6600

CHIPPEWA OPERATING SYSTEM

60124500 Record of Revisions

REVISION NOTES
C This printing obsoletes all previous editions.
(4-29-65)

Pub. No, 60124500
April, 1965

© 1965, Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue

St, Paul, Minnesota 55112

or use Comment Sheet located in
the rear of this book.

TABLE OF CONTENTS

System Tape

Dead Start Load

Equipment Numbers

Central Storage Special Addresses
Control Point Area Information
Equipment Status Table

Channel Status Tabie

File Name Table / File Status Table
Resident Periphéral Library
Peripheral Library Directory
Resident Subroutine Library
Central Library Directory

Disk File Organization

Track Reservation Tables

Alpha Files (Tape, Disk)

Punched Card Formats

Resident Peripheral Program
Peripheral Communication Area
Monitor Calls From Peripheral Processors
Peripheral Program Formats
Resident Peripheral Library
Peripheral Library Directory

DSD - System Display - Channel 10

iii

10
11
11
12
12
14
17
18
19

20

TABLE OF CONTENTS (Cont.)

Job Control Cards

Program Calls

Sample Job

Monitor Action on Central Progréms
Central Program Formats

Resident Subroutine Library

Library Subroeutine Calling Sequences
Central Library Fortran Subroutines
Central Library Programs

Fortran Compiler Arguments

Fortran Program Header Cards
Subroutine Header Cards

Function Header Cards

Fortran Handling of Binary Subroutines
Additional Notes on the Fortran Compiler

Fortran Handling of Assembly Language
Header Formats

Fortran Formats

Declaration Formats

Instruction Formats

Constant Formats
Fortran Handling of an ASCENT Subset
Fortran Error Printouts
Error Messages Entered into Day File
CPUASM
PAS
PERIPH

Card Image Records - Second File Library Tape

iv

37
38
40
41
42
43
45
51
52
55
56
57
57
58
59

62
63

64
65

67
71

72
74
81
82
88
92

93

APPENDIX A
OPERATING SYSTEM FLOW CHARTS

Begin CIO

Enter CIO, Read Function

Enter CIO, Write Function

Enter 2BP Overlay

Enter 2RC Overlay

2RC

2RC

Process Binary Card

Process Hollerith Card

Enter 2RD Overlay, Disk File Read

Enter 2RT Overlay, Binary Tape Read

Enter 2RT Overlay, BCD Tape Read

Enter 2RT Overlay, Rewind Tape

Enter 2WD Overlay, Write Disk File

Enter 2WT Overlay, Write Binary Tape

Enter 2WT Overlay, Write BCD Tape

Enter 2WT Overlay, Write File Mark

Enter 2LP Overlay, Print

Enter 2PC Overlay, Punch Cards

2BD

2BD

2BT

2BT

2DF

2DT

2DF

2TJ

2TS

28D

Overlay, Backspace Disk

Subroutine, Back One Sector

Overlay, Backspace Tape

Subroutine, Back One Block

Overlay, Drop File, File Name in 40/44

Overlay, Drop Disk Tracks, File Status in 20/24
Overlay, Process Error Flag

Overlay, Translate Job Name

Overlay, Translate Control Statement

Overlay, Search Dayfile

A-13
A-14
A-15
A-16
A-19
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29

A-34

1AJ

1BJ

1DJ

1TD

1LJ

1LT

CLL

DMP

DMP

EXU

LBC

LOC

MSG

PBC

MTR

APPENDIX A
OPERATING SYSTEM FLOW CHARTS (Cont,)

Package, Advance Job
Package, Begin Job
Package, Phase 3 Print
Package, Phase 3 Tape Dump
Package, Phase 1 Card Load
Package, Phase 1 Tape Load
Package, Central Library Loader
Package, Storage Dump
Subroutine, Dump PPU Buffer
Package, Execute Program
Package, Load Binary Corrections
Package, Load Octal Corrections
Package, Dayfile Message
Package, Punch Binary Cards
Package, System Monitor
Subroutine, Advance Clock
Subroutine, Process PPU Message
Function 0l, Process Dayfile Message
Function 02, Request Channel
Function 03, Drop Channel
Function 04, Assign PP Time
Function 05, Monitor Step Control
Function 06, Request Disk Track
Function 07, Drop Disk Track

Function 10, Request Storage

Function 11, Complete Dayfile

MIR Function 12, Release PPU

vi

A-35
A-37
A-38
A-40
A-42
A-44
A-46
A-47
A-48
A-49
A-50
A-51
A-53
A-54
A-55
A-56
A-57
A-57
A-58
A-58
A-58
A-59
A-59
A-59
A-60
A-61

A-61

MTR

MTR

MIR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

MTR

OPERATING SYSTEM FLOW CHARTS (Cont,)

Function 13,
Function 14,
Function 15,
Function 16,
Function 17,
Function 20,
Function 21,
Function 22,
Function 23,
Function 24,
Function 25,
Function 27,
Function 30,
Function 31,
Function 32,
Function 33,
Subroutine,
Subroutine,
Subroutine,
Subroutine,
Subroutine,
Subroutine,
Subroutine,
Subroutine,
Subroutine,
Subroutine,

Subroutine,

APPENDIX A

Abort Control Point

Enter New Time Limit
Request Central Processor
Release Central Processor
Pause for Storage Relocation
Request PPU

Recall CPU

Request Equipment

Release Equipment

Request Priority

Request Exit Mode

Toggle Simulator Status
Operator Drop

Ready Tape

Drop Tape

Assign Equipment

Process PP Call

Set Error Flag

Search for Free PPU
Advance CPU Job Status
Search for CP Priority
Dump Dayfile Phase 1
Dump Dayfile Phase 2
Dump Dayfile Phase 3
Dump Dayfile Phase 4

Dump Dayfile Phase 5

& & & & &€ & B B B & 8

Dump Dayfile Phase 6
vii

A-61

A-62

A-62
A-63
A-63
A-63
A-64
A-64
A-64
A-65
A-65
A-66
A-66
A-66
A-66
A-67
A-68
A-68
A-69
A-70
A-70
A-70
A-71
A-71
A-72

A-72

BACKSP

REWINM

ENDFIL

INPUTB

OUTPTB

APPENDIX B

I1/0 SUBROUTINE FLOW CHARTS

viii

Read
coo,
cot,
coz,
co3,
C04,
€05,
co6,
co7,
Cl0,
Cl1,
cl2,
Cl3,
Cl4,
Cl5,
Cle,
Cc17,
c20,
c21,
c22,
c23,
LSFT
RSFT
RSFN

24,

APPENDIX C

SIM FLOW CHARTS

PPU Input Register
STOP

Return Jump

Go to K + Bi

Go to K if ...

Go to K if Bi = Bj
Go to K if Bi # Bj

Go to K if Bi = Bj

Go to K if Bi < Bj

Transmit Xj to Xi

Logical Product of Xj and Xk to Xi

Logical Sum of Xj and Xk to Xi

Logical Difference Xj - Xk to Xi

Transmit Xk Complement to Xi

Logical Product of Xj and Xk Complement to Xi
Logical Sum of Xj and Xk Complement to Xi
Logical Difference of Xj and Xk Complement to Xi
Left Shift Xi jk Places

Right Shift Xi jk Places

Shift Xk Left Nominally Bj Places

Shift Xk Right Nominally Bj Places

Unrounded Normalize

ix

c-1

Cc-2

C-5

C-5

C-6

C-6

Cc-6

C-6

Cc-8

Cc-8

c-9

c25,
c26,
c27,
c30,
c3l,
c32,
c33,
c34,
c3s,
c36,
37,
c40,
cal,
ch2,
c43,
chb,
c45,
c46,
c47,
c50,
c60,
cs1,
cél,
cs2,
c62,

c53,

APPENDIX C

SIM FLOW CHARTS (Cont.)

Rounded Normalize c-9

Unpack Xk to Xi and Bj c-9

Pack Xi from Xk and Bj c-9

Floating Add c-10
Floating Subtract Cc-10
DP Add c-10
Floating DP Subtract c-10
Floating Add Round c-10
Floating Subtract Round Cc-10
Integer Add Xi = Xj + Xk c-11
Integer Subtract Xi = Xj - Xk c-11
Multiply Cc-12
Multiply Round Cc-12
DP Multiply c-12
Form Mask of jk Bits in Xi Cc-13
Divide Cc-13
Divide Round Cc-13
Pass c-13
Sum of 1's in Xk to Xi c-13
Ai = Aj + K c-14
Bi = Aj + K c-14
Ai = Bj + K c-14
Bi = Bj + K c-14
Ai = Xj + K c-14
Bi = Xj + K c-14
Al = Xj + Bk c-14

ce3,
Cs54,
cél4,
c55,
cé5,
56,
C66,
c57,
c67,
RDWT
c70,
c71,
c72,
c73,
C74,
c75,
c76,

c77,

Bi

Ai

Bi

Al

Bi

Ai

Bi

Ai

Bi

Xj
Aj
Aj
Aj
Aj

Bj

Bj

Bj

Bj

Entry

Xi

Xi

Xi

Xi

Xi

Xi

Xi

Xi

Bj
Xj
Xj
Aj
Aj
Bj

Bj

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

Bk

APPENDIX C

SIM FLOW CHARTS (Cont.)

xi

System Tape =

The system tape is loaded from the dead start panel via tape
unit 50. This tape contains the operating system and the peripheral
and central program libraries. Dead start panel settings are as
follovs.

01 1410
o2 7305
03 0000
ol 7505
05 7113
06 0000
o7 T705
10 2000
11 7705
12 2020
13 Th05
14 7105

The systew tape is completely loaded at dead start time. All
Gute is transferred to the channel O disk file. The tape is not
referenced during system operation.

The system tape contains a single file of binury rccords in
standard format. There is one file mark at the ena of the data.
Copies of the system tape may be made by COPYBI' in the centrol
library on either tape or cards. Data on the system tupe 1s organized
as follows. Each item is treated as one record.

Load package.

System display (DSD).
Monitor (MIR).

Central resident (CR).
Peripheral package 1LT.
Peripheral package 1TD.
Peripheral package 2PC.
Peripheral package DMP.
Peripheral package LBC.
Peripheral package LOC.
Peripheral package PBC.
Peripheral package DIS.
Peripheral package SIM.
(zero length record)
Central library (one record each package)

Dead Start Load =~

The dead start load of the system tape begins with the dead
start panel settings on peripheral processor 0. Processor 0
transfers a short program to processor 5 which reads the first
record from tape 50 on channel 5, This first record contains the
peripheral resident program which is common to all processors and
a transient package which loads the remainder of the system tape.

Processor 5 transfers the peripheral resident program to the
other nine processors over their respective channels. Processor
5 then reads the next record from the system tape (DSD) and transfers
it to processor 9. Processor 5 then reads the third record from the
system tape (MTR) and transfers it to processor 0. Processor 5
then reads the next record from the system tape and transfers it to
central storage. Processor 5 then disconnects all channels other
than 5. This action starts execution in all ten processors. Processor
Q-is_permanently assigned the job of system monitor. Processor 9
is permanently assigned the job of system display. The other eight
processors form a pool for temporary assignment of I/0 packages.

Processor 5 reads the system tape to a zero length record. Eech
record prior to the zero length record is transferred to the disk
file on channel 0 as a peripheral package. An entry is made in the
Peripheral Library Directory (PLD) as each package is transferred.

Processor 5 then reads the remainder of the system tape and
transfers each record to the channel zero disk file as a central
processor package, An entry is made in the Central Library Directory
(CLD) for each package transferred. Processor 5 then idles in
the resident peripheral program until action is requested as a pool
PP,

Equipment Numbers -

Each peripheral equipment is assigned a two digit octal nunber
to uniquely identify the equipment for job assignments. This
equipnent number is the same as the relative location of the equipment
data in the equipment status table. Numbers are assigned as follows.

00 - Channel O disk file.

01 - Channel 1 disk file.

02 - Channel 2 disk file.

Qi - Channel 4 card reader.
05 -~ Channel 12 card reader.
05 - Channel 13 card punch.
07 - Channel 13 line printer.
10 - Channel 10 display.

11 - Channel 11 daisplay.

30 - Channel 3 one inch tape.
31 = Channel 3 one inch tape.
32 -~ Channel 3 one inch tape.
23 - Channel 3 one inch tape.
50 - Channel U nalt inch tape.
41 - Channel & half inch tape.
42 - Channel 4 half inch tape.
43 - Channel 4 half inch tape.
50 - Channel 5 half inch tape.
51 - Channel 5 hali inch tape.
52 - Channel 5 half inch tape.
53 - Channel 5 half inch tape.
GO - Channel 6 one inch tape.
(1 - Channel 6 one inch tape.
62 - Channel 6 one inch tape.
63 - Channel 6 one inch tape.
70 - Channel 7 one inch tape.
71l - Channel 7 one inch tape.
72 - Channel 7 one inch tape.
73 - Channel 7 one inch tape.

Central Storage Special Addresses -

Central storage addresses 0000 thru 7777 are reserved for
tables and communication areas for the operating system, Special

fixed storage locations are as follows.

0000 Zero

0001 RPL, , , , .lesdut pugh uduey

0002 PLD, limit, , , , .?«ueh-c\&wﬂ
0003 DFB, input, output, limit, .

0004 FNT, limit, . 6 A TADY

0005 EST, limit, . Courd swbs whE
0006 RSL, limit, s o LT ULl LBy
0007 CLD, limit, , , . Goulfwc arnn Diaahy
0010 TRTO, last track, , GO to G3, G4 to G7.
0011 TRT1l, last track, , GO to G3, G4 to G7.
0012 TRT2, last track, , GO to G3, G4 to G7.
0014 Monitor step control,

0015/0017 Channel status table,

0020 CP zero status,

0023 idle time for central processor,
0024 idle time for peripheral processors.
0026 XJ address for simulator.

0027 P address for simulator.

0030/0037 time and date line.

0040/0052 starting time counts.

0055 temporary storage for monitor.
0056/0057 CP stack indicators,

0060 PPl communication area,

0070 PP2 communication area,

0100 PP3 communication area,

0110 PP4 communication area,

0120 PP5 communication area,

0130 PP6 communication area.

0140 PP7 communication area.

0150 PP8 communication area.

0160 PP9 communication area,

0170 PPO communication area.

0200 Control point one area.

0400 Control point two area.

0600 Control point three area,

1000 Control point four area.

1200 Control point five area.

1400 Control point six area,

1600 Control point seven area.

v v
v v

Tade
fast ¥
AAdL>

Control Point Area Information -

There are seven control points. Each occupies 200 octal
locations and includes the following information.

000/017 exchange package

020/022 status information
7023 central processor running time.
—024 peripheral processor running time

025 PP recall input register

026 sense lights and switches

027 equipment assignments

030/037 1last dayfile message.

O40/177 control statement buffer.

Word 020 -

(12) status byte (W, X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
(12) error flag.

(12) storage move flag.

(12) reference address (hundreds).

(12) field length (hundreds).

Word 021 -

(48) job name in display code.
(12) next statement address.

Word 022 -

(12) priority.

(12) message count.

(12) tract count.

(12) time 1imit (8 sec increments).
(12) operator assigned equipment.

! Word 023/02L4 - % 23— P Twu

| : ‘ €2l+) not used. ; Zg - Pp YTwe
; Co [(210 second count.

12) millisecond count.

Equipment Status Table -

The equipment status table contains a one word entry for each
physical equipment in the system. Format is as follows.

(12) Control point address,

(12) Channel number,

(12) Synchronizer and unit number,
(12) Equipment type.

(12) Not used.

Equipment type designations are as follows. (display code)

(DA) Channel zero disk cabinet.
(DB) Channel one disk cabinet,

(DC) Channel two disk cabinet,

(DS) Display console,

(CP) Card punch,

(CR) Card reader,

(LP) Line printer.

(MY) 607 magnetic tape.

(WT) 626 magnetic tape,

The upper bit of the equipment type designator is used as an
interlock for equipment which is turned off. This bit is set when
the equipment is not available and cleared when the equipment is
available,

Channel Status Table -

The channel status table occupies 3 words (0015/0017) in resident
central storage. These three words are read into monitor peripheral
storage for updating and the first 12 bytes in these three words are
then associated with the 12 I/0 channels, Two psuedo-channels (octal
14 and '15) are used for access to the FNT/FST entries., A cleared
byte indicates the channel is not assigned. A processor number
indicates the channel assignment. ‘

File Name Table / File Status Table -

The name and status of all system files are kept in common
table structure, This table contains two words per entry, The
first word identifies the file and the second word records the
status of the file. Formats for each two word entry is as follows,

First Word,
(42) file name in display code,

(6) priority number,

(6) not used,

3 file type (0 = input, 1 = output, 2 = common, 3 = local).
(3) control point assignment,

Second Word. (disk file)
(12) equipment number,
(12) beginning track,
(12) current track,

(12) current sector,
(12) last buffer status,

Second Word, (tape file)
(12) equipment number,
(24) last block number,
(12) not used, :
(12) last buffer status.,

Second Word, (card file)

(12) equipment number,

(24) card count this record.
(12) end of job flag,

(12) last buffer status.

The buffer status byte in the file status word serves as an
interlock for peripheral processor access to the corresponding file
data, The last buffer status has an even numerical value while a
peripheral package is altering the file data, The last buffer status
has an odd value when no peripheral action is involved with the file,
Pseudo-channel 14 is requested for access to an existing file status,
Pseudo-channel 15 is requested for access to enter a new file name in
the table.

Resident Peripheral Library -

Central storage addresses 10000 thru 13777 are reserved for
resident peripheral packages, Each package begins with a control
word in the following format,

(42) package name in display code.
(18) package length.

The last package is followed by a blank word.

Peripheral Library Directory -

A directory of peripheral packages located in the disk file
library is kept in resident central storage. Each entry in the
directory requires one central word, Format of this word is as
follows:

(42) package name in display code.
(6) sector number,
(12) track number,

Resident Subroutine Library -

Central program subroutines which are most frequently used
are kept in resident central storage, A program calling for these
subroutines may read them directly from this RSL (Resident Sub-
routine Library) area rather than from the disk file library.

Each subroutine in the RSL is preceded by a one word tag in the
following format.

(42) package name in display code.
(18) package length.

The last package is followed by a blank word,

Central Library Directory -

Central programs and subroutines which are not stored in the
RSL are stored in a disk file library., A directory of these pro-
grams and subroutines is kept in central storage (CLD). Each entry
in this directory consists of one central word in the following
format.

