CONTROL DATA

CORPORATION

CONTROL DATA’

CYBER 70 MODEL 74
COMPUTER SYSTEM

—'~ ¢ N SRR .

SYSTEM DESCRIPTION ANL
PROGRAMMING INFORMATICN
REFERENCE MANUAL VOLUME 1

New features, as well as changes, deletions, and additions to information in this manual, are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed,

REVISION RECORD

REVISION DESCRIPTION
A Manual released.
(2-22-171)
B Manual revised. Addition of Interlock Register information.
(3-6-171)
C Addition of timing information and minor changes. ECO 27834,
(7-171)
D Manual revised; Engineering Change Order 29919, publication change only.’ Pages v, 2-1, 2-34,
11-16-71) and Comment Sheet revised.
E Manual revised; Engineering Change Order 33547. Pages v, 1-2, 1-9, 1-10, 1-11, 1-12, 2-7,2-8,
(4-13-73) 2-9, 2-10, 2-11, 2-12, 2-17, 2-18, 2-19, 2-31, 2-32, 2-35, and 2-36 are revised. Pages 2-8.1,
11-.1, and 32.1 are added.
F
(4-1-74) Manual revised; includes Engineering Change Order 33534. Pages 2-10 and 2-35 are revised.
G Manual revised; includes Field Change Order 34719. Pages 2-24 and 2-31 are revised.
(6-26-74)
H Manual revised; includes Engineering Change Order 35407, publication change only, Pages 2-34
(8-7-74) and 2-35 are revised,
J Manual revised; includes Engineering Change Order 35429, Pages 2-8, 2-8.1, 2-9 and 2-10 are
(9-9-74) revised.
K Manual revised; includes Engineering Change Order 35678. Pages 2-12, 2-13, 2-18 and 2-19 are
(12-5-74) revised.
L Manual revised; includes Engineering Change Order 36380. Page 1-10 is revised.
(6-24-175)
M Mﬂwmmwmwg ii, 2-14, and 2-28 are revised,
(6-29-76)
N Manual revised; includes Engineering Change Order 37836. Pages iii, 2-21, and 2-22 are revised.
(6-15-717)

Publication No.
60347400

REVISION LETTERS |, 0, @ AND X ARE NOT USED

© 1971, 1973, 1974, 1975, 1976, 1977
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112
or use Comment Sheet in the back of
this manual.

PREFACE

The CONTROL DATA® CYBER 70 series reference manuals are published in a series of
volumes. This manual is volume 1 of the series.

This volume contains the Systems Description and general programming information.
Volume 2, publication number 60347300, contains detailed descriptions of the central proc-

essor and the peripheral processor instructions.

Information about the ECS (Extended Core Storage option) is in volume 3 of the series,
publication number 60347100.

The publications listed are available through the nearest Control Data Corporation sales
office.

60347400 N iiifiv l

1.

SYSTEM DESCRIPTION

Introduction

System Characteristics

Peripheral Processor
Characteristics

Central Memory Characteristics

Functional Descriptions

2.

Central Processor
Peripheral Processors

Central Memory

PROGRAMMING INFORMATION

Central Processor Programming

Instruction Formats
Operating Registers
Program Address Register

Exchange Jump

MODEL 74-YZ Mainframe
Memory Map

Central Processor Instruction
Format

Exit Mode:
Bounds

Address Out of

Unconditional Exit Actions

Range of Permissible Exponents

Indefinite Forms

60347400 E

CONTENTS

Central Processor Characteristics 1-3
Peripheral Processor Programming

1-3
1-3
1-3
1-3
1-7
1-10

Reference Address

Exit Mode

Floating Point Arithmetic
Fixed Point Arithmetic

Instruction Formats
Address Modes

Access to Central Memory
Input and Output

Interlock Register

Manual Control

Dead Start Panel

Console

System Interrupt

Hardware Provisions for
Interrupt

Timing Information

FIGURE

1-2 2-2
1-12

2-3
2-2 2-5

TABLES

2-4
2-9
2-10f2-5
2-12

2-6
2-13

Central Processor Timing

Peripheral Processor Timing

S

Central Processor Operating
Registers

Exchange Jump Package

Console Operator Control
Panel

Overflow and Underflow
Conditions

Central Processor Instruction
Execution Times

Peripheral Processor Instruction

Execution Times

2-17
2-7
2-11.1}
2-19
2-20
2-20
2-21
2-22
2-24
2-28
2-29
2-30
2-31
2-32. 1

2-32.1
2-33
2-33
2-36

2-34

2-37

SYSTEM DESCRIPTION 1
%
INTRODUCTION

The CONTROL DATA® CYBER 70 MODEL 74-YZ Computer Systems consist of a mainframe
anda flexible assortment of peripheral and control equipment, A system usually will have a
control console and input/output devices such as stations, card readers, magnetic tape
drives, mass storage units and printers. Extended Core Storage (ECS) offered in a variety
of sizes may be used to augment the system.

The mainframe contains 10, 14, 17, or 20 peripheral processors (PPU's) and the data
channels necessary to communicate with the peripheral equipment. A central memory (CM),

a central processor unit (CPU), with 24 operating registers per arithmetic unit, (one or two)
and the attendant control logic are the major components on the mainframe. Optional couplers
or controllers may be in the mainframe on some systems. Figure 1-1 shows the mainframe
and some of the optional equipment.

The contents of this manual are concerned with the basic system without attempting to
describe or give programming information for the peripheral equipment. The peripheral
equipment and their controllers are covered in separate manuals.

The system model numbers are assigned as follows:

System Model Code for number of Code for the size
Central Processors of the Central
in the system. (either Memory*
1 or 2)

*CENTRAL MEMORY CODES

SIZE
CODE (60-Bit Words)

32K
49K
65K
98K
131K

OO kwWwN

60347400 C 1-1

¢-1

d 00¥L¥£09

_EXTENDED CORE STORAGE SYSTEM (OPTIONAL
r [ORAGE SYSTEM (OFTIONAL!
: Ec8
i BANKS
| | osTRIBUTIVE
1 ecs 128K, 250K,
T~ DATA PATH
! CONTROLLER , 1000K
| oR
: 2000K
—
b oo o o e wme | - e . - e e == W SEm e e -
r AENR GENRSMR CENEER WONENED CRNNEE VSRS S— o semmes GumES SuE— S SN -_—— —
£cs
CONSOLE | COUPLER
'I PERIPHERAL
CENTRAL
L] z/0 PROCESSORS
MEMORY
CHANNELS 10, 14,
DATA 32K, 49K,
CHANNEL 12 17 OR 20
CONVERTER 65K, 98K
OR 24 USED OR
USED 4K STORAGE \ CPUI crul
! EACH 3K 24 UNIFIED
DATA | OPERATING ARITIMETIC
CHANNEL REGISTERS uNIT
‘ | orrionay] |cormionan
| mAIN FRAME
L S WERED GERSTED SRR TSNS SENSNRN EER Sw— RIS GEEIEED RIS GNENED SN CEIENS EENND CUNEUNS GRNENS GNNIND NN SRR SS— ——
Figure 1-1, MODEL 74-YZ Mainframe

ADD
FUNCTIONAL UNIT

LONG ADD
FUNCTIONAL UNIT

SHIFT
FUNCTIONAL UNIT

‘ INCREMENT
crPu O FUNCTIONAL UNIT |

24 INCREMENT
FUNCTIONAL UNIT l

OPERATING
REGISTERS

i

MULTIPLY l
FUNCTIONAL UNIT

MULTIPLY
FUNCTIONAL UNIT

DIVIDE
FUNCTIONAL UNIT

BOOLEAN
FUNCTIONAL UNIT

BRANCH
FUNCTIONAL UNIT

L———

SYSTEM CHARACTERISTICS

CENTRAL PROCESSOR CHARACTERISTICS

e 60-bit word length

e Computation in floating point and fixed point, single and double precision

e 24 operating registers per central processor

e 10 arithmetic functional units for concurrent operations

e Memory transfer rate of up to one word each 100 nsec

e Instruction stack which holds up to 27 instructions for simplified reference access

e Optional dual processor configuration (second processor is a unified arithmetic unit,)
PERIPHERAL PROCESSOR CHARACTERISTICS

e 12-bit word length

e Computation in fixed point

e Time-shared access to central memory
e Internal memory of 4, 096 12-bit words

e 10, 14, 17, or 20 processors

CENTRAL MEMORY CHARACTERISTICS

e Capacity of 32,768 to 131, 072 60-bit words

e Independent bank construction, to allow separate access to each 4K bank of memory
(called phasing)

e Transfer rate up to 1 word each 100 nsec in phased operation

FUNCTIONAL DESCRIPTIONS

CENTRAL PROCESSOR

The central processor is an arithmetic processor which communicates only with central
memory. It is isolated from the peripheral processors and is thus free to carry on computa-
tion unencumbered by input/output requirements. It consists of 10 functional units and
control logic. The functional units contain all logic necessary to execute the arithmetic,
manipulative and logical operations. The control logic directs the arithmetic operations and

provides the interface between the functional units and central memory. The control logic

60347400 C 1-3

also performs instruction retrieving, address preparation, memory protection, and data
retrieving and storing. The second processor is a unified arithmetic unit. It performs much

the same as the functional units except that it operates serially.

PROGRAM HARDW ARE RELATIONSHIPS

Programs for the central processor are held in central memory. A program is started with
an Exchange Jump instruction from a peripheral processor. The Exchange Jump instruction
specifies the location in central memory of the central processor program, specifies the
mode of exit (normal or error) for the program, and sets initial quantities in the operating

registers.

OPERATING REGISTERS

Twenty-four operating registers are provided to mimimize memory references:

e 8 address registers, 18 bits in length
e 8 increment registers, 18 bits in length

e 8 operand registers, 60 bits in length

PROGRAM HANDLING

Programs are written for the central processors in a conventional manner, specifying a
sequence of arithmetic and control operations. Each instruction in a program is brought up
in its turn from one of the instruction registers. These registers are filled from central

memory. Each central processor is programmed independently.

BRANCHING

A branch to another area of the program voids the previous instructions in the registers and
brings in new instructions. When a new instruction is brought up, a test is made, to deter-
mine if the arithmetic unit is busy, or if reservation conflict is possible. If the unit is free
and no conflict is present, the entire instruction is given to the arithmetic unit for further
action. Another instruction may then be brought up and issued.

1-4 60347400 C

PROGRAM SEQUENCES

The original sequence of the program is established at the time each instruction is issued.
Only those operations which depend on previous results prevent the issuing of instructions,
and then only if the steps are incomplete. The reservation control keeps a running account
of the address, increment, and operand registers in order to preserve the original sequence.
On occasion, a program may use an Increment Store instruction to modify the contents of a

memory location holding a subsequent instruction.

PROGRAM REFERENCES

Nearly all central memory references for information or instructions are made on an implicit
or secondary basis. Instructions are retrieved from memory only if the instruction registers
are nearly empty (or when ordered by a branch). Information is brought to or from the oper-
and registers only when appropriate address registers are referenced during the course of a

program. Such references are also accounted for in the reservation control.

PROGRAM MEMORY LOCATIONS

All central processor references to central memory are made relative to the lower boundary
address. A central processor program may therefore be relocated in central memory by
modifying the boundaries only. Any attempt by the central processor to reference memory
outside of its boundaries causes an immediate exit which can be readily examined by a

peripheral processor and displayed for the operator.

