62 %6

16 March 1984

.y

CONTROL DATA

DISTRIBUTED COMMUNICATION NETWORK

EXTERNAL
REFERENCE

SPECIFICATION

/0078y



SNSTRUCTIONS

-suse 811 our documentation 1s bDeing
reproduced on reduction, 1t 1s
escential that this form is either
TYPED OR PRINTED LEGIBILY 3N BLACK 1K,

F111 out only those fields marked by
bullets (o).

JOCUMENT TYPE: One of the ﬂmulaz:
M - Archictecture Requirments (CYBER 80)
ESL - Baseline Documentation Change(s)
DAP - Design Action Paper
DUDO - Design Direction Document
DR - Design Requirements
£PP - Evalutaton Project Plan
IRS - External Reference Specifications
FIP - Feature Test Plan
GDS « General Design Spec (CYBER 80)
GID - General Internal Specifications
8 - Installation Mandbook
1PP « 1 le en a fon Project Plan
PDA - Product Development Assurance Plan
PP - Project Plan
.S1D - Standards Document
STP - System VTest Plan
TIR - Tras-uul% Integration & Release Criterts

CONTROL DATA CORPORATION

e o0 00 o0

: DOCUMENT

3 CONTROL %’éw

20 UOCURIRT TYPL T e .

i ERS : NG D
3 LYt O
t Cowreon. DATR Distesgured Commomcanas Peruiot,
:70 RESTRACT - '

®
DESCRIBES CoMPONENTS £
C

F.UNCNON.S oF THE
DeneT (8ka ICN)'

;O WOLTRTRY DN Rasse A

2O MWK | Lveas/B.S. Sexmon éM.C. Stem e
:'o"m‘% f T o

3 ALH20T :__£007/6097
E. PRUXCT

:"0SECTTON

DESILN ASSURANCE .

OTH - Other, specify type :g or t o SIP Number(s)
ITLE: Be concise. Be sure to include the amm of :
the product involved, (. X s
\BSTRACT: A brief description of the contents. o mn g : 0 Redesign® o Reimplementatic
1f the ftem 13 extremely short, it may be : : pproval
weitten in designated space with nothing else : Rame : Initials : Date
attached. 7@ Internal Reviewer' : : {
WBLICATION #: If a document with a pudb. ¢ {3 "o VraJect Teader : v
deing changed, write the pub. ¢ here. : : R
70 Unit ¥anager : ‘ :
1P & PRM l:mr‘o $: {f l.i"t.:: ashs:ciated with : H :
this documen s em here, 70 Section Kanager : ~ : 7
' : ’ ;2@{7 el
PPROVALS: (Minimum DCS Requirements) T Destgn Team 4 — s
Project leader for all, s Referee : : ] 5’//4//’ Z
Unit Manager for all, ¢ DESTGN -
Section Manager: Project Plans only. :_TEAM evetE 9 O WORKING DAYS
DCS will assign referee, : Soectal
] '} 27
ROJXCT: The project name that the author s Distridution: : yﬁf
belongs to, €.9., CLUE. H /& g //(
=< Mailing List Pasted Here - :
(On top of iastructions) H 4 C-0
-'F;; ARMOPS Use Only! : Referee's m
—— : Distridution Codes:
CORKERT STATOS .
DEFAULY WITR-
UMBER DATE TVPE SUBMITTED 8Y APPROVAL DATE REVIEW : MOLD : APPROVED : DRARN

Z

2oy
(=232

A

eeles coloe oofoe oo

sefee sofes 0e]oo cofes 0o

0s sofee sollos ooler aclee 00foe sofes sojee eofes 20 oo

oo sofee coloe 0efee sofee ccloe safes colee sofee oo

ee oefee cofes solee eofee

o6 s0]os solee colees volon coloe 0o]ee sofee solen safor 00 oo

o0 s0fee vo]oe coleo csofor oofoe sejer &

o o0

leo sefee ocfee osoloe celee oofce o0fee 2efeo 20100 soloe 00 o0
e0 sejee eelee aolee cefee cojee s0le0 osjee vrjen safoer 00 00

T

e
.o oo

1 - DVASH/D146M



/0078y

3.2

3.3

TABLE OF CONTENTS (continued)

System Management

3.2.1 E}(ecutive e o & e o o o o o

3.2.2 Common Subroutines

3.2.3 On-line Loader

1 CPUScheduling « « « « o «
2 Exception Processing . . .
3 Inter-Task Communication .
4
5
6

3.2.4 Diagnostics Management Services

3.2.5 Failure Management

Layer Software . . . « «

3.3.1 Ilower Layers . .

3.3.1.1 lLayer 1 . .
3.3.1.2 Layer 2 . .
3.3.1.3 layer 3A . .
3.3.1.4 Cl170 Channel

Support

3.3.2 Middle Layers .« « o « « o o o

3.3.2.1 Internet Layer . . . «
3.3.2.2 Transport Layer
3.3.2.3

.2.3 X.25 Support Layer . .

3‘303 ’ Highel' Iayers e o & e ® o o o

Page

-ii-

L] * L] .

e e © o o & o ¢ o o o o oo

.

Buffer Management and 'I'hresholds
Timer SEerviCes o« « o« o o o o o o
Non-buffer Memory Management

16 March 1984

3-15
3-16
3-18
3-19
3-20
3-21
3-22
3-22

3-23

3-23
3-24

3-25

. 3-27
3-33
3-34
3-35
3-37
3-38
3-39
3-40
3-42
3-44

3-45



1.0 INTRODUCTION . . « o ¢ o o o o o .
1.1 Initial Glossary . « « « « o &«

1.2 Document Organization . . . .

1.3 References . « ¢« ¢« ¢ ¢ o o o &
1.3.1 Product References . .

1.3.2 Hardware References . .
1.3.3 Software References

2.0 DEVICE INTERFACE HARDWARE OVERVIEW

Internal System Bus . . .
Interrupts « « ¢ ¢ o ¢ o o«
DI Address Structure . « « . .
Main Processor Board (MPB) . .

*

Private Memory Module (PMM)

*

[SE SN SN S SN SRR SR SRS
L] .
WO OO WU W+

0 Line Interface Modules (LIM)

System Main Memory (SMM) « « &« ¢ « « « &

L4 L] L] L

Communications Interface Module (CIM)
Ethernet Serial Channel Interface (ESCI)
Mainframe Channel Interface (MCI)

.
.
[
[

o o o

e o © o o o & o o o

. e ® e o o L3 o o .

e o o e o o @ o o ]

3.0 DISTRIBUTED OOMMUNICATIONS NETWORK SOFTWARE (DCNS)

3.1 System Management of DI Load & Startup .

3.1.1 m m’mard Diagnostics. e o o o

3.1.2 ROM-based Initialization Software

3.1.2.1 Main Bootstrap Controller

3.1.2.2 Initialization Bootstrap .

3.1.3 Initialization M-E

301.4 Startup e o @ ©®© s o o o » o o o

3.1.4
3.1.4
3.1.4

.

.2 System Ancestor

Page ~-i-

/0078y

.1 Initial Ioader . . . . .

3 Configuration Processor

16 March 1984

3-10
3-10

3-11
3-13
3-13

3-14
3-14

w

e
o .

Y

h.

e



A

16 March 1984

TABLE OF CONTENTS (continued)

3.5 mNS and the Cl70 L] . L] - L2 * L] * L] L] L] L] . L] L] 3-81
3.5.1 The Gateway Function and NP Transforms . . 3-82
3.5.2 C170 A-B CONNECEIONS « « « « « « o o o «  3-86
3.5.3 Terminal-to-Cl170-Application Connections 3-88
3o504 MDI-[eSident SOftware e @ e ®© ® ® o o o o 3-90

3-5-4.1 MDI-W e ®© o o e o o o o o o ° » 3-92
3.5-402 MDI "Applications“ e o o o o o o o 3-94
3.5.5 Cl70-reSident Software e e o o o o o o o 3-98
3.5.5.1 Load and Configuration Files . . . 3-98
3.5.5'2 mI I.Oadirlg . * . . . L] * L] . L] L] 3-99
3.5.5.3 Cl170 Helper Applications . . « « « 3-100
3.5.5.4 Network Performance Analysis . . . 3-101
3.5.5.5 DI Dump Analyzer . . « « ¢« o o o « 3-101
3.6 K:NS and x.25 oooooooo e o ® ® ® o o o @ 3-102
3.7 mNS and 'Ieminals o e & @ ®© © o o ® o o e o o o 3-106

Page -iv-

/0078y



16 March 1984

TABLE OF CONTENTS (continued)

3.4 Netmrk mnagen’ent e © ® 8 @ 6 o o o o o s o o o 3-48
3.401 ROUting M-E e ® o6 @ o o o & o o o o o o o 8-49

3 . 4 . l . 1 Inter-netWOrk ROUting e o o o o o 3-50

3 . 4 . l 3 2 Intra-netmrk ROUting e o o o o o 3-53

3.4.1.3 Intra-system Routing . . e o o 3-55

3.4.1.4 Generation of Routing Tables . o e 3-56

3.4.1.5 Open Issues on CDNA Routing . . . 3-61

304.2 Directory M-E e o o ® o o o e o o o o 3-62

3.4.2.1 Directory Entries . ¢« « « ¢ ¢+ o & 3-63
3.4.2.2 Registration SerViceS e o o o o o 3-65
3 4 2o3 TraﬂS].ation services e o o o o o 3-68

3.4.3 Command M-E and Command Processors . . 3-72

304.4 m M-E e o o e o ®o o e o o & o ° o o 3-73

3.4.4.1 Dependent IogM-E . . . « ¢« « ¢« & 3-74
3.4.4.2 Independent ILog M-E. . . « « « « & 3-75
3.4.5 File AcceSS M-E + ¢ « « o o o o o o « 3-76
3.4.5.1 Dependent File Access M-E (DFA) . 3-77
3.4.5.2 Independent File Access M-E (IFA). 3-78
3.4.6 Error M=E . ¢ ¢ o ¢ o ¢ o o o o o o o 3-79
3.4.7 EChOM-E ¢« o « ¢ o ¢ ¢ o ¢ o o o o o o 3-80
3.4.8 Initialization M=E . . ¢ ¢ ¢ ¢ o o o = 3-80
Page -iii-

/0078y

)

£
N

~
o/



TABLE OF CONTENTS (continued)

11.0 FAILURE MANAGEMENT

12.0 ACCOUNTING

13.0 ANALYSIS

13.1 Dumps and Dump Analyzer

13.2 Log Messages

13.3 Network Performance Analyzer (NPA)
14.0 PERFORMANCE

14.1 Factors

14.2 Metrics

14.3 Goals

15.0 FINITE STATE MACHINES

Appendix A Command Surmary
Appendix B Log Messages
@ Appendix C File Conventions and Formats
' Appendix D Utilities ‘
Appendix E Scenarios (e.g. installation, log-in)
Appendix F Network Initialization flow

Page -vi-

a°

/0078y

16 March 1984

MCS

PIM

SVLOPS



16 March 1984

TABLE OF CONTENTS (continued)

4.0 C170 INTERFACES ;LLL
4.1 Cl70 Network Products Interface
4.2 MDI Loading Interface
5.0 X.25 INTERFACE LLL
6.0 TERMINAL INTERFACE RET
7.0 NETWORK VALIDATION RET
8.0 TITLES AND ADDRESSES NLR?
9.0 NEIWORK DEFINITION LLL/AEA
10.0 NETWORK OPERATION LLL/BSS
10.1 Operator Environment

10.2
10.3
10.4
10.5
10.6

/0078y

10.1.1 Command Environment
10.1.2 Menu/Display Environment

Status

Statistics

On-line configuration

Logging Control

Network Routing (Only if op cmds exist to affect routing)

Page -v-



15 March 1984

1.0 INTRODUCTION

The Congrol Data Distributed Communications Network (CDCNET or DCN for
short) (*) is an implementation of the Control Data Network Architecture
(CDNA) . CDNA is a layered architecture based upon ISO's Open Systems
Interconnection (OSI) reference model. An overview of both theiOSI model
and CDNA appears in the CDNA General Design Specification (ARH4243); a
condensed version of that overview will be supplied here in a future
update. It will only be noted here that the standardization efforts on
the OSI model and on the supporting protocols are not yet complete; CDNA,
and therefore the DCN implementation, currently lead ISO standardization
efforts in some areas. CDNA will track standardization efforts as they
progress and CDNA implementations, such as DCN, will be upgraded
according to marketing and customer requirements.

This document describes the Distributed Communication Network (DCN)
hardware and software as they will appear in the first release.

Release 1 supports interconnection of Cl70 mainframes running C170 NOS
and Network Products; asynchronous terminal support via the DCN is also

provided.

DCN hardware is known collectively as the Device Interface (DI). DCN
software that runs on the DI is known as the Distributed Communications
Network Software (DCNS). DCNS is concerned with moving data across the
network and managing the network.

Release 1 also includes a set of Cl70-resident software that is concerned
with the definition and analysis of the DCN, as well as providing mass
storage and host console access for DCNS.

This document is primarily intended to collect in a single place all
information related to the external design of the DCN; this measure will
facilitate a review of the overall DCN design and should also serve to
identify design holes in external interface definitions. This document

is also intended to provide input to the Publications and Graphics
Division for use in preparing customer documentation.

(*)  mhis product family has been recently renamed so there is still
documentation in existence that refers to the DCN by its former name, ACN.

/0058y Page 1 -1



13 March 1984

1.1 INITIAL GLOSSARY

7 -
QK;% An understanding of most large computer-related efforts involve learning a new

vocabulary consisting largely of acronyms, and the Distributed Communications
Network (DCN) is no exception. In general, new terms and acronyms will be
defined in context in individual sections; however, an initial glossary is
provided to give the reader at least a running start.

Network Solution

Catenet

Network

CDNA

DI

DCNS

/0058y

A term used to describe a single instance of a
communications medium; e.g. an Ethernet cable is a
"network solution;" so is an X.25 Public Data Network.

A term used to describe a group of multiple interconnected
"network solutions" and systems, which collectively form a
"concatenated network."

A context-dependent term that may mean either "network
solution" or "catenet."

Control Data Network Architecture - the definition of the
network architecture to which future Control Data
communications products are to adhere. The term "network"
in this context is really a catenet.

Distributed Communications Network - The name of the first
product implementation of CDNA; DCN includes both hardware
and software. The term "network" in this context is
really a catenet.

Device Interface - the name of the hardware used in the
DCN product.

Distributed Communications Network Software - the name of
the software used in the DCN product. DCNS runs in the
DI. The term “"network" in this context is really a
catenet.

Page 1 - 2

7N

kv/



13 March 1984

1.2 DOCUMENT ORGANIZATION

AN
The remainder of Section 1 briefly describes the organization/content of this (J
ERS and provides a list of references for further reading. )
Section 2.0 of this ERS provides an overview of the hardware used to implement
the DCN. The hardware is known generically as the Device Interface (DI). The
basic DI can be configured into a number of variants serving specific purposes
within the DCN, e.g., Mainframe Device Interface (MDI), Terminal Device
Interface (TDI), Network Device Interface (NDI), and others to be defined for
subsequent releases.

Section 3.0 describes the major components of the DCN Software, aka DCNS.

DCNS operates in the DI hardware and is composed of the following major
elements:

- System Management Software - responsible for creation and
maintenance of the system environment for the other
functions. Creation of the system environment is provided
by the Network Load & Startup software, which is
responsible for dumping/loading/reloading the DI hardware
as needed and for putting the network into an operational
state. Other system management software provides the
environment during normal operation of the network.

- Layer Software - responsible for transmission of data for
the end-users of the DCN. , O

- Network Management Software - responsible for providing
network management functions.

The DCN software provides for the following three major external interfaces:
- C170 Interface
- X.25 Interface
- Terminal Interface

An overview of each of the major iﬁterface components is given in last three

subsections of Section 3; each is described in more detail in Sections 4.0,
5.0, and 6.0, respectively.

/0058y Page 1 -3



13 March 1984

1.2 DOCUMENT ORGANIZATION (continued)

The remaining sections of this ERS, summarized below, describe various

aspects of DCN; additional introductory remarks will be added as drafts

of the remaining sections become available.

..
[3
.

Section 7.0 describes the process of network validation;
Section 8.0 defines Titles and Addresses;

Section 9.0 describes the process of defining/configuring a
DCN;

Section 10.0 describes the operation of a DCN, primarily from
the Network Operator's perspective;

Section 11.0 describes failure management; in what manner can
the network fail and what actions are taken to
lessen/eliminate the impact of failure;

Section 12.0 describes the accounting facilities provided for
the DCN;

Section 13.0 describes analysis and tuning of the DCN. This

section also provides a description of the facilities provided

to handle dumps.

Section 14.0 describes DCN performance expected under various ./
loads.

Section 15.0 defines finite state machines.

ERS appendices include:

/0058y

a summary list of all commands

a summary list of all log messages
file conventions and formats
utilities

scenarios; e.g., typical installation process, typical log-in
process, etc.

network initialization flow

Page 1 - 4



13 March 1984

1.3 REFERENCES

\ k)
O 1.3.1 Product References (;/

Additional information on the DCN product family as a whole mayibe found in
the following documents:

g-‘--;;Z;;;-Arch;t-:ectural Ob;;;;.:ves ----- ARI&EOll -};
.5 ACN Design Requirements ARH5123 :
.s CDNA General Design Specifications ARH4243 e
.E Device Interface GDS ARH4948 :
! Cl70/CDNA Interface Specification 54234 '
% ACN Maintenance Software ERS ARH5176 :
+

1.3.2 Hardware References

Additional hardware information may be obtained from the following documents:

C — .

DI Bquipment Specification 53984774
CIM Equipment Specification 67328072
MCI Equipment Specification 67328070

RS449 Equipment Specification 67328074

RS232 Equipment Specification 67328073

ESCI Equipment Specification 67328071
PMM BEquipment Specification 67328069
SMM Equipment Specification 21935466

MC68000 16-bit Microprocessor User Manual

P ts P 00 s 0 P 0 C O ¢ 0 Pn 0 P 0 S0

4 e tetwtate tatn te tu it te tu te 0w t@ b b o

- - - - - - T - - - - - - - +

/0058y Page 1 -5



15 March 1984

1.3.3 Software References

DCNS can be logically divided into the major component groups listed
below, each of which is discussed in its own subsection. A bibliography
of existing documentation for each component group is provided below
under the component group heading.

[3
.

SYSTEM MANAGEMENT SOFIWARE

DI Load & Startup Software

UL S LSttt +
H System Ancestor ERS ARH5377 !
: IDS (*) :
: !
: Initial Ioader ERS ARH5377 !
] L]
! Main/Initialization Bootstrap ERS ARH5377 ¢
! IDS (*) :
: !
! Software lLoad Process ERS ARH5377 :
] s
: Configuration Procurer ERS ARH5377 !
[ ]
: On-line Loader ERS (*) :
L 1
: Initialization M-E ERS ARH5377 :
L] [ ]
' :
PR S EEE R S i +
Operational Software
RS Pt bt +
! Executive ERS ARH4976 !
! IDS ARH5704 :
L . [ ]
: Common Subroutines Handbook (*) !
R SRR S R it +

(*) Not submitted to DCS; no number available.

/0058y

Page 1 - 6

-



@ 1.3.3 Software References (continued)

LAYER SOFTWARE

Lower Layers

- — G G - . W G WD R I G S S I D T D S S W T W G M - - -

+ +
E Generic 3A ERS (*) :
g Ethernet/Firmware/SSR ERS (*) :
's HDLC SSR ERS (*) .:
é CIM Controlware ERS (*) :
% Device Manager (DVM) ERS (*) :
U +

B -——— -— P
: Internet (Xerox) ERS (*)
!
m) : Transport Generic Xerox ERS (*)
]
B —— - - o e o e
Higher Layers
o —————— e o e e
! ITS (*)
1
:
!
o rmr e — e ————— e 2

(*) Not submitted to DCS; no number available.

/0058y Page 1 -7

13 March 1984

O

C



15 March 1984

1.3.3 Software References (continued)

NETWORK MANAGEMENT FUNCTIONS

VT mming mEES ™

Directory M-E ERS (*)
1DS (*)
Dependent Log M-E (LSA) ERS (*)
Independent Log M-E ERS (*)

Error/Echo M-E ERS ARH6065

File Access M-E ERS ARH5960
IDS (*)

Dependent Command M-E ERS ARH5451

Independent Command M-E (OSA) ERS (*)

e Gas 6m O 80 6 00 O S 0m Oms S 0n F 0 0s O O 0 00 G om O 0n bn S

Status Command Processor DAP ARH6014
ERS (*)
f ) Statistics Command Processor/M-E
. DAP (*)
ERS (*)
Initialization M-E ERS ARH5377

+ e 0 Sem B S o S 0ot Cen 0 O 0 $w 00 S 0 O S0 00 0™ O O Ser 0o 00 O

————--—-—------———-----—--——--------—-------——--——--—‘——--------------—-—--—

(*) Not submitted to DCS; no number available.

/0058y Page 1 - 8



13 March 1984

(j') 1.3.3 Software References (continued)
C170 INTERFACE i
MDI-resident software
dmmmm e memememm———————————————————————— +
: C170 Support Software DAP (*) :
] 1]
: C170 Gateway ERS (*) :
] ]
: BIP ERS ARH5378 :
[ ] ]
: MFI SVM ERS ARH5376 :
] ]
: K-Display Support ERS ARH5968 :
1] - ]
e —mmmemecmmemcmcem—eeeceec e e—e———————— +
Cl70-resident software
S - +
: C170/CDNA Console Access :
H Helper Application 54406 .
] 1
@) : DCN Operator Facility GID $4500 :
] ]
: DCN File Utility GID S4566 :
] 1
! DCN File Server Application :
: ERS S4507 :
: GID (*) :
: :
: DCN Log Server Application DAP (*) :
: ERS (*) :
! :
e e EE LT B T +

- ——— - - - - . G . G Y D G S G T S D G S N S O G G S S e e

(*) Not submitted to DCS; no number available.

C

/0058y Page 1 -9



13 March 1984

1.3.3 Software References (continued)

3 ‘ O

X.25 INTERFACE

————— o - - - - - o > - - - - - . - - - > - -

: :
'

% X.25 Support Layer ERS ARH5678 :
g X.25 Packet Level ERS (*) :
% X.25 Gateway ERS (*) :
e eccemcemmmmmmmmmemmemee—mmmmeeme=moeoeos +

?""DEI«'E;};I;;T;;;;SZE’BRE """""" ARHS627 +

% LOM/TDSM ERS (*) :

% Asynch TIP ERS (*) :
( fmmmmmmmmmecmeemmmmmmmmmmmeeemmemeem—emmmemm———e= + .
L N

-—-—-—-—-----------—-—---—------———--———-----------——--_-—------—-————---—

(*) Not submitted to DCS; no number available.
(A |
@ \
O

/0058y Page 1 - 10



15 March 1984

2.0 DI HARDWARE OVERVIEW

device. DI architecture is based on a multi-master bus and shared
resources.

