
.&J ~ CONT[\OL DATA
~ r::J CORfORf\TION

CDC® CYBER CROSS SYSTEM
VERSION 1
PASCAL COMPILER
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS1
NOS/BE1

96836100

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

(12/75)

B Manual revised to reflect NOS/BE 1.1 changes (comprised primarily of PASCAL enhancements) and

(4/76) manual name change from CCP Support Software to CYBER Cross System.

c Manual revised to incorporate CYBER Cross NOS R6.

(8/79)

D Revised at PSR level 528 to reflect a change in symbol table size and for various technical corrections.

(10/31/80)

Publication No.
96836100

REVISION LETTERS I. 0, Q AND X ARE NOT USED

Address comments concerning
this manual to:

©coPYRlGHT CONTROL DATA CORPORATION 1975, 1976, 1979, 1980

All Rights Reserved

Printed in the United States of America

il

CONTROL DATA CORPORATION
Publications and Graphics Division

i 15 MOFFETT PARK DRIVE
SUNNYVALE, CALIFQRNIA 94084

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover --
Tit le Page --
ii D
iii/iv D
v/vi D
vii B
vi ii B
1-1 thru 1-3 B
2-1 thru 2-13 B
2-14 D
2-15 thru 2-20 B
2-21 D
2-22 thru 2-27 B
3-1 thru 3-8 B
4-1 B
4-2 D
4-3 thru 4-5 B
5-1 thru 5-4 B
6-1 thru 6-3 B
7-1 thru 7-6 B
7-7 D
7-8 B
Glossary-1 8
A-1 thru A-4 B
B-1 B
B-2 B
C-1 thru C-4 B
0-1 B
E-1 D
F-1 thru F-3 B
G-1 0
H-1 B
H-2 B
Index-1 thru Index-3 B
Conment Sheet 0
Mailer -
Back Cover -

96836100 D iii/iv•

PREFACE

This manual describes the PASCAL programming language for the CONTROL DATA® CYBER 18 series
computer and the CDC 255x Host Communications Processors. PASCAL operates on the
CYBER 170/70/6000 computers and generates object code suitable for execution on a CYBER 18 series
computer or a CDC 255x processor. The PASCAL compiler is a component of the CYBER Cross System
operating under control of the NOS or NOS/BE operating system.

This manual is provided to serve both as an introduction and a reference to the PAS CAL programming
language. The descriptions are presented utilizing a syntactical notation coupled with a semantic
discussion of the various language elements. Appendix A provides a brief summary of syntax descriptions
for the PASCAL language elements that appear in this manual.

Detailed information can be found in the listed publications. The publications are listed alphabetically
within groupings that indicate relative importance to readers of this manual.

The NOS and NOS/BE manual abstracts are instant-sized manuals containing brief descriptions of the
contents and intended audience of all NOS and NOS product set manuals, and NOS/BE and NOS/BE product
set manuals, respectively. The Software Publications Release History can be useful in determining which
revision level of software documentation corresponds to the Programming Systems Report (PSR) level of
installed site software.

The following publications are of primary interest:

Publication

CYBER Cross System Build Utilities Version 1
Reference Manual

CYBER Cross System Version 1 Reference Manual

Mass Storage (MS) FORTRAN Version A/B
Reference Manual

Mass Storage Operating System (MSOS)
Reference Manual

NOS Version 1 Reference Manual, Volume 1 of 2

NOS/BE 1 Reference Manual

Publication Number

60411200

96836000

60362000

96769400

60435400

60493800

The following publications are of secondary interest:

96836100 D

Publication

NOS Version 1 Installation Handbook

NOS/BE Version 1 Installation Handbook

NOS Version 1 Manual Abstracts

NOS/BE Version 1 Manual Abstracts

Software Publications Release History

Publication Number

60435700

60494300

84000420

84000470

60481000

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features and parameters.

v/vi •

CONTENTS

PREFACE v

DEFINITIONS 4 STANDARD PROCEDURES

Syntax Notation 1-1 NEW 4-1
Constants 1-1 PACK 4-1
Identifiers 1-2 UNPACK 4-2
Reserved Keywords 1-3 APPEND 4-2

INSERT 4-2
2 PASCAL LANGUAGE DESCRIPTION ADDR 4-3

Procedures 2-1
RETADR 4-3
RETURN 4-3

Procedure Heading 2-2
I.OCK 4-3

Variable Parameters 2-3
UNLOCK 4-3

Value Parameters 2-3
Procedure Heading Examples 2-3

IINT 4-4

Declaration/Definition
EINT 4-4

(D /D) Segment 2-4 STREGS 4-4

Label Declarations 2-4 LDREGS 4-4

Constant Definitions 2-5 RESET 4-4

Type Definitions 2-6 INST 4-5

Variable Dec la rations 2-16
Value Initialization 2-18 5 FUNCTION PROCEDURES

Action Segment 2-20 Function Declaration 5-1
Variable Specifications 2-20 Function Call 5-2
Expressions 2-22 ABS 5-2

Forward Reference Declaration 2-27 SQR 5-2
Comments 2-27 ODD 5-3

ORD 5-3
3 PASCAL STATEMENTS AND CHR 5-3

STATEMENT LABELS succ 5-3

Assignment Statement 3-1 PRED 5-4

GOTO Statement 3-3
IF Statement 3-4 6 PASCAL PROGRAM

CASE Statement 3-4 Global Data 6-1
WHILE Statement 3-5 External Procedures/Functions 6-1
REPEAT-UNTIL Statement 3-5 Example PASCAL Program 6-2
FOR Statement 3-6
WITH Statement 3-7 7 MSOS FEATURES
Procedure Statement 3-8

Input/ Output 7-1
Empty Statement 3-8

PREAD - Formatted 7-1

96836100 B vii

PREAD - Binary 7-1 GLOSSARY Glossary-1
PWRITE - Formatted 7-2
PWRITE - Binary 7-2 APPENDIX A
REWIND 7-2

Syntactical Descriptions of
BACKSPACE 7-2

PASCAL Elements A-1
END FILE 7-2

Format Descriptors 7-3 APPENDIXB
I - Input (riw) 7-3
I - Output (riw) 7-3 PASCAL Compiler Options B-1
Z - Input (rZw) 7-3
Z - Output (rZw) 7-4 APPENDIX C
A - Input (rAw) 7-4

PASCAL Compilation Error Messages C-1
A - Output (rAw) 7-4
R - Input (rRw) 7-4

APPENDIX D
R - Output (rRw) 7-4
H - Output (nH) 7-5 PASCAL Correlation Table D-1
* - Output (*CCC•••*) 7-5
X - Input (nX) 7-5 APPENDIX E
x - Output (nX) 7-5

Compiler Limits E-1
Protected Area I/O Considerations 7-5
Monitor Requests 7-6

APPENDIX F
READ, FREAD, WRITE,

FWRITE 7-6 Format Program F-

SCHEDL 7-6
TIMER 7-7 APPENDIX G
LINK 7-7

PASCAL Cross-Reference Program G-
DISPAT 7-8
RE LESE 7-8

APPENDIX H
Run-Anywhere Programs 7-8

MSOS Considerations H-

INDEX Index-

TABLES

PASCAL Graphict1

viii 96836100B

INTRODUCTION 1

The SYMPL language is similar to the JOVIAL language,
which was derived from the ALGOL-58 language. Conse­
quently, it has many similarities with ALGOL and ALGOL­
like programming languages such as PL/I, although it has
features not found in these better known languages. SYMPL
also has similarities with the COMPASS assembly language
and the FORTRAN Extended compiler language. SYMPL
statements provide Boolean and algebraic capabilities; the
declarations provide the data structures of other languages.

Since SYMPL is a systems programming language, it does
not include input/output facilities. When a SYMPL subpro­
gram is called from a FORTRAN Extended main program,
however, the FORTRAN language PRINT statement capabil­
ities can be used within the subprogram for debugging
purposes.

Of more significance for input and output, however, is the
fact that the calling sequence conventions for FORTRAN
Extended and SYMPL are alike. Both COMPASS and
FORTRAN Extended routines interface easily with SYMPL.

CHARACTERISTICS OF SYMPL
The SYMPL language is characterized by:

Reserved words

Orientation toward manipulation of bits and 6-bit bytes
as well as words

Free-form program format, although good programming
practices and coding conventions advise use of a more
rigid structure

Nonexecutable declaratives that describe data structure
and use

Nonexecutable compiler-directing statements

Executable statements that describe procedures to be
carried out

Block structure in which the reserved words BEGIN and
END delimit compound statements and declarations

Loader capabilities for interprogram communication avail­
able through SYMPL include: the CO.'.\IMON declaration
that produces named or blank common blocks; the XREF
declaration that produces loader external references; and
the XDEF declaration that produces loader entry points.

SYMPL COMPARED WITH
FORTRAN

This user guide illustrates many SY:VIPL concepts by
comparing SYMPL with FORTRAN Extended. Figures 1-1
and 1-2 show two jobs that produce the same results through
FORTRAN Extended and SYMPL. Figure 1-1 shows a job
deck containing a FOR TRAN Extended program that gener­
ates and prints the first 10 Fibonacci numbers. (A Fibonacci
number is defined as the sum of the two immediately
preceding Fibonacci numbers.)

60499800 A

a. Job deck

job statement
FTN,R=O.
LGO.
7/8/9

PROGRAM FIBON(OUTPUT)
INTEGER L(lO)
DATA L(l),L(2) /l,l/
LIMIT=lO
PRINT 4,LIMIT

4 FORMAT (*lFIRST *,12,
* FIBONACCI NUMBERS*)

DO 1 N=3,LIMIT
L(N)=L (N-1) + L(N-2)

1 CONTINUE
DO 2 N=l,LIMIT
PRINT 3,L(N)

2 CONTINUE
3 FORMAT(lH ,110)

STOP
END

6/7/8/9

b. Output from program FIBON

FIRST 10 FIBONACCI NUMBERS
1
1
2
3
5
8

13
21
34
55

Figure 1-1. FORTRAN Extended
Fibonacci Numbers Example

Figure 1-2 illustrates the same task as figure 1-1. Since the
SYMPL subprogram uses FORTRAN 1output, a FORTRAN
main program is required to control the environment in
which the SYMPL subprogram executes. The XREF state­
ment is necessary to allow access to library procedures
which perform output. The SYMPL subprogram statements
are arranged in the order of the FORTRAN program
statements. Current Control Data coding standards require
the subprogram to be structured as shown in figure 1-3 and
to include comments.

Syntax differences between SYMPL and FOR TRAN include
the following SY:\1PL conventions:

All statements must be terminated by a semicolon.

BEGIN and END delimit a compound statement that can
contain other elementary or compound statements.

1-1

1-2

job statement
FTN,R=O.
SYMPL.
LOO.
7/8/9

PROGRAM MAIN(OUTPUT)
CALL FIBON
STOP
END

7/8/9
PROC FIBON;

BEGIN
XREF BEGIN PROC PRINT; PROC LIST;

PROC ENDL; END
DEF LIMIT #10#;
ITEM NI;
ARRAY [l:LIMIT]; ITEM L=[l,1];
PRINT("(*lFIRST *,I2,* FIBONACCI

LIST(LIMIT);
ENDL;

NUMBERS* ,//)");

FOR N=3 STEP 1 UNTIL LIMIT DO
L[N]=L[N-1] + L[N-2];

FOR N=l STEP 1 UNTIL LIMIT DO
BEGIN

END
TERM

6/7/8/9

PRINT("(lH ,110)");
LIST(L[N]);
ENDL;

END

Figure 1-2. SYMPL Fibonacci Numbers Example

Reserved words exist; in figure 1-2, the following
reserved words are used: PROC, BEGIN, XREF, END,
DEF, ITEM, ARRAY, FOR, STEP, UNTIL, DO, and
TERM.

A subprogram is called by the program name itself,
without a preceding CALL.

Spaces are significant and can be replaced by, or
accompanied by, one or more blanks or comments.

Comments are delimited by the mark # when the
ASCII character set is used or - when a CDC
character set is used.

Brackets delimit array subscripts.

PROC FIBON;
BEGIN
XREF

BEGIN
PROC PRINT;
PROC LIST;
PROC ENDL;
END

DEF LIMIT #10#;
ITEM NI;
ARRAY (l:LIMIT];

ITEM L = (1,1];

PRINT("(*lFIRST * ,12. * FIBONACCI NUMBERS*)");
LIST(LIMIT);
ENDL;

FOR N=3 STEP 1 UNTIL LIMIT DO
L[N]=L[N-1] + L[N-2];

FOR N=l STEP 1 UNTIL LIMIT DO
BEGIN
PRINT("(lH ,110)");
LIST(L[N]);
ENDL;
END

END
TERM

Figure 1-3. PROC FIBON in Recommended
Program Format

Language differences between SYMPL and FORTRAN
include the following SYMPL conventions:

All variables must be declared, even those used only for
loop control.

External subroutines are required for output.

FOR loops can have negative step increments.

IF statements have the form IF ••• THEN ••• ELSE.

Symbolic constants are allowed.

Array items are referenced by item name, not array
name.

60499800 A

LANGUAGE ELEMENTS 2

The SYMPL language consists of reserved words,
programmer-supplied words, and expressions. These, in turn,
are composed of characters from the SYMPL character set.
The remainder of this section discusses each of these basic
language elements.

SYMPLCHARACTERSET
The SYMPL character set is limited to 55 characters:

Letters A through Z and $ ($ is considered to be a
letter)

Digits O through 9

Marks + - * I = [] () < > " # • , : ; and blank

Other characters in the computer character set (appendix A)
can appear in a SYMPL program only within a character
constant or a comment.

Input and output of the SYMPL marks is complicated by the
different character sets available on keypunches, terminals,
and printers. Not all 026 keypunches have the same
characters written on the top of keys; not all characters
appear on key caps of either terminals or keypunches. A
character that is keypunched for a constant as ' might
appear on printed output as 11 or :f:. , depending on the type
of printer.

The two marks most frequently confused among the SYMPL
character set are those used to delimit comments and some
types of constants. For these functions, SYMPL requires the
display code values of 60 and 64, respectively. Appendix A
of most CYBER 170 .software manuals shows the CDC
standard character set that can be used to determine which
keys must be used to obtain the punch combination for the
required display code.

Display
Delimiter Code ASCII CDC

For . Value Graphic Graphic

Comment 60 # -

Character
Constant 64 II ¢or'

In this manual, an ASCII input device and an ASCII printer
are assumed.

The marks + - * and I have the same meaning in arithmetic
expressions as they do Jn other languages, with ** repre­
senting exponentiation and = = representing interchange.
The marks , and • have customary meanings. The mark =
represents replacement, as in FORTRAN Extended (not as in
PL/I).

The marks [] () and < > are explained below:

[] Balanced brackets delimit a subscript of an array.

< > Balanced angle brackets delimit arguments for the
based array P function and the bead functions B
and C.

60499800 A

() Balanced parentheses delimit arguments of a
function, procedure, or DEF statement. They also
group expressions and denote a call-by-value
argument. As in other languages, parentheses can
be used to improve readability of expressions or to
force a specific evaluation order within
expressions.

The two marks # and 11 must be used in pairs.

Paired pound signs delimit:

Comment

Character string of a DEF statement

II Paired quote marks delimit a character or status
constant.

The remaining marks are used as follows:

Semicolon terminates each declaration and
executable statement, and most compiler-directing
statements.

Colon is used to:

Separate bounds of array dimension

Terminate a label

Define a status constant

RESERVED WORDS
SYMPL is a reserved-word language. A complete list of the
50-plus reserved words appears in the SYMPL Reference
Manual. In this user guide, reserved words are introduced as
the appropriate language element is described. Reserved
words identify elements of the language. Examples are
PROC and PRGM which signify program headers, ITEM and
ARRAY which describe data items, and IF and ELSE which
form part of executable statement syntax.

Words appearing in capital letters in statement formats
presented in this manual are, for the most part, reserved
words. A few words or letters required in some circum­
stances are not reserved words. Specifically, the following
are not reserved, although good programming practice
restricts use of these words to situations in which meaning
cannot be confused:

Data descriptions: B, I, U, S, R, C.

Control words of the CONTROL compiler-directing
statement, such as EJECT, NOLIST, PRESET, PACK,
and IFEQ.

PROGRAMMER-SUPPLIED
IDENTIFIERS
Identifiers are programmer-supplied names that are anal­
ogous to COMPASS names and FORTRAN variable names.
Identifiers cannot be constructed through micro substitution
or concatenation, however, as they can in COMPASS.

2-1

Identifiers must have these characteristics:

First character must be a letter or$

Contain 1 through 12 letters, digits, or $

Must not duplicate a reserved word

Although SYMPL identifiers can have 12 characters, it is
good programming practice to limit identifier length to 10
characters. This restriction allows efficiencies in tables
constructed by the compiler.

Examples of valid identifiers are:

Xl

$IGN

SEMAPHORE

FIRSTBIT

Examples of invalid identifiers are shown in table 2-1.

TABLE 2-1. INVALID IDENTIFIERS

Identifier Why Invalid

LIM Reserved word

lAJ Does not begin with letter or$

LAB"I" Contains marks

H 00017 t+ are not SYMPL characters

FIRST CASE Contains invalid blank

TEST Reserved word

OPEN.RM Contains mark

~XPRESSIONS
Expressions are used within statements. SYMPL expressions
are similar to those of other languages in that they are
sequences of identifiers, constants, or function calls
separated by operators and parentheses. Two types of
expressions are:

Arithmetic expressions that yield numeric values.

Boolean expressions that yield Boolean values of TRUE
or FALSE.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used in replacement statements
such as the following in which identifier A receives the
value of the evaluated expression:

A=arithmetic expression;

2-2

An operand in an arithmetic expression can be any of the
following:

Constant.

Variable defined as data type I, U, S, R, or C. ·variables
can be scalars (full 60-bit word for each item) or fields
in an array (number of bits determined by array
declaration) or parts of a scalar or field indicated by a
bead function (a bead function extracts bits or char­
acters from an array item or scalar).

Function call.

Boolean data cannot be used in arithmetic expressions.

All manipulation of variables takes place in full words, with
SYMPL aligning a partial word field in a full word before
performing the expression evaluation. Alignment is as
shown in table 2-2. When data of different types is used in a
simple expression, the system performs conversions as
necessary. The SYMPL Reference Manual contains full
details of conversion.

TABLE 2-2. DATA ALIGNMENT

Data Type Alignment

c Left-justified and adjusted to one
word length. Data less than 10
characters is blank filled; data
longer than 10 characters is trun- .
cated to 10 characters.

I Right-justified with sign extension.

u,s Right-justified_.

R Real data always occupies a full
word and need not be realigned.

When character data is used in arithmetic expressions, only
a single word of characters is involved. Any character data
used as an integer is assumed to be an integer; the leftmost
bit is the sign bit, and other bits are the integer value. No
realignment takes place when character data becomes
integer data, unless there is less than 10 characters; I
character data less than 10 characters is shifted right to
normal integer position and zero filled. When an integer is
converted to character data, however, the rightmost 6 bits
of the integer are assumed to be a single character; and they
are left-justified and blank filled. Any other bits in the
integer are ignored. With this exception, conversions are .
standard for mixed data types.

The operators in an arithmetic expression can be arithmetic
or logical. For the most part, character data is used only
with logical operators.

Arithmetic Operators

The arithmetic operators are:

Unary operators +
ABS(exp)

and the intrinsic function

Binary operators + - * I and **

60499800 B

A series of operators are evaluated according to FORTRAN
precedence rules in which evaluation proceeds in the
following order; parentheses can force a different order:

** (exponentiation)

* or I (multiplication or division)

+ or - (addition or subtraction)

When an integer is divided by another integer, the quotient
is truncated without rounding. For example, the following
statements produce WORD=2 and BIT=48:

ITEM BIT, WORD, I;
1=18;
WORD=l/10+1;
BIT=6 * (1-1/10 * 10);

Exponentiation is always performed in-line for all powers of
two. Other small integer powers might be performed in­
line, depending on compiler optimization. Integer multipli­
cation and division by a power of two are performed in-line
and are accurate to 60 bits signed.

Masking Operators

The masking: operators of arithmetic expressions perform
bit-by-bit operations that yield numeric values. The
operators, in order of precedence, are:

LNO Complement (set 0 to l, or set 1 to 0)

LAN

LOR

LXR

LIM

LQV

Logical product (set to 1 if both bits 1)

Inclusive OR (set to 1 if either or both bits
is 1)

Exclusive OR (set to 1 if bits are unlike)

Imply (set to 1 if first operand is 0, or if first
and second operands are both 1)

Equivalence (set to 1 if both bits alike)

These operands work with the full word containing a scalar.
More powerful masking operations result when the items are
part-word array items or bead functions as described in
section 5.

An example of logical product use of a 12-bit mask of zeros
that sets the twelve low order bits to zero in ABCDEFGHIJ
is:

ITEM N C(lO)="ABCDEFGHIJ";
ITEM MASK2=-0"7777";
N=N LAN MASK2;

The following example shows exclusive OR use that sets X=O
only if A=B:

ITEM A,B,X;
X=A LXR B;

Character data used with masking operators always involves
60 bits. Shorter strings are left-justified and blank-filled;
longer strings are truncated to ten characters.

60499800 A

BOOLEAN EXPRESSIONS

Boolean expressions are rules for determining logical values.
Such expressions always yield Boolean results; that is, the
result is always TRUE or FALSE. Boolean expressions are
used primarily in statements that test a condition, such as:

IF Boolean-expression THEN •••

FOR I=O STEP 1 WHILE Boolean-expression DO •••

A Boolean expression also can be used as the right-hand side
of a replacement statement if the type of the left-hand side
identifier is Boolean, as in:

ITEM ERRORS B, CHARCOUNT;
ERRORS=CHARCOUNT GR 7;

Another use of Boolean expressions is to manipulate absolute
values. In the following example, SIGNE is TRUE if NUMB
is less than O. After the absolute value is obtained, if SIGNE
is TRUE, NUMB is reset to negative:

ITEM NUMB, SIGNE B;
SIGNE=NUMB LS O;
NUMB=ABS (NUMB);

IF SIGNE THEN NUMB= -NUMB;

Two types of operators that can be used in Boolean
expressions classify the expressions:

Logical operators AND, OR, and NOT classify the
expression as a logical Boolean expression.

Relational operators EQ, GR, LS, GQ, LQ, and NQ
classify the expression as a relational Boolean
expression.

In the following example of a relational Boolean expression,
OK is TRUE if A is greater than Q:

ITEM A, Q, OK B;
OK=A GR Q;

In the following example, relational Boolean expressions and
logical Boolean expressions are combined. OK is TRUE if A
is greater than Q and A is not 0:

ITEM A, Q, OK B;
OK=(A GR Q) AND NOT (A EQ O);

Logical Operators

The logical operators for Boolean expressions are identical
to the FORTRAN logical operators,. although they are
written without the decimal point delimiters. They are
implemented in SYMPL by tests such as the ZR instruction
of COMPASS.

In contrast to the masking operators of arithmetic
expressions, the logical operators of Boolean expressions
work with one Boolean value (TRUE or FALSE) versus
another, as in:

IDENTl OR IDENT2

2-3

The Boolean logical operators, in order of-. highest to lowest
precedence, are:

NOT

AND

OR

Logical negation (TRUE if neither TRUE)

Logical conjunction (TRUE if both TRUE)

Logical disjunction (TRUE if either TRUE)

During execution, evaluation of a Boolean expression
proceeds only as long as needed to determine the result;
evaluation terminates when partial evaluation satisfies the
expression. For example:

B =(I EQ 1/6*6) OR (NAME EQ "ABC");

If I is a multiple of 6, B is TRUE without further
evaluation.

Relational Operators

The relational operators specify a comparison between two
arithmetic expressions or character operands. The rela­
tional operators for Boolean expressions are equivalent to
FORTRAN relational operators, although the mnemonics of
the operators differ. These operators are used only with
arithmetic expressions, as in:

IDENT3 NQ 17

The relational operators are:

EQ Equals

GR Greater than

LS Less than

GQ Greater than or equal to

LQ Less than or equal to

NQ Not equal

During execution, character values in the arithmetic
expression of a relational Boolean expression are compared
in-line if neither value crosses a word boundary. If either
crosses a word boundary, a call to a SYMPL library routine
is compiled with attendant increase in instruction execution
time.

Character strings of unequal length can be compared;
SYMPL expands the shorter with blank padding to the length
of the longer before comparing. For example, at the end of
the sequence shown in figure 2-1, AB, BC, and AC have the
value TRUE.

ITEM A C(2)="XX",
B C(4)="XX ",
C C(6)="XX "·

ITEM AB B, BC B, AC B;
AB=A EQ B;
AC=A EQ C;
BC=B EQ C;

Figure 2-1. Unequal Length
Character String Example

STATEMENTS
Statements in a SYMPL program can be classified by syntax
or use.

2-4

Statement use is described by the terms declaration and
executable statement.

A declaration defines data or subprograms and also
directs the compiler.

An executable statement specifies the operations to be
carried out.

Statement syntax is described by the terms elementary and
compound.

An elementary statement consists of a single language
statement terminated by a semicolon.

A compound statement begins with the reserved word
BEGIN; it contains zero, one, or more elementary or
compound statements, and it ends with the reserved
word END. One compound statement is considered to
be a single statement.

Classification of a statement as compound does not affect
its use; that is, a compound statement can be part or all of
either a declaration or an executable statement.

Elementary statements begin with a reserved word or a
programmer-supplied identifier. Examples of elementary
statements are shown below. Reserved words in these
examples are: PROC, GOTO, CONTROL, ITEM, IF, LS,
THEN, DO, and LAN.

PROC FIRSTONE (A, B, C);

GOTO LABELABC;

CONTROL NOLIST;

ITEM SIZEREC I=350;

IF A LS B THEN C=D;

DO XX [1]=9-I;

P=R LANT;

MYPROCALL;

Compound statements form a single unit. They can be used
in most places where an el~mentary statement can be used.
One of the most common occurrences of a compound
statement is in the declaration of a procedure. (Procedures
are similar to FORTRAN subroutines.) The syntax of a
procedure states that a procedure is declared by a procedure
header followed by optional declarations followed by a single
statement. Since the single statement can be a compound
statement, a procedure has virtually unlimited length. For
example:

PROC LONGONE;
BEGIN

ITEM I, J;
XREF ARRAY K;

END

Procedure header

Single compound
statement

60499800 A

The compound statement structure can be part of a
declaration, as in:

XDEF
BEGIN

END

ITEM A;
ITEM B;
ITEM C;

The same three items could be declared as externals with
three elementary declarations, as in:

XDEF ITEM A;
XDEF ITEM B;
XDEF ITEM C;

In many instances a compound statement must be written to
perform several operations as a single logical unit. The
syntax of a FOR statement, for example, states that a single
statement must follow the reserved word DO. To perform
three arithmetic replacement operations with a single FOR
statement, the single statement following DO must be
compound, as in:

FOR I=4 STEP 1 UNTIL 10 DO
BEGIN l
A=B·
C=D: Single compound
E=F;' (statement
END J l Single elementary

FOR statement

Another instance of compound statements deals with arrays.
Array declaration syntax states that the one ITEM declara­
tion immediately following the ARRAY declaration is a
named item in that array. When more than one named item

. occurs within the array, the ITEM declaration can be a
compound statement, as in:

ARRAY A [0:2];
BEGIN
ITEM AA;
ITEM AB;
ITEM AC;
END

The same ARRAY declaration can be written using the
abbreviated format for an ITEM declaration, as in:

ARRAY A[0:2];
ITEM AA, AB, AC;

Notice that individual declarations or executable statements
within a compound statement are terminated by a semi­
colon, including those immediately preceding END. State­
ments within a compound statement are written the same
way as though they were outside the compound statement
context. The words BEGIN and END are reserved words and
are not terminated by semicolons.

DECLARATIONS

Declarations are required in a SYMPL program to define the
type and use of data and to define other entities used in the
program. Each declaration begins with a reserved word.
Table 2-3 shows reserved words which begin declarations.

60499800 A

TABLE 2-3. RESERVED WORDS THAT
BEGIN DECLARATIONS

Word Use

ITEM Defines an item, its characteristics and,
optionally, its value.

ARRAY Defines an array, its structure, and
optionally, its values for direct refer-
ence.

BASED For indirect reference, defines an array,
ARRAY its structure, and optionally the value

of each item in the array.

LABEL States that a label name is used locally
as a label in the case of a duplicate
name outside the subprogram when the
label name has not yet been declared.

STATUS Defines names to be associated with
compiler-assigned integer values.

SWITCH Defines a list of label names to be asso-
ciated with compiler-assigned integer
values.

COMMON Defines a storage block for reference by
external subprograms.

PROC Begins a procedure subprogram to be
executed when the procedure is called.

FUNC Begins a function subprogram that
results in associating a single value with
the function name when the function is
called during execution •

ENTRY Defines an alternate entry point for a
subprogram.

XDEF States that a subprogram, data or
switch is to be accessible external to
this module.

XREF Identifies declarations defined in an ex-
ternally compiled subprogram.

DEF Defines character strings or variables to
be substituted during compilation.

CONTROL Declares actions the compiler is to take
at the time the statement is executed.

Declarations and executable statements can he intermixed
in a program. However, a specific requirement concerns the
placement of some declarations. For example, an item must
be declared before it is referenced, and a function must be
declared before it is called. A procedure, on the other hand,
can be called before it is declared. These differences and
requirements of each declaration are explained where each
declaration is discussed in depth.

The following examples show the use of various declarations:

Definition of an item with a preset value:

ITEM PI R=3.14159;

2-5

Definition of an array and its structure:

BASED ARRAY A [0:4,3:5] P(2);
BEGIN
ITEM AA C(0,0, 7)=["POS=",,,,"MAX="];
ITEM BB I(0,42,18)=[5(4)];

END

Assignment of special properties:

STATUS MONTH JAN, FEB, MAR, APR;

Definition of a storage block that can be refer­
enced externally:

COMMON INFO;

Specification of a subprogram:

FUNC ROUND(INNUM);
ITEM INNUM;
ROUND=(INNUM +9)/10;

Identification of local labels:

LABEL CASE3,CASE4;

Character string substitution during compilation:

DEF OFF #0#;

Conditional assembly:

CONTROL IFEQ OPSYS,"NOS";

'EXECUTABLE STATEMENTS

Executable statements specify the operations to be carried
out within the program using the elements defined in
declarations. These statements execute in the order they
appear in the program, allowing for transfer of control as a
result of an executing statement. A complete list of
executable statements is shown in table 2'-4.

STATEMENT LABELS

A label is an identifier used to name a statement. Any
executable statement in a SYMPL program can be labeled.
Labels on declarations refer to the following executable
code.

Labels are referenced by GOTO statements, which transfer
control to the named label. SYMPL has neither an assigned
GO TO statement nor a CASE statement such as are
available in other languages. A feature similar to the
computed GO TO statement of FORTRAN is provided in
SYMPL by switches.

The format of a label is:

name:

name

2-6

Identifier of 1 through 12 letters, digits, or $
that does not duplicate a reserved word or
another identifier in the subprogram. The
colon must immediately follow the last char­
acter.

TABLE 2-4. EXECUTABLE STATEMENTS

Statement Use

Assignment statements Replace item to left of =
such as A=B+C; with value obtained by

evaluating the expression
to the right of =.

Exchange statements Interchange the values of
such as D==E; D and E.

Procedure call state- Calise execution of proce-
ments such as dure named.
MYPROCCALL;

GOTO statement Transfers control to the
labeled statement specified.

FOR ••• STEP ••• DO ••• Cause repetitive execution
WHILE/UNTIL .•• during specified conditions.
statement and its
associated TEST
statement

IF ••• THEN •.• ELSE ••• Conditional execution de-
statement pending on circumstances

specified.

RETURN statement Ends a function subprogram
or procedure subprogram.

STOP statement Terminates program.

The example in figure 2-2 illustrates the use of a label
named FINAL.

PROC TESTADD;
BEGIN

END

ITEM A, B, C, D;
IF A GR B
THEN

GOTO FINAL;
ELSE

C=B-A;
FINAL: D=C;

Figure 2-2. Label Example

A LABEL declaration can· be used to declare a label. In
some instances, it is required. When the compiler encoun­
ters a statement that references a label, it links the
reference to the last declared label name whether or not
that label was in the same procedure. If the label name has
not yet been used within the procedure and a duplicate label
name exists outside the procedure, a LABEL declaration is
required to transfer control to the correct labeled statement
within the procedure.

A LABEL declaration has the following format:

LABEL name.name, .•• ;

name Label that is to be declared subsequently.

60499800 A

In the example in figure 2-2, if FINAL were a label name
outside this procedure it would be necessary to include a
LABEL declaration within PROC TESTADD:

PROC TESTADD;
BEGIN
LABEL FIN AL;

Since any program statement can be labeled, a label
statement can be labeled. This practice is recommended for
program clarity when labels have different purposes. In the
example in figure 2-3, the label LL is an exit from previous
code, and label MM is the beginning·of a loop.

LL:
MM:

IF A GR B

OUT:

THEN
BEGIN
A=A-B;
COUNT=COUNT+l;
GOTO MM;
END

ELSE
GOTO OUT;

Figure 2-3. Label Statement LAhel ExRmple

A labeled statement can be simply a labeled END. Although
the following statement is valid for labeling an END for
usage similar to the CONTINUE statement of FORTRAN, it
is not particularly useful since SYMPL offers the TEST and
RETURN statements which bypass the need for such labels:

FIN:END

Comments are valid after a label, as in:

NEXTONE: #CONTROL REACHES HERE TO GET
THE NEXT CHARACTER#

STATEMENT FORMAT

SYMPL statements can be written anywhere within col­
umns 1 through 72 on any number of cards or card images.
Unlike FORTRAN and COMPASS, SYMPL attaches no
significance to any particular column of a card. The
compiler treats the source program simply as a stream of
characters obtained from columns 1 thr·ough 72. Card
boundaries are ignored.

