CONTROL DATA’ 6000 SERIES COMPUTER SYSTEMS
ASCENT General Information Manual

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION

Documentation Department

February, 1966 3145 PORTER DR'_VE ‘ 1966, Control Data Corporation
Pub. No. 60135400 PALO ALTO, CALIFORNIA Printed in the United States of America

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

INTRODUCTION
System Configuration

LANGUAGE SPECIFICATIONS

Definitions
Format

PSEUDO OPERATION CODES

MACROS

Programmer Macros
System Macros
Magnetic Tape Macros
Disk Macros

Printer Macros

Card Macros

Display Macros
System Action Macros
Wait Macro

Overlay Macro

SUBROUTINES

System Library Subroutines
Programmer Defined Subroutines

DIAGNOSTICS
ASCENT Error Printouts

PROGRAM SEGMENTATION

CP Program Segmentation
Segment Definition
Segment Loading

CENTRAL PROCESSOR OPERATION CODES

11

11
11
12
12
12
13
13
13
13
13

15
15
15
17
17

19

19
20
20

21

iii

INTRODUCTION 1

N

-

ASCENT, the assembly system for the central processor, is a two-pass
assembler executed in the central processor of a Control Data ® 6400, 6600,
or 6800 computer. Operating under control of theﬂ;ﬁ : RQ‘S system, ASCENT
simplifies the writing of machine-language programs for the central pro-
cessor through mnemonic instructions and symbolic addressing.

In addition, ASCENT offers programming aids, pseudo operation codes,
and provisions for the inclusion of system and programmer macros. The
principal features of ASCENT are as follows:

Use of all 1/0 functions in the operating system
Use of system and programmer-defined macros

Ability to mix ASCENT code with the FORTRAN language on a
line-for-line basis

Subroutine calls
Pseudo commands
Peripheral processor program calls

Access to all features of the central processor

SYSTEM

CONFIGURATION Minimum equipment requirement to run ASCENT under control of
SIPROS is as follows:

A 6000-series computer with a central processor, 10 peripheral
processors, and 12 data channels

One disk unit with a storage capacity of 8 million 60-bit words
One display console

One 1200 card/minute reader

One 1000 line/minute printer

One 250 card/minute punch

Bank of two 607 or 626 magnetic tape units

DEFINITIONS

CHARACTERS

SYMBOLS

CONSTANTS

SINGLE-PRECISION
FLOATING POINT

LANGUAGE SPECIFICATIONS

ASCENT uses the following character set:
Letters A through Z
Numbers 0 through 9

+ -/ %= ()., $ space

A symbol is any arrangement of letters and numbers which starts with
a letter and contains no more than eight characters.

Constants may be any of the following forms:

Integer 18 or less decimal digits ranging from - (259—1) to (259-1).
Octal 20 or less octal digits 0 through 7 with a B suffix

Symbolic ~ Meets the specifications for a symbol but is equated to a
constant or to the difference of two symbols.

Expressed by one of two forms:

15 or less decimal digits and a single decimal point.

15 or less decimal digits with or without a single decimal point followed
by the power of 10 representation shown below:

E+tnorEn
E specifies that an exponent follows; n, 3 or less decimal digits,
is the power of 10 to be applied to the constant.

The sign of n may be omitted if positive.

DOUBLE-PRECISION
FLOATING POINT

COMPLEX

OPERATORS

LITERALS

Expressed by one of two forms:

29 or less decimal digits with or without a decimal point and a
letter D suffix.

29 or less decimal digits with or without a decimal point followed
by the power of 10 representation as shown below:

D+norDn

D is a required letter

n, 3 or less decimal digits, is the power of 10 to be applied to
the constant

The sign of n may be omitted if positive.

Any pair of single-precision floating-point constants separated by a
comma and enclosed in parentheses.

In certain cases, operators join register mnemonic codes in defining
the numerical operation code of an instruction.

The following operators are used:

+ addition

- subtraction

* multiplication
/ division

The + and - are also used in address manipulation specifications.

Literals are used for addressing a core location whose contents are
specified by the value within parentheses. Literals may be any of the
following forms:

(Constant)
(Symbol)

(Symbol * T)
(Symbol - Symbol)

SEPARATORS

OPERANDS

FORMAT

Iis an integer, octal or symbolic constant.

When a two-word form such as
(Floating Double Precision Constant)

(Complex Constant)

is defined, the first word only is addressed.

