Control Data®
7600 Computer System

Preliminary Reference Manual

00000

0100K
011jK
012jK
013jk
013jK
014jk
015jk
0160k
016jk
0170k
017jk

02i0k

030jK
031jK
032K
033jK
034jK
035K
036K
037jK
04ijK
05ijK
06ijK
07ijK
10ij0
11ijk
12ijk
13ijk
1410k
15ijk
16ijk
17ijk
20ijk
21ijk
22ijk
23ijk
24ijk
25ijk
26ijk

2733k

735k
30ijk
31ijk
32ijk
33ijk
34ijk
35ijk
36ijk
37ijk
40ijk
41ijk
42ijK
43ijk
44ijk
45ijk
46000
47i0k
50ijK
51ijK
52ijK
53ijk
54ijk
55ijk
56ijk
57ijk
601K
1ijK
82ijK
63ijk
64ijk
65ijk
66ijk
67ijk

INSTRUCTION
CENTRAL PROCESSOR

Error exit to EEA 3-2

Return jump to K 3-30
Block copy K + (Bj) words from LCM to SCM 3-39
Block copy K + (Bj) words from SCM to LCM 3-36
Exchange exit to NEA if exit flag clear 3-31
Exchange exit to K + (Bj) if exit flag set 3-32
Read LCM at (Xk) to Xj 3-42
Write (Xj) into LCM at (Xk) 3-44
Reset channel (Bk) input buffer if j=0 3-45
Read channel (Bk) input status to Bj if j#0 3-46
Reset channel (Bk) output buffer if j=0 3-48
Read channel (Bk) output status to Bj if j#0 3-49
Jump to K + (Bi) 3-33
Branch to K if (Xj) = 0 3-34
Branch to K if (Xj) #0 3-34
Branch to K if (Xj) positive 3-34
Branch to K if (Xj) negative 3-34
Branch to K if (Xj) in range 3-34
Branch to K if (Xj) not in range 3-34
Branch to K if (Xj) definite 3-34
Branch to K if (Xj) indefinite 3-34
Branch to K if (Bi) = (Bj) 3-35
Branch to K if-(Bi) #(Bj) 3-35
Branch to K if (Bi)> (Bj) 3-35
Branch to K if (Bi) < (Bj) 3-35
Copy (Xj) to Xi 3-8

Logical product of (Xj) and (Xk) to Xi 3-9

Logical sum of (Xj) plus (Xk) to Xi 3-9

Logical difference of (Xj) minus (Xk) to Xi 3-10
Copy complement of (Xk) to Xi 3-10
Logical product of (Xj) and comp (Xk) to Xi 3-11
Logical sum (Xj) plus comp (Xk) to Xi 3-11
Logical difference of (Xj) minus comp (Xk) to Xi 3-12
Left shift (Xi) by jk 3-12
Right shift (Xi) by jk 3-13
Left shift (Xk) by (Bj) to Xi 3-14
Right shift (Xk) by (Bj) to Xi 3-14
Normalize (Xk) to Xi and Bj 3-15
Round and normalize (Xk) to Xi and Bj 3-16
Unpack {Xk) to Xi and Bj 3-17
Pack (Xk) and (Bj) ta Xi 3-18
Floating sum of (Xj) plus (Xk) to Xi 3-19
Floating difference of (Xj) minus (Xk) to Xi 3-20
Floating DP sum of (Xj) plus (Xk) to Xi 3-21
Floating DP difference of (Xj) minus (Xk) to Xi 3-22
Round floating sum of (Xj) plus (Xk) to Xi 3-22
Round floating difference of (Xj} minus (Xk) to Xi =~ 3-23
Integer sum of (Xj) plus (Xk) to Xi 3-7

Integer difference of (Xj) minus (Xk) to Xi 3-7

Floating product of (Xj) times (Xk) to Xi 3-24
Round floating product of (Xj) times (Xk) to Xi 3-26
Floating DP product of (Xj) times (Xk) to Xi 3-27

Form mask of jk bits to Xi

Floating divide (Xj) by (Xk) to Xi
Round floating divide (Xj) by (Xk) to Xi
Pass

Population count of (Xk) to Xi

Increment (Aj) plus K to Ai
Increment (Bj) plus K to Ai
Increment (Xj) plus K to Ai
Increment (Xj) plus (Bk) to Ai
Increment (Aj) plus (Bk) to Ai
Increment (Aj) minus (Bk) to Ai
Increment (Bj) plus (Bk) to Ai
Increment (Bj) minus (Bk) to Ai

Increment (Aj) plus K to B*
Inerement (Bj) plus K to B.
Increment (Xj) plus K to Bi
Increment (Xj) plus (Bk) to Bi
Increment (Aj) plus (Bk} to Bi
Increment (Aj) minus (Bk) to Bi
Increment (Bj) plus (Bk) to Bi
Increment {Bj) minus (Bk) to Bi

'
—
for)

©o (
b 0w NN
w0 -3

ot
(SR I S N B e e

WD W W RWE WWWWWWWW WWwwWww
1

INDEX

70ijK
71K
72ijK
73ijk
74ijk
75ijk
761k
771k

00
01
02
03
04
05
06
07

10
11
12
1

14
15
16
17
20
21
22
23
24
25
26
27

30
31
32
33

35
36
37

40
41
42
43
44
45
46
417

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
87

70
71
72
73
74
75
76
77

Increment (Aj) plus K to Xi
Increment (Bj) plus K to Xi
Increment (Xj) plus K to Xi
Increment (Xj) plus (Bk) to Xi
Increment (Aj) plus (Bk) to Xi
Increment (Aj) minus (Bk) to Xi
Increment (Bj) plus (Bk) to Xi
Increment (Bj) minus (Bk) to Xi

PERIPHERAL PROCESSORS

Error stop

Long jump to m + (d}
Return jump to m + (d)
Uneonditional jump d
Zero jump d

Nonzero jump d
Positive jump d
Negative jump d

Shift d

Logical difference d
Logical product d
Selective clear d
Load d

Load complement d
Add d

Subtract d

Load dm

Add dm

Logical product dm
Logical difference dm
Pass

Pass

Pass

Pass

Load (d)

Add (d)

Subtract (d)

Logical difference (d)
Store (d)

Replace add (d)

Replace add one (d)
Replace subtract one (d)
Load ((d))

A3 7NN
AQG WG

Subtract {((d))

Logical difference ((d))
Store ((d))

Replace add ((d))

Replace add one ((d))
Replace subtract one ((d))

Load (m+{d))

Add (m+(d)}

Subtract (m+(d))

Logical difference (m+(d))
Store {(m+(d))

Replace add (m+(d}))

Replace add one (m+(d))
Replace subtract one (m+(d))

Jump on input word flag
Jump if no input word flag
Jump on input record flag
Jump if no input record flag
Jump on output word flag
Jump if no output word flag
Jump on output record flag
Jump if no output record flag

Input to A from channel d

Input (A) words tc m from channel d
Output from A on channel d

Output (A} words from m on channel d
Output record flag on channel d

Pass

Pass

Error stop

V Loy
[= W= W= ez e e i = I]

'

WWWWwWWwWwW
i

'
D = D OO VO UT O = = =] 0000 UYL

Lot
wwo

o
N

[
G

o [
E =] o Wwo

[

'
- OO s m] P b] e 0D

DO DODNNDN DN DMDN NN ND DO DD
|
fe2e2]

-17

[=per = R0 e 202 @ R o 1)
o a4t
MoK N R DD DN
OO0 ~000

Control Data®
7600 Computer System

Preliminary Reference Manual

RECORD of REVISIONS
REVISION NOTES
01 Preliminary edition.
(11-1-68)
02 Manual revised; Engineering Change Order 21882, publications change only. Pages iii,1-4, 1-6,
(3-21-69) 1-7,2-2, 2-3, 2-4, 2-5, 2-6, 2- 14, 2-19, 3-2, 3-4, 3-5, 3-7,3-12, 3-13, 3-15, 3-25, 3-32, 3-33, 3-35,
3-36, 3-37,3-43, 3-45, 3-46, 4-1,4-2,4-3,4~4,4-7,4-8,4-10,4-11,5-1,6~1,6-17,7-2,17-4, A-1, A-2
A-3, A-4, A-6, A-7, B-6 and B-8 revised. Delete page 7-5.
Address comments concerning this
manual to:
Control Data Corporation
Technical Publications Department
Pub No. 60258200 4201 North Lexington Avenue

© 1968, 1969

by Control Data Corporation

St. Paul, Minnesota 55112
or use Comment Sheet in the back of

Printed in United States of America this manual.

FORM CA230 REV. 1-67

1. SYSTEM DESCRIPTION
Introduction

System Characteristics
Central Processor Unit
Characteristics

Peripheral Processor Unit
Characteristics

Basic System Description

Central Processor Unit (CPU)

Peripheral Processor Unit
(PPU)

CONTENTS

1-5

Maintenance Control Unit (MCU)1-6

System Communication

2. CENTRAL PROCESSOR UNIT

Computation Section
Operating Registers
CPU Instruction Formats
Instruction Word Stack
Functional Units
Exchange Jump

Program Status Designations

3. CENTRAL PROCESSOR
INSTRUCTIONS
Introduction
Error Exit and No Operation
Increment
Fixed Point Arithmetic
Logical
Shift
Floating Point Arithmetic
Branch
Input/Output

1-6

2-1
2-1
2-4
2-6
2-8
2-10
2-14

3-1
3-2
3-4
3-7
3-8
3-12
3-19
3-30
3-36

4. CENTRAL PROCESSOR
MEMORY

Introduction

Memory Protection

Small Core Memory
Organization
Address Format
Small Core Memory Access
Memory Reference

Central Processor Unit
Access

I/O Multiplexer
Large Core Memory
Organization

Large Core Memory Access

5. PERIPHERAL PROCESSOR
UNIT
Organization
Processor
Memory
Input/Output

6. PERIPHERAL PROCESSOR
INSTRUCTIONS
Instruction Formats
Address Modes
No Address
Direct Address
Indirect Address

Description of Peripheral
Instructions

Error Stop
No Operation

1-1
1-1
4-2

4-3
4-3
4-4

4-5
4-5
4-10
4-10
4-10

Rev 02

Data Transmission 6-5 Introduction

Arithmetic 6-8 Maintenance Control Unit
Shift 6-11 PPU Dead Start
Logical 6-11 Dead Dump
Replace 6-14 CPU Dead Start
Branch 6-17 Parity Error Register
Input/Output 6-20 Program Error
Console
7. MANUAL CONTROL Keyboard Input
Appendix A Timing Notes
Appendix B Floating Point Arithmetic
Arppendix C Mnemonic Codes

Rev 01 iv

System Communication Paths

1 CPU Information Flow

Parcel Instruction Arrange -
ments

3 Exchange Package
4 Flag and Register Arrange-

ment

1 Memory Map
2 SCM Address Format

I/O Exchange Package Areas

Central Processor Instruction
Designators

Addressing Modes for Periph-
eral Processor Instructions

FIGURES

1-7 4-4 Buffer Area Arrangements 4-1
2-2 5-1 Signal for One PPU Channel
(fully Duplexed) 5-5

2-5 5-2 Controller/PPU
9-11 Communications 5-8

6-1 71 Flow Chart 6-23
2-15 6-2 73 Flow Chart 6-25
4-2 7-1 MCU Configuration 7-2
4-3 7-2 Display Console 7-5
4-6
TABLES

6 -2 Peripheral Processor
3-1 Instruction Designators 6-4
6-3

Rev 01

CONTROL DATA 7600 COMPUTER

1. SYSTEM DESCRIPTION

INTRODUCTION

The CONTROL DATA® 7600 computing system is a large-scale solid-state, general
purpose digital computing system. The 7600 is the result of a development program
to provide computing capacity significantly beyond that of the 6000 systems. The
advanced design techniques incorporated in this system provide for extremely fast

and efficient solutions for large scale, general purpose processing.

The 7600 system comprises a Central Processor Unit (CPU) and a number of Periph-
eral Processor Units (PPU). Some of the PPU are physically located with the CPU
and others may be remotely located. The PPU provides a communication and message
switching function between the CPU and individual peripheral equipment. Each PPU
may have a number of high speed data links to individual peripheral equipment as

well as a data link to the CPU.

SYSTEM CHARACTERISTICS

Central Processor Unit Characteristics

Computation Section

e 60-bit internal word
e binary computation in fixed point and floating point format

e nine independent functional units

Floating Multiply Boolean
Floating Divide Shift

Floating Add Increment

Long Add Population Count
Normalize

1-1 Rev 01

° twelve-word instruction stack

e synchronous internal logic with 27.5 nanosecond clock period

Small Core Memory

e 65,536 of 60-bit words of coincident current memory with five parity bits

per 60-bit word
e organized into 32 independent banks (2, 048 words per bank)
e 275 nanosecond read/write cycle time

e 27.5 nanosecond per word maximum transfer rate

Large Core Memory

e 512,000 60-bit words of linear select memory with four parity bits per
60-bit word

e organized into 8 independent banks (64, 000 words per bank)
e 1,760 nanosecond read/write cycle time
e 8 words read simultaneously each reference

e 27.5 nanosecond per word maximum transfer rate

Multiplexer
e 15 independent 12-bit channels
e each channel fully duplex
° fixed SCM buffer areas for each channel; normally 128 words

e two clock periods per 60-bit word maximum transfer rate between SCM

and the Multiplexer

Rev 01 1-2

Peripheral Processor Unit Characteristics

Computation Section

e 12-Dbit internal word
e Dbinary computation in fixed-point

e synchronous internal logic with 27. 5 nanosecond clock period

Core Memory

e 4,096 12-bit words of coincident current memory with a parity bit for each
12-bit word

e organized into 2 independent banks (2, 048 words per bank)

e 275 nanosecond read/write cycle time

Input/Output Section

e 8 independent channels (asynchronous)
e each channel fully duplex (12-bit)

e nine clock periods per 12-bit word maximum transfer rate

BASIC SYSTEM DESCRIPTION

The 7600 mainframe includes a Central Processor Unit (with its associated memory),
a Maintenance Control Unit, and may contain up to 13 Peripheral Processor Units.
Additional PPU's may be mounted externally. Overall system operation depends on
the integral operation of these elements. Following are brief descriptions of the

system elements; detailed descriptions appear in subsequent chapters.

Central Processor Unit (CPU)

The CPU is a single integrated processing unit. It consists of a computation section,
small core memory, large core memory and an input/output.multiplexer. These
sections are all contained in one main frame cabinet and operate in a tightly synch-

ronous mode. Communication outside the main frame cabinet is asynchronous.

1-3 Rev 01

Computation Section

The computation section of the CPU contains 9 functional units, and 24 operating
registers. These units work together to execute a CPU program. Data moves into,

and out of, the computation section of the CPU through the operating registers.

Core Memory

The CPU contains three types of internal memory arranged in a hierarchy of speed

and size.

1. The instruction stack which is a register memory of 12, 60-bit words holds
instructions. Small program loops can be contained within this stack thus

avoiding memory references.

2. The Small Core Memory (SCM) containing 65, 536 60-bit words arranged in
32 banks of 2, 048 60-bit words each. Each bank is phased; that is, consecu-
tive addresses go to different banks giving a marked decrease in memory
conflicts and allows overlapping of memory cycles. Each bank is made up of
ten stacks. Each stack contains 1, 024 12-bit words plus one parity bit per
12-bit word. These stacks are identical with the Peripheral Processing Unit

memory. Either instructions or data may be held in SCM.

3. The Large Core Memory (LCM) contains 500K of 60-bit words arranged in
eight phased banks. This memory is a linear select memory with one parity
bit for each 15 bits. The LCM words contain eight 60-bit words and is
designed for rapid transfer of blocks of data. However, individual 60-bit

words may be accessed. Instructions cannot be executed directly from LCM.

The SCM performs certain basic functions in system operation which the LCM cannot
effectively perform. These functions are essentially those requiring rapid random
access to unrelated fields of data. The first 4K addresses in SCM are reserved for
the input/output control and data transfer to service the communication channels to
the PPU. CPU object programs do not have access to these areas. The remainder of
the SCM may be divided between fields of CPU program code and fields of data for the

currently executing program. A small portion will contain a resident monitor program.

Rev 02 1-4

Input/Output Multiplexer

The CP input/output Multiplexer (MUX) includes the mechanism to buffer data to

(or from) a PPU that is directly connected to the CPU. The PPU communicates with
the CPU over a 12-bit fully duplex channel. There are a total of 15 such channels in
the MUX. Each channel has assembly/disassembly registers to convert 12-bit channel
data to 60-bit CP words (and vice versa). The function of the MUX is to deliver these
60-bit words to SCM for incoming data, read 60-bit words from SCM for outgoing
data, and provide the capability to interrupt the CP program for monitor action on the
buffer data.

Each channel has a SCM buffer area for incoming data and a separate buffer area for
outgoing data. Each channel also has separate exchange packages for incoming and
outgoing data. The MUX exchange package areas and the buffer areas are permanently
assigned in the lowest order addresses of SCM. The buffer areas may be changed both

in size and order (by a wiring change) to accommodate various types of channel volume,

Peripheral Processor Unit (PPU)

The Peripheral Processor Units (PPU) are separate and independent computers, som:
of which may reside in the main frame cabinet. Others may be remotely located. The
PPU may be connected to SCM, another PPU, a peripheral device or a mix of these.
Each PPU has a computation section which performs binary computation in fixed point
arithmetic. A PP memory provides storage for 4, 096 12-bit words. This storage is
arranged in two independent banks, each with a cycle time of 275 nanoseconds. The
two stacks used in a bank contain 1024 12-bit words each. These same stacks are used
in groups of five (60 bits) to form SCM.

The PP instruction set combined with the high speed memory and channel flexibility
enables a PPU to drive many types of peripherals without the necessity of an inter-
mediate controller. There are eight input data paths and eight output paths connecting
the PPU to other devices, The PP input/output facility provides a flexible arrangement
for very high speed communication with a variety of I/O devices. The duplex channels
allow additional Peripheral Processor Units to be added to the system by linking PPU
to PPU.

1-5 Rev 01

Maintenance Control Unit (MCU)

The Maintenance Control Unit is a mainframe PPU with specially comnected I/0O
channels. It has the capability of selecting any PPU's channel which is connected to
the scanner, and dead starting this PPU. It can write into any part of SCM by specify-
ing the SCM address. It can dead start CPU by entering a program into SCM and

initiating an exchange jump to start execution.

With these capabilities it may perform system initialization and basic recovery of the
system. The MCU also serves as a maintenance station for describing and monitoring

system maintenance activity.

SYSTEM COMMUNICATION

System communication paths are illustrated in Figure 1-1. All input data enters and
leaves the system via peripheral equipment. The PPU serves to gather input data
from the peripheral equipment controllers for delivery to the CPU for processing,
~ and distribute processed data to the output devices. Communication between the PPU
and the I/O devices is generally limited by the rate at which the equipment controller

can deliver or accept data.

Communication between the PPU and the CPU is over a channel identical to that used
for communication between the PPU and peripheral equipment. All 15 CP I/O channels
may be in operation at the same time. Data may be sent to or from the CPU on long
records. These records can exceed the size of the SCM buffer area which is filled and
emptied in a circular mode. This is done by interrupts which initiate a CPU program

that can empty or fill the buffer area some fifty times faster than a PPU.

Example:

The PPU starts filling the buffer area at its lowest address and continues entering
words until the midpoint of the buffer is reached. This causes an interrupt to a

CPU program which empties the lower half of the buffer. Meanwhile the PPU continues

filling the buffer. At the end of the buffer another interrupt occurs to initiate the CPU
program. Meanwhile, the PPU starts to refill the buffer at the lower address again,

Rev 02 1-6

DISPLAY
UNIT

C)

PERIPHERAL
EQUIPMENT
AND /OR
OTHER
PERIPHERAL
PROCESSING
UNITS

CARD
READER
McuU
2 CENTRAL PROCESSING UNIT {CPU)
BITS
PPU DATA
60
COMPUTATION| BITS | LARGE
> CORE
SECTION MEMORY
> PPU
INSTRUCTION DATA
OR DATA 60 BITS 60 BITS
DATA
> PPU 60
CORE
MEMORY
> PPU
Figure 1-1. System Communication Paths

Rev 02

2. CENTRAL PROCESSOR UNIT

COMPUTATION SECTION

The computation section of the Central Processor Unit contains all logic necessary to
execute program instructions stored in Small Core Memory. It includes the registers
and control logic to direct the arithmetic operations and provide interface between the
arithmetic units, SCM, and LCM. In addition to instruction execution, the Central
Processor Unit performs instruction fetching, address preparation, memory protection

s

and data fetching and storing: Figure 2-1 illustrates the general flow of information.

Program execution is begun by an exchange jump. The operating system can use an
exchange jump to switch program execution between two SCM programs, leaving the

first program in a usable state for later re-entry.

The Central Processor Unit reads 60-bit words from SCM and stores them in an
instruction stack capable of holding up to twelve 60-bit words. Each instruction word
in turn leaves the stack, enters a Current Instruction Word register for interpretation
and testing. The Current Instruction Word register holds four 15-bit instructions,
two 30-Dbit instructions or combinations of the two types of instructions. The 15- or
30-bit instructions issue individually from the Current Instruction Word register to
one of nine functional units. The functional units obtain the instruction operands from
and store results in 24 operating registers. Reservation control keeps an account of

active operating registers to avoid conflicts,

Operating Registers

Twenty-four registers are provided to minimize memory references for arithmetic

operands and results. These 24 are divided into:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits
Address Registers A0 - AT 18 Bits
Increment Registers BO - B7 18 Bits

2-1 Rev 01

¢0 A9Yd

ﬁNSTRUCTION ADDRESS STACK(I8 BIT

8)]| [INSTRUCTION WORD STACK (60 BITS)
I I

[]
[[
[I T
— T
| i} [
- [
T 1]
1 [|
| | |
— [
C — (
CURRENT |
L INSTRUCTION WORD|
FROM SCM
INSTRUCTION
ISSUE

SCM SCM LCM LCM
ADDRESS DATA ADDRESS DATA
Figure 2-1. CPU Information Flow

e
_
—
11—

FUNCTIONAL
UNITS

LONG ADD
FLOATING ADD]

FLOATING MULTIPLY]
FLOATING DIVIDEJ

BOOLEAN T
SHIFT T
NORMALIZE J

POPULATION COUNT |

INCREMENT J

B REGISTERS
(18 BITS)

/
H—l‘(

X Registers

There are eight 60-bit X registers in the computation section of the CPU. These
registers (X0, X1, . . . X7) are the principal data handling registers for computation,
Data flows from these registers to the SCM and the LCM. Data also flows from SCM
and LCM into these registers. All 60-bit operands involved in computation must

originate and terminate in these registers.

Operands and results transfer between SCM and these registers as a result of placing

a quantity into a corresponding address register.

The X registers also serve as address registers for referencing single words from

LCM. X0 is used as the LCM relative starting address in a block copy operation.

A Registers

There are eight 18-bit A registers in the computation section of the CPU. These
registers (A0, Al, . .., A7) are essentially SCM operand address registers. The
registers are associated one-for-one with the X registers. Placing a quantity into an
address register Al - A5 causes an immediate SCM read reference to that relative
address and sends the SCM word to the corresponding operand register X1 - X5,
Similarly, placing a quantity into address register A6 or A7 causes the word in the
corresponding X6 or X7 operand register to be written into that relative address of

SCM. Only the Lower 16 bits are used; the remainder are ignored.

The A0 and X0 registers operate independently of each other and have no connection
with SCM. A0 is used as the relative SCM starting address in a block copy operation

and for scratch pad or intermediate results.

B Registers

There are eight 18-bit B registers in the computation section of the CPU. These
registers (B0, B1, . . . B7) are primarily indexing registers for controlling program

execution. Program loop counts may be incremented or decremented in these registers.

2-3 Rev 02

Program addresses may be modified on the way to an A register by adding or subtract-
ing B register quantities. The B register also holds shift counts for pack and normalize

operations and the channel number for channel status requests.

BO always contains positive zero; that is, BO is held clear.

CPU Instruction Formats

Program instruction words are divided into 15-bit fields called parcels. The first
parcel is the highest order 15 bits of the 60-bit word. The second, third, and fourth
parcels follow in order. A CPU instruction may occupy either one or two parcels,
depending on the type of instruction. The possible arrangements of one and two parcel
instructions are shown in Figure 2-2. If an instruction requires two parcels it should
not begin in the fourth parcel of the word. When a two parcel instruction begins in

the last parcel of an instruction word it will be executed as if there were a fifth parcel
in the instruction word and this parcel in the instruction word and this parcel contained
all zeros; it will not obtain its seconds half of the instruction word from the next
instruction word. For example, an 02 Jump instruction in the fourth parcel may be

acceptable if the programmer wishes K to be zero.

One parcel Pass instructions may be used to complete a 60-bit word in order to place

a particular instruction in the first parcel of a word. It may also be used to avoid
starting a two parcel instruction in the fourth parcel of a word. Note that a 60, 61, 62
instructions with i equal to zero become pass instructions, (Page 3-5). Since these are
30 bit instructions they may be used as two parcel pass instruction. Pass instruction
may be necessary for branch entry points because a branch instruction destination

address must begin with a new word.

