CONTROL DATA’ 6400/6600 COMPUTER SYSTEMS
ASCENT/ASPER Reference Manual

3

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION
Documentation Department
July, 1966 3145 PORTER DRIVE ©1966, Control Data Corporation
Pub. No. 60172700 PALO ALTO, CALIFORNIA Printed in the United States of America

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CONTENTS

INTRODUCTION

THE ASCENT LANGUAGE

1.1 ASCENT Terms
1.2 Language Specifications

Instruction Fields
Special Usages

1.3 Central Processor Instructions
Instruction Format
Definitions
Operating Registers
Operation Codes

THE ASPER LANGUAGE

2.1 ASPER Terms
2.2 Instruction Fields
2.3 Peripheral Processor Instructions

Instruction Format
Address Modes
Operation Codes

ASCENT/ASPER PSEUDO OPERATIONS AND MACROS

3.1 ASCENT/ASPER Pseudo Operations
3.2 Programmer-Defined Macros

Definition
Rules
Examples

ASSEMBLER ERRORS

4.1 Error Flags
4.2 Fatal Messages

I
j—

[o T S S SR S SO WP
1
M= O 00 oo o

= o

i

1ii

CHAPTER 5

APPENDIX A

iv

COSY

Input

Output
Corrections
COSY Identifier
Example
Diagnostics
Deck Format

v Ol ool O OOl
3O U W

ASCENT CONTROL CARD

TABLE 1. CENTRAL PROCESSOR OPERATION CODES
TABLE 2. PERIPHERAL PROCESSOR OPERATION CODES
TABLE 3. ASCENT PSEUDO OPERATION CODES

TABLE 4. ASPER PSEUDO OPERATION CODES

TABLE 5. 6400/6600 CHARACTER CODES

A-2
A-4
A-6
A-T

INTRODUCTION

The Control Data® 6400/6600 Assembly System consists of two language
processing programs: ASCENT (for Central Processor instructions) and
ASPER (for Peripheral Processor instructions). This manual defines the
ASCENT and ASPER languages, including programmer macros, assembler
diagnostics, and a description of COSY for both assembly languages.

The central processor handles the computational load; central memory
stores operational and system programs together with the data they re-
quire. The peripheral processors transfer from peripheral equipment
into central memory the programs to be executed by the central processor,
as well as all input data required at execute time. Similarly, peripheral
processors transfer (from central memory) output data generated by the
central programs to peripheral equipment.

ASCENT and ASPER programs may be intermixed within an assembly,
even though the individual instructions may not be mixed within a subpro-
gram. To preserve processing efficiency, each of the two subsystems has
a direct (though not exclusive) path for its own type of instruction.

This document represents version 1.1 of ASCENT/ASPER.

1.1
ASCENT TERMS

THE ASCENT LANGUAGE 1

The following terminology is used in ASCENT.

CHARACTERS

The character set comprises the letters A-Z, the digits 0-9, and the special
characters + - / * =(). , $blank

SYMBOLS

A symbol is any arrangement of letters and digits which starts with a letter
and contains no more than 7 characters.

Examples: T, PROG, ABSC123

Exceptions: A0,Al,...A7 are used for address registers.
B0,B2,...B7 are used for increment registers.

X0,X2,...X7 are used for arithmetic and operand
registers.

CONSTANTS

Constants may be any of the following:

Integer
. - 59 59
Up to 18 decimal digits, from -(2° -1 to (27 -1).

Examples: 3, 8125, 123456789012345678

1-1

QOctal

Up to 20 octal digits (0-7) terminating with the letter B. It functions exactly
like an Integer.

Examples: 47B, 770077B, 252525252525252525258B

Single-precision floating point

Up to 15 decimal digits, in the following forms:

With a single decimal point.
Examples: 1., .1, 0.1, 1.0, 5248.6153

With or without a decimal point, followed by EN or E+n, where n specifies
the power of 10 to be applied to the constant. The sign may be omitted

if it is positive; n may have up to 3 decimal digits.

Examples: 1E+5, 1.0E+250, .1E-30, 5248.6153E7, 14E51

Double-precision floating point

Up to 29 decimal digits, with or without a decimal point, followed by D or Dn
or D#n, where n specifies the power of 10 to be applied to the constant. The
sign of n may be omitted when positive; n may have up to 3 decimal digits.

Complex constant

Any pair of single-precision floating point constants separated by a comma
and enclosed in parentheses. For example: (1.0,-2.2), (1E+5,.001E-15).

The computer treats a complex constant simply as a pair of constants to be
stored in consecutive locations. When 1.0,-2. 2 is coded on a constant card,
1.0 and -2. 2 will be stored in consecutive locations. Parentheses have the
effect of telling the assembler the constants should be single-precision floating
point.

SPECIAL CHARACTERS
In the following instances only, special characters form part of a constant:

Decimal point in floating point numbers
Comma which unites the two parts of a complex number

Parentheses enclosing a complex constant or indicating a literal
(the only functions of parentheses in ASCENT)

OPERATORS
Operators + - * / are used in three ways:

1. Between quantities to be combined at assembly time to form an 18-bit
address field.
Examples: SA1 10+1
SA1 12-1
SA1 2%5+1
SA1 20+13/3

2. Between register names, indicating arithmetic functions to be carried
out at run time; in such an instruction, an operator qualifies the opera-
tion code.

Examples: FX1 X1+X2
FX1 X1-X2
FX1 X1*X2
FX1 X1/X2

3. Between a register name and a quantity, when a plus or minus sign indi-
cates that the quantity is to be added to or subtracted from the content of
the register at run time.

Examples: SA3 X4+365
JP B2+HOME

1-3

SEPARATORS

Normal separators are comma, blank, and equal sign; they are treated identi-
cally by the assembler, except in the location field. Conventionally, blanks
are used between the operation code and address fields, and a comma is used
as a separator within the address field.

Example: EQ B1,B2,ALASKA

Any number of separators may divide the operation code from the address but
once the address field has begun, two consecutive separators will terminate
the assembler scan; anything further to the right on the card will be interpreted
as a remark.
Examples: EQ B1,B2,ALASKA SHREWD
EQ B1,B2,ALASKA, ,SHREWD
A period or dollar sign anywhere in the location, operation code, or address
field terminates the scan.
Examples: . THIS IS A COMMENT CARD
NO . THIS IS A NO-OP
EQ B1,B2,ALASKA.SHREWD

LITERALS

Literals are used for addressing a core location the contents of which are
specified by the value within parentheses. Literals may be any of the follow-
ing forms:

(Constant)

(Symbol)

(Symbol=]) 1 is an integer, octal or symbolic constant (a
symbol that does not represent a relocatable
address)

(Symbol - Symbol)

When a two-word form is defined, the first word is addressed:

(Floating Double-Precision Constant)

(Complex Constant)

Examples: (3-2), (SAM), (SAM+5), (770.,5.1E31), (3. 4D70)
A second pair of parentheses is not used when a complex constant becomes a
complex literal.
OPERANDS

Operands combine operators, symbols, literals, and constants in the following
format:

OP TERM OP TERM OP TERM.

oP is+-*or /

TERM is * (current address), symbol, literal, or constant

Evaluating an Operand in the Address Field

A register is set to 0 and the leftmost OP and TERM are applied to the regis-
ter. (If no leading OP appears, + is assumed; a leading * indicates the
address of this location.) Each successive pair of OP and TERM is then
applied to the register. Thus, 21 + 12/3 is evaluated as 11, not as 25.

The resultant address is relocatable if:

o the operand field contained only one relocatable symbol
(A literal is a relocatable symbol.) and

e the operators * and / were not used, and

e the instruction is not LXi jk, AXi jk, or MXi jk.

Otherwise, the operand is absolute.

Symbolic Constant

A symbol constant is a symbol in the LOC field defined by the pseudo operation
EQU to take the value of an absolute operand.

1.2
LANGUAGE
SPECIFICATIONS

1.2.1
INSTRUCTION FIELDS

1-6

Examples: TAG EQU 20 (If A is relocatable, X4X is also

relocatable and cannot be called
A+
XX EQU 1008 a symbolic constant; otherwise
SUE EQU X4X/2 TAG, X4X, SUE and JOE are

JOE EQU B*512+C all symbolic constants.)

(A,B, and C must be previously defined.)

INSTRUCTION FORMAT

The following fields constitute an instruction:

Location Operation Code Address Remarks
Provides a Defines the oper- Supplies the Contains program-
symbol for ation, wholly or operands and/ mer notes only.
referencing partially or completes This field has no
by other the operation effect on the
instructions code assembly process

The fields of the basic ASCENT instruction are described in the following

sections.

LOCATION FIELD

Columns 2-9 constitute the location field. If the field is not blank, it must
contain one of the following:

+

in any column, with blanks in the other columns. The assembler
puts the instruction at the beginning of a 60-bit machine word,
automatically inserting no-operation instructions to fill out the
previous word if necessary.

in any column, with blanks in the others, is significant only if
the preceding instruction is JP, RJ, or PS. Normally the
assembler fills any unused part of JP, RJ, or PS machine words
with no-operation instructions so that the next instruction begins
a new machine word; however, if the next instruction is coded
with a minus sign in the field, it is assembled into the same word
with the JP, RJ, or PS if there is room.

Symbol anywhere in the field (with blanks in the unused columns). It is
equivalent to the address of the instruction or constant occupying
the rest of the card. The assembler inserts one or more no-
operation instructions before a labeled instruction when necessary
to position it at the beginning of a machine word.

. or$ inany column, with preceding blanks, indicates a comment card.
No symbol may appear in the location field of more than one card in a single
program. No symbol that occurs in the address field of a COMMON or EXT
card may occur in a location field in the same program. However, a symbol
that occurred in the location field of a COMMON card could appear in the loca-

tion field of another card; these two pseudo operations are exceptional in
several respects (see 3.1).

OPERATION CODE FIELD

The operation code field length is variable; it starts in or after column 11 and
is terminated by one or more separators (normally blanks). The field may
contain any of the following:

6400/6600 central processor mnemonic codes (Table 1, Appendix)

ASCENT pseudo codes (Table 3, Appendix)

Name of any programmer-defined macro

Numeric operation codes are not legal,

ADDRESS FIELD

The address field length is variable; its content varies with the instruction.
Two consecutive separators terminate the field.

REMARKS FIELD

The remarks field starts after two consecutive separators, or after a period
or dollar sign (except a period on a CON card or between parentheses, which
is assumed to be a decimal point). If the first non-blank character on a card
is a period, the entire card contains remarks. In a BCD or DPC card (3.1,
the remarks field begins after the last character to be assembled. If the
address field is blank, the remarks field must begin with a period.

1-7

OTHER COLUMNS

Only columns 1-72 are considered by ASCENT. Column 1 is either a blank or
a C for comment card. Column 10 is a blank and serves as a separator be-
tween location and operation code fields. ASCENT ignores column 10 except
to flag an error if non-blank.