(42) package name in display code.
(6) sector number,
(12) track number.

Disk File Organization -

Programs, alpha data files, and binary data files are stored
in the disk file system in a common structure. The addressing
mechanism and file marking system are the same for all types of
files.

The physical disk structure of cabinets, head groups, tracks,
and sectors, is modified slightly in system addressing. The basic
unit for purposes of reserving storage is a half track. This half
track unit consists of either the odd or the even numbered sectors
in a physical track within a head group. This modification is
intended to provide minimum access for a single processor streaming
data from a disk record.

A disk file in the logical sense is a named half track (with
continuation half tracks) in a 8ingle disk cabinet. A disk file
may be of any length within the limits of the storage capacity of
the disk cabinet. There are 2048 half tracks in a disk cabinet
which may be grouped into named files of any length. Each named
file must begin at the first sector of a half track.

Each sector in a file contains two control bytes in addition to
the 320 data bytes in a sector. The first of these control bytes
designates the location of the next sector in the named file. The
second control byte designates the number of central words in the
current sector. These two control bytes are the first two bytes in
a sector.

The first control byte in a disk file Sector is coded in one
of two formats. If the next sector is in the same half track, the
control byte is coded with the next sector number (0000 thru 0077).
If the next sector in the named track is the beginning of a new
half track, the control byte is coded for the next half track number.
(4000 thru TT77)+ The format for this control byte is as follows.

(1 vit) always set.

(7 bits) track number.

(1 bit) odd/even track.

(3 bits) head group number.

The control bytes for the last sector in a named file are both
Zzero. This sector is read as a file mark. No data can appear in a
disk file after the first file mark.

Track Reservation Tables -

A 2048 bit reservation table is maintained in resident
central storage for each disk file cabinet. One bit in the table
corresponds to each half track in the disk cabinet. Each table
occupies 64 central words and uses the lowest order 32 bits of
each word. The highest order 7 bits of the track number specify
table address and the lower order 5 bits of the track number
specify bit position in the word.

10

Alpha Files (Tape, Disk) -

Alpha files are stored in packed display code for disk storage
and magnetic tape storage. Each line of alphanumeric characters
begins at the first byte of a central word and continues two characters
ver byte to the end of a line of code. The line of coding may be of
any length. The last central word used in a line of coding is com-
pleted with cleared bytes. A cleared byte is the end of line designation.

Punched Card Formats -
Alpha files - Hollerith code - 80 columns.

Binary files - 15 words per card.

- 7, 9 punch column one.
word count in column one row 0,1,2,3.
correction punch in column one row 4.
- check sum modulo 4095 in column two.

Record separator - 7,8,9 punch column one.

File separator - 6,7,8,9 punch column one.

11

Resident Peripheral Program -

This program is loaded in each peripheral processor on dead start
and is not altered throughout execution of the system, The resident
program occupies peripheral addresses 0100 thru 0771, Temporary
storage addresses 0000 thru 0017 are used by the resident program,
These locations may also be used by a called peripheral package as
no continuity is required between executions of the resident program,

Peripheral addresses 0075 thru 0077 are constants for a processor
and should not be altered by a peripheral package. These addresses
contain the following information.

0075 processor input register address
0076 processor output register address
0077 processor message buffer address

Peripheral Communication Areas -

Central storage addresses 0060 thru 0177 are used for peripheral
processor communication, Each processor is assigned a block of eight

words, Format within a processor area is as follows.
T

(one word) processor input register
(one word) processor output register
{six words) message buffer

The processor input register is cleared when the processor is
idling. The monitor processor enters a control word in the input
register to call a transient peripheral package to the processor.
The resident peripheral program senses the input register entry and
searches the RPL (Resident Peripheral Library) for the peripheral
package named in the input register, If the named package is mnot
in the RPL the resident program then searches the PLD (Peripheral
Library Directory) for the named package. When the package has been
located the resident program reads the package into peripheral
storage beginning at peripheral address 1000, The resident program
then jumps to peripheral address 1000 to begin execution of the
transient package.

Format for the input register comtrol word is as follows.

(18 bits) package name in display code

(6 bits) control point number
(36 bits) arguments

12

The processor output register is entered by a transient
peripheral package to communicate with the peripheral monitor,
The monitor continually scans the processor output registers and
interprets the requests from the transient peripheral packages,
The message buffer is used for those monitor requests in which
the output register is not sufficiently large., The monitor pro-
gram clears a processor output register when the requested
function has been performed,

The processor input register is not altered during the
execution of a transient peripheral package. Upon completion
of the transient package a request to the monitor clears the
input register and the transient package exits to the resident
peripheral program (address 100),

13

Monitor Calls From Peripheral Processors -

The following control words are interpreted by the monitor
processor when entered in a Egripheral output register.

0001, 0000,0000,0000,0000 Dayfile message.
The monitor enters & message in the dayfile consisting of
a time tag, a Job tag, and the contents of the peripheral processor
message buffer. The message buffer should contain one line in packed display
code.

0002 , 00NN , 0000, 0000, 0000 Request channel NN.
Assign channel NN to the requesting processor as soon &as the
channel is available.

0003 , 00NN , 0000,0000,0000 Drop channel NN.
Release the assignment of channel NN from the requesting processor.

000k ,0000,0000,0000,0000 Assign PP time.

Update the pp running time at the control point for the re-
questing processor. :

0005,0000,0000, 0000, 0000 Monitor step control
Shift monitor control to step mode using central address OOlk
for control.

0006 , 00NN , 0000,0000,0000 Request track.

Request any unassigned track from track reservation table NN
(10,11,12). If a track is available the track number is entered in
the first byte of the process message buffer. If a track is not
available a cleared byte is returned.

0007, OONN, TTTT, 0000,0000 Drop track.
Drop track TTTT from track reservation table NN (10,11,12)

0010,NNNN, 0000,0000,0000 Request storage.
Assign NNNN hundred octal words of central storage to the control
point of the requesting processor. If a conflict exists the monitor
may not assign the requested storage. The requesting processor must
sense the control point status to verify the actual assignment. A
pause function (17) should preceed further requests for storage.

0011,0000,0000,0000,0000 Release PP.

Release the peripheral processor from the control point. The
monitor clears the processor input register before resuming this
function. ’

14

0013,0000,0000,0000 Abort control point.

Abort the job associated with the requesting processor. The
requesting processor is responsible for an explanatory message in the
dayfile. The monitor clears the PP input register before resuming
this function.

OOlh,TTTT,OOO0,0000,0000 Time limit.
Enter a job time limit at the associated control point TTTT
increments of time. Each time increment is 8 seconds.

OOlS,OOO0,0000,0000,0000 Request central processor.
Set the central waiting flag (W) at the associzted control point.
Search for job priorities to initiate central processor action.

OOlé,OOO0,0000,0000,0000 Drop central processor.
Drop central processor execution for the job at the associated
control point.

OOlY,OOO0,0000,0000,0000 Fause for relocation.

This function allows the monitor to move central storage data for
the associated job. The requesting processor should check the reference
address for the control point after resume from this function.

,____4;.,oozo,oooo,oooo,oooo,oooo Request PP.

This function requests the initiation of another peripheral
processor. The first word of the message buffer associated with
the requesting processor contains the input register duta for the
new PP. This function is resumed with the PP input register address
in the first byte of the message buffer. If no PP is available a
blank byte is returned.

OOQl,OOO0,0000,0000,0000 Recall central processor.
Restart the central brogram associated with the requesting PP
only if the central recall flag (X) is set.

OOEE,NNNN,OOO0,0000,0000 Request equipment

Search the equipment status table for an equipment of type NNNN
and assign this equipment to the control boint. The monitor responds
with the equipment number in the first byte of the PP message buffer
1f an equipment of the broper type is available. The monitor responds
with a blank byte if the equipment is not available.

OO23,00NN,OOO0,0000,0000 Drop equipment.
Drop equipment number NN from the associated control point.

002L, 00NN, 0000, 0000, 0000 Request priority.
Assign priority number NN to the control point.

15

0025 , 000N, 0000, 0000,0000 Error exit mode. :
Assign exit mode N to the central program at the assoclated
control point.

0027 ,0000,0000,0000,0000 Toggle simulator.
Toggle the status of the central processor and simulator. The
simulator is called from the peripheral library or dropped as required.

0030, 000N, 0000, 0000, 0000 Operator drop.
Drop the job at control point N by setting the operator drop
error flag.

0031, OONN, 0000, 0000, 0000 Equipment on.

Clesr the lockout bit for equipment NN in the equipment status
table. :

0032, 00NN, 0000, 0000, 0000 Equipment off.

Set the lockout bit for egquipment NN in the equipment status
tab le.

0033, 00NN, 000P ,0000,0000 Assign equipment.

Assign equipment number NN to control point P and enter the
pumber NN in the control point area for operator assignment.

16

Peripheral Program Formats -

Binary versions of peripheral brograms contain data in the first
word of the program code which controls loading of the package. All
Peripheral packages in the RPL (Resident Peripheral Library) and PLD
(Peripheral Library Directory) are overlays which are called by the
resident peripheral programs. These overlays are called once and
executed and then discarded when the next overlay is called. All
overlays are coded for a particular beginning address in peripheral
storage. Overlays which begin at address 1000 in peripheral storage
are the basic transient peripheral packages. These transient packages
may call equipment driver overlays which begin at peripheral address
2000. The various types of peripheral overlays are identified by
name only in the calling formats. Those basic transient backages
which may be called by a central brogram are assigned names beginning
with a letter. Those packages which are equipment driver overlays

or are special operating system packages are assigned names beginning
with a numeral.

The first word of a peripheral package contains the following
information.

(18 bits) Package name in display code.

530 bits) Not used.
12 bits) Package length in central words.

17

Resident Peripheral Library -

The following peripheral overlays are
peripheral library.

lad - Advance Job.
1BJ - Begin Job.

1DJ - Phase three print.

SRS

1LJ - Phase one card load.
<BD - Backspuace disk.

2BP - Buffer parameters.
2BT - Backspace tape.

2DF - Drop file.

ZDT - Drop tracks.

2EF - krror flag.

2LP - Line printer

2RC - Read cards.

2RU - Read disk.

2RT - Read tape.

25D -FSearch dayfile.

2T7J - Translate job card.
2TS - Translate statement.
2WD - Write disk.

2WT - Write tape.

18

stored in

the resident

Cl0 - Circular I/O.
CLL - Call library.
EXU - Execute. |
MSG -

Message for dayfile.

Peripheral Library Directory -
The following peripheral overlays are listed in the peripheral
library directory.
1LT - Phase one tape load.
1TD - Phase three tape dump.

_—-—-‘*“""‘“——«M
2PC - Punch cards.

DMP - Dump storage.

IBC - Load binary cards.
LOC =~ Load octal cards.
PBC - Punch binary cards.
DIS - Display job.

SIM - CPU simulator

19

DSD - System Display ~ Channel 10

This package is loaded in processor 9 on dead start and remains
there unaltered throughout execution of the system. This package
provides an overall status display for all currently running Jjobs.
The keyboard is used to inltiate and control equipment assignment
and Jjob progress.

The two console screens may be assigned any combination of two
of the following displays.

A - dayrile

B - job status

C - data storage ES groups of 4 octal digits)

D - data storage (5 groups of U octal digits)

E - data storage (5 groups of 4 octal digits)

¥ - program storage (4 groups of 5 octal digits)
G - progran storage (4 groups of 5 octal digits)
H - job backlog

As an exemple, the following keyboard entry would select H
Gisplay on the left screen and B display on the right screen.

JY._IB-

The storage displays C through G consist of L fields of 6 words
cach. The fields are designated 0,1,2,3 and may be individually
changed to any O word group of central storage. The following
keyboard entry would change the D display, field 2, to display central
storage addresses 001020 through 001027.

D2, 1020.

If D4,1020 were used in the above example the D display would
be changed to 4 consecutive fields beginning with address 001020.

Any word in central storage may be modified from this console.
An entry in central storage is made in the following format.

1022, 2100 1000 0000 Q111 23k7.

Spacing is not important. Leading zeros uay be dropped in both
address and data word. All entries are octal and the digits are
right adjusted.

20

AUTO,

This keyboard entry may be used after a dead start from the
system tape to select a mode for automatic job processing., This
mode assumes job inputs from punched cards and printer output,

STEP.

This keyboard entry selects a step mode for the operating
system monitor, Each processor request is stepped by depressing
the keyboard space bar, High speed operation may be resumed by
entering a period on the keyboard,

SIM.

This keyboard entry calls a central processor simulator
package from the disk file library to a peripheral processor.
Subsequent system operation is with a simulated central processor.
The simulator may be dropped by repeating the keyboard entry SIM,
Repeated entries will toggle the system between simulated and
real central processor,

0N42 .

This keyboard entry is an example of format for designating
to the operating system that a particular equipment is working
and ready for automatic monitor assignment to any job requesting
this type of equipment. The equipment is designated by a two
digit octal number corresponding to the position of the equipment
in the equipment status table,

OFF42,

This keyboard entry is an example of format for removing
a particular equipment from automatic monitor assignment, The
equipment is designated by a two octal digit number corresponding
to the position of the equipment in the equipment status table.
TIME., 12,10.03, March 12, 1965.

This keyboard entry permits the operator to enter the correct
time and date,

21

1. READ,

This keyboard entry is an example of format for selecting a
punched card job input package, The leading digit designates
which control point is to be used for the input package, Jobs
are read from punched cards as long as cards are entered in the
card reader. All job data is stored in disk files, and the jobs
are executed according to the priorities on the job cards,

2, PRINT.
This keyboard entry is an example of format for selecting a
printer output package. The leading digit designates which con-

trol point is to be used for the print package., Job output files
are printed in the order of job priorities,

3. NEXT.
This keyboard entry is an example of format for selecting a

control point, as designated by the leading digit, to process job
executions., Jobs are called one at a time in order of priority.

4. Go.

This keyboard entry is an example of format for restarting a
job which has come to a pause statement, The leading digit must
correspond to the control point with the pause statement displayed,
4, DIs.

This keybéard entry is an example of format for calling a
job display package (DIS) to a control point as designated by the
leading octal digit,

4, DROP,

This format drops the job at the designated control point,
4, ASSIGN 53.

This format assigns a particular equipment (53) to a par-
ticular control point (4). This method of equipment assignment

should be used only when the job is waiting for the equipment
assignment as indicated by a REQUEST statement display.

22

T+ LOAD.

This keyboard entry selects a magnetic tape job loader package
at the designated control point. The package will request operator
assignment of a specific tape unit. The tape read on thils unit
must have input jobs stacked to a double file mark. Such a tape
may be prepared by copying card to tape with the library program COPY.

5. DUMP.

This keyboard entry selects a magnetic tape dump package at the
designated control point. The package will request operator assign-
ment of a specific tape unit. The current backlog of completed
output files will be dumped on this tape in the order of job priority.
A file mark will be. recorded and the tape backspaced to allow repeated
dumps on the same tape. The tape may then be listed off line with
a tape to printer program.

L. oOnsw2.

This keyboard format allows setting of the six sense switches
for Fortran programs during execution.

L. OFFswk.

This keyboard format allows clearing of the six sense switches
for Fortran programs during execution.

5. DCN1ll.

This format allows the operator to manually disconnect any I/0
channel. The channel number is octal.

5. FCN1O.

This format allows the operator to manually enter a zero function
on any I/0 channel. The channel number is octal.

23

DIS - Job Display

This package may be called at any time during the execution of
a job. This package, when called, stops further automatic advance
of the job control cards. The display provided in this package
covers only data pertaining to the particular job. The keyboard is
used to advance the job control cards and provide any combination
of two of the following displays.

- dayfile

- job status

- data storage (5 groups of 4 octal digits)

- data storage (5 groups of 4 octal digits)
data storage (5 groups of 4 octal digits)

- program storage (4 groups of 5 octal digits)
- program storage (4 groups of 5 octal digits)

OHREUOW >
'

As an example, the following keyboard entry would select A display
on the left screen and B display on the right screen.

AB.

The storage displays C through G consist of 4 fields of 8 words
each. The fields are designated 0,1,2,3 and may be individually
changed to any 8 word group of central storage. The following
keyboard entry would change the D display field 2 to display central
storage addresses 001020 through 001027.

D2, 1020.

1f D4, 1020 were used in the above example the D display would
be changed to 4 consecutive fields beginning with address 001020,

Any word in central storage which lies within the field length
of this job may be modified from this console. All addresses are
relative to the job reference address. An entry in central storage
is made in the following format.

1022, 2300 7775 1143 0000 0022,
Spacing is not important. Leading zeros may be dropped in both

address and data word. All entries are octal and the digits are
right adjusted,

24

The following keyboard entry formats may be used to alter the
contents of the exchange package for the job displayed. If the
program is running the operation will stop before the entry is made.
The numerical values in the examples below are for illustrating
format only.

ENP, 12345.

Enter the Value 12345 in the exchange package for the next
program address.

ENA3, 665000.

Enter the value 665000 in the exchange package for the A3 register.
ENB2, Lb.

Enter the value 44 in the exchange package for thé B2 register.
ENX5, 2223 4000 0000 0000 0200.

Enter the indicated value in the exchange package for the X5
register.

ENEM, 7.

Enter the value T in the exchange package for the exit mode.
ENFL, 10000.

Enter a field length of 10000 for the exchange pack@ge.
ONSW3.

This keyboard format allows the operator to set a Fortran
sense switch during execution.

OFFSW5.

This keyboard format allows the operator to clear a Fortran
sense switch during execution.

25

The following keyboard entry formats may be used to change
the status of & job. The numberical values are for illustration
of format only.

ENTL, 200.
Enter a time limit of 200 octal seconds.
ENFR, 5.
Enter a Jjob priority of 5.
DCP.
Drop the central processor and disp;ay the exchange area.

RCP.

Request the central processor and begin execution at the next
program address.

BKP, u44300.

Breskpoint to address 44300 in the program. This entry begins
central processor execution of the program at the next program address
and stops execution when the program register reaches address L4300,
The contents of address L4300 is cleared while the program is running
and is restored when the break point address is reached.

RI‘S L]
Read the next control statement and begin execution.
RSS.
Read the next control statement and stop before execution.

DROP.

Drop the display package and continue execution of the remaining
control statements.

HOLD.

