CONTROL DATA CORPORATION
DOCUMENT

w . CONTROL FORM

o : 0o DOCUMENT TYPE o LOG 1D

ZO5 : ARH20/6
Dol Trterne? Protacol

; o ABSTRACT
Describes +he impleneu‘-/‘a"“:‘on of Ve &0

Irternet Protocol as LageR 38)jn the
. COCMNET envirenment :
:"o PRODUCT AFFECTED

: o TITLE

: ___ _COCMET

: o AUTHOR

: 11}5An R' 111n14n ar

: o MAIL STATION : 0o EXTENSION

: AR HR d’ + : §¢ T 7

: o PROJECT . - , - .

H -{ yed ! /".’LL/L’? /’Tc ‘D —_— ‘/.f‘ ', k ‘_‘»' -"" s T4 r = N s

7o SECTION A~ ¢~

Ve S L

: o RSMor : o SIP Mumber(s)

: PSR # . '

: o PUB #

: o PRM # : o Redesign* o Reimplementation¥*
: Approval

: ___Name : Initials : Date

: o Internal Reviewer* : :

: 0o Project Leader

io Unit Manager ,r-c- MC,(XQ ’I'C/V\ 7/2(/6/\(

: 0o Section Manager

Design Team R.9: Sehwow (% q)5lss

: Referee

: DESIGN DEFAULT

:_TEAM COCNET CYCLE (O WORKING DAYS

. o Special ' Q. Y AT Mo

: Distribution: > R WAL E A 7

: Referee's

Distribution Codes: ﬁC,TS-"B 5 AC_-—B

PAGE @

70 B8E FILLED OUT BY DCS CURR§N1’ STATUS{ §
S |vjve
)es Log ALLT0LE. . dEraTiR 2 | 3135
approvAl R |2 | 2|23
NumBER DATE rype supmsrreo BY _DATE [ol|lZ2%
! | \eugs\oeze 1) L Lymay : NOWE A
] |
f- '
1 |
!
|
|l
. S S—
?
|

s e

\51 o

1
85/09/24

DOD Internet Protocol
Internal Design Specificatiod

September 24, 1985

AUTHOR:

John R. Lyman III

TDRB APPROVAL:

AD&C APPROVAL:

DISCLAIMER: This document is an internal working paper
only. It is unapproved, subject to change, and does not
necessarily represent any official intent on the part of
Control Data Corporation.

2
DOD Internet Protocol IDS

85/09/24

PROPRIETARY NOTICE

The technical content set forth in this document is the
property of Control Data and is not to be disseminated,
distributed or otherwise conveyed to third parties without the
express written permission of Control Data.

This document is to be used for planning purposes only. It
does not include any explicit or implied commitments for any
specific release dates or feature content. These matters are
currently under active development, and as such are subject to
revision and replanning as circumstances warrant.

CONTROL DATA PRIVATE

~

./

3
DOD Internet Protocol IDS

85/09/24
RECORD OF REVISION
Revision | Description Author | Date
01 Draft Version JRL3 | 07/30/85
02 Updated after IP walkthrough JRL3 | 09/24/85

—_—t—t—t—

e — e ——

J A SR S S 1P R A 4

-{.-—-{}-—-}—4}—#——4#-——-”-—-{&—-1\-.—4}-—-0-——{}-_—_4}-
$—t—t—t—F—t—t—t— Ft—t—+—+

o o e o e o — — —

R el .
$—t— +—

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

1.0 INTRODUCTION .
2.0 REFERENCES . .

3.0 ENVIRONMENT . .
3.1 HARDWARE . . .
3.
3A INTRANET

S
2.
2.
2
.2

.

4
4.

4,

TIMER LIST
TIALIZATION

L)

2
3.
3.
3
3
0
1
4
4
4
4
4
4
4.
4
4
4
4
4
4
2
4
4
4
4
3
4

4,
4.4 DE

.1.11 RECEIVE_3A_DATA

.1.12 RECEIVE_3A_STATUS
.1.13 STATISTICS_PROCESSOR
DATA STRUCTURES
PROTOCOL_STATUS_TABLE
REASSEMBLY_BUFFER . .

L]

OFIWARE &
MODULE

1

2 IP ROUTING MODULE .
.3 STATISTICS MANAGER
4 EXECUTIVE COMMON ROUTINE

T

.
.
.
]
L
.

DESIGN OVERVIEW
FUNCTIONAL STRUCTURE

.

PROCESS_ICHP_DATAGRAM
PROCESS_IP_FRAGMENT
PROCESS_TIMER_EVENT

1.1 CLOSE_SAP_PROCESSOR . .
1.2 GENERATE_ICMP_DATAGRAM
1.3 GENERATE_IP_FRAGMENTS
1.4 INITIALIZE IP_MODULE
1.5 OPEN_SAP_PROCESSOR
.1.6 PROCESS_IP_DATAGRAN .
1.7
1.8
1.9
1.1

]
L]
.
3
.
.
]
.
L]
.
.
.
3
.

