CDC CYBER 200/MODEL 205

TECHNICAL DESCRIPTION

CONTROL DATA CORPORATION
CYBER 200 MARKETING SUPPORT DEPARTMENT

October 1980

CONTENTS

Szction Title
1 GENERAL INFORMATION

INTRODUCTION

ARCHITECTURAL CONCEPTS

HARDWARE
SCALAR PRCCESSOR
VECTOR PROCZSSOR
MEMOQRY
INPUT/OUTPUT PORTS
LINK HARDWARE

SOFTWARE
OPERATING SYSTEM (CYBER 200-0S)
CYBER 200 FORTRAN
META ASSEMBLER
LOADER PROGRAM
LINK SOFTWARE

2 HARDWARE DESCRIPTION
CDC CYBER 200/MODEL 205 COMPUTER OVERVIEW
SYSTEM CHARACTERISTICS
SYSTEM ARCHITECTURE
MAINTENANCE CONTROL UNIT
DISTRIBUTED PERIPHERAL NETWORK

3 SOFTWARE DESCRIPTION

CDC CYBER 200/MODEL 205 OPERATING SYSTEM
CHARACTERISTICS

FILE SUBSYSTEM

ACCOUNTING

MULTI-TASKING

JOB PROCESSING CONTROLS

CYBER 200-OS OVERVIEW

SUMMARY OF OPCRATING SYSTEM
LANGUAGE PROCESSORS

CYBER 200 FORTRAN

CYBER 200 ASSEMBLER

CYBER 200 LOADER

CYBER 200 SOFTWARE MAINTENANCE AIDS
CYBER 200 FRONT-END LINK

Page

[~ N1 GO LPERRWWWWN-a=-

PREFACE

This document describes the basic hardware and software characteristics of the super-scale CDC CYBER 200/
Model 205 Computer System. Section 1 provides a general description of the system, including the basic
architecture of the Model 205 and its hardware and software components. Section 2 covers the hardware

of the Model 205 in more detail. A detailed description of the software is contained in Section 3.

iifiv

Section 1
GENERAL INFORMATION

INTRODUCTION

Control Data Corporation is committed to development, manufacture and support of large-scale high-perform-
ance scienlilic computers. The CDC CYBER 200/liodel 205 Computer System wiil satisfy the needs of
users with high-performunce computer requirements. This effort Legan with the design of the COC STAR-100, .
continued with the identification several ysors ago of promising technology developments for high-performance
computing and now provides enhanced memory and scalar processing performance and the development of

foster vector processing and increased input/output capacity.

As early zs 1973, Control Data began investigating Large Scale Integration {(LSI) technology for use in large
digital computers. Control Data also developed computer-aided design and simulation teshniques which now
enable LS| technology to be utilized in the largest digital system. The design of a 6400 Class LSI test
vehicle was initiated in 1974; LS| components and design simulation tools were selected; and a working
model was demonstrated in 1976. The success of these efforts led to further study and develcpment in
the areas of packacing and cooling technology. During this saine timeframe, Control Data was also studying
ways of expanding the performance of the CDC STAR-100 computer.

These activities led to a Cocporaie comiaitment in 1975 to design and implement semiconductor memory
veith an L3 Loldar wait oo the CNC STAR-100 and to replace the vector processor on the CDC STAR-100

with LSI circuitry. This new computer system is known as the CYBER 200 Series.

Control Data’s commitnwent is to design, dovclop, manufacture and market a vector computer technology
which substantially improves the CDC STAR-100 series in terms of reliability, performance and maintainability.
The goal of the simulator and test vehicle construction was not to develop a new computer architecture
but solely to prove the feasibility of new circuit technology that was not available when the CDC STAR-100
was developed. The proven architecture of the CDC STAR-100 system continues in the enhanced CDC

CYBER 200 scries computers.

The first member of the CYBER 200 Series was the CYBER 200/ Model 203 which was announced early in
1979. CYBER 200/Mndel 203 deliveries started in tha fourth quarter of 1979. The Model 203
featured a high performance scalar processing unit employing lsrge-scale integration (LS1) circuit technology, a
Lipclar semiconductor memory of one-half to two million 64-bit words, and a vector processing unit utilizing

mediunrscale integrated circuitry. - s

-

The second model of the CYBER 200 Series Systems, the Model 205, features a new LS! vector unit integrated
with the Model 203 LS| Scalar processing unit.

The Model 205 uses LS! circuitry throughout. High density chips (168 gates per chip), improved packaging,
and subnanosecond switching time result in exceptional performance and high reliability. High levels of
reliability and maintainability are enhanced by dense integrated circuitry reducing interconnects and a cooling
system which maintains a low semiconductor junction temperature. Fewer than 30 different pluggable LSI

circuit types are used in the central processor.

ARCHITECTURAL CONCEPTS

From a user’s point of view, many operations in the Model 205 are performed in a serial fashion; other
operations are performed in a parallel mode; but all operations are issued in strict sequence from a single
instruction stream. The serial or scalar processing mode is common to almost all computer systems today.
The parallel or vector processing mode allows the manipulation of many operands by a single instruction.
Functional concurrency is permitted wherever possible while retaining logical integrity of the user’s program.

In super-scale computer systems such as the Model 205 computer system, a distribution of the many tasks amé-ng
specialized units is the key element for speed and for economic functioning. Within the Model 205 system, this
is achieved by assigning various numerical, input/output, and nonnumerical operations to a variety of specialized
sections and units such as input/output ports, the functional units of the scalar processor, and the stream, string

and array sections of the vector processor.
The Model 205 is assigned primarily to the computational aspects, leaving input/output operations and
many other support tasks to front-end and station computers. This “functional hardware concept” or
distributive processing concept is the cornerstone of the Model 205 system architecture. Functional and
distributed hardware means economy, controlled growth and expansion capability, and better overall
availability and total performance. The Model 205 provides high performance in computing and in
associated disk and high density {6250 cpi) tape input/output. The front-end computer can provide
input/output for tapes, unit record equipment, and remote devices as well as data management and network

control.

The Model 205 hardware supports floating point, integer, bit and byte and character data types. These

data formats are demanded by many scientific applications and are supported by commonly used compilers

and more advanced programming languages.

The extensive instruction repertoire allows computation and data processing both in the traditional serial or
scalar processing mode, requiring at least one instruction to perform an operation on a single operand or
operand pair, and in the vector processing mode, producing many arithmetic resuits on multiple operands
or operand pairs. Vector processing is, in essence, a parallel processing mode. The speed of serial or
scalar processing is dictated by the circuit speed and, hence, restricted by the speed of light. In vector

mode, as many as 800 million 32-bit opsrations _per second may be computed by the Model 205.

Vector processing is quite adaptable to many scientific and engineering computational processes where
vectors are a common notion. The instruction set supports many simple and complex vector operations
and even provides application primitives which must be expressed as program loops on other computers.

“More computation per issued instruction” and the parallelism of multiple functional units, which is trans-
parent to the user, are the key architectural concepts in achieving the computational performance that the

Model 205 system offers.
HARDWARE

SCALAR PROCESSOR

The scalar processor features multiple segmented functional units which are pipelined to accept new
operands every clock cycle. A 84-word instruction stack permits inany large loops of code, once loaded
into the stack, to be executed without repeated memory references to reload the instructions. The 256
general-purpose registers are provided to greatly simplify programming as any register can be used for any
operation. Many variables can be permanently resident in this register file. In the case of memory-resident
data, the large number of registers and the design of the load/store unit combine to permit an essentially
unlimited number of load (memory fetch) instructions to be issued with minimum time penalty, as

necessary to complete the computations required within any program.

VECTOR PROCESSOR

The vector unit can operate in parallel with the scalar unit. Each operand in a vector operation can
contain data in sets of up to 65,535 elements. Vectors are defined as contiguous sets of data elements,
An array is a vector of floating point elements. A string is a vector of bit or byte elements. The
control vector is a bit string used in the control of array operations. Control vectors make it possible to
imbed decisions within array operationsvby inhibiting the store operation on selected elements of the
array. Special vector operations such as dot product and square root provide the equivalent of complete
subroutines on other computers. The benefit of these features is that more code can be vectorized with-

out intervening scalar instructions, thereby simplifying programming and increasing performance.