Drop the display for later recall by the system display console.
This entry holds the job at its present status.

26

GO,

This keyboard entry restarts a program that has stopped at a
pause statement, ’

ENS., XXXXXXXXXXXXXX,

This keyboard format allows the entry of any control statement
XOXXXXXXXXXXX as if it had been entered on a control card.

DMP (200,330)

This format dumps storage addresses 260 to 330 in the. output
file. .

DMP (400)
This format dumps storage from the reference address to address 400.
DMP. " » L ’

This format dumps the exchange package in the output file,

27

CI0O Circular Buffer 1/0 Package

Interface with central program -

This peripheral package is called by entering CIO in display code
left adjusted in RA + 1. The lowest order 18 bits of RA + 1 contain
the relative storage address (BA) of the circular buffer parameters.
These parameters occupy five central words beginning at BA.

BA. . (42 bits) File name in display code left adjusted.
(12 bits) not used;
(6 bits) buffer status.

BA + 1. (42 bits) not used.
(18 bits) FIRST. First address of circular buffer.

BA + 2. (42 biés) not used.
(18 bits) 1IN, Next buffer input address.

BA + 3. (42 bits) not used,
- (18 bits) OUT, Next buffer output address.

BA + 4. (42 bits) not used,
(18 bits) LIMIT, Last buffer address + 1.

If IN = OUT the buffer is empty. Maximum buffer capacity is
" LIMIT - FIRST - 1. IN and OUT may equal FIRST but may not equal LIMIT.

The six bit buffer status indicates the mode of the buffer and
provides an interlock for peripheral package activity. The buffer
status has an even numerical value when CIO is called. The buffer
status is set to an odd value when the peripheral package has completed
the I/0 function. Specific status indicators may be obtained by
combining the octal digits in the table below.

OX not used X0 request coded read

1X buffer I/0 X1 complete coded read
2X end record X2 request binary read
3X file mark X3 complete binary read
4X Dbackspace X4 request coded write
5X rewind X5 complete coded write
6X rewind unload X6 request binary write
7X not used X7 complete binary write.

28

CIO treatment of status codes

(1) Input (001,0X0)

File is read into circular buffer until buffer is filled (001,0X1)
or until end record (010,0X1) or file mark (011,0Xl), The mode bit
in this function request is ignored and mode is determined by the input
medium, A file mark response should never occur with data,

(2) Output (001,1X0)

Data in circular buffer is recorded on file for as many complete
physical records as available data. No partial end record is made.
(001,1X1).

(3) End Record (010,1X0)

Data in circular buffer is recorded on file including a short
physical record to mark end of logical record., The last physical
record may be of zero lemgth, 1IN = OUT = FIRST. (010,1X1)

(4) File Mark (011,1X0)

(a) Data in circular buffer; or

(b) Last buffer status (001,1XX)

Data in circular buffer is recorded on file including a short
physical record to mark end of logical record, Then a file mark is
recorded, 1IN = OUT = FIRST. (011,1X1)

(c) All others

A file mark is recorded, IN = QUT = FIRST. (011,1X1)

(5) Backspace Binary (100,X10)
Back file to end of last record, A file mark is considered as
a record in this case, IN = OUT = FIRST, (100,011)

(6) Backspace Coded (100,X00)

Back file one coded line, A file mark is considered as a coded
line in this case. The last physical record will be left in the
buffer beginning at FIRST. 1IN and OUT will be adjusted for a one line
backspace, (100,001)

(7) Rewind (101,XX0)
Rewind the file, IN = OUT = FIRST. (101,0X1)

(8) Rewind Unload (110,XX0)
Rewind and unload the file, IN = OUT = FIRST. (110,0X1)

29

CIO special properties.

(1) The central program must complete writing a record before
requesting a backspace, rewind, or wode change.

(2) The central program need not complete writing a record before
requesting a file mark.

(3) The central program must complete reading a record before
beginning output data to the buffer.

(h) Binary tapes and coded one inch tapes record 1000 octal word
physical records in odd parity. No special control words are
added. A zero length physical record is generated by recording

a partial word (4 bytes). Coded one inch tapes use packed display
code with short word separators.

(5) Coded half inch tapes record 120 character BCD code in even
parity.

(6) A one inch tape with mixed binary and coded records presents
problems if a backspace is used to cross a mode boundary.

(7) A problem exists in mode change from coded input to output
on one inch tape if the file is positioned between two lines of
code. No problem exists if the file is positioned before or
after & file mark. No problem exists in mode change on binary
files.

(8) A disk file connot be substituted for a tape file if the file
has multiple file marks or has data recorded after a file mark.

30

DMP - Dump Storage.

This peripheral package may be called from a control card or
from a DIS console. An octal dump is entered in the OUTPUT file
with the central storage address and one data word per line. There
are several format variations for calling this package.

DMP.
This format dumps the exchange area into the OUTPUT file.
DMP, 3400.

This format dumps from the reference address to the argument
address.

DMP (L4000,6000)

This format dumps from the first argument address to the
second argument address.

31

IBC - Load Binary Corrections.

This peripheral package may be called from a control card or
from a DIS console. Binary corrections are read from the INPUT
file and are entered in central storage. If an argument is used
in the package call, the binary cards are loaded beginning with
that address. If no argument is used, the binary cards are loaded
beginning at the reference address. Only one record is read from
the INPUT file. If more than one block of data is to be entered
more calls must be made.

The two types of format for this package call are as follows.
1BC.

1BC, 2300.

32

LOC - Load Octal Corrections.

This peripheral package may be called from a control card or
from a DIS console. Octal corrections are read from the INPUT file
and are entered in central storage. The octal cards which are used
for these corrections must be in the following format.

23001 45020 04000 000L2 0OOkk

The address must begin in column one. Leading zeros may be dropped
in the address. The data word must not begin before column 7. Spacing
in the data word is not important but the word must contain 20 digits.

Several formats are allowed in making this package call. The
simplest is the following.

LOC.

This call reads all of the correction cards in the next INPUT file
record and modifes central storage accordingly.

LOC, 1000.

This call clears central storage from the reference address to
the argument address. The correction cards are then read from the
INPUT file.

LOC (2022, 3465)

This call clears central storage from the first argument address

to the second argument address. The correction cards are then read

from the INPUT file.

This package may be called to clear storage only by providing an
empty record in the INPUT file.

33

PBC - Punch Binary Cards.

This peripheral package may be called from a control card or
from a DIS console. This package punches & deck of binary cards
directly from central storage. Storage is not modified by this
operation.

Several formats may be used in calling this peripheral package.

PBC, 2000.

This format causes a binary deck to be punched from the reference
address to the argument address.

PBC (2000, 3000)

This format punches a binary deck from the first argument address
to the second argument address.

PEC.

This format punches a binary deck using the first word in central
storage as a control word for deck length. The deck always begins
at the reference address and terminates one address less tban that
indicated in the lower 18 bits of the first word. This format may

be used for punching any central or peripheral program in standard
format.

34

CLL - Call Central Overlay

This peripheral package calls one or more central overlays to
addresses supplied by the calling program. The lowest order 18
bits of the call word in RA+ 1 contain the storage address (BA)
for arguments. The first two words in the argument region contain
beginning and limit addresses for the overlays as a group. A list
of the overlay nemes begins in BA+ 2 and continues to a cleared
word.
BA. 42 bits) not used.

18 bits) beginning address for first overlay.

BA+ 1. L2 bits) not used.

18 bits) 1limit address for group of overlays.
BA+2. 42 bits) neme of first overlay in display code.
(18 bits) beginning address of overlay (inserted by CLL).
BA + 3. (42 bits) name of second overlay in display code.
(18 bits) beginning address of overlay (inserted by CLL).

etc.

CLL searches for the overlays in the order named first in the
Resident Subroutine Library (RSL), then in the Central Library
Directory (CLD), and then in the assigned job files. As a named
overlay is located it is copied into central storage at the next
avallable address. This address is then entered into the argument
region with the name of the overlay. If an overlay cannot be
located the address is left blank in the argument region. If an
overlay exceeds the limit address a 777777 is entered as the argument
address. The last overlay 1s followed by a cleared word. CLL then
clears (BA) to indicate completion of the call.

35

EXU - Call and Execute.

This peripheral package is called by entering EXU in display
code left adjusted in RA + 1, The lowest order 18 bits of the call
word indicates the central storage address for the argument. The
argument consists of the name of a central program to be called and
executed, This call destroys the calling program and completely
replaces it with the called program.

MSG - Dayfile Message.

This peripheral package is called by entering MSG in display
code left adjusted in RA + 1. The lowest order 18 bits of the call
word indicates the central storage address for the argument. The
argument consists of a sequence of words in display code which are
to be entered in the dayfile. The time and job name are automatically
inserted before the argument data, The data is terminated by a
cleared byte.

36

Job Control Cards -

A job consists of one or more central programs which are executed
with common data files. Job control cards are used to identify the
programs and data files and sequence the program executions.

Each job must begin with a job card. This card names the job
and provides priority, time limit, and field length information for
the job. An example of a job card is as follows.

JoB237, 6, 400, 27000.

In this example the job name is JOB237. Priority is 6. Time
limit is 40O octal seconds. Field length is 27000 octal words.
Spaces are not important in the Jjob card format except that the job
name must begin in column one. The job name must begin with a letter
and may have up to 7 characters. The priority is u single decimal
digit. A higher priority is represented by a larger number. The
time limit may consist of up to 5 octal digits. The octal value in
hundreds is approximately the time in minutes. The field length
must be in hundreds and cannot exceed 360,000.

The rest of the Jjob control cards must follow the job card in
the order of execution. A record separator follows the last job
control card. Program and data cards then follow in the order of
input requests.

File Names -

All input and output actions of a central program must involve
a named file. This file may be a disk file, a magnetic tape file,
‘e punched card file, or a printer output file. The physical unit
assoclated with a file name is controlled by the Jjob control cards
and is not a function of the central program ceding directly. The
operating system provides a common interface between the central
© program and the peripheral programs which drive the peripheral
equipments.

File names must begin with a letter and may have up to 7 characters.
There are two special names which are implied with each job. These
names are INPUT and OUTPUT. The name INPUT refers to the file from
-which the job cards were read. This file is the result of loading
the card deck for the job. The name QUTPUT refers to the file which
ends in printed copy at the end of the job. These two names must
be avolded in assigning names to temporary files and other I/0 files.

37

Program Calls -

A program is called from a file or the program library by a control
card in the following format.

SORT(T1, T2, XIF)

In this example the name of the program is SORT. This program
may have been loaded from a file specifically associated with this
job, or it may have been compiled from a fortran deck in the input
file, or it may be in the general program library. All files associated
with the job are searched for this particular name. If no job file
has this name the program library is searched for a program of this
name. When the program has been located it is read into central core
storage. The arguments within the parenthesis are then entered in
the program beginning at address 000002. These arguments are names
for other files associated with the job and are entered in the fore-
part of the progrem in display code left adjusted in each word. The
nwiber of arguments must agree with number provided in the program.
The execution of the program is initiated at a program address specified
in the forepart of the program. (see program format)

If a file name appears for the first time as the argument in a
program call it is assumed to be a disk file and is assigned to disk
storage at that time.

Special Control Curd Formats -

The following control card formats are recognized as special
cases and must not be used for the names of programs.

ASSIGN MT, AFIIE. MT~ P
ee
This format assigns any available peripheral unit of type MT to o

a file name AFILE. This must be the first appearance of AFILE.

COMMON BFILE.

This format causes a search for the name BFILE in the list of
common files. If a common file is located with this name, and if the
file is not being used by another job, it is assigned to this job
until dropped. If the file is being used by another job or does not
yet appear in the list of common files, this job must wait until the
file is available.

If BFILE already appears as a local file name for the job, this
format transfers that file to common status and is available to other
Jjobs when dropped by this Job.

38

RELEASE BFIIE.

This format causes a common file named BFILE currently assigned
to this job to be dropped from common status.

REQUEST CFILE.

This format requests the operator at the system display console
to assign a specific peripheral equipment to this Job with the name
CFILE. This must be the first appearance of the name CFILE. The
Job waits for operator action before proceeding.

MODE 3.

This format assigns arithmetic exit mode 3 to the job until
further specification.

SWITCH 5.

This format sets switch 5 for reference by subsequent FORTRAN
programs .

EXIT.

This format is used to separate the control cards associated with
the normal execution of the job from a group of control cards to be
executed in the event of an error exit. If this control statement is
reached by sequential execution of the job it terminates the job. If
an error exlt occurs in the Jjob before this EXIT card is reached, the
control statements following this card are executed.

39

Sample Job -

The following job cards are an example of a Fortran load and
run job with READ and PRINT statements. The job has a priority
of 2, a time limit of one minute, and a field length of L0000 octal
words. A Fortran program deck may be declared in either a FORTRAN II
or FORTRAN IV mode. The mode is declared in the header card for the
maein program along with the name and I/0 file arguments.

JoB236, 2, 100, L0000.

RUN.

789

FORTRAN IV PROGRAM JOHN(INPUT,OUTPUT)

(Fortran program coding)
789
(Fortran data)

6789

Sumple job -

The following Jjob illustrates a Fortran load and run job with
three tape references. The Fortran language TAPE 1 in this example
is assumed to be an input tape which the operator lozds on a particular
unit. The other two tapes are assumed to be scratch tapes which are
draw from a tape pool.

JOB237, 2, 400, 60000.
ASSIGN WT, TAPE 5.

. ASSIGN WT. TAPE 6.
REQUEST TAPE 1.

RUN.

;ggTRAN II PROGRAM HENRY(INPUT,OUTPUT, TAPEl,TAPES,TAPEO)
(Fortran program coding)

789

(Fortran déta)

6789

40

Monitor Action on Central Programs -

The monitor will act upon a central program in the following
cases,

Higher Priority,

If a higher priority program is ready for execution the current
program exchanges in favor of the new program,

Arithmetic Exit.

The monitor exchanges to the next lower priority program whenever
the central program address becomes zero. An arithmetic exit mode
flag is set for this case,’

Time Limit,

The monitor exchanges to the next lower priority program if the
time limit is reached. A time limit flag is set in this case,

Call Peripheral.

A central program calls a peripheral package by entering the
package name in display code in the upper 18 bits of RA + 1. The
lower 36 bits may contain arguments for the peripheral package.

The monitor clears address RA + 1 as soon as the peripheral package
is called.

Recall,

‘A central program may stop for later recall by emtering RCL in
RA + 1 and looping until RA + 1 clears, The monitor will exchange
to the next lower priority program and restart this program at a
later time (about 250 milliseconds). If the central program has
called a peripheral package for I/0 action this package may restart
the central program when the action is completed.

Abort.

A central program may abort the job by entering ABT in RA + 1.
This action sets an abort exit flag.

End.
A program is terminated by entering END in RA + 1. The monitor

then calls a peripheral package to advance the job to the next control
statement.

41

Central Program Formats =~

Binary versions of central programs contain data in the fore-
part of the program code which controls loading and starting of the
program. This data i1s contained in the first two words of the
program code. These words are interpreted by the loading processor
and then cleared before beginning execution.

Central program arguments begin in address 000002 of & central
program. The arguments are file names which are in display code
left adjusted in the word. A set of file names are generally stored
in the argument area of a program at the time it is compiled. If
arguments are used in a control card at the time the program is
called for execution, these arguments are inserted in the program
in the argument area and override the original values. If no argu-
ments are used, or if fewer than anticipated arguments are used,
the original argument values are effective at run time. The list
of argument names at the front of the program must be followed by
a cleared word. The first word of program for execution follows
this cleared word.

The first word of a binary central program contains the
following information.
&N
A
®
(42 bits) Program name in display code.
(18 bits) Program length.

The second word of a binary central program contains the
following information.

a“’“__p(% bits) Not used. ls
S (6 bits) Number of arguments.

Execution of a central program begins at an address equal to the
number of arguments plus 3.

42

Resident Subroutine Library -

The following central program subroutines are stored in the
resident subroutine library,

ALOG

ALOG10

ATAN

COS

DVCHK

END

EXIT

EXP

IBAIEX

IFENDF

OVERFL

PAUSE

RBATIEX

RBAREX

REMARK

SIN

SQRT

SLITE

SLITET

Computes the natural logarithm of a floating point number.
The result for a negative argument is indefinite,

Computes the common logarithm of a floating point number,
The result for a negative argument is indefinite.

Computes the arctangent of a floating point number.
Calculates the cosine of a floating point number,

Divide and check,

Causes end of file on all circular buffers for the program,

Terminates a program similar to END, The word EXIT is entered
in the dayfile.

Calculates the floating point functiom E * ¥* X,
Computes I % % J where both I and J are fixed point.

Checks the status of a circular buffer for an end of file
condition, 1IN = OUT and 3X function,

Result is set to one if overflow exits and two if no overflow.

Loop on recall until operator action. Word PAUSE entered in
the dayfile,

Computes A * * I where A is floating point and I is fixed point,
Computeé A * % B where both A and B are floating point.

Transmits a message to the system dayfile and displays it on the
conscle display.,

Example: CALL REMARK (22H REMARKS HERE IN ENTRY).
22H indicates 22 Hollerith characters in the remarks
(maximum of 40). . :

Computes the sine of «the argument,

Computes the square root of the argument. A negative argument
results in an indefinite result,

Sense lights. Turn off if zero. Turn on if non zero.

Respond with one if light was on, two if light was off. Turn off
light.

43

SSWICH
START
STOP
TAN
TANH

TIME

Respond with one if switch is down, two if switch is up.
Enter START in dayfile,

Enter STOP in dayfile and perform same function as END,
Compute the tangent of the argument,

Compute the hyperbolic tangent of the argument.

Enter the word TIME and hollerith information in the dayfile.

Library Subroutine Calling Sequences

Arithmetic subroutines in the Resident Subroutine Library may be called by
the following calling sequences,

I. ALOG cos SQRT
ALOG10 SIN TAN
ATAN EXP TANH

Each of the above subroutines is entered ﬁith the address of its single
argument in the Bl register and exits with its result in the X6 register.
All registers except AO are available and need not be saved,

‘Example
AA = SIN(BB)
Program
Address
CSEQ I = BB 6110B Put address of argument
in Bl
R = SIN 0100 SIN o Return Jump to SIN subroutine
Y = .(AA) | 506, . " Store answer from X6 to
memory
Continuation of main program
SIN-3 - Subroutine name and length
SIN-2 Number of arguments
- SIN-1
SIN 0 00... Entry/Exit Address
P = SIN 02.,SIN Jump to Entry/Exit Address

of Subroutine for return
to main program ‘

45

II. The subroutines IBAIEX, RBAIEX, and RBAREX require two arguments,
X registers 6 and 7 are used for transmitting the arguments, X6 for the
base and X7 for the exponent, These subroutines save and restore all
index registers used. The result is left in X6.

