Assembly
[Language
Programming

for the

Control Data

6000 and
Cyber Series

Ralph Grishman

Algorithmics

Assembly
[Language
Programming

for the

Control Data
6000 and

Cyber Series

Ralph Grishman

revised and enlarged in collaboration with

Kevin McAuliffe

Algorithmics

DEDICATION

This book is dedicated to A6 & A7,

without which none of the results
in this book could have been saved.

TABLE OF CONTENTS
Introduction

Chapter 1: The Basic Design of the 6000 and Cyber 70 Series

1.1 The Components of a Digital Computer System 1
1.2 Design Objectives and Speed 1
1.3 Central Processor Design 3
1.4 Peripheral Processors 6
1.5 Variations on a Theme 9
1.6 The Bold Step Forward 12
Chapter 2: Number Systems and Computer Arithmetic
2.1 The Binary Nature of Components 13
2,2 Binary and Binary Coded Decimal Representations 14
2,3 Arithmetic in the Binary System 15
2.4 The Octal Number System 23
2.5 Base Conversion Algorithms 26
2.6 Floating Point Numbers 29
Chapter 3: The Central Processor Instruction Set
3.1 A Summary of Central Processor Instructions 33
3.2 The Types of Central Processor Instructions 34
3.3 Instruction Formats 36
3.4 Branch Instructions 37
3.5 Vriting Assembly Language Code 46
3.6 Subprogram Linkage and Parameter Transmissions 50
3.7 Set Instructions 54
3.8 Boolean Instructions 62
3.9 Integer Arithmetic: Addition and Subtraction 66
3.10 Floating Point Addition and Subtraction 68
3.11 Floating Point Multiplication 76
3.12 Floating Point Division 84
3.13 Arithmetic Exit 88
3.14 Character Manipulation 93
3.15 Integer Multiplication and Division 101
3.16 Compare and Move 112
Chapter 4: COMPASS
4.1 The Pseudo—-Instructions 125
4,2 The Macro 125
4.3 Macro Parameters 128

Chapter 6:

6.1
6.2
Exercises

Solutions

Appendix

Appendix
Appendix
Appendix

Index

Conditional Assembly
Debugging with Macros
Micros and Code Duplication
The Value of a Symbol

: Debugging

Introduction
The Listing
The Load Map
The Dump
REGDMP
Remarks
Optimization

Machine Architecture and Code Optimization
Optimizing the Programming Effort

to Exercises

A: Sample Listings and Dumps
(for exposition of debugging)

B: REGDMP

C: More About Passing Parameters

D: Central Processor Instruction Timings

132
140
149
162

167
168
170
171
173
175

177
183

185

197

205

225

235

237

244

INTRODUCTION

This text is intended to familiarize users with the design of the
Control Data 6000 series, Cyber 70 series, and Cyber 170 series
computer systems and to enable them to write central processor
assembly language code. No knowledge of the hardware of this
or any other computer is assumed; only a knowledge of the basics
of FORTRAN, of running a FORTRAN program on a 6000 or Cyber
machine, and of English are required.

In 1965, Control Data Corporation began delivery of its 6600
computer system, the most powerful computer delivered up to that
time and still a very powerful machine by today’s standards. They
subsequently added four systems to the 6000 series: three smaller
systems, the 6200, 6400, and 6500, and one larger system, the
6700. For the 1970°s Control Data reintroduced these machines
with a few small additions, as the Cyber 70 series, models 72,
73, and 74. 1In the mid 70°s, using newer technology, they came
out with the Cyber 170 series, models 171, 172, 173, 174, and
175. Most recently, to start off the 80’s, they have added four
models to the Cyber 170 series: the 720, 730, 750, and 760. All
of the machines in these series are programmed identically.
Thus, although I shall generally refer to the 6600, the
information in this volume 1s applicable to all the above
mentioned machines.

In 1969, Control Data regained the "most powerful computer
delivered" title with its 7600 system, which is about five or six
times faster than the 6600. To the general user the 7600 appears
very similar to a 6000 series machine, although the overall
system organization is quite different. Nearly all of the
material to be presented here will also be applicable to the
7600, subsequently rechristened the Cyber 70 model 76, and to the
Cyber 170 model 176, which has the same structure. We shall not
consider any of the new features of the 7600 in any detail,
however, unless they are connected with the development of the
6000 series or represent corrections of errors in the 6000 series
design.

This text will try to be explanatory and not simply expository.
That 1is, we won’t simply tell you that the structure of the
computer is so and so, and the instructions are (1)eeey, (2)...,
etc., and "that’s how things are." Undeniably, it is important
to know the instruction set backwards and forwards to write
really good code, but there 1s something else you should
understand: why the machine was buillt the way it was. Clearly
it is impossible to show that 6600 is the best machine

configuration (it 1isn’t, as IBM, Univac, and CDC’s other
competitors will hasten tc point out), but you should at least
see why 1t 1s a reasonably good design, and why some of the
choices were made as they were.

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

CHAPTER 1

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

1.1 COMPONENTS OF A DIGITAL COMPUTER SYSTEM

Any real electronic data processing system has four functions:
the input of instructions and data, the storage of instructions
and data, the actual calculation using the data, and the output
of results. The input and output (I-0) devices, such as the card
reader and printer, which interface the computer with the user
and the external environment, are generally grouped together;
some devices, in fact, such as magnetic tape drives, serve for
both the input and output of information.

The storage of data for the actual computing unit of -the system
is done in a high speed memory. In some of the earliest
computers, the program of instructions was kept on loops of
perforated tape, separate from the data, which were then read by
the computer. Present computer speeds dictate, however, that the
instructions for the computing unit be much more rapidly
accessible, so the program of instructions 1is also stored in the
high speed memory. Such a system is thus called a stored program
computer. (Using ordinary paper tape to supply its instructions,
a 6600 would have to gobble tape at about 30 miles per second!)

1.2 DESIGN OBJECTIVES AND SPEED

The CDC 6000 and 7000 series were designed for large scale,
extremely high speed scientific data processing. They are among
the most expensive computers ever sold, and were not designed for
installation in your local grocery store to help with the bills.

In discussing the speed of these machines, we will never be
talking in terms of seconds or milliseconds (thousandths of a
second); our basic units will be the microsecond, one millionth

1

THE BASIC DESIGN OF T"HE 6000 AND CYBER SERIES

of a second (abbreviated us) and the nanosecond, one billionth of

a second (abbreviated ns). The 6600 is able to add two 18-digit
integers in 300ns; to add two floating-point (i.e., FORTRAN type
REAL) numbers in 400ns, with l4-place accuracy; and to multiply
two floating--point numbers in 1000ns (=1 us). And, as if that
weren’t fast enough, the 6600 can do two multiplications, one
integer addition, and one addition of floating numbers (and a few
other things) simultaneously. Although just how it can keep all
these things going concurrently i1s rather complicated, you should
have some idea now of how fast the 6600°s processing unit is.
Going along at a typical 3 million calculations per second, a
6600, for example, should have no problem doing arithmetic
accurately, faster than thte entire population of the United
States with paper and pencil. The 6600 obtains such speed from
cleverly designed electronic circuitry, based upon electronice
switches which can switch in 5ns (200,000,000 times a second).

The lower-numbered members of the 6000 series are of simpler
design and correspondingly slower. The 6400, for example, takes
600ns to do an integer addition and 5.7us (5700ns) to do a
floating-point multiply; also, it can only do one operation at a
time. The 7600, using faster circuitry than the 6000 series, can
do an integer add in 55ns and a floating-point multiply din
137.5ns.

The memory of a 6000 series machine 1s large and also quite fast.
It has a maximum capacity of over 130,000 numbers. The time it
takes the memory to deliver a particular number to the processing
unit after the processing urit asks for it ~- called the access
time of the memory -- i1s 500ns. After a result is calculated in
the processing unit and seat to the memory, it takes the memory
1000ns to store this result. To make things go even faster, the
memory 1s divided up into 32 sections, called banks, and the
memory unit is able to read numbers out of, or store numbers
into, several banks, i.e., several parts of memory, at the same
time. The memory of the 7600 is about four times faster: access
time is 137.5ns, full cycle (store) time 1s 275ns.

The memory of the 6000 and 7000 series 1s made up of very large
arrays of tiny ferrite (iron) magnetic cores (doughnut-shaped
rings, a fraction of an inch in diameter), so it is often called
core memory or core storage. Information is retained in core
storage by magnetizing the individual cores; more about this
later. Core storage is sald to be random-access; that is, the
time to access any information in the memory 1s the same,
regardless of which piece of information is being accessed.

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

This is in contrast to magnetic tape, for example, where one can
get at the information on the tape directly under the tape head
(the part that reads and writes on the tape) right away, but one
may have to rewind the tape for a minute or two to get what is on
the beginning of the tape.

1.3 CENTRAL PROCESSOR DESIGN

Most of the machines of the early 1960°s (the so-called second
generation machines) were very much memory dependent. Typically,
such a machine has a few transistor registers (electronic devices
for holding numbers, as opposed to cores) for computation, but in
an arithmetic operation one of the two operands comes from
memory. For example, an add instruction would add a number
stored in core memory to a number in one of the registers; a
multiply instruction would multiply a number in memory by one in
one of the registers. The advantage of this scheme is that you
don’t need many registers; in fact, if you want to be really
cheap about it, you need only one. But there is one hitch:
after the machine figures out that an instruction is an add
instruction, it has to request the number from memory for the
addition, and then walt until memory returns the needed number.
The arithmetic unit can get the number out of the register very
quickly, compared to memory speeds. The rest of the time, while
the storage unit is getting out the information, the arithmetic
section is waiting without anything to do.

In the "old days," when the arithmetic section was slow, this
state of affairs wasn’t too bad. It took about 1 to 2us to
access Information from storage, but it took about 10us to do a
multiply and 20us to do a divide, so the extra 1l or 2us were not
so bad. Nonetheless, to save these couple of microseconds, the
computer designers used something called look-ahead. In the
simplest form of look-ahead, the computer accesses the next
instruction from memory at the same time as it 1is executing the
present instruction; this 1s known as instruction overlap. This
technique enables the processing unit to figure out what the next
instruction is, and possibly even to request the operand (number)
for the next operation before the previous calculation is
finished.

Some machines, such as IBM’s Stretch (7030), tried to do even
better by an intricate look-ahead scheme, which examines the

3

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES
subsequent instructions and tries to determine what data will be
needed. This scheme, however, has some difficulties: for
exampie, one instruction may determine from which place in core
storage the next instruction will take its operand. Furthermore,
as long as there are only a Zew registers in which arithmetic is
done, the chances are quite good that one instruction will
require the result of a previous instruction as an operand. So,
even if the machine could handle more instructions at the same
time, overlap is limited; one instruction using a register could
not begin executing until a previous one delivering 1its results
to this register is finished. It turned out, as a result, that
the look-ahead did not make the machine so much faster as it did
make it more expensive.

In the 6600, any computer organizatlion that forced the computer
to wait for an operand to come from memory would be very
wasteful, since the arithmetic section is much faster (multiply
lus, other operations in 300ns). Knowing that one can get a
number much faster out of a (transistor) register than from core
storage, you might suggest that we build a machine with dozens or
hundreds of registers. This solution, unfortunately, overlooks
the shortage of that priceless ingredient, money: high-speed
registers are about two orders of magnitude more expensive than
core storage, at least. Aware of the rather limited market for
billion-dollar computers, we have to limit ourselves to a few
registers, and seek other solutions.

So the problem remains: how to avoild this situation without
having a complicated look-ahead scheme which isn’t very good
anyway? The answer: have the programer do the looking ahead;
i.e., shortly before the instruction to perform an add, multiply,
etc., let the programmer put an instruction which tells the
processing unit to load the operand from memory. 1In this way,
the operand is already sitting in one of the registers, and can
be fetched by the arithmetic unit very quickly.

This method imposes another requirement: we have to have several
registers, so that the aritlimetic unit can use two of them for
operands, put the result in a third, while at the same time
operands can be loaded from memory for the next Instruction into
a fourth and fifth, and the result of the previous operation kept
in a sixth until it is storad in memory. The 6600 has 8 such
high-speed registers, called X registers.

The place in memory where a memory word (number) is stored is
called a location; like positions in a one-dimensional array,
locations in core are designated by numbers. The number of the
location where a particular variable or other information is
stored is called its address.

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

Now let’s say that, in order to figure out the address of a word
(number) we want to load from memory into a register, we have to
do a calculation such as adding two numbers. On a typilcal second
generation machine, we would have to (1) do the calculation in an
arithmetic register, (2) store the result in a special register,
called an index register, and (3) execute the load instruction,
with a "flag" in the instruction which tells the machine to use
the address in one of the index registers. For example, 1if we
want to load the contents of successive locations (as in a DO
loop with subscripted variables), we would first have to
increment the index register, and then execute the load. If you
think about it for a while, you will see that this is clearly a
waste of time; why not have a special "index register" which
automatically loads the word into an arithmetic register when it
is set to an address? And, similarly, have "index registers"
which, when set, store an arithmetic register at the location in
memory specified by the contents of the index register. This is
precisely what 1s done on the 6600. These speclal registers are
called A registers, and there are 8 of them, paired off with X
registers. When some A reglsters are set to an address, the
contents of that location 1is loaded into the associated X
register; when other A registers are set, the contents of the X
register i1s stored at that location.

So far we have A and X registers; do we need any others? We
haven’t considered yet the usual case with index registers, in
which we have a counter (such as a DO loop index) which is not
equal to an address which we want stored or loaded during the
loop. We wouldn’t want to keep this count in an A register,
since it would be wasteful to have the computer load or store a
location which we don’t want. We could, of course, put the index
in an X register. Loop indices, however, are usually quite small
(since a good-sized loop takes a while to do even a million
times) whereas the arithmetic operands of the problem being
computed in X registers are often much larger than a million, or
require more than 6 significant figures. Since registers which
hold more digits (bigger numbers) cost more, reasonably enough,
it would be wasteful to allocate additional large X registers for
small counters. As a result, for reasons of economy, we have,
for indices and similar purposes, a set of special registers,
smaller than the X registers, called B registers (or index
registers). Of course, if a counter is required which is larger
than can be put into a B register, one can always use an X
register for it.

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

1.4 PERIPHERAL PROCESSORS

Thus we have a processing unit for our computer with A, B, and X
registers for holding data, and hardware for executing all the
instructions -- doing the arithmetic operations. Now let’s take
the memory unit, this processing unit, and the required
electronics for routing data back and forth, and wire them all
together. What have we got? A most expensive plle of electronic
junk (no reflection on the 6600).

What have we forgotten? Connections for the input and output of
information. Unless the machine can input data and instructions
and output results, it clearly will do us no good. And unless it
can input and output fast enough, all the speed and power of the
computer are for naught.

In the most elementary computers, input and output are taken care
of by the same electronics that routes data between memory and
the arithmetic unit. Thus, when an output instruction is
executed, the computer requests a word (number) from memory as it
would for a arithmetic operation, but instead of loading it into
a register, i: sends it out along one of the input-output lines,
to a printer, for example. Alternately, it could take a word
already in one of the registers and send it out on the same
lines. The disadvantage of this scheme is thatno arithmetic
processing can occur during input or output, since there is only
one path to and from memory, and only one control section to
direct the flow of data.

The logical solution 18 to create several additionmal paths to and
from memory, each with its own control section. The control
section, with internal ccnnections to memory and external
connections to input-output lines, is known as a data channel.
The main control unit, wich executes the instructions in memory,
can then instruct one data channel to read a certain section of
memory and write 1t on magnetic tape, instruct another to
transmit a second region of memory to the printer, and get a
third to read information from punched cards and store it in
memory. These commands are issued to the data channels when the
main control section encounters an input or output instruction,
just as 1t would instruct the arithmetic unit to do a multiply if
a multiply instruction were encountered. Commands to the data
channels may instruct theam to do input=-output, to pass on
commands to an I-0 device (e.g., tell a tape transport to rewind
a tape), or to return to the main control section the status of
any input-output requests previously made (successfully
completed, error encountered, etc.).

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

The data channel concept was a very good one, and almost all
second generation (early 1960°s) computers used some variation of
this scheme. 1In fact, with some further alterations, it is being
used on most third generation (present-day) computers. To reduce
the need for the program (i.e., the main control unit) to
regularly interrogate the data channels for information, systems
of interrupts have been devised for many computers. When an
interrupt is on ("enabled") and a specified condition occurs
(e.ge., an error during input or output, the completion of input
or output), the computer automatically transfers control to
(starts executing) a program in memory designed to take care of
the situation. For example, 1f a card gets stuck in the card
reader, the computer might interrupt to a program which prints a
line to the computer operator, "CARD READER JAMMED." Interrupt
systems minimize the time that the computer has to spend checking
up on the data channels,

This system is fine, especially for I-O devices that can transmit
large quantities of information without much supervision, such as
magnetic tape units. In contrast, suppose the computer was
connected to 100 terminals —- units like typewriters, on which
users can communicate with the computer. If "character-by-
character response" were desired -- every time someone types in a
character, the computer checks 1f any action by the computer is
necessary —-- the computer would be interrupted fairly often.
Similarly, 1f a magnetic disk 1s used for storing programs to be
executed, as on the 6600, and, as on the 6600, data is stored in
small packets of 64 words, which can be read or written in 500us,
there will be a need for frequent interrupts. Even if the data
channel were capable of writing or reading several sectors
(packets of 64 words) by itself it would be necessary to use the
computer regularly to determine if the last needed sector had
just been read, or where the next sector of a program is, or, if
a search of part of the disk is being made, to examine the data
as it is read in.

Thus it is clear that if several different I-0 operations are
going on simultaneously, the computer would have to be
interrupted quite often. But many other computers, designed to
handle considerable amounts of I-0, have adopted an interrupt
scheme; why shouldn’t the 6600? To answer this question we have
to keep in mind several facts about the 6600: first, that it has
a number of registers, and second, that 1t will usually be
executing several instructions at the same time. Now, when an
interrupt occurs, we would like to save the contents of all the
reglsters, so that they will be unaltered when the interrupt
program 1is over and control returns to the regular program. We
can do this in two ways: first, we could use a different set of

7

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

registers for the interrupt program, and simply switch registers
when an interrupt occurs; this 1s a very fast method, but a
second large set of registers 1isn’t cheap. As a result, a
second, slower scheme was used: whenever the 6600 stops executing
one program and starts executing the next, all the registers are
automatically stored in memory and new values for the next
program are loaded from memory. Since, at any moment, several
instructions are executing, the computer has to wait until all
the instructions are finished before 1t can begin storing the
registers; as a result, it can take quite a few microseconds to
change programs. If the 6600 were to interrupt every time some
processing was needed for I-0 operations, possibly 2,000 times a
second or more 1f a lot of I-0 is going on simultaneously, a
sizeable fraction of the time of the main arithmetic unit would
be spent simply exchanging back and forth between the regular and
interrupt programs. So, no matter how fast the mailn processor
could do the I-0O chores, a significant amount of its time would
be used up. In addition, the I-0 processing is usually quite
simple -~ comparing numbers, searching for a particular item =--
s0o during I-0 processing the extraordinary power of the
arithmetic unit would be largely wasted.

The logical sclution is to provide each data channel with the
ability to do some simple processing. The sophisticated data
channels of the IBM 7000 series took a step in this direction:
when a data channel finished one operation, it could read the
next data channel commmand from memory without any intervention
by the central processing unit (the maln program). These data
channels, however, still performed only I-0 instructions.

The next step, as taken in the CDC 6000 series, 1is to give the
"data channels" the ability to perform elementary arithmetic
operations. These souped-up data channels can then take care of
such processing as determining the next sector on the disk to
read or write, searching for a certain item on the disk, or
checking the input of 100 terminals letter-by-letter, and leave
the central processor to do the work it was designed for: the
more complex arithmetic prccessing for users’ programs. These
super data channels are cal.ed peripheral processors, because
they act as an interface between the peripheral (input-output)
eqipment. Warning: in the 6600, "data channel" refers to the
lines to I-0 equipment, not unlike the data channels of the very
simple computers mentioned esrlier.

For several reasons, the peripheral processors have been given
their own individual memoriles, rather than share in the main
memory of the central processor, the central memory. One reason
is that the "ideal" word size for the PP’s (peripheral

8

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

processors) is considerable smaller than that for the central
processor; firstly, the "basic unit" in I-0O is generally small,
typically one number or character (e.g., one card column).
Secondly, I-0 devices are usually slow compared to computer
speeds, so a PP can keep up with external equipment even if it
works only a few digits at a time. And thirdly, they do not
require a large word size for precision artithmetic, since they
are designed to handle chiefly simple calculations. As a result,
it would be wasteful to have a word size as large as that of the
central processor. Furthermore, direct access of all PP’s to
central memory would require considerably more central memory
electronics, and would complicate the control hardware of the
PP’s.

Thus we now have a machine configuration consisting of a high-
speed central processor and a set of independent, less powerful
peripheral processors for input and output. (Figure 1, page 11.)
Because the PP’s are all logically iIindependent processors,
running with their own programs, they can perform another
function, in addition to doing I-0: they can act as system
monitors. A system monitor supervises the running of the
computer system: oversees input and output, determines which
program will run on the central processor at any moment, and
keeps records of all activities. In a 6600 system, there are
normally 10 PP’s; one or two can be assigned to supervisory
functions, and the rest used for I-O operations.

1.5 VARIATIONS ON A THEME

The first machines in Control Data’s 6000 series, the 6600 and
the 6400, were originally offered only in the configuration shown
in Figure 1. In order to expand and diversify its series, CDC
soon offered two significant options: multiprocessors and
extended core storage.

A multiprocessor configuration is simply an arrangement whereby
two or more central processors are attached to central memory.
Hooking together two 6400 processors yields a 6500, which ranks
somewhere between a 6400 and a 6600 in computing power. Adding a
6400 central processor to a system with a 6600 yields a 6700, the
top of the line. With either of these systems, the two CP’s work
on separate jobs in separate sections of central memory, so the

9

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

user need never be concerned that there i1is more than one CP in
the system.

Extended core storage (ECS) is a larger, slower, and cheaper form
of the core storage used for central memory; it is available in
sizes up to 1 million words for the 6000 series and 1/2 million
for the 7600. It provides a intermediate level of storage
between high-speed central memory and the relatively slow=-speed
disk. It may be used to hcld data or operating system tables
which are not referenced often enough to justify a place in
central memory, or programs which are executed very often (such
as the FORTRAN compiler). Programs cannot be executed directly
from extended core storage; they must first be moved to central
MemoOry .

ECS has been specifically designed to allow for the rapid
transfer of large blocks of data from ECS to central memory and
back. On 6000 series machines, the data rate is 10 million words
per second; on the 7600, 3¢ million words per second. (To get
some grasp of what 36 million words per second means, consider
that the entire contents of the 2000-page Manhattan telephone
directory could be transmitted in one-tenth of a second, or, more
pertinently, that a FORTRAN compiler can be moved into central
memory in about one-third of a millisecond.) A 6000 or 7000
series central processor can move a block of words to or from ECS
with a single instruction; in addition, the 7600 CP can load a
word into an X register from ECS and store into ECS from an X
regisrer. These particiular instructions will not be discussed
in detail in this volume; further information on them can be
obtained from the reference manual for your machine.

In the usual ECS configuration, only the central processor, and
not the peripheral processors, can access ECS. If the tables and
principal programs of the oparating system are kept in ECS, this
means that a peripheral processor which wishes to change an entry
in an operating system tatle (when a job starts or finishes
executing, for example) has to request the central processor to
make the change. This suggests, of course, that some system
"bookkeeping" functions be performed by the central processor.
Provisions have been made for this on the 6000 series machines
through a special instruction (the "monitor exchange jump") which
enables the central processor to switch back and forth between
the user’s program and the operating system’s monitor program.

The 7600 system, which always includes ECS, was designed
specifically to run with a central processor monitor. On one
hand, a 7600 PP cannot do some things a 6600 PP could (such as
start and stop the CP, or read any word in central memory) while,

10

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

on the other hand, the 7600 CP has some additional instructions
to keep track of the PP’s.

CENTRAL

PROCESSOR

CENTRAL

MEMORY

PERIPHERAL PROCESSORS (10)

DATA CHANNELS TO EXTERNAL EQUIPMENT

FIGURE 1

11

THE BASIC DESIGN OF THE 6000 AND CYBER SERIES

1.6 THE BOLD STEP FORWARD

As any marketing expert or hcmemaker will tell you, it just won’t
do to keep on selling the same product year after year under the
same name. After a few years, good old SPQR becomes New Improved
SPQR with Miracle Whitener. This 1is especially important in the
computer business, where having the "newest and fastest'" is a
status and selling point. Sc, to meet the challenge of the 70’s,
CDC rechristened the 6000 and 7000 machines the Cyber 70 series.
The 6200 became a Cyber 70 model 72, the 6400 a model 73, the
660 a model 74, and the 7600 a model 76. The dual processor
systems, which formerly gct the separate model designations 6500
and 6700, became options on the Cyber 70 models 72, 73, and 74.

The role of the New Miracle Whitenmer is played by the compare and
Move Unit, or CMU. This small addition to the central processor
was designed to make a computer originally intended for
scientific calculations more efficient in commercial and text-
processing applications. It is standard equipment on the Cyber
70 models 72 ad 73, and available as an option on the model 76.
We shall consider the capabilities of the CMU in detail at the
end of Chapter 3.

In the mid 70"s, these machines were redesigned to take advantage
of newer technology. 1In place of individual transistors, they
used integrated circuits - small packages (less than an inch
long) containing dozens of transistors. In place of core memory,
they used integrated circuits that could store 1024 bits on each
"chip" (package)s Although quite different internally, these
machines - the Cyber 170 models 171 through 175 - are programmed
identically to the earlizr series. Further advances in
technology (such as memory circuits holding 4096 bits per chip)
led CDC in 1979 to introduce four more models in the Cyber 170
line - the 720, 730, 750, and 760. These too were '"program
compatible" (identical from the programmer’s viewpoint) with
earlier models.

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

CHAPTER 2

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

2.1 THE BINARY NATURE OF COMPUTERS

The question of the number system to be used by the computer in
doing arithmetic i1s one of the basic questions in computer
design. To those of you not familiar with the way arithmetic is
done on computer, it may seem that "addition is addition, after
all," regardless of the number system used. We shall presently
see the error of such ideas.

It is a basic fact of computer design that virtually all digital
electronic components built for computers are binary in nature.
That is, every component can be in either of two states: a
transistor, which is basically an electronic switch, can be
either conducting (on) or nonconducting (off); a magnetic core,
the tiny ring-~shaped piece of ferrite used in core memorles, can
be magnetized in either a clockwise or counterclockwise
direction; a light can be either on or off, etc. In each case,
we assoclate one state with the digit 0 and one with the digit 1;
the choice 1s usually quite arbitrary. Each digit in our
tepresentation may be either a 0 or a 1; hence it is called a
binary digit, or bit. Thus each basic computer component
represents one bit of information, a 0 or 1, yes or no, on or off
datum. Larger amounts of information may be represented by using
several bits together. Thus, a palr of binary digits may take on
any of four possible values (00, 01, 10, and 11), a set of three
bits may have any of 8 different values, and so forth. 1In
general, n bits (which may be represented by n binary computer
components) may have any of 2*#*n different values.

13

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

2.2 BINARY AND BINARY CODED DECIMAL REPRESENTATIONS

Using four bits, we can represent the first 2**4 = 16 numbers (0-
15). There are many ways in which we can associate these 16
numbers with the 16 possible arrangements of four binary digits.
One arrangement, however, 1s particularly desirable from both a
logical and an electronic point of view; this arrangement is
known as the binary number system. It uses the concept of place
value in the same way as the decimal system, except that, instead
of the place values going up in powers of ten, they go up in
powers of two. Thus, just as

1*10*%2 + 2*]10*%*1 + 3*10%*%0

123 (base 10)

= 1#]100 + 2*10 + 3
50
1101 (btase 2)

1%2%%3 4+ 1%2%%2 4 Qk2**] + 1*2%%Q

= 1%8 + 1*%4 + 0*2 + 1
Thus:

123 (base 10) 1111011 (base 2)

= 1%64 + 1*32 + 1*16 + 1*8 + 0*%4 + 1*%2 + 1

If one wants to store numbers, and not to do any arithmetic
processing, the binary system has the one advantage that one need
not memorize the value of each bit pattern, but, to convert
binmary to decimal, one need simply to add up the place values of
all the "1" bits. Since, for everyday purposes, we would like to
talk to the computer in decimal, it is important that we have a
simple scheme for going back and forth between decimal and binary
notation.

But there are other arrangements for storing numbers in memory
which are even simpler to convert to decimal. Since four bits
may take on any of 16 possible values, it 1s easy enough to use
four bits to represent one decimal digit, 0-9. Again, there are
many possible representatijions or codes for associating the
decimal digits with the values of the four bits (16!/6!,which
equals about 29,000,000,00C codes). However, there are again
only a few desirable arrangements. One, in particular, codes
each decimal digit in the binary system: 0 = 0000, 1 = 0001, 2 =
0010, 3 = 0011, ..., 9 = 1001,

In order to store a decimal number with more than one digit, we
need merely set aside four bits for each decimal digit, and code

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

each decimal digit separately in its four bits. This technique
is called binary coded decimal, or BCD. Thus in the computer
memory we would store 123 as 0001 0010 0011, and 4978 as 0100
1001 0111 1000. This certainly is easier to convert to decimal
than ordinary binary; 1in fact, after some practice, you could
practically read the decimal when looking at the binary. Then
why use the binary system at all? Simply because it 1s easier
for the machine to do arithmetic in the binary system, as we
shall see in the next section.

2.3 ARITHMETIC IN THE BINARY SYSTEM

To add two binary numbers is very simple; just as when adding in
decimal, we do 1t bit by bit, starting at the right. Just as in
decimal, 0+0 = 0, 1+0 =1, O+1 = 1; now 141 = 2 in decimal, but
there is no 2 in binary. So in binary we write 1+1 = 10 or, if
we are continuing the addition, 141 = O plus a 1l bit carry (since
a 1 carried on to the next place is a 2 with respect to the
present place). Now the only remaining problem is, what to do
when adding up the next column, with a carry to take into
account? It should be reasonably clear that, when there is a
carry from the previous column, 0+0 = 1, 0+1 = 0 with a carry
into the next column (i.e., = 10 (base 2) = 2), 1+0 = 0 with a
carry into the next column, and 1+1 = 1 with a carry into the
next column (i.e., = 11 (base2) = 3). In case this isn‘t
absolutely clear, some examples:

(carries -—-> 11)
addend 1 = 100110
addend 2 = + 010011

sum = 111001

(carries —=> 1111111)
addend 1 = 11111111
addend 2 = 1

sum = 100000000

What makes this simple 1is that there are only eight
possibilities, 0+0, 0+1, 140 and 1+1, with and without a carry,
while in decimal arithmetic there are two hundred possibilities

15

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

{two possible carries, 0 or 1, ten possible digits in each place
of each number). If we were to store the decimal digits as
binary numbers, as suggested above, we could add the individual
digits 1ike binary numbers, but it would still be necessary to
check whether, in doing the addition, we created an illegal digit
{(one greater than nine). For example, 1n

23 = o010 0011
+ 49 = + 0100 1001
0110 1100

the low=~order digilt is 12, so we have to change it to 2, and
propagate a carry into the ten’s digit, so that the result is

0111 0010 = 72

Regardless of what BCD code we used for the decimal digits, in
fact, we would have to do some checking after the addition for
illegal digits; as a result, it 1s simpler and faster to do
binary addition (both for you and the computer) than to do BCD
addition.

To learn binary multiplication is even easier: do the long
multiplication just as you would decimal numbers, and then add
the partial products up as you just learned to add binary
numbers; for example,

1000110
* 10107
1000110
100011¢
1000110

10110111110
another example

11101110
* 11101
11101110
11101110
1110111C
11101110

110101111C110

16

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

If you get confused keeping track of all the carries in binary,
do as the computer does: as you multiply, keep a running total
of the partial products so you only have to add two numbers
together at a time. In fact, if you take a careful look at what
you have done, you will see that the computer doesn’t really have
to multiply in the sense in which you had to learn to multiply in
decimal. All it does 1s shift one of the numbers to the left,
one binary place at a time, and check whether the corresponding
bit in the other number (starting with the rightmost bit and
going left) 1s 1; 1f it 1is, add the first number into the
subtotal (in its present, shifted, position) before continuing
with the shifting.

This makes binary multiplication really easy for the computer.
In comparison, to do multiplication in decimal, it would have to
learn a 10*10 multiplication table. Some machines which do
decimal arithmetic, such as the IBM 1620 computer, store addition
and multiplication tables in memory, and look them up every time
they do an arithmetic operation; that is, to say the least, a
slow process.

At this point we have significant information for a first
decision concerning the number system for our computer: binary or
decimal (BCD). It should be clear by now that 1f a lot of
arithmetic will be done with the numbers in memory, it is simpler
(in terms of computer electronics) and faster to use the binary
system. On the other hand, for some business uses where an
enormous amount of data is read in and out, many of the numbers
are never used in arithmetic operations (who ever heard of
multiplying a Social Security number?), and only some simple
arithmetic is performed with the rest, decimal arithmetic may be
best in order to save the time converting back and forth between
decimal and binary. The CDC 6600, however, was made essentlally
for sclentific uses, where a lot of arithmetic is done (in
comparison with the amount of I-0), so the choice is clear: use
the binary number representation.

Having covered addition and multiplication, let us complete the
sequence with a discussion of subtraction and division. Just as
for addition ~- binary or decimal =-- we need the concept of a
carry, for subtraction we need the concept of a "borrow." The
rules for doing a subtraction are quite simple: 0-0=0, 1-0 =
1, 1-1 = 0, and 0-1 = 1 with a borrow from the column on the left
(in effect, borrowing 2, just as you borrow 10 in decimal).
Borrowing from a 1 simply makes it a 0, while borrowing from a 0
makes it a 1 and requires still another borrow from the next
column to the left (compare with the process involved in the
subtraction, in decimal, 100 - 1). Some examples to make this

17

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

clear:
11011119210 100000000
~ 100110101 - 1
1001090101 11111111

In case you might have been confused by all those borrows, I have
some good news for you: we are about to show that it 1s really
unnecessary to learn to subtract at all. You may have heard this
line somewhere before -- when you were told that you really
didn’t have to subtract, you just added a negative number. Well,
this information really won’t help you too much (unless you like
to use nine’s complements), since to add a negative you probably
go through the motions of a subtraction anyway. But in a
computer, where the electrorics for doing a subtraction as we did
above would require quite a few electronic components, we would
much prefer to use some sly trick which enabled us to get away
with having only an adder (and not a subtracter). After all,
electronic circuits don’t grow on trees.

S0, we are going to investigate the possibility of adding
negative numbers, instead of subtracting, in binary. Our first
problem is how to get a negative number, but that isn’t very
difficult: simply subtract a number from a smaller number, say
24 - 32,

111000
- 102000

711000

What now? Well, there are at least two reasonable possibilities.
Firstly, we could, if we were subtracting numbers with only six
(or fewer) bits, agree that we are allowed a free borrow from the
next column (sort of an imagined 1 bit in the next column of the
upper number); 1in effect, we disregard any borrow into the last
column. Then, where the "%" is, we would simply put a one:

24 - 32 = 011000
- 100000
111000 = -8
So -8 = 111000 for six-bit numbers. Alternately, we could

agree to borrow from the btottom (rightmost) column; in this case
things are a little bit more complicated because we have to
continue borrowing up to the fourth column:

18

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

011000
~ 100000
111000
- 1 bornow

110111

Now, you might dare to ask, why in the world should we take the
borrow from the low-order digit? Take a careful look at our
second result: -8 = 110111 (for si#—bit numbers), and recall
that 8 = 001000; now do you notice anything? Wherever there is
a one in the binary representation of the positive number, there
is a zero in the binary of the negative number, and vice versa;
this is called the one’s complement of the number. The other
representation of the negative number, the first one calculated,
is called the two’s complement; it is equal to the omne’s
complement plus one (since to form the two’s complement we don’t
borrow 1 from the low-order (rightmost) bit, as we did for the
one’s complement).

Let’s assume for the moment that whenever we do a subtraction
with end around borrow (borrow from the low bit) and get a
negative number, it will be the one’s complement of the positive
number (we will prove this shortly). Then we have a simple rule
for subtraction: just add the one’s complement of the number.
For this method to work, however, we have to keep one thing in
mind: when we borrowed for the high-order (leftmost) bit, we took
a 1l from the low-order bit, so when we have a carry from the
high-order bit, we have to carry it around to the low-order bit.

This, logically enough, is called an end around carry. Some
examples:

32 = 24

00100000 00100000
- 00011000 11100111
00000111

+ 1 <~- end around carry

00001000 = 8!

il
+

28 -1

00011100 00011100
- 00000001 11111110

1]
+

+ 1 <~- end around carry

00011011 = 27

19

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

13 -0 = 0000110: 00001101
- 00000000 = + 11111111
00001100
+ 1 <=- end around carry
00001101 = 13

Notice that 1in our third example we have found another zero (the
so-called -0 = 11111111), 1in other words, another number which
when added to any number N gives the same number N. Now, in
order to find the negative of a number, one method is to subtract
that number from zero; so, we can subtract the number from -0
just as well. We will thus get the one’s complement of the
number, since subtracting one from one gives zero, and zero from
one gives one:

-0 - 27 = 11111111
- 00011011

11100100 = =27

Thus, we have "proven" that if we use end around borrows and
carrys (one’s complement arithmetic), the negative of a number is
the one’s complement of the number.

Now recall, 1if you will, why we started on this examination of
negative numbers: we wanted to see if it is possible to perform
subtraction on the computer using addition. We have found that
one can do subtraction by adding the complement of the number,
and that there are two convenient complements: one of them, the
one’s complement, can be calculated by simply putting ones where
there are zeros and vice versa. The other, the two’s complement,
is found bty adding one to the one’s complement. The one’s
complement is clearly simpler to calculate (it requires only one
operation) and largely for this reason one’s complement
arithmetic was selected for the 6600.

Having now reached this cecision, some words of caution are in
order. When we wrote down numbers and their complements above,
we were usuaily careful to specify, "for eight-bit numbers," etc.
Why we had to do this should be evident by now. If we have a
five~bit number, say 27 (base 10) = 11011 (base 2), and want to
represent it on a register which has six bits (six binary
electronic components), we would write 011011; if we had an
eight-bit register, we would write 000110ll. 1In other words, if
there are more bits than we need for the number, we do the

20

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

obvious thing, and fill the register with zeros. But consider
now putting -27, the one’s complement of 27, in the register; for
the six-bit register, we have the complement of 011011, which is
100100, while for the eight-bit register we have the complement
of 00011011, or 11100100. That is, when we put a negative number
into a larger register we have to fill the register with ones,
not zeros!

Complement arithmetic brings up one other problem. Let’s say we
have a six-~bit register, and I tell you that it contains 101101.
What number is in that register? You could say either 45 or -18
(in one’s complement), but you couldn’t tell me which of those
two. So we have to make a convention about when we consider a
register to contain a positive or negative number. Recall now
that if the register is sufficiently large, a positive number
will have the most significant (leftmost) bit equal to zero,
while a negative number will have it equal to one (since for
positive numbers we f£111l out the register with zeros, for
negative numbers with ones). We therefore will adopt the
convention that if the most significant bit 1s zero, the number
is positive; if the most significant bit is one, the number is
negative. As a consequence of this convention, we call the most
significant bit the sign bit, and refer to the aforementioned
process of filling a register with zeros (if sign bit = 0) or
ones (1f sign bit = 1) as sign extension.

A register of n bits can take on 2%*%*n values, which we originally
assoclated with the positive integers 0 through 2%*(n-l). With
our new convention, we are limited to n-1 bits (the high bit must
be zero), and so to positive numbers 0 through 2**(n-1) - 1. 1In
recompense for this loss, we obtain the ability to represent the

negative numbers -0 through -(2*#%(n-1) - 1), so that all in all
the register can still take on 2**n values. In doing integer

arithmetic, one must always be careful to avoid exceeding the
allowed range of positive or negative numbers; for example, in
the addition in a six-bit register

24 + 24 = 011000
+ 011000

110000 = -001111 = -15!

The sum is incorrect becuase we have exceeded the limit 2%*5 -]
= 31. Such an error is termed overflow because a carry spills
over into the sign bit when the number exceeds the prescribed
range.

21

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

[n case you are confused by now about integer arithmetic, there
is one additional polnt; we could either store a negative number
in the computer as the complement of the positive number, or as
the positive number (the magnitude) with a special bit set to
indicate that it is a negative number. The latter 1s called a
sign and magnitude representation, and the special bit is called
the sign bit, since (like the sign bit discussed above) it is
zero for positive numbers, one for negative numbers. For
example, =27 would be

one’s complement: 11100100
sign and magnitude: L 0011011

sign and magnitude = 27

If we stored the numbers in one’s complement, we could add them
directly in the arithmetic unit; if we stored them in sign and
magnitude, it would be necessary to convert the numbers to
complement form before adding them. On the other hand, an
advantage of storing numbers as sign and magnitude is that they
are easier to read 1f you are looking directly at the 0°s and l’s
out of the machine (you don’t have to complement the number in
your head before figuring out what it is). But most people
generally don’t read numbers directly out of the machine’s
memory; they have the computer convert them back to decimal. As
a result, the method siampler for the arithmetic section was
selected for the 6600: storing numbers in one’s complement.

We have finally finished addition, multiplication, and
subtraction, and all the vagaries of one’s complement. Division
in binary is essentially the same process as in decimal, but is
somewhat simplified because there are only two possibilities for
each digit. The actual method for long division is identical to
that for decimal; the only difference 1s that you have to
remember to subtract in binary:

00000110 = 6

7/42 = 00000111 / 00101010
111

You may notice that the onlv operations involved are shifting the
divisor right one bit at a time and subtracting (or, alternately,
adding the complement, 1:111000). In the division process, the

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

divisor starts out shifted all the way to the left, and is
repeatedly shifted right one binary place; each time the divisor
is shifted, the arithmetic unit checks if the divisor is less
than the dividend (as you do when performing the division by
hand); 1f it is, the unit puts a one in the quotient and
subtracts the divisor from the remaining dividend; in either
case, it then continues shifting the divisor to the right.

Thus we have finally covered the four basic operations of binary
arithmetic; if you don”t have them quite straight yet, you will
probably be heartened to know that you will probably never do a
problem in binary arithmetic while you are programming (unless
you feel a sudden urge to do so).

2.4 THE OCTAL NUMBER SYSTEM

The disadvantages of the binary system are obvious: it takes
long enough just to write out a good-sized number (like 4100
(base 10) = 1000000000100), never mind doing a long
multiplication or division. In designing the computer, we don’t
have to worry about this, but for ourselves we would like a more
convenient notation. We could use decimal, of course, but this
has one problem: 1if we want to examine the individual bits, we
may have a hard time figuring out from the decimal value of a
(binary) register whether a particular bit is a 0 or a 1 (quick,
what 1s the thirteenth-from-low-order bit of 3,628,422,3012).
The only way to insure that we can convert easily from the
machine representation to our representation 1s to have one digit
in our number system correspond to an integral number of bits.
For example, in a machine using BCD for storing numbers, it is
trivial to go from the machine representation to decimal, since
one decimal digit corresponds to four bits. We can accomplish
the same thing for a machine using the binary system by having a
number system whose base 1s a power of two: base four (two bits
to a digit in base four), base eight (three bits to a digit in
base eight), base 16 (four bits to a digit in base 16), etc.
Since we want to minimize the number of digits we have to write,
bases eight and 16 are preferred to base four. You might think
that, from this point of view, we should use base 32 or even 64.
But for base 32, we need 32 different digits; knowing already 10
(i.e¢y 0 - 9), we would have to invent and memorize the values of
22 others, not a very pleasant thought at a time when we are
trying to make work easier for ourselves. So the normal number

23

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

systems used are base elght -- octal -- and base 16 =--
hexadecimal. For octal, we need eight digits: 0 - 7, logically
enough; for hexadecimal, we take the ten decimal digits 0 - 9 and
add six letters A -~ F to make 1l6.

On the 6600, the basic bit groupings are 6, 12, 15 and 30 bits ~--
all multiples of three -- sc¢ the octal system, which associates
one diglit with each three bits, was selected. To convert binary
to octal and vice versa, you first have to learn the binary
equivalents of the octal digits:

Octal Binary
= 000
= 001
010
011
100
= 101
= 110
= 111

NN~ O
]

Then, to convert binary to cctal, simply break up into groups of
three and convert group by group; for example,

I 101 010 (base 2) = 1 5 2 (base 8)
In case the basis for this procedure isn’t obvious, study the
following:
= 1h2kkG - [X2k%5 4 Qk2%kk4 + 1*2%k%3 + Q#2%kk2 4 1k2%k%k] 4 QR2%%(
=] %2%%6 + (1*%2%%2 4 Q*2%k*%] + 1)*24%3 4+ (Q#2*%2 + 1*2%%] + 0)*2**(
= 1*%8%*2 + (5)*8%*1 + (2)*8**0

=] 5 2 (base 8)

Converting from octal to binary is just as simple:
3 7 4 2 (base 8)
= 0Ol1 111 100 (010 (base 2)

With a little practice this should become as automatic as
breathing.

24

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

Converting from octal to decimal is a procedure analogous to
converting binary to decimal.

3 7 4 2 (base 8)

JKGHKT 4 THBRRD + LABRK] 4 2

3*%512 + 7*64 + 4%*8 + 2
=2018

If you remember the powers of two (useful information in any case
when you are programming) this is simple enough. But, as we
shall see in the next section, there are techniques which absolve
you from having to remember 2**39 if you want to convert
37421654513007 (base8) .

Doing arithmetic in octal is similar to decimal, except that you
have to cut two fingers off before counting. When you add, you
have to remember to propogate a carry and start counting again at
eight, when subtracting, to borrow eight, not ten:

70320
+ 165432

255752

42731
- 25616

Multiplying 1in octal can be messy unless you memorize the
multiplication table, though if that gives you a hard time, you
can multiply each pair of octal digits in decimal and then
convert to octal (e.g., 7(base 8)*7(base 8) = 49 (base 10) =
6l1(base 8)). Since that is, to say the least, a slow procedure,
you will be happy to hear that you won’t often have to do a
multiplication like this:

1542
* 317

536076

25

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

Once you have octal multiplication and subtraction down pat,
octal division is simple -~ the same procedure as long division
in decimal:
1542
317 / 536076
317

2.5 BASE CONVERSION ALGORITHMS
A base conversion algorithm is a technique for converting numbers
in one base to numbers in aaother. We have already discussed a
few; for example, from bihary to decimal:

110101 (base 2)

= 1*QRKS 4 1X2KK4 + OKIKK3 + 1*2k%kD + Q#2kk] + 1#2%%(

1
i

= 1%32 + 1% 16 + 0*8 + 1*%4 + 0*2 + 1

fi

53 (base 10)

Now watch carefully

110101 (base 2)

1*24%5 4 1%2%%4 + Q*2%%3 + L*2*%2 + Qk2%%k] + 14%2%%(

(L*2% %4 4 1% 2%%3 4 0%2%%2 4+ 1%2%%] + 0)*2 + 1

26

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

((1#%2%%3 + 1%2%%2 + O%2%*] + 1)*2 + 0)*2 + 1

(((1%2%%2 + 1%2%%] + 0)*2 + 1)*2 +0) *2 + 1

If

(C((1%2 + 1)*2 + 0)*2 + 1)*2 + 0)*2 + 1

Thus converting binary to decimal can be reduced to multiplying
by two and adding the next bit to the right, repeating this
process till we run out of bits; this may be diagrammed:

1 1 0 1 0 1 (base 2)
(1%2 + 1)
———————— Y
(3%2 + 0)
(6%2 + 1)
(13%2 +(»¢
(26%2 + 1) |
53

Converting from octal to decimal is the same, except we multiply
by eight:

3 7 4 2 (base 8)

(3%8 + 7))
——————— Y
(31%8 + 4)

2018

Thus, we have an algorithm for converting from binary and octal
to decimal that doesn’t require us to memorize tables of powers
of two.

To go the other way —— to convert decimal to octal —— we can
simply turn the tables and multiply by 12 (base 8),(= 10 (base
10)) and do all the arithmetic in octal:

27

NUMBER SYSTEMS AND CCMPUTER ARITHMETIC

2 0 1 8

(2*12 + 0)]

————————— Y
(24%12 + 1)

But -- since most people prefer not to multiply in octal -— there
is another conversion technique we can use, involving repeated
division. Consider a three digit number, with digits
d(3)d(2)d(1). 1Its value, in decimal, is

d(3)*8%%2 + d(2)*8%*1 + d(1)

I[f we now divide in decimal by 8, we get quotient d(3) * 8%*]1 +
d(2), remainder d(1) (since d(l) is less than eight); if we
divide the quotient again by eight, we get d(3), remainder d(2).
Thus, by repeated division by 8, we will get the octal digits as
a series of remainders. To convert 2018 to octal,

2018/8 252, remainder 2
252/8 = 31, remainder 4
31/8 = 3, remainder 7
3/8 = 0, remainder 3
so again, (reading the remainders from bottom to top), 2018
(base 10) = 3742 (base 8)., For binary, we use the same procedure
except we divide by two. To convert 53 to binary,
53/2 = 26, remainder 1
26/2 = 13, remainder O

13/2

6, remainder 1

6/2 = 3, remainder 0

3/2 1, remainder 1

1/2 = 0, remainder 1

28

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

so (reading up) 53 (base 10) = 110101 (base 2). We will have
more to say about conversion algorithms quite a bit later, when
we will be writing programs to do the conversions.

2.6 FLOATING POINT NUMBERS

So far, in discussing the representation of numbers in the
computer, we have considered only integers. But, as you know
from FORTRAN, we have two basic modes for representing numbers:
integer and real. Real numbers are needed for numbers much
larger than or smaller than one, and numbers with fractional
parts. In writing very large or very small numbers in FORTRAN we
use scientific notation, E format, such as 3.E+30 or 7.1E-32 in
order to avoid such space-consuming monstrosities as 3000 000 000
000 000 000 000 000 000 000. or 0.000 000 000 000 000 000 000 000
000 000 071 1In storing the numbers in the machine, we use a
similar technique: we convert the number to a reasonable-sized
integer multiplied by a power of two; for example, the binary
xumber 101 000 COO 000 000 000 000 000 000 000. we can write as
101%2*%11011.

