
r--.-·

:,~)
; ..

,. _i f
i. ."

l~ 1 I "'_'J ~ '"\ 1 1 '''~::''.

~Ij ~ .. ~. ~ .. ', sl < ,;.)
<---" II "'.~ ":7 ~", f1. ~
V. V J ~-~""Il'l..J

DATE: 14 January 1974

TO: Distribution LOCATION:

FROM: J. A. Wilson LOCATION: PGAANX EXT: 6428

SUDJECT: IPL Archit'ectural Definition

1. Attached is the IPL Architectural Definition which is
submitted for your approval. A meeting will be scheduled
on Tuesday, Jan~ary 22, following PRAM in Escondido, to
solicit your comments.

\ .

/:.Qq I \.-ll-.(2.:: "-- ___ .
J. ~Wilson

ImIt

Distribution: T. H. Elrod ASL/W
R. o. Gunderson
M. F. Harris ASL/W
G. M. Schumacher
D. L. Slais

i

!
,;j
i

i

IPL

ARCHITECTURAL

DEFINITION

1/14/74

. rID .. ·ooD ~~\ R ¥\ ~, d, I r.l I

U Ll J U

1. INTRODUCTIOrJ

2 • IPL C O~lF I G-UR,'l. TI ON

;3- VIRTUAL ~IEnORY

"
4 • DAT A fOf\ul\TS

5. IPL INSTRUCTION REPERTOIRE

6. OPERATING SYSTEM

1. INTRODUCTION

1.1 The Architectural Definition is the first of three
levels of dGfinition of IPL as described in the IPL
System Design Plan document. Each level will define
IPL in more detail. The Architectural Definition
defines:

'0 Inter-proces~or connection
• Vi~tual memorymechanis~
• Data formats .
o "Direction to be fbilowed in defining the instruction

set • ,
1.2 The objective of the Advanced Systems Laboratory is to'

define a computer systems product line which spans the
1 e as e p ric era n 9 e 0 f ~ i~ - ~ ::J Q ,~: i ~: 0 ~I'C han d per for man c era n 9 e
of from onQ t'~:ith of C1 b~OJ to cl::ven tir,les a [~L·lJO.

1.3 The definition of compatibility to be achieved in IPL was
, defined by the joint NCR/CDC task force in May, 1973. The
required level of compatibility is level IV with level V
desired- Level V is to be pursued only if the result does
not ,compromise too severely the cost/performance of the
1 ine.

Level IV - This level established the minimum requirements
'which must be satisfjed to have an integrated product line.
These requirements are stated as:

• ~ndustry standard data representation on cards and
tape.

• Complete portability of higher level language source
code, including software writer's language. {Note,
that users who write model dependent code cannot be
fully masked.}

o Common data formats {internal and external}.
~ Common disk recording formats.
o Common data communications protocol.
• Common operating system at the sout"'ce level, providing

JCl, file organizations, access methods, labeling con­
ventions, etc.

'0 Common I/O channel.
• Common system console design.
• Consistent virtual storage definition.

level V - This level' includes Level IV plus a bit-compatible
instruction set.

2

IPL COr:FIGURATION

2 • 1 The p rim a r y asp e c t 0 f con f i 9 u rat ion t h .J t t.J ill b e ':1 d d res sed her e
i s the rei c] t ion s hip bet ll.' C C nth e rn u 1 tip l 2 pro c e s ~; 0 r' sty pic a 1 0 f
the IPL, and central memory. Further details relating to
channel configuration and pei~ipheral 8Guipment support will be
supplied at a later stage.

2.2 The basic configuration of the IPL is one where a central memory
is accessed via a c6mmon addressing scheme by mUltiple processo~s:

- -'j
PROC~SSOR •

CENTRAL MEMORY

PROCESSOR
C

Central memory will not
be the Q~ communication
path for the individual
processors. However, the
precise connections are
still being developed and
will be included in this
specification at a later
date.

The addressing scheme employed is based on a virtual memory
mechanism which is described fully in the next section. That
mechanism forms the basis for the protection and security schemes
devised for the IPL, and by ensuring that all memory references
are via this mechanism, system- wide protection and security are
guaranteed.

