
SWL,:lAN-GUAGE SPECIFICATION
" , ...' .. ' .

20 0 Languag.e "bverview:

2.0 . LAN GUA GE ,OVERVI EW

7' December 1973
Pagc: 2-1

"

A SWL . program consists:·of statements, which define actions involving progr~mrtia,tic '

elements", anddeciarClfions" whrch' d~finesuch elements.; .. ,' . "'. ,," ;. ..

The definable: elememts.include variables, procedures, labels and file~~ dll-,having f'he I.
characteristics that ,are conventionally associated wfth their nam~. D~clcirdtforiS of

in'stances of f·hese:.el~merits.are spelJed:out in terms of an ide.ntifi~r for the·element

and 'a ~ de:s~ript,ionj which.defines the .operatioQ,aLaspeCtsofJ~eeleme~t a~d, in

many cases, '.indiCates 'areferentialnota!ion.In the case of a ;V~c:iri~.blc,d.eclal:~tion"

the .typedefi des 'the' set o~' val ues that may be assumed by the vpdqbl e... .Types·' may

be airectly descri,be~',ln:suc:hdedarations, or they ,may b.e.ref~~¢,n.:~ed 'b{a 'type ',:

identifier, which in turn must· be defined' by an explicit ,type,d~Ct~ration. A small
.', ,

set of pre-defined types are provided, together with notations for defining new.types.

,in terms of exi,stingoneso:,"

In .general ~ 'anelement may not enter into operations outside; the dO~lOin indicai'ed by
. ',' .. :- . .

its -type;. and mostcJyo~Hc operations are restrict,edtv elements of equivalent types

, ,(e.go, an' integer may, not be added toa real number) •.. Since· the requirements for

type equivalence are severe., th~~e.o.perational consfTaints are strict. Departures' from

them must beexplicttly spelled"'o~tin terms of conversion fynctions.

The basic~ include ·th~pre-defined integer I char,boolean; and.,.rea'1 typ·es;aIJ

havi'ng their' conventional' connotation~, valu~ sets, and operational domainso ' The

'first three arescalar.!1e.:;,' whichdeHne well-ordered sets of values. ~-as ,distinguisheq .

from real types .. ':A .~~al;~r,type 'rnoY,also' b'e deflpe.d6s art' 'b~'cJi;nQrtxe~: . .by e~un~~ra.tr.ng
- . ".,. :."

the identifiers \vhidh sta~d for,its ordinal values/(Jr-as a.5ubrdnge of anothe~s'calar

type by sse.c.tfytrig' the smallestahd largest values of the subrangc. Pointer types are

SWL lAN'GUAGE SPECIFICATION

2.0 Language Overview
7 December 1973
Page: 2-2

included in the basic types. They represent location values, and other descriptive,

information, that can be used to reference instances of variables and other SWLel e­

ments. ,Pointers 'are always bound to a specific type, and pointer variables may •
, '

assume, as values, only' pointers to elements of that type.

Structured ~ represent collections of component's, and are 'defined by describing

their component' types and indicating a so-called structuring method. These differ,

in the accessing discipline and notation used to select individual components. Five

structuring m'ethods are available: ~ structure, string structure, array ,structure,

record stru,cture and union structures.

· A set type represents the subset of values of some scalar'type •
. - .

'A string.~ of length n represents all ordered' n-tuplesof values of character type.

· An ordered k-tuple of these values (l~K<n) is called a sub-string. Notation for

accessing sub-strings·· is provided .. ,

An array ~ repres.::nts a structure consisting of components of the same type. Each

component is selected by an array selector consisting of an ordered set of n index

· values whose' types are indicated in the array definition.

A record ~ represents a structure consisting of a fixed number of components called

fields, whi~h may be of different types. In order that the type of a selected field be

evident from the program text (without' executing the, program), a field selector is not

a computable value, but instead is an identifier uniquely denoting the component to

beselected~,~These component identifie~s are declared in the record type definition.

A vdria'nt' record type "may be specified as consisting of several variants. This implies
, ,

thatdifferent'variables, although said to be of the same type, may assume structures

which differ ~ina certain manner. The difference may consist of a different number

SWL LAN GUA GE SP ECI FI CA Tl 0 N

20 0 Language Overview
7 December 1973
Page: 2-3

and different types of components. The variant which· is assumed by the current value

of a record variable is indicated by a component field which is common to all variants '

and is called the tog' field.

-"\-ullion t)'p.fl re resents a finite set of selectable r non-equivalent ty • ~

pennit one to define procedures whose more than one type and

ernative to variant record types.

Array and record types may have associated packing attributes; which can be used to

speci fy component space-ti me trade-offs. ·Access Ii file for spe ei f1 e components 0 f

~ael<cd (space compressed) struc tures can be shortened by declaftrtg, j'Mom to be

-aligned. €rammed structured ~ are used to spcll. out the precise rcprcsentatioo

';~'slTucholFein-terrnsoftheeH!"'lengthsancl relative aligilments of its components.

;hc use of cFammed t}'pes is restri eted to the so-called representation dependent

~n 0 f a pregf€!ffio

Storage ~ represent structures to which other variables may be added r referenced

and c!eleted under explicit program control. They Cie also the only types that can be

-used to define relative· pointers, which can be used to reference variables added to

'!Storage structurBSr There are 'three storage types, each with its own management and

<access ch~i'acteri sti cs. A stock type represents a coli ection of components of l'he some

.type which is accessed by a IIlast in-first out" discipline. The IItop" component of a

stock can be referenced by using the stock's identifier as a pointer. Sequence typ'cs

. and heap ~ represent storage structures whose components may be of diverse type.

'Components of sequences must be accessed by a sequential accessing discipl inc (thru

the operations of IIresetting" to the first component and moving to the next component).

Space for components of heap storages must be explicitly managed by the operation of

allocate and free; the components are accessed thru pointers constructed. as by-products

of the allocate operation. The only storage type supported byRe leas'e 1

is the default heap.

I

I

·SWL LANGUAGE SPECIFICATION

2.0 Language Overview'
7 December 1973
Page: 2-4

Many" of the structured and storage types (and subrange types) are described in tenns

of attributes, called bounds, that specify their shapes and extents. If the values of

such attributes can be detennined by a per"sal of the entire program, then the asso­

ciated type is precisely defined, and is said to be of fixed ~;otherwise, the type

is said to be of variable bound ~.In the latter case, the type represents a class

of potential instances of fixed types. An 11instantaneous ll fixed type for these is

established whenever the type declaration is elaborated during execution (upon enter­

ing the block in which the declaration occurs), and persists over the scope of the . .

declaration. Variable bound types are not supported· by Release 1.

Adaptable ~ are array, string, record and storage types defined in terms of one or

more indefinite bounds. They may be used as formal parameters of procedures - in

which case the bounds of the actual parameters are assumed, or they may. be used to

define pointers f'o structures which are meant to be explicitly allocated - in which.

case the actual bounds are specified in the allocate statement. Adaptable types
are not supported by Release 1.

Denotations for explicit values of the basic and structured types consist of constants

- which denote constant values of the basic types, and value consfructors, which are

used to denote instances of values of set, array and record types. Numerals I quoted

strings of characters and the boolean constants (true~ false) are pre-defined. New

constants can be introduced by constant declarations, which associate an identifier

with a constant expression.

Definite value constructors, which include 'specific type information, may'be used

freely in expressions. Indefinite value constructors .can be used only where their

type is explicitly indicated by the context in which they occur.

Variables can be declared with initialization specifications and with certain attribute's~

Initialization expressions are evaluated when storage for the variable is allocated., and

I

." SWL LANGUAGE SPECIFICATION

7 December 1973
20 0 Language Overview Page: 2-5

the resultant values are then assigned to the ·variable. The attributes incluc!e' access

.Q#F.i.blJtes 'r'lhich specify the purposss fur which the varigble mg)' bs gccssssQ.) storage

attributes - which. specify when storage for the variable is to be allocated ancJ when

it is to be freed, and scope attribufes-which specify the program span over which the

. declaration is to hold (the scope of the declaration)o Unless otherwise specified, the

scope of a declaration is the block containing the declaration, including all contained

sub-blocks except for those which contciina re-declaration of the. identifiero

Blocks are portions of programs grouped together as either begin-end blocks or proce­

dureso The former are used primari Iy to. define scope and provide shielding. The

latter also have identifiers associated with them, so that the identified portions 'of

. the program can be activated on demand by statements of the languageo

Procedures are declared in terms of their identifier, the associated program, a set 'of

attributes, and a list of formal pqrameterso Formal parameters are variable declara-,

tions which provide a mechanism for the binding of references to the procedure with

a set of values and variables - the actual parameters - at the point of activation.

Two methods of parameter binding are provided -. call-by-value and call-by-refer­

~; they have their conventional connotationso

A function is a procedure that returns a value of a specified typeo These return­

types eire restricted to the basic types, and are specified i~ the procedure declara­

tiono

be used in the creation of coprocesses, which

of the entire procedure

causes execution

resume statement of the coprocess.
.' ,

SWL LANGUAGE SPECIFICATION

2.0 Language Overvi ew
7 December 1973
Page: 2-6

common attributes can be associated with seq
.~---'===~..;:;.

which are

with the

variable and pro~eciure declarations

their other programmaric aspects, blocks (together with

portions of programs.

for the shielding and

mechanisms for the shielding and

'grouped set of declarations and a I'

level •

wi thour the

primari Iy designed to

and

a mechanism

. Statements define actions to be performed. Structured statements are constructs com­

posed of statement lists: begin staj'ements provide for scope control and storage alloca­

tion for their constituentdeclarations/~if statements provide for the conditional execu­

tion of one of a set of statement .Iists; ~ statements cause unbounded repetitions of

their statement list; while, for. and repeat statements control repetitive execution of·

their statement" lists; ~ statements conditionally select one of their component state­

ment lists for execution; variant case statements allow access to the variant fields of

records; -eenform i ty case statements selectORS of thEli r compoRsRt stah~m9nt lists for

~*ecution, depending on the type of the ' .. alue ofa union variable.

Controi statements cause the creation or destruction of execution environments. They

provide for the activation of procedures; the creation, resumption and destruction of

coprocesseSi and general changes in the flow of control.

w Begin statements are not supported by Release 1.

I

f

SWL LANGUAGE SPECIFICATION

20 0 language OverVi ew
7 December 1973
Page: 2-7

Storage management statements provide mechanisms for pushing and popping . stack

components, moving forward and backward over components of sequences, and allo­

cating and freeing storage for components of heaps.

Finally,. assignment statements cause variables to assume new values.

A. SWL program is meant to be translated, by a compilation process into a SWL

object program. Object programs resulting from distinct compilation can be com-

o bined. byalinking process r into a single object program r and m!JY undergo further

transdflTlration, by a loading process r i",to forms capable of direct interpretation

(execution) by members of the IPL line.

==::.;..;.:::=-.:..=.:.;:...facilities, that are essentially extra-linguistic in nature r are

ilatiOl1 process and construct the program

facilities divide The first

time variabledeclaration~,

statements,

ism, which

ism

produced by the

to the macro mechanism, but must follow normal

compile-

mi cro me chan-

and cannot affect the e~isting declaration or block structure.

incorporation of some representation-dependent ~~:..:...;...:;:,.;....-'­

dependent on the SVVL

represents the

with specifie~ component bit-sizes. and

)ods for overriding pointer-to-type equivalence restrictions.

SWL LANGUAGE SPECIFICATION

20 0 Language Overview
7 December 1973
Page: . 2-8

ded set of machine dependent facilities including native ~ w?rosr
attribul"es and instruc I e to be provided for eachma· or which SWL will

body of the so~

called ---=---==- SWL

SWL LANGUAGE "SPECIFICATION

3.0 Metalanguage and Basi c Constructs
3.1 Metalanguage

.. 3.0 METALANGUAGE AND BASIC CONSTRUCTS

3.1 METALANGUAGE

7 December 1973
. Page: 3-1

In this specification syntactic constructs are denoted by English words enclosed between

angle brackets < and >. These. words also describe the nature or meaning of the con- .
,

struct I and are used in the accompanying description of semantics. The symbol ::=

is" used to meanllis defined" as", and· the vertical bar I is used to signal an alternative

~efinition. An ~ptional syntactic unit {zero or one occurrences) is designated by

square "brackets [and]. Indefinite repetition (zero or more .occurrences) is designated

by braces {and f •

The angle brackets, square brackets, braces, and the "is defined as ll symbol are also

elements of ~he language, and therefore are used in syntactic constructs. Such syn­

tactic occurrences of these symbols will be underscored when necessary.

SWL LANGUAGE SPECIFICATION

3.0 Metalanguage and Basi'c Constructs
3.2 Basic ConsfTucts

3.2 BASIC CONSTRUCTS

3.2. 1
Alphabet

7 December 1973
Page: 3-2

The lexical units of the language - identifiers, basic symbols and constants ~

are constructed from one or more (juxtaposed) elements of the alphabet.

3.2.1 ALPHABET

The al phabet consists of tokens from a subset of the 256 - val ued ascii character set:

those for which .graphic denotations are defined.

<ascii character> ::= <alphabet> I <unprintable>

<alphabet> ::= <letter>

<digit>

I <speci al mark>

I <unused mark>·

<letter> ::= A I B I C I D I FiG I Hili J I K I LIM I N 10 I P I Q I R I SIT I U I V I W I X I Y I Z

I a I b I c I die I fig I h I iIi I kill min 101 pi q I r I sit I u I v 1 w I x I y) z

<digit>::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

<special mark> ::= + I - I * I / I • 1 , I ; I : 1 II I I

I#I$II@I.?I(I)I=I<I>

I" I [IJII\I ~ 1,b'1

<unused mark> ::= & I % I { I } I·' , ~

3.2.2 IDENTIFIERS

Identifiers serve to denote constants, variables/ procedures and other programmatic

elements of the language.

SWL' LANGUAGE SPECIFICATION

3.0 Metalanguage and Basic Constructs
3.2 Basi c ConstrOcts

<identifier> ::= ·<Ietter> l<fol lower>l

<follower> ::= .<Ietter> I <digit> I 1# 1$ I @

3.2.3·
Basic. Symbols

7 December 1973
Page: 3-3

Identifiers are restricted to a maximum of 3D charaGters, and identifiers that differ

only by case shifts of component letters are considered to be identical.

3.2.3 BASI C SYMBOLS

Selected identifiers, special marks, digraphs of special marks, and other polygraphs

are reserved for specifi c purposes in the I anguagei e.g., as operators, separators,

delimitors r groupers. These ~o-ca"ed "basic symbols" will be introduced as they

·arise in the sequel. Identifiers reserved for use as basic symbols will be shown

as underscored, lower-case words.

