60462500

C
DS @ 5) SONTROL DATA
C CORPORATION
CDCNET
MC68000 UTILITIES
C
C
C

OO0

RELATED PUBLICATIONS

[R R S

Background (Access as Needed):

HANDBOOK

ASSEMBLER

CYBIL References:

CDCNET CYBIL
REFERENCE
MANUAL

‘MANUAL HISTORY

This manual is Revision 01, printed 10/84. It is the Preliminary Release under
NOS Version 2. :

© 1984

Control Data Corporation. All rights reserved.
Printed in the United States of America.

2 MC68000 Utilities Revision 01

\‘
;4

£
~

oMo

CONTENTS

HOW TO USE THIS MANUAL ..cecececcccnacee I
Organization .ceceeeccsscceccsccoscse I
Audience .e.eececececsscccscscscccccnes D

INTRODUCTION coecesccsoccanscesccanses 1=l
SYMBOL MODULE PURGER ..ccceccvceessenes 2=1
OBJECT MODULE BINDER .ecccececescsesee 3-1
DI LIBRARY TRANSLATOR .cceececcseccess 4-1

ABSOLUTE LINKER .ecceccccccccccccccocse =1
Linker Parameter File ececcececeese 3
LINK_OPTIONS Subcommand ee.eceees. 5-3
OBJECT_FILE and OBJECI_LIBRARY

SubcommandsS ceoceccccecssssscscce I35
DEFINE_ﬁEGMENT Subcommand ..cceee. 56
OBJECT_MODULE Subcommand «.ceceee. 57
INBOARD_ﬁYMBOL_IABLE Subcommand .. 5-7
INCLUDE_LINKED_SYMBOLS Subcommand 5-8
END Subcommand .eecseeccecssscscees -8
Linker File FOrmatsS seecesececscscecss =9
Input FileS eccececssvccncoccescese 59
Output FileS ceeececscocccassssnss 5—10

OBJECT RECORD TRANSLATOR ccccovocceess 61
MEMORY IMAGE BUILDER .cccvcececccccess 7—1

DIAGNOSTIC MESSAGES .ecceecccasccssces A-1l
Linker Map File Diagnostic
MESSAZES ceesessccncsccsscscoses Al
Linker Dayfile MesSSagesS sscecsceecs A=6
MC68000 Utility Dayfile Messages . A-8

OBJECT TEXT FORMATS FOR THE MC68000
ABSOLUTE LINKER .¢covecececcscecacess B-1

Revision Ol

About This Manual 3

O
0

N

ABOUT THIS MANUAL

This manual describes the Motorola 68000 Utilities for CDCNET software development. These
utilities are part of the Software Engineering Services (SES) tools package available under
the Network Operating System (NOS).

AUDIENCE

This manual is written for the CDCNET system programmer. It assumes that the reader is
familiar with the CYBIL programming language as described in the CDCNET CYBIL Reference
Manual, and the Motorola MC68000 Cross—Assembler as described in the CDCNET MC68000
Cross—Assembler manual.

ORGANIZATION

Chapter 1 of this manual shows how the utilities described in this manual are used in the
CDCNET software development process. Each of the remaining chapters describes one of the
MC68000 utilities.

The appenxides contain supplementary information. Appendix A describes all of the
diagnostic messages associated with the utilities. Appendix B presents the object text
formats for the MC68000 Absolute Linker; this appendix is intended for programmers who wish
to use object program modules other than those created by the CDCNET CYBIL compiler or the
MC68000 Cross—Assembler as input to the Linker.

CONVENTIONS

Command formats in this manual follow the conventions generally used in NOS manuals for
presenting NOS system commands.)

All of the commands used to call the utilities are actually calls to a NOS procedure. The
procedure allows you to use an order—dependent or an order—independent format.

° If you use the order—dependent format, you do not have to specify the reserved
words that introduce parameter values in the commands. You must include a
separator (comma or space) between each parameter you specify. If you omit a
parameter from the parameter list and wish to specify a parameter that occurs
later in the parameter list, you must include an additional separator for the
parameter you omitted. '

) If you use the order—independent format, you must specify the reserved words that
introduce the parameter values. You must include a separator between each
parameter you specify, but you do not need to include additional separators for
parameters you do not specify.

Uppercase letters in the command formats represent reserved words; you must enter them
exactly as shown. Lowercase letters indicate names and values that you supply.

Optional parameters are labeled as optional in the parameter list. You must specify values
for all parameters that are not labeled as optional.

4 MC68000 Utilities Revision Ol

Permissible abbreviations and alternate forms of parameters are shown in parentheses aex to

the parameter definitions.

The lowercase descriptions of parameters in the parameter lists give an indication of the
type of the parameter. In general, the words are used in the same sense as in CYBIL (for

example, name refers to a string of up to 31 characters).
standard CYBIL terms are also used:

° The term file name refers to a NOS file name.

The following terms that are not

) The term user name refers to a NOS user name.
® The term number refers to a decimal integer or a hexadecimal integer followed by

the integer 16 in parentheses.

Revision Ol

About This Manual 5

J

A~

INTRODUCTION

The CDCNET MC68000 utilities are a set of software tools that allow you to create software

for CDCNET device interfaces (DIs).

These utilities are part of the Software Engineering
Services (SES) tools package available under the Network Operating System (NOS).

Figure 1-1 shows how the utilities interact to process program modules written using the

CDCNET CYBIL compiler or the MC68000 Cross~Assembler.

The commands for the utilities are

shown in parentheses. This figure shows three major paths in preparing program modules for

a DI.

e Path @uses the DI Library Translator utility (TRANDILIB).
creating a relocatable object library to be loaded into a DI.

This path is used for

e Path @uses the Absolute Linker (LINK68K) and the Memory Image Builder (BLDMI68K).
This path is used to create absolute memory images of program modules to be loaded

into a DI.

e Path @uses the Absolute Linker (LINK68K) and the Object Record Translator

(TRAN68K). This path is used in creating read-only memories (ROMs) to be installed

in a DI,

Symbol DI Library
Table Purger Translator
CDCNET (PURSYM&BK) (TRANDILIB}
cyYBiL
Compiler
DCNET
Absolute Memory Image C
Linker - Builder File Access oI
(LINK68K) (BLDMIGBK) Management Memory
Entity
CDCNET @
MC68000
Cross-Assembler
Object Module Object Record ROM
Binder Translator Programmer
BIND68K) (TRANGBK) ogramme
Figure 1-1. Interaction of the CDCNET MC68000 Utilities

Revision Ol

MC68000 Utilities 1-1

The Symbol Table Purger (PURSYM68K) and the Object Module Binder (BIND68K) can
be used in all paths. :

The Symbol Table Purger is used when the program modules generated by
the CDCNET CYBIL compiler or the MC68000 Cross—Assembler have been
created using the debug option. The Symbol Table Purger removes the
debug symbol table from the file containing the program modules. The
debug symbol table must be removed in path 1 before the DI Library
Translator is used.

The Object Module Binder reduces the size of an object library by
combining code, data, and binding sections, by optimizing the combined
binding section for minimum redundancy, and by removing ummecessary
entry points. The use of this utility is always optiomnal.

The SES Object Code Utilities, not shown in the figure, can be used to
manipulate the object files at any point in the development of DI software.
These utilities can be used to create object libraries from object files. The
SES Object Code Utilities are described in the SES User”s Handbook.

MC68000 Utilities 1-2

Revision Ol

——

A

o le

SYMBOL TABLE PURGER

The Symbol Table Purger utility (PURSYM68K) removes the debug symbol tables from program
modules on object files or object libraries. A debug symbol table is generated when the
program module is created using the CDCNET CYBIL compiler or the CDCNET MC68000
Cross—Assembler using the debug option. If you intend to make a relocatable object library
from program modules that contain debug symbol tables, you must remove these tables before

you use the DI Library Translator utility.

Format : SES .PURSYM68K
INPUT=1ist of file name
OUTPUT=1ist of file name
UN=user name

C optional

Parameters:

INPUT (1)

Names of the files from which debug symbol tables are to be removed. These files
need not be local. The files can be object files or object libraries.

OUTPUT (0)

GL’ Names of the files to which the output
into the permanent file catalog of the

all input files that are object files,

input files that are object libraries,

is to be written. These files are written
user specified in the UN parameter. For
the output files are object files; for all
the output files are object libraries.

The number of files specified in the OUTPUT parameter must be the same as the
number of files specified in the INPUT parameter.

UN
The user name of the permanent file catalog to be searched for input files and to
K j which the output files are to be writtem. If you omit this parameter, your
permanent file catalog is used.

Example: In the following example, debug sysmol

tables are removed from the program

modules on files EXECUTV and MONITOR, and the resulting modules are written to

files EXEC and MNTR respectively.

SES .PURSYM68K (EXECUTV MONITOR) (EXEC MNTR)

Revision Ol

C
C

MC68000 Utilities 2-1

ofs

OBJECT MODULE BINDER 3

e]

The Object Module Binder utility (BIND68K) creates a single bound load module from input
object modules. The code sections of the input modules are combined into a single code
section, data sections with identical attributes are combined into a single section, and the
binding sections are combined and reorganized for minimum redundancy. Entry point
definitionas that are referenced from one or more component modules are deleted unless they
are explicitly retained in the BIND68K command or if they have been previously retained.