1.2.2
SPECIAL USAGES Ascent Forcing Convention
Following a PS, JP, or RJ instruction, ASCENT forces the next instruction
to the upper portion of the next 60-bit word, unless there is a minus sign in
the location field of that instruction. A plus sign in the location field of any
instruction will cause it to be forced upper.
Asterisk
The asterisk, when used as an operand or part of an operand, assumes the
value of the current object code address. The forms are:
*
* operator constant
Examples: SAi * Load current object code word
Jp *43 Jump forward three 60-bit words
1.3
CENTRAL PROCESSOR
INSTRUCTIONS
1.3.1

INSTRUCTION FORMAT Instructions may be 15 bits or 30 bits. Either format uses a 6-bit operation
code. The result register requires 3 bits; the number of bits used for the
operand varies with the instruction.

1-8

1.3.2
DEFINITIONS

f m i j k

3 3 3 3 3 15 bits
14 U
m 2nd Operand
Code register (1 of 8)
Result register 1st Operand
(1 of 8) register (1 of 8)
f m i j k
3 3 3 3 18
= | Lo L
Operation 1st Operand 2nd Operand
Code register (1 of 8)
Result register
(1 of 8)
The parameters used in the instructions are defined as follows:
fm Operation code (6 bits)
i Specifies the result register or the X register condition for
a branch (3 bits)
j Specifies the first operand register (3 bits)
k Specifies the second operand register (3 bits)
jk Constant, indicating number of shifts (6 bits)
K Constant, indicating branch destination or second operand
(18 bits)
A One of eight 18-bit address registers
B One of eight 18-bit increment registers
X One of eight 60-bit operand registers

30 bits

19

1.33

OPERATING REGISTERS The 24 operating registers are identified by letters and digits:

1-10

A0,Al,...AT Address registers

BO,B1,...B7 Increment registers

X0,X1,...XT7 Operand registers
A Register

The execution of a SAi (i = 1-5) instruction produces an immediate memory
reference to the address contained in Ai and reads the contents of that location
into the corresponding operand register Xi (i = 1-5). When a SAi (i =6or 7)
instruction is executed the contents of the corresponding X register is stored
at the address specified by Ai. The address register A0 is used for temporary
storage; the execution of a SA0 instruction does not affect XO0.

Examples: SA3 A4+10

Adds 10 to the address in A4 and sets the A3 register to this sum. The
X3 register is set to the contents of the location specified by the new A3.

SA6 A2-15

Stores the contents of X6 into the location obtained by subtracting 15
from the address in A2,

B Register

The increment register B0 is set permanently to an 18-bit positive zero which
may be used in testing for zero or as an unconditional jump modifier. B1-B7
are used as modifiers and for program indexing. For example, B4 may be
used to control the number of passes of a program loop, terminating when a
given condition is reached.

Example: SB3 B5+B4

Adds the values contained in the two increment registers, B5 and B4,
and places the result in B3.

1.34
OPERATION CODES

X Register

Any of the registers X0-X7 may be used as a result or operand register.
X1-X5 hold read operands from central memory; X6 and X7 hold results sent
to central memory. The operand registers may be used and changed without
causing a change in the corresponding address registers.

Examples: BX2 X2+X4

Performs the logical addition of X2 and X4 and places the resultant
sum in X2,

SX6 A2-B5

Subtracts the contents of B5 from the contents of A2 and stores the result
in X6,

The instructions for the central processor are listed below. They are
ordered by octal code which divides the instructions according to functional
units. For each instruction, examples are given to show all the normal
forms of address fields. In the examples, "K" represents what might be
coded as any one of the following:

® One or more decimal or octal integers, symbolic constants, or
ordinary symbols, connected by operators.
e External symbol.

® Common block segment name alone or followed by a plus si gn and an
integer or symbolic constant.

e Literal.

00 PS Program Stop
Stops the central processor at the current instruction. An exchange jump
instruction is necessary to restart the central processor. PS is a 30-bit
instruction.

e.g. PS

A comment after PS should begin with a period, otherwise it will look like an
address field and may cause error flags.

1-11

1-12

01 RJ K Return Jump to K

Stores an unconditional jump (04) and the current program address plus one in
the upper 30 bits of K, and then branches to K + 1 for the next instruction.
The contents of K after the instruction is executed appear as follows:

K EQ B0,B0,L+1
PS

where L is the address of the executed RJ instruction

A jump to K at the end of the branch routine returns to the original program-
ming sequence.

e.g. RJ K

02 JP Bi+K Jump to Bi + K

Adds the contents of Bi to K and branches to the address specified by the re-
sultant sum. When Bi = B0, the branch address is K. Addition is performed
modulo 218-1.

e.g. JP B2+K
JP K+B2

030 ZR Xj,K Jump to Kif Xj =0
Branches to K if Xj is equal to zero. If the condition is not met, the next con-
secutive instruction step is executed. The test is made in the long add unit.
Minus zero and plus zero both satisfy the test.

e.g. ZR X2,K

ZR K,X2

031 NZ Xj,K Jump to K if Xj #0
Branches to K if Xj is not equal to zero. If the condition is not met, the next
consecutive instruction step is executed. The test is made in the long add

unit. Either plus zero or minus zero will fail the test.

e.g. NZ X2,K
NZ K,X2

032 PL Xj,K Jump to K if Xj is Plus

Branches to K if Xj is positive. If the condition is not met, the next consecy-
tive instruction step is executed.

e.g. PL X2,K
PL K,X2
033 NG Xj,K Jump to K if Xj is Negative

Branches to K if Xj is negative. I the condition is not met, the next consecu-
tive instruction step is executed.

e.g. NG X2,K
NG K, X2
034 IR Xj,K Jump to K if Xj is In Range
Branches to K if Xj is in range, less than infinity (377700. . .08).
e.g. IR X2,K
IR K,X2
035 OR Xj,K Jump to K if Xjis Out of Range
Branches to K if Xj is out of range, greater than or equal to 377700. . '08'
e.g. OR X2,K
OR K, X2
036 DF Xj,K Jump to K if Xj is Definite

Branches to K if Xj is definite. The test is a comparison against an indefinite
quantity (177700. . .08).

e.g. DF X2,K
DF K,X2

1-13

1-14

037 ID Xj,K Jump to K if Xj is Indefinite

Branches to K if Xj is indefinite. The test is a comparison against an indefi-

nite quantity (L777000...0,).

e.g. ID X2,K
ID K,X2
04 EQ Bi,Bj,K Jump to K if Bi = Bj

Compares Bi with Bj and branches to K if Bi is equal to Bj. Minus zero is
not equal to plus zero.

e.g. EQ B1,B2,K EQ BI,K, B2
EQ B2,Bl,K EQ K,Bl, B2

EQ K assembles as EQ B0, B0O,K an unconditional jump.

04 ZR Bi,K Jump to K if Bi = B0

Compares Bi with BO and branches to K if Bi is zero. Minus zero in Bi
fails this test.

e.g. 7ZR B2,K
ZR K,B2 means EQ B0, B2,K
05 NE Bi, Bj,K Jump to K if Bi # Bj

Compares Bi with Bj and branches to K if Bi is not equal to Bj. Minus
zero is not equal to plus zero.

e.g. NE B1,B2,K
NE B2,Bl,K
NE B2,K,Bl
NE K,B1,B2
05 NZ Bi,K Jump to K if Bi # BO

Compares Bi with B0 and branches to K if Bi is not zero. Minus zero in Bi
passes this test.

e.g. NZ B2,K
NZ K,B2 means NE B0,B2,K

06 GE Bi,Bj,K Jump to K if Bi = Bj

Compares Bi with Bj and branches to K if Bi is greater than or equal to Bj.
Plus zero is greater than minus zero.

e.g. GE B1,B2,K

GE B1,K,B2
GE K, B1,B2
06 PL Bi,K Jump to K if Bi = B0

Compares Bi with B0 and branches to K if the result is positive.

e.g. PL B1,K
PL K, Bl
means
GE B1,B0,K
07 LT Bi,Bj,K Jump to K if Bi < Bj

Compares Bi with Bj and branches to K if Bi is less than Bj. Minus zero
is less than plus zero.

e.g. LT BI,B2,K
LT BIL,K,B2
LT K, Bl,B2
07 NG Bi,K Jump to K if Bi < B0

Compares Bi with BO and branches to K if Bi is negative.

e.g. NG B1,K
NG K, B1
means
LT B1,B0,K
10 BXi Xj Transmit Xj to Xi

Transfers the 60-bit word in operand register Xj to Xi.

e.g. BX2 X3

1-15

11 BXi Xj*Xk Logical Product of Xj and Xk to Xi

Forms the logical product (AND function) of the 60-hit words in operand regis-
ters Xj and Xk and places the result in Xi.

Xj 0101
Xk 1100
Xi 0100
e.g. BX2 X3*X4
12 BXi Xj+Xk Logical Sum of Xj and Xk toXi

Forms the logical sum (inclusive OR) of the 60-bit words in operand registers
Xj and Xk and places the result in Xi.

Xj 0101
Xk 1100
Xi 1101
e.g. BX2 X3+X4
13 BXi Xj-Xk Logical Difference of Xj and Xk to Xi

Forms the logical difference (exclusive OR) of the 60-bit words in operand
registers Xj and Xk and places the result in Xi.

Xj 0101
Xk 1100
Xi 1001
e.g. BX2 X3-X4
14 BXi -Xk Transmit Xk Complement to Xi

Transmits the complement of the 60-bit word in operand register Xk to Xi.
The contents of Xk are not changed.

e.g. BX2 -X3

1-16

15 BXi -Xk*Xj Logical Product of Xj and Xk Complement to Xi

Forms in Xi the logical product (AND function) of Xj and the complement of
Xk. The contents of Xk and Xj are not changed.

Step1 Xj 0101 Step2 Xj 0101
Xk 1100 -Xk 0011
Xi 0001
e.g. BX2 -X3*X4
16 BXi -Xk+Xj Logical Sum of Xj and Xk Complement to Xi

Complements the 60-bit word in Xk, then forms the logical sum (inclusive OR)
of this quantity and Xk and places the result in Xi. The contents of Xk and Xj
are not changed.

Step1 Xj 0101 Step2 Xj 0101
Xk 1100 -Xk 0011
Xi 0111
e.g. BX2 -X3+X4
17 BXi -Xk-Xj Logical Difference of Xj and Xk Complement to Xi

Complements the 60-bit word in Xk, then forms the difference (exclusive OR)
of this quantity and Xj, and places the result in Xi. The contents of Xk and Xj
are not changed.

Step 1 Xj 0101 Step 2 Xj 0101
Xk 1100 -Xk 0011
Xi 0110
e.g. BX2 -X3-X4
20 LXi jk Shift Xi Left jk Places

Shifts the 60-bit word in Xi left circular jk places. Each step moves the left-
most bit of Xi into the rightmost position of Xi.

The 6-bit shift count jk is normally coded as an octal or decimal number. A
comgplete circular shift of Xi is possible, when jk = 60.

e.g. ILX2 36

1-17

1-18

21 AXi jk Shift Xi Right jk Places

Shifts the 60-bit word in Xi right jk places. The rightmost bits of Xi are dis-
carded and the sign bit is extended. The 6-bit shift count jk is normally coded
as an octal or decimal number.

e.g. AX2 36

22 1LXi Bj,Xk Left Shift Xk Nominally Bj Places to Xi

Shifts the 60-bit word in Xk the number of places specified by the low-order
6 bits of Bj and places the result in Xi.