2.3 Implied in the configuration is a single operating system and a
single instruction set. The individual processors will not
necessarily be identical, but with the exception of some special
I/O commands they will all be capable of executing the same'
processes-

3

Some processors will have the ability to communicate with
peripheral devices. The operating system will recognize this
unique feature and will assign work accordingly- The general
configuration is shown below:

PROCESSOR

A

PRO(ESSOR
8

CENTRAL MEMORY

PROCESSOR
C - - -

1/0

PROCESS Of~
D

...... - ---
1/0

Peripherals

2.4 The IPL wi~l embrace a range of processors of differing power­
Total syst~m power m~y be increased by utilizing a more powerf~l
pr~cessor, or by adding processDrs of like power. Since all IPL
models require an 1/0 capability it is the less powerful pro­
cessors representing the low-end of the line that will satisfy
this need. A minimum low-end configuration will typically con­
tain a single processor:

Peripherals

CENTRAL MEMORY

4

More powerful systC?ms uill typicclily ho;.lvr~ two proc('~-:;sors"l one
o f w ~ i c h w i 11 h cJ vet h c I / 0 c.J P .~·l LJ iIi t y •

2.5 DepQnding on the power of a p~rticul~r processor, cort~in oper-
a t ion sma,} b e 0 p tim i ;' cd. For (? x ~: 1i p !. e, ~1 l t \ 1 C 1 0 '.-J - (, n U t~ Ii Pin -
structions may be C?~<c~cut.:'d r:loro efficiently t.h~:n t!H!ir count0r'-
partsat the hi<Jh··er,ci. iL:-vcrttlclL:SS, oc::.)lc I/O cO;:lr:;.~!nds excepted,
all processors can execute ·all code. This fact, wl~ich enables
the con f i gu r 2 t i () n sou t 1 j it cd h Q t' e 1 a 1 sop t"' 0 v i cJ c s for p.J r a 11 e::l
redundancy and all the benefits which arc derived from it.

2.6 The instruction set to be used for the rPL is discussed in
S e c.t i 011 5 i d n d r eli ,:;:! i 1 i t y iss u c: S t'J i 11 b G the sub j e c t 0 f f u t u r e
sections or ~ppen~ic~s.

5

3.1.1 In order to simplify progr~ns all 6W2rcn2SS of the
actual size of physical memory h0S been removed
from the user. Instead, the user works in a virtual
memory space which has a finite size of 2~3 bytes
for any given user. To permit users to share data
and code in a controlled manner, the entire infor-
m a t ion s·t are i s d i v ide d up i n t 0 seq s.(: n t s .' E a c h
segment has associated with ita set of attributes
which C; 0 n t r 0 1 the a c c G S S to t hEl t segment. A 9 i ve n
use r may add r' e s sup to 2 l ~ {4 09 b} s e 9 1:1 en t sin a sin 9 1 e
process. Each segment has a maximum permissible
length of 2]i bytes. To facilitate mc::pping segments
into real memory, and to enable management of the very
large memories envisaged for the IPL, segments are
subdivided into paops. Page sizes may vary between
a minimum of 256 bytQS and a maximum of 64K bytes.
In any given machine the peg9 size will be fixed­
The minimum page size permissible is termed a para­
graph. Within this memory space addressing will be
to the byte. The total hierarchy then is:

SEGMENT

In general, users refer to a segment and a byte
offset within a segment. Pages are transparent
to the user in much the same way that banks are
transparent to users in real memory.

3.1.2 Having established an environment in whi~h ~~ny
users may share code ahd data it is necessary to.
provide suitable protection mechanisms to insulate

-the individual users from each other. Two techniques

6

are used to'guar~ntcc interprocess and intraprocess
protection. The: f ir::;t i~ c~chicvC!d vitl the segment
a t t rib ute s Ii} hie h h i3 V 2 c: 1 r 2 cJ d 'j b e Q. n men t ion e d, t h C?

second is achieved by logicJlly org2nizing the en­
tire information store wiLhin a series of concentric
rings corresponding to different states the machine
operates in- f~in9 zero is the most priveleged ring­
In general, a procedurQ. executing in a particular ring
has access to code and data in that ring and in any
ring outside {greater ring number} its own- Access to
inner rings can only be made through carefully con­
trolled entry' points or gates.

3.2 Memory Address Formation·

3.2.1 This section specifies the logical algorithms used
for translating the IPL process virtual address {PVA}
into a real address. The formation of the PVA is a
function of the instruction repertoire and how the
various fields of the instruction are used to form
an effective address.

3.2.2 The PVA is mapped into a 64-bit container- Three
fields are used during address translation- These
are the ring number {RN}, the segment nu~ber {SEG}
and the byte number {BN}. The format of the PVA is

. shown below:

I is the invalid flag and, when set {I=l} denotes an
invalid pointer.

