" SWL LANGUAGE SPECIFICATION

, - 7 December 1973
2,0 Longuage Overview Page: 2-1

2.0 LANGUAGE OVERVIEW

A SWL -piogram consists-of statements, which define actions involving pr'.bg_rér’nr‘rja_ﬁc

elements, and declarations,. which define such elements,

The deﬁ;noble;_ elements. include variables, procedure’é, labels ond'f'iesf‘-rdﬂ‘licving the

~ characteristics that .are conventionally associated with their names. Declorahons of
instances of these élements are spelled: out in terms of an L@ix_f‘er for the elemenf
and a type descnphon, which. defines fhe operchona! aspectsof | fhe elemenf cmd, in
many cases, indicates a teferential notation. In fhe case of a variable declorahon,
the fype defines the set of values that may be assumed by the varxcble,. Types mcy

be duecﬂy described in such- declarahons, or they- mcy be referenced by a AyDe -
identifier, which in tum must- be def’ned by an exphcnf fyoe declcrohon, A vno” o
set of pre-defined fypes are provnded together with notations for_ defining new types

m ferms of ex;shng ones.

In genéro!“"on element may not enter into operations outside: the domain indicated by
its type, and most dyadic operations are restricted tc elements oF equivalent types
" (e.g., an integer may. not be added to @ redl number) Smce}-fhev requirements for
type equivalence are severe, fhese_.qpercflonal constraints are s'f.;ricf.,' ; Deporfufes'frdrﬁ

them must- be »exp!igiﬂyﬁ sp';el’ledf-oi-.gf in vterms of conversion Fuhcﬁéns,

The basic types include the pre—def'ned integer, char, boolean,- cmd reci ’rypes, all

having their conventional connotations, value sets, and operahonol domomso The

" first three are scalar t fype s, whlch define well-ordered sets of values -~ as dlshngmshed :

from real types. A scclor type may also be def'ned as an orqul tXE by enumwahng '
the identifiers which si'oncl forits ordinal values, . or'as a subranqe of onofher scalor |

fype by specifying the smallest and lcxrgesf values of the subrongeo Pointer types are

x ReleaSe:l}ﬁ@és hot support fi '\lf’es':'.

SWL LANGUAGE SPECIFICATION

: . : . S 7 December 1973
2,0 Language Overview - . * Page: 2-2

included in the basic types. They represent location values, and other descriptive -
information, that can be used to reference instances of variables and other SWL ele-
ments, Pointers ‘are always bound to a specific type, and pointer variables may

assume, as values, only pointers to elements of that type,

Structured types répresent collections of components, and are ‘defined by describing

their component nypes and indicating a so-called sfrucfu}ing method, These differ .

in the accessing discipline and notation used to select individual components, Five .

structuring methods are available: set structure, string structure, array structure,

tecord structure and union structures,

A set fy'pe,, represents the subset of values of some scalar type.

“A string type of length n represents all ordered n-tuples of values of character type.
“An ordered k-tuple of these values (IKKgn) is called a sub=siring, Notation for

accessing sub~-strings is provided, -

~ An array type represents a structure consisting of components of the same type. Each

component is selected by an array selector consisting of an ordered set of n index

values whose types are indicated in the array definifion,

- A record type represents a structure consisting of a fixed number of components called
fields, which may be of different types. In order that the type of a selected field be

evident from the program text (without executing the program), a field selector is not

 a computable value, but instead is ar: identifier uniquely denoting the component to

be selected,.” These component identifiers are declared in the record type definition,

A variant record type may be specified as consisting of several variants, This implies

that different variables, although said to be of the same type, may assume structures

- which differ .in a certain manner, The difference may consist of a different number

SWL LANGUACE SPECIFICATION

0 ’ , . 7 December 1973
2,0 Language Overview . : Page: 2-3

ond different types of components, The variant which is assumed by the current value
of a record variable is indicated by a component field which is common fto all variants

and is called the _f_c_:_g'ﬁeld;

represents a finite set of selectable, non-equivalent types.

permif one to define procedures whose
i érnative to variant record types,

f more than one type and

- Array and record types may have associated packing attributes, which can be used to

specify component space-time trade-offs., Access—time—for—specifie—componenis—of—

Storage "f;pes represent structures to which other variables may be added, referenced

and deleted under explicit program control. Fhey—eie—elso—the—only—types—that—ocan—be

-ste;age—stmetu-ﬁesr There are three storage types, each with ifs own management and
‘access characteristics. A stack type represents a collection of components of the same

type which is accessed by a "last in-first out" discipline. The "top" component of a

stack can be referenced by using the stack's identifier as a pointer, Sequence types
‘and heap types represent storage structures whose components may be of diverse type, °

-Components of sequences must be accessed by a sequential accessing discipline (thru =

‘the operations of "resetting" to the first component and moving to the next component).

Space for components of heap storages must be explicitly managed by the operation of

allocate and free; the components are accessed thru pointers constructed as by-products

of the allocate operation. The only storage type supported by Release 1
is the default heap. | | '

SWL LANGUAGE SPECIFICATION

‘ » 7 December 1973
2.0 Language Overview: ° ' Page: - 2-4

Many of the structured and sforoge types (and subrange types) are described in terms
of attributes, called bounds, that specify their shapes and extents, If the values of
such attributes c'on.be determined by a pervsal of the entire program, then the asso-
ciated type is precisely defined, and is said to be of fixed type; otherwise, the type -

is said to be of variable bound type, In the latter case, the type represents a class

of potential instances of fixed types. An "insfcnfcnedus" fixed type for these is
- established whenever the type declaration is elaborated during execution (upon enter-

ing the block in which the declaration occurs), and persists over the scope of the

declaration, Variable bound types are not suppor‘ted.by Release 1.

Adcptable types are array, string, record and storage types defined in terms of one or

more indefinite bounds, They may be used as formal parameters of procedures — in
which case the bounds of the actual parameters are assumed, or they may. be used to
define pointers fo structures which are meant to be explicitly allocated — in which |

case the actual bounds are specified in the allocate statement, Adaptable types
are not supported by Release 1.

Denotations for explicit values of the basic and structured types consist of constants

— which denote constant values of the basic types, and value constructors, which are

" used fo denote instances of values of set, array ond record types, Numerals, quoted
strings of characters and the boolean constants (true, false) are pre~defined. New

constants can be introduced by constant declarations, which associate an identifier

with a constant expression,

Definite value constructors, which include specific type information, may be used

freely in expressions. Indefinite value constructors.can be used only where their

type is explicitly indicated by the context in which they occur.

Variables can be declared with initialization speciﬁccﬂdns and with certain attributes,

Initialization expressions are evaluated when storage for the variable is allocated, and
g

"SWL LANGUAGE SPECIFICATION -

~ . » 7 December 1973
2,0 Language Overview ' Page: 2-5

the resultant values are then assigned to the variable.

The attributes include -eceess-

—accessesh, storage
attributes — which specify when storage for the variable is to be allocated and when

it is to be freed,

and scope attributes-which specify the program span over which the
declaration is to hold (the scope of the declaration)

Unless otherwise specified, the

scope of a declaration is the block containing the declaration, including all contained

sub-blocks except for those which contoin a re~declaration of the identifier,

Blocks are portions of programs grouped together as eifher'begin-—end blocks or proce-

dures, The former are used primarily to define scope and provide shielding. The

latier also have identifiers associated with them, so that the identified portions of

- the program can be activated on demand by statements of the language.

Procedures are declared in terms of their identifier, the associated program, a set of

attributes, and a list of formal parameters, Formal parameters are variable declara-

tions which provide a mechanism for the binding of references to the procedure with

a set of values and variables - the actual parameters - at the point of activation.

Two methods of parameter binding are provided = call-by-value and call- bx—-refer-
ence; they have their conventional connotations,

A function is a procedure that returns a value of a specified type.

These return-~
ypes are restricted to the basic types, and are specified in the procedure declara-
tion, '

dures may be used in the creation of coprocesses, which are distinct sync

ous processes, of the entire procedure being executed

en returning in
line, coprocesses allow partial ex

procedures with the single thread
of control being passed back a

ugh the resume statement,
Subsequent resy

i of a coprocess causes execution to commence

€ last executed resume statement of the coprocess,

he successor

SWL LANGUAGE SPECIFICATION

o 7 December 1973
2.0 Language Overview Page: 2-6

. Statements define actions to be performed, Structured statements are constructs com=

posed of statement lists: begin statements provide for scope control and storage alloca~

tion for their constituent 'declafaﬁons;’fj_f_ statements provide for the conditional execu-

‘tion of one of a set of statement lists; loop statements cause unbounded repetitions of -

their statement hsf, whlle, for and repeat statements control repetitive execution of

their statement lists; case statements condlhonclly select one of their component state~

ment lists for execufion; variant case statements allow access to fhe variant fields of -

Control statements cause the creation or destruction of execution environments, They
provide for the activation of procedures; the creation, resumption and destruction of

coprocesses; and general changes in the flow of control.

¥ Begin statements are not supported‘by Re]easé 1.

 SWL LANGUAGE SPECIFICATION

A 7 December 1973
2,0 Language Overview Page: 2-7

Storage managemenf statements provide mechanisms for pushing and popping stack

components, moving forward and backward over components of sequences, and allo-

cating and freveing storage‘ for components of heaps.

Finally, assignment statements cause variables to assume new values,

A SWL program is meant to be translated, by a compilation process info a SWL

object program. Object programs resulting from distinct compilation can be com-

- bined by a linking process, into a single obiecf program, and may undergo further

fransdfmrahon, by a loading process, into forms capable of direct interpretation

(execuhon) by members of the IPL line,

Compile-time facilities, that are essentially extra~linguistic in nature, are used

‘control the ilation process and construct the program to be com The

facilities divide info two~categories. The first category ists of the compile-

time variable declarations, compilé f statements, compile~time if

ory consists of the micro mechcm-

statements, and macro facilities,

for scope, and cannot affect the existing declaration or block structure.

Jﬂe/

nisms for the incorporation of some representation-dependent facilities

dures declared with the repdep attribut acilities include a cell fzge, that

represents the smallest uni irectly addressab|e storage; mmed.'cypes which are

memory-depe structures with specified component bit-sizes and alig s, and

fods for overriding pointer-to-type equivalence restrictions,

SWL LANGUAGE SPECIFICATION
- 7 December 1973
- 2,0 Language Overview Page: 2-8

ded set of machine dependent facilities including native data types, storage—
ot which SWL will

attributes and instruchi

e to be provided for each ma

generate object codes. The use of suc is restricted to the body of the so-

called code stateme ich may include SWL statements an ions as well as

m.

SWL LANGUAGE - SPECIFICATION

3.0 Metalanguage and Basic Constructs : 7 December 1973
3.1 Metalanguage , : Page: 3-1

3.0 METALANGUAGE AND BASIC CONSTRUCTS

3.1 METALANGUAGE

In this specification synfacﬁé constructs are denoted by Eng,lish words enclosed between
angle brackets < and >, These words also describe the nature or meaning of the éon‘- '
struct, and are used in the accompanying description of semantics. The symEol =
is used to mean "is defined as", and the vertical bar | is used to signal an alternative
- deﬁniﬁon.- An optional syntactic unit (zero or one occurrences) is designated by
square brackets [chd] . Indefinite repefifiion (zero or more occurrences) is designated

by braces {and } .

" The angle brackets, square brackets, braces, and the "is defined as" symbol are also
elements of the language, and therefore are used in syntactic constructs. Such syn-

tactic occurrences of these symbols will be underscored when necessary.

SWL LANGUAGE SPECIFICATION s

Alphabet
3.0 Mefclcﬁgucge and Basic Constructs B 7 December 1973

3.2 Basic Constructs Page: 3-2
, , . \..

3.2 BASIC CONSTRUCTS

The lexical units of the language — identifiers, basic symbols and constants —

are constructed from one or more (juxtaposed) elements of the alphabet,

3.2.1 ALPHABET

- The alphabet consists of tokens from a subset of the 256 — valued oscii character set:

those for which .graphic denotations are defined.

<ascii character> ::= <alphabet> | <unprintable>
<alpAhobef> 1= <letter>

| <digit>

I <special mark>

I <unused mark>

<letter> ::= AIBICIDIFIGIHITIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ
o ~lalblcldlelfliglhliljlkiliminlolplqlrislitivliviwlxlylz
Ldigit> == 01 11213141516171819

<special mark> = + 1 =1 *1 /0.1, ;010"

TEEst_t1@r21(1)1=1<1>
INT[1] ALY LEL
<unused mark> = & 1% 1 {1} 111~

3.2.2 |IDENTIFIERS

Identifiers serve to denote constants, variables, procedures and other programmatic

elements of the language.

SWL LANGUAGE SPECIFICATION 323
' : : R ‘ e Basic Symbols

3.0 Mefolonguoge and Bosnc Consfrucfs N 7_December 1973
3.2 Basic Consfrbcfs : : - . Page: 3-3

<ide_nfiﬁer5 = <leffer>¢<follower>} .
<follower> ::= <letter> | <digit> | _ 1t1$1@

Identifiers are restricted to a maximum of 30 characters, and identifiers that differ

only by case shifts of component letters are considered to be identical.

3.2.3 BASIC SYMBOLS

Selected idenﬁfiers, specia‘[marks, digraphs of special ‘marks,‘ and other polygrapHs
are reserved for specific purposes in the language; e.g., as operators, separators,
‘d.elimitors, groupers. These so-called "basic symbols" will be introduced as they
‘arise in the sequel. Identifiers reserved for use as basic symbols will be shown

as underscored, lower-case words.

3.2.4 CONSTANTS

<constant> ::= <basic constant> | <string constant>
<basic corfstonf> ::= <scalar constant>
‘ . , . . .

1 <real constant>
I <pointer constant>

<scalar éénsfonb ::= <ordinal constant>
I <boolean constant>
| <integer constant>

| <character constant>

SWL LANGUAGE SPECIFICATION 323
' . : Basic Symbols

30.0 Metalanguage and Basic Consfrucfs. 7 December 1973
3.2 Basic Constructs . ' Page: 3-4

<ordinal constant> ::= <ordinal constant identifier> . "c.f., 4.2.1.1.3"

<boolean constant> ::= false | true !.<boo|ec1n constant identifier>

<integer constant> ::= <integer> | <integer constant identifier>
<chorccferA constant> ::= '<alphobet>' | <character constant identifier>
_<rea| constant> ::= <real number> | <real constant identifier>"
<string constant> ::= <string term>
. | <string term> {cat <string term>}
<string term> ::= ~ <character constant> | <string constant identifier>
I $char (<inféger>) "c.f., Standard Functions, 11.2"
| *<alphabet> <alphabet> {(alphcbeb}' -
<pointer constant> = nil
- <ordinal ‘constant identifier> ::= <identifier>
<boolean constant identifier> ::= <identifier>
<integer constant identifier> ::= <idenfi.ﬁer>
<character constant identifier> .::___, <identifier>
<real constant iden.ﬁﬁ.er> ::= <identifier>
<string constant identifier> ::= <identifier>
<poinfe‘r constant identifier> ::= <identifier>
<real nu.mbevr> ::= <unscaled number>
| <scaled number> _
<unscaled number> ::= <digit> {<digif>} « <digit> {<digif>}
<scaled number> ::= <unscaled number> E [<sign>] <digit> {<digit>}
<integer> = <digit> {<digit>}
IA<digif> {<hex digif>} <base designator>
digi> =01 112131415161718129

SWL LANGUAGE SPECIFICATION - 325

Conventions
- 3.0 Metalanguage and Basic Constructs - 7 December 1973

3.2 Baisc Constructs o Page: 3-5

<hex digit> := A1 BICDIEIF

| lalblcldlelf
1 <digip>

<base designator> ::= (<radix>)

<radix> ::= 214181 16

<sign> =+ | =

3.2.5 CONVENTIONS

Identifiers, reserved words and constants must not abut and must not contain embedded
blanks, Basic symbols constructed as digraphs may not contain embedded blanks, Other-
wise, blanks may be employed freely, and have no effect outside of character constants

and string constants = where they represent themselves.

