 |zt NAS | 32 b}
-8-6-0-11 | 9-8-0-L1-TI 9-8-0-14 r-8-0-Z1 9-6-0-11 | (-6-0-T1 9-6 9-6-ZL | §-0-1t | 9-0-Z1 5-0 | 924 9 4} 6 9-8-6-0 9 g1t 1 0
A i A 4 9 L NAS WOV
83 08 av :}:] S8 av 5¢ sy | 51 LR R 2 n|s8 alvid n{sd3|s4 G|D9 % | at »vN | Oz ON3
€-8-6-0-11 | 5-8-0-11-CL S80It €-8-0-I1 §-6-0-it | 9-6-0-14 5-6 S-6-11 | v-0-11{| $-0-Z1 0 | 521 S »-8-0 $-8-6 S-8-6-0 s (R
" a n 3 5 * HYN DN3
v3 bot:] v va ¥9 (] e Nd | vz 4A8 | £V RN plea 1yvoavs v]as $ | oC ¥oa | ee 10
z-8-6-0-11 | rB-0-L1-U 8011 z-8-0-Z\ 6011] 5-6-0-71 -6 v-6-0| €-0-4t| v-0-21 €0 |ran 4 -8l 8-6 -6 v 0010
J o 1 a v H ¥3Q 103
4a L] :37 08 €9 vy [(¥4 v 1| €8 2113 sitoole4 €8 #lc wl|to X13
(-B-6-11-Z1 | E-8-0-11-T c-8-0-11 t-8-0-Z1t €-6-0-11] v6-0-Z1 €6 g-R0| z-0-n1] CoU -0 |e-ti 3 -8 €-6-11 €-6-21 £ I V00
' 2 S 2 4 # €20 x13
aa vea vy 8! 79 cr vi sl 4 S41 66 +] 8 alea wloe|td T} 4} aje X1
9-g-6-14~Ti | Z-8-0-11-21 T-8-0-1t | B-6-0-tL-Zt Z-6-0-41 | £-6-0-2% -8-6-t1 -6-0) s-1-a1 | z-o-an | 6-u le-nu z -8 T-6-11 -6-T1 4 0L 00
[Q o [} [4 00 X 1§
[ale] 68 ov 1 65 v iC ¥4 SOS | B6 bl g ejga O|1ov 14 1 }dr Y 120 | 10 HOS
S-8-6-11-T1 6-0-11-21t 1-g-0-1t| £-6-0-11-L1 -8-11 | -6-0-L1 t-6 \-6-0 | B-1t-zi] 1o~z] o8- -t ! t-8-74 L-6-11 1-6-21 1 1 000
b (] 8} v i [[Jela} HOS
fels] 88 46 9 85 1y ot oz sa | 6 4161 . jta 41Dt ejo4 00y 45101 37a | 00 INN
y-g-6-11-21 8-0-11-2) (-8 -1 9-6-0-11-21 B-6-11-C1] 1-6-0-Z1§ t-8-6-0-t11-Z4} 1-8-6-0-t1 | L-L1-2L (R ENEIE N 0 | wsund-ou | 1-8-B-tL-CL | 1-8-6-0-1L 1] 0000
a . d] 0 ds 310 NN
E]] 13 [(¢]] 104 @ v}
i v L o0 T ot 6 8 3 9 S y 4 z i [tq Iq €q ™
103
1 [} i 0 1 0 ' 1] 1 0 t [} 1 0 i [} 5q
t ‘ 0 1] \ 1 0 0 1 [0 v i 1] 0 9q
1 t 1 [[+ 0 0 0 1 t 1 1 []] 1] (] iq
I i 1 t ' 1 1 t o [0 [} (1] 0 [} '] 8q

