
MEMO CONTROL DATA"
~ ---~~---

L/\NA,)/\ I TU

CFO"14

DATE: 12 May 1975

TO: DISTRIBUTION LOCATION: EXT:

~OM: R· Rothstein LOCATION: TTOFAC EXT:

SUBJECT: ISWL TRAINING GUIDE

Attached you will find the ISWL TRAINING GUIDE· This
is the first release of this document· The material
reflects the current status of the ISWL compiler.

When SWL becomes available this document will be up
graded to reflect the features of SWL· Your comments
and criticism will be helpful in improving the quality
of this document·

Please do NOT reproduce this document. Additional copies
may be obtaIned from Dave Dudley, PGAASL, {6l2-830-64l9}.

Thank you for your co-operation.

Ron Rothstein,
IPL Training,
Canadian Development Division'
Control Data Canada Limited,
1855 Minnesota Court,
Mississauga, Ontario

{416 - 826-8640 X24l or X457}

NOTE: This copy contains Revision B,
dated 6/30/75.

INTERiM

SOFTWARE WRITERS LANGUAGE

TRAINING GUIDE

THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY
TO THE NATIONAL CASH REGISTER COMPANY AND CONTROL
DATA CORPORATION, ITS CONTENTS SHALL NOT BE
DIVULGED OUTSIDE OF EITHER COMPANY NOR REPRODUCED
H1THOUT EXPLICIT PERMISSION OF THE DIRECTOR AND
GENERAL MANAGER, NCRlCDC ADVANCED SYSTEMS LABORATORY,

RON ROTHSTEIN

JUNE, 1975

· RECORD of REVISIONS
REVISION NOTES

A Manual released. April, 1975
04-15-75 Pre-release chanaes: PV""'f".= o ~- 1 IJ ~_ ~,. ~ IJ-::IA

R M.:InlJ.:Il r"l:luiC::l:lrl t:n rn V""' m;"' "'11.=..,"'nll'"

06-30-75 technical and grammetical errors. Paces
changed: 1-16, 2-3, 2-6, 2-8, 2-9, 2-10,
2-11, 2-21, 2-22, 2-30, 2-32, 3-9, 3-10, 3-16,
3-18, 3-19, 3-20, 3-23, 3-24, 3-26, 3-29, 3-31,
3-32, 4-2, 4-9, 4-19, 4-24, 4-26, 6-2, LOF-3,
INDEX -2

\

DOC. No. ASL00334

PREFACE

The growing interest in producing quality software has fostered many
schools of thought and many alternative methods of accomplishing this
goal. Control Data Corporation, National Cash Register Company, and
the Advanced Systems Laboratory have chosen the programming language
SWL (Software Writer's Language) as a vehicle for producing qua lity
software.

This text explains ISWL (Interim Software Writers Language) in
a tutorial manner. It is not a reference document. Where
possible, the reasoning behind certain language features is
examined and explained. SWL will be available in the near
future and this document will be upgraded at that time to reflect
the added features available to the software writer.

Huch of the material in this text comes from the questions posed in the
many SWL classes which hav'e been taught to-date. Certain portions of
this material have been influenced greatly by a few individuals. John
Sutherland provided much of the coding and ideas behind "Structured
Programming and SWL" as contained in Chapter 5. John Dirnbers..er put .
together the extensive"Bibliography" which aepears in Appendi:l'_Q __ ..

--Alex-SegglePrOvided the initial impetus for producing the "CHARACTER
CODES" in Appendix G. In addition I would like to thank the many
colleagues who advised, discussed, suggested, and influenced the writing
of this material.

Ron Rothstein
TORONTO, CANADA
APRIL, 1975

Your comments on this document will be appreciated. Please address all
correspondence to:

REV. A

Purveyor of the ISWL
Training Guide

Canadian Development Division
Control Data Canada Limited
1855 Minnesota Court
Streetsville, Mississauga
Ontario, Canada L5N lK7

/
, ,

CONTENTS

CHAPTER:

INTRODUCTION

1. CONCEPTS OF SWL

2. ELEMENTARY SWL

3. SWL DATA STRUCTURES

4 • ADVANCED SWL

5. STRUCTURED PROGRAMMING AND SWL

6. SWL PROGRAMMING TECHNIQUES AND CONVENTIONS

7. PERFORMANCE MEASUREMENT & PREDICTION

APPENDIX:

A. RESERVED WORD LIST

B. ERROR LIST

~) r-· C.-----LANGUAGE--SUMMARiJ

D. BIBLIOGRAPHY

E. ANNOTATED TERMINAL SESSION

F. COMPILATION LISTING

G. CHARACTER CODES

H. SWL BNF (ALPHABETICAL)

LIST OF FIGURES:

INDEX:

ii

INTRODUCTION

The·Advanced Systems Laboratory (ASL) was founded in September, 1973 as a
joint venture of Control Data Corporation (CDC) and the National Cash Register
Company (NCR). The goa 1 of ASL is " ••• to design a line of architectura lly
~S1;i.1:>,l~_C:~.E~~~r _~.Y=~~.~m~=JittlL<!,,=~.~ga.g~.~~Jlg~e=_QJ_g~_9s:~e.I'!.~.in~PQ:W~;,--enaB1Tng
both compames'-ro meet their respectiv'e customers' needs". This new computer
line has been christened IPL (Integrated Product Line)l.

~w ... """"\~Ull:l:Unlj!/I:8o

The method chosen to insure compatibility consists of a high-level implement
ation language common to all processors in the product line. This language
is known as The Software Writer's Language (SWL). Product set 'members (i.e.
FORTRAN, COBOL, Operating System, etc.) for the IPL machines will be written
in SWL. In this way, a software product (such as FORTRAN) will be written
once in SWL for all IPL machines.

In addition, concern has been expressed regarding the qua lity, reliability,
maintainability, etcetera of software. SWL will provide an effectiv'e v'ehic1e
for writing software in a uniform, structured manner. This will certainly
enhance the quality of IPL software and the ability to maintain and modify
that software.

This text is intended to be tutoriaL It is expected that the .
reader have some basic understanding of computer programming. From this
base the text prov'ides the building blocks for helping the reader become a
competent SWL programmer. You will be exposed first to the concepts under
lying this language (i.e. What is? •• block structure, pointers, procedures,
recursion, stacks, etc.). Next, we concentrate on writing simple SWL programs.
Then, a complete discussion of SWL data structures and the more advanced
language constructs are presented. Fina lly, to improv'e your ability to
program the text includes chapters on writing structured programs, applying
IPL conventions and programming techniques, and measuring and predicting SWL
program performance.

This text may be read from "cov'er to cov'er". It is not a reference manua 1
and care has been taken to provide continuity between chapters. Some of
the chapters are used in conjunction with SWL courses and may ~e read
separa te 1y.

1 CDC MEMO: "FORMATION OF ADVANCED SYSTEMS LABORATORyn
R. M. PRICE, PRESIDENT
CONTROL DATA SYSTEMS & SERVICES CCMPANY
23 AUGUST 1973.

iii

CHAPTER 1

CONCEPTS OF THE SOFTWARE WRITERS LANGUAGE

This chapter will eJ{plain the most important concepts of SWL. SWL syntax
is not included. Check the list of topics below. If you are familiar with
all the concepts listed - skip this chapter.

CONCEPTS DISCUSSED IN THIS CHAPTER

Compilation Unit

Block Structure

Scope of Identifiers
Procedure
Block

Procedures and Functions

Calling Mechanisms
Shielding and Sharing Variables
Parameter Passing
Recursion

Pointers

Storage Management

Stack
Sequence
Heap

Type

Variables

Scope
Automatic/Static

Synchronous/Asynchronous Processing

Understanding Backus - Naur Form (BNF)

1-1

THE CCMPILATION UNIT

To compile any SWL program(s) the compilation unit must be defined. This
unit (of compilation) is called a MODULE. The module declaration may
(optiona lly) contain the name or identifier of the module. This module
name becomes a most convenient way of referring to the program. The end of
the compilation unit must also be defined. A pictorial representation of a
compilation unit is given in figure 1.1. Remember, one and only one compil
ation unit can be compiled at one time. The compilation process transforms
a single compilation unit (of source statements) into a single OBJECT MODULE.
The compilation process is depicted in Figure 1.2. If five compilation
units are to be transformed into five object modules, then five compilation
processes must be used.

Note that the compilation unit and module are not synonymous. A module
may be used in many ways which will be covered later. One use of the module
is to define a compilation unit.

Module
named
Test Cases

Source
Pro- f

Module Test Cases;

gram \'-I .. ,,;;:::::;:::=;::;==~_
Modend Test_Cases;

THE CCMPILATION UNIT - FIGURE 1.1

Compilation
Unit

THE CCMPILATION PROCESS - FIGURE 1.2

Compi la t ion
Unit

1-

BLOCK STRUCTURE

A programming Language is said to be "block structured" when we can
identify and create unique blocks (or,groups) of source statements and
when we can associate a lifettme with the declarations in a block. A
block (and hence block structure) in SWL can be identified in one of two
ways: 1) BEGIN-END BLOCKS, and 2.) PROC-PROCEND BLOCKS.

The BEGIN-END Block is stmply a list of source statements surrounded by
BEGIN and END. See figure 1.3 below.

Start
Execution
Here

)

BEGIN

END;

BEGIN-END BLOCK - FIGURE 1.3

J This is the BEGIN-END
block. It contains
source statements.

Of course, a giv'en block may contain other blocks as shown in figure 1.4.

1 .~

-.J

Start
Execution
Here

)
BEGIN

BEGIN

~
BEGIN

END;

END;

END;

BEGIN

END;

~ This is the outer
--------~ most block. It

contains source
statements and two
other blocks.

J

NESTED BEGIN-END BLOCKS - FIGURE 1.4

You will notice that BEGIN-END Blocks are executed as they are encount
ered. In the absence of control statements the program will execute from
top to bottom. Of what significance is all this structure? The Block
structure enables us to eaSily identify the structure of the program. For
example, a block may be written that reads input data, or defines what
execution takes place when v'ariables A and B are equal. Implicit here is
the notion that a block maybe easily replaced by another block whose
function is similar but is improved in some way. This con~ept of
"Replaceable blocks" is illustrated in figure 1.5.

1.-

TRUE

FA 0/1.E

I

BLOCK STRUCTURE - FIGURE 1.5

Here we see (in figure 1.5) that we can have blocks within blocks.
The BEGIN-END statements are the SWL way for implementing this block
structure. Also note the help that this block structure prov'ides in
implementing software. We can write our software at an overview leve I
first and then go back and amplify the details of each "block".

Also note in Figure 1.5 that during execution only certain blocks will
be used. For example: if the boolean test is False' only one relatively
small block is used.' It would be nice if our programming language could
utilize this knowledge of BLOCKS to reduce the amount of storage required
at execution time, for example. In SWL, variables are declared with the
VAR statement. Our BEGIN-END block then can take the form shown in
Figure 1.6. "

1-5

Start
Execution __________ -,
Here

BEGIN
VAR

END

A, B, C ;]
LOCAL VARIABLES - FIGURE 1.6

In figure 1.6, the BEGIN-END block contains a declaration for local
variables A,B, and C,.as well as, some executable statements. SWL allocates
storage space for the variables only when the block is entered. Therefore,
if the block is not entered (as in figure 1.5) the variable ·won't actually
be assigned storage locations and storage wiil be used more efficiently.
Notice that when the block is exited, the storage locations for A, B, and
C will become unassigned and made av'ailable for assignment to some other
block. So at execution time, storage for variables will be created and des
troyed in direct relation to the requirements of the program. It is,
however, the programmers responsibility to define blocks and v'ariables within
blocks correctly.

Another feature of block structure is the SHIELDING and SHARING of variables.
In SWL variables declared are said to be GLOBAL or LOCAL depending upon their
position in the program and our point of reference. This problem is usually
addressed as lISCOPE OF IDENTIFIERS II • That is, we ask the question where is
a reference to an identifier valid? What is the scope of the identifier?
Figure 1.7, illustrates scope of identifiers.

, BLOCK 1

VAR A

BLOCK 2

I VAR B

BLOCK 3

I VAR C

"
SCOPE OF IDENTIFIERS - FIGURE 1.7

In figure 1.7 we see three blocK8. Notice that Block 1 contains Block 2
and Block 3~ Each block declares one variable (it may be an array of 1000
integers). The declaration of variable A is local to block 1 but global
to blocks 2 and 3. Statements within a block may make v'alid references to
all variables local to their block and also to all variables global to
their block. So, for example, statements in Block 2 can reference the
v'ariable A and so can statements in Block 3.

Block 3 declares variable C to be local. Hence statements in Block 3 can
reference variables C and A. (because A is global to block 3). However,
there can be no reference to variable B from statements within Block 3.
This is because the variable B is neither Local or Global to Block 3.

In general, then; we try to declare variables in such a way as to make them
ava ilable when needed.

Figure 1.7, when written in SWL would appear as shown in figure 1.8.

1-7

Begin
Execution

)

Begin
Var A

Begin

Var B

En;r--

Begin

YaLQ -
End

End

SCOPE OF IDENTIFIERS (SWL) - FIGURE 1.8

Block 1

Bl:J

Of course, we could place all the variable declarations in Block 1 and
our program would run just fine, hut we might be wasting storage space
during the program execution.

The fina 1 question to be asked is: what happens when variable' name s conf lict
as in figure 1.97

Block 1

Var A
Block 2

Var A

Block 3
Var B

~~

IDENTIFIER CONFLICTS - FIGURE 1.9

If figure 1.9 the variable A is declared Local in blocks 1 and 2. The
result is that any t'8ference to variable A from within blocks 1 or 3 will
actua lly refer to the A declared in Block 1. However, when Block 2 is
entered at execution time a new (local) variable named A will be created.
This new variable A will not destroy the old (Block 1) variable A. Of
course, when we exit Block 2 its loca 1 variable A is removed and then
only the A declared in Block 1 exists.

The second method for declaring block structure is the procedure (PROe). Procedures
are declared with the PROC-PROCEND statements as bounds on the procedure.
Like BEGIN-END blocks, Procedure blocks may have globa 1 and loca 1 variables.
Procedures may contain Procedure blocks and Procedure identifiers are shared
and shielded exactly as variable identifiers are. Unlike BEGIN-END blocks,
the Procedure block is called by referring to the name of the procedure.

Figure 1.10 shows a simple Procedure block.

t-9

PROC XYZ;

~ Procedure XYZ
PROCEND XY Z;

A SIMPLE PROCEDURE BLOCK - FIGURE 1.10

Of course, procedure blocks may contain other procedure blocks as shown in
Figure 1.11.

Execut ion of
PROC ABC

PROC ABC; ~
VAR X

~:CyTEST; I
PROCEND TEST. -----1 I ,

PROC JOE;
VAR Z

PROCEND JOE;

Begins ----~~. TEST;
here

------+-..::>'" CALL INVOKING TEST

JOE; ------+-~>;;;.. CALL INVOKING JOE

PROCEND ABC ; -------'

NESTED PROCEDURE BLOCKS - FIGURE 1.11

In figure 1.11, Procedure ABC contains procedures TEST and JOE. With
this organization TEST and JOE are SHIELDED by ABC. That is, procedures
outside ABC may not call TEST or JOE directly. Only statements within
ABC may call TEST or JOE.

Any v'ariables declared in ABC (such as X above) are global to TEST and JOE.
Variables declared in either TEST or JOE (such as y & Z) are local to their
respective procedures.

Finally, BEGIN-END Blocks may be declared within any of these procedures.

In summary, we have examined the concept of block structure. We have seen
how blocks may be created either through BEGIN-END or PROC-PROCEND state
ments. The sharing and shielding of variables was discussed in relation to
both types of blocks.

1-1

Procedures

Procedures prov'ide two significant capabilities. First, they provide
a mechanism by which we may isolate a number of source lines and call
for the execution of these lines when needed. This is particularly
he Ipfu 1 when we have a sequence of source lines which are repea ted
many times within the program. The procedure concept allows us to extract
these common lines and formulate them into a Callable Unit. A call to the
procedure then replaces the original lines of code. The call itself consists
of the name of the procedure.

Figure 1.12 shows a compilation unit with many common lines of code.
~igure 1.13 shows an equiv~lent program when the common lines of code
are grouped together and called Procedure A. In the body of the program
(figure 1~13) the actua 1 lines of code hav'e been replaced with a reference
to procedure named Ai When properly written, both programs produce
identic'al results. During execution (figure 1.14),when the reference to
Procedure A is encountered the statements in Procedure A are executed.
When the end of Procedure A is reached the next Statement executed is the
one after the call to Procedure A.

MODEND EXAMPLE~PROCS;

Figure 1.12

MODULE
PROC A;

PROCEND

Execution
begins here).

A • ,

A • ,
~-

Fi"gure 1.14

A· . ,

MODULE;
PROC A;

PBOOEND A· -- '
A .
-'
A . ,

A •
~.

MODEND;

Figure 1.13

FLOW OF EXECUTION DURING PROCEDURE CALLS - FIGURE 1.12,1.13,1.14

1-11

Second, procedures provide the ability of shielding and sharing variables.
Variables which are declared inside a procedure are called local v'ariables.
Their scope is the procedure (block) in which they are defined.
Se"~ f i.gure 1. 15 •

PROC X;
VAR Xl
VAR Yl

PROC Y;
VAN. Xl
VAR Zl

1
PROCEND]

L PROCEND X;

executable statements
of procedure Y

executable statements
of proce dure X

SHIELDING & SHARING VARIABLES - FIGURE 1.15

The shielding and sharing of variables declared in procedures is very
similar to the BLOCK method of shielding and sharing variables. In figure
1.15 variable Yl is local to Procedure X. Since Procedure Y is contained
in Procedure X variable Yl may also be referenced in Procedure Y. In this
case (from the point of view of Procedure Y), we say that variable Yl is
Global to Procedure Y. Similarly, variable Zl declared in Procedure Y is
local to Procedure Y and cannot be referenced in Procedure X. In the case
of variable Xl, we really have two local variables. One v'ariable, Xl
declared in Procedure X, is local to Procedure X. The variable Xl declared
in Procedure Y, howev'er, denotes a loca 1 variable which can be referenced
only in Procedure Y. This is because the identifier Xl appears in both
procedures. Figure 1.16 clarifies some of these points.

VARIABLE Declared in Can Variable Can Variable Scope of
IDENTIFIER Procedure be referenced be referenced the Variable

in Procedure X? in Procedure Y? Identifier

Xl X YES NO Procedure X
Yl X YES YES Procedures X
Xl Y NO YES Procedure Y
Zl Y NO YES Procedure Y

SCOPE OF VARIABLE IDENTIFIERS - FIGURE 1.16

&Y

1-1

When a procedure is ca lIed we often "pass parameters" to the procedure.
These parameters consist of data that the ca lled procedure needs to operate
correctly. For example, suppose we had a procedure that: ~lOuld sort arrays
of integers. Typically, we would call the sort procedure and pass to the
sort procedure the array of integers to be sorted. Figure 1.17 shows a
sequence of statements.

SOl\T(:XARRAY) ;

PARAMETER PASSING - FIGURE 1.17

Statement IISORT (XARRAy);1I calls the sort procedure and passes to it the
values XARRAY to be sorted. Often, we pass many parameters to a procedure.
Three mechanisms exist for making parameters available to a procedure which
is called. These are: 1) use of Global variables; 2) passing parameters
by II va lue"; and 3) passing parameters by "reference".

The .Q1£palvariabl~ is the simplest mechanism for paramater passing. Of course,
Procedure TEST can re-assign (or destroy) values in the variable "X". This
means that "X" is not very secure. It is not 'ilell shielded. It is shared.
So Procedure TEST can pass information back to the main program through
variable IIXII or any other global variable.

A second method of passing parameters is by value. If the parameter XARRAY,
in figure 1.17, were e.'!E~ed byvalu~"a copy of the value(s) in'XARRAY would
be made for the procedure SORT. In this way, SORT wo};!-ld have access to all
~~!SO,~!..,~u1d ngt.j>e a,hl~..b2~any o{_~e origina~, -
&~.t!I .. ~.~ You can see that this would provide a lot of protection for
our original values in XARRAY. Hence, shielding or protection is excellent.
However, communication is poor. The procedure SORT would not be able to
return the sorted values in the original array. Some other mechanism would
have to be used. Perhaps this would not be the best sort procedure.

A third method of parameter [assing is _=~~r§.tere~c,~. If the parameter XARRAY
in figure 1.17 were passed by reference,~ Eointer to_~~ a~~~y XARRAY wo~
~~-!:..9~~2£~JillI-~.~. This pointer would point to the origina I
XARRAY. Executable statements in procedure SORT would then be able to
reference and modify the original values in XARRAY. This is probably the
best way for a SORT procedure. Parameters passed by reference are not
especially secure (or protected) but enjoy the ability of providing two
way communication.

1-13

The chart on figure 1.18 prov'ides some insights into the various uses of
the three calling mechanisms.

PARAMETER
PASSING
METHOD

GLOBAL VARIABLES

CALL BY VALUE

CALL BY REFERENCE

PROTECTION
(SHIELDING)

WORST

GOOD

POOR

CCMMUNICATION
(SHARING)

BEST

POOR

GOOD

PARAMETER PASSING MECHANISMS - FIGURE 1.18

As you can see from the information presented in figure 1.18, no single
parameter passing method prov'ides the best all-round combination of
protection and communication of variables. What we attempt to do is pick
the right combination of protection and communication for each individual
procedure.

Once procedures are written, we know that they are called by simply using
the name of the procedure as a statement (on a line). When a procedure
calls itself we say that the procedure 1.s being used Recursiv'ely. For
instance, figure 1.19 shows a very simple example of recursion.

PROC SCANNER; .
SCANNER; <

PROCEND SCANNER;

RECURSIVE
CALL

SIMPLE RECURSION - FIGURE 1.19

PROCEDURE

SCANNER

We could imagine more complex examples of recursion. For example, suppose
that a statement in Procedure A calls Procedure Band that.a statement in
Procedure B calls Procedure A. Recursion occurs here also,but the chain of
procedure calls is longer. This example is illustrated in figure 1.20.

~.'

1-1'

PROC A; <:. _

B· , CALL TO B .
I

PROCEND A;

PROC

A' ,
• •

B; ~"'----I

CALL TO A

PROCEND B;

/
\/

I

I
I __ -.J

NOT-SO-SIMPLE RECURSION - FIGURE 1.20

PROCEDURE
A

PROCEDURE
B

All we need say here is thatEl:~ recursive_ ~i~~)a l~o~~d~. Some .
programming a 19orithms are expressed very concise ly us-~ng recurs~ve techn~ques.
Since ISWL supports recursive procedures we can implement these recursiv-e
algorithms in a straightforward manner.

Functions are a specia I kind or: procedure. Like procedures, functions are
executable statements which are ca lled from some other statement. Functions
follow all the rules of block structure and scope of variables. Functions
may be passed parameters exactly as procedures (global variables, call by
value, or call by reference).

Functions differ from procedures in two important ways. 1) the method of ca lUng
the function is unique, and 2) the fll'.lction has a unique way (in addition
to the conventiona 1 manner discu·$sed for procedures) of returning va lues.

A function call cannot stand as a statement by itself. The function call must
be part of another statement. For example, consider a function to return the
square root of its real argument as shown in figure 1.21.

• • •
X:= 5*SQRT (Y);
•

FUNCTION CALL - FIGURE 1.21

In figure 1.21, we have an aSSignment statement that assigns X a
va lue 5 times the square-root of Y. Of courseY must be assigned a va lue
and the Function SQRT must be defined somewhere.

Wha t is important, howev'er, :I.R tha t the ca 11 to SQ~T is imbedded in
s ta tement. ----

The function value (square-root of Y) is returned where the function is
inv·oked. In figure 1.21, the square root of Y is returned and is then
multiplied by 5 to obtain a result which is assigned to X.

1-15

POINTERS

A pointer variable is a variable whose v'a lue represents the location of some
other variable (or ISWL element). Pointers are used effectiv'ely to:

1. Maintain the location of (or point to) elements in
stacks, sequences and heaps (see page 1-19).

2. Point to procedures or labels.

3. Point to user declared elements, (Le. arrays, records, variables, etc.).

There are, of course, other uses for pointers but these are the major uses.

One example of using pointers is illustrated in figure 1.22.

NIL

VI VI
V2 VI V2

V2

A FORWARD & BACKWARD LINKE\) LIST - FIGURE 1.22

Figure 1.:~2 illustrates a forward and backward linked list. Each list
element (known as a record) contains two v'alues (Vl & V2) and two pointers.
The first pointer points to the next element in the linked list and is
ca lled the forward pointer (or forward link). The second pointer in each
record points to the preceding record and is therefore called the backward
pointer (or backward link). NIL is the va lue we give to a pointer that
doesn't point to any element.

The beginning of the LINKED LIST may be identified because it has no
b0'3.r;l<ward pointer (no record precedes it). The end of the LINKED LIST may
be identified because it has no Forward pointer (its forward pointer is
NIL indicating that no list element comes after this one.'

Another example of the use of pointers is a "Jump Table". The jump table
is simply a table of pointers that usually point to procedures.

Rev. 8

1
2
3
4
5

Pointer to Procedure Xl
Pointer to Procedure X2
Pointer to Procedure X3
Pointer to Procedure X4
Pointer to Procedure XS

JTJMP TABLE - FIGURE 1.23

1-16

Figure 1.23 illustrates the construction of a jump table. In this table
there are five elements (or five entries in the table). Each entry is a
po i.n ter to some proce dure •

For instance, the table in figure 1.23 might be used to process Channel
interrupts. If an interrupt occurs on Channe 1 4 w~! wou ld look in the
fourth entry in our jump table and the pointer (to Procedure X4) could
be used to call procedure X4 to process this particular kind of interrupt.

There are many other uses for pointers and many will emerge later in the
text.

1-17

STORAGE MANAGEMENT

When we speak of storage management we are considering stacks, sequences
and heaps. All of these concepts invol'Te the use of storage. Often, we
need special methods of accessing storage. These differing methods are
embodied in our storage management capabilities.

Perhaps the easiest storage management scheme is the sequence. The sequence
a llows only sequentia 1 access to its member elements. A progrartlIner will
choose the sequence when he requires sequential access to data.

THE SEQUENCE - FIGURE 1.24

Figure 1.24 illustrates a sequence. The elements of a sequence are
programmer defined. Each element could be an integer, a string, an array,
a record,etc. Each sequence has a pointer associated with it. This
pointer may be RESET to the beginning of the sequence (with a RESET
statement). The pointer to the sequence may be advanced to the NEXT
element in the sequence (with the NEXT statement). At any tim~ the
programmer may reference the data in the sequence that the pointer points
to. When the end of the sequence is reached (by successive applications
of the NEXT statement),the sequence pointer becomes NIL (i.e. there are no
more elements in the sequence).

You can see that the access mechanism for a sequence is clearly sequential~

The stack is simply another method of using storage. The stack is some
times ca l1ed a push-down stack to emphaSize the method of accessing data
in the stack. The elementR of a stack are accessed using the LAST IN
FIRST OUT METHOD.

IN~ rOUT

----'-

THE STACK - FIGURE 1.25

1-1

Figure 1.25 illustrates the concept that when elements are added to the
stack (with a PUSH statement) they are placed "on the top of the stack".
When elements are removed from the stack (with the POP statement) they
are removed "from the top of the stack". This then is the way the
LAST-IN,FIRST-OUT access is implemented. Of course, a stack can be
"emptied" with the RESET statement.

The programmer will choose to use the stack when the FIRST IN - LAST OUT
access method is the correct method for the problem at hand.

The last storage management method is the Heap.

