o0

CDCNET

MC68000™ Cross—Assembler

Reference

This product is intended for use only as
described in this manual. Control Data
cannot be responsible for the proper
functioning of undescribed features or
parameters.

Publication Number 60462700

RELATED PUBLICATIONS

Background (Access as Needed):

CDCNET
MC68000
UTILITIES

CYBIL References:

CYBIL
HANDBOOK

MANUAL HISTORY

This manual is Revision 01, printed 10/84. It is the Preliminary Release under NOS

~Version 2.
© 1984

by Control Data Corporationm.

All rights reserved.

Printed in the United States of America.

2 MC68000 Cross—Assembler

Revision 01

J

RN
<

s

""ary\}

O
O

CONTENTS

ABOUT THIS MANUAL.ceoveseovseccccscscscsccccsne
Audience for this Manualecesscocccces
Organization-.--.....................
ConventionSccececessscccoscescsncccasn

INTRODUCTION

Purpose---cooonooo.oooo.ooonooo.ooc.o

Source Program RestrictionSeccecscess

CROSS ASSEMBLER PROGRAM ELEMENTS AND
CODING RULES
Structure of a Cross—Assembler
Source Moduleces cecccssccecsasccns
"68000" Statementecesecscscscessccsncs
Source Statement Format RuleSeescecos
Label Fieldecsecscsoscsscccscses
Operation Fieldeocsecsoscosocsasne
Operand Fieldeseeescccsscocsccce
Comment Fieldecececcooccsccscces
Format of Valid ExpressionSecescesocee
symbols....‘.0'.’.".......‘..'.
Numeric ConstantSccecescccsccsces
String ConstantSeoceceoscccoecsss
Dollar Sign ($).......'.‘0’...'0
OperatorsSeccececcscocccecscncocces
Valid Combinations of Relocatable
and Absolute Expressionscecccccsccs
Addressing Modes and Cross—Assembler

Syﬂtax.tcoootooooo.-occoooooco-oooo

PSEUDO INSTRUCTION STATEMENTS

ABS[OLUTE]_SHORT, ABS[OLUTE]_LONG

= Set Addressing Modesecececesscecs
ASC[II] - Define an ASCII Stringcese.
BIN[ARY), DEC[IMAL], HEX,

OCT[AL] - Define Constant..........
COMN, DATA, ORG, PROG - Designate

Memory Storage Are@cecsccececocesses
DC - Define Constanteseccecscsccecssces
DS - Reserve Storage.-...............
END - Terminate a Program Uniteececece
EQU, SET - Equate Symbol to a Value..
EVEN - Set Program Counter to Even

AddresSecccscceccssssccsncocovescce
EXPAND - Enable Cross-Reference

Listing................-.........-.
EXTERNAL - Identify Labels Which

Are Declared Externallyeeceeceosscces
GLB - Declare Label to Be Globaleeeso

Revision 01

[V, NV, NV}

IF, ELSE, IFEND, ENDIF - Conditional

Assembly-----...................... 3-7
LIST, NOLIST - Listing Control

Options...--.........e......;..-... 3-8
MASK - Setup String Masking Values... 3-8
NAME - Add Comments to Object Module. 3-9
REPT ~ Repeat the Next Statemente.ees 3-9
RORG, PC_INDEP, NO_RORG, PC_DEP

= Declare Position Independent

Program SectioNeccesccoscocccsssnsns 3-10
SKIP - Perform Page Eject.-.......... 3-10
SPC - Leave Blank Lines on Listing... 3-10
TITLE - Define Listing Titlecsesoeses 3-11

MACHINE~INSTRUCTION STATEMENTSeeecesceccee 4-1

MACROS
Macro Formatesesececsccscoscosscesssese 5—l
Optional ParameterSeeececceccsscsscsee 3=l
Unique Label GeneratioNeeseccecsscesccss 3=2
Macro Conditional Assemblysccococseees 5=2
<IF Instructioﬂooaoonoooo‘o.coo-o.o 5"2
DSET Instruction...........I.QO.... 5_3
«GOTO Instrﬂctionoooocooe.‘ooooooou 5=-3
+NOP InstructioNeececccescscccssees =3
Macro Local SymbolSccesceccccoessesse =3
Checking and Indexing Parametersececes 5=4
Macro Examples.....o-...-o-~......... 5-4
String Definition Macroccscecccceces 5=4
Recursive Factorial Macroeecesceecess 3=53
Simulate ORG in Relocatable
Sections.....-ecocooo-vo----ooo-oon 5=4
Calculate MAXIMUM Value of Given
Number Seteccsocceccsoscsocossescsscs 5=5

RUNNING THE CROSS—ASSEMBLERecesceccocosse 6-1
APPENDIXES
CROSS—-ASSEMBLER ERROR MESSAGEScecsececescs A=l

CROSS~ASSEMBLER OBJECT FILE FORMATeecoees B-l
SUMMARY OF PSEUDO-INSTRUCTION STATEMENTS. C-1

About This Manual 3/4

TN

. “'L_ b

o
O

ABOUT THIS MANUAL

e

This manual describes the CDCNET MC68000™ Cross-Assembler (Cross—Assembler), which runs under
the Network Operating System (NOS) Version 2. These software products operate on CDC CYBER
70 Computer Systems Models 71, 72, 73, and 74, CDC® CYBER 170 Computer Systems, CDC CYBER 180
Computer Systems, and CDC 6000 Computet Systems. The Cross—Assembler is part of the CDCNET
support tools product.

AUDIENCE FOR THIS MANUAL

" This manual assumes you are an assembly language programmer who is developing software that

will execute on the MC68000 microporocessor in CDCNET device interfaces (DIs). You need to
be familiar with the Motorola MC68000 microprocessor, the NOS system commands, and CDC CYBER
computer systems.

ORGANIZATION

This manual consists of six chapters. Chapter 1 describes the purpose of the CDCNET MC68000
Cross-Assembler. Chapter 2 describes Cross—Assembler program elements and coding rules.
Chapters 3 and 4 describe the pseudo and machine instruction statements that the
Cross—Assembler supports. Chapter 5 describes and illustrates macro capabilities, and
Chapter 6 explains how to run the Cross—Assembler.

CONVENTIONS

The follbwing conventions apply to user entry formats presented in this manuale.
e Square brackets indicate optional constructs.
¢ Exprl and expr2 indicate arithmetic expressions.
e Apostrophes or quotation marks indicate a sequence of ASCII characters.
¢ Number(s] indicates one or more numbers separated by commas.
e Expression{s] indicates one or more expressions separated by commmas.

e Symbol[s] indicates one or more symbols separated by commas.

e Ellipsis [« . .] indicates any number of repetitions.

Revision 01 About This Manual 5

M ~
3

A\ﬁ
N

SN

‘\z;

ol

OO0

INTRODUCTION 1
I-.---I-I----.-----------------------------.-.-----.-.

Purpose.........--................-.........-............-o.-.--.......-................ 1-1

Source Program Restrictions.-ooooo.ooo.ooo-0.-oooco;o;'ocooo..aloaoo.ooooooooo.ot-ooocco 1-1

N

o

INTRODUCTION . 1

This section describes the purpose of the CDCNET MC68000™ Cross-Assembler (Cross-Assembler),
and describes the restrictions the Cross—Assembler places on the format of the source program.

PURPOSE

The Cross—Assembler is a software program that generates programs and code for loading into
and executing on a MC68000-based device. The primary purpose of the Cross—Assembler is to
aid in the development of software for the CDCNET device interface (CDI). The
Cross—~Assembler can also be used for development of software for other MC68000-based systems.

SOURCE PROGRAM RESTRICTIONS

The Cross—Assembler places the following restrictions on the format of the source program.

e A REPT pseudo instruction should not appear within an IF - IFEND block that is nested
inside a MACRO definition. If this type of code sequence occurs inside the program,
the results are unpredictable. To avoid this, you should always use .IF inside MACRO
definitions.

e IF - ELSE = IFEND sequences within macros may only be used if the text within the IF
structure does not contain any macro constructs. In other words, no parameter
substitution, unique label generation, or local symbol substitution will take place
within the IF - IFEND block. For this reason, you should always use .IF instead of IF

within macros.

Revision 01 Introduction 1-1

oNe

O

o0

CROSS-ASSEMBLER PROGRAM ELEMENTS AND
CODING RULES | 2

(W U —

This chapter describes program elements and coding rules, and specifies valid program formats
for the Cross—Assembler.