7

3.2.2.1 rnlC? rin,S __ .~l_~~l~)Q..r:. is a four bit field used in
~ccess v~ljddtion and is discussed in the
next section-

3 • 2 • 2 • 2 The 5 (? £Q':;_~~ t ~ J r.;.~J,EJ: is a 12 - bit fie I d t 11 at is
used to 2ccess the segment descriptor. In
effect this fjeld is an index into the seg-
me tl t des C f"' i p tor t 2 b 1 c • S 29m e n t n' u m b e r s are
assigned as needed by the operating system.
Each process in the system has its own virtual
address s!=,{3ce and can, have up to 4096 segmen ts
described in that'address space. So~e of the
segments will be pre-assigned to s9stem code
and tables that are in a privile~ed machine
state {typically ring zero}. Other segments
will contain the code and data of the users
application.

3.2.2.3 The p~~~~ber specifies the location to be
accessed within a segment and is made up of three
parts; the page number {PN}, the page offset
{PO}, and the 'paragraph number.

~ .:"C" >~ ... ~t9.":":~:. ~:--::.::.1 •

3 ... 2.2.3.~ The<,"f},aqe-D..umber. field is variable in
',. ~ii~ and ranges from 15 to 23 bits­

The size is fixed on a per install­
atio~ basis and will not vary while
the system is running. The actual
size of the page number field is
contained as a mask in the page size
mask register.

Th~age size mask reai~ter
is set so that it can be
used against bits 48 through
55 of the PVA to separate
out the page number and the
page offset. Bit positions
33 through 47 of the PVA
are automatically included
in the page number, and bits
56 through 63 are automat­
ically included in the page

-offset.

The page size mask is 8-bits
long and is always a log­
ical prefix vector with
{8-U} ones followed by U
zeros where the page size
is 2 U x paragraph size

/
/ ,

/
/

8

u . .' {8+U}
{ :: 2 x 2 5 bar 2 } • F' 0 rex -
ample, U=2 yields a page size
o f 2 (J + "J.) = 1 0 2 lj b Y t e s · T he
corresponding page size mask
would be set to:

nl111110n~.

3 • 2 . [] . 3 . 2 T h t? [1 ~9_L 0 f [.?..r.J:.. i s the dis p 1 2 C em e n t 0 f the
location to be accessed relative to the
page boundary. This field varies with the
page size and ranges from 8 to 16 bits.

3 • 2 • 2 • 3 • 3 The .R.? I" 2_9 r a QJJ __ Il~~ll. G r iss p e c i fie d as the
23-bit v~lue contained in bits 33 through
55 of the PVA. It is used both to validate
against trying to access beyond the defined
length of a segment, and to allow a segment
allocation unit that is smaller than a page.

3.2.2.4 The formation of the page number and the page offset
from the byte number and the page size mask is illus­
t,r ate d below:

,.
/

/

/

BYTE,NUMBER

I
I

I

I
I

/'

{31}

r
I

, ,
\

\ , , , , ,
\ , ,

.r---I _________ --,.--,:..----;-...0...-. _----~~J

1

3 • 2 • 3 M n :'1 0 r \j Tt:l; 1 r: s .. Two mc:-~) r ~/ con t cl i n (::: d t ,l b 1 (~s c1 t'" r:> u s ~.' d tot. r' ,; :-) :.,.; 1 ,:'; L :,,?

the--PVA1'n co are a 1 a c! rJ I' t:: S S • T h C2 S Q cJ r G t h l: n roc r. S ~-, ',.. ~ ,., • ~ t ~: I,) l0
~ n d t he . ~~~~~ m _.~.:::'C~ _J:.,',::_~_-~l.~)..:. . T h i2 ~' c"J' C S pee i f ~ ~:;-d-w ltT:- r': ,'~ t', \ ;_, (lr ('~. ~~'-='.3
1 n s pC C 1 alp r 0 9 j'" c:: ~:~;,~ -~:, IJ 1 c: r' c S 1 $ tc: r'" S • T h Q r c~] 1 ~~ t c r S C c:: r1 () t, 1 ''/ L r:
m~nipulated by privi10Qcd routines of the operating ~y~t0m.