The following separators indicate the end of distinct instruction entities:
$, space . =

Other characters, which may assume the role of separators depending upon
usage, are:

+ - % /
Operands are combinations of symbols, literals, the operators + and -, and

certain types of constants. In the acceptable forms shown below, Iis an
integer, octal or symbolic constant.

Symbol

Symbol + 1
Symbol - Symbol
+1

Literal

Literal + I

ASCENT has one basic instruction format with four fields:

I ! I M 72|

| Location| |Opcode Address Remarks

ASCENT considers only card columns 2 through 72. Column 1 is reserved
for the exclusive use of the Programming System Control Package. A
blank in column 10 separates the location and opcode fields.

An input card may contain up to six instructions separated by dollar signs.
Only one location field may appear on a card regardless of the number of
instructions it contains. It applies only to the first instruction on the card.

The $ acts as the recurrence of column 10; the next expected item is
an opcode.

All instructions must be completed prior to column 73.

LOCATION FIELD This field provides a symbol for referencing by other instructions. The
location field is fixed length; it may be blank or contain a symbol starting
in column 2-5 and ending prior to column 10.

OPCODE FIELD The Opcode field defines the instruction: It is variable length, starting
in or after column 11 and terminating with at least one separator.

The Opcode field may contain any of the following items:

6000 Series central processor mnemonic codes or their octal
equivalents

ASCENT pseudo codes
System macro codes
Programmer defined macro
Integer or octal constant

Mnemonic codes are evaluated to determine their octal equivalents; the
octal value is inserted into the instruction word. Pseudo operations are
interpreted and used in assembler sequence control. System macros are
replaced by calling sequences to a resident communication subroutine.

ADDRESS FIELD The address field is variable length and has any of the following formats:

REGISTER

—REGISTER

REGISTER OPERATOR REGISTER
—REGISTER OPERATOR REGISTER

REGISTER REGISTER OPERAND
REGISTER OPERATOR OPERAND
REGISTER OPERAND
OPERAND
LIST
List is a sequence of registers and operands as specified for the operation

code. Adjacent operands must be separated by a comma. The LIST
form in an address field is used in certain pseudo and macro codes.

The content of the address field varies with the instruction. Therefore,
several types of instructions are important in its specification:

No address required

Numeric

Registers and Operators

Registers only

Opcode complete, order independent

Opcode complete, order dependent

18-bit arithmetic with registers and operand

18-bit arithmetic for sum of two registers

18-bit arithmetic for difference of two registers

REMARKS FIELD The remarks field contains programming notes which have no effect on
the assembly process. It must begin with a period in or after column 11,
or it may be blank.

Example: The instructions shown on the following page are part of a
program for the data display unit.

Location

START

START 1

START 2

BX6

BX4

FX7

BX3

EQ

SAT7

Nz

RDC

SB1

LX1

Jp

Instruction

X1

-X3

X6%X4

-X4+X1

B5 B2 AB
B2+DATA

DATA

X1 ABC

SUB

1, ST, (BA), (BA+8), 8, 2
1 § SA2 DATA+1

SB6 -8 $SA5 B6+DATA $
SB7 B5-B6

$ {r one ¢
d

B2+BETA

Remarks

.X1 TO X6

.-X3 TO X4

. FLOATING X6*X4 TO X7
.X1+COMP. X4 TO X3

.IF B5=B2, GO TO AB
.STORE X7 TO DATA+B2

. STORE X7 TO BO+DATA

.IF X1 NOT ZERO, GOTOABC
.RETURN JUMP TO SUB

. LIST

.PACKED CARD

.MAXIMUM 6 PER CARD

. BEGIN REMARKS WITH
PERIOD

.JUMP TO B2+BETA

PSEUDO OPERATION CODES

ASCENT pseudo operation codes, listed below, enable the programmer to
control the printing of the assembly listings, perform numerical and
alphabetic conversions, reserve storage areas, and specify subroutine
names. The instruction format for pseudo operation codes is the same
as the basic ASCENT mnemonic coding format:

ASCENT
END
ASPER
SUBROUTINE
BSSD
BSS
BSSZ
EQU
DPC
BCD
CON
LIST
SPACE
EJECT

defines central processor program.,

defines end of central processor program.
defines.peripheral processor routine.

defines subroutine name.

defines file on a specified disk unit.

reserves central memory region.

reserves central memory region and sets it to zero.
equates a symbol to a value.

inserts display-coded characters into the program.
inserts BCD characters into the program.

defines constants in the program.

controls side-by-side output listing.

determines line spacing output listing.

ejects listing to top of next page.