If Bj is positive, Xk is shifted left circular.

If Bj is negative, Xk is shifted right (end off with sign extension).

When Bj is negative, the complement of the low-order 6 bits of Bj gives

the number of places to be shifted.

e.g. LX2 BI,X3
LX2 X3,B1

23 AXi Bj,Xk Arithmetic Right Shift Xk Nominally Bj Places to Xi

Shifts the 60-bit word in Xk the number of places specified by the low-order
6 bits of Bj and places the result in Xi.

If Bj is positive, Xk is shifted right (end off with sign extension).

If Bj is negative, Xk is shifted left circular.

When Bj is negative, the complement of the low-order 6 bits of Bj gives
the number of places to be shifted.

e.g. AX2 B3,X4
AX2 X4,B3
24 NXi Bj,Xk Normalize Xk in Xi and Bj

Normalizes the floating point quantity in Xk and places it in Xi. The number
of left shifts required to normalize the quantity is placed in Bj during the oper-
ation. If the coefficient of Xk is zero, Xi is cleared to all zeros and Bj is

set to 48. If the size of the exponent is less than the number of leading zeros
in the coefficient of Xk, underflow occurs during normalizing and the exponent
and coefficient of Xi are both cleared.

e.g. NX2 B3,X4
NX2 X4,B3

25 ZXi Bj,Xk Round and Normalize Xk in Xi and Bj

Performs the same operation as NXi (24) except that the quantity in Xk is
rounded before it is normalized. Normalizing a zero coefficient places the
round bit in bit 47 and reduces the exponent by 48.

e.g. ZX2 B3,X4
ZX2 X4,B3

26 UXi Bj,Xk Unpack Xk to Xi and Bj

Unpacks the floating point quantity in Xk and sends the sign and 48-bit co-
efficient to Xi and the 11-bit exponent minus 2000 _ to Bj; then Bj contains
the true 1's complement representation of the exponent. Xk may be an un-
normalized number.

e.g. UX2 B3,X4
UX2 X4, B3

The exponent and coefficient are sent to the low-order bits of the réspective
registers as shown in the following diagram.

si Biased
gn Exponent Coefficient
Packed Quantity 11 48 \\ Xk
5958 4847 0
Unbiased
Exponent

Exponent
Sign Extended

Coefficient
Sign Extended

Unpacked Bj

\ Xi

17 109 0 59 4847 0

27 PXi Bj,Xk Pack Xi from Xk and Bj
Packs a floating point number in Xi. The coefficient of the number is obtained

from the sign and low-order 48 bits of Xk and the exponent is obtained by
adding 20008 to the low-order 11 bits of Bj. The coefficient is not normalized.

1-19

1-20

Exponent and coefficient are obtained from the low-order bits of the register
and packed as shown in the diagram for the unpack (26) instruction., Overflow
is produced during pack when Bj is a positive number of more than 10 bits; the
overflow exit is optional. Underflow is produced (no exit) when Bj is a nega-
tive number of more than 10 bits.

e.g. PX2 B3,X4
PX2 X4,B3
30 FXi Xj+Xk Floating Sum of Xj and Xk to Xi

Forms the sum of the floating point quantities in Xj and Xk and packs the re-
sult in Xi. The packed result is the upper half of a double precision sum.

Both arguments are unpacked, and the coefficient of the argument with the
smaller exponent is entered into the upper half of a 96-bit accumulator. The
coefficient is shifted right by the difference of the exponents. The other co-
efficient is then added into the upper half of the accumulator. If overflow
occurs, the sum is shifted right one place, and the exponent of the result is
increased by one. The upper half of the accumulator holds the coefficient of
the sum, which is not necessarily in normalized form. The exponent and
upper coefficient are then repacked in Xi.

If both exponents are zero and no overflow occurs, the instruction effects an
ordinary integer addition.

e.g. FX2 X3+X4

31 FXi Xj-Xk Floating Difference of Xj and Xk to Xi
Forms the difference of the floating point quantities in Xj and Xk and packs

the result in Xi. Alignment and overflow operations are similar to the floating
sum (30) instruction, and the difference is not necessarily normalized. The
packed result is the upper half of a double precision difference.

An ordinary integer subtraction is performed when the exponents are zero.

e.g. FX2 X3-X4

32 DXi Xj+Xk Floating DP Sum of Xj and Xk to Xi

Forms the sum of two floating point numbers as in the floating sum (30) in-
struction, but packs the lower half of the double precision sum with an expo-
nent 48 less than the exponent of the upper sum.

e.g. DX2 X3+X4

33 DXi Xj-Xk Floating DP Difference of Xj and Xk to Xi

Forms the difference of two floating point numbers as in the floating difference
(31) instruction, but packs the lower half of the double precision difference
with an exponent of 48 less than the exponent of the upper difference.

e.g. DX2 X3-X4

34 RXi Xj+Xk Round Floating Sum of Xj and Xk to Xi

Forms the round sum of the floating point quantities in Xj and Xk and packs
the upper sum of the double precision result in Xi. The sum is formed in the
same manner as the floating sum (30) instruction except that the operands are
rounded before the addition, as explained below, to produce a round sum.

A round bit is attached at the right end of both operands if both operands
are normalized, or the operands have unlike signs.
For all other cases, a round bit is attached at the right end of the oper-

and with the larger exponent.

e.g. RX2 X3+X4

35 RXi Xj-Xk Round Floating Difference of Xj and Xk to Xi

Forms the round difference of the floating point quantities in Xj and Xk and
packs the upper difference of the double precision result in Xi. The difference
is formed in the same mamner as the floating difference (3 1) instruction ex-
cept operands are rounded before the subtraction, as explained below, to pro-
duce a round difference.

A round bit is attached at the right end of both operands if both operands
are normalized, or the operands have like signs.

For all other cases, a round bit is attached at the right end of the operand
with the larger exponent.

e.g. RX2 X3-X4

1-21

1-22

36 IXi Xj+Xk Integer Sum of Xj and Xk to Xi

Forms a 60-bit one's complement sum of the quantities in Xj and Xk and stores
the result in Xi. An overflow condition is ignored.

e.g. IX2 X3+X4

37 IXi Xj-Xk Integer Difference of Xj and Xk to Xi

Forms the 60-bit one's complement difference of the quantities in Xj (minuend)
and Xk (subtrahend) and stores the result in Xi.

e.g. IX2 X3-X4

40 FXi Xj*Xk Floating Product of Xj and Xk to Xi

Multiplies the floating point quantities in Xj (multiplier) and Xk (multiplicand)
and packs the upper product result in Xi.

The result is a normalized quantity only when both operands are normalized;
the exponent is then the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized;
the exponent is then the sum of the exponents pius 43.

e.g. FX2 X3*X4

41 RXi Xj*Xk Round Floating Product of Xj and Xk to Xi
Attaches a round bit to the floating point number in Xk (multiplicand), multi-
plies this number by the floating point number in Xj, and packs the upper

product result in Xi. (No lower product is available.)

The result is a normalized quantity only when both operands are normalized;
the exponent is then the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized;
the exponent is then the sum of the exponents plus 48.

e.g. RX2 X3*X4

42 DXi Xj*Xk Floating DP Product of Xj and Xk to Xi

Multiplies the floating point quantities in Xj and Xk and packs the lower prod-
uct in Xi with an exponent 48 less than the exponent of the upper product. The
result is not necessarily a normalized quantity.

e.g. DX2 X3*X4

43 MXi jk Form Mask in Xi, jk bits

Forms a mask in Xi. The 6-bit quantity jk defines the number of ones in the
mask as counted from the highest order bit in Xi.

e.g. MX2 36

44 FXi Xj/Xk Floating Divide Xj by Xk to Xi
Divides the floating point quantities in Xj (dividend) by Xk (divisor) and packs
the quotient in Xi. The exponent of the result in a no-overflow case is the dif-
ference of Xj and Xk exponents minus 48.

A one-bit overflow is compensated by shifting the coefficient right one place
and increasing the exponent by one. 'The exponent is then the difference of Xj
and Xk exponents minus 47.

The result is a normalized quantity when both Xj and Xk are normalized.

e.g. FX2 X3/X4

45 RXi Xj/Xk : Round Floating Divide Xj by Xk to Xi
Divides the floating point quantity in Xj (dividend) by Xk (divisor) and packs the
round quotient in Xi. A 1/3 round bit is added to the least significant bit of the
dividend (Xj) before division starts. The result exponent in a no-overflow case
is the difference of Xj and Xk exponents minus 48.

A one-bit overflow is compensated by shifting the coefficient right one place
and increasing the exponent by one. The exponent is then the difference of Xj
and Xk exponents minus 47.

The result is a normalized quantity when both Xj and Xk are normalized.

e.g. RX2 X3/X4

1-23

46 NO Pass
No operation. This is a 15-bit instruction. A comment on the same card
should begin with a period; otherwise it will look like an address field and
may cause an error flag.

47 CXi Xk Count the Number of 1's in Xk to Xi

Counts the number of ones in Xk and stores the count in Xi.

e.g. CX2 X3
50 SAi Aj+K
e.g. SA2 A2+K
SA2 K+A2
SA2 A3-K
51 SAi Bj+K
e.g. SA2 B3+K
SA2 K+B3

—a _Tr

SAZ Bz2-K
SA2 K means SA2 BO0+K
52 SAi Xj+K
e.g. SA2 X3+K
SA2 K+X3
SA2 X3-K
53 SAi Xj+Bk
e.g. SA2 X3+B4
SA2 B4+X3
SA2 X3 means SA2 X3+B0
54 SAi Aj+Bk
e.g. SA2 A3+B4

SA2 B4+A3
SA2 A3 means SA2 A3+B0

1-24

55 SAi Aj-Bk

e.g. SA2 A3-B4
56 SAi Bj+Bk
e.g. SA2 B3+B4

SA2 B3 means SA2 B3+B0

57 SAi Bj-Bk

e.g. SA2 B3-B4

These instructions perform one's complement addition and subtraction of 18-
bit operands and store an 18-bit result in Ai.

Operands are obtained from address (A), increment (B), and operand (X)
registers as well as the K portion of the instruction. K is an 18-bit signed
constant. As used in instructions 50,51, and 52, if the sign of K is minus,
ASCENT places the 18-bit one's complement of K in the K portion of the in-
struction word. Operands obtained from an X register are the truncated lower
18 bits of the 60-bit register.

An immediate memory reference to the address specified by the final contents
of address register Ai is effected by the execution of a SAi (i = 1-7) instruction.
The operand read from memory address specified by A1-A5 is sent to the cor-
responding operand register X1-X5. The operand from X6 or X7 is stored at
the address specified by the corresponding A6 or A7.