(I108V) AONVHOYIAINT NOILVWHOJINI ¥0d HAOD THVANVLIS TVNOILVN NVOTHAWY

NOTLVISNYHY1l JI0D0€d ANV SAQOD (G¥VD QHHONNd

“g9-y T4Vl

A-11 @

60449900 D

llewn3apexap) 2p0) 1195V =015 e— 1001047 |1OSY

[5: 233
IPaY pe)—; -

h—— 10243 310993 aN3Inai

34 03 |64 €4 a3 3 Q oa 5] 44 S ¢ |38 ~ lie [8ns |0 138 |3t sn {40 15 4 61
1-8-6-0-V4-Ti § L-8-6-0-11 | L-8-8-11-L1 | £-8-6-0-Z) |s-8-0-14-Z1 | £-a-0-1n |i-8-10-24 |c-B-0-2t (-R 1-9-0 L-8-11 -8z (-8-6 1-8-6-0 -8-6-11 | ¢-8-6-Z1 3 [
¢ - { ans 138 sni 15
34 :E] [7] 23 93 9Q FE) =) ac EN < {8t ‘ez + 136 90 FECAEN sy | 30 I
9-8-6-0-i1-Z) | - 8-6-0-t1 | 9-8-8-11-20 [9-8-6-0-71 [9-8-0-Li-Zi | 9-B~0-11 |9-B-11-21 [9-8-0-U1 9-8 9-9-0 9-8-11 9-8-2i 9-8-6 9-8-6-0 9-8-6-11 | 9-8-6-21 3 ot
P IS : ® XV S\ (¢
a4 2] [¥] a3 53 50 ER) [&] 13 . l4s 6Z t ez)V st NVYN | S0 oN3 {at so | ae 43 el
G-8-6-0-11-21 | 5-8-6-0~t1 | 5-0-6-14-24 }G-8-8-0-Z1 }5-8-0-1t-21 {S-BO- 41 |5-@-14-L4 {G-B-0-C1 5-8 5-8-0 5-B- 11 5-8-LL 5-8-6 5-8-6-0 S-3-6-11 | S-8-6-Z) a [
. t) NV ON3 SOt Hd
24 94 03 v3 v3 va a2 93 ov a3 {st % vz BES > ot ¥20 08 o1 sS4 20 43 .
r0-6-0-11~T1 | ¥-8-6-0-11 | r-@-6-11-28 | ¥8-6-0-Z) {¥8-0-11-Z1 | v-B-0-14 |r-8-11-21 |r8 0Tl 8 y-8-0 8- 8-zl 86 r8-6-0 8-6-11 | v-8-6-21 53 oo
9 J @ 3 . > (Al S4l 44
[F] 54 43 63 €3 £a 32 (%) 44 8 |ot o 2 s |3z a6 a8 48 a0 JL 3 T
C-8-8-0-11-21 | €-8-6-0~41 | €-B-6-13-£1 |C-8~6—0-ZI |€-8-0-4i-Z1 [E-8-0-41 {E-B-34-T) |0-8-0-L) £-8 £-8-0 €-8-11 £-8-r4 €-8-C €-8-6-0 €-8-6-11 | €-8-6-Z1 8 L1011
4 : 3 €N na ino LA
vd vd 33 83 1£] za 83) vE Y] ! |as []8s | jve ve 26 38 1)
2-8-6-0-11-Z1 | L-8-6-0-\1 | Z-B~6-11-Z% | 2-6-6-0-Zi | Z-8-0-1(-Z) [Z-6-0-1) jZ-8-10-2L | Z-8-0-21 -8 -z -8t -8-21 z-8-6 z-84-6-0 -8-6-11 | 2-8-6-2) v 0101
INATH . | [? WS 22 NS
6C 6] vs z]es d | 6v 1]i3 [Z3 1| 1169 Joo - |ea 18 av 66 68 61 DERKCL
[6-0 & 11 624 60-11-21 6-0-11 TR} 6-0-Z1 R i-8-0 i-g-ul 1-8-Z1 1-8-6 \-8-6-0 1-8-6-11 | -8t 6 100t
6 z '] ! 1 1 3 N w3 ERlY)
8t 8| 65 Afss o|8ar o3 61 Al b|e9 ulo LT o8 (v 86 88 8t NVD | L6
8 8-0 31 8-zl 801421 8-0-11 B-ii-21 8-0-ZL | B-6-0-11-Z) |B 6011 |H-6-11-21 | 8-6-0-T4 86 8-6—0 8-6- 11 8-6-Z1 B 0001
8 A o} H A b 4 NVD 19
€ L 8s X108 d{iv o9 | 44 8t * oL d119 slhio L v av v0 103 { a¢ 253 [¢B 4¢ 13d
t -0 -1l -y -0~ V1= 0-41 L-t-u -0-24 | (-6-0-11-21 | ¢-6-0-41 [L-6-10-Z0 | L-6-0-C8 L-6 1-6-0 t-6-11 L-6-Z1 L [N]
L X d 9 x a [103 253 hll 130
9% 9|5 M| 4 Ojor 430 1 LR FL] o |99 ijoo 98 v Sv a6 11 ai3 | so sg | 98
9 90 o1 -z 9-0-14-Z4 9-0-11 g-ti-zn 90-Lt { 9-6-0-t1-Zt | 9-6-0-4t | 9-6-11-2¢ | 8-6-0-Z1 9-6 9-6-0 9-6-11 9-6-21 9 o110
9 "n [¢] 4 - o) an 813] 1
St 5| 9s Alay N| sy 3|oa 9¢ A 1139 ulsg [EL] 58 av 2% 56 vo 41 |58 60 1H
] 50 $-ti 5-Z1 S-0-11-C4 S-0-11 S 1-Zi 5-0-21 | S-6-0-11-Ti | 5-6-0-11 | 6 6-11-Lt | 5-6-0-T) 5-6 S-6-0 §-6-11 5-6-2t [toti1o
[A N 3 A u a . sH Eal N 1H
3 v| ss n| ar D a {oa [n | as w [v 3 EL] ov [X7 vE vg a6 26
v o il i ro--z o-1 [v-0-Z1 | ¥6-0-1i-21 | v-6-0-11 | r-6-11-Z1 | 6-0-Ct r6 r6-0 6-11 —6-Ti4 [oo0to
2 n w a " w [Nd dArd S3y 4d
€ €] s L] ov ey 0| 8a 17 (8 1] ileg s as %] av v £6 €8 (4} £oa| €0 x13
[y €0 £-it 224} E~0-t1-Zt €-0-11 £-1t-21 £-0-Zi) E-6-0-11-28 | €-6-0-41 } £-6-14-L1 | £-6-0-Z} €6 £-6-0 €-6-11 £-6-21 [t1oo0
3 1 1 3 ' 1 a) Wi %13
25 z| s s| ay »|zr al|vo €L 1189 « 9 al o8 I14:] vv v 91 NAS | ZB 14} ajw x1s
z -0 T-1t -z T-0-11-21 -o-11 -1z z-0-2¢ | Z-6-0-11-24 | £-6-0-1t [Z-6-11-21 | Z-6-0-T} -6 -6-0 T-6-11 z-6-ZL t 0100
z S A] s 1 qQ NAS Sd 20 X1S
e 1] 48 vy] v | 60 El ~]wvo e L :E] FT4 t]6v ov 16 8 i D0 10 HOS
t 1-6-0-13 -t -z 1=0-11-21 1-0- 11 -z 1-0-21 | 1-6-0-11- 21 t-0 | 1-8-11-21 | 1-6-0-L1t 16 160 18- 1t 1-6-21 1 tooo
i r v ~ | . / S0S 120 HOS
o o] 25 \| at {] 8¢ HES 1a v [ve az -t LR K4 ds |06 08 o 370j00 NN
0 z-8-0 oy o-zty] 1-8-0-1i-zi | 1-gro-ti |-z | 1-8-0- L o-ti-24 1 Z1 | wund ou | 1-g-6-0-11-2t | 4-8-6-0~¢1 | 1-8-6-11-21 [1-8-6-0-C) 4] cooo0
[\ |) - k] 45 5Q 110 NN
aNZ{L e gy
ist) i»t)
4 3 _nn: _w. :c: s«: 8 [] ¢ 9 5 v € z 1 0 X 3H
151 s118
t [} 1 0 t o 1 o 1 0 1 0 1 0 1 0 €
t 1 [} [1 1 0 0 1 ' 0 0 1 i 0 o Z s
1 ' y 1 o 1} 0 o t 1 i 1 [} [0 0 1
1 t 1 1 ' t 1 1 i} [o [} [} 0 [0 [

60449900 D

NOTLVISNVEL ITOSV ANV SHEQ0D QuvD QURONNJ
(DIADHT) 4a0D AONVHOUUINI IVHIDIA 440D RUVNIL dIANIIXT " [~V 1€V

& A-12

DIAGNOSTICS B

Diagnostic messages can either appear in the dayfile
or are Iintermixed with Update output in the output
file. In addition to detecting errors, Update
detects overlapping corrections when the EXTOVLP
installation option has been assembled.

DIAGNOSTIC MESSAGES

All diagnostic messages that can be issued during an
Update run are listed in alphabetic order in
table B-1. One of the following codes is included
for each diagnostic:

Type Meaning

I An informative message; processing con-
tinues.

N A nonfatal error; processing continues.

F A fatal error; processing is terminated,

OVERLAPPING CORRECTIONS

Update can detect four overlapping correction
situations. When any of these types are detected,
Update prints the line in error with the words

TP.n OVLP appended on the far right of this 1line.
Type n is one of the following:

"Type

Type Meaning

1 Two or more modifications are made to one
line by a single correction set.

2 A modification attempts to activate an
already active line.

3 A modification attempts “to deactivate an
already inactive line.

4 A line is ingerted after a line which is

inactive on the old program library and
is inactive on the new program library.

The 1listing of overlap lines is controlled by list
option 3.

Detection of an overlap does not necessarily indi-
cate a user error. Overlap messages are advisory,
and they point to conditions in which the
probability of error is greater than normal. If any
overlap condition is encountered, a dayfile message
is printed.

TP.2 and TP.3 are detected by comparing
existing correction history bytes with those to be
added. Complex operations involving YANK and PURGE
might generate these overlap messages even though no
overlap occurs.

TABLE B-l. DIAGNOSTICS
Message Type Significance Action
A OPTION INVALID WITH RANDOM F The old program library is Correct the error.
OLDPL OR SEQUENTIAL NEWPL not sequential or the new
program library is not ran-
dom or is not on a random
device for a sequential-
to-random copy.
*%**ADDFILE DIRECTIVE INVALID ON F The ADDFILE directive cannot Remove the ADDFILE directive
REMOTE FILE¥*** be used in the file specified from the file specified by the
by a READ directive. READ directive.
***ADDFILE FIRST LINE MUST BE F The first line on the file Correct the error.
DECK OR COMDECK*** specified by the ADDFILE
directive is not a DECK or
COMDECK directive.
***ALL YANK, SELYANK, YANKDECK, I 1f Update changes any identi- None.
AND CALL DIRECTIVES AFFECTED fiers during a merge, it also
HAVE BEEN CHANGED#*** -changes the corresponding
YANK, SELYANK, YANKDECK, and
CALL directives.
B OPTION INVALID WITH SEQUENTIAL E The old program library is not Do not specify B on the control
OLDPL random for a random-to- statement.
sequential copy.