3.2,6 COMMENTS

Commentary strings may be used anywhere that blanks may be used except within

character and string constants,

<commentary string> ;= " {<comment charocfer>}"
<comment character> ::= <any ascii character other than double-quote

and semicolon>

- SWL LANGUAGE SPECIFICATION

. . . ‘ , 7 Deceml.:ver 1973
4,0 SWL Types ' 2 - Page: 4-1

4,0 SWL TYPES
SWL provides four cldsses of programmatic éb]ecfs of discourse:

<SWL type> = <data i'ype>
| <c:;:lcxp’rable type> w
| <formal fype> ™
| <file type> ™

Broadly speaking: data types are used to define sets of values that can be assumed by
SWL variables; adaptable types define data types that have indefinite attributes, are
meant fo be explicitly "type fixed" during execution, and — together with formal

~ types — may be used as formal parameters of procedures, and must otherwise be

referenced through a pointer mechanism; formal types are associated with procedures,
coprocesses, and labels (c.f., Section 8,0); file types are primarily used in input-

output operafions, ®

y | . .
Release 1 does not support adaptablea formala or file types.

SWL LANGUAGE SPECIFICATION .

4,0 SWL Types . 7 December 1973
4.1 Type‘Dec-Iardﬁphs ‘ Page: 4-2

4.1 TYPE DECLARATIONS

- SWL provides a small set oF~pre—de‘Fined types, reserved identifiers for these types, and

notation for defining new types in terms of existing ones.
Type declarations provide the mechanism for introducing new types.

<typ‘e declaration> ::= type <type spec> {,<fype spec>} .
'<fylpe spec> 1:= <type identifier Hst> = <SWL type> |

tvoeidentitiertistoe <idenfifierlist

{type identifier) :2= <identifier>

SWL LANGUAGE SPECIFICATION 42,0 |
' ' Fixed and Variable Bound Types

4,0 SWL Types 7 December 1973
4,2 Data Types Page: * 4-3

4,2 DATA TYPES

Ldata type> ::= <fypé> .
<type> ::= <basic type> | <structured type> | <storage type>

For brevity's sake, data types will be referred to in the sequel as types; for clarity's
sake, references to other SWL type-varietals will be spelled out completely. Basic
types define components that may take on simple values, while structured types and

storage types define collections of components,

42,0 FIXED AND VARIABLE BOUND TYPES

Many of the types ‘(parﬁcularly the sffucfured and storage types) are couched in terms
of attributes that are called "lengths" or "sizes" or "bounds" or "index ranges", ‘
depending on the specific type and on the context in which it is being discussed.

If the values of such attributes can be determined by a perusal of the entire pro-
gram, then the associated type is precisely defined, and is said to be of fixed type;

otherwise, the type is said to be of variable bound type, In the latter case, the

type represents a class of potential instances of fixed types. An "instantaneous"
fixed type for these is established whenever the type declaration is elaborated during
execution (upon entering the block in which the declaration occurs), and persists.
over the scope of the declaration (c.f., Scope of ldentifiers, 5.2). For purposes of

-. exposition, the constructs

<variable_bound type>
and ' .
<fixed type>

are introduced, the latter denoiing all 'fypes but the former. Release 1 does

not support variable bound types.

SWL LANGUAGE SPECIFICATION 4,2.1
: Basic Types

4.0 SWL Types ' 7 December 1973
4,2 Data Types Page: 4-4

4.2.1 BASIC TYPES

<basic type> = <scalar type>
| | <redl fype>
I <pointer fypé>

4.2.1.1 Scalar Types

Scalar types define well-ordered sets of values for which the following functions are

defined:

succ = the succeeding value in the sef;

~ pred the preceding value in the set.

<scalar type> ::= <integer type>
| <character type>
| <ordinal type>
| <boolean type>
| <subrdnge type>

4.2.1.1.1 Integer Type

<integer type> ::= integer | <integer type identifier>
~ <integer type identifier> ::= <identifier>

SWL LANGUAGE SPECIFICATION 4,2.1
4 Basic Types

4,0 SWL Types 7 December 1973
4.2 Data Types : Page: 4-5 .

Integer type represents an implementation-dependent subset of the integers, and is

' eqpivalehr'to the subrange (c.f., 4.2, 1..1.5) defined by

— b2~ -(aq.g -‘],) .. (qu, - l) .

4,2,1.1.2 Character Type

<character type> ::= char | <character type identifier> i
<Lcharacter type identifier> ::= <identifier>

“Character type defines the sef 'of 256 values of the ascii character set, and is equiva=-

lent to the subrange (c.f., 4f 2.1.1.5) defined by
$char(0) .. Schar(255)

where "$char" denotes the mapping function from integer pre onto character type

(c.f., Standard Functions, 11.2).
4.2.1.1.3 Ordinal Type

~ <ordinal type> = (<ofdinal list>)
1 <ordinal type identifier>
<ordinal list> ::= <identifier list>

~ <ordinal type identifier> ::= <identifier>

SWL LANGUAGE SPE‘CIFICA‘TION‘ N 420
L Basic Types

40 SWL Types 7 December 1973
4,2 Data Types Page: 4-6

An ordinal type defines an ordered set of values by enumeration, in the ordinal list,
~of the identifiers which denote the values. Each of the identifiers in the ordinal list

is ‘thereby declared as a constant of the particular ordinal type.

Two ordinal types are equivalent if they are defined in terms of the same ordinal list, ™

Ordinal type specifications are restricted to appear only in type declarations.
Example: The constants of the ordinal type "primary color" declared by

type primary color = (red, green, blue) .
~are. denoted by "red", "green", and "blue", and the following relations hold:
red < green

red < blue =
" green < blue

A mapping from ordinals onto non-negative integers is provided by the " $integer"
function (c.f., Standard-Functions, 11.2). For the constants of the example, -

the following relations hold:

$integer (red) = 0
$integer (green) =

$integer (blue) =

The ordinal type declaration

i .
type primary color = (red, green, blue),

hot_color = (red, orange, yellow)

would be in error because of the dual definition of the identifier "red" as a constant

of two different ordinal types,

" w In ISWLa two separately deflned ordinal types are never con51dered
to be equivalents.

SWL LANGUAGE SPECIFICATION 4.2,1

_ Basic Types :
4.0 SWL Ty’pes ' o 7 December 1973 .
4,2 Data Types ' ~ Page: 4-7

4.2.1.1.4 Boolean Type

<boolean type> ::= boolean
_ | <boolean type identifier>
<boolean type identifier> ::= <identifier>

Boolean type represents the ordered set of "truth values" whose constant denotations

are false and irue, and is equivalent to the ordinal type specified by the ordinal list

(false, true)

4,2,1.1.5 ‘Subrange Type

<subrange type> ::= <subrange type identifier>
| I <lower> .. <upper>

<lower> ::= <scalar expression>

<upper> ::= <scalar expression>

- <subrange type identifier> ::= <identifier>

A subrange type represents a subrange of the values of another scalar type, defined

by a lower bound and an upper bound., The lower bound must not be greater than
the upper bound and both must be of equivalent scalar types. -Subrange—types—may

Two subrange types are equivalent if they have identical upper and lower bounds;*and
an improper subrange type (i.e., one that spans its 'parent' ronge) is equwalenf to
its 'parent fype. ’ '

'w In ISWLa two types are equ1va1ent only if they represent the
same 1nstance of, a type definition.

SWL LANGUAGE SPECIFICATION I 4,2.2

Real Type
4,0 SWL Types 7 December 1973
4,2 Data Types Page: 4-8
Exch’tglez'
type non__negoﬁve_in.feger =0.. n2,

letter = 'A' . 'Z',
color = (red, orange, yellow, green, blue),
hot_color = red .. ye”VOW, |
hue = red .. blue,

range = =10 .. 10

" Note that the subrange type, "hue", is an improper subrange of, and therefore .

equivalent to, its parent ordinal type, "color".

4,2.2 REAL TYPE

<real type> = real | <real type identifier>
<real type identifier> ;= <identifier> '

The range and precision of real type is implementation-dependent. Conversion functions

between real and integer type are provided (c.f., Standard Functions, 11,2),

42,3 POINTER TYPE

.Poi_nfer types represent location values, and other descriptive information, that can be

used to reference instances of SWL objects indirectly,

<pointer type> ::= <direct pointer type>

SWL LANGUAGE SPECIFICATIO.N | 4,23
: : Pointer Type

4.0 SWL Types ‘- ” 7 December 1973
4,2 Data Types Page: 4-9

<direct pointer type> ::= A<type> . |
| | <adaptable pointer>
| <formal pointer>
, : I A<file type> '
<c:dcpfoblé pointer> ::= A<adaptable type> . ‘
- <adaptable pointer to string> ::= <adaptable pointer>
<adaptable pointer fo array> ::= <adapter pointer>
<adaptable ;;oinfer to stack> ::= <adaptable pointer>
<adaptable pointer to sequence> ::= <adaptable pointer>
<adaptable pointer to heap> ::= <adaptable poinfer§)
<formal pointer> ::= A<formal type>
<pointer to label> ::= <formal pointer>

<pointer to précedure> ::= <formal pointer>

E . l I . s :F l . ' ;
Direct {relative) pointer types are equivalent if they are defined in terms of equivalent
SWL _types (fypes) w | ' .

Direct -(Fe-le#we-)- pointer types represent locations .ér-elehsfe—-leeaheﬂs-) of instances of -

objects of SWL type (componenfs of objects of-storage type).

w In ISWUL+ two types are equivalent only if they represent the
same instance of a type definition.

SWL LANGUAGE SPECIFICATION | 43,1

Set Type |
4.0 SWL TYPéS , , S | 7 December 1973
4.3 Structured Types v : L Page: 4-10

4,3 STRUCTURED TYPES -

Structured types represent cullecrions of components, and. are defined by describing

~ their component types and indicating a so-called structuring method, These differ |

in the accessing discipline and notation used to select individual components, Five Four
structuring methods cre available: set structure, string structure, array structure, and
record structure, end—amen—s#we#u-ses;— Each will be described in fhe sequel, Structured
types may be oF variable bound fype (c.f., 4.2 0) .

<s‘i'rucfu,red type>::= <set type>
| 1 <string type>
| <array type>
| <record type>

43.1 SET TYPE

<set type> = set _<_>_{_"_<ba.se type>
o | <set type identifier>
<base type> ::= <scalar type>

<set f);pe identifier> ‘::‘= <identifier>

A set type represents the set of subsets of values of the base type. The number of
elements defined by the base type must be constrained (consider, e.g., set of integer).
%HGLHM’E&'HMHMW i i efT _. : dent;—but-ne—tess—than—256—{to—accommodates
set-of<cher)r ISUL limits the number of elements to LO.

SWL LANGUAGE SPECIFICATION ~ ~ 43.2 |
' : ' String Types

4,0 SWL Types | 7 December 1973
4.3 Structured Types , x Page: "4-11

Set types are equivalehf if they have equivalent base types, ™
Example: The set, access, 'declared by

type access = set of (no read, no write, no execute)

represents the set of the following subsets of values of its ordinal base type:

$access []"the empty set"
 $access [no_read] .

$access [no_write]

$access [no_execute]

$access [no_read, no__wrife]

$access [no_read, no_execute]
+ $access [no_write, no_execute]

- $access [no read, no write, no execute]_

where the notation $access [...]" denotes a value corstructor (c.f., Value construc-

tors, Section 5.1) for the set type, access.

43.2 STRING TYPES

<string type> ::= string (<lengfh>) of <charqcfer_fype>‘
| <string type identifier>

v<length> ::= <positive integer Lasiant >

<string type identifier> ::= <ideniifier>

A string ‘type of length n represents all ordered n-tuples of values of character type,
An ordered k-tuple of these values (1sksn) is called a sub-string. Notation for

accessing sub-strings is provided (c.F., Variables and Voriable Declaration,” 7,0),

“ In ISWL2 two types are e ulvalent only if they Pepresent the
same instance of a type definition.

SWL LANGUAGE SPECIFICATION 433

- Array Type
4.0 SWL Types ‘ 7 December 1973

4.3 Structured Types . Page: 4-12

Two string types are equivalent when they have the same length™ In the case of a

variable length, the length is determined when the declaration is elaborated,

4.3.3 ARRAY TYPE

An array type represents a structure consisting 6f components of the same ‘fype. Each
componenf is selected by an array selector consisting of an ordered set of n index
values whose types are indicated by the indices in the definition. = Theoretically,
the time needed to select a component is independent of the set of index values,

so that an array structure is an example of a so-called random=-access structure,

<array type> 1= [<packing>] <array ‘type ‘identifier>
. | [Kpacking>] <array spec>

<afroy type identifier> ::=<identifier>

<array spec> ::= array [<indices>1<_>f <con:nponenf type>
 <indices> 1= <index> {, R <index>}.

. <index> ::= <scalar rype> ,

<§omponenf type> ::= <fype>

<packing> = <pockmg attributes>

Packing attributes are used to specify component storage space - component access

time trade-offs (c.f., Packing and Alignment, 4.8).

- If n indices are specified, then the array type has dimension n. Two array types are
equivalent if they have the same pocking and dimensions, have equivaleat component
types, and correspondmg indices are of equivalent types,® For variable index ranges,
the index type is defined by the values of its constituent expressions determined when

the declaration |s elaborated,™™

M In ISwLn two types are egu1valent only 1F they represent the
same instance of a type definitione.

un Release 1 does not support variable bound arraysg

SWL LANGUAGE SPECIFICATION - 434
' : : ~ Record Type

40 SWL Types 7 December 1973

4.3 Structured: Types Page: 4-13
Examglezb_

1199 hotness = array [color] of noh_negaﬁve__infeger,
token_code = array [char] of token class,
foken__‘_class‘ = (alpha, numeric, specials, others),
array1 = array [1 .. 100, 100", 200] of 100 .. 300,

Ci1=1..100, o
i2 =100 .. 200,
s1 = 100 .. 300,
array? = array [i1,i2] of s1,

arrayd = array [i .. j] of boolean,

array4 = array [1 .. 10] of array3

4.3.4 RECORD TYPE

In a record structure, the components are not necessarily of the same rype. In order
that the type of a selected component be evidént'from the program text (without
executing the program), a record selector is not a computable valu.e,_ but instead is
‘an identifier uhiqué!y denoting the component to be selected. These component -
identifiers are declared in the record type definition. Again, the time needed to
access a selected component does not depend on the selector, and the record is

- like an array, a random-access structure,

SWL LANGUAGE SPECIFICATION 4.3.4
‘ o ' o Record Type

4.0 SWL Types o 7 December 1973
4.3 Structured Types - Page: 4-14.

A record f)"pe”may be specified as consisting of several variants. This implies that
different variables, although said to be of the same type, may assume structures which
differ in a certain manner, The difference ma-y. consist of a different number and

~ different fypevsof componenfﬁ. ‘The variant which is assumed by the current value of
a record variable is indicated by a.component field which is common to all variants

and.ié called the tag field,

<record type> 1= [<packing>] <record fype identifier>’
I[<packing>] <record spec>
<record type identifier> ::= <identifier>

~ <record spec> ::?;AM <field list> recend
<Field list> 2= [<fixed fields>,] <shifty field>
1 <fixed fields> |
<fixed fields> ::= <fixed field> { ,<fixed field>} : |
- <fixed field> :=-<field selectors> : {<alignment)- <fixed type>
<shifty field> ::= <variable bound field> ™
| | <variant field> | | A
<variable bound field> ::= <field selector>: [<alignment>] <variable bound type>
<variant field> ::= case <tag field spec> of <variations> casend. .
- <tag field spec> ::= <tag field selector> : <tag field type>
- <tag field type> 2= <scalar type> | |
<tag field selector> ::= <identifier>
<variations> ::= <variation> } <variation>}
<variation> ::= = <selection values> = <variant>

<selection values> 1:= <selection value> | <selection value>}

w Release 1 does not support variable bound fields.

