

INSTRUCTION INDEX

INSTRUCTION INDEX

CENTRAL PROCESSOR

00000 Error exit to MA or Program Stop 3-3 T2ijK Set Xi to (X)) + K 3-25
73ijk Set Xi to (Xj) + (Bk) 3-25
-0100K Return jump to K 3-3 T4ijk Set Xi to (A)) + (Bk) 3-25
011K Read extended core storage 3-6 75ijk Set Xi to (A)) - (Bk) 3-25
0125K Write extended core storage 3-6 76ijk Set Xi to (Bj) + (Bk) 3-25
013jKO0 Central exchange jump 3-6 77ijk Set Xi to (Bj) - (Bk) 3-25
02i0k Jump to (Bi) + K 3-4 PERIPHERAL PROCESSORS
030jK Jump to K if (Xj) =0 3-4 00 Pass 4-4
031K Jump to K if (Xj) £ 0 3-4 01 Long jump to m + (d) 4-5
032jK Jump to K if (Xj) positive 3-4 02 Return jump to m + (d) 4-5
033jK Jump to K if (Xj) negative 3-4 03 Unconditional jump d 4-5
034jK Jump to K if (Xj) in range 3-4 04 Zero jump d 4-6
035jK Jump to K if (Xj) out of range 3-4 05 Nonzero jump d 4-8
036K Jump to K if (X)) definite 3-4 06 Plus jump d 4-6
037jK Jump to K if (Xj) indefinite 3-4 07 Minus jump d 4-7
04ijK Jump to K if (Bi) = (Bj) 3-5 10 Shift d 4-7
05ijK Jump to K if (Bi) # (Bj) 3-5 11 Logical difference d 4-7
061K Jump to K if (Bi) > (B})) 3-5 12 Logical product d 4-8
07ijK Jump to K if (Bi) < (Bj) 3-5 13 Selective clear d 4-8
14 Load d 4-9
10ij0 Transmit (X)) to Xi 3-7 15 Load complement d 4-10
11ijk Logical product of (Xj) and (Xk) to Xi 3-7 16 Add d 4-12
12ijk Logical sum of (Xj) and Xk) to Xi 3-7 11 Subtract d 4-12
13ijk Logical difference of (Xj) and (Xk) to Xi 3-8
1410k Transmit complement of (Xk) to Xi 3-8 20 Load dm 4-10
15ijk Logical product of (Xj) and comp (Xk) to Xi 3-8 21 Add dm 4-12
16ijk Logical sum (Xj) and comp (Xk) to Xi 3-9 22 Logical product dm 4-8
17ijk Logical difference of (Xj) and comp (Xk) to Xi 3-9 23 Logical difference dm 4-8
24 Pass 4-4
20ijk Left shift (Xi) by jk 3-9 25 Pass 4-4
21ijk Right shift (Xj) by jk 3-10 260 Exchange jump 4-14
22i3k Left shift (Xk) nominally (Bj) places to Xi 3-10 261 Monitor exchange jump 4-14
23ijk Right shift (Xk) nominally (Bj) places to Xi 3-10 262X Monitor exchange jump to MA 4-15
24i3k Normalize (Xk) to Xi and Bj 3-11 27 Read program address 4-15
251jk Round and normalize (Xk) to Xi and Bj 3-11
26ijk Unpack (Xk) to Xi and Bj 3-12 30 Load (d) 4-10
27ijk Pack Xi from (Xk) and Bj) 3-12 31 Add (d) 4-12
32 Subtract (d) 4-13
30ijk Floating sum of (Xj) and Xk) to Xi 3-13 33 Logical difference (d) 4-9
31ijk Floating difference of (Xj) and (Xk) to Xi 3-14 34 Store d 4-10
32ijk Floating DP sum of (Xj) and (Xk) to Xi 3-14 35 Replace add (d) 4-17
33ijk Floating DP difference of (Xj) and (Xk) to Xi 3-14 36 Replace add one (d) 4-18
34ijk Round floating sum of (Xj) and (Xk) to Xi 3-15 37 Replace subtract one (d) 4-18
35ijk Round floating difference of (Xj) and (Xk) to Xi 3-15
36ijk Integer sum of (Xj) and (Xk) to Xi 3-19 40 Load ((d)) 4-11
37ijk Integer difference of (Xj) and (Xk) to Xi 3-19 41 Add ((d)) 4-13
42 Subtract ((d)) 4-13
40ijk Floating product of (X)) and (Xk) to Xi 3-16 43 Logical difference ((d)) 4-9
41ijk Round floating product of (Xj} and (Xk) to Xi 3-17 44 Store ((d)) 4-11
42ijk Floating DP product of (Xj) and (Xk) to Xi 3-17 45 Replace add ((d)) 4-18
43ijk Form mask in Xi, jk bits 3-13 46 Replace add one ((d)) 4-18
44ijk Floating divide (Xj) by (Xk) to Xi 3-18 417 Replace subtract one ((d)) 4-19
45ijk Round floating divide (Xj) by (Xk) to Xi 3-18
46000 No operation (pass) 3-20 50 Load (m + (d)) 4-11
464jk0 Move indirect 3-20 51 Add (m + (d)) 4-13
465jk0 Move direct 3-21 52 Subtract (m + (d)) 4-14
466jk0 Compare collated 3-21 53 Logical difference (m + (d)) 4-9
467jk0 Compare uncollated 3-22 54 Store (m + (d)) 4-11
47i0k Count the numbers or "1's" in (Xk) to Xi 3-19 55 Replace add (m + (d)) 4-19
56 Replace add one (m + (d)) 4-19
50ijK Set Al to (Aj) + K 3-22 57 Replace subtract one {(m + (d)) 4-20
513K Set Ai to (B)) + K 3-22
52ijK Set Ai to (Xj) + K 3-22 60 Central read from (A) to d 4-15
53ijk Set Ai to (Xj) + (Bk) 3-93 61 Central read (d) words to (A) from m 4-16
54ijk Set Ai to (A]) + (Bk) 3-23 62 Central write to (A) from d 4-16
551jk Set Ai to (Aj) - (Bk) 3-23 63 Central write (d) words to (A) from m 4-17
56ijk Set Ai to (Bj) + (Bk) 3-23 64 Jump to m if channel d active 4-20
57ijk Set Ai to (Bj) - (Bk) 3-23 65 Jump to m if channel d inactive 4-20
66 Jump to m if channel d full 4-21
60ijK Set Bi to (Aj) + K 3-24 67 Jump to m if channel d empty 4-21
611 K Set Bi to (Bj) + K 3-24
62ijK Set Bi to (Xj) + K 3-24 70 Input to A from channel d 4-21
63ijk Set Bi to (X)) + (Bk) 3-24 71 Input (A) words to m from channel d 4-22
64ijk Set Bi to (Aj) + (Bk) 3-24 72 Qutput from A on channel d 4-22
65ijk Set Bi to (Aj) - (Bk) 3-24 73 Output (A) words from m on channel d 4-23
66ijk Set Bi to (Bj) + (Bk) 3-24 4 Activate channel d 4-23
67ijk Set Bi to (Bj) - (Bk) 3-24 75 Disconnect channel d 4-24
T01jK Set Xi to (A)) + K 3-25 76 Function (A) on channel d 4-24

71K Set Xi to (Bj) + K 3-25 71 Function m on channel d 4-24

CYBER/0

MODEL 72
MODEL 73
MODEL 74

Computer Systems

REFERENCE MANUAL

Instruction Descriptions

VOLUME 2

CONTROL DATA

REVISION RECORD

REVISION DESCRIPTION
A Manual Released.
(2-22-171)
B Manual revised, cditorial corrections.
(3-1-71)

60347300

Publication No.

© 1971

by Control Data Corporation

Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

or use Comment Sheet in the back of
this manual.

PREFACE

The CONTROL DATA® CYBER 70 series reference manuals are published in a series of

volumes. This manual is volume 2 of the series.
The detailed system description is in volume 1 of the series. Publication number 60347000
covers CYBER 72 systems, 60347200 covers CYBER 73 systems, and 60347400 covers

CYBER 74 systems.

Information about the ECS (Extended Core Storage) is in volume 3 of the series, publication
number 60347100,

The publications listed are available through the nearest Control Data Corporation sales
office.