3. 2 • 3 • 1 T h G I?..C.~~2~~_? e ~_C . .Q.n t' J::: hJ_fl. iss p c c i f i ~ d by t LJ 0 V u 1 u e s :
the segment tcible udcJrf:~ss {STA} and ttle SCClI71t:?·nt td81G
length {STt}. The STA is the first real'address of th2
first entry of the process segment table. Each entry is
b4-bits long 2nd is accessed by indexing the STt\ \"Jith
the a ~~ r r IJ p r i 2 t Q S c= S men t nu ::1 b e r • The S e 9 men t t C'; b 1 c 1 eng t 11
indicates the ndmber bf usable entries in the scgncnt
table. The segment nwmber to be used as an index must
be less than or equal to the value of the STL. The
format of thG segment table entr'les {segment descriptors}
is shown below:

RO' R"F.f~=-I_.-A .. S_ID ____ [: : I1PGN

4 8 1
2

1
b

3 3
2 3

~".

The process se9~ent table entries are used primarily
to validate access. They are also used to convert the
PVA to a system virtual address {SVA}, by substituting
a 16-bit active segment identifier for the 12-bit pro­
cess segment number. The segment table entry is known
as a segment descriptor. The formation of the SVA is
illustrated:

PROCESS VIRTUAL ADDRESS

rZ!.I!i2Z2:'1 S E G ~H _______ BN __ ~
/' /'

/

SYSTEM VIRTUAL ADDRESS

10

3 • 2 • 3 • 1 • 1 The act i v e s e gene n t i tJ C I' t i f i ~? 1"1 {A SID} i s a S 0 f t tlJ .J res u p p 1 i c d val u e
th a t reI 2 t est h.e pro c e s s' s c ~~i!n (2 n t n u r:l b c r' too n l! 0 fag lob a 1 set
of segmcn~active in tho systQm. Two prGC2S~QS which are sharing
a s,e 9 m (? n t m c:: y use d iff e r Q n t !3 C' 9 r.1 en t n U I;i b Q r s to ad c! r' c sst he s e 9-
men t, but w i 11 h a vet h Q sam e A SID • T h ;"~ f\ S I I) iss u b s tit ute d for
t hOe s e g men t n u m b e r i nth e P V Abe for e t h €! S Y s t Q m p a 9 eta b 1 e i s
accessed.

3.2.3.1.2 The w~ R, and X flags indicate the type of access that is per­
mitted to the segm2nt. These quantities, the ring numbers RO­
R~ and the call limit {Cl} are discussed more fully in the next
section.

3. 2 • 3 • 1 · 3 The r.t 2 ~im l: ilL-Q. a.i:~9J:. .. ::)_Ul:L_t2.~~fl~ ~J ~ r {M P G N} is use d toe n sur e t hat the
byte number from the PVA does not reference beyond the end of
the segment. The PGN must not be greater than the maximum
paragraph number of the segment as specified in the descriptor.

3.2.3.1.4 The inv~lid-L~ag {JJ: indicates whether the segment descriptor
contains valid information. If a process is removed from memory
and placed on secondary storage~ its segments are considered to
be no longer active and the ASID is released. Hence, when the·
process returns to memory the entries in the segment table are no
longer correct and ar~ marked invalid. As each segment is used
a new value for the ASID is supplied. Attempting to use a seg­
ment descriptor with an invalid bit set causes a irap so that.

·the operating system can make the segment descriptor valid.

3.~.3.1.5 The direct flag {D} is used to indi~ate·direct addressing of
the'segment. This is a special mode of operation that reduces
fragmentation of real memory when $everal segments of· less than
one page in length can be grouped together. The address trans­
lation mechanism for the direct address mode proceeds as follows:

{i} Zeros are placed in the paragraph portion of the seg~entl
page identifier. That is, the page number is forced to
ze'ro •

iii} The"physical page address" is recognized as the segment
relocation address and is added to the 31-bit physical
memory address.

This process is illustrated as follows:

~--.-----------------------------------~

,
\

,
\

\

,
'\ ,

11

'­, jJ \\
.... 7, ,

[~O-O----~~ 'l~'~O~~;----------------T

l~' -PAGE NUf'18ER {24}-----·--..·l·'.i<----PAGE OffSET {32}-------~·.1

3. 2 • 3 • 2 Th e s v s t_e m 0 a 0 e t§.. b 1 e iss pee i fie d b Y two val u e s : the p age tab 1 e
address {PTA} and the page table length {PTL}. Th~ ~age table
address is the real address of the first entry of the system pa9~
table. Each entry is 64-bits long: The de~ired entry in the table
is located with a combination of indexing .and linear searching. The
page table l~ngth is a mask that is used to force the index used to
access' the page table to be modulo the size of the table- The table
size is a function of real memory size and the page si2e~ and is a
mUltiple of the number of page frames in real memory - usually 2-4
times the number of available page frames.