3.2.4 CONSTANTS

<constant> ::= <basi c constant> I <string constant>

<basic constant> ::= <scalar constant>

·1 <eoffipile tiffie variable>

I <real constant>

<pointer constant>
I

<Scalar constant>. ::= <ordinal constant>

<boolean constant>

<integer constant>

<character constant>

Seetiol"l 12.1!.L

SWLLANGUAGE SPECIFICATION

3uO Meta I anguage and Basi c Constructs
3.2 Basi c Construe ts

3.2.3
Basic 'Symbols

7 December 1973
Page: 3-4

<ordinal constant> ::::: <ordinal constant identifier>. IIc.f., 4.201.1.3"

<boolean constant> ::= false I tr~e I' <boolean constant identifier>

<integer constant) ::= <integer> I <integer constant identifier>

<character constant> ::= l<alphabet>1 I <character constant identifier>

<real constant> ::= <real number> I <real constant idenl'ifier>'

<string constant> ::= <string term>

,I <string term> {cat <string term>}

<string term> ::= . <character constant> I <string constant identifier>

Schar «integer» lie. f., Standard Functions, 11.211

l<alphabet> <alphabet> {<alphabet>} I

<pointer constant> ::= nil

<ordinal constant identifier> ::= <identiHer>

<boolean constant identifier> ::= <identifier>

<integer constant identifier> ::= <identifier>

<character constcint identifier> ::= <identifier>

<real constant identifier> ::= <identifier>

<string constant identifier> ::= <identifier>

<pointe'r constant identifier> ::= <identifier>

<real number> ::= <unsealed number>

<Scaled number>

<unsealed number> ::= <digit> {<digit>} • <digit> {<digit> }

<Scaled number> ::= <unsealed number> E [<sign:>] <digit> {<digit>}

'<integer> ::=<digit> {<digit>}

1 <digit> {<hex digit>} <bose designator>

<digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

SWL 'LANGUAGE SPECIFICATION

3.0 Metalan~uage and Basic Constructs
·3.2 Baise Constructs

<hex digit> ::= A I B I C DIE I F

I a I b 1 c I die I f

I <digit>

<base designator> ::= «radix»

<radix> ::= 2 I 4 I 8 I 16

<sign> ::= + I -

3.2.5 CONVENTIONS

3.2.5
Conventions

7 December 1973
Page: 3-5

Identifiers, reserved words and constants must not abut and must not contain .embedded

blanks. Basic symbols const~ucted as digraphs may not contain embedded blanks. Other­

wise, blanks may be employed fr/?ely I and have no effect outside of character constants

and string constants - where they represent themselves.

3.2.6 COMMENTS

Commentary strings may be used anywhere that blanks may be used except within

character and string constants.

<commentary string> ::= 1\ {<comment character>} II

<comment character> ::= <any ascii character other than double-quote

and semi col,on>

SWL LANGUAGE SPECIFICATION

4. OSWL Types

4.0 SW L TYPES

7 December 1973
Page: 4-1

SWL provides four classes of programmatic objects of discourse:

<SW L type> ::= <data type>

I <adaptable type> M

I <formal I ype> M

I <fi Ie type> M

Broadly speaking: data types are used to define sets of values that can be assumed by

SWL variables; adaptable types define data types that have indefinite attributes, are

meant to be explicitly II type fixed II during execution, and - together with formal

types· - may be used as formal' parameters of procedures, and must otherwise be

referenced through a pointer mechanism; formal types are associated with procedures,

coprocesses, and labels (c. f., SecHon 8.0); file types are primarity used in inpuf­

output operations. N

M Release 1 does not support adapt~ble, formal, or file types.

SWL LANGUAGE SPECIFICATION

40 0 SWL Types
4.1 Type. Oeclarations

4.1 TYPE DECLARATIONS

7 December 1973.
Page: 4-2

SWL provides a small set of pre-defined types, reserved identifiers for these types, and

notation for defining new types in terms of existing ones.

Type declarations provide the mechanism fo~ introducing new type5.

<typ'e declaration> ::= type <type spec> {/<type spec>}

<type spec> ::= <typ~ identifier -I+.rf.> = <SWL type>

-4ype identifier list>.. <identifier lis!'>

·(idellHFier list>.. <identifier> I,<identifier>}

(type identifier> :~= <identifier>

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.2 Data Types

4.2 DATA TYPES

. <data type> ::= <type>

4.2.0
Fixed and Variable Bound Types

7 December 1973
Page: . 4-3

<type> ::= <basic type> I <structured type> <storage type>

For brevity's sake, data types will be referred to in the sequel as types; for clarity's

sake, references to other SWL type-varietals will be spelled out completely. Basic

types define components that may take on simple values, while structured types and

storage types define coil ections of components. .

4.2.0 FIXED AND VARIABLE BOUND TYPES

Many.of the types· (particularly the structured and storage types) are couched in terms

of attributes that are called Ilengths" or "sizes" or "bounds" or "index ranges",

depending on the specific type and on the confext in which it is being discussed.

If the values of such attr:ibutes can be determined by a perusal of the entire pro­

gram, then the associated type is precisely defined, and is said to be of fixed type;

otherwise, the type is said to be of variable bound· type. In the latter case, the

type represents a class of potential instances of fixed types. An "instantaneous"

fixed type for these is established whenever the type declaration is elaborated during

execution (upon entering the block in which the declaration occurs), and persists

~ver the scope of the declaration (cof., Scope of Identifiers, 5.2). For purposes of

exposition, the constructs

<variable bound type>

and

<fixed type>

are introduced, the latter denoHng all types but the former. Release 1 does

not support variable bound types.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.2 Data Types

4.2. 1 BAS IC TYPES

. <basic type> ::=<Scalartype>

<real type>

I. <pointer type>

4.2.1.1 Scalar Types

4.2. 1
Basic Types

7 December 1973
Page: 4-4

Scalar types define well-ordered sets of valves for which the following functions are

defined:

succ . the succeeding value in the set;

pl'ed the preceding value in the set.

<scalar type> ::= <integer type>

<character type>

<ordinal type>

<boolean t)/pe>

<subrcinge type>

4.2. 1. 1. 1 Integer Type

<integer type> ::= integer <integer type identifier>

<integer type identifier> ::= <identifier>

SWL LANGUAGE SPECIFICATfoN

4.0 SWL Types
4. 2 Data Types

4.2. 1
Basic Types

7 December 1973
Page: 4-5.

Integer type represents an implementation-dependent subset of the integers, and is

equivalent· to the subrange (c.f., 4.2. 1. 1.5) defined by

. 48 ···48 .
Al •• n2· - (2 -1).. (2 -1).

where nl and n2 denote impJemeAtation dependent integ~fS.

4. 2. 1. 1. 2 ~haracter Type

<character type> ::= char I <character type identifier>

<character type identifier> ::= <identifier>

·'Chdracter type d.efines the s~tof256 values of the ascii character sei, and is equiva­

lent to the subronge (c. f., 4.2. 1. 1. 5) defined by

$char(O) •• $char(255)

where"$char ll denotes the mapping function from integer tY!Je onto character tYFle

(co f., Standard Functions, n.2).

4.2. 1. 1. 3 Ordinal Type

<ordinal type> ::= «ordinal list»

I <Ordinal type identifier>

<ordinal list> ::= <identifier list>

. <ordinal type' identifier> ::=<identifier>

SWL LANGUAGE SPE,CIFICATION

4.0SWL Types
4.2 Data Types

4.2. 1
Basic Types

7 December 1973
Page: '4-6

An 'ordinal type defines an ordered set of valu~s by enumeration, in the ordinal list,

. of the identifiers which denote the values. Each of the identifiers in the .ordinal list

is thereby declared as a constant of the particular or.dinal type.

Two ordinal types are equivalent if they are defined in terms of the same ordinal list. M

Ordinal type specifications are restricted to appear only in type declarations.

Exampl e:· The constants of the ordinal type "primary color" declared by'

type primary_color = (red, green, blue)

are, denoted by "red", "green", and "blue",and the following relations hold:

red < green

red < blue

green < blue

A mapping from· ordinals onto non-negative integers is provided by the "$integer"

function (c. f., Standard'Functions, 11. 2). For the constants of the example,

the following relations hold:

$integer (red) = 0

$integer (green) = 1

$integer {blue} = 2

The ordinal type declaration

type primary_color = (red, green, blue),

hot color = (red, orange, yellow)

would be in error because of the dual definition of the identifier IIred" asa constant

of two different ordinal types.

w In ISWL"I two separately defined ordinal types are never considered
to be equivalent.

SWL LANGUAGE SPECIFICATIO'N

4.0 SWL Types
. 4.2 Data Types

,4.2.1.1.4 Boolean Type

<boolean type> ::= boolean

<boolean type identifier>

<boolean type identifier> :.:= <identifier>

4.2.1 .
Basic Types

7 December 1973
Page: 4-7

Boolean type represents the ordered, set of "truth values" wbose constant denotations

are false and~, and is equivalent to the ordinal type specified by the ordinal' list

(false, ~)

4~'2.1 ~1 ~5'SuorongeType

<subrange typ~> ::= <subrange type identifier>

<lower> •• <upper>

<lower> ::= <scalar expression>

<upper> ::= <Scalar expression>

<subrange type identifier> ::= <identifier>·

A'subrange type represents a subrange of the values of another scala~ type, defined

by a lower bound and, an upper bound. The lower bound must not be greater than

the upper bound and both must be of equivalent scalar types. SubrOAsetypes mey

',be of variable bound. t,pe (c.fe ,. 4.2.0).

Two subrange. types are equivalent if they have identical upper and lower bounds;"and

an improper subrange type (i.e., one that spans Hs 'parent'. range) is equivalent to

its 'parent' type.

" In ISWL, two types ar~ equivalent only if they represent the
same instance o-t: a type definition-

1

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.2· Data Types

.type non _ negative_in.teger ~ 0 •• n2,

letter = IAI •• IZI,

color = {red, orange, yellow, green, blue},

hot_color = red •• yell~w,
hue = red •• blue,

range = - 10 •• 10

4.2.2
Real Type

7 December 1973
Page: 4-8

. Note that the subrange type, II hue II, is an improper subrange Of, and therefore

equ'ivalentto, its parent ordinal type, "colorll.

4.2.2 REAL TYPE

<real type> ::= real I <real type identifier>

<real type identifier> ::= <identifier>

The range and precision of real type is implementation-dependent. Conversion functions

between real and integer type are provided {c.f., Standard Functions, 11.2}.

4.2.3 POINTER TYPE

. Pointer types represent location values, end other descriptive information, that can be

used torefe.rence instances of SWL objects indirectly.

<pointer type> ::= <direct pointer type>

·1 <relative poiAter t~~ I.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.2 Data . Types

<direct pointer type> ::= I\<type>

<adaptable pointer>

<formal pointer>

11\ <file type>

4.2.3
Pointer Type

7 December 1973
Page: 4-9

<relative poinrer type> ::- cl [(<storage type»] 0<type>

<adaptabl e pointer> ::= 1\ <adaptable type>

<adaptable pointer to string> ::= <adaptable pointer>"

<adaptable pointer to array> ::= <adapter pointer>

<adaptable pointer to stack> ::= <adaptable pointer>

<adaptabl e pointer to s~quence>::= <adaptable pointer>

<adaptable pointer to heap>::= <adaptable pointer> ..

<formal pointer> ::=I\<formal type>

<pointer to label> ::= <formal. pointer>

<pointer to procedure> ::= <fonnal pointer>

<pointer to eoproe).. <formal pointer>

Direct (relative) pointer types are equivalent if they are defined in terms of equivalent

SWL. types (types).w

Direct· (relative~ pointer types represent locations {re+ativo locations} of instances of

objects of SWL type. (comp'Jnents of objects of. storage type).

-:Built-in mapping fundions betwe~n direct pointers and relative pointers <:Ire provided .
!(o.f. j Standard Fundionsj 11.2).

H In ISWL, two types are equivalent only if they represent the
" same instance of a type definition-

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.3 Structured Types

4.3 STRUCTURED TYPES

.4.3.1
Set Type

7 December 1973
Page: 4-10

Structured types represent c<?lIections of components, and. are defined by describing

their component types and indicating a so-called structuring method. These differ

in the accessing discipline and notation u~ed to select individual components. ~ Four

structuring methods ere available: set structure, string structure, array structure, and·

record structure. and tlnion structures.' Each will be described in the sequel. Structured

types may be of variable bound type (c.f., 4.2.0). . ,

<s.tructu.red type>::= <set type>

4.3.1 SET TYPE

J <string type>

I <array type>

<record type>

<unit?n type>.

<Set type> ::= set of <ba;c type>

I <Set type identifier>

<base type> ::= <scalar type> 1

<Set type identifier> .::= <identifier> .

A set ~ype represents the set of subsets of values of the base type. The number of

elements defined by the base type must be constrained (consider, e.g., =.=..t of integer).

Its ""'alue ''''ill be implementation dependent, but no less than 256 (to accommodate­

~ ~ ~h ISWLlimits the number of elements to 60.

SWL .LANGUAGE SPECIFICATION

4.0 SWL Types
4.3 Structured. Types

40 3.2
String Types

7 December 1973
Page: ·4-11

Set types are equivalent if they have equiv.alent base types. W

Examele: The set, access, declared by

type access = set of (no_read, no _ wri t~ , no_execute)

represents the set of the following subsets of values of its ordinal base type:

$access [J lithe empty set "

$access [no_read] .

$access .[no_ write]

$access [no_execute]

$access [no_read, no _ wri te]

$access [no_read , no_execute]

$access [no_write, no_execute]

$access [no_read, no_write,. no_execute].

where the notation $access [••• J" denotes a value ~structor (c.f., Value construc­

tors, Section 5.1) for the set type, access.

4.3.2 STRING TYPES

<string type> ::= string «length»of <character_type>

I <string type identifier>

<I h> < • • •. eons+ant....: engt ::= positive Integer EHEprSS510n/

<string type identifier>::= <idenTifier>

,.

A string . type of length!! represents all ordered n-tuples of values of character type.

An ordered k-tuple of the!:e values (ls;k::;:n) is called a sub-string~ ·Notation for

accessing sub-strings is provided (c.f., Variables and Variable Declaration,· 7.0).

W In ISWL, two tyees are equiva1e~t only if they represent the
same instance of a type definltlon.

I

SWL LANGUAGE SPECIFICATION

4.0 . SWL Types
4.3 Structured Types

4.3.3
Array Type

7 Decemher 1973
Page: 4-12

Two string types are equivalent when they· have the same length.~ In the case of 01
variable length, the length is determined when the declaration is elaborated.

4.3.3 ARRAY TYPE

An array type represents a structure consisting of components of the same~ype. Each

component is selected by an array selector consisting of an ordered set of n index

values whose types are indicated by the indi<;es in the definition.. Theoretically,

the time n~eded to select a component ,is independent. of the set of index values/.

so that an array structure is an example Of a so-called random-access structure.

<array type> ;:=[<packing>] <array 'type 'identiHer>

I [<packing>] <array spec>

<array type identifier> ::=" <identifier>

<array spec> ::= array [<indices>] of <component type> --. - -:---

<indi ces> ::= <index> { , <index>}

" <index> :;= <scalar type>

<component type> : :=<type>

<packing> ::= <packing attributes>

Packing attributes are used to specify component storage space - component access

time trade-:-offs (c.f., Packing and Alignment, 4.8).

" If .!! indices are specified, then th~ array type has dimension.!!. Two array types are

equivalent'if they have the' same packing and dimensions,· have equivalent component

types, and corresponding indices a~eof equivalent types. H For variable index ranges,

the index type is defined by the values of its constituent expressions determined when

the decl~ration is elaborated. HH

" I'n ISWL, two types are equivalent only if they represent the
same instance of a type definitiono

HH Release 1 does not support variable bound arrays-

SWL LAN GUAGE SPECIFICATION

4.0 SWL Types
4.3 Structured" Types

Example:

4.3.4
Record Type

7 Dec.ember 1973
Page: 4-13

"~ hotness = array [colorJ of non_negative_integer,

token_code = array [char] 2.£. token_class,

token_class = (alpha, numeric, specials, others),

arrayl = array[l •• 100, 100' •• 200J of "100 •• 300,

i1 = 1 •• 100,

i2 = 100 •• 200,

sl = lOO •• 300,

array2 = array [i1, i2] of s 1,

array3 = array [i .. i1 of poolean,

arroy4 :::.,o.rr9Y [I .. 1912£ arra,y3

"arrayl" and larray2" are equivalent.

variable bounds because Hs index ra ermined until run-time elaboration ,

arahon. "" Similarly for the larray4" type,since its component type IS

4.3.4 RECORD TYPE

In a record structure, the components are not necessarily of the same type. In order'

that the type of aserected component be evicie'nt' from the program ,text (without

executing the program), a record selector is not a computable value, but instead is

. an identifier uniquely denotil'lgthe component to be selected. These component

identifiers are declared in the record type definition. Again" the time needed to

access a selected compohEmt does not depend on the selector, and the ,record is

like an array, a random-access structure.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.3 Structured Types

4.3.4
Record Type'

7 December 1973
Page: 4-14

A record type may be specified asconsistin~ of several variants. This .implies that

different variables,althaugh said to be of the' same type, may assume structures which

differ in a certain manner. The ,difference may consist of a different number and

different types of components. The' variant which is assumed by the current value of

a record variable is indicated by a, component field which is common to all variants

and ,is called the tag field.