Format: SES .BIND68K
FILE=list of (file name or (list of file name,user name))
NAME=name
MODULE=list or range of name optional
RETAIN=1ist of name optional
OMIT=list of name optional
STARTING_PROCEDURE=name optional
UPON=file name or (file name,user name)
BASE=file name or (file name,user name) optional
LOCK=file name optional
NOLOCK . optional
OUTPUT=file name optional
LPF=file name optional
Parameters:

FILE (LIBRARY, LIB, F)

The names of the files containing program modules to be bound. Files that are

not in your permanent file catalog must be referenced in the format (list of file
name,user name).

NAME (N)
The name to be associated with the output module.

MODULE (MODULES, M)

The modules that are to be components of the output module. You can specify
subranges of modules in the list of modules. If this parameter is omitted, all
modules on the input files are used.

RETAIN (R)

The externally declared names in the component modules whose definitions are to
be retained in the output module. The externally declared names are referenced
by a component of the created module. The Object Module Binder automatically
retains entry point names that have been retained previously.

Revision 0l MC68000 Utilities 3-1

OMIT (0)-

The externally declared names in the component modules whose
definitions are to be removed in creating the output module.

STARTING_PROCEDURE (SP)

The externally declared name of the procedure at which execution of the
output module is to begin. If you omit this parameter, the last
transfer symbol encountered is used to identify the starting

procedure. The starting procedure is always retained in the new module.

UPON (UP)

The name of the file to which the output module is to be writtem. If
you want the output to be written to another user”s permanent file
catalog, use the format (file name,user name) for this parameter.

BASE (B)

The name of a file of object code modules to which the output file is
to be added. If this parameter is specified, the SES Object Code
utilities GOF and GOL are used to append the output file to the base
file. If you want the output to be written to another user”s permanent
file catalog, use the format (file name,user name) for this parameter.

LOCK
This parameter specifies that the file specified in the UPON parameter
is to be interlocked while the Object Module Binder is writing to that
file.

NOLOCK

This parameter indicates that the file specified in the UPON parameter
is not interlocked while the Object Module Binder is writing to that
file.

OUTPUT (OUT)

The name of the file to which an object map of the output module is to
be written.

LPF

The name of the file containing a list of parameters for the Object
Module Binder. The FILE, MODULE, OMIT, RETAIN, NAME, and
STARTING_PROCEDURE parameters can be specified in this file. The
parameter file must contain one parameter per line, and the last line
must consist of the word END, This file must be local to your job.

MC68000 Utilities 3-2 Revision 0l

N A

A

C‘j

oNe

Examples:

Revision Ol

In the following example, the input program modules are located om file MYLIB,
which is either local or in the user”s own permanent file catalog, and files
SIN and TAN, which are in the permanent file catalog of user name FTNLIB. The
Object Module Binder binds all program modules in the input files. The output
module, named TRIG_FUNCT, has a starting procedure named START, and is written
to file BOUND in the user”s permanent file catalog.

SES .BIND68K F=(MYLIB, (SIN,TAN,FTNLIB)) M=TRIG_FUNCT SP=START UP=BOUND

In the following example, some of the parameters for the Object Module Binder
are contained in local file BINDLPF. The input program modules are located on
files FILEl and FILE2, which are either local or in the user”s own permanent
file catalog. The Object Module Binder only binds program modules MODI
through MOD4, Entry points ENT1 and ENT2 are retained in the binding

process. The output module, named NEWMOD, has a starting procedure named
TEST, and is written to file FILE3 in the user”s permanent file catalog. An
object map of program module NEWMOD is written to file LIST.

SES .BIND68K LPF=BINDLPF OUT=LIST UPON=FILE3
File BINDLPF contains:

FILE=(FILE1l,FILE2)
MODULE=(MOD1 . .MOD4)
RETAIN=(ENT1,ENT2)
NAME=NEWMOD
SP=TEST

END

MC68000 Utilities 3-3

SN
~ ;

7

Mo

o
S

DI LIBRARY TRANSLATOR | 4

S

The DI Library Translator utility (TRANDILIB) translates program modules on object files or
object libraries into packed byte-oriented data mappings to create a relocatable object
library that can be loaded into a DI.

Format: SES.TRANDILIB
INPUT=1ist of file name
OUTPUT=1ist of file name

UN=user name optional
keyword optional
Parameters:
INPUT (1)
The names of the files to be translated. These files need not be local to your
job.
OUTPUT (0)

The names of the files to which the translated files are to be written. The
number of output files must be the same as the number of input files.

UN
The user name whose permanent file catalog is to be searched for input files and
to which output files are to be written. If you omit this parameter, your
permanent file catalog is used.

FILE (F)
If you specify this keyword, or if you specify no keyword, the output files are
formatted as files rather than as libraries.

LIB (L)

If you specify this keyword, the output files are formatted as libraries. Each
library file contains a program module directory and an entry point directory in
addition to the program modules.

Example: In the following example, the program modules on files OBJFILl and OBJFIL2 are
translated and written to files OBJLIB3 and OBJLIB4 in the user”s permanent file
catalog. Files OBJLIB3 and OBJLIB4 are written in library format.

SES.TRANDILIB I=(OBJFIL1 OBJFIL2) 0=(OBJLIB3 OBJLIB4) L

Revision Ol MC68000 Utilities 4-1

‘\.\‘JJ/
S

Y
W ¥

w

MC68000 ABSOLUTE LINKER (LINK68K) 5

The MC68000 Absolute Linker (the Linker) creates a set of linked segment files from input

object modules created by the CDCNET CYBIL compiler or the MC68000 Cross—Assembler. These
linked segment files can be input to the Object Record Translator or Memory Iinage Builder

utilities to create software for a DI.

The Linker forms a set of memory segment images from the object text sections of the input
object modules. Data in the memory segments is primarily referenced via pointers set up in
the binding segment, which is initialized during the link operation. Unsatisfied extermals
are satisfied from libraries specified in the call to the Linker.

You execute the Linker with the LINK68K command, which calls an SES procedure. Parameters
for the call to the Linker can be specified in the LINK68K command, in a Linker Parameter
File, or in both places. Values that you specify for parameters in the LINK68K command take
precedence over values you specify in the Linker Parameter File.

Format:

SES .LINK68K) .
OFL=list of file name optional
LFL=1ist of file name optional
SP=name optional
NS=name optional
MF=file name optional
MO=character optional
REWIND or NOREW optional
LPF=file name optional
CYBMLIB i optional

Parameters:

OFL

The names of up to 10 files containing input object modules for the Linker.

LFL

The names of up to 10 library files containing input object modules for the Linker.

SP

The starting procedure for the linked modules. This parameter specifies the entry
point at which execution of the linked modules is to begin. If you omit this
parameter, execution begins at the first transfer symbol encountered.

NS

The four-character name seed for the files created by the Linker. The name seed is
used as the first four characters of the NOS file names for the header file, output
segment files, and the outboard symbol table file. This field is ignored if the NS
parameter is specified on the LINK68K command. If you omit this parameter, the
characters SEGM are used as the name seed.

Revision Ol MC68000 Utilities 5-1

The name of the Linker map file. If you omit this parameter, the map file is
written to file LINKMAP.
MO
This parameter specifies the amount of information to be included in the
Linker map file. Values for this parameter are:
N No map information.
S Section allocations for each section of each input object module.
E Section allocations, entry points names and address assignments.
M Section allocations, entry points, and output segment and common
block allocations.
1 Section allocations, entry points, output segment and common block
allocatiouns, and Inboard Symbol Table (full linker map).
REWIND
If you specify this parameter, the Linker map file is rewound before it is
. written. If you specify neither REWIND nor NOREW, the Linker map file is
rewound.
NOREW
If you specify this parameter, the Linker map file is not rewound before it is
written.
LPF

The name of a file containing a list of parameters for the Linker (see Linker
Parameter File later in this chapter). If you omit this parameter, the
default values for parameters described under Linker Parameter File are used.

CYBMLIB (DIOSLIB)

If you specify this parameter, the Linker uses SES library file CYBMLIB to
satisfy external references during the linking process. The Linker accesses
this file and adds it to the library file list. If you omit this parameter,
CYBMLIB is not used to satisfy external references.

Example: In the following example, the object modules on files LGOl and LGOl are input
to the Linker, and the remaining parameters for the Linker are specified in
file MYLPF.

SES .LINK68K OFL=(LGO1,LGO2) LPF=MYLPF
MC68000 Utilities 352 Revision O1

'.%\ J"‘

@ \ 0)
N L

olle

LINKER PARAMETER FILE

A Linker parameter file is a file of subcommands that control the operation of the Linker.
The Linker parameter file allows you to specify a number of parameters that can not be
included in the LINK68K command. You specify the LPF parameter in the LINK68K command to
indicate that you are including a Linker parameter file. The Linker parameter can contain
the following subcommands:

e LINK OPTIONS

e OBJECT_FILE

e OBJECT_LIBRARY

e DEFINE_SEGMENT

e OBJECT_MODULE

e INBOARD_SYMBOL_TABLE

e INCLUDE_LINKED SYMBOLS

e END
The subcommands must be on separate lines in the Linker parameter file. If you need to
continue a subcommand on a second or subsequent line, you must end every line in the

subcomand except the last line with two periods (..) to indicate that a continuation line
follows.