60347300 B 3-1iii

8]
o)

o
m

d
tn

3. CENTRAL PROCESSOR INSTRUCTIONS No Address Mode 4-1

Instruction Formats 3-1 Direct Address Mode 4-2
Monitor, Stop 3-3 Indirect Address Mode 4-2
Branch 3-3 Description of Instructions 4-3
Extended Core Storage No Operation 4-4
Communication 3-5 Branch 4-5
Central Exchange Jump 3-6 Shift 4-7
Logical 3-7 Logical 4-7
Shift 3-9 Data Transmission 4-9
Floating Point Arithmetic 3-13 Arithmetic 4-12
Fixed Point Arithmetic 3-19 Central Processor and Central
Pass 3-90 Memory Communications 4-14
Move, Compare Data Handling 3-20 Replace 4-117
Increment 3-22 Input/Output 4-20

4. PERIPHERAL PROCESSOR
INSTRUCTIONS

Instruction Formats 4-1

Address Modes 4-1

TABLES
3-1 Central Processor Instruction 4-2 Peripheral Processor
Designators 3-2 Instruction Designators 4-4

4-1 Addressing Modes for Peripheral

processor Instructions 43

60347300 A 3-v

CENTRAL PROCESSOR INSTRUCTIONS 3.

INSTRUCTION FORMATS

This section describes the Central Processor instructions. The CPU instructions tend to

fall into two categories: those causing computation and those causing storage references or
program branching. The instructions causing only computation are generally executed in a
fixed amount of time after they have been issued. Instructions involving storage references

€ 4l A pal PO m
1

o~ emam e A -~ 1
LG Al caliiivlr e proelidcoly

timed.

Careful coding of critical program loops can produce substantial improvements in execution
time. Detailed timing information is provided in the applicable CYBER 70 series System

Description Reference Manual.

Preceding the description of each instruction is the octal code, the instruction name, the
number of bits in the instruction, and a diagram showing the instruction format. Slanted
parallel lines within a format diagram indicate unused bit positions. Table 3-1 defines the

Central Processor instruction designators.

60347300 A 3-1

TABLE 3-1.

CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A Specifies one of eight 18-bit address registers.

B Specifies one of eight 18-bit index registers; BO is fixed and
equal to zero.

C1 The offset (character address) of the first character in the
first word of the source field.

C2 The character address of the first character in the first word
of the result field.

fm A B-bit instruction code.

i A 3-bit code specifying one of eight designated registers
(e.g., Ai).

] A 3-bit code specifying one of eight designated registers
(e.g., Bj.

ik A 6-bit constant, indicating the number of shifts to be taken.

k A 3-bit code specifying one of eight designated registers
(e.g., Bk).

K An 18-bit constant, used as an operand or as a branch
destination (address).

K1 An 18-bit address indicating the memory location of the first
(left-most) character of the source field.

K2 An 18-bit address indicating the memory location of the first
(left-most) character of the result field.

LL The lower 4-bits of a character count, used as part of the 13-bit
character count for the number of characters to be moved.

LU The upper 9-bits of the character count, used with LL

X Specifies one of eight 60-bit operand registers.

60347300 A

MONITOR, STOP

00 Error Exit to MA or Program Stop (15 Bits)

LI 777/ A A

24 23 o]

A panel switch determines which of the functions this instruction performs. In the stop
position, the Central Processor is stopped. In the other position, an Error Exit occurs and

causes an exchange jump to the monitor address (MA) in the exchange package.

BRANCH
010 Return Jump to K (30 Bits)
L V7 ¢ l
29 2120 1817 0o

The instruction stores an 04 unconditional jump and the current address plus one [(P) + 1]
in the upper half of address K, then branches to K + 1 for the next instruction. Note that

this instruction is always out of the instruction stack, thus voiding the stack.

The octal word at K after the instruction appears as follows:

UNCONDITIONAL

JUMP P+
—N— / A \
K Lo a 00 XXXX XX |ooo7j ol
59 - 30 29 0
8i = Bj

A jump to address K at the end of the branch routine returns the program to the original
sequence.

60347300 A 3-3

02 Jump to (Bi)+ K (30 Bits)

Lm [P2 K |

29 24 23 21201817 (o}

This instruction adds the contents of increment register Bi to K and branches to the address
specified by the sum. The branch address is K when i = 0. Addition is performed modulo

2184,

Note that this instruction is always out of the instruction stack, thus voiding the stack. For
an unindexed, unconditional jump, the 04 instruction with i = j = 0 is a better choice. Thus,
if this instruction is contained in a tight loop, the instruction at K can be obtained from the

stack, if possible.

030 Jump to K if (Xj)=0 (30 Bits)
031 Jump to K if (Xj) # 0 (30 Bits)
032 Jump to K if (Xj) = plus (positive) (30 Bits)
033 Jump to K if (Xj) = negative (30 Bits)
034 Jump to K if (Xj) is in range (30 Bits)
035 Jump to K if (Xj) is out of range (30 Bits)
036 Jump to K if (Xj) is definite (30 Bits)
037 Jump to K if (Xj} is indefinite (30 Bits)

I K]

29 21201817

These instructions branch to K when the 60-bit word in operand register Xj meets the
condition specified by the i digit. The instruction allows zero, sign, and indefinite forms

tests for fixed or floating point words.

The following applies to tests made in this instruction group:

a) The 030 and 031 operations test the full 60-bit word in Xj. The words 000...000

and 777...777 are treated as zero. All other words are non-zero.

b) The 032 and 033 operations examine only the sign bit (259) of Xj. If the sign bit
is zero, the word is positive; if the sign bit is one, thw word is negative. Thus,

the sign test is valid for fixed point words or for coefficient in floating point words.

3-4 60347300 A

c) The 034 and 035 operations examine the upper-order 12 bits of Xj. Both plus and

minus infinity are detected:
3TT7XX...XX and 4000XX. .. XX are out of range; all other words are in range.

d) The 036 and 037 operations examine the upper-order 12 bits of Xj. Both plus and

minus indefinite forms are detected:

1777XX, ..XX and 6000XX, .. XX are indefinite; all other words are definite.

04 Jump to K if (Bi) = (Bj) (30 Bits)
05 Jump to K if (Bi) # (Bj) (30 Bits)
06 Jump to K if (Bi) = (Bj) (30 Bits)
07 Jump to K if (Bi) < (Bj) (30 Bits)

m | i]| K |

29 2423 21201817 o]

These instructions test an 18-bit word from register Bi against an 18-bit word from register
Bj (both words signed quantities) for the condition specified and branch to address K on a

successful test. All tests against zero (all zeros) can be made by setting Bj = BO.

The following rules apply in the tests made by these instructions:
a) Positive zero is recognized as unequal to negative zero, and
b) Positive zero is recognized as greater than negative zero, and

¢) A positive number is recognized as greater than a negative number.

Note that the 06 and 07 instructions first perform a sign test on Bi and Bj and the Branch/
No Branch determination is based on the above rules. If Bi and Bj are of the same sign, a
subtract test is performed (in the Increment Unit) and the sign of the result (Bi-Bj) deter-

mines whether a Branch is made.

EXTENDED CORE STORAGE COMMUNICATION

This category of instructions provides the ability to communicate with Extended Core
Storage (ECS). This section describes Extended Core Storage instructions. A more detailed
description of the instructions can be found in the Extended Core Storage volume of the

Reference Manual (volume 3, Pub. No. 60347100).

60347300 A 3-5

These instructions must be located in the upper order position of the instruction word. If
they are not, any attempt at execution will cause an exit to RACM regardless of the error
mode hits, This will also happen if the instructions are used in a system that does not have

ECS.

011 Read Extended Core Storage (30 Bits)

L fmi |i] « |

59 5150 48 47 30

This instruction initiates a Read operation to transfer [(Bj) + K] 60-bit words from Extended
Core Storage to Central Memory. The initial Extended Core Storage address is [(X0) +

]; the initial Central Memory address is [(AQ) + RA

RApcs cm

012 Write Extended Core Storage (30 Bits)

I x]

59 5150 48 47 30

This instruction initiates a Write operation to transfer [(Bj) + K] 60-bit words from Central
Memory to Extended Core Storage. The initial Central Memory address is [(A0) + RACM];
the initial Extended Core Storage address is [(X0) + RAECS]'

CENTRAL EXCHANGE JUMP

013 Central Exchange Jump (60 Bits)
[fmi l i | K NOT USED
59 5150 4847 3029 o
Thig instruction unconditionally exchange jumps the Central Processor, regardless of the

the Monitor Flag bit is set or clear. Operation is as follows:

a) Monitor Flag bit clear. The starting address for the exchange is taken from the
18-bit Monitor Address register. Note that this starting address is an absolute

address. During the exchange, the Monitor Flag bit is set.

3-6 60347300 A

b) Monitor Flag bit set. The starting address for the exchange is the 18-bit result
formed by adding K to the contents of register Bj. Note that this starting address

is an absolute address. During the exchange, the Monitor Flag bit is cleared.

LOGICAL

10 Transmit (Xj) to Xi (15 Bits)

L B N 777

14 9 8 6 5 3 2 0

This instruction transfers a 60-bit word from operand register Xj to operand register Xi.