SWL LANGUAGE SPECIFICATION ' 4,3.4
: Record Type

4,0 SWL Types , - 7 December 1973
4,3 Structured Types _ ‘ . ‘Page: 4-15

<selection value> ::= <constant scalar e*p{:e’ssen>-[f——4eeﬁs#en-f—ﬁeel-e-=-e*presﬂeﬁ>}

<variant> : [<fnxed fields>] <variant field>

" _ | <fixed fields> .
<field selectors> ::= <field selector>{,<field selector>}
<field selector> ::= <identifier>

A record fype represents a structure consisting of a fixed number of components called
fields, which may be of dnfferent types and are identified by field selecfors, ‘which
are unique Wi thin any one variant and the precedmg fixed fields. Multiple field
selectors provide a concise notation for specifying fields having the same -elignment-
-and- type. A record type whose last field is of variable bound type is called a

varicble ‘bound 'record type; -one -whose -last field is a variant field is called a

variant record type, which may never be of variable bound type.

" A variant field is distinguished by an explicit tag field which represents a set of

selection values that maps onto the variants in a many-to-one manner.

Two récord types are equivalent if they have the same packing, the same number of
fields, and identical field selectors and équivole_nl' types for corresponding fields,
Two vdri‘cml' fields are of equivalent types if they have identical tag field selectors
and equivalent tag field types, and if variants having identical field selectors and
equivalent types are selected by the same selection values, The type of a variable

bound field is determined when the declaraﬁon is elaborated,®

» In ISWL~ two types are equivalent only if they r*epr*esent the
same instance of a type definltion-

SWL LANGUAGE SPECIFICATION 4.3.4
S ' Record Type

4,0 SWL Types : : 7 December 1973

4,3 Structured Types ' Page: 4-16
ExamEIe:A
| type

date = record day: 1., 31,
month: if_iin_g(zf) of _g:h_a_r,
year: - 1900 .. 2100
recend,
status = record age: 6 .. 66,
married, sex: boolean,
recend,

red book = record ‘name: “string (3) ‘of char,

status: status,
scores: array [0 .. n] of date
recend, “
shape = (triangle, rectangle, circle),
angle = -180 .. 180,
figure = record x, y, area: real,
case s shape of -
= triangle = side: real, inclination, anglel, angle2: angle
= rectangle = sidel, side2: _rg'g_i, skew, ‘cng|e3:.cng|e
= circle = diameter: real

casend

recend

Red book" type may be of variable bounds type by virtue of the index range of

"scores", while "figure" type is of variant record type.

SW,L.LANGU'AGE SPECIFICATION o 4,3.5

v Union Type
; 4.0 SWL Types . ' | 7 December 1973
4.3 Structured Types . Page: 4-17

5 UNION TYPE

Union type xepresents a finite set of selectable, non-equivalent types.

(Ktype list>)
, <type>}

<union type> N _union

<type list> 1:= <type

Union types permit one to define proc rameters can be of more than

one type and provide a restrictive, but mor&sg@nitary, altemative to variant record

types.

Two union types are equivalefit if their type lists can be re>sgdered so that correspond-

ing types are equival

type param = union (redl, int)

SWL LANGUAGE SPECIFICATION 4.4.1

Stack Type
4,0 SWL Types o 7 December 1973
4.4 Storage Types Page: 4-18

4.4 STORAGE TYPES

Storage types represent structures to which other varicbles‘mcy be added, deleted, and
referenced under explicit program .confrol (c.f., STORAGE MANAGEMENT STATEMENTS,
- 10.4). They are, in addition, the only SWL types that can be used to cohs_fruciL rela-

tive pointers (c.f., Pointer Types, 4.2.3).

<storage type> ::= <stack type>
I <sequence type>
| <heap type>

| Sfofoge types may be of variable bound type (c.f., Fixed and Variable Bound Types, 4.2,0).

4,4,1- STACK TYPE

<stack type> = stack [<stack size>] of <type>

<stack size> ::=<integer expression>

A stack type represents a collection of up to "stack size" components (of the same

type) accessed via a "last in=first out" discipline.

~ The l"top" component of a stack (a variable of stack type) can be referenced by using

- the stack's identifier as a pointer,

© No storage types may be declared in Release 1. The only storage
type supported is the default heap. .

SWL LANGUAGE SPECIFICATION 442
, ' B - . ' Sequence Type

4.0 SWL Types S 7 December 1973
4,4 Storage Types , . Page: 4-19

4,42 SEQUENCE TYPE

<sequence type> ::= seq (<space>)
<space> ::= {,|
 ::= [_<inl'¢ger expression> ﬂa_g]<fype>

A sequencé type represents a storage structure whose components are referenced by a -

sequential accessing discipline.
| seq (100 rep integer, 36’33_,3_’9391[1 . 30]?f.£h§£)
443 - HEAP TYPE
<heap type> ::=‘}f$ (<sp;1ce>)

A heap type represent: a structure whose components can be explicitly allocated and

- | freed,

4,44 SEQUENCE AND HEAP SPACE

A space attribute of the general form

nl rep typel, n2 rep type2, ...

specifies a requirement that sufficient space be provided to simultaneously hold "n1"
instances of variables of typel, "n2" instances of variables of type2, and so on.
“The space attribute has no other connotations whatever except those that may exist

in the mind of the programmer,

N.B. No storage types may be decla%*ed in Release 1.

SWL LANGUAGE SPECIFICATION 4,51
, : Adaptable String

4,0 SWL Types | ‘ 7 December 1973
4,5 Adaptable Types Page: 4-20

4.5 ADAPTABLE TYPES ™

Adaprab‘ile types are structural skeletons of structured and storage types containing one
or more indefinite bounds, indicated by an asterisk, They may be used solely to de-
fine formal parameters of procedures (c.f., Procedure Type, 4.6.2) and adaptable

pointers (c.f., Pointer Type, 4.2,3), the latter providing a mechqnism for referencing

fixed instances of adaptable types,

<adaptable type> ::= <adaptable structured type>
| ' | <adaptable storage type>
<adaptable structured type> ::= <6dopfcb|e string>
| ‘ I <adaptable array>
| <adaptable record>
<adaptable storage type> ::= <adaptable stack> .
- ‘ "I <adaptable sequence>
| <adaptable heap>

45,1 ADAPTABLE STRING

<adaptable string> ::= string(*) of <character type>
| <adaptable sfring. identifier>
<adaptable string identifier> ::= <identifier>

u Release 1 does hbt.support adaptable types-'

SWL LANGUAGE SPECIFICATION 452
o - Adaptable Array

4,0 SWL Types - 7 December 1973
4,5 Adaptable Types ' ‘ Page: 4-21

- 4.5.2 ADAPTABLE ARRAY

.<csdapfc1b|e array> = [<packing>] <adaptable array identifier>
‘ l [<pa;';king>] <adaptable array spec>
<adaptable array identifier> ::= <identifier>
<adaptable array spec> o= array [<starred list>] of <type>
<starred list> ::= <star or index> i., <star or index>}
| <star or index> ::="* : <scalar type> | <index> | *

An asterisk (*) without a scalar type indicates an adopfdble.bobnd' of intggerifype.
45,3 ADAPTABLE RECORD -

. <adaptable record> 1= [<pacvking>] <cdcpf0b|e record identifier>
. | [Kpacking>]<adaptable record spec>
<adaptable record identifier> ::= <identifier> ‘
<adaptable record spec> ::= record [<fixed ﬁe|d§>,] <adaptable type> recend

© 4.5.4 ADAPTABLE STACK

<odapfoble stack> ::= <adaptable stack identifier>
v 1 stack[*] of <type>
<adaptable stack identifier> ::= <identifier>

NeB. Release 1 does not support adaptable types.

SWL LANGUAGE SPECIFICATION 4,55 '
- ' L ‘Adaptable Sequence
40 SWL Types | 7 December 1973
4.5 Adaptable Types Page: 4-22 '
4,5.5 ADAPTABLE SEQUENCE
<adaptable sequence> ::= <adaptable sequence identifier>-

| seq(*)

—

<adaptable sequence identifier> ::= <identifier>

456 ADAPTABLE HEAP
<adaptable heap>::= <ad<;|pfoble heap identifier>

1 heap(*)
<adaptable heap identifier> ::= <identifier>

N.B. Release 1 does not support adaptable types.

SWL LANGUAGE SPECIFICATION . 4.6.1

Label Type
4.0 SWL'Tyées _ ' _ 7 December 1973
4.6 Formal Types | Page: 4-23

4.6 FORMAL TYPES ™

<formal type> ::= <label type>
| | <procedure type>

—<ecoprocess—yper—

Formal types may be used solely to define formal reference parameters (c.f., below)

and formal pointers (c.f., Pointer Type, 4.2.3). See section 8.0 for semantics.

4.6.1 LABEL TYPE

<label type> ::= label

4.6.2 PROCEDURE TYPE -

A procedure type defines an optional ordered list of formal parameters together with

an optional return type.

- <procedure type> ::= <procedure type identifier>
| proc [<pc|.romefer list>] [<retumn type>] .
<procedure type identifier> ::= <identifier>
<parameter list> ::= (<param segment> {;<param segment>})

- <param segment> ::= <reference params> | <valve params>

<reference params> ::= ref <formal param list> :{-Ezacd-]}ﬁef type>

<value params> ::= val <formal param list> :{E@eod]}<val type>

» Release 1 does not support formal types.

SWL LANGUAGE SPECIFICATION - 4,6.2
' S - Procedure Type

4.0 SWL Types | 7 December 1973
4.6 Formal Types Page: 4-24

<formal param lisf>':‘:‘= <identifier list>
<ref type> ::= <SWL type>
<val type> ::= <type> | <adaptable type> m

<return type> ::= <basic type>

Val type is further restricted to exclude the so-called non-value types: storage
types, arrays of non-value types, and records containing a field of a non-value

type.

Two procedure types are equivaient if corresponding param segments have the same
number of formal parameters, identical methods ‘and equivalent types, and if their
return ‘types are equivalent,™ i H—F

k'Release 1 does not suppdﬁt adaptablé typese.

- wmm In ISWL- two types are equivalent only if they r'epr‘esent the
same ipstance of a type deflmtlon- ‘

N.B. Release 1 does not support formal types.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types 7 December 1973
4,7 File Type Page: -4-25

4.7 FILE TYPE »

A file type represenf§ a source .qnd/or sink of data whose .componenfs, like those of
a sequence, are handled by a sequ_e.n’rial accessing discipline. Although variables .
of file type may be declared, their identifiers are treated as formal (or so-called,
logical') file-identifiers; the actual file-identifiers are outside the |exfcql scope
of dny SWL program, and their association with formal identifiers cannot be
expressed in SWL (e.g., one cannot ‘open' a file in SWL). All SWL file variables .

have the de-facto static attribute,

 <file type> 1= <file type identifier>
| file [(<file attribute>)]

<Lfile type .identifier>.:;= <identifier>
- <file attribute> ::= binary 1 text

A binary file's components are SWL variables; a text file's components are of

string type, and are called lines, If no attribute is specified, the attribute

text is assumed.

File components are referenced by so-called input-output statements (c.f., 10.5).

% Release 1 does not support file types.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types 7 December 1973
4.8 Packing and Alignment Page: 4-26

4,8 PACKING AND ALIGNMENT

- Lpacking attributes> +:=packed l-unpacked-
. EG“g““ie“‘; - .."“"'G‘l"‘gﬁ‘e‘d" ’

D ——

A packed structure will genevrcHy require less space at the cost of greater overhead

associated with access to its components, |f a packing affr'ibuf'e is unspecified then

the structure is assumed to be unpacked. -An—innerstructure—inherits—the—packing-

- aalaalaValWal S atabJakhaldaVa Q 2% W AV aVa aVa Mla na ala¥e

Unpacked structures and their components are always aligned. Packed structures are

also aligned uniess they are components of a packed structure, but their components

SWL LANGUAGE SPECIFICATION' AR

Constants and Constant Declarations

.0 Value Constructors and Value ‘Conversions 7 December 1973
1 Value Constructors . S Page: 5-1

0 O
L]

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS

5.1 \/ALUE CONSTRUCTORS

Two mechamsms are provided for explicitly denohng values: constants and value

constructors, Constants are used to denote constant values of the basic types;
value constructors are used to denote instances of values of sef, array, and record

types. There are two kinds of value constructors: definite value constructors, which

include specific type identification; and indefinite value constructors, whose type

must be determined contextually,

5.1.1 - CONSTANTS AND CONSTANT DECLARATIONS

<constant declaration> ::= const <constant spec list>

<constant spec list> ::= <constant -spec>{ <constant spec>}
<constant spec> ::= <constant identifier Hst> = <consfon1' -expression> -
- <constant identifier lis> o= <|denhf|er list>

A constant spec associates one or—more identifiery with the value of the constant.

w ISUL supports only definite value constructors for setéuvand
indefinite value constructors for array initialization.

SWL LANGUAGE SPECIFICATION - AR

Definite Value Constructors

5.0 Value Constructors and Value Conversions 7 December 1973
1 Value Constructors o o Page: 65-2

5.
'5,1.2 DEFINITE VALUE CONSTRUCTORS

<definite value consfrucfor}, 1= $<value type id> [Kvalue glemenfs>] ’

<value type id> 1= <set type identifier>

‘ I : / ‘ ‘! f.E. :
L2 . | jl i i
<value elements> ::= <value element>{,<vc|ue elemenf>}»
<value element> ::= [<rep spec>] <expression> '

<rep spec> ::= <positive integer expression> rep

~ldentifiers for definite value constructors are obtained by prefixing the "target type"
identifier with a dollar sign, "$". The types of the elements of the value constructor
must match the ordered set of components of the specified structure type. Definite

value constructors may be used wherever an expression can be used,
5.1.3 INDEFINITE VALUE CONSTRUCTORS
<indefinite value cqnstrﬁc;dr> = [<value elemenfs>1 '

Indefinite value constructors can be used only where their their type is explicitly

~indicated by the context in which they occur: ‘as drguments of conversion functions

(c.f., Section 5.2), as elements of definite ond indefinite value constructors, and
- for the initialization of variables (c.f., Section 6.0); - They may be o set, array or

record depending on their context, ISUWL supports indefinite value
constructors for array initialization onlys and in this case

the value elements must be constants.

SWL LANGUAGE SPECIFICATION IR . 5,13

Indefinite Value Constructors

5.0 Value Constructors and Value Eonverions 7 Decemibe'r 1973
5.1 Value Constructors ’ : ‘ Page: 5-3
ample:

For the\types defined by

(red, green, b!be),

type clor

string (3) of char,

A =oxay [1 .. 20]_9_{ integer,

R1 = record t : array [1 .. 3] of booledn,
AN
recend,

R2 = record F1 : set & cofor,
F2 : S,
F3 : X,
F4 : Rl

recepd;

instances of defini#€ value constructors for the types R1 and\R2 follow, with their

fine structure displayed,

R1[[3 rep true], 'SBC1]
e g S ——
I L—— <string constant> for field s

<indefinite value constructor> for field t

SWL LANGUAGE SPECIFICATION 5.1.3

Indefinite Value Constructors

5,0 Value Constructors and Value Conversions - 7 December 1973
5.1 Value Constructors ~ Page: 5-4

'CBS', [20 rep 2], [[3 rep false], 'BCSJ‘]]
| ['—<indefinife

<indefinite value

e constructor> for F4

nstructor> for F3

L<indefinite val Gonstructor> for

Each of the-constants used in the above examples could have been repla

fessions that evaluate to the required types.