o 00
THE HEAP - FIGURE 1.26

Figure 1.26 illustrates that the heap does not have an explicit access
mechanism. Elements are placed in the Heap with the ALLOCATE statement.
~~~_-.!::_h.EL~2.CAT-fL_s_ta_t,~!!!.~ n t !.I?,"""~~,!;~",_ ~..,-R~_i~~_er=.=.~....::~~ tU:[!l.~g t."Q-:R:tQ~3_tLt11e 
ability to access this element in tlie future. The programmer must save 
"Eilepolnt"er ';etJrn~-ii':-- Add1tiot:'i-~ie~ents-~an be placed in the Heap with 
additional ALLOCATE statements. 

When the programmer no longer needs some (previously allocated) space 
he/she may "unuse" the space with the' FREE statement. ~£!'l FREE statement 
returns (or makes available for future use) one elementin-111~:1f~p~-==-"~~:'=' 
How do ~e know which element is FREE'd? The ~~iatemen~~st contain a 
pointer to the element in the Heap that is to be FREE'd. 

In summary then, the different storage management statements simply prov'ide 
the programmer with easy.to-use methods for accessing data. These methods 
conform to the accessing methods we find most prevalent in systems 
programming. 

1-19 



TYPE 

In many programming, languages some type is associated with various elements 
such as variables. For example, it might be said that a variable is type 

"integer". In SWL a mechanism is provided to separate the definition of a 
type (e.g.,integer) from the declaration of variables. Of course, when 
variables are declared their type must be specified. But the key point is 
that the programmer may construct some type and give that type a unique 
identifier. The unique identifier, then, represents the programmer defined 
type. 

In any language there are many so-called pre-defined types. In SWL the 
pre-defined types include INTEGER, CHARACTER (abbreviated CHAR), REAL, and 
BOOLEAN. The programmer may, in addition, define additional types 
including ORDINAL, SUBRANGE, POINTER, and STRUCTURED types. 

We need not discuss all the types here. The significant concept is that 
the definition of a type may be separate from the declaration of variables. 
When a variable is declared in terms of some type then the variable is 
restricted to v'a lues denoted by the type and in addition some referencing 
notation may be implied. 

TYPE 
TABLE = ARRAY [1 .. 10J OF INTEGER; 

TYPE DEFINITION - FIGURE 1.27 

In L1gure 1.2~ TABLE is defined to be a type which is a ten element array 
of integers. The ten elements must be referenced 1 through 10. Note that 
no storage space is consumed by the type definition. The definition simply 
provides an identifier (TABLE) for a type which is an array as described 
above. 

La ter in the program, if a variab le is dec lared to be of type TABLE, tha t 
variable will be allocated enough storage space to contain ten integers. 
In addition,the array elements can only be accessed as elements 1 through 
10 and the contents of the array must be integers. 

It would be nice if our programming language could check (at compile time 
and execute time) that a 11 our assignments and computations do involve similar 
types. For example, if a pointer is declared to point to a REAL it would 
be nice if the programming language could "catch lt the error when we tried to 
make that pointer point to an array. SWL provides a substantial amount of 
"TYPE CHECKING" at compile time and at execute time. In simple situations 
"TYPE CHECKING" seems like a nuisance. For instance, you cannot add an 
integer to a real (directly). First you must convert the real to integer 
and add two integers (or conv'ert the integer to rea 1 and add two rea 1s). 
The point is that the type conversion must be explicitly written. In com
plicated situations, the l1TYPE CHECKING" done by the compiler (and at 
execute time) saves hours of difficult and tedious debugging. 

1-2 



VARIABLES 

All variables used in a SWL program must be declared. When we declare a 
va:dable we specify the name or identifier of the variable, the type of 
the variable and other information such as access, storage and scope 
attributes. 

A typical variable declaration is shown in figure 1.28 

BEGIN 

VAR X: INTEGER, 
Y: 0 •• 15, 
R: REAL; 

END 

BLOCK 
CONTAINING 
VARIABLE 
DECLARATION 

VARIABLE DECLARATION - FIGURE 1.28 

Figure 1.28 illustrates that the variable X is type integer, R is type 
real, and Y is a subrange of the integers. That is variable Y may be 
assigned only integer values ·in the range 0 to 15. 

Variables dec lared as shown in figure 1.28 are va lid (can be referenced) 
anywhere in the block in which they are declared. For a more detailed 
discussion of SCOPE of v'ariables, see the section on Block Structure. 

In addition, variables declared as in figure 1.28 are called, ",iiutomatic_ 
~x.ia~s". This means that sto~r th~se v.:.ariables is created (or 
made available) when ~he blo<;.k:1,n which t~~QrieCll.s il!Y'oke.sL 
at execution time. When (at execution tline) the end of the block is 
:te·acl1eC1-f~ge space for these automatic variables is made available 
for other automatic variables. Hence, the lifetime of automatic variables 
is determined by the block containing the variable declaration. 

It is possible to create a variable which "stays around" throughout the 
execution of the entire program. These variables are called static 
variables and their declaration is shown in figure 1.29 "-~~ • 
... ..:..~"'~,..:l 

END 

X: [STATIC] INTEGER, 
Y: [STATIC] O •• 15, 
R: [STATIC] REAL; 

STATIC VARIABLE _ FIGURE 1.29 

1-21 



In figure 1.29 the variables are declared to be static in addition to the 
other information which was discussed with figure 1.28. 

The STATIC attribute causes storage to be allocated once and only once 
for each variable. This storage space once allocated will not be made 
available for other variables. The result is that the STATIC variable 
has a lifetime tha t inc ludes the entire program execution. 

There are other attributes for variables which will be discussed later in 
the text. 

\ 

1-~ 



UNDERSTANDING BNF 

BACKUS - NAUR FORM (sometimes called BACKUS - NORMAL FORM) is used to 
describe the syntax of SWL. The syntax simply specifies VALID language 
constructs. The symantics or meaning of the language constructs are 
described in this text and in the SWL Reference Manual. Appendix B con
ta ins the BNF description of the SWL Language Syntax • 

The specification of syntactic constructs are dEmoted by descriptions 
enclosed in the angle brackets <and 7. These words describe the nature 
or meaning of the construct. Constructs not enclosed in angle brackets 
stand for themselv'es. The symbol ::= is read "is defined as" and the 
v'ertical bar I is used to denote alternativ'e definitions and is read nOR". 
An optional syntactic unit (zero or one occurrence) is designated by 
square brackets [and J • Indefinite repetition (zero or more occurrences) 
is designated by braces' f and 1 . 
For example, consider the sample SWL BNF below: 

< integer~ ::= <digit~ t<digit.>] 
I <digit>t<hex ~igit>J<base designator> 

<digit> ::= 0/1/2/3/4/5/6/7/8/9 

< hex digit:> ::= A I B I C I DIE I F/ 
a I b I c I die I fl 
<digit.> 

<: base designator> ::= «radix» 

EXAMPLE OF BNF - FIGURE 1.30 

In figure 1.30, we see that an <integer?, is defined as a.cdigit> followed 
zero or more occurrences of a <digit? And, a <:digit> is defined as 0 
thru 9. So a valid <integer> could be 6 or 637, etc. Also,we see the 
a lternative definition of a <digit:/ is a <digit> followed by zero or more 

'- hex digit ~followed by a <base designator~. We can see what constitues 
a valid <hex digit>and what is a valid<base designator). Some examples 
of valid and invalid integer follow. 

INTEGERS 

VALID 

7 
673 
16215(10)' 
415(8) 
10110(2) 
OAEF(16) 

INVALID 

FFF(16) 
142(5) 

BNF INTEGERS - fIGURE 1.31 
1.-23 



The valid integers do not require an e:xplanation. The invalid integers 
are described below. FFF(16) is an invalid integer because according to 
the BNF an integer must begin with a digit and a digit is defined as 0 to 
9.' The proper way to write this value then would beOFFF(16). The integer 
142(5) is invalid because the radix (or base) of fiv'e is not allowed • 
.as.£2E gjng=~~I1;h~ ... ~;t{E'"'t:~~g,llJs=~alld.~PJJ~~=~,~~4~Lt.,.8TtQ~E!D,2~~,~ If we 
rea lly wanted to represent 142 Base 5, we could figure out its equivalent 
value in one of the correct Bases. For instance, 142(5) = 2F(16) = 47(10) 
= 57(8) = 233(4) = 101111.(2). So we could use any of the valid represent
ations shown abov'e for this value. 

1-2 



CHAPTER 2 

ELEMENTARY SWL 

This chapter is a tutorial on the more elementary SWL language elements. 
Emphasis is plaeed on learning how to write simple SWL programs. Many 
examples are provided to clarify the material presented. 

The following language elernents are covered: basic construc1;s, symbols, 
identifiers, constants, v'ariables, types (integer, real, character, boolean, 
subrange), declar.ation statements' (MODULE, MODEND, VAR, CONST), assignment 
statements, structured statements (IF, LOOP, WHILE, REPEAT, FOR, GASE), 
control statements (EXIT), elementary input/output (READ and WRITE), and 
PROC [XDCL] MAIN;. 

2-1 



In every languag~ the programmer is faced with the probem of learning the 
symbols and keywords of the languag~ as well as, the rules for forming 
identifiers. 

SWL provides a number of keywords -""hich may be used only in specia I 
contexts. The programmer may construct identifiers for his/her use 
but programmer declared identifiers may not be the same as keywords. 
A list of keywords (or reserv'ed words) is given in Appendix A. 

Identifiers may be declared by the prograLwers. Identifiers are names 
containing 31 characters or less and begin with an alphabetic character. 
Upper and lower case letters are considered to be identical. Hence, an 
identifier written entirely in upper case letters is the same as the identifier 
written entirely in lower case letters. The valid characters after the 
first character (which must be alphabetic A to Z or a to z) include : the 
digits 0 to 9, the letters A to Z, the letters a to z, the underscore, 
the pound (or number) sign, the dollar sign, and the at sign. 

Some examples of va lid and inva lid identifiers are shown in figure 2.1 

VALID 

XYZ 
WHEAT PRODUCTION 
A&10 
Syntax_Ta b Ie 
SyStEm1NaLuE 
FUNNY@VARIABLE 
X1F_$@ 
name field 
X3P7S4 
Joe 

IDENTIFIERS - FIGURE 2.1 

INVALID 

$VAR X 
SIX+SEVEN 
@loc 
4P3S7 

PETE 
D.1S 
I/O 

Now that we have the basics of identifiers and we hav'e referred to Appendix 
A and seen the list of keywords, lets put together the ske leton of a SWL 
program. 



Every SWL program must be bounded by the MODULE and MODEND statem{-mts. 

ACCEPTABLE PREFERRED 

MODULE; MODULE INTRODUCTION; 

MODEND; MODEND INTRODUCTION; 

MODULE & MODEND STATEMENTS - FIGURE 2.2 

Figure 2.2 illustrates the beginning and end respectiv'ely of a SWL program. 
I!l ,the acceptable example, we have used the minimum information necessary 
(MODULE & MODEND) to describe a SWL program. The preferred approach shows 
the use of an optional identifier (in this case the identifier INTRODUCTION) 
to prov'ide a name for the program (or module). It is genera lly considered 
good pr'::>gramming practice to giv'e names to modules as these names enhance 
the readability of the source text. In the preferred approach then, we 
would say that the module is named (or called) "INTRODUCTION". 

You will also notice the semi-colon (;) which is included in the example. 
In SWL,the semi-colon is used as a statement separator. A semi-colon is 
needed to separate one !::Jtatement from another. There are places wher.e a 
semi-colon may be omitted. In general, when a statement is followed by a 
keyword the semi-colon is not needed. Extra semi-colons may in general 
be used and will indicate an empty statement. Since the SWL compiler will 
ignore empty statements, extra semi-colons will not have any direct effect 
on the source program (i.e., they will not create errors). In some cases, 
the judicious use of semi-colons can make program modification easier, 
as will be shown later. 

When writing source lines ,one is apt to ask, "where can blanks go?1I. 
Generally, identifiers, reserved words, and constants must not contain 
imbedded blanks and must be separated,one from another by at least one' 
blank. 

Comments are added to the source text to enhance progra~ll clarity and may 
be used anywhere blanks can be used. The comment is enclosed in d.,)uble 
quotes (11). 

The comment itself may not contain a semi-colon {it looks like 
a statement separator to the compiler}, a double quote {it"looks 
like another comment}, or a dollar sign {it is used to indicate 
a compile time option as described on page 4-~8}. 

Rev. B 2-3 



MODULE ca~MENT ILLUSTRATION; 
"THIS MODULE ILLUSTRATES THE 
USE OF THE COMMENT TO ENHANCE 
PROGRAM C LARI TY " 

MODEND COMMENT_ILLUSTRATION; 

COMMENTS - FIGURE 2.3 

In figure 2.3 the use of comments to enhance program clarity is illustra ted. 
Figure 2.3 contains one three-line comment. It could haV'e been written with 
three one-line comments. 

All executable statements i;:'1 SWL must be contained inside a procedure. We 
can cause the statements to be executed by calling the procedure. But what 
of the first procedure7 How do we get thai: first procedure called? This 
is accomplished by the loader. After completion of the load, the loader 
simply calls the uSer procedure called MAIN. Since an external call is 
inV'olv'ed the procedure MAIN must be declared for external use. This is done 
with the XDCL (DeCLared eXterna 1) attribute. 

So if we had some executable statements to perfor.n (as any real program does) 
our Module (program) would look like the one shown in fig~re 2.4. 

MODULE PROGRAL'v1_STRUCTURE; 

PROC [XDCL] MAIN; 

"EXECUTABLE STATEMENTS" 
"ARE PLACED HERE " 
PROCEND MAIN; 

MODEND PROGRAM _STRUCTURE; 

PROGRAM STRUC TURE - FIGURE 2.4 

Notice in figure 2.4 above the procedure MAIN. The beginning of the 
procedure is denoted by "PROC [XDCL] MAIN;". PROC is a reserV'ed word used 
to introduce a procedure. [XDCL] is used to indicate tha t the proe~ dilre is 
declared here and will be available for use by other external procedures 
(in this case the loader). MAIN is the name of the procedure. Of course, 
procedures can be giV'en other names, but remember that the loader always 
transfers to the procedure named MAIN. TIll-' end of the procedure MAIN is 
indicated by the statement "PROCEND MAIN;". 

2-4 



The statements PROC to PROCEND define a procedure block. Inside this block 
we may have declarations for variables and executable statements. These 
variables and executable statements will follo~'l the block-structuring J'ules 
discussed in Chapter 1. 

Now lets go further and introduce some variables into our program. Variables 
are dec lared with the VAR sta tement. In the VAR statement, we provide 
(minima lly) the name or identifier of the variable and the type of the 
variable. There is additional information that we can specify which we 
will discuss later. The simple variable declaration then, might appear 
as: 

VAR X: INTEGER; 

In this statement VAR indicates that we are declaring a variable and also 
introduces (or begins) the VAR statement. X is the identifier or name of 
the variable and INTEGER is the type of the variable. Notice the syntax. 
A colon is used to separate the variable identifier from the type. Since we 
have said no more, variable X is an automatic variable. That is, storage 
~pace for X will be allocated when the block in which the VAR statement 
appears is vntered (at execute time). Since X is type integer, the per
missable values that X may contain are restricted to the integers. 

Often in a program we need many variables. The following statements 
illustrate how this may be done: 

VAR X: INTEGER; 
VAR Y: REAL; 
V AR Z: BOOLEAN; 
VAR A: BOOLEAN; 
VAR C: CHAR; 

Notice that we have declared five automatic variables:X, Y, Z, A, and C. 
Notice the use of five separate VAR statements. The semi-colon is used to 
separate the statements one from another. Variable Y is type REAL. That 
is, Y may be assigned any real value. Variable Z is declared to be type 
BOOLEAN. Variable Z, therefore, may contain one of the BOOLEAN values TRUE 
or FALSE. Variable C is type CHARacter. Notice that we do not spell out 
the word character. We use 'Lnstead the abbreviation CHAR. Variable C, 
then, may contain only a single character. 

It seems like a rWaste of space to have to declare VAR five times, once for 
each variable. Wouldn't it be nice if we could use only a single VAR state
ment and declare lots of variables? Well,lve can. Look below: 

VAR X: INTEGER, 
Y: REAL, 
Z: BOOLEAN, 
A: BOOLEAN, 
C: CHAR; 

2-5 



~I,'tice the interesting syntax here. VAR introduces the variable declarations. 
The semi-colon separates this statement from any following statements. Note 
that all five variables are declared in ONE statement. See the use of commas 
to separate one part of the variable declcll";Ltion from another. This is a 
compound statement - but it is only one statement NOT fLve. 

Now look at the variables Z and A above. They are both BOOLEAN. What a 
waste - having to write BOOLEAN twice. Can this be impr.)ved upon? Yes 
indeed: 

VAR X: INTEGER, 
Y: REAL, 

Z,A: BOOLEAN, 
C: CHAR; 

In the statement abov'e, when more than one identifier appears on the left of 
the colon (as in Z,A) the identifiers are separated,one from anothe~ by a . 
comma and they become the type declared to the right of the colon. In 
the example above, both Z and A are BOOLEAN. 

How could we improve on this? We 11, consider the prob lem of adding a variable 
to this declaration at the end (after C:CHAR;). What needs to be done7 
First we must change the semi-colon to a comma. Second we must add another 
line at the end. TWo distinct lines must be changed. Similarly, if you 
consIder adding a variable at the beginning of the VAR statement two lines 
must be altered. Wouldn't it be nice if we could add lines at the beginning 
or end a':1d only hav'e to make one change, the addition of the line? The 
following example i.1lustra tes the syntax necessary to make this possible ~ 

VAR 
X: INTEGER, 
Y: REAL, 

Z,A: BOOLEAN, 
C: CHAR, 

We still have one statement but now we can simply add new lines to this -- , 
statement with the minimum amount of effort. This is just a technique. 

Unfortunately, this technique will not work in the current 
version of ISWL. The technique is mentioned here to increase 
your anticipation of future versions of ISWL. 

Rev. B 2-6 



Now we come to placing variable declarations in our Module. Figure 2.5 
illustrates two a lterna tives: 

ALTERNATIVE 1 

MODULE VARIABLES1;, 
VAR X: INTEGER; 

PROC [XDCL] HAIN; 
"PROGRAM BODY" 
PROCEND MAIN; 

MODEND VARIABLES1; 

ALTERNATIVE 2 

HODULE VARIABLES2; 

PROC [XDCL 1 MAIN; 
VAR X: INTEGER; 
"PROGRAM BODY" 
PROCEND MAIN; 

MODEND VARIABLES2; 

SCOPE OF VARIABLES - FIGURE 2.5 

Alternative 1 in figure 2.5 has the variable declaration inside the Module 
but outside any procedures (like MAIN). In this ease, X is a globa I variable. 
Its scope (see Chapter 1) is the entire Module. Every procedure inside the 
Module (like MAIN) can make references to or alter the contents of variable X. 

Alternative 2 in figure 2.5 illustrates placing the variable declaration inside 
a procedure (in this example, MAIN). With this approach, variable X is local to 
procedure (or block) MAIN. Variable X can be referenced or altered by any 
statement within procedure MAIN. However, if there were other procedures in 
this Module the other procedures would not have access to variable X (unless 
X was passed as a parameter to the procedure). 

Generally, we place variable declarations in the block in which they are 
needed. This "shields" the variables from unintentional alteration by 
other procedures and makes for the most efficient allocation of storage for 
automa tic variables. 

Sometimes, when we decla',:e a variable we don't 'N'ant the variable to be able 
to take on a 11 possible va lues norma lly associated with its type 0 For 
example,a variable declared as i 11t2ger can take on all positive and negative 
integer values. It would be nice if we could restrict the values of some 
variable to the subrange 0 to 100 for instance. This can be accomplished 
with the use of "subrange". For example, 

VAR INDEX O •• 100; 

declaJ-es variable INDEX to be type "Subrange of INTEGER". We know the 
type is a subrange because of the use of " •• " to indica te lowe t" and upper 
bounds on the subrange. The type is subrange of integer because both a and 
100 are integers. With this declaration the variable INDEX can be assigned 
(or take on) only integer valnes from a to 100 inclusive. Any other value 
placed into INDEX would be an error. We might also note that subranges are 
always expressed in ascending order (i.e. 100 •• 8 is an illegal subrange). 

2-7 



Another example can be shown with the type character (CHAR). If a V'ariab1e 
is declared to be type CHAR, then,it may contain anyone of the 256 ASCII 
characters. But what if we really want a V'ariab1e to be able to take on 
values equiv'a1ent to the alphabetic characters IAI to IZI. Notice that 
characters are enclosed in single quotes (I). This is to distinguish the 
character IAI from the V'ariab1e identifier A. The following example ~;hows 
the use of subrange of type character. 

V AR ALPHA: I A I •• I Z I ; 

In this examp1e,the variable identifier ALPHA is a subrange of the 
characters. Since the lower bound (IAI) of the subrange is a character, 
we can see that ALPHA will be a subrange of characters. 

Is it possible to haV'e a subrange of the type BOOLEAN? Type BOOLEAN only 
h~s two v'a lues FALSE and TRUE. So a subrange here would not proV'ide us 
with any additiona 1 capabilities ev'en though we could define such a sub
range (i.e.,VAR YES NO : FALSE •• TRUE;). 

What about subranges of the REAL type? Real v'a1ues are written with an 
integer part, a decimal point and a fractional part (i.e.,1.0 is a real 
number). Also, the exponential form of real numbers is allowed (i.e., 
1.3E6, represents 1.3xl06 or the V'alue 1300000). Can we haV'e subranges 
of these real v'a1ues? Would it make sense to haV'e a subrange 1.5 •• 1.6? 
You might argue that this is a 1right, simply restricting a rea 1 V'ariab1e 
to some specific subrange. In ISWL, howeV'er, subranges of the REAL type a::e 
no: allowed. -

What about th~ problem of numbers to bases other than base 10? In SWL the 
bases (or radix) 2, 4, 8, 10, and 16 are allowed. So, for example, to 
represent some binary subrange the prog'r"ammer might write 

VAR BINVAL: 0000(2) •• 1111(2); 

to represent a V'ariab1e whose binary V'a lues could be from 4 bits of zero 
to 4 bits all ones. Of course there are a1ternatiV'e ways of writing the 
same V'ariab1e,as shown in figure 2.6. 

VAR 
BINVAL1: 0000(2) •• 1111(2), 
BINVAL2: 0(4) •• 33(4), 
BINVAL3: 0(8) •• 17(8), 
BINVAL4: 0 •• 15, 
BINVAL5: 0 •• OF(16); 

SUBRANGES WITH RADIX - FIGURE 2.6 

All the V'ariab1es in figure 2.6 are automatic V'ariab1es and they all haV'e 
equivalent subranges. We haV'e simply shown a1ternativ'e ways of writing the 
subrange 0 •• 15 (in ·i'cimal). 

Rev. 8 2-8 



OccasionallY,we need a constant in a program. It would be nice if we could 
give the constant a name (or identifier) and use the name instead of a con
stant. In addition, if the constant were needed in lots of places in the 
program we could use the identifier instead of writing the constant over 
and over again. This would have some added benefit if l,Je had to change the 
constant at a later date. We could simply change the definition of the 
constant identifier in one place. All the references to the constant 
identifier would remain unchanged. Still another advantage is provided by 
the SWL compiler. ~l}_a ~~ol1stant . ~ dec}al:'e1,-d,~-=JJ.~_s-()~_a.=rea:d=on-I-y= 
COIlst.a:nt., That is the constant cannot be changed by the executing program. 
~nstants are declared with the CONST statement. 

Just like VAR statement, the user can write a single CONST statement which 
declares many constants or many CONST statements each declaring constants. 
As an example, suppose that we have some lower and upper bounds for subranges. 
These could be declared as constants as shown below: 

CONST 
LOWERBOUND = 0, 
UPPERBOUND = 100(16); 

In this example notice the us~ of the equal sign (=). The equal sign is 
used in the CONST statement to imply an equality between the identtfier 
on the left and the value on the right. 

Naturally, we can declare INTEGER, REAL, CHAR and BOOLEAN constants. The 
example in figure 2.7 illustrates the use of constants. 

MODULE CONST_ EXAMPLE; 
CONST 

LOWER BOUND = 0, 
UPPER BOUND = 100(16), 
CHARLIMIT 'Z', 

I 

YES = TRUE; 
REALCONST -1.635, I .. 

PROC [XDCL] MAIN; 
VAR 
INm~x 

ALPHA 
RANGE 

Lowr:RBOUND •• UPPERBOUND, 
'A' •• C]-lARLIM IT , 
-100 •• LOWERBOUND; 

"PROGRAM BODY" 
PROCEND MAIN; 

MODEND CONST_ EX&lPLE; 

CONSTANT DECLARATIONS - FIGURE 2.7 

In figure 2.7 we can see the use 
Of course, constants may be used 
HO'veV'er, we have not covered any 

of constants in variable declarations. 
in other executable statements too. 
e~ecutable statements yet. 

Rev. B 

I 

2-9 



I 

INPUT/OUTPUT 

For elementary Input and Output ISWL (not SWL) provides two statements: 
READ and WRITE. These sta cements are rea lly pr<):::edure calls that cause 
reading of information from (or writing information to) a file. The READ 
and WRITE statements normally use the Input and Output ::iles, respectively. 
However, we can alter this by parameters (on the control cards) to READ 
from (or write to) any arbicrary file. 

What kinds of data can be pead? The READ procedure is capable of reading 
integers, reals and characters. The WRITE procedure allows writing of 
integers, rea is, characters, boo leans and strings. 

For example, the statements 

VAR X:INTEGERj 
READ(X); 

declare an integer X and then read an inte3-~r f'-om the input file. The 
next integer on the file then becomes the value of X. When reading integers 
from a file, end .. of -lines on the file are treated as blanks. Blanks are 
used to separate one integel from another. Each READ statement causes the 
next integer to be read from the file. t19te that each read statement does_ 
not cause a new line to be read. Each read statement reads the next integer 
from the fi le. 

In the following sequence 

VAR CH: CHAR; 
READ(CH) ; 

CH is declared to be type character. The read statment READ(CH) then reads 
the next character from the file. 

In the L',;lse of reading characters, the end-of -line character is not treated 
as a blank. It is read'as an end_of-line character. This enables us to 
distinguish one line from another. 

A read statement may have many parameters as shown in the example below: 

VAR 
X: REAL, 
C: CHAR, 
Z: INTEGER; 

READ (X,Z,C) j 

The READ statement first reads a real number from the file. Then the next 
value on the file (which must be an integer) is read. Finally, the character 
following the integer is read. 

The WRITE statement enables us to write informatio"l on the output file. The 
v'ariables in the WRITE statement al~e added to the file in the OI:der of their 

Rev. 8 2 -10 



appearance in the statement. Chat"acters are written to the file in I 
~1l~J"J!C; ~~r."_"QQ.I?,j.J:.i.911~. !. n t e 9 e r 5 are w r itt e n tot h e fTrefrl10 
c~~.~,r.~~}"",E:!!:._,g.Qs .. ~.,~.,i.:(:U~.§' Reals are wri t ten in 20cnaracter posi tions. 

We can write end-of-lines on the file (to create new lines) by writing the 
constant EOL. For example, the statement 

VAR I,J,K,L: INTEGER; 
• • · WRITE (I,J,EOL,K,L,EOL); 

writes the va lue of I (right justified, blank fill) in 10 character 
positions on the output file followed by the value of J. Next, an EOL 
is written on the file followed by the va lue of K and L. The EOL will 
cause the va lues of K and L to appear on a line after the line conta ining 
I and J. 

If we do not want the standard 10 character positions assigned to each 
real or integer written,we can specify the number of character positions 
to be used. For example, in the statement 

VAR I : 0 •• 20; 

WRITE (I:5,EOL); 

"I"is a subrange of the integers. "I"can never be less than 0 or greater 
than 20. The write statement specifies that the value of I (whatever it 
is) will be written on the output file using only 5 character positions. 
After the va lue of I,a11 end-of-line (EOL) will be written on the file. 

For real values the WRITE statement may contain a specification like 
R:8:2. 

VAR R:REAL; 
• • • 

WRITE (R:8:2,EOL); 

In this WRITE statement, R: 8:2 means write the rea I va lue R on the output 
file using 8 total character positions. The decimal portion of the real 
value R will contain 2 places. 

Since we can write strings of characters on the output file we can put 
explanatory information on the output file. This is shown below: 

VAR I : INTEGER; 
• • 

WRITE ('RESULT = " I:8,EOL); 

The. WRITE statement writes the string "RESULT =" on the file followed by the 
v'alue of I (in 8 positions) followed by an end-of-line. 

Rev. B 2-11 



Now we can write a simple program that reads and writes data. Figure 2.8 
shows a simple program. 

MODULE INPUT_OUTPUT; 

PROC [XDCL 1 MAIN; 
VAR I: rNTEGER; 

"READ AND WRITE AN INTEGER" 
READ(I) ; 
WRITE(I,EOL); 

PROCEND MAIN; 
MODEND INPUT_OUTPUT; 

SIMPLE INPUT/OUTPUT - FIGURE 2.8 

If we wanted to read and write two integers, \ve might choose either of 
the methods shown in figure 2.9. 

MODULE 101; 
PROC (XDCL) MAIN; 
VARI,J : INTEGER; 

READ (I,J); 
WRITE (I,J,EOL); 

PROCEND MAIN; 
MODEND 101; 

MODULE 102; 
PROC [XDCL 1 MAIN 
VAR I,J : INTEGER; 

READ (I); READ (J); 
WRITE (I); WRITE (J,EOL); 

PROCEND MAIN; 
MODEND 101; 

SIMPLE INPUT/OUTPUT (INTEGER) - FIGURE 2.9 

In figure 2.9,we have two programs obtaining exactly the same results. 
These examples show that a READ list containing a number of variables 
is equiv'alent to a number of READ statements each containing a single 
variable. 

Most often, however, we would like to do more than just read and write 
variables. We would like to perform some computations, make some 
assignments and write some results. So first let's examine the assignment 
statement. 

2-12 



ASSIGNMENT 

The. assignment operator in SWL is ":d'. The variable to the left of the 
colon-equa,l (:=) is assigned the value to the right of the colon-equal. 
Of course, the types must be conformable. For instance, if the variable 
on the left is type real and the resulting value on the right is type 
integer the assignment is not legal. Consider the following: 

VAR X: INTEGER; 

X:=-3; 

Variable X is declared to be type integer. The assignment "X:=-3;" is 
va lid, because the type of the va lue (or constant) to the right of the 
assignment operator is the same as the type of the variable to the left 
of the assignment. 

What about operators? What operators exist and how are they used? 

OPERATORS 

SWL defines four classes of operators, these are: 

NOT OPERATOR 
MULTIPLICATIVE OPEfu\TORS 
ADDITIVE OPERATORS 
RELATIONAL OPERATORS 

CLASSES OF OPERATORS - FIGURE 2.10 

The classes of ope"cators are shown in figure 2.10. There is an implied 
precedence for these operators. The NOT operator has the highest precedence. 
Relational operators have the lowest precedence. Parenthesis are used to 
alter the normal order of precedence. 

The mUltiplicative operators include multiplication (~\"), division (J), 
remaindE~r (HOD), and logical and (AND). 

The additive opera tors include addition (+), subtraction (-), inclusive 
or (OR), and exclusive or (XOR). 

The relational operators include less than «), greater than (», equal 
(=), greater than or equal (}=), less than or equal «=), not equal <1=), 
set membership (IN) and a few other set operations. . 

When using these operators, the left and right arguments must conform. For 
instance,an integer may be added to an integer. A real may not be added 
to an integer. 

2-13 



In any expression,operations are performed in the order of precedence 
described above. In the following assignment statement 

VAR I : INTEGER; 

· 1:= 3*5+2; 

the order of precedence is multiplication first and then addition; the 
result is 1:=17. Using parenthesis we can alter the order of precedence 
as shown below. 

VAR X: REAL; 

· X:= 3.0*(5.0+2.0); 

Here multiplication should be done first. However, in order to do the 
multiplication the right argument "(5.0+2.0)" must be evaluated. The 
result (7.0) is then multiplied by 3.0 giving the result X:=21.0. 

All this seems elementarY,at best, until we encounter some interesting 
cases. These interesting cases can be shown using the relationals. 
Remember the relational A<B really asks a question: "is A less than B"? 
If the answer is yes the result is the Boolean value TRUE. If not, the 
result is the Boolean value FALSE. Try the next example: 

VAR B: BOOLEAN, 
I: 0 •• 100, 
Z: REAL; 

1:=3 ; Z:=1.6 ; 

· B:= 1<5 AND Z>1.5; 

What do you think the value of B is? 
5 and Z is greater than 1.5 B will be 
operator has a higher precedence than 
"5 and Z" is eva lua ted first which is 

It appears that if I is less than 
true. Unfortunately, the AND 
the relationals. So the expression 
inva lid. 

To fix the problem the expression must be rewritten with parenthesis as: 
"B:= (1<5) AND (Z>1.5);" so here the parenthesis are needed. 

2-14 



Now we can even do some e lementa17Y computation as shown in figure 2.10. 

MODULE CCMPUTE; 
PROC [XDCL 1 MAIN; 
VAR I: INTEGER; 
READ(I); 
1:=1*1*1; 
WRITE (I,EOL); 
PROCEND MAIN; 
MODEND CCMPUTE; 

ELEMENTARY CCMPUTATION - FIGURE 2.11 

The examph~ in figure 2.11 reads an integer (1) •. I is then multiplied by 
itself three times (finds I to the third power) and writes out the 
result. In an expression like I:=I~\'I~(I; 't!!l:ere operators are of the 
same precedence the operations are p.~!'Jgrmed left_to_right. 

CONVERSION FUNCTIONS 

At this point you might ask, "what can we do if we really want to add an 
integer to a real"? This problem is addressed with the use of conv'ersion 
functions. In SWL, conv'ersion functions are constructed by preceding the 
type with a do llar sign. The argument to the conversion function then is 
placed in parenthesis. Some conversion functions are shown in figure 2.12. 

FUNCTION 

$ REAL 
$ INTEGER 
$ CHAR 

ARGUMENT 

INTEGER 
REAL ,CHAR 
INTEGER 

RESULT 

REAL 
INTEGER 
CHAR 

CONVERSION FUNCTIONS - FIGURE 2.12 

For example, if we needed to add the integer I to some real value X and 
place the result in X the following method could be used: 

VAR I: INTEGER, 
X: REAL; 

X:= X+$REAL(I); 

In this example we have conv'erted the integer I into a rea 1 va lue so that 
it could be added to X. The $CHAR function is an interesting one. 
Remember that S'iJL uses the 256 ASCII characters. All the characters do not 
have graphic representations.· How can we refer to a character we can't 

write (or type or punch)? 

2-15 



The answer is we convert an integer to the corresponding character. 
For example, $CHAR (53) converts the integer 53 into the equivalent 
ASCII character. The result of $CHAR (53) is a character. Remember 
the EOL character we discussed with respect to read and write statements? 
Well, $CHAR(10) is the end-of-line character. If you are interested in 
the complete list of characters Appendix G shows the $CHAR 0 equiva lent 
of all the characters on the Control Data 713 terminal. . 

The integer conversion function can be used to convert a real into an 
integer or a character into an integer. For example, $INTEGER(fA') 
is the integer equivalent of the ASCII character 'A.'. We might note 
in passing the identity $INTEGER ($CHAR(3». This expression finds 
the character equivalent to the third ASCII characte~and then finds the 
integer equivalent of the thir.d ASCII character. The result i~of 
course, the integer 3. 

STRUCTURED STATEMENTS 

Structured statements are statements that are composed of other statement 
lists. The SWL statements that fa 11 into this category are: IF, WHILE, 
LOOP, REPEAT, FOR, and CASE statements. 

IF STATEMENT 

'rhe IF STATEMENT allows for the testing of conditions and for an alternative 
execution of statement lists. 

FAL=S=E, ____ < 
ELSE 

\~ -
STATm1E~lT 

LIST 2 LIST 1 

IFEND 

IF STATEMENT FLOWCHART - FIGURE 2.13 

( 

2-16 



Figure 2 0 13 illustrates the conditional test and the alternative statement 
list execution. The statement list may contain any SWL executable state
ment including additional IF statements. The beginning of the IF statement 
is denoted by IF and the end of the statement is denoted by IFEND. 
For instance, consider figure 2.13 

VAR Y,X: INTEGER; 
• · · IF X<O 
THEN 

ELSE 

IFEND; 

Y:=X*X; 
WRITE (Y,EOL); 
Y:=X./2; 
WRITE (Y,EOL); 

IF STATEMENT SYNTAX - FIGURE 2.14 

In figure 2.14, the IF statement includeS six lines. The one IF statement 
starts at IF and ends with the line IFEND. Notice that this statement 
includes other statements. This particular IF statement tests IF X is less 
than zero. If this is true,X<O returns the Boolean result TRUE and the 
THEN part of the IF statement is executed. The THEN portion computes Y 
as x*x and writes the resulting value of Y followed by an end-of-line. 
The next statement executed is the one after IFEND;. 

In the event that X is not less than zero, X<O is FALSE and the ELSE 
portion of the IF statement is executed. The ELSE portion computes Y as 
X divided by 2 and writes the resulting value of Y followed by end-of-line. 
The next statement executed is the one after the IFEND;. 

So you can see how the SWL syntax implements the IF statement flowchart 
shown in figure 2.13. 

Some variations on the basic IF statement are supported. One variation 
is when there is no ELSE portion. In this even~ the ELSE clause may be 
left out entirely. The flowchart for this short form of the IF statement 
is shown in figure 2.15. 

IF 

r 
L._--._ .... --- ..... -.---... ---.. ~ __ 

tIFEND 

TRUE 
THEN ~ 

.: STA;~~N;l 
I LIST . 
I . J, 

7 
o 

SHORT IF STATEMENT - FIGURE 2.15 
2-17 



FALSE 
r ELSE 

.-_J .......... . 
STATEMENT 

LIST 3 

As shewn in figure 2.15,the shert IF statement has enly ene statement LIST. 
An example ef this form ef the IF statement is shewn in figure 2.16 belew. 

VAR DEBUG: BOOLEAN; 
DEBUG := TRUE; 

IF DEBUG 
THEN WRITE ('CHECKPOINT 17',EOL); 

IFEND; 

IF STATEMENT SYNTAX - FIGURE 2.16 

Figure 2.16 is the kind ef IF statement that ceuld usefully be added to. 
a program fer checkeut purposes. First,a BOOLEAN variable DEBUG is 
declared. If DEBUG is TRUE,the IF statement THEN-clause will be executed 
writing some checkpeint infermatien en the eutput file. If DEBUG is 
FALSE,the IF statement will not cause any additienal eutput lines to. be 
generated. That is, the IF statement effectiv'ely becemes a ne-eperatien 
statement. We say "effectively" because seme executien time is required 
to. determine that DEBUG is FALSE and to. skip over the executable statements 
in the IF statement. Also., the IF statement requires seme space in the 
generated object cede even if it never writes anything en the output file. 

Semetimes we have many tests to. perferm in order to. preperly execute SOI.1e 
statements. A fairly typical example is a three level test for less-than 
zero., equal-to-zeroor greater-than-zere. This ceuld be accemplished 
using nested IF statements as shewn in figure 2.17. 

I 

I 

IF t 
~ts~E/, ··~C~_--::~=R=~=~,--

'~/. 

I 
I 

( .. 
'-.... 

TRUE 

~~<~THE1 
STATEMENT 

LIST 2 

STATEMENT 
LIST 1 

.... _ .. _J 

IFEND >rc
. 

~----------~)~<~----------~ 

I IFEND 

NESTED IF STATEMENTS FLOWCHART - FIGURE 2.17 

2-1 



When we translate the flowchart of figure 2.17 intoSWL SYNTAX it becomes 
somewhat complex as shown in figure 2.18. 

VAR Y,X: INTEGER; 

IF X=O 
THEN Y:=X*X; 
ELSE IF X<O. 

THEN Y:=X+X; 
ELSE Y:=X-2; 

IFEND 
IFEND; 

NESTED IF STATEMENT SYNTAX - FIGURE 2.18 

Since these nestf~d IF statements can become quite complex SWL has intro
duced the ORIF clause which can (in many cases) simplify the complexity 
of nested IF statements. The ORIF clause pl"ovides the capability of 
performing additional tests within an IF statement without the necessity 
of creating another IF-THEN-ELSE-IFEND sequence. Figure 2.19 shows how 
the example of figure 2.18.can be simplified using the ORIF clause. 

VAR Y,X : INTEGER; 

IF X=O 
ORIF X<O 
ELSE 

IFEND; 

THEN Y:=X*X; 
THEN Y:=X+X; 

Y:=X-2; 

ORIF CLAUSE IN IF STATEMENT - FIGURE 2.19 

Sometimes the tests in an IF statement are really individual cases. 
For instance: 

VAR" Y,X: o •• 4; 
• • • 

IF X=O 
ORIF X=l 
ORIF X=2 
ORIF X=3 
ORIF X=4 
IFEND 

THEN Y:= X*2; 
THEN Y:= X+X; 
THEN Y:= X-2; 
THEN Y:= X-1; 
THEN Y:= X/2; 

CASES IN AN IF STATEMENT - FIGURE 2.20 

In figure 2.20,X can take on values of 0 thru ~ inclusive. The IF 
statement tests for which value X has and executes the appropriate 

2-19 



statement LIST. But when there are a finite (and relatively small) 
number of possible cases we have another statement which more clearly 
and succinctly explains the action at eXHcute time. This statement is 
called the CASE statement. 

CASE STATEMENT 

The CASE statement causes selection of one and only one of the constituent 
cases depending on the value of the case selector. The CASE statement can 
a lways be replaced by some equiva lent IF statement(s). But, in many 
instances the CASE statement more clearly represents the intent of the 
programmer and hence improv'es program clarity. 

The flowchart of the CASE statement is 'shown in figure 2.19. 

CASE 

Statement Statement Statement 

List 1 List 2 List N List wN 

CASE STATEMENT FLOWCHART - FIGURE 2.21 

The ELSE portion of the CASE statement is optional. Let's take the example 
in figure 2.20 and show how it is made clearer with the use of the CASE 
statement as in figure 2.22. 

VAR Y ,X: 0 •• 4 

CASE X OF 
=0= Y:=X*2; 
=1= Y:=X+X; 
=2= Y:=X-2; 
=3= Y:=X-l; 
=4= Y:=X/2; 
CASEND; 

CASE STATEMENT SYNTAX - FIGURE 2.22 

The CASE statement in figure 2.22 begins with the reserved word CASE 
and ends with CASEND. This is one statement. The CASE statement is a 
structured statement,which can contain many other statements,but,it is 
still one statement. 

2-20 

( 

\ 



In the CASE statement (in the first line IICASE X OFII), the variable X is 
ca lIed the se lector and the va lues between the equa 1 signs (like =0=) 
are called the cases. On entry to the case statement, the value of the 
selector is evaluated. This selector value is then used to select (or 
pick) the appropriate caSe for execution. For example, in figure 2.22 if 
X had the va lue 3 then the statement list IIy :=X-1; 11 would have been 
selected for execution. Upon completion of execution of this case, the 
statement after the CASEND would be executed. 

Another example of the CASE statement in figure 2.23 shows the use of the 
CASE statement to categorize characters in a syntactic analysis. 

CaNST 
ALPHA = 1, 
NUMERIC = 2, 
SPECIAL = 3, 
OTHER = 4-, 

VAR CH: CHAR, 
CH'IYPE : 1 •• 4; 

CASE CH OF 
='A' •• '2 1 

='0' .. '9' 
='+','-','/' 
ELSE 

CASEND; 

CHTYPE := ALPHA; 
CHTYPE := NUMERIC; 
CHTYPE := SPECIAL; 
CHTYPE := OTHER; 

CASE STATEMENT SYNTAX - FIGURE 2.23 

In the example in figure 2.23 the CASE statement is used to classify a 
character. Notice the use of cases containing subranges. If the chara6ter 
CH is any of the characters 'A' to '2', then we set CH'IYPE to ALPHA (which 
is the constant va lue 1. A similar action occurs if the character CH is a 
'a' thru '9'. Notice the use of non-contiguous cases. (='+', '-','/'=). 
If the character CH is a plus, minus, or slash character, then CHTYPE 
becomes SPECIAL. The ELSE case is genera lly included as a good programming 
practice. In the event that none of the cases are selected,the ELSE case 
becomes effective. 

Rev. B 2-21. 



Figure 2.24 illustrates the effective use of the ELSE case. 

VAR X: O •• 3, 
Y: INTEGER; 

• . 
. CASE 
=0= 
=1= 
=2= 
=3= 
ELSE 

CASEND; 

X OF 
Y:= X*X; 
Y:= X*2; 
Y:= X-1; 
Y:= X+1; 
ERROR_ROUTINE; 

ELSE IN CASE STATEMENT - FIGURE 2.24 

In ftgure 2.24we can see that v'ariable X is declared to be a subrange 
0 •• 3 of the integers. Certainly then, the CASE statement need only 
contain the cases =0=, =1=, =2=, and =3=. No other values for X are 
valid. If we could rely on this absolutely, the ELSE clause would not 
be needed. Howev'er·, what happens when a memory parity error exists? 
What happens on some minor failure in the arithmetic unit of the 
computer? For these UNUSUAL conditions it is an extra safeguard to 
include the ELSE case. If X should ever erroneously obtain a value 
outside the proper suhrange (0 •• 3) and the case statement is entered the 
ELSE case would be executed ca lUng a procedure "ERROR ROUTINE". Without 
the ELSE case and if X somehow becomes out of range the program would abort 
with the error message "CASE VARIABLE OUT OF RANGE". So, the ELSE case 
provides us, in this Situation, an extra measure of program reliability. 

REPETITIVE STATEMENTS 

SWL provides a number of repetitiv'e statements. These are: REPEAT, 
~rnILE, FOR and LOOP. All these statements cause a list of statements 
to be executed repetitively. In some situations, the progranuner could use 
anyone of these statements and the choice of which statement to use 
will be 'ln arbitrary one. Howev'er, each of these statements provides some 
special feature or capability not found in the other statements. These 
special features will be identified in the text helow. 

REPEAT STATEMENT 

The REPEAT statement controls repetitive execution of its constituent 
statement list. The special feature of the REPEAT statement is that 
(upon entering the REPEAT statement) t~e statement list will be executed 

)!t least once. Thereafter, the boolean control expression will determine 
if additiona 1 repf .. t ttions are to be performed. The flowchart in figure 
2.23 illustrates the flow of control in a REPEAT statement. Noti ce that 
the REPEAT statement begins with the work "REPEAT" and ends with 
the word "UNTIL". This is different than most other statements 
that end with some form of the word "END" {e.g. WHILEND, FOREND, 
ETC. }. 
Rev. B 2-22 



/ 

FAL 

REPEAT 

STATEMENT 
LIST 

REPEAT STATEMENT FLOWCHART - FIGURE 2.25 

In the flowchart of figure 2.25, notice how the statement list is performed 
once. After the statement list is performed a boolean test is per- . 
formed. If the r·<:sult is FALSE', then the statement list is executed again. 
When the boolean condition result is TRUE then the repeat statement is 
finished and the next statement after the repeat is executed. Note that 
the statement list may contain any executable statements including 

. aaciitionai(or nested) reEeat statements. Tne repecffsta-tementflien- can 
-ne read: "Repea t the statement list unfil some condition is true". 
Again, the special feature of this statement is that upon entry the state
ment list will be executed once regardless of the result of the b.oolean 
condition. 

An example of the syntax of the repeat statement is shown in figure 2.26. 

MODULE SKIP LINE; 
PROC (XDCL] MAIN; 
VAR CH : CHAR 

REPEAT 
READ (CH); 
UNTIL CH=EOL; 

PROCEND MAIN; 
MODEND SKIP_LINE; 

REPEAT STATEMENT - FIGURE 2.26 

The program in figure 2.26 will read characters from the input file 
(advancing the file pointer) until the end of line character is read. 
This effective ly skips over (or goes past) the first line in the input 
file. It is assumed that at least one line is in the input file. 

2-23 



Notice that upon entering the REPEAT statement the "READ (CH);" statement 
will be executed. Then the test for end"of ~line is performed. If this 
"READ (CH);" statement did not produce an end-of-line, then the statement 
list "(READ(CH));" is executed again. 

What happens if the file is empty? That is, it contains only an end-of
file? The first read will read and set the end-of- file condition 
(no end of line is present). The conditional test (CH=EOL) will of course 
be false and the statement list (READ(CH)) will be executed again. This 
will cause an attempt to read past end-of-file and the job will terminate. 

So,it would be nice if we could test for end-of-file,as well as end of line. 
Of course,we must execute the READ statement once in order to obtain any 
fi le i.nformation (end-of -line, end -of -file, or a character). The REPEAT 
statement guarantees that the READ statement will be executed once. 

END-DF-FILE 

The end-of-file condition can be tested by using the boolean result 
returning built-in function #EOF(filename). This function can be used 
to test the status of any file. If end-of-file has been reached on the 
file, #EOF(filename) will be TRUE. If end-of-r:ile has not been reached, 
then #EOF(filename) will be FALSE. 

We can now modify the example in figure 2.26 to include the end-of-file 
test also. Naturally, once end-of-file is found some additional processing 
(not shown) will be required. Figure 2.27 illustrates the new (slightly) 
modified program. 

WHILE STATEMENT 

MODULE SKIP LINE NEW; 
PROC [xDCLl MAIN;~ 
VAR CH:CHAR; 

REPEAT 
READ(CH) ; 
UNTIL CH=EOL OR #EOF(INPUT); 

PROCEND MAIN; 
MODEND SKIP_LINE_NEW; 

REPEAT STATEMENT SYNTAX - FIGURE 2.27 

The WHILE statement causes repetitiv'e execution of its sta tement list but 
slightly differently than the repeat statement. The WHILE statement does 
the condition test first (upon entry to the whilestatemenn--ana-then-~-

W"e-xeZtite-;theSta tement- liSt£iily'::-{-f--thJL Boo iean condition ~s TRUE:--With 
~...... ,......----- -------.-tliis organ~zat~on,it ~s possible that the statement list might not be 
executed at alL 

2-24 



/ 

The flowchart in figure 2.28 illustrates the operation of the WHILE 
statement. 

FALSE 

I WHILE 

STATEMENT 
LIST 

'" 

WHILE STATEMENT FLOWCHART - FIGURE 2.28 

An example of the use of the WHILE statement is shown below in figure 
2.29. The idea here is to read an integer and compute the factorial 
of that integer, then terminate the program. We will restrict our input 
numbers to those that are 1) positive, including zero, and 2) less than 
100. Remember 0 FACTORIAL is 1. 

MODULE FACTORIAL; 
PROC [XDCL] MAIN; 
VAR N,FACT: INTEGER; 

READ(N) ; 
FACT:=l; 

WHILE N>O DO 
FACT:::;: FACT*N; 
N:= N-l; 
WHILEND; 

WRITE(N:5,'FACTORIAL = ',FACT,EOL); 

PROCEND MAIN; 
MODEND FACTORIAL; 

WHILE STATEMENT - FIGURE 2.29 

2-25 



In the example in figure 2.29,notice how the WHILE statement performs 
the test for N>O prior to the execution of any of the statement list. 
If the value 0 were read for N at the beginning of the program,FACT 
would be set to 1. Then the WHILE statement would evaluate N>O and 
the result would be FALSE. In this event, none of the statements of the 
WHILE statement list would be executed. The WRITE statement then would 
write 11 0 FACTORIAL = 1 IT which is, of course, the correct answer. 

After reading one value of N and computing one factorial, this program 
terminates. Lets modify the program slightly to continue reading values 
for N and computing factorials until a number greater than 100 appears On 
the input file. Since the input file may become empty (end-of- file), we 
will also include appropriate tests for this condition. 

With these new features, we will hav'e a reasonably complete and safe 
program. That is, the program will not be prone to aborting abnormally. 
See figure 2.30 below: 

I 

MODULE FACTORIAL1; 
PROC [XDCL] MAIN; 
VAR N,FACT : INTEGER; 

READ(N) ; 
WHILE (N(=100) 
FACT :=1; 

AND (NOT #EOF(INPUT» DO 

I I WHILE N>O DO 
FACT:=FACT*N; 
N:~ -1; 

I I_WHILEND; 

WRlTE(N:5, 'FACTORIAL = ',FACT,EOL);' 
! READ(N); 
I WHILEND; 

WRITE ('END OF JOB',EOL); 

PROCEND MAIN; 
MODEND FACTORIAL1; 

WHILE STATEMENT (FACTORIALS) - FIGURE 2.30 

Let 1s review the operation of the program in figure 2.30. The WHILE 
statements have been enclosed in brackets to illustrate where they begin 
and end, and also the nesting of the WHILE statements. Upon entry into 
the program a va lue of N is read. The WHILE statement then checks that 
1) N is not greater than 100 and 2) that we have not encountered an 
end-of- file. If either of· these conditions is fa lse, then no statements 
in the constituent list of the WHILE statement are executed. The next 
statement executed will be the one that writes the end of job message. 

2-26 



If N is within range and there is no end-of-file, then the WHILE statement 
is entered. The factorial is computed as described for the program in 
figure 2.29. The result is written to the output file and another N is 
rea'd. Then control is returned to the beginning of the outermost Tllhile 
statement to check the conditions on N and end of file. 

Could repeat statements have been used in the example in figure 2.30? 
The answer is of course yes - but,You will find if you write such a program 
that extra IF statements will be needed. This is because the repeat 
statement does its testing at the end of the statement list and in this 
example we need tests performed prior to executing the constituent 
sta tement list. 

LOOP & EXIT STATEMENT 

The LOOP statement provides for unbounded looping. The statements inside 
a LOOP statement are executed repetitively forever. The LOOP statement 
itse 1f provides no me~hanism for termination. Conceptua l1~-L..Ehen~~.E'I:!.gE£_ 
use a LOOP statement if we were writing some portio.~~!_~l?-_..9~~tillg 
.2,Ystem, for ex~.!!!.E1Ei!-L_5i~.~~,h_~!L.!'!.1V!~'y'~_._~ecuting_~ The actua I instan~es of 
this type of programming is relatively rare;-So a mechanism for exiting 
(or getting out of) the LOOP statement is provided. This mechanism is 
called the EXIT statement. 

The flowchart of a LOOP statement is very simple. It is shown in figure 
2.31 below. 

LOOP 

" ~ 
\~ 

STATEI.'1ENT 

I LIST 

LOOPEND 

LOOP STATEMENT FLOWCHART - FIGURE 2.31 

The EXIT statement can be used to ex;i.t aI1y_s,.;~x:.uc..t:w.:.e...d..Jlj:_a..t~nt_lIF, REPEAT.,_ 
FOR, CASE, WHILE, LOOP) • 

. ------..... ~, .. ,. 

The EXIT statement comes in a number of flavors. The simplest form is 
simply EXIT. When the EXIT statement is executed, it exits the structured 
statement in which it is enclosed. FOT example, in figu;re 2.32 

IF A<B 
THEN EXIT 
ELSE A:=B*Z; 

WRITE (A,B,EOL); 
IFEND; 

EXIT STATEMENT - FIGURE 2.32 

2-27 



The IF statement in figure 2.32 contains an EXIT statement. In the eV'ent 
that A is less than B then the EXIT statement will cause control to be 
passed to the statement following the IFEND. 

The EXIT statement inthi.s example is not rea lly needed. If the EXIT 
statement were omitted the THEN clause would be empty and the program would 
accomplish exactly::he same result. 

A more meaningful use of the EXIT statement is the following. An EXIT 
statement may contain a WHEN clause which will cause a c·)nditional exit. 
This form of the EXIT statement is shown below: 

EXIT WHEN A<B; 

When the EXIT statement is executed and A is less than ~ the EXIT statement 
will EXIT. If A is not less than B this statement becomes a no-operation. 
That is, it does not EXIT. 

Now we can show how the LOOP statement and EXIT statements can be used 
together to provide a conditional repetitive statement. The example in 
figure 2.33 illustrates a method for copying a file. 

MOD1JLE COPY; 
PROC [XDCL] MAIN; 
VAR CH:CHAR; 

LOOP 
READ (CH); 
EXIT WHEN #EOF (INPUT); 
WRITE (CH); 
LOOPEND; 

PROCEND MAIN; 
M ODEND COPY ; 

LOOP STATEMENT - FIGURE 2.33 

The program shown in figure 2.33 reads characters from the input file and 
writes them on the output file. After each character read,a test is made 
for end-of-file. If the end of file condition is TRUE,then the loop 
statement is exited and of course the job terminates. 

FOR STATEMENT 

Our last repetitive statement is the FOR statement. This statement uses a 
control variable to control the execution of the constituent statement list. 
Control over the number of repetitions is declared explicitly rather than 
being some boole:=m test as is the case in the REPEAT and WHILE statements. 

2-2: 

\ 
\ 



A flowchart of the FOR statement is shown in figure 2.34 

COMPUTE 
INITIAL VALUE 
FOR CONTROL VAR-

IABLE ASSIGN TO TEMP 

,I; n-----·· -_.--............... ]. 
CCMPUTE 
FINAL VALUE 
FOR CONTROL 
VARIABLE 
,._ ... ~ ...... -..... ,~.. .. ....... __ ............... _ ....... ...,-

DO TRUE -.---- -----"---'1 
CONTROL:= TEMP I 

FOR STATEMENT LIST 

~----------,~~:~~~~~FfRJ 
ASSIGN TO TEMP 

I 

1 
FOR STATEMENT FLOWCHART - FIGURE 2.34 

FOREND 

2-29 



I 

1. dfy., 't ~ i t4 b~'L acRAcl~ "'" d.u~ t;(J __ _ 
Figure 2.34 illustrates the FOR statement flowchart. ~i~ LLo~~~:~iS 
~ea ~ly only, Va lid fQ..:LB.S.cen.d~r-F-:;O~R~s~t~a~t~e:",m-:e~n~t~;p. Ascending FOR-s·ca·t·ertients 
are those whose--control variable take"s on successive ly higher va lues. 
When the c on.tr...o.LYJU".i.a.12.1JL t:! ke~!l __ §uc.~~.~iy.:.e_ly_.smaJ.t~r __ va~ue.s-we-sa.:y_t ha t~ 
1!te FOR statement is descending~ The ISWL fOR statement can only 
1 ncrement or decrement by' one. 
An example of the FOR statement syntax is provided by the example in 
figure 2.35. In this example,assume that the input file contains a number 
of integer values to be added together. The first integer on the file, 
however, indicates how many additional integers are to be added together. 

MODULE SUMS; 
PROC [XDCIJ MAIN; 
VAR I,M ,N, S: INTEGER; 
S:=O ; 
READ(M) ; 

FOR I: = 1 TO M DO 
READ(N); 
S:=S+N; 
FOREND; 

Wl{ITE('SUM = , SEaL)' " , 
PROCEND MAIN; 
MODEND SUM S ; 

FOR STATEMENT SYNTAX - FIGURE 2.35 

Notice in the FOR statement in figure 2.35 that the control variable (I) 
will take on successiv'e integers from 1 to M where M has been read from 
the input file. The FOR statement, then, is executed M times. Each time 
a new v'a lue is read it is added to the sum S, l-lhen the FOR statement is 
exhausted (after M iterations), the sum is written to the output file. 

When we wish to choose control v'ariable values in descending order we use 
the reserved ".1t.Pt;9 DOWNTO insJ:.e.a.d of TQ'"t We might ~Tso note tha to- the 
control v'ariable need not be integer. The control variable can be any 
type whose successor and predecessor values may be found. ~ example, __ 
this would include the characters. 
~-------.-.. ~-----.~-.•. - .. -- --- -----,. 

Have you ever had trouble saying the alphabet backwards? The example 
in figure 2.36 illustrates a program to produce the alphabet backwards 
so you will hav'e the correct sequence to practice. 

Rev. 8 2-30 



MODULE BACK ALPHA; 
PROC [XDCL1 MAIN; 
VAR I: IAI •• IZI; 

FOR I:=IZI DOWNTO IAI DO 
WRITE (I,EOL); 
FOREND; 

PROCEND MAIN; 
MODEND BACK_ALPHA; 

FOR STATEMENT SYNTAX - FIGURE 2.36 

In the example in figure 2.36 variable I is declared to be a subrange 
of the characters (IAI to IZI). That is to say that at execution time 
I may take on only alphabetic characters IAI to IZI (but not necessarily 
in that order). The FOR statement indicates that I is to take on values 
from I ZI DOWNTO IAI. The WRITE statement writes each successive value 
of the control variable on a line by itself on the output file. In this 
way the characters Z Y X W etc. are listed on the output file. 

REPETITIVE STATEMENT COMPARISON 

While each of the repetitive statements (FOR, WHILE, REPEAT, and LOOP) 
has some special feature associated with it, there will be many times when 
the choice may be arbitrary. 

As an example, lets look at the problem of creating some repetitive 
sequence from 1 to LIMIT. In our example, the v'a lue of the contro I variable 
must be available during each iteration. 

How can we solve this programming problem with each of the four repetitive 
statements? The next four figures 2.37 thru 2.40 illustrate some solutions 
to the problem. 

CONST LIMIT = 100; 
VAR I: 1 •• LIMIT; 

FOR 1:= 1 TO LIMIT DO 

FOREND; 

REPETITIVE FOR STATEMENT - FIGURE 2.37 

2 -31 



I 

I 

(\jq)+IVu v /tR- (tvCcfoj!X& c>vtA 1'l". ~r{)' 

CaNST LIMIT = t0Q. 
VAR I : 1.~ 
1:=1 ; 
REPEAT 

1:=1+1 
UNTIL -I > LIMIT; 

REPETITIVE REPEAT STATEMENT - FIGURE 2.38 

CaNST LIMIT = 100; 
VAR I : 1. .LIMIT+l; 

1:=1 ; 
WHILE 1..( = LIMIT DO 

I :=It-l; 
WHILEND; 

REPETITIVE WHILE STATEMENT - FIGURE 2.39 

CaNST LIMIT = 100; 
VAR I : 1 •• LIMIT+l; . • 
1:=1 ; 
LOOP 

1:=1+1 ; 
EXIT WHEN I > LIMIT; 

LOOPEND; 

REPETITIVE LOOP STATEMENT - FIGURE 2.40 

You are bound to ask, lWhich of the above four methods is the best?1l 
And by that question you mean 1) which method requires the least execution 
time and 2) which method requires the smallest storage requirements or 
3} which method is most easily understood and maintained? We 
don't know the answer yet - but we are working on itE 

Rev. B 2-32 



CHAPTER 3 

SWL DATA STRUCTURES 

This chapter presents both concepts and examples of structuring data in 
SWL. We begin with a discussion of SWL types. This includes both the~ 
declaration and use of tyges. We progress onto type conformity and the 
use of type testing. We.will amplify the material on variables presented 
in the last chapter to include some of the more important variable 
attributes, data structures, and variable references. We will also 
di,,(~uss value constructors and variable initialization. 

3-1 



TYPES 

In the last chaptet; we examined some of the more primitive (or elementary) 
types including integer, real, boolean, and character. The point was made 
that a clear distinction exists between the variable and the type of the 
variable. The simple variable declaration statements like "VAR X:INTEGER;" 
were used to declare an automatic variable X and its type-integer. Now, 
an expansion of the type specification facility is needed. 

In SWL, the capability exists to declare a type. Not a variable - just the 
type. When this is done, the reserved word TYPE is used to introduce the 
declaration. A simple example is shown in figure 3.1. 

MODULE TYPE_DECLARATION; 
TYPE Q = INTEGER; . .---"-""--""~ . 
VAR X:Q; 

MODEND TYPE_DECLARATION; 

TYPE DECLARATION ~ FIGURE 3.1 