>

THE CENTRAL EXCHANGE JUMP

The exchange jump can be performed unconditionally (regardless of the state of the monitor
flag) by the central processor. If the monitor flag is clear the jump is to the Monitor Address,
or if the flag is set the address is formed by adding Bj to K. The peripheral processors

also perform exchange jumps as explained in the peripheral processor section of this manual.

FUNCTIONAL UNITS

There are eight types of functional units which make up the total of ten functional units in the
basic central processor. There are two multiply and two increment units. They are duplexed
in operation so that when one is busy, the other can be concurrently utilized. The second
central processor is a unified arithmetic type and does not have functional units. All arith-

metic is performed serially in that type of processor.

60347400 C 1-5

ADD FUNCTIONAL UNIT

This unit performs addition and subtraction on floating point numbers or on rounded floating
point numbers.

LONG ADD FUNCTIONAL UNIT

This unit performs one's complement addition and subtraction of 60-bit fixed point numbers.

SHIFT FUNCTIONAL UNIT

This unit performs left (circular) shifting, right (end-off sign extension) shifting, normalize,
pack, and unpack operations. The unit also performs mask generation.

INCREMENT FUNCTIONAL UNITS

These units perform one's complement addition and subtraction of 18-bit numbers.

MULTIPLY FUNCTIONAL UNITS

The units perform multiplication on fixed point numbers, floating point numbers, or on
rounded floating point numbers.

DIVIDE FUNCTIONAL UNIT

This unit performs division on floating point numbers or on rounded floating point numbers.
The unit also counts the number of one's in a word.

BOOLEAN FUNCTIONAL UNIT

This unit performs the logical operations; transfer, logical product, logical sum, and

logical difference.

BRANCH FUNCTIONAL UNIT

This unit performs all jumps or branches from the programs.

1-6 60347400 C

RESERVATION CONTROL

Special control logic is included to coordinate the interaction of the functional units with in-
structions and the operating registers. Conflicts can arise if several instructions simul-
taneously call for the use of the same functional unit or of the same operating registers. The
reservation control solves these conflicts and reserves access in accordance with the solu-
tion. The reservation control logic is frequently referred to as the ''scoreboard.

PERIPHERAL PROCESSORS

The peripheral processors are identical. They operate independently and simultaneously as
stored-program computers. Many programs thus may be running at one time or a combina-
tion of processors can be involved in one problem which may require a variety of input/output

tasks as well as use of the central memory and the central processor(s).

The peripheral processors act as system control computers and input/output processors.
This permits the central processor to continue computation while the peripheral processors
do the slower input/output and supervisory operations.

Each processor has a 12~bit, 4096 word random -access memory (independent of central
memory) with a cycle time of 1000 ns. Execution time of processor instructions is dependent
on memory cycle time,

INPUT/OUTPUT

All processors communicate with external equipment and each other via the independent,
bidirectional I/O channels. The number of channels depends on the number of peripheral
processors in the system. All channels are 12-bit (plus control) and each may be connected
to one or more external devices. Only one external equipment can utilize a channel at one
time, but all channels can be simultaneously active. Data is transferred into or out of the
system in 12-bit words; each channel has a single register which holds the data word being
transferred in or out. Each channel operates at a maximum rate of one word per micro-
second.

Data flows between a peripheral processor memory and the external device in blocks of

words (a block may be as small as one word). A single word may be transferred between
an external device and the A register of a peripheral processor.

60347400 C 1-7

The I/O instructions direct all activity with external equipment. These insiructions deter-
mine the status of, and select an external device on any channel and transfer data to or from
the selected device. Two channel conditions are made available to all processors as an aid

to orderly use of channels.

e Each channel has an active/inactive flag to signal that it has been selected for use

and is busy with an external device.

e Each channel has a full/empty flag to signal that a word (function or data) is avail-
able in the register associated with the channel.

Either state of both flags can be sensed. In general, an I/O operation involves the following

steps:
1. Determine channel inactive

Determine equipment ready

. Select equipment

Activate channel

U‘?WN

. Input/Output data

6. Disconnect channel

One peripheral processor may communicate with any other over any channel which has been
selected for output by one and for input by the other. A common channel can be reserved
for interprocessor communication and for preservation of order by keeping track of equip-

ment and channel status.

REALTIME CLOCK

A real-time clock reading is available on a channel which is not counted as a regular channel.
The clock period is 4096 major cycles. The clock starts with power on and runs continuously.
It cannot be preset or altered. The clock may be used to determine program running time

or other functions such as time-of-day, as required.

CENTRAL MEMORY COMMUNICATIONS

Each processor exchanges data with central memory in blocks of words. Five successive
12-bit processor words are assembled into a 60-bit word and sent to central memory for a
Write operation. A 60-bit central memory word is disassembled into five 12-bit words and

sent to successive locations in a processor memory for a Read operation. Separate assembly

1-8 60347400 C

(write) and disassembly (read) paths to central memory are shared by up to 10 peripheral
processors. Up to four processors may be writing in central memory while another four are
simultaneously reading from central memory. Systems with more than 10 peripheral pro-
cessors have another set of read and write paths.

PERIPHERAL PROCESSOR SYSTEM RELATIONSHIPS

The peripheral processors generally are not used to solve complex arithmetic and logical
problems. Usually they are used to perform I/O operations for running central processor
programs and for organizing data (operands, addresses, constants, program length, relative
starting address, exit mode), to store in central memory.

THE EXCHANGE JUMP

An Exchange Jump instruction starts (or interrupts) the central processor and provides the
central processor with the starting address of a problem stored in central memory. The
central processor, at the next convenient breakpoint, then exchanges the contents of its A,
B, and X registers, its program address, relative starting address, length of program,
Exit mode and Extended Core Storage parameters with the stored information for the new
program. A later Exchange Jump would be needed to call for a return to the incomplete
interrupted program,

INTERLOCK REGISTER AND ACCESS CHANNEL

This is a 64- or 128-bit flag register with a special access channel (158). Each access
channel accommodates up to 10 peripheral processors so if the system has more than

10 processors, a second access channel is utilized. The interlock register provides a
means for all peripheral processors to communicate with each other without the necessity
for making central memory references. The peripheral processors can perform set,

clear, test, and read operations on the interlock register.

The access channel has a 12-bit input register and a 12-bit output register. The channel
assumes a Full status whenever one peripheral processor does an output (to prevent any
other peripheral processor from interrupting. The Full status is cleared only by the
concerned peripheral processor doing an input. The access channel is designated as
channel 15,

60347400 E 1-9

CENTRAL MEMORY

Central memory is a core memory with a capacity of 32K, 49K, 65K, 98K, or 131K 60-bit
words in 8, 12, 16, 24, or 32 banks of 4096 words each. ' The banks are logically independent
and may be phased into operation at 100 nsec intervals. The central memory address and
data control mechanisms permit a word to move to or from central memory every 100 nsec.
(32K and 49K memories pause 200 nsec after every eight words.) Addresses, written or
compiled in conventional manner, reference consecutive banks and thus make efficient use

of the bank phasing technique.

ADDRESS FORMATS

The location of each word in central memory is identified by an assigned address, which
consists of 18 bits. Address formats are shown below for 8-bank (32K), 12-bank (49K),
16-bank (65K), 24-bank (98K), and 32-bank (131K) systems. Within the address format, the
bank portion specifies one of 12, 24, or 32 banks; 12-bit address defines one of the 4096

separate locations within the specified bank.

W/A ADDRESS I”""l 8-Bank (32K) Format
17 1514 32 0

x[/] 1| aooRess [eand] 12-Bank (49K) Format
76151413 32 0
U AoDRess | 8ank] 16-Bank (65K) Format
171615 » a3 o

7H ADDRESS [oam | 24-Bank (98K) Format
17 161514 a3 0

»xi] | ADDRESS paw] 32-Bank (131K) Format
71615 IR

ACCESS

References to central memory from all areas of the system (central processor and periph-
eral prbcessor_s) and extended core storage go to a common memory control and are issued
to all banks in central memory. The control accepts addresses from the various sources

under a priority system and at a maximum rate of one address every minor cycle.

An address is sent to all memory banks. The correct bank, if free (the bank ignores the ad-
dress if it is busy processing a previous address), accepts the address and indicates this to
the memory control. The associated data word is then sent to or stored from a central data
distributor. The memory control issues addresses at a maximum rate of one every 100 nsec.

*One bit of bank portion is supplied by address bit 21% or 214 (49K) or 216 + 215 (98K), de-

pending on the Section/Chassis configuration.
** Bit-16 0 = bank 004 - 174 address 0000005 - 1777774
1 = bank 208 - 374 address 200000, - 3171714

1-10 60347400 L

The memory control saves, in a hopper mechanism, each address that it sends to central
memory and then reissues it (and again saves it) under priority control in the event that it

is not accepted because of bank conflict. The address issue-save process repeats until the
address is accepted, at which time the address is dropped from the hopper and the read or
store data word is distributed. A fixed time lapse from address-issue to the memory-accept
synchronizes the action taken.

The previously unaccepted address has highest priority among addresses to central memory.
The central processor and peripheral processors (all share a common path to the memory
control) follow in priority.

A data distributor, which is common to all processors, handles all data words to and from
central memory. Upto10 peripheral processors share one read path and one write path to the l
distributor. A series of buffer registers in the distributor provides temporary storage for
words to be written into storage when the addresses are not immediately accepted because

of bank conflict. Systems with more than 10 peripheral processors have another set of read

and write paths.

Each group of four banks communicates with the distributor on separate 60-bit read and
write paths, but only one word moves on the data paths at one time. However, words can
move at 100 nsec intervals between the distributor and central memory or distributor and
address-sender.

Data words and addresses are correlated by control information tags entered in the memory
control with the address. The tags identify the address sender, origin/destination of data,
and whether the address is a Read, Write, or Exchange Jump address.

MEMORY PROTECTION

All central processor references to central memory for new instructions, or to read and
store data, are made relative to the Reference Address. The Reference Address defines
the lower limit of a central memory program. Changes to the Reference Address permit

easy relocation of programs in central memory.
During an Exchange Jump, an 18-bit Reference Address and an 18-bit Field Length (parts of
the Exchange Jump package) are loaded into their respective registers to define the central

memory limits of the program initiated by the Exchange Jump.

The relationship between absolute memory address, relative memory address, Reference
Address (RA), and Field Length (FL) is indicated in Figure 1-2,

60347400 E 1-11

The following relationships must be true if the program is to operate within its bounds:

RA <(RA + P) < (RA + FL) (Absolute Memory Addresses), or
0<P<FL (Relative Memory Addresses)

NOTE

FL is the number of 60-bit words in the program.
It is not an address.

To avoid possible "artificial' range faults, instruc-
tions should not be stored at absolute address

[(RA +FL) - 1] because an instruction produces a
range fault when the (look-ahead) Read Next Instruction
occurs to (RA + FL). Data rather than instructions
should always be stored in addresses near absolute
location (RA +FL).