S

® ® o & e ® ® @ o o o ¢ s o o s o

o e o o o o o

2.1
2.2
.2.3 STATISTICS DATA_ STRUCTURE
2.4
INI
S

.
.
L]
L]
.
.
.
.
.
.
.
.
.
L]
.
.
.
.
.
.
.
E

IGN CRITERIA AND ALTERNATIVES

e o o o o o o

e o e e e e e o e o & o o+ o o o o & s o o

e e o o o o o

e © e o o 8 @ e o & 6 & o 5 & o o o & o+ o o

e e ® e e e ¢ o o o e o e o 0 . o o ° s ¢ o

e e o e e 8 e & 6 o e e o s+ ° & e o & ¢ o o

1
85/09/24

3-1
3-1
3-1
3-1
3-2
3-2
3-2

e e o o o o o
e e e o o o o
e o o e o o o
e & o o o o o
e e o e o o o

4-1

4-3

4-3

45

4-7

4-9
4-10
4-12
4-14
4-16
4-18
4-20
4-22
4=24
4-26
4-28
4-29
4-31
4-33
4-35
4-36
4-37

o e & 8 8 @& e & & 8 ® o o s O & © o s & o o
e e & & e © © o ° @ e e e ¢ & o o 2 ° & s o
e @ o o o e o 8 e e e e e o & o o s o o o o
s e 6 o e e o 9 o ¢ & e o s e e ° o o *o o o
e @ o o 8 e ® @ e e ® ¢ o s 5 ° o o & o o oo
® e 6 o 6 e o @ & e e o 8 o © & ° ¢ o o o o

CONTROL DATA PRIVATE

1-1
DOD Internet Protocol IDS

(/ 85/09/24

1.0 INTRODUCTION

1.0 INTRODUCTION

This document describes the internal design of the Internet
Protocol (IP) module. The IP module implements the full DoD
IP protocol, and adds some minor features not in the DoD
specification. The IP module includes both the IP and the
ICMP protocols. Due to the £fact that the DI hardware is
capable of connecting to many networks at the same time, the
IP module extends the DoD specification by providing a
datagram forwarding service between any number of connected IP
networks. Routing decisions are not made by the IP module,
instead the IP static routing module makes all necessary
routing decisions.

In the CDCNET environment the IP module will use the 3A

intranet module. This allows the IP protocol to be active on

C) any of the network solutions that the DI software and hardware
‘ provide.

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

2-1 |
85/09/24 N

2.0 REFERENCES

_J

2.0 REFERENCES

The following manuals contain material that either defines
the operations of the IP module and the modules it interfaces
to, or provides additional insight into the use of the IP

module.
(1] RFC-791 SRI
[2] RFC-792 SRI
[3] MIL-STD-1777 DoD
[4] ARB6265 cDC
(5] ARH6879 cDC
(6] JRL3... cbC

‘Internet Protocol

Internet Control Message Protocol
Internet Protocol Standard

DoD Internet Protocol ERS

3A Intranet ERS

DoD IP Static Routing ERS

CONTROL DATA PRIVATE

3-1
DOD Internet Protocol IDS
85/09/24

3.0 ENVIRONMENT

3.0 ENVIRONMENT

3.1 HARDWARE

The IP module has no special hardware requirements. The IP
module is part of the CDCNET software and will run on a 68000
based Device Interface (DI). The module will be written in
the CYBIL language, and will be compiled and bound using SES
tools on a CYBER mainframe.

3.2 SOFTWARE

The IP module depends on a number of other software
components in order to function in the DI. The following
sections list these components and itemize the services of

‘::m sach component that the IP module uses.

3.2.1 3A INTRANET MODULE

The 3A Internet module provides a basic point-to-point data
transfer service between two systems connected to a common
network solution. The interface between the IP module and the
3A module will require that the following services be provided
by the two modules.

1. The 3A module will provide an open SAP service such that
the IP module is able to open a SAP through which it
will receive datagrams from all IP type network
solutions. '

2. The 3A module will provide a routine which the IP module
will call to send datagrams to other connected systems.

3. The IP module will provide a routine that the 3A wmodule
will call to present datagrams that are received on IP
network solutions.

4. The IP module will provide a routine that the 3A wmodule
will call to present status indications for all IP

‘::ﬁ network solutions. This status will include the maximum
datagram size for each network.

CONTROL DATA PRIVATE

3-2
DOD Internet Protocol IDS

Y
85/09/24 ()
.
3.0 ENVIRONMENT
3.2.2 IP ROUTING MODULE
3.2.2 IP ROUTING MODULE
The IP module does not make any routing decisions, for each
datagram that it receives from an upper layer module or the 3A
module, the IP routing module is called to determine the next
destination of the datagram. The IP routing module provides a
routine which uses the source address, the destination
address, and the IP options of the datagram to determine the
next destination that the datagram should be sent to. This
routine will then return the source address, destination
address, the type of destination, and the maximum datagram
size to the IP module The IP module can then route the
datagram to the proper location.
3.2.3 STATISTICS MANAGER
- . /’N A,
The IP module will provide a report procedure that the
statistics manager can call to display the statistics that the \
IP module has collected. A statistics SAP will be opened
during initialization, and the required pointers will provided
to the statistics manager.
3.2.4 EXECUTIVE COMMON ROUTINES
The IP module will use a number of the common subroutines
that are provided as part of the executive. The following
services will be expected from the executive.
1. Timer interrupts.
2, Buffer creation.
3. Buffer destruction.
4. Addition of data to buffers.
5. Removal of data from buffers.
6. Intertask messages.
o \\;
N

CONTROL DATA PRIVATE

: 4-1
(ij} DOD Internet Protocol IDS
] 85/09/24

4.0 DESIGN OVERVIEW

4.0 DESIGN OVERVIEW

The IP module provides the ability to transmit datagrams
throughout a packet-switched internetwork. This service is
provided as a number of direct subroutine calls. The IP
module will not run as a task in the DI due the simplicity of
the processing that it does. Each task that uses a service of
the IP wmodule will provide the cpu time that the subroutines
in the IP module need to provide that service. The following
page contains a diagram of the flow of execution thru the IP
module. The subroutine names listed below correspond to the
numbers in the diagram.