60449900 E

TABLE B-1. DIAGNOSTICS (Contd)
Message Type Significance Action
***BAD ORDER ON YANK N Identifiers separated by a Correct the order of the
DIRECTIVE*%* period on the YANK directive identifiers.
are in the wrong order.
*%*LIJNE NUMBER ZERO OR INVALID F Sequence number field on a Correct the sequence number.
CHARACTER IN NUMERIC FIELD*** correction directive is
erroneous.
#**DIRECTIVE INVALID OR F Update detected a format error Correct the error. - -
MISSING*** on 8 directive, deleted a
directive that was unrecogniz-
able, or detected an illegal
file name. Illegal operations
such as INSERT prior to an
IDENT could also have been
attempted.
*%*xCOPY TO EXTERNAL FILE NOT N No copy is made. Correct the error.
ALLOWED WHEN READING ALTERNATE
INPUT UNIT*#%
COPYING INPUT TO TEMPORARY I A sequential new program None.
NEWPL library was requested on a
creation run.
COPYING OLDPL TO A RANDOM FILE I The old program library is None.
being copied to a random file.
CREATING NEW PROGRAM LIBRARY I Indicates that a new program None.
library is being created.
*%**DECK NAME ON ABOVE LINE NOT I When a DECLARE directive is in Add appropriate DECLARE direc-
LAST DECLARED DECK**%* effect, only line images tives or remove directives
belonging to decks specified that reference non-declared
can be modified or referenced. decks.
*%*DECK SPECIFIED ON MOVE OR I The specified deck will not be Correct the error.
COPY DIRECTIVE NOT ON OLDPL, moved or copied.
DIRECTIVE WILL BE IGNORED***
DECK STRUCTURE CHANGED I A deck has been moved or None.
deleted.
*%*D0/DONT IDENT idname IS NOT I A DO directive, to negate the Nome. .
YANKED/YANEED NULL DO/DONT#%% effect of a YANK, references
an identifier that has been
yanked; or a DONT directive,
to restore a YANK, references
an identifier that was already
yanked .
***DUPLICATE DECK dname NEWPL F/N Update encountered an active Change one of the deck names.
TLLEGAL *** DECK or COMDECK directive
that duplicates a previous
directive. This condition is
fatal if a new program library
is being created; nonfatal if
a new program library is not
being created.
***DUPLICATE FILE NAME OF file, F The same file nmame has been Change one of the file names.
JOB ABORTED*#** assigned to two Update files.
#***DUPLICATE IDENT CHANGED TO N Update changed a duplicate None.

ident®**

identifier name to a unique
one.

60449900

TABLE B-l. DIAGNOSTICS (Contd)
Message Type Significance Action
*#%%*DUPLICATE IDENT NAME##*% F During a merge rum, Update Change one of the identifiers.
encountered a duplicate
identifier name that it could
not make unique.
***DUPLICATE IDENT NAME IN F The name of a correction set Change the name of the
ADDF ILE *#%% to be added as a result of an correction set.
ADDFILE directive duplicates
a correction set name on the
old program library. o
DUPLICATE SECONDARY OLDPL I Two secondary old program Correct the error or ignore.
IGNORED libraries have the same name.
***ERROR. NO PERMISSION TO F Both MODIFY and EXTEND Attach file with correct
WRITE NEWPL#*#% permission must be present access permissions. The
to overwrite a permanent tape requested or labeled for
(direct access) file, or a output must have a write ring.
write ring must be in place (Refer to the NOS, NOS/BE,
to store the information. or SCOPE reference manuals.)
ERRORNOT ALL MODS WERE F All changes indicated in the Make sure that names specified
PROCESSED#*#% input stream were not pro-— on correction directives corre-
cessed. spond to identifiers on the old
program library (or om the
COMPILE directive if in quick
mode) .
***ERROR. WIDTH EXCEEDS 256 N Total of statement width plus Correct *WIDTH statement.
CHARACTERS*%* ident field width is greater
than 256 characters on *WIDTH
statement.
***FILENAME OF file IS TOO LONG, F A file name exceeds seven Correct the file name.
UPDATE ABORTED#*#*% ’ characters.
***F ITLENAME ON ABOVE DIRECTIVE F A file name exceeds seven Correct the file name.
GREATER THAN SEVEN characters.
CHARACTERS #%*
FILE NAME ON UPDATE CONTROL F A file name on the UPDATE Correct the file name.
STATEMENT GR 7 CHARACTERS control statement is greater
than seven characters.
G AND O FILES CANNOT HAVE SAME F The G and O control statement Change one of the names.
FILENAME options specify the same file
name .
GARBAGE IN OLDPL HEADER, F Invalid data was found in the Rerun job/re-create program
UPDATE ABORTED random index. library. 1If the problem still
exists, follow site-defined
procedures for reporting soft-
ware errors or operational
problems.
% IDENT DIRECTIVE MISSING, I/F If no new program library is Add IDENT directive if new
NO NEWPL REQUESTED, DEFAULT generated, then a correction program library is to be
IDENTIFIER OF .NO.ID. USED#*%%* set need not be introduced by generated.
an IDENT directive. The iden-
tifier .NO.ID. is used.
IDENT xxxxx WILL NOT BE I Named correction set not None .

PROCESSED

60449900 E

processed because dependency
condition (K or U parameter omn
the IDENT directive) has not
been met.

TABLE B-1. DIAGNOSTICS (Contd)
Message Type Significance Action
*%%x DENT LONGER THAN NINE F . An identifier can only have up Correct the identifier.
CHARACTERS*** to nine characters.
**%* TDENTIFIERS SEPARATED BY F The specified identifiers are Switch the identifiers.
PERIOD IN WRONG ORDER*** not in the correct order.
*%%*TLLEGAL CONTROL STATEMENT F ADDFILE insertions cannot con- Remove the correction
IN ADDFILE#%%* tain correction directives. directives.
IMPROPER MASTER CHARACTER N The character specified on the Use the same master control
CHANGED TO char * control statement parameter character as on the old program
is not the same as the master library.
control character on the old
program library.
INSUFFICIENT FIELD LENGTH, F The table manager ran out of Allocate more field length.
UPDATE ABORT room for internal tables.
*#%%*TT MAY EXIST IN A DECK F An identifier references a Correct the error.
NOT MENTIONED ON A COMPILE line in a deck not specified
DIRECTIVE*** on a COMPILE directive (only
if in quick mode).
*%*TNVALID NUMERIC FIELD#*% F The directive does not contain Correct the directive.
required numeric field.
*%**LENGTH ERROR ON OLDPL. F Line length on old program Rerun job. 1f problem still
UNUSARLE OLDPL OR HARDWARE library is greater than the exists, then recreate the pro-
ERROR*** maximum allowed or is less gram library.
than one.
% ISTED BELOW ARE ALL IDENT I Update changes any duplicate None.
NAMES WHICH WERE CHANGED identifiers to make them
DURING THE MERGE#%* unique when merging two pro-
gram libraries.
%%*NEW IDENT ON CHANGE F An attempt was made to change Correct the error.
DIRECTIVE IS ALREADY KNOWN*** a correction set identifier to
one already in existence.
%%*NO ACTIVE LINES WERE N All line images within the None.
FOUND WITHIN THE COPY RANGE. specified range are inactive.
NULL COPY***
**%*NO DECK NAME ON DECK F No name was specified on the Specify a name.
DIRECTIVE**% DECK directive.
NO INPUT FILE, Q MODE, UPDATE F In quick mode, Update relies Put appropriate COMPILE
ABORT on the input file to determine directives in the input file.
what is written to the compile
file.
NO OLDPL, NOT CREATION RUN, F No old program library was Correct the error.
UPDATE ABORT supplied on a non-creation
run.
*%%*NULL ADDF ILE*** I The first read on the file Correct the error.
specified by ADDFILE encounter-
ed an end-of-record. If the
input file was specified, the
first read encountered an
illegal directive.
***NULL IDENT#**#* F An identifier was not found on Correct the directive.

a directive where one was
expected.

60449900

TABLE B-1, DIAGNOSTICS (Contd)
Message Type Significance Action
—— —— e —

***NULL DECK NAME*#** F During ADDFILE or a CREATION Correct the directive.
run, Update encountered a DECK
or COMDECK directive that did
not have a name.

***0QLDPL -READ ERROR - ATTEMPTING F A parilty error or other error Rerun the job. If the U option

RECOVERY *** has occurred while processing is used, line images might be
an old program library. As a lost on the NEWPL.

***READ RECOVERED - DATA LOST result, Update is uncertain of

BEFORE THE FOLLOWING LINE#*%*% the position of the old pro-

-line image- gram library. When Update -
finds the next valid line fol-
lowing the error, the second
message and the image of that
line are printed.

OLDPLS HAVE DIFFERENT I The merging of two old program Use program libraries with the

CHARACTERS SETS libraries with different char- same character set.
acter sets 1s not allowed.

***%QUTPUT LINE LIMIT EXCEEDED. N Update output exceeds the Use the LIMIT directive to

LIST OPTIONS 3 AND 4 DEFEATED*** line limit specified by increase one unit.
default or by the LIMIT
directive. B

PLS HAVE DIFFERENT CONTROL F The merging of two program Use program libraries with the

CHARACTERS, ABORT libraries with different same control characters.
control characters is not
allowed.

