CONTROL DATA CORPORATION
Interoffice Memorandum

DATE : October 1, 1985

TO : ACSD Personnel LOCATION : ARH207

FROM : Janice Netko Feuling LOCATION : ARH207

SUBJECT : Template Control Characters

This memo is meant to elaborate on the documentation of
template control characters for defining a message template.

+N[n]

Start a new line in the output text indented by n
spaces. If n is omitted, the new line is not indented.
NOTE: The DI message formatter and the formatter on the
170 used by NPA ignore the '+N' if it occurs as the
last text in a template definition. When a message
contains multiple templates, then the following is true
of the '+N' control character:

1) The f£first template in a message will automatically
begin on a new line due to the prefixing of the
status severity level by the wmessage formatter.
Thus, a template that begins a message does not
normally have a +N at the beginning of a template
definition. (Display command responses with
headers and columnized data are an example where the
template that begins the message has a +N at the
beginning of the definition.)

FOR EXAMPLE: ,
If a message is generated by the templates

cmeSfirst_line
{E First line of message.

then the result will ap§ear as
== ERROR =- First line of message.

2) +N's at the end of a template definition are
ignored. If you desire a new line then it should be
specified by a +N at the beginning of the template
definition for the template that you wish to appear
on a new line, not at the end of the definition of
the previous template.

+

+H([N)

FOR EXAMPLE:
If a2 message is generated by the template

cme$first_line
{I First line of message.+N

cme$second_line
{I Second line of message.

then the result will appear as

-~ INFORMATIVE —- First line of nessage.Second line of message.

NOTE that the +N in this example was ignored. Below is the

correct way to define the templates.
If a message is generated by the templates

cme$fir:t_1ine
{I First line of message.

cmeS$second_line
{I +NSecond line of message.

then the result will appear as

-- INFORMATIVE -- First line of message.
Second line of message.

3) +N's occuring within the text of a template
definition will always result in a new line.

FOR EXAMPLE:
If a message is generated by the template

cmeSfirst_line
{I This will result +N in two lines.

then the result will appear as

This will result
in two lines.

Insert spaces until, BUT NOT INCLUDING, column n of the
current line in the output text is reached (resulting
in the text or variable data being placed in column n).
If the current position in the output text is past
column n, then one space will be inserted. If n is
omitted then insert spaces until the next default tab
position in the current line of output text is reached.
Default tab positions occur every 8 columns.

FOR EXAMPLE:

e

s

N

™
(myﬁ If a message is generated by the templates

cmeScolumnizing
{E acb+H6efg

then the result will appear as

columns 1 6
tm————
abc efg

If you have any questions, please see me.

Janice Netko Feuling

'$% EJECT ?? { CALLC DOMLOG
This deck provides information on generating CDCNET Log
Messages.

(;%he information you are about to provide will be used to
generate a CDCNET Log Message Manual and will provide the

. necessary information needed for generation of CDCNET
Alarm Reports and Network Performance Reports.

PROCESS TO DEFINE CDCNET LOG MESSAGES:

1.

Mﬂﬁgﬁrﬁmﬁﬁﬁﬁfﬁrﬁfhﬁﬁmﬁﬁﬁﬁﬁﬁrﬁ

Obtain a copy of the deck CMECOMT from the CDCNET Source Program
Library.

SES.GETMOD M-CMECOMT B=SOURCEBASE UN=CDNA G=CMECOMT

This deck contains common message templates which are intended to
to be used across the CDCNET product (i.e., to be used across many
areas). Any message template which is used by 2 or more areas must
be placed in this deck. Common message templates should be used
whereever possible. When defining your log message templates and
command response templates always check this deck to see if there
are already defined templates which you can use. Also if you define
any message templates which can be used across multiple areas, place
those templates in this deck. Each area is defined by a group code
which has been assigned by integration.

Obtain a copy of the deck CMELOG from the CDCNET
Source Program Library.

SES.GETMOD M=CMELOG B=SOURCEBASE UN=CDNA G=CMELOG
This obtains a skeleton deck which can be used to
generate a Log Message Definition deck. Below is
a description of the information which must be
placed in the Log Message Definition deck.

LOG MESSAGE PURPOSE

This section gives a short description of the log message
and why it is being generated.
EXAMPLE:

Whenever'a Routing Information Data Unit (RIDU) is received
which does not follow the accepted format, a log message is
generated.

ACTION REQUTIRED

This section specifies the action to be performed by an operator
upon receiving the log message.
EXAMPLE CONTTINUED:

No operator action required. The dynamic routing within CDCNET
adapts automatically to the failure.