Now what about numbers smaller than one? Just as we represent
such numbers in decimal with decimal fractions, we can represent
them in binary by binary fractions; as places to the right of a
decimal point represent 1/10, 1/100, 1/1000, etc., the places to
the right of a binary point (which looks just like a decimal
point) represent 1/2, 1/4, 1/8, and so forth. Thus

0.001 (base 2)

0*%1/2 + 0*%1/4 + 1*1/8
1/8

0.125 (base 10)

W

and

1.0101 (base 2)

1 +0%1/2 + 1*1/4 + 0%1/8 + 1*1/16
1+ 5/16

1.3125 (base 10)

nunn

29

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

Without describing the conversion algorithm--which is quite
similar to these previously discussed--it is clear that given any
decimal fraction we can coavert to binary. Once this is done, it
is trivial to get into our fcrm of integer times exponent:

1.3125 (base 10)
1.0101 (base 2)
= 10101%2%%(~]00)

it

When we storz the number, of course, we will just store the
integer coefficient and exponent, since the base of the exponent
(2) is understood. In the 6600, memory words and X registers
have 60 bits, to be allocated between the coefficient and
exponent. The low 48 bits are used for the coefficient, the next
11 for the exponent, and the high-order bit has the sign of the
number (i.e., of the coefficient):

SIGN EXPONENT COEFFICIENT
(1) (11 (48)

The 11 exponent bits contain a biased exponent; that 1s, 2000
(base 8) is added to the true exponent before 1t is put into the
floating-point (real) number. Thus, a true exponent of 0 appears
as 2000 (base 8), and a true exponent of 1777 (base 8) becomes
3777 (base 8), the largest number that will fit in all 11 bits.

However, an exponent of ~1 becomes 1776 (base 8), and not 1777
(base 8) (the exponent 1777 (base 8) has a special significance,
which will be discussed later). In other words, when we add the
bias, 2000 (base 8), to -1 =3776 (base 8) (ll=-bit one’s
complement), we ignore the carry out and keep only the low 11
bits.

2000 (base 8)
3776 (base 8)

1000000606000
11111111110

tTo1111111110
keep 11 Lits
= 1 7 7 6 (base 8)

In this way, the smallest exponent possible, -1777 (base 8)
becomes (+2000 (base 8) + 2000 (base 8)) 0000 (base 8).

30

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

At this point you should be able to figure out that

0.5 = 1776 00000000000000 Ol (base 8)

16. = 2000 00000000000000 20 (base 8)
or should

16. = 2004 00000000000000 01 (base 8)

or perhaps

16.

]

1724 40000000000000 00 (base 8) ?

Since all these representations have the same value (doubling the
coefficient and subtracting one from the exponent leaves the
values unchanged), which should we choose? The answer in general
requires some understanding of the floating point arithmetic unit
of the central procesor; however, in the cases where it is not
possible to represent the number exacly in floating point format,
the preferred form is clear. For example, 1/3 in binary is a
repeating fraction,

0.010101010101010 «.. (base 2)
=02 5 2 5 2 ... (base 8)

just as it is in decimal (0.333...), so we cannot represent it
exactly using any combination of coefficient and exponent.
However, the more digits we include in the coefficient, the more
accurate will be our floating point number:

1774 0000000000000002 (base 8)
is only very approximate (l/4 = 0.25)

1771 0000000000000025 (base 8)
is better (= 0.328), and

1716 5252525252525252 (base 8)
is accurate to one part in 2*%48 (since the coefficient has 48
bits); the pattern has changed to a leading 5 because we shifted
46 bits (not a multiple of 3) in order to get the most

significant bit into the high order position of the coefficient.
This form, in which the coefficlent 1s shifted so that the most

31

NUMBER SYSTEMS AND COMPUTER ARITHMETIC

significant bit occupies bit 47, the high order bit of the
coefficient, 1s the standard form for floating point numbers in
the 6600. The process of converting a number to this form is
called normalization, and a number in this form is said to be
normalized. When normalized, our earlier examples, 0.5 and 16,
become

0.5 = 1717 40000000C0000C (base 8)
16. 1724 4000006000000 (base 8)

Our final problem with floating point numbers is how to represent
negative numbers. The method used is very simple: the
representation of a negative number 18 the one’s complement of
the positive number of the same magnitude. Everything 1is
complemented, exponent and coefficient:

il

-0.5 6060 377777777777777 (base 8)
-16 = 6053 377777777777777 (base 8)

Note that, since we made sure bit 59 (the high order bit) is zero
for positive numbers, it will be one for negative numbers; thus
we have the same positive/negative rule we had for integers.
Also, since the '"normalized bit" (bit 47) is one for normalized
positive numbers it will be zero for normalized negative numbers.

32

CENTRAL PROCESSOR INSTRUCTION SET

CHAPTER 3

CENTRAL PROCESSOR INSTRUCTION SET

3.1 A SUMMARY OF CENTRAL PROCESSOR HARDWARE

In the past two chapters we have gradually unfolded the basic
facts concerning the central processor. Now, before we go on to
the instruction set of the central processor, let us review and
complete the information necessary for an understanding of these
instructions.

The standard central memory for the 6600 has 2%#%#17 = 131,072
words; 2**15 = 32,768 and 2**16 = 65,536 word memories are
optionally available if you don’t happen to have the extra half
million dollars or so on hand for the larger memory (the 7600
comes only with a 32 or 65 thousand-word central memory). Having
the number of words be a power of two simplifies central memory
organization somewhat. As mentioned earlier, each word has 60
bits, relatively large as machine word sizes go. This size
permits a floating point number with about 15 decimal places
accuracy, sufficient for virtually all applications. A large
word also permits several instructions to be put into one word
(as we shall soon see), so that the number of memory accesses
required to get out instructions is reduced. Finally, 60 is a
multiple of 2, 3, 4, 5, and 6, so that several different
subdivisions of the word may be conveniently made.

The central processor has three types of registers: A, B, and X
registers; there are eight of each type, identified as AQ through
A7, BO through B7, X0 through X7. The X registers are used to
hold the operands and results in arithmetic operations; since
words are loaded from memory into X registers, and stored into
memory from X registers, X registers also have 60 bits.

The A registers are special registers 1involved in the loading and
storing of operands. When an address is put into one of Al-A5,
the word at that address 1s loaded into the associated X register
(X1-X5); when an address is put into A6 or A7, the contents of X6
or X7 are stored at that location. The AO and X0 registers have

33

CENTRAL PROCESSOR INSTRUCTION SET

no connection with memnmory, and may be used for holding
intermediate results.

The A registers are 18 bits, and thus can accomodate 2%%18
addresses -~ a 2%*18 word memory had been envisioned for 6000 .
series computers. Eighteen 1s also a convenient size, being a
multiple of 2, 3, and 6; eighteen-bit quantities appear in many
of the central processor instructions.

The B registers are used for holding small numbers, such as loop
indices. In order that the arithmetic hardware can be used for B
and A registers, B registers also have 18 bits. Because the
constant zero is needed so often, register BO is permanently set
to zero.

3.2 THE TYPES OF CENTRAL PROCESSOR INSTRUCTIONS

Every central processor program is a series of CP (central
processor) instructions, each of which accomplishes a small step
in the overall calculation. In selecting the instructions to be
recognized by the CP, we seek a set which enables us to write
efficlent programs for a large varlety of problems -- programs
which run quickly and do not take up too much space. At the same
time, we must resist the urge to include every useful instruction
we can think of, lest we (after installing the hardware to
recognize all these instructions) re-enter the billion-dollar
computer market. In other words, we have to find a relatively
small set cf versatile instructions with which, in combination,
we can perform all the different types of operations efficiently.
So, as a first step, let us see what basic types of instructions
we would want to have.

First we need the arithmetic operations: addition, subtraction,
multiplication, and division. Although we could simulate
subtraction, multiplication, and division with short programs
using only addition and one’s complementing, this would be very
slow; hence, for high speed scientific computing, hardware
subtraction, multiplication, and division are essential. The
computer must be able to do all four operations on both integer
and floating point operands. In all these instructions, the two
operands will be taken from X registers and the result put in an
X register.

34

CENTRAL PROCESSOR INSTRUCTION SET

In addition to the arithmetic operations, we will need the
Boolean or logical operations: and, or, not. These are required
for such purposes as masking and evaluating logical expressions
(the .AND., .OR., .NOT., operations in FORTRAN). These
instructions will also take operands from and put the result in
an X register. In conjunction with the Boolean instructions, we
will need shift instructions (for which there 1s no explicit
analogue in FORTRAN), which enable the programmer to shift the
position of a bit pattern in a register; for example, to change

63000 00000 00000 00000
to

00000 00000 63000 00000
and to

00000 00000 00000 00063

To get data to and from storage we will need instructions that
set the A registers. Since the A registers only have 18 bits,
these operations need only perform 18 bit arithmtetic, while the
X register operations above perform 60 bit arithmetic. A similar
group of instructions must be provided to set the B registers;
here, too only 18 bit arithmetic is necessary. To make things
"complete," a third set of 18 bit arithmetic instructions has
been provided which leaves the result in an X register. This is
necessary, for example, to get the contents of B and A registers
into X registers when the contents are to be stored or are an
operand in a multiplication or division (multiplication and
division, after all, are only done among X registers).

Finally, we need branch instructions to transfer control within
the program. Normally when the CP has finished executing
instructions in one word, it takes the next instructions from the
next location in memory; in other words, the instruction location
counter is regularly incremented by one. When a branch is made,
the CP instead takes its next instruction from a location
specified in the branch instruction. There are both
unconditional branches (corresponding to GO TO statements) and
conditional branches (corresponding to IF statements).

35

CENTRAL PROCESSOR INSTRUCTION SET

3.3 INSTRUCTION FORMATS

Each computer instruction is nothing more than a set of bits
occupying a word or part of a word. Particular groups of bits in
the instruction give specific information about the operation to
he performed. One group, known as the operation code or opcode
specifies the particular operation to be carried out. Other
groups specify the operands or the sources of operands (i.e.,
register numbers) and the destination of the result (another
register number).

In 6600 instructions, the operation code is the leftmost 6 bits
of an instruction. The six bits allow for 64 different CP
insttuctions (well, actually 71, because one opcode specifies one
of a group of eight similar instructions). Though 71
instructions Isn’t very many (most very large computers have
several hundred), the 6500 instructions are sufficiently
versatile and powerful and so fast that the 6600 can run circles
around many other large computers with many more instructions.
Often an entire program loop on a 6600 will be faster than a
single instruction on anotler machine which performs the same
calculation!

Consider a normal arithmetic instruction: how many bits are
necessary to specify the entire instruction? We need the opcode
(6 bits) plus the two operand registers and the result register.
Since all registers involved in a arithmetic instruction are X
registers, we need only give the register number, 0 - 7; hence
each register specification requires 3 bits. Thus the
instruction requires a total of 6 bits (opcode) + 6 bits (two
operand registers) + 3 bits (result register) = 15 bits. Most
of our instructions will be 15 bits; this size, convenilently

enough, allows us to get 4 instructions in a single word.

If you think about it a while, however, you will see that inter-
register instructions (those in which both operands and result
are registers) aren’t enough. Assume that at the beginning of
your program you do not know what is in any of the registers; as
the first step in your program, you would like to load a wvariable
I, which you know to be at location 2167 (base 8) of your
program. In other words, you want to set an A register to 2167.
But now you realize that the only way to get the number 2167 is
to load it out of memory (it°s not in any of the registers), so
you wisely put the number 2167 in your program, in a variable K,
location 2166(base8). Now your problem is how to get 2166,...You
suddenly realize that you're stuck, and can’t even begin your
problem (well, actually you could always keep the next needed
addresses in loction 0, and set A register to BO = 0; such a

36

CENTRAL PROCESSOR INSTRUCTION SET

programming restriction, however, verges on the absurd).

As a result, we have some instructions which include an 18 bit
constant to be used as one operand in place of a register. In
addition to the case cited, having a constant in the instruction
is particularly useful in branch instructions, since the location
to which we branch is generally a constant, and not the result of
an arithmetic calculation. In a 30 bit instruction which sets a
register (i.e., not a branch), the type of result (A, B, or X)
and the type of register from which the second operand is taken
are both specified by the opcode, along with the operation to be
performed. Hence the total length of such an instruction is,
conveniently, 6 bits (opcode) + 3 bits (result register) + 3 bits
(one operand register) + 18 bits (constant for second operand) =
30 bits, so we can put two such "long instructions" in one word,
or one long instruction and two '"short instructioms" (30 + 15 +
15 = 60)s If this seems a bit confusing now, don’t worry; it
should become clearer after we study some specific cases later
on.

Having 64 opcodes permits a convenient division into 8 sets of 8
instructions. In general the instructions within one set of 8
(00 - 07 (base 8), 10 (base 8) -~ 17 (base 8), etc.) are closely
related. This organization of the opcodes will make it easier to
remember the 1instruction set after we have discussed the
individual instructions. And now, having waded through these
preliminaries, we are ready to begin studying the central
processor instructions.

3.4 BRANCH INSTRUCTIONS

We begin our study with branch instructions for several reasons,
the least of which is the fact that they constitute the first set
of eight opcodes, 00 - 07. The chief reason is that it 1is
impossible to write any useful code without knowing at least two
or three of the branch instructions. After all, if, in the
middle of a FORTRAN program we want to execute some code we wrote
in machine language, we have to branch to the machine-language-
coded routine, and at the end of the routine branch back to the
main program. As we shall soon see, this involves at least two
different branch instructions.

37

CENTRAL PROCESSOR INSTRUCTION SET

The simplest instruction of the group (not really a branch) is
opcode 00, the program stop; the mnemonic we will use to
designate the instruction when writing code is PS. It is a 30
bit instruction, but the remaining 24 bits are ignored; we
diagram it thus

PS Program Stop (30 bits)

0 O /1111 rTrriiriiiiieiiiilieelly

29 23 0

with the numbers below the figure designating the bits, counting
the rightmost as bit 0. A program stop does exactly what it
says: 1t stops the central processor at the current step in the
program. After a program stop, the CP has no means of restarting
itself; it can only be restarted by a PP. (On the 7600 the
instruction is called "error exit" and causes the CP to start
executing the monitor program.)

Quite a number of other computers, incidentally, use a zero
opcode for program stop. The reason for this is quite simple:
if, due to programming error, your program runs amuck, and, say,
starts trying to execute your data, there is a good chance that
it will run into a zero opcode (since positive integers less than
2*%%54 have the six high bits zero). Thus the program will come
to a halt quickly, without wasting much time.

We digress now from numerical order to look at opcode 02, the
(unconditional) jump instruction, mnemonic JP. This instruction
transfers CP control to (branches to) a location specified by the
low 24 bits of the 30 bit instruction. Bits 21 to 23 specify a B
register, (these bits in an instruction are referred to a "i,"
and hence the specified register as "Bi"); bits 0 to 17 are
treated as an 18 bit constant (these bits in an instruction are
referred to as "K"). The 18 bit sum of this constant and the
contents of the B register (i.e., Bi + K) is the location to
which the branch is made. The instruction is diagrammed

JpP Bi + K Jurlp to Bi + K (30 bits)
(0 2 i Y K]
29 23 20 17 0

38

CENTRAL PROCESSOR INSTRUCTION SET

Note that three bits of the instruction are ignored.

In most cases the address to which control is transterred is a
constant which we can put in the K part of the instruction, so
that we really don’t want to add in any B register. 1In this case
we let 1 = 0, so that the effective address is BO + K = X (since
BO = 0). Using a B register, on the other hand, permits a simple
computed GO TO statement. The FORTRAN statement

GO TO(100, 200, 300), I

may be coded, if the variable I is already in register Bl, by

TABLE JP BI1+TABLE
JP S100
Jp 5200
JP 8300

where S100, S200, and S300 are the address of the statements with
numbers 100, 200, and 300, respectively. TABLE is the location
of the first jump instruction; we designate this by writing the
label TABLE to the left of the instruction. When a label appears
to the right of the mnemonic (in the address field) without any B
register, register BO is implied; thus JP S200 means JP BO+S5200.
Each jump instruction occupies the upper 30 bits of a separate
word. Thus the first jump instruction branches to the second,
third, or fourth (at TABLE+1, TABLE+2, TABLE+3) depending on
whether Bl=I=1, 2, or 3; these latter jumps go in turn to
statements 100, 200, and 300.

Having taken care of the GO TO and computed GO TO statements, let
us now consider the implementation of the CALL statement. The
magic of the CALL statement is that, when a RETURN occurs in the
called routine, the program transfers control back to the next
statement after the calling sequence. When the CALL is made, the
computer must store somewhere the address to which the called
program should return; otherwise, the called routine will be
unable to tell from where it was called. Since the process of
CALLing, i.e., of transferring control to a routine in such a way
that the program can return to the original sequence, is so
common, it has been implemented as a single hardware instruction.

This instruction is the return jump, opcode 0l, mnemonic RJ.
When a jump at a location HERE to a location THERE is executed,
two things happen: (1) at location THERE is stored a jump to
HERE + 1 and, (2) control transfers to location THERE + 1. When

39

CENTRAL PROCESSOR INSTRUCTION SET

the routine beginning at THERE + 1 is finished, a jump to THERE
will get control back to HERE + 1. The return jump is a 30 bit
instruction, like the jump instruction, but contains only an 18
bit constant for an address; no B register is specified (since a
"computed call" is such a rare occurrence). The instruction is
diagrammed:

RJ K Return Junmp to K (30 bits)

[R . K

29 23 17 0

With this information, we can give a specific numerical example:
before execution of the RJ at location 325 to location 1732

location 325 (base 8) 01 00 001732 00000 00000
location 1732 (base 8) 00 00 000000 00000 00000

(the instructions of the called routine start at location 1733).
After execution of the RJ

location 325 (base 8) 01 00 001732 00000 00000
location 1732 (base 8) 04 00 000326 00000 00000

and the CP has begun executirg the routine starting at 1733. You
may notice that the instruction at 1732 is an 04 opcode, not an
02 jump; as we shall see directly, in this case it is also an
unconditional jump instruction.

This completes our discussion of unconditional branch
instructions, and we shall 20w proceed to study the remaining
conditional branch instructions, opcodes 03 through 07. A
conditional branch instruction is an instruction which causes a
transfer of control only if a certain condition exists, such as
an X register being zero or one B register being equal to another
B register. If the condition is not met, the CP continues on to
the next instruction, as usual. There are some branches which
depend on the values of X registers, and some which depend on
values of B registers; no branches involve tests of A registers,
since A registers are generally not used for the results of
arithmetic calculations.

40

CENTRAL PROCESSOR INSTRUCTION SET

There are a total of 8 different X register branches; because of
the limited number of opcodes (64), all the branches have been
put under one six-bit opcode, 03. The type of branch 1is
specified by the next three bits, 21 to 23; thus for X register
branches there is effectively a 9 bit operation code. The
register number is given by the next three bits, 18 to 20 (termed
the "j" part of the instruction), and the address to which the
branch is made if the condition is met is given by the last 18
bits (K). We shall discuss the first four branches now; the
other four are special tests for floating point numbers, and will
be discussed later.

Opcode 030 is a zero jump (mnemonic ZR): control transfers to K
if Xj 1is zero. Both plus zero, 000...000, and minus zero,
777404777 (base 8), meet this condition; any other value does
note.

ZR Xj, K Jump to K 1if Xj = O (30 bits)
[0 3 0 3 K

29 20 17 0

Opcode 031 is the exact opposite: a non-zero jump (mnemonic NZ).
The branch to K occurs if Xj contains anything other than plus or
minus zero

NZ Xj, K Jump to K if Xj # O (30 bits)

0 3 1 i K]

The next two opcodes test the sign of an X register. Opcode 032
is a plus jump (mnemonic PL): a transfer is made to K if Xj is a
positive. As you will recall, this has been defined to mean
that the high order bit of the X register is O.

PL Xj, K Jump to K if Xj positive (30 bits)

(N N S

CENTRAL PROCESSOR INSTRUCTION SET

Finally, opcode 033 is a minus jump (mnemonic NG): the branch is
made if Xj is negative, i.e., the high order bit of Xj is 1.

NG Xj, K Jump to K 1f Xj negative (30 bits)

KRR i I]

By now you have probably recognized that the X register branches
come in pairs of complementary (opposite) conditions. For
example, 1f the condition for opcode 030 is met (=0) that for
opcode 031 {does not equal 0) is not, and vice versa.

As an application of X register branches, consider the arithmetic
I[F statement

IF (NUMBER) 100, 200, 300
Lf NUMBER is in X1, this becomes simply

ZR X1, 5200
PL X1, S$300
Jp 5100

where 85100, S200, S300 are, as before, the locations
corresponding to statement number 100, 200, and 300. Note that
the order in which the tests are made is important; for example,

PL X1, S300
ZR X1, S200
JP S100

will not work (do you see why?). Suppose Xl contains plus zero;
we would then want to go to 200. The first code indeed does, but
the second brings us instead to S300, since plus zero is
positive. Thus one must check for zero before testing the number
for sign. We may note, incidentally, that the instruction

NG X1,S5100

could be used instead of the unconditional jump; however, the
unconditional jump is faster (since it does not have to make a
test).

We now come to the last set of jump instructions, the B register
branches. 1In contrast to the X register branches, the B register

42

CENTRAL PROCESSOR INSTRUCTION SET

branches depend on relational conditions: whether one B register
is equal to another, greater than another, etc. B registers are
typically used for indices, and these relational test
instructions are particularly convenient for loop control (e.g.,
checking whether an index exceeds the upper limit, kept in
another B register). Comparisons against B0 can always be used
for tests like those in X register branches (zero, positive,
etc.) B register branches occupy opcodes 04 to 07; the six bit
opcode specifies the relation to be tested for.

Like all the other jump instructions, B register branches are 30
bit instructions. The numbers of the two registers to be
compared are in bits 21 to 23 (1) and 18 to 20 (j)» The address
to which control 1s transferred if the branch is successful is in
bits 0 to 17 (K).

Opcode 04 is the equal jump (mnemonic EQ); the branch is made if
Bi = Bj.

EQ Bi, Bj, K Jump to K if Bi=Bj (30 bits)
Lo 4 i j K J
A

29 23 20 17 0

A B register can be checked for a value of zero by setting one of
the register numbers to zero:

ZR Bi, K Jump to K if Bi = 0 (30 bits)

Note that this instruction actually tests if Bi = BO; as a
result, only plus zero (000000) and not minus zero (777777)
causes a branch.

Opcode 05 is the complementary condition: not equal branch
(mnemonic NE); the jump is performed if Bi does not equal Bj.

NE Bi, Bj, K Jump to K if Bi # Bj (30 bits)

EEENENE S

43

CENTRAL PROCESSOR INSTRUCTION SET

By setting j = 0 (or i = 0) this instruction can also be used for
a non-zero test.

NZ Bi, X Jump to K if Bi # 0 (30 bits)
0 5 i (0 [K J
| I RIS SO

Again, because a comparison is made against BO (= plus zero),
negative zero is treated as non-zero.

Opcode 06 is greater-than-or-equal jump (mnemonic GE); a transfer
to K is made if Bi >= Bj.

GE Bi, Bj, K Jump to K if Bi > Bj (30 bits)
e r - _-T ______

0 6 i 1 I] ‘ K
L b — ————

In making the comparison, the B registers are treated as signed
numbers. Thus a positive number, such as 012345 (base 8), is
greater than a negative number, such as 765432 (base 8). With j
= 0, the instruction becomes a positive test:

PL Bi, K Jump to K if Bi positive - (30 bits)
I oUrT T '
i 0 6 i 0 K J
ISRy NV S [—— —

Finally, opcode 07 is the complementary condition to 06, a less-
than branch {mnemonic LT); the jump is made if Bi < Bj.

LT Bi, Bj, K Jump to K if Bi < Bj (30 bits)
- = -r= - !
rQ 7 i (3 K]
e i —

By the rule that a negative number is less than a positive
number, minus zero is considered less than plus zero (but don’t
ask how much less). By the same technique used above, this

CENTRAL PROCESSOR INSTRUCTION SET

instruction provides a negative B register test:

NG Bi, K Jump to K if Bi negative (30 bits)

0 7 i 0 K

g4,
After a first glance at the opcodes, you might remark that only‘ iﬁeé
four of the six basic relations have been provided -- less~than-* ,, st
or-equal and greater-than have been omitted. But a moment’s ...~ ¥%:
reflection should make you realize that, by reversing the order -
of the registers, these other two conditions may be easily tested Mgufi
for. A LT Bi, Bj, K may also be considered a jump on Bj greater :=¢f'¢
than Bi, and a GE Bi, Bj, K also used as a jump on Bj less-than- !‘%™-7*
or-equal-to Bi. These relation-testing jumps thus constitute a <=
powerful, versatile set of dinstructions. For example, to
determine whether the contents of a B register is strictly
positive (i.e., greater than zero), we require only one
instruction,

LT BO, Bi, K

Since we have not yet discussed the iInstructions for setting B
registers, no real examples of the use of these instructions are
possible at the moment. One item of note should, however, be
mentioned: the instruction EQ BO,BO,K. This clearly is an
unconditional jump to K, just like JP K (and just EQ Bi,Bi,K is,
i=1l,4ee,7)s As you may recall, the EQ BO,BO,K instruction came
up earlier in connection with the return jump instruction; it is
the 0400 K which is stored by the RJ instruction. This EQ BO0,BO
is also used by the FORTRAN compiler to implement the GO TO
statement. Why? Because EQ B0,BO under certain circumstances is
faster than JP, and in the remaining cases takes the same time to
execute (the reasons for this are too involved to explaln at
present). As a result, it is a common programming practice to
use EQ BO,B0 in place of the JP when an unindexed Jump is
required. In accordance with the general rule that 1if no
register i1s mentioned BO is implied, we may write this
unconditional branch as EQ K.

45

CENTRAL PRCCESSOR INSTRUCTION SET

3.5 WRITING ASSEMBLY LANGUAGE CODE

Before we continue discussing the CP instructions, some practical
information on how to write code at the machine~instruction level
is in order. In the same way that a compiler is used to
translate FORTRAN, a program called an assembler is used to
translate the mnemonics we use in writing our program into the
binary numbers accepted by the machine. Several assemblers have
been written for the 6600; scme are very simple, and can process
little except the instructior mnemonics, while others are highly
sophisticated - almost as complicated as a compiler ~- and offer
the user great programming flexibility.

The original (non-operating) operating system for the 6600,
SIPROS, (SImultaneous PRocessing Operating Systenm), included a
fancy assenbler called A3CENT (Assembly System Central
Processor). SIPROS ASCENT permitted the programmer to intermix
FORTRAN statements and assembly language code (machine
nnenonics), within the same program. Thus, if in the middle of
his FORTRAN program the user 1ad some processing which he wanted
to code in assembly language, he could simply put his ASCENT code
right there. This made things more complicated for the
assenbler-compiler writer, of course, because the combined
program had to be able to recognize both FORTRAN and ASCENT

instructions.

Hith the first operating opereating system, the Chippewa Operating
System, came several assembly programs. The Chippewa FORTRAN
compiler alone accepted two different assemhbly languages (the
same instruction had alteogether different mnemonics in the two
languages). The Chippewa assembly language (CLASS), the original
6600 assembly language, is very little used any longer. The
other language, ASCENTF, was a subset of ASCENT, with the same
mnemonics as ASCENT, though not all of its features. In
addition, in the Chippewa cperating system, a separate assembly
program, similar to SIPROS ASCENT, was available under the name
ASCENT.

More recent operating systems =-- SCOPE, KRONOS, and NOS -~
include the nost sophisticated 6600 assembler, COMPASS. This
assembler is considerably more versatile than even SIPROS ASCENT.
It is not possible in COMPASS, however, to write a few lines of
FORTRAN, then some assembly language, then some FORTRAN. The
main program and each of the subprograms (subroutines or function
subprograms) must be written entirely in one language. Thus one
can mix a main program and FORTRAN subroutines with assembly
language subroutines, but may not mix FORTRAN and assemnbly
language within a subroutine. This, incidentally, is a general

46

CENTRAL PROCESSOR INSTRUCTION SET

restriction in assembler-compiler systems; the line-by-line
mixing facility which SIPROS ASCENT would have had (if i1t had
ever worked) is not generally available.

In this chapter we will try to cover the most basic information
required for writing COMPASS subroutines. The next chapter will
introduce some of the fancler features of COMPASS.

A line of source code representing an instruction consists of
four fields: a location field, an opcode field, an address
field, and a comments field. A field is a portion of a line
given over to a particular purpose. For example, in a FORTRAN
card the first five columns may be described as the statement
number field. The location or label field permits a name to be
associated with the location of the instruction (recall the
example of the computed GO TO). The opcode and address fields
specify the instruction; the opcode field has the mnemonic part,
and the address field the remainder of the instruction. For
example:

location field opcode field address field

HERE EQ B1l,B3,THERE

Note that the address field will generate more than just an
address (label). A blank indicates the end of each of these
three fields; consequently, these fields must be separated by at
least one blank and may contain no embedded blanks. The comments
field, the last field on a card, allows the programmer to include
informative remarks concerning the instruction; the comments
field must be separated from the address field by at least one
blank, and may contain blanks.

The label (symbol in the location field) must start in either
column 1 or column 2. Symbols in COMPASS may have 1 to 8
characters. Although some special characters are allowed in
symbols, we shall restrict ourselves to names beginning with a
letter and containing only letters and digits (just like names in
FORTRAN). The opcode may start in column 3 or after; general
practice is to start in column 1ll. Although the address field
may begin anywhere after the opcode (up to column 29), and the
comments fleld anywhere after the address, easy readability of
the written code dictates that standard starting columns be
selected for these two fields. Representative conventions are:
columns 18 (address field) and 30 (comments field), or columns 18
and 36. Thus a sample card would appear:

47

CENTRAL PROCESSOR TINSTRUCTION SET

column: 2 11 8 30
HERE JP R2+4THERE BRANCH TO TABLE

Any field except the opcode field may be omitted. If the
location field is blank, no name is associated with the location
of the instruction. Also, if there is a label in that field, the
instruction automatically gets put at the beginning of a word
(leftmost part); otherwise, the instruction would go into the
next available space. As we have seen, this may mean that the
instruction is put in the middle or end (right part) of a word.
Thus the sequence of instructions

LABEL EQ B1,B2,TESTI
MABEL 7R X4, TEST2

will occupy two words (with the instructions left justified in
those words), while

LABEL EQ B1,B2, TESTI
ZR X4, TEST?2

puts both 30 bit instructicn into one word. In the former case
the question naturally arises, what is in the low 30 bits of the
two words? We can’t just leave them =zero, because then
(supposing Bl does not equal B2) the computer encounters a 00
opcode, a program stop. As a result, the computer has a special
instruction used for "padding out" words of instructions like
these. It is opcode 46, and 1s called a no operation instruction
(nore commonly, a "no-op"):

NO No operation (15 bits)

4 6 5//////////////////),

14 8 0

When the computer encounters a no-op instruction, the computer
does absolutely nothing except pass on to the next instruction;
hence the instruction 1s also called a "pass instruction.” 1In
our example, we have to pad out 30 bits, so we put two no-ops in
a row: 46G0046000. Thus, if TESTI is location 242, and TEST2
location 272, the two words are

(LABEL) 0412000242 4600046000
(MABEL) 0304000272 4600046000

CENTRAL PROCESSOR INSTRUCTION SET

The effect of a label of putting the instruction on the card into
the upper (leftmost) portion of a new word is called "forcing
upper." One additional rule you should be aware of is that
forcing upper 1is automatic after an unconditional branch
instruction. This is reasonable enough, since in all
probability you will never want to put another instruction in a
word after an unconditional branch (it would never be executed).
This explains why, in our computed GO TO table, each jump appears
in a separate word: after each jump, forcing upper is automatic,
so the next jump is put in a new word. Similarly, a RJ is
unconditional, so

ME RJ EWE
PL X0, RAM

takes up two words. Now how about

THINK EQ HARD
LT B7,B6,RELAX ?

You will be happy to hear that COMPASS realizes that this is
really an unconditional branch, so the LT instruction is forced
upper.

Comment cards are indicated by an asterisk (*) in column 1 (just
as they are indicated by a C in column 1 in FORTRAN). Comments
on an otherwise blank card (with no * in column 1) must begin in
or after column 30, or an assembly error will result.

Like all other subprograms, assembly subroutines require header
and end cards. The end card is simple enough: just the word
END, starting in column 1ll. 1In COMPASS the form of the header

card is

IDENT SUBNAME

with IDENT beginning in column 11, followed by the subprogram
name (SUBNAME in the example above.)

49

CENTRAL PROCESSCR INSTRUCTION SET

3.6 SUBPROGRAM LINKAGE AND PARAMETER TRANSMISSION

With what we have learned so far, we are ready to write our first
assembly language subroutine. Since we don’t know many
instructions yet, our subroutine will be somewhat less than awe-
inspiring; in fact, it will do absolutely nothing, just like the
FORTRAN

SUBROUTINE DUMB
RETURN
LND

The first line of our COMPASS routine will be
IDENT DUMB

Now, recall that we are going to enter this subroutine by mneans
of a return jump instruction. The first thing the RJ is going to
do is store a jump back to the calling routine, so we must set
aside a word into which this will be stored. This word is called
the entry line.

We could set aside a word by writing an unconditional jump
instruction (so the next word is forced upper). There 1is,
however, a special instruction which tells the assembler to set
aside several words: BSS. A '"BSS" allocates as many words as
specified by the address field, for example,

BSS 13

reserves 12 words of storage. You should be warned that words
set aside by a BSS are not set to zero; the contents of these
words is unpredictable (or, as we would say if we were writing a
computer science text, undefined). BSS stands for '"block started
by symbol," so-called because if there is a symbol (label) in the
location field, it is associated with the first word of the
blocks The BSS and similar instructions which do not generate
machine instructions are called pseudo-instructions. Thus the
next line ot our subroutine is

DUMB BSS 1

The instructions of the subroutine begin in the next word after
the entry line. In our example, we have only a RETURN statement,
i.e., a jump to the entry line:

EQ DUMB

50

CENTRAL PROCESSOR INSTRUCTION SET

Tack on an END card and put it all together and we’re done -~
well, almost. One small problem remains: ordinarily, symbols in
one COMPASS subroutine, like variables and statement numbers in a

FORTRAN subroutine, cannot be referred to in another routine.
Since we want to be able to refer to the label DUMB in our
calling routine, we have to declare it an entry point:

ENTRY DUMB

(Note: symbols which are declared to be entry points may have
only 7 characters, not 8.) Then, if in the calling program we
declare the symbol DUMB to be "external':

EXT DUMB
we are allowed to refer to it by name:

RJ DUMB

With this problem well in hand, we are ready to put together our
first subroutine:

IDENT DUMB
ENTRY DUMB
DUMB BSS 1
EQ DUMB
END

Before we start discussing parameters, I ought to tell you what
you can do with your DUMB subroutine.

If you wanted to assemble the routine separately, you could
invoke the assembler directly (with a COMPASS control card). All
the COMPASS routines we will write, however, are subroutines to
be invoked by FORTRAN routines, so we will make use of a valuable
feature of the 6600 series FORTRAN compilers: anywhere you can
put a FORTRAN routine in your source deck, you can also put a
COMPASS subroutine. The compiler automatically transfers control
to COMPASS when it notices a card with IDENT beginning in column
11, and COMPASS returns control to the compiler when it
encounters a FORTRAN header card.

Thus, a possible complete (and completely useless) source program
is:

PROGRAM DODO

CALL DUMB

STOP

END

51

CENTRAL PROCESSOR INSTRUCTION SET

IDENT DUMB
ENTRY DUMB
DUMB BSS 1
EQ DUMB
FND

Note that the FORTRAN statement
CALL DUMB

is effectively translated into

EXT DUMB
RJ DUME

since DUME is an entry point in the subroutine and hence must be
declared external to the main program.

Now that vou know what to do with your DUMB subroutine, we can
proceed to the second toplc of this section: the transmission of
subroutine parameters. (The term parameter and argument are used
interchangeably.)

When writing assembly ccde, of course, it won’t do just to put
the dummy parameter name in an instruction, as you would when
writcing FORTRAN, and havz the assembler magically fetch the
parameter for you. You are writing the code instruction-by-
instruction, and so have to know, 1in real hardware terms, where
the parameters are.

In the first place, FORTRAN always transmits the address of the
parameter, and not the parameter itself. For example, if you
write

CALL WXYZ(K)

it will transmit the address of K to subroutine WXYZ; likewise,
if the statement is

CALL WXYZ(2)

it will transmit the address of a location containing the number
2. To try to transmit instead the value itself would cause quite
a few difficulties; for example, 1f A were a 100 by 100 matrix,
and subroutine OREZ set one element to zero, and the call were

CALL OREZ(A)

52

CENTRAL PROCESSOR INSTRUCTION SET

the FORTRAN routine would have to transmit all 10,000 elements,
not knowing which would be changed. Or, consider transmitting a
function name as a parameter:

EXTERNAL TAN
CALL SUN(TAN)

one can’t very well transmit to SUN the value of TAN; it doesn’t
have one by itself. Hence, the only thing to do is to transmit
the address of the TAN routine.

The calling sequence generated by the FORTRAN Extended compiler
stores the addresses of the parameters in a series of consecutive
words of memory, followed by a word of zeros. The compiler then
sets Al to the address of the first of these words. Recall from
section 3.1 that setting Al will cause the contents of that
memory location to be put in X1l; thus, in this case X1 will
contain the address of the first parameter. For example, 1if we
had a routine with two parameters, whose addresses were 2110 and
2120, the situation might look like this:

Al 4601 location 4601 2110
X1 2110 " 4602 2120
" 4603 0000

It is usual that the calling sequences generated by compilers for
different languages (such as FORTRAN, COBOL, and PL/l) are
incompatible, so that a routine written in one language cannot
directly call one written in another language. Control Data,
however, always one step ahead of the other manufacturers, has
arranged things so that the calling sequences generated by the
two FORTRAN compilers -- RUN and FORTRAN Extended -- are also
incompatible. Consequently, assembly language routines must be
coded differently for use with the two compilers. RUN was the
original CDC FORTRAN compiller, but it is no longer used very
much, so all the examples presented in this volume will assume a
FORTRAN Extended calling sequence. The RUN calling sequence (and
some additional notes about parameter passing in FORTRAN
Extended) are given 1in the section '"More About Passing
Parameters" toward the end of this volume.

One final item regarding argument transmission needs to be
covered: returning the value of a function. Since we know that
the result of a function is always a number, and not an array or

53

CENTRAL PROCESSOR INSTRUCTION SET

the address of a function, we needn’t go through the trouble of
storing the result at an address passed to the function.
Instead, the result is returned directly in a register, X6. The
calling sequence, after the RJ to the function, simply takes the
result out of Xé.

The assembler does not differentiate between subroutines and
functions. It 1s up to you to remember, 1f you referenced the
routine as a function (in a replacement statement, e.g., Y =
TINY(X)), to write the routine as a function -- return the result
in X6. Similarly, 1f you referenced the routine as a subroutine
in a CALL statement, you have to write it as a subroutine =--
return all results via parameters. That the differentiation
between subroutines and functions 1s entirely your concern 1s
emphasized by the fact that in COMPASS there 1s only one header
card for both types of routines:

IDENT TINY

Tn the next section, after introducing some more instructions, we
will consider a simple assembly-language function. If this
discussion of parameter transmission has gotten you somewhat
confused, the examples in the next few sections should help to
clarify matters.

3.7 SET INSTRUCTIONS

Together with the branch Instructions, the set of dinstructions
known as the set instructions (or, technically, "increment unit
instructions") constitute the two most lmportant groups of
instructions. These two groups are both necessary and sufficient
for writing useful assembly language routines.

The set instructions perform 18 bit (one’s complement) addition
and subtraction. They provide the only means of setting A
registers, and, with the exception of a few instructions for
manipulating floating point numbers, the only means of setting B
registers. They are also required for putting an A or B register
in an X register.

There are 24 set instructions, opcodes 50(base8) to 77(base8).
They are organized as three groups of eight instructions (opcodes
50-57, 60-67, 70-77); these three groups are set-A-register, set-

54

CENTRAL PROCESSOR INSTRUCTION SET

B-register, and set-X-register instructions, respectively.
Except for the type of result register, these three sets are
entirely identical. We shall begin when with a consideration of
the set-X-register group; when that is done, the set-A and set-B
groups will require little further explanation.

The increment unit instructions leaving the result in an X~
register (i.e., set X), opcodes 70-77, can be further divided
into two groups, the long instructions, opcodes 70-72, and the
short instructions, opcodes 73-~77. The long instructions, as you
may recall, are 30 bit instructions in which one of the two
operands 1s an 18 bit constant appearing in the instruction. The
three instructions permit calculation of A register + constant, B
register + constant, and X register + constant.

SXi Af + K Set Xi to Aj + K (30 bits)
7 0o {1 |3 K J
29 23 20 17 0
SX{ Bj+K Set Xi to Bj + K (30 bits)
7 11 ! K !
SXi Xj+K Set Xi to Xj + K (30 bits)
7 2 1 K J

Since you (hopefully) remember that X registers are 60 bit
registers, you may be wondering how we can do 18 bit arithmetic
with them. When an X register 1s an operand in a set instruction,
only the low 18 bits are used ~- the remainder are ignored. When
the result of a set instruction is placed in an X register, the
18 bit result is put in the low 18 bits and the sign 1s extended.
That is, 1f the result is positive, the high 42 bits become zero,
while 1if it is negative the high 42 bits are set to onme. In this
way, the correct positive and negative numbers will be stored in
X registers. So, for example, if Al = 003215(base8), a

SX1 Al+2

55

CENTRAL PROCESSOR INSTRUCTION SET

will set X1 to 00000 00000 00000 03217 (base 8). If B4 = =4
(777773 (base 8)) then

5X7 B4+2

will set X7 to -2 (77777 77777 77777 77775 (base 8)). Note that
in the last case the set instruction first creates the result 777
775, and the negative sign s then extended.

Results other than those desired may occur if the magnitude of an
X register used as an operand exceeds 377777 (base 8). For
example, if X0 = 1475231 (base 8), the instruction

5X0 X0+6

will set X0 to 77777 77777 77774 75237 (base 8) (surprisel!l).
First X0 is truncated to 18 bits, 475231 (base 8), then 6 is
added to give 475237 (base 3). This 1s a negative 18 bit number
(bit 17 is a 1) so the negative sign 1s extended, setting the
high 42 bits to 1.

The assembler allows instruction of the form SXi Aj-K, SXi Bj-K,
and SXi Xj-K. There are not, however, any separate machine
instructions for subtracting constants. Instead, the assembler
stores the one’s complement of K in the instruction. For example,

5X3 Al - 10
becomes
70 5 1 777765

(since 10 is 12 (base8)); like FORTRAN, numbers are assumed
decimal unless suffixed by a B). Also,

SXé6 X1 - 777607B
becomes

72 € 1 000170
i.e«, SX6 X1+170B

It is possible, as 1t was in the JP instruction, to omit
specifying any register:

SX2 314
in this case BO is understocd, so a

SX2 BO+314

CENTRAL PROCESSOR INSTRUCTION SET

is assembled, which indeed sets X2 to 314, Since a label is
essentially a number (the number of the location it is associated
with), a label can be used in place of a number in these
instructions:

SX2 ABLE

SX5 B1+MABEL

The short instructions, opcodes 73-77, are 15 bits long; they
calculate the sum or difference of two registers. There are
theoretically 15 possible combinations (SXi Aj+Ak, Aj+Bk, Aj+Xk,
Bj+Bk, Bj+Xk, Xj+Xk, Aj-Ak, Aj-Bk, Aj-Xk, Bj-Bk, Bj-Xk, Xj-Xk,
Bj-Ak, Xj-Ak, Xj-Bk) but the limited number of opcodes restricts
us to five; which five? The hardware designers reasoned that,
since indices would normally be kept in B registers, the most
useful instructions would be those for adding and subtracting B
registers from A, B, and X registers. This leaves six opcodes;
deeming SXi Xj—-Bk least useful, they implemented

SXi Xi+Bk Set Xi to Xj+Bk
i ‘ r A
7 300 ;o k| (15 bits)
14 8 5 2 0
SXi Aj+Bk Set Xi to Aj+Bk
7 4 04 { i ko (15 bits)
i b |
SXi Aj-Bk Set Xi to Aj-Bk
, ,
7 5 1 i 1ok (15 bits)
SXi Bj+Bk Set Xi to BjtBk
7 6 i j k (15 bits)
SXi Bj-Bk Set Xi to Bj-Bk
7 7 i j k (15 bits)

57

CENTRAL PROCESSOR INSTRUCTION SET

As you must have realized by now, making a set-instruction
mnemonic is very simple: the opcode field is the result
register, prefixed by "S"; the address field has the two
operands, separated by + or -.» Unfortunately, this logical set
of mnemonics tempts programmers to make up nonexistent
instructions as necessary for their programs. You are urged to
remember that it is possibla to add or subtract a B register from
another register, but not X register minus B register.

The mnemonics are self-explanatory, and the operations the same
as those involved in the long instructions, so a few examples
should suffice to make the instructions clear: 1if Bl = 2 and

B7 = 3,

5X6 B1+B7
set X6 to 5, while
5X6 B1-B7
sets X6 to -1 (77777 77777 77777 777776 (base8)).

A set instruction may contaln simply one register designation in
the address field:

5%6 AO

In such a case, two different but equivalent instructions could

be assembled:
SX6 AO+0 (opcode 70) or

S¥6 AO0+B0O (opcode 74).

Can you figure out which is preferable? Since the instructions
are otherwise equivalent, the shorter one (opcode 74 -- 15 bits)
1s preferred, so the assemblar will generate SX6 AQ+B0O. Although
saving 15 bits may not seem very important, it adds up to a lot
of words in a 20 or 30 thousand instruction program.

Now to write our first useful routine, LOCF. You may be
acquainted with the LOCF function from FORTRAN. It has one
argument and returns as 1ts result the address of the argument:
the value of

LOCF(A)

is the location of A in memory (the first location of A, if A is
an array).

CENTRAL PROCESSOR INSTRUCTION SET

To write our routine, we have to answer: where do we get the
operand (argument) from, what operation do we perform on the
operand, and where do we leave the result? The input to the
routine is the address of the argument, which is in X1j the
expected output is precisely this address, in X6 (remember, a
function always returns its value in X6). Thus all the routine
has to do is take what it gets in X! and put it into X6.

IDENT LOCF
ENTRY LOCF
LOCF BSS 1 ENTRY LINE
SX6 X1 PUT RESULT INTO X6
EQ LOCF RETURN
END

The set A register instructions, opcodes 50-57, are the same,
execpt for result register type, as the set X instructions:

opcode 50 SAi Aj+K Set Al to Aj+K (30 bits)
opcode 51 SAi Bj+K Set Al to Bj+K (30 bits)
opcode 52 SAi Xj+K Set Ai to Xj+K (30 bits)
opcode 53 SAi Xj+Bk Set Ai to Xj+Bk (15 bits)
opcode 54 SAiI Aj+Bk Set Al to Aj+Bk (15 bits)
opcode 55 SAi Aj-Bk Set Ai to Aj-Bk (15 bits)
opcode 56 SA1I Bj+Bk Set Ai to Bj+Bk (15 bits)
opcode 57 SAL Bj-Bk Set Al to Bj-Bk (15 bits)

Recall that setting Al through A5 to an address loads the
contents of that location into the associated X register, while
setting A6 or A7 stores the contents of the X register at the
specified location. Setting AOQ causes no memory reference.

Your job 1s assigned a definite number of words in central memory
in which to run, known as its field length (FL). If a program
attempts to reference an address (load or store) beyond its field
length, the job will be aborted with the day file message 'CPU
ERROR EXIT AT 012345, CM OUT OF RANGE'".

With this information, we are ready for our second subroutine.
This routine has two arguments, and puts in the second argument
the contents of the first, truncated to 18 bits, with the sign of
the 18 bit number extended to the high 42 bits. This none-too-
useful routine at least has the merit that it can be coded in
terms of the instructions studied so far:

CENTRAL PROCESSOR INSTRUCTION SET

JDENT SET
ENTRY SET
SET BSS 1 ENTRY LINE
SAZ Al+1 X2=ADDRESS OF SECOND ARGUMENT
$A1 X1 X1=FIRST ARGUMENT
SX6 X1 X6=FIRST ARGUMENT, TRUNCATED
SA6 X2 STORE INTO SECOND ARGUMENT ADDRESS
£Q SET
END

Since this is our first procedure of some complexity, let’s
examine it closely, Suppose the routine is called as follows:

CALL SET (1,.J)

where I and J’s memory addrasses are 2730 and 2462, respectively,
and the value of 1 is 2146435 (octal). Thus, the calling
sequence might look like this:

A1 3043 location 3043 2730
e s o e [-

¥1 2730 " 3044 ; 2462
r- ———————— -

" 3045 | 0000
R 4
" 2730 | 2146435 '
" 2462 2227 |
_________ 4

(the contents of location 2462 is of no interest to us).

The SA2 Al+l adds one to the address in Al (Al itself is not
modified) and set A2 to thils new address, causing a fetch of the
address of the second parameter to X2 (A2 = 3044; X2 = 2462).
The S5Al1 X1 sets Al to the address of the first parameter, hence
fetches the first parametar to X1 (Al = 2730; X1 = 2146435).
The SX6 X1 performs the necessary truncation and sign extension,
leaving the result in X6 (X2 = 2146435; X6 = 146435). SA6 X2
put the address of the second parameter in A6, storing the result
into the second parameter (A6 = 2462; contains of location 2462 =
146435).

CENTRAL PROCESSOR INSTRUCTION SET

If the routine was called with a constant

CALL SET (1,J)

location 3043 would not contain the number one. The FORTRAN
compiler would create a variable called ONE, for example, whose
contents is the number one and set the contents of 3043 to the
address of ONE.

The third group of set instructions, for B registers, is the same
as the other two:

opcode 60 SBi Aj+K Set Bl to Aj+K (30 bits)
opcode 61 SBi Bj4K Set Bi to Bj+K (30 bits)
opcode 62 SBi Xj+K Set Bi to Xj+K (30 bits)
opcode 63 SBi Xj+Bk Set Bi to Xj+Bk (15 bits)
opcode 64 SBi Aj+Bk Set Bi to Aj+Bk (15 bits)
opcode 65 SBi Aj-Bk Set Bi to Aj-~Bk (15 bits)
opcode 66 SBi Bj+Bk Set Bi to Bj+Bk (15 bits)
opcode 67 SBi Bj-Bk Set Bi to Bj-Bk (15 bits)

The instructions SBO BO+7 is perfectly acceptable, and will not
cause the computer to blow a transistor. However, after the
instruction has been executed, BO will still be zero (it is
permanently zero).