MACROS 4

PROGRAMMER

MACROS To use a programmer macro, a definition or skelton must precede the first
executable instruction in the program. After the macro is defined, it may
be used by specifying the macro symbolic name as an operation code and
listing the actual parameters. Since the amount of space reserved for
the macro symbol table is an installation parameter, there is no restric-
tion on the number of macros that may be used within any one program.
System macros may be used within programmer macros.

SYSTEM MACROS ASCENT provides system macros for the programming of all peripheral
devices and for requesting standard system operations. Since SIPROS
provides automatic buffering, input and output need not be buffered
directly by the programmer. However, through a character (an appended
W) associated with each macro, the programmer can specify whether the
computations in his program must wait until the macro has been executed,
or whether execution can proceed without the macro results. System
macros are included for the following operations:

Magnetic tape

Disk

Printer

Card

Console

Segmentation

Request-and-release central processor memory

Request-and-release disk space

Macros are executed as they are encountered in a program. However,
printer and punch output is retained on the system disk until the program
is completed. Although system macros used in an ASCENT program are
actually executed by a peripheral and control processor, an ASCENT pro-
grammer need not be aware of this; the macros are automatically routed
to the peripheral and control processors by SIPROS.

11

MAGNETIC TAPE
MACROS

=
C
(V4]

DISK MAC

PRINTER MACROS

12

RQTW
DRTW
SFFW
SFBW
WFMW
RW LW
RWUW
FSPW
BSPW
RFCW
RFBW
WRCW
WRBW

RDHW
RDRW
WRDW

SSPW
DSPW
FCTW
FC8W
MC1W
MC2W
MC3W
MC4W
MC5W
MC6W
CMCW
SPAW
PRNW

requests a tape assignment from the system.
releases a tape back to the system.

searches a tape forward until it detects a file mark.
searches the tape backward until it detects a file mark.
writes a file mark.

rewinds a tape to the load point.

rewinds a tape for unloading.

spaces a tape forward.

backspaces a tape.

reads a tape forward in coded mode.

reads a tape forward in binary mode.

writes a tape in coded mode.

writes a tape in binary mode.

reads a disk record and holds the data on disk.
reads a disk record and releases the data on disk.

writes a record on disk.

single spaces printer.
double spaces printer.
selects format channel 7.
selects format channel 8.
selects monitor channel 1.
selects monitor channel 2.
selects monitor channel 3.
selects monitor channel 4.
selects monitor channel 5.
selects monitor channel 6.
clears monitor channel 1-6.
suppresses space after next print.

prints single line or multiple lines.

CARD MACROS

DISPLAY MACROS

SYSTEM ACTION
MACROS

WAIT MACRO

OVERLAY MACRO

PCHW
RDCW

DRSW
DSLW
DHRW
DHLW
RDPW
RTYW

TPPW

RQMW
DRMW
RQDW
DRDW

WAIW

OLAY

punches cards.

reads cards.

displays on right scope for system time limit.
displays on left scope for system time limit.
displays on right scope and holds indefinitely.
displays on left scope and holds indefinitely.
removes display.

reads console typewriter.

transfers a PP program from central memory to a peripheral
processor and starts executing the program with the first
ASPER instruction.

requests central memory.
releases central memory.
requests disk space.

releases disk space.

checks status of the specified input-output routine and exits
on a request completed or aborted condition.

defines and loads a normal segment at the central memory
location associated with the specified overlay point. An
error return entry may be specified for abnormal loader
termination.

13

SYSTEM LIBRARY
SUBROUTINES

PROGRAMMER
DEFINED
SUBROUTINES

SUBROUTINES 5

A set of subroutines is included in the system library for general use by
ASCENT and FORTRAN-66. In many cases, the library routines are
referenced as function subroutines by FORTRAN-66 and as subroutines

in ASCENT coding. Therefore, a compatible format is used in the
definition of the routines, the FORTRAN code generators, and the ASCENT
calling sequences.

The general form is as follows:
CALL name (list)

CALL is a FORTRAN statement.
name is the name of a routine.

list contains a sequence of operands
which define actual parameters.

In addition to the library functions, a programmer may define new sub-
routines in the process of writing a program. Symbols within a subroutine
are local to that subroutine.