60499800 A

Because SYMPL statements are format free, both of the
examples in figure 2-4 are acceptable to the compiler. The
first sequence not only allows the program logic to be
followed more easily, it also allows easier modifications
through utilities such as UPDATE or MODIFY. The
conventions of the SYMPL coding form are recommended, in
which labels appear in column 1 and declarations and
executable statements begin in column 7, with only one
statement appearing on a single card.

IF I LS MAX
THEN

BEGIN
A[I]=A[I] + 1 ;
I=I+l;
END

ELSE
GOTO FIN;

NEXT:
ENTER(SYMBOL,TABLE [I]);

IF I LS MAX THEN BEGIN A[I]=A[I]+l;I=I+l;
END F.LSR GOTO FIN;NEXT:ENTER

(SYMBOL, TABLE
[I]);

Figure 2-4. Statement Format Example

COMMENTS AND SPACES
A comment is written as a string of characters delimited by
a pound sign,#. Comment character strings can contain any
of the computer set characters except:

Pound sign

Semicolon

A null comment that consists only of two adjacent pound
signs is legal also. Anyplace a space is legal, a comment is
legal, with the exception of a DEF declaration or reference.
In other than DEF:

A comment can substitute for a space.

A comment can be concatenated to any legal space.

The SYMPL metalanguage described in the SYMPL Refer­
ence Manual distinguishes between instances where a space
or comment is required and instances where a space or
comment can, but need not, appear. In general, a space or
comment is required to separate reserved words and
identifiers.

Instances in which spaces or comments are prohibited are:

Within reserved words: (GOTO not GO TO)

Within status constants: (S"RED" not S "RED "

Before the colon in a label: (SUBR: not SUBR :)

Between P, B, or C and the left angle bracket of a P
function or bead function: (C<2,6>ALPHA not
C <2,6>ALPHA)

2-7

Spaces or comments are allowed before and after the
following marks:

2-8

Semicolon that terminates statements

Comma that separates elements of a list

Arithmetic operators or unary operators

Colon in array dimensions

Brackets in array declarations

Parentheses enclosing formal parameters in a subpro­
gram declaration

All the following statements are valid:

GOTO LAB;

GOTO LAB ;

GOTO##LAB;

GOTO LAB#ORDE#;

GOTO LAB # EXIT WHEN A=B # ;

60499800 A

PROGRAM STRUCTURE 3

A SYMPL program is a series of declarations and executable
statements. It can be structured as a main program or as a
subprogram. Since SYMPL is a systems programming
language, most source code is written in the form of a
subprogram rather than a main program. The two types of
subprograms are procedures and functions; they differ in
that:

A function returns a value through the function name.
It is called when its name is used in an expression.

A procedure can, but need not, return values through
any of its parameters. It is called when its name or one
of its alternative entry points is referenced.

A program module is a separately compiled main program or
subprogram. Compilation of a module is terminated
whenever the compiler encounters a TERM statement.

If a subprogram is compiled in the same program module as
the program or subprogram it is called by, it requires no
special treatment. If a subprogram is compiled as a
separate module, however, it is known as an external
subprogram and any other module referencing it must
acknowledge the external subprogram status.

Separately compiled programs and subprograms can com­
municate by any of the following ways, as described at the
end of this section:

Declaring data in labeled or blank common

Declaring entities as external

Passing arguments in a procedure or function call

Passing parameters to a procedure using common instead of
using formal parameters in the procedure call might improve
execution speed. Differences in object program size vary
depending on whether the program sets the common vari­
ables before each call, or with formal parameters, how many
transfer vectors are recognized as duplicates.

General information about procedures and functions is
contained in this section, along with information about
alternative entries to these subprograms. Section 7 contains
the details of parameters in subprogram declarations.

MAIN PROGRAMS
A main SYMPL program consists of a main program header,
a single (usually compound) statement, and the ending
reserved word TERM, as shown in figure 3-1. Notice that in
SYMPL neither BEGIN nor END is followed by a semicolon.

Source statements between PRGM and TERM are compiled
as a single relocatable binary module with a transfer address
to the first executable statement.

A main program can include any number of embedded
subprograms, and those subprograms also can include em­
bedded subprograms. If TERM appears at the end of a
subprogram, it stops compilation of the module in process
and source statements following TERM are compiled as a
separate module.

60499800 A

PRGM name;

BEGIN

declarations and statements

END

TERM

Figure 3-1. Main Program Structure

The main program header establishes the program name:

PRGM name;

name Any identifier (1 through 12 letters, $, or
digits not beginning with a digit) that is not a
reserved word. For loader purposes, the name
is truncated to seven characters.

PROCEDURES

A procedure is a subprogram that is called when its name is
referenced. The procedure can, but need not, have an
associated parameter list; also it can h.ave alternative entry
points. SYMPL procedures are similar to FORTRAN
subroutines. They behave as PL/I or ALGOL procedures.
They can be embedded within other procedures; nesting of
embedded procedures is possible to any level.

SYMPL does not support recursive procedures; a procedure
should neither call itself nor be called by any procedure it
has called. Responsibility for avoiding recursion rests with
the programmer. The SYMPL compiler, which does not have
the stack mechanisms found in ALGOL and PL/I, does not
check for recursion.

Procedures and functions can be nested, as shown in
figure 3-2. In this figure the nested subprogram GEN has
access to all data declared in the outer procedure MYSUB.

PROCEDURE DECLARATION

A declaration establishes a procedure. It can appear
anywhere in a module, even after the procedure has been
referenced. It is good programming practice, however, to
group all procedure declarations together at the beginning of
the program preceding any executable statements.

3-1

PROC MYSUB;
BEGIN
ARRAY T [100]; ITEM TT;

PROC GEN;
BEGIN

TT [I] = O;
END# GEN#

}
FUNC MAX(A,B) R; }
BEGIN

END# MAX#

GEN; } call to procedure GEN

.

GEN declared
within MYSUB

MAX declared
within MYSUB

X=MAX(Y, Z) + MAX(V, W); } use of function MAX

GEN;

END# MYSUB #

Figure 3-2. Nested Subprograms

A procedure declaration can appear in either of the
following formats:

procedure header
declarations for procedure
elementary or compound executable statement

or

procedure header
compound statement including declarations and execut­
able statements

The usual form of a procedure includes all declarations and
statements witnin the procedure header and the END which
corresponds to the first BEGIN of the procedure. The name
of the procedure is not required, but it can be included as a
comment on the END statement. For example:

END#FINDIT#

The format of a procedure header is:

PROC name(param,param, .••);

name Any valid identifier that does not duplicate a
reserved word.

param Optional formal parameter used within the
procedure for which an actual parameter is to
be substituted at execution time.

A more thorough discussion of procedure declarations and
parameters can be found in section 7.

3-2

A procedure declaration for a procedure SETIT is:

PROC SETIT (optional formal parameter list);
BEGIN

END# SETIT #

The two declarations shown in figure 3-3 are legal and
equivalent.

PROC P(A, B);
ITEM A,B;
BEGIN
ITEM l,J;

END

PROC P(A, B);
BEGIN
ITEM A, B, I, J;
END

Figure 3-3. Procedure Declarations

Figure 3-4 shows a nested procedure REINITIALIZE within
procedure MYSUB. Procedure REINITIALIZE can use any
data of MYSUB without the need to pass that data formally.
Notice that only the procedure name is used in the call; the
four characters CALL do not precede the procedure name.
For readability, however, many programmers use a DEF
declaration (DEF CALL##) to allow CALL in source
listings.

PROC MYSUB;
BEGIN
ARRAY [100]; ITEM A;

PROC REINITIALIZE;
BEGIN
ITEM I;
FOR I=O STEP 1 UNTIL SIZE DO } procedure

A[I]=O; 1 declaration
FOR l=O STEP 1 UNTIL LENGTH DO

NAME[I]=" II ;

END # REINITIALIZE # J

REINITIALIZE; } call to procedure

REINITIALIZE;} call to procedure

END# MYSUB #
TERM

Figure 3-4. Procedure Declaration and Call Example

60499800 A

Notice that procedure REINITIALIZE executes when it is
called, not when its declaration is encountered. When
MYSUB in figure 3-4 executes, the statements of procedure
REINITIALIZE are bypassed as though the program were
written as shown in figure 3-5.

GOTO BYPASS;
PROC REINITIALIZE;

END # REINITIALIZE #
BYPASS:

Figure 3-5. Program Execution Flow

Procedures should be called only by the procedure name or
alternative entry point name.

PROCEDURE EXIT

When control passes to a procedure, execution begins at the
first executable statement associated with the entry point
by which the procedure was called. Execution continues
within the procedure until one of the following statements
occurs:

END statement of the single procedure is reached and
control returns to the statement following the pro­
cedure call.

RETURN statement within procedure is executed to
return control to the calling subprogram.

STOP statement within procedure is executed to return
control to the operating system.

GOTO statement is executed to transfer control to a
label outside the procedure.

Exit from the middle of a procedure through a RETURN
statement is illustrated in figure 3-6. Execution of pro­
cedure P occurs at its first call, after I has been assigned a
value 0. After the first call, J has the value 0 since the
RETURN statement executes. After the second call, which
is entered with I=l, J has the value 1. A jump out of a
procedure is valid, although good programming practices
avoid such a jump.

In the example in figure 3-7, procedure JUMP has formal
parameters N, Ll, and 12. (The parentheses of N indicate
call-by-value.) Since declarations for 11 and 12 do not
appear within JUMP, the compiler considers them to be
labels. The SWITCH declaration results in the compiler
associating the identifiers of list MYSW with integer values
0 through 3, respectively. The IF statement sets N to one of
these values; the GOTO statement jumps to the label
associated with the value of N. The call to JUMP specifies
the value of N and the particular label to be associated with
switch values 0 and 3.

Section 7 describes parameters for procedure calls.

60499800 A

ITEM I, J;

I=O;
J=O;
P;
P;

PROC P;
BEGIN
I=I + 1;
IF I EQ 1 THEN RETURN;
J=l;
END# PROC P #

Figure 3-6. Procedure Exit by RETURN Statement

PROC JUMP{ (N), 11, 12) ;
BEGIN

SWITCH MYSW 11, LABl, 1AB2, 12;
IF N LQ 0 THEN N=O;
ELSE

IF N GR 3 THEN N=3;
GOTO MYSW[N] ;

END # PROC JUMP #

ERRMIN: ••.
LABl: •••
LAB2: .••
ERR MAX:

JUMP(I, ERRMIN, ERR MAX); .•.

Figure 3-7. Procedure Exit by a Jump

FUNCTIONS
A function is a subprogram used within an expression. It
returns a value through its function name. This value is then
used in evaluation of the expression.

The two types of functions are:

Intrinsic functions that can be referenced at any time
within a program without any FUNC declaration.

Programmer-supplied functions that must be declared
within a program before they can be referenced.

INTRINSIC FUNCTIONS

The five intrinsic functions are:

ABS Absolute function that obtains the absolute
value of its argument.

B Bit function that refers to bits in the specified
item.

3-3

C Character function that refers to 6-bit char­
acters in the specified item.

LOC Location function that obtains the address of
its argument during execution.

P Pointer function that refers to the pointer to a
based array.

The B, C, LOC, and P functions are described in section 5.

PROGRAMMER-SUPPLIED FUNCTIONS

Functions are similar to procedures in that they can be
embedded within other subprograms, and they can be
declared and referenced in suitably written separate mod­
ules. Parameter lists can be passed to functions. Alter­
native entry to a function can be declared within a function
body, as described below. Recursive functions are not valid.

Functions differ from procedures in two respects:

A function must b~ declared before it is referenced.

A function declaration must contain an assignment
statement that assigns a value to the function name.

Function Declaration

A function declaration must appear before the function is
referenced in a module. It begins with a header followed by
an optional series of declarations and a function body. The
function body is a single elementary or a compound
statement which can include the declarations as well as
other elementary or compound statements. A statement
assigning a value to the function name must be included in
the function body.

The format of the function header is:

FUNC name (param,param, ...) type;

name Any valid identifier that does not duplicate a
reserved word.

param Optional formal parameter used within the
function body for which an actual parameter is
to be substituted at execution time.

type Type of result as described in section 4.

B Boolean
I Integer
U Unsigned integer
S:stlist Status
R Real
C(lgth) Character
If type is omitted, I is assumed.

Within the function body, the function name can be used
only as the left-hand side of a replacement statement. In
the example of a function declaration in figure 3-8, notice
that the statement MAX=M sets the return value, thus
fulfilling the requirement that a value be assigned to the
function name. A real function MAX searches for the
maximum value in array T[O:N]. Within the body, a
statement such as IF TAB[I] GR MAX THEN... or
MAX=MAX + 1 is invalid since SYMPL does not allow
recursion.

3-4

FUNC MAX (T, (N)) R;
BEGIN

ARRAY T; ITEM TAB R;
ITEM NI, MI;
M=TAB[O];
FOR I=l STEP 1 UNTIL N DO

IF TAB[I] GR M
THEN M=TAB[I];

MAX=M;
END # FUNCTION MAX #

Figure 3-8. Function Declaration Example

A RETURN statement can appear in the function body to
return control to the calling program, as long as the function
name is assigned a value before RETURN executes.
RETURN is not required to end a function.

Formal parameters within the function body are subject to
the same scope of declaration rules as procedures.

Function Call

A function is called when its name appears in an expression.
Each of the following statements is valid, assuming a prior
declaration of function MAX having two formal parameters
as shown in figure 3-8:

I=I + MAX (VECT, 17) ;

T[MAX (VECT, 17)]=K;

P(MAX (VECT, 17), X) ;

Actual parameters in the call must correspond to formal
parameters in the function declaration. Parameters can be
passed by value or address, as described in section 7 for
procedure parameters.

Function calls compile as return jump instructions, with the
result normally in register X6. When the result is data
type C with a string of more than 10 characters, however,
register X6 contains the address of the first word of a
temporary storage area containing the string.

Real and integer functions are compatible with FORTRAN
Extended 4; character value functions are compatible also,
if the function is declared to be 10 characters or less. The
function value is returned left-justified in a word, and the
unused bits are not guaranteed to contain any specific value
such as zeros or blanks.

ALTERNATIVE SUBPROGRAM
ENTRY
Alternative entry points can be defined for both procedures
and functions. The format of the declarations are, respec­
tively:

ENTRY PROC name(optional formal parameter list);

ENTRY FUNC name(optional formal parameter
list) type;

Entry names can be passed as parameters and declared as
externals.

60499800 A

An example of alternative entry is shown in figure 3-9.
Procedure INIT is declared with alternative entry
INCREASE. When the procedure is called with INIT, array
item TAB[I] is set to 0, but when called with INCREASE,
array item TAB[I] is increased by 1.

As shown with procedure INIT in figure 3-9, the parameter
list in an ENTRY declaration need not match the list in the
subprogram declaration. If the same parameter name does
appear in two entry points, it must be the same type of
variable in each. A given parameter cannot be passed by
value in one list and passed by address in another list. (See
section 7 for parameter details.) PROC Pl(A, (B)) and
ENTRY PROC P2(A, B) are illegal, since B is not referenced
identically in all entries to the procedure.

ARRAY TAB[O:lOO]; ITEM T;
INIT(TAB, 100);
INCREASE(TAB); ...
INCREASE(TAB); ..•
INIT(TAB, 100);

PROC INIT (A, (N)) ;
BEGIN

ARRAY A; ITEM AA;
ITEM N, M, I, X;
X=-1;
ENTRY PROC INCREASE (A) ;
X=X + 1;
FOR I=O STEP 1 UNTIL N DO

AA[I]=X;
END# INIT AND INCREASE#

Figure 3-9. Alternate Entry Example

COMMON BLOCK DECLARATIONS

Blank common and 509 labeled common blocks can be used
to pass data to separately compiled programs and subpro­
grams. The declaration for data in a given block must be
the same in all program modules. The ITEM names can
differ but the specifications must be the same.

To declare common storage, the format is:

COMMON name; data-declaration

name Label for common block. Can be
expressed as any legal identifier, but
only the first seven characters
become the block name.

If omitted, storage is allocated in
blank common.

data-declaration Scalar or array declaration. Can be
expressed as a compound statement.
If an array declaration is BASED
ARRAY, only the pointer to the array
is in common.

60499800 A

Data is never initialized in blank common. Data is
initialized in labeled common only when one of the following
conditions exists:

The program or subprogram is compiled with the P
parameter on the SYMPL compiler call.

A CONTROL PRESET compiler-directing statement
appears at the beginning of the program module.

Labeled common blocks are listed as part of the compiler
output when either the X or R parameter is selected on the
compiler call. The cross-reference map also lists labeled
common names.

Good programming practices require use of meaningful
names to improve readability when common is used.
UPDATE common decks are particularly suitable for
handling common. For example, assume the description of
common block PARAMS is in an UPDATE common deck, as
shown in figure 3-10. Decks that include P and Q should call
the deck with PAR AMS. The call to Q below has no actual
parameters. Without the use of common, the declaration of
Q would be Q(Il, 12, R3) and the call would take a form
similar to Q(A[l],10,17 .4). The use of XREF PROC Q within
P is required because P and Q are separately compiled.

PROC P;
BEGIN
XREF PROC Q;
COMMON PARAMS BEGIN

ITEM 11, I2;
ITEM R3 R;
END

Il=A[l];
12=10;
R3=17.4;
Q;

END# PROC P #
TERM

PROC Q;
BEGIN
COMMON PARAMS BEGIN

ITEM 11, 12;
ITEM R3 R;
END

FOR I=O STEP 11 UNTIL 12 DO •.•
END# PROC Q #
TERM

Figure 3-10. COMMON Declaration Example

EXTERNAL DECLARATIONS
AND REFERENCES
Any of the following SYMPL entities can be declared and
referenced in separately compiled subprograms:

Scalar

Array

3-5

Based array

Label

Switch

Function

Procedure

The two SYMPL reserved words used for externals are:

XDEF Used in the declaring program to define the
entity. This declaration generates an entry
point that can be used by the loader.

XREF Used in the referencing program. This decla­
ration generates an external reference to the
entity. Use of XREF implies that the entity
has been defined in another program.

XDEF and XREF are analogous to the COMPASS pseudo­
instructions ENTRY and EXT, respectively. They are not
analogous to FORTRAN Extended EXTERNAL statements.

DEFINING EXTERNALS

Storage is allocated for all entities declared with XDEF, just
as if they did not have the XDEF designation. The
declaration for an external definition of a scalar array,
based array, or switch is simply the normal declaration
preceded by the reserved word XDEF, as shown by the two
examples in figure 3-11.

XDEF ITEM NAME C(7), MSGNUM I;

XDEF BEGIN
ITEM NAME C(7), MSGNUM I;
ARRAY [SIZE]; ITEM AA;
SWITCH AUTOMAT DIGIT, LETTER, POINT,

TEN, MARKS;
END

Figure 3-11. XD EF Declaration Example

When a function, procedure, or label is declared to be
external, however, the XDEF indicator is separate from the
normal declaration. These three entities must be identified
in two declarations:

The declaration appears in its normal format.

The XDEF indicator formats are:

XDEF PROC procname;

XDEF FUNC funcname;

XDEF LABEL labelname;

When more than one name is declared they must be
contained in a compound statement. For example:

3-6

XDEF
BEGIN

PROC PRGMA;
PROC PRGMB;

END

The external declaration can appear anywhere within the
scope of the corresponding name. XDEF is implicit in the
outermost subprogram of a module and all its alternate
entry points. Outermost entities should not be specifically
declared external.

REFERENCING EXTERNALS

When a program references an entity that is defined and
allocated storage in a separately compiled program, the
referencing program must contain a declaration that states
allocation exists elsewhere. No storage is allocated for an
entity declared by XREF. The form of the declaration is
affected by the kind of entity, but all such declarations
begin with the reserved word XREF.

The declaration for a scalar, array, or label is simply the full
declaration preceded by the word XREF, as shown by the
two examples in figure 3-12. The declaration for a switch is
XREF followed by SWITCH and the switch name, without
the list of labels. For example:

XREF SWITCH ACTION;

XREF ITEM NAME C(7), MSGNUM I;

XREF BASED ARRAY SIZE;
BEGIN

END

ITEM LFN C(O,O, 7);
ITEM CS(0,41,18);

Figure 3-12. XREF Declaration Example

The declaration for a procedure is XREF followed by PROC
and the procedure name. No parameters accompany the
procedure name. For example:

XREF PROC Q;

The declaration for a function is XREF followed by FUNC
and the function name and type. The function declaration
must appear before the function is referenced. For
example:

XREF FUNC SEARCH B;
IF SEARCH(FET) THEN GOTO ACTION[!];

The XREF declaration can take the form of a compound
statement, as shown in figure 3-13. XDEF declarations can
appear anywhere within th.e corresponding program. Except
for procedures and labels, however, they must appear before
they are referenced. All entities declared with XREF must
have a corresponding entry point generated by an appro­
priate XDEF declaration or by being the outermost subpro­
gram name in a module.

XREF BEGIN
ITEM DATE C(8), TIMER;
ARRAY FET;
FUNC SUCC B;
END

Figure 3-13. XREF Declaration as a
Compound Statement

60499800 A

DATA DECLARATIONS 4

Data in a SYMPL program can be classified in terms of
structure, type, or use.

Data structure is described by the terms scalar and array:

A scalar is a single element that occupies at least one
full word of storage. A scalar is defined by an ITEM
declaration.

An array is an arrangement of elements. An array is
defined by an ARRAY declaration followed by either an
ITEM declaration or a compound statement containing
ITEM declarations. These ITEM declarations define
elements within the array.

Data type is described by the terms integer, unsigned
integer, real, status, character, and Boolean:

Integer, unsigned integer, and real data represent
numbers in a form suitable for arithmetic. Such data is
defined by a constant in an appropriate format or by an
ITEM declaration with data type I, U, and R.

Status data is a variation of integer data in which the
compiler substitutes integer values with names in a list.
A STATUS declaration is required when data type Sis
specified in a declaration for a scalar or array item.

Character data is display code representation. Such
data is defined by a constant in an appropriate format
or by an ITEM declaration with data type C.

Boolean data can take on only the values TRUE and
FALSE. Such data is defined by the constants TRUE
and FALSE or by an ITEM declaration with data type B.

Data use is described by the terms arithmetic and Boolean:

Arithmetic data used in arithmetic expressions can be
any type except Boolean.

Boolean data is used only in Boolean expressions.
Boolean type is considered nonarithmetic.

CONSTANTS
SYMPL has five types of constants. Real, integer, status,
and character data can be used in arithmetic expressions;
Boolean constants can be used only in Boolean expressions.
All types of constants can be used to preset a scalar or array
item.

REAL CONSTANTS

Real constants are rarely used in system programming.
They represent a numeric value containing a decimal point
and are written in standard scientific notation with a string
of decimal digits 0 through 9, a required decimal point, and
optional sign. Optionally, a real constant can be written in

60499800 A

exponential form with the characteristic and mantissa
separated by the letter E. No embedded blanks are allowed.
Examples of real constants are:

45.
98.9
.4

o.o
6.4E+4
31.415E-01

INTEGER CONSTANTS

Integer constants represent either a numeric value or a bit
pattern. They can take the form of a decimal constant, an
octal constant, or a hexadecimal constant.

The size of any integer constant is limited by the amount of
storage allocated for it. Constants to be preset in an item
are limited to item size. Only character type data can cross
word boundaries. Constants used in expressions can be one
word in size.

Decimal Constants

Decimal constants represent numeric values without a
decimal point; a preceding sign is optional. They are
expressed as:

decimal-integer

Decimal-integer must be a string of decimal digits 0
through 9, with no embedded blanks.

Examples of decimal integers are:

6 -24 4096

Octal Constants

Octal constants represent bit patterns, with each digit in the
constant establishing 3 bits. They are expressed as:

O"octal-integer"

Octal-integer must be a string of octal digits 0 through
7; embedded blanks are ignored.

Examples of octal constants:

Octal Constant

0"777"

0"22"

Resulting Bit Pattern

111111111

010010

4-1

Hexadecimal Constants

Hexadecimal constants represent bit patterns, with each
digit in the constant establishing 4 bits. They are expressed
as:

X"hex-integer"

Hex-integer must be a string of 1 through 15 hexa­
decimal digits 0 through 9 and A through F; embedded
blanks are ignored.

Examples of hexadecimal constants are:

Hexadecimal Constant

X"F"

X"4BC"

Resulting Bit Pattern

1111

010010111100

STATUS CONSTANTS

A status constant is a mnemonic for an integer that is set at
compilation time by a STATUS declaration. A status
constant has meaning only in conjunction with the STATUS
declaration which contains the status name and status­
values. A status constant is represented internally in the
same way as a U data type item. Status constants are
expressed as:

S"status-value"

Status-value is the name established by a STATUS
declaration. Blanks are not permitted between S and
the status-value; they cannot be embedded within a
status-value.

Examples of status constants, assuming a STATUS COLOR
RED,ORANGE,YELLOW declaration, are:

Status Constant

S"RED"

S"YELLOW"

Value Compiled

0

2

CHARACTER CONSTANTS

Character constants represent alphanumeric data with each
character in the string representing 6-bit display code. They
are expressed as:

"character-string"

Character-string must be a string of any characters
from the computer character set. Maximum number of
characters is 240. Any character " in the string must be
expressed as " ".

Examples of character constants are:

4-2

"THIS IS A CHARACTER CONSTANT WITH
NON-SYMPL CHARACTERS t% II

"THIS ONE" "S TRICKY"

BOOLEAN CONSTANTS

Boolean constants represent the values TRUE and FALSE.
They can be used only with Boolean expressions or items
declared data type B. They are expressed as:

TRUE

FALSE

SCALAR DECLARATION

The ITEM declaration defines a scalar. SYMPL scalars are
similar to FORTRAN variables, but they differ in several
respects. In SYMPL:

Every scalar must be explicitly declared, including
those used as DO loop variables.

The scalar declaration must appear before the first
reference to the scalar.

No implicit characteristics are attached to scalar
names.

Values can be preset in the scalar definition.

ITEM DECLARATION FORMAT
FOR SCALARS

The format of a scalar declaration is:

ITEM name type = constant;

name

type

Any identifier of 1 through 12 letters, $,
or digits beginning with a letter or $.

Data type; if omitted, I is assumed.

Integer in which the leftmost bit
is used for the sign and the
remaining 59 bits represent the
binary value. The compiler
allocates a full word for an
integer scalar.

U Unsigned integer in which all bits
are used to represent the value.
The compiler allocates a full
word for an unsigned integer
scalar.

R Real in which data appears in the
single precision floating-point
format standard for CYBER 170
systems.

C(lgth) Character in which data appears
in standard 6-bit display code
format with 10 characters to a
word. The compiler allocates as
many words as necessary for the
character string; characters in
the string are left-justified in
the words. The character string
length must be specified. It is a
decimal integer constant of 1
through 240.

60499800 A

constant

B Boolean in which data appears as
zeros or ones. The compiler
allocates a full word for each
Boolean scalar.

S:stlist Status in which data appears as a
small integer value assigned by
the compiler from the positions
of identifiers in list declared by
a STATUS declaration. The
compiler allocates a full word
for each status scalar.

Initial value of scalar to be preset at load
time. Format of constant should be
appropriate for the data type.

PRESET CONSTANT VALUES

A preset value can be assigned to a scalar at load time. The

EXAMPLES OF SCALAR DECLARATIONS

1. These examples show scalars without preset values:

ITEM I;

Integer scalar assumed for identifier I in the
absence of a specified type parameter.

ITEM OPERAND B;

Boolean scalar.

ITEM NAME C(7);

Character scalar with string of 7 characters.

2. Scalars can be written in contracted form:

format of the constants are: ITEM I, OPERAND B, NAME C(7);

I or U Integer constant in decimal, octal, or hexa­
decimal form.

R Real constant with a decimal point.

c Character constant in the form "string".

B Boolean constant TRUE or FALSE.

s Status constant in the form S"status-value".

Preset constant values are stored as presented by the
constant form in the ITEM declaration, whether or not the
constant agrees with the type specified. SYMPL neither
converts nor checks for agreement between the type
parameter and the preset value.

Constants preset by ITEM declarations are similar to those
set by DATA statements in FORTRAN in that they are
initial values only. During execution the value of a preset
item can be changed, and once changed, it does not revert to
its preset value even if the procedure that set it is called
several times. For example, if the procedure shown in
figure 4-1 is called three times, the output values of l are 1,
2, and 3, assuming OUTPUT is declared externally.

PROC P;
BEGIN

ITEM I=O;
I=I + 1;
OUTPUT (I);

END# P #

Figure 4-1. Preset Constant Value Example

CONTRACTED ITEM DECLARATION
FORMAT

A second ITEM declaration format allows more than one
scalar to be declared.

ITEM name type=constant, name type=constant, ••• ;

Each name and . type pair is independent of any other pair.
Syntax is the same as described above.

60499800 A

Equivalent to example 1.

ITEM A, B, C R;

Equivalent to ITEM. A I; ITEM B I; ITEM C R; It is
not equivalent to ITEM A R; ITEM B R; ITEM C R;

3. Examples of scalars with preset values appropriate for
the data type:

ITEM NUM U=O;

Unsigned integer scalar with 60 bits used as value.

ITEM TOTAL=O;

Integer scalar with rightmost 59 bits used as value
and leftmost bit as + sign.

ITEM FIRST B=TR UE;

Boolean scalar with the value 1 in a 60-bit word.

ITEM MESSAGE C(l5)= "COMPILER ABORTS";

Character scalar with COMPILER A in first word
and BORTS with trailing blank fill in second word.

ITEM MASK12 U=0"0101";

Unsigned integer scalar creating bits 000001000001
at the rightmost end of the word.

4. Examples of scalars with preset values that do not
correspond to the data type. Presets use the constant
specified, even if it does not agree with the type
declared:

ITEM ONE R=l;

Stored as 0 ••••• 01, not normalized floating point
format.

ITEM SILLY I=FALSE;

Stored as all 0 bits.

4-3

ARRAY DECLARATION
An array is an ordered set of entries defined by two
consecutive declarations:

An array header that establishes the size and structure
of the array.

A single ITEM declaration that describes the fields of
the array. If more than one array item is declared, the
declarations can appear between BEGIN and END.

Allocation of storage for an array depends on the array
header:

An ARRAY declaration results in allocation of storage.

A BASED·ARRAY declaration does not result in storage
allocation for the array. Rather, it defines a structure
that is to be superimposed over storage allocated
elsewhere in the program and allocates one word to
contain the pointer. Based arrays are described in
section 5.

SYMPL arrays differ from FORTRAN arrays in several
respects. In FOR TRAN, an array has a name by which all
elements in the array are known. Individual elements, which
must be one word in length, are referenced by a subscript
written in enclosing parentheses. FORTRAN numbers each
dimension of the array starting with 1 and limits the number
of dimensions to three.

In contrast to FORTRAN, an array in SYMPL need not have
a name. Elements, which need not ~ all the same length
and can contain more than one word, are referenced by their
array item name, not the array name itself. Subscripts to an
array item name are written in enclosing brackets. The
number of dimensions in an array is limited to seven; each
dimension can have a programmer-supplied upper bound and
lower bound.

SYMPL offers many capabilities for array declaration that
are not available in FORTRAN. These include:

Specifying bounds of a dimension with negative values,
as in:

ARRAY [-10:-3];

Specifying array elements less than one word in size, as
in:

ARRAY[4]; ITEM A C(5), B U(0,30,3);

Specifying array elements more than one word in size,
as in:

ARRAY[4]; ITEM D C(46);

Presetting values in the array elements, as in:

ARRAY[4]; ITEM NUMS=[l,2,3,4,5];

Specifying storage structure for multiword elements, as
in:

ARRAY[4] 8(2);

Although arrays can have up to seven dimensions, system
programming generally does not require multidimension
structures. (The multiword element capabilities of SYMPL
and its serial-versus-parallel storage structures allow results
that might require more than one dimension in other
languages.). Consequently, the following material deals

4-4

mostly with single dimension arrays. See the SYMPL
Reference Manual for a description of multidimensional
arrays.

The complete format for an array declaration is shown here
for reference only. Section 6 presents arrays in a tutorial
manner.

ARRAY name [low:up,low:up, •..] structure (esize);

name

low

Identifier naming the array.

Lower bound of a dimension of the
array.

up Upper bound of a dimension beginning
at low.

structure Structure of the array, P (parallel) or
· S (serial).

I

esize Number of words required to hold one I
entry of the array.

SCOPE OF DECLARATIONS
An item. declared within a subprogram is valid only within
that subprogram and subprograms nested within it. State­
ments outside the declaring subprogram cannot reference
that item by name. An itein declared within a nested
subprogram is valid only within that subprogram and any
subprogram nested within it.

An item referenced only within the subprogram in which it is
declared is called a local identifier. The compiler always
allocates space for a local identifier. An item declared in
one subprogram" and referenced in a nested subprogram is
called a global identifier.

Figure 4-2 illustrates local and global identifiers. In the
procedure SUBPROG:

Identifiers for items D and E are local to procedure P.
They are global identifiers for procedure R which is
nested within procedure P. They are unknown outside
procedure P.

Identifiers for items F, G, H, and I are local to
procedure Q. They are unknown outside procedure Q.

Identifiers for items A, B, and C are local to procedure
SUBPROG. They are valid anywhere in the body of
SUBPROG. Therefore, A, B, and C are global identi­
fiers for procedure P, procedure R, and procedure Q.

The statement D=A+B is valid within the body of
procedure R. Within procedure Q, however, the same
statement is invalid since D is unknown outside pro­
cedure P.

Procedure R cannot be called at any point marked
#NO#.