11 Logical product of (Xj) and (Xk) to Xi (15 Bits)

m [5 []

14 9 8 6 5 3 2 (0]

This instruction forms the logical product (AND function) of 60-bit words from operand
registers Xj and Xk and places the product in operand register Xi. Bits of register Xi are

set to ""1" when the corresponding bits of the Xj and Xk registers are ""1" as in the following

example:
(Xj) = o101
(Xk) = 1100
Xi = 0100
12 Logical sum of (Xj) and (Xk) to Xi (15 Bits)

& T]

14 9 8 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand registers

Xj and Xk and places the sum in operand register Xi. Bits of register Xi are set to ''1"" if

(Xj) = 0101
(Xk) = 1100
Xi = 1101

60347300 A 3-7

13 Logical difference of (Xj) and (Xk) to Xi (15 Bits)

L e [v 1 v | x|

14 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand
registers Xj and Xk and places the difference in operand register Xi. Bits of register Xi
are set to "'1" if the corresponding bits in the Xj and Xk registers are unlike as in the

following example:

(Xjy = 0101
(Xk) = 1100
Xi = 1001
14 Transmit the compiement of (Xk} to Xi (15 Bits)

L m | « b4 « |

14 9 8 6 5 3 2 (o]

This instruction extracts the 60-bit word from operand register Xk, complements it, and

transmits this complemented quantity to operand register Xi.

15 Logical product of (Xj) and complement of (Xk) to Xi (15 Bits)

B I B N

14 9 8 6 5 3 2 (o]

This instruction forms the logical product (AND function) of the 60-bit quantity from operand
register Xj and the complement of the 60-bit quantity from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to ""1" when the corresponding

bits of the Xj register and the complement of the Xk register are ""1" as in the following

example:
(Xj) = 0101
Complemented (Xk) = 0011
Xj = 0001

3-8 60347300 A

16 Logical sum of (Xj) and complement of (Xk) to Xi (15 Bits)

L] i] i]« |

f the 60-bit quantity from operand

Q

1 :

This instruction forms the logical sum (inclusive OR)

register Xj and the complement of the 60-bit word from operand register Xk, and places

the result in operand register Xi. Thus, bits of Xi are set to ''1" if the corresponding bit
1

of the Xj register or complement of the Xk register is a ''1"" as in the following example:

(Xj) = o101
Compiementied {(Xkj - 0011
Xi = 0111
17 Logical difference of (Xj) and complement of (Xk) to Xi (15 Bits)

LN B R R

14 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of the quantity from operand
register Xj and the complement of the 60-bit word from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to '"1" if the corresponding bits

of register Xj and the complement of register Xk are unlike as in the following example:

(Xj) = 0101
Complemented (Xk) = 0011
Xi = 0110
SHIFT
20 Left shift (Xi), jk places (15 Bits)

I I N T

14 9 8 6 5 0

This instruction shifts the 60-bit word in operand register Xi left circular jk places. Bits

shifted off the left end of operand register Xi replace those from the right end.

The 6-bit shift count jk allows a complete circular shift of register Xi.

60347300 A 3-9

21 Arithmetic right shift (Xi), jk places (15 Bits)

fm i ik |

14 9 8 6 5 (o]

This instruction shifts the 60-bit word in operand register Xi right jk places. The right-
most bits of Xi are discarded and the sign bit is extended.

22 Left shift (Xk) nominally (Bj) places to Xi (15 Bits)

w1 T T]

14 9 8 6 5 3 2 [¢]

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand register Xi.

1) If Bj is positive (i.e., bit 17 of Bj = 0), the quantity from Xk is shifted left-
circular. (The low order six bits of Bj specify the shift count.)

2) If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from Xk is shifted right
(end off with sign extention). (The one's complement of the low order eleven bits
of Bj specify the shift count.) If any of bits 26-210, after complementing, are

""11'g", the shift is not performed and the result register Xi is cleared to all zeros.

23 Right shift (Xk) nominally (Bj) places to Xi (15 Bits)

fm I K
14 9 8 6 5 3 2 [0}

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand register Xi.

1) If Bj is positive (i.e., bit 17 of Bj = 0), the quantity from register Xk is shifted
right (end-off with sign extension). (The low order eleven bits of Bj specify the

6 5,10
a

shift count.) If any of bits 27 -2 re ""1's", the shift is not performed and the

result register Xi is cleared to all zeros.

2) If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is shifted left

circular. (The complement of the lower order six bits of Bj specify the shift count.)

3-10 60347300 A

24 Normalize (Xk) to Xi and Bj (15 Bits)

fm i T

14 9 8 6 3 0
This instruction normalizes the floating point quantity from operand register Xk and places
it in operand register Xi. The number of left shifts necessary to normalize the quanlity is
entered in increment register Bj. A Normalize operation may cause underflow which will
clear Xi to all zeros regardless of the original sign of Xk. Normalizing either a plus or

minus zero coefficient sets the shift count (Bj) to 4:810 and clears Xi to all zeros.
If Xk contains an infinite quantity (3777X...X or 4000X...X) or an indefinite quantity

(1777X..,X or 6000X...X), no shift takes place. The contents of Xk are copied into Xi and

Bj is set equal to zero. Optional error exits do occur.

25 Round and normalize (Xk) to Xi and Bj (15 Bits)

fm i j k

14 9 8 6 S 3 2 (o]
This instruction performs the same operation as instruction 24 except that the quantity from
operand register Xk is rounded before it is normalized. Rounding is accomplished by placing
a '""1'"" round bit immediately to the right of the least significant coefficient bit. Normalizing
a zero coefficient places the round bit in bit 47 and reduces the exponent by 48. Note that the

same rules apply for underflow.
If Xk contains an infinite quantity (3777X,..X or 4000X...X) or an indefinite quantity

(1777X...X or 6000X...X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do occur.

60347300 A 3-11

26 Unpack (Xk) to Xi and Bj (15 Bits)

tm] i] x|

14 9 8 6 5 3 2 0

This instruction unpacks the floating point quantity from operand register Xk and sends the
48-bit coefficient to operand register Xi and the 11-bit exponent to increment register Bj.
The exponent bias is removed during Unpack so that the quantity in Bj is the true one's

complement representation of the exponent.

The exponent and coefficient are sent to the low-order bits of the respective registers as

shown below:

SIGN BIASED EXPONENT COEFFICIENT
PACKED QUANTITY I | | I T a8 j X
59 58 a8 47 N 0
UNBIASED
EXPONENT
EXPONENT SIGN COEFFICIENT
EXTENDED V SIGN EXTENDED
UNPACKED BjM —I X
17 109 0 59 48 a7 o
27 Pack Xi from (Xk) and (Bj) (15 Bits)

LN I B

14 9 8 6 5 3 2 o]

This instruction packs a floating point number in operand register Xi. The coefficient of the
number is obtained from operand register Xk and the exponent from increment register Bj.
Bias is added to the exponent during the Pack operation. The instruction does not normalize

the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective
registers and packed as shown in the illustration for the Unpack (26) instruction. Thus, bits

48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow or underflow.

3-12 60347300 A

Note that if Xk is positive, the packed exponent occupying positions 48 to 58 of Xi is obtained
from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is not complemented
but bits 0 to 9 are.

43 Form mask in Xi, jk bits (15 Bits)

[T o1 %]

14 9 8 6 5 0

This instruction forms a mask in operand register Xi. The 6-bit quantity jk defines the

number of "1's" in the mask as counted from the highest order hit in Xi,

The contents of operand register i = 0 when jk = 0,

FLOATING POINT ARITHMETIC

30 Floating sum of (Xj) and (Xk) to Xi (15 Bits)

L= [¢ [i [«]
14 9 8 6 5 3 2 o
(o]

This instruction forms the sum of the floating point quantities from

perand registers Xj and
Xk and packs the result in operand register Xi. The packed result is the upper half of a

double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller
exponent is entered into the upper half of a 98-bit accumulator. The coefficient is shifted
right by the difference of the exponents. The other coefficient is then added into the upper
half of the accumulator. If overflow occurs, the sum is right-shifted one place and the
exponent of the result increased by one. The upper half of the accumulator holds the
coefficient of the sum, which is not necessarily in normalized form. The exponent and

upper coefficient are then repacked in operand register Xi.
If both exponents are zero (20008) and no overflow occurs, the instruction causes an ordinary

integer addition. For treatment of special operands and/or indefinite forms, refer to the

programming information in volume 1.

60347300 A 3-13

31 Floating difference (Xj) and (Xk) to Xi (15 Bits)

fm i T
14 9 8 6 5 3 2 (o]

This instruction forms the difference of the floating point quantities from operand registers

Xj and Xk and packs the result in operand register Xi. Alignment and overflow operations
are similar to the Floating Sum (30) instruction, and the difference is not necessarily

normalized. The packed result is the upper half of a double precision difference.