In figure 3.1 above, the reserved word TYPE is used to introduce the type 
declaration. Q is the name (or identifier) of the type. The equal sign 
is used to signify equa lity between the name Q and the type INTEGER. 
Hhat has been accomplished is simply to provide an alternative identifier 
IIQl' which stands for (or represents) type integer. You can see how this 
ident tfier can be used in the VAR statement. Instead of specifying 
IIVA-1\. X:INTEGER;" it is possible to declare I1VAR X:Q;I1. Which simply says 
that X is to be type Q, but _y!"'e know that Q_~y~~,.2:Et~_~~r. 

So one thing an explicit type declaration allows is the ability to give 
a name to a type and use the name to stand for the type. This 
can be especially useful when the type itself ~q!!.1~e_~e.n.g.tJlY (say 5 or 
:::,?re lin~s,as_in t~..!!SLof re..£.Q.rW. - ----. _. __ .-

iI' \ Another use for the explicit type declaration is that some SWL language 
elements make reference to type. An example is to ~~~~ointers 

_which must E~~ a t~ In this case, t.!:e type declaration can be he1pfu!.. .• 

In the last chapter, we examined the types integer, rea 1, boo 1e;ln, and 
character. Now we will examine some of the more complex (and useful) types. 

ORDINALS 

Ordina 1s are used primarily to provide meaning and clarity to the program 
text. An ordinal is user defined and is scalar. That is the user defines 
the elements of the ordinal in some order. Once the order is declared it 
is fixed. In general, then, it is possible to determine the predecessor 
and successor for any element in the ordina 1. Once ordina 1 ide~s_ 
are declared the id",ntifiersmay not be used in anyoffier cont;xt in the - ~~-... -,-.. ~---<;--.<--"'-~ -
~~ne identifiers may be used solely to inaicate the elements of 
the ordina 1. 

( 

3-~ 



Let us assume that we have a program that processes gra in production 
values. The grains we are inter.ested in are whea-t, oats, barley, and 
rye_. We could deHne a type GRAIN which could be any of the four. gra ins 
we are interested in, see figure 3.2. 

TYPE 
GRAIN = (~~~~_, OATS, BARLEY, RYE); 

ORDINAL TYPE- FIGURE 3.2 

Notice the USe of parenthesis in figure 3.2. Parenthesis around the four 
identifiers indicate that these are ordinal" elements. We should itso nOte~ 
that there-exists a direct relat1.onship between the ordina I identifier and 
its position. Wheat is the Oth ordinal element.- Similarly, OATS is the 
1st ordinal element, BARLEY is the 2nd and RYE the 3rd ordinal element. 

Once an ordinal type is declared we can do lats of interesting things. 
For eX8mple, we can declare variables that may take on values of the 
ordinal as shown in figure 3.3. 

TYPE 
GH.AIN = (WHEAT, OATS, BARLEY, RYE),; 

VAP.. 
INDEX : GRAIN; 

INDEX : = WHEAT; 

ORDINALS - FIGURE 3.3 

In figure 3.3 abov'e a variable INDEX has been declared to be type GRAIN. '\ 
'fEat means that the variable INDEX c;..~JJ.._.,.be._as.s.igl1.~_~L~.1}y.o.t!h~LapRrop.E_!~E.~ __ 
"values" of the ordinal as illustrated by the "INDEX:=WHEAT i..~_statement. 
-.~-- ----_.-._.---------- -----
How does a 11 this improve program clarity? Assume that we wish to find 
the total production of grain when we know the 'production of wheat, oats, 
barley and rye. If the production values (4 of them) are real and exist 
on an input data file then the following program could get the task 
accomplished. -

MODULE SUMMATION; 
TYPE GRAIN = (WHEAT, OATS, ·Bk~LEY, RYE); 
PROC [XDCL1 MAIN; 
VAR I : GRAIN 

V,PRODUCTION: REAL; 
PRODUCTION:=O; 
FOR I:=WHEAT TO RYE DO 
READ (V); 
PRODUCTION:= PRODUCTION +V; 
FOREND; 
WRITE (' PRODUCTION=' ,PRODUCTION ,EOL); 
PROCEND MAIN; 

MODEND SUMMATION; 

USE OF ORDINALS - FIGURE 3.4 
3-3 



Perhaps the most interesting aspect of the program in figure 3.4 is the 
stat21l1ent "FOR 1:= WHEAT TO RYE DOli. Since WHEAT and RYE are unique 
identifiers (representing the Oth and 3rd elements 0I~-or'd1naf~AIN), 
we can use them as ord1nar-cO([stants. STtlcet11e-o'rdinar-constilitSn-a:ve-a 
SCALAR ordering (successor and preoecessor) the SWL compiler can generate 
code to find the successiv'e values as required by the FOR statement. Note 
that the control variable in the FOR statement (I) must be type GRAIN in 
order to accept the va lues WHEAT •• RYE. Isn't tha t program much c lea rer 

9-'than one in which the FOR statement read "FOR 1:= 0 to 3 DOli? If the FOR 
{~ statement says "0 to 3 11 it is not clear what is being done. If the FOR 

,~) statement says IIWHEAT TO RYETI it is pretty obvious tha t the program is 
)( ~ dea ling with GRAIN. 

;y~ 

O~\ * As you might imagine these ordina 1 va lues can be used 
OATS) and as cases in the CASE statement. 

in subranges (i,rnEAT •• 

It was mentioned above that the ordinal identifiers are ordered and there 
is an equivalence (of sorts) between the Oth element in the ordinal list 
and the first identifier. How then can we convert an ordina I identifier 
into an integer and an integer into an ordina 1 identifier? 

Figure 3.5 shows how an ordinal identifier can be converted into an 
integer using the $INTEGER conversion function. 

TYPE 
COLOR = (RED, YELLOW, BLUE, GREEN); 
VAR X: COLOR, 

I: 0 •• 3; 

1:= $INTEGER(BLUE); 

CONVERTING ORDINALS TO INTEGERS - FIGURE 3.5 

In figure 3.5 the statement "I:=$INTEGER(BLUE);lI conv'erts the ordinal 
identifier BLUE into an integer (the v'a lue would be 2) and then assigns 
the value to an integer variable (I). The statement lII:=BLUE;" would 
not be va lid since the type of I is integer and BLUE is a member of an 
ordina L Our program must, therefore, make the types equiva lent by 
using the conversion function $INTEGER. 

Now let's go the other way, converting an integer into an ordinal element 
as shown in figure 3.6. 

( 

3-



TYPE 
HARDWARE = (NAILS,TACKS~ SCREWS); 

VAR 
H : HARDWARE, 
I: O •• 2; 

1:= 1; . 
H:= $HARDWARE (I); 

CONVERTING INTEGERS TO ORDINALS - FIGURE 3.6 

In figure 3.6 the statement IIH:=$HARDWARE CI);II takes the integer value 
I and conv'erts it to type HARDWARE (in this case since 1:=1, the 
conv'ersion $HARDWARE (I) will result in the ordinal TACKS) and the 
resulting or.dinal, TACKS, would be assi~ned to the variable H. 

It is often quite a convenience to be able to go back and forth between 
the ordina 1 identifiers and their equiva lent integer representation. 

ARRAYS 

The array type is a convenient way of prov'iding random access to a 
of homogeneous elements. Arrays can hav'e any number of dimensions 
is no. arbitrary limit). An array has two significant components: 
ii1dic~s and 2) the contents. 

number 
(there 
1) the 

The genera 1 syntax of an ar'ray declaration is IlARRAY rindiceJ OF type ll • 

That is, in the declaration of an array the indices an~ type of components 
must be specified. 

Perhaps the simplest array structure is one that is one dimensional, has 
integer indices, and contains integer components. This type would be 
declared as shown in figura 3.7. 

TYPE 
TYPICAL = ARRAY [0 . . 100} OF INTEGER; 

VAR 
X: TYPICAL; 

TYPICAL ARRAY TYPE - FIGURE 3.7 

Figure 3.7 shows an array declaration that is'typical. The array contains 
101 distinct elements (0 •• 100) and each element is an integer. The variable 
X is type TYPICAL which means that X is an array of 101 integer elements. 
In a program,the identifier X is used to refer to the entire array. To 
refer to any single element (integer) of the array the notation X[I1 is used; 

3-5 



f'- . 

~J 
ib 

an integer from a to 100 (as defined by the TYPE declaration). :l III" can be 

~t-'" An example 
('1 

of the declaration and use of arrays is shown in figure 3.8. 

MODULE ARRAY SETUP; 
PROC [XDCL] MAIN; 
TYPE 

A = ARRAY [-5 •• 5] OF INTEGER; 
VAR 

X: A, 
I: INTEGER; 

FOR 1:= -5 TO 5 DO 
X [11 := I~"5; 
FOREND; 

PROCEND MAIN; 
M ODEND ARRAY_SETUP; 

USE OF ARRAYS - FIGURE 3.8 

In the example in figure 3.8, the variable X is type A. Type A is an array 
of integers. There are 11 elements (or indices) for this array -5 thru+5. 
The FOR statement se lects successive va lues from -5 to+5 and assigns these 
to~~ control variable I. The array X is then initia lized element by 
element. 

We maya lso dec lare arrays with more than one dimension by declaring an 
array of an array. This may be done in either of two ways illustrated in 
figure 3.9. 

TYPE 
TWOD 1 = ARRAY [1.. 10] OF ARRAY [1.. 10] OF REAL; 

TYPE 
TWOD2= ARRAY [1. .10,1. .10] OF REAL; 

MULTI_DIMENSIONED ARRAYS - FIGURE 3.9 

Figure 3.9 shnws the two ways for declaring a two dimensional array type. 
The first method is preferred as it clearly illustrates the concept of a 
two dimensiona 1 array as an array of an array. Regardless of which method 
is us.-::i i:O dec lare the array type, any variable tha t is a two dimensiona 1 
cu:ray can be referenced in either of twoways~as shown in figure 3.10. 

3-E 



TYPE 
A = ARRAY [1. .10] OF ARRAY [20 •• 30J OF INTEGER; 
VAR 
X:A; 

· · 
X [5 , 21] : = - 6 7 ; 
X [S][22] := 73; 

ARRAY REFERENCES - FIGURE 3.10 

Figure 3.10 ill1lstrates the two (equally correct) methods of referencing 
a two dimensiona 1 array. The first method "X [S ,21] 11 is correct but not 
preferred. IIX[S] [221" is preferred because it clearly carries thru the 
idea of double subscripting and the idea of an array of an array. We 
should also note that using the example in figure 3.10,X[3] is a valid reference 
and refers to one array 20 •• 30 of an integer. In fact each XCI] (where I is 
from 1 to 10) is an array 20,.30 of integer. 

Some examples of array concepts and their specification is SWL are given 
be low: 

? 

UE TR 

FAL SE 

TYPE· 

TRUE FALSE 

FALSE FALSE 

TRUE TRUE 

TRUTHTABLE = ARRAY [BOOLEAN] OF 
ARRAY [BOOLEAN] OF BOOLEAN; 

VAR 
X: TRUTHTABLE; 

· · X ITRUE] [TRUE1 := FALSE; 
X r.rRU~ [FAL3t1 := FALSE; 
X (fALSE, TRUE] : = TRUE; 
X [Fit i5.~ (FA L:;-e] :: -::; T(-2il"&:) 

A BINARY TRUTH TABLE - FIGURE 3.11 

0000000000002 12 BITS 

1111111111112 

X [[Rut; J ::::=:=- f-A-U;';f; ~ 

xfFItU:{J j :::=. T~u F) 

3-7 



CONST 
LIMIT = 111111111111(2); 

TYPE 
MEM = ARRAY [0 •• :!:.IMITJ OF O •• LIMIT; 

VAIl 
MEMORY :MEM; 
• 
~EMORY [0111(2)] := 010110101101(2); 
MEMORY [57(8)] := 0476(8); 
MEMORY [1079] := 3215; . .. '. 

A 12-BIT MEMORY WITH 12-BIT ADDRESSING - FIGURE 3.12 

---8 BIT 
ASCII CODE $CHAR (0) 

'A' 
~ • 7 .. 

$CHAR (255) 

CONST 
MAXVALUE =255; 

TYPE 
,,:A=AR;RAY [ CHAR] OF O •• MAXVALUE ; 

..J ( V AR~'-··>",--. . 

·~~~:~~.~~4~~) 
I := TRANSLATE [, B'~ ; 

I := TRANSLATE [$CHAR (26)] 

A CHARACTER CONVERSION TABLE ~ FIGURE 3.13 

3-8 



I SWL provides us with a couple of very powerfu 1 array opera'tions. These are 
\j ~rray assignm~) and ~!..E!.y eq~~¥ testing. No other array operations are 

a rIoweo. 

Array assignment allows the element by element assignment of one array to 
another if the arrays are the same type. Thi.s can eliminate many 
repetitive statements. Also, arrays may be compared for equality. Two 
arrays (of the same type) are equal if every pair of corresponding elements 
are equal. Thesc~ operations are illustrated in figure 3.14. 

STRINGS 

VAR 

• · 
X, Y: ARRAY [1. .10J OF REAL; 

X:=Y; 

· • 
IF X=Y 

THEN WRITE (' ARRAYS EQUAL I ,EOL); 
ELSE WRITE ('ARRAYS NOT EQUAL' ,EOL); 

IFEND; 

ARRAY OPERATIONS - FIGURE 3.14 

The string type pro'Tides a convenient way of manipula ting strings of 
characters. We could, of course, create an array of characters. But 
arrays :;1I7,~ accessed one element at a time. So an at7ray of characters 
wor.1.ol always have to be accessed one character at a time. 

Sometimes what we really want to do is manipulate a nwnber of characters 
(a string of characters) as a unit. In addition,we would like to be able 
to examine Sub-Sr:r'1.11gs of various lengths without accessing each 
indiv'idua 1 character. 

!..strin~ only_c.9JJ..s.:ts_t_Q..f charact~J:s. §l:rings of other ty"~~.~ch~_~,.:3.l 
!.eal, Boolean~hl~.!_EL...t:l..Q!:_._!!.llowed.: Figure 3.15 shows how a string typt1 
declaration might appear. 

TYPE 
ONELINE. = STRING (72) OF CHAR; 
VAR X: ONELINE; 

STRING TYPE DECLARATION - FIGURE 3.15 

In figure 3.15 the type identifier 
declares this type to be a string. 
of the string to be 72 characters. 
type ONE LINE. 

Rev. 8 

is ONE LINE. The reserved word STRING 
The 11(72) OF CHAR" dec lares the length 
The variable X is then declared to be 

/ 

3-9 



STRING REFERENCING 

When the name (or identifier) of the string (X in figure 3.15) is used it 
refers to the entire string. So, X in figura 3.15 refers to a string of 
72 characters. 

Any indi'lidua 1 character may be referenced by-giving the __ R9-P_:i.J~JQPd)_f~!;~ 
Character in the stringTt1-par:e:ii-t:hl:J>~:- -For example X(1) is a referenc~' 
to the first: characterB ortliesrriilg-. x(n) would be a reference to the 
last character iL1 string X. 

So far, string referencing is identical to one dimensional array referencing 
except tha t the parenthesis () are used in string references and the 
square brackets [ ] are used in array references. 

But string references also include the ability to reference a sub-string 
of any va lid length. This method of reference hasil;) equ"lva lent with 
respect to arrays. T.Q...,.1:.e_f.e.r...-.t..o_a substring~!te. foL!.9Rillg_form is useg 
?llst.a.x~t:i,Jlg EositioI2, _JeJ18tll2,. So X(1,10) w01l1d refer to th-e substring 
starting in position one and having a length of 10 characters. The length 
position of the reference may contain an askerisk ("!() indicating that the 
length should extend to the end of the string. For example X(7O,*)~, 
S1JR,S.t.):'J.ng_o.L-.t..QELJa.s_t_tll.'r.ece __ c_har.aJOters of X. We might note tha t there is 
;~me o'~'~rlap-of-re-fere;;Ces~-For instance=;4c, X(1,72) and X(1,*) all refer 
to the entire string X. Simi1arly,X(70,3) and X(70,*) both refer to the 
last three characters of the string X. 

Let's put this information to use by writing a short program which reads one 
line fi~om the input file and builds a string. Then the program will write 
i:he string. Remember, JL..§..tti.ng_ca.n_he_w.r_i_t;t;~!b=8HF1:---}t_.s:.J1_~ no-=t;:_.-l>~,_r_e.a_g. 
~e=sall,~h.Q~e:"~f;U:,-,~ead. char~~~!.,. So, our approach is to read one character 
at a time from the inputfiV~ and build the string (one character at a time). 
When the string is built, it is written tc the output file. 

I 0r1(0-( 

~ 
\1\(_"\-" r \..t~{, (\ iR f) f ~e.,..) 
\Ullq\\t v 

Rev. B 

MODULE STRING BUILD; 
PROC [XDCL] MAIN; 
CONST STRLEN = 80; 
VAR LINE: STRING (STRLEN) OF CHAR, 

LEN: INTEGEK. 

LEN:=O; 
READ(C) 

C: CHAR; 

WHILE (c /=EOL) ?\ND (NOT 4iEOF (INPUT» DO 
LEN :=LEN+l ; 
EXIT WHEN LEN >= STRLEN; 
LINE (LEN):=C; 
READ(C) ; 
WHILEND; 

WRITE (LINE(1,LEN) ,EOL); 

PROCEND MAIN; 
MODEND STRING_BUILD; , 

BUILDING STRINGS - FIGURE 3.16 

3-10 



In the program .in (figure 3.16), we assume that no line (string) will exceed 
80 characters. If a line does exceed 80 characters only the first 80 
character~ will be added to the string. Since our string length has been 
declared to be 80 characters, and a line may contain fewer characters we 
need to keep some indication (LEN) of the current (or actual) string 
length. The WRITE statement then writes the substring "LINE(l,LEN)11 
conta ining the actua 1 characters read fron the input file. 

Another example af the use of strings is contained in the next example (figure 
3.17) • Here we have an array of strings. Each array element is a string 
of characters. The program compares a given string with a 11 the strings in 
the array to see if the string can be found. A string constant may be 
constructed by placing a number of characters in quotes. For example, if 
S is a string then IS(i,3):='ABC';" assigns the string 'ABC' to the 
substring S(1,3). 

Before looking at the program skeleton, see figure 3.17 which illustrates 
the problem conceptually. 

STRING 

· · 
SEARCH STRING · ~ 

N 

ARRAY OF STRINGS 

STRING SEARCHING - FIGURE 3.17 

Figure 3.17 i llustra tes the array o.f strings. Each string might be the 
name of a person, or the name of some variable, etc. The search string 
wi 11 be compared with each e ler:1ent (string) in the array. 

The program skeleton to accomplish this string search is shown in figure 
3.18 below. 

3-11 



MODULE STRING_SEARCH; 

PROC LXDCLJ 

CONST 
SLEN = 10, 
ASIZE = 100; 

TYPE 

MAIN; 

STR = STRING(SLEN) OF CHAR; 

VAR 
SARRAY' 
SSTR 
I 

ARRAY [1 .. ASIZE] OF STR, 
STR, 
1 •• ASlZE+l; 

"ASSUME SARRAY IS 11 

IIINITIALIZED BY THE PROGRAM HERE'! 

"BEGIN STRING SEARCHII 
SSTR := 'SMITH,JOHN'; 
1:=0; 
REPEAT 
1:=1+1; 
UNTIL (SSTR=SARRAY [I]) OR (I>ASlZE) 

IF I~ASIZE 
THEN WRITE (SSTR, 'FOUND AT POSITION',I,EOL);. 
ELSE. WRITE (SSTR, 'NOT FOUND;EOL); 

IFEND; 

PROCEND MAIN; 
MODEND STRING_SEARCH; 

STRING SEARCH - FIGURE 3.18 

Another example of string searching uses the concept of sub-strings. This 
problem is to find certain keywords in a line. In SWL terminology,we want 
to find the occurance of a substring in a string. 

If we can assume that we have a line (string) of characters and a keyword 
(string), then the problf~m is to check each and eV'ery substring in the line 
for a matach aga inst the keyword string. The search is shown c~c.eptua lly 
in figure 3.19. 



LINE (STRING) 

KEYWORD (STRING) 

FINDING ONE STRING IN ANOTHER - FIGURE 3.19 

The SWL program to accomplish this search is shown in figure 3.20. 

MODULE SUB STRING SEARCH; 
PROC [XDCL]-MAIN; -
CONST 

LINELEN = 80, 
STRLEN = 3; 

VAR LINE: STRING (LINELEN) OF CHAR, 
KEYW: STRING (STRLEN) OF CHAR, 
I 1 •• LINELEN -2 ; 

"ASSUME LINE IS INITIALIZED HERE" 

KEYW :='XOR'; 

"BEGIN SEARCH" 
FOR 1:= 1 TO LINELEN-2 DO 
IF KEYW = LINE (1,3) 

THEN WRITE(KEYW, 'FOUND AT POSITION", I,EOL); 
IFEND; 
FOREND; 
WRITE ('END OF JOB' ,EOL); 

PROCEND MAIN; 
MODEND SUI1_STRING_SEARCH; 

SUB-STRING SEARCH - FIGURE 3.20 

3-13 



STRING CONVERSION 1 

When a string is not the right length for either an assignment or a 
comparison we have the task of converting the string to the correct size. 

The $STRING conversion function accomplishes the task. This conv'ersion 
function can be used to lengthen (by filling on the right) or shorten 
(by truncating on the right) a giv'en string. 

For e>:ar.1ple, suppose we had defined a string in the following way: 

VAR S: STRING (80) OF CHAR; 

and we wish to initialize the string without having to write 80 blanks. 
We might use: 

S := $STRING (80,' ,); 

The $STRING function says take the string (' 
characters. Blank fill is used by default. 
characters as shown below 

') and extend it to 80 
We can specify fill 

S := $STRING (80, 'ABCD', '*'); 

STRING REPRESENTATION 2 

Another thorny problem is that of converting a value into the character 
representation of the value. For examp1e,converting the integer 125 
into the character string '125'. This task is accomplished with the 
$STRINGREP Procedure. 

The function is defined as follows: 

$STRINGREP(VALUE ,SUBSTRING ,WIDTH,DECIMALS) -----
Where v'a 1ue is the integer, rea 1, or Boolean. 

SUBSTRING is the character representation 
constructed by the Function. 

WIDTH is the number of character positions • 

.@:. DECIMALS is the number of decima 1 positions 
for rea 1 numbers. 

Boolean values are converted to the string 'TRUE' or 'FALSE' RIGHT
JUSTIFIED, blank-filled. 

Reals are represented as decimal numbers with exponent base 10 with 
"DECIMALS" digits after the decima 1 point. 

Integer va lues are converted to IWIDTH"decL"lla 1 digits with leading zero 
rep lace d by b la nIcs. 

1 - ISWL 
will 

2 - This 

REV. A 

facility only. Automatic adjustment of string length in SWL 
be accomplished using varying strings. 
ISWL f . 1 . . 11 b aC1 1ty W1 e addressed by general formatted I/O in SWL. 

I 

3-14 



An example is shown below: 

VAR S: STRING (10) OF CHAR, 
I: INTEGER; 

1:=-1276 ; 
#STRINGREP (I,S,10); 

Notice that #STRINGREP is ,a procedure. 

;tl.Q;t 12f). Lft.. N..tt,fJ 1\II"L.!;~~\.b VV 

POINTERS 

SWL has a v'ery powerful pointer capability which is used throughout 
the language in many ways. In this section,we will present the more 
elementary and straight forward uses of pointers. The other interesting 
uses of pointers will be covered under the topics of storage management 
and records. 

In SWL,when a pointer is declared it is done with reference to a type. 
_~t_ execut ion _~ ~~~~_ .. :e.~,~n E_~, v'a t;"!.EiJ:?1~,,,~~~,t:!,.J~~,",se.t,,"to __ ,.point,,,,_tP,,J:!9I!!~_,._l:l,P~_~ ~.~!c: 
.2.~£!!!:!!.!lc._~_,..9_f_t,J:ie_ty-pe... But at declaration the pointer is said to point ' 
to a type - not a variable. 

The pointer symbol A (ton some termina ls) is used to make reference to 
or declare a pointer. 

Some declarations of pointer types and pointer variables are shown in 
figure 3.21. 

TYPE 
A = STRIN.G (10) OF CHAR, 
B = ARRAY [1..10] OF INTEGER, 
C =AA; 

VAR 
APTR :A A, 
APTR1: C, 
BPTR :AB, 
INTP : A INTEGER, 
VARA A, 
VARB : B; 

POINTER TYPES - FIGURE 3.21 

In figure 3.21,we see a number of different pointer declarations. First, C 
is declared to be a type which is a pointer to the type A (a string of 10 
characters). Of course C is not a variable, just the name of a type. 
Looking at the variable declarations we s,ee a variable APTR which is an 
automatic variable that is a pointer to the type A. The variable APTR1 is 

3-15 



also a pointer to the type A. This is so because APTRl is type C and C 
is type pointer to type A. BPTR is a variable that is a pointer to type 
B (an array of integers). INTP is a variable that is a pointer: to any 
integer. VARA is a v'ariable that is type A (a string of characters). 

At execution time,VARA will become a string of characters. Variable APTR 
(which is a poini':,er to a string of characters) could be made to point to 

~C;- VARA at execution time. 

Since polnters may onl)' be declared as Roint~:r:~s~tQ_AQm~_~t'y~pe~,t,b~~~fol1owing 
~ 

VAR X: INTEGER, 
Y:I\X; 

is an error. Notice that Y is declared to be a pointer to a variable. 
This is a no-no. Perhaps wha t is needed is a pCllnter to X a t execution 
tIme. But at declaration time,the sequence of statements would look ~ike: 

VAR X: INTEGER, 
Y: 1\ INTEGER; 

Here Y is a pointer to type integer. X is a variable whose type is 
integer. At execut ion time, Y could be m~d~"~to. __ point to X. 

~ " ""'-...... " _ .,. "',~"",="',,_.,~.,.......''''' ... ,''''--o-:=,.-.-.~,. .. u_" ,.. - -- ---..........,.-"t"". 

POINTER REFERENCES 

Once pointers have been dec lared it becomes necessary to be ab le to 
reference not only the pointer but what the pointer,points to. These 
problems of reference are also handled with the pointer symbol. 

Another problem, is what to do with an empty pointer, i.e., the pointer 
doesn1t point to anything. 
In SWL, the reserved word NIL is used to indicate an empty pointer. Any 
pointer can be set to NIL. When a pointe'r is tested and found to be NIL, 
then we know that it does not point to anything. 

There are four possible ways in which the A symbol may be used to 
indicate pointer references- Two of these use' the 1\ symbol on the 
righ~ of an assignm~nt and two use the A on the left of an assignment. 
ConsIder the follOWIng: 

Rev. B 

TYPE 
A :0:: ARRAY [1. .10] OF REAL; 

VAR 
P :I\A, 

X,Y: A; 

P :=Ax; 
X :=PI\; 
PA :=Y; 

Ap :=X; 

IIp IS ASSIGNED A POINT,~:R TO X" 
"X IS ASSIGNED WHAT THE POINTER P POINTS TO" 
"WHAT THE POINTER P POINTS TO IS ASSIGNED Y" 
"THIS FORM IS ILLEGAL" 

POINTER REFERENCES - FIGURE 3.22 

3-16 



Figure 3.22 illustrates the four possible uses of the A symbol in assign
ment. Basically, the A symbol to the left of a vari~ble V\X) means 
"cons truct a pointer to X". The" symbol on the right of a (pointer) 
variable means "use what the pointer v'ariable points to". So, the example 
IIP:::(\X; II indicates that a pointer to X is found (constructed) and this 
pointer is assigned to P. Naturally, P must be a type of pointer to the same 
type that X is. 

Similarly, "PJ\:=Y;" expresses that what the pointer P points to is assigned 
the va lue Y. 

The form "Ap:=x" is illega 1 because AP cannot be used on the left of an 

ass ignmen t • -F'L.."e, Ls 1'!A.\) 1V %Wr' e.. \.. ,tr c,,- p-e [iIA.;~:VLJ 
In summary then: 

SYMBOL MEANING 

AX 
PA 

CONSTRUCT A POINTER TO X 
REFER TO WHAT P POINTS TO 

POINTER SYMBOLS - FlGURE 3.23 

As an example in using pointers, let's construct an array of integers 
and create a pointer to the array which can be used to search the arrav 
for some value (e.g. the value 3). If that v'alue is found, we will ch~nge 
the value 3 to -9. 

TYPE 
ARY = ARRAY [1. .100J OF INTEGER; 

VAR 
XARRAY 
PTR 
I 

: ARY, 
: AARY, 
: INTEGER; 

"ASSUME XARRAY IS l;HTIALIZED HERE" 

PTR:= AXARRAY; 
FOR 1:= 1 TO 100 DO 
IF PTR}{Il = 3 

THEN PTRJ\[I] := -9 
IFEND; 
FOREND; 

USE OF POINTERS - FIGURE 3.24 

3-17 



In figure 3.24 the pointer variable PTR is declared to be a poinr:er to 
type ARY. Note that variable XARRAY is type ARY. The state'llent 
IPTR:=AxARRAY;" constructs a pointer to XARRAY and assigns this 
pointer to the pointer variable PTR. In the IF statement, we want t" 
check the contents of each element (integer) in the array,XARRAY. PTR 
is a pointer to XARRAY. PTR" means what the pointer points to; the 
pointer poincs to XARBAY. PTR" then is XARRAY. PTBA[3] references the 
third element in the array point'ed to by PTR. -- . __ ._-.. _-_._ ......... _ ..... . 
"""",. -~.-.. - .. -~. ~-.. -....... --~ ... -... --~-~-.. - ........ , 
This interesting reference notation can be carried ev'en further. If a 
pointer XPTR po"i.nts to an array and the elements of the array are strings 
(length 10) of characters, then to reference the 2nd, 3rd, and 4th 
characters in the string which is the 3rd element in the array, the reference would 
be XPTRAl31(2,3)~ 

t 1-?--tv't rJ~V\J 
RECORDS \ ~¢ ('ilt',A,,~ ~lI\ tr-tNlJ 

So far all the data structures that we have discussed have been 
homogeneous. That is, all the elements have been identical. How 
doe s SWL ena b Ie us to crea te a da ta s truc ture thaLc.o.r>...t.a.ins....no.n."::. 
lw_mogeneOl,1JLe..leme.n.t.;.s.? It is done with a data structure ca lled the 
record. 

The recoed is introduced with the reserved word RECORD and terminated 
with RECEND. Each of the constituent elements in the record are called 
fie Ids. 

Figure 3.25 shows the conceptualization of a record: 

FIELDS 

SURNAME 
AGE 
MARRIED 
SEX 
FINGERS 

RECORD 

STRING (10) OF CHAR 
O •• 100 

r--
BOOLEAN 
BOOLEAN 
o •• 11 

RECEND; 

THE CONCEPTUAL RECORD - FIGURE 3.25 

As illustrated in figure 3.25 the record is bounded by RECORD-RECEND. 
Each field in the record is given an identifier (i.e. SURNAME, AGE, MARRIED, 
ETC.). As you can see the rec'J:t'd can conta in a mixture of types. In fact 

. ~e.cQ-rd-e-a·n-GOnta.in as a field any of the types discussed so fa:c,_ 
including another record. 
~ "-----.-------:--

Rev. B 3-18 



If we were to commit the conceptual record of figure 3.25 to SWL syntax 
the result would be as shown in figure 3.26. 

TYPE 
NAMEREC = RECORD 

VAR 

SURNAME ~ ;,TRING(10) OF CHAR, 
AGE : O •• 100, 
MARRIED, SEX: BOOLEAN, 
FINGERS : 0 •• 11, 
RECEND; 

·RECVAR : NAMEREC, 
RECARRY: ARRAY [1. .10] OF NAMEREC, 
PTR : "NAMEREC; 

RECORD SYNTAX - FIGURE 3.26 

Figure 3.26 shows how the record syntax appears. In this example,the record 
was created as a type (NAMEREC). Subsequently, a variable RECVAR is 
declared that is type NAMEREC. The variable RECVAR (when assigned to 
storage) will contain enough space for each of the fields in type NAMEREC. 
The variable RECARRY is interesting. RECARRY is a ten element array. E'lch 
element in the array is a record of type NAMEREC. 

RECORD REFERENCES 

Once a variable is declared to be type record (or array of record) how 
do we access the indiv'idua 1 fields of a record? Let's use the record 
v'ariablH RECVAR from figure 3.26. RECVAR is the variable name of a 
record. Whenever we use RECVAR by itself we are referring to the entire 
record. ~~~~~l!~!~..!!t,.!.~~~.h~ w~ y,..Y.JL!~!,er.enc.!:.._ tl}.~~y~~ .. ~.1E 1 ieJd ,.91 .. _tb~ 
.y,IiIJ;:i.~pl~,J~:.~S:_'\t~~ Not:ice the use of the period here as a field separator. 
The period separates the field identifier (SURNAME) from the record name 
(RECVAR). If we wanted to .!ID~~~J!.~m.~~~tJLt_h~Lc~~,C;:9,;:sL,~~~ ... ,pr~.per ,~ss~~E.: 
ment statement would be "RECVAR. SURNAME :='KARENSKIDY' • 11 •• If we wanted 1Io.~~'I.:,;J:O'.;;...~'!.::.;";c"",,,,_"'''' .. ~':' .•• '':':''''::'''''''''-:''''-__ :'''''''_ .:..._._ .. ,~ "_ .. ___ .~-::..;:.;;.:.:.::..:..~::....;. _____ ._ •.. ,u .... ___ .~:.. ~'.~'::: • .:~' ';"-,; '" .,.',"" ••• , ...... '"' •• : • .'._.:::....:~..:=.~.:.:" ... ::;""_'_~ 

to reference the first three characters of the surname in the record we mi ht{;;~- liRECVAR :SURNAME"-( r=j")·i,·:r--..... =-_. =·=~_,~-= __ • _____ ._, ________ .............. w 

~.='".lII~:II'....",,"' .......... ,. ........ - ... - ...... --.... ~ ...... ,"--•• J ......... -"" ......... 'I 

Consider the pointer PTR in figure 3.26. How would we lniHalize this 
pointer variable to point to RECVAR? Answer: "PTR:=ARECVAR;". 

Once we have such a pointer, how could we use the pointer (:tnstead of the 
record varia ble RECVAR) to initia lize the age fie ld to 15? Answer: 
PTM.AGE:=15;. In this example,.Y.J;J.~ .. 6 ... BR~..n!~~J~~_.E.~~_..:ecord and is a 
correct substitution for the vari':lble name RECVAR: .-.--------- .. 
==:.=: .... =-"'"=''''"'''''l"''-'r'''' ______ ~~'-''--'-__ . _. ~ __ , ... -.,,,.:.-L, ..... O.-........ - .... --.... ----.,-, .... -.-." ... 

Rev. B 3-19 



Continuing, in figure 3.26 an array of records is declared as RECARRY., 
'~is array has 10 elements each one conta ining a record. How would we 
refer to the last 5 characters of the surname field of the 7th record 
(element) in the arr.ay? Answer: RECARRY [7]. SURNAME (6,*);. 

Our fina 1 example is a common one for programmers who dea 1 with l'blked 
lists. How can we construct a forward pointing linked list: This 
problem is illustrated in figure 3.27. 

START POINTER 
I J 

A FORWARD LINKED LIST - FIGURE 3.27 

Notice (in figure 3.27) how each record contains a 
record. The last record contains an empty pointer 
is needed to locate the first record in the list. 
some value (shown as integers in this example). 

pointer to the next 
(NIL). A start pointer 
Each record contains 

How would we repre . .,;ent this interesting data structure in SWL? 

Rev. B 

MODULE LINKED LIST; 
PROC [XDC L] MAIN; 
TYPE 

REG = RECORD 

VAR 

FPTR :~E_G_,. 
VALU: INTEGER, 
RECEND; 

STARTPTR:/\ REC. 
REC1,REC2,REC3,REC4 . ' . 
STARTPTR :::AREC1; 
REC1. FPTR:=I\REC2; 
REC2. FPTR:=A REC3; 
REC3. FPTR:= I\REC4; 
REC4. FPTR:= NIL; 
RECl. VALU: = .. 3; 
REC2. VALU:= 6; 
REC3. VALU:= -5; 
REC4. VALU:= 421; 

PROCEND MAIN; 
MODEND LINKED_LIST; 

REG; . 

LINKED LIST IN SWL - FIGURE 3.28 

3-20 



The example in figure 3.28 is a nice illustration,but lacking in its 
applicability to real programming practi.ee. From this example we can 
see, how to construct the structure shown in figure 3.27. The problem 
with figure 3.28 is that our program states explicitly how many records 
exist (in this exantple - four). In a rea 1 programming problem the 
number of records would change dynamically and we would have to add new 
records onto our list and delete records from the list,as required by 
the dynamic execution of the program. 

\!Us dynamic allocation and fr,~~ing of records ~~ •. seace) ~ill be coveFeA 
later under th!L.toEic of storage management. 

SETS 

The SWL notion of a set follows reasonably closely the mathematical 
concept of set. A set' is simply an accumulation of elements (members). 
The elements can be identifiers (an ordinal), characters, boolean, or 
integers. The set members have no order. We cannot say that some member 
is the first member. However, we can place members in the set, delete 
members from the set, and determine whether a given member exists at the 
present time in the set. Of course, we can create both empty and full 
sets. 

Figure 3.29 illustrates the kinds of sets allowed and the syntax for 
declaring sets. 

TYPE 
A = SET OF (RED,GREEN,BLUE), "ORDINAL SET" 
B- SET OF 0 •• 17, 
C = SET OF IAI •• IZI; 

VAR 
ORDSET 
INTSET 
CHRSET 

A, 
B, 
C; 

DECLARATION OF SETS - FIGURE 3.29 

"INTEGER SET" 
"CHARACTER SET" 

In figure 3.2~ type A is a set of the ordinal identifiers (RED,GREEN,BLUE). 
That means that there are three possible members for the set type A. When 
a v'ariable such as ORDSET is declared, it is a set variable. If ORDSET is , , 
empty then it contains no members. If ORDSET is full then the members 
RED,GREEN, and BLUE are all present in the set. 

The obvious question then is how do we create empty and full sets? How 
do we place members in the set and remove members from the set? 

We use a conversion function to convert identifiers (or constants) into 
set members. For example (using figure 3.29) $A[RED] is a conversion 

3-21 



function that converts the identifier RED into the set element RED belonging 
to the set type A •. Since we have a variable ORDSET, we could initialize (or 
assign) the member RED to the variable ORDSET by writing: 
"ORDSET:= $A[RED];" ~ If we wanted to initia lize (or assign) two members 
into ORDSET we could write: "ORDSET := $A[RED, BLUE] ;". 

The empty set is constructed by having no members between the square 
brackets. For example (using figure 3.29) to make the variable INTSET 
empty we could write: INTSET:= $B[];. If we wanted to place all the 
members in CHRSET we could use one of two methods 

1) create an empty set and complement the empty set 
(giving a full set). 

2) 

For example: 
CHRSET := NOT $C[l.; 

OR 
. CHRSET := NOT (CHRSET XOR CHRSET); 

OR 
CHRSET := NOT CHRSET XOR CHRSET; 

write out each and every member of the set. 
For example: 

CHRSET := $C ['A', 'B I, 'C' , 'D' , 'E' , 
'H' , 'I' , 'J' , 'K' , 'L' , 
'0' , 'P' , 'Q' , 'R' , 'S' , 
'V' , i\11 , 'X' , 'Y' , 'Z '1; 

MAKING FULL SET - FIGURE 3.30 

'F' , 
'M' , 
'T' , 

'G' , 
'N' , 
lUI , 

After seeing the two methods you would probably choose the first method 
whenever number of members in the set is large. 

Now that we know how to assign members to sets we should look at the kind 
of set operations that exist in SWL.· These operations are summarized by 
example in figure 3.31 below. 

3-22 



Rev. 8 

TYPE 
A = SET OF 0 •• 5; 

VAR 
SETA, SETB, SETC:A; 

B: BOOLEAN; 

IIASSIGN MEMBERS TO A SETII 
SETB := $A[2,0, 1); 

IIINCLUSE OR OF TWO SETSII 
SETC := SETB OR $A[4,0,1]; 

ilLOGICAL PRODUCT (AND) OF SETSII 
SETA := SETB AND SETC; 

II SET IDENTITY (or equa li ty) II 
B := SETA = SETC; 

II SET MEMBERSHIP 
B := 5 IN SETA; 

IISET INEQUALITY 
B := SETA /= SETC; 

II 

II 

IISETA IS CONTAINED IN SETC 11 

B := SETA<=SETC; 

IISETA CONTAINS SETC 
B := SETA>=SETC; 

11 

IISET DIFFERENCE, THE SETII 
IICONSISTING OF ELEMENTS OF THE 11 

1ILEFT OPERAND THAT ARE NOT ALSOII 
IIELEMENTS OF THE RIGHT OPERAND 11 

SETA := SETCOA[1, 5] ; 

11 SYMMETRIC DL;'FERENCE, THE SET 11 

IIOF ELEMENTS CONTAINED IN EITHER1I 
II SET BUT NOT BOTH SETS II 

SETA := SETe XOR $A{l,S}; 

SET OPERATION EXAMPLES - FIGURE 3.31 

"RESULTII 

110,1,2 11 

II 0,1,2, l~11 

110,1,2 11 

II FALSE II 

II TRUE II 

II TRUE II 

IIFALSEII 

110,2,411 

110,2,4,5 11 

3-23 



· ~t{wk IVluJYVl.1 /fV!", 1VlQ.N\.~VaW"V\'b\Iv\, 

/ STORAGE MANAGEMENT 

We are often faced with the programming problem of managing storage 
efficiently. We want to be able to use the storage space efficiently 
and to access the space efficiently. The statements presented in this 
section help accomplish these goals. 

THE UNIVERSAL HEAP 

The universal heap is an area associated with the users program storage 
that can be managed explicitly by the user. Two statements are provided. 
The ALLOCATE statement is used to assign (or use) space in the universal 
heap. When the user allocates some type to the universal heap,SWL reserves 
enough space for the type and returns a pointer to the space to the user. 
Using the pointer, then, the user may access the space, store information 
into the sp:.ce and retriev'e data previously stored into the spate. If the 
space cannot be a 110ea ted the 'p"'oint~..!' __ .!_s~et.J:.? NIL...., 

MkI}Mtl. ut iAaM) 
When the user no longer needs the reserved l:llocated) space the FREE 
statement may be used to make the space available for use later on in the 
program execution. 

Any data type may be allocated explicitly by the user. In practice, 
howev'er, the array, record, and sequence (to be discussed shortly) types 
are most often allocated. 

Lets examine the use of explicit allocation with respect to RECORDS. In 
this example,we will create a linked list by allocating space in the 
universal heap. See figure 3.27 for a diagram of the forward linked list. 

Rev. B 

PROC [XDCL] MAIN 
TYPE 
R = RECORD 

FPTR:AR, 
VALU: INTEGER; 

VAR 
P,TEMPTR:I\R; 
N: INTEGER; 

READ(N); 
ALLOCATE Pi 
IF P=NIL 

"FIRST ALLOCATE" 

THEN WRITE ('NO ALLOCATE',EOL); 
ELSE PA.FPTR:=NIL; 

PA • V ALU : = N; 
IFEND; 

READ (N); "SECOND ALLOCATE" 
ALLOCATE TEMPTR; 
IF TEMPTR = NIL 
THEN WRITE ('NO ALLOCATE' ,EOL); 

3-24 



ELSE pA.FPTR:=TEMPTR; 
TEMPTRA.FPTR:=NIL; 
TEMPT~.VALU:=N; 

IFEND 

STORAGE ALLOCATION - FIGURE 3.32 

Naturally,these allocate statements would be in some repetitive statement -
not written in line, as shown in the example in. figure 3.32. 

If we were through using our linked list and wanted to fr~e all the 
a lloca ted records we would have to work our way down the linked list 
freeing each record in turn until we reached the record containing a 
forward pointer of NIL. 

This successive freeing is illustrated in figure 3.33. 

PTR 

TEMPTR 

TEMPTR :=PTR 
WHILE TEMPTR !=NIL DO 
PTR : = TEM P TR" • FPTR ; 
FREE TEMPTR; 
TEMPTR :=PTR; 
WHILEND; 

FREEING A LINKED LIST - FIGURE 3.33 

o-r---::. _~ ~ )) 

~\/ . 

..----

L 

."... 
~_-_i" 

C~l (N_ ."j" 

/}{{occJ.e 5aq~e!A.~ (fi~ 5.31.) 
3-25 



I 

SEQUENCES 

The sequence type represents a storage structure whose components are 
referenced through sequentia 1 accessing. Once a sequence (v'ariable) 
is declared there 'are ~ly two operations that can b~ eerformed" NEX~ 
and RESET. This sequential access to storage is analogous to the 
seq{;~nt·:i.;i file access provided by the READ sta tement. 

When a sequence is declared a definite measure of the space required by 
the sequence must be provided. rhe NEXT statement is u~~th to enter 
v'a lues into the sequence and to remow (or obta in) va lue sfrom the sequence ~ 
The reset statement may be used to place the sequence pointer so that the . 
NEXT statement will access the first element in the sequence. 

When declaring the space required by a sequence the form n~...1L..QF t..~p§,.n 
is used. That is the sequence must be large enough to hold N repetitions 
of t~ The example in figure 3.34 illustrates how we usethe'sequence
as a data type. 

Rev. B 

MODULE SEQUENCE TEST; 
PROC [XDCL] MAIN; 
TYPE 
A = SEQ(REP 10 OF INTEGER); 

VAR 
P:~INTEGER, 

ASEQ : A, 
I : INTEGER; 

"PLACE 10 VALUES IN ASEQ" 
FOR I := 1 TO 10 DO 
NEXT P IN ASEQ; 
PA:=I*5 ; 
FOREND; 

"WRITE ALL VALUES IN SEQUENCE" 
RESET ASEQ; 
NEXT P IN ASEQ; 
WHILE P/= NIL DO 
WRITE (PA:5,EOL); 
NEXT P IN ASEQ; 
WHILEND; 

PROCEND MAIN ; 
MODEND SEQUENCE_TEST; 

SEQUENCE SYNTAX - FIGURE 3.34 

.3-26 



The statement "NEXT P IN ASEQ;" provides a pointer to the next element 
in the sequence ASEQ. To access this element we must use the pointer 
reference PA. So,to place a value in the sequence we use a statement 
like "PA :=I~·:.3; !I 

To access the va lues in the sequence first RESET the sequence and then obtain 
successive pointers to elements in the sequence with the "NEXT P IN ASEQ;" 
statement executed repetitively. Notice that when the end of the sequence is 
reached, the "NEXT P IN ASEQ" wi 11 return a pointer va lue that is NolL 
(indicating the end of the sequence). 

VARIABLE ATTRIBUTES 

When variables are declared certain attributes may be associated with the 
variable. We will consider two classes of attributes: 1) storage 
attributes and 2) scope attributes. 

Recall that the general form of a variable declaration is "VAR identifier: 
type;". When we wish to add attributes to the variable declaration the 
form becomes '~y'0E--:~.g.!:!~1=Jl~~£:.~L~c=~.t~:i:g1,},,-!;22J,,-~1:,YJ1~.,;.'~. That is, the attributes 
are added after the colon (:) and before the type and the attributes are 
enclosed in square brackets. 

STORAGE ATTRIBUTE 

A variab Ie dec lared without any attributes becomes an automatic variable. 
Storage for this type of variable is allocated automatically when the block 
in which the declaration exists is entered (at execution time). The 
storage for such a variable is freed upon EXIT from the block in which it is 
declared. When a variable is given the [STATIC] attribute the automatic 
allocation is not changed. But, the storage for the variable is not freed 
upon exit from the block. In fact, once allocated the storage for the 
variable remains a llocated for the lifetime of the program. This can be 
very helpful for counters (for instance) where the counter should not be 
re-initialized (or re-allocated). 

SCOPE ATTRIBUTES 

The [XDCLJ att~ibute indi:ate: that ,the variable is declared, in this 1". ~,. f,j} .. '(,p.)~ 
module, and thlS declaratl.On 1S avallable to other modules. 'DCt"KCVlQt;l 0rr,Yi1rl.,t. ... (v:.2 tnlj()"L::; ,Jar ,._ .,. _. ....w:---====-----=. . ~ 0: ~~==~~~ 

The [XREF] a ttrlbute indicates tha t the variable is used ~K~;:g!!S~.9}~",;~", 
in this module and that the actual variable declaration is contained .in 
t!='-",,",~--:'=;:::;-:t"=~~~ (~.-;:;:"' ___ ._~"'*w"......,...-.--.:..-' ...... ~=:. ........ _ 7: rt:A~~~~'~"" ... ~--

sOme other module. 
t:::::;-.~--~--:::::..-~~,.. ... ~::;:..",,=~~---

3-27 



Prior to program execution the [XREF] and [XDCId variables (with the same 
identifier) are bound together so that only one occurrence of the variable 
actua lly exists in storage. To effect this "linkage" the[XREF] and[XDCLJ 
variable declarations should express the same type •. 

The example in figure 3.35 illustrates the use of[XREF]and(}cDCiJin two 
modules. 

MODULE PASS1; 

VAR SYNTAX TABLE 
[XDCL] -ARRAY 

[1. .100J OF CHAR; 

"VARIABLE SYNTAX TABLE" 
"DECLARED XDCL HERE SO THATII 
"IT CAN BE ACCESSED " 
"FROM ANOTHER MODULE " . 

• 
MODEND PASS1; 

MODULE PASS2; 
• . 
VAR SYNTAX TABLE 

: [XREF]-ARRAY 
[1. .100] OF CHAR; 

"VARIABLE SYNTAX TABLE" 
"DECLARED XREF SO-THAT " 
"THE ACTUAL STORAGE. 11 

"ALLOCATED IN PASSl lrlILL BE USEDll 

MODEND PASS2; 

XDCL and XREF ATTRIBUTES - FIGURE 3.35 

As shown in figure 3.35 only, one ,one-hundred-e lement array will be 
allocated storage. This storage allocation is from MODULE PASS1. Any 
use of the variable SYNTAX_TABLE from MODULE PASS 2 will rea lly be 
referencing the storage allocated in MODULE PASS1. 

If variables are declared and used in only one module, then there will be 
no need for the [XDCIJ and [XREFJ attributes. 

Our example shows these attributes with an array variable. Of course, any 
type of variable can be made [XDCiJ or used as[XREFJ 

PACKED VARIABLES 

The ability to specify tha t a variable is packed, is the SWL method for 
providing the programmer a choice between compacting data and access time. 
Generally, a packed variable (such as a packed array) will save space but 
requ:ire grea ter time to access any individua 1 element. 

There are only two data types that can be packed - arrays and records. 

Although the actual packing algorithm may differ from one language 
implementation to another the concept of the trade-off between storage 
space and access time is a va lid one 

3-28 



Take a look at the example in figure 3.36. 

VAR 
X ARRAY [1. • 10 OJ OF O •• 15, 
Y [PACKED] ARRAY [1..100J OF 0 •• 15; 

PACKED DATA - FIGURE 3.36 

In figure 3.3~ both arrays contain one hundred elements. In both cases 
the array contents is in the range ° to 15. The variable X will optimize 
access time at the expense of storage space. The variable Y will 
optimize storage space at the expense of longer access time. It's your 
choice - access time or efficient storage. Generally, you can't have both. 

The actual packing algorithm (or number of bits used) need not concern us 
here. 

VARIABLE INITIALIZATION 

OccaSionally, it would be nice if we could initialize a variable along 
with the declaration of the variable. That is, not hav'e to write a 
separate statement to perform the initialization. At the present time 
~l,,~l;~:AT,!9J,","v~r i~Q.,~,~",",!ll~.Y,,~~ni ~!.~!. i z-="~.. ~--'" -- ~"--- - """----~ 

To initia lize a variab le we simply add an assignment onto the end of 
the variable declaration. 

Some simple instances of variable initialization are shown in figure 3.37. 

VAR 
X rSTATICl INTEGER := 0, 
Y [STATIC] BOOLEAN := TRUE, 
R [STATIC] REAL := 1.537, 
Z [STATIC] (RED,BLUE) := RED, 
C [STATIC] CHAR := 'T'; 

VARIABLE INITIALIZATION - FIGURE 3.37 

Of course more complicated data types may be initialized too. For 
instance, RECORDS, ARRAYS, and SETS may be ini tialized. When arrays are' 
initialized the values for each dimension are enclosed in square brackets 
[]. When records are initialized each record is enclosed in square brackets. 

As an example, let's initia lize a two-dimensiona 1 array as shown in 
figure 3.38. 

Rev. 8 3-29 



VAR 
X : CSTATIC] ARRAY [1 •• 2~ OF 

ARRAY [3 •• 5 OF 
:= [@' 7, -3J, [5,7,2 9J ; 

INTEGER 

ARRAY INITIALIZATION - FIGURE 3.38 

Notice that array X is an array of an array. Each element in the first 
array is an array of three elements. So,two groups of three integers 
are required for initialization. The initialization expression 
[[ ] [ J ] conta ins two groups of three integers~ 

As one last example of i!l,t;ializatig.T;l consider the variable R which is 
a record containing a record,as shown in figure 3.39. 

VAR 
R : [STATICJ RECORD 

AGE: 6 •• 66, 
MARRIED,SEX: BOOLEAN, 
DATE: RECORD 

DAY: 1. .31, 
MONTH: 1 •• 12, 
YEAR: 70 •• 80 
RECEND 

RECEND 
:= [23, TRUE, TRUE, [3,5, 731J; 

RECORD INITIALIZATION - FIGURE 3.39 

In figure 3.39,each record initialization is enclosed in square brackets[ ]. 
The initialization values are explained in figure 3.40. 

FIELD VALUE -------
R. AGE 23 
R. MARRIED TRUE 
R. SEX TRUE 
R. DATE.DAY 3 
R. DATE.MONTH 5 
R. DATE.YEAR 73 

RECORD INITIALIZATION VALUES - FIGURE 3.40 

3-30 



~~ (;? 'S S iii::) y b? in j t i i.':ll ;1.: (:.~ d "I t; 0 0' "l by P J. i:J C 1 ! 1 Si t h (; :1. j'1 i t.i. a 1. i z (;] d s ~O! t m "~I"n bel""' S 
i n ::~ q u .. ~, r'~: b r~ t-J ,:.:'~;': :~:: t S J t:: S ::~ ~ .. , G !.!j \~i ~.:: ,~: :.~, ~~~ ~:.~ I ~-~ :i' :~_ !.;.~J '!.,: {\ .~~: 3;· ~{O :1 :b 

VAR 
S : [STATIC] SET OF 0 •• 9 

:= [8,4,9,7J~ 

SET INITIALIZARION - FIGURE 3.40.1 

Strings may be initialized by placing the initialization values in 
single quotes. Also, the CAT operator may be used in string initial
ization as shown below: 

VAR 
Sl : {STATIC] STRING (5) OF CHAR := 'ABCDE', 
S2 : (STATIC] STRING (10) OF CHAR 

:= 'STUVW' CAT 'AB5~C'~ 
STRING INITIALIZATION - FIGURE 3.40.2 

NOTE Pointers may not be initialized. 

TYPE CONVERSION 

The operations of assignment, comparison, and arithmetic are 
defined ()llly for operands of equivalent types. When it is necessary 
to operate on operands that do not meet the requirements of type 
equivalence the type conv'ersion functions must be used. 

There are two classes of type conv'ersion. The primitiv'e conversions 
are described on page 2-15. Structured conversions are not available 
in ISWL but will be prov'ided in SWL. 

Rev. B 3-31 



I/O REVISITED 

In our ear lier discussions of Input and Output (the READ and WRITE 
statements) we did not discuss the problen of reading more than one 
line of data from a termina 1. Our prev'ious I/O discussions were correct 
for reading data from a data file,' ,When wehaV'~ ad,ac~§l, file" a 11 the 
data ex:i.::;ts in the file at the time the file is opened: (if it is a file 
to be read). 

In contrast to thiR. tieiiidmHirlputis eriteredone r:i..ri~;iat 'ai'time. t,;ach " ~., 

cHIle ,~n.~,~_~!!..2::~"~,iu>.c:JJ~,£>~'C'!L.~~,~".,.t~:rt~.,~.i!~.,, So to read a second line from 
a ,terthinaLwe <'must·rewind thetermina 1 input file' with:; the' statement\: 
11 REWIND (IN'PU'J:')' {'J'" 

As an oV'erV'iew, then, we can see that a program written to read data from 
a file will not in general read terminal input successfullY}' And, a 
program written itb i~ea&.! terminal datawilil1otwOrkc:orrect'fy when the 
data is pro'V'tded v'ia an: existing.file. . The di:fferend:" between the two 
prograals will be the l1REWIND(INPUT);" 'statement. 

Assume that an ISWL program intends to read four (4) lines of data. The 
data is integer and we wish to sum up the' in1:egerva:lue~. ;, 

An IS~~L program to accomplish this from a data file would haV'e the 
following statements: 

MODULE FILEIO; 
PROe [XDCL] MAIN; 
VAR I,S:INTEGER 
S:=O· 

" ..... "REf,:b( I ) . ,. "c',,' , .. '. ,',',., 
WHILE NOT 1foEOF(INPUT)DO 
S :=S+I; 
READ(I); 

., WHIL.END; •.... 
WRITE(S,E:JL) ; 
P~WCEND MAIN; 
MODEND FILEIO; 

READING INPUT FROM DATA FILE - FIGURE 3.41 

In figure 3.41 the program will Tead data until it reaches the end of file. 
All read statements look Eke they are reading from file input hOT,veV'er, 
using control language statements we will (at load time) change file 
input to some data file. 

Rev. B 
3-32 



To read a similar four lines fro~pterminal the following program could 
be used: 

MODULE TERMINALIO; 
PROC [XDCL] MAIN; 
VAR 1,8: INTEGER; 
8 :=0; 

,- REPEAT 
: READ(I); 
'l~WHILE NOT #EOF(INPUT) DO 

8 :=8+1; 
READ(I); 
vlHILEND; 
,REWIND( INPUT) ; 
UNTIL #EOF(lNPUT); 
WRITE(8,EOL); 
PROCEND MAIN; 
MODEND TERMINALIO 

READING INPUT FROM TERMINAL - FIGURE 3.42 

In figure 3.42 the program reads data until it reaches end-of-file. 
This condition really signals end-of-line since each line is terminated 
by an end-of -file. Then the program does "REWIND ( INPUT);" which gets 
set for the next line. If the terminal user keys in an empty line 
(carriage return only) the end-of-file will be set and the program will 
exit the REPEAT statement. 

Actua lly, the program of figure 3.42 could be used for file I/O if the 
"REWIND (INPUT) ;" statement was removed. 

3-33 



( 



CHAPTER 4 

ADV ANCED SWL 

This chapter includes discussions about the more advanced features 
supported by SWL. The materia 1 presented will cover Procedures, 
Functions, Adaptable types, Unions, Conformity case, Variant records, 
Labels, Control Statements, Advanced I/O, Representation Dependent 
facilities, Standard Functions and Compile Time options. 

4-1 



I 

PROCEDURES 

Before studying this section you may wish to review the materia 1 on 
Procedures, Block Structure, Call by Value, Call by Reference, and 
Scope of Identifiers presented in Chapter 1. 

A procedure is a conv'enient way of dec laring some v'ariables and execution 
time statements in one ,place in a module and referring to (or calling) 
the procedure from some other location in the module or from some other 
module. 

A procedure is delimited by the PROC and PROCEND statements. The 
simplest example of a procedure declaration is a procedure that has no 
parameters passed to it. This form of procedure normally uses global 
variables to obtain or store data. 

This very simple procedure declaration is shown in figure 4.1. 

"GLOBAL VARIABLE DECLARATION" 
VAR I,J,K:INTEGER; 
• . 
"PROCEDURE DECLARATION" 
PROC ADD; 
K:=I+J; 

PROCEND ADD; 

"PROCEDURE CALL" 
PROC (XDCL) MAIN 
READ (.1 ,J) ; 
ADD; 
WRITE (K,EOL); 
PROCEND MAIN; 

SIMPLE PROCEDURE DECLARATION & CALL - FIGURE 4.1 

The example in figure 4.1 illustrates both the simple procedure declar
ation and the procedure ca 11. In this example, variables I,J, and K are 
global variables. Their scope includes both procedure ADD and procedure 
MAIN. Procedure ADD, when called, adds the global v'ariable I to the 
global variable J and assigns the result to global v'ariable K. Note 
that no parameters are actually passed to the procedure ADD directly. 

In procedure MAIN, figure 4.1, the first statement reads v'a lues for 
the globa 1 v'ariables I and J. Then the procedure ADD is ca lled (by the 
line "ADD;"). Procedure ADD does its computation and returns 
(at the "PROCEND ADD;" statement) to procedure MAIN. The next statement in 
procedure MAIN writes ,the results (K). 

Rev. 8 4-2 



This example illustrates the declaration and call to a procedure using 
the globa 1 variable mechanism for communica tion. This mechanism pro
vides good communication, but does not provide much protection for the 
globa 1 variables. 

Next, we want .to describe the passing of parameters to a procedure. When a 
procedure is declared, and parameters are specified in the declaration, 
these parameters are called FORMAL parameters. 

When a procedure is ca lled and parameters are placed in the ca 11 the 
parameters are known as ACTUAL parameters. These concepts are shown 
in figure 4.2. 

PROC ADD ( FORMAL PARAMETERS); 

PR~CEND ADD; 

PROC [XDCL] MAIN; 

ADD (ACTUAL PARAMETERS); 

PROCEND MAIN; 

ACTUAL and FORMAL PARAMETERS - FIGURE 4.2 

The {~~ parameters and a~!!L.parameters ~st agree in number.!. 
o~~IL<Lt..)i.pg...'!....--~ 
'\ 
The formal parameters also declare whether parameter passing is done by 
va lue or by reference. If the parameter passing is by va lue then a 
copy of the actual parameter is made for the procedure which is called. 
This mechanism insures that the procedure called will have the value of 
the actual parameter and that the procedure called cannot change the 
actual parameter. This provides protection for the actual parameter. 

If the formal parameter indicates a call by reference then a pointer to 
the actual parameter is passed to the procedure called. In this manner, 
the called procedure can read and alter the actual parameter. 

It should be clear that a call by reference parameter provides excellent 
communication but provides limited protection (or security). The call 
by va lue parameter provides exce llent protection (or security) but poor 
communication. 

Now we can modify the simple add procedure of figure 4.1 to inolude both 
ca 11 by reference and ca 11 by v'a lue parameters. Notice the syntax of 
the parameters. 

4-3 



MODULE PROC WITH PARAMETERS; 
PROC ADD (~M: INTEGER; 

VAL N,P:INTEGER;); -M :=N+P; 
PROCEND ADD; 

PROC [XDCL 1 MAIN; 
VAR I,J,K:INTEGER; 
READ(J,K); 
ADD(I,J,K); 
WRITE(I,EOL); 
PROCEND MAIN; 
MODEND PROC_WITH_PARAMETERS; 

PROCEDURE WITH PARAMETERS - FIGURE 4.3 

In the example in figure 4.3 notice that in the procedure declaration 
for ADD three (formal) parameters are declared. The first (M) is call 
by reference and the last two (N,P) are call by v'alue. The procedure 
then uses the variables M, Nand P to compute some result. 

Referring now to procedure MAIN in figure 4.3 notice the local variables 
I,J and K. These variables cannot be accessed by procedure ADD directly 
because the scope of the identifiers (I,J,and K) is limited to procedure 
MAIN. 

At execution time the first statement executed will be the "READ(J ,K) ;tt 
statement. The next statement ttADD(I,J,K);" calls the procedure ADD and 
passes the three parameters. Since the 2nd and 3rd parameters are call 
by va lue (see PROC ADD dec lara tion) a copy of the actua 1 parameters 
(J,K) is made for the procedure ADD. Inside procedure ADD these two 
paramters are known as Nand P. From the viewpoint of procedure ADD 
variables Nand P are local variables and they are copies of the actual 
parameters J and K. 

The actual parameter I, however, is different. In the procedure ADD 
declaration the 1st (formal) parameter is declared to be call by 
reference. This means that procedure add will receive a pointer 
(reference) to the actual parameter (I). Notice that this means that 
any changes (assignments) to the 1st forma 1 parameter \oJithin PROC ADD 
will modify the actual parameter (in this case I). 

The call oy reference for the 1st formal parameter is essential in this 
example because it provides the mechanism for the procedure ADD to 
return the result to the procedure MAIN. 

After procedure ADD is completed (the "PROCEND ADD; tt statement is executed) 
control returns to the write statement in procedure MAIN and the result 
I is written to the output file. 

4-4 



What would happen if the 1st formal parameter (M) had been declared to 
be call by value instead of call by reference. This is illustrated 
below: 

PROC ADD (VAL M:INTEGER; 
VAL N,P:INTEGER;); 

M :=N+P; 
PROCEND ADD; 

In this case,when the procedure add was called,a copy of the actual 
parameter (I, which is undefined) would be made for the procedure to 
use. After the procedure ADD statement 11M :==H+P;" is executed, the 
result v'alue M would be a local value (local variable). When procedure 
ADD returns to Procedure MAIN, all local variables 'will be destroyed. So, 
the value of M we so carefully computed would be destroyed. The actual 
parameter (I) would remain undefined and the write statement, would write 
out some undefined quantity for the value of 1. 

It should now be apparent that we must carefully declare formal parameters 
according to their use considering both communication and protection 
of variables. 

FUNCTIONS 

Functions are similar to procedures. Their dec lara tion is almost 
identical with the exception of a return type,added on at the end, that 
declares the type of the function. Functions normally return a value. 
This value can then be used in other computations. 

Because the _function returns a v'alue, we cannot place the' function call on a 
line by itself (what would happen to the result?). Therefore, a function call is 
normally embedded in some other statement (such as an assignment or IF 
statement). 

Let's write our ADD routine as a function and see how it differs from the 
procedure use of the same routine. 

MODULE FUNCTION ADD; 
PROC ADD (VAL N~P:INTEGER) INTEGER; 
ADD:=N+P; 
PROCEND ADD; 

PROC [XDCL] MAIN; 
V AR I , J , K: INTEGER; 
READ (J ,K); 
I:=ADD(J,K); 
WRITE(I,EOL); 
PROCEND MAIN; 
MODEND FUNCTION_ADD; 

FUNCTION DECLARATION - FIGURE 4.4 

4-5 



In the example in figure 4.4 notice the declaration of the function ADD. 
It looks just like the procedure declaration except for the reserved 
word 11INTEGER" at the end of the line 11PROC ADD (VAL N,P:INTEGER) INTEGER;". 
This word does two things: first, it specifies that this is a function 
declaration (instead of a procedure declaration); and second, it specifies 
that the function returns a type which is an integer. Or saying it 
different ly, the function. returns an integer va lue. 

Now, inside the function "ADD", the line that computes the result 
11ADD:=N+P;l1 adds N-r-P and assigns the result to the function namel 
Yes, this is how the function obtains its value. 

Looking at the ca 11 to the function (from procedure MAIN) "1:= ADD(J ,K); 11 , 
we see that the actual parameters J and K are sent to the funct:ion 
and that IADD(J,K);" must result in some value because the value is 
assigned to 1. The value of "ADD(J ,K)" is called the function value. 
You can see how the function name in the call is part of a larger 
statement. 

One final comment on the restrictions on functions. Functions can 
not return all call types. A function can return an integer, character, ordinal, 
-.- . ~-------'~~~ 
boolean, real, or pointer result. --"-~---

4-6 



NESTED PROCS and FUNCTIONS 

When procedures or/and functions are nested,we obtain security for 
the function or procedure itself as distinct from the parameters which 
are passed. 

For example, consider the program structure in figure 4.5. 

MODULE NE:STED _PROCS; 
PROC CCMPUTE; 

VAR 

PROC TEST; J T 
VAR E 
"EXECUTABLE STATEMENTS HERE" S 
PROCEND TEST; T 
II EXECUTABLE STATEMENTS HERE" 

PROCEND COMPUTE; 

PROC [XDCL1 MAIN; . . 
CCMPUTE; 

PROCEND MAIN; 

NESTED PROCS - FIGURE 4.5 

C 
o 
M 
P 
U 
T 
E 

M 

A 
I 
N 

In the example in figure 4.5 we see that procedures MAIN and COMPUTE 
are at the outermost level. Procedure TEST is nested inside CCMPUTE. 
This structure provides some shie lding (protection) for procedure TEST. 

With this structure,procedure MAIN can call procedure CCMPUTE, BUT 
procedure MAIN cannot call procedureTEST. Only COMPUTE can ca~TEST. 
So TEST can re lyon COMPUTE to va lidate variables and perform other 
computations which might be necessary for the correct execution of TEST. 

This kind of nesting structure is frequently used to provide protection 
for procedures or/and functions. 

XDCL and XREF ATTRIBUTES 

We discussed XDCL and XREF a ttributes wit h respect to variables in 
Chapter 3. The concept is equivalent for procedures and functions. 
These attributes are only needed when we wish to declare a procedure 
(or function) in one module and be able to refer to (or call) that 
procedure (or function) from another module. 

4-7 



Figure 4.6 below provides an example of this kind of referencing 
mechanism. 

MODULE FIRST; 
/FROC [XREF] CCMPUTE; 

PROC [XDCL] MAIN; 

COMPUTE; 

PROCEND MAIt\; 
MODEND FIRST; 

MODULE SECOND; 
~PROC [XDCL] CCMPUTE; . 

PROCEND COMPUTE; 
MODEND SECOND; 

XDCL and XREF PROCEDURES - FIGURE 4.6 

In figure 4.6 modules FIRST and SECOND would each be separately compiled and 
then loaded together. Note that procedure COMPUTE is declared in 
module SECOND. In fact,no other declarations exist in module SECOND. 
The procedure COMPUTE (in module SECOND) is given the attribute XDCL. 
This means that the procedure is declared in this module and can be 
referenced from some other module. 

In module FIRST only the line "PROC (XREF J COMPUTE;" appears to identify 
COMPUTE. This line indicates that COMPUTE is a procedure. The XREF 
attribute indicates that the procedure (COMPUTE) will be referenced in 
this module (FIRST) and is declared somewhere else. Inside module FIRST, 
the identifier COMPUTE is known as a procedure name. 

~.s.~,~~E,~ .. ~w<l!~!!.Y=P~;~~,~"~_~~" .. "~: _~~~~_m:_ter 1 i~ (f_~:r:~. 
pamme ters ~ wou 1 d ha y~ t;.9."""Q,..e~",s,pec~fl.e,d.,.,J,n.,.,eaC11.";;pLQ.c~,gg;re·=ae c Tar a t 1.0 n 1. n 

