A SWL APOLOGIA

J. Keffe RECE VED
L. Kerr
J. Merner SE? 251973
- C. Schwarcz o
IDD 3D -

15 September 1 973

Subiect

1.0

N -
o .

3.0

33

40

. APOLOGIA

15 Scmerrber 1973 .
vPage. .

© TABLE OF CONTENTS

\}'WOJL' ,liDN .

s e '»

CONTROL STR UCTURE

2.1

‘4.25'.

23
24
25
26
2.7
28

DATA STRL CTURES

31
32

"')A

3 5 :
356
37
- 38
3.9
3.10

t..OJp and ES’“OPE Siaaemg,n.s e
Increment on 'For’ Sioremen‘r_ e e
~ Procedure \/cncbles

Label Variables , . . .

@« o 6.0 @ @ 0.6 e 2 ¢ o ¢ & o

» @ o ® & 2 60 @ 3 e o o o ° ® o

L)

_ta.o.iooonoia’.-..o

00003'.0000'-‘0 e e 'o e

'Orift Clause on"lcl Statement . . v v v v e v e
'Else’ Clause on 'Case!

uuvtll\,lllo s . 5 & o ® .o

Recd-OnIy Variables

~ Initialization ,

 Variable Bound Arroys ..
- Slice Notation . . . , : .
Storage Clcsses e e e sl el ol e

e o

Heaps, Stacks, Queues,

Relative Pointers . .

| SYNTACTIC CHANGES . .

4.1
4.2

4.4

4.5
46

47

MACHINE DEPENDENT FEATURES . . e e e
‘ilLoc‘ FUHCfion ooo-oooc'-_orvo‘»o-."ccl_‘!.c.

Cell Type . v i v ittt e et s e s aesoeeaan

5.1

5.2
53
54

55

Machine Code . . v
Machine Dependent Types |

Character Set

- Unique Delimiters, ., .

43

Declarations ., . ..

ldentifiers , &
~ Label Identifiers ., .

integer Constants , .

Crammed Records ',

. s

e o
v e
LI]

o a2 @

s & 2 o

Sfcfemmnf

~ Functions Declcred as Procedures B N
. Coprocesses o L] . . ° o . (3 ‘ L] L 3 L e 1 . - v. . L] ‘.) :0' e L] v. ‘e

e @ o o & o 0 0 & ¢ ¢ e o o o o

* o @ o & o o e e © 9 e o 0°o & e o

- Structured Data Constructors . v v v v v o o o o o o «
" Union of Type ., .. | .

e 6 & o ® o & o 0o © © 8 & s e o

and Sequences’, ¢ .

e e o & & ¢ & © @ © s o 6 e e @

‘vcom.menfscoboc.c.o,o‘o-o.va;.o-o.oonbr‘.'.oa

A SWL APOLOGIA 15 September

Subject

i Ao st

6.0

Page: ii

 TABLE OF CONTENTS

FASCELLANECUS CHANGES L L0 e e v e e e v

61 Compile~Time Expressions | . v v v v s o v oo
':‘6'2 xz’aﬁihl B’OC;CS ’- e e s o ® o 0 e s 0 e 9 o‘c ‘o o

643 . OpcrOi.Ors « @ o o ¢ . . . L4 < . . L] . . L] .‘ . L]

:‘"“6:4"”") PGFGFHQ%CI‘SV . L[] v . . . L .‘ '. . . . * L] L] ’. . ° L] ». '.

6.5 Designational Assignment -,
66 - Compile~Time Facilities . . . v v v v v ois oe
6.7 Filesand 1/0 0 0 v v s v e vt v e e ee e
6.8 Maximum Sef Size |, ‘
6.9 Type Checking. v v i e vt v oo oaeso
6,10 Type Conversion e ev oo ocoeas

e @ e ¢ @ o o o 0 @ © o 0 o

1973

e o o
. . e
e .

[
O O b

0
iQ
«©Q
(0]

o
&

A SWL APOLOGIA

1.0 Introduction 15 September 1973
Page: 1-1

10 1N r‘DUCHuN

The Soltware ‘n’u ”{‘ Llanguage: (“‘”L) Project was originally cncrgnd with the responsn-
bi iny of des;gfung a systems mo!cm entation ianguage which would be as compohble as
‘possible with Poscal. This proved to be a somawhcn‘ cmbrguousa goal, as fhere are af
least six sources which could rccsonobiy be used as a definition of the Pcsccl lon-

gucge, and no two of them agree in all respecfs., '

The Pascal referehces which were used during the design of the SWL are:

N

1. vN,»Wirfh, "The 'Prog'rcjmmi‘ng Language Pascal", Acta Informatica 1, 35-63
(1971). ?hispdpef déscrfbes, the original Pascal language. '

2. N, Wirth, The Programming Langucge Pascal (Revised Reporf),'E.T.H.‘
-; . todaa. . U 1aman -t .l ! !
: [ERVINEISTE N \‘ ‘{chlllucl Y717 l B | |liD lchUl l Ucbbl lI»JC-J u lurlguusc \'Y“l\ail la .