60 SBi Aj+K
e.g. SB2 A3+K
SB2 K+A2
SB2 A3-K

61 SBi Bj+K
e.g. SB2 B3+K
SB2 K+B3
SB2 B3-K

SB2 K means SB2 B0+K

1-25

62 SBi Xj+K
e.g. SB2 X3+K
SB2 K+X3
SB2 X3-K
63 SBi Xj+Bk
e.g. SB2 X3+B4
SB2 B4+X3
SB2 X3 means SB2 X3+B0
64 SBi Aj+Bk
e.g. SB2 A3+B4
SB2 B4+A3
SB2 A3 means SB2 A3+BO0
65 SBi Aj-Bk

e.g. SB2 A3-B4

66 SBi Bj+Bk

e.g. SB2 B3+B4
SB2 B3 means SB2 B3+B0

67 SBi Bj-Bk

e.g. SB2 B3-B4

These instructions perform one's complement addition and subtraction of 18-
bit operands and store an 18-bit result in Bi.

Operands are obtained from address (A), increment (B), and operand (X) reg-
isters as well as the K portion of the instruction. K is an 18-bit signed con-
stant. As used in instructions 60,61 and 62, if the sign of K is minus,
ASCENT places the 18-Dbit one's complement of K in the K portion of the in-
struction word. Operands obtained from an X register are the truncated lower
18 bits of the 60-bit register.

1-26

70

71

72

73

74

75

76

SXi Aj+K
e.g. SX2
SX2
SX2
SXi Bj+K
e.g. SX2
SX2
SX2
SX2
SXi Xj+K
e.g. SX2
SX2
SX2
SXi Xj+Bk
e.g. SX2
SX2
sX2
SXi Aj+Bk
e.g. SX2
sX2
SX2
SXi Aj-Bk
e.g. SX2
SXi Bj+Bk
e.g. SX2
SX2

A3+K
K+A2
A3-K

B3+K
K+B3
B3-K
K means SX2 B0+K

X3+K
K+X3
X3-K

X3+B4
B4+X3
X3 means SX2 X3+B0

A3+B4
B4+A3
A3 means SX2 A3+B0

A3-B4

B3+B4
B3 means SX2 B3+B0

1-27

77 SXi Bj-Bk

e.g. SX2 B3-B4

These instructions perform one's complement addition and subtraction of 18-
bit operands and store an 18-bit result in Xi.

Operands are obtained from address (A), increment (B), and operand (X) reg-
isters as well as the K portion of the instruction. K is an 18-bit signed con-
stant. As used in instructions 70,71, and 72, if the sign of K is minus,
ASCENT places the 18-bit one's complement of K in the K portion of the in-
struction word.

Operands obtained from an Xj register are the truncated lower 18 bits of the

60-bit register. Conversely, an 18-bit result placed in Xi carries the sign bit
extended to the remaining bits of the 60-bit register.

1-28

21
ASPER TERMS

THE ASPER LANGUAGE 2

The following terminology is used in ASPER.

CHARACTERS

The character set is identical to that of ASCENT: A-Z, 0-9, and special
characters + - / * =()., $ blank.

SYMBOLS

As in ASCENT, a symbol is any arrangement of letters and digits up to 7,
starting with a letter. But unlike the rule for ASCENT, A3 or X7 would be
a valid symbol in ASPER.

Examples: T, PROG, ABCD123

CONSTANTS

Constants may be any of the following:

A decimal integer less than 218.

Up to 6 octal digits (0-7) terminating with the letter B.

Examples: 47B, 77708, 140B

OPERATORS
Operators are used in address manipulations only:

+ addition
subtraction
multiplication
/ division

* 1

2-1

2.2
INSTRUCTION FIELDS

2-2

SEPARATORS

The $ blank . = and , are used as in ASCENT, with the single exception
that in ASPER a . is used only to terminate the scan; there are no floating
point constants in ASPER. $ or . terminates the scan; anything following to
the right is a remark.

OPERANDS

An operand is a combination of operators, symbols, and constants terminated
by a separator. A single operand must not contain embedded separators. The
format is:

OP TERM OP TERM OP TERM

oP is+-%/
TERM is constant, symbol, or *

When the operand begins with a TERM, it is treated as if preceded by +.

* ag a TERM indicates the address of a 1-word instruction; in a 2-word
instruction, it indicates the address of the first word.

Literals are not allowed in ASPER.

INSTRUCTION FORMAT
The fields constituting an instruction are the same as in ASCENT:

Location Operation Code Address Remarks

The fields of the basic ASPER instruction are described in this section.

LOCATION FIELD

The location field occupies columns 2-9. The field may be blank or contain a
symbol of up to 7 characters ending on or before column 9. Symbols may not
be duplicated in the location field within a program. The special character *
may not appear in the location field.

OPERATION CODE FIELD

The operation code field length is variable; it starts in or after column 11 and
is terminated by a separator (two if there is no address field). The field may
contain:
6400/6600 peripheral pbrocessor mnemonic codes (Table 2, Appendix)
ASPER pseudo codes (Table 4, Appendix)
Programmer-defined macros
The 6-bit machine code represented by mnemonic becomes the left half of the

first instruction word. Pseudo operations are interpreted and used in assem-~
bler sequence control. Numeric operation codes are illegal.

ADDRESS FIELD

The address field length is variable; its content varies with the type of in-
struction.

Operand (6-bit address)

No address (mnemonic ends in N) Example: LPN 77B
Direct (mnemonic ends in D) Example: STD ALOC
Indirect (mnemonic ends in I) Example: STI ALOC

Instructions of this class require only one peripheral memory location. The
address field is restricted to one operand. The operand evaluation must pro-
duce an octal equivalent = 77 8 This value becomes the right half of the in-
struction word.

Operand,Operand (12-bit address and 6-bit index designator)

Memory (mnemonic ends in M) Example: LDM RECORD, ALOC
Instructions of this class require two peripheral memory locations; the first
contains the 6-bit operation code and the index designator (I = 77g). The

second word contains the address portion evaluated to = 212-1. The index
designator may be blank.

Example: LDM RECORD

2-3

2.3
PERIPHERAL
PROCESSOR
INSTRUCTIONS

2.3.1
INSTRUCTION FORMAT

2-4

Operand (18-bit address)
Constant (mnemonic ends in C) Example: LDC 776304B

Instructions of this class require two peripheral memory locations. The first
word contains the 6-bit operation code and the high-order 6 bits of the operand.
The low-order 12 bits are placed in the second word. The address field is re-
stricted to one operand, which must produce an octal equivalent= 218_1 when
evaluated.

REMARKS FIELD

The remarks field follows the first . or $ or the first occurrence of two con-
secutive separators (comma, blank, or equal) after the beginning of the
address field.

OTHER COLUMNS

The blank column 10 separates the location and the operation code fields.
Column 1 must contain blank or C; C indicates a comment card.

A PP instruction may be 12 bits or 24 bits to provide 6-bit or 18-bit oper-
ands and 6-bit, 12-bit or 18-bit addresses.

The 12-bit format has a 6-bit operation code, f, and a 6-bit operand or oper-
and address, d.

Operation Operand or
Code Operand Address
f d
T
6 i 6
i
11 0

The 24-bit format requires two memory words. The 6-bit quantity, d, of
the first word is used with the 12-bit quantity, m, of the next consecutive word
to form an 18-bit operand or operand address.

Operation Operand or

Code Operand LAddress
f s d m \
6 6 12
NEY ONE!)
Y Y
P P+1
2.3.2
ADDRESS MODES The usage of the quantities d and m varies with the addressing mode:

No address mode: d or dm is taken directly as an operand, eliminating the
need for storing many constants. d is a 6-bit quantity 00-77g, but it may
be considered asan18-bitnumber with zero in the upper 12 bits. dm is
an 18-bit quantity; d is the upper 6 bits and m the lower 12 bits.

Direct address mode: d or m + (d) is used as the operand address. d speci-
fies one of the first 64 memory locations (0000-0077g). m + (d) gener-
ates a 12-bit address for referencing all possible PP memory locations
(0000-7777g). If d =0, m is taken as the operand address. If d #0,
the content of location d is added to m to produce an operand address
(indexed direct addressing).

Indirect address mode: d specifies a location containing the address of the
desired operand.

Indirect addressing and index direct addressing each require an additional
memory reference.

Examples: d= 258 contents of loc. 258 = 01508

m = 1008 contents of loc. 1508 = 77768

contents of loc. 2508 = 1:2348

Mode Instruction Interpretation A Register
No Address LDN 25B IDN d 000025
LDC 250100B LDC dm 250100
Direct Address LDD 25B LDD (d) 000150
LDM 100B,25B LDM (m+(d)) 001234
Indirect Address LDI 25B LDI ((d) 007776

Actual operation code formats are shown in Table 2, Appendix.

2-5

2.33
OPERATION CODES

2-6

00 PSN d Pass
A no operation instruction. A comment after the operation should begin

with a period; otherwise it looks like an address field and may cause an

error.

01 LIM m+H(d) Long Jump

Jumps to sequence beginning at address m + (d). If d =0, m is not modified.

02 RJIM m+(d) Return Jump

Stores the current program address plus two (P + 2) at location m + (d), and
jumps to location m + (d) + 1.

03 UJN d Unconditional Jump

Unconditional jump of up to 31 steps forward or backward from current pro-
gram address, depending on value of d. Forward if d is positive (01-37g).
Backward if d is negative (40-76g). Program stops when d equals 00 or 77.

04 ZJN d Zero Jump

Conditional jump of up to 31 steps forward or backward from current program
address if A register is zero. If A is nonzero, the next instruction is exe-
cuted. Negative zero (777777) is treated as nonzero. See instruction 03 for
an interpretation of d.

05 NJN d Nonzero Jump

Conditional jump of up to 31 steps forward or backward from current program
address if A register is nonzero. If A is zero, the next instruction is exe-
cuted. Negative zero (777777) is treated as nonzero. See instruction 03 for
an interpretation of d.

06 PJN d Plus Jump

Conditional jump of up to 31 steps forward or backward from current program
address if A register is positive. If A is negative, the next instruction is exe-
cuted. See instruction 03 for an interpretation of d.

07 MJN d Minus Jump

Conditional jump of up to 31 steps forward or backward from the current pro-
gram address if A register is negative. If A is positive, the next instruction
is executed. See instruction 03 for an interpretation of d.

10 SHN d Shift

Shifts contents of A register right or left d places. I d is positive (00-37g),
shift is left circular; if d is negative (40-77), A is shifted right (end off with
no sign extension). A left shift of 6 places results when d =6 and a right
shift of 6 places results when d = 718.

11 LMN d Logical Difference

Forms in the A register the bit-by-bit logical difference of d and the lower 6
bits of A. This is equivalent to complementing the individual bits in A which
correspond to one bits in d. The upper 12 bits of A are not altered.

A 001110101011001001
d 001010

001110101011000011

12 LPN d Logical Product

Forms in the A register the bit-by-bit logical product of d and the lower 6
bits of A. The upper 12 bits of A are zero.

A 001110101011001001
d 001010

000000000000001000

13 SCN d Selective Clear

Clears the lower 6 bits of the A register where corresponding bits of d are
ones. The upper 12 bits of A are not altered.