MEMORY MAP

000 000
FIRST LOCATION
IN PROGRAM AREA
ABSOLUTE RELATIVE
MEMORY MEMORY /A
ADDRESS ADDRESS
I
RA P=0O AANNSNANNN
RA+P P<FL NAANARNNN FL PROGRAM AREA
RA+FL P=FL CSSSSS li
SOME ARBITRARY
an | LOCATION IN
PROGRAM AREA
377 77

LAST LOCATION +1
IN PROGRAM AREA

Figure 1-2. Memory Map

An optional exit condition (EM in the Exchange Jump package) allows the central processor
to stop on a memory reference outside the limits expressed above.

1-12 60347400 E

PROGRAMMING INFORMATION 2.

R

CENTRAL PROCESSOR PROGRAMMING

Central processor program instructions are stored in central memory. Each 60-bit memory
location may hold four 15-bit instructions, two 30-bit instructions or a combination of 15

and 30-bit instructions.

The central processor reads 60-bit words from central memory and stores them in an
instruction stack which is capable of holding up to eight 60-bit words. These programming
instructions refer only to CPUO in dual CPU systems. Programming for the unified
arithmetic unit (CPU1) is described in the Model 73 reference manual volume 1, publication
number 60347100,

Each instruction is sent in turn to a series of instruction registers for interpretation and
testing and is then issued to the arithmetic unit for execution. The arithmetic unit obtains
the instruction operands from, and stores results in, the 24 operating registers. The
reservation control records busy operating registers to avoid conflicts and to ensure that
the original instructions do not get out of order.

INSTRUCTION FORMATS

Groups of bits in an instruction are identified by the letters f, m, i, j, k, and K as shown
in Figure 2-1. All letters represent octal digits except K, which represents an 18-bit
constant. The f and m digits are the operation code and identify the type of instruction.
In a few instructions the i designator becomes a part of the operation code.

In most 15-bit instructions, the i, j, and k digits each specify one of the eight operating
registers where operands are found and where the results of the operation are to be stored.
In other 15-bit instructions, the j and k digits provide a 6-bit shift count.

In 30-bit instructions, the i and j digits each specify one of the eight operating registers

whe re one operand is found and where the result is to be stored, and K is taken directly as
an 18-bit second operand.

60347400 D 2-1

INSTRUCTION FORMATS
INSTRUCTION COMBINATIONS f i ik

IN CENTRAL MEMORY
“_W_J [,
) OPERATION
[® [= [®feooms %
%9 o REG.
% 1 % 3

2nd OPERAND

Figure 2-1. Central Processor Instruction Formats

OPERATING REGISTERS

An Exchange Jump instruction from a peripheral processor enters initial values in the
operating registers to start central processor operation. Subsequent address modification

instructions provide the addresses required to retrieve and store data.

In order to provide a compact symbolic language, the 24 operating registers are identified

by letters and numbers:

A
B
X

X REGISTERS

The operand registers hold operands and results.

address register (A0, Al ... A7)
increment register (B0, B1 ... B7)
operand register (X0, X1 ... X7)

Five registers (X1 - X5) hold read oper-

ands from central memory, and two registers (X6 - XT7) hold results to be sent to central
memory (Figure 2-2). Operands and results transfer between memory and these registers

as a result of placing a quantity into a corresponding address register (Al - AT).

60347400 C

x
N

.
I

OPERANDS

x
w

RESULTS

BOEE

A ADDRESS
(18 BIT)

ARITHMETIC
SECTION
10 FUNCTIONAL
UNITS

OPERAND
CENTRAL
MEMORY

ADDRESSES

l=l=|=|=l|=|=l=lﬂ

B INCREMENT
(18 BIT)
80
8l
B2
83
B4 RESERVATION
Sl CONTROL AND
Bs INSTRUCTION
— WORD
i REGISTERS
[-k4
INSTRUCTIONS T

Figure 2-2. Central Processor Operating Registers

Placing a quantity into an address register Al - A5 produces an immediate memory reference
to that address and reads the operand into the corresponding operand register X1 - X5.
Similarly, placing a quantity into address register A6 or A7 stores the word in the corres-
ponding X6 or X7 operand register in the new address.

60347400 C 2-3

A REGISTERS

An increment instruction places a result in address register Ai (where "i" = 0-7) in any one

of three ways:
e By adding an 18-bit signed constant K to the contents of any A, B, or X register.
e By adding the contents of any B register to any A, B, or X register.

e By subtracting the contents of any B register from any A register or any other

B register.

The A0 and X0 registers are independent and have no connection with central memory. They
may be used for scratch pad or intermediate results. Note the special use of A0 and X0
when executing extended core storage communication instructions.

B REGISTERS

The B registers have no connection with central memory. The BO register is fixed to pro-
vide a constant zero (18-bit) which is useful for various tests against zero, providing an
unconditional jump modifier, etc. In general, the B registers offer means for program
indexing. For example, B4 may store the number of times a program loop has been tra-

versed, thereby providing a terminating condition for a program exit.

PROGRAM ADDRESS REGISTER

An 18-bit P register serves as a program address counter and holds the address for each

program step. P is advanced to the next program step in the following ways:

1. P is advanced by one when all instructions in a 60-bit word have been extracted

and sent to the instruction registers.

2. P is set to the address specified by a Go To ... (branch) instruction. If the instruc-
tion is a Return Jump, (P) + 1 is stored before the branch to allow a return to the
sequence after the branch., Branch instructions to a new program start the program
with the instruction located in the highest order position of the 60-bit word.

3. P is set to the address specified in the Exchange Jump package.

2-4 , 60347400 C

EXCHANGE JUMP

An Exchange Jump instruction starts or interrupts the central processor and provides central
memory with the first address of a 16-word package in central memory. The Exchange
Jump package (Figure 2-3) provides the following information on a program to be executed,
1. Program address (P)
2. Reference Address for Central Memory (RACM)
3. Field length of program for Central Memory (FLop)
4. Reference Address for Extended Core Storage (RAECS)
5. Field length of program for Extended Core Storage (FLECS)
6. Program exit mode (EM)
7. Initial contents of the eight A registers
8. Initial contents of the eight X registers
9. Initial contents of B registers Bl - B7 (B0 is fixed at 0)
10. Monitor Address (MA)

CENTRAL MEMORY

PERIPHERAL *
PROCESSOR — 6 18 18 18
A REGISTER / toc. n P ~ =
CENTRAL uEmORY]| Loc. n +1 RAcm Al 8l
Loc. n Loc. n +2 Flem A2 B2
" ° Loc. n +3 3 EM a3 83
3635 817 o
RAgce o0 a4 B4
FLecs oo] 48 BS
NA a6 86
a7 87
*The Central Processor o
may also initiate an -
exchange jump. -
x3
X4
x5
X6
Loc. n+15 X7
59]
MA:MONITOR ADDRESS
P: PROGRAM ADDRESS A: ADDRESS REGISTERS
RA: REFERENCE ADDRESS 8= INCREMENT REGISTERS
FL: FIELD LENGTH X: OPERAND REGISTERS
EM: EXIT MODE : (000000 DISABLE EXIT MODE
010000 ADDRESS OUT OF RANGE
020000 OPERAND OUT OF RANGE
ocTaL 030000 ADDRESS OR OPERAND
CONTENTS OF our OF RANGE
BITS 36153, |040000 INDEFINITE OPERAND REss
=53, .1050000 INDEFINITE OPERAND OR ADDRES
LOCATION"'n +3 OUT OF RANGE
060000 INDEFINITE OPERAND OR OPERAND
OUT OF RANGE
070000 INDEFINITE OPERAND OR ADDRESS
OUT OF RANGE OR OPERAND OUT
OF RANGE

Figure 2-3. Exchange Jump Package

60347400 C 2-5

The central processor enters the information about a new program into the appropriate
registers and stores the corresponding and current information from the interrupted pro-
gYam at the same 16 locations in central memory. Hence, the controlling information for
two programs is exchanged. A later Exchange Jump may return an interrupted program to
the central processor for completion. The normal operation of the A and X register is not
active during the Exchange Jump so that the new entries in A are not reflected changes in X.

NOTE

When an Exchange Jump interrupts the central processor,
several steps occur to ensure leaving the interrupted
program in a usable state for re-entry:

1. Issue of instructions halts after issuing all in-
structions from the current instruction word in
the instruction stack.

2. The Program Address register, P, is set to the
address of the next instruction word to be exe-
cuted.

3. The issued instructions are executed, and then:

4, The parameters for the two programs are ex-
changed.

A subsequent Exchange Jump can then re-enter the inter-
rupted program at the point at which it was interrupted,
with no loss of program continuity.

To preserve the integrity of an "in-stack'' loop (in the
event of an Exchange Jump), it is illegal to modify the
contents of any memory address which holds an exe-
cutable instruction (or instruction word) contained within
the loop.

EXAMPLE:

After executing the
lower instruction at

(Y + 3], the contents
<|>:f me]mory location
. . Y + ldiffer from the
Theze gnstxt-uc;mn contents of [Y + 1] in
z‘?‘gr: 1xrr)1esma(ﬁ the stack. If the Ex-
S locations [Y +y1] change Jump comes
through [Y + 5]) in as indicated, sub-

g sequent reentry will
constitute aloop. call up the modified
loop from memory,
rather than the stack

e loop in its original

un-modified form.

Y+1

Y+7 \

Assume Exchange Jumpx
comes in at this point

Y+2

Y+3

Y+a

Y+3$

2-6 60347400 C

REFERENCE ADDRESS

All central processor references to central memory, whether for new instructions, or to
fetch and store data, are made relative to the Reference Address. This allows easy reloca-
tion of a program in central memory. The Reference Address or beginning address allows the

central processor to stop on a memory reference outside these limits.

The Program Address register, P, defines the location of a program step within the limits
prescribed. Each reference to memory to fetch instructions is made to the address speci-
fied by P + RA. The program relocation is thus conveniently handled through a single change
to RA. A P =0 condition specifies address zero and hence RA. This address is reserved
for recording program exit (error) conditions and should not be used to store data or instruc-
tions of a program.

EXIT MODE
The Exit mode allows the programmer to select Exit or Stop conditions for the central
processor. Exit selections (EM) are loaded into bits 36-53 of memory location ''n+3" of

the Exchange Jump package (Figure 2-3). When the Exchange Jump to that package occurs,
the exit selections are stored in the central processor and the exit occurs as soon as the
selected condition is sensed.

NOTE

The CEJ/MEJ switch permits selection of a non-stop mode
at its ENABLE position. In this mode, any stop condition is
treated as an instruction to jump to the monitor address in
the Exchange Jump package if the moniter flag is clear. If
the monitor flag is set (CPU in moniter mode) the CPU will
stop. If the CEJ/MEJ switch is at DISABLE position, the
stop condition will cause a stop.

EXCHANGE JUMP PACKAGE

The Exit selections are stored in bits 36-53 (EM) of address ''n+3" in the Exchange Jump
package. The significance of the bits is shown here octally with the binary equivalent shown
in the explanations:

EM = 000000 Disable Exit mode - no Exit selections made.

= 010000 Address out of range - (Bit 48 set) I

a. an attempt to reference either central memory or extended

core storage outside established limits, or

60347400 E 2-1

b. the word count, [(Bj) + K], of an extended core storage
Communication instruction is negative.

(For details on action when an address is out of range, refer to the
Increment and extended core storage instruction descriptions.)