1. Receive_ULP_Data
2. Receive_3A Data
‘ZjD 3: Process_IP Datagram
4. Process_Fragment
5. Process_ICMP_Datagram
6. Generate_ICMP Datagram
7. Generate_Fragment
8. Open_SAP_Processor

9. Close_SAP_?:oc;usor

10. Process_Timer_event

11. Receive_3A_Status

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

4-2

N
85/09/24
Sdbishanl)
4,0 DESIGN OVERVIEW
* *
$ $
S ULP module $
$ $
$ Send Data Error Open Close §
$ ¢ * $
* *
* *
$ $
$ o > v $
$ v et S $
5 Aot | | 8 | s
s | 1| el B s
$ Fe——e—— * P> 4 | v $
A R T I 2 * ek §
s | 9 | s
$ * * * * S x g
s - f———> —_—> | 5 | —+ S N
$ 3 S, S S o
$ e 100 | s
s ——> — ? SN S
$ t S ¥ e * | $
$ +—--—>| 6 | ¢ == — $
$ Koo $
$ $
§ Kook K mmemmm ek Rk S
s | 2 | s—>| 7 | | 11 | s
$ e Rk | Ko $
$ +) $
S + >|< + S
$ $
$ *
* *
$ v $
$ Send Data Status $
$ S
$ 3A Module $
$ $
* *
i
L/

CONTROL DATA PRIVATE

4-3
. DOD Internet Protocol IDS »
, 85/09/24

4.0 DESIGN OVERVIEW
4.1 FUNCTIONAL STRUCTURE

4.1 FUNCTIONAL STRUCTURE

4.1.1 CLOSE_SAP_PROCESSOR

The close_SAP routine is called by the ULP to close an open
SAP. This will clear the data structure and allow another
module to use the released protocol number. This routine
should be called by the ULP as soon as it is done transmitting
datagrams with the particular protocol number.

Call format

PROCEDURE ip_close_sap (

~ protocol : 0..255;
. sapid ¢ INTEGER;
("“) VAR status : ip_status_type);
protocol In This value specifies the user
protocol to the IP module.
sapid In This is the SAPid returned on the
original open request.
status Out This is the status of the

request. The following values may
be returned: '

ip_successful

ip_sap_not_open

Global data accessed

1. The Protocol Status Table (PST) is updated and the PST
record is deleted.

2. Any Reassembly Buffers in use are released.

‘::D 3. The Statistics Data Structure (SDS) is updated.

CONTROL DATA PRIVATE

4-4

DOD Internet Protocol IDS
85/09/24

0 DESIGN OVERVIEW
1

4.
4.1.1 CLOSE_SAP_PROCESSOR

General Algorithm

BEGIN
IF the SAPID is in use THEN
Clear the PST record pointer;
Release any reassembly buffers;
Release the PST record;
IF (ten or more unused protocols) THEN
Reduce the array size;
IFEND;
Update the SDS counters;
Force statistics for the protocol;
Release the statistics record for the protocol;
RETURN (ip_successful)
ELSE
RETURN (ip_sap_not_open)
IFEND
END.

CONTROL DATA PRIVATE

4-5
85/09/24

C DOD Internet Protocol IDS

4.0 DESIGN OVERVIEW
4.1.2 GENERATE_ICMP_DATAGRAM

4.1.2 GENERATE_ICMP_DATAGRAM

This routine is called by the process_ip_datagram routine
in order to generate a ICMP datagram. The appropriate
information will be passed in to describe the type of error
that has been detected. The datagram will be created and sent
to the sender of the datagram in error.

Call format

PROCEDURE generate_icmp_datagram (

header ¢ ip_header;
options : ip_option_rec;
error_type : icmp_status_type;
error_code : INTEGER;
. error_ptr : INTEGER;
) new_address : ip_address;
‘::3 data : buf_ptr);
header In This is a record which contains
all of the information that was
contained in the IP header of the
datagram that is in error.
options In This is a byte array which
contains the options that the IP
header included.
error_type In This is the type of ICMP datagram

that should be sent. The following

types of datagrams may be sent.
icmp_echo_reply
icmp_dest_unreachable
icmp_source_quench

. icmp_redirect

icmp_echo_request
icmp_time_exceeded
icmp_parameter_error
icmp_time_request
icmp_time_reply
icmp_info_request

O iemp_info_reply

error_code In This is the code that is passed
in the datagram and determines the

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

4-6
85/09/24

4
4

.0 DESIGN OVERVIEW
.1.2 GENERATE_ICMP_DATAGRAM

specific error with the type. The
value of this parameter is dependent
on the type parameter.

error_ptr In This is a pointer to the byte in
error for the case of parameter
errors. ‘

new_address In This is the new address for a

redirect datagram.

data In This is a pointer to the data to
be sent with the ICMP datagram. For
most error types the data buffer
will contain the data portion of the
datagram in error, only the internet
header and the first 64 data bytes
will be used. In the case of Echo,
- Timestamp, and information
- datagrams, the data buffer will
contain all data comprising the ICMP
datagram except for the first word
which contains the type, code, and
checksum.

Global data accessed

1. None.

General Algorithm -

BEGIN
Build the IP header.
Compute the IP checksum.
Build first word of datagram.
Build remainder of datagram (depends on error_type).
Compute the ICMP checksum. ‘
Send the datagram.
END :

CONTROL DATA PRIVATE

I

L

C

4

DOD Internet Protocol IDS

85/09

4-7

/24

4:
4.

0 DESIGN OVERVIEW
1.3 GENERATE_IP_FRAGMENTS

4.1.3 GENERATE_IP_FRAGMENTS

This routine is called by the process_ip_datagram routine
in order to fragment a datagram that is too large to be
transmitted on the appropriate network. The datagram will be
divided into a number of fragments and each fragment will be
sent out through the 3A module.

