DATE:

TO:

FROM:

SUDJECT:

Temor o ...v’l"‘m (10\‘\,4‘{\--'0!“ nen (rr"n"\""‘\ e SR ']
b ihar U E 3 N R o Uuwjmmwl ..\wuu.ﬂ‘uu‘

1Y January 1974
Distribution LOCATION:
J. A. Wilson LocaTion: PGAANY exT: bU2g

IPL Architectural Definition

Attached is the IPL Architectural Definition which is
submitted for your approval. A meeting will be scheduled
on Tuesdays dJanuary 221 following PRAM in Escondido. to
solicit your comments.

ds ﬁ//wllscn

/mlt

Distribution: T. H. Elrod ASL/U

\ln f ' o ' i e
MERICES }&WE 5 - DRAFY

: Ahfrnw

R« 0. Gunderson

M. F. Harris ASL/7UY
G. M. Schumacher :
D. L. Slais

NERIIGE

‘S;“

LJ\..'

B

IR
i

A

IPL
ARCHITECTURAL
DEFINITION

S X/3u/74

TAELE OF CONTLHNTS

L. INTRODUCTION

2. IPL CONFIGURATION

3. VIRTUAL NENORY

4. DATA FORMATS

5. IPL INSTRUCTION REPERTOIRE
" b. OPERATING SYSTEN

E\]EWU 3 wa;i[;,Jt;;lu | BME |

Y. INTRODUCTION

1.2 The Archltectural Pefinition is the first of three
levels of definition of IPL as described in the IPL
System Design Plan document. Fach level will define
IPL in more detall The Architectural Definition
deflnes-
Inter~proceszor connection
Virtual memory mechanisa
Data formats
Direction to be followed in defining the instruction
set-

R

.2 The objective of the Advanced Systems Leboratory is to-
define a computer systems product line which spans the
lease price range of <.X-ZZ0:#,/nonch and performance range

— -

of from one toenth of & LLDD to oleoven times a Lol0.

k.3 The definition of compatibility to be achieved in IPL was
"defired by the joint NCR/CDC task force in May- 1973« The
required level of compatibility is level IV with level V
desired. Level V is to be pursued only if the result does

not .compromise too severely the cost/performance of the
line.

Level IV - This level established the minimum requirements
which must be satisfied to have an integrated product line.
These requirements are stated as:

¢ Industry standard data representation on cards and
tape.

¢ C(omplete portability of higher level language source

codes including software writer's language. <{Noteas

that users who write model dependent code cannot be

fully masked.?}

Common data formats {internal and external’.

Common disk recording formats.

Common data communications protocol.

Common operating system at the source level. providing

JCL~ file organizations. access methods. labeling con-

ventions. etc.

e (Common I1/0 channel.

e (ommon system console design.

¢ (onsistent virtual storage definition.

‘e 0 0@

Level V - This level 1ncludes Level IV plus a bit- compatlble
1nstruct10n set.

om0 DRAGT

NERRRE

IPL CONETGURATION

2.l The primary aspect of configuration that will be addressed here
is the relationship between the multiplie processors typical of
the IPL~ and central memory. Further details relating to
chennel configuration and peripheral equipment support will be
supplied at a later stage.

2.2 The basic conflguratlon of the IPL is c¢ne where a central memory
is accessed via a common addressing schieme by multiple processors:

; Central memory will not
PROCESSOR ~ {PROCESSOR be the only communication
A B . path for the individual
processors. Howevera the
precise connections are
still being developed and
will be included in this
specification at a later
date.

CENTRAL MEMORY

PROCESSOR
C

The addressing scheme employed is based on a virtual memory
mechanism which is described fully in the next section. That
mechanism forms the basis for the protection and security schemes
devised for the IPL. and by ensuring that all memory references
are via this mechanism. system- wide protection and security are
guaranteed.