A common use of the set-B instructions is in program loops. For
example the FORTRAN loop

K=0
DO 20 I = 1,10
20 K = K+ 1

could be coded as follows, where X0 is used instead of K

SB1 10 SET LOOP UPPER BOUND
SB2 1 SET LOOP LOWER BOUND

LOOP SXO0 X0+B2 ADD IN LOOP COUNTER
SB2 B2+1 INCREMENT LOOP COUNTER
GE B1,B2,LOOP CHECK IF WE’RE DONE

Another, less useful, routine is a function to add two integers
of magnitude less that 2%*%16 ~ l. The function, called SUM, has
as its arguments the two addends. Thus all the routine has to do
is to load the two arguments and add them, leaving the result in
in X6:

61

CENTRAL PROCESSOR INSTRUCTION SET

SAl Bl
SA2 B2
5X6 X1+X2

All right? Not quite: there is no instruction SX6 X1+X2. What
' we have to do is put one operand into a B register, and then add
them:

[DENT SUM
ENTRY SUM
SUM 3S5 1 ENTRY LINE
BA2 Al+1 X2=ADDRESS OF SECOND ARGUMENT
BAL X1 X1=FIRST ARGUMENT
B5A2 X2 X2=SECOND ARGUMENT
HB3 X2 B3=SECOND ARGUMENT
3X6 X1+B3 X6=SUM
12Q SUM RETURN
END

We wouldn’t want to use an A register (except A0Q) instead of B3,
lest we produce a memory reference out of range or accidentally
store into a needed location. Note that since the magnitude of
the operands is less that 2#%*16 - 1, the sum is less than 2%*17 -
I, avoiding the problem of truncation of the set instruction.

A small warning should bz made at this point: the FORTRAN
extended compiler assumed that functions and subroutines donot
change the value of AO. I you write a routine which uses AOQ,
you must save the value of A0 at the beginning of the routine and
restore the original value before returning. To simplify
matters, we shall avoid using AO in the routines in this book.

3.8 BOOLEAN INSTRUCTIONS

Having dispatched the jump and increment unit (set)
instructions, we shall now begin the discussion of the arithmetic
operations among X registers (opcodes 10-47) with the Boolean

instructions, the basic logical operations =--— complement (.NOT.),
logical sun (.OR.), logical product (.AND.), logical difference
(exclusive or) =- and the moving of a number from one register to

the other. Logical operations are done on a bit-by-bit basis;
that is, the value of bit i of the result is determined by the
value(s) of bit 1 in the operand(s).

62

CENTRAL PROCESSOR INSTRUCTION SET

The Boolean instructions are organized into two groups of four
instructions. There are four basic operations: logical sum,
product, difference and transmit. The transmit operation, the
only unary operation (one operand) of the group, simply takes the
contents of the one register and transfers it to another. 1In the
first group of four, neither operand is complemented before the
operation; in the second group, one of the operands 1is
complemented before the operation.

With this introduction, the eight Boolean instructions will now
be enumerated. All are 15 bit instructions, specifying two
operand X registers and one result X register:

opcode i j k

14 8 5 2 0

In the unary operations, one of the two operand designators (j or
k) is dignored. Since these are bit-by-bit operations, they may
be described precisely by giving the result for each possible bit
combination in the operands. Sample operands and results (in
binary), including all possible bit combinations, are given below
for each instruction:

opcode 10: BXi Xj Transmit Xj to Xi

Transfers a 60-bit word from Xj to Xi:
if Xj = 10 (base2),
then Xi = 10 (base2)

opcode 11l: BXi Xj*Xk Logical Product of Xj and Xk to Xi

Bit in Xi is 1 when corresponding bitsin both Xj AND Xk are 1:
if Xj = 1010
Xk = 1100

1000

]

then Xi

opcode 12: BX1 Xj+Xk Logical Sum of Xj and Xk to Xi

Bit in Xi is 1 when corresponding bit in either Xj OR Xk 1is 1:

if Xj = 1010
Xk = 1100
then Xi = 1110

63

CENTRAL PROCESSOR INSTRUCTION SET

opcode 13: BXi Xj-Xk Logical Difference of Xj and Xk to Xi

Bit in Xi is 1 when corresponding bits in Xj and Xk are unlike

(exclusive OR):
if Xj = 1010

Xk = 1100
then Xi = 0110
opcode l4: BXi ~-Xk Transmit the complement of Xk to Xi

Puts in Xi the complement of the contents of Xk:
if Xk = 10
then Xi = 01

opcode 15: BXi -Xk*Xj Logical product of Xj and complement of
fk to X1

Bit in Xi is 1 when corresponding bits in
both Xj AND the complement of Xk are l:

if Xj = 1010 Xj = 1010
Ak = 1100 comp. of Xk = 0011
then Xi = 0010

opcode 16: BXi -Xk+Xj Logical Sum of Xj and complement of Xk
to Xi

Bit in Xi is 1 when corresponding bit in
either Xj OR the complement of Xk is 1:

if Xj = 1010 Xj = 1010
Lk = 1100 comp. of Xk = 0011
then X1 = 1011

opcode 17: BXi ~Xk-Xj Logical Difference of Xj and complement
of Xk to Xi

Bir in Xi is 1 whena corresponding bits
in {j and Xk are the same:

64

CENTRAL PROCESSOR INSTRUCTION SET

if X3 = 1010 Xj = 1010
Xk = 1100 comp. of Xk = 0011
then Xi = 1001

The mnemonics are, as usual, straightforward: the letter "B"
followed by the result register in the opcode field, the operands
and operators in the address field. Note that the minus sign
indicating complementation must appear first (BXi Xj*-Xk is not
allowed) and that this minus sign signifies that only the
immediately following register i1s complemented, not the entire
quantity.

About the simplest possible subroutine is a transmit subroutine,
which takes the contents of the first argument and puts it in the
second

IDENT KMIT
ENTRY XMIT
XMIT BSS 1 ENTRY LINE
SA2 Al+l X2=ADDRESS OF SECOND ARGUMENT
SAl X1 X1=FIRST ARGUMENT
BX6 X1 X6=FIRST ARGUMENT
SA6 X2 STORE INTO SECOND ARGUMENT ADDRESS
EQ XMIT
END

This routine is very similar to our earlier routine "SET", but
this one transmits the entire 60 bit value, not just the low 18
bits. This routine is thus suitable for transferring any single-
word datum, including integer and floating-point numbers.

A variation of our "SUM" function provides our second example.
This function will take the 60 bit logical sum of the two
arguments:

IDENT LSUM
ENTRY LSUM
LSUM BSS 1
SA2 Al+1 X2=ADDRESS OF SECOND ARGUMENT
SAl X1 X1=FIRST ARGUMENT
SA2 X2 X2=SECOND ARGUMENT
BX6 X14+X2 X6=ARGl .OR. ARG2
EQ LSUM
END

65

CENTRAL PROCESSOR INSTRUCTION SET

Then the statement
I = LSIM(J,77B)

where J = 140B will set I tc 177B.

Several additional examples will be forthcoming when we discuss
bit and character manipulation.

3.9 INTEGER ARITHMETIC: ADDITION AND SUBTRACTION

Integer addiftion and subtraction are about the simplest of the
arithmetic instructions. These instructions form the 60 bit
one’s complement sum and difference of the contents of two X
registers. Because these instructions do 60 bit arithmetic,
they are termed long add instructions (in contrast to the
floating operations, which we shall discuss shortly). The two
instructions are:

IXT Xi+Xk Integer sum of Xj and Xk to Xi
3 5 | i i]k (15 bits)
| —_L
14 8 5 2 0
IXi Xj-Xk Integer difference of Xj and Xk to Xi
! ——pe—
3 7 i [b k (15 bits)
14 8 5 2 0

As the characteristic mnemonic letter for set instructions is
"S", and for Boolean is "B", for integer operations it is "I".

As a simple example, we may conjure up a routine which takes the
(60 bit) difference of two integers. This function of two
arguments is similar to several we have written before:

66

CENTRAL PROCESSOR INSTRUCTION SET

IDENT IDIF
ENTRY IDIF
IDIF BSS 1 ENTRY LINE
SA2 Al+1 X2=ADDRESS OF SECOND ARGUMENT
SAl X1 X1=FIRST ARGUMENT
SA2 X2 X2=SECOND ARGUMENT
IX6 X1-X2 X6=ARGl - ARG2
EQ IDIF RETURN
END

We can now "jazz up" the routine so that, if A-B is negative, the
routine will return zero instead of A-B; the result is a standard
FORTRAN function, IDIM. All that is required is to add an
instruction to set X6 to zero, preceded by a jump which returns
directly (avoiding the set to zero) if the result is positive:

IDENT IDIM
ENTRY IDIM i
IDIM BSS 1 ENTRY LINE
SA2 Al+1 X2=ADDRESS OF SECOND ARGUMENT
SAl X1 X1=FIRST ARGUMENTT
SA2 X2 X2=SECOND ARGUMENT
IX6 X1-X2 X6=ARGl -~ ARG2
PL X6,IDIM IF ARGl - ARG2 POSITIVE, RETURN
SX6 BO ELSE SET RESULT=0
EQ IDIM AND RETURN
END

The original 6000 and 7000 series machines were not provided with
any single instructions for doing integer multiplication and
division. These operations were performed intead by a sequence
of instructions using floating multiplication and division. The
absence of hardware integer multiplication and division is
attributable to the basic objective in 6600 design of high speed
scientific calculation. Since scientific computation 1is
characterized by a preponderance of floating point rather than
integer arithmetic, it was decided to have the integer operations
be somewhat slower and utilize the very-high-speed floating point
capabilities. Recent machines have 1incorporated a slight
modification of the arithmetic unit to permit integer
multiplication in a single instruction; this change has by now
also been added to most existing 6000 series machines. The
sequences of instructions for integer multiplication and division
on both old and new machines will be described in section 3.15.

67

CENTRAL PROCESSOR INSTRUCTION SET

3.10 FLOATING POINT ADDITION AND SUBTRACTION
Consider the problem of adding, using scilentific notation,

3.40 * 10%*3
+ 1.77 * 10%%2

The operation involves two steps: (l) changing one of the numbers
(say, the one with the smaller exponent) so that both have the
same exponent and (2) adding the coefficients, affixing to the
result the common exponent of the addends:

3.40 % 10*%*%3 = 3.40 * 10%*%*3
1.77 * 10**2 = ,177 * 10%%*3

3.577 * 10%*3

If we are retaining three digits of accuracy, we can either
truncate the fraction, leaving 3.57*10%*3, or, more accurately,
round the fraction, yielding 3.58*10%*3. To complicate the
situation somewhat, let us consider

1.21 * 10%%3
~ 7.82 * 10%%K7D

By the same two operations as above, we obtain

1.21 * 10%*3 = 1.21 % [0#%*3
~7.82 * 10%*%2 = -.782 * 10%%*3

-428 * 10%%3

But .428%10**3 1s no longer in normal form, i.e., does not have
one significant digit to the left of the decimal point. Hence we
must 1include one final step, normalization, to obtain our result
in normal form, 4.28%10%%2,

The process we have 1llustrated in decimal scientific notation is
little different from that used for adding floating point numbers
in the computer. First a floating add is done to add the two
numbers (steps (l) and (2) above), and then a normalize is
performed to get the result back into normal form. A special 98
bit register, known as an accumulator, 1s used to perform the
shifting (to equalize coefficlents), and the actual addition. A
98 bit register makes it possible to obtain a double precision
result, with 96 bit accuracy. Just as our three digit operands
may yield a sum contianing more than three digits, 48 bit addends
may yield a more than 48 bit sum.

68

CENTRAL PROCESSOR INSTRUCTION SET

As a result of the addition of two 60 bit floating point numbers
on the machine, three different numbers may be obtained: a
floating sum, a round floating sum, and a floating double
precision sum. The double precision sum gives the low order 48
bits out of the accumulator; as its name implies, 1t is used for
double precision arithmetic. The other two sums both give the
most significant 48 bits of the accumulator, and either can be
used when only a single precision (48 bit) result is desired.
The floating sum just chops out 48 bits from the accumulator,
whereas the round sum includes a rounding procedure which yields
a slightly better result.

To clarify this, consider the addition (all numbers in octal)

4710 0010 0000 0210, * 2%%3

* Okk (=) ! :
6163 5050 0000 0421, 2%% (3?\)\-”’(:1%' ZAC‘LMH:(2,7]
These are essentially 6600 floating point numbers, with a 48 bit
integer coefficient and binary exponent, except that here a true,
rather than biased, exponent is given. Schematically, the
addition is done on the 6600 as follows: first, the addend with
the smaller exponent is put in the accumulator

0 6163 5050 0000 0421. 0000 0000 0000 0000 * 2%%(-33)

where a decimal point has been inserted to indicate the assumed
binary point between bits 47 and 48. The leftmost zero
represents only two bits; the high-order bit, bit 97, is the sign
bit, while the next bit is there to prevent possible error in the
case of overflow. The coefficient 1s now shifted and the
exponent correspondingly increased until it equals that of the
other operand:

0 0000 0000 0061 6350. 5000 0004 2100 0000 * 2%%*3
The second operand is now added in:

0 0000 0000 0061 6350. 5000 0004 2100 0000 #* 2%*3
+ 4710 0010 0000 0210.

0 4710 0010 0061 6560. 5000 0004 2100 0000 * 2%*3

|{~== floating sum ->| floating double
|<{- precision sum =>|

69

CENTRAL PROCESSOR INSTRUCTION SET

The most significant part of the sum is given by the floating
sum, 4710 0010 0061 6560%2*%*3, The double precision sum gives
the least significant part, i.e., that numnber which, when added
to the floating sum, gives the sum to 96 bit accuracy, 5000 0004
2100 0000 #* 2%*(-55), Note that, because in the accumulator the
binary point 1s assumed at the left of these 48 bits, the
exponent must be reduced by 48 (base 10) =60 (base 8) when the DP
sum is stored as a separate floating point number, with the
assumed binary point on the right.

The rounding procedure in the floating add unit is different from
the usual method you know for rounding, though the effect is
almost the same. The "usual method" for calculating a round
floating sum would be to increment the integer part (bits 48-95)
by one if the fractional part (bits 0-47) were greater than one-
half, i.e., if bit 47 were a one. The add unit instead puts a
one bit on the right end of the operands (if both are
normalized); in our example the addition would become

- round bit

0 0000 0000 006! 6350. 5000 0004 21%6 0000 * 2%%3
+ 4710 0010 0000 0210. 4 * 2%%3

L-round bit
0 4710 0010 0061 6561. 1000 0004 2140 0000 * 2%%3

| {==-- round sum =-=>|

Observe that the round sum, 4710 0010 0061 6561%2*%3, is the same
result we would have obtained by applying the '"usual method" of
rounding to our original 98 bit sum. This 1s because the effect
of the actual rounding procedure is to add one-half to the sum.
This 1s true even 1f the exponents of both operands are the same,
since then the binary point must be shifted one bit left. For
example, the round sum of 5:00 0000 5200 0000*2**10 with itself,

5100 0000 5200 0000. 4000 0000 0000 0000 * 2**10
+ 5100 0000 5200 0000. 4 * 2%%]0

1 2200 0001 2400 0001. 0OOO 0000 0000 0000 * 2%%10
=0 5100 0000 5200 000CO. 4000 0000 0000 0000 * 2%*]]

| {=—= round sum =--->]

Inserting bits before the addition is a simpler and faster
procedure than adding one to the coefficient at the end, which
may require several carries.

70

CENTRAL PROCESSOR INSTRUCTION SET

When calculating a round sum, only the upper 48 bits are usuable;
the least significant 48 are meaningless. Conversely, when we
wish to recover 96 bits, we must use the floating and DP sums,
and not the round sum. Thus, the floating and DP sums are
essential for double precision work, while the round sum is
preferable for single precision, since 1t 1s slightly more
accurate. (For reasons of tradition, however, most compilers,
including those for the 6600, generate floating rather than round
floating arithmetic instructions.)

With this we are ready to enumerate the floating point addition
and subtraction instructions.

FXi Xj+Xk Floating sum of Xj and Xk is Xi

3 0 i J k (15 bits)
14 8 5 2 0
FXi Xj-Xk Floating difference of Xj and Xk to Xi
L 3 1 i 3 k (15 bits)
DX1i Xj+Xk Floating DP sum of Xj and Xk to Xi
—_—

3 2 i 3 k (15 bits)
DX1 Xj-Xk Flcating DP difference of Xj and Xk to Xi

3 3 k] (15 bits)
RXi Xj+Xk Round floating sum of Xj and Xk to Xi

3 4 i 3 k (15 bits)

71

CENTRAL PROCESSOR INSTRUCTION SET

j
I
i
I
i
i
1
i
1
I
i
i

1

-1

(15 bits)

w
w
[,
.
=

As is evident, the characteristic letters for floating, DP, and
round arithmetic are F, D, and R; from this you can probably
already guess the mnnemorics for the multiply and divide
instructions.

As the preceding discussion suggested, we will require one
additional instruction: the normalize instruction, which puts a
number intc normalized form. That is, the coefficient from the
operand is shifted left bit-by-bit until the most significant bit
is in bit 47; positions vacated on the right are filled with
zeros (binary ones if the number is negative). For each bit that
the coefficient 1s shifted, the exponent is decremented by one,
so the value of the number is unchanged. The normalized number
is put in the X result register; in addition, the number of
shifts required for normalization is left in a B result register.
Thus, this is one of the few (3) 6600 instructions with only one
operand and two results. The normalize instruction is the first
of the so—called "shift unit instructions" (opcodes 20-27) which
we shall consider:

(15 bits)

For the sake of completeness, the round and normalize instruction
will also be mentioned. This instruction adds 1/2 to the
coefficient before normalizing; i.e., for positive numbers, a l
bit is attached to the right of the binary point before shifing.
Tt has the totally nonsensical mnemonic ZX:

ZXi Bj, Xk Round arnd normalize Xk into Xi and Bj

ko (15 bits)

CENTRAL PROCESSOR INSTRUCTION SET

For example, if
X2 = 1753 0005 7410 2121 6050

the instruction NX3 B3,X2 will set
B3 = 000011 X3 = 1742 5741 0212 1605 0000
while ZX3 B3,X2 results in

round bit —
B3 = 000011 X3 = 1742 5741 0212 1605 0400

Lest you fear that normalizing a zero coefficient puts the
machine in some sort of infinite loop, let me inform you that the
instruction ends with the shift count (Bj) = 48(base 10), and Xi
cleared to zero. This is dimportant in testing a floating point
number for zero, using the ZR X1i,K instruction. In general,
subtracting a number from itself will yleld a result with a zero
coefficient but not a zero exponent, so the result will fail the
ZR test, which examines all sixty bits. After normalization,
however, a result with a coefficlent of zero will become all
zero, so the branch will occur if a ZR test is made. To round
out the picture, one may note that a ZX (rounded normalize) of a
zero coefficient will reduce the exponent by 48 and leave a round
bit in bit 47.

In the following examples we will use only the unrounded
normalize, since we will be doing round floating arithmetic.
Performing a rounded normalize on the result of a round floating
operation would have the undesirable effect of adding a round
bit in twice.

As a trivial example, we can modify the IDIM function coded
earlier for floating point numbers (i.e., the FORTRAN ADIM
function). The only change is in the subtraction:

IDENT ADIM
ENTRY ADIM
ADIM BSS 1 ENTRY LINE
SA2 Al+] X2=ADDRESS OF SECOND ARGUMENT
SAl X1 X1=FIRST ARGUMENT
SA2 X2 X2=SECOND ARGUMENT
RX6 X1-X2 X6=ARG1-ARG2
NX6 BO,X6
PL X6,ADIM IF (ARG1-ARG2).GE.0,RETURN
SX6 BO ELSE SET RESULT=0
EQ ADIM AND RETURN
END

73

CENTRAL FROCESSOR INSTRUCTION SET

Note that we had no use for the shift count from the normalize
instruction, so we designated BO for the result (BO, however, is
unaffected -- it 1is always zero); this could have been written
NX6 X6, as BQ is assumed if no B register is specified. If the
normalize were omitted, the routine would be unacceptable, since
in our coding we shall always assume that floating point operands
(which are results of previous operations) are normalized.
Hence, every floating add or subtract must be followed by a
normalize instruction.

As a slightly more complicated example, let us consider the
function whose value 15 the trace -- the sum of the diagonal
elements -- of a square matrix of arbitrary size. In FORTRAN
this would bhe

FUNCTION TRACE (ARRAY,N)
DIMENSION ARRAY (N,N)

TRACE = O
DO 10 I = 1I,N
10 TRACE = TRACE+ARRAY(I,I)
RETURN
END

Now observe that the address of ARRAY(I,I) = address of the first
word of ARRAY+(I-1)+N*(I-1)= address of the first word of
ARRAY+(N+1)*(I-1). Since in memory the N*N array is stored as
linear array of N*N elements (A(l,1), A(2,1),...,A(N,1),
A(1,2),A(2,2),ee, A(N,N)), 1t 1s simpler to manipulate ARRAY as
a linear array when possible. In this case, it 1s particularly
simple: the DO loop in effect goes through ARRAY in steps of
N+1l. Thus, to load the first element of ARRAY we set an A
tegister to ARRAY (the value of an array tag is the first
location of the array). To load subsequent array entries, we
need merely increment the A register by N+1. In addition, we
will have to keep a count sc that the assembly language routine,
like the DO loop, will know when 1ts job is finished. Thus, in
COMPASS, our function is

74

CENTRAL PROCESSOR INSTRUCTION SET

IDENT TRACE
ENTRY TRACE

TRACE BSS 1
SA2 Al+1
SA2 X2 X2=DIMENSION OF ARRAY
SB4 X2+1 B4=DIMENSION + 1
SAl X1 A1=STARTING ADDRESS OF APRAY
BX6 X1 X6=FIRST ARRAY ELEMENT
SB3 1 INITIALIZE COUNTER
LOOP SAl Al+B4 GET NEXT ARRAY ELEMENT
RX6 X1+X6
NX6 X6 ADD INTO SUM
SB3 B3+1 INCREMENT COUNTER
LT B3,B4,LO0P IF NOT THROUGH, LOOP
EQ TRACE ELSE RETURN
END

It is unlikely that any but the best optimizing compilers would
be able to produce such short code from the FORTRAN version of
the routine. It is not so difficult to realize that it is more
efficient to accumulate the sum in X6, since the result will have
to be put in X6 before returning; on the other hand, it is a very
shrewd compiler which sees the trick with an increment of N+l.

75

CENTRAL FROCESSOR INSTRUCTION SET

3.11 FLOATING POINT MULTIPLICATION

Multiplying two floating point numbers involves multiplying
coefficients and addding exponents, in decimal:

3.1 * 10%%2
* 2.2 % 10%%*7

6.82 * 10%%9
or in octal:

4200 0000 0000 0000. #* 2%%3
* €010 0000 0000 0000. * 2%%6

3144200000000000 0000 0000 0000 0000. * 2%%*11

Multiplying together two-digit decimal coefficents yields a three
or four digit result (3.1 * 2.2 = 6.82; 6.4 * 6.4 = 40.96);
similarly, the product of :zwo 48 bit coefficents is a 95 or 96
bit result. The multiply instructions on the 6600 automatically
adjust a 95 bit result coefficent to get a normalized 96 bit
quantity, shifting the coefficent left one bit and reducing the
exponent by one; for example, the result above would become

6310400000000000 0000000000000000. #* 2**10

Thus if the two operands in a multiply instruction are both
normalized, and so have 48 bit coefficents, the result will have
a normalized 96 bit coefficent; no additional normalize
instruction is required.

Just as there are three types of floating point addition and
subtraction, there are three types of floating point
multiplication: floating, round floating, and double precision
floating. Since each instruction can only return one floating
point number, with 48 bits of coefficent, two instructions, the
floating and DP multiply, are needed to get out all 96 bits:

6310400000000000 0000000000000000. * 2**1Q
f loating product DP product

So, in this example, the floating product is 63310400000000000 *
2%%10; right? Wrong. At the end of a multiply, the binary point
is all the way at the right of the 96 bits; when we put the most

76

CENTRAL PROCESSOR INSTRUCTION SET

significant 48 bits into the result register, the assumed binary
point 1s at the right of those 48 bits -~ in other words, it has
been shifted 48 bits to the left. So, to have the floating
product be the most significant half of the product, we have to
increase the exponent put in the floating result by 48 (base 10)
= 60 (base 8). On the other hand, no change is need to get the
exponent of the DP result, since the assumed binary point starts
out to the right of those 48 bits. Thus the two products are:

floating product = 6310400000000000 * 2%%*7Q
DP product 0000000000000000 * 2**10

their sum is the product with 96 bit precision. (Don’t get the
impression, incidentally, that the DP product is generally zero;
this is only a consequence of the numbers chosen).

The round multiply gives a rounded version of the most
significant half of the product —- a 48 bit coefficent "good to
the last bit'". As before, the rounded result is generally
preferable for single precision, while the floating and DP
instructions are needed to recover a double precision result.

The three instructions occupy opcodes 40-42:

FXi Xj*Xk Floating product of Xj and Xk to Xi

4 0 i j k (15 bits)
14 8 5 2 0
RXi Xj*Xk Round floating product of Xj and Xk to Xi

4 1 i i k (15 bits)
DXi Xj*Xk Floating DP product of Xj and Xk to Xi

4 2 i 3 k (15 bits)

The example we shall consider to illustrate the nmultiply
instructions is considerably more complicated than our previous
subroutines. This routine will compute the product of two
matrices; in FORTRAN it would be

77

CENTRAL FPROCESSOR INSTRUCTION SET

SUBROUTINE MATMU (A,B,C,L,M,N)

@]

C MULTIPLIES MATRIX A, DIMENSIONS L*M,
C AND MATRI1X B, DIMENSIONS M#*N, LEAVES
C RESULT IN MATRIX C, DIMENSIONS L*N

C

DIMENSION A(L,M), B(M,N), C(L,N)
Do 20 I = 1,L
DO 20 K = 1,N
SUM = 0.
po 10 J = I,M
10 SUM = SUM + A(I,J)*B(J,K)
20 C(I,K) = SIM
RETURN
END

This example is important because it occurs often in practical
calculations, and can consume a lot of computing time: the
innermost DO loop is executed L*M*N times. For example, 1if the
matrices were all 100%100 (quite large, but still easily within
the capacity of memory) the inner loop would be executed
1,000,000 times.

We will try to write an optimized matrix multiply to the extent
we have learned so far, i.e., minimize the number of instructions
to be executed. Of course, since the inner loops are executed
much more often than the initialization code (which is executed
once), we shall be much more concerned about saving instructions
in the loops. (To the ambitious student, may I suggest that, to
get the most out of the following explanation, you code -- and
perhaps ever try to run -- a MATMU of your own in assembly
language befcre reading on.:

As a first step let us consider what we have to do in the
innermost locop. The biggest problem seems to be geting A(I,J)
and B(J,K):

address of A(L,J} address of A + (I-1) + L*(J-1)
acdress of B(J,K) = address of B + (J-1) + M*(K-1)

We can note that it would make more sense to keep indices
I = 1-1, J = J=1, and K* = K~-1; then

address of A(I,J)

address of A + 17 ‘%
address of B(J,K) B +

17 + J7*L
address of J’ + K'*M

But we don’t know how to do those integer multiplications yet,
and anyway feel that there must be some better way than doing

78

CENTRAL PROCESSOR INSTRUCTION SET

these multiplications perhaps a million times. Taking a hint
from our TRACE function, we suspect that we can simply increment
the relevant A registers each time through the inner loop. And
indeed, each iteratiom of the loop advances the A matrix address
by L and the B matrix address by 1.

With this thought in mind, we can begin by constructing the inner
loop. We may assume for the moment that the loop indices and
limits will be kept in B reglsters, as usual; we can change this
later if we get into difficulty. So suppose we have I’ in B2, J’
in B3, K’ in B4, L in B5, M in B6, and N in B7. Let’s also
suppose that we are loading A and B matrix elements into X1 and
X2 respectively, and accumulating the sum in X6. Then the
innermost loop has to (1) advance Al by L and A2 by 1, (2)
multiply elements of matrices A and B and add into sum, and (3)
increment J° and loop if not done:

LUP1 SAl A1+B5 X1=A(I,J)
SA2 A2+1 X2=B(J,K)
RX1 X1%X2 X1=A(I,J)*B(J,K)
RX6 X1+X6
NX6 X6 ADD INTO SUM
SB3 B3+1 J=J'+1
LT B3,B6,LUP1 IF(J‘ .LT .M), LOOP

Note that the loop is done when J exceeds M, and so when J’ is
equal to M.

Having succeeded in coding the innermost loop in a minimum of
instructions (each operation is essential to the loop), let us
see whether we can do the same for the outer loops. Instructions
are needed right before the inner loop to initialize the sum (X6)
and after the loop to store the result. Now the question arises,
should the I or the K loop be outer-most? Though the differences
are small, I have selected the I loop to be in the middle, and
the K loop to be on the outside. Consider the store instruction
which follows the inner loop: previous experience indicates that
we can compute the address for the store most simply if we find a
constant increment by which to advance the store address
throughout the loop. This is possible, clearly, only if the
address is incremented by one each time; since address of C(I,K)=
address of C + I’ + K’*L, this means that we increment I’ in the
inner loop, and K’ in the outer loop (thus obtaining the sequence
C(1,1)5ees, C(L,1), C(1,2)y4ee, (C(1,3),ees, C(L,N)). Since each
element of matrices A and B is accessed several times, it would
not have been possible to reference eoither A or B simply by
continuously incrementing an A register. The outcome of all this
is that the store operation (C(I,K) = SUM) will become

79

CENTRAL PROCESSOR INSTRUCTION SET

SA6 A6+] STORE IN C(I,K)

The other tasks in the outer loops are to (1) initialize Al and
A2 for the inner loop and (2) initialize the sum (X6). From the
FORTRAN routine we might suspect that the latter becomes SX6 BO.
Some thought, however, should indicate that it would be faster to
initialize X6 to A(I(1)*B(1,K), since it saves one iteration of
the inner loop. (In exchange for this slight increase in
efficiency, however, we obtain a routine which will not work for
M=1.) And, at the same time, A(I,1) and B(1,K) are the correct
initial addresses in Al and A2 for starting the inner loop. So
the only remaining problem is getting the addresses of A(I,l) and
B(1,K); we decided before that we can’t do this just by
incrementing the previous contents of Al or A2 (unless we are
willing to increment/decrement more than once). But A(I,1) is
simple, since address of A{I,l)= address of A+I1° = B14+B2, if we
keep the address of A in Bl. Address of B(l1,K) = address of
B+K’#M is a bit more work, but we can manage by keeping the
address of B in some register and adding M to the register each
time through the K loop. Having run out of B registers, let’s
use, say, X5.

If you have been able to wade through all this, you will realize
that the code before the inner loop is

LUP2 SAl B1+B2 X1=A(I,1)
5A2 X5 X2=B(1,K)
RX6 X1*X2 INITIALIZE SUM
583 1 J =1

while at the end of the I loop we have to perform the store,
increment and test I7:

SA6 A6+] STORE SUM INTO C(I<K)
582 B2+] I'=I"+1
LT B2,B55,LUP2 IF I°.LT.L, LOOP

Our outermost (K) loop doesn’t have to do very much: at the
beginning, initialize 1° for the middle loop, at the end
increment and test K —- and advance X5, which should have the
address of B4K'*M:

LUP3 SB2 BO I°=0
SB4 B4+l K"=K’+1
SX5 X5+B6 X5=X5+M
LT B4,B7,LUP3 If K“.LT.N, LOOP

CENTRAL PROCESSOR INSTRUCTION SET

Since you are by now probably thoroughly confused as to how all
these jig-saw puzzle pleces fit together, let me put all the
loops together

LUP3 SB2 BO I’=0
LUP2 SAl B1+B2 X1=A(I,1)
SA2 X5 X2=B(1,K)
RX6 X1*X2 INITIALIZE SUM
SB3 1 Jr =1
LUP1 SAl Al+B5 X1=A(1,J)
SA2 A2+1 X2=B(J,K)
RX1 X1*X2 X1=A(I,J)*B(J,K)
RX6 X1+X6 ADD INTO SUM
NX6 X6
SB3 B3+1 J =J"+1
LT B3,B6,LUP1L IF(J°.LT.M), LOOP1
SA6 Ab+1 C(I,K)=SUM
SB2 B2+1 I°=1"+1
LT B2,B5,LUP2 IF(I’.LT.L), LOOP2
SB4 B4+1 K”=K’+1
SX5 X5+4B6 X5=X5+M
LT B4,B7,LUP3 IF(K’.LT.N), LOOP3

All that’s left now is the initialization of registers. L, M,
and N go into B5, B6, and B7.

SA2 Al+3 X2=ADDRESS OF L
SA3 Al+4 X3=ADDRESS OF M
SA4 Al+5 X4=ADDRESS OF N
SA2 X2 X2=L
SA3 X3 X3=M
SA4 X4 X4=N
SB5 X2 B5=L
SB6 X3 B6=M
SB7 X4 B7=N

the address of matrix A goes into Bl and the address of matrix B
goes into X5

SB1 X1 B1=ADDRESS OF A MATRIX
SAS5 Al+1 X5=ADDRESS OF B MATRIX

and K’ is initialized to zero,
SB4 BO K =0

Finally, we have to set A6 to one less than the address of C

81

CENTRAL PROCESSOR INSTRUCTION SET

SAl AL+ X1=ADDRESS OF C MATRIX
SA6 TXi-

This unfortunately clobbers whatever was in that location
before, so we need the sequence

SA1 Al+2 X1=ADDRESS OF C MATRIX
SAl X1-:

BX6 X1

SA6 Al

to preserve whatever was in that location.

With a sigh of relief we can now tack on the usual beginning and
ending for our routine (which appears on the next page).

All this gory detail has becn presented to give you some idea of
what is invelved in codinz an efficient routine. Of course,
things don't usually go as smoothly as was indicated here-- a
half dozen revisions were nceded before I came upon the efficient
code developed here. On tae other hand, such extreme care in
saving instructions is not generally required in assembly
language coding.

It is worth remarking here that it rarely makes any sense to
write really inefficent assembly language code. If one doesn’t
bother to write efficient machine code, one might as well program
in FORTRAN or some other high-level language to begin with, and
spare oneself the problems of debugging assembly language
programs. Similarly, it doesn’t pay to write program sections
that will be executed only a few times in assembly language,
since the time you could save by producing highly optimized code
would be infintesimal. An efficent programmer will resort to
machine language coding only when it is worthwhile -- when the
potential time saving justifies the effort.

CENTRAL PROCESSOR INSTRUGCTION SET

IDENT

MATMU

REARAAARARAAXRARKRRARAKR IR AR AR A AR AR AR AR AR AR T AR AR AR AR A A A hhhd X

CALL MATMU (A,B,C,L,M,N)

AND MATRIX B, DIMENSIONS M*N, LEAVES RESULT

BEEERE AR EL RS ST EE RIS IS LTRSS TR T S

X2=ADDRESS OF
X2=ADDRESS OF
X4=ADDRESS OF
X2=L
X3=M
X4=N
B5=L
B6=M
B7=N
B1=ADDRESS OF A MATRIX
X5=ADDRESS OF B MATRIX

=l o

K’ =0

X1=ADDRESS OF C MATRIX
INITIALIZE A6
WITHOUT CLOBBERING
LOCATION

I°=0

X1=A(I,1)
X2=B(1,K)
INITIALIZE SUM

J =1

X1=A(I,J)1
X2=B(J,K)
X1=A(I,J)*B(J,K)
ADD INTO SUM

J’=J"+1

IF(J’.LT.M), LOOP1
STORE SUM INTO C(I,K)
I°=1"+1

IF(K’.LT.N), LOOP3
K’’=K’+1

S5=X5+M

IF(K’.LT.N), LOOP3
RETURN

*
* MATRIX MULTIPLY ROUTINE
* CALLING SEQUENCE:
* MULTIPLES MATRIX A, DIMENSIONS L*M
*
% IN MATRIX C, DIMENSIONS L*N
*
*
ENTRY MATMU
MATMU BSS 1
SA2 Al+3
SA2 Al+4
SA3 Al+5
SA2 X2
SA3 X3
SA4 X4
SB5 X2
SB6 X3
SB7 X4
SB1 X1
SA5 Al+1
SB4 BO
SA1 Al+2
SAl X1-1
BX6 X1
SA6 Al
LUP3 SB2 BO
LUP2 SAl B1+B2
SA2 X5
RX6 X1%X2
SB3 1
LUP1 SAl Al1+B5
SA2 A2+1
RX1 X1*X2
RX6 X1+X6
NX6 X6
SB3 B3+1
LT B3,B6,LUP1
SA6 A6+1
SB2 B2+1
LT B2,B5,LUP2
SB4 B4+1
SX5 X5+4B6
LT B4,B7,LUP3
EQ MATMU
END

*
*
*
*
*
*
*
*

83

CENTRAL PROCESSOR INSTRUCTION SET
3.12 FLOATING POINT DIVISION
This section, covering the two floating point divide

instructions, completes
instructions. A floating
coefficients and subtracting

exponents;

4.5 * 10**8 = 45.0 * 10**7
9.0 * 10%*7 = 9.0 * 10%*2
5.0 * 10%%5

our discussion of the arithmetic
point division 1involves dividing
in decimal:

In octal it is similarly necessary to increase the coefficient
and correspondingly reduce the exponent before dividing:

63104000 00000000. * 2%%7Q
60100000 00000000. #* 2%*6
is changed to
631044000 00000000 00000000 0Q0000000. * 2#%*]0
60100000 00000000. * 2%%6
104000000 00000000. * 2%%2
and, converting the coefficient to 48 bit form,
= 4000000 00000000. #* 2%*3

If the operands are normalized,

the exponent of the result =

(exponent of dividend) - (exponent of divisor) - 57 (base 8) or

60 (base 8),

the end of the operation, as it was above.

process, as outlined above,
coefficient,

instructions.

with a rather involved sequence of instructions.

an inexact quotient (non--zero rem
gives
ignored),
result.

The two instructions are:

FXi XJ/Xk

r S
IR N U O N
14 8 5 2 0

ainder),

Floating Divide XJ by Xk to Xi

depending on whether a one bit shift is required at
Since the division
yields a result with a 48 bit
there are only floating and round floating
Double precision division 1s nonetheless possible,

In the event of

the floating divide
a truncated quotient (the result of the remainder is
while the round divide give an (approximately) rounded

(15 bits)

CENTRAL PROCESSOR INSTRUCTION SET

RXi XJ/Xk Round floating divide Xj by Xk to Xi

-

L 4 5 1 i k (15 bits)

As the example above indicated, both instructions leave
normalized results when both the dividend and divisor are
normalizede On the other hand, if the divisor is not normalized
the quotient conmputed may be wrong. In consequence, operands in
these instructions should be normalized to insure correct
results.

As an application of the floating divide, let us study a simple
version of the Newton--Raphson square root:

FUNCTION SQRT(X)
IF (X.LT.0.) GO TO 2
SQRT = X
IF (X.EQ.0.) RETURN
1 SQRT = .5*%(SQRT + X/SQRT)
IF (ABS(SQRT*%2 - X) .GT. X*1.E-12) GO TO 1
RETURN
2 SQRT = 0.
RETURN
END

Our criterion for terminating the iteration 1is that SQRT#*%*2
equals X to a precision of 1 part in 10%**-12. We can rewrite the
IF as:

IF (SQRT**2 .LT. X - X*1.E-12) GO TO 1

IF (SQRT**2 .GT. X + X*1.E-12) GO TO 1

This permits us to take the calculation of the limits out of the
loop:

FUNCTION SQRT (X)
IF (X.LT.0) GO TO 2
SQRT = X
IF (X.EQ.0) RETURN
SLIMIT] = X - X*1.E-12
SLIMIT2 = X + X*1.E-12
1 SQRT = 0.5*%(SQRT + X/SQRT)
IF (SQRT*%2.LT.SLIMITL) GO TO 1
IF (SQRT**2.GT.SLIMIT2) GO TO 1
RETURN
2 SQRT = 0.
RETURN
END

85

CENTRAL P2R0CESSOR INSTRUCTION SET

Converting this to assembly language is quite straightforward.
First, check if the argument is negative:

SAl X1 X1=X
NG X1,NEG SENSE ARGUMENT NEGATIVE

Second, set a first guess anc compute limits:

BXE X1 X6=FIRST GUESS=X

7R X1,SQRT IF X=0,RETURN 0

SA3 TINY X3=10%%(-12)

RX3 X1*X3 X3=X*10%%(-12)

RX4 X1-+X3 X4=UPPER LIMIT =X+X*10%%(-12)
NXL X4

RXS X1-X3 X5=LOWER LIMIT=X-X*10%%(-12)
NX5 X5

SA3 HALF X3=0.5

SA3 HALF saves 0.5 so it will not have to be refetched each time
in the loope.

LUP EXO X1/X6 X0=X/LAST GUESS
RXO) X0+X5 X0=X/LAST GUESS +LAST GUESS
NXO X0
RX6 X0*X3 X6=NEW GUESS=0.5%X0
RXO X6*X6H X0=(NEW GUESS)#%*2
RXZ X0-X5 X2=(NEW GUESS)#*2-LOWER LIMIT
NG X2,LUP IF VALUE TOO LOW,LOOP
RXZ X4~=X0 X2=UPPER LIMIT-(NEW GUESS)*%2
NG X2,LUP IF VALUE TOO HIGH, LOOP
EQ SQRT EXIT

In comparing the result with the limits, we are only interested
in the sign of the difference, and hence need not spend the time
normalizing after the subtractions (normalization would be
necessary 1f we were going to use the results or test whether
they were zerc). Two more instructions are needed to process the
case where the argument is naegative:

NEG SXé6 BO IF ARGUMENT NEGATIVE,
Q) SQRT SET RESULT = 0 AND EXIT

Finally, we have to preset two words to 0,5 and 1.E-12, This 1is
accomplished in COMPASS by the DATA pseudo-operation. This
pseudo—-op sets aside one word, and presets it to the constant in
the address field. Thus, we would require:

TINY DATA 1.E-12

HALF DATA 0.5

86

CENTRAL PROCESSOR INSTRUCTION SET

Putting all this together, our routine would be:

IDENT SQRT
ENTRY SQRT

SQRT BSS 1
SAl X1 Xl = X
NG X1,NEG SENSE ARGUMENT NEGATIVE
BX6 X1 X6 = FIRST GUESS = X
ZR X1,SQRT IF X=0, RETURN
SA3 TINY X3=10%%(-12))
RX3 X1%X3 X3=X*10%%(=12)
RX4 X1+X3 X4=UPPER LIMIT=X+X*10%%(-12)
NX4 X4
RX5 X1-X3 X5=LOWER LIMIT=X-X*10%%(-12)
NX5 X5
SA3 HALF X3=0.5
LUP RXO0 X1/X6 X0=X/LAST GUESS
RXO0 X0+X6 X0=X/LAST GUESS + LAST GUESS
NXO0 X0
RX6 X0*X6 X6=NEW GUESS=0.5%X0
RXO X6%X6 X0=(NEW GUESS)*%2
RX2 X0-X5 X2=(NEW GUESS)*#*2-LOWER LIMIT
NG X2, LUP IF VALUE TOO LOW,LOOP
RX2 X4=X0 X2=UPPER LIMIT-(NEW GUESS)*%2
NG X2,LUP IF VALUE TOO HIGH, LOOP
EQ SQRT EXIT
NEG SX6 BO IF ARGUMENT NEGATIVE, SET
EQ SQRT RESULT=0 AND EXIT
TINY DATA 1.E-12
HALF DATA 0.5
END

Let me conclude agaln with a comment on the importance of
assembly language coding. Some functions, although in themselves
very short, are used so often in so many programs that optimizing
them becomes of prime importance. Chief among these are the
FORTRAN library functions (SIN, COS, LOG, EXP, SQRT, etc.), where
every attempt i1s made to squeeze the last microsecond out of the
routine. Extensive studies have been made, for example, on the
best starting value for Newton-Raphson square root iterations.
In the case of the SQRT, a combination of an efficlent algorithm
and optimized machine language coding have resulted in a 6600
routine which computes a full-word precision (coefficient good to
the last or next to the last bit) square root in 17-1/2 us. That
is quite an accomplishment when one considers our effort above,
which requires about that much time without any iterations!

87

CENTRAL PROCESSOR INSTRUCTION SET

3.13 ARITHMETIC EXIT

Let me begin by assuring you that trying to divide by zero does
not cause the 6600 to blow a transistor. The divide unit senses
that the divisor is zero, and, instead of going through the
entire division process, puts out a speclal number as the
quotient. For a positive number divided by minus zero, the
result is:

3777 0000 0000 0000 0000,

a positive number with the largest possible exponent (real
exponent = 1777 (base 8) = 1023 (base 10). A number with an
exponent of 3777 (and any coefficient) is called 'plus
infinity", since we would ordinarily expect a non-zero number

divided by zero to yeild infinity . A negative number divided by
a plus zero or a positive number divided by minus zero produces

4000 0000 0000 0000 0000

the negative number formed by complementing the high 12 bits in
plus infinity; note that the actual exponent is still 3777 (base
8) In case you haven’t guessed, this number has been dubbed
"minus infinity".

Dividing (plus or minus) zero by (plus or minus) zero is a
special case yilelding

1777 0000 0000 0000 0000

Considering its significance, this number is appropriately called
"plus indefinite". There is also a '"minus indefinite":

6000 0000 0000 0000 0000.

Indefinite has an actual exponent of minus zero, which cannot
otherwise arise in normal computation. In contrast, it is
possible to produce infinity without dividing by zero: for
example, by multiplying two numbers whose product would have an
actual exponent greater than 1777 . In such cases, known
generally as 'overflow'", the 6600 automatically sets the result
exponent tc 3777 with the bias included.

The numbers infinity and indefinite are important because using
either of them as an operand in a floating-point instruction
causes the central processor to stop immediatelely (well, within
a couple of microseconds, in any event). This feature, known as
arithmetic error exit, 1is designed to avoid wasteful use of the

88

CENTRAL PROCESSOR INSTRUCTION SET

CPU, since infinite and indefinite results generally mean a
progran error. The operating system notices that your program
has stopped, and puts out the dayfile message:

CPU ERROR EXIT AT 012345
ARITHMETIC INFINITE

for using infinity as an operand, and

CPU ERROR EXIT AT 012345
ARITHMETIC INDEFINITE

for using indefinite as an operand. The address is the
approximate location of the instruction which caused the error
exit. Remember that "arith errors'" are caused only by using these
special numbers in floating point instructions.

To keep the accidental use of an illegal operand from throwing
your program off the machine, there are four conditional branch
instructions to test for infinity and indefinite. These are the
four remaining X register branches, opcodes 034 through 037. Two
test for infinity, also called "out of range" (i.e., outside of
the range of legal exponents). These instructions only check
whether the 12 high bits are 3777 or 4000; the coefficient of the
number in the X register is ignored.

IR Xj, K Junp to K if Kj is in range (30 bits)

0 3 b3 K |
i L

29 20 17 0

OR Xj, K Jump to K if Xj 1s out of range (30 bits)

: r

L0 3 55 K _l

[L L -

Similarly, the definite/indefinite test only compares the high 12
bits against 1777 and 6000,

DF Xj, K Jump to K if Xj is definite (30 bits)

0 3 6 | K _]
L3 |

&9

CENTRAL PROCESSOR INSTRUCTION SET

ID {i, K Jump to K if Xj is indefinite (30 bits)
L 0 3 7 4 4
29 20 17 0

As an example of the use of these instructions, let us modify our
square root routine to check for all illegal arguments:
infinity, indefinite and regative numbers. For any of these
arguments, the routine will return an indefinite (just as the
FORTRAN library routine does). Returning indefinite rather than
zero for negative arguments prevents the program from wasting CPU
time if it tries to use the result of the illegal SQRT call in
further computation. Thus, our improved square routine:

[DENT SQRT
ENTRY SQRT
SQRT BSS 1
SA1 X1 Xl = X
NG X1,IL. SENSE ARGUMENT NEGATIVE
OR X1,ILL INFINITE,
ID X1,TL% OR INDEFINITE
RX6 X1 X6 = FIRST GUESS = X
7R X1,SQRT IF X = 0, RETURN 0
SA3 TINY X3 = 10%* (-12)
RX3 X1%¥3 X3 = X*10*%*(-12)
RX4 X1+%3 X4 = UPPER LIMIT = X+X*10%%(-12)
NX4 X4
NX5 X5
SA3 HALF X3 = 0.5
LUP RXO X1/%6 X0 = X/LAST GUESS
RXO X0 +X6 X0 = X/LAST GUESS + LAST GUESS
NXO0 X0
RX6 X0*x3 X6 = NEW GUESS = 0.5*%X0
RXO X6*X6 X0 =(NEW GUESS)**2
RX 2 X0=¥%5 X2 =(NEW GUESS #*2-LOWER LIMIT
NG X2, LUP IF VALUE TOO LOW, LOOP
RX2 X4=%0 X2 = UPPER LIMIT-(NEW GUESS)*%2
NG X2, LUP IF VALUE TOO HIGH, LOOP
£Q SQRT EXIT
iLL SAl IND IF ARGUMENT INVALID,
RX6 X1 RETURN INDEFINITE RESULT
£Q SQRT AND EXIT
TINY DATA 1.E-12
HALF DATA 0.5
IND DATA 177700000000000000008
IND

90

CENTRAL PROCESSOR INSTRUCTION SET

As the size of our routine increases, we note that the number of
constants we have to keep track of and put at the end of the
routine grows too. We might compare our current situation to
writing FORTRAN programs under the restriction that constants may
appear only in DATA statements. If we wanted to add 3.1 to X in
this restricted FORTRAN, we would have to write

DATA CON3P1 /3.1/
X = X + CON3Pl

Of course, FORTRAN does allow us to write
X=X+ 3.1

the compiler will automatically set aside a word at the end of
the routine and initialize it to 3.1.

The COMPASS assembler also provides a facility for automatically

generating constants, called the literal. For example, if we
include in our routine

SA3 =0.5
COMPASS will automatically generate a
DATA 0.5

at the end of the routine, and put the address of the DATA
instruction in the K portion of the SA3 instruction. The
assembler checks for duplicate literals; even 1f =0.5 is used in
several instructions, only one DATA 0,5 will be generated.

Using literals, we can shave a few lines off our SQRT routine
without changing the generated code one whit: (see next page.)

Before performing our own exit from this discussion of arith
errors, it is worth mentioning that the approach taken on the
6600 to check for division by zero, exceeding the range of
exponents, etce., is not the method used on most computers.
Computer designers have generally favored terminating the program
when an arithmetic fault (such as division by zero or exceeding
the range of exponents) occurs, rather than waiting until the
result of such an operation is used later as an operand. The
6600 scheme has a definite disadvantage in comparison: when an
arith error occurs in a large program, it may be difficult to
find the instruction which generated the infinite or indefinite.
This has been rectified on the 7600, which provides for optional
program termination when an infinite or indefinite is generated.