Example
AA = BB#**CC
Program
Address
CSEQ Y = BB 6170 BB Set X6 to desired base
Z = CC 6160 CC Set X7 to desired exponent
R = RBAREX 0100 RBAREX Return Jump to RBAREX
subroutine
G = AA 5160 AA Store result at AA
Continuation of main program
RBAREX 0 00 Entry/Exit
P = RBAREX 0z,.. Jump to Entry/Exit address

for return to main program

III., The BACKSP, REWINM, ENDFIL, and IFENDF subroutines receive a single
argument via the X6 register and do not use index registers, The calling
sequence must place in X6 either:

A. The address of the parameter list describing the circular buffer
to be referenced, or

B. The complement of the address of the file name or variable tape
number., File names are left justified and tape numbers are binary
and right justified.

If the address of the parameter list is known at the time the calling
program is compiled, the calling sequence may place this address in X6
before jumping to the subroutine.

If the address of the parameter list is not known at compile time, the
calling sequence must place in X6 the complement of the address of the
tape number or file name, When the subroutine senses that X6 holds a
complemented address (<0), it determines whether the word at that address
ie a file name or tape number and, 1f necessary, forms a file name by
inserting TAPE in display code in front of the tape number (also converted

46

to display code),.

When the proper file name has been obtained, a

masked search is made starting at address 000002 of the program, The
address of the parameter list is found in the lower 18 bits of the match,

Example
REWINM 6

When address of parameter list is known:

Program
Address

CSEQ

REWINM

PLIST

Y = PLIST 7160 PLIST

R = REWINM 0l...

Continuation of main program

P = REWINM 0200 REWINM

TAPE6...SS

FIRST
IN
ouT

LIMIT

47

Set X6 to address of
parameter list

Return Jump to REWINM
subroutine

Entry/Exit

Jump to Entry/Exit
address for return to
main program

File name in display
code and buffer status

First address of buffer

Last address of buffer

When address of parameter

list is unknown (variable tape number):

Program
Address
CSEQ Y = TAPENO 7160 TAPENO
Y= -Y 14606
R = REWINM 01
, Continuation of main program
REWINM 0 00
P = REWINM 02 REWINM
TAPENO 0000,...6
RA + 2 File Name 1
RA + 3 File Name 2
RA+n TAPE 6 ,, PLIST

When address of parameter

CSEQ Y = FILENAME
Y= -Y
R = REWINM
FILE NAME TAPE6000, .0

Set X6 to address of
tape number

Complement address in X6

Return Jump to REWINM
subroutine

Entry/Exit

Jump to Entry/Exit
address for return to
main program

Tape number (binary)

Matching file name and
address of parameter list

list is unknown (File name):

7160 FILENAME

14606

01...REWINM

48

Set X6 to address of
file name

Complement address in X6

Return Jump to REWINM
subroutine

IV. The subroutines INPUTB, INPUTC, OUTPTB, AND OUTPTC assume that all
registers are available. These subroutines receive arguments via the

B registers and are entered at least three times for each data list
transferred:

On first entry Bl = 000000, B2 contains the address of the parameter
list or the complement of the address of the file name or tape
number, and B3 contains the address of the format statement (for

the coded routines only).

On intermediate entries Bl contains the address of a data item or
the beginning address of an array, and B2 is the array length.

On final entry Bl <O indicating that the data list has been exhausted.
Example

List the data in array AA and variable BB,

Program
Address
CSEQ I=20 61100 Set Bl = 000000
J = PLIST 61200 PLIST Set B2 to address of
parameter list
K = FORMAT 61300 FORMAT Set B3 to address of
format statement
R=0UTPTC 0100 OUTPTIC Return Jump to OUTPTC
subroutine
I =A 61100 AA Set Bl to beginning
address of array AA
J = LENGTH 61200 LENGTH Set B2 to length of
array AA
R = QUTPTC 0100 OUTPTC Return Jump to OUTPTC
subroutine
I = BB 6110 B Set Bl to address of
variable BB
J=0 61200 D Set B2 to 000000
R = OUTPIC 0100 OUTPTC Return Jump to OUTPTC
I= -1 6110 -1 Set B{< 0 to indicate

all data has been transferred

49

R = OUTPTC 0100 OUTPTIC Return Jump to OUTIPTC
: : subroutine to send E,O.,R,

L)
.

Continuation of main program

50

Central Library Fortran Subroutines -

XLOCF

INPUTB

INPUTC

OUTPTB

OUTPTC

ENDFIL

REWINM

BACKSP

DISPLA

RANF

CHAIN

Returns the memory location of a variable name.
Binary input,
Fortran data input,
Binary output.
Fortran data output.
Write end of file,
Rewind medium,
Backspace medium,
Displays a variable name and its numerical value. The value is
displayed as an integer if unnormalized and in floating point
format if normalized.
Example: CALL DISPLA (5HVNAME, VNAME)
Displays a variable with 5 Hollerith characters (VNAME)
and its numerical value,
Random number generator,
Loads a program from the disk file and executes the program.
Arguments transferred from one program to another must be in the
common region., All segments to be chained must be compiled with
the same file names. The segment name is transferred to the

dayfile and displayed prior to execution,

Example: CALL CHAIN (5HLINK2) calls and executes program LINK2,
5H indicates 5 Hollerith characters in the name.

51

Central Library Programs -

RUN - Compile and run fortran.

COPY - Copy to double file mark.

COPYCR - Copy coded record.
COPYCF - Copy coded file.
COPYBR - Copy binary record.
COPYBF - Copy binary file.
REWIND - Rewind medium.
VERIFY -~ Verify two media.

APRAB - Assemble peripheral overlay.

COPYSBF - Copy shifted binary file.

52

COPYCR(A,B,N) =~ Copy Coded Record
This central program coples N coded records from & medium A

to a medium B. If the third argument is omitted one record is
copied.

COPYCF(A,B,N) - Copy Coded File.

This central program coples N coded files from a medium A to
a medium B. If the third argument is omitted one file is copied.

COPYBR(A,B,N) - Copy Binary Record.
This central program coples N binary records from a medium A

to a medium B. If the third argument is omitted one record is
copied.

COPYBF(A,B,N) - Copy Binary File.

This central program copies N binary files from a medium A to
a medium B. If the third argument is omitted one file is copied.

COPYSBF(A,B) - Copy Shifted Binary File.

This central program copies a binary file of coded information
from a medium A to a medium B, shifting each line one character
and adding a leading space.

53

REWIND(A) - Rewind Medium.

This central program rewinds a tape or disk medium.

BKSP(A) - Backspace Medium.

This central program backspaces a tape or disk medium.

VERIFY(A,B) - Verify Two Media.

This central program reads two files and compares the data
word by word to a file mark. If a disagreement is found the
program stops. The word from the first file is contained in X1
and the word from the second file in X2. The program may be
resumed by advancing the program address and restarting.

COPY(A,B) = Copy to double file mark.

This central progran copies from one mediwm to another until
a double file mark is detected. Both medic wre then backspoced
over the last file mark.

54

FORTRAN COMPILER ARGUMENTS

The Fortran compiler, RUN, may be called with up to six
arguments. An example appears below, and the arguments are
identified in the order of appearance:

RUN(L, 300000, 100000, 3000, AA, BB)

(1) Compiler mode,
G - Compile and execute.
S - Compile and do not execute,
P - Compile and punch and do not execute.
L - Compile and list and do not execute,
(2) Object program field length., (octal)
(3) Object program common length. (octal)
(4) Object program I/0 buffer lengths., (octal).
(5) File name for compiler input.
(6) File name for compiler listable output.

If an argument is entered as zero, or a space, or the list of
arguments is shorter than six, an assumed argument is entered by
the compiler. Compiler output, except in the G mode, includes a
reproduction of the source program, a variable map, and indications
of errors detected during compilation. If the G mode is selected,
all output is suppressed unless errors are detected, in which case
the output is the same as indicated for the other modes, If the
L mode is selected, the output will include an octal list of the
compiled instructions.

(1) 1If the first argument is omitted it is assumed to be G.

(2) 1If the second argument is omitted it is set equal to the field
length at compile time.

(3) If the third argument is omitted it is set equal to the amount
of common storage required for the main program being compiled,

(4) The fourth argument specifies the length of the buffers which
will be used for each I/0 device in the object program, If not
specified this argument is assumed to be 2001 octal,
(5) If this argument is omitted it is assumed to be INPUT.
(6) 1If this argument is omitted it is assumed to be OUTPUT.

A copy of the compiled program is always left in disk storage

as a binary file with the name of the program as file name, It
may be called and executed repeatedly by name.

55

FORTRAN PROGRAM HEADER CARDS

Every Fortran program must have & header card in one of the following
forms:

PROGRAM NAME (Al, ... , AN)

FORTRANIV PROGRAM NAME éAl, «es , AN)

FORTRANII PROGRAM NAME (Al, ... , AN)

The first two forms cause the program and its subroutines to be
campiled in the FORTRAN IV mode. The third form causes compiling
in the FORTRAN II mode.

The arguments Al, ... , AN must be the names of all input/output
files required by the main program and its subroutines. Although
these arguments may be changed at the time the program is executed,
they must, at compile time, satisfy the following conditions:

1. The file name INPUT must appear if any READ statement
is included in the program or its subroutines.

2. The file name OUTPUT must appear if any PRINT state-
ment is included in the program or its subroutines.

‘3. The file name PUNCH must appear if any PUNCH state-
ment is included in the program or its subroutines.

4., The file name TAPEi, where i is an integer, must
appear if a READ INPUT TAPE i, WRITE OUTPUT TAPE i,
READ TAPE i, WRITE TAPE i, READ (i,n), WRITE (i,n),
READ (i) or WRITE (i) statement is included in the
program or its subroutines.

5. The file names TAPEij, ..., TAPEi) must appear if I
"~ is an integer variable name and a READ INPUT TAFE I,

WRITE OUTPUT TAPE I, READ TAPE I, WRITE TAPE I, READ
(I,n), WRITE (I,n), READ (I) cr WRITE (I) statement
appears in the program or its subroutines. The
integers 13, ..., ix must include all values which
will be assumed by the variable I. The file name
TAPEI may not appear in the list of arguments to the
main program. '

6. The file name TAPEV must appear if V is a symbolic
tape unit number and a READ INPUT TAPE V, WRITE
OUTPUT TAPE V, READ TAPE V, WRITE TAPE V, READ (V,n),
WRITE (V,n), READ (V) or WRITE (V) statement appears
in the program or its subroutines

56

A program is terminated by 8 single END card.

A provision is made for equivalencing file names at compile
time, For example, the header record

" PROGRAM NAME‘(INPUT,>0UTPUT, TAPE1l = INPUT, TAPE2 = OUTPUT)

would cause all input normally provided by TAPEl to be extracted
from the INPUT file and all listable output normally recorded on
TAPE2 to be transmitted to the OUTPUT file, Equivalenced file
names must follow, in the list of arguments, those to which they
are made equivalent, Their corresponding argument positions may
not be changed at the time the program is executed, although the
names of the files to which they are made equivalent may be
changed at this time.

SUBROUTINE HEADER CARDS

Every Fortran SUBROUTINE compiled independently of a main program
which is to use it must have a header card in one of the following
forms:

SUBROUTINE NAME (Al, ..., AN)
FORTRANIV SUBROUTINE NAME (Al, ..., AN)
FORTRANII SUBROUTINE NAME (Al, ..., AN)

The first two forms cause the subroutine to be compiled in the
FORTRAN IV mode, and the third form causes it to be compiled in
the FORTRAN II mode. The arguments Al, ..., AN have their
conventional FORTRAN significance.

A SUBROUTINE is terminated by a single END card,

FUNCTION HEADER CARDS

Every Fortran FUNCTION which is compiled independently of a
main program which is to use it must have a header card in one
of the following forms:

FUNCTION NAME (Al, ..., AN)
FORTRANIV FUNCTION NAME (Al, ..., AN)
FORTRANII FUNCTION NAME (Al, ..., AN)

The first two forms cause the function to be compiled in the
FORTRAN IV mode, and the third form causes it to be compiled
in the FORTRAN II mode. The arguments Al, ..., AN have their
conventional FORTRAN -significance.

A FUNCTION is terminated by a single END card,

57

FORTRAN HANDLING OF BINARY SUBROUTINES

The Fortran compiler, RUN, is capable of processing previously
compiled or assembled subroutines which appear on binary cards.

If this capability is to be used, then a card with a plus sign (+)
in column 1 must immediately follow the END card of the program
to be compiled, This card, in turn, must be immediately followed
by subroutines on binary cards, The end of the binary subroutine
portion of the deck is indicated by a standard end-of-file card,

JOB238 (5,100 ,40000)

RUN .

789

PROGRAM HENRY (INPUT, OUTPUT)
(Standard Fortran coding)

END
+

(Binary subroutines)
789
(Fortran data)

6789

58

ADDITIONAL NOTES ON THE FORTRAN COMPILER

The following remarks concern certain nonstandard features of the
compiler;

1. Boolean constants in B-type statements must be changed in
some cases because of the increased word length of the 6600
or because of the use of display code as an internal code.

2, Complex arithmetic is not performed by subroutines,.

3. Double-precision arithmetic is performed on one-word
operands (allowing approximately 15 decimal digits of
accuracy), although two memory locations are allocated to
double-precision variables,

4, The notations ".T." and ".F." may be substituted for the
FORTRAN IV constants '",TRUE," and ",FALSE,'".

5. The compiler requires 30000 octal locations in memory plus
a variable-sized area for tables and the binary version of
the object program. It is recommended that arrays be
assigned to the blank COMMON region since this region is
not part of the binary version of the object program as
developed at compile time,

6. Independently compiled subroutines, or functions, may not
use more than 65,536 decimal locations in the COMMON
region or more than 65,536 decimal locations locally.

7. FORTRAN IV blank COMMON assignments are made after labeled
COMMON assignments, i.e., blank COMMON regions are located
in higher addresses than labeled COMMON regions. A labeled
COMMON region may be considered as a local region of the
program or subroutine which establishes it. Hence, data
may be entered into it by DATA statements,

8. Object-program input/output buffers are assigned to the
top of the field in which the program is to run, Blank
COMMON assignments are made to the region immediately below
the input/output buffers. Neither of these regions is
included in the binary version of a program or subroutine
which is transmitted to the disk for running or punching.

9, FORTRAN II and FORTRAN IV statements which are not inherently
incompatible may be intermixed in a program to be compiled
in either mode., Inherently incompatible statements are
those involving function subroutine references and EQUIVA-
LENCE statements causing a reordering of variables in the
COMMON region. However, any standard FORTRAN II or FORTRAN
IV library or built-in subroutine reference may appear in a
program to be compiled in either mode.

10. The statement IF(ENDFILE I)Nl,NZ, vhere 1 is a constant or
variable, may be used in a program or subroutine.

59

11,

12,

13.

14,

15.

le.

17.

18.

19.

20.

21,

22,

)

If a program is declared to be FORTRAN II, FORTRAN IV, MACHINE,

or ASCENTF, this mode is assumed for all subsequent subroutines
unless specific subroutines are declared to be of a different
mode. If a subroutine is declared to be of a different mode,

it will be processed in its declared mode, The subroutine follow-
ing it, unless again declared to be of a different mode, will be
processed in the mode applying to the main program. In other
words, after processing any subroutine the compiling mode reverts
to the one applying to the main program,

Indices in DO loops must be less than 217 in absolute value,

A BLOCK DATA subroutine is not necessary for entering data into
a labeled COMMON region, although it may be used if desired.

An O followed by at least six octal digits is interpreted as an
octal number by the compiler and is assigned a logical mode,

A two-way IF statement is allowed., For example, IF(E)N1,N2
causes branching to statement N2 only if the value of E is +0.
E may be of logical, integer, real, double, or complex mode.
If its mode is complex, the test is made on its real part,

Full mixed mode arithmetic is permitted, The mode of an arith-
metic expression is determined by the term of highest mode
appearing in the expression, where the modes, from highest to
lowest, are COMPLEX, DOUBLE, REAL, INTEGER, and LOGICAL, An
expression is of logical mode if ,NOT., .OR,, or ,AND, appears
as an operator or if it contains a single term of logical mode. In
this case,operands may be of any mode. If an operand is complex,
a logical operation is performed on its real part.

If L is a logical variable and E is an expression of any mode,
L = E causes a replacement of L by the value of E.

If V is a variable of any mode and L is a logical expression,
V = L causes a replacement of V by the value of L.

A slashf(/) in a B-type FORTRAN II statement causes a logical
difference to be formed on its associated operands.

If C is a complex variable and E is an expression of any mode
except complex, C = E causes a replacement of the real part of
C by the value of E and a replacement of the imaginary part of
C by +0.

1f V is a variable of any mode except complex and E is a complex
expression, V = E causes a replacement of V by the real part of E.

The logical operators ,NOT., .OR., or .AND. may be replaced by
.N., .0., or .A,, respectively.

60

23. A number with fewer than six digits trailed by an S and appearing as an
argument to a subroutine call is interpreted by the compiler as a
statement number; e,g.,, CALL DUMP(100S,200S,0) causes an octal dump

of the region between statements 100 and 200 of the program being
compiled,

24, All vorking regions of object programs are clear prior to execution,
except for blank COMMON regions., Blank COMMON regions are clear at
execution time if compilation is in the G mode,

61

FORTRAN HANDLING OF ASSEMBLY LANGUAGE
The Fortran compiler, RUN, is capable of processing programs or
subroutines written in assembly language. Such programs or sub-
routines may be intermixed with regular Fortran programs and
subroutines, Each must be organized as follows:
1. Header card.
2. Fortran cards, if any,
3. Declaration cards, if any,
4, Instruction cards,
5. Constant cards.
6. End card.
It is noted that
a) The instruction portion of the deck must be preceded by
"0" lines corresponding to control words, arguments, and
an exit/entry line,
b) The constant portion of the deck must be separated from
the instruction portion by a card with two periods (..)

punched in columns 7 and 8,

c) The end card is punched as in Fortran, i.e., END in columns
7-9 of a card.

d) Constants may appear in the instruction portion of the
deck provided they are positive and less than 2%

e) A card with an asterisk (*) in column 1 may appear anywhere
in the deck and is treated as a remark card.

f) A card with a period (.) in column 1 may appear anywhere

in the deck and will cause a page eject at the time the
program or subroutine is listed.