An ordinary integer subtraction is performed when the exponents are zero. For treatment
of special operands and/or indefinite forms, refer to the programming information in

volume 1.

w
>
g
Q
[w}
hv]
(%]
IS
3
o
e Y
-~
=
N
QD
3
Q
3
X
.
S
b

. m [¢ [¢ [x|

14 9 8 6 5 3 2 0

This instruction forms the sum of two floating point numbers as in the Floating Sum (30)
instruction, but packs the lower half of the double precision sum with an exponent 48 less
than the upper sum. For treatment of special operands and/or indefinite forms, refer to

the programming information in volume 1.

33 Floating DP difference of (Xj) and (Xk) to Xi (15 Bits)
fm i i]«
14 9 8 6 5 3 2 (o]
This instruction forms the difference of two floating point numbers as in the Iloating
Differ truction, but packs the lower half of the double precision difference with

reince (31) inst
an exponent of 48 less than the upper sum. For treatment of special operands and/or

indefinite forms, refer to the programming information in volume 1.

60347300 A

34 Round floating sum of (Xj) and (Xk) to Xi (15 Bits)

LN T N

14 9 8 6 5 3 2 (o]

h

D
=
]
o]
[s%)
o+
=
o]

Thig instruction forms the roun of

o

Xj and Xk and packs the upper sum of the double precision result in operand register Xi.
The sum is formed in the same manner as the Floating Sum instruction but the operands

are rounded before the addition, as shown below, to produce a round sum.
1) A round bit is attached at the right end of both operands if:
a) both operands are normalized, or
b) the operands have unlike signs.

2) A round bit is attached at the right end of the operand with the larger exponent for

all other cases.

3) Inthe event that the operands have equal exponents, a round bit is attached to the

coefficient for only one of the operands.

IFor treatment of special operands and/or indefinite forms, refer to the programming

information in volume 1.

35 Round floating difference of (Xj) and (Xk) to Xi (15 Bits)
LI B B
14 9 8 6 5 3 2 o]

This instruction forms the round difference of the floating point quantities from operand
registers Xj and Xk and packs the upper difference of the double precision result in operand
register Xi. The difference is formed in the same manner as the Floating Difference (31)
instruction but the operands are rounded before the subtraction, as shown below, to produce

a round difference.
1) A round bit is attached at the right end of both operands if:
a) Dboth operands are normalized, or

b) the operands have like signs.

60347300 A 3-15

2) A round bit is attached at the right end of the operand with the larger exponent for

all other cases.

3) Inthe event that the operands have equal exponents, a round bit is attached to the

coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to the programming

information in volume 1.

40 Floating product of (Xj) and (Xk) to Xi (15 Bits)

fm i j k

14 9 8 6 5 3 2 o]

This instruction multiplies two floating point quantities obtained from operand registers Xj
(multiplier) and Xk (multiplicand) and packs the upper product result in operand register Xi.
When both operands are 48bit integers with the upper 12-bits sign extended, the integer
condition is detected. Integer multiplication takes place and the upper 48-bits of the product

are entered into Xi.

The two 48-bit coefficients are multiplied together to form a 96-bit product. The upper
48 bits of the product (bits 48-95) are then packed together with the resulting exponent.
Note that when using unnormalized quantities, the entire result could lie in the lower-

order 48 bits of the product; hence, this result would be lost when packing occurs.

The result is a normalized quantity only when both operands are normalized; the exponent

in this case is the sum of the exponents plus 47 (or 48).
The result is unnormalized when either or both operands are unnormalized; the exponent in

this case is the sum of the exponents plus 48. For treatment of special operands and/or

indefinite forms, refer to the programming information in volume 1.

3-16 60347300 A

41 Round floating product of (Xj) and (Xk) to Xi (15 Bits)

Lm i i]

14 9 8 6 5 3 2 o]

from operand register Xk (multiplicand),
T roduct rcsult is pac

Pro
in operand register Xi. (No lower product available.) The multiply operation is identical

to that of instruction 40 with the following exception:

Before the left shift of the final product and during the merge operation to form the final

95, round is by one-fourth

° for products > 2
for all other products, round is by one-half

e when one or both operands are unnormalized, round is by one-fourth.

The result is a normalized quantity only when both operands are normalized; the exponent

in this case is the sum of the exponents plus 47 (or 48).
The result is unnormalized when either or both operands are unnormalized; the exponent in

this case is the sum of the exponents plus 48. For treatment of special operands and/or

indefinite forms, refer to the programming information in volume 1.

42 Floating DP product of (Xj) and (Xk) to Xi (15 Bits)

L I T

14 9 8 6 § 3 2 o]

This instruction multiplies two floating point quantities obtained from operand registers Xj
and Xk and packs the lower product in operand register Xi. The two 48-bit coefficients are
multiplied together to form a 96-bit product. The lower-order 48 bits of this product

(bits 47-00) are then packed together with the resulting exponent. The result is not nec-
essarily a normalized quantity. The exponent of this result is 48 less than the exponent
resulting from a 40 instruction using the same operands. For treatment of special operands

and/or indefinite forms, refer to the programming information in volume 1.

This instruction performs an integer multiply if the 12 upper bits (exponents) of both operands
are sign extended. The result, the lower 48 bits of the 96-bit product, is entered into Xi
with sign extension.

60347300 A 3-17

44 Floating divide (Xj) by (Xk) to Xi (15 Bits)

l m o] o«]

14 9 8 6 5 3 2 0

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi.

The exponent of the result in a no-overflow case is the difference of the dividend and divisor

exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting the quotient
one place. In this case the exponent is the difference of the dividend and divisor exponents

minus 47.

The result is a normalized quantity when both the dividend and the divisor are normalized.
A divide fault occurs when the coefficient of the dividend is two or more times as large as
the coefficient of the divisor., This forces an indefinite result (17770...0). To avoid this,
normalize both operands before executing this instruction. For treatment of special operands

and/or indefinite forms, refer to the programming information in volume 1.

45 Round floating divide (Xj) by (Xk) to Xi (15 Bits)

LI B T

14 9 8 6 5 3 2 o]

This instruction divides the floating quantity from operand register j (dividend) by the floating
point quantity from operand register Xk (divisor) and packs the round quotient in operand
register Xi. Rounding is accomplished by adding one-third during the division process. In
effect, the quantity ''2525....2525," resides immediately to the right of the dividend binary

8
point prior to starting the divide operation. On the first iteration, a "1" is added to the least

significant bit of the dividend. After each iteration (subtraction of divisor from partial
dividend) a two-place left shift occurs and a "1" is again added to the least significant bit of

the partial dividend. Thus, successive iterations gradually bring in the one-third round
"quantity' (25.... 258).

The result exponent in a no-overflow case is the difference of the dividend and divisor

exponents minus 48.

3-18 60347300 A

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
quotient one place; in this case the exponent is the difference of the dividend and divisor

exponents minus 47.

The result is a normalized quantity when both the dividend and the divisor are normalized.
A divide fault occurs when the coefficient of the dividend is two or more times as large as
the coefficient of the divisor. This forces an indefinite result (17770...0). To avoid this,
normalize both operands before executing this instruction. For treatment of special operands

and/or indefinite forms, refer to the programming information in volume 1.

FIXED POINT ARITHMETIC

36 Integer sum of (Xj) and (Xk) to Xi (15 Bits)

m [0 [i [o]

14 9 8 6 § 3 2 (0]

This instruction forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in operand register Xi. An overflow condition

is ignored.

37 Integer difference of (Xj) and (Xk) to Xi (15 Bits)

L tm I

14 9 8 6 5 3 2 0

This instruction forms the 60-bit one's complement difference of the quantities from operand
registers Xj (minuend) and Xk (subtrahend) and stores the result in operand register Xi. An
overflow condition is ignored.

47 Count the number of “I's” in (Xk) to Xi (15 Bits)
L m»™ [« P70 v]
149 9 8 6 5 3 2 o]

This instruction counts the number of "1's" in operand register Xk and stores the count in

the lower order 6 bits of operand register Xi, Bits 6 through 59 are cleared to zero.

60347300 A 3-19

PASS

46 No operation (Pass) (15 Bits)

l m_ I/B//////////////{A

14

This instruction is a ""do-nothing'' instruction that is typically used to pad the program

between certain program steps.

EXAMPLE:

59 [o]

P 30-BIT INST. 15-BIT INST. PASS

P+ 30-8BIT INST, 30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word at P. Since

the next instruction is 30 bits, it cannot fit in P and must be placed in P + 1.

MOVE, COMPARE DATA HANDLING

464 Move Indirect (60 Bits)

[T« VL

59 515048 47 3029 0

This instruction moves the source field to the result field as specified by the descriptor.
The quantity Bj + K is the address of the descriptor. Any instructions located in bit positions

0-29 will not be executed.