91

CENTRAL

PROCESSOR

INSTRUCTION SET

SQRT

LUP

ILL

IDENT
ENTRY
BSS
SAl
NG

OR

ID
BX6
7R
SA3
RX3
RX4
NX4
RXS5
NX5
SA3
RXO
RXO
NXO0
RX6
RXO
RX2
NG
RX2
NG

EQ
SAIL
BX6
EQ
END

92

SQRT
SQRT

1

X1
X1,I.LL
X1, I.L
X1,I.L
X1
X1,S8QRT
=]1,F~-12
X1*%X3
X1+X3
X4
X1-X3
X5
=0.5
X1/X6
X04X6
X0
X0*X3
X6*XH
X0-X5
X2,LUP
X4-X0
X2,LUP
SQRT

X1=X
SENSE ARGUMENT NEGATIVE,
INFINITE
OR INDEFINITE
X6=FIRST GUESS = X
IF X=0,RETURN O

X3=X*10**%(-012)
X4=UPPER LIMIT=X+X*10%%*(~12)

X5=LOWER LIMIT=X-X*10%#*(-12)

X0=X/LAST GUESS

X0=X/LAST GUESS+LAST GUESS
X6=NEW GUESS=0.5%X0

X0=(NEW GUESS)#*%*2

X2=(NEW GUESS)**2-LOWER LIMIT
IF VALUE TOO LOW, LOOP
X2=UPPER LIMIT-(NEW GUESS)#*#2
IF VALUE TOO HIGH, LOOP

ELSE DONE -~ EXIT

=1777000000000000000008B

X1
SQRT

IF ARGUMENT INVALID,
RETURN INDEFINITE RESULT

CENTRAL PROCESSOR INSTRUCTION SET

3.14 CHARACTER MANIPULATION

It is the task of every good computer manual to constantly
reassure the student, in an effort to keep him from the
realization that, by the time he has finished the twelfth volume
and is an expert machine programmer, the machine is obsolete and
he will have to start all over again with a new model. In
accordance with this policy, I can reassure you that this section
is not concerned with brain-washing.

A large portion of the data processed by the computer is text—--
strings of characters, rather than numeric data items. Source
programs are text; in fact, anything coming in on Hollerith
punched cards or going out onto the printer is at some point
processed as text. Numeric data read in from cards must first be
converted from a sequence of digits and decimal points to numbers
in binary representation; in FORTRAN programs this is done
automatically by the format—directed input processing routine
(KRAKER).

Different computer applications require different sets of
characters. The FORTRAN character set for the 6600 has 47
characters: 26 letters, 10 digits, and the '"special characters"
+ - * / ()Y ¢& =, , and the blank. A set of six bits
is required to represent these 47 characters; thus a 6600 word
can hold 10 characters

For some applications a set with more than 47 characters is
desirable. With six bits for each character, we can have up to
64 characters. The SCOPE system accepts cards punched in a 64
character set (adding the characters: = [] : ¢ - < > (£
> AV Y| % = gto those required for FORTRAN). These added
characters are used, for example, for some of the special
features of COMPASS. Some computer systems, such as the IBM
System/360, allocate 8 bits for a character, thus permitting a
very large character set, including upper and lower case letters.

The code used on the 6600 for associating a six-bit number with a
character is called display code, because the computer display
console, when it is being fed data by a PP, can display
characters in accordance with this code. The letters are
represented by the first 26 numbers, 0l (base 8) to 32 (base 8);
the digits by the next 10, 33 (base 8) to 44 (base 8); the blank
and special characters are matched up with 45 (base 8) to

93

CENTRAL PROCESSOR INSTRUCTION SET

77 (base 8) and 00 (the code 1is tabulated on the page following).
The end of a card or a line is indicated by zeroes in bits O
through 11 of a word. For example, the card

7
PROGRAM HOHUM(INPUT, OUTPUT)

would be stored in memory as

55 55 55 55 55 55 20 22 17 07 PROG
11 01 15 55 10 17 10 25 15 55 RAM HOHUM
51 1L 16 20 25 24 56 17 25 24 (INPUT,OUT
20 25 24 52 55 55 55 55 00 00 PUT)

in four CM words.

Techniques for character manipulation are generally applicable to
the wider class of problems involving the separate handling of
portions of a computer word. The fundamental capability required
in all these problems which we have not yet considered is that of
shifting around the bits in a word. Two different kinds of
shifts are available on the 6600: a left circular shift and an
arithmetic right shift.

A left circular shift one bit takes the contents of each bit
position and moves it to the next position on the left; the bit
at the left end goes 1into the rightmost bit position. For
example,

100110100000
shifted left circular one bit becomes
001101000001

A left shift n bits is sim2ly the repetition of this process n
times; for example, our original 12 bit number, shifted left
circular fcur becomes

101000001001
shifted left twelve,
100110100000
we get back the same number (each bit has gone once all the way

around)s The 6600 instruction to shift an X register left
circular is (the text continues following the table below)

94

CENTRAL PROCESSOR INSTRUCTION SET

TABLE OF DISPLAY CODES

CHARACTER CODE CHARACTER CODE
: 00 *x*
A 01 0 33
B 02 1 34
C 03 2 35
D 04 3 36
E 05 4 37
F 06. 5 40
G 07 6 41
H 10 7 42
I 11 8 43
J 12 9 44
K 13
L 14 + 45
M 15 - 46
N 16 * 47
0] 17 / 50
P 20 (51
Q 21) 52
R 22 $ 53
S 23 = 54
T 24 (blank) 55
U 25 , 56
Y 26 . 57
W 27 = 60
X 30 [61
Y 31] 62
Z 32 % 63
¥ 64
—- 65
\% 66
A 67
t 70
\ 71
< 72
> 73
< 74
2 75
- 76
H 77%

*Do not use the semicolon in COMPASS instructions

**Some installations may use a 63-character set, in which display
code 63 is "', and "00" is only used to indicate end-of-file.

95

CENTRAL PROCESSOR INSTRUCTION SET

LXi jk Left shift Xi, jk places

2 0 L i ik (15 bits)

The address field is a single number, the shift count, from 0O to
63 (shifting 61 places has the same effect as shifting left one
place).

An arithmetic right shift one bit moves the contents of each bit
position one place to the right. The rightmost bit, however,
just "falls off" and is discarded; instead, the high order bit
keeps its old value. In effect, as the number is shifted to the
right, the bits vacated on the left end are filled up with the
sign bit; thus, this process is called sign extension. Starting
with the same 12 bit number, a right shift two yields

111001101000
and a right shift twelve leaves the sign bit in every position:
111111111111

The 6600 instruction for arithmetic right shifting an X register
is

AXi ik Arithmetic right shift Xi, jk places
? 2 1 i jk 1 (15 bits)
14 8 5 0

Again, the shift count (bits 0 to 5) can be 0 to 63, a count of
60 or more leaving 60 copies of the original sign bit in Xi.

Observe that right shifting an integer one bit divides the
integer by two. Similarly, a left circular shift one place
multiplies the integer by two (unless the range of possible
integers is exceeded); left shifting a negative number brings a
one into the low order bit, just as the end around carry would if
the number were added to itself. For example,

111001111010 = -605 (base 8) = --389 (base 10)

doubled:

96

CENTRAL PROCESSOR INSTRUCTION SET

110011110101

-1412 (base 8) = -778 (base 10)
halved:

111100111101

-302 (base 8) = ~194 (base 10)

A devious absolute value function will illustrate use of the
right shift., Basically, all that is necessary for an absolute
value is to complement the number if it is negative. In
straightforward code, to put the absolute value of X1 in X6

BX6 X1
PL X6, NEXT
BX6 -X6

NEXT (next instruction)

Now consider

BX2 X1
AX2 60
BX6 X1-X2

After the AX2 60, X2 contains in each bit the sign bit of the
number; in other words, all zeros if X1 was positive, all ones if
X1 was negative. So, if X1 was positive, the last instruction
logically subtracts all zeros from the number, which leaves it
unaltered, while, 1f it was negative, a logical difference of Xl
with all ones is performed, which complements the number. Though
both sequences require three instructions, the right shift takes
nuch less time than the branch instruction, so the latter code is
preferred.

An an example of the use of the left shift, consider the task of
taking ten characters, stored in the low six bits of ten
consecutive computer words (upper 54 bits zero), and packing them
into one word. This may be accomplished by putting the first
character into the low bits of a register, shifting it left six
bits, entering the next character into the low six bits, shifting
both left six, etc. until all ten characters have been packed.
In machine code this 1s realized as

SB1 BO CHARACTER COUNT=0
SB2 10 NUMBER OF CHARACTERS TO PACK
SX6 BO
LUP SAl B1+CHAR LOAD NEXT CHARACTER
LX6 6 SHIFT PREVIOUSLY LOADED CHARS
BX6 X6+X1 OR IN NEXT CHARACTER
SB1 Bl+1 INCREMENT CHARACTER COUNT
LT B1,B2,LUP IF MORE TO PACK, LOOP

97

CENTRAL PROCESSOR INSTRUCTION SET

Then ten characters are expected to be in the array CHAR, and the
packed result will be left ia X6. If, say, the characters were A
BCDEFGBIJ, X6 will be, after successive iterations of the
loop:

460000000000000000001,
00000000000000000102,
00000000000000010203, + « . and finally
010203040506071011 2.

We can now reverse the process, and write a similar loop to
unpack the characters. For the sake of variety, let us unpack
them into the high order six bits of ten consecutive words. Each
time through the loop, then, we want to "mask out'" and store the
leftmost character, and then shift the word left six bits, so the
proper character is in posifion the next time around. Masking
out the leftmost character involves taking the logical product of
the packed word with an appropriate mask, Iin this case
7700000000000C000000 (base 8). The high six bits of the product
will be those bits from the packed word, since anding a bit with
a one leaves the bit unchanged, while the low 54 bits will be
zero, as the logical product of anything with zero is zero. So
our last problem is to get 77000000000000000000 (base 8) into a
register. We could, of course, load it from menory. The 6600
designers, however, have provided us with an instruction for just
such occasions:

MXi ik Form mask in Xi, jk bits

4 3 i ik (15 bits)

14 8 5 0

which sets the high order jx bits of Xi to one, and the rest to
zero (if jk=0, the register is set to zero). 1In our example,
we’ll use a MX5 6 to generate our mask:

£B1 BO CHARACTER COUNT=0
SBZ 10 NUMBER OF CHARACTERS TO UNPACK
MX5 6 FORM ONE-CHARACTER MASK
LUP EX6 X1*X5 MASK OUT ONE CHARACTER
SA6 B1+CHAR STORE IN MEMORY ARRAY
IX1 6 SHIFT NEXT 6 CHAR.TO HIGH BITS
£B1 Bl+1 INCREMENT CHARACTER COUNT
IT B1,B2,LUP IF MORE TO UNPACK, LOOP

98

CENTRAL PROCESSOR INSTRUCTION SET

where the packed word is assumed to be in X1 at the start. If we
had needed a low six bit mask, we could have simply used SX5 77B
(a 30 bit instruction) or, more efficiently, set X5 to
77777777777777777700(base 8) with an MX5 54 (a 15 bit
instruction), and then used a BX6 -X5*%X1 instead of BX6 X1*X5,

As a final complication, we shall modify our character packing
routine to stop packing if it encounters a special character or a
blank -- in other words, anything with a display code of 45 (base
8) or above (for simplicity, we will not stop packing at a colon,
display code 00), At the same time, we shall insist that the
characters be left justified; i.e., that the first character be
in the leftmost six bits. Thus, whenever we are finished packing
characters, we will have to figure out how many characters have
been packed, and shift the word accordingly. The two shift
instructions we have studied so far, however do not permit us in
any simple way to use the contents of a register as the shift
count. We shall rectify this presently by introducing the last
two shifts, which take their shift counts from B registers:

LXi Bj, Xk Left shift Xk nominally Bj places to Xi

[2 2 i 3 k (15 bits)

AXi Bj, Xk Arithmetic right shift Xk nominally Bj
places to Xi

’ I
{ 2 3 L i g j k (15 bits)

If Bj is positive, these instructions act just like the
corresponding shifts described earlier, with the low six bits of
Bj taken as the shift count. (In the realm of 6600 trivia we may
note that if any of bits 6 through 10 of Bj are non-zero, the
noninal right shift will, instead of performing the shift, set Xk
to zero.,) If Bj is negative, each instruction acts as the other
would with the complement of Bj. That is, a nominal left shift
with =5 in the B register causes an arithmetic right shift 5,
while a nominal right shift with -5 produces a circular left
shift 5 places. Hence the term '"nominal': opcode 22 is not
intrinsically any more a left shift than a right shift but, in
order to distinguish the two shifts, we designate each by their
effect with a positive B register.

99

CENTRAL PROCESSOR INSTRUCTION SET

To stop the packing process when a blank or special character is
encountered requires two additional instructions:

SBI1 BO CHARACTER COUNT
SB2 10 NUMBER OF CHARS TO PACK
SX6 BO

LUP SAl B1+CHAR LOAD NEXT CHARACTER
$X2 X1-453
PL X2, DONE IF BLANK OR SPECIAL, DONE
LX6 6
BX6 X6+X1 ELSE PACK CHAR INTO WORD
SB1 Bl+1 INCREMENT CHAR COUNT
LT Bl,BE2,LUP TIF MORE TO PACK, LOOP

DONE

At DONE will go an instruction to shift X6 into position; if we
are keeping the appropriate count in B3, we can use an LX6 B3,X6.
B3, then, will have to be a count of the number of unfilled bits,
starting at 60 and decreasing by 6 each time through the loop:

$BI BO CHARACTER COUNT=0

382 10 NUMBER OF CHARS TO PACK

3B3 60 INITIALIZE SHIFT COUNT
LUP SAl B1+CHAR LOAD NEXT CHARACTER

SX2 X1-458

PLL X2 ,DONE IF BLANK OR SPECIAL, DONE

1LX6 6

BX6 X6+X1 ELSE PACK CHARACTER INTO WORD

581 B1+1 INCREMENT CHARACTER COUNT

383 B3-6 DECREMENT SHIFT COUNT

LT B1,RB2,LUP IF MORE TO PACK, LOOP
DONE LX6 B3, X6 LEFT JUSTIFY PACKED WORD

The left shift is unnecessary in the event that ten characters
are packed and we "fall through" the loop, but putting the left
shift at the end of the loop makes the code simpler (if ten
characters were packed, B3=0, so an LX6 0 is effectively
performed).

Lest we omit discussing any of the instructions, let me make
mention here of the "count ones" instruction. This rarely used
instruction counts the number of one bits in an X register and

places the number, between O and 60, in another X register:

100

CENTRAL PROCESSOR INSTRUCTION SET

CXi Xk Count of number of "1’s" in Xk

to Xi
(4 7 i /77777 k (15 bits)
14 8 5 2 0

This instruction is of use when binary data, such as yes=-no
responses from questionaires, are stored one datum per bit rather
than one datum per word (as they would be in a FORTRAN type
LOGICAL array) so that sixty times as much informatioon can be
stored in a given block of memory. A count ones instruction may
then be used to determine the total number of yes responses (1
bits) in a word.

3.15 INTEGER MULTIPLICATION AND DIVISION

As we mentioned earlier, the original 6000 and 7000 series
machines had no single instructions for integer multiplication
and division. These operations were performed by converting the
operands to floating point, executing a floating multiply or
divide, respectively, and then converting the result back to an
integer. Control Data subsequently realized that by making a
fairly simple change in the floating nultiply instruction it
would be possible to perform integer multiplies without the
conversions. This modified instruction is included in all recent
6000 and Cyber series, and has been installed as a "field change"
in most earlier machines.

To begin this section, however, we will consider the situation
before the field change, when integer multiplicatipon as well as
division had to be done by conversion to and from floating point.
Because of the frequency of these operations, two instructions
have been included for conversion between integer and floating
point.

Consider converting an integer to floating point: all that is
necessary is to put a biased exponent of zero in the high twelve
bits;

101

CENTRAL PROCESSOR INSTRUCTION SET

for example: 0000 0000 0123 0004 7621
in floating point is: 2000 0000 0123 0004 7621
while its complement: 7777 7777 7654 7773 0156
is in floating point: 5777 7777 7654 7773 0156

This operation can be performed in one instruction with the pack
instruction:

PXi Bi, ¥k Pack Xi from Xk and Bj

2 A k (15 bits)

i
i
'
o L .

L4 8 5 2

This instruction takes the coefficient from Xk and the true
exponent of the number from Bj and "packs'" them together into a
floating point number in Xi. In the usual case where a true
exponent of zero is desired, one need merely specify BO: PXi Xk.
The instructicn may be diagrammed:

Bj p//////?true(signid)exponent

L7 10 0

* sign
e
i

X (11111111111 coefficient

59 47 0

+ sign + biased exponent

1

Xi ‘

coefficient J

58 47 0

For example, if

B: = 000010 and Xk = 0000 0000 4215 7123 6661

102

CENTRAL PROCESSOR INSTRUCTION SET

then Xi = 2010 0000 4214 7023 6661
If Bj = 777766 and Xk = 0635 0210 0011 0000 0003
then Xi = 1766 0210 0011 0000 0003

Note, that in the last example that only the low 48 bits of Xk
are used for the coefficient, so packing a number greater than
2%%48 - 1 will give an incorrect floating point conversion.

If the resulting floating point number will be used in normal
floating point calculations, it should be normalized before being
used or stored. If, however, it is to be used in one of the
special integer arithmetic sequences to be described below, it
may be unnecessary or incorrect to normalize it.

Floating to integer conversion is slightly more involved. The

first step is performed by an unpack instruction, which does
precisely the reverse of the pack instruction:

UXi Bj,Xk Unpack Xk to Xi and Bj

2 6 i j k (15 bits)

14 8 5 2 0

This instruction unbiases the exponent from the floating point
number in Xk and puts it in Bj, while sending the 48 bit
4oefficient to Xi:

+ sign + biased exponent

Xk coefficient

59 47 0

+ exponent sign extended

-
Bj (unbiased exponent)
J

17 9 0

103

CENTRAL PROCESSOR INSTRUCTION SET

; coefficient sign extended

Xi coefficient

59 47

For example, 1,5 =
Xk = 1720 6000 0000 0000 0000
is unpacked to
Bj = 777720 X1 = 0000 6000 0000 0000 0000
while an unrormalized 24, =
Xk = zZ0C3 0000 0000 0000 0003
is unpacked into
Bj = 00C003 Xi = 0000 0000 0000 0000 0003.

The second step is to convert this integer with exponent to a
simple integer; for example,. in the latter case we would want to
multiply Xi=3 by 2**3 to get 24 as an integer. Now what is the
fastest way to multiply an integer by 2%*%n? Shift it left n
places. Thus we would want & sequence such as

Ux1 B7,X1
LX] B7,X1

to convert X1 from floating to integer. In the second example,
X1 would be shifted left 3, leaving X1=30(base8)=24, In the first
case, the shift count B7=-57(base 8), so the nominal left shift
performs a right shift 57(base 8), yielding X1l=1, the proper
result of a floating to integer conversion of 1l.5. If the
floating point number is tovo large to be stored as an integer
(magnitude>2#%59 — 1) the left shift will rotate the coefficient
around, causing totally erroneous results; since only the low six
bits are used as a shift count, for example, an exponent of
101(base 8) is treated as an exponent of l. On the other hand,
if the floating point number is less than 1, the result of the
integer conversion will always be zero. In particular, if the
magnitude of a negative exponent (shift count) is more than
77(base 8), the result register will automatically be set to zero
by the shift instruction (remember that bit of trivia concerning
the nominal shift instruction?).

104

CENTRAL PROCESSOR INSTRUCTION SET

Now that we are thoroughly versed in integer-floating conversion,
integer multiplication and division should be simple matters.
Suppose we want to put into X6 the product of the integers in Xl
and X2. We first convert the numbers to floating point:

PX3 X1
PX4 X2

Second, we multiply X3 and X4 together; to see which multiply
instruction we require, consider the product of two sample
nunbers:

if X1 = 12(base 10) and X2 = 20(base 10), then
X3 = 2000 0000 0000 0000 0014 (=0000 0000 0000 0014 * 2%%Q)
X4 = 2000 0000 0000 0000 0024 (=0000 0000 0000 0024 * 2%%Q)

so the product is

0000 0000 0000 0014 * 2%*Q
0000 0000 0000 0024 * 2%*Q

0000 0000 0000 0000 0000 0000 0000 0360 * 2*%Q
|{~floating product->|<{-=-— DP product—-—>|
So clearly we want the DP product
DX6 X3*X4

Finally, we have to convert the result back to integer; note,
however, that the DP product of two numbers with true exponents
of zero also has a true exponent of zero, so all we need is

UXé X6

"discarding" the exponent into BO. Thus, the sequence for an
integer multiply is: pack both operands, DP multiply, unpack
result.

Note that we do not normalize the operands before multiplying,
and that the sequence of instructions described above would in
fact not work if either of the operands were normalized prior to
the multiplication. Also, the DP multiply will only recover the
low 48 bits of the product; a more complicated sequence would be
needed to recover the entire 96 bits. To save execution time,
the FORTRAN compilers generate code to compute only the low 48

105

CENTRAL PROCESSOR INSTRUCTION SET

bits of an integer product, rather than compile the extra
instructions necessary to get a 60 bit product (one clearly
cannot store more than 60 bits into an integer variable).

If we now wished the integer quotient of X1 divided by X2 in X6,
we would begin as before, packing the operands:

X3 X1
PX4 X2

Before doing the division, however, we have to normalize the
divisor, since, as was mentioned earlier, the divide instruction
may otherwise produce an incorrect quotient:

NX4 X4

As division only generates a 48 bit quotient, there is no problem
deciding which divide instruction to use; since we want the
quotient to be truncated (rather than possibly rounded) we use a
floating divide:

FX6 X3/X4
Lastly, we convert the result back to integer; inasmuch as we
can’t predict the exponent of the result, we have to unpack and

shift the result:

Uxa B7,X6
1LX6 B7,%X6

To summarize the situation before the field change:

integer X1*X2 integer X1/X2

product to X6 quotient to X6
PX3 X1 PX3 X1
PX4 X2 PX4 X2
DX6 X3%X4 NX4&4 X4

UX6 X6 FX6 X3/X4

Ux6 B7,X6

LX6 B7,X5

The change incorporated into recently manufactured machines, and
made in the field to most earlier machines, modifies the
operation of the double precision multiply instruction, DXi
Xj*Xk. If an integer smaller than 2**48 is used as an operand to

CENTRAL PROCESSOR INSTRUCTION SET

a floating point instruction, it is treated as a floating point
number with a biased exponent of 0 and hence a true exponent of -
1777(base 8). Before the double precision multiply was changed,
if both operands of the instruction were integers less than
2%%48, the machine would compute a true exponent of -3776(base 8)
for the product. Since a floating point number that small cannot
be represented in 6600 floating point format, the instruction
would return a zero result. The new, modified instruction checks
for the condition where the high order 12 bits of both operands
are all zeros or all ones (corresponding to a biased exponent of
zero in a positive or negative number). In this case, the
instruction returns the low 48 bits of the product of the
coefficients in the low 48 bits of the result register, with the
sign of the result extended into the high 12 bits., In short, if
both operands and result are less than 2*%48, the double
precision multiply can be used as an integer multiply
instruction, without packing and unpacking. Integer divides must
still be performed by the six-instruction sequence given above.

To commemorate this change, a new instruction mnemonic has been
added to COMPASS in version 3:

IXi X j*Xk

This line is assembled into the 15 bit instruction 42i jk,
precisely like Dxi Xj*Xk.

Before using opcode 42 for doing integer multiplies, of course,
you should check that your machine does have the integer multiply
feature installed. In the example of integer multiply given
below, we shall use the 4-instruction sequence for the multiply
which, while less efficient, will work on all machines.,

To illustrate the use of these integer operations we shall code a
routine which converts an integer to the series of display code
characters which is the decimal representation of the number.
This is essentially the same task that is performed by the
FORMAT-directed output encoding routine (KODER) when it is
converting a number for output according to I format. The
routine will be called with two arguments: the number to be
converted, and the array into which the digits should be stored.
We will agree only to process numbers whose magnitude is less
than 2*%*%48; any larger integer will be considered out of range,
designated by the letter R in the character string generated by
the routine. The algorithm we shall use is similar to those
described earlier, in the "Base Conversion Algorithms'": divide
the absolute value of the number repeatedly by 10 until the
quotient is zero; the remainders from the successive divisions

107

CENTRAL PROCESSOR INSTRUCTION SET

will be the decimal digits, the least signigicant digit coming
out first, If the number was negative, a minus sign must be
tacked on in front. We will assume that the character array,
transmitted as a parameter to our routine, will be 20 words long;
storing the digits one to a word, right justified, we can than be
sure we will never run out of space (2%%48 is a 15 digit
decimal)., However, we will not assume the array was blank to
start, and so the routine’s last job will be to £ill out the
unused portion of the array with blanks. The routine will have
to

(1) conpute the absolute value of the number

(2) check whether the number is in range

(3) generate the decimal digits by repeated division by 10
(4) add on a minus sign if the number was negative

(5) fill out the character array with blanks

LLet us attack these tasks in order. In the previous section we
saw an efficient technique for obtaining the absolute value of a
nunber:

SA2 Al+1 X2=ADDRESS TO STORE RESULT
SB2 X2 B2=ADDRESS TO STORE RESULT
SAL X1 X1=NUMBER TO BE CONVERTED
BX?2 X1

AX2 60

BX2 X1-X2 X2=ABSOLUTE VALUE (NUMBER)

The number will be out of range if any of the high twelve bits in
the absolute value of the aumber are non-zero. This can be
checked for by shifting the number right 48 bits (so only the top
twelve are left) and then testing for zero:

X3 X2
AX3 48
NZ X3,RANGE SENSE OUT OF RANGE

Before diving into the loop, we should initialize a few
registers. A pointer is needed to inform the routine where to
store the next digit; since the first digit will be stored in the
last array element, at B2+19, we preset a counter to 19;

SB3 19

108

§ o

o

CENTRAL PROCESSOR INSTRUCTION SET

We shall compute remainders as is done in FORTRAN with the
expression remainder = NUMBER —iNUMBER/lQ*lOﬁ Since the number
10 is used twice in the loop (onide to divide;” once to multiply),
we certainly will want to put it in a register outside the loop.
Also, we need two forms of the number 10: an unnormalized
floating point form for the multiply, and a normalized form for
the divide. We shall keep one in X4, and the other in X5:

SX4 10
PX4 X4 X4=UNNORMALIZED FL PT 10
NX5 X4 X5=NORMALIZED FL PT 10

The loop begins by computing NUMBERENUMBER/10*10:

-

Fle

NEXT PX3 X2 e
FX3 X3/X5
UX3 B7,X3
LX3 B7,X3 X3=NUMBER/ 10
PX0 X3
DX0 X0*X4
UX0 X0 X0=NUMBER/10%10
IX6 X2-X0 X6=NUMBER-NUMBER/10%*10

Observe that we have been careful to preserve X3, since it will
be the new value of "NUMBER" the next time through the loop. The
decimal digit, now in X6, is converted to display code by adding
33(base 8), and is stored in the character string:

SX6 X6+33B CONVERT DIGIT TO DISPLAY CODE
SA6 B2+B3 STORE CHARACTER
SB3 B3-1 RESET CHARACTER POINTER

Each time a character is stored, the pointer is decremented by
one, since the next digit goes into the previous array element.
Finally, NUMBER/10 is put into X2 for the next loop iteration,
and, 1f the quotient 1is not zero, the loop is repeated.

BX2 X3 X2=NEW NUMBER=OLD NUMBER/10
NZ X2 ,NEXT IF .NE.O, CONTINUE LOOPING

Next, we store a minus sign (display code 46 (base 8))in front of
the number if it was negative:

PL X1,FILL
SX6 46B IF NUMBER NEGATIVE
STOR SA6 B2+B3 STORE MINUS SIGN
SB3 B3-1
FILL ...

109

CENTRAL PROCESSOR INSTRUCTION SET

The label next to the storz2 instruction anticipates a need we
will see in a moment.

The final loop continues storing blanks (display code 55(base 8))
until B3 goes negative, i.2., the beginning of the array has been
passed:

FILL S5X6 558

DUN NG B3,CDC IF ARRAY FULL, EXIT
SA6 B2+B3 IF NOT, STORE A BLANK,
583 B3-1] MOVE CHARACTER POINTER
EQ DUN AND LOOP

Finally, for the out-of-range case, we want to store an R (display
code 22(base 8), and then fill the array with blanks:

RANGE SX6 22B IF OUT OF RANGE,
SA6 B2+B3 STORE AN R
SB3 B3-]
EQ FILL

If you are reasonably observant, you have noticed that we can
save two instructions:

RANGE SX6 22B IF OUT OF RANGE,
EQ STOFK STORE AN R

However, unless you are unusually perspicacious (more so than I
was the first time I ran the program) you have not noticed that
the SB3 19 came after the NZ X3,RANGE, so that, if the number was
out of range and B3 was, say, 10 000, the routine could
innocently wipe out your entire program. To rectify this error
the SB3 19 has to be moved up a few instructions.

To add a crowning touch to this example, let us now dub it
subroutine CDC (for convert to display code, of course), and
show how such a routine might be usefully applied.

CENTRAL

PROCESSOR INSTRUCTION SET

CDhC

NEXT

STOR

FILL
DUN

RANGE

IDENT
ENTRY
BSS
SAl
BX2
AX2
BX2
SB3
BX3
AX3
NZ
SX4
PX4
NX5
PX3
FX3
UX3
LX3
PXO0
DXO0
UX0
IX6
S5X6
SA6
SB3
BX2
NZ
PL
SX6
SA6
SB3
SX6
NG
SA6
SB3
EQ
SX6
EQ
END

100

cDC
cDC

1

Bl

X1

60
X1~X2
19

X2

48

X3, RANGE
10

X4

X4

X2
X3/X5
B7,X3
B7,X3
X3
X0*X4
X0
X2-X0
X6+33B
B2+B3
B3-1

X3

X2, NEXT
X1,FILL
46B
B2+B3
B3-1
55B

B3, CDC
B2+B3
B3-1
DUN

22B
STOR

X1=NUMBER

X2=ABSOLUTE VALUE(NUMBER)

SENSE OUT OF RANGE

X4=UNNORMALIZED FL PT 10
X5=NORMALIZED FL PT 10

X3=NUMBER/10

X0=NUMBER/10%10
X6=NUMBER~NUMBER/10%*10
CONVERT DIGIT TO DISPLAY CODE
STORE CHARACTER

RESET CHRACTER POINTER

X2=NEW NUMBER=0OLD NUMBER/10
IF .NE.O CONTINUE LOOPING

IF NUNMBER NEGATIVE
STORE MINUS SIGN

IF ARRAY FULL, EXIT
IF NOT, STORE A BLANK
MOVE CHRACTER POINTER
AND LOOP
IF OUT OF RANGE,
GO STORE AN R

PROGRAM TRUTH(OUTPUT)
DIMENSION CHAR(20)
CALL CDC (14710B,CHAR)

PRINT 100,CHAR

FORMAT(18HI1EVERYBODY LOVES A, 20R1)

CALL EXIT
END

CENTRAL PROCESSOR INSTRUCTION SET

which prints the line:

EVERYBODY LOVES A 6600

3.16 COMPARE AND MOVE

Operations on packed character strings are relatively cumbersome
on the 6600. Ten instructions are required to extract the 7th
through l4th characters of a 20-character (2-word) string and
store then in some other word. Comparing two 20-character
strings to determine which comes first in alphabetical order is a
formidable task, for reasons to be explained later; perhaps 50 or
60 instructions are required on a 6600. These operations are so
complex because the 6600 has no instructions for operating on
units of data smaller than a 60-bit word. In contrast, most
other large modern computers provide instructions for
manipulating individual characters within a word. As long as the
6600 was intended primarily for running FORTRAN programs, this
was not a major drawback; character manipulation generally plays
a minor role in scientific calculation. When Control Data set
its sights on capturing part of the large business market,
however, the relatively slow character manipulation was a
disadvantage, since commercial applications involve primarily the
processing of large files of data, mostly in packed character
format.

As a result, when Control Data decided to reincarnate the 6000
series under the name Cyber 70, they included in some of the
models four new instructions for character manipulation. These
four instructions are performed by a box added onto the old 6000
series central processors and dubbed the Compare and Move Unit,
or CMU. The CMU is standard equipment on the Cyber 70 model 72
and 73 and the Cyber 170 models 172, 173, 174, 720, and 730; it
is optiomally available on the Cyber 170 model 171.

The four new instructions are radically different from the
original 71 on the 6000 series: Three of the four instructions
are 60 bits long. All work directly on operands in memory--data
does not first have to be _oaded into X registers. And all can
directly address any character (6-bit field) in memory. Four new
opcodes were created by dividing opcode 46 into 8 opcodes
460,461,.0.,467; 460 stays a no-op, 464 through 467 are used by

112

CENTRAL PROCESSOR INSTRUCTION SET

the CMU and 461 through 463 are left for the new instructions in
the Cyber80.

The CMU treats memory not as a sequence of 60-bit words, but
rather as a sequence of 6-bit fields or characters. Each
character is designated by the address of the word in which it
occurs, and its character position in that word, nunbered O to 9
from left to right:

01 2 3 4 5 6 7 8 9 0 1 2 ...

word 100 — {-- 6 bits word 101

Character 9 of word 100 is thus followed by character 0 of word
101l. A character string (which can be the operand or result of a
CMU instruction) is specified by its starting character and a
character count. For example, if we wanted to specify the 8th
and 9th characters of word 100 and the Oth character of word 101,
we would include in the CMU instruction the address 100, the
character position, and the character count 3. Note that a
character string may cross a word boundary with impunity.

The CMU instructions either move the contents of one character
string into another character string or compare two character
strings. In either case the instruction must specify the
starting character of the two operands (or operand and result)
and the length of the strings compared or moved. Specifying a
character requires 22 bits (18 bit address + 4 bit character
position); 2 #22 bits + 9 bit opcode = 53 bits., In a full-word
instruction, this leaves 7 bits for a length field, so a string
of up to 2%*7 - 1 = 127 characters can be moved or compared.

The first of the quartet we shall present is the direct move,
opcode 465. It is a 60-bit instruction, and like the other full
word instructions to be presented later, cannot be split between
words.

DM L, k(s), c(s), k(d), c(d) Move L characters, starting at
(k(s),c(s)) to (k(d),c(d))

4 6 5L, k(s) L3“Oc(s)c(d)i k(d) }

59 50 47 29 25 21 17 0

CENTRAL PROCESSOR INSTRUCTION SET

This instruction moves the L characters starting with character
position c(s) of word k(s) to the L characters starting with
character position k(d) of word c(d) (s and d stand for source
and destination respectively). The source and destination fields
should not overlap. The 7-bit length is divided between a 3-bit
field, L(6-4), which containsg bits 6,5 and 4 of the length, and a
4 bit field, L(3-0), which contains bits 3,2,1, and 0 of the
length. This curious arrangement of the instruction was dictated
by a desire to have the two address fields in bits 0-17 and 30-
47, just as they would be if the word contained two 30 bit
instructions.

This instruction can be used instead of a load-transmit-store
sequence to compile a simple assignment statement. For example,

B = A
would move 10 characers:
DM 10,4,0,B,0
One instruction would even be enough to copy a small array:

DO 11 =1,10
1 B(I) = A(I)

could be compiled as a 100-character move:

bM 100,A,0,B,0
The problem with which we tegan this section is equally simply
solved. If we want to extract the 7th through 14th characters
from a 20-character (2-word) array STRING and place them in the
variable NAME, left-justified, with the two rightmost characters
filled with blanks, we need only code

DM 8,5TRING, 6,NAME, 0

DM 2,BLANKS, 0, NAME, 8

where BLANKS is word filled with BLANKS:
BLANKS DATA 555555555555555555558
On occasion we may want to move a string of more than 127

characters. We could, of course, code several DM’s in a row, but
control Data has been thoughtful enough to provide a second move

114

CENTRAL PROCESSOR INSTRUCTION SET

instruction, which can handle up to 8191 characters at a time.
This is the indirect move:

IM Bj+K Move according to descriptor at address Bj+K (30 bits)

4 6 4|3 K

29 20 17 0

The word at address Bj+K should contain the length and the source
and destination addresses and character positions in a special
format called a move descriptor. COMPASS provides the pseudo-
instruction MD for setting up a word in the proper format:

MD L,k(s),c(s),k(d),c(d) Move descriptor for moving L characters
starting at (k(s),c(s))to (k(d),c(d))

E// Loy k(s) L ojc(s)e(d) k(d)

59 56 47 29 25 21 17 0

All the fields in the move descriptor have the same meaning as
those in the direct move instruction; all we have gained through
this indirect addressing is a larger length field. The DO loop
given above as an example of the direct move can also be
translated as an indirect move:

M DESCRIP
with the move descriptor

DESCRIP MD 100,A,0,B,0

The IM instructlion has the standard format of a 30-bit
instruction witb a Bj+K address field (it is the only CMU
instruction in a familiar format) and so the usual rules for such
address fields apply: in particular, if no B register 1is
mentioned, BO is implied. Note also that MD defines data, not an
instruction; it belongs with the other DATA instructions of a
routine.

The CMU is very efficient for moving large blocks of data. After
a couple of microseconds to start the ball rolling, the CMU can
nove one word every 300ns on the Cyber 70 series, one word every
500 ns on the 170 series, This is about ten times faster than

115

CENTRAL PROCESSOR INSTRUCTION SET

the most efficient loop using the other instructions on a Model
73.

One final note about the direct and indirect move: both use
register X0 for temporary storage during execution of the
instruction, and set X0 to +0 when the instruction is finished.
All other registers are left intact by these instructions.

The two remaining instructions of the CMU compare two character
strings; they return an indication of whether one string is less
than, equal to, or greater than a second string. The comparison
is done character by character, from left to right, until a
difference 1in the two strings is found or the end of the strings
is reached. In the comparison the characters are treated as 6-
bit positive integers. We will begin with the 467 instruction,
compare uncollated (just what uncollated means will be clear in a
moment when we describe the compare collated instruction). This
instruction is similar in format to the direct move:

CU L,k(a),c(a),k(b),c(b) Compare L characters starting at
k(a),c(a) with L characters starting
at k(b),c(b)

o
[@)]
~J

L, k(ade(b) k(b) |

v [T
|
|
?
|
1
1
1
I
I
¥
I
|
|
1
1

el
w
o
B~
~

29 25 21 17 0

Here k(a), =(a) and k(b), c(b) give the starting addresses and
character positions of the two string; L specifies the length of
the strings, up to 127 characters. The result of the comparison
is returned in X0 as follows:

string a = string b X0=0

first n characters of strings are equal,
(n+1)st character of a > (n+l)st character of b X0=L-n>0

first n characters of strings are equal,
(n+1)st character of a < (n+l)st character of b X0=n-1.<0

In effect, during the execution of the instruction, X0 contains
the number of characters which remain to be compared. If the
instruction terminates because X0 reaches 0 or string a > string
b, X0 1is left unchanged; if it terminates because string a <
string b, X0 is complemented.

116

CENTRAL PROCESSOR INSTRUCTION SET

To appreciate the value of the compare instruction, let us
consider how we might perform the same operation without the CMU
instructions. To simplify matters, we won’t be concerned with
pinpointing the first character that is different in the two
strings; we shall be satisfied if we can determine which string
is larger or whether they are equal. The task of comparing two
character string fields is then equivalent to treating the two
fields as unsigned binary integers and comparing their values.,
To make the problem even simpler, the two strings we will compare
are each 10 characters long and contained entirely in one word at
locations FRITZ and SCHLITZ.

How do we compare two quantities? By subtracting and testing the
difference for zero, plus, or minus. If we subtracted SCHLITZ
from FRITZ, however, the machine would treat the two as assigned
60-bit quantities, which is not what we want (even comparing two
signed 60 bit quantities is not so simple -- see exercise 22),
For the machine to treat a quantity as a positive number, it has
to be 59 bits or less, with the sign bit set to zero. As a
result, we are going to have to do our 60-bit comparison in two
parts; for example, first the high-order 59 bits, then the low
order bit. So we begin by masking out the high-order 59 bits,
shifting them right one bit, and subtracting them:

SAl FRITZ

SA2 SCHLITZ

MX5 59

BX3 X1#X5 MASK OUT HIGH-ORDER

BX4 X2%*X5 59 BITS OF OPERANDS
LX3 59 SHIFT RIGHT ONE, LEAVING
LX4 59 SIGN BIT = O

IX0 X3-X4 X0=DIFFERENCE OF HIGH 59
NZ X0, CDONE IF HIGH BITS DIFFER,

NEED NOT COMPARE LOW

If the high 59 bits are equal, we have to compare the low order
bits. Simply subtracting the full 60-bit words will give the
difference of the low order bits, since the other bits are equal;
there is no need to mask out the low order bits:

IXO X1-X2
CDONE cee

This sequence of instructions leaves X0 equal to zero if FRITZ >
SCHLITZ, and X0 < 0 if FRITZ < SCHLITZ. The same could be
accomplished by the single instruction

117

BITS

BIT

CENTRAL PROCESSOR INSTRUCTION SET

cr 10,FRITZ,0,SCHLITZ,0

Tf the character strings were longer than 10 characters or not
contained entirely in one word, the non-CMU code would be even
longer, but only one CU instruction would be required.

This exampie, however, does not fully indicate the power of the
CU instruction. We have nct yet made use of the ability of the
CU instruction to pinpoint the first character at which the two
strings differ. This feature makes it possible for a single CU
instruction to replace certain searching loops in 6000-series
code. For example, if we wanted to find the first non-zero
element in a ten-~word array TABLE, we could set up a second ten-
word array, initialized to zZero by

ZERO BSS7Z 10
and then execute
Cu 100, TABLE,0,ZERO,O

This will ZIeave in X0 a number between 100 and O (since
characters are treated as rositive numbers, no character string
can he smaller than ZERO, so X0 will always be positive). By
computing (110-X0)/10, we obtain a number between 1 and 10
indicating the first non-zero entry, or 11 if all the elements of
TABLE are zero. Because the CMU can compare a pair of words
every 600 ns on the Cyber 70s, every 725 ns on the Cyber 170s
(after a few microseconds start-up time), this code will in
general be much faster than a search loop.

Of course, since the comparzison is done character by character,
the CU can scan individual characters as well as words. Suppose
we have read an 80-character string into array CARD, and want to
find the first non-blank character. If we set up another 8-word
array BLANKS, initialized to all blanks (55555555555555555555B),
all that is required is a compare.

CU 80,BLANKS,0,CARD, O

After this instruction is executed, the magnitude of X0= 80 - n,
where n is the number of lcading blanks (the sign of X0 depends
on whether the first non-blank has a display code below or above
55 (base 8)). Thus, 81-JABS (X0) will give the number of the
first non-blank character, and 81 if CARD is all blank.

One thing the CU instruction is not very good for is deciding
which of two strings comes first in alphabetical order. How’s

118

CENTRAL PROCESSOR INSTRUCTION SET

that? Didn’t we just see that the compare instruction compares
strings from left to right according to the display code values
of their characters? And doesn’t the display code sequence
correspond to alphabetical order? All quite right, but that
overlooks one minor detail--blanks. In display code, a blank has
a higher value than any letter, so

[S [A [M_[] = 23 0l 15 55
is longer than

[Laole] - 2 o105 o

which is contrary to the normal lexicographic convention —- SAM
comes first in the dictionary. In order to have the comparison
come out right, we would have to change all 55 characters
(blanks) to 00 before we made the comparison.

In a practical application, the problem is further conplicated by
the appearance of non-alphabetic characters in the strings to be
compared. If we are sorting addresses into alphabetical order,
we will have to handle digits, hyphens, commas, and periods.
Should digits rank higher or lower than letters in comparisons?
And how about punctuation? We could insist that the ordering
imposed by display code (first letters, then digits, then
punctuation) be used, but some customers may not like that and
not buy our computer. Businessmen often have definite ideas as
to how things should be sorted (perhaps because their old machine
did it that way), and, as long as they have a few megabucks to
put up for a new machine, who are we to argue? So, as input to
any sorting program we might write, we allow the customer to list
the order in which he wants the characters ranked for comparison
purposes. Such a list it called a character collating sequence.

Suppose one user wanted his characters ranked as follows (in
octal):

119

CENTRAL PROCESSOR INSTRUCTION SET

01 blank (display code 55)
02 « " " 57)
03 « " " 56)
04 - « " " 46)
05 0 (" " 33)
06 1 (" " 34)
]6 9 (" " 44)
17 A « " " 01)
20 B « " " 02)
50 Z « " " 32)

Before we could compare two character strings we would have to go
through both strings, character by character, changing a 535 to a
0l, a 57 to a 02, a 56 to a 03, etc., so that the comparison
would come out as desired. Even using a table to do the
conversion (with the 55th entry containing 01, the 57th, 02,
etc.) this would take a long time. After this was all done, the
compare instruction would take only a few microseconds, but this
seems slim consolation to the man who realizes that he could have
bought a yacht with what hne paid for the CMU.

To keep the customers happy, CDC has included a fourth
instruction in the CMU, compare collated. This instruction takes
as input, in addition to the two strings to be compared, a table
specifying the collating sequence. If a character in string A
has the value m, and the corresponding character in string B has
the value n, the compare collated will compare the values of the
mth and nth entries in the table (this has the same effect as
actually performing the substitution as described above). The
format and significance of the fields is exactly the same as for
the conmpare uncollated instruction:

cc L, k(a), c(a), k(b), c(b) Compare collated L characters
starting at k(a), c(a), with
charactersstarting atk(b),c(b)

4 6 5L k(a) Ly.gle(adle(b) k(b)

oty

59 51 47 29 25 21 17 0

CENTRAL PROCESSOR INSTRUCTION SET

The result 1is returned in X0, exactly as for the compare
uncollated instruction. The collating table has 64 entries, one
for each possible value of a single character; these entries are
packed 8 per word, forming an 8-word table. AO must be set to
the address of the first word of the table before executing the
instruction.

Each entry in the collating sequence table is 6 bits. The 8
entries in each word occupy the high order 48 bits; the low 12
bits of each word are ignored. The format of the table, with the
entries labeled in octal, is thus:

word 59 53 47 41 35 29 23 17 11 0

A0 00 01 02 03 04 05 06 07 /17111111117

AO+1 10 11 12 13 14 15 16 177777717777

AO+2 20 21 22 23 24 25 26 2701111111111

AO0+3 30 31 32 33 34 35 36 371111711117

AO+4 40 41 42 43 A 45 46 4711117111114

AO+5 50 51 52 53 54 55 56 5741111117717

AO+6 60 61 62 63 64 65 66 67 Y111111111171

AO+7 70 71 72 73 74 75 76 71117111717

Suppose we wanted to compare character strings using the
collating sequence given earlier. Since we must assign a ranking
to every possible character, we shall assign the remaining
special characters values above Z, from 51 (base 8) to 77 (base
8), (except for the 00 character ":", which will will be assigned
the lowest value, 00). The table required for the CC
instructions would be:

CCTABLE DATA 001720212223242500008B
DATA 262730313233343500008B
DATA 363740414243444500008B
DATA 464750050607101100008B
DATA 121314151651045200008
DATA 535455565701030200008B
DATA 60616263646566670000B
DATA 70717273747576770000B

121

CENTRAL PROCESSOR INSTRUCTION SET

All that is required to compare out friends SCHLITZ and FRITZ,
according to this collating sequence, is then

SAO CCTABLE
ccC 10,FRITZ,0,SCHLITZ,0

It is possible to assign the same rank to two or more characters.
Though this normally is not required in sorting applications,
this possibility greatly Iincreases the power of the compare
instructions for scanniung. Bear in mind in the following
discussion that, since it is the ranks of two characters which
are compared, two characters assigned to the same rank are
considered equal.

With the uncollated compare it was possible only to scan a string
for the first character which did not have some value "x", by
comparing it with a string of all x°s. With a collated compare,
we can divide the character set into two classes, which we will
call "interesting" and "ualnteresting" characters, and then
search a string for the first interesting character. We can do
this by assigning all interesting characters rank 1 and all
uninteresting characters rank 0 in our collating table, and then
comparing our string with one consisting entirely of
uninteresting characters.

For example, we might want to find the first arithmetlc operator
(+ ~ * or /) 1in the 80-character string card. To do this we
create a table with rank . assigned to these four characters
(45,46, 47, and 50) and rank 0 assigned to all the rest:

SCANTAB DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 00000000000101010000B
DATA 01000000000000000000B
DATA 0
DATA 0

We then compare CARD with a string of 80 blanks (any
uninteresting character will do):

122

CENTRAL PROCESSOR INSTRUCTION SET

SAO SCANTAB

cC 80,CARD, 0,BLANKS, O
5X6 81

IX6 X6-X0

This sequence leaves in X6 the index of the first operator in
CARD (81 if no operator was present).

123

COMPASS

CHAPTER 4

COMPASS

4.1 THE PSEUDO-INSTRUCTIONS

If we are to believe the reference manual, COMPASS stands for
COMPrehensive ASSembly system. The operation codes we have used
so far - the central processor instructions and a few of the most
basic pseudo-operations - reflect only a small fraction of the
capabllities of COMPASS. The eighty or so pseudo-instructions
included in COMPASS offer the programmer powerful means for the
control of code generation.

We shall not attempt to consider all these pseudo-instructions in
this chapter; to do so in any detail would probably require
several hundred pages and provide more information than most
users will ever require. We shall rather restrict ourselves to a
few of the most important COMPASS features ~- MACROs, MICROs, and
conditional assembly ~-- and then discuss primarily the principles
involved, and not the detailed rules and restrictions. Control
Data’s COMPASS Reference Manual is generally understandable, if
not totally lucid, and can provide the detailed information once
the principles have been understood.

4.2 THE MACRO

What has been presented so far in this book, and indeed what 1is
included in many books on programming, might leave the impression
that, once the algorithm for a program has been determined,
programming 1s essentially a task of translating this algorithm
into an appropriate computer language. This is simply
inaccurate. In an intelligently planned programming project,
most of the time is spent in program design, and in program
debugging and checkout; the actual coding represents only a small

125

COMPASS

fraction of the total effort. Needless to say, some projects,
eager to produce results, skimp on program design and rush
headlong into the coding phase; they soon pay 1n increased coding
and debugging time, to remove errors that might never have
arisen through proper design.

Good program design is in large part a task of identifying
functions that must be performed repeatedly during the program,
and of building larger functions out of more basic ones. Two
fundamental programming constructs have been developed to assist
the programmer once he has identified these functions: the
subroutine and the macro. The idea behind the subroutine is that
the code to implement the functions appears only once in the
program. Each time the function is invoked, control 1is
transferred to the subroutine; when the subroutine has completed
its task, it returns control to the calling sequence. In
contrast, the macro is based on the i1dea that the code to
implement the function appesr each time the function is required.
When the statement invoking the function is encountered by
COMPASS during assembly, it is replaced by the machine code
necessary to perform the function.

A small example should help make this clear.