If an item declared in a nested subprogram has the same
name as a global identifier, the compiler allocates space for
both identified scalars or arrays. The innermost declaration
is valid only in the procedure in which it is declared. In case
of conflict, the innermost declaration always has prece­
dence. Consequently, two declarations can specify different
types of data for the same identifier.

60499800 B

PROC SUBPROG;
BEGIN
ITEM A, B, C; •••

PROC P;
BEGIN
ITEM D, E; •••

PROC R;} BEGIN
D=A + B;

END #R#
END #P#

#NO#

#NO#

#NO#

PROC Q;
BEGIN
ITEM F, G;
ITEM H, I;

END #Q#

END# SUBPROG #

Proce­
dure R

Proce­
dure Q

Proce­
dure P

Figure 4-2. Local and Global Identifiers

In the example shown in figure 4-3, VAR is declared twice in
procedure SUBPR. Since the innermost declaration has
precedence, VAR in the body of procedure P is a local
identifier of type Boolean and the statement VAR=TRUE is

60499800 A

legal. The integer identifier VAR is valid anywhere in
SUBPR except within procedure P. Since the two items,
VAR, are in no way connected, good programming practice
would be to give them unique names. In light of the systems
nature of most SYMPL programs, it is also good program­
ming practice to limit the use of global identifiers.

The subprogram in which an identifier is declared establishes
the scope of declaration; the mere presence of a
BEGIN ••• END sequence does not. BEGIN and END in
compound statements such as FOR and IF do not affect the
scope of an identifier.

PROC SUBPR;
BEGIN
ITEM VAR I;

PROC P;
BEGIN
ITEM VAR B;

VAR=TRUE;
END #P#

VAR=l;

END #SUBPR#

Figure 4-3. Duplicate Name Item Declarations

4-5

SYMPL FEATURES 5

This section presents some of the declarations and state­
ments that give SYMPL its power. These include:

DEF Declaration

References character strings by name for char­
acter string substitution during compilation.

SWITCH Declaration

Declares labels for a computed GOTO capability.

STATUS Declaration

Declares identifiers with implicit integer values for
symbolic reference.

BASED ARRAY Declaration

Declares an array structure to be superimposed
over data allocated elsewhere in program.

LOC Function

References addresses of other program entities.

Bead Functions

References part of a string of characters or bits.

DEF DECLARATION

The DEF declaration is a compiler-directing statement that
allows a character string to be referenced symbolically in a
program. The DEF declaration defines a name and a
character-string to be substituted for subsequent occur­
rences of the name. The character-string, or DEF body, can
be as simple as an integer constant for a DEF name used in
array dimension syntax; or it can be a complete executable
statement or part of such a statement.

The DEF declaration has two forms:

A DEF name without a formal parameter list resembles
the COMPASS assembly language MICRO pseudo­
instruction that allows symbolic reference to a char­
acter string (in SYMPL, micro delimiters are not used
with micro references, however).

A DEF name accompanied by a formal parameter list
resembles the COMPASS macro facility and FORTRAN
statement function facility in which actual parameters
are substituted for formal parameters when the DEF
name is referenced.

During compilation, the character-string is substituted for
occurrences of the DEF name. No computation takes place
as a result of the substitution; a DEF name of ABC and a
body of 3+2 results in the three characters 3+2 in place of
ABC, not the single character 5.

60499800 A

Among the common uses of DEF are:

Improving program readability by allowing illegal words
in the source listing. To allow a source statement such
as IF A=O THEN CALL ERROROUTINE:

DEF CALL##;

Improving program execution speed by allowing in-line
function code rather than the return jump execution of
normal function calls:

DEF MODULO(X,N) #(X)-(X)/(N)*(N)#;
RANK=MODULO(LENGTH,10);
expands as RANK=(LENGTH)-(LENGTH)/(10)*(10);

Improving program maintainability by defining limit
sizes that can be updated by future DEF changes:

DEF ENTR YLENGTH #3#;
ARRAY TBL[2] P(ENTRYLENGTH);

DEF cannot be used to redefine an identifier defined in an
ITEM, ARRAY, or COMMON declaration:

ITEM ONE; DEF ONE #TWO#; produces ERROR nn

Further, DEF cannot be used to redefine the characters that
serve to identify SYMPL syntax. Character substitution
does not occur for the following characters used in the
context of a syntax descriptor:

B, C, I, R, S, U, E, 0, X, P

Substitution does occur when one of these characters is used
as an identifier, nevertheless:

DEF C #NEW#;
ITEM ONE C(6); A=B + C;
expands as ITEM ONE C(6); A=B + NEW;

Similarly, DEF S #Q#; has no effect on a subsequent
statement such as IF Z EQ S"SIZE". Substitution does not
take place within a comment or within a character-string
constant.

Any DEF declaration is effective only within the procedure
or function in which it is declared, and it is effective only
after the declaration appears. If a DEF name is redefined
within a subprogram it does not affect the definition in an
outer program. When the same DEF name is used again
after leaving the subprogram, the DEF declaration in the
outer program is effective.

DEF WITHOUT PARAMETERS

A DEF declaration without parameters produces straight­
forward expansion. The DEF format is:

DEF name #character-string#;

name Any valid identifier by which
character-string is to be referenced.

the

5-1

character­
string

DEF body that is to replace the DEF name
during DEF expansion. From 1 to 240
characters can be used. The character #
must appear as ##.

A space, but not a comment, can appear between the DEF
name and the character-string.

The DEF body can contain another DEF name, as long as the
definitions are not recursive or circular. The compiler
checks for a single level of recursiveness only. Recursive­
ness obtained by nesting produces infinite loops.

DEF WITH PARAMETERS

A DEF declaration with parameters produces parameter
name substitution during the expansion of the DEF body.
The format for DEF with parameters is the same as without
parameters, with the addition of a parameter list:

DEF name (param,param, ..•) #character-string#;

param Formal parameter to be replaced by an actual
parameter during DEF expansion. Must dupli­
cate at least one identifier within the DEF
body. If more than one parameter is used,
they must be separated by commas.

If the number of actual parameters exceeds the number of
formal parameters in the DEF declaration, a fatal error
condition exists and expansion is suppressed. Expansion does
occur, however, when the number of actual parameters is
less than the number of formal parameters. The formal
parameters without corresponding actual parameters are
removed and nothing is inserted in those places. Debugging
can be difficult when the number of formal parameters
differs from the number of actual parameters.

During compilation, the formal parameter names within the
DEF body are replaced by actual. parameter names. For
example, assume the following DEF declaration:

DEF RESET (A,N) #FOR I=O STEP 1
UNTIL N DO A[I]=O;#;

A reference RESET(T,64) produces:

FOR I=O STEP 1 UNTIL 64 DO T[I]=O;

A DEF parameter is not recognized within a comment or a
constant string. For example, assume the following DEF
declaration:

DEF RESET (A,N) # ##SET A[2] TO "N" ## A[2]="N" #;

A reference RESET(T,64) produces:

#SET A[2] TO "N" # T[2]="N";

Expansion occurs in all other contexts except as a declara­
tion name or within # or " pairs. For example, assume
the following DEF declaration:

5-2

DEF PART (A,B,C,D) #C<A,B> C[D] =" "#;

A reference PART(W, X, Y, Z) produces the meaning­
less syntax:

Y<W,X> Y[Z] =" ";

Often, parentheses should be used within the DEF body to
achieve correct results. For example, assume the following
DEF declaration:

DEF MODULO(X,N) #X-X/N*N#;

A reference Y=3*MODULO(l3+2, 6+2) produces:

Y=3*13+2-13-2/6+2*6+2; and subsequent evaluation
as Y=42.

Yet DEF MODULO(X,N) #(X-(X)/(N)*(N))#; with the
same reference produces:

Y=3*(13+2-(13+2)/(6+2)*(6+2)); and subsequent
evaluation as Y=21.

Actual parameters must be separated by commas. The
compiler recognizes parameters by balancing pairs of delim­
iters: (), < >, and []. New parameters are not recognized
within pairs of # delimiters, however. Consequently, any
actual parameter that contains a comma, semicolon, right
parenthesis, or an unbalanced (,), <,>, or [,], should be
delimited by pairs of # marks.

The delimiting # are suppressed during expansion. For
example:

All the following are valid as actual parameters:

F(L,N)

P((A+B)/C)

C< MODULO(N ,64),J>T[K,L]

"T[K,L]"

Each of the following, however, must be within # pairs
if they are to be used as actual parameters:

2,BYTPW

A=B; C=D;

must be #2,BYTPW#

must be #A=B; C=D;#

C< must be #C<#

A comment can be passed as an actual parameter if the
comment is enclosed by double # marks, as in:

DEF THREE(A,B,C) #A; BC;#
THREE(X=Y, ##SET Z TO X##, Z=X);
expands as X=Y; #SET Z TO X# Z=X;

A consecutive set of commas in an actual parameter string
is valid to indicate an empty actual parameter, as in:

DEF THREE(A,B,C) #A; B C; #
THREE(X=Y,, Z=X);
expands as X=Y; Z=X;

SWITCH STATEMENT

A switch is a SYMPL concept that is similar to the
computed GO TO statement of FORTRAN. The label to
which control branches depends on the value of an expres­
sion at the time the GOTO executes. SYMPL has neither
the assigned GO TO statement of FORTRAN nor the CASE
statement of ALGOL.

60499800 A

The SWITCH declaration defines a named list of labels. The
compiler associates the first label in the list with unsigned
integer value 0, the second label is associated with 1, and so
forth, through the list.

The SWITCH declaration is:

SWITCH swname label, label, •.. ;

swname

label

Identifier specifying the name of the
switch.

Identifiers of labels to be associated with
the list. Labels in the list need not have
been previously declared. A label identi­
fier can duplicate identifiers in other
lists. Null positions in the list can be
indicated by consecutive commas.
Another switch name cannot appear in the
list.

The switch name can be used only in a GOTO statement. It
cannot be used in P functions or as a parameter for a
function or procedure.

GOTO format is:

GOTO swname [arithmetic expression];

When GOTO executes, the expression is evaluated; control
then transfers to the label whose value is equal to the value
of the expression:

In the following, control transfers to label LDN when 3
is the value of I:

SWITCH DEVELOP TTO, ARH, SVL, LDN;

GOTO DEVELOP [I];

If evaluation of the expression in the GOTO statement
produces a result that is beyond the values associated with
the switch, execution results are unpredictable. Switch
limit checking can be activated by the C parameter of the
compiler call. When C is selected, an out-of-bounds
reference results in a . diagnostic message and execution
aborts.

Within the SYMPL compiler, switches are implemented as
sequential jumps. Normally, one element appears in each
half of the word. Less space is consumed, but execution
time is increased when switch packing is selected. Both the
D parameter of the compiler call and the CONTROL PACK
compiler-directing statement cause switches to be packed.

In the example in figure 5:... 1, the jump vector was compiled
when neither the D nor the C option was selected for a
declaration of SWITCH EVEN ZERO,,TWO,FOUR. With this
declaration, an evaluation of I with a value of 1 creates an
infinite loop.

EVEN JP ZERO
JP ZERO

+ JP *
JP *

+ JP TWO
JP TWO

+ JP FOUR
JP FOUR

Figure 5-1. SWITCH Declaration Compilation

60499800 A

STATUS STATEMENT
STATUS is one of the more powerful concepts of SYMPL.
The functions of STATUS can be duplicated by other
programming techniques using integer values, but the simpli­
fication in programming, improvement in documentation,
and advantages for program maintenance cannot be dupli­
cated. STATUS is particularly useful in decision table and
syntax analysis situations. Good programming practices call
for use of STATUS whenever a set of variables is to be
associated with small integer values.

STATUS is a compile-time concept similar to the EQU
pseudo instruction of COMPASS. No memory is assigned to
the status list mnemonics during execution.

The STATUS declaration defines a named list of mnemonics.
The compiler associates the first mnemonic in the list with
the unsigned integer value 0, the second mnemonic is
associated with 1, and so forth, through the list. All items
in the list always are referenced mnemonically.

The STATUS declaration format is:

STATUS stlist status-value, status-value, .•. ;

stlist Name by which entire list is known, called a
status list name.

status- Identifiers to be associated with the list. An
value identifier cannot be duplicated within a list.

Unlike other program identifiers, however,
they can duplicate the name of an identifier in
any other status list or in the program, or even
duplicate reserved word.

The following are equivalent:

ITEM A=3;

STATUS NUM ZERO, ONE, TWO, THREE;
ITEM A S:NUM=S"THREE";

STATUS-VALUE REFERENCES

Status-values can be referenced in several forms, depending
on the needs of a program:

A status function is used in all contexts in which the list
and value must be associated.

A status constant is used in contexts in which the status
list name is not ambiguous.

A status item provides convenience in referencing a
scalar or array item that always takes status constant
values.

A status switch is a SWITCH statement in which the
switch name is associated with a status list and each
label is associated with a status-value.

Status Function

A status function is actually a constant. It can be used
anywhere in a program in which an integer constant can be
specified, including array bounds specification and item
presetting. Format is:

stlist "status-value"

5-3

During compilation the function is replaced by the appro­
priate value:

In the following statements, code generated during
compilation presets item WHICH to the unsigned
integer value 2 and assigns X=O:

STATUS KIND DOG, CAT, BIRD;
ITEM WHICH I=KIND"BIRD";
X=KIND"DOG";

Status Constant

A status constant is a shortened form for a status function.
The format for a status constant, as defined in section 4, is:

S"status-value"

Because status-values are not required to be unique, the
compiler must have some way to relate a status-value to the
appropriate status list. This can be done by presetting the
list name in an ITEM declaration, as in:

STATUS CLR RED, GREEN, GREY;
ITEM SHADE S:CLR;
IF SHADE EQ S"GREEN" •.••

where CLR is the list name and GREEN is the status­
value being referenced.

A status constant can be used as loop control in FOR
statements if the induction variable item has a status type.
In expressions, the use of a status function or status
constant is not restricted. If their meanings are not obvious,
however, programming comments should be used
extensively.

Status Item

If a scalar or array item usually contains a value from a
particular status list, it should be defined as a status item.
When this scalar or array is used in ap expression with a
status-value, a status constant can be used instead of a
status function. ·

A statusitem is declared by a data type of:

S:stlist

Any place ITEM name U can appear in a declaration, the
following can appear:

ITEM name S:stlist

Once an item of data type status is declared, status-values
from the named list can be specified as status constants
rather than the status functions that would otherwise be
required. For example:

5-4

STATUS BULK ROBIN, OWL, EAGLE;
ITEM INCHES S:BULK;
ITEM WEIGHT U;
INCHES=S"OWL";

Without the status data type declaration for INCHES,
the last statement must appear as:

INCHES=BULK"OWL'';

With only the above declarations, INCHES=S"HA WK"
produces a compilation error since HAWK is not a
status-value from the list BULK.

Further, a statement such as WEIGHT=S"ROBIN"
produces an error since WEIGHT is not a status item
with ROBIN as a status-value.

A status item and status constant can be combined to preset
an integer value. In th"e following example PAGE is set to 2:

STATUS SP NO, SGL, DBL, TPL;
ITEM PAGE S:SP=S"DBL";

Status items are not limited to status-values. Good
programming practice, however, prohibits usage such as
assigning a status-value to a status item for which it was not
originally defined.

STATUS SWITCH

A status switch is a form of the SWITCH statement. Format
is:

SWITCH swname:stlist label:status-value, label:status­
value, .•• ;

swname

stlist

label

status­
value

Switch name

Name of. status list previously defined in a
STATUS declaration

Name of label

Status-value from status list stlist that is
to be associated with the preceding label

Figure 5-2 is an example of status switch use. Depending on
whether NAME is alphabetic (has a display code less
than 33), . numeric (has a· display code less than 45), or
neither, NEXTCHAR is set to a certain status-value. At the
end of their common processing, control transfers to the
switch AUTO. If NAME is alphabetic, NEXTCHAR is set to
status-value LETTER which is associated with label ALPHA,
and control transfers to processing at label ALPHA. Control
transfers in the same manner to NUMB if NAME is numeric,
or to MARK if it is neither.

Label:status-value pairs can appear in any order. Not all
status-values need be referenced in the switch. The same
label can appear with more than one status-value. However, I
status values can appear only once. Figure 5-3 shows two
examples of valid switch declarations.

EXAMPLES OF STATUS USE

The example in figure 5-4 declares status lists SOP and
CLASS, which are sets of operators, with related status
items initialized, respectively, to the last and first status
values of the related list. The unnamed array has one
element for mnemonic of status list SOP. Each array
element is preset to a value that indicates whether it is an
arithmetic operator, relative operator, or an error.

The following IF statement determines whether or not code
at level EXP should be executed by comparing the value of a
current element of CLASS with the value of a status
constant acceptable for arithmetic operators:

IF CLASS [OP]=S "ARITH" THEN GOTO EXP;

60499800 B

STATUS CHAR LTR, DIGIT, OTHERS;
ITEM NEXTCHAR S:CHAR;
SWITCH AUTO:CHAR ALPHA:LTR,

NUMB:DIGIT,
MARK:OTHERS;

ITEM NAME;

IF NAME LS 33
THEN NEXTCHAR=S"LTR";
ELSE IF NAME LS 45

THEN NEXTCHAR=S"DIGIT";
ELSE NEXTCHAR=S"OTHERS";

. .
GOTO AUTO[NEXTCHAR];

ALPHA:

NUMB:

MARK:

Figure 5-2. Status Switch Example

STATUS CHAR LTR, DIGIT, OTHERS;
SWITCH LOOP:CHAR LOOPA:DIGIT,

LOOPB:LTR,
LOOPB:OTHERS;

STATUS CHAR LTR, DIGIT, DIGIT2, OTHERS;
SWITCH LOOP:CHAR LOOPA:DIGIT,

LOOPB:DIGIT2,
LOOPC:OTHERS;
LOOPD:LTR;

Figure 5-3. Valid Status Switch Declarations

STATUS SOP PLUS, MINUS, EQ, LS, SOP;
STATUS CLASS BAD, ARITH, REL, COMP;
ITEM OP S:SOP=S"SOP";
ITEM KLASS S:CLASS=S"BAD";
ARRAY [SOP "SOP"];
ITEM CLASS S:CLASS = [S"ARITH",

S"ARITH",
S"REL",
S"REL",
S"BAD"];

#PLUS 1#
#MINUS 1#
#EQUAL 2#
#LESS THAN 2#
#ERROR 0#

Figure 5-4. Preset Status Values Example

60499800 .B

Status constants can be used also as the loop control of a
FOR statement, assuming an array TAB:

FOR OP=O STEP 1 UNTIL S"SOP" DO
TAB [CLASS [OP]]=TRUE;

Adding a new operator to the status list SOP in the example
in figure 5-4 entails changing the STATUS declaration and
adding a new element to CLASS:

STATUS SOP PLUS, MINUS, EQ, GR, LS, SOP;

S"REL", #GREATER THAN#

The IF and FOR statements in the example are not affected
by the addition of the new operator. The addition was
accomplished even though no empty array element was left
for growth.

BASED ARRAY DECLARATION
AND P FUNCTION
A based array is a structure for which no storage is
allocated by the compiler. All references to items within a
based array are compiled relative to the contents of its
array pointer. The array pointer must be set explicitly
within the program through use of the P function. Usually,
the P function, for which one word is allocated, is assigned a
value as the result of the LOC function reference to an
array for which storage has been allocated.

In concept, a based array is a structure that can be
superimposed over any portion of memory. By changing the
pointer, the structure can be moved to various parts of
memory. Based arrays in SYMPL (which have no similarities
in COMPASS, FORTRAN, COBOL, or PL/I) provide flexi­
bility for dealing with system programming concepts.

The declaration for a based array is the same as for a fixed
array, except a name is required and preset values are not
relevant:

BASED ARRAY name structure(esize); item descrip- I
tion;

name Required name of array.

structure Indic.ation of parallel or serial (P or S)
structure of multiword entries. Default
is P.

esize Number of words in each entry. Default I
is 1.

item Description of entry in array, as described
description in section 4.

Several based arrays can be declared in a format:

BASED BEGIN ARRAY name •.• ;
ARRAY name ..• ;

END

The array dimensions can, but need not, be part of the
BASED ARRAY declaration. If the subscripts of the based
array and the array it is to be superimposed on need to be
the same, the first element of a based array should
correspond to the first element of the fixed array. SYMPL
adjusts each array item reference at the time it is
referenced, not at the time of the pointer setting.
Accessing a based array item is slower than accessing a
normal array item.

5-5

The pointer to theJ>ased array must be given a value through
the P function. A P function is the name of the internal
variable that contains the array pointer. It can be used the
same as any variable.

-The format is:

P<based array name> = arithmetic expression;

based array Name declared in BASED ARRAY decla-
name ration.

arithmetic Arithmetic expression whose evaluation
expression results in an address. Can be a LOC

function, constant, or other expression.

On a word-addressable CYBER 70 or CYBER 170 system,
any location in the program field length can be accessed as a
subscripted word of a based array by:

BASED ARRAY ANY; ITEM X;
P<ANY>=O;
X[n]= ••.

The combined use of the BASED ARRAY declaration and the
P function is illustrated in figure 5-5. The example assumes
a file information table is allocated storage in procedure R.
Procedure Q is to manipulate a file information table, with
the array containing the file information table being passed
as a parameter to Q. A reference to LFN[O]="MYFILE" in
figure 5-5 sets the characters MYFILE in the first word of
array FITN AME.

PROC Q(FITN AME);
BEGIN

END

XREF ARRAY FITNAME;
BASED ARRAY ALLFITS S(l 7);

ITEM LFN C(O,O, 7),
RL I(l,0,24),
MRL I(6,0,24);

P<ALLFITS> = LOC(FITNAME);

Figure 5-5. P Function Example

To superimpose the FIT structure on location 1000 octal in
figure 5-5:

P<ALLFITS> = 0"1000";

The P function can be used to represent the based array
pointer variable in an expression. For example:

Assume the value of P<FIT> has been set to location
1000 octal. To move the based array structure 1000
octal words in memory:

P<FIT> = P<FIT> + 0"1000";

A reference to LFN[O] in figure 5-5 then accesses
location RA+2000 octal.

A based array can be used as a formal parameter in a
procedure, though it is slow to access. The actual
parameter must be a P function, not a based array name.
This method is useful if the procedure is going to move the
array.

5-6

For example, in figure 5-6, assume a based array A is to be
used with the storage to which based array B currently
points. Procedure P manipt.ilates data known as array item.
At the end of the procedure, the pointer to B must be reset
to the pointer of A. Normally, the formal parameter is a
fixed array, and the call passes a based array as an actual
parameter.

PROC P(B);
BEGIN
BASED ARRAY B; ITEM ••• ;
BASED ARRAY A;

BEGIN ITEM •••

END
P<A> = P;

P = P<A>;
RETURN;
END

Figure 5-6. Based Array as a Formal Parameter

A based array also is useful when a list is built dynamically
in an area it shares with many kinds of data. For example,
in figure 5-7a, assume a list in which STR points to a
character string and sue points to the next location in the
string. Procedure ACTION manipulates each element of the
list. The first parameter is the first element of the list; the
second parameter is a procedure name (and consequently
must be identified by FPRC). A call to procedure ACTION
that w:ould result in the printing of all elements of the list is
shown in figure 5-7b. The subscripts can be omitted on STR
and SUC because L has bounds 0:0.

a. PROC ACTION ((FIRST), WHAT);
ITEM FffiST;
FPRC WHAT;
BEGIN
BASED ARRAY L;

ITEM STR C(0,0,7), sue I(0,42,18);
ITEM DUMY;
FOR DUMY = DUMY WHILE FffiST NQ 0 DO

BEGIN
P<L> = FIRST;
WHAT (STR);
FIRST=SUC;
END -

END #ACTION#

b. ARRAY HEAP[1:200]; •••
PROC OUTPUT ((S));

ITEMS C(7);
BEGIN
PRINT("(lH,A 7)");
LIST(S);
ENDL;

END #PROC OUTPUT#
ACTION(LOC(HEAP[N]),OUTPUT);

Figure 5-7. Use of a Based Array for Listing

LOC FUNCTION
LOC is an intrinsic function that returns the address of the
actual argument used in the function call. The most
common use of LOC is to obtain an address for a based array

60499800 A

pointer, but LOC is not restricted to such use. The value
returned from the function is an address of type I.

The function call is:

LOC(argument)

argument Can be the name of any of the following:

Scalar
Subscripted array item
Procedure name
Function name
Label name
Switch name
Array name with optional subscript
P function

When LOC is used with the name of a based array as an
argument, the value returned is the current value of the
pointer, not the address of the pointer. When LOC is used
with a P function, the address of the pointer word of the
based array is returned. If the argument is an array item,
the value returned is the address of the word where the item
resides within the element.

For example, assume array ILFIT is a file information table
declared in another module. It is accessed as a based array
FIT with:

XREF ARRAY ILFIT; ITEM LFN C(0,0,10), ••. ;

P<FIT>=LOC (ILFIT);

In general, LOC should not be called with the name of a
function, procedure, label, or switch, except perhaps during
debugging. Although an address is returned, that address is
probably not useful since no inferences can be drawn about
the contents of locations surrounding the address returned.
Further, the results from a particular program might not be
reproducible when a different version of the compiler is used
or a different optimization occurs with the same compiler
version. For instance, with statements L:GOTO M;
GOTO N; in a program, A = LOC(L) returns the address of
label L, but A+l does not reference GOTO N because the
compiler can delete the statement and reorder the physical
locations. Similarly, A = LOC(L+l) has no meaning, although
the compiler does not prohibit such a statement.

One use of LOC is illustrated in figure 5-8. Assume a
COMPASS main program with a 1000 word buffer at tag
BUFFER. The SYMPL subprogram uses the buffer for
writing, accessing the array as an XREF item. The buffer
pointers are on array FET. After the first LOC function,
FIRST points to BUFFER; after the second LOC function, IN
points to the element BUFFER [CURRENT] which would be
the last word of data written.

PROC WRITE;
BEGIN
XREF ARRAY BUFFER;
ITEM CURRENT;
ARRAY FET; ITEM FIRST . . • • IN ••• , .•• ;

FIRST [O]=LOC (BUFFER);
IN [O]=LOC (BUFFER (CURRENT]);

Figure 5-8. LOC Function Example

60499800 A

When file environment tables or other system interfaces are
involved, SYMPL code cannot be used to monitor operating
system activity. Optimization considers such data to be
constant and might remove the tests from loops. See the
SYMPL Reference Manual appendix C for more information.

BEAD FUNCTIONS
ITEM declarations define scalars, full words of arrays, or
partial words of an array. Each time an identifier of an
ITEM declaration is referenced, the entire contents of the
item is accessed. At times, however, only part of an item is
wanted. The bead functions (a bead is one of a string)
provide access to part of an item for the purpose of
extracting the contents of, or storing into, partial words.

In good programming practices, bead functions are used
sparingly, since a program making frequent references to
these functions is hard to maintain. Declaration and use of
an array with partial-word items is preferable.

The two bead functions are:

C Access specified number of 6-bit bytes as data type
character.

B Access specified number of bits as data type
unsigned integer.

The two functions are not interchangeable; the C function
implies the result is data type C, but the B function implies
the result is data type U. The source data type is assumed
to match the function, even if it is a different data type
item. For example, the function B<42,18>, not the function
C<7 ,3>, should be used to access an address in the lower 18
bits of an integer item.

Numbering conventions, which for the most part are not the
conventions used elsewhere in the operating system, are as
follows:

Characters and bits are numbered from 0, not from 1.

The leftmost bit is numbered O.

The leftmost character is numbered O.

Characters are each 6 bits.

If a bead function appears within a larger expression,
SYMPL moves the specified item to a full word, aligning
data as appropriate for its type. Then the result is used in
the expression or replacement statement.

SYMPL does not check whether the number of beads to be
extracted is within the size of the item. The programmer is
responsible for the use of the function.

Bead functions can be used in the following circumstances:

In place of an item name in an expression, as in:

IF C<0,5> NAME EQ "INPUT" THEN R=l;

Left side of a replacement statement. Only the beads
specified are affected, with any remaining characters
untouched:

C<9,4> STRING=C5;

5-7

Right side of a replacement statement. SYMPL
extracts the beads, then converts to the data type of
the left side of the statement:

LFN=C <0,7> FITQ;

Parameters to a function or procedure. The function
has the same properties as a subscripted variable in that
it is computed and stored in temporary storage, and
cannot be an output parameter:

CALLABC {J, C<9,1> NAME);

Bead functions can cross word boundaries only when the
bead is extracted from a data type C item. Calls to library
routines are compiled when a bead function crosses, or
might cross, a word boundary, thus retarding processing. If
the compiler can determine that only one word is to be
accessed, the function is evaluated in-line. For example,
given a data item LONG, in-line code results from:

C<l2,3> LONG;

On the other hand, calls to library routines are compiled
from:

C<I,J> LONG;

CHARACTER (BYTE) FUNCTION

The character function, which is also known as a byte
function, extracts consecutive 6-bit characters from the
specified item. The function is similar to the PL/I function
SUBS. The result of a character function is data type C,
with values assumed to be display code.-

The format of the character function is:

5-8

C<start,number> identifier

start Arithmetic expression indicating the first
character to be extracted. Character
positions are numbered from O at the left
of the item.

number

identifier

Arithmetic expression indicating the num­
ber of consecutive characters to be
accessed. The value of start+number
should be within the size of the item.

If a length parameter is omitted, a single
character is extracted.

If the data type of the item being
accessed is C, the function can cross word
boundaries and the maximum value for
length is 240. (240 is the maximum
number of characters allowed in a string.)

If the data type of the item is not C,
however, the maximum value for length
is 10.

Name of scalar or array item from which
characters are to be extracted. Can be
any data type, except B or S, but the
result is always data type C. The extrac­
tion is done without any conversion.

EXAMPLES OF CHARACTER
FUNCTION USE

1. To compare the hashed value associated with an
identifier, the function shown in figure 5-9 adds the
display code values of all identifier characters. The
modulo 100 octal (decimal 64) is established through
DEF so the subprogram could be easily modified for
another modulo. The C function extracts one character
at a time from the identifier. As with all functions, the
name is set to the return value within the function.

FUNC HASH (IDENT) I;
BEGIN
DEF NCH #64#;
ITEM IDENT C(l2);
ITEM I, H;
H=O;
FOR I=O STEP 1 WHILE C<I,1 > NQ II II DO

H=H + C<I,1> IDENT;
HASH=(H)-(H)/(NCH)*(NCH);
END #HASH FUNCTION#

Figure 5-9. Use of C Function in a Hashing Routine

2. SYMPL limits character strings to 240 characters.
Longer strings can be manipulated within a program as
an array of strings. Procedure ADD, as shown in
figure 5-10, adds up to 10 characters to the right end of
a character string. The procedure has three param­
eters: the name of the array to which characters are to
be added, the number of characters to be added, and the
characters to be added. The first call to ADD moves
three characters expressed as a constant; the second
call uses a bead function to specify the location of
characters to be moved.

The example in figure 5-10 moves characters to a
larger array BUFFER. The two DEF statements
establish a byte number of a character within a word,
and the word index of a character in a string buff er
given its index I. I points to the first available
character.

The IF statement handles two conditions: the THEN
clause adds characters when the characters to be added
reside within a single word; the ELSE clause handles the
situation when all characters are not in the same word.

Good programming practice calls for a statement
similar to DEF BYPW #10# with reference to the
number of bytes per word referenced as BYPW. As
stated above, the exam.pie is machine dependent.

3. An integer value between 0 and 9 can be converted to a
decimal digit in display code by adding the character
constant 0 to the integer. This is machine dependent, in
that it depends on contiguous numbers in the character
set.

As shown in figure 5-11, function DECIMAL is a
character function that converts N to a string of digits.
Boolean item NEG is used to determine whether the
leftmost character in working string STR is to be a
minus sign. The absolute value function, ABS, is used
with N prior to conversion.

60499800 A

ARRAY BUFFER [1000]; ITEM BUFWD C(lO);
ITEM I;
DEF JB(I) #1-(1)/10*10#;
DEF JW(I) #1/10+1#;
ITEM LETTERS C(26)=

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
I=O;
ADD(BUFFER,3,"ABC");
ADD(BUFFER,10,C<3,10>LETTERS);

.
PROC ADD(SBUF ,(NCHARS),(CHARS));
BEGIN
ARRAY SBUF; ITEM SBUFW C(lO);
ITEM NCHARS, CHARS C(lO);
ITEM I, L;
XREF PROC ERROR;
IF NCHARS LQ 0 OR NCHARS GR 10
THEN

ERROR ("ILLEGAL NCHARS");
IF JB(I)+NCHARS LQ 10
THEN

C<JB(I),NCHARS>SBFW[JW(I)] =
C< O,NCHARS>CHARS;

ELSE
BEGIN
L=BY PW-JB(I);
C<JB(I),L> SBFW[JW(I)] = C<O,L>CHARS;
C<O,NCHARS-L> SBUFW[JW(I)+l] =

, C<L,NCHARS-L>CHARS;
END

I=I+NCHARS;
END #ADD#

Figure 5-10. Use of C Function to Increase
Character String Size

FUNC DECIMAL((N)) C(20);
BEGIN
ITEM N;
ITEM K, DIGIT;
ITEM NEG B;
ITEM STR C(20);
STR=" ";
IF N EQ 0 THEN BEGIN

NEG=N LS O;
N=ABS(N);
K=21;

C<l9,1> STR="O";
RETURN;
END

FOR DIGIT = N-N/10*10 WHILE N NQ 0 DO
BEGIN
K=K-1;
C<K,l> STR =DIGIT+ "0";
N=N/10;
END

IF NEG THEN C<K-L,l> STR="-";
DECIMAL=STR;
END

Figure 5-11. Use of C Function for Number Conversion

BIT FUNCTION

The bit function extracts the specified number of consecu­
tive bits from any specified item of type I, U, R, or C. The

60499800 A

result of a bit function always is data type U, even if the
bits are extracted from a different type of item.