A 001110101011001001
d 001010

001110101011000001

14 ILDN d Load
Clears the A register and loads d into the lower 6 bits of A. The upper 12
bits of A are zero.

15 LCN d Load Complement
Clears the A register and loads the complement of d into the lower 6 bits of A.
The upper 12 bits of A are set to ones.

16 ADN d Add

Adds the 6-bit positive quantity d to the contents of the A register.

17 SBN d Subtract

Subtracts the 6-bit positive quantity d from the contents of the A register.

20 LDC dm Load
Clears the A register and loads the 18-bit quantity consisting of d as the upper
6 bits and m as the lower 12 bits.

21 ADC dm Add
Adds to the A register the 18-bit quantity consisting of d as the upper 6 bits
and m as the lower 12 bits.

22 LPC dm Logical Product

Forms in the A register the bit-by-bit logical product of the contents of A and
the 18-bit quantity dm.

A 001110101011001001
din 001110000011001010

001110000011001000

23 LMC dm Logical Difference

Forms in the A register the bit-by-bit logical difference of the contents of A
and the 18-bit quantity dm. This is equivalent to complementing the individual
bits in A which correspond to one bits in dm.

A 001110101011001001
dm 000010000000001010

001100101011000011

24 Pass

A no operation instruction. There is no mnemonic for this.

25 Pass

A no operation instruction. There is no mnemonic for this.

26 EXN d Exchange Jump

Transmits an 18-bit address from the A register to the central processor and
directs the central processor to perform an exchange jump, with the address in
A as the starting location of a 16-word file containing information about the CP
program to be executed. The 18-bit initial address must be entered in A before
this instruction is executed. The central processor replaces the file with sim-
ilar information from the interrupted CP program. The PP program is not
interrupted.

27 RPN d Read Program Address
Transfers contents of the central processor program address register to the
peripheral processor A register to allow the PP to determine whether the
central processor is running.

30 LDD (d) Load

Clears the A register and loads the contents of location d into the lower 12 bits
of A. The upper 6 bits of A are zero.

2-9

2-10

31 ADD (d) Add

Adds to the A register the 12-bit positive quantity in location d.

32 SBD (d) Subtract

Subtracts from the A register the 12-bit positive quantity in location d.

33 LMD (d) Logical Difference

Forms in the A register the bit-by-bit logical difference of the lower 12 bits of
A and the contents of location d. This is equivalent to complementing individ-
ual bits of A which correspond to one bits in the contents of d. The upper 6 bits
of A are not altered.

A 001110101011001001
d 010100001010

001110111111000011

34 STD (d) ‘ Store
Stores the lower 12 bits of the A register into location d. The contents of A
are not altered.

35 RAD (d) Replace Add
Adds the 12-bit quantity in location d to the contents of the A register and
stores the lower 12 bits of the result back in location d. The result is also
left in the A register at the end of the operation.

36 AOD (d Replace Add One
Adds one to the original value in location d and stores the lower 12 bits of the
result back in location d. The result is also left in the A register at the end
of the operation.

37 SOD (d) Replace Subtract One
Subtracts one from the original value in location d and stores the lower 12 bits

of the result back in location d. The result is also left in the A register at the
end of the operation.

40 LDI ((d) Load

Clears the A register and loads into A the 12-bit quantity obtained by indirect
addressing. The upper 6 bits of A are zero.

41 ADI ((d)) Add

Adds to the contents of the A register a 12-bit positive operand obtained by in-
direct addressing.

42 SB1 ((dy) Subtract

Subtracts from the A register a 12-bit positive operand obtained by indirect
addressing.

43 LMI ((d)) Logical Difference

Forms in the A register the bit-by-bit logical difference of the lower 12 bits of
A and the 12-bit operand obtained by indirect addressing. This is equivalent
to complementing individual bits of A which correspond to one bits in the
operand. The upper 6 bits of A are not altered.

A 001110101011001001
(@) 010100001010

001110111111000011

44 STI ((d)) Store
Stores the lower 12 bits of the A register into the location specified by the con-
tents of d. The contents of A are not altered.

45 RAI ((d)) Replace Add
Adds A register contents to the operand obtained from the location specified by

the contents of d. The resultant sum is left in the A register at the end of the
operation and the lower 12 bits of A replace the original operand in memory.

2-11

2-12

46 AOI ((d)) Replace Add One

Adds one to the operand obtained from the location specified by the contents of
d. The resultant sum is left in the A register at the end of the operation and
the lower 12 bits of A replace the original operand in memory.

47 SOI ((d)) Replace Subtract One

Subtracts one from the operand obtained from the location specified by the con-
tents of d. The resultant difference is left in the A register at the end of the
operation and the lower 12 bits of A replaces the original operand in memory.

50 LDM (m+(d)) Load

Clears the A register and loads a 12-bit operand obtained by indexed direct
addressing into the lower 12 bits of A. The upper 6 bits of A are zero. If
d =0, the operand address ism. I d#0, m plus the contents of location d
is the operand address.

51 ADM (m+(d)) Add

Adds to the contents of the A register a 12-bit positive operand obtained by
indexed direct addressing. (See instruction 50.)

52 SBM (m+(d)) Subtract

Subtracts from the A register a 12-bit positive operand obtained by indexed
direct addressing. (See instruction 50.)

53 LMM (m+(d)) Logical Difference

Forms in the A register the bit-by-bit logical difference of the lower 12 bits of
A and a 12-bit operand obtained by indexed direct addressing. This is equiva-
lent to complementing individual bits of A which correspond to one bits in the
operand. The upper 6 bits of A are not altered.

A 001110101011001001
(m+(d)) 010100001010

001110111111000011

54 STM (m+(d)) Store

Stores the lower 12 bits of the A register in the location determined by indexed
direct addressing. The contents of A are not altered. (See instruction 50.)

55 RAM (m+(d)) Replace Add

Adds A register contents to the operand obtained from the location determined
by indexed direct addressing. The resultant sum is left in the A register at
the end of the operation and the lower 12 bits of A replace the original operand
in memory. (See instruction 50.)

56 AOM (m+(d)) Replace Add One

Adds one to the operand obtained from the location determined by indexed di-
rect addressing. The sum is left in the A register at the end of the operation
and the lower 12 bits of A replace the original operand in memory. (See
instruction 50.)

57 SOM (m+(d)) Replace Subtract One

Subtracts one from the operand obtained from the location determined by in-
dexed direct addressing. The result is left in the A register at the end of the

operation and the lower 12 bits of A replace the original operand in memory.
(See instruction 50.)

60 CRD d Central Read from (A) to d

Transfers a 60-bit central memory word to 5 consecutive PP memory loca-

tions. The A register must contain the 18-bit absolute CM address before the
instruction is executed. The 60-bit CM word is disassembled beginning at the
left; d + 1, the next 12-bit word, etc. The A register contents are unchanged.

61 CRM m,d Central Read (d) words from (A) to m

Reads a block of 60-bit words from central memory into peripheral processor
memory. The A register contains the 18-bit CM starting address and must be
loaded prior to the execution of this instruction. The contents of A are in-
creased by one as each 60-bit CM word is disassembled and stored. The block
length or number of CM words to be read is contained in location d. The num-
ber also goes to the Q register where it is reduced by one as each CM word is
processed. Transfer is complete when Q = 0.

2-13

2-14

The current contents of the P register are stored in PP location 0000, and the
PP starting address m in the P register, which is increased by one as each
12-bit word is stored. Five words are required for each CM word read, since
each CM word is disassembled into five successive PP words. The original
contents of P are restored upon completion of the transfer.

62 CWD d Central Write from d to (A)

Assembles five successive 12-bit words into a 60-bit word and stores it in
central memory. The 18-bit CM address must be in the A register prior to
the execution of the instruction, and it remains there unchanged afterwards.

The first word to be read out of PP memory is contained in location d; it
appears as the leftmost 12 bits of the 60-bit word. The remaining 12-bit
groups are taken from successive addresses in PP memory.

63 CWM m,d Central Write (d) words from m to (A)

Assembles a block of 60-bit words and writes them in central memory. The A
register contains the beginning central memory address and must be loaded
prior to the execution of this instruction. The number in A is increased by one
after each 60-bit word is assembled, to provide the next CM address.

The contents of location d specify the number of 60-bit words to write. The
number also goes to the Q register where it is reduced by one as each CM
word is assembled. Transfer is complete when Q = 0.

The original contents of the P register are stored in PP location 0000. The
address of the first word to read from PP memory, m, goes to the P register
which is increased by one as each 12-bit word is read to provide the next PP
memory address. The original contents of the P register are restored at the
completion of the transfer.

64 AJM m,d Jump to m if channel d active
Conditional jump to a new program sequence beginning at address m if the

channel specified by d is active. If the channel is inactive, the current pro-
gram sequence continues.

65 IJM m,d Jump to m if channel d inactive

Conditional jump to a new program sequence beginning at address m if the
channel specified by d is inactive. If the channel is active, the current pro-
gram sequence continues.

66 FJM m,d , Jump to m if channel d full

Conditional jump to a new program sequence beginning at address m if the
channel specified by d is full. If the channel is empty, the current program
sequence continues.

When the input equipment sends a word to the channel register and sets the
full flag, the channel remains full until the PP accepts the word and clears the
flag. '

On output, the PP places a word in the channel register and sets the full flag.
The channel is empty when the output equipment accepts the word and notifies
the PP.

67 EJM m,d Jump to m if channel d empty
Conditional jump to a new program sequence beginning at address m if the
channel specified by d is empty. If the channel is full, the current program
sequence continues.

70 IAN d Input to A from channel d
Transfers a word from input channel d to the lower 12 bits of the A register.
The upper 6 bits are cleared.

71 IAM m,d Input (A) words from channel d to m
Transfers a block of words from input channel d to PP memory beginning at
a location specified by m. The A register contains the block length; it is re-
duced by one as each word is read. The input operation is complete when
A=0.

The current contents of the P register are stored in PP location 0000 and the
starting address, m, in P, which is increased by one as each word is stored

to give the next address. The original contents of the P register are restored
at the end of the operation.

72 OAN d Output (A) on channel d

Transfers a word from the lower 12 bits of the A register to output channel d.
The A register remains unaltered.

2-15

2-16

73 OAM m,d Output (A) words from m on channel d
Transfers a block of words on output channel d from PP memory beginning at
the location specified by m. The number of words is specified by the contents
of the A register, which is reduced by one as each word is transferred. The
output operation is completed when A = 0.

The current contents of the P register, m, are stored in PP location 0000. P
is increased by one as each word is read to give the next address. The original
contents of the P register are restored at the end of the operation.

74 ACN d Activate channel d
Activates the channel specified by d. This instruction must precede instruc-
tions 70-73. Activating a channel alerts the 1/0 equipment for the exchange of
data.

75 DCN d Disconnect channel d
Deactivates the channel specified by d; stops the 1/0 equipment and terminates
the buffer.

76 FAN d Function (A) on channel d
Sends on channel d the external function code in the lower 12 bits of the A
register.

77 FNC m,d Function m on channel d

Sends on channel d the external function code specified by m.