The Device Interface (DI) is a highly modular, microprocessor-based (:fm

The basic DI is diagrammed below and consists of:
. One Master Processor Board (MPB)

. An Internal System Bus (ISB) that can connect up to eight cards,
one of which is the MPB

: Room for up to eight Line Interface Modules (LIMs).

. Power supplies, cabinetry and cooling facilities
tmmm———— +
!MPB!
4=l 1=+
[

L L R R ST /

: The ISB

N ————————————————— /

/0065y Page 2 -1



15 March 1984

2.0 DI HARDWARE OVERVIEW (continued)

o Because of the modularity of both the hardware and software, a DI can be
J/ configured to support a wide variety of functionality. For the first @
release, the following DI variants have been defined and named according
to their function: .
MDI Mainframe Device Interface, which connects the DCN to a
C170 mainframe. The source or destination of the data
transferred to/from the C170 is dependent upon other
modules configured within the MDI.

NDI Network Device Interface, which acts as a packet switcher
to transfer data between network solutions. Depending upon
the modules configured, a particular NDI may interface to
any or all of the following:

- Public Data Network (PDN) - X.25 Type
- Local Area Network (LAN) - Ethernet
- Communications Line(s) - Point-to-Point Links

TDI Terminal Device Interface, which is used to interface
terminal devices to the DCN. Future releases may allow a

TDI to interface to high-speed line(s) and/or a public data
network to function as a "remote concentrator”.

S

C | C

/0065y Page 2 - 2



15 March 1984

2.0 DI HARDWARE OVERVIEW (continued)

The DI variants are created by configuring the appropriate combination of
cards from the list below. These cards are known as "peripheral cards;"
peripheral cards that contain microprocessors are known as "intelligent
peripherals.” 5

. Mainframe Channel Interface (MCI)

. Ethernet Serial Channel Interface (ESCI)
. Communications Interface Module (CIM)

. Private Memory Module (PMM)

. System Main Memory (SMM)

The MPB provides the main processing power for the DI. The MPB is
shielded from most of the real-time external interrupts to allow parallel
processing and high performance; for example, the CIM card handles all
interrupts from communication lines, while the ESCI card handles all
interrupts from Ethernet. The MPB is therefore free to process the next
(or previous) message while the peripheral cards are busy transmitting
the previous (or receiving the next) message.

Normally, all cards share access to the system bus and to other system
resources (e.g. SMM). However, the MPB can selectively prevent one or
more cards from accessing the bus, thereby allowing isolation of a bad
card from the rest of the DI without physically removing the card from
the DI.

Each card in the DI has a certain amount of Read Only Memory (ROM); the
ROM is used to keep card identification (e.g. version number) and
self-test (on-board diagnostics) code. In addition, ROM on some cards
contains boot code to facilitate loading of the DI across that specific
card. All ROMs include a 16-bit checksum to facilitate detection of
memory failures.

All memories and data paths in the DI have a certain amount of built-in
error detection capability. The system main memory (SMM) contains logic
for single bit error correction/double bit error detection (SECDED). All
Random Access Memory (RAM) on individual cards contains a parity bit for
each byte; parity is checked on all read operations. The data bus
portions of the system bus, 68000 extension bus, and the LIM bus contain
one parity bit for every eight bits of data.

/0065y Page 2 - 3



15 March 1984

2.1 INTERNAL SYSTEM BUS

e The Internal System Bus (ISB) is used for all communications between ‘
‘%J) different cards; the ISB consists of the following two parts: @
Internal Transfer Bus (ITB) - The ITB is used for data transfer between
individual cards as well as for the bus contention management:. It
consists of a 24-bit address bus and a 16-bit data bus. It supports
a 16-megabyte address range and a minimum transfer rate of 2.5
megawords-per~-second across the bus; each word contains 16 bits.
The ITB is a multi-master bus in the sense that it may be owned by
any one of the eight cards at a given point in time. The contention
logic ensures that all cards have an equal opportunity to gain access
to the ITB.
Internal Control Bus (ICB) -The Internal Control Bus (ICB) is owned by
the MPB and is used for control activities such as status and
interrupts. The ICB contains an 8-bit data bus and a 4-bit address
bus.
. The address bus allows the selection of up to sixteen cards, even
though only eight cards are supported at present.
The data bus allows the MPB to send a command byte to a selected card
as well as to receive (read) a Status byte from a selected card.
Each data bus access can be qualified in four different ways to
facilitate support of up to four command and four status bytes. One
( of the command bytes is used to enable/disable access to the ITB from N
B a specific card. Y

The ICB is also used to reset a card from the MPB.

's

O

/0065y Page 2 - 4



15 March 1984

2.2 INTERRUPTS

The MPB can send two types of interrupt to an intelligent card (e.g. CIM,
ESCI). One type of interrupt is non-maskable and is used for re-starting
the card; the second type of interrupt is maskable. Both types are

-

invoked by sending a command byte to the card via the ICB bus. §

All cards (intelligent or otherwise) can send an interrupt to the MPB
card. These interrupts are scanned by the MPB in the following way:

The MPB maintains a hardware counter which increments from 0 to
7 (for an 8-card backpanel) or from 0 to 15 (for a l6-card
backpanel) .

Every time this counter is incremented, the card whose slot
number equals the current value of the counter is checked for

an outstanding interrupt.

If one is present, the hardware stops incrementing the counter
and initiates interrupt processing. At the end of the
interrupt processing, the hardware continues incrementing the
counter.

/0065y Page 2 -5

C



15 March 1984

2.3 DI ADDRESS STRUCTURE

The DI address structure provides a 16M-byte address space. The lower 256K of
this address space is local to each card in the sense that it is used for the
on-card memory as well as for addressing the local devices. This address
space is not accessible via the ISB.

..
&
.

$000000 ! !
! LOCAL ADDRESS SPACE ! 256K bytes
$0 3FFFF : ( T ) :
$040000 ! - - 7
: NON-SMM CARD SLOTS ! 768K bytes
: ADDRESS SPACE . :
$OFFFFF ! !
$100000 : T T T
: SMM CARD SLOTS : 15359232
H ADDRESS SPACE ! bytes
$FFFCFF H :
$FFFDO0 ! [
: OPTIONAL TRAPS AND VECTORS H 768K bytes
! ADDRESS SPACE !
$FFFFFF : H

Address space from $040000 to $OFFFFF makes up twelve 64K-byte segments. This
address space is called the non-SMM card slots address space and is used to
allow direct access from the MPB to peripheral devices (e.g. DMA chip) on
other cards. Each 64K-byte segment will be associated with a specific card
slot during installation. Note that, at present, only MCI card allows this
type of access.

The address space from $100000 to $FFFDOO is reserved for the SMM cards. This
address space is accessible via the ISB to all cards connected to the ISB.

The 768K bytes at the top of the address space are reserved for the interrupt

and trap vectors for the cards and devices that require these vectors to
reside at high addresses.

/0065y Page 2 - 6

0

G



15 March 1984

2.4 MAIN PROCESSOR BOARD

The MPB provides the primary processing power for the DI software. It
includes one Motorola 10-MHZ 68000 microprocessor, 16K bytes of RAM and
16K bytes of ROM. 4K bytes of the RAM are battery-backed. The,MPB also
contains a 68000 extension bus, which allows the MPB to access Up to 128K
bytes of RAM on a Private Memory Module (PMM) card. The MPB's on-board
RAM, as well as PMM memory, is provided to support fast memory access.
Read and write operations to these memories occur with no 68000 "wait
states". 1In addition, the MPB's on-board RAM can be dynamically
write-protected via I/0 instruction; however, the write protection is
valid only if the 68000 microprocessor is in the user state.

The MPB contains a 32-MHZ oscillator, which is used to provide a 16-MHZ
clock for the ISB. The MPB also contains a real-time clock and calendar,
which are battery-backed. The MPB also contains a Serial Communications
Controller (SCC) device, which provides two RS232 ports; the baud rate
for these ports is programmable between 300 and 9600 baud.

The MPB includes a deadman timer which needs to be reset within nine
seconds by software writing to a specific address ($006102). If a
deadman time out occurs, halt and reset signals are sent to the 68000
processor, which results in a DI reset.

ghi MPB contains a software-readable 16-bit status register, illustrated
elow.

indicates if the local RAM is
write-protected or not.

BITS BITS BIT BITS
!0 - 3 ! 4 - 7 ' 8 ! 9 - 15 !
L B e R B
! ! : L ! !
PRI S NI [ T J S +
: ! !
! : :
: : contain information
: : about the last bus error.
1 1
3 [ ]
!
!

indicates reason for the last reset
signal to the 68000 processor.

T ETEREIEETECEERE NERE BENENENL ]

indicate environmental status
such as battery low,
temperature warning,
temperature shut down, and
AC power low.

/0065y Page 2 -7



15 March 1984

2.5 MAIN PROCESSOR BOARD (continued)

The MPB supports an "interrupt vector table" in memory locations $00000
to $0003FF, which points to interrupt handler routines. The interrupt
vector table resides in the MPB ROM, following a power-on or manual
reset; the interrupt handler routines to which it points are rudimentary
and contain only the code needed during DI loading. During normal
network operation, the interrupt handler routines need additional

sophistication.

The MPB therefore contains logic to support alteration

of the interrupt vector table. An I/0 instruction is provided to
interchange ROM with RAM; specifically, RAM locations ($008000 to

$00BFFF) are interchanged with ROM locations ($00000 to $003FFF). This
allows dynamic changes to the interrupt vector table by re-writing the

appropriate RAM location.

The 68000 microprocessor supports seven interrupt levels, which are used
on the MPB board in the following way:

level 7

Ievel 6

Level 5

Level 4

Level 3

Level 2

Ievel 1

/0065y

The level 7 interrupt is generated as a result of the
following two conditions:

AC low (power failure) indication

Temperature shut down (overheated)
Software is expected to read the MPB status register
to determine which of above two conditions is
responsible for the interrupt.
The level 6 interrupt is generated by the SCC device

The level 5 interrupt is generated by the 68000
extension bus.

The level 4 interrupt results from the scanned ISB
interrupts and therefore can be from any one of the
other cards.

The level 3 interrupt is generated by a device called
CIO. This device is responsible for monitoring the
various external switches on the MPB board.

The level 2 interrupt is generated by the Real Time
Clock (RIC).

The level 1 interrupt is, at present, not used.

Page 2 - 8



15 March 1984

2.4 MAIN PROCESSOR BOARD (continued)

software to function the MPB hardware. These commands are executed by reading
from/writing to address $0061XX, where the value of XX depends upon the
specific command to be executed. The following is a list of these cammands,
which are described in detail in the MPB Engineering Specification:

The MPB 68000 microprocessor hardware provides a set of commands to the C
/

Read MPB status register

Set and clear RAM write protect
Set bus lock

Read bus error address register
Set and clear diagnostics mode
Reset deadman timer

Set and clear swap of ROM and RAM
Set external indicators

Read ITB loop back data

L] L[] . . L L] L] . ®

/0065y Page 2 -9



15 March 1984

2.5 COMMUNICATIONS INTERFACE MODULE (CIM)

The CIM is the controller for up to eight (8) Line Interface Modules (LIM).

Each CIM contains a 10-MHZ MC68000 16-bit microprocessor with a minimum of 16K U
bytes of RAM with byte parity and zero wait state operation. A minimum of 8K '
bytes of ROM with checksum is included for on-board diagnostics and

initialization code. .

The CIM has two interfaces:
- the LIM Bus interface to communicate with the LIMs
- the ISB interface to communicate with the rest of the DI

The LIM Bus is an 8-bit data bus that can connect the CIM to a maximum of
eight LIMs. LIMs are numbered according to their physical position in the LIM
backpanel; the LIM closest to the outside is LIM 7.

A "daisy chain" method is used to determine the specific source of an
interrupt on the LIM Bus. The lowest numbered LIM has the highest priority.
The CIM contains gating to bypass each LIM and substantially reduce the amount
of time required for the disable signal to ripple thorugh successive LIMs.

The bypass scheme on the CIM also allows for an empty slot in the middle of
the daisy chain, which allows LIMs to be removed without the need to
reconfigure the system's interrupts.

The LIM Bus is protected with a single parity bit. Occurrence of a parity
error causes a bus error .

1/0 control logic on the CIM generates properly timed control signals required \
by the CIO and the peripheral chips on the LIM. It also generates the ‘
necessary handshake signals that are used by the processor control circuitry.

The CIM drives the LIM Bus using information provided by the MPB.

The ICB is used for receiving commands from the MPB and to allow the MPB to
read hardware and software status from the CIM. The CIM communicates with the
SMM over the ITB. The MPB communicates with the CIM over the ICB.

Parity bits (upper and lower) are generated for all write operations
regardless of the destination of the data, and without regard to byte or word
operations. Parity bits may or may not be used depending on the destination
of the data. Parity is checked, on a byte-basis, during read operations from
the ITB, the LIM Bus, and the CIM RAM.

/0065y Page 2 - 10



15 March 1984

2.6 ETHERNET SERIAL CHANNEL INTERFACE (ESCI)

The ESCI transports data between SMM and one Ethernet 10 Mbit Serial Channel.
The ESCI card contains:

- Intel 82586 Ethernet Controller chip (the Controller)!
- Intel 82501 Serial Interface chip

- Motorola MC68000 microprocessor (the Processor)

- 16K bytes of RAM

- 16K bytes of ROM

The on-board ROMs contain initialization bootstrap code, diagnostics, and
checksum.

The Controller has priority access to both local memory and SMM. Extra
on-card bus buffering is used to permit the Processor to access local memory
while the Controller accesses SMM.

The ESCI is connected to the Ethernet cable transceiver and to the DI's

Internal System Bus (ISB). Communication with the DI is primarily through
data structures in SMM.

Three kinds of Ethernet data loopback are available for use by diagnostics:
- local loopback on the Ethernet controller
- intermediate loopback on the Intel 82501 Ethernet Serial Interface
- external loopback on the Ethernet cable

Because Motorola and Intel differ in their handling of memory stacks, the
Processor and Controller store data differently on byte and 24-bit long-word
operations; 16-bit operations are handled in the same manner.

On byte operations, the Controller stores/loads the first byte in/from
bits 0-7 when starting on an-even address; the Processor stores/loads
the first byte in/from bits 8-15 under the same conditions. Transfers
between the Controller and the ITB mask this difference by swapping the
two bytes across this interface; ITB bits 0-7 = controller bits 8-15 and
bits 8-15 = controller bits 0-7 on all direct transfers between the
Controller and ITB devices. Byte-swapping does not occur on transfers
to local memory or between the Processor and the Controller.

On long-word operations, the Processor stores/loads the two most
significant bytes in/from the first location and the two least
significant bytes in/from the following location; the Controller
stores/loads the two least significant bytes in/from the first location

_and the two most significant bytes in/from the next location. If only
receive-data and transmit-data is transferred directly between the ITB
and the Controller, the byte-swap performed by this interface resolves
any addressing conflicts. Addressing conflicts between the Processsor
and the Controller must be resolved by on-board software.

/0065y Page 2 - 11

Q

O



e

15 March 1984

2.7 MAINFRAME CHANNEL INTERFACE (MCI)

The MCI, which operates under MPB control, will transport data between a C170
12-bit channel and SMM. A chained DMA capability and on-board ROM containing
bootstrap code, diagnostics and checksum is provided. Two data packing and
unpacking modes will be supported with channel and bus parity, bit and byte.
Only one MCI per channel will be supported. Pass-on/pass-back willl not be
supported. Up to three MCI's per MDI will be supported.

/0065y Page 2 - 12



15 March 1984

2.8 PRIVATE MEMORY MODULE (PMM)

The PMM provides additional zero-wait-state RAM for use by the MPB via the -
68000 extension bus. Use of the PMM reduces the number of instruction (:JD
accesses across the ISB and increases throughput of the MPB. The PMM can be
configured in any of the DI variants. -
The PMM contains either a 64K-byte memory or a 128K-byte memory; both have the
same artwork and differ in the number of memory chips assembled. The smaller
PMM is not field-upgradable.

Maximum transfer rate for a read cycle is 140 nanoseconds. Since the memory
is static, there is no constraint on minimum transfer rate.

Maximum transfer rate for a write cycle is 180 nanoseconds.

If a data parity error occurs on a write operation, the PMM sends a bus error
signal; however, the incorrect data is written into the memory.

/0065y Page 2 - 13



{&
3 i
N o
A

15 March 1984

2.9 SYSTEM MAIN MEMORY (SMM)

The SMM has a minimum of 512K bytes of RAM with internal refresh, Single Error
Correction/Double Error Detection (SEC/DED), and error reporting to the MPB.
A diagnostic mode on the SEC/DED chip and programmable start address are also
features.

[3

ITB interface parity errors, SEC/DED multiple errors, and (if enabled) SEC/DED
single bit errors are recorded on the SMM error log. The error log is a
16-bit register that contains information about the type and location of
error(s). When an error is recorded in the error log, an ICB interrupt is
generated and the log is locked. The error log logs only one error at a time;
new errors can be recorded only after the log is unlocked by a Master Clear,
Reset, or by reading the log. The error log is read by an ITB diagnostic mode
read when the ICB Mode Control is off. Contents of the error logs are unknown
on power-on.

An Am2960 EDC chip is used for error detection and correction. The EDC
contains the logic necessary to generate check bits on a 16-bit data word
according to a modified Hamming code. The EDC will correct an single-bit
error and will detect all double and some triple-bit errors on data-read
operations. _

If the SMM detects a single bit error on a read cycle, it will correct the
word, generate a new check code and write the corrected data word/check code
to the address specified by the read cycle.

Maximum transfer rate during a read cycle is 312.5 nanoseconds (625 ns for
read with corrected error). Minimum read access time is 312.5 ns (437.5 for
read with corrected error).

Maximum transfer rate for a write cycle is 312.5 nanoseconds (625 ns for byte
write.).

/0065y Page 2 - 14

A



15 March 1984

2.10 LINE INTERFACE MODULES (LIM)

Multiple versions of this board will be developed. LIMs have their own space
within the DI and up to eight (8) can be configured within a single DI. Each
LIM interfaces to the LIM Bus and can drive external lines.

[
A LIM can be connected to only one CIM at a time. It can have from two to
four ports, each of which connects to a communications line or a unit record
device.

All LIMs employ VLSI line controllers with the following programmable features:

- Baud Rate/Channel/Receive or Transmit
- External/Internal Clock

- Synchronous (Bit or Byte) and Async

- Auto Echo and Loop Back

- Interrupt (Vectors, Enable)

- Modem Control Response

- CRC-16 or CCITT CRC Generation

- Mark or Space Idle

- (dd or even line parity

The first release will include the LIM types described below.

/0065y Page 2 - 15



lb Marcn 13984

2.10 LINE INTERFACE MODULES (continued)

2-Channel RS449 LIM

This is a two-channel device which provides, as standard, two DTE connections m
that comply with all the requirements and options for the RS449 primary
channel. Both RS422 and RS423 electrical standards are supported via a

strappable option.

FEATURES SUPPORTED COMMENTS

RS449 PRIMARY CHANNEL DTE + RS422 STANDARD

RS449 PRIMARY CHANNEL DTE RS423 STANDARD WITH STRAPS

RS449 PRIMARY CHANNEL DCE + RS423: AS FOR (3) WITH STRAPS
RS INDARY OR BA( .

P GmOw St S 0w S mOm Ou

!

!

:

]

! RS449 PRIMARY CHANNEL DCE + RS422! REQUIRES MODEM ELIMINATOR
1 ]

E

:

:

:

CHANNEL, DTE, RS423 ___!CABLE ADAPTOR 9 PIN TO 37 PIN
RS449 PRIMARY CHANNEL WITH (SDCD) 'CABLE ADAPIOR 37 PIN AND 9 PIN!
! FLOW CONTROL. DTE, RS422 'TO 37 PIN.PSEUDO STANDARD ONLY.
] 1 ]
! 6 WITH RS423 OPTION ! AS PER 6 WITH RS423 STRAPS .
: {REQUI ' TWARE :
! RS366A AUTO DIAL OPTION !(REF. 3.1.1.7) _ :
: : REQUIRES ADAPTOR, STRAPS :
! X.24/X.21 PARTY LINE : AND SOFTWARE :
//" N
Each of the features listed require one of the two available channels on this N

LIM.

- In asynchronous mode this LIM will support both data rates of 50 to
38.4Kbps per channel, and different receive and transmit rates (e.g.
send 1200 baud, receive 75 baud).

-  In synchronous mode this LIM will support up to 64Kbps with a local
clock; with an external clock, up to 250Kbps can be supported by the
hardware. As a synchronous DCE, this LIM will supply a transmit
clock.

4-Channel RS449 LIM

This LIM will provide both RS232/V.28 and RS422/V.11 electrical interfaces.
The physical interface will be compatible with RS232/V.24 (via an adaptor
cable if necessary), with X.21, and with X.24. Allowance will be made for
both DTE/DCE operation and both local or external clock sources.

-

/0065y Page 2 - 16



15 March 1984

2.10 LINE INTERFACE MODULES (continued)

4-Channel RS232 LIM O

RS232 will support per channel all those DTE signals defined in "RS232
application notes option D" VIZ: $

CCcIT RS232

CIRCUIT CIRCUIT NAME
101 AA Ground
102 AB Logic RIN
103 BA Transmit Data
104 BB Receive Data
105 ca Requst to Send
106 CB Clear to Send
107 cC Data Set Ready
108.2 D Data Terminal Ready
125 CE Ring Indicator
109 CF Carrier Detect
113 DA Transmit Clock (DTE)
114 DB Transmit Clock (DCE)
115 DD Receive Clock (DCE)

The RS232 implementation will allow different transmit and receive rates as

used by V.23 style modems.

Signalling rates supported will range from 50 bps to 38.4Kbps asynchronous and g
56Kbps synchronous. With external clocking, or using non standard baud rates, 0&
speeds up to 250Kbps can be supported. The higher baud rates will limit the

cabling (as wave shaping will be used).

4-Channel X.24/X.21 LM

This will support the following as a DTE.

X.24 :
CIRCUIT NAME
G Ground
T Transmit Data
R Receive Data
C Control
I Indication
S Signalling Clock

The electrical level will be RS422/V.1l. All of the above will be supported
as either Data Communication Equipment (DCE) or Data Terminal Equipment (DTE).

O

/0065y Page 2 - 17



15 March 1984

2.10 LINE INTERFACE MODULES (continued)

V.35 LIM

This 2-Channel LIM is based on the RS449 LIM with appropriate changes to the
electrical and physical interfaces to comply with CCITT V.35 + APPENDIX II,
and ISO 2593-1973(E) for all CCITT-specified circuits.

S§gnilling rates up to 108KHz will be supported with external (DCE) supplied
c w Ll

/0065y Page 2 - 18



14 March 1984

3.0 DISTRIBUTED COMMUNICATIONS NETWORK SOFTWARE (DCNS)

O DCN software (DCNS) resident in the DIs provides four major functions:

- System management software - implementation of software to
create and maintain a system environment for the other' functions.

- CDNA layer software - implementation of the Control Data Network
Architecture (CDNA) layer functions.

- CDNA network management software - implementation of the Control
Data Network Architecture (CDNA) network management functions.