62

Header Formats:

Each program or subroutine coded in assembly language must have a
header card in one of the following formats:

MACHINE PROGRAM NAME _
MACHINE PROGRAM NAME (Al, ..., AN)
MACHINE SUBROUTINE NAME

MACHINE SUBROUTINE NAME (Al, ..., AN)

It is noted that

a) The header information must be punched between column 6
and column 73 of each card used,

b) Up to 19 continuation cards may be used in any declaration,
but an asterisk (*) must appear in column 6 of each
continuation card.

¢) 1In the forepart of the program or subroutine to be assem-
bled there must be three '"0'" lines plus one '"0" line for
each argument Al, ..., AN?

0 CONTROL WORD ONE

0 CONTROL WORD TWO
Al 0 ARGUMENT 1
AN 0 ARGUMENT N
0 EXIT/ENTRY

The first two "0" lines correspond to control information
furnished by the compiler, and the last '"0" line is unused
by a program but is the exit/entry line for a subroutine.
The first executable instruction must follow the exit/entry
line.

d) The arguments Al, ,.,, AN are treated as dummy arguments
by the compiler in that they are used only to obtain an
argument count to insert in the second control worxd.

e) If an assembly-language subroutine is to be referenced by
a Fortran program or subroutine, then the assembly-language
subroutine must be written assuming that the addresses of
the first six arguments, Al-A6, will be transmitted through
index registers Bl-B6; addresses of arguments beyond the
sixth, A7-AN,will be transmitted into the locations cor-
responding to A7-AN within the assembly-language subroutines;
a return jump will be made to the location following AN.

f) Function routines, either Fortran-coded, assembly-language
coded, or from the system's library, leave results in X6
upon exiting.

63

Fortran Formats:

Fortran statements which are allowed in an assembly-language program
or subroutine are the following:

COMMON
EQUIVALENCE
DIMENSION
EXTERNAL
DATA

Identifiers appearing in the above statements may be used in subsequent
symbolic instructions. Continuation cards must contain an asterisk (*)
in column 6,

64

Declaration Formats:

Six tag-associating declarations are allowed in assembly language,
These provide for associating alphanumeric tags with constants,
with regions reserved locally or in COMMON, and with externmal sub-
routines which are subject to reference. Examples and explanations
of these declarations follow:

1.

CON (Cl=25, C2=777B, C3=-6.54E-2)

Causes the constants on the right of the equals relations
to be assembled into a storage area and tagged with the
identifiers appearing on the left.

HOL (H1=ABCDEFGHIJ, H2=1234567890)

Causes the ten-character groups, including spaces, on the
right of the equals relations to be converted to display
code, placed into a storage area, and tagged with the
identifiers appearing on the left,

ABS (JJ=100, KK=100B, LL=7777B)

Causes the unsigned values on the right of the equals
relations to be assembled into instructions containing
the tags on the left in their address fields,

RES (K1=10, K2=100B, K3=1000)

Causes local block reservations, where the number of words
reserved in each block is the unsigned number to the right
of the equals relation and where the beginning of each
block is tagged with the identifier on the left,

COM (B1=1, B2=300, B3=205B)

Causes blank COMMON block reservations, where the number of
words reserved in each block is the unsigned number to

the right of the equals relation andwhere the beginning

of each block is tagged with the identifier on the left.
SUB (SI=SIN, LG=LOG, OUT=OUTPTC)

Causes the subroutines whose names appear on the right of

the equals relations to be assembled into memory and tagged
with the identifiers appearing on the left.

65

It is noted that

a)

b)

Each tag-associating declaration is punched between
column 6 and column 73 of each card used.

Up to 19 continuation cards may be used in any declaration,
but an asterisk (*) must appear in column 6 of each con-
tinuation card,

The open parenthesis (() following CON, HOL, ABS, RES,

COM, or SUB may be replaced by any separator if the final
closing parenthesis ()) is dropped,

66

Instruction Formats:

In the assembly language, operational registers are designated by
single-character names as follows:

S = XO 0 = BO A = AO
T = X1 I = Bl B = Al
U= X2 J = B2 C = A2
V= X3 K = B3 D = A3
W= X4 L = B4 E = A4
Y = X6 N = B6 G = A6
Z = X7 p = B7 H = A7

The letter R is used to specify a return jump, and the letter P is
used to specify all other jumps.

Let S represent any of the letters S-Z, I represent any of the
letters I-0 or the digit 0, and A represent any of the letters
A-H, Let Q represent a positive integer less than 216 or an
alphanumeric tag of 2-6 characters. Then the forms of assembly-
language instructions, grouped according to functional units
required for execution, are as follows:

Symbolic Form Machine Form Example
0 00xxx 0
=Q : 01xxK R=TAG - - - RI &
P=Q+I 02ixK P=TAGHN - - - JP Bi+&
P=Q,S=0 030jK P=TAG,T=0 - -- 2@ Xi &
P=Q,S/0 0313K P=TAG,U/0 - -~ pg
P=Q,S)0 s°7° 032jK P=TAG,V)0 - -~ QL
P=Q,S(0 s*° 033jK P=TAG,W(0 - -~ N&
P=Q,S.I 034jK P=TAG,X.I - - TR
P=Q,S.9 035jK P=TAG,Y.® --- @®
P=Q,S.D 0363jK P=TAG,Z.D --- D¥
P=Q,S.N 037jK P=TAG,S.N - -- ©9O
P=Q,I=1 041ijK P=TAG,J=K -- €@ B %) Q
P=Q,I/I 05ijK P=TAG,L/M -. W&
P=Q,I)I 06ijK P=TAG,N)P - .. <& 8. %, Q
P=Q,I(I - 07ijK P=TAG,I(0 -. LY
S=s 10ijx Y=V - -0 RXE Xy
S.L=S*S 11ijk T.L=W*X - . @x¢ X;#%Xe
S.L=S+S 12ijk V.L=Y+Z - - %% X +Xe
S.L=S-S 13ijk V.L=U-V - . | « Xj-ke
S=-8§ 14ijk Z=-W . _ _ . -¥x
S.C=8%*S 15ijk W.C=T*U . .. L= Keaxg
S.C=5+S 16ijk X.C=V+W e = Ker X
S.C=S-8§ 17ijk Y.C=S-Z N

67

&

ok

'_‘A‘K'
xsi.q

v)

=,
JURURSEI 4

Symbolic Form

Machine Form

$=5(Q)
$=S(-Q)
S=S(I)
S=S(-1I)
S,I=S-
S,I=S+

n 0
' +
LU nnom

Wonononn
w
+

nwnwm
+

;ﬁ:;ubbzz

nw’m
L]
=
-0
[]
+

S=(S+1)
S=(A+1)
S=(A-1)
S=(I+I)
S=(I-I)
I=A+Q
I=1+Q
I=5+Q
I=S+1
I=A+I
I=A-1
I=I+I
I=I-I
S=A+Q
S=1+Q
S=5+Q
S=S+1
S=A+I
S=A-1
S=I+1
S=1-I

20ijk
2113k
2217k
23ijk
24ijk
251jk
26iyk
27ijk
4313k

30ijk
3lijk
32ijk
33ijk
34ijk
351jk

361ijk
3713k

40ijk
4113k
4213k

4413k
45ijk
46xxx
471ixk

50ijK
51ijK
521K
53ijk
5413k
55ijk
56ijk
57ijk
601ijK
61ijK
621K
631ijk
641k
65ijk
661 jk
67ijk
70ijK
71ijK
72ijK
73ijk
74ijk
7513k
76ijk
77ijk

68

Example

T=T(24) - . X ik
U=U(-10) -- Ax¢ g
V=X(N) -- ot B xe
W=W(-M) .. Axs %5 %=
X,J=W- . pae 8§ Xu
Y,K=2+ — ~ 2x; @ X
Z,0=U.’ - Oit 68)(...
T=K,V. - - Pu % Xe
Y=F12 s e e
T.N=THV - - ¥x¢
U.N=X-Z - X«
V.D=VHV - Dny
W.D=S-U - Day
X.R=Y+Z - Qx;
Y.R=2-T - @y,
T.I=HX - TX
Z.1=Y-Z .TX;

S.N=X*X - -¥K
Y.R=Y*Y - . Ao RX;
T.D=T*U - - DXy

Y.N=T/X ~ ¥X
Z.R=X/W .- @x¢
$ - Nd
T=%W - QXL X

T=(C+TAG) ~ SAL
U=(J+100) - SA¢ @ +k
Z=(T+30B) - SA; ¥+
T=(T+1) _ #g.sA¢ Xy+3e

AleK

U=(B+K) - gA; A;+Ba
V=(C-N) < SA; A -8a
W=(HN) . sA! @;+%a
X=(L-K) - 3Ar % -bn
J=H+TAG - 3R Aj«k
K=L+10 -: sf¢ NHt+w
L=L1+55B .. B¢ X;+h
M=T+] . . sy X +Be
N=G+K -- s@¢ Aj+Be
p=A-L -. S Aj~$n.
I=I+T . st % +he
J=K-M -~ sb; bi by
T=G+TAG -- SK{ A‘yk
UsK+5 - - Sx¢ {j+k
V=L+15B - Sx{ ¥+
W=X+J -~ 3Sx; X+8u
X=A+K — sx; %A+
Y=C-L -. s A -be
Z=MHL . . KL DY+,
S=N-f .. Sk %3"$YL

It is noted that

a)

b)

c)

d)

e)

£)

The arithmetic mode indicators L, C, N, D, R, and I may
immediately follow a result register name, i.e., the
period (.) in these cases is optional,

TL=X*Y
Uc=v+v
VN=T/W
WD=X+Y
XR=S-T

In the instructions 02 and 50-77 either term may be
dropped, in which case a 0 designation is assembled.

P=K
P=TAG
T=(J)
J=15B
U=-K

In the instructions 50-54, 60-64, and 70-74 the terms
may be interchanged unless Q is a constant,

T=(TAG+L)
M=K+B
U=L+X

In the instructions 50-52, 60-62, and 70-72 the plus sign
(+) may be replaced by a minus sign (-) if Q is a constant,

X=(I-30)
=K-55B
Y=-1

In the instructions 51, 61, and 71 the right member may
be an indicated sum or difference of a tag and a constant,
in which case the constant must follow the tag.

W=(TAG-35)
K=TAG+1
U=TAG+100B

In the instruction 51 the parenthesized quantity may be a
constant, represented in conventional Fortran form, only
if the result register is to receive the machine version
of that constant; in this case the address of the con-
verted number is assembled into the instruction.

T=(-1.5E-6)
U=(47550516045547B)
XbeENDL X

69

g) If it is desired to have Q correspond to an octal integer,
then the digits in the number must be trailed by a B.

h) Alternate forms for certain instructions are

S=S.8 11ijk
$=5$S 1213k
S=-8.8 15ijk
=-8$S 16ijk
S=S+8§ 36ijk
S=s-8 37ijk
S=5%3 40ijk
s=s/s 441 jk
A=A+Q 501jK
A=I+Q 511K
A=S+Q 521jK
A=S+1 53ijk
A=A+I 5413k
A=A-T 55ijk
A=I+I 56ijk
A=I-1 57ijk

i) Each instruction must be punched between column 6 and column 73
of a card; no blanks are permittedwithin the instruction code.

j) A comment may follow any instruction code, but at least one
blank must separate it from the instruction.

k) An alphanumeric location tag of 2-6 characters may be punched
in columns 1-6 of a card containing an instruction; no blanks

are permitted within the tag.

1) A plus sign (+) in a location field will force the corresponding
instruction to the high order positions of a new word.

m) The instruction 00 is assembled as a full zero word.

70

Constant Formats:

Decimal constants in standard Fortran notation may be specified in
assembly-language., Octal constants may be specified by placing a
B after the digits of the number.

It is noted that

a)

b)

c)

A constant must be punched between column 6 and column 73
of a card; no blanks are permitted with the constant
specification,

-100.0
500

100B
+15.64E-3

An alphanumeric location tag of 2-6 characters may be
punched in columns 1-6 of a card containing a constant; no
blanks are permitted within the tag.

CON1 -150.0
CON2 3.6E10

Block reservations of zero words, tagged or untagged, may
be made by enclosing the number of words to be reserved in
parentheses; the parenthesized quantity must appear between
column 6 and column 73 of a card; if a location tag appears
on the same card, then it will be associated with the first
word of the block,.

BK1 (100)
BK2 (200B)

71

FORTRAN HANDLING OF AN ASCENT SUBSET

The Fortran compiler, RUN, is capable of processing programs or
subroutines written in a subset of ASCENT assembly language, Such
programs or subroutines may be intermixed with regular Fortran programs
and subroutines. Each must be organized as follows:

1. Header card.
2., Fortran cards, if any,
3. Instruction cards.
4, Constant cards,
5. End card,
It is noted that

a) The instruction portion of the deck must be preceded by lines
of coding which produce "0" words corresponding to control
words, argument words, and an exit/entry word.

b) The instruction portion of the deck may contain BSS, BSSZ,
and EQU cards. The address field of any such card may contain
only a single constant, BSS and BSSZ cards produce zero regions,

c) The constant portion of the deck may contain BSS, BSSZ, EQU,
DPC, BCD, and CON cards. The address fields of these cards
may contain only a single constant or ten-character string
of the form *ABCDEFGHIJ*, DPC and BCD character strings are
reduced to display code.

d) The constant portion of the deck must be separated from the
instruction portion by a card with two periods (..) punched
in columns 7 and 8,

e) The end card is punched as in Fortran, i.e.,, END appears
between column 6 and 73 of the card.

f) TFortran C-type comment cards are not permitted.

g) Fortran cards may contain COMMON, EQUIVALENCE, DIMENSION,
EXTERNAL, or DATA statements, Identifiers appearing in the
statements may be used in subsequent symbolic instructions.
Continuation cards must contain an asterisk (*) in column 6.

h) The header card must be in one of the following formats:
ASCENTF PROGRAM NAME
ASCENTF PROGRAM NAME (Al,,...,AN)

ASCENTF SUBROUTINE NAME
ASCENTF SUBROUTINE NAME (Al,...,AN)

72

3

k)

1)

n)

The header information must be punched between column 6 and
column 73 of each card used, Continuation cards may be used,
but must be designated by an asterisk (*) in column 6.

Instruction formats are as described in ASCENT programming
manuals, but with certain restrictions., An address field may
contain an indicated sum of a tag and constant, but not a
sum or difference of two tags., Location tags may start in
column 1, but may not extend beyond columm 6., Instructions
may start anywhere beyond column 6, but no card may contain
more than one instruction, The PS instruction causes
assembly of a full zero word,

Location tags associated with pseudo-operations may start
in column 1, but may not extend beyond colummn 6,

Double-precision and complex ''literal constants' are not
accepted,

A minus sign (-) in a location field is not allowed,
An asterisk(#*) in an address field is not allowed.

Except for the header card and the double-period card,

separating instructions from constants, upward compatibility
from the Chippewa System to SIPROS is achievable by starting
location tags of no more than five characters in column 2 and
by starting instructions and pseudo-operations in column 1l.

All other formats, except those of instructions, which have
been described for the Chippewa assembly language acceptable

to the compiler may be used; but each such usage introduces an
incompatibility between the Chippewa System and SIPROS. TIf ome
desires only to replace instruction formats of the Chippewa
assembly language by ASCENT formats, but retain all other
formats of that language, he may do so.

73

FORTRAN ERROR PRINTOUTS

During a Fortran compilation two-character error prints may
follow statements which are incorrett; other such prints may follow
the END statement, indicating other types of errors in the program.
A list of these two-character error indicators, along with a brief
explanation of the type of error which each indicates, follows:
AC Argument-Count Error

Indicates that the number of arguments in a current reference to
a subroutine differs from the number which occurred in a prior
reference,
AL Argument-List Error

Indicates a format error in a list of arguments.
AS Assign Error

Indicates a format error in an ASSIGN statement.

BC Boolean-Constant Error

Indicates a format error in the designation of a FORTRAN boolean
constant in a B-type expression,

BI Binary-Input Error

Indicates that a subroutine on binary cards following the Fortran
program and its Fortran-coded subroutines has an incorrect header card.

BO Common-Block-Overflow Error

Indicates that the current requirements for a labeled block of
COMMON storage exceed the length of the block as established in a
preceding COMMON statement,
BX Boolean-Expression Error

Indicates a format error in a B-type boolean statement.

CD Duplicate-Common Error

Indicates that a variable currently being assigned to the COMMON
region has been previously assigned to this region.

CE Common-Equivalence Error
Indicates that two variables assigned to COMMON storage are

being improperly equivalenced.

74

CL Call Error

Indicates a format error in a CALL statement.
CM Common Error

Indicates a format efror in a COMMON statement,
CN Continuation Error

Indicates that more than nineteen continuation cards appear in
succession or that one such card appears in an illogical sequence.

CO Common-Overflow Error
Indicates that the amount of COMMON storage, required by the
main program or specified to the compiler, is less than that required
by the current program or subroutine.
CT Continue Error
Indicates that a CONTINUE statement is missing a statement number.

DA Duplicate-Argument Error

Indicates that duplicate dummy arguments appear in a function-
definition statement.

DC Decimal-Constant Error

Indicates a format error in the expression of a FORTRAN decimal
constant.,

DD Duplicate-Dimension Error

Indicates that a variable currently being dimensioned has been
previously dimensioned.

DF Duplicate-Function-Name Error

Indicates that the function name in the current function-
definition statement has occurred as the name of a previously
defined function. -
DM Dimension Error

Indicates a format error in a DIMENSION statement.

DO Do Errorx

Indicates a format error in a DO statement.

75

DP Duplicate-Statement-Number Error

Indicates that the current statement number has previously
appeared in the statement-uumber field, .

DS Missing-Do-Number Error

Indicates that references have been made in DO statements to
statement numbers which did not appear somewhere in the statement-
number field of a card.
DT Data Error

Indicates a format error in a DATA statement.
EC Equivalence-Contradiction Error

Indicates that a variable currently appearing in an EQUIVALENCE
statement cannot be equivalenced because of an inherent contradiction
in the statement.