bmxca”y s:ms]or to fhcf described by (1), but whxch dxffers subsfcnhclly

; -m ceri'cun creas

3. C.A.R. HOcn‘_e and N. Wirth, An Axiomatic Definition o.f. the Programming'

Language Pascal, E.T.H. Zyrich (Ndvember 1972). Tﬁis -V(eporf represenfﬁl

an attempt at a rigorous, formal definition of the language described by
@. |
4. The June 1972 Pascal 6000 Compx!er. This is a compz!er whlch 1mple- ‘

menis the language described by (1)

S, | The December' 1972 Pascal 6000 Compi'fer. This co‘m;v)ilervconfcins some
‘of the modifications required for the language described by). It was
intended i bndoe ihe gﬁp bnh/een (1) and (2) unhl a new compiler was _

vjcompleted for (2)

A SWL APOLOGIA

1.0 [:nfroduc-ﬁon | 15 September 1973
Page: 1-2°

6, The March 1973 Pascal Sicck Machine Compiler. This compiler imple-

: . O
fenis most of the lengu

)

i
=

wge described by (2), and compiles code for a

hypothetical stack machine. The compiler will ultimately evolve into a -

.

4
Foscal 60

0CO compiler for @).

In the fo”o:-.fing sections of this document, an aitempt is made to list the changes

that were made to Pascal in the design of the SWL, and the reasons for these changes
~are discussed. The changes are described primarily relative to the revised Pascal
report and the Decembar 1972 Pascal 6000 compiler, as these are the reference sources

with which CDC and NCR Pascal users are most familiar.

" The changes are grouped into five sections: Control Structures, Data Structures,
Syntactic (_‘kqacac' Mnrchine Denendent Features. and Misceiianeous Changes. These
categories are rather arbitrary, and were chosen merely for ease of presentation.
Some overlap exists between different groups: procedure vcr’icb!es, for example,
represent an enhancement to the control structures as well as Béing a new data type.

‘In such cases, the changes were placed arbitrarily in one group or the other.

‘Wherever possible, reference is made to the cppfopriofe sections of the SWL Specifica=-
fion.documenf which describes the language features in detail. Such references take

the form of a section number enclosed in brackets (e.g., [5.3])

Loop and Escape Statements

2.0 Conirol Sfruci‘ures , R 15 Sep?émbér 1973
2.1 Loop and Escape Sfchmen%s Page 2-1 g

d

2.0 CONTROL ST RUCTUR

The changes discussed in this section include new control statements (e.g., loop,

return, resume, etc.), new data iypes that are related to control mechanisms (e.g.,

label, procedure and coprocess variables), and modifications of existing Pauscal con=~

h'oi structures,

2.1 LOOP AND ESCAPE STATEMENTS [10.2.4, 10.35-1037]

Sy

The loop statement and the esécpe'.si‘afémenfs_ (continue, exit, and return) were intro-

duced to replace the use of the goto statement in common programming situations
which do not require the full generality of the goto. This will encourage the
wriiing of rr}orev_}ﬁg;ﬁy situciured programs and should improve boin readabiiiiy and

; ;"e!iab’}ilify;

The !oop s’rcfemont hcs H'xe effect of repeofedly execuhng the statements con%amed
within the loop-ioopend pair. This action continues until alfered by fhe execuhon
~ of some control statement within the loop — typically, an exit statement which

causes control to pass to the statement foHoWing the end of the Toop.

The continue sfci‘emenf is used to start a new iteration of a for, repecf while, or loop

si’aiemem. The exit statement is used fo fermmcxfe the execution of @ SfrU”fo‘?d

‘statemen!, and may also be used fo -cause control to exit from an enc!osmg proce-

dure. The return statement is provided as a convenient form of exit from the nearest

enclosing procedure,

While the loop and exit statements are not contained in any Pascal language des-

criptions, they cre implemented in the May 1973 Pascal stack machine compiler,

A SWL APOLOGIA 2.2

Increment on'For'Statement

2.0 Control Structures 15 September 1973
2.2 Increment on 'For'Statement Page 2-2 :
2.2 INCREMIENT ON

NOFORY STATEMENT [10.2.7]

In order to allow grecter flexibility in the control of the ‘index variable, an optional
by clause wus added fo the for statement. When specified, this clause allows incre-

ments of othar than +1 and -1,
9.3 PROCEDURE VARIABLES [4.1.9, 10.3.1]

While Pascal allows only formal parameters to be declared with type pro‘cedure,‘ in
SWL this concept has been extended so that any variable can be declared to be a
procedure varicble, This extension was required to allow the implementation of

loaders, debug packages, and table-driven systems.
2.4 LABEL VARIABLES [4.1.8, 10.3.8]

Labe! variables are provided primarily to allow satisfactory handling of error. conditions,
Label variables allow dynomic stack unstacking, including the -situation in which con-
frol is feturned to a procedure in a different compilation unit, and also provide for |

alternate return points from procedures‘when‘they are used as formal parameters,
2.5 'ORIF" CLAUSE ON 'IF' STATEMENT [10.2.3]
A programming construct that arises frequently in Pascal is the following:

_i_f COND1 then STATI1
else if COND2 then STAT2

else if CONDN then STATN

A SWL APOLOGIA 2.6

‘Else’ Clause on 'Case’ 'S“tcfe_menf _

2.0 Confro! Structures ' B T5°‘;Sep'%:emb’erv 1973
2,5 'Orif' Clouse on 'lf' Statement o Page 2-3

The problem with this construct is ihat in reality the clse ‘clcuses. Become' more ,Gnd .
more deeply nested, and this artificial nesting has two unfortunate implications:
1. An avtomatic SOL;FCe code formatter will make the nesﬁng éxplicif by
progressively indenting each alternative across the pagé.‘_'This is
especially serious if there are more than just a few alternatives.

2. The unique ending delimiter principle adopted for SWL (described later

in Section 4.2) forces the programmer to code numerous ifend symbols -

ofter the last alternative.,

These difficulties are avoided by using the orif construct, which is essentially equiva-

lent to else if without its inherent nesting.

s ntme

2.6 'ELSE' CLAUSE ON 'CASE' STATEMENT [10.2.8]

e e

It often occurs that on‘l"y a few cases in the possible range of a case variable require
special handling, while all the others may be grouped together ‘and handled in a
uniform way (frequently as an error condition). The else clause provides a way of

describing this situation concisely and conveﬁienﬂy.
2.7 FUNCTIONS DECLARED AS PROCEDURES [4.1.9, 8.0, 8.3]

Although the Pascal concept of not allowing functions to cause side-effects has some
merif, it was decided that such a resiriction in SWL would be too severe. Functions
in SWL can therefore be viewed as procedures which return a value, and hence they

can call other procedures and alter nonlocal variables,

In order to make the distinction beiween SWL functions and Pascal functions explicit,

all functions in SWL are declared as proc's which return a value.

A SWL APOLOGIA 2,8

Coprocesses
‘2?..0” Control Structures]5 Scptﬂmber 1973
2.8 Coprocesses Page 2-4

2,8 COPROCESSES [4.1.10, 8.0, 10.3.2-10.3.4]

A set of coroutines is a sei of concurrénﬂy active procedures which link foge‘i’hef
through a mechanism u?uch cmabmes the features of “ccx“" and "return", Some
programs can be coded convenient tly only erough the use of coroutines - an example
is the case of a compiler that pnrforms macro e\panSlon and syn%dchc anolysns in the
same pass, To simulate coroutines in a block structured languege is difficult and re-

- quires dropping into implementation dependent code.

Coprocesses are a generalization of coroutines in which more than one instance of a

porﬁcu'!cr coroutine may be active at a time. This prowdes the equivalent of synchronous

...u!‘.‘f,::c:::.:f.".g, PRI S o S :'»sln -i-LrnnA ~f nrsn%rnl ic ewitrhed ‘Frnm Ane nrocess tn annther

explicitly by the programmer., The coprocess facilities therefore combine the advcnicges
of coroutines and parallel processes, while avoiding the additional overhead required |

by asynchronous multiprocessing.-

Provision is made in SWL for credﬁng a new coprocess and storing its identity in a
coprocess variable, ’rrcnsferring control to a coprocess and saving the state of the

current one, and destroying a coprocess,

A SVIL APOLOGIA 31 |
‘ ' .'Vonab!e dound Arroys

3.0 'Dc{'a'Sfruch‘ersr 15 Sepiember 1973
3.1 Variable Bound Arrays - Page: - 3-1

The ?npv‘s discussed in this szction mc{ud\. dmcz iypes, “data ckruci‘urmg methods,

afiributes of vorzoblps, and sforcxgc c:”occmon control.
.3 - VARIABLE BOUI‘ D ARRAYS [42 2]

Pascal requxres the bounds of all crroys to be known at compile time, mckmg it

. :mposmble to code procedures which accept array parameters. of- crbx’rrcry size or to
create array variables whose bounds are not known until run time. This restriction
has been relaxed in SWL with the introduction of variable bound arrays and adopvfcb!é

arrays.

" A variable bound arrey is a local array variable, one or more bounds of which is an
_expressioh which can only be evaluated at run time. In this case, the array bounds

are evaluated upon entermg the block in whxch the array is declured

k\aépg-abie arrays contain one or more"indefini’re bounds, fndic’o’redA by qdding an
asterisk instead of cﬁ actual bound. They mcy‘b'e used as formal parameters, in which
case the indefinite bounds assume the bounds of the actual parameter, as arrays which
are to be exphcnﬂy allocated, in which case the actual bounds are specmed in the
allocate statement, or they may be made fo aes:gncfe an-actual arroy by means of

the demgndhonal assignment statement.
82 SLICE NOTATION [10.1.1]

Since Pascal treats character sirings as arrays of characters, the most convenient way
of denoting a subsiring is through the use of array slice notation. An array slice is.
an arroy reference in which o wubscript range is specified in pfoce of the usual index

expression, - The resulting subarray can then be used in an array assignment statement,

A SWL APOLOGIA 3.3

Storage Classes

‘3“.0 ‘Data Structures 15 Sepi’éfnber 1973
3.3 Storage Classes Poge: 3-2

passed as o parameter to a procedure, or used generally wherever an ordinary array

can be used.
3.2 STORAGE CLASSES 5.2.1, 7.1.1.2, 7.1.1.3

Since SWL is required to support separate compilation of procedures, it was necessary

to provide a number of new storage classes. These storage classes are:

1. static = The storege for the variable is allocated at load fime, and

the value of the variable is.moin’rcine‘d from block exit fo block

reentry,

2. xdel ~ The variable is treated as a static variable, and in addition

*1Ts name is Known exTernaily and may DE accessed irom. viie

compilation units by varicbles declared as xref.