Suppose we have written a large program, and declde afterwards
that we would like to keep count of the number of lines printed
by our program. We would have to execute, after each section of
code which generates a line of output, a sequence of instructions
such as

SAl LCOUNT
SX6 X1+1
SA6 Al

There are 629 such sections of code in our program, and we aren’t
looking forward to adding 3*629 cards to our deck. We have two
ways out: first, we coulc put these three lines of code in a
subroutine

LNCTR BSS 1 INCREMENT LINE COUNT
SAl LCOUNT
5X6 X1+1
SA6 Al
EQ LNCTR

and place after each of those 629 sections of code a call to our
subroutine
RJ LNCTR

126

COMPASS

(note that, as long as our little subroutine appears in the same
subprogram, i.e., between the same pair of IDENT and END cards,
as the rest of our program, the label LNCTR is a perfectly
ordinary symbol, and requires no ENTRY or EXTernal declarations).
Alternatively, we could define thece three lines of code as the
macro LNCTR, by including at the beginning of our program

LNCTR MACRO
SAl LCOUNT
SX6 X1+1
SAb6 Al
ENDM

Then, whenever we write, in the opcode field, the macro name

LNCTR
COMPASS will expand the macro, generating

SAl LCOUNT
SX6 X1+1
SA6 Al

The macro approach is more space consuming (75 bits are required
for the three instructions, while the RJ needs at most 60 bits,
if it is the first instruction in a word) but it is much faster,
since three jumps are necessary to get to and from the
subroutine.

We shall close this section with a bit of terminology. Every
macro definition, such as the one just above, consists of three
parts:

l. Macro heading: the MACRO pseudo-instruction, with the
macro name in the location field

2. Macro body: the instructions which constitute the macro
code definition

3. Macro terminator: the ENDM pseudo-instruction, which
marks the end of the macro definition

The macro definition must appear prior to any reference to the
macro; it 1s generally a good idea to put all macro definitions
at the beginning of a subprogram.

127

COMPASS

4.3 MACRO PARAMETERS

If each macro could perform only one specific function, the
applications for macros would be severely limited. As a result,
macros, like subroutines, include parameters which may be used to
vary the function performed. There is a fundamental difference
between subroutine and macro parameters, which must be kept in
mind. Subroutine parameters are transmitted to the subroutine at
execution time, and the subroutine must 1nclude code to test
these parameters and take appropriate action. Macro parameters,
on the other hand, determine the code that is generated by
COMPASS when the macro is 1invoked. We can elucidate this
distinction by pursuing the example from the previous section.

Suppose that three different types of lines are printed by our
big program, and we want to keep a separate count for each type
of line, in LCOUNT1, LCOUNT2 and LCOUNT3. We could modify our
subroutine to accept as argument, passed in Bl, the address of
the count to be incremented:

LNCTR BSS 1
SAl Bl
SX6 X1+1
SA6 Al
EQ LNCTR

and then call it each time with the appropriate counter as
argument, for examgple

SB1 LCOUNT2
RJ LNCTR

Alternatively, we could define our macro with one parameter, the
counter to be incremented:

LNCTR MACRO COUNTER
SAl COUNTER
5X6 X1+1
SA6 Al
ENDM

Then, by invoking the macro with the name of one of the counters
as argument (in the address field), we can generate the code to
increment that counter; for example,

LNCTR LCOUNT2

would be expanded into

128

COMPASS

SAl LCOUNT2
SX6 X1+1
SA6 Al

Note that, now that the "increment counter" function has been
parameterized, the advantage of the macro version in terms of
execution time has increased, while the disadvantage in terms of
space consumed has disappeared.

A macro may have up to 63 parameters. In the macro heading,
these parameters are listed in the address field, separated by
commas, thus:

MCNAM MACRO P1,P2,P3,P4

These parameter names may appear in any field of any line of the
macro body. To be recognized as parameters, however, (and,
therefore, replaced by the actual arguments when invoked) they
must be bounded by one of the characters + - * / () § =. .
or blank. Thus, Pl would be recognized as a parameter in

SAl P1-2
but not in

SAl P1CTR-2

A macro with several arguments is invoked by placing the macro
name in the opcode field and listing the actual arguments in the
address field, separated by commas. Macro MCNAM, for example,
could be invoked by

MCNAM HE,HI,HO+2,B6+HUM

The actual arguments may be arbitrary character strings not
including blanks or commas (a method for tramsmitting arguments
with commas and blanks will be discussed later).

Our second example will confront, in rather simplified form, one
of today’s most important programming problems: transferring
programs from one machine to another completely different
machine. The usual solution to this problem has been the writing
of programs in high-level, "machine independent" languages.
Large computer systems now generally include FORTRAN, COBOL, and
ALGOL compilers; the smaller systems at least a FORTRAN compiler.
For the scientific and commercial applications for which these
languages were designed, their use appears to offer the best
solution to program transferability. There are, however, many
applications, such as text processing, list processing, and

129

COMPASS

systems programming, for which these languages are less than
ideal. The natural impulse under these circumstances is to
design one’s own programming language, and write a compiler to
translate 1it; one soon realizes, though, that no else will be
able to use your program (unless he has the same computer you
do), since he doesn’t have a compiler for your language. One way
out of this morass is to design a small set of macros which
perform all the basic functions you require, and write your
program as a sequence of macro calls. Transferring the program
to another machine would then involve recoding the macro bodies,
certainly a much smaller job than recoding the entire program.

For this scheme we require a macro processor on each machine, but
not necessarily a macro-assember. In other words, for one
machine we might write our macro bodies in the language ALGOL,
and have our macro processgor expand our program (sequence of
macro calls) into an ALGOL program. Some higher level languages
do include a macro processor; PL/I is probably the most familiar
example. However, since the only macro processor on most
machines is the macro-assembler, and, as you may recall, we are
supposed to be studying COMPASS in this chapter, we shall
restrict ourselves to writing COMPASS versions of our macros.

The' set of macros we shall prepare will not be in any sense
complete; all we will be able to do with them 1Is add and subtract
integers and floating-point numbers. In constructing our macros,
we shall imagine that we are writing code for a hypothetical
machine wirh one register, which we shall call the AC
(accumulator). This machine can load a word from memory into the
AC, store a word in memory from the AC, and compute the integer
or real sum or difference of a memory word and the AC, leaving
the result in the AC. This makes a total of six hypothetical
instructions, so we need six macros:

LOAD MACRO ADDR
SA5 ADDR
BX6 X5
ENDM

STORE MACRO ADDR
SA6 ADDR
ENDM

IADD MACRO ADDR
SAS5 ADDR
IX6 X6+X5
ENDM

130

COMPASS

ISUB MACRO ADDR
SA5 ADDR
IX6 X6-X5
ENDM

FADD MACRO ADDR
SA5 ADDR
RX6 X6+X5
NX6 X6
ENDM

FSUB MACRO ADDR
SA5 ADDR
RX6 X6-X5
NX6 X6
ENDM

Then, if we wanted to store the sum of the real variables A and B

in C, and the difference of the integer variables K and L in M,
we would code

LOAD A
FADD B
STORE c
LOAD K
ISUB L
STORE M

This would be expanded by COMPASS into

SAS A

BX6 X5
SA5 B

RX6 X6+X5
NX6 X6
SA6 C

SAS K

BX6 X5
SA5S L

I1X6 X6-X5
SA6 M

(If you wish to assemble these macros yourself, you must include
LIST M

immediately after the IDENT card, or the macro expansions will
not be listed).

131

COMPASS

It should be a simple task to implement these macros on any
computer. Of course, they are not likely to yield very efficient
code (unless the real machine, like our hypothetical one, has
only a single register). But we are often willing to sacrifice
some efficiency in order tc get an easily transferable program;
once the program has been successfully transferred to a new
machine, it is always possible to recode critical sections of the
program in carefully optimized machine code.

Naturally, our little macro language has 1its problems too. One
of them is indicated by the following code sequence, where A and
B are floating point variables, K an integer variable:

LOAD A
TADD K
STORE B

What’s wrong? We are adding a floating point number (A) to an
integer (K). If our macros are to be worth the cards they are
punched on, we must either flag this as an error, or convert one
of the operands to the mode (floating point or integer) of the
other before performing the addition.

4.4 CONDITIONAL ASSEMBLY

In order to catch these "mixed-mode" operations (integer operand
and floating point operand), we have to

1. keep track of the mode (integer or floating) of the
quantity in the accumulator,

2. before every arithmetic operation, compare this mode with
the mode of the operand in memory, and convert one of
the two operands if necessary.

To do the first, we need a symbol to which we can assign the
value 0 when the accumulator contains an integer quantity and 1
when it contains a floating point quantity.

Until now, the only way we had of assigning a value to a symbol
was to place the symbol in the location field:

CMBAL SB1 3

132

COMPASS

The value thus assigned is the address of the word containing the
instruction. This value 1s permanently assigned to the symbol;
anywhere in the program that this symbol is used, it will have
this value. What we require now is a means of defining a symbol
in such a way that it can take on different values at different
points in the program. This ability is provided by the SET
pseudo-instruction:

CMBAL SET 1

The SET pseudo-operation assigns the value of the number, symbol,
or expression* in the address field to the symbol in the location
fields This assignment remains in effect until the next SET
involving this symbol is encountered. So, for example, the
sequence

Q SET A
SB1 Q

Q SET Q+1
SB2 Q

yields the same instructions as the sequence

SB1 A
SB2 A+l

These two methods of defining a symbol are incompatible; a symbol
may be assigned a value either one way or the other, but not
both. Thus, if you would like an assembly errror, code

00PS FX5 X1#X3
O0PS SET 37

Armed with our SET instructions, we are now able to keep track of
the mode of the quantity in the accumulator. If we use the
symbol ACMDE to hold this information, any macro which leaves an
integer quantity in the accumulator will have to include

ACMDE SET O

*Note: An expression in COMPASS, more precisely called an
address expression, is a series of integers and symbols separated
by the four operators + - * / ; for example, A+3, HUM-HO, C*2/D.
Expressions are evaluated from left to right, with multiplication
and division performed before addition and subtraction, as in
FORTRAN. Wherever a number or symbol is expected in an address
field, an address expression may appear instead.

133

COMPASS

while any macro which leaves a floating point number will have to
include

ACMDE SET 1

This brings us to our second problem: how can we use this
information (the value of ACMDE) to control the code generated by
the macros?

COMPASS provides for this purpose a set of IF pseudo-operations,
which permit the conditional assembly of instructions. That is,
an IF instruction specifies a relation between two quantities; 1f
this relation holds, the following instructions are assembled by
COMPASS as usual; if it does not hold, the following instructions
(up to the next ENDIF instruction) are skipped and ignored. For
example,

IFEQ A,B
Jp THENCE
ENDIF

will generate a jump to THENCE if the values of the symbols A and
B are equal; 1f they are not equal, no code will be generated.
It should be emphasized that the IF pseudo-operation causes a
test to be made at the time the program is assembled; its effect
is entirely different from that of the FORTRAN IF statement

IF (A.EQ.B) GO TO 10

which is compiled into code that compares the contents of
locations A and B at execution time.

There are a total of ten ccnditional-assembly pseudo-operations
in COMPASS. Six of them, with mnemonics IFEQ, IFNE, IFGT, IFGE,
ILFLE, and IFLT, compare the values of the two items in the
address field; as should be evident, the mnemonics are formed
from IF + name of corresponding FORTRAN relational operator. The
items of the address field, separated by commas, can be numbers,
symbols, or address expressions. The number of instructions to
be assembled or skipped 1s indicated by an ENDIF instruction or
by a line count as the third item in the address field:

IFEQ A,B,1
Jp THENCE

We shall use the ENDIF in all our examples. (Note: lines
skipped by an IF instruction are normally not listed on the
assembler output.)

134

COMPASS

We now have all the information we need to write our improved
macrose. Let’s start with the LOAD macro. We immediately
encounter a problem: we can’t tell from

LOAD VARB

whether VARB is an integer or floating point wvariable. What we
will have to do is replace our old LOAD macro with two new
macros, ILOAD, and FLOAD, for loading integer and floating
quantities, respectively. The ILOAD macro will set ACMDE to O,
the FLOAD macro will set it to 1:

ILOAD MACRO ADDR
SA5 ADDR
BX6 X5

ACMDE SET 0
ENDM

FLOAD MACRO ADDR
SAS ADDR
BX6 X5

ACMDE SET 1
ENDM

The addition and subtraction macros are more complicated, since
they will have to include some conditionally assembled code. Let
us begin by considering the integer add macro, IADD; a problem
arose with this macro when the quantity already in the
accumulator was floating-point. Taking our cue from the mixed-
mode rules in FORTRAN, we shall, in this case, convert the
integer to floating-point and perform a floating point addition.
Thus, our new IADD macro will be

IADD MACRO ADDR
SA5 ADDR
IFEQ ACMDE, 0
IX6 X6+X5
ENDIF
IFEQ ACMDE, 1
PX5 X5
NX5 X5
RX6 X6+X5
NX6 X6
ENDIF
ENDM

If ACMDE=0 (the accumulator contains an integer)

135

COMPASS

SAS ADDR
IX6 X6+X5

is generated as before; if ACMDE=1 (the accumulator contains a
floating point number) the operand from memory is first converted
to floating point, and then the floating addition is performed:

SAS ADDR
PX5 X5
NX5 X5
RX6 X6+X5
NX6 X6

Note that, since the mode of the quantity in the accumulator is
not changed by either operation, ACMDE need not be reset.

For the floating point add macro, FADD, the situation is
reversed: if the accumulator contains an integter, we must
convert it to floating point before performing the addition.
Thus, thils macro becomes

FADD MACRO ADDR
SAS ADDR
IFEQ ACMDE, 0O
PX6 X6
NX6 X6
ACMDE SET 1
ENDIF
RX6 X6+X5
NX6 X6
ENDM

If ACMDE=1 we get back the original FADD macro:

SA5 ADDR
RX6 X6+X5
NX6 X6

however, 1f ACMDE=0, the accumulator is first converted from
integer to floating point:

SA5 ADDR

PX6 %6

NX6 X6
ACMDE SET 1

RX6 X6+X5

NX6 X6

136

COMPASS

Since this changes the mode of the accumulator, ACMDE must be

reset.

Replace addition by subtraction, and we have ISUB and FSUB:

ISUB

FSUB

ACMDE

MACRO
SA5
IFEQ
IX6
ENDIF
IFEQ
PX5
NX5
RX6
NX6
ENDIF
ENDM

MACRO
SAS5
IFEQ
PX6
NX6
SET
ENDIF
RX6
NX6
ENDM

ADDR
ADDR
ACMDE, O
X6-X5

ACMDE, 1
X5

X5
X6-X5
X6

ADDR
ADDR
ACMDE, 0
X6

X6

1

X6-X5
X6

This brings us finally to the STORE macro. As we did for the
LOAD macro, we shall introduce two macros, ISTORE and FSTORE, for
storing into integer and floating point variables respectively.

The ISTORE macro will have to first convert the accumulator to an
integer if 1t contains a floating point number:

ISTORE

ACMDE

MACRO
IFEQ
UX6
LX6
SET
ENDIF
SA6
ENDM

ADDR
ACMDE, 1
B1,X6
Bl,X6

0

ADDR

Similarly, the FSTORE macro will have to convert the accumulator
to floating point if 1t contains an integer:

137

COMPASS

FSTORE MACRO ADDR
IFEQ ACMDE, 0
PX6 X6
NX6 X6
ACMDE SET 1
ENDIF
SA6 ADDR
ENDM

Before we set aside our mixed-mode problems for a while, let us
add two small refinements. In these eight macros, the pack and
normalize sequence required to convert an Integer to floating
point occurs five times, so it seems reasonable to make this
sequence into a macro itself. Something like

FLOAT MACRO X1
PX1 X1
NX1 X1
ENDM

seems approprilate. Then, if we wanted to generate the code to
"float" X6, we would write

FLOAT X6

Just to be sure that this works (although this is such a trivial
macro it is hard to imagine we could have made a mistake) we look
at the macro expansion:

PX1 X6
NX1 X6

Surprised? 1If you are, you forgot the rule concerning the
recognition of parameters in the macro body. Parameters are
recognlized only 1f they are delimited by one of the characters +
-~ % / ()S$Se,, - % or blanke The X1’s in the address fields
meet this requirement, since they are surrounded by blanks;
however, the X1‘s in the opccde field are immediately preceded by
a letter, so they fail this test. This predicament was
anticipated by the assembler designers, and a special character
" ", was introduced to circumvent the problem. The magic of this
character is that, as soon as actual parameters have been
substituted into the macro body, all the “s disappear. This
character 1s referred to as the catenation (or concatenation)
mark, and the procedure of removing these blanks 1s called
catenation. To see how this works, let us fix up the definition
of FLOAT:

138

COMPASS

FLOAT MACRO X1
P-+X1 X1
N-=X1 X1
ENDM

When the macro is invoked by
FLOAT X6

COMPASS first substitutes X6 wherever X1 occurred as a parameter
in the macro body:

P—-X6 X6
N~X6 X6

then it deletes the catenation marks and squeezestogether the
characters surrounding the catenation marks (so no blank is
left where a catenation mark was deleted):

PX6 X6
NX6 X6

(Note: 1f only LIST M is requested, COMPASS will print these
lines with the catenation marks still in; to see the lines with
these marks removed, a "list" card must be included; i.e.:)

LIST A

Now that our FLOAT macro is in working order, we can use it in
our earlier macros. For example, IADD would become

IADD MACRO ADDR
SAS ADDR
IFEQ ACMDE, 0
IX6 X6+X5
ENDIF
IFEQ ACMDE, 1
FLOAT X5
RX6 X6+X5
NX6 X6
ENDIF
ENDM

This macro is a simple 1llustration of the property that makes
macros such a powerful tool: the ability to nest macros, to
invoke one macro within the body of another. The inner macro
(FLOAT) need not be defined before it appears in the definition
of the outer macro (IADD), but only before the outer macro is
invoked.

139

COMPASS

We can pare one more line from the IADD and ISUB macros by using
the ELSE pseudo-operation. An ELSE appearing in the range of an
IF (between the IF and the ENDIF) reverses the effect of the IF
instruction. That 1is, 1f the condition in the IF instruction is
true, the lines between the IF and the ELSE are assembled while
the lines between the ELSE and the ENDIF are skipped; i1if the
condition is false, the lines before the ELSE are skipped and the
lines after it are assembled. For example,

IFEQ DESPERAT, 0
EQ EXIT

ELSE

EQ EELP

ENDIF

generates a jump to EXIT if DESPERAT is zero, and a jump to HELP
if it isnt. In the case of our IADD macro, since ACMDE will
always be 0 or 1, we can code

IADD MACRO ADDR
SAS ADDR
IFEQ ACMDE, O
IX6 X6+X5
ELSE
FLOAT X5
RX6 X6+X5
NX6 X6
ENDIF
ENDM

We leave to the reader the straightforward task of modifying all
the earlier macros to use FLOAT, and then trying these macros out
on a few sequences of mixed-mode arithmetic. Having now whetted
the reader’s appetite for the excitement of mixed-mode
arithmetic, rest assured that we shall not abandon the topic;
after a brief respite, we shall return with yet finer and fancier
macros.

4.5 DEBUGGING WITH MACROS

Although any programmer who gets anything accomplished spends at
least 907% of his time debugging, most programming texts give

140

COMPASS
short schrift to the topic. This book will not be different.
This 1s hardly surprising; a thorough exposition of coding
requires a knowledge of the rules of the programmming language,
which are usually readily available. A proper exposition of
debugging, on the other hand, would require some knowledge of the
kind of mistakes people make in writing programs, and this
complex and mysterious area has been the subject of relatively
little study (perhaps because people are reluctant to admit the
mistakes they make).

Of course, the best solution would be to not make mistakes in the
first place; some of the philosophical interludes in this volume
have tried to suggest how using a higher-level language where
appropriate and organizing the program carefully may help to
reduce the frequency of bugs. Still, the best of us will make
mistakes, so we may reasonably ask what tools are available to
help us track down these errors.

The standard tool used in debugging programs on the CDC 6000
series (and many other machines) may best be characterized by one
word: medieval. It is the absolute octal core dump: a print-out
of the contents of core, in octal, near the point where the
program stopped, or got an arith error, or whatever (in chapter 5
we shall briefly describe how to read a dump). There 1is a
certain irony in providing the user with an array of powerful
machine-independent languages and then, when the program '"bombs
out,”" telling him that he has to learn machine language in order
to interpret the dump that is produced. In fairmess to Control
Data, some additional debugging tools are provided with the
system, although also oriented towards assembly-language
programmers. However, because these tools are more complicated
than many programmers would like, and because they did not work
when first introduced, they have not become very popular. (The
author, having developed a much more powerful debugging system,
which had these problems to a correspondingly greater degree, is
painfully aware of the lack of enthusiasm which ensues.) As an
alternative to these tools, we shall examine how macros can be
used to build simple yet powerful debugging ailds.

We shall begin with a debugging ald called a store trace. This is
a print-out, each time a store occurs, of the name of the
variable stored into and the value stored. To make life simple,
we shall assume that we have only integer variables (no mixed-
mode). Also, so that we need not concern ouselves with calling
output routines in assembly language, we shall use a small
FORTRAN routine to print the trace:

141

COMPASS

SUBROUTINE TRACE(NAME, IVALUE)
PRINT 1, NAME, IVALUE

1 FORMAT (* STORE TO *,A8 ,*=%, T17)
RETURN
END

All that 1s now required is to place a call to TRACE after every
store instruction in the program. TIf the program were coded
instruction by instruction, this might be a sizeable task; for a
program using our macro package, however, this involves merely
putting a call to TRACE in the STORE macro.

The STORE macro will begin, as before, with the actual store
operation:

STORE MACRO ADDR
SA6 ADDR

Next, we must set up the arguments for the call to TRACE.
Somewhere in our COMPASS program we set aside space for the
argument list:

TRCARGS BSS 2
DATA 0

The macro must store the addresses of the two arguments in
TRCARGS and TRCARGS+1. The second argument 1s easy, since the
value stored 1s now in location ADDR:

SX7 A6
SA7 TRCARGS+1

The first argument, the name of the variable, is a bit more
complicated. If we were invoking TRACE from a FORTRAN program,
the call would have the general form

CALL TRACE{4HIVAR,IVAR)

Character string constants valid in FORTRAN, such as 1H+ or
3REOF, are also allowed in COMPASS DATA instructions, so for our
macro the DATA instruction would be

DATA SH»ADDR

If we included this DATA instruction in the macro, it would be
necessary to jump around it; this seems nelther elegant nor
efficlents Fortunately, we can circumvent this problem without
circumventing the DATA instruction by using a COMPASS feature

142

COMPASS

introduced in the last chapter (3.13): the literal. If we code

SX7 =8H+~ADDR
SA7 TRCARGS

COMPASS will generate the DATA instruction at the end of the
program, and put its address in the K portion of the SX7
instruction. This takes care of the arguments, so we can call
our FORTRAN routine

SAl TRCARGS
RJ TRACE

On return from TRACE, X6 will no longer contain the value of the
accumulator (routines generally do not save and restore
registers), so we must reload X6:

SA5 ADDR
BX6 X5
ENDM

If we glue all the parts together we have

STORE MACRO ADDR
SA6 ADDR
SX7 =8H+~ADDR
SA7 TRCARGS
SX7 Ab
SA7 TRCARGS+1
SAl TRCARGS
RJ TRACE
SA5 ADDR
BX6 X5
ENDM

Starting with this basic pattern, the variations which can be
made are endless. Using conditional assembly, we can trace
stores to one or a few variables; through appropriate tests in
the TRACE routine, we can start printing the trace when a
particular variable is assigned a particular value. We shall
exerclse some restraint, however, and consider only two small
improvements.

Debugging aids like the store trace are best designed into the
program from the start, and left in throughout program
development. This is possible if we make assembly of the code
for tracing stores conditional on the value of a symbol:

143

COMPASS

STORE MACRO ADDR
SA6 ADDR
IFNE STORTRAC, O
SX7 =8H+ADDR
SA7 TRCARGS
5X7 A6
SA7 TRCARGS+!
5Al TRCARS
RJ TRACE
SAS ADDR
BX6 X5
ENDIF
ENDM

In this way the debugging code will be assembled only if STORTRAC
is non-zero. We may also make the external declaration which is
required for TRACE conditional:

IFNE STORTRAC, O
EXT TRACE
ENDIF

As well as the space for the argument list

IFNE STORTRAC, O
TRCARGS BSS 2

DATA C

ENDIF

Finally, we must set STORTRAC at the beginning of the progranm,
with appropriate flourish:

*

* STORTRAC : NON-ZERO TO TRACE STORES
*
STORTRAC SET 1

Our second improvement 1s concerned with the traceback features
of FORTRAN and other high-level languages. When a system routine
detects an error, it traces backwards the series of subroutine
calls which brought control to this routine, starting with the
subroutine which invoked the current routine, then the subroutine
that invoked that routine, ard so forth until the main program is
reached. A traceback 1s made possible by the convention that a
RJ always be placed in the high-order 30 bits of an instruction
word, and the low-order 30 blts contain

nnnn TRACEBAK

144

COMPASS

where nnnn (12 bits) is the line number of the statement which
caused the RJ to be generated (0 for RJ in COMPASS programs) and
TRACEBAK is the (18 bit) address of a word in the calling
routine. This word contains the name of the calling routine, and
in the low-order 18 bits the address of the entry line of the
calling routine.

In order to set up this word and the pointer to it, we must
introduce a new pseudo-operation, VFD (variable field
definition). In contrast to the DATA operation, the VFD permits
us to specify separately the contents of portions (fields) of a
word., The address field of the VFD consists of one or more
subfields, separated by commas; each subfield has the form

bit-count/ address—expression

and specifies that the value of the address expression is to be
placed into the next "bit count" bits of the word. For example,

VFD 12/17778B,48/0
generates a plus indefinite, and

VFD 60/TRACEBAK

generates a word containing the address TRACEBAK. If the
expression includes a symbol (is not composed entirely of
constants*) it must be placed in a field at least 18 bits long,
ending at bit 0, 15, or 30 (in a position where the K portion of
a 30 bit instruction could occur); thus

VFD 59/TRACEBAK, 1/0

is 1llegal. Note that although the previous VFD specifies a full
word field, a DATA instruction could not be used; the address
field of a DATA instruction can contain only constants.

The STORE macro would be modified as follows:

#Note: More precisely, as shall be explained in Section 4.7, if
it is not an absolute expression.

145

COMPASS

STORE MACLO ADDR
SA6 ADDR
[FNE STORTRAC, O
5Xx7 =8H+-ADDR
SA7 TRCARGS
SX7 A6
SA7 TRCARGS+1
SAl TRCARGS

+ RJ TRACE

- VFD 12/0,18/TRACEBAK
SA5 ADDER
BX6 X5
ENDLF
ENDM

The + in the location field (column 1 or 2) of the RJ instruction
forces upper, 1l.e., places the RJ in the high-order part of a new
instruction word. Contrarily, the - in the location field of the
VFD overrides the force upper which is automatic after the RJ,
and places the VFD in the next available 30 bits.

If the routine written in our macro package is called LINDA , it
must begin essentially thus:

[DENT LINDA

TRACEBAK VFD 42/7LLINDA , 18/LINDA
ENTRY LINDA

LINDA BSS 1

If we adhere to these conventions, it is a simple matter to
generate a traceback. To indicate how this is done, we shall
consider the example shown in Figure 2. The main program, MAIN,
calls a user-written subroutine, MYSUB; MYSUB detects an error
and calls the system subroutine SYSTEM to generate a traceback.
SYSTEM does the following:

l. extracts from the entry line of SYSTEM the address portion of
the EQ instruction, and subtracts one to get the address of the
call to SYSTEM, 743

2. the low 18 bits of location 743 point to word 700, which
contains the name of the invoking routine ("MYSUB"); the first
lines of the traceback can now be printed:

SYSTEM
CALLED FROM MYSUB AT 000743

146

COMPASS

3. the low 18 bits of word 700 point to the entry line of MYSUB;
the entry 1line contains an EQ instruction,
so the procedure of steps 1 and 2 can be repeated: the address
from which MYSUB was called is determined (120), the name of the
calling routine is found ("MAIN"), and the next line is printed:

CALLED FROM MAIN AT 000120
4. The low 18 bits of the word containing "MAIN" point to a word

which does not contain an EQ instruction; we have reached the
main program, so the traceback is complete.

147

COMPASS

111 7LMATIN 00011 2]= (FORTRAN)
- main program
112 SB1 1 4 31882 144 MAIN
120 RJ 7011000500011 1=+ line 5:
- CALL MYSUB
user’s {(COMPASS) subroutine MYSUB
700 7LMYSUB 0007 0 1}
entry
line -»701 E Q 1210000000000
M i

RJ
SYSTEM ——»743 RJ L 421100000007 0 O0f)p——

1420 7TLSYSTEM 001421
entry line —-—» 1421 E Q 7440000000000

system
subroutine
SYSTEM

e J

FIGURE 2

148

COMPASS

4.6 MICROS AND CODE DUPLICATION

So far, we have constructed a set of basic arithmetic macros; we
have shown how they can be helpful in debugging, and we have
modified them to include one higher-level language feature,
mixed-mode arithmetice. In thils section, as our final
improvement, we shall implement another, more significant,
feature of higher-level languages.

Suppose we want to compute the sum of the integer variable HEN
and the floating point variable ROOSTER and leave the result, in
floating point, in CHICK. In our macro language, we would write:

ILOAD HEN
FADD ROOSTER
FSTORE CHICK

Compare this with the equivalent series of FORTRAN statements:

INTEGER HEN
REAL ROOSTER, CHICK
CHICK = HEN + ROOSTER

In our macro language, we must explicitly state for each
operation the mode of the operand or the mode in which we want
the result stored. In FORTRAN, on the other hand, the mode is
made a property or attribute of the variable; in processing the
assignment statement, the compiler uses the modes assigned to the
variables involved to determine the instructions to be generated.
We shall try to implement a similar arrangement in our macro
language.

To do so, we must find a means of assigning an attribute to a
symbol. We shall do this by associating with each symbol a
second symbol, whose value indicates an attribute of the first
symbol. For example, we could form the second symbol by
suffixing the first symbol with an M: for a variable VAR, we
would use the value of the symbol VARM to indicate the mode of
VAR. To hide this apparatus from the user of our macro language,
we supply two macros with which the user can indicate the mode of
his variables:

INTEGER MACRO VAR

VAR=M SET 0
ENDM

REAL MACRO VAR

VAR»M SET 1
ENDM

149

COMPASS

Variable names are thus restricted to seven characters; if an
eight-character name is used as the argument to one of these
macros, a nine-character name will be generated, and hence an
error message. Clearly symbols ending in M should also not be
used; however, if the user forgets this restriction, and puts in
his program

VARBM SET 0

(When he already has a variable VARB) he will completely foul up
code generation yet get no error message. To avoid this trouble,
I shall tell you a secret, which you must promise not to tell the
user of our macro language: any speclal character except + -~ *
/ s 7 or blank is allowed in a symbol name (the first character
may not be §$, = or a digit). Thus, we could use a $ suffix
instead of an M; a user is less likely to use a $ 1n a name
accidentally:

INTEGER MACRO VAR

VARS SET 0
ENDM

REAL MACRO VAR

VARS SET 1
ENDM

($ 1s a delimiter for macro parameters, so no catentation mark is
required). This may all seem quite trivial, especially if you
are writing a macro for your own use, but the Iimportance of
coding in such a way that bugs are avoided or caught early cannot
be overemphasized. "An ounce of prevention 1s worth a pound of
cure" 1is a severe understatement in programming.

Now that we have devised a means of recording the mode attribute,
modification of the arithmetic macros 1is entirely
straightforward. Each of our new macros will invoke the
corresponding old integer or floating poilint macro, depending on
the mode of the operand:

LOAD MACRO ADDR
IFEQ ADDRS, 0
ILOAD ADDR
ELSE
FLOAT ADDR
ENDIF
ENDM

150

COMPASS

ADD MACRO ADDR
IFEQ ADDRS,0
IADD ADDR
ELSE
FADD ADDR
ENDIF
ENDM

SUB MACRO ADDR
IFEQ ADDR$,0
ISUB ADDR
ELSE
FSUB ADDR
ENDIF
ENDM

STORE MACRO ADDR
IFEQ ADDRS, 0
ISTORE ADDR
ELSE
FSTORE ADDR
ENDIF
ENDM

If the user forgets to declare a variable INTEGER or REAL before
it is referenced in an arithmetic macro, the associated symbol
with suffix $ will be undefined, and an error message will
result.

1
As a final veneer for our macro programming efforts, consider the
task of modifying our INTEGER and REAL macros to accept lists of
variables, like FORTRAN:

REAL FLOAT, SINK, BATHTUB
INTEGER ENRY, IGGINS

Many assemblers, including COMPASS, have some pseudo-instructions
specifically for handling such lists. However, 1n order to
illustrate the general capabilities of COMPASS for processing
character strings, we shall initially code our fancy INTEGER and
REAL macros using only the most basic character manipulating
instructions. At the end of this section we shall consider how
we might have spared ourselves all this effort by invoking one of
the more powerful COMPASS pseudo-instructions. We shall first
describe the algorithm for our fancy INTEGER macro in a very
informal, hopefully self-explanatory manner. Then we shall take
the algorithm, step-by-step, and translate it into COMPASS
pseudo-operations. Our new INTEGER macro has one parameter, a

151

COMPASS

character string which should be a 1ist of symbols; let us call
this parameter LIST. A possible algorithm for this macro is

1. Let L= the character string LIST with the characters
", ." added at the end

2. Let FIRST = 1 and CURRENT = 1

3. Let CURRENT

CURRENT + 1

4. Let CURRCHAR

character number CURRENT of the string L

5. IF CURRCHAR is a comma,

a. let NAME = the (CURRENT-FIRST)
characters of L, strarting with
character number FIRST

b. invoke the old INTEGER macro
with parameter NAME

ce let first = CURRENT + 1

6. 1f CURRCHAR 1is not a period, go to step 3;
if i1t is a period, algorithm is done.

The loop (steps 3 through 6) scans the character string from left
to right; CURRENT points to the character position currently
being examined. When a comma 1is encountered (step 5) the
characters in the string from position FIRST up to the character
preceding the comma are put into NAME; thus NAME will contain the
name of the next symbol on the list. After the old INTEGER macro
is invoked, FIRST is reset to point to the first character after
the comma. The comma is appended to the string in step 1l so that
the last 1list member will Se processed; the period is added to
mark the end of the string.

In order to be able to implement this in COMPASS, we have to
introduce mechanismg for looping and for extracting substrings of
character strings. The mechanism for looping or, more precisely,
code duplication, is provided by the DUP pseudo-operation. The
address field of the DUP may contain an integer, symbol, or
expression; this number specifies how many times the following
instructions, up to the next ENDD instruction, are to be
duplicated. As a simple example, suppose we have an array of
dimension 8:

ARRAY BSS 8

and we wish to set it to zero. One way of doing this is

152

COMPASS

MX6 0

SA6 ARRAY
SA6 A6+l
SA6 A6+1
SA6 A6+1
SA6 Ab6+1
SA6 A6+1
SA6 A6+1
SA6 A6+1

The identical code be generated by coding

MX6 0

SA6 ARRAY
DUP 7

SA6 A6+l
ENDD

If the dimension of the array were assigned to a symbol

SIZE SET 8
ARRAY BSS SIZE

the generation of code to zero the array can be controlled by
this symbol:

MX6 0

SA6 ARRAY
DUP SIZE-1
SA6 A6+1
ENDD

The third operation in this family is the STOPDUP. When a
STORDUP 1s encountered in the range of a DUP, duplication stops
with the current iteration, regardless of the count in the DUP
instruction. The current iteration is completed -— the following
instructions up to the ENDD are assembled one last time. The
STOPDUP is normally used with an IF instruction to control the
number of times code 1s duplicated. For example, the above
instruction sequence can also be coded

153

COMPASS

MX6 0
SA6 ARRAY
COUNT SET 1
DUP 1000
SA6 A6+1
COUNT SET COUNT+1
IFGE COUNT,SIZE
STOPDUP
ENDIF
ENDD

When duplication 1s to be controlled by a STOPDUP,the duplication
count (here 1000) will normally be made so large that it will not
be reached unless there is a coding error. The DUP and STOPDUP
will enable us to implement the "loop" in our algorithm. The
seccnd mechanism we required for our algorithm was one to extract
substsrings from character strings. This facility is provided
by the MICRO operation, which has the form

micro-name MICRO nl, n2, daaaaaaaad

here nl and n2 may be integers, symbols, or expressions;
aaaaaaaa 1s any string of characters, and d, the delimiter
character, is any character not appearing 1n aaaaaaaa. The value
of the micro-name after this operation is the n2 characters of
aaaaaaaa starting with character position nl. For example,

NOW MICRO 1,3,*%*HOW ARE YOU*
assigns the character string "HOW" to the micro NOW. If n2 is
omitted, the substring from position nl through the end of the
string is assigned; thus after

NOW MICRO 1,,*HOW ARE YOU#*
NOW has the value "HOW ARE YOU ".
After the micro has been defined, the micro name may appear
anywhere in any instruction; however, it will be recognized only
if the name is immediately preceded and followed by the micro
mark # For example, if we define the micro

SETTWO MICRO L, s ¥SET 2+

and then use it in

VARF £SETTWO#

154

COMPASS

COMPASS will first replace the micro by its value:

VARF SET 2

and then assemble the instruction as usual. Micro substitution
is performed at the same time as catenation (if there are any
catenation marks in the line), after substitution for macro
parameters but before any other analysis of the instruction.
Thus, if we have the micro

SWEET MICRO 1,,%+16$

and the macro

SETBI MACRO P1,P2
SB1 P1#P2+
ENDM

and then invoke the macro
SETBIL VARF, SWEET
then micro substitution will be performed
SB1 VARF+16
and finally the instruction will be assembled.

Micro names are not symbols. The value of a symbol is a number,
while the value of a micro 1is a character string. Since
references to micros are distinguished by the surrounding micro

marks, it 1s possible to have a symbol and micro of the same
name. Thus, with the definitions

SIX SET 6
S0X SET 8
SOX MICRO 1,,+SIX+
the instruction
SB1 SOX
assembles to a SBl 8, while
SB1 $S0X+

assembles to a SBl 6.

155

COMPASS

With micro and DUP in hand, we are ready to start work on our
algorithm. ZBefore we do, we shall rename our old INTEGER macro
"INTEGER .", so that we don’t end up with two macros of the same
name:

INTEGER. MACRO VAR
VARS SET 0
ENDM

Our algorithm requires two integer "variables;" for these we
shall use the symbols FIRST. and CURRENT. (we include a special
character in these names so that the user of our macro language
will not have a symbol of the same name). Our new INTEGER macro
begins with the macro heading

INTEGER MACRO LIST

Step 1 assigns to L the string LIST with ",."” appended; this
clearly calls for a micro:

L MICRO 1,,$LIST,.$

In using $ as the string delimiter, we tacitly assume that there
will be no $ in LIST {itself. Step 2 initializes FIRST. and
CURRENT.:

FIRST. SET 1
CURRENT. SET 1

Steps 3 through 6 comprise the scanning loop, which we now know
must begin with a DUP:

DUP 72

Duplication will be terminated by a conditionally-assembled
STOPDUP (step 6); since there can be only 70 characters in a one-
card instruction (columns 73 and after are ignored, and there
must be blanks between location and opcode and between opcode and
address fields), LIST will surely be less than 70 characters,
hence L will be less than 72 characters, hence an lteration count
of 72 will not be reached. Steps 3 and 4 are straightforward

CURRENT. SET CURRENT.+1
CURRCHAR MICRO CURRENT., 1, $#L#$

Remember that when a micro is used in the address field of
another MICRO operation, both micro marks and a delimiter
character are required, since the value of the micro replaces the

156

COMPASS

micro name and marks in the address field before the instruction
18 assembled.

Step 5 says "if CURRCHAR is a comma..." This test is basically
different from those we have made before: it compares two
character strings, rather than the values of two symbols or
expressions. For testing character strings there is another IF
operation, the IFC, whose form is

IFC relation,daaaaadcccced

where "relation" is any relational mnemonic (EQ, NE, GE, LE, GT,
LT), "aaaaa" and "ccccc" are the two character strings being
compared, and d, the first character after the comma, acts as the
delimiter for both strings. As an example, the following macro
will generate a store instruction only i1f the argument to the
macro is "A'":

STOA MACRO PAR
IFC EQ, *PAR*A*
SA6 PAR
ENDIF
ENDM

The IFC test will succeed only if the argument is literally "A";
invoking the macro with another symbol of the same value

B SET A
STOA B

will not cause the store instruction to be generated, since it is
the argument name, and not its value, which is being tested.

Thus step 5 becomes

I1FC EQ, $#CURRCHAR#S, $

NAME MICRO FIRST.,CURRENT.~FIRST.,S$£L#$
INTEGER. #NAME#

FIRST SET CURRENT.+1
ENDIF

Step 6 uses an IFC to stop the scanning loop by assembling a
STOPDUP:

IFC EQ, $#CURRCHAR#S$. $
STOPDUP
ENDIF

157

COMPASS

Having come to the end of the loop, we finally terminate the
range of the DUP:

ENDD

Collect the instructions we have written over the last few pages
and we have

INTEGER MACRO LIST
L MICRO 1,,$LIST,.$
FIRST. SET 1
CURRENT., SET 1
DUP 72
CURRENT. SET CURRENT.+1
CURRCHAR MICRO CURRENT., 1, $#L#5
1FC EQ, $#CURRCHAR#S, $
NAME MICRO FIRST.,CURRENT.-FIRST.,S$#L#$
INTEGER #NAME#
FIRST. SET CURRENT.+1
ENDIF
IFC EQ, $#CURRCHAR#S. S
STOPDUP
ENDIF
ENDD
ENDM

Proud of our fancy new macro, we eagerly try it out:

INTEGER A,BB,CCC

and are, to say the least, a little disappointed when all that
comes out 1s

AS SET 0

The trouble is that, the way we have invoked the macro, there
appear to be three arguments. COMPASS matches the first one,
"A", with the first parameter in the macro definition, LIST;
since there are no more parameters in the definition, "BB" and
"CCC" are ignored. If we want to include a comma (or blank) in a
macro parameter, we must enclose the parameter in parentheses,
thus:
INTEGER (A,BB,CCC)

In expanding the macro, the parentheses are removed and the text
between the parentheses 1s substituted for the corresponding
formal parameter in the macro body. Thus, the first line of the

158

COMPASS

macro becomes
L MICRO 1,,8A,BB,CCC,.S

and this macro call does indeed generate

AS SET 0
BBS SET 0
cces SET 0

Our original goal was to write one such macro for INTEGER
declarations and another for REAL declarations. Rather than code
this sequence twice, we shall (what else?) write a macro with two
parameters: the list, and the macro to be invoked for each item
on the list (in the above case, INTEGER.). In fond memory of a
pseudo-operation in an earlier assembler which performed
essentially the same function, we shall call this macro IRP
(iterate prototype).

We will also require the two macros which IRP will invoke:
INTEGER. and REAL.. And, finally, the two macros seen by the
user of our macro language: INTEGER and REAL.

IRP MACRO MCNAM,LIST
L MICRO 1,,$LIST,. .4
FIRST. SET 1
CURRENT. SET 1
DUP 72
CURRENT. SET CURRENT.+1
CURRCHAR MICRO CURRENT., 1, $#L#$
1FC EQ, $#CURRCHAR#S, §
NAME MICRO FIRST.,CURRENT.-FIRST.,$#L#$
MCNAM #NAME #
FIRST. SET CURRENT.+1
ENDIF
1FC EQ, $#CURRCHAR#S$.$
STOPDUP
ENDIF
ENDD
ENDM
INTEGER. MACRO VAR
VARS SET 0
ENDM
REAL. MACRO VAR
VARS SET 1
ENDM

COMPASS

i ———— - i ———— —— " T S T T v e " T " —————— " o o -

INTEGER MACRO VARLIST
IRP INTEGER., (VARLIST)
ENDM

REAL MACRO VARLIST
IRP REAL., (VARLIST)
ENDM

The parentheses around the list are removed when the list is
substituted for VARLIST in the macro body; since the list must be
enclosed in parentheses on the parameter list of the IRP call, we
have to supply a fresh set of parentheses; hence '(VARLIST)".

Although our efforts at developing a macro package over the last
few sections have been quite modest, relatively few programmers
code macros as fancy as IRP. One factor is that those not very
familiar with all the pseudo-operations believe they will spend
more time debugging their macro than they could possibly save
using 1t; unless the macro is being developed for general use,
this argument is often valid. Another factor is that fancy
macros assemble very slowly. In the case of IRP, the ten
statements in the range of the DUP must be assembled once for
each character in the list; an IRP with a list of six 7-character
symbols expands to more than 500 instructions. As machine speeds
continue to increase, this factor will decrease in importance,
but it cannot be ignored. These problems notwithstanding, this
example indicates how a "comprehensive'" macro-assembler can be
used to assemble a relatively sophisticated "higher-level"
language.

Large, complex programs have an inherent tendency to get larger
and more complex, particularly if they are heavily used; no
matter now many features are included, there 1s always one more
which someone would like to add. This is especially true when
program designers are also constant program users, as 1is
generally the case with assemblers (which are almost always
written in assembly language). Features which the designer as
program user finds useful cen then easily find their way into the
program.

The sequence of 6000 series assemblers (described on pages 53 and
54) certainly exemplifies this natural growth process. The first
assembler manual -- for SIPROS ASCENT -- 1s a slim little thing
describing 16 pseudo-instructions in four pages; the current
COMPASS manual (version 3) needs more than 125 pages to describe
its 80-plus pseudo-instructions. The largest increment, both in
terms of number of pseudo~instructions (several dozen) and size
of the reference manual (ahout one pound) occurred in the great

160

COMPASS

leap forward from version 1 to version 2 of COMPASS. A number of
assembly-time operations which had proven particularly useful but
which required complicated macros in version 1 were implemented
as pseudo-instructions in version 2; among these was IRP.

In consequence, 1f you are diligent enough to punch and run the
macros described above, you will be rewarded with the error flag
"L" as follows:

L IRP MACRO MCNAM,LIST
and the explanation
L TYPE ERROR LOCATION FIELD BAD

What this means 1s that there already is an operation code IRP.
If you consult your COMPASS manual, you shall discover that the
IRP pseudo~instruction does pretty much the same thing our IRP
macro was supposed o do. More precisely, 1f a macro contains
the sequence of instructions

IRP LIST

IRP

and LIST is a macro parameter whose value 1s a list of items
separated by commas, the instructions between the two IRPs will
be assembled once for each item on the list. Furthermore, if the
symbol LIST appears in any of the instructions between the two
IRPs, it will be replaced by the first item in the list the first
time the instructions are assembled, by the second item the
second time they are assembled, and so forth.

For example, the following macro will generate code to increment
each variable appearing in LIST by INCR:

INK MACRO LIST,INCR
SX2 INCR
IRP LIST
SAl LIST
IX6 X1+X2
SA6 Al
IRP
ENDM

If invoked by

161

COMPASS

INK {BRIG,VISP,ZERMATT),9

it will generate

SX2 9

SAl BRIG
IX6 X1+X2
SA6 Al

SAl VISP
IX6 n1+S2
SA6 Al

SAl ZERMATT
1X6 X1+X2
SA6 Al

Returning to our arithmeti: macros, we see now that they could
have been written simply as

INTEGER MACRO VARLIST
IRP VARLIST
VARLISTS$ SET 0
IRP
ENDM
REAL MACRO VARLIST
IRP VARLIST
VARLISTS SET .
IRP
ENDM

4.7 THE VALUE OF A SYMBOL

The object of this chapter, as I stated at the outset, has been
to present the principles and potentlalities of assembly language
macro programming. It 1s not the object of this chapter to
replace the COMPASS reference manual; this would be pointless if
not impossible, since COMPASS 1is still a growing language. If I
have been successful, you should now have little difficulty in
learning the rules and restrictions of COMPASS, the operations
we have not discussed and variants on those we have, as you need
them from the reference manual.

162

COMPASS

I must confess, though, that there is one point on which I have
intentionally been less than candid until now: the value of a
symbol. As we have said several times, the value of a symbol is
a number; however, there are numbers and there are numbers. The
rest of this section will explore the wisdom of this last remark.

In the earliest systems, the addresses which a program would
occupy were fixed at assembly time. The user would tell the
assembler that the program would be loaded into memory at
execution time starting at location 100, for example. Then, when
the assembler encountered a JP Q, where Q was the label on the
second word of the program, the assembler would generate a JP
101. This arrangement, known as absolute assembly, was simple
but not very satisfactory; if the first routine in a program was
made one word longer, all the other routines would have to be
reassembled to start one location higher.

To eliminate this problem, the relocatable assembly was devised.
In this scheme, the assembler assembles the program as if it were
to be loaded starting at location 0; at the same time, it flags
those instructions which reference labels in the program (for
example, JP Q but not JP 7). A special routine, called the
loader, is added to the system to read assembled programs into
memory. The user can specify to the loader where in memory his
program is to be loaded. Suppose the loader starts loading the
program at location 100; then whenever it reads in an instruction
which has been flagged by the assembler, it adds 100 to the
instructions before storing it. In this way our JP Q, which was
translated by the assembler into JP 1, would end up as JP 101, as
before.

In a relocatable assembly the user can also reference an external
symbol, i.e., a symbol in another routine. An instruction
referencing such a symbol is marked by the assembler with the
name of the symbol. When this instruction is loaded, the symbol
name 1s recorded on a table; when the loader encounters an entry
point of this name while loading another routine, it goes back
and fills in the address in the first instruction.

So far we have three kinds of addresses: absolute addresses
(i.e., constants, which are not relocated), (program) relocatable
addresses, and external addresses. When we come to FORTRAN 1V,
the situation is further complicated by labeled common. As long
as all variables were local (part of the subprogram being
compiled), the compiler just needed one counter to keep track of
the address to assign to the next statement or variable. If
words O through 704 (relative to the beginning of the program)
had been used, this counter would be at 705; to process

163

COMPASS

DIMENSION A(10),B(10)

the compiler would assign words 705 to 714 to A, words 715 to 724
to B, and leave the counter at 725. With labeled common, the
compiler has to maintain a separate counter for each block. When
the first declaration for block A is encountered,

COMMON /A/F,G

the compiler assigns F to word O relative to the start of common
block A, G to word 1, and leaves the counter for block A at 2.
This may be followed by a declaration of a block B:

COMMON /B/LINE

a counter for B is set up as a result. Still later the program
may continue the declaration for A:

COMMON /A/4,1

The compiler must then return to the counter for block A,
allocating H to word 2 relative to the start of common block A,
etc.

Common blocks may be declared by COMPASS by means of the USE
pseudo-instruction, which has the form

USE /block-name/

This imnstruction tells the assembler to start using the counter
for common block "block-name."” For example, the FORTRAN
declarations

COMMON /A/F,G
COMMON /B/LINE
COMMON /A/H,I

would be coded in COMPASS as

USE /A/
F BSS 1
G BSS 1
USE /B/
LINE BSS 1
USE /A/
H BSS 1
1 BSS 1
USE]

164

COMPASS

The instruction SAl H would then be translated into SAl 2 and
marked common relocatable with common block name A. The loader
would set aside four words for block A, and add the starting
address of block A to all instructions marked with that block
name. The final USE O specifies that following code is to go
into the usual, program relocatable, block.