Groups of bits in an instruction are identified by the letters g, h, i, j, k, and K. Each
letter represents an octal digit except K, which represents 6 octal digits. The desig-

nators are arranged in one and two parcel words as shown in Figure 2-2,

The g and h designators form the operation code. The g designator generally identifies
the type of instruction and frequently specifies the functional unit. The h designator
completes the function code specification for all but a few instructions by specifying

the functional unit mode.

Rev 02 2-4

INSTRUCTION FORMATS

g h i j k
3 (3 [3]3] 3] i58iTs
{4 0
INSTRUCTION COMBINATIONS A S
IN SCM OPERATION
CODE
RESULT
IST pARCEL 4TH pARCEL REG
v /¥ (I OF 8)
[s |15 [5] 5] eosits |
39 Y 1ST OPERAND
REG (1 OF 8)
y
2ND opERAND
| 30 [s [15 J REG (I OF 8)
Lis | 30 | 5]
[15 | 15] 30 |
[30 [30
g ho j K
3 | 3 | 3] 3 J 8] 30 BITS
29 0
\ﬂ__/
OPERATION
CODE
2ND opgRAND
RESULT
REG
(1 OF 8)
¥
1ST OPERAND
REG (I OF 8)
Figure 2-2. Parcel Instruction Arrangements
2-5 Rev 02

The i, j, and k designators are the operand source and destination indicators. They
specify which one of the eight possible A, B, or X registers is referenced. The i
designator is normally the destination indicator. If there are two destinations required
for the instruction, both the i and j designators specify destination. In some 15-bit

instructions the j and k designators specify shift count.

The K designator in a 30-bit instruction is an 18-bit operand for branch destination

addresses and for small integer constants.

Instruction Word Stack
The Instruction Word Stack (IWS) is a group of twelve 60-bit registers in the CPU

computation section that hold program instruction words for execution. The instruction
stack information is essentially a moving window in the program code. The stack is
filled two words ahead of the program address currently being executed. A small
program loop may frequently be entirely contained within the instruction stack. When

this happens, the loop may be. executed repeatedly without further references to SCM.

A group of twelve 18-bit address registers are associeted with the Instruction Word
Stack. These registers, called the instruction address stack (1AS), hold relative SCM
program addresses on a one-for-one basis with the program words in the instruction
word stack. The rank one register contains the oldest address in the stack and the

SCM address from which the word in rank one of the instruction word stack was read.

When a shift stack condition exists each rank is cleared and simultaneously entered
with information from the next highest order rank. The information in rank one is

discarded. New information arriving from SCM is entered in rank 12.

The twelve registers are individually identified by rank. The rank one register contains
the oldest data in the stack. If the Instruction Word Stack contains sequential program
instruction words, the contents of the rank one register in the stack correspond with

the lowest storage address in the instruction address stack. The rank 12 register

contains the last word to enter the stack. This register is loaded directly from SCM.

Program Address Register

An 18-bit P register serves as a program address counter and holds the relative
address for each program step. P is advanced to the next program step in the following

ways:

Rev 02 2-6

1. P is advanced by one when the associated instruction word is sent to the

Current Instruction Word register.

2. P is set to the address specified by a Go To ... (branch) instruction. If the
instruction is a Return Jump, (P)+1 is stored before entering P with the new

value to allow a return to the original sequence,

3. P is set to the address specified in the Exchange package.

Instruction Issue

Program instruction words are read one at a time from the instruction stack into the
Current Instruction Word (CIW) register for execution. An instruction "issues" from
the CIW register when the conditions in the functional units and operating registers

are such that the functions required for execution may be performed to completion
without conflicting with a previously issued instruction. Once an instruction has issued
it must be completed in a fixed time framework, No delays are allowed from issue to

delivery of data to the destination operating registers.

Since each instruction word is divided into four 15-bit parcels, there may be as many
as four instructions in the CIW register at one time. These instructions are executed
in sequence and the proper allowance made for the mixture of one and two parcel

instruction formats.

Program Branching

When program execution reaches a branch instruction, the action taken depends upon
whether the destination address is already in the instruction address stack. If the
destination address is in the instruction address stack the P register is altered to the
new program address and the corresponding word is read from the instruction stack to
the CIW register. The jump is then completed without an SCM reference for a new

instruction word.

If the destination address is out of the stack two new words, located at the destination
address and the destination address plus one, are requested from SCM to begin the
new program sequence. Instruction execution continues upon receipt of the words
from SCM.,

2-7 Rev 01

Duplicate Entries In Stack

It is possible for a branch out of IWS to occur when the destination address corresponds
to a program word that has already been requested from SCM as a result of the sequen-
tial two-word read ahead. If the word has not actually arrived at the IWS at the time
of the branch test, the jump occurs and a duplicate of the first word in the new sequence
is read from SCM. Execution of the new sequence begins as soon as the earlier word

arrives at the instruction stack.

Duplicate entries in the IWS cause no problems unless an instruction is modified during
execution. Since this modification occurs only in SCM, and since duplicate entries are
merged in a logical sum network, an erroneous instruction will result. Therefore, the
TWS should be voided by executing a Return Jump (01) instruction after instruction

modification has been performed.

Holes In The Stack

It may happen that several small program sequences reside in the instruction stack at
the same time. Program execution may branch back and forth between two such
sequences. The execution of the sequence occupying the lower ranks of the instruction
stack may branch in such a way as to continue sequential execution into a program area
not loaded into the stack on the initial pass. When this happens it is possible for the
next sequential instruction word to be missing in the stack and no request has been

made for it because rank 11 or 12 were not involved.

This situation is equivalent to a branch out of stack with no branch instruction involved.,

Two new words are requested from SCM to continue the program sequence.

Functional Units

There are nine functional units in the computation section of the CPU. Each is a
specialized unit with algorithms for a portion of the CPU instructions. The general
function of each unit is listed. A number of functional units may be in operation at the

same time,.

Rev 01 2-8

UNIT GENERAL FUNCTION

Boolean Handles the basic logical operations of transfer, logical
product, logical sum, and logical difference. It also performs

the pack and unpack floating point operations.

Shift Executes operations basic to shifting. This includes left
(circular) and right (end-off sign extension) shifting, and

mask generation,
Normalize Performs the normalize operations.

Long Add Unit Performs integer addition or subtraction of two 60-bit fixed

point operands.

Floating Add Performs single or double precision floating point addition or

subtraction on floating point operands.

Floating Multiply Performs single or double precision floating point multiplica-

tion on floating point operands.

Floating Divide Performs single precision floating point division of floating

point operands.

Population Count Counts the number of 1 bits in a 60-bit word.
Increment Performs one's complement addition and subtraction of 18-bit
operands.]

A functional unit receives one or two operands from operating registers at the beginning
of instruction execution and delivers the result to the operating registers after perform-
ing the function. The functional units do not retain any information for reference in
subsequent instructions. The units operate in three address mode with source and

destination addressing limited to the operating register.

Except for the floating multiply and divide units, all functional units have one clock
period segmentation. This means that the information arriving at the unit, or moving
within the unit, is captured and held in a new set of registers at the end of every clock

period. It is therefore possible to start a new set of operands for unrelated computation

2-9 Rev 01

into a functional unit each clock period even though the unit may require more than

one clock period to complete the calculation. This process may be compared to a delay
line in which data moves through the unit in segments to arrive at the destination in

the proper order but at a later time. ATl functional units perform their algorithms in

a fixed amount of time. No delays are possible once the operands have been delivered

to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter
the multiply unit in any clock period providing there was no multiply operation initiated
in the preceding clock period. There is a one clock period delay in initiating a multi-

ply instruction if another multiply instruction has just been started.

The floating divide unit is the only functional unit in which an iterative algorithm is
executed. There is essentially no segmentation possible in this unit. Therefore, to
maximize execution speed, the beginning of a new divide operation should follow a

previous divide operation by at least 18 clock periods.

Exchange Jump

The CPU exchange jump is a mechanism for switching CPU execution between programs.

The execution of an exchange jump involves the simultaneous storing of all pertinent
information in the CPU operating registers and control registers into SCM and writing
new information from SCM into these same registers. This block of data is called an
exchange package. An exchange package (Figure 2-3) provides the following information

on a program to be executed:
1. Program address (P)
2. Reference address for Small Core Memory (RAS)
3. TField length of program for Small Core Memory (FLS)
4. Reference address for Large Core Memory (RAL)
5. Field length of program for Large Core Memory (FLL)

6. Program Status Designation register (PSD)

Rev 01 2-10

SCM LOCATION n

+ 1
+ 2
+3
+ 4
+5
+6
+7
+8
+9
+ 10
+ 11
+ 12
+13
+ 14
+15

;é/ P AO BPA
RAS Al BI
FLS A2 B2
/42 PSD A3 B3
RAL Ad B4
FLL AS B5
NEA A6 B6
EEA A7 B7
X0
X |
X2
X3
X4
X5
X6
X7

Figure 2-3. Exchange Package

Rev 01

7. Normal exit address (NEA)

8. Error exit address (EEA)

9. Breakpoint address (BPA)
10. Initial contents of the eight A registers
11. Initial contents of the eight X registers

12. Initial contents of B registers Bl through B7.

The period of time during which a particular exchange package resides in the CPU
hardware registers is termed the execution interval. The execution interval begins
with an exchange jump that reads the exchange package from SCM and enters these
parameters into the CPU registers. It ends with another exchange jump that stores

the exchange package back into SCM.

Several instructions or conditions initiate exchange jumps and select the exchange

package that is to begin execution,

Exchange exit instructions (01300 and 013jK)
Error exit

Input/Output interrupt

Real time interrupt

Program breakpoint

(o2 JENES 2 H® = O B A

Step mode

Exchange Exit Instructions

The normal termination for an exchange package execution interval is caused by an
exchange exit instruction (01300 or 01 3jK) in the associated program. The exit mode

flag in the PSD register determines the source of the exchange package.

The exit mode flag is intended to indicate a privileged monitor program and is normally

not set for an object program execution interval. When the flag is not set and the

Rev 01 2-12

object program terminates the execution interval with an 01300 instruction, the normal
exit address (NEA) is the absolute address of the exchange package. When this flag is
set and program terminates the execution interval with an 013jK instruction, the

absolute SCM address for the exchange package is formed by adding (Bj) + K + (RAS).

An overflow of the lowest order 16 bits of this result causes an error condition that is
not sensed in the hardware. Should a program erroneously execute an exchange exit
instruction with an overflow condition, the exchange jump sequence will begin at the

absolute SCM address corresponding to the lowest order 16 bits of this sum.

Error Exit

An object program terminates execution with an exchange jump to the Error Exit
Address (EEA) upon encountering an error exit instruction (00) or under certain
conditions defined by the Program Status Designation register (PSD). Some of these
conditions may be selected by the programmer, and some are unconditional. In general,
errors caused by arithmetic overflow, underflow, or indefinite results during compu-
tation may be allowed to proceed through the calculation, or may cause an error exit,
depending on mode selection. Errors caused by hardware failure or program address-
ing out of an assigned field in storage cause unconditional error exits. In any error

exit case the programmer may allow the object program to continue where the error

can be corrected or ignored.

The error condition flags and mode selection flags are all contained in the Program
Status Designation register (PSD), which is loaded from the exchange package for each
program execution interval. The mode selections are made in the exchange package
prior to the execution interval of the program. If an error condition occurs during
the execution interval the type of error can be determined by analyzing the terminating
exchange package parameters. Each bit in the PSD register has significance either as
a mode selection or an error condition flag. For a detailed description of the PSD

register refer to Program Status Designation (page 2-14).

Input/Output Interrupt

Refer to Small Core Memory (page 4-2)

2-13 Rev 01

Real Time Interrupt

CPU programs may be timed precisely by using the CPU clock period counter which is
advanced one count each clock period of 27.5 nanoseconds. Since the clock advances
synchronously with program execution, a program may be timed to an exact number

of CPU clock periods.

The CPU clock period counter contains a 17-bit register that can be read by a CPU
program with a Read Clock instruction (016j0). This register contains the lowest
order 17 bits of the real time count. An overflow of the highest order bit in this
register sets a real time interrupt flag, which can be seen as the 18th bit when the
time is read. It also attempts an interrupt of the CPU program to absolute address
0020 in SCM every 3.6 milliseconds (approximate). The real time exchange package
at this SCM address executes a CPU program that performs operations associated

with the clock.

Program Breakpoint

)
{0
o
o
]
&
o
L
[{)]
o]
]

section of the CPU that is loaded from the program exchange package. A coincidence
test is made between (BPA) and the Program Address register (P) as each program
instruction word is read from the instruction word stack. When coincidence occurs

the program execution terminates with an exchange jump to the Error Exit Address
(EEA). If the BPA is equal to (P) in the initiating exchange jump package, no instruc-
tions are executed. Normally, no instructions are executed at address BPA (see P2-18).

Step Mode

A program may be executed in Step mode by setting the step mode flag in the Program
Status Designation register for the program execution interval. Step mode causes the
program to be interrupted at the end of each program instruction word with an exchange

jump to the Error Exit Address(EEA).

Program Status Designations

The Program Status Designation register (PSD) is a collection of 18 program status
flags. Six of these flags are mode designators and 12 are condition designators. The

arrangement of these flags in the register is shown in Figure 2-4.

Rev 02 2-14

61-¢

10 A9Y

MODE FLAGS CONDITION FLAGS

4 A Y A \

L7 fwefis]als[ie][ufw][o[e 7 6]s]alz]2] 1 | o]
EXIT—] UNDERFLOW
MONITOR OVERFLOW

STEP INDEFINITE
INDEFINITE STEP
OVERFLOW— L BREAKPOINT
UNDERFLOW— — PROGRAM RANGE
LCM PARITY— L—SCM DIRECT RANGE
SCM PARITY | L LCM DIRECT RANGE
LCM BLOCK RANGE— L—SCM BLOCK RANGE

I'igure 2-4. Flag and Register Arrangement

The PSD register is loaded from the exchange package during an exchange jump
sequence. All 18 bits are entered in the register at this time. The six mode desig-
nators remain unaltered throughout the execution interval for the exchange package.
The 12 condition designators may be set by conditions that occur during the execution
interval. All flags are stored in the SCM exchange package at the end of the execution

interval.

The execution interval for an exchange package may be terminated by an error condition

that occurred during this interval.

Mode Flags
Exit Mode Flag (Bit 17): The exit mode flag controls the source of the exchange

package address for the execution of an exchange exit instruction (013). If this flag is
set, the exchange package absolute address is (Bj) + K+ (RAS). If this flag is not set,
the exchange package absolute address is (NEA).

Monitor Mode Flag (Bit 16): The monitor mode flag controls the mode of input/output

activity. If this flag is set, the program currentily being execufed cannot be inierrupied
by an I/O interrupt request. If an I/O interrupt occurs, it will not be honored until

the end of the execution interval for the current exchange package.

The monitor flag also controls the execution of the reset buffer instructions (0160, 0170).
If the monitor mode flag is set, the reset buffer instructions are executed (Page 5-45).
Otherwise, the reset buffer instructions are executed as pass instructions. This flag

prevents an object program from interfering with I/ O activity.

Step Mode Flag (Bit 15): The step mode flag, if set, causes the current program to be

interrupted at the end of each program instruction word. The terminating exchange
package is at absolute address (EEA) in SCM.

Indefinite Mode Flag (Bit 14): The indefinite mode flag enables interruption of the

current program on the condition of an indefinite floating point result. The combination

of this flag set and the indefinite condition flag set terminates the execution interval at

Rev 01 2-16

the end of the current program instruction word. The terminating exchange package
is located at absolute address (EEA) in SCM.

Overflow Mode Flag (Bit 13): The overflow mode flag enables interruption of the

current program on the condition of an overflow of a floating point result. The combi-
nation of this flag set and the overflow condition flag set terminates the execution
interval at the end of the current program instruction word. The terminating exchange
package is located at absolute address (EEA) in SCM.

Underflow Mode Flag (Bit 12): The underflow mode flag enables interruption of the

current program on the condition of an underflow of a floating point result. The
combination of this flag set and the underflow condition flag set terminates the execution
interval at the end of the current program instruction word. The terminating exchange
package is located at absolute address (EEA) in SCM.

Condition Flags

LCM Parity Condition Flag (Bit 11): The LCM parity condition flag is set whenever an

LCM parity error is detected during an LLCM reference. When this flag is set the
execution interval for the exchange package terminates at the end of the current pro-
gram word. The terminating exchange package is located at absolute address (EEA)
in SCM.

SCM Parity Condition Flag (Bit 10): The SCM parity condition flag is set whenever an

SCM parity error is detected during an SCM read/write cycle. When this flag is set
the execution interval for the exchange package terminates at the end of the current
program instruction word. The terminating exchange package is located at absolute
address (EEA) in SCM.

LCM Block Range Condition Flag (Bit 9): The LCM Block range condition flag is set

whenever a block copy instruction is issued that would cause an LCM reference to an

address equal to or greater than (FLL). The block copy instruction is issued as a pass
instruction in this case. When this flag is set the execution interval for the exchange
package terminates at the end of the current program instruction word. The terminating

exchange package is located at absolute address (EEA).

2-17 Rev 01

SCM Block Range Condition Flag (Bit 8): The SCM block range condition flag is set

whenever a block copy instruction is issued that would cause an SCM reference to an

address equal to or greater than (FLS). The block copy instruction is issued as a pass
instruction in this case. When this flag is set the execution interval for the exchange
package terminates at the end of the current program instruction word. The terminating

exchange package is located at absolute address (EEA) in SCM.

LLCM Direct Range Condition Flag (Bit 7): The L.CM direct range condition flag is set

whenever a read LCM (014) or write LCM (015) instruction causes an LCM reference

to an address equal to or greater than (FLL). Writing into LCM is inhibited in such a

case. When this flag is set the execution interval for the exchange package terminates
at the end of the current program instruction word. The terminating exchange package
is located at absolute address (EEA) in SCM.

SCM Direct Range Condition Flag (Bit 6): The SCM direct range condition flag is set

whenever an SCM reference other than a block copy instruction occurs with an address

equal to or greater than (FLS) or whenever the P register is greater than or equal to
(FLS), Writing into SCM ig inhibited in such a case. When this flag is set the execu-
tion interval for the exchange package terminates at the end of the current program
instruction word. The terminating exchange package is located at absolute address
(EEA) in SCM.

Program Range Condition Flag (Bit 5): The program range condition flag is set when

the P register equals zero or an error exit instruction is issued. When this flag
is set the execution interval for the exchange package terminates immediately. The

terminating exchange package is located at absolute address (EEA) in SCM.

Breakpoint Condition Flag (Bit 4): The breakpoint condition flag is set whenever (P)

equals (BPA). When this flag is set the execution interval for the exchange package
terminates-at the end of the current program instruction word. The terminating

exchange package is located at absolute address (EEA) in SCM.

This condition flag normally sets in time to terminate the execution interval before

the instruction word located at program address (BPA) is executed. If two increment

Rev 01 2-18

instructions with 30-bit formats are contained in the instruction word at (BPA) -1,
however, it is possible for execution of the instruction word at (BPA) to begin before
the breakpoint condition flag has taken effect. In this case the execution interval for
the exchange package terminates at the end of the execution of the instruction word
located at address (BPA). If the breakpoint condition flag is set at a word immediately
following a branch instruction, the program will terminate whether or not the branch

is taken.

Step Condition Flag (Bit 3): The step condition flag is set whenever the step mode flag

is set and an instruction issues. This combination of conditions allows only one
instruction word to be executed during this execution interval for the exchange package.
When this flag is set the execution interval for the exchange package terminates at the
end of the current program instruction word. The terminating exchange package is
located at absolute address (EEA) in SCM.

Indefinite Condition Flag (Bit 2): The indefinite condition flag is set whenever an

indefinite floating point value is detected by a floating point functional unit., An indefinite
value may occur during execution of instructions 30, 31, 32, 33, 34, 35, 40, 41, 42,

44, and 45. When this flag is set and the indefinite mode flag is also set, the execution
interval for the exchange package terminates at the end of the current program instruc-
tion word. Note that this program instruction word is not necessarily the word contain-
ing the instruction that caused the indefinite condition. Rather, it is the current
instruction word at the time the error condition is generated in the functional unit.

The terminating exchange package is located at absolute address (EEA) in SCM.

Overflow Condition Flag (Bit 1): The overflow condition flag is set whenever an over-

flow of the floating point range is detected by a functional unit. A floating point over-
flow may occur in the execution of instructions 30, 31, 32, 33, 34, 40, 41, 42, 44, and
45. When this flagis set and the overflow mode flag is also set, the execution interval
for the exchange package terminates at the end of the current program instruction

word. Note that this program instruction word is not necessarily the word containing
the instruction that caused the overflow condition. Rather, it is the current instruction
word at the time the error condition is generated in the functional unit. The terminating

exchange package is located at absolute address (EEA) in SCM.

2-19 Rev 02

Underflow Condition Flag (Bit 0): The underflow condition flag is set whenever an

underflow of the floating point range is detected by a functional unit. A floating point
underflow may occur in the execution of instructions 32, 33, 40, 41, 42, 44, and 45.
When this flag is set and the underflow mode flag is also set, the execution interval

for the exchange package terminates at the end of the current program instruction
word, Note that this program instruction word is not necessarily the word containing
the instruction that caused the underflow condition. Rather, it is the current instruc-
tion word at the time the error condition is generated in the functional unit. The termi-

nating exchange package is located at absolute address (EEA) in SCM.

Rev 01 2-20

3. CENTRAL PROCESSOR INSTRUCTIONS

INTRODUCTION

This section describes the Central Processor Unit instructions. The CPU instructions
tend to fall into two distinct categories: those causing computation, and those causing
storage references or program branching. The CPU instructions causing computation
are generally executed in a fixed amount of time after they have issued from the
Current Instruction Word register. Instructions involving storage references for
operands or program branching cannot be precisely timed. Program branching within
the instruction stack causes no storage references and small program loops can there-

fore be precisely timed.

Careful coding of critical program loops can produce substantial improvements in
execution time. Detailed timing information is provided in the appendix section of this
manual to allow a complete analysis of these situations warranting the programming
effort.

Preceding the description of each instruction is the octal code, the instruction name

and length. Table 3-1 defines the Central Processor Unit instruction designators.

TABLE 3-1. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

DESIGNATOR USE

A Specifies one of eight 18-bit address registers.

B Specifies one of eight 18-bit index registers; B0 is fixed and
equal to zero,

gh A 6-bit instruction code.

ghi A 9-bit instruction code.

i A 3-bit code specifying one of eight designated registers
(e.g., Ai).

j z& 3—bit]§‘(;de specifying one of eight designated registers
e.g., Bj.

3-1 Rev 01

TABLE 3-1. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS (Cont'd)

DESIGNATOR USE
jk A 6-bit constant, indicating the number of shifts to be taken.
k A 3-bit code specifying one of eight designated registers
(e.g., Bk).
K An 18-bit constant, used as an operand or as a branch
destination (address).
X Specifies one of eight 60-bit operand registers.

Instruction formats are also given; parallel lines within a format indicate these bits

are not used in the operation.

Error Exit And No Operation

00 Error exit to EEA (15 Bits)
K /i
14 12 11 9 8 0]

This instruction is treated as an error condition and will set the program range con-
dition flag in the PSD register. The condition flag will then generate an error exit
request which will cause an exchange jump to address (EEA). All instructions issued
prior to this instruction will be run to completion. Any instructions following this
instruction in the current instruction word will not be executed. When all operands
have arrived at the operating registers as a result of previously issued instructions,

an exchange jump will occur to the exchange package designated by (EEA).

The i, j, and k designators are ignored. The program address stored in the exchange
package on the terminating exchange jump is advanced one count from the address of
the current instruction word. This is true no matter which parcel of the current

instruction word contains the Error Exit instruction,

This instruction format is intended to be a privileged instruction. The program range

condition flag is set in the PSD register to indicate that the program has jumped to an

Rev 02 3-2

area of the SCM field which may be in range but is not valid program code. This
should occur when an incorrectly coded program jumps into an unused area of the
SCM field or into a data field. The program range condition flag is also set on the
condition of a jump to address zero. These conditions can be determined on the basis
of the register contents in the exchange package. The existence of an Error Exit

condition resulting from execution of this instruction format may thus be deduced.

An error exit is treated as an SCM range error which blocks a write operation in SCM
as soon as the error is detected. Thus, a legitimate SCM write operation may be
blocked by the error condition even though the instruction causing the write operation

issues substantially before the error exit.

46 No operation (Pass) (15 Bits)
%9 l2|II h VI

This instruction is a "do-nothing" instruction that is typically used to pad the program

between certain program steps.

EXAMPLE:

59 0
P 30-BIT INST. 15-BIT INST. PASS
P+ 30-BIT INST. 30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word at P.

Since the next instruction is 30 bits, it cannot fit in P and must be placed in P + 1.