LINK _ OPTIONS Subcommand

The LINK OPTIONS subcommand provides parameters for the LINK68K command. With the exception
of the MAX EXTERNALS and HEAP_SIZE parameters, all parameters for this subcommand can be
specified in the LINK68K command. Any values specified for these parameters in the LINK68K
command override the values specified in the LINK OPTIONS subcommand.

Only one LINK OPTIONS subcommand may be included in the Linker parameter file. If you omit

this subcommand values for parameters not specified in the LINK68K command are the same as
the values used when the individual parameters are omitted.

Format: LINK OPTIONS.SMAP FILENAME=file name,&MAP_OPTIONS=character,&REWIND MAP,..

&NAME ._SEED=naume, SMAX ._EXTERNALS=integer, SHEAP _SIZE=integer , &STARTING_] "~ PROCEDURE=name

Parameters:
MAP_FILENAME

The name of the Linker map file. If you omit this parameter, the map file is
written to file LINKMAP. '

Revision Ol MC68000 Utilities 5-3

//
MAP_OPTIONS {%M;ﬁ

This parameter specifies the amount of information to be included in the Linker map
file. Values for this parameter are:

N No map information.
S Section allocations for each section of each input object module.
E Section allocations, entry points names and address assignments.

M Section allocations, entry points, and output segment and common block
allocations.

I Section allocations, entry points, output segment and common block
allocations, and Inboard Symbol Table (full linker map).

REWIND_MAP

If you specify this parameter, the Linker map file is rewound before it is written. i
If you specify neither REWIND MAP nor NO_MAP_REWIND, the Linker map file is rewound. o

NO_MAP_REWIND

If you sbecify this parameter, the Linker map file is not rewound before it is
written.

NAME_SEED

The four-character name seed for the files created by the Linker (the header file, 4
the segment files, and the Outboard Symbol Table file). The name seed is used as Ny
the first four characters of the NOS file names for the header file, output segment

files, and the outboard symbol table file. This field is ignored if the NS

parameter is specified on the LINK68K command. If you omit this parameter, the

characters SEGM are used as the name seed.

MAX EXTERNALS

The maximum number of external references to be allowed in the link operation. If
you omit this parameter, a value of 300 is used.

HEAP_SIZE ‘ «

The size, in bytes, of the system heap for object modules generated by the CDCNET
CYBIL compiler. This value overrides the value specified in the object modules. If
you omit this parameter, the heap sizes specified in the individual object modules
are used for each module; if no object module specifies a heap size, a value of zero
is used. For further information about the system heap, refer to the CDCNET CYBIL
Reference Manual.

STARTING_PROCEDURE

The starting procedure for the linked modules. This parameter specifies the entry
point at which execution of the linked modules is to begin. If you omit this
parameter, execution begins at the first transfer symbol encountered.

MC68000 Utilities 5~4 Revision Ol

OD

00

OBJECT _ FILE and OBJECT _- LIBRARY Subcommands

The OBJECT_FILE and OBJECT_LIBRARY subcommands specify the input files to the Linker and
provides names for sections of the input files. Any values specified for the OFL and LFL
parameters in the LINK68K command override the values specified in the OBJECT_FILE and
OBJECT_LIBRARY subcommands. You should include one OBJECT FILE subcommand for each input
file that is not in library format and one one OBJECT_LIBRARY subcommand for each input file
that is in library format.

Format :

OBJECT_FILE ,FILENAME=file name,DEFAULT_SECTION=list of (name,list of character)

OBJECT_LIBRARY,FILENAME=file name,DEFAULT_SECTION=list of (name,list of character)

Parameters:
F ILENAME .

Name of the local file containing input object modules for the Linker. This file
must be local to your job.

DEFAULT_SECTION

The names to be associated with any unnamed sections of the input file, and the
attributes to be assigned to those sections. Values for the section attributes are:

R Read.
W Write.

E Execute.

Revision Ol MC68000 Utilities 5-5

DEFINE . SEGMENT Subcommand
The DEFINE_SEGMENT subcommand allows you to define an absolute program segment. You can
include any number of DEFINE_SEGMENT subcommands in the Linker parameter file. You must

specify either the LOAD ADDRESS parameter or the EXECUTE_ADDRESS and ATTRIBUTES parameters
for each DEFINE_SEGMENT subcommand.

Format: DEFINE_ﬁEGMENT,LOAD_ADDRESS*(number),EXECUTE_ADDRESS=(number),..
ATTRIBUTES=(1list of name),SECTION NAME=(list of name)

Parameters:
LOAD_ADDRESS
The absolute address (or byte offset) at which the segment is to be loaded. This

number may be a decimal integer, or a hexadecimal integer in the format
(hexadeximal integer(16)).

EXECUTE_ADDRESS
The absolute address (or byte address) at which the segment is to executecifies
where the segment will ultimately execute. This number may be a decimal integer, or
a hexadecimal integer in the format (hexadeximal integer(16)). If you specify
neither LOAD_ADDRESS nor EXECUTE_ADDRESS, offset loading is not performed.
ATTRIBUTES

The access attributes for the segment. You can specify any combination of the
following attributes:

RD Read.

WT Write.

EX Execute.

ET Extend.
SECTION NAME

The names of Working_Storage sections to be mapped into this section.

MC68000 Utilities 5-6 Revision Ol

U

oo

0

OBJECT - MODULE Subcommand

The OBJECT_MODULE subcommand specifies names of modules to be included in the link
operation. You may include only one OBJECT_MODULE subcommand in the Linker parameter file.

Format : OBJECT_MODULE ,NAME=1ist of name
Parameters:

NAME Names of modules to be included in the link operation.

INBOARD - SYMBOL ~TABLE Subcommand

The INBOARD SYMBOL TABLE subcommand specifies files that contain Inboard Symbol Tables to be
passed to the Linker. An Inboard Symbol Table is a table of entry points resolved in a
previous link operation. An Inboard Symbol Table allows you to link only the code that will
be executed. You may include only one INBOARD SYMBOL TABLE subcommand in the Linker
parameter file. N

Format : INBOARD_ SYMBOL_TABLE ,NAME=1list of file name
Parameters:
NAME Names of files containing Inboard Symbol Tables.
Revision Ol MC68000 Utilities 5-7

INCLUDE _ LINKED . SYMBOLS Subcommand

The INCLUDE_LINKED SYMBOLS subcommand copies the Outboard Symbol Table into a segment file
defined in a DEFINE SEGMENT subcommand for the current link operation. This subcommand is
processed after the " link operation is complete.

Format: INCLUDE_LINKED_ SYMBOLS ,POINTER=name,SECTION=name
Parameters:
POINTER

The name of a pointer to the adaptable array to which the Outboard Symbol Table
is to be written. This subcommand causes the adaptable pointer to be
initialized. The variable name must be defined in the current link operation.

SECTION

The section name of the segment in which the linked symbol table is to be
included. You must define this segment with a DEFINE_SEGMENT subcommand in the
current link operatiom.

END Subcommand

The END subcommand indicates end of the Linker parameter file. If you omit this subcommand,
the Linker uses the end-of-information of the file to determine the end of the Linker
parameter file.

Format: END

The following example shows a call to the Linker that uses a Linker parameter file. The
Linker parameter file specifies three input object files and defines seven object segments.

SES .LINK68K LPF=LPARAM1
File LPARAM] contains:

LINK_OPTIONS ,MAX EXTERNALS=500,NAME_! SEED=LNKI1

OBJECT FILE FILENAMR=SYS DEFAULT SECTION((EXEC R R) (COMN R W)
OBJECT_] “FILE FILENAME=REL1 DEFAULT SECTION((CODEl R E))
OBJECT_FILE FILENAME=REL2 DEFAULT SECTION((CODE2 R E))
DEFINE_SEGMENT (00(16)) ATTRIBUTES=(RD EX WT) ALS$ORG_00000000
DEF INE_SEGMENT (30(16)) ATTRIBUTES=(RD EX WT) ALS$ORG_(;00000030
DEF INE_SEGMENT (80(16)) ATTRIBUTES=(RD EX WT) ALS$ORG_(00000080
DEFINE_SEGMENT (8800(16)) ATTRIBUTES=(RD EX) (EXEC CODEl)
DEFINE_SEGMENT (111400(16)) ATTRIBUTES=(RD EX) CODE2

DEFINE SEGMENT (111000(16)) ATTRIBUTES=(RD WT) DATA
DEFINE:}EGMENT (8400(16)) ATTRIBUTES=(RD WT) COMN

END

MC68000 Utilities 5-8 Revision Ol

.

S

@

e Ne

LINKER FILE FORMATS

The following sections describe the formats of the files that are input to the Linker and
the output files created by the the Linker.

INPUT FILES

The files that constitute the input to the Linker are object files, object libraries, and
files containing Inboard Symbol Tables. You must specify at least one object file or object
library as input to the Linker; an Inboard Symbol Table is not required.

Object Files

Object files contain object modules created by the CDCNET CYBIL compiler or the CDCNET
MC68000 Cross—Assembler. Several object modules may reside on a single object file.

Each object module consists of an identification record, a section definition record, and
the object text associated with the sections. The identification record describes the
external characteristics of the object module (module attributes and the number of
sections). Each section in the object module contains a section definition record that
describes the attributes of the section (code, binding, working storage, or common).