H+I
ili 23 4

3.2.3.2.1 The system page table entries are used r6 locate ·the
proper page frame to be accessed and record usage of
the page frame. Their format is illustrated below:

PAGEID 3~"44 RPGA

56 34
6
3

I

12

3.2.3.3 The ~al c~dress is formed by adding the real paragraph address
and the SVA byte offset.

PAGEID REAL ADDRF.SS
--~~~------~ ======~

SYSTEM VIRTUAL ADDRESS

lZ/m?iI ASID H BN ._.

-~~ ..

;1 ----:2.:4
TARGET REAL ADDRESS

3.2.3.4 The entire address formation {excluding access validation} is
described by the following flow cha~t:

FORM S/PID
fROM ASID & P~

FORM PO FROM
SVA

~--~r~----~nASK

PAGE
fAULT

<C.-----r----"

FORM"REAL
. ADDRtSS

" 13

FORM S/PID
FR OM ASID & ZERiOS

PO = 8N

14

The P~92 tdblQ cOlltuin~ onG entry for each frame of real memory­
The entries are placed in the table according to a hash index
t h.J tis 9 Q rEo! r.J ted fro i1 the S V A • Sin c e man y SV A's wi 11 has h t u
the same indo x it is necessary to specify the algorithm to be
used to continue searching the table- this is a straight. linear
search.

3.2.3.2.2 The Qane identtfir; .. 0_ti_Qn {P.t\GEID} consists of the ASID and the
page number derived from the PVA. It is used to identify the
SVA to be translated by the particular entry.

3.2.3.2.3 The ~eal Car2qr22had~ress {RPGA} specifies the 256 byte bouQdary
in real memory at which this section of the SVA is mapped. B~­
cause of the paragraph size ~llocation unit, the final real ad-'
dress should be formed by addition of the real paragraph address
and the SVA byte offset. The formation of these quantities is
diagrammed.

PAGE TABLE ENTRY
rrrrrr-~~bI.D_. ____ .

/// II
/6/

, \-4<:>-I E.A.~J:ID':-----:;
I 40

3.2.3.2.4 The used{U} and modified {M} flags indicate whether the page
table entry has been used for address translation, and when
used, if the real memory location was modified.

3.2.3.2.5 The T-f!.£9. is used as a lock-out. When set this flag indicates
that the page table entry cannot be used by the CPU for address
translation because the block is being modified by I/O.

3.2·3.2.6 The control {C} flea"controls the search of the page table for
the proper SVA. If C is not set, then the block of SVA space
is not in real memory and a page fault is generated.

1,5

3.3 PROTECTION MECHANISM

3.3.1 Two mechanisms are used in the IPL for controlling access to
a. s e 9 men t • Fir st., t·J hen a use r c rea t e s a s e S men t h C? i n d i c c3 t e s
the type of access other users may have to that segment. The
options of read, write and execute arc denoted by individual
f 1 a 9 sin the s e 9 men t des c rip tor. T h;2 H.::.L 1 a 9 m u s t be set if
the s e g men tis to be mod i fie d • The E(:..fJ c' 9. m u s t be set if'
d a t a i s to be f etc he d fro m the s e 9 men t • The X - Lt~l..9. m u s t be
set if the segment contains executable code and constants.

3.3.2 The ability to grant access rights to a particular segment
is not sufficient control, and that mechanism is augmented
by a technique governing intra-process control. This tech­
nique is an extension of the common two state {system state
and user state} machines. The IPL may operate in any of
sixteen states. These states are rings of protection. In
general, segments in the same ring have access to each other
limited only by their prescribed access modes. In addition,
segments in lower-numbered rings have unlimited access to
segments in high-numbered rings, subject to the access modes
of those segments.

3.3.3 By definition, passing control outwards {to a gre~ter ring
number} from a segment is legal. However, passing control
inwards {to a smaller ring number} is carefully controlled,
and is achieved by providing the callee. with a gate through
which the caller must pass. The most common example of this
process occurs when a user calls on the operating system to
pef"'form a task-

3.3.4 It is frequently convenient to allow a segment to execute in
several rings. This is accomplished by giving the segment an
~cute bracket. This bracket delimits the rings in which the
segment may be executed - always provided that the segment
has execute access grant~d via the X-fleo" The RO-R3 fields
in the segment descriptor are used to denote the rings of
which a segment may be a fuember. If a process is executing
in a ring containadin the execute bracket of a segment, and
control is transferred to that segment, then the ring of ex­
ecution is unchanged. If the current ring of execution is
less than the ring bracket., then when control is transferred
to that segment the ring of execution is set equal to the
smallest ring number in the bracket. In a similar way, if
the current ring of execution was greater than the ring
bracket it would be set equal to the greater ring number in
the bracket, assuming the segment had a gate- In this con­
text it is also useful to specify a gate bracket. An attempt
to execute a segment from a ring greater than the gate bracket
is prohibited. The fields Rl, R2 and R3 ~re used to denote

16

the execute bracket {Rl, R2} and gate bracket.