Call format

PROCEDURE generate_ip_fragments (

header ¢ ip_header;
options : ip_option_rec;
data ¢ buf_ptr;
max_size ¢ INTEGER;
. network_id : net_id_type;
- system_id : sys_id_type);
header In This is a record which contains
the header of the datagram that
needs to be fragmented.
options In This is a byte array which
contains the options that the IP
header should include.
data In This is a pointer to the data to
be sent with the IP datagram. :
max_size In This is the maximum number of
bytes that each datagram is allowed
to contain.
network_id In This is the 3A identifier for the
network that the datagram is being
sent to.
system_id In This is the 3A identifier for the

the specific host that the datagram
is intended for.

CONTROL DATA PRIVATE

4-8
DOD Internet Protocol IDS

85/09/24
4.0 DESIGN OVERVIEW
4.1.3 GENERATE_IP_FRAGMENTS
Global data accessed
1. None.
General Algorithm
BEGIN
IF NOT header.dont_frag THEN
dmax := max_size - options_size - 20;
dmax := dmax - (dmax MOD 8);
fcount := O;
WHILE data<>NIL DO
Remove dmax bytes from the data buffer.
header.offset := fcount;
- header.more_frags := (data<>NIL);
IF f£count=0 THEN
Build the fragment with all options.
ELSE
Build the fragment with repeat options only.
IFEND;
Send the fragment through 3A.
fcount := fcount + dmax;
WHILEND;
ELSE
Return(ip_ fragnentat;on needed) ;
IFEND;
END

™~

~

o
ra

CONTROL DATA PRIVATE

O

4-9

DOD Internet Protocol IDS

85/09/24

.0 DESIGN OVERVIEW
.1.4 INITIALIZE_IP_MODULE

4.1.4 INITIALIZE_IP_MODULE

This routine is called to initialize the IP wmodule. The
routine sets up all of the data structures, opens a SAP with
the 3A module, and opens a SAP with the statistics processor.

Call format

PROCEDURE initialize_ip_module (
VAR status : INTEGER);

status ouT This is the status of the
. initialization request returned to
the caller. This may be one of the
following values.
- ip_successful
ip_insufficient_resources

Global data accessed

1. All pointers in the Protocol Status Table will be set to
NIL.

2. All ecounts in the Statistics Data Structure will be set
to zero.

3. The timer list will be created.

General Algorithm

BEGIN
Initialize the Protocol status table.
Initialize the Statistics Data Structure.
Create the timer list.
Open a SAP with the statistics processor.
Open an IPnet SAP with 3A.

END

CONTROL DATA PRIVATE

4-10
DOD Internet Protocol IDS
85/09/24

£

.0 DESIGN OVERVIEW
1

4
4,1.5 OPEN_SAP_PROCESSOR

4.1.5 OPEN_SAP_PROCESSOR

The open_SAP routine is called by the ULP module in order
to open a SAP with the IP module. A open SAP allows the ULP
module to use a specific protocol number and thereby send
datagrams out on the network. Each SAP is identified by the
SAPID that is assigned by the IP module, all communication

between the modules will use this number for identification.
Call format
PROCEDURE ip_open_sap (
protocol s 0..255;
data_ind : ip_data_ind;
error_ind ¢ ip_error_ind;
- VAR send_req : ip_send_req;
- VAR sapid ¢ INTEGER; SN
VAR status : ip_status_type); S
protocol In This value specifies the user
protocol to the IP module. The IP
module will only allow one SAP for
each protocol number. The ULP must
specify an appropriate number
between zero and 255.
data_ind IN This is a pointer to a user
supplied routine, which the IP
module will call to present data
messages to the ULP.
error_ind IN This is a pointer to a user
: supplied routine, which the IP
module will call to present error
messages to the ULP.
send_req ouT This is a pointer to the IP
modules routine to send data.
sapid ouT This is a 32 bit value that
identifies the particular IP SAP in
all later requests. ' AN
status ouT This is the status of the o

request. The following values may |

CONTROL DATA PRIVATE

o DOD Internet Protocol IDS

4-11

85/09/24
.0 DESIGN OVERVIEW
4.1.5 OPEN_SAP_PROCESSOR
be returned:
ip_successful
ip_protocol_inuse
ip_protocol_illegal
ip_insufficient_resources
Global data accessed
1. The Protocol Status Table (PST) is updated and a PST

record is created.

2. The Statistics Data Structure (SDS) is updated.

‘:jD General Algorithm

BEGIN
IF first open_sap call THEN
Call the initialization routine.
IFEND
IF legal protocol number THEN
IF PST array too small THEN
Enlarge the PST array.
IFEND;
IF protocol number not in use THEN
Create a PST record.
Update the PST record pointer.
RETURN (ip_successful);
ELSE
RETURN (ip_protocol_inuse)
IFEND
ELSE
RETURN (ip_protocol_illegal)
IFEND
END

CONTROL DATA PRIVATE

4-12
DOD Internet Protocol IDS '
85/09/24 / }

4.0 DESIGN OVERVIEW
4.1.6 PROCESS_IP_DATAGRAM

4.1.6 PROCESS_IP_DATAGRAM

This routine will receive an IP ditagram that has come from
the ULP or 3A module. It will determine where the datagram is
going, process reassembly, and do fragmentation.