Appendix B contains the object module type definition for object files that are input to the
Linker.

Library Files

In addition to object files, the Linker accepts MC68000 library files as input. MC68000
library files contain object modules formatted into a library by the SES Object Code
Utilities (refer to the SES User”s Handbook for a description of these utilities). The
object module structure for library files is identical to the object module structure for
object files.

Appendix B contains the library record definition for library files that are input to the
Linker.

Inboard Symbol Table Files

The Inboard Symbol Table file contains a table of gated entry points created in one
execution of the Linker. A symbol table is called an Inboard Symbol Table when used as
input to the Linker; the same symbol table is called an Outboard Symbol Table when it is
created by the Linker. An Outboard Symbol Table file is generated by the Linker if entry
points that have the gated attribute are encountered during a link operation. Gated entry
points are associated with gated variables, functions, and procedures in CYBIL object
modules (refer to the CDCNET CYBIL Reference Manual).

OUTPUT FILES

The Linker creates a header file and a number of segment files during each successful link
operation. Depending on the parameters specified in the call to the Linker, an Outboard
Symbol Table and a Linker map may also be created.

Revision Ol MC68000 Utilities 5-9

Header File

The Linker creates a header file that describes the results of the link operation. The name
of the header file is the name seed, specified in the NAME SEED parameter, followed by the
characters HDR. For example, if the name seed is SEGM, the header file is named SEGMHDR.

The header file contains a header variant and a segment descriptor variant for each segment
file created in the link operation. The header variant contains the number of segment
descriptors, the initial program address and its key, and the binding section address. The
segment descriptor contains the name of the file on which the segment was written and its
segment attributes.

Segment Files

The Linker outputs segment files that can be input to the Memory Image Builder and Object

Record Translator utilities. A segment file contains a load file directory and a linked
segment .

The names of the segment files are generated by adding a three-digit number to the name seed
specified in the NAME SEED parameter. A unique three-digit number, starting with 101, is
used for each segment file. For example, if the name seed is SEGM and four segment files
are created, their names are SEGM101, SEGM102, SEGM103, and SEGM104.

The Linker allocates and creates segment files during a link operation. You can explicitly
allocate a segment using the DEFINE_SEGMENT subcommand in the Linker parameter file.

Outboard Symbol Table File

The Outboard Symbol Table file contains a table of gated entry points created in one
execution of the Linker. An Outboard Symbol Table file is generated by the Linker if entry
points that have the gated attribute are encountered during a link operation. Gated entry
points are associated with gated variables, functions, and procedures in CYBIL object
modules (refer to the CDCNET CYBIL Reference Manual). The Outboard Symbol Table file name
is the name seed specified in the NAME_SEED parameter followed by the strimg OST.

Linker Map
The Linker map shows the address assignments made by the Linker. You specify the name of
the file onto which the linker map is written either as a parameter in the LINK68K command
or as parameter of the LINK OPTIONS subcommand in the Linker Parameter File. The linker map
contains four parts; you have the option of selecting, all, some, or nome of these parts to
be included in the Linker map. The four parts are:

° Section Definitions

e Entry Point Names

° External References

e Output Segments and Common Blocks

MC68000 Utilities 5-10 ' Revision Ol

N

N
(i

v
LW o

O

:
w;,>

O

Section Definitions

The following information is printea for every section of every object module:
® Section type (working storage or code).
o Access attributes (read, write, or execute).
e Length, in b}tes.
e Address (load address and execution address if different).

. Section name or default section name if applicable.

Entry Point Names

The following information is printed for every entry point:
e Name.
e An indication as to whether the entry point is gated or not gated.

® Address (load address and execution address if different).

External References

A list of the external references is printed after the entry point list.

Output Segments and Common Blocks

The following information is printed for every output segment allocated by the Linker:
L) File name.
e Address (load address and execution address if different).
e Length, in bytes.
e Access attributes (read, write, or execute).
. Section names associated with the segment.
The following information is printed for every common block allocated by the Linker:
. Name.
e Access attributes.
. Length, in bytes.

° Address (load address and execution address if different).

Revision Ol k MC68000 Utilities

Figure 5-1 shows an example of a full Linker map. The section definitions portion of the
map shows that the three input object modules TOIMONT, TOICYBM, and TOlASMl were involved in
a link operation. The entry point names portion shows that a single entry point TEST was
present. The absence of an external references portion indicates that no external
references were encountered. The output segments and common blocks section shows that the
four segment modules TOO1101, T001102, T001103, and TO01104 were created by the Linker.

LINKER V 4,1 OQUTPUT LISTING 9/24/84 16.00.46
MODULE = TOIMONT LANGUAGE = ASSEMBLER
FILE = TO1MONR July 11, 1984 5:12 PM
SECTION TYPE/ LOAD/
ACCESS ATTRIBUTES LENGTH EXECUTION ADDR
WORKING STORAGE - ALS$0RQ_90000000 N
READ WRITE EXECUTE 30 000 000000000 ~ |)
S
WORKING STORAGE - ALS40RQ_9000007C
READ WRITE EXECUTE 4 000 00000007C
WORKING STORAGE - ALS4ORQ_9000007C]
READ WRITE EXECUTE 4 000 00000008C
CODE - MONR - PROG
READ EXECUTE 578 000 000000400
‘//Au \'\
ENTRY POINT DEFINITIONS ADDRESS M& A
MONITOR_CONTROL) NOT GATED 000 0000086C o
MONITOR_FEGISTE NOT GATED 000 00000802
XFR_BUF NOT GATED 000 00000878
MONITOR_MESSAGE NOT GATED 000 00000850
MONITOR_ENTRY NOT GATED 000 00000400
RESET_ENIRY NOT GATED 000 00000634
SPECIAL_ENTRY NOT GATED 000 00000498
AN
-=--- TOTAL MODULE LENGTH ---- 580 ‘)
N W

Figure 5-1. Example Linker Map

MC68000 Utilities 5-12 Revision O1

oo

MODULE
FILE

TO1CYBM
TOLCYBR

SECTION TYPE/
ACCESS ATTRIBUIES

1984/07/11

LANGUAGE = CYBIL

17:14:02
LOAD/
LENGTH EXECUTION ADDR

CODE - CYBER
READ EXECUTE

WORKING STORAGE - DATAIL
READ

WORKING STORAGE - DATA2
READ WRITE

ENTRY POINT DEFINITIONS
TEST

60 000 000000978

2A 000 0000009D8

20 000 000000402

ADDRESS

NOT GATED 000 00000978

EXTERNAL ENTRY POINTS REFERENCED

SCAN

——-- TOTAL MODULE LENTH ----

MODULE = TOlASMI1 LANGUAGE = ASSEMBLER
FILE = TOlASMR July 11, 1984 5:12 PM
SECTION TYPE/ LOAD/

ACCESS ATTRIBUTES

LENGTH EXECUTION ADDR

CODE - ASMR
READ EXECUTE

ENTRY POINT DEFINITIONS
SCAN

--—— TOTAL MODULE LENTH -~—-

Figure 51.

Revision 01

- PROG
46 000 000000422

ADDRESS

NOT GATED 000 00000422

Example Linker Map (Contd.)

MC68000 Utilities

5-13

Cco

SES/MC68000 LINKER OUTPUT

PRIMARY ENTRY POINT = TEST

ID = $00000000000000000000C003SRXMDO

FILE NAME/ LOAD/
ACCESS ATTRIBUTES LENGTH EXECUTION ADDR
SECTION NAMES

TOO1101
READ WRITE EXECUTE 4 % 000 0000008C
ALS$ORG_000000BC

T001102 .
READ WRITE EXECUTIE 4 * 000 0000007C AN
ALS$ORG_0000007C N

TO01103
READ WRITE EXECUTE 30 * 000 00000000 -
ALS$ORG_00000000

TO01104

READ WRITE EXECUTE 668 * 000 00004000
MONR
ASMR 22N
CYBR / \‘(
DATAL NS
DATA2

~--- TOTAL LENGTH —---- 6a0

NO LINKER ERRORS WERE DETECTED (w””""\‘

\ ‘m‘ .,W)
Figure 5-1. Example Linker Map (Contd.)
MC68000 Utilities 5-14 Revision Ol @

oNe

LIMITATIONS OF THE LINKER

The Linker performs only cursory checks to determine if you have specified any duplicate
input file names.

The Linker performs no checks to determine if any file names generated using the NAME SEED
parameter duplicate any file names you have specified in the call to the Linker. You must

resolve any file naming conflicts resulting from the use of the name seed prior to executing
the Linker command. Creation of duplicate file names may cause the Linker to abort or yield
unpredictable results.

The Linker is sensitive to portions of the data on an object file. It uses some of the data

for computations. Therefore, an object file that has been incorrectly generated may cause
the Linker to abort or yield unpredictable results.

Revision Ol MC68000 Utilities 5-15

U

N

W

C

O

OBJECT RECORD TRANSLATOR | 6

The Object Record Translator utility (TRAN68K) translates files created by the MC68000
Absolute Linker into files of Motorola type S records. Output files can be used as input to
a ROM programmer to create ROMs that can be installed in DIs.