<record type> ::= [<packing>] <record type identifier>'

I [<packing>] <record spec>

<record type identifier> ::= <identifier>

<record spec> ::~" record <field list>,recend

<field list> ::= [<fixed fields>,] <shifty field>

<fixed fields>

<fixed fields> ::= <fixed fieI'd> { ,<fixed field> }

<fixed field> ::="<field selectorS> : [<aIiSAffient;:.] <fixed type>

<shifty field> ::=,<variable bound field>

I <variant field>

<variable bound field) ::= <field selector>: [<aligm'l'loAt>] <variab~e bound type> " I"

'<variant field> ::= ~ <tag field spec> of <variations> casend.

<tag field spec> ::= <tag field selector> : <tag field type>

<tag field type> ::= <Scalar type>

<tag field selector> ::= <identifier>

<variations> ::= <v6riation> 1 <variation>l

<variation>::= = <selection values> = <variant>

<selection values> ::= <sela'ction value> { <selection v~lue>}

:,-

" Release 1 does not support variable bound fields-

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.3 Structured Types

40 304
Record Type

7 December 1973
Page: 4-15

<selection value> ::= <constant scalar ~ression> E •• <constant sealar e)(pressioFt>j­

<variant> ::= [<fixed fields>] <variant field>

I <fixed' fields>

<field selectors>::= <field seledor>{,<field selector>}

<field selector> ::= <identifier>

A record type represents a structure consisting of a fixed number of components called

fields, which may be of different types and are identified by field selectors,which

are unique vJ thin anyone variant and the preceding fixed fields. Multiple field

selectors provide a concise notation for specifying fields having the same alignmeri~

--Effi4. type. A record type whose last field is of variable bound type is called a

vdriab!ebound'recordtypeione,whoselast fi~ld isa variant Jield iscaJl.edq

variant record type, which may never be of variable bound type.

Two record types are equivalent i.f they have the same packing, the same number of

fields, and identical field sel ectors and equivalent types for corresponding fields.

Two variant fields are of equivalent types if they have identical tag field selectors

and equivalent tag field types, and if variants having identical field selectors and

equivalent types are selected by the same selection values. The type of a variable

bound field is determined when the declaration is elaborated."

" In ISWL'I two types are equlva1ent only if they represent the
same instance of a type definition-

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.3 Structured Types

Example: .

date -'- record day: •• 31,

recend,

month: string(4) of char,

year: . 1900 •• 2100

status = record age: 6 •• 66,

married, sex: boolean t

recend t

red book = record·name:stdng(3)ofchar I

status: status t

scores: array [0 .. n] of date

recend t

shape = (triangle t rectangle, circle),

angle = -180 •• 180,

figure = record x, y, area: real,

case s: shape of

4.3.4
Record Type

7 December 1973
Page: 4-16

= triangle = side: real, inclination, angle1, angle2: angle

= rectangle = side1 t side2: recti, skew,angle3: angle

= circle = diameter: real

caSend

recend

'.' Red book 11 type may be of vari ab I e bounds type by vi rtue of the index range of

II scores II , while II figure" . type is of variant record type.

SWL LANGUAGE SPECIFICATION

. 4.0 SWL Types
4.3 Structured Types

UNION TYPE

4.3.5
Union Type

7 December 1973
Page: 4-17

Union resents a finite set of selectable t non-equivalent types.

<union type> :. - union «type list>)

I <type>}

Union types permil" one to define proc

one type and provide a restri ctive I

types.

Two union types are

log types are

type param = union (real t int)

variant record

SWl LANGUAGE SPECIFICATION

4.0 SWL Types
404 Storage Types

4.4 STORAGE TYPES W

404.1
Stack Type

7 December 1973
Page: 4-18

Storage types represent struc:tures to which other variables may be added, deleted, and

referenced under explicit program . control (c.f., STORAGE MANAGEMENT STATEMENTS,

lOA). They are, in addition, the' only SWL types that can be used to consfruct rela­

tive pointers (c.f., Pointer Types, 4.2.3).

<storage type> ::= <stack type>

I <sequence type>

I <heap type>

Storage types may be of variable bound type (cof., Fixed and Variable Bound Types, 4.2.0).

4.4.1' STACK TYPE

<stack type> ::= stack [<sta'ck size>] of <type> - -
<stack size> ::= "<integer expression>

A stack type represents a collection of up to II stack size" components (of the same

type) accessed via a "last in-first out U discipline.

The "top" component o~ a stack (a variable of stack type) can be referenced by using

the stack's identifier as a pointer.

w No storage types may be declared in Release 1. The only storage
type supported is the default heap.

I

SWL LANGUAGE SPECIFICATION

4.0 SWLTypes
4.4 Storage Types

4.4.2 SEQUENCE TYPE

<sequence type> ::= ;,.eq «space»

<space> ::= {, ~

::= [<integer expression>. rep]<type>

4.4.2
. Sequence Type

7 December 1973
Page: 4-19·

A sequence type represents a storage .structure whose components are referenced by a

sequential ac~essing discipline,;

Example:

seq (100 rep integer ,30 ~array [1 •• 30J of char)

4.4.3 . HEAP TYP E

<heap type> ::= heap (<Space»

A heap type represent~ a structure whose components can be explicitly allocated and

. freed •.

4.4.4 SEQUENCE AND HEAP SPACE

A space attribute of the general form

n1 .~. type 1 , n2 ~ type2, •••

··specifies a requirement that sufficient. space be provided to simultaneously hold"n 111

instances of variables of type 1, In2" instances of variables of type2, and so on.

The space attribute has no other connotations whatever except those that may e?{ist

in the mind of the programmer.

N~B. No storage types may be declared in Release],.

SWL LANGUAGE SPECIFICATION 4.5.1

4.0 SWL Types
4.5 Adaptabl e Types

4.5 ADAPTABLE TYPES M

Adaptable String

7 December 1973
Page: 4-20

Adaptable types are structural skeletons of structured and storage types containing one

or more indefinite bounds, indicated by an asterisk. They may be used solely to de­

fine formal parameters of procedures (c.f., Procedure Type, 4.6.2) and adaptable

pointers (c.f., Pointer Type, 4.2.3), the latter providing ci mechanism for referencing

fixed instances of adaptable types.

<adaptabl e type> :::;= <adaptabl e structured type>

<adaptabl e -sto rage type>

<adaptable structured type> ::= <adaptable string>

<adaptable array>

<adaptable record>

<adaptabl e storage type> ::= <adaptabl e stack>

4.5.1 ADAPTABLE STRING

-, <adaptable sequence>

,I <adaptable heap>

<adaptable string> ::= string(*) of <character type> -- - -,'

I <adaptable string identifier>

<adaptable string identifier> ::=<identifier>

" Release 1 does not, support adaptable types.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types·
4.5 Adaptable TYP7s

. 4.5.2 ADAPTABLE ARRAY

4.5.2 .
Adaptable· Array

7 December 1973
Page: 4-21

<adaptable array> ::= [<packing>] <adaptable array identifier>

I [<packing>] <odaptabl earrClY spec>

<adaptable array identifier> ::= <identifier>

<adaptable array spec> ::= array [<starred list>] of <type>
. -----

<starred list> ::= <star or index> {, <star or index>}

<star or index> ::=. * : <scalar type> I <i:ndex> I *

An asterisk (*) without a scalar type indicates an adaptable bound of integer type.

4.5.3 ADAPTABLE RECORD .

<adaptable record> ::= [<packing>] <adoptable record identifier>

I [<packi ng>] <adaptabl e record spec>

<adaptable record identifier> ::= <identifier>

<adaptable record. spec> ::= record [<fixed fields>,] <adaptable type> recend

4.5.4 ADAPTABLE STACK

<adaptable stack> ::= <adaptable stack identifier>

I stack[*]of <type> - -- -
<adaptable stack identifier> ::= <identifier>

N.B. Release 1 does not support adaptable types.

SWL LANGUAGE SPECIFICATION 405.5
. Adoptable Sequence

.-

4.0 SWL Types 7 December 1973
4.5 Adoptable Types . Page: 4-22

4.5.5 ADAPTABLE SEQUENCE

<adoptable sequence> ::= <adoptable sequence identifier>·

I seq(*}

<adoptable sequence identifier> ::= <identifier>

4.5.6 ADAPTABLE HEAp·

<adoptable heap>::= <adoptable heap identifier>.

I heap(*}

<a~aptable heap identifier> :.:= <identifier>

N.B. Release 1 does not support adaptable types.

SWL LANGUAGE SPECIFICATION

4.0 SWLTypes
4.6 Formal Types

4.6 FORMAL TYPES w

<formal type> ::= ~Iabel typ~>

<procedure type>

<coprocess t)'pe>

4.6. 1
Label Type

7 December 1973
Page: 4-23

Formal types may be used solely to define formal reference parameters (c. f., below)

and formal pointers (c. f., Pointer Type, 4.2.3). See section 8.0 for semantics.

4.6. 1 LABEL TYPE

<label type> ::= label

4.6.2 PROCEDURE TYPE

A procedure type defi nes an optional ordered I ist of formal parameters together with

an optional return type •

. <procedure type> ::= <procedure type identifier>

I proc[<parameter list>] [<return type>].

<procedure type identifier> ::= <identifier>

<parameter list> ::= «param segment> {;<param segment>})

<param segment> ::= <reference params> I <value params>

<reference params> ::= ref <formal param list> :(tr@odM<reftype>

<value parains> ::= val <formal param list> :[~~:~?n<vai type>

.. Release 1 does not support formal types.

SWL LAN GUAGE SPECIFICATION

4. O-SWL ,Types
4.6 Formal, Types

. .

<formal parClm list> '::= <identifier list>

<ref type> ::= <SWL type>

<val type> ::= <type> I <adaptabJ e type> H

<method> :: ref I yaJ

<return type> ::= <basic type>

4.6.2
Procedure Type

7 December 1973
Page: 4';',24

Val type is further restricted to exClude the so-called non-value types: storage

types, arrays of non-value types, and records containing a field of a non-value·

type.

Two procedure types are equivalent if corresponding param' segments have the same

IiUniber of formal parameters, identical methods 'and 'equival'ent' types, and Hthe i r
. . .

return 'types are equivalent."Wfhe· reed access attribute (c.f., 7.1.1.1) defi~e5 a

Fcsel-e!'!ly peremotsr.'

" Release 1 does not support adaptable types.

HH. In ISWL .. two types are equiva lent only if they represent the
same instance of a type definition.

N.B. Re1ease 1 does not support forma1 types.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.7 File Type

4.7 FILE TYPE w

7 December] 973
Page:·4-25

A fit e type represents a source and/or sink of data whose components, I ike those of

a sequence, are handled by a sequential accessing discipline. Although variables

of file type may be declared, their identifiers are treated as formal (or so-called,

lIogicaJl) file-identifiers; the actual file-identifiers are outside the lexical scope

of any SWL program, and their association with formal identifiers cannot be

expressed in SWL (~.g., one cannot 'open' a file in SWL). All SWL file variables

have the de-factostati c attribute.

<file type> ::= <file type identifier>
I file [«file attribute»]

<file t.ype .identi Her> ::=<i.dcnHfi.er>

.' <file attribute> ::= binary I text

A binary file's components areSWl variables; a text file's components are of

string type, and are called lines. If no attribute is specified, the attribute

text is assumed.

File components are referenced by so-called input-output statements (c.f., 10.5).

" Release 1 does not support file types.

SWL LANGUAGE SPECIFICATION

4.0 SWL Types
4.8 Packing and Al ignment

4.8 PACKING AND ALIGNMENT

<packing attributes> ::= packed I unpocktild

-4Jlignfflent>:: aligned-

7 December 1973
Page: 4-26

A packed structure will generally require less space at the cost of greater overhead

associated wirh access to its components. If a packing aHr!bute is unspecified then

the structure is assumed to be unpacked. An inner structure inherits the packing

-of its iRlmediatel}' containi'ng structure unless the pocking of the inner structure is

e)(plicitly specified.

Unpacked structures and their components are always al igned. Packed structures are

also aligned uniess they are components of a packed structure l but their components

are not. ynless th@), OH) explicitly oligned.

The attributes packed, un~nd craRlRlsd (c,f' j CraRlmed Typesj 13.1.2) connot

..be app Ii ed to types that ore e)(p Ii citl y packed 1 unpacked I or cramRled.

,I

SWL LAN GUAGE SPECIFICATION·

5.0 Value Constructors and Value Conversions
5.1 Value Constructors

5.1.1
Constants and Constant Declarations

7 Deceml:ier 1973
Page: 5-1

5.0 VALUE CONSTRUCTORS AND VALUE CONVERSIONS

5.1 VALUE CONSTRUCTORS

. .
Two mechanisms are provided for explicitly denotin~ values: constants and value

constructors. Constants are used to denote const(;:mt values of the basic types; -
value constructors are used to denote· instances of values of set, array, and record

types. There are two kinds of value constructors: definite value constructors, which

include specific type idenHfication; and indefinite value constructors, whose type

must be determined contextually •. M

5.1.1 . CONSTANTS AND CONSTANT DECLARATIONS

<constant deciaraHon> ::=const <constan·t spec list>

<constant spec li·st> ::= <constant .spec> { ,<constant. spec>J

<constant spec> ::= <constant identifier...J.ffi:.> = <constant e)Epression>

. <constant identifier .I-W:> :;= <identifier .J.i.sf:>

A constant spec associates one or~or€l identifier$ with the value of the constant.

expression. it.. Gonstcmt ~)){pr8ssion is an 8xpr€lssiori whose faGtor& an~ €lith€lr· constants

oar parenthesized constant e)(presSiohs (olfl, Constants, 3.214, and t:xpr8s~ions,. 9.0).

" ISWL supports only definite value constructors for sets, and
indefinite value constructors for array initialization_ I

SWL LANGUAGE SPECIFICATION

5.0 Value Constructors and Value Conversions
5.1 Value Constructors

·5.1.2 DEFINITE VALUE CONSTRUCTORS

5.1.2
Definite. Value Constructors

7 December 1973
. Page: 5-2

·<definite value constructor> ::= $<value type id> [<value elements>]

<value type id> ::= <set type identifier>

<arro), t)'pe id9ntjfiQ~·

'. . <record t)'pe identifler~

<value elements>::= <value element>{:,<value element>}·

<value· el ement> : := [<rep spec>] <expression>

.1 [<rep ·spec>] <indsfinils YQlbl9 constrblGtor>

<rep spec> ::= <positive integer expression> ~

.Identifiers .for .definite value .constructors are obtained by prefixing the "target type ll

identifier with a dollar sign, 11$". The types of the elements of the value constructor

m.ust match the ordered set ofcOl:nponents of the specified structure type. Definite

value constructors may be used wherever an expression can be used.