= 020000 Operand out of range - floating point using an infinite operand (see
Range Definitions under Floating Point Arithmetic). (Bit 49 set)

= 030000 Address or operand out of range. (Bits 48 and 49 set)

= 040000 Indefinite operand - floating point arithmetic sequence attempted to
use an indefinite operand (see Range Definitions). (Bit 50 set)

= 050000 Indefinite operand or address out of range. (Bits 48 and 50 set)

= 060000 Indefinite operand or operand out of range (infinite operand). (Bits 49
and 50 set)

= 070000 Indefinite operand or operand or address out of range, (Bits 48, 49,
and 50 set)

ERROR EXIT STATUS BITS

The Error Exit Status bits are stored in EM bits 51 and 52. These bits are stored during an
Exchange Jump and result from an error condition. The octal formats and descriptions are:

EM = 1X0000 Error condition detected and exchanged out.
[Error Exit not executed.] (Bit 51 set)
EM = 2X0000 Error Exit completed, halt central processor.

[P = zero] (Bit 52 set)

The Error Exit Status bits 51 and 52 are for hardware action only, and should not be set
via software. If EM 51 or 52 is set by software, erroneous error conditions will be re-

ported.

If EM bit 51 is set in an Input Exchange Package the CPU will Error Exit (no mode bit will
be set in RA). If EM bit 52 is set in an Input Exchange Package the CPU will Error CEJ
if the CEJ/MEJ hardware switch is enabled; the CPU will halt if the switch is disabled.

EM 52 is set by the hardware to prevent execution of a bad program; if re-execution is de-

sired, EM 52 must be cleared by the software via the operating system.

2-8 60347400 J

RESULTS OF EXIT

The Reference Address (RA) for any program is typically left cleared to all zeros. When an
error exit is taken, the central processor records at RAcm the exit condition (bits 48-53)
and the Program Address (bits 30-47) at exit time (refer to the format below).

NOTE

The Exit condition(s) recorded at RA are all the Exit
conditions detected since the last Exchange Jump,
regardless of whether or not they were selected.
Thus, combinations of error Exit conditions (03, 05,
06 or 07) can appear at RA:

a. When at least one Exit condition was selected
and the selected condition plus another condi-
tion occurred since the last Exchange Jump,
or

b. When more than one Exit condition was selected
and each occurred in the same minor cycle.

59 54 53 48 47 30 29 o
RAem| 0—o0 | o—x [x x [o 3—o |

STOP EXIT P ZEROS

(P)=P,P+1,0R P+2 AT TIME OF ERROR EXIT.

For error stops, RAcm (P) gives only an approximate location of the error since the central
processor may have issued other instructions (one of which may have been a branch) before

the error condition was sensed.

60347400 J 2-8.1

ADDRESS OUT OF RANGE

On an Address Out of Range, hardware action differs from that previously outlined. In some

cases, a stop occurs when an address is out of range even though an Exit mode stop is not

selected for this condition.

reference addresses that are out of range.

TABLE 2-1.

Table 2-1 summarizes hardware action for operations which

Floating point arithmetic is discussed separately.

EXIT MODE: ADDRESS OUT OF RANGE

Hardware Action

(Refer to note on page 2-7,)

Operation Exit Mode Selected Exit Mode Not Selected
RNI to an ad- | 1. Detect error condition 1. Detect error condition
dress that is
out-of-range 2. Write EM and (FL-1) into RA 2. Stop by reading (AAZ)
(occurs when
an instr. is (Absolute Address Zero)
located in . .
absolute ad- 3. Clear P (RNI RA) 3. Nothing stored in RA

+
g‘rf)s? (II;LA 4. Error CEJ is executed by reading RA.| 4. (P) = out of range P or
(Refer to note on page 2-7). (FL)
Branch to an 1. Detect error condition 1. Detect error condition
address that
is out-of- 2. Write EM and jump address in RA 2. Stop by reading (AAZ)
range.
3. Clear P (RNI RA) 3. Nothing stored in RA
4. Error CEJ is executed by reading RA.| 4. (P) = jump address
(Refer to note on page 2-7.)
Read 1. Detect error condition 1. Detect error condition
Operand .
(Increment) 2. Write EM and (P) + 1 or (P) + 2 2. Store zeros in Xi'
into RA
3. Clear P (RNI RA) 3. Nothing stored in RA
4. Error CEJ is executed by reading RA.| 4. Continue program
(Refer to note on page 2-7.)
Write 1. Detect error condition 1, Detect error condition
Operand
(Increment) 2, Write EM and (P) +1 or (P) +2 2. X, not stored; (X))
into RA unchanged, and A.l =
1t
3. Clear P (RNI RA) Increment Resu
4. Error CEJ is executed by reading RA,| o Continue program.

60347400 J

UNCONDITIONAL EXIT

All central processor attempts to execute an illegal or non-available instruction will force

an Error Exit.

There are no mode selectims for these conditions. Table 2-1,

hardware action for the different types of illegal instructions:

TABLE 2-1.1., UNCONDITIONAL EXIT ACTIONS

1 lists the

} Operation Hardware Action
; Illegal 30 bit Instruction 1. Detect error condition
i (fm of 30 bit instruction in parcel 3) 2. Store P+1 or P+2 into RA
i 3. Clear P (RNI RA)
’l 4. Error CEJ is executed by reading RA.
i 4 (Refer to note on page 2-'7.)
| Illegal 01X instruction 1. Detect error condition
(fm of 01X instruction not in parcel 0). 2. Store P+1 or P+2 into RA
. Does not include 010 jump (see text). 3. Clear P (RNI RA)
4. Error CEJ is executed by reading RA.
L (Refer to note on Lagg_Z-Xl.)
' Illegal ECS instruction 1. Detect error conditon
: (execution of ECS instruction without ECS)|2, Store P into RA
3. Clear P (RNI RA)
4. Error CEJ is executed by reading RA.
(Refer to note on page 2-%.)
Illegal CEJ instruction 1. Detect error condition
(execution of CEJ instruction when the 2. Store P into RA
. CEJ/MEJ switch is disabled) 3. Clear P (RNI RA)
4, Error CEJ is executed by reading RA.
- (Refer to note on page 2-¥7.)
1
Nlegal CMI instruction 1. Detect error condition
. 464, 465, 466, or 467. (CMI instruction |2. Store P+l or P+2 into RA
not available in CYBER Model 74.) 3. Clear P (RNI RA)
4. Error CEJ is executed by reading RA.
- (Refer to note on page 2-7.)
Illegal stop instruction, fm=00 1., Detect error condition
(non-stop if the CEJ/MEJ switch s 2. Store P+1 or P+2 into RA
enabled) 3. Clear P (RNI RA)
4,

FR?ror CEJ is executedzkl% 'r)eading RA.

efer tn note on page

2-10

60347400 J

A unique condition exists in the storing of RA when an Illegal (fm in parcel 3) 010 Return
Jump to K is executed. The contents of RA will be the K address +1 (K + 1) specified by
the 010 Jump. (Note in the example that K is taken from parcel 0.) The address K will
automatically contain an unconditional 04 Jump to K if (Bi) = (Bj) to the current Addres + 1
(P + 1) of the Illegal 010 Jump instruction.

EXAMPLE |
Ra [o—oJox—x] k+1 lo 0|
P [y v |x T——x{ 01000 | __Kev-y _ 1
PCO PC1 d
P+1 [x-
ILLEGAL 010
JUMP (FM IN PARCEL 3)
K [oao00 P+1 Jo
K+1 X = x |

60347400 E 2-11

FLOATING POINT ARITHMETIC

FLOATING POINT ARITHMETIC THEORY

Floating point arithmetic takes advantage of the ability to express a number with the general
expression kB!, where:

k = coefficient
B = base number

n = exponent, or power to which the base number is raised

The base number is constant (2) for binary-coded quantities and is not included in the general
format. The 60-bit floating-point format is shown below. The binary point is considered to
be to the right of the coefficient, thereby providing a 48-bit integer coefficient, the equiva-
lent of about 14 decimal digits. The sign of the coefficient is carried in the highest order bit
of the packed word. Negative numbers are represented in one's complement notation.

COEFFICIENT BIASED INTEGER
SIGN EXPONENT COEFFICIENT
L v o § 4 l
5958 a8 a7 o
BINARY
POINT

The 11-bit exponent carries a bias of 210 (2000g) when packed in the floating point word
(biased exponent sometimes referred to as: ''characteristic'')., The bias is removed when

the word is unpacked for computation and restored when a word is packed into floating format.

Table 2-2 lists (in decimal and octal notation) the complete range of permissible exponents
and the octal form of the corresponding positive and negative floating point words.

60347400 E 2-11.1

Thus, a number with an exponent of 342 would appear as 23428; a number with an exponent
of -160 would appear at 16178. Exponent arithmetic is done in ones' complement notation.
Floating point numbers can be compared for equality and threshold.

TABLE 2-2. RANGE OF PERMISSIBLE EXPONENTS

Exponent (n) Representation of kxB™ (Octal)

Positive Negative
Decimal Octal Coefficient Coefficient
+1023 +1777 (infinite operand) 3717TTX.... X 4000X X
+1022 +1776 376 X X 4001 X.... X
+1 +1 2001 X.... X 5776 X X
+0 +0 2000X.... X 577X X
-0 -0 (indefinite operand)| 1777X.... X 6000 X.... X
-1 -1 176 X X 6001 X.... X
-1023 -1777 0000 X.... X TMMTX.... X

NORMALIZING

Normalizing a floating point quantity shifts the coefficient left until the most significant bit

is in bit 47. Sign bits are entered in the low-order bits of the coefficient as it is normal-
ized. Each shift decreases the exponent by one. Two normalized input operands cannot

be used during an integer multiply operation because they will be treated as floating point
operands and will cause the storage of the underflow results. Therefore, normalizing floating

point quantities used as operands should be done whenever there is danger that they may be
interpreted as integers.

ROUNDING

A round bit is added (optionally) to the coefficient during an arithmetic process and has the
effect of increasing the absolute value of the operand or result by one-half the value of the
least significant bit. Normalizing and rounding are not automatic during pack or unpack
operations so that operands and results may not be normalized.

2-12 60347400 K

SINGLE AND DOUBLE PRECISION
The floating point arithmetic instructions generate double-precision results. Use of un-
rounded operations allows separate recovery of upper and lower half results with proper

exponents; only upper half results can be obtained with rounded operations.

Double precision results appear as follows:

I MOST SIGNIFICANT BITS [LEAST SIGNIFICANT BITS

95 48047 o)

\ N /]

\'4 V
UPPER HALF LOWER HALF
RESULT RESULT

BINARY
POINT

RANGE DEFINITIONS

A result with an exponent so large that it exceeds the upper limit of octal 3777 (overflow
case) is treated as an infinite quantity. A coefficient of all zeros and an exponent of octal
3777 or 4000 is packed for this case. An optional exit is provided when an attempt is made
to use an infinite operand in floating arithmetic sequences since its use may propagate an
indefinite result as shown in Table 2-3. No error exit occurs when an infinite or indefinite
result is generated in a sequence.