2.3 Implied in the configuration is a single operating system and a
single instruction set. The individual processors will not
necessarily be identicals but with the exception of some speci31:
I/0 commands they w111 all be capable of executing the same’
processes.-

UERIEER PETE DRABT

-t}

Some processors will have the ability to communicate with
peripheral devices.. The operating system will recognize this
unique feature and will assign work accordingly. The general
configuration is showun below:

PROCESSOR PROCESSOR
A B

CENTRAL METMORY

PROCESSOR PROCESSOR

C D
T~ 1I/0 ’ Y
Peripherals Peripherals

2.4 The IPL will embrace a range of processors of differing power.
Total system power may be increased by utilizing a more powerful
processora. or by adding processors of like power. Since all IPL
models require an I/0 capebility it is the less powerful pro-
cessors representing the low-end of the line that will satisfy
this need. A minimum low-end configuration will typically con-
tain a single processor:

Proc!I/O Peripherals

CENTRAL MEMORY

CNEREE —— DRAET

More powerful systems will tvpicaelly have two processorsa. one
of which will have the I/0 capability.

Depending on the pouwer of & particular processors certain oper-
ations may be optimired. For exanple. at the low-cnd ©LP in-
structions may be exocutéd more efficicntly than theilr counter=
partsat the high=~end. iloverthelessa dasic 1/0 commands excepteda
all processors can exccute all code. This fact. which enables
the configuretions outlined here. also provides for parallel
redundancy and all the benefits which are derived from it.

The instruction set to be used for the IPL is discussed in
Section 5+ and relievility issues will be the subject of future
sections or appencices.

Y f‘* e - . 17

3. VIRTUAL MEMORY

3.1 Qverviey

3.1.1 In order to simplify prograns all swereness of the
actual size of physical memory has been removed
from the user. 1Instead. the user works in a virtual
memory space which has a finite size of 273 bytes
for any given user. To permit users to share data
and code in a controlled masnnera. the entire infor-
mation store is divided up into segments. Each
segment has associcted with it a set of attributes
which control the access to that segment. A given
user may address up to 2'* {409L} secguents in a single
process. Each segment has a maximum permissible
length of 27" bytes. To facilitate mepping segments
into real memory. and to enable management of the very
large memories envisaged for the IPL. segments are
subdivided into paces. Pege sizes may vary betuween
a minimum of 25&L bytes and a maximum of LYK bytes.
In any given mechine the pege size will be fixed.
The minimum page size permissible is termed a para-
graph. UWithin this memory space addressing will be
to the byte. The total hierarchy then is: '

\\S\\\ SEGMENT J////’
\\\\EAGE /////
,3\\31:5///

In general. users refer to a segment and a byte
of fset within a segment. Pages are transparent
to the user in much the same way that banks are
transparent to users in real memory.

3.k.2 Having established an environment in which pany
users may share code and data it is necessary to.
provide suitable protection mechanisms to insulate
~the individual users from each other. Two techniques

WEREIROETTE 0 DRAET

are used to guarantce interprocess and intraprocess
protection. The first is cchicved via the segment
attributes which have already been mentioneda the
second is achieved by legically orgenizing the en-
tire information store within a series of concentric
rings corresponding to different states the machine
operates in. Ring zero is the most priveleged ring-

In generala a procedure axecuting in a pearticular ring
has access to code and data in that ring and in any
ring outside {grester ring number} its own. Access to
inner rings can only be mede through carefully con-
trolled entry points or gates.

3.2 Memory Address Formation

3.2.1 This section specifies the logical algorithms used
for translating the IPL process virtual address {PVAZ}
into a real address. The formation of the PVA is a
function of the instruction repertoire and how the
various fields of the instruction are used to form
an effective address. :

3.2.2 The PVA is mapped into a LU-bit container. Three
fields are used during address translation. These
_are the ring number {RN}. the segment nuhber {SEG}
and the byte number {BN}. The format of the PVA is
‘shown below:

W////l/ RN SEG {1 BN
& / - [
] i = B "3 3 '
L O 72 3 73
s 7
7 VS
~ pd
-/ 7
7 //
2/ e
PGN
3 5 b

3 5 3

I is the invalid flag and. when set {I=1} denotes an
invalid pointer.