MEMORY

The Model 205 provides both a large, real memory and essentially unlimited virtual memory. The hardware
address space provides a virtual memory of 2 trillion words per user, eliminating the need for programmer
concern about running out of space. (The 2 trillion words of virtual memory address space is a theoretical
maximum. Actual virtual address space is limited by the number of CDC 819 disk drives connected to

the system,) The Model 205 provides real memory sizes of 1 million, 2 million and 4 million 64-bit
words. Memory can be addressed in full word, half word, byte, and bit units. To enhance reliability,
circuitry is provided to correct single bit errors and to detect double bit failures for each 32-bit half word;
thus, automatic correction for even two memory failures in a logical word will occur when the failures are

in different half words.

INPUT/OUTPUT PORTS
Sixteen inputf/output ports can be connected through channel couplers to disk drives and front-end processors
or stations. The purpose of the stations is to remove the burden of peripheral input/output from the
central processor. The Model 205 central processor is devoted to computational tasks while the station

processors handle device communications.

LINK HARDWARE

The hardware link between the Model 205 computer and the front-end station processors consists of the
channel couplers. The channel coupler provides the compatible interface which allows direct connection
of the data channels and controls the transfer of all data between the two mainframes.

SOFTWARE

Standard Model 205 software components include the operating system {(CYBER 200-0S), CYBER 200
FORTRAN, META assembler, Loader, and link software.

OPERATING SYSTEM (CYBER 200-OS)

CYBER 200-0OS is a multiprogramming operating system which provides a file system with security and
back-up facilities, a full job and file recovery system, and a well-defined interface for computer-to-computer
linkages. The operating system and FORTRAN combine to provide facilities which are adequate not only
to support efficient production usage of the Model 205 but also to facilitate conversion and new code
development; interactive and symbolic debucging capabilities are examples. Support codes include an

assembler, a loader, source and object code iaintenance utilities, and file utilities.

CYBER 200-0S is designed to support all Model 205 hardware features. The virtual memory implemen-
tation in the FORTRAN environment removes one of the most limiting factors imposed on scientific users.
In this environment, all input/output operations can be performed implicitly by the system. However,
where real-time limitations are of paramount importance, the user may employ explicit input/output calls
which efficiently overlap computation and input/output for a given job. Another advantage of virtual
memory is that large codes can be accommodated without the necessity for using an overlay facility.

To allow efficient multiprogramming and support, CYBER 200-OS was designed as a task-oriented system.
System resources are shared among system and user tasks. System integrity is maintained through the

use of virtual memory hardware protection.

CYBER 200-0OS is file-oriented, with all jobs, tasks, and data existing as files. The file mechanism allows
definition of selective read and write access to files. The file system defines files as private to a particular
user, common to all users, or shared among a specific pool of users managed by a pool boss. The file
technique is also an integral part of the recovery which the operating system provides since temporary

and input files which were transmitted by front-end stations are not destroyed until after job execution
and output files are retained until successfully transmitted to front-end stations.

CYBER 200 FORTRAN

CYBER 200 FORTRAN implements the standard FORTRAN (as defined by American National Standards
X.9-1966, FORTRAN) with many extensions. These extensions already provide many of the capabilities
that are in the FORTRAN 1977 standard. CYBER 200 FORTRAN also provides vector language

extensions and direct access to all central processor instructions which makes efficient machine utilization

possible without the necessity for assembly language programming. Efficient code development is aided

by a symbolic cross-reference map and a symbolic debugging package.

CYBER 200 FORTRAN takes advantage of the hardware capabilities by using the registers for intermediate
operands and results, vector descriptors, and particularly for FORTRAN scalar variables. At the time that
a subprogram is invoked, local variables are block-transferred to the register file where they may be rapidly
accessed and updated. In this way, the potential for high performance, which is inherent in the large

general-purpose register file, is realized by the CYBER 200 FORTRAN implementation which automatically

assigns most scalar variables to registers during their active life.

META ASSEMBLER

META is the assembly language for the Model 205 central processor. . The assembler generates relocatable
binary output which is linked and loaded by the Loader under (_)peratihg system control. META provides:

® Conditional assembly capability for selective assembly.

) Set capability to define, reference, and extend the list of expressions.

] Procedure and function capability.

. Attribute assignment for symbols and elements.

LOADER PROGRAM

The Loader program provides the user with a means of collecting and linking relocatable programs and

subprograms to produce an executable program. The final product is a file ready for execution under

control of the operating system.

LINK SOFTWARE

Control Data has software packages available for controlling the hardware link from the Model 205 computer
to front-end processors and high speed disk and tape stations. These packages operate in conjunction with
the Model 205 operating system {CYBER 200-0S) and the front-end processor’s operating system. CDC
CYBER 170 series mainframe running under the Network Operating System (NOS) or the NOS Batch
Environment (NOS/BE) system are examples of systems used to front-end the Model 205. This approach
offers the availability of each system’s software product set to the programs residing in the other system.

Section 2

HARDWARE DESCRIPTION

CDC CYBER 200 MODEL 205 COMPUTER OVERVIEW

The Model 2G5 computer is a super-scale, high-speed, logical and arithmetic computing system. It utilizes
LSI circuits in both the scalar and vector processors that improve performance to complement the many
advanced features that were implemented in the STAR-100 and CYBER 203, such as stream processing,
virtual addressing, and hardware macroinstructions. The Model 205 contains separate scalar and vector
processors specifically designed for sequential and parallel operations on single bits, 8-bit bytes, and 32-bit
or B64-bit floating-point operands and vector elements. The central memory of the Model 205 is a high-
performance semiconductor memory with single-error correction, double-error detection (SECDED) on each
32-bit half word, providing extremely high storage integrity. Virtual addressing uses a high-sped mapping
technique to convert a logical to an absolute storage address to allow programs to appear logically

contiguous while being physically discontiguous in the storage system.

The basic Model 205 computer consists of the central processor unit (CPU), 1 million 64-bit words of
central memory with SECDED, 6 input/output ports, and a maintenance control unit (MCU). The CPU
contains the scalar processor and a vector processor with one vector pipeline. Central memory is field-
expandable from 1 million 64-bit words to 2 or 4 million words of semiconductor memory. The vector
pipelines can be expanded to 2 or 4 and the input/output ports are expandable to 16.

The Model 2C5 central processor contains all instruction and streaming control, scalar and vector arithmetic
processors, and control for communication with central memory by the CPU and the input/output channels.

Figure 2-1 shows the basic functional areas of the Model 205 CPU:

° Scalar Processor
° Vector Processor
° Memory Interface

° Maintenance Control Unit
The physical layout of the CPU and the central memory is shown in Figure 2-2.

The LSI scalar processor contains a scalar arithmetic unit with independent high-speed scalar arithmetic
functional units. The scalar processor also contains a semiconductor register file of 256 64-bit words
used for instruction and operand addressing, indexing and storing constants and field length counts, in
addition to hoiding operands and results for scalar instructions. The scalar processor performs instruction
control and virtual address comparison and translation. A feature is provided to select, via an operating
system software installation parameter, a small page size of 512, 2048, or 8192 words. A large page
size of 65,536 words is also provided.