A compatible definition and calling format are used. To define a subroutine,
a header card is needed:

subroutine symbol (list)

subroutine is the pseudo operation code.

symbol is the identification name for
the subroutine.

list is a sequence of symbols, called
formal parameters, separated by
commas, which represent I/0O
variables to the subroutine.

15

16

References to the subroutine are made with the statement:
CALL symbol (list)

symbol is the same combination of letters
used in the subroutine identification
name.

list contains the names and values of the I/O
parameters for the subroutine in the
same order as given in the subroutine
definition list.

Other communications between the subroutine and the calling programs
include: alternate entry points, common data blocks, and variable sub-
routine and function names for calls made within the subroutine.

Subroutines may be assembled independently of other subroutines and the
calling programs. Subroutine linkage and common variable references
are adjusted at load time.

ASCENT ERROR
PRINTOUTS

>

DIAGNOSTICS 6

Literal Table Full. The literal is not assigned a location.
Symbol Table Full. The symbol is not assigned a location.

Duplicate Symbol. The symbol in the location field has been previously
defined. A list of all duplicate symbols is printed at the end of the
side-by-side listing.

Instruction Error. There are more than six instructions on the card.
Format Error. An error is detected in the format of an instruction.
Integer Error. An error is detected in a decimal or octal number.

K-Field Error (address field). The address portion of the instruction
does not meet program specifications or is out of range.

Literal Error. An error is detected in the evaluation or conversion
of the literal.

Multiply Defined Reference. A reference is made to a symbol that
appears more than once in the location field.

Operation Code Error. The operation code cannot be evaluated.
ASCENT assumes an operation code of zero and processes the instruc-
tion accordingly.

Parameter List Error. The parameter list does not satisfy ASCENT
specifications - too few or too many parameters.

Register Error. An error is detected in the format of a register name
or its improper usage.

Sign Error. A sign is incorrect or out of order.

Tag Error. A symbol in the location or address field does not meet
ASCENT specifications.

Undefined Symbol. A reference is made to a symbol that does not
appear in the location field. ASCENT assigns a location at the end of
the object program to each unique undefined symbol. In certain pseudo
codes (EQU, BSS, BSSZ), a symbol used in the address field must be
defined prior tothe pseudo code. A list of undefined symbols appears
at the end of the side-by-side listing.

17

CP PROGRAM
SEGMENTATION

PROGRAM SEGMENTATION 7

Any ASCENT program may be divided into segments to reduce:the amount
of memory space required. When a program has been segmented, one
part, called the basic segment, must remain in memory at all:times.

The remaining segments, called normal segments, may be loaded into
memory by a system macro, OLAY, at any time.

The segmentation scheme for central processor programs allows the
programmer to define segments either at load time or execute time and

to specify the routines to be included in the basic segment. It also allows
multiple segments to be loaded into memory. With regard:to the definition
and use of central memory, three options are available:

The system releases all unused memory after the basic segment
is loaded; it then requests and releases memory as required in
handling overlays.

The system releases all unused memory after the first occurrence
of the OLAY macro; it then requests and releases memory as
required in handling overlays.

The system does not release memory at any time; if there is not
sufficient memory for an overlay, additional memory is requested
to fulfill the overlay request.

The option selected is defined in the basic segment definition eard.

A FORTRAN library routine, SEGMAP, facilitates checkout of a segmented
program. This routine inserts a map of the current contents of memory
into a specified print file. The map provides such information as the
contents of each overlay, the names of routines called but not loaded, and
so forth.

19

SEGMENT
DEFINITION

SEGMENT LOADING

20

The basic segment is defined by a basic segment definition card supplied
by the programmer; it may be made up of a main program, subroutines,
and other segments. The name of the routine in the basic segment that is
to initially receive control must be enclosed in asterisks. If this routine
is also defined as a normal segment, the normal segment name must also
be enclosed in asterisks.

The same conventions used in defining the basic segment are used in de-
fining normal segments. In addition, however, a normal segment may be
defined in the program by the OLAY macro.

Only the routines defined in the basic segment card and the standard library
routines called by the basic segment routines are loaded into memory when
the basic segment is loaded. Calls to non-standard library routines from
the basic segment are filled with error stops and given the proper addresses
after the called routines are loaded into memory.

The only routines loaded into memory by an OLAY macro are those named
in the macro list and the standard library routines called by them. A
routine already in memory will not be reloaded. Calls to non-standard
library routines are filled with error stops and given the proper addresses
after the called routines are loaded.