3
“J

COEmEE DRAB

3.2.2.1 The rinc nlmhnr is a four bit field used in
access validaetion and is discussed in the
next section. .

J.2.2.2 The sacrmint nurber is a l2-bit field that is
used to access the segment descriptor. In
effect this field is an index into the seg-
ment descriptor table. Segment numbers are
assigned as needed bv the operating system.
Ecch process in the system has its own virtual

- address snace and can have up to H09L segments
described in that adcress space. Some of the
segments will be pre-sssigned to system code
and tables that are in a priviliaged machine
state {typically ring zerol}. Other segments
will contain the code and data of the users
application.

3.2.2.3 The byte number specifies the location to be
accessed within a segment and is made up of three
partss the page number {PN}. the page offset
{PC¢}~ and the paragraph number-
s
'3<E-E-3-l The page number field is variable in
: - siZe and ranges from 15 to 23 bits.
The size is flxed on a per install-
ation basis and will not vary while
the system is running. The actual
size of the page number field is
contained as a mask in the page size
mask register.

3.2.2.3.1.)2 The page size mask reacister
" is set so that it can be

used against bits 48 through
55 of the PVA to separate
out the page number and the
page offset. Bit positions
33 through 4?7 of the PVA
are automatically included
in the page numbera and bits
S5k through L3 are autcmat-
ically included in the page
~of fset. ' _

3.2.2.3.1.2 The page size mask is 8-bits
' long and is always a log-
ical prefix vector with
{8-U} ones followed by U
zeros where the page size
is 2% x paragraph size

RCIBEEE 0 DRAFT

3.2.2.4

ol % ast or 28V For ex-
ample. U=2 yields a page size
of 2 ¢4+ = 1024 bytes. The
corresponding pege size mask
would be set to:

"111111007.

The ncoe offset is the displacement of the
iocation to be accessed relative to the
page boundary. This field varies with the
page size and ranges from & to lb bits.

3.2.¢.

954
[X8
n

3.2.2.3.3 The naragraph number is specified as the
' 23-bit value containad in bits 33 through
55 of the PVA. It is used both to validate
against trying to access beyond the defined
length of a segments and to allow a segment
allocation unit that is smaller than a page.

Thé formation of the page number and the page offset
from the byte number and the page size mask is illus-
trated below:

BYTE NUMBER {31}

J
L

J

)

Lk

"
¥
u

OFFSET {321}

LA

e DRAGT

3.2.3 HMemory Tehlaos - Two merory contained tables are usced to "ranslata
~ the PVA into a real addrass. These are the nrocasst oo et tablo
and the svstem nucoe 0. They are specificd with r. Qi”},sreiscs
in qpec1al proc.c” C: lﬁﬁl“tﬁ”r- The registers can only o
menipulated by pr;v1ngLd routines of the opgratlng UL tem

3.

3.2.3.)3 The process seanant table is specified by two values:
the segment table address {STA} and the secment table
length {STL}. Tha STA is the first real address of the
first entry of the process segment table. ELach entry 1is
EY-bits lonc end is accessed by indexing the STA with
the arpropriate scgment number. The segment toble lengtin
indicates the number of usable entries in the segnment
table. The segment number to be used as an index must
be less than or equal to the value of the STL. The
format of the segment table entries {segment descrlptors}
is shouwn below

i
)

RO} RY Re R3 ASID MPGN

\"J

CL

]
[

3 . o 535
3 : , b? & q

LE S K Fanay = impaiy

-
3

The process segment table entries are used primarily
to validate access. They are also used to convert the
PVA to a system virtual address {SVA}. by substituting
a lb-bit active segment identifier for the l2-bit pro-
cess segment number. The segment table entry is known
as a segment descriptor. The formation of the SVA is
illustrated:

SEGMENT DESCRIPTOR PROCESS VIRTUAL ADDRESS

Plas —_—~ il /A
R ,

///Z// l‘SID {ll} }' BN {32}

SYSTEM VIRTUAL ADDRESS

® DRAGT

U\J‘ugh} H @ [IJ EU uul

10

3.2¢3.1.1 The active segment identifier {ASID} is a software supplied value
that relates the proce*"' segment number to one of a global set
of segmentSactive in the sy<tnm Two procasses which are sharing
a segment may use differont scaement numbers to address the seg-
ment. but will have the same ASID. Tho ASID is substituted for
the segment number in the PVA before the system page table is
accessed.