CYBER 205
SCALAR
ARITHMETIC
SCALAR [<7 777> UNIT
UNIT b
1/2 MILLION - -
WORDS }
, Yy
I STREAM |
N VECTOR
T < UNIT ARITHMETIC PIPES
E
;
A { PIPE |
[adadetedeiteddidiid M C
. ' E <
i | MILLION ‘= -« .
' OPTION
.
] g 2
[]
Lecccneaa-.d
i |
ecmeamann \)
' .; HE Siuiuiat 1 E
¢ ZMILLION <> I S 1S - B
» OPTION Entaiiininiad *
: ~————> -~ —— - — =~ e - - === == - - = ~>:)
H H g £ B
S -d A L PIPE 4 i
: L-.....-..J:
STRING Lcenanmamm- 3
A UNIT «————
(16-8IT)
- I/0 (16) MAINTENANCE
PORTS CONTROL
(25M-BYTE) UNIT

Figure 2-1." Model 205 Computer System Configuration

- e it S
- | | i ! N e
< 1,2l Iz, | SA
N LT 15y -d VAARN
4 1a szl ,
< > (. r%l : w g 1 [} \/
N 122! 1251 o8 .
S N\ 1 o] x l-Ul 7.0 &< 7/
N\, o3 1Ywn &
(AN RN <1 VA4
N ! A
BN 1 | * O
\ ’1'0‘9}_ \ § l /(3\'1‘6((, '/ .
N N L L J(/ 4
N ST /
N
s <
’ AN
/ .
512K MEMORY I 512K MEMORY
SECTION B SECTION MEMORY SECTION SECTION G
J INTERFACE K
Ry
7.
£
&t
r Q‘»"&
S P,
0,70,
4, .
-
T2
SCALAR <3
PROCESSOR 35
v w
[7,)
N
1’0 & VES:T,?SWS:S;UP AND VECTOR STREAM & STRING
SEGTION N SECTICNP
\. \/
VECTOR
PROCESSOR.

CYBER 205

Figure 2-2. Model 205 Computer System Floor Plan

The vector processor contains one, two or four parallel, segmented pipelines to facilitate high-speed vector
processing. The vector processor control is contained in the stream unit. The string and all logical

operations are performed in the string unit.

The memory interface provides the read and write ports of central memory for the scalar and vector
processors. Each port contains a one-SWORD (512-bit Super WORD) buffer to facilitate high transfer

rates.

The CPU processes input and output by issuing relatively simple high-level messages to high-speed peripheral
stations or a front-end processor connected to the input/output ports,

SYSTEM CHARACTERISTICS

The general characteristics of the Model 205 hardware are summarized below. The hardware characteristics

are described in detail in the following sections.

CPU Characteristics

° Minor cycle of 20 nanoseconds for both scalar and vector operations,
° Two’s complement arithmetic.

° One, two or four parallel vector pipelines.

e Hardware macroinstructions.

° Sequential stream processing.

] Bit, byte, half-word, or 64-bit word floating-point operations.
] Independent scalar and vector instruction execution for no-conflict operations.

° Semiconductor high-speed register file - 256 64-bit registers (two reads and one write
per clock period).

° Sixty-four 64-bit word instruction stack for the optimization of programmed scalar
loop iteration.

Virtual Addressing Mechanism

® 48-bit virtual address. Actual virtual address space is limited by the number of
CDC 819 disk drives connected to the system.

° Program protection via lock and key.
™ 16 registers for simultaneous virtual to-physical mapping. S

° Selectable page sizes - small page sizes of 512, 2048, and 8192 words and large
page size of 65,536 words.

Extensive Instruction Repertoire

32-bit and 64-bit floating-point arithmetic.
Vector and sparse vector.
Vector macros.

Dot product.

Square root instructions.

Rcliable Central Memory Structure

Semiconductor memory with 80-nanosecond access time.

SECDED for each 32 bits for high reliability.

Memory sizes of 1, 2, and 4 million 64-bit words. -
High memory bandwidth' of 512 bits per 20-nanosecond minor cycle for a

1 million word system and 1024 bits per 20-nanosecond minor cycle for a

2 million word system, and 2048 bits per 20-nanosecond minor cycle for a
4 million word system. -

Flexible High-Speed Input/Output

6-16 input/output ports.
Each port is capable of 200 million bits per second maximum transfer rate.

Conncction to a CDC 6000 or CYBER 170 fiont-end coinputer {and some
non-CDC computers) in a computational facility configuration.

One channel is used for the maintenance control unit (MCU).

SYSTEM ARCHITECTURE

Central Processor

The Model 205 CPU contains a scalar processing unit and a vector processing unit.

Scalar Processor

In addition to providing for the execution of scalar operations, the scalar processor performs the primary

system control functions of the Model 205.

The scalar unit contains a sixty-four word discontiguous instruction stack segmented into eight super-words

{SWORDs).

The instruction stack is capable of holding up to 128 32-bit Model 205 instructions, 64 64-bit

10

IS

instructions or a coinbination of both, and provides a sixteen word instruction read ahead. The instruction
issue pipe decocf;s all instﬁ:c'tions, ini%iates scalar operations with the appropriate functional unit, and directs
decoded vector/string instructions to the vector processor for execution. The instruction issue pipe is

capable of issuing instructions at the rate of one instruction every 20 nanoseconds. Thus, with independent
vector and sczlar instruction controls operating on a single instruction stream, the scalar processor can

execute scalar instructions in parallel with most vector instructions provided there are no remory referances
generated by the scalar instructions. A block diagram of the functional components of the scalar processor

is shown in Figure 2-3.

The load/store unit provides special handling of the load and store instructions. The unit acts as a pipe-
line and is capable of initiating one load every minor cycle or one store every two minor cycles, provided

a memory busy, access interrupt, or register file write-bus busy does not occur. A circular buffer containing

siX registers provides buffering for up to six load requests, thiee store requests, or a .mixture of loads and
stores.

The load/store unit is capable of loading a randomly accessed word of data from central memory in the
register file in 300 nancseconds after reading the base address and item count of the data. This time

assumes a memory busy, access interrupt, or register file write-bus busy does not occur. A memory busy

would add 80 nanoseconds to the load time.

The scalar arithmetic unit contains completely independent functional units to attain high scalar performance.
Table 2-1 contains the times in nanoseconds to produce a 32-bit or 64-bit result in each functional unit
These times correspond to the short-stop times. Short-stop is the process by which a result from any
arithmetic unit may be returned directly to either input of any arithmetic unit. This occurs in parallel
with the storing of the result in the register file. Short-stop eliminates the time necessary to store the
result in the register file and then retrieve it for use in the next arithmetic operation.

11

SCALAR PROCESSOR

A
SCALAR
ARITHMETIC
UNIT
na AR
UNIT
RNS/ INSTR . INSTR
BRANCH STACK ISSUE
UNIT (8 SWORDS) PIPE
MULT
UNIT
v,
- ~
MEMORY P
ko3 ACCESS o ' LOGICAL
T) A UNIT
CONTROL
SINGLE
CYCLE
v VY Y \ 2R UNIT
ASSOCI - LOAD/ REGISTER
ATIVE STORE (== FILE pemn
DIVIDE /
UNIT UNIT 64 X 256)
it (SQRT/
CONVERT
UNIT

w3 DATA OR ADDRESS

— > CONTROL

Figure 2-3.

12

L.S! Scalar Processor Block Diagram

o o e e it -

TABLE 2-1.

SCALAR UNIT

INCREMENT/INTEGER

SHIFT/LOGICAL/PACK

FLOATING POINT ADD/SUBTRACT

FLOATING POINT MULTIPLY

FLOATING POINT DIVIDE

FLOATING PCINT SQUARE ROOT

LOAD

STORE

BRANCH FALL THROUGH

BRANCH INSTRUCTION-STACK

BRANCH OUT OF }NéT-STACK

BRANCH TO SUBROUTINE (CALL)
INTO INSTRUCTION STACK

OUT OF INSTRUCTION STACK

1 MINOR CYCLE = 20 NANOSECONDS

SCALAR PERFORMANCE

ISSUE

o 0o N

24

23

MINOR CYCLES

SHORT-
STOP

REGISTER
FILE
WRITE

4
6
8
8

57
56

15

SHORT-STOP = “EXPRESS” TIMING FOR FIRST FUNCTIONAL UNIT USE OF RESULT

REGISTER FILE WRITE = TIMING FOR LOAD, STORE AND SUBSEQUENT FUNCTIONAL

UNIT USE

13

The functional units are segmented aqd capable of accepting new operands every 20 nanoseconds except
for the Divide/SORT/Convert Unit which must complete each operation before a new one can begin. All

units are capable of being short-stopped.

The scalar processor contains a semiconductor register file which provides 256 64-bit registers for use in
instruction and operand addressing, indexing, field lengths, and as source and destination registers for
scalar instruction operands and results. The register file is capable of two reads and one write every

20 nanoseconds.

The Model 205 virtual memory feature provides the facilities for exploiting advanced techniques of memory

management and user program protection, Some of these features are:

® Key and lock provide memory protection and user separation.