5.1.3 INDEFINITE VALUE CONSTRUCTORS

<indefinite value constructor> ::= -[<value elements>]

Indefinite value constructors can be used only where their their type is explicitly

. indi cated by the context in whi ch they occur: as arguments of conversion functions

(c.f., Section 5.2), as elements of definite and indefinite value constructors,· and

for the initialization of variables. (c. f., Section 6.0}. They may be ·0. set, array or

record depending on their context. ISWL. supports indefinite va lue

constructors for array ini"tiaJization only, and in this case

the value elements must be constants~

SWL LANGUAGE SP~CIFICATION

5.0 Value Constructors and Value COllverions
5.1 Value Constructors

fine

..

by

lor = {red, green, blue},

= string (3) of char,

[l .. 20J of integer ,

Rl : array [l .. 3J of bool

recend,

R2 = record F 1

constructors

[[3 rep trueJ, IS BCI]
"'-v-/ --..,.-

5.1.3
IndeHnite Value Constructors

. 7 December 1973
Page: 5-3

2 follow I with their

l L- <string constant> for field s

. <indefinite value constructor> for field t

SWL LAN GUAGE SPECIFICATION

5.0 Value' Constructors and. Value Conversions
5.1 . Value Constructors

5.1.3
Indefinite Value Constructors

7 December 1973
Page: 5-4

[20 rep 2J I [[3 ~fa~J I I BCSI J
~ l <indefinite

<indefinite value for F3

the above examples could have been

res~ions that eVdluate to the required types.

SWL LANGUAGE SPECIFICATION

5.0 Value Cons~ructors and Value Conversions
5.2 Type Conformity and Value Conversion

5.2 TYPE CONFORMITY AND VALUE CONVER?ION

50 2.1.
Type Conformity

7 Dece~ber 1973
Page: 5-5

The operations of assignment and comparison (and most binary operations) are defined

only for operands of equival.ent types. This ~equirement is relaxed only to permit

values of a subrange type and values of its parent type to enter into the same opera­

tion. When it is necessary to operate on operands that do not· meet the str,ict

requirements for type eCJuivalence, the conversion functions described below must

be used. These map values of a "source lJ type into values of a "target" type and

are defined only for so-called conformable source and target types.

5.2.1 TYPE CONFORMITY

Type conformity is a weak form of equivalence that does not require identical "com­

putational" attributes, bounds, packing, alignment or field selectorso Unlike equiva­

lence, conformity is not a transitive concepto

Integer types and character types conform •

. Integer types and real types confqrm.

Integer types and ordinal types conform •

. String types are mutually ccnformable •.

ArrQy types conform if they have the same dimension, their corresponding index

ranges span the same number of elements and their component types conforma •

Record types conform if they have the same number of fields and corresponding

fields conform.

String types, and one-dimensional array types with character-type components, conform.

SWL LANGUAGE SPECIFICATION

. 5.0 . Value Constructors and Value Conversions
5.2 Value Constructors

5.2.2· TYPE CONVERSION FUNCTIONS

5.2.2
Type Conversion Functions

7 December 1973
Page: . 5-6

Identifiers for conversion functions are obtained by prefixing the targe~ type identifier

with a dollar sign. The function so identified will then accept as an argument values

that are i·ntype conformity with the target type.

5.2.2.1 Pdmitive· Conversions

These consist of the "pre-defined II functions (c.f., Standard Fun!=tions, 11.2).

$integer «real expression or char expression or ordinal expression»

$real «integer expression»

Schar «i nteger expression»

$string «length>, <string expression>[,<ch?r expression>])

and the "~efinable" functions (c.f., below)

$<Ordinal type identifier> «integer expression»

$<string type identifier> (<string expression> [,<c..har expression>])

5.2.2.1.1 Pre-defined Primitive Conversions

Conversions between the basic types are the conventional ones and are defined in

section 11.2. In conversions between string types, thesourcestri ng is converted

to match the specified length either by truncation (on the right) or by appending

(on the right) the required number of so-called llfillll characters. In the "Iong" form

of the string conversion function, the fill cha~acter is explicitly specified by the last

parameter; in the "short" form it is implicitly specified to be the space character.

SWL LANGUAGE, SPECIFICATION

5.0 Value Constructors and Value Conversions
5.2 Value Constructors

5.2.2.1.2 Definable Primitive Conversions

5.202
Type Conversion Functions

7 December 1973
Page: 5-7

Conversions to ordinal type, return the value whose ordinal number is the value of the

integer ,expression used as argurnent.

String-to-string type conversions are analogous to the pre-defined string..,.conversion func­

tion, with the length being specified by the length associated with the target type.

5.2.2.2 Structured Conversions

Conversions between strings and one-dimensional arrays of characters are analogous to

string-to-string conversions. No other .structuredcorlVersi.onsare -supported

by ISWL.
a -to-array and record-to-recordconversions are defined recursively in terms of

When a structured conversion invol ves string compo

impl i ed by, the functiona

used whenever filling i; The two two forms

of definable string-to-string co

expressi on>])

<array

<indefinite value constructor>

::= <expression>

<indefinite value constructor>

; SWL LANGLiAGE SPECIFICATION . .

5.0 Value Constructors and Value Conversions'
5.2 Value Constructors

Al = array [1 •• 10] of sl, -- - .

s 1 = string (20) of char,

2 = .array [11 •• 20J of s2,

Rl

A : Al

recend,

R2 = record

: real,

gamma: A2

R2·
':"---' ,

5.2.2
Type Conversion- Functions

7 December 1973
Page: 5-8

o array types conform, the two string types conform, and the

nform.

1

SWL LANGUAGE SP~CIFICATION 6.2.1
Access Attribute

6.0 Variables, Attributes and Segments
6.1 Variable Declaration

6.0 VARIABLES, ATTRIBUTES AND SEGMENTS

6.1 VARIABLE DECLARATION

Page: 6-1

<variable declaration> ::= ~ <variable specs>

<variable specs> ::= <variable spec> {,<variable spec>}

<variable spec> ::= <variable identifiers> : [<attributes>] <type> [<initialization>]

<variable identifierS> ::= <variable identifier> {,<variable identifier>}

<variable identifier> .::= <identifier>

A variable spec introduces a new variable in terms of the identifier that denotes the

variable, a type, an optional set of so-called attributes and an optional value

initiaJi·zotion (cof. , . 6.3).

6.2 ATTRIBUTES

<attributes> ::= [<attribute> {,<attribLite>}]

<attribute> ::= <access aHFibufe>

I <storage attribute>

·1 <scope attribute>

. A variable can

In the former case, the

. .
attribute; no other

Section 9.0) and as an object for assignment (c. f.,

SWL LANGUAGE SPECIFICATION 6.2.2
Storage Attributes

6.0 Variables, Attributes and Segments
6.2 Variable Declaration Page: 6-2

the variable may be initialized, may not

the results of

by di rect assignments} may be undefined.

6.202 STORAGE ATTRIBUTES w

<storage attribute> : := static ,.,(5 egment i den tifi er>

mayor may not

a read-only

Storage attributes specify when storage for a variable is to be allocated (and ini­

ticilizep if necessary) and freed. If neither storage attributes nor scope attributes

(see below) are specified, allocat.ion and initialization occur automatically each time

the variable declaration is elaborated {on entry ·to the block containing the declara­

tion) , and freeing occurs automatically on each exit from that block (c. f., Section

7.0). Variables so trt:ated are called automatic variables. If 0 storage attribute

is specified, then allocation and ~nitialization occur once and only once - .ot 0

time no later than initial entry to the block containing the declaration, and storage

is not freed on exits from that block. \Alhon tho storage· aHribute is a segment

4dentifier (co f. I Section 6.5), then storage is allocated \vithin the specified seg

• menta Segments have the denfacto static attribute •.

6~ 2. 3 SCOPE ATTRIBUTES

<scope attribute> ::= xdcl I xref I 9)(ternal

M Release 1 does not support static storage.

I

SWL LANGUAGE SPECIFICATION

6.0 Variables, Attributes and Segments·
6.2 Attributes

6.2.3
Scope Attributes

Page: 6-3

Variable identifiers are used in varable denotations. Scope attributes specify the

regimen to be used to associate instances of variable identifiers with instances of

variable specs. The programmatic domain over which a variable spec is associated

with instances of its associated variable identifiers that are used in variable denota­

tions, is called the scope of that spec. If- no scope attribute is specified, the spec

is said to be internal to the block in which it occurs, and a so.;..called block­

structuring regimen is used (c.f., Section 7.2). Internal variables are always

dutomatic variables (see above) unless given a storage attribute, while scope-

. attributed variables are always: static. Each of the scope attributes specifies

certain deviations from the block-structuring regimen. Broadly speaking, a var­

iable identifier associated with an xref variable can be used to denote a similarly

idenHfied variab!ehaving the xdclatl'ribute, stJbiectorily'to iedsondole rules of

specificational conformitYo~rnol voriobles are introduced to permit s\~n_ pro-

.grams to be interfaced with programs written in other longuagesi the)' may be

.referenced whenever and 'Nhere",'er their spec appeoRlor Neithe.r xref nor external

variables can be initialized, and each carries the de-facto static storage attribute.

SWL LANGUAGE SPECIFICATION

6.0 Vciriables, Attributes and Segments
6.2· Initialization

6~ 3 INITIALIZATION

Page: 6 ... 4

. <initialization>"= := <c:>:pression> <constant>

:= <indefinite value constructor>

Since initialization is an "allocation-time" assignment to the variable, the initia­

lization expression must satisfy the requirements of the assignment statement (c. f. ,

10. 1).

.. An Clstorisk j II *" can be used to denot€l on vninitiali;;:Gd el@m€lnt of Q volUl~ con-

el I: ••• I' ~. stFuctOF use ror IRltla IzarlOR,

expressions are evaluated when the

stati c

Examples of initializ:Jtion are· used throughout the remainder of this section in the

explanation of variable references,

ISWL only supports initialization of static variables which are

'scalars~ strings, or unpacked arrays- Initialization is restricted

to constants or va1ue constructors a1l of whose fields are

constants.

SWL LANGUAGE SPECIFICATION

6.0 Variables, Attributes and Segments
6.4 Variable References

6.4 VARIABLE REFERENCES

<variable> ::= <variable reference>

<variable reference> ::= <variable identifier>

<pointer reference>/\

6.4.1
. Pointer References·

Page: 6-5

<Substring reference> Del

<Subsc~ipted reference>

I <field reference>

6.4. 1 POINTER REFERENCES

<pointer reference> ::= <pointer variable> I <fundion designator>

<pointer,variabl e> ::=<variabl e>

Whenever a variable reference denotes a variable of pointer'type it is referred to

as a pointer reference and the notation

<pointer reference>/\

may be used to denote a variable whose t,pe is determined by the type associated

with the pointer variable. If another variable of pointer type is denoted by this

reference, then

<poi nter reference> /\ /\

may be used as a variable reference. I Note that variables of pointer type can be

components of struc;:tured variabl~s as well as valid return types for p'rocedures.

Del Re lease 1 does not support substring references •.

SWL LANGUAGE SPEClFlCATfoN

6.0 Variables, Attributes and Segments
6.4 Variable References

6.4.2 SUBSTRING REFERENCES N

6.4.2
Substring References

Page: 6-6.

<substring reference> ::= <string variable> (<Substring spec»

<string variable> ::= <variab.le>

<Substring spec> ::= <first char> [,<Substring length>]

:Cfirst char> ::= <positive integer expression>

<substring length> ::= <positive integer expression>

I *

Values of string variables (of length ~) are ordered n-tuples o~ character values.

Su~string references denote ordered sub-tuples of string variables. If II S .. denotes

a string variable (of length, say, n) then: IIS(i)1I denotes the i-th character of S;

S(i ,k)1I denotes the sub-tuple of S consisting of the i-th through the (i+k-l)-th

character of 5; II S (i, *) II is equivalent to II SO, n-i + 1) II •

For purposes of type equivalency, IIS(i,k)" denotes a value of type string(k).

Example:

If a string variable is declared by

~ S :stri ng(6) of char := I ABeD EF' i

. then the following relations hold

S{l) = IA'

S(6) = 'F' .

S(1,6) = S

S(2,5) = IBCDEF"

S(2, *) = S(2,5)

S(1,*) = S.

H Release 1 does not support substring references-

SWL LANGUAGE SPECIFICATION 6.4.3
Subscripted Reference

. .

6.0 Variables, Attributes and Segments
6.4 Variable References Page: 6-7

6.4.3 SUBSCRIPTED REFERENCE

<subscripted reference> ::= <array variable> [<subscripts>] - -
<array variable> ::= <variable>

<S~bscripts> ::= <subscript> {,<subscript>}

<subscript> ::= <scalar expression>

A subscripted reference denotes a component 'of an array variable, whose value type

is the component type of the array variable., Subscript types must be equivalent to

the ,corresponding index types specified for the array variable. However, for pur-

. poses of computational equivalency, values of a subrange type and values of the

parent type are treated as being of equivalent type (the parent type).

Example:

If an array variable is ,specified by

var A: array [1. ° 5] of integer := [1,2,3,4,5] - -- -,
and' an integer variaqleis specified by

~ i: integer :=5

then the following relations hold

A[i] = 5

A[i-l] = 4

A[io_4] = 1.

SWL LANGUAGE SPECIFICATION

6.0 Variables, Attributes and Segments
6.4 Variable References

6.4.4 FI ELD REFERENCES

6.4.4-
Subscripted Reference

7 December 1973
Page: 6-8

<field reference> ::= <record variable>. <fjeldselector>

<record variable> ::= <variable>

A field reference denotes a field of a record variable. Since field selectors are

unique only within the scope of their parent record type, the record variable must

be specified. The field denoted by a field reference may be of record type, in

which case

<record vari abl e>. <fie Id sel ector>. <fiel d se I ector>.

becomes a valid field reference.

The field ifentifiers within a ·variant are available as field se.lectors only within the

constituent statement list of a variant ~ statement (c.f., Section 10.2.8).

Example:

For the record variable defined by

var R: record age : 6 .• 66,

. married, sex : boolean,

date : record day : 1 .. 31,

month: 1 :. 12,

year : 70 ~. 80.

recend,

recend·

:= [23,false'~/[3,5,73]]

the following relations hold

- R.oge = 23

R. date. yea~ .= (3 •

SWL LANGUAGE SPECIFICATION

6. a Variables, Attributes and Segments
6.5 Segments and Segment Declarations Page: 6-9

SEGMENTS AND SEGMENT DECLARATIONS

ment declaration> ::= segment <segments> ,<segments>

<segment

<access

. . . .

::= <segment identifiers> : [[<access attributes>]

entifiers> ::= <segment identifier>

.:= <access attribute>

A segment is a static storage a a for specifie . variables and procedures. The access

'a ~ubset of that segment's access

attributes to be supported will b

[read], [read, write]

Example:

info : [read, wri te] ;

to be ina particular segment mL'st be

combi nations of segment access

dependent, but will include

name table: [symbol_info] array [alot] of name I

attribute_table: [symbol_info] array [alot] of attr I

keywords: [symbol_info,read] array [32] of name i

SWL LANGUAGE SPECIFICATION

7.0 Blocks r Modules,. and Compilation Unit
7.1 Declarations

7 December 1973
Page:. 7-1

7.0 BLOCKS, MODULES r AND COMPILATION ·UNIT

7.1 DECLARATIONS

Through the use of a declaration an identifier can be declared as a symbol with

specific declared attributes. The range of references over which the identifier

retains its declared meaning is known· as the IIscope ll of the identifier.

<declaration list> ::= <de~laration>{i<deciaration>}; I <empty>

<declaration> ::= <micro declaration> .{c.f.} 12.0)

<segment declaration> (e,f' l 5.0)

<constant declaration> (c.fo r 5.1)

<type declaration> (c.f., 4.1)

<variable declaration> (c.fo, 6.1)

, I <module declaration> .~Oif'l 7.3)

<label dedaration> (c.f., 8.2)

.<procedure declaration> (c.f., 8.1)

SWL LANGUAGE SPECIFICATION

. -'
. .

7.0 Blocks, Modules, and Compilation Unit
7.2 ·Blocks

. 7.2 BLOCKS "

7 Dec~mber 1973
Page: 7-2

Unless further limited, the scope' of an identifier is the block in which the identifier

is declared. Thus, the symbol is k'nown withi.n the block and the blockls inner

blocks, but is unknown outside the' block.