3.2.3.k.2 The Wa Ra and X flags indicate the type of access thet is per-
mitted to the segmrent. These quantitiess the ring numbers RO-
R3 and the call limit {CL} are discussed more fully in the next
section.

3.2.3.2.3 The neximum paraarash nunsar {MPGN} is used to ensure that the
byte number from the PVA does not reference beyond the end of
the segment. The PGN must not be greater than the maximum .
paragraph number of the segment as specified in the descriptor.

3.2.3.%.4 The invalid flag {I} indicates whether the segment descriptor
contains valid infermation. If & process is removed from memory
and placed on seccndary storagea. its segments are considered to
be no longer active and the ASID is released. Hence. when the:
process returns to memory the entries in the segment table are no
longer correct and are marked invalid. As each segment is used
a new valua for the ASID is supplied. Attempting to use a seg-
ment descrlptor with an invalid bit set causes a trap so that .
~the operating system can make the segment descriptor valid.

3.2.3.%.5 The direct flag {D} is used to indicate direct addressing of
‘ the segment. This is a special mode of operation that reduces
fragmentation of real memory when several segments of less than
one page in length can be grouped together. The address trans-
lation mechanism for the direct address mode proceeds as follows

{i} Zeros are placed in the paragraph portion of the segment/
page identifier. That is. the page number is forced to
zero. ’

{ii} The"physical page address"™ is recognized as the segment
relocation addross and is added to the 3l-bit physical
memory -address.

This process is illustrated as follows:

WREEMIME 00 DRAET

11

BYTE NUNBER {317}

\
\
\\ \
N\ \
\ \

Q[\ \

224

L \ \\

\N/? s N
DO— e ~00 |
[6——PAGE KUMBER {24}~ }$ PAGE OFFSET {32} <

3.2.3.2 The svystem paca ta bTe is specified by two values- the page table
address {PTA} and the page table length {PTL}. "The page table
address is the real address of the first entry of the system page
table. Ezch entry is LU-bits long. The desired entry in the table
is located with a combination of 1ndexing,and linear searching. The
page table length is a mask that is used to force the index used to .
access-the page table to be modulo the size of the table. The table
size is a function of real memory size and the page sizea and is a
multiple of the number of page frames in real memory - usually -4
tlmes the number of available page frames.

3.2.3.2.1 The system page table entries are used tb locate the
proper page frame to be accessed and record usage of
the page frame. Their format is illustrated below:

'y

U PAGEID / " RPGA

I 23 4 | | 33 ik | -2
56 3y -3

WOERIEE 000 DRAET

12

3.2.3.3 The real address is formed by adding the real paragraph address
and the SVA byte offset. ' '

SYSTEM VIRTUAL ADDRESS

. 4 S 1
PAGEID REAL ADDRESS /) asTh] BN

f»,.-",?
%2,

w

e b AR

TARGET REAL ADDRESS

3.2.3.4 The entire address formation {excluding access validation} is
described by the following flow chart: - : .

WRGIRPIE 0000 DRAGT

.

SEG%E§Iﬁ//,»A—*>-~ TRAP

7 YES
GET DESCAIP.OT"]

f
.'l'

FORM S/PID
FROM ASID & PN

Q.
\p SSCRIBTORT |
27 YES
£ZBCH NP~ N0 | TRAP
(g"? YES
VALIDATE ACCE;?
FORi: SVA
1
NO m’cy\ YES
< "’DBRESSING¢ v
FORM S/PID

FROM ASID & ZER

0S

i

1

SVA

FORM PO FROM

>

PO = BN

-

s

A
&

HASH S/PID
1
%‘

{MASK BY PTL
- .

INCREASE INDEX

GET PTE

&YES

il

FORM REAL
"ADDRESS

HTQXUTE ADDRESS FORMATION
i o ,

13

sinet

Ly

" The pege table contains one entry for each frame of real memory.
The entries are placed in the table according to a hash index
that is genarctcd from the SVA. Since many SVA's will hash to
the same index it is necessary to Specify the algorithm to be
used to continue searching the teble. This is a straight linear
search.

3.2.3.2.2 The paae identification {PAGEID} consists of the ASID and the

page nhumber derived from the PVA. It is used to idgntify the
SVA to be translated by the particular entry.