- Interface software - implementation of interface software to
connect foreign networks, systems, and devices to the DCN.

The diagram belows illustrates the relationship between the major DCN
software functions.

- e ———————— e e o e o e e +
'///////////////////////////////////ﬂ
VS MANAGEMENT SOFTWAR / /

'///////////////////////////////////ﬂ
VIS HE = +///// -
'// //'l**********************"/////l

'///////H**********************n/////u
Y/ /) /) ) /aik x x x k& & INTERFACE mﬂmﬁ****"////ﬂ

CD v///////n**********************--/////
l///////n**********************n/////-
[ === H ek kxR L))
L/ ' axxw /)11
o/ " HIGHER LAYER RNV NN

Y/ /N . SOFTWARE Wk x k% V1 7/ /) /0

'/ /! '!  NETWORK ' xRk xx11/ /7))

! /” L e !!===z====!!/////'
v/"mmmmm ' 27777/

v/ /0 ' MIDDLE LAYER SOFTWARE SN
//“ SOFTWARE ' 37777

1/ /8 1 e e e e e e s e s s e === ===~ w7777
|//" :! o ll/////l

1/ o/ ' LOWER LAYER SOFTWARE 2/ /7))
l//l! l' :u/////
njll/////l

. / /H
'///////////////////////////////// /1.

YA JSIISS LSS LSS
////////////////////////////////////‘

-----———-——_-—_—--—-———-----—-———_--——_———-—-———-----_-_---—--—---—o-——-

/0061y Page 3 - 1



15 March 1984

3.0 DISTRIBUTED COMMUNICATIONS NETWORK SOFTWARE (DCNS) (continued)

System management software operates initially to create an operational
environment in a DI. Software resident in the ROMs operates in
conjunction with the Initialization M-E to load a DI; the following
components then put the DI into an operational state:

..
[3
.

- Initial Loader
- System Ancestor
- Configuration Procurer

Section 3.1 describes the network load & startup process.

Once the network is operational, system management software maintains the
environment for the layer and network management functions; operational
system management components are:

- Executive

- Common Subroutines

- On-line Loader

- Diagnostic Management Services

- Failure Management
Every DI contains all of the operational system management software.

Section 3.2 provides an overview of the operational system management
software components.

/0061y Page 3 - 2

/
o /

N



14 March 1984

3.0 DISTRIBUTED COMMUNICATIONS NETWORK SOFTWARE (DCNS) (continued)

CDNA layer software provides communication between systems, terminals, (ﬁ”

applications, and end users connected to the DCN. DCN implements one or
more software components for each layer to provide the functiong reguired
by CDNA for that layer, as illustrated below. ‘

CDNA LAYER FUNCTIONS DCN SOFTWARE COMPONENTS
e +
CDNA 7! !
HIGHER H HIGHER : - Interactive Transfer
LAYERS 6 ! LAYER H Service (ITS)
! GROUP !
5! !
L e e e L L P L L LD !
: !
CDNA 4B§ X.25 SUPPORT LAYER ! - X.25 Support Layer
[}
MIDDLE L
L 1
LAYERS 4 ! TRANSPORT : - Generic Transport
: : - Xerox Transport
e = = = = = =
: !
3B! INTERNET : - Internet
] 1 ]
S : P
: : 0
3A! INTRANET : - Intranet
cDNa ! !
1e = = = = = =1
LOWER ! !
2! LINK ! - HDLC SSR
LAYERS ! ! - Ethernet SSR
L] L
1o - o o - - -
: !
1! PHYSICAL : - HDLC CIM Driver
! : - Ethernet Driver
] ]
- - = = = cjemecmcccme——e—————a——— +

Every DI contains software components for layers 1 through 4B. HDIC
and/or Ethernet components are present for layers 1 and 2. These layers
are necessary in order to support network management functions.

DCN layer components are discussed in Section 3.3.

/0061y Page 3 - 3



15 March 1984

3.0 DISTRIBUTED COMMUNICATIONS NETWORK SOFTWARE (DCNS) (continued)

CDNA network management is provided by software components called

Management-entities (M-Es). Management-entities are the following: @
- Routing M-E handles routing of data within the catenet.
- Directory M-E maintains a directory of Titles and
Addresses.

- File Access M-E provides access to secondary storage files.

- Command M-E processes network commands.

- Log M-E provides logging of messages.

- Echo M-E allows data to be "echoed" back to the
sender.

- Error M-E provides for communication of error
conditions.

- Initialization M-E operates as part of the DI load & startup
process.

Every DI contains all or some portion of the above M-Es. whether or not

a given DI contains the full-blown version of a particular M-E depends on

whether that DI is configured to support both an active ("independent")

and a passive ("dependent") role in network management or just a passive

("dependent") role. Generally, DIS that have access to secondary storage

are the best candidates to be configured in support of active network NS
management roles.

Section 3.4 provides an overview of each Management-entity and further
elaborates upon the distinction between active and passive roles.

/0061y Page 3 - 4



13 March 1984

3.0 DISTRIBUTED COMMUNICATIONS NETWORK SOFTWARE (DCNS) (continued)

Any system that contains at least the CDNA layer and network management
functions defined above is said to be a "CDNA system.” In Release 1,
each DI is therefore a CDNA system; the C170 mainframe is not a‘fCDNA
system because it does not contain any of the CDNA layers or management
functions. In contrast, the C180 mainframe, which will be supported in a
subsequent release, does contain CDNA layers and management functions and
is therefore a CDNA system.

CDNA implementations, such as DCN, are expected to facilitate . '
interconnections with non-CDNA systems; DCN provides this capability via
the DCN interface software.

DCN interface software supports three major external interfaces, as
follows:

C170 interface allows DCN end users to access services
of a C170 host connected to the DCN.
Cl70 interface software is also used to

access C170 host resources for use by the

DCN network management functions. Section
3.5 provides an overview of this
interface.

X.25 interface provides a mechanism whereby two or more
physically disjoint DCN networks can be
logically connected via an X.25 PDN or
X.25 trunk. This same interface
provides, to foreign systems and
networks, a transparent access to the
DCN. Section 3.6 provides an overview of
this interface.

Terminal user interface allows DCN end users to access the
services of the DCN via terminal devices
connected via asynchronous communication
lines. Subsequent releases will also
support synchronous communication lines.
Section 3.7 provides an overview of this
interface.

The C170 and X.25 interface software both include a "gateway function" to
permit communication between unlike architectures. DCN implements the
"gateway function" by software components called "transforms" that
provide a mapping between the services offered by DCN and those offered
by the other architectures. Gateway functions and the associated
transforms are further discussed in Sections 3.5 and 3.6.

/0061y Page 3 - 5



N

o r

15 March 1984

3.0 DISTRIBUTED COMMUNICATIONS NETWORK SOFTWARE (DCNS) (continued)

The diagram below illustrates the three major external interfaces,
including the gateway functions.

.y

fomm————— +
! Q7o ! TTT
! Host ! ///
[ ] ]
domsd demmd 544
1 / 7/ /
e T +=/=/=/ =+
I"gateway": H : Terminal
C170 . : ! ™1 ! Interface
Interface ! MDI : : : Software
Software : : te=m=le-—t
tommlomme- + !
! !
[==———— ~O====——== e ks -o-- - - /
]
Bl ettt +
! NDI !
! !
!"gateway". tommmmm—ee——— +
Fommm———— + / ! !
X.25 ! X.25 !
Interface : PDN !
Software bt +

The specific functional role of a DI determines which DCN interface
software components are resident in that DI.

If the role of a DI is to interface a C170 mainframe to the DCN, the
DI will contain C170 interface software and the DI is called a
Mainframe Device Interface (MDI).

1f the role of the DI is to interface terminals to the DCN, the DI
will contain terminal interface software. Such a DI is called a
Terminal Device Interface (TDI).

1f the role of a DI is to interface an X.25 network to the DCN, the
DI will contain the X.25 interface software and the DI is called a
Network Device Interface (NDI). DIs that interconnect HDIC and
Ethernet networks do not require any specific non-CDNA interface
software; these DIs are also called NDIs.

Because of the modularity of the DI hardware and software design, DIs can
be configured to support more than one type of function. For example, a
DI can be configured with both the terminal and mainframe support
hardware/software. The role of such a DI becomes Mainframe and Terminal
Interface (MTI). Other varieties of hybrid DIs are possible.

/0061y Page 3 - 6

N
N

-



15 March 1984

3.1 SYSTEM MANAGEMENT OF DI LOAD & STARTUP

This section describes the DCNS components involved in bringing the DI C\
hardware to an operational state. Components are introduced and

described in the order in which they operate during network loading and

startup. .

In Release 1, a C170 mainframe is the initial source of load files and is
the only destination for dump files; consequently the load process begins
with interaction between a C170 mainframe and a Cl170 MDI that is
connected via a channel interface.

A program called INITMDI in the C170 mainframe is activated as the result
of a request from the MDI; INITMDI is responsible for executing the
Initialization protocol with the MDI across the channel. Further
information on the process of loading across the channel will be supplied
in a future update to this document; the remainder of this section
assumes that at least one MDI is loaded and ready to load other DIs in
the catenet.

In the descriptions that follow, the DI to be loaded is referred to as
the "remote DI," while the DI performing the load (and optionally
receiving the dump) is referred to as the "local DI." A local DI can
load a remote DI only through two types of network solution, namely the
Ethernet and an HDLC line. Since the remote DI initially contains only
the code that is burned into its ROMs, loading over an X.25 packet
network is impractical.

Each remote DI must receive its load information from a neighbor that is C)‘ ~
already loaded and operational. A remote DI sends a "Help Request" to

all of its neighbors on one of the network solutions to which it is
connected; each neighbor either ignores the "Help Request" or ,
acknowledges by sending a "Help Offer." If more than one "Help Offer"” is
received, the remote DI accepts help from a single neighbor by sending a
"Help Accept."” A "Help Offer" contains a priority field that will, in
suliseq:gnt releases, be used to determine which neighbor should be
selected.

If the DI to be loaded does not receive a "Help Offer" from at least one
neighbor, it sends another "Help Request" to all of its neighbors on
another network solution to which it is connected. This process is
repeated until a "Help Offer" is received.

/0061y Page 3 - 7



15 March 1984

3.1 SYSTEM MANAGEMENT OF DI LOAD & STARTUP (continued)

Each DI contains software in read-only memory (ROM) to provide the
functions needed for initial self-test and loading of the DI; these
functions are invoked after a power failure or a reset due to any other
failure, such as hardware and software failures.

The software contained in ROM consists of two major components:

The ROM On-Board Diagnostics, which:

- Check the ROM memory for integrity;

- Determine which cards are physically present in the DI and
builds the hardware configuration table, also known as the DI
Card Map; and

- Test the individual hardware cards.

The ROM-based Initialization Software, which:

- Locates possible load sources (e.g connected networks) and
requests help in loading the DI from the selected source, and

- Provides an optional dump of the DI, with the assistance of the
selected source.

3.1.1 ROM On-Board Diagnostics

The ROM on-board diagnostics are self-test diagnostics that check the DI
hardware for correct operation. They are run every time the card is
reset. On-board diagnostics exist on the following cards:

MPB
MCI
ESCI
CIM
SvM

00000

On-board diagnostics on the MPB board are responsible for testing the MPB
and PMM boards. In addition, they are responsible for coordination of
on-board diagnostics on the other cards. The MPB on-board diagnostics
are responsible for construction of the DI Card Map, which contains a
list and status of cards physically present in the DI; it also determines
the total SMM address space based on the SMM cards present and
operational in the DI.

On-board diagnostics on the other cards are initiated by the MPB on-board
diagnostic based on information from well-known ROM locations on the
board under test. They test the hardware present on the card and provide
its status to the MPB on-board diagnostics.

/0061y Page 3 - 8



15 March 1984

3.1.2 ROM-based Initialization Software

O The ROM-based initialization software consists of the following two parts:

MPB ROM Bootstrap

Card-specific Bootstrap

The MPB ROM Bootstrap in the remote DI is
responsible for coordination of the bgotstrap
load process and execution of the CDNA
Initialization protocol with either a peer
Initialization M-E in the local DI or INITMDI
in the C170 host. The MPB ROM Bootstrap
includes the following major components:

Main Bootstrap Controller
Initialization Bootstrap

Card-specific Bootstraps exist in ROM on the
following cards:

CmM
ESCI
MCI

A Card-specific Bootstrap is called by the Main
Bootstrap Controller as a subroutine and, in
turn, calls the Initialization Bootstrap
software to help in loading the DI. The
Card-specific Bootstrap provides the layers 1,
2, and 3A functions for the network solution
connected to the card. In the case of the CIM
Card-specific Bootstrap, up to two connected
HDLC lines are tried, one at a time, according
to switch settings.

The reader might note that the MPB ROM Bootstrap is the DCNS
implementation of the dependent Initialization M-E in the remote DI, as

described in the CDNA GDS.

The Initialization M-E in the fully loaded

local DI functions as the independent Initialization M-E.

/0061y

Page 3 - 9

O

8



J

15 March 1984

3.1.2.1 Main Bootstrap Controller

The Main Bootstrap Controller is invoked by MPB on-board diagnostics to

read the "boot enable" switch on the MPB card to determine the first card 0
to be used for the bootstrap load. If the selected card is present and

operatiional (as determined from the DI Card map), the Card-specific

Bootstrap from the card's ROM is moved to SMM and an attempt is made to

load the DI across this card by using the Card-specific Bootstrap as a

subroutine.

If the attempt is unsuccessful, other cards that are potential bootstrap
sources are selected and the load attempt is retried. Cards are selected
in numerical card slot order.

If all attempts fail, the Main Bootstrap Controller displays an error
code via the light indicators on the MPB Card and halts the processor.
This results in a Dead man time out, which re-starts the whole process by
starting the on-board diagnostics.

3.1.2.2 Initialization Bootstrap

The Initialization Bootstrap is called as a subroutine from the
Card-specific Bootstrap; it broadcasts a Help Request on the network
solution connected to the card across which the load is being attempted.
It waits for a certain amount of time for possible Help Offers; selects
one based on the priority included in the Help Offer; and sends a Help
Accept to the selected system.

The Initialization Bootstrap uses the Auto Dump table to determine if the o
DI memory is to be dumped before loading the DI. The Auto Dump table \\ /
resides at a well known address and is protected via a checksum. The -
table is built by the operational software present in DI prior to this

load. It contains a list of portions of DI memory to be dumped. 1If the

Auto Dump table does not exist or is invalid, a default Auto Dump

consisting of all of SMM and the MPB RAM is sent; RAM on other card types

is not included in the default Auto Dump.

The Initialization Bootstrap calls subroutines in the Card-specific

Bootstrap to dump the DI memory and then load the DI. It executes the
CDNA Initialization protocol to do so.

/0061y Page 3 - 10



15 March 1984

3.1.3 Initialization M-E

Each MDI and NDI that is loaded and operational, contains a copy of the iy,
independent Initialization Management-entity (M-E), which is used to dump ( ¥
and load other DIs. -

[3

The independent Initialization M-E in the local DI uses the File Access
M-E to read the load file from a C170 mainframe and executes the
Initialization protocol with the MPB ROM Bootstrap (dependent
Initialization M-E) in a remote DI in order to load the remote DI. The
Initialization M-E uses lower layers (layers 1-3A) to send and receive
data to and from the remote DI.

Lower layers associated with Ethernet do not have to do anything special
to effect loading of a remote DI. Lower layers associated with the HDIC
lines have to prime the line for the Initialization protocol by using
"RIM" and "SIM."

The following is a step-by-step description of the process used to load a
remote DI, from the local DI's perspective.

1. e network solution connecting the local and remote DIs is
configured in the local DI via a configuration command. As a
result, the lower layer software is initialized for data
transfer on the network solution.

2. The Initialization M-E in the local DI informs its lower layers
of its willingness to receive data from any connected network 5
solution. Information in the protocol header of the incoming @
data is used to determine if the data is addressed to the
Initialization M-E.

3. The Initialization Bootstrap in the remote DI sends a Help
Request, which is received by the Initialization M-E in the
local DI.

4. ‘The Initialization M-E uses the File Access M-E to read a file
that contains information about DIs that need a non-default
version of the load file as well as a list of DIs that should
not be loaded. This file is further described in the section
on Network Definition.

If no restriction is found on loading that remote DI, the
Initialization M-E sends a Help Offer. The Help Offer contains
a priority field which, in Release 1, can contain only a single
value; future use of this field remains to be determined.

5. The Initialization Bootstrap in the remote DI decides if it
wants to accept the Help Offer. If so, it sends a Help Accept
to the Initialization M-E in the local DI.

o

/0061y Page 3 - 11



&

15 March 1984

3.1.3 Initialization M-E (continued)

6. After receipt of the Help Accept, the Initialization M-E in the
local DI uses information in the original Help Request to
determine the need to dump the memory of the remote DI; the
criterion used in this determination is the reason for loading
the remote box. ¢

7. If the remote DI memory needs to be dumped, the Initialization
M-E uses the File Access M-E to create a new dump file on an
accessible C170 mainframe. An Initiate Auto Dump is sent to the
remote DI, which responds by sending dump data.

The Initialization M-E in the local DI and the Initialization
Bootstrap in the remote DI follow the Initialization protocol to
dump the memory of the remote DI. The Initialization protocol
allows for partial and full dump. Throughout this process, the
Initialization M-E uses the File Access M-E to write dump data
to the dump file.

8. Once the dump is complete or if the dump is not needed, the
Initialization M-E uses the File Access M-E to find the
appropriate load file on an accessible C170 mainframe. It uses
the File Access M-E to read the load file and the lower layers
to transmit the information to the remote DI. The
Initialization M-E and the Initialization Bootstrap use the
Initialization protocol to manage transmission of load data.

/0061y Page 3 - 12

™
S

C



15 March 1984

3.1.4 Startup

This section provides an overview of the three software components that
execute immediately after the DCN software has been loaded into DI
memory. These three components bring the loaded software to a fully
operational state. The three processes are the Initial Loader, System
Ancestor, and Configuration Procurer and execute successively in this
order.

3.1.4.1 Initial Loader

The Initial Loader is the first software loaded into the DI by the
Initialization Bootstrap. The Initial Loader arrives as a prelinked
MC68000 absolute record ready for execution. The Initial Loader is given
control by the Initialization Bootstrap after all software has been
placed into DI memory.

The first function of the Initial Loader is to absolutize the loaded
software modules. This function includes:

- allocating memory for the modules,
- moving code and data into the allocated memory, and
- linking external references.

The second function involves the initialization of the Executive, which
includes:

- initializing the system vector and configuration tables,

- creating buffer and memory pools, and

- setting up hardware timers.
The Initial Loader then starts the System Ancestor as a task. This
process starts both the Executive and the System Ancestor. At this

point, all software is ready for startup; the Executive is initialized
and running; and the System Ancestor has been started as a task.

/0061y Page 3 - 13



15 March 1984

3.1.4.2 System Ancestor

A
Y’

tasks associated with a subset of the loaded software. » This subset
«consists of the software common to all DI variants plus the software
required to drive the network interface that was used as the load source.

The System Ancestor's function, during initialization, is to start the @;b

The System Ancestor makes successive calls to the Initial Loader to
obtain information about the next task to be started. This information
includes the task's transfer address, stack size, and priority. This
information is given to the Executive for each task as it is started.
Each time the System Ancestor calls the Initial Loader, it determines if
the task returned is the System Ancestor itself. If so, this informs the
System Ancestor that its function is complete with respect to DI

initialization. The System Ancestor also plays a role in the management
of failures; this role is discussed in the next section.

The Initial Loader works off a list of loaded software, called the Module
Name List. The System Ancestor task's position within the Module Name
List differentiates tasks started directly by the System Ancestor from
tasks started through some other process such as configuration commands.
Thus, some tasks are started as the result of the initialization process;
others are started as the result of the configuration process; and yet
others are started as the result of some other stimulus.

When the System Ancestor completes its initialization function, the
minimum set of system tasks have been started.

‘Qawf 3.1.4.3 Oonfiguration Procurer

N
N

The Configuration Procurer uses the services of the File Access M-E to
read a file containing the configuration commands specific to the DI
being initialized. The Configuration Procurer issues an Open File
request that specifies the type of configuration file (via the "file-type
Title" parameter) and the System ID of the system being configured (via
the "file name" parameter).

The Configuration Procurer submits the commands to the Command M-E for
processing by the responsible command processors. In this way, the set
of software and tasks that supports the DI's unique configuration are
started. :

The Configuration Procurer receives command responses for each command
submitted and issues log messages for those commands that were not
processed to normal completion. Commands in error do not prevent
execution of subsequent commands. Once a DI is operational,
configuration command errors can be corrected manually via the operator
interface.

The execution of the Configuration Procurer can be bypassed by creating a
configuration file containing a "Bypass Configuration" command; all DI
configuration information can then be entered manually by an operator.

‘© G

/0061y Page 3 - 14



O

15 March 1984

3.2 SYSTEM MANAGEMENT

The components described in this section provide support for the layer
and network management functions during normal network operation.

: .
.

DCNS provides system management functions, as follows:

Executive - provides the functions needed in a
multiprocessing/multitasking software
environment.

Common Subroutines - provide commonly used functions and
CYBIL interfaces to Executive
subroutines.

On-line Ioader - used to load and remove software
modules in an operational on-line
environment.

Diagnostics Management - provides the framework for execution of
on-line diagnostics

Failure Management - provides detection, logging, and
recovery of hardware and software
failures

/0061y Page 3 - 15

C

O



16 March 1984

3.2.1 Executive
ﬂl:@ The DCNS Executive provides, to all processes, the kernel set of Q:E

primitive functions reguired in a multiprocessing/multitasking software
environment. These functions include such services as:

- CPU scheduling .

- exception processing and interrupt vector services

- intertask communication

- memory and buffer management

- timer services
Statistics, journaling, debug, and gueueing services are also provided,
although they are not at present used.

Code for the Executive can reside within the MPB RAM, SMM, or PMM if
available. The Executive executes on the Main Processor Board (MPB) of

the DI.
The MPB's MC68000 microprocessor is always in one of three processing
states:
e normal associated with instruction execution; the memory .
(L e references are to fetch instructions and operands, and (K D
to store results. -
exception associated with interrupts, trap instructions,
tracing and other exceptional conditions.
halted an indication of catastrophic hardware; only an

external reset can restart a halted processor.

/0061y Page 3 - 16



15 March 1984

3.2.1 Executive (continued)

0 The processor operates in one of two states of "privilege:"

supervisor

user

the higher state of privilege. All instructions can
be executed in the supervisor state; all excéption
processing is done in the supervisor state.

the lower state of privilege. Some instructions which
have important system effects are privileged and
cannot be executed in user state. Once the processor
is in the user state, only exception processing can
change the privilege state.

The Executive is responsible for the allocation of MPB MC68000 processor
and system memory between two classes of software processes:

Exception processors - Exception processors are high-priority

Tasks -

predefined code sequences that are given CPU control
by the hardware when an exception is sensed by the
CPU. A hardware interrupt is an example of an
exception.

Tasks provide network layer and management functions
during that period when the CPU is not busy servicing
exceptions.