**%*PREMATURE END OF RECORD ON F A PRU of level O was Rerun the job. If error still

OLD PROGRAM LIBRARY**%* encountered in the line image. exists, recreate the program

library.

READING INPUT I The input file is being read None.
by Update.

***RECURSIVE CALL ON COMDECK F A common deck has called Correct the error.

dname IGNORED. FATAL ERROR*** itself or common decks that
contain calls to the specified
common deck.

SECONDARY OLDPL NOT RANDOM F Secondary old program Use random sécondary old
libraries must be random. program libraries.

***SEQUENCE NUMBER EXCEEDS F The proper range of sequence Correct the error.

13107 1 *%* numbers is 1 through 131071,

STACK DEPTH EXCEEDED F Stack in which line images are Follow site-defined proced-
placed became full while ures for reporting software
processing a BEFORE or ADDFILE errors or operational prob-
directive. lems. (increase RECURDEP).

TABLE MANAGER LOGIC ERROR F There is not enough table Increase field length.
space to accommodate the old
program library tables.

***THE ABOVE CALLED COMMON F The called common deck could Check the spelling of the deck

DECK WAS NOT FOUND*** not be found. name. If creating a program

library with calls to secondary
old program libraries, set C=0
on the UPDATE control
statements.

***THE ABOVE CARD AFFECTS A I Corrections are restricted Change the declared deck or

DECK OTHER THAN THE DECLARED
DECK***

60449900 F

to the named deck.

correct the identifier name.

TABLE B-1. DIAGNOSTICS (Contd)
Message Type Significance Action

***THE ABOVE DIRECTIVE IS F A directive that is not Remove the illegal directive.

ILLEGAL DURING A CREATION allowed on a creation run was

RUN*%** encountered.

***xTHE ABOVE DIRECTIVE IS N Directives *READ, *SKIP, or Remove the illegal directives.

ILLEGAL IN AN ALTERNATE FILE. *REWIND are illegal in an .

IGNORED*#** alternate file.

***THE ABOVE DIRECTIVE IS N CHANGE, PURGE, and YANK Remove the illegal directiyes.'

ILLEGAL AFTER A DECK HAS BEEN directives are illegal after a -

DECLARED**%* deck has been specified on a
DECLARE directive. They are
ignored.

*%*THE ABOVE LISTED DIRECTIVES I Only YANK, YANKDECK, SEL- None.

CANNOT EXIST IN THE YANK DECK YANK, and DEFINE directives

AND HAVE BEEN PURGED DURING are kept in the YANKSS deck.

EDITING***

***THE ABOVE OPERATION IS NOT F The specified operation is Correct the error.

LEGAL WHEN REFERENCING THE illegal when referencing the

YANK DECK#*** YANKS$SS deck.

***THE ABOVE SPECIFIED LINE F Update could not locate the Make sure that the correct

WAS NOT ENCOUNTERED**% specified line on the old pro- identifier is specified.
gram library.

*%**THE INITIAL LINE OF THE COPY N No copy was made. Make sure that the correct

RANGE WAS NOT FOUND. NULL identifier is specified.

COPY **%

**%*THE TERMINAL LINE OF THE I The last line specified was Make sure that the correct

COPY RANGE WAS NOT FOUND. not found; the rest of the identifier is specified.

COPY ENDS AT END OF SPECIFIED deck was copied.

DECK*#*%

*%*THE TERMINAL LINE SPECIFIED F While processing a line range, Make sure that the correct

WAS NOT ENCOUNTERED**%* Update could not locate the identifier is specified.
last line of the range.

THIS UPDATE REQUIRED n WORDS OF I It took n words of memory for None .

CORE the update.

*%*T00 MANY CHBS —-- INCREASE F Correction history bytes Increase of value of L.CHB

L.CHB*** exceed the specified limit of in Update and reinstall it.
100g for a line.

TOO MANY SECONDARY OLDPLS F Up to seven secondary old Specify seven or fewer

SPECIFIED program libraries can be secondary old program
specified. libraries.

***JNBALANCED TEXT/ENDTEST N TEXT/ENDTEXT directives Make TEXT/ENDTEXT directives

DIRECTIVES*** encountered in the run were matching pairs.
not matching pairs.

*%*UNKNOWN IDENTIFIER idname¥** F A correction directive Make sure that the correct
references an identifier not identifier is specified.
found in the directory.

UPDATE COMPLETE 1 The update is completed. None.

UPDATE CONTROL STATEMENT F The UPDATE control statement Correct the erroneous

ERROR(S)

B-6

contains unacceptable
parameters. The erroneous
parameters are listed on the
next line.

parameters.

60449900

TABLE B-1.

DIAGNOSTICS (Contd)

Message

Type

Significance

Action

UPDATE CREATION RUN

WAITING FOR 450008 WORDS

***0LDPL CHECKSUM
ERRQR***

**%*YANK, SELYANK, OR YANKDECK
ident NOT KNOWN*#*#*

***deckname IS NOT A VALID DECK

NAME *%*

*%%n ERRORS IN INPUT#**%

*%%n ERRORS IN INPUT, NEWPL,
COMPILE, SOURCE SUPPRESSED***

n ERRORS IN UPDATE INPUT

n DECLARE ERRORS

n FATAL ERRORS

n NONFATAL ERRORS

n OVERLAPPING CORRECTIONS

n UPDATE ERRORS, JOB ABORTED

This Update run was a creation
run.

Update is.waiting for the
operating system to allocate
enough memory.

At least one updated deck
from the old program library
is bad.

The identifier referenced on a
YANK, SELYANK, or YANKDECK has
probably been purged; this
applies to lines already on
the library.

A deck name has 1 through 9
characters; legal characters
are: A through Z, 0 through
9, and + - * /() $=.

Update encountered n fatal
errors in the input stream.
Processing continues in order
to detect additional errors.
This message is issued only if
the U parameter is specified
on the control statement.

‘Update encountered n fatal

errors in the input stream.
Processing continues in order
to detect errors. A new
program library, a compile
file, and a source file are
not generated.

First pass of Update pro-
cessing encountered n fatal
errors while reading a
correction set.

Indicates the number of
directives that reference
line images in decks not
specified on DECLARE
directives.

Indicates the number of errors
that caused Update to abort.

Indicates the number of errors
that did not cause Update to
abort.

A correction set changed the
status of some lines more than
once or referenced an inactive
line image.’

Errors were encountered in
reading the input file.

None.

None.

Rerun Job. If problem still
exists, follow site-defined

procedures for reporting soft-
ware errors or operatiomal
problems.

Remove the yank directive
from the YANK$SS deck.

Correct the deck name.

None.

None .

None.

None.

None.

None.

None.

None.

60449900 D

s-71

GLOSSARY C

ASCII -
American Standard Code for Information Inter-
change. ASCII input and output codes for Update
are B8-bit characters right-justified in a 12-bit
byte.

Common Deck -
A deck that is written on a compile file as a
result of a CALL directive. The COMDECK
directive introduces a common deck.

Compile File -
The file generated by Update that contains line
images restored to a format that is acceptable
to a compiler or assembler.

Copy Run ~
An Update run that performs a sequential-to-
random or random-to-sequential copy of a program
library. Contrast with creation run and
correction run.

Correction History Byte -

A byte added to a line image by Update each time
the status of the line image changes. The
correction history byte tells Update whether or
not a line image is active or inactive and which
correction set modified the 1line image. A
maximum of 100B correction history bytes may
exist for each line.

Correction Run -
An Update run in which changes can be made to a

program library. Contrast with copy run and
creation run.

Correction Set -
A set of directives and text that direct Update
to wmodify a program library. The IDENT
directive introduces a correction set.

Creation Run -
An Update run that constructs a program
library. It 1is the original transfer of lines
into Update format. Contrast with copy run and
correction run.

Deck -
A deck consists of a DECK or COMDECK directive
and all text and directives until the next DECK
or COMDECK directive. It 1is the smallest unit
that can be extracted from a program library.