3.2.3.2.3 The real paraaranh address {RPGA} specifies the 25k byte boundary
in rcal memory &t which this section of the SVA is mapped. Be-
cause of the paragraph size allocation unit. the final real ed-
dress should be formed by addition of the real paragraeph address
and the SVA byte offset. The formation of these quantities 1s
diagrammed.

PAGE TABLE ENTRY

i PAGETD
/ ;
/ & !
/ -)
/ Y H
V4 S/ = ‘
, o A -
X A v i
PAGETD p REAL ADDRESS, 0-0
| 40 | b St

3e2e3:8-4 The used{U} and modified {M} flags indicate whether the page
: table entry has been used for address translationa. and when
used. if the real memory location was modified-.

3.2.3.2.5 The T-flagq is used as a lock-out. UWhen set this flag indicates
that the page table entry cannot be used by the (PU for address
translation because the block is being modified by I/0.

3.2.3.2.L The control {(} flag controls the search of the page table for
the proper SVA. If C is not set. then the block of SVA space
is not in real memory and a page fault is generated.

L5

3.3 PROTECTION MECHANISH

3.3.1

3.3.2

"3.3.3

J.3.4

NCRIGOGHRIUATES

Two mechanisms are used in the IPL for controlling cccess to
a segment. First. when a user creates a secment he indicates
the type of access other users may have to that segment. The
options of read. write and 2xecute are denoted by individual
flags in the segment descriptor. The W-flag must be set if
the segment is to be modified. The R- flco must be set if
data is to be fetched from the segment. The X-flag must be
set if the segment contains executable code and constants.

The ability to grant access rights to a particular segment
is not sufficient control.: and that mechanism is augmented
by a technique governing intra-process control. This tech=-
nique is an extension of the common two state {system state
and user state} machines. The IPL may operate in any of "
sixteen states. These states are rings of protection. 1In
general. segments in the same ring have access to each other
limited only by their prescribed access modes. In additiona-
segments in lower-numbered rinqs have unlimited access to
segments in hlgh-numbered rings. subject to the access modes
of those segments.

By definition. passing control outwards {to a greater ring
number} from a segment is legal. Howevera. passing control
inwards {to a smaller ring numberl} is carefully controlleda:
and is achieved by providing the callee. with a gate through
which the caller must pass. The most common example of this
process occurs when a user calls on the operating system to
perform a task.

It is frequently convenient to allow a segment to execute in
several rings. This is accomplished by giving the segment an

execute bracket. This bracket delimits the rings in which the

segmnentc may be executed - always provided that the segment
has execute access granted via the X-fleg. The RO-R3 fields
in the segment descriptor are used to denote the ril rings of
which a segment may be a member. If a process is executing
in a ring containad in the execute bracket of a segment. and
control is transferred to that segment. then the ring of ex-
ecution is unchanged. If the current ring of execution is
less than the ring bracket. then when control is transferred
to that segment the ring of execution is set equal to the
smallest ring number in the bracket. In a similar waya if
the current ring of execution was greater than the ring
bracket it would be set equal to the greater ring number in
the bracket. assuming the segment had a gate. 1In this con-
text it is also useful to specify a gate bracket. An attempt

to execute a segment from a ring greater than the gate bracket

is prohibited. The fields Rl. R2 and R3 are used to denote

Ny e

DRAZT

Ll

b

the execute bracket {Rl. RZ} and gate bracket.

3.3.5 The concept of ring brackets is extended to read- and write
protecticrn. A process must be executing within the read or’
write bracket of a1 scgmenta and appropriate access must heve
been grantad for their oserations to be executed. The conmplete
set of corditions for reading. writing and executing a segment
are given belouw.

3.3.5.1 UlUrite Access
W= I P.RN is the current ring
i of execution.
RD %4 P.RN.

PVA.RN% R1

3.3.5.2 Read Access

R= 1
s

RO P.RN

PVA.RN % R2

3.3.5.3 Execute Access

X= 1
RL ¢ PVA.RN € R2

3.3.L When a procedure makes a call on another procedure executing
in an inner ringa the right to make the call must first be
validated. and the proper use of the gate must be checked.