60- Bit Descriptor Word

V/| w | ko o ee] K2

59 5756 4847 30 29 2625 22211817 0

The move is from left to right through the field. Register X0 is cleared at the end of

execution.

3-20 60347300 A

465 Move Direct (60 Bits)

fmi |Lu Kl LL|Ci |Cc2 K2
59 51504847 3029 262522211817 o]

2.

as specified by the descriptor,

This instruction moves the source field to the result fiel

be part of the instruction word. The field length is limited to a 7 bit count. The
maximum field length is 177 octal or 127 decimal. If the field length is zero the instruction

is a pass, at the end of execution.

466 Compare Coiiated (60 Bits)
fmi Lu Kl LL|CI [C2 K2
59 51504847 3029 262522211817 (o}

This instruction compares the field designated by K1, C1 with the field designated by K2,
C2 and sets X0 as follows:

If (field K1)} is greater than (field K2), set X0 to 00 - O0XXX

If (field K1) is equal to (field K2), set X0 to 00 - 000

If (field K1) is less than (field K2), set X0 to 77 - 7YYY

where YYY is the complement of XXX

Ll and Lu are the 7 bit lengths of the fields (in 6 bit characters) being compared. ‘The

maximum length of a field for this instruction is 177 octal or 127 decimal.

If L = 0 the instruction is a pass.

The compare is made left to right through the fields until two unequal characters are found.
These two characters are then collated. If the value found for the two unequal characters

is the same, thé compare continues until another pair of characters are unequal or until the

field length is exhausted.

The value of the two octal numbers XX, stored in X0 is determined by the equation
L - N = XX, where L is the length of the field and N is the number of pairs of characters

that were collated equal, prior to instruction termination. In other words XX is the number

of pairs of characters not yet compared plus one.

60347300 A 3-21

Register A0 contains the starting word address of an 8 word, 64 character, collating table,

This table must have been previously stored in consecutive memory locations.

Address Collating Character Locations

A0 00 | 01| 02 | 03| 04 | 05| 06 |07 \\\\\\\\\\\X\

Ao+t 10| 11| 12 [13] 14 [15 | 16 | 17 QI

Ao+2 |20 | 21] 22 | 23 | 24 | 25 | 26 [27 [
\\\\\\\\\\

A0+3 30 | 31| 32 {33 | 34 |35 | 36 |37
A0+4 40 | 41| 42 | 43 | 44 | 45 | 46 | 47

A0+5 |50 | 51| 52 | 53 | 54 | 55 | 56 | 57 \\\\\\\\\\\\\\

AO016 60 | 61| 62 | 63 | 64 | 65 | 66 | 67

AR
ao+7 |70 | 71| 72 [3 | 74 |75 | 76 | 77 \\\\\\\\\\\\\\\

59 12 11

The value of the character being collated is found by examination of the table. Suppose the
character under examination were an octal 63. The 6 would be added to the contents of
register A0 to form the word address and the 3 would be used to pick the correct character

from that word. Note that this number corresponds to the character address.

467 Compare Uncollated (60 Bits)
fmi J}ul Kl LLfer fce K2
59 51504847 3029 262522211817 [0}

This instruction is identical to the Compare Collated instruction with one exception. The
collating table is not used. X0 is set when the first pair of unequal characters is encountered

or when the field length is exhausted.

INCREMENT
50 Set Ai to (Aj)+ K (30 Bits)
51 Set Ai to (Bj)+ K (30 Bits)
52 Set Aito (Xj)+ K (30 Bits)

[m [i]i] X i

29 2423 2120 18 17 0

3-22 60347300 A

53 Set Ai to (Xj) + (Bk) (15 Bits)

54 Set Ai to (Aj) + (Bk) (15 Bits)
55 Set Ai to (Af) — (BK) (15 Bits)
56 Set Ai to (Bj) + (BK) (15 Bits)
57 Set Ai to (Bj)— (BK) (15 Bits)
fm)] i [k]
14 9 8 6 5 3 2 (o]

These instructions perform one's complement addition and subtraction of 18-bit operands
and store an 18-bit result in address register Ai. Overflow, in itself, is ignored, but an

address range fault may result from overflow in this set of instructions.

Operands are obtained from address (A), increment (B), and operand (X) registers as well
as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand

register are the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is performed to the address specified by the final
content of address registers A1 - A7. The operand read from memory address specified by
Al - A5 is sent to the corresponding operand register X1 - X5. When A6 or A7 is referenced,
the operand from the corresponding X6 or X7 operand register is stored at the address
specified by A6 or A7.
NOTE
If, in this category of instructions, the result placed
in address register Ai is an address out of range, the

following occurs: (Note that this action is independent
of an Exit selection on Address Out of Range.)

If i = 1-5: Operand register Xi is loaded with the
contents of absolute address zero and the contents
of memory location (Ai) are unchanged.

If i =6 or 7: Operand register Xi retains its original

contents and the contents of memory location (Ai) are
unchanged.

60347300 A 3-23

EXAMPLE:

1

i

4

=6

0321008 + 2345678

Tnitial Quantities

>
"

234567

8
A4 = 3211108
AS = 0321008
X4 - 00..... 008

Storage location 266667 = 7 ...

Final Quantities:

>
1

266667

4 8
AG = 0321008
X4 =T7... 753421046008

Set Bi to (Aj)+ K
Set Bi to (Bj)+ K
Set Bito (Xj))+ K

ERER ¢

24 23 2120 18 (7

Set Bi to (Xj) + (Bk)
Set Bi to (Aj)+ (BK)
Set Bi to (Aj)— (Bk)
Set Bi to (Bf) + (Bk)
Set Bi to (Bj)— (Bk)

fm

50 SA1 = Ay + K
SA4 = AG + K
SA4 =
bA4 = 2666678

60
61
62
I fm
29
63
64
65
66
67
14

3-24

753421046008

(30 Bits)
(30 Bits)
(30 Bits)

(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)

60347300 A

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18-bit result in increment register Bi. An overflow condition is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as well
as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand

register are the truncated lower 18 bits of the 60-bit word.

70 Set Xi to (Aj)+ K (30 Bits)
71 Set Xi to (Bj)+ K (30 Bits)
72 Set Xi to (Xj)+ K (30 Bits)
Lifil K
29 2423 2120 18 17
73 Set Xi to (Xj) + (Bk) (15 Bits)
74 Set Xi to (Aj) + (Bk) (15 Bits)
75 Set Xi to (Aj)— (Bk) (15 Bits)
76 Set Xi to (Bj) + (Bk) (15 Bits)
77 Set Xi to (Bj)— (Bk) (15 Bits)

L

fm

14

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18-bit result into the lower 18 bits of operand register Xi.

result is extended to the upper 42 bits of operand register Xi.

ignored.

The sign of the

An overflow condition is

Operands are obtained from address (A), increment (B), and operand (X) registers as well
as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand

register are the truncated lower 18 bits of the 60-bit word.

60347300 A 3-25

EXAMPLE:
Initial Quantities:

73 SXi Xj + Bk i=2 X2 =0... 07453214028
SX2 X3 + B1 j=3, k=1 X3 =0... 06522243108
SX2 =0... 06522243108 + 5112458 B1 = 5112458

SXy =7 ... 7777735555

2 8

Final Quantities:

Xg =T ... TT7T7735555

2 8
X3 =0... 06522243108
B1 = 5112458

3-96 60347300 A

PERIPHERAL PROCESSOR INSTRUCTIONS 4.

INSTRUCTION FORMATS

Two formats are used; 12-bit and 24-bit. The 12-bit format has a 6-bit operation code f and

a 6-bit operand or operand address d.

OPERATION OPERAND OR
CODE QPERAND ADDRESS
f d
6 6]
n 6 5 0

The 24-bit format uses the 12-bit quantity m, the contents of the next program address

(P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS
CODE ! A \
f d m
[6 6 [12 |
1" o 1l o
\ J\ /
\'A \'4
(P) (P+1)

ADDRESS MODES
Program indexing is accomplished and operands are manipulated in several modes. The

two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-bit

addresses.

NO ADDRESS MODE

In this mode d or dm is used as an operand. This mode eliminates the need for storing
constants. The d quantity is considered a 12-bit number, the upper six bits of which are

zero. The dm quantity has d as the upper six bits and m as the lower 12 bits.

60347300 A 4-1

DIRECT ADDRESS MODE

In this mode, d or m + (d) is used as the address of the operand. The d quantity specifies
one of the first 64 addresses in memory (0000-00778). The m + (d) quantity generates a
12-bit address for referencing all possible peripheral memory locations (0000-77778). If
d # 0, the content of address d is added to m to produce an operand address (indexed ad-

dressing). If d = 0, m is taken as the operand address.