Structure of a Cross—Assembler Source ModulGeeeccscescscceossessscesccscsscscsscocrscosccsscen 2-1
"68000" StatemeNtecececeesoscssessscecerssesersoccsscesonececeessesescssessocesooscscesscos 2-1
Source Statement Format RuleSeeecescsccessessecssesessosscecsssoscocescsssecsscococssosecosocnscs 2-2
Label Fieldeoeoooosocscososcossccsosocsorssceceeccnosesoscersessssesesesotssectsscccscecsse 2-3
Operation Fieldeeoecesvocsocovreccoeessococssccesecoscsccnsosscscesosconsesccossccsesnsncos 2-3
Operand Fieldeeecoooovsenecnssscoscossssosescosnccnsecssncsoscesesvosesscsssccccosasses 2-3
Comment Fieldecescecscoeveccrcescsscososssccosesssccossscsccoscosssssssessscscssoscossscse 2-3
Format of Valid Expl'essions....--.........o......e....--.u...........................-. 2-4
SYMDO1Seescecsasssansssssssssssessssssssssossssssnsacsassssasassssscssscsassscscscse 20
Numeric CoOnStantSescsccecescsssosscessssssoscsscccssscssosseossosssosccsoscscsccscnssoossoness 2-4
String CONSLANLESecoocoossocresceescsseesesssessssoscsessessssssscocesonesvesocsonossse 2=-4
Dollar Sigﬂ (s)'oo‘o-o-oococ'o'-o..o.uoo.o-oooa-ooouonoaa.oooo-b-nnootcooooo.o.o.-oo 2-5
Operators‘.........-................................o............................... 2-5
Valid Combinations of Relocatable and Absolute EXpressionSeesccecccsscesscosccssssssasces 2=3
Addressing Modes and Cross—Assembler Syntax..-..............................-........... 2-6

,/)V \\\.

R

ole

®)

00

CROSS-ASSEMBLER PROGRAM ELEMENTS AND
CODING RULES 2

This chapter describes all the Cross—Assembler program elements and coding rules. This -

chapter also specifies which program formats will be accepted as valid input for the
Cross—Assembler.

STRUCTURE OF A CROSS-ASSEMBLER SOURCE MODULE

A Cross—-Assembler source module is the name given to an entity that the Cross—Assembler
treats as one complete independent unit. The Cross—Assembler has the capability of
processing several source modules in one run, but it effectively reinitializes itself at the
beginning of each source module. Previous source modules have no effect on any subsequent
source modules within the entire source module.

The following example shows how source modules can be grouped into a larger source module.

"68000" statement #1

e « o zero or more assembler instructions . ¢ »

) END statement #1 ’

"68000" statement #2 : .

s e« ¢ zero or more assembler instructions . . .«
END statement #2

. 3

“68000" statement #n
e o « Zero or more assembler instructions . . .
END statement #n

“68000 STATEMENT”

Purpose The "68000" statement identifies the beginning of a new source module. This
statement also indicates information pertaining to the current source module
such as the object code module name, listing options, and assembly—control

options.
Format "68000" NAME [options]
Parameters NAME specifies the current source module being assembled. This name also

identifies the assembly object module. The source module name must obey NOS
file name conventions. The maximum number of characters is seven, and all of
these characters must be alphanumeric.

You can select none or all of the following options for the "68000" statement

format. These options control the assembly and must be separated by one or
more spaces.

Revision 01 " Cross—Assembler Program Elements and Coding Rules 2-1

Option Description
Zption Zescription

NOLIST Specifies that the source listing, except for lines that contain errors, will
be suppressed. All LIST pseudo instructions within the source program are
ignored.

LIST Specifies that the source listing will contain one line for each line in the

source file, and that macro expansion will not be shown on the listing. All

NOLIST pseudo instructions in the source program are ignored.

EXPAND Specifies that the source listing will contain both a list of all

source lines

entered and a list of all macro expansions. All LIST pseudo instructions in

the source program are ignored.

NOCODE Suppresses the genération of object code for this source module.

This permits

fast assembly so that the syntax of the source program may be checked quickly.

XREF Generates a cross—reference listing for the current quule. All symbols used
within the program are listed in alphabetical order. Also, all lines from

which each of the symbols was referenced are displayed.

Remarks . The "68000" statement must be the first line of the source module.
® No comments or blank lines may precede the "68000" statement.
. Because the Cross—Assembler has the capability of assembling multiple

source modules at a time, any line that follows the END statement must be

the "68000" statement of the next source module.

SOURCE STATEMENT FORMAT RULES

Each source statement that the Cross—Assembler accepts is a line from a source module. The

four possible types of source statements are as follows.
1. Microprocessor instruction statements
2, Cross~Assembler pseudo instruction statements
3. Macro call statements

4, An empty line or a comment line

Each source statement for microprocessor instruction statements, Cross—Assembler pseudo

instruction statements, and macro call statements is divided into the following
1. Label field
2. Operation field
3. Operand field

4, Comment field

2-2 MC68000 Cross—Assembler

four fields.

Revision Ol

oo

Each source statement may be up to 110 characters in length. Anything beyond this maximum
will be truncated. There are no continuation lines in the language. The rules for forming
each of these fields is described in their respective sections in this chapter.

Label Field

Labels can occur on all microprocessor instructions, all macro calls, and on some
Cross—Assembler pseudo instructions. Every label must be unique within each given source
module. The reason for this is that the assigned label identifies that particular statement
and this label may be used as a reference point by other statements in the program. However,
a macro name and a statement label may have the same name because the context of their uses
will determine whether the name refers to a macro or a statement label.

The label field starts in column one of the source file and is terminated by a space or a
colon. A label may contain any number of characters but only the first 15 are significant.
The first character must be alphabetic. The remaining characters may be alphabetic, numeric,
or underscores. Lowercase characters are not equivalent to their corresponding uppercase
characters. For example, LaBel and LABEL are not the same symbol.

The only statements for which labels are mandatory are macro definitions and EQU and SET
instructions. For all other statements, labels are optional.

Operation Field

The operation field contains a mnemonic code for a microprocessor instruction, a pseudo
instruction, or a macro call. The pseudo instruction specifies the operation or function to
be performed. This required field begins at the first non—space character after the label
field, and is terminated by a space or a tab.

Operand Field

The operand field specifies values or locations required by the instruction in the operation
field. The operand field begins at the first non-space character after the operation field.
It is terminated by a space, tab, carriage return, or semicolon.

The operand may ‘contain an expression consisting of a single symbolic term, or a combination
of symbolic and numeric terms. The operand must be enclosed in parentheses, and joined by
the expression operators described under Format of Valid Expressions in this chapter.

Comment Field

The comment field is optional. This field contains information that you believe is necessary
to identify portions of the program. This information is not processed by the
Cross—Assembler.

The delimiter for the comment field can be an asterisk in column one of a source statement.
The delimiter can also be a semicolon, a tab, or a space that follows the operand field. A
semicolon used in any column of the source statement will always start a comment except if

the semicolon is part of an ASCII string.

Revision 01 Cross—Assembler Program Elements and Coding Rules 2-3

FORMAT OF VALID EXPRESSIONS

Absolute and relocatable are the two basic classes of valid expressions that the
Cross—Assembler's expression evaluator expects. The operands composing the expressions and
the operators that are applied to these operands determine whether an expression can be
absolute or relocatable. All possible operands and operators are described in the following

sections of this chapter.

Symbols

The following symbols can be used in an expression.

. Label. This symbol appears in the label field of a machine instruction or a macro
call. This symbol may also appear in one of the following Cross—Assembler pseudo

instructions.

ASC
BIN
DEC
HEX
OCT

All labels defined in the relocatable sections PROG, DATA, and COMN, are called
relocatable. All labels defined in an ORG section are called absolute symbols.

° External symbol. This symbol appears in the operand field. This symbol is defined
with the EXTERNAL pseudo instruction and is relocatable.

. Equated symbol. This symbol appears in the label field of an EQU or a SET pseudo
instruction. This symbol is relocatable only if the expression to which it is

equated is relocatable.

Numeric Constants

Numeric constants are either hexadecimal, decimal, octal, or binary numbers. The suffix

attached to the number determines its form.

B is attached to binary numbers; O or Q is

attached to octal numbers; and H is attached to hexadecimal numbers. A number is assumed to
be decimal if none of these four suffixes is attached to it.

Numeric constants are treated as 32-bit quantities and as absolute expressions. Numeric
constants must lie within the range of -2,147,443,648 to 4,294,887,295.,

String Constants

A string constant is a sequence of characters used in an expression and enclosed in either
quotation marks or apostrophes. Like numeric constants, string constants are treated as
32-bit quantities and are limited to a maximum of four significant characters. If the string
constant exceeds this length, only the first four characters are significant. All characters
after the fourth are ignored. If the length of the string is less than four characters, the
string is padded on the left with null characters (zero bytes). String constants are treated
as absolute expressions. The value of a string constant is calculated by using the ASCII

values of the characters within the string.

This value is also affected by the current MASK

values. For a detailed explanation of the MASK pseudo-instruction statement see chapter 3.

2-4 MC68000 Cross—Assembler

Revision Ol

OO0

To use an apostrophe within a string, you must use double quotes as the string delimiters.
Similarly, to use a double quote within a string, you must use apostrophes as the string
delimiters.

Dollar Sign ($)

The value of the dollar sign ($) is the current value of the location counter for the current
section. If the current section is PROG, DATA, or COMN, the dollar sign is a relocatable
symbol. If the current section is ORG, the dollar sign is an absolute symbol.

Operators

The following list shows all of the operators that are accepted by the Cross—Assembler. This
list also gives a brief explanation of the operation performed and the arguments expected.
The operators are listed in descending order of precedence. The first three operators are
unary and expect one argument following them. The remainder of the operators are binary and
must occur between two expressions.