[Hardware mapping from virtual to physical addresses.
] An ordered page table to minimize operating system overhead.

e Program overlays at exccution time formed by the hardware system transparent
to the user’s program.

. Sharing of user programs or data with other users.

° Small page sizes: 512, 2048, or 8192 64-bit words selectable by an operating system
software installation parameter. The default is a small page size of 512 words.

° Large page size: 65,536 64-bit words.

The associative unit in the scalar processor contains the page table virtual addressing mechanism which is
composed of 16 associative registers and a space table (located in a restricted area of central memory)

with sufficient entries for up to four million words of central memory.

The page table is an ordered list of associative words necessary to define the pages in absolute memory.
The 16 associative registers allow for immediate transformation of the most recently used 16 page table
entries into real memory addresses. The ordering is done so that the most frequently used associative
words tend to stay at the top of the table. The space table is an extension of the page table containing
associative words necessary to define pages in absolute memory that have not been in recent use. The
associative unit is capable of comparing all the associative registers in one clock cycle and the space table

entries at the rate of two entries per clock cycle.

The paging mechanism of the Model 205 plus the operating system software- permit the most active portions
{pages) of a user program to reside in central memory. The virtual addressing facility, through the page
table, makes these areas of physical memory appear to be contiguous in a manner invisible to the user.
The paging mechanism ensures that a large nuimber of users can have simultaneous access to the Model 205

computer, with minimum page swapping overhead.

14

Vector Processor

The vector processor unit consists of an operand streaming unit to control, buffer, and manipulate data to
and from memory, a string unit for processing bit and byte operands, and general purpose segmented
vector functional units called vector pipelines. The Model 205 has one vector pipeline in its basic offering

and an option to increase the number of vector pipzlines to two or four,

The vector processor functional unit is an integral part of the CYBER 200 Model 205 central processor,
and designed to process vector hardware instructions issued by the scalar unit. The vector processor is
rapable of manipulating vectors with 1-bit elements, 8-bit elements, 32-bit floating point elements and

64-bit floating point elements.

The vector processor achieves extremely high performance based on its segmented operations synchronized
with the basic 20 nanosecond clock period of the system and “its method of stréaming vector source and

result operands directly from and to the broad bandwidth memory.

Additional refinements in the performance and capability of many of the CYBER 200 vector instructions,
particularly those associated with the refeiencing of non-contiguous data, has provided the CYBER 205
with performance improvements over the carlier CYBER 203 significently beyond the factor of two through
the use of the LSI technology. These improvements include a 20 nanosecond versus 40 nanosecond clock

cycle and up to four vector pipes.

Mega FLOPS (Millions of Floating Point Operations Per Second) performance rates attainable with the
CYBER 205 vector processor are depicted in Table 2-2,

15

TABLE 2-2 PEAK VECTOR INSTRUCTION PERFORMANCE

FLOATING PT.
OPERAND PEAK PERFORMANCE
SIZE (MEGA FLQOPS)
NUMBER OF VECTOR PIPELINES 32-BITS AND
64-BITS 1* -2 4
VECTOR ADD/SUBTRACT 32-BITS 100 200 400
64-BITS 50 100 200
VECTOR MULTIPLY 2-BITS —~ 100 ~° 200 400
64-BITS 50 100 200
VECTOR LINKED MULTIPLY AND 32-BITS 200 400. .. 800
ADD OR SUBTRACT 64-BITS 100 200 400
VECTOR DIVIDE/SQUARE ROOT 32-BITS 15.3 30.6 61.2
64-BITS 8 16 32
VECTOR DIVIDE/SQUARE ROOT 32-BITS —_ 61.2 122.4
(HIGH SPEED OPTION) 64-BITS — 32 64

*FOR MODFL 205411 ONLY

16

S

Memory Interface Unit

The memory interface unit provides five ports for access to central memory. The scalar processor, vector
processor and input/output ports are connected to central memory through this unit. The control of all
data transmissions is provided by the memory access control in the scalar processor. Single Error Correction
and Double Error Detection (SECDED) of each 32-bits of the data on the memory ports is performed in
the scalar processor, and SECDED checking of vector operands is performed in the vector processor.

Data can be transferred to and from the memory ports in 32-bit half words, 64-bit words, or 512-bit
SWORDS.

Each of the memory ports is connected to memory through a one SWORD buffer located in the memory
interface. Where a buffer is shared by multiple ports, the memory access control provides proper port
selection to the memory interface selection networks. Data is transmitted to and from the buffers in
quarter swords at the rate of one-quarter sword per minor cycle (20 nanoseconds). :

Central memory is a single-level, random-access memory using bipolar integrated circuits. The memory
words are 78 bits which provide a 64-bit data word and 14 bits of SECDED (7 bits for each 32-bit
half-word}. The semiconductor memory access time is 80 nanoseconds. This memory is directly address-
able in monitor mode and via hardware virtual relocation in job mode.

The basic central memory size is one million words with expansions to two or four million words available

as field upgrade options.

Each one million words of central memory contains 16 memory modules each having 128 K 39-bit half-
words (32 data bits plus 7 SECDED bits). Each module is arranged in eight phased banks. In streaming
mode, a reference is made simultaneously to the same address in each of the 16 memory modules to obtain
a super word (sword) of 512 data bits. Memory busy conflict rules take into account the 16 physically
independent modules and the eight-bank phasing within each module to treat the bank address in each of
the 16 modules as a separate entity. Thus, each million words of central memory contains 128 phased
half-word banks when utilized in 32-bit mode and 64 banks as utilized in 64-bit mode.

The eight-bank phasing plus the physical distribution of the memory modules allows memory references
to be made at a maximum rate of one every 20 nanosecond clock cycle. Thus, central memory has a
high data transfer bandwidth of 512 bits per minot cycle in one million word configuration as required
to support the operand request rate and the result request rate for two vector pipelines.

Input/Output Ports

The CYBER 205 has optionally 6, 8, 10, 12, or 16 Input/Output ports, each of which has a transfer rate
of up to 200 megabits. Since the high speed transfer of data is so frequently a critical element in the
effective execution of applications requiring a super-scala system, the CYBER 205 is designed to support
the full bandwidth of data movement from all of these channels to central memory while vector and
scalar operations are proceeding at their maximum rate. Also, the high individual bandwidth of each

17

v

channel provides excess capacity for future incorporation of new higher performance secondary storage

devices as their technologies advance.

MAINTENANCE CONTROL UNIT

An important element contributing to maximization of reliability and availability of the Model 205 computer

is the Maintenance Control Unit (MCU). The MCU, through hardware interfaces and sense lines together

with sophisticated maintenance diagnostic programs and a complete set of intarface tools for the maintenance
engineer, provides a full range of maintenance and monitoring activities. The MCU is a dedicated Model

205 station providing a focal point for maintenance activities of the CPU. The MCU provides monitoring/
logging/recovery of CPU faults, control of the CPU diagnostic system, management of CPU microcode memory,

and system deadstart. _— e

DISTRIBUTED PERIPHERAL NETWORK -

Control Data utilizes a distributed peripheral network, specifically designed to solve the problems of inter-
processor and peripheral connections and to provide an efficient approach to interfacing a variety of main-
frames and peripherals in a local network. Control Data’s solution to the local networking problem

encompasses not only the hardware interconnection media, but also comprehensive software and diagnostic

capabilities.

The system is comprised of several different hardware components. The transmission medium in the system
includes one or more coaxial cable data trunks. These trunks provide reliable communication between
attached devices at rates up to 50 million bits per second at 1000 feet. Commmunications over these

trunks at longer distances are possible by reducing the number of attached devices. Fach trunk has the
capability of supporting multiple drops, thus providing for interconnection of many devices in a cominon
network. Access Devices are used to interface various devices to the coaxial trunk network via a 50-megabit

per second Data Set.

The architecture of the peripheral network is a generalized 1/O system for multiple levels of independent
communication control between multiple computer systems and/or peripheral devices attached to the
computer systems. Each level has a well-defined functional task and well-defined interfaces to the adjacent
levels. Three functional communication levels have been defined: data set communications, trunk interface

communications, and attached device/processor communications.