3-3 Rev 01

Increment

50 Set Ai to Aj+ K (30 Bits)
51 Set Ai to Bj + K (30 Bits)
52 Set Ai to Xj + K (30 Bits)
[ofhn[i]i] K
29 27262423 2120 1817 0
53 Set Ai to Xj + Bk (15 Bits)
54 Set Ai to Aj + Bk (15 Bits)
55 Set Ai to Aj — Bk (15 Bits)
56 ' Set Ai to Bj + Bk (15 Bits)
57 Set Ai to Bj — Bk (15 Bits)
o T 0 T 7 T 3 [* |
14 12 1l 9 8 6 5 3 2 o}

These instructions perform one's complement addition and subtraction of 18-bit
operands and store an 18-bit result in address register i. Operands are obtained
from address (A), increment (B), and operand (X) registers as well as the instruction
itself (K = 18-bit signed constant). Operands obtained from an Xj operand register
are the truncated lower 18 bits of the 60-bit word. The highest order bits are ignored,.

These instructions are intended for fetching operands from storage for computation
and for delivering results back into storage. If the i designator is non-zero, a storage
reference is made to SCM using the lower 16 bits of the resulting sum or difference
as the relative storage address. The type of storage reference is a function of the i

designator value.

[y
n

0; no storage reference

1,2,3,4,5; read from SCM to register Xi

-
]

6, 7; write into SCM from register Xi

pe
"

Rev 02 3-4

If this instruction makes a storage reference to SCM the address is compared with
(FLS) to determine if the reference is within the assigned SCM field. If the address
is out of range the SCM direct range condition flag is set in the PSD register. This
flag will cause the current program sequence to terminate with an exchange jump to
(EEA). If the reference involved writing in to an X register, the out of range word
addressed will be written into the X register before the interrupt occurs. If the
reference involved writing into SCM the memory sequence will be aborted to avoid
altering the designated storage quantity. If the quantity placed in A is larger than 16
bits, only the lower 16 bits will be sent to SCM.

60 ‘Set Bi to Aj + K (30 Bits)
61 Set Bi fo Bj + K (30 Bits)
62 , Set Bi to Xj + K (30 Bits)
Lof[h]i]il] K l
29 27262423 21201817)
63 Set Bi to Xj + Bk (15 Bits)
64 Set Bi to Aj + Bk (15 Bits)
65 Set Bi fo Aj — Bk (15 Bits)
66 Set Bi to Bj + Bk (15 Bits)
67 Set Bi to Bj — Bk (15 Bits)
L 9 [h i] 0] K
14 12 1 9 8 6 5 3 2)

These instructions perform one's complement addition and subtraction of 18-bit

operands and store an 18-bit result in increment register Bi. An overflow condition

is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant). Operands obtained from an

3-5 Rev 02

Xj operand register are the truncated lower 18 bits of the 60-bit word.

order bits are ignored.

The highest

If the designator i is a zero, these instructions become pass

instructions.
70 Set Xi to Ai + K (30 Bits)
71 Set Xi to Bj + K (30 Bits)
72 Set Xi to Xj + K (30 Bits)
Lafnlifi]
29 27262423 212018 17
73 Set Xi to Xj + Bk (15 Bits)
74 Set Xi to Aj + Bk (15 Bits)
75 Set Xi to Aj — Bk (15 Bits)
76 Set Xi to Bj + Bk (15 Bits)
77 Set Xi to Bj — Bk (15 Bits)
T N
14 12 1 9 8 6 5

These instructions perform one's complement addition and subtraction of 18-bit oper-
ands and store an 18-bit result into the lower 18 bits of operand register Xi. The sign
of the result is extended to the upper 42 bits of operand register Xi. An overflow

condition is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as
well as the instruction itself (K = 18-bit signed constant). Operands obtained from an
Xj operand register are the truncated lower 18 bits of the 60-bit word. The highest

order bits are ignored.

Rev 01 3-6

Fixed Point Arithmetic

36 Integer sum of Xj and Xk to Xi (15 Bits)

Lo [n [T T 7 [k]

14 12 1l 9 8 6 5 3 2 0

This instruction forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in operand register Xi. An overflow condition

is ignored,

This instruction is intended for addition of integers too large for handling in the
increment unit. It is also useful for merging and comparing data fields during data

processing.

If both operands are zero the result is zero. If either zero operand is positive,the

result is positive zero. If both operands are negative zero the result is negative zero.

37 Integer difference of Xj and Xk to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction forms the 60-bit one's complement difference of the quantities from
operand registers Xj (minuend) and Xk (subtrahend) and stores the result in operand

register Xi. An overflow condition is ignored.
This instruction is intended for subtraction of integers too large for handling in the

increment unit. This instruction is also useful in comparing data fields during data

processing,

3-7 Rev02

If (Xj) is a negative zero quantity, and (Xk) is a positive zero quantity, the result is a
negative zero quantity. The other three combinations of positive and negative zero

operands result in a positive zero quantity.

47 Count the number of “1’s” in Xk to Xi (15 Bits)

[fm 7/

i4 9 8 6 5 3 2 9]

This instruction counts the number of "1 bits'' in operand register Xk and stores the
count in the lower order 6 bits of operand register Xi. Bits 6 through 59 are cleared

to zero.

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register.

If Xk is a word of all zeros, a zero word is delivered to the Xi register.
Logical

10 Transmit Xj to Xi (15 Bits)

o [v [v [i Wi

14 12 11 9 8 6 5 2 0

This instruction transfers a 60-bit word from operand register Xj to operand register
Xi. It is intended for moving data from one X register to another X register as rapidly

as possible. No logical function is performed on the data.

Rev 01 3-8

11 Logical Product of Xj and Xk to Xi (15 Bits)

14 12 Il 9 8 6 5 3 2 0]

This instruction forms the logical product (AND function) of 60-bit words from operand
registers Xj and Xk and places the product in operand register Xi. Bits of register Xi

are set to ''1"" when the corresponding bits of the Xj and Xk registers are ''1" as in
the following example:

Xj =0101
Xk =1100
Xi =0100

This instruction is intended for extracting portions of a 60-bit word during data

processing. If the j and k designators have the same value, the instruction degenerates
into a copy instruction.

12 Logical sum of Xj and Xk to Xi (15 Bits)

14 2 i 9 8 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand
registers Xj and Xk and places the sum in operand register Xi. Bits of register Xi

are set to ""1" if the corresponding bit of the Xj or Xk register is a "'1" as in the
following example:

Xj = 0101
Xk = 1100
Xi = 1101

3-9 Rev 01

This instruction is intended for merging portions of a 60-bit word into a composite
word during data processing., If the j and k designators have the same value, the

instruction degenerates into a copy instruction.

13 Logical difference of Xj and Xk to Xi (15 Bits)

14 12 1 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of 60-bit words from
operand registers Xj and Xk and places the difference in operand register Xi. Bits of

register Xi are set to "'1" if the corresponding bits in the Xj and Xk registers are

unlike as in the following example:

Xj = 0101
Xk = 1100
Xi = 1001

This instruction is intended for comparing bit patterns or for complementing bit
patterns during data processing. If the j and k designators have the same value the

result will be a word of all zeros written into register Xi.

14 Transmit the complement of Xk to Xi (15 Bits)

g h 7/

14 12 I 9 8 6 5 3 2 0]

This instruction extracts the 60-bit word from operand register Xk, complements it,
and transmits this complemented quantity to operand register Xi. It is intended for

changing the sign of a fixed point or floating point quantity as quickly as possible.

Rev 01 3-10

15 Logical product of Xj and complement of Xk to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 (¢}

This instruction forms the logical product (AND function) of the 60-bit quantity from
operand register Xj and the complement of the 60-bit quantity from operand register
Xk, and places the result in operand register Xi. Thus, bits of Xi are set to "1'" when
the corresponding bits of the Xj register and the complement of the Xk register are

"1" as in the following example:

Xj = 0101
Complemented Xk = 0011
Xj = 0001

This instruction is intended for extracting portions of a 60-bit word during data pro-
cessing. If the j and k designators have the same value, a logical product is formed

between two complementary quantities, The result will be a word of all zeros.

16 Logical sum of Xj and complement of Xk to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from
operand register Xj and the complement of the 60-bit word from operand register XKk,
and places the result in operand register Xi. Thus, bits of Xi are set to ""1" if the
corresponding bit of the Xj register or complement of the Xk register is a ""1" as in

the following example:

Xj = 0101
Complemented Xk = 0011
Xi =0111

3-11 Rev 01

This instruction is intended for merging portions of a 60-bit word into a composite
word during data processing. If the j and k designators have the same value the result

will be a word of all ones.

17 Logical difference of Xj and complement of Xk to Xi (15 Bits)

14 12 1l 9 8 6 5 3 2 o

This instruction forms the logical difference (exclusive OR) of the quantity from
operand register Xj and the complement of the 60-bit word from operand register Xk,
and places the result in operand register Xi. Thus, bits of Xi are set to "1'" if the
corresponding bits of Xj and the complement of register Xk are unlike as in the follow-

ing example:

Xj = 0101
Complemented Xk = 0011
Xi = 0110

This instruction is intended for comparing bit patterns or for complementing bit
patterns during data processing. If the j and k designators have the same value, a
logical difference is formed between two complementary quantities. The result is a

word of all ones.

Shift

20 Left shift Xi, jk places (15 Bits)

[¢ [N i k|

14 12 1l 9 8 6 5 0

This instruction shifts the 60-bit word in operand register Xi left circular jk places.
Bits shifted off the left end of operand register Xi replace those shifted from the right

end.

Rev 02 3-12

The 6-bit shift count jk allows a complete circular shift of register Xi.

In the example below the j designator has a value of 1 and the k designator a value of 2.

These octal quantities are treated as a shift count of 12 octal or 10 decimal,

Example: Initial (Xi) = 2323 6600 0000 0000 0111
ik = 12
Final (Xi) = 7540 0000 0000 0022 2464

If the shift count is greater than the 60-bit register length the shift is performed
modulo 60. For example, if the shift count is 63 (decimal) the result is a three bit

position left shift,

2] Arithmetic right shift Xi, jk places

[¢ [b i k|

14 12 1 9 8 6 5 o

This instruction shifts the 60-bit word in operand register Xi right jk places. The
rightmost bits of Xi are discarded and the sign bit is extended.

Example: Initial (Xi) = 2004 7655 0002 3400 0004
ik = 30
Final (Xi) = 0000 0000 2004 7655 0002

If the shift count is greater than the 60-bit register length the result will contain 60
copies of the sign bit, If the operand was positive, a positive zero word will result.

If the operand was negative, a negative zero word will result,

3-13 Rev 02

22 Left shift Xk nominally Bj places to Xi (15 Bits)

(o [& [[7 [«

14 12 11 9 8 6 5 3 2 0o

This instruction shifts the 60-bit quantity from operand register Xk the number of
places specified by the quantity in increment register Bj and places the result in oper-

and register Xi.

1. If Bj is positive (i.e., bit 17 of Bj = 0), the quantity from Xk is shifted left-
circular. The lower order six bits of Bj specify the shift count. The higher

order bits are ignored.

2. If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from Xk is shifted right
(end off with sign extension). The one's complement of the lower order 12
bits of Bj specify the shift count. The higher order bits are ignored. If the
shift count is greater than 60 (decimal) the result stored in the Xi register

will consist of 60 copies of the operand sign bit.

The contents of Bj might be the result of an unpack operation; in which case it is the
unbiased exponent and (Xi) is the coefficient. This instruction is used for shifting a

coefficient from a floating point number to the integer position after an unpack operation.

23 Arithmetic right shift Xk nominally Bj places to Xi (15 Bits)

I L R R

14 12 1l 9 8 6 5 3 2 0

This instruction shifts the 60-bit quantity from operand register Xk the number of
places specified by the quantity in increment register Bj and places the result in

operand register Xi.

1. If Bj is positive (i.e., bit 17 of Bj = 0), the quantity from register Xk is
shifted right (end off with sign extension). The lower order 12 bits of Bj

Rev 01 3-14

specify the shift count. The higher order bits are ignored. If the shift count
is greater than 60 (decimal) the result stored in the Xi register will consist

of 60 copies of the operand sign bit.

2. If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is
shifted left circular. The complement of the lower order six bits of Bj specify
the shift count. The higher order bits are ignored.

This instruction is intended for use in data processing where the amount of shift is
derived in the computation. This instruction is also useful for adjusting the coefficient

of a floating point number while it is in its unpacked form.

24 Normalize Xk in Xi and Bj (15 Bits)

(& [v [7T 7 [%]
4 1211 9 8 65 3 2 0

This instruction normalizes the floating point quantity from operand register Xk and
places it in operand register Xi. Normalizing consists of left shifting the coefficient the
minimum number of positions required to make bit 47 different from bit 59. This

places the most significant bit of the coefficient in the highest order position of the
coefficient portion of the word. The exponent portion of the word is then decreased by
the number of bit positions shifted. The number of left shifts necessary to normalize

the quantity is entered in increment register Bj.

If a complete underflow occurs (i, e., the unpacked exponent is more negative than
-1777), a zero word is delivered to the Xi register. The sign of the operand is
preserved and (Xi) is either all zero bits or all one bits, depending on the sign of the
original operand. The shift count delivered to the Bj register is a result of considering
the coefficient field of (Xk) without regard to the exponent. This quantity is therefore
the value that would be appropriate for normalizing the operand if the exponent were

in range,

3-15 Rev 02

If a partial underflow occurs (i.e., the unpacked exponent equals -1777), the result is
delivered to the Xi register and the Bj register as for a normal case even though sub-

sequent computation may detect this operand as an underflow case.

Normalizing either a plus or minus zero coefficient sets the shift count (Bj) to 4810
and clears Xi to all zeros. The sign of the operand is preserved and (Xi) is either all

zero bits or all one bits.

If Xk contains an infinite quantity (3777X....X or 4000X....X) or an indefinite quantity
(1777X....X or 6000X....X) no shift takes place. The contents of Xk are copied into
Xi and Bj is set equal to zero. No flags are set in the PSD register by the normalize

unit.

25 Round and normalize Xk in Xi and Bj (15 Bits)

glhlisJilkJ

14 12 1 9 8 5 3 2 0

This instruction performs the same operation as instruction 24 except that the quantity
from the operand register Xk is rounded before it is normalized. Rounding is accom-
plished by placing a ''1" round bit immediately to the right of the least significant
coefficient bit. The resulting coefficient is increased by one-half the value of the least
significant bit. Normalizing a zero coefficient places the round bit in bit 47 and reduces
the exponent by 48. Note that the same rules apply for underflow, overflow, and

indefinite results.
If Xk contains an infinite quantity (3777X....X or 4000X....X) or an indefinite quantity

(1777X....X or 6000X. ...X), no shift takes place. The contents of Xk are copied into

Xi and Bj is set equal to zero. No flags are set in the PSD register.

Rev 01 3-16

26 Unpack Xk to Xi and Bj (15 Bits)

14 12 1 9 8 6 5 3 2 ¢}

This instruction unpacks the floating point quantity from operand register Xk and sends
the 48-bit coefficient to operand register Xi and the 11-bit exponent to increment
register Bj. The exponent bias is removed during Unpack so that the quantity in Bj is

the true one's complement representation of the exponent.

The exponent and coefficient are sent to the low-order bits of the respective registers

as shown below:

SIGN__BIASED EXPONENT COEFF ICIENT
PACKED QUANTITY | I | I [48 | Xk
59 58 l 48 47 0
UNBIASED
EXPONENT
EXPONENT SIGN l COEFFICIENT
EXTENDED SIGN EXTENDED

UNPACKED BjW///A | Y]x;

17 109 0 59 48 47

Special operand formats are treated in the same manner as normal operands. No flags

are set in the PSD register by this instruction.

3-17 Rev 01

27 Pack Xi from Xk and Bj (15 Bits)

o [v [+ [3 [%]

14 12 11 9 8 6 5 3 2

This instruction packs a floating point number in operand register Xi. The coefficient
of the number is obtained from operand register Xk and the exponent from increment
register Bj. Bias is added to the exponent during the. Pack operation. The instruction

does not normalize the coefficient,

Exponent and coefficient are obtained from the proper low-order bits of the respective
registers and packed as shown in the illustration for the Unpack (26) instruction. Thus,
bits 48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow

or underflow. No flags are set in the PSD register by this instruction.

Note that if Xk ig positive, the packed exponent occupying positions 48 to 58 of Xi is
obtained from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is

not complemented but bits 0 to 9 are.

The j designator may be set to zero in this instruction to pack a fixed point integer

into floating point format without using one of the active B registers.

43 Form mask in Xi, jk bits (15 Bits)

14 12 11 9 8 6 5 0

The instruction forms a mask in operand register Xi. The 6-bit quantity jk defines
the number of ""1's" in the mask as counted from the highest order bit in Xi. The
completed masking word consists of ''1's'"" in the high order bit positions of the word

and "'0's'" in the remainder of the word.

Rev 01 3-18

Example: j=2
k=14
(Xi) = 7777 7760 0000 0000 0000

The contents of operand register i = 0 when jk = 0. The contents of operand register i

are all "1's'" when jk is 60 (decimal) or greater.

This instruction is intended for generating variable width masks for logical operations.
Used with the shift instruction, this instruction will create an arbitrary field mask
faster than by reading a pre-generated mask from storage.

Floating Point Arithmetic

30 Floating sum of Xj and Xk to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction forms the sum of the floating point quantities from operand registers
Xj and Xk and packs the result in operand register Xi. The packed result is the upper

half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the
smaller exponent is entered into the upper half of a 99-bit accumulator. The coefficient
is shifted right by the difference of the exponents. The other coefficient is then added
into the upper half of the accumulator. I« overflow occurs, the sum is right-shifted

one place and the exponent of the result increased by one. The upper half of the accu-
mulator holds the coefficient of the sum, which is not necessarily in normalized form.

The exponent and upper coefficient are then repacked in operand register Xi.

If the two operands are of equal magnitude and opposite sign the resulting sum will

have a zero coefficient. The exponent delivered to the Xi register will be the same as

3-19 Rev 01

the exponent for the operands even though the coefficient is zero. The sign of the

result will be positive.

If one of the operands is at the upper limit of the floating point range, the resulting
sum may be exactly +1777 unbiased. In this case the resulting exponent will indicate
the overflow condition, but the coefficient will be processed in a normal manner. No
error indication is made for this case and no condition flags will be set in the PSD
register, Subsequent use of this number as an operand in a floating point unit will,

however, result in overflow detection.

If the exponents of both operands are zero (i.e., 2000), and no overflow occurs, the

instruction effects an ordinary integer addition.

31 Floating difference Xj and Xk to Xi (15 Bits)

This instruction forms the difference of the floating point quantities from operand

registers Xj and Xk and packs the result in operand register Xi., Alignment and over-
flow operations are similar to the Floating Sum (30) instruction, and the difference is
not necessarily normalized. The packed result is the upper half of a double precision

difference.

If the two operands are identical the resulting difference will have a zero coefficient.
The exponent delivered to the Xi register will be the same as the exponent for the

operands., The sign of the result will be positive.
If one of the operands is at the upper limit of the floating point range, the resulting

difference may be exactly +1777 unbiased. In this case the resulting exponent will

indicate the Overflow condition, but the coefficient will be processed in a normal

Rev 01 3-20

manner. No error indication is made for this case and no condition flags are set in
the PSD register. Subsequent use of this number as an operand in a floating point unit

will, however, result in overflow detection.

When the exponents of both operands are zero (i.e., 2000), an ordinary integer sub-

traction is performed,

32 Floating DP sum of Xj and Xk to Xi (15 Bits)

[o | [i [i [«

14 2 1l 9 8 6 5 3 2 0]

This instruction forms the sum of two floating point numbers as in the Floating Sum
(30) instruction, but packs the lower half of the double precision sum with an exponent

48 less than the upper sum. The result is not necessarily normalized.

If one operand is at the upper limit of the floating point range, the resulting double
precision sum may overflow and cause the exponent for the upper half to go out of
range. Since the exponent for the lower half of the double precision sum is 48 less
than this overflow value, the result delivered to the Xi register is processed as a

normal floating point result and no error condition flags are set in the PSD register,

If the two operands are near the lower limit of the floating point range, the exponent
for the lower half of the double precision sum may be exactly -1777 unbiased. This
result is processed as a normal floating point number and no error condition flags are
set in the PSD register. Subsequent use of this number as an operand in a floating

point unit may, however, result in underflow detection.

If the exponent for the lower half of the double precision sum is less than -1777 unbiased,
the result delivered to the Xi register is a complete underflow word with a zero coef-
ficient. The sign of the result will be the same as the sign of the operand with the

larger exponent. If the two operands have identical exponents the sign of the result

3-21 Rev 01

is the same as the sign of (Xk). The underflow condition flag is set in the PSD register

for this case,.

33 Floating DP difference of Xj and Xk to Xi (15 Bits)

14 12 1 9 8 6 5 3 2 0

This instruction forms the difference of two floating point numbers as in the Floating
Difference (31) instruction, but packs the lower half of the double precision difference
with an exponent of 48 less than the upper difference. The result is not necessarily

normalized.

If the two operands are identical the resulting double precision coefficient difference
will be zero. This condition is not sensed as a special case and the exponent will be
the same value as for a nonzero coefficient. The sign of the resulting zero coefficient

will be positive.

For treatment of other special situations and operands refer to the description of

instruction 32 Floating DP Sum,

34 Round floating sum of Xj and Xk to Xi (15 Bits)

14 2 1l 9 8 6 5 3 2 (¢}

This instruction forms the round sum of the floating point quantities from operand
registers Xj and Xk and packs the upper sum of the double precision result in operand
register Xi. This instruction is intended for use in floating point calculations involving

single precision accuracy. The result is not necessarily normalized.

Rev 01 3-22

Rounding of the operand coefficients occurs just prior to the double precision add
operation. At this time the two 48-bit coefficients are positioned in the 99-bit ones
complement adder with an offset corresponding to the difference of the exponents. A
round bit is always added to the coefficient corresponding to the larger exponent. If

the exponents are equal the round bit is added to the coefficient for (Xk). The round

bit is equal to the complement of the sign bit and is inserted immediately to the right

of the lowest order bit in the coefficient. This has the effect of increasing the magnitude
of the coefficient by one-half of the least significant bit. A second round bit is added

in a corresponding manner to the other coefficient if both operands were normalized,

or if the operands had unlike signs.

For treatment of special situations, refer to instruction 30 Floating Sum.

35 Round floating difference of Xj and Xk to Xi (15 Bits)

[o [» [7 T 7 [%]

12 11 9 8 6 5 3 2 0

This instruction forms the round difference of the floating point quantities from
operand registers Xj and Xk and packs the upper difference of the double precision
result in operand register Xi. This instruction is intended for use in floating point
calculations involving single precision accuracy. The result is not necessarily nor-

malized.

Rounding of the operand coefficients occurs just prior to the double precision subtract
operation. At this time the two 48-bit coefficients are positioned in the 99-bit ones
complement adder with an offset corresponding to the difference of the exponents. A
round bit is always added to the coefficient corresponding to the larger exponent. If
the exponents are equal the round bit is added to the coefficient for (Xk). The round
bit is equal to the complement of the sign bit and is inserted immediately to the right
of the lowest order bit in the coefficient. This has the effect of increasing the magni-

tude of the coefficient by one-half of the least significant bit. A second round bit is

3-23 Rev 01

added in a corresponding manner to the other coefficient if both operands were normal-

ized, or if the operands had like signs.

For treatment of special situations, refer to instruction 31, Floating Difference.

40 Floating product of Xj and Xk to Xi (15 Bits)

14 12 11 9 8 6 5 3 2

This instruction multiplies two floating point quantities obtained from operand registers
Xj (multiplier) and Xk (multiplicand) and packs the upper product result in operand

register Xi.

In this operation, the exponents of the two operands are unpacked from the floating
point format and are added with a correction factor of 48 to form the exponent for the
result. The coefficients are multiplied as signed integers to form a 96-bit integer
product. The upper half of this product is then extracted to form the coefficient for
the result. An alternate output path is provided with a one-bit position displacement
to normalize the result coefficient if the original operands were normalized and the
double precision product has only 95 significant bits. The exponent for the result is

corrected by one count in this case.

If the two operands are not both normalized the resulting double precision product will
have less than 96 significant bits. No test is made for the position of the most signif-
icant bit in the product for this case. The upper 48 bits are read from the 96-bit
positions in the double precision product register, and leading zeros will occur in the
result coefficient, The alternate path is not used in this case even though the one-bit

displacement may have normalized the result.

If the two operands are not both normalized the upper half of the double precision

product may be all zeros. This situation is not sensed, and the exponent for the result

Rev 01 3-24

will be processed without regard to the zero coefficient. This will result in a zero
coefficient and a nonzero exponent. No error flags are set in the PSD register for

this case,

A partial overflow occurs for this instruction whenever the exponent computation
results in exactly +1777 octal and the result coefficient is taken from a double precision
product with 96 bits of significance. There are no error condition flags set in the PSD
register for this case, and the result is delivered to the Xi register in a normal
manner. Subsequent use of this result as an operand in a floating point unit will, how-
ever, result in overflow detection. However, if the coefficient is shifted one position
to normalize it, the exponent delivered to the Xi register will be reduced one count

and the result will be in floating point range.