SWL LANGUAGE SPECIFICATION 5.2.1
S ' Type Conformity

5.0 Value Constructors and Value Conversions 7 December 1973
5.2 Type Conformity and Value Conversion ~ Page: 5-5

5.2 TYPE CONFORMITY AND VALUE CONVERSION

The operations of assignmen't and comparison (and most binary operations) are defined
only for operands of equivalent types. This requirement is relaxed only to permit |
vaiqes of a subrange type and values of its parent type to enter into the same opera-
tion, Whgen it is necessary fo 6perafe on operands that do not meet the strict
requirements for type equivalence, the conversion functions described below must

be used., These map values of a "source" type into values of a "target" type and

are defined only for so~called conformable source and target types.

5.2.1 TYPE CONFORMITY

Type conformity is a weak form of equivalence that does not require identical "com-
putational " attributes, bounds, packing, alignment or field selectors, Unlike equiva-

lence, conformity is not a transitive concept.

Integer types and character types conform.

Integer types and real types conform,

Integer types and ordinal types conform, .

String types are mutually ccnformable,

Array types conform if they have the same dimension, their corresponding index
ranges span the same number of elements and their component types conform, °

Record types conform if they have the same number of fields and corresponding
fields c;onfqrm.

String types, and one~dimensional array types with character-type components, confom,

SWL LANGUAGE SPECIFICATION 522
‘ . Type Conversion Functions

5.0 Value Constructors and Value Conversions - 7 December 1973
5.2 Value Constructors _ : ~ Page: 5-6

5.2,2 TYPE CONVERSION FUNCTIONS

Identifiers for conversion functions are obtained by prefixing the target type identifier
with a dollar sign. The function so identified will then accepf as an argument values

that are in type conformity with the target type.

5.2.2,1 Primitive Conversions
These consist of the "pre-defined" functions (c.f., Standard Functions, 11.2),

$integer (<real expression or char expression or ordinal expression§)
$real (Kinteger expressi§n>) 4
 $cher Kinteger expression>)
$string (Klength>, <string expressnon>[<chor expressnon>])
‘and the "definable" functions (c.f ., below)
§<ordinal type identifier> (integer expression>)
$<string type identifier> (<string expression> [,<char expression>])

5.2.2.1.1 Pre-defined Primitive Conversions

Conversions between the basic types are the conventional ones and are defined in
section 11.2. In conversions between string types, the source string is converted

to match the specified length either by fruncoﬁon (on fhe right) or by appending

(on the nghf) the required number of so-called REE choracfers. In the "long" form |
of the string conversion function, the fill character is exphcltly spec:f:ed by the last

‘parameter; in the "short" form it is implicitly specified to be the space character,

SWL LANGUAGE SPECIFICATION 5.2.2

Type Conversion Functions
5.0 Value Cénsfrucfors and Value Conversions 7 December 1973

5.2 Value Constructors | R Page: 5~7

-5.,2.2,1.2 Definable Primitive Conversions

Conversions fo ordinal type return the value whose ordinal number is the value of the

“integer expression used as argument,

String-to-string type conversions are analagous to the pre-defined string~-conversion func-

tion, with the length being specified by the length associated with the target type.

5.2.2.2 Structured Conversions

Conversions between strings and one-dimensional arrays of characters are analagous to-

~ string-to-string conversions. No other structured conversions are supported
by ISUL.

~to-array and record-to-record conversions are defined recursively in terms of

quired. The two forms are identic

<array expression> :;5~ <expression>

| <indefinite value constructor>

<expression>

| <indefinite value constructor>

-SWL LANGUAGE SPECIFICATION 522

Type Conversion Functions

5.0 Value Cénsfrucfors and Value Conversiéns’ 7 December 1973
5.2 Vadlue Constructors Page: 5-8

Al = array [1.. 10] of sl,

= string (20) of char,

=array [11 .. 20] of s2,
string (10) of char,

" recend,

R2 = record

alph

The

hform,

wo array types conform, the two string types conform, and the three recor N /pes

SWL LANGUAGE SPECIFICATION ' 6.2.1

Access Attribute

6.0 Vcriobles, Attributes ond Segments : '
6.1 Variable Declaration ' Page: 6-1

6.0 VARIABLES, ATTRIBUTES AND SEGMENTS

6.1 VARIABLE

<variable
<variable
<variable
<variable

<variable

DECLARATION

declaration> ::= v_a;r_<vc1ric1b|e specs>

specs> ::= <variablé spec> {,<\)crioble spec>}

spec> 1:= <variable identifiers> : [<attributes>] <type> [Kinitialization>]
identifiers> ::= <variable identifier> {,<vcricble' ideni’iﬁer>}

identifier> ::= <identifier> | |

‘A variable spec introduces a new variable in terms of the identifier that denotes the

variable, a type, an optional set of so-called attributes and an optional value

~initialization (c.f., 6.3).

6.2 ATTRIBUTES

<attributes> ::= [<attribute> {,<attribute>}]

<attribute> 1= <aeccess—eatirtbute>—

1 ACCESS

<access attribute

"A variable can be detclared

| <storage attribute>
| <scope attribute>

ATTRIBUTE

read | write | execute

access attribufe with the read attribute; no other

SWL LANGUAGE SPECIFICATION | 6.2.2
- ' Storage Attributes

'6 0 Voncxbles, Attributes and Segmeni‘s :
6.2 Variable Declorarnon ' - Page: 6-2

e latter case, the variable may be initialized, may not be an obje

assignment, an be used as an actual parameter onl e corresponding

formal parameter is a val para ffributed ref parameter (c.f.,
Section 4.6.2), Access to su variables may or may not

be completel ceable; thus, the results of aftempting to a read-only

e (except by direct assignments). may be undefined.

6.2.2 STORAGE ATTRIBUTES »

<storage attribute> ::= static +-<segment—identifier>-

Storage attributes specify when storage for a varicble is to be allocated (and ini-
tialized if necessary) and freed. If neither storage attributes nor scope aftributes
(see below) are specified, allocation and initialization occur automatically each time
ithe vcnable declarchon is elaborated (on entry to the block containing the declara-
hon), and freeing occurs automatically on each exit from that block (c.f., Section
7.0). Variables so treated are called automatic variables. |f a storage attribute

is specified, then allocation and initialization occur once and only once — af a

time no later than initial entry to the block containing the declaration, and storage

is not freed on exits from that block. -\Al-lﬂren—rhe—ﬁefege—eﬁﬁbwe—l-s-e—segmem—

6.2.3 SCOPE ATTRIBUTES

<scope attribute> ::= xdecl | xref J-external—

» Release 1 does not support static storage.

SWL LANGUAGE SPECIFICATION ' 6.2.3 |
\ ' Scope Attributes

6.0 Varlcbles, Attributes c:nd Segmenfs _ S
6.2 Attributes Page: 6-3

‘.\/ariablé identifiers are used in varable denotations. Scope attributes specify the
regimen to be used to associate instances of variable identifiers with insfcnce§ of
variable specs. The programmatic domain over which a variable spec is associated
wffh instances of its qssoc‘icxt.ed variable identifiers that are used in variable denota-

tions, is called the scope of that spec. If-no scope attribute is specified, the spec

is said to be internal to the block in which it occurs, and a so-called block-
sfruci’urmg regimen is used (c.f., Section 7. 2) lnferncl variables are always
automatic variables (see above) unless given a sforage cH‘nbufe, while scope-
_attributed variables are always. static, Each of the scope attributes specifies.
certain deviations from the block=structuring regirﬁen. Broadly speakfng, a var=-
iable identifier associated with an xref variable can be used to denote a similarly
identified varickle "having the xdcl ativibute, subject only to reasondble rules of

specificational conformity, -Ea@ema@anpables-—a;e—m#mduee@e—pem#—%ﬂr—pfe-

»Fe$e+eneed—4¥heﬂe¥ef—eﬁd—whe¥e¥e:—ﬂqe+r—apee—e-ppeem Neither xreF nor external

variables can be initialized, and each carries the de-facto static storage attribute.

SWL LANGUAGE SPECIFICATION |

6.0 Variables, Attributes and Segments
6.2 Initialization Page: 6-4

6.3 INITIALIZATION

- Linitialization> 1= = <erpressier> {constant) ‘

| := <indefinite value constructor>

Since initialization is an "allocation-time" assignment to the variable, the initia~
lization expression must satisfy the requirements of the assignment statement (c.f.,

C10.1).

ck containing th tarafion. Initialization of

is elaborated — on entry ¥o

constructors all of whose

static variables is restricte sfant expressions ©

constants,

~ Examples of initialization are used throughout the remainder of this section in the

‘explanation of variable references,

ISuL only supports initialization of static variables which are

- scalarss stringsa or unpacked arrays. Initialization is restricted

1

"~ to constants or value constructors all of whose fields are

constantse. . ,
: S i

SWL LANGUAGE SPECIFICATION 6.4.1

‘Pointer References

6.0 Variabl'es, Attributes and Segments :
6.4 Variable References | Page: 6-5

6.4 VARIABLE REFERENCES

<variable> ::= <varidble reference>
<variable reference> ::= <variable identifier>
| <pointer reference>A
I Qubsfriné reference> ¥
| <subscripted reference>
| <field reference>

6.4.1 POINTER REFERENCES
<pointer reference> ::= <pointer variable> | <function designator>
-Lpointer-variable> ::= <variable>

Whenever a variable reference denotes a variable of pointer type it is referred to

as a pointer reference and the notation

<pointer reference>A

may be used to denote a variable whose type is determined by the type associated
with the pointer variable. If another variable of pointer type is denoted by this .

reference, then
<pointer reference>AA

may be used as a variable reference. 'Note that variables of pointer type can be

components of structured variables as well as valid return types for procedures.

u Release 1 does not support substring references.’

- SWL LANGUAGE SPECIFICATION = 6.4.2

Substring References

6.0 Variables, Attributes and Segments , _
6.4 Variable References - Page: 6-6.

~ 6.4.2 SUBSTRING REFERENCES ™

<substring reférencé> ::= <string variable> (<substring spec>)
<string variable> = <vcriable> :

<substring spec> ::= <first char> [,<substring liengfh>]

<first char> ::= <positive infeger expression>

<substring length> ::= <positive integer expression>

l *

Values of string variables (of length n) are ordered n-tuples of character values.
Substring references denote ordered sub-tuples of string variables. If "S" denotes
a string variable (of length, say, n) then: "S(i)" denotes fHe i-th character of S;
S(i,k)" denotes the sub=tuple of S consisting of the i-th through the (i+k-1)-th

character of S; "S(i,*)" is equivalent to "S(i,n=i +1)",
For purposes of type equivolency,. "S@, k)" denotes a value of type string(k).
~ Example:

If a string variable is declared by

var S : string(é) of char := 'ABCDEF';

‘then the following relations hold

S(1) ="'A S(2,5) = 'BCDEF"

5(6) = 'F 5(2,%) = 5(2,9)
81,6 =5 S(1,*) = .

¥ Release 1 does not éuppor‘t_ substring references-.

 SWL LANGUAGE SPECIFICATION 6,43

Subscripted Reference

. 6.0 Varidbies, Attributes and Segments "
6.4 Variable References : _ _ Page: 6~7

6.4.3 SUBSCRIPTED REFERENCE

<subscripted reference> ::= <array variable> [<subscripfs>! :
<array variable> ::= <variable> .
<subscripts> 1= <subscript> { ,<subscript> }

<subscript> ::= <scalar expression>

A subscripted reference denotes a component of an array variable, whose value type

- is the component type of the array variable, Subscript types must be equivalent to

the corresponding index types specified for the array yqrfable. However, for pur-

~ poses of computational equivalency, values of a subrange type and values of the

parent type are treated as being of equivalent type ‘(fhe parent type).

Example:

If an array variable is specified by

\ic_u_' A : array [1..5] o_i;' integer := [],2,3,4,5]

~and an integer variable is specified by

var | : integer :=5

» then the fo”éwing relations hold

Alil =5
A[i‘-l] =4

| A[i.—4]‘=Al'

SWL LANGUAGE SPECIFICATION 6.4, 4

Subscnpfed Reference

6.0 Vanables, Atmbutes and Segments o _7 December 1973
6.4 \/anable References - } o - Page: 6-8

6.4.4 FIELD REFERENCES

<field reference> ::= <record vcr:ab|e> <field selecfor>

<record vancble> = <vc1r|able>

A field reference denotes a field of a record variable, Since field selectors are
unique only within the scope of their parent record type, the record variable must '
be specified. The field denoted by a field reference may be of record type, in

which case
<record variable>.<field selector>.<field selector>,
becomes a valid field reference.

The field identifiers within a variant are available as field selectors only within the

constituent statement list of a variant case statement (c.f., Section 10.2,8).

Example:

For the record variable defined by

- var R : record age : 6.. 66; ’

" married, sex : boolean,

- dafe : record day : 1.. 31,
’ month : 1..]2, '
year : 70.. 80
recend

= [23,false,_fﬁ:_e_, [3,5,73]]
the following reldﬁons hold

- Riage = 23
R.date. year = 73 .

SWL LANGUAGE SPECIFICATION

6.0 Variables, Attributes and Segments : '
6.5 Segments and Segment Declarations A Page: 6-9

5 SEGMENTS AND SEGMENT DECLARATIONS

ment dec!arqtfon> .:= segment <segments> ,<segments>
ats> := <segment identifiers> : [[<c1c¢ess attributes>]
identifier> }

A segment is a static storage area for specified’variables and procedures, The access
attributes of variables and procedur red to be in a particular segment must be
a subset of that segment's access attri The combinations of segment access

attributes to be supported will be”i ion: depehdenf, but will include

symbol_info : [read,write];

name_fable : [symbol_info] array [alot] of name ,

attribute_table : [symbol_info] array [alot] of attr ,
keywords : [symbol_info,read }array [32] of name ;

SWL LANGUAGE SPECIFICATION

7.0 Blocks, Modules, and Compilation Unit ‘ 7 December 1973
7.1 Declarations ' S Page: 7-1

\

7.0 BLOCKS, MODULES, AND COMPILATION UNIT

7.1 DECLARATIONS

Through the use of a declaration an identifier can be declared as a symbol with
specific declared attributes, The range of references over which the identifier

retains its declared meaning is known as the "scope of the identifier.

<declaration list> 1= <declaration>{;<declaration>} ; 1 <empty>

<declaration> ::= <miero—declaration> - desf—12:0)
I <constant declaration> (c.f., 5.1)
| <type declaratior> (c.f., 4.7)
| <variable declaration> (c.f., 6.1)
I <label declaration> (c.f., 8.2)

| <procedure declaration> (c.f., 8.1)

SWL ‘L‘ANGUAGE SPECIFICATION

7.0 Blocks, Modules, cxnd Compllahon Unlt -7 D’e'ce_mbér-1973

7.2 Blocks

7.2 BLOCKS *

Unless further limited,

Page: 7-2

the scope’ of an identifier is the block -in which the identifier

is declared, Thus, the symbol is known within the block and the block's inner

blocks, but is unknown outside the: block.

<block> ::= "<begin statement> | (c.f., 10,2,1) ™
| <procedure declaration> (c.f., 8.0)

- Example:

var choices : set of 'B' ,. 'Y",

tast, result :

- begin

union (boclean, 'B' .. Y');

var last : [static] 'A" .. 'Z%
while last < 'Z' do

last := #succ (last);

if last in choices then

result := last

’O_l'_lf last = 'Z' then |

last := 'AY;

. resulf := false

ifend

whilend

end; -

_l_f_rlgf (boolean ::

last := result

ifend

result) then

u Release 1 does not support begin blocks.

SWL LANGUAGE SPECIFICATION

7 December 1973 o

7.0 Blocks, Modules, andrCompilafion‘ Unit
' o ' Page: 7-3

7.3 Modules

A3 MODULES
A modyle is a shield around a set of declarations.

<modyle declaration> := module [<module identifier>] [(<pr6ngs>)];
<declaration list>

' modend [<module identifier>]

An identifier declared\yithin o module cannot be referenced fro withUt the module

unless the identifier is dexlared as a prong.