The lower level of communication occurs between the data sets. The primary responsibility of the data
sets is to transport data bits between trunk interface units via the transmissicn medium. The interface
between the data set and trunk interface unit is defined so as to isolate the data set characteristics from
the trunk interface unit logic. This defined interface will allow improved coaxial or other kinds of trans-

mission- systems (for example, light fibers, cable television, or microwave) to be used when appropriate.

-

The next higher level of communication occurs between trunk interface units. The primary responsibility
of the trunk interface unit is to transport data and control messages and responses between the buffer
areas of the Access Devices using the data set communications link. Since the transmission medium may

18

be shared among several data sets, a predefined trunk protocol must be followed. The trunk interface
unit is responsible for generating and checking the channel protocol as well as maintaining the channel
integrity.

The highest level of communications occurs at the attached device level. The Access Device processor is
responsible for establishing, maintaining, and closing communications links between attached devices.

Components of the Distributed Peripheral Network hardware and- software are utilized by the CYBER 205
system to prcvide appropriate interfaces between peripheral devices (such as the 819 disk subsystem or
6250 CPl tape) and the 200 meagabit porte of the CYBER 205. It also provides the interface to other
computer systems providing the front-end function to the Model 205.)

19

FR AV s R

Section 3

SOFTWARE DESCRIPTION

CDC CYBER 200 MODEL 205 OPERATING SYSTEM CHARACTERISTICS

The Model 205 Operating System, called CYBER 200-OS, was designed to provide the user with convenient
access to the CYBER 200 computational facility either from a remote batch or interactive terminal or
peripheral devices via the front-end computer. The objective of the total system is to make availzble to
the user the computational capabiiity and the many advanced. Model 205 hardware features combined with
the large product set available on the CDC CYBER 170 series product line. CYBER 200-OS accommodates
the large multiprogramming base during one time of the day as well as the very large production jobs run
at another time during the day. Such an environment is encountered in many industry areasi_such as -
atomic/nuclear, reservoir simulation and seismic data processing, numerical weather prediction and meteoro-

logical research, and structural analysis.

The operating systerﬁ is the result of many years of design and development effort. Since mid 1974, the
software system has been employed in a user’s environment in which all features and aspects of the system
have been explored and extensively tested. Enhancements have been provided since the initially released
version for the CDC STAR-100, and additional enhancements are planned to support new hardware capa-
bilities and features offered in the CYBER 200 product line.

The set of software available with the Model 205 computer system, ranging from software and file

maintenance aids to basic mathematical functions, may be categorized in the following groups:

] CYBER 200 operating system

° Language processors; FORTRAN and META Assembler

(

° Software maintenance aids

° External CYBER 200-OS characteristics

CYBER 200-OS permits concurrent and parallel operations of many computational and input/output
activities, The user interfaces with the system via the front-end computer. The CDC CYBER 170 series
front-end provides access via interactive or remote batch terminals as well as through lecal unit record
equipment. Information is passed between the front-end computer and the Model 205 computational
facility using the distributed network described in Section 2. Any required data conversion of binary
and coded information is handled by the access devices within the network prior to transmission, between

computer systems,

Since a distributive concept was the major guidelir;e in the hardware design A:)f the CYBER 200 computer,
a distributed system and processing approach is also the most logicél choice in the software design to
achieve economic functioning within the total CYBER 200 data processing complex. Thus, a major
attribute of the software system is its high modularity and task-oriented structure, based on an efficient

file concept.

20

Major characteristics and features of CYBER 200-OS include:

) File oriented system with security and backup facilities based on high performance
random access mass storage.

° Support of virtual memory addressing.

. Input/output may be performed implicitly or explicitly,
] Implementation of a muilti-tasking concept. ..

° Extensive accounting and resource utilization information.
° Job and file recovery.

. User and system checkpoint/restart. - - -

FILE-SUBSYSTEM
A portion of CYBER 200-0OS with which the user is very concerned is the file system. There are the

following two major aspects in looking at the file system.

° A differentiation of the files based on the file ownership category.

. A differentiation based on the method in which the input/output operation
is performed.

Based on the first aspect, CYBER 200-OS recognizes three file ownership categories. The user has the

following access capabilities under each:

° Public Files

The public filas contzin assemblers, compilers, and other general purpoase routines and
utilities. These files are managed by the system’s privileged users who have Read/Write/
Execute access to these files. These files are available to all users with the access rights
granted by the system privileged user, generally Read and Execute.

[Shared Files

Shared files or pool files are accessible to a subset of users as specified by the owner,
user or administrator of the pool. The owner specifies the type of access {any
combination of Read/Write/Execute). The members of the pool can access a pool file
with any access that is granted by the administrator.

. Private Files
Private files can only be accessed by the originating user. They may be local files

existing only for the duration of a job or terminal session, or permanent files which
are retained between jobs or sessions.

The second aspect in looking at the file system is. based on the file input/output method. To perform
file input/output operations the user can chooss between two methods:
° Implicit input/output supported by the virtual memory system leaving the data

manipulation and “overlay” handling task up to the operating system and supporting
hardware.

21

. Explicit input/output to provide the user with maximum control over essential system
resources during the execution of certain time dependent tasks,

Since CYBER 200-OS supports the virtual memory hardware concept allowing the user to address more
than 2 trillion (2X1012) 64-bit words directly, the user does not have to consider overlay techniques.
The operating system manages allocation of storage between main memory and mass storage, moves
information from mass storage to main memory as needed, and, by setting values in the page table,
permits the hardware to translate virtual memory addresses to physical addresses in main memory.’

CYBER 200-OS considers every program to be executable only in virtual memory which means that every
page in virtual memory has a corresponding space on the disk storage system. Executable code exists first
as a file on mass storage. This file, called a program filg, is built by the loader and contains a inap at
the beginning of the file called the minus page. This map «;girsspuids io the vir_t..:l page addresses and

relates them to corresponding logical disk addresses.

The program file exists as read only, and the integrity of the program file is never violated. At the
beginning of execution the sysiem automatically creates another file, called the drop-file. The. purpose of .
the drop-file is for program swap-out by the system and allows the user to terminate at any time and
reconvene at any time. Also, the drop-file can be saved and used for recovery purposes. The drop-file

is automatically updated by the system to contain memory pages containing any program data modified
during program execution. If a program is modified dynamically- during execution, the modified portions
are swapped in and out from the drop-file; the original program file is never modified. If a user wishes
to moedify the program file, then a new program file must be created to contain the modified program.

The user may then release the original file.

The code and the data of the program need not be in contiguous physical memory locations. The

original user code is kept on the program file which is swapped into virtual memory when required but
never swapped out to that file since it allows “read-only” access. The data associated with the program
file can be swapped in and out of memory as necessary to execute the progiain. Tne swapp.ag of

program code as previously mentioned occurs with the drop file so that the integrity of the program-file

is maintained. By allowing “‘read-only” access to the program-file, it can be executed over and over

again by the user. The drop-file provides a snapshot of the execution stage in the program and can be
used as an aid in debugging the program. CYBER 200-OS provides a checkpoint restart capability consisting
of saving the drop-file and restarting the saved file.