A complete overflow occurs for this instruction whenever the exponent computation
results in an exponent greater than +1777 octal. This situation is sensed as a special
case, and a complete overflow word with proper sign, overflow exponent, and zero
coefficient is delivered to the Xi register. The coefficient calculation is ignored for

this case, and the overflow condition flag is set in the PSD register.

A partial underflow occurs for this instruction whenever the exponent computation
results in exactly -1776 octal and the result coefficient is shifted one position to
normalize. The exponent delivered to the Xi register is reduced one count, creating
an underflow exponent with a valid coefficient, There are no condition flags set in the
PSD register for this case. Subsequent use of this result in a floating point unit may,

however, result in underflow detection.

A complete underflow occurs for this instruction whenever the exponent computation
results in less than -1776 octal, This situation is sensed as a special case, and a

complete zero word with proper sign is delivered to the Xi register. The coefficient
calculation is ignored in this case, and the underflow condition flag is set in the PSD

register,

If either operand is zero, the underflow condition flag will set.

3-25 Rev 02

41 Round floating product of Xj and Xk to Xi (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction multiplies the floating point number from operand register Xk (multi-
plicand), by the floating point number from operand register Xj. The upper product
result is packed in operand register Xi. (No lower product is available.) The multiply
operation is identical to that of instruction 40 except that a rounding bit is added in bit
position 46 of the product. The upper half of the product is then extracted to form the
coefficient for the result. An alternate output path is provided with a one-bit position
displacement to normalize the result coefficient if the original operands were normal-
ized and the double precision product has only 95 bits of significance. The exponent
for the result is corrected by one count in this case. The following rounded result is

the net effect of this action:
e for products > 295, round is by one-fourth

e for all other products, round is by one-half

The result is a normalized quantity only when both operands are normalized; the

exponent in this case is the sum of the exponents plus 47 (or 48).
The result is unnormalized when either or both operands are unnormalized; the expo-

nent in this case is the sum of the exponents plus 48. For treatment of special situations

and operands, refer to instruction 40, Floating Product.

Rev 01 3-26

42 Floating DP product of Xj and Xk to Xi (15 Bits)

14 12 1l 9 8 6 5 3 2 0

This instruction multiplies two floating point quantities obtained from operand registers
Xj and Xk and packs the lower product in operand register Xi. The two 48-bit coeffi-
cients are multiplied together to form a 96-bit product. The lower-order 48 bits of
this product (bits 47-00) are then packed together with the resulting exponent., The
result is not necessarily a normalized quantity. The exponent of this result is 48 less

than the exponent resulting from a 40 instruction using the same operands.

This instruction is intended for use in multiple precision floating point calculations.
It may also be used to form the product of two integers providing the resulting product
will not exceed 48 bits of significance. The operands must be packed in floating point
format before executing this instruction. The result must be unpacked to Obtail:l the

integer product.

For treatment of special situations and operands, refer to instruction 40 Floating

Product.

44 Floating divide Xj by Xk to Xi (15 Bits)

[o [n T 7 T 7 T &
2 1l

14 9 8 6 5 3 2 0

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi.

The exponent of the result in a no-overflow case is the difference of the dividend and

divisor exponents minus 48,

3-27 Rev 01

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
quotient one place. In this case the exponent is the difference of the dividend and
divisor exponents minus 47. The result is a normalized quantity when both the dividend

and divisor are normalized.

If the divisor is not normalized and the dividend coefficient is larger than the divisor
by a factor of two or more, the quotient coefficient will be incorrect. The quotient is
disregarded in this case, and the word delivered to the Xi register is positive indefinite

with a zero coefficient. The indefinite condition flag is set in the PSD register.

A partial overflow occurs for this instruction whenever the exponent computation
results in exactly 41777 octal. There are no error condition flags set in the PSD reg-
ister for this case, and the result is delivered to the Xi register in a normal manner,

Subsequent use of this result as an operand in a floating point unit will, however,

result in overflow detection.

A complete overflow occurs for this instruction whenever the exponent computation

]

esults in an exponent greater than +1777 octal. This situation is sensed as a special
case, and a complete overflow word with proper sign, overflow exponent, and zero
coefficient is delivered to the Xi register. The coefficient calculation is ignored for

this case, and the overflow condition flag is set in the PSD register.

A partial underflow occurs for this instruction whenever the exponent computation
results in exactly -1777 octal. There are no error condition flags set in the PSD reg-
ister for this case, and the result is delivered to the Xi register in a normal manner.
Subsequent use of this result as an operand in a floating point unit may, however,

result in underflow detection.

A complete underflow occurs for this instruction whenever the exponent computation
results in an exponent less than -1777 octal. This situation is sensed as a special
case, and a complete zero word with proper sign is delivered to the Xi register. The
coefficient calculation is ignored in this case, and the underflow condition flag is set

in the PSD register.

Rev 01 3-28

45 Round floating divide Xj by Xk to Xi (15 Bits)

14 t2 11 S 8 6 5 3 2 0

This instruction divides the floating quantity from operand register j (dividend) by the
floating point quantity from operand register Xk (divisor) and packs the round quotient
in operand register Xi. The operation is the same as for a Floating Divide except that
a round bit is added just below the lowest order bit of the coefficient from Xj. This
round bit has the effect of increasing the magnitude of the dividend by one-half the

value of the least significant bit,

The result is a normalized quantity when both the dividend and the divisor are normal-

ized.

The result exponent in a no-overflow case is the difference of the dividend and divisor

exponents minus 48.
A one-bit overflow is compensated for by adjusting the exponent and right shifting the
quotient one place; in this case the exponent is the difference of the dividend and

divisor exponents minus 47,

For treatment of special situations and operands, refer to instruction 44 Floating Divide.

3-29 Rev 01

Branch

010 Return jump to K (30 Bits)

Lol n] i V7 K

29 27262423 21201817 o

This instruction stores an 04 unconditional jump and the current address plus one
[(P)\ii] in the upper half of address K in SCM, then branches to K + 1 for the next
instruction. The lower half of the stored word is all zeros. This instruction always
branches out of the instruction stack and voids all instructions presently in the instruc-

tion stack.

The octal word at K after the instruction appears as follows:

UNCONDITIONAL
JUMP

oo
r

+
A

A
k[o4 o0 o0 XXXXXX looo &/ o

59 _v_/ 30 29 o

Bj=Bj

This instruction is intended for executing a subroutine between execution of the current
instruction word and the following instruction word. Insiructions appearing after the
return jump instruction in the current instruction word will not be executed. The
called subroutine entrance address must be K+ 1 in SCM. The called subroutine must
exit at address K in SCM. A jump to address K of the branch routine returns the

program to the original sequence.

Special Situations

If the value of K in a return jump instruction is greater than the SCM field length, the

instruction is executed with the store of the exit word in SCM inhibited. The program

Rev 01 3-30

address is altered to the value K and advanced by one count in a normal manner. The
program range condition flag is set in the PSD register to indicate the jump is out of
range. The program sequence is then terminated with an exchange jump to (EEA).
The resulting exchange package will contain a program address equal to K + 1, and a

bit set in the PSD area corresponding to the range condition flag.

If the value of K in the return jump instruction is zero, the instruction is executed in
a normal manner, and the exit word is stored at address zero in the SCM field. In the
process of executing the instruction (P) is momentarily set to zero. This is sensed as
an error condition, and the program range condition flag is set in the PSD register.
As a result, the program sequence will be terminated at the completion of the return
jump instruction with an exchange jump to (EEA). The return jump instruction will
have advanced the program address one count so that the exchange package will indi-

cate a program address of one rather than zero.

If the value of K in the return jump instruction is equal to (BPA), in the process of
executing the instruction (P) will momentarily be set equal to (BPA). This will be
detected as a breakpoint condition, and the breakpoint condition flag will set in the PSD
register. The return jump instruction will advance (P) one count in the process of
completing execution. This final value of (P) will appear in the exchange package

when the breakpoint interrupt occurs.

An I/O section interrupt request may occur during the execution of a return jump
sequence. In such a case the return jump instruction is completed, and an exchange
jump to the proper I/O channel exchange package occurs with the program address

equal to K + 1 from the return jump instruction.

01300 Exchange exit to NEA (15 Bits)
(Exit mode flag cleared)

Lo | v [& Y77

14 12 11 9 8 6 5 3 2 o

An exchange exit instruction executed with the exit mode flag cleared causes the current

program sequence to terminate with an exchange jump to address (NEA). This is an

3-31 Rev 01

absolute address in SCM and is generally not in the SCM field for the current program.

The j and k designators in the instruction are ignored.

This instruction is intended for use in calling a system monitor program for input/
output request, library calls etc. All operating register values, program address,
and mode selections are preserved in the exchange package for the object program in
order that the object program may be continued at a later time. The program address
in the object program exchange package will be advanced one count from the address
of the instruction word containing the exchange exit instruction. The monitor program

will normally resume the object program at this address.

This instruction has priority over all other types of exchange jump requests. If an
I/O interrupt request or an error exit request has occurred prior to the execution of
this instruction, it is denied and the exchange jump specified by this instruction is
executed. The rejected interrupt request is not lost, however, as the conditions that

caused it will be reinstated when the exchange package enters its next execution interval.

The current contents of the instruction word stack are voided by the execution of this

instruction.

There are no protective tests made on the exchange jump address for this instruction.
The assignment of (NEA) is a responsibility of the system monitor program. If (NEA)
has more than 16 bits of significance, the upper bits are discarded and the lower 16

bits used as the absolute address in SCM for the exchange jump.

013 Exchange exit to (Bj) = K (30 Bits)
(Exit mode flag set)

Lo [n]i[i] K

29 27262423 21201817

ol |

If the exit mode flag is set, this instruction causes the current program sequence to
terminate with an exchange jump to an address in the SCM field for the current pro-

gram. The exchange package is located at relative address (Bj) + K.

Rev 02 3-32

This form of the exchange exit instruction is intended to be privileged to a monitor

program,

This instruction has priority over all other types of exchange jump requests. If an
I/O interrupt request or an error exit request has occurred prior to the execution of
this instruction, it is denied and the exchange jump specified by this instruction is
executed. The rejected interrupt request is not lost, however, as the conditions that

caused it will be reinstated when the exchange package enters its next execution interval.

The current contents of the instruction word stack are voided by the execution of this

instruction.

There are no protective tests made on the exchange jump address for this instruction.

02 Jump to Bi + K (30 Bits)

Lalnli V7 K

2927262423 21201817 0

This instruction adds the contents of increment register Bi to K and branches to the
relative SCM address specified by the sum. The remaining instructions, if any, in
the current instruction word will not be executed. The branch address is K when
i=0.

Addition is performed in an 18-bit ones complement mode. The instruction word stack
is not altered by execution of this instruction. The instruction is intended to allow
computed branch point destinations. It is the only CPU instruction in which a computed
parameter can specify a program branch destination address. All other jump instruc-
tions have preassigned destination addresses. Program modification to implement
changes in a branch point destination address is not recommended in general because

of complications associated with the instruction stack.

3-33 Rev 02

Special Situations

If an I/O interrupt request or an error exit request exists at the time this instruction

is executed, the instruction is executed to completion before the interrupt occurs.

If the branch point destination address is greater than the SCM field length, the SCM
range condition flag is set in the PSD register. The instruction will execute to com-
pletion, but the first instruction word for the next program sequence will not read
from the IWS to the CIW register. At this point an Error interrupt will occur as a
result of the SCM range condition flag, and an exchange jump will occur to address
(EEA) in the SCM. The terminating exchange package will contain the out-of-range

address in the program address field.

A jump to relative address zero in the SCM field causes the program range condition
flag to set in the PSD register. The program will be terminated with an error exit to
address (EEA). The terminating exchange package will contain a zero quantity in the

program address field.

A jump to address (BPA) will set the breakpoint condition flag in the PSD register.
The instruction will be executed to completion, and the exchange jump to address

(EEA) will occur before the first instruction is executed at the branch point destination

address.
030 Jump to K if Xj =10 (30 Bits)
031 Jump to K if Xj # 0 (30 Bits)
032 Jump to K if Xj is positive (30 Bits)
033 Jump to K if Xj is negative (30 Bits)
034 Jump to K if Xj is in range (30 Bits)
035 Jump to K if Xj is out of range (30 Bits)
036 Jump to K if Xj is definite (30 Bits)
037 Jump to K if Xj is indefinite (30 Bits)
Lo f[h]i]il K
29 27262423 2120 1817 0]

These instructions cause the program sequence to branch to K or to continue with the
current program sequence depending on the contents of operand register Xj. The

decision will not be made until the Xj register is free.

Rev 01 3-34

The following applies to tests made in this instruction group:

1,

04
05
06
07

The 030 and 031 operations test the full 60-bit word in Xj. The words
00..... 00 and 77..... 77 are treated as zero. All other words are non-zero.
Thus, these instructions are not a valid test for floating point zero coefficients

However, they can be used to test for underflow of floating point quantities.

The 032 and 033 operations examine only the sign bit (259) of Xj. If the sign
is zero, the word is positive; if the sign bit is one, the word is negative.
Thus, the sign test is valid for fixed point worde or for coefficients in floating

point words.

The 034 and 035 operations examine the upper-order 12 bits of Xj. The

following quantities are detected as being out of range:

3TTT X, X (Positive Overflow)
4000 X..... X (Negative Overflow)
1777 X.. ... X (Positive Indefinite)
6000 X..... X (Negative Indefinite)

All other words are in range. An underflow quantity is considered in range,

The value of the coefficient is ignored in making this test.

The 036 and 037 operations examine the upper-order 12 bits of Xj. Both

positive and negative indefinite forms are detected:
1777 X, ..., X and 6000 X, X are indefinite.

All other words are definite. The value of the coefficient is ignored in making
this test.

For special situations, refer to the 02 Jump instruction.

Jump to K if Bi = Bj (30 Bits)
Jump to K if Bi # Bj (30 Bits)
Jump to K if Bi = Bj (30 Bits)
Jump to K if Bi < Bj (30 Bits)
Leln[i]i] K]
29 27262423 21201817 0

3-35 Rev 02

These instructions test an 18-bit word from register Bi against an 18-bit word from
register Bj for the condition specified and branch to address K on a successful test,
Otherwise, the program sequence continues. All tests against zero (all zeros) can

be made by setting Bj = B0. The decision is not made until both B registers are free.

The following rules apply in the tests made by these instructions:
1. TPositive zero is recognized as unequal *o negative zero, and
2. Positive zero is recognized as greater than negative zero, and

3. A positive number is recognized as greater than a negative number,

The 06 and 07 instructions are intended for branching on an index threshold test. The
tests are made in a 19-bit ones complement mode. The quantity (Bi) and the quantity
(Bj) are sign extended one bit to prevent an erroneous result caused by exceeding the

modulus of the comparison device. The quantity (Bj) is then subtracted from the

quantity (Bi). The branch decision is based on the sign bit in the 19-bit result.

For special situations, re

Input/Output

012 Block Copy SCM to LCM (30 bits)

Lo ln]i]i] K

29 27262423 2120 1817 (o]

This is a two parcel instruction in which the lower order 18 bits are used as an operand
K. This instruction reads a sequence of 60-bit words from consecutive addresses in
SCM and copies them into a block of consecutive addresses in LCM. The block of
words begins at address (A0) in the SCM field. The words are stored in the LCM field
beginning at address (X0). The number of words to be copied is determined by the sum

of K + (Bj). This quantity, (K+(Bj)) cannot exceed 1’7778 words. If a quantity larger

Rev 02 3-36

than this is used LCM truncates the quantity to the 10-bit maximum. Thus a block
count of 30008W0rds will transfer 10008 words. No error indications are given when

this occurs.

This instruction is intended to move a quantity of data from SCM into the LLCM as
quickly as possible. All other activity in the CPU, with the exception of I/O word
requests, is stopped during this block transfer of data. All instructions which have
issued prior to this instruction are executed to completion. No further instructions
are issued until this block transfer is nearly completed. As a result of these restric-
tions the data flow from SCM to LCM can proceed at the rate of one 60-bit word each
clock period. When an I/O multiplexer request for SCM occurs during this transfer,
the data flow is interrupted for one clock period. The I/O word address is inserted in
the stream of addresses to the SAS, and the addresses for the block transfer are

resumed with a one clock period delay.

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. Either quantity may be used to increment, or decrement,
the other. The addition is performed in an 18-bit ones complement mode. The resul-
tant sum is treated as an 18-bit positive integer. This 18-bit quantity is truncated to
a 10-bit quantity by LCM. A zero result will cause this instruction to be executed as

a pass instruction.

Three of the parameters for this instruction reside in operating registers (A0, X0,
Bj). The contents of these registers are not altered by the execution of this instruc-
tion.

The lowest order 19 bits of (X0) are used to determine the initial address in the LCM
field for the block copy. The higher order bits are ignored. If (X0) is negative the

lowest order 19 bits are masked out and treated as a positive integer,

A test against LCM field length is made at the beginning of the block copy sequence,
The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones
complement mode. The resulting sum is treated as an 18-bit positive integer. This
integer is added to the lowest order 19 bits of (X0), also treated as a positive integer.
The resulting sum is compared with (FLL). If the resulting sum is greater than (FLL),
indicating that the block copy will go beyond the assigned LCM field, the block copy is
not executed. In this case the LCM block range condition flag is set in the PSD regis-

3-37 Rev 02

ter and the block copy instruction is issued as a pass. The exchange jump to (EEA)
resulting from setting the LCM block range condition flag will not occur before execution
of the next program instruction word unless a delay is introduced by subsequent instruc-

tions in the current instruction word.

A test against SCM field length is made at the beginning of the block copy sequence.
The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones
complement mode. The resulting sum is treated as an 18-bit positive integer. This
integer is added to (A0), also treated as an 18-bit positive integer. The resulting sum
is compared with (FLS). If the resulting sum is greater than (FLS), indicating that
the block copy will go beyond the assigned SCM field, the block copy is not executed.

" In this case the SCM block range condition flag is set in the PSD register and the block
copy instruction is issued as a pass. The exchange jump to (EEA) resulting from
setting the SCM block range condition flag will not occur before execution of the next
program instruction word unless a delay is introduced by subsequent instructions in

the current instruction word.

Block Length Negative

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. The addition is performed in an 18-bit ones complement
mode. The resultant sum is treated as an 18-bit positive integer. A negative result will
therefore appear as a large positive integer. In this case the SCM block range condi-
tion flag, and possibly the LCM block range condition flag, will set in the PSD register,
indicating too large a block for the assigned fields. The block copy instruction will
issue as a pass. The exchange jump to (EEA) resulting from setting the SCM block
range condition flag will not occur before execution of the next program instruction
word unless a delay is introduced by subsequent instructions in the current instruction

word.,

Block Length Zero

A zero block length is treated as a normal situation. No error flags are set, A block

copy instruction is executed as a pass.

Rev 01 3-38

Last Parcel

The block copy instruction requires two parcels of an instruction word for normal use.
If this instruction begins in the first, second, or third parcel of an instruction word
the following parcel completes the instruction. If a block copy instruction begins in
the last parcel of an instruction word it will not be continued in the following word. In
this case the instruction will be executed as if there were a fifth parcel in the instruc-

tion word and this parcel contained all zeros.

Error Condition During Execution

A LCM or SCM parity error may occur during the execution of a block copy instruction.
An arithmetic error from a previous instruction may also occur during the beginning

of the block copy sequence. If any error conditions occur, the proper flags are set in
the PSD register, and the block copy instruction is executed to completion. There are

no error conditions which will interrupt the instruction before completion.

Multiplexer Interrupt During Execution

An I/O section interrupt request may occur during the execution of a block copy instruc-
tion. In this case the interrupt request is not honored until the block copy instruction
has been completed and any subsequent instructions in the current instruction word

have been completed.

011 Block Copy LCM to SCM (30 bits)

Lo [n] i]i] K Il

29 27262423 2120 1817 0

This is a two parcel instruction in which the lower order 18 bits are used as an operand
K. This instruction reads a sequence of 60-bit words from consecutive addresses in
LCM and copies them into a block of consecutive addresses in SCM. The block of
words begins at address (X0) in the .CM field. The words are stored in the SCM

field beginning at address (A0). The number of words to be copied is determined by
the sum of K + (Bj). This quantity, (K + (Bj)) cannot exceed 17778 words. If a quantity
larger than this is used LCM truncates the quantity to the 10-bit maximum. Thus a
block count of 3000 words will transfer 10008 words. No error indications are given

when this occurs.

3-39 Rev 01

This instruction is intended to move a quantity of data from the large core memory
into SCM as quickly as possible. All other activity in the CPU, with the exception of
I/O word requests, is stopped during this block transfer of data. All instructions
which have issued prior to this instruction are executed to completion. No further
instructions are issued until this block transfer is nearly completed. As a result of
these restrictions the data flow from LCM to SCM can proceed at the rate of one 60-bit
word each clock period. When an I/O Multiplexer word request for SCM occurs during
this transfer, the data flow is interrupted for one clock period. The 1/O word address
is inserted in the stream of addresses to the SAS, and the addresses for the block

transfer are resumed with a one clock period delay.

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. Either quantity may be used to increment, or decrement,
the other. The addition is performed in an 18-bit ones complement mode. The resul-
tant sum is treated as an 18-bit positive integer. This 18-bit quantity is truncated to
ten bits by LCM. A zero result will cause this instruction to be executed as a pass

instruction.

Three of the parameters for this instruction reside in operating registers (A0, X0, Bj).

The contents of these registers are not altered by the execution of this instruction.
The lowest order 19 bits of (X0) are used to determine the initial address in the LCM

field for the block copy. The higher order bits are ignored. If (X0) is negative the

lowest order 19 bits are masked out and treated as a positive integer.

I.CM Out of Range

A test against LCM field length is made at the beginning of the block copy sequence.

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones
complement mode. The resulting sum is treated as an 18-bit positive integer. This
integer is added to the lowest order 19 bits of (X0), also treated as a positive integer.
The resulting sum is compared with (FLL). If the resulting sum is greater than (FLL),
indicating that the block copy will go beyond the assigned LCM field, the block copy is
not executed. In this case the LCM block range condition flag is set in the PSD regis-
ter, and the block copy instruction is issued as a pass with a four clock period execution
time. The exchange jump to (EEA) resulting from setting the LCM block range condi-

tion flag will not occur before execution of the next program instruction word unless a

Rev 01 3-40

delay is introduced by subsequent instructions in the current instruction word.

SCM Out of Range

A test against SCM field length is made at the beginning of the block COpy sequence,

The length of the block is determined by adding the quantity K to (Bj) in an 18-bit ones
complement mode. The resulting sum is treated as an 18-bit positive integer. This
integer is added to (A0), also treated as an 18-bit positive integer. The resulting sum
is compared with (FLS). If the resulting sum is greater than (FLS), indicating that
the block copy will go beyond the assigned SCM field, the block copy is not executed.
In this case the SCM block range condition flag is set in the PSD register, and the
block copy instruction is issued as a pass. with a four clock period execution time. The
exchange jump to (EEA) resulting from setting the SCM block range condition flag will
not occur before execution of the next program instruction word unless a delay is

introduced by subsequent instructions in the current instruction word.

Block Length Negative

The length of the block is determined by adding the quantity K from the instruction to
the contents of register Bj. The addition is performed in an 18-bit ones complement
mode. The resultant sum is treated as an 18-bit positive integer. A negative result
will therefore appear as a large positive integer. In this case the SCM block range
condition flag, and possibly the LCM block range condition flag, will set in the PSD
register, indicating too large a block for the assigned fields. The block copy instruc-
tion will issue as a pass with a four clock period execution time. The exchange jump
to (EEA) resulting from setting the SCM block range condition flag will not occur before
execution of the next program instruction word unless a delay is introduced by subse-

quent instructions in the current instruction word.

Block Length Zero

A zero block length is treated as a normal situation. No error flags are set. The

block copy instruction is executed as a pass with a four clock period execution time.

LCM Words Already in Bank Operand Register

The LCM words required for the block copy instruction may already be in one of the

LCM bank operand registers from the execution of a previous instruction. This

3-41 Rev 01

situation is not sensed. The words in the LCM bank operand register are discarded
and are reread from the LCM bank.

Last Parcel

The block copy instruction requires two parcels of an instruction word for normal
use. If this instruction begins in the first, second, or third parcel of an instruction
word the following parcel completes the instruction. If a block copy instruction begins
in the last parcel of an instruction word it will not be continued in the following word.
In this case the instruction will be executed as if there were a fifth parcel in the in-

struction word and this parcel contained all zeros.

Error Condition During Execution

A LLCM or SCM parity error may occur during the execution of a block copy instruction.
An arithmetic error from a previous instruction may also occur during the beginning

of the block copy sequence. If any error conditions occur, the proper flags are set in
the PSD register and the block copy instruction is executed to completion. There are

no error conditions which will interrupt the instruction before completion.

I/ O Interrupt During Execution

An I/ O multiplexer interrupt request may occur during the execution of a block copy
instruction. In this case the interrupt request is not honored until the block copy
instruction has been completed and any subsequent instructions in the current instruc-

tion word have been completed,

014 Read LCM (15 Bits)

14 12 1l 9 8 6 5 3 2

This instruction reads one word from the LCM and enters this word in an X register,
The word is read from the LCM field at relative address (Xk). The word is then

entered in register Xj. The SCM is not involved in this process.