TABLE 2-3. INDEFINITE FORMS

©® — ® =z INDEFINITE ® 4+ N=®
® + ® = INDEFINITE o+ N:o®
® e O = INDEFINITE ® — Ns®
oO+0 = INDEFINITE N+0-:o
INDEFINITE +,—,+, o (X) = INDEFINITE 0+®z0
®© 4+ @ : ® Oe 0:=0
® e ® : o O+ N=0
©+0 T ® N+ ®=0
WHERE: ® = INFINITY, N = INTEGER,
X =o®,N OR O

A resulting exponent which is less than the lower limit of octal 0000 (underflow case) is
treated as a zero quantity. This quantity is packed with a zero exponent and zero coeffi-
cient. No exit is provided for underflow. A partial underflow result with an exponent of
octal 0000 and a coefficient which is not zero is a non-zero quantity and is packed with a
zero exponent and the non-zero coefficient. A precaution must be taken to normalize when
using partial underflow results as operands in subsequent floating point multiply operations.
This will prevent these operands from being interpreted as integer operands resulting in an

integer multiply operation.

60347400 K 2-13

Use of either infinity or zero as operands may produce an indefinite result. An exponent of
octal 1777 and a zero coefficient are packed in this case, and an optional exit provided. In
the special case of integer multiply, both operands have zero coefficients and no packing
and no exit take place. Note that zero, infinite, and indefinite results are generated or re-
generated in floating arithmetic operations only. The branch instructions test for infinite

or indefinite quantities.

In all floating arithmetic operations, an attempt to normalize an indefinite quantity returns
the original quantity, e.g., if the number 17770237 ... were to be normalized, the result
would be the same as the original number. Exit mode can be made to occur on detecting an
indefinite quantity.

Exit mode tests for infinite and indefinite operands are made in the shift (normalize), floating
add, multiply, and divide sequences. The 12 most significant bits of each operand are tested

for these special forms.

In the multiply and divide sequences (but not in a floating add) there is a special test for zero
operands as determined by the 12 most significant bits.

Thus, the special operand forms (in octal) are:

37T77X... X (+o0) } infinite operands

4000X...X (-o0)

1777X...X (+IND) } indefinite operands

6000X...X (-IND)

X, .. X (-0) (If both operands have +0 or -0 exponents, integer

0000X...X (+0) } zero operands for Multiply and Divide
multiply results)

Whenever infinite, indefinite, or zero results are generated in accordance with the rules
given in Table 2-3 and only the following octal words can occur as results:

37770...0 = +00 (result)
40000...0 = ~Q0 (result)
17770...0 = +IND (result)
00000...0 = 40 (result)

Note that in these cases the 48 least significant bits of the result are zeros. Indefinite and
zero results generated in accordance with Table 2-3 are always positive, but the sign of
infinite results is determined by the usual algebraic sign convention. For example:

2-14 60347400 M

(+0) / (-0) = +IND = 17770...0
(+N) * (-0) = 40 = 00000...0
(-o) / (-0) = +o = 37770...0
(+o0) / (-0) = - = 40000...0

There is no special treatment of zero operands in floating add operations. Zero coefficients
and the forms 0000X...X and 7777X...X are not specially detected, and unstandardized zero
results can be produced. (See description of 30 instruction).

OVERFLOW AND UNDERFLOW

Exponents lying outside the range -1777 g to +1777 g cannot be generated during execution of
a floating point arithmetic instruction or during execution of a Normalize instruction. An
attempt to generate an exponent greater than +1777g yields an infinite result (overflow case).
An attempt to generate an exponent less than -17778 yields a zero result (underflow case).
All cases of overflow and underflow are listed in Table 2-4,

CONVERTING INTEGERS TO FLOATING FORMAT

Conversion of integers to floating point format makes use of the shift sequence and the zero
constant in increment register BO. The B0 quantity provides for generation of exponent
bias in this case. For example, the instructions:

e Sum of Bj and Bk to Xi (wherei =2, j=3, k = 4)
™ Pack Xi from Xk and Bj (wherei =2, j =0, k = 2)

form an 18-bit signed integer in operand register X2 as a result of the addition of the con-
tents of increment register B3 and B4. The integer coefficient with its sign, plus the octal
2000 exponent is then packed into the floating format shown earlier. The coefficient is not

normalized; normalizing may be accomplished with a Normalize instruction.

60347400 C 2-15

TABLE 2-4. OVERFLOW AND UNDERFLOW CONDITIONS

Overflow
Instructions Overflow Condition Result

Normalize (24, 25) None -—--
Upper Sum (30, 31, 34, 35) None (see Note 1) -—-
Lower Sum (32, 33) None -—-
Upper Product (40, 41) *n1 +n, + 608 > 20008 Xi =37770.... 08 or

4000 0.... °s
Lower Product (42) n; +n, > 20004 [(True Sign)
Quotient (44, 45) n; - n, - 578 > 20008

Underflow
Instructions ' Underflow Condition Result

Normalize (24 only) Initial coefficient = 0 X, = 0000 0....0g, (Bj) =

608
Normalize (24, 25) Final Exponent < -20008 Xi = 0000 O.... 08' (Bj)

are correct. (See Note 2.)

Upper Sum (30, 31, 34, 35) None -
Lower Sum (32, 33) Final Exponent < -20008 Xi =00000.... 08
Upper Product (40, 41) n; +n, + 575 <-20004
Lower Product (42) n; +ny - 1 <-20004 X, = 0000 0....0g
Quotient (44, 45) n, -n, - 608 < -20008

"‘N1 and n, are the initial exponents.

Note 1. Overflow of Upper Sum: Overflow cannot occur unless one operand is
infinite. In this case the result is as indicated. If a one-place Right Shift
occurs when the larger operand exponent is equal to +17 768, a correct
result with exponent +1777 8 is generated.

Note 2. Underflow of Exponent During Normalization: The final (Bj) are the same

as if underflow had not occurred. In particular, if the initial coefficient is
zero, (Bj) are equal to 608‘

2-16 60347400 C

FLOATING POINT ARITHMETIC TABLES

The following is a tabulation of operations (Add, Subtract, Multiply, Divide) using various
combinations of operands to supplement Table 2-1. The key to operands and results used
is as follows:

KEY:
Operands Results
+0 = 0000 X...X 0 = 0000 0...0
-0 = M7 X... X IND = 17770...0
+0o = 37177 X...X INT = Integer result
-00 = 4000 X...X +0o = 37770...0
+IND = 1777 X. .. X -0 = 40000...0
+INT = Integer number A = Any result except 0,
=-INT = Integer number IND, or #m
w = Any word except 00, + IND O = Any result except
N = Any word except oo, *IND, or =0 IND or +®

ADD (INSTRUCTIONS 30, 32, 34)

Xi=Xj+Xk
Xk
Xj w + © - © += IND
W a + o - © IND
+ o +0 + oo IND IND
- - IND - 0 IND
+ IND IND . IND IND IND
SUBTRACT (INSTRUCTIONS 31, 33, 35)
Xi=Xj-Xk
Xk
Xj w + - +IND
w 0 - + IND
+ 00 + 0 IND + IND
- - - Q0 IND IND
+ IND IND IND IND IND

60347400 E 2-17

MULTIPLY (INSTRUCTIONS 40, 41, 42)

Xi =Xj*Xk
Xk
Xj +N -N +0 -0 to - *IND
+N A A 0 0 +00 -0 IND
-N A A 0 . 0 -Q0 4+ IND
I +0 0 0 INTEGER (yorm | IND IND IND
-0 0 0 MULTIPLY IND IND IND
+00 +0 -® IND IND 40 - IND
-0 -o +® IND IND - +® IND
+IND | IND IND IND IND IND IND IND

NOTE: I« both operands are normalized and the exponents are zero,
positive underflow results are reported.

DIVIDE (INSTRUCTIONS 44, 45)

Xi=Xj/ Xk
Xk

Xj +N -N +0 -0 +00 - + IND

+N A a 400 - 0 0 IND

-N A JA) -0 +m 0 0 IND

+0 0 0 IND IND 0 0 IND

-0 1] 0 IND IND 0 0 IND

+00 +® -0o +00 - IND IND IND

- -0 +00 -00 +a@0 IND IND IND

+ IND IND IND IND IND IND IND IND
SHORT WORD INTEGER MULTIPLICATION TABLES
KEY:

Operands Results

+0 = 0000 0...0 +0 = 0000 0...0
-0 = 7777 7...7 +0 = 0000 0...0
+INT = 0000 X...X +INT = 0000 X...X (NOTE)
-INT = 7777 X...X -INT = YNNI X...X (NOTE)

NOTE: Unless both operands are normalized, in which case complete
positive underflow results.

2-18 60347400 K

INTEGER MULTIPLY (INSTRUCTION 42)

Xi=Xj*Xk

Xk
Xj +INT -INT +0 -0
+INT +INT -INT +0 -0
-INT -INT +INT -0 +0
+0 +0 -0 +0 -0
-0 -0 +0 -0 +0

FIXED POINT ARITHMETIC

Fixed point addition and subtraction of 60-bit numbers is handled in the long add functional
unit section. Negative numbers are represented in one's complement notation, and overflows
are ignored. The sign bit is in the high-order bit position (bit 59) and the binary point is at
the right of the low-order bit position (bit 0).

The increment functional units provide an 18-bit fixed point add and subtract facility. Nega-
tive numbers are represented in one's complement notation and overflows are ignored. The
sign bit is in the high-order bit position (bit 17), and the binary point is at the right of the
low-order bit position (bit 0).

Integer multiplication is handled as a subset operation of the Floating Multiply (42) instruc-
tion. The integer multiply requires that both of the 47-bit integer operands have zero expo-

nents and one or both operands are not normalized. The result is 48 bits with sign exten-
sion. Both operands normalized cause positive underflow results to be reported. If the
results exceed 48 bits, overflow will not be detected. (See 40 instruction for overflow de-

tection.)

An integer divide takes several steps. For example, an integer quotient X1 = X2/X3 is

produced by the following steps:

Instructions Remarks
1. Pack X2 from X2 and B0 Pack X2
2. Pack X3 from X3 and B0 Pack X3
3. Normalize X3 in X0 and BO Normalize X3 (divisor)
4, Floating quotient of X2 and X0 to Xi Divide
5. Unpack X1 to X1 and B7 Unpack quotient
6. Shift X1 nominally left B7 places Shift to integer position

60347400 K

The divide requires that:

1. both integer (247 maximum) operands be in floating format
and 2. the divisor be shifted 48 places left
or 3. The quotient be shifted 48 places right

or 4. any combination of n left-shifts of the divisor and 48-n right shifts of the

quotient be accomplished.

The Normalize X3 instruction shifts the divisor n places left (n > 0), providing divisor
exponent of -n. The quotient exponent then is: 0 - (-n) - 48 =n - 48 <0.

After unpacking and shifting nominally left, the negative (or zero) value in B7 shifts the

quotient 48 - n places right, producing an integer quotient in X1. A remainder may be
obtained by an integer multiply of X1 and X3 and subtracting the result from X2.

PERIPHERAL PROCESSOR PROGRAMMING

INSTRUCTION FORMATS

Peripheral processor instructions are either in a 12-bit or a 24-bit format. The 12-bit for-
mat has a 6-bit operation code designated f and a 6-bit operand or operand address designated

d. The formats are made up as follows:

OPERATION OPERAND OR
cooE OPERAND ADDRESS
L ¢ | s |
" 6 s)

The 24-bit format uses the 12-bit quantity m, the contents of the next program address
(P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS
CODE r A \
t d m

| s | 6 | 12]
" o)
\ J\ -)

\J v

(P) (P+1)

The instruction codes are described in detail in Volume 2 of this reference manual.