Format: SES.TRAN68K
HDR=file name
SREC=file name
UN=user name optional

Parameters:
HDR (H)

The name of the header file generated by the MC68000 Absolute Linker for the
program modules to be translated. The header file name has the form seedHDR,
where seed is the name seed specified in the call to the Linker for the program
modules. The header file contains information about additional files needed to
create the type S records. :

SREC (S)

The name of the file to which the translated program modules are to be written.

The user name whose permanent file catalog is to be searched for input files and
to which output files are to be written. If you omit this parameter, your
permanent file catalog is used.

Example: In the following example, the program modules referenced in file SEGMHDR are
translated into Motorola type S records. The output is written to file SRECFIL
in the user”s permanent file catalog.

SES .TRAN68K SEGMHDR SRECFIL

Revision Ol MC68000 Utilities 6-1

oo

N

() MEMORY IMAGE BUILDER 7

P e

The Memory Image Builder utility (BLDMI68K) creates an absolute module from output files of
the MC68000 Absolute Linker. The output module can be loaded directly into a DI.

Format : SES .BLDMI68K
NAME=file name
HDR=file name
OUTPUT=file name optional
UN=user name optiomnal

Parameters:

C}' NAME

HDR (H)

The name to be associated with the absolute monle created.

The name of the header file generated by the MC68000 Absolute Linker
for the program modules to be processed. The header file name has the
form seedHDR, where seed is the name seed specified in the call to the
Linker for the program modules (refer to chapter 5). The header file
contains information additional files needed to create the absolute

w module.

OUTPUT (0O)
The name of the file to which the absolute module is to be writtem. If

you omit this parameter, the absolute module is written to a file named
MIBMOD.

v The user name whose permanent file catalog is to be searched for input
W files and to which output files are to be written. If you omit this
1 ; parameter, your permanent file catalog is used.

Example: In the following example, an absolute module named ABSMOD is created from the
files referenced in file SEGMHDR and written to file NEWMOD in the user”s
permanent file catalog.

SES .BLDMI68K ABSMOD SEGMHDR NEWMOD

(m Revision Ol MC68000 Utilities 7-1

w

N

X

AN

N

O

0.

o)

®

oNe

DIAGNOSTIC MESSAGES A

The CDCNET MC68000 Utilities generate the following three types of diagnostic messages:
e Diagnostic messages written by the MC68000 Absolute Linker to the Linker map file.

e Diagnostic messages issued by the Linker only that are displayed at the interactive
terminal and written to the job dayfile.

e Diagnostic messages issued by all of the CDCNET MC68000 Utilities that are displayed
at the interactive terminal and written to the job dayfile.

LINKER MAP FILE DIAGNOSTIC MESSAGES

The Linker writes all messages to the Linker map file in the following format:

* % * LINKER ERROR NNNNN *FATAL* error message text
MODULE =name
FILE =file name
NAME =name
RECORD COUNT =integer

The string *FATAL* appears only if the error being reported was fatal to the link
operation. NAME indicates the entry point at which the error occurred.

1 IMPROPER RELOCATION ADDRESS SPECIFICATION

Description: Relocation information is being incorrectly generated; Linker output
is unaffected.
Action: Correct the object text.

2 UNANTICIPATED EOR

Description: The Linker encountered an EOR somewhere other than at the end of an
object module.
Action: Correct the object text.

3 MORE THAN ONE CODE SECTION IN A MODULE

Description: A single object module had more than one code section; only one is
permitted.
Action: Correct the object text.
Revision 01 MC68000 Utilitites A-1

10

11

12

13

MC68000 Utilities A-2

SDO GREATER THAN IDR SPECIFICATION ENCOUNTERED

Description: The number of sections in the IDR is incorrect or the section
ordinals do not start at zero or are not contiguous.
Action: Correct the object text.

CODE SECTION ATTRIBUTE SPECIFICATION ERROR

Description: A code section was found to have a write or binding section
attribute.
Action: Correct the object text.

MORE THAN ONE BINDING SECTION PER MODULE

Description: An object module had more than one binding section; only one is
permitted.
Action: Correct the object text.

BINDING SECTION ALIGNMENT ERROR

Description: The binding section for a module was not aligned on a 16-bit word
boundary.
Action: Correct the object text.

BINDING SECTION ATTRIBUTE SPECIFICATION ERROR

Description: The binding section for a module had a write or execute attribute.
Action: Correct the object text.

DUPLICATE SECTION DEFINITION ORDINAL

Description: The same ordinal has been used for two sections in a single object
module.
Action: Correct the object text.

BINDING ATTRIBUTE SPECIFIED FOR A NON BINDING SECTION

Description: The binding attribute was specified for a section other than the
binding section.
Action: Correct the object text.

CONFLICTING PROTECTION ATTRIBUTE FOR COMMON BLOCK

Description: Different protection has been specified in separate common block
declarations.
Action: Correct source program.

CONFLICTING LENGTH SPECIFICATION FOR COMMON BLOCK

Description: Unequal lengths were specified in separate common block declarations.

Action: Correct source program.
COMMON TABLE OVERFLOW - RECOMPILE LINKER

Description: Linker internal table size was exceeded.
Action: Correct the object text.

Revision 01

O
o

TN

OO0

14 MISPLACED IDR OR SDC
Description: Object‘text structure is incorrect.
Action: Correct the object text.
17 SDOS NOT CONTIGUOUSLY NUMBERED
Description: Object text structure is incorrect.
Action: Correct the object text.
18 SEGMENT TABLE OVERFLOW - RECOMPILE LINKER
Description: Linker internal table size was exceeded.
Action: Contact your CDC customer representative.
19 ZEROIZE SECTION INTERNAL LOGIC ERROR
Description: The Linker has aborted.
Action: Contact your CDC customer representative.
21 POINTER IN BINDING SEGMENT WAS MISALIGNED
Description: A binding section entry was not right-justified in a 16-bit word
boundary.
Action: Correct the object text.
22 ATTEMPTED TO PLACE DATA IN A BINDING SECTION
Description: A binding section entry was not a pointer or a procedure descriptor.
Action: Correct the object text.)
24 PREALLOCATED BINDING SEGMENT ATTRIBUTE ERROR
Description: A binding segment was defined as writable, executable, or readable
under key lock control.
Action: Correct the DEFINE_SEGMENT subcommand for the segment.
25 PREALLOCATED EXECUTABLE SEGMENT ATTRIBUTE ERROR
Description: An executable segment was defined as writable.
Action: Correct the DEFINE_SEGMENT subcommand for the segment.
28 FIRST RECORD OF AN OBJECT MODULE WASNT AN IDR
Description: An input file to the Linker did not have the correct format.
Action: Correct input file.
29 DUPLICATE ENTRY POINT WAS DETECTED
Description: A symbol contains more than one XDCL as an entry point. The Linker
used the first definition; Linker output is unaffected.
Action: Correct object file list if necessary.
30 LST OVERFLOW - TOO MANY ENTRY POINTS
Description: Linker internal table size was exceeded.
Action: Contact your CDC customer representative.
Revision 01 MC68000 Utilitites A-3

31 EXTERNAL ARRAY OVERFLOW - TOO MANY EXTERNALS
Description: Linker internal table size was exceeded (maximum size is 200
entries.)
Action: Contact your CDC customer representative.
32 RECORD CONTAINS IMPROPER SDO
Description: An object text record referenced an undefined object text section.
Action: Correct the object text.
33 INPUT RECORD CONTAINS AN IMPROPER SECTION OFFSET
Description: An object text record referenced an offset outside the range
specified in the section definition.
Action: Correct the object text.
34 NO PRIMARY ENTRY POINT ENCOUNTERED
Description: No primary entry point was specified.
Action: Correct the object text.
35 PRIMARY ENTRY POINT NOT XDCLED
Description: The XDCL attribute was not assigned to the object module containing
the primary entry point.
Action: Assign the XDCL attribute to the appropriate program module.
36 NO OBJECT FILE INPUT
Description: No object module input was encounted by the Linker.
Action: Check the input files for content and check the format of the input
file parameters in the call to the Linker.
37 UNSATISFIED EXTERNAL REFERENCE
Degeription: An externally referenced (XREF) declaration was not externally
declared (XDCL) in any input module or in any of the modules on the
referenced libraries.
Action: Check your source program for a missing XDCL, and check the format
of the input file parameters in the call to the Linker.
38 LFD CONTAINS IMPROPER EXECUTE ATTRIBUTE
Description: An unknown execute attribute was specified in LFD.
Action: Correct LFD.
39 UNKNOWN OBJECT TEXT RECORD TYPE
Description: Object text structure is incorrect.
Action: Correct the object text.
40 UNKNOWN EXTERNAL REFERENCE INSERTION TYPE
Description: Object text structure is incorrect.
Action: Correct the object text.
MC68000 Utilities A-4 Revision 01

U

Y O

41 UNKNOWN SECTION DEFINITION TYPE

Description:
Action:

Object text structure is incorrect.
Correct the object text.

42 RIF DOES NOT PERTAIN TO CODE OR BINDING SECTION

Description:
Action:

43 TIMPROPER RELOCATION
Description:
Action:

44 EXPECTED SDC RECORD

Description:
Action:

Relocation information is being incorrectly generated. Linker
output is unaffected.
Correct the object text.

CONTAINER SPECIFICATION
Relocation information is being incorrectly generated. Linker

output is unaffected.
Correct the object text.