C}) The Executive provides interfaces for defining both types of processes.
It is the Executive's responsibility to schedule the CPU between the

tasks.

/0061y

Page 3 - 17



Ne

15 March 1984

3.2.1.1 CPU Scheduling

Tasks are scheduled to the CPU based on their task priority. Tasks with
the same priority are scheduled to the CPU in a round-robin fashion. The
CPU scheduling algorithm is executed when the currently running task
completes execution or when a higher priority task is waiting for the
CPU. The Executive will recognize and schedule the higher priority task
under the following conditions:

- the currently running task has exceeded its time slice;

- the currently running task makes a request for Executive
services;

- an exception processor completes processing. In this case, the
Executive schedules the higher priority task instead of
rescheduling the task that was interrupted.

The Fxecutive may temporarily reduce a task's priority as a result of
executing the CPU scheduling algorithm. This is only done when it is
determined that a task is using an inordinate amount of CPU time. 1In
this case, a task's priority is reinstated at that time when the task has
completely processed all of its queued intertask messages and has entered
a waiting state.

Exception processors are given CPU control whenever the hardware senses
an exception event. Exception events are prioritized by the hardware.
This provides resolution of simultaneous exception events and also allows
a lower priority exception processor to be interrupted by a higher
priority exception processor. Details of MC68000 exception processing
are described in the MC68000 16-bit Microprocessor User Manual.

CPU scheduling is currently undergoing design; some of the guestions
remaining to be answered are:

When the priority is lowered, is the task put at the head or tail of
the queue containing tasks at the lowered priority?

what is an "inordinate" amount of time?

what happens if the task gives up the CPU before the I™ queue is
empty?

/0061y Page 3 - 18



15 March 1984

3.2.1.2 Exception Processing

Exceptions can be generated either externally or internally. Externally (
generated exceptions are:

ey

- reset requests

- interrupts from peripheral devices

- bus errors
Internally generated exceptions may arise as the result of execution of
an instruction. The TRAP, TRAPV, CHK, and DIV instructions can generate
an exception as part of their execution. Other instructions can generate

exceptions:

- as the result of being an illegal instruction

by attempting word fetches from odd addresses

by attempting to execute a privileged instruction while the
MC68000 processor is in the non-privileged state.

The Executive maintains an exception vector table that maps the exception
vector number to the entry point of the corresponding exception
processor. The vector table contains 255 entries and is initialized as
part of the Executive initialization process.

Exceptions not known to the Executive at initialization time are mapped
to the spurious interrupt processor; such exceptions are normally
interrupts from peripheral devices that are not yet initiallized. When
that device is undergoing initialization, an Executive service is
provided to change the device's exception vector from the spurious
interrupt to the appropriate peripheral device interrupt processor.

When peripheral devices interrupt the CPU, they present an exception
vector number that is used as an index into the exception vector table so
the appropriate interrupt exception processor can be executed. The
Executive provides services for making entries into the exception wvector
table for purposes of servicing hardware interrupts and software-defined
TRAP levels.

All exception processors execute in the MC68000 supervisor state and
utilize the system stack.

/0061y Page 3 - 19



— m————— —— - -

3.2.1.3 Inter-Task Communication

The main function of tasks is to process intertask messages sent to them
- by exception processors or by other tasks. In support of this function,
the Executive provides services for sending and receiving intertask a;)
messages. Each task has two associated intertask message queues that are
maintained for the task by the Executive. Tasks execute in the MC68000
user state and utilize their own associated stack area. i

A
{
=

The Executive maintains a list of Task Control Blocks. Each entry in the
1ist contains control information for one of the currently defined tasks.

Associated with every task is a task stack and task priority.

The task stack is used to hold procedure automatic variables and to
Facilitate the linking/unlinking of nested procedure calls. The task
stack size is set once at task startup time and remains unchanged for
the life of the task. There is no mechanism to prevent a task from
overflowing its stack space; there will, however, be methods for
detection, isolation, recovery, and prevention of stack overflow.

The task priority is used by the Executive to determine the next task
to be scheduled for the CPU. Tasks with higher priority are given
first consideration. Task priority is specified at task startup time
and can also be altered dynamically via an Executive service.

L C

/0061y Page 3 - 20



15 March 1984

3.2.1.4 Buffer Management and Thresholds

Buffer Management is the Executive service that supports the dynamic
allocation and deallocation of buffers used to hold message data. The
design of the Executive buffer management service considers both system
performance and the unique processing requirements of a layered
architecture. L

Every attempt has been made to minimize or eliminate movement of data
within system memory. Such functions as adding or deleting message
headers or trailers do not affect the residence of message data.
Multiple copies of messages are maintained at the logical level by
utilizing one physical copy and an associated usage count.

To support this level of buffer management sophistication, a descriptor
buffer design was chosen. Associated with every data buffer is a
descriptor buffer that keeps track of buffer chaining, usage counts, data
offsets, data counts, and pointers to associated data buffers. Both
descriptor and data buffer sizes are configurable.

The Executive provides services to obtain and release buffers. The
services of the Executive buffer management are augmented by a set of
common subroutines that perform the high frequency functions on buffers,
such as addition/deletion of message headers/trailers, message
fragmentation/assembly, logical/physical message copy, etc.

The Executive can be configured to support any number of buffer
thresholds. Both the number of thresholds and the total number of
buffers available at each threshold level are configurable.

The Executive uses the configured parameters while processing "buffer
get" requests. The user process must specify a buffer threshold along
with every "buffer get" request. The Executive will honor the request
only if the number of currently available buffers is greater than the sum
of the number of requested buffers and the configured threshold value.

Threshold level zero is predefined by the Executive; requests at
threshold level zero are always honored. If enough buffers are not
available to satisfy a threshold level zero request, buffer space is
allocated from global memory until enough buffers exist to honor the
request. All common subroutines that potentially need to obtain an
Executive buffer, require a buffer threshold parameter.

Buffer threshold use is currently undergoing design; some of the
questions to be answered are:
How is buffer threshold used?

An overview of memory management should be supplied.

/0061y Page 3 - 21

C



O

15 March 1984

3.2.1.5 Timer Services

The Executive provides a set of timer services that allow a process to

request that a specified subroutine be called. In addition to specifying

the subroutine to be called, the user can also optionally specify a
parameter to be included with the subroutine call when the subroutine is
activated.
The user can request that the specified subroutine be called:

- at a specified time with a time resolution of one minute

- periodically

- after an interval of elapsed time.

The service also exists to cancel a previously issued timer request.

All timers are accurate to one millisecond.

3.2.1.6 Non-buffer Memory Management

The Executive provides a service whereby a variable-length memory exent
may be obtained by processes requiring non-message memory areas.
Variable-length memory extents can be obtained directly through the use
of an Executive-supported service or via the CYBIL ALLOCATE statement.

. The Executive internally utilizes global memory for allocating and

deallocating memory space to and from the data buffer pool.

This feature may or may not be retained; investigation is currently
underway.

/0061y Page 3 - 22



16 March 1984

3.2.2 Common Subroutines

Q The Common Subroutines are a collection of freguently used functions,
which can be grouped into the following categories:

3.2.3 On-line Loader

CYBIL interface to Executive functions

.y

Queue management
- Task management
- Timer services
- Miscellaneous Executive functions, such as
obtaining/releasing memory, start/stop of tools, etc.
- Common Type definitions

Non-Executive functions

Tree (table) management
Buffer management

- Operations on integers

The On-line Loader provides the following services to other DI tasks:

Translate entry point names and module names into tasks/addresses

Interlock use of modules to prevent deloading of modules while

still in use

Provide a status interface for communication between loaded
modules and operator status enquiries.

On-line Loader functions are:

/0061y

Ioad

Deload

Translation

provides loading of modules by entry point name
and module name. The load process consists of
reading the object module file, allocating memory
for the module sections, moving code and data
into the sections, and linking external
references.,

provides deloading of unused modules. The deload
process consists of dereferencing other modules,
deallocating memory for the module sections, and
removing entry point names.

provides the entry point name and module name
translation to already loaded modules or modules
to be loaded. It also provides translations to
support the status interface, checksum all loaded
modules, validate the program counter, and return
transfer addresses.

Page 3 - 23



15 March 1984

3.2.4 Diagnostics Management Services

Diagnostics Management Services (DMS) co-ordinate on-line diagnostics and
provide support for failure management software. DMS consists of the
following components:

- DIAG INIT PROCESSOR reviews the final status of on-board
diagnostics.

- GEN_DIAG_COMMAND builds a "send" command for the Attention
Sequence of Auto-Initiate processors.

- MONITOR_ON BOARDS Starts and monitors an on-board
diagnostic for a specific device while
operating in an on-line environment.

On-line diagnostics are SMM-resident programs that test individual boards
within a DI while the remainder of the DI remains operational. Running
the diagnostic may temporarily cause the system to stop normal processing
in cases where there is only one board of the type being diagnosed;
however, the board's controlware is not disturbed by the diagnostic so
that it can be returned intact to the system when the diagnostic
completes.

On-line diagnostics are loaded on an as-needed basis to test both the DI
hardware elements and their interfaces with external devices such as Cl170
mainframe channel, Ethernet Transceiver, modems, and communication

lines. The following on-line diagnostics are planned for Release 1:

- cmMo - tests a CIM and its associated LIMs, via standard
controlware resident in the CIM. CIMO uses loop-backs
provided in the LIMs and attached modems to isolate
problems in the communication lines.

- ECHO - tests the DI-to-DI link, across either Ethernet or
communications line/modems. Testing consists mainly
of echoing data from one DI to the other.

- ESCO - tests the ESCI board and the Ethernet Transceiver via
the standard ESCI-resident controlware. ESCO uses
loopbacks provided by the ESCI module and Ethernet
Transceiver to isolate problems in the Ethernet.

- MCIO

tests the MCI board. Testing is done from the MPB,
using the MPB-resident controlware. Testing simulates
customer operation.

- PMMO - tests the PMM board; testing is done from the MPB.

- sMMo - tests the SMM board. Testing is done from the MPB.

/0061y Page 3 - 24

0

N

o



C

15 March 1984

3.2.5 Failure Management

Failure management software is concerned with the detection, logging, and
recovery of DCN hardware and software failures.

Failure detection includes the following aspects:

oy

1) How each failure is detected.

2) Wwhat information is available at the time of failure; for
example, what software component was executing; what memory
address was being accessed.

3) How severe the failure is; dependent upon the type of failure,
recent occurrences of the same failure, and which software
component experienced the failure.

Failure logging includes the following aspects:

1) which failures are reported

2) when failures are reported

3) which software components reports a failure and to whom
4) what information about a failure is saved and how

Failure recovery may include any of the following:

1) reloading the DI
2) restarting the DI without reloading
3) downgrading part of the hardware resources

4) removing/replacing a failing hardware component while the DI
remains on-line

5) restarting a specific software component, with or without a
reload

6) retrying the failing function
7) executing appropriate on-line diagnostics

Failure recovery must be preceded by failure isolation and saving of
relevant information. Isolation of hardware failures is limited to
identification of the failed card; isolation of software failures is
limited to identification of the failed software component, where
software component is defined to be an individually loadable piece of
software.

/0061y Page 3 - 25

O

)



N
-’

/

——

{ j
N 4

15 March 1984

3.2.5 Failure Management (continued)

Recovery procedures must take into account the probability of that
failure occurring; for example, if an error is likely to occur very
rarely, a reload or restart of the DI may be an acceptable recovery
rocedure. Recovery procedures must also be sensitive to the environment
in which the failure occurred; for example, recovery procedures for a CIM
board failure in an NDI may differ, depending on whether or not a back-up
CIM board exists.

If the recovery procedure includes a hardware-reset of the total DI, the

reason for the reset must be saved for use by the on-board diagnostics
that run as part of the reset process; for example, if part of an SMM

card is unusable, the on-board diagnostics must not include that part in
its definition of the DI configuration.

If a failure is unrecoverable, other DIs connected to the failed DI must
be able to detect the situation and initiate appropriate recovery action,
such as operator notification.

DCN failure management is discussed in more detail in a subsequent
section of this document.

/0061y Page 3 - 26



15 March 1984

3.3 LAYER SOFTWARE

The CDNA/DCN layer software provides the functions needed to provide ‘L:m
communication between systems, terminals, applications and end users

connected to the DCN. Since CDNA is based on the ISO's OSI model, its

layer structure is very similar to the one proposed in the OSI model, but

includes some enhancements and alterations.

This section introduces the layer groups and defines some terms that are
necessary to understand the layers. Subsequent subsections deal with
each layer group in greater detail.

The lower layer group is concerned with transmission of data across
specific network solutions. This group consists of three layers,
numbered 1, 2, and 3A:

The Physical layer (1) includes software to activate, maintain and
deactivate interconnection with various media.

The Link layer (2) includes software to support synchronization,
error control and flow control functions for data transfer between
two or more DIsS connected to the same network solution. Layers 1 and
2 are identical to layers 1 and 2 of the OSI model.

The Intranet layer (3A) provides a single network-solution-

independent interface for users of the lower layers. It is

responsible for routing and relays within a specific network

solution. The layer 3A is a result of the sub-layering of the ™
Network layer of the OSI model. 0

The middle layer group provides data-independent, end-to-end services and
protocols. This group consists of the following:

The Internet layer (3B) provides a relay function between different
network solutions to allow users connected to different network
solutions to exchange information. The layer 3B is a result of the
sub-layering of OSI layer 3 into Internet (3B) and Intranet (33)
layers.

The Transport layer (4) functions are identical to the OSI layer 4.
The CDNA/DCN Transport functions are provided by two "sub-layers,"
called Xerox Transport and Generic Transport.

The X.25 Support layer (4B) provides a service equivalent to that
provided by an X.25 network.

/0074y Page 3 - 27



t}\l

C

15 March 1984

3.3 LAYER SOFTWARE (continued)

The higher layer group provides data-dependent, end-to-end services and
protocols in direct support of applications. This group provides the
functionality of the layers identified as Application, Presentation and
Session layers in the OSI model, although it is not defined as three
distinct layers. 5

CDNA/DCN defines a distinct higher layer group for each different type of
application. In Release 1, the higher layer group provided is the
Interactive Transfer Service (ITS); ITS supports the OSI Application,
Presentation and Session layer functions for data transfer between two
interactive applications and between an application and a terminal.

A separate higher layer group, Batch Transfer Service (BTS), will provide
batch data transfer functions in a subsequent release.

e - ;e meme—e———————— +
! !
! APPLICATION(S) !
1] L
fomm—— e ceefmmm—cc e ———————— +
! : ! :
! I T S ! B T S ! Other H
L ] ? [ ]
P — P — O — :
! !
: M I DDULE L A Y ERS :
1 1
] L

/0074y Page 3 - 28

0

N

L\u,yi



15 March 1984

3.3 LAYER SOFTWARE (continued)

»?“'\'\
LAYERLAND GLOSSARY O

DATA UNIT A "data unit" is data that is transmitted, as a unit,
between peer entities in different systems; the term is
usually used synonymously with "protocol data unit (PDU)."

RELAY The term "relay" is used to define the process in which a
CDNA system receives a data unit from one locally connected
network solution and transmits it on another locally
connected network solution.

In the configuration pictured below, there are three CDNA
systems, labelled A, B, and C, and two network solutions,
numbered 1 and 2. System A is connected to network 1;
system C is connected to network 2; and system B is
connected to both networks 1 and 2.

Fmm————— +
L N
B s s 2
/ ! 1 /
/ ; 7
dommmtmmmt
! B !
e Attt o
/ 2 : /
/ 4 /
S +
P Cc !
fom————- +
Suppose system A wants to send a data unit to system C.
System A will send it to system B on network solution 1.
System B will receive it on network solution 1 and will
determine that it is destined for system C. System B will
then transmit the data unit on network solution 2. System C
will receive it on network solution 2. The function
performed by system B, in this example, is called a relay.
HOP The term "hop" is associated with the term "relay." 1In the

above example, one says that system C is one hop away from
system A, etc. A hop count is maintained in the Internet
header of each data unit and is incremented by the Internet
layer each time a hop is made. Should the hop count ever
exceed sixteen, the data unit is discarded. This use of the
hop count is intended to prevent a data unit from wandering
aimlessly through the DCN forever.

/0074y Page 3 - 29



15 March 1984

3.3 LAYER SOFTWARE (continued)

a Jb LAYERLAND GLOSSARY (continued)
.

..
[3
H

LOCALLY CONNECTED NETWORK SOLUTION A network solution is said to be

"Jocally connected" to a system if that system can
directly transfer data across that network solution to
another system on the same network solution. In the
above example, systems A and C each have one locally
connected network solution; system B has two locally
connected network solutions.

Note that this term has been adopted for this document
because of the potential confusion between "Distributed
Communications Network (DCN)" and "directly connected
network (DCN)." The latter term is used in the CDNA
GDS which was written before the term "Distributed
Communications Network" came into being.

REMOTELY CONNECTED NETWORK SOLUTION A network solution is said to be

/0074y

"remotely connected" to a system if that system is not
locally connected to that network solution, but there

exists some path whereby that system may transmit data
to that network solution in one or more hops.

Page 3 - 30

AN

o/



15 March 1984

3.3 LAYER SOFTWARE (continued)

Cj LAYERLAND GLOSSARY (continued) O
’ J

INTERFACE METHODS

/0074y

Software modules within the same system can
communicate with each other using any of the methods
described below; software modules in different
systems can communicate with each other only by use
of a connection.

Call/return interface - within the same
system, one module may "call" the other via the
call/return interface; only the two modules are
involved in this form of interface.

Inter Task Message interface - within the same
system, a module may communicate with another
module using the inter-task message interface
provided by the Executive.

Connection - if modules reside in different
systems, they can communicate with each other
only by establishing a "connection.” Depending
on the expected duration and usage of a
connection, one of the following connection
modes is used:

Liaison-mode has discrete establishment, Pty
data transter, and termination phases and 0 .
is used when significant amounts of data

are expected to be sent back and forth
over some period of time.

Datagram mode is transaction-oriented; a
datagram is a single data unit exchanged
between two entities. There are no
discrete establishment, data transfer, and
termination phases; address information is
included within each datagram.

Broadcast/multicast mode is an expansion
of datagram mode in that it permits
transmission of a datagram to more than
one entity.

Page 3 - 31



J

N
9

15 March 1984

3.3 LAYER SOFTWARE (continued)

LAYERLAND GIOSSARY (continued)

NETWORK ADDRESS

/0074y

All externally addressable DCN software is identified @
via a three-part address that provides a unique

identification within the catenet; a full network

address consists of the following parts:

Network ID Each network solution with a catenet
is assigned a unique 32-bit Network ID. DCN systems
will use Network IDs assigned by Xerox to ensure
their being unigue worldwide.

System ID At the time of its manufacture, each
DI 1is assigned a unique 48-bit identification number
from a pool of numbers allocated to Control Data by
Xerox. This number is written into battery-backed
RAM and is used throughout the catenet as the System
ID for that DI.

The System ID is used as the Ethernet address for

‘any system that is locally connected to one or more

Ethernet network solutions.

HDIC station addresses are handled locally by any
two DIs that are locally connected by an HDIC line;
the station address is not used as the System ID.

4

N
AN

SAP ID A SAP can be viewed as a "port"
through which two components communicate with each
other. The SAP ID is a 16-bit number that
jdentifies a SAP in such a way that software in the
local system can access another component by its SAP
ID. Dedicated ("well known") SAP IDs are assigned
to some frequently used components; other SAP IDs
are dynamically assigned as needed.

Page 3 - 32



15 March 1984

3.3.1 Ilower layers

Lower layer software is concerned with moving data from one system to
another system within a specific network solution. In addition, the
lower layers are responsible for routing and relaying data units within a
single network solution. Note that the network solutions to be Supported
in Release 1 do not need software support to relay or route within a
network solution and consequently do not perform any routing. Lower
layer software will be involved in routing in subsequent releases, in
particular for the C180 channelnet.

The following network solutions will be supported in DCN release 1:
. Ethernet
. Point-to-point HDLC line (up to 56Kbps)
. X.25 virtual circuit used to interconnect two DIs

In subsequent releases, when a C180 mainframe is supported as a CDNA
system, the channel interfaces between a C180 mainframe and one or more
DIs will make up another example of a network solution called the
"channelnet."

Independent software components exist for layer 1 of each network
solution. ILayers 2 and 3A software includes code that is common to all
network solutions as well as code specific to each network solution.
Layer 1, 2 and 3A software for a given network solution work together to
move data between systems connected to that network solution.

/0074y ‘ Page 3 - 33

P

~



15 March 1984

3.3.1.1 layer 1
Layer 1 software for Release 1 consists of the following:

. CIM controlware

. ESCI controlware

L XY

CIM controlware resides and executes on the CIM card to support
physical interconnection with different types of communication
lines. It consists of three parts:

interface with layer 2 software

state programs to provide the interface to communication
lines. Different state programs exist for different types

of communications lines. At Release 1, state programs will
exist to support synchronous HDIC lines and asynchronous

terminal lines.

the base system, which runs in the background to provide
resource (e.g. CPU) sharing between state programs.

ESCI controlware resides and executes on the ESCI card to suppdrt
physical interconnection with the Ethernet transceiver. Data to
and from the Ethernet is physically moved by the Ethernet

controller Intel 82256 chip, which is part of the ESCI card. The

ESCI controlware programs this chip to move data between the SMM

and Ethernet transceiver. A set of commands is programmed for the
controller chip to inform it about the physical location of data

puffers for outgoing data and empty buffers for incoming data.

Both the CIM and ESCI controlware interface with layer 2 software via the
Device Manager (DVM). DM resides and executes on the MPB card.

/0074y page 3 - 34

N



15 March 1984

3.3.1.2 layer 2

Layer 2 software includes the following: (:?m
Y

. Device Manager (DVM)
. HDLC Stream Service Routine (SSR) )
. ESCI Stream Service Routine (SSR)

e e T

{HDLC SSR!ESCI SSR :

[ ] [ ] 1

o= -—- + T + Layer 2

! Device Manager :

: (DVM) H

+- —- —— += - = = = - - -

: CIM : ESC1I ! Layer 1

! Controlware ¢ Oontrolware H

et S e +

DVM provides a general-purpose interface between layer 1 software on

intelligent cards (e.g. CIM and ESCI) and the Stream Service Routines

(SSRs) , which execute on the MPB card. This interface is provided via a

table called Device Control Block (DCB)

A separate DCB exists for each intelligent card in the DI. The DCB

contains: (j

a command ring, which contains command packets sent to the layer 1

software by the layer 2 software.

a status ring, which contains status packets sent to the layer 2
software by the layer 1 software

two chains of empty buffers, which contain empty buffers to
receive the incoming data units. Layer 1 software uses one chain
at a time. When all the buffers in one chain are used up, layer 1
software starts using the second chain; layer 1 software notifies
DVM when this occurs, so that DVM can obtain a new buffer chain.

Layer 1 software communicates with the SSR software by constructing a
status packet, adding it to the status ring in the DCB, and interrupting
the MPB card. The interrupt is processed by the DWM, which checks for
any outstanding status packets. If one is found, it is sent to the SSR
via an intertask message.