3. xref = The identifier beiﬁg declared refers to an xdcl variable

declared in another compilation unit.

4, external = Storage for an external variable is shared in common
with external variables declared with the same name in other

compilation units.
34 SEGMENTS [7.1.1.2, 7.2]

To allow greater control over the allocation of static variables and permit |mproved
locality of memory references, provision is made in SWL for naming memory segments
and specifying that ceriain varicbles and procedures are to be stored in particular
segments, In addition, a segment may be restricted to some combination of read,
write, and execute access privileges, in which case the compiler will assist in

] o,

defecting violations of these privileges.

A SWL APOLOGIA 35
S Lo Read-Only - Variables
3.0 Da!jq Structures _ 15 Sepfé'mber 1973'/ ;
3.5 Read-Only Varicbles Page: 3-3 -

3.5 READ-ONLY VARIABLES - 7.1.1.1

A need exists for varichles whose value is determined when the variable is declared,
and s then fo ba left unchli'ere‘d.' Examples of this c:s_'eb the tables for a table-driven

| cvompﬂer,_ c:‘vnvcsrroy.'of' chor‘cc"rer sfrings.For’error‘-messczges, etc. The advantage of
being able fo spéc'ify that a variable is not fo be altered subseqderif‘ to iini,'riclizoﬁ‘on .
is not only that the compiler can assist in detecting violations of this intent, but

also that more extensive épﬁmizcﬁon can be performed. This shou‘ld‘ result in improved

efficiency as well as reliability.
36 INITIALIZATION [7.1.2]

“Although the Fascal ianguage has no provision for initiaiizing variabies oiher ihan

by explicit »oséignmén’r statements, the Pascal 6000 compilers provide the value state=

ment which can be used for this purpose. This method was discarded in SWL in
- favor of an initializetion clause as part of the variable declaration statement. In
" SWL, therefore, the initialization information is specified in the same p!acé as other
declarative information for a variable, ‘gr’eoﬂy‘ improving the readability of the | |

: vprogrom. -
37 STRUCTURED DATA CONSTRUCTORS [6.2]

A struciured ,_ciafc constructor is a mechanism for. describing some value of a structured
type. Pascal already has such a méchon‘ism for sefs; in SWL the concept was extended .
to include drrqys and records as well. The prime jusiification for structured data

: cmmi'mctors is their use for initializing structured vari‘cbles, but ‘they can be used to

‘edvantoge in expressions as well,

A SWL APOLOGIA 38
‘ Union of Type

3.0 Data Structures 15 Sepfembér 1973
3.8 Union of Type Page: 3-4

Eﬂcenhoﬂv fh ree kinds of data consiructors are prowded oné that builds an ordered
list of elemants (i.e., an array or n,corfi), a second that builds an unordered set of

elements (| e.; a set), cnd a third that builds g vclue of any specmc s’r'ucfured type..

1t was difficult to decide on suitable orocke’nna chcroc.ers for the first two consfructs
Braces were chosen for set constructors as being the most natural with respect fo

traditional mathematical notation. Alihough either parentheses or angle brackets would

have been suitable for array and record constructors, both lead to ambiguities in the

language so square brackets were chosen instead.
3.8 UNION OF TYPE [4.24]

x a roewn JR LIRS RS NG n_-_...l [N NS Py §
. WOOISOS

. r*& mugux ucuwsuu :u un: ucalgn (SRR X W3 v GIaCi G e s wacas “onllpr -

records, ond fo replace it with the concept of union of type as used in Algol 68.

The reasons for making this change are:

1. Whereas fields of a Pascal variant record can be accessed under the
guise of any of the variants without any checking of the tag field
being imposed by the compilér, a SWL union of type can be accessed
only after first ensuring that the actual typebof the value is the one
intended. In this respect the SWL_ construct is more restrictive than
the Pascal construct, ‘and it should eliminate some programming errors

as well as some questionable programming practices.

2. Union of type allows procedures to be written which accept parameters

which can assume values of more than one type.