A bit function cannot be used to obtain the absolute value of
an integer. In the following example where INT contains a
negative value, the result is probably a very large, positive
number:

B<l,59>INT

The format of the bit function is:

B<start,number> identifier

start

number

identifier

Arithmetic expression indicating the first
bit to be extracted. Bit positions are
numbered from O at the left of the item.

Arithmetic expression indicating the
number of consecutive bits to be ac_­
cessed. The value of (start+ number)
should be within the length of the item. If
a number parameter is omitted, a single
bit is extracted. Number can be a
maximum of 60.

If the data type of the item accessed is C,
the function can cross word boundaries
and the maximum value for
(start +number) is 1440 (240 is the maxi­
mum number of characters allowed in a
string). If the data type of the item is not
C, however, the maximum value for
(start + number) is 60.

Name of scalar or array item from which
bits are to be extracted. Can be item of
any data type except B or S, but the result
is always data type U.

Bit functions extract beads from the item specified, not
from the word in which the item is located. For instance,
assuming a one-word array as shown in figure 5-12,
B<29,2> BB[I] extracts bits 29 and 30 from item BB, which
are bits 39 and 40 of the full word WW[I]. 8<30,10> WW[I]
is equivalent to XX[I].

0 10

I AA I

ARRAY WORD;
ITEM AA

BB
cc
xx
WW

30

BB

WW

(0,0,10),
(0,10,30),
(0,40,20),

U(0,30,10),
(0,0,60);

40

I
---xx

cc

Figure 5-12. Bit Function Example A

59

I

5-9

EXAMPLES OF BIT FUNCTION USE

The first two examples show machine-dependent code.

1. An infinite operand if hardware compatible with
CYBER 170 hardware (coefficient of 4000 or 3777
depending on a positive or negative operand) can be
checked by:

DEF INF(X) # B<0,12>X EQ 0"4000"
OR B<0,12>X EQ 0"3777" #;

2. An octal number in item N is converted to a string to be
displayed as shown in figure 5-13.

FUNC DISPLAY ((N)) C(20);
BEGIN
ITEM N;
ITEM I, DIS C(20);
FOR I=O STEP 1 UNTIL 19 DO

C<I> DIS=B<I*3,3> N+"O";
DISPLAY=DIS;
END

Figure 5-13. Bit Function Example B

3. An integer variable from status list OPTION is used as a
Boolean array as shown in figure 5-14. The item SET
might be nag bits.

5-10

STATUS OPTION LIST, MAP, CROSS, TRACE;
ITEM SET;
DEF OFF # EQ 0 #;
DEF ON # EQ 1 #;

B<OPTION"TRACE"> SET=l;

IF B<OPTION"MAP"> SET ON AND
B<OPTION"CROSS"> SET OFF THEN •••

Figure 5-14. Bit Function Example C

4. Fields within an array item T are accessed by a
subscripted array reference, even though the array is
declared to have full-word items. The bead function
defines three 20-bit fields in each array item. The
example in figure 5-15 sets the pseudo-array item
TT(lO) to O.

ARRAY [26]; ITEM T;
DEF TT(I) # B<((I) - (I) I 3*3) * 20, 20> T[l/3] #;
ITEM A, B;

A=6;
B=4;
TT (A+ B)=O;

Figure 5-15. Bit Function Example D

60499800 A

MULTIWORD AND PART·WORD ARRAYS 6

An array is declared by an array header followed by an item
declaration describing the named entity in that array. In
section 4 the declaration was shown with the format:

ARRAY name[dimension bounds];

ITEM name type;

For example, ARRAY[9]; ITEM ENTRY; defines an array of
10 entries, each one word in size. A reference to
ENTRY [2] obtains the third word in the array. The total
number of entries must be less than 65535. SYMPL arrays
are not limited to one-word entries, however.

Assume an entry of 30 characters occupying 3 words.
The array would be declared:

ARRAY [9] P (3);
ITEM THREEWDS C(0,0,30);

A reference to THREEWDS(2] then obtains the third
entry in the array, which is 30 characters long.

Suppose the entry has three words of related, but not
identical, items. Rather than a 30-character string, an
entry might consist of three separate items: a header word,
an identifier name, and a pointer. The first and last words
are data type integer, while the middle word is data type C.
One means of describing this situation is through three
arrays, but such declarations neither show the relationships
between arrays nor off er the convenience of passing a single
parameter to a subprogram. By using multi word array
entries, the relationship can be maintained. To describe the
three words suggested above:

ARRAY ALLTHREE[9] S(3);
ITEM HEAD I(O),

IDENT C(l,0,10),
PTR I(2);

Subscripts (0), (1), and (2) determine the word in the
entry in which the named item is to appear.

A reference to IDENT[9] picks out the second word of the
last occurrence of the entry. Because the array is described
with an S instead of a P, IDENT[9] occupies the next to the
last word of storage allocated for that array. Use of
ALLTHREE as a parameter to a procedure makes all
occurrences of HEAD, IDENT, and PTR available to that
procedure. The called procedure must have a formal
parameter array with fields defined the same.

As an alternative to having more than one word, an entry
can have less than one word. Consider a list of characters A ~~
through Z right-justified and zero-filled such as the
FORTRAN compiler establishes for an array described by
DIMENSION ALPHA(26) and DATA/ALPHA/. This array
could be declared:

ARRAY[25] P(l);
ITEM ALPHA C(0,54,1) =

["A", "B", "C", ••• "Z"];

A reference to ALPHA[lO] obtains the 6-bit letter K,
not 60 bits.

60499800 A

Further, one physical word of the array can have more than
one item defined within it. Consider the 26 letters left­
justified in the left-hand side of the word, with an address in
the lower 18 bits-of the word. The array with such an entry
could be described:

ARRAY WHERE[25] P(l);
ITEM ALPHA C(0,0,1),

ADDR U(0,42,18);

Notice that the two item descriptions define only the
leftmost 6 bits and the rightmost 18 bits of the word.
Array item descriptions need not account for all bits in
a word.

One further capability, overlapping, is possible in SYMPL
arrays. A given bit in a word can be defined as part of more
than one item. Suppose, in array WHERE above, the
program needed to access the entire word, not just a part of
a word. A third item, integer ALLOFIT, can be declared as
shown in figure 6- la.

Efficient overlapping of Boolean items can provide for
testing many conditions with one elementary statement. In
the example shown in figure 6-lb, testing B3 combines the
tests on Bl and B2. B3 is true if either Bl or B2 is true.
Testing is accomplished with one IF statement. The
overlapping feature gives SYMPL capabilities achieved in
FORTRAN by the EQUIVALENCE statement and in
COMPASS by EQU.

a. ARRAY WHERE[25] P(l);
ITEM ALPHA C(0,0,1),

ADDR U(0,47 ,18),
ALLOFIT;

b. ARRAY [10];
ITEM Bl B(0,0,1),

B2 . B(0,1,1),
B3 B(0,0,2);

IF B3 THEN GOTO FIN AL;

Figure 6-1. Item Overlapping

The only limits in combining multiword and part-word item
descriptions are governed by physical word size:

All character data must be aligned at 6-bit boundaries.

Only items of data type C can cross word boundaries.

Items of data types other than C must be restricted to
word boundaries.

COMPLETE ARRAY
DECLARATION SYNTAX
The array discussion in section 4 and the examples above
made use of abbreviated for ms of array declarations. The

6-1

full array declaration, which allows multiword, fullword, or
part-word entries to be combined in one of two storage
formats is:

I ARRAY name [low:up,low:up, .•.] st (esize);

I
I

name

low

up

st

esize

Identifier specifying the name of the array. It
can be omitted unless the array is referenced
in an XDEF, XREF, or BASED ARRAY decla­
ration or a LOC function. No type is associ­
ated with the name.

Lower bound of a dimension of the array.
Must be expressed as an integer constant. Any
value, including a negative value, can be
specified, although a value of O offers exe­
cution efficiencies. If omitted, a value of O is
assumed and the following colon must also be
omitted.

Upper bound of a dimension of the array. Must
be expressed as an integer constant. Can be
positive or negative. Must be equal to or
greater than the preceding low with which it is
paired.

Structure of the array in storage:

s

p

Serial in which all the words of one
element are allocated contiguously.

Parallel in which the first words of each
entry are allocated contiguously, followed
by the second word of each entry, and so
forth.

Number of words required to hold one entry,
expressed as an l.Dlsigned integer. If esize is
omitted, 1 is assumed. esize must be less than
2048 words.

The ITEM declaration must immediately follow the ARRAY
declaration. The format of the ITEM declaration for an
array is:

6-2

ITEM name type(ep,fbit,size)=[preset],
name type(ep,fbit,size)=[preset], ••• ;

name

type

ep

fbit

size

Name of element in the array.

Type of element: I, U, R, C(lgth), B, or
S:stlist. If omitted, I is assumed.

Entry position. Word number within the
element where the high-order bit of the item
occurs, starting from O. Must be expressed as
an unsigned integer constant. If omitted, 0 is
assumed.

First bit. Beginning position of item within
the word ep, counting from 0 on the left. Must
be expressed as an unsigned integer constant.
For a character item, character bit position
0,6, ••• ,54. For other type items, bit number 0
through 59. If omitted, 0 is assumed.

Item length expressed as an unsigned integer
constant. For a character item, length is the
number of characters not to exceed 240. For
other type items, length is in bits not to
exceed 60. R type data must have a size of

60. If size is omitted, 1 is assumed for
Boolean and character, and 60 for all other
data types. Only C type data can cross word
boundaries.

preset Initial value for the item expressed as a series
of values. The values must be arranged in the
same order as the allocation of storage order
and separated by commas. If omitted, no
values are preset at load time.

If the entire field descriptor (ep,fbit,size) is omitted,
defaults are as described above. If one parameter appears
within the parentheses, it is assumed to be ep; two
parameters are assumed to be ep and fbit.

The type indicator for an array item must specify the
position the item occupies in the entry. For 60-bit items of
type I, U, B, R, or S, position information can be abbrevi­
ated, but the word position is required. The three examples
shown in figure 6-2 are all valid for an array declared as
ARRAY LOOK[lOO] (3).

ITEM A
B
c

BEGIN
ITEMA
ITEMB
ITEMC
END

ITEMB
c
A

(0)1
B(l,0,60),
C(2);

I(O,O);
B(l);
R(2,0,10);

B(l),
C(2,0),

(0,0,60);

Figure 6-2. Array Item Declarations

Notice that for data type C the format is not the same as
for a scalar. For a 12-character item:

Scalar C(l2)

Array item C(ep, fbit, 12)

An example of part-word items in an array with single-word
entries is shown in figure 6-3.

H+r

ARRAY DESCRIPTORS (1);
ITEM N B(0,0,1),

V B(0,1,1),
A B(0,2,1),
KIND U(0,27,5),
TYPE U(0,32,5),
SCOPE U(0,37 ,5),
ADDR I(0,42,18);

27 32 37 42

I KIND I TYPE I SCOPE I ADDR

Figure 6-3. Array With Part-Word Items

59

60499800 B

When more than one item references the same field in the
same word, the programmer is responsible for the results
when data types are not alike. In the example in figure 6-4,
INT[l] and CHAR[l] ref er to the same word, but the types
are different. Because of the differences in data type,
different results are obtained from an assignment
statement:

INT[l]=l Sets right-justified integer 1.

CHAR[l]=l Sets left-justified character A.

ARRAY CONST[24] S(3);
BEGIN ITEM IDENT C(0,0,8);

ITEM KIND I (l);
ITEM INT 1(2);
ITEM CHAR C(2,0,10);

END

Figure 6-4. Duplicate Field Item References

PARALLEL AND SERIAL ARRAYS
The capability to control array storage allocation is one of
the outstanding features of SYMPL. For arrays with one­
word entries, the distinction between P and S is meaningless.
When multiword arrays exist, however, a parallel structure
can decrease execution time.

For serial arrays, all words of the entry appear together.
This is the normal structure for arrays such as the file name
table in central memory resident or a FORTRAN double
precision or complex array where entry size would be 2.

For parallel arrays, only entry words with the same entry
position appear together. The structure can be visualized as
an array of word [O] followed by an array of word [1], and so
forth.

During execution, subscript calculations are faster for
parallel arrays. Consequently, parallel arrays should be
specified whenever possible. To access ONE[I], for instance,
requires calculation of:

Parallel

Serial

Address of ONE[O] + I

Address of ONE[O] + 3 * I
Assuming. an array SHOWIT with a 3-word entry containing
three integer items, the different storage structures for
serial and parallel allocation are shown in figure 6-5.

When an array item contains character data of more than 10
characters, the serial and parallel allocations still pertain to
each 10-character word of the item within each word of the
entry. Only items of data type C can cross word boundaries.
Figure 6-6 compares serial and parallel allocation when
multiword items are declared. For serial entry S, the two
words of S[l] are contiguous. All entries with subscript [1]
appear before any entries with subscript [2]. For parallel
entry S, the two words of S[l] are not contiguous. All of
entry S appears before any of entry T. The parallel
structure is maintained within each entry.

PRES ETTI NG ARRAYS
The first 6000 words of an array can have preset values. An
array item is initialized by a string that contains one value

60499800 A

for each occurrence of the item within the array. Pre­
setting occurs for each item. The array declaration
specifies what an item should be, not what a word should be.
For example:

For a three-word array with one item in which
occurrences are to be initialized to increasing integer
values:

ARRAY LOOK [2];
ITEM ONE=[0,1,2];

ITEM ZERO (0,0,60),
ONE (1,0,60),
TWO (2,0,60);

Serial Parallel

ARRAY [2] S (3); ARRAY [2] P (3);

ZERO [O] ZERO [O]

ONE [O] ZERO [1]

TWO [O] ZERO [2]

ZERO [1] ONE [O]

ONE [1] ONE [1]

TWO [1] ONE [2]

ZERO [2] TWO [O]

ONE [2] TWO [1]

TWO [2] TWO [2]

Figure 6-5. Serial and Parallel Allocation

A three-word array, SHOW, with two items in a single word,
in which the occurrences of the first item are to be 1, 2, 3
and the second item A, B, C, is shown in figure 6-7. Bits 30
through 53 are undefined in the resulting array.

The string of values can be specified in abbreviated form,
depending on the program needs:

If not all occurrences are to be initialized, a null value
must be established by consecutive commas.

Trailing commas can be omitted.

If all occurrences are to be preset to the same value, an
abbreviated format can be specified. To set ONE to all
0, for example:

ONE=[3(0)]

An example of array presetting when not all occurrences are
to be initialized is shown in figure 6-8. The elements
without preset values are undefined, not zero. An example
of array presetting with character data when not all
occurrences are to be initialized is shown in figure 6-9.

If a number of occurrences are not to be initialized, an
abbreviated format can be specified. For example, [10(),l]
is equivalent to [,,,,,,,,,,1].

·6-3

s

T

<

Serial

ARRAY SER[1:2] S (4);
ITEM S C(0,0,12)=["BBBBBBBBBBBB",.

"CCCCCCCCCCCC"],
T C(2,0,12)=["EEEEEEEEEEEE",

"ZZZZZZZZZZzZ"];

BBBBBBBBBB

BB

EEEEEEEEEE

EE

cccccccccc

cc

zzzzzzzzzz
zz

Parallel

ARRAY PAR [1:2] P (4);

} s [1]

} T [1]

} s [2]

} T [2]

ITEM S C(0,0,12)=["BBBBBBBBBBBB",
"CCCCCCCCCCCC"],

TC (2,0,12)=["EEEEEEEEEEEE",
"ZZZZZZZZZZZZ"];

/ BBBBBBBBBB s [1] word 1

I cccccccccc s [2] word 1

BB s [1] word 2

'cc s [2] word 2

/ EEEEEEEEEE T [1] word 1

I zzzzzzzzzz T [2] word 1

EE T [1] word 2

\, z z ~T [2] word 2

Figure 6-6. Serial and Parallel· Allocation
of Multiword Items

Presetting occurs without any check of array size. As a
result, overlapping of values can occur. No error occurs if
array bounds are exceeded. In the example in figure 6-1 Oa,
item X is initialized here only because of its position in
relation to T. The compiler does not guarantee that array X
immediately follows array T unless these declarations are
within a COMMON block.

In the example in figure 6-lOb, the preset values for BB, and
then CC, overlap the preset values for AA. DD is initialized
to the preset values of CC. This order is not guaranteed
unless these declarations are in COMMON.

6-4

0

ARRAY SHOW[2];
ITEM FffiST (0,0,30)=[1,2,3],

SECOND C(0,54)=["A", "B", "C"];

29 30 53 54

1

2

3

Figure 6-7. Array Presetting Example A

ARRAY [10];
ITEM T=[,2(1,,2),,,3];

1

2

1

2

3

T [O]

T [1]

T [2]

T [3]

T [4]

T [5]

T [6]

T [7]

T [8]

T [9]

T [10]

Figure 6-8. Array Presetting Example B

ARRAY [3] S (2);

A

B

c

ITEM H C(0,0,12) = ["T'', ,"EEEEEEEEEEEE"];

Tbbbbbbbbb

b b

EEEEEEEEEE

EE

} H [OJ

} H [1]

} H [2]

Figure 6-9. Array Presetting Example C

59

60499800 B

a. ARRAY [1]; ITEM T=[l,2,3;4,5];
ARRAY [4]; ITEM X;

1 T [O]

2 T [l]

3 X [O]

4 xrn
5 x [2]

x [3]

x [4]

b. ARRAY A;
ITEI\1 AA=[l,2,3,4,5];
ARRAY B;
ITEM BB=[6, 7 ,8,9,10];
ITEM CC=ll;
ARRAY D [1:3];
ITEM DD;

1

6

11

8

9

10

AA [O]

BB [O]

cc

DD [1]

DD [2]

DD [3]

Figure. 6-10. Array Presetting Example D

Arrays can be initialized through status constants as well as
the more common integer, Boolean, or character constants.
Assume an array with two one-word entries as shown in
figure 6-11. The second entry is associated with a status

I value from st~tus list KIND.

Presetting of items that occupy only part of a word is the
same as for whoie wm~·d or multiword items. The setting of
arrays TENSER and TENP AR in serial and parallel struc­
tures, respectively, is shown in figure 6-12.

PART-WORD ITEM EFFICIENCY
When an array with _parf-word items· is being designed,
efficiencies in access can be planned. Although SYMPL
allows fields to occupy almost any position in an entry, good
programming practice favors certain constructions for data
of certain types.

When two items in different arrays are frequently
exchanged, execution proceeds more quickly when the items
occupy the same position within a word.

BOOLEAN DATA
The most efficient length for Boolean data is one bit. When
a Boolean item is one bit in length, a shift to bit 0 and a sign

60499800 B

STATUS KIND NUMB, INT, REAL, BOOL, CHAR;
ARRAY STAN [4] S(2);
BEGIN

END

ITEM !DENT C(0,0,10)=
["SIN",,, "SUBS", "ABS"];

ITEM SKIND S:KIND(l)=
[S"REAL",,,S"CHAR", S"NUMB"];

SI N ID ENT [O]

2 SKIND [O]

ID ENT [1]

SKIND (1]

ID ENT [2]

SKIND [2]

SUBS ID ENT [3]

4 SKIND [3]

ABS !DENT (4]

0 SKIND (4]

Figure 6~11. Array Presetting Example E

test are the only instructions needed to determine whether
it is TRUE or FALSE. If the item is more than one bit,
however, the field must be masked and tested for a value
other than O.

An exception exists when one item overlays two others. In
the following, item B1ANDB2 can be used to test for Bl
or B2:

ITEM Bl B(0,18,1),
B2 B(0,19,1),
BlANDB2 B(0,18,2);

Boolean data is most efficient in bit O. No shifts or masks
are required to access it.

Efficiencies in decision tables can be achieved when Boolean
values are packed within a single word, as shown in
figure 6-13. The STATUS function assigns integer values 0
through 3 to FO. The dimensions of array CHARACTERS
are assigned through status functions and are [0,3]. To
check whether a delete operation is valid, the following IF
statement can be used:

IF VALIDDELETE [FO] THEN ZAPIT;
ELSE ERROR;·

INTEGER DATA

Signed integer data (declared by data type I) can be accessed
more quickly on CYBER 170 compatible systems when the
field is 60 bits or 18 bits and the field begins in bit 0 or the
field occupies bits 42-59. Signed integers are faster than
unsigned integers. Unsigned integers (declared by data
type U) are accessed more quickly when the field ends with
bit 59.

6-5

SeriaI allocation:

ARRAY TENSER[4] S (2);
BEGIN
ITEM A I(0,0,30)=[4,,3,,6];
ITEM B I(0,30,15)=[,3,, 7];
ITEM C C(l,0,5)=["LLLLL", "BBBBB", "CCCCC",

"T'ITM''', "EEEEE"];
END

0 29 30 44 45 59
:-

4 A [O] , B[O]

LLLLL C [OJ

3 A [1] , B [1]

BB BBB . c [1]

3 A [2] , B [2]

CCC CC c [2]

7 A [3] , B_ [3]

TTTTT c [3]

6 A [4], B [4] .

EEEEE c [4]

Parallel allocation:

. ARRAY TENPAR[4] P(2);
BEGIN

-·ITEM A I(0;0,30)=[4,,3,,6};
. ITEM B I(0,30,15)=[,3,, 7]; ·
ITEM C C(l,0,5)=["LLLLL", "BBBBB", "CCCCC",

"'I'T'l'TT'', "EEEEE"];
END

0 29 30 44·.45 59

.4 AfO], B to]
,,

3 A [1] , B [i]

3 A [2] , B [2]

7 A [3] , B [3]

.6 A (4] , B [4]

LLLLL C [O]

~

BBBBB c [1]

CC CCC c [2]

TTTTT c [3]

EEEEE c [4]

Figure 6-12. Array.Presetting Example F

STATUS FO SQ, WA, IS, l\K;
ARRAY CHARACTERS [FO"SQ":FO" AK"];

BEGIN ITEM 01 B(0,0,1) = FALSE,
02 B(0,1,1) =FALSE,
03 B(0,2,1) = TRUE,
04 B(0,3,1) = TRUE,

V ALIDDELETE B(0,0,4);
END

Figure 6-13. Packed Boole,,.n Array

ACCESSING ARRAY ITEMS
A particular occurrence of an array item is referenced by:

6-6

item-name [subscript]

subscript Arithmetic expression indicating occur­
rence of item. Can be signed integer
constant, an unsigned integer constant, a
scalar, array item, or an expression that
provides such a value.

Both of the following are valid:

TAB [I+ TAB[3]·* 2]

X [-3] where ARRAY [.:.5:5]; ITEM X;

SYMPL does not check array bounds during execution. If the
subscript is omitted from a reference to an array item, O is
assumed. A diagnostic is generated unless the array bounds
are 0:0.

When multiword items are referenced, the format is the
same. The compiler generates code needed to extract the
item from its serial or parallel array. Code generated for
parallel arrays is more efficient. ·

When a part-word item is referenced, the compiler gener­
ates code that:

Masks the item to extract it from its word.

Shifts it to the position appropriate for its data type.
Character data is left-:-justified and signed integer data
is right-justified with sign extension, as described in
section 4.

Only the referenced item is affected by access. No other
part of the word in which the item is positioned is disturbed.

60499800 A

PARAMETER USAGE 7

The usual form of a procedure declaration is shown in
figure 7-1. The formal list of parameters identifies param­
eters to be passed to the procedure when the procedure is
called by a reference to its name.

PROC name (formal list); procedure header

BEGIN

} procedure body

END

Figure 7-1. Procedure Declaration Structure

The procedure declaration establishes formal parameters
that are used within the procedure body declaration. At the
time the procedure is to execute, the actual parameters
accompanying the procedure reference take the place of the
formal parameters. The programmer is responsible for
correspondence between the formal parameters and actual
parameters. SYMPL checks neither the number nor type of
parameters on a call during compilation or execution.

Formal and actual parameters are illustrated in figure 7-2a.
Assume procedure SUB. The header for nested procedure P
defines three formal parameters: A, BOUND, and S.
Parameters A and BOUND are used within P to check
whether the array bound is positive and to initialize the
array items to a zero value. Parameter S returns a
character constant to the calling procedure SUB. The
header specifies that parameters A and Sare to be passed by
their address, but BOUND is to be passed by value.

When procedure P is called, actual parameters TAB, 64, and
ETAT are substituted, respectively, for formal param­
eters A, BOUND, and S. Procedure P executes as if the
lines containing the comment* were written as shown in
figure 7-2 b.

PROCEDURE DECLARATION
AND CALL

The format for a procedure header with formal parameters
is:

PROC name (paraml, param2, ••.);

name

60499800 A

Any SYMPL identifier (1 through 12 letters, $,
or digits beginning with a letter) that is not a
reserved word. Names of intrinsic functions
are not reserved words. If the procedure is to
be called by a program written in a language
other than SYMPL, only the first seven char­
acters are used and the first character cannot
be the dollar sign.

a. PROC SUB;
BEGIN

PROC P(A,(BOUND),S);
BEGIN
ARRAY A; ITEM AA;
ITEM BOUND, S C(lO);
ITEM I;
XREF PROC ERROR;

#*#IF BOUND LS 0
#*#THEN ERROR("BOUND NEGATIVE");
#*# FOR I=O STEP 1 UNTIL BOUND DO

AA[I]=O;
#*# S=''INIT";

END# PROC P #
ITEM ETAT C(lO);
ARRAY TAB[64]; ITEM T;
P(TAB, 64, ET AT);

END # PROC SUB #

b. BOUND=64;
IF BOUND LS 0

THEN ERROR ("BOUND NEGATIVE");
FOR I=O STEP 1 UNTIL BOUND DO

T[I]=O;
ETAT="INIT";

Figure 7-2. Formal and Actual Parameters Example

param Name of any SYMPL entities listed below.
Later in this section, each type of parameter
is discussed separately.

Array Based array

Function Procedure

Label Item

If the name specifies an item, it can be
enclosed in parentheses to indicate a call-by­
value rather than a call-by-address.

Within the procedure body, all formal parameters of any
type except label must be declared. Any formal parameter
not declared in the body is assumed to be a label parameter.

SYMPL makes certain assumptions about the formal
parameters, depending on their type, as shown in table 7-1.
Again, depending on the type, table 7-2 lists reasonable
entities to pass as actual parameters. Notice that an array
or based array formal parameter can be passed in several
forms. Switch elements cannot be passed as parameters. (A
switch can be used as an external entity, however.)

7-1

TABLE 7-1. FORMAL PARAMETER ASSUMPTIONS

Formal Assumed
Parameter Content of

Declaration Parameter Word

ITEM I Address of item I

ARRAY A First word address of array A

BASED Address of pointer to BA
ARRAY BA

LABEL L Address of label L

FPRC FP Address of entry to procedure FP

FUNC F Address of entry to function F

TABLE 7-2. POSSIBLE ACTUAL PARAMETERS

Formal Reasonable
Parameter Actual Parameter

Item for Item name, (item name)
call-by-
address

Item for Item name, arithmetic expres-
call-by- sion, subscripted array item
value

Array Array name, based array name

Based P function, item name, expres-
array sion whose result is a pointer

Label Label nam·e

Procedure Procedure name

Function Function name

SCALAR AND ARRAY ITEM NAMES
AS PARAMETERS

Any scalar or array item of any type (I, U, R, C, S, or B) can
be specified as a formal parameter. Within the procedure,
the formal declaration syntax is the same as a declaration
outside the procedure.

The formal parameter list indicates whether a given
parameter is to be passed by value or address. This is
illustrated in figure 7-3. The corresponding actual param­
eter for W or Z is assumed to be a local variable with the
address of W or Z; for X or Y, the assumption is that they
are the actual values to be used for X or Y. Call-by-address
is required for any parameter whose value is to be returned
to the calling subprogram since call-by-value parameters
work with a temporary copy of a variable.

An actual parameter can be a scalar name, constant, array
item name, or expression. (When an actual parameter is the
name of an item enclosed in parentheses, SYMPL considers
it to be an expression.) Consequently, the procedure
receives the address of a temporary location containing the

7-2

PROC P(W, (X), (Y), Z);
BEGIN ITEM W R,

END #P#

XI,
Y C(14),
Z B;

Figure 7-3. Passing Parameters by Value or Address

scalar value instead of the address of the scalar itself. Such
a parameter does not create the instruction savings of a
cal~by-value parameter. It does, however, provide the
protection for the scalar value accorded all call-by-value
parameters.

SYMPL performs no conversions when the type of a formal
parameter is not the same as the type of the actual
parameter:

In the following, X=F ALSE at the end of the procedure
since 1.0 is type real and has a format that is not the
same as integer type 1:

R(l.O, 1, X);
PROC R((A), {B), C);
ITEM A B,B B,C B;
C =A EQ B;

No BEGIN and END pair is associated with procedure R.
The declarations for a procedure can appear before the
executable statement. Since C=A EQ B constitutes the
entire executable portion of R, a compound statement is not
required. Many of the remaining examples in this section
use such a single elementary statement in the procedure
called.

EXPRESSIONS AS ACTUAL PARAMETERS

Expressions are evaluated and the result is passed to the
procedure as a temporary storage word. The procedure
receives the address of a temporary location containing the
result of the evaluation.

In figure 7-4, when procedure P is called, the statement
changing W in the procedure has no effect. The temporary
storage word for A+B is changed.

ITEM A=l, B=2;
P(A+B, B, 3);

PROC P(W, (X), (Y));
BEGIN ITEM W, X, Y;
ITEM I;
X=X+l;
FOR I=O STEP 1 UNTIL X DO
W=W+Y;
END# PROC P #

Figure 7-4. Expression as Parameter

60499800 A

SUBSCRIPTED VARIABLES AS
ACTUAL PARAMETERS

Subscripted variables are considered to be expressions. The
procedure receives the address of a temporary location
containing the result. As with parameters called by value,
subscripted variable parameters modified within the pro­
cedure cannot be passed out of the procedure. For example,
assume procedure Pis defined by:

PROC P(A);
ITEM A;
A= O;

When procedure P is called from a program containing the
following statements, T[12]=2 when the calling program
resumes execution:

ARRAY TT; ITEM T;
T[12]=2;
P(T[12]);

If a procedure must modify a subscripted variable, the array
name and the subscript must be passed as separate param­
eters. In the formal array, the variable to be modified must
be described as the same field as the actual item in the
actual array. For example, assume a procedure Q defined,
as shown in figure 7-5. When procedure Q is called from a
program containing the following statements, T[l2]=0 at the
end of the procedure. Items X and T must have identical
field descriptions:

ARRAY TT[lOO]; ITEM T;
T[12]=2;
Q(TT,12);

PROC Q(XX, Y);
BEGIN
ARRAY XX; ITEM X:
ITEM Y;
X[Y]=O;
END

Figure 7-5. Subscripted Variable as Parameter

CHARACTER STRINGS AS PARAMETERS

Character strings are passed to a procedure without any
accompanying information about length. The programmer
writing the procedure is responsible for knowing the length.

The declared length of the string cannot be passed to the
procedure through a variable in the parameter list. ITEM
STRING C(N) is illegal in a procedure since the syntax of an
ITEM declaration requires a character string length to be
expressed as an integer constant. The compiler generates
code based on the declared length of the formal parameter.
If the actual parameter is not the same length, unexpected
results can occur.

The actual parameter string should have a length longer than
or equal to the formal parameter string length. If it is
longer, only the number of characters specified by the ITEM
declaration are used or altered. An actual parameter string
shorter than the formal parameter string can produce
unpredictable results, since characters following the actual
parameter are accessed. The compiler does not guarantee
the contents of those characters.

60499800 A

No padding occurs when an actual parameter string is
shorter than a formal parameter string. In the example in
figure 7-6, the call to procedure Q sets the first 10
characters of LEFT to the value RIGHT; the last 10
characters are undefined.

ITEM LEFT C(20), RIGHT C(lO), JUNK C(lO);
Q(LEFT ,RIG HT);

PROC Q(S, T);
ITEM S C(20), T C(20);
S=T;

Figure 7-6. Character Strings as Parameters

LABEL NAMES AS PARAMETERS

A label name can be used as an actual parameter. A formal
parameter declaration for the label can, but need not,
appear in the procedure declaration. It makes debugging
easier and is generally good programming practice to
declare it, however. The parameter in the transfer vector is
assumed to be the address of a label.

PROCEDURE NAMES AS PARAMETERS

A procedure name can be specified as a formal parameter.
Within the procedure, the formal parameter declaration is
not the same as a procedure declaration elsewhere. The
parameter in the transfer vector is assumed to be the
address of the entry to the procedure. SYMPL calls the
procedure by simulating a return jump.

A formal parameter that is a procedure name must be
declared with:

FPRC name, name, ••• ;

name Identifier of a procedure.

The formal declaration of a procedure name does not include
any parameters to that procedure. Such parameters must be
established for use in the procedure. Assuming procedures P
and S as shown in figure 7-7, a call P(l 7 ,S) results in a call
to procedure S with 17 as a parameter. The programmer
writing procedure P is responsible for knowing that pro­
cedure S requires an integer parameter X.

PROC P (N, Q);
BEGIN ITEM N;

FPRC Q;
Q(N);
END# P #

PROC S (X);
BEGIN ITEM X;

END# S #

Figure 7-7. Procedure Name as Parameter

A procedure no.me in a parameter list should be programmed
carefully. Since the called procedure must supply param­
eters and SYMPL checks neither the number or type of

7-3

parameters, any execution-time errors are difficult to
debug. In the example in figure 7-7, calls to procedure P
must supply only the names of the procedures, all of which
require exactly the same type of parameters.