The authority to make the call has been given to the caller

if: .

PVA.RN & R3

‘Having validated the right of the caller to make the callna
the entry address must be verified. This is done by com-
paring the (L field of the descriptor with the PVA.BN. to
ensure that the entry is via the appropriate transfer vector.
If the address is within range of the transfer vectora. the
gate is allowed. In this case the current ring of execution
is set to R2. Execution now proceeds as normal.

3.3.7 To ensure protection when returning from an outward callax
outward calls are trapped by the operating system which
then simulates the CALL operation. In this case the current
ring of execution is set to Rl. '

WRIEEENIE 00 DRAET

4. D FORMATS

4.1

.

FULL WORD

' The data formats'supported by the IPL are diagrammed below:

“ . —
HALFWORD HALFWORD
1] ! .
> e BYTE - BYTE BYTE = BYTE BYTE BYTE et BYTE BYTE
{
|
i |
" FT/TD poINT MivBED
" 31
- NTEGER
rd [31
. : :
i
THLPT FLAATING POINT NUMRER
- ? 24
T EsFRLNEINT FRACTION
, ! 3y
: N
!
FLANS FLORTING POINT HUMRER
< 7 5t
ExFonent FRACTION
[~ | l |
H . ! .
2% .5UT LENSTH FLOATING POINT NUNUER
7. - .
"’; 'LIPG.'AC 4 ‘ 8(FkiggloN
4
G ! 1 - ;'
} PATAED DECIVAL NUMZER - i ew mm o Em mr em G ww e we v - e e e am em o = e . - on am - o - -
4 4 4
DIGIT DIGIT DIGIT
e e s e - e om m em o em e e o e - - - - - - - -
ZONED DECIMAL NUMBER = n em s D B e Gn e e om am m o G A o me m o > w - - - -- - -
4 r 4 4
ZONE DIGIT ZONE DIGIT =
en e o G CR We ww we o W SR CR S G R MR AP Gp G e W B R an e an e K -
|
YARIABLE LENGTH LOGICAL INFOPMATION - - s W as wm ee W me ow mm aw a wm w - - - - - -
) (] 8 g8
H CHARACTER CHARACTER CHARACTER
-— - WD WS SN AP SIS SER SR GER Guh WS W S W - e e .A—- -—

DATA _FORMATS

18

4.2 An 8-bit unit of information is fundamental to most of these data
formats. The location of a stored field is spccified by the address
of the leftmost byte of the field. Variable-length fields may start
on any byte locationa but a fixed=~length field of 4- or &-bytes must
have ‘an address that is a multiple of 4 or 8. respectively.

4.3 Alphe-numeric data is carried either in ASCII or in EB(CDIC. which
codes are shouwn on the following page:

DRAFT

B!OEITIONS ————t=0l ’
L5535 00 ~N 01 N

00 01 10 11 00 oL 10 11
4567
: . . y
0000 UL DLE Sp 0 @ } P)
0001 CCH DCI 1. 1 A 0 a a
Colc BT IDT2 o 2 n R L
0011 ne3 { i3 3 G | S c s
£ 0160 G4 s 4 n_ b7 g ¢
0101 MK % 5 5 13 — e]
0110 S & 6 r \Y% £ v
011l “ R nTR ! 7 G W a \g4
) |
1000 P8 ig;;..:: (g H X h | x
1051 @D I) 9 T Y i v
) . lowo hr SUB * : J 7 ; -
[e
1011 T 5C + ; K L k 2
1100 fF F3 , < L A 1 ;
1101 R 1G5 - = M] m)t
1110 {20 RS . > N N n -
1111 ST ;S) / l ? (o] — o) DEL
NUL Null/Idle DCl Device control
SCH Start of heading - DC2 Device control
sTX tart of text ' DC3 Device ‘control
ETX nd of text - Dcy Device control (stop)
EDT End of transmission NAK Negative acknowledge
ENQ Enquiry SYN . Synchronous idle
ZCK = Acrxnowledge ETB End of transmission block
BEL Audible cr attention signal ' CAN Cancel
ES Backspace EM End of medium
HT Horizontal tab . SUB Start of -special sequence
LF Line fced ESC Escape
T Vertical tab FS File separator
FF Form feed GS Group separator
CR Carriage return RS Record separator
S0’ Shift out : Us Unit separator
SI Shift in Sp Space