Rev 01 3-42

This instruction is intended for direct addressing of the LCM for individual words. It
may also be used to advantage in addressing a string of words in consecutive storage
locations. This is particularly true if a string of words is to be read, modified, and
written back into the same storage locations. The process of reading and writing will
proceed in this case without a LCM read/write cycle delay until the addressing crosses
a LCM bank boundary.

The lowest order 19 bits of (Xk) are used to determine the address in the LCM field.
The higher order bits are ignored. If (Xk) is negative the lowest order 19 bits are
masked out and treated as a positive integer. No error flags are set for these con-
ditions unless the resulting address is out of range. The X0 register may be used for
either Xj or Xk in this instruction. The j and k designators may have the same value
in this instruction. In this case the requested address is lost when the word arrives

at the Xj register.

This instruction is buffered to the extent that it issues in one minor cycle unless a
previous LLCM reference is in process. When this instruction issues the LCM busy

flag is set and remains set until the requested word has been delivered to the designated
X register., The destination X register is reserved in a manner analogous to a refer-

ence in that only one LLCM read or write may be in process at one time.

Address Out of Range

The lowest order 19 bits of (Xk) are compared with (FLL) to determine if the requested
address is in the assigned LLCM field. If the requested address is greater than, or
equal to, (FLL) the LCM direct range condition flag is set in the PSD register. This
flag will cause an error exit request to interrupt the program with an exchange jump

to address (EEA). The instruction will be executed in this case with a LCM read
reference beyond the assigned field, and a word will be entered in the Xj register

from this location. The absolute address in LCM for this reference will be the lowest
order 19 bits in the sum resulting from adding (RAL) to the lowest order 19 bits of
(Xk). The exchange jump resulting from the error exit request will generally not occur

before one or more subsequent instructions have been executed.

3-43 Rev 02

015 Direct Write LCM (15 Bits)

14 12 11 9 8 6 5 3 2 0o

This instruction writes one word directly into LCM from an X register. The word is
read from register Xj and is written into the LCM field at relative address (Xk). The
SCM is not involved in this process.

This instruction is intended for direct addressing of the LCM for individual words. It
may also be used to advantage in addressing a string of words in consecutive storage
locations. This is particularly true if a string of words is to be read, modified, and
written back into the same storage locations. The process of reading and writing will
proceed in this case without a LCM bank read/write cycle delay until the addressing
crosses a LCM bank boundary.

The lowest order 19 bits of (Xk) are used to determine the address in the LCM field.
The higher order bits are ignored. If (Xk) is negative the lowest order 19 bits are
masked out and treated as a positive integer. No error flags are set for these condi-
tions unless the resulting address is out of range. The jor k designators may be zero

or both may be the same value.

This instruction is buffered to the extent that it issues in one minor cycle unless a
previous LCM reference is in process. When this instruction issues the LCM busy
flag is set and remains set until the word has been delivered to the proper LCM bank
operand register. No X register reservations are made for this instruction. The
following instruction may issue in the next clock period and may use either of the X
registers designated in this instruction. If the word cannot be entered immediately

in the proper LCM bank operand register it is held in the LLCM write register until the
LCM bank operand register is free. This process differs from a SCM write reference

in that only one LCM read or write may be in process at one time.

Address Out of Range

The lowest order 19 bits of (Xk) are compared with (FLL) to determine if the requested

Rev 01 3-44

address is in the assigned LCM field. If the requested address is greater than, or
equal to, (FLL) the LCM direct range condition flag is set in the PSD register. This
flag will cause an error exit request to interrupt the program with an exchange jump
to address (EEA). In this case the word will not be written into LCM. The exchange
Jump resulting from the error exit condition will generally not occur before one or

more subsequent instructions have been executed.

0160 Reset input buffer (15 Bits)

14 12 11 9 8 6 5 3 2 o

This instruction is used to initiate a new record transmission from a PP to SCM. It
resets the channel (Bk) input buffer in the multiplexer (MUX) in preparation for the
next incoming record. The channel (Bk) input buffer address register is cleared to

zero. The channel input assembly register is reset to first position.

This instruction is intended to be privileged to an input routine; that is,one which
terminates a record of incoming data and prepares for the next record. A routine is
called by an I/O section interrupt request when the record flag is set on the channel
input data path. The data in the channel input buffer is removed and this instruction

is executed to clear the buffer for the next incoming record.

This instruction is effective only if the monitor mode flag is set in the Program Status
register. If the monitor mode flag is cleared this instruction becomes a pass instruc-
tion. When this instruction issues it will execute the required channel functions with-

out regard to the current status or activity at the channel input register.

This instruction is intended to be executed in response to a multiplexer interrupt
request resulting from the setting of the channel input record flag. The record flag
is cleared when the interrupt request is generated. Further entries to the channel
input buffer are not locked out by the interrupt request flag in the channel access
control during the execution interval for the interrupt exchange package. The PPU
should wait for a positive response through a programmed output over the output

channel before beginning the next record.

3-45 Rev 02

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number. If (Bk) = 0, this instruction becomes a

pass instruction.

If the monitor mode flag is not-set in the PSD register when this instruction is executed,

this instruction becomes a pass instruction.

The channel input buffer is normally inactive when this instruction is executed because
the PP has transmitted a record flag and is waiting for monitor response on the output
channel, If the PPU has for some reason continued transmitting data, a word may be
waiting to enter the channel input buffer and a word request flag may be set. These
two operations may occur in the same clock period with conflicting commands to the
registers from the multiplexer. In this case the commands associated with this in-
struction take priority, and the result is a loss of data in the input buffer for the
incoming record. The incoming record will continue in this case with no indication of

error except that the record will be shortened by the lost data.

Two or more reset input buffer instructions may occur in consecutive program instruc-
tion locations referencing different channels. These instructions may issue in consec-

utive clock periods, and no interference will result in the multiplexer.

Two or more reset input buffer instructions may occur in consecutive program instruc-
tion locations referencing the same channel. These instructions will issue in consec-
utive clock periods and repeatedly perform the same functions. No interference will

occur other than the obvious repetitive functions.

016 Read channel input status: | nonzero (15 Bits)
(Read real time clock: (Bk)=10)

14 12 1l 9 8 6 5 3 2 0

This instruction reads the current value of the channel (Bk) input buffer address
register contents to register Bj. The status of the channel (Bk) input buffer address

register is not altered.

Rev 02 3-46

This instruction is intended for use in monitoring the progress of the channel input
buffer in the multiplexer. The channel input buffer area is divided into two fields by
the threshold testing mechanism. The first half of the buffer area constitutes one
field and the last half of the buffer area the other field. An I/O threshold interrupt
request is generated by the threshold testing mechanism whenever the channel input
buffer address is advanced across a field boundary. This will occur at the center of

the buffer area and at the end of the buffer area.

This instruction is the only vehicle for a program to determine whether an I/O section
interrupt request was generated by a buffer threshold test or by a record flag. The
program must retain the buffer address from one interrupt period to the next. If the
buffer address is in the same field as for the previous interrupt, the interrupt request
was from a record flag. If the buffer address is in the opposite field from the previous

interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number. If (Bk) = 0, this instruction reads the

contents of the CPU clock period counter.

Two or more read channel input status instructions may occur in consecutive program
instruction locations referencing the same or different channels. These instructions
may issue in consecutive clock periods providing the Bj register reservations do not

cause a delay. No interference will result in the multiplexer in these situations.

Real Time Clock

This instruction has a special use if the channel number (Bk) is zero. There are no
buffer areas for the MCU which use the I/O section channel zero access position. In
this case the current contents of the CPU clock period counter are read into the Bj
register., This is a 17-bit counter which is advanced one count in a two's complement
mode each clock period. This count is intended for timing measurements in the CPU
program, Timing considerations for this special use are the same as the normal

timing from a channel input buffer address register.

3-47 Rev 01

0170 Reset output buffer (15 Bits)

14 12 11 9 8 6 5 3 2 0

This instruction is used to initiate a new record transmission from SCM to a PP, It
resets the channel (Bk) output buffer in preparation for the next record transmission.
The channel (Bk) output buffer address register is cleared to zero. A record pulse is

transmitted over the channel output data path and a SCM reference is initiated.

This instruction is intended for execution in an output routine to initiate a new record
transmission over a channel output data path. The channel output buffer is normally
inactive when this instruction is executed. The channel output buffer is loaded with

the data for the next record, and this instruction is executed to initiate the transmission,
A record pulse is transmitted at the time this instruction is executed to indicate the
beginning of &« new record. The first word of data will follow as soon as the SCM word

is entered in the channel output disassembly register.

This instruction is effective only if the monitor mode flag is set in the Program status
register. [the monitor mode flag is cleared this instruction becomes a pass instruc-
tion. When this instruction issues it will execute the required channel functions with-

out regard to the current status or activity at the channel output register. The channel

output disassembly register is reset by the channel output word request flag.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked
out and used to determine the channel number, If (Bk) = 0, this instruction becomes

a pass instruction.

If the monitor mode flag is not set in the PSD register when this instruction is executed,

this instruction becomes a pass instruction.

The channel output buffer is normally inactive when this instruction is executed because

Rev 01 3-48

a program should have checked for completion of the previous record before beginning
this routine. There are two methods that a program can use to detect end of record.
One method is to read the channel output buffer address and compare with a known
record length. The other is a positive response from the peripheral unit over the
corresponding channel input data path. If for some reason the channel output buffer is
actively moving data over the channel output data path at the time this instruction is
executed, conflicting commands may be sent to the channel registers. In this case

the commands associated with this instruction have priority, and the result is a loss of

data in the previous record.

Two or more reset output buffer instructions may occur in consecutive program
instruction locations referencing different channels. These instructions may issue

in consecutive clock periods and no interference will result in the multiplexer control.

Two or more reset output buffer instructions may occur in consecutive program
instruction locations referencing the same channel, These instructions will issue in
consecutive clock periods and repeatedly perform the same functions. A record pulse
will be transmitted over the channel output data path for each instruction execution.
The channel output buffer will be repeatedly restarted, and a data word may, or may
not, be transmitted over the channel output data path depending on the timing of the

instructions and the conflicts that occur.

017 Read channel output status: | nonzero (15 Bits)

14 12 11l 9 8 6 5 3 2 0

This instruction reads the current value of the channel (Bk) output buffer address
register contents to register Bj. The status of the channel (Bk) output buffer address

register is not altered.

This instruction is intended for use in monitoring the progress of the channel output
buffer. The channel output buffer area is divided into two fields by the threshold
testing mechanism. The first half of the buffer area constitutes one field and the last

half of the buffer area the other field. Amultiplexer interrupt request is generated by

3-49 Rev 01

the threshold testing mechanism whenever the channel output buffer address is advanced

across a field boundary. This will occur at the center of the buffer area and at the
end of the buffer area.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits
are ignored. If higher order bits are set in (Bk) the lowest order four bits are masked

out and used to determine the channel number. If (Bk) = 0, this instruction reads all
zeros into Bj.

Two or more read channel output status instructions may occur in consecutive program
instruction locations referencing the same or different channels. These instructions
may issue in consecutive clock periods providing the Bj register reservations do not

cause a delay. No interference will result in the multiplexer in these situations.

Rev 01 3-50

4. CENTRAL PROCESSOR MEMORY

INTRODUCTION

The Central Processor Unit contains two memories: Large Core Memory (LCM) and
Small Core Memory (SCM). In the following description the term Central Processor
Unit (CPU) implies that part of the Central Processor hardware which does not contain

the memory or its directly associated hardware.

MEMORY PROTECTION

All Central Processor Unit references to either SCM or LCM are made relative to a
reference address (Figure 4-1). The reference address defines the lower limit of the
program and/or data. All references from the program must lie within a range defined
at its lower limit by the reference address and at its upper limit by the reference
address added to program field length. The field length is the number of 60-bit words

comprising the program and it is established by the programmer prior to execution.

During an Exchange Jump, the reference addresses and the field lengths are loaded

from the exchange jump package into the respective registers to define the limits of
the program.

When the program specifies an address, it is automatically added to the reference
address. This new address is then checked to see if it lies within the bounds specified
above. If it does, the program proceeds normally; if it does not then an unconditional
exit is made and the program is terminated. These constraints are applied to both
SCM and LCM addresses. Therefore, two reference addresses and two field lengths

are required; one for each memory.

Two error-conditions are noted. One will occur if the requested address is outside
the limits defined above. The other will occur if a block transfer between SCM and
LCM will, during its execution, cause a reference to an address outside of the limits
defined above. When one of the error conditions occurs one of two flags is set to
indicate whether that error is in LCM or SCM.

4-1 Rev 02

MEMORY MAP

FIRST LOCATION
000 000 IN PROGRAM AREA
ABSOLUTE RELATIVE
MEMORY MEMORY RA
ADDRESS ADDRESS
RA P=0 SNONNNNNN
RA+P P<FL SSSSSS FL PROGRAM AREA
RA +FL P=FL SONSNN
SOME ARBITRARY
e LOCATION IN
[T N PROGRAM AREA
177 777 LAST LOCATION +1

IN PROGRAM AREA

Figure 4-1. Memory Map

SMALL CORE MEMORY

Organization

Small Core Memory (SCM) is organized into 65K, 60-bit words, (plus 5 parity bits) in

32 banks of 2, 048 words each. The banks are logically independent and consecutive

Rev 02 4-2

addresses go to different banks. Banks may be phased into operation at clock period
intervals, resulting in very high operating speed. Up to 10 banks may be in operation
at one time. The SCM address and data control permit a word to move to or from SCM

every clock period. A parity error in SCM sets a flag in the Program Status register.

Address Format

The location of each word in SCM is identified by 16-bit address. The address format
is shown below (Figure 4-2), Within the address format, the lowest 5 bits specify one
of 32 banks. The 11-bit address defines one of 2048 separate locations within the
specified bank. Addresses that are numerically consecutive reference consecutive

banks and hence make most efficient use of the bank phasing.

ADDRESS BANK SELECT
15 5 4 0

Figure 4-2, SCM Address Format

Small Core Memory Access

Introduction

Logically, SCM is the center of the Computer System with communication to the CPU,
LCM and the PPU.

PPU access is limited to certain buffer areas in the low order addresses of SCM.
These are used for data transfers and for monitor communication between the CPU.
The PPU can write into these areas at any time. It is the responsibility of the CPU
programs to empty or fill the PPU buffer areas. The PPU can read the buffer areas
only when directed to do so by the CPU.

The CPU can reference any part of SCM subject to the constraints of Field Length and
Reference Addresses.

4-3 Rev 02

The LCM can communicate with any part of SCM. However, it is designed to copy
large blocks of data to, or from, SCM. Although a block of data may be as small as
one word, such transfers are time consuming. For this reason, there is the capability

to reference single words from LCM directly into the CPU. LCM access is described

under the LLCM Section (page 4-10).

Memory Reference

When a storage reference is initiated the address is sent to all banks in the memory,
and the correct bank, if free, accepts the address. If the bank is busy the request
waits until that bank is free. Requests for 3 addresses may be waiting for SCM at the
same time. Instruction issue stops when the second address is sent to SCM and the
first address sent has not been accepted. Instruction issue does not start again until

all unaccepted addresses have been accepted by SCM (up to 3 addresses).

It is possible to abort a valid SCM memory write which is followed by an SCM write
out of range. The case in which this can happen is as follows: write SCM bank X,
write SCM bank X, write SCM out of range. Due to the 2 valid writes going to the
same bank, the second write to bank X is held up in the SCM access control. However,
the range check is made immediately after the out of range address is formed by the
increment unit. Thus SCM direct range error bit in PSD register will be set before
the second write to bank X can be initiated (page 2-18). Since the SCM direct range
error stops any write into SCM both the second write to bank X (which is valid), and

the write out of range will be aborted.

All addresses presented to SCM are processed in the order in which they are received.
SCM requests from various parts of the computer are given a priority which determines

which addresses shall be allowed access first.

These priorities are as follows:

1. Exchange Sequence Request 4, Input/Output Section Request
2. Increment Unit Request 5. Read Next Instruction Request (RNI)
3. Return Jump Exit Request 6. Read Next Instruction Request (RNI)

All memory references appear the same to SCM. The hardware provides tags that

identify the source or destination of any word that is stored or read.

Rev 02 4-4

Central Processor Unit Access

The CPU can access SCM in two ways, either from an A register or from the instruction

stack.

A Register Access

The eight A registers are divided into five read registers (A1-A5) and two write
‘registers (A6, AT). A0, the remaining register, cannot be used in this manner.
Placing a quantity into an A register causes a reference to that SCM location. If the
A register is A6 or A7, the corresponding X register is stored in SCM. If the A
register is A1-A5, the corresponding X register is loaded with the contents of that

memory location,

Instruction Stack Access

References to SCM are made by the stack advancing, by a branch out of the stack or

an instruction request,

/o) Multiplexer

Introduction

The Multiplexer buffers data to (or from) the directly connected PPU. PPU's connected
with the CPU communicate over a 12-bit full duplex channel. In the CPU, each channel
has assembly and disassembly registers to convert the 12-bit channel data to 60-bit
CPU words.

There are a total of 15 channels in the Multiplexer. These channels are numbered

beginning with 01, and ending with 178. Each channel has a SCM buffer area for

incoming data an(i3 a separate SCM buffer for outgoing data. In addition each channel
has an exchange package for incoming data and an exchange package for outgoing data.
Each buffer area is divided into two fields, a lower field and an upper field. Data is
entered (or removed) from the buffer area in a circular mode. The last word in the

lower field is followed by the first word in the upper field. The last word in the upper

4-5 Rev 01

field is followed by the first word in the lower field. Whenever a buffer area has been
filled (or emptied) to the point where a field boundary is crossed, the CPU is interrupted
and the associated exchange package initiates a program to process the buffer data.

The channel continues to fill (or empty) the other buffer field while the CPU is pro-

cessing this buffer data.

The I/O exchange package areas are permanently assigned in the lower order ad-
The I/O section

buffer areas are assigned in higher order address positions of SCM. These areas may

dresses of SCM. These areas are arranged as shown in Figure 4-3.
be changed both in size and order (wiring change) to accommodate various types of
channel volume. A typical arrangement for the buffer areas is shown in Figure 4-4.

Total I/ O section space in SCM cannot exceed absolute address 10, 0008.

The Maintenance Control Unit is assigned to channel 0 but is different from the normal

PPU access (see Manual Control, page 7-1),

1000 [LANNEL'6 | CHANNEL 16 | GHANNELIT | CHANNEL I7
INPUT PACKAGE |OUTPUT PACKAGE|INPUT PACKAGE |OUTPUT PACKAGE
700 IT"CHANNEL 14 | CHANNEL 14 | CHANNEL IS | CHANNEL I5
INPUT PACKAGE |OUTPUT PACKAGE|INPUT PACKAGE [OUTPUT PACKAGE
600 [~ UANNEL 12 | CHANNEL 12 | CHANNEL I3 | CHANNEL 13~
INPUT PACKAGE |OUTPUT PACKAGE|INPUT PACKAGE |OUTPUT PACKAGE
00 T™CHANNEL 10 | CHANNEL 10 | CHANNEL Il | CHANNEL Ii
200 |INPUT PACKAGE |OUTPUT PACKAGE |INPUT PACKAGE OUTPUT PACKAGE
CHANNEL 6 | CHANNEL 6 | CHANNEL 7 | CHANNEL?
INPUT PACKAGE |OUTPUT PACKAGE |INPUT PACKAGE |OUTPUT PACKAGE
300 "CUANNEL 4 | CHANNEL 4 | CHANNEL 5 | CHANNELS
200 |NPUT PACKAGE_|OUTRUT PACKAGE INPUT PACKAGE [OUTPUT PACKAGE
CHANNEL 2 CHANNEL2 | CHANNEL3 CHANNEL 3
oo |INPUT PACKAGE. |OUTPUT PACKAGE | NPUT PACKAGE [OUTPUT PACKAGE
MCU REAL TIME | CHANNEL | CHANNEL 1
o L_ProKace PACKAGE |INPUT PACKAGE |OUTPUT PACKAGE
0 20 40 60 100
{ OCTAL ADDRESSES)
Figure 4-3. I/O Exchange Package Areas

Rev 01

4-6

200 400 600 1000

10000
CHN 16 CHN 16 CHN 17 CHN 17
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
7000
CHN 14 CHN 14 CHN 15 CHN 15
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
6000
CHN 12 CHN 12 CHN 13 CHN i3
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
5000
CHN 10 CHN 10 CHN {1 CHN 11
INPUT BUFFER OUTPUT BUFFER INPUT BUFFER OUTPUT BUFFER
4000
CHNS 485 CHNS 687
I/0 BUFFER I/0 BUFFER
3000
CHN | CHN | CHNS 283
INPUT BUFFER OUTPUT BUFFER I/0 BUFFER
2000
AVAILABLE FOR A MONITOR PROGRAM
1000
INPUT-OUTPUT SECTION EXCH PACKAGES

0 T T T
200 400 600 1000

i

- Figure 4-4. Buffer Area Arrangements

Example of PPU to SCM Data Transfer

Assume that the PPU has been notified that it must enter data into SCM. This must be
done by the monitor transmitting a message over the associated output channel to

the PPU. The CPU must clear the I/O control with a Reset Input Buffe’r instruction
(0160). This sets the assembly counter and the address counter to zero. Each transfer
should be preceded by this instruction.

The PPU transmits 12-bit words to the control which assembles them into 60-bit
words. Each 12-bit transfer is accomplished by the usual scheme.of word and record
flags and resume signals. (See Peripheral Processors, page 5-3.) When a 60-bit

word has been assembled from five 12-bit words a request is made for SCM access,

4-7 Rev 02

The PPU must wait until this is accomplished, which may take from a few clock periods
to a considerable length of time depending on SCM conflicts. Once the word has been

accepted by SCM the transmit and assemble procedure is repeated again.

When the PPU has transmitted enough words to half fill its assigned buffer area, a
midpoint threshold interrupt is generated in the SCM access control. This causes an
exchange jump to the channel input package which then proceeds to empty the buffer
into LCM. When the CPU begins to copy data from SCM to LCM the issue of all new
instructions is stopped, but existing instructions are allowed to complete execution.
This allows the CPU to transfer data one 60-bit word every clock period. The only
interruptions allowed are those from any PPU that is writing into SCM. Because of

this the CPU should be able to empty the buffer area fifty times faster than the PPU
can fill it.

When the PPU comes to the end of its buffer area a second interrupt request will be
transmitted to the CPU. The CPU will again start emptying the buffer area into LCM.
Since PPU records may be of any lengths, the PPU will now start entering new data

at the lower end of the buffer area. At this point, the CPU may have not responded to
the midpoint threshold interrupt. Therefore, should this condition occur (both threshold
interrupt flags set) no further PPU data transmission is allowed.

The PPU terminates the data transfer by setting the Input Record flag on the CPU
channel. If the PPU has not transmitted sufficient 12-bit words to form a complete
60-bit word then the 60-bit word is sent to SCM with the remaining parcels filled with

zeros. Before setting the Record flag the PPU should check to see that the last word
was accepted by SCM.

The PPU must not begin transmitting a new record of input data before the CPU has
completed processing the data in the SCM buffer area. There is no hardware provision
to prevent the PPU from doing this. Therefore, the PPU program must wait for
communication through its input channel before starting a new record. Should it start

a new record, it could destroy the End of Record condition already established in the
SCM buffer area.

Rev 02 4-8

Note that an End of Record will establish an interrupt condition of the CPU. However,
the CPU cannot determine whether this is a Threshold interrupt or an End of Record
interrupt. The CPU program has to keep track of which buffer threshold boundary
caused the last interrupt. If the interrupt occurs without crossing another buffer

threshold boundary it is an End of Record interrupt.

Example of a SCM to PP Data Transfer

Assume that the PPU has been notified that it must read data from SCM. The CPU
must clear the I/O section with a Reset Output Buffer instruction (0170). This sets
the Assembly counter and the Address counter to zero. It also initiates a SCM refer-
ence to bring the first 60-bit word from the buffer area to the disassembly register.
At the same time, the instruction sends a Record pulse to the PPU to indicate that the
transmission is able to start. The upper 12-bit parcel of the 60-bit word is then held
on the data lines and a Word Pulse signal is sent to set the Word flag in the PPU. The
PPU accepts the word and returns a Resume signal to SCM. When the fifth (last)
parcel is ready to be transmitted to the PPU a SCM reference is started to bring the
second 60-bit word from the buffer area to the channel register. This sequence is
accomplished by the hardware and once initiated by the CPU requires no further CPU
activity instructions to be executed. As the thresholds are passed in the buffer area
the CPU exchange package refills the buffer. This will happen as long as PPU requests
data. It is therefore necessary that the PPU program must know the record length by

prearranged data communication by the monitor or by some convention,

When the PP has received the expected amount of data it stops reading from the PPU
input channel and this terminates SCM activity. However, the PP program must sense
the Record flag on its input channel to determine whether the CPU has cleared the

SCM buffer area and begun a new record transmission. This, the CP program must

do by executing a Reset Output Buffer instruction again,

4-9 Rev 01

LARGE CORE MEMORY
Organization

Large Core Memory is a 2-wire, word organized memory of 1. 76 usec cycle time.
Parity checking is provided with one parity bit for each 15 data bits. It is designed to
provide a large amount of storage that emphasizes rapid transfer of data rather than
high speed random access. It has a capacity of 512,000 60-bit words. These are
arranged in 8 banks of 64, 000 words each. Within the bank, eight 60-bit words are
grouped into one LCM word and a parity bit is added for each 15 bits. A memory
reference reads all eight 60-bit words simultaneously, which are then held in a 480-
bit register. Since there is one 480-bit register per bank these 8 registers can hold
a total of 64, 60-bit words.