A SWL APOLOGIA 39 .
SR Heaps, Stacks, Queuves, and

- . Sequences
3.0 Data Structures 15 September 1973
3.9 Heaps, Stacks, Queues, and Sequences Page: 3-5

5. Different verionis of o variant record frecuently have several fields in
common, Unless they cppear in the fixed part of the record, Pascal
recuires fhai each of these fields have a unique field identifier. This

restriction does not exist ‘w'ifh. union of type.
3.9 HEAPS, STACKS, QUEUES, AND SEQUENCES [4.2.5-4.2.8, 10.4]

Heaps, stacks, queues, and sequences were introduced as new data types in SWL
to provide more conirol over storage allocation (improving memory reference locality)

and o facilitate the handling of certain data structures.

Heaps are areas of memory out of which variables can be allocated and freed. Since
heaps can be local to a block, any unfreed storage in the heap is automatically re-

turned when control exits from the block. _

Si’ccf(s, queues, and sequences‘are also areas of memory in which variables can be
stored and removed, but they assume an additional structuring of these variables.
Stacks and queues are intended for the commonly used structures that their names
“imply, while sequences are used to store any data structure which is seqvenfid!ly
decodable by an algorithm provided by the programmer, Sequences are useful for
describing structures such as blocks of variable length arrays, where each array is

preceded by an integer indicating its length.
3.10 RELATIVE POINTERS [4.1.7]

Relative pointers were introduced to allow data structures to be moved from one area
“of memory to another without requiring oll pointers to the dota to be updated. An
additional advantage of relative pointers is that they can be more compact to store

than regular pointers.

A SWL APOLOGIA 3.10
' - Relative Pointers

3.0 Data Structures ‘15‘S'ep{ambex‘”1973 .
- 3.10 Relative Pointers Poge: 3-6

Each storoge reference using a relafive pointer must specify which memory area the

_pointer is fo be based on for that reference.

A SWL APOLOGIA 4.1 o
Character Set

7'4‘;0 Syr‘jfoc‘ﬁc ‘Chvcmges 15 ‘Sepi'_embévr, 1973
4.1 Character Set. Page: 4-1

P NS Ay A e
. ‘;‘«O' S} i\'.éd"'x"a H i'/:. C‘LII“\ !\(::‘ o)

T1 h ¢ die cod 1 '} e sacdi) ! l h |
The changes discussed in this section are those that involve: ac ange m synfax on y,

‘and do not have any effect on the functional capabilities of the language.

4.1 LHI\RAL {ER SET

It was cxssumed that ASCH wx” ‘be the official character set for the In’recrcfed Producf
Line. Since Pcsccl uses several characfers that .are not contomed in ASCH, some

c?nurqc:er.se? changes were required. These chcnges are summarized in the following

toble.

e D"tﬂﬂ' ﬂ'\ﬂ?ﬂl’\ﬁ!) . Qw' (’\lm“\(\l
Joscal ymbel QWL eymnbol
v oA T3 I & -

s 2 7! = = =

Since some SWL symbols are outside the CDC 63-character ASCII subset, alternate

representations are provided to allow the compiler to be accommodated on CYBER

70 equipment.

SWL symbol | Alternate representation

| & ~ o , OR AND NOT
0]

e
L
lmy

- A SWL APOLOGIA 4.2

Unique Delimiters

4.0 Syntactic Changes 15 September 1973
| 4.2 Unigue Delimiters Page: 4-2 '

,One_of the changes that gives the greatest appearcnce of incompatibility with Pascal

is,'?hé concepi of Uniqﬁe ending delimiters. As a result of adopting this policy, each
sfrﬁcmred statement is terminated with a symbol that is unique to that statement type.
" For éxamp]e, a while loop in Pascal such as L

while COND do

macey

begi

>

in SWL bebcomes

while COND do
S1;

SN

‘whilend
The reasons for adopting the principle of unique ending delimiters are:

1. The odded redundancy in the source text allows the compiler to detect
unbalanced delimiters af a much earlier stage, permifting it to issue

- more meaningful diognosiics and perform more intelligent error recovery.

A SWL APOLOGIA 1.3

Declarations
4.0 Syntactic Changes 15 September 1973
4.3 Declarations = = Page: 4-3

lelimiters are a great aid to the human reader in matching

o)
@
)
ot
(8}
=
po]
L
G
o]

. the beginning and end of structured statements. . This is especially true
if the progrem is alsg formatted into paregraphs that reflect the nesting

structure.

o

Structured statemenis such as while and for are usually composed of a

list of component statements, rather than just a single statement. In
Pascal the list of statements must be explicitly bracketed by d-ée___gfn—
‘Efé pair. In SWL this bracketing is inherent in the structured state~
ment itself, which in most cases provides for a more natural and

readable construct.

132 ehanld ka r\r\‘l-(:.rl et 1% Yo o etrmtAlhifamiiaird el 3a o mAashantasll l\-\—nne'n&r\ ~
T e L T e e R =.. Tt TN

existing Pascal progbmm into one which uses unique delimiters.
4.3 DECLARATIONS [5.1, 6.1, 6.3.1, 7.1, 7.2, 8.0]

- ‘Péscc! requires a strict ordering of constant definitions, type definitions, variacble
declarations, and procedure declarations. It was decided that this ordering was not
accep’mb'le for SWL, because of the requirement to be able fo group together all

. %h.e constant, type, variable, and procedure declarations for a particular funcﬁ_onc»l
‘module. This is necessary so that the declarations can be stored away-as sfcnddrd

source fext, and included into user programs as required.