<block> ::= . <begin statement> (c. f., 10.2.1) "

I <procedure 'declaration> (c.f., 8.0)

Example:

var choi ces : set of I BI • 0 IVI - . -- ,
last, rcsol t : uri ion (bdc!e'cn I 181 • 0 lyl);

begin

~ last: [static] IN •• .'ZI;

while last < IZI do

last := #succ· (last);

if last in choices then

result := last

orif last = IZI then

last := IAI;

result := false

ifend

whilend \
end .<

-'
.!£.. ~ (boolean :: result) then

last := result

ifend

" Release :L does not support begin blocks.

SWL LANGUAGE SPECIFICATION

7~O Blocks, Modules, andCompilaHon Unit
7.3 Modules

3 MODULES

Ie is a shield around a set of declarations.

7 December 1973
Page: 7,...3

declaration> := module [<module identifier>] [«prongs>)];

<declaration' list>

modend [<module identifier>]

An identifier declared

unless the identifier is de lared as a prong •

. <prongs> ::= <identifier ist>

·,<modute.identifier>.· ::= <i

referenced module·

Declaring an identifi~r as a prong maK immediately outside

the module.

Example:

module (upper_case);

.~ mine : set of u per_case;

type upper_case •• 'Z'

modend

upper_case = 'A'

odule;

'Zt. . . ,

var mine : set of upper_case

mod end

.,

SWL LANGUAGE SPECIFICATION

7.0 Blocks,. Modules, and Compilation Unit
7.4 Global Variables

7 December 1973
Page: '7-4

Note that a module is not a block and that the declaration within the madule are

evaluated when the declarations of the black ·containing the module are 8valuGted.

7.4 GLOBAL VARIABLES

A variable declared with the xdcl, xref, or e)(te~nGI attribute (c.f., 6 0 2.3) is a

~ global variable in the sense that it can be referenced by any other program

that declares it.

7.5 .COMPILATION UNIT

A compilation unit is the basic unit of input that can· be compiled.

module (moduleidentjfier>]
<compilation unit> ::= <madule deeloratiafi) <declaration 1 ist)

modend [<module identifier>]

A • bl did . hO .neclaration ·.J·i.st . 0 . d d r ° : ny vana es ec are. WI t In tne .olJt€lrmost mo4JIe·out not In a proce ure ec aratlon

. will implicitly have the static attribute. AfiY vGriable thGt is declGred GS GlPFOFlg- .

il=l the orJtermost modrJle iuill impliCitly be siven the xdcl attribute unless it WQS

-declared with the xref or extemol attribute.

7.6 FIELD SELECTORS

The scope of an identifier that is a field selector is the record definition itself ..

(e.f., 4.3.4, Record ~ype).

SWL LANGUAGE SPECIFICATION

8.0 Procs, Coprocs, and Labels 7 December 1973
Page: 8-1

8.0 PROCS, COPROCS, AND LABELS

A procedure declaration defines a portion of a program and' associates an identifier

with it so that it can be activated (i .e., executed) on demand by other statements

in the language. A procedure can return a value of some basic type, in vh ich

case it is referred to :IS ci function and is invoked as a factor in an expression. If

a procedure returns no value it is invoked by a procedure call statement. or Q copro ...

cess create stotememt.

The value' of a function is the value last assigned to its procedure identifier before

returning {either by falling through the procend or by an explicit return statement}.

A procedure call statement causes the exec.ution of the .constituent declarations and

statement lists of the procedure after substituting the actual parameters of the call

for the formal parameters of the declaration. Control returns to the next statement in

line.

statement creates the necessary environment for the execution of a pro

A coprocess is a separate synchronous process.

returning in line,

execution of a set of the single

and forth

coprocess causes execution to

resume statement of the- cop­

esume statement designating that coprocess

declaration list of the procedure used

SWL LANGUAGE SPECIFICATION

. 8.0 Procs,Coprocs, and Labels
8. 1 Procedure Declarations

8. 1 PROCEDURE DECLARATIONS

7 December 1973
Page: 8-2·'

<procedure declaration> ::= proc [xrefJ <procedure identifier> [<parameter list>] .

[<return type>]

proc [k <proc attributes> d] <~rocedure identifier>

[<parame.ter list>] [<return type>J;

<d~claration list> <statement list>procend [<procedure identifier>1

<procedure' identifier> ::= <identifier>

<function identifier> ::= <procedure identifier>

. .
The first form is used to refer to a procedure which has been compiled as part of a

different unit of compilation."' The procedure tnusthave"bee~qec'laredwHh·'the'y.dcl

attribute, and with ~n equivalent parameter list and return type in that unit.

The second form declares the procedure identifier to be a proce,dure of the type

specified by its parameter list and return type,' and associates the identifier wit~

the constituent declaration list and statement list of the declaration •

. The type of the procedure is elaborated on entry to the blo~k in which it is declared

and remains fixed throughout the execution of that block, i. e., all variable bounds,
"

lengths, or sizes are' evaluated at that time. ' .

Outermost level procedures, .i_ e., those wrose declarations are not contained in

another procedure, must th.erefore have a fixed type detenninedat compile time.

Thus none of its parameters may be of a variable bound type. Note that this

.restriction holds with respect to the xref form of declaration since by definition

it must refer to an outermost level procedure (Section 8. L 1, PROC ATTRIBUTES).

SWL LANGUAGE SPECIFICATION

8; 0 Procs, Coprocs, and Labels
8. 1 Procedure Declarations.

8. 1. 1 PROC ATTRIBUTES

8. 1. 1
Proc Attributes

7 December 1973
Page: 8-3

Proc attributes are essentially extra-linguistic features in that they have an effect on

the output produced by the compiler rather than an effect on the meaning of the

program.

<proc attributes> ::= <proc attribute> ~oe attribute> I
<proc attribute> ::= xdcl I repdep I <segment identifier>

The attribute xdcl may only be used on a procedure declared .at the outermost level,

i.e., not contained in another procedure. It specifies that the procedure should be

made referenceable from other units of compilation which have a declaration for the

same procedure identifier with the xref attribute.

specifies that the procedure is potentially

and use of those portions

tion dependent (see

The attribute specifies that the '':0

should be allocated to the

data carrying the same segment identifier.

SWL LANGUAGE SPECIFICATION

8.0 Procs, Coprocs, and Labels
8. 1 Procedure Declarations

8.1. 2 PARAMETER LIST

8. 1.2
Parameter List

7 December 1973
Page: 8-4

Variables that are referenced but not declared in ,the body of a procedure follow normal

scope rules, i.e., the references are bound to the declaration environment of the pro­

cedure. A parameter list is a set of variable deClarations which provides a mechanism

for the binding of references to the procedure call environment. This is accompl ished

by providing the procedure with a set of values and variables - so called actual param­

eters .- at the po int of co II.

<parameter list> ::= «par~meter segment> { ; <parameter segment> })

<parameter segment> ::= <method> <parameters> { , <paramet~rs> }

<melnod> ::= val I ref

<parameters> ::= <parameter> t " <paramete,r> } : ..[.EreQ~J..J <5WL type>

, <parameter> ::= <identHier>

Two methods of passing parameters 'are provided '- call-by-value, designated by val,

and call-by-reference~ designated by ref.

; A caH-by-vcilue parameter results. in the creation of a variable of the specified type

local to the, body of the procedure. The value of the corresponding actual parameter

is assigned to this variabl,e at the time of the procedure call. If the form 0.\ parameter

is an adaptable array, ,string, or reco~d then the variable thus cr~ated is an array,

string, or' record of the same size and shape as the corresponding actual.pararneter.

The type of a formal call-by-value parameter may be any data type or adaptable

type except for the so-called non-value types. The non-value types are: file,'

stack, 'heap and sequence, arrays of non-value types, and records containing a field

of a non-value type.

bound
N.B. Release 1. does not support variab'leAtypes, adaptable types,

,or any of the non-value types.

SWL LANGUAGE SPECIFICATION

8.0 . Procs, Coprocs, and Labels
8. 1 Procedure Declarations .

8.1.3
Functions and Return Types

7 December 1973
Page:. 8-5

. A call-by-reference parameter results in the formal parameter designating· the corres­

po~ding actual parameter throughout execution of the procedure. Assignments to the

formal parameter thus cause changes to the variable that was passed as the correspond­

ing actual parameter.

The type of a formal, call-by-reference parameter ,may be any SWL type (including,

,the non-value types, and the formal types ~ label, procedl!re and coprocess).

The read cHtribyt9, QPpli@d to 9ith8r kind of parQr+l8t8r prohibiJ:s 8xplicHQssisnments

.to that parameter or an)' component. of it.

The procedure type is elaborated on entry to the block in which it is declared, and

remains fixed throughout the execution of that block, i. e., ail variable bounds,

lengths, or sizes occurring in the type of the parameters are' eva luated once on

entry to the block, "and remain fixed for all calls on the procedure within that

brock.

8.1.3 FUNCTIONS AND RETURN TYPE

A procedure may return a value ofa specified type, in which case it' is referred to as

a function. . A function is activated by a function designator (see Factors in Chapter 9)

which is a componeritof an expression. The" function is given a value by assigning to

its procedure identifier. The type of the value returned is specified by the return

type.

<return type> ::= <b~sic type>

SWL LANGUAG~ SPECIFICATION

8.0 Procs, Coprocs, and Labels
8. 1 Procedure Declarations

Examples:

8. 1.3
Functions and Return Types

7 December 1973
Page: 8-6

proc GCD (val m, ninteger; ref x, y, z : integer);

var a 1, a2, b 1 ,b2 I C; d I q, r : integer; "m > 0, n > 0"

IIGreatest Common Divisor x of m and n,

Extended Euclid's Algorithm"

a 1 := OJ a2:= 1; b 1 := 1; b2 := OJ

c := m; d:= ni

while d /= 0 do

II a 1 * m + b 1 * n = d, a2 * m + b2 * n = c,

gcd(c, d) = gcd(m, n)1I

. q := c / d; r:= c mod d;

a2 := a2 - q * ali b2:= b2 - q * b 1;

c :: d; d:= ri

r := al; a1:= a2; a2:- rj

r := b 1; b 1 := b2; b2:= r

whilendj

x := Ci y:= a2; z:= b2

IIX = gcd(m, n), y * m + z * n = gcd(m, n)1I

procend

r
I

SWL LANGUAGE SPECIFICATION

8.0 Procs, Coprocs, and Labels
8.2 Label Declarations

.. 8~ 2' LABEL DECLARATIONS

7 December 1973
Page: 8-7

Label declarations serve to define 'those labels of, the block which may be assigned

to a pointer to label variable, passed as a parameter to a procedure or function,

or serve' as the destination of a goto exit statement which crosses a blo~k oj­
procedure boundary (see 10.3.8, GOTO STATEMENTS). '

<label declaration> ::= label <label> { , <label>}

<label> ::= <identifier>

All labels in the list must also appear in the block labeling a statement which is

.. not contained within a nested block' (see 10.0, STATEMENTS).

:~::::::~;;th~o~s~e~l~ab~e~l~s~w~h~i~c~h~a~re::a:ss:i:gn:e~d~;~pa~s~s~ed~aJs~a~p~a~r~am~e~te~r~~~F~~:'tn~r~ destination of a non-local gotost uiredtobe declared in a label

ut othe r labels of the block are permitted.

ISWL requires a11 labels to be declared.

SWL LANGUAGE SPECIFICATION

9.0 Expressions

9.0 EXPRESSIONS

7 December 1973
Page: 9-1

Expressions are constructs denoting rules of computation for obtaining values of variables

and generating new values by the application of operators. Expressions consist of oper­

ands, i.e., variables and constants, operators, and functions.

The rules of composition specify operator precedence according to five classes of opera­
'The not operator has

tors. :rhe t~'pe testing operators ~0N-Q..".the highest precedence, follolAl€d' by the no~

.operator, followed by the so-called multiplying operators, then the so-called adding

operators, and finally, with, the lowest precedence, the relational operators. Sequences

of operators of the same precedence are executed from left to right and the left oper­

and of a dyadic operator is evaluated before the right operand. The rules of precedence

are reflected by the following syntax:

(collformity) .• ~ <type ideliliRer) <Iype fest operator) (ulliorr--vetr'iable)ow"""c",c,

'I <poililer variable> <poiR.ter type test operator> <uRiol'l variable>

<factor> ::= <confofFl'lit)'> I <variable> I <constant>

J <definite value constructor> (I\<variable> 11\<label> w

I 1\ <procedure i.dentifier> I <function designator>

I «expression» I <not operator> <factor>

<term> ::= <factor>1 <term> <multiplying operator> <factor>

<simple expression> ::= <term> I <sign> <term>

, .

<simple expression> <adding operator> <term> ' -,

,<expression> ::= <simple expression>

<simple expression> <relational operator> <simple expression>

<type idcl'lHficr> ::- <idcl'ltifier)

<union .. cariable> ;:'- <variable>'

<function designator> ::= <procedure reference> «actual parameter>{, <actual parameter>}>

I <procedure reference? () /.

w Re lease 1. does not support A<labe 1> or ,,<procedure identifier> •

SWL LANGUAGE SPECIFICATION

9.0 Expressions
7 December 1973
Page: 9-2

<procedure reference> ::= <procedure identifier> I <pointer to procedure>1\ ~

.<actual parameter> ::= <expression> I <procedure identifier> I <label>

<type test operator>:: ::

,<pointer type test operator> ::- ::-

<n.ot operator> :: = not

<multiplying operator> ::= * _.I / I mod and

<sign> ::= + I '-

<adding operator> ::=. + I - I or I xor

<relational operator> ::= < I <= I > I >= I = I /= I in

Examples:

Con form i ti 9-ST

Factors:

Terms:

~pint 11- bosi evar

,real II basievor

x

15

(x+y+z)

f{x + y) .

$colorset [red~ c, green]

not p

,/\a[i,iJ

x *. y

oj / 3

. p and q

. (x' <= y) and {y < z}

~ Release 1 does not support <pointer to procedure) •

~~ Release 1 does not st.lpport. procedure or label parameters.

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.1 Evaluation of Factors

9.1 EVALUATION OF FACTORS

7 December 1973
Page: ' 9-3

·The value of a conformity os 0 foetor is tho boolean value true if the type test is

. successful and fal S9 otherwise (S99 9.2.1, Type Test Operators).
. -- ' .

The value of a variable, as a factor, is the value last assigned to it as possibly

modified by subsequent assignments to its componentso

The value of an unsigned number is the value of type integer or real denoted by it in

the specified radix system.

String constants consisting of a single character denote the value of type char of the

character between the quote marks.

String ,constants of n (n> 1) characters denote the string (n) value consisting of the

characters between the quote marks.,

The constant nil denotes 'a null pointer value of any pointer type.

A constant identifier is replaced by the constant it denotes. If this in trun is a

constant identifier the process is repeated until a constant of one of the above

forms results. The value is then obtained as above.

'The value of 'a definite value constructor is the value obtained from the values of

its constituent expressions of type specified by its type identifier.

The value of an up-arrow followed by a variable of type T is th'e pointer value of

type /\T that- designates that variable.

SWL LANGUAGE SPECIFICATION

9.0 Expressions.

Simple expressions:

Expressions:

x + y

-x·

huel or hue2

i * i + 1

7 December 1973
Page: 9-4

hue - $colorset [red, green]

x = 1

p < =2·

(i < j) = (i < k)

c in hue 1

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.1 Evaluation of Factors

7 December 1973
Page: . 9-5

The value of an up-arrow followed by a procedure identifier of proc type P is the

pointer to procedure value of type t\ P that designares the current instance of declara­

tion of that procedure. M

The value of an up-arrow followed by a la~el is the pointer to label value of type

t\label that designates the current instance of declaration ~f the label (see 10.0,

STATEMENTS). M

A function designah?rspecifies the execution of a Function. The actual parameters are

substituted for the corresponding formal parameters in the declaration of the function.