3.3.5 The concept of ring brac~ets is extended to read, and write
p t' 0 t e c t ion. i-\ pro C C ssm u s t b e ~.! x C? cut i n 9 w Lt hi nth erc'a d 0 r .
write bracket of ~ sogment, and ~ppropriate access must have
been grant~d for their' o~)2rations to be executed. The complete
set of co~ditions for reading, writing and executing a segment
are given below.

W= 1

RO /~ p. RN .

PV A. RN"< Rl

Read Access

R= 1

RO'< P.RN

PVA. RN '< R2

Execute Access

X= 1

Rl i"~ PV A. RN ~ R2

P.RN is the current ring
of execution-

3.3.6 When a'procedure makes a calIon another procedure executing
in an inner ring, the right to make the call must first be
validated, and the proper usa of the gate ~ust be checked.
The authority to makE the call has been given to the caller
if:

PVA· RN <: R3

Having validated the right of the caller to make the call,
the entry address must be verified. This is done by com­
paring the CL field of the descriptor with the PVA.8N, to
ensure that the entry is via the appropriate transfer vector.
If the address is within rangG of the transfer vector, the
gate is' allowed. In this case the current ring of, execution
is set to R2. Execution now proceeds as normal.

3.3.7 To ensure protection when returning from an outward call,
outward calls are trapped by the operating system which
then simulates the CALL operation. In this case the current
ring of execution is set to Rl.

--

4. D~ FORMATS

4.1 The data formats supported by the IPL. are diagrammed below:

L
L------------HALFWORD . I
~--a·{TE c: , BYTE
I

I i
I I
i I
::~ P~!~:-r !:""' ... ~~E~~

[,I
i ';
I
I !":-:-:'?7 r:.~1-::_!~;'1

\ : \
7

::/r~·;r'.T

!

!
I

I
1 Lr.,.~;j fL'.:J..7!!,j

7
£:~ ;:~·.t:IT

I
I
I

P~!::T !;,:~~~? ER

I
I

I
P'iI~;T =:I~-:i!f.P.

cl.~YTE

31

lr~TEGER

21.J
FRACTION

~~ .:'.! l.t·.~TH FLOATI:.G POI/IT flunBtR

I, 7 1 .~ (JP~;.C.T
;

c

I
i ;~:::> tI£CI:ru. :n::"'r?:~~--~--T'--4 --+--4~"'"

DIGIT DIGIT

FULLWORD------------------~--------------------------------------~

-------------~~--------------------------P~FWORD-----------------------------~

BYTE ... Y'l'E BYTE
J

ColO BYTE cl B\"'l'!:

31

~
31

1

Sb
fRACTION

J. 6

((J,~U
FRACTION

zo::m D!:CI!".AL tn..,...BER

-----l-------------------------~-----·
~---,,------~----,----~ - -- -- - - .. - -... ----- .. - - ~ - -- - - - .. - -. :~ - .. - - ~ ..

4

DIGIT

4 4

DIGIT ZONE

,t'AAIABt.z U:::;G'rH LOOr.;.:.r::~1-..!:.L...lr:.:;!:~FO~P~~~'J.~~1'2.!O!.!l!::..l --4-----=-----;----~--___j i . I C"AMCTER CHARA~ER CHARA~~ 1-------------------------------·
I I \-------------------------------.

D!.TA FORMATS

18

4.2 An 8-bit unit of information is fund~mental to most of these data
formats. The location of a stored field is s~~cified by th8 address
of th~ leftmost byte of the field. Variable-length fields may start
on any by to location, but a fixed-length field of 4- or 8-bytes must
have an address that is a mUltiple of 4 or 8, respectively.