During program execution the program can either open existing file space or create new file space and
assign the type of access it desires to that file. It can assign a read-only type access to the file in which
czse the programmer would be notified if any attempt were to be made to write into that file. It can
assign a read/write access to the file in which case the data is swapped into mamory and back to the
file. 1t can also assign a type of access termed write-temporary access in which case the data file is
treated like program-files; that is, pages that are modified are never swapped back to the original fils,
but rather to the drop-file. The user naver needs to issue any input or output commands with this
virtual memory scheme. The only thing the u;er needs to do is reference data. The operating system
intervenes to bring the referenced data into main memory if it is not aiready there. This type of input/
output is called implicit 1/0. In other words, when implicit input/output is being used the user never
issues a read or write command, allowing greatly simplified program structures to be developed. Using

22

B L SO Y SN

implicit 1/O, however, the job’s execution is interrupted until the appropriate page has been transferred
from mass storage ta central memory: For most jobs this is acceptable, especially in multiprogramming
mode, because another job can have access to the central processor while the interrupted program is
waiting until the implicit 1/O is completed. However, when there is one large production type code

that is using all the resources of the machine, or a job is to be processed in the shortest possible elapsed
time, CYBER 200-0S offers two methods of minimizing program interruptions. The first is the ADVISE
request by which the user informs the systam, in advance, of the next pages of data which are required,.
and the system, in parallel with the job executicn, streams the data from mass storage to central memory,
Then when the job references the data, it is available in central memory and no program interruption
tskes place. The second is an alternative method of performing input/foutput willed explicit 1/0. This is
the type of input/output that all programmers are accustomed to, that is, the programmer explicitly uses
read and write staterments to acguire or store his data. “Jithﬁ_ex,plic‘i} 1/0, a picgiam may be reading,
writing and executing simultaneously. This cun be important for the effective utilization of the machine

in the previously mentioned environments,

With these two file input/output methods, it is possible, based on the user’s particular nesds, to trade -
off convenience and efficiency depending on whather the processing time reduction by overlapping input/.

output and computation for a given job is essential or not.

ACCOUNTING

To provide the elements for the implementation of an appropriate accounting system, CYBER 200-0S
generates statistical information about resources used by each task or job step. These statistics, which
include a summary of the central processor, central memory and input/output resources used by a job,
are appended to the job output as part of the dayfile for that job. All entries are time-stamped and
identified by source (user, job, or system operator). Statistics related to the task and its environment

zr of pajes aloeated, »nd page frriting

are aiso provided. Tiese indiude aveiaye woiking sat size, o
frequency. Additionally, as an installation option, the statistical records may be written to an accounting
file maintained and protected by CYBER 200-OS. An installation supplied privileged program is able to
extract all accumulated accounting information from the system at any time. The accounting file contains
sufficient information to define the scope of a job, so that an accounting program which processes the
file can compute a charge by job. At the conclusion of every job, the dayfile information is provided

to the user. The information contained in the dayfile includes the resources used, time of day the job
started and ended processing, and error messages and informative messages from the operating system

and language processors, along with operator actions related to the job.

Accounting and statistical information for the file system is also included. Each file in the system is

sccounted for by user number, with options for division code and account number.

The following are some file activity statistics which are maintained by the operating system:

~

e Number of explicit disk accesses and v.a!ume of data transferred.

° Number of disk accesses and amount of data transferred due to page faults.
° File creation date.

° File destruction date.

23

MULT!-TASKIN@_
The operating system supports the distributive processing concept in two ways. First, the operating
system itself is divided into small segments which perform specific tasks upon request, and second, the
central computer portion of the operating system communicates with the peripheral stations and front-end
systern(s) using simple commands to effect data and status transfers, The concept is extended to the
individual jobs and tasks submitted by users. Each function which the cperating system completes is

signaled to the user in the form of a standard message. -

A job consists of one or more tasks plus the control information. A job starts with the first control
card or statement and ends at the end-of-information. Tasks are the execute modules within jobs. Each
task can initiate another task. The initiating task, referred to as controller, may pass messages and

paramzters to the called task, referred to as contruilee, and vice versa (see Figure 2-1).

Requests are also interchanged between the user program and the operating system which may in turn
generate another request for a disk station or front-end computer to parform, for example, a disk input/

output cperation. .

This mechanism allowing the communication between different user tasks, the operating system’s tasks, the
front-end, and peripheral tasks, represents an efficient parallelism in program execution, matching the

distributed hardware with an equivalent software concept.

JOB PROCESSING CONTROLS

The user is provided with sufficient flexibility to control the way the application is to be processed. The
user may keep control over the execution of a specific job or leave it up to the system to advance the
job urder the normal multiprogramming scheduling constraints. Each bhatch job processed by the system
contains a unique job identification. This allows all output and status informastion to be correctly associ-
ated with the job. As part of the job deck, the user is able to specify resource parameters which include
job class, job priority, memory requirements, and total processing time. The user may change the initial
memory requirements during each task via job control statements. Thesa resource parameters specified

in the job deck are used and enforced by CYBER 200-0S. |If either the processing tirne or memory
limits are exceeded during execution, the job will be aborted and an appropriate message returned in the
user’s dayfile. Users will be allocated real memory up to the amount requested and execution delayed

if the requested amount is unavailable. If the memory parameter is not specified, the user's memory
space will be dynamically adjusted based upon other activity in the system and the page fauit frequency
of the job.

CYBER 200-0S allows formal parameters to be specified in stored job control language statements, The

user can replace these formal parameters during execution of a job.

Under CYBER 200-OS, the user is also able to obtain control after certain pregram errors which cause

abnormal termination. A user program trying to execute an illegal instruction is an example of this

type of error.

24

e - .a o= L —_—

o e N 8 £ P T VI et e i

r—-i—u——-—--—--\-‘—-ﬂ

CONTROLLER l ~ o
, ! 3UFFER
3 RIS SSRANUR— L

! SYSTEM

!
1
|
I
e e e

CONTROLLEE 1 !

CONTROLLEE

CONTROLLEE 2

[CONTROLLEE

[

1

CONTROLLEE 3

TASK COMMUNICATION ASIT IS
ACTUALLY ENABLED THROUGH
THE OPERATING SYSTEM

TASK COMMUNICATION
ASIT IS SEEN
BY THE USER

I
I
I
|
|
I
|
I
I e o
I
|
|
I
I
|
I
I

Figure 3-1. Task Communication

25

The resource parameters associated with user jobs may also be changed through system operator commands.
Cperator commands are available to c:‘xange the priority, the amount of virtual memory, program pages

and processor tiime limit of a job. The system operator may also change parameters in the scheduling
algorithm such as number of jobs per each priority or job class allowed in execution. These operator
commands provide control of job or system resources in order to provide effective processing for all

the users of the system.

CYBER 200-OS OVERVIEW
The CYBER 205 operating system (CYBER 200-OS) is divided into three parts. The interactions among

the tasks are illustrated in Figure 3-2.
° The small resident system runs in monitor mode; it resides in core and references
memory by absolute addresses, rather than through the virtual paging mechanism.
When the processor is in monitor mode, interrupts are inhibited and extra instructions
are enahled. -

) The virtual system tasks, which run in user mode, are called as nesded and reference
memory by virtual addresses. These tasks communicate with the resident system by
using reserved messages and by modifying system tables. Theay handle non-time-critical
tasks such as resource allocation, file management and terminal messages.

° The privileged user tasks have the same characteristics as virtual system tasks but may
not modify system tables directly. They perform the physical input/output on devices
and pass messages from and to the operator to be acted upon.

Figure 3-3 is a more detailed depiction of the major sections of the opersating cystem and their interaction.

26

vt e e

USER TASKS TO MAKE VIRTUAL
SYSTEM CALLS ONLY
PRIVILEGED
TASKS - - ~-
| PRIVILEGED TO MAKE
RESIDENT SYSTEM CALLS
VIRTUAL
SYSTEM
. JASKS

RESIDENT SYSTEM

. 1 KERNEL PAGER

!

TO STATION AND FRONT-END

Figure 3-2. Basic System Overview

27

@nmBmmﬂmlmmmwbﬂmﬁaﬁa&mmmmun;:ls:sieaEamﬁagmm.mmmmmmmzsq
: MAINTENANCE !} 819 ! 819 ! t rronTEND
g CONTROLUNIT I DISKSTATION I DISK STATION I 1 INTERFACE 1
, i 1 1 I STATION 1
- : | ' .- ;
i Mcu ' DISK ! DISK ! i | rronT-EnD] B
: overLAvs | | Jovertays| 1 | oveRtavs| | ! | overtavs | o
g | station |} [stamion |] [sTamion | ! i | station :
- NUCLEUS i NUCLEUS i NUCLEUS i I NUCLEUS _
I R e e e 0 : e - : sta e mm-i - : — ~ : R Sae— | l
[PO I L e SN R L ! :
:REQDENT voniTarl
g SYSTEM) MODE :
] STATION B
i ' T COMMUNICATION [* 1
: , 1
- [|
1 , [|
: e ey oo ioeed |
1 USER | CEANEL b PAGE FAULT PAGE]
1 FUNCTIONS [~ ¥ ’ + ™ ROUTINE [* ™ TABLE]
o]
: y s 1
- 1
. o L e, s '
- SHARED i
- TABLES 1
1 1
: 1 -
- W WD WSS WS S e T ROE S WS R WA WA SN ERE SN B "l o el | e ees s el el 2 | e v D W GER MRS P I GG DL GRS RS A D SUE D S GRS IR M PeS WA BEE G R WRE W SR S e _'
: PAGABLE USER :
CODE MODE

1 SYSTEM TASK
- 1 1asks [TaBLES :
| |
1 A i
] USER 1
1 CODES '
: '-
|
&m“@&!ﬁﬂiﬂﬁi“P@ih’ibﬁﬂ!ﬂkﬂﬂmlﬂiﬂiﬂhﬂHN{‘?‘?!@!H!mr&'ll&ntl&ﬂﬂﬁﬁiiﬂmmm{‘i#ﬁf&iﬁ‘ié

Figure 3-3.