The body is then executed. The value of the function designator is the value last

assigned to the function identifier. The procedure reference must be to a procedure

with a return type. The meaning of, and restrictions on, the actual parameters is

the same as for the procedure call statement (see 100 3.1).

The value of a parenthesized expression is the value of the expression which is en­

closed by the parentheses.

The type of the value of a factor obtained from a variable or function designator

whose type is a subrange of some scalar type is that scalar type.

" Release 1 does not support pointer to procedure or pointer
to label values.

SWL LAN GUAGE SPECIFICATION

9 0 0 Expressions
9~2 Operators

9.2 OPERATORS

9.2.1
Type Testing Operators

7 December 1973
Page: '9-6

Operators perform operations on a value or a pair of values to produce a new value.

Most of the operators are de'fined only on basic types, though some are defined on

most types. The following sections ,define the range of applicability, as well as

, ,resul t, of the defined operators.

TYPE TESTING OPERATORS

used to determine last assigned

the type identifier on the'type of the value of

the union variable on the

The pointer type test operator .. =} returns the ean \(J lue ~ if the pointer

variable on the " type pointer to the type oft yalue of the union variable

on the right. th~n the poi nfer variabl e on the to designate

union variable; otherwise the value is false and

9.2.2 ,NOT OPERATOR

The not operator, ~, applies to factors of type boolean and set. When applied to
, ,

'type boolean the meaning is negation - i.e., not true == false and not, false, == true.
. -- -- --

When applied to a set the meaning is set complement with r~spect to the base type -

i.e., the set of all elements of the base type not contained in the specified set.

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

9.2.3 MULTIPLYING OPERATORS

, 9.2.3
Multiplying Operators

7 Decembe'r 1973
Page: 9-7

The following table shows the multiplying operators, the types of their permissible­

operands, and the type of the result.

Operator Operation Operands Resul t

* multiplication real real
integer integer

/ integer division integer integer
for a, b, n positive integers
a/b= n ,where" n ,is the Jargest intE;)ger

such that b * n < = a
{-a)/b: (a)/(-b):"; (a/b) , alb: (-a)/(-b)

real division real real -- -

mod remainder, function integer integer -- a mod b: a - (a/b> * b -- .

and logical landl boolean boolean - true and false: false, true and hue: true
false and false: false, false and true: false

set intersection set of type set of type

- the ,set consisting of elements common
to the two setso

-

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

9.2.4 SIGN OPERATORS

9.2.4
Sign Op~rators

7 December 1973
Page: 9-8

The + operator can be applied to integer and reattypes only. It denotes the identity

operation and results in integer or oreal type respectively - i.e., a E + a.

The - operator can be applied to integer and real types only. It denotes sign

inversion - i.e., -a == f6 - a.

9.2.5 ADDING OPERATORS

The following tabl e shows the adding operators, the types of their permissible

operands, and the type of the result.

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

Operator Operation

+ addition'

subtraction

boolean difference
true _ true: false, true - false;: true
false - true _ false, false - false _ false -- -- -- -- --

set difference
- the set consisting of elements of the
left operandt:,at aie not also elenlents
of the right operand.

logical 'or'
true or true == true, true o(false,~ true .

, fcilseor true~uel false or false. ~ }o!se. -- -- -- ----',-- --

9.2.5
Adding Operators

, 7 December 1973
Page: 9-9

Operands

integer
real

integer
real

boolean

set, of type

b<;>olean

.,.", :"

Result

integer
real,

integer
real

boolean

set of type

boolean

.. " .-,:

xor

set union
- the set consisting of all elements of
both'sets.

exclusive' 'or'
true xor true == false
true XOr false == true
false xor true == true
false Xor false: false

symmetri c difference

.. ' .. :.,

- the set of elements' contained in either
set but not both sets

sefof'type' .::! of type

boolean bool.ean

set of type set of type

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

9.2.6 RELATIONAL OPERATORS

9.2.6
Relational Operators

7 December 1973
Page: 9-10

Relational operators are the, primary' means of testing values 'in SWL. ' They return the

boolean value true if the specified relation holds between the operands, and the value

false otherwise.

9.2.6.1 Comparison of Scalars, Reals,and Strings.

All six comparison operators < (less than), <= (less than or equal to), > (greater than),

>= (greater than or equal to), = (equal to) and /= (not equal to) are defined between

operands of the same scal or type, operands of type real, and operands of type string or

'string and 'char.

For operands of type integer or real they have their usual meaning.

For operands of any ordinal type T, a = b if and only if a and b are the same value;

a < b if and only if a precedes bin the ordered list of values defining T. .•

For operands of type, string (n) or string (1) and char, comparison is defined in the

following way:

If one of the operands is ·of type char it is converted to the string (1) value consisting

of that character; otherwise the strings must be of the same length.

Let n be the I ength of the resul ting string val ues a and b (n >= 1), and cp be any
, --

of the six comparison operators, then:

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

a (1) .<?E. b (1)

or a {i)::; b (i) for all i (1 <=<k)

and a (1<) £E b (k) (1 < k < = h)

9.2.6.2 Relations Involving Sets

9.2.6
Relational Operators

7 Dece.mber 1973
Page: 9-11

The relation a in S is true if the scalar value a isa member of the set value 50 The

base type of the set must be the same as I or a 5ubrange of, the type of the seal are

The· set operations = (identical to), /= {different fromL <= (is included in), and

>= (includes) are defined between two set values of the same base type.

Sl = 52 is true if all members of 51 are contained in 52, and all members

of 52 are contained in 5 J.
Sl /= S2is true when 51 = 52 is false.

Sl <= S2 is true "if all members of Sl are also members of 52.

Sl >= S2 is true ·if all members of 52 are also members of 51.

9~2.6.3 Relations Involving Other Types

Certain types in the language cannot be compared. These are stacks, heaps, sequences,

unions, variant records, arrays of non-comparable component types, and records con­

taining a field of a non-comparable type. The remaining types (including pointers

to non-comparable types) are comparable for equality (=) and inequality (/=).

SWL LANGUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

9.2.6
Relational Operators

7 December 1973
Page: 9-12

Two arrays are equal if their types are the same (i .e., subscript bounds and component

types are identical) and elements with correspond(ng subscript values are equal.

Two records are' equal if they are of the· same type and their corresponding fields

are equal.

Two pointers to procedure are equal if they designate the same instance of declaration·

of 0 procedure. M

+wo pointers to coproc are equal' if the), designate the same coproccsso

Two pointers to label are equal if they designate the same instance of definHion

ofa'labclo M

Pointers of other types are equolif they designate the same variable. For adaptable

pointers this means that their instantaneous type" (i.e'., including bounds or lengths)

must be the same as the pointer they are being compared with. MM

The following table shows the rel.ational operators, the types of their permissible

operands, and the type of the result~

M Release 1 does not support pointers to procedure or pointers
to label.

MM Release. 1 does not support.adaptable types.

. SWL LAN GUAGE SPECIFICATION

9.0 Expressions
9.2 Operators

Operator Operation

< - less than
<= - less than or equal to
> - greater than
>= - grearer than equal to
= - equal to
/= - not equal to

in set membership test -

= - idenHty
/= - differ~nt

<= - is contained in
>= - contains

= - equal to
/= - not equal to

Left Operand

any seal artype T
real
string (n)
string (1)
char --

any scalar type T

set of T
where T is any
scalar or subrange
type

any comparabl e
type T

9.2.6
Rei atioflOlOperators

7 December 1973
Page: 9-13

Right Operand

T
real
string (n)
char
string (1)

set of T'
where T' is T
or a subrange
of T

set of T --

T

Result

boolean
boolean
boolean
boolean·
boolean

boolean

boolean

.
boolean

sw~ LANGUAGE SPECIFICATIQN

10.0 Statements

10.0 STATEMENTS.

7 December 1973
Page: 10-1.

Statements denote algorithmic actions, and are said to be executable o ' A statement

list denotes an ordered sequence of such actions. A statement is separated from its

successor statement by a semicolon. The successor to the last staiement ofa state;'"

ment list is determined by the structured statement or procedure of which it forms a

part.

A statement may be labelled by preceding it by an identifier followed by a colon.

This allows j'he statement to be explicitly referred to by other statements (e.g., goto,

exit, cycle). Such a labelling of a statement constitutes the declaration of the

identifier as a label, and' hence the identifier must differ from all other identifiers·

declared in the same blocko.

If an identifier labels a statement of the constituent stdtement list of a procedure

declaration (see Section 8.0) ora begin statement (see Section 10.20 1) r then its

scope is that procedure declaration or begin statement. If it labels a statement

of one of the constituent statement lists of other structured statements (see section

!0.2)r then its scope is that statement list. Thus it is impossible to refer to a

label contained within a procedure declaration or structured statement from outside

that· declaration or statement, or from oth~r statement lists of the same structured

. statemento "

A label may optionally follow a structured statement other than the repeat state-

ment, in which case is must be identical to one of the labels labelling that statement.

This is for checking purposes only, and does not affect the meaning of the program •

.. This paragraph in the SWL specification -(7 Dec. 73} is
incorrect and must be replaced.

SWL LANGUAGE SPECIFICATI,oN

10.0 Statements
7 December 1973
Page: .10-2

<statement list> ::= <statement> { ;<statement>}

<statement> ::= <unlabelled statement> I <label> .: <StarcfAent>(un labe lled

<unlabelled statement> ::= <assignment statement> .

'0 •

. 1 <structu°red statement> [<lab~l> l
I <control statement>

I <Storage management statement>

I <input-output statement>

<label> ::= <identifier>

~xample:

check_range: if val < 0 then tagfld := 0

,orif val),oound thentagfld ,:=.bound

else tagfld:= val

ifend check_range

statement>

SWL LANGUAGE SPECIFICATION

10.0 Statements
10.1 Assi gnment Statemen ts

7 December 1973
Page: 10-3

10.1 ASSIGNMENT STATEMENTS

The assignment statement is. used to replace the current value of a variable by a hew

value derived from an expression, or to define the value returned by a function

desi gnator.

<assignment statement>::= <variable>·= <expr~ssion>

<fundionidentifier> := <expression>

The left part of the assigrimentoperator (.:=) is evaluated to obtain a. reference to some

variable. The expression on the right is evaluated to obtain a value. The value of the

referenced variable is replaced by the value of the expression.

The variable on the left may not be of type file, sequence, stack or heap,nor may

it be an array of such, nor a record containing a field of those types.

The variable on the left and the expression on the right must be of identical types

except as noted below:

1. . The type of the variable may be a subrange of the type of the

expression. If the value of the expression is not a value of the

subrange the program is in error.

variable is a union variable, then the value

maybe anyone 0

In thi s case, the ty

united.

SWL LANGUAGE SPECIFICATION

Statements
Assignment Statements

7 December 1973
Page:· 10-4

3. If the left part is a string or substring designator of length 1, then

the expression may be a char value, and if the left part is of type

char then the expression may· be a string value of length 1.

4. If the left part is a variable bound array then the expression must be

an array with the same current values and types of subscript bounds,

packing attribute, and component type. W

5. If the left part :is an adaptable pointer to type, the expression must

be d pointer toone of the types to which the pointer can adapt. W

Note that generally a pointer value has a finite lifetime (see Section 5) different·

from that of the pointer variable. Procedures, labels, and automatic variables cease

to exist on exit from the block in which they were declared. Allocated variables

cease to exist when they are freed or popped. Attempts to reference them via a

designator beyond their lifetime is a programming error and could lead to disastrous

results.

Examples:

i :=i + 1 ptrl := I\a [iJ
a [iJ := 15 a := b [iJ

ptr 1 . := ptr2 a [i]:= b [i , i]
buffer (i,20) := "ERROR IN DECLARATION II

myunion := true

myunion := x/15.0

errorbranch:=/\I abel 1

strptr := I\buffer(i)·

W Release 1 does not support variable bound or adaptable types.

SWL LANGUAGE SPECIFICATIQN 10.2.1

10.0 Statements
10.2 Structured Statements

10.2 . STRUCTURED STATEMENTS

Begin Stateme~ts

7 December 197~.
Page: 10-5

Structured statements are constructs composed from statements lists. They provide for

storage C1llocation and scope control,' selective execution, or repetitive execution of

their constituent statement lists.

<Structured statement> ::= <begin statement> W

10.2.1 BEGIN STATEMENTS W

<if statement> I <loop statemen.t>

I <while statement> I <repeat statement>

<for statement> I <case statement>

<variant case statement> <conformity case storer-liell!)

Begin statements are blocks, and constitute the scope of their constituent declarations.

On entry to the begin sta.tement all declarations are evaluated, and storage allocated

for automatic variables. The statement list is then executed. On exit I either through

completing execution0f the last statement of the statement list or through an explicit

transfer of control, all identifiers declared within the: begin statement become inacces­

sible, and the values of automatic variables become undefined.

The successor of the last statement of the statement list of a begin statement is the

successor of the begin statement.

<begin statement> ::= begin <declaration list> <statement list> end

Example:

begin:::::. temp: integer; temp .= i, := ji := temp end

W Release 1 does not support the begin statement.

SWL LANGUAGE SPECIFICATION

10.0 'Statements
10.2' Structured Statements

10.2.2 IF STATEMENTS

10.2.2
If Statements

7 December 1973
Page: 10-6

. The if stotement provides for the execution of one of a set of statement lists depend­

. ing on the values of Boolean expressions.' The Boolean expressions following the if

o'r orif symbols 'are evaluateq in order from left to right until one is found whose

value is true. The subsequent statement list is then executed.

·If all Boolean expressions are false then either no statements or the statement list'

following the else symbol is executed.

The successor to 'the last statement of a constituent sl'atement list of· an if statement is

the successor of the if statement.

<if statemerit> ::= <alternative parts> ifend

1 <alternative parts> else <statement list> ifend

<alternative parts> ::= if <expression> then <statement list>

{ orif <expression> then <statement' list>}

Examples:

. if x < y' then x:= y ifend

if x <= 5then Z := y + 1; y := y + 5

orif x > 30 then z := y -I; Yi Y := z - --
orif x = 15 then z := y * z - -
else z:::; z * Zi Y := 2 * Z + 15

ifend

SWL LANGUAGE SPECIFICATION

1000 . Statements
10.2 Structured Statements

Examples:

. .
while a[iJ /= x do

while i > 0 do

.­. + 1 whilend

if oqd (i) then z := z* x ifend;

i := i / 2;

. x := x * x

whilend

10.2.5 REPEAT STATEMENTS

10.2.4
While Statements

7 December 1973
Page: 10-8

A repeat statement controls repetitive execution of its constituent statem~rit list.

<repeat statement> ::= repeat <statement list> until <expression>

The expression controll ing repetition must be of typ.e Boolean. The statement list

between the symbols repeat and unti I is repeatedly {and at least once} executed

. until the expressionhecomes true. The repeat stat~ment

repeat S until· e

is equivalent to

begin S; if e then else repeat S until e ifend end

The successor of the last statement of the constituent statement list of a repeat state­

. ment is the expression following unti I.

SWL LANGUAGE SPECIFICATION· , ,.

10.0 .Statements ,
10.2 Structured Statements

Example:

repeat k := i mod ii'

i := k

until i := 0

10.2.6 FOR STATEMENTS

10.20 5
Repeat Statements

7 December 1973
Page: 10-9

The for statement indicates ·that its constituent statement list is to be repeatedly exe­

cuted while a progression of values is assigned to a variable which is called the

control variable of the for statement.