ASCENT/ASPER PSEUDO OPERATIONS AND MACROS 3

3.1
ASCENT/ASPER
PSEUDO
OPERATIONS

The following ASCENT and ASPER pseudo operations apply to both languages
except where noted.

ASCENT (ASCENT only)

Defines the beginning of a program and its name. Sets assembly mode to
ASCENT. Must be the first instruction of an ASCENT routine.

END ASRRERA N (vi separated by commas represent a variable number of
symbols or integers in the location field.)

Indicates last card of assembly. If address field is non-blank, a main program
is assumed and relocation bits are not punched in the Chippewa binary deck.
Apart from this, vy has no significance. In an ASPER program, it has none

at all.

SUBRT (ASCENT only)

This should be used only as the next card after an ASCENT pseudo operation.
The program containing it becomes a non-main program, so that relocation
bits will be punched regardless of how the END card is coded.

EXT vl,v2, ... ’Vn

Defines v. as external symbols. Meaningful only if relocatable binary decks

are punchled.

Symbols used with EXT must be different from all normally defined symbols
and from common block segment names.

ENTRY VioVgseea ¥y (ASCENT only)

Defines \ to be entry points. Meaningful only if relocatable binary decks are
punched.

3-2

LIST v 1
Controls the side-by-side listing so that sections of coding may be omitted.

It v, = 0, print the listing
If v, # 0, suppress the listing

A LIST pseudo operation overrides permanently the choice of
list or non-list mode on the ASCENT job control card. During
assembly, a line that contains an error flag is always listed.

SPACE \f

Spaces v 1 (1-63) lines on the listing.

EJECT

Ejects the listing to the top of the next page.

ASPER (ASPER only)
Defines the beginning of an ASPER program. It must be the first card of the

program, except for comment cards.

MACRO name, v,,v_,...,v

1’72 n

Indicates the start of a macro definition; name is the name associated with the
macro. v, are formal parameters. (See section 3. 2.)
ENDM

Indicates the end of the macro definition.

IFF Vl’vz’VS
1

If v. =0, assembles the next card if Vo # Vg
If v, # 0, assembles the next card if Vo =V

IFZ vl,v2

Assembles the following v, cards if the value of v, = 0.

IFN vl,v2

Assembles the following v,, cards if the value of v, #0.

REPLACE ViV

Replace cards from alter number \ to v_,. If v_ is omitted, replace card
v.. All succeeding cards up to but not including the next REPLACE, DELETE,

II%SERT, or COSY, constitute the replacement.

DELETE vl,v2

Delete cards from alter number v1 to v I v2 is omitted, delete card v_.

2 1

INSERT v 1

Insert new cards after alter number v.. All succeeding cards are inserted up
to but not including the next INSERT, 6 LETE, REPLACE, or COSY.

COsY

Indicates the end of modifications and start of the COSY deck.

ORG vy (ASPER only)

Sets the location counter to the value of vy

ORGR v 1 (ASPER only)

Sets the location counter to the value of vy

LOC BSS \f

Reserves the number of words specified by vy beginning at the next available
location. The contents of the reserved locations are not set. The LOC sym-
bol is equated to the address of the first word of the area. Any symbol appear-
ing in the address field must be previously defined.

3-3

3-4

LOC BSSZ vy

Same as BSS; the contents of the reserved locations are set to zero in the
object code.

LOC EQU \f

Assign the value v, to LOC. Any symbol appearing in the address field must
be previously defined.

LOC DPC
or *Comment*
LOC BCD

Converts the characters enclosed by the asterisks (any number of characters)
to display code or to BCD code, starting at the next available location. The
last word, if incomplete, is padded with DPC or BCD blanks. The LOC sym-
bol is equated to the address of the first word of the area. Characters between
the asterisks have no effect on the assembler; for instance, a dollar sign does
not terminate the scan. The comment field begins after the second asterisk.

LOC DPC
or nnComment
LOC BCD

Converts nn characters to display code or BCD code, beginning at the next
available location (nn must be a two-digit decimal number). The last word, if
incomplete, is padded with DPC or BCD blanks. The LOC symbol is equated
to the address of the first word of the area. Characters following nn have no
effect on the assembler; the comment field begins after the nn assembled
characters.

LOC VFD (ASCENT only)

The VFD card generates a 60-bit word. Field specifications are:

Dnn/v1 generates nn bits of display code. nn must be a multiple of 6, the
first character must be alphabetic, and all other chacters must be letters

or digits. If special characters are to be used, the use of Nnn/v1 and the
octal equivalent is necessary.

3.2
PROGRAMMER-
DEFINED MACROS

3.2.1
DEFINITION

Nnn/ vy, generates nn bits as an integer; vo must be an integer, decimal or
octal; it may be preceded by + or -.

An:n/v1 generates mn bits as an address (if vy is relocatable, nn must be 18
and the 18-bit byte must be positioned in bits 0-17, 15-32, or 30-47). vy
must be a single unmodified symbol.

The sum of all nn's must be = 60. If less than 60, the result will be left
justified with 0 fill.

Examples: VFD D30/INPUT, N12/0, A18/NAME

LOC COMMON v_,n (ASCENT only)

120 Vgrgs o
Defines common block LOC and segments v, of lengths n..] must be sym-
bols; n; must be integers. Meaningful only in relocatable binary decks. Blank
common is defined by leaving the location field blank. A simple variable must
be defined as a one-word segment and a multi-dimensioned array as a one-

dimension segment.

LOC CON Vo Vgr e

In ASCENT, each of the vi must be one of the following:

Integer, octal constant, single or double precision floating point constant,
complex constant, or operand. In this case, the operand is evaluated as

an integer constani. A lileral must not occur in such an operand.

In ASPER, each of the v, must be acceptable as the first operand in an instruc-
tion with operation code LDM. It will be converted into the same 12-bit word
as it would be in the LDM instruction.

The constants into which v, are assembled will be assigned to consecutive
memory locations.

Programmer-defined macros are defined by the programmer within an
ASCENT or ASPER subprogram with a MACRO pseudo-instruction in the fol-
lowing form:

3.2.2
RULES

Location OpCode Address

blank MACRO symbol, list

MACRO is the pseudo operation code
symbol is the macro name

list means the formal parameters of the macro

Macros are called by writing the macro name in the operation code field, and
the quantities, symbols, or register names to be substituted for the formal
Parameters in the address field.

The following rules apply to ASCENT and ASPER macros:

The definition of a macro must precede the first executable instruc-
tion of the subprogram in which it is used.

Programmer-defined macros are local to the subprogram in which
the definition appears.

A maximum of 100 macros is allowed per subprogram.

Macros may be nested to any depth; they may be used in the definition
of other macros, provided they too are defined prior to use. A macro
may not be used in its own definition.

Macro names may be any arrangement of letters and digits up to 7,
starting with a letter.

The macro name may not be identical to a machine mnemonic code, a
pseudo code, or any other brogrammer-defined macro in the same
subprogram.

A maximum of 16 parameters is allowed in a macro parameter list.

The order and count must be the same for formal and actual
parameters.

When the actual parameter is zero, a zero is inserted in the gener-
ated instruction if the formal parameter is in the address field; a
blank is inserted if the formal parameter is in the location field.

An ENDM pseudo operation must be the last instruction in the macro
definition.

Each location field between the MACRO and ENDM cards must contain
blank, plus, minus, or a formal Parameter; it must not contain a
symbol which is to appear in the location field each time the macro

is called; that could produce a multiple definition of the symbol.

3.23
EXAMPLES

ASCENT

Location

D

[epllie I

OpCode

MACRO
SAl
SAB
FX6
SA6
ENDM

MACRO
SAM
ABC
FXT7
SAT
ENDM

Address

ABC, D, BA, AB, BN, RESULT, X
BA

BN+X

X1%X2

RESULT

DEF,XA,AM,F,H,Z, L
OoP

E,B3,A3,Z,F,G
X6/XA

G

Using the definitions above, a macro call of

DEF

X5, A5, LOC1, LOC2, U*V+Q-10,

would generate the following set of instructions:

ASPER

SA5
SAl
SA3
FX6
SA6
FX7
SA7
MACRO
LDM
OP
STM
ENDM

OP

B3
U*V+Q-12B+G
X1*X2

XYZ,OP, A, B,C
A,B

c

A,B

Using the definition above, a macro call of

LOC

XYZ

SBC,D1,D2,D3

would generate the following set of instructions:

LOC

LDM
SBD
STM

D1,D2
D3
D1,D2

This definition is incorrect; NG is disregarded when the macro is called:

NG

MACRO
SAl

SA2
ENDM

WICKED, AB, AC
AB
AC

0

3-7

ASSEMBLER ERRORS 4

4.1
ERROR FLAGS The error codes that appear in the left margin of the listing are shown below:
O operation code error
U undefined symbol in the variable field
D doubly defined symbol in the variable field or location field
V address portion of VFD pseudo operation in error
R range error for ASPER jump instructions; in ASCENT, an operand with
absolute value of not less than 2%8,
F field error in the variable field of a CON, BCD, or DPC card; or d
greater than 63, or m greater than 4096 in ASPER instruction
L location field error
T literal table overflow
B symbol table overflow in ASPER assembly
7Z program length exceeds 7777B in ASPER, or 177777B in ASCENT
S a symbol in the address field contains more than 7 characters
No flag but message in address field of BSS-BSSZ instruction, indicates unde-
fined arguments in pass 1.
4.2

FATAL MESSAGES The following messages indicate fatal assembler errors:

MACRO PARAMETER TABLE OVERFLOW

TOO MANY ASSEMBLER OPTIONS REQUESTED
ATTEMPT TO PUNCH DECK WITH NO ENTRY POINT
BREAKDOWN BUFFER AREA OVERFLOW

SYMBOL TABLE OVERFLOW

4-1

4-2

CHECKSUM ERROR ON COSY CARD
MACRO DICTIONARY OVERFLOW
MACRO SKELETON TABLE OVERFLOW
INSERT TABLE OVERFLOW

COMMON BLOCK TABLE OVERFLOW
ENTRY POINT TABLE OVERFLOW
EXTERNAL TABLE OVERFLOW

NOT ENOUGH FIELD LENGTH

5.1
INPUT

5.2
OUTPUT

5.3
CORRECTIONS

The 6400/6600 assembler is capable of producing and assembling compressed -
symbolic (COSY) data. A COSY deck contains all information from a source
deck reduced in size by a ratio of 5:1 to 10:1, depending on the number of
comments.

The COSY input file is specified on the ASCENT control card in the sixth
parameter. Input is read from this file once a COSY identifier is encountered.
The file name may be INPUT or any name other than SCR. If not specified it
is assumed to be INPUT.

COSY correction decks containing alter cards and symbolic corrections to be
included in the assembly are entered via the input file. Since ASCENT
begins assembly for each subprogram by reading a BCD card image from the
input file, the first card for each COSY subprogram must be one of the COSY
instructions: INSERT, REPLACE, DELETE, or COSY.