Thus we have four kinds of addresses the loader will recognize:
absolute, program relocatable, common relocatable, and external.
What restrictions does this imply for assembly language coding?
In the first place, every address expression must fit into one of
these four types. For example, if A and B are program
relocatable symbols, the instruction

SB1 A+B

1s unacceptable because there is no way of indicating to the
loader that twice the address of the start of the program is to
be added to the instruction. On the other hand,

SB1 A-B

is acceptable since the difference of two program relocatable
symbols 1s an absolute expressione.

Second, the value of the operands of some pseudo-instructions
must be determined at assembly time; these operands must be
absolute expressions. One such instruction is DUP:

DUP A

where A 1s relocatable, 1is an error, since the assembler cannot
walt until the program is loaded to decide how many times to
duplicate the following code.

The remaining restrictions on the use of symbols hinge on whether
they are defined or not. This question is often confused by the
fact that "defined" may mean two different things. By
considering the modus operandi of the assembler, we should be
able to make all these restrictions clear and logical.

Consider the problem an assembler faces in processing

JP THERE
THERE PS

The problem is quite simple: when the assembler encounters the JP
instruction, it has no idea what the value of THERE is, so it

165

COMPASS

cannot generate any code. Yet we know the assembler handles such
a sequence; what does it do? The solution is equally simple: it
reads through the program twice. The first time it decides how
much space each instruction occupies, and thus determines the
value of every symbol; the second time through it knows the
values of all symbols, so It can evaluate address fields and
generate code. Each readirg through of the source program is
called a pass; thus COMPASS, and nearly every other assembler,
is a two-pass assembler.

Any expression that affects the amount of code to be generated
must be evaluated in pass one. Such an expression may therefore
contain only previously defined symbols, i.e., symbols whose
value can be determined from the portion of the program already
read. Expressions on which this restriction 1s imposed include
the repetition count in DUP instructions, the word count in BSS
instructions, and the two expressions which are compared in the
various 1IF instructions. If you look back over the examples in
this chapter, you will notice that we have been careful to define
symbols (usually by SET instructions at the beginning of the
program) before they were tested by IF instructions.

Expressions which do not affect the amount of code generated,
principally the address fields of machine instructions, are
evaluated during pass two. These expressions may reference any
permanently-defined symbol (any symbol defined by 1ts appearance
in the location fleld of a machine instruction or BSS), since the
values of such symbols are recorded during pass one. The values
of SET-defined symbols, however, cannot be saved from pass one to
pass two, since these symbols may take on many values in a
program. Such symbols are therefore reset "undefined" at the
beginning of pass two, and remaln undefined until the first SET
instruction for this symbol 1s encountered. Consequently, SET-
defined symbols may not appear in any expressions unless they
have been previously defined.

166

CHAPTER 5

DEBUGGING

5.0 INTRODUCTION

A large portion of the time devoted to program development is
spent in correcting errors (bugs) that occur in a program. The
process of locating and fixing these bugs 1s known as debugging.
Debugging can be, and usually is, the most tedious part of
programming. It ds a task that is very rarely escaped, and for
the beginning programmer, it is a frequent ritual. Debugging
also tends to be an ongoing process, mostly due to poor initial
program design, little forethought, and inadequate testing on the
part of the programmer.

Bugs fall into two major categories: syntax errors and logic
errorse Most compilers and assemblers assist the programmer with
syntax errors by pointing out the type of error present and the
statement in which it occurs. Some compllers even correct
syntax errors. These aids enable the programmer to quickly and
easily fix these types of bugs.

On the other hand, logic errors are often hidden deep within the
inner workings of a program, and their effects may not be
detected Iimmediately after their generation. For example, a
division may produce an indefinite, but the program will not
abort until this value is used in another arithmetic operation,
which may be many instructions later, or even in another
subroutine. Logic errors may also be intermittent, that is, they
may cause the program to fail only under certain conditions. For
these reasons, logic bugs give the programmer a much more
formidable challenge than do syntax errors.

Compllers and assemblers do not offer any aild to the programmer
for finding loglc bugs; bugs of this type require special
techniques. These techniques vary with the power of the
programming language used by the programmer. Since assembly
language 1s a low-level language with no I/0 primitives, its
fundamental debugging technique is the examination of register

167

DEBUGGING

and memory contents. Througzh this examination, the debugger can
trace erroneous values to the instruction that produced them.

In the past, this examination was done by physically entering
memory addresses Into a computer by sense switches and reading
their contents from a panel of lights located on the computer.
This technique required the programmer to have full use of the
computer while he was debugging. For a machine the size of the
6600, which costs several dollars a minute to operate, this
approach would be expensive. In i1its place, computer
manufacturers have developed a number of debugging aids. These
aids range from register and memory dumps to interactive
debuggers which allow the user to examine registers and memory,
as well as change their contents, while the program is executing.

Two important tools, the assembly listing and the load map, are
needed by the debugger before any attempt 1s made to find bugs.
These tools display the mewmory layout of the program, allowing
the programmer to determine which registers and memory locations
are of interest. The first part of this chapter will discuss
these tools, and the second will discuss the debugging aids
available to the COMPASS programmer.

5.1 THE LISTING

Generally, assembly listings generated from COMPASS subprograms
consist of at most five sections. These sections are (in order
of appearance): the header page, the octal and source listing,
assembler statistics, the 2rror directory, and the symbolic
reference table. Each of these sections, with the exception of
the error directory, appears for each subprogram in the source
texte The name of the subprogram appears at the top left hand
corner of each page belonging to that subprogram. Pages Al-A4
(Appendix A) show a typical listing.

The header page (Al) is analogous to a table of contents. It
designates the major sections of code that are defined in the
subprogram, specifying the name, starting address, and length of
the subprogram; the names, types, starting addresses, and
lengths of the blocks; the names and addresses of the entry
points; and a list of all external symbols defined by the EXT
pseudo-op. Blocks that appear in the subprogram are usually

168

DEBUGGING

common data blocks or program blockse The name PROGRAM#* refers
to the primary block of the subprogram, the block into which all
instructions and data are put if no USE pseudo-instruction
appears. If the subprogram does not contain any common blocks,
the block usage description does not appear.

The octal and source listing (A2) is the most informative section
of the listing. Each 1line of the source text 1s printed
alongside the octal code generated for the instruction.
Instructions that are packed into one word are displayed in an
Indented fashion, each successive instruction being indented
further. The first instruction packed into a word is preceded by
the relative address of the word in which the instructions are to
be stored. Notice that no-ops used to fill words are not
displayed.

If an iInstruction contains an address, the octal code may be
suffixed by a +, C, or X. These flags indicate how the address
is to be treated when the code 1is being loaded. The "+"
indicates that the address is relocatable. The "C" means that the
address references an element in a common block. The "X"
indicates that the address Is external to the subprogram.

If any syntax errors occur in a source statement, a flag appears
on that line, in the left hand margin. The flags are single
letters. It is possible to have more than one flag appear for a
single source statement. Some examples of syntax error flags
appear on the lsting on page A2.

The assembler statistics appear immediately following the octal
and source statement listing. The statistics give information
about the size of the subprogram, and the length of time required
to assemble it. They are of little interest to the debugger.

The error directory (A3) appears only if syntax errors occur in
the source text. Each type of error flag in the octal and source
statement listing is displayed with a brief description of the
error and the pages in which the error occurs.

The symbolic reference table (A4) is a quick index into the
subprogram. It aids the programmer in both debugging and code
modification. Each symbol used in the subprogram appears in the
table with its value and a series of page/line references. The
references specify the pages and lines on which the symbol
appears. Some of the page/line references are postfixed by a
flag. The flags and their meanings follow:

DEBUGGING

Symbol definition statement (EQU or SET)
Symbol defined as an entry point

Symbol 1is used in condition test

Symbol used ir location field

Symbol used in store instruction (SA6 or SA7)
Symbol defined as external

Mmoo

If a "U" prefixes a symbol’s name, the symbol is undefined,
implying one of three conditions: the symbol was not declared
external, its definition was omitted, or the symbol is a
typographical error.

5.2 THE LOAD MAP

A binary file produced by a compiler or an assembler from a
source program 18 not yet in a form that is executable. The
compiler or assembler has coded each common or program block
separately, with each one beginning at address zero. Since
blocks cannot be in the same memory locations, they must be
relocated (see section 4.7). Also, many library routines that
are referenced but not included in the Source program must be
added (for example, math routines such as SQRT and SIN and
FORTRAN I/0 routines). The addition of library routines, linking
of subroutines, relocation of blocks, and all other tasks
necessary to get a binary file into executable form are done by
the loader.

For each common and program block in the binary file and for
added library routines, the loader allocates a block of memory.
The first location of a memory block is called the starting
address of the common or program block. These starting addresses
are used by the loader to adjust the relocatable, external, and
common addresses referenced in the program blocks. The type of
adjustment is specified by the flag on the octal and source
statement listing. The address at which the entire program
starts 1s called the first word address (FWA).

A load map displays the relocation information. It gives the
name of each block plus its starting address and length, the name
of the file containing the binary code, the date the binary code
was created, and other miscellaneous information about the block.
Blocks are printed in ascending order of starting addresses. The
load map is produced by the control card MAP (PART), which may

170

DEBUGGING

appear anywhere prior to the invocation of the loader. (Some
gystems automatically produce a load map.)

Page A9 contains the load map for the FORTRAN program on page A5
and the COMPASS routine on pages A6-A8. Looking at the map, we
see that the common block VECTOR is loaded at the lowest address,
111 (user defined common blocks are always loaded before the
first routine which references them). The routine VECLIB is
loaded at location 2232 and consists of 15 words of instructions
and data. As VECLIB is being loaded, the loader adds the
starting address, 2232, to each relocatable address. For
example, the assembler generates 0400000012+ for the EQ LOOPI
instruction at the bottom of page A6, but when the routine is
reloacated the loader adjusts the code to 0400002244 (2232 + 12).
Note that most of the load map consists of '"library" routines
that have been added to the original binary file (LG O).

5.3 THE DUMP

The most basic debugging aid avaflable to the COMPASS programmer
is the dump. A dump is a print-out of the contents of
consecutive memory locations. The range of locations printed is
stated on the first line of the dump. The contents of four
locations are printed on each line, with the address of the first
location printed on the left hand side of the page. The message
"duplicated lines" appears if successive groups of four locations
have the same value as the last group that was printed.

The dump is generated by the control card DMP (start,end); the
parameters (octal values) specify the starting and ending memory
locations of the dump, respectively. If only one parameter is
given, a dump is produced that starts at the first word address
(FWA) and terminates at the parameter value. Page AlQ
illustrates a dump produced by the control statement DMP
(100,200).

The dump glves the debugger "postmortem'" information, that is,
values In memory at the time of program termination (either
normal or abnormal). Although the dump does not indicate how
these values change during execution, it can give the debugger
some clues in finding bugs. For example, the COMPASS routines
shown on pages A7 operate on the vector VEC. If we suspected

171

DEBUGGING

that one of these routines was malfunctioning, we could use a DMP
command to print the final value of this vector. VEC is in the
common block VECTOR at the relative address zero. Looking at the
load map (A9), we see that VECTOR’s starting address is 1l1l1.
Therefore, we can include a DMP control card with appropriate
parameters to see if the correct values are present in the
vector. {(DMP(111,123) would do the trick if the vector were ten
elements long.) By examining the dump, we can determine if the
values seem totally incorrect, or if something more subtle has
occurred, e.g., only nine partial sums were computed instead of
ten. (This error is frequent, and i1s known as the off-by-one
bug.)

A dump is also produced by the operating system when a program
terminates abnormally (see example on page Al6). It is 100 octal
memory locations in length, with the instruction that caused the
program to terminate in the middle. Preceding the dump are the
contents of the first two words of the user’s memory area, RA
(reference address), and RA+1l. Bits 30-47 of RA are of special
interest to the debugger. They specify the memory location of
the next instruction word to be executed when the program
terminated. The instruction causing termination, therefore, is in
the previous word. (On a machine having multiple functional
units, Hke the 6600 (see section 6.1), the Iinstruction causing
termination may be located in one of a few previous words.)
Above RA and RA+l is the exchange package. The exchange package
gives the values in the reglsters at program termination, the
contents of the memory addresses stored in the A registers, and a
series of program parameters. The only program parameter of
interest is the fleld length (FL).

A dump produced by the operating system is very useful to the
debugger, and can often lead directly to the instruction causing
the program to terminate. 'This is possible because the register
values printed in the exchange package are the values in the
registers at the time of the error. Thus, by inspecting these
values, important leads can be discovered.

Pages All-Al4 show a COMPASS function WORDS for computing the
number of words in a sentence, along with a FORTRAN main program
which calls WORDS. Unfortunately, as the dayfile on page Al7
shows, this program '"bombs out" with a CM OUT OF RANGE message.
Let us consider how we would track down the source of this error.
The dayfile message means that the program referenced a memory
location outside of its field length. Either the program
branched to an address outside the field length, or one of the A
registers has been set to a value greater than or equal to the
field length. Looking at the exchange package (Al6), we compare

172

DEBUGGING

the field length (FL) with each of the A registers (except of
course AQ, since assigning a value to A0 does not cause a memory
reference). We see that FL is 15200, and the address in Al is
15236. This tells us that the instruction that terminated the
program was a SAl.

Now our job is to find the SAl instruction. Looking at page Al6,
we see bits 30-47 of RA contain 4564 (we could also have obtained
this address from the dayfile message, CPU ERROR EXIT AT 004564).
Since our program was executed on a Cyber 720, which does not
have multiple functional units, we know that the instruction
causing program termination is in location 4563. Examining the
load map, we note that the largest starting address less than
4563 is that of WORDS, 4556, By subtracting the two values, we
find that the instruction is in the program WORDS at relative
address 5. Looking back at the listing (Al13), we see that word 5
contains a SAl Al+B2; our culprit is found!

5.4 REGDMP

Using the dump and exchange package, we were able to find the
instruction that contained a bug, but this did not give us any
clues about the cause of the bug. However, we must realize that
any postmortem data about a program glves little information
about dynamic changes in register and data values. Also, if a
program terminates normally, but produces wrong answers,
postmortem dumps may be of no help at all.

Thus, a more dynamic way of examining registers is needed —-- a
method of looking at the values of registers while the programn is
executing. This is not a trivial task. Any program that is
going to allow us to look at the contents of the registers must
use the registers itself, but we do not want the contents of the
registers to be altered. Impossible you say; well, it isn’t.
Appendix B contains a routine called REGDMP and its output
routine that do the job. REGDMP is a wutility that saves the
contents of all 24 registers, calls a FORTRAN routine to print
thelr contents, and then restores the previous register values.
It is a very cleverly designed routine, and the reader is invited
to peruse the code.

To use REGDMP, it must be first declared external to the
subprogram. The debugger can then call the routine before or

173

DEBUGGING

after any instruction under suspicion (assuming that REGDMP has
been installed in vyour system Ilibrary). The output Iists the
location from which the call was made, the number of times the
routine was called, and the contents of the 24 registers. We

continue the "bug hunt" from the previous section to show how
REGDMP is used.

We found that the SAl Al+B2 instruction terminated the program,
but we are still unsure of the underlying cause of the error. We
need to examine the values bdeing assigned to Al. Placing a call
to REGDMP before the loop gives us the initial address of the
array being searched; this is necessary for comparisons to
subsequent values of Al. A second call to REGDMP is placed after
the SAl Al+B2. The output of this call gives the needed
information about the dynamic changes in Al. (Page Al8 shows the
code with the REGDMPs added.)

The output of the REGDMP (A19 - 20) displays the changes to Al.
The first gives the initial value with subsequent REGDMPs giving
values generated in the loop. The program WORDS is designed to
search through successive elements of an array, but we see from

the values of Al that it goes through the array in leaps and
bounds.

The bug has been found: Al is being assigned its previous loop
value plus the increment value of B2. This produces larger and
larger addresses, causing the program to eventually access a
location outside its field length. (Note that if the array were
smaller, the program would not have aborted, but simply have
given incorrect results; in this case, the described technique
would still succeed.) We can fix the bug by replacing the SAl
Al1+B2 with SAl Al+l.

5.5 REMARKS

The scenarios of the previous sections describe techniques using
the avallable debugging aids. Considerable practice is required
before one can master them. For this reason, debugging is often
called an art. The skillful debugger, like the experienced
detective, learns to enjoy the hunt and to remember the
significance of the many different clues he has seen.

174

DEBUGGING

The best form of debugging, though, 1s good programnming. A
thorough understanding of a problem and its inputs, plus careful
program design decreases the amount of debugging. Well-designed
and commented code helps in finding and correcting bugs.
Programs with many branches and devious bits of code often make
nodifications difficult, and can lead to more bugs.

175

OPTIMIZATION

CHAPTER 6

OPTIMIZATION

6.1 MACHINE ARCHITECTURE AND CODE OPTIMIZATION

The goal of this chapter is as modest as that of the last: to
describe those features of the 6000 (Cyber 70 Model 74) which the
programmer can take advantage of in optimizing his program. We
shall not discuss the 6200 or 6400/6500 central processors (Cyber
70 Models 72 and 73) or the Cyber models 171-174, 720, and 730;
the optimization possible on these machines is rather limited,
and the few pertinent rules are included in both the COMPASS and
hardware reference manuals. Nor shall we consider all the
details of 6600 instruction timing; this would in fact be quite
difficult because 6600’s are not all identical in some aspects
affecting timing.

The high speed of the 6600 is due in good part to two unusual
features of the central processor: multiple functional units and
an Instruction stack. The 6200, 6400 and 6500 central processors
(and Cyber 72, 73, 171-174, 720 and 730), like most computers,
have a "unifled arithmetic unit,”" a single "box" of electronics
which executes all instructions. As a result, instructions are
executed sequentially (i.e., one at a time). In contrast, in the
6600 central processor the hardware to execute the instructions
has been divided into several functional units, each of which can
execute a few of the central processor instructions, Each
functional unit can only handle one instruction at a time, but
several units can be operating concurrently. Thus, if two
instructions in sequence do not require the same functional unit,
and the result of the first instruction is not used as an operand
of the second, the two instructions can execute in parallel.

The control unit in the central processor decodes (analyzes) the
instructions to determine the functional unit, operand, and
result registers required, and dispatches the instructions to the
appropriate functional unit. To keep track of all the functional
units and the registers they require, it uses a complex maze of
registers called the scoreboard. The following outline of the
stages in the execution of one instruction gives some idea of the
scheduling problems involved:

177

OPTIMIZATION

1. Decode instruction, determine functional unit, result
and operand registers;

2, TIf functional unit is busy (executing another
instruction) wait until unit is free;

3. If result register is reserved by another functional
unit which is currently busy and which will store its
result in this register, wait until the other
functional unit stores its result;

4, Pass instruction to functional unit (this is called
"instruction issue');

5. Reserve result register for this functional unit, so
that a subsequent dinstruction which uses that
register will wait until the current instruction has
been conmpleted;

6. Functional unit waits until operands are available
(until operand registers are not reserved, as defined
in step 3);

7. Instruction 1s executed by functional unit;

8. Functional unit stores result in result register and
clears the reservation of that register.

The control unit can decode and issue an instruction every minor
cycle (100mns), so the 6600 has a theoretical limit of 10mips
(million instructions per second). Register and functional unit
conflicts in typical unoptimized code reduce the speed to
something like 3mips. Careful optimization, by reducing register
and functional unit conflicts, can sometimes double execution
rate, to around 6mips.

The 6600 has ten functional units: branch, Boolean, shift, long
add, floating add, divide, (2) multiply, and (2) increment. The
multiply and increment units are duplexed; that is, there are two
identical functional units of each kind, and an instruction is
issued to whichever unit is free. The instructions executed by
each functional unit and the execution time for each instruction
are tabulated for the convenience of the reader in the last
section of this book.

178

OPTIMIZATION

A few general observations can be made about these execution
times. One is that branch instructions are abysmally slow; the
6600 is one of the few machines which takes longer to branch than
to perform a floating point multiplication. An X-register
branch, for example, usually takes 15 minor cycles (1500ns) if
the branch is made, and 14 minor cycles if the branch is not
taken. During those 14 or 15 cycles, no other instructions are
issued. Consequently, an efficlent programmer will avoid using
branch instructions when equivalent sequences without branches
will do as well; a prime example is the absolute value function
(see section 3.14). Under certain circumstances jumps will take
less time; these conditions will be discussed at the end of this
section.

Another significant observation is that, relative to the other
instructions, a load from memory takes quite a long time. The
set-A instruction executes in three minor cycles; an additional
five cycles are required to fetch the word from memory (more if
there is a conflict with other memory accesses), so that a total
of eight cycles is required to perform a load. As a result, the
load instruction should generally not be placed immediately
before the instruction which uses the word loaded; whenever
possible, the load should be placed a few instructions earlier,
so that the memory fetch is overlapped with other calculations.
For example, suppose our program must jump to EXIT if either Bl
is negative or the contents of SWITCH are non-zero. Until now,
we would have coded:

NG B1,E XIT
SAl SWITCH
NZ X1,EXIT

If the NG branch is not taken, the program must wait eight cycles
after the NG is completed until the X1 load is finished and the
NZ instruction can start. If we put the load first, however,

SAl SWITCH
NG Bl,EXIT
NZ X1,EXIT

all but one cycle of the load operation is overlapped with the NG
instruction; unless the NG branch is almost always taken, the
second sequence is faster.

These simple rules go only a short way towards maximizing
instruction overlap. A high level of optimization is usually
achieved only through a lengthy procedure, which starts with a
timing analysis of the code sequence, tabulating instruction

179

OPTIMIZATION

issue, execurion start, result available, and functional unit
free times for each instruction. This analysis is then
scrutinized to determine where the greatest delays occur;
instructions are then reordesred or registers reassigned to reduce
the delay, and the timing analysis 1s repeated.

We now turn to the other unusual feature of the 6600 central
processor: the instruction stack. The stack is a set of eight 60
bit registers, called I0 through I7. During the sequential
execution of instructions (no transfers), Il holds the current
instruction word, I2 through I7 contain previously executed
instruction words, and I0 contains the next instruction word:

instruction word
from location

72 17
73 16
previously
74 I5 executed
instruction
75 14 words
76 13
l——————
77 12
CURRENT
100 I1 te—— INSTRUCTION WORD
101 I0 le—— next instruction
L - word

After all the instructions in the current instruction word have
been issued, the contents of each I register are moved into the
next-higher—-numbered register; the contents of I7 are lost, and
the next instruction word from memory is brought into IO:

180

OPTIMIZATION

- 4
16 4}3
I5 j’
)
D)
Pa—
I1 :>
10 ‘)

next instruction word from memory

Normally, when a transfer is made the stack is "flushed" (all its
entries are cleared), and the instruction word at the transfer
address is brought into I0, and from there into Il. If the
target instruction word is already in the stack, however, no
menory reference is necessary; the current instruction word
pointer 1s simply reset to point to the I register containing
that word. For example, if an instruction in location 100 causes
a transfer to 73, the pointer will be set to I6:

contains contents
of location

72 17
current
73 16 je instruction
word
74 I5
75 14
|
76 13 ;
77 12
100 Il EQ B1,B2,73
101 10

181

OPTIMIZATION

This will happen whenever a loop of seven or fewer instruction
words (an '"in-stack loop") is belng executed. As long as the
program remains in this loop, all instructions are taken from the
stack. Since an in-stack branch need not wait for a new
instruction word to be fetched from memory, it takes much less
time (600ns less) than an out-of-stack branch. In addition,
while in the loop no delays are possible due to instruction
fetches. Short program loops may therefore be speeded up
significantly if they can be made to fit into the stack.

There are several means for shortening loops which almost fit
into the stack. The most obvious method is the removal from the
loop of instructions which can just as well be executed before
the loop begins. Setting registers outside the loop will also
often be helpful. Even if this does not eliminate an Instruction
in the loop, 1t may be possible to replace a 30 bit with a 15 bit
instruction. A SBl1 Bl+1l inside a loop, for example, can be
replaced by SB7 1 prior to the loop and SB1 BIl+B7 in the loop.

Finally, we should note that the unconditional branch
instructions always flush the stack, even if the target
instruction word 1s in the stack. The RJ and JP instructions
therefore cannot be part of an in—stack loop (this is the reason
for using EQ BO,BO,... everywhere instead of JP).

The 7600 uses the same techniques as the 6600 for increasing
processor performance--nultiple functional units, instructiorn
overlap, and an instruction stack. As a result, most of the
techniques described above for optimizing 6600 code are
applicable to the 7600 as well. The main difference of the 7600
design is that the functional units are pipelined. A pipelined
instruction unit is divided into stages corresponding to the
steps required to perform the iInstructions. The clearest example
is floating=-point addition, which must be done in four steps:
subtracting exponents, shifting one coefficient, adding
coefficients, and possibly shifting the result by one bit. In
executing one instruction, the operands come in at one end of the
"pipe", they move through these four stages, and a result comes
out at the other end. The advantage of a pipelined unit is that
several pairs of operands can be in the unit, at different stages
of processing, at the same time. Once a pair of operands has
moved from stage one to stage two, a new pair of operands can be
accepted into the first stage. For example, floating addition on
the 7600 requires four cycles (110 ns); if there are several
successive floating point addition instructions, the first one
could start at cycle n, producing a result at cycle n+4; the
second could start at cycle n+l, producing a result at cycle n+5;
the third could start at cycle n+2, etc. Most 7600 functional

182

OPTIMIZATION

units can accept new operands every cycle; the multiply unit
accepts new operands every second cycle, and the divide unit
(which is not pipelined) every 18th cycle. The internal design
of the 7600 has been carried forward to the Cyber 70 model 76 and
the Cyber 170 models 175, 176, 750, and 760,

6.2 OPTIMIZING THE PROGRAMMING EFFORT

The difference between optimization in the small and optimization
in the large 1is the difference between good coding and good
programmning. We have briefly considered the former in the last
section; in this final section I shall venture a few words on the
latter,

Efficient program development is largely a matter of exercising
good judgment in program design and choice of implementation; as
such, it cannot readily be reduced to a set of hard and fast
rules. It is usually learned only through bitter experience,
when it is learned at all. The most I can hope to do in these
last few pages is to make the experience a little less bitter by
repeating some warnings I have made before on three points:

l. Design carefully, One of the most common failings of program
planners 1s an optimism concerning programmer ability, which
obscures the ease with which even the best programmers can
founder in a mass of detail. Even major computer manufacturers
with years of experience regularly plan systems an order of
magnitude more complex than earlier systems, and then are
surprised when they are "ready'" years late, if at all, and still
contain an order of magnitude more bugs than the earlier systems.

This is not to say that ambitious projects never succeed, but
rather that they require careful planning to eliminate needless
detail, to develop a simple structure for the entire program, and
to prepare complete documentation for the system.

2. Use the appropriate language. If you have digested the last
six chapters -- and, more important, have coded enough routines
on your own == you now possess two of the most important skills
of any programmer: machine language and macro programning. I
hope you have also gained some appreciation for what I feel to be
the beauty of this machine and the elegance of some of the tools,
such as the macro. Still, one must keep in mind that programmning
languages are only tools, each with its proper role.

183

OPTIMIZATION

When a suitable high-level language is available, use it; it will
make the program easier to write, debug, modify, and read.
"Descend" to assembly language when time or space requirements
are critical, as they often are in system routines, or when no
high-level language is suitable. Use macros whenever
appropriate, not just to shorten the source progranm, but to
indicate aspects of the structure of your program.

3. Optimize code only where necessary. Some people find
(timing) optimization a lot of fun, but good optimization is
very time-consuming (for the programmer) and the resulting code
is generally harder to debug, modify, and read. Do it only for
code which will be executed very often, such as the SQRT routine
or the inner loop of a matrix multiply. And keep in mind that
there is another kind of optimization == minimization of space
required —— which is more important for the many system routines
which are loaded into memory very often, but executed
infrequently (initialization and error routines, for example).
Space optimization 1s generally a matter of register allocation
and subroutine design and is, except In the most extreme cases,
less tedious than time optimization.

Above all, some perspective and common sense are needed in
deciding when and how to optimize. A good system designer is
willing to sacrifice some efficiency in individual routines in
order to have a cleanly structured system which can be debugged
faster and maintained more easily. Don’'t become one of those
people who are so obsessed with saving computer time that they
forget that computers are supposed to save people time.

184

EXERCISES

EXERCISES

Given below are twenty~five simple exercises in assembly language
programming; these are presented as specifications for
subroutines, functions, or macros. The first fourteen can be
done after reading Chapter 3, the next seven after Chapter 4. I
have intentionally not keyed these exercises to individual
sections, since many exercises that can be done after reading
part of a chapter may profitably be recoded into more efficient
routines after progressing further in the text. The last four
problems are related to the discussion of the Compare and Move
Unit, section 3.16, but they can all be done on a machine without
aCMU.

Solutions to a few exercises which I found of particular interest
are included at the end. Readers may also wish to write some of
these routines in FORTRAN, and compare the code generated by the
compiler with their own assembly language versions. (Both the
RUN and FORTRAN Extended compilers will optionally produce a
listing of the generated code).

l. Write a function INDEX with three arguments:

INDEX (ITEM,LIST,LENGTH)

where LIST is a one=-dimensional array of LENGTH words, whose
value is the index of the first occurrence of ITEM in LIST,
starting with LIST (1); if ITEM does not appear in LIST, INDEX
returns 0. Stated another way, INDEX returns n if LIST (n) =
ITEM and LIST(1l) through LIST(N-1) are all # ITEM.,

2, Write a subroutine SORT with two arguments:
SORT(LIST,LENGTH)

where LIST is a one-dimensional array of LENGTH words containing
integer values. Sort should rearrange the elements of LIST into
ascending sequence, with LIST(1l) containing the smallest element.

Remark: Any sorting algorithm will be satisfactory. For those
not familiar with any sorting methods, may I suggest an exchange
sort, which could be coded in FORTRAN as follows:

185

EXERCISES

LMl = LENGTH-1
DO 10 I=1,LM1
IP1 = I+l
po 10 J=IP1,LENGTH
IF (LIST(I).LE.LIST (J)) GO TO 10
ITEMP = LIST(I)
LIST(I) = LIST(J)
LIST(J) = ITEMP
10 CONTINUE

It

il

0f course, the assembly language version of this routine should
require fewer memory references. Not only is it possible in
assembly language to interchange the contents of two variables
without using a third, temporary variable, but it is also
possible to keep LIST(I) in a register through the loop on J (so
that at most one load and one store are required for each
iteration of the inner lootg).

3. Write a subroutine TRANSPO with two arguments:
TRANSPO(MATRIX,N)

where MATRIX is an N*N array. TRANSPO should replace MATRIX with
its transpose (i.e., interchange every pair of off-diagonal
elements MATRIX(I,J) and MATRIX(JID)).

Remark: This is essentially an exercise in efficient array
indexing. Plan your choice of indices carefully before starting
to code so that the number of operations in the inner loop will
be minimized.

4, Write a function NFACT of one argument
NFACT(N)
which returns the value of N factorial (if N=0, it returns 1).

Remark: If the integer nultiply feature is not installed, the
usual FORTRAN loop for factorial,

NFACT = 1
DO 10 I=2,N
10 NFACT = NFACT*I

186

EXERCISES

will most likely generate code to pack NFACT before each
multiplication and unpack the product. Your assembly language
routine can maintain NFACT in '"packed" format (i.e., as an
unnormalized floating point number) and only unpack the final
result.

5. Write a function EXP of one argument:
EXP(X)

which returns the value of e**x

Remark: Use the series expansion for the exponential function,
exp(x) =1 + x + x**%2/21 + x*%%3/31 + ,..

Keep adding terms until the current term divided by the sum of
all previous terms is less than a given number, say 1.E-10.

Remark: If you encounter difficulties for large negative values
of x (due to the finite precision of the floating point
arithmetic), compute exp(abs(x)) and then use exp(-x) = l/exp(x).

6. Write a function STDDEV of two arguments:
STDDEV(DATA, L)

where DATA is a one-dimensional array of length L containing
floating point values. STDDEV should return the standard
deviation of the elements of DATA, defined as

{(1/<L—1)>*Z (DATA(1) - DATA)*#*2}%%(1/2)

where DATA is the average of the elements of DATA, and the sum
ranges over i from 1 to L.

Remark: To evaluate the formula given above, the routine must go
through DATA twice, first to compute the average and then to
compute the sum of the squares of the differences from the
average. This formula can be rewritten as

(L/(L=1D)*{) (DATAMW)I*R2 = (D DATAMI**2/L)}}*#(1/2)

187

EXERCISES

Using this second formula, the standard deviation can be computed
after one pass through DATA, in which both the sum and sum of
squares are computed.

Remark: As the final step in the routine, to compute the square
root, one can call the FORTRAN library SQRT function, just as one
would in a FORTRAN routine. Don’t forget to include an EXT SQRT
in STDDEV.

7. Write a function MULT of two arguments:
MULT(N1,N2)

which returns the 60 bit prcduct of the integers N1 and N2. Two
methods are suggested:

(a) Use the "shift and add" method described in Chapter 1. That
is, if the low bit of the multiplier is a one, add the
multiplicand into the runnirg sum of partial products; then shift
the multiplicand left one bit and the mnultiplier right one bit.
Repeat these two steps until the multiplier is zero. This is a
very slow method, but is helpful in doing problem 8.

(b) after packing both integers (if the integer multiply feature
is not available), compute both the floating and DP products;
then combine the low 12 bits of the floating product with the 48
bits of the DP product to form a full 60-bit product.

8. Write a function RBAIEX of two arguments:
RBAIEX(R,I)

where R is floating point and I integer, which returns the value
of R**I (RBAIEX stands for real base, integer exponent). The
obvious method is to multiply R by itself I times; a more
efficient algorithm, however, is analogous to suggestion (a) for
the previous problem: Initialize the result to I. If the low
order bit of the exponent is a one, multiply the base into the
result. Square the base and halve the exponent (shift right
one). Repeat until the exponent is zero.

Remark: Check if the exponent is negative; if so, return
1/R**TABS(1).

188

EXERCISES

9. Write a subroutine similar to CDC (section 3.15) which
- produces an octal instead of a decimal integer, i.e., according
to 020 instead of 120 format.

Remark: This routine is much simpler than CDC, since 020 format
always produces 20 digits, no minus sign, and no "R'". The
algorithm required is in fact very similar to the character
unpacking routine, except that here 20 3-bit fields must be
unpacked, and each converted to a display code digit. (The
divide and find remainder algorithm used in CDC would not work
for numbers larger than 2*%*48 , and hence cannot be used here).

10, Write a subroutine IDN (interpret decimal number) with two
argunents:

IDN(NUM, CHAR)

where CHAR is an array of 20 words, each containing one display
code character, right justified, zero filled. If CHAR contains a
valid decimal integer, including a possible plus or minus sign,
IDN should return the value of the integer in NUM. Thus, IDN
performs the inverse function from (¢DC, provided that the
absolute value of the number is less than 2**48,

Remark: The value of NUM when CHAR does not contain a valid
decimal integer is not specified. The routine should, however,
check for such errors as more than one sign character or an
invalid character and return some error indication. This error
indication should be clearly stated in the comments for the
routine.

Remarks: In the usual conversion algorithm, when a new digit is
fetched, the value of the number encountered so far is multiplied
by ten, and the value of the new digit is added in. If the
multiplication 1is performed by the usual method, there is an
inherent limit of 2#%%48; on the other hand, if the multiplication
is effected by a combination of left shifts and additions,
numbers up to 2%*59 can be accepted.

Remark: The routine should in either case place some limit on
the magnitude of numbers which will be accepted, and return an
error indication if this limit is exceeded.

189

EXERCISES

11. Write a subroutine I0N (interpret octal number) with two
argunents:

TON(NUM,CHAR)

which is identical to IDN except that the series of digits in
CHAR is to be interpreted as an octal integer. This routine is
thus the inverse of the one specified in exercise 9.

Remark: Remark 1 from exercise 10 applies here, too. Since
numbers of up to twenty digits must be accepted, the
multiplication referred to in the second remark must here be
performed by a left shift. Finally, since CHAR can contain at
most twenty characters, the maximum allowable value, 2*%%60-1,
cannot be exceeded.

12. Combine the routines IDN (exercise 10) and TION (exercise 11)
into a subroutine IN with two arguments:

IN(NUM, CHAR)

as follows: 1if the series of digits in CHAR is followed by a "B"
then interpret the digits as an octal number (as ION would),
otherwise interpret the digits as a decimal number (as IDN
would).

13. Write a function CHARCT of one argument:
CHARCT (NAME)

whose value is the number of non-zero characters in NAME (between
0 and 10). For example, CHARCT(1L*) is 1, while CHARCT(1H*) is
10.

l4. Write a function DADD of two arguments:
DADD(N1,N2)

to perform decimal addition. The operands N1 and N2 are each
single words containing ten decimal digits in display code (e.g.,
10H0000012345); the value of the function should have a similar
forn.

190

EXERCISES

Renmark: Such decimal arithmetic, while not available in
FORTRAN, is a standard part of COBOL and PL/1.

Remark: A straightforward algorithm can be written to perform
the addition serially, one digit at a time. However, it is
possible by careful analysis to devise a routine which adds all
ten digits simultaneously, and is consequently much faster.

15, Vrite a set of four macros, CLOAD, CADD, CSUB, and CSTORE
which perform the same operations as LOAD, TADD, ISUB, STORE
(Section 4.3), but on complex numbers.

Remark: A complex number is two floating point numbers stored in
successive memory words. The first word contains the real part
of the number, and the second word the imaginary part.

Remark: The ambitious reader may wish to incorporate these
complex operations into the set of mixed-mode arithmetic macros.
Conversions should then be performed according to the rules of
FORTRAN.

16. Modify the FADD and FSUB macros (section 4.3) to test if the
result is infinite, and, if so, call a (FORTRAN) subroutine to
print an appropriate error message.

17. Write a function SUBARGS with no argument (invoked in
FORTRAN by

I = SUBARGS (DUMMY)

where the argument is ignored), which returns the number of
arguments with which the routine which calls SUBARGS was invoked.
For example, if

SUBROUTINE ROSSINI (V, E, R, D, I)
INTEGER SUBARGS
K=SUBARGS (DUMMY)

END

191

EXERCISES

is invoked with five arguments
CALL ROSSINI (S, E, VvV, I, L)

K will have the wvalue 5, while if it is invoked with three
arguments

CALL ROSSINI (B, A, R)

K will have the value 3.

Remark: Every FORTRAN Extended Subprogram begins with a '"SAQ Al"
and saves the address of its parameter list in AO throughout the
subprogram (this is why a COMPASS routine called from FORTRAN
should not change the value of AO). Therefore, when SUBARGS is
called, AO will point to the argument list of the calling
procedure; SUBARGS nust determine how long this list is.

18. Modify the INTEGER and REAL macros (p.l150) to accept
arguments of the form

INTEGER ARRAY [100]
and generate in this case

ARRAY BSS 100
ARRAYS SET 0

The array "dimension" can be any valid address expression. The
macros should continue to accept declarations of "simple
variables'", without any dimension, and generate a BSS 1.

Remark: Rather than repeat the code for analyzing the argument
in INTEGER and REAL, place this code into a single macro which is
invoked by both INTEGER and REAL.

Remark: Once this is done, it 1s a simple matter to modify the
fancier INTEGER and REAL macros (p. 162) to accept a list of
symbols with dimension declarations, such as

REAL (Af20],B[SIZE],C)

192

EXERCISES

19. Using the code developed for exercise 18, modify the
arithmetic macros to permit reference to subscripted variables:

LOAD Al1l]
ADD B[I]
STORE C[3]
The subscript must be either an integer or a variable name
(symbol). If the subscript is an integer, it is added to the
array address to yleld the effective address; if the subscript is

a varlable, the contents of the variable are added to the array
address to yield the effective address. For example

LOAD A[2]
should generate

SA5 A=-142

BX6 X5
while

LOAD AlT1]
should generate

SA4 I

SA5 X4+A-1

BX6 X5

Note that A-1 is used because, by FORTRAN convention, the address
of A(l)= the address of A.

Remark: Symbols and integers are easily differentiated, since
our symbols always begin with a letter, integers with a digit.

20. Vrlte a three-way IF macro for the arithmetic macro package,
with the form

IF3 N,z,P

which branches to Z if the accunulator is zero, to N if it is
negative, to P if it is positive. N, Z, and P may be arbitrary
address expressions. When two of the address expressions are
equal, the sequence of generated branches should be simplified if
possible.

193

EXERCISES

21. Modify the LOAD and STORE macros (p. 130) so that if a STORE
is immediately followed by a LOAD referencing the same location
as the STORE, the LOAD will generate no code. For example,

STORE A
LOAD A

should generate simply

SA6 A

22. Write a function ICOMPAR of two arguments

[COMPAR(M,)

such that
iF M=N, ICOMPAR(M,N)=0
IF M>N, ICOMPAR(M,N)>0
IF M<N, ICOMPAR(M,N)<0

where M and N are any integers.

Remark: If | M-N|] < 2**59-1, the routine IDIF presented in
section 3.9 would be a satisfactory solution. If this is not the
case, however, subtracting N from M will cause integer overflow,
meaning simply that the difference is too large to represent as a
60-bit ones-complement intecger. In that event the sign of the
difference will not indicate which number is larger. This
difficulty mav be circumvented by first testing the signs of the
arguments or by comparing first the high-order bits and then the
low-order bits of the numbers. The latter is analogous to the
technique presented in section 3.16 for comparing two 60-bit
quantities treated as positive integers. Alternatively, if a CMU
is available, the test may be performed by a suitable sequence of
compare instructions.

23. VUrite a function B2Z of one argument
B2Z (CHAR)

which returns the value of CHAR, a 10-character string, with each
occurrence of a blank character (55 base8) replaced by 00.

194

EXERCISES

This routine can be written in a straightforward manner, using a
loop which iterates over the 10 characters. As in the case of
CHARCT and DADD, however, (exercises 13 and 14) it is possible to
code a faster routine which tests and replaces all 10 characters
simultaneously.

24, Develop a set of macros for operating on character strings.
In contrast to the arithmetic macros described in Chapter 4,
these macros will take their operands from and return their
result to memory. A minimal set would include three macros: one
for allocating a variable, one for moving a string, one for
comparing strings. The allocation macro will have two arguments,
the name and length of the string:

CVAR ASTRING, 20

This would set aside a 2~word (20-character) block called
ASTRING, and assign the symbol ASTRINGS the value 20. The latter
operation will make it possible for the move and compare macros
to determine the length of their arguments. The move macro will
take two arguments, the source and target strings:

MOVE FROMSTG, TOSTG -

The problem arises of what to do if the strings are of different
length. The simplest solution i1s to move the first n characters
of FROMSTG to the first n characters of TOSTG, where n is the
minimum of the lengths of the two strings, Optionally, one could
fill any remaining characters in TOSTG with blanks. The compare
macro takes as arguments two strings and a label:

IFEQ ASTRING,BSTRING, INDEED

and branches to the label INDEED if the strings are equal. Again
a question arises if the lengths of the strings differ. One can

say that the strings are equal if the first "n" characters are

identical, where "n" is the length of the shorter string, or one
nay also require that the remaining characters of the longer

string all be blanks.

25. Write a function of three arguments

SUBSTR(STRING,FIRST,COUNT)

195

EXERCISES

where STRING is a character string (array), and FIRST and COUNT
are integer variables, FIRST = 1, 1 S COUNT < 10. SUBSTR
returns COUNT characters of STRING, beginning with character
number FIRST., If COUNT < 10, the substring that is returned in
X6 should be left justified and padded on the right with blanks.

Remark: Whereas exercise 24 was intended to indicate the ease
with which CMU instructions can handle fixed-length strings
beginning at fixed locations, this exercise points up the
difficulties when variable—-length strings at variable locations
are involved. The character count FIRST must be reduced to an
offset, in words, from the address of STRING plus a character
position. The address, character position, and length must then
be shifted into place and incorporated into a move descriptor.
Would it be just as easy without the CMU instructions? Try it
and compare.

196

SOLUTIONS TO SELECTED EXERCISES

SOLUTIONS TO SELECTED EXERCISES
l. Straightforward solution:

IDENT INDEX
R T T T Y T L L)

* *
* FUNCTION INDEX(ITEM, LIST, LENGTH) *
* SEARCHES THE ARRAY LIST, OF LENGTH WORDS, *
* FOR ITEM. RETURNS ARRAY INDEX OF FIRST *
* OCCURRENCE OF ITEM IF FOUND, ELSE O. *
* *
* *

hhkkdhhhhhdhhhhhhhdhddrhhhhh A A hhhhhhhtbhhhhdrrtdsd

ENTRY INDEX
INDEX BSS 1
SA4 Al+1 X4=STARTING ADDRESS OF LIST
SA3 Al+2 X3=ADDRESS OF LENGTH
SAl X1 X1=ITEM SOUGHT
SA3 X3
SB3 X3 B3=LENGTH OF LIST
SB4 0 B4=COUNT=0
LUP SA2 X4+B4 FETCH NEXT LIST ELEMENT
IX5 X1-X2
ZR X5,HIT JUMP IF IT MATCHES ITEM SOUGHT
SB4 B4+1 INCREMENT COUNT
LT B4,B3,LUP LOOP IF NOT AT END OF LIST
SX6 BO
EQ INDEX RETURN 0 - ITEM NOT FOUND
HIT 5X6 B4+1
EQ INDEX RETURNS ARRAY INDEX
END

Notes:

(a) This routine will successfully match an item of -0 with a
list element of +0 (or vice versa); =0-(+0)=-0 and +0-(-0)=+0,
and the ZR test will branch on either +0 or -0. To accept only
LIST elements which match ITEM bit-for-bit, we must take the
logical instead of the integer difference

BX5 X1-X2

and branch out of the loop only on X5 = +0. The latter may be
accomplished by

NG X5,NEG
ZR X5,HIT
NEG SB4 B4+1

197

SOLUTIONS TO SELECTED EXERCISES

or by
CX5 X5
ZR X5,HIT

The count instruction is slightly faster than the branch on the
6600 but much slower on the 5400 and 6500.

(b) We must add one to B4 at HIT because the LIST element at
address LIST+l has array index i+l.

A more devious solution:

IDENT INDEX
ENTRY INDEX

INDEX BSS 1
SA2 Al+1 X2=STARTING ADDRESS OF LIST
SA3 Al+2 X3=ADDRESS OF LENGTH
SAL X1 X1=ITEM SOUGHT
SB2 X2 B2=STARTING ADDRESS OF LIST
SA3 X3 X3=LENGTH OF LIST
SA4 X3+B2 FETCH WORD AFTER END OF LIST
BX6 X1
SA6 A4 PUT SOUGHT ITEM THERE
SA2 B2 FETCH FIRST ELEMENT OF LIST
SB7 1

LUP IX5 X1-%X2
SA2 A2+4+B7 FETCH NEXT ARRAY ELEMENT
NZ X5,LUP LOOP IF PREVIOUS ELEMENT#ITEM
BX7 X4
SX6 A2-B2 X6=INDEX OF MATCHING ENTRY
SA7 A4 RESTORE WORD AFTER END OF LIST
X0 X3-X6 X0=ARRAY LENGTH-INDEX
PL X0, INDEX IF INDEX.LE.LENGTH, RETURN INDEX
SX6 BO ELSE RETURN ZERO
EQ INDEX

Notes:

(a) This routine puts the item sought after the end of the list
so that it will always be fcund by the search loop, even if the
item does not appear in the list. Consequently, the loop need
not check each time if it has reached the end of the list.
However, when a match is found, the routine must determine
whether an element of the list or the item put after the end of
the list was found.

(b) The warning in note (a) for the first solution also applies
here.

198

SOLUTIONS TO SELECTED EXERCISES

(c) The SA2 is put after the IX5 in the loop so that the time
required to fetch the next element will overlap the branch
execution (on the 6600).

(d) The constant 1 is preloaded into B7 so that the search loop
can fit into one word.

8. Simple algorithm:

IDENT RBAIEX
HARKRKRRAAIREARRRA AR A KRR A A A A AR AR R AR hhhhhhhkhhhhk

* *
* RBAIEX(R,I) WHERE R IS FLOATING, *
* I IS INTEGER. RETURNS R#*=*[*
* *

ARkArdh AR AARA DA AR hhhhhhkdhhhhhhhhhhdhhhhdhhhhhhhhdk

ENTRY RBAIEX

RBAIEX BSS 1
SA2 Al+1 X2=ADDRESS OF EXPONENT
SAl X1 X1=BASE
SA2 X2 X2=EXPONENT
SA4 =].
BX6 X4 X6=1.
ZR X2,RBAIEX IF EXPONENT=0,RETURN 1
BX3 X2
AX3 60
BX3 X2-X3 X3=ABSOLUTE VALUE OF EXPONENT
SX0 1
LUP FX6 X6*X1 X6=X6*BASE
IX3 X3-X0 EXPONENT=EXPONENT-1
Nz X3,LUP IF EXPONENT # 0, LOOP
PL X2,RBAIEX IF EXPONENT POSITIVE, RETURN
FX6 X4 /X6 IF EXPONENT NEGATIVE, COMPUTE
EQ RBAIEX RECIPROCAL AND RETURN
END

199

SOLUTIONS TO SELECTED EXERCISES

8. Fast algorithm:

IDENT RBATIEX
ENTRY REAIEX
RBAIEX BSS 1
SA2 Al+1 X2=ADDRESS OF EXPONENT
SAl X1 X1=BASE
SA2 X2 X2=EXPONENT
SA4 =1].
BX6 X4 X6=1.
ZR X2,RBAIEX IF EXPONENT=0,RETURN 1
BX3 X2
AX3 60
BX3 X2-X3 X3=ABSOLUTE VALUE OF EXPONENT
MX5 59
LUP BX7 -X5%X3 X7=LOW ORDER BIT OF EXPONENT
ZR X7,BITOFF
FX6 X6%X1 IF BIT=1,MULTIPLY BASE INTO X6
BITOFF AX3 1 HALVE EXPONENT
FX1 X1#*X1 SQUARE BASE
NZ X3,LUP IF 1 BITS REMAIN IN EXPO, LOOP
PL X2,RBATEX IF EXPONENT POSITIVE, RETURN
FX6 X4 /X6 IF EXPONENT NEGATIVE,COMPUTE
EQ RBAIEX RECIPROCAL AND RETURN
END

Notes:

(a) The fast algorithm is tased on the following analysis. If
we write the exponent as a binary number with Dbits

b(n). . b(0):

I = b(n)*2**n + b(n-1)*2%%(n-1) + ... + b(1)*2%%x] + b(0)*2%*0
then

R¥*[=R**(b(n)*2*%*n + b(n-1)*2%*(n-1) +...+ b(1)*2*%%] + b(0)*2%%()
=R**(b(n)*2%*n)*R&*(b(n—1)**2(n—1))*, . *R**(b(1)*2*%* 1)*R**(b(0)*1)
since each b(k) = 0 or 1, this means that the factor R**(2%*#*k) is
to be included in the result only if b(k)=1. The loop in the
routine generates successively R**(2**k), k = 0, 1, 2, .. and
nultiplies it into X6 if the corresponding bit in I, b(k)=1.