Operator Meaning . \
+ } Unary plus
- Unary minus
«NT. Logical one's complement
«SL. Arithmetic left shift
«SR. Arithmetic right shift
* Multiplication
/ Integer division
+- Binary addition
- Binary subtraction
+AN. Logical bitwise AND
.OR. Logical bitwise OR
-EQ. Boolean comparatives = equal
NEo Not equal
«GT. Greater than
«GE. Greater than or equal
.LT. Less than
.LE. Less than or equal

VALID COMBINATIONS OF RELOCATABLE AND ABSOLUTE EXPRESSIONS

The value of an absolute expression is known at assembly time. The value of a relocatable
expression, however, is not completely determined until after the program has been linked. A
valid relocatable expression evaluates to an offset into one of the relocatable sections
(PROG, DATA, COMN), or to an offset. from an external label. At link time, the linker must
add actual address values to these relocatable expressions depending on where the relocatable
sections are to be loaded into memory. ‘

Revisioﬁ 01 Cross—Assembler Program Elements and Coding Rules 2-5

In the following definitions of expressions, the type of a relocatable expression refers to
the relocatable section or external symbol to which the expression corresponds. Two
relocatable expressions are of the same type only if both expressiouns correspond to the same
relocatable section or the same external symbol.

The following are definitions of the six possible valid combinations of relocatable and
absolute expressions.

1. Any numeric constant, string constant, or absolute symbol, including the dollar sign
in ORG sections, is an absolute expression.

2. Any relocatable or external symbol, including the dollar sign in relocatable
sections, is a relocatable expression.

3. Parentheses can be used within expressions to force the order of operations.
Parenthetic expressions always take the highest precedence.
TN
/ \
4. 1If REL_EXPRl and REL_EXPR2 are two relocatable expressions of the same type the L
following are all valid absolute expressions. N

REL_EXPRI-REL EXPR2
REL EXPRI[OP]REL EXPR2
where [OP] is one of .EQ. .NE. .GT.
«GE. LT. .LE.

If REL_EXPRl and REL_EXPR2 do not refer to the same relocatable section or external
symbol, the assembly aborts and an error message is issued.

5. If ABS_EXPR is an absolute expression and REL EXPR is a relocatable expression, the ,”/ N
following are all valid relocatable expressions of the same type as REL_EXPR. N

ABS_EXPR+REL_EXPR
REL EXPR+ABS_1 "EXPR
REL_] EXPR—ABS EXPR

6. If ABS_EXPR1 and ABS_EXPR2 are absolute expressions, the following are valid absolute
expressions.

[unary operation]ABS_EXPRI
ABS_EXPRI [binary operation]ABS_EXPR2 o

An expression must be of one of the six types described above in order to be valid. However, N
the Cross—Assembler automatically converts relocatable expressions to absolute expressions

when they are used with any operator except binary plus or minus. The Cross~Assembler does

this by assuming that the relocatable part of the expression is zero. This provides the

ability to convert relocatable expressions to absolute by multiplying them by the number

one. For an example of this conversion see RELORG in chapter 5.

ADDRESSING MODES AND CROSS-ASSEMBLER SYNTAX

The addressing modes used by the Cross—Assembler are identical to those listed in the
Motorola M68000 16/32-Bit Microprocessor Programmer's Reference Manual, available from the
Motorola Corporation. The only difference is that the Cross—Assembler expects the use of
square brackets instead of parentheses.

2-6 MC68000 Cross—Assembler . : Revision Ol
G
C

.

-

@

00

PSEUDO INSTRUCTION STATEMENTS | 3

---.--l--.I---.IIlIIIII------------I-I-----Il---------.-Il.---.-

This chapter contains detailed descriptions of individual Cross—Assembler pseudo instruction
statements. '

ABS[OLUTE]_ﬁHORT, ABS[OLUTE]_LONG - Set Addressing MOd@eceeecvesssosssssenssccscssccscsccesnse 3=2
ASC[II] - Define an ASCII Strings..c.........-.. 3-2
BIN[ARY], DEC[IMAL], HEX, OCT[AL] - Define Constant.....-.......-.......--.............. 3-3
COMN, DATA, ORG, PROG = Designate Memory Storage Are8escssscsscccccnsssesccssecssncscocos 3-3
DC =~ Define ConStanteeecccoccsccesseseo0eese000000606000000000000600c0060c0000000000600005800%0 3-4
DS - Reserve Storage.-.........-..o.o...-..........-.....-.....--.....-.....-........... 3=5
END - Terminate A Program UnNifeeecoscoccoescseossscccscosocsssscsceceocerssesccesscesceocse 3=5
EQU, SET - Equate Symbol To A ValUu@escoscocscsscesocssscssscosssoscssccescoscscscssnssssccens 3-5
EVEN - Set Program Counter To Even AddreSSeececcceesscsocsccsceccscccssosccssssscrssesconscccs 3-6
EXPAND - Enable Cross-reference Listing-ooooo.00..-ocoooocoooooooooooooooo.oooooo-.o-oco 3-6
EXTERNAL - Identify Labels Which Are Declared Externally..............-....o............ 3-6
GLB - Declare Label To Be Globalecessecsscccoccccsncoccccsccscscscessscocencssccccssasconce 3=7
IF, ELSE, IFEND, ENDIF - Conditional Assembly.............-............................. 3-7
LIST, NOLIST - Listing Control Options..........................‘.................s..... 3-8
MASK - Setup String Masking ValueSeevovecocsscecsssssosscevsessccsesccosscoscensscscosscsccoscs 3-8
NAME - Add Comments To Object Modulesecsoceessesccsescscesosesssssscccssscsssesessccscocscas 3-9
REPT - Repeat The Next Statementeccocsvoscscsccesccconscoscesseccscsssscscncccsossvnsooscscssne 3-9
RORG, PC_INDEP, NO_RORG, PC_DEP- Declare Position Independent Program Sectionsceccoeccss 3-10
SKIP - Perform Page Eject.........o.........o..............-....o.-....-.--...e..ooc...~ 3-10
SPC - Leave Blank Lines On Listinge-e.oo--o.c.‘....o....o............o......ee......a... 3-10
TITLE - Define Listing Titleececeocecsccccsccecsesesscoccssesescsoccssccocneceosscoocoscces 3-11

N
\ J
NS

N
S S

O
O

PSEUDO INSTRUCTION STATEMENTS | 3

S

This chapter contains detailed descriptions of individual Cross—Assembler pseudo instruction
statements. These pseudo instructioms provide information to the Cross—Assembler and provide
the following capabilities.

Listing control.

Linkage control.

Program section control.
Daté generation.

Constant definition.

Alteration of code generated by MC68000 machine instructions.

For a summary of these pseudo instruction statements see Appendix C.

Revision 01 Pseudo Instruction Statements 3-1

- ABS(OLUTE) SHORT, ABS(OLUTE) LONG — SET ADDRESSING MODE

The ABSOLUTE_SHORT and ABSOLUTE_LONG addressing pseudo instructionms force short and long
absolute addressing modes respectively. These pseudo instructions can be used anywhere in
the program module and remain in effect until the next instruction of this type is
encountered.

The syntax of the ABS(OLUTE)_SHORT and ABS(OLUTE)_LONG addressing pseudo instructions is as
follows.

Label ; Operation Operand
[symbol] ABS [OLUTE]_SHORT
or
[symbol] ‘ABS [OLUTE]_LONG
The Cross—Assembler always defaults to the long absolute addressing mode when the- 7N
Cross—Assembler encounters a forward reference to a program label, or when the label is . y/
external. The Cross—Assembler optimizes to the short absolute addressing mode when the label e
has been predefined, or the address is a numeric value. A short address must be less than or
equal to 7FFF hexadecimal.
The following are some examples of the ABS_SHORT and ABS_LONG addressing modes.
LOC OBJ. CODE LABEL OPERATION OPERAND
0000 33c4 MOVE D4 ,DEST
0002 0000 0290 .
ABS_SHORT : 7N
0006 31c4 0290 MOVE D4 ,DEST N
- ABS_LONG
000A 33c4 MOVE D4 ,DEST
000c 0000 0290
0290 DEST DS.W 1
ASCIII] — DEFINE AN ASCII STRING
The ASC[II] pseudo instruction stores ASCII text in memory using quotation marks or P
- apostrophes as delimiters. Whichever delimiter was used to initiate the string must also be { p
used to terminate it. %

The syntax of the ASC pseudo instruction is as follows.

Label Operation Operand
[symbol] ASC{I1] string

The ASCII characters specified in the operand field can be in the form of any valid string
expression. However, only one such ASCII string is permitted on the statement. The ASC
instruction will always generate an even number of characters in the string. If you specify
an odd number of characters, the assembler will add a space to the end of the string in order
to force it to an even number of characters. If you want an odd number of characters in the
string expression, use the DC.B instruction.

3-2 MC68000 Cross—Assembler ' Revision 01

00

BIN(ARY), DEC(IMAL), HEX, OCT(AL) — DEFINE CONSTANT

The BIN[ARY], DEC[IMAL], HEX, and OCT{AL] pseudo instructions store data in memory in binary,
octal, decimal, or hexadecimal format [respecivelyl.

The syntax of the BIN[ARY], DEC[IMAL}, HEX, and OCT[AL] pseudo instructions is as follows.