The assembler produces COSY output when the fourth parameter on the
ASCENT control card is non-zero. This output will contain any COSY correc-
tions included in the assembly. It is written on file P80C, which may be
assigned to the punch, tape, or disk. The COSY edition number is

increased by 1 on each COSY output.

Corrections may be made to a COSY deck with the alter instructions INSERT,
REPLACE, or DELETE. Each may be followed by a correction set con-
sisting of symbolic instructions punched in the usual format. A correction
set is terminated by another alter instruction or by a COSY identifier.

NSERT m

5-1

54
COSY IDENTIFIER

Succeeding symbolic instructions are inserted after card m, which is the
sequence number of a symbolic card from the COSY deck.

(I

‘REPLACE m,n

Cards m through n are replaced by the symbolic instructions which follow.
If n is omitted, only one card is replaced.

[of n

} }DELETE m,n

Cards m through n aredeleted. A single card is deleted if only m is speci-
fied. If instructions follow DELETE, they will replace the deleted cards as
in the REPLACE instruction.

References to symbolic sequence numbers by INSERT, REPLACE, or
DELETE cards need not be in ascending order.

However, a reference on a COSY alter card must not conflict with other COSY
alter cards, such as, DELETE 100 and INSERT 100 in the same deck, or
DELETE 10,30 and DELETE 20,40 in the same deck.

[o| In
COSY

This instruction signals the end of the COSY correction deck. Upon encounter-
ing this identifier, ASCENT begins reading COSY input. This card must
appear if the assembly is from COSY input, even if there are no corrections.

5.5

EXAMPLE The following deck ig on tape in COSY format:

ASPER EXM 00001

ORG 100R 00002

AX LM 0,0 00003
LDN 0 00004

STN 778 00005

B LDI 778 00006
STM 20000B,77B 00007

AOD 77B 00008

SBN 778 00009

ZJN AX 00010

END 00011

In the following job, corrections will be inserted, a new COSY deck and a
binary deck punched, and a listing generated:

12 ol n
0B, 17, 10,0000,
tlassIGN Pl lP8oC.
QUEST Cl0SY.
IND(COB[Y)
ASCENT (L, [, P, P,0,C0SY)
(7,8,9 record separator)
REPLACE 10
INJN B
UJN AX
NSERT 3
L b
REPLACE 5
STD 77B
COSY
6,7, 8,9 file separator)

T This card is no longer legal for version 1.1.

5.6
DIAGNOSTICS

The listing from the assembly will appear as follows:

REPLACE 10 CHANGE
NJIN B INSERTED
UJN AX INSERTED
INSERT 3 CHANGE
A EQU *-1 INSERTED
REPLACE 5 CHANGE
STD 778 INSERTED
ASPER EXM 00001
ORG 100B 00002
0100 0100 0000 AX LIM 0,0 00003
000101 A EQU *-1 INSERTED
0102 1400 LDN 0 00004
0103 3477 STD 778 INSERTED
0104 4077 B LDI 77B 00006
0105 5477 2000 ST™ 2000B,77B 00007
0107 3677 AOD 77B 00008
0110 1777 SBN 778 00009
0111 0572 NJIN B INSERTED
0112 0365 UJN AX INSERTED
END 00011

PRECEDING CHANGE OVERLAPPED-IGNORED

Erroneous correction set is not processed. Message appears on the
listing.

Sequence numbers specified on a COSY correction card conflict with
those of previous corrections.

CHECKSUM ERROR ON COSY CARD

Job is terminated. Message is placed in the dayfile.

This refers to the 30-bit checksum; a zero checksum is not checked.
INSERT TABLE OVERFLOW

Job is terminated. Message is placed in the dayfile.

The Insert Table is not large enough to contain all of the symbolic

corrections.
5.7
DECK FORMAT Columns Rows Code Purpose
1 7,9 P Deck identification
2 12,11,0-9 c 12-bit checksum inserted by
peripheral punch program
3 12,11,0-3 E 6-bit edition number;
appears only on first card
of a COSY deck
4-9 C 30-bit checksum; upper 6 bits
4-5 12,11,0-9 C 30-bit checksum; lower 24
bits
6-75 12,11,0-9 S Compressed symbolic data:
14 words (60-bit)
76-80 12,11,0-9 H 5-digit COSY sequence number

in Hollerith

COSY information consists of packed display codes representing BCD card
images. In addition to the normal display characters (1-57), the following
codes are used:

55 - 1 blank

64 - 2 blanks
65 - 3 blanks
66 - 4 blanks
67 - 5 blanks
70 - 6 blanks

5-5

5-6

Rows

71 - 7 blanks
72 - 8 blanks
73 -9 blanks
74 - 10 blanks
75 - 20 blanks
76 - 30 blanks
77 - 40 blanks
00 - End of symbolic card image.

For example: 777455 represents 51 consecutive blanks.

=
=N

W 0 N OB W N~ O

/

Columns

E
c C|C|s|s]|... .eo{S |H |H|H|HI|H
| |c
P
P
1 2 3 4 5 6 7 75 76 77 78 79 80

APPENDIX SECTION

ASCENT CONTROL CARD A

ASCENT (1, x, pa, pc, pb, cosy)

1 if non-zero, a listing will be written on the output file.
X inoperative

pa if non-zero, binary deck will be punched.

pc if non-zero, a COSY deck will be punched.

pb inoperative

cosy if zero or INPUT, COSY input is on INPUT file; otherwise this parameter is the name
of the file from which COSY input is to be read.

Examples:

List only: ASCENT.
or ASCENT(L)

List and punch binary deck:
T ASSIGN CP, P80C.
ASCENT(L, 0, PA)

List and punch a COSY deck:
t ASSIGN CP, P80C.
ASCENT(L, 0,0, PC)

List and write a COSY deck on tape 51:
ASSIGN 51, P80C.
ASCENT(L, 0,0, PC)

Insert modifications into a COSY deck on tape 51, list, and punch a binary deck:
JOB.
T ASSIGN CP, P80C.
ASSIGN 51, COSY.
ASCENT(L, 0, PA, 0,0, COSY)
(7,8,9 record separator)
Mod pack ending with COSY card
(6,7, 8,9 file separator)

T This card is no longer legal for version 1.1.

A-1

TABLE 1
CENTRAL PROCESSOR OPERATION CODES

Octal
Op. Code Mnemonic Address Comments
BRANCH UNIT
00 PS Program stop
01 RJ K Return jump to K
02 JP Bi + K Jump to Bi + K
030 ZR Xj K Jump to K if Xj = 0
031 NZ Xj K Jump to K if Xj # 0
032 PL Xj K Jump to K if Xj = plus (positive)
033 NG Xj K Jump to K if Xj = negative
034 IR Xj K Jump to K if Xj is in range
035 OR Xj K Jump to K if Xj is out of range
036 DF Xj K Jump to K if Xj is definite
037 ID Xj K Jump to K if Xj is indefinite
04 EQ Bi Bj K Jump to K if Bi = Bj
04 ZR Bi K Jump to K if Bi = B0
05 NE Bi Bj K Jump to K if Bi # Bj
05 V4 Bi K Jump to K if Bi # BO
06 GE Bi Bj K Jump to K if Bi = Bj
06 PL Bi K Jump to K if Bi = B0
07 LT Bi Bj K Jump to K if Bi < Bj
07 NG Bi K Jump to K if Bi < BO
BOOLEAN UNIT
10 BXi Xj Transmit Xj to Xi
11 BXi Xj*Xk Logical Product of Xj and Xk to Xi
12 BXi Xj + Xk Logical sum of Xj and Xk to Xi
13 BXi Xj - Xk Logical difference of Xj and Xk to Xi
14 BXi - Xk Transmit comp. of Xk to Xi
15 BXi - Xk*Xj Logical product of Xj and Xk comp, to Xi
16 BXi - Xk + Xj Logical sum of Xj and Xk comp, to Xi
17 BXi - Xk -~ Xj Logical difference of Xj and Xk comp. to Xi
SHIFT UNIT
20 LXi jk Left shift Xi, jk places
21 AXi jk Arithmetic right shift Xi, jk places
22 LXi Bj Xk Left shift Xk nominally Bj places to Xi
23 AXi Bj Xk Arithmetic right shift Xk nominally Bj places to Xi
24 NXi Bj Xk Normalize Xk in Xi and Bj
25 ZX1i Bj Xk Round and normalize Xk in Xi and Bj
26 UXi Bj Xk Unpack Xk to Xi and Bj
27 PXi Bi Xk Pack Xi from Xk and Bj
43 MXi jk Form mask in Xi, jk bits
ADD UNIT
30 FXi Xj + Xk Floating sum of Xj and Xk to Xi
31 FXi Xj - Xk Floating difference Xj and Xk to Xi
32 DXi Xj + Xk Floating DP sum of Xj and Xk to Xi
33 DXi Xj - Xk Floating DP difference of Xj and Xk to Xi
34 RXi Xj + Xk Round floating sum of Xj and Xk to Xi
35 RXi Xj - Xk Round floating difference of Xj and Xk to Xi

Octal
Op. Code Mnemonic Address Comments

LONG ADD UNIT

36 IXi Xj +
37 IXi Xj -

Integer sum of Xj and Xk to Xi
Integer difference of Xj and Xk to Xi

R

MULTIPLY UNIT

40 FXi Xj * Xk Floating product of Xj and Xk to Xi

41 RXi Xj * Xk Round floating product of Xj and Xk to Xi

42 DXi Xj * Xk Floating DP product of Xj and Xk to Xi
DIVIDE UNIT

44 FXi Xj / % Floating divide Xj by Xk to Xi

45 RXi Xj/ X Round floating divide Xj by Xk to Xi

46 NO No operation

47 CXi Xk Counts in Xi the number of 1l's in Xk

INCREMENT UNIT

50 SAiL Aj + K Set Ai to Aj + K
50 SAiL Aj - K Set Ai to Aj + comp. of K
51 SAi Bj + K Set Ai to Bj + K
51 SAi Bj - K Set Ai to Bj + comp, of K
52 SAi Xj + K Set Ai to Xj + K
52 SAL Xj - K Set Ai to Xj + comp., of K
53 SAi Xi + Bk Set Ai to Xj + Bk
54 SAi Aj + Bk Set Ai to Aj + Bk
55 SAL Aj - Bk Set AL to Aj - Bk
56 SAi Bj + Bk Set Ai to Bj + Bk
57 SAi Bj - Bk Set Al to Bj - Bk
60 SBi Aj + K Set Bi to Aj + K
60 SBi Aj - K Set B to Aj + comp. of K
61 SBi Bj + K Set Bi to Bj + K
61 SBi Bj - K Set Bi to Bj + comp. of K
62 SBi Xj + K Set Bi to Xj + K
62 SBi Xj - K Set Bi to Xj + comp. of K
63 SBi Xj + Bk Set Bi to Xj + Bk
64 SBi Aj + Bk Set Bi to Aj + Bk
65 SBi Aj - Bk Set Bi to Aj - Bk
66 SBi Bj + Bk Set Bi to Bj + Bk
67 SBi Bj - Bk Set Bi to Bj - Bk
70 SXi Aj +K Set Xi to Aj + K
70 SXi Aj - K Set Xi to Aj + comp. of K
71 SXi Bj + K Set Xi to Bj + K
71 SXi Bj - K Set Xi to Bj + comp. of K
72 SXi Xj + K Set Xi to Xj + K
72 SXi Xj - K Set Xi to Xj + comp. of K
73 SXi Xj + Bk Set Xi to Xj + Bk
74 SXi Aj + Bk Set Xi to Aj + Bk
75 SXi Aj - Bk Set Xi to Aj - Bk
76 SXi Bj + Bk Set Xi to Bj + Bk
77 SXi Bj - Bk Set Xi to Bj - Bk