-

28

Organization and Communication Paths of Operating System

Resident System

The resident portion of the operating system consists of the KERNEL, which handles time slicing of
active jobs and message communication, and the PAGER, which handles memory allocation and page

swapping.

User jobs, privileged user tasks, and virtual system tasks communicate messages to the KERNEL through
a hardware interrupt. PAGER communicates with the KERNEL by setting pointers in the queuing
structure without using external interrupts. The KERNEL communicates with the peripheral system by
setting pointers and channel flags. All communications between the various portions of the system are
by messages. Messages either pass through the KERNEL, in which case it acts as a message switcher,
or are proccored direstly by the KERNEL ’ ;

The PAGER dynamically allocates both large and smiall pages.— It performs all required implicit input/
output, thereby freeing mamory pages and obtaining the required pages from disk storage. PAGER
operates in a demand mode. The PAGER routine provides a local paging strategy. Two distinct

strateyies are used, onz for small pages and the other for large pages. .o
4 g g g

The small page strategy is based on variation of both the common working set and page fault frequency
philosophies. A working set is established by noting the distance a ma}ker page migrates downward in
the page table over a predetermined time interval. The time interval varies according to the locality

and the fault-frequency. Pages which are below the marker page are not part of the working set.

The large page strategy is intimately bound to the envricnment created by the job load and the rules
governing the scheduling algorithm for the various priority classes. A job will be allcecated a new large
page up to its job class maximum, with lower priority jobs being disconnected to make large pages
available. Once the maximum is reached, the PAGER will use a “local least recently used” strategy to

satisfy larce page requests for that program.

The local paging strategy, rather than a “global least recently used eviction’” strategy is known as the

working set pager; it allows installation definition of applicable parameters.

Associated with paging, the scheduler can control the level of multiprogramming such that page faults are
minimized. The scheduler which is tied to the pager maintains four queues for different types of jobs
and employs a scheduling algorithm whose behavior may be almost completely controlled by external,
locally set parameters. The intent is to provide a given installation with maximum flexibility in scheduling

and resource utilization with a minimum amount of page swapping.

Virtual System Tasks

The virtual portion of the system controls the entering of users and jobs into the system, ordering jobs
by priority, and entering and removing jobs from the time-slice loop. In addition, it contains routines

for system file management, explicit " input/output, and terminal message -hanﬂling.

29

Virtual system tasks are queued by one of three occurrences:
[Communication from a station requiring processing.
° A user job requesting a systam service not provided by the resident system.

° An entry in the periodic tzble indicating that it is time to run a virtual
system task.

During job processing, virtual system tasks connect a user to the system via control cards in batch mode.
Virtual system tasks nrocess the messages of the job and perform the end-of-job functions.

Massages from progiams and tasks to perform input/output are passed to the virtual system where they
are processed aiid scat fto the nropar station where the requested input/output takes place. In addition,

isk space is allocated through the virtual system, and jobs or_tasks_are scheduled. in to the time-slice

jo %

mechanism.

Several accounting tasks such as those associated with the file system and systam usage accounting are

also performed through the virtual system.

All prograins share the same virtual system tasks, which are called into memory only upon demand and

only to the extent required.

Privileged User Tasks

Privileged user tasks run under sgecial user identification; they can make either normal user calls or
privileged system calls and can modify tables only through calls. The system operator under the current
CYBER 200-OS is an example of a privileged user.

The sysiein oparctor ncnitors wnd controls internctive and batch tasks running under CYBER 200-OS. The
operator communicates interactively with the OPERATOR program to:

) Display user, task, e;nd accounting information

° Terminate tasks

° Suspend and resume tasks

) Enter and display system date and time

o Display virtual system memory o.r view system tables

° Create and modify user and account information and,

® Logically turn disks and on-line tapes on and off.

Other examples of privileged user tasks are those associated with system file maintenance, and transferring

information betwzen a CYBER 200 computer and- a front-end computer.’

30

Paripharal System Tasks

Each peripheral station contains a resident portion and a set of overlays for execution of its specified
tasks. In the case of a front-end computer, the software is the entire operating system and related
software plus a portion of software used for communicating with a CYBER 200 computer system.
Commuiication between CYBER 200-OS and the peripheral stations is by meassages and data transfers,

Although related to the recovery and availability of the CDC CYBER 200 computer system, the
Maintenance Control Unit (MCU) is part of the peripheral system.

The MCU real-time monitor detects all hardware logic faults, aleng with temperature, pressure, dew point, and
power failures. For catastrophic software failures, the central memory resident processor informs the MCU that
a software failure has oncurred. Program operation then is halted and control given to the MCU, Siation or
channel malfunctions are detected by the MCU, This is accomplished by the MCU micnitering the station com-

munication paths, through a series of messages and expected responses, while the system is running.

Failures which require operator attention are reported to the system operator, as well as logged on the.
MCU mass storage disk. Failures which do not require the operator are c<imply logged. The error file

n
on the MCU is designed to be dumped at regular intervals and the failures analyzed.

SUMMARY OF OPERATING SYSTEM

The operating system provides the user of a CYBER 200 computer system with numerous features which
allow access to the entire range of hardware capabilities in either batch or interactive mode. It manages
the distributed processing attributes of the system with a minimal amount of user intervention. Capabilities
are provided for user files with saveral categories of access, defined by the “owner” of the files. Recovery
is provided in two forins: one through the opsrating system if a system hardware or software catastrophic

error occurs, and a seennd, called Cheackpoint/Restart, for iisers.

Buring operation, statistics and accounting informstion are gathered and maintained for user and file
activity. Provisions are made for a single task to start and communicate with several other user tasks

and for jobs and tasks to share files.

LANGUAGE PROCESSORS

CYBER 200 FORTRAN
The source language for CYBER 200 FORTRAN is ANSI (ASA document X3.9-1966) with extensions.

The extensions provide vector language syntax and direct access to all central processor instructions which
make efficient machine utilization possible without the necessity for assembly language programming. The
FORTRAN compiler, object time library and generated object programs are location independent.

The CYBER 200 FORTRAN compiler provides code optimization, loop collapsing into vector instructions
and effective utilization of the large CYBER 200 register file. Programmers can write in traditional
FORTRAN allowing the compiler to optimize and collapse loops; or, they may utilize the extensions

31

which permit direct access to the hardware capahilities of vector and string manipulation. Efficient code

develocpment is aided by a symbolic cross reference and a symbolic debugging package.

The CYBER 200 FORTRAN library provides the stzndard and extended mathematical and input/output
functions. Althcugh defined primarily for the FORTRAN user, those who are coding in another language

inay wish to take advantage of the functions in the library. The following sets of routines are included:

. Intrinsic Functions {Scalar and Vector Sets)

- Absolute Value

- Truncation

- Remaindering

- Choosing Largest or Smallest Value

- Conversion

- Diffarence

—~ Przcision

- Complex Factors
° External Functions (Scalar and Vector Sets)

- Exponential

- Logarithms

- Trigonometric

- Square Root

- Double Precision Remaindering

— Modulus

—~ System Routines (TIME, DATE, SECOND)
. Input/Output Functions

- Fixed and Variable Format

- NAMELIST

- BUFFER

- ENCODE/DECODE

- Unformatted

- Unit Control (REWIND, BACKSPACE, etc.)