Deck List -
A 1list internal to Update that contains the
names of all decks in the program library and
the location of the first word for each deck.

Directory -
A list that contains one entry for each DECK,
COMDECK, and IDENT directive that 1is wused for
the program library.

60449900 D -

Full Update Mode -
An Update run in which the F parameter 1is
selected on the control statement causing Update
to process all decks on the library. Contrast
with normal selective mode and quick Update mode.

Identifier -
The name of a deck, common deck, or correction
set.

Input File -
The user-supplied file or part of the job deck
that contains the 1input stream of Update
directives and text.

Known -
The status of a deck name or identifier that is
on the primary old program library. The deck
name must be in the deck 1list on the primary old
program library and an identifier must be in the
directory on the primary old program library.

Line Identifier - .
The combination of 1identifier and sequence
number that uniquely identifies each line image
in a program library.

Master Control Character -
A character in column 1 that informs Update
that the line contains a directive.

Merge File -
The file that contains a program library to be

merged with the old program library into a new
program library.

New Program Library -
The program library either automatically gen~
erated by a creation rum or optionally generated
by a correction run.

Normal Selective Mode -
An Update run in which the F and Q options are
not selected on the control statement. All
decks specified on COMPILE directives as well as
all corrected decks are processed. Contrast
with full Update mode and quick Update mode.

01d Program Library -
The program library to be modified.

Output File -
The print file generated by Update that contains
the status information produced during Update
execution. It is in a form suitable for
printing.

Program Library -
The file generated by an Update run that
contains decks of 1line images that. can be
manipulated by Update.

Pullmod File ~
A file that contains directives and text or
re-created correction sets specified on PULLMOD
directives.

Quick Update Mode -
An Update run in which the Q option is selected
on the control statement. Only decks specified
on COMPILE directives and called common decks
are processed. Contrast with full Update mode
and normal selective mode.

Secondary 0l1d Program Library -
A program library from which decks on the old
program library can call common decks.

Sequence Number -
A number supplied by Update that uniquely
identifies a line image.

Source File -
An optional file generated by Update that uses
line images of an input stream to generate a new
program library.

System-Logical Record =
Under NOS/BE, a data grouping that consists of
one or more PRUs terminated by a short PRU or
zero~length PRU. These records can be trans-

60449900 D

ferred between devices without 1loss of
structure. Equivalent to a logical record under
NOS. Table C-1 shows equivalency under
SCOPE 2.

TABLE C-1. RECORD TYPE UNDER SCOPE 2

Type Level Equivalency

RT=W 0 thru l6g end—-of-section

RT=W 17g end-of-partition

RT=S 0 thru 1l7g end—of-record

RT=2 0 thru 17g end-of-section

BT=C 0 thru 1l7g end-of-section
Unknown -

The status of a deck name or identifier that is
not on the old program library. A deck name or
identifier that 1is purged has the status of
unknown.

c-2

FILE FORMAT AND STRUCTURE D

The files generated and used by Update have formats
determined by both the operating system in use and
the user. This appendix describes default file
formats, allowed file formats, and the inter-
changeability of files among operating systems.
Table D~1 summarizes file structure according to
the operating system used.

LIBRARY FILE FORMATS

Update can create and maintain library files in two
distinctly different formats: random and sequen-
tial. These formats are described in detail
below. Random format should be wused whenever
possible because it can be processed substantially
faster than sequential format.

RANDOM FORMAT

On a random format library, each deck 1is a
system—logical record as shown in figure D-1. The
deck records are followed by separate records
containing the deck 1list, the directory, and the
random index.

Random Index

The random index tells Update the beginning point
and length of the directory and the deck list. The
index also contains such information as the master
control character and the character set used when
the library was generated. Random index format is
shown in figure D-2.

Two copies of the random index are generated under
SCOPE 2 because Update generates another copy when
it closes the file. The closing of the file is a
process internal to Update.

Under SCOPE 2, Update adds a 2-word header to the
random index that indicates the number of words in
the index. SCOPE 2 header format 1is shown in
figure D-3.

Copying to Tape

Random program libraries should be copied to tape
through Update parameters. To copy a random
program library to tape under NOS or NOS/BE, use
the UPDATE control statement:

UPDATE(B,P=plname ,N=1fn)
where plname is the library name and 1lfn is the
tape file. To copy the 1library back to mass

storage,; use:

UPDATE(A,P=1fn,N=newpl)

60449900 F

EACH DECK IS
A LOGICAL
RECORD T

“—FIRST ENTRY

Deck List POINTS TO
YANKSSS
DECK
Directory

SCOPE 2 Header!T

Random Index

Random Index

—==E0I~=-

TFor SCOPE 2, each deck is a section.
TiHeader applies to SCOPE 2 only.

Figure D-1. Random Program Library Format

where 1fn is the -tape file and newpl is the new
program library name.

Under SCOPE 2, use the UPDATE control statement:
UPDATE (F,P=plname,N=1fn)

to copy a random program library to tape. The

program library name is plname and 1lfn is the tape

file. To copy the library back to mass storage,
use:

UPDATE(F,P=1fn,N=newpl)

where 1fn is the tape file and newpl is the new
program library name.

TABLE D~1. FILE STRUCTURE VERSUS OPERATING SYSTEM
NOS/BE NOS SCOPE 2
Ugiize Tape Mass Storage Tape Mass Storage Tape Mass Storage
P=0LDPL Binary Random or Binary Random or Binary, sequentiaiT Random: RT=W,
SI tape| sequential SI tape or| sequential RT=W or S unblocked
I tape Sequential: RT=W,
unblocked
RT=W
N=NEWPL Binary Random or Binary Random Binary, sequential Random if unblockéd
SI tape| W - sequential | SI tape or|{ W — sequential] RT=W or S Sequential if blocked
1 tape or if W specified
on Update control
statement.
RT=W,unblocked by
default.
RT=blocked W or S;
specified through
FILE control state-
ment.
Cannot be blocked if
random.
C=COMPILE Binary Sequential Binary Sequential RT=W,I blocked. RT=W,unblocked.
RT=2 RT=2 Other types (F or Other types (F or
2 only) determined Z only) determined
by FILE control by FILE control
statement. statement.
I=INPUT Binary Sequential Binary Sequential RT=W,I blocked. RT=W,unblocked
RT=2 RT=Z Other blocking or RT=W blocked or RT=Z,
RT=Z, FL < 256 FL < 256 through FILE
through FILE con- control statement.
trol statement.
0=0UTPUT Binary Sequential Binary Sequential RT=W,I blocked. RT=W,unblocked
RT=Z RT=Z Other types
possible through
FILE control
statement.
S=SOURCE Binary Sequential Binary Sequential RT=W,I blocked. RT=W,unblocked
RT=Z RT=Z Other blocking or RT=W blocked or RT=Z
RT=Z, FL < 256 if specified
through FILE con- through FILE con-
trol statement. trol statement.
*READ 1fn or| Binary Sequential Determined| Sequential RT=W,I blocked. RT=W,unblocked
*ADDFILE lfn RT=2 by REQUEST| RI=Z Other blocking or RT=W blocked or RT=Z
or LABEL RT=Z, FL { 256 if specified
control through FILE con- through FILE con-
statement trol statement. trol statement.

tial file.
records.

to a W unblocked file.

TRandom files can be put on tape by copying the file to tape.
W records are 5120 characters in length.
directory header containing DIRECT$ to identify random file and for presence of CHECK in word 1 of sequen-

If both tests fail, library format is unacceptable.

To access this file, it must first be copied

SCOPE 2 Update checks for presence of

Random format library must be unblocked W

NOTE

Update uses 7000 record manager for I/0, but Update does not use 6000 record manager
(BAM) Basic Access Method. A FILE control statement can be used with SCOPE, but this
control statement is ignored under NOS and NOS/BE.