/0074y Page 3 - 35



% ’;

f:‘i\.\

15 Marcn 1vo4

3.3.1.2 layer 2 (continued)

SSR software calls a DVM subroutine in order to send a command packet to
layer 1 software. DW adds the packet to the command ring in the Device
Control Block and interrupts the intelligent card which contains the @

corresponding layer 1 software. Upon receipt of the interrupt, layer 1
software checks the DCB for any outstanding command and processes ;the

command (s) sent by the SSR.

SSRs are responsible for statistics collection and error logging for
themselves as well as associated layer 1 software.

/0074y

The HDLC SSR provides layer 2 functions for the point-to-point

synchronous HDLC line. HDLC SSR implements the balanced mode HDLC
protocol; options to support the LAFB protocol are included, as
are those options needed to load a remote DI across the HDLC

line. These options can be selected dynamically. HDLC SSR exists
as a separate task for each configured line. It is used to
support the layer 2 functions for both a general-purpose X.25
interconnection to a PDN and a point-to-point HDLC line used as a
network solution.

The ESCI SSR is not required to support any complex protocol. As

2 result, the ESCI SSR is a relatively simple piece of software.

page 3 - 36



16 March 1984

3.3.1.3 Layer 3A

Layer 3A software consist of a single component called Intranet. (:j&
Intranet provides an interface between the other lower layers (1 and 2) '
and a subset of the users of these layers. This subset includes users

who view layers 1 and 2 as providing an interface to a network. Intranet

users, illustrated below, are:

- Internet layer (3B)

- Initialization M-E

- BIP/SWM
S — —————+ +
: INTERNET !  INITIALIZATION M-E ! BIP/SWM !
| B o e e e e +
! !
! I N T R A N E T !
[ ] ]
- —- + . . e
! HDLC SSR ! ESCI SSR ! MCI SSR :
[P TR —- R — +
! DEVICE MANAGER ! !
R b e eee + M C I : ,
' CcIM ! ESCI ! DRIVER : (j
!  CONTROLWARE !  CONTROLWARE ! !
PR s L +

Intranet provides the following services to its users:
- Open and close a 3A SAP
- send data requests
- receive data and broadcast indications

- notification, to users with an open 3A SAP, of changes in
the status of underlying network solutions.

Intranet maintains output queues for the underlying network solutions.
For each queue, Intranet maintains two thresholds, called congestion and
uncongestion thresholds; the congestion threshold is higher than the
uncongestion threshold. If the number of outgoing messages in a queue
exceeds the congestion threshold, the associated network solution is
considered "congested." It remains congested until the number of
messages in the queue becomes less than the uncongestion threshold. Two
distinct thresholds are maintained to avoid the situation where the
status of a network solution is continuously changing between congested
and uncongested.

/0074y Page 3 - 37



- 15 March 1984

3.3.1.4 C170 Channel Support

Release 1 supports a channel interface with a C170 mainframe. Although
the C170 mainframe channel interface software cannot be associated with @
any network solution and is not actually a CDNA lower layer, the DCNS

implementation is patterned after the lower layer groups discussgd in
this section. o

The "layer 1" software for the C170 mainframe channel interface is called
the MCI driver. It resides on the SMM card and executes on the MPB

card. It uses the hardware on the MCI card to move data to and from the
channel interface. The MCI driver does not use the DVM to interface with
the MCI "layer 2" software, because both "layers" reside on the same
card; they can communicate using a direct interface.

The "layer 2" software for the Cl170 mainframe channel interface is not
required to support any complex protocol; as a result, the MCI SSR is a
relatively simple piece of software.

/0074y Page 3 - 38



3

(j

15 March 1984

3.3.2 Middle layers

The 0SI model defines a single middle layer, called the Transport layer C
(4); CDNA/DCN defines the Transport layer to consist of two "sub-layers,” /
Generic Transport and Xerox Transport. CDNA/DCN defines two additional
middle layers: the Internet layer (3B) and the X.25 Support layer. The
relationship between these middle layer components is illustrated below.

fmmmmmmmmmmmmmemm e e e e e e em————————————— +
: :
! X.25 SUPPORT LAYER !
] ]
Tt - +
: :
! GENERIC TRANSPORT !
] ]
o e e e e et a ;
: :
! XEROX TRANSPORT !
1 1
e m e —mmmmmm——— e e mm e ———————————— e ——— +
! :
! INTERNET LAYER !
1 1
+ + o

/0074y Page 3 - 39



15 March 1984

3.3.2.1 Internet layer

The Internet layer is responsible for relaying of messages between
different network solutions within the catenet. In DCN release 1, the
Internet layer functions are provided via the Xerox Internet protocol.

o

The Internet layer provides the following services to users withih its
system:

. Datagram Request

. Datagram Indication

. Broadcast Indication
In addition, the Internet layer manages an interface with the Intranet
(3a) layer to transmit and receive data units from locally connected
network solutions.

The Internet layer routes data units based on the destination network
address, which consists of a Network ID, System ID and 3B SAP iD.

The Internet layer receives data units from two sources:
from within the CDNA system in which it resides

from outside the system across a locally connected network

solution.
g In either case, if the destination Network ID jdentifies a locally
‘&W/‘ connected network solution, the destination System ID is used to

determine if the data is destined for this system.

1f it is, the destination 3B SAP ID is used to determine the
appropriate software component within this system.

1f it is not, the data is transmitted across the specified
locally connected network solution to the destination system
specified by the destination System ID.

1f the destination Network ID identifies a remotely connected network
solution, the Internet layer uses the Internet Routing tables to

determine if one or more paths to the final destination exists. The
Internet layer uses the relative cost of the paths to share the load over
the possible paths in exact proportion to their cost.

&

/0074y Page 3 - 40



15 March 1984

3.3.2.1 Internet Layer (continued)

If a path exists, the Internet Routing tables contain the Network
ID/System ID of next "hop," i.e., the next system enroute to the final
destination; the Network ID identifies the locally connected network
solution to be used by the Internet layer to transmit the datd unit.

Each time Internet layer relays a data unit, it increments the cumulative
hop count in the Internet header of the data unit. If the resultant hop
count exceeds sixteen, the Internet layer discards the data unit and
notifies the originator. If the Internet layer cannot re-route or
deliver a received data unit for any other reason, it discards the data
unit and notifies the originator.

The Internet layer relies on the Routing M-E to maintain the Internet
Routing tables as well as to provide services to open and close Internet
SAPs. The section on the Routing M-E discusses these services in more
detail.

/0074y Page 3 - 41

C



D

15 March 1984

3.3.2.2 Transport laver

The Transport layer is implemented as two software components, or
"sub-layers:"

Generic Transport - provides services identical to NBS and
ISO class four Transport. It uses the
Xerox Transport to help provide these
services. Where there is no direct
mapping between NBS/ISO services and
Xerox Transport services, it provides
the functions needed to support this
mapping.

Xerox Transport - implements the Xerox sequence packet
protocol.

All Release 1 DI-resident users of the Transport layer use the Generic
Transport services. (Subsequent DCNS releases may include support of
standards other than Xerox Transport; use of Generic Transport will
eliminate the need for Transport layer users to be concerned with the
specification Transport layer standard.) Implementation of Xerox
Transport does not, however, preclude future applications from using its
services directly.

Generic Transport provides the services listed below to its users.
Additional information on these services appear in the CDNA GDS.

. SAP management services

. Connection establishment and disconnect services
. Data transfer services

. Expedited data transfer services

. Status services

Generic Transport does not limit the maximum data size of data being
transferred via the Data Transfer services; however, Xerox Transport has
an upper limit on the maximum data unit size. As a result, Generic
Transport includes functions to fragment and re-assemble data units as
necessary; fragmentation and re-assembly is transparent to Generic
Transport users.

/0074y Page 3 - 42



15 March 1984

3.3.2.2 Transport lLayer (continued)

(j\ Services provided by Xerox Transport are very similar to those provided

S by the Generic Transport. There is a one-to-one match between the
primitives (interfaces) provided by the two Transports to support the
services; however, Xerox Transport primitives have the following
additional features:

. Each data unit can be assigned a data stream type. Xerox
Transport simply passes it on from one user to the other

(peer) user.

. Each data unit can be qualified to be or not to be the last
data unit in a sequence. This feature is used by Generic
Transport to facilitate its fragmentation and re-assembly of
data units.

/0074y Page 3 - 43




.

15 March 1984

3.3.2.3 X.25 Support Layer

The X.25 Support layer provides a service eguivalent to that provided by
an X.25 network. It provides this service by using the services of the
Transport layer and a CDNA protocol that enconmpasses X.25-specific
characteristics.

..

In Release 1, services of the X.25 Support layer are used by the :
following functions:

o C170 Transform for Transparent A-A connections between DCN
and C170 Network Products

o X.25 Transform between DCN and X.25 network

In subseguent releases, the X.25 Support layer will provide X.25 network
access to C180 applications that do not have direct access to an X.25
network.

The X.25 Support layer provides the following services to its users:

SAP management services allow a user to open and close an X.25 Support
Tayer SAD. An open SAP is required to receive incoming call
(connect) requests. Connection establishment and disconnect

services support all primitives (e.g. request, indication,
response, confirm) normally associated with these services.

Data transfer services support the data request and data indication

primitives. Both primitives allow specification of one or more
of three possible flags:

- The Q flag corresponds to the qualifier bit in the X.25
packet header.

- The D flag corresponds to the delivery confirmation bit in
the X.25 packet header.

- The M flag corresponds to the »more data" bit in the X.25
_packet header.

Expedited data transfer services allow a user to send one byte of data

which is guaranteed to be delivered before any subsequent data
requests.

Reset services allow a user to re-initialize the connection. All queued
Jata at both ends of the connection is discarded by the two
peer X.25 Support layer entities.

Change block size services allow a user of the X.25 Support layer, to
change the maximum data unit size for the incoming data units.

/0074y Page 3 - 44

O



15 March 1984

3.3.3 Higher layers

The higher layers provides data-dependent, end-to-end services and C
protocols to allow applications to communicate with other applications or
with terminals.

3

DCNS higher layer services are implemented as a dual-endpoint liaison
connection service. The end users at the endpoints of the connection are
viewed as "associates." The connection is called an "association."
Conceptually, an association may be viewed as a logical connection
between two peer associates.

DCNS implements the OSI higher layers as "layer groups." Consolidating
the layer 5-7 functions into groups is necessary since industry standards
for individual layers are not complete and agreement has not been reached
as to how the higher layer functions are to be distributed. Although the
provided services and protocols of each DCNS layer group are not directly
mappable to OSI layers 5-7, they do provide functions needed to allow
communication between user/application processes.

DONS will initially provide two higher layer groups:

Interactive Transfer Service(ITS) - provided in Release 1

Batch Transfer Service (BTS) - provided in subsequent release(s)

ITS is the only higher layer group available in the initial release of -
DCN. ITS provides the set of services required for communication between f
two DCN end-users engaged in the transfer of interactive data. The two 0
end-users may both be applications (A-A) or one may be an application and

the other a terminal user (T-3).

Full implementation of ITS will be phased, with early releases of DCN
focusing on ITS support of Terminal-to-Application (T-A) communication.
The initial ITS implementation specifically addresses the requirements of
asynchronous terminal communication with C170 applications.

The diagram below illustrates DCNS components involved in support of
asynchronous terminal access to a C170 host.

/0074y Page 3 - 45



J

3.3.3 Higher Layers (continued)

Asynchronous
Terminal
Devices
// // /
7'717

A=/== ==/
'Terminal !
! Support . ¢
! Software !
teee! tee==! TDI
t 1T7T8 !
I
! TRANSPORT °
fom——— e +

The C170 Interactive Virtual Termi
be transformed to the ITS represen

15 March 1vyo4

PR +
! Host ! C170
! Applications @ Host
PR ! ..
! NAM : ’
: !
o= Voleemeem- +

L

L
e P lemmmme- +
: T-A :
! Interactive !
: Transform
R ! lemmmem- ! C170
: ITS ! MDI
lewmm- L :
: TRANSPORT :
fmmmm——— e +

:

--------- B a2

nal (IVT) representation of data must
tation for transmission across the

DCN. This transformation is performed by the nr-A Interactive

Transform.” The T-A Interactive Transform maps the IVT protocol on to
the one supported by ITS. The T-A Interactive Transform is not a layer
and is mentioned here simply to provide a more complete picture of the

Release 1 higher layer group.

One additional component must be mentioned and that is the Terminal
Support Software, which is also not a layer. The Terminal Support
Software is the DCN implementation of the architecturally defined
Terminal Access Process. In the initial DCN release, ITS associations
(connections) exist between Terminal Support Software in a TDI and the
C170 Interactive Transform in an MDI, with the Terminal Support Software
being the initiator of the association.

The Terminal Support software offers the terminal user the flexibility to

establish and maintain multiple, simultaneously active associations in
Release 1. Future releases will support such features as screen

management and windowing.

The Terminal Support Software uses a set of ITS services that are

different from the set used by the

C170 Interactive Transform; ITS

services for T-A communication are said to be "asymmetric" for this

reason.

/0074y Page 3 - 46



(j}

15 March 1984

3.3.3 Higher layers (continued)

The Terminal Support Software uses the ITS asymmetric service for the (:j?
functions: 4

following

Establish an ITS association

aty

Transmit Bdited terminal input text

Transmit Transparent terminal input text
Transmit notification of terminal break

Transmit one character of terminal interrupt data

Transmit notification and values of changed terminal
attributes

Transmit a response to a request for the current values of
terminal attributes

Terminate an ITS association

The C170 Interactive Transform uses the ITS asymmetric service for the
functions:

following

/0074y

Respond to a reguest to establish an ITS association . R
Transmit Formatted terminal output text ‘::i
Transmit Transparent terminal output text

Transmit request to discard queued terminal output data

Transmit request for current terminal attributes values

Transmit request to change terminal attributes values

Terminate an ITS association

Page 3 - 47



15 March 1984

3.4 NETWORK MANAGEMENT

Network management consists of those functions within the DI that are
required to manage the Distributed Communications Network. Network
management functions are provided by Management-entities (M-Es). M-Es
are defined in the (DNA GDS as part of the Control Data Network
Architecture (CDNA). M-E software is always present in the DIs. ;-

Management-entities provide the following functions:

Creation and management of Internet Routing Tables
Title definition and translation

Command processing

Logging

File access

Error processing

Echo processing

0000000

Each function in this list is provided by a separate Management-entity.
Several M-Es consist of two parts, "dependent” and »independent;" the
dependent M-E relies upon the independent M-E toO provide services. This
division is necessitated by the fact that it is either impossible (or
impractical) to support the entire set of required functions in each DI.
For example, a sub-function of file access is concerned with direct or
indirect access to some sort of mass storage; not all DIs have access to
mass storage and therefore will not be able to support this
sub~-function. Similarly, a sub-function of command processing provides
an interface to a command source such as a terminal user or an
application; since not all DIs support terminal users Or applications,
there is no need to support this sub-function in each DI.

The Command M-E, Log M-E and File Access M-E have explicit and
stand-alone dependent and independent parts, where each part is
implemented in a separate piece of software. The software implementing
the dependent part of these M-Es will be present in every pI. The
software implementing the independent part will be present in some of the
pIs. As a result, some DIs will have both dependent and independent

parts of a given Management-entity.

/0060y page 3 - 48



15 March 1984

3.4.1 Routing M-E

The Routing M-E is responsible for creation, update and management of the
tables needed to route information between CDNA systems. The Routing M-E also
provides the services necessary to open and close 3B SAPs. i

Routing involves finding a path from one system to another, using this path to
transfer data between the two systems, and locating the software that is to
receive the data within the destination system. The routing process starts
when layer 3B software is requested to send a data unit to another system.
This request includes the network address of the destination system (Network
ID and System ID) as well as the 3B SAP ID of the destination software. The
routing process consists of the following sub processes:

Inter-network routing - responsible for ensuring that the data unit
reaches the network solution whose Network ID
is the same as that of the destination
system. This is done by delivering the data
unit to any system that is locally connected
to the desired network solution.

Intra-network routing - takes over once the data unit reaches a system
connected to the destination network

solution. It is concerned with delivering the
data unit to appropriate system on the
destination network solution. The System ID
in the destination address is used to locate
the desired system.

Intra-system routing - responsible for delivery of the data unit to
the appropriate software component once the
data unit reaches the addressed system. The
3B SAP ID is used to accomplish this routing.
Each of these three types of routing is
described next in more detail.

/0060y Page 3 - 49



15 March 1984

3.4.1.1 Inter-network Routing

Inter-network routing is the most complex of the three sub-processes. It
requires each CDNA system to know the next hop in the path to every network
solution in the catenet. Fortunately, in any catenet configuration, the
number of network solutions will be considerably smaller than the;number of
systems. s

ij;

Each CDNA system contains Internet routing tables. These tables are created
when the system first comes up and are dynamically updated. The process to
build and update these tables is described in the "generation of routing
tables" section.

Internet routing tables are also known as the Least Cost Routing Data Store Or
LCR-DS for short; the LCR-DS contains an entry for each locally connected
network solution. These entries exist as rows in the LCR-DS; each row
contains information about one or more paths to the network solution
associated with the row. This information is included in what is known as a
routing entry. There is one routing entry for each path.

Let us consider the following configuration as an example to jllustrate some
of the concepts. In this configuration, lettered boxes are used to represent
systems; numbered lines are used to represent network solutions; numbers in
parentheses represent cost.

1

(5) A Bt + 2 (20) N +

fommmmmmmmm = 1t B lememmeoesmoossToTTTT vt Cc

! $oml==t O

! '4 (10) '8 (3)

! ! ' SN
E ottt 6 (5) fompm—=t W
! A ! D leeem——emm-smemoosoos 't F !
$omtm=t $o=t-=t o

: 5 (10) :

: : :

: 3. e 7 (10) :

fommemmm— e e 1 lemmesmmossmoossoooTTOO +

O +

Let us assume that we are looking at routing tables in system A and we are
interested in all paths from system A to the network solution numbered 8. The
following is a partial list of all possible paths from system A to network
solution 8.

path-1  A-1-B-2-C-8

Path-2 A-1-B-4-D-6-F-8
Path-3 A-1-B-4-D-5-E-7-F-8
Path-5 A-3-E-7-F-8

Path-6 A-3-E-5-D-6-F-8
Path-7 A-3-E-5-D-4-B-2-C-8

Some of these paths will show up in the LCR-DS row associated with network
solution 8. ,

/0060y page 3 - 50



15 March 1984

3.4.1.1 Inter-network Routing (continued) ,

The first criterion for the paths in the LCR-DS row is that they should not be(“y
overlapping; two paths are said to be overlapping if they start out on the

same network solutions. 1In the above list, paths 1 through 3 start out on
network solution 1; therefore they overlap with each other and so only one of
these will end up in the LCR-DS row for network solution 8. Similarly, only

one path out of paths 5 through 7 will find its way to the LCR-DS row.

The second criterion for a path to be included in the ICR-DS is that, of the
overlapping paths, the one with the "least cost" will be selected. For
Release 1, the cost of a network solution is inversely proportional to its
accessible (static) bandwidth. The cost of a path will be the sum of costs of
all network solutions that make up the path. A cost of "1" for a network
solution with bandwidth of 100 megabits per second is used to normalize the
cost of various network solutions. This normalization yields the following
cost for some typical bandwidths:

Bandwidth Oost

10 Mbs A(l6)
1.54 Mbs 41 (16)
56 Kbs 6FA (16)
9.6 Kbs 28BO(16)

In the sample configuration, the numbers in parenthesis show the cost of each
network. Using these numbers, one gets the following costs for the listed

paths: 0

Cost
5
20
35
17
22
47

TR

Since only one of paths 1 through 3 is to be selected, path number 2 will
qualify. Similarly, of paths 5 through 7, path number 5 will be selected.
Paths 2 and 5 will be included in-the LCR-DS row according to their increasing
cost. Therefore, path number 5 will be the first path and path number 2 will
be the second path in the LCR-DS row.

However, only limited information about the two selected paths is included in
the LCR-DS. The following table shows the information included in the LCR-DS
for these paths:

Qoosr FIRST NETWORK SOLUTION FIRST RELAY SYSTEM

(Path 5) 17 3 E
(Path 2) 20 1 B

/0060y Page 3 - 51



ey

C

15 March 1984

3.4.1.1 Inter-network Routing (continued)

It is very important to understand that the Internet routing table (ILCR-DS)
does not contain complete information about each path. Basically it contains
only the following information:

o Existence/non-existence of a path ¢

o Network ID and System ID of the first network solution and
system in the path; the next hop

o COost of the total path

This allows dynamic and adaptive selection of the path. 1In the above example,
when a data unit leaves system A, it starts out on the best possible path,
pased on current information. It will travel on network solution 3 to system
E. In system E, the best path will be selected once again to take it to its
final destination. Normally, this path will be the network solution 7.
However, the routing process will have built-in intelligence to react to
dynamic changes in the configuration, such as failure or congestion of network
solution 7.

There is one more restriction on paths considered for inclusion in the
ICR-DS. Any path that involves more than sixteen hops is automatically
rejected. The Internet layer (3B) software keeps the cumulative hop count
with the data unit. 1f the hop count exceeds 16, the data unit is discarded;
this prevents endless relaying of a data unit in the catenet.

/0060y page 3 - 52

77N
W



15 March 1984

3.4.1.2 Intra-network Routing

Intra-network routing is concerned with routing of a data unit within a
network solution. In Release 1, intra-network routing by the software is not
needed, so this concept will be illustrated by using the chahnelnet network
solution that will be supported in a subsequent release.

Intra-network routing is initiated when a data unit reaches a system that is
locally connected to the destination network solution. Let us use the
following configuration as an example to illustrate the intra-network routing.

t []
! C180 H
! MAINFRAME !
! A !
! !
H .
! B :
t+MDI ! !MDI !
! B P !
! Pl !
! !
/ 2 ! / / H 3 /
| ]
/ / / .T___;___T /
'!TDI! =
: E ! i[:%
M !

Suppose the C180 mainframe is sending a data unit to TDI-E. The address of
this TDI will be stated to be Network ID=3/System ID=E. When this data unit
reachs MDI-C, the MDI-C 3B software will do the following:

a) It will check the destination Network ID of the data unit and
find it to be 3.

b) It will check its LCR-DS to see if network 3 is accessible.

c) It will find that this network is accessible and is locally
connected.

d) It will compare the destination System ID (E) with its own System
ID (C) and find that they differ.

e) It will transmit across network solution 3 and address it for
system E.

f) TDI-E will repeat steps a through d and accept the data unit.

/0060y Page 3 - 53



15 March 1984

3.4.1.2 Intra-network Routing (continued)

The above configuration shows two MDIs connected to the C180 mainframe via
channel connections; both channel connections are assumed to be configured as
part of a single network solution. All or some of the channel connections to
the same C180 mainframe may be configured as a single network solgtion.