4.3 Alpha-numeric data is carried either in ASCII or in EBCDIC, which
codes are shown on the following page:

"

NUL
SOH
STX
ETX
EDT
£:;Q
J..CK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE

Null/Idle
Start of heading
Start of text
En,1 of text
End of tl.-ansmission
En:luiry
Ac}:r;owledge
Audible or attention signal
Back~pace
Horizontal tab
Line f~ed
Vertical tab
Form feed
Carriage return
Shift out
Shi ft in
Data link escape

/'

00

DCI
DC2
DC3
Dcli
NAK
SYN
ETB
CAN

SUB
ESC
FS
GS
RS
US
SP
DEL

--- 0],

01 10

Dev ice control
Device control
Device 'control

11

Device control (stop)
Ncaative acknowledge

, Synchronous idle
End of transmission block
Cancel
End of medium
Start o~·special sequence
Escape
File separator
Group separator
Record separator
Unit separator
Space
Delete

EIGHT-BIT REPRESE8TATION FOR CODED INFORMATION (ASCII)

tfSb7

0000

000],

GOlD
0011

0::'00

0101

01::'0

0111

lCJCJO

lGOl

10::'0

1011
1100

ll~Jl

1110

1111

BIT POSITIONS - OJ,
"..----- 00 -----...... , / ______ 0J,

. -23 "
__________ ~, /~----------10 -----~ ,.------],], ------, / ,

00 01 10 11 00 01 10 11 00 Oli 10 11 00 01 10 11

t!Ul DLE DS SP & ~ 0

SOH DC1 SOS a j A J ,
~

~TX DC2 fS I syrl b k s 8 K S 2

ETX Ti1 c 1 t (l T ~

PF RES BYP prj d m u D M U t.;
-

HT tlL LF R~

lC I 8S (08 CC
-I

. --,-' I

DEL IL ! Pi\E i EOT
l c=1
•

I e n v

f I 0 W
I

9 P x

E rJ V - I
f 0 L: I b

G P X I 7

(AN h q Y H a y I ~

Fl1
~,..~ ((SM

VT CU1 I CU2 CU3
Ff IFS DC4
C~ I~S C:Q fSt..f(

SO IRS ACK
SI IUS B[l sua

-

{. ~I
! :

. $ ~ ...
< "'--r '-* i % ~~

{)- - -8 +

~-I I I ? .

i r 2

! I I I
f

1
I
! -

I R Z I i
I I

i
t I

I
i I

ACK ~cknowledge DEL Delete IGS Interchange Group Separator SI Shift In
BEL Bell DlE Data Link Escape IL Idle SM S2tMode
8S Backspace DS . Digit Select IRS Interchange Record Separator Si1M Stat~t Manual Message
8YP Bypass EM End of tledium IUS Interchange Unit Separator SO Shift Out
CAN Cancel ENQ Enquiry LC Lower Case SOH Start of Heading
CC Cursor Control EOT End of Transmission LF Line feed SOS Start of Sig:1ifican.:e
CR Carriage Return ESC Escape NAK Negative Acknowlege S? SpC.ce
CU Customer Use 1 ETB End of TrClnsmission alock Nl rJew Line S'iX Start of Text
ClJ2 Customer Use 2 ETX End of Text NUL Null SUB Substitute
CU3 Customer Use 3 Ff' Form feed PF Punch Off SYN Synchronous Idle
DCl Device Control], ·FS Field Separator PN Punch On TM Tape Mark
DC2 Device Control 2 HT Horizontal Tab RES Restore UC Upper Case
DClf Device Control If IFS Interchange File Separator RS R(;!ader Stop VT Vertical Tab

ru
CJ

EXTENDED BINARY - CODED - DECIMAL INTERCHANGE CODE {EBCDIC}

21,

4.4 Packed Decimal Numbers - In the packed format, two deci~al digits
normally are placed adjacent in a byte, except for the rightr:1ost
byte of tho field- In thc! r'ightmost byte a sign is p12ced to the
right of the decimal digit. The digits 0-9 have the binary en­
coding 0000-1001. The codes 1010-1111 are invalid as digits.
This set of codes is interpreted as sign codes with 1010, 1011,
1100, 1110, 1111 recognized as plus and with 1101 recognized as
minus- 1100 is the preferred code for plus- The codes 0000-
1001 are invalid as sign codes-

4.5 Zoned Decimal Numbers - In the zon2d format decimal digits are
rep res e n ted b y t :~, e i r G nco de d for m e i the r in the AS C I lor E 8 CD Ie
char~cter set. In those forms the low-order four bits of a byte
are normally occupied by a decim~l digit, and the four high order
bits are called the zone. Zone codes are 0011 for ASCII and
1111 for EBCDIC. Two forms of trailing sign are supported. In
the first form the last byte of the number contains a sign con­
sisting of either a plus or a minus in the appropriate binary
encoded form- In the second form the last byte contains a decimal
dig i tin its low - 0 r d e r f 0 u r bit san d a s i 9 n in the u·p per f 0 u r bit s •
The sign uses the same convention as for the packed decimal format.
These two formats are illustrated below:

z d
I

z : d z d s I I .
z d

z
I I z ! 1] ! l z I d d z d s d , d

Arithmetic is performed on operands in the packed format. In­
structions will be provided to translate between the two formats
a' n d' i 11 ega 1 bin a rye nco d e d for' m s w i 11 bed e t e c ted •