Label Operation Operand

[symbol] BIN[ARY] binary number(s]
[symbol] ggc[IMAL] decimal number(s]
[symbol] ggx ~ hexadecimal number [s]
{symbol] ng[AL] octal number[s]

The suffixes B, D, O, and H are implicitly assumed because of the operation code. These
suffixes are not appended to the end of the numbers used in the operand field. If more than
one operand is specified, each one must be separated.from the others by commas. Each number
specified in the operand field occupies 32 bits of memory. To generate numbers that are less
than 32 bits in length, use the DC.B or DC.W instructionms.

COMN, DATA, ORG, PROG — DESIGNATE MEMORY STORAGE AREA

The COMN, DATA, ORG, AND PROG pseudo instructions permit change from one code section to
another.

The syntax of the COMN, DATA, ORG, and PROG pseudo instructiomns is as follows.

Label Operation Operand

COMN

or

DATA

or

ORG absolute address
or

PROG

Three program counters can be used to identify areas of relocatable code in addition to the
program counters used for the absolute code sections. The relocatable areas are designated
as data (DATA), program (PROG), and common (COMN). The absolute areas are controlled by the
ORG instruction.

Although the PROG and DATA instructions are functionally identical, they have two different
names to identify two separate relocatable memory areas. COMN allows construction of a
common block of data similar to the common blocks of FORTRAN used by different program
modules. All labels appearing in the PROG, DATA or COMN sections are treated as relocatable
labels.

.

Revision 01 : Pseudo Instruction Statements 3-3

ORG is only used for absolute programming. ORG sets the contents of the location counter to
the address entered in the operand field. The statement immediately following the ORG
instruction will be located at the address specified. All labels appearing in an ORG section
are treated as constants. The following sequences of code are considered identical by the
assembler.

ORG 100H cee
LABEL ... , LABEL EQU 100H

The ORG instruction cannot alter the relocatable area counters associated with the DATA,
PROG, and COMN instructions. This is because the relocatable area instructions do not
contain operands, their associated counters start at zero, and their counters are initialized
at linking time. However, the DS instruction may be used to set the offset into any of these
relocatable sections. This simulates the execution of ORG instruction into the relocatable
sections. ’

The default memory area (PROG) is used when constructing a source program. The DATA memory
area might occupy another part of memory and can be used for storing data, tables, and
instructions. The COMN pseudo instruction can be used to group information common to a’
number of program units. Assigning these types of items to a specific area in memory
facilitates modification and referencing.

DC — DEFINE CONSTANT

The DC instruction stores a constant in memory starting with the current setting of the
program counter.

The syntax of the DC pseudo instruction is as follows.

Label Operation Operand ~**
[symbol] DC.B expression[s] or string
[symbol] gé.w expression|[s]
[symbol] gE.L expression(s]

The DC instruction may contain more than one operand, but each must be separated by a comma.
The operands can be symbols, expressions, or numbers that the Cross-Assembler can evaluate to
numerical values. The constant will be aligned on a word boundary if word (W) or longword
(L) is specified. If W or L is not specified, the constant is aligned to a byte boundary.

The DC.B instruction allows a string as an operand. However, a string can be the only operand
specified for the instruction. This instruction also allows the generation of messages with
an odd number of characters. For information on generating messages with an even number of
characters, see the ASC[II] pseudo instruction in this chapter.

The label symbol is optional. When present, it is assigned the starting value of the
location counter, and references the first constant stored by the instruction.

3~4 MC68000 Cross—Assembler ’ : Revision 01

S

‘[:%

00

DS — RESERVE STORAGE

The DS instruction defines a block of memory.

The syntax of the DS pseudo instruction is as follows.

Label Operation Operand

[symbol] DS.B absolute expression
[symbol] gg.w absolute expression
[symbol] .g;.L absolute exp}ession

The value of the expression in the operand field specifies the number of bytes (B), words
(W), or longwords (L) to be reserved. Any symbol appearing in the operand field must be
defined before this instruction is encountered in the source file. If the value of the
operand expression is zero, no memory will be reserved. If the optional label symbol is
present, it will be assigned the current value of the location counter. If the value of the
operand is less than zero, an error will occur.

The DS instruction increases the location counter by a specified value within the relocatable

sections PROG, DATA or COMN. This cannot be done with ORG because this pseudo instruction
causes a different section to be generated.

END — TERMINATE A PROGRAM UNIT

The END pseudo instruction signifies the logical end of a program unit.

The syntax of the END pseudo instruction is as follows.

Label Operation Operand
END [global labell

Each program unit must begin with a “68000" statement and terminate with an END statement.
The optional label in the operand field specifies the starting address in memory for program
execution. This address is also known as the transfer address. The label must be declared to
be a global symbol in order to be used in this context. The label must also be defined in
the module in which it is used as‘the transfer address.

EQU, SET — EQUATE SYMBOL TO A VALUE

The EQU and SET pseudo instructions establish a relationship between a symbol and an
expression. The symbol in the label field acquires the same value as the expression in the
operand field.

The syntax of the EQU and SET pseudo instructions is as follows.

Label Operation Operand
symbol EQU expression
or .
symbol SET absolute expression
Revision 01 . " Pseudo Instruction Statements 3-3

An EQU instruction equates external and equated symbols to either absolute or relocatable
types. The SET instruction, however, can only be used with absolute expressions. A symbol
in a SET instruction can be redefined, but a symbol in an EQU symbol cannot be redefined.
For a complete discussion of possible expression formats see Format of Valid Expressions in
chapter 3.

The following are some examples of the EQU and SET pseudo instructions.

Label Operation Operand
MPC_IBC EQU 6
UACCESS EQU 0COH+(MPC_}BC)/2
DEBUG SET TRUE
DEBUG SET - " FALSE
EXTERNAL TABLE
SYMNAME EQU TABLE+5

EVEN — SET PROGRM COUNTER TO EVEN ADDRESS‘

Label Operation Operand
[symbol] EVEN

The EVEN pseudo instruction effectively ensures that the program counter is aligned on a word
boundary for the next instruction. If a label is present, it is assigned the address of the
location counter before any alignment is performed.

EXPAND — ENABLE CROSS-REFERENCE LISTING

Label Operation Operand
EXPAND

The EXPAND pseudo instruction can be used in the "68000" statement or as a stand-alone
statement in the source module. If embedded in the source module, EXPAND will generate,
within the output listing, all macro and data expansions that follow it. The EXPAND mode may
be exited by embedding the LIST directive at any point following the EXPAND directive within
the source.

EXTERNAL — IDENTIFY LABELS WHICH ARE DECLARED EXTERNALLY

Label Operation Operand
EXTERNAL symbol[s]

Symbols that are used in one program unit but are defined in a different program unit must be
declared external with an EXTERNAL statement. When the Cross—Assembler processes the source
statement, it puts information into the object text that describes the external symbols to
the linker. At linkage time, the linker modifies the code so that all references to the
external symbols contain the proper addresses. All external addresses must be 32 bits in
length because of the CDC object text format.

3-6 MC68000 Cross—Assembler . Revision 01

AN
a7

-~

A

GLB — DECLARE LABEL TO BE GLOBAL

Label Operation Operand
GLB symbol([s]

Symbols must be declared to be global in the program unit in which they are defined if these
symbols are referenced by other program units. This is done through the use of the GLB
statement. The Cross—Assembler indicates all symbols that were declared global in the object
codes for the linker. At linkage time, the linker matches all external references with global
symbols. All labels that are declared to be global must be relocatable labels. Labels that
are used in ORG sections are treated as constants and must be declared via EQU statements in
other modules. '

The following are some examples of the GLB pseudo instruction.

Label Operation Operand
GLB KILL__MEMORY , INIT_MEM
GLB READ_CLOCK

IF, ELSE, IFEND, ENDIF — CONDITIONAL ASSEMBLY
The IF, ELSE, IFEND, and ENDiF pseudo instructions permit conditional assembly.

The syntax of the IF, ELSE, IFEND, and ENDIF pseudo instructions is as follows.

Label Operation Operand
IF absolute expression
ELSE

cee

IFEND or ENDIF
‘or

IF absolute expression

IFEND or ENDIF

The IF pseudo instruction permits sections of code to be conditionally assembled. Sections
of code are assembled or skipped as specified on the absolute expression. This expression is
treated as a boolean value with either a true (non-zero) or a false (zero) value. The
expression type must be absolute, and all symbols used in the expression must be previously
defined in the source.

When the expression evaluates to a true condition, the code following the IF is assembled
until an ELSE or an IFEND or ENDIF is encountered. If the expression evaluates to false, the
ELSE part of the IF instruction is assembled until an IFEND or ENDIF is found.

The IFEND or ENDIF instructions are used to terminate the IF instruction. They must follow
either the ELSE instruction or the IF instruction if no ELSE portion is desired.

Revision 01 Pseudo Instruction Statements 3-7

Conditional IF instructions can be nested up to 20 levels deep. If the nesting levels exceed
20, an appropriate error message is issued. The occurrence of an ELSE, IFEND, or ENDIF
instruction without a matching IF instruction also generates an error.

Whenever an IF-ELSE-IFEND sequence is used within a macro, no macro constructs can occur
within the sequence. If this happens, none of the macro coustructs are processed and error
messages are issued. To avoid this, use .IF sequences in place of IF within macros.

The following are some examples of the IF, ELSE, IFEND, and ENDIF pseudo instructions.