EF End-of-File Error

Indicates than end-of-file card is detected before the last
END card is encountered.

EM Exponential-Mode Error

Indicates that the mode of the base or the exponent of an
indicated exponentiation process is improper.

EQ Equivalence Error
Indicates a format error in an EQUIVALENCE statement.
EX Exponent Error

Indicates a format error in the exponent portion of an indicated
exponentiation process.

FL. Function-List Error

Indicates a format error in an EXTERNAL statement or F-type
statement.

FM Format Error

Indicates a format error in a statement whose type cannot be
determined.

FN Format-Statement-Number Error

Indicates that a FORMAT statement is missing a statement number.

76

FS Format-Specification Error

Indicates a format error in the specification portion of a FORMAT
statement,

FT Function-Type Error

Indicates a format error in a TYPE statement,
GO Go-To Error

Indicates a format error in a GO statement.
IF If Error

Indicates a format error in an IF statement,
IL Indexed-List Error

Indicates a format error in an indexed list of the current input/
output statement.

LR Library-Reference Error

Indicates that a feference has been made to a standard library
subroutine where more arguments appeared in the reference than are
provided for by the subroutine.

LN Name-List Error

Indicates a format error or a reference to an array with variable
dimensions in a NAMELIST statement,

LS List Error
Indicates a format error in an input/output list.
MA Misuse-of-Argument Error

Indicates that an argument of the SUBROUTINE or FUNCTION being
compiled has been misused in an EQUIVALENCE statement.

MC Machine-Constant Error

Indicates an gtréf in the formatting of a constant in a tag-
defining line of coding invclving the pseudo operations RES, COM,
CON, ABS, SUB, or HOL.
MD Machine-Duplicate-Tag Error

Indicates ‘that a tag appearing in a tag-defining line of coding

involving the pseudo operations RES, COM, CON, ABS, SUB, or HOL has
been previously defined,

77

MF Machine-Format Error

Indicates a format error in a tag-defining line of coding involving
the pseudo operations RES, COM, CON, ABS, SUB, or HOL,

ML, Machine-Location-Tag Error a;

Indicates that a tag appearing in an address field of a machine
instruction did not appear in a subsequent location field,

MO Memory-Overflow Error

Indicates that the compiler field length, as specified on the
job card, is too short.

MR Missing~Subroutine Error

Indicates that subroutines which are not in the standard sub-
routine library have been referenced by the Fortran program or its
Fortran-coded subroutines,
MS Missing-Statement-Number Error

Indicates that references have been made to statement numbers
which did not appear somewhere in the statement-number field of a
card,

MT Machine-Tag-Definition Error

Indicates a format error in a tag-defining line of coding involving
the pseudo operations RES, COM, CON, ABS, SUB, or HOL,

NC Name-Conflict Error

Indicates that the name of a SUBROUTINE or FUNCTION conflicts
with prior usage of the name,

NM Name Error
Indicates an error in formatting of the name (header) card.
OD Dimension-Statement-Order Error

Indicates that a reference to an array has been made prior to
the appearance of the array name in a DIMENSION statement,

PN Parentheses Error

Indicates that an unequal number of opened and closed parentheses
appear in a statement.

78

RN Return Error
Indicates a format error in a RETURN statement.
SB Subscript Error

Indicates a format error in a subscript of an array reference
currently being processed,

SE Sense Error
Indicates a format error in a SENSE statement.
SF Short-Field-Length Error

Indicates that the required field lengtﬁ of the program or sub-
routine being compiled exceeds the specified one.

SL Subroutine-Storage-Limit Error

Indicates that the compiler field length, as specified on the
job card, is exceeded at the time that standard library subroutines
are being assembled,

SM Statement-Number-Field Error

Indicates a format error in the statement-number field of the
current statement,

SN Statement-Number Error

Indicates a format error in a position where a statement number
should appear, .

SY System Error

Indicates a machine malfunction,
T™ Too-Many-Arguments Error

Indicates that a subroutine reference has more than sixty argu-
ments or that the program or subroutine being compiled has more
than sixty arguments.
TY Type Error

Indicates & format error in a TYPE statement,
UA Unidentified-Array Error

Indicates that a reference has been made to an array where the

array name has not previously appeared in a DIMENSION statement,

79

UE Unidentified-Equipment Error

Indicates a reference to an input/output file which was not
listed in the header card of the main program.

US Unreferenced-Binary-Subroutine Error

Indicates that a subroutine on binary cards following the
Fortran program and its Fortran-coded subroutines has not been
referenced,

VC Variable-Name-Conflict Error

Indicates that a variable name appears which conflicts with
some other prior usage,

VD Variable-Dimensioned-Array Error

Indicates that an array whose dimensions are arguments to the
SUBROUTINE or FUNCTION being compiled has been misused.

VN Variable-Name Error

Indicates an error in a variable name appearing in the current
statement,

XF Expression-Format Error

Indicates a format error in the expression currently being
processed.

XM Expression-Mode Error

Indicates that an expression currently being processed is omne
in which modes are mixed.

80

Error Messages Entered into Dayfile

The following error statements may be entered into the dayfile
during execution of a FORTRAN program, or a machine language
program using the FORTRAN subroutines,

After‘each_message the program is aborted.

Origin

INPUTC - data input subroutine.

INP(FN) FN is the number of the format statement
being executed at time of error.

END OF FILE, DATA INPUT , Attempt made to read past
file mark,

OUTPTC - data output subroutine,
BCD OUTPUT ** UNASSIGNED MEDIUM ., Failure to specify
. a file name during

compilation,

NO DEC, PT INE OR F , No significance specified
in E or F conversion,

EXCEEDED RECORD LENGTH , More than 150 characters
have been entered as a
record,

ILLEGAL FUNCTIONAL LETTER , 1Illegal format letter.

PAREN, LEVEL N(N(. Format has parenthetical
group within a parenthetical

group.

For OUTPTC messages, the format number is
entered in the line following the message.

INPUTB - binary input.

BIN INPUT *%* UNASSIGNED MEDIUM,
OUTPTB - binary output,

BIN OUTPUT *%* UNASSIGNED MEDIUM,
ENDFIL - write end of file.

EOF #** UNASSIGNED MEDIUM,

81

CPUASM

The Central Processor Assembler provides a language for writing
programs and subroutines that fhay be executed independently or as
a FORTRAN subroutine., The basic features of the language were
originally described in Volume I ASCENT of CONTROL DATA® 6600
Programming System/Reference Manual.

Assemblies are initiated by calling for CPUASM from the systems
library. Punch, list, and execute options are parameters to
CPUASM. The binary version is always transferred to the disk file
regardless of option parameters or assembly errors, P, L, and X
are the three parameters to the assembler:

P - punch binary cards,
L - list side by side,

X - execute program,

Example of program to be assembled:

JOB,5,3,30000.

CPUASM(L, X, P)

7,8,9

PROGRAM NAME
STATEMENTS

END

6,7,8,9

If the execute option (X) is deleted, the progrsm may still be
called by referencing the program via the control card following
the assembly, '

82

Symbols:

Symbols may be any arrangement of characters up to 10
characters in length. A symbol must begin with an alphabetic
letter and must not contain any separators, The special
characters used as separators are + , - / * = $ and SPACE,
Symbols used in address fields may be signed + or - allowing
them to be added to one another or to a constant,

Constants:

Constants may be either octal or decimal fixed point integers
= 260.1, a symbolic address or a single precision floating
point number, Integers are assumed to be decimal unless
appended by the letter B. Floating point numbers must have a
decimal point and may optionally be followed by an exponent
E+N.

Field definitions:

The location field starts in column 2 and may be 1-10 char-
acters in length, If a location tag is present the operation
code must be separated from it by a space code or must not
start prior to column 7 if no location tag is present,

The address field is variable in length and is separated from
the operation code. 1In general, the address field may be any
combination of terms, integer and/or symbolic, as long as the
constant field for the instruction is not exceeded. Terms in
address fields may also be a combination of 1 or 2 A, B, or X
registers; if only 1 term is present Bo is assumed as the
second term,

83

Pseudo Operation Codes.

PROGRAM: Defines the job to be a program; the symbol in
the address field is the name of the program as
referenced by the system,

SUBROUTINE: Defines the job to be a subroutine and sets
relocatable bits for later use by the FORTRAN
compiler or machine program. The symbol in the
address field is the name used to reference the

subroutine.
END: Last card of a program or subroutine,
BSS: Address field defines the length of the block

reservation., Address field may be integer
constant or symbolic constant.

EQU: Equivalences a symbol to another symbol or a
constant,

DPC: Allows the entry of console display codes, the
length being specified by a 2 digit integer, or
the codes between *'s are entered, '

BCD: Converts the characters 2snclosed by the asterisks
or converts the characters specified by the
beginning 2 digit integer.

CON: Converts each term to a 60 bit constant,
EJECT: Ejects the listing to the top of the next page.
SPACE: - Spaces the number of lines specified by the

address field.

84

OPERATION CODES

OP MNEMONIC ADDRESS REMARKS
: «Branch unit
00 PS .Program stop
01 RJ K .Return jump to K
02 Jp Bi+ K .Jump to Bit+K
030 ZR Xi K .Jump to K if Xi=0
031 Nz Xi K .Jump to K if Xi#0
032 PL Xi K .Jump to K if Xi=plus (positive)
033 NG Xi K .Jump to K 1f Xi=negative
034 IR Xi K .Jump to K if Xi is in range
035 OR Xi K .Jump to K if Xi is out of range
036 - DF Xi K .Jump to K if Xi is definite
037 ID Xi K . +Jump to K if Xi is indefinite
04 EQ BiBjK .Jump to K if Bi=Bj
04 ZR Bi K .Jump to K if Bi=B0
05 NE BiBjK - .Jump to K if Bi#Bj
05 NZ Bi K .Jump to K if Bi#BO
06 GE BiBjK .Jump to K if Bi2Bj
06 PL Bi K .Jump to K if Bi2BO
07 LT BiBjK .Jump to K if Bi<Bj
07 N6 = BL K .Jump to K if Bi<BO
.Boolean Unit
10 BXi Xj .Transmit Xj to Xi
11 BXi Xj*Xk .Logical Product of Xj & Xk to Xi
12 BXi Xj+Xk .Logical sum of Xj & Xk to Xi
13 BXi Xj-Xk .Logical difference of Xj & Xk to Xi
14 BXi -Xk .Transmit the comp. of Xj to Xi
15 BXi -Xk*Xj .Logical product of Xj & Xk comp. to Xi
16 BXi ~Xk+Xj .Logical sum of Xj & Xk comp. to Xi
17 BXi =-Xk=-Xj .Logical difference of Xj & Xk comp. to Xi
.Shift Unit
20 LX1 jk .Left shift Xi,jk places
21 AXi jk .Arithmetic right shift Xi,jk places
22 LXi Bj,Xk .Left shift Xi nominally Bi places
23 AXi Bj,Xk .Arithmetic right shift Xi nominally Bi places
24 NXi Bj Xk .Normalize Xk in Xi and Bj
25 ZXi Bj Xk .Round and normalize Xk in Xi and Bj
26 UXi Bj Xk .Unpack Xk to Xi and Bj
27 PX1 Bj Xk .Pack Xi from Xk and Bj
43 MX1i jk .Form mask in Xi,jk bits
‘ .Add Unit
30 FXi Xj+Xk .Floating sum of Xj and Xk to Xi
31 FXi Xj-Xk .Floating difference Xj and Xk to Xi
32 - DXi Xj+HXk .Floating DP sum of Xj and Xk to Xi
33 DXi Xj-Xk .Floating DP difference of Xj and Xk to Xi

34 RX{ Xj+Xk .Round floating sum of Xj and Xk to Xi

85

36
37

40
41
42

44
45
46
47

50
50
51
51
52
52
53
54
55
56
57
60
60
61
61
62

2]
A

63
64
65
66
67
70
70
71
71
72
72
73
74
75
76
77

MNEMONIC ADDRESS
RXi Xj-Xk
IXi Xj+Xk
IXi Xj-Xk
FXi Xj*Xk
RXi Xj*Xk
DXi Xj*Xk
FXi Xj/Xk
RXi Xj/Xk
NO
CXi Xj
SAi Aj+K
SAi Aj-K
SAi Bj+K
SAi Bj-K
SAi Xj+K
SAi Xj-K
SAi Xj+Bk ,
SAi Aj+Bk
SAi Aj-Bk
SAi Bj+Bk
SAi Bj-Bk
SBi Aj+K
SBi Aj-K
SBi Bj+K
SBi~ Bj-K
SBi Xj+K
SBi Xj-K
SBi Xj+Bk
SBi Aj+Bk
SBi Aj-Bk
SBi Bj+Bk
SBi Bj-Bk
SXi Aj+K
SXi Aj-K
SXi Bj+K
SXi Bj-K
SXi Xj+K
SXi Xj-K
SXi Xj+Bk
SXi Aj+Bk
SXi Aj-Bk
SXi Bj+Bk
SXi Bj-Bk

REMARKS

.Round floating difference of Xj and Xk to Xi

.Long Add Unit

.Integer sum of Xj and Xk to Xi
.Integer difference of Xj and Xk to Xi

+Multiply Unit

.Floating product of Xj and Xk to Xi
«Round floating product of Xj & Xk to Xi
.Floating DP product of Xj & Xk to Xi

.Divide Unit

.Floating divide Xj by Xk to Xi
.Round floating divide Xj by Xk to Xi

.No operation

.Count the
.Increment
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Ai to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Bi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to
.Set Xi to

86

number of 1's in Xj to Xi

Unit
Aj+K

Aj+ comp,
Bj+K

Bj+ comp.
Xj+K

Xj+ comp,
Xj+Bk
Aj+Bk
Aj-Bk
Bj+Bk
Bj-Bk
Aj+K

Aj+ comp,
Bj+K

Bj+ comp.
Xj+K

Xj+ comp.
Xj+Bk
Aj+Bk
Aj-Bk
Bj+Bk
Bj-Bk
Aj+K

Aj+ comp.
Bj+K

Bj+ comp.
Xj+K

Xj+ comp.
Xj+Bk
Aj+Bk
Aj-Bk
Bj+Bk
Bj-Bk

of

of

of

of

of

of

of

of

of

K

K

K

Error Codes,

The following error codes may appear on the side by side listing:

oRR-HOCONW

Location symbol has previously been defined,

Symbol in address field is undefined.

Constant out of range or contains illegal codes.
Instruction field not legal.

Symbol in address field is multiply defined.

Address field does not correspond to any valid instruction,

87

PAS
PERTPHERAL ASSEMBLY LANGUAGE

This assembler is a PPU program which converts PPU gsymbolic language

into PPU absolute language.

The assembler produces a side by side listing and bihary cards. Punch-
ing of cards is suppressed if an error has been detected in the assembled
nrogram. The binary cards punched may be either 80-column binary cards or
Chippewa Laboratory standard binary card format, i.e.: Columns 1 and 2 con-
tain a binary card identifier (7-9 punch), number of 60-bit words on the card
(1510 ma#imum) and a card check sum. Column 80 i{s a card sequence number.,

To punch Chippewa Laboratory binary cards, the job cards are:

Job (1, 100, 1000)

PAS

789

Program Deck
6789

To ounch standard 80-column binary cards, the job cards are:
Job (1, 100, 1000)
PA3, 1000
789
Program Deck
6789
There is no provision for leaving a running version of the assembled

program in the computer. The assembled program is available as a card deck

and/or a line printer listing.

CARD FORMAT:

Card format for this assembler is fixed field except for the remarks
card which may be one of two variations.

(1) Pseudo op "REM" which must appear in the OP field (Cols. 6-7-8) is
free fielded thereafter and

(2) * in Column 1, and free fielded thereafter.

88

The other exception is the "DIS" pseudo op which converts all characters

following DIS to display code.

The standard format then, used in all other instances, is as follows:

Col. 1<4 = Location field. Maximum of 4 alpha-numeric characters.

Col. 5 = Blank.

Col. 6-8 = Op field. Three character mnemonic (See Table 1).

Col. 9 = Blank.

Col. 10-13 = Tapg field. Maximum of 4 alpha-numeric characters.
There are no provisions for adding a constant to or
subtracting a constant from a tag.

Col. 14-19 = Blank.

Col. 20-80 = Comments.

CONSTANTS:

Numeric constants used in a program will be placed in Columns 10-13
and are considered to be octal. They therefore have a range of 0000 to
7777 in a two address instruction or a range of 00 to 77 in a one address
instruction. All constants are right adjusted by the assembler.

Constants may also be in the form of a tag; however, the converted

value must also follow the rules for one and two address instructions.

OP CODES AND PSEUDO OPS:

These are defined in Table 1.

ERROR FLAGS:
There are several errors which will be detected by the assembler and

shown as a 1 character/error tag in the left margin of the assembled listing.

= Illegal Op code.

Undefined tag has been referenced.

Location tag used more than once.

R < S~ A
i

= Range error. d portion is greater than 77 or on a jump
instruction (03-07) location tag is found to be more than
374 forward or backward.

89

TABLE 1.

Op Codes

MNEMONIC OP CODES AND PSEUDO OPS

Mnemonic &

Octal

LIM
RIM
UJN
i ZJN
i NJN
PJIN
MJIN
i SHN
. LMN
: LPN

SCN
. LDN
i LCN
. ADN
SBN

LDC
ADC
LPC

(PSN
PSN

EXN
RPN

LDD
ADD
SBD
MD
STD
RAD
AOD
SOD

LDI
ADI
SBI

PSN

Code
00

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

20
21
22
23

24
25

26
27

30
31
32
33
34
35
36
37

40
41
42

Name

Pass

Long jump to m + (d)
Return jump to m + (d)
Unconditional jump d
Zero jump d

Nonzero jump d

Plus jump d

Minus jump d

Shift d

Logical difference d
Logical product d
Selective clear d
Load d

Load complement d
Add d

Subtract d

Load dm

Add dm

Logical product dm
Logical difference dm

Pass
Pass

Exchange jump
Read program address

Load (d)

Add (d)

Subtract (d)

Logical difference (d)
Store (d)

Replace add (d)
Replace add ome (d)

Replace subtract one (d)

Load ((d))
Add ((d))
Subtract ((d))

IMI

STI
RAT
AOI
S0I1

LDM
ADM
SBM
MM
STM
RAM
AOM

SOM

CRD
CRM

CWD
CWwM
AIM
IJM
FIM
EIM
IAN
OAN
OAM
ACN
DCN

FAN
FNC

Mnemonic &
Octal Code

Name

43

44
45
46
47

50
51
52
53
54
55
56
57

60
61

62
63
64
65
66
67

70
71

72
73

74
75
76
77

Logical difference ((d))

Store ((d))

Replace add ((d))

Replace add one ((d))
Replace subtract one ((d))

Load (m + (d))
Add (m + (d))
Subtract (m + (d))

Logical Difference (m + (d))

Store (m + (d))

Replace add (m + (d))
Replace add one (m + (d))
Replace

Central read from (A) to d
Central read (d) words

from (A) tom
Central write to (A) from d
Central write (d) words

to (A) from m

Jump to m if
channel d active
Jump to m if
channel d inactive
Jump to m if
channel d full
Jump to m if
channel d empty
Input to A from channel d
Input (A) words to m
from channel d
Output from A on channel d
Output (A) words from m on
channel d
Activate channel d
Disconnect channel d
Function (A) on channel d
Function m on channel d

subtract one (m + (d)

|
|

90

" TABLE 1, (cont.)