In the above configuration, systems A, B, and C are all connected to the same
network solution, namely the channelnet numbered 1. Now let us assume that
system B wants to send a data unit to system C. The destination address of
this data unit will be specified as Network ID=1/System Ip=C. The following
steps describe the intra-network routing processing:

a) The Internet (3B) software in system B will use its LCR-DS to

determine that network solution 1 is accessible and locally

connected. It will also determine that the data is not destined
for itself.

b) The Internet (3B) software will transmit the data unit to the
system A.

c) This data unit will be received by the channelnet Intranet (33)
software in the €180 mainframe (i.e., System A).

d) The channelnet Intranet (3A) software in system A will determine
that the destination network is the channelnet itself, but the
destination system is other than System A.

e) The channelnet Intranet software will relay the data unit to
system C.

/0060y page 3 - 54

U



15 March 1984

3.4.1.3 Intra-system Routing

Intrasystem routing is concerned with delivering the received data unit to th. %\
appropriate software component within the system. The Internet (3B) software
maintains a table of 3B SAP IDs of all software components that either have
opened 3B SAPs or have a dedicated SAP. This table also contains the current
status of the SAP (i.e. open or closed) as well as the address of a procedure

to be called to deliver the incoming data units.

After verifying that the Network ID and System ID of the received data unit
are the same as that of the system where the data unit is received, the
Internet (3B) software uses the 3B SAP in the address part of the received
data unit to find a matching entry in its 3B SAP table. If the entry is found
and the SAP is open, the received data unit is delivered to the associated
software component. Otherwise, the data unit is discarded and an error PDU is
sent to the source of the data unit.

/0060y Page 3 - 55



15 March 1984

3.4.1.4 Generation of Routing Tables

The following tables are created and updated by the Routing M-E and are used
to accomplish the three types of routing described in the previous section: @

- 3B SAP table ¢

-  Local Directly Connected Network Solution Data Store
(L-DCN-DS)

- Remote Directly Connected Network Solution Data Store
(R-DCN-DS)

- Ilocal Network/Community Title - Address Table
- Remote Network/Community Title - Address Table
- least Cost Routing pData Store (LCR-DS)
The 3B SAP table contains information about dedicated 3B SAPs as well as
non-dedicated SAPs that are open. Creation and update of this table is
straightforward and does not need any further description. This table is used
for the intrasystem routing.

The L-DCN-DS contains information about all locally connected network
solutions.

The R-DCN-DS contains information about all remotely connected network \
solutions. W

The Local Network/Communit Title/Address Table contains Titles/Addresses of
Tocally connected fetwork solutions and of the neommunities" to which the

local system belongs. Communities are defined via conf iguration commands.

The Remote Network/Community Title/Address Table contains Titles/Addresses of
remotely connected network solutions and of "communities" to which the remote
multi-homed systems belong. This information is received in Routing

Information data units from remote multi-homed systems.

The LCR-DS is a simple table and is easy to use to do the inter-network and
Thtra-network routing. However, the process used to create and update this

table is rather complex. The .following discussion provides a simple overview
of this process; the reader is referred to the CDNA GDS for rigorous details.

/0060y page 3 - 56



15 March 1984

3.4.1.4 Generation of Routing Tables (continued)

The LCR-DS contains information about least cost paths to accessible network (j}
solutions. Even though this table does not contain information about every
possible path, the process used to create and update this table has to know

these paths completely in order to select the least cost nonioverlapping paths.

Information about different paths can be either pre-defined or computed
dynamically. In CDNA this information is not pre-defined; instead it is
dynamically computed and updated periodically.

Any path definition has to be based on configuration information of individual
CDNA systems that make up the path. However, no single system can compute
these paths based on its own configuration information (trivial paths being
exceptions). Therefore, any system or process interested in computing such
paths must obtain up-to-date configuration information from other systems if
tables are to be maintained dynamically. Fortunately, configuration
information is needed from a relatively small number of systems.

For example, consider the following configuration, which includes four DIs
connected to a single network solution, namely Ethernet.

R + 4o +
I N ! B !
i S R S 2
/ : ! / _
/ ! ! 7 'l
et S tometmemd cm
!oc ! ! D !
+ e +

Let us assume we are trying to build the LCR-DS in system A. This
configuration contains only one network solution that is locally connected to
system A. Systems B, C, and D cannot provide any new information to system A
to help it build its LCR-DS. In this case, the LCR-DS will contain a single
row that is associated with the locally connected network solution.

/0060y Page 3 - 57



N

15 March 1984

3.4.1.4 Generation of Routing Tables (continued)

Next, let us look at a more complex configuration.

e + B
! A H ¢
b=t
/ : 1 _/
/S ; 7
P
! B M
Fommtmmt
/ 2 : /
J1 7
fommte et
! C !
P +

Once again, let us try to build the LCR-DS in system A. Both network
solutions numbered 1 and 2 are accessible from system A; however, system A by

s

jtself cannot find out that network solution 2 is remotely connected to it.

System B must tell system A that

it (System B) is locally connected to both

network solutions. Only then system A can deduce the fact that it can reach

network solution 2 via system B.

Similarly, system C must receive the same

information from system B, in order to learn that network solution 1 is

accessible to it.

The points being made by the above examples may be summed up as follows:

o Systems that are locally connected to a single network solution
do not need to tell other systems about their configuration.

o Systems that are locally connected to more than one network
solution need to tell all other systems in the catenet about
network solutions locally connected to them.

/0060y Page

3 -58

-
s



15 March 1984

3.4.1.4 Generation of Routing Tables (continued)

If a system is locally connected to more than one network solution, the
Routing M-E periodically broadcasts Routing Information PDUs (RI-PDUs) on
all its locally connected network solutions. The RI-PDU contpins
information about locally connected networks as well as local network and
community titles. Normally, an RI-PDU is sent once every thirty seconds,
but will be sent sooner if a change takes place in the information
included in the RI-PDU.

Each RI-PDU contains a sequence number and a change/no change flag. Each
time an RI-PDU is transmitted, its sequence number is incremented by one
and all changed information is flagged.

The Routing M-E in each system, receives RI-PDUs from other systems. The
sequence number of the received RI-PDU is checked. If the sequence
number is the same as one received previously from the same system, it is
discarded. Otherwise, the following is done:

- A copy is made and saved for local processing.

- The RI-PDU is broadcasted on all locally connected
network solutions, except the one on which it was
received.

- The local copy is examined for change flag(s). If
there are no changes, the processing ends. Otherwise,
the changed information is used to update the
corresponding information in the R-DCN-DS and remote
network/community title-address table.

- If there were any changes in the R-DCN-DS entries, the
LCR-DS is re-computed and updated.

/0060y Page 3 - 59

o

le



P

15 March 1984

3.4.1.4 Generation of Routing Tables (continued)

DCN Release 1 systems connected to more than one network solution are called

NDIS. Each NDI sends information about its locally connected network @
solutions via Routing Information PDUs. As the status of connected network

solutions in the L-DON-DS or R-DCN-DS changes, the LCR-DS is re-computed to

incorporate effects of these charges. The step-by-step process uded to create

the LCR-DS is as follows:

a) Create the Local Directly Connected Network Solution Data Store
(L-DCN-DS) , which contains a list of, and information about, all
locally connected network solutions.

b) Maintain the Received Directly Connected Network Solution Data Store
(R-DCN-DS) , which contains an entry for each system from which
Routing Information PDUs are received. Each entry will contain
information about network solutions locally connected to the system
associated with that entry.

c) Since all locally connected networks in the L-DCN-DS are obviously
reachable, create a row for each locally connected network solution
in the LCR-DS (i.e., Internet routing table.)

d) For each locally connected network solution in the LCR-DS, search

the R-DCN-DS entries to see if its Network ID matches one of the

locally connected network solutions in the R-DCN-DS entry. If a
match is found, then all other locally connected network solutions
in that entry will also be reachable from the system, where the
ICR-DS is being created. Therefore, add these other locally N
connected network solutions (i.e. create a new row) to the LCR-DS, -
if they are not already present. If they are already present and
the newly discovered path does not overlap one already present in
the LCR-DS row, add this path to the row. If the newly discovered
path overlaps one already present, compare the two costs and retain
the lower cost path in the row.

e) As a result of step &, the LCR-DS will contain rows for remotely
connected network solutions. Repeat step d for these rows, etc.

/0060y page 3 - 60



15 March 1984

3.4.1.5 Open Issues on CDNA Routing i
C

The following is a list of limitations and problems with CDNA routing as
described in the CDNA GDS. Some of these limitations are inherent to the
chosen philosophy for routing. Others are problems or holes which need to be

addressed.

a)

b)

c)

/0060y

The algorithm used to compute the cost of a path does not take into
account the overhead involved in relaying a data unit from one
network solution to another. This is the CPU overhead in the system
doing the relay. This cost should be easy to compute and include in
the total cost.

The impact of congestion on the cost associated with a specific
network solution is not adequately addressed.

The routing tables do not contain any information about the status
of systems which are connected to one network solution only. For
example in the following configuration, system A has no way of
finding if system B is up or down. The best it can do is to detect
the absence of system B via time out mechanisms in Transport layer
software. This limitation is inherent in the approach chosen for
the CDNA routing, but is not serious.

O

: : ! :
i A ! ! B !
Page 3 - 61



15 March 1984

3.4.2 Directory M-E

A Directory M-E is resident in every DI. Each individual Directory M-E
maintains local data stores that contain Title information that is most
beneficial to its local system and the catenet as a whole. Collectively,
the Directory M-Es maintain a distributed Directory of Titles ang
associated Addresses.

Directory M-Es use Internet datagram and broadcast services to distribute
Title information to Directory M-Es in other systems. Dissemination of
this information is conducted under the control of the Directory M-E
protocol, which allows Directory M-Es to communicate in a manner that
minimizes the amount of network traffic required to maintain a
destributed Directory and provides Directory services at a high
performance level.

Directory M-E services fall into two categories:

Registration services Software components use Registration
services to announce availability,

location, and specific characteristics of
services they offer. During
initialization, each component determines
its own network address and uses
Registration services to announce its
availability to other components at the
location specified by its network
address. Registration services are also
provided to alter and delete entries from
the Directory.

Translation services Software components use Translation

services to determine the network location
of a required or requested service.

/0060y Page 3 - 62

U

VA

\ ;
e/



15 March 1984

3.4.2.1 Directory Entries

The Directory consists of multiple Directory Entries, each of which O
contains a registered Title/Address pair. A Title/Address pair consists
of the following information: s

Title - any string of 1 to 256 ASCII (Parity Bit = 0)
characters.

Adress - a field of octets that contains one of the following:

A network address that consists of:

3B Network ID, or

3B Network ID + 3B System ID, or

3B Network ID + 3B System ID + 3B SAP ID

3B Network ID + 3B System ID + 3B SAP ID + 4 SAP ID

A non-network address that is a 32-bit machine-address
field used by components within a system to exchange
interface addresses. Non-network addresses have only
local system significance and therefore Directory
information relative to non-network addresses is not
distributed throughout the network.

Each Directory Entry also contains a Directory Entry Identifier that

uniquely identifies when and where that entry was created or last :
updated. Whenever a Directory Entry is changed in any fashion, its 0
Directory Entry Identifier is also changed. The Directory Entry

Identifier is an 18-octet value comprised of the local Network ID /

System ID and date/time stamps.

A Directory Entry may optionally contain attributes that can be used in
the following ways:

- specify additional Title-matching criteria that must be met
before that Directory Entry will be considered to be a match in
a request for translation;

- indicate a priority relative to other entries with the same
Title;

- identify protocol(s) associated with that Directory Entry.

/0060y Page 3 - 63



ﬂ”\ﬁ
1\4‘% y !

L

3.4.2.1 Directory Entries (continued)

15 March 1984

The Directory user has some controls over domains in which a registered

Title is meaningful,

Title Domain -

via the "Title pomain" and

allows the Registration se

"Search Domain."

. '
rvices user to provide

some insight to the Directory M-E as to where information about a

specific Title
subset of netwo
of the requests
A Title Domain
of the register
specified domai

Search Domain -

should be distributed. Ti
rks and systems within the

tle Domain specifies a
catenet, from whence most

for the registered Title will probably originate.
specification does not, however, restrict knowledge

ed Title to those networks
n.

and systems in the

allows the Translation services user to specify a

subset of networks and systems within the
Directory M-E should limit its Title Translation search. A

translation of
Title Domain, i
pomain that inc

catenet to which the

a Title can be obtained from outside its registered
£ the Translation services user specifies a Search

judes some portion of the

specified Title Domain.

The following special Titles are used to specify domain parameters:

is a 1-32 octet community

name; community titles are registered
as the result of configuration

-  "Community xx" where "xx"
commands.
- "Broadcast Network rr" where "rr"

These special Titles

"311 networks within

/0060y

is the hex number of 3B

relays (i.e., the number of hops) to

the remote

network; the Routing M-E

registers one such Title for each
locally connected network solution

(™00" hops
each networ
hops away,

away) , one such Title for
k solution that is "01"
and so forth.

are used by Directory users when they want to
specify a domain in terms of "3]]1 systems belonging to community xx" or
rr hops from the local network.” When the Directory
M-E receives a request containing a domain identified by one of the above
Titles, it searches its own Directory for that

~ determine the Address(es) corresponding to the

Title in order to
specified domain.

™
J/



By
VY

15 March 1984

3.4.2.2 Registration Services “
Registration services include primitives to; (J/

- register a Title, its corresponding Address, and other optional
information in the Directory

- change information about a Title previously registered
- delete a Title from the Directory

Create Entry Primitive

A Directory user utilizes the Create Entry primitive to request that a
new Directory Entry be created. Parameters are:

Title - specifies the ASCII Title, as defined above.

Address - specifies the Address to be associated with the Title
in the Directory Entry. The user may specify the
Address in any of the ways defined above, or, may
specify only the 3B SAP ID or the 3B SAP ID + the 4
SAP ID. If only SAP ID(s) are specified or if no
Address parameter is given at all, the Directory M-E
supplies the Network ID / System ID of the local
system. L
Directly Accessible Service - optionally specifies the set of CDNA 0
end-to-end protocols associated with this Directory
Entry. This parameter can be used to ensure that the
two potentially communicating end-users have
compatible underlying services. This attribute is
used as a Title-matching criterion only if it is
specified on a Translation request, in which case
only Titles registered with the same "directly
accessible service" will be supplied in response.

Password - optional parameter that can be used as an extra
measure of security. If this attribute is
registered, it is always used as a Title-matching
criterion; i.e., subseguent Translation requests must
contain a matching password.

User Information - optional parameter that can be used to pass up
to 32 octets of information in responses to
subsequent Translation requests. This parameter is
not used as a Title-matching criterion.

/0060y Page 3 - 65



15 March 1984

A(J) 3.4.2.2 Registration Services (continued)
e

Create Entry Primitive (continued)

Title Domain - optional parameter that can be used to specify the
domain over which the Title is to be known. A Title
pomain may be specified as one of the following:

- Local System (default value)
- Local Network

- Broadcast Network "rr"

- Community "xx"

- Catenet

Distribution Frequency - specifies when and where to distribute the
information associated with this Directory Entry:

- distribute, upon request, only to the
requesting Directory M-E

- distribute, upon request, to the
requesting Directory M-E and all Directory
M-Es on the same network (default value)

- distribute, upon request, to the
requesting Directory M-E and all Directory
M-Es on the same network and also
73 periodically distribute throughout the
Title Domain. The frequency of
distribution is configurable.

Priority - specifies the priority to be asociated with this
Directory Entry. The range of priorities supported
is 0 - 3, with 3 being the highest and default

priority. when multiple entries exist for the same
Title, the entry with the highest priority is
returned in a Translation indication. This parameter

is not used as a Title-matching criterion.

';he'Directory M-E processes a Create Entry request by creating an entry
in its Registered Data Store (RDS). The RDS contains Directory Entries
created by users in the local system.

The Directory M-E creates a Directory Entry Identifier for the newly
created entry; the Directory Entry Identifier is returned to the
requestor upon completion of processing.

1f the Create Entry request specifies a Title Domain other than "Local
System" and a periodic Distribution Freguency, the Directory M-E sends a
copy of the newly created entry to all networks identified by the Title
pomain.

/0060y page 3 - 66



15 March 1984

3.4.2.2 Registration Services (continued) (Tmh
Change Entry Primitive A
A Directory user utilizes the Change Entry primitive to requést that a

specific Directory Entry be altered. The user must identify the target

entry by supplying the Directory Entry Identifier. The user can change

any of the Create Entry values except the Title parameter.

The Directory M-E processes a Change Entry primitive in the same manner

as a Create Entry primitive, except that instead of Creating a new RDS

entry, an existing entry is updated. A new Directory Entry Identifier is
generated and returned to the requestor.

Distribution, if any, of the altered entry is done according to the same

rules used for the Change Entry primitive.

Delete Entry Primitive

A directory user utilizes the Delete Entry primitive to request that the

a Directory Entry be deleted. In order to delete a Directory Entry, the

user must specify both the Title and Directory Entry Identifer.

The Directory M-E processes a Delete Entry request by removing the entry m ‘
from the RDS. 1If the Title Domain of the deleted entry is not "Local

System" and periodic Distribution Frequency is registered, the Directory
M-E notifies all networks identified by the Title Domain that the
Directory Entry has been deleted. :

/0060y Page 3 - 67



el

i
()

N

V4

3.4.2.3 Translation Services

Translation services

- requesting a Title

15 March 1984

include primitives for:

Translation,

..
[

- notification that a Translation has been found,

- requesting that a pr

cancelled,

- notification

terminated.

inter-network communica
a single Translation request wil
indications. For these reasons,

be returned asynchronously in response to
st processing is signalled by a

letion of Translation reque
Translation Request Termination

contains both a nyser ID"

Translation Request

eviously requested Translation be
that a Translation request has been

tion requests may require inter-system and/or

tion between Directory M-Es. It is possible that
1 result in multiple Translation

one or more Translation indications may

a Translation request.

primitive. Each of these primitives

and a "Directory M-E ID" that can be used to
match requests and indications.

Primitive

A Directory user utilizes
that the Directory M-E re
user-supplied Title and op
of this primitive are

Title -

/0060y

the Translation Request primitive to request
turn Address(es) corresponding to the

as follows:

specifies the 1 - 256
The full Title can be
characters

way:

tional Title-matching criteria. The parameters

character Title to be matched.
specified or the "wild-card"

described below can be used to locate
multiple Directory Entries that are related in some

)

* repre

* repre

sents any single character

sents any string of characters

of arbitrary length

[ ] represents any single character that

is:

a member of the set enclosed in
square brackets (e.G.r [abgz]
mans "a" or “b" or llq" or "z“)

within a range (e.g., [0-91)



15 March 1984

3.4.2.3 Translation Services (continued)

Translation Request Primitive (continued)

Out-of-date Identifier - specifies a Directory Entry I&entifier

that the user previously obtained in a Translation
indication; the Address associated with that
Identifier could not be used to reach the destination
service. If an Out-of-date Identifier is specified,
the Directory M-E does not consider that Directory
Entry to be a match for the Translation request. Up
to eight Out-of-date Identifiers may be specified on
a single Translation request.

Directly Accessible Service - optional parameter that specifies the

Password -

set of CDNA end-to-end protocols that are to be
associated with any matching entries. This parameter
can be used to ensure that the two potentially
communicating end-users have compatible underlying
services.

provides a measure of Directory Entry security. If
specified on a Translation request, a matched
Directory Entry must have the same value. If not
specified on a Translation request, a matched entry
must not contain a password.

Search Duration - optional parameter that specifies the maximum

Search Domain

/0060y

amount of time that the Directory M-E is to search
for the requested Translation. Minimum, maximum, and
default time values are configurable.

- specifies the domain across which a search for the
Title is to be made. A Search Domain may be
specified as one of the following:

- Local System (default value)
- Iocal Network '

- Broadcast Network "rr"

- Community "xx"

- Catenet

Page 3 - 69



,.
A
)

s
W

e
-

N

15 March 1984

3.4.2.3 Translation Services (continued)

Number of Translations - specifies the number of Translations to be
searched for and returned to the requestor; the default value is
one.

3

If the Search Domain is not "Iocal System," the value
restricted to the range 1 - 8.

If the Search Domain is "Ipcal System," the value can be in
the range 1 - 255.

The number of translations obtained may be less if the Search
puration expires prior to receiving the number of requested
translations.

The Directory M-E processes a Translation regquest by making an entry in
its Translation Request pata Store (TRDS) and generating a Translation
confirm to the requestor. The Translation confirm notifies the user that
the request was valid and that the Directory M-E is now searching for the

*

requested Title Translation.

The Directory M-E begins searching the Search Domain by se@rching data

stores in its local system. Two data stores are involved in the local
system search:

The first data store is the RDS which contains entries resulting from
the processing of Create Entry request primitives from local system
components.

The other data store is the Translation Data Store (TDS). The TDS
contains entries for Title Translations learned about through
received Directory protocol data units. Entries in the TDS are
directly related. to the Title Domain specified for a Title registered
in another system. The size of the TDS is fixed at one-hundred
entries; the oldest entries are cycled out when maximum size is
reached.

After both local data stores are searched, the Directory M-E sends out
Directory protocol data units, requésting the aid of Directory M-Es 1n
other systems.

whenever a matching Title is found, a Translation Indication is sent to
the originator of the Translation request and the number of translations
in the corresponding TRDS entry is decremented. When this number
reaches zero, Translation request processing is complete. The TRDS entry
is deleted and a Translation Regquest Termination is sent to the
originator of the Translation request.

/0060y page 3 - 70

U



15 March 1984

3.4.2.3 Translation Services (continued)

C

Translation Indication Primitive

'3

The Translation indication primitive is used by the Directory to inform
the Directory user that a Title Translation has been found for a
previously issued Translation request. The parameters of this primitive
are as follows:

Title - The Title contained in the matched Directory
Entry.
Address - The Address associated with the matched

Directory Entry.

Directory Entry Identifier - The identifier of the matched
Directory Entry.

Directly accessible Service - The Directly Accessible Service
attribute of the matched Directory Entry.

User Information - The User Information contained in the matched
Directory Entry.

Priority - The priority associated with the matched o
Directory Entry. 0

Abort Translation Primitive

This primitive provides the Directory user with capability to cancel a
previously issued Translation request. .

Translation Request Termination

This primitive is used by the Directory M-E to notify the Directory user
that processing relative to a specific Translation request has terminated.

/0060y Page 3 - 71



.
o

15 March 1984

E and Command Processors

3.4.3 Command M-
mmand M-E is undergoing design;

The Co
future updat

/0060y

e to this document.

information will be supplied in a

page 3 - 72

7N
\\_, ,,7'7‘



15 March 1984

304-4 E M-E

The Log Management-entity is responsible for providing a service to all ( >
DI-resident software to generate log messages and ensure that they are =
written to mass storage for subsequent analysis. In Release 1, the

physical writing of the log messages to mass storage is handled by a C170
mainframe program called the C170 Log Server, which is described later in

this document.

The Log M-E also allows one or more network operators to receive a
defined set of log messages as alarms at their consoles.

The following are examples of types of information that may be logged.