2-20 60347400 C

ADDRESS MODES

Program indexing can be accomplished and operands can be manipulated in several modes.
The two instruction formats provide for 6-bit or 18-bit operands and for 6-bit, 12-bit or
18-bit addresses. ‘

NO ADDRESS

In this mode d or dm is taken directly as an operand. This mode eliminates the need for
storing a large number of constants. The d quantity is considered as a 12-bit number, the
upper six bits of which are zero. The dm quantity has d as the upper six bits and m as the
lower 12 bits.

DIRECT ADDRESS

In this mode, d or m + (d) is used as the address of the operand. The d quantity specifies
one of the first 64 addresses in memory (0000-00778). The m + (d) quantity generates a
12-bit address for referencing all possible peripheral processor memory locations
(0000-77778). If d £ 0, the content of address d is added to m to produce an operand address

and m = 7777,

(indexed addressing). Ifd =0, m is taken as the operand address. If m = 7777,, the
8 8 I

8)
address is 0. Address 77778 is only accessible if the value of d is 7777
EXAMPLE: Address Modes

Given: d =25
m = 100

contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234
Then:
MODE INSTRUCTION (A) REGISTER
No Address 14 d 000025
20 dm 250100
Direct Address 30 (d) 000150
50 (m + (d)) 001234
Indirect Address 40 ((d)) 007776

60347400 N 2-21

INDIRECT ADDRESS

In this mode, d specifies an address which holds the address of the desired operand. Thus,
d specifies the operand address indirectly. Indirect addressing and indexed addressing re-

quires one more memory reference than does direct addressing. Address 7777, is
accessible if the desired operand address is 77778.

ACCESS TO CENTRAL MEMORY

The peripheral processors have access to all central memory storage locations. One word
or a block of words can be transferred from a peripheral processor memory to central
memory or vice versa. Data from external devices is read into a peripheral processor
memory and, with additional instructions, transferred from there to central memory.
Conversely, data is transferred from central memory to a peripheral processor memory
and then transferred, by additional instructions, to external devices. All addresses sent to
central memory from peripheral processors are absolute addresses, rather than relative
addresses.

CENTRAL MEMORY READ

The 60 instruction is used to read one word and a 61 instruction is used to read a block of
60-bit central memory words. The central memory words are delivered to a five stage read
"pyramid" where they are disassembled into five 12-bit words.

One 12-bit word is transferred to a peripheral processor each microsecond. Because the
central memory word is 60 bits long, five microseconds are required for the transfer of
each central memory word, It is possible to have four peripheral processors time-sharing
the "pyramid" so that the transfer rate can be increased to four central memory words each

five microseconds.

If more than four peripheral processors are simultaneously requesting central memory Read
operations, the instructions are maintained and are accepted in the order in which they appear
when the "pyramid" can accept another peripheral processor, unless one of the peripheral

processors has priority (see access priority).

The central memory starting address must be entered in the A register before a Read instruc-

tion can be executed. A Load dm (20) instruction may be used for this.

2-22 60347400 N

ONE WORD READ

For a one word transfer, the d portion of the Read (60) instruction specifies the following:

d = peripheral processor memory address (0000—00778) for the first 12-bit word. The

remaining words go to locations d + 1, d + 2, etc.

BLOCK READ

For a block transfer, d and m of the read (61) instruction specify the following:

(d) = the number of central memory words to be transferred. It will be reduced by one

for each word transferred.

m = the peripheral processor memory first word address. It will be increased by one
for each successive word. (A) is increased by one with the transfer of each word to lo-
cate consecutive central memory words.

CENTRAL MEMORY WRITE

The 62 instruction is used for one word and the 63 instruction is used for a block transfer.
They assemble 12-bit words into 60-bit words and write them in central memory. Assembly
is performed in a write ''pyramid" and then transferred to central memory. As is the read
"pyramid" it can be time-shared by up to four peripheral processors. Write "pyramid"

timing is similar to Read "pyramid’ timing.

The starting address in central memory is entered in the A register before the Write instruc-

tion is executed.

ONE WORD WRITE

For a one word transfer, the d portion of the Write (62) instruction specifies the following:

d = the peripheral processor memory address (0000-00778) of the first 12-bit word.
The remaining words are taken from d + 1, d + 2, etc.

60347400 C 2-23

BLOCK WRITE

For a block transfer, d and m of the Write (63) instruction specify the following:

(d) = the number of central memory words to be transferred. It is reduced by one for

each word transferred.

m = the peripheral processor memory starting address. It is increased by one with the
transfer of each word for locating each successive word. (A) is increased by one with
the transfer of each word to provide consecutive central memory locations.

ACCESS PRIORITY

Two types of access priority are provided. Placing the Central Memory Access
Priority (CMAP) switch in the Program Mode position,one or more peripheral pro-
cessors may be assigned a priority status by setting bit 217 of its A register. This
enables the selected peripheral processors to have preference over other peripheral
processors in gaining access to central memory. It also makes it possible for a
peripheral processor to interrupt an ECS transfer, which is not otherwise possible.
Priority should be assigned to no more than three peripheral processors for operations
when ECS is inactive because the value of priorities would thereby be defeated. For
operations when ECS is active, priority usage should be limited, because even one

interruption of an ECS transfer degrades the transfer rate significantly.

Placing the CMAP switch in the Constant Mode position forces 217 set for all peripheral
processors. This makes it possible for any peripheral processor to interrupt an ECS

transfer, however, there is no preferential priority among the peripheral processors.

INPUT/OUTPUT

The peripheral equipment connected to the data channels can be accessed by each of the
peripheral processors. Input/output instructions select a data channel to contact a unit of
peripheral equipment and to initiate transfer of data to or from that equipment. The instruc-
tions can determine whether or not a channel (and the peripheral equipment) is available and

ready to transfer data.

Each type of peripheral equipment (including a control console) has a set of external function
codes which must be used by the peripheral processors for communication with the equipment.
These function codes are explained in the applicable reference manual for each type of equip-
ment.

DATA CHANNELS

The number of data channels is dependent on the number of peripheral processors in the
system. Each channel has a 12-bit bi-directional data register and two control flags which
allow the peripheral processors to monitor the status of the data channels.

2-24 60347400 G

CHANNEL ACTIVE/INACTIVE FLAG

When a Function instruction specifies a mode of operation, it places a function word in the
channel data register and activates the channel. When the peripheral equipmeni: accepts the
function word from the data register, its response clears the data register and the channel
active flag.

If an active channel instruction is used with other data transfer instructions, a disconnect
channel instruction is required to clear the channel active flag.

REGISTER FULL/EMPTY FLAG

A channel data register is full when it contains a function or data word for an external equip-
ment or contains a word received from an external equipment. The register is empty when
it is cleared. The flags are set or clear as the register changes state.

On data output, the peripheral processor places a word in the channel register and sets the
full flag. When the external devicre accepts the word, it clears the register, and clears the
full flag,

On data input, the external device places a word in the channel data register and sets the full
flag. When the peripheral processor stores the word, it clears the register, and clears the
full flag.

DATA INPUT

Several instructions are necessary to transfer data from external equipment into a peripheral
processor. The instructions prepare the channel and equipment for the transfer and then
start the transfer. Some external equipment, once started, sends a series of words (record)
spaced at equal time intervals and then stops between records; Magnetic tape equipment for
example. The peripheral processor can read all or a part of the record and then disconnect
the channel to end the operation and to make the channel inactive. Other equipment, such as
the display console, can send one word (or character) and then stop. The input instructions
allow the input transfer to vary from one word to the capacity of the peripheral processor.

An input transfer may be accomplished in the following way:

1. Determine if the channel is inactive. A Jump to m on channel d Inactive (65)
instruction does this. Here, m can be a function instruction to select Read mode
or determine the status of the equipment.

60347400 C 2-25

2. Determine if the equipment is ready. A Function m on Channel d (77) instruction
followed by an Active channel d ('714) followed by an Input to A from Channel d (70)
instruction loads A with the status response of the desire equipment. Here, m is
a status request code, and the status response in A can be tested to determine the
course of action.

3. Disconnect Channel d (75); this avoids hanging up the procedure.

4. Select Read mode in the equipment. A Function m on Channel d (77) instruction or
Function (A) on Channel d (76) instruction will send a code word to the desired de-
vice to prepare it for data transfer.

5. Enter the number of words to be transferred in A. A Load d (14) or Load (d) (30)

instruction will accomplish this.

6. Activate the channel. An Activate Channel d (74) instruction sets the channel active
flag and prepares for the impending data transfer.

7. Start input data transfer. An Input (A) Words to m on Channel d (71) instruction or
an Input to A from Channel d (70) instruction starts data transfer. The 71 instruc-
tion transfers one word or up to the capacity of the processor memory. The 70
instruction transfers one word only.

8. Disconnect the channel. A Disconnect Channel d ('75) instruction makes the channel

inactive and stops the flow of input information.

The design of some external equipment requires timing considerations in issuing function,
activate, and input instructions. The timing consideration may be based on motion in the
equipment, i.e., the equipment must attain a given speed before sending data (e.g., mag-
netic tape). In general, timing considerations can be ignored by issuing the necessary in-
structions without an intervening time gap. The external equipment reference manuals list

timing considerations which must be taken into account.

DATA OUTPUT

The data output operation is similar to data input in that the channel and equipment must be
ready before the data transfer is started by an output instruction.

An output transfer may be accomplished in the following way:

1. Determine if the channel is inactive. A Jump to m on Channel d Inactive (65)
instruction does this. Here, m can be a function instruction to select Write mode

or determine the status of the equipment.

2-26 60347400 C

2. Determine if the equipment is ready. A Function m on Channel d (77) followed by
an Activate channel d (74) followed by an Input to A from Channel d (70) instruction
loads A with the status response of the desired equipment. Here, m is a status
request code, and the status response in A can be tested to determine the course of
action.

3. Disconnect Channel d (75); this avoids hanging up the processor.

4. Select Write mode in the equipment. A Function m on Channel d (77) instruction or
Function (A) on Channel d (76) instruction will send a code word to the desired de-
vice to prepare it for data transfer,

5. Enter the number of words to be transferred in A. A Load d (14) or Load (d) (30)
instruction will accomplish this.

6. Activate the channel. An Activate Channel d (74) instruction signals an active
channel and prepares for the impending data transfer.

7. Start data transfer. An Output (A) Words from m on Channel d (73) instruction or
an Output from A on Channel d (72) instruction starts data transfer. The 73 instruc-
tion can transfer one or more words while the 72 instruction transfers only one
word.

8. Test for channel empty. A Jump to m if Channel d Full (66) instruction where m =
current address, provides this test. The instruction exits to itself until the channel
is empty. When the channel is empty, the processor goes on to the next instruction
which generally disconnects the channel. The instruction acts to idle the program
briefly to ensure successful transfer of the last output word to the recording device,

9. Disconnect the channel. A Disconnect Channel d (75) instruction makes the channel
inactive. Data flow in this case terminates automatically when the correct number
of words is sent out.