ARRAY NAMES AS PARAMETERS

Any array or based array can be specified as a formal
parameter. Within the procedure, the formal parameter
declaration syntax is the same as array declaration outside
of the procedure, including the descriptions of items in the
array.

When the formal parameter is specified with a BASED
ARRAY declaration, the actual parameter must be a pointer
or LOC function, or an expression whose value is a pointer.
Access of a formal based array is inefficient and should be
avoided. Such access is justified only when the intent of the
procedure is to move the based array.

When the formal parameter is specified with an ARRAY
declaration, the actual parameter must be an array or based
array. An array name can be subscripted; this has the effect
of imposing the first element of the formal array onto the
designated element of the actual array.

The first word address of an array is passed to a proc~ure
without any accompanying information about array bounds,
and SYMPL performs no subscript checking. Consequently,
the array bounds are not required in the formal array
declaration. The programmer writing the procedure is
responsible for bounds and subscript checking.

If the size and structure are not the same for the formal and
actual arrays, the wrong elements are accessed. The
programmer is responsible for defining the correct field
positions in the formal array, and for extracting or storing
the desired fields in the actual array.

For single-dimension single-word arrays, bounds can be
omitted in the formal declaration since parameters passed
to a procedure can control array size. In the example in
figure 7-8a, calls to procedure Q set both array A and
array B to zero. For multidimension arrays or multiword
array items, the formal declaration must be correct to
ensure proper results. In figure 7-8b, the first call to
procedure P sets array A to zero. The second call, however,
erroneously sets more than the 37 items of array B.

EFFICIENCY IN PARAMETER
LISTS
The calling sequence for a procedure with parameters is
lengthy. Several techniques can be used on source programs
to reduce the size of the generated code or to reduce the
time required for execution. Three such techniques are: use
of call-by-values for scalars or array items, reuse of a single
parameter list, and the DEF capability.

7-4

a. ARRAY A[0:64]; ITEM AA;
ARRAY B[27:63]; ITEM BB;
Q(A,64);
Q(B,63-27);

PROC Q (X, (N));
BEGIN
ITEM N, I;
ARRAY X; ITEM XX;
FOR I=O STEP 1 UNTIL N DO

XX[I]=O;
END# Q #

b. ARRAY A[64]; ITEM AA;
ARRAY B[27:63]; ITEM BB;
P(A, 64);
P(B, 63-27);

PROC P (T);
BEGIN
ARRAY T; ITEM TT;
ITEM I;
FOR I=O STEP 1 UNTIL 64 DO

TT[I]=O;
END

Figure 7-8. Array Names as Parameters

CALL-BY-VALUE PARAMETERS

SYMPL calls subprograms through a return jump instruction.
Actual parameters are passed to the subprogram through a
transfer vector list.

The address of a parameter list is passed in register Al. If
the F parameter appears on the SYMPL compiler call, the
last word in each list contains all zeros as required by the
FORTRAN Extended calling sequence.

The transfer vector list contains local copies of all param­
eters used. The two types of parameters are:

A scalar or array item parameter enclosed in paren­
theses in the formal parameter list indicates that the
parameter is to be called by value rather than by
address. The transfer vector points to a temporary
storage word containing the value. The corresponding
actual parameter is protected by SYMPL.

All other parameters appear in the transfer vector lists
as addresses of memory words containing their values.

Call-by-address parameters require two memory references
to access the parameter. This indirect addressing is less
efficient than the direct addressing possible for call-by­
value parameters.

For program efficiency, call-by-value should be specified for
scalars or array items in a formal parameter list as often as
possible. Call-by-address should be used only when the
parameter is modified within the procedure and the new
value of the parameter is to be returned to the calling
subprogram.

60499800 A

REUSING A PARAMETER LIST

The SYMPL compiler uses the same transfer vector as many
times as possible. Consequently, the size of generated code
can be reduced by rewriting some calls to reference global
identifiers. Consider the following:

A declaration for procedure P is identical to that for
procedure Q:

PROC Q (R, S, T, U, (V));

60499800 A

If the calls are·P(A, B, C, D, F+l) and Q(A, B, C, D, E),
the same transfer vector cannot be used. These two
calls do allow the same transfer vector:

H=l; P(A, B, C, D, H);

H=F+ 1; Q(A, B, C, D, H);

Use of global identifiers, external identifiers, and common
variables must be considered in relation to other modular
programming needs.

7-5

IF AND FOR STATEMENTS

The IF statement allows alternative statements to execute,
depending on whether a Boolean expression is TRUE or
FALSE. The FOR statement simplifies coding of repetitive
operations.

IF STATEMENT
The IF statement has three clauses: ·

The IF clause specifies the Boolean condition to be
tested.

The THEN clause specifies the statement to execute
when the result of the IF clause evaluation is TRUE.

The ELSE clause specifies the statement to execute
when the result of the IF clause evaluation is FALSE.
This clause is optional; if omitted, the statement
following the THEN clause executes when the result is
FALSE.

The IF statement syntax is:

IF Boolean expression THEN statement ELSE statement

Boolean Boolean expression specifying the con-
expression dition to be tested.

statement Any elementary statement or compound
statement. All statements must be ter­
minated with semicolons just as if they
were not associated with IF.

Since the ELSE portion of the IF statement is optional, the
simplest form of the IF statement is:

IF Boolean expression THEN statement;

Both of these are valid IF statements:

IF A EQ 0 THEN T[l]=O; ELSE T[l]=2;

IF A EQ 0 THEN T[I]=l;

ELSE distinguishes between statements that are always
executed and those that execute only when a condition is
false.

The logic of the IF statement is shown in figure 8-1. The
THEN statement executes only when the Boolean expression
is TRUE; the ELSE statement executes only when the
Boolean expression is FALSE.

The differences in execution between the following two
statements

IF A EQ B THEN C=D; E=F; G=H;

and

IF A EQ B THEN C=D; ELSE E=F; G=H;

appears in the logic diagrams shown in figure 8-2. The
second diagram illustrates the execution of E=F; only when
A EQ B; is false.

60499800 A

TRUE

THEN
statement

FALSE

ELSE
statement

Figure 8-1. IF Statement Logic

TRUE FALSE

C=D

E=F

G=H

FALSE

G=H

Figure 8-2. ELSE Statement Logic

8

8-1

All the statements in an IF construct are subject to the
same rules, including punctuation, as other statements in
SYMPL.

The statement can be an elementary statement such as:

BIRD="TROCAN";

The statement can be a compound statement, as shown in
figure 8-3a. The statement can be another IF statement,
FOR statement, STOP statement, and so forth, as shown in
figure 8-3b.

a. BEGIN
BIR D="TROC AN";
TREE=24;
END

b. IF A EQ 0 THEN
IF B EQ 0 THEN

C=l;
ELSE

C=2;

Figure 8-3. IF Statement Example A

A common programming practice is to write every state­
ment following THEN and ELSE as a compound statement.
In this instance the BEGIN and END visually delimit nested
statements, as shown in figure 8-4.

IF A EQ 0 THEN
BEGIN
IF B EQ 0 THEN

BEGIN
C=l;
END

ELSE
BEGIN
C=2;
END

END

Figure 8-4. IF Statement Example B

Punctuation within an IF statement follows the rule that
each elementary statement must be terminated by a
semicolon. Each statement in the IF construct has a
following semicolon. No semicolons are associated with
BEGIN and END.

NESTED IF STATEMENTS

When IF statements are nested, the ELSE portion of an IF
statement is always associated with the innermost nested IF.
A nested IF statement and its corresponding logic flow are
shown in figure 8-5.

It is a better practice, however, to write nested IF
statements as compound statements to avoid confusion on
this point. It makes the code more obvious, and, in terms of
execution time and space, is no more costly. The statement
in figure 8-5 should be written as shown in figure 8-6.

Another example of a nested IF statement, in which C=4
only if neither A nor Bis 0, is shown in figure 8-7.

8-2

TRUE

IF A EQ 0
THEN

TRUE

IF B EQ 0
THEN
C=l;
ELSE
D=l;

FALSE

FALSE

Figure 8-5. Nested IF Statement Example A

IF A EQ 0 THEN
BEGIN
IF B EQ 0

THEN C=l;
ELSE D=l;

END

Figure 8-6. Nested IF Statement Example B

IF A EQ 0 THEN IF B EQ 1 THEN C=l;
ELSE C=2;

ELSE IF B EQ 0 THEN C=3;
ELSE C=4;

Figure 8-7. Nested IF Statement Example C

BOOLEAN EXPRESSIONS IN IF STATEMENTS

Any Boolean expression can be used in an IF statement.
Evaluation of the expression terminates as soon as any part
of the expression determines the results. The example in
figure 8-8a is evaluated as if it were written as shown in
figure 8-8b.

This feature avoids wasteful tests and can result in valuable
protection in a program. For example, in the following the
procedure SQROOT is not called when Xis negative:

IF X GQ 0 AND SQROOT(X) EQ Y
THEN •••

60499800 A

a. IF I GR 0 AND T[I] EQ 0
THEN X=O;
ELSE X=l;

b. IF I GR 0
THEN IF T[I] EQ 0

THEN X=O;
ELSE X=l;

ELSE X=l;

Figure 8-8. Boolean Expression in an IF Statement

Evaluation of two Boolean expre:;sions can be forced by an
expression of the proper form. For example:

IF A EQ BAND A EQ C THEN •••

can be written in a faster executing form:

IF {A-B LOR A-C) EQ 0 THEN •.•

However, clarity and maintainability should be considered
when code is written for faster execution time.

FOR STATEMENT

The FOR statement should be used any time a statement is
to execute at least 3 or 4 times, or any time the conditions
for execution might not exist.

The FOR statement has three clauses:

The FOR clause specifies the conditions under which
the DO clause is to be executed. Those conditions
might result in zero executions.

The WHILE clause or the UNTIL clause specifies the
conditions that terminate the DO clause executions.
The WHILE clause offers execution advantages in
certain cases.

The DO clause specifies the operations to be repeated.
In most instances, the DO clause includes a compound
statement.

An example of a FOR statement that sets each element of
array T to 0 is shown in figure 8-9.

DEF SIZE #1024#;
ARRAY [SIZE]; ITEM T;
ITEM I;
FOR I=O STEP 1 UNTIL SIZE DO T[I]=O;

Figure 8-9. FOR Statement Example

The FOR statement is an extension of the DO statement of
FORTRAN. It differs from DO in several respects, however.
In SYMPL:

The induction variable {loop counter) must be declared
as a scalar before it can be used.

The step value can be negative.

A loop is not necessarily executed once.

60499800 A

The TEST statement can be included in the loop to
cause remaining computations inside the loop to be
bypassed.

A CONTROL statement can affect the optimization the
compiler performs with the statement.

SYMPL version 1.2 introduces program control over the code
generated for FOR loops. Through a CONTROL FASTLOOP
or CONTROL SLOWLOOP compiler-directing statement, a
SYMPL 1.2 program can specify the implementation of the
loop within each individual FOR statement. Execution
advantages can be gained by specifying FASTLOOP; on the
other hand, this specification puts restrictions on the for mat
and use of the FOR statement.

SYMPL versions prior to 1.2 always produced slow loops that
could not be optimized since the compiler could not
ascertain the permanence of all statement characteristics.
The default condition for version 1.2 is SLOWLOOP.

When the programmer knows that a loop has certain
characteristics, however, CONTROL FASTLOOP should be
specified to obtain optimization. The following character­
istics are required for optimization:

The induction variable is type integer or type unsigned
integer with an absolute value that can be expressed in
17 bits.

The variables in the arithmetic expression of the STEP
clause must not be modified.

The variables in the arithmetic expression of the UNTIL
clause, if present, must not be modified inside the
controlled statement.

The controlled statement of the loop is executed at
least once.

The variables in a WHILE clause can be changed in the loop;
however, the current value is always used.

For both fast loops and slow loops, the programmer can
affect code efficiency by properly planning the loop.

Faster execution for slow loops can be achieved by moving
arithmetic expressions outside the loop. In the example in
figure 8-lOa, TAB[J]-1 is evaluated once, but N+2 and
TAB[J] are evaluated every repetition. To avoid evaluation
of arithmetic expressions within the loop, the FOR state­
ment in figure 8-lOa could be written as shown in
figure 8-lOb. Further, any call to a procedure or function
within a loop inhibits optimization.

a. FOR I=TAB[J]-1
STEP N+2 UNTIL TAB[J]-1 DO
TAB[I]=O;

b. S=N+2;
L=TAB[J]-1;
FOR I=TAB[J]-1
STEPS UNTIL L DO
T[I]=O;

Figure 8-10. Evaluation of Arithmetic Expression
in a FOR Statement

8-3

FOR SYNTAX

The general format of the FOR statement is:

FOR induction variable = loop control DO statement;

induction
variable

loop
control

statement

Identifier of data type I, U, S, or R to be
used as the loop counter. Data type R is
not often used. The type of this induction
variable establishes the mode for evalu­
ation of arithmetic expressions in the
FOR statement. When the loop ter­
minates, the current value of the
induction variable is available only if a
jump exits from the loop. If the loop
terminates normally, the induction vari­
able is not defined.

Condition under which the loop is to be
executed. It can take several forms as
noted below.

Statement to be executed as long as the
loop control condition exists. This state­
ment, which is called the controlled state­
ment, can be any elementary or compound
statement, including an IF statement or a
FOR statement. Good programming
practice is to write the controlled state­
ment as a compound statement at all
times.

LOOP CONTROL

For slow loops, evaluation of the test condition occurs at the
beginning of each loop before the controlled statement is
executed. Consequently, the controlled statement can be
bypassed. In the following example T[I]=O is never executed:

L=3;
FOR 1=4 STEP 1 UNTIL L DO

T[l]=O;

Both the test for loop terminating conditions (WHILE
Boolean expression or UNTIL arithmetic expression) and the
increment to the induction variable take place within the
loop.

The loop control has these five forms (the fourth and fifth
forms produce an infinite loop; the programmer is respon­
sible for coding an exit jump):

1. Initial WHILE Boolean expression

2. Initial STEP arithmetic expression WHILE Boolean
expression

3. Initial STEP arithmetic expression UNTIL arithmetic
expression

4. Initial STEP arithmetic expression

5. Initial

initial

8-4

Arithmetic expression g1vmg the initial
value of the induction variable. The
expression is evaluated once at the start
of the FOR statement.

Boolean Boolean expression specifying the con­
expression dition under which looping is to continue.

arithmetic
expression

As long as the expression is TRUE, looping
continues; when the expression is FALSE,
looping does not take place.

Arithmetic expression indicating:

STEP
Clause

UNTIL
Clause

Increment to the induction
variable to be added each
loop. This constant or vari­
able can have a positive or
negative value.

Value after which looping
terminates.

The expression can have a negative, as
well as a positive, value.

The logic of a statement with a WHILE clause and STEP
clause with a slow loop is shown in figure 8-11. For an
UNTIL clause with a positive step with a slow loop, the logic
is as shown in figure 8-12. Figure 8-13 shows the logic of an
UNTIL clause with a fast loop, when a STEP expression can
be positive or negative.

AGAIN

induction
variable =

initial

controlled
statement

induction
variable =
initial +

increment

FALSE

Figure 8-11. Slow Loop Logic Example A

WHILE Clause

The WHILE clause of the FOR statement combines the
capabilities of an IF statement with the looping capabilities
of FOR. For example, the sequence shown in figure 8-14
assigns SOL the minimum value of I, if any, when T[I]=O.

60499800 A

AGAIN

induction
variable =

initial

controlled
statement

induction variable =
induction variable

+increment

NO

Figure 8-12. Slow Loop Logic Example B

controlled statement

induction variable =
induction variable

+ increment

Figure 8-13. Fast Loop Logic Example

60499800 A

SOL=O;
FOR I=O STEP 1UNTIL100 DO

IF T[I] EQ 0
THEN

GOTO FOUND;

FOUND: SOL=I;

Figure 8-14. WHILE Clause Example A

Using the WHILE clause, a FOR statement can be written to
accomplish the same function if it is certain that T[l]=O
exists to stop the loop:

SOL=O;
FOR I=O STEP 1 WHILE T[I] NQ ODO

SOL=I;

Empty compound statements are often useful in FOR
statements with WHILE clauses. For example, the state­
ment shown in figure 8-15 exits from the loop with :vIIN
having the minimum value such that T[MIN] exceeds 0. This
technique is valid only with a slow loop. With a fast loop the
value of the induction variable is undefined on a normal exit.

FOR MIN=O STEP 1
WHILE T[MIN] LQ 0 DO

BEGIN
END

Figure 8-15. WHILE Clause Example B

No form of the FOR statement exists in which the reserved
words FOR and the initial value of the induction variable
can be omitted. That is, a WHILE B DO statement is not
valid. The same results can be achieved, nevertheless,
through use of the DEF statement to generate a valid FOR
statement, as shown in figure 8-16.

ITEM DUMMY;
DEF ASLONGAS #FOR DUMMY=DUMMY WHILE#;
#SET NEXT TO FIRST ELEMENT OF LIST#
ASLONGAS NEXT NQ 0 DO

BEGIN

END

Figure 8-16. WHILE Clause Example C

Controlled Statement

The controlled statement can be any valid statement.
Examples of common types of controlled statements are
given below; they assume all variables have been defined
previously.

1. The statements necessary to initialize three arrays are
shown in figure 8-17.

2. The IF statement as a controlled statement is illus­
trated in figure 8-18.

8-5

3. The FOR statement as a controlled statement which
sets the lower triangle of MATRIX to 0 is shown in
figure 8-19.

4. A compound statement nesting within a controlled
statement is shown in figure 8-20.

FOR I=l STEP 1 UNTIL N DO
BEGIN
T[I]=O;
U[I]=O;
V[I]=I;
END

Figure 8-17. Controlled Statement Example A

FOR I=M STEP 1 UNTIL N DO
IF T(I] EQ 0
THEN
GOTO L;
ELSE

BEGIN
K=K + 1;
U[K]=U[K] + 1;
END

Figure 8-18. Controlled Statement Example B

ARRAY [1:10, 1:10]; ITEM MATRIX;
FOR I=l STEP 1 UNTIL 10 DO

FOR J=l STEP 1 UNTIL I DO
MATRIX[l,J]=O;

Figure 8-19. Controlled Statement Example C

FOR I=l STEP 1 UNTIL N' DO
BEGIN
TAM[I]=O;
FOR J=l STEP 1 UNTIL N DO

BEGIN

END

MAT[I,J]=O;
TAB[I,J]=TAB[I,J] + 10 *I+ J;
END

Figure 8-20. Controlled Statement Example D

A jump out of the controlled statement is valid. Under such
circumstances, the current value of the induction variable is
preserved and can be used outside the statement.

A jump into a controlled statement from outside the
controlling FOR statement is possible, although such an
action generally has no meaning and produces errors.
Although the induction variable can be modified within the
controlled statement on slow loops, good programming
practice avoids such code.

TEST STATEMENT OF FOR

The TEST statement has meaning only within the FOR
controlled statement. TEST, which allows the remaining
part of a loop to be bypassed, is equivalent to a FORTRAN
statement that jumps to a CONTINUE statement in a DO
loop.

8-6

The use of TEST, in which the statement V[I]=O is bypassed
for values of I such that U[l]=VAL, is illustrated in
figure 8-21. Without TEST, the sequence shown in
figure 8-21 appears as shown in figure 8-22.

When loops are nested, the induction variable name can be
added to the TEST statement to specify which loop is to be
bypassed, as illustrated in figure 8-23. The logic of the code
in figure 8-23 is as if it were written as shown in
figure 8-24.

FOR I=O STEP 1 UNTIL N DO
BEGIN
Tfl]=O·
IF U[IJ EQ v AL

THEN
TEST;

V[I]=O;
END

Figure 8-21. TEST Statement Example A

I=O;
AGAIN:

IF I LQ N
THEN
BEGIN
T(I]=O;

NEXT:

IF U[I] EQ VAL
THEN
GOTO NEXT;
VAL[I]=O;

I=I + l;
GOTO AGAIN;
END

Figure 8-22. TEST Statement Example B

FOR I=O STEP 1 UNTIL N DO
FOR J=O STEP 1 UNTIL M DO

BEGIN
A(I,J]=A[I,J] + 1;
IF A[I,J] EQ VAL THEN TEST I;
IF A[I,J] EQ LAV THEN TEST J;
B[I,J]=O;
END

Figure 8-23. TEST Statement Example C

AGAIN!: IF I LQ N THEN
BEGIN
J=O;

AGAINJ: IF J LQ M THEN
BEGIN
A I,J=A I,J + 1;
IF A I,J EQ VAL THEN GOTO NEXTI;
IF A I,J EQ LAV THEN GOTO NEXT J;
B I,J=O;

NEXTJ: J=J+l; GOTO AGAINJ;
END

NEXTI: I=I+l; GOTO AGAINI;
END

Figure 8-24. Logic of TEST Statement

60499800 A

COMPILATION CONTROL 9

SYMPL compilation is controlled by:

DEF statements in the program that are similar to
COMPASS macros, as described in section 5.

Several types of actions are influenced by CONTROL,
including:

Source listing control.

CONTROL compiler-directing statements in the pro­
gram. Compilation options affecting packed switches, preset

of.common, and FORTRAN compatibility.
$BEGIN and $END debugging code delimiters.

SYMPL compiler call itself.
Characterization of variables and arrays for· opthniza­
tion purposes.

Conditional assembly. The CONTROL statement is a compiler-directing statement
rather than an . executable statement .in a program. The
words used in the CONTROL statement are not reserved
words: ITEM NOLIST, for example, is legal. Also, these
words can be expanded by DEF.

Table 9-1 shows all control-words of the CONTROL state­
ment and the range of compiler action in regard to each
statement. ·

TABLE 9-1. CONTROL-WORDS OF CONTROL

Control-Word Function Extent of Effect

DISJOINT· variable Characterize variable as having single name. Entire module

EJECT Skip to new page of source listing output~ Single compiler action

ENDIF End conditional assembly begUn by IFxx. Immediate compiler action

FASTLOOP Generate FOR loop similar to FORTRAN D.O . Until a subsequent FASTLOOP,
loop. SLOW LOOP, or TERM

FI Sa.me as ENDIF. Sa.me as ENDIF

FT.NC ALL Turn on compiler call F parameter. Entire module

IFxx condition Compile code if condition true. UNTIL balanced ENDIF or FI

INERT array Characterize array as not having overlapping En tire module
subscript references.

LE.VEL n block Specify memory_ residence of common block Entire module
or based array.

LIST Resume source listing. Until subsequent NOLIST or TERM

NO LIST Suspend source listing tmless H parameter on Un.ti! subsequent LIST or _TERM
compiler call or OBJLIST appears.

OBJLIST List object code, overlapping compiler call Entire module
list parameter and LIST ·or NO LIST.

OVERLAP variable Characterize variable as having more than Entire module
one name.

PACK Pack switch code. En tire module

PRESET Preset items in common. Entire module

REACTIVE array Characterize array as possibly having over- Entire module
lapping subscript references.

SLOW LOOP · Generate FOR loop without FORTRAN Until a subsequent FASTLOOP,
similarities. .SLOWLOOP, or TERM

TRACEBACK Generate traceback information. Entire module

WEAK name Characterize name as being a weak external. Entire module

60499800 B 9-1

I

CONDITIONAL COMPILATION
The IF:xx form of the CONTROL statement allows con­
ditional compilation that resembles COMPA~S conditional
assembly. SYMPL offers fewer capabilities than COMPASS,

· with no statements equivalent to COMPASS pseudo-
instructions ELSE and IF DEF. ·

For instance, to compile source statements only when
DBUG=O in COMPASS and SYMPL, the statements shown in
figure 9-1 can be used •. In each case, the· code that produces
an error message and aborts the program is not assembled
when DBUG=O. The COMPASS code that conditionally
assembles the range identified by name- B is in figure 9.;. la.
The same function in SYMPL is performed as shown in
figure 9-lb.-

a. DBUG EQU 1

b.

B IFNE DBUG,0
SA! MSGVECT
RJ ERROR
JP ABORT

B ENDIF

DEF DBUG #1#;

CONTROL IFNQ DBUG,O;
ERROR(MESSAGE);
GOTO ABORT;
CONTROL ENDIF;

Figure 9-1. CONTROL Statement Example A

In both languages, the conditfonal source statements are
bracketed between a statement defining the conditions and a
statement ending conditional assembly. In SYMPL, the
ending statement can be either:

CONTROL ENDIF; or CONTROL FI;

However, this statement must not be generated by a DEF.
When the IF condition is false, DEF statements are not
expanded.

The format of a conditional assembly statement is:

9-2

CONTROL IFxx constant!, constant2;

xx

constant!
constant2

Condition that compiler is to test con-_
stants for in a constant! xx constant2
situation:

EQ Equal

LS Less than

LQ Less than or equal to

GR Greater than

GQ Greater than or equal to

NQ Not equal

Constants or status functions to be tested.
Generally, at least one constant is defined
through DEF.

Both constants must be the same type since SYMPL
does not convert types in this context. Data type B and
C should be compared only with IFEQ and IFNQ. Blanks
are signif i<,?ant in· character strings, whether the blanks

·are within the string or at the end of the string.

If only one constant appears, it is assumed to be
constant!, and constant2 is assumed to have a value
of O.

When the condition is false, assembly continues with the
next statement ·after the balancing CONTROL ENDIF of
CONTROL FI. The source listing produced shows a minus
sign in the left margin.

An example in which code is generated to call procedure S
when FAST=O is shown in figure 9-2•

.DEF FAST #0#;

CONTROL IFEQ FAST;
S;
CONTROL FI;

Figure 9-2. CONTROL Statement Example B

A capability similar to ELSE of COMPASS can be simulated
by the negation of the direct IF control statement. In the
example in figure 9-3, MODEL is defined througb DEF (as in
DEF MODEL #76# or DEF MODEL #74#). Depending on.the
model, a one-bit is tested for 0 or 1.

CONTROL IFEQ MODEL, 76;
IF B<MFLAG> WORD [OPTS] EQ 0

THEN RETURN;
CONTROL ENDIF;
CONTROL IFNQ MODEL, 76;
IF B<MFLAG.> WORD [OPTS] EQ 1

THEN RETURN;
CONTROL FI; ,

. Figure 9-3. CONTROL Statement Example C

Similarly, a logical product (AND) of conditions can be
satisfied by nested CONTROL statements. In the ~xample
in figure 9-4, a call to LOAD (TBL, XDEFNAME, FALSE) is
generated when the model is not 76 and the system is
neither ATS nor KRONOS. Notice that DEF is used within
the conditional code to redefine SKIP.

OPTIMIZATION CONTROL
The SYMPL version 1.2 compiler introduced four CONTROL I
statement control-words that can be used to influence
optimization performed by the compiler. None of these
statements (OVERLAP, DISJOINT, INERT, REACTIVE) is
required. In their absence, the compiler proceeds with its
normal optimization. Because the consequences of some
optimizations are unpredictable, default optimization is
limited.

When the programmer informs the compiler that variables
and array subscripts have been limited to uses with known
consequences, the additional optimization can occur. Pro­
grams with such limits are called behaved, as opposed to
unbehaved programs.

60499800 B

STATUS SYS ATS, INTCOM, KRONOS, S34, S2;
DEF SYSTEM ••• ;
DEF MODEL .•• ;

CONTROL IFNE MODEL, 76;
DEF SKIP #1#;
CONTROL IFEQ SYSTEM, SYS"ATS";

LOAD (TAB, XDEFNAME);
DEF SKIP #0#;

CONTROL ENDIF;
CONTROL IFEQ SYSTEM, SYS"KRONOS";

LOAD (TAB, XDEFNAME, TRUE);
DEF SKIP #0#;

CONTROL ENDIF;
CQNTROL IFNE SKIP;

LOAD (TAB, XDEFNAME, FALSE)
CONTROL ENDIF;

CONTROL ENDIF;

Figure 9-4. CONTROL Statement Example D

The SYMPL Reference Manual contains details of the
compiler optimization and the use of the optimization
control-words. Future versions of the compiler might
require these statements.

With or without the optimization CONTROL control-words,
the SYMPL compiler performs optimization that moves code
as it sees fit. A SYMPL programmer should not assume
locations of any executable code~

To allow more, rather than less, optimization, a programmer
should consider:

Initialization of a program in one procedure and the
body of a program in another. (SYMPL does not move
code from one procedure to another.)

Limiting of array subscripts to the bounds of the array,
so that A[n] and B[m] are not the same word.

$BEGIN/SEND DEBUGGING
COMPILATION
Statements . in a source program that are delimited by
$BEGIN and $END are compiled only when the E parameter
is specified on the SYMPL compiler call. Without the E
parameter, such· statements are shown in the source listing
with a minus sign in ·the left margin, but they . are not
compiled. The $END statement must not be generated by a
DEF. DEF is not expanded within $BEGIN and $END
without the E parameter.

An example of this· feature used to affect error output is
shown in figure 9-5. CURSTAT is not allocated any memory
space unless the E parameter is selected. The check of
BYTETYP NQ S"INT" always compiles; in debug mode it
produces a message, and in normal mode it does nothing.

S.YMPL COMPILER CALL
The SYMPL compiler calls follow the conventions of other
language processors, with !=INPUT, L=OUTPUT, and B=LGO
parameter defaults. The compiler call using all defaults is:

SYMPL.

60499800 A

PROC PASSN;
BEGIN

$BEGIN
ITEM CURSTAT;
$END

PROC MISTAKE(CODE, AUXl, AUX2);
BEGIN
ITEM CODE, AUXl, AUX2;

$BEGIN
ERPRINT(CODE, CURSTAT, AUXl, AUX2);
RETURN;
$END

END #PROC MISTAKE#

IF BYTETYP NQ S"INT"
THEN MISTAKE(ERR"NOTINT",IN[O], INX);

INPARMX=INPARMX + l;
$BEGIN
CURSTAT=CURSTAT+ 1;
IF INPARMX GR INTYPE"MAX"
THEN ERROR(ERR"INMAX");
IF DEBUGO THEN TRNACINT(INPARMX);
$END

END #PROC PASSN#

Figure 9-5. Use of $BEGIN and $END

Other compiler call parameters are summarized in
table 9-2. The SYMPL Reference Manual describes all
parameters in detail.

Listings are controlled by any combination of LXOR=lfn:

x Storage map and common block listing

0 Object code, lfn/line/line lists only code for
source lines indicated by number

R Cross reference map and common block listing

The time required to compile a program depends more on
the length of the source code than on the number of
declarations. On a CYBER 70 Model 73 system, about 2000
lines can be compiled per minute when full compilation is
selected.

The total field length required. for a given compilation
depends on the length of the symbol table which, in turn, is
dependent on the number of declarations rather than length
of source code or statements. For each entry in the table,
five words are required.

Field length requirements are, at minimum:

51K octal under NOS 1 and NOS/BE 1

41K octal under SCOPE 2

The SYMPL compiler is written, for the most part, in
SYMPL.

9-3

I

I

Generated code might reference the FORTRAN library and
SYMLIB (NOS 1 and NOS/BE 1) or SYMIO (SCOPE 2) library.
The FORTRAN library is expected to contain routines XTOI
and ITOJ for exponentiation and routines for print input/­
output. The SYMLIB or SYMIO library is expected to
contain the SYMPL. execution-time routines SYMSM$,
SYMSC$, and SY MSG$ for the more complex bit and
character processing routine, SYMBSW$ for switch checking,
and the SYMPL interface routines to the print facilities.

TABLE- 9-2. COMPILER CALL PARAMETERS

Parameter Significance

A Abort after error

c Check switch references for range

D Pack switches two per word

E Compile debugging statements within
·$BEGIN and $END

F Generate procedure call parameter
lists compatible with F6RTRAN
Extended

H List all source statements despite any
CONTROL NOLIST statement

I Designate input file to be other than
INPUT

K Generate points-not-tested interface
code

N List unreferenced items on cross refer-
ence map

p Initialize (preset) items in labeled
common

S=O Suppress LDSET table generation

S=lib/lib Generate LDSET table with entries for
named libraries. Default is S=SYMLIB/-
FORTRAN for NOS 1 and NOS/BE 1;
S=SYMIO/FORTRAN for SCOPE 2.

T Suppress code generation

w Single statement scheduling for closer
correspondence between source state-
ment order and object code order

y Suppress diagnostic 136, SEMI ENDS
COMMENT

9-4 60499800 B

DEFINITIONS

1.1 SYNTAX NOTATION

The syntax notation used in the formal presentation of the PASCAL language elements adheres to the
following rules:

1

1. Keywords appear in capital letters and must be specified exactly as shown. In the examples
presented, the keywords have been unde~lined.

2. Variables and procedure names appear as single or a hyphenated set of lowercase words
that suggest the meaning attributed to them.

3. All non-alphanumeric characters, except the hyphen, must appear as presented.

4. Optional items appear enclosed in slashes, e.g. , I optional-item\.

5. One or more repetitions of a single syntactical item is indicated by following it with a
succession of three periods (•••).