Call format

PROCEDURE process_ip_datagram (

header ¢ ip_header_rec;
source ¢ ip_address;
destination : ip_address;
options ¢ ip_option_rec;
data ¢ buf_ptr;

VAR status : ip_status_type);

header In This is a record which contains NS
the IP header for the datagram.

source In This is the address of the
sender. This address may be
partially of completely unspecified
if the datagram can from the ULP.

destination 1In This is the address of the remote
IP that the data is being sent to.

options In This is an array which contains
the option parameter data.

data In ‘ This is a pointer to a system
buffer containing the data portion
of the datagranm.

status Out This is the status of the
request. The following values may
be returned:
ip_successful
ip_net_unreachable
ip_host_unreachable
ip_£fragmentation_needed _
ip_option_error ﬂkﬂ\
ip_sap_not_open N
ip_source_illegal

CONTROL DATA PRIVATE

4-13

4 kS DOD Internet Protocol IDS
A 85/09/24

4.0 DESIGN OVERVIEW
4.1.6 PROCESS_IP_DATAGRAM

ip_destination_illegal
ip_protocol_illegal

Global data accessed

1. None.

-General Algorithm

BEGIN
Process the options;
‘:i§ - IF no option errors THEN
j . CALL the routing module;
CASE route OF
={LP=
IF fragment THEN
CALL process_ip_fragment;
ELSE
IF ICMP datagram THEN
CALL process_icmp_datagram;
ELSE
Present the data to the ULP;
IFEND;
IFEND;
ap=
Build datagram and send it out through 3A;
=No route=
RETURN (error_code_from_routing);
CASEND;
ELSE
RETURN (ip_option_error);
IFEND;
END

CONTROL DATA PRIVATE

4-14
DOD Internet Protocol IDS o
85/09/24 I

4.0 DESIGN OVERVIEW
4.1.7 PROCESS_ICMP_DATAGRAM

4.1.7 PROCESS_ICMP_DATAGRAM

This routine will receive ICMP datagrams from the
process_ip_datagram routine. The routine will generate an
error indication to the ULP or generate an ICMP datagram and
send it through 3A.

Call format

PROCEDURE process_icmp_datagram (

source ¢ ip_address;
destination : ip_address;
data : buf_ptr);
source In This is the address that the

datagram originated from.

destination In This is the address that the
datagram was sent to.

data In This is a pointer to a system
buffer which contains the data that
was received in the datagram.

Global data accessed

1. None.

CONTROL DATA PRIVATE

. 4-15
Y DOD Internet Protocol IDS
() 85/09/24

4.0 DESIGN OVERVIEW
4.1.7 PROCESS_ICMP_DATAGRAM

General Algorithm

BEGIN
Pull the ICMP header out of the data buffer.
CASE error_type OF
=icmp_echo_reply=
Do nothing.
=icmp_time_reply=
Do nothing.
=jcmp_info_reply=
Do nothing.
=icmp_dest_unreachable=
CASE error_code OF
0: ULP_error_ind (ip_net_unreachable);
1: ULP_error_ind (ip_host_unreachable);
2: ULP_error_ind (ip_protocol_unreachable);
3: ULP_error_ind (ip_port_unreachable);
. 4: ULP_error_ind (ip_fragmentation_needed);
‘:T) - 5: ULP_error_ind (ip_route_failed);

CASEND;
=icmp_source_quench=
ULP_error_ind (ip_congestion);
=icmp_redirect=
Inform IP routing module;
=icmp_echo_request=
Strip the first 4 bytes from the data buffer;
Generate_icmp_datagram (dest,src,0,0,0,0,data);
=iemp_time_exceeded=
CASE error_code OF
0: ULP_error_ind (ip_timeout);
1: ULP error_ind (ip_assembly_timeout);
CASEND;
=icmp_parameter_error=
ULP_error_ind (ip_option_error);
=icmp_time_request=
Strip the first 4 bytes from the data buffer;
Update the timestamps in the data buffer;
Generate_icmp_datagram (dest,src,14,0,0,0,data);
=icmp_info_request=
Strip the first 4 bytes from the data buffer;
Generate_icmp_datagram (dest,src,16,0,0,0,data);
CASEND;
END

CONTROL DATA PRIVATE

4-16
DOD Internet Protocol IDS ‘ A
85/09/24 W Y

4.0
4'1.

DESIGN OVERVIEW
8 PROCESS_IP_FRAGMENT

4.1.8 PROCESS_IP_FRAGMENT

This routine is called by the process_ip_datagram routine
to process a datagram fragment. If the fragment contains the
correct header information then the fragment is added to the
datagram buffer chain. If the datagram is completely
assembled then the datagram will be presented to the user and
the structure will be released.

Call format

PROCEDURE process_ip_fragment (

header ¢ ip_header;
source ¢ ip_address;
destination : ip_address;
. options : ip_option_rec; ‘
- data : buf_ptr); : -
-
header In This is a record containing the
header information that came in the
datagram.
source In This is the source address from
the IP header.
destination In This is the destination address
from the IP header.
options In This is an array of bytes which
contains the options from the IP
header.
data IN This is a pointer to a system

buffer which contains the data that
came in the datagram.

Global data accessed

1. This routine will access the protocol_status_table to
find the address of the reassembly buffer.

CONTROL DATA PRIVATE

4-17

) 85/09/24

‘ii? DOD Internet Protocol IDS
J

4.0
1

DESIGN OVERVIEW
4,1.8

PROCESS_IP_FRAGMENT

2. The routine will then access the reassembly buffer, add
the datagram to the buffer if appropriate, and release
the buffer when the datagram is completed and presented
to the ULP.