~ <prongs> ::= <identifier\ist>
Lmodule .identifier> ::= <identifier>
Declaring an identifier as a prong makss thaj/identifier known immediately outside

the module.

Example: ‘.

module (upper_case);

var mine : set of ypper case;

—a—

A ‘fzpe upper_case/~ 'A' ., 'Z!

modend

is ‘equivalent 6
typ€ upper_case = 'A' ., 'Z';
odule;
~ var mine : set of upper case

modend

SWL LANGUAGE SPECIFICATION

7.0 Blocks, »MOdLIJ'eS, and Compilation Unit _ 7 December 1973
7.4 Global Variables B Page: '7-4

7.4 GLOBAL VARIABLES

A variable declared with the xdcl, xref, -er—extemel attribute (c.f., 6.2.3) is a

static global variable in the sense that it can be referenced by any other program

that declares it. -

7.5 COMPILATION UNIT

A compilation unit is the basic unit of input that can be compiled.

. o - module [<module identifier>]
<compilation unit> ::= <medvle—deelaration> <declaration list) '
~modend [<module identifier>]

Any variables declared within fﬁfmtﬁuf not in a procedure declaration

~will implicitly have the static attribute, ~Any—variable—thei—is—declared-as—a—prong-

7.6 FIELD SELECTORS

The scope of an identifier that is a field selector is the record definition itself

- (c.f., 4.3.4, Record Type).

SWL LANGUAGE SPECIFICATION

8.0 Procs, C.oprqcs,and Labels a : 7 December 1973
' ’ . Page: 8-l

8.0 PROCS, -CORREECS, AND LABELS

A p‘rocedure declaration defines a portion of a program and associates an identifier
with 'itA so that it can be activated (i.e., executed) on demand by .o.fher statements
in the language. A procedure can return a value of some basic type, in vhich

case it is referred to as a function and is invcked as a factor in an expression. If

a procedure returns no value it is invoked by a procedure call statement.-or—a—copro=
ceoss—croate—statemants

The value of a function is the value last assigned to its procedure identifier before

returning (either by falling through the procend or by an explicit return statement).

A procedure call statement causes the execution of the constituent declarations and
statement lists of the procedure after substituting the actual parameters of the call

for the formal parameters of the declaration. Control refurns to the next statement in

line, -

_create statement creates the necessary environment for the execution of a pro

dure as a rocess. A coprocess is a separate synchronous process. Ins of the

entire procedure betng_executed and then returning in line, coproc@sses allow partial

execution of a set of proceduwres with the single thread

and forth amongst them through the T

conirol being passed back
ent, Subsequent resumption of a
coprocess causes execution to comme successor of the last executed

If a coprocess has n created but not resumed,

SWL LANGUAGE SPECIFICATION

8.0 Procs, Coprocs, and Labels | 7 December 1973
8.1 Procedure Declarations : ‘ Page: 8-2

8.1 PROCEDURE DECLARATIONS

] <procedure |denhf|er> [<pcrcmeter Iisf>]

<pr6cedure declaration> ::= J:_

[<refurn type>]

1 proc [[<proc aHnbutes)]] <procedure ideni‘ifier>”
[<parcme.fer Iisf>] [<remrn fype>:l ; |

» <declarahon list><statement ||st> procend [<procedure identifier>]
<procedure identifier> ::= <identifier>

<function identifier> ::= <procedure identifier>

The first form is used to refer fo a procedure which has been compiled as part of a

different unit of compilation. The procedure must have ‘been declared “with the ‘xdcl

attribute, and with an equivalent parameter list and return type in that unit.

The second form declares the procedure identifier to be a procedure of the type
- specified by its parameter list and return type, and associates the identifier with

the constituent declaration list and statement list of the declaration.

The fype of the procedure is elaborated on entry to the block in which it is declared
and remains fixed rhroughouf the execution of that block, i.e. : all variable bounds,

lengths, or sizes are evaluated at that time.

- Outemmost level procedures, i.e., those whose declarations are not contained in
another procedure, must therefore have a fixed type determined at compile time.
Thus none of its parameters may be of a variable bound type. Note that this

restriction holds with respect to the xref form of declaration since by definition

it must refer to an outermost level procedure (Section 8.1.1, PROC ATTRIBUTES).

- SWL LANGUAGE SPECIFICATICN - 8. 1.1
: Proc Attributes

8.0 Procs, Coprocs, ‘and Labels ’ 7 December 1973
8.1 Procedure Declarations. ' Page: 8-3

8.1.1 PROC ATTRIBUTES

Proc attributes are essentially extra-linguistic features in that they have an effect on
the output produced by the compiler rather than an effect on the meaning of the

program,

<proc attributes> ::= <proc attribute> 4—<proe—etiribute>—}—
 <proc -attribute> ::= xdcl lrepdepl <segment—identifies>-

The atiribute xdcl may only be used on a procedure declared at the outermost level,
-i.e., nof contained in another procedure. It specifies that the procedure should be
made referenceable from other units of compilation which have a declaration for the

same procedure identifier with the xref attribute.

tiribute repdep specifies that the procedure is potentially representation de
and gives permi

tion dependent (see Chapter

The attribute "segment .identi
for the body g procedure should be allocated to the named segme

s code and data carrying the same segment identifier.

SWL LANGUAGE SPECIFICATION | 8.1.2
R o : . Parameter List

8.0 Procs, Coprocs, and Labels. o 7 December 1973
8.1 Procedure Declararions Page: 8-4

8.1.2 PARAMETER LIST

Variables that are referenced but not declared in ‘the body of a procedure follow normal
| scope rules, i.e.,‘ the references are bound to the declaration environment of the pro-
cedure. A parameter list is a set of variable declarations which provides a r_nechdniém
for the bindingvof references to the procedure call environment, This is accomplished
by providing the procedure with a set of values and variables — so called actual param-

eters — at the point of call,

<parameter list> ::= (<parameter segment> { ; <parameter segment> })
<parameter segment> ::= <method> <parameters> | <parameters> }
<method> ::= val | ref '

<parameters> ::= <parameter> { , <parameter> } -[—E-zead}-} <SWL type>
* <parameter> ::= <identifier> | - |

Two methods of passing parameters ‘are provided — call-by-value, designated by val,

- and call-by-reference, designated by ref,

* A call-by-value parameter results in the creation of a variable of the specified type

" local to the body of the procedure. The value of the corresponding actual parameter
is assigned to this variable at the time of the procedure call. If the formal ‘pcrcmefer
is an adaptable array, string, or record then the variable thus created is an array,

string, or record of the same size and shape as the corresponding actual parameter.

The type of a formal call-by-vdlué parameter may be any data type or adaptable

- type except for fhé so-called non-value types. The non-value types are: file,
stack, heap and sequence, arrays of non-value types, and records containing a field
of a non-value type. B

o o bound , -
N«.B. Release 1 does not support Variableﬁyyp681 adaptable typesa

.or any of the nQn-va'lue types.

SWL LANGUAGE SPECIFICATION T 8.1.3

“Functions and Return Types

8.0 ' Procs, Covprocs,‘ and Labels | 7 December 1973
8.1 Procedure Declarations i Page: 8-5

A call-by-reference parcmeter results in the formal parameter designating the corres-
pénding actual parameter throughout execution of the procedure. Assignments to the
formal parameter thus cause changes to the variable that was passed as the correspond=

‘ing actual pcrcmefer.

The type of a formal call-by-reference pqramefer may be any SWL type (mcludmg

-the non=value types, and the formal types — label, procedure and coprocess).

The procedure type is elaborated on entry to the block in which it is declared, and
remains fixed throughout the-execution of that block, i.e., ail variable bounds,
lengths, or sizes occurring in the type of the parameters are evaluated once on

entry to the block, and remain fixed for all calls on the procedure within that

block.

~8.1.3 FUNCTIONS AND RETURN TYPE -

A procedure may return a vqlué of ‘a specified type, in which case it is referred to as
a function. = A funcﬁoﬁ is activated by a function designator (see Factors in Chapfer» 9)
which is a component of an expression. iThe-' function is given a value by assigning to
its procedure idehﬁﬁer. The type of the value returned is speciffec!.by' the return

" type.

<Lreturn type> = <basic type>

8.1.3

SWL LANGUAGE SPECIFICAT.ION
7 December 1973

Procs, Coprocs, and Labels .
Page: 8-6

8.0
8.1 Procedure Declarations

Examples:
integer; ref x, y, z : integer);

proc GCD (Y_.Cll_ m, n:
var al, a2, bl, b2, ¢; d, q, r : integer; "m >0, n > 0"
"Greatest Common Divisor x of m and n,

Extended Euclid's Algorithm"
al :=0; a2 :=1; bl :=1; b2 :=0;

c:=m; d:=n;

whiled/=0_c_:|2 .
"a]*m+b]'*n=d, a2 *m+ b2 *n=c¢c,

ged(c, d) = ged(m, n)"

q:=c /d; 1= ¢ mod d;

a2 :=a2 -q*al; b2 :=b2 - q* bl;
c:i=d; d:==r;

r:=al; al :=a2; a2 =7

r:=bl; bl :=b2; b2 :=r

whilend;

X:=¢ y:=a2 z:=b2

"x =ged(m, n), y *m+ z * n = ged(m, n)"

procend

Functions and Return Types

" SWL LANGUAGE SPECIFICATION

8.0 Procs, Coprocs, and Labels ' 7 December 1973
8.2 Label Declarations ‘ - Page: 8-7

8.2 LABEL DECLARATIONS

Label declarations serve to define those labels of the block which may be assigned
to a pointer to label variable, passed as a parameter to a procedure or function,
or serve as the destination of a goto exit statement which crosses a block or

procedure boundary (see 10.3.8, GOTO STATEMENTS).’
<label declaration> ::= label <label> {, <label>}

© Llabel> ::= <identifier>

All labels in the list must also appear in the block labeling a statement which is

not contained within a nested block (see 10.0, STATEMENTS),

I

destination of a non=local goto st

those labels which are assigned, passed as a parameter

vired to be declared in a label

ion, but other labels of the block are permitted.

ISUL requires all labels to be declared.

SWL LANGUAGE SPECIFICATION:

E , 7 December 1973
9.0 Expressions o) | Page: 9-1

- 9.0 EXPRESSIONS

Expressions are constiucts denoting rules of computation for obtaining values of variables
and generating new values by the application of operators, Expressions consist of oper-

ands, i.e., variables and constants, operators, and functions,

The rules of composition specify operator precedence according to five classes of opera-
The not operator has

tors.) g-operaiers—have- the highest precedence, followed by—the—not-
-operator, followed by the so-called multiplying operators, then the so-called adding

operators, and finally, with the lowest precedence, the relational operators. Sequences
of operators of the same precedence are executed from leff to right and the left oper-
and of a dyadic operator is evaluated before the right operand. The rules of precedence

are reflected by the following syntax:

) . rl é . i . *l ; ; . } ; ; . ! . !! :
<factor> 1= 4§eﬂ;§e+mi-f-y>—+<varioble> | <constant>

| <definite value constructor> | A<variable> | A<label> %
| A<procedure identifier> | <function designa_tor> ™
| (Kexpression>) | <not operator> <factor>
<term> ;= <factor>] <term> <multiplying operator> <factor>
v<simp|e expression> 1:= <term> | <sign> <term>
| o <simple expression> <adding operator> <term> .
<expression> ::= <simple expression> | o
A | <simple expression> <relational operator> <simple expression>
Cvpetidentifiesns Cdentifion
e tabled sim dyariables.

<functiondesignator>::= <procedure reference> (<actual parameter>{,<actual parameter>})

~procedurereforence-{)—

'u Release 1 does not support Allabel) or A{procedure identifier)> -

SWL LANGUAGE SPECIFICATION

: : 7 December 1973
9.0 Expressions : Page: 9-2

<procedure reference> ::= <procedure identifier> | <pointer to procedufe)A- ™

~ <actual parameter> ::= <expression> | <procedure identifier> | <label> ™%

'<n,of operator> ::= not

<multiplying operator> ::= *.1 / | miod | and
<sign> = + | =

<adding operator> ::$_+ I = lorl xor

<relational operator> u=< 1 <= 1> >1|=1/=1in
Examples:
G.‘E_alc . _..I"_l .
creal s+ basiovar
Factors: ' X
15 ‘
(x +y +2z)
flx +y)
$colorset [red; c, green]
ot p .
.na [i, i3
- Terms: o x*y
i/ 3
‘pandq.

(x <=y) and (y < z)

L] Rglease 1 does not support <(pointer to procedure? .

_’NN Release 1 does not support. procedure or label parameters.

SWL LANGUAGE SPECIFICATION

9.0 Expressions 7 D.ecember 1973
9.1 Evaluation of Factors Page: - 9-3

9.1 EVALUATION OF FACTORS

‘Il l) ° E N . . ‘ . ‘ 3

The value of a variable, as a factor, is the value last assigned to it as possibly

modified by subsequent assignments to its components,

The value of an unsigned number is the value of fype integer or real dencted by it in

the specified radix system.

String constants consisting of a single character denote the value of type char of the

character between the quote marks,

 String -constants of n (n > 1) characters denote the string (n) value consisting of the

characters between the quote marks,
The constant nil denotes ‘a null pointer value of any pointer type.

A constant identifier is replcced by the constant it denotes, If this in trun is a
constant identifier the process is repeated until a constant of one of the above

forms results, The value is then obtained as above.

‘The value of a definite value constructor is the value obtained from the values of

its constifuent expressions of type specified by its type identifier.

The value of an up-cr}ow followed by a variable of type T is the pointer value of

type AT that-designates that variable,

SWL LANGUAGE SPECIFICAT!ON :

o : : 7 December 1973
9.0 Expressions : Page: 9-4

Simple expressiéns: x +y
| =X . .
huel or hue2
ST

~ hue - $colorset [red, green]

Ex‘_pressi'ons: x =1
| p<=2 |
(i<i)=(<k)

c g_ huel

SWL LANGUAGE SPEClFICATION

9.0 Expressions ' ‘ , . 7 December 1973
9.1 Evaluation of Factors S ~ Page: 9-5
The value of an up-arrow followed by a procedﬁre identifier of proc type p is the

pointer to procedure value of type AP that designates the current instance of declara-
~ tion of that procedure, | '

The value of an up-arrow followed by a label is the pointer to label value of type.

nlabel that designates the current instance of declaration c'>f the l_dbel (see 10.0,

STATEMENTS), ™

A function designator specifies the execution of a function. The actual parameters are
substituted for the corresponding formal parameters in fhe‘decvlaraﬁon of fheb_Furllc('ion.i
The body is then executed, The value of the function designator is éhe value last
assigned to the function identifier, The procedure reference must be to a procedure

with a refurn type. The meaning of, and restrictions on, the actual parameters is

the same as for the procedure call statement (see 10.3.1),

The value of a parenthesized expressidn is the value of the expression which is en-

closed by the pcrénfheées,

The type of the value of a factor obtained from a variable or function designator

whose type is o subrange of some scalar type is that scalar type.

™ Reléase 1 does not support pointer to procedure or pointer
to label values. -

SWL LANGUAGE SPECIFICATION 9.2.1
| Type Testing Operators

9,0 Expressions ' 7 December 1973
9.2 Operators o Page: 9-6

9.2 OPERATORS

Operators perform operations on a value or a pair of values to produce a new value.
- Most of the operators are defined only on basic types, though some are defined on
most types. The following sections define the range of applicability, as well as

result, of the defined operators,

o]

TYPE TESTING OPERATORS

to a union variable,
the type identifier on the type as the type of the value of

- the union variable on the

the valye~of the union variable; otherwise the value is false and the pointer variable

ssigned the value nil.

9.2.2 NOT OPERATOR

The not operator, not, applies to factors of type boolean and set. When applied to

type boolean the meaning is negation - i.e., not true = false and not false. = true,

—— —

When applied to a set the meaning is set complement with respect to the base type -

i.e., the set of all elements of the base type not contained in the specified set.