(b) The second version requires about log(base 2) I iterations

of the loop, and thus is much faster than the first version,
which requires I iterations.

200

SOLUTIONS TO SELECTED EXERCISES

13. Straightforward solution:

IDENT CHARCT
LR L L Y P I T T T T R T PP

* *
* CHARCT (WORD) RETURNS NUMBER OF *
* NON-ZERO CHARACTERS IN WORD *
* *
ARARAARRARARAN AR R AR AR A dh T AR A h kAR A kR h kA hhhAx
ENTRY CHARCT
CHARCT BSS 1
SA2 X1 X1=WORD
SB7 10
SX6 0 X6=CHARACTER COUNT=0
MX5 6 FORM ONE CHARACTER MASK
LUP BXO X5%X1 MASK OUT HIGH-ORDER CHARACTER
ZR X0,NOCHAR IF NON-ZERO,
SX6 X6+1 INCREMENT CHARACTER COUNT
NOCHAR LX1 6 SHIFT WORD LEFT ONE CHARACTER
SB7 B7~1
NZ B7,LUP IF 10 CHAR NOT EXAMINED, LOOP
EQ CHARCT
END

Faster method:

IDENT CHARCT
ENTRY CHARCT
CHARCT BSS 1
SAl X1 X1=WORD
SA2 =40404040404040404040B
BX6 X1
DUP 5 OR ALL SIX BITS OF A CHARACTER
LX1 1 INTO THE HIGH-ORDER
BX6 X6+X1 BIT OF THE CHARACTER
ENDD
BX6 X6*X2 MASK OUT HIGH-ORDER BITS OF CHARS
CX6 X6 RETURN NUMBER OF 1 BITS
EQ CHARCT
END
Note: Fast character manipulation routines, such as the above,

are often obtained by processing a number of characters
simultaneously. The sequence of five shift and logical sum
operations (within the DUP) leaves in the high-order bit of each
character in X6 the logical sum of all six bits of the character

201

SOLUTIONS TO SELECTED EXERCISES

in the argument. After the logical product only the high-order
bit of each character is left; it will be non-zero if any bit in
the original character was non-zero. Thus, the number of one
bits in X6 before the count ones instruction is executed equal
the number of non-zero characters in WORD.

14.

IDENT DADD
Khkkhkhhhkkhhhhhhhhhhhhkhhhnhhhhhrvhhhhhhhhhhhhhhhkhdhrk
* %
* DADD(ADDEND1,ADDEND2) RETURNS THE SUM, *
* OF THE TWO DISPLAY~CODE DECIMAL ARGUMENTS *
* *

AhhhkAARhhAhhhhhhhhhhhhnhhhrhhhhrkrkkhhhrhkkhhhrhhhrk
ENTRY DADD

DADD BSS 1
SA2 Al+1
SAl X1 X1, X2=TWO ARGUMENTS TO BE SUMMED
SA2 X2
IX3 X1+X2 FORM INTEGER SUM
SA4 =60606060606060606060B
SAS5 =33333333333333333333B
BX6 X3*X4 FOR EACH CHAR IN X3>=66B
BX7 X6 (NO CARRY OUT OF CHAR POSN)
LX7 57 SET CORR CHAR IN X6=66B,
BX6 X6+X7 OTHER CHARS IN X6=0
IX6 X3-X6 SUBTRACT 66B FROM ALL CHARS >=66B
IX6 X6+X5 ADD 33B TO ALL CHARS
EQ DADD RETURN
END

Note: In discussing binary-coded-decimal addition (p. 14), we
mentioned that the addition algorithm must check for digits
greater than ten in the sum, and propagate a carry to the next
digit. Storing the decimal numbers in display code neatly solves
the problems of propagating carries; if the sum of two digits is
greater than 9, the sum of their display codes will be greater
than 77B, and a carry will be propagated into the next character
by the IX3 X1+X2, For example,

display code

17 34 42
+ 25 +35 40
42 72 02 1integer sum

37 35 final result

202

SOLUTIONS TO SELECTED EXERCISES

If no carry occurred out of a given character position, the
character will be between 66B (sum of two display code zeros) and
77B; we must subtract 33B to get the proper display code
character for the result. If a carry out did occur, the
character will be between 00 and 11B; 33B must be added to obtain
the proper display code character. This routine "corrects" all
characters simultaneously through some devious bit manipulation.
First, 66B is subtracted from all characters > 66B; second, 33B
is added to all characters.

17.

IDENT SUBARGS
i L e Y L L e I

* *
* SUBARGS TAKES NO ARGUMENTS: IT RETURNS *
* THE NUMBER OF ARGUMENTS PASSED TO THE *
* ROUTINE WHICH INVOKED SUBARGS *
* *

ENTRY SUBARGS
SUBARGS BSS 1
SA2 A0 X2=FIRST WORD OF ARGUMENT LIST
TO ROUTINE THAT CALLED SUBARGS
SX6 0 X6=ARGUMENT COUNT =0
ZR X2,SUBARGS IF NO ARGUMENTS, RETURN
NEXTARG SA2 A2+1 FETCH NEXT WORD OF ARGUMENT LIST
SX6 X6+1 INCREMENT ARGUMENT COUNT
NZ X2,NEXTARG IF NOT AT END OF ARGUMENTS, LOOP
EQ SUBARGS RETURN
END
20.
IF3 MACRO N,Z,P
ZR X6,2
IFC NE, $NSPS
PL X6, P
ENDIF
EQ N
ENDM

203

SOLUTIONS TO SELECTED EXERCISES

Note: The IFC NE,NSP will succeed unless N and P are literally
identical character for character. The reader might be inclined
to use instead

IFNE N,P

which would succeed unless the values of N and P are equal.
However, the latter IF would be an error unless both N and P were
previously defined. Since this would not always be the case, the
test on the values of N and P cannot be used.

204

+9 WNsSd +8 LINT

“SINIOd XJINF

14 ? NOWWOD YOLOIA
St ? TYO0T xWY¥DOMd
HLONIT SSIVAQY 3dXL SAD0TE
ang
917034 IN3IAI
“SAEVYD TOMINOD XJVNId
T 295¥d "TSTY I "€9/T1/28 *81S-9°€ SSVYAROD *xT¥xx

ST

HLONIT

ST
[

S$83¥aav

"NOIL¥DOTIV FOY¥Y0LS

aI723A

gI703A NI Sd903¥d ¢

SAONIVAITE 91 SANODAS €£€°0 XTAWASSY €L TIAOW
STO9HAS 9 SINAWALYLS 6% gasn IovdoLs
aNg
LI ¥90d 0D d001 o}
YALNAOD LNIWIYONT T+2d [4:4]
WNS TYILdvd JHL JI0LS v 9¥S
(INGWATE MIAN SNT1d WAS TY¥IL¥Vd Q710)
WAS TYIL¥VA MIN FLOGROD 9¥X+TIX 9XI
INIW3ITI LXIN 13D T+T¥ T¥s
ANOG 17Y¥ AM ZIV WNSd‘T14’zd an 4001
JALNNOD=249 T zgs
¥OLD3A IHI 30 3AZIS=Td [24 das
HOI03A FHL J0 FZIS TENIOY I3D IXI ZYs
INFWITI LSETA=9X X 9xg
INIWITE LSYId=TX Jda 1%s
1 ssd Wnsd
WAsd TIYD ¥

:FONFADIAS HNITIVD I OL T WOMd SINAWITA IHL 40 WNS FHL OL
TYN0E SI {1)03A ‘MOIO3IA ¥ JO WNS TVILIVA FHL SILNIWOD WASd

FYOH Y04 0O 4007 ok}

YALNOOD LNIWIMONI 1+28 [4:4]

INAW3TI IXIN LAS ‘ION 41 T+9¥ 9¥s

ANOQ 3MV EM JI ¥OFHD IINI‘Ta’‘zd an

dALNNOD=C4 T 2ds

INIWETT LS¥Id FHL LAS J3A 9vs

JqoLOIA 3UL 40 IZIs=T8 (.4 1€s

¥OLOIA FHL 40 IFZIS TYNLOY LAD az21s Z9s
NOLLVYZI'IVLINI 304 Q35S0 dNTY¥A=9X 1% 9X8
NOILYZITYLINI ¥04 Q390 3NTY¥A=TX X Tv¥s
1 s54

(93D3LNI) LINI TIVD
:SMOTTI0d SV EONIN0IS ONITIV] LI Ol QISSVd ¥ALIAWVIVd FHL
40 FNTYA FHL O FOLDIA FBL JO SINIWITA IHL SHZITYILINI LINI

[i34
¥OLJEA FHL J0 I2IS TUALOY T Ssd
SINIWITA A7 30 TZIS WOWIXVYW ‘¥OLOTA FHL 14 ssd

/90103a/ asn

WNSd XYLNI
LINI Z¥INI

JOLOFA MO07d NOWWOD 3FHI NI ¥OLD3IA ¥ NO
SNOILIVIEd0 WNOJd¥Ed HOIHM SENILOOY 40 XAVYAIT ¥ ST 8|ITIDIA

gI7T0dA INIAI

2ovd *ZgIYtIZ t£@/21/88 “8TG-9°€ SSYIWOD w¥ TV xx

4001

IINI

x

2z1I8
23

+

WD 980¢cey
ST
+ 000008278 V1
108008022719
BI9YS
9T99¢ €1
1800001185
+ 9808881290 1
1986888219 11
8ZTE9
2294244715 AT
11981
D 2090080T1S L
T 9
ypoooepove
1280882219 S
1202808998¢
+ 200009871298 ¥
1289808219 ¢
o BaddBEdS1S
Aa7T¢FQ 2
yz2a88e71s
TIeet
grTes T
T 8
1 ve
¥e]
g17104/

€

advd

AT A ARV

T€8/71/08

4

‘@ QIWNSSY INTIYA “TO9WAS QINIJIAND

4

SATOH NOILINIJAQ LSYI4 FHL “TOLYWAS QANIJIA X74R0d

"8T5~9°¢ SSYIWOD

*x €V xx

SEOVd NO QI¥YINIO0
Jo¥yd IJAL N

SADVA NO dIFINIOO0
q0¥yA FJAL d

S A¥OLOIAIA Joudd
gITDIA

v

q0¥d

A4 ARE4

‘£9/71/88

*81¢-9°¢

8v/¢

SSYAW0D

LEST s
/T 1

T Tv/T
9z/2 1
xx UV xx

ve/e
ze/e

9e/T
62/
61/2

w1

[c3 i 21

81/2
11/2
6€/2
ta/c
92/2
90/

dOLI3A 9 Jga

¥OLOdEA ve 4218
IXIs

*WID0Ed 9 Wnsd
*WVID0dd 14 4001
*W¥ID0dd 8 LINI

TATEYEL AONIITIHYE DITOIWAS
417034

T

qovd

T6°Cv 12

JOLOIA

*€8/71/88

AVIaEY JADIELNI

8TG+8"7 NId

Wasd

JdA

¥x GV x¥

2

aasn WO 8008TS

12 g5
Lzt ge007
LS a1L
1z
HIONAT
I
SO¥v ddXL
AAOKH
dOLJIA YJIADILNI
NOILYDOTa¥ ddXL

HIONAT NOWWOD daTIEYT WO

HIONIT ¥adang
HLIONIT WWED0dd
SOILSILVYLS

d40LodA
SAD0TH NOWHOD

LINI
STVNIILXI

40dino @
SIWYN dTId

dZI8 %2
NS SATAVIFVA

NIVH 296¢
SINIOd Z¥INI

(T=¥) dvW FONIYHIAY DITOLGWAS

ang

d01S

WAS4 TTYD

(T)LINI TI¥D

BT = IZIS

HZIS*DIA HADFINI

I2IS' (BZ)DFA /¥01D3A/ NOWKOD
(IN4INO) NIVW WYIDONd

1=1d0 ¥L/EL

RIVN W¥ID0Ed

—

WRSd +9 LINI

“SINICI AYINI

14 2 NOWWOD HCIDZA
51 8 TY20T «RYYD0¥d
HLONAT SSEYACY TdRL S¥2071d

GNHE St

g9IT2IA INICT < @

“SEUED TOMINOD XNYNIH HLONET SSIFAAY
“NOILYI0TIV EDWdOLS
SSYIWOD ¥ 9V xx HIT23A

SAONdIIIFE 91 SANODES §Ze° @
STOEWAS 9 SINAWILVYIS 6%
LI ¥0d 0D Td00T
YILNNOI LNIWIIONI 1+zd
WAS TVILIYd IHL FIOLS 184
(INIWITI MAN SNId WAS TY¥IIEVd Q10)
HWRS TYILYYd MAN IINAWOD 9X+1X
LNIWIFd LXEN 13D T+I¥
ANOQ TIVY 3M JIV UWNsd‘T1g‘zd
JALNAOD=C4d T
YOLOIA FHL 40 FZIS=T€ ZX
YOLOIA FHL 40 IZIS IVNLIOY L3AD JZIS
INZWITA LSYT4=9X 1$:4
INEWITI LS¥Id=TX JFA

T

WS4 TIY0

ATdWISSY £L TAAOW
aasn JOVI0LS WD 98PLey

aNdg

ol
zdas
9¥S

9XI
1¥S

a9
cgs
ids
Z¥s
9%d
Vs
ssd

$FONANDAS ONITIVS I OL Y WO¥d SINIWATE FHL 40 WNS FHL OL
1¢003 SI (I)D3A “¥OLOFA ¥V J0 MWOS TVYIINYd FHI SALOAWOD WNSd

FAOW J0d 09

YILNOOD LNIWIIONI

INIW3TE IXEN LIS ‘LON dI

INOQ 3Jd¥ 3M JI MOIHD

YILNNOD=249

ENIWITT LW (d IHL LIS

¥YOLOIA FBL 40 IZIsS=T€d

JOLOEA IHL 40 FZIS TYALOV LIAD
NOILVZITVYLINI ¥Od GISN FNTYA=9X
NOILVZITVLINI ¥O0d d3SN FNTYA=TX

do01
T+2d
T+9¥
IINI‘TE‘Z8
1
23A
X
4718
X
X

T

(4IDIINI) LINI TI¥D
$SMOTI0d SY ADNANDES ONITIVD LI OL dISSVd YALAWYIVd FHL
40 30TYA JHL OL JYOLDIA IAHI 40 SINIWITI FHI SIFZITYILINI IINI

JOLOEA dHL 40 dZIS TYNLOV
SINAWITE @7 40 FZIS WAWIXVW “¥0LDIA FIHL

[}
1

/4
/905L230/

Wasda
LINT

oa
cdgs
9Vs

ao
[4:+
9vs
1ds
[4£
9¥d
T¥sS
ssg

asn
ssd
ssg
asi

XYLNT
XELNI

¥OLO3A ¥D0T€ NOWKWOD FHL NI ¥0ID3A ¥ NO
SNOIILVYAdO WJOJ¥Ad HOIHM SANILNOY 40 A¥YYEIT ¥ SI dITDHA

a9vd "Z@TIVCIT "€0/71/88 "8T1G6-9°€ SSYAWOD

dITO3A

¥x LV ¥x

INIAI

14001

Wnsd

*

doo1

LINI

qZIS
J3A

ST
+ Cldeeodevs ©I1
10896802219
B8T9%¢S
9199¢ €1
T28088TTAS

+ 980000612908 T
1000008219 T1T
271¢€9
O vZoe8e6TTS o1
11901
O B00800BTIS

o~

+ v0000006078

1008002279 S

O vZenBgeazIS

1880869985

+ 00800001290 ¥
1000006219 ¢€

O POOOBBAOTS
9TTe9 ¢

11961
AT1ES T
[
¥Z
2

SITTDIA

3ovd

TT@TIvTIT

“Ee/zT/88

“8T7S-97¢ SSY4WOD

LE/T S

6E/7

4244 1

97/ 1
wx BY xx

ve/e
72/t
9£/2
8/t
62/2
51/2

(X I A IR QRS P |

a1/t
i1/t
L8/2
(4244
9z/2
98./2

JOLOIA [
dCLO3A ¥
xWTID08 4 g
*WYED0Ud [4
*WY¥D0Ad ¥
«WPEDOEd 2

SFTFVE FONT¥AL

23A
218
Wnsd
140071
4007
LINI

¥ DITOGHAS
gIT03A

BIIOUYNYN INIOd TOHLNOD

T

SIAOW 3TLVL 2

TAOVINALNI YIAOUNVM ZMOWIW 144
“INZAISIY YAAYOT DIWVNAA LSY4

ISINDEY T+¥¥ LS04 -

SFTIIA 40 LSIT ¥0d dD¥dS JLVYO0TIY -
"AYLNT ¥0SSII0Ud ¥o¥yH

“INILAOY ODNITIOCYLNOD

"Q3XI4 ¥MT LY MNIYHS
“SANILNO¥ENS INIAISIY

"WHO HIVAILOVIQ
*SOILSIIVIS AYVHKAS 13D
TQEXII JINA

“WHLIYODTVY d3¥d gIXId
*Q3XId SD3dS IONVHD
"QIXId ILY¥DOTIV

T°TA
° 1A

T°TA
T°TA
T°1A
°1A
1°1A
T°TA

Wi
WaD
Wad
Wao
WHO
WWD

WWO
HWWD
WHO
WHO
WHO
WWD

"183N0IY WIISKS SS3ID0UL
“B1/S8/6L

@D NOIIVZITIYILINI ANV JIY=SXS NIIMLILG MNIT
YOLdT¥OSEA ATIA ¥ NIAIS LId ¥ JILVI0T

"SITLITILL °"OSIW 104

"SHILITIILIN X¥WICEIT LD03LE0 NYILI04
JOVHOLS VIYd JILHIANOD

ONIQVOT 3TNSd¥D 104

"@7/€08/98

TANILROY NOILVZIFIVILINI 7124

T=Ld0

WY¥D0dd

SLNIWNOD

3994 “Y@-IvIZ c€8/71/98

81¢s
81s

81§
8T¢&
8IS
81§
81g
81¢
8IS
81¢
81¢
81§
81¢S
81¢
81§
81¢S
8TS
8TS
81s
816
818
81s
81S

8TS

81§
I X999 8TS

JEAVMOIYH TIATT

M m

o WWOWOWWOWOUOLVWOOWYOVWOYOLWWOLWWOWWYWOY 0 o
MMM NMOMMMOOMom

™

J3A

dasa dADVIOLS WD €6991C

SSYdHWOD
SSYdWOD

SSVYAWOD
SSYdROD
SSYdWOD
SSYdHOD
SSYIWO2
SSY¥dWOD
SSYdWO0D
SSYdWOD
SSYJWOD
SSYAROD
SSYIW0D
SS¥dW0D
SSVAWOD
SS¥dW0D
SSYIWO0D
SSYdWOD
SSYdWOD
SSYdWOD
SSYAWOD
SSVYANWOD
SSYJHOD

SSVAWOD

SSYAWOD
NILJ

¥s300¥d

18/01/68
16/01/98

y1/081/08
v¥1/01/68
v1/81/08
y1/61/98
£1/81/08
€1/81/68
€1/091/68
€1/61/88
€1/81/08
€1/81/88
€1/81/68
€T/91/68
€1/81/08
€1/01/68
v1/01/08
¥1/91/68
¥1/01/28
v1/61/88
YT/01/88
v1/01/88
v1/81/08

v1/81/08
£0/21/98

€6/21/088

ALNA

8zee

8TS~-S°T ¥IAVOT HIAGAD »x 6V xx

SANODES 4D #6¢°

9IT1SXS-1S 222 S12% IWW 1 1ad
gITSXS-18 T1¢ $080S S3¥ *1ad
A gLLY /W0D*1ad/

gI7SAS-1S § €LY =SAS$WY
dITSAS-1S L9 2837 WI$ISIT
g1TSXS-1S ST L¥9Y Jietttetcd
gITSAS-TS &Y 12y WI$TLIO
gITSAS-1S 22 oLTY 478" IWD
9ITSAS-TS 962 z9LE o WKD
9I1SAS-1IS L £GLE WIH * WRD
gITSAS~1S ZT T9LE TINWHD
dIISAS-1S T¢ LTLE $S9° IWD
gITSAS-TIS 9¢ 199¢€ ECEGE)
gITSAS-IS %1 4215 LEER" %)
gITSAS-1S 9 LEYE 8D AWD
9I7SAS-1S 791 SSYE EGLAF(Th)
aITSXS-1IS 8% STve SXS°ndd
gITSAS-11S § g3 WdD*Ndd
NYEId0d-TS T L8vE =QIVSAS
NYII¥Od-IS b1 £T€E =II1453D
NYNIN0d-T1S 62 99z¢ =1IL0¥0d
NYIII0d-1S 91§ 1434 =SAS404
NY¥IN04-1S € S¥ST =1SdI134
NYIZE0d-1S 0% 17244 1ad=1D4
184 (4444 /INI="1Dd/

NYII¥04-1T1S T (3424 =X4INZO
S¥T 9422 /701°83/

ez 8572 /*o°12d/

T Lvze /aN3*d1s/

091 ST 4344 91703A

0971 vL02 9€T NIYW

sz 1t /H0LO3IA/

4114 HIONIT SSIWAAY M00178
*SINIWNDISSY ¥D018 ANY WWID0odd

NIVW -- SINIOd X¥INT WVID0dd

(k444 NIVH -- SSIIaAV ¥FISNVIL
LEDS avo1 IHI J0 T+¥MI

141 avoT FHI JO ¥Md

NI¥W - d¥W QvO01l

20202
€geze
40009

00008
LBZ08
£e1e0
L2100
£Z100
Le000
£egeg
28020
apgeen

eopes
22020
appa8

aeBo
200040
veeve
voeve
veove
0000
00000
geoo@
29@29

gpooe
280290
20808

080000
20000
20000
poBed
00080
ppe00
opeae0
poees
29229

83220
30932
200%1

000080
00000
90009
28099
20009
20209
pE009
00892
#9300

geseg
goee?
200903

80008
12600
ze100
97109
71989
920080
7@008
#0090
eggoe

2280
20289
20290

Bo0ooOR
2A2YT
v00%0
voovo
gopeaop
090000
00000
200800
232328

30820
2a089
200080

800049
szoTv
gpgoe
avees
26000
geoge
Baeae
8aceo
26229

ggo0@e
9000a
20090

20049
76ZLT
08899
20209
20000
982080
00088
30089
#2222

29008
ae00n
epaope

20080
1989
TeT00
szien
TTees
spoeo
10020
0p008
(254

00080
200880
apeed

03000
000900
voavo
voove
60000
eoeoo
20009
¢0002
a92@a

xx OTV *x

02080
90089
lz@en

00000
00000
000020
ggaae
a0p0@
200920
09000
gp008
22339

200200
poeae
gpe0¢

goeeo
geeop
20009
ogee9
goooo
200842
2908089
ggsee
zegag

devvy
22088
geoe0

goooe
vetoo
ae108
yzien
01008
voooo
8z2ze
LEYSO

1e2@9

T88

“SINIT C3ILVIIT4NT

JBBE3 CBB50 GODED
20822 20088 20828
@eode @eepd 200900

“SEANIT Q3IL¥DITINC

pooae
voeve
ye0vo
yaove
so00e
2s800
20080
paees
gepte

0g0oae
20309
20800
X1y
2080
28000
88911
gagae
gaeae

oL 2@t

BoB0 851
|42
st

8290 8yt
26809 VeT
200809 0€T
20899 ¥zt
200800 2T
paaoe ¥IT
T18ST a1t
20008 vet
agevs 2@

wWoO¥d drad

W

o]

v

o

T

3FOvd

98 LT 22

“LT/T1/88

YAOILNI

8IG+8 % NIJ

agasn WO 9089cs

vsez 4908y

HIONAT ¥3gang

8¢ aLey HLONET WYdD0dd
SOILSILVLS

IWd 9 VLIV LHd S LTV
ST3GY] INIWILVILS

4 YIOALNT SAJYoM
SodY AdXL STYNIILXI
LWd LOdLNO yS6Z LI INANI 8

JAOW SAWYN FTId

AVdYY YIOFLNT LNIS SQT¥

YILNON §6C7F YIDILNT I £62%
NOILVYD0TAY 3dXL NS SATAVIYVA

NIVR L€T¥

SINIOE AMINZ

(T=4) avW FONIYAJITY DITOLIUES

ang

(SI’x SI SQYOM J0 JIEWON FHIL) IVWIOL
(T¥88) LY¥WI04

d01s

YAIHAN‘9 INI¥d

(@91 'INAS) SQUOM = JAGWAN

(g97/18=1" (I)INIS) ‘S avayd
(@8’1T=I'(I)LN3S) 'S avay

SAYOoM’ (#9T) LNIS HADAINI

(LNALNC“ TNANI) NIVW WYID0ud

2T

nw

xx TIV ¥x T=1d0 vL/€L NIVA WY¥90¥d

et

o83l £

TLBTLTZZ CLT1/21/88

+2 SQ¥0oM

*SINIOd XHLNA

aNd
SQ¥Y0M INAJI sI
*SQd¥D TOYINOOD X¥VUNI® HLONIT

*QTE~9°¢ SSVAWO0D xx ZTV xx

ST
2

ssIEaav

"NOILIV¥OOTIV FOTIOLS
SQIOM

SEONIYAIFE ¥ 1 SANODAS S¥ZT° 9

STOHWAS & SINIWILYLS 8€
aNg
MNVIE EATILSOL LJFT ¥ ANIAEA HT ¥ivd
NINITY SAYOM ok
INNOD INIWIEONI “‘QIOM ¥ HIIM dIANT AONILNIS T+9% 9%S
NENLHEESTX £ANVIS ¥ UXIOVNYHD IS¥I I8LI SYM SGHOM’ 16 folct
dO0T’ION JI ¢SYIIOVMVHD TIV INIWVXE 3M aId dooT‘cd’‘zd firss
JIINAOD YILOVIVHD INIWITIONI +z€ zds
ANVIENON AIVOIANI O 9VId IIS 1 19gs
IXAN [o):|
AIYIAINAOONT INVTE FLYOIANI O VL 1dS g 1dgs
INOOD C¥OM INZWIMONI ‘OS dJI T+9X% 9XS
SAYOM NIAMIIE MNVIE LS¥Id FHL LI SI IXIN’ 1€ o3
dwnr ‘ION JI ¥aao‘ Ix ZN

MNVIE ¥ Y3IOVEYHD FHL SI SX-1X x4
MﬂEUmM¢AU LXIN LID 2a+1vY Tvs
ANVIGNON=OV¥1d ‘ION 4I T 1ds

dunr ‘os JI dooT‘ 1% ¥z

ANVTIE ¥ ¥3LOVYEVHD LS¥YId4 dHL SI SX-TX Xd
ANVId QIIAILSAL LJTT=GX ANYIg SVsS

JALNOOD MIOM=9X gd 9XS

YIAINAOD YIALOVIVYHD=ZH T zds
SANVIENON=T SIUNVIg=g ‘OVId=Td od 1ds
FONILNAS 30 HIONAT=€€ X €£dgs

AONALNIS mn HIONIT=CX ZX s

HONALNIS A0 SSIFAGY DNILIVELS=TV X T¥S
HION3ET 40 5SE¥AQV=CX T+T¥ (4 £

T ssd

SAYOM ZYINT

(ALONIT’ HONZLNES) STIOM = YATWAON
$AONINDES HNITIVO
“QaITIdA ¥NVIE
‘QIIAIISOr LJ9T ‘QIOM ¥34 YALOVIVHD ANO ‘S¥ILOVEVYHD J0
AVJYY NY SI JONILNIS dJHL .m&Zﬁdm FYOW ¥0 INO A€ JIALVIVEAS
SYALOVEVED 4O FONIANDIS ¥ SI 'GIOM ¥ "ISVYEd ¥0 FONIINIS ¥
NI SQ¥OM J0 YISWON JHL SLNOOD HOIHM NCILONAJ ¥ SI SQHOM

SqY0oM INIAI

aDv¥d TLBLTZT CLT/T1/88 "816-9°¢ SSYAWOD ¢ €IV »x

LTIHESSY €/ TAQOW
adsn ASWOLS

ANVTIE

LXIN
J3A0

d001

SAYOM

Kok K kxR K

WO d8@eey
ST
$5595556655665666856G BT
+ 00800008Y0 €1
18880099CL
+ 00bEBOLIVE CT
SPPP00ETLE
1699082219 TIT
1000800119 6T
+ 11000008670
60799 L
19900899ZL
+ T186088TV8 9
oT2900TTED
STIET
ZITPS S
1609600119
+ SOPBOBTOES ¥
STIET
+ 71008P8E8STS
8899L €
10808086219
66199
8Zee9 T
[IAAR
aTIES
1000081205 1
1 [}
SqIOM

9€/2 vE/T T 21/2
T 1£/T

T 28/ g€/

£€/2 T ¥2/2

1 LE/2

FID¥ *LBTLTtZT CL1/71/88 "815-3°¢ SS¥IKOD *¥ Y1V xx

11/2
92/t
Le/e
2T/t
8z/t

+W¥D0¥4d
*WYJIDOoNd
*RYYO0dd
*WID0Ed
*WYID0AL

[SQUOM

81 dAA0
11 IXAN
S 40071
¥1 ANYTE

“HT78YL ZONI¥AIFE JITOEWAS

SQEOM

CHOVAYILNI YADVYNVR XHOWIW Tad
SIN3JISTd ¥ddv0T JIWVYNAQ ISVd

LSAN03Y T+Y¥¥ IS0d - WiD

SHTI4 40 LSIT ¥0d IADV4S FILVOOTIV - WID
*AAINd JOSSAD0Ud H0J¥T WHD

“ENILOOY ODNITTOIINOD WD

“gIXId YMT IV MNISHS - T°TA WWO
"SENILNOYENS INIAISTE -~ T°TA WWO

“WWD HIVAILOVEAQ - 1°TA WHD
*SOILSILVIS XYYWKOS 139 - T°TA WHO
‘@IXId ITYA - T°TA WWD
*WHIINOOIV Z3¥d 4IXId - T°TA WRD
"QEXId SOEAS FONVHD - T°TA WWO
*@3XId ALYOOTIV - T1°TA WWO
*15300F9 WALSXS SSIAD0¥d
BIZOUNYW INIOd TOYINOD *@Z/£8/088 "01/SB/6L
@D NOIIVZITVILINI ANV QIV=SKS NIIMLIE INIT
2d0D IN4IN0 NOWWOD
*Q¥0DFY NYYINO4 FII¥M AITIILYWIOS
*INANI NYEI¥0J QILIVWIOd SSID0¥d
"EELTEAYEAINI LYWE0d INdINO0
*Q¥OO3AY NY¥IY0d aVId JATIVIRIOS
200D ONILIYWIOd ININI NOWWOD
¥OIAI¥DSIA FTI ¥ NIAID LId ¥ FIVDOT
*SAITLITILO *ISIW Tdd
*SEILITILO AYVYEIT I0EL90 NVII¥O0J
‘EEAVEN/YIA0Y ¥Od IVWIOJ ANV ISITAV ADWND
A0 IN4INO ONITYOTA NOWWOD
*YAIYIANOD INANI ONILYOTd NOWWOD
FOVI0LS VIVA QATITANOD
*SINYISNOD FZITVILINI
ONIAVOT ITASIVD TOd
*SINYISNOD GNY SANILOOY O/I QET0D NOWWOD

“INITNOY NOILVZITYILINI T0d4

T=1d0 WYED0odd

SLNAWHWOD

T 3Dvd "8B°L1ZZ “L1/TT/88

81¢S
8TS

8IS
81S
818
8TS
81¢
8T1s
81¢
81¢
81s
815
81¢
81g
81S
819
81g
81§
81S
81¢
81¢
81§
816§
81s
81s
81¢
81§
81s
81s
31§
81§
81¢
81g
818

81s

81S
I X999 8Ts

JEVMQIVE TIATT

p=-J¥e]
~mm

S e e s 4 b s v e e e oe v o
MO MMMNOMONMNMMAMNMMNOONMMMM MO MEo oo

WOWOWOWOWWOWWYOWLWWWIWIWIW WDWIVIWIWVIWIWLIWY O W WY O WY

SSYdW0D
SSYIKHOD

SS¥dKOD
SSV4N0D
SSYdWOD
SSYdWOD
SSYdWOD
SSYdNWOD
SSYdH0D
SSYdROD
SSYAROD
SSYdWOD
SSYdHWOD
SSY¥dHOD
SSYAW0D
SSYdWOD
SSYdW0D
SSYdUWOD
SSYdW0D
SSYIROD
SSYAWOD
SSVAWOD
SSYdHOD
SS8YdN0D
SSYdH0D
SS¥IWOD
SSYdWOD
SSYdHOD
S8YdHO0D
SSYdHOD
SSYdWOD
SSVYAWOD
SSYdROD
SSY¥AWOD

SSYdKWOD

SSYdWOD
NILJ

ds5004dd

16/01/08
16/81/88

y1/01/68
y1/981/88
y1/81/98
P1/91/08
£1/081/088
€1/61/08
€1/01/88
£1/81/98
€1/81/08
£1/01/08
€1/01/68
€1/01/88
€T/081/88
£1/81/08
v1/601/08
v1/81/88
y1/01/08
¥1/91/98
v1/81/068
v1/61/68
v1/91/08
¥y1/01/08
v1/091/98
¥1/81/08
1/81/68
v1/91/08
v1/01/03
vi/01/88
v1/01/08
y1/81/08
v1/81/08
y1/81/08

v1/81/68

LT/21/88
L1/21/88

JLYA

8sTy

81G6-G" T ¥IAYVOT YILAD xx G1V xx

gITSXS-18
gIT1SX8-1S

8I78XS-18
4ITSAS-1S
gITSAS-1S
dIT5X5~1S
gI184S-18
dIISAS-1S
dITSAS-"IS
dITSAS~1S
dITSAS-1S
dIT8i8-18
dITSAs~18S
dITSAS-1S
gITSAS-18
gII8X5-1S
gIISAs-1S
NYILYOA-TS
NI LIOI-"TS
NVIIH04-18
NVYI¥O4-T1S
NRIIA0I-TS
NYII§0I-1S
NYILIOH-TS
NY4LI0d-1S
NVIIIQI-TIS
NYVILHIOd-IS
NYELI0d-TS
NYYId0d-TS
NYELI0I-TS
NYILd04d-TS
NYYI¥0d-1S
NILJOa-TS
NYILNOA-TS

NYII¥04-1S

091
091

3114

(444
112

¥sT
2sT
SLE
S9%
Loe
SPT
vL
114
91s
LSE
T1¢
9ST
€
184
ay
(33
14
T
LAY
9¢
T
ST
Shyy

HLONIT

§9971
151218
XA AN
€EVTT
breet
LTEZT
79911
8y9T1T
TEPTT
€TYIT
TIPTT
L9ETT
TEETT
STETT
LBETT
STTIT
S961T
890TT
LSBTT
€0L0T
€E€S0T
9ETRT
ISyl

zveL

SLBL

100L

¥sL9

9¢C9

LS9

9% €S

@LIS

S91s

¥Ci1s

v9@s

Teas

BLLY

LILY

[44°3 4

visy

€LSY

98s¥

1T

$534qav

IWH* 102
Say * 104
/ROD 1G4/
=SAS$WI
WIS$ISIT
misyya
WISTLD
A7TS* WD
J°WHO
WA HHD
TINWHO
$59°* WD
294 dHO
¥ad*HWO
ELRE k]
JdTY " WD
SXS°0dd
WdD°ndd
=QIVSiS
=HODLNO
=0100
=4IITIN
=33a04
=0dNI
=WOONI
=I1ILID
=1I0J0d
=SAS¥0d
=dYIKd
=10011d
=NIJ1d
=1S413d
=4SWO3d
1ad=104
=0IH0D
/IN=124/
=X4INZD
/*01°88/
/*0°104/
/aNZ*dLs/
SAUOM
NIVH

A0014

“SINIWNDISSY ¥D01d UNY WWID0Odd

NIVK

B8sTy

NIV

LOTET
it

SINIOd AYLNI WWID0Ed

-— SSHYAAVY VIAISNVIL

avo1 FHL 40 T+WYMT
avo1 FHL 40 ¥Md

NIVW -

d¥H a¥o1

TIT@S G6GSG SBBTY CTSGSS GGLTV TS6G6G GGSSS G5G66S SG8PS TLIEP GGGSS SG6SS GGLTF TGGSG §556G GGG6S 1 24°1

6SGS6 66665 GG9TS BSISS GGG6G65 SG566 $GG668 GG66SS 600600 PPRP0 POB06 0P0PQ BBPOP 0G0BBD 0POBD PADGE az9y
BZ9v0 D20QR PROCO BAPOD 08002 PBOGE DDOGY PPPED SSYeT PPPED 00680 00908Z BY9.0 P90HD 0BPEE 00000 P19V
pPO00 38000 20000 POONP Y7000 DOAOY 0POPD PPA0D 60000 PP0P0 PEOBE BE0GP 0p000 02009 2BPO0 POOGOYD a19f
8PP0 DDOGO 00000 POPAOA BP0 DOPOO POADO 0BDDO $0090 6OOGY 0OOGOD 06000 91c0e 89800 Peoec 00080 veov
¥vZvo DDEED 00000 PRAOD pPeeD PAA0@ PEO00 00000 G9G68€E LTILZY 9TLBT 10062 GSTET PLLYPT ZTEVWLT TLULT (1314
68090 BOBYT STOTY TSTLL 06000 PBO0O ¥ISTH CTOTTIL 8yava vevev oveve vOvey 65665 66656 56666 GGS6S vist
8089% 8GBT9 0BVY90 080D G5666 GGG6S5 GG6GS GG66SS 8009% PBAT9 9SGVE BAOVD 18000 @99ZL 9S5v0 091VE LSy
£9G6yQ BETLP 1@@eR BIITO 9999y 98979 180808 909119 00089% L9SVYE 0ABVE BAT99 16006 P99TL L9SVD BBIVE 14:14
995¥@ ATTEA STIET CUIPS 19000 BATTY £95v@ BTOELQ STTET CLGVH BASTIS 08991 10000 8BTT9 00199 BTEEY oSy
gzzee AT1es TPOOP BTI8S $PP0O0 00AB LSTVE 0POVE GGG6G6S 666565 GG6S5 §8G6S §666G 66665 §5685 GGSTE 12114
666485 GGG8GS GG56S GGSPT GGGGG 56666 G664 §6STC 65666 65566 65555 GSST8 GGGSS S§56656 656SS SSS8T 8ssy
5G6G5 GG6G6GG §666S GGGGS §6G6G5 58556 §5665 S6GCT G68GS GGGGS §G665G GGSTT GGGGE GGGS8S6 GSGSS §6660 13444
GEGSS 69GSG 669665 G6GOT GGGEG SGECGE GGGSS GGShT GGGEGE 65666 $GG5G SG95SS GG6G6S GGG5S S6GGS G666S (3214
GG6GS 96556 GGGGES 6666 §6G6G6 GGEGE $GGGG 65590 G5655 66666 56665 GSSLT GGG6G5 66595 559685 SGSSS 14314
25555 53535% EE38% 55353 SEEST STEEE STLEE GCCFE CGEGE CCEEGE €EGCS CEETY CCECC GCCCC cCccec qoaTa arcy
SCEGT GECES CESEEG GG66E G5GECE GGGGE GEEEE GGEES 66866 GE5S6G 56686 §G6SS §596G §9566 GGGGS G555D ¥Isy

“yeoy 0L PZSY Wodd dwWnd wWo

2499 9994 4249 4940 0999 (T+w)
2009 0099 28%¥9 Sv8Q 1800 (g

TE9Y 0000 000D PBAO TTOT LX
S0@d 0099 9900 099F PPAD 9xX
6665 666G 6868 GSSS GGGS 194
ZE€9v 0000 9909 9080 0000 12,4
peee @0ST v.00 0029 209D €X

8y7@ 9000 09000 6080 [4.4

2900 3200 oe2e 0922¢ X

BBLL LLLL LLLL LLLL 8x
Z€9% 6000 260 @009 CTiez (L¥) 8 La 799% LY
G666 GGG GGGG §68§S §66S (9¥) T 9€ @v9¥ A 1] 43 L L]
666G G665 G665 §8SS 698S {(5¥) (4 sg TLSV s¥Y 0 q1d
GGGS GGSG TSPE TAEE (y¥) Z1 ¥ vecvy yYe @ I
998 BBST V.00 0080 (€¥) ave €9 EvIL €Y L08L W3
8yz0 9800 0BPO 0000 (zv) LET z8 Zlew [4 21 TANt T
9900 0090 6600 POQD (T¥) T T 9€ZST IV @vTviv w
pRee @P8P B8YS SVO8 (3¥) [gg 2 av @ d

wx OTY xx “HOYNOYd FONVHOXH

SSNDIGHITO 2168V ¢g0N1°91°62°¢1

*SiNngu1*2 FUSIVeHT 6T ET
*SJ3s4H6e°1 423N Hy1°6T°¢ET
*SNNMSC0*2Z ‘SNIN*HIt6T €T
*SNNXET10° 0 €4d3n°HT1°61°¢€l
SSNMI200°C fOVIN YT 6T ET

NOILJNALSNI v9373T *»1°6T1°ET

*3IONVY 40 LNO WO °9l*6T1°€l

“%96%00 LV 1IX3 d30¥33 Nod *H»1°*61°€l
“002=14¢0971°T1*61"¢1

CLUVAdVRTI BT ET

3nlL NOILVIIAWOD SONDJI3S &1 1€9° CTI*6T°ET
*N1d4°g80°s1°€l

*HOOGECA0EV2ZT ¢30¥VHIBOHT ET
CENITINYIWCAISNTL0°6TET

*S03M9¢0°0 fCGEY “¥IIN*L0°6T°ET
CHAN*LO0°6T°ET
TZ-NAN-8T5-%*T SCN CALITIOVA SNILNAWOD JIW3ITVIV NANLI/OT/08 °*OSEYANY

*¥ [TV xx

SIONIFIITATY LT SANQJ3AS L9T°8 ATdWISSY €L TIAOW

STOEKAS 9 SINIWILYLS ¥ gasn IDYA0LS WD 88BLEY
ana L1
ANYTIE g34ILSNe 1437 ¥ INTAAd HT ¥iva YNVId 66556665666666566565 9T
NENLIY SAYOM 03 + 09004838290 ST
INfOD INIWIIONI ‘A¥OM V¥ HLIM CGIANT FONILNAS T+9% 9Xs 10080888992,
NAOIFI ' STX SHUNVTE ¥ YALOVYVYHD LSYT FHL S¥M Sqaom’ 18 okt + 0000000T%¥8 V¥I
00T ION 41 ¢SWALOWMYHD TIV¥ ENIWYXE 3M 4Id d007'tg’zd Lot + 908088t7LO
YIINAOD ¥EIOYYVYHD INIWIANONI T+28€ [4:8) IX3N 16890982719 €1
MNYTENON JIVOIANI OL D¥Td LIS T 18s d43A0 1000080608TT9 2T
IX3IN [k + £ipgop20vd
QIYHALNNOONA MNVTE FLYOIANI OL D¥id 13S e 1ds 88199 T1T
INAOD Q90M INIWIHONI ‘0SS dI T+9X 9XSs 199@888997L
SQYOM NIIMIZE MNYI8 IS¥I4 JHL 1T ST LX3N'TE o + £1000021ve &1
dWar ‘ION a1 YHAO' TR ZN + Z1280077¢8
ANVIE ¥ HALOVAVHD AHL SI SX~TIX ixd SITET (L
dWadad ra X 9080098018
HILOVEYHD IX3N 13D 78+1V¢ 1¥s 4007 Z1Ibs 9
dWao3d rd X ppeedosaId ¢
MNYTENON=DY¥Td ‘LON 41 1 18S8 LBBRBBE LY
awnr ‘cs ar 2007 TX ¥i + safagatara ¢
MNYTE ¥ ¥ILOVHYHD IS¥Id JHL SI SX-TX ixd cTITET
MNY18 QFIJAILSAL L43T=8X ANVIE S¥s ¢ 3722022518
JIALNAOD QYOM=9X og 9Xs 8e99L ¢
HAINAOD FILIVYVHO=ZH T [4:5 1008808779
SUNYIENON=T SHNV1d=p ‘OV1d=18 [} 188 38199
HONIINIS 30 HIONAT=td ZX €8s aLLeEy ¢
JONILNAS J0 HION3T=IX ZX 7¥s AN
FONFLINIES A0 SSEYATY ONII¥VWLS=TV 18 1¥s 817¢¢
HIONIT 30 S$SAWAAV=ZX T+1¥ [A-£ Tezepeizec 1
1 sse STUCOM T [
dWaD3d LX3

SOJYOM AYLNI

(HLONIT‘ IONILNIS) SQI0OM = YILWNN
$EAONFADAS ONITIVD
"a3ITIIA NNYIE
fQIIJILSAC T487T ‘QHOM ¥3d HEIOVIVHD ENO ‘S¥RELOVNVHD 40
AVHEY NY SI ZONAINIS EHI CSMNVIE JWOW ¥0 3INO A§ QALVIVAES
SUALOVYYHD 30 FONANOIS ¢ SI QUOM ¥ "ISVIHE ¥0O FONILNIS ¥
NI SOYOM J0 ¥IEWNN FHI SINACD HOIEM NOILONOJ ¥ ST SCNOM

* K ok K K KK

SqYOM INZCI

Jo¥d *8Y65°BZ “L1/T1/P8 *815-9°¢ SSVAWOD ¥ 81V *x SOHOM

000000 Lg STZ500 Ly $915000000080000218C LX
T00002 9d £L1500 9¥ 000000000000000006000 9%
[Ay:1:1')’] se PLSPOO SY §6656G6656696G55655¢ SX
z10008 v vacvoo 1A S9TS8000008000000000 124
0vzo08 €d 9LGLB8 £y 0A000BBSLLOBE0000000 .4
£80000 Zd zrevoe 44 ovC000000000000600000 X
800000 14 vzevoo v 6G955555GG65666666G6 X
000000 g 0800039 v GOLLLLLLLLLLLLLLLLLL gxX
$95¥0@ NOILYD0T WOdJ daTIvd € YIGWON dRNA ¥ILSIOIY SI SIHL
000080 Lg s1zses LY S9TS00PeR00PA000210Z LX
1060820 9dg €LTG00 9¥ 800000000029000660000 9%
50009 qd yiLsvee Y G556655655656555666S SX
Z10009 vd yocvoe A4 59150e0009080000080080 2.4
872000 €d 9LGL00 4 2000000SLLO00000000 (4
700909 e CIEvVee (A4 6vC000600000000000800 X
008000 13:1 TZEV 00 184 §9GG95555555565G66556 X
0000890 g4 290000 A4 @OLLLLLLLLLLLLLLLLLL [’4
?95%00 NOILYDOT WO¥d QITIVD Z YIEWON dWAQ J3ISIDAY SI SIHL
2000080 L8 S1CSee A4 S915000000000000ZT0C LX
100888 9d £L1S00 9% 00000P00000000600000 9%
69000 sd viGvo0 SY §6G66655966G65666565666 SX
z100400 4 vecveo (A S9T1S0P00000000000000 124
8vz000 €g 9LSL00 €Y D0PY00ASLLODBIDOIO0D €X
100000 cd [As34:1’} [A 2vC000060000000000000 [44
000000 13:) LTEYBY v G666555566665666GG6S X
opeoee gd gopgee oY OOLLLLLLLLLLLLLLLLLL 8x
¥95¥098 NOIIV30T WO¥d QITIVD 1 YIEWON dWNd ¥3LSIDEY SI SIHE
SZACK 379YL 9 aasn IOVY0LS WO d68vot SANO0DJ3as dd 6L9°
SHOVJYALNT dIOUNVH AYOWEW Tdd 8TS 9°¢ SSVYAWOD T19/01/88 gITSAS-1S 222 ceeet THK*® 104
"IN3AIS3IY ¥IAVOT DIWYNACQ LSVd 81S 9°¢ SSYAWOD T18/061/08 dI718is-1s TT1¢ TZOET S3¥ "11a4
SELNIWWOD JIYMQIVE TIATT JEA ¥SSO0¥d aL¥q 4114 HLIONIT SSa”aav A0014d

“L1/z1/88 8TG-G T ¥HAVOT ¥TGAD 44 g1V xx NIVK - dvW C¥0T

xx QCV xx

919000 4! c1evee (A4 9vC00020000000000000
180000 T zoevoe v GGGG6666666655556590
209060 24 ag0009 v POLLLLLLLLLLLLLLLLLL

95y 00 NOILVYDOT WO¥d QITIVD 8 YIGWON dWNd J3LSIDIY SI

280000 L4 5175089 LY G91S@P000000000202108C
100880 9d £LTS08 9v¥ 10000000002000000000
(431121 sd bLcvoe a¥ GG5666566655656565666
z18090 v vocvoee 1A S9150000002000000000
2vze00 €d 9.5.08 €Y peEPPRBSLLPO00AAGERD
LDBOOG [4:S Zieve (A4 9v700000000000000000
000000 148 zsevoe ¥ §6G6G5665566G665556STT
008800 ee gogoee v BOLLLLLLLLLLLLLLLLLL

$969080 NOILVIOT WOdd JIdYTIWD L YADWON dWNT ¥3LSID3IY 51

200808 L s1Zzsen Lv S9158000000009087T07
100000 94 €L1508 9¥ 19006060000000000060
150800 cd LA 41] SvY GGGGEGEGGEGGEE66G56S
z1ee0e ve yecyao jA S9T500002000800000C0
avzeen €g 9L5L80 €Y 80800005L.000008080080
ggeees [4:! zieven (A 9vyZ00000800000000000
e2oopea 83 £veEvoe 184 §66G5666566555566656S
0060000 24 20000¢@ A BOLLLLLLLLLLLLLLLLLL

POSP 39 NOILVYOOT WOdd GITIVD 9 YIEWNN dWd ddL5I038 SI

ppoea0e Lg sT1ZS08 LY 591580p0002000007T0C
1000880 98 €L1508 9v¥ LR A)
750009 S visvee S¥ $56655666656556555865
zi@ese ve yoEveo [Ad S9T1500000060300000000
avzeeo €d 9L5L00 34 BRO0PR0SLLOBBNAR0000
spoeee z4 ZT1evoee (A4 BycpesepacoeARRAB0000
Teesee 8:! seevee v GGGCE6SG68G66666666666S
gooeee ed 200900 °A4 BOLLLLLLLLLLLLLLLLLL

¥95¥@88 NOILW2CT WO¥4 Q3TTED 5 JEEWAN dWNd ¥3LSIDIY ST

30060080 Ld 512508 LY S91SAA200R20009007TRT
100080 94 €L1500 9v¥ Pe00PP00APERAARB0000
750080 € yLGVOB G¥ 666665666665556GG65S
z108600 ve vocvaes 1A 5915800804420000000008
2vzZeoeo €g 9LsLee £V 09090403S..0000000000
yopede [4:] cievee (A 2vy7a0p0200020000000C00
gopege 14 gcevon ¥ GGG55556G559656686vE
20082 gd 200998 v BOLLLLLLLLLLLLELLLLL

¥9G%@8¢ NOTILVOOT WORA JITIVD ¥ HAGWIN dWNT HILSIODAY SI

ZX
X
/2.4

SIHL

LX
9%
X
X
£€X
X
X
gx

SIHL

LX
9xX

|28
£X
X
X
BxX

SIHL

LX
9%
X
2.4
[4
[2.4
X
28X

SIH

T

aD¥d

"18°18°€2

“LT/2T/88

+@
+1%1T

"8715-9°¢ SSY4WOD

dWaoad
Z1S480

299480

“STI0EWXS TVNIILKI
+v¥ ZAVS80
+8 293980

“SLNIOE A¥ILNZ

aNz

293980 INIAI

SEQAYD TOUINCD A¥UNIG

¥x T xx

90z

HIDNAT

98¢
]

$SI¥AAY

*NOII¥D0TIY HAOVNOIS
293480

.