3. The timer entry for the reassembly buffer will be
updated. i

General Algorithm

BEGIN
IF a reassembly buffer exists for this protocol THEN
IF header fields and options match THEN
Find the correct place in the linked list.
. Insert the new data into the linked list.
- IF datagram completed THEN
‘::> Deliver datagram to ULP.
Release the buffer space.
Release the timer entry.
ELSE
Update the timer entry.
IFEND;
ELSE
Do nothing.
IFEND;
ELSE
Create a reassembly buffer and store the data.
Create a timer entry for the buffer.
IFEND;
END

CONTROL DATA PRIVATE

4-18
DOD Internet Protocol IDS
85/09/24

4.0 DESIGN OVERVIEW
4.1.9 PROCESS_TIMER_EVENT

4.1.9 PROCESS_TIMER_EVENT

This routine is called by the executive to process the
expiration of a system timer. The routine processes the timer
list and releases any reassembly buffers whose timers have
expired. The executive timer will expire periodically once a
second.

Call format

PROCEDURE process_timer_event (
parameter : #CELL);

parameter In This is the parameter that was
- passed to the executive when the
timer was initiated.

Global data accessed

1. The the timer list will be accessed and expired timer
records will be released.

2. The reassembly buffer of any timer record that is
released will also be released.

General Algorithm

BEGIN

cur_rec := timer_listt.next_rec;

cur_rect.delta := cur_rect.delta - 1;

WHILE cur_rect.delta=0 DO
Delete the buffer pointer to by cur_rec*.buffer_ptr;
timer_list%.next_ptr := cur_rect.next_rec;
Release the timer rec pointer to by cur_rec;
cur_rec := timer_listt.next_rec;

WHILEND;

CONTROL DATA PRIVATE

AN
E—a’; .

N

4-19

DOD Internet Protocol IDS
85/09/24

4.0 DESIGN OVERVIEW
4.1.9 PROCESS_TIMER_EVENT

END

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

4-20
85/09/24

4
4

.0 DESIGN OVERVIEW
.1.10 RECEIVE_ULP_DATA

4.1.10 RECEIVE_ULP_DATA

The receive_ulp_data routine is called by the ULP in order
to send data out to some other host on an IP network. The
address of this routine is given to the ULP when an open

request is made.

Call format

PROCEDURE receive_ulp_data (

header
source
destination
options
sapid
. data
- VAR status
header In
source In

destination In

options In
sapid In
data In
status Out

ip_header_rec;
ip_address;
ip_address;
ip_option_rec;
INTEGER;
buf_ptr;
ip_status_type);

This is a record which contains
the IP header for the datagram. The
ULP module does not £ill in the
entire header only the user
?p;cificd fields as noted in the ERS

4}.

This is the address of the
sender. This address may Dbe
partially of completely unspecified
if the datagram can from the ULP.

This is the address of the remote
IP that the data is being sent to.

This is an array which contains
the option parameter data.

This is the SAPid returned by the
original open request.

This is a pointer to a system
buffer containing the data portion
of the datagram.

This is the status of the

CONTROL DATA PRIVATE

4-21
DOD Internet Protocol IDS

C; 85/09/24

4.0 DESIGN OVERVIEW
4.1.10 RECEIVE_ULP_DATA

request. The following values may

be returned:
ip_successful
ip_net_unreachable
ip_host_unreachable
ip_fragmentation_needed -
ip_option_error
ip_sap_not_open
ip_source_illegal
ip_destination_illegal
ip_protocol_illegal

Global data accessed

1. The PST is accessed to validate the SAPID and to
(:i> - determine the protocol number.

2. The packet and byte counts in the SDS are updated.

General Algorithm

BEGIN
IF valid SAPID and protoecol THEN
CALL process_ip_datagram (status);
RETURN (status);
IFEND;
END

CONTROL DATA PRIVATE

4-22
DOD Internet Protocol IDS .
85/09/24 //\T

4.0 DESIGN OVERVIEW
4.1.11 RECEIVE_3A_DATA

4.1.11 RECEIVE_3A_DATA

This routine is called by the 3A module to present data

indications. As each datagram is received from the network it
will be delivered to the ULP, be added to the appropriate
reassembly buffer, or be sent back to 3A. If the datagram is
damaged or undeliverable then it will be discarded and an ICMP
datagram will be sent back to the source. .
Call format
PROCEDURE receive_3a_data (
multicast : BOOLEAN;
receive_netid : net_id_type;
sending sysid : sys_id_type;
VAR datagram : buf ptr);
N
W
multicast In This flag will be TRUE if the o
datagram was sent as a broadcast
datagram.
receive_netid In This is the network identifier of
the network solution that the
datagram was received on.
sending_sysid In This the system identifier of the
‘system that transmitted the
datagranm.
datagram In This is a pointer to the system
buffer which contains the datagram.
Global data accessed
1. May access the protocol status table.
2. Will update the SDS counters.

O

5
S

CONTROL DATA PRIVATE

‘ 4-23
“f“x DOD Internet Protocol IDS

85/09/24

4.0 DESIGN OVERVIEW
4.1.11 RECEIVE_3A_DATA

General Algorithm

BEGIN
Pull the IP header out of the buffer;
Unpack the source and destination addresses;
CALL process_ip_datagram (status);
IF status<>ip_successful THEN
CALL generate_icmp_datagram;
IFEND;
END

CONTROL DATA PRIVATE

4-24

DOD Internet Protocol Ibs
85/09/24

4.0 DESIGN OVERVIEW
4.1.12 RECEIVE_3A_STATUS

4.1.12 RECEIVE_3A_STATUS

This routine is called by the 3A module to present status
indications. Since the IP module relies upon the IP routing
module for routing decisions it does not need to know the
status of networks, however, the statistics reporting requires
that IP know what network solutions should be reported about.
Therefore, this routine will check the active SDS buffer, if
it receives an indication about a network that is not in the
buffer it will add it.