<for statement> ::= for <control variable> := <for list> do <statement list> fore,nd

<for list> ::= <initial value> to <final ~alue> [~<i:refflent>]·
I <initial value> downto <fin'al value>.[~ <deefeFfleRt~

<control variable> ::= <variable>

<initial valu~> ::= <expression>

<final value> ::= <expression>

<increFRent> u= <expression>

.<decreFRent> ::- <C>Epression>

The control variable, initial value~n4inal value end increment or deereFfleR(~~stall be

of the ·same scalar type or subran,ges of the sanie type. The control variable FRa)' not be.

EI GOFRponent of EI paolEed .. er cn::miFReg. s'trueture,· .snd when the "by"option is I:Ised ml:lst

be typeinteser or 5ubronse thereof. 'ISWL requires the.contro 1 variable to

be simp1e and either local or global-

SWL LANGUAGE SPECIFICATION

10.0 . Statements
10.2 Structured Statements'

10.2.4
For Statements

7 December 1973
Page: 10-10

The sequence of values assigned to the control variable for which the'statE';ment list

• d • d . d . I I b h • ~ • I I andf~ I I .J • IS execute I IS etermme so e y y t e Inlha va ue ma va ue, anu IAcreme.A-f:..

-G-F-dscremeAt. Assignment to the control variable on a given iteration will cause

its value to be changed for ~he remainder of that iteration, but its value will be

reset to the next value of the sequence prior to the next iteration.

The initial valu:vtdfinal value, -'lAd increment or oecFeme.A-i:- are evaluated once on

entry to the for statement, ,as is the name of the control variable. Thus, subsequent

assignments to components of these expressions have no effect on the sequencing of

the statement.

If the initial value is greater than the final value in the lito" form, or if the initial

. vCllueis less than the final value in the lido \vn ro II fOlm,then no assignment is made

to the control variable and the statement list is not executedo

If no assignment is made to the control variable by the statement list, and the state­

ment is exited normally, then the value of the control variable is the final value.

A for statement of the form

"

for'Vi:= to n do'S forend

is equivalent to

SWL LANGUAGE SPECIFICATION

10.0 Statemen'ts
10.2 Structured Statements

10~2.6
For Statements

7 D~cember 1973
Page: 10-11

begin ~ control: "TYPE (w), temp, limit TY~E (w)

control:= "Wi 'temp' :=, ii, limit: = ,ni

.!i temp <= limit then'

while temp < limit do control 1\:= temp, 5i temp :=#succ(temp} whilendi -
control,,:= tempi

Si

Hend

end

where control, temp and limit .areidentifiers not appearing in the s"tateinent list 5, and

TYPE' is ~ function returning the type of its argument (not availabl e in 5WL)o

A for'stdtementdf'the "form

for w' := i downto n do 5 forend

is equivalent to

begin ~ control' : "TYPE(w), temp, limit: TYPE(w)i

control ::= "Wi temp':= i" I imit:= ni .

.!i temp >= limit then ,

while temp> limit do control,,:= tempi Si temp =#pred(temp) whilendi

control" := tempi

S· ' .,
tfend

. end

SWL LANGUAGE SPECIFICATION' .

10.0 Statements
10.2 Structured Statements

statement of the form

i to n by inc' do S forend

is

:'/\ TYPE(w), limit, step,

10.2.6
For Statements

7 December 1973
Page:' 10-12

inc;

temp + step'

whilend

end

And a for statement of the

for w:= i downto

is equivalent to

end

: /\ TYPE(w), limit, step, temp

:= /\Wi temp := i; limit := ni step :=

while temp >= limit do

control /\ := tempi S; temp := temp - step

whilend

'sw~ lANGUAGE SPECIFICATION

10.0 Statements
10.2 Structured Statements

10.2.7
Case Statements

7 December 1973
Page: 10-13

The successor to the last statement of the constituent sta·teinent list of a for statement

is the calculation of the next value of the temporary control variable.

Examples:

for i := 2 to 100 do if a OJ > max then max := a[iJ ifend forend

for := 1 to n do

forend

for j := n dovmto ldo

x := OJ

. for k := 1 to n do x:= x + aCi, kJ * bCk, jJ forend;

cCi, jJ :=x

forend

for c := red to blue do q(c) forend

10.2.7 CASE STATEMENTS

A case statement selects one of its component statement lists for execution depending on

the value of an expression.

<case statement> ::= case <selector> of<cas~s> [else:. <Statement nst>] , casend .

<Selector> ::= <expression>

,<cases>::= <a case> I i <a case>}

<a case> ::= = <selection spec> 1, <selection spec>} = <statement list>

<Selection spec> :':= <constant scalar expression> [•• <col1stan! scalar expression>]

SWL LANGUAGE SPECIFICATION

10.0 Statements.
10.2 Structured Statements

10.2.7
Case Statements

7 December 1973
Page: 10-14

The case statement selects for execution that statement list '{if any} which has a

selection specification which includes the value of the selector, If no selection speci­

fication includes the value of the selector. the statement list following else is selected

when the else option is employedi otherwise the program is in error.

The selector and all selection specifications must be of the same scalar type or sub":

ranges of the same type. No two selection specifications may include the same

. values ti.e., selection must be unique}.

)'he successor of the last statement of a selected statement list is the successor of the

case statement.

Examples:

~ operator of

= plus = x:= X + Yi

= minus = x:= x - Yi

= times = x:= x * Y

casend

case· i of

= 1 =
= 2 =

= 3 =
=4=

else

casend

x := sin(x};

x ':= cos{x};

x := exp(x)i

x := In(x}

x := - x

'SWL LANGUAGE SPECIFICATION

10.0 Statements
10.2 Structured Statements

10.2.8 VARIANT CASE STATEMENTS

10.2.8
Variant Case Statements

. 7 December 1973
Page: 10-15

A variant case statement is us'ed to allow access to the variant fields of a record

according to the value of its tagfield.

<variant case statement> ::= case ~ <tag selector> of <cases>

[else <Statement list>] casend

<tag selector> ::= <record variable>· <tagfield>

<record variable> ::= <variable>

<tagfield> ::= <identi fi er>

<cases> ::= <a case> {; <a c~se>}

<a case> ::= = <selection spec>{,<selection spec>} = <statement list>

<selection .spec> ::= '<cons,tcmt scalar expression> [•• <constant scalarexpressi~n>]

Each selection specification list must identify a set of values which is identical to, or

a subset of, the set of values which select a unique variant associated with the tag

field in the corresponding record definition. The field identifiers of that variant are

available as field selectors in the associated statement list.

If the value of the tagfielddiffers from the values of 'all selection specifications the

statement list following else is selected and none of t~e field identifiers or'the variants

are made available as field selectors; if else was not specified the program is in error.

The successor of the selected statement list is, the successor of the variant case statement.

SWL LANGUAGE SPECIFICATION 10.2.8
Variant Case Statements

10.0 Statements 7 December 1973
Page: 10-16 10.2 Structured Statements

Examples:

!rE!:.'lextype = (basic, inconst, realconst,stringconst, identifier),

symbol = record

~ lex: lextypeof

= basic::':: name: symbolid, class: operation .
= inconst = value : integer, optimiz : boolean

= realconst = value : real

= stringconst = length: 1. • 255,stringbuf: I\striog(*)

= identifier = identno : integer,. decl : I\symbol·entry

cas end

recend;

var cursym : symbol, sign: boolean := false;

L 1 : insymbol;

L2 : ~ tag cursym·lex of

= basic =if cursym. symbolid = minus then sign := ~ sign; goto L1

orifcursym· symbolid = plus then· goto L 1

else error ('missing operand') .-
ifend;

= intconst = cursym· optimiz := (cursym. value < halfword) or pwr2 (cursym. value);

if sign then sign := false; cursym. value := - cursym.value ifend;

= realconst = if sign then sign := false; cursym. value := - cursym· valueifend;

= stringconst.=error ('string constant where arithmetic type expected');

= identifier =cursym· decl := symbolsearch (cursym. identno);

casend

if.,cursym. decl/\" typ /= constdecl then variable (cursym. decl)

else cursym := cursym. decll\."valuel\i goto L2

ifend

SWL LANGUAGE SPECIFICATION 10.2.~
Conformity Case Statements

10.0 Statements
10.2 Structured Statements

1 CONFORMITY CASE STATEMENTS

7 December 1973
Page: 10-17

case statement sel ects for execution one of its compone'nt

the type of the value last assigned to a union variable.

statement> . ,=

• nion variable> 2i <conformity cases> [else <sta ment list>Jcasend

<union variable> :.-.: <variable>

conformity case> {;<a conform' y case>1

<aconforr'nity case> ::= specification> = <stat list>

<type' specification> ,::= <poin

<pointer variable> ::=<variable>

to one of the types of the union

ther type specifiers in the state-

ment (i.e., type selection must be u ·que). If one e type speci fi ers is a poi nter

to the type of value ,last assigne to the union variable, I will be assigned a pointer

to that value and the associa d statement list will be execute. Within the starement

list the

If none of the

statement

error.

y an 'up arrow may he used to refer to

specifiers match the type of the value of the

lowing else is executed; if the else part is omitted the

the

selected statement list is the successor of the conformity case

SWL LANGUAGE· SPECIFICATION

10.0 Statements
10.2 Structured Statements

. = pbool

casend

(integer, boolean), S

: f\ boolean;

10.2.9
Conformity Case Statements

7 December 1973
Page: 10-18

SWL lANGUAGE SPECIFICATION 10.3.1

10.0 Statements
10.3 Control Statements

Procedure Call Statement

7 December 1973
Page: 10-19

10.3 CONTROL STATEMENTS

Control statements cause the creation or destruction of execution environments, the

transfer of control to a different execution environment or to a different statement in

the same environment, or both.

<control statement> ::= . <procedure call statem~nt>

I <create statement> I <destroy statement>

.·1 <resume statement> I <cycle statement>

<exit statement> I <return statement>

<goto statement> I <empty statement>

10.3.1 PROCEDURE CALL STATEMENT

A procedure call statement causes the creation of an environment for the execution of

the specified procedure and transfers control to thatpro'cedure.

<procedure callstatement> ::= <procedure refen'.nce> <actual parameter list>

<procedure reference> ::=<procedureidentifier> .1 <pointer to procedure>/\

<adual parameter list> ::=. «actual parameter> {,<actual parameter>})

<empty>

<actual parameter> ::= <expression> <procedure identifier> ""

I <label>

The actual parameter list must, be compatible with the formal parameter list of the pro­

cedure. An aCtual parameter corresponds to the formal parameter whi ch occupies the

same ordinal position in the formal parameter list.

" Release 1 does not support pointer to procedure- .

"" Release 1 does not support procedure or label parameters.

SWL LANGUAGESPECIFICATIO~~

10.0 . Statements
10.3 Control Statements

10.3.1
Procedure Call Statement

7 December 1973
Page: 10-20

The corresponding actual and formal parameters must be of the same type except for

the following:

1. If the formal parameter is call-by-value, the actual parameter may be

any expression which could b~ assigned to a variable of the type of

the' formal. (See 10.1 ASSI GNMENT STATEMENTS)

20 If the formal parameter is an adaptable string, the qctual parameter

may be a stri,!g variable or substring designator of any length. If

the formal were call-by-value then the actual may also be a string

value. H

3 0 If the formal parameter is an adaptable array, the actual parameter

may be any array variable with the sume packi ng attribute, number

of dimensions, types of subscripts, . and component type. If the

formal were call-by-value then the actual may also be an array

value with the same restri ctions. H

40 If the formal parameter is an adaptable record, the actual parameter

may be any record whose type is the same except for the shifty

field. The shifty field must be an adaptable string r array, or record

and the conditions under 2, 3, or 4 hold with respect to it. H

5. If the formal parameter is a ca.lI-by-ref procedure, then the actual

parameter must be a procedure re'ference to a procedure with the

same ordered I ist of parame'ter types and return type. HH.

6. If the formal' parameter is a call-by-ref label, then the actual

. parameter must be a label reference. HH

.. Release 1 does not support adaptable types.

HH Release 1 does not support procedure or label parameters.

SWL LANGUAGE SPECIFICATION ·10.3.1
Procedure Call Statement

10.0
. 10.3

Statements
Control Statements

7 December 1973
Page: 10-21

A call-by-value parameter causes the creation of a variable local to the procedure

of the type of the formal parameter,and assigns the value .of the actual parameter

to it. If the formal is an ·adaptable array, string or record, the local variable is

a fixed bound array, string or record of the same size and shape as the actual.

A call-by-ref parameter causes the formal parameter to .designate the actual parameter

throughout execution of the procedure. Assignments to the formal parameter thus cause

changes to the corresponding actual parameter 0 An actual parameter corresponding to

a call-by-ref formal parameter may· never be a component of a packed array or record.

Examples:

insymbol

transpose (a, n, m)

sum (fct, 0, 10001 x)

The create creation of a coprocess from the

and establishes the ment (including parameter list) for.

procedure as a coprocess.is assigned to the

specified pointer to coproc.

ment using the pointer to coproc

uent declaration list

it

nt is designated the primary procedure

return or a continue, exit l return or goto

is still active is an error.

state-

Exiting

SWL LANGUAGE SPECIFICATIQN

10.0 Statements.
10.3 Con hoi Statements

10.3v2
Create Statement

7 December 1973
Page: 10-22

<create statement> ::= create «pointer to coproc>, <procedure 'call statement»·

tocoproc> ::= <variable>

Example:

. create macro_expander (source-fil e»

10.3.3
" ,

The destroy stater:nent destructi on of the

coproc and sets the pointer to ~ Storage

subsequent attempts to resume the

A destroy statement designating the cop ocess

<dest('oy statement> ::= destroy

<pointer to

Example:

10,,3.4 RESUME S

specified by the pointer to

coprocessis returned, and

variables local to it are in error.

hich it occlirs is an error.

coproc> {,<pointer to coproc>})

of the current coprocess to . be and

continue at the successor of the last executed resume'statem n of the

If the specified coprocess had just been created, executio

. sumes at its constituent declaration list.

, I

. I

SWL LANGUAGE SPECIFICATIOI-..J

10.0 Statements·
10.3 . Control· Statements

. 10.3.4
Resume Sl'atement

7 December 1973,'
Page: 10-23

statement designating a destroyed coprocess or the coprocess in

<resumcil

<coproc

Examples: '

nextsymbolA)

__ (user[iJA)

10.3.5 CYCLE STATEMENT·

«coproc

The cycle statement allows the conditional by-passing of the remainder of the st.afe­

ments of the constituent statement list of the designated repetitive statement, thus

cycling it to its next iteration (ifany)o .

. <~yclestatemen~> ::= cycle [<label>J[when <expression>]

The label must label a repetitive statement (for, repeat, while or loop statement) which

statically encompasses the cycle statement, i.e., the cycle statement must be within the

scope of the label. If no label is specified then the continue statement must be a

statement of the constituent statement list of a repetitive statement, and it is that

repetitive statement that is cycled •.

SWL LANGUAGE SPECIFICATION

10.0 Statements
10.3 Control Statements

10.3.5
Cycle Statement

7 December 1973
Page: 10-24

The expression following when must be a boolean expression. If the value of the

expression is true, or the when clause does not occur, then execution continues at

the successor of the last statement of the constituent statement list of the designated

structured statement or procedure. Otherwise, execution continues at the successor

of the cycle statement.

Thus, the cycle statement has the effect of (potentially) re-executing the statement

list of a repetitive statement such as for, repeat, loop, or while.

Examples:

for i = 1 1£ n do cycle when x < a[i]; x := a [iJ forend

cycle outerloop when sum <=eps

10.3.6 EXIT STATEMENT

The exit statement causes execution to continue at the successor of the designated

structured statement or procedure when the condition is true or non-existent. If

no label or procedure is specified then execution continues at the successor of the

immediately containing structured statement or procedure.