I P L I r,J S T R U C T ION REP E R T 0 IRE

5.1 The cost effectiveness of the IPL is very sensitive to the in­
struction set chosen for it. Consequently, this item will take
longGst to define of all items, and will involve many measure­
ments in an attempt to ensure that the optimum set is defined.
To facilitate this effort the instruction set has been broken
into three sub-sets comprising BDP instructions, scientific
instructions and ngener~ln instructions-It is anticipated
that the general instructions will be heavily used in systems
programming work, and quite heavily in scientific and com-
mercial computations. . .

5.2 The low-end of· the IPL is typical of the NCR market-place today,
and will be used to dictate the requirement for BDP instructions.
Memory compaction, with byte addressability characterizes the
desire to minimize cost at this end of the spectrum. Complex,
memory-to-memory descriptor driven operations have been defined
at the present time for the low-end, while more conventional
operations have been proposed at the high-end. An effort is
in progress to merge these two approaches so that a single set
of operations will result. The governing parameters are those
of the low-end, and if necessary, an interpretive mode will be
used at the high-end to achieve the" level 5 compatibility goal.

5.3 At the other end of the spectrum the high-end attrihlJtes {per­
formance} will decide the final format of the scientific in­
structions. These instructions will be simple and probably
operate register to register to optimize performance. The
instructions will form part of a virtual machine that will be
emulated by a fast micro-processor at the low-end.

5.4 The general instruction set is the most difficult to derive in
that the requirements have not been subject to the same analysis
as the scientific and BDP fields- Since system code will use
these instructions almost exclusively it is important that the
problem be researched as thoroughly as possible. For this
~eason independent approaches from the low-end, and high-end
viewpoints of the IPL are being made, with an aim to coalesce
those divergent approaches into a single instruction set. At
the same time statistical data is being gathered from existing
operating systems and compilers- This data will be used to
validate any instruction set that results-

5.5 The overall approach is to seek a fast, register-oriented
machine for the high-end of the line which may use cache memories,
instruction stack, parallel functional units, etc., in order
to achieve the desired performance- The complex operations
needed for the low-end machines will be trapped and interpretively
executed if necessary. At the low-end a virtual machine capable

of being omulatod by a riera-processor will be evolved such
that mcmo~y utiliz~tion {2nd consequently, overall cost} may
b e min i OJ i ;-~ (; d •

5.6 Other virtual machines ... such as COBOL virtual machines, will
be p t2 r Ll i Ltc d as Ion I~ as the yeo n for r.1 tot h e I P LOS in t e r fa c e s •

24 -

6.1 Architectural considerations up to this point have conten­
trated on hardware characteristics, although the processor
configurations and virtu~l nemory mechanism are not without
software i~plications. However, one important component
of the system architecture is the operating system, and
this section discusses so~e of the basic philosophies
leading up to its definition-

6.2 "The IPL Operating System {IPLOS} will be developed as a
collection of subsystems all of which are administered as
user work- In other words, the system will be organized
as a collection of intercommunicating user and system
proc~sses, each having different levels of capability,
protection and security. There will be a small amount of
code., having maximum exposur'e to har'duare characteristics,
which will manage inter-process messages. For purposes of
reliability, security and measurability it is desirable to
organize system services as separate sub-systems. However,
the resultant performance penalties appear to be unacceptable.
Consequently, the IPLOS is planned to utilize both inte~rated
and seareqated system services. Interfaces will be deTlnea
such that future changes may be accomplished with a mlnlmum
effort. Such a measure will compromise reliability and
security for performance-

b.3 A single- operating system based on the general multiple­
processor configuration discussed in section 2 is planned
for all IPL models.

6.4 The virtual memory organization described in section 3 is
required by the IPLOS to enable code and data sharing in a
c ontro 11 e d env i roni,le nt, m ax i m izmg secu r i t y and protect ion
for the system and user alike.

6.5 The IPLOS will organize all external 1/0 in an implicit
fashion.

6.6 All IPLOS code will be written in a high level implementation
language {SWL}. Any use of IPL assembly language will be
done in the context of the SWL environment, and will be kept
to an absolute minimum.