Call format

PROCEDURE receive_3a_status (
nib_ptr : nib_type);

nib_ptr In This is a pointer to the
information block of the network
whose status has changed.

Global data accessed

1. This routine will add networks to the active.SDS buffer.

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

4-25
85/09/24

4.0 DESIGN OVERVIEW
4.1.12 RECEIVE_3A_STATUS

General Algorithm

BEGIN

IF (status is UP) AND (not found) THEN
Add the network to the buffer.
ELSE

Search the active SDS buffer for the netﬁork id.

Force statistics for this network.

IF (status is DOWN) AND (found) THEN l

Remove the record for this network.

ELSE
Do nothing.
IFEND
IFEND;
END

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

4-26

85/09/24

.0 DESIGN OVERVIEW
1

A
4.1.13 STATISTICS_PROCESSOR

4.1.13 STATISTICS_PROCESSOR

Call format

PROCEDURE statistics_processor (

sds_hdr

function

reason

time

param

VAR status
sds_hdr In
funétion In
reason In
time In
param In
status Out

Global data accessed

tsds_header;
statistics_function_codes;
statistics_reason_type;
report_time_type;

tcell;
statistics_function_status);

This is a pointer to the header
record of the statistics data
structure.

This is the type of operation to
be performed.

This code indicates the reason
that the statistics are Dbeing
reported.

This is starting and ending time
of the period that statistics should
be reported for.

This is a pointer for use when
the report is forced.

This is the status returned to the
caller.

1. This routine will read and write the SDS tables.

CONTROL DATA PRIVATE

’ /K N
qu/

) 4-27
€ DOD Internet Protocol IDS
C 85/09/24

4.0 DESIGN OVERVIEW
4.1.13 STATISTICS_PROCESSOR

General Algorithm

BEGIN
CASE function OF
=issue_report_and_clear_buffers=
Build a log message from the inactive buffer.
Send the log message.
Clear the inactive buffer.
=clear_buffers=
Clear the inactive buffer.
=start_collecting=
Do nothing.
-=gtop_collecting=
Do nothing.
=gselect_bufferl=
IF local pointer set to buffer 2 THEN
Copy the network table to SDS buffer 1.
Set the local pointer to buffer 1.

. IFEND
(zjb =gelect_buffer2=
IF local pointer set to buffer 1 THEN

Copy the network table to SDS buffer 2.
Set the local pointer to buffer 2.
IFEND :
CASEND;
END

CONTROL DATA PRIVATE

DOD Internet Protocol IDS

4-28
85/09/24

4.0
4.2

DESIGN OVERVIEW
DATA STRUCTURES

4.2 DATA STRUCTURES

The ICMP datagrams use the following set of codes for the

error code field that they contain,

CONST
icmp_echo_reply = 0,
icmp_dest_unreachable = 3,
icmp_source_quench = 4,
icmp_redirect = 5,
icmp_echo_request = 8,
icmp_time_exceeded = 11,
icmp_parameter_error = 12,
icmp_time_request = 13,
icmp_time_reply = 14,
icmp_info_request = 15,
icmp_info_reply =16;

TYPE

icmp_status_type = icmp_echo_reply..icmp_info_reply;

CONTROL DATA PRIVATE

.

4-29

, \ DOD Internet Protocol IDS
Y 85/09/24

4.0 DESIGN OVERVIEW
4.2.1 PROTOCOL_STATUS_TABLE

4.2.1 PROTOCOL_STATUS_TABLE

The protocol status table (PST) is used to keep track of
the current condition of each protocol number. The PST is an
array of pointers, where each active protocol number has a
pointer to a record which contains the current status of the
user of that protocol number. If a particular protocol number
is not in use then the pointer will be NIL and no PST record
will exist. The size of the PST will increase and decrease
dynamically as SAPs are opened and closed. An active PST
record may point to a chain of reassemble buffers.

CYBIL data definitions

TYPE
pst_array = ARRAY [*] OF #pst_rec;
pst_rec = RECORD
sapid ¢ INTEGER,
protocol : 0..255,
prev_ptr : *pst_rec,
next_ptr : tpst_rec,
data_ind : ip_data_ind,
error_ind : ip_data_ind,
rbuf_ptr : treassembly buffer,
sds_ptr : *tip_protocol_rec,
RECEND;

VAR
pst_size : INTEGER;

Creation/Modification

1. The base array of the PST is dynamically allocated by
the open and close SAP routines. On the first call to
the open SAP routine the array will be created.

will create a PST record containing all of the received
information. The pointer in the base array will then be
updated to point to the new record. IF necessary the

‘:j& 2. As each SAP is opened by the ULP, the open_sap routine

CONTROL DATA PRIVATE

4-30

DOD Internet Protocol IDS

85/09/24

4.0 DESIGN OVERVIEW
4.2.1 PROTOCOL_STATUS_TABLE

*

PST array will be enlarged.

When a SAP is closed by the ULP, the close_sap routine
will set the pointer in the base array to NIL and
release the PST record. All buffers in use for
reassembly will also be .released. If there are more
than ten pointers at the end of the PST array that are
not active, then the size of the array will be
decreased.)

Many of the IP routines will use the information in the
table but the only routines that modify the table will
be the open and close SAP routines.