~~~, .... --~~"'~ .,' ~~,',;\l;.~~.~_ •• C!=~~ 

eacJL~tODU~ And, the parameter specifications would have to "agree 1.n
~~"" .. -~~'----.''"-"---... --... -.
number, order, and type. ~he identifiers of corresponding parameter
could, however, be different •.

We might also note that "PROC [XDCL] MAIN;" declares a procedure whose
name is MAIN that is XDCL (declared here for reference elsewhere).
This is a special procedure. The loader (a procedure) calls the
procedure MAIN to begin program execution. Hence, we must have one
procedure MAIN and it must be XDCL so the loader can call it.

4-8

J ADAPTABLE TYPES

Before we cover adaptable types lets examine a SWL function to sum (add)
all the elements in an array and return the sum as a result.

MODULE SUMMATION;

TYPE Q = ARRAY [1. .10] OF INTEGER;
PROC SUM (VAL VECTOR Q) INTEGER;

VAR I: INTEGER;
SUM := 0; .
FOR 1:= 1 TO 10 DO
SUM := SUM + VECTOR (I];
FOREND;

PROCEND SUM;

PROC [XDCL] MAIN;
VAR K: ARRAY [1 •• 10] OF INTEGER,

RES,I: INTEGER;
FOR 1:= 1 TO 10 DO
READ (K[Il);
FOREND;
RES:= SUM(K);
WRITE (RES ,EOL) ;
PROCEND MAIN;
MODEND SUMMATION;

SIMPLE SUMMATION FUNCTION - FIGURE 4.7

From the structure of the program in figure 4.7 we can see that procedure
MAIN ca 11s (and uses) the function SUM. Notice that in MAIN an array (K)
is declared to contain ten elements. Because MAIN ca11s SUM, SUM must
also contain a declaration for an array (VECTORY. The annoying thing is
that the array v'ector (type Q) also contains ten elements.

Why is this a problem? If procedure MAIN were altered to read in twenty
integers (and the variable dechlration for K were also changed to be
1. .20) then we would have to change the function declaration also. In
this example,the statement "TYPE Q ~ ARRAY [1..10] of INTEGER;" would
have to be changed to an array of 20 elements.

This change of the function SUM is unfortunate. It would be much nicer
if the function could change the nunber of elements in the array to suite
(or conform to) the number of elements in the actual parameter.

There is such a type in SWL and it is called thp ADAPTABLE type. It is
ca 11ed ADAPTABLE because the forma 1 type can adapt (to a limited extent) to the
specification of the actual parameter. This process of ADAPTING takes I
place at execution time. We say "to a .1imited extent" because
ADAPTABLE means adjustable size or bounds. The type of parameter
cannot be adjusted.