As well as allowing arbitrary ordering of the different kinds of declarations, it was
decided that ecch declaration section should be made into a single stotement, with

the component declarations being separated by commas instead of semicolons as in
Pascal. This guards cgainst the possibility of a minor error cousing the misinterpretation

ki

of an entire declaration section, ond also tzems to be o more consistent use of the

semicolon.

A SWL APCLOGIA 44

Identifiers
4.0 Syntactic Changes : 15,Sepfémbér 1973

4.4 ldantifiers Page: 4-—4

To improve recdability, the maximum length of SWL idenfifiers was increased to 31
- characters, and the underscore was infroduced as an alphabetic character. The
pound sign, dollar sign, and at sign (7, $, and @)are considered to be alphabetic

and may clso be used within identifiers,
4,5 LABEL IDENTIFIERS {10.0]

Labels in SWL are denoted by identifiers, rather than by integers as in Pascal.
Identifiers can be made far more meaningful, and their use should lead to more

readable programs.
46 INTEGER CONSTANTS [6.3]

SWL provides for describing integer constants in decimal notation or in base 2, 4,
8, or 16 notation. The codditional notations are required for describing machine

‘dependent values in a convenient and readable fashion.
4.7 COMMENTS = [3.1]

The comment delimiters were changed from braces in Pascal to quototion marks (")

in SWL. This decision was arrived at for the following reasons: .

1. Bracketing symbols ‘were in high demand for use as siructured data
constructors, and braces seemed the most appropriate for set

constructors,

" A SY/L APOLOGIA 47

Comments
4.0 Syntectic Changes 15 Septembef 1973
4.7 Commenis Page: 4-5

2. Droces do not appear in the CDC 63~character ASCil subset. Although
an aliernate represeniciion could have been provided for use with
CYBER 70 equipmant, it wes felt that for such a common language

i f‘ r .) ; < <

element as comments a single, uniform representation was preferable.

(2

The quotation mark was not required for use as any other symbol in

the language.

4. Quotation marks proved to give adequate visibility to comments,

and were found o have a natural and plecsing appearance.

5. PL/i-style comments { /* and */), the only other serious contender,

were rejected as they were felt to be unnatural and ugly.

Another change in the syn‘rcx‘of comments was motivated by a concern for the

chaotic effects of inadvertantly dropping the closing delimiter of a comment. (Note
that a similar problem exists even when the opening and closing delimitets are distinct.
:This case is actually more insidious, since the compiler recovers at the end of the
nexi comment ond the error can go undetected.) In order to detect this situation at
an early stage, the restriction was made that semicolons may not appear within

comments.

A SWL APOLOGIA 5.1

'Loc’ Function

5.0 Machine Dependent Features ' 15‘5epfembef 1973 .
5.1 ‘'Loc' Function Page: 5-1 :.

5.0 MACHINE DEPENMDENT FEATURES

The language ,f—;ea'rgrc—s d‘iscussed in this section are those thot are concerned with the
- hardware representation of variables or with actual machine instructions. - This is not
meant fo imply, however, that programs which use any of these features are

- necessarily machine dependent. It is possible, for example, to write a machine
independent memory allocation procedure using type cell and the ‘size, alignment,
and location functions. In fact, crammed records were introduced for fhelviery |
purpose of allowing convenient transfer of information between machines of

different architecture.
'5.1 YLOC' FUNCTION [11.2.”, 11.3.1, 13.2]

It is sometimes necessary fo be dble fo reinterpret some arbitrary part of memory
according fo a particular type. This facility is provided in SWL by the loc function,
which returns the location of a variable. Use of the loc function is restricted to ‘
‘a direct assignment to a pointer variable, which may then be used to access memory

according to the fype‘of the pointer.

The loc function may be applied only to directly addressable variables, thereby

excluding elements of packed structures.
52 CELL TYPE [13.1.1, 11.3.2-11.3.4]

It was felt that there was a need for untyped storage in SWL,; to be used for such
applications as memory allocation roQﬁnes, storage areas for interpreters, efc. A
cell is defined to be the smallest unit of memory directly addressable by a pointer,
and could be @ word, ¢ byte, or a bit, depending on the erchitecture of the

Le 1.
particular machine.

A SWL APOLOGIA . 5.3

Crammed Records

0 Machine Dependent Features 15 September 1973
3

5
5.3 Crommed Records : Page: 5-2

~ ® . . - . c.
The only operclion definad on voriobles of fype cell is that of assignment. Other

types of access to cell variables can be made in conjunction with the loc function.

In order to allow cell variables fo be used in a machine independent way, a number
of standard procedures are provided which relate the size of a cell in a particular

" implementafion to the other SWL data types. These functions are:

1. size (org) = returns the number of cells required to contain a variable

of the same type as 'arg'.

2. maligned (arg, offset, base) = provides the offset and base alignment

of 'arg' in terms of cells.