Pseudo Ops

IDT = Name of program.

#RG = Beginning location of assembled program, Will be set to 1000
if no PRG specified.

SBL = Set beginning address of binary punch out,
BLR = Block locations reserve,

'REM = Remarks card., * in Column 1 is also a remarks card.

- EQU = Equates a tag to a numeric constant or a pre-defined location tag.

DIS = Converts the remaining characters to display code and packs them

2 to a word., Word following packed display code is all zeros.

" END = Defines the last card of the deck to be assembled.

91

PERIPH
PERIPHERAL ASSEMBLY LANGUAGE

PERIPH is identical to PAS except that it is run by the CPU rather

than a PPU.

92

Card Image Records' - Second File Library Tape

The following routines are listed in card image form in the
second file on the library tape. Each routine is entered as one
record,

(00) Loader (34) PBC (68) TIME
(01) DSD (35) BKSP (69) COPYSBF
(02) MIR (36) copy (70) RANF
(03) CR (37) COPYBF (71) -
(04) 1AJ (38) COPYBR (72) -
(05) 1BJ (39) COPYCF (73) -
(06) 1DJ (40) COPYCR (74) -
(07) 1LJ (41) REWIND (75) -
(08) 1LT (42) VERIFY (76) -
(09) 171D . (43) APRAB (77) XLOCF
(10) 2BD (44) ALOG (78) INPUTB
(11) 2BP (45) ALOG10 (79) INPUTC
(12) 2BT (46) ATAN (80) OUTPTB
(13) 2DF (47) cos (81) OUTPTC
(14) 2DT (48) DVCHK (82) ENDFIL
(15) 2EF (49) END (83) REWINM
(16) 2LP (50) EXIT (84) BACKSP
(17) 2pc (51) EXp (85) DISPLA
(18) 2RC (52) IBAIEX (86) 007
(19) 2RD (53) IFENDF (87) RUN
(20) 2RT (54) OVERFL

(21) 28D (55) PAUSE

(22) 213 (56) RBAIEX

(23) 2TS (57) RBAREX

(24) 2wp (58) REMARK

(25) 2wt (59) SIN

(26) cI10 (60) SQRT

(27) CLL (61) SLITE

(28) DIS (62) SLITET

(29) DMP (63) SSWTCH

(30) EXU (64) START

(31) LBC (65) STOP

(32) 1LoC (66) TAN

(33) Msc (67) TANH

93

APPENDIX A

CHIPPEWA OPERATING SYSTEM FLOW CHARTS

BeGIN CIO

BUFFER CONTROL ADDRESS
IN INPUT REGISTER OF PPU

CALL 2BP

OVERLAY

VERIFY ARGUMENTS
READ BUFFER STATUS
RESERVE FiLE

YES]
[IS A READ FUNCTION REQUESTED ? J——-—-—-‘————él CIO READ FUNCTION 1

NO

YES
I Is A WRITE FUNCTION REQUESTED ?]——){ CIO WRITE FUNCTION }

NO

YES YES
[JZS A BACKSPACE FUNCTION REQUESTED ?]——————{ 18 FILE A DISK FiLE ? J———a

NO

NO
_l IS FILE A D!

ISK FILE ?

YES

{

i RESET FILE STATUS FOR REWIND

L

NO

CALL 2BD OVERLAY
BACKSPACE DISK

IS FILE A TAPE UNIT 2

I YES

NO

CALL 2BT OVERLAY
BACKSPACE TAPE

—9{ IS FILE A TAPE UNIT ? |

1.NO

YES

CALL 2RT OVERLAY
REWIND TAPE

SET READ MODE
SET IN = OUT = FIRST

—

SET READ MOOE I(———

RELEASE FILE
STORE BUFFER STATUS

I RECALL CPU |

I RELEASE PPU |

[ENTER CIO READ FUNCTION

-] NO
| IS FILE A DISK FILE ? [

YES

" NO
——IJAS FILE BEEN USED ?

YES

CALL 2RD OVERLAY
READ. DISK DATA

I EXIT l
'—‘9| SET FILE MARK I
I EXIT l

CALL 2RC OVERLAY
READ CARDS
ExiT

SET FILE MARK

5] . |LYES
> IS FILE A CARD READER ? |
NO
NO
I IS FILE A TAPE UNIT ? F

YES

IS MODE

CALL 2RT overLay | NO

EXiT

BINARY ?

YES

S|
“1

IS TAPE TYPE MT ?]

NO YES

[READ BINARY TAPE }‘(‘

A-2

ExIt ke

Jl READ BCD TAPE |

ENTER CIO WRITE Funcnon—l

"o ' CALL 2PC OVERLAY
l IS FILE A DISK FILE ? JI ,lr IS FILE A CARD PUNCH P }ﬁ__) PUNCH CARDS
YES "o EXiT

NO
HAS FILE BEEN USED ?

YES ES CALL 2LP OVERLAY
[IS FILE A LINE PRINTER ?—I-——) PRINT DATA
NO EXIT

WAS LAST USE IN WRITE | YES
MODE ?

NO o

N
Is FILE A TAPE UNIT ?

YES

CaLL 20T OVERLAY,
DROP DISK TRACKS.

CALL 2WT OVERLAY NO
IS A FILE MARK REQUESTED ?
YES
———9! IS A FILE MARK REQUESTED ? |
YES No NO

WAS LAST RECORD COMPLETED 2

YES

NO
I WAS LAST RECORD COMPLETED ? I'—"——
YES

NO
—-—-I IS THERE DATA (N THE BUFFER ?
YES

NO
—L Is THERE DATA IN THE BUFFER ? I

YES

I IS TAPE TYPE MT p [€

YES NO

CALL 2WD OveRLAY
WRITE DISK DATA

I IS MODE BINARY ? }L—%l WRITE BINARY DATA I

NO

WRITE BCD DATA

El Is A FILE MARK REQUESTED ?

o YES

"

| WRITE FILE MARK l

ENTER 28P OVERLAY |

READ BUFFER STATUS
READ BUFFER ARGUMENTS

NO ﬁ'
bs ARGUMENT REGION IN RANGE ? %

YES

YES
I 1s LIMIT over FieLo LEneTH 7 [~— D

NO

Is OUT EQUAL OR GREATER THAN LIMIT 7 I—Y—Esi 3

NO \;
4

| YES A DAYFILE MESSAGE—BUFFER ARG ERROR ?,
IS IN EQUAL OR GREATER THAN LIMIT ? I ABORT CONTROL POINT
NO) RELEASE PPU

l IS OUT LESS THAN FIRST 2 |VES____ {

NO

lis IN LESS THAN FIRST ? Iﬁ——— ‘P
NO
®
./\

l IS FILE NAME IN VALID FORMAT ? ’L——

YES

REQUEST CHANNEL 14
YES | Is FILE RESERVED ?

IS FILE NAME IN FILE NAME TABLE (FNT) ?]YES— NO

NO

RESERVE FILE.
RELEASE CHANNEL 14

YES | REQUEST CHANNEL [5

IS THERE A BLANK ENTRY IN FNT 2
NO

l EXIT l

RELEASE CHANNEL {5
DAYFILE MESSAGE—FNT LIMIT.
ABORT CONTROL POINT
RELEASE PPU

RELEASE CHANNEL |4
PAUSE FOR MONITOR NO
READ RA

IS ERROR FLAG SET ?

ENTER NAME IN FNT AND ENTER YES
A NEW DISK FILE IN FST

RELEASE CHANNEL |5

@ | RELEASE PPU I

l ENTER 2RC OVERLATI

[IS END OF JoB

FLAG SET 2?2 }—YES—)

NO

CLEAR END OF JOB FLAG
SET FILE MARK
EXIT

MODIFY OVERLAY
PARAME TERS

FOR EQUIPMENT

NO

WORDS OF INPUT DATA ?

DOES BUFFER HAVE ROOM FOR 15 | NO

YES

r REQUEST CHANNEL

READ EQUIPMENT STATUS.
IS CARD READER READY ?

FOR CARD READER
NO

= ExiT l

RELEASE CHANNEL

YES

READ ONE CARD
RELEASE CHANNEL

ADVANCE CARD COUNT IN FILE STATUS
IS 789 PUNCHED IN COLUMN ONE ?

NO [YES

CONSOLE MESSAGE—READER NOT READY

PAUSE FOR MONITOR
READ RA YES
IS ERROR FLAG SET 2
NO
REQUEST CHANNEL
NO

READ EQUIPMENT STATUS

RELEASE PPU

IS CARD READER READY ?

YES

HCLEAR CONSOLE MESSAGE

5|

IS 6789 PUNCHED IN COLUMN ONE ? |NL

l IS 79 PUNCHED IN COLUMN ONE ? YES PROCESS BINARY CARD I

NO

[PROCESS HOLLERITH CARD]

UPDATE IN ADDRESS IN CENTRAL STORAGE

PAUSE FOR MONITOR
READ RA
IS ERROR FLAG SET ?

YES

RELEASE PPU

YES

I WAS LAST RECORD COMPLETE ?]ﬁ

YES

-Y—ES% 1S BUFFER EMPTY ?J

NO

I SET END OF JOB FLAG }%J

SET END OF RECORD

CLEAR CARD COUNT
ExiT

SET FILE MARK
CLEAR CARD COUNT

EXIT

2RC PROCESS BINARY CARD |

DETERMINE NUMBER OF SIGNIFICANT
COLUMNS FROM WORD COUNT IN COLUMN ONE

YES
I IS THERE A CORRECTION PUNCH IN COLUMN ONE ? {

NO

CLEAR CHECK SUM
SET COLUMN INDEX TO COLUMN 2

ADD COLUMN TO CHECK SUM MODULO 4095 Ib

ADVANCE COLUMN INDEX NO
WAS THIS THE LAST SIGNIFICANT COLUMN ?
YES
| vES COPY SIGNIFICANT WORDS TO CIRCULAR BUFFER
[IS CHECK SUM ZERO 7 | ADVANCE CIRCULAR BUFFER IN ADDRESS BY
NO WORD COUNT

CONSOLE MESSAGE — BINARY CARD ERROR
DELAY 4 SECONDS I EXiT |
REQUEST CHANNEL FOR CARD READER

READ STATUS

RELEASE CHANNEL
IS CARD READER READY 2

YES NO

PAUSE FOR MONITOR | EXIT I

READER RA- *
IS ERROR FLAG SET?
YES NO

I RELEASE PPU |

¥ THIS PATH PROVIDES AN OPPORTUNITY FOR THE OPERATOR TO REREAD THE FAULTY CARD

| 2RC PROCESS HOLLERITH CARD I (a)

SENSE TRAILING SPACES AND DETERMINE IS THIS FIRST CHARACTER IN BYTE r‘NO___
LAST SIGNIFICANT COLUMN YES

TABLE LOOKUP FOR DISPLAY CODE

STORE CHARACTER IN UPPER HALF OF BYTE
ADVANCE COLUMN INDEX

WAS THIS THE LAST SIGNIFICANT COLUMN ?

YES

I SET COLUMN INDEX TO FIRST COLUMN I NO

I CLEAR WORD BUFFER]

STORE WORD IN CIRCULAR BUFFER

N
ADVANCE CIRCULAR BUFFER IN ADDRESS 0
| SET BYTE INDEX TO FIRST BYTE I DID THIS WORD HAVE DATA IN LAST BYTE ?
YES
| CLEAR CHARACTER BUFFER I STORE CLEARED WORD IN CIRCULAR BUFFER

ADVANCE CIRCULAR BUFFER IN ADDRESS

NO
—-l IS ROW {2 PUNCHED ?1
- A

I ADD 60B TO CHARACTER]—

TABLE LOOKUP FOR DISPLAY CODE
YES ADD CHARACTER IN LOWER HALF OF BYTE
ADVANCE COLUMN INDEX

NO/I 1S ROW 1] PUNCHED ? I WAS THIS THE LAST SIGNIFICANT COLUMN ?
YES NO
[ADD 40B TO CHARACTER }___ NO [ADVANCE BYTE INDEX
WAS THIS THE LAST BYTE IN WORD ?
YES
NOEl 1S ROW O PUNCHED ? I

STORE WORD IN CIRCULAR BUFFER
CLEAR WORD BUFFER

SET BYTE INDEX TO FIRST BYTE

l ADD 20B TO CHARACTER ADVANCE .CIRCULAR BUFFER IN ADDRESS

l /
sy

%‘ IS ROW | PUNCHED 2

YES

ADD | TO CHARACTER l———‘

NO
YES
l IS ROW 2 PUNCHED ? HADD 2 TO CHARACTER l—'—
No YES
“‘“9'713 ROW 8 PUNCHED ?H ADD {0B TO CHARACTER l—
YES No
{ 15 mow 3 puncep 7 >3] AbD 3 To cHARACTER —
NO
| 1s row 4 puncrep » |YE5 5 aob 4 To camacTER |——
NO
[1S ROW 5 PUNCHED ? ‘}—Y—Es'—al ADD 5 TO CHARACTER l——! I 1S ROW 9 PUNCHED ? lﬁﬂ ADD IIB TO CHARACTER]
NO NO
[IS ROW 6 PUNCHED 2 }% ADD 6 TO CHARACTER }——
TNo
l IS ROW 7 PUNCHED 2 l_Y_Es___>‘ ADD 7 TO CHARACTER l——
NO
[1s row 8 puncrep ?—|-£5——>| ADD 0B TO CHARACTER | ——
No
. A-7
YE)
I IS ROW 9 PUNCHED ? S ADD IIB TO CHARACTEﬂ'—

ENTER 2RD OVERLAY
DiSK FILE READ

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

COMPUTE NUMBER OF SECTORS

WHICH CAN BE LOADED INTO THE
CIRCULAR BUFFER.
1S NUMBER OF SECTORS ZERO P

YES

NO

HAS THIS FILE BEEN USED BEFORE ? 1“—% z::‘_ FILE MARK

YES

REQUEST CHANNE
POSITION DISK TO PROPER TRACK

L FOR DISK FiLE

l

READ ONE SECTOR

7"' EXiT I

READ DISK STATUS
Is PARITY OK ?

YES

[IS CONTROL BYTE A NEW TRACK NUMBER ? 1<

le

REREAD SECTOR
READ DISK STATUS
IS PARITY OK ?

YES

SELECT MARGIN |
REREAD SECTOR
READ DISK STATUS
IS PARITY OK ?

NO

YES

SELECT MARGIN 2
REREAD SECTOR
READ DISK STATUS
IS PARITY OK 7

YES NO

YES

rPOSITION DISK TO NEW TRACK I

NO

rADVANCE FILE STATUS FOR NEXT SECTOR |

ADVANCE

BUFFER IN ADDRESS

STORE SECTOR DATA IN CIRCULAR BUFFER

IS THIS SECTOR A SHORT SECTOR ?

YES

NO

YES 1S THERE ROOM FOR
DATA IN THE CIRCULAR BUFFER ?

ANOTHER SECTOR OF

NO

SET END OF RECOROD
RELEASE CHANNEL

l RELEASE CHANNEL ’l

UPDATE CIRCULAR BUFFER IN ADDRESS
1S DISK AT FILE WARK ?

YES

| SET FILE MARK }—-——9‘ EXiT I

NO

DAYFILE MESSAGE ~
DISK PARITY ERROR
GX TXXX SXXX
SToP

ENTER 2RT OVERLAY
BINARY TAPE READ

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

IS THERE ROOM IN

BUFFER FOR A FULL BLOCK OF DATA ?

THE CIRCULAR NO

YES

REQUEST CHANNEL FOR TAPE UNIT | NO

Is TAPE

READ TAPE STATUS

NO

>I| ExiT I

READY ?

YES

CONSOLE MESSAGE—TAPE XX NOT READY
RELEASE CHANNEL

YES
PAUSE FOR MONITOR

READ RA
IS ERROR FLAG SET 2

3{ RELEASE PPU |

YES

CLEAR CONSOLE MESSAGE NO
READ ONE BLOCK OF TAPE (ODD PARITY)
1S LENGTH AN ODD FRACTION OF WORD ?
YES
YES I |s LENGTH LESS THAN 4 BYTES ? J
NO
SET FILE MARK
READ TAPE STATUS ADVANCE BLOCK COUNT
WAS FILE MARK READ p | YES RELEASE CHANNEL
NO EXIT
1S PARITY CHECK OK 7] YES ADVANCE BLOCK COUNT [>(:)
| RELEASE CHANNEL
NO
DAYFILE MESSAGE —
I HAS BLOCK BEEN READ 3 TIMES ? YES TAPE XX PARITY ERROR
RELEASE CHANNEL
NO SET PAUSE BIT IN (RA)
—{ BACKSPACE TAPE ONE BLOCK]
PAUSE FOR MONITOR NO HAS PAUSE BIT BEEN CLEARED IN (RA) ? |
READ RA NOJ
IS ERROR FLAG SET ?
YES
I RELEASE PPU I
NO STORE DATA IN CIRCULAR BUFFER
UPDATE BUFFER IN ADDRESS YES SET END OF RECORD
WAS BLOCK A SHORT BLOCK ? EXIT

ENTER 2RT OVERLAY
BCD TAPE READ

MODIFY QVERLAY FOR
EQUIPMENT PARAMETERS

L REQUEST CHANNEL FOR TAPE UNIT I < NO

() READ TAPE STATUS
IS TAPE UNIT READY ?