Rev. B 4-9

In our example (figure 4.7) if the variable VECTOR were adaptable then
we would hav'e some problem with the statement "FOR 1:= 1 TO 10 DO".
If the variable VECTOR were adaptable its first element might not be
one. Further, its last element would almost certainly not be ten.
Our FOR statement must be able to adapt too. The problem can be
expressed as one of being able to find out what the current bounds of
an adaptable array are. In SWL, two functions ex:i.st to help us. The
!LOWERBOUND (a~ptable array _n~me, dir:t~ns~n) !':':~~t~ r!U;~r~_al!Tnteg_~

~~~hd~e~~io~°;t~r~tro~~~t~l!~~Y.·ui:-~~'·i~-;;t~~~/~~i*1 
~to find the lowerbound in any dimension of the adaptable array. Similarly, 
the #UPPERBOUND (adaptable array name, dimension) function is used to 
determine (at execution time) the upper bound of an adaptable array. 

Using these concepts we can rewrite the MODULE as shown in figure 4.8. 

MODULE BETTER_SUMMATION; 

TYPE Q =ARRAY [* 1 OF INTEGER; 
PROC SUM (VAL VECTOR:Q) INTEGER; 
VAR I: INTEGER; 
SUM:= 0 
FOR 1:= #LOWERBOUND (VECTOR,l) TO 

# UPPERBOUND (VECTOR,l) DO 
SUM:= SUM + VECTOR [I]; 
FOREND; 
PROCEND SUM; 

PROC [XDCL) MAIN; 
VAR K: ARRAY [1'. .10] OF INTEGER; 
RES,I: INTEGER; 
FOR 1:= 1 TO 10 DO 
READ (K[I]); 
FOREND; 
RES := SUM (K); 
WRITE (RES,EOL); 
PROCEND l-iAIN; 
HODEND BETTER_SUMMATION; 

ADAPTABLE SUMMATION FUNCTION - FIGURE 4.8 

In the exao.ple in figure 4.8,notice the statement "TYPE Q=ARRAY [~,,] OF 
INTEGER;". The asterisk ['I'(] indicates that the array is adaptable and 
that the indices are integer. Inside the function SUM notice the way 
the FOR statement has been written to take on the lowerbound and upper
bound of the adaptable array. 

If we wish to read in a different number of integers,now we need only 
change procedure MAIN'~ No changes will be needed for the function SUM. 

We have succeeded in writing a more general purpose function. 

4-10 



ADAPTABLE SPECIFICATIONS 

Adaptable types are used only as formal parameters for procedures and 
functions. There are six data types which can be adaptable. These are 
ARRAYS STRINGS RECORDS STACKS SEQUENCES d HEAPS "'=.-=~~~.~~~~=~~=.~ 

_____ ...:;r.t!'"""...::=-.!'!!;Q~'lI::l"'.:=:'t'::.:=.!:tl.:~.'\, .. O!!Or~"lZ:T;t~~~ •• _:l'tWZt:l::lE' •• !'ll.':l>e:'.; ... ,~===,;,.::. .. :.=..-...~$:;1.":;:;-•• ~.~-:::::;;:-.... -" _,...: .... _ ..... ""....J.'.c:.,~1,:...:. , ... .::; ...... ~~""'~&.;;~~=-.-.~....:...-........ .:..., .. ,.....-.:.:.: ..... 

An adaptable array can be specified in a number of ways. Adaptable array 
indices are not limited to integers. Figure 4.9 illustrates some of the 
adaptable types allowed for arrays. 

TYPE 
"ADAPTABLE ARRAY WITH INTEGER INDICES" 
Q ='ARRAY [*)OF REAL, 

"ADAPTABLE 2-D ARRAY WITH INTEGER INDICES" 
R1 = ARRAY t * 1 OF ARRAY [* J OF BOOLEAN, 
R2 = ARRAY [*, * 1 OF BOOLEAN, 

"PARTIALLY ADAPTABLE ARRAY WITH INTE(a~:R INDICES" 
S1 = ARRAY [3 •• *] OF CHAR, 
S2 = ARRAY [* •• 53] OF REAL, 

"ADAPTABLE AERA~ WITH CHARACTER INDICES" 
T = ARRAY ~] OF REAL; 

ADAPTABLE ARRAY SPECIFICATIONS - FIGURE 4.9 

In addition to adaptable arrays we may have adaptable strings. The string 
declaration is simple in that the string has only one type, character, and 
one length specification. In addition,the length specification must be 
integer. Figure 4.10 illustrates the ~Rt~!>.J1L!!!E!;,r.::~ ~pecifiCa,1!~!!:. 

~~=--...:::'~--::,~. 

TYPE 
STR = STRING (*) OF CHAR; 

ADAPTABLE STRING SPECIFICATION - FIGURE 4.10 

When we use adaptable strings inside a procedure or function we need a 
method of obtaining the string length of the actual parameter. The 
ISTRLENGTH (adaptable string variable name) function returns an integer 
value which ist'ii'ei.ength orttie aaaptabl;r="string variable name. This 
f~trlction is the string equiva lent of the upper and lower bound functions 
for arrays. 

The record type may a 150 be adaptable if one and only one of its fie lds 
are of adaptable type. 

4-11 



UNION OF TYPE 

Sometimes we hav'e a need for a variable that can contain different types -
not simultaneously - but alternately. Two examples are indicative of 
this need. 

First,consider an array that contains pointers to different types of 
records. This is shown graphically in figure 4.11. 

ARRAY OF POINTERS B 
~------=*-----===----~~ 
1-----::=--==1--......... nm 0 

NIL' LJ 

ARRAY OF UNION OF POINTERS - FIGURE 4.11 

In figure 4.11 the array elements are pointers, some of which point to 
R1-type records and some to R2-type records. To accomplish this, 107C must 
declare the array elements as UNION type. In th~s way, the array elements 
can be either union membe'r type (Le. a pointer to either type of record. 

This concept is expressed in SWL syntax below. 

TYPE 
R1 = RECORD 

A,B,C:INTEGER, 
RECEND, 

R2 = RECORD 
W,X,Y,Z:BOOLEAN, 
RECEND, 

UN = UNION (AR1 ,AR2) , 

AR = ARRAY [1 •• 1 Q 1 OF UN; 

VAR 
PTRARYAR; 

UNION SYNTAX - FIGURE 4.12 

4-12 

, 
I 



Another example uses the concept of union to a llow the declaration of a 
procedure (or function) that can accept as an argument anyone of several 
types. 

Unfortunately, at the present time only union of pointer types is allowed. 
But one day, union of other types will a lso be available. So in our 
example be low we have a procedure which will free a linked list. This is an 
extension and generalization of the example in figure 3.33. The procedure 
will accept as an argument one of many types of pointer to linked list. 
We will show only the procedure declaration at this time. 

TYPE 
R1 

R2 

R3 

= RECORD 
"R1 RECORD DECLARATION" 
RECEND, 

= RECORD 
"R2 RECORD DECLARATION" 
RECEND, 

= RECORD 
"R3 RECORD DECLARATION" 
RECEND, 

UN = UNION (AR1,~R2,AR3); 

• .. 
PROC FREELIST (VAL PTR:UN"); 

PROCEND FREELIST; 

UNIONS IN PROCEDURES - FIGURE 4.13 

In figure 4.13 the union type. UN can contain a pointer to one of R1, R2 
or R3 type records. The procedure FREELIST can accept as an actual 
parameter either of the three types of pointers. The contents of the 
procedure FREELIST will be discussed below. 

UNION OPERATORS 

There are three UNION operators. 

OPERATOR 

:=: 
: /'11.: 

These are: 

. MEANING 

TYPE TESTING 
VALUE TYPE TESTING 
POINTER TYPE TESTING 

UNION OPERATORS - FIGURE 4.14 

4-13 



Of the three union operators illustrated in figure 4.14 only the value type 
I'~~.~_!=.t~~~"::--=~~ .~g~)::~,~~_r __ ~p~.::~:,:!~~-*Y~N..:a;i...,1ah-le:. There fore, we wii'idiscuss=''= 
this operator only. 

VALUE TYPE TESTING 

The va lue type testing operator performs two operations. First, if the variable 
on the left is the same type as the current v'a lue of the union v'ariab le on the 
right the operator returns the boolean value TRUE; otherwise,the boolean 
value FALSE is returned. Second, when the boolean -lI'alue is true .then the 
variable on the left is assigned the current value of the union variable 
on the right. We can test to determine what type is currently in the 
variable and obtain the contents of the union variable. 

Keeping in mind that only unions of pointers are a Howed at the present 
time we can finish the contents of the FREELIST procedure that we 
started in figure 4.13. 

"ASSUME RECORD TYPES DECLARED" 
"AS IN FIGURE 4.13 " 

TYPE 
UN = UNION (~R1,~R2,AR3); 

PROC FREELIST (VAL PTR:UN); 
VAR PTR1:AR1, 

PTR2:AR2, 
PTR3:"R3; 

IF PTR1 :=: PTR 
THEN "CODE TO FREE R1 TYPE LIST" 
ORIF PTR2 :=: PTR ' 
THEN "CODE TO FREE R2 TYPE LIST" 
ORIF PTR3:=: PTR 
THEN "CODE TO FREE R3 TYPE LIST" 
ELSE IIERROR" 

IFEND; 

PROCEND FREELIST; 

VALUE TYPE TESTING OPERATOR - FIGURE 4.15 

In the example in figure 4.15, the formal parameter "PTR" is a union of 
three possible pointers to three different records. The variable declaration 
identifies three v'ariables each one is a pointer to a different type record. 

In the statement "IF PTR1 :=: PTRII, the v'alue type test operator :=: tests 
the type of PTRl (pointer~Q :Rr £i[e recor4 list) against the curre~t type -
or=tne contents of t,q,e }Inion v'ariable' p·n. . 

--

4-14 



If the types are not identical, then the Boolean result FALSE is returned 
and the IF statement progresses to the nextQRIF clause. If the types 
match, then the boolean value of :=: is TRUE and the v'ariable PTR1' is set 
(or assigned) to the current va lue of the uuion variable. ~lhen the 
result of the value testing operator :=: is true,the THEN clause of the 
IF statement is executed and the code to free the list is executed. 

You can see how much effort must be used to isolate and use the current 
contents of the union variable. 

VALUE CONFORMITY CASE 

The v'alue conformity CASE statement prov'ides a method of clearly identifying the 
case to be p(=xEormed depending upon the current va lue of a union variable. 
The value conformity case, then, is an extension of the IF and ORIF 
clauses (in figure 4.15) necessary to isolate the current value of a union 
and execute the appropriate statements. 

Lets rewrite the FREELIST procedure of figure 4.15 using the v'a lue 
conformity CASE statement. 

"ASSUME RECORD TYPES DECLARED" 
"AS IN FIGURE 4.13 " 

TYPE UN = UNION (AR1,AR2,~R3); 
PROC FREELIST (VAL PTR:UN); 
VAR PTR1 :I\,R1, 

PTR2 :AR2, 
PTR3 :AR3; 

CASE :=: 
=PTR1= 
=PTR2= 
=PTR3= 
ELSE 
CASEND; 

PTR OF 
"CODE TO FREE R1 TYPE LIST" 
"CODE TO FREE R2 TYPE LIST" 
"CODE TO FREE R3 TYPE LIST" 
"ERROR" 

PROCEND FREELIST; 

VALUE CONFORMITY CASE SYNTAX - FIGURE 4.16 

You can see how this value conformity CASE statement makes the program 
text clearer. The first line of the CASE statement "CASE :=: PTR OF" 
clearly identifies the statement as _"~~.sttng_,.~::ya-lu~~,."oCE11e:::utiI"Qlb.... 
V8rm'!Et:'Ji~--:""'3 The pos''SIlfre=case''S''('=PTR1= etc.) clear ly indicate what 
tlie~~er;~tives are. With the conformity case statemen~we do not need 
to bother with the TRUE-FALSE values normally associated with the type 
testing operators. 

W11en the type of a case (i.e. =PTRl=) does match the current type of the 
union variable (PTR) the variable in the case (PTR1) is assigned the current 
v'alue of the union. This value (PTR1) can then be used in the executable' 
code of the confonnity case statement. 

4-15 



VARIANT RECORDS 

When we Ilre defining tables for system software, we often require a record 
with some fixed information (or fields) followed by some variable 
(variant) fields. Usually, we know what all the variants look like. 
Figure 4.17 shows this pictorially. 

FIXED 
PART 

VARIANT 
PART 

f 
, 

INTEGER 
NAME 

TYPE / 
BOOLEAN 

ATTRIBUTES 

RECORD ~ REAL 
BOOLEAN 
INTEGER 

VARIANT RECORD CONCEPT - FIGURE 4.17 

A } SHORT 
B FORM 

C } D LONG 
E FORM 

Figure 4.17 shows a record consisting of two major parts: 1) the name 
and-2) some attributes. Depending upon the type of the record the 
attributes portion of the record can be one of two forms (the short 
form or the long form). 

In anyone occurrence of the record,on1y one of the two forms will exist. 
However, some occurrences of the record may be the short form and others 
may be the long form', 

This kind of record structure can be declared in SWL. 

TYPE 
FORM = (SHORT, LONG), 

RECTYPE = RECORD 
NAME: STRING (11) OF CHAR 
CASE T: FORM OF 
=SHORT= A: INTEGER, 

=LONG= 

CAS END 
RECEND; 

B: BOOLEAN, 
REAL, 
BOOLEAN, 
INTEGER, 

C: 
D: 
E: 

VAR ONEREC, TWOREC: RECTYPE; 

SWL VARIANT RECORD SYNTAX - FIGURE 4.18 

4-16 



The record structure declared by the example in figure 4.18 will be one 
of the two illustrated in figure 4.19. 

NAME' 
T 
A 
B 

STRING (11) 
SHORT 
INTEGER 
BOOLEAN 

SHORT VARIANT 

OF CHAR NAME 
T 
C 
D 

E 

STRING (11) OF CHAR 
LONG 
REAL 
BOOLE~ .. 
INTEGER 

LONG VARIANT 

VARlANT RECORD LAYOUT - FIGURE 4.19 

As illustrated in figure 4.19 there are two forms (or variants) for the 
record (LONG or SHORT). Notice that the identifier T (the tag field) 
is included in the record itself. 

How do we access or use the variant record~ Consider the variable ONEREC 
declared in figure 4.18. :de can store information into the variable one 
tield at a time._ To declare which v'ariant we are using we must assign a 
value (long or short) to the tag field T. This is illustrated for each 
record type (variant) in figure 4.20. 

"ASSUME TYPE DECLARATION" 
!IAS SHOWN IN FIGURE 4.1..8" 

VAR ONEREC, TWOREC: RECTYPE; 

• 
"INITIALIZE ONEREC AS SHORT RECORD" 
ONEREC. NAME := 'IDENTIFIER1'; 
ONEREC. T := SHORT; 
ONEREC. A := 6; 
ONEREC. B := TRUE; 

"INITIALIZE TWOREC AS LONG RECORD" 
TWOREC. NAME:=' IDENTIFIER2' ; 
TwOREC. T := LONG; 
TWOREC. C := 6.735; 
TWOREC. D := FALSE; 
TWOREC. E := 5; 

VARIANT RECORD INITIALIZATION - FIGURE 4.20 

Since the variant (Tag Field) of the record is stored in the record 
we can always determine at execution time which variant is contained 
in the record. 

4-17 



LABELS 

In the current ISWL (not SWL) language all labels must be declared with the LA.BEL 
statement. The label statement simply declares its constituent 
identifiers as labels. 

Labels are often required by the EXIT and CYCLE stllb~ments to identify 
which statement is being EXITed or CYCLEd. Labels are also used in the 
GOTO·statement. 

A labeled statement is one that includes a label followed by a colon pre
ceding the statement itself. 

LABEL FORLOOP, LOOP1; 
• 
• 

LOOP1: LOOP 

J LOOP1 

LOOPEND 

FORLOOP: 

] FOR 
• FOR LOOP 

FOREND; 

LABELS - FIGURE 4.21 

Notice, in figure 4.21, that the label may be placed to the left of a 
statement (as in LOOP1) or on a line by itself (as in FORLOOP). In 
either method,the label identifies the whole statement. The label 
LOOP1 refers to the entire LOOP-LOOPEND statement. A GOTO statement 
referencing LOOP1 would initialize (or begin execution) at the first 
constituent statement of the LOOP statement. An EXIT statement, inside 
th~ FOR statement,that EXITs FORLOOP will continue execution (branch 
to) at the statement after FOREND. 

EXIT REVISITED 

The EXIT statement was discussed in Chapter 2. Recall that the EXIT 
statement exits the structured statement in which it is contained. By using 
a label with the EXIT statement it is possible to specify 
which statica lly encompassing structured statement is to be EXITed. 
Consider the program skeleton shown in figure 4.22. 

4-18 



WHILE A(B DO 

• 
IF C=D 

THEN EXIT 
ELSE "SCME STATEMENTS" 

IFEND; 

• 
WHILENDS 

NON-LABELED EXIT - FIGURE 4.22 

In the example in figure 4.22 the EXIT statement exits the structured 
IF statement. 

Is it possible for the EXIT statement to EXIT the WHILE statement; 
that is, to cause control to be transferred to the statement after 
WHILEND? The answer is yes, using a labe 1. See figure 4.23. 

!.AP,.,T 
\ 

L:WHILE A<B DO 

IF C=D 
THEN EXIT L 
ELSE ~'SCME STATEMENTS" 

IFEND; 

WHILEND; 

LABELED EXIT - FIGURE 4.23 

In the e~(ample in figure 4.23, when the "EXIT L" statement is executed 
control will be transferred to the statement after the one labeled L. 
This statement is of course the one after the WHILEND because label L 
designates the entire WHILE statement (from WHILE to WHILEND). 

Notice that the EXIT statement is a kind of restricted GOTO. It does 
not provide the ability to arbitrarily go anywhere in the program 
(the GOTO doesn't either as we will find out). The EXIT statement 
with a label allows the orderly exit from any statement (which is 
labeled) that statically (in the sourc~ code) encompasses the EXIT 
statement. 

Rev. 8 

, 

4-19 



CYCLE STATEMENT 

The CYCLE statement allows the conditional bypassing of the statements 
inside a repetitive statement (FOR,LOOP,WHILE,REPEAT) and cycles to 
the next iteration, if any. 

The CYCLE statement may use a labe 1 to desIgnate which repetitive 
statement is being cycled. The CYCLE statement can only cycle 
repetitiv'e statement that statically encompass the CYCLE statement. 

The CYCLE statement can also be made conditional by using the WHEN 
clause. Examples of non-la be led CYCLE statements are given in 
figure 4.24. 

FOR 1:= 1 TO 10 DO 

CYCLE WHEN I = 6; 

WRITE (I,EOL); 

FOREND; 

WHILE C/=EOL DO 

IF C = A [I] THEN CYCLE; 

READ (C); 
WHILEND; 

NON-LABELED CYCLE STATEMENT - FIGURE 4.24 

In figure 4.24 the FOR statement would create 10 iterations. However, 
when the CYCLE statement is executed and 1==·5 the statements from CYCLE 
to FOREND will be skipped and the next iteration (1:=7) will be done. 
The WRITE statement then would write the values of I: 1,2.,3,4,5,7,8,9,10. 

·;.'he WHILE statement in figure 4.24 shows how the si.nple CYCLE statement 
can be used to cycle a repetitiv'e statement (e .g., the WHIL';: statement). 

4-20 



LABEL L1,L2 

L1:REPEAT 

L2:WHILE 

FOR 1:= 1 TO 10 DO 

CYCLE WHEN A = B [11; 
CYCLE L2 WHEN A<B (11; 
CYCLE L1 WHEN A>B [I] 
FOREND; 

WHILEND; 
UNTIL C=EOL; 

W 
H 

F I 
R L 

E 

LABELED CYCLE STATEMENT - FIGURE 4.25 

R 
E 
P 
E 
A 
T 

Figure 4.25 illustrates the use of labels in the CYCLE statement. The 
sta tement I1CYCLE WHEN A=B [I); II wi 11 cause the FOR statement to be 
cyc led when B [11 = A. The sta tement "CYCLE L2 WHEN A<B tI]; 11 wi 11 
cause the WHILE statement (statement L2) to be cycled. The statement 
I1CYCLE L1 WHEN A>B[I] 11 will cause the REPEAT statement to be cycled. 

RETURN 

The RETURN statement will cause control to be transferred (back) to the 
procedure that called the procedure containing the return statement. 

At execution time, a return is automatica lly done when we reach the end 
of a procedure or function (PROCEND). For this reason we have not needed 
the return stat,ament for our examples thus far. 

But,what if we wish to return from some place other than the end of the 
procedure or function? Then the RETURN statement is needed. The RETURN 
statement can also have (optionally) a WHEN clause making the RETURN 
statement conditional. 

4-21 



Figure 4.26 illustrates the use of the RETURN statement in a function. 

PROC CHECK (VAL M: INTEGER) BOOLEAN; 

IF M)=O 
THEN CHECK:=TRUE; 

RETURN; 
ELSE CHECK:= FALSE; 

RETURN; 
IFEND; 

PROCEND CHECK; 

USE OF RETURN STATEMENT - FIGURE 4.26 

In figure 4.26, the function CHECK returns the boolean va lue TRUE when the 
parameter passed is positiv'e or zero and returns the boo lean v'a lue FALSE 
when the parameter passed is negative. 

Gore STATEMENT 

The GOTO statement is not our favorite statement. In fact, we try to 
avoid writing GOTO's. But, if you insist - read on. 

The GOTO statement causes transfer of control to the statement designated 
by a labe 1. 

If the label referenced is outside the current block then the form 
"GOTO EXIT labe 1" must be used. 

ADVANCED INPUT/OUTPUT 

In Chapter 2,we discussed the simple I/O procadures READ and WRITE. These 
procedures provided the capability to read the input file .and write on the 
output file. There were certain types that could be written. The input 
and output files were opened automatically at job initiation and closed 
automatically at job termination. 

Now we want to exaoine a more complicated world of I/O. In this environ
ment we must open and close files explicitly and we must ~ul~~ 
pointer to the file. We can handle eith~~;qr"", .. gb,,.s9ded files. 
~,_,;:sc_ we .... · . ::::.::a .................. ::::OC==::~ """",,$IS :z, , . ::....;;:m;:a iii: " ...... 

The I/O statements discussed here ar;,:£'Jg) ••• EYT~~l!iQ.""...REWR,:v.,'F~O,f.~ __ 
CLOSE, IIEOF, and the file type. '--=-

14 • _ •• ( ...... ;~_""' ____ ...,.;.. ...... ..m.;;'_ 

Before we can do any advanced I/O,we must declare the filename, type of 
file, and intended use oJ the file. 

( 

4-22 



TYPE 
REC = RECORD 

VAR 

NAME : STRING (10) OF CHAR, 
DAY : 1 •• 31, 
MONTH : 1. .12 , 
YEAR: 1975 •• 2000, 

. INFO : IlnEGER, 
RECEND; 

F1 [IN] :: FILE OF CHAR, 
F2 [oUT1 : FILE OF INTEGER, 
F3 [IN] : FILE OF REC; 

FILE DECLARATIONS - FIGURE 4.27 

In Figure 4.27, we see examples of file declarations. The 
file named F1 is an input file of characters. Each GET operation will 
access one character. Character files are coded files. 

F2 and F3 are binary files. File F3 illustrates how a file of some 
arbitrary type can be declared. For file F3 each GET or PUT will access 
one record. Tha tis, !;he f.i te-E£..c la r.9.Lt.Q!LA§_t~,? __ !=.!t_~_._~E.!.~()_~_.~~~5~.~a t ion 
!!:9Jls.fer.r.eod_"wJt:.h .. 9Jl.e"Ij Q .. $ ta teme nt~. 

The names Fl, F2 and F3 function in two capacities. First, they are the 
name of the file. Second, they are the pointers to the elements in the 
file. 

OPEN 

Before we can perform any advanced operations ona file the file must be 
explicit 1y opened (files INPUT and OUTPUT, hO'Vlever, are opened auto
matically). The OPEN statement opens the file specified and assigns 
the first component to the fil(~ buffer pointer. 

An illustration of the file structure is shown in figure 4.28. 

4-23 



FILE BUFFER POINTER 
Fl ---=t 

FILE FILE OF TYPE 
BUFFER 

VAR 
Fl [IN 1 FILE OF REC, 

X RECj 

OPEN (Fl) j 
X:=Fll\j 

FILE STRUCTURE - FIGURE 4.28 

Figure 4.28 illustrates access to a file. The file Fl is declared to be 
a file of REC (from figure 4.27). That means each component on the file 
is a record. Notice that a variable X is also declared. The "OPEN (Fl)j" 
statement opens the file Fl and positions the file buffer over the first 
component and sets the file buffer pointer to point to the file buffer. 
The statement "X :=F1A; 11 assigns to X wha t the fi Ie buffer pointer points 
to (Le. the first component in the file). In this manner~ we have just 
"read" the first record from the file. 

GET STATEMENT 

To continue our reading process,we must move the file buffer to the next 
component and update the file buffer pointer accordingly. These 
operations are accomplished by the GET statement. 1:LC)J:.~=,f:;he):=9..E.T,_.9o~~~noJ':~ 
retr..i4e~e data GET Eositions the file buffer and the associated "TiTe buffe:r;:. 
~.r-,""",-. __ .,-, ._ .. ~." .. ~m,_ ~,.,_ ... ,., •. -:JfJ ttl c .• ~ ~ ""n"" , . ,......"".,.~"l'"=.,=~,_""""'"_='l •• ;:""""""''"''''''''"='"'~,...,-~.,.~.~.~_~~.:":~" .. J'"'~._,."_ .• ".r:::::-.=,..-r:-"-:'_r.>r.'_:",""',=n""''''''''''''''''''~-'"'''' 

.2~~~~!,.o T~l! d _,ga ta! wLa l\;?'!Y~~§~J:.!!~".~~.y.E.~~.~_~Kt1.~.~~m:_ .. I.::'_.~~ 

Now we can write a program skeleton to open a file and read the components, 
effectively transferring the components from a file to an array in memory. 

Rev. 8 

"ASSUME RECORD DECLARATION IN FIGURE 4.27" 
CONST LIMIT = 100; 
VAR Fl [INJ FILE OF REC, 

X ARRAY [1. .LIMIT] OF REG, 
I : [STATIC] 1 •• LIMIT +1 :=1; 

OPEN (F1); 
WHILE NOT 1fEOF (F1) ANJ (I<=LIMIT) DO 
x[I1 :=Fl,,;-

I := 1+1; 
GET (Fl); 
WHILEND; 
WRITE (lEND OF READI,EOL); 

GET-FILE 110 - FIGURE 4.29 4-24 



PUT STATEMENT 

~!.....sta tem~t appends the va lue of the file_9ug er var!AEJ~ __ <"[~.L~£ 
the file and then the file buffer variable (fA) becomes undefined • 

...;.- ,.",~.---~.--,--~-. -"--- - ------_ ..... ,-. -. -'''--.- --_.,', --" '- ,--- ,~----..... -~. --" ". - ~.-,--." .. -.,~--... , ...... 

For example, let's consider writing the contents of an array of records 
onto a file for use later. 

OTHER I/O STATEMENTS 

"ASSUME RECORD DECLARATION AS IN FIG. 4.2711 
CONST LIMIT = 100 
VAR X: ARRAY (i •• LIMIT] OF REC, 

I: 1. .LIMITti, 
F2 [OUT] : FILE OF REC; 

11 ASSUME ARRAY X HAS BEEN INITIALIZEDII 
OPEN (F2); 
FOR 1:= 1 TO LIMIT DO 
F21\ := X [I); 
PUT (F2); 
FOREND; 

• 

PUT - FILE - Figure 4.30 

The REWIND statement is used to reset the current position to the begin
ning of the filg_911d-as.signs_t,he.....£i.l~.uf.f..e_L.R9.:!.!lJ;~r.:-t.o -El!:~=n.!..~J;. 
~P2E.~t.j._l}.,".th~ fil~, •. To rewind file Fl, the statement IIREWIND (Fl);" 
would De used. <~--~~~~-. 

The CLOSE statement closes the file. 
the file once it has been closed~ To 
IICLOSE(Fi);1I would be used • .... ~ 

DATA-REPRESENTATION DEPENDENT FEATURES 

I/O operations are not allowed in 
close file Fl,the statement 

The facilities covered in this section can be used only in a procedure or 
function which is declared [REPDEP]. Generally, you will not need (and 
will not use) these facilities. Occasionally, you will need these features, 
and when you do they HUST be dec lared [REPDEP1 • 

One facility,which is needed occasionally, is the ability to measure a 
variablE~s storage space requirements in the addressable unit of memory for the 
machine on which the SWL program is executing. This kind of a bi lity 
would certainly be required in a memory management utility for example. 

To support the need for assigning values to the unit of addressable 
storage, the CELL data type was created. 

4-25 



I 

Only assignment and equality tests are defined on a CELL~ 

To tnanipulatecells two functions are provided: 
1) IISIZE (variable identifier) function returns the number of CELLS 
required to contain the variable identifier or type identifier specifi,~d; 
2) #LOC (argument) returns a pointer which can be assigned to any direct 
pointer. These functions, when used, must appear in a [REPDE~] procedure 
or function. 

For example, the following function returns an integer indicating the 
number of cells required to contain the specified argument (which is 
an array in this example). 

TYPE A =ARRAY r *] OF INTEGER 
PROC [REPDEP] MEMORY . 

(VAL M:A i). INTEGER; 
MEMORY := IISIZE (M); 
PROCEND MEMORY; 

REPDEP FUNCTION #SIZE - Figure 4.31 

The next example illustrates how values may be assigned to CELL type. 

PROC [XDCL REPDEPl MAIN; 
VAR A,C : CELL) 

P : "INTEGER; 

P:= IILOC (A) 
PI\:= 0110(8); 
C := A; 

• 
• 

PROCEND MAIN; 

REPDEP CELL AND #LOC FUNCTION - Figure 4.32 

Many interesting things are happening in figure 4.32. 
Notice the statement "P:= IILOC (A);". P is a pointer to an integer. A 
is type cell. #LOC (A) returns a pointer to type cell. This assignment 
then is quasi-legal. That is, it assigns a pointer to a cell to a variable 
that is a pointer to an integer. This is the mixing of types that requires 
the REPDEP attribute. #LOC will provide a pointer to its argument that can 
be assigned to any pointer variable. 

f The next statement "p,,:= 0110(8);" is no surprise. It simply assigns 
J the va lue 0110(8) to wha t LP.9-itl~t;,I;I=!;P~_(th..e~_,~.~ut.. Unfortuna te ly, this 

is the only way to assign constants. directly to a cell. 

Once cells have been initialized,we can make assignments as sho"?11 in the 
statement "C:=A;". Here,we are simply assigning the value of cell A to 
cell C (no type mixing here). 

Rev. 8 4-26 



STANDARD FUNCTIONS 

We have covered most of the standard functions available in the language 
throughout the text. Belo'w you will find'a list of the current standard 
functions. 

FUNCTION 

$REAL (X) 
$INTEGER (X) 
$CHAR (X) . 
$STRING (1, s,f) 
1foSTRLENGTH (S) 
#LOWERBOUND (array,N) 
#UPPERBOUND (array,N) 
1foEOF (file name) 
1foLOC (argument) 
#SIZE (argument) 
#STRINGREP (VAL,SUBSTR,WlDTH,DECIMALS) 
11SUCC (X) 
11PRED (X) 
#ABS (X) 

REFER TO 

CHAPTER 2, fig 2.11 
CHAPTER 2, fig 2.11 
CHAPTER 2, fig 2.11 
CHAPTER 2 
CHAPTER 4, fig 4.10 
CHAPTER 4, fig 4.8 
CHAPTER 4, fig 4.8. 
CHAPTER 2,' fig 2.25 
CHAPTER 4, fig 4.32 
CHAPTER 4, fig 4.31 
CHAPTER 2 

STANDARD FUNCTIONS - Figure 4.33 

SUCCESSOR & PREDECESSOR FUNCTIONS 

The #SUCC (argument) function returns the successor of its argument. 
For example 11SUCC (3) is the va lue 4 because the successor of three 
is four. 

If an ordinal was declared: 
TYPE 

COLOR = (REO, YELLOW, BLUE, GREEN); 

Then #SUCC (YELLOW) would be BLUE. The #SUCC <'A') is 'B', etc. 

The #PRED (argument) function is similar; it returns the predecessor of 
its argument. 

What happens if we request a predecessor or successor that does not 
exist (like #SUCC (GREEN) or #PRED (RED))? The result becomes 
undefinedl 

4-27 



CCMPI1E TTh1E OPTIONS 1 

Compile time options a~e currently implemented through the mechanism 
of comment toggles. A comment toggle is a toggle that is inside a 
comment lLle (anywhere in the program). 

Through the use of lIcomment toggles ll , the programmer has control over 
certain aspects of the generated code and the source listing. A toggle 
is a switch associated with a particular feature (such as checking for 
zero-divide), and it may be turned on or off by means of a comment 
tot;gle list. A comment toggle list may appear anywhere within a comment, 
and its syntax is: 

<comment 
toggle 

toggle list;> ::= $ <toggle" ,<toggle;> 
::= A<plus or minus> "assignment checkingll 

X<plus or minus> lIindex checkingll 
D<plus or minus> 11 zero-divide checking" 
R <plus or minus? lI rounding arithmetic 11 
T(plus or minus)' 11 se ts all of A, X, D, and R11 
C<plus or minus~ "list object code 11 
l<plus or minus;> 11listing on or off11 

S (intege.1:" 

S 
K<plus or minus" 
M<integer7 

B.(integer 'J 

(lines with errors listed 
even if $1-) 

11 skip <integer:> lines on 
listing 11 

11 skip to new page on listing11 
110verprint SW1 reserv'ed words 11 
11terminate scan of source 

lines after column <'integer)11 
"start scan of source lines on 

co lumn <integer)11 
« plus or minus") ::= +~-

Embedded blanks may not appear within a comment toggle list. 

So, for example, to cause overprint of SW1 reserved words a comment toggle 
\,.;rou ld be constructed: 11 $K+" • To turn off the overprint of keywords 
la ter on in the program,11$K_11 could be used. 

The compiler initially sets the toggles to correspond to 
11 $T+ ,C _, 1+ ,K- ,M72, B111 

which hnplies that all run-time checking is activated; arithmetic is 
performed with rounding instructions; a source listing is produced but 
without object code listing and overprinting; and the source lines are 
scanned from co lumn 1 up to and inc luding coli.unn 72. 

/ 

1 - Compile time options described here are for ISW1 only. 
An entirely different mechanism of specifying compile time options 
will be used in SW1. 

REV. A 4-2 



CHAPTER 5 

STRUCTURED PROGRAMMING AND SWL 

One of the primary goals we hope to attain with the use of SWL is the 
reduction in cost of developing software products. This reduction, 
hopefully, will take place to some extent in the implementation phase 
of software development and to a greater extent in the ongoing maintenance 
phase of the software dev'eloped. 

It is hoped that a high lev'el, block-structured language (SWL) will 
help make these dreams a reality. Our dream is software which is easy 
to understand. Hence, it will be easier to implement and easier to 
maintain and modify. In our visions, we see programs with a well
defined (and easy-to-understand) structure •. 

It is hoped that implementors will structur~ both their thoughts, and 
their programs. Not much can be done to tell people how to structure 
their thoughts. With respect to programs, however, we can suggest 
ways of structuring both data and executable lines of code. 

5-1 



-
... -

.... 

/ 

I 

- -

AN UNSTRUCTURED PROGRAM - Figure 5.1 

( 
i 

5-2 



~ ==--------------------------~~ 

A STRUCTURED PROGRAM - Figure 5.2 

5-3 



Figure 5.1 illustrates graphically a sorting procedure which was written 
in an unstructured way (in FORTRAN). Notice how the lines of control 
cross and intermingle in this procedure. It would be difficult 
to understand this flow o( control. As you can imagine the task of 
modifying the procedure is complicated by the many different ways we 
can get to many statements. 

Contrast this unstructured flow of control with the nicely nested flow of 
control in figure 5.2. This flow of control (figure 5.2) resulted 
from a SWL program written to perform exactly the same sorting algorithm. 
Notice the elegant structure. It becomes obv'ious which loops are the 
outermost controlling loops. Making changes to this SWL prograrn should 
be much easier. 

Of course, it is possible to write a structured FORTRAN program or an 
unstructured SWL program .. thats not the point. The point is that you 
should be aware of the structure and strive to make your program 
structures as clear and meaningful as possible. 

This goal will be easily achieved if, when wrHing SWI .. code, you try 
to avoid the GOTO stat'ement and concentrate on the structured statemeni:s 
including the IF, WHILE and REPEAT statements. 

One approach to help make programs clearer is to develop the programs 
in a step~by~step manner. This concept was discuss in a paper by NIKLAUS 
WIRTH entit led IT PROGRAM DEVELOPMENT BY STEPWISE REFINEHENT" which 
appeared in COMMUNICATIONS of the ACM, Volume 14, Number 4, Ap~il 1971. 
The program solutions were modified to SWL by John Sutherland of 
Control Data Canada Limited. 

The program we will use to illustrate these concepts is a solution to the 
IT 8-Queens problem". The problem may be sta ted: 

Given are an 8 x 8 chessboard and 8 queens which are hostile to each 
other. Find a position (or square) for each queen so that no queen 
may be taken by any other queen (i.e. every row, column and diagonal 
contains at most one queen). 

Our program will find one solution to the problem. In thinking about 
the problem itis clear that we will want to test a square (by considering 
a queen to be there). If the position is safe, then we will set the 
queen at that position and move on to the next column. 

If the position is not safe, we want to consider additiona 1 positions 
in the column. If we cannot find an acceptable position in a column, 
we must go back to the preceding co luron and mov'e the queen there. 

The program ends successfully if we try to move an to the 9th (non
existant) column. This of course means that we hav'e successfully 
placed all 8 preceding queens. 

The program ends unsuccessfully if we have to move the queen in the 
first column to the 8th rank unsuccessfully and then try the preceding 
(non-existant column). 

5-4 



So we may exp.t'ess our game plan at the highest leve 1 in the fo llowing 
,way (figure 5.3) ~ 

INITIALIZE; 
HEPEAT 

TESTSQUARE; 
IF SAFE 

THEN SETQUEEN; 
NEXTCOLUMN; 

ELSE ADVANCEQUEEN; 
IFEND; 
UNTIL ENDOFSEARCH; 
WRI ~RESULT; 

PROGRAM OVERVIEW - Figure 5.3 

Our intention is reasqnably clear. After some initialization,we will 
REPEAT until ENDOFSEARCH. The search algorithm entails first the test 
of a square to see if it can be occupied (TESTSQUARE). If the square 
is safe, then we will SETQUEEN on this square and go to the NEXTCOLUHN. 
If the square was not SAFE,then we ADVANCEQUEEN. ADVANCEQUEEN then 
must prepare for the next TESTSQUARE. We will also provide ADV~~CE
QUEEN with enough inte lligence to determine when it cannot adv'ance in 
one column and~henceJmust backtrack to a preceding column. 

Our goa 1 is to leav'e the text of the program in figure 5.3 intact and 
arrange our data structure and procedures so that this high-level 
description of the program is correct. Note that this approach 
closely resembles the way we think about problems. 

With this high-lev'el design completed,we must turn to the data structures 
to make the program work. We need to be able to identify valid and 
invalid positions for each queen. There are four components to this 
1) horizontal v'alidity 2) v'erticle validity, 3) left diagonal 
validity, and 4) right diagonal validity. 

We can handle horizontal and v'eri:ical v'alidity with one array (indexed 1 
to 8), making sure that there is only one 'queen in each row. We could 
call this array HORIZONTAL. HORIZONTAL[3]= FALSE indicates that the 
third row is not available for a queen (it has a queen in it). 

The right diagonals can be represented as an array (indexed 2 to 16), 
where the diagonal is found by adding the row and column. For example 
row 3,column 5 (sum=8) is in the same diagonal as row 6 column 2 
(sum=8). An array value TRUE would indicate that the corresponding 
right diagonal is available for a queen. 

The left diagonal can be represented as an array (indexed -7 •• 7) where 
the diagonal is found by subtracting the row minus the column. For 
example row 3,column 6 (difference = -3) is in the same left diagonal 
as row 2,column 5 (difference = -3). An array value TRUE would indicate 
that the corresponding left diagona 1 is available for a queen. 

5-5 



The position array (indexed 1 to 8) contains values indicating the row 
of the queen. For example POSITION r 3.1 = 7 would indicate that the third 
co lumn conta ins a queen in the sev'ent h row. 

Now lets examine some of the procedures. Here we step down to a lower 
leve 1 of refinement. 

INITIALIZE must set up all arrays to their initial values. 

TESTSQUARE must check to see if a queen can be placed on a given square 
(row and column). TESTSQUARE is shown in figure 5.4. 

PROC TESTSQUARE; 
SAFE := A[ROW] AND 

B[ROW+COLUMN] AND 
C[ROW-COLUMN]; 

PROCEND TESTSQUAR~; 

TESTSQUARE PROCEDURE - Figure 5.4 

The SETQUEEN procedure must mark rows, left diagonals, and right 
diagonals when they have been used. Also, when a position is used 
it must be saved in the position array. 
See figure 5.5 below: 

PROC SETQUEEN; 
AgOW] := FALSE; 
B OW+COLUMN] := 
CROW-COLUMN} := 
POSITION [COLUMN] 

PROCEND SETQUEEN; 

FALSE; 
FALSE; 
:= ROW; 

SETQUEEN PROCEDURE - Figure 5.S 

The remaining procedures are equally simple. A complete program listing 
can be found in figure 5.6. 

The important point is that our programming language was able to implement, 
in a reasonable way, the logical expression of our problem. 

5-6 



000001 
000063 
000063 
000073 
0001 12 
000131 
000141 
000]42 
000143 
000]44 
000145 
000145 
000145 
000150 
000154 
000156 
000166 
000173 
000200 

!MODULE QUEENS; 

!VAR HORIZONTAL 
RDIAGN0L · · LDIAGN0L · · P0SITION 
SAFE 
ROW : 
C0LUMN 
I 

PR0C REM0VEQUEEN; 
REPEAT 

ARRAY [1 •• 8) 

ARRAY [2ee16J 
ARRAY [-7 •• 7] 
ARRAY [ 1 •• 8] 

B00LEAN# 
1 •• 9 # 
O •• 9# 
-7 •• 16; 

COLUMN := C0LUMN - 1; 

OF' 
01' 
01' 
01' 

IF C0LUMN < 1 THEN RETURN IFEND; 
R0W := P0SITI0N[C0LUMN1; 
H0RIZ0NTALCR0WJ:=TRUE; 
RDIAGN0LCR0W+C0LUMNJ:=TRUEJ 
LDIAGN0LCR0W-C0LUMNJ:=TRUE; 

B00LEAN# 
800LEA(\l~ 

800LEAN# 
INTEGER# 

--,--.--,--~.-.-

.. _.~O_O~O 6 .-=--=R...:..0::::..:.:..li~:_=--.:...:Rc.::0:..:;l.J~+---,1,--",,-· ________________ _ 
000212 
000214 
000216 
000216 
000216 
000216 
000227 
000235 
000244 
000252 
000261 
000267 
000276 
000304 
000305 
000306 

.000310 
0003]0 
000310 
000313 
000331 
000332 
0003 L.! 1 
000346 
000350 
000354 
000356 
000356 
000356 
000356 
000365 
000372 
000402 

!UNTIL ReiN <= 8; 
!PR0CEND REM0VEQUEEN; 

PROC INITIALIZE; 
F OR I : = 1 T0 8 00 

H0RIZ0NTAL[ I J := TRUE F0RENDJ 
F0R I : = 2 T0 16 00 

RDIAGN0LCIJ := TRUE F0REND; 
FOR I := -7 10 7 00 

. LDIAGN0L[I) := TRUE F0REND; 
!FOR I := 1 T0 8 DO 
! POSITION[I) := 0 F0REND; 
!COLUMN:=] ; 
! RO'.'/ :=1; 
!PR0CEND INITIALIZE; 

!PR0C WRITERESULT; 
! IF COLUMN < ] 
! THEN WRITEC' NO MORE SOLUTI0NS',E0L); 

RETU~N IFEND; 
!FOR RO'.v := ] TO 8 00 
IWRITE{POSITI0N[R0W):5); 
!F0RE~D: 

!WRITE{EOL); 
!PR0CEND WRITERESULT; 

!PR0C TESISQUAREJ 
SAFE := HORIZONTAL CROW) AND 

RDIAGN0L(ROW+COLUMN) AND 
LDIAGN0LCR0W-C0LUMN1; 

!PR0CEND TESTSQUARE; 

STEPWISE REFINEMENT - Figure 5.6 

5-7 



000404 
000404 
000404 
000413 

__ .-J1Q0 420 
000425 
000432 
000434 

!PR0C SETQUEEN; 
H0RIZ0NTAL[R0Wl := FALSE; 

! RDIAGN0L[R0W+C0LUMNJ := FALSE; 
! LDIAGN0LCR0W-C0LUMNJ := FALSE; 
! P0SITI0N(C0LUMN] := R0W; 
!PR0CEND SETQUEENJ 

000434 !PR0C NEXTC0LUMNJ 
000434 ! C0LUMN := C0LUMN + 1; 

-=0",-,O",-,0::<...4-,--,,42=---~! ~R~0.!!.W~:-,-=----,-t~; __________________ ... ____ ..... _ 
000443 !PR0CEND NEXTC0LU~NJ 
000445 
000445 PR0C ADVANCEQUEEN; 
000445 R0W:= R0W + 1; 
000454 IF R0W > 8 THEN REM0VEQUEEN; IFEND; 
000~4=5~7~~P~R=0~C=E~N=D~A~D~V~A~N~C~E~Q~U~E~E=N~,~· __________ __ 
000461 
000461 
000461 
000473 
000475 

PR0C END0F'SEARCH 800LEAN; 
END0FSEARCH:=(C0LUMN<I) 0R (C0LUMN>8); 

.PR0CEND END0FSEARCH; 

_-'='0'-"'0'-"'0'-4!....!7-=5'--'!'-'-P-'-R.!..!0::..!C~[::...!X..!.!Do:...:C~L=-=-] ....,Mc.:.;A...!....:!:..I !..!.N~; ________________ _ 
000475 ! INITIALIZE; 
000501 ! REPEAT 
000501 TESTSQUAREJ 
000502 IF' SAFE 
000502 THEN SETQUEEN; 
000504 NEXTC0LUMN; 
000505 ELSE ADVANCEQUEEN; 
000507 IF'END; 
000507 !UNTIL END0FSEARCH ()J 

000511 !WRITERESUL1J 
000512 !PR0CEND MAIN; 
000514 !M0DEND QUEENSJ 

STEPWISE REFINEMENT - Figure 5.6 (Continued) 

5. 



To find the complete list of so lutions to this problem (a 11 92 of them) 
we need only cause the repeat sequence of procedure MAIN to be repeated 
as shown in figure 5.7 • 

. - 000~11 

000477 
000503 
000503 
000503 
000504 
000504 
000506 
000501 
00051 I 
000511 
000513 
000514 
000511 
000521 

!PR0C [XDCLl MAINJ 
!INITIALIZEJ 
!REPEAT 
!REPEAT 
! TESTSGlUAREJ 
! . II' SAF'E 

THEN SETGlUEENJ 
NEXTC0LUMNa 

ELSE ADVANCEGlUEENJ 
IF'ENDJ 

UNTIL END0F'SEARCH ()J 
WRITERESULTJ 
IF C0LUMN.>= 1 THEN ADVANCEQUEEN IFENDJ 
UNTIL C0LUMN < lJ 
P~0CEND MAINJ 

MODIFICATION TO PROGRAM OF FIGURE 5.6 - Figure 5.7 

5-9 



( 
\ 



CHAPTER 6 

SWL PROGRAMMING TECHNIQUES AND CONVENTIONS 

This chapter is an assembly of techniques ::lnd conventions that may be 
used at your discretion. Unfortunately, at this time there are no 
conventions. There are also precious few good programming techniques. 
It is hoped tha t readers will pr.ovide some feedback and suggest 
additional SWL Progralnming TECHNIQUES. 

6-1 



TECHNIQUES FOR EASE OF MAINTENANCE 

Almost every program declares some variables. Typically, at some later 
date, it becomes necessary to add variables to the program. Consider 
the v'ariable declaration of figure 6.1 

VAR R: REAL, 
A: ARRAY r 1 •• 10] OF BOOLEAN, 
C: CHAR; 

DIFFICULT TO MAINTAIN VAR DECLARATION - Figure 6.1 

In figure 6.1, if we needed (for maintenance or modification) to add 
another variable to the declaration (presumably at the end of the list 
of variables, we would have to change two lines. First, the semi-colon 
must be changed to a comma. Second,the new variable line must be 
added. The result is two modifications. Similar problems occur if 
we needed to delete the variable R or C from the declaration. 

Now refer to the variable declaration of figure 6.2. 

VAR 
R: REAL, 
A: ARRAY [1.. 10] OF BOOLEAN, 
C: CHAR, 

EASY TO MAINTAIN VAR DECLARATION- Figure 6.2 

In flgure 6.2,it is easy to add a new variable with only one modification. 
Similarly,deleting any variable from the list requires only one 
modification. This feature is not available in the current version 
of ISWL. Future versions wil~however., support this feature. 

TECHNIQUES FOR PROGRAM CLARITY 

Often, poor programming habits will cause a decrease in program clarity. 
One example of this is the unnecessary use of control statements 
(GOTO, EXIT, etc.). 

Fig'Jre 6.3 illustrates two programs. The results are identical, only the 
source code is different. The programs check for an empty line (from 
a termina 1). If the line is empty, a REWIND is executed and another 
attempt is made to find data on the line. When reading data, it is 
necessary to check for end-of-file after each read. 

Rev. 8 6-2 



LABEL 
Z, 

; 
VAP.. 

SUM 
N 
; 

INTEGER, 
INTEGER, 

"CHECK FOR EOF" rZ: IF ff:EOF (INPUT) 
THEN REWIND (INPUT); 

GOTO Z 
IFEND; 

"SUM UP DATA" 
SUM :=0; 
LOOP 
READ (N); 

..-+-- EXIT WHEN ff:EOF (INPUT); 
SUM := SUM+N 
LOOPEND; 

VAR 
SUM 
N 
; . 

INTEGER, 
INTEGER, 

"CHECK FOR EOF" 

L~ILE #EOF (INPUT) DO 
REWIND (INPUT); 
WHILEND; 

"SUM UP DATA" 
SUM. :=0; 
READ (N); 

[
WHILE NOTff:EOF 
SUM := SUM+N 
READ (N); 
WHILEND; 

(INPUT) DO 

PROGRAM CLARITY - Figure 6.3 

In figure 6.3 both examples appear similar. However, upon detailed 
analysis the left program requires the r~ader to trace lines of control 
created by the GOTO and EXIT statement. The right example can be read 
more easily from top to bottom. 

6-3 





CHAPTER 7 

PERFORMANCE MEASUREMENT & PREDICTION 

In this chapter, we will be discussing techniques for improving the 
execution time performance of your SWL programs. Since the performance 
tools we will be discussing exist on the CDC CYBER 70/170 computer 
systems under the KRONOS 2.1 operating system,the techniques are 
necessarily machine dependent. However, it is most likely that some 
similar tools will exist on future computer systems. Once you see how 
easy the tools are to use .and how much information can be obtained from 
a performance stud~you will certainly want to include performance 
testing in your software deve lopment plans. 

7 -1 



PERFORMANCE PREDICTION 

Performance prediction is done prior to coding - often during the design 
stage(s) of software development. In performance prediction,we ask 
questionsJ such as: 

1. Which data structure will provide most rapid access 
(least CPU time)? 

2. Which algorithm will execute in the least amount of 
CPU time? 

3. What disc loading will this program create during 
execution? 

Notice that performance prediction tries to answer questions about what 
will happen when the software is written. Performance predicition 
helps us choose the best methods of software design and implementation 
prior to coding. 

Unfortunately, at this time there exists almost no performance prediction 
information for SWL, so we must leave this important performance area 
without providing any acceptable answers. We mention the topic of 
performance prediction to indicate the lack of information and to put 
performance measurement in its proper perspective. 

PERFORMANCE MEASUREMENT 

Performance measurement is done after a program is written. The perform
ance measurement tools will enable us to find the specific statements in 
our SWL program that account for the greatest percent (or amount) of CPU 
time. Armed with this information we can make modifications to our soft
ware to make it perform faster. In addition, after making some cha~ges we 
can determine just wha t improv'ement in execution time was actua lly 
rea lized. In a 11 these endeav'ours, however, the performance considerations 
are done after the software has been written. 

Fortunately, we have available some very good performance measurement tools. 
These are standard tools available to any program (FORTRAN, APL, COBOL, etc.) 
that runs under KRONOS 2.1 on the CDC CYBER 70/170 computer systems. These 
tools have been interfaced with SWL to make them easy to use. 

HOW DOES PERFORMANCE MEASUREMENT WORK? 

~he following discussion explains the performance measurement tools on 
the CDC CYBER 70/170 computer systems. 

There are two distinct parts to our performance measurement tool. The 
first part gathers information (statistically) from the running SWL program. 

7-2 



This data gathering is done at a frequency of once every 100 micro 
seconds. The data gathering is done by a Peripheral Processing Unit 
(PPU) running a data collection program called SMPl SMP reads the 
central processor P register each 100 x 10-6 seconds, categorizes the 
location of the P register (was the P register running our program or 
someone elses program?), and adds a count to the appropriate location 
in a table in the PPU's memory. At job termination, the PPU writes the 
raw data (table contents) onto a file named PSAMPLE. This concludes the 
data gathering portion of our performance measurement tool. 

The second part of our performance too 1 is the da tareduction program" 
This is a standard (KRONOS supplied) FORTRAN program (named PSAMP) that 
reads the contents of the file named PSAMPLE and produces some nice 
looking data for our interpretation. This concludes the data reduction 
portion of performance measurement. 

Now, our work begins. We correlate the performance information produced 
by the FORTRAN program (PSAMP) with our SWL source language listing. From 
this correlation,we can determine how much time each SWL statement 
(or group of statements) requires. We can also determine how much time 
is spent waiting for I/O and how much time is being spent in the system 
routines. 

We may in fact, run the performance measurement tool a number of times. 
First we ·.."i.ll be looking for an overview at the procedure level. We 
wi 11 be trying to answer the question: IIwhich procedures require enough 
CPU time to warrant further investigation?lI. Then we may narrow the 
range of our performance measurement to a single procedure (or part of 
a procedure) to answer the question: IIwhich SWL statements in this 
procedure take up most of the CPU time?lI. 

SYSTEM DESCRIPTION 

Figure 7.1 illustrates the important pieces of a performance measurement 
run. Your program resides in a portion of real memory. When a performance 
run is in progress your job cannot be rolled out. This,_i~Blie~=tha~ ~ 

pe-Ef?:::nB:nc~.~~~~~!1t ..E~~!!-~I!.~y'jJ'Lmaje in ~. ~ckgr~)Uwt (oJ;:._ 
15aEcnmOCfej. There are two ways to run batch jobs:1) read the job in 
(ro~~the=CARD reader, or. 2) use the SUBMIT command from the terminal. 
The only restriction is that the performance measurement job may not run 
interactively from the terminal. As your job is running the dedicated 
PPU (SMP) is sampling the P register ev'ery 100 micro seconds and updating 
the PPU raw data table. At job termination the file PSAMPLE is created. 

The PPU raw data table is 202S entries long. One entry is for all samples 
found below the range you have asked to sample. A second entry is devoted 
to all samples abov'e the range you have asked to see. The remaining 200S 
entries are for the range you have asked to examine. 

7-3 



PPU-SMP 

DISC FILE 

CYBER 
CPU 

P-REGISTER 

, 
, , , , 

, , , 

o 

, 

~ YOUR -- PROGRAM 

FL-1 

REAL MEMORY 

PERFORMANCE MEASUREMENT SYSTEM DESCRIPTION - Figure 7.1 

I~ 

II 



If, for example, you ask to examine the 2008 word area in your program from 
113068 to 115058 then the raw data table will have one entry for each word 
in your program in the range you wanted sampled. 

Remember that the PPU raw data table is fixed in length (2008 entries). 
So, if you ask for a sample range of 3008 words (say from 162148 to 16513 ) 
then the PPU raw data table will use one entry to represent two words 8 
from your 'program. Hence the resolution of the sample will be (every) two 
words. 

Figure 7.2 shows the correspondence bet'ween the range you ask to sample 
and the resolution of the data produced. 

SAMPLE 
RANGE 
REQUESTED 

(R) 

O<R:::2008 
2018~R~4008 
4018~R~10008 
10018~R~20008 
20018~R~4000 
40018~~100088 
100018~~200008 
200018~~0000 
400018~R~1000088 
1000018~R~2000008 

RAW 
DATA 
TABLE 
RESOLUTION 

1 WORD 
2 WORDS 
4 WORDS 

lOS WORDS 
208 WORDS 
40 WORDS 

100~ WORDS 
2008 WORDS 
400 WORDS 

1000~ WORDS 

SAMPLE RANGE v's RESOLUTION - Figure 7.2 

SWL INTERFACE 

The interface function is written in assembly language (CCMPASS) to conform 
to and be callable 'from any SWL procedure. The interface procedure accepts 
two paramaters (FIRSTword address to be sampled and LASTword address to be 
sampled) and returns a boolean result. The boolean result is always TRUE 
on the CDC CYBER computer system. It would be FALSE on a computer system 
that did not have the performance measurement tools. The CCMPASS interface 
procedure calls the PPU program SMP and insures that only one performance 
measurment is allowed to run. This interlock (allowing only one sampling 
run) is done to insure that the computer system resources (central memory 
and Peripheral Processors) are not all tied up doing sampling runs. 

7-5 



The COMPASS interface function is equivalent to the following SWL 
procedure declaration: 

PROC (XDCL] SWLSMP (VAL FWA,LWA:INTEGER) BOOLEAN; 

PROCEND SWLSMP; 

So, when you want to do a sampling run you must declare SWLSMP to be 
XREF as fo llows: 

PROC [XREF] SWLSMP(VAL FWA,LWA:INTEGER) BOOLEAN; 

Then,when you want to begin the sampling run the SWLSMP function is 
.called giving the FWA and LWA to be sampled. A typical calling sequence 
might be: 

IF SWLSMP (500(8),1627(8)) 
THEN WRITE ('SWLSMP OUTPUT FOLLOWS',EOL); 
ELSE WRITE ('SWLSMP NOT AVAILABLE',EOL); 

IFEND; 

The COMPASS interface function (SWLSMP) is available in source form and 
may be obtained with the command: 

GET, SWLSMP /UN=ZED 

SWLSMP is also reproduced in figure 7.3. Since this is not a guide for 
COMPASS prograrmners SWLSMP will not be explained in detail. 

7 -6 



I uE: !\if SWL SMP 
ENTRY SWLSMP 

-. -------- .. ----.---* * * * * * -I .. * -I} * '.I- * * -I~ * * * * * i~ * * '* * * *-*** * -if * * *** -I~* ** * ***-*-.u:---------.- ------

WRITTEN bY 
CDC f A-C 1"1:: I T Y 
COI-1POSED ON 
LAST tv100IFII::.D: 

RON ROTHSTEIN -.. -..... -.. --.... TioFAt" 

25 OCTObER 1974 
2B UCTOtjER 1'174 

* 
* "if' 

* 
* - .... - .. -.- .... _-- ---_ ... _--,.. ---_.- -- ._----- --------- -- --------.----------~------- ---- -----_.- -_._---

-~ lSWL EOUIVALENT STATEMENT: * 
>, .. * 
" Pf.lOC (xOCLl SWLSMP * ,,. (VAL I-WA,LWA:INTEGER) AOOLEAN; * 
.. !} * 

SKU 85 **************** 
LXO 2~d * 
BX1 x7+XO * ENTRY SEQUENCE 
S~5 86 * 

----S-A-7-----'b~+ 1----------*------

5d6 B6+6 **************** 

Sti2 'xxxXXX +}O**************** 
SA2 BO+d2 * INITIALIZE fET 
MXO 420 * £RROR RETURN ADDR 

---- -.. --------;J-K'2----X-2*xtr----·-----r-sO PSAt.1PLE BUSY---------------
SX3 BO+~RAO * M~SSAGE WILL NOT 
Bt6 X2+X3 * APPEAR IN DAYFILE 

**************** 

hTTCH () 

.. ----------ATfACH X X XXXX~-,-;W_---

S~l XXXXXX, READ RETURN CODE 
~AO 8 CONSTRuCT ~ASK 
LXO Ifj POSITION TO BITS 17-10, 
HAl xO*Xl EXTRACT CODE BITS 
Sjl Xl MOVE CODE TO 81 

Sd2 400Ub 
Nt Bl,~2'NEXT 

PSAMPLE fILE 
NOT FOUND 

5)(6 80 
5A6 B5+~ PSAMPLE := FALSI::.; 
MESSAGE MESSl,3.R PSAMPLE fILE NOT fOUND 

------·--------Eal--- B O~U-; E)( Tf---RET URN-

~vt:. X T St:i2 2000b pSAMPLE fILE 
Nt: Bl,tj2,NEXTl FOUND 8USY 
RECALL 
ECJ BO,dO,ATTCH TRY AGAIN LATER 

--_.- .--_._.-

SWLSMP INTERFACE FUNCTION - Figure 7.3 

7-7 



( 

( 

CALSMP 

EtJ 

SX6 
Bl,bU,CALSMP OTHER ERRORS 
80 

SA6 HS+l;: PSAMPLt: := FALSE; 
ERRORS ON PSAMPLE FILE 
RETURN 

M£5~AGE Mt~53.3,R 
£0 80,dO,EXIT 
5 4 1 
SA2 

~~ "----- -
SXo 
LX6 
MAO 
t!Xl 
t!X2 
LxI 

--rl6---
t3~6 
~-1;q 

LX! 
IX6 
!-;u 

85+3 GET fWA 
b5+4 GET LwA 

----
2315208 .SMP. 
420 LEFT JUSTIFY .SMP. 
42u 77777777777777000000 
-XU* Xl-() •• Of.- wA 
-XO*X20 •• 0LWA 
IdD O •• OFWAO •• O 

--)(6+;;( C-------SMP .F WAU ~-;O-------- --- _d 

X6+X2 SMP.FWA.LWA 
1 
41D 
X6+Xl 
=XSYS= 

RECALL 8IT 
SMP.R.FWA.LWA 

-- ------------ -------------------------------

SX6 
SA6 

BO+ 1. 
85+2 

TRUE 
PSAMPLE := TRU£; 

txII SAl 85+1 **************** 
Sd6 85 * 

-------------S~.;-r----xT---------------*~t.~X--.I--=T sl: fill E N-C~-- ---
LXI 421) * 
50S Xl * 
JP H1 ~~~**~~*~***~*** 

~RAU t!5S 4 _ 
---~1Es-5T------[ns----m-,*Ps_AM~-rILrNOT FOUND*---------- ----------

¥~SSj DIS .*E~RORS ON PSAMPLE fILE* 
L t.N £iJU 1031:1 **************** 
x_xxxxx F lLt..t! BUf ,LEN, FEl=14, EPR, pFN=PsAMPLE. US/\J=7EO 
HUF H~S LEN **************** 

SWLSMP INTERFACE FUNCTION - Figure 7.3 (Continued) 

( 
I 
\ 

7-



GEtTING STARTED 

Assuming that you want to initiate yOH!:.' sample run from.your terminal, 
you must create a SUPMIT file and give that file a namf'. The SUIMIT 
file should contain the follmdng (the numbers on the left are not in 
the SUEMIT file they are for reference only). 

1. XYZ,CM10000,T100. YOUR NAME 
2. ACCOUNT ,XYZ, PASSWORD. . 
3. CHARGE,CHARGENO,PROJECTID. 
4. ATTACH, ISWL/UN=ALL. 
5. GET, ISWLLIB/UN=ALL. 
6. GET,UTL/UN=ALL. 
7. GET, SWLSMP /UN=ZED. 
8. G,ET , YOURPROG. 
9. GET, YOURDATA. 

10. RFL,70000. 
11. COMPASS,I=SWLSMP,O=Z,B=LGO. 
12. RFL,112000. 
13. ISWL, I=YOURPROG, O=Z,B=LGO. 
14. MAP, ON. 
15. LGO,I=YOURDATA.,O=Z. 
16. PSAMP (,A). 
17 • REWIND ,A . 
18. COPYCR,A,Z. 
19. REWIND, OUTPUT. 
20. COFYCR,OUTPUT,Z. 
21.. CTIME. 
22. DAYFILE, Z. 
23. UTL,1000,INP=Z,OUTP=LIST. 
24. DISPOSE,LIST=PR/EI=XYZ. 
25. DAYFILE,LOOKSEE. 
26. REPLACE,LOOKSEE. 
27. EXIT. 
28. DAYFILE,LOOKSEE. 
29. REPLACE,LOOKSEE. 

SUIMIT FILE FOR SAMPLING - FIGURE 7.4 

In the example, SUEMIT file in figure 7.4 the only things you need to change 
are those that are underlined. These include your user number (lines 1,2, 
and 24), your password (line 2), your charge information (line 3), the name 
of the file containing your program (lines 8 and 13), and the name of the 
file containing your data (lines 9 and 15). All the other lines may be 
used exactly as shown. 

Lines 25 thru 29 produce a copy of the SUEMIT dayfile at your terminal. 
With this file (LOOKSEE) available you Gan examine the dayfile to be 
sure that all ~,.,p.nt well. The output listings will be avai lable when 
you log-in to an Export/Import terminal (200UT). If you want the output 
to be somewhere else, simply change line 24 accordingly. 

7-9 



THE LOAD MAP 

The load map will enable you to get a picture of where things are in the 
"field length (memory) when your program is running. 

Figure 7.5 is the load map from our sample program (to be discussed later). 

Figure 7.6 shows how we can interpret the load map to gain a picture of 
where" each module is loaded. This is nece"ssary in order to correct ly 
ana lys(~ the sample da ta. 

( 

" 

7-lC 



- .. - ..... ---- --- -_ .. _- -_ .. __ .. - --- --_._._---- _._-_ ... _------'------
LOAD MArJ. 

FL REQuIREO TO LOAD 13400 
FL R~uuIR~O TO HUN 6400 
INITIAL TRANSfEk TO SWLSY.l 4055 

HLuCK ASSIGNMENTS. 

BLOCK 

SwLSMP 
IGETPUll 

LUUPS 
SWLSYS 
CPUPFM 
CPUSYS 
II 

ENTRY 

SWLSMP 
SWLSI"1i-' 

LOUPS-
i"lAIN 

SWLSYS 
SWLSY.l 
r<PVTAo 

CPUPFM 

AUURESS 1-ENG.I~._L~ t. _____________ ... ____ .. __ _ 

101 171 LGO 
212 20U 
472 164 LGO 
656 3350 ISWLLI8 

4226 10 SYSLIB ._--- _._-----_._--"- -------_._---------._-_.". 
4236 3~ SYSLI8 
4270 2002 

ALJURESS 

101 

555 

405~ 

4151 

--------------------- -------_.----

kEFEHENCES 

LOOPS 564 

SwLSYS' 4142 

P FM :-------- - --------4227 SWLSMP III 
CPUSYS 

SYS= 4241 

RCL= 4253 
~N8= 4260 
MS'0;=---- ... ------------ 4265 

SWLSMP 
CPUPrM 
SWLSMP 
CPUP~M 

SWLSMP 

133 
4226 . 

121 
4231 

~-.-------'-'- _._-- -_._----------, 
116 12S 

TYPICAL LOAD-MAP - Figure 7.5 

. 7-11 



o 

KRONOS SYSTEM AREA 

100 
101 

SWLSMP INTERfACE FUNCTION 

271 
272 

/GET PUTI C<MMON I/O AREA , 

471 
472 

LOOPS 
(THIS WILL BE YOUR PROGRAM) 

655 
656 

SWLSYS 
SWL SYSTEM ROUTINES 

4225 
4226 

CPUPFM 
CPU PERMANEN T FILE MANAGER 

4235 
4236 

CPUSYS 
CPU SYSTEM MANAGER 

4267 
4270 

BLANK C<MMON 

MEMORY LAYOUT DERIVED FRCM LOADER MAP - Figure 7.6 

7-12 



From the load map (fig. 7.5) or from the memory layout (fig. 7.6) we can 
see that our program "LOOPS" begins at location 4728 • This number (4728) 
is ca lled the (LOADER) program offset. It represents the offset from the 
start of the field length to the start of our program. This information 
is essentia 1 and only available from the loader map. 

THE PROGRAM MEASURED 

This will be your program, of cour~e, but for this illustration we will 
supply a program that contains four SWL methods of accomplishing a 
repetitive loop with control variable. The four methods use: 
FOR, REPEAT, WHILE; and LOOP statements respectively. We will attempt to 
determine which method is the fastest and how much faster it is. 
Figure 7.7 is a listing of the source program. 

7-13 



(') () r'\ 0 n J v M 0111 L E L 0 () P s: 
n n 1"\ () 1')"1 v 

(i 0 " 0 A 1 v 0 R n r. [X P F FJ C, "'I.. s r-1 P ( V A L M. N : TNT E G E R ) ~ r) 0 L E l\ 1\,1: 
(\ () !) 0';1 v 
nn0061 vPQnc [xnCLl M~TN; 
nO",nA~ v 

'lO')flt:,'i vL~YFL L 1 .L?tl.L4: 
('If) " q h'~ v (nl S T L () 0 pcn,I t .. 1 or = 1 (l 0 0 0 (I ; 

n 0) () h '~, v 
I)f)'l()hj vTF' SLlIlS"W (i)+41?(A) d62(A)+47?(~» 

n 1)11) 7:'> V TYE\! I,./hl T TF ('" s'~L S,~fp 6lJrpt)t FOLLOWS1- .. El1ll ; 
nn"ll~ v FlSF WQrTF'(~ SWLSMP ~OT AVAIL68LE +.EOL); 
n()r'131 vTF'P,In; 

nfl" 1 ,~1 v 

(1)r'l111 vLl:F'n~ T := 1 oro L()np~OUNT 00 
n'lnllS v i~1~ LO()P~ 

non 1 (.", V 

n (\ 'I 1 4 (1 V L? ~ T : = n : 
nO"14j vQFoFOT 
nn"'l~] v 1:=1+1: 
nnn14~ v ~oFP~AT LO()~t 

n/),11l."1 v 1I''lTTI. 1 >= LOOPCOL)NT: 
nn''I]'4;;; v 

onn14G vLl!T:=n: 
nl)"'14~ v~HJLF' T <= LooPcnUNT no 
nnll~n v 1:=,+1: 
() n f\ 1 C:;? v ;f ,,1 H I L F L ,) () ;::) ;t 

nni'll (;,;,> v 

()n"\lC~'< v 

n0~1~1 vL4:I:=O: 
nnnlS/ .. v 1.10P 
()1)i'llSi4, v T:=t+l: 
no:"I}=;>:- v 'fLOOP U)()Pj 

nn I'll t:; h v ~ q T 'II H (,' t > = L () 0 PC 0 lr-J T : 
n (1 (\ 1 "" I v I 1!);:>qJfH 

no"q.;;> v 

!) I) " 1 .; ';'> v P R i ) r: r: :,' 0 'A A PI : 
nnnl~4 vM()1F'~n lOOPS; 

SOURCE PROGRAM TO BE SAMPLED - Figure 7.7 

( 

l 

7-14 



In figure 7.7 we have a sample program. The actua 1 numbers on ,the left 
of the listing represent the offset (in words, OCTAL) of each statement 
,from the beginning of the module. Each of the repetitive statements is 
labeled (L1,L2,L3 and L4). This insures that the statement will begin 
on a new word. We can see that the FOR statement (L1) begins'at 
location 1318 and continues until 1378" The repeat statement (L2) 
begins at 1408 • , 

From the Loader Map we can see that the loader has loaded this module 
(LOOPS) beginning at 472 8 , Hence the actual location of the FOR 
statement is 1318 to 1378 plus 4728 or 623 8 to 6318 , 

Figure 7.8 illustrates the computations required to find the actual 
locations of each of the repetitive statements. 

1. BELOW FOR STATEMENT: 08 TO 1308 
+ LOADER OFFSET 472 8 4728 

ACTUAL ADDRESSES 4728 TO 6228 

2. FOR STATEMENT: 1318 TO 1378 . 
+ LOADER OFFSET 4728 4728 
ACTUAL ADDRESSES 623 8 TO 6318 

3. REPEAT STATEMENT: 1408 TO 1448 
+ LOADER OFFSET 4728' 4728 
ACTUAL ADDRESSES 6328 TO 6368 

4. WHILE STATEMENT: 1458 TO .1528 
+ LOADER OFFSET 472 8 4728 
ACTUAL ADDRESSES 6378 TO 6448 

5. LOOP STATEMENT: 1538 TO 1628 
+ LOADER OFFSET 4728 4728 
ACTUAL ADDRESSES 6'45'8 TO b'54'8 

6. ABOVE LOOP STATEMENT 6558 TO END 

ACTUAL ADDRESS COMPUTATION - Figure 7.8 

7-15 



ANALYZING THE RESULTS 

The results of a sample run come in two parts·. The first part is shown 
in figure 7.9 below. 

D Q~G1STF~ Sa~PL£S FOR LGn.~=l. 
7::-/01/10. r)A.~'1.Sq .• 

fl !\PSl="fI ~EAL Tp~F 

F.1i.\P-':;FO CPil TT'11=: 
Ifl.A4;::' SFC. 
,~.lISg SFr.. 

c:; II ~.~ 0 L F S J I)~ . "! ~ T 1'.\ C T I V E 
S~~~LFS JO~ T~ ~l="tnLL 
S ',<·.PL Fe; f.~EI. nt" i)A~~r,F 

C:;~~DLI="~ l~ Pa~GF 

S~M~LI="C:; AR0Vf RhNGI=" 
S ~ ~~ ~ L I=" S C P I J 1\ T S U f~ - C p 

SAMPLE OUTPUT - 1st PART - FIGURE 7.9 

t:., V,qs 

447 
I) 

1 ~,;J v:; 
1 A~S 

I) 

In the output shown in figure 7.9 the first line "P REGISTER SAMPLES 
FOR LGO,O=Z." indicates that a 11 the information to follow is for the 
LGO .statement only. This is the KRONOS control statement that caused 
our program (LOOPS) to begin execution. The samples are a 11· done in 
the time between the invocation of SMP. (By the statement IF SWLSMP 
( ••• » until the "PROCEND MAIN;" statement in our program (LOO·P). 

The next line simply conta ins the date and time of this sample run. 

The next two lines report the t.ota 1 rea 1 time and CPU tine used while 
sampling took place. 

The "SAMPLE RANGE" is given next as a check on the parameters (FWA & 
LWA) supplied in the call to function SWLSMP. Remember that the LWA 
will be rounded up to the next power of two interva 1 (see fig. 7.2). 

The remaining lines describe the results of the sampling (which .occurs 
approximately once each 100x10·6 seconds). 

The "SAMPLES JOB NOT ACTIVE" is the number of samples when the CPU was 
running some other job. During these samples real time is going by 
but there is no CPU time for our job. 

"SAMPLES JOB IN RECALL" is the number of samples when our job was found 
to be in recall. This time usually represents I/O and system requests 
made by om: job. 

"SAMPLES BELOW RANGE" are the samples when the CPU was running our job 
but the P register was found below the range being sampled. 

7-16 

( 
\ 



"SAMPLES IN RANGE" are the samples when the CPU was running our job and 
the P register was found to be within the range '<.tIe have asked to sample. 

"SAMPLES ABOVE RANGE" are the samples when the CPU was running our job, 
but the P register was found to be above the range being sampled. 

"SAMPLES CPU AT SUB-CP" are the samples when the CPU was found at a sub
control point. These will always be zero unless we are sampling a 
K~ONOS SUBSYSTEM (like TELEX, etc.). 

"TOTAL SAMPLES" is just the sum of a il the other reported samples. 

Since the 
second we 
number of 

sampling rate is pretty close to one sample, each 100x10-6 
can convert anl sample count into time by mUltiplying the 
samples by 10- (100x10-6 sec = 10-4 sec). 

So, for example, the "TOTAL SAMPLES" is 104062. In terms of time, this is 
10.4062 seconds. The "ELAPSED REAL TIME" was reported to be 10.645 
seconds. The tota 1 samp Ie s shou Id (in terms of time) equa 1 the rea 1 
time. Does 10.4062 equal 10.645? Nol The error, however, is 0.2388 
seconds or an error of (((10.645 - 10.4062)/10.645)*100 = 2.24':0 
2.24 percent. 

He could of course compute the sampling rate: 

REAL TIME = 10.645 = 102 x 10-6 sec/sample 
TOTAL SAMPLES 104062 

But the result is so close to 100x10-6 seconds that we will generally 
use the nominal sampling rate of 100x10-6 sec/sample. 

The sum of SAMPLES BELOW RANGE + SAMPLES IN RANGE + SAMPLES ABOVE RANGE 
will equal the ELAPSED CPU TIME (with a small percent error). 

From the above information we can answer questions· like: 

1. What percent (or how much) real-time was spent outside 
our job (i.e. waiting on other jobs)? 

2. What percent (or how much) real-time was spent waiting 
for our job to complete I/O & SYSTEM operations? 

3. What percent (or how much) CPU time was spent in the 
range we are sampling? 

4. Is our job I/O bound or CPU bound? What percent of the real 
time is I/O? What percent of the real time is CPU time? 

There are, perhaps, many other questions we could ask. The above is 
just a sample of the kinds of infonnation to be obtained from the 
first part of the output of a performance measurement run. 

7 -17 



Figure 7.10 shows the second part of the sample output. This part is a 
detailed account of where the P register was' found for samples ABOVE 
RANGE, IN RANGE, and BELOW RANGE. . 

The leftmost column is the P-register locations sampled. The next 
column is the number of samples (count) at each P~register location. 
The next column (PCT) is the percent of the CPU time that the count 
represents. Then we have a bunch of asterisks(*). Each asterisk 
represents 1 percent. So the number of asterisks is a bar-chart (or 
histogram) representation of the percent (~CT) column~ The plus signs 
(+), when connected, form an accumulation of CPU time. Notice the 
numbers 0 to 9, 0 a long the top margin. These represent percent of 
CPU T]ME accumulated. So after connecting the plus sig~s together 
we can make statements like: "By the time location 6338 is reached 
28 percent of the CPU time has been used". This kind of comment is 
only really meaningful fora program that progresses from top to bottom 
without a lot of jumps (or GOTG's) from one end of the program to the 
other. 

7-18 

( 
\ 



" .. ,' 

~ 

I 

I 

I 
I 
I 

I 
I---
I 

r 
iF 
10 
'P.,. 

~-

l~ 
it 
'A 

P-REG 

pc: I ,)./ 

n0">47? 
1)()'147, 
on(J/.74 
o Ml!.7::; 
(H)n47A 

• .. .. 
G 

• 
011'1" ?4 

COUNT 

I) 

o 
o 
o 
o 
o 

• 

o 

peT 

0.1) 
".') 
n,') 
C.') 
0.0 
n.0 
• 

" 
• 

n.o 
oon".?::; 1 ASf) 4 • .1 
onnA?') j911 4.R 
nn0,,?7 ?211 ~.S 

o 

o 
<> 

<> 
<> 
o 

* 

o 
*-t. ... .a-

2. ..3 

'y 

4--- - !S 6 7 -8 9 o 

.!1-"~:"~~0 }_C;I':~ __ ~_~~-i_____ "'-
nn')All 13A7 ~.4 000 '-~------~--------~-------------------------------~ 
OTJ0A,? I) 0.1) <> 

OOIIA,' 1<)9, 1;l.0 
nnn~14 lSS~ ~.q 
0nn~'S 3~lA ~.~ 

non~l~ 1772 4.4 \ ... :r_ Wi ~17---~--- A 1 ;;-----~. ii-----~- *<:. "-:-,---------------------------'---------
w 
H , 
~ 
E 

onO~40 l411) ~.o OODO._ 

nnnf.,41 11?4 ?~ oa. 
000A4? lS~l ~.q o.a .. _.o. 
000"41 IS5.4 • 

,,---- ~~[.!': _____ ?;>l~ _____ 2·') ___ ~·~'a_*_a_* ______________________________ ~ 

L.. 
() 

o 

-P ;--
I 
I 
! 

000<,4::; 0 ".0 0 

onOA4f., 21f.,2 ~.4 a.O*. 
(,)OOA47 lA?4 4.1 a* •• 
nOG~SO 2AA5 7.2 oa.*.a. 
non~::;l ISf.,n 1.9 0.00 

onn~::;? 971 ?4 0* 
f)iii)~-c;i~-------l ?04 --1 ~ o---~**-*-

oonAS4 I) n.o 0 

~~s::; /) ".0 a 
annASf., I) n.o 0 

oonAS7 I) 0.0 <> 
. 0011"'f.,0 0 /:I.n a 
;----ili]nr.."'T---~---o----,,~-o -;;a:-------~------------------------------~-

onOAA? 0 n.O 0 

(1nl}~Al 0 o./) 0 Figure 7.10 
~-.. ---.. --- _._ ..... -----

I)OnAf.,4 0 n.O <> 

i O(J'l""S 0 !'I.n <> SAMPLE OUTPUT - 2nd PART 
L_-'1'ln~:f.,f., ______ ..:._0 ___ ;nC' __ Q _____ o ___ ~__ _ __________ ~_~ ____ _ 
: f)(\!1~."7 0 n.o <> 

000"70 0 0.0 0 

l)()n<,71 (J(). 0 0 

A~'V~ 1AqS 4.? 0.00 

-------I---~ 

7-19 
______ ~~__________ _~ C;_Q C; 7 ' ]n Ii d ______ _ -._-------_.---_ .. _.---._- -_ .... - -----_._ .. 



In figure 7.10 the locations of each statement (FOR, REPEAT, WHILE, LOOP) 
are identified. By adding up the percentages we can determine how much 
(or what percent of) CPU time is spent on each statement. This infor
mation is summarized .in figure 7.11. 

1. BELOW 4728 TO 6228 0.0% 

2. FOR STATEMENT 6238 TO 631 8 21.7% 

3. REPEAT STATEMENT 6328 TO 6368 22.170 

4. WHILE STATEMENT 6378 TO 6448 25.7% 

5. LOOP STATEMENT 6458 TO 6548 26.0% 

6. ABOVE 6558 TO END 4.2% 

TOTAL 99.7% 
" 

REPETITIVE STATEMENT RESULTS - FIGURE 7.11 

As shown in figure 7.11 there isn't much difference between these 
repetitive statements, considering our 3% error factor. However, the 
fastest repetitive statement is the FOR (using 21.7% of the CPU TIME). 
The slowest repetitive statement ';is the LOOP statement (us:tng 26.0% of 
the CPU TIME). 

So 'there is a difference in repetitiv'e statements - but not much. 

IMPROVING PERFORMANCE 

The techniques shown above can be used to determine how much CPU time is 
being spent in each Procedure in your program. 

This can lead you quickly to examine the few procedures that are taking 
most of the CPU time. Experience has shown that most of the CPU time is 
generally spent in one or two of the many procedures in a software system. 

While each program is unique there are generally two ways of improving the 
performance of a program. One·method is to fix up the executable code. 
This can be done using a different algorithm or eliminating redundant 
execution statements. 

The other method for improv'ing performance is to change the data 
structures and of course thereby change the access to the data structure. 
In many procedures significant amounts of CPU time are wasted thru 
inefficient accessing of data structures. 

SUMMARY 

With the tools and concepts presented here you can do a reasonably complete 
performance measurement study. You ~ill be able to speed up your programs. 
The amount of speed up, of course, is difficult to say. The few software 
products ana lyzed thru performance measurement so far hav'e been improved· 
anywhere from 50 to 400 percent. 

Sometimes many modifications are required to properly obtain a significant 
performance improvement. The flowchart·in figure 7.12 ~llustrates how 
successive experiments are used to improve Software. 

I 

\, 



CREATE 
HYPOTHESIS 

. DESIGN 
EXPERIMENT NO 

MEASURE 

ANALYZE 
DATA 

NO 

MODIFY 
1..------1 (EXPERIMENT) 

YES 

YES 

NO 

PERFORMANCE IMPROVEMENT CYCLE - FIGURE 7.12 

7-21 





APPENDIX A 

SWL RESERVED WORD LIST 





.. 
ALIGNED NIL 
ALLOCATE NOT 
AND OE -_ ........ _-------------'"' -------
A~~AY OPEN 
BEGIN OR 
BY . ................................... .......... ORIE 
CASE PACKED 
CASEND POP 
CAl PRO~ 
CLOSE PROCEND 
CODE PUSH 
C 0 ~ S T ... .......... __ ._._ ... ~ .... _. _ ............ _ QUEUE 
COPROC RECEND 
CRAMMEO REGORD 

___ C=REATE REF 
CYCLE REL 
DEFINE REP 
DEQUE UE .. c ....... __ ••. _ •. _ .......... __ .... REPOE P 
DESTROY REPEAT 
DO RESET 
DOHNTO RESUM,_~~ ___ _ 
ELSE RETURN 
END REWIND 
ENQUEUE ........... _ ..... _._._. ____ . .. SEG ME NT 
EXE~UTE SEQ 
EXIT SET 
EXTERNAL ST~CK 
FILE STATIC 
FOR STRING 

__ .. ~ ... _fOREND .. _ ....... _____ . _______ ... TAG ... , ........ _ ....... _ ..... " .. 
FREE THEN 
GOTO TO 
HEAP TYPE 
IF UNION 
IFEND UNPACKED 

_ .. _ .. 1 N .. " .. _ .... _ ........... _ ....... __ .... _ .... ____ .,._ .. _._._ UHT I L 
LABEL VAL 
LOOP VAR 

__ LO_~PE~D· W,E.OCLF _____ _ 
MACRO WHEN 
MACRO~ND WHILE 
MOD .... ...... _ ........... _ ....... ___ ._ .... _ .. _ W H I L E ~ D 
MODE XO:L 
MO~END XOR 

__ ~M~ODULE XREF 
NEXT 

SWL RESERVED WORD LIST A-l 





APPENDIX B 

ERROR LIST 



( 



WL ERROR MESSAGES - 1 FEB 75 

1: SCALAR TYPE EXPECTEDD 
2& INTEGER TOO LARGEo 
~8 ERROR IN CONSTANT. 
;:a;:-·--EXP E C fE-b-:'-'-'---'~'--------------

5: FIELD NAME DECLARED TWICE. 
6: BlID_ RANGE. 
73 TAG FIELD TYPE BADo 
8t NAME DECLARED TWICE .. 
92 a) G EXPECTED .. 
0: a:D EXPEc:tEb-.----------------------------·-------~---------

.1& IDENTIFIER EXPECTED. 
2& IDENTIFIER NOT DECLAREDo 
31 INDEX MUST 8E Of SCALAR TYPE • 

. 4: "OF" EXPECTED. 
5: TYPE IDENTIFIER EXPECTED • 

. 6: [lifO CE Dl.TRE blcTA RE D TW IC=E=-.. --------------------------

.7g "END" EXPECTEDo 

.8: ERROR IN TYPE DECLARATION • 

. 91 ERROR IN VARIABLE DECLARATION.. - .. -........., ......................... "-
~O: ERROR IN INITIALIZATION VALUES .. 
~1: ERROR IN PROCEDURE DECLARATION .. 
~2TTb-6-M A NYINIr iAl IZA T ION VAL UE S',,----------------------------
~3g PARAMETER LIST IGNORED •. 
~4: ERROR IN DECLARATION PART. 
~5~ LOWBOUND > HIGHBOUND. 
~6g 'NOT A VARIABLE IDENTIFIER .. 
~7: DECREASING ADDRESSES IN VALUE PARTo 
'8& SYMBOLIC SU8RANGE TYPE NOT ALLOWED. 

;: PARAMETER MISSING IN FUNCTION DECLARATIONo 
10: ILLEGAL COMPONENT TYPE. 
;18 UNDECLARED IDENTIFIERo 
)2g VARIABLE OR FIELD IDENTIFIER EXPECTED .. 
13: EXPRESSION TOO COMPLICATED. 
;4: TYPE OF VARIABLE SHOULD BE ARRAY. 
>5: TYPE OF EXPRESSION MUST BE SCALAR. 
161 CONFLICT OF INDEX TYPE WITH DECLARATION .. 
17& a] a EXPECTED.··--· .-- ........... - .--.----.... . 
18g TYPE OF VARIABLE SHOULD BE RECORD. 
193 NO SUCH FIELD IN THIS RECORD • 
• 0: TiPE OF VARIABLE SHOULD BE POINTER OR FILE • 
• 12 FIELD NAME EXPECTED • 
• 22 ILLEGAL SYMBOL IN EXPRESSION • 
• 3& UNDEFINED LAOELo 
~4a ILLEGAL TYPE OF PARAMETER IN STANDARD FUNCTION OR PROCEDURE • 
• 5g TYPE IDENTIFIER.IN STATEMENT PART • 
• 63 PROCEDURE USED AS FUNCTION • 
• 7: INTEGER EXPRESSION EXPECTEDo 
.8: 0) a EXPECTED • 
• 9 g IDENT IFIER EXPECTED. 
)0: ILLEGAL TYPE OF OPERAND. 
j13 CORD AND ·XOR- CANNOT BE USED AS MONADIC OPERATORS. 