1.2 CONSTANTS

A constant ls a lit.era! representation of a fixed value that ls assoclat.ed with some data type. A
PASCAL constant may be specified as:

• A decimal integer number

• A hexadecimal integer number

• An octal integer number

• A character

• A character string

A decimal integer is specified as a string of decimal digit characters not including a decimal point. It
may be preceded by a sign (+or-). The general form of a decimal integer is:

I sign\ decimal-digit I decimal-digit\ •••

A hexadecimal integer is specified as a string of hexadecimal digit characters preceded by a dollar sign
($). A hexadecimal integer may not have a preceding sign nor may it include a hexadecimal point. The
general form of a hexadecimal integer is:

$hex-digit /hex-dlglt\ •••

96836100 B 1-1

An octal integer is specified as a string of oct&l · dlglt characters followed by the letter B. An octal
integer may not bave a preceding sign nor may it include an octal point. The general form of an octal
lateaer la:

octal-clglt I octal-dlgtt \ ••• B

The range of values that may be specified as a decimal .constant, a hexadecimal constant, or an octal
constant are:

-32, '16'1 $ cJeoimal-integer $ 32, '16'1

$0 $ hexadecimal-integer ~ $FFFF

OB $ octal-integer ~ 1 '1'1'1'1'1B

Some sample integer constant speciflcatlons are:

1 0 100 -5273 $'IC $3121 '17B

A character constant consists of a single graphic character enclosed in single triple marks. A character
string constant consists of two or more graphic characters enclosed in single triple marks. The
general form of a character constant ls:

=lftPhiCE

The general form for a character string is:

egrapbic graphic I graphic\ ••• e

Note that it is necessary to represent the triple mark graphic by a pair of single triple marks.

Some example chuacter constants and character strings appear as:

1.3 IDENTIFIERS

An identifier represents constants, type definitions, variables, procedures, and functions to the PASCAL
compiler. It is a contiguous sequence of letters and decimal dillitsa that begins with a letter. An
identifier is delimited by characters that are neither letters nor decimal digits.

An identifier may be freely chosen (with the exception of reserved keywords) by the programmer wher­
ever the PASCAL language prescribes. It may be any number of characters in length, but its uniqueness
mast be apparent within the first six characters.

ff8S&100 :8

Some sample identifiers are:

BEWARE A123 FORTHRIGHT

2BAB. is not an identifier.

SAMEID and SAMEIDENTIFIER are viewed as identical identifiers by the PASCAL compiler.

1.4 RESERVED KEYWORDS

PASCAL uses keywords to direct the compilation process. Each keyword takes the form of an identifier,
but is viewed as a distinct, special symbol. The keywords cannot be used as identifiers, so they are
considered to be reserved. The following keywords are reserved for PASCAL:

IF END THEN BEGIN REPEAT FORWARD FUNCTION PROCEDURE
DO NIL ELSE UNTIL DOWNTO RELATIVE
TO FOR GOTO WHILE RECORD
OF DIV CASE ARRAY PACKED
IN MOD WITH VALUE

VAR TYPE CONST
SET FILE LABEL
NOT

96836100 B 1-3

OUTPUT FACILITIES 10

SYMPL has no input/output facilities. The SYMPL library
does, however, contain· procedures that are links to the
PRINT routines of FOR TRAN Extended.

To use the output features:

A FORTRAN Extended main program must call the
SYMPL subprogram. The PROGRAM statement of the
main program must specify the· file OUTPUT.

The SYMPL program must specify the library pro­
cedures in an XREF declaration. Procedures PRINT and
ENDL always are required; LIST is optional.

The SYMPL program must call both procedure PRINT
and procedure ENDL for each output list to be printed.
If variables are to be output, a LIST procedure call is
required for each variable. PRINT, LIST, and ENDL
form a single output sequence and must appear in that
order, although intervening statements can appear.

The library procedures have alternative names PRINT$,
LIST$, and ENDL$ for use when PRINT, LIST, or ENDL
conflicts with a name used elsewhere in a program. The
required externals are specified with an XREF declarative
as shown in figure 10-1.

XREF BEGIN
PROC PRINT;
PROC LIST;
PROC ENDL;
END

Figure 10-1. Output XREF Declarations

The parameters for the SYMPL procedure calls are based on
the FORTRAN statements. A FORTRAN Extended PRINT
statement and its associated FORMAT statement have this
format:

PRINT label, parameter!, parameter2, ..•
label FORMAT (format specification)

The label of the FORMAT statement is not required for
SYMPL output. The format specification specifies the
format in which the parameters are to be output, including
carriage control or Hollerith constant specifications. In
SYMPL, this entire format, including its enclosing paren­
theses, must appear as a character string in a PRINT
procedure call. Each FORTRAN parameter specifies a
variable or array to be printed. In SYMPL, each item or
array to be printed must appear in an individual LIST
procedure call.

Any errors in the format specification and LIST arguments
are detected during execution by the FOR TRAN routines.
The FORTRAN Extended Reference Manual explains any
error messages that might result.

PRINT PROCEDURES
PRINT specifies the format in which information is to be
output. Information appears on the file OUTPUT. Another

60499800 A

library procedure, PRINTFL, is available for writing to files
other than OUTPUT, as described in the SYMPL Reference
Manual for PRINTFL discussion. The procedure call is:

PRINT("(specification)");

specification String of characters duplicating the
specification of a FORTRAN Ex­
tended PRINT statement. The speci­
fication can be any legal FORTRAN
specification. Parentheses are re­
quired to be part of the string.

Examples of PRINT procedure calls are:

Assume a literal is to be printed. Either of the
following can be specified:

PRINT ("(lOH DISASTER)");

PRINT ("(* DISASTER*)");

Assume a character string item defined by:

ITEM SYNTABFORM C(40)=
#(6H HASH=06, 11X6, 6HIDENT=2A10, •••)#;

The string can be specified by simply:

PRINT(SYNTABFORM);

Assume an array item defined by ARRAY (1:9]; ITEM
NDIGITS C(2)=[#11#,#I2#, ••. ,#I9#];

The entire array is specified by:

PRINT (NDIGITS[I]);

LIST AND ENDL
PROCEDURE CALLS
LIST identifies one expression to be output. The procedure
call is:

LIST(expression);

expression Any item, subscripted array item, or
expression to be output.

LIST must follow a PRINT procedure call or another LIST
call. One LIST call must appear for each variable element
of the PRINT specification.

The order of execution of the multiple LIST calls must
correspond to the format of the preceding PRINT statement,
just as the output specifications of a FORTRAN FORMAT
statement must correspond to the order of parameters in the
FOR TRAN PRINT statement.

ENDL is required to end each output list. If no LIST calls
appear, ENDL is still required. The procedure call is:

ENDL;

10-1

EXAMPLES
1. FORTRAN Extended statements and SYMPL statements

that produce the same result are shown in figure 10-2a
and figure 10-2b, respectively.

a. PRINT 10
10 FORMAT (*l LIST OF IDENTIFIERS*)

PRINT 20, LNAME, RNAME, HASH
20 FORMAT (1H0,2Al0,3X,12)

b. PRINT ("(*l LIST OF IDENTIFIERS*)");
ENDL;
PRINT ("(1H0,2A10,3X,12)");
LIST(LNAME); LIST(RNAME); LIST(HASH);
ENDL;

Figure 10-2. Output in FORTRAN and SYMPL

Output written is: LIST OF IDENTIFIERS lname rname
hash where LNAME and RNAME are each 10 alpha­
numeric characters and HASH is a two-digit integer. In
the SYMPL code, each variable is a parameter to a LIST
procedure call.

2. The SYMPL code to output FATAL or NON-FATAL,
depending on the current value of B, is shown in
figure 10-3.

10-2

PRINT("(LX,AL)");
IF B THEN STR="F ATAL";

ELSE STR="NON-FATAL";
LIST(STR);
ENDL;

Figure 10-3. SYMPL Output Example A

3. To repeat the for mat for each iteration of a loop, the
FORTRAN Extended routines perform the implicit DO
loop, as shown in figure 10-4.

PRINT ("(llX,110)");
FOR I=STKTOP STEP -1 UNTIL 0 DO

LIST (STACK[I]);
ENDL;

Figure 10-4. SYMPL Output Example B

4. The SYMPL code to list array FLAG is shown in
figure 10-5.

PRINT("(LX,1 OL3)");
FOR I=l STEP 1 UNTIL 10 DO

LIST(FLAG[I]);
ENDL;

Figure 10-5. SYMPL Output Example C

60499800 A

PASCAL LANGUAGE DESCRIPTION 2

The programming language PASCAL is a high-level, algorithmic type language. It is patterned after
ALGOL 60 and retains the attractive features of that language. Because PASCAL's grammar is
essentially context-free, its syntax is unambiguous and simple to define. In addition, the block-oriented
structure of ALGOL 60, which is particularly adaptable to structured programming teclmiques, is
preserved.

The two basic constituents of a PASCAL program are the statement and the declaration/ definition.
Statements indicate the various actions that are to be carried out by a program, and declarations/
definitions describe the meaning attached to the various identifiers used in a program.

PASCAL provides some noteworthy extensions to the capabilities of ALGOL 60. PASCAL supports a
broad variety of structured statements, so repetitive or conditional. actions may be coded in a concise
and natural manner. More significantly, ALGOL 60's deficiency in the area of structured data is
remedied by the introduction of a set of data structuring techniques. PASCAL al.so provides pointer-type
variables, along with the ability to allocate storage dynamically and explicitly. These features extend
the .range of applicability of PASCAL beyond its more traditional ancestor.

2.1 PROCEDURES

The procedure is the primary unit of a program structure in PASCAL. It represents the algorithm
intended for execution on the processor. A PASCAL procedure is analogous to a subroutine in that it is
called and it may have calling sequence parameters associated with it.

Each PASCAL procedure is represented by a declaration/definition (D/D) segment and an action segment.
The D/D segment defines the identifiers used within the procedure and the variable data considered
local to the procedure. The action segment defines the logic by which the variables will be affected.
The basic form of a procedure declaration appears as

PROCEDURE heading information
D/D segment

BEGIN
action segment

END

A procedure may also contain procedure declarations that are coded in line. This type of procedure,
, which is internal to another procedure, is called a nested procedure and is considered to be local. The

procedure in which the local procedure resides is considered global in relation to the local procedure.
Any procedure may contain no, one, or many local procedures. A local procedure may contain other
local procedure declarations.

96836100 B 2-1

The basic form of a procedure declaration with local procedures appears as

PROCEDURE heading information
D/D segment
/local procedure declarations\

BEGIN
action segment

END

The t.erms local and global are relational, depending on the frame of reference. A procedure that
contains local procedure declarations may be defined as global; however, it may have been declared
local to another procedure In which it was defined.

2.2 PROCEDURE HEADING

The heading of a procedure declaration provides the following:

1. It indicates the start of the procedure declaration.

2. It assigns the identifier by which this procedure may be called via a procedure statement.

3. It defines the form of the calling sequence that must be presented with the identifier when
this procedure is called.

The general form of the procedure is:

PROCEDURE proc-id /formal parameter section\;

where proc-id is the assigned procedure identifier.

The formal parameter section, if present, is enclosed in parentheses. The main constituents of the
formal parameter section are the formal parameters. These are identifiers that represent the actual
parameters (those presented to this procedure when it is called) to be substituted within the procedure
program segment when it is to be executed.

When coding a procedure, the formal parameters represent the forms of the calling sequence,
establishing the positional relationship the actual parameters must take when this procedure is called.
The formal parameters are used in the body of the program segment where the corresponding actual
parameters are to be substituted.

The formal parameters, as they appear in the procedure heading, are grouped into two major categories:
variable parameters and value parameters.

All formal parameters that awear in the formal parameter section are grouped by category and listed
according to the following convention:

2-2

1. Formal parameters of the same category and type may be listed together, separated by
commas.

96836100 B

2. A type identifier must be declared following the parameter list by specifying a colon
immediately aft.er the last parameter and before the type identifier.

3. The variable category designation is explicitly declared by preceding its parameter list with
the keyword VAR. The value category designation is implicityly declared by absence of a
keyword.

4. Category groups are separated by semicolons.

2.2.1 VARIABLE PARAMETERS

Variable parameters represent data elements for which the procedure may produce a result. That is,
when this procedure is called, the actual parameter represents a location where the called procedure
may store data. The actual parameter in this case must always be a variable identifier; it may not be
a data constant. The general form for specifying a formal parameter list in the variable parameter is:

VAR variable-param I, variable-param \ ••• : type-identifier

2.2.2 VALUE PARAMETERS

Value parameters represent data elements whose value may be used by the procedure during processing.
The procedure will not affect the contents of the parameter as it appears in the procedure that presented
it. The actual parameter is an expression. The general form for specifying a formal parameter list in
the value parameter category is:

value-param I, value-pa.ram\ ••• : type-identifier

Value parameters are recognized by the absence of a preface keyword.

A procedure can change the value of a presented value parameter du.ring its processing and still not
change its value as it exists in the calling procedure. The presented value parameter is copied into a
local variable area upon entry into the called procedure and then only the specified local variable is
accessed whenever it appears in the program segment.

2.2.3 PROCEDURE HEADING EXAMPLES

With no formal parameter section:

PROCEDURE BINlNT;

PROCEDURE LOOPC;

96836100 B 2-3

With a formal parameter section:

PROCEDURE GETBNS (VAR BINPTR:BPTR);

PROCEDURE MULPLY (X, Y: INTEGER; VAR Z: INTEGER);

PROCEDURE FIXFLT (VAR X: CHAR; VARY: INTEGER);

2.3 DECLARATION/DEFINITION (D/D) SEGMENT

The D/D segment provides preparatory information to the PASCAL compiler for its use in generating
the object text defined in the action segment. Five categories of information may be provided in the
D/D segment:

• Label declarations

• Constant definitions

• Type definitions

• Variable declarations

• Value initialization

Each category is presented within the D/D segment headed by the appropriate keyword. The
presentation of each category ls optional; they must be presented in the order shown above.

2.3.1 LABEL DECLARATIONS

The label declaration specifies all statement labels that are:

1. Defined in the procedure's action part

2. Referenced by a GOTO statement in procedures that are themselves local to the procedure

The general form of a label declaration is

LABEL statement-label /, statement-label\ ••• ;

Examples:

LABEL 4;

LABEL 5, 15, 3;

2-4 96836100B

2.3.2 CONSTANT DEFINITIONS

A constant definition equates a constant value to an identifier where a constant value may be:

1. A literal constant

2. A previously defined constant identifier

3. A standard constant identifier

A constant definition does not generate data but simply assigns a symbolic identifier t:o represent the
constant value. The constant identifier is thus synonymous with the constant value. An analogous
capability is available with most assemblers via the pseudo-operation usually known as EQUATE or EQU.

PASCAL provides a set of standard (predefined) constant identifiers:

•

•
•

NIL

TRUE

FALSE

- Represents a pointer value that points to no element at all. For PASCAL,
NIL is represented by a zero word.

- Represents the TRUE value condition for Boolean data types.

- Represents the FALSE value condition for Boolean data types.

• ALFALENG - Represents the length of a character string that may be packed into a single
word. For PASCAL, ALFALENG = 2.

The general form for equating an identifier to a constant value is:

identifier = constant-value

The general form of the constant definition part of the D/D segment is:

CONST identifier = constant-value, /identifier = constant-value,\ ...

Example:

CONST MAXCOR = $7FFF,
TOTLIN = 32,
EMPTY= NIL,
MINUSl = -1,
LINES = TOT LIN;

Note that the last constant definition is followed by a semicolon instead of a comma.
(An absolute entry point (ENT) is generated for each constant identifier.)

96836100 B 2-5

2.3.3 TYPE DEFINITIONS

Data values are represented by st.orage elements referred t.o as variables. Every data element in
PASCAL has a type definition associated with it. The data type essentially defines the set of values that
a data element may assume. A data type may be directly described in the variable declaration, or it
may be referenced by a type identifier. The type definition part of the D/D segment assigns type
identifiers t.o explicit type definitions.

Note that a type definition does not generate data, but establishes an identifier to represent the defined
data type in any subsequent declaration of variable data or function type.

The general form of the type definition part of the D/D segment is:

TYPE type-definition; /type-definition;\ ...

The general form for equating a type identifier to a data type is:

type-identifier = data-type-definition,

The data type may be specified as any one of the following:

1. A scalar type

2. A structured type

3. A pointer type

2.3.3.l SCALAR

The basic PASCAL data types are the scalar types. Their definition indicates a distinct and ordered set
of values. A scalar-type description introduces the type identifier and a list of constant identifiers that
it represents. The general form of the scalar-type definition appears,

type-identifier = (constant-identifier /, constant-identifier\ ...)

A scalar-type definition of the above form is also referred t.o as an enumeration type.

Examples:

MONTH = (JAN, FEB, MARCH, APRIL, MAY, JUNE, JULY, AUG, SEPT, OCT, NOV, DEC)

SUIT = (DIAMOND, HEART, SPADE, CLUB)

BINTYP = (DATABIN, TAGBIN, DISKBN)

COLOR= (RED, YELLOW, BLUE, GREEN)

CODES= (ASCII, BAUDOT, EBCDIC, XCESS3)

Data variables that are declared to be scalar may contain any of the constant values represented by the
constant identifier list.

2-6 96836100 B

Certain scalar types are predefined by the PASCAL compiler. These standard scalar types include
Boolean, Integer, and CHAR (character).

BOOLEAN TYPE

The Boolean type denotes the pair of truth values whose identifiers are TRUE and FALSE. The Boolean
.predefinition is equivalent to the following scalar-type definition:

BOOLEAN = (FALSE, TRUE)

INTEGER TYPE

The integer type represents the set of whole numbers. It represents the range of integer values that can
be specified within a single, central memory word.

-32767 !S integer !S 32767

If we consider the literal representation of the integer values as a s~cial form of a constant identifier,
the integer-type predefinition may be considered to be equivalent to the following scalar-type
definitions:

INTEGER = (-32767, -32766, ... , -0, 0, ••. , 32767);

INTEGER= ($8000, $8001, ••• , $FFFF, $0, $1, ••. , $7FFF);

CHAR TYPE

The CHAR (character) type represents the entire set of graphic characters that are defined by the
CDC 63-character set. This code is presented in Table 2-1 together with its associated ordinal valu·
(the hexadecimal numbers that represent the characters).

96836100 B 2-7

TABLE 2-1. PASCAL GRAPHICS

High-Order Ordinal Hexadecimal Digit

~ 2 3 4 5

0 blank 0 s p

1 v 1 A Q

~ 2 -1- 2 B R
.~
Q

3 c - 3 - s
as s 4 $ 4 D T -~ 5 reserved 5 E u

= Cl)

::x:: 6 /\ 6 F v -as
d 7 t 7 G w -'2

(8 H 0 8 x
~

~ 9) 9 I y

9 A * : J z
~ [~ B + ; K

c ' < L :l:

D - = M]

E . > N ..,
F I • 0 ,...

Tithin memory, a character appears right-justified in a 16-bit word with leading zeros.

: we consider the literal representation of the character constants as a special form of constant
:lentifiers, and if their ordinal value implies the character ordering, then the CHAR type predefinition
:iay be considered to be equivalent to the following scalar-type definition:

2-8

CHAR=(=: =:, =:v=:, ••• ,=: r+=:);

The ordered set of char­
acters as they appear in
the preceding table.

96836100 B

SUBRANGE TYPE

A specific interval (subrange) of a known integer or character type may be defined as a distinctive
scalar type. This subrange type is defined as:

subrange-identifier = minimum-constant • . maximum-constant

An enumeration-type subrange may not be specified in PASCAL.

Examples:

BINCNT = O •• 127;

LETTRS = =:A: •• :: Z =:;

PAGADR = $0 •• $7F;

ONEBIT = O •• 1;

Note that the standard definition, integer, is in reality a subrange of the whole numbers:

INTEGER= -32767 .. 32767

2.3.3.2 STRUCTURED TYPE

A data type may be defined in terms of previously defined constituent types. A data type that consists of
several related variables (components) is said to be a structured type. A structured type is defined by
describing the types of its components and indicating its structuring method. Three methods of
structuring are available in PASCAL, each distinguished by the manner in which individual components
are accessed: array structures, record structures, and set structures.

ARRAY STRUCTURE TYPE

A variable that is typed as an array structure consists of a fixed number of repeated components that
are all of the same type, the component type. An array structure is characterized by the following:

1. Each individual component of the array is directly accessible by an assigned index into the
array.

2. The number of its components is defined when the array variable is introduced and remains
unchanged thereafter.

96836100 B 2-9

An array structure is shown as:

First index

value ------~
Second index
value----

Last index
value----

First
component

Second
component

Last
component

Each of the
components
is of the same
type

The general form of a single-dimensioned array-type definition is:

type-identifier = ARRAY [index-type) 0 F component-type

Where: index-type is the range of all possible indices.

component-type is any type, those described as well as those to be described.

The size of an array variable may be determined by the count of components (implicitly known from the
index type) and the size of each component (determinable from the component type).

Examples:

CNTTBL =ARRAY [1.. 100] OF INTEGER

CHRARY= ARRAY [1 •• 58] Q! LETTRS

ODDBAL =ARRAY [COLOR] OF BOOLEAN

Note that with the last example if a variable is typed with the type identifier ODDBAL and further, if
I COLOR is defined as a scalar list of constant identifiers as in Section 2. 3. 3.1, then the ODDBAL

variable will consist of four components indexed as [RED] , [YELLOW], [BLUE 1, and [GREEN],
where each component may be specified as TRUE or FALSE.

It is possible to define an array whose component type is also an array.

An example declaration might appear,

ARRAY [1. .4) OF ARRAY [0 •• 100) OF INTEGER

This type of a structure is called multidimensional and may be represented in a more convenient manner:

ARRAY [1. .4, 0 .• 100) OF INTEGER

2-10 96836100 B

Pictorially, the two-dimensional array in the above example would appear in the following form:

ARRAY (1 •• 4) Repeated ARRAY [O •• 100]

integer [1, o J

integer [1, 1]

ARRAY fl] ARRAY [0 .. 100)

integer [1, 100)

integer [2, 0 1

integer (2, 1]

ARRAY [2] ARRAY [O •• 100)

integer [2, 100)

integer f 4, O 1

integer [4, 1 1

ARRAY (4) ARRAY (0 •• 100]

integer [4, 100 1

The total number of integer components that comprise this two-dimensional example equals:

4 (Number of components in first dimension)
x 101 (Number of components in second dimension)

404 (Total integer components)

The concept of defining ARRAYs of ARRA.Ya, etc., may be extended to three or more dimensions.

The general form of an array-type definition, including multidimensionality, is:

type-identifier= ARRAY [index-type /, index-type\ .•.] OF component-type

96836100 B 2-11

RECORD STRUCTURE TYPE

A variable that is typed as a record structure consists of a set of components (fields) that are not
necessarily of the same type. A record structure ls charact.erized by the following:

1. Each field of the record is directly accessible by qualifying the record variable name
with the desired field name. (See Section 2. 4.1.)

2. A portion of the record, if not all, may be defined to have more than one set of field
definitions occupying the same area. Such a multidefined (multipurpose) area is called a
variant.

3. The size of each record is determined by the worst-case (largest size) arrangement of its

variants.

A record-type definition contains two basic parts: fixed and variant. Either one or both may be present
in a definition; however, if both are present the fixed part must precede the variant part. The general
form of a record type definition is:

type-identifier = RECORD
I fixed-part \
I variant-part \

END

The fixed part introduces field names associated with the record and assigns a type to each of the
introduced fields. The general form of the fixed part is:

field-identifier /, field-identifier\ ••• : type-definition

I ;field-identifier I, field-identifier\ ••• : type-definition\ •..

Examples:

DATE= RECORD
DAY: 1.. 31;
MONTH: 1 •• 12;
YEAR: INTEGER;
LEAP: BOOLEAN

END

BIN= RECORD

END

FSTCHR: 1. . 58;
LSTCHR: 1 .. 58;
SOMBN, EOMBN: BOOLEAN~
TEXT: ARRAY (1 .. 58] OF CHAR;
CHAIN: tBIN

(Refer to section 2. 3. 3. 3 for description of pointer types, e.g., t BIN.)

2-12 96836100 B

The type definition may also be a previously defined type identifier. For example, the BIN type definition
could also be specified in the following manner:

TXTYP =ARRAY (1.. 58) Q! CHAR;
BIN= RECORD

FSTCHR: 1.. 58;
LSTCHR: 1. • 58;
SOMBN, EOMBN: BOOLEAN;
TEXT: TXTYP;
CHAIN: tBIN

END

The variant part may in turn contain a fixed part, a nested variant part, or both. The fixed part is
specified in the form described above. The nested variant part is similar to the variant part, but the
deepest nested variant part must contain only a fixed part. The general form of the variant part is:

CASE tag-field: tag-type-identifier OF
case-label/, case-label\ •.. : (/fixed-part\ /variant-part\)
/;case-label /,case-label\ ... : (/fixed-part\ /variant-part\)

The tag field identifies the first field assigned to the variant part and is common to each of the variations
to be defined. The tag field must be declared a scalar type via a type identifier. The case label is a
constant value that may be assigned to the tag field. It is used to associate a variation in the structure
with a particular tag-field value.

A variable record structure is shown:

J
Memory
Extent

Fixed
part

Tag field

l Variant
part

(Variation 1)

Tag field

Variant
part

(Variation 2)

The variant part is depicted in the same manner as a variable record.

Tag field

Variant
part
(Variation n)

PASCAL provides an option wherein the tag field of a variant record structure occupies no memory
space; however, it must be specified in the type definition in order to assign case labels to variants.
An options comment is used t.o specify th.is option.

96836100 B 2-13

Examples:

The following record definition includes both a fixed and a variant part:

TAG=RECORD
MT FCHN: tTAG;
coa;ET: CODES;
MSGLNG: INTEGER;

CASE BTYP: BINTYP OF
TAGBIN: (PRIORT: 1.. 4;

NODATA: BOOLEAN;
TRANSP: BOOLEAN);

DISKBN: (DSKADR: INTEGER;
DATAB: BOOLEAN)

This is a more complex example of nested variant parts:

BEmG =(ADULT, ClllLD)
SEX= (MALE, FEMALE)
PERSON = RECORD

NAME: ARRAY (1 •• 10) OF CHAR;
AGE: INTEGER;

CASE HUMAN: BEmG OF
ADULT: (CASE ASEX' SEX OF

MALE: (FATHER: BOOLEAN);
I FEMALE: (MOTHER: BOOLEAN));

CHILD: (CSEX: SEX)

film

The following three cases are the variations defined by the PERSON type identifier:

SET TYPE

NAME
AGE
HUMAN
ASEX
FATHER

NAME
AGE
HUMAN
ASEX
MOTHER

NAME
AGE
HUMAN
CSEX

A set-type definition assigns a set identifier and associates it with a particular scalar type. A set-type
variable represents a set or subset of the associated scalar values. A set variable will be assigned
sets of values during the action portion of a procedure. The general form of the set-type definition is:

type-identifier= SET OF scalar-type;

2-14 96836100 D

PASCAL permits a maximum of 16 elements in a set. Within PASCAL a set of items occupies a full
word, where each element is associated with a bit within the word. The element assignment is ordered
from the rightmost bit.

Examples:

HUE = SET QE COLOR

SEASON = SET OF MONTH

Note that scalar types associated with sets are limited to the integer subrange types where the lower
bound is greater than or equal to 0 and the upper bound is less than or equal to 15, and enumeration
types with 16 or fewer elements. (The CHAR scalar type may also be used, but it is limited to the
special characters $ 00 through $OF when associated with sets.)

PACKED STRUCTURES

The PASCAL language provides a specialized keyword (PACKED) which, when specified, indicates to
the compiler that the associated data components should be arranged in a compact form whenever
possible. When PACKED is specified, it immediately precedes the structure definition's primary
keyword:

PACKED ARRAY

PACKED RECORD

The presence of PACKED has no effect on the interpretation of the program. Its use is considered
when economy of storage is more important than efficiency of access.

PACKED ARRAY will have significance to the PASCAL compiler only for arrays that consist of
CHAR-type components. An unpacked array with CHAR-type components is interpreted as an array
of characters, one character per word. A packed array with CHAR-type components defines an
array of characters, two characters per word. Packed arrays with components of any other type will
be allocated space in the same manner as an unpacked array.

A packed record, as interpreted by PASCAL, will compact scalar-type fields according to the following
rules:

1. Integers will occupy a full word.

2. An integer subrange type will occupy the smallest portion of a word that will retain all values
ascribed to the subrange. The assigned field position will begin:

a. At the next available bit position if there is sufficient space in the word.

b. At the first bit position of the next available word if there is insufficient space in the
current word.

3. A scalar enumeration type will occupy the smallest portion of a word that will retain all
values ascribed to the scalar type. The field position assignments will be made in the same
manner as for the subrange type. The first constant of the enumeration list will be
assigned a zero value, the second constant a one value, etc.

96836100B 2-15

4. A Boolean type will occupy a single bit and will be assigned t.o the next available bit
position type:

0 =False
1 =True

5. A CHAR-type will occupy an eight-bit field beginning at the next available bit position in the
word. If there is insufficient space to retain the entire character in the current word being
filled, it will be assigned to the leftmost byte of the following word.

All other field types associated with the packed record will be assigned space in the same manner as an
unpacked record.

When a field ends in the middle of a word and the next field specified cannot fit in the remainder of that
word, the initial field is expanded to the end of the word. An exception is the case of tag fields (or, if
no space is allocated for tag fields, the last field of the fixed part), which are not expanded.

2.3.3.3 POINTER TYPE

Variables for a program may be declared in the variables declaration portion of the D/D segment.
Declared variables are predefined and local to the procedure; consequently, they are considered as static
variables. Variables may also be generated dynamically by calling a standard procedure, NEW, which
returns a pointer to the allocated data.

A pointer-type definition assigns a pointer identifier and associates it with (binds it to) another defined
type. A pointer-type variable is the storage element that points to a dynamically allocated variable.
The allocated variable is of the pointer's bounded type. The general form of the pointer type definition is:

type-identifier = t defined-type-identifier

Examples:

IPrR = tlNTEGER

TAGTYP = tTAG

PERTYP = tPE.RSON

CPrRTY = tCNTTBL

BPrR =•BIN

2.3.4 VARIABLE DECLARATIONS

The variable declaration part of the D/D segment lists each of the variables that is local to the
procedure. Each local variable is assigned an identifier and bound to a type. The general form of the
variable declaration part of the D/D segment is:

VAR variable declaration; I variable declaration; \ •••

2-16 96836100 B

The general form for a variable declaration is:

variable-identifier/, variable-identifier\ ••• : type-definition

where the type definition may be a type identifier or an explicit type definition.

Example:

I, J: INTEGER;
CARD: SUIT;
NODMND: SUIT;
LCNT: 0 •• 15;
DIGITS: SET Q!' O •• 15;
P, Q: BOOLEAN;
BINPrR: t BIN;
MEMBRS: ARRAY [1 •• TOTLIN] OF PERSON;
ORANGE: HUE;
STATE: ARRAY (0 •• 15) Q! BOOLEAN;
ALETTR: LETTRS;
TITLE: ARRAY (1 •• 10) Q! LETTRS;
JAM: BIN;
TMPBNS: ARRAY (1 •. 2] OF BINS;
PAGPrR: t PAGADR;
TINT: COLOR;
MO: SEASON;
MON: SEASON;

In PASCAL, storage areas for local variables may be assigned in-line at compile time, or they may be
allocated dynamically during run-time immediately after a called procedure is entered. The
programmer selects the particular method used, specifying the desired option in an options comment.
(refer to Appendix B).

Dynamic allocation of local variable space permits the compiler t.o generate recursive code. In-line
generation of local variables prohibits recursive code generation.

In-line variables will be assigned memory space in the same order as the variable declarations are
specified. With a priori lm.owledge as to the manner in which storage elements are assigned, a
programmer may predictably structure (on a relative basis) a local variable area.

A program's global area (the main procedure's local variable area) may generate only in-line variables.
PASCAL recognizes this global area uniquely.

An assembly language routine may access a variable in the global area by using the following
external definitions:

1. A relocatable external address for each variable identifier appearing in the VAR part of
the D/D segment.

2. An absolute external displacement for each field identifier appearing in the TYPE definition
part of the D/D segment.

96836100 B 2-17

3. An absolute external field position for each field identifier appearing in the TYPE
definition part.

Note that within the definition of the PASCAL language it is possible to specify separate record types
that have like field identifiers. It is the responsibility of the programmer to avoid duplication of
global field names in different type definitions to prevent the generation of ambiguous entry definitions.

2.3.5 VALUE INITIALIZATION

PASCAL provides compile time value initialization for global variables and local variables in
procedures that were compiled selecting the in-line variables option. The value initialization
'.l8.rt of the D/D segment lists selected variables and assigns them initial value constants. The
~eneral form of the value initialization part is:

VALUE a value assign; I a value assign;\ •••

Variables may be initialized only if they have been previously declared in the variable declaration part.
Variables that may be initialized are restricted to the following types:

1. Scalar data types

2. Single dimensioned arrays whose components are of an unpacked scalar type

3. Single dimensioned char-type packed arrays

4. Packed/unpacked record as an lmpacked array of integers

A value assignment appears in four general formats.

SINGLE VALUED SCALARS

variable-identifier= initial-value-constant

Example:

VALUE

I= 5;
CARD= HEART;
NODMND = HEART;
P =FALSE;
ALETTR =::D=:;

ARRAY OF SCALARS

variable-identifier= (constant I ,constant\ •••)

2-18 96836100 B

Example:

VALUE

The value of an uninitialized variable is undefined. In the above example, if TITLE is declared as in
the example in Section 2. 3. 4, then the last four characters of TITLE are undefined.

Within the value initialization, the sequence of repeating constants can be abbreviated by preceding the
constant that is to be repeated with an unsigned repetition fact.or followed by an asterisk (*). For
example, if it is desired t.o complete the initialization of the TITLE array by defining the last four
characters as blanks, then the specification of the TITLE initialization could appear,

TITLE=

PACKED ARRAY OF CHARACTERS

variable-identifier= (character-string-constant)

A char-type packed array may be initialized by specifying the initial value as a character string constant.

Examples:

MESSAGE: PACKED ARRAY (1.. 9) OF CHAR;

VALUE
MESSAGE =(=A MESSAGE:=);

PACKED/UNPACKED RECORD

variable-identifier = (constant /, constant\ •••)

A packed/unpacked record is treated as an array of integers so that each integer constant specified in
the value list is assumed to represent a full word in the record, regardless of its actual field type or
the number of fields ascribed to any one word. The number of integer constants that may be specified
in the list must not exceed the t.otal number of words assigned by the compiler to the record.