CONTROL DATA PRIVATE

4-31

e DOD Internet Protocol IDS
C : , . 85/09/24

4.0 DESIGN OVERVIEW
4.2.2 REASSEMBLY_ BUFFER

4.2.2 REASSEMBLY_ BUFFER

Each protocol will have a chain of reassembly buffers.
Each buffer is constructed as a linked list with a header
record and a list of smaller records that identify each piece
of data in the buffer. The data which makes up each segment
of the datagram being reassembled will remain in the system
buffer that it was received in, however, it will be appended
to buffers containing adjoining data. When the buffer is
completed it will be contained in a single buffer. Each
reassembly buffer will have an entry in the timer 1list which
is used to limit the time used in the reassembly process.

CYBIL data definitions

O TYPE
e

reassembly buffer = RECORD

next_buffer : treassembly buffer,
first_rec : tbuffer_rec,
timer_ptr : *timer_rec,
source ¢ ip_address,
destination : ip_address,
identifier : 0..OFFFF(16),
precedence : 0..7,
security : ip_security,
first_frag : BOOLEAN,
last_frag : BOOLEAN,

RECEND,

BUFFER_REC = RECORD
first_group : INTEGER,
last_group ¢ INTEGER,
next_rec : freassembly buffer,
data ¢ buf_ptr,

RECEND;

Creation/Modification
‘:jb 1. Each reassembly buffer will be created, maintained, and

released by the routine that reassembles datagrams.

CONTROL DATA PRIVATE

4-32
DOD Internet Protocol IDS
85/09/24

4.0 DESIGN OVERVIEW
4.2.2 REASSEMBLY_ BUFFER

»

2. A single reassembly buffer may be released by the timer
routine if the reassembly time expires.

CONTROL DATA PRIVATE

-
\Eﬁ¥‘

(.\l/
we’

C

4-33

DOD Internet Protocol IDS

85/09/24

4.0 DESIGN OVERVIEW
4.2.3 STATISTICS_DATA_STRUCTURE

4.2.3 STATISTICS_DATA_STRUCTURE

The statistics compiled by the IP module are stored in the
structure described in this section. The data is updated by a
number of routines throughout the IP module and the overall
reporting and control is done by the statistics processor.

CYBIL data definitions

TYPE
ip_sds_buffer = RECORD
open_count : four_byte_statistic_record,
close_count : four_byte_ statistic_record,
protocol_list : %ip_protocol_rec,
- network_list : *ip network_rec,
RECEND,

ip_protocol_rec = RECORD

bytes_sent : four_byte_statistic_record,
datagrams_sent ¢ four_byte_statistic_record,
bytes_received s four_byte_statistic_record,
datagrams_received : four_byte_statistic_record,
resource_errors s four_byte_statistic_record,
content_errors : four_byte_statistic_record,
next_rec ¢ tip_protocol_rec,

RECEND, :

ip_network_rec = RECORD
network_id : network_id_type,
network_name : *CELL,
local ¢ ARRAY [0..5] OF four_byte_statistic_reco
forward ¢ ARRAY [0..5] OF four_byte_statistic_reco
next_rec s tip_network_rec,

RECEND;

Creation/Modification
1. The main structure of the SDS will be allocated upon
initialization of the IP module.
2. The individual network records will be created by the 3A

CONTROL DATA PRIVATE

d,

4-34

DOD Internet Protocol IDS
85/09/24

4.0 DESIGN OVERVIEW
4.2.3 STATISTICS_DATA_STRUCTURE

status processor.’

. 3. When the buffer is changéd all active networks will be
copied from the old buffer to the new buffer.

CONTROL DATA PRIVATE

AN

fﬁj\
NS

4-35
" DOD Internet Protocol IDS

O : . 85/09/24

4.0 DESIGN OVERVIEW
4.2.4 TIMER LIST
4.2.4 TIMER LIST ‘

The timer list is a linked 1list of records. The first
record marks the head of the list and is not used for data.
The list is ordered by the time duration for each entry. Each
entry in the list contains a time value which represents the
interval of time which must expire after the preceeding record
is removed from the list. This format requires more time when
adding and deleting entries, but is very simple to process
when checking for expired timers.

CYBIL data definitions
TYPE
- ip_timer_rec = RECORD
O time_delta : INTEGER,
next_rec : tip_timer_rec,
buffer_ptr : *reassembly_buffer,
RECEND;
VAR

timer_list : ttimer_rec;

Creation/Modification
1. The first (base) record of the list is created by the
initialization routine and always exists.

2. When each reassembly buffer is created, a timer record
will be created.

3. As each datagram is processed the timer record may be
updated.

4. When a reassembly buffer is deleted the corresponding
timer record will also be deleted.

CONTROL DATA PRIVATE

4-36

DOD Internet Protocol IDS
' 85/09/24

4.0 DESIGN OVERVIEW
4.3 INITIALIZATION

4.3 INITIALIZATION

The IP module will initialize itself when the first SAP is
opened. A static variable will be used by the open_sap
routine to determine if it is being called for the first time,
and if so then the data structures will be initialized, a SAP
will be opened with the statistics processor, and a SAP will
be opened with the 3A intranet layer.

CONTROL DATA PRIVATE

. A 4-37

‘i?\ DOD Internet Protocol IDS
i 85/09/24

4.0 DESIGN OVERVIEW
4.4 DESIGN CRITERIA AND ALTERNATIVES

.

4.4 DESIGN CRITERIA AND ALTERNATIVES

The IP module will process each datagram that comes from
and goes to an IP network. It is therefore important that the
IP module process each datagram as quickly as possible and use
the smallest amount of resources possible.

The IP module does not run as a separate task because of
the (hopefully) small amount of time it will use to process
each request, and the need to avoid the overhead of intertask

One possible sacrifice of efficiency is the separation of
the routing tasks into a separate module. This is a good
logical grouping of functions, but could add additioral
procedure calls not otherwise needed.

o

@

CONTROL DATA PRIVATE