~~~~~--------------
j23 .: =. EXPECTED.
;3: ASSIGNMENT NOT ALLOWED.

: ILLEGAL SYMBOL IN STATEMENT ..
,~t TYPE OR CONSTANT IDENTIFIERu
;6: °THEN" EXPECTED.
;7: TYPE OF EXPRESSION IS NOT BOOLEAN. fBT"f"---E X PEC TED 0 .'-"--'---"-'-----,---"-'---'-''------------------------

;) 9 : • DO· EX PE C TEO.
jOg ILLEGAL PARAMETER SUBSTITUTION. B-1
~~ ~ Il\nC:-1 c:-vpc:-rTc:-n_

--&2:11LEG AL TYPE OF EXPRESSION.
&3: CONSTANT EXPECTED.
&4t o:a EXPECTED.
&51 ·OF o EXPECTED.
~6: TAG FIELD MISSING FOR THIS VARIANT.

': ·UNTIL" EXPECT~E~D~.~ ______ ~ ________ ~ ______ ~ __________________ __
0132 "END· EXPECTED.
691 LOOP CONTROL VARIABLE MUST BE SIMPLE AND ~OCAL OR GLOBAL.
70: • TO· 0 R aDO W N TO • E XPE C TE 0 .,.",,,.,.,,., __ . __ ,,,,.,,.,_,,,,.,,,,.,,_, .. ,,,,, .. ,,, " ... " ... ,,,,.,,.,
71t TOO MANY CASES IN CASE STATEMENT •.
72: NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION.
73: MIXED TYPES.
74= TOO MANY LABELS IN THIS PROCEDURE.
75: TOO MANY LONG CONSTANTS OR YET UNDEFINED LABELS I~ THIS PROCEDURE.
76a DEPTH OF PROCEDURE NESTING TOO LARGE. . 77: LA BEL DEF INED MORE TH AN ONCE .~ '." . ., , ,." " .. ,., , ~,~ .. ''' .. ~ ~ .. ".~., .. ,.", .. , ,.",., ," .. ,

78: TOO MANY EXIT LABELS.
79: ·C" EXPECTED.
80' t Q,. EX PEC::-:T:,...:;E;.::D:....:.~---------------------------------------
81: ASSIGNMENT TO FORMAL FUNCTION IDENTIFIER ILLEGAL.
82: TOO MANY NESTED WITH-STATEMENTS.
831 ST ANDARO IN-LINE PR()CEDURE OR FuNtT-IONUSE6·AS"'A'C'~fuAC'·PARAMETE:R~· .-.
84: TOO MANY LONG CONSTANTS IN THIS PROCEDURE.
85: ASSIGNMENT TO FUNCTION IDENTIFIER MUST OCCUR IN FUNCTION ITSELF.
66: ACTUAL PARAMEtER MUST BE A VARIABLE.
87: VARIABLE MUST BE ALIGNED.
881 OPERATORS -c l AND .>. ARE NOT DEFINED FOR PO~ERSETS.

"'89: RE DUN DANTOPERA TION"ONPOWERSETS ~'. "''",.,.", ... ,., - .. " .. ,', .. ",-, ,' '''''''--,-, "'''".,
90: PROCEDURE TOO LONG.
91: TOO I1ANY EXIT LABELS OR FORWARD PROCE:-:D::-:U;..:R;;:.E::...:S::....:.~ ____________ ---:-

. -~: TOO MANY POINTER TYPES OR FILE VARIABLES.
\'_...1: BAD FUNCTION TYPE.

94: ONLY 1=' AND ·n' ALLOWED HERE. . 95 : BAD FILE bE C L'A RAT ION ~"..".".-"'. ,."" .. ,.,-.. ,,,,--.. ,,,,,,,,.,,, .. -----,,,.,,,,,-,,,,., .. ,,, .. ,,,,,, .. "" ... "", .. ,,,,,, .. ,., ".".,-, , .. '.,',.,

96: TYPE DECLARED TWICE.
97: cEND.· ENCOUNTERED.
981 ete EXPECTED.
99: INDEX OUT OF RANGE.

100: LABEL TOO LARGE. . '. .. to 1 * V A L U E · .. t S ." 0 U T" .. '0 F" ... R JfN G't·;·",· .. _·· --"'''''''"'''' ,.--...... ,.'., .. ,."' .. "" ... ,,,,,.,,.,,',, .. ,.,,"-"' ... ,,.,, ,, ... "".""., .. """--.... ,,-...... ,, .. "--' ... , ,,., .. ,,", , ""
102: DIVISION BY ZERO.
103: PARAMETER PROCEDURE HAS MORE THAN 17 pARAMETERS.

--f04--:TEN OR MORE ERRORS ON THIS LINE.
105: e;1 NOT ALLOWED IN COMMENTS, COMMENT TERMINATED.
106: IDENTIFIER TOO LONG. 1 0 7 ·S- MOD U L E • EX P E CT EO. ,., " .. ',." "." , ", ... ",.,""",.,' ,." .. ,.,_._".,,--,., .. , ,.', "" -" , , ... , "",,..... " .. ' ,."" .. ,' ... " ... '" ... ,." ,,' ".

108: aMODENO" EXPECTED.
109: INVALID ATTRIBUTE.
110e 'IFEND- EXPECTED~

l1t: TOO MANY ALTERNATIVES IN IF STATEMENT.
112: • LOOP END· EXPECTE D. 113 I . II W H IL END' EX P EC TED. ,., .. ,.,.,,,._,--,,,,, ... ,,, " ... '-'-' .. -.. " ... ' ,-'.'" ".'.,,, , ... , , ... " ".,,'"'' ... ,-,., ' .. -- '" .. "".-.......... "-"" ""-.. ".,.,,,.

114: "FOREND" EXPECTED.
115: END LABEL DOES NOT MATCH.
1161 NESTING OF STAT~E~M~E~N~T~S~A~N~D~P~R~O~C~ED~U~R~E~S~T .. O~O~D~E~E~p •• ----------------~
1171 ILLEGAL REFERENCE TO LABEL OR PROCEDURE NAME.

: TOO MANY UNRESOLVED REFERENCES.
119: ·WHEN" EXPECTED.
120: MORE THAN ONE LABEL ON STATEMENT.
121: NO ENCLOSING PROCEDURE.

-ri2: CY CU--RE-FE RE NCE NO T;"'="':'T;"::O::-::--:::R=E""'P=E=T-=I=T=I-=-O'""N--=-S=-T A-::-:T=E:":M---=E=N=T=-.-------------
123: ·VAL" OR -REF· EXPECTED. B-2
124: LOCAL CLASS MAY NOT BE REFERENCED BY EXTERNAL POINTER.
1 ?C:;! \fARTARI F' MI'~T RI=' ~T4Trr~ n~ Ynrl_

-.-.-.- ... ----.-.--------::-::-~-

126: ·PROCENO· ExPECTED.
127: SYSTEM ERROR (INVALIO RELOCATION).
120: FEATURE NOT IMPLEMENTED.
129t "RECENDo EXPECTED.
1~Og STORAGE OR SCOPE ATTRIBUTE EXPECTEDe

'.g. ·R~C-s.l~~EXP-s-~lt;D,, __________________________ _
i_~t ILLEGAL BUILT-IN FUNCTION NAME.
133: ILLEGAL CONVERSION FUNCTION OR VALUE CONS~RUCTOR TYPE.
134: NOT SUPPORTED YET.
135~ "CD OR or' EXPECTED.
136: ELEMENT VALUE OUT OF RANGE.
137t -1100E" NOT SUPPORTED.
138 t F I L E""-t-1 A Y NOT BE I tJ-=I-=-T"::"'I-CCA-L-r-Z-E--D-.. -. ------'-----------
139: POINTER MAY ONLY BE INITIALIZED TO NIL. .
140: COMPILER ERROR {CTPTR = NIL IN CHECKTYPEBOUNDS}.
141~ SELECTION VALUE MUST BE ORDINAL, INTEGER, OR CHAR CONSTANT.
142: MULTIPLE SPECIFICATION OF SELECTION VALUES.

___ 1.~~CAS~.tl_D· EXPEQT=E""-n-"-. ____ ~-----------------.---
144: NUMBER OF INIIIALIZATION VALUES EXCEEDS ISWLLIMITATION.
145g NUMBER OF REPLICATIONS LESS THAN 1.
145: ., e 0 R"; 8 EXPECTED. '
147~ STRING LENGTH ERROR.
148; ILLEGAL OPERAND FOR CONCATENATION •

. ____ ~_~<.3..!_t~_E~_~ L CON V E R~) 0 N FU NC T I O . ..:..:N'--=I...;..:N'--=-C..::,..O..:.,:N..;::,S....:,T..:.,:A.c..,:N..;,..T..;,... _____________ _
150t POINTER VARIABLE EXPECTED.
151: STRING OR CHARACTER EXPRESSION EXPECTED.
t52: CHAR EXPRESSION EXPECTED.
153g SUBSTRINGS OR STRING CONVERSIONS NOT ALLOWED AS PARAMETERS.
154g IDENTIFIERS IN PRONGS LIST NOT DECLARED.
1551 ALL OR NONE OF IDENTIFIER LIST MUST· BE PRONGS OF OUTERMOST MODULE.
~-~: MODULE NESTING ERROR.
L : ONLY VARS AND PROCS ALLOWED AS PRONGS OF OUTERMOST MODULE.
1582 TOO MANY BLOCKS OR MODULES IN A COMPILATION UNIT;DEBUG TURNED OFF.
159: SIZE OF SEQUENCE TYPE IS ZERO WORDS.
160: SEQUENCE VARIABLE EXPECTED.
161: eREp· EXPECTED.
162 i DING EXPECTED.
163: NOT NESTED IN A REPDEP PROC~
164: DECLARATION PART EXPECTED.
1653 DEBUG STATEMENT-NUMBER TABLE OVERFLOW; DEBUG TURNED OFF.
1662 DEBUG SYMBOL TABLE OVERFLOW; DEBUG TURNED OFf •

. _J.6_:L!~Rlt:!G TYPE VARIABLE EXPECTEO-"-" _________________ _
168: DECIMAL SPECIFICATION IGNORED.
169: INITIALIZATION VALUE AND ELEMENT NOT OF EQUIVALENT· TYPE"
170: VALUE MUST BE QUOTED STRING.
1712 TOO MANY VALUES FOR SUB-ARRAY.
172: O[a OR "REP I OF" EXPECTED.
173& INSUFFICIENT VALUES FOR SUB-ARRAY.
174: 0]" OR ',. EXPECTED.
175: INSUFFICIENT VALUES FOR RECORD.
1761 TOO MANY VALUES FOR RECORD.
177: TAG FIELD MAY NOT BE INITIALIZED BY .~'.
178: MUST 8E A SET.TYPE.
179: THE OPERAND IS NOT A SET OR BOOLEAN.
180: ILLEGAL CONSTANT FACTOR.
lAt: °CAT- OPERATOR NOT PERMITTED HERE.

·PACKED· ATTRIBUTE CAN ONLY BE USED FOR ARRRAYS AND RECORDS.
1831 CANNOT CHANGE PACKING OF PREVIOUSLY DEFINED TYPE.
184: DATA TYPE OF EXPRESSION TOO COMPLICATED.

___ t~_~!....£~I NTJ: R TOP RP~. 7-E-:-:X=P=EC~T==-E.::-D7-:. ==-=-:::-________________ _
186: PROCEDURE HAS VALUE PARAMETERS.
187: fORWARD PROC ALREADY HAS ATTRIBUTES.
1882 STATEMENT NOT NESTED IN PROCEDURE.

11._" __ "_1 _ ~_~ Itl"'" al I "1 _ ttr-nr-

B-3

190Z
191:
192:
193.
t qt. I

;1

1,=,61
1971
1981'
1991
200:
201:
2021
2031
204:

(

MORE THAN 1 ADAPTABLE FIELD IN RECORD OR ADAPTABLE FIELD IN CASES.
POINTER TO TVPEID EXPECTED.
UNION VARIABLE EXPECTED. . ' ... , "." _
NOT A MEMBER OF THIS UNION.
POINTER VARIABLE EXPECTED.
UNIONS ARE NOT EQUIVALENT.
UNION OR POINTER VARIABLE EXPECTED.' .
POINTER MAY NOT BE PASSED By'REf TO UNIO~·PARAMETER.
POINTER VARIABLE EXPECTEPON.LEFT9.f.·Z=Z· ... " _ "
ARRAY VARIABLE EXPECTED.
WRONG DIMENSION SPECIFICATION.
•••• EXPECTED.
NON-COMPARABLE STRUCTURES.

,"., , .•.•..• ,•.••. ,-,.' ,.• . .. ~ - ~'_''"'''''''''''''''''''"'V'''''' .• :. v ~ __ -.--.............................. ,,~ ~,."t --.-....................................... :. ,.,._ ~ ""4 ,. ..••.•• ,. , ... _ _

:1tt

;'
... "., ,., .. " , .. -............. " , ".,." ... , •....... , .. , ..

B-4

APPENDIX C

LANGUAGE SUMMARY
_______ ----1

RESERVED WORD

ALIGNED
ALLOCATE
AND
ARRAY
BEGIN
BY
CASE
CASEND
CAT
CLOSE
CODE
CONST
COPROC
CRAMMED
CREATE
CYCLE
DEFINE
DEQUEUE
Dl~STROY

DO
DOWNTO
ELSE
END
ENQUEUE
EXECUTE
EXIT
EXTERNAL
FILE
FOR
FOREND
FREE
GOTO
HEAP
IF
IFEND
IN
LABEL
LOOP
LOOPEND
MACRO
MACROEND
MOD
MODE
MODEND
MODULE
NEXT

USAGE

ALLOCATE P;
REPEAT S UNTIL A AND B;
VAR X: ARRAY [1 .• 10] OF INTEGER;

CASE TAG OF =1== S; =2= S; CASEND;
CASE TAG OF =1= S; =2= S; CASEND;
VAR S: [STATIC]STRING(6) OF CHAR:= 'ABC' CAT 'DEF';
CLOSE (Ft);

CONST LIMIT = 100;

REPEAT Sl,CYCLE WHEN 1<10; S2; UNTIL 1=100;

FOR 1:= 1 TO 10 DO Sl; FOREND;
FOR 1:= 100 DOWNTO 1 DO Sl; FOREND;
IF 1<100 THEN S 1; ELSE S2; I FEND;

LOOP Sl; EXIT WHEN 1=10; 82; LOOPEND;

VAR Fl [OUT J : FILE OF CHAR;
FOR 1:= 1 TO 10 DO Sl; FOREND;
FOR 1:= 10 DO~~TO 1 DO S1; FOREND
FREE P;
GOTO Ll;

IF 1<10 THEN Sl; 1FEND;
IF 1<=100 THEN S2; IFEND;
B:= 5 IN SETA;
LABEL Ll,L2,L3,L4;
LOOP Sl; LOOPEND;
LOOP Sl; LOOPEND;

MODULE TEST;Sl;S2; MODEND TEST;
MODULE TEST;Sl;S2; MODEND TEST;
NEXT P IN SEQVAR;

SWL LANGUAGE SUMMARY

C-l

RESERVED WORD

NIL
NOT
OF
OPEN
OR
ORIF
PACKED
POP
PROC
PROCEND
PUSH
QUEUE
RECEND
RECORD
REF
REL
REP
REPDEP
REPEAT
RESET
RESUME
RETURN
REWIND
SEGMENT
SEQ
SET
STACK
STATIC
STRING
TAG
THEN
TO
TYPE
UNION
UNPACKED
UNTIL
VAL
VAR
WEOF
WHEN
WHILE
WHILEND
XDCL
XOR
XREF

USAGE

P:=NIL
IF NOT #EOF (INPUT) THEN Sl; IFEND;
VAR S:STRING (10) OF CHAR;
OPEN (Fl);
B:= A OR B;
IF B THEN Sl; ORIF A THEN S2; IFEND;
VAR X: PACKED ARRAY [1 •• 10] OF 0 •• 8;

PROC NAME; Sl,S2; PROCEND;
PROC NAME; Sl,S2; PROCEND;

TYPE R= RECORD Fl,F2: INTEGER RECEND;
TYPE R= RECORD Fl,F2: INTEGER RECEND;
PROC NAME (REF I:INTEGER); Sl;S2; PROCEND;

VAR X: [STATIC] ARRAY [1..10] OF INTEGER:= [REP 10 OF 0];
PROC [REPDEP] NAME; Sl, S2; PROCEND;
REPEAT Sl UNITL 1<6;
RESET P;

RETURN WHEN 1<10;
REWIND (INPUT);

Vfu~ Q:SEQ (REP 10 OF R);

VAR X: [STATIC] ARRAY [1. .10] OF INTEGER:= [REP 10 OF 0];
VAR S: STRING (10) OF CHAR;

IF 1<10 THEN Sl; IFEND;
FOR 1:= 1 TO 10 DO; .
TYPE ORD= (RED,BLUE,GREEN);
TYPE U=UNION (AReal, AINTEGER);

REPEAT Sl UNTIL J;.=10;
PROC NAME (VAL I:INTEGER); Sl,S2; PROCEND;
VAR I: INTEGER;
WEOF (INPUT);
EXIT WHEN 1<10;
WHILE 1<10 DO Sl;S2; WHILEND;
WHILE B DO Sl; S2; WHILEND;
PROC [XDCL] MAIN;
B:= A XOR B
PROC [XREFJ SWLSMP;

SWL LANGUAGE SUMMARY

C-2

(

APPENDIX D

BIBLIOGRAPHY

EMPLEMENTATION LANGUAGES

Software Writer's Language (SWL) Specifications
CDC, 1975

MALUS Language Specifications
CDC, 1972

SYMPL made simple:
A CYBER SYMPT 1.1 User's Guide
CDC, 1974

A. D. FALKOFF
Criteria for a system design language
in Software Engineering techniques.
(J. N. BUXTON, B. RANDELL (eds.))
Report on a Conference sponsored by the NATOSCIENCE
COMMITTEE, ROME, 1969

N. WIRTH
PL360, a Programming Language for the
360 Computers
Journal of ACM 15,1 (Jan'68), pp 37-74

W. R. WULF, et a1.
BLISS: or Language for Systems Programming
Comm ACM 14,12 (Dec'71), 780-790

G. SEECNULLER
Systems Programming as an Emerging Disc:i,pline
Proceedings IFIP Congress 74, pp417-426
North-Holland Pub1. Comp., Amsterdam, 1974

D-l

W. F. BURGER
PASCAL Ma nua 1

PASCAL

"Dept. of Compo Science, Univ'. of Texas at Austin, March '73

C. A. R. HOARE, N. WIRTH
An Axiomatic Definition of the Programming
Language PASCAL
Acta Informatica 2,4 (1973)", pp 335-355
or
Berichte der Fachgruppe Computer-Wissenschaften
Nr. 6 (Nov. 1972)

K. JENSEN, N. WIRTH
A User Manua 1 for Pasca 1
Eidgenossische Technische Hochschule (ETH),
ZURICH, Switzerland

G. H. RICHMOND (ed.)
PASCAL News letters, January '74, Number 1
SIGPLAN Notices 9,3 (March '74), 21-28

N. WIRTH
The Programming Language PASCAL
Acta Informatica 1,1 (1971), pp 35-63
or
Berichte der Fachgruppe Computer-Wissenschaften 1 (Nov.'70)

N. WIRTH
The design of a Pascal Compiler
Software-Practices and Experience Vol 1, 309-333 (1971)

N. WIRTH
The Programming Language PASCAL (revised report)
Eidgenossische Technische Hochschule (ETH) Zurich,
Switzerland, July 1973

D-2

PROGRAMMING MANAGEMENT

F. T. BAKER
Chief Programmer Team Management of Production Programning
IEH SYSTEM Journa 1 11,1, pp 56-73, 1972

F. T. BAKER
Systems Qua lity Through Structured Programming
AFIPS Fall Joint Computer Conference Proceedings
Vol 41, Part I, 1972, pp 337-343

F. T. BAKER, H. MILLS
Chief Programmer Teams
Datamation 19, Dec. 1973, pp 58-61

F. L. BAUER (ed.)
Advanced Course in Software Engineering
Feature notes in Economics and Mathematical
Systems, 81, Springer Verlog, N.Y.,1973

J. DIRNBERGER, R. ROTHSTEIN
Fostering a Structured Programming Environment
Principles of Software Dev'elopment, Conf. Proc. CDC,
1974, pp 132 - 175

H. MILLS
Chief Programmer Teams: Principles & Procedures
UN, Federal Systems Division, Ref. If FSC 71-5108,
Gaithersburg, Md., June 1971

G. M. WEINBERG
The Psychology of Computer Programming
Van Nostrand Reinhold, N.Y.,1971

G. M. WEINBERG
The Psychology of Improved Programming Performance
Datamation 17,11 (Nov.'72), pp 81-85

D-3

STRUCTURED PROGRAMMING

C. BOHM, G. JACOPINI
Flow diagrams, turning machines and languages
with only two formation rules
Comma ACM 9,3, pp. 366-371

O.-J. DAHL, E. W. DIJKSTRA, C.A.R. HOARE
Structured Programming
Academic Press, N.Y., 1972

E. W. DIJKSTRA
Structured Programming
in Software Engineering Techniques,
Report on a Conference sponsored by the
NATO SCIENCE COMMITTEE, ROME, 1969, pp. 88-93
(J.N. BUXTON, B. RANDELL (eds.))