Resource utilization and error statistics
Hardware and software failures
Configuration changes

Accounting information

* L] L] L]

The type of log analysis to be done can vary, based on the needs of
different sites; so rather than qualify each log message by its
attributes (such as error statistics message, software failure message,
etc.), CDNA does not call for any qualification of the log messages.
Instead, a unique message number is associated with each potential log
message. Qualification of log messages is left to analysis software,
such as the Network Performance Analyzer.

CDNA defines a concept called "ILog Groups." A Log Group contains a list @
of log message numbers and identifies the destination for these

messages. A set of Log Groups is associated with each system that can

generate log messages. Information in the ILog Groups is used to control

the generation and transmission of log messages.

The Log M-E is implemented as two parts:

. Dependent Log M-E
. Independent Log M-E

A Dependent Log M-E exists in each DCN system. An Independent Log M-E
exists only in those systems that.have access to mass storage. In
Release 1, the Independent Log M-E functions are implemented by software
components that reside in a Cl170 MDI and connected C170 mainframe.

Each Dependent and Independent Log M-E belongs to one or more Log Groups,
each of which is identified by a Log Group Mmber. Each Log Group
contains a list of log messages included in it. This list is implemented
as a bit map of all log messages included in the group. If a bit is set
in the bit map, the corresponding log message is included in that Log
Group. The Dependent Log M-E supports on-line commands to allow an
operator to add or delete log messages in a Log Group.

/0060y Page 3 - 73



15 March 1984

,,,,, 3.4.4.1 Dependent Log M-E

{ }1
- A Dependent Log M-E exists in each DCN system and provides a service to other ”
software components in that system for generation and transmission of 1og ..
messages. 3
As a part of system configuration, the Dependent Log M-E is given a list of
the Log Groups to which it belongs. This list is a set of integers (nj).,
each of which identifies a Log Group. The Dependent Log M-E combines each
such integer with the character string, "log M-E Group" to generate a Log
Group Title of the form "Log M-E Group nj. The Dependent Log M-E requests a
Translation of each such Title to obtain the address of the Independent Log
M-E to whom the log message in the associated Log Group should be sent.

The Dependent Log M-E establishes a Transport connection with one Independent
Log M-E in each Log Group. The Independent Log M-E uses the connection to
send the log message number bit map for the Log Group to the Dependent Log
M-E. The Dependent Log M-E uses the connection to transmit log messages to
the Independent Log M-E.

The Dependent Log M-E maintains a table called the Correspondent Data Store,
which contains an entry for each Log Group to which the Dependent Log M-E
belongs. Each entry contains the bit map of the log messages belonging to
that Log Group. Each entry also contains address (es) of the Independent Log
M-E(s) that belong to that Log Group, one of which is identified as the one
P being currently used (via Transport connections) for transmission of log
beo 7 messages.
when the Dependent Log M-E receives a request for the generation of a log
message, it checks each Correspondent Data Store entry to identify the Log
Group(s) that include that log message. The log message is then transmitted
to the Independent Log M-E associated with the jdentified Log Groups.

/0060y Page 3 - 74



15 March 1984

3.4.4.2 Independent Log M-E

M"\
The Independent Log M-E function is implemented by two software components. (J
One component, called the C170 Log Server, resides in the Cl170 mainframe. The
other component, called the Independent Log M-E, resides in the MDI connected
to the C170 mainframe. These two components interface with each other via a
Cl70 Network Products A-A connection.

As a part of system configuration, the Independent Log M-E receives a list of
Log Groups to which it belongs as well as the bit map for log messages in each
Log Group. For each Log Group nj in this list, it registers the following
Title in the Directory:

"LOG M-E GROUP nj"

The Independent Log M-E opens a Transport SAP and accepts connection requests
from Dependent Log M-Es that belong to one or more of its Log groups. Once
the connection is established, the Independent Log M-E transmits group bit
maps to the Dependent Log M-E for the Log Groups belonging to that Dependent
Log M-E. It receives log messages from the Dependent Log M-Es on the
Transport connections and delivers the log messages to the C170 Log Server.

The Independent Log M-E also provides an alarm service to the DCN network
operators. The process used to provide the alarm service needs to be defined.

/0060y Page 3 - 75



15 March 1984

3.4.5 File Access M-E

The File Access M-E provides components in CDNA systems with access to
secondary storage files; it allows components to behave as if they had
local system access to those files.

o

..
'3
.

The File Access M-E consists of two parts:

/0060y

pependent File Access M-E (DFA) , resident in every pI in the

catenet. To Software components within a DI, the DFA appears

to be providing access to local secondary storage .

ndependent File ACcCesSS M-E (IFA), resident only in DIs that

I
have a system-specific interface to secondary storage. In
Release 1, only C170 MDIs are capable of being optionally

configured with an IFA. At least one MDI within the catenet
must contain an IFA.

N

7

Page 3 - 76



15 March 1984

3.4.5.1 Dependent File Access M-E (DFA) (‘\
S

The DFA provides two types of primitives to components in its local
system:

..
+
H

- file-specification primitives

Open File
Create File
Delete File

- file-operation primitives

Read File
Write File
Position File
Close File

During initialization or reconfiguration, an IFA registers a "file-type
Title" for each type of file that it supports. File-type Titles are used
to control the location(s) within the DCN of particular types of files.

When a file-specification primitive is issued, its parameters must
include both a file-type Title and a file-name. For example, a component
responsible for generating memory dumps as part of error processing would
issue a Create File request to the DFA, supplying a file-type Title
indicating "dump file" service. Since a DFA has no direct access to Cﬂ?
secondary storage, it must locate an IFA that supports the requested ‘
file-type. The DFA uses the supplied file-type Title in a Translation
request and is returned a corresponding network address.

/

The DFA then uses that IFA network address to establish a Transport
connection with the IFA. The Transport connection is used by the DFA and
IFA to exchange File Access Protocol Data Units.

Once the requesting software has been notified that the requested file
has been opened or created, file-operation primitives can be used to
manipulate the file. The Close File request causes termination of the
Transport connection. ”

The Delete File request causes both the establishment and termination of

the Transport connection and hence is considered to be a
file-specification primitive.

/0060y Page 3 - 77



15 March 1984

3.4.5.2 Independent File Access M-E (IFA)

In Release 1, IFAs will reside only in Cl170 MDIs. The IFA does not
access secondary storage directly, but instead communicates over a Cl70
Network Products connection to a File Server application on the €170
host. The File Server application:

receives file access requests from the IFA

transforms them into NOS file access requests

sends the results back to the IFA
All file access requests/responses are multiplexed onto one Network
Products connection. This connection is initiated by the IFA during IFA
initialization and remains active during the life of the IFA.
The following block diagram illustrates the software processes and

interfaces involved when an IFA is supporting two active file accesses
from one DFA and one active file access from another DFA.

O + O +
file 1l : : filel : :
-------- ! D F A !o====-=========-0. :
file 2 : : file 2 : :
-------- -o! lo=====mmoe======0] : tomm———t
o D + (o] : : files : :
: : : : 1,2,3 : :
: : : 10===mmmm=—=- -0!C1l70
: Transport : : o 'File !
Call/Return Connection ! ITFA ! : !Server.
interface interface : ! Network ‘Appl. .
: : : ! products ¢ :
: : : ! Connection : :
! . : ! interface +-===-- +
o 4mmmm——- + : : !
file 3 : : o ! !
-------- 0! D F A !0----======--===0. :
: : file 3 ! :
: : ! :
tommmm—- + pommmmeme= +

Each IFA in the network can be configured to support any subset of the
supported file-types. The configuration can be dynamically altered via
configuration commands. The IFA registers a separate Title for every
file-type supported. Each Title is associated with the IFA's network
address.

/0060y Page 3 - 78



16 March 1984

3.4.6 Error M-E

The Error M-E exists in all DIs to provide Internet and Internet users (zjb
with the ability to create Internet Error Reports (IERS) and send them to ‘
the originator of the message that caused the error. The Error M-E

receives directives via intertask messages, usually from Interfnet, and

sends IERs using Internet. The Error M-E can write IERs to log files.

The Error M-E facility is provided via an intertask message interface.
An error number, error parameter and 3B SAP ID of the entity detecting
the error are specified along with the erroneous 3B PDU.

An IER is created and sent to the message source, which is determined by
examining the Internet header of the message in error. The IER is a 3B
PDU, consisting of an error description field prefixed to the first 42
bytes of the message in error.

Certain IERs, listed below, are inappropriate to be returned to the
message source; these are written to a log file instead. The Error M-E
uses the Independent Log M-E (aka Log Support Application) to issue log
requests under the following conditions:

- Checksum error - since the integrity of the Internet header is
in doubt, the message source address may be incorrect.

- Multicast/broadcast - since one multicast may result in several
data indications, IERs are not sent back to the source.

- IERs - since the Error M-E generates IERs, it makes no sense to ‘::E
send IERs due to the receipt of bad IERs.

/0060y Page 3 - 79



3.4.7 Echo ME

The Echo M-E provides the ability for an Inter
to a particular system and have it returned.

15 March 1984

net user to send a message
The user of Echo M-E

services issues 2 normal Internet datagram request to send a 3B PDU to

.

the Echo 3B SAP 1n any DI in the catenet. Either datagram Or
proadcast/multicast indications may be processed by the Echo M-E;éin
either case, datagrams will be returned to the sender.

The 3B PDU used for the Echo M-E is a normal 3B PDU with an
necho-operation” field prefixed to the text portion of the message. The
echo-operation field indicates whether the operation is a request or a

reply.

A 3B PDU received by the Echo M-E is sent, via Internet, to the message

source if the echo-operation field specifies

wecho-request.” The 3B PDU

will be returned with echo-operation set to vecho-reply.""

1f the echo-request message is checksummed, the echo-reply message wil

also be checksurmmed.

The Echo M-E uses Tnternet to send the 3B PDUs back to the message

source.

3.4.8 Initialization M-E

The Initialization M-E provides the services needed to dump and load
DIs. The Tnitialization M-E is implemented in two parts:

- Dependent Initialization M-E (MPB ROM Bootstrap) - resides in

every DI's ROM.

- Independent Initialization M-E - resides in the C170 and in each

Independent IRIt 8- 2-———r s

Toaded/operational MDI and ND

The functions of the Tnitialization M-E were described previously as part

of the DI load & startup process.

/0060y page 3 - 80

U



15 March 1984

3.5 DCNS AND THE C170

(™
DCNS and the C170 together provide the following functions: (—w‘“

support of C170 application-to-application (A-A) cornections
support of terminal-to-C170-application (T-A) connections
network management via a C170 host console.

access to Cl170 secondary storage files for loading, dumping, log
information storage and other network management functions.

Primary considerations in the design of the DCN interface to C170 Network
Products were:

/0068y

accommodation of future features such as C170/C180 A-A
communications - C170/C180 A-A communication will, in future

releases, be accomplished by terminating all Network Products
logical links in the MDI. The Network Products Connection and
Block Protocols are never carried across the DCN. C170
application data traverses DCN as the data portion of DCN higher
or middle layer protocol data units. Since the C180 supports
the same protocols as DCN, C170/C180 A-A communication requires
only an agreement on application level protocols. @

i

transparency of the interface to the C170 - The C170 MDI
presents a local "255X NPU-1ike" interface to the C170.
Physical and link protocols at the channel level are unigue to

» but the Network Products Connection and Block Protocols
have been preserved.

The C170 MDT is configured in the Network Definition Language
(NDL) as a local NPU. A Cl70 MDI is capable of supporting
multiple logical links, but each logical link requires a
separate CYBER channel and a separate MCI card in the MDI.

provision for support of all existing C170 networking features -
Existing CI70 Network Products Features are supportg in the MDI
by "NAM-level" software that is capable of processing the
Network Products (NP) Connection and Block Protocols in support
of A-A and T-A connections. The MDI contains a "gateway"

function to interface DCN connections to NP connections.

Page 3 - 81



A
H 1
A=

15 March 1984

3.5.1 The Gateway Function and NP Transforms

The gateway function is provided by software entities that reside in DCN
wpoundary systems;" boundary systems are DIs that connect a CDNA network
with a non-CDNA network. Boundary systems understand both architectures
and are a member of both networks. .

[3
.

- C170 MDIs reside at the boundary between CDNA and C170 Network

products and provide the NP gateway function, which is described

in this section.

- NDIs configured with an X.25 interface reside at the poundary of
CDNA and the architecture defined by CCITT Recommendation X.25;
NDIs so configured provide the X.25 gateway function, which is
described in the section entitled "DCNS and X.25."

fommmmcemmme—eeme—s=mssss=soosssSoSS +
! GATEWAY :

1 1

2 . * L] L] L] L] L ] L ] . .!

DCN | et L e i lecmene= L :
Boundary {CDNA . !Foreign . !
System ! Architecture Architecture

| t mmmmae } mmmm—- 1 Vpnwcme- :

: L : L :

! ------- : : ....... : ------- oo ! ------- !

! : . :

R et o emmmee- e et L !

: : . :

fom————- ! ! ------- - P ! ------- +

/0068y page 3 - 82

e/

P

7N

/



15 March 1984

3.5.1 The Gateway Function and NP Transforms (continued)

The gateway function in the C170 MDI is provided by software components
called "NP Transforms." NP Transforms interface C170 NP Connection/Block
protocols to DCN Connection and Data Transfer protocols; thus; no special
software in the C170 is required to support these connection types across
the DCN. The term "transform" is used in this document to mean a
specific component that provides a gateway function; elsewhere,
"transform” and "gateway" are used synonymously.

An NP Transform is defined for each of the following connection types:

- A-A Transparent (Release 1)
- T-A Interactive (Release 1)
- T-A Batch (future release)

Each NP Transform is a separate entity and each maintains an entry in the
network Directory. Each NP Transform provides a unique service for
accessing a specific C170 host in the DCN network. NP Transform names
reflect the type of data traffic they support relative to the higher
layer protocols involved in the transmission of the data.

The A-A Transparent Transform deals with the transmission of A-A data
and does not require the services of any higher layer protocols;
hence, the name "Transparent".

The T-A Interactive Transform deals with the transmission of
1nteractive data and requires the services of the ITS higher layer.

The T-A Batch Transform deals with the transmission of batch data and
requires the services of the BTS higher layer. This NP Transform
will be provided in subsequent releases.

NP Transforms cannot be used to select a specific C170 host application.
C%?O host application selection/switching is completely within the realm
of the C170. y

Each NP Transform maintains one DCN connection/association for each
active Network Products connection and must therefore be knowledgable in
the connection management protocol of Network Products and one connection
management protocol of DCN.

The following diagram illustrates the relationship of the NP Transforms
to other system components.

/0068y Page 3 - 83

(m— w»“i.\z
Y

o



J

15 March 1984

3.5.1 The Gateway Function and NP Transforms (continued)

Sm b O 0en O b= +

VT PRU A-A
SN B paeiss S P R i
T-A : T-A H A-A :
'Interactive ! Batch !Transparent :
' Transform ! Transform ! Transform :
T B s et T i
!Interactive Batch V77777 ¢

! Transfer
! Service Service
1]

om o St O

!O////ﬂswmn

wn
[+
. § o= ~
=
(a4
4 s tm s oo

: / // ' Llayer

temen! lemmedooe=!  loomcd=--- ! -
! !
: TRANSPORT !
] ]
I -+

..y

Network Products
Interface

Gateway function

Underlying
Service

CDNA Transport
Service

During initialization,

each NP Transform requests access to the

appropriate underlying service by "opening a SAP;

is identified by the
the open SAP request,

"directly accessible service
the NP Transform receives a

* the underlying service

" field.

In response to

3B SAP address.

The NP

Transform then notifies other network
registering itself with the Directory

- Title - the ASCII equivalent

components of its availability by
M-E, using the following fields:

of the "host node" of the logical

/0068y

1ink between the C170 host and MDI; NP Transforms in any given

MDI all register the same Title.

Network Address - the Network ID and Sys
System plus the 3B SAP ID as received in
SAP request.

within an MDI by its underlying service.

Page 3 - 84

tem ID of the local
response to the open

"directly accessible service" - identifies the NP Transform



15 March 1984

3.5.1 The Gateway Function and NP Transforms (continued)

The "directly accessible service" field serves two purposes:

- explicitly identifies the CDNA end-to-end protocols that are to
be used when communicating with the associated NP Transform.

- implicitly identifies the unique function that the NP Transform
performs. For example, a "directly accessible service" of ITS
implies that the associated NP Transform supports T-A
Interactive,

The table below lists directory entries for a C170 MDI that supports all

three possible Transforms. The host node number in this example is
assumed to be "1D."

TRANSFORM NAME TITLE TRANSPORT SAP ADDRESS DIRECTLY

ACCESSIBLE
SERVICE
T-A Interactive "1p" system-assigned ITS
T-A Batch "1D" system-assigned BTS
A-A Transparent "1p" system-assigned X.25 Support Layer

Any network components wishing to communicate with an NP Transform must
first obtain the network address from the Directory. For DCN release 1,
an application may initiate contact with another application and a
terminal may initiate contact with an application; therefore, the
software entities that query the Directory are:

- Terminal S rt Software in TDIs must determine the existence
and networE agaress of T-A Transform(s) prior to establishing
higher layer associations in support of terminal devices.

Terminal Support Software is discussed in the section entitled
"DCNS and Terminals."

- A-A Transparent Transforms must determine the existence and
network address of other A-A Transparent Transforms prior to
establishing connections in support of Cl70 A-A transfers across
DCN.

/0068y Page 3 - 85



15 March 1984

3.5.2 Cl70 A-A Connections

.

C170 A-A connections are supported via an X.25 Support Layer connection @;ﬁ
between gateway functions in two C170 MDIs, as illustrated below.

..
&
.

O + T +
! Host : ! Host :
: ! C170 : ! C170
! Applications ! Host ! Applications ! Host
| LI 1 b e o o o o e !
: NAM : : NAM :
: : : :
tommm—— ! lemocee- + $rem——— ! lermmeme +

' ! L
o R et + C170 et ! lemcmee- + C170
: MDI ~NAM ! MDI H MDI-NAM : MDI
O L et : L et ! leemmee- :
!  Gateway : !  Gateway :
: Function : : Function :
o ! leweeee- : L ! leemmem- :
! X.25 Support i0-====-==-=< -o! X.25 Support !
: Layer ! Connection ! Layer :
lecomm- ! leemeae- ! L ! lemmeee 4
: TRANSPORT : : TRANSPORT :
tommm——— e + tom—m——— lemcceme- +
P ! !
s [mm————== aQmmmmmmeme s mesesesesoe= Qe m————————— / 7N

N

Each C170 host is interfaced to the DCN via a C170 MDI. An NP connection
exists between the gateway function in each MDI and its associated C170
host. Gateway functions communicate with each other using an X.25
Support Layer connection.

The C170 A-A connection can be initiated by either host. The C170 MDI of
the calling host selects the called host based on information in the
Networks Products A-A outcall. Application selection is processed by the
Network Validation Facility (NVF) in the called host.

C170 applications refer NAM to a predefined OUTCALL block in order to
identify the host to be connected. The "dhost" field in the OUTCALL
block contains the ASCII destination host node number. The "dhost" field
is included in the text portion of the A-A connection request service
message sent from NAM to the MDI.

The A-A Transparent Transform uses the "dhost" string as a Title for
querying the directory for the network address of another A-A Transparent
Transform that previously registered that Title with a “"directly
accessible service" of X.25 Support lLayer.

O

/0068y Page 3 - 86



O

15 March 1984

3.5.2 Cl170 A-A Connections

Because an A-A connection can be initiated in either host, the A-A
Transparent Transform must be capable of processing connection
indications initiated by either C170 Network Products or DCN.:{ Likewise,
the Transform must be capable of making connection requests to either
network.

When connection processing is complete, the A-A Transparent Transform
maintains two paired connections, both in the data transfer state. Data
and control information arriving on either connection must be mapped into
corresponding data and control information and sent on the paired
connection. The A-A Transparent Transform is only involved in protocol
conversion when processing data and qualified data.

The Network Products Data Block Clarifier (DBC) is removed from all data
and qualified data received on the Network Products connection before the
data or qualified data is sent on the DCN connection. Likewise, a DBC is
constructed and prefixed to all data and qualified data received from DCN
prior to sending to Network Products. The DBC removed/appended by the
A-A Transparent Transform always has only the Transparent bit set.

A connection termination message received on either connection causes the

Transform to send a corresponding connection termination message on the
paired connection.

/0068y Page 3 - 87

2T,

®



'

)

._\{Y“‘/ )

15 March 1984

3.5.3 Terminal-to-Cl170-Application (T-A) Connections

Terminals accessing a C170 host ar

e supported vi

connection between Terminal Support Software in

a a DCN higher layer
the TDI and the gateway

function in the Cl170 MDI, as illustrated below.
fomm—mm—————————— +
! Host ! C170
!  Applications ! Host
Terminals lememm e :
/[ /L [ L ! NAM !
7777 4ommeme P olmemmeee +
/ /77 L
+/=-=/-=/==/-+ TDI fomm——- ! leee———=+ C170
: : : MDI -NAM IMDI
!Terminal @ tommeee [ PR +
! Support ! Gateway :
! Software ! Higher ! Function :
leeeo! l--=-! layer L it ! lemmmem- :
' ITS/BTS :0========"< -o! ITS/BTS :
leee=! !---=! Connection i-----= ! lemeeme- :
! TRANSPORT : !  TRANSPORT :
ommm e + +- : -
: :
[mmmm———————= o--- ——— —————————ee- “Om=mmmmm———=—— /

Terminals are interfaced to the DCN by Terminal

Support Software in TDI

components. The Terminal Support Software maintains a higher layer

connection to a T-A gateway function in a C170 MDI, which interfaces the
higher layer connection to an NP terminal connection. Host selection is
processed by DCN, based on terminal user input.

processed by NVF in the C170 host.

Since the Network Products design

initiated by terminals, the T-A gateway £
connection indications initiated by DCN.

requires that

higher layer connections is wagsociations”.

Upon receipt of a Create Association indication,

establishes a corresponding NP connection.
Transform, both T-A Transforms maintain a
connection, with the T-A Interactive Trans

between an ITS association and an

Transform maintaining a pairing between

connection.

Application selection is

all T-A connections be

unctions need only recognize
The DCN terminology for these

the T-A gateway function

Like the A-A Transparent
pairing between association and
form maintaining a pairing

IVT connection and the T-A Batch

/0068y Page 3 - 88

a BTS association and a PRU

U

N



15 March 1984

3.5.3 Terminal-to-Cl70-Application (T-A) Connections (continued) ('*?\
o

Once the association/connection pairing is established, the T-A gateway
function receives data and control information on an .
association/connection and sends corresponding data and control
information on the paired association/connection.

Unlike the A-A Transparent Transform which transmits transparent data,
the T-A Transforms must provide mappings between dissimilar data
presentation protocols. As such, their protocol conversion functions are
somewhat more substantial.

The T-A Interactive Transform does have a relatively simplistic mapping
between IVT commands and ITS command services, because the initial ITS
design is based on C170 IVT design with the mapping between the two a
significant consideration.

The cénversion between IVT and ITS data units is more complex, involving
IVT DBC creation based on ITS header and ITS header creation based on IVT
DBC.