EXAMPLE: Address Modes

Given: d = 25
m = 100
contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234
Then:
MODE INSTRUCTION A REGISTER
No Address 14 000025
20 250100
Direct Address 30 000150
50 001234
Indirect Address 40 007776

INDIRECT ADDRESS MODE

In this mode, d specifies an address which contains the address of the desired operand.
Thus the operand is indirectly obtained. Indirect addressing and indexed addressing require

an additional memory reference beyond that required by direct addressing.

The description of instructions uses the expression (d) to define the contents of memory
location d. An expression with double parentheses ((d)) refers to indirect addressing. The
expression (m + (d)) refers to direct addressing when d = 0 and to indexed direct addressing

when d # 0, Table 4-1 summarizes the addressing modes used for the Peripheral Processor

instructions.

60347300 A

TABLE 4-1. ADDRESSING MODES FOR PERIPHERAL
PROCESSOR INSTRUCTIONS
Address Mode
Instruction

Type Direct Indirect No Address
Load 30, 50 40 14, 20
Add 31, 51 41 18, 21
Subtract 32, 52 42 17
Logical Difference 33, 53 43
Store 34, 54 44 // /// ///////////
Replace Add 35, 55 45
Replace Add One 36, 56 46 //////// / /
Replace Subtract One 37, 57 417 00
Long Jump 01 //////// ////
Return Jump 02 //// /

Unconditional Jump

o
77

7
’

Zero Jump / //// / 04
Non-Zero Jump / // / 05
Positive Jump Z % 06
Minus Jump // ////// Z 07
Shift % /// / /// % /// // 2 10
Logical Product // / /// 12, 22
Selective Clear // zZ 13
Load Complement | i

DESCRIPTION OF INSTRUCTIONS

This section describes the Peripheral Processor instructions.

used throughout the section.

60347300 A

Table 4-2 lists designators

TABIE 4-2. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use
A The A register.
d A 6-bit operand or operand address.
f A 6-bit instruction code.
m A 12-bit quantity used with d to form an 18-bit operand or

operand address.

The Program Address register.

Q The Q register.
() Contents of a register or location
0 Refers to indirect addressing.

Preceding the description of each instruction is the octal code, the instruction name and

instruction length.

EXAMPLE:
52 Subtract (m + (d)) (24 Bits)
N s’ ‘_f e
Octal Instruction Instruction
Code Name Length

Instruction formats are also given; hashed lines within a format indicate bits which are not

used in the operation.

NO OPERATION

00 Pass (12 Bits)
24 Pass (12 Bits)
25 Pass (12 Bits)

111111111

(o]

f A,

These instructions specify that no operation be performed. They provide the means for

padding out a program.

60347300 A

BRANCH
01 Long Jump to m + (d) (24 Bits)

f d m]
23 18 17 12 11 (o]

This instruction jumps to the sequence beginning at the address given by m + (d). Ifd = 0,

then m is not modified.

02 Return Jump to m + (d) (24 Bits)
f d] m]
L 1 1 J
23 18 17 12 1 0
\ /A /
\' V
(P) (P+1)

This instruction jumps to the sequence beginning at the address given by m +(d). Ifd =10
then m is not modified. The current program address (P) plus two is stored at the jump
address. The new program commences at the jump address plus one. This program should
end with a long jump to, or normal sequencing into, the jump address minus one, which
should in turn contain a long jump, 0100, The latter returns the original program address

plus two to the P register.

03 Unconditional Jump d (12 Bits)

-

[1 d
" 6 5 o

This instruction provides an unconditional jump to any instruction up to 31 steps forward or
backward from the current program address. The value of d is added to the current program
address. If d is positive (01 - 37), then 0001 (+1) - 0037 (+31) is added and the jump is
forward. If d is negative (40 - 76) then 7740 (-31) - 7776 (-1) is added and the jump is
backward. The program stops (a Dead Start is necessary to restart the machine) when
d =00 or 77.

60347300 A 4-5

04 Zero Jump d (12 Bits)

L d |

I 6 5 o]

This instruction provides a conditional jump to any instruction up to 31 steps forward or
backward from the current program address. If the content of the A register is zero, the
jump is taken. If the content of A is non-zero, the next instruction is executed. Negative

zero (777777) is treated as non-zero. For interpretation of d see instruction 03.

05 Non-zero Jump d (12 Bits)

f d |

I 6 5 o]

This instruction provides a conditional jump to any instruction up to 31 steps forward or
backward from the current program address. If the content of the A register is nonzero,
the jump is taken, If A is zero, the next instruction is executed. Negative zero (777777)

is treated as nonzero. For interpretation of d see instruction 03.

06 Plus Jump d (12 Bits)

| f d

] 6 5 [0}

This instruction provides a conditional jump to any instruction up to 31 steps forward or
backward from the current program address. If the content of the A register is positive,
the jump is taken. If A is negative, the next instruction is executed. Positive zero is
treated as a positive quantity; negative zero is treated as a negative quantity. For inter-

pretation of d see instruction 03.

4-6 . 60347300 A

07 Minus Jump d (12 Bits)

B 6 5 0

1~
L I

PRGNS
1 uac

)

4 man At
L L il

frox 3o} program
the jump is taken. If A is positive, the next instruction is executed. Positive zero is
treated as a positive quantity; negative zero is treated as a negative quantity. For inter-

pretation of d see instruction 03.

SHIFT

10 Shift d (12 Bits)

A

1 6 5 o]

This instruction shifts the contents of A right or left d places. If d is positive (00-37) the
shift is left circular; if d is negative (40-77) A is shifted right (end off with no sign extension).
Thus, d = 06 requires a left shift of six places. A right shift of six places results when
d=171.

LOGICAL

11 Logical difference d (12 Bits)

L] d l

1 6 5 0

This instruction forms in A the bit-by-bit logical difference of d and the lower six bits of A,
This is equivalent to complementing individual bits of A that correspond to bits of d that are

one. The upper 12 bits of A are not altered.

60347300 A 4-17

12 Logical product d (12 Bits)

L « |

i 6 5 (o]

This instruction forms the bit-by-bit logical product of d and the lower six bits of the A

register, and leaves this quantity in the lower 6 bits of A, The upper 12 bits of A are zero.

13 Selective clear d (12 Bits)

1 6 5 0o

This instruction clears any of the lower six bits of the A register where there are corre-

sponding bits of d that are one. The upper 12 bits of A are not altered.

22 Logical product dm (24 Bits)
Lt [¢ | m
23 18 17 12 11 o]
\ /\ /
\ \'
(P) (P+1)

This instruction forms in the A register the bit-by-bit logical product of the contents of A
and the 18-bit quantity dm. The upper six bits of this quantity consist of d and the lower

12 bits are the content of the location following the present program address.

23 Logical difference dm (24 Bits)
| ¢ | d m
23 18 17 12 1l (o]
\ N J
\ \
(P} (P41}

This instruction forms in A the bit-by-bit logical difference of the contents of A and the
18-bit quantity dm. This is equivalent to complementing individual bits of A which corre-
spond to bits of dm that are one. The upper six bits of the quantity consist of d, and the

lower 12 bits are the content of the location following the present program address.

4-8 60347300 A

33 Logical difference (d) (12 Bits)

H 6 S 0

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A and the
contents of location d. This is equivalent to complementing individual bits of A which corre-

spond to bits of (d) that are one. The upper six bits of A are not altered.

ss

43 Logical difference ((d)) {

f | ¢ J

H 6 5 0

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A and the
12-bit operand obtained by indirect addressing. I.ocation d is read out of memory, and the

word obtained is used as the operand address. The upper six bits of A are not altered.

53 Logical difference (m + (d)) (24 Bits)
L+ | o 1 m |
23 18 17 12 (o]
\ —V — \ V J
(P) (P+1)

This instruction forms in A the bit-by-bit logical difference of the lower 12-bits of A and a

12-bit operand obtained by indexed direct addressing. The upper six bits of A are not altered.

DATA TRANSMISSION

14 Load d (12 Bits)

f a |

1 6 5 0

This instruction clears the A register and loads it with d. The upper 12 bits of A are zero.

60347300 A 4-9

15 Load complement d (12 Bits)

f | 4]

t 6 5 [¢]

This instruction clears the A register and loads the complement of d. The upper 12 bits of

A are set to one.

20 Load dm (24 Bits)
L+ | ¢] m
23 18 17 12 11 o]
\ J\ J
\ \
(P) (P+1)
This instruction clears the A register and loads an 18-bit quantity consisting of d as the

higher six bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m.

30 Load (d) (12 Bits)

1 6 5

(=]

This instruction clears the A register and loads the contents of location d. The upper six

bits of A are zero.

34 Store (d) (12 Bits)

[o T A
1Iils 10sLrucLioltl 5

4-10 60347300 A

40 Load ((d)) (12 Bits)

f d |

I 6 5 0

This instruction clears the A register and loads a 12-bit quantity that is obtained by indirect

addressing. The upper six bits of A are zero. Location d is read out of memory, and the

word obtained is used as the operand address.