SWL LANGUAGE SPECIFICATION

2.0 Expréssions
9.2 Operators -

92.2.3 MULTIPLYING OPERATORS‘ A

- 9.2.3
Multiplying Operators

7 Decerhbe‘r 1973
Page: 9~7

The following table shows fhe multiplying operators, the types of their permnss:ble

operands, and the type of the result,

Operator Operation Operands Result
* multiplication real real
integer integer
/ integer division integer integer
for a, b, n positive integers
-a/b- = n where. n .is_the largest integer
such that b * n <=a
(-a)/b= (a)/(-b)== (a/b), a/b = (-a)/(-b)
real division real real
mod remainder- function integer integer
amod b=a - (a/b) * b
and logical 'and' boolean boolean
frue and false =false, true cnd true = true
false and false = false, false and true = false
set intersection set of type set of type
- the set consisting of elements common
to the two sets.

SWL LANGUAGE SPEClFlCATION 9.2.4
: Sign Operators

9.0 Expressions , 7 December 1973
9.2 Operators Page: 9-8

9.2.4 SIGN OPERATORS

The + operator can be applied to integer and real types only. It denotes the identity

operation and results in integer or real type respectively — i.e., a E + a,

The = operator can be applied to integer and real types only. It denotes sign

inversion — i.e., a =8 - a.

9.2.5 ADDING OPERATORS

The following table shows the adding operators, the types of their pemissible

~ operands, and the type of the result,

SWL LANGUAGE SPECIFICATION

9.0 Expressions

9.2.5
Adding Operators

7 December 1973

9.2 Operators Page: 9-9
Operator Operation Operands Result
+ addition iﬁfeger integer
real real .
- subfraction integer integer
rea real
boolean difference boolean boolean
true - true = false, true - false = true
“false - true = false, false - false = false
set difference set of type | set of type
— the set consisting of elements of the ‘
left operand that are not also elements
of the right operand.
or logical 'or' - _ boolean boolean
true or true = frue, true or’ false .= true - S
false or true = true, false or false = false. .
set union - K ISR B _s:'c_s_f-';cf’fyp.e' set of type
- the set consisting of all elements of ‘ :
both sets.
xor exclusive ‘or! boolean . boolean
true xor true = false '
true xor false = true
false xor true = frue
" false xor false = false
symmetric difference _ set of type | set of type
- the set of elements contained in either :
set but not both sets

SWL LANGUAGE SPECIFICATION 92.2,6

Relational Operators

9.0 Expressions : 7 December 1973
9.2 Operators Page: 9-10

9.2.6 RELATIONAL OPERATORS

Relational operators are the primary means of testing values in SWL. They return the
boolean value true if the specified relation holds between the operands, and the value

false otherwise,

9.2,6,1 Comparison of Scalars, Reals, and Sfrings.

All six comparison operators < (less than), <= (less than or equal to), > (greater than),
>= (greater than or equal to), = (equal to) and /= (not equal to) are defined between
operands of the same scalar type, operands of type real, and operands of type string or

~stringand “char,

For operands of type integer or real they have their usual meaning.

For operands of any ordinal type T, a = b if and only if a and b are the same value;

a < b if and only if a precedes b in the ordered list of values defining T.

For operands of type string (n) or string (1) and char, comparison is defined in the .

fol lbwing way:

If one of the operands is of type char it is converted to the string (1) value consisting

of that character; otherwise the strings must be of the same length.

‘Let n be the length of the resulting string values a and b (n >= 1), and cp be any

of the six comparison operators, then:

SWL LANGUAGE SPECIFICATION 9.2.6

Relational Operators

9.0 Expressions 7 December 1973
9.2 Operators Page: 9-11

}°SEblff» a (1)335(1)‘
| Cor a (i) =b (i) forall i (1<=<k)

and a (k) op b (k) (1 <k <=h)

9.2,6.2 Relations Involving Sets

The relation a in S is true if the scalar value a is a member of the set value S. The

base type of the set must be the same as, or a subrange of, the type of the scalar.

The' set operations = (identical to), /= (different from), <= (is included in), and

>= (includes) are defined between two set values of the same base type.

"~ S1 =52 is true if all members of S1 are contained in 52, and all rﬁembgré
of $2 are contained in S1. | _ |
S1 /= S2 is true when S1 = S2 is false,
S1 <= 52 is true if all members of S1 are also members of S2.

S1 >= S2 is true if all members of $2 are also members of S1.

9.2.6.3 Relations Involving Other Types

Certain types in the language cannot be compared. These are stacks, heaps, sequences,
unions, variant records, arrays of non-comparable component types, and records con-
taining a field of a non-comparable type. The remaining types (including pointers

to non-comparable types) are comparable for equality (=) and inequality (/=).

- SWL LANGUAGE SPECIFICATION 9,26

Relational Operators

9.0 Expre§sibns ’ 7 December 1973
9.2 Operators o " Page: 9-12

Two arrays are equal if their types are the same (i.e., subscript bounds and component

types are identical) and elements with corresponding subscript values are equal,

Two records are equal if they are of the same type and their corresponding fields

are equal,

Two pointers to procedure are equal if they designate the same instance of declaration

of a procedure, ™

Two pointers to label are equal if they designate the same instance of definifion

of o label, ™

Pointers of other types are equal if they designate the some variable. For adaptable
pointers this means that their instantaneous type (i.e., including bounds or lengths)

must be the same as the pointer they are being compared with, s

~ The following table shows the relational operators, the types intheir permissible

operands, and the type of the result,

¥ Release 1 does not support pointers to procedure or pointers
to label. ' '

uM Release 1 does not support adaptable .types-

SWL LANGUAGE SPECIFICATION

9.0 Expressions

9.2 Operators

9.2,6

Relational ‘Operators

7 December 1973
Page: 9-13

Right Operand

| ‘Result

not equal to

type T

Operator Operation Left Operand
< ~ less than any scalar type T T boolean
<= - less than or equal to | redl real boolean
> - greater than string (n) string (n) boolean
>= - greater than equal to | string (1) char " | boolean -
= - equal to char string (1) | boolean
/= - not equal to -
in set membership test any scalar type T set of T' boolean
‘ where T' is T
or a subrange
of T
= - identity set of T set of T “boolean
= - different where T is any '
= - is contained in scalar or subrange
>= - contains type
= - equal to any comparable T boolean

WL LANGUAGE SPECIFICATION

: o 7 December 1973
10.0 Statements . SR Page: 10-1

10.0 STATEMENTS. | o

Statements denote algorithmic actions, and are said to be executable.” A statement
list denotes an ordered sequence of such actions, A statement is separated from its
successor statement by a semicolon. The successor to the last statement of a state-
ment list.is determined by the structured statement or procedure of which it forms a

-part.

A statement may be labelled by precedipg it by an identifier followed by a colon.
This allows the statement to be explicitly referred to by other sfa.i'emenfs (e.g., goto,
exit, cycle). Such a labelling of a statement constitutes the declaration of the
identifier as a label, and hence the identifier must differ from all other identifiers-

declared in fHe same block, .

lf an identifier labels a sfcfemenf- of the constituent statement list of a procedure
declaration (see Section 8.0) or a beg"in statement (see Section 10.2.1), then its
scope is that procedure declaration or begin statement. If it labels a statement
of one of the constituent statement lists of other structured statements (see section
10.2), then its scope is that statement list. Thus it is impossible to refer to a
label contained within a procedure declaration or structured statement from outside
that declaration or statement, or from other statement lists of the same structured

_statement, ™

A label may optionally follow a structured statement other than the repeat state-
ment, in which case is must be identical to one of the labels labelling that statement.

This is for checking purposes only, and does not affect the meaning of the program.

% This paragraph in the SUL specification {7 Dec. 73} is
incorrect and must be replaced.

SWL LANGUAGE SPECIFICATION
R . . | o , 7 December 1973
10,0 Statements : Page: 10-2

Sstatement list> 1= <statement> {;<sfofement>}

<statement> ::= <unlabelled statement> | <label> : -Q#é#emen&{uhlabelled
i statement?

<unlabelled std’rement> ..= <assignment statement> -
| | <stroctured statement> [<lcbel>]
| <control statement>

- | <storage management statement> -

| <input-output statement>

<label> ::= <idenﬂf{er>
ExamEle:

'che‘ck__rcnge: if val < 0 then tagfld := 0
orif val >.bound then tagfld := bound

else tagfld := val

ifend check range

SWL LANGUAGE SPECIFICATION

10.0 Statements : ' ‘ 7 December 1973
10,1 Assignment Statements Page: 10-3

10.1 ASSIGNMENT STATEMENTS

The assignment statement is used to replace the current valie of a varicble by a new
value derived from an expression,- or to define the value returned by a function

designator,

<assignment statement> :1:= <variable> := <expr'eSSion>

| <function identifier> := <expression>

The left part of the assignment operator (:=) is evaluated to obtain a reference to some
variable, The expression on the right is evaluated to obtain a value. The value of the

referenced variable is replaced by the value of the expression.

The variable on the left may not be of type file, sequence, stack or heap, -nor may

it be an array of such, nor a record containing a field of ‘those types.

The variable on the left and the expression on the right must be of identical types

except as noted below:

1. " The type of the variable may be a subrange of the fyperf the
expression, If the value of the expression is not a value of the

subrange the program is in error.

variable is a union variable, then the value of the

may be any one o from which filon type was united,

In this case, the type expression s W its value is

SWL LANGUAGE SPECIFICATION -

10,0 Statements ‘ ‘ ‘ 7 December 1973
10.1 Assignment Statements . » , Page: - 10-4

3. If the left part is a string or substring designator of length 1, then
the expression may be a char \)clue, and if the left part is of type -

S——

char then the expression may be a string value of length 1.

L]

4, If the left part is a variable bound array then the expression must be
an arfoy with the same current values and types of subscript bounds,

packing aftribute, and component type. ™

5. If the left part .is an adaptable pointer to type, the expression must

be o pointer to one of the types to which the pointer can adapt, ™

Note that generally a pointer value has a finite lifetime (see Section 5) different
from that of the pointer variable. Procedures, labels, and automatic variables cease
" fo exist on exit from the block in which they were decl_aréd. Allocated variables
cease to exist Whenfhey .qre freed or popped.' Attempts to reference them via a

designator beyond their lifetime is a programming error and could lead to disastrous

results.

Examples:
=it | - ptrl :=nai] myunion := true
alil=1 a:=b[i] ' myunion := x/15.,0
ptrl := ptr2 a[i]= b[i,i] ' errorbranch :=Alabel1
buffer (i,20) = "ERROR IN DECLARAT!ON" sfrp{-r ::/\buffer(i)-

Release 1 does not suppoht variable bound or adaptable types.

SWL LANGUAGE SPECIFICATION £10.2.1

Begin Statements

10.0 Statements 3 7 December 1973 .
10.2 Structured Statements Page: 10-5

. \
10.2 STRUCTURED STATEMENTS

Structured statements are constructs composed from statements lists. They provide for
storage allocation and scope control,: selective execution, or repetitive execution of

their constituent statement lists.

<structured statement> 1:= <begin statement> ™ . ' |
| <if statement> | <loop statement>
| <while statement> | <repeat statement>

| <for statement> | <case statement>

I <variant case sfctemenf>.-|—4een$ofﬁﬁ+y—cese—sfd+cménf->— ' ‘
10.2.1 BEGIN STATEMENTS ™ | o

Begin sfotemenlﬁ are blocks, and constitute the scope of their constituent declarations.
On entry to the begin statement all declarations dre evaluated, and storage allocated
for automatic variables. The statement list is then executed. On exit, either through
- completing execution of the last statement of the statement list or through an explicit
transfer of control, all idénﬁfie_rs declared within the begin statement become inacces-

sible, and the values of automatic variables become undefined.,

The successor of the last statement of the statement list of a begin statement is the

successor of the begin statement.

. <begin statement> ::= begin <declaration list> <statement list> end
Example:
begin var temp:integer; temp :=1i, i := j; | := temp end

u Release 1 does not support the begin statement.

SWL LANGUAGE SPECIFICATION 10,22
: ' ' ' ' If Statements

|]b.O~‘-Sfcfem‘enfs h : } 7 December 1973
10.2 Structured Statements - i Page: 10-6

10.2.2 IF STATEMENTS

. The if sfcfemenf provides for the execuhon of one of a set of statement lists depend-
"lng on the values of Boolean expressions, The Boolean expressions following the if
or orif symbols are evaluated m order from left to right until one is found whose

value is true. The subsequem‘ statement list is then execufed

If all Boolean expressions are false then either no statements or the statement list

following the else symbol is executed.

The successor to the last statement of a constituent siatement lisf‘of-. an if statement is

the successor of the if statement.

- <if statement> ;= <alternative pari s> ifend

| <alternative parts> else <statement hst> ifend

<alternative parts> = if <exp1essnon> then <statement list>

{orlf <expression> fhen <statement hst>}

Examples:

_._ifx<y~f.henx:=y ifend
ifx<=5thenz:=y+ 1, y:=y+5
orif x > 30 then z ==y * y; y := z

‘g_r_i_f_‘x=]5 then z :=y * z

elsez =z %z, y:=2*2z+15

m——

ifend

SWL LANGUAGE SPECIFICATION 10.2.4

While qufemeﬁfs
10.0 - Sfotemé‘nfs

7 December 1973
- 10,2 Structured Statements Page: 10-8

. Exomglesﬁ .
~ while ol /= xdoi:=

= i + 1 whilend
"bwhile i>0do

_i_fqdd (1) fvhen z = z * x ifend;
i=i/2
x = x*x

‘ whvilend .

10.2,5 REPEAT STATEMENTS

A repeat statement controls repetitive execution of its constituent statement list.

<repeat statement> ::=

repeat <statement list> until <expression>

The expression controlling repetition must be of type Boolean. The statement list

between the symbols repeat and until isrepéotedly (and at least once) executed
-until the expression becomes true. The repeat statement

repeat S until e

is equivalent to-

begin S; _|f e then else repeat S until e ifend end

The successor of the last statement of the constituent statement list of a repeat state-
. ment is the expression following until.

SWL LANGUAGE SPECIFICATION 1025

Repeat Statements

10.0 Statements _ v 7 December 1973

10.2 Structured Statements ' Page: 10-9
~Example:

repeat k := i mod i;

i=
i=k
until { :== 0

1026 FOR STATEMENTS

The for statement indicates that its constituent statement list is to be repeatedly exe-
cuted while a progression of values is assigned to a variable which is called the

control variable of the for statement.

‘<for statement> : For <confro| variable> := <for list> do <stafemenf list> forend

- <Lfor list> = <m|hal value> to <final vclue> r <{nerement>

I <initial value> downto <f1nal vclue> W

<control varioble> ::= <variable>

<initial value> 1:= <expression>
<final value> ::= <expression>
- < fncrementr—u= ‘GXPFGSS.1992

‘The control variable, initial value, IMimal vc:lue-«.>.nel—|-a%4—emePf4’—9r—el-eer-eﬁ%rﬁ-f~ must all be
of the some scalar type or subrcmges of the same type. -Ih-e—e.eat-x-e-L—#a;—pa-bl—e—may—net—be—

-be-t-ype-mtege;—ef—ssbr-aﬁge—the;eef-. 'ISUL requires the control var-'lab'le to

be s1mp1e and either local or global.

'SWL LANGUAGE SPECIFICATION 1026

For Statements

10.0 Statements . 7 December 1973
10.2 Structured Statements’ ' Page: 10-10

The sequence of values assigned to the control variable for which the ‘'statement list
is executed, is determined solely by the initial vclueandfinal value, -end—inecrement-
-or—decrement, Assig‘nmen’r' to the control variable on a given iteration will cause
" its value to be changed for the remainder of that iferoﬁén, but its value will be

reset fo the next value of the ;sequence prior. to the next iteration.