Instruction timing considerations, as in a data input operation, are a function of the external

device. Refer to the applicable reference manual for the peripheral equipment timing infor-
mation.

60347400 C 2-27

INTERLOCK REGISTER

The interlock register may be accessed by each of the peripheral processors through a
common internal channel.

PROGRAMMING SEQUENCE

Accessing the interlock register requires a load dm (2000) instruction, a description word
(described below), an output on channel 15 (7215) instruction, and an input on channel 15
(7015) instruction.

NOTE

Since channel 15 is always active, bit 5 of
the input and output instruction does not
function as stated in the instruction descrip-
tion when accessing this channel. In fact,

it must not be set as it may allow more than
one peripheral processor to access the inter-
lock register at the same time.

DESCRIPTOR WORD

| The descriptor word format is:

w R BIT
INSTRUCTION CODE ojo ggsﬁs%mon

] 98 76 4]

The instruction codes used in the descriptor word are as follows:

0XXX - Read the designated word in the interlock register. There are six words in a
64-bit register and 11 words in a 128-bit register. The words in a 64-bit
register are as follows:

WORD WORD WORD WORD WORD WORD

63 6059 48 47 36 35 24 23 12n 0

2-28 60347400 M

The words in a 128-bit register are as follows:

WORD |WORD | WORD | WORD | wORD | woRD | worD | worD [worp [woro [worp
10 9 8 7 6 5 4 3 2 |)

27 120119 108107 9695 6483 7271 6059 4847 3635 2423 12 o

1XXX - Test the designated bit in the interlock register. The status is returned as
bit 0 of a 12-bit word. A '"'1'" indicates that the tested bit is set and a "0"
indicates that the tested bit is clear.

2XXX - Clear the designated bit in the interlock register. A "0" is reported to the
peripheral processor.

3XXX - Test the designated bit and leave it in the clear condition.
4XXX - Set the designated bit. A "0" is reported to the peripheral processor.
5XXX - Test the designated bit and leave it in the set condition.

6XXX - Clear all bits in the interlock register. A "0" is reported to the peripheral
processor.

7XXX - Test all bits in the interlock register. The status is returned as a "'1" if one
or more bits of the interlock register is set.

EXAMPLE: To read word 3, the following sequence would be used:

2000 load dm

0003 read word 3

7215 output on channel 15
7015 input on channel 15

MANUAL CONTROL

Manual control of system operation is provided through the console or other keyboard. For
starting a down system, the Dead Start panel must be used to enter a 12-word program
(normally a load routine) to start up operation. The console or other keyboard provides for
the entry of data or instructions under program control,

60347400 C 2-29

DEAD START PANEL

The three modes of operation, load, sweep, and dump are selectable via the dead start
panel; they are described below.

LOAD MODE

To load programs and data into the computer system, the MODE switch must be placed in
the LOAD position. The matrix of toggle switches must then be set to a 12-word (or less)
program (switch up = ""1", switch down = "9"). The program set in the switch matrix should
be a load routine to load a larger program from an input device such as a disk file or mag-
netic tape unit.

Turn the DEAD START switch ON momentarily, then OFF. That initiates the following
operations:

1. Assigns all peripheral processors to corresponding data channels.

2. Sends a Master Clear to all I/O channels. A Master Clear removes all equipment
selections except the dead start panel, and sets all channels to the Active and
Empty condition (ready for input).

3. Sets all peripheral processors to the Input (71) instruction.
4. Clears the P register and sets the A register to 100008 in all processors.

5. Transmits a zero word followed by the 12 words from the toggle switches into
memory locations 0000 - 00148 of peripheral processor 0, and then disconnects
data channel 0 causing word 00158 of peripheral processor 0 to be zeroed and
causing peripheral processor 0 to start execution with the instruction at location
0001.

After the switch matrix program is read from the dead start panel, the panel is automatically
disconnected. Processor 0 reads location 0000, adds one to its content, and begins executing
the program at address 0001. The other processors are still set to the Input (71) instruction
and may receive data from processor 0 via their assigned channels.

SWEEP MODE

Placing the MODE switch in the SWEEP position and momentarily turning on the DEAD START
switch results in the following:

1. Sets all processors to instruction 50X.

2. Clears all processor P registers to zero.

2-30 60347400 C

The translation of the 50X instruction in each processor causes each processor to sweep
through its memory, reading and restoring the contents of each location, without executing
instructions. Sweep mode is a maintenance tool useful in checking the operation of mem-
ory logic.

DUMP MODE

Placing the MODE switch in the DUMP position and momentarily turning on the DEAD START
switch initiates the following operations:

1. Assigns all peripheral processors to corresponding data channels.
2. Sends a Master Clear to all I/O channels except channel 0.

3. Holds channel 0 to Active and Empty.

4. Sets all processors to the Qutput (73) instruction.

5

. Clears the P register and sets the A register to 100008 in all processors.

Each of the processors senses the Active and Empty condition of its assigned channel and
outputs the content of its memory address zero. Each of the I/O channels is then set to Full
(except channel 0), and the processors wait for an Empty signal. Each processor advances
its P register by one and reduces the content of its A register by one (to 77768). At this
point, the processors waiting for an Empty signal are hung up and cannot proceed.

Channel 0 (assigned to processor 0) is held to Empty by the DUMP position. Processor 0,
therefore, proceeds through the 73 instruction until the contents of A are reduced to one.
Processor 0 has now dumped its entire memory content on channel 0 (although no I/O device
was selected to receive it). Execution then starts with the instruction at the location speci-
fied by the contents of location 0000 plus one; it is now free to execute a dump program which
must have been previously stored in its memory (location 0000 must have been previously
set to the starting address minus one).

PROGRAM/CONSTANT MODE

Placing the CMAP switch in the Program Mode position provides program selectable
priority for each peripheral processor. Placing it in the Constant Mode position assigns
priority status to all peripheral processors by which any one can interrupt an ECS transfer.

CONSOLE

The display console consists of two cathode ray tube (CRT) display screens and a keyboard
for manual entry data.

60347400 G 2-31

CONSOLE CONTROLS

O <— DEAD START

HORIZ. VERT. HORIZ. VERT. INTEN. FOCUS ASTIG. INTEN. FOCUS ASTIG.

OO 0O OO0 00O

EMERG.
OFF

GAIN CENTERING
\ J \ J \ -
\d vV v
BOTH LEFT RIGHT
SCREENS SCREEN SCREEN

Figure 2-5. Console Operator Control Panel

POWER ON /OFF Switch (located under the right side of the desktop.)
This switch applies or disconnects the console ac power,

HORIZONTAL GAIN Control
This control varies the width of the displays.

VERTICAL GAIN Control
This control varies the height of the displays.

HORIZONTAL CENTERING Control
This control varies the horizontal location of the displays.

VERTICAL CENTERING Control
This control varies the vertical location of the displays.

INTENSITY
These two controls vary the brightness of the displays.

FOCUS

These two controls are used to obtain image clarity in the center area of the displays.

ASTIGMATISM Controls

These two controls are used to obtain image clarity at the edges of the displays.

DEAD START Switch
This pushbutton switch dead starts the mainframe.

EMERGENCY OFF Switch

This pushbutton switch immediately disconnects ac power from the display console and the

entire mainframe.

2=32

60347400 E

CAUTION

This switch removes all system power and does
not allow proper mainframe refrigeration system
pump down. Unless the system is to be restarted
within a few minutes, call customer engineering so
that they can perform the pump down.

OPERATING PROCEDURES
To turn the console on, rotate both INTENSITY controls fully counterclockwise and press
the POWER ON/OFF switch to the ON position.

CAUTION

Failure to rotate INTENSITY controls fully
counterclockwise prior to warm-up may result
in irreparable damage to the CRT's.

After the built-in 40- to 80-second time delay, rotate the INTENSITY controls clockwise to
obtain proper character intensity. In the event it is necessary to turn the console off, rotate
both INTENSITY controls fully counterclockwise and press the POWER ON /OFF switch.

NOTE

See Volume 2 of this reference manual for
program interaction and keyboard usage.

SYSTEM INTERRUPT

Detecting and handling interruptible conditions involves both hardware and software. This
section describes hardware provisions for detecting and handling interrupt. The features

of an operating system used for implementing interrupts are described in the operating sys-
tem reference manuals.

HARDWARE PROVISIONS FOR INTERRUPT

EXCHANGE JuMP

Within a peripheral processor, execution of an Exchange Jump instruction initiates hardware
action in the central processor to interrupt the current central processor program and sub-
stitute another program, the parameters of which are defined in the Exchange Jump package.
The Exchange Jump is also used to start the central processor from a Stop condition.

60347400 E 2-32.1 |

CHANNEL AND EQUIPMENT STATUS

Within the peripheral processors, hardware flags indicate the state of various conditions in
the data channels, e.g., Full/Empty, and Active/Inactive. External equipment devices are
capable of detecting certain errors (e.g., parity error) and holding status information
reflecting their operating conditions (e.g., Read, End of File, etc.) Channel and equipment
status information may be examined by instructions in the peripheral processors. The Input/
Output section describes these instructions. For detailed status information on external
devices such as magnetic tape units and card readers, refer to the applicable reference
manual for each device or its controller.

EXIT MODE

Central processor hardware provides for three types of error halt conditions (Exit mode):
e Address out of range (i.e., out of bounds)
e Operand out of range (i.e., exponent overflow)

e Indefinite result

Detecting the occurrence of one or more of these conditions is accomplished by the hardware
and causes an error exit. Note that halting on any of these conditions is selectable.

TIMING INFORMATION

Instruction execution times are explained in this section. The basic times are listed in
tables, however there are certain conditions which must be taken into account to permit
calculation of program execution timing as follows:

CENTRAL PROCESSOR TIMING

The instructions and their execution times are shown in Table 2-5.

1. A minimum of 5 minor cycles is required from the end of Increment unit time
until the next operand is retrieved from central memory and is ready in the
X register. Memory bank conflicts can lengthen the time.

2. Memory bank conflicts cause a delay of at least 3 minor cycles. The address is

issued every 3 cycles until it is accepted by memory.

60347400 C 2-33

3. Instructions are issued from the instruction stack at a maximum rate of one 60-bit
instruction word every 4 minor cycles. If the instruction word comes from memory
the same rate applies except for memory conflicts. If a conflict occurs the maxi-
mum rate becomes one word every 8 minor cycles.

4, The time required from the issue of the last parcel of an instruction word until the
issue of the first parcel of the next instruction word is one minor cycle whether the
word comes from the stack or from memory. If from memory, memory conflicts
can cause the time elapsed to be 4 minor cycles. If the.second parcel of an instruc-
tion word is a 30-bit instruction, add one more cycle to the times specified.