60449900 D

59 47 29 24 23 17 1" 5
7000 dl " diire
unused dirl dirra
unused L] X Lab y ¢
Label
Label (contd)
7000 Identifies random directory record. -
dtiL Length of the deck List in words.
dllra Random address of first word of deck List.)
dirl Length 6f directory in words.
dirra Random address of first word of directory.
] Indicates presence of deck bits in deck List
1 Deck bits present.
other Deck bits not present.
X Character set identifier determined by IP.CSET parameter.
3 (36g) IP.CSET is set for a 63=-character set.
4 (37g) IP.CSET is set for a 64-character set.
7 (42g) IP.CSET is set for 63-character set plus ASCII.
8 (43g) IP.CSET is set for 64-character set plus ASCII.
Lab Label flag:
nonzero Words 3 and 4 contain tape lLabel.
0 Words 3 and 4 not present.
SCOPE 2 does not recognize tape labels.
y Indicates which character set was used when the Library was generated.
Y or nutl b4-character set used.
other 63-character set used.
c Indicates master control character in use when the Library was created.
Figure D-2. Random Index Format
59 17
DIRECTS unused
n
n Number of words in the random index.

60449900 D

Figure D=3. SCOPE 2 Random Index Header Format

D-3

SEQUENTIAL FORMAT

Update optionally creates new program libraries in
sequential format. On magnetic tape, a sequential
library (I tape format on NOS, SI tape format on

NOS/BE, or RT=S on SCOPE) is written as one record .

in binary (figure D-4). The first word in the
file is a display code key word (figure D-5); the
second is a counter word containing the number of
deck mnames in the deck 1list and the count of
correction set identifiers in the directory
(figure D-6). The last word in the file 'is a
checksum (figure D-7).

YANK$$$ DECK

The YANK$$$ deck is automatically created on a
creation run as the first deck on the program
library. It does not have a DECK line as its first
line image. On correction runs, Update inserts
into the YANKS$SS deck any YANK, SELYANK, YANKDECK,
and DEFINE directives that it encounters during the
read-input-stream phase. These directives acquire
identification and sequence information from the
correction set from which they originate. On a
merge, the two YANKS$S8S decks are merged into a
single deck.

Although the YANK$SS deck as a whole cannot be
yanked or purged, lines in the deck can be deleted,
yanked, or purged. If information other than the
four directive types mentioned inadvertently gets
into the YANK$$$S deck, this information can be
purged through the E option on the Update contrel
statement or through the SELYANK directive. The
YANKS$SS deck is maintained in display code.

DECK LIST

The deck list is a table that contains an entry for
each deck on the program library. Each entry on a
sequential program library consists of one word
containing the deck name; bit three is reserved for
the deck bit that indicates whether or not the deck
is a common deck. Each deck list entry on a random
program library consists of two words as shown in
figure D-8. The deck list is maintained in display
code. ’

DIRECTORY

The directory is a table that contains one entry
for each DECK, COMDECK, and IDENT that has ever
been used for this library. Directory entries each

consist of one word containing the 1 through 9
character identifier in display code,
left-justified with zero fill. Correction set
identifiers and deck names are listed

chronologically as they are introduced into the
library. The directory is maintained in display
code.

A deck name that has been purged remains in the
table although it is not printed on the listable
output file. The purged deck names are not removed
from the table unless the E (edit) parameter is
specified on the Update control statement.

The mnumber of identifiers in the directory is
limited by the amount of central memory (or small
core memory) available.

Display Code Key Word

Counter Word

Directory

Deck List

YANKSSS Deck

Deck 1

beck 2

)l
1

beck n

Checksum

Figure D-4. Sequential Program
Library Format

Each directory entry has the format shown in
figure D-9. For a purged identifier, bits 59
through 6 are zeros, and bits 5 through 0 contain
a 20g.

COMPRESSED TEXT FORMAT

Text is an indefinite number of words that contain
a correction history and the compressed image of
each line in the deck. Information for each line
is in the format shown in figure D-10.

OLD SEQUENTIAL FORMAT

Update accepts library files in the old
(pre-SCOPE 3.4) Update sequential format as shown
in figure D-11. These libraries resemble the new
sequential format but do not contain the CHECK word
or checksum, and the text format and correction
history bytes are different. Word 2 on the new
format is the same as word 1 on the old format.
Update no longer generates this obsolete sequential
format.

60449900 D

59 29 24 23 17 1 5 0
CHECK 00] X Lab y c
‘CHECK Identifies the file as being a sequential file.
m Indicates presence of deck bits in deck List:
1 Deck bits present,
other Deck bits not present.
X Character set identifier determined by IP.CSET parameter:
3 (Gég) IP.CSET is set for a 63-character set. - -
4 (373) IP.CSET is set for a 64—character set.
7 (42g) IP.CSET is set for 63~character set plus ASCII.
8 (43g) IP.CSET is set for 64-character set plus ASCII.
Lab Label flag:
L Indicates Llabeled tape.
null Indicates unlabeled tape.
SCOPE 2 does not recognize tape labels.
y Indicates which character set used when the Library was generated:
Y or null b4-character set used.
other 63-character set used.
[Indicates master control character in use when the library was cfeated.
Figure D=5, Display Code Key Hord Format
59 35 17 0
unused idcount dcount
idcount Number of identifiers in the directory.
dcount Number of deck names in the deck List.
Figure D=6. Counter Word Format
59 0
checksua
checksum Count of bits in the program library.

60449900 C

Figure D=7. Checksum Format

D-5

59 29 5 3 0

dname ' unjd{un

unused ra

dname 1 through 9 alphanumeric character deck name obtained from DECK or COMDECK
directive when deck was placed on Library. The first dname is YANKSSS.

un Unused.
d Deck bit. Indicates kind of deck.

0 Common deck.
1 Regular deck.

ra Random address of first word of compressed text for the deck.

Figure D-8. Random Program Library Deck List Format

59 . 5 0

unused

E identifier or 20g

Figure D-9. Directory Format

59 58 53 35 17 0
c] stat we seqnum chb 1
ctunused chb 2 chb 3 chb &
¢ funused chb n-2 chb n-1 chb n
compressed Line

c Correction history byte flag. Indicates the Last word containing
correction history bytes.

0 Not last word.
1 Last word.

Figure D-10. Compressed Text Format on Program Library (Sheet 1 of 3)

D6 60449900 D

stat

HC

segnum

chb;

Compressed
line in
display
code

Line status:

58 56 54 53

a b d
a Activity bit:
0 Line is inactive,
1 Line is active.
b Character set mode:
0 Character set is display code.
1 Character set is ASCII, o
d Yank deck indicator (#DECK directive only):

0 Deck not yanked.
1 Deck yanked.

Number of words of compressed text for this Line, excluding words
containing correction history bytes.

Sequence number of line (octal) according to position in deck or
correction set identified by chb 1.

k Correction history byte. Update creates a byte for each correction

.

set that changes the status of the Line. The format of chb is:

17 15 : 0

yla identno

y Yank bit:

0 Line not yanked.
1 Line has been yanked.

a Activity bit:

0 Correction set deactivated the Line.
1 Correction set activated the Line.

identno Index to the entry in the directory that contains the name

of the correction set or deck that introduced the line or
changed the Line status.

The compressed image of the line in display code. Single and double
spaces are unaltered. Three or more embedded spaces are replaced in
the image as follows:

3 spaces replaced by 0002g

4 spaces replaced by 0003g

5 spaces replaced by 0004g

64 spaces replaced by 0077

65 spaces replaced by 0077?53

66 spaces replaced by 00775555g

67 spaces replaced by 00770002g, etc.

Trailing spaces are not considered as embedded and are not included
in the line image. A 4-digit octal code 0000 or word count (uc)
reached marks the end of the Line. This is conditional on the
CHARG64 option.

60449900 D

Figure D-10. Compressed Text Format on Program Library (Sheet 2 of 3)

D=7

When the full-character set installation option is assembled, a byte
of 0001 represents a colon.