44 Store ((d)) (12 Bits)

L d |

I 6 5 0

This instruction stores the lower 12 bits of A in the location specified by the contents of

location d.

50 Load (m + (d)) (24 Bits)

L« [¢ | m
23 1817 12 1 0
\ /\ /
\'4 Vo
(P) (P+1)

This instruction clears the A register and loads a 12-bit quantity. The upper six bits of A
are zero. The 12-bit operand is obtained by indexed direct addressing. The quantity "m",
read out of memory location P + 1 serves as the base operand address to which (d) is added.
If d = 0, the operand address is m, but if d # 0, then m + (d) is the operand address. Thus

may location d be used for an index quantity to modify operand addresses.

54 Store (m + (d)) (24 Bits)
f d m
23 18 17 2 11 o]
A J\ /
Vv vV
(P) (P+1)

This instruction stores the lower 12 bits of A in the location determined by indexed address-

ing (see instruction 50).

60347300 A 4-11

ARITHMETIC

16 Add d (12 Bits)

[f ‘|

1 6 5

(o]

This instruction adds d (treated as a 6-bit positive quantity) to the contents of the A register.

17 Subtract d (12 Bits)

Nl 6 5 o]

This instruction subtracts d (treated as a 6-bit positive quantity) from the contents of the

A register.

21 Add dm (24 Bits)

L«] ¢«] = |

23 18 17 12 1t o]
\ /. /
V- \4
(P) (P+1)

This instruction adds to the A register the 18-bit quantity consisting of d as the higher six
bits and m as the lower 12 bits. The contents of the location following the present program

address are read out to provide m.

31 Add (d) (12 Bits)

f d]
1 6 5 0

This instruction adds to the A register the contents of location d (treated as a 12-bit positive

quantity).

4-12 60347300 A

32 Subtract (d) (12 Bits)

H 6 5 (0]

This instruction subtracts from the A register the contents of location d (treated as a 12-bit

P R RE. Y R, |
pUlﬁlthC qudlritity/.

41 Add ((d)) (12 Bits)

| f d

" 6 5 [o]

This instruction adds to the contents of A a 12-bit operand (treated as a positive quantity)
obtained by indirect addressing. Location d is read out of memory, and the word obtained

is used as the operand address.

42 Subtract ((d)) (12 Bits)

1] 6 5 (o]

This instruction subtracts from the A register a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory, and the word

obtained is used as the operand address.

51 Add (m + (d)) (24 Bits)
l f | d m
23 18 17 12 11 o]
\ \ /
v V
(P) (P+1)

This instruction adds to the contents of A a 12-bit operand (treated as a positive quantity)

obtained by indexed direct addressing (see instruction 50).

60347300 A 4-13

52 Subtract (m + (d}) (24 Bits)

L £ I d m

23 18 17 12 1 (o}
\ /\ _J
A\ A4

(P) (P +1)

This instruction subtracts from the A register a 12-bit operand (trcated as a positive

quantity) obtained by indexed direct addressing (see instruction 50).

CENTRAL PROCESSOR AND CENTRAL MEMORY COMMUNICATIONS

260 Exchange Jump (12 Bits)
| f i VW”/,/l//j 1|<——(Dwu. CP BIT)
1 6 5 3 2 1 O

This instruction transmits an 18-bit (absolute) address (only 17 bits are used) from the

A register to the Central Processor with a signal which tells the Central Processor to
perform an Exchange Jump, with the address in A as the starting location of a file of 16
words containing information about the Central Processor program to be executed. The
18-bit initial address must be entered in A before this instruction is executed. The Central
Processor replaces the file with similar information from the interrupted Central Processor
program. The Peripheral Processor is not interrupted. In systems with dual Central

Processors the lowest order bit specifies which Central Processor the Exchange Jump will

interrupt.
261 Monitor Exchange Jump (12 Bits)
e l P V//////]]q—(oum_cpam
1 5 32 1 0

This instruction, typically used to initiate Central Processor Monitor activity, causes a
conditional exchange jump to the Central Processor. If the Monitor Flag bit is clear, this
instruction sets the flag and initiates the exchange. If the Monitor Flag bit is set, this
instruction acts as a Pass instruction. The starting address for this exchange is the 18-bit
address held in the Peripheral Processor A register. (The Peripheral Processor program
must have loaded A with an appropriate address prior to executing this instruction.) Note
that this starting address is an absolute address. This instruction is either 2610 (CPU-0) or
2611 (CPU-1).

4-14 60347300 A

N
)]
N

Monitor Exchange Jump to MA (12 Bits)

: IR /77400 L

" 5

This instruction is a conditional exchange jump of the Central Processor. If the monitor
flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor

flag is set, this instruction acts as a Pass instruction. The starting address for this
exchange jump is the 18-bit address held in the MA Register. Note that this starting address

is an absolute address.

27 Read program address (12 Bits)

-

L

(DUAL CP BIT)

Lo 0 s

This instruction transfers the content of the Central Processor Program Address register,
P, to the Peripheral Processor A register; this allows the Peripheral Processor to deter-
mine whether or not the Central Processor is running. In systems with dual central
processors, the lowest order bit of the instruction format specifies which central processor
P register is to be examined. The largest value that (P) may be is 17 bits. The remaining
bit (bit 17) will appear set to this instruction when an ECS transfer is in progress. However,

bit i7 is not set in P.

60 Central read from (A) to d (12 Bits)

f d B

il 6 5 0

This instruction transfers a 60-bit word from Central Memory to five consecutive locations
in the processor memory. The 18-bit address of the Central Memory location must be
loaded into A prior to executing this instruction. (Note that this is an absolute address.)
The 60-bit word is disassembled into five 12-bit words beginning at the left. Location d
receives the first 12-bit word. The remaining 12-bit words go to succeeding locations.
This instruction will not interrupt an ECS transfer unless bit 17 of the A register is

set (Access priority).

60347300 B 4-15

61 Central read (d) words from (A) tom (24 Bits)

I R
23 1817 12 11 0o
\ J\ J
\ A4
(P) (P+1)

This instruction reads a block of 60-bit words from Central Memory. The content of
location d gives the block length. The 18-bit address of the first central word must be
loaded into A prior to executing this instruction. (Note that this is an absolute address.)
During the execution of the instruction, (P) goes to processor address 0 and P holds m.
Also, (d) goes to the Q register where it is reduced by one as each central word is pro-

cessed. The original content of P is restored at the end of the instruction.

Each central word is disassembled into five 12-bit words beginning with the high-order

12 bits. The first word is stored at processor memory location m. The content of P (which
is holding m) is advanced by one to provide the next address in the processor memory as
each 12-bit word is stored. If P overflows, operation continues as P is advanced from

77778 to 00008' These locations will be written into as if they were consecutive.

The content of A is advanced by one to previde the next Central Memory address after each
60-bit word is disassembled and stored. Also, the contents of the Q register are reduced
by one. The block transfer is complete when Q = 0. The block of Central Memory locations
goes from address (A) to address (A) + (d) -1. The block of processor memory locations
goes from address m to m + 5(d) -1. This instruction will not inturrupt an ECS transfer

unless bit 17 of the A register is set (Access priority).

62 Central write to (A) from d (12 Bits)

il 6 5 0

This instruction assembles five successive 12-bit words into a 60-bit word and stores the
word in Central Memory. The 18-bit address word designating the Central Memory location

must be in A prior to execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears
as the higher order 12 bits of the 60-bit word to be stored in Central Memory. The remain-
ing words are taken from successive addresses. This instruction will not interrupt an

ECS transfer unless bit 17 of the A register is set (Access priority).

4-16 60347300 B

63 Central write {d) (A) from m (24 Bits)

¢

L ¢ [¢] m
23 18 17 12 11 0

This instruction assembles a block of 60-bit words and writes them in Central Memory. The
content of location d gives the number of 60-bit words. The content of the A register gives
the beginning Central Memory address. (Note that this is an absolute address.) During the
execution of this instruction (P) goes to processor address 0 and P holds m. Also, (d) goes
to the Q register, where it is reduced by one as each central word is assembled. The

original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word to be
read out of the processor memory. This word appears as the higher order 12 bits of the

first 60-bit word to be stored in Central Memory.

The content of P is advanced by one to provide the next address in the processor memory as
each 12-bit word is read. If P overflows, operation continues as P is advanced from

77778 to 00008' These locations will be read from as if they were consecutive.

The content of A is advanced by one to provide the next Central Memory address after each

60-bit word is assembled and Q is reduced by one. The block transfer is complete when
Q = 0. This instruction will not interrupt an ECS transfer unless bit 17 of the A register

is set (Access priority).