The banks are phased to provide maximum data transfer rate for block copy instruc-

of one 60-bit word per clock period is possible. LCM is provided with 4 reserve sense
lines per bank (stack). Also, there are 12, 288 reserve 60-bit words for LCM

(1525 words per bank). These can be exchanged in groups of 128 60-bit words with

groups in the bank and is done by changes to the stack wiring. A parity error in LCM
sets a bit in the Program Status register (page 2-14).

Large Core Memory Access

LCM can be accessed in two ways: either by block transfers between the SCM or by
single word transfers between the CPU.

SCM Access (Block Transfers)

Block transfers or copies are done by a block read or by a block write instruction.
Upon issue of a block copy instruction, all previously issued instructions are allowed
to complete execution but no new instructions are issued. This ensures that the copy

will proceed at maximum speed. However, the PPU access channels may still read

Rev 02 4-10

or write into SCM. Since LLCM will have ten SCM banks active when transferring at
maximum rate, this leaves 22 banks free for PPU access. Note that there is no con-
straint on a PPU accessing the same portion of SCM that is being used for a block
transfer. However, an I/O interrupt will not be processed until the block copy is

complete,

CPU Access (Single Word Transfers)

Single word transfers store, or load, one 60-bit word from, or into, the designated X
register. The first reference to a bank will require a complete clock period; how-
ever, subsequent references to the next seven words do not require the memory
reference because these words are held in the bank registers. In this case, the access
time is only 3 clock periods. Furthermore, there are 8 banks of LCM giving 8 60-bit
registers; effectively a 64-word register memory. By loading instructions into SCM

and retaining operands in LLCM the operands can be used at the following rate:
First word 16 clock periods

Second through eighth word 3 clock periods each
(Register Access)

Repeat for remaining eight word groups.

This means that operands are available, on an average, every 5 clock periods as opposed

to operands from SCM at 8 clock periods.

4-11 Rev 02

S. PERIPHERAL PROCESSOR UNIT

ORGANIZATION

Each Peripheral Processor Unit (PPU) is a completely independent and self-contained
computer. Therefore, each PPU may be executing a different prbgram at the same
time. A PPU's primary function is to perform I/O tasks at the request of the Central
Processor Unit. The standard system configuration has 7 peripheral processor units.
One of these seven is designated the Maintenance Control Unit (MCU). It is identical
to the other PPU's except it has specific, invariant channel connections. These
channel connections may be made to other PPU's and to the CPU to monitor error

conditions or to dead start them (see MCU, Manual Control, page 7-1).

The PPU has three major sections: the processor, memory, and I/O sections.

Processor

The processor is of conventional organization with an accumulator directing operands
to, or accepting operands from an adder. Two other adders are provided for use in

arithmetic operations associated with indirect addressing.

The processor has seven basic registers. These are the A, P, Q, X, Sk, K and Fd.

registers.

A Register (18 bits)

The arithmetic or A register is the principal operand register. The contents of A are
treated as signed operands. If bit 17 is set the operand is negative. Overflows are
ignored although an end around carry may show in the register at the end of an instruc-
tion execution. No sign extension is provided for 6-bit or 12-bit quantities which are
entered in the low order bits. However, the unused upper bits are cleared to zero.
Zero is represented by all zeros. The A register is used in the shift, logical arith-

metic and four I/O instructions.

5-1 Rev 02

P Register (12 bits)

The Program Address register or P register holds the address of the current instruc-
tion. During the execution of the current instruction the contents of P are advanced
by 1 or 2 to provide the address of the next instruction in the program for 12- or 24-bit

instructions. If a jump is called for, the Jump address is entered in P,

Q Register (12 bits)

The @ register has two major functions. It is primarily used for holding the address
of an operand during instruction execution. The secondary purpose is to hold the upper

6 bits of an 18-bit operand in the lower 6 bits of the register during operand arithmetic,

X Register (12 bits)

This register holds all data read from memory. It also is used during 18-bit arith-
metic operations in the A register. It holds the lower 12 bits of the operand during

these instructions.

Sk Register (6 bits)

The Sk register contains a shift count during shift instructions.

Fd Register (12 bits)

The Fd register holds the current instruction word for translation.

K Register (3 bits)

The K register is the instruction cycle counter and is used to count the number of

memory references required during indirect addressing.
Note that, of all the registers listed above, only the A register is used directly by the
programmer,

NOTE

Program loops in the PPU should be four words or long-
er to avoid reducing memory margins.

Rev 01 5-2

Memory

Each processor has its own 12-bit, 4096-word, magnetic core, random access
memory with a cycle time of 275 nanoseconds. Each 12-bit word has a parity bit
attached.

The memory is organized into two banks and consecutive addresses alternate between
these banks to increase processing speed. The memory consists of four 12-bit modules,
each of 1024 words. Two of these modules form one memory bank. Associated with
each bank is an S register which holds the address of the operand in storage, a Z
register which holds operands to be stored and the X register which receives operands
read from either bank. There are, therefore, two Z and two S registers for each

PPU. Associated with each Z register is a parity generating circuit that generates an
odd parity bit and this is stored in the memory with the operand. Parity is checked

on reading operands from memory. In the event of a parity error, the PPU sends a

parity error signal to the Maintenance Control Unit {MCU).

Input/Output

The PPU's communicate with the CPU and with other devices over channels which
operate in a full duplex mode. That is, information may be transmitted from the PPU
to a particular device at the same time that information is being received from that
device. Each full duplex channel consists of an input data path and an output data path
plus the associated control lines for each path. The full duplex channel consists of
two physical cables. Each cable handles data moving in one direction and contains

the control lines associated with that data. The two cables are completely symmetrical.

Word Flag

A word flag is normally a one clock period pulse transmitted over a cable to notify the
receiving device that the 12 data lines contain new information which is ready to be
sampled. In special situations the word flag is forced to a continuously set condition.
In this case the data may be sampled by the receiving device at any time. There is no
coordination between transmitter and receiver in this case, and the receiver must

interpret the data to exact information on time changes.

5-3 Rev 01

Record Flag

A record flag is normally a one clock period pulse transmitted over a cable to notify
the receiving device that a record of data transmission has been completed. In cases

where the word flag is continuously set the record flag is not used.

Resume

A resume is normally a one clock period pulse transmitted from the data receiving
device back to the data transmitting device to indicate that the data on the cable has
been sampled and the next data may be placed on the lines. In special situations the
resume may be forced to a continuously set condition. In this case the data transmit-
ting device may send new data at its own rate. There is no coordination between
transmitter and receiver in this case, and the receiver must be ready to accept each

12-bit data word as transmitted.

Input Channels

There are provisions for eight input cables in each PPU. Each input cable provides

Lemm i Sam s At -
uca L

40 Tl oL 4 3 5
12 bits Of incomin the associa ted control lin

sample the data on any one of these eight input cables at any one time. The selection
of which one of the eight cables is determined by the lowest order three bits in the

d register. The input channels are numbered zero through seven to correspond with
the value of the lowest order three bits in the d portion of the Fd register. The input

data and input control lines are illustrated in Figure 5-1.

Input Word Flag

This flag is set when a word pulse is transmitted over the input cable to the PPU.
The flag is cleared when the PPU has sampled the data on the cable and sends a resume
pulse to the transmitting device at the other end of the cable. This flag is also forced

to a cleared state during a Dead Start condition.

Input Record Flag

The flag is set when a record pulse is transmitted over the input cable to this PPU.

The flag is cleared when the PPU has sampled the next following input data word and

Rev 01 5-4

OUTPUT

INPUT

DEVICE A DEVICE B
ouTPUT WORD PULSE INPUT
WORD LNPUT
FLAG WORL
OUTPUT REC PULSE ouT
RECORD ECORD PUL INeuT
FLAG ECOR
INPUT
12 DATA BITS
RESUME PULSE @ INPUT
RESUME
INPUT ~ | worD PULSE = OUTPUT
WORD WORD PULSE uTey
FLAG WORD
INPUT RECORD PULSE oUTPUT
RECORD OUTPUT
FLAG FLAG OUTPUT
I2 DATA BITS
INPUT
RESUME<:> RESUME PULSE

®

Set by any output instruction

Set by output record flag instruction (74)

Set by corresponding output flag

Transmitted by any input instruction

Figure 5-1.

cleared by a resume pulse
cleared by a resume pulse
cleared by a resume pulse

cleared after one clock period

Signals for one PPU Channel (Fully Duplexed)

Rev 01

sends a resume pulse to the transmitting device at the other end of the cable. This

flag is also forced to a cleared state during a Dead Start condition.

Input Resume Flag

The flag is set for one clock period when the PPU has sampled the input data and is
ready for the next word to be transmitted. This flag is also set during a Dead Start
condition. A resume pulse is transmitted from this PPU over the input cable during

the time in which this flag is set.

Output Channels

There are provisions for eight output cables in each PPU. Each output cable provides
a path for 12 bits of outgoing data plus the associated control lines for that data. The
PPU may enter data on any one of these eight output cables at any one time. The
selection of which of the eight cables is determined by the lowest order three bits in
the d register. The output channels are numbered zero through seven to correspond

with the value on the lowest order three bits in the d register.

Output Word Flag

The flag is set when a word pulse is transmitted over the associated output cable.

The flag is cleared when a resume pulse is returned over this output cable. This flag
is also forced to a cleared position during a Dead Start condition. A one clock period
wide word pulse is formed for transmission over an output cable. This pulse is
associated with the output channel word flag and sets the word flag in addition to

transmitting the pulse over the output cable.

Output Record Flag

The flag is set when a record pulse is transmitted over the associated output cable.
The flag is cleared when a resume pulse is returned over this output cable. This flag

is also forced to a cleared position during a Dead Start condition.
A one clock period wide record pulse is formed for transmission over an output cable.

This pulse is associated with the output channel record flag and sets the record flag in

addition to transmitting the record pulse over the output cable.

Rev 01 5-6

Example 1

Assume that there are two PPU's with an inter- connecting channel and that a series
of one-word transfers is required. The PPU X is the output and PPU Y is the input
PPU.

1. PPU X loads its A register. If the PPU Y is expecting a transfer, it executes
a jump on the Input Word Flag instruction. If the flag is set it will go to the

next instruction. If clear, it will repeat this instruction.

2. PPU X executes an Output from the A register instruction. This will set the
output word flag in PPU X and the input word flag in PPU Y.

3. Since PPU Y's input word flag is now set it goes to the next instruction which
is an Input to the A register. This accepts the word that was transmitted by
PPU X and returns a Resume signal. This clears both the input and output
word flags. While PPU Y was involved in this activity PPU X was executing
a Jump on the Output Word flag instruction. If the flag is set and the word
was not accepted, then it repeats the instruction. If a Resume signal was

received then the flag would be clear and PPU X exits to the next instruction.

Note that the programmer had to indicate to the PPU that it should prepare for a data
input. This could be done by having PPU X set its Output Record flag which, in turn,
would set the Input Record flag in PPU Y. PPU Y could intermittently monitor this

flag and when it became set it would then go to the sequence outlined above,

In the case of a block transfer PPU X and PPU Y would perform the signal exchange
outlined above. The transfer is terminated when one of two conditions occurs., Either
the correct number of words will have been transferred or a record flag will be set by
PPU X and acknowledged by PPU Y to terminate the transfer. Note that there are two
ways a channel can be hung through an incorrect instruction sequence in a FF, First,
if the inputting device failed to look at its data channel, the outputting device would
remain hung until its word flag was clear. Secondly, if PPU X would attempt a block
transfer of more words than PPU Y then PPU X would hang up. The reverse is also

true.

5-7 Rev 01

Example 2

In communicating with a peripheral device there is no way of telling the device whether
data or a function code is being transmitted to it. However, this may be accomplished
in a number of ways. In one case, one channel may be assigned to transmit data
between the peripheral device and the PPU and a second channel may be assigned to
control and status lines. The following example describes communication between a

PP and a disk controller.

One channel is assigned to data transfers, a second channel carries control and status

information (Figure 5-2).

PERIPHERAL
PPU CONTROLLER
12 DATA BITS
CHANNEL
A
DATA 3 CONTROL SIGNALS
(WORD , RECORD, RESUME PULSES)
12 STATUS/CONTROL BITS
CHANNEL
B
3 CONTROL SIGNALS
CONTROL

Figure 5-2. Controller/ PPU Communication

1. The PPU executes a Record flag on channel A instruction (74) that initializes
the controller. The controller sends a resume on channel A to clear the
Record flag in the PPU.

2. The PPU reads channel B data which is 12 bits of status. These are always

available because the word flags are held set.

3. Assuming status conditions are correct, the PPU transmits the function
codes to the controller on channel B. For example, with a disk file the PPU

would send a track select code, with the track address in the lower bits.

Rev 01 5-8

It would then send a sector select code and so forth. All outputs to the

controller on channel B would be treated as function codes.

The controller is now ready to transfer data. This transfer would then p
proceed over channel A as example 1. However, once the controller starts
sending data it will not wait for the resume signal from the PPU. If the PPU
does not accept the data at once, the controller will replace that data with
new data. Therefore the controller's Word flag and Record flag are under

hardware control.

5-9 Rev 01

6. PERIPHERAL PROCESSOR INSTRUCTIONS

INSTRUCTION FORMATS

An instruction may have a 12-bit or a 24-bit format. The 12-bit format has a 6-bit

operation code f and a 6-bit operand or operand address d.

OPERATION OPERAND OR
CODE OPERAND ADDRESS
f d
6 6 B
T 6 5 0

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program

address (P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS
CODE p » A -
f d m
I | |
I , o Il . 0,
(P) (P+1)

ADDRESS MODES

Program indexing is accomplished and operands manipulated in several modes. The

two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-

bit addresses.

No Address

In this mode d or dm is taken directly as an operand. This mode eliminates the need
for storing many constants in storage. The d quantity is considered as a 12-bit num-

ber the upper six bits of which are zero. The dm quantity has d as the upper six bits

and m as the lower 12 bits.

6-1 Rev 02

Direct Address

In this mode, d or m + (d) is used as the address of the operand. The d quantity
specifies one of the first 64 addresses in memory (0000-00778). The m + (d) quantity
generates a 12-bit address for referencing all possible memory locations but one
(0000—77768). It is not possible to reference address 77778. If d # 0, the content of
address d is added to m to produce an operand address (indexed addressing). I d =0,

m is taken as the operand address.

EXAMPLE: Address Modes

Given: d =25
m = 100

contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234
Then:
MODE INSTRUCTION A REGISTER
No Address 14 000025
20 250100
Direct Address 30 000150
50 001234
Indirect Address 40 007776

Indirect Address

In this mode, d specifies an address the content of which is the address of the desired
operand. Thus, d specifies the operand address indirectly. Indirect addressing and

indexed addressing require an additional memory reference over direct addressing.

The Description of Instructions section uses the expression (d) to define the contents
of memory location d. An expression with double parentheses ((d)) refers to indirect
addressing. The expression (m + (d)) refers to direct addressing when d = 0 and to
indexed direct addressing when d # 0. Table 6-1 summarizes the addressing modes

used for the various Peripheral Processor instructions.

Rev 01 6-2

TABLE 6-1. ADDRESSING MODES FOR PERIPHERAL
PROCESSOR INSTRUCTIONS

INSTRUCTION

ADDRESSING MODE

TYPE DIRECT INDIRECT NO ADDRESS
Load 30, 50 40 14, 20
Add 31, 51 41 16, 21
Subtract 32, 52 42 17
Logical Difference 33, 53 43 11, 23

v/

Store 34, 54 44 %///////////%
Replace Add 35, 55 45 ////////////
Replace Add One 36, 56 46
Replace Subtract One 37, 57

7
///////////
77

Long Jump

01

Return Jump

7
7

/////////////

Unconditional Jump

ero Jump

] T
7

7,

2
7 77

04

on-Zero Jump

7

T

05

Z
N
Positive Jump
M

0

0

06

inus Jump

7

07

Shift

10

Logical Product

. 7
f///??////////////

12, 22

Selective Clear

7
7

13

Load Complement

.
7

%
1,7

15

6-

ev 01

DESCRIPTION OF PERIPHERAL INSTRUCTIONS

This section describes the Peripheral Processor instructions. Table 6-2 lists

designators used throughout the section.

TABLE 6-2. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

DESIGNATOR USE
A The A register.
d A 6-Dbit operand or operand address.
f A 6-bit instruction code.
m A 12-bit quantity used with d to form an 18-bit operand

or operand address.

P The Program Address register.

Q The Q register.

() Contents of a register or location
(O) Refers to indirect addressing.

Preceding the description of each instruction is the octal code, the instruction name
and instruction length.

EXAMPLE :
52 \Subtract ilm + (d))J \ (24]‘BIits),
Octal Instruction Instruction
Code Name Length

Instruction formats are also given; hashed lines within a format indicate these bits are

not used in the operation.

Rev 01 6-4

Error Stop
00 Error Stop (12 bits)
77 Error Stop (12 bits)
The instructions cause the peripheral processor program to stop and to indicate a

program error condition to the Monitor Control Unit. The Peripheral Processor Unit
can be restarted only by a dead start sequence from the Maintenance Control Unit,

No Operation

24 Pass (12 Bits)
25 Pass (12 Bits)
26 Pass (12 Bits)
27 Pass (12 Bits)
75 Pass (12 Bits)
76 Pass (12 Bits)
7
f 000000
| 6 5 0]

These instructions specify that no operation be performed. They provide a means of

padding out a program.

Data Transmission

14 load d (12 Bits)

This instruction clears the A register and then loads it with d. The upper 12 bits of A

are zero,

15 Load Complement d (12 Bits)

6-5 Rev 01

This instruction clears the A register and loads the complement of d. The upper 12
bits of A are set to one.
30 Load (d) (12 Bits)

This instruction clears the A register and loads the contents of location d. The upper

six bits of A are zero.

34 Store (d) (12 Bits)

This instruction stores the lower 12 bits of A in location d.

40 Load ((d)) (12 Bits)

This instruction clears the A register and loads a 12-bit quantity that is obtained by
indirect addressing. The upper six bits of A are zero. Location d is read out of

memory, and the word obtained is used as the operand address.

Rev 01 6-6

44 Store ((d)) (12 Bits)

" 6 5 o

This instruction stores the lower 12 bits of A in the location specified by the contents

of location d.

20 Load dm (24 Bits)
f | d m
23 18 17 12 11 0
— A /
V —V
(P) (P+1)

This instruction clears the A register and loads an 18-bit quantity consisting of d as
the higher six bits and m as the lower 12 bits. The contents of the location following

the present program address are read out to provide m.

50 Load (m+(d)) (24 Bits)
Lf [¢ [m |
23 8 17 12 11 0]
— / \— /
4 \'4
(P) (P+1)

This instruction clears the A register and loads a 12-bit quantity. The upper six bits
of A are zero. The 12-bit operand is obtained by indexed direct addressing. The
quantity "'m", read out of memory location P + 1 serves as the base operand address
to which (d) is added. If d = 0, the operand address is simply m, but if d # 0, then
m + (d) is the operand address. Thus location d may be used for an index quantity to

modify operand addresses.

6-7 Rev 01

54 Store (m + (d)) (24 Bits)

f | d I m
23 18 17 12 11 0
\ AN /
v v
(P) (P+1)

This instruction stores the lower 12 bits of A in the location determined by indexed

addressing (see instruction 50).

Arithmetic

16 Add d (12 Bits)

This instruction adds d (treated as a 6-bit positive quantity) to the content of the A

register.

17 Subtract d (12 Bits)

This instruction subtracts d (treated as a 6-bit positive quantity) from the content of

the A register,

Rev 01 6-8

31 Add (d) (12 Bits)

This instruction adds to the A register the contents of location d (treated as a 12-bit

positive quantity).

32 Subtract (d) (12 Bits)

This instruction subtracts from the A register the contents of location d (treated as a

12-bit positive quantity).
41 Add ((d)) (12 Bits)

This instruction adds to the content of A a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

6-9 Rev 01

42 Subtract ((d)) (12 Bits)

This instruction subtracts from the A register a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

21 Add dm (24 Bits)
f I d] m
23 18 17 12 11 0
A /\ 7
' Vv
(P) (P+1)

This instruction adds to the A register the 18-bit quantity consisting of d as the higher
six bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m,

51 Add (m +(d)) (24 Bits)
f d | m J
23 1817 121 0,
A \'
(P) (P+1)

This instruction adds to the content of A a 12-bit operand (treated as a positive quantity)

obtained by indexed direct addressing (see instruction 50).

Rev 01 6-10

52 Subtract (m + (d)) (24 Bits)

Lt [a] m
23 1817 12, . 0,
(P) (P+1)

This instruction subtracts from the A register a 12-bit operand (treated as a positive

quantity) obtained by indexed direct addressing (see instruction 50).

Shift

10 Shiftd (12 Bits)

This instruction shifts the contents of A right or left d places. If d is positive (00-37)

the shift is left circular; if d is negative (40-77) A is shifted right (end off with no sign
extension). Thus, d = 06 requires a left shift of six places. A right shift of six places
results when d = 71,

Logical

11 Llogical difference d (12 Bits)

I 6 5 0

This instruction forms in A the bit-by-bit logical difference of d and the lower six bits
of A. This is equivalent to complementing individual bits of A that correspond to bits

of d that are one. The upper 12 bits of A are not altered.

6-11 Rev 01

12 Logical product d (12 Bits)

This instruction forms the bit-by-bit logical product of d and the lower six bits of the A
register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are

zZero.

13 Selective clear d (12 Bits)

This instruction clears any of the lower six bits of the A register where there are

corresponding bits of d that are one. The upper 12 bits of A are not altered.

33 Logical difference (d) (12 Bits)

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and the contents of location d. This is equivalent to complementing individual bits of

A which correspond to bits of (d) that are one. The upper six bits of A are not altered.

Rev 01 6-12

43 Logical difference ((d)) (12 Bits)

f d B
0

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and the 12-bit operand obtained by indirect addressing. Location d is read out of
memory, and the word obtained is used as the operand address. The upper six bits of

A are not altered.

22 Logical product dm (24 Bits)
f d m
23 18 I7 IZI\L o ,
—V v
(P) (P+1)

This instruction forms in the A register the bit-by-bit logical product of the contents
of A and the 18-bit quantity dm. The upper six bits of this quantity consist of d and

the lower 12 bits are the content of the location following the present program address,

23 Logical difference dm (24 Bits)
f d | m [
RN A T
(P) (P+1)

This instruction forms in A the bit-by-bit logical difference of the contents of A and
the 18-bit quantity dm. This is equivalent to complementing individual bits of A which
correspond to bits of dm that are one. The upper six bits of the quantity consist of d,
and the lower 12 bits are the content of the location following the present program

address.

6-13 Rev 01

53 Logical difference (m +(d)) (24 Bits)

f | d l m
23 18t 12 11 0

v v

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A

are not altered.

Replace

35 Replace add (d) (12 Bits)

()]
o
>

This instruction adds the quantity in location d to the contents of A and stores the lower
12 bits of the result at location d. The resultant sum is left in A at the end of the

operation and the original contents of A are destroyed.

36 Replace add one (d) (12 Bits)

The quantity in location d is replaced by its original value plus one. The resultant sum

is left in A at the end of the operation, and the original contents of A are destroyed.

Rev 01 6-14

37 Replace subiract one (d) (12 Bits)

The quantity in location d is replaced by its original value minus one. The resultant
difference is left in A at the end of the operation, and the original contents of A are

destroyed.

45 Replace add ((d)) (12 Bits)

The operand which is obtained from the location specified by the contents of location d,
is added to the contents of A, and the lower 12 bits of the sum replace the original

operand. The resultant sum is also left in A at the end of the operation.

46 Replace add one ((d)) (12 Bits)

The operand, which is obtained from the location specified by the contents of location
d, is replaced by its original value plus one. The resultant sum is also left in A at

the end of the operation, and the original contents of A are destroyed.

6-15 Rev 01

47 Replace subtract one ((d)) (12 Bits)

The operand, which is obtained from the location specified by the contents of location
d, is replaced by its original value minus one. The resultant difference is also left

in A at the end of the operation, and the original contents of A are destroyed.

55 Replace add (m + (d)) (24 Bits)
f d | m
23 18 17 12 1|1 0]
A /\ J
A4 v
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct ad-
dressing, is added to the contents of A, and the lower 12 bits of the sum replace the
original operand in memory. The resultant sum is also left in A at the end of the

operation, and the original contents of A are destroyed.

56 Replace add one (m + (d)) (24 Bits)
f d m
23 18 17 12 11 0,
v vV
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct address-
ing, is replaced by its original value plus one (see instruction 50, for explanation of
addressing). The resultant sum is also left in A at the end of the operation, and the

original contents of A are destroyed.