DESCRIPTIVE MESSAGE

This section specifies the actual fields of the log message.

A log message is made up of a MASK (fixed text) and fields which
get inserted into the MASK (variable fields of log message). The
variable fields are those which change from one instance to the
next whereas the fixed fields remain constant from one instance

to the next. The variable fields of the log message are generated
by the software module calllng log _request. The address passed

on the log request interface is a buffer address. The buffer conta
the variable fields of the log message. The MASK is generated by a
offline utility called GENMT, and is combined with the variable
fields of the log message by an application which resides on the
Cyber Host. The Message Template Data Stores reside on the Host
where mass storage is available.

The deck METMDU on the CDCNET Source Program Library should be
called to obtain the CYBIL definition of the MDU data element type
A brief description of each MDU data type is given below. For
further detail refer to section 7.0 of the CDNA GDS entitled
'Management'. Section 7.0 describes the format of the data when
represented in the MDU format. CDCNET programmers need not

concern themselves with this other than to understand the format
for debugging purposes. For programming purposes the programmer
simply needs to interface to gen_data_field and get_data_field.
These procedures make sure the data gets formatted into the MDU
format as described in section 7.0 of the GDS. The data presented
to gen_data field must be - right Jjustified in the lowest byte
within memory (this should not be surprising). Be careful when

using packed datall¥

Binary Octet (bin octet): Binary octets consist of bytes
of binary information. The length field passed to
gen_data_field indicates the number of bytes. Binary octets
are displayed as their equivalent hexidecimal value.

A single octet becomes a 2 digit hex ASCII display.

Character String (char_octet): Character string data contains
ASCII characters. The length passed to gen_data field
indicates the numbers of ASCII characters.

Binary String (bin_str): A binary string is a contiguous
string of bits. The length passed to gen _data field
indicates the number of bits. A binary string is displayed
as 0's and 1's.

Unsigned Integer (bin_int): An integer contains a string of
binary bits. The 1ength passed to gen_data field indicates
the number of bits in the integer. A data element of type
integer gets displayed as its equivalent decimal value.

Signed Integer (bin_sint): An integer contains a string of
binary bits. The length passed to gen_data_field indicates
the number of bits in the integer. A data element of type
integer gets displayed as its equivalent decimal value.

The most significant bit contains the sign bit.

Binary Coded Dec (bcd char): BCD values range from 0 to 9 or
0000(2) to 1001(2) respectively. Each octet contains 2
BCD data elements. The length field passed to gen_data field
indicates the number of BCD elements in the field. A data
element of type BCD gets displayed as its equivalent decimal
value.

This section should contain a complete description of the log
message including MASK and variable fields.
EXAMPLE CONTINUED:

r*wg:zﬁwﬁHwﬁvﬁﬂhﬁvﬁwNﬁwﬁmHﬂw*wﬁHW*VMHH#W*VMWHﬁé;;LﬂW*VN

TEMP

M A SK LOG_MESSAGE_BUFTFER
_________________________ e e e e e e e e e e e e e e e e
fixed text type |value | description

_________________________ L A S M S

See maskl below | |none } iField describing error

_________________________ b e ————

See mask2 below ||binary |1..512 |The Bad RIDU

octets loctets |

_________________________ e e e e ——— rrr——— ————
maskl - 'Incorrectly formatted Rotuing Information Data Unit receiv
mask2 - 'Routing Information Data Unt = '

LATE IDs

This section lists the template id common decks containing the
template definitions used for the log message. See step 3 below
on how to generate message templates.

Programmers should contact the responsible analyst to get message
template ids assigned for their respective areas.

EXAMPLE CONTTINUED:

RMETEMP

LOG MESSAGE ID

CONST
rme_bad ridu = min_log message_id + 432;

ﬂw*‘;avﬁﬁvﬁHwﬁvﬁﬁvﬁﬁvﬁﬁvhﬁvﬁﬁvﬁﬁvﬁ

This section specifies the log message id. The log message id
uniquely identifies the log message.

Programmers should contact the responsible analyst to get log
message ids assigned for their respective areas.
EXAMPLE CONTINUED:

LOG MESSAGE ATTRIBUTES

This section describes the attributes of the log message. A log
message can be qualified with 1 or more attributes. Below is a
list of attributes and associated codes:

A ACCOUNTING

HE HARDWARE ERROR
SE SOFTWARE ERROR

S STATISTICS

EL EVENTS LOG

NS NETWORK SECURITY

INSTALLATION DEFINED TYPES
INSTALLATION DEFINED TYPES are new attribute names which the
site can assign if the customer does not agree with the CDC
defined attributes.
EXAMPLE CONTTINUED:

The example below has assigned the log message to have
the attributes of Software Error and Events Log. The

The attribute definition is specified in a form directly
readable by DADR (an NPA preprocessor), since it is

DADR which will read this text.