S, daunignment. {arg, offcct, base) - provides the affcet and bhase alionment

required for a variable of the same type as 'arg'.
5.3 CRAMMED RECORDS [11.3.2, 11.3.4, 13.1.2]

" Crammed records are provided to accommodate those situations where the programmer
must have -bit by bit control over the representation used for a data structure. For

the representation of a crammed record, the bits requifed to store a particular field
follow immediately after the previous field, regardless of any natural storage unit

" boundaries.

Explicit control over the size of a field and its alignment is achieved through the

optional use of the width and maligned attributes.

A SWL APOLOGIA 5.4

Machine Code

50 Machine Dependent- Fecmres ‘ 15 Sepfenﬂberrl‘?73
‘5.4 Machine Code Page: 5-3

e

54 MACHINE CODE [14.4]

Although the nzed to sscope to machine code should be comparatively rare, it was

still felt necessary io allow the generation of machine code instructions dxrecfly in
SWL. In order to control the use of this facility, all machine code statements must
be contained within 'code blocks', which are groups of SWL statements and machine
code stafements bracketed by code-codend symbols. The machine code statements are
distinguished by prefixing them with an exclomation point, and their syntax and

‘semantics are lefi fo the code generator for the pcrﬁéulor machine involved.
5.5 MACHINE DEPENDENT TYPES [14.1, 14.2]

Apart from the r‘equiremenrlto be cbi'e To generafe speciiic machineg wode nsiuciiung,
there is the more common need fo deal with machine dependent types and storage
classes. Examples of these would be a page table entry type, register storage class,
-efc. All usage of such machine debpenden’r types é,nd storage classes must appear
“within 'code blocks'. Variables declared with machine dependent storage class but
normal type may be used in normal SWL statements, but variables declared with
‘machine dependent type are restricted to assignments, equality tests, and machine

code statements.

A SWL APOLOGIA 6.1 _
' | Compﬁe-ﬂmé Expressions .

6.0 Misce(lanebus Changes | | 15 Sep%ember]973

6.1 Compile-Time Expressions Poge: 6-1
6.0 MISCELLANEOUS CHANCES
6.1 COMPILE-TIME EXPRESSIONS

SWL allows. expressions that can be evaluated at compile time to be used wherever
constants are allowed. This reduces the amount of hand computation required of
the programmer and provides constants with a greater information value (e.g.,-

4* page size instead of 40%).
6.2 'BEGIN' BLOCKS [10.2.1]

1t was decided to provide begin-end blocks which allow local declarations. This
nermits more efficient use of storage, and ailows macios 1o be writion with varichlae

which are local to the macro body.
6.3 OPERATORS [9.2]
"The following changes were made to the operators:

1. In Pascal _fhevdivisiOn opercfo.r (/) when operating on two integers,
results in a quotient of type real. Since it was felt that real numbers
have mfnim_ci Ufilify in a sysfems implementation language, this be-
‘havior was judged to be undesirable, and that the result should be
that of infeger lelSlOﬂ with .frunccmon This definition was adopted,

and the Pascal integer division operator (div) was removed from the

language.

A SWL APOLOGIA | 6.4

Parameters
6.0 Miscellaneous Changes 15 S_epiember' 1973
64 Parameters Page: 6-2 :

T6 wum famt Aot ol HE R MRS NN |
2.1t was decidad that the 'hol

epercior should be extended to sets in
ordzr fo be able to determine the complement of a set. The tilde
{~} is used fo répresent this operator.

3. it was felt that the minUs sign, being an arithmetic operator, was
not appropriate for set difference. The tilde (~), already a unary.

set operaftor, was extended fo serve as the set difference operator.

4. An ‘exclusive or' operator (xor) was added to the language. .

-

5. A rep operator is iprovided in SWL to form a list of repeated values,

e.0.s

T eevam g N/
EATr1 TEpP CATZ

is equivalent ifo
EXP2, EXP2, ..., EXP2
where EXPQ is repeated EXP] 'fimesb.
6.4 PARAMETERS [4.1.9, 8.2, 10.3.1]

. While the default method of passing pﬁrqmefers in Pascal is by value, it was felt that
the more efficient method of passing parameters by reference (used for ._/_E_f parameters
in Pascal} should be made more wfde!y applicable and its use encéurcged. To ensure
that the programmer is fully aware of which method is being used, no default is
allowed and either ref or val must be specified. In order to allow constants and

read-only variables fo be passed by reference, an additional option - ref read -

is provided; in this case the compiler assists in detecting ossignments to the parameter.

A SWL APOLOGIA 6.5

Designational Assignment

6.0 Miscellaneous Changes 15 'Sep’remb'er. 1973
6.5

Designational Assignment Page: 6-3

DA o ™ r“{‘q."‘»<|,l_'~"lb.,\..: AT L ol N ~
U.:) DESTENAT !O i \.A.L A28 1\;1'1,1; N [[1 O.] .Zf] .

assignmeni stctement is used »fo assign a reference to the variable
on the right~hand side of the assignment to the variable on the lefi~hand side.