TABLE 2
PERIPHERAL PROCESSOR
OPERATION CODES

Octal

Op. Code Mnemonic Address Comments
00 PSN Pass
01 LIM m,d Long jump to m + (d)
02 RIM m,d Return jump to m + (d)
03 UJN d Unconditional jump d
04 ZJIN d Zero jump d
05 NJIN d Nonzero jump d
06 PJIN d Plus jump d
07 MIN d Minus jump 4
10 SHN d Shift d
11 LMN d Logical difference d
12 LPN d Logical product d
13 SCN d Selective clear d
14 LDN d Load d
15 LCN d Load complement d
16 ADN d Add d
17 SBN d Subtract d
20 LDC dm Load dm
21 ADC dm Add dm
22 LPC dm Logical product dm
23 LMC dm Logical difference dm
24 Pass
25 Pass
26 EXN Exchange jump
27 RPN Read program address
30 LDD d Load (d)
31 ADD d Add (d)
32 SBD d Subtract (d)
33 LMD d Logical difference (d)
34 STD d Store (d)
35 RAD d Replace add (d)
36 AOD d Replace add one (d)
37 SOD d Replace subtract one (d)
40 LDI d Load ((d))
41 ADI d Add ((d))
42 SBI d Subtract ((d))
43 LMI d Logical difference ((d))
44 STI d Store ((d))
45 RAIL d Replace add ((d))
46 AOI d Replace add one ((d))
47 SOI d Replace subtract one ((d))
50 LDM m,d Load (m + (d))
51 ADM m,d Add (m 4+ (d))

Octal

Op. Code Mnemonic Address Comments
52 SBM m,d Subtract (m + (d))
53 LMM m,d Logical difference (m + (d))
54 STM m,d Store (m + (d))
55 RAM m,d .Replace add (m + (d))
56 AOM m,d Replace add one (m + (d))
57 SOM m,d Replace subtract one (m + (d))
60 CRD d Central read from (A) to d
61 CRM m,d Central read (d) words from (A) to m
62 CWD d Central write to (A) from d
63 CWM m,d Central write (d) words to (A) from m
64 AIM m,d Jump to m if channel d active
65 M m,d Jump to m if channel d inactive
66 FIM m,d Jump to m if channel d full
67 EJM m,d Jump to m if channel d empty
70 TIAN d Input to A from channel d
71 IAM m,d Input (A) words to m from channel d
72 OAN d Output from A on channel d
73 OAM m,d Output (A) words from m on channel d
74 ACN d Activate channel d
75 DCN d Disconnect channel d
76 FAN d Function (A) on channel d
77 FNC m,d Function m on channel d
Notation
d Implies d itself
(d) Implies the contents of d
() Implies the contents of the location specified by d
m Implies m itself used as an address
m + (d) The contents of d are added to m to form an operand (jump address)
(m + (d)) The contents of d are added to m to form the address of the operand
dm Implies an 18-bit quantity with d as the upper 6 bits and m as the

lower 12 bits

A-5

A-6

Op. Code

ASCENT
END
EXT
SUBRT
ENTRY
BSS
BSSZ
EQU
DPC
BCD
CON
LIST
SPACE
EJECT
MACRO
ENDM
IFF
IFZ
IFN
REPLACE
DELETE
INSERT
COSY
VED
COMMON

TABLE 3
ASCENT PSEUDO OPERATION CODES

Meaning

Defines CP program

Defines end of CP program

Defines external symbols

Results in relocation bits in Chippewa binary deck
Defines entry points

Reserves central memory region

Reserves central memory region and presets it to zero
Equates a symbol to a value

Inserts display-coded characters into program
Inserts BCD characters into program

Defines constants in program

Controls listing

Spaces listing

Ejects page on listing

Beginning of MACRO definition

End of MACRO definition

Determine if next card is assembled

Determine if following cards are assembled
Determine if following cards are assembled
Replace specified cards

Deletes specified cards

Inserts source cards

Indicates end of modifications; start of COSY deck
Generates a 60-bit word as specified

Defines common block and arrays

Op. Code

ASPER
END
ORG
ORGR
BSS
BSSZ
EQU
DPC
BCD
CON
LIST
SPACE
EJECT
MACRO
ENDM
IFF
IFN
IFZ
REPLACE
DELETE
INSERT
CosY

TABLE 4
ASPER PSEUDO OPERATION CODES

Meaning

Defines PP program
Defines end of PP program
Specifies starting address of PP program

Specifies starting address of PP program

Reserves peripheral memory region

Reserves peripheral memory region and presets it to zero

Equates a symbol to a value

Inserts display-coded characters into program

Inserts BCD characters into program

Constructs 12-bit constants

Controls side-by-side listing

Spaces side-by-side listing

Ejects page on side-by-side listing

Beginning of a MACRO definition

End of a MACRO definition

Determine if next card is assembled

Determine if following cards are assembled

Determine if following cards are assembled
********* ifie

Deletes specified cards

Inserts source cards

Indicates end of modifications; start of COSY deck

TABLE 5
6400/6600 CHARACTER CODES

Display Printer Hollerith Display Printer Hollerith

Character Code Code Punch Positions Character Code Code Punch Positions

A 01 61 12-1 8 43 10 8

B 02 62 12-2 9 44 11 9

C 03 63 12-3 + 45 60 12

D 04 64 12-4 - 46 40 11

E 05 65 12-5 * 47 54 11-8-4

F 06 66 12-6 / 50 21 0-1

G 07 67 12.7 (51 34 0-8-4

H 10 70 12-8) 52 74 12-8-4

I 11 71 12-9 $ 53 53 11-8-3

J 12 41 12-9 = 54 13 8-3

K 13 42 11-2 blank 55 20 space

L 14 43 11-3 R 56 33 0-8-3

M 15 44 11-4 . 57 73 12-8-3

N 16 45 11-5 # 14 8-4

0] 17 46 11-6 : 00

P 20 47 11-7 = 15

Q 21 50 11-8 % 16

R 22 51 11-9 [17

S 23 22 0-2] 32

T 24 23 0-3 — 35

U 25 24 0-4 = 36

v 26 25 0-5 A 37

W 27 26 0-6 v 52

X 30 27 0-7 t 55

Y 31 30 0-8 ¢ 56

Z 32 31 0-9 > 57

0 33 12 0 < 72

1 34 01 1 = 75

2 35 02 2 — 76

3 36 03 3 ; 77

4 37 04 4

5 40 05 5

6 41 06 6

7 42 07 7

A-8

FROM

CORPORATION

CONTROL DATA
| comroration

COMMENT AND EVALUATION SHEET

6400/6600 Computer Systems
ASCENT/ASPER Reference Manual

Pub. No. 60172700 July, 1966
THIS FORM IS.NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

NAME :

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

|
|
|
|
|
|
l

STAPLE

Pub. No. 60172700

CONTROL DATA SALES OFFICES

ALAMOGORDO, NEW MEXICO
ALBUQUERQUE, NEW MEXICO
ATLANTA, GEORGIA

AUSTIN, TEXAS

BILLINGS, MONTANA
BIRMINGHAM, ALABAMA
BOSTON, MASSACHUSETTS
BOULDER, COLORADO

CAPE CANAVERAL, FLORIDA
CEDAR RAPIDS, IOWA
CHICAGO, ILLINOIS
CINCINNATI, OHIO
CLEVELAND, OHIO
COLORADO SPRINGS, COLORADO
DALLAS, TEXAS

DAYTON, OHIO

DENVER, COLORADO

DETROIT, MICHIGAN -

DOWNEY, CALIFORNIA
GREENSBORO, NORTH CAROLINA
HARTFORD, CONNECTICUT
HONOLULU, HAWAII
HOUSTON, TEXAS
HUNTSVILLE, ALABAMA
IDAHO FALLS, IDAHO
INDIANAPOLIS, INDIANA
KANSAS CITY, KANSAS

LAS VEGAS, NEVADA
LIVERMORE, CALIFORNIA

LOS ANGELES, CALIFORNIA
MADISON, WISCONSIN

MIAMI, FLORIDA

MILWAUKEE, WISCONSIN
MINNEAPOLIS, MINNESOTA
MONTEREY, CALIFORNIA
NEWARK, NEW JERSEY

NEW ORLEANS, LOUISIANA
NEW YORK, NEW YORK
OAKLAND, CALIFORNIA
OMAHA, NEBRASKA

PALO ALTO, CALIFORNIA
PHILADELPHIA, PENNSYLVANIA
PHOENIX, ARIZONA
PITTSBURGH, PENNSYLVANIA
PORTLAND, OREGON
ROCHESTER, NEW YORK
SACRAMENTO, CALIFORNIA
ST. LOUIS, MISSOURI

SALT LAKE CITY, UTAH

SAN BERNARDINO, CALIFORNIA
SAN DIEGO, CALIFORNIA

SAN FRANCISCO, CALIFORNIA
SAN JUAN, PUERTO RICO
SANTA BARBARA, CALIFORNIA
SEATTLE, WASHINGTON
TULSA, OKLAHOMA

VIRGINIA BEACH, VIRGINIA
WASHINGTON, D. C.

ADELAIDE, AUSTRALIA
AMERSFOORT, THE NETHERLANDS
AMSTERDAM, THE NETHERLANDS
ATHENS, GREECE

BOMBAY, INDIA

CALGARY, ALBERTA, CANADA
CANBERRA, AUSTRALIA
DUSSELDORF, GERMANY
FRANKFURT, GERMANY

GENEVA, SWITZERLAND
HAMBURG, GERMANY
JOHANNESBURG, SOUTH AFRICA
KASTRUP, DENMARK

LONDON, ENGLAND

LUCERNE, SWITZERLAND
MELBOURNE, AUSTRALIA
MEXICO CITY, MEXICO
MONTREAL, QUEBEC, CANADA
MUNICH, GERMANY

OSLO, NORWAY

OTTAWA, ONTARIO, CANADA
PARIS, FRANCE

ROME, ITALY

STOCKHOLM, SWEDEN
STUTTGART, GERMANY

SYDNEY, AUSTRALIA

TEHERAN, IRAN

TEL AVIV, ISRAEL

TOKYO, JAPAN (C. ITOH ELECTRONIC
COMPUTING SERVICE CO. LTD.)

TORONTO, ONTARIO, CANADA
VANCOUVER, BRITISH COLUMBIA, CANADA
ZURICH, SWITZERLAND

CONTROL DATA

CORPORATION

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

Litho in U.S.A.

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	replyA
	replyB
	xBack