<exit statement>::= exit [<label. or proc identifier>] [when <expression>]

<label or proc identifier> ::= <label> I <procedure identifier>

Example:

repeat exit wh~n key = a [iJ; := i +1 until i > n

SWL LANGUAGE SPECIFICATION

10.0 . State men ts
10.3 Control Statements

10.3.7 RETURN STATEMENT

100 3.7.
Return Statement

7 December 1973
Page:· 10-25

The return statement causes. the current pro~edure to return when. th~· expression is

true or non-existent; . i.e., the successor of a ·return. statement is the successor .of the

last statement of the constituent statement I istof the procedure or function in which

it is embedded.

<return statement> ::= return [when <expression>]

Example:

return whe~ next_term < epsilon

. 10.3.8 GO TO STATEMENT

<gote" statement> ::= goto [exit] <label reference>

<label reference> :~= <label> I <pointer to label>/\ "

The goto statement names as its successor the labelled statement designed by the label

or by the vallie of the pointer to label .• "

If the label reference is to a label outside the current block, then the form goto exit·

must be used, and the label must have been declared in a label declaration· in the

declaration list of its blocki otherwise the form without exit is usedo ""

If the pointer to label designates a statement in a procedure thQt has already been

exited, eF g statel;:Hmt in a CGpmCefiS GtheF than the Gne in wlli shth9gGte stgtemenr

0966YFS, then the gata stdtementis in error."·

" Release 1 does not support pointer to label.

"" ISWLrequires all labels to be declared in'a label declaration.

SWL LAt-.fGUAGE SPECIFICATION

10.0 Statements
10.3 Control Statements

Examples:

'g'oto exi t errexit --
goto labelarray [symbol_number] /\

10.3.9 EMPTY STATEMENT

10.3.8
Goto Statement

7 December 1973
Page: 10-26

An empty statement denotes no action and consists of no symbolso

<empty statement> ::=

SWL LANGUAGE SPECIFICATION·

10.0 Statements
10.4 Storage Management Statements

.10.4 STORAGE MANAGEMENT STATEMENTS N

. 7 December 1973
Page: 10-27

There are three storage types - stack, sequ,ence, and heap..,.. define~ in the language,

each with its own unique management and access characteristics. A variable of any

of these types represents a structure to which other variables may be, added, referenced,

and deleted under program control according to the discipl ine impl ied by the type of

the stor9ge variable. Storage management statements are the means for effecting this

control.

<storage management statement> ::= <push statement> <po~ statement>

<next statement> <reset statement>

<allocate statement> I <free statement>

ALLOCATION DESIGNATOR

An allocation designator specifies the type of the variable to be managed by the stor~

age management statements. It is either a pointer to tyept in which case a variable

of that type is designated, or it is an adaptable pointer variable followed by a type

fixer which. defines the adaptable bound, length or size, in which case it is a

variable of the, fixed type that' is designated.,

<allocation designator> ::= <pointer variable>

I <adaptable pointer to array> : [<bounds list> 1
I <adaptabl e pointer to stack> : I <expre~sion>l
I <adaptable pointer to record> : I <bounds list>l

. I <adaptable pointer f'o string> : «length»

<adaptable pointer to sequence> : {, })

<adaptable pointer to heap> : ({ I .})

 ::= [<integer expression> rep]. <type>

" Re 1 ease 1 does not support sta·c!"s or , sequences, and the only heap·
supported is the universal heap.

"" Release 1 does not support adaptable types.

NN

SWL lANGUAGE SPECIFICATION

10.0 Statements ..
10.4 Storag~ Management Statements"

Examples:

procvector : [0 •• 10J

"garbage (35 .rep rinds, 15 rep pits, grounds)

10.4~ 1 PUSH STATEMENT D4

10.4.1"
Push Statement

7 December 1973
Page: 10-28

" The push statement causes a new element to be added to the sp·ecified stack. It is

accessible through the stack variable followed by an up arrow. .

<push statement> ::= push <stack variable>

<stack variable> ::= <variable>

Examples:

push" opl:lrator _stac"k

"new top element" is

operator_stack 1\"

10.4.2" POP STATEMENT D4

The pop statement causes the top element of the stack to be removed (i .e., last allo­

cated element). The previous element is no~ available through the stc:sck variable

followed by an up arrow. If no elements remain in the stack, the stack variable

will have the value liil.

<pop statement> ::= pop <Stack variable>

" Release 1 does not support stacks a

SWL LANGUAGE SPECIFICATION

10.0 Statements
10.4 Storage Management Statements

Examples:

10.4.3 NEXT STATEMENT H

. 10.4. a
Next Statement

7 December 1973
Page: 10-29

The next statement sets the allocation designator to designate the current element ,?f

. the sequence, and caus~s the next element to become the current element. After a

reset or an allocation of a sequence the current element is the first element of the

sequence. Note that the ordered· set of 'variables comprising a sequence is determined·

algorithmically by the sequence of execution of next statements.

If the execution of a next statement ~uld cause thennew current element to lie out­

side the bounds of the sequence, then the allocation designator is set totthe value nil.

<next statement> ::= next <allocation designator~· in <Sequence variable>

<sequence variable>::= <variable> .

Example:

next length ptr in buf;
~ .--
next string: [1 •• Iength_ptr AJ in buf

10.4.4 RESET STATEMENT H

The reset statement causes pos.itioning in the sequence. The current element becomes

either the first element of the sequenc;:e· or the element specified by the allocation

designator. The use of an allocation designator which was not set by a next state­

ment for the same sequence is an error.

" Release 1 does not support sequences.

SWL LANGUAGE SPECIFICATION

10.0 Sf'atements
10.4 Storage Management Statements

10.4.5
Allocate Statement

7 December 1973
Page.: 10-30

.
<reset statement> ::= reset <sequence variable> [to <allocation ·d.esignator>]

Example:

reset buf to length _ptr

10.4.5 ALLOCATE STATEMENT . .

The allocate statemznt causes the allocation of a variable of the spec ifiedtype in the

specified heap and sets the allocation designator to designate that ~ariable or to the

value nil if there is insufficient space for the allocation. If a heap' variable is not

$pecified, the allocation takes place out of the universal (system defined) heap."

<allocate statement> ::= allocate <allocation designator> [in <heap variable>]

<heap variable> ::= <variable>

Examples:

allocate my-stack: [50J

allocate sym ...:.ptr in symbol_table

'.

10.4.6 FREE STATEMENT

The free statement causes the deletion of the specified variable from a heap, thus

making its sl'orage available for subsequent allocate statements. If the allocation

designator was not set as a result of a previous allocate statement for the same heap

the effect is undefined.

" Release 1 supports the universal heap only.

I

I

SWL LANGUAGE SPECIFICATION

10.0 Statemenrs
10.4 Storage Management Statements

10.4.6
Free Statement

7 December 1973
Page: 10-31

<free statem~nt> ::= free <allocation designator> [in <he'Jp variable>] N

Examples: .

free sym _ptr in symbol_table

free my _stac k

N Release 1 supports the universal heap only_. I

SWL lANGUAGE SPECIFICATION

10.0 Statements,
'10.5 Input-Output Statements

10.5. 1
Write' Binary Statement

7 December 1973
Page: 10-32

10.5 INPlJT -OUTPlJT STATEMENTS"

Two file, types are .accorri,!!odated: bin~~ .files which consist o~ a linear seqlJence of

.SWL 'variables, and text files which consist of a s.equence of entities called.

lines. There isa system defined mapping between lines and string{n) which may

differ depending on the source or destination device for the line. Statements that

cause transmission from such a file are provided with an addiHonal field to specify . '

the number of characters in the internal representation of the. line.

<input-output statement> ::= " <write binary statement>

I <write line statement>

<read binary statement>

I <read ,line statement>

<Set mode file statement>

<rewind statement>

<write eof statement>

10.5.1 WRITE BINARY STATEMENT'

A write binary statement causes the value of an expression to be transmitted to the

specified binary file.

<write binary statement> ::= put «file variable>, <expression»

Example:

put (intermediate_text I symbol_string) ,

.. Release 1 does not support files or the SWL I/O statements.

... I

SWL LANGUAGE SPECIFICATION

10.0 Statements
10.5 Input-Output Statements

10.5.2 WRITE LINE STATEMENT

10.5.2
Write Line Statement

7 December 1.973
Page: 10-33

The write line statement causes the transmission of a string value as a line to the

specified file.

<write line statement> ::= put «file variable>, <string value»

<string value> ::= <expression>

Examples:

~ (listing, 'missing loopend symbol')

put (listing, line_buffer)

10.5.3 READ BINARY STATEMENT

The read binary statement causes the transmission of a value from the file to a variable 0

If the sequence of types read is different from the sequence vtritten, the result is un­

~efined. An attempt to read beyond the end of information causes the builtin func­

tion eof «file_variable» to return true •

. <read binary statement> ::= get «file variable> I <variable»

Example:

. get (intermediate_text, symbol_string)

N.B. Release 1 does not support files or the SWL I/O statements. .1'

SWL LANGUAGE SPECIFICATION

10.0
·10.5

Statements
Input-Output Statements·

10.5.4 READ LINE STATEMENT

10.5.4
Read Line Statement

7 December 1973
Page: 10-34·

The read line statement causes the next line to be transmitted from the file as a

string to the specified variable. The number of characters transmitted is stored in

the variable specified by the third parameter. An attempt to read beyond the last

line causes the built-in function eof «file variable» to. return the value true.

<read line statement>::= get «file variable>, <string variable>, <no. read»

<string variable> ::= <variable>

<no. read>::= <variable>

The string variable must be a variable of type string (n), and no. read must be an .

integer variable. If the line transmits as more than ncharacters it is truncated.on

the right before storing into the string variable.

Example:

10.5.5 SET MODE FILE STATEMENT

The set mode file statement sets the mode of the file to read or write mode. A file

cannot be written if it is in read mode., and cannot be read in write mode. The

file is initially in a neutral mode and is set to read or write mode by the first get

or put statement on it.

<set mode file statement> ::= mode «file variable>, <file mode»

<file mode> ::= read write

N.B. Release 1 does not support files or the SWL I/O statements.

SWL LANGUAGE SPEqFICATION

10.0 Statements
10.5 Input-Output Statements·

Example:

mode (intermedi ate_text, read) .

10.5.6 REWI ND STATEMENT

100 5.6
Rewind Statement

7 December 1973
Page: . 10-35

The rewind statement repositions the file at its beginning and sets eof «file variable»

to false. It has no effect on the file mode.

<rewind statement> ::= rewind «file variable»·

Example:

rewind (intermediate_text).

10.5.7 WRITE EOF STATEMENT

The write eof statement causes a file in write mode to record information such that

on a subsequent attempt to read it beyond the current position the bui I t-in function

,eof «fi Ie vari abl e» can return the val ue true.

<write eof statement> ::= weof «file variable»

Example:

weof (i ntermedi ate_text)

N.B. Release 1 does not support files or the SWL I/O statements.

SWL LANGUAGE SPECIFICATION 11.1.1
Translate

11. 0 Standard Procedures and Functions
11. 1 Standard Procedures

7 December 1973
Page: 11-1

11.0 STANDARD PROCEDURES AND FUNCTIONS

Certain standard procedures and functions have been defined for the SWLwhich have
, ,

been included because of the assumed frequency of 'their use or because they would

be difficult or impossible to define in the language in a machine':'independent way.

11. 1 STANDARD PROCEDURES
• I

T e following standard pr<?cedures assign values' of type string •.

(s, t, d) ,

11.1.2 #stringrep (val, substr,

width [,decimals])

converts the elements of saccording to

late table t and assigns them to d.

must all be strings."S andd

length.

The resul tis: t($int(S (i») for all elements

tion in IIwidth characters. The result is stored

in the string substr •

. decimal numbers with lea 'ng zeros blank sup­

'pressed. Reals are represente

numbers with exponent base 10, an "decimals"

digits after· the dec imal point. Bool ean~ re
. .
represented by true or false, right justified a
.. --

blank filled.

SWL LANGUAGE SPECIFICATION 11 ~ 2. 1
abs{x} ,

1'1. 0 Stand~rd Procedures and Functions
11. 2 Standard Functions

7 December 1973
Page: . 11-2

11.2 STANDARD FUNCTIONS

The fol rowing standard functions return values of the specified type ..

11. 2. 1 # abs(x)

11. 2.3 #succ (x)

11.2.4 #pred(x}

11.2.5 $integer(x)

computes the absorute value of x. The type of x:

must either be real or integer, and the type of

the resul t is the type of x.

returns the value 1 if

.xmust,be integer or ~r'

the same type as x.

, xis of any scalar or subrange type, and the

. result is the successor varue of x (if it exists).

. x is o~ any scalar or subrangetype, and the

result is the predecessor value of x (if it exists).

returns the ordinal number of the scalar value x.

x must be an ordinal type, char, or real; if x

is real then the value returned is an integer y of

the same sign as x such that abs(x)-l < abs(y)

<= abs(x).

SW.L LANGUAGE SPECIFICATION 11.2.6
$real{x}

11. 0 - Standard Procedures Elnd Functions
11. 2 Standard F unctions

7 December 1973
Page: 11-3

11.2.6 -Sreal(x}

11.2.7 $char(x)

11.2. 8 $stri~g(l/s[,fill])

. 11. 2. 9 - #strlength(x)

11. 2. 10 #Iowerbound (array, n)

11.2. 11- #upperbound (array I n)

\

returns _q value of type real thatapproximate~

the integer value x. Note that Sinteger($real{x)}

does not necessarily equal x.

x. must be an integer value 0 <= x <= 255. The

- value returned is the character wrose ordinal

number is x.

.returns a strin!;J value of length I-obtained from

the string s by

(a) truncating s on the right if length of s > I, or.

(b) appending characters on the right if length

of s < I. The characters appended are

blanks~ or the character value of fill when

it is spec~fied •

returns the length in tenns of number of char­

ac;:ters of the string x. "

returns the value of the nlth lower bound of the

ar.ray. The type is the index type of that dimen­

sion ·of the array. The left most subscript position

is -numbered 1. "

,

returns the value of the n'th upper Lx> und of the

array. The type is the inde?< type of that dimen­

sion of the array. The left most subscript position

is numbered 1. "

" Release]. does not support #strlength, #lowerbound, or #upperbocnd. r

SWL LANGUAGE SPECIFICATION 11.2. 12
lIeof (file)

11. 0 Standard Procedures and Functions
11. 2 Standard Functions

7 December 1973
Page: 11-4

11.2.12,lIeof(file}

-11.2. 13 Hcoprocid

IIrel (pointer LstorageJ)

11.2. 15 IIptr (relative_pointer

G storage..:.,variableJ)

returns the value true if the end-of-file condi­

tion exists for t~;e specified file. Returns false

otherwise. M

returns the value of type GoprOG of the coprOC9SS

. in which it is C)(ccutoo.

produces a relative pointer value from a pointei:

and storage variable. The relative pointe s

of the same type as the point'er.

undefined if the pointer does no

element of the storage vari ... Ie. If the storage

used. '

o convert a relative pointer to a pointer I

;s required whe~ using a relative pointer.

Example:

,
,type myheap = heap

,~ rptr: reI (myheap)

"h ': myheap,

x : integer;

x :~ #ptr (rptr, h)/\;

M Release 1 does not support #eof.

SWL LANGUAGE SPECIFICATION 11.3. 1
loc

11. 0 Standard Procedures and Functions
11.3 Representation Dependent

7 December 1973
Page: 11-5

REPRESENTATION DEPENDENT

11. 3. 1

11.3.2 #size (argument)

11.3.3 #offset(u, base) ,

11.3.4 #malignment

ese)

returns a P?inter to the argument

directly assigned to any poin

e some type as the argument.

u in number of cells from an integral

O~ n < base.

nment required

for a variable of the same type as' first

arg,ument, to its'second and third argum

respec ti ve I y •