Label Operation Operand
IF DEBUG
JSR WRITE_MESSAGE
ASCII - "TRACE - Entering GETCHR"
DC.B 0
IFEND
IF BAUD.EQ.1200
MOVEI #DELAY_}ZOO,DI
ELSE
MOVEIL #DELAY_}OO,DI
IFEND

LIST, NOLIST — LISTING CONTROL OPTIONS

Label Operation Operand
LIST
or
NOLIST

The LIST pseudo instruction can be used in the "68000" statement or as a stand—alone
statement in the source program. If embedded in the source program, LIST generates one line
of output for each line of source code that follows. All LIST instructions within the source
program will be overridden if any list option was specified on the "68000" statement.

The NOLIST instruction is used in the "68000" statement or as a stand-alone statement in the
source programe 1f embedded in the source program, it suppresses the output listing of all

source statements that follow. If used in the "68000" statement, NOLIST suppresses all
output listings except error messages.

MASK — SETUP STRING MASKING VALUES

The MASK pseudo instruction masks all ASCII strings defined in the source that follows the
instruction.

The syntax of the MASK pseudo instruction is as followse.

Label Operation Operand
MASK ' exprl[,expr2]

3-8 MC68000 Cross—Assembler Revision 01

>

=

©o0

The MASK pseudo instruction only affects ASCII strings. With each ASCII character this pseudo
instruction produces a logical AND operation followed by a logical OR operatiom. The value
of exprl is the value with which each character will be ANDed. The value of expr2 is the
value with which each character will be ORed. The value expr2 is optional.

The default condition at the beginning of each program unit is as follows.

AND value = OFFH
OR value = 0

NAME — ADD COMMENTS TO OBJECT MODULE

‘The NAME pseudo instruction adds comments to the object module for referemnce on the load map
listing. i

The syntax of the NAME pseudo instruction is as follows.

Label Operation Operand

NAME character string

The name string is limited to a maximum of 40 characters that can be any combination of
alphabetic characters, numbers, or special characters.

REPT — REPEAT THE NEXT STATEMENT

The REPT pseudo instruction is used to repeat the next source statement any given number of
times.

The syntax of the REPT pseudo instruction is as follows.

. Label Operation Operand
REPT number

Only the following seven Cross—Assembler pseudo instructions make sense after a REPT
statement. Unfavorable results may arise if any other pseudo instructions are attempted
< after a REPT.

l. AsC
2. BIN
3. DEC
4, HEX
5. OCT
6. Dc

7. DS

A REPT pseudo instruction cannot be nested inside of an IF that is nested inside a macro
definition. If this is done the results are unpredictable.

Revision Ol © Pseudo Instruction Statements 3-9

RORG, PC INDEP, NO RORG, PC DEP — DECLARE A POSITION
INDEPENDENT PROGRAM SECTION

These pseudo instructions allow you to declare a position—-independent program section.

The syntax of the RORG, PC_INDEP, NO_ORG, and PC_DEP pseudo instructions is as follows.

Label Operation Operand
[symbol] RORG
or
[symbol] PC_INDEP
or
[symbol] NO_RORG
or
[symbol] PC_DEP

The RORG, PC_INDEP, NO. ORG, and PC DEP pseudo instructioms should only be used in relocatable
program modules. They should not be used with absolute program units containing ORG
instructions (absolute program units). These pseudo instructions do not allow arguments and
do not affect the current location counter. PC relative addressing modes are only generated
after a RORG (PC_INDEP) pseudo instruction is encountered and will continue until the next
NO_RORG (PC_I DEP) | pseudo instruction is encountered. These instructions do not have to be used
in pairs. RORG and PC_INDEP are treated identically by the Cross—Assembler.

NO_RORG and PC_DEP are ' also treated identically.

SKIP — PERFORM PAGE EJECT

The SKIP pseudo instruction causes the next line of output to be placed at the beginning of a

new page.

The syntax of the SKIP pseudo instruction is as follows.

Label Operation Operand
SKIP

The SKIP pseudo instruction does not appear on the output listing unless an error occurs on
this statement. If the NOLIST option has been selected, the SKIP pseudo instruction is

ignored.

P s smeen smaE as

SPC — LEAVE BLANK LiNES ON LISTING

The SPC pseudo instruction causes the Cross—-Assembler to space downward (line feed) a

specified number of lines.

Label Operation Operand
SPC [number]

The number of line feeds required is indicated in the operand field.

If the operand field is

left blank, the Cross—Assembler generates one blank line. The SPC instruction is not printed

on the output listing unless an error occurs in the statement.

If the NOLIST option is in effect, the SPC instruction is ignored and does not affect the

listing.

3-10 MC68000 Cross—Assembler

Revision 01

P
"

™

d"
.

o0

TITLE — DEFINE LISTING TITLE

The TITLE pseudo instruction initiates a page eject and causes the string expression to be

printed as a title at the top of each page that follows.

The syntax of the TITLE pseudo instruction is as follows.

Label Operation Operand
TITLE name or string

The operand name or string operand (the title) may be a maximum of 70 characters in length

and can be changed any number of times during the program. The TITLE instruection is not
printed on the listing unless an error occurs on that statement.

If the NOLIST option has been selected, no page eject is performed.

The following are some examples of the TITLE pseudo instruction.

Label Operation Operand
TITLE CDNA Executive V1.0
TITLE Executive
Revision 01 . Pseudo Instruction Statements

3-11

L

4

P

“_/

®

00

MACHINE INSTRUCTION STATEMENTS 4

X

This chapter contains a table which summarizes machine instructions and syntax for the
MC68000.

Machine Instruction StatementSececcecocccsscccssssssossssessscscsssesssscoscccsssnsesecscs 4-1

ofe

T

N’

o C

0 |
(“‘ MACHINE INSTRUCTION STATEMENTS 4

This chapter contains a summary of machine instructions for the MC68000 and the syntax the
Cross—Assembler expects for each instruction. See the Motorola M68000 16/32-Bit
Microprocessor Programmer's Reference Manual for a complete description of the MC68000.

The following notation is used in this chapter.

e The Operand Assembler Syntax column describes the syntax the Cross—Assembler expects
for the operands of each instruction. The following notation is used in this column.

<EA> Any effective addressing mode.
Dy Any data register (D0-D7).
»\ Ay Any address register (A0-A7).
W #<DATA> Any immediate data (for example, #5).
<LABEL> Any program statement label.
Rx,Ry Any machine registers.

#<VECTOR> Any trap vector.

¢ The Condition Codes column describes the result of the instruction on each of the
condition codes. XNZVC represent the extend, negative, zero, overflow and carry flags
respectively. The following characters are used under each of these columms.

Set according to the result of operation.
Not affected by the operation.

Cleared.

Sete.

Undefined.

e =0 | »

o The Effective Modes column describes which effective addressing modes are valid for
the given instruction. The following notation is used in this column.

M The memory addressing modes can be used.
A The alterable addressing modes can be used.
D The data addressing modes can be used.
c The control addressing modes can be used.

O M~A Memory alterable addressing modes are valid.

; DA Data alterable addressing modes are valid.
C A Control alterable addressing modes are valid.
ALL All addressing modes are valid.
A- All alterable addressing modes are valid unless the operand size is byte,
in which case the address register direct mode is not allowed.
Revision Ol Machine Instruction Statements 4-1

o0

Table 4-1. Machine Instruction Instruction Statements
Instruc. Perm. Operand Cond. | <EA> Description
Mnemonic Ext. Assembler Codes |Modes
Syntax XNZVC
ABCD B Dy,Dx *yky* Add decimal with extend.
-[Ay],-[Ax]
ADD B WL | <EA>,Dy *%k%%) | ALL Add binary.
Dy, <EA> M~A
AND B WL | <EA>,Dy -===~= | ALL Add address.
ADDI BWL #<DATA>, CEAD' | **&kk D"A Add immediate.
ADDQ B WL | #<DATA>,<EA> | #*%%% | A~ Add quicke.
ADDX BWL | Dy,Dx Sekdedkk Add extended.
-{Ay],-[Ax]
AND B WL | <EA>,Dy -%%00 | DA | AND logical.
: Dy,<EA> M~A
ANDI BWL #<DATA>, <EAD> | =**00 D~A AND immediate.
#<DATA>,SR
ASL, ASR | BWL | Dy,Dx Kkdkk Arithmetic shift.
#<DATA> Dy
W <EA>
Bee S L <LABEL> ——— Branch conditionally.
BCHG B L | Dy,<EA> -~%=— | D"A Test a bit and change.
#<DATA>, <EA> D"A
BCLR B L | Dy,<EA> —=%— | D"A Test a bit and clear.
#<DATA>, <EA> DA
BRA SL <LABEL> —— Branch unconditionally.
BSET B L | Dy,<EA> —=k=w | D"A Test a bit and set.
#<DATA>, <EA> D~A
BSR SL <LABEL> e Branch to subroutine.
BTST B L | Dy,<EA> it D Test a bit.
#<DATA>, <EA> D
CHK w <EA>,Dy -%*uuu D Check against bounds.
CLR BWL | <EA ~0100 | D~A Clear an operand.