J. R. DONALDSON
The revo lution in programming:
Some advanced techniques
Control Data Corp., Publ. #:60417000, 1973

EDP - ANALYSER
The Adv'ent of Structured Programming
Canning Publ. Comp., Vol. 12, 6 (June '74)

D. GRIES
On Structured Programming - A Reply to Smoliar
Comma ACM 17,11 (Nov'.'74)

B. W. KERNIGHAN, P. J. PLAUGER
The Elements of Programming Style
McGraw-Hill, 1974

D. E. KNUTH
Structured Programming with GOTO Statements
ACM Computing Surv'eys 6,4 (Dec.'74), pp.261-302

B. H. LISKOV
A DesIgn Methodology for Reliable Software Systems
AFIPS Conference Proceedings 41 (Fall'72), pp. 191-199

D. L. PARNAS
On The Criteria to be Used in Decomposing Systems into Moduls
Comma ACM 15,12 (Dec.'72), pp. 1053-1058

N. WIRTH
Systematic Programming
Prentice -Ha 11, 1973

D-4

(
\

APPENDIX E

ANNOTATED TE~INAL SESSION

(
\

75/03/13. 10.43.55.
! i' !

M'IDWEST CLUSTERCEI\l'TER/S'YSTEM F" I<R0N0S 2.1.0-06
USER NUMBER: ED,R325Tl
lERMINAL: . 101,713

R E ~ D Y 0 J • ,LOGIN' PROCEDURES.

C HALl'
2. READY. 2. THIS TERMINAL RUNS IN HALF-
t---Ii r- NEW. SUM

L-READY.

r r-- TEXT

DUPLEX. THIS CCMMAND TELLS
KRONOS.

,
; ENTER TEXT MeDE. 3 • SPECIFY NEW PRIMARY

M0DULE SUM
PRe.C [XDCLl MAIN; 4. USING TEXT MODE ENTER

V~R I: (StATIC] INtEGER: = 0 ENTIRE PROGIUM. TERM INATE
TEXT MODE WITH BREAK KEY.

! "SKIP EMPTY LINES" !
~--Trr~~~~~~~~~~------~--j I I.oJHILE #E0F'CINPUT) D0 i

! WHILEND; I I 5. PACK CCMMAND REQUIRED I

i~ ~~!6~N ~ SUM INPUT L INE"- AFTER TEX'rMODE INPUT. I
WHILE N0T #E0F'CINPUT) 00

I I=I+NJ

I READCN)

I
WHILEND;

"i,tJRITE RESULT"
WRITEC' SUM = ·,I.E0L)J

M0DEN 0 SUM;
i.-

EXIT TEXT M0DE.··

tiCP~CK

6. SAVE SOURCE PROGRAM AS
INDIRECT FILE NAMED SUM.

ANNOTATED TERMINAL SESSION

E-l

(
!
!

~ BATCH
$RFL,20000.
IATTACH,ISWL/UN=ALL
1

IRFL,105000
RFL,105000.
IISWL,I=SUM

1
OCDC CV8ER SYSTEM

75/03/13.

000001 !M0DULE SUM
000063 !PR0C(xDCl.J MAIN;
**** 1'58

10.50.~5.

" 7. OBTAIN COPY OF CCMPILER
AND RUN TIME ROUTINES.

ISWL 2.0 LEVEL 1
PAGE 1

000063 !VAR !:[STATICJ INTEGER := 0 I
!---1t----::-=-:::-::-:;--:--.----~----------..:....:;-------=--------------------.. -----! I 000064

I 000064
000064

~ ****
000070

i 000071
000071
000071

!"SKIP EMPTY LINES"
!WHILE #E0FCINPUT) D0

1'146
!\yHILEND;

! "READ ,~ SUM INPUT LINE"
!READCN)

**** 1'31
00007 1 ! w H fCE: N0TNE0F'fINpOT>00 "
**** 1'58
000072 !I=I+N;

**** 1'52
000072 !READCN)

**** 1'31
000072 !WHtCENo
000073
000073 !"WRITE RESULT"
000073 !WRITEC' SUM = ',I,E0L)J
000107
000107 !M0DEN D SUMJ

000107

AME ADDR. = 105263

8. "ISWL,I=SUM" CAUSES CCMPILER"
tOCtM:PILE SOl.Jt{CE PROGRAM AND
PRINT LISTING AT THE TERMINAL.
ERROR LINES ARE SHOWN.

9. CCMPILER "BLOWS UP".

ANNOTATED TERMINAL SESSION

E-2

- ED I T
BEGIN TEXT EDITING.

- READ eN)
? RS:/)/~/)J/
? ,,: /MI2JD/
MI2JDEN D SUM.
? RS:/N D/~/ND/
? END

- END TEXT EDITING.
$EDIT~SUM.

- /REPL4CE
-/

10.

._------,-_._----- -.--_.-{

11. WHEN EDITING CCMPLETE
REPLACE OLD PERMANENT
FILE COPY WITH REVISED
(ED! TED) COPY.

ANNOTATED TERMINAL SESSION

12.

13

[/ISWL~I=SUM~0=Z * NUMB[R 0F SYNTAX ERR0R$ =_~
1[0 I T ~ Z

B[GIN T[XT EDITING.

**** 1 S;-1
t31

VAR I:[STATIC] INTEGER 1= OJ
1 RS:/OJ/~/O~I
? ADD
ENT[R TEXT.

? N: INTEGERJ'
R[AOY.

? END
END T[XT EDITING.
$EDIT~SUM.

IS t~R[PLACE

.. __ .. . 12 • REC().tPILE EDiTED PRIMARY
FILE (SUM) AND PLACE LISTING
ON FILE 2.

13. SINCE THERE ARE ERRORS, EDIT
FILE 2, FIND ERROR.

15. REPLACE PERMANENT FILE
WITH NEW PRIMARY FILE.

ANNOTATED TERMINAL SESSION

(
\.

E-4

i [RETURN. LG0. Z
l $RETURN.LG0.Z.

r IC/ISWL.I=SUM.0=~
16.. RETURN OBJECrFILE (LGO)

AND LISTING FILE (2). THIS IS
i * NUMBER 0r SYNTAX ERR0RS
!-J."'~/-..;E~D~I;...T~.;.:Z==~;:;;--=...-;;:"";"7:=-_____________________ ' __ ' __ ' ____ . __ _
: BEGIN TEXT EDITING.

= 3 . A QUICK WAY OF EMPTYING THESE FILES.

? LJ*
t

.' ~'.'

ISWL 2.0 LEVEL 1 oeDe eYBE~ S¥STEM
75/03/13. 10.58.30. PAGE 1

000001 !M0DULE SUMJ
000063. fPR0C eXDCLl MAINJ
000063' !VAR I:CSTATICl INTEGER :=
000064 N: INtEGERJ.·· .. ···· ., ..
000064
000064
000064
000070
000071
000071
000071
000073
000074

**** 000074
000076
000077
000077
000077
000113
000113

!"SKIP EMPTY LINES"
WHILE IE0FCINPUT) 00
WHILENDJ

" , " __ ..
"·READ & SUM INPUT LINE"
READCN)J
WHILE N0T 'E0FCINPUT)00
I=I+NJ

t52
!READCN)
!WHIl..ENDJ

'''WRITE RESULT"
!WRITEC' SUM = '.I.E0L)J
!
!M0DEND SUMJ

t "2-'6~"5'8 ,.,.... -.. ¥-- •• -----~.~-.- ••• ¥' ••• ~ ••

-END 0F rILE-
I"'? END I END TEXT EDITING.
: $EDIT. Z.
i 1
I

I.

o. .p. RECCMPILE WITH LISTINGS ON
FILE 2.