Rev 01 6-16

57 Replace subtract one (m + (d)) (24 Bits)

f d m
23 Bz 2 0,
' ¥
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct address-
ing, is replaced by its original value minus one (see instruction 50, for explanation of
addressing). The resultant difference is also left in A at the end of the operation, and

the original contents of A are destroyed,

Branch

03 Unconditional jump d (12 Bits)

1 6 5 o

This instruction provides an unconditional jump to any instruction up to 31 steps for-
ward or backward from the current program address. The value of d is added to the
current program address. If d is positive (01 - 37), then 0001 (+1) - 0037 (+31) is
added and the jump is forward. If d is negative (40 - 76) then 7740 (-31) - 7776 (-1) is
added and the jump is backward. The value of d must not equal 00 or 77. REither of
these values cause the PPU to hang in a loop on the 03 instruction. This will violate
the restriction on program loops (see page 5-2). Note that the MCU cannot monitor
this looping. Should the PPU be hung in such a loop a Dead Start is necessary to
restart the PPU.

04 Zero jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward

6-17 Rev 02

or backward from the current program address. If the content of the A register is
zero, the jump is taken. If the content of A is non-zero, the next instruction is

executed. Negative zero (777777) is treated as non-zero. For interpretation of d

see instruction 03.

05 Nonzero jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. Tf the content of the A register is

nonzero, the jump is taken, If A is zero, the next instruction is executed. Negative

zero (777777) is treated as nonzero. For interpretation of d see instruction 03.

06 Plus jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
positive, the jump is taken. If A is negative, the next instruction is executed. Positive
zero is treated as a positive quantity; negative zero is treated as a negative quantity.

For interpretation of d see instruction 03.

Rev 01

07 Minus jump d (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
negative, the jump is taken. If A is positive, the next instruction is executed. Positive
zero is treated as a positive quantity; negative zero is treated as a negative quantity,

For interpretation of d see instruction 03.

01 Long jump to m + (d) (24 Bits)

23 18 17 12 11 o

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0, then m is not modified.

02 Return jump to m + (d) (24 Bits)
| f d | m
_23 18 I7 |2/LII 0,

~ v 4
(P) (P+1)

This instruction jumps to the sequence beginning at the address given by m + (d). If
d = 0 then m is not modified. The current program address (P) plus two is stored at
the jump address. The new program commences at the jump address plus one. This
program should end with a long jump to, or normal sequencing into, the jump address
minus one, which should in turn contain a long jump, 0100. The latter returns the

original program address plus two to the P register,

6-19 Rev 01

Input/Output

60 Jump on input word flag (24 Bits)
64 Jump on output word flag (24 Biis)
[¢ | d m
23 I8 17 12 11 0]
\ J\ /
v \/
(P) (P+1)

These instructions are conditional jumps. The current program sequence is continued

if the flag on channel d is clear. If the flag on channel d is set a new program sequence

is begun at address m.

61 Jump on no input word flag (24 Bits)
65 Jump on no output word flag (24 Bits)
f d m
23 18 17 12 11 o
AN 7\ 7
v \
(P) (P+1)

These instructions are identical to the 60 and 64 instructions except that the jump

occurs if the flag is clear.

62 Jump on input record flag (24 Bits)
66 Jump on output record flag (24 Bits)

7+ 1 « | =

23 I8 17 i2 1l 0
\ J\ J

v \'4
(P) (P+1)

These instructions are identical to the 60 and 64 instructions except that the jump is

conditioned by the status of the record flag.

Rev 01 6-20

63 Jump on no input record flag (24 Bits)

67 Jump on no output record flag (24 Bits)
f d m
23 I8 17 12 11 o]
L AN /
A\ 4 A4
(P) (P+1)

These instructions are identical to the 61 and 65 instructions except that the jump is

conditioned by the status of the record flag.

70 Input to A from channel d (12 Bits)

This instruction reads one word from input channel d and enters the word in the A
register. This instruction will not be executed until the input channel d word flag is
set. If the flag is not set at the time the instruction is read from storage the PPU
program will stop with the instruction in the f and d registers and wait until the flag
is set by an external signal. The input channel d record flag does not affect execution
of this instruction. This instruction clears the input channel d word flag and record
flag and transmits a resume signal over the input cable after the word has been read

into the A register. The upper six bits of A remain clear.

72 Output from A on channel d (12 Bits)

f d |
0

This instruction transmits one word over output channel d from the lower 12 bits of A,
The A register content is not altered. This instruction will not be executed while the

output channel d word flag is set. If the flag is set from a previous output instruction

6-21 Rev 01

the PPU program will stop with this instruction in the f and d registers and wait for an
external resume signal to clear the output channel d word flag. When this instruction
is executed the output channel d word flag is set and a word pulse is transmitted over

the output channel d cable.

71 Input (A) words to m from channel d (24 Bits)
f d m
23 18 17 12 11 0
\ /\ /
\'4 v
(P) (P+1)

This instruction reads a block of data arriving on input channel d and stores the data

in consecutive address locations in memory. The initial storage location for the block
is specified by the m designator. The length of the block is specified by the initial
contents of the A register or by the setting of the record flag on the input channel during

a data transfer.

The starting address is obtained from address m and is entered in the Q register

which therefore contains the address for the first word of the data block. The d register
contains the channel number, and the A register contains a word count for the block,

If (A) is zero at this time the instruction sequence is terminated and the next instruction

word is read from storage.

The input channel d word flag must be set before the first word of the block can be
entered in storage. If this flag is not set when the instruction is initiated the PPU
program will stop with the instruction in the f and d registers and wait until the flag

is set by an external signal. The presence of an input channel d record flag is ignored
for the first word of the block.

When the input channel d word flag is set the word on the input channel data lines is

read into PPU storage at location (Q). The content of the A register is reduced by

one count. The content of the Q register is increased by one count in a 12-bit ones

Rev 01 6-22

71 INPUT (A) WORDS TO M FROM CHANNEL D

I

YES EXIT

NO

SET BY AN
I8 < INPUT WORD PULSE
CHANNEL D
INPUT WORD FLA

SET?

SET BY AN INPUT
<~ RECORD PULSE

IS

CHANNEL D ENTER "NOISE"

THIS THE FIRST

INPUT RECORD FLAG WORD IN
WORD RECEIVED SET? STORAGE
EXIT

SEND WORD TO STORAGE
A-1—>A; INCREMENT STORAG
LOCATION; CLEAR INPUT
WORD AND RECORD FLAGS
SEND RESUME PULSE.

Figure 6-1. 71 Flow Chart

6-23 Rev 01

complement mode. The input channel d word flag and input channel d record flag are
cleared, and a resume pulse is transmitted over the input cable. If the content of the
A register is now zero the instruction sequence is terminated and the next instruction
word is read from storage. If (A) is not zero the PPU program waits for the setting

of the input channel d word flag for the next word of the block.

The setting of the input channel d record flag terminates the block input at any word
after the first word. In this case the sequence is terminated with (A) decremented by
the number of words actually transmitted over the input channel. A 'noise' word is
entered in the next sequential storage location in the PPU block input storage area.
The remaining locations in the PPU storage area are unaltered. Note that Q may be

incremented through location 77768 to 00008, which may destroy existing data or a

program.
73 Output (A) words from m on channel d (24 Bits)
L f | d m
23 i8 i7 i2 i (0]
— AN J
v 4
(P) (P+1)

This instruction transmits a block of data over output channel d from consecutive
storage locations beginning at address m. The length of the block is specified by the
initial contents of the A register. A zero length will cause the instruction to be

executed as a pass instruction.

The starting address is obtained from the location defined by m and is entered in the
Q register. The Q register now contains the address for the first word of the data
block. The d register contains the channel number, and the A register contains the
word count for the block, If (A) is zero at this time the instruction sequence is

terminated and the next instruction word is read from storage.

Rev 01 6-24

73 OUTPUT (A) WORDS FROM M ON CHANNEL D

|

YES S ExiT

NO

CLEARED BY
—OUTPUT RESUME PULSE

IS
CHANNEL D

OUTPUT WORD
FLAG SET?

SEND DATA & HOLD
SEND OUTPUT WORD FLAG
SEND OUTPUT WORD PULSE

A-1->A

NOTE THAT THE OUTPUT CHANNEL D RECORD FLAG
IS IGNORED BY THIS INSTRUCTION.

Figure 6-2. 73 Flow Chart

6-25 Rev 01

The output channel d word flag must be cleared before the first word of the block can
be transmitted over the channel. If this flag is set when the instruction is initiated the
PPU program will stop with the instruction in the f and d registers and wait until the
flag is cleared by a resume pulse over the output channel d cable. The presence of an

output channel d record flag has no effect on the execution of this instruction.

When the output channel d word flag is cleared a word is read from storage location
(Q) and is entered in the channel d output register. The output channel d word flag is
set, and a word pulse is transmitted over the output cable. The content of the A
register is reduced by one count. The content of the Q register is increased by one
count in a 12-bit ones complement mode. If the content of the A register is now zero
the instruction is terminated and the next instruction is read from storage. If (A) is
not zero the PPU program waits for the output channel d word flag to clear and repeats

the sequence for the next word of the block.

74 Output record flag on channel d (12 Bits)

¢ d]

i 6 5 0

This instruction sets the output channel d record flag and transmits a record pulse
over the output channel d cable. The previous status of the output channel d flags is
ignored in this process. The instruction will be executed and a record pulse transmitted

even though the output channel d record flag was already set.

Rev 01 6-26

7. MANUAL CONTROL
INTRODUCTION

Manual control is provided by the Maintenance Control Unit (MCU) and the console
keyboard, The MCU is a PPU that is dedicated to system maintenance. The MCU
enables the entering of programs into the system with no prior program in the system
(Dead Start). It has secondary functions of monitoring memory parity errors, program

errors and generate dead dumps.

MAINTENANCE CONTROL UNIT

The MCU is connected with up to 15 PPU's through the scanner as shown in Figure 7-1,
The scanner is a device that, upon translation of the scanner selector bits from the
MCU, connects MCU channel 7 to channel 0 of any one of 15 PPU's. It also connects
dead start, dead dump, and clear parity error to the selected PPU's control cable and
the PPU progfam and parity errors to MCU channel 3. The MCU-scanner interface
consists of MCU output channel 0, input channel 3, and input and output channel 7.
Output channel 0 sends four PPU selector bits and one bit each for dead start, dead
dump, and clear parity error. Channel 3 has five inputs to the MCU: a program error
signal and four stack parity bits. Channel 7 is a normal data channel operating in a
full duplex mode. The PPU-scanner interface consists of full-duplex channel 0 and a
control cable containing the dead start, dead dump, and clear parity error inputs and

the program error and four stack parity error outputs.

PPU Dead Start

The following PPU registers are set to the indicated values by a Dead Start signal:

(A) = 007777
(P) = 0000
(X) = 0000
(f) =11

(d)y = 00

(k) =1

7-1 Rev 01

DEAD START CPU

CHAN O . ¢ EAR CPU I/0 SECTION FLAGS
CLEAR CPU PARITY FLAGS PPU
Q<

2 7

\)C?‘P\/GV |

P !

CHAN O CHAN O > |
CARD CHAN 3 ADD'L
READER MCU SCANNER PPU’S

DEAD STARL CHAN 7

LCM

SCM
PARITY PARITY
INFO INFO

Figure 7-1. MCU Configuration

Rev 02 , 7-9

In addition to the values forced in the register, the PPU flags for the input and output
channel control are all forced to a cleared condition and a continuous resume signal is
sent over all input cables while the Dead Start signal is up. Dropping of the Dead Start
signal then allows a program to be loaded into the PPU over input channel 0 beginning
at storage address 0. The loading, if not terminated at some point by a record flag,
will terminate at 7777 (octal) words. The PPU then begins execution of the program
at address 0001. The Dead Start signal and the input program are sent from the MCU

under control of the MCU program.

The MCU is dead started by the card reader. A switch on the card reader generates
the Dead Start signal which sets the MCU registers to the values described above for
the PPU. The card reader will then input a program to the MCU over channel 0 until
the A register count has decremented to zero (memory full) or until the end of file

switch on the card reader is manually depressed generating a record flag.

Dead Dump

One of the control lines from the MCU to the PPU (through SCANNER selection) is a
dead dump line. A signal is programmed on this line when the PPU program has
failed and a dump of PPU memory is desired to analyze the cause of failure. In this
case a Dead Start signal must be programmed first, followed by a Dead Dump signal.
This changes the 71 input code in the f register to a 73 output code. The Dead Dump
signal is synchronized in the PPU and begins a data transmission of the entire PPU
storage over output channel 0. The transmission starts at address 0 and terminates
at address 77768.

CPU Dead Start

The MCU outputs the CPU Dead Start signal and, while the Dead Start signal remains
up, writes into SCM. The MCU has access to any part of SCM. Therefore, each word
sent to the CPU is given a specific address. When the Dead Start signal drops, the

7-3 Rev 01

CPU executes an exchange jump using an exchange package starting at absolute SCM
location 0. The MCU must have written the exchange package and a program into

SCM. How the CPU loads the system programs is software determined.

Parity Error Register

Each PPU contains a four bit parity error register. The storage stack in the PPU
which has failed is indicated by a set bit. A bit in the parity error register remains
set until a clear Parity Error signal is transmitted over the control cable from the MCU
by way of the scanner. This condition is programmed in the MCU and clears all four

bits in the selected PPU parity error register.

Program Error

A Program Error condition is transmitted from the PPU to the MCU over the control
cable. This condition is a translation of the f register contents and is present when
the (f) are either 00 or 77,

CONSOLE

This display console consists of a cathode ray tube display and a keyboard for manual

entry of data. A system may have several display consoles for controlling independent

programs simultaneously.

Keyboard Input

The console may be selected for input to allow manual entry of data or instructions to
the computer. The first part of an operating system program may select keyboard
input to allow the programmer to manually select a routing from the operating system.
Data entered via the keyboard may be displayed on the display tubes if desired.
Assembly and display of keyboard entries is done by a routine in the operating system.,

Rev 02 7-4

Figure 7-2. Display Console

7-5 Rev 01

APPENDIX A

TIMING NOTES

TIMING NOTES

Times given include clock period known to occur before instruction issue, but do

not consider register conflict conditions that might delay issue.

Except for the multiply and divide units, all functional units permit new instructions
to enter them every clock period. A new instruction may enter the multiply unit

in any clock period, provided there was no operation initiated in the preceding
clock period. A new instruction can enter the divide unit two clock periods prior

to completion of a previous divide operation. Once an instruction issues to a

functional unit, it is executed in a fixed amount of time. No delays are possible.

Times given for instructions 01 to 07 and 50 to 57 do not consider memory

conflict conditions or SAS backup conditions caused by bank conflicts.

Execution of Block Copy instructions (011 and 012) will be delayed until the

following conditions are satisfied:
a. Al operating registers are free,
b. No SCM bank conflicts exist.

c. LCM is not busy.

d. All LCM banks have completed previously initiated read/write cycles.
A delay will occur during instructions 011, 012, and 013 when an I/O section word

request is made. A minimum delay of one clock period is required to enter the
I/O word address in the address stream to the SAS. An additional delay will occur
if the I/O reference causes a bank conflict in SCM.

A delay will occur in the execution of the Exchange Exit instruction (013) until two
conditions are satisfied:

a. All operating registers are free.

b. No SCM bank conflicts exist,

A-1 Rev 02

5. The Read LLCM and Write LLCM instructions (014 and 015) will not issue until three

conditions are satisfied:
a. LCM is not busy.
b. Xj register is free,

c. Xk register is free.

6. A Read LLCM instruction (014) for a word already residing in an LCM bank operand
register as a result of a previous instruction will require three clock periods.
For a word not currently residing in one of the LCM bank operand registers, the

instruction requires 6 clock periods.

7. The Reset Buffer instructions and Read Channel Status instructions (016 and 017)

will not issue and begin execution until the required B registers are free.

8. Jump instruction 02i0K will not begin execution until the Bi register is free.

i
b sk 21T m T b AT o 1 3 H i i
Insiruction execution will also be delayed if an instruction fetch is in process,

9. The execution of a branch instruction (030 to 037, 04ijk, 05ijk, 06ijk, and 07ijk)

maybe delayed if an instruction fetch is in process.

10. Instructions 10 to 47 and 60 to 77 will not issue until the following conditions are

satisfied:

a. The required A, B, and X registers are free,

b. X and B register input paths will be free during the required clock period.
c. No SAS backup condition exists,

d. The multiply unit is free (instructions 40, 41, and 42 only).

e. The divide unit is free (instructions 44 and 45 only).

Rev 02 A-2

11.

12,

Instructions 50 to 57 will not issue until the following conditions are satisfied:
a. The required A, B, and X registers are free,

b. No SAS backup condition exists,

A delay may occur in the execution of the Return Jump inétruction (0100K) if the
instruction stack control has requested one or more instruction words that have

not arrived at the instruction stack (likely to occur in straight line coding).
Average execution time is 18 clock periods.

A-3 Rev 02

CENTRAL PROCESSOR INSTRUCTIONS

INSTRUCTION EXECUTION TIME FUNCTIONAL
CODE NAME (CLOCK PERIODS) UNIT
00000 Error exit to EEA - -
0100K Return jump to K Min 13%* -

011jK Block copy K + (Bj) words

from LCM to SCM Min = N + 15%% -
012jK Block copy K + (Bj) words

from SCM to LCM Min = N + 11%x* -
01300 Exchange exit to NEA if exit

flag clear Min = 28 -
013jK Exchange exit to K + (Bj) if

exit flag set Min = 28 -
014k Read LCM at (Xk) to Xj 3, 16%* -
015jk Write (Xj) into LCM at (Xk) 3 -
0160k Reset channel (Bk) input

buffer if j = 0 4 -
0167k Read channel (Bk) input

status to Bj if j # 0 3 -
0170k Reset channel (Bk) output

buffer if j = 0 16 -
017k Read channel (Bk) output

status to Bjif j # 0 3 -
02i0K Jump to K + (Bi) Min 3 (in stack jump) -

Min 11 (out of stack jump)

030jK Branch to K if (Xj) =0 Min 2 (branch fall through) -

Min 3 (branch in stack)
Min 11 (branch out of stack)

031jK Branch to K if (Xj) # 0 b -
032jK Branch to K if (Xj) positive -
033jK Branch to K if (Xj) negative -
034jK Branch to K if (Xj) in range -
035jK Branch to K if (Xj) not in [Same as above

range -
036jK Branch to K if (Xj) definite -
037jK Branch to K if (Xj) indefinite/ -

* Refer to Timing Notes.
%% 1< = Number of words in the block. (4 clock periods if N=0)

Rev 02 A-4

INSTRUCTION
CODE

041jK

051jK
0613iK
071iK
10ij0
11ijk
12ijk
13ijk
14i0k
15ijk
16ijk
17ijk
20ijk
21ijk
221k
23ijk
24ijk
25ijk
26ijk
27ijk
30ijk

31ijk

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

NAME

Branch to K if (Bi) = (Bj)

Branch to K if (Bi) # (Bj)
Branch to K if (Bi) > (Bj)
Branch to K if (Bi) < (Bj)
Copy (Xj) to Xi

Logical product of (Xj)
and (XKk) to Xi

Logical sum of (Xj) plus
(Xk) to Xi

Logical difference of (Xj)
minus (Xk) to Xi

Copy complement of (Xk)
to Xi

Logical product of (Xj)
and comp (Xk) to Xi

Logical sum (Xj) plus
comp (Xk) to Xi

Logical difference of (Xj)
minus comp (Xk) to Xi

Left shift (Xi) by jk

Right shift (Xi) by jk

Left shift (Xk) by (Bj) to Xi

Right shift (Xk) by (Bj) to Xi
Normalize (Xk) to Xi and Bj

Round and normalize (Xk)
to Xi and Bj

Unpack (Xk) to Xi and Bj
Pack (Xk) and (Bj) to Xi

Floating sum of (Xj) plus
(Xk) to Xi

Floating difference of (Xj)
minus (Xk) to Xi

EXECUTION TIME
(CLOCK PERIODS)

Min 2 (branch fall through)
Min 3 (branch in stack)
Min 11 (branch out of stack)

Same as above

W N DN NN DN

w

FUNCTIONAL
UNIT

Boolean
Boolean
Boolean
Booléan
Boolean
Boolean
Boolean

Boolean
Shift
Shift
Shift
Shift

Normalize

Normalize
Boolean

Boolean
Floating Add

Floating Add

Rev 01

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

INSTRUCTION EXECUTION TIME FUNCTIONAL

CODE NAME (CLOCK PERIODS) UNIT
32ijk Floating DP sum of (Xj) plus

(Xk) to Xi 4 Floating Add
33ijk Floating DP difference of (Xj)

minus (Xk) to Xi 4 Floating Add
34ijk Round floating sum of (Xj)

plus (Xk) to Xi 4 Floating Add
35ijk Round floating difference of

(Xj) minus (Xk) to Xi 4 Floating Add
36ijk Integer sum of (Xj) plus (Xk)

to Xi 2 Long Add
37ijk Integer difference of (Xj)

minus (Xk) to Xi 2 Long Add
40ijk Floating product of (Xj)

times (Xk) to Xi 5 Floating Multiply
41ijk Round floating product of

(Xi) times (Xk) to Xi 5 Floating Multiply
42ijk Floating DP product of (Xj)

times (Xk) to Xi 5 Floating Multiply
43ijk Form mask of jk bits to Xi 2 Shift
44ijk Floating divide (xj) by (Xk)

to Xi 20 Floating Divide
45ijk Round floating divide (Xj) by

(Xk) to Xi 20 Floating Divide
46000 Pass 2 -
4710k Population count of (Xk) to Xi 2 Population Count
50ijK Increment (Aj) plus K to Ai 2 (Set Aj) Increment

8 (Read to Xj)
1 (Store from Xj)

51ijK Increment (Bj) plus K to Ai Increment
52ijK Increment (Xj) plus K to Ai Same as above Increment
53ijk Increment (Xj) plus (Bk) to

Ai Increment

Rev 02 A-6

CENTRAL PROCESSOR INSTRUCTIONS (Cont'd)

INSTRUCTION EXECUTION TIME FUNCTIONAL

CODE NAME (CLOCK PERIODS) UNIT
54ijk Increment (Aj) plus (Bk) 2 Set (Aj)

to Ai 8 (Read to Xj) Increment

1 (Store from (Xj)

55ijk Increment (Aj) minus (Bk)

to Ai Increment
56ijk Increment (Bj) plus (Bk) Same as above

to Ai . Increment
5T7ijk Increment (Bj) minus (Bk)

to Ai Increment
60ijK Increment (Aj) plus K to Bi Increment
61ijK Increment (Bj) plus K to Bi Increment
62ijK Increment (Xj) plus K to Bi Increment
63ijk Increment (Xj) plus (Bk)

to Bi 2 Increment
64ijk Increment (Aj) plus (Bk)

to Bi 2 Increment
65ijk Increment (Aj) minus (Bk)

to Bi 2 Increment
66ijk Increment (Bj) plus (Bk)

to Bi 2 Increment
687ijk Increment (Bj) minus (Bk)

to Bi 2 Increment
T0ijK Increment (Aj) plus K to Xi 2 Increment
71ijK Increment (Bj) plus K to Xi 2 Increment
72ijK Increment (Xj) plus K to Xi 2 Increment
73ijk Increment (Xj) plus (Bk) to

Xi 2 Increment
T4ijk Increment (Aj) plus (Bk) to

Xi 2 Increment
75ijk Increment (Aj) minus (Bk)

to Xi 2 Increment

76ijk Increment (Bj) plus (Bk) to

Xi 2 Increment
77ijk Increment (Bj) minus (Bk)

to Xi 2 Increment

Rev 02

PERIPHERAL PROCESSOR INSTRUCTIONS

INSTRUCTION CODE EXECUTION TIME
(OCTAL) NAME (CL.OCK PERIODS)
00 Error stop -
0100 Long jump to m 10 or 15
01XX Long jump to m + (d) 15,20, 25
0200 Return jump to m 15 or 20
02XX Return jump to m + (d) 20, 25,30
03 Unconditional jump d 8,10
04 Zero jump d 5
05 Nonzero jump d 5
06 Positive jump d 5
07 Negative jump d 5
10 Shift d Minimum 6, Maximum 34
11 Logical difference d 5
12 Logical product d 5
13 Selective clear d 5
14 Looad d 5
15 Load complement d 5
16 Add d 5
17 Subtract d 5
20 Load dm 10
21 Add dm 10
22 Logical product dm 10
23 Logical difference dm 10
NOTES:

1. Where more than one time is given, the shorter time is obtained when full use
of bank phasing (back-to-back storage references to alternate banks) is made.

2. Conditional jump instructions list times for the "jump not taken' case. Add
3 or 5 clock periods for the ''jump taken'' case, depending on the value of d.