DLE Data link escape DEL Delete

EIGHT-BIT REPREéENTATION FOR_CODED INFORMATION (ASCII)

Wl

1
C

ey e

il

LT

BIT POSITIONS - 01
‘ 00

o ~ -0} — : N o 10 N/ ’ 11
0o 0l 10 11 0o 01 10 11 0o 03 10 11 0o 01 10 11
nuL | DLE DS |sp g 4 0
SOH DCY S08 a j A J 3
ST pce | FS sy b K s 8 K S 2
£TX T ' c 1 t C L T z
PF RES BYP PH d n u D M U Yy
HT tL LF RE e n v E fl \ <
Le s ECE e f o w F 0 e s
DEL IL ©PRE EOT g p X G [X ?
CAN h q v H a Y Z
£ i r z I R z 3
oM L S8 ¢ ! :
VT Ul cu2 3 . % - o
FF IFS DY < X % @
2 163 Eng {niek L ¥ = b
SO IRS ACK + kY =
SI IUS BEL sSus : | - 7 n
ACK Acknouledge DEL Delete I6S 1Interchange Group Separator SI Shift In
BEL Bell - DLE Data Link Escape IL Idle $M Set Mode
BS Beckspace DS - Digit Select IRS Interchange Record Separator SHM Stert tanual Message
BYP Bypass £n End of Medium IUS - Interchange Unit Separator SO0 Shift Out
CAN Cancel EN@ Enquiry - . LC Lower C(ase SOH Start of Heading
cC Curs?r Control ECT End of Transmission LF Line Fead SO0S Start of Significence
(R Carriage Return ESC Escape S : NAK Negative Acknowlege SP Spece
qu Customer Use 1 ETB End of Transmission Block NL New Line STX Start of Text
C%- Customer Use 2 - . ETX End of Text NUL Null SuUB Substitute
cu3 Cusgomer Use 3 ; ~ FF' Form Feed) PF Punch Off SYN Synchronous Idle
- DCY Dev;ce Control 1 FS Field Separator . PN Punch On ™ Tape Mark
Ce Device Control 2 ' HT Horizontal Tab RES Restore uc Upper (Case
DC4 Device Control 4 IFS Interchange File Separator RS Reader Stop . VT Vertical Tab

EXTENDED BINARY - CODED - DECIMAL INTERCHANGE CODE {EBCDIC}

o2

2l

Packed Decimal Numbers = 1In the packed format. two decimal digits
normally are placed adjacent in a bytea except for the rightmost
byte of the ficeld. 1In the rightmost byte a sign is placed to the
rignt of the decimal digit. The digits 0-7 have the binary en-
coding 0000-100X. The codes 1010-111) are invalid as digits.

THis set of codes is interpreted as sign codes with 1010. 101a
1100+ 1110+ 1111 recognized as plus and with 110l recognized as
minus. 1200 is the preferred code for plus. The codes 0000-

1001 are invalid es sign codes.

Zoned Decimal Numbers - 1In the zonad format decimal digits are
represented by their encoded form either in the ASCII or EBCDIC
character set. 1In those forms the low-order four bits of a byte
are normally occupied by a decimal digit. and the four high order
bits are called the zone. Zone codes are 00Ll for ASCII and

1111 for EBCDIC. Two forms of trailing sign are supported. 1In

the first form the last byte of the number contains a sign con-
sisting of either a plus or a minus in the appropriate binary
encoded form. In the second form the last byte contains a decimal
digit in its low=-order four bits and a sign in the upper four bits.
The sign uses the same convention as for the packed decimal format.
These two formats are illustrated below: o

] I T 1
z | d z 1 d z} d z | d s
1 l 1 I
l 1 LB | |
z U d z ¢t d z 4V d z I d s | d
{ H i P : 1

Arithmetic is performed on operands in the packed format. In-
structions will be provided to translate between the two formats
and illegal binary encoded formas will be detected.