During the loading of an overlay, control is normally returned to the
instruction immediately following the OLAY macro. However, it is
possible to switch control directly into the new overlay by enclosing
in asterisks the name of the routine that will receive control. If the
routine that is to receive control appears in the OLAY macro list,
the name must be enclosed in asterisks in the list. If it also appears
in a segment definition card, it must also be enclosed in asterisks
on the card.

CENTRAL PROCESSOR OPERATION CODES

Octal

Opcode Mnemoniec _A_dd_ris_s
00 PS

01 RJ K

02 Jp Bi+ K
030 ZR Xj K
031 : NZ Xj K
032 PL Xj K
033 NG Xj K
034 IR Xj K
035 OR Xj K
036 DF Xj K
037 D Xj K
04 EQ Bi BjK
04 ZR Bi K
05 NE BiBjK
05 NZ Bi K
06 GE Bi Bj K
06 PL Bi K
07 LT Bi Bj K
07 NG Bi K

Meaning
BRANCH UNIT

Program stop

Return jump to K

Jump to Bi + K
Jumpto Kif Xj =0

Jump to K if Xj # 0

Jump to K if Xj = positive
Jump to K if Xj = negative
Jump to K if Xj is in range
Jump to K if Xj is out of range
Jump to K if Xj is definite
Jump to K if Xj is indefinite

Jump to K if Bi = Bj
Jump to K if Bi = BO
Jump to K if Bi # Bj
Jump to K if Bi # BO
Jump to K if BiZ Bj
Jump to K if Bi= B0
Jump to K if Bi < Bj
Jump to K if Bi < B0

21

Octal
Opcode

10
11
12
13
14
15

16
17

20
21
22

23

24
25
26
27
43

30
31
32
33

22

Mnemonic

BXi
BXi
BXi
BXi
BXi
BXi

BXi
BXi

AXi

AXi

ZXi

PXi
MXi

FXi
FXi
DXi
DXi

Address

Xj
Xj*Xk
Xj + Xk
Xj - Xk
- Xk

- Xk*Xj

- Xk + Xj
- Xk - Xj

jk
jk
Bj

B

Bj

Bj
Bj
Bj
Bj
jk

BOE R R K

Xj + Xk
Xj - Xk
Xj + Xk
Xj - Xk

Meaning
BOOLEAN UNIT

Transmit Xj to Xi

Logical product of Xj & Xk to Xi
Logical sum of Xj & Xk to Xi
Logical difference of Xj & Xk to Xi
Transmit the comp. of Xk to Xi

Logical product of Xj & Xk comp. to
Xi

Logical sum of Xj & Xk comp. to Xi

Logical difference of Xj & Xk comp.
to Xi

SHIFT UNIT

Left shift Xi, jk places
Arithmetic right shift Xi, jk places

Left shift Xk nominally Bj places
to Xi

Arithmetic right shift Xk nominally
Bj places to Xi

Normalize Xk in Xi and Bj

Round and normalize Xk in Xi and Bj
Unpack Xk to Xi and Bj

Pack Xi from Xk and Bj

Form mask in Xi, jk bits
ADD UNIT

Floating sum of Xj and Xk to Xi
Floating difference Xj and Xk to Xi
Floating DP sum of Xj and Xk to Xi

Floating DP difference of Xj and Xk
to Xi

Octal

Opcode Mnemonic
34 RXi
35 RXi
36 IXi
37 IXi
40 FXi
41 RXi
42 DXi
44 FXi
45 RXi
46 NO
47 CXi
50 SAi
50 SAi
51 SAi
51 SAi
52 SAi
52 SAi

Address

Xj + Xk

Xj - Xk

Xj + Xk
Xj - Xk

Xj * Xk
Xj * Xk

Xj * Xk

Xj / Xk
Xj / Xk

Aj+K
Aj-K
Bj + K
Bj -K
Xj + K
Xj-K

Meaning
Round floating sum of Xj and Xk to

Xi

Round floating difference of Xj and
Xk to Xi

LONG ADD UNIT

Integer sum of Xj and Xk to Xi
Integer difference of Xj and Xk to Xi

MULTIPLY UNIT

Floating product of Xj and Xk to Xi

Round floating product of Xj & Xk
to Xi

Floating DP product of Xj & Xk to Xi
DIVIDE UNIT

Floating divide Xj by Xk to Xi
Round floating divide Xj by Xk to Xi
No operation

Count the number of 1's in Xk to Xi
INCREMENT UNIT

Set Aito Aj + K
Set Ai to Aj + comp. of K
Set Aito Bj + K
Set Ai to Bj + comp. of K
Set Ai to Xj + K
Set Ai to Xj + comp. of K