4

JoNd

SY4ELSIDEY °d "D JHI FAVS OL INILAOY

*NOISNILXA NOIS HIIM QIISnray LHOIY L4° T ssg LEAYS
*NOISNIZIXE NOIS HLIM QIISNLAY IHDI¥ 99° T ssd 9gAVS
*NOISNALXZ NOIS RIIM QIISALAY IHOIW 6€° T ss8 SEAYS
*NOISNALXE NOIS HIIM Q3ISNCAY IHOSIY va- T ssg YEAVS
*NOISNZLXE NOIS HIIM QaLSOCLAY LEOIM €9° 1 ss€ €EAYS
*NOISNAIXE NOIS HIIM dILSNrdy IHOIY 7§° T ssg ZHAYS
*NOISNAIXE NOIS HILIM Qaisncdy IHOIY 19° T ss€ THAYS
‘@9 FLVOIGNI Ol QIo¥3Z 34 TIIM QIOM SIHL® T ssq @EAVS
"NOISNIIXHE NOIS HIIM aIIsSneay LHOIY LY 1 ssg LYAYS
*NOISNZIXE NOIS HILIM Q3rsarad IBOIN 9¥° T ssg 9YAYS
*NOISNALXY NOIS BIIM q3arsnray LEOIN GY° T ssd SUAYS
"NOISNAIXE NOIS RIIM d3LSNCAV LHDIYW py* T ssg YYAYS
*NOISNALXT NOIS HIIM @aIsnrdy IHOIM €v° T ss€ £YAYS
*NOISNALXT NOIS HIIM GILISACAY IHOIY Z¥° 1 ssd ZYAYS
*NOISNALXZ NOIS HIIM QIISArdy IHOIY T¥° T ssa T¥AYS
*NOISNIIXE NOIS HIIM QIISNrdY LHDIY @¥° 1 ss8 aYAYS
*JYAR QF¥OLS d€9 TTIIM LX 30 SINILNOD 3HL® 1 s54 LXAYS
*HYEHE QIYOIS A€ TTIM 9X 0 SINIINOD FHL® 1 sse 9XAVS
*g¥IA QIIOLS ¥€9 TIIM SX J0 SINIINOD FHL® T ssq GRAVS
*FYIH GIIOLS I TIIM ¥X 0 SINIINOD IHL" 1 ssd ¥XAVS
"g¥3IA QAYOLS 39 TIIM £X J0 SINIINOD FHL® T ssd £XAVS
*g¥3F gII0LS Fd TIIM ZX 30 SINILNOD ZHL® T ssd TXAVS
*3¥3IH @I¥0LS Jd TIIM TX 40 SINILNOD FHI® 1 ss€ TXAVS
*3YEH QIUOLS d9 TIIM @X J0 SINIINOD IHIL® 1 ssg 9XAYS
FYAH QIYOLS AYY SYALSIONAY *d D 30 SINILNOD
7934980 40 aN3
SSERAAY SNITIVO JO FOVIOLS MOd AYWNOAWIL® 1 ssg 2dWaL
T 7998
ZdW3L/@9 ada
BFRAYS/ 85 dda QAVIEY
ANIINOY ONITIVD OL N4NLAY* 293980 Jok:]
$O3¥ ONIILVNA40 FHL JO SINIINOD FHI FYOLSIE " ZLSu8d [t
S9ELSIDIY IRL 40 SINIINOOD FRI ININd* z5udgd it
799380 Y04 IONINOIS ONITIVD I3S* aayoav Tvs
INdDI¥ Ol SINAWNDYV &0 IIS
WO NI SSIWAAY ONITIVD FAYS*® ZAWAL L¥S
WO¥d (ETIVD SSFNAaw=LX° 1-1X LXS
SLIg 8T ¥IMOT O SSIYAAY NIOLIY® [X1
ILNOYW ONITIVD AHL OL MOVE dWNL FRL 40 ¥JId* 293480 198
SYIISIOIY (8'¥’'X) ONILVYEI0 FHI FAYS® ZAYS8D ra
draoId noz z939ed
90008V +x ar awgoay
dWangy XUINI
O¥AENISOY UIAVA ANV X800VL dad Xg T°¢ 3d0DS YHANN M¥OM OL JHIJIAOW
200 - YISVL FAILIS A€ @°€ JOOS ¥IANA YHOM OL GIIJIAOW
¥ILSIOFA ANY JO SINIINOD FHI ONIXOWISIA INOHLIM S¥ILSIDAY *d °D
5d¥ ANV FAVS O SWYMDOMd 40 L3S ¥ ‘294480 ANV zis¥s8d’zavssd’zoausd

299480 1Xd
ZL5¥80* ZA¥S8D‘ 2D3Y8D XWINT
2934980 LNIAT

"IB°T18'€T “L1/71/88 "8TI5-9°¢ SSVAHWOD ¥x T8 xx

KKK

KK KKK

+

+

A A At A A A AAAA A A A A A A

T
T

4
7

ZTecoppeoeaonaapgapee 21
t1989980330060888308088 L

+ gpcpeesave S
+ 1vigegepie S

pe@e0@eBTe

+ Lesege@ris ¥

ZTAPQ@8.LTS

™

9LLLLLTLZL &
9£787

+ 0000088TTS

+ bvogeacate

-y

+ dggaavaaza

=

%9980

€

a9v¥d

"NO SUYM L9 40 9§ IT9 IVHI JIVDOIANI °S3X°
"NO £9 J0 (LT LIg MON) @ LI9 SYM"
*NOILISOd NOIS HABL OINI L8 30 9 LIg ONINE®
*NO S¥M (€ 0 T II€ IVHL IIVIIQANI °SHAX"
"NO £€ J0 (LT 1I9 MON) T IId SYM"®
"NOILISOd NOIS FHI OINI (€ 40 T LIS 9NI¥g-
*NO S¥M (9 J0 7 LI9 IVHI IIVOIQNI °SEX’
NO t€ d0 (LT II9 MON) Z LI9 SVYM
*NOILISOd NDIS FHL OINI L€ 40 7 IId ONI¥G®
"NO SYM L€ 30 € II9 IVHL AIVIIANI °"SIX°
“NO L€ 40 (LT IIg€ MON) € IId SYM°®
“NOILISOd NOSIS FHL OINI (€ JO € LId ONINE"
*NO S¥M L9 40 % II9 IVHI IIVOIANI °SIX’
“NO £€ 30 (LT II€9 MON) ¥ II€ S¥M"®
‘NOILISOd NOIS FHI OINI L8 40 ¥ IIg SNIdd-
"NO SYM L9 40 § LI€ IYHL ILVOIGNI °*S3A-
"NO L€ J0 (L1 LI9 MON) S I1I9 S¥M°
"NOILISOd NOIS HHI OINI L€ 40 § IId ONI¥G~
"NO S¥M L€ J0 9 IId IVHEI ILYIIGNI °SIX°
"NO L9 30 (LT 1I9 MON) 9 LI9 SUM"*
*NOILISOd NOIS #HI OINI L€ JO 9 II9 ONINE"®
*NO SYM L€ JO L II€9 IVHIL IIVIIANI °SIX"
"NO L8 J0 (LT II€ MON) [IId SYM"
*NOILISOd NOIS JHI OINI L€ JdO . LI€ ONTUd®
“NO S¥M L9 30 8 119 IVHL IIVOIGNI *SdX°
"NO L8 30 {LT LIY MON) 8 IIg SUM"
"NOILISOd NOIS FHI OINI L€ 40 8 IId ONI¥g-
"NO S¥M /9 4O 6 I1Id ILVHL IIVIIANI °SIX°
NO L€ J0 (LT LIE MON) 6 1Ig S¥M
*NOILISOd NOIS HEL OINI L€ 40 6 II€ ONIud’
"NO SYM .9 40 @7 LId I¥YHL FLYSIANI °SIX-
"NO L9 J0 (LT I1I9 MON) 6T IId SYM’
NOILISOd NOIS HHL OINI L€ 40 @7 II9 DNIJE
"NO SYM (€ J0 T 119 IVHLI ILYOIANI °SHAX"
"NO L€ 30 (LT LId MON) TT IId SyM*
*NOILISOd NOIS EHI OINI £§ 40 [T IId ONI¥g®
*NO S¥M L9 J0 ZTT LI9 IVYEL IIVIIANI "SIX°
"NO (9 30 (L1 1I9 MON) ZT IId SUM°
‘NOILISOd ROIS FHL OINI 29 J0 ZT LI€ ONING-
"NO S¥M L€ JC €1 LI9 IVHL ZIVOICNI °SHX°
*NO € J0 (LT &LI9 MON) €[1I9 SYM~
*NOILISOd NOIS EHI OINI L9 J0 €T 1I9 ONING®
NO SVM /(8 JO ¥T LIE LVHL ILVIIANI ‘SIX
"NO L9 J0 (LT II9 MON) ¥T IId SyM*
*NOILISOd NOIS HHI OINI (9 40 $T ILI€ ONI¥G®
"NO SYM (9 40 ST 119 IVHI IIVJIANI °SHX*
"NO L€ JO (LT II9 MON) G 1Id9 S¥M”
"NOILISOd NOIS HHIL OINI L9 40 ST LI€E ONI¥g-
*NO S¥M L8 J0 9T LII€ IVHI ILV¥JIIANI *SAX*
"NO L9 30 (LT LId MON) 9T IId SVM~
*NOILISOd NDIS IBL OINI L9 JO 9T LId ONINg-
"NO S¥M L9 40 LT 1I€ IVAL ALYDIQNI"

*NO SVM LT 4I€ LVHI ILVDIANI 09 °SIX°
9TLIE OI HONVME ION 4I ‘NO (9 JO LI 1Id SI®

ZAVS8D/8 1 ZAVYS8DHI/T¥

‘T0°T18°€T "LT/TT1/B8 “8T15-9°€ SS¥WAWOD

xS
rYaNd‘Lg
Lg+Ld
rd
grIg‘te
LE+LE
zed
T1I8‘L9
La+L9
€ra
zrI1g‘Ld
La+L9
pry
£119‘L9
La+Ld
sra
prId‘Ld
LE+L8
9ra
syIig‘Ls
La+Ld
Lra
91Ig‘Ld
Le+td
8ry
Lr1dLd
La+id
60d
81I1d’L8g
L8+L€
g1y
6LIg‘Ld
La+Ld
Tice
gTIIE’ Lg
La+Ld
(48]
TIII9Ld
ta+L9
€10y
ZriI1g‘Ld
La+Ld
20k
£TLIdLg
La+L9
STy
vILIg‘La
La+Ld
910y
STLIg‘Ld
La+Ld
Lire

LIr9’9d‘eg

9TIId‘Ld

*x €9 xx

ra
1d
Lds
r
1d
Lds
x-S
1d
Lds
ra
1d
Lgs

14
Lds
ra
1d
L€S

1d
Lds
e}
1d
[A:
ra
1d
L4as

a4
Lgs
rg
1d
Lgs

1d

g ¥I¥d
adAa

gy

8LId
e

TLIg
zre

ZLlg
€rd

€LId
yra

bLIid
sra

SLId
9ra

9L1d
Lra

LLId
8ry

81Ig
604

6LIg
ATy

ATLIE
Ty

Tixnid
[Ave:-

Z1iIg
PRt

€TLIg
yiryg

¥1i1d
S1r4

STLIg
91Ld

9TIIg
L1y

ZAYS80

+

+ #1100600Te 01T
+ T110986L98
LLL99 (BT
+ 9010000810 90T
+ LBT16008L90
LLL99 &1
+ V01006066TE8 ©voOT
+ SOT@B05L90
LLL99 €8T
+ 010000919 zAT
+ £019006.90
LLL99 TOT
+ 0016000816 Q0T
+ 1810908L90
LLLY9 tLL
+ 9.0006000T0. 9.
+ LLO0B0BL90
LLL99 &L
+ v.0000007T0 VL
+ SLB0B0OLID
LLLY99 €L
+ TLB0B0A0TO TL
+ €L008880L99
LLLe9 1L
+ 0L0000P9T0 QL
+ 1L00608L90
LLL99 L9
+ 9900006018 99
+ L900808.98
LLL99 99
+ ¥900090070 79
+ S9PB800AL90
LLLY9 €9
+ 7960008018 79
+ €900006.90
LLE9S T9
+ 09060008018 69
+ 19088898.90
LLL99 LS
+ 95000098T0 95
+ LSBR006L99
LLL99 &S
+ ¥S00006808TO VS
+ G500908.90
LLL9Y €S
+ TS000008T0 2S
+ €S08896L90
LLL99 TS
+ 06500000610 @S
+ 1500000299
LLL99 LY
+ 9v000000T8 9%
+ 970600000V 0
+ LV00008.98 GV
$0B08000000000000008 bV
+ VvO0P@SSTEITIAECEYTZ EF
p4alce:t:1o)

4

Jo¥d

(ON $ ON $ » £¥) WIOd ¥HI 30 QM ¥ J¥OLS®
*97 LIg FLYDIANI OL 4asn (yx £¥) FHL HOLAL®

“LX NI QILOAILSNOODAY 3d TIIM (8"
*J00T ZHI HONOWHI SNOILWMILI INOQD TIIM £9°

“ZX 40 T &I9 NI /1 II€

NOILISOd "

(ON $ ON $ LI0Y¥ £4) = 9% Ids

“ppPOEDO0RATERORE000

g = TX IL3s*
7z = 7€ 13s°’

*NOTIDMMISNI (LT£d [8) ¥ HOZAL®
*¢1 &I9 BIVOIANI OI QIsh (x £¥) FAL HOLEL®
*99000009A0F 000080007 = X I3S°

*RYOWEK NI

*gd ONIAVS ¥04 (@8

*RMOWIH NI oV
“XHOWIW NI ¥Y
“LX OINI (S¥)D
“ZMOWIW NI €¥
*9X OINI (#¥)D
*ZJOWIW NI Z¥
“L¥ OINI (€£Y)D
*RJOWIW NI TV
*9% OINI (Z¥)D
“XJOWIW NI oV
“L¥X OLNI (T¥)D
*XJOWIW NI 6X
*9X OINI (8Y)D
*X4OW3W NI ¥X
“LX OINI (SX)D
“XOWEW NI €X
"9X OINI (¥X)D
" X4OWIW NI ZX
*L¥ OINI (EX)D
*ZMOWIAW NI T¥
*9X OINI (ZX)D
CIYOWIH NT aY
*LX OINI (TX)D
*XYOWIW NI 99
*9% OINI (8X)D
"AMOWIW NI 68
*LX OINI (98)0
“IMOW3W NI ¥€
*9¥ OINI (58)D
*ZHOWIW NI €9
‘L% OINI (pd)D
*KJOWAW NI z€
*9X OINI (£d)D
* AYOWIW z_w Td
“LX OINI (Z€)D
{ouaz SAVMIV) gd
*9X OINI (1€)D

SKIOWEAW NI (¥

JAVS
JAYS®
JAOR®
JAVS”
JAOR "
JAVS©
JAOKW "
JAVS®
AAOKW "
JAYS*
JAOW*®
FAYS®
dA0KH*
dAavs*
JA0KW”
FAVS®
JAOW
dANS”
JAOW"

JAOKW
LXS) SI SIHIL GNILI™L*

JAYS*

*ONZ FHI BONOYHI T O 7vndd NIVWIY TIIM L8°

*9X OINI (L¥W)D
*AMOWAW NI 9X
*XIOWAW NI 9V

*LX OINI (9¥)D
*XJOWENW NI LX

FAOW*
AAYS®
dAVS
JAOH "
JA¥S

“L9 NI {(£¥)D QIOH ATIVVIOdWAL®

*18°18°€T "L1/21/8%

“815-9°¢ SSVYAWOD

9¥sS
(4]
Lxg
£4s
[441
9xXd
TX1
cds
£Ys
Vs
TXHW
L¥s
9¥s
LXS
[A £
9XS
9¥s
LXS
L¥S
9Xs
9vs
LXS
LNS
9XS
9¥S
(R4
LNS
9xg
9¥s
iXa
L¥S
9xa
ave
LX8
LYS
9xg
9vs
LXS
198
9Xs
9¥s
LXS
LY¥S
9Xs
9v¥s
LXS
L¥S
9Xs
LXH
9¥S
LES
9¥s
9¥s
L¥S
LXS
A £
Lds

doo’l

ragNa

77985 €T
144424
zZLOT TET
8276095579
19712
£€98T €T
8y 102
LLZ99
+ LETOBRBETS LTT
+ 9v80860ZTS
T8TEV 92T
19L%S
LLoys
BSLGL
L9L¥S ST
pyosL
LLIPS
geLSL
L9LPS ¥TT
8295L
+ £7PBBRASTS
BTLSL €21
L9L¥S
1441
Izt
ezt
L1T
91T
§TT
PIT
LL9VS
1080806LT9
gLoLL €11
1288680915
+ T€0089BLTIS ZTT
29051
+ Z708089LTS
gLLS9 TTT
253880

€Y JUOLSIY " LE+PR £YS
T8+ ¥¥s
¥ FWoLsdy* LE+6X 46
Tg+9¥ [43
TV JYOLSHI* LE+PX ¥s
1E+6¥ ¥YS
BY FUOLSTY * L8+6X #YSs
BYAYS SYS
HLLLLLLH+TX Lgs
29 ZXH
€Y 9¥s oM
9X+¥X 9¥g
BIM’SX 14
EX¥P R~ 9Xd
18 2.4
4 XKW
SXAYS SYS
™ £YS
s413s‘zd ZN
T9+9¥ 9vs
£X+ZX 9xg
LX+TX TXI
TXx8X £X9
1g-2¢ zds
T8+1¥ vs S419S
A 9vsS
E£X+2ZX 9xd
9 zds
1z LX1
CXx9X- Zxdg
TXx 08X £X9
TeRISd [4 £
8T)41
19 LXS
8T BXW
T = LX° 14 LXS
T 14s
THAYS Vs
8 ¥I¥ad zsusd
ZLS480/81 ZLSUSDHS /Z¥ ada
SYALSIODIY *d D FHI TWOISTI OI FINIINOH
"g¥IH gIINDAXE ION ‘LIL¥ IV AIWOIS SI SIHL® L1004 ry SNICY
ZAVS8D o))
*XHOWIW NI L9 FAYS® LAAYS L¥S
"NOISNILXI NOIS HLIM LX NI L€ LSQLAV IHDIY® [44 LXY
‘¢ LIF Y04 NOILONELSNI (s £¥) HHIL FIOLSTE" [4:S84 4 9¥s
*LX 40 65 NOILISOd NI .d IO £T II€ Ind-® 144 LX1
*d00T 09 # IId AIVOLSTY LIX ION IAVH aM JI° JooT‘€d 14
*L€ 30 II€¥ IXIN HBL ¥Od WOOY IAVW® T LX1T
*NOILOOYISNI (s £¥) IXEN |FHI HOIFI® za+2v (44
°L9 JO NOILDAMISNOODEY FHI OINI LI€ SIHL J0° TX+LX LX9
1 A9 ¥WIINOQOD NOILVEALI IHIL FSYIADHA L8~-£49 £ds
"ILSNI (y £¥) HHI JO SSIIAAY mmﬁ oL Z aav- TX+9% 9XI
*ZX 40 § NOILISOd Ol LIf QJIAVS FHI IJIHS® 9S (244
q9vd *1B°18°€C “LT/T1/8B8 *8TS-9"€ SSVAWOD *x GF xx

+

* ok K

*

LYEES LST
159%S
LSZES
TS¥S
LYTIES 96T
15v%S
LSBES
+ €£ZPOQBASTS SGT
LLLLLLTLZY
yLZEY
BEIPS PST
9v9eT
+ pSTIPBASZES €ST
VEIST
£9%07
vovEYr ZST
#zB6BAESTS
+ E€LTPPBBETS TST
LY 100680750
199%S
€292T @ST
[244:13
TOETT
12TLs
TIPS L¥T
6Z9%S 9VI
£Z921
9096000219
STLAT SPT
[14430
18€TT
+ 9LTB006ZTS V1
144114
8TLYL
(44157
B8TLIL €VT
1009698119
+ VEPPBABTITS Z¥1
8800080 E2200600600 1523
+ TVIBPBSSZEYZEZTZIERTZ OVI
+ 9v002900168 LET
+ ¥9000668¥0 9CT
+ ZY90006LTS
TSLIZ SET
2795S
TSL02
+ ZTETHROHE98 PHET
10L82
(44417
TLLTZT €ET
LEELY
1999¢
BL212
7293480

OoN £aasy 0889y Q87

78 J¥90LsEd * g+id zds 2000006L219
ON poa9y
ON sy 2889% LLT
18 JPOIST o+L9 1ds 200086LTT9
ON 20097
ON TEISd 9089% 9L
QILFIIN0D ¢X 40 NOILVIOLSIYE*® SX‘18 SXd SISLe
6y S¥1 19582
cx’zd SXd SZSLT
6% S¥1 19902 SLT
cx‘cd GXd SESLe
6¥ SX1 19682
SX’‘vd SXd S¥sLT
6¥ SX1 19582 PLT
sx’‘sd SXd S§6SLT
6% SX'T 19687
GX‘9¢g SXd G96LT
€X J40 NOIIWVNOLSIY IMVIS® a8 SXKW TT™® BASEY €L
g¥ F¥OLSHEY” Ld+8X £ L5GES
SYAVS S¥s + @€PBBIBSTS TLIT
Sx‘9d SXN 59592
Tt SX71 £1502
sx’sd SXn 96897 TLT
1T SXT £1502
sx‘ye SXn S¥S9¢T
1t SX1 £1582
sx‘eg SXn SES9Z BLT
11 SX1 £1sez
sxX‘zd SXn q2697
11 SXT [8 14
SX‘18 SXn S169Z L91
SEANS ERA] T T P T D
/X FEOLSIY® oX LX8 SSLBT
T8+9¥ SYS T65%5 991
9X F¥OLsIY* oX 9xd c6opT
9XAYS S¥S + T784800STS
¥X 3¥olszd - oX | 24:1 SS¥AT S91
18+4¥ SUS 15693
£X 3¥oLsay -’ 6X £xa SSERAT
Ta+5¥ SNS 168vs
ZX d¥90Ls3y-” SX [44:4 SGZAT V9T
Ta+6V¥ SYS 1667¢
TX 3¥0Ls3y " SX X4 SST8T
Tg+8¥ a¥e TgG%C
@X J¥OoLsaN” 34 28] GGAeT €91
@XAYS qvs + €T189886515
LV 3¥0LSTE’ gd-s¥ L¥S BSLSS
S¥ LX8 eSLAT 79T
L9+SX SVsS LGGES
LYANS GNS + Z€@8R20ASTIS
9¢ FEOLSEV’ ga-sv¥ 9v¥s 259¢5 197
SX 9Xg Sc9871
L9+8X G¥s L6GE¢S
9VAYS SYS + T€0088851S 891
PY¥ FWOISTI* L8+6X y¥s Lepes
T8+%¥ S¥S TbS¥S

qovd ‘TR°T18 €T "LI/TT/88 “g8T16-9°¢ SSYdWOD ¥ 9€ ¥x zH3uel

L

aovd

“18°T9°€T

SAONIYTATL £LST

SANQJAS L948°T

STOEHAS 6L SINIWILIVIS 2OE

anz
FOYIOVd ONIAWNA ¥IALSIOA d0
215480 oz
L8 BYOLST* f+L€ Lgs
ON
ON
99 FYOLSTI * B+Lg 9gs
ON
ON
gd FIOLSTI* B+L9 5:5
ON
ON
¥ TYOISHY* piLE vgs
ON
ON
€9 F¥OLSHY P+i8€ €4S
ON

“L1/21/88 *8T15-9°€ YSYIHOD xx L9 xx

aNz

ATEWISSY £L 'TICQOW
aasn FOVIOLS

L9989

9845y

SgIsy

yegsy

WO agev9y
99z
+ Ty100800V9 SBC
00PBOBLLTY
2809%
6083y vez
p0BEBBLITY
28069%
60g9% €6T
8OB00BLSTY
geQsoy
) - 60689% Z8Z
pOBOBILYTO
6809%
08@89% 16¢
BOGBRALETY
2ee9%
293980

9s/6

¥1/% 8v/¥ 96/¢
(VL

7176 nfa/f za/¢
S1/L T 61/S 81/S
7T/t $1/2

Fov¥d *18°T@°ET ‘L1/T1/08 *976-9°€ SSVIWOD x 88 ¥x

s

T

-

[= S % IS S S S S Iy S B Y I R I I, . o I |

LE/9

LE/Y

15/9
8E/E
£E/E
9€/¢
6€/€
4743
SV/€
8% /€
TS/¢
98/¢
68/¢
/¢
ST/€
8T/t
12/¢
vz/€
Lz/€
¥S/€
LS/€
yI/S
ti/¢
£1/2
17/2
[944
8z/2
L9/s
18/¥
8Z/¢€
Te/€
ve/s
LE/E
aq«m
L/ o
9V /¢
6% /€
LB/€
81/¢
€1/t
S1/€
6T/¢€
zeZ/E
sz/€
TS/€
SS/€
£2/2

M aAaddd HGeddd Gl ld i dud el aa

[I IS IS . - S [[|

[R

Sv/T
vv/C
£v/¢
Z¥/T
/T
ov/T

*N¥IO0dd
*HYED0Yd
*AVIO0dd
*WYYD0dad
*HIO0ad
*HYID0dd
*WIO0dd
*WYIO0Hd
*WVID0Ud
FATUD0Ud
*WYI90dd
*xW¥IO0dd
*WVED0dd
+WPID0d
*WTIDOEd
*WYE00dd
*WID0Ed
«WRID0Ed
+HYID0Ed
*»NTIO0Hd
*HYID0dd
FHTUO0Ud
*HYIDOId
xW¥O0ud
*WTIDOUd
*RID08d
*WEID0Ed
*WYAD0dd
*WYID0Ed
»HYID0Hd
*WTIDOAd
*WYID0Ud
«WYdI0dd
*HYEDOUd
*WYIO0Id
*WTIDOH
»TYNIILXI
*ATYD0Ud
*W¥ID0dd
*HRAD0Yd
«HYYO0Ud
*HYID0Ud
*WTID0Ud
*HYEO0dd
+AYIDCEa
*WYID0Ad
*WYYD0Ud
*WYUD0Td
MDA
*WYYO0Ud
*HYE00dd
*W¥IO0¥d
*WYI00dd
*HTID0dd
*WRAD0Ed
*AVID0Ad
*»RVIO0Ed

se1
LoT
L

GYAVS
yYavs
EYAYS
ZVANS
TVAYS
BYAVS
LEaSy
9IS
SHISY
RIS
£aasy
sy
Ta¥sy
60y
8rd
Lry
9rd
sry
¥y
€
604
L1y
9T LY
Sy
LAYS-S
ERIN-
fAsy-|
Ticy
g1y
ry
aryg
SNITY
dWUDWd
zavSel
2153980
253380
%949480
4007
9GN3
6514
8LIg
Liig
95L1g
SLIg

=TT
Vil

£LId
zLid
9T.LIg
STLrId
AT
€ILId
ZT318
T1LIg
AnAY:]
TL1g
(528
aqvoyy

*ETEVL FONIUIITY OITOGWAS

29348

6

49¥d

"T8°18°ET

TLT/TU/88

1
T
T 92/2
S
12/9 s
sz/9
11/9 S ST/¥ T
s
£9/9 S
*81S-9°€ SSYAWOD ¥ 69 xx

6€/9
LY/
vZ/t
6£/S
z8/v
S8/%
i%/S

[4 944
11/¢

8z/s

L8/9
14:744

A 3 dAgalA 3adaaldaan

*WYIO0¥d
*HYID03d
*WTIDOYD
*»WED0Ed
*WYID0dd
*HYID0¥d
*HYIDOYd
*WYID0¥d
+HYID0Nd
*HTIO0Id
L HRAD09d
*WID0dd
*WRAD0Id
*HYID09d
*HID0dd
*HTIDOId
*WYIDO¥d
*WTID0dd
*HWTIO0Ed
*HTID0¥a
*ATIDOId
*WAD0¥E

™

oM
ZdRAL
SgLds
LXANS
9XAVYS
SXAVS
YXAVS
E€XAYS
CXAVS
TXAVS
BXAVS
LEAYS
9dAvS
SEAVS
vdAvYS
£9AVS
ZHAYS
T9AYS
AHAYS
LYANS
9VAYS

“ITEVE IONTYAIAY DITOIWXS

2534980

3D¥a

g 18°¢cz

IR

"L1/21/88

aasn WO €e98ISs

6L aL1T HIONIT WVED0dd
SOILSILYLS
§439 IX3 gst 99 1 LA
$3I1Ld93d04dd HION3T L-WOYd XIANT T138¥1 S4007
£ 281 IWd z L IWd T 19

S1IEV] INIWIALVIS

LWd 104500

JA0W SAWNYN ITId
- LY TVIE SYLSOd @
YIDIINI YddWON SE tdtd HdDIINI NL20T @
AVyYwY daSIINI NI €8l WADIINT I 7éT1
NOILVYDO013¥ ddXL NS SITEVIUVA

IDddsd €
SINIOd AMINT

(T=¥) dvW FONINIIIY DITOGWAS

ang

(HT)1VWd0d €
(9O“XE’/TI‘EHT'XL 90 XE‘TI‘VHI ‘XL BZO'XE ' TI ‘KBTI 'XTT) AVWaOd T
{ HI/90‘s NOILYDOT WO¥d U3TIVD x I

‘€1¢y WHEWNN dWAQ WIISIOAY SI SIHI »°'X01////)LYW¥0d I 2

NINIIY

€ INI¥d

(8'1=1 1

(9T+Y) SYUISHY/ (I)INI‘ (8+I)SAISOY ' (I)VINI’ (I)SHISOU’ (I)INI) ‘7 INIUd
T+4939WON= ¥IEHON S

NIJOT‘¥IAEGWAN ‘T INI¥d
/L4976 % e 1 0 T/INI "¥TERNN YiIVd
(pZ)S9LSHY’ (8) NI NOISNIWIA

(NLDOT‘ SYISOY) 2oud8D ANILOONENS 1

8TG+8° ¥ NIL4 *¥ OTE x¢ 1=140 YL/EL zD¥d80 BNIINOYERS

APPENDIX C: MORE ABOUT PASSING PARAMETERS

APPENDIX C: MORE ABOUT PASSING PARAMETERS

PROCEDURES WITH A VARIABLE NUMBER OF ARGUMENTS

One of the virtues of the FORTRAN Extended calling sequence is
the ease of writing functions with a variable number of
arguments, As a simple example of this, we shall present a
function that returns the maximum of its integer arguments (this
is the same as the MAX]1 built-in function). This function may
take any number of arguments.

IDENT MAX
ENTRY MAX

MAX BSS 1
SA2 X1
BX6 X2 X6 = FIRST ARGUMENT

MAXLOOP SAl Al+1 X1 = ADDRESS OF NEXT ARGUMENT
ZR X1,MAX IF NO MORE ARGUMENTS, RETURN
SA2 X1 X2 = NEXT ARGUMENT
IX3 X6-X2 NEW ARGUMENT > X6 (CURRENT MAXIMUM)
PL X3,MAXLOOP
BX6 X2 YES, REPLACE X6 BY NEW ARGUMENT
EQ MAXLOOP
END

A related problem, counting the number of arguments to a function
or subroutine, 1s presented in exercise 17.

RUN COMPILER CALLING SEQUENCE

As we noted in our discussion of parameter transmission (section
3.6), CDC’s original FORTRAN compiler, named RUN, used a quite
different calling sequence. Instead of passing the addresses of
parameters as a list in memory, it placed the addresses of the
first (up to) 6 parameters in registers Bl to B6 (if only one
parameter, in B1l, and so forth). For example, the IDIF function
(section 3.9) would have been coded

IDENT IDIF
ENTRY IDIF
IDIF BSS 1
SAl Bl X1=ARGUMENT 1
SA2 B2 X2=ARGUMENT 2
IX6 X1-X2 X6=ARGUMENT 1-ARGUMENT 2
EQ IDIF RETURN
END

235

APPENDIX C: MORE ABOUYT PASSING PARAMETERS

What if a routine has more than six parameters? The addresses of
the remaining parameters are stored in memory immediately before
the traceback word of the routine being called (note: for RUN,
the traceback word must be immediately before the entry line and
contain, in the low 18 bits, the argument count of the
subprogram). As an example we shall consider ISUM8, a function
of 8 integer arguments which returns as its value the sum of
these eight numbers. The code for ISUM8 is:

I[DENT ISUM8
ARG7 BSS 1
ARGS8 BSS 1
TRACEBAK VFD 42/7LISUMS ,18/8
ENTRY ISUM8
ISUM8 BSS 1
SAl Bl X1=ARGUMENT 1
SA2 B2 X2=ARGUMENT 2
SA3 B3 X3=ARGUMENT 3
SA4 B4 X4=ARGUMENT 4
IX6 X1+X2 X6=SUM=ARG1l + ARG2
IX6 X6+X3 SUM = SUM + ARG3
IX6 X6+X4 SUM = SUM + ARG4
SAl BS X1= ARGUMENT 5
SA2 B6 X2= ARGUMENT 6
SA3 ARG7 X3= ADDRESS OF ARGUMENT 7
3A3 X3 X3= ARGUMENT 7
SA4 ARG8 X4= ADDRESS OF ARGUMENT 8
SA4 X4 X4= ARGUMENT 8
IX6 X6+X1 SUM=SUM + ARG5S
IX6 X6+X2 SUM=SUM + ARG6
IX6 X6+X3 SUM=SUM + ARG7
[X6 X6+X4 SUM=SUM + ARGS8
EQ ISUM8 RETURN
END

The FORTRAN routine will put the addresses of the seventh and
eigth arguments in ARG7 and ARGS8 before calling ISUM8., A well-
formed traceback word, including the count of the number of
arguments, 1s essential for routines with more than six
arguments. The calling routine needs to know the number of
arguments the called routire expects, in order to store the
addresses of arguments after the sixth in the right place.

236

APPENDIX D

CENTRAL PROCESSOR INSTRUCTION TIMINGS

APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

CENTRAL PROCESSOR

6400
6200 6500 6600

Opcode Mnemonic Unit(2) 72 72 74 171
00 PS Branch
01 RJ X " 24 21 13 43
02 JP BidK " 16 13 14 36
030 ZR Xj,K "
031 NZ Xj,K "
032 PL Xji,K "
033 NG Xi,K "
034 IR Xj,K " branch 16 13 36
035 OR Xj,K " taken
036 DF Xj,K "
037 ID Xj,K " branch
04 EQ Bi,Bj,K " not 16 5 19

(ZR Bi,K) taken
05 NE Bi,Bj,K "

(NZ Bi,K)
06 GE Bi,Bj,K "

(PL Bi,K)
07 LT Bi,Bj,K "

(NG Bi,K)
10 BXi Xj Boolean 8 5 3 17
11 BXi Xj*Xk " 8 5 3 19
12 BXi Xj+Xk " 8 5 3 19
13 BXi Xji-Xk " 8 5 3 19
L4 BXi -Xk B 8 5 3 17
15 BXi -Xk*Xj " 8 5 3 19
16 BXi -Xk+Xj " 8 5 3 19
17 BXi -Xk-Xj " 8 5 3 19
20 LXi jk Shift 9 6 3 19
21 AXi ik " 9 6 3 19
22 1Xi Bj,Xk " 9 6 3 19
23 AXi Bji,Xk " 9 6 3 19
24 NXi Bj,Xk " 10 7 4 20
25 ZXi Bj, Xk " 10 7 4 20
26 UXi Bj,Xk " 10 7 3 19
27 PXi Bj,Xk " 10 7 3 19

238

APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

INSTRUCTION TIMINGS

173
172 174 175 720 730 750 760 Notes Page

38

36 29 28 36 25 28 20 40
29 22 26 29 22 26 18 38
41

41

41

42

29 22 26 29 20 26 18 89
89

(3) 89

90

12 5 3 12 5 2 2 43
43

43

A

44

44

4b

45

10 4 2 10 3 2 2 63
12 6 2 12 5 2 2 63
12 6 2 12 5 2 2 63
12 6 2 12 5 2 2 64
10 4 2 100 3 2 2 64
12 6 2 12 5 2 2 64
12 6 2 12 5 2 2 64
12 6 2 12 5 2 2 64
12 6 2 12 5 2 2 96
12 6 2 12 5 2 2 96
12 6 2 12 5 2 2 99
12 6 2 12 5 2 2 99
13 7 3 13 6 3 3 72
13 7 3 13 6 3 3 72
12 6 2 12 5 2 2 103
12 6 2 12 5 2 2 102

239

APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

6400
5200 6500 6600

Opcode Mnemonic Unit(2) 72 72 74 171

30 FXi Xj+Xk Add 14 11 4 24

31 FXi Xj-Xk " 14 11 4 24

32 DXi Xj+Xk " 14 11 4 24

33 DX1 Xj-Xk " 14 11 4 24

34 RXi Xj+Xk " 14 11 4 24

35 RXi Xj~Xk " 14 11 4 24
~136 IXi Xj+Xk Long Add 9 6 3 19
127 IXi Xj=-Xk " 9 6 3 19

40 FXi Xj*Xk Multiply 60 57 10 71

41 RXi Xj*Xk " 60 57 10 71

42 DXi Xj*Xk " 60 57 10 71

43 MXi jk Shift 9 6 3 19

44 FXi Xj/Xk Divide 60 57 29 71

45 RXi Xj/Xk Divide 60 57 29 71

460 NO 6 3 1 17

464 ™

465 DM

466 cc

467 CU

47 CXi Xk Divide 71 68 8 80

50 SAi Aj+K Increment

51 SAi Bij+K " i=0: 9 6 19

52 SAi X3+ " i=1-5: 15 12 35

53 SAi Xi+Bk " 1i=6,7: 13 10 24

54 SAi Aj+Bk "

55 SAi Aj-Bk "

56 SAi Bj+Bk "

57 SAi Bj-Bk "

60 SBi Aj+K " 8 5 3 18

61 SBi Bi+K " 8 5 3 18

62 SBi Xj+K " 8 5 3 18

63 SBi Xj+Bk " 8 5 3 18

64 SBi Aj+Bk " 8 5 3 18

65 SBi Aj-Bk " 8 5 3 18

66 SBi Bj+Bk " 8 5 3 18

67 SBi Bj-Bk " 8 5 3 18

240

APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

173
172 174 175 720 730 750 760 Notes Page

17 11 4 16 9 4 4 71
17 11 4 16 9 4 4 71
17 11 4 16 9 4 4 71
17 11 4 16 9 4 4 71
17 11 4 i6 9 4 4 71
17 11 4 16 9 4 4 72
12 6 2 12 5 2 2 66
12 6 2 12 5 2 2 66
64 58 5 63 57 5 5 77
64 58 5 63 57 5 5 77
64 58 5 63 57 5 5 77
12 6 2 12 5 2 2 98
64 58 20 63 57 20 20 84
64 58 20 63 57 20 20 85
10 3 1 10 3 1 48
(4) 115
(4) 113
(4) 120
(4) 116

73 67 2 73 67 2 2
12 5 2 12 5 2 2 59
28 21 23 25 18 23 15 (5) 59
17 10 2 15 8 2 2 59
59
59
59
59
59
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61
11 5 2 11 4 2 2 61

241

APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

6400
6200 6500 6600
Opcode Mnemonic Unit(2) 72 72 74 171
70 SXi Aj+K Increment 9 6 3 19
71 SXi Bji#K " 9 6 3 19
72 SXi Xj+K " 9 6 3 19
73 SXi Xij+Bk " 9 6 3 19
74 SXi Aj+Bk " 9 6 3 19
75 SXi Aj-Bk " 9 6 3 19
76 SXi Bj+Bk " 9 6 3 19
77 SXi Bj=Bk " 9 6 3 19

1. All instruction times are given in minor cycles (also called
clock periods), which are

100 ns for 6000 and Cyber 70 series
50 ns for models 171-174, 720, and 730
25 ns for models 175, 750, and 760

2. Functional unit designations are for the 6600 and Cyber 70
model 74. In addition to units specified above,

for opcode 02: address calculation done in increment unit
for opcodes 03x: tests done in long add unit
for opcodes 04-07: tests done in increment unit

Functional unit relationships for models 175, 750, and 760 are
the same except:

opcodes 24 and 25: noramalize unit
opcodes 26 and 27: Boolean unit
opcode 47: population count unit

3. Branch timings for 6600 and Cyber 70 model 74:

opcode 03x opcode 04-07
branch in stack, branch taken 9 8
branch in stack, branch not taken 11 10
branch out of stack, branch taken 15 14
branch out of stack, branch not taken 14 13

For models 175, 750, and 760, if the branch is taken and the
instruction branched to is in the instruction stack, 3 cycles are
required.

242

APPENDIX D: CENTRAL PROCESSOR INSTRUCTION TIMINGS

173
172 174 175 720 730 750 760 Notes Page

12 6 2 12 5 2 2 55
12 6 2 12 5 2 2 55
12 6 2 12 5 2 2 55
12 6 2 12 5 2 2 57
12 6 2 12 5 2 2 57
12 6 2 12 5 2 2 57
12 6 2 12 5 2 2 57
12 6 2 12 5 2 2 57

4. Instructions available only on models 72, 73, 171 (optional),
172, 173, 174, 720, and 730. The timing formulas for these
instructions are quite complex; refer to the hardware manual for
your specific machine.

5. On the 6600 and model 74, data is available in the X register
8 cycles after the instruction begins.

243

INDEX

INDEX

A register,5,33-34

set instructions for,

59-60
Absolute assembly, 163
Absolute value function, 97
Access time, memory,2,179
Add unit,178

instructions, 68-72
Addition;

in binary, 15-16

in binary-coded-decimal, 15

double precision floating
point, 69-~71
floating point, 68-70
integer, 66-67
in octal, 25
round floating point,
69-72
Address, 4
field, 47
Address expression, 133,
165-166
ADIM function, 73
ALGOL, 129
"And" operation, 63-64
Argument, see parameter
Arith error,88-89, 91
ASCENT, 46
ASCENTF, 46
Assembler, 45-46
see also COMPASS
Attribute
of a symbol, 146

B reglster, 5,33-34

branches, 43-45

set instructions for, 61
Biased exponent, 30
Binary coded decimal, 14-15
Binary number system, 14
Bit, 13
Blank:

in instruction, 48

in macro parameter, 158
Boolean instructions, 62-65

Boolean unit, 178

Branch instructions, 37-45
execution time, 179, 182

BSS pseudo-instruction, 50

CALL statement, 52-53

Catenation, 138

Catenation mark, 138

Central menmory, 2, 11, 33

Central processor, 9, 33

Character set, 95
Character manipulation,

93-100, 112-123

Chippewa Operating System,
46

COBOL, 129

Code duplication, 152-154

Coefficient (of floating
point number), 30

Collating sequence, 119-121

Comment Card, 49

Comments field, 47,49

COMMON statement, 164

Comnmon relocatable symbol,
164

Compare collated, 120-123

Compare and Move Unit, 12,

112-123

Compare instructions, 116-123

Compare uncollated, 116-18
COMPASS, 46,125-166
Concatenation, see
catenation
Conditional assembly, 134
Conversion algorithms:
binary to decimal, 27,
107-111
binary to octal, 24
decimal to binary, 28
decimal to octal, 28
octal to binary, 24
octal to binary, 24
octal to decimal, 25, 27
Core:
ferrite, 2, 13
menmory, 2

244

INDEX

storage, 3
see also central memory,
extended core storage

Count one’s instruction, 100-
101

Cyber 70 and 170 series, features
special to, 12, 112

Data channel, 6-7
DATA pseudo-instruction,
86, 142, 145
Debugging, 140-149, 167-175
Definition, symbol, 39,47
133, 165-166
Delinmiter:
in IFC instruction,
157
in MICRO instruction, 154
Direct move instruction,
113-114
Display code, 93-95
Divide unit, 179
instructions, 84-85, 101
Division:
in binary, 22
floating point, 84

integer, 101, 106
round floating point,
85

Double precision floating
point:
addition and subtraction,
68-72
multiplication, 76-77,
105, 107

Dup pseudo-instruction,
153

Dunp, octal core, 141, 171-173

ELSE pseudo-instruction,
140
END pseudo=-instruction, 51
End around carry, 19-20
ENDD pseudo-instruction,
153
ENDIF pseudo-instruction, 134

ENDM pseudo-instruction,
127
ENTRY pseudo-instruction, 51
Entry line, 51
Entry point, 51
Exchange package, 172
"Exclusive or" operation,
64
Exponent (of floating point
number), 30
Expression
see address expression
EXT, 51
Extended core storage, 10
External symbol, 51-52, 163

Field, 47

Field length, 59, 172

Floating peint:
numbers, representation
of, 30
addition and subtraction,
68-77
multiplication, 76-77
division, 84-85

Forcing upper, 49, 146

FORTRAN, 1, 29, 35, 46, 129,
149
see also FORTRAN Extended
RUN FORTRAN, and
specific FORTRAN
statements

FORTRAN Extended compiler,
53

Function, 53-54

Functional unit, 177-178

GO TO statement, 45
computed, 39

Hexadecimal, 24
Higher-level language, 129,184

245

INDEX

I register
see instruction stack

IDENT pseudo-instruction,
50

IDIM function, 67

IF pseudo-instruction
134, 157

IF statement 42
vs. IF pseudo-instructions
134

IFC pseudo-instruction,
157

IFEQ pseudo-instruction,
134

IFGE pseudo-instruction
134

IFGT pseudo-instruction
134

IFLE pseudo-iastruction,
134

IFLT pseudo~ianstruction,
134

IFNE pseudo-instruction,
134

Increment unit, 54, 178
instructions, 54-62

Indefinite, 88
tests for, 89-90

Index register, 5

Indirect move instruction,
115

Infinity, 88
tests for, 89

Input=output, 6-9

Instruction location
counter, 35

Instruction overlap, 3,177-179

Instruction stack, 180-182

Integer
addition and subtraction, 66
66
rultiplication and
division, 101-107

Interrupt, 7

IRP pseudo-instruction, 1561

Junp, unconditional, 38

and instruction stack, 181-182

Left shift instruction, 96
nominal, 99
LIST pseudo-instruction,
M option, 131
A option, 139
Listing, 168-170
Literal, 91, 143
Load, 2, 5, 33, 59, 179
Load map, 170-171
Loader, 163
Location, 4
field, 47
LOCF function, 58-59
Logical:
difference, 64
product, 63-64
sum, 63-64
Long add unit, 178
instructions, 66
Look~ahead, 3

Machine independence, 129
Macro, 125-132
MACRO pseudo-instruction,
127-129
Map, see load map
Mask instuuction, 98
MATMU (matrix multiply)
subroutine, 78-83
Memory,
see central memory,
extended core storage,
MICRO pseudo-instruction,
154~155
Mip, 132
Mixed-mode, 132
macros for, 132-140
Monitor, 9, 10
Monitor exchange jump, 10
Move descriptor, 115
Move instruction, 113-116
Multiplication
in binary, 16-17
in binary-coded decimal, 17

246

INDEX

double precision floating
point, 76-7, 105-107
floating point, 76-77
integer, 1, 12, 101-107
in octal, 25
round floating point, 77
Multiply unit, 178
instructions, 76-77
Multiprocessor, 9

No operation instruction,
48

Normalize instruction, 72

Normalization, 32, 68, 86

"Not" operation, 64

Octal, 24
One’s complement, 19
Opcode, 36

field, 47
Operation code

see opcode
Optimization, 177-184
"Or" operation, 63-64
Overflow:

integer, 21

floating point, 88

Pack instruction, 102-3
Parameter
subroutine, 52
macro, 128-129, 138, 158
Pass, assembler, 166
Pass instruction, 48
Peripheral processor, 8-9
Pipelined functional unit, 182
PL/I 130
Program relocatable symbol,
163
Program stop instruction,
38
Pseudo-instruction
see pseudo-operation
Pseudo-operation, 50,125

Random access, 2
REGDUMP, 173~174, B1-B10
Register, 3-4

see also A register,

B register, X register
Relocatable assembly, 163
Relocatable symbol,

163
Return jump, 39-40

and instruction stack,

182
Right shift instruction,

96

nominal, 99
Round and normalize

instruction, 72-73
Round floating point:

addition and subtraction,

70-71

division, 84~5

nultiplication, 77
RUN FORTRAN compiler, 53,Cl-C2

Scoreboard, 177

Set instructions, 54-62

SET pseudo-instruction,
133, 166

Shift instructions, 96-9

Shift unit, 178
instructions, 72,96-103

Sign and magnitude
representation, 22

Sign bit, 21

Sign extension, 21
in set-X instructions, 55-56
in right-shift instructions,
96

SIPROS, 46

Special character, 93

SQRT function, 85-87, 90-92

Stack:
see instruction stack

STOPDUP pseudo-instruction,
153

Store, 2, 5, 33, 59

Store, 141-144

247

Stored program computer, 1
Subtraction
in binary, 17-19
double precision floating
point, 68-71
floating point, 68-71
integer, 66
in octal, 25
round floating point,
68-72
Symbol, 47, 150
value of, 162-166

TRACE function, 74-75
Traceback, 144-148

Transmit instruction, 63-64
Two’s complement, 19

Unpack instruction, 103
USE pseudo-instruction, 164

VFD pseudo=-instruction, 145

Word, &, 8, 33

X register, 4, 33
branches, 40-42, 89-90
set instructions for, 55-58

248

\

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248