4~2 MC68000 Cross—Assembler

(Continued)

Revision

01

G

O
L

o

Table 4-1, Machine Instruction Statements (Continued)
Instruc. Perm. Operand Cond. | <EA> Description
-Mnemonic Ext. Assembler Codes |Modes
Syntax XNZVC
CMP B WYL | <EA>,Dy —*kk*% | ALL Compare.
CMPA WL | <EA>,Ay —%k%* | ALL Compare address.
CMPI B WL | #<DATA>,<EA> | —%%** | D~A Compare immediate.
CMPM BWL | [Ay]+, [Ax]+ [=%k Compare memory.
DBce w Dy, <LABEL> e Test, decrement and Bec.
DIVS w <EA>,Dy =*%%*0 D Divide signed.
DIVY W <EA>,Dy —%%%(0 D Divide unsigned.
EOR B WL | Dy,<EA> -**00 | DA Exclusive OR logical.
EORI B WL | #<DATA>,<EA> | -**00 | D~A Exclusive OR immediate.
#<DATA>,SR
EXG L |Ry,Rx = |====- Exchange two registers.
EXT WL Dy -*%*00 Sign extend register.
JIMP <EA> — | ¢ Jump.
JSR <EA> emmnee C Jump to subroutine.
LEA L | <EA>,Ay —— C Load effective address.
LINK Ay, #<DATA> ——— Link and allocate.
LSL, LSR | B WL | Dy,Dx *kk(Q* Logical shift.
#<DATA>,Dy
W <EA> M-°A
MOVE BWL | <EA>,<EA> -*%00 | ALL Move data.
D"A Data alt. destination.
MOVE W <EA>,CCR *kkdk D Move to CCR.
MOVE W <EA>,SR edededed D Move to SR.
MOVE W SR, <EA> =——— | D"A Move from SR.
MOVE L UsP,Ay ——— Move user stack pointer.
Ay,USP

Revision 01

(Continued) -

Machine Instruction Statements

Table 4-1 Machine Instruction Statements (Continued)

Instruc. Perm. Operand Cond. | <EA> Description
Mnemonic Ext. Assembler Codes [Modes
Syntax XNZVC
MOVEA WL | <EA>,Ay | ~——- ALL Move address.
MOVEM WL | RL,<EA> ———== | C"A Move multiple registers.
RL,-[Ay]
<EA>,RL Cc
[Ay]+,RL
MOVEP W L | Dy,d[Ax] —— Move peripheral data.
dlAy],Dx
MOVEQ L | #<DATA>,Dy ~**00 Move quick.
MULS W <EA>,Dy -*%00 D Multiply signed.
MULU w <EA>,Dy =-%**00 D Multiply unsigned.
NBCD B <EA> *uy*y* | DA Negate decimal, extend.
NEG BWL | <EA kkkkk | DA Negate.
NEGX BWL | <EA> %kkkk | DA Negate with extend.
NOP No operation.
NOT BWL | <EA ~**00 | D~A Logical compliment.
OR BWL | <EA>,Dy =**00 D Inclusive OR logical.
Dy, <EA> M"A
ORI B WL | #<DATA>,<EA> | =**00 | DA Inclusive OR immediate.
#<DATA>,SR
PEA L | <BA> ——— [Push effective address.
RESET ——— Reset external devices.
ROL, ROR BWL Dy,Dx —k%k(Q%k Rotate.
#<DATA>,Dy
W <EA> M-A
ROXL,ROXR | B WL | Dy,Dx *kk(* Rotate with extend.
#<DATA> ,Dy
W <EA> M‘A
RTE Fdedkk Return from exception.
RTR Fkdkk Return and restore CCR.

4-4 MC68000 Cross—Assembler

(Continued)

Revision

01

P

Y,

OO0

Table 4-1. Machine Instruction Statements (Continued)
Instruc. Perm. Operand Cond. | <EA> Description
Mnemonic Ext. Assembler Codes |Modes
Syntax XNZVC

RTS {4] me— Return from subroutine.
SBCD B Dy,Dx *u*y* Subtract decimal with

-[Ay],-[Ax] extend.
Sce B <EA> -———— | D"A Set conditionally.
STOP #<DATA> dekdkkk Load SR and STOP.
SUB B WL | <EA>,Dy *%%%* | ALL | Subtract binary.

Dy, <EA> M-A
SUBA W L | <EA>,Ay —==—=— | ALL Subtract address.
SUBI B WL | #<DATA>,<EA>| ***** | DA Subtract immediate.
SUBQ B WL | #<DATAD,<EA>| #kxxx | A Subtract quick.
SUBX BWL Dy,Dk ***;* Subtract with extend.

-{Ay],~[Ax]
SWAP w Dy -%*%00 Swap register halves.
TAS B <EA> -%*Q00 | D"A Test and set.
TRAP #<VECTOR> ————— Trap.
TRAPV mr—— Trap on overflow.
TST BWL | <EBA> -%%00 | D-A Test an operand.
UNLK Ay ——— Unlink.

Revision 01

Machine Instruction Statements 4-5

O

e /xw

N F

TN

\,./5

00

MACROS

L e

This chapter describes macro constructs and provides examples of macro capabilities on the

Cross—Assembler.

Macro Formt.......'................'...............'......'"..........................
Opcional PArAME L e Sececcosecseccoces cee0ssoee0ecessrsstscscsssceseessescsosesosesssscssonone
Unique Label Generatiomesccccesscccecosccssscscessossssocensscecsccscocesssnssssscsscsoce
Macro Conditional Assembly.....-...‘..-............-....-...o........................--.
«IF InStructioNeecsscecscosccscscscssovssossescscscescsscscscscssosscosccscecsascssscsssssonse
. oSET InStructiONecccocesscecccsscssesvscssscsssscsccosccocsseccscscsccssoscssccoscscosncssononse
.GOTO Instruction..‘............'..........‘....................'........ﬁﬂ........'
eNOP InStrucCtiONececcsccsccescecssccccccsesssscscsccocsecoscsosncscesscssesssessosscsscocos
Macro Local Smbols.................‘.........‘...‘."............‘.'..............'..’.
Checking and Indexing ParameterSecceccsvecsssccesesosssssscsseconrosccsccssoscssosssssosnsanse
Macro Examples..-...-............--....................'.n-.-....-...o-............o...
String Definition MacrOeececsceessscvccesccssecsssonescscescrocsssscsoceosssosscsscnsncscosnse
Recursive Factorial MacCrOeescesccococccossscssossccsessvscsoscscsscsossscsssscsscseccscssncoe
Simulate ORG in Relocatable SectionNScececcscecccvcccssccecocscssacvseccssecsoscsssnses
Calculate MAXIMUM value of Given Number Setecececseseccsccceccccsceccccoscccccccsncas

5~1
5-1
5-2
5~2
5-2
5-3
5~3
5-3
5-3
5-4
5-4
5-4
5=5
5=5
5-5

N

A el

O

©0

MACROS 5

This chapter describes the use and definition of macros on the Cross—-Assembler. In the
beginning of this chapter all macro constructs are described in detail. At the end of this
chapter, macro examples illustrate many of the available capabilities.

MACRO FORMAT

Macro definitions and macro calls (or expansions) are the two major classes of macro usage.
with the Cross—Assembler.)

The general format of a macro definition is as follows.

name MACRO parameter_list
macro_body
MEND

Any number or type of instructions can be used within the macro body except nested macro
definitions. For this reason, an MEND instruction must be encountered after a MACRO
statement before the next MACRO instruction appears. Also, the use of the IF-ELSE-IFEND
sequence within macros is not recommended. For further information on this pseudo
instruction sequence, see IF, ELSE, IFEND, and ENDIF in chapter 3.

The macro name becomes the symbol that identifies that particular macro instruction. This
name must be unique. The macro name cannot be the name of any previously defined macro, a
pseudo instruction, or MC68000 machine instruction. Macro names must begin with an
alphabetic character and may consist of any number of alphanumeric characters. However, only
the first 15 characters are significant.

The parameter list consists of O to 34 formal parameters separated by commas. The format of
each parameter is described in detail in Optional Parameters in this chapter.

OPTIONAL PARAMETERS

The parameters inside of a macro definition are referred to as formal parameters. The
parameters that are specified in the macro call are referred to as actual parameters.

The parameter list in the MACRO statement is optional. If the parameter list is included it
must consist of one or more formal parameters separated by commas. Each formal parameter
must begin with an ampersand (&) followed by an alphabetic character followed by 0 to 14
alphanumeric characters. A maximum of 34 formal parameters may be specified. It is
impossible to have more than 34 formal parameters because of the 110-character line length
restriction.

Revision Ol ’ Macros 5-1

Actual parameters appear in the operand field of the macro call statement and are separated
by commas. An actual parameter may consist of any sequence of characters. However, if the
actual parameter contains any spaces or commas, it must be enclosed in quotation marks or)
apostrophes. There is a one-to—-one correspondence between the actual and formal parameters.
The first formal parameter is replaced by the first actual parameter, the second formal
parameter is replaced by the second actual parameter, and so on.

Parameter substitution is a textual replacement of the actual parameters for the formal
parameters. Wherever the formal parameter occurs in the macro body, it is replaced by the
exact sequence of characters specified in the corresponding actual parameter. For example,
if the actual parameter is null, the formal parameter is replaced with the null string.