3. For the 10 (shift) instruction: Minimum time is required if the shift count <3;
for shift counts > 3, add 1 clock period per shift beyond 3 to the minimum time,

Rev 01 A-8

PERIPHERAL PROCESSOR INSTRUCTIONS (Cont'd)

ISTRUCTION CODE EXECUTION TIME
(OCTAL) NAME (CLOCK PERIODS)

24 Pass

25 Pass 5
26 Pass

27 Pass

30 Load (d) 15
31 Add (d) 15
32 Subtract (d) 15
33 Logical difference (d) 15
34 Store (d) 15
35 Replace add (d) 25
36 Replace add one (d) 25
37 Replace subtract one (d) 25
40 Load ((d)) 15,25
41 Add ((d)) 15,25
42 Subtract ((d)) 15, 25
43 Logical difference ((d)) 15, 25
44 Store ((d)) 15, 25
45 Replace add ((d)) 25,35
46 Replace add one ({d)) 25,35
47 Replace subtract one ((d)) 25,35
5000 Load (m) 20
50XX Load (m + (d)) 20, 30
5100 Add (m) 20
51XX Add (m + (d)) 20, 30
5200 Subtract (m) 20
52XX Subtract (m + (d)) 20, 30
5300 Logical difference (m) 20
53XX Logical difference (m + (d)) 20, 30
5400 Store (m) 20

A-9 Rev 01

INSTRUCTION CODE

PERIPHERAL PROCESSOR INSTRUCTIONS (Cont'd)

EXECUTION TIME

(OCTAL) NAME (CLOCK PERIODS)
54XX Store (m + (d)) 20, 30
5500 Replace add (m) 30
55XX Replace add (m + (d)) 30,40
5600 Replace add one (m) 30
56 XX Replace add one (m + (d)) 30,40
5700 Replace subtract one (m) 30
57XX Replace subtract one (m + (d)) 30,40
60 Jump on input word flag 10%
61 Jump if no input word flag 10
62 Jump on input record flag 10
63 Jump if no input record flag 10
64 Jump on output word flag 10
65 Jump if no output word flag 10
66 Jump on output record flag 10
67 Jump if no output record flag 10
70 Input to A from channel d 93k
71 Input (A) words to m from channel d +
72 Output from A on channel d 9++
73 Output (A) words from m on channel d +
74 Output record flag on channel d 5
75 Pass 5
76 Pass 5
T Error Stop

(restart only by a

Dead Start)

% Jump instruction times are for the ''jump not taken'' case. The "jump taken"
execution time is identical if the jump is to an alternate bank. If the jump is taken
to the same bank, add 5 clock periods.

#% Assume input channel d word flag is set; if not set, add the time waiting for flag to

set.

++ Assumes output channel d word flag is clear; if not clear, add the time waiting for

flag to clear.

+ Timing for these instructions are sample times only for various cases. Assumptions

made for each case are stated on the following page.

Rev 01 A-10

71 Instruction:

Case 1:

Case 2:

Case 3;

73 Instruction:

Case 1:

Assume - a.

Assume -

Assume -

Assume -

e.

a block input terminated by a record flag rather than by

decrementing (A) to zero,

a 2 clock period response time between the resume and

the word flag,
a 3-word block followed by a record flag.

the channel d input word flag is set at instruction

initiation, and

the first data reference is to the alternate storage bank.

Execution Time = 42 Clock Periods

a.
b.
c.

d.

a block input terminated by reducing (A) to zero.
same response as in Item b, Case 1,
a count of 2 in the A register, and

items d and e in Case 1 are true.

Execution Time = 24 Clock Periods

a.

a block input initiated with (A) = zero.

Execution Time = 10 Clock Periods

a count of 3 in the A register,

the device has a 2 clock period response time from receipt

of word pulse to transmission of resume pulse.
the output channel d word flag is clear, and

the first word of the block is read from the alternate

storage bank.

Execution Time = 34 Clock Periods

A-11 Rev 01

Case 2: Assume - a. a block output initiated with (A) = zero.

Execution Time = 10 Clock Periods

Rev 01 A-12

APPENDIX B

FLOATING POINT ARITHMETIC

FLOATING POINT ARITHMETIC

FORMAT

Floating point arithmetic takes advantage of the ability to express a number with the

general expression kB", where:
k = coefficient
B = base number
n = exponent, or power to which the base number is raised

The base number (B) is assumed to be 2 for binary-coded quantities. In the 60-bit
floating-point format shown below, the binary point is considered to be to the right of
the coefficient. The lower 48 bits express the integer coefficient, which is the equiv-
alent of about 15 decimal digits. The sign of the coefficient is separated from the rest
of the coefficient and appears in the highest order bit of the packed word. Negative
numbers are represented in one's complement notation.

COEFFICIENT BIASED INTEGER BINARY
SIGN EXPONENT COEFFICIENT POINT
] | 48 J
5958 48 47 0

The exponent portion of the floating point format is biased by complementing the
exponent sign bit., This particular format for floating point numbers is chosen so that
the packed form may be treated as a 60-bit integer for sign, threshold, equality, and

zero tests.

The following table (B-1) summarizes the configurations of bits 258 and 259 and the

implications regarding signs, of the possible combinations.

TABLE B-1. BIT 2°% AND 2°9 CONFIGURATIONS

959 998 COEFFICIENT SIGN EXPONENT SIGN
0 1 Positive Positive
0 0 Positive Negative
1 0 Negative Positive
1 1 Negative Negative

B-1 Rev 01

PACKING

Packing refers to the conversion of numbers in the form kB" to floating point format.
A short-cut method of packing exponents can be derived by considering the representa-
tion of negative and positive zero exponents. Assuming a positive coefficient, zero

exponents are packed as follows:
Positive zero exponent = 2000X~------- X

Negative zero exponent = 1777X-------- X

Since positive exponents are expressed in true form, start with a "bias" of 2000
(positive zero) and add the magnitude of the exponent. The range of positive exponents
is:

0000 through 1777

Or, in packed form:

2000 through 3777,

Negative exponents are expressed in complement form. Hence, start with a bias of
1777 (negative zero) and subtract the magnitude of the exponent. The range of negative

exponents is:
-0000 through -1777
Or, in packed form:

1777 through 0000,

Some examples of packed and unpacked floating point numbers are shown below in
octal notation to illustrate the packing process. The first two examples are different
forms of the integer +1. The third example is +100 decimal and the fourth example is
-100 decimal. The last two examples are of very large and very small positive
numbers. The unpacked values are shown as they might appear in X and B registers

prior to a pack operation,

Rev 01 B-2

1. unpacked coefficient = 0000 0000 0000 0000 0001
unpacked exponent = 00 0000
packed format = 2000 0000 0000 0000 0001

2. unpacked coefficient = 0000 4000 0000 0000 0000
unpacked exponent = 77 7720
packed format = 1720 4000 0000 0000 0000

3. unpacked coefficient = 0000 6200 0000 0000 0000
unpacked exponent = 77 7726
packed format = 1726 6200 0000 0000 0000

4, unpacked coefficient = 7777 1577 7777 7777 7777
unpacked exponent = 77 7726
packed format = 6051 1577 7777 7777 7777

5. unpacked coefficient = 0000 4771 3000 0044 7021
unpacked exponent = 00 1363
packed format = 3363 4771 3000 0044 7021

6. unpacked coefficient = 0000 6301 0277 4315 6033
unpacked exponent = 77 6210
packed format = 0210 6301 0277 4315 6033

OVERFLOW

Overflow of the floating point range is indicated by an exponent value of +1777 octal
(3777 or 4000 in packed form). This is the largest exponent value that can be repre-
sented in the floating point format (see Table B-2). This exponent value may result
from the calculation in a floating point unit in which this exponent value, together with
the computed coefficient value, is a correct representation of the result. This situation
is called a ''partial overflow' in this manual. An Overflow Error condition is not
indicated by the functional unit generating this result. However, further computation

in floating point functional units using this result will generate an overflow,

B-3 Rev 01

TABLE B-2.

FLOATING POINT REPRESENTATION

POSITIVE COEFFICIENT NEGATIVE COEFFICIENT
OVERFLOW | Complete Overflow = 3777 0------ 0 | Complete Overflow = 4777 T---=1
Partial Overflow = 3777 Xeowm-- X | Partial Overflow =4000 X---X
INTEGERS Largest: *Largest: _
Tommnn 7. x 271776 3qng 7o 7 e M 7. x 27776 - 4001 0----0
Smallest:O *Smallest: 0
1. x2 = 2000 0----- 01 -1. x 2 = 5777 7---16
ZERO Positive Zero = 2000 0------~ 0 | Negative Zero = 5777 T=-=-=1
INDEFINITE | Indefinite Operand = 1777 0------ 0 porIndefinite Operand = 6000 7----7
OPERANDS
FRACTIONS | Largest: -60 *Largest: -60
[E— 7. x2 = 1717 T------ 7 R (R 7. x 2 = 6060 0----0
Smallest: *Smallest:
1, x 271777 = 0000 0-----01 1. x 27T = 7777 1---76
UNDERFLOW | Complete Underflow = 0000 0------ 0 Complete Underflow = 7777 T----71
Partial Underflow = 0000 X~-=---- X Partial Underflow = 7777 X---X
* In absolute value.
#% An indefinite operand with a negative sign can only occur from packing or Booleart operations.

Rev 01

A "complete overflow'' occurs whenever a floating point functional unit computes a
result that requires an exponent larger than +1777 octal. In this case the functional

"complete overflow' value for

unit indicates an Overflow Error condition and packs a
the result. This result has a +1777 exponent and a zero coefficient. The sign of the
coefficient will be the same as that which would have been generated if the result had

not overflowed the floating point range.

UNDERFLOW

Underflow of the floating point range is indicated by an exponent value of -1777 octal
(0000 or 7777 in packed form). This is the smallest exponent value that can be repre-
sented in the floating point format. This exponent value may result from the calculation
in a floating point unit in which this exponent value, together with the computed coeffi-
cient value, is a correct representation of the result. This situation is called a '"partial
underflow' in this manual. An Underflow Error condition is not indicated by the
functional unit generating this result. However, further computation in floating point

functional units using this result may be detected as an underflow.

A "complete underflow' occurs whenever a floating point functional unit computes a

result that requires an exponent smaller than -1777 octal. In this case the functional
unit indicates an underflow error condition and packs a ''complete underflow' value

for the result. This result has a -1777 exponent and a zero coefficient. The sign of
the coefficient will be the same as that which would have been generated if the result
had not underflowed the floating point range. Thus, the complete underflow indicator
is a word of all zero bits, or all one bits, depending on the sign, It is the same as a

zero word in integer format,

INDEFINITE RESULT

An indefinite result indicator is generated by a floating point functional unit whenever
the calculation cannot be resolved. This is the case in division when the divisor is zero

and the dividend is also zero. It is also the case in multiplication of an overflow number

B-5 Rev 01

times an underflow number. The indefinite result indicator is a value that cannot occur
in normal floating point calculations. This indicator corresponds to a minus zero
exponent and a zero coefficient (17770------ 0 in packed form). An Indefinite Error
condition is indicated by the functional unit generating this result. Any floating point
functional unit receiving an indefinite indicator as an operand will generate an indefinite
result no matter what the other operand value. Although indefinite indicators are
always generated with a positive sign by the floating arithmetic units, they may occur

as operands with negative sign because of complementation in the Boolean unit.

NON-STANDARD FLOATING POINT ARITHMETIC

In summary, the special operand forms in octal are:

positive underflow (+0) = 0000X------ X
negative underflow (-0) = 7T777X------ X
positive overflow (+@®) = 3777X------ X
negative overflow (-®) = 4000X------ X
positive indefinite (+IND) = 1777X-----~ X
negative indefinite (-IND)= 6000X-~~--- X

If a functional unit generates the above special forms while using normal operands, it
usually gives an error indication. When a floating point arithmetic unit uses one
of these six special forms as an operand, however, only the following octal words can

occur as results and the associated flag is set in the Program Status Designation (PSD).

positive overflow (+0) = 37770--=--~ 0 Overflow condition flag
negative overflow (- ®) = 40007------ 7 Overflow condition flag
positive indefinite (+IND) = 17770------ 0 Indefinite condition flag
positive underflow (+0) = 00000------ 0 Underflow condition flag
negative underflow (-0) =777 T 7 Underflow condition flag

The following tabulations show the Add, Subtract, Multiply and Divide operations using
various combinations of underflow, indefinite, and overflow quantities as operands.

In the tabulations the designations W and N are defined as follows:

Rev 02 B-6

W = Any word except +m, +IND

N = Any word except xm, +IND, or +0,.

(Instructions 30, 32, 34)

ADD

Xi=Xj+Xk

Xk
W + @ - +IND
W - + @ - IND
+ + @ + IND IND
Xl ~o IND - IND
+IND IND IND IND IND
SUBTRACT
Xi=Xj-Xk
(Instructions 31, 33, 35)
Xk
\% +@ - +IND
W - - +® IND
Xj + + IND +® IND
- - - IND IND
+IND IND IND IND IND
B-7

Rev 01

MULTIPLY
Xi=Xj*
(Instructions 40, 41, 42)

Xk

+N -N +0 -0 + @ - +IND

+N - - 0] 0 +@ - IND
-N - - 0 0 - +0 IND
+0 0 0 0 0 IND IND IND
Xj -0 0 0 0 0 IND IND IND
+ @ + @ - IND IND + IND IND
- - +@® IND IND IND + @ IND
+IND IND IND IND IND IND IND IND

DIVIDE
Xi=Xj/ Xk
(Instructions 44, 45)
Xk

+N -N +0 -0 + - +IND

+N - - + @ - 0 0 IND
-N - - - + 0 0 IND
+0 0 0 IND IND 0 0 IND
Xj -0 0 0 IND IND 0 0 IND
+ @ + @ - +® - IND IND IND
- -0 +® - + IND IND IND
+IND IND IND IND IND IND IND IND

Rev 02 B-8

NORMALIZED FLOATING POINT

A floating point number in packed format is normalized if the coefficient sign bit is
different from bit 47, This condition implies that the coefficient has been shifted to
the left as far as possible, and therefore the floating point number has no leading zeros

in the coefficient.

The normalize unit performs this function. The floating multiply and floating divide
units deliver normalized results when provided with normalized operands. The floating
add unit may deliver un-normalized results even when both operands are normalized.

It is therefore necessary to perform the normalize operation in the normalize unit

after each sequence of floating add or subtract operations if the result is to be kept in

a normalized form.

ROUNDED COMPUTATION

Optional floating point instructions are provided to round the results in single precision
computation. These instructions are executed in the same amount of time as the
unrounded versions. The operands are modified in the functional units to accomplish
the rounding function. The amount of bias introduced by the rounding operation varies
from unit to unit and is affected by the coefficient value in the operands. The descrip-

tions of the round instructions in Section 3 define the effects of rounding, in detail,

DOUBLE PRECISION

The floating point arithmetic instructions generate double-precision results. Use of
unrounded instructions allows separate recovery of upper and lower half results with
proper exponents; rounded instructions allow only upper half results to be obtained.
The position of the binary point and the exponent of the double precision result depend

upon the arithmetic operation chosen.

B-9 Rev 01

To add or subtract two floating point numbers, the floating point Add unit enters the
coefficient having the smaller exponent into the upper half of an accumulator and shifts
it right by the difference of the exponents. Then it adds the other coefficient into the
upper half of the accumulator. The result is a double length register with the following

format:

| MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS |

95 48,47 0

A v /\ v v,
UPPER HALF RESULT BINARY POINT | owER HALF RESULT

If single precision is selected, the upper 48 bits of the 96-bit result and the larger
exponent is the result. Selecting double precision causes the lower 48 bits of the
96-bit result and the larger exponent minus 608 to be returned as the result. The
subtraction of 608 is necessary because the binary point is effectively moved from the
right of bit 48 to the right of bit 0 .

The Multiply units generate 96-bit products from two 48-bit coefficients. The result
of a multiply is a double length register with the following format:

MOST SIGNIFICANT BITS LEAST SIGNIFICANT BITS
o° , 48 47 . o,
UPPER HALF RESULT LOWER HALF RESULT ~ DINARY POINT

If single precision is selected, the upper 48 bits of the product and the sum of the
exponents plus 608 are returned as the result, The addition of 608 is necessary
because the binary point is effectively moved from the right of bit 0 to the right of
bit 48 when the upper half of the 96-bit result is selected. If double prekcision is

selected, the lower 48 bits of the product and the sum of the exponentis is the result,

Rev 01 B-10

INTEGER ARITHMETIC

There are no CPU integer multiply or divide instructions. Integer multiplication and
division must be performed in the floating multiply and divide units. Integer arithmetic
is accomplished by packing the integers into floating point format using the pack instruc-

tion with a zero exponent value.

In integer multiplication, a product can be formed for small integers without normalizing
the operands by using the double precision multiply instruction. The result does not
need to be unpacked if the destination is an A or a B register because the increment

unit extracts only the lowest order 18 bits of the 60-bit word.

In integer division the divisor must be normalized with a Normalize instruction but the
dividend need not be normalized. The resulting quotient must be unpacked and the
coefficient shifted by the amount of the unpacked exponent using the Left Shift Nominally

instruction to obtain the integer quotient.

B-11 Rev 01

APPENDIX C

MNEMONIC CODES

ES

RJ
RL
WL
MC
ME
RX
WX
RI
1B
B
RO
OB

JP

ZR
NZ
PL
NG
IR

OR
DF
ID

EQ
NE
GE
LT

00000

0100K
011jK
012K
0133k
013jK
014jk
015k
0160k
0163k
01630
0170k
017k

02i0K

030K
031jK
032jiK
033jK
034jK
035jK
036jK
037jK

04i jK
05ijK
06ijK
07ijK

MNEMONIC CODES

CENTRAL PROCESSOR
Error exit to EEA

Return jump to K

Block copy K + (Bj) words from LCM to SCM
Block copy K + (Bj) words from SCM to LLCM
Exchange exit to NEA if exit flag clear
Exchange exit to K + (Bj) if exit flag set
Read LCM at (Xk) to Xj

Write (Xj) into LCM at (Xk)

Reset channel (Bk) input buffer if j=0

Read channel (Bk) input status to Bj if j#0
Set Bj to current clock time

Reset channel (Bk) output buffer if j=0

Read channel (Bk) output status to Bj if j#0

Jump to K + (Bi)

Branch to K if (Xj)=0

Branch to K if (Xj)#0

Branch to K if (Xj) positive
Branch to K if (Xj) negative
Branch to K if (Xj) in range
Branch to K if (Xj) not in range
Branch to K if (Xj) definite
Branch to K if (Xj) indefinite

Branch to K if (Bi)=(Bj)
Branch to K if (Bi)#(Bj)
Branch to K if (Bi)> (Bj)
Branch to K if (Bi)<(Bj)

Rev 01

Rev 01

BX
BX
BX
BX
BX
BX
BX
BX

LX
AX
LX
AX
NX
ZX
Ux
PX

FX
FX
DX
DX
RX
RX
IX

X

FX
RX
DX
MX
FX
RX
NO
CX

10ij0
11ijk
12ijk
13ijk
14i0k
15ijk
16ijk
17ijk

201ijk
21ijk
22ijk
231ijk
24ijk
25ijk
26ijk
27ijk

30ijk
31ijk
32ijk
33ijk
34ijk
35ijk
36ijk
37ijk

40ijk
41ijk
42ijk
43ijk
44ijk
45ijk
46000
4710k

Copy (Xj) to Xi

Logical product of (Xj) and(Xk) to Xi

Logical sum of (Xj) plus (Xk) to Xi

Logical difference of (Xj) minus (Xk) to Xi

Copy complement of (Xk) to Xi

Logical product of (Xj) and comp (Xk) to Xi
Logical sum (Xj) plus comp (Xk) to Xi

Logical difference of (Xj) minus comp (Xk) to Xi

Left shift (Xi) by jk

Right shift (Xi) by jk

Left shift (Xk) by (Bj) to Xi

Right shift (Xk) by (Bj) to Xi
Normalize (Xk) to Xi and Bj

Round and normalize (Xk) to Xi and Bj
Unpack (Xk) to Xi and Bj

Pack (Xk) and (Bj) to Xi

Floating sum of (Xj) plus (Xk) to Xi

Floating difference of (Xj) minus (Xk) to Xi
Floating DP sum of (Xj) plus (Xk) to Xi

Floating DP difference of (Xj) minus (Xk) to Xi
Round floating sum of (Xj) plus (Xk) to Xi

Round floating difference of (Xj) minus (Xk) to Xi
Integer sum of (Xj) plus (Xk) to Xi

Integer difference of (Xj) minus (Xk) to Xi

Floating product of (Xj) times (Xk) to Xi
Round floating product of (Xj) times (Xk) to Xi
Floating DP product of (Xj) times (Xk) to Xi
Form mask of jk bits to Xi

Floating divide (Xj) by (Xk) to Xi

Round floating divide (Xj) by (Xk) to Xi

Pass

Population count of (Xk) to Xi

SA .
SA
SA
SA
SA
SA
SA
SA

SB
SB
SB
SB
SB
SB
SB
SB

SX
SX
SX
SX
SX
SX
SX
SX

ESN
LJM
RIM
UJIN
ZJN
NJN
PIN
MJN

50ijK Increment (Aj) plus K to Ai

51ijK Increment (Bj) plus K to Ai
52ijK Increment (Xj) plus K to Ai
53ijk Increment (Xj) plus (Bk) to Ai
54ijk Increment (Aj) plus (Bk) to Ai
55ijk Increment (Aj) minus (Bk) to Ai
56ijk Increment (Bj) plus (Bk) to Ai
57ijk Increment (Bj) minus (Bk) to Ai
60ijK Increment (Aj) plus K to Bi
61ijK Increment (Bj) plus K to Bi
62ijK Increment (Xj) plus K to Bi
631ijk Increment (Xj) plus (Bk) to Bi
64ijk Increment (Aj) plus (Bk) to Bi
65ijk Increment (Aj) minus (Bk) to Bi
66ijk Increment (Bj) plus (Bk) to Bi
67ijk Increment (Bj) minus (Bk) to Bi
70ijK Increment (Aj) plus K to Xi
71ijK Increment (Bj) plus K to Xi
72ijK Increment (Xj) plus K to Xi
73ijk Increment (Xj) plus (Bk) to Xi
T74ijk Increment (Aj) plus (Bk) to Xi
751k Increment (Aj) minus (Bk) to Xi
76ijk Increment (Bj) plus (Bk) to Xi
TTijk Increment (Bj) minus (Bk) to Xi

PERIPHERAL PROCESSORS

00 Error Stop

01 Long jump to m + (d)
02 Return jump to m + (d)
03 Unconditional jump d
04 Zero jump d

05 Nonzero jump d

06 Positive jump d

07 Negative jump d

C-3

Rev 01

SHN 10 Shift d

LMN 11 Logical difference d
LPN 12 Loogical product d
SCN 13 Selective clear d

LDN 14 Load d

LCN 15 Looad complement d
ADN 16 Add d

SBN 17 Subtract d

LDC 20 Load dm

ADC 21 Add dm

LPC 22 Logical product dm
LMC 23 Logical difference dm
PSN 24 Pass

PSN 25 Pass

PSN 26 Pass

PSN 27 Pass

LDD 30 Load (d)

ADD 31 Add (d)

SBD 32 Subtract (d)

LMD 33 Logical difference (d)
STD 34 Store (d)

RAD 35 Replace add (d)

AQD 36 Replace add one (d)
SOD 37 Replace subtract one (d)
1LDI 40 Load ((d))

ADI 41 Add ((d))

SBI 42 Subtract ({(d))

I.MI 43 Logical difference ({(d))
STI 44 Store ((d))

RAI 45 Replace add ((d))

AOI 46 Replace add one ({d)
SOI 47 Replace subtract one ((d))

Rev 01 C-4

LDM
ADM
SBM
LMM
STM
RAM
AOM
SOM

FIM
EIM
IRM
NIM
FOM
EOM
ORM
NOM

IAN
IAM
OAN
OAM
RFN
PSN
PSN
ESN

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

Load (m+(d))

Add (m+(d))

Subtract (m+(d))

Logical difference (m+(d))
Store (m+(d))

Replace add (m+(d))

Replace add one (m+(d))
Replace subtract one (m+(d))

Jump on input word flag
Jump if no input word flag
Jump on input record flag
Jump if no input record flag
Jump on output word flag
Jump if no output word flag
Jump on output record flag

Jump if no output record flag

Input to A from channel d

Input (A) words to m from channel d
Output from A on channel d

Output (A) words from m on channel d
Output record flag on channel d

Pass

Pass

Error stop

Rev 01

CUT ALONG LINE

e e st e G e S e (n faey e Saamam Goann ——— —— — — — — — — — —— a——— — — — ——— — — s oo monrs s s s i, e e aeps s e, gt

FORM CA231 REV.1-67 PRINTED IN USA

COMMENT SHEET

MANUAL TITLE CONTROL DATA 7600 Computer System

Reference Manual

PUBLICATION No. 60258200 REVISION

FROM: NAME:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION

8100 34TH AVENUE SOUTH
MINNEAPOLIS, MINNESOTA 55440

ATTN: TECHNICAL PUBLICATIONS DEPT.
PLANT TWO

CUT ALONG LINE

60258200 LITHO USA

CONTROL DATA |

CORPORATION BN

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	C-001
	C-01
	C-02
	C-03
	C-04
	C-05
	replyA
	replyB
	xBack