ESE, EL

[.

Add a '*callc XXELOG' to the CMCLOG deck. The CMCLOG deck can be
compiled to produce a listing containing all of the log messages
currently defined in the system.

Obtain a copy of the deck CMETEMP from the CDCNET Source Program
Library. '

SES.GETMOD M=CMETEMP B=SOURCEBASE UN=CDNA G=CMETEMP

This deck is a skeleton deck which can be used to define message
templates for a particular area. XX is the group id for the area
as defined by integration.

Below is a description of the data which must be included in the
Template Definition Deck and instructions on how the definitions
are made.

(e o
H<g

O

AN A A o A o

ER
IN

ITY and LOG MESSAGE TEMPLATE
ITION

The severity level of the log message and the text used to define
the message template(s) (i.e., mask) for the log message is
specified in the deck XXETEMP.

A single log message may use several message templates.

The first display line of a log message should always describe
the condition. The severity level for the log message applies

to the severity of the condition.

If a log message is made up with the use of 2 or more

message templates the first template (which contains the
condition description), will be defined with the severity level
which will apply to the entire log message. Additional templates
used for forming the log message should be defined with a
severity level of INFORMATIVE.

The definition is given in a form directly readable by GENMT,
a utility which is used to generate a compilable module from the
specified definition. The module is then compiled to produce
the desired object module containing the message template.
The produced module will be used by the Cyber Host to format the
message into an Alarm, or by DADR to produce an NPA Software Error
or Hardware Error report.
The template definition must be in the following format:
template id;
{<severity> <message text (upto 80 characters)>}
{<message text continued (if necessary)>}

Below is a list of the control sequences provided to the CDCNET
programmer for DEFINING A MESSAGE TEMPLATE FOR A LOG MESSAGE.

The plus character (+) is used as a delimiter to indicate
control information. This control character and the
characters immediately following it represent actions
the message formatter will perform with the text. In the
following, [n] 1is used to indicate that n is optional.
n is defined as an unsigned decimal number between 1
and 128.

+P[n]

+N[n]

The nth variable field is inserted in the output text.
If n is omitted, n is assumed to be one more than the
value used in the previous call. If there has not
been a previous call, the first variable field is
inserted.

Assuming the following variable field values:
'i11', '222', *'333', '444°',

'abc+Pdef+P3ghi+Pjkl+P2' will cause

"abcllldef333ghid444jk1222" to appear in the output

text.

'abc+P-123"' will cause

"abcl11123" to appear in the output text.

Start a new 1line 1in the output text indented by n
spaces. If n is omitted, the new line is not indented.
NOTE: The DI message formatter and the formatter on the
170 used by NPA ignore the '+N' if it occurs as the
last text in a template definition. When a message
contains multiple templates, then the following is true
of the '+N' control character:

1) The first template in a message will automatically
begin on a new line due to the prefixing of the
status severity 1level by the message formatter.
Thus, a template that begins a message does not
normally have a +N at the beginning of a template
definition. (Display command responses with
headers and columnized data are an example where the
template that begins the message has a +N at the
beginning of the definition.)

FOR EXAMPLE:
If a message is generated by the templates

cmesfirst_line
{E First Tine of message.

then the result will appear as
-— ERROR -- First line of message.

2) +N's should not be specified at the end of a
template definition. If you desire a new 1line then
it should be specified by a +N at the beginning of
the template definition for the template that you
wish to appear on a new line, not at the end of
the definition of the previous template.

FOR EXAMPLE:
If a message is generated by the templates

cme$first line
{I First Tine of message.

cme$second line
{1 +NSecond line of message.

+X[n]

++

+H[N]

then the result will appear as

—=— INFORMATIVE -- First line of message.
Second line of message.

3) +N's occuring within the text of a template
definition will always result in a new line.

FOR EXAMPLE:
If a message is generated by the template

cmesindented_new_lines
{I +Nnow+N2is+N4the+Ntime

then the result will appear as

—— INFORMATIVE --
now
is
the
time

Insert n spaces in the output text. If n is omitted,
1 space is inserted.

'abc+X5def' will cause "abc def" to appear in the
output text.

Insert a single "+" in the output text.