The initial vcluemdﬁnoll value, -and-incremeni—or-decrement are evaluated once on
entry to the for statement, -as is the name of the control variable. Thus, subsequent -
~ assignments to components of these expressions have no effect on the sequencing of

the statement.

If the initial value is greater than the final value in the "to" form, or if the initial -
- value ‘is less than the final value 'in ‘the "downtc" form, then nc assignment is made

to the confrol variable and the statement list is not executed.

If no assignment is made to the control variable by the statement list, and the state-

ment is exited normally, then the value of the control variable is the final value.
A for. statement of the form

forw := i ton do'S forend

is equivalent to

SWL LANGUAGE SPECIFICATION 10,2.6

For Statements

10.0 ‘Sr_afeme.n'fs o o | 7 December 1973
10,2 Structured Statements , - ~ Page: 10-11

l_l_a_e_g_;jp_ ‘_/_ci_rconrrol : ATYPE (w), temp, limit : TYPE (w)

control := AW; ‘temp - :=i; limit :=,ﬁ;

if temp <= limit then '

__w_h_i_l_g femio < limit do control n:= temp, S; temp :=#succ(temp) whilend;
| control A:= temp; | ' .

S;

ifend

end

where control, temp and limit are identifiers not appearing in the statement list S, and

TYPE is a function returning the type of its argument (not available in SWL),
A for stétement of the form

for w := i downto n do S ‘Forend ,

is equivalent to

begin var control : /\TYPE(w), temp, limit : TYPE(w);
~control := Aw; temp := i, limit := n; ° ‘

| if temp >= limit then _

. while temp > limit do COnfrol)\ := temp; S; temp =#pred(temp) whilénd;
control A := temp; ' ' : L i .
S; ‘
ifend

- end

——

SWL LANGUAGE SPECIFICATION 10,246

For Statements

10.0 Statements o - - 7 December 1973
10.2 Structured Statements _ - Page: 10-12

A _for statement of the form

for w:= to n by inc'_c_ig S Foreﬁd

is equivalent to

‘begin varxcontrol :-A TYPE(w), limit, step, temp £ integer;

control\¢= Aw; temp := i; limit := n; step”:= inc;

 while temp<= limit _cl_o_

control) := temp; S; temp 4= temp + step

whilend

end
~ And a for statement of the form
for w:=1i downto n decr do S forgnd

is equivalent to

 begin corftrol : A TYPE(w), limit, step, temp : Npteger;

control :=Aw; temp := i; vlimif = n; step := decr;
while temp >= limit do ' N\
control A := temp; S; temp := temp - step

whilend

end

SWL LANGUAGE SPECIFICATION . 10.2,7
- : o Case Statements

-~ 10.0 Statements ' 7 December 1973
©10.2 Structured Statements Page: 10-13

" The successor to the last statement of the constituent statement list of a for statement

is the calculation of the next value of the temporary control variable,

" Examples:

D

~for i:=2 to 100 do if a[i1> max then max := ali] ifend forend

for i :=1to n do

for | :=n downto 1 do

x :=0;
.fci[k:=]_fgn_d_<_>_x:=x+dfi, k1 * bk, jJ forend;
cli, jJ:=x

forend '

forend

~for ¢ := red to blue do g(c) forend

10.2,7 CASE STATEMENTS

A case statement selects one of its component statement lists for execution depending on

the value of an expression.

<case statement> ::= case <selector> _c_>_{:'<casgas> [else’(sfafemenf -lisf>] casend

<selector> ::= <expression>
<cases> ::= <a case> {; <a case>} ,
<a case> 1= = <selection spec> |, <selection spec>} = <statement list>

<selection spec> ::= <constant scalar expression> [.. <constant scalar vexpression>]

 SWL LANGUAGE SPECIFICATION . 10.2.7

Case Statements

10.0 Statements . | ‘ = o 7 December 1973
10.2 Stru‘.ctured Statements , Page: 10-14

The case statement selects for execution that statement list ‘(if any) which has a
selection specification which includes the value of the selector, If no selection speci-
fication includes the value of the selector the statement list following else is selected

when the else option is employed; otherwise the program is in error.

The selector and all selection specifications must be of the same scalar type or sub-
ranges of the same type. No two selection specifications may include the same

“values (i.e., selection must be unique). -

The successor of the last statement of a selected statement list is the successor of the

case statement.
Examples:

case operator of

=plus= x:=x+y;
=minus='x:=x4-'y;
= times = x:=x *y
casend‘
case-i_g_'f
=1= x = sin(x);
=2= X = cos(x);‘{
=3 = | x 1= exp(x);
=4 = x := In(x)
else X = - x

———

casend

'SWL LANGUAGE SPECIFICATION 10.2.8

Variant Case Statements

10,0 Statements . 7 December 1973
10.2 Structured Statements . Page: 10-15

10.2.8 VARIANT CASE STATEMENTS

A variant case statement is used to allow access to the variant fields of a record

according to the value of its tagfield.

<variant case statement> ::= case tag <tag selector> of <cases>

else <statement Iisf>] casen

(tag selector> ::= <record variable> « <tagfield>
<record variable> ::= <variable> - |
<tagfield> ::= <‘idem‘iﬁer> ‘

. <cases> 1= <a case> {; <c”c<':se>.§ |
<a case> 1= = <selection spec>{,<selection spec>} = <statement list>

<selection -spec> ::= <constant scalar expression> [‘,, <constant scola;"-é'xpression>]

Each selection specification list must idenﬁfy a set of values which is identical to, or
~ a subset of, the set of values which select a unique variant associated with the tag
field in the corresponding record definition. The field identifiers of that variant are

available as field selectors in the associated statement list,

If the value of the tagfield differs from the values of “all selection specifications the
statement list following else is selected and none of the field identifiers of the variants

are made available as field selectors; if else was not specified the program is in error,

The successor of the selected statement list is the successor of the variant case statement.

'SWL LANGUAGE SPECIFICATION = 10,28

Variant Case Statements

10.0 Statements . 7 December 1973

10.2 Structured Statements - Page: 10-16
Examples:

» _txg_e_"lexfype = (basic, inconst, realconst, stringconst, idéntifier),
symbol = record . | |
case lex : lextype of
=basic = name : symbolid, class : ope"rc:fion
= inconst = value : ihfeger,'opf.imiz : boolean
= realconst = value real
= stringconst = length : 1., 255, stringbuf : Astring (*)
= identifier = identno : integer, decl :Asynibol~entry

casend

recend;

var cursym : symbol, sign : boolean := false;

L1 : insymbol;
L2 : cose tag cursym- lex of

=basic = if cursym.symbolid = minus then sign := not sign; goto L1

orif 'cursym- symbolid = plus then goto L1
else error ('missing operand')
ifend;

= intconst = cursym- optimiz := (cursym. value < halfword) or pwr2 (cursym. value);

if sign then sign := false; cursym. value := - cursym. Value ifend;
= realconst = if sign _f_bg_rl sigﬁ := false; cursym. value := - éursym- value ifend;
.=sfri'ngconsf,= error ‘('sfring constant where arithmetic type expected');
= identifier = cursyrﬁ- decl := symbolsearch (cursym. identno);
if cursym. decla- typ /= constdecl then variable (curs}m'- decl)
else cursym := cursym. declA.valuen; goto L2 |

ifend

casend

SWL LANGUAGE SPECIFICATION 10.2.9

Conformity Case Statements
10.0 Statements

7 December 1973
10,2 Structured Statements

Page: 10-17
18,2.9 CONFORMITY CASE STATEMENTS

A confo

ity case statement selects for execution one of its component statement list
depending

the type of the value last assigned to a union variable.

Lconformit\ case statement> ::=

case union

nion variable> of <conformity cases> [else <stajément |isf>] ‘casend
<union variable> ¢ <variable>

<conformity cases> ::

=\a conformity case> {;<a conformify case>|
<a conformity case> ::= ent list>
<fype' specification> .::=

<pointer variable> ::=.

ment (i.e., type selection must be upique). If one of

to that value and the associgréd statement list will be executed, Within the stafement

statement list

lowing else is executed; if the else part is omitted the progrgh is in
error.

'l;yftci;essor of the selected statement list is the successor of the conformity case
_sfatement, - |

SWL LANGUAGE SPECIFICATION | 10,29
: Conformity Case Statements

16,0 Statements 7 December 1973
10,2 Structured Statements Page: 10-18

Eroc. rmat (ref u + union (integer, boolean), S : string(*)

)i

~ var pint :ANqgteger, pbool :A boolean;

case union u of

= pint = stringrep (pi

- = pbool = if pbool A then := ‘true !

'False_'
iF'en‘

casend -

SWL LANGUAGE SPECIFICATION 10.3.1

Procedure Call Statement

10,0 Statements 7 December 1973
10.3 Control Statements . Page: 10-19

10.3 CONTROL STATEMENTS

Control statements cause the creation or destruction of execution environments, the
transfer of control to a different execution environment or to a different statement in

the same environment, or both,

<control statement> ::= - <procedure call statement>
I <resume—statement> | <cycle statement>
| <exit statement> | <return statement>

I <goto statement> | <empty statement>
10.3.1 PROCEDURE CALL STATEMENT

A procedufe call statement causes the creation of an environment for the execution of

the specified procedure and transfers control to that procedure.

<proced§re call statement> ::= <procedure refercnce> <actual parameter list>
<procedure reference> ::= <procedure identifier> | <pointer to procedure>A
<actual parameter list> ::= (Kactual parameter> {,<actual parameter>})

I <empty> '
<actual parameter> ::= <expression> | <procedure identifier> ol

| <label>

The actual parameter list must be compatible with the formal parameter list of the pré-
cedure., An actual parameter corresponds to the formal parameter which occupies the

same ordinal position in the formul parameter list.

u Release 1 does not support pointer to procedure. -

um Release 1 does not support procedure or label parameters.

SWL LANGUAGE SPECIFICATION - C 1030
S Procedure Call Statement

10.0 - Statements | o S 7 Deéember 1973
10.3 Control Statements Page: 10-20

i
The corresponding actual and formal parameters must be of the same type except for

the following:

1. If the formal parameter is ccll-—by—vclue., the actual parameter-may be
any expression which could be assigned to a variable of the fype of

the formal, (See 10.1 ASSIGNMENT STATEMENTS)

2, If the formal parameter is an adaptable string, the actual parameter
may be a string variable or substring designator of any length. If
the formal were coll-by—valué then the actual may also be a string

. value, ™

3. If the formal parameter is an adaptable array, the actual .porcmefer
may be any array variable with the sume packing attribute, number
of dimensions, types of subscripts, and component type. If the |
formal were call-by-value then the actual may also be an array

value with the same restrictions, ™

4, If the formal parameter is an adaptable record, the actual parameter
‘may be any record whose type is the same except for the shifty
field. The shifty field must be an adaptable string, array, or record

and the conditions under 2, 3, or 4 hold with respect to it, ™

5. If the formal parameter is a call-by-ref procedure, then the actual
parameter must be a procedure reference to a procedure with the

same ordered list of parameter types and return type,
6. If the formal parameter is a call-by-ref label, then the actual

-parameter must be a label reference, ™%

% Release 1 does not support adaptable types.

ux Release 1 does not support procedure or label paraheters.

" SWL LANGUAGE SPECIFICATION 1031

Procedure Call Statement

10.0 Statements - | 7 December 1973
10,3 Control Statements . Page: 10-21

A call-by-value parameter causes the creation of a variable local to the procedure
of the type of the formal parameter, and assigns the value of the actual parameter
to it. . If the formal is an adaptable array, string or record, the local variable is

a fixed bound array, string or record of the same size and shape as the actual,

A call-by-ref parameter causes the formal parameter to designate the actual parameter
throughout execution of the procedure. Assignments o the formal parameter thus cause
changes to the corresponding actual parameter. An actual parameter corresponding to

a call-by-ref formal parameter may never be a component of a packed array or record,
Examples:

-insymbol
transpose (a, n, m)

sum (fct, 0, 1000, x)

2 CREATE STATEMENT

The create state t causes the creation of a coprocess from the speci procedure,

and establishes the envitoament (including parameter list) for execution of that
procedure as a coprocess. The 1 i Coprocess is assigned to the

specified pointer to coproc, i the create statement, a resume state-

rocess is still active is an error,

SWL LANGUAGE SPECIFICATIQN 10.3.2

Create Statement
"~ 10.0 Statements

‘ : - 7 December 1973

10.3 Control Statements A ' Page: 10-22
<create statement> ::= create (<pointer to coproc>, <procedure ‘call statement>)
<poin’fer to coproc> ::= <variable> .

Exomple:

_create (n.fsymbol, macro_éxpcnder’(source-ﬁle))
10.3.3 DESTROY STATBMENT

~ The vdesfroy‘ statement causes Yhe destruction of the coprocess specified by the pointer to
coproc and sets the pointer to nN

Storage allocated tg”the coprocess is returned, and
subsequent attempts to resume the cOprocess or access variables local to it are in error.

A destroy stotement designating the cop ocess inAhich it occurs is an error.,

<destroy statement> ::= destroy (<ppfnder to coproc> {,<poi'nfer to coproc)})
<pointer to coproc> ::= <variable> ’ o

Example:
- destroy (nextsymbo

10,3.4 RESUME STATEMENT

The resume sfatement causes execution of the current coprocess. to be susgended, and
execution.to continue at the successor of the last executed resume statemdniof the

specified coprocess. If the specified coprocess had just been created, executio
j€sumes at its constituent declaration list,

SWL LANGUAGE SPECIFICATION -~ 10.3.4

Resume Statement

10.0 Statements) 7 December 1973 -
10.3 * Control" Statements - Page: 10-23

\

1

sume statement designating a destroyed coprocess or the coprocess in which i

.Exdmgles: .

resume (user[i]A)

10.3.5 CYCLE STATEMENT -

The cycle statement allows the conditional by-passing of the remainder of the stafe- °
ments of the constituent statement list of the designated repetitive statement, thus

cycling it to its next iteration (if any).

~ <Lcycle statement> ::='cyc|e [<Iqbel>] [when <expression>]

Thé label must ‘lob‘el a repetitive statement (for, repeat, while or loop smtémenf) which
statically encompdsses the cycle statement, i.e;, the cycle statement must be within the
scope of the label. 1f no label is specified then the continue statement must be a
squemenf of the constituent statement list of a repetitive sfc{temen;‘, and n‘ is that

repetitive statement that is cycled, |

SWL LANGUAGE SPECIFICATION N 10.3.5
o ' Cycle Statement

10.0 Statements o | ' 7 Décember 1973
10.3 Control Statements ~ Page: 10-24

The expfession following when must be a boolean expression. If the value of the |
- expression is true, or the when clause does not occur, then execution continues at -
the successor of the last statement of the constituent statement list of the designated
structured sfafemenf or procedure.‘l Otherwise, execﬁfion continues at the suécessor

of the cycle statement.