Object text structure is incorrect.
Correct the object text.

45 TINVALID PROCEDURE OFFSET FOR INDIRECT CALL

Description:
Action:

The byte offset for an indirect procedure call is not divisible by 2.
None necessary at this time, but the object text generator should be
modified to allocate all procedures on a word boundary. ‘

46 INVALID BIT STRING INSERTION RECORD

Description:

Action:

47 BAD LIBRARY FORMAT
Description:

Action:

The Linker encountered a bit string insertion record with a bit
offset greater than 7 or a bit length greater than 63. No bit
string insertion has taken place.

The utility that generated the object text has caused the error and
must be corrected.

An input file that was specified as a library was not in library
format.
Check the input files that were specified as libraries.

48 REQUIRED LIBRARY MISSING

Description:

Action:

The Linker encountered a libraries record that specified a library
not present in the list of input library files.

Correct the list of input library files in the call to the Linker to
include the missing library.

49 ERROR IN PARAMETER VERIFICATION

Description:

Action:

kevision 0l

The type declarations for the variable do not match on the XDCL and
XREF statements.

Check the type declarations for the variable and correct them so
that they match.

MC68000 Utilitites A-5

LINKER DAYFILE MESSAGES <{

i
The following messages are issued for the Linker only. They are displayed at the %u;b
interactive terminal and written to the job dayfile.

10000 LINKER TERMINATED NORMALLY

Description: The Linker has terminated normally with no fatal or nonfatal
errors.
Action: None.

10100 LINKER NORMAL TERMINATE WITH NONFATAL ERRORS - SEE MAP LISTING
Description: One or more non-fatal errors were encountered during the link
operation. Linker output may or may not be valid.

Action: Check Linker map for further diagnostic messages.

10101 LINKER ABNORMAL TERMINATE - SEE MAP LISTING

~
Description: The Linker detected a fatal error and aborted. Linker output : j
is undefined. o o
Action: Check Linker map for diagnostic message.

10102 LINKER ABNORMAL TERMINATE - NO MODULES PROVIDED
Description: The Linker found no input object modules.
Action: Check the file input parameters on the call to the Linker and
check all input files for content.

10200 LIBRARY FILE file name NOT LOCAL

PN
Description: The file specified in the LFL parameter of the LINK68K command J
or the OBJECT_LIBRARY subcommand of the Linker Parameter File
- is not a local file.
Action: Make the file local.
10201 OBJECT FILE file_name NOT LOCAL
Description: A file specified in the OFL parameter of the LINK68K command or
the OBJECT_FILE subcommand of the Linker Parameter File is not
a local file. N
Action: Make the file local. |)
AN g

10202 OBJECT FILENAME file_name DUPLICATES EXISTING FILE

Description: A file name specified as an input object file or library is
identical to the name of another file used by the Linker.

Action: Change the name of one of the file names involved in the
duplication.

10203 IST FILE file_name NOT LOCAL

Description: A file specified in the INBOARD_SYMBOL_TABLE subcommand of the
Linker Parameter File is not a local file.
Action: Make the file local.

MC68000 Utilities A-6 Revision 01

O
O

ole

IST FILENAME file_name DUPLICATES EXISTING FILE

10204
Description: A file name specified in the INBOARD_SYMBOL_TABLE subcommand of
the Linker Parameter File is identical to the name of another
file used by the Linker.
Action: Change the name of one of the file names involved in the
duplication.
10300 LPF FILE file_name NOT LOCAL
Description: A file specified in the LPF parameter of the LINK68K command is
not a local file.
Action: Make the file local.
10301 UNKNOWN LPF COMMAND command SPECIFIED
Description: The Linker detected an invalid Linker Parameter File subcommand.
Action: Correct the Linker Parameter File subcommand.
10302 INVALID MAP OPTION map_option SPECIFIED
Description: The Linker detected an invalid map option specified in the the
MO parameter of the LINK68K command or in the MAP_OPTIONS
specification of the LINK_OPTIONS subcommand in the Linker
Parameter File.
Action: Correct the map option specification.
- 10303 INVALID NAME_SEED xxxx SPECIFIED
Description: The Linker detected an invalid name seed specified in the NS
parameter of the LINK68K command or in the NAME_SEED
specification of the LINK_OPTIONS subcommand in the Linker
Parameter File .
Action: Correct the name seed specification.
10304 INVALID SEGMENT ATTRIBUTE segment_attribute SPECIFIED
Description: The Linker detected an invalid segment attribute specified in
the ATTRIBUTES specification of DEFINE_SEGMENT subcommand in
the Linker Parameter File .
Action: Correct the attribute specification.
10306 INVALID SECTION ATTRIBUTE SPECIFIED
Description: The Linker detected conflicting access attributes in the
specification of a default section name.
Action: Correct the access attributes.
Revision 01 MC68000 Utilitites A-7

A=

MC68000 UTILITY DAYFILE MESSAGES

The following messages are issued for all the MC68000 Utilities. The message indicated as
being error messages reflect conditions that cause the utility to abort. These messages are
displayed at the interactive terminal and written to the job dayfile.

s
0
N’

20001 HEADER FILE file name IS BAD

Severity: Error.
Description: The specified file does not have the header file format.

20002 SEGMENT FILE file_name NOT FOUND

Severity: Error.
Description: Self-explanatory.

20003 ACQUIRE ERROR file_name

TN
Severity: Error. o
Description: Internal error trying to acquire file_name. o
20004 USER ID long_user_id IS TOO LONG, NOW short_user_id
Severity: Informational
Description: Self-explanatory.
. 20005 SYMBOL long_symbol HAS BEEN SHORTENED TO short_symbol
Severity: Informational N
Description: Self-explanatory. l% P
20006 UNKNOWN OBJECT TEXT IN file_name
Severity: Error.
Description: Self-explanatory.
20007 UNEXPECTED EOF OR EOR FOUND
Severity: Error.
Description: Self-explanatory. _/“\J
i
W

20008 TOO MANY EXTERNAL REFERENCES

Severity: Error.
Description: Self-explanatory.

20009 MODULE module_name IS NOT A MC68000 MODULE

Severity: Error.
Description: Self-explanatory.

20010 DUPLICATE ENTRY POINT NAME

Severity: Error.
Description: Entry point name specified more than once.

MC68000 Utilities A-~8 Revision 01

, 2001 momuLE module_name IS ALREADY ABSOLUTE AND CANNOT BE REFORMATTED
L W

Severity: Error.
Description: Input modules must be relocatable.

20012 ORG ADDRESS FOR section_name IS INVALID

Severity: Error.
Description: The new module is made up of too many modules.

20201 MULTIPLE IDENTIFICATION RECORDS FOUND ON MODULE module_name

Severity: Error.
Description: Self-explanatory.

20202 SECTION OF NEW MODULE IS TOO LONG

Severity: Error.
Description: The new module is made up of too many modules.

C> 20204 UNKNOWN SECTION ORDINAL FOUND ON MODULE module_name

Severity: Error.
Description: Recompile the module.

20205 MISSING SECTION DEFINITION ON MODULE module_name

Severity: Error.
Description: Recompile the module.

0 20206 REFERENCING OUTSIDE SECTION ON MODULE module_name
Vi

Severity: Error.
Description: Recomplied module.

20207 TOO MANY LIBRARIES ENCOUNTERED

Severity: Error.
Description: Self-explanatory.

20211 STARTING PROCEDURE start_proc_name NOT IN CODE SECTION

Severity: Error.
Description: Self-explanatory.

20217 ATTEMPTING TO BIND module_name, AN ABSOLUTE MODULE

Severity: Error.
Description: Module_name cannot be bound.

20218 COMMON BLOCK common_block_name HAS 2 DIFFERENT LENGTHS, SECOND FOUND IN MODULE
module_name

Severity: Error.
Description: Self-explanatory.

Revision 01 MC68000 Utilitites A-9

OO0

20219

20220

20301

20302

20302

ERROR ENCOUNTERED IN SYMBOL TABLE IN MODULE module_name

Severity: Error.
Description: Self-explanatory, recompile module.

ERROR ENCOUNTERED IN LINE TABLE IN MODULE module_name

Severity: Error.
Description: Self-explanatory, recompile module.

NUMBER OF INPUT FILES DOES NOT EQUAL NUMBER OF OUTPUT FILES

Severity: Error.
Description: Self-explanatory.

MISSING IDENTIFICATION RECORD ON FILE file_name

Severity: Error.
Description: Self-explanatory.

FOUND A TEXT RECORD THAT IS NOT SUPPORTED FOR MC68000 ON FILE file_name

Severity: Error.
Description: Self-explanatory.

MC68000 Utilities A-10

Revision 01

N
(

wJ

-

_ OBJECT TEXT FORMATS FOR THE MC68000 B
(C ABSOLUTE LINKER |

{6 ——

This appendix contains the CYBIL type and constant declarations that define
the format for files of object modules that are input to the MC68000 Absolute
Linker. These formats are consistent with object files created by the CDCNET
CYBIL compiler and the MC68000 Cross-Assembler.