Compressed The compressed image of the line in ASCII. One or more spaces are
Line in replaced in the image as follows:
ASCII code

1 space replaced by 040g
2 spaces replaced by 001g
3 spaces replaced by 002g
&4 spaces replaced by 003g

3 ;paces replaced by 036; .-
32 spaces replaced by 037g 040g
33 spaces replaced by 037g O41g

000g(NUL) replaced by 037g 000g
0018 (SH) replaced by 037g 001g

037g (Us) replaced by 037g (37g

Compressed ASCII characters are stored as 7-1/2 eight~bit characters
per 60-bit word, with multiple blanks compressed and trailing blanks
B removed. A four-digit octal code 0000g marks the end of the line,
if the code occurs before the end of the Last word is reached. Only
the lower 8 bits of each 12-bit byte are saved; the upper & bits are
ignored, unless expanding a compressed Line image. When expanding
an ASCII compressed lLine image, the upper & bits of each character
are set to zero, unless the character is NUL (000g). If the
character is NUL, the 12-bit value 4000g is returned. Characters

in the range 0413 to 377g are stored unchanged.

Figure p-10. Compressed Text Format on Program Library (Sheet 3 of 3)

INTERCHANGEABILITY OF

2 35 17 9 LIBRARIES
unused identifier deck When the random format libraries have been copied
count count to tapes, the libraries have limited inter-
changeabllity among the operating systems. This

interchangeability is shown in table D-2.
Directory
The control statements COPY, COPYBF, COPYBR,
COPYCF, or COPYCR should not be used on random
beck List access files on NOS/BE or on SCOPE since these
operating systems might not recognize that the
copied file is a random access file.

YANKSSS Deck
Sequential program libraries are interchangeable
among operating systems when they are system-—
beck 1 logical records (Record Manager type S records).

COMPILE FILE FORMAT

Through control statement parameters, the user can
specify whether the text on the compile file is to
Deck n be compressed or expanded, and sequenced or
unsequenced. The expanded compile file format for
each line consists of 72 or 80 columns of data [
followed by O to 18 columns of sequence informa—
Figure D-11. Old Seguential Program tion. The maximum size of a line image is 90 §
Library Format columns.

2)
ALY
7).
ALY

D-8 60449900 D

TABLE D-2. FILE INTERCHANGEABILITY

System to Read
System That Generated Random Library From
Random Library on Tape
Tape NOS | NOS/BE [SCOPE 2
NOs Yes No No
NOS/BE Yes | Yes | Noff
SCOPE No No Yes

TA yes indicates the tape can be read; a no
indicates it cannot.

TTMust be copied to umblocked mass storage
file when read in.

Update attempts to place sequence information in
the columns remaining in the line image after the
data columns have been allocated. When the data
field is 72 and the lime image 1is 90 columns,
column 73 is blank and 17 columns are available for
sequencing information. In this case, the 1 to 9
character identifier is left-justified in
column 74, and the sequence number is right-
justified in column 86.

When the data field is 72 and the line image is 80
columns, 8 columns are available for sequencing
information. If the data field is 80 and the line
image is 90, 10 columns are available for
sequencing information. In either of these cases,
if the identifier and sequence number exceed the
field, VUpdate truncates the least significant
(right-most) characters of the identifier leaving
the sequence number intact.

If the data field and line image are both 80, the
compile file output cannot have sequence infor-

mation appended.

The width statement overrides the values specified
by D and 8. The table D-3 shows the equivalence of
the D and 8 parameter options to the *WIDTH
directive.

TABLE D-3. WIDTH DIRECTIVE EQUIVALENCE
TO D AND 8 OPTIONS

D and 8 Options *WIDTH Equivalent

neither D nor 8 option *WIDTH 72,14
D option *WIDTH 80,10
8 option *WIDTH 72,8
D,8 option *WIDTH 80,0

The examples in figure‘ D-12 show how Update
positions sequencing information for the various
control statement options.

In addition, figure D-13 shows possible widths of
the identification field and the positioning of the
identifier name and sequence number. The total
length possible for the identification field is
17. 1If the identification field length is larger
than 17, extra blanks will be inserted between the
sequence fields.

If the 80- or 90-character 1line image on the
compile file has two blanks as the last two
characters, these are converted to a 0000 line
terminator and the line image is 8 (or 9) words
long. If the last two columns do not con-

74

80 ‘ 86 90

NORMAL COMPILE OUTPUT—=~| A | S | E | V | E

WITH D OPTION ———

WITH 8 OPTION —————==| § E|V E |1

Figure D-12. Sequencing Format for Compile File

80 85 90 95 100
*HIDTH 80,5] sj{ef{v]|e}s3
*WIDTH 80,15 —==| Als|E|Vv]IE]}N 3
*WIDTH 80,20 — = Alajlala|s|e N|c|H 3

Figure D=13, Sequence Number Overlay

60449900 F

tain blanks, a word containing & blanks and a The format of the compressed compile file is shown
zero~byte line terminator are added, thus making in figure D-14. The first word 1s a loader prefix
the line image 9 (or 10) words long. This same table (77g). Compressed format 1is

procedure is used for creation of the source file.

statement.

through the X option on the UPDATE

generated
control

59 53

41 35 17 . 0

g4 00

00 00 unused

sequence field 1

ne 1

n
L4

))]
W

compressed Line 1

)
(

)

sequence field 2
nw 2
compressed Line 2 ~
= compressed lines can use more than one word ~
sequence field n
nw n

)]
ALY

).
W

compressed Line n

sequence field;

nwy

compressed Line;

17 characters comprising card columns 74 through 90. Column 73 is
always blank.

Binary number of words in compressed Line.

Each 00 character is replaced by the 12-bit value 0001, and three or
more consecutive blanks (to a maximum of 64) are replaced by a 12=bit
value 0002 through 0077g. A.single blank is represented in display
code (55g); two consecutive blanks are represented by the 12-bit

value 5555, 1f the last word is not full, it is padded on the
right with binary zeros. Because word count nw is present, an extra

all~zero word is not required to guarantee 12 zero bits. *WIDTH
directives are ignored with compressed compile files. The full line
image is always present, and the seguence field information is always
a full 17 characters.

Figure D=14., Compile File Compressed Format

60449900 D

INDEX

—

A parameter 4-1

ABBREV directive

ADDFILE directive
Description
Examples

3-14

3-1, 3-5
5-4

B parameter 4-1

BEFORE directive 3-6

C parameter 4-1
CALL directive
Description
Example 5-2
CHANGE directive 36
Character sets A-1
COMDECK directive
Description
Example 5-1
Comments 3-3, 3-16, 4-~7
Common decks (see Decks)
COMPILE directive 3-11
Compile file (see Files)
Control Statement (see UPDATE control statement)
COPY directive
Description
Example 5-2
Copy run 1-3, 2-2
Correction history bytes
Correction run
Description
Example 5-2
Files 2-1
Correction set
Creation run
Description
Example 5-1
Files 2-1
CWEOR directive

3-11

1-2, 3-4, 3-5

3-6

1-3

1-2

1-2, 3-7, 3-8

1-2

3~1, 3-3, 3-4, 3-11

D parameter 4-2
Debugging 4-6
DECK directive
Description
Example 5-1
Deck list 1-2, D-4
Decks
Common
Calling 3-11
Description
Example 5-1
Regular
Description
Example 5-1
DECLARE directive 3-1, 3-15
DEFINE directive 3-15
DELETE directive
Description
Example 5-2
Diagnostic Messages

1-2, 3-5

1-2, 3-4, 3-5

1-2, 3-4

3-7

B-1

60449900 F

Directives
Compile file 2-3, 3-l11
Correction 3-5
Deck identifying
Description 1-1,
File manipulation
Format 3-3
Input stream control
Special 3-15
Directory 1-2, 3-8, D-4
DO directive
Description
Example 5-4
DONT directive
Description
Example 5-4

3-4
1-2, 3-1
3-13

3-14

3-12

3-12

4-3
3-15

E parameter
END directive
ENDIF directive
Description
Example 5-4
ENDTEXT directive

3-12

3-14

F parameter 4-3
Files
Compile
Control statement parameters
Description i-1, 2-3
Format D-8
Input
Control statement parameter
Description 1-2, 2-1
Example 5-1
Listable output
Merge
Control statement parameter
Description 1-2, 2-4
New program library
Control statement parameter
Description 1-1, 2-3
01d program library
Control statement parameter