L]

Thus, the cycle statement has the effect of (potentially) re-executing the statement

list of a repetitive statement such as for, repeat, loop, or while,

. ExomEles:

‘_fg_!"i =1 ig.An do cycle when x < afi]; x := a[i] forend

cycle outerloop when sum <= eps

10.3.6 EXIT STATEMENT

‘The exit statement causes execution to continue af the successor of the designated
structured statement or procedure when the condition is true or non-existent, If
no label or procedure is specified then execution continues at the successor of the

immediately containing structured statement or procedure,

<exit statement>::= exit [<lqbel'or proc idenﬁfier)] [when <expression>]

<label or proc identifier> ::= <label> | <procedure identifier>

_ Example:

repeat exit when key =a[i]; i :=i+1until i>n

SWL LANGUAGE SPECIFICATION =~ 1037

Refurn Statement

ld.O " Statements . o 7 December 1973
10.3 Control Statements : ' Page: - 10-25

10.3.7 RETURN STATEMENT

The refurn statement causes. the current procedure fo return when the - expression is
true or non-existent; 'i.e., the successor of a refurn. statement is the successor ’of the
last statement of the constituent statement list of the procedure or function in which

- it is embedded.
Zreturn statement> ::= return [when <expression>]

Example:

return when next term < epsilon

- 10.3.8 GOTO STATEMENT

<goto statement> ::= goto [exit] <label reference>
<label reference> ::= <label> | <pointer to label>A ™

The goto statement names as lts successor the labelled statement desxgned by the label

or by the value of the pointer to label,

If the lobei reference is to a label outside the current block, then the form goto exit
must be used, and the label must have been declared in a label declaration in the

declaration list of its block; otherwise the form without e;ﬂ_f_.is used, M

* If the poinfer to label designates a statement in a procedure that has already been

«oeeurs; then the goto statement is in error. ™

% Release 1 does not support pointer to label.

mM ISUL requires all labels to be declared in a label declarations

'SWL LANGUAGE SPECIFICATION 10.3.8
‘ : S Goto Statement

10.0 Statements - : : 7 December 1973
- 10,3 Control Statements Page: 10-26
Examples:

. 'goto exit errexit

goto labelarray [symbol_number],\

- 10.3.9 EMPTY STATEMENT

An empty statement denotes no action and consists of no symbols.

. <empty statement> ::=

SWL LANGUAGE SFECIFICATION

10,0 Statements - _ ' 7 December 1973
10.4 Storage Management Statements . Page: 10-27

104 STORAGE MANAGEMENT STATEMENTS *

~ There are fhreeA sforcée types - stack, .seqiu_ence, and heap — defined in the language,
each with its own uniaue management and access characteristics. A variable of any
of these types represents a sfructure to which other variables may be added, referenced,.
and deleted under program control according to the discipline implied by the type of
the storage variable, Storage management statements are the means for effecting this

control,

<storage management statement> ::= <push statement> | <pop statement>
| <next statement> | <reset statement>

I <allocate statement> | <free statement>

ALLOCATION DESIGNATOR

An allocation designator specifies the type of the variable to be managed by the stor=
age management statements. It is either a pointer to tyep, in which case a variable
of that type is designated, or it is an adaptable pointer variable followed by a type
fixer which defines the adaptable bound, length or size, in which case it is a

variable of the fixed type that is designated.-

<ul'|ocaﬁon designator> ::= <pointer variable>
| <adaptable pointer to array> : _[_<bounds lisf>_1
i <adaptable poinfér to stack> : _L<expre;sion>l
| <adcpfdb|e pointer to record> : _[_<bounds_ list>l |
N <cdc1pfc1.b|e pointer fo string> : (<l‘engﬂ.1>) |
| <adaptable pointer to sequence> : <spcn>{,})
| <adaptable pointer to heap> : ({,}) . wm !

 = [<integer expression> EEE]‘<f)'Pe>

® Release 1 does not support stacks or s '
s equencess and t
supported is the universal heap. 9 v and the only heap

%4 Release 1 does not support adaptable types.

© SWL LANGUAGE SPECIFICATION 10.4.1
S ; Push Statement

10.0 Statements ' . | " 7 December 1973 ‘

10.4 Storage Management Statements Page: 10-28
Examples:

procvector : CO .. 107 _
garbage : (35 rep rinds,]5 rep pifs, grounds)

10.4.1 PUSH STATEMENT ™

" The push statement causes a new element to be added to the sp'ecifiéd stack. It is

accessible through the stack varicble followed by an up arrow.

<push statement> ::='push <stack variable>
- <stack variable> ::= <variable>

Examples:

push operator_stack
"new top element is

operator stack A"

10.4.2 POP STATEMENT ™

The pop statement causes the top element of the stack to be removed (i.e., last allo-
cated element). The previous element is now available through the stack variable

followed by an up arrow. If no elements remain in the stack, the stack variable

will have the value nil.

<pop statement> ::= pop <stack variable>

¥ Release 1l does not support stacks.

SWL LANGUAGE SPECIFICATION ~ 10,43
S ' ‘ ' ' Next‘Sfctemenf_

10.0 Sfcfemenfs R 7 December 1973

- 'lO 4 Storage Mcnogemenf Statements : v Page: 10-29
Examp!es:

pop .operdfor_sfcck

Se——

10.4.3 NEXT STATEMENT ™

The next statement sefs the allocation desngnofor to designate the current element of
‘l'he sequence, and causes the next element to become the current element. After a
reset or an allocation of a sequence the current element is the first element of the
sequence. Note that the ordered set of ‘variables comprising a sequence is detenmned '

algonfhmucally by the sequence of execution of next statements.

If the execution of a nexl statement would cause fhennew current element to lie out-

side the bounds of the sequence, then the allocation designator is set ot the volue nil.

<next statement> ::= next <allocation desngnator> in <sequence vorlable> _

<sequence variable> : = <variable>

next léngfh;_;:afr in ‘buf;

‘next string : tl .« length ptr (\] in buf
10.4.4 RESET STATEMENT »

The reset statement causes positioning in the sequénce. The current element becomes
either the first element of the sequence or the element specified by the allocation
designator. The use of an allocation designator which was not set by a next state-

ment for the same sequence is an error,

u Release 1 does not Support sequences.

SWL LANGUAGE SPECIFICATION o 10.4.5

Allocate Statement

10.0 Sf'cfemenfs | o 7 December 1973
10.4 Storage Management Statements ’ Page: 10-30

<reset statement> ::= reset <sequence variable> [f_o_ <allocation 'd,esignafor>}

Example:

reset buf to length pir

10,45 ALLOCATE STATEMENT

The allocate statemant causes the allocation of a variable of the specified type in the
specified heap ahd sets the allocation designator to designate that variable or to the
value nil if there is insufficient space for the allocation. If a heap variable is not

specified, the allocation takes place out of the universal (system defined) heap.™ ,

<allocate statement> ::= allocate <allocation designator> [:_rl <heap varicble>] . l
<heap variable> ::= <variable>

Examples:

allocate my-stack : C507]

- allocate sym ptr in symbol table

10.4.6 FREE STATEMENT

The free statement causes the deletion of the specified variable from a heap, thus
making its storage available for subsequent allocate statements. If the allocation
designator was not set as a result of a previous allocate statement for the same. heap

the effect is undefined.

¥ Release 1 supports the universal heap only.

SWL LANGUAGE SPECIFICATION 10.4.6

Free Statement

10.0 Sfafemehfs ‘ IR 7 December 1973
10.4 Storage Management Statements * Page: 10-31"

— —

<free statement> ::= free <allocation designator> [in <heap vcrioble>] M

Examples: -

free sym ptr in symbol table

free my stac k

Se—

W Release 1 supports the universal heap only.

SWL LANGUAGE SPECIFICATION ~10.5.1
‘ : S - Write Binary Statement

‘ :|'0.0‘ Statements) B o SO 4 Décémber 1973
10.5 Input-Output Statements o Page: 10-32

10.5 INPUT-OUTPUT STATEMENTS *

Two file types are accommodated: binary files which consist of a linear sequence of
SWL ‘variables, and text files which consist of a sequence of entities called |
lines, There is a system defined mapping between lines and string(n) which may

differ depending on the source or destination device for the line, Statements that
cause: ‘troﬁsmission from such a file are provided with an additional field to specify -

the number of characters in the internal representation of fhe_liné.

<input-output sta‘femenf} ::= . <write binary statement>
| <write line statement>
| <read binary statement>
| <read line statement>
| <set mode file statement>
1 <rewind statement>

| <write eof statement>

10.5.1 WRITE BINARY STATEMENT

A write binary statement causes the value of an expression to be transmitted to the

specified binary file.
| <wrife _binqry statement> ::= put (<filé variable>, <expfe§si§n>) |
‘Exampigz
mv(fnfermediate_text, symbol_string) o

x Release 1 does not support files or the SUL I/0 Statemehts‘.

SWL LANGUAGE SPECIFICATION — * 1052 |
' ‘ . ' Write Line Statement

10,0 Statements R B 7 December 1973
- 10.5 Input-Output Statements o , Page: 10-33

10.5.2 WRITE LINE STATEMENT

- The write line statement causes the transmission of a string value as a line to the

specified file,

<write line statement> ::= put (Kfile variable>, <string value>)

<string value> i:= <expression>
Examples:

put (listing, 'missing loopend symbol')

put (listing, line_buFFer) |
10.5.3 READ BINARY STATEMENT

The read binary statement causes the fransmission of a value from the file to a variable.
- If the sequence of types read is different from the sequence written, the result is un-
defined. An attempt to read beyond the end of information causes the built in func-

tion eof (<file variable>) to return true.
- <read binary statement> ::= get (<file variable>, <variable>)
Exdmple:

‘get (intermediate_text, symbol_string)

N.B. Release 1 does not support files or the SWL I/0 statements. |

SWL LANGUAGE SPECIFICATION 1054

Read Line Statement -

10,0 Statements . - - 7 December 1973
10,5 Input-Output Statements - - Page: 10-34°

10.5.4 READ LINE STATEMENT

The read line statement causes the next line to be transmitted from the file as a
string to the specified variable, The number of characters transmitted is stored in
the variable specified by the third parameter. An attempt to read beyond the last

line causes the built-in function eof (<file variable>) to. return the value true.

<read line statement> ::= get (<Fi|e>vcricb|e>, <string variable>, <no.read>)
<string variable> ::= <variable>

<no. read> ;= _<varic:ble>

The string variable must be a variable of type string (n), and no. read must be an
integer variable, 'If ‘the line transmits ‘as more than .n.characters it is truncated on -

~ the right before storing into the string variable.

ExamEIe:

get (source fiie, line buffer, line length)

10.5.5 SET MODE FILE STATEMENT

The set mode file statement sets the mode of the file to recd or write mode. A file
cannot be written if it is in read mode, and cannot be read in write mode. The .
file is initially in @ neutral mode and is set to read or write mode by the first get

or put statement on it.

<set mode file statement> ::= mode (Kfile variable>, <file mode>)

<file mode> ::= read | write

N.B. Release 1 does not support files or thé SWL I/0 statements. .

SWL LANGUAGE SPECIFICATION . 10.5.6
: ' ' S Rewind Statement

10.0 Statements fo ' . . 7 December 1973

10.5 Input-Qutput Sfctémenfs - Page: 10-35
‘ . } ‘
Example:

" mode (intermediate text, read) .

10.5.6 REWIND STATEMENT

The rewind statement repositions the file at its beginning and sets eof (<file variable>)

to false, It has no effect on the file mode.
<rewind statement> ::= rewind (<file vcrfable>)- |
Exdmple:

rewind (intermediate text). -

10.5.7 WRITE EOF STATEMENT

The write eof statement causes a file in write mode to record information such that
on a subsequent attempt fo read it beyond‘ the current posifion the built-in function |

eof (<file variable>) can return the value true.

<write eof statement> ::= weof (Kfile variable>)

ExamEle:

‘weof (intermediate_text)

N.B. Release 1 _does not support files or the SUL I/0 statements.

' SWL LANGUAGE SPECIFICATION C LT

Translate
11.0 Stcnda}d Proceciures and Functions ‘ - 7 December 1973
11.1 Standard Procedures . Page: 11-1

11.0 STANDARD PROCEDURES AND FUNCTIONS -

Certain standard procedures and functions have been defined for the SWL which have:
been included because of the assumed frequency of ‘their use or because Hﬁey would

be difficult or impossible to define in the language in a machineéindependeht way.

.

11,1 STANDARD PROCEDURES - S

Tke following standard procedures assign values of type string.

IR

nslate (s, t, d) - . e trans=

length.

The result is: d(i)=t($int(S(i))) for all elements |
of d. o

lvl. 1.2 #stringrep (val, substr,
width [,d,ecvimcls])

s the value, val, which i'ncy be of type

|, or boolean to a string representa~

represented by true or false, right justified an

blank filled.

SWL LANGUAGE SPECIFICATION 1.2.1

abs(x)
11.0 Standard Procedures and Funétions ' , | » 7 D‘ece_mber 1973
11,2 Standard Functions - . . ‘Page: 11-2

11.2 STANDARD FUNCTIONS

The following standqfd functions return values of the specif.ied type.’

H.>‘2. 1 #abs(x) B o computes the absolute value of x. The type of x

must either be real or integer, and the type of

the result is the type of x.

. returns the value Tif x>0,

the v ifx=0,"

or the value -1 if x < 0.

-x must .be integer or reat;=

the same type as x.

11.2.3 #succ(x) | , : , x is of any scalar or subrange type, and the

- result is the successor value of x (if it exists).

11.2.4 #pred(x) o : ~x is of any scalar or subrange type, and the

result is the predecessor value of x (if it exists).

11.2.5 $infeger(x) returns fhe ordinal number of fhe scalar value x.
x must be an ordinal type, _cln_c_:_g, or real; if x

is Ig_a_l_'then the value returned is an integer y of

~ the same sign as x such that c:bs(x)f] < aBs(y) | |

<= abs(x). | . '

SWL LANGUAGE SPECIFICATION

11.2.6

$real (x)
11,0 Sfand&rd Procedures and Functions ' - 7 December 1973
‘ Page: 11-3

11.2 Standqrd Functions

11.2.6 $real(x)
11.2.7 $char(x)

11.2.8 $srriqg(1,s[, fi11)

“11.2,9 #strlength(x)

11.2.10 #lowerbound (array, n)

11. 2. 11 #ypperbound (array, n)

\ B
returns a value of type real that approximates

the integer value x. Note that $integer($real(x)) '

does not necessarily equal x.

x must be an integer value 0 <= x <= 255, The

" value returned is the character whose ordinal

number is x.

returns a string value of length | obtained from

the siring s by
(a) truncating s on the right if length of s > I, or

(b) appending characters on the right if length
 of s<|. The characters appended are
blanks, or the character value of fill when

it is specified.

returns the length in terms of number of char-

acters of the string x. ™

returns the value of the n'th lower bound of the
array. The type is the index type of that dimen=

sion of the array. The left most subscript position

" is numbered 1, ™

returns the value of the n'th upper bound of the
array. The type is the index type of that dimen=
sion of the array, The left most subscript position

is numbered 1, ¥

¥ Release 1 does not support #strlengtha *lowerbounds or #upperboond.

SWL LANGUAGE SPECIFICATION ”.2.-12
‘ : o _ - feof (file)

i1.0 Sfdndé:rd.Proc-edureé and Functions , . 7 December 1973

11.2 Standard Functions _ Page: 11-4
”2 12 - #eof (file;) returns the value true if the end-of-file condi~

tion exists for the specified file. Returns false
 otherwise. ™

B

te which 16 o

2.14 trel (pointer [,storage]) produces a relative pointer value from a pointes

and storage variable. The relative pointe
of the same type as the pointer. The résult is
undefined if the pointer does no esigﬁcfe an
‘element of the storage varjafile. If the storage

variable is not supplied’the defauit heap is

11.2,15 #ptr (relative_pointer is used A0 convert a relative pointer to a pointer, -

[,sforage_-_vcricblé]) -~ apK{s required when using a relative pointer.

tive pointer.

Example:

. var pir : rel (myheap)
h : myheap,

X : integer;

x := tptr (rptr, h)A;

¥ Release 1 does not support #eof.

SWL LANGUAGE SPECIFICATION * ~ 1L.3.1

loc.
" 11.0. Standard Procedures and Functions - 7 December 1973
11.3 Representation Dependent - ~ Page: 11-5
3 REPRESENTATION DEPENDENT
11.3.1 #[So(argument) . returns a pointer fo the argument which can be
o directly ass.igned fo any poingef type. |

11.3.2 #size (ctfgumenf) A - returns the number ot cells required to contain

e same type as the argument.

an integer value n which is the offset of

11.3.3 foffset(u,base) r
' the variabley in number of cells from an integral

~ multiple of base |l boundary. 0« n<base.

11.3.4

assigns the offset and base ahgnment required

for a variable of the same type as

argument, to ifs second and third argum

~ respectively.