{ Date request return value. }

TYPE
ost$date = record
CASE date_format: ost$date_formats OF
=osc$month_date=
month: ost$month_date, { month DD, YYYY }
=osc$mdy_date=
mdy: ost$mdy_date, { MM/DD/YY }
O =osc$iso_date=
iso: ost$iso_date, { YYYY-MM-DD }
=osc$ordinal_date=
ordinal: ost$ordinal_date, { YYYYDDD }
CASEND,
recend,

ost$date_formats = (osc$default_date, osc$month_date, osc$mdy_date,
osciso_date, oscordinal_date),

£ ost$month_date = string (18),

O ost$mdy_date = string (8),
ost$iso_date = string (10),
ost$ordinal_date = string (7);

{ Time request return value. }

TYPE
ost$time = record
CASE time_format: ost$time_formats OF
=osc$ampm_time=
C\ ampm: ost$ampm_time, { HH:MM: AM or PM }
/ =osc$hms_time=
hms: ost$hms_time, { HH:MM:SS }
=osc$millisecond_time=
millisecond: ost$millisecond_time, { HH:MM:SS.MMM }
CASEND,
recend,

ost$time_formats = (osc$default_time, osc$ampm_time, osc$hms_time,
osc$millisecond_time),

ost$ampm_time = string (8),

ost$hms_time = string (8),
ost$millisecond_time = string (12);

: Revision 01 MC68000 Utilitites B-1

TYPE
pmt$program_name = ost$name;

CONST
osc$max_name_size = 31,
osc$null_name = '

TYPE
ost$name_size = 1 .. osc$max_name_size;

TYPE
ost$name = string (osc$max_name_size);

{ * amdname}
TYPE
amt$file_name = string (*),
ant$local_file_name = ost$name;

{ CYBER 180 PPU characteristic definition. }
CONST
llc$max_ppu_number = 20 - 1, {maximum number of

lic$max_ppu_size = Off£(16); {maximum number of

TYPE _
11t$ppu_address = 0 .. llc$max_ppu_size;

with the following topology:

< object text descriptor # 1 >
< object text record # 1 >

< object text descriptor # 2 >
< object text record # 2 >

< object text descriptor # n >
<object text record # n >

will be referred to as records hereafter.
the following order:

1). Identification record
2.) Library, section definition, text,

records that refer to the section.
3). Transfer symbol record.

P, i, Ay, (A, PRy, Ay Ay iy Ay A phm, piny i A, A phn, pAn (e iy ey (PR PPy Ay P P, AR A (R A

MC68000 Utilities B-2

PPUs in a configuration.}
words in a PPU.}

The general form of an object module is a file of binary records

For the sake of simplicity the record descriptor - record pairs

For a CPU program, the object text records must be arranged in

bit string insertion,

address formulation, external linkage, entry definition,
relocation, formal parameter specification, actual
parameter specification and binding template records in
arbitrary order with the one stipulation that a section
definition record must precede any other object text

Revision 01

ofe

7N

‘
N

©O0

For a PPU program or overlay, the object text records must be
arranged in the following order:

1.) Identification record
2.) PPU absolute record

P e L

{ Constants that pertain to both the object and load module. }

CONST
llc$max_adr_items = Off££(16),
llc$max_ext_items = Off£f£(16),
llc$max_libraries = Offff(16),
llc$max_rel_items = Offf£(16);

TYPE
11t$object_text_descriptor = record

case kind: llt$object_record_kind of

= llc$identification, llc$section_definition, llc$bit_string_insertion,
1llc$entry_definition, llc$binding_template, llc$transfer_symbol =
unused: llt$section_length, {must be zero}

= lle$libraries =
number_of_libraries: 1 .. llc$max_libraries,

= llc$text, llc$replication =

number_of_bytes: 1 .. llc$max_section_length,
= llc$relocation =

number_of_rel_items: 1 .. llc$max_rel items,
= llc$address_formulation =

number_of_adr_items: 1 .. llc$max_adr_items,
= llc$external_linkage =

number_of_ext_items: 1 .. llc$max_ext_items,

= llc$formal_parameters, llc$actual_parameters,
llc$cybil_symbol_table_fragment, llc$symbol_table,
llc$line_table_fragment, llc$symbol_table_fragment =
sequence_length: llt$section_length, {REP sequence_length OF CELL}
= llc$ppu_absolute =
number_of_words: llt$ppu_address,
= llc$allotted_section_definition =
allotted_section: ost$relative_pointer, { REL “seq(*) }
= oct$module_directory, oct$entry_point_directory =
number_of_directory_entries: integer,
= 11c¢$68000_absolute =
number_of_68000_bytes: 1 .. llc$maximum_68000_address,
= llc$line_table, llc$obsolete_line_table =

number_of_line_items: 1 .. llc$max_line_adr_table_size,
casend,
recend;
TYPE
1lt$section_ordinal = 0 .. llc$max_section_ordinal,

llt$section_offset = 0 .. llc$max_section_offset,

llt$section_length = 0 .. llc$max_section_length,

1lt$section_length_in_bits = 0 .. (llc$max_section_length *
llc$bits_per_byte),

llt$section_address_range = - (llc$max_section_offset + 1) ..
llc$max_section_offset;

Revision 01 v MC68000 Utilitites B-3

CONST
llc$max_section_ordinal = Offff(16),
llc$max_section_offset = 7€fE££££(16),
llc$max_section_length = llc$max_section_offset + 1,
1lle$bits_per_byte = 8;

TYPE

11t$object_record_kind = (llc$identification, llc$libraries,
llc$section_definition, llc$text, llc$replication,
lle$bit_string_insertion, llc$entry_definition, llc$relocation,
llc$address_formulation, llc$external_linkage, llc$formal_parameters,
llc$actual_parameters, llc$binding_template, llc$ppu_absolute,
llc$obsolete_line_table, llc$cybil_symbol_table_fragment,
llc$allotted_section_definition, llc$symbol_table, llc$transfer_symbol,
oct$library_header, oct$module directory, oct$entry_point_directory,
11c$68000_absolute, llc$line_table, llc$line_table_fragment,
llc$symbol_table_fragment);

TYPE

1it$line_address_table_size = 0 .. llc$max_line_adr_table_size;

CONST
llc$max_line_adr_table_size = Offf£££(16);

TYPE
11t$68000_address = 0 .. llc$maximum_68000_address;

CONST
llc$maximum_68000_address = OffffEEE££(16);

{ NOS/180 address constants. }
CONST

{ Ring names. }

{ Lowest ring number (most privledged). }

osc$min_ring =
= Highest ring number (least privledged). }

osc$max_ring

osc$invalid_rin
osc$os_ring_1
osc$tmtr_ring
osc$tsrv_ring
osc$sj_ring_1
osc$sj_ring_2
osc$sj_ring_3 ,
osc$application_ring_1

R =
e

Reserved for Operating System. }
Task Monitor. }

Task services. }

Reserved for system job. }

{
0
{
{
{
{

W nuu
A d>WNH

7, { Reserved for application subsystems.}

osc$application_ring_2 = 8,
osc$application_ring_3 = 9,
osc$application_ring_4 = 10,

osc$user_ring = 11, { Standard user task. }
osc$user_ring_1 12, { Reserved for user...0.S. requests available.}

osc$user_ring_2 = 13,
osc$user_ring_3 = 14, { Reserved for user...0.S. requests not available. }
osc$user_ring_4 = 15;

MC68000 Utilities B-4 Revision

01

AN

Y

{ Virtual address space dimensions. }

CONST
osc$maximum_segment = Of££(16),
osc$maximum_offset = 7ff£E££££(16),
osc$max_segment_length = osc$maximum_offset + 1;

{ Global-local key lock definition. }

TYPE
ost$key_lock = packed record
global: boolean, { True if value is global key. }
local: boolean, { True if value is local key. }
value: ost$key_lock_value, { Key or lock value. }
recend,

ost$key_lock_value = 0 .. 3f(16),

i\
‘ i { CYBER 180 forty eight bit PVA definition. }

ost$ring = osc$invalid_ring .. osc$max_ring, { Ring number. }
ost$valid_ring = osc$min_ring .. osc$max_ring, { Valid Ring Number. }
ost$segment = 0 .. osc$maximum_segment, { Segment number. }

ost$segment_offset = - osc$maximum_offset .. osc$maximum_offset,
ost$segment_length = 0 .. oscimax_segment_length,
ost$relative_pointer = - 7f££££££(16) .. 7fE£E££££(16),

i y ost$pva = packed record
ring: ost$ring,
seg: ost$segment,
offset: ost$segment_offset,
recend;

{ Identification record. }

e TYPE
LN 1l1t$identification = record

C/ name: pmt$program_name,
object_text_version: string (4),
kind: llt$module_kind,
time_created: ost$time,
date_created: ost$date,
attributes: llt$module_attributes,
greatest_section_ordinal: llt$section_ordinal,
generator_id: llt$module_generator,
generator_name_vers: string (40),
commentary: string (40),

recend;

CONST
llc$object_text_version = 'V1.4';

Revision 01 MC68000 Utilitites B-5

OO0

TYPE @:T}

11t$module_kind = (lle$mi_virtual_state, llc$vector_virtual_state, llc$iou, A
llc$motorola_68000, llc$p_code, llc$motorola_68000_absolute); i “JD

TYPE
llt$module_generator = (llc$algol, llcapl, llcbasic, llc$cobol,
llc$assembler, llc$fortran, llc$object_library_generator, llc$pascal,
llc$cybil, lle$pl_i, llc$unknown_generator, llc$the_c_language, llc$ada,
lle$real_memory_builder);