UNIQUE LABEL GENERATION

The Cross—Assembler provides the ability to generate unique label names within macros. This
capability prevents duplication of labels when the macro is expanded more than once. The
macro unique label construct consists of four consecutive ampersands (&&&&). Wherever this
construct is encountered within a macro, the construct is replaced by a four-digit decimal
number. This decimal number is padded on the left with zeros if its value is less than

1000, The unique label effect is obtained because this four-digit number is set to 0000 at
the beginning of assembly and is incremented by one each time a macro is expanded. All
occurrences of &&&& within a single macro expansion are replaced by the same four—digit code.

MACRO CONDITIONAL ASSEMBLY

The Cross—Assembler provides a set of four pseudo instructions that allow for looping and
conditional assembly within macros. This capability is similar to the IF = ELSE - IFEND
facility used outside of macros. This set of pseudo instructions consists of .IF, .SET,

+GOTO, and .NOP. These pseudo instructions are described in detail in the following sections.

F Instruction

The .IF instruction provides the ability to conditionally branch to any line within the
macro. The syntax of this instruction is as follows.

[local symbol] «IF expression label

The value of expression must be absolute. ILf the value of expression is true (not zero), the
Cross—Assembler will jump to the statement with label in its label field. In other words,
the Cross—Assembler will either back up or skip forward in the source file until it finds the
required line. If the value of expression is false, the assembler continues processing at
the next line following the .IF statement.

Label must be a macro local symbol within the same macro as the .IF instruction.

The use of IF - ELSE - IFEND sequences within macros should be avoided. The .IF
instruction should always be used for any conditional assembly within macros.

5-2 MC68000 Cross—Assembler Y Revision Ol

TN
W

N/

2N

&

O
O

.SET Instruction

The .SET instruction is similar to the SET instruction used outside of macros. The .SET
instruction allows macro local symbols to be equated to an absolute value. The format of
this instruction is as follows.

label «SET absolute_expression

In the .SET instruction label becomes a macro local symbol that is equated to the value of
the absolute_expression. The most common use of this facility is for loop counters. Each
time through a loop the value of the local symbol can be decremented by one, and the loop can
be executed repeatedly until the value of the symbol goes to zero.

.GOTO Instruction

The .GOTO instruction is used for unconditional branching within macros. This instruction
is useful for creating looping constructs, or for skipping over sections of code. The format
of this instruction is as follows.

«GOTO label

.NOP Instruction

The .NOP instruction is only used to define macro local symbols. This instruction is
commonly used as the target of a conditional or unconditional branch (.IF or .GOTO). The
format of this instruction is as follows.

label +NOP

MACRO LOCAL SYMBOLS

Macro local symbols are symbols that are only recognized within the given macro. When the
macro is being expanded, a separate symbol table is created that contains all of the local
symbols for this macro. At the end of the expansion of the macro, this separate symbol table
is destroyed so that the local symbols are no longer known. A local symbol is defined as any
label that occurs on an IF, .SET, or .NOP instruction. Local symbols are convenient for use
as loop counters and labels for flow control. A maximum of 20 local symbols may occur within
any macro definition.

Revision 01 Macros 5-3

CHECKING AND INDEXING PARAMETERS

There is a one—~to-one correspondence between formal and actual parameters. Sometimes,
however, it is more convenient to step through each of the actual parameters in the list in
order instead of accessing the parameter by name. This is possible through the use of the
parameter indexing operator &&. The two ampersands must be followed by a macro local symbol
that appeared on a .SET instruction. The value of this local symbol indicates which actual
parameter is intended. For example, if the value of a local symbol named COUNT is 1, the
construct &&COUNT refers to the first actual parameter in the parameter list. If the value
of COUNT is 7, &&COUNT refers to the seventh parameter in the list. This capability is
typically used-within a loop as follows.

ASC2 MACRO

COUNT «SET 1

TOP +IF "&&COUNT".EQ. ™" DONE
ASCII " &&COUNT "

COUNT «SET COUNT+1
-GOTO TOP

DONE" +«NOP
MEND

This example will loop through all parameters in the parameter list and define them as ASCII
strings. Any number of parameters may be specified. The indexing operator is useful in
defining macros that can handle a variable number of parameters. The third line in the
example above shows a test to see if the parameter is null. This is a common method of
determining when the end of the parameter list has been encountered. This is referred to as -
parameter checking. ’

MACRO EXAMPLES

This section includes samples of Cross—Assembler macro instruction usage. Each sample
illustrates only one of many possible ways to define the given macro. These macro examples
show only some of the many macro capabilities that the Cross—Assembler provides.

String Definition Macro

This macro permits the definition of strings so that the string length is contained in the
first byte of the string. This is a common string format used in most versions of BASIC and
in versions of Pascal that have extended the language to include strings.

In the following example, the unique label generation operator has been used to determine the
length of the string.

STRING MACRO &P
DC.B LEN_&&&&
STRT&&&& DC.B &P

LEN_&&&& EQU $-STRT&&&E
MEND
5-4 MC68000 Cross—Assembler Revision 01

O

®

o0

Recursive Factorial Macro

The following example illustrates the use of recursion in macros. This sample macro computes
the factorial of the input parameter, and leaves the result in the global variable FACTVALUE.

FACTORIAL MACRO &n
IF &n.LE.1 FACTI1
FACTORIAL &n-1

FACTVALUE SET (&n)*FACTVALUE
.GOTO FACTEND

FACT1 «NOP

FACTVALUE SET 1

FACTEND -NOP
MEND

Simulate Org in Relocatable Sections

This macro simulates the operation of ORG in the relocatable (PROG, DATA, COMN) sections of
the program. This macro also illustrates the Cross—Assembler's ability to convert
relocatable expressions to absolute by multiplying the expressions by 1. This conversion is
necessary because subtracting a relocatable value from an absolute value is not valid.

RELORG MACRO &SECTION, &OFFSET
&SECTION
<IF &OFFSET.GE.$ NOERROR
ERROR “Invalid offset specified”
<GOTO REND

NOERROR .NOP
DS.B SOFFSET-1*$

REND «NOP
MEND

Calculate Maximum Value of Given Number Set

This macro calculates the maximum of a given set of numbers. The following macro illustrates
the application of the macro parameter indexing operator to handle a variable number of
parameters. This example also shows the use of macro conditional instructions to perform
looping. These instructions assume that all of the values are non-negative, and leaves the
resulting maximum value in the global variable MAXVALUE.

MAX MACRO

MAXVALUE SET 0

LPCNT +SET 1

LoOoP oIF '&&LPCNT'.EQ. '’ MAXEND
«IF &&LPCNT.LE.MAXVALUE NEXT

MAXVALUE SET &&LPCNT

NEXT +NOP

LPCNT +SET LPCNT+1
+GOTO LOOP

MAXEND .NOP
MEND

Revision 01 Macros 5-=5

I

- N4 o @ f%

oNe

Co0

RUNNING THE CROSS-ASSEMBLER 6

H 0

This chapter describes the procedure call, the parameter format, and valid keywords for
running the Cross—Assembler.

Running the Cross—Assemblereececscecsccscscscsoscoscoscscssscssccccsosceccsscassoscosccccocsce 6-1

N
W/

‘/'/7\\

>

00

RUNNING THE CROSS-ASSEMBLER 6

The Cross-Assembler is available through the SES procedure ASM68K. The procedure call for
the Cross—Assembler is as follows.

SES.ASM68K, parameters.

The parameters have the format keyword=value, keyyord=(va1ue), or keyword. Parameters are
separated from each other by a comma. The following keywords are valid.

Keyword Abbreviation Description
INPUT=filename I The name of the file to be assembled. If this

parameter is omitted, the Cross—Assembler assumes that
input is on a local file named INPUT.

BINARY=filename B The name of the file to which the object code
generated by the Cross—Assembler is to be written.
This file is not rewound by the ASM68K procedure. If
this parameter is omitted, the object code is written
to a local file named LGO.

LISTING=filename L The name of the file to which the Cross—Assembler
: source listing is written. This file is not rewound
by the ASM68K procedure. If this parameter is
omitted, the listing is written to a local file named
LISTING. :

XREF X If this keyword is present, a symbol cross—reference
table is included in the Cross—Assembler listing. If
this keyword is omitted, no cross-reference table is
generated.

DEBUG D 1f this keyword is present, debug symbol tables are
. included in the object code file. If this keyword is
omitted, no debug symbol tables are generated.

COLUMNS: COLS or COL The column numbers of the left and right margins for
(left, right) the Cross—Assembler source listing. If this parameter
is omitted, the values (1,90) are used.

MSG If this keyword is specified, informative messages are
displayed at the terminal while ASM68K is executing.

NOMSG If this keyword is specified, informative messages are
not displayed at the terminal while ASM68K is
executing. If this keyword is omitted, informative
messages are displayed.

‘

Revision 01 Running the Cross—Assembler 6-1

C O

—

WS

olle

APPENDIXES

e S

A - CROSS~ASSEMBLER ERROR MESSAGES:c:cecsssesccocessssssacesscacnanassccsssccascocscscss A=l
B - CROSS—-ASSEMBLER OBJECT FILE FORMAT ecesecccoovcsccscsscsssoscscsccsoscoscocsocssoscsccescco B-1

Cc - SUMMARY OF PSEUDO-INSTRUCTION STATEMENTSeeceoccesvsacscscsssccvccocccesccscscscsscocscos C-’l

(/(W\\

O

@

00

CROSS-ASSEMBLER ERROR MESSAGES A

This appendix contains an alphabetized list of Cross—Assembler error messages and an

explanation for each error.