The initial release of DCN, supports both edited terminal input and
transparent terminal input. Physical representation of these two data
formats are the same in both IVT and ITS data units. The initial
implementation of the T-A Interactive Transform does not have to be
concerned with any text processing functions that would be required in
converting from one data format to another.

T-A Batch Transform functions are not as yet completely defined. T-A
Batch support is not a DCN Release 1 feature.

/0068y Page 3 - 89



‘)

15 March 1984

3.5.4 MDI-resident Software

MDI-resident software within the C170 MDI serves two purposes:

it allows user access, via the DCN, to applications and features in
the C170 host. ..

[
.

it provides the DCN itself with access to C170 secondary storage and
host console. The DCN does not support its own secondary storage oOr
operator console for network control functions at Release 1 time.

The primary component of the MDI-resident software is called MDI-NAM.

MDI-NAM interacts with its wusers," as depicted in the figure below.

tm b tem Oew Sm S b 0 |

oen SmOm O +

! : c170 MDI
fommmmm ! | sttt fmmmmmmmmm—mmmm—o—mm—SSSSSSSSSoSTIIITOT
! :

! CDNA Transport Service M D I

: !

4ommmmmm ! leommomme o= ! "Applications"

] ]

I Network Products for c170
tGateway Function :

1 ]

H— ! P fommmmmmomm e : PP
:

: M D I - N A M

1

:

USRS ! Ve rme———e—————————————m s =S ST

Implementation of MDI-NAM made it possible to define the concept of an
MDI "application” within the MDI. An MDI "application” uses the services
of MDI

I

-NAM to communicate with a corresponding helper agglication within

the C170 host. These application pairs communicate over Network Products
A-A connections using Network Products protocols and serve to provide
access to C170 host resources for the DCN. The three application pairs
defined for Release 1 are as follows:

/0068y page 3 - 90



15 March 1984

3.5.4 MDI-resident Software (continued)

FUNCTION PROVIDED MDI APPLICATION HELPER‘:APPLICATION

]
]
]
[]
[]
]
]
]
]
[]
[}
]
[]
[}
]
1
]
]
[]
]
[]
]
[]
[]
]
]
[}
]
]
]
§
i
[}
]
]
]
]
]
]
[]
]
[]
]
]
]
[]
-+

- lmtm te O ¢ O O Sen

File Access Independent File Access

Access M-E (IFA)

Independent Command M-E
& KDISP

Console Access Operator Facility

- tete tmtm tm tm bt o
" e tutwlte tutate fa
tm tmtm bt tate ¢ b 0 @

Log Access Independent Log M-E

+ tatatam
Smtmow s
S bmom o

4 tetntw

[

- - o - -

e

Note that the above application pairs are implemented such that the MDI
"application” half of the pair is physically contained partially or
completely within an independent management-entity rather than existing as
a separate module; the concept of MDI "application" is retained simply to
provide a mental model of the functionality and to maintain consistency

with existing overview documentation of the system.

Additional information on MDI "applications" appears later in this section
and in the section on "Network Management."

Helper applications are described in the section on "Cl70-Resident
Software."

The NP gateway function uses MDI-NAM to map Network Products protocol to

and from the X.25 Support Layer protocol; i.e., the NP protocol is said to
be "terminated" in the MDI.

/0068y Page 3 - 91

. tmtm tm ot |

4+ e te it tn bttt e

Q _

@



o

15 March 1Y84

3.5.4.1 MDI-NAM

The C170 Network Products (NP) Block protocol defines the concept of
"logical links" imposed upon physical links; for example, a logical link
between a host and frontend 255X NPU is imposed upon the physical link
consisting of a CYBER channel. Each logical link contains up to 256
logical connections, one of which is known as the service channnel. The
service channel is used to communicate commands to establish and
terminate other connections and to regulate the logical link; the other
255 connections are used to transmit data between communicating

applications.

MDI-NAM presents virtually the same interface to the C170 host as does

the 255X Communication Control Program (CCP); in fact some of the CCP
module names and functions are carried over into MDI-NAM.

The MDI Block protocol Interface Program (BIP) and Service Module (SVM)
use the NP Block Protocol to communicate with NAM in the C170 host. The
protocol used by the MDI SVM is a subset of that used by the CCP SVM; no

special C170 software is required to interface to the MDI SVM and MDI BIP.

MDI-NAM does, however, use a new communications protocol at the link
level. This protocol is processed by the MCI Stream Service Routine (MCI
SSR) and MCI driver in the MDI and by an enhanced version of the 255X PIP
in the C170 PPU.

MDI BIP depends upon the services of the MCI SSR and driver for physical
transmission of data across the coupler to the channel-connected C170
host. MDI BIP and SVM add to the services of the MCI SSR to provide a
"transport-like" service for their mysers," the MDI napplications” and
t:.h:eL NP gateway function. This interaction is illustrated in the figure
below.

MDI-NAM STRUCTURE

d te v

——em—————— JE—— - ! —————

oo oo o0
L]
o oo oo

-
ten SO0 O O

(Connection Management Services) (Data Transfer Services)

G O O <

——

H
:
: :
! Servic e Module Block Interface Program :
: (SVM) s (BIP) ]
1 [] L
oo ommmemmmmmmmemmmm=mem=m==msee R : P :
: :
: M C I Stream Service Routine ( S SR) :
L] 1
| eoommmmommemmmmmmmm—mm===s : | eommee—mmmmmemmmmmommme= :
! :
: MCI Driver !
] ]
N ' TR +
t'*channel !
to C170 Host

/0068y Page 3 - 92



C

15 March 1984

Services provided by SWM include:

Logical connection management - accomplished through SWM's
interfaces to BIP and to its "users." "Users" call SV to establish
and terminate connections with NAM; SVM then calls BIP to send the
hecessary service messages and protocol elements to NAM. Messages
from NAM are passed to SVM by BIP.

Logical link status maintenance - MCI-SSR will inform SVM of a
change in the status of the logical link by building a service
message and routing it through BIP to SVM. SWM will change the
status of the Logical Link Control Block for that logical link.

BIP communicates with NAM in the C170 host via the NP Block Protocol to
provide data transfer services across an established Network Products
connection. BIP additionally supports a local interface with SWM for
the exchange of connection management messages between SVM and NAM.

All messages from the C170 to the MDI arrive at BIP from the MCI-SSR.
Connection management and logical link status messages are delivered to
SWM for processing. All other messages are delivered to the appropriate
"user."

Al]l messages from the MDI to the C170 leave BIP through the MCI-SSR.

Such messages may originate either from SVM in the case of connection
management messages or from a "user."

/0068y Page 3 - 93

O



15 March 1984

3.5.4.2 MDI "Applications"”

MDI "application" is a logical concept that does not necessarily imply @
existence of a separate physical entity. It was more efficient, in some

cases, to implement MDI "application" functionality as part of a ;

management-entity. d

MDI "applications" reside within a C170 MDI and communicate with peer
helper applications in the C170 host via a Network Products A-A
connection. MDI "applications" and their C170 host helper peers support
three network management functions, for which the DCN is dependent on
external sources.

File Access
Access to C170 files is provided by the Independent File Access (IFA)

management-entity. IFA is described in the section entitled "File
Access M-E." The MDI-resident IFA program provides the DCN interface

to secondary storage for all DCN files except Log files.

Cl170 MDI

Independent File Access M-E (IFA) MDI "Application"

St 000 s @

:
:
;’\v .-o!
\_J . JP— R P— FU— : F—— e e - = - - -
B . : : ! C
. ! S VM B I P ! =
. : d !
. ity s ! R ! MDI-NAM
1 1
. : M CTI S § R !
. : &§ Driver :
. fommmm— e —————— e | ttatalebting b - = = = ===
. ' 1
. Peer . LM
. Protocol Channel
L ] e
. L i c170 HOST
. fommm—————————— L | it +
. ! !
. : :
. | ittt : | ettt !
. : :
.« o ol File Server ! Helper Application
3 ’ )
Hemmmmmmmmmmm—emmmm—sm——mosSssSoooSsSSSSoSSSTTooT +

/0068y Page 3 - %4



15 March 1984

3.5.4.2 MDI "Applications" (continued)
Console Access O

The NAM K-Display at the C170 console is used to manage the DCN. DCN
commands are entered and command responses are received by the
operator at the NAM K-Display.

Access to the NAM K-display, is provided by two modules resident in
the MDI:

the K-display Supervisor (KDISP)
the Independent Command M-E

For purposes of discussion within this section of the ERS, these two
modules will be considered jointly to be the MDI "application" for
console access, as illustrated below. (It might be noted here that,
in other DCN documentation, the Independent Command M-E is
occasionally called the "Operator Support Application (OSA)" in
recognition of its dual role as both a management-entity and an MDI
"application.")

KDISP establishes and supports a Network Products A-A connection,

using SWM, to communicate with the C170 Operator Facility helper

application. During initialization, KDISP initiates an A-A

connection request, supplying INCALL application name information to .
identify the Operator Facility as the requested helper application. 0
The Operator Facility is started by NAM and the connection is brought

to a fully operational data transfer state. KDISP will reinitialize

the connection if it detects an A-A protocol error or if it receives
notification of an unsolicited TCN/AP/R connection termination.

The Independent Command M-E (aka Operator Support Application) in the

MDI uses KDISP to transmit command traffic between the network and
the C170 console, as described in the section entitled, "Command M-E."

/0068y Page 3 - 95



15 March 1984

3.5.4.2 MDI "Applications" (continued)

Console Access (continued)

A

MDI

cC170

Command M-E
&

Independent

K DI SP

MDI "Application"

MDI-NAM

]
.
|
.
]
.
)
.
)
.
1
.

Vmemm—————

P

'
I

m

-.f _.

| e S L L L

=
>

0

]
]
|
1
]
[}
. +
1
)
]
]
]
1
|
]
[}
1
]
[}
1
{
]
]
]
[}
1
[]
!

- mOme mo ws mO ™0

R

1]

QO
=

,,;\ /V/
//r\v%h_

_ §

ord

! Iy

©
0
' ot
—

_ &

_ g

. & °

e}

1 7))

'o.”v ﬁHV.MuI. . ol.'“oiol-

( ' 1

1 i |

“ ot L

] ~il ]

' ' 1 o

1 —~] 1

\ ol ' -

' 1 1 o~

| i |

] [} ] o

] [} 1

1 ] ] 8]
~ ! [} []

b et Rt b i 0
v v B
> Q “

ol o “
- c ' ™
(=] ] ! o
o ')

3 \
e b ' @
] ] ] ¥

{ i 1
' i 1 )
" " Lo

f ' |
| 1 [l (@]

' 1 i

1 i |

1 | {

1 0 1

i ' 1

! 1 (

[} — ] ]

] Q \ ]
-e + x 4 = o o wo we =0 I“

D
g5 ;
4

P *

-
.
.
]
°
-
3

SN

s t\

page 3 - 96

/0068y



15 March 1984
3.5.4.2 MDI “"Applications" (continued)
Access
Access to C170 secondary storage for log information is provided by

the MDI-resident Independent Log M-E; a description of the
Independent Log M-E may be found in the section entitled "Log M-E."

Cl70 MDI

Independent Log M-E MDI “"Application"

:
!
.....
. N ! R temmm—— ! R R T
. ! ! !
. ! S VM B I P H
1 [] ?
. [P ———t ! R ! MDI-NAM
L 1]
. ! M C I S S R !
. ! & Driver !
. Frmmm e " el L
. LS e
. Peer :! !
. Protocol Channel
e "
. " 1 Cl70 HOST
. D " T ———— +
. ! !
: : ;
. - ———————————ee Rt e !
[} L
« ol Log Server ! Helper Application
[ ] ]
o e e +

/0068y Page 3 - 97



\‘\4

,'/

15 March 1984

3.5.5 Cl70-res jdent Software

This section describes Cl170-resident software components that relate to

the operation of DCN. Cl170-resident software provides the following
functions:

builds load and configuration files for the DCN

..
[3
.

joads a C170 MDI as the first step in loading the network

provides network management function support via Cl7
applications

analyzes DCN network performance

analyzes DI dumps

3.5.5.1 Load and Configuration Files

/0068y

(*¥***TO BE SUPPLIED****)

Page 3 - 98

0 helper



15 March 1984

3.5.5.2 MDI Loading

INITMDI is the C170 software responsible for the initialization of
channel-connected C170 MDIs. INITMDI functions as an independent
Initialization M-E and is comprised of a C170 CP program and a. PP
helper. The CP program is activated as the result of an initfalization
request from the MDI. The CP program is responsible for executing the
Initialization protocol with the MPB ROM bootstrap of the requesting
MDI. The CP program requests the PP program for sending and receiving
initialization protocol data units.

INITMDI uses the NOS EST interlock to lock out all other C170 processes
from trying to use the loading MDI. Once the entire load file is
transferred to the MDI, the EST interlock is cleared and the EST for the
MDI enters an operational state. The operational state is noted by NAM
and a PIP is assigned to the MDI. Error and status information pertinent
to initialization are reported to the operator by an INITDI interface to
the NAM K-Display.

/0068y Page 3 - 99



y

R

15 March 1984

3.5.5.3 C170 Helper Applications

The Operator Facility maintains an A-A connection with the MDI

"application," KDISP. Together, these two provide the capability of
managing the DCN from the NAM K-Display.

The Operator Facility is initialized when NAM receives an A-A incall from
the KDISP MDI "application.” AOF validates the connection by requiring
that a specific text message be received from the calling application as
the first data unit after the connection is established. After ’
validation, the connection can be used to send DCN commands and receive
DCN command responses. The operator uses standard NAaM K-Display
procedures for interfacing to the Operator Facility.

The File Server Facility in the C170, along with the independent File

Access M-E in the MDI, provides secondary storage access capabilities for
DCN. The File Server is capable of providing multiple simultaneous file
accesses to the same or different NOS-resident files. All file accesses
are multiplexed across one A-A connection. File unigueness is
accomplished by assignment of a file identifier (FID) to each active
file. The FID is assigned by the independent File Access M-E when the
file is opened. The FID remains associated with the file until the file
is closed.

The File Server supports the file functions of open, create, delete,
read, write, position, and close.

NOS-resident files are used by DCN to support the network management
functions of DI loading, DI configuration, DI dumping, and network user
validation.

The Log Server and the independent Log M-E in the MDI provide a network
logging and alarm capability. The Log Server receives log messages from
the independent Log M-E and writes them to a formatted log file.

The Log Server examines each log message to determine if it is also
currently selected as a network alarm. In addition to being written to
the DCN log file, alarm messages are displayed. The mechanisms for
processing alarms are currently being defined.

/0068y Page 3 - 100

.



15 March 1984

3.5.5.4 Network Performance Analysis

N
The Network Performance Analyzer (NPA) is both a batch report generator C
and interactive processor of the DCN log file. Network management v
personnel use NPA to gather and analyze the performance aspects of the

DCN. NPA generates reports to highlight trends that aid in early

detection of imminent hardware failure, present and future configuration
requirments, and network capacity, bottlenecks, and throughput.

3.5.5.5 DI Dump Analyzer

(****T0 BE SUPPLIED****)

/0068y Page 3 - 101



15 March 1984

3.6 DCNS AND X.25

NDIs may be configured to interface DCN to an X.25 network, via a
software component called the "X.25 Transform." The X.25 Transform Q[ _J“;
interfaces X.25 virtual circuits and protocols to DCN X.25 Support Layer

connections and protocols. The X.25 Transform performs the X.25 dateway

function; the two terms can be used synonymously.

The X.25 gateway is unlike the NP gateway in that it does not contain
multiple specialized components. The X.25 gateway only supports A-A
Transparent connections.

The diagram below illustrates the relationship of the X.25 Transform to
other system components.

X.25 Interface

1} [ ]

! X.25 Transform ' X,.25 Gateway

1 1

FJ— R P— :

: H

! X.25 Support Layer @ Underlying _
' ! Service Y
[P [ P ! N
: !

: TRANSPORT ! CDNA Transport

H ! Service

fommm———————————————— +

Like NP gateway functions, the X.25 Transform must register its Title in
the network Directory. A Title is required for every logical interface
to an X.25 Public Data Network (PDN) or X.25 Trunk. A logical interface
to a PDN or X.25 trunk is defined as one or more physical links to a PDN
or X.25 trunk.

The Title is used to select a lggical interface to a PDN or X.25 trunk,
not a physical link; physical link selection is accomplished via

——

specification of a source DTE address.

The Title is also not used for selecting a destination host or
application; destination host selection is accomplished via the

destination DIE address. Destination application selection is
accomplished at the destination host.

/0068y pPage 3 - 102



15 March 1984

3.6 DCNS AND X.25 (continued)

When C170 applications initiate an A-A connection that traverses both DCN (}
and transparent X.25, the C170 OUTCALL block is configured with a “"port"

field that is mappable to the Title of the X.25 Transform prowiding the

desired X.25 interface. Mapping of this parameter into the appropriate

Title and searching of the directory will be performed by the NP gateway

function in the MDI associated with the calling host.

The NP A-A Transparent Transform will obtain the "port" field from the
text portion of an ICN/AP/R service message. If the value of the "port"
field is zero, the requested connection is not to traverse a transparent
X.25 interface; in this case, the NP A-A Transparent Transform will use
the "dhost" field within the ICN/AP/R text as a Title for locating
another NP A-A Transparent Transform.

When the X.25 gateway receives an incoming call indication, the eighth
and ninth octets of the call user data are used as a Title for locating
the NP A-A Transparent Transform that services the requested host. By
Network Products convention, these two octets of call user data contain
the ASCII equivalent of a C170 host node number; this convention will be
used in the initial release of DCN so as not to affect the existing
Network Products design in this area.

Because the external design of the X.25 Support Layer is almost identical
to the external design defined by DCN for the X.25 Packet Level, the
mapping of connection and data transfer protocols between the two P
entities is a relatively straightforward process. The X.25 Transform (j) :
maintains connection pairings just as the NP gateway function does. The
connection pair consists of an X.25 Support Layer connection and an X.25
virtual circuit. The X.25 Transform receives service indications on a
connection/virtual circuit and issues the corresponding service request
on the paired connection/virtual circuit.

In the initial release of DCN, an X.25 interface is available in support
of both DCN itself and also in support of C170 A-A connections that
traverse an intermediate X.25 virtual circuit link.

DCN utilizes X.25 virtual circuits as CDNA network solutions,
connecting two NDIs via a public data network (PDN). The virtual
circuits carry DCN Internet datagrams, complete with all CDNA
protocols.

When X.25 virtual circuits are used as intermediate links in a C170
A-A connection, data units appearing on the virtual circuits are free
of any CDNA protocols. Since only the application's data units
themselves are present on the virtual circuit, the virtual circuit is
commonly called a Transparent X.25 virtual circuit.

/0068y Page 3 - 103



S

15 March 1984

3.6 DCNS AND X.25 (continued)

The diagram below illustrates use of X.25 virtual circuits as CDNA
network solutions. Four NDIs are pictured, each with an X.25 interface
to a common PDN.

..
[
.

e /
i a2
!NDI!
! "A" 1 / ________ O mmeee————————— /
ommm———— + B ettt + !
/: : +o-=l-==t

L alaleleddad + : X [] 25 ! L! N D I :
!NDI! Z : PDN ! !ome
' " ! ! H o= +
O e & ettt + /

: [t-—====- +

! !NDI

: ! llDil !
[===O==-==mmmmmm——————= / omele=mt

[ ]
/ -0 -/

Assuming the configuration is fully connected, each NDI pictured above
maintains one Ethernet network solution and three X.25 virtual circuits
as point-to-point network solutions; e.g., NDI "A" uses one virtual
circuit to communicate with NDI "B", the second to communicate with NDI
nc  and the third to communicate with NDI "D". These virtual circuits
are used by Internet entities within the NDIs for sending and receiving
Internet datagrams.

/0068y Page 3 - 104



16 March 1984

3.6 DCNS AND X.25 (continued)

The diagram below illustrates use of an X.25 virtual circuit as an O
intermediate link in a Cl170 A-A connection. A Transparent X.25 virtual

circuit is always used by DCN when communicating over an X.25 interface

with "foreign" systems; i.e., systems that do not implement the DCN

protocols.

tommm————— +
! Cc170 !
¢ Host !
! "All :
+===l! loemt
1 1
P
! G ! MDI
! )
et Sttt
H tom—————— +
[=mmmm——— O======= e iy / ! camn !
: « Host !
L ' nge !
: ¢ NDI $oeml Jemet
! ! fommm———————— + -
Foomm—- + [ : 4==! le—t 255X
! X.25 : / ‘GW ! NPU o
! PDN ! : ! 0
. : it +
R +

C170 host "A" is connected to an NDI that interfaces to X.25; Cl170 host
"B" is connected to a front-end 255X that interfaces to X.25. The C170
A-A connection in the diagram is really comprised of four distinct
intermediate connections joined together by gateway functions:

ENTITIES CONNECTED INTERMEDIATE CONNECTION TYPE
170 host/ M1 NP comection
MDI / NDI X.25 Support Layer connection
NDI / 255X Transparent X.25 virtual circuit
255X / Cl70 host NP connection

Gateway functions exists in the MDI, NDI and the 255X. Since the 255X

does not implement the DCN protocols, the NDI and 255X "gateway"

communicate over a Transparent X.25 virtual circuit. Only the

application's data units, or a portion thereof, appear in the packets

that traverse the X.25 virtual circuit. WI

/0068y Page 3 - 105



N/

3.7 DCNS AND TERMINALS

DCN terminal support is
unique Terminal Interfac
various protocols/capabi

implemented in a
e Programs (TI

TDI component. wWithin the TDI,

ps) are required to support the

lities of the wide range of available terminal

types. Despite dissimilarities between
functions that TIPs perform are common.

a set of common TIP func
Software."

terminal types, many of the
To take full advantage of this

commonality and to provide a basis for common and simplified TIP design,

tions is implemented and called »merminal ¢Support

Terminal users supply Terminal Support Software in the TDIs with host

select information during initial inte

rchange. The host select

information is used to construct a Title that is the ASCII equivalent of
the C170 node number. This Title is used for querying the network

Directory for the Transport SAP

servicing the selected host.

- The Transport SAP add
accessible service" o

associations in

address (es) of the T-A Transform(s)

ress of the Transform that has a "directly
£ ITS is used for establishing ITS

support of the terminal's interactive device(s) .

-  The Transport SAP address of the Transform that has a "directly

accessible service" of BTS is used for establishing BTS
associations in support of the

Terminal Support Software is implemented

- the Line Contro

1 Module (LCM)

terminal's batch device(s) .

in two major modules:

- the Terminal Data Services Modules (TDSM) .

A TIP interfaces to L™

and

TDSM via shared control blocks that are

created and deleted under the control of LM subroutines. The control
a hierarchical fashion. At the highest level,
the Configured Line Control Block (CLCB)
current state of the line. Linked to the CLCB and at successively lower
hierarchical levels are separate control blocks that maintain Cluster,

Terminal Device, and Data Association information is used by both the

TIPs and the Terminal Support Software.

blocks are organized in

/0068y

maintains the configuration and

Page 3 - 106

¢

U

VN

‘K V/