'abcd++efg’' will cause "abcd+efg" to appear
in the generated text.

This option inserts nothing in the output text. It
is used to separate control characters from text
characters where there can be a conflict.

'abc+X1+-1xx' will cause "abc 1xx" to appear in

the generated text, where as 'abc+Xllxx' will

cause "abc xx" to appear in the generated
text.

Insert spaces until, BUT NOT INCLUDING, column n of the
current line in the output text is reached (resulting
in the text or variable data being placed in column n).
If the current position in the output text is past
column n, then one space will be inserted. If n is
omitted then insert spaces until the next default tab
position in the current line of output text is reached.
Default tab positions occur every 8 columns.

FOR EXAMPLE:
If a message is generated by the templates

'abc+H6efg’

+R

then the result will appear as

columns 1 6
tm—m——t——
abc efg

Begin repeating information. The rest of the message
text is assumed repeated indefinitely until all the
delimited sequences from the text field of the status
record are exhausted. NOTE: 1If n is specified for

a P control sequence within the repeating information,
the information will be repeated an infinite number
of times (i.e., infinite loop -- be careful not to
have n specified on the P parameter).

Assume the following variable field values:
'four', 'score', 'and', 'seven', 'years', 'ago'

'+P+R+H+P' will produce:
"four score and seven years ago"

'+R+P+H+P+H+P+N' will produce:

"four score and
seven years ago"

If the character following the control character is not one
of those quoted above, the results are undefined.

Below is list of the SEVERITY LEVELs which can be assigned to a
log message, and the associated codes to be used:

II'I
lWl
IEI
lFl
lCl

INFORMATIVE CONDITION
WARNING CONDITION
ERROR CONDITION

FATAL CONDITION
CATASTROPHIC CONDITION

CDCNET SEVERITY LEVEL DEFINITIONs
INFORMATIVE CONDITION - These messages convey items of

general interest and are not a result of incorrect

or incomplete operation.

Used for Statistical type log messages, system event
log messages (e.g., logging of operator activity --
including all commands entered, responses received, and
alarms received), periodic reporting of system
configuration information, accounting type information,
etc.

- WARNING CONDITION - These messages convey items of general

interest and may have been the result of incorrect

or incomplete operation. Warning indicates that the
system is approaching some error condition (i.e.,
threshold condition).

Used for log messages containing information warning

of system resource degradation (e.g., used by Executive
to report availabilty of buffers, memory, etc.; has
degraded below the acceptable threshold), etc.

ERROR CONDITION - These messages convey that the operation

was not completed correctly.

CONST
rme$rme bad ridu = cme$min template id + 21;

A log message is qualified as severity level error if
the message is the result of an error condition which
is correctable by the DI software (i.e., error has
minimal impact on system operation and performance).
Used for parameter verification errors (e.g., if a
communication layer or network management entity
receives invalid parameters at its user interface, the
error is logged by the layer and the user is notified
of the error). This level should be used when reporting
the receiption of bad PDUs. This severity level should
also be used in the case that an action is not allowed
at the time of request.
FATAL CONDITION - These messages convey that the operation
was not completed correctly.
A log message is qualified as severity level fatal
if the message is the result of an error condition
which affects the operation of a major portion of the
system but was recoverable by the DI software.
Used to log fatal hardware failures (e.g., used by
lower layer failure management to log device failures),
and fatal software conditions (e.g., used by System
Ancestor to report the occurence of a task failure).
CATASTROPHIC CONDITION - These messages convey that the
operation did not complete correctly and resulted
in the least desired recovery.
A log message is qualified as severity level catastrophi
if the message is the result of an error condition which
has severe impact on system/network operation and
performance. Used for severe hardware failures which
affect a large portion of the system (used by lower laye
failure management to log severe device failures). Used
by System Ancestor to indicate that the system required
reloading due to numerous task failures.
Catastrophic means that the DI could not recover without
reload.

EXAMPLE CONTTINUED:
The following statement defines the template id, severity
level, and message template to be used for the log message.
Note that the 3rd and 4th characters of the template id
must be 'es$'.

{E Incorrectly formatted Routing Information Data Unit received}
+NRouting Information Data Unit = +P1}

MESSAGE TEMPLATE

OPERATOR DISPLAY EXAMPLE
This shows how the message would appear if it were displayed
as an alarm at the operators console.

mmgmﬁ-\f—hﬁr«rﬁmm

{
{
R
(i

5.