18. EDIT FILE 2 AND OBTAIN A
CCMPUTE CGfPILATION LISTING.

ANNOTATED TERMINAL SESSION

E-5

EDIT
. BEGIN TEXT EDITING.
? F:/I=II
1= I +N; 19. MAKE CORRECTIONS TO EDIT FILE.

~~~~~~--~--------------------~----~~~~~==~~~~~=~~~~~--~< 
? RS:I=I"I:=I 
? 1'+ *DEL* 
F:/M0DENDI 
M0DEND SUM; 
? SI-l 
? ADD 
EN·=T~E~R~T~E~X~T~.------------------------~--------------------------------------

? 'PR0CEND MAIN;' 
READY •. 

? END 
END TEXT EDITING. 

$EDIT"SUM. 
; , , 
I 

20 
t~REPLACE 

20. REPLACE PERMANENT FILE WITH 
CONTENTS OF PRIMARY FILE. --I 

RETURN"L0 *DEL* 
ERETURN-'LG0~Z 

t * INTERRUPTED* 

25'"'. x 
*TERMINATED* 

27 

IEDIT 
BEGIN TEXT EDITING. 

? F :/WHILEI 
WHILE #E0I'CINPUT) 00 
? LJ3 
WHILE HE0I'CINPUT) 00 
WHILEND; 

? ADD 
ENTER TEXT. 

? 'REWINDCINPUT)J' 
READY. 

? END 
END TEXT EDITING. 

$EDIT,SUM. 

[

/REPLACE 
IRETURN,LG0"Z 
$RETURN,LG0"Z. 
IISWL,I=SUM,0=Z 

, - END C0MPILATI0N 
I 

21. CLEAR OUT FILES LGO & 2. 

22 ~ RECCMPILE PRIMARY FILE. 
NOTICE NO CCl1PILATION ERRORS. 

23. EXECUTE PROGRAM. INPUT 
DATA AFTER? 

24. EXECUTE AGAIN. THIS TIME 
TEST AN EMPTY INPUT LINE. 

25. AFTER A FEW MINUTES WITH NO 
RESPONSE WE REMEMBER THAT 
THE "REWIND(INPUT) " STATEMENT 
WAS au TTED • BREAK KEY IS 
USED TO TERMINATE EXECUTION. 

26. USE EDIT TO ADD MISSING 

27. REPLACE PERMANENT FILE. 

RECCl1PILE. 

ANNOTATED TERMINAL SESSION 

I 
; 

E-6 

,/ 
I 
\ 



~LG0 ? 2 3 4 5 
I SUM =. 14 
. - END EXECUTI0N 

/LG13 
? 
? 
? 33 44 55 

SUM = 132 
~ - END EXe:CUT 10N 
i~/SAVE,LG0=SUMLG0 
,. /BYE 

ZED L0G 13;;. 11.06.02. I ZED SS 10.369 SEC. 
TI0 3532 

28. TEST PROGRAM -WITH INPUT DATA. --_ .. __ ....... __ ... _-_ ... _--<; 

29. TEST PROGRAM "WITH EMPTY INPUT 
LINES. 

._--_ ... __ ....... ---. 
30. SINCE PROGRAM WORKS SAVE THE 

BINARY OBJECT DECK AS A FILE 
.. CALLED . SUMLGOFOR FUTURE USE. 

31. LOGOFF. 

ANNOTATED TERMINAL SESSION 

E-7 



( 
\ 



APPENDIX F 

COMPILATION LISTING 



/ 
( 

( 

( 



COMPILATION 

CCMPUTER SYSTEM 

.. - i- - ---- .-.- -1------·------· .. -

DATE 
YY /MM/DD 

Tll1E OF 
CCMPILATION 

HH.MM.SS. 

! 7& VERSION 

ISWL 200 LEVEL 1 OCDC CYBER SYSTEM 
75/03/12. 19.45.09. PAGE 1 

000001 !M0DULE L00PS; 
00006.""3--'-____________________ . _____ . _____ .. _ .. _ ... __ 
000063 
000063 
000063 
000063 

!PR0C [XREFJ SWLSMP (VAL MIN:INTEGER) 800LEAN; 

!PR0C [XDCLJ MAIN; 

000063 !LABEL LIIL2; 
____ Q_Q_9.""-0=6-"'3'---.:!.."C,-"0~N.!.!S"_T~L ... 0"'_'_P=C=0_""U.!.!N:..t.T_=__'1'_"0"_'O~O",-,O",-,O><-L.J _____ _ 

000063 !VAR I : INTEGER; 
000063 
000063 !IF SWLSMP (0+472(8)#162C8)~472C8» 

000072 THEN WRITEC' SWLSMP 0UTPUT F0LL0WS'IE0L); 
000112 ELSE WRITEC' SWLSMP N0T AVAILABLE ',E0L); 

_--,,=-0~O~O...!.I..::!3~1---.!!,-,I'-!.F-1:E::.!N.!.!D~; ____________________________ .. __ .. __ .... _ 
000131 
000131 !Ll :F0R I := 1 T0 L00PC0UNl D0 

**** t31 
000132 "F0R L0gP" \ ERROR 
000132 F0REND; DESIGNATION 
OOOlL3~5~~ _________________________ _ 

!L2:I:=0; 
REPEAT 
1:=1+1;-
"REPEAT L0gP" 

000135 
000136 
000136 
000140 
000140 UNTIL 1 >= L00PC0UNT; 
**** t31 
000 1 41 
000141 !PR0CEND MAIN; 
000143 !M0DEND L00PS; .r------ ERROR 

* NWI1 BER 0F SYNTAX ERR0RS = 2 SUMMARY 

LOCATION OF SOURCE STATEMENT 
FRCM BEGINNING OF MODULE (IN OCTAL). 

F-l 



( 



APPENDIX G 

CHARACTER CODES 

The character codes illustrated are specifically 
for the CDC 713 Terminals. Since the 713 Terminal 
follows the standard ASCII character coding/the 
codes shown will probably be the same for any 
ASCII Terminal. 



( 



! II$K" tH8D 

!HODUlE CHARACTER$SET$713; 

! II 
! •• 

DISPLAY CODES FOR CDC 713 TERMINALS 
DRIVEN UNDER KRONOS 201 LEVEL G 

! C-6-MS-T---
! 
! .. NAME VALUE DESCRI PTION 
! 
! NUL = $CHAR( 0), "NULL OR IDLE 

SOH = $CHAR ( 1), "START OF MESSAGE 

ASCII 

0000 0000 
0000 0001 

-+---5TX---:----tettA-R-t-- 2), ''-START OF TE)(T nnnn OOiO 
ETX = $CHAR( 3), "END OF TEXT 0000 0011 
EaT = $CHAR( 4), IIEND OF TRANSMISSION 0000 0100 

! ENQ = $CHAR( 5), "ENQUIRY 0000 0101 
! ACK = $CHAR( 6), "ACKNOWLEDGE 0000 0110 
! BELL = $CHAR( 7), "BELL 0000 0111 

OPR CHR 

N N 
N N 

---N- N 
y Y 
N N 
N N 
N N 
N N 

GRP 

la ! 

'0 ! 
I. ! 

II! 

II! 
.1 ! 

.- --~~~-!----II, . 
II, . 
I. ! 
II! 
.1 ! 

-t---B-S-----;---$€tt-A-R-( 8) , "CURSOR lEFT (BACKSPACE) 0000 1 Oa-a---¥---#-------~-!----
HT = $CHAR( 9), "HORIZONTAL TAB 0000 1001 N N H, 

! LF = $CHAR( 10), "LINE FEED (EOL) 0000 1010 Y N "! 
VT = $CHAR( l1h "VERTICAL TAB 0000 1011 N N "! 
FF = $CHAR( 12), "FORM FEED 0000 1100 N N "! 
CR = $CHAR( 13), "CARRIAGE RETURN 0000 1101 Y N "! 

-t----SG--m---$C-tt-A-R-{ lit), "SIfIFT OUT (BlAC/( ON -WIlITE) 0000---4-1-!{I-----¥--------¥----- n _____ ·~'- __ _ 

SI = $CHAR( 15), "SHIFT IN (WHITE ON BLACK) 0000 1111 Y Y .. 
! OLE = $CHAR( 16), "DEVICE CONTROL 1 0001 0000 N N II 

! DCl = $CHAR( 17), "DEVICE CONTROL 2 0001 0001 N N .. 
DC2 = $CHAR( 18), "DEVICE CONTROL 3 0001 0010 N N •• 
DC3 = $CHAR( 19), "DEVICE CONTROL 4 0001 0011 N N .. 

- !-- OClt------::o--$€IIAR« 20) ,-~~E_V_ffiE_€_O_Nl-R-Q_l--4---------&a-M:__9__1__GG_---_N-- -------N---- ----~4---

! SKIP = $CHAR( 21), "CURSOR RIGHT (SKIP) 0001 0101Y N .O! 
LCLR = $CHAR( 22), "LINE CLEAR 0001 0110 Y N "! 

! ETB = $CHARC 23), "END TRANSMISSION BLOCK 0001 0111 N N .'~ 
! CLR = $CHAR( 24), "CLEAR SCREEN 0001 1000 Y N "! 

RSET = $CHAR( 25), "RESET CURSOR no HOME) 0001 1001 Y N "! 
! CUP = $CHA-R:{ 26 h HOYRSQ-R---UP . 0001 1010 I( N U!-
! ESC = $CHAR( 27), "ESCAPE 0001 1011 N N "! 
! FS = $CHAR( 28), "FIELD SEPARATOR 0001 1100 N N "! 

CHARACTER CODES G-l 



GS = SCH AR ( 2 q) , "GROUP SEPARATOR 0001 1101 N N I. ! 
RS = SCHAR( 30), "RECORD SEPARATOR 0001 1110 N N I'! , US = SCHAR( 31), "UNIT SEPARATOR 0001 1111 N N II !. 
SP :: SCHAR ( -32), IJSPACE 0011} 0009 V N :I~ ! 
EX = SCHAR( 33), "EXCLAMATION MARK 0010 0001 y y '1 ! 
DQ = $CH AR ( 34), "DOUBLE QUOTE 0010 0010 y, V II ! 
PS = $CHAR( 35), "NUMBER SIGN 0010 0011 y V •• ! 
OS = SCHAR( 36), "0 OLLAR SIGN 0010 0100 y V .. ! 

PER :: SCHAR( 37), "PERCENT SIGN 0010 0101 V V '1 ! 
AMP =$CH-A-R+ 36-h----uAMfl-ER-£ANil----- ----- - ------ o 0 1l}---Q-1 !-9-- ____u ¥- Un -V- - II! 
RAP :: $CHAR( 3q), "RIGHT APOSTROPHE 0010 01!:1 y y I. ! 

! LP = $CH AR. ( It- 0 ) , "LEFT PARENTHESIS 0010 1000 y V I'! 
! RP :: SCHAR( It-t), "RIGHT PARENTHESIS 0010 1001 y V •• ! 

! AS = SCHAR( It-2), "ASTERISK 0010 1010 y y •• ! 

! PL = SCHAR. ( It-3), "PLUS 0010 1011 y y I.! . 

! CM :: $CHAR ( It-lt-), "COMMA 0010 1100 y y I'! 
!--,M 1---- -.::---$£--H-A-R-f-4-5 h----!!.H I-NUS--------------- , o 0 1-9--4-1a-t y- ¥----,- --- -~-! .----

! PERO :: SCHAR( 46), "PERIOD 0010 1110 y y OW 

! SOL :: SCH AR ( It-7) , "SLASH OR SOLIDUS 0010 1111 y y OW 

! ZER = SCHAR( It-8)' "ZERO 0011 0000 y y •• 
! ONE = SCHAR( It-q), "ONE 0011 0001 y V •• 
! TWO = SCHAR(,50), "TWO 0011 0010 y y •• 
-!---lHR--=--$GHAR ( 51) , "THREE 0011 001i Y Y -----~-

! FOUR = SCHAR( 52), "FOUR 0011 0100 y V •• ! 

! FIVE = $CHAR( 5~), "FIVE 0011 0101 y y .. ! 

! SIX = SCHAR( 5lt-), "SIX 0011 0110 y y •• ! 

! SEV = SCHAR ( 55)' "SEVEN 0011 0111 y V •• ! 

! EGH = $CHAR( 56), "EIGHT 0011 1000 y y •• ! 
,- !--, -- ~I-N--=----$G-H A-fH---5-7-}-,- "NINE ,-'''-,---'''- ------{H}-1-1--1:-G-9-1 Y V ' -- --- - .I!__ -

! COL = SCHAR( 58), "COLON 0011 1010 y y •• ! 

! SC = SCHAR( 5q), "SEMI-COLON 0011 1011 y y I'! 
LT = $CHAR( 60), "LESS THAN 0011 1100 y, y "! 

! -EQ :: SCHAR( 61», "EQUAL 0011 1101 Y y .• ! 

! GT = $CHAR( 62), "GREATER THAN 0011 1110 y V •• ! 

-QK -= ' SC H AR (-- -63 h-- - - "Q-U£ -5T-I-GN-MARK---- - --- ----- - -- - B-Gt:l 1111 Y V •• ! 

AT = $CHAR ( 6lt-), "A T SIGN 0100 0000 y y It! 

A = $CHAR( 65), "UPPER CASE A 0100 0001 Y V .1 ! 

B = $CHAR ( 6Ed, "UPPER CASE 8 0100 0010 y V .1 ! 

C = $CHAR ( 67), "UPPER CASE C 0100 0011 y V .. ! 

0 = SCHAR( 68), "UPPER CASE 0 0100 0100 y Y .. ! 

E --=-$CH-A-R.+-6,q},- ----··y-PP€R--GASE--E - 01(Hl-O 1 B-1 - V y .• e! 

r--'" CHARACTER CODES _G-2 



F = $ C H A R ( 7 0 ) , .. U P PE RCA S E F 0 1 0 0 0 11 0 Y Y 
G = SCHAR( 71), "UPPER CASE G 0100 0111 Y Y 
H = SCHAR( 72), "UPPER CASE H 0100 1000 Y Y 
I = SCHAR( 73), "UPPER CASE I 0100 1001 Y Y 
J = $CHAR< 74), "UPPER CASE J 0100 1010 Y Y 

t. ! 
II ! 

'" ! 
II! 
I. ! -

-!--*-------=-$-G+tAR(-1-5-h---~u_PPE_R__G_A_5&-K---------- - ---------------Gt{}{J--! {J-!1 - ------l/--- ----Y------ -- "-!---
!L = SCHAR( 76), "UPPER CASE L 0100 1100 Y Y 

M = SCHAR( 77), "UPPER CASE H 0100 1101 Y Y 
! N = SCHAR( 78), "UPPER CASE N 0100 1110 Y Y 
! 0 = SCHAR( 79), "UPPER CASE 0 0100 It~l Y Y 

P = SCHAR( 80), "UPPER CASE P 0101 0000 Y Y 
Q -=$CHAR (--8-1), ·~u-PPER-C-A-st-Q.-- - ------ ------- - -IH01--G001-¥- -- --V------

! R = SCHAR( 82), "UPPER CASE R 0101 0010 Y Y 
! S = SCHAR( 63), "UPPER CASE S 0101 0011 Y Y 
! T = SCHAR( 84), "UPPER CASE T 0100 0100 Y Y 

U = SCHAR( 85), "UPPER CASE U 0100 0101 Y Y 
! V = SCHAR( 86), "UPPER CASE V 0100 UII0 Y Y 

-t--W-------~H-A-fH--8-1-+-, Ie UPPER CASE W 010 9 9111 ~---¥ 

! X = SCHAR( 88), "UPPER CASE X 0100 1000 Y y 
! Y = SCHAR( 89), "UPPER CASE Y 0100 1001 Y Y 
! Z = SCHAR( 90), "UPPER CASE Z 0100 1010 Y Y 
! OB. = SCHAR( 91), "OPEN BRACKET 0100 1011 Y Y 
! aSH = SCHAR( 92), "BACK SLASH 0100 1100 Y Y 

I. ! 
II! 
II ! 
10 ! 
It! 

__ at ! 
al! 
•• ! ... 
GI! 
'1 ! .. .. .. 
II .. .. 

-l---CB----~--$£-H-A1H-_9__3_}__~~t-eSE BRACKE-T-------- ---- ---{)-1-O-{}--14Gt-------¥---¥- __ u-!-___ _ 
! CIR = SCHAR( 94), "CIRCUMfLEX 0100 1110 Y Y 
! UNO = SCHAR( '95), "UNDERSCORE 0100 1111 Y Y 
! LSQ = SCHAR( '3.6), "LEfT SINGLE QUOTE 0101 0000 Y Y 
! LCA = SCHAR( 97), "LOWER CASE A 0101 0001 Y Y 
! LCB = SCHAR( 96), "LOWER CASE B 0101 0010 Y Y 
! LCC = $CHAR( 99), "LOWER CASE C 0101 0011 Y Y 

-! - Lefi--:-- tett-AR-t1:6tl ),-----"t.-e14ER-e-A-SE--j}--- -----6-1-{) 1 0100 'f----y---
! LCE = $CHAR{tOl), "LOWER CASE E 0101 01nl Y Y 

LCF = SCHAR(102), "LOWER CASE F 0101 0110 .y y 
! LCG = $CHAR(103), "LOWER CASE G 0101 0111 Y Y 
! LCH = $CHAR(104), "LOWER CASE H 0101 1000 Y Y 

LCI = $CHAR(10S), "LOWER CASE I 0101 1001 Y y 
! . LCJ--~--$eHAR-(Hl&h--- "lOW£R CAS£- J - --0101--{ 01-G-- -_. -¥ -- - - Y 

LCK = $CHAR(07), "LOWER CASE K 0101 1011 Y Y 
! L C L = $ C H A R ( 10 8 ) .. .. LOW ER CAS E L 0 1 0 1 11 0 0 Y Y 

LCM = $CHAR(t09), "LOWER CASE M 0101 1101 Y Y 
LCN= $CHAR(110), "LOWER CASE N 0101 1110 Y Y 

CHARACTER CODES 

.1 ! 
I. ! 
•• ! 
ID! 
,. ! 

I. ! 
•• t----
U! 
10 ! 
01 ! 
"! 
.t ! 
u, 
. --.. 
U! 
8' ! 
Itl ! 
,. ! 

G-3 



LCO = $CHARCllU, "LOWER CASE 0 
LCP :: $CHAR+112}, . '-lBWERC ASE P 
LCQ =$CHAR(113l, "LOWER CASE Q 
LCR = $CHAR(114), "LOWER CASE R 

! LCS :: $CH A R ( 115) , "LOWER CASE S 
! LCT = $CHAR(116), uLOWER CASE T 
! LCU = $CHAR(117), "LOWER CASE U 
! LCV· :: $CHAR-f-H:-6h- - ·'~laWER--oA-5E--V--

LCW = $CHAR (119), "LOWER CASE W 
! LCX = $CHAR(129), '"LOWER CASE X 
! LCY :: $CHAR(130), "LOWER CASE Y 
! LCZ :: $CHAR (31) , "LOWER CASE Z 
! OBR :: $C H A R (12 3 ) , "OPEN BRACE 

0101 1111 
·0110 £HHHJ 

0110 0001 
0110 0010 
0110 0011 
0110 0100 
0110 0101-

.- . ·--------tH-l9-S-t Hl·· 
0110 0111 
0110 1000 
0110 1001 

·01101010 
0110 1011 

Y Y 
Y .y 

Y Y 
y Y 
Y Y 
y Y 
V y 

._."?------'(----

Y Y 
Y Y 
Y Y 
Y Y 
Y Y 

" ! 
" ! 
It! 
•• ! 
I'! 
It! 
It, . 
~'!!---

... ! 
ur 
'" 
I. ! 
I. ! 

-t -- S-t}R----=---$£ttAR-t 12 It ) , '-'-STYLI lEE}- OR (VERTICAL BAR) o 11 a 110-tr---¥- y -!!..t.--

/F~~~, 

CBR = $CHAR(25), "CLOSE BRACE 0110 1101 
! TL = tCHAR(126), "TI LDE 0110 1110 
! RO = $CHAR(127); nRUBOUT 0110 1111 
! •• 

!U $CHAR(128) •• tCHAR(25S) PRINT AS A SPACE ON THE TERMINAL 
!-~ --ANI}- A RE-UN-ASS I G-NEB---A-S£-I-f-&R-A-Pttl£-S--~------~ -~~ ----.---------_. 
! 
!U FOR A DETAILED DESCRIPTION OF CONTROL DATA 713 TERMINAL 
!" CODES REFER TO -
! 
!.. CONTROL DATA 713 CONVERSATIONAL DISPLAY TERMINAL 
!.. HARDWAREPROGRAMHING REFERENGE-MA-NUAL---
!" PUBLICATION NO. 62033400 (JUNE, 1971) 
! 

Y Y 
Y Y 
Y Y 

II! 

'" 
•• ! 
I' ! 
•• ! 
t. ! .. ____ ._ 

.. ! 
I'! 

'1 ! 
.~~--!-

II! 

!" OPR - INDICATES WHETHER A DISPLAY OPERATION IS PERFORMED (CURSOR MOVED) It! 
!It CHR - INDICATES WHETHER A CHARACTER IS DISPLAYED ON THE TERMINAL SCREEN .. ! 
!" GRP - SHOWS THE GRAPHIC ACTUALLY DISPLAYED ON THE TERMINAL SCREEN It! 

!HOOENO CHARACTER$SET$713; 

CHARACrER CODES G-4 



APPENDIX H 

SWL BNF (ALPHABETICAL) 





1 <A CAS~> ::= =<SELECTION SPEC>[,<SELECTIUN SPEC>]= 
<STATEMENT LIST> 

2' <A POINTER CONFORMITY CASE> ::= 
=<POINTER TYPE SPECIFIER>= <STATEMENT LIST> 

3 <A VALUt CONFORMITY CASE> ::= 
=<VALU~ TYPE SPECIFIER>= <STATEMENT LIST> 

4 <ACCESS ATTRIBUTE> ::= READ \ WRITE \ EXECUTE 

5 <ACCESS ATTRIBUTES> ::= <ACCESS ATTRI8UTE>(,<ACCESS ATTRIbUTE>] 

6 '<ACTUAL FILE NAME> ::= <STRING EXPRESSION> 

7 <ACTUAL PARAMETER LIST> ::= 
«ACTUAL PARAMETER>[,<ACTUAL PARAMETER>J) 

\<EMPTY> 

d <ACTUAL PARAMETER> .. -.. - <EXPRESSION>\<PRUCEDUH~ IDENTIFIER> 
\<LABEL> 

<AOAPTABLE AGGREGATE TYPE> ::~ <AUAPTABLE STRING> 
\<ADAPTABLE ARRAY> 
\<ADAPTAbLE RECURD> 

10 <ADAPTABLE ARRAY IDENTIFIER> ::= <IDENTIFIEH> 

11 <ADAPTABLE ARRAY SPEC> ::= 
ARRAY [<STARRED LIST>} OF' <TYPE> 

'\ARRAY «STARREU LIST>] OF <ADAPTABLE CUMPUNENT TYPE> 
\ARRAY l<INDICES>] UF <ADAPTA~LE COMPONENT TYPE> 

12 <ADAPTABLE ARRAY> ::= «PACKING>]<ADAPTABLE ARRAY IDENTIFIER> 
\[<PACKING>]<ADAPTABLE ARRAY SPEC> 

13 <ADAPTABLE COMPONENT TYPE> ::= <ADAPTABLE TYPE> 

14 <ADAPTABLE FIELD FIXER> ::= <STAR FIXER> 

15 <ADAPTABLE FIELD> ::= 

\<STARRY SUBRANGE FIXER> 
\<LENGTH FIXER> 
\<SPAN FIXER> 

<FIELD SELECTOR>, [<ALIGNMENT>] <ADAPTABLE TYPE> 

16, <ADAPTABLE HEAP IUENTIFIER> ::= <IDENTIFIER> 

17 <AUAPTABLE HEAP> ::= <ADAPTABLE' HEAP IDENTIFIER> 

18 <ADAPTABLE POINTER TO ARRAY> ::= <ADAPTABLE POINTER> 

19 <ADAPTABLE POINTER TO HEAP> ::= <ADAPTAbLE ,POINTER> 

) 
SWL ~F (ALPHABETICAL) 

\~ 

H-1 



20 <ADAPTABLE POINTER TO SEQUENCE> ::= <ADAPTABLE POINTER> 

21 <ADAPTABLE POINTER TO STACK> ::= <ADAPTABLE POINTER> 

22' <ADAPTAHLE POINTER TO STRING> ::= <ADAPTABLE POINTER> 

23 <ADAPTABLE POINTER> ::= -[[READ]]<ADAPTABLE TYPE> 

24 <ADAPTABLE RECORD SPEC> ::= 
RECORD [<FIXED FIELDS>.] <ADAPTABLE FIELD> RECEND 

25 <ADAPTABLE RECORD TYPE IDENTIFIER> ::= <IDENTIfIER> 

26 <ADAPTABLE RECORD> ::= 
l<PACKING>]<ADAPTABLE RECORD TYPE IDENTIFIER> 

\[<PACKING>]<ADAPTABLE RECORD SPEC> 

27 <ADAPTA8LE SEQUENCE IDENTIFIER> ::= <IDENTIFIER> 

28 <ADAPTABLE SEUUENCE> ::~ <ADAPTABLE SEQUENCE IDENTIFIER> 

29 <ADAPTABLE STACK IDENTIFIER> ::= <IDENTIFIER> 

30 <ADAPTABLE STACK> ::= <ADAPTABLE'STACK IDENTIFIER> 
\ STACK [*1 OF <TYPE> 

31 <ADAPTABLE STURAGE TYPE> ::= <ADAPTABLE STACK> 
\<ADAPTABLE SEQUENCE> 
\<ADAPTABLE HEAP> 

\<ADAPTABLE STRING IbENTIFIER> 

32 <ADAPTABLE STRING IDENTIFIER> ::= <IDENTIFIER> 

33 <ADAPTABLE TYPE> ::= <ADAPTABLE AGGREGATE TYPE> 
\<ADAPTABLE STORAGE TYPE> 

34 <ADDING OPERATOR> ::= ... \ - \ OR \XOR \ UOR 

35 <AGGREGATE TYPE> ::= <STRING TYPE> 
\<ARRAY TYPE> 
\<RECORD TYPE> 

36 <ALIGNMENT> ::= ALIGNED 

37 <ALLOCATE STATEMENT> ::= 
ALLOCATE <ALLOCATION DESIGNATOR> [ IN <HEAP VARIABLE>] 

38 <ALLOCATION DESIGNATOR> ::= 
<POINTER VARIABLE> 
\<ADAPTA~LEPOINTER VARIABLE> : [<ADAPTABLE FIELD FIXER> 

[,<ADAPTABLE FIELD FIXER>]] 
\<POINTER TO BOUND VARIANT RECORD VARIABLE> : 

[<TAG FIELD FIXER> [. <TAG FIELD FIXER»] 

SWL BNF (ALPHABETICAL) 

H-2 



.39 <ALPHAI:iET> .. -.. - <LETTER> 
\<DIGIT> 
\<SPECIAL MARK> 
\<BLANKS> 
\<UNUSED MARK> 

40 <ALTERNATIVE PARTS> ::= IF <EXPRESSION> THEN <STATEMENT LIST> 
[ORIF <EXPRESSION> THEN <STATEMENT LIST>] 

41 <ANY INDEX> ::= <INDEX> \ <STARRED INDEX> 

42 <ARRAY EXPRESSION> ::= <EXPRESSION> 
\<INDEFINITE VALUE CONSTkUCTOR> 

43 <ARRAY SPEC> ::= ARRAY [<INDICES>] OF <COMPOh~NT TYPE> 

44 '<ARRA1 TYPE IUENTIFIER> ::= <IDE~TIFIER> 

45 <ARRAY TYPE>. ::= l<PACKING>]<ARRAY TYPE IDENTIFIER> 
\[<PACK1NG>]<ARRAYSPEC> 

46 <ARRAY VARIABLE> ::= <VARIABLE> 

47 <ASCII CHARACTER> ::= <ALPHABET>\<UNPRINTABLE> 

4~ <ASSIGNMENT STATEMENT> ::= <VARIABLE> := <EXPRESSION> 
\<FUNCTION IDENTIFIER> := <EXPkESSION> 
\<SUCCESSOR ASSIGNMENT> "CFo .1001 02" 
\<PREDECESSOR ASSIGNMENT> 

49 <ATTRIdUTE> ::= <ACCESS ATTRIBUTE> 
\<STORAGE ATTRIBUTE> 
\<SCOPE ATTRIBUTE> 

50 <ATTRIBUTES> ::= [<ATTRIBUTE>[,<ATTRIHUTE>]] 

51 <BASE DESIGNATOR> ::= «RADIX» 

52 <I:iASE TYPE> ::= <SCALAR TYPE> 

53 <bASIC CONSTANT> ::= <SCALAR CONSTANT> 
\<COMPILE TIME. VARIAbLE> "CF.. SECTION 12.1" 
\<REAL CONSTANT> 
\<POINTER CONSTANT> 

54 <I:iASIC TYPE> ::= <SCALAR TYPE> 
\<RE:AL TYPE> 
\<POINTER TYPE> 

~5 <1:i£GIN STATEMENT> ::= 

56. 

57 

BEGIN <DECLARATION LIST><STATEMENT LIST> END 

<BLANKS> .. -. .-
<800LEAN CONSTANT IDE:NTIFIER> .... -.. - <IDENTIFIER> 

SWL BNF (ALPHABETICAL) 
H-3 



~H <~OUL~AN CONSTANT> ::= FALSE\TRUE\<BOOLEAN CONSTANT IDENTIfIER> 

~9 <~OOL~AN TYPE IDENTIFIER> ::= <IDENTIFIER~ 

00 <BOOLEAN TYPE> ::= BOOLEAN 
\<BOOLEAN TYPE IDENTIFIER> 

01 <BOUND VARIANT POINTER> ::= -[[READl]<BOUND VAHIANT RECOHD TYPE> 

02 <HOUNO VARIANT RECORD TYPE>. ::= 
«PACKING>] <BOUND VARIANT RECORD TYPE IDENTIFIEH> 

\[<PACKING>l BOUND <VARIANT RECORD SPEC> 
\«PACKING>] BOUND <VARIA~T RECORD TYPE IDENTIFIER> 

63 <CASE PART> ::= CASE <TAG FIELD SPEC> OF <VARIATIUNS> CASENO 

6~ <CASE STATEMENT> ::= CASE <SELECTOR> OF <CASES> 
[ELSE <STATEMENT LIST>] CASENU 

b~ <CASES> ::= <A CASE>[;<A CASE>] 

00 <CELL TYPE> ::= CELL 

b7 <C~ARACTER CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

oH <CHARACTER CONSTANT> ::=·'<ALPHABET>' 
\<CHARACTER CONSTANT IDENTIFIER> 

. - \SCHAR «INTEGER» 

69 <CHARACTER TYPE IDENTIFIER> ::~ <IDENTIFIER> 

10 <CHARACTER TYPE> ::= CHAR\<CHARACTER TYPE IDENTIFIER> 

11 <COMMfNTARY STRING> ::= II[<COMMENT CHARACT~H>]" 

72 <COMPILATION UNIT> ::= <MODULE DECLARATION> IICF. SECTION 

73 <COMPONENT TYPE> ::= <TYPE> 

7~ <CUNfORMITY> ::= 
<TYPE IDENTIFIER> <TYPE TEST OPERATOR> <UNION VARIABLE> 

\<POINTER VARIABLE> <POINTER TYPE TEST OPERATOR> 
<UNION VARIAdLE> 

\<VARIABLE> <VALUE TYPE TEST OPERATOR> <UNION VARIABLE> 

75 <CONSTANT DECLARATION>::= 
CONST «CONSTANT SPEC> [, <CONSTANT SPEC>]] 

76 <CONSTANT IDENTIFIER LIST> ::= <IDENTIFIER LIST> 

11 <CONSTANT SPEC> ::= 
<CONSTANT IDENTIFIER LIST> = <CONSTANT EX~RESSION> 

\ <E~PTY> 

78 <CONSTANT> ::= <BASIC CONSTANT>\<STRING CONSTANT> 

SWL BNF (ALPHABETICAL) 
H-4 



79 <CONSTRUCTOR 10> ::= <SET TYPE IDENTIFIER> 
\<ARRAY TYPE IDENTIFIER> 
\<RECORD TYPE IDENTIFIER> 

eo <CONTROL STATEMENT> ::= <PROCEDURE CALL STATEMENT> 
\<CREATE STATEMENT>\<DESTROY STATEMENT> 
\<R~SUME STATEMENT>\<CYCLE STATEMENT> 
\<EXIT STATEMENT>\<RETUkN STATEMENT> 
\<GOTO STATEMENT>\<EMPTY STATEMENT> 

el 

83 

<CONTROL TYPE> .. -.. -

<CONTROL VARIABLE> 

<COP~OC REFERENCE> 

<LABEL TYPE> 
\<PROCEDURETYPE> 
\<COPROCESS TYPE> 

· . -· .- <VARIABLE> 

· .-· .- <POINTER TO COPROC>-

84 <CUPROCESS TYPE> ::= COPROC 

e~ <CRAMMED ARRAY> ::= 
ARRAY «CRAMMED INDICES>] OF <CRAMMED ELEMENT> 

1::16 <CRAMMED ELEMENT> ::= 
<BOOLEAN TYPE> 
<INTEGER TYPE>«WIDTH>l 

[<MALIGNMENT>] 
\ [<MALI~NMENT>l 
\ [<MALIGNMENT>] 
\ <CR~MMED TYPE> 

<INTEGER SUBRANGE TYPE>«~IDTH» 

b7 <CRAMMED FIELD> · .-· .- <IDENTIFIER LIST> : <CRAMMED ELEMENT> 

<CRAIv1I"1ED INDEX> · .-· .- <FIXED SCALAR TYPE> 

b9 <CRAMMED INDICES> ::= <CRAMMED INDEX> [,<CRAMMED INDEX>] 

90 <CRAMMED RECORD> ::= 
RECORD <CRAMMED FIELO>[,<CRAMMED FIELD>] RECEND 

91 <CRAMMED STRUCTURE> ::= <CRAMMED ARRAY>\<CRAMMtD RECORD> 

92 <CRAMMED TYPE> ::= [<MALIGNMENT>l CRAMMED <CRAMMED STRUCTURE> 

93 <CREATE STATEMENT> ::= 
CREATE «POINTER TO COPROC>. <PROCEDURE CALL STATEMENT» 

94 <CYCLE STATEMENT> ::= CYCLE [<LABEL>][WHEN <EXPRESSION>] 

95 <DATA TYPE> ::= <TYPE> 

96 <DECLARATION LIST> ::= [<DECLARATION>;] 

SWL BNF (ALPHABETICAL) . 

H-S 



97 <DECLARATION> ::= <TVPE DECLARATION> 
\ <VARIABLE DECLARATION> 
\ <SEGMENT DECLARATION> 
\ <~ODULE DECLARATION> 
\ <PROCEDURE DECLARATION> 
\ <LABEL DECLARATION> 
\ <MICRO DECLARATION> 
\ <EMPTV> 

9h <D~CREMENT> ::= <EXPRESSION> 

99 <D~FINITE FILE VARIABLE CONSTRUCTOR> 
$<FILE TVPE> [<FILE EXPRESSION» 

.. -.. -
100 <DEFINITE VALUE CONSTRUCTOR> ::= 

$<CONSTRUCTOR 10> [<VALUE ELEMENTS» 

lU1 <DESTROV STATEMENT> ::= 
D~STRQY «POINTER TO COPROC> [,<POINTER TO COPROC») 

102 <UIGIT> ::=.0\1\2\3\4\5\6\1\8\9 

103 <DIRECT POINTER TYPE> a:= <POINTER TO TYPE> 
\<~ORMAL POINTER> 

104 <EMPTY STATEMENT> ::= 

105 <~NCOUING> ::= 'ASCII' \ 'EBCDIC' \ 'SIX-TWELVE-ASCII' \ 

106 <EXIT STATEMENT> ~:= EXIT [<LAaEL O~ PROC IDENiIFIER>] 
[WHEN <EXPRESSION>] 

107 <EXPONENTIATING OPERATOR> ::= ** 
lOB <EXPRESSION> ::= <SIMPLE EXPRESSION> 

\<SIMPLE EXPRESSION><RELATIONAL OPERATOR> 
<SIMPLE EXPRESSION> 

••• 

109 <FACTOR> .. -.. - <CONFORMITV>\<VARIABLE>\<CONSTANT> 
\<DEFINITEVALUE CONSTRUCTOR>\-<VARIABLE>\-<LABEL> 
\-<PROCEDURE IDENTIFIER>\<FUNCTION DESIGNATOR> 
\«EXPRESSION»\<NOT OPERATOH><FACTOR> 

110 <FIELD REFERENCE> :~= <RECORD VARIABLE>.<FIELD SELECTOR> 

III <FIELD SELECTOR> ::= <IDENTIFIER> 

112 <FIELD SELECTORS> ::= <fIELD SELECTOR> [,<FIELD SELECTOR>] 

113 <FILE ATTR!l:WTE> .. -.. - <OLD NOR NEW> 
\ <MODE> 
\ <ENCODING> 
\ <POSITION> 

114 <FILE ATTRIBUTES> ::= <FILE ATTRIBUTE> [·,<FILE ATTRIBUTE» 

SWL BNF (ALPHABETICAL) 
H-6 



15 <FILE SPEC> ::= <ACTUAL FILE NAME> [,<FILE ATTHIHUTES>] 

Ib <FIL~ TYPE> ::= LEGIBLE \ PRINT \ BINARY \ DIRECT 

17 <FILE VARIAHLE INITIALIZATION> ::= 
:= <FILE EXPRESSION> 

\ := <INDEFINITE FILE VARIA8LE CONSTRUCTOR> 

18 <FILE VARIABLE SPEC> ::= <VARIABLE IDENTIFIERS> 
[<SCOPE OR STORAGE ATTRIbUTES>] 
<FILE TYPE> "CF. 4.8 11 

[<FILE VARIABLE INITIALIZATION>J 

19 <FINAL VALUE> ::= <EXPRESSION> 

20 <FIRST ChAR> ::= <POSITIVE INTEGER EXPRESSION> 

"CF. bol" 

21 <FIXED FIELD> :;= <FIELD SELECTORS> : [<ALIGNMENT>] <FIxED TYPE> 

22 <FIxED FIELDS> ::= <FIXED FIELD> [, <FIXED FIELD>] 

23 <FIXED OR VARIA~LE HOUND TYPE> ::= 
<BASIC TYPE> \ <STRUCTURED TYPE> \ <STOHAGE TYPE> 

24 <FIXED RECORD TYPE> ::= <INVARIANT RECORD TYPE> 
\<VARIANT RECORD TYPE> 

25 <FOLLOWER> ::= <LETTER>\<DIGIT>\~\#\$\~ 

26 <FOH LIST> ::= 
<INITIAL VALUE> TO <FINAL VALUE>[BY <INCREMENT>] 

\<INITIAL VALU~> DOwNTO <FINAL VALUE>[BY <DECREMENT>] 

27 <FOR STATEMENT> ::= FOR <CONTROL VARIAHLE> := <FOR LIST> DO 
<STATEMENT LIST> fOREND 

28 <FORMAL PARAM LIST> · .-· . ~ <IDENTIFIER LIST> 

29 <FORMAL PAR AM LIST> · .-· .- <IDENTIFIER LIST> 

30 <FURMAL POINTER> ::= <ADAPTABLE POINTER> 

31 <FORMAL TYPE> .. -.. -
\<POINTER TO CONTROL> 
\<BOUND VARIANT POINTER> 

<ADAPTABLE TYPE> "CF. 4 .. 5" 
\<CONTROL TYPE> lieF. 4.6" 
\<BOUND VARIANT RECORD TVPE> "CF. ~o7" 

32 <FREE STATEMENT> ::= 
FREE <ALLOCATION DESIGNATOR>[IN <HEAP VARIABLE>J 

33 <FUNCTION DESIGNATOR> ::= 
<PROCEDURE REFERENCE>«ACTUAL PARAMETER> 

[9<ACTUAL PARAMETER>]) 
\<PROCEDURE REFERENCE>( 

SWL BNF (ALPHABETICAL) 
H-7 



134 <FUNCTION IDENTIFIER> ::= <PROCEDURE IDENTIFIER> 

135 <GOTO STATEMENT> ::= GOTO [EXIT] <LABEL REFERENCE> 

136 <HEAP TYPE> ::= HEAP «SPACE» 

137 <HEAP VARIAHLE> ::= <VARIABLE> 

138 - -<ht:.X DIGIT> *** .- A \B\C\D\E\F-
\<DIGIT>· 

"CF. 4.4.4" 

13Y <IDENTIFIER LIST> ::~ <IDENTIFIER>[,<IDt:.NTIFIEK>J 

140 <IDENTIFIER> ::= <LETTER>[<FOLLOWER>] 

141 <IF STATEMENT> ::= 
<ALTERNATIVE PARTS> IFEND 

\<ALTERNATIVE PARTS> ELSE <STATEMENT LIST> IFEND 

1~2 <INCREMENT> ::= <EXPRESSION> 

143 <INDEFINITE FILE VARIABLE CONSTRUCTOR> ::= [<FILE SPEC>] 

144 <INDEFINITE VALUE CONSTRUCTOR> ::=' [<VALUE ELEMENTS» 

145 <INDt:.X> ::= <SCALAR TYPE> 
\<SCALAR EXPRESSION>.. <SCALAR EXPRESSION> 

146 <INDICES> ::=<INDEX>[,<INDEX>J 

147 <INITIAL VALUE> ::= <EXPRESSION> 

148 <INITIALIZATION> ::= := <EXPRESSION> 
\ := <INDEFINITE VALUE CONSTRUCTOR> 

149 <INTEGER CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

150 <INTEGER CONSTANT> ::= <INTEGER>\<INTEGER CONSTANT IDENTIFIER> 

151 • <INTEGER TYPE IDENTIFIER> ::= <IDENTIFIER> 

152 <INTEGER TYPE> ::= INTEGER\<INTEGER TYPE IDENTIFIER> 

153" <INTEGER> ::= <DIGIT>[<DIGIT>] 
\<DIGIT>[<HEX DIGIT>] <BASE DESIGNATOR> 

154 <INVARIANT RECORD SPEC> ::= RECORD <FIXED FIELDS> RECEND 

155 <INVARIANT RECORD TYPE> ::= 
«PACKING>] <INVARIANT RECORD TYPE IDENTIFIER> 

\«PACKING» <INVARIANT RECORD SPEC> 

156 <LABEL DECLARATION> ::= LABEL <LABEL>[, <LABEL>] 

SWL BNF (ALPHABETICAL) 
H-8 



1~1 <LAHEL OR PROC IDENTIFIER> ::= <LABEL>\<PROCEUURE IDENTIFIER> 

l~M <LAbEL REFERENCE> ::= <LA8EL> \ <POINTEH TO LAbEL>-

l~Y <LAMEL TYPE> ::= LAbEL 

100 <LArlEL> ::= <IDENTIFIER> 

161 <LENGTH FIXER> ::= <SCALAR ExPRESSION> 

102 <LENGTH> ::=<POSITIVE INTEGER EXPRESSION> 

103 <LETTER> ::= A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\~\R\S\T\U\V\w\X\Y\Z 

164 <LUOP STATEMENT> ::= LOOP <STATEMENT LIST> LOOPEND 

16~ <LOwE~> ::= <CONSTANT SCALAR EXPRESSION> 

166 <MALIGNMENT> ::= MALIGNED «OFFSET>[,<BASE>J) 

167 <MEMbEkS> ::= <TYPE LIST> 

168 <MODE> ::= READ[~WRITE] \ WRITE[ 9READl 

169 <MODULE BODY> ::= <DECLARATION LIST> 

170 <MOUULE DECLARATION> ::= 
MODULE [<MODULE IDENTIFIER>] [«PRUNGS»); 
<MODULE BODY> 
MODEND [<MODULE IDENTIFIER>] 

171 <MODuLE IDENTIFIER> ::= <IDENTIFIER> 

112 <MULIIPLYING OPERATOR> ::= * \ / \ MOD \ AND \ CAND 

173 <NEXT STATEMENT> ::= 
NEXT <ALLOCATION DESIGNATOR> IN <SEQUENCE VARIABLE> 

174 <NOT OPERATOR> .::= NOT 

175 <NTH> :;= <INTEGER EXPRESSION> 

176 <O~JECT TYPE> ::= <TYPE> 

177 <OLD OR NE~> ::= OLD \ NEW 

17H <ORDINAL CONSTANT IDENTIFIER LIST> ::=. 
<ORDINAL CONSTANT IDENTIFIER>9<ORDINAL COI~STANT IDENTIFIER> 
(,<ORDINAL CONSTANT IDENTIFIER>] 

179 <ORDINAL CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

180 <ORDINAL CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

.181 <ORuINAL CONSTANT> ::= <ORDINAL CONSTANT IDENTIFIER> 

SWL BNF (ALPHABETICAL) 
H-9 



182 <ORDINAL TYPE IDENTIFIER> ::= <IDENTIFIER> 

1~3 <URDINAl TYPE> ::= «ORDINAL CONSTANT IDENTIFIER lIST» 
\<ORDINAL TYPE IDENTIFIER> 

184 <PACKING ATTRIBUTES> ::= PACKED \ UNPACKED 

Id~ <PACKING> ::= <PACKING ATTRIBUTES> 

Ibb <PARAM SEGMENT> ::= <R~FERENCE PARAMS~\<VAlUE ~ARAMS> 

187 <PARAMETER LIST> ::= «PARAM SEGMENT>[;<PARAM SEGMENT>J)· 

18b <PARENTAL TYPE> ::= <STORAGE TYPE> 
\<AGGREGATE TYPE> 

Icl9 <POINTER CONFORMITY CASE STATEMENT> ::= CASE :-: <UNION VARIABLE> 
OF <POINTER CONFORMITY CASES>[ELSE <STATEMENT LIST>] CASEND 

1~0 <POINTER CUNFORMITY CASES> ::= 
<A POINTER CONFORMITl CASE>[;<A POINTER CONFORMITY CASE>] 

l~l <POINTER CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

192 <POINTER CONSTANT> ::= NIL 

193 <POINTER REFERENCE.> ::= <POINTER VARIABLE> 
\<FUNCTION DESIGNATOR> 

. lY4 <~OINTER TO CONTRUL> ::= -<CONTROL TYPE> 

<PUII'~TER TO COP ROC> · .- <FORMAL· POINTER> · .-
1~6 <POINTE~ TO COPROC> · .- <VARIABLE> · .-

<POINTER TO FILE> .. - -<FILE TYPE> .. -197 

<POINTER TO LAbEL> .. - <FORMAL POINTER> .. -19H 

<I-'GINTC:R TO PROCEDURE> .. - <FUR MAL POINTER> .. -199 

200 <POINTER TO TYPE> ::= -[[READ1]<FIXED OR VARIAblE BOUND TYPE> 
\<POINTER TO FILE> 

201 <POINTER TYPE SPECIFIER> ::= <POINTER VARIABLE> 

202 <POINTER TYPE TEST OPERATUR> ::= :-: 

203 <POINTER TYPE.> .. -.. - <DIRECT POINTER TY~E> 
\<RELATIVE POINTER TYPE> 

204 <POINTER VARIABLE> ::= <VARIABLE> 

cu5 <POP STATEMENT> ::= POP <POINTER VARIABLE> ON <STACK VARIAblE> 

206 <POSITION> ::= FIRST \ ASIS \ lAST 

SWL BNF (ALPHABETICAL) 
H-l0 



~07 ·<POwE~> ::= <FAeTOH~ \ <POwER> <~XPONENTIATION OPERATOR> <FACTOR> 

~Od <P~EU~CESSOR ASSIGNMENT> ::= <SCALAR VARIABLE> :- <NTH> 

~OY <Prioe ATTRIbUTE> ::= XDCL \ REPDEP \ <S~GMENT IDENTIFIEK> 

~IO <PROC ATTRIBUTES> ::= <PROC ATTRIBUTE>[<PROC ATTRIbUTE>] 

211 <PkOC' bODY> :~= <DECLARATION LIST> <STA1EMENT· LIST> 

212 <PRoe END> ::= PROCEND [<PROCEDURE IDENTIFIEK> ] 

213 <PKOC SPEC> ::= <PROCEDURE IDENTIFIER> <Pkoe TYPE SPEC> 
\ <PROCEDURE IDENTIFIER> <PROCEDURE TYPE> 

214 <PROC TYPE ATTRIBUTES> ::= 
<NULL LONSTRUCT (FOR EXPANSION PURPOSES» 

~15 <PROC TYPE SPEC> ::= 
[[<PRoe TYPE ATTRI~UTES>ll[<PARAMETEk LIST>]«KETUHN TYPE>] 

~lb <PHOCEDUKE CALL STATEMENT> ::= 
<PROCEUUHE REFERENCE> <ACTUAL PARAMETER LIST> 

217 <PHOCEOUR~ UECLARATION> ::= 
PHOC [ XHEF] <PROC SPEC> 

\ PROC[[<PHOC ATTRIBUTES>]]<PROC SPEC>;<PHUC BODY><PkOC END> 

cl~ <PRUC~uURE IDENTIFIER> ::= <IDENTIFIER> 

cl~ <PROC~UURE kEFER~NCE> ::= <PROCEDURE IDENTIFIER> 
\<POINTER,TO PkUCEOUK~>-

~2U <PROCEDURE TYPE IDENTIFIER> ::= <IDENTIFIER> 

~21 <PROCEuURE TYPE> ::= <PROCEDURE TYPE IDENTIFIER> 
\PROC <PROC TYPE SPEC> 

~22 <PRONGS> ::= <IDENTIFIER LIST> 

223 <PuSH STATEMENT> ::= PUSH <POINTER VARIABLE> ON <STACK VARIABLE> 
\ PUSH <ALLOCATION DESIGNATOR> 

~24 <RADIx> ::= ~ \ 4 \ 8 \ 10 \ 16 

225 <R~AL CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

~~6 <REAL CO~STANT>::= <REAL NUM8ER>\<REAL CONSTANT IDENTIFIEH> 

~27 <R~AL NUMBER> ::= <UNSCALED NUM~ER> 
\<SCALED NUMBER> 

22H <REAL TYP~ IDENTIFIER> ::= <IDENTIFIER> 

~24 <REAL TYPE> ::= RfAL\<REAL TYPE IDENTIFIEH> 

SWL BNF (ALPHABETICAL) 
H-ll 



230 . <ReCORD EXPRESSION> ::= <EXPRESSION> 
\<INDEFINITE VALUE CONSTRUCTOR> 

,231 <RECOHU TYPE> ::= <FlXED RECORD TYPE> 
\<VARIABLE BOUND RECORD TYPE> 

232 <RECORD VARIA8LE> ::= <VARIABLE> 

i: 33 <REF TYPE> · . -· .- <SWL TYPE> 

<KEF TYPE> · .-· .- <SWL TYPE> 

235 <REFERENCE PARAMS> ::= 
REF <FOH~AL PARAM LIST> : [[ READ ))<REF TYPE> 

236 <RELATIONAL OPERATOR> ::= < \ <= \ > \ >= \ = \ /= \ IN 

c37 <RELATIVE POINTER TYPE> ::= 
REL(<PARENTAL TYPE» ]-<OBJECT TYPE> 

\ 

i:38 <REP SPEC> ::= REP <POSITIVE INTEGER EXPRESSION> Of 

i:3~ <REP TYPE> ::= <CELL TYPE> 
\<CRAMMED TYPE> 

240 <kEPEATSTATE~ENT> ;;= REPEAT <STATEMENT LIST> UNTIL <EXPRESSION> 

2~1 <RESET STATEMENT> ::= 
RESET <SEQUENCE VARIABLE>[ TO <POINTER VARIABLE>] 

\ RESET <STACK VARIABLE> (TO <POINTER VARIABLE>] 

i:42 

£:'43 

\ RESET <HEAP VARIABLE> 

<HLSUM~ STATEMENT> 

<RETURN STATEMENT> 

· ... -
· .-· .-

RESUME «COPROC REFERENCE» 

RETURN [WHEN <EXPRESSION>] 

i:4~ <RETUHN TYPE> ::= <BASIC TYPE> 

245 <SCALAR CONSTANT> ::= <ORDINAL CONSTANT> 
\<BOOLEAN CONSTANT> 
\<INTEGER CONSTANT> 
\<CHARACTER CONSTANT> 

2~b <SCALAR TYPE> ::= <INTEGER TYPE> 
\<CHARACTER TYPE> 
\<ORDINAL TYPE> 
\<BOOLEAN TYPE> 
\<SUBRANGE TYPE> 

i:~7 <SCALED NUMBER> ::= <UNSCALED NUMBER> E«SIGN>J<DIGIT>«DIGIT» 

2~8 <SCOPE ATTRIBUTE> ::= XDCL \ XREF \ EXTERNAL 

249 <SCOPE OR STORAGE ATTRIBUTE> ::= 
<SCOPE ATTRIBUTE> [,<STORAGE ATTRIBUTE>] 
\ <STORAGE ATTRIBUTE> [,<SCOPE ATTRIBUTE>] 

SWL BNF (ALPHABETICAL) 
H-12 



25U <SEGMENT DECLARATION> ::= SEGMENT <SEGME~TS>, <SEGMENTS> 

t51 <5EGMENT IDENTIFIER> ::= <IDENTIFIER> 

~52 <SEGMENT IDENTIFIERS> ::= <SEGMENT IDENTIFIER> 
(,<SEGMENT IDENTIFIER>] 

<SEGIv"ENTS> .. -.. - <SEGMENT IDENTIFIERS> : [l<ACCESS AITHIHUTES»] 

~5~ <SELECTION SPEC> ::= <CONSTANT SCALAR EXPHESSIUN> 
[ •• <CONSTANT SCALAR EXPHESSION>J 

<SELECTION VALUE> .. -.. - <CONSTANT SCALAR EXPRESSION> 
[ •• <CONSTANT SCALAR EXPRESSION>] 

eSb <SELECTION VALUES> ::= 
<SELECTION VALUE> [. <SELECTION VALUE>] 

257 <SELECTION VALUES> ::= <SELECTION VALUE> [9 <SELECTION VALUE>] 

258 <SELECTOR> ::= <EXPRESSION> 

25Y <SE~UENCE TYPE> ::= SEQ «SPACE» 

<SEQUENCE VARIABLE> .. -.. - <VARIABLE> 

col <SET TYPE IDENTIFIER> ::= <IDENTIFIER> 

262 <SET TYPE> ::= SET OF <BASE TYPE> 
\<SET TYPE IDENTIFIER> 

203 <SIGN> ::= + \ -

~64 <SIMPLE EXPRESSION> ::= <TERM> \ <SIGN><TERM> 
\<SIMPLE EXPRESSION> 

<ADDING OPERATOH><TEHM> 

265 <SPACE> ::= <SPAN>[~<SPAN>] 

cob <SPAN FIXER> ::= [<SPAN> (, <SPAN> J) 

2b7 <SPAN> ::= [REP <POSITIVE INTEGER EXPRESSION> UF] 
<TYPEIDENTIFIER~ 

2btl <SPECIAL MARK> ::= +\-\*\/\.\;\:\"\' 
\#'$\~\~\?\(\)\=\<\> 

269 <STACK SIZE> ::= <INTEGER EXPRESSION> 

c7U <STACK TYPE> ::= STACK [<STACK SIZE>] OF <TYPE> 

e71 <STACK VARIABLE> ::= <VAHIABLE> 

SWL BNF (ALPHABETICAL) 
H-13 



272 <STAR FIXER> .. -.. - <SCALAR EXPRESSION> 00 <SCALAR EXPRESSION> 

~73 <STAR> ::= * \ * : <SCALAR TYPE> 

214 <STARRED INUEX> ::= <STAR> \ <STARRED SUHRANGE> 

~rs <STARRED LIST> ::= 
[<INDEX>,] <STARRED INDEX> [, <ANY INDEX>J 

~7b <STARRED SUBRANGE> ::= * •• <SCALAR EXPRESSIGN> 
\<SCALAR EXPRESSION> o. * 

el7 <STARRY SUBRANGE FIXER> ::= <SCALAR EXPRESSION> 

i7H <STATEMENT LIST> ::= <STATEMENT>[;<STATEMENT>J 

il9 <STATEMENT>::= <UNLABELED STATEMENT>\<LA~EL> : <STATEMENT> 

i80 <STORAGE MANAGEMENT STATEMENT> ::= <PUSH STATEMENT> 

21:H <STORAGE TYPE> .. -.. - <STACK TYPE> 
\<SE~UENCE TYPE> 
\<HEAP TYPE> 

\<POP STATEMENT> 
\<NEXT STATEMENT> 
\<RESET STATEMENT> 
\<ALLOCATE STATEMENT> 
\<FREE STATEMENT> 

ibc <STRING CONSTANT IDENTIFIER> ::= <IDENTIFIER> 

283 <STRING CONSTANT> ::= <STRING TERM> (CAT <STRING TERM>] 

284 <STRING TERM> ::= <CHARACTER CONSTANT> 
\<STRING CONSTANT IDENTIFIER> 
\'<ALPHABET> <ALPHABET> [<ALPHABET>]' 

2d5 <STRING TYPE IDENTIFIER> ::= <IDENTIFIER> 

~Hb <STRING TYPE> ;:= STRING «LENGTH» OF <CHARACTER~T~PE> 
\<STRING TYPE IDENTIFIER> 

c~7 <STRING VARIA~LE> ::= <VARIABLE> 

~8H <STRUCTURED STATEMENT> ::= <BEGIN STATEMENT> 
\<IF STATEMENT>\<LOOP STATEMENT> 
\<WHILE STATEMENT>\<kEPEAT STATEMENT> 
\<FOR STATEMENT>\<CASE STATEMENT> 
\<VALUE CONFORMITy CASE STATEMENT> 
\<POINTER CONFORMITY CASE STATEMENT> 

S1VL BNF (ALPHABETICAL) 

H-14 



cHY <STRUCTURED TYPE> ::= <SET TYPE> 
\<UNION TYPE> 
\<AGGREGATE TYPE> 

290 <SU~RANGE TYPE IDENTIFIER> ::= <IDENTIFI~R> 

2Yl <SU8HANGE TYPE> ::= <SUBRANGE TYPE IDENTIFIER> 
\<LOWER> •• <UPPER> 

t.Y2 <SU8SCRIPT> ::= <SCALAR EXPR~SSION> 

2Y3 <SU8SCRIPTEO REFERENCE> ::= <ARRAY VARIA8LE> «SUbSCRIPTS» 

294 <SUBSCRIPTS> ::= <SUBSCRIPT>[9<SUBSCRIPT>] 

CY~ <SU8STRING LENGTH> ::= <POSITIVE INTEGER EXPHtSSION> 

2Yb <SU~STRING HtFERENCE> ::= <STRI~G VARIA~LE>«SU~STRING SP~C» 

c97 <SUBSTRING SPEC> ::= <FIRST CHAR>(9<SU~STRINb LENGTH>J 

2YM <SUCCESSOR ASSIGNMENT> ::= <SCALAR VARIABLE> :+ <NTK> 

<SwL TYPE> .. -.. - <DATA TYPE> 
\<FORMAL TYPE:> 

300 <TAG FIELD FIXER> ::= <SCALAR EXPRESSIUN> 

301 <TAG FIELD SELECTOR> ;:= <IDENTIFIER> 

302 <TAG FIELD SPEC> ::= 
<TAG FIELD SELECTOR> : «ALIGNMENT>] <TAG FIELD TYPE> 

.303 <TAG FIELD TYPE> ::= <SCALAR TYPE> 

304 <TERM> ::= <POWER>\<TEHM><MULTIPLYING UPERATUR><POwER> 

30~ <TYPE DECLARATION> ::= TYPE «TYPE SPEC>[, <TYPE SPEC>] ) 

306 <TYPE IDENTIFIER LIST> ::= <IDENTIFIER LIST> 

307 <TYPE IDENTIFIER> ::= <IDENTIFIER> 

30M <TYPE LIST> .. -.. - <TYPE> [, <TYPE»· 

30Y <TYPE SPEC> ::= <TYPE ID~NTIFIEH LIST> = <SwL TYPE> \ <EMPTY> 

jl0 

.;11 

<TYPE TEST OPERATOR> .. - .. .. - .. 
<TYPE> .. -.. - <FIXED OR VARIA~LE 80UND TYPE> \ <fILE TYPE> 

312 <UNION TYPE> ::= «PACKING>] UNION «MEMBERS» 

SWL BNF (ALPHABETICAL) 
H-15 



313 <UNION VARIABLE> ::= <VARIABLE> 

314' <uNION VARIABLE> ::= <VARIABLE> 

315 <UNLA~~l~D STATEMENT> ::= <ASSIGNMENT STATEME~T> 
\<STRUCTURED STATEMENT>[<LAclEL>] 
\<CONTROl STATEMENT> 
\<STORAGEMANAGEMENf STATEMENT> 
\<INPUT-OUTPUT STATEMENT> 

316 <UNSCAlED ~UMBER> ::= <DIGIT>[~DIGIT>J.<UIGIT>[<DIGIT>] 

317 <UNUSED MARK> ::= L\ \[\l\\\%\~ 

318 <UPPER> ::= <CONSTANT SCALAR EXPRESSION> 

31Y <VAL TYPE> ::= 
<TYPE> \ <ADAPTABLE TYPE> \ <BOUND VARIANT RECORD TYPE> 

3~O <VAL TYPE> ::= 
<TYPE> \ <ADAPTA~LE TYPE> \ <BOUND VARIANT RECORD TYPE> 

3~1 <VALUE CONFORMITY CASE STATEMENT> ::= 
CASE :=: <UNION 'VARIABLE> OF <VALUE CONFURMITY CASES> 

[ELSE <STATEMENT LIST> J CASEND 

32~ <VALUE CONFORMIty CASES> ::= 
<A vALUE CONFORMITY CASE> [; <A VALUE CONFORMITY CASE> 1 

323 <VALUE ELEMENT> ::= [<REP SPEC>]<EXPRESSION> 
\[<REP SPEC>l<IND£FINITE VALUE CONSTRUCTOR> 
\[<REP SPEC>] * 

324 <VALUE ELEMENTS> ::= <VALUE ELEMENT>[.<VALUE ELEMENT>J 

325 <VALUE PARAMS> · .-· .-
VAL <FORi"lAL PARAM LIST> [ ( READ 11<VAL TYPE> 

<VALUE PARAMS> · .-· .-326 
VAL <FORMAL PARAM lIST> [ ( READ l)<VAL TYPE> 

327 <VALUE PARAMS> ::= 
VAL <FORMAL PARAM LIST> : [[ READ Jl<VAL TYPE> 

32H <VALUE TyPE SPECIFIER> ::= <VARIA~LE> 

32Y <VALUE TYPE TEST OPERATOR> .. - ._ . . . - .-. 

330 <VARIABLE BOUND FIELD> ::= 
<FIELD SELECTOR> : [<ALIGNMENT>J<VARIABLE BOUND TYPE> 

331 <VARIAdLE BOUND RECORD SPEC> ::= 
HECORU[<FIXED FIELDS>.J<VARIABLE BOUND FIELD>RECENU 

SWL BNF (ALPHABETICAL) 
H-16 

f. 



'332 <VARIAblE bOUND RECORD TYP~> ::= 
[<PACKING>]<VAHIABlE BOUND RECORO TYPE lUENTIFIfk> 

\[<PACKING>]<VARIA~LE BOUND HECORD SPEC> 

333 <VARIAbLE DECLARATION> :.:= 
VAR [<VARIABLE SPEC> (, <VARIABLE SPEC>]] 

\ VAR [<FILE VAHIABLE SPEC>(,<FILE VARIA~LE SPEC>]) 

334 <VARIA~LE IDENTIFIER> ::= <IDENTIFIER> 

335 <VARIAbLE IDENTIFIERS> ::= 
<VARIABLE IDENTIFIER> (,<VARIABLE IDENTIFIER>] 

336 <vARIAdLE REFERENCE> ::= <VARIABLE IDENTIFIEH> 
\<POINTER REFERENCE>
\<SUBSTRING REFEkENC~> 
\<SUBSCRIPTED REFEHENC~> 
\<FIELD REFERENCE> 

337 <VAHIABLt SPEC> ::= 
<TYPE>[INITIALIZATION] 

\<EMPTY> 

338 <VARIABLE> ::= <VARIABLE REFEHENCE> 

3j9 <VAkIANT RECORD SP~C> ::= 
H~CORU [<FIXED FIELDS>,] <CASE PAHT> RECtNO 

340 <VARIANT RECORD SPEC> ::= 
RECORD [<FIXED FIELDS>,] <CASE PART> HECEND 

341 <VAHIANT RECORD TYPE> ::= 
[<PACKING>] <VARIANT RECORD TYPE IDENTIFIER> 

\[<PACKING>] <VARIANT RECORD SPEC> 

342 <VARIANT> ::= <FIXED FIELDS> 
\«FIXED FIELDS>,) <CASE PART> 

343 <VARIATION> ::= =<SELECTION VALUES>= <VARIANT> 

344 <VARIATIONS> ::= <VARIATION> (, <VARIATION» 

34S <WhILE STATEMENT> ::= 
wHILE <EXPRESSION> DO <STATEMENT LIST> wHILENO 

346 <WIDTH> ::= <INTEGER CONSTA~T> 

SWL BNF (ALPHABETICAL) 

H-17 





LIST OF FIGURES 

Cl-l,c\PTER 1: CONCEPTS OF SWL 

THE COMPILATION UNIT 
THE COMPILATION PROCESS 
BE~aN -END BLOCK 
NESTED BEGIN-END BLOCKS 
BLOCK STRUCTURE 
LOCAL VAH.L\BLES 
SCOPE OF IDENTIFIERS 
SCOPE OF IDENTIFIERS (SWL) 
IDENTIFIER CONFLICTS 
A SnlPLE P~OCEDURE BLOCK 
NESTED PROCEDURE BLOCKS 
FLOW OF EXECUTION DURING PROCEDURE CALLS 

II II II II 

'I 'I 

SHIELDING & SHARING VARIABLES 
SCOPE OF VARIABLE IDENTIFIERS 
PAR:'IHETER PASSING 
PARAHETER PASSING MECHANISMS 
S TI-l PLE REC URS I ON 
NOT-SO-S]}1PLE RECURSION 
FUNCTION CALL 

II 

II 

A FORWARD & BACKWliliD LINKED LIST 
JllHP TABLE 
THE SEQUENCE 
THE STACK 
THE HEAP 
TYPE DEFINITION 
VARIABLE DECLARATION 
STATIC VARIABLE 
EX_~lPLE OF BNF 
BNF INTEGERS 

Cl-l~PT~R 2: ELEMENTARY SWL 

IDENTIFIERS 
MODULE & MODEND STATEMENTS 
CCMMENTS 
PROGRAM STRUCTURE 
SCOPE OF VARIABLES 
SUBRA.l"lGES WITH RADIX 
CONSTANT DECLARATIONS 
Sn-IPLE INPUT/OUTPUT 
S n-IPLE I~~PUT/OUTPUT (INTEGER) 
CLASSES OF OPERATORS 
ELEt<IENTARY CCl1PUTATION 
CONVERSION FUNCTIONS 
IF STATEMENT FLOWCl-l~RT 

II 

II 

Figure 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
1.10 
1.11 
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 
1.20 
1.21 
1.22 
1.23 
1.24 
1.25 
1.26 
1.27 
1.28 
1.29 
1.30 
1.31 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
2.10 
2.11 
2.12 
2.13 

Page 

1-2 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-10 
1-11 
1-11 
1-11 
1-12 
1-12 
1-13 
1-14 
1-14 
1-15 
1-15 
1-16 
1-16 
1-18 
1-18 
1-19 
1-20 
1-21 
1-21 
1-23 
1-23 

2-2 
2-3 
2-4 
2-4 
2-7 
2-8 
2-9 
2-12 
2-12 
2-13 
2-15 
2-15 
2-16 

LoF -1 



CHAPTER 2: ELEMENTARY SWL (Continued) Figure Page 

IF STATEMENT SYNTAX 2.14 2-17 
, SHORT IF STATEMENT 2.15 2-17 

IF STATEHENT SYNTAX 2.16 2-18 
NESTED IF STATEMENTS FLOWCHART 2.17 2-18 
NESTED IF STATEMENT SYNTAX 2.18 2-19 
ORIF CLAUSE IN IF STATEHENT 2.19 2-19 
CASES IN AN IF STATEMENT 2.20 2-19 
CASE STATEMENT FLOWCHART 2.21 2-20 
CASE STATEMENT SYNTAX 2.22 2-20 
CASE STATEMENT SYNTAX 2.23 2-21 
ELSE IN CASE STATEMENT 2.24 2-22 
REPEAT STATEMENT FLOWCHART 2.25 2-23 
REPEAT STATEMENT 2.26 2-23 
REPEAT STATEMENT SYN~AX 2.27 2-24 
WHILE STATEMENT FLOWCHART 2.28 2-25 
WHILE STATEMENT 2.29 2-25 
WHILE STATEMENT (FACTORIALS) 2.30 2-26 
LOOP STATEMENT FLOWCHART 2.31 2-27 
EXIT STATEMENT 2.32 2-27 
LOOP STATEMENT 2.33 2-28 
FOR STATEMENT FLOWCHART 2.34 2-29 
FOR STATEMENT SYNTAX 2.35 2-30 
FOR STATEMENT SYNTAX 2.36 2-31 
REPETITIVE FOR STATEMENT 2.37 2-31 
REPETITIVE REPEAT STATEMENT 2.38 2-32 
REPETITIVE WHILE STATEMENT 2.39 2-32 
REPETITIVE LOOP STATEMENT 2.40 2-32 

CHAPTER 3: SWL DATA STRUCTURES 

TYPE DECLARATION 3.1 3-2 
ORDINAL TYPE 3.2 3-3 
ORDINALS 3.3 3-3 
USE OF ORDINALS 3.4 3-3 
CONVERTING ORDINALS TO INTEGERS 3.5 3-4 
CONVERTING INTEGERS TO ORDINALS 3.6 3-5 
TYPICAL ARRAY TYPE 3.7 3-5 
USE OF ARRAYS 3.8 3-6 
HULTI-DIMENSIONED ARRAYS 3.9 3-6 
ARRAY REFL~RENCES 3.10 3-7 
A BINARY TRUTH TABLE 3.1,1 3-7 
A 12-BIT MEMORY WITH 12-BIT ADDRESSING 3.12 3-8 
A CHARACTER CONVERSION TABLE 3.13 3-8 
ARRAY OPERATIONS 3.14 3-9 
STRING TYPE DECLARATION 3.15 3-9 
BUILDING STRINGS 3.16 3-10 
STRING SEARCHING 3.17 3-11 
STRING SEARCH 3.18 3-12 
FINDING ONE STRING IN ANOTHER 3.19 3-13 
SUB-STRING SEARCH 3.20 3-13 

, 
I 
\ 
\, 

LDF -;;Z 



CHAPTER 3: SWL DATA STRUCTURES Figure Page 

POINTER TYPES 3.21 3-15 
POINTER REFERENCES 3.22 3 -16 
POINTER SYMBOLS 3.23 '3-1.7 
USE OF POINTERS 3.24 3-17 
THE CONCEPTUAL RECORD·· 3.25 3-18 
RECORD SYNTAX 3.26 3-19 
A FORWARD LINKED LIST 3.27 3-20 
LINKED LIST IN SWL 3.28 3-20 
DECLARATION OF SETS 3.29 3-21 
MAKING FULL SET 3.30 3-22 
SET OPERATION EXAMPLES 3.31 3-23 
STORAGE ALLOCATION 3.32 3 -24, 25 
FREEING A LINKED LIST 3.33 3-25 
SEQUENCE HYNTAX 3.34 3-26 
XDCL and XREF ATTRIBUTES 3.35 3-28 
PACKED DATA 3.36 3-29 
VARIABLE INITIALIZATION 3.37 3-29 
ARRAY INITIALIZATION 3.38 3-30 
RECORD INITIALIZATION 3.39 3-30 
RECORD INITIALI.ZATION. VALUES 3.40 3-30 
SET INITIALIZATION 3.40.1 3-31 I STRING INITIALIZATION 3.40.2 3-31 
READING INPUT FRGl: DATA. FILE 3.41 3-32 
READING INPUT FRGl: TERMINAL 3.42 3-33 

CHAPTER 4: ADVANCED SWL 

SIMPLE PROCEDURE DECLARATION & CALL 4.1 4-2 
ACTUAL and FORMAL PARAMETERS 4.2 4-3 
PROCEDURE WITH PARAMETERS 4.3 4-4 
FUNCTION DECLARATION 4.4 4-5 
NESTED PROCS 4.5 4-7 
XDCL and XREF PROCEDURES 4.6 4-8 
SIMPLE SUMMATION FUNCTION 4.7 4-9 
ADAPTABLE SUMMATION FUNCTION 4.8 4-10 
ADAPTABLE ARRAY SPECIFICATIONS 4.9 4-11 
ADAPTABLE STRING SPECIFICATION 4.10 4-11 
ARRAY OF UNION OF POINTERS 4.11 4-12 
UNION SYNTAX 4.12 4-12 
UNIONS IN PROCEDURES 4.13 4-13 
UNION OPERATORS 4.14 4-13 
VALUE TYPE TESTING OPERATOR 4.15 4-14 
VALUE CONFORMITY CASE SYNTAX 4.16 4-15 
VARIANT RECORD CONCEPT 4.17 4-16 
SWL VARIANT RECORD SYNTAX 4.18 4-16 
VARIANT RECORD LAYOUT 4.19 4-17 
VARIANT RECORD INITIALIZATION 4.20 4-17 
LABELS 4.21 4-18 
NON-LABELED EXIT 4.22 4-19 
LABELED EXIT 4.23 4-19 
NON-LABELED CYCLE STATEMENT 4.24 4-20 
LABELED CYCLE STATEMENT 4.25 4-21 
USE OF RETURN STA.TEMENT·. 4.26 4-22 

Rev- 8 LOF-3 



CHAPTER 4: ADVANCED SWL (Continued) 

FILE DECLARATIONS 
FILE STRUCWRE 
GET-FILE I/O 
PUT-FILE 
REPDEP FUNCTION #SIZE 
REPDEP CELL AND #LOC FUNCTION 
STANDARD FUNCTIONS 

CHAPTER 5: STRUCTURED PROGRAMMING AND SWL 

AN UNSTRUCTURED PROGRAM 
A STRUCTURED PROGRAM 
PROGRAM OVERVIEW 
TESTSQUARE PROCEDURE 
SETQUEEN PROCEDURE 
STEPWISE REFINEMENT 
MODIFICATION TO PROGRAM OF FIGURE .5.6 

CHAPTER 6: SWL PROGRAMMING TECHNIQUES AND CONVENTIONS 

DIFFICULT TO MAINTAIN VAR DECLARATION 
EASY TO MAINTAIN VAR DECLARATION 
PROGRAM CLARITY 

CHAPTER 7: PERFORMANCE MEASUREMENT & PREDICTION 

PERFORMANCE MEASUREMENT SYSTEM DESCRIPTION 
SAMPLE RANGE v's RESOLUTION 
S1.JLSMP INTERFACE FUNCTION 
SUlMIT .nLE FOR SAMPLING 
TYPICAL LOAD MAP 
MEMORY ,LAYOUT DERIVED FROM LOADER MAP 
SOURCE PROGRAM TO BE SAMPLED 
ACWAL ADDRESS COMPUTATION 
SAMPLE OUTPUT - 1st PART 
SAMPLE OUTPUT - 2nd PART 
REPETITIVE STATEMENT RESULTS 
PERFORMANCE IMPROVEMENT CYCLE 

Figure 

4.27 
4.28 
4.29 
4.30 
4.31 
4.32 
4.33 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 

6.1 
6.2 
6.3 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
7.10 
7.11 
7.12 

Page 

4-23 
4-24 
4-24 
4-25 
4-26 
4-26 
4-27 

5-2 
5-3 
5-5 
5-6 
5-6 
5-7,8 
5-9 

6-2 
6-2 
6-3 

7-4 
7-5 
7-7,8 
7-9 
7-11 
7 -12 
7-14 
7-15 
7-16 
7-19 
7-20 
7':"21 

LOF-4 



Adaptable Array~ 4-11 
ADAPTABLE Types~ 4-9,4-11 

Arrays, 4=11 
Strings ~ 4-11 
Records, l~-l1 

Stacks, 4-11 
Heaps? 4-11 
Sequences, 4-11 

I N D E X 

Allocate Statement, 1-19, 3-24 
Arrays, 3-5, 3-6 
Array References, 3-7 
Assignment Operator ("="), 2-13 
Automatic Variables, 1-21, 2-8 

Backus Naur Form, 1-23,H-1-H-17 
BEGIN-END BLOCK, 1-3, 1-4, 1.6 
BEGIN Statement, 1-3, 1-5 
Block Structure, 1-3~ 1-5 

CASE Statement, 2-16, 2-20, 2-21, 4-15 
CASEND Statement, 2-20 
CDC-713 Character Codes, G.1-G-4 
CELL Data Type, ll·~25 

Classes of Operators, 2-13 
NOT Op~rator, 2.13 
Multiplicative Operator, 2-13 
Additive Operator~ 2.13 
Relational Operator, 2-13 

CLOSE Statement, 4-25 
Comments, 2-3, 2-4 
Compilation Listing, F-l 
Compila t ion Unit, 1-2 
Compile-Time Options, 4-28 
CONST Statement (Constant Declaration), 2-9 
Constant, 2-9 
Conversion Functions, 2-15, 2-16 
CYCLE Statement, 4-18, 4-20, 4-22 

Data ReprHsentation Dependent Features 
«(.RE PDEP]) , 4-25 

END-OF-FILE Condition, 2-2/.~ 

END Statement, 1-3, 1-5 
Error List, B-l-B.4 
EXIT Statement, 2-27, 2-28, 4-18~4-20 

FOR Statement, 2-16, 2-28-2-31, 4-20 
FREE Statement, 1-19, 3-24 

Functions, 1-11, 4-5 
Declarations~ 4-6 
Ca11,,4-6 

GET Statement, 4-24 
GLOBAL Variables, 1-6, 1-7, 1-9, 1-12 
GOTO Statement, 4-22 

Heap, 1-19 

Identifiers, 2-2 
IF Statement~ 2~16~ 2-18 
IFEND Statement, 2.17 
Input/Output, 2-10 

Jump Table, 1-16 

LABEL Statement, 4-18 
Language Summary~ C-1,C-2 
Linked Lists~ 1-16 
Load Map, 7-11 
#LOC Function, 4-26 
Local Variables, 1-6, 1-7, 1-9, 1-12 
LOOP Statement, 2-16-2-28 
#LOWERBOUND Function, 4-10 

Module 
(dec1aration)~ 1-2, 2-7 

MODULE-MODEND Statements 1 2-3 

Nested IF Statement, 2-18 
Neste:i Procedures and Functions, 4-7 
NEXT St~tement, 3-26 

OPEN Statement, 4-23 
Operator Classes, 2-13 
ORDINALS, 3-2-3-5 
ORIF Clause, 2-19 

Packed Variables, 3-28 
Parameter Passing (Functions), 1-15, 4-3 
Parameter Passing (Procedures), 1-13,1-14 
Pointers (Declaration), 3-15 
Pointer References, 3-16 
Po inte'r 3ymbo Is, 3 -17 
Pointer Variable 

(forward and backward pointers), 1-16 
#PRED FUNCTION, 4-27 
Predefined Variable Types, 1-20 

Integer, 2-5, 12.6 
Character, 2-5, 12-6 

INDEX-1 



Predefined Variable Types (Cont) 
Real, 2-5, 12-6. 
Boolean, 2-5, 12-6 

Procedures, 1-11 
Procedure Actual Parameters, 4-3 
Procedure Call, 4.2, 4-3 
Procedure Formal Parameters, 4-3 
PROC-END (Procedure) BLOCK, 1-3, 1-9, 

1-10, 4-2 
PROC-PROCEND Statements, 2-4,2-5 
PUT Statement, 4-25 

READ Statement, 2-10, 2-12 
Records, 3 -18 
RECORD-RECEND, 3-18 
Record References, 3-19 
Recursive Calls (Procedures) 1-14, 1-15 
REPEAT Statement, 2-16, 2-22, 2-23 
Repetitive Statement Comparison, 2-31, 2.32 
l:tepetitive Statements, 2-22 
Replaceable Blocks, 1-5 
Reserved Words, A-I 
RESET Statement, 3-26 
RETURN Statement, 4-21 
REWIND (Input) Statement, 3-32, 3-33, 4-25 

SCOPE Attributes, 3-27 
Scope of Identifiers, 1-6, 1-7, 1.8 
Sequence Storage Management Scheme, 1-18 
Sequence Type, 3.26 
SET0, 3·21 
Set Initialization, 3-31 
Sharing Variables, 1_6,cl_12 
Shielding Variables, 1-6, 1-12 
#SIZE Function, 4-26 
SMP (Data Collection Program), 7.3-7-10 
SMP Output, 7-16-7-21 
Stacks, 1-18 
Standard Functions, 4-27 

$REAL, 4-27 
$ INTEGER , 4-27 
$CHAR, 4-27 
$STRING, 4-27 
1/STRLENGTH, 4.27 
#LOWERBOUND, 4.27 
1/UPPERBOUND, 4-27 
1/EOF, 4.27 
1ILOC, 4-27 
1/SIZE, 4-27 
1/STRINGREP, 4.27 
1/SUCC, 4-27 
1/PRED, 4-27 
#ABS, 4-27 

Rev. B 

Static Variables, 1-21, 1-22 
Storage Attributes (Variables) (Automatic, 

STATIC), 3-27 
Storage Management, 1-18, 3-24 
Str ing Convers ion, 3 -14 
String Initialization, 3-31 
String Referencing, 3-10 
$STRINGREP Function, 3-14 
Strings, 3-9 
#STRLENGTH (Adaptable String Variable 

Name), 4-11 
Structured Program, 5-3, 5-4 
Structured Statements, 2-16 
Substrings, 3-12 
SUCCESSOR (if/SUCC) and PREDESSOR U/PRED) 

Functions, 1 •• 27 

Terminal Session, E-1-E-7 
Type Conformity, 3-31 
Type Declaration, 1-20 

UNION Operators, 4-13 
UNION Type, 4-12 
Universal Heap, 3-21 
#UPPERBOUND Function, 4-10 
User-Defined Variable Types, 1-20 

Ordina 1, 1-20 
Subrange, 1-20 
Pointer, 1-20 
Structured, 1-20 

Value Type Testing, 4.14 
VAR Statement, 1-5, 1-6, 2-5, 3-2 
Variables, 1-21 
Variable Attributes, 3-27 
Variable Declaration, 1-20, 3-2, 6-2 
Variable Initilization, 3-29 
Variable Type, 1-20 
Variable Type Checking, 1-20 
Variable 

Type Declarations (TYPE), 3-2 
Variant LONG FORM, 4-17 
Variant Records, 4-16 
Variant SHORT FORM, 4-17 

WHILE Statement, 2-16, 2-24-2-26 
WRITE Statement, 2-10, 2-11, 2-12 

XDCL (Declared External) Attribute 
(Procedures and Functions), 2-4, 3-27, 4-7 

XREF Attribute (Procedures and Functions) 
3-27, 4-7 

INDEX-2 