The voriable on the left~hand side must be a reference variable, i.e., a pdim‘er

" variable, an odaptcble array, o procedure variable, or a label variable. The
designational assignment was judged to be a more satisfactory solution than achieving
- the same result by an ordinary assignment, with a built=in funcﬁoh returning a

referance on the right-hand side.

Because of the similarity of the designational assignment statement and the ‘conforms

:fo and becomes' operator {::=), the same representation is used for both.
6.6 COMPILE-TIME FACILITIES [12.0]

There is o wide range of possible cbrﬁpﬂe—ﬁme facilities which can be included in
_the aesign of a high~level language - from none at all (the -most common crioproc:ch),
to a simple text replacement macro facility, to a PL/1-level facility which provides
_ compile~time variables and conditional co‘impilo’r'ion, to a powerful macro facility
which offers an extensive list of compile-time statements, optional and keyword

macro parameters, access fo the compiler's symbol table, etc.

The correct choice for SWL was not obvious. The decision hinged upon the question
of whether or not macros were intended to be the sole means for. handling system

f compile-time facilities would be required,

inferfoces. If so, then an extensive set o
greatly increasing the complexity of the front end of the compiler and substantially

decreasing compilation speed.
7

A SWL APOLOGIA 67
Files and 1 /O

6.0 Miscellaneous Changes 15 Sepfcrﬁber 1973

19

If, on the other hand, some other mzons of handling system interfaces were provided,
then the additional burden of powerful compile~time facilities was felt to be un-

warranted.

[was decided that uniil there exists a clear need for something more - powerful,, the
" compile-time facilities in SWL would be kept to' a minimum. In particular, the

following features are provided:

1. Compile-time variables of type integer and boolean.

2. A compile=~time assignment statement for altering the value of
compile~time variables,
3. A compile-time if cictoment to ollaw conditianal comnilation.

L AR AR
—

4. A simple, parameterized text substitution facility.
6.7 FILES AND 1/0 [4.2.9, 10.5]

I+ was decided that adequate 1/O facilities must be provided for within the SWL -'
itself, since the alternctive would likely be a proliferation of incompatible 1/O |
packages. The Pascal file variable was felt to be inadequate, however, since the
components of a particular file variable must all be of the same type. The concept
‘of a file was changed, therefore, to the nhaorﬂe traditional one which allows access

to the file only through actual transfer of information to or from a regular variable.

P

A bosic set of sequential file operations is provided in SWL: get, put, rewind, file
mode reset, write end-of-file, and end-of-file test. This sef is not intended fo be
complefe, but further extensions must wait until more is known about the IPL data

menagement system,

A SWL APOLOGIA 68

Moxnmam Sef sze :

6.0 Miscellaneous Changes 15 Sepfembér 1973-
6.8 Maxirmum Set Size : Page: 6-5" -

o

£ MAKIMUM SET SiZe [4.2.1]

While the Pescal fanguage sﬁeéiﬁes no limit on the number of ellem"enfs‘fhcf can be
contained in a set, the Pascal compilers have made the restriction that a set must
fit within one word of memory. Such a restriction is not made in SWL, and while
there may be some implemehvi'oﬁonb dependent upper bound, sefs of at least 256

elements will be allowed. This accommodates the important case of set of char.

6.9 TYPE CHECKING [4.17, 4.1.9, 4.2.1-4.2.4]

ifiost Pascal operations are defined only for two operands of the same type. Previous
Pascal compilers have performed this type checking in a highly restrictive way,
iUt iy ;gl‘;, ‘f;N:{’ ’;G.‘.:’.:':: Lo dozlared with the cama inctance of the tvne dehmhon.-

In SWL this requirement is relaxed substantially, and the fol]owmg rule_s are used to

defermine whether two types are compatible:

1. Record types are cbmpo’rible if the corresponding component types

are compatible and the field selector identifiers are the same.

2. Array types are compatible if they have compatible element types,
the same number of dimensions, and the same extent (but not

necessarily the same bounds) for each dimension.

3. Procedure types are compatible if the types of all the ;Scro‘mefers
(including the return volue,” if any) are compatible. The names

of the formal parameters need not agree.

4. Set types are compatible if the bcse types are the same scalar |

e
fvma
&7 ‘)v .

A SWL APOLOGIA 610

4 Type Conversron

: 60 Mlsce”cneous Chonges 15 Sep ember]973
6. 10 Type Convprszon Page: 6-6

4.10 TYPE cm\‘/;t~3 ON [nw n%]

Poscél?_s ‘ord‘-“‘ond‘ tehr! “functions czHow conversion between vcmobfes of type m’reger
and >‘rype character. H was decxded that SWL should also pmwde for conversion .
befween type infeger and any User-czef'ned ordinal type. To handle all these

" conversions in a uniform way, one may des:gna’re a conversxon funchon from-one

scalar type to another by prefxxmg the target type with a do“ar sxgn, e.g.,

color = (red, 'gree‘n,' 'b]ue); :

g

]

P

v A: color,

|

15

~ B: integer;
& = $color (2);

B 2= Sinteger (red);

Ordinal types are assumed to have zero-origin representation.