5. Operand registers are available to more than one function unit in a single minor
cycle if the function units are from different groups. The groups are as follows:

GROUP 1 GROUP 2 GROUP 3
Boolean Shift
Divide Floating Add Increment 1
Multiply 1 Long Add Increment 2
Multiply 2
6. A result register can be used as an operand register in the same minor cycle.
TABLE 2-5. CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES
CPU-0 CPU-1 NOTES
00XXX Error exit to MA or Program Stop 4
0100K Return jump to K 13 21 6
011jK Read extended core storage - - 2
012jK Write extended core storage - - 2
013jK Central exchange jump - - -
02ixK Jump to (Bi) + K 14 15 9,10
030jK Jump to K if (Xj) = 0 9 15 1,3,6,9
031jK Jump to K if (Xj) # 0 9 15 1,3,6,9
032jK Jump to K if (Xj) positive 9 15 1,3,6,9
033jK Jump to K if (Xj) negative 9 15 1,3,6,9
034jK Jump to K if (Xj) in range 9 15 1,3,6,9
035jK Jump to K if (Xj) out of range 9 15 1,3,6,9
036jK Jump to K if (Xj) definite 9 15 1,3,6,9
037jK Jump to K if (Xj) indefinite 9 15 1,3,6,9
04ijK Jump to K if (Bi) = (Bj) 8 15 1,3,6,9,10
05ijK Jump to K if (Bi) # (Bj) 8 15 1,3,6,9,10
06ijK Jump to K if (Bi) > (Bj) 8 15 1,3,6,9,10
07ijK Jump to K if (Bi) < (Bj) 8 15 1,3,6,9,10
2-34

60347400 H

TABLE 2-5, CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES (Contid)

CPU-0 CPU-1 NOTES
10ijk Transmit (Xj) to Xi 3 4
11ijk Logical product of (Xj) and (Xk) to Xi 3 5
12ijk Logical sum of (Xj) and (Xk) to Xi 3 4
13ijk Logical difference of (Xj) and (Xk) to Xi 3 5
14i0k Transmit complement of (Xk) to Xi 3 4
15ijk Logical product of (Xj) and comp (Xk) to Xi 3 5
16ijk Logical sum (Xj) and comp (Xk) to Xi -3 4
17ijk Logical difference of (Xj) and comp (Xk) to Xi 3 5
20ijk Left shift (Xi) by jk 3 6
21ijk Right shift (Xj) by jk 3 6
22ijk Left shift (Xk) nominally (Bj) places to Xi 3 6
23ijk Right shift (Xk) nominally (Bj) places to Xi 3 6
24ijk Normalize (Xk) to Xi and Bj 4 7
25ijk Round and normalize (Xk) to Xi and Bj 4 7
26ijk Unpack (Xk) to Xi and Bj 3 7
2Tijk Pack Xi from (Xk) and (Bj) 3 7
30ijk Floating sum of (Xj) and (Xk) to Xi 4 11
31ijk Floating difference of (Xj) and (Xk) to Xi 4 11
32ijk Floating DP sum of (Xj) and (Xk) to Xi 4 11
33ijk Floating DP difference of (Xj) and (Xk) to Xi 4 11
34ijk Round floating sum of (Xj) and (Xk) to Xi 4 11
35ijk Round floating difference of (Xj) and (Xk) to Xi 4 11
36ijk Integer sum of (Xj) and (Xk) to Xi 3 6
37ijk Integer difference of (Xj) and (Xk) to Xi 3 6
40ijk Floating product of (Xj} and (Xk) to Xi 10 57
41ijk Round floating product of (Xj) and (Xk) to Xi 10 57
42ijk Floating DP product of (Xj) and (Xk) to Xi 10 57
43ijk Form mask in Xi, jk bits 3 6
44ijk Floating divide (Xj) by (Xk) to Xi 29 57
45ijk Round floating divide (Xj) by (Xk) to Xi 29 57
46(oxx)xx No operation (pass) 1 3
47ixk Count the numbers or ''1's" in (Xk) to Xi 8 68
50ijK Set Aito (Aj) +K 3 - 8,7
51ijK Set Ai to (Bj) + K 3 - 8,7
52ijK Set Ai to (Xj) + K 3 - 8,7
53ijk Set Ai to (Xj) + (Bk) 3 - 8,7
54ijk Set Ai to (Aj) + (Bk) 3 - 8,7
55ijk Set Ai to (Aj) - (Bk) 3 - 8,7
56ijk Set Ai to (Bj) + (Bk) 3 - 8,17
57ijk Set Ai to (Bj) - (Bk) 3 - 8,7
60ijK Set Bi to (Aj) + K 3 5
61ijK Set Bi to (Bj) + K 3 5
62ijK Set Bi to (Xj) + K 3 5
63ijk Set Bi to (Xj) + (BKk) 3 5
64ijk Set Bi to (Aj) + (Bk) 3 5
65ijk Set Bi to (Aj) - (Bk) 3 5
66ijk Set Bi to (Bj) + (Bk) 3 5
67ijk Set Bi to (Bj) - (BKk) 3 5
T0ijK Set Xi to (Aj) + K 3 6
71ijK Set Xi to (Bj) + K 3 6

60347400 H 2-35

TABLE 2-5. CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES (Cont'd)

CPU-0 CPU-1 NOTES

72ijK Set Xi to (Xj) + K 3 6
13ijk Set Xi to (Xj) + (Bk) 3 6
T4ijk Set Xi to (Aj) + (Bk) 3 6
75ijk Set Xi to (Aj) - (Bk) 3 6
76ijk Set Xi to (Bj) + (Bk) 3 6
T7ijk Set Xi to (Bj) - (Bk) 3 6
NOTES:
1. Add 6 cycles for a jump out of the stack for an instruction. Add 2 cycles for a
no jump condition. Add 5 cycles for a no jump condition out of the stack for CPU-0.
2. Refer to the ECS Description manual (See Preface) for timing information.
3. For CPU-1, jumps in which the jump conditions are not present, add 2 cycles.
4. If error exit to MA is selected, cycles.
5. All times are in minor cycles (100 nsec).
6. Times do not account for memory conflicts which can cause delays. See text.
7. For CPU-0, the A register is reserved for 3 cycles. When i = 1-5, Xi is
reserved for 8 cycles. When i = 6 or 7, Xi is reserved for 9 cycles.
8. For CPU-1, wheni =0, 6 cycles, when i = 1-5, 14 cycles, wheni =7 or 8,
12 cycles.
9. When more than one functional unit is used, both must be free before the instruc-
tion can be issued.
10. Increment unit time affects timing, see text.

PERIPHERAL PROCESSOR TIMING

The instructions are listed in Table 2-6. Certain considerations which might affect the times

shown in the table are:

1.

3'

2-36

Instructions with the 24-bit format require 10 extra cycles (1 major cycle) to

read m. These are the indirect and indexed addressing instructions.

Instructions for input/output and for memory references can transfer a word every
10 cycles although the peripheral equipment seldom permits this rate for input/

output operations.

Conflicts with the central processor for central memory references cause indeter-

minate delays.

Following an Exchange Jump instruction, the central processor must complete the
exchange jump before further memory references or Exchange Jump instructions

can be executed.

In systems with 14, 17, or 20 peripheral processors, certain delays occur because
the data channels are mounted in an extsrnal cabinet. A delay of four minor cycles
occurs in recognizing a changed channei status. A peripheral processor can not

60347400 g

recognize a change in status of a data channel made by any of the four processors
preceding it in the "barrel'. For example; after a channel goes inactive, the next
four processors in succession do not recognize the change, so the fifth peripheral

processor is the first one that can recognize and take advantage of the change.

TABLE 2-6. PERIPHERAL PROCESSOR INSTRUCTION EXECUTION TIMES

CYCLES NOTES
00 Pass 10
01 Long jump to m + (d) - 1
02 Return jump to m + (d) - 2
03 Unconditional jump d 10
04 Zero jump d 10
05 Nonzero jump d 10
06 Plus jump d 10
07 Minus jump d 10
10 Shift d 10
11 Logical difference d 10
12 Logical product d 10
13 Selective clear d 10
14 Load d 10
15 Load complement d 10
16 Add d 10
17 Subtract d 10
20 Load dm 20
21 Add dm 20
22 Logical product dm 20
23 Logical difference dm 20
24 Pass 10
25 Pass 10
260X Exchange jump - 3
261X Monitor exchange jump - 3
262X Monitor exchange jump to MA - 3
27 Read program address 10
30 Load (d) 20
31 Add (d) 20
32 Subtract (d) 20
33 Logical difference (d) 20
34 Store d 20
35 Replace add (d) 30
36 Replace add one (d) 30
37 Replace subtract one (d) 30
40 Load (d) 30
41 Add ((d)) 30
42 Subtract ((d)) 30
43 Logical difference ((d)) 30
44 Store ((d)) 30
45 Replace add ((d)) 40
46 Replace add one ((d)) 40
47 Replace subtract one ((d)) 40

60347400 C 2-317

TABLE 2-6. PERIPHERAL PROCESSOR INSTRUCTION EXECUTION TIMES (Cont'd)

2-38

CYCLES NOTES

50 Load (m + (d)) - 2
51 Add (m + (d)) - 2
52 Subtract (m + (d)) - 2
53 Logical difference (m + (d)) - 2
54 Store (m + (d)) - 2
55 Replace add (m + (d)) - 4
56 Replace add one (m + (d)) - 4
57 Replace subtract one (m + (d)) - 4
60 Central read from (A) to d - 5
61 Central read (d) words to (A) from m - 6
62 Central write to (A) from d - 5
63 Central write (d) words to (A) from m - 6
64 Jump to m if channel d active 20

65 Jump to m if channel d inactive 20

66 Jump to m if channel d full 20

67 Jump to m if channel d empty 20

70 Input to A from channel d 20

71 Input (A) words to m from channel d - 7
72 Output from A on channel d 20

73 Output (A) words from m on channel d - i
74 Activate channel d 20

75 Disconnect channel d 20

76 Function (A) on channel d 20

7 Function m on channel d 20

NOTES: 1. 30 cycles unless d = 0, then 20 cycles

2. 40 cycles unless d = 0, then 30 cycles

3. 26 cycles because of central memory access limitations (If exchange
is executed) If exchange is not executed it will be 10 cycles.

4. 50 cycles unless d = 0, then 40 cycles

5. Minimum of 60 cycles
6. 50 cycles plus 50 cycles per word
7. 40 cycles plus 10 cycles per word

All times are in minor cycles (100 nsec)

60347400 C

CUT ALONG LINE

e s SEER G S GNG G GGes GHNy G G D SR I i D G — e i i NG G NS N SN R CHNAD CHUND SN GEENNS GO GRENED GMRED GEMND GENNND SENEE GG GENS AN SEEN ——— SN G SV el NG e

PRINTED IN USA

AA3419 REV, 7/78

COMMENT SHEEY

wanuaL Tme CDC CYBER 70 Model 74 Volume 1 System Description and

Programming Information Reference Manual

PUBLICATION NO. 60347400 Revision N

FROM: NAME:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE :
|
}
!
'
}
)
)
)
]
|
]
]
]
’
’
’
’
)
|
:m;-_---—--‘--—-- --------- A D D G G G G G T — ---—--_‘4
|
FIRST CLASS |
PERMIT NO. 8241 1
)
MINNEAPOLIS, MINN. '
|
, . '
BUSINESS REPLY MAIL |
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. _ '
[| !
—
POSTAGE WillL BE i’A‘D BY
] I
CONTROL DATA CORPORATION i
Publications and Graphics Division I |
ARH219 I |
4201 North Lexington Avenve . |
Saint Pavul, Minnesota 55112 ; (]
v .)
] !
|
. (|

CUT ALONG LINE

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08.0
	2-08.1
	2-09
	2-10
	2-11.0
	2-11.1
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32.0
	2-32.1
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	replyA
	replyB