CDCNET ALARM ****%%

system name 83/08/04 11.00.35 30432

--ERROR-~- 1Incorrectly formatted Routing Information Data Unit
Routing Information Data Unit = ffedcl2450cdcdl20123ccE

Add a '*callc XXETEMP' to the CMCTEMP deck. The CMCTEMP deck can be
complied to produce a listing containing all of the message templates
currently defined in the system.

When the module which uses the defined log messages is transmitted
the Log Message Definition deck XXELOG and the Template Definition
deck XXETEMP should be transmitted under the same PSR. XX is the
appropriate group code for the area.

EXAMPLE:

There are 4 different log messages which are logged from within
the ROUTING M-E. Therefore when the ROUTING M-E is transmitted
to I&E, there will be a deck called RMELOG which contains the
information for all the Routing M-E log messages, which will
also be transmitted. The deck RMETEMP will also be transmitted.

7. HOW TO LOG A MESSAGE IN CDCNET

C

{The xxelog deck containing the log definitions for the particular
{area, the xxetemp deck containing the message template definitions,
{and the XREF decks for gen data field, gen_template_id, and

{log request procedures need to be called into the module.

*callc rmelog

*callc rmetemp

*callc mexgdf

*callc csxgti

*callc lsxlogr

log msg_bufptr := NIL;

gen_template_id (log_msg bufptr, rme$rme_bad rldu),

gen_data field (log msg bufptr, “ridu, ridu_size, bin_octet);
log _request (rme_ bad ridu, log msg_bufptr);

Additional Background Information:

The template definition lines in the Log Message Definition

decks will be read as input to GENMT (Message Template Generator)
generate a message template. CDCNET programmers do not need

to actually generate the resultant template by running the template
definitions into GENMT. CDCNET programmers must simply provide the
information requested for in the log definition deck XXELOG and

and message template definition deck XXETEMP.

O

“Efecr 37 { CALLC CHETEMP'

? NEWTITLE := 'CDCNET Template Identifier Range' ?2?

»? PUSH (LISTEXT := OFF) ?2?
{ cmetmpr - CDCNET Template Identifier Range

2?2 POP 2?
CONST
cme$min_template_id = 0,
cme$max template id = 65535;
TYPE
template_id type = cme$min_template_id .. cme$max_template_id;
??2 OLDTITLE ?27?

?? NEWTITLE :=

'XXETEMP - id .. id, <feature name> Message Template Definitions', EJECT

?? PUSH (LISTEXT := OFF) ?2?
{ XXETEMP - Message Template Definitions for <feature name>
2?2 POP ?27?

?? FMT (FORMAT := OFF) ?2?

]

CONST
<template id> = cme$min_template id + <assigned_template_id>;

{<severity> <message text (upto 80 characters)>
{<message text continued (if necessary)>}

wCONST

<template id> = cme$min template id + <assigned_template_id>;
{<severity> <message text (upto 80 characters)>
{<message text continued (if necessary)>}

MT (FORMAT := ON) ?2?

2?2 F
??2 OLDTITLE ?2?

3¥ BIE T 22

?? NEWTITLE := 'CMEECCR - CDCNET Exception Condition Code Ranges'

{ CALLC CMELOG

?? PUSH (LISTEXT := OFF) 2?2

CMEECCR - CDCNET Exception Condition Code Ranges

22

2?2 POP ?2?
CONST
' min_log message_id = 0,

max_log message id = 32999,
min_response_message_id = 33000,
max_response _message_id = 65535;

TYPE
log msg_id_type = min_log_message_id .. max_log_message_id;

?? OLDTITLE ?2?

C

?2?2 NEWTITLE :=
2?2 PUSH (LISTEXT
{ - XX Log Message Definitions
2>
?

?
?

' XXELOG :
:= OFF) ?2?
XXELOG
POP ?2?

FMT (FORMAT 2?

:= OFF)

MASK
fixed text
TEMPLATE IDs

A A o o i i g, i, e, o, o, i, o o, o = e, o o P oy P o, o oy P, P,

LOG MESSAGE

ONST

<log message id>

LOG MESSAGE PURPOSE

ACTION REQUTIRED

DESCRIPTIVE MESSAGE

MESSAGE

id .. id, XX Log Message Definitions',

EJECT ?2?

_______ e e e e e e e e e

{<list of assigned attributes>

| value |
fomm +
fmmm +

description

———— — " - — - — - — — > (i S — —_- " 2w it o o S sm

<list of common decks containing template definitions>

ID and LOG MESSAGE ATTRIBUTES

min_log _message_id + <assigned_log_message_id>;

?? EJECT ??
?? FMT (FORMAT := ON) ??
(3§? OLDTITLE ??