TYPE
llt$module_attributes = set of (llc$nonbindable, llc$nonexecutable);

{ Library record. }

TYPE
11t$libraries = array { 1 .. *] of amt$local_file_name;

{ Section definition record. } ‘f

TYPE
lit$section_definition = record
kind: 1llt$section_kind,
access_attributes: llt$section_access_attributes,
section_ordinal: llt$section_ordinal,
length: lit$section_length,
allocation_alignment: llt$section_address_range,
allocation_offset: llt$section_address_range,
name: pmt$program_name, o
recend; k
TYPE
llt$section_kind = (llc$code_section, llc$binding_section,
1le$working_storage_section, llc$common_block,
llc$extensible_working_storage, llc$extensible_common_block,
1lc$lts_reserved);

TYPE
11t$section_access_attributes = set of llt$section_access_attribute,

N

A;(
N A

lit$section_access_attribute = (llc$read, llc$write, llc$execute,
lic$binding); -~

{ Text record. }

TYPE
11t$text = record
section_ordinal: llt$section_ordinal,
offset: llt$section_offset,
byte: array [1 .. *] of O .. 255,
recend;

O

MC68000 Utilities B-6 Revision 01

C

®,

©0

{ Replication record. }

TYPE
llt$replication = record

section_ordinal: llt$section_ordinal,
offset: llt$section_offset,

increment: 1 .. llc$max_section_length,
count: 1 .. llc$max_section_length,
byte: array [1 .. *] of O .. 255,

recend;

{ Bit insertion record. }

TYPE

11t$bit_string_insertion = record
section_ordinal: llt$section_ordinal,
offset: llt$section_offset,
bit_offset: 0 .. 7,
bit_length: 11t$bit_string_length,

bit_string: packed array [11t$bit_string_length] of O ..
recend,

11t$bit_string_length = 1 .. llc$max_bit_string_length;

CONST

1lc$max_bit_string_length = 63;

{ Address formulation record. }

TYPE

1lt$address_formulation = record
value_section: llt$section_ordinal,
dest_section: llt$section_ordinal,

item: array [1 .. *]} of llt$address_formulation_item,

recend,

1lt$address_formulation_item = record
kind: llt$internal_address_kind,

1,

value_offset: llt$section_address_range, { only llc$address can be

negative. }

dest_offset: llt$section_offset,
recend;

TYPE

11t$address_kind = (llc$address, llc$internal_proc, llc$short_address,
llc$external_proc, llc$address_addition, llc$address_subtraction);

TYPE
11t$internal_address_kind = llc$address .. llc$external proc;

Revision . 01

MC68000 Utilitites

{ External reference record. }

TYPE

llt$external_linkage = record
name: pmt$program_name,
language: llt$module_generator,
declaration_matching_required: boolean,
declaration_matching_value: integer,
item: array [1 .. *] of llt$external_linkage_item,

recend,

l1t$external_linkage_ item = record
section_ordinal: llt$section_ordinal,
offset: llt$section_offset,
kind: llt$address_kind,
offset_operand: llt$section_address_range,
recend;

{ Entry point definition record. }

TYPE

11t$entry_definition = record
section_ordinal: lit$section_ordinal,
offset: lit$section_offset,
attributes: llt$entry_point_attributes,
name: pmt$program_name,
language: llt$module_generator,
declaration_matching_required: boolean,
declaration_matching_value: integer,

recend; '

TYPE
llt$entry_point_attributes = set of (llc$retain_entry_point,
llc$gated_entry_point);

{ Relocation record. }

TYPE
11lt$relocation = array [1 .. *] of llt$relocation_item,

llt$relocation_item = record
section_ordinal: llt$section_ordinal,
offset: llt$section_offset,
relocating_section: llt$section_ordinal,
container: llt$relocation_container,
address: llt$address_type,

recend;

TYPE
11t$relocation_container = (llctwo_bytes, llcthree_bytes, llc$four_bytes,
llc$eight_bytes, 11c$180_d_field, 11c$180_q_field, 11c$180_long_d_field);

TYPE
1lt$address_type = (llc$byte_positive, llc$two_byte positive,
1lc$four_byte_positive, llc$eight_byte_positive, llc$byte_signed,
lictwo_byte_signed, llcfour_byte_signed, llcheight_byte_signed);

MC68000 Utilities B-8 Revision

O

\\Wr. Q/JJ

ﬂﬂi;\
\{h‘_ j/

OO0

{ Procedure formal parameter description record. }

TYPE
l1t$formal_parameters = record
procedure_name: pmt$program_name,
specification: SEQ (*),
recend;

{ Procedure call actual parameters record. }

TYPE
11t$actual_parameters = record
callee_name: pmt$program_name,
language: llt$module_generator,
line_number_of_call: llt$source_line_number,
specification: SEQ (*),
recend;

TYPE
llt$source_line_number = 0 .. 999999;

o A

formal parameter. }

TYPE
11t$fortran_argument_desc = record
argument_type: llt$fortran_argument_type,
string_length: llt$fortran_string_length, { only used for type
argument_kind: llt$fortran_argument_kind,
array_size: llt$fortran_array_size, { only used for kind ARRAY

FORTRAN argument description: used to describe a single actual or }

CHAR }

}

unknown_argument_ordinal: 1 .. llc$max_fortran_arguments, { only used }
{ for actual argument kind of UNKNOWN. Points back to formal parameter }

{ passed on by this call. }
mode: llt$argument_usage,
recend;

CONST
llc$max_fortran_arguments = 500;

TYPE

11t$fortran_argument_type = (llc$fortran_logical, llc$fortran_integer,

llc$fortran_real, llc$fortran_double_real, llc$fortran_complex,
llc$fortran_char, llc$fortran_boolean, llc$fortran_null_type,
1llc$fortran_statement_label);

TYPE
llt$fortran_string_length = record
attributes: llt$fortran_string_attributes,
number_of_characters: llt$fortran_string_size,
recend;

TYPE
11t$fortran_string_size = 0 .. llc$max_fortran_string_size;

Revision 01

MC68000 Utilitites B-9

TYPE
1l1lt$fortran_string_attributes = set of llt$fortran_string_attribute,

l1t$fortran_string_attribute = (llc$fortran_assumed_len_string,
llc$fsa_reserved_7, llc$fsa_reserved_6, llc$fsa_reserved_S,
llc$fsa_reserved_4, llc$fsa_reserved_3, llc$fsa_reserved_2,
llc$fsa_reserved_1);

CONST
1llc$max_fortran_string_size = Offf£(16);

TYPE
lit$fortran_argument_kind = (llc$fortran_variable, llc$fortran_array,
llc$fortran_external, lle$fortran_array_element,
lic$fortran_unknown_arg_kind);

TYPE
lit$fortran_array_size = record
attributes: llit$fortran_array_attributes,
rank: llt$fortran_array_rank,
number_of _elements: 11lt$section_length,
recend;

TYPE
1lt$fortran_array_attributes =set of llt$fortran_array_attribute,

11t$fortran_array_attribute = (llc$fortran_assumed_len_array,
lle$fortran_adaptable_array, llc$faa_reserved_6, llc$faa_reserved_S5,
1llc$faa_reserved_4, llc$faa_reserved_3, llc$faa_reserved_2,
lic$faa_reserved_1);

TYPE
lit$fortran_array_rank = 0 .. llc$max_fortran_array_rank;

CONST
1llc$max_fortran_array_rank = 7;

TYPE
lit$argument_usage = (llc$argument_written, llc$argument_not_written);

{ Binding template record }

TYPE
11t$binding_template = record
binding_offset: llt$section_offset,
case kind: 1llt$binding_template_kind of
= llec$current_module =
section_ordinal: llt$section_ordinal,
offset: llt$section_address_range,
internal_address: llt$internal_address_kind,
= llc$external_reference =
name:. pmt$program_name,
address: llt$address_kind,
casend,
recend;

MC68000 Utilities B-10

Revision 01

'
L

O
O

©0

TYPE
11t$binding_template_kind = (llc$current_module,

{ Symbol table record }

TYPE
11t$symbol_table = record
language: llt$module_generator,
text: SEQ (*),
recend;

AN A Ay (A A

other than 180. For example CYBIL C/M. }

TYPE
11t$debug_table_fragment = record
offset: llt$section_offset,
text: SEQ (*),
recend;

{ Transfer record. }

TYPE
" llt$transfer_symbol = record
name: pmt$program_name,
recend;

{ PPU absolute record. }

TYPE

11t$ppu_absolute = record
executes_on_any_ppu: boolean,
ppu_number: O .. llc$max_ppu_number,
load_address: llt$ppu_address,
entry_address: llt$ppu_address,
text: array [0 .. *] of O .. Offff(16),

recend;

TYPE
11t$68000_absolute = record
load_address: 11t$68000_address,
transfer_address: 11t$68000_address,
text: SEQ (*), { REP n OF byte }
recend;

Revision 01

llc$external_reference);

Debug table record used for emitting line tables and symbol tables }

in fragments rather than all together. Not used by II compilers and }
simply passed over by any object text processors operating on NOS/VE. }
Intended for use by compilers producing this loader text on machines }

MC68000 Utilitites

B-11

=

TR
/ \

_/

N
\\W)/

==