Message

A register required

argument subfield must be a symbolic
name

colon not after label

digit inconsistent with base

displacement value is out of range

division by zero attempted

expecting end of statement

expecting expression

expecting formal parameter

expecting macro conditional after dot

expecting right bracket

expecting right parenthesis

Revision 01

Significance

This statement did not include the required A register
as an operand.

The operand must be a symbol.

A colon was encountered which did not immediately
follow a label and was not within a string.

An illegal digit was used in a number. This digit is
illegal because of the base of the constant. For
example, the digit 2 may not occur in a binary
constant.

The specified displacement will not fit in the field
provided.

The Cross—Assembler will not allow division by zero in
an expression.

Additional information was found on a statement line
when none was expected. This usually occurs on
statements which require no operands and have a
comment which was used without a leading semicolon.

An expression was expected as an operand but none was
found.

The instruction following the MACRO pseudo instruction
must be a formal parameter beginning with an ampersand

(&).

A period which was not followed by a macro conditional
(.IF, .GOTO, .SET, .NOP) was found in the operation
field.

A left bracket was encountered for which the
corresponding right bracket was not found. This could
occur because the bracket is not there, or because the
construct inside of the brackets is not a legal mode
recognized by the Cross—Assembler.

A left parenthesis was encountered for which the
corresponding right parenthesis was not found.

Cross—Assembler Error Messages A-l

'expecting *68000" This statement must contain "68000" beginning in
column 1 because the first statement of each module
must be a "68000" statement.

expression must be absolute A relocatable expression was encountered where an
absolute expression was required.

illegal expression An illegal expression was encountered by the
expression evaluator. Different relocatable values
were probably improperly mixed.

illegal or non—graphic character This statement contains a character that is not
recognized by the Cross—Assembler. Retype the entire
line.
illegal register list An illegal register list was encountered on a MOVEM
instruction. A specification probably indicates the N
second register to be lower than the first. An example QL y
is D7-D3. S
internal static table error Something is internally wrong with the Cross—Assembler.
invalid addressing mode The addressing mode specified for this statement is
not one of the permissible modes for this instruction.
label ignored The label will be ignored.
invalid character 'in parameter Parameters may consist only of letters or digits and n
must begin with an ampersand (&). /A
o
invalid extension The extension used is not valid for this operation.
invalid index register An illegal register value was specified. Legal index
registers are DO-D7 and AO-A7.
inv#lid macro name A macro name must consist of an alphabetic character
followed by any number of alphanumeric characters. In
addition, a macro name cannot be the same as a machine
instruction or a Cross—Assembler pseudo instruction.
s
invalid operator in expression The expression contains an operator which the {)
Cross—~Assembler does not recognize. N
label not a symbolic name The label beginning in column 1 does not begin with an
alphabetic character.
labels and operands ignored Labels and operands will be ignored.
maximum IF nesting level exceeded This IF statement causes the IF nesting level to

exceed 20 levels.

maximum MACRO expansion nesting level The macro nesting level has exceeded 100. The macro
is probably executing an infinite recursive invocation.

A=-2 MC68000 Cross—Assembler Revision 01

SNe

O

®

OO0

maximum MACRO loop count exceeded

missing IFEND statement
missing MEND statement
nested macro definition

operation prohibits base
specification

operand type invalid

operation subfield not a symbolic
name

PC or A register required
register required

required operand missing

statement label is not unique

statement label required

statement is valid only within an IF

statement is valid only within a
macro

string too long
symbol must be globall
syntax error

Revision 01

The current macro has gonme through a loop more than
5000 times. A sequence of statements formed by .GOTO
or .IF statements inside of the macro is probably
executing an infinite loop.

The END statement was encountered or the end of file
was encountered where an an IFEND was expected.

The END statement or the end of file was encountered
within a macro definition.

A MACRO statement was encountered inside a macro
definition. Nested macro definitions are not allowed.

The constants used with the pseudo instructions BIN,
DEC, OCT and HEX cannot contain a trailing base
specification.

This type of operand is not valid for the given
instruction.

The operation field must contain a symbolic name.
The addressing mode used is valid only if the program
counter or one of the address registers is used. For

example, there is no such addressing mode as [D5]+.

The register required by the instruction was not
specified.

The operand which the given instruction requires is
missing.

The label appearing on this statement has already been
defined in the source.

This statement requires a label but none was found.

An ELSE or an IFEND was encountered that was not
preceded by a matching IF statement.

An MEND or a macro conditional statement was
encountered while outside a macro definitionm.

The string goes beyond the end of the physical source
line. The terminating delimiter of a string was
probably missing.

Because the symbol appearing on the END statement is
used as a transfer symbol, this symbol must be
declared to be global.

A syntax error was encountered.

Cross—Assembler Error Messages A-3

syntax error in operatioh field

too many local symbols

too many statement labels

too many parameters

. .

undefined operation "...

undefined symbolic name "...

value out of range

A-4 MC68000 Cross—Assembler

The operation field cannot be recognized as a valid

symbol by the Cross—Assembler.

The macro symbol table has overfléwed. The maximum
number of local symbols that can be used within a

single macro definition is 35.

A label was encountered that was followed by a comma

instead of a space or a colon.

More than 34 formal parameters appear in the macro
definition. This error should not occur because of

the 110-character line limit.

The symbol in the operation field is not recognized as
a hardware instruction, pseudo instruction, or macro.

The name

eee” is not defined in the source module.

The specified value cannot be represented with the

number of bits contained in the field.

Revision Ol

N
W/

i

-

CROSS-ASSEMBLER OBJECT FILE FORMAT | B

The Cross—Assembler produces object code in the CDC Object Text Format. Different portions
of the code generated for a program go into different sections of the object text. The linker
allows the user complete control over the locations in memory into which each of these
sections will be loaded. These locations are specified through the use of the Linker
Parameter File (see the CDCNET MC68000 Utilities Manual for details)..The following section
names are used by the Cross—Assembler.

CODE Everything that occurs in the relocatable PROG section in the source module
will be placed in a CDC object text section named CODE.

COMN Everything that occurs in the relocatable COMN section in the source module
will be placed in a CDC object text section named COMN.

®

X

Everything that occurs in the relocatable DATA section in the source module
will be placed in a CDC object text section with a null name.

ALSS.. Everything that occurs in the absolute ORG sections in the source module will
be placed in a CDC object text section with the name ALSS$xxxxxxxx, where
xxxxxxxx is the address specified on the ORG statement and represented in
hexadecimal notation.

Revision Ol : Assembler Object File Format B-=l

00

N

OO0

SUMMARY OF PSEUDO INSTRUCTION STATEMENTS

This appendix contains an alphabetized list of pseudo instruction statements and a
description of the functions each statement performs.

Pseudo Instruction

ABS [OLUTE]_SHORT
ABS [OLUTE]_LONG

ASC{IT]
BIN[ARY]
DEC[IMAL]
HEX
OCT[AL]

DC.B, DC.W, DC.L

COMN
DATA
ORG
PROG

DS.B, DS.W, DS.L

END

EQU

SET
EVEN
EXPAND
EXTERNAL
GLB

IF, ELSE, IFEND

LIST
NOLIST
MACRO, MEND
MASK

NAME

REPT

RORG, PC_INDEP
NO_RORG,” PC_DEP

SKIP
SPC
TITLE

Revision Ol

Function Performed

Cause absolute addresses to default to 16 bits.
Cause absolute addresses to default to 32 bits.
Store data in memory using ASCII format. -
Store data in memory using binary format.

Store data in memory using decimal format.
Store data in memory using hexadecimal format.
Store data in memory using octal format.

Store data in memory in any numeric format.
Following text assembles into the common area.
Following text assembles into data area.
Following text assembles into absolute memory.
Following text assembles into program area.
Reserve storage.

Signifies the logical end of program unit.
Equate symbol to absolute or relocatable value.
Equate symbol to absolute value only.

Align program counter to word boundary.

Cause macro expansions to be shown on listing.
Declare symbols to be external to program unit.
Declare symbols to be globally defined.

Define conditional code sequences.

Show only source lines on listing.

Suppress all lines except errors on listing.
Define a macro instruction.

Define AND/OR values for ASCII mask.

Add comments to object module.

Repeat next source statement given number of times.
Change default to PC relative addressing.
Change default back to absolute addressing.
Perform a page eject on listing.

Space downward a given number of lines on listing.
Cause page eject and print title on every page.

Summary of Pseudo Instruction Statements

C O

AT,

:\.ﬂ\:‘u’;g, ;

7N
a

o

oNe

00

CUT ALONG LINE

-

COMMENT SHEET

MANUAL TITLE: CDCNET MC68000 Cross-Assembler
PUBLICATION NO.: 60462700 REVISION: 01

NAME:.

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

O Please Reply O No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
BUSINESS REPLY MAIL .
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. [T
. |
POSTAGE WILL BE PAID BY ‘ T
CONTROL DATA CORPORATION N
: L]
Publications and Graphics Division R
ARH219 |
4201 North Lexington Avenue R
Saint Paul, Minnesota 55112 ——
T
. |
FOLD T FOLD

CUT -ALONG LINE

AN

oL
I
]

U
U