23

Octal

Opcode Mnemonic Address Meaning

53 SAi Xj+ Bk Set Ai to Xj + Bk

54 SAi Aj+ Bk Set Ai to Aj + Bk

55 SAi Aj - Bk Set Ai to Aj - Bk

56 SAi Bj + Bk Set Ai to Bj + Bk

57 SAi Bj - Bk Set Ai to Bj - Bk

60 SBi Aj+K Set Bito Aj + K

60 SBi Aj-K Set Bi to Aj + comp. of K
61 SBi Bj +K Set Bito Bj + K

61 SBi Bj - K Set Bi to Bj + comp. of K
62 SBi Xj+K Set Bito Xj + K

62 SBi Xj-K Set Bi to Xj + comp. of K
63 SBi Xj + Bk Set Bi to Xj + Bk

64 SBi Aj+ Bk Set Bi to Aj + Bk

65 SBi Aj - Bk Set Bi to Aj - Bk

66 SBi Bj + Bk Set Bi to Bj + Bk

67 SBi Bj - Bk Set Bi to Bj - Bk

70 SXi Aj+K Set Xi to Aj + K

70 SXi Aj-K Set Xi to Aj + comp. of K
71 SXi Bj+K Set Xi to Bj + K

71 SXi Bj-K Set Xi to Bj + comp. of K
72 SXi Xj+K Set Xi to Xj + K

72 SXi Xj-K Set Xi to Xj + comp. of K
73 SXi Xj+ Bk Set Xi to Xj + Bk

74 SXi Aj + Bk Set Xi to Aj + Bk

75 SXi Aj - Bk Set Xi to Aj - Bk

76 SXi Bj + Bk Set Xi to Bj + Bk

77 SXi Bj - Bk Set Xi to Bj - Bk

24

TITLE

General

6000 SERIES PUBLICATIONS

6600 Parallel Operation

6600 Remote

Time-Sharing

6600 Code Book

Hardware

6000 Series,
6000 Series,
6000 Series,
6060 Remote

Software

6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,
6000 Series,

Reference Manual

Site Preparation and Installation Manual
Input/Output Specification

Calculator, Reference Manual

ASCENT, General Information Manual

ASPER, General Information Manual
FORTRAN 66, General Information Manual
SIMSCRIPT, General Information Manual
SIPROS, General Information Manual

File Manager, General Information Manual
PERT, General Information Manual

Report Generator, General Information Manual
PERT/TIME Reference Manual

Chippewa FORTRAN, Reference Manual
Chippewa Operating System Reference Manual
Matrix Algebra Subroutine Reference Manual
SIPROS, Operator's Guide

Statistical Subroutine Reference Manual
SIPROS=IMPORT 31/EXPORT Reference Manual

6600 Programming Systems

6600 Library Functions

6600 Standard Programming Packages
6600 Extended Programming Package
6600 ASCENT, Reference Manual

6600 ASPER,

Reference Manual

FORTRAN 66, Reference Manual
6600 SIPROS, Reference Manual
6000 Series Instant Chippewa Operating System FORTRAN
6000 Series Instant Chippewa Operating System
ASCENT and ASPER

PUB. NO.

55-0122
55-0123
60141900

60045000
60143400
60064100
60147900

60135400
60135100
60135500
60133200
60135600
60135000
60133300
60135800
60133600
60132700
60134400
60135200
60135700
60135300
38791600
55-0124
360114500

PRI Ref or 88-0089

No publication no.
60101600
60101700
60101500
60101800
60133400
60134500

The above publications may be ordered from the nearest Control Data Corporation

Sales office.

25

STAPLE

STAPLE

STAPLE

FOLD

FIRST CLASS
PERMIT NO, 8241

MINNEAPOL. IS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

STAPLE

CONTROL DATA

CORPORATION

COMMENT AND EVALUATION SHEET

6000 SERIES COMPUTER SYSTEMS
ASCENT General Information Manual

Pub. No. 60135400 February, 1966

YOUR EVALUATION OF THIS MANUAL WILL BE WELCOMED BY CONTROL,DATA
CORPORATION. ANY ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL
COMMENTS MAY BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nawme:

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

FOLD ON DOTTED LINES AND STAPLE

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	replyB
	xBack