e

IPL INSTRUCTION REPERTOIRE

5.1 The cost effectiveriess of the IPL is very sensitive to the in-
struction set chosen for it. C(onsequently- this item will teke
longest to define of all items. and will involve many measure-
ments in an attempt to ensure that the optimum set is defined.
To facilitate this effort the instruction set has been broken
into three sub-sets comprising BDP instructionsa scientific
instructions and "general”™ instructions. It is anticipated
that the general instructions will be heavily used in systems
progranming worka. and quite heav1ly in sc1ent1f1c and com=-
mercial computations :

5.2 The low-end of the IPL is typical of the NCR market-place todaya
and will be used to dictate the requirement for BDP instructions.
Memory compaction- with byte addressability characterizes the
desire to minimize cost at this end of the spectrum. C(omplexa
memory-to-memory descriptor driven operations have been defined
at the present time for the low-enda. while more conventional
operations have been proposed at the high-end. An effort is
in progress to merge these two approaches so that a single set
of operations will result. The governing parameters are those
of the low-ends and if necessary. an interpretive mode will be
used at the high-end to achieve the level 5 compatibility goal.

5.3 At the other end of the spectrum the high-end attributes {per-
formance} will decide the final format of the scientific in-
structions. These instructions will be simple and probably
operate register to register to optimize performance. The
instructions will form part of a virtual machine that will be
emulated by a fast micro-processor at the low-end.

5.4 The general instruction set is the most difficult to derive in
that the requirements have not been subject to the same analysis
as the scientific and BDP fields. Since system code will use
these instructions almost exclusively it is important that the
problem be researched as thoroughly as possible. For this
reason independent approaches from the low-end~ and high=-end
vieupoints of the IPL are being mades with an aim to coalesce
those divergent approaches into a single instruction set. At
the same time statistical data is being gathered from existing
operating systems and compilers. This data will be used to
validate any instruction set that results.

5.5 The overall approach is to seek a fast. register-oriented
machine for the high-end of the line which may use cache memories,
instruction stacka. parallel functional unitsa. etc.. in order
to achieve the desired performance. The complex operations
needed for the low-end machines will be trapped and interpretively
executed if necessary. At the low-end a virtual machine capable

DICEPENE 0000 DRAS

of being cmulated by a micro-processor will be evolved such

that memory utilization {end consequently. overall cost} may
be minimizcd. , '

Other virtual machinesa such as (0BOL virtual machinesa will
be permitted as lonyg as they conform to the IPLOS interfaces.

iatme | ~ | N T -
TG : |
TﬁﬁJHLB ‘ o Illlﬁlzgk’}gcif

4.

OPERA

el

TIMG SYSTENM .

bel

Architectural considerations up to this point have concen-
trated on hardware characteristicsa. although the processor
configurations and virtual memory mechanism are not without

- softuware implications. Howevera one important component

k.2

k.3

b‘q

k-5

b.b

of the system architecture is the operating systems and
this section discusses sone of the basic philosophies
leading up to its definition. :

"The IPL Operating System {IPLO0S} will be deVeloped as a

collection of subsystems all of which are administered as
user work. In other words. the system will be organized

as a collection of intercommunicating user and system
processes. each having different levels of capabilitya
protection and security. There will be a smell amount of
codes having maximum exposure to hardware characteristicsa
which will manage inter-process messages. For purposes of
reliability. security and measurapbility it is desirable to
organize system szrvices as separate sub-systems. Howevera
the resultant performance penalties appear to be unacceptable.
Consequently. the IPLOS is planned to utilize both integrated
and sedregated system services. Interfaces will be derined
such that future changes may be accomplished with a minimum
effort. Such a measure will compromise rellablllty and
security for performance.

A single operating system based on the general multiple’
processor configuration discussed in section 2 is planned
for all IPL models. :

The virtual memory organization described in section 3 is
required by the IPLOS to enable code and data sharing in a
controlled environinentamaximizing security and protection
for the system and user alike.

The IPLOS will organize all external I/790 in an implicit
fashion.

A1l IPLOS code will be written in a high level implementation
language {SWLZ}. Any use of IPL assembly language will be
done in the context of the SWL environment. and will be kept
to an absolute minimum. _

JRRIEH ~ DRAFY