2-4

Description 1-1, 2-3
Qutput

Control statement parameter

Description 1-1, 2-4
Pullmod

Control statement parameter

Description 1-2, 2-4

Example 5-4

Secondary old program library
Control statement parameter

Description 2-3, 3-ll
Source
- Control statement parameter
Description 1-2, 2-4

Full mode (see Update mode)

G parameter 4-3

4-1,

4-6

Index—1

H parameter 4-3 R parameter 4-5
Random program library (see Program library)

READ directive 3-13

I parameter Regular deck (see Decks)
Description 4-3 RESTORE directive 3-9
Example 5-1 REWIND directive 3-13

IDENT directive 3-~7
IF directive
Description 3-12

Example 5-4 S parameter 4-6
Input file (see Files) Secondary input stream (see Input stream)
Input stream 1-1, 2-2 Secondary old program library (see Files)
INSERT directive SELPURGE directive

Description 3-8 Description 3-9

Example 5-2 Example 5~3 o

SELYANK directive
Description 3-10
K parameter 4-3 Example 5-3
SEQUENCE directive 3-10
Sequential program library (see Program library)
L parameter 4-4 SKIP directive 3-14
LIMIT directive 3-15 Source file (see Files)
Line identifier 1-1, 3=-4
LIST directive 3-14
T parameter 4~6
TEXT directive 3-14
M parameter bty
Master control character 3-3, 4-6
Merge file (see Files)
MOVE directive 3-8 U parameter 4-6
UPDATE control statement
Description 4~}

N parameter 4-5 Examples 4-7

New program library (see Files) Parameters 1-1, 4-1

NOABBREV directive 3-14 Update mode

NOLIST directive 3-14 Full 1-3, 4-3

Normal selective mode (see Update mode) Normal selective 1-3, 4-3, 4-5

Quick 1-3, 2-4, 4-5

O parameter 4-5
0ld program library (see Files)
OQutput file (see Files) W parameter 4=6
Overlapping Corrections B-1 WEOR directive
Description 3-3, 3-4, 3-13
Example 5-1
P parameter 4-5 WIDTH directive
Primary input stream (see Input stream) Description 3-13
Program library (see also Files)
Auditing 4-3
Editing 4-2 X parameter 4-6, D-10
Random and sequential
Description 2~2, 4-2, 4-4, 4~5
Format D-1

PULLMOD directive YARK directive
Description 3-15 Description 3~10
Example 5-4, 5-5 Example 5-3

Pullmod file (see Files) YANKDECK directive

PURDECK directive Description 3~10
Description 3-8 Example 5-3
Example 5-3 YANKSSS deck 1-2, D=4

PURGE directive

Description 3-9

Example 5-2, 5-3
parameter 4-6
comment directive 3~15
parameter 4-7
parameter 4~6

Q parameter 4-5
Quick mode (see Update mode)

* NS

Index-2 60449900 D

INI ONOTVY 1ND

COMMENT SHEET

MANUAL TITLE: Update Version 1 Reference Manual

PUBLICATION NO.:

REVISION: F

This form is not intended to be used as an order blank.
welcomes your evaluation of this manual.
additions or deletions, or general comments on the back

60449900

Control Data Corporation
Please indicate any errors, suggested
(please include page number

references).
Please reply - No reply necessary
FOLD FOLD
NO POSTAGE
MNECESSARY
IF MAILED
IN THE
UNITED STATES
[
BUSINESS REPLY MAIL N ——
FARST CLASS PERMIT NO. 8240 MINNEAPOLIS, MINN. e
[]
POSTAGE WILL BE PAID BY []
CONTROL DATA CORPORATION L
[]
Publications and Graphics Division B ———
P.0. BOX 3492 PE—
Sunnyvale, California 94088-3492 .
Lo
b
T
FOLD FOLD
'NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
NAME:
COMPANY :
STREET ADDRESS:
CITY/STATE/ZIP:
TAPE TAPE

3 duf

[paiageo

SRR R GRS
39300aRy) T0IUC) IpemC) [

? duy

» Pa33ymo

T9I58IND 1033000 F9380R

susn1o2 og : 8

sumn103 (g PRIITm0

9174 917dmo) ug UIPTA esem] 1]
1VRIO] pIsseadwod Oy : b §

: u-,luau, ‘poesazdecy uw aou PoIATHO

A-,«unuauon : A

. eTamescd zy woptes - paameo

awvmiog ZIwiqy] wwadoig mey [¥jjuenbag

3 VOTANDIAD
PU2 10U Op €10113 TRIN] n
UoTINDIX SPUS 10119 TWIN] paiITmo
Ten Wasa 1
UjI=gl 30

UIT UJI=91 30 Uylm.]

208105 81 .70 .91:10 1

auou PRIIIWO

@7¥4 92IN05 W01 SADI(] UOWEO) ITMO L

v31-gs 10
UIT - UjTagS 30 UFTmg

amnos g5 10.95 10 g

anou PRIlIm0

Swwy 9114 @9inog. §

(5 ‘a
‘N fD) 99113 Pat3yode puinsa Caht L) |
Buppuisal ou U
sa{}3 putasa euu:lo,

¥9114 pPulAWY ¥

SH3L3NWVHVYd LNIJINILVLS TTOHLNOD m,k<nn5

e,

9pon 1o0b b

apow 9ATID]98 TRRIOCU pallIImo

Spoq s3wpd X710 D

18 o 83TIVPUOINE {14010 22028/ 18/=d

16 U0 BITINPUDAE SUJT 1 /76/18/UITwd

L] uiT=4
8d 3094 10
"14a1o 410 pajIgwo

auey BTT] AJeaqr] wiH01g P10

..w.—nnﬂ 10
VT UjI=90 10 UjI=Q

. 8030 90
104100 30 0 10 Pa3ITEO

oEEy 9113 andang S1qvasTl

VI T=gN 20
BT UITmoN 30 UJTeN

TIMEN . BN G0 9N 10§

uni
uoYy3II81200 JT esaaddne 1amm pa1ITw0
QWWN ATTI AIRIQT] -luum:um AN R
uy uIT=R
20¥aAR SR 30 g 10 K
#8a9m ou pRalTmo
¥S7Ieiqy] Weidoig aBiaN H
1 30y ‘g niy3l g suoyado 944+ 2u
Bupisy] ssaaddns e
1 :and3no 1euymIal
14y 1una £dod.
9 4 fZ M1 'V una uoTIdaa10d ;
741 'y 1uni uoy3waad pe3ITuO0
suoradp Indang a1qwasyl 1
U REL AR 2] O3T=gy 20
uo: aduanbas BATIDNITIP FTIdNDD UIT=0% 10 uUFley
4114000 213 10
uo eouanbas. IAFIDIITP F1I4N0D g1 10y
BOTIEI0T
A29p savjwiIalap Jajaweaed) pa33IMO
@ousnbeg 2133 911dwoy)

uil EMAI@N 20U =]

81 2991
1MdNI 30 1 o paa3jmo

SuWEy 9114 Wmealg Induy 1

99 y=i
£9 t=H
398 3mezep B 30 peadywo

sBuwy 395 AeIoRiRy)
UITwgy 20
U3l U39y 10 VIT(=H

@173 @a2anos : Pa33Two

. Wy 9114 PORTING D

apom 1103 : a
pom ATIIR a8 TRRIOU Pa311m0
SpoR s3epdn 110 4
fuiarpe 2
Su1arpe ou Pl

Jvaqy Bels0oag PTI0 Ipd 3
sumn{od og a

SURNI02 2/ Pa3311W0

9113 S17dm0) UQ WIPTM ¥I®Q - @

uou 0=2
HONDd ' uoNna=2
u31=82 20

UJT B3T=9) 20 BITe]

82 1093
TI1dW)D 10 D 1o paaajwe

aweN #1713 211dwoy -9
Adao [}

Adoa ou POIITHO

Adoy Teyivanbag_oj-mopury ;g
£dod v

A4oo ou PeIITNO

Zdoy wopueg-oj-1ejuanbag y

(udsre tzd1d)aivaan

60449500

ORPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN 55440 f . LITHOIN USA.

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD - - .
: }; ‘:
i

@DCONTROLDATA