96836100 B 2-19

Example:

TYPE
RECTYP = PACKED RECORD

FIELDl: O •• $7FFF;
FIE L:OO: BOOLEAN;
FIELD3: INTEGER

END;

REC: RECTYP;
VALUE

REC = ($273D, 47);

In the above example the initial values assigned to the fields would be:

FIELDl = $139E
FIELOO =TRUE
FIELD3 = 47

2.4 ACTION SEGMENT

A procedure provides a functional. requirement for a program. Execution of a procedure usually involves
the assignment of a determined value(s) (either by calculation or logical consequence) to a global
variable and/or a variable parameter. The action segment of a PASCAL procedure defines the logical
path of processing to be per:brmed in determining the required values.

2.~.1 VARIABLE SPECIFICATIONS

A variable may be designated in the body of a procedure's action segment in four ways:

• As an entire variable

• As a pointer variable to a scalar type

• As an array variable

• As a field variable

An entire variable is represented by a simple specification of the variable identifier. Entire variable
specifications are restricted to the following types, which do not themselves appear in structured types:

•
•
•

2-20

Scalars

Sets

Pointers

96836100 B

A pointer variable t.o a scalar type represents a dynamically allocated scalar variable. Since there is
no unique identifier to represent the allocated variable, it is specified by suffixing an up-arrow (t)
to the identifier declared for the pointer variable. For example,

PAGPrRf

An array variable is specified by suffixing an appropriate index value enclosed in brackets to the array's
declared identifier. For example,

TITLE(2)

STATE{LCNT]

MSG (BlINO, CHIDX]

It is possible t.o specify the index in terms of an e~resgi<'n as long as the result is of the index type.
For example,

STATE(LCNT + 2]

A field variable is specified by denoting the record variable followed by a period (.) followed by the
field identifier. The field identifier is said to be a qualification of the record variable. A record
variable may appear as:

• A record identifier

• An indexed array identifier of type RECORD

• A pointer variable to a RECORD structure

• A field variable that is itself a record variable

Examples:

l.AM.FSTCHR

TMPBNS [1] • EOMBN

MEMBBS (30] .HUSBND

A pointer-type record variable to a record structure is denoted by specifying the pointer identifier
suffixed by an up-arrow (t). For example,

BINPTRt. TEXT (FSTCHR)

It is possible to specify a field variable that is itself a record variable. In the example in section 2.3.3.2, a I
TYPE record structure identified as BIN includes a field name, CHAIN, that is typed as a pointer to the
BIN record structure. The CHAIN pointer essentially introduces a level of indirectness. An indirect
specification of this type might appear as:

BINPI'Rt. CHAIN t. EOMBN

96836100 D 2-21

Specifying a pointer variable (e.g. , CHAIN without the suffixed t) denotes the pointer value; whereas
adding the t suffix denotes the variable referenced by the pointer variable.

A procedure may reference any of its local variable identifiers as well as those variable identifiers that
are declared global to it. All others, including those declared in its local procedures, may not be
referenced.

2.4.2 EXPRESSIONS

Expressions are constructs that direct the execution of a computation; the result is the value of the
computation. An expression is specified within PASCAL as:

• A· standalone value, optionally preceded by a sign

• A simple expression involving values of like type separated by an operator

• A compound expression involving parenthesized (possibly understood) expressions
represen~ing values of like type separated by an operator.

A value appearing in an expression, sometimes called an operand, may be presented as a variable,
constant, set, function, or expression. A standalone value represents the result of the expression.
The value type is the result type. The negation of an integer or Boolean value may be represented by
the following method:

integer-value

-, Boolean-value

NOT Boolean-value

The keyword NOT and -, are equivalent symbols. A plus sign (+) preceding an integer value is under­
stood, but it may be specified. The following are examples of standalone expressions:

2-22

4

p

TITLE (4]

PAGPTR

NOT BINPTR t • EOMBN

+LCNT

-15

96836100 B

Simple and compound expressions involve operands and operators. The PASCAL language defines a
fixed set of operators that are associated with values of specific data types. The available operators
may be subdivided into the following groups:

1. Arithmetic

2. Relational

3. Set

4. Boolean

2.4.2.1 ARITHMETIC OPERATORS

The arithmetic operators are restricted to use with operands that are of the integer type or a subrange
thereof. The result of a computation involving arithmetic operators is itself an integer type. The
following lists the arithmetic operators, a formal specification of the operat.ors in a simple expression,
and the implied operation:

Simple Implied
Operator Expression Operation

+ Val
1

+ Val
2 Addition

Val
1

- Val
2 Subtraction

* Va11 * Val2 Multiplication

DIV Val
1

DIV Val
2

Division, Val
1

divided by Val
2

MOD Val
1

MOD Val
2

Modulo, remainder of Val
1

divided by Val
2

An expression that involves arithmetic operators and results in an integer type is called an arithmetic
expression.

Examples:

LCNT +4

4 * LCNT

(LCNT DIV 4) MOD 3

Note that in some cases an arithmetic expression may be added t.o or subtracted from a pointer variable
(see Section 3.1).

96836100 B 2-23

2.4.2.2 RELATIONAL OPERATORS

The relational operators specify a comparison between their two associated operands, the result of
which is always of Boolean type. The relational operators that may be specified depend on the operand
types involved in the comparison. A relational expression may be categorized into operations involving
operands of:

1. Scalar type

2. Set type

3. All types

The scalar type defines an ordered set of values for which the following comparisons may be made:

Operat.or

=

<

>

Examples:

LCNT = 4

4 ~ LCNT

NODMND >HEART

Simple
Expression

Val
1

= Val
2

Val
1

Val
2

Val
1

< Val
2

Va\> Val2
Val

1
~ Val

2
Val

1
~ Val

2

Operation

Equality

Inequality

Val
1

less than Val
2

Val
1

greater than Val
2

Val
1

less than or equal to Val
2

Val
1

greater than or equal to Val
2

The result of an arithmetic expression is itself a scalar value that may be specified as a scalar operand.
Expressions involving both arithmetic and relational operators a.re computed by resolving all of the
arithmetic operations first and then resolving the relational operations. The arithmetic operators are
of higher precedence than the relational operators. The following is an example of this expression type:

LCNT +4<15

Variables that are of set type may be tested for equality, inequality, and inclusion. In addition, a scalar
value may be tested for membership in a set variable whose base type is the same as that of the scalar
value.

2-24 96836100 B

The relational operators that involve set operands are listed in tlle following table:

Operator

IN

Simple
Expression

Set
1

= Set
2

Set
1
~ Set

2
Set

1
~ Set

2

Val IN Set

Operation

Equality

Inequality

Inclusion; i.e. , set
1

included
in set

2
Inclusion; i.e., set

2
included

in set
1

Membership

The relational operators <, ~, ~, > may also be applied to packed arrays with components of type char.

~ and ~ denote the set functions of inclusions normally represented as C and ::>.

Examples:

4 IN DIGIT

MO~ MON

All other variable types may be compared for equality /inequality. Both operands must, however, be of
the same type.

2.4.2.3 SET OPERATORS

Variables that are of the same set type may be operated upon and derive a result that is of the same
set type. The set operators available and their operations are listed in the following table:

Simple
Operator Expression Operation

v Setl v Set2 Set union

/\ Seti/\ Set2 Set intersection

+ Seti+ Set2 Exclusive OR of sets

Seti - Set2 Set difference

96836100 B 2-25

2.4.2.4 BOOLEAN OPERATORS

Boolean operators indicate operations on Boolean values, which in turn result in a Boolean value; the
so-called truth value. Boolean operations include logical AND and logical OR. In addition, a Boolean
expression may be prefaced with the logical NOT, where a Boolean operand includes:

e A Boolean constant: TRUE or FALSE

• A Boolean variable

• A Boolean expression

• A relational expression

The Boolean operators available are listed in the following table:

Operator

/\

v

NOT

Simple
Expression

Booll /\ Bool2

Booll v Bool2

I Boolean expression

Operation

Logical AND

Logical OR

Logical negation of Boolean
expression

NOT Boolean expression Logical negation of Boolean
expression

Expressions whose results are Boolean are called Boolean expressions. These include expressions
that involve relational operators as well as Boolean operators.

2.4.2.5 OPERATOR PRECEDENCE

Operators are applied in the order of their precedence. Operators with higher precedence are applied
first. Operators that have the same precedence are applied from left to right.

2-26

Precedence

4

a
2

1

Operator

-,NOT

* DIV MOD A

+ - v

;;:::/<~>~IN

96836100 B

2.5 FORWARD REFERENCE DECLARATION

A procedure or function procedure may be referenced before it is declared. The forward reference
declaration is used when the forward-referenced routine is a function procedure or a procedure of level
2 or greater. The format of this forward reference is identical to the called procedure's heading infor­
mation with the addition of the suffixed keyword FORWARD. Its general form is:

PROCEDURE proc-identifier /(formal-parameters) ; FORWARD

Similarly, the general form for forward-referencing a function procedure is:

FUNCTION function-identifier /(formal-parameters)\ :type; FORWARD

The prestatement of a procedure or function procedure calling sequence must immediately precede the
heading information for the procedure or function procedure that is about to be declared. Note that a
forward reference applies t.o all subsequent procedure declarations that forward-reference the same
procedure, so the prestatement does not have to be repeated. It is not necessary to repeat the formal
parameter section in the declared procedure's heading information.

Example:

PROCEDURE P (VAR X:INTEGER); FORWARD;
FUNCTION Q (Y:INTEGER): INTEGER; FORWARD;
PROCEDURE R;

VAR Z:INTEGER;
BEGIN

Z :=1; P(Z); Z :=+Q(Z)
END;

PROCEDURE P;
BEGIN X :=X+l END;

FUNCTION Q;
BEGIN Q:=Y + 1 END;

2.6 COMMENTS

Comments may be introduced in a procedure at any position that does not violate a keyword
or an identifier. The text of a comment may include all graphic characters except,... and ~ . The $
character may not be the first character in the text. The two characters r+and' serve to delimit the
text of a comment; the character r+ indicates the beginning of a comment and the character ~ indicates
the end of the comment.

Note that a comment is a delimiter for keywords and identifiers within the source program.

96836100 B 2-27

PASCAL STATEMENTS AND STATEMENT LABELS

'!be action segment is specified by a list of executable statements, each of which denotes an
algorithmic action to be performed. The general format of a statement is:

/label:\ statement;

3

Any statement may be labeled with an unsigned integer. The statement label identifies a particular
statement for use with the GOTO statement. For PASCAL, the statement label may be assigned within
the limits

1 S statement-label S 9999

The constituents of simple statements are constants, variable identifiers, procedure/function
identifiers, keywords, and special characters. The symbol arrangements (syntax structure) associated
with each simple statement and the description of its action are presented in this section. Note that
constants, identifiers, and keywords are delimited by one or more blank characters or by a special
character. Special characters are self-delimiting and need not be surrounded by blanks.

A statement may be specified in two forms: as a simple statement and as a composite statement. A
simple statement refers to a basic action type that may be specified in the PASCAL language. A
composite statement comprises a sequence of statements (which themselves may be simple and/ or
composite) that are to be executed in the same sequence as they are specified.

The different types of simple action statements thay may be specified in PASCAL are described in
this section. The sequence of statements that comprises a composite statement is delimited by the
statement brackets BEGIN and END. The general form of a composite statement is:

/label:\ BEGIN statement/ ;statement\ ••• END

Note that references to statement imply either a simple or composite statement.

3.1 ASSIGNMENT STATEMENT

'!be assignment statement replaces the current value of a variable with the result of an expression.
The result of the expression must be the same type as the receiving variable. Its general form is:

receiving-variable : = expression

The receiving variable in this case may be either a scalar identifier, a set identifier, or a function
identifier.

96836100 B 3-1

The assignment statement also serves to equate variables of like type:

destination-variable : = source-variable

The value of the source variable is copied into the destination variable. A source variable, which is
an expression consisting of a standalone value, represents a special case of the previous assignment
definition; however, this second definition is particularly meaningful for copying pointer or structured
variables.

Lastly, the assignment statement serves to assign a set of constants to a set variable. The constants
may be specified as constant or :,ls constant identifiers, but they must be of the same type as the set
variable to which they are assigned. The g;eneral form for this assignment is:

set-variable : = [/constant I , constant\ ••• \)

It is possible to have an empty set for the set variable. In this event the enclosing brackets contain no
constants: [].

Examples:

P ·= TRUE

Q ·= p

CARD := CLUB

I := J DIV 4+(1 * LCNT)

BINPTR .CHAIN := BINPI'R

DIGIT := [0,1,2,3,4,5,6,7,8,9)

PASCAL is not sensitive to the variable types associated with a pointer variable when the pointer
variable (a reference without the suffixed t) appears in an assignment statement. This means that the
memory address appearing in a pointer variable may be assigned to another pointer variable
regardless of their associated types. For example,

VAR
Pl
P2

BEGIN

tINTEGER;
t BOOLEAN;

NEW (Pl):
P2 := Pl

END

PASCAL also permits an integer value to be added to or subtracted from a pointer variable within an
assignment statement when specified in the following general forms: ··

pointer-variable ·= pointer-variable ±arithmetic-expression
pointer-variable ·= NIL ±arithmetic-expression

3-2 96836100 B

Pt: tINTEGER;
P2: tBOOLEAN;

BEGIN
NEW (Pt);

Pt:= Pt+ 2;
Ptt := 3;
P2 := Pl + (4 - Plt)

3.2 GOTO STATEMENT

The GOTO statement transfers control to the statement with the given label. The GOTO specification
has two general forms:

GOTO statement-label

GOTO EXIT statement-label

The scope of a label is the procedure within which it ls defined; that is, it is not possible to jump
(transfer control) into a local procedure.

The first form of the GOTO statement is used for jumps to statements that appear in the procedure,
whereas the second form is used to jump outside of the procedure (i.e., to a statement within a
procedure that is global to the one where the GOTO is specified). In this second case the statement
label must be specified in a label declaration of the global procedure.

The following example depicts the GOTO relationship described above:

PROCEDURE A;
LABEL 10;

PROCEDURE B;
BEGIN
GOTO 10; ---,

10: statement .,._I

BEGIN

.QQ.IQ EXIT 10 J
film;

10: statement
END;

96836100 B

]-
Procedure A
D/D segment

Procedure B

}

Procedure A
action segment

3-3

3.3 IF STATEMENT

The lF statement specifies conditional execution of its component statements, depending on the
outcome of an associated Boolean expression. The general form of an lF statement specification is:

lF boolean-expression THEN statement /ELSE statement\

The Boolean expression is evaluated; if the result ls true, the statement following THEN ls executed
before proceeding to the next statement. lf the result ls false, then

1. The statement following the ELSE ls executed, if ELSE has been specified.

2. Control transfers Immediately to the statement following the lF, if ELSE was not
specified.

Examples:

.!E P .!!!fil! LCNT := 5

IF P /\ Q ~ LCNT := I
ELSE BEGIN

ALETTR :=::z=;
I :=J;

END

This composite statement
constitutes the statement
following the ELSE.

IF CARD = HEART THEN CARD := CLUB
ELSE CARD := HEART

3.4 CASE STATEMENT

The CASE statement consists of an expression (the selector) and a list of statements, each labeled by
one or more constants of the type of the selector. lt specifies that one statement ls to be executed
whose constant label is currently equal to the value of the selector. lf the selector value does not
equal any of the specified labels, then processing will proceed with the statement following the CASE
statement. The general form of the CASE statement ls:

3-4

CASE expression OF

END

constant /, constant\ ••• : statement
I ;constant /, constant\ ••• : statement

96836100 B

Examples:

CASE t OF -- -

END

1: J:=l;
2: J:=t*I;
3: J:=I*t*l

CASE CARD Q!:
HEART: tAM. TEXT [tAM. FSTCHR] :==A=;
CLUB: ~ P :=TRUE;

Q :=FALSE

filill

3.5 WHILE STATEMENT

The WHILE statement specifies that an associated statement may be executed repeatedly until a
controller Boolean expression becomes false. If the Boolean is initially false, the associated statement
will not be executed. The general form of the WHILE statement is:

WffiLE boolean-expression DO statement

The repeated statement must affect a variable included in the Boolean expression that will at some
repetition result in a false value, or it must exit the WHILE with a GOTO statement; otherwise this
statement would repeat indefinitely.

Examples:

WHILE I< 10 00
BEGIN

END

J := J*J;
I := I+l

WHILE -, IAM. TEXT [I] IN DIGITD DO
IF I>58

'mENGOT04
EISE I:= l+l

3.6 REPEAT-UNTIL STATEMENT

The REPEAT-UNTIL statement provides an alt.emate form for specifying that an associated list of
statements be executed repeatedly until a controlling Boolean expression becomes true. tt differs
from the WIHLE statement in that,

96836100 B 3-5

1. A list of statements may be repeatedly executed, as opposed to a single statement.

2. The test of the controlling Boolean expression follows the list of statements to be
executed repeatedly. This implies that the statement list wlll be executed at least once.

The general form of the REPEAT-UNTIL statement is:

REPEAT statement I ;statement\ ••• UNTIL boolean-expression

The list of statements being executed repeatedly must affect a variable included in the Boolean
expression that will at some repetition result in a true value, or the repeated statements must termi­
nate by exiting via a GOTO statement. If this is not done, the list of statements will be repeated
indefinitely.

Examples:

REPEAT l:=J;
J:=J+4

UNTIL 1> $1000

ORANGE:=[RED, YELIDW]
REPEAT TINT := SUCC ('TINT)
UNTIL r- TINT IN ORANGE

3.7 FOR STATEMENT

The FOR statement indicates that a statement is to be executed repeatedly while a progression of
values is assigned to a control variable. It may be specified in two basic forms:

FOR control-variable :=initial-expression
TO final-expression DO statement

FOR control-variable := initial-expression
OOWNTO final-expression DO statement

The first form is used to assign values to the control variable in increasing order, while the second
form will assign values in a decreasing order.

The control variable must be a scalar type. The initial and final expressions must yield a value of
the type for which the control variable is defined. The control variable is assigned all of the values
that lie in the range delimited by the initial and final values. The associated statement will be
executed once for each assignment.

The control variable is available for reference within the associated statement, but it may not have its
value changed. In addition, any variables appearing in the final expression may not be changed. The
control variable should be considered an unknown quantity after the FOR statement has been
completed.

3-6 96836100 B

Examples:

EQ!!: I := 1 TO J DO LCNT :=t+J
!":Q!!. TINT := GREEN OOWNTO RED

~BEGIN
LCNT := LCNT + 4;
MEMBRS [LCNT) .NAME (1) :=

'nTLE {J+t)
END

3.8 WITH STATEMENT

The WITH statement provides a simplified notation for specifying a field identifier within an
associated statement. Specifying a record variable in the WITH statement implies its existence
before each of the field identifiers in the associated statement. The form of the WITH statement is:

WITH record-variable I, record-variable\ • • • 00 statement

There can be no assignment within the associated statement to any constituents of a record variable
that appears in fhe WITH statement. The record variable(s) are considered fixed for the execution
of the associated statement.

Example:

~ MEMBRS [LCNT] ~
~AGE :=AGE +t;

IE AGE > 16 A -, HUMAN = ADULT
~ ~HUMAN :=ADULT;

ASEX := MALE;
FATHER := FALSE

END

The equivalent coded sequence not utilizing the WITH statement would appear,

MEMBRS [LCNT] .AGE := MEMBRS [LCNT] .AGE + 1;
IF MEMBRS [LCNT] • AGE > 16 A

-., MEMBRS [LCNT] .HUMAN= ADULT
THEN BEGIN MEMBRS [LCNT] • HUMAN := ADULT;
~MBRS [LCNT] .ASEX :=MALE;

MEMBRS [LCNT] • FATHER:= FALSE
END

Note that if the scalar variable LCNT were modified during the sequence, the WITH statement could
not be used.

96836100 B 3-7

3.9 PROCEDURE STATEMENT

A procedure sta.t.ement serves to execut.e (or call) a procedure. The procedure statement may contain
a list of actual parameters that replace the corresponding formal parameters of the procedure
declaration. The general form for specifying a procedure statement is:

procedure-ldenti:fler /(actual-param /,actual-param \ •••)\

Examples:

BININT

GETBNS (BP)

stNCOS (MULTI, RADIANS, SLANTRG)

3.10 EMPTY STATEMENT

The empty stat.ement consists of no information at all. 1t may appear at any position where a statement
ls appropriate.

3-8 96836100 B

STANDARD PROCEDURES

A set of intrinsic procedures are associated with PASCAL. The user may assume that any of these
is available to be called.

4.1 NEW

NEW is the dynamic allocation procedureo The PASCAL user will be provided storage for a variable
with a NEW call. There are two calling sequences for the NEW procedure:

NEW (p)

NEW (p, t, It'\, ...)

Where p is a pointer variable.

t is a tag field value.

4

The p pointer variable is bound to a variable type that allows the PASCAL compiler to determine the
amount of storage to allocate. Upon return to the caller the p pointer contains the pointer value, which
may be used in accessing the newly acquired variable.

The second form of the calling sequence may be used when accessing a record type variable that
contains variants that may affect the size of the allocated space. The specification of the tag field
value(s) provides the compiler with sufficient information to allocate the minimum storage that will
accommodate the requested record structure.

4.2 PACK

PACK provides the mechanism for moving and transforming two characters in a CHAR-type array to
a packed array. The PACK calling sequence is:

PACK (uparry, index, parry)

Where uparry is the source unpacked array of characters.

index is the character index into the unpacked array.

parry is the receiving packed array.

96836100 B 4-1

4.3 UNPACK

UNPACK provides the opposite capability as the PACK procedure. UNPACK moves and transforms
two charact.ers from a CHAR-type packed array to an unpacked array. The UNPACK calling sequence
is:

UNPACK (parry, uparry, index)

Where parry is the source packed array of characters.

uparry is the receiving unpacked array.

index is the character index into the unpacked array.

4.4 APPEND

I The APPEND procedure left-shifts (non circular) an integer variable and then performs a logical OR of
another integer into the shifted variable. The APPEND calling sequence is:

APPEND (var, shift. orval)

Where var is the variable that is to be left-shifted and will receive the result.

shift is the number of bit positions to left-shift.

orval is the value to be logically ORed into var.

After execution shift and orval are unchanged.

4 .. 5 INSERT

I The INSERT procedure left-shifts (noncircular) an integer value and then performs a logical OR of the
shifted value into a receiving variable. The INSERT calling sequence is:

lNSE RT (orval,_ shift, var)

Where orval is the value to be left-shifted.

shift is the number of bit positions to left-shift.

var is the receiving variable into which the shifted value will be logically ORed.

After execution orval and shift are unchanged.

4-2 96836100 D

4.6 ADDR

The ADDR procedure stores the address of the first para.met.er in the second parameter. The first
parameter may be a variable or a level 1 procedure. The ADDR calling sequence is:

ADDR (i,j)

where the address of 1 ts stored into variable j.

4.7 RETADlt

The RETADR procedure stores the return address of the procedure in which it appears in the
parameter. 'lbe parameter ls an Integer variable. The RETADR calling sequence is:

RETADR(i)

where the retum address is stored into integer variable i.

4.8 RETURN

The RETURN procedure stores the contents of the para.met.er in the word reserved for the procedure's
retum address. The para.met.er ls an Integer variable. The RETURN calling sequence ls:

RETURN (i)

where the contents of int.eger variable tare stored into the return address word.

4.9 LOCK

The LOCK procedure inhibits lilt.errupts and increments the global lnt.errupt flag by one. 'Ibe LOCK
calling sequence ts:

LOCK

4.10 UNLOCK

The UNLOCK procedure inhibits interrupts, decrements the global interrupt flag by one, and enables
interrupts if the global interrupt flag ts zero (after being decremented). The UNLOCK calling
sequence is:

UNLOCK

Note that if the global interrupt flag becomes negative, QDEBUG is called with an error code of 6.

96836100 B 4-3

4.11 llNT

'lbe TINT procedure causes the compiler to generat.e an inhibit int.errupts instruction [llN OJ. 'lbe
IlNT calling sequence ls:

lINT

4.12 EINT

'lbe EINT procedure causes the compiler to generate an enable tnt.errupts Instruction [EIN OJ. 'lbe
EINT calling sequence ts:

4.13 STREGS

The STREGS procedure causes the compiler to generate a store registers instruction [SRG l]. 1be
parameter ts a variable. 1be STREGS calling sequence is:

STREGS(i)

where variable i serves as the operand of the store registers instruction.

4.14 LDREGS

The LDREGS procedure causes the compiler to generat.e a load registers instruction [LRG l). 1be
parameter is a variable. The LDREGS calling sequence is:

LDREGS (l}

where variable i serves as the operand of the load registers instrucUon.

4.15 RESET

The RESET procedure replaces the contents of the pointer to the next available word in the
dynamic variable area with the contents of the para.met.er. 'lbe paramet.er is a pointer variable.
The RESET calling sequence ts:

RESET (i)

where i is a pointer variable.

4-4 96836100 B

4.16 INST

The INST procedure allows the user to specify instructions to be generated in-line. The INST
procedure has a variable number of parameters [at least one]. The parameters may be constants,
variables, or level 1 procedures. The generated instruction(s) reflects constants that will not be
modified and address constants for variables and level 1 procedures. The INST calling sequence is:

INST (P 1, P2 , ••• , Pn)

where n ::= 1 and Pi are constants, variables, or level 1 procedures.

96836100 B 4-5

FUNCTION PROCEDURES

PASCAL provides a specialized procedure known as a function procedure. It is declared in a form
that is very similar to a procedure; however, its special effect is to return a single value that may
be used as a variable in an expression of a PASCAL statement.

5.1 FUNCTION DECLARATION

A function procedure ls declared in the local procedure declarations segment of a procedure or
function procedure. The basic form of a function procedure is:

FUNCTION heading information
D/D segment
Aocal procedure declarations\

BEGIN
action segment

END

The heading information provides the following:

• It indicates the start of the function procedure declaration.

• It assigns a function identifier for calling this function procedure.

• It defines the form of the calling sequence that must be presented with the function
identifier when this function procedure is called.

• It declares the type of the returned value when this function procedure is called.

The general form of the function procedure heading is:

FUNCTION function-identifier I (formal-parameter-section)\: type

The formal para.meter section is defined in Section 2. 2, Procedure Heading.

The D/D segment is specified in the same manner as a procedure.

The local procedure declaration segment may be used to declare procedures and/ or function
procedures.

96836100 B

s

5-1

The action segment of a function procedure is identical to that of a procedure, but it is necessary to
specify at least one assignment statement of the form:

function-identifier : = return-value

to establish the value that is to be returned to the caller.

A function has at least one parameter.

5.2 FUNCTION CALL

A function procedure is called to represent a computed value within a PASCAL statement. The call
essentially stands in for a variable and may be specified at any position where a variable of
corresponding type may be specified. The type of value returned by a function procedure is called
the function type.

A sample recursive (calls itself) function procedure declaration is:

FUNCTION LEFTSHFT (VAL:INTEGER;CNT:INTEGER): INTEGER;

~
LEFTSHFT :=VAL;
!!' CNT> 0 THEN LEFTSHFT := LEFTSHFT (VAL*2, CNT-1)

film

5.3 ABS

The A~ function procedure computes the absolute value of a presented integer.

Am (x)

where x is the presented parameter of type integer.

5.4 SQR

The SQR function procedure computes the square (x2) of a presented int.ager.

SQR (x)

where x is the presented parameter of type integer.

5-2 96836100 B

5.9 PRED

The PRED function procedure computes the predecessor value (the next lowest member in order) of a
presented scalar value.

PRED (x)

where x is the presented parameter, which may be of any scalar type. The result is unpredictable if
the presented parameter is the lowest member of the presented scalar type.

5-4 96836100 B

5.5 ODD

The ODD function procedure comput.es x MOD 2 for a presented Integer.

ODD (x)

where x ls the presented parameter of type Integer.

5.6 ORD

The ORD function procedure comput.es the ordlnal number (Internal Integer equivalent) of a presented
character.

OBD (c)

where c ls the presented parameter of type charact.er. An Integer-type result ls retumed.

5.7 CHR

The CHB function procedure generates the charact.er from a presented ordinal number.

CBR (x)

where x ls the presented parameter (an ordlnal number of type Integer). A char-type result ls
returned.

5.8 succ
The SUCC function procedure computes the successor value (the next highest member ln order) of a
presented scalar value.

succ (x)

where xis the presented parameter that may be of any scalar type. The result is unpredictable if the
presented parameter is the highest member of the presented scalar type.

96836100B 5-3

PASCAL PROGRAM 6

The main (or level 0) procedure defines a PASCAL program. It contains a complete set of local
procedures and local function procedures. A PASCAL program has the form of a procedure declaration
without a procedure heading. The final END keyword is followed by a period(.) character.

6.1 GLOBAL DATA

The variables that are declared in the D/D segment of the main procedure are considered global to the
entire set of nested procedure and function procedure declarations. Under PASCAL, the level O
variables will generate a standalone relocatable object deck with the assigned object deck name of G LOBL$.

Each of the global variable names that is represented in the GLOBL$ object text will be implicitly
declared as externally defined so that separately assembled modules may make external references to

them.

In addition, PASCAL includes, as externally defined, all constant definitions which have been defined in the
CONST part and all field names that have been defined in the TYPE declaration part of the level 0 D/D
segment. In the case of field names, the values assigned are the same as for an entry field definition:

1. The relative word position within the record to the named field

2. The start bit and bit length for the field

Within the context of the PASCAL language, it is syntactically correct to use the identical field name
in two separate record definitions; however, a specification of this kind at level 0 will generate multiple
external definitions.

Note that the PASCAL language does not permit an externally defined variable (one that is defined in a
separate assembly /compilation) to be referenced by a PASCAL procedure.

6.2 EXTERNAL PROCEDURES/FUNCTIONS

Under PASCAL, each level 1 procedure or function procedure declaration generates a separate
relocatable object text deck. The level 1 procedure identifier is defined as the entry point name by
which any call from another level 1 procedure, the main procedure, or a separately assembled/
compiled procedure may be resolved as a call to an external procedure.

96836100 B 6-1

In PASCAL all undefined procedure references are assumed to be calls to:

1. A level 1 procedure that has yet to be presented to the compiler (PASCAL is a single-pass
compiler),

2. A separately compiled level 1 PASCAL procedure

3. A separately assembled subroutine (an honorary level 1 PASCAL procedure).

This implies that the generated code for the procedure calls to the undefined names includes an external
reference declaration for that name.

Undefined function procedure references are considered to be errors; therefore, a function procedure
call to:

1. A level 1 function procedure that has yet to be presented to the compiler

2. A separately compiled level 1 PASCAL function procedure

3. A separately assembled subroutine (an honorary level 1 PASCAL function procedure)

must be explicitly declared with a prestatement of its specification format (a forward declaration).
The syntactical description of this prestatement is presented in Section 4.6, Forward Reference
Declaration.

This capability allows arbitrary memory placement of all level 1 procedures via the link editing process.
The main procedure's object text, less the global variables, will itself exist in a standalone object text
deck with the compiler assigned deck name of MAIN$.

6.3 EXAMPLE PASCAL PROGRAM

The following example program is presented to show the relationship between the source of a PA~AL
program and the entry externals generated in the associated object decks:

6-2

ENT - Entry definition

EXT - External reference

ENF - Entry field definition

EXF - External field reference

96836100 B

CONST
BIGNUM = $7FFF;

~

VAR

RECA = PACKED RECORD
GFl :INTEGER;
GF2 :BOOLEAN;
GF3 :0 •• $7FFF

END;

X, Y :INTEGER;
Z :RECA;

PROCEDURE LlA; r+LEVEL 1 t
VAR Xl, Yl :INTEGER;
BEGIN

filill;

Xl := 2; Yl := 3;
X := Xl; Y := Yl;

LlB

PROCEDURE LIB; r+LEVEL 1 t
VAR X2 :INTEGER;
-- PROCEDURE L2B;r+LEVEL 2 t

BEGIN X2 := X END;
BEGIN

L2B; LlA;
Z.GF2 :=TRUE

END;

~
LlB

~·

96836100 B

Object Deck - GLOBL$
ENF: GF2

GF3
ENT: BIGNUM

GFl
x
y

z
GLOBL$

Object Deck - LlA

ENT: LlA
EXT: LlB

Object Deck - LlB

ENT: LlB
EXT: LIA

Object Deck - MAIN$
ENT: MAIN$
EXT: LlB

6-3

MSOS FEATURES

When a PASCAL program is executed in an MSOS (Mass storage Operating System) environment, it
may make use of MSOS input/output routines and monit.or requests; also, t.o allow the program t.o
execute in the MSOS protected area, an option to generate run-anywhere code is provided. Further
information regarding these features is available in the MSOS and MS FORTRAN Version 3A/B
reference manuals.

(Note that recursive procedures and the use of dynamic variables is a:Ilowed for PASCAL programs
executing in the unprotected area but not for programs executing in the protected area.)

7 .1 INPUT /OUTPUT

PREAD and PWRITE statements are used for both formatted and binary I/O. REWIND, BACKSPACE,
and ENDFILE statements are used for manipulating magnetic tape files.

In the following:

lu is an integer constant or variable used to identify the logical unit.

standard MSOS logical units are referenced as follows:

1 = inpit
2 = binary output
3 = list output
4 =comment

other logical units are referenced using their actual assigned numbers.

a is a packed character array containing format information. The first character in "a" is
a left parenthesis "("; a right parenthesis ")" follows the last format descriptor.

list is a series of variables separated by commas and terminated by a semicolon. Variables
which occupy one or more full words may appear in the list.