In addition, the Model 205 application user is provided access to the powerful automatic-branching-on-
special-conditions facility with the Model 205 computer. This facility is provided for the purpose of
detecting and processing unexpected data faults or contingency situastions. The user. may exercise an

32

option to provide own code processing of fault conditions or may elect to allow all faults to be handled

by the standard error processing routines.

An implementation of ANSI 1977 standards for FORTRAN is currently under development for the CYBER
200 scries. However, many of the FCRTRAN ‘77 extensions are provided in the current FORTRAN.
Examples of this are the PARAMETER and CHARACTER statements.

CYBER 200 ASSEMBLER

META is the machine language assembler for the Model 205 central processor. The assembler generates
relocatable binary output which is linked and loaded by the LOADER under CYBER 200-0S control.

META provides:
° Conditional assembly capabiiity for selective asszmbly. -
° Set capability to dsfine, reference and extend the list of expressions.
. Procedure and function capability. o

) Atiribute assigninent for symbols and elements.

CYBER 200 LOADER

LOADER provides the user with a means of collecting and linking relocatable programs and subprograms
to produce an executable program. The final product is a file ready for ‘execution under control of the
operating system. The loading process involves !nading relocaiable object modules from one or more user’s
files and satisfying any unresolved externals from user libraries, if specified, and then from the system

library.

LOADER provides many features which control the characteristics of the executable program file. One of
the more important features of LOADER is that the user may specify certain routines to be loaded as a
group on either a small or large virtual memory page. In a similar fashioq, the user may specify data
blocks to be grouped on small or large pages, to optimize paging strategies. The virtual memory scheme
of the hardware provides each user program with an address space of two trillion words, thus eliminating

the traditional use of program overlays, and minimizing memory management constraints on the user.

CYBER 200 SOFTWARE MAINTENANCE AIDS

The source images of the CYBER 200 software system, including compiler and assemblers, are contained
in a number of files referred to as program library files. These files, plus cother user program and data
files, may be created and maintained with a utility program called CYBER 200 UPDATE. The user may
chocse to maintain these library files using CYBER 200 UPDATE or the CYBER 170 UPDATE on the

front-end computer system.

OLE, Object Library Editor, performs several basic functions in the maintznance of the software system.
OLE creates CYBER 200 library files by combihir{g files containing binary object modules. It also edits
library files by adding or deleting object modules. And, finally it combines files containing ohject modules
producing a non-library formatted file in output.

33

EDITPUB is the Public File Editor. It allows authorized users to list existing public file names and make

additions or deletions to the public files.

The following file utilities are available to all users. These can also be used in the maintenance of the

CYBER 200 operating sysiem and library. Control is through the file a2ccess permission.

DEFINE Create a disk file

PURGE ‘ Destroy all or a subset of user private 'files

GIVE Give files to another user or pool

FILES List of user’s files along with their attributes -
CcoPY Copy all or part of one disk file to another

SWITCH Changes certain file attributes

CCMPARE Compare all or part of one disk file with another

TCOPY Copy files or records between tapes and disks - '

These utilities, along with the ones previously mentioned, may be arranged in batch jobs. Using these
utilities and by following a well-defined procedure, an zuthorized user can regenerate the operating system

and its product set.

The CYBER 200 opersting system which supports these language processors and maintenance aids is a
sophisticated system which prevides capabhilities necessary to control the flow of programs and data in an

advanced high-speed computer.

CYBER 200 FRONT-END LINK

The software which interfaces a CYBER 200 through the Distributed Periphzral Netwoik hardware and
software to a front-end computer system is called Remote Host Facility (RHF). A front-end system such
as the CYBER 170 computer system under control of the Network Operating System (NOS) includes the
RHF software. The full set of standard software products provided on both systems are available to the
user. This RHF software resides in the CDC CYBER 170 and allows the CYBER to link to another
mainframe. Also available is the CYBER 170 series product set which includes FORTRAN, COBOL,
ALGOL, data management software, standard utilities, etc., as well as diagnostics. The Model 205 runs
the standard CYBER 200-OS as well as another portion of the RHF software, the complement of the
CYZER 170 software. On the Model 205, there is also a full set of diagnostics which run either on-line

or off-line.

One of the benefits gained using RHF software is a multi-mainframe environment. If desired, the user
has a choice of different mainframes. A standard large-scale computer such as the CYBER 170 series
works very well at editing and job preparations by doing this work on the front-end processor; the Model
205 is free for large computational tasks and, therefore, better utilization is ‘made of the Model 205
computer. Another advantage is that one set of peripherals can serve the needs of both the Model 205
and the front-end system. All the slower peripherals, (ape drives, card readers, printers, etc., can be
on-line to the front-end system, but the Model 205 still has access to these peripheral devices via RHF.

Note that high-speed random access storage devices, the CDC 819 High Crpecity Disks, and the CDC 679
high-speed tapes, are on-line to the Model 205. Using CDC-supplied software for the front-end system
and the Meodel 205 system allows use of the mature CDC CYBER 170 software as well as access to the

new software and new features of the Model 205 computer.

RHF offers spocling, staging and interactive capabilities. Spooling is defined as a local or remote job file
being submitted to the front-end system input queue for execution on the Model 205. A parameter on
the job card specifies the destination mainframe in this case and the job file is transferred to that main-
frame for execution. Output generated during execution of the job is automatically returned to the
originating mainframe and terminal unless explicitly diverted by the job.

The staging capability allows the files to be trencferrzd from the frontend system to the Model 205 and
from the Mcdel 205 to the front-end systam. The Model 205 user can request.via ccntrol card that a
mass storage file located on the front-end system be staged to the Model 205 or that a mass storage file
located on the Model 205 be staged to the front-end system.

One of the considerations in data transmission between the Model 205 and the system frontend is file
conversion. A job file is transferred over to Mcdel 205 and converted into a sequential structured file,
recognizable by the Model 205 batch processor. When the output is transported back to the front-end
system, it is then converted to a printable or punchable file. A coded- file is converted on the Model

205 to an ASCIHi file. A front-end system binary file located either on mass storage or tape is transferred
with or without conversion to the Model 205 mass storage. With conversion, the binary files are converted
from front-end system fermat to Model 205 €4-bit format. In a similar fashion, data conversion is
performed in a reverse manner when the file is transferred from the Model 205 to the frent-end system.

The Model 205 scftware can also be accessed interactively at a front-end system terminal. The intzractive
messages: input at the termina!l are transferred to the Model 205 system across the link, compietely trans-
parent to the front-end system. In addition, the input, print, panch, ood sctive Model 205 guewuss cin be

displayed on a terminal.

The Model 205 interactive user has all the same Job Control Language and other capabilities as the Model
205 batch user. In addition, the Model 205 interactive user has available utilities for testing and debugging
correctly compiled programs that execute unsatisfactorily. For example, the DEBUG utility allows a user
to breakpoint at a place in the program, display and then alter data in the program, and finally continue
execution from the last user breakpoint. This process of breakpointing, displaying data, and then continuing
execution can be used to speed the calendar time associated with obtaining a correctly executing program.
EBUG inteifaces to the symhal table generated by FORTRAN. Other utilities, such as LOOK which
display or alter the contents of mass storage files, are also available to help the user in developing new

programs in an interactive mode.

Production programs, as well, can be run in interactive mode. A user may wish to observe the effects
of paraniater choices on program execution. Parameters can be entered at a terminal, and cignificant data

displayed, allowing the user to control the processing.

35

The RHF software design is such that standard utilities exist internal to itself to handle all file, commands,
and data communication requirements. These utilities are the small virtual tasks which handle the special-
ized requirements, while the resident tasks handle the generalized or Jlobal requirements. The resident

task runs the communication buffers and the utility tasks handle data conversion, file read and write

raquests, message formatting and paramater gathering.

The design of the RHF software permits multiple front-end computers to be attached and in operation
concurrently. This multiple front-end configuration to the Model 205 can grow, limited only by the

number of front-end systems devoted to computer linkage.

36