REPLACE

35 Replace add (d) (12 Bits)

f | d

" 6 5 (o]

This instruction adds the quantity in location d to the contents of A and stores the lower
12 bits of the result at location d. The resultant sum is left in A at the end of the operation

and the original contents of A are destroyed.

60347300 B 4-17

36 Replace add one (d) (12 Bits)

, I ¢ |

Il 6 5 0

The quantity in location d is replaced by its original value plus one. The resultant sum is

left in A at the end of the operation, and the original contents of A are destroyed.

37 Replace subtract one (d) (12 Bits)

f d]

i 6 5 o]

The quantity in location d is replaced by its original value minus one. The resultant

difference is left in A at the end of the operation, and the original contents of A are destroyed.

45 Replace add ((d)) (12 Bits)

L f I ¢ |

I 6 5 (o]

The operand which is obtained from the location specified by the contents of location d, is

added to the contents of A, and the lower 12 bits of the sum replace the original operand.
The resultant sum is also left in A at the end of the operation.

46 Replace add one ((d)) (12 Bits)

f I d |
I 6 5 (o]
The operand, which is obtained from the 1

ocation specified by the contents of location d, is

1al valu u 1 he regultant sum is also left in A at the end of the
operation, and the original contents of A are destroyed.

60347300 A

47 Replace subtract one ((d)) (12 Bits)

N 6 5 o]

The operand, which is obtained from the location specified by the contents of location d, is

randannd b ita Ariginal valiin rintia Aana Mha roaqiiltant Aiffaranecn ia alan 1oft in at the
.LC[JJ.G.\.,L\A U‘y iLD UL Ls.LLLCI.L Valius L11111uD UllCT. L IIC L UDULLAILL ULl Ul LITL U L0 CLALOoWU LV ll il 43 AL uviie
end of the operation, and the original contents of A are destroyed.

55 Replace add (m + (d)) (24 Bits)

t | a | 0m

23 18 17 12 11 o]

L FAN /
A\ \'/

(P) (P+1)

The operand, which is obtained from the location determined by indexed direct addressing,
is added to the contents of A, and the lower 12 bits of the sum replace the original operand

in memory. The resultant sum is also left in A at the end of the operation, and the original

contents of A are destroyed.

56 Replace add one (m + (d)) (24 Bits)

| ¢+ | o m
23 18 17 12 11 0

\u J\ J
\4 Vv

(P} (P+1)

The operand, which is obtained from the location determined by indexed direct addressing,
is replaced by its original value plus one (see instruction 50, for explanation of addressing).

The resultant sum is also left in A at the end of the operation, and the original contents of

A are destroyed.

60347300 A

57 Replace subtract one (m + (d)) (24 Bits)

L [¢ | m l

23 18 17 12 1 (o}

\ - /\ v— J
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct addressing,
is replaced by its original value minus one (see instruction 50 for explanation of addressing).
The resultant difference is also left in A at the end of the operation, and the original contents

of A are destroyed.

INPUT/OUTPUT
64 Jump to m if channel d active (24 Bits)
Lt | ¢ m
23 18 17 12 H 0
\ /\ J
\2 v
(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by the contents of m. The jump is taken if the channel specified by d is active.

The current program sequence continues if the channel is inactive.

65 Jump to m if channel d inactive (24 Bits)

L 1 ¢ [

23 18 17 12 1t 0o
\ N\ _/
A\ \ 2

(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by m. The jump is taken if the channel specified by d is inactive. The

current program sequence continues if the channel is active.

4-20 60347300 A

66 Jump to m if channel d full (24 Bits)

Lt [¢ m |

23 18 17 12 1t (o}

\ /\ /
A4 A\

(P} (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by m. The jump is taken if the channel designated by d is full. The present

program sequence continues if the channel is empty.

IS

A

)
[
o
3
o
<
[¢)
-
o
()
p
E
o
(@]

word has not yet been sampled by a processor. The channel is empty when a word has been
accepted. An output channel is full when a processor places a word on the channel. The

channel is empty when the output equipment has sampled the word.

67 Jump to m if channel d empty (24 Bits)
[¢« | « m
23 18 {7 12 1 o]
\ A\ /
—V —V
(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address specified by m. The jump is taken if the channel specified by d is empty. The
current program sequence continues if the channel is full. (See instruction 66 for the

meaning of full and empty.)

70 Input to A from channel d (12 Bits)

l f d |

11 6 5 [o]

This instruction transfers a word from input channel d to the lower 12 bits of the A register.

The upper 6 bits of the A register are cleared to zeros.

NOTE

This instruction will hang up the peripheral processor
if executed when the channel is inactive.

60347300 A 4-21

71

Input (A) words to m from channel d (24 Bits)
Lt [¢ | m |
23 18 17 12 1 [o]
(. /\ J
\ —V
(P) (P+1)

This instruction transfers a block of 12-bit words from input channel d to the processor
memory. The content of A gives the block length. The first word goes to the processor
address specified by m. The content of A is reduced by one as each word is read. The
input operation is complete when A = 0 or the data channel becomes inactive. If the opera-
tion is terminated by the channel becoming inactive, the next location in the processor
memory is set to all zeroes. However, the word count is not affected by this empty word.

Therefore, the contents of the A register gives the block length minus the number of real
data words actually read in.

During this instruction address 0000 temporarily holds P, while m is held in the P register.

The content of P advances by one to give the address for the next word as each word is stored.

NOTE

If this instruction is executed when the data channel is
inactive, no input operation is accomplished and the
program continues at P + 2. However, the location
specified by m is set to all zeroes.

72 Output from A on channel d (12 Bits)

' | ¢« |

i 6 5 [o]

This instruction transfers a word from A (lower 12 bits) to output channel d.

-

This instruction will hang up the peripheral processor
if executed when the channel is inaclive.

60347300 A

73 Output (A) words from m on channel d (24 Bits)

lfldl'm]

23 18 17 12 11

\ /\
v v

(P) (P+1)

This instruction transfers a block of words from the processor memory to channel d. The
first word comes from the address specified by m. The content of A specifies the number
of words to be sent. The content of A is reduced by one as each word is read out. The

output operation is complete when A = 0 or the channel becomes inactive.

During this instruction address 0000 temporarily holds P, while m is held in the P register.
The content of P advances by one to give the address of the next word as each word is taken

from memory.

NOTE

If this instruction is executed when the data channel is
inactive, no output operation is accomplished and the
program continues at P + 2,

74 Activate channel d (12 Bits)

] 6 5 o

This instruction activates the channel specified by d and must precede any 70-73 instruction.

Activating a channel alerts and prepares the I/O equipment for the exchange of data.

NOTE

Activating an already active channel causes the periph-
eral processor to hang up.

60347300 A 4-23

75 Disconnect channel d (12 Bits)

L | d]

N 6 5 0o

This instruction deactivates the channel specified by d. As a result, the I/O equipment stops
and the buffer terminates.

NOTE

1) Do not attempt to deactivate an already inactive
channel or the peripheral processor will hang up.

2) If an output instruction is followed by a disconnect
instruction without first establishing that the in-
formation has been accepted by the input device
(check for channel empty) the last word transmitted
may be lost.

3) Do not deactivate a channel before putting a useful
program in the associated processor. Processors
other than 0 are hung up on an Input instruction
(71). Deactivating a channel after Dead Start causes
an exit to the address specified by the contents of
location 0000 plus 1 and execution of that program.
If the channel is deactivated without a valid program
in that processor, the processor will execute what
ever program was left in memory; it could, there-
fore, run wild.

76 Function (A) on channel d (12 Bits)

1 6 5 (o]

The external function code in the lower 12 bits of A is sent out on channel d.

NOTE

Do not execute this instruction when the channel is
Active or the peripheral processor will hang up.

77 Function m on channel d (24 Bits)

23 18 17 12 11 o]

The external function code specified by m is sent out on channel d.

4-24 60347300 A

CUT ALONG LINE e e

PRINTED IN USA

AA3419 REV. 11/69

COMMENT SHEET

manuaL tmee_ CONTROL DATA CYBER 70 Computer Systems

Reference Manual Instruction Descriptions Volume 2

60347300 B
PUBLICATION NO. REVISION

FROM: NAME:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

e e e e o e . - — —— —— = —— o = —— —— — — — —— —— - —— = — ews wm em eme e e = = s e o e e e e e

CUT ALONG LINE

CONTROL DATA

CORPORATION

CORPORATE HEADQUARTERS
8100 34TH AVENUE SOUTH
MINNEAPOLIS, MINNESOTA 55420

SALES OFFICES AND SERVICE CENTERS
IN MAJOR CITIES
THROUGHOUT THE WORLD

® © © o o & o

1Va TO¥INOD
-

v
e e

S31¥3S 0Z ¥38AD
® © o o

?

e o

"

-

o © o

	0001
	0002
	001
	002
	003
	004
	005
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	replyA
	replyB
	xBackB