7.1.1 PREAD - FORMATTED

PREAD(lu, a)list;

7

Data input from logical unit lu is scanned and converted according to the format information in array a,
and then transferred to the variables In the list.

96836100 B 7-1 •

7.1.2 PREAD- BINARY

PREAD(lu)list;

Data input from logical unit lu ls transferred without modification to the variables in the list.

7.1.3 PWRITE - FORMATTED

PWRITE(lu, a)llst;

The values in the list are converted according to the format information in array a, and then output to
logical unit lu.

7.1.4 PWRITE - ltNARY

PWRITE (lu)llst;

The values in the list are output without modification to logical unit lu.

7.1.5 REWIND

REWIND(lu);

The logical unit lu is positioned at its load-point.

7 .1.6 BACKSPACE

BACKSPACE(lu);

The logical unit lu is positioned at the beginning of the preceding block.

7 .1.7 ENDFILE

ENDFILE (lu);

An endfile record is written on logical unit lu.

7-2 96836100 B

7 .2 FORMAT DESCRIPTORS

'!be format descriptors are: I, Z, A, R, H, *, and X.

In the following:

w, n are non-zero integer constants representing the width of the field in the external
character string.

r indicates the repeat count ls an optional non-zero integer constant indicating the number of
times to repeat the succeeding descrip;or.

Format descriptors are separated by commas and/or slashes; slashes indicate end-of-record.

7 .2 .1 I - INPUT (rlw)

'!be I descriptor ls used to inpit decimal integer values. The input field consists of an integer sub­
field and may contain only the characters +, -, O through 9, or blank. When a sign appears, it must
precede the first digit in the input field. Blanks are interpreted as zeros. The value is stored right­
justifled in the specified variable.

Examples: 2I6, 14, I5

7 .2.2 I - OUTPUT (rlw)

The I descriptor is used to output decimal integer values. The outpit quantity occupies w output record
positions right-justified in the field w. If the field w is larger than the number required, the output
quantity is right-justified with blank fill on the left. If the field is too short, lt is filled with asterisks.

Examples: 216, I7, 18

7.2.3 Z - INPUT (rZw)

The Z descriptor is used to input hexadecimal integer values. The input field w consists of a string of
hexadecimal integer characters; blanks are interpreted as zeros.

Examples: Z4, Z3, Z2

96836100 B 7-3 •

7.2.A Z - OUTPUT (rZw)

The Z descriptor is used to output hexadecimal Integer values. 'Ihe output quantity occupies w outpit
record positions right-justified ln the field w. It is an unsigned hexadecimal integer value, with a
maximum absolute value of FFFF.

Examples: Z6, Z7, ZS

7.2.5 A - INPUT (rAw)

On lnpllt, the A descriptor accepts characters as list elements. If the field width w is two or more, the
right-most two characters from the external input field are stored as the list element. If w equals one,
the character from the external input field ls left-justified in storage with a trailing blank.

Examples: 2A2, Al

7 .2.6 A - OUT-PUT (rAw)

The A descriptor outputs w characters from a two-character list element. If w is two or more, the
two characters from memory appear right-justified in the external outpit field preceded by blanks. If
w equals one, the left-most character from memory is stored in the output field.

Examples: 3A3, Al

7 .2.7 R - INPUT (rRw)

On input, the R descriptor accepts characters as list elements. If the fie1d width w is two or more, the
right-most two characters from the external Input field are stored as the list element. If w equals one,
the character from the external input field is riglt-justified in storage with a leading hexadecimal 00.

Examples: 2R2, Rl

7 .2.8 R - OUTPUT (rRw)

the R descriptor outpits w characters from a two-character list element. If w is two or more, the
two characters from memory appear right-justified in the external outpit field preceded by blanks. If
w equals one, the right-most character from memory is stored in the output field.

Examples: 3R3, Rl

7-4 96836100 B

7.2.9 H - OUTPUT (nH)

The H descriptor outputs characters, including blanks, in the form of comments, titles, and headings.
n is an unsigned integer specifying the number of characters to the right of H that will be transmitted to
the output record.

Examples: 6HABCDEF

7 .2 .10 * - OUTPUT (*ccc ... *)

The llteral descriptor (*) causes the string of characters between the *s to be transmitted to the output
record.

Example: *THIS IS A COMMENT*

7 .2 .11 X - INPUT (nX)

The X descriptor causes n characters to be skipped on input.

Example: 5X

7.2.12 X - OUTPUT (nX)

The X descriptor causes n blanks to be inserted in the output record.

Example: 7X

7 .3 PROTECTED AREA 1/0 CONSIDERATIONS

SETBFR must be called prior to performing formatted I/O in programs residing in the protected area.

Calling sequence:

Where: buffer

length

SETBFR (buffer, length)

is the starting location of the user's buffer.

is the length of the user's buffer.

The first 18 words of the buffer contain the calling sequence for the I/O request and information for
re-entrancy. The remainder contains the input/output data.

96836100 B 7-5 •

7 .4 MONITOR REQUESTS

The following monitor reqtlests may be made from a PASCAL program: READ, FREAD, WRITE,
FWRITE, SCHEDL, TIMER, LINK, DISPAT, and RE LESE.

7 .4.1 READ, FREAD, WRITE, FWRITE

Calling sequence:

Where: name

lu

buffer

length

name (lu, buffer, length, completion, flag,. temp);

is READ, FREAD, WRITE, or FWRITE

is the mode and logical unit. The logical unit number is right-justified in the word
and bit 12 indicates the mode (0 = binary mode, 1 = ASCII mode).

is an area in memory where data is read into or written from.

is the number of words to be read or written.

completion is the location to which control is returned after completion of the. I/O operation.

flag is a packed word.

Bits

0-3
4-7
8 - 15

completion priority
request priority
0

temp is an eight-word area for building the calling sequence to the monitor.

Example:

100

7 .4.2 SCHEDL

ADDR (100, COMPLT);
FWRITE (LU, BUF, LENGTH, COMPLT, FLAG, TEMP);
I:= J;

Calling sequence: SCHEDL (p, flag, parameter, temp);

Where: p

flag

' 7-6

is the requested program to be scheduled at the completion priority specified by
flag.

is a packed word with the completion priority in bits O through 3 and an indicator
in bits 8 through 11. Indicator settings are:

0
1
2

p is a statement label
p is an index to the directory
pis an external core-resident main program

96836100 B

parameter ls a positive integer which may be passed to the scheduled program. The
scheduled program obtains the parameter by calling the integer function LINK.

temp is a four-word area in which the scheduler call is generated.

Example: SCHEDL (ABC, FLAG, 10, TEMP);

7.A.3 TIMER

Calllng sequence: TIMER (p, flag, time, temp);

Where: p is the program to be given control at the completion priority specified by flag
after the time interval specified by time has expired.

flag is a packed word containing the completion priority in bits O through 3, a unit of
time code in bits 4 through 7, and an indicator in bits 8 through 11. Indicator
settings are:

0-p
1-p
2-p

is a statement label
is an index to the directory .
ls an external core-resi<lent main program

Time code settings are:

O system time units
1 1/10 second
2 1 second
3 1 minute

time is the time interval to delay before scheduling the program, p, at the completion
priority specified by flag. At the end of the time interval, the core clock is
passed to the requested program as a parameter. To obtain this parameter,
the integer function LINK must be called.

temp is a four-word area in which the timer call is generated.

Example: TIMER (ABC, FLAG, 5, TEMP);

7.A.A LINK

Calling sequence: LINK (O);

The function value is:

1. The passed parameter from a scheduler call if LINK is called at the start of the scheduled
program.

2. The value of the core clock if IJNK is called at the start of a program called by a TIMER
request.

96836100 D 7-7

I

3. The error flag at the completion of I/O if LINK is called at the completion location.

Example: I : = LINK (O);

7.A.5 DISPAT

Calling sequence: DISPAT;

Control is given to the dispatcher in the monitor to start the next highest priority program.

7.A.6 RELESE

Calling sequence: RELESE;

All programs that have been allocated protected core must return memory to the core allocator when
they are finished. This statement must be the last executed statement in the MAIN$ program. (Note
that RE LESE may only be called from a MAIN$ program and that the MAIN$ program should· precede
all procedures when program execution takes place in the protected area.)

7.5 RUN-ANYWHERE PROGRAMS

The run-anywhere option causes the compiler to replace program relocatable addressing with relative
addressing. Because addresses are relative rather than relocatable, the loader does not have to modify
a program after the program has been loaded. Run-anywhere programs may be executed in the MSOS
protected area.

The RELATIVE declaration is used to specify those procedures which are to be referenced with relative
rathex- than absolute addressing. It precedes the LABEL declaration in the global definitions.

Example: ~ $M+, Y+'

'1-8

RELATIVE

pgml, pgm2, pgm.3;

LABEL

10,_ 20;

CONST

TYPE

Kl= 1,
K2 = 2;

Tl= o •• 3;

96836100 B

SYNTACTICAL DESCRIPTIONS OF PASCAL ELEMENTS A

Procedure Structures

PROCEDURE

/LABEL

/CONST

/TYPE

/VAR

/VALUE

BEGIN

proc-identifier I (formal-parameter-list)\

statement-label /,statement-label\ .•• ;\

constant-definition; /constant-definition;\ ..• \

type-definition; /type-definition;\ ••• \

variable-declaration; /variable-declaration;\ •.• \

value-assignment; /value-assignment;\ •.. \

action segment

END

Formal Parameter List

/VAR variable-parameter/, variable-parameter\ ..• :type-identifier\

/value-parameter/, value-parameter\ ••• :type-identifier\

Statement Label

unsigned-integer

Constant Definition

identifier= constant-value

Type Definition

type-identifier= data-type-definition

Variable Declaration

variable-identifier I, variable-identifier\ ... : data -type-definition

variable-identifier I, variable-identifier\ ... : type-i dantifier

96836100 B

Reference
Section

2.1

2.2

2.4.3

2.3.2

2.3.3

2.3.4

A-1

Value Assignment

variable-identifier = variable-initialization

Data Type Definition&

A-2

Scalar:

type-identifier = (constant-identifier I, constant-identifier\ •••)

Subrange:

type-identifier= minimum-constant .• maximum-constant

Array:

type-identifier= ARRAY [index-type/,index-type\ •••] OF component-type

Record:

Set:

type-identifier = RECORD

/fixed-part\

/variant-part\

END

Fixed Part:

field-identifi~r I, field-identifier\ ••• :type

I ;field-identifier I, field-identifier\ •.• :type\ •••

Variant Part:

CASE tag-field: tag-type-identifier OF

case-label/, case-label\ ••• : (/fixed-part\/variant-part\)

I ;case-label/, case-label\ ••• : (/fixed-part\/variant-part)\ •••

type-identifier= SET OF scalar-type

Pointer:

type-identifier= tdefined-type-identifier

Reference
Sectim

2.3.5

2.3.3.l

. 2.3.3.1

2.3.3.2

2.3.3.2

2.3.3.2

2.3.3.3

e6836100 B

Simple Action Statements

Assignment:

receiving-variable :=expression

destination-variable : =source-variable

set-variable :=(/constant/, constant\ ••• \]

function-identifier :=return-value

pointer-variable :=pointer-variable± arithmetic-expression

GOTO:

IF:

GOTO statement_-label

GOTO EXIT statement-label

IF boolean-expression THEN statement /ELSE statement\

CASE:

CASE expression OF

ENn

constant/, constant\ ••• : statement

I ;constant/, constant\ ••• : statement

WlDLE:

WHILE boolean-expression DO statement

REPEAT-UNTIL:

FOR:

REPEAT statement/ ;statement\. • • UNTIL boolean-expression

FOR control-variable : =initial-expression
TO final-expression DO statement

FOR control-variable :=initial-expression
DOWNTO final-expression DO statement

96836100 B

Reference
Section

3.4.3.1

3.4.3.2

3.4.3.3

3.4.3.4

3.4.3.5

3.4.3.6

3.4.3.1

A-3

WITH:

WITH record-variable/, record-variable\. • • DO statement

Procedure can:

procedure-Identifier I (actual-param/, actual-param \)\

Forward Reference Declaration

A-4

PROCEDURE proc-identifier /(formal-parameters)\ ;FORWARD

FUNCTION function-identifier /(formal-parameters)\ :type ;FORWARD

Ref ere nee
Section

3.4.3.8

3.4.3.9

2.5

9'6836100 B

PASCAL COMPILER OPTIONS

Compiler options are presented to the PASCAL compiler in two forms:

1. As parameters passed in the job control statement call of the PASCAL compiler

2. As option comments that appear in the source statements presented to the PASCAL
compiler

PASCAL Call Options

1. P = lfn

lfn is the logical file name on which the PASCAL source program resides.
(Default: P = INPUT)

2. L = lfn

lfn is the logical file name onto which the PASCAL compiler writes the source
listing. (Default: L =OUTPUT)

3. 0

O indicates that a listing of the object code is to be written. (Default: no object code
listing)

4. CSET =ch

ch is the name of the character set used by the operating system. ch is 63 for the CDC
63-character set, and ch is 64 for the CDC 64-character set. (Default: CSET=63)

Example PASCAL call:

PASCAL(P=COMPILE, 0)

Option Comments

PASCAL option comments control the mode of generated code or provide listing control on the
generated output listing. They may be inserted at any position in the program. Each of the available
options is designated by a single letter code immediately followed by a plus sign (+), which turns the
option on, or a minus sign, which turns the option off. More than one option may be listed in an option
comment by separating each specification with a comma.

B

96836100 B B-1

An option comment takes the general form of a comment (i. e. , it ls surrounded by r+ and ~ where the
first character following the ~ is a dollar sign ($)). The option codes and their meanings are:

Code Meaning

A For each assignment to a subrange variable, check whether the value assigned lies within
the specified subrange. (Default: A-)

B For the next external procedure call, generate an SJQ (rather than RTJ) instruction. This
option is in effect for one call only. (Default: B-)

C Reserved for compiler maintenance.

D For each division operation, compile instructions that will check for a zero divisor.
(Default: D-)

E For each specification of a record variable containing a variant case, do not generate space
for the tag field. (Default: E-)

G For all following procedures and function procedures, compile instructions that will protect
from interrupting the stack management instructions that appear in the entry/exit code.
(Default: G-)

H Output a heading with page number for each page output. (Default: H-)

I For all following procedures and function procedures, compile an interrupt lock-out upon
entry and an interrupt unlock at exit. (Default: I-)

J Page eject before printing the next line. (Default: J-)

Allow for execution of object programs under the MSOS operating system. (Default: M-)

N For the following level 0 variable, field, and constant symbol names, suppress the genera­
tion of external definitions within the object text. (Default: N-)

O For each call of a recursive procedure or recursive function procedure, compile instructions
that will check (at runtime) for stack overflow. (Default: 0-)

R For all following procedures and function procedures, compile instructions that allow for
recursion. (Default: R+)

s Suppress the source listing following the specification of this option. (Default: S-)

T Set options A, D, O, V, and X (on or off). (Default: options set individually)

V For each request for space from the dynamic variable area (via NEW), compile instructions
that will check for area overflow. (Default: V-)

X For each array variable specification, compile instructions that will check the specified
array indices to determine if they lie within the array bounds. (Default: X-)

Y Generate run-anywhere object code. (Default: Y-)

Example option comment:

~$0+,X-, D-, E-'

B-2 96836190 B

PASCAL COMPILATION ERROR MESSAGES

Compilation errors are indicated by flagging the detected error.

The listing line following the source line in error begins with **** in the location field. At, or
immediately after, the column in which the error was identified, an t will be printed, followed
immediately by a numeric code. The following table lists the codes and their meaning.

Error
Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Meaning

Scalar type expected

Integer too large

Error in constant

=expected

Field name declared twice

Bad range

Tag field type bad

Name declared twice

) expected

: expected

Identifier expected

Identifier not declared

Index must be of scalar type

OF expected

Ten or more errors on this line

Procedure declared twice

END expected

Error in type declaration

Range restricted to O through 15

Error in VALUE part

Too many arguments for this procedure

Value is out of range

96836100 B

c

C-1

Error
Jode Meaning

23 Too many relative procedure names or exit labels

24 Error in declaration part

25 Lowbound is greater than highbound

26 Not a variable identifier

27 Label too large

28 Symbolic subrange type not allowed

29 Parameter missing in function declaration

30 Too many unique external type references

31 Too many unique external references

32 Variable or field identifier expected

33 Expression too complicated

34 Type of variable should be array

35 Type of expression must be scalar

36 Conflict of index type with declaration

37 1 expected

3 8 Type of variable should be record

39 No such field in this record

4 0 Type of variable should be pointer

41 Field name expected

42 Illegal symbol in expression

43 Undefined label

44 Illegal type of parameter in standard function or procedure

45 Type identifier in statement part

46 Procedure used as function

4 7 Type of standard function parameter should be integer

4 8 Index out of range

49 [expected

50 Illegal type of operand

51 v cannot be used as monadic operator

52 :=expected

53 Assignment not allowed

C -2 96836100 B

Error
Code Meaning

54 Illegal symbol in statement

55 Type or constant identifier

56 THEN expected

57 Type of expression is not Boolean

58 ; expected

59 DO expected

60 Illegal parameter substitution

61 Label expected

62 Illegal type of expression

63 Constant expected

64 Type declared twice

65 Bad function type

66 Tag field missing for this variant

67 UNTIL expected

6.8 Only = and # allowed here

69 Loop control variable must be simple and local or global

70 TO or DOWNTO expected

71 Too many cases in CASE statement

72 Number of parameters does not agree with declaration

73 Mixed types

74 Too many labels in this procedure

75 Too many constants, yet-undefined labels, or temporary storage references

76 Depth of procedure nesting too large

77 Label defined more than once

78 Too many exit labels

79 (expected

80 , expected

81 Too many exit labels or forward procedures

82 Too many nested WITH statements

83 Value declaration in recursive procedure

84 Too many constants in this procedure

96836100 B C -3

Error
Code

85

86

87

88

89

90

91

C-4

Meaning

Assignment to function identifier must occur in function itself

Actual parameter must be a variable

Packed field not allowed here

Operators< and > are not defined for powersets

Redundant operation on powersets

Procedure too long

Begin comment character (r9') imbedded in comment

96836100 B

PASCAL CORRELATION TABLE

CHAR HOLLERl:TH CHAR HOLLERl:TH CHAR HOLLERl:TH

Blank No punch 6 6- K

v 11-0 7 7 L

- 8-4 8 8 M

- 0-8-6 9 9 N

$ 11-8-3 8-2 0

Reserved 12-8-7 p

/\ 0-8-7 < 12-0 Q

t 11-8-5 = 8-3 R

(0-8-4 > 11-8-7 s
) 12-8-4 • 11-8-6 T

• 11-8-4 s 8-5 u

+ 12 A . 12-1 v
0-8-3 B 12-2 w

11 c 12-3 x
12-8-3 D 12-4 y

I 0-1 E 12-5 z

0 0 F 12-6 [

1 1 G 12-7 i:?!

2 2 H 12-8)

3 3 I 12-9 ..,
4 4 J 11-1 ~

5 5

*When using the 200 Users Terminal, the % (8-6) character should be input in place of the
-, (12-8-6) character.

96836100 B

11-2

11-3

11-4

11-5

11-6

11-7

11-8

11-9

0-2

0-3

0-4

0-5

0-6

0-7

o-s
0-9

8-7

12-8-5

0-8-2

12-8-6 •

0-8-5

D-1

D

COMPILER LIMITS

Description

Active exit labels

Active FORWARD declarations

Parameters for a procedure

Forward-referenced types used in pointer type definitions

External or forward-referenced procedures referenced in a
level 1 procedure

Constants local to a level 1 procedure and its subprocedures

Labels for a procedure

CASE statement labels

Relative procedures

Words written to the binary file for a level 1 procedure

Local symbols

Global (level 0) symbols

Maximum Number

10

10

20

21

40

100

100

100

100

15360

1760

1536

E

I

I
I
I

These limits can be changed. For further information see the NOS Installation Handbook and the NOS/BE I
Installation Handbook listed in the preface. ·

96836100 D E-1

FORMAT PROGRAM

The format program converts the intermediate binary outpit from the PASCAL compiler into a form
that ls compatible with the MSOS relocatable loader and is accep1able as input to the link editor

F

and the library maintenance program. The format program requires the file it reads to have the logica.l
file name P ASCLGO.

INPUT

Eight types of data are input to the format program:

NAM (0010)

ENT (1000)

Format 1 data
ENF (0000)

EXT (1010)

EXF (1110)

XFR (1100)

(

RBD (0100)
Format 2 data

BZS (0110)

Format 1 data bas the following form:

Name data

Entry point data

Entry field data

External name data

External field data

Transfer address data

Comm.and sequence data

Zero storage data

59 56 55 52 51 46 45 40 39 34 33 28 27 22 21 16 15

cl

Where: x = 0010, NAM
1100, XFR
1000, ENT
0000, ENF
1010, EXT
1110, EXF

c2 c3 c4 c5 c6

0

Address

96836100 B F-1

y = 0000, relocatable ENT
relocatable EXT

y = 0001, absolute ENT
relative EXT

ENF bas an additional word:

59 56 55 52 51 48 47 44 43

Where: s = start bit

1 = length

Format 2 data has the following form:

59 56 55 52 51 36 35 32 31

x I yl I Address I y 2 I

Where: x = 0100, RBD
0110, BZS

yl = 0001, relocatable
0011, global

y2 = 0000, absolute
0001, relocatable
0011, global

z = the RBD instruction or the BZS size

Note: Fo.£' BZS, y2 is always zero.

OUTPUT

0

0

16 15 0

z I 0 I

Output is as defined in Chapter 12 of the MSOS reference manual. As with the bimJ,ry card format,
the various blocks (i.e., NAM, EXT, RBD, etc.) are preceded by a sequence number word and a com­
plemented word-cowit word, and are followed by a checksum word.

F-2
96836100 B

NOTES

1. Global variables are classed as labeled COMMON and their object deck is GLOBL$.

2. ENT items are grouped to form ENT blocks.

3. EXT items are grouped to form EXT blocks.

4. The Format program locates the ENT and EXT blocks after the last RBD block.

5. There is only one NAM block per object program, and it is the first block of the object
program.

6. There is only one XFR block per object program, and it is the last block of the object
program.

7. External references (EXT) are references to CYBER 18 PASCAL level 1 procedures, assembly
language subroutines, and main program entry points.

8. Relocatable entry points (ENT) are names of level 1 procedures, global variables, and
main program entry points.

9. Absolute entry points (ENT) are for fields within records defined in the global section.

10. Main programs are given the name MAIN$.

ERROR MESSAGES

SIZE OF ARRAY ISAVE EXCEEDED---TERMINATE PROCESSING

More than the maximum number of ENTs, ENFs, and EXTs are present in the object program
.being reformatted.

ILLEGAL INPUT DATA TYPE IN WORD xxx ••• xxx

There is bad data in the PASCLGO file,

STOP 7777 (in dayfile)

I/O error occurred while attempting to write on the LGO file.

96836100 B F-3 •

PASCAL CROSS-REFERENCE PROGRAM G

The PASCAL cross-reference program is used to obtain cross-reference listings of programs written in
PASCAL. The cross-reference program is written in 6000 PASCAL. The cross-reference is produced from
the output listing produced by CYBER Cross PASCAL.

Example job set-up:

job card
ATTACH(PASCAL,ID=SCDD)--------- Attach the MP17 PASCAL.
ATTACH(PASXREF,ID=SCDD) Attach the XREF binary.
RFL(77000)
PASCAL(L=TEMP) Compile the PASCAL program.
RETURN(P ASCAL)
REWIND(TEMP)
ATTACH(PASCAL,PASBNOl,ID=SCDD) ~---- Attach the 6000 PASCAL.
RFL(l25000)
PASCAL(LOAD=P ASXREF ,D=TEMP) ~----- Run XREF using MPl 7 output as the input.
7/8/9
••• PASCAL source program •••
6/7/8/9

96836100 D G-1 •

Action segment

Constant

Declaration/definition
segment

Expression

Formal parameter

Global procedure

Identifier

Keyword

Local procedure

PASCAL

Procedure

Value parameter

Variable parameter

96836100 B

GLOSSARY

The portion of a procedure that defines the logic by which the variables
will be affected.

A literal representation of a fixed value that is associated with some data
type; may be specified as a decimal, hexadecimal, or octal integer or as
a character or a character string.

The portion of a procedure th.at describes the meaning of the various
identifiers used in a program.

A construct that directs the execution of a computation.

An identifier that represents the actual parameter to be substituted within
the procedure program segment when it is to be executed.

A procedure that contains a nested, or local, procedure.

A contiguous sequence of letters and decimal digits, beginning with a
letter, that represents a constant, type definition, variable, procedure,
or function to the PASCAL compiler.

A reserved identifier fhat directs the compilation process.

A procedure that is nested within another procedure.

A high-level, algorithmic-type language patterned after ALGOL 60.

The primary unit of program structure in PASCAL; the algorithm intended
for execution on the processor. Analogous to a subroutine.

A data element whose value may be used by the procedure during
processing.

A data element for which the procedure may produce a result.

Glossary-1/Glossary-2

MSOS CONSIDERATIONS

Executing PASCAL programs in the MSOS background (unprotected ailocatable memory):

1. The MSOS option should be used when compiling PASCAL programs to run in the MSOS
background.

H

2. The global variables as a whole are implemented as labeled COMMON, and they make up the
object deck GI.OBL$. GLOBL$ should be the first object program loaded as any of the level
1 procedures or the main program may reference global variables.

3. The main program (MAIN$) calls QSPLIT which performs the runtime stack and dynamic
variable area initialization. To ensure that the MSOS relocatable loader transfers control
to the main program, the object deck, MAIN$, should be the last object deck loaded (except
for runtime routines).

4. Runtime routine QSPLIT divides the unused background space equally between the runtime
stack and the dynamic variable area.

5. QSPLIT uses a table of externals to initialize the variables in the other runtime routines
(QENTRY, QEXIT, and QGOTOX) which point to the top of the runtime stack. QENTRY,
QEXIT, and QGOTOX need not be loaded if recursive procedures are not used.

6. If recursive procedures are used, the I register must be saved and restored when
performing I/O and making monitor requests.

Executing PASCAL programs in the MSOS protected area (protected allocatable memory):

1. The MSOS option and the run-anywhere option should be used when compiling programs to
run in the MSOS protected area.

2. Because global variables are implemented as labeled COMMON; unless they are included at
the time the system is built, PASCAL programs cannot use global variables. TI1erefore,
the main program cannot access any variables, and as a result the bulk of the program
must be implemented via level 1 procedures.

3. In general, the object deck G I.OBL$ should be discarded and the object deck MAIN$ should
be the first object program loaded for PASCAL programs executing in the MSOS protected
area.

4. In general, the main program will call one or more level 1 procedures which will perform
the required program functions. \Vb.en processing is complete, control should be returned
to the main program which th.en calls RE LESE.

Note that for protected programs the last instruction executed should be a call of RE LESE;
for PASCAL programs, that call can only successfully be made from a main program.

5. The program may perform I/O and monitor requests if the runtime routines are included at
the time the system is built or if run-anywhere versions of the runtime are available.

6. Note that neither the runtime stack or the dynamic variable area are available: for PASCAL
programs executing in the MSOS protected area.

96836100 B H-J

H-2

GLOBL$

Uvel 1 procedures {

Procedure 1

. . .
Procedure n

Entry point from MSOS MAIN$

QSPLIT

(If required) QENTRY, QEXIT, and QGOTOX

MSOS runtime routines {
1/0 runtime routines

Monitor requests runtime routines

Runtime Stack Area

Dynamic Variable Area

layout of PASCAL Program in the MSOS Background Area

Entry point from MSOS

Uvel 1 procedures {

MSOS run-anywhere
runtime routines

(if required and available)

MAIN$

Procedure 1

. . .
Procedure n

1/0 runtime routines

Monitor requests runtime routines

layout of PASCAL Program in the MSOS Protected Area

96536100 B

INDEX

ABS 5-2
Action segment 2-1, 2-20
ADDR 4-3
ALGOL 60 2-1
APPEND 4-2
Arithmetic operators 2-23
Array of scalars 2-18
Array structure data type 2-9
Array variable 2-21

B 1-2
BACKSPACE 7-2
Boolean

Data type 2-7
Operators .. 2-26

CASE 3-4
Case label 2-13
CHAR 2-8
Char data type 2-7
Character

Constant 1-2
String 1-2

CHR 5-3
Comments 2-27
Compiler limits E-1
Constant 1-1
Constant definition 2-5
Constant identifiers 2-5
Correlation table D-1
Cross reference program G-1

Data types 2-6
Pointer 2-16
Scalar 2-6
Structured 2-9

D/D segment 2-1, 2-4
Decimal integer constant 1-1

Range of values 1-2
Declaration/definition (D/D) segment 2-1, 2-4
DISPAT 7-8

96836100 B

EINT 4-4
Empty statement 3-8
ENDFILE 7-2
Entire variable 2-20
Error messages C-1, 2, 3, 4
Expressions 2-22

Field variable 2-21
Fixed part 2-12
FOR 3-6
Formal parameters 2-2
Format descriptors 7-3

A - input 7-4
A - output 7-4
H - output 7-5
I - input 7-3
I - output 7-3
X - input 7-5
X - output 7-5
Z - input 7-3
Z output 7-4
* - output 7-5

Format program F-1
Forward reference 2-27
FREAD 7-6
FUNCTION 5-1
Function procedures 5-1

ABS 5-2
Call 5-2
CHR 5-3
External 6-1
ODD 5-3
ORD 5-3
PRED 5-4
EQR 5-2
succ 5-3

FWRITE 7-6

Global data 6-1
Global procedure 2-1
GOTO 3-3
Graphics 2-8

Index-1

Heading, procedure 2-2
Hexadecimal integer constant 1-1

Range of values 1-2

Identifier 1-2
IF 3-4
llNT 4-4
INSERT 4-2
iNST 4-5
Integer data type 2-7

Keywords 1-1
Reserved 1-3

Label declaration 2-4
LDREGS 4-4
Limits E-1
IJNK 7-7
I.Deal procedure 2-1
LOCK 4-3

Manipulating magnetic tape files 7 -1
Monitor requests 7-6
MSOS considerations H-1
MSOS features

Format descriptors 7-3
Input/output 7-1
Monitor requests 7-6
Protected area 1/0 considerations 7-5
Run-anywhere programs 7-8

Nested procedures 2-1
NEW 4-1

Octal integer constant 1-2
Range of values 1-2

ODD 5-3
Operators

Arithmetic 2-23
Boolean 2-26
Precedence of 2-26
Relational 2-24
Set 2-25

Option comment B-2
ORD 5-3

PACK 4-1
Packed array 2-15

Of characters 2-19
Packed record 2-15

Index-2

Packed structure data type 2-15
Packed/unpacked record 2-19
Parameters 2-2

Formal 2-2
Value 2-3
Variable 2-3

PASCAL iii; 1-1; 2-1
Elements of language A-1,2,3,4
Error messages C-1,2,3,4
Language descriptor 2-1
Options B-1, B-2
Sample program 6-2, 6-3

Pointer type 2-16
Pointer variable 2-21
PREAD 7-1, 7-2
PRED 5-4
Prestatement 2-27
Procedure names 1-1
Procedure statement 3-8
Procedures 2-1

ADDR 4-3
APPEND 4-2
EINT 4-4
External 6-1
Function 5-1
Headings 2-2
IlNT 4-4
INSERT 4-2
INST 4-5
LDREGS 4-4
LOCK 4-3
Nested 2-1
NEW 4-1
PACK 4-1
RESET 4-4
RETADDR 4-3
RETURN 4-3
STREGS 4-4
UNLOCK 4-3
UNPACK 4-2

Protected area I/0 considerations 7-5
PWRITE 7-2

READ 7-6
Record structure data type 2-12
Relational operators 2-24
RELATIVE 7-8
RELESE 7-8
REPEAT-UNTIL 3-5
RESET 4-4

96836100 B

Reserved keywords 1-3
RETADDR 4-3
RETURN 4-3
REWIND 7-2
Run-anywher~ programs 7-8

Scalar data types 2-6
Boolean 2-7
Char 2-7
Integer 2-7
Subrange 2-9

SCHEDL 7-6
SETBFR 7-5
Set data type 2-14
Set operators 2-25
Single-valued scalars 2-18
Slashes 1-1
SQR 5-2
Statements 2-1; 3-1

Assignment 3-1
CASE 3-4
Composite 3-1
Empty 3-8
EOR 3-6
Format 3-1
GOTO 3-3
IF 3-4
Procedure 3-8
REPEAT-UNTIL 3-5
Simple 3-1
WfilLE 3-5
WITH 3-7

Structured data types 2-9
Array structure 2-9
Packed structure 2-15
Pointer type 2-16
Record structure 2-12
Set data type 2-14

96836100 B

STR~GS 4-4
succ 5-3
Syntax notation 1-1

Tag field 2-13
TIMER 7-7
Type definition 2-6, 2-13

UNLOCK 4-3
UNPACK 4-2

Value assignment formats
Array of scalars 2-18
Packed array of characters 2-19
Packed/unpacked 2-19
Single-valued scalars 2-18

Value initialization 2-18
Value parameters 2-3
Variable

Declarations 2-16
Parameters 2-3
Record structure 2-13
Specifications 2-20

Variables 1-1; 2-3, 2-6
Array 2-21
Entire 2-20
Field 2-21
Pointer 2-21

Variant part 2-13

WIIlLE 3-5
WITH 3-6
WRITE 7-6

Index-3

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	1-01
	1-02
	1-03
	10-01
	10-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-04
	5-05
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	E-01
	F-01
	F-02
	F-03
	G-01
	Glossary-01
	H-01
	H-02
	Index-01
	Index-02
	Index-03