NO

YES

CLEAR CONSOLE MESSAGE

READ ONE TAPE BLOCK (EVEN PARITY)

YES

CONSOLE MESSAGE~TAPE XX NOT READY

RELEASE CHANNEL
PAUSE FOR MONITOR
READ RA

IS ERROR FLAG SET ?

YES RELEASE PPU

SET FILE MARK

WAS A FILE MARK READ ?
' NO

YES [

WAS BLOCK LENGTH

LESS THAN 6 BYTES ?

NO

L WAS PARITY CHECK OK P

YES

DETERMINE NUMBER OF
SIGNIFICANT CHARACTERS IN

DATA ELIMINATING TRAILING SPACES

CONVERT CHARACTERS TO DISPLAY

CODE BY TABLE LOOKUP

COPY DATA INTO CIRCULAR BUFFER

TO A BLANK LOWEST BYTE

UPDATE BUFFER IN ADDRESS
ADVANCE BLOCK COUNT
RELEASE CHANNEL

ExiT

RELEASE CHANNEL
ExiT

ADVANCE BLOCK COUNT

.}Lﬂ HAS BLOCK BEEN READ 3 TIMES P ILYES

NO

L BACKSPACE TAPE ONE BLOCK I

DAYFILE MESSAGE — TAPE XX PARITY ERROR
RELEASE GHANNEL
SET PAUSE BIT IN (RA)

dit HAS PAUSE BIT BEEN CLEARED IN (RA) 2

NO
|<———— PAUSE FOR MONITOR

NO -

READ RA

Is ERROR FLAG SET 7
YES

l RELEASE PPU I

ENTER 2RT OVERLAY
REWIND TAPE

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

REQUEST CHANNEL FOR TAPE UNIT I NO

CONSOLE MESSAGE—TAPE XX NOT READY
RELEASE CHANNEL

PAUSE FOR MONITOR YES RELEASE PPU

READ RA
NO IS ERROR FLAG SET ?

READ TAPE UNIT STATUS
IS TAPE UNIT READY ?

YES

l IS UNLOAD REQUESTED ? ‘
NO YES

rREWIND 1 l REWIND UNLOAD |

RELEASE CHANNEL
CLEAR BLOCK COUNT
ExiT

A-l

ENTER 2WD OVERLAY
WRITE DISK FILE

MODIFY OVERLAY FOR EQUIPMENT PARAMETERS

I REQUEST CHANNEL FOR DISK FILE I

l HAS THIS FILE BEEN USED BEFORE ? |N°—>

YES

REQUEST A NEW TRACK FROM MONITOR

IS A TRACK AVAILABLE ?
YES

POSITION DISK TO PROPER TRACK
REQUEST A NEW TRACK FROM MONITOR

NO

IS A TRACK AVAILABLE ?
YES

DAYFILE MESSAGE—DISK X TRACK LIMIT
WRITE END OF FILE SECTOR

RELEASE CHANNEL

ABORT CONTROL POINT

RELEASE PPU

IS THERE ENOUGH DATA IN THE CIRCULAR

NO

BUFFER FOR A FULL SECTOR ?

]

IS AN END RECORD FUNCTION REQUESTED 2

DAYFILE MESSAGE~DISK X TRACK LIMIT

NO
RELEASE CHANNEL
ABORT CONTROL POINT
RELEASE PPU

1 NO

]

YES

WRITE SECTOR ON DISK

NOI

IS THIS THE LAST SECTOR ON THIS TRACK ?

YES

YES

POSITION DISK TO NEW TRACK

NO

REQUEST A NEW TRACK FROM MONITOR
IS A TRACK AVAILABLE ?

YES

WAS THIS SECTOR A SHORT SECTOR ?
YES

DAYFILE MESSAGE—DISK X TRACK LIMIT
WRITE END OF FILE SECTOR

RELEASE CHANNEL

ABORT CONTROL POINT

RELEASE PPU

WRITE END OF FILE SECTOR

DO NOT ADVANCE FILE STATUS FOR THIS SECTOR

CALL MONITOR TO DROP SPARE TRACK
RELEASE CHANNEL

STORE BUFFER CONTROL IN=OUT =FIRST
EXIT

A-12

WRITE END OF FILE SECTOR
DO NOT ADVANCE FILE STATUS FOR THIS SECTOR
CALL MONITOR TO DROP SPARE TRACK

RELEASE CHANNEL

UPDATE BUFFER CONTROL OUT ADDRESS
EXIT

ENTER 2WT OVERLAY
WRITE BINARY TAPE

MODIFY OVERLAY FOR EQUIPMENT PARAMETERS J

IS THERE ENOUGH DATA IN THE
CIRCULAR BUFFER FOR A FULL BLOCK ?

YES

No—:a! IS AN END RECORD FUNCTION REQUESTED 7 O

YES

REQUEST CHANNEL FOR TAPE UNIT
READ TAPE STATUS
IS TAPE READY ?

CONSOLE MESSAGE—TAPE XX NOT READY
NO | RELEASE CHANNEL VES

NO

PAUSE FOR MONITOR

YES

CLEAR CONSOLE MESSAGE
WRITE DATA ON TAPE NO

READ RA
IS ERROR FLAG SET ?

RELEASE CHANNEL

READ TAPE STATUS

IS PARITY CHECK OK ?
YES

NO

ADVANCE BLOCK COUNT
RELEASE CHANNEL

UPDATE BUFFER OUT ADDRESS
WAS BLOCK A SHORT BLOCK ?

YES

SET BUFFER IN=OUT=FIRST
EXIT

SET PAUSE BIT IN (RA)

DAYFILE MESSAGE—TAPE XX WRITE PARITY ERROR
PAUSE FOR MONITOR

READ RA
1S ERROR FLAG SET ?

NO

—No—l HAS PAUSE BIT BEEN CLEARED IN (RA) ? —]

YES

REQUEST CHANNEL FOR TAPE UNIT

BACKSPACE TAPE ONE BLOCK

A-13

YES

RELEASE PPV

RELEASE PPU

ENTER 2WT OVERLAY
WRITE BCD TAPE

[MODIFY OVERLAY FOR EQUIPMENT PARAMETERS]

L

YES

NO
| Is THERE OATA IN THE CIRCULAR BUFFER 2 |-——

READ ONE WORD FROM CIRCULAR BUFFER
CONVERT DISPLAY CODE TO BCD CODE BY TABLE LOOKUP

ADVANCE BUFFER OUT ADDRESS
IS LAST BYTE OF BUFFER WORD ZERO ?

——>| IS AN END RECORD REQUESTED ?]—ﬂ°—

YES

SET BUFFER IN=OUT=FIRST |

YES
——ﬁi PAD LINE WITH SPACES TO (20 CHARACTERS]

NO

——NO-I HAVE 120 CHARACTERS BEEN CONVERTED 2]

YES

NO

REQUEST CHANNEL FOR TAPE UNIT
READ TAPE STATUS NO

1S TAPE READY

YES

CLEAR CONSOLE MESSAGE
WRITE ONE BLOCK (EVEN PARITY) NO

CONSOLE MESSAGE — TAPE XX NOT READY
RELEASE CHANNEL
PAUSE FOR MONITOR
READ RA

IS ERROR FLAG SET ?

RELEASE CHANNEL

READ TAPE STATUS
IS PARITY CHECK OK P

YES

ADVANCE BLOCK COUNT
RELEASE CHANNEL

UPDATE BUFFER OUT ADDRESS

SET PAUSE BIT IN (RA)

YES

DAYFILE MESSAGE - TAPE XX WRITE PARITY ERROR
PAUSE FOR MONITOR
READ RA

IS ERROR FLAG SET ?

RELEASE PPU

YES
RELEASE PPU

NO

NO
———{ HAS PAUSE BIT BEEN CLEARED IN (RA) 7 J

YES

A4

REQUEST CHANNEL FOR TAPE UNIT
BACKSPACE TAPE ONE BLOCK

ENTER 2WT OVERLAY
WRITE FILE MARK

MODIFY OVERLAY FOR EQUIPMENT PARAMETERS

REQUEST CHANNEL FOR TAPE UNIT
READ TAPE STATUS
IS TAPE READY ?

NO

NO

YES

CLEAR CONSOLE MESSAGE
WRITE FILE MARK
ADVANCE BLOCK COUNT
RELEASE CHANNEL

| EXIT l

CONSOLE MESSAGE—TAPE XX NOT READY
RELEASE CHANNEL

PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

A-l5

YES

RELEASE PPU

ENTER 2LP OVERLAY
PRINT

\

I MODIFY OVERLAY FOR EQUIPMENT PARAMETERS I

() Is THERE DATA IN THE CIRCULAR BUFFER

? }NO——>[IS AN END RECORD REQUESTED 7 } NO

YES

YES

READ ONE WORD FROM CIRCULAR BUFFER
ADVANCE OUT ADDRESS

COPY WORD TO PRINT LINE BUFFER

IS LOWEST ORDER BYTE ZERO ?

> e]

YES

NO

_Ng{

HAVE 130 CHARACTERS BEEN ASSEMBLED

?]

YES

| REQUEST CHANNEL FOR PRINTER |<———

READ PRINTER STATUS | yEg

RELEASE CHANNEL
PAUSE FOR MONITOR

| Rrecease pPU |
L

YES

READ RA
IS ERROR FLAG SET ?
NO
REQUEST PRINTER
QUEST CHANNEL FOR N0 5[CoNsoLE MESSAGE-PRINTER NOT READY
IS PRINTER READY ? :

CLEAR CONSOLE MESSAGE
IS THERE A ZERO IN COLUMN ONE ?

YES

PRINT LAST LINE AND ADVANCE PAPER l

NO

©

{NEXT PAGE)

READ PRINTER STATUS YES

[SET BUFFER PARAMETERS IN=OUT =FIRST 'r

RELEASE CHANNEL
PAUSE FOR MONITOR
READ RA

‘{ RELEASE PPU ‘

IS ERROR FLAG SET ?
NO

REQUEST CHANNEL FOR PRINTER | NO

1S PRINTER REAOY ?
YES

CLEAR CONSOLE MESSAGE
ADVANCE PAPER ONE LINE

CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER CODE AND OUTPUT TO PRINTER
RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

A-16

le CONSOLE MESSAGE—PRINTER NOT READYJ

(2LP CONTINUED)

®

[IS THERE A ONE IN COLUMN ONE ? Iﬂ__el PRINT LAST LINE AND ADVANCE PAPER
NO
READ PRINTER STATUS | ygg
RELEASE CHANNEL A{ RELEASE PPU |
PAUSE FOR MONITOR)
READ RA
1S ERROR FLAG SET ?
NO
REQUEST CHANNEL FOR PRINTER
ﬂ——-—)I CONSOLE MESSAGE—PRINTER NOT READY J
IS PRINTER READY ?
YES
CLEAR CONSOLE MESSAGE
PAGE SPACE PAPER
CONVERT CHARACTERS IN PRINT LINE BUFFER
) TO PRINTER CODE AND OUTPUT TO PRINTER
RELEASE CHANNEL
UPDATE CIRCULAR BUFFER OUT ADDRESS
1S THERE A -+ IN COLUMN ONE ? |Y—Es——al PRINT LAST LINE AND DO NOT ADVANGE PAPER]
NO
READ PRINTER STATUS [o
RELEASE CHANNEL >|‘ RELEASE PPU l
(NEXT PAGE) PAUSE FOR MONITOR
READ RA
IS ERROR FLAG SET ?
NO
REQUEST CHANNEL FOR PRINTER ‘—Eg——él CONSOLE MESSAGE—PRINTER NOT READY I
IS PRINTER READY ?
YES

CLEAR CONSOLE MESSAGE

CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER CODE AND OUTPUT TO PRINTER
RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

A-17

(2LP CONTINUED)

©

Is THERE A 7X cOD

| PRINT LAST LINE AND ADVANCE PAPER]

E IN COLUMN ONE ? j YES

NO

PRINT LAST LINE Al

ND ADVANCE PAPER J

READ PRINTER STATUS
RELEASE CHANNEL
PAUSE FOR MONITOR

READ RA
1S ERROR FLAG SET ?

NO

YES

REQUEST CHANNEL FOR PRINTER YES

IS PRINTER READY ?

RELEASE PPU

NO

CONSOLE MESSAGE —

PRINTER NOT READY

>

READ PRINTER STATUS YES

RELEASE CHANNEL
PAUSE FOR MONITOR
READ RA

>|| RELEASE PPU I

IS ERROR FLAG SET ?
NO

REQUEST CHANNEL FOR PRINTER NO

IS PRINTER READY ?
YES

SELECT PRINTER CARRIAGE CHANNEL X

CONSOLE MESSAGE —
PRINTER NOT READY

CLEAR CONSOLE MESSAGE
CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER CODE AND OUTPUT TO PRINTER

RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

A-18

ENTER 2PC OVERLAY
PUNCH CARDS

LMOD!FV OVERLAY FOR EQUIPMENT PARAMETERS J

NO
[IS THE CIRCULAR BUFFER IN A WRITE CODED MODE ? {NEXT PAGE)

YES

—-‘9{ CLEAR PUNCH BUFFER FOR 80 CHARACTERSJ

YES

CONVERT WORD INTO 10 HOLLERITH CHARACTERS
HAVE 80 CHARACTERS BEEN ASSEMBLED ?

NO

NO
——i WAS LOWEST ORDER BYTE OF WORD ZERO ?

YES

YES

REQUEST CHANNEL FOR PUNCH
READ PUNCH STATUS
RELEASE CHANNEL

IS PUNCH READY ?

NO

NO YES
—{ IS THERE ANOTHER WORD (N THE CIRCULAR BUFFER ? I—H IS A FILE MARK REQUESTED ? ‘l‘%

NO

CLEAR CARD COUNT
PUNCH 6789 CARD

SET BUFFER PARAMETERS
IN=OUT =FIRST

ExiT

YES
Is AN END RECORD REQUESTED ? H

NO

CLEAR CARD COUNT
PUNCH 789 CARD

SET BUFFER PARAMETERS
IN=OQUT =FIRST

EXiT

I Exit I

NO

YES

CLEAR CONSOLE MESSAGE
REQUEST CHANNEL FOR PUNCH
PUNCH ONE CARD

RELEASE CHANNEL

PAUSE FOR MONITOR

YES

CONSOLE MESSAGE - PUNCH NOT READY
PAUSE FOR MONITOR YES
READ RA

IS ERROR FLAG SET ?

READ RA
IS ERROR FLAG SET ?

NO

UPDATE BUFFER OUT ADDRESS

ADVANCE CARD COUNT

>]| RELEASE PPU l

(2PC OVERLAY CONTINUED)

®

l IS THE CIRCULAR BUFFER IN A WRITE BINARY MODE ? Ilo———%

YES

SET BUFFER PARAMETERS IN =QUT =FIRST
EXIT

| IS THERE ENOUGH DATA FOR A FULL CARD ? I

YES NO

| IS AN END RECORD REQUESTED 7

YES

YES
IS THERE DATA IN THE BUFFER ? |—

NO

1 NO
o

1 NO

A{ IS A FILE MARK REQUESTED ? [
YES

PUNCH 6789 CARD

SET BUFFER PARAMETERS IN=0UT =FIRST
CLEAR CARD COUNT

ExiT

PUNCH 789 CARD

CLEAR CARD COUNT
EXIT

SET BUFFER PARAMETERS IN=OUT =FIRST

CLEAR PUNCH BUFFER FOR |5 WORDS
TRANSFER DATA TO PUNGH BUFFER
ENTER CARD LENGTH iN COLUMN ONE

ENTER SUM OF DATA BYTES MODULO 4095 IN COLUMN TWO

ADVANCE CARD COUNT
ENTER CARD COUNT IN COLUMN 80

READ PUNCH STATUS
RELEASE CHANNEL
IS PUNCH READY ?

REQUEST CHANNEL FOR PUNCH

NO

CONSOLE MESSAGE-PUNCH NOT READY

PAUSE FOR MONITOR

NO| Reap RA

YES

CLEAR CONSOLE MESSAGE

PUNCH ONE CARD
RELEASE CHANNEL

REQUEST CHANNEL FOR PUNCH

NO | PAUSE FOR MONITOR

READ RA
1S ERROR FLAG SET ?

UPDATE BUFFER OUT ADDRESS

YES

Is ERROR FLAG SET ?

%ll RELEASE PPU I

A-20

YES

?Jl ExiT

RELEASE PPU

2BD OVERLAY
BACKSPACE DISK

] YES SET CIRCULAR BUFFER IN=OUT=FIRST
J

WAS LAST REFEREN FILE MAR
[EFERENCE A FILE K 7 ExiT

NO

I MODIFY OVERLAY FOR EQUIPMENT PARAMETERS

YES
lVIS A BINARY BACKSPACE REQUESTED 7 } ﬂw

NO

LSET FIRST REFERENCE FLAG] l BACK ONE SECTOR l

®_—ﬁl COMPUTE D=IN—OUT] REQUEST CHANNEL FOR DISK

POSITION DISK
READ ONE SECTOR
RELEASE CHANNEL

——>i IS NEXT SECTOR THE FIRST SECTOR IN THE FILE ? i&—

NO

Is SECTOR A SHORT SECTOR 7 INL

I BACK ONE SECTOR I YES

SET CIRCULAR BUFFER IN= QUT= FIRST
ExiT

REQUEST CHANNEL FOR DISK
POSITION DISK TO NEXT SECTOR
READ ONE SECTOR

RELEASE CHANNEL

SET OUT = FIRST + SECTOR LENGTH — D
SET IN = FIRST + SECTOR LENGTH
STORE SECTOR IN CIRCULAR BUFFER BEGINNING AT FIRST

l IS SECTOR LENGTH GREATER THAN D ? }&—
NO

—9[DOES OUT = FIRST ? }YES

[Decneass D BY SECTOR LENGTH l No

LIS FIRST REFERENCE FLAG SET ? llo-—-———

| CLEAR FLAG |

NO
l DOES (OUT-1) CONTAIN A BLANK LOWEST BYTE ? I&
YES

UPDATE CIRCULAR BUFFER IN AND OUT ADDRESSES
ExIT

A-21

28D SUBROUTINE
BACK ONE SECTOR

REDUCE SECTOR NUMBER ONE COUNT

1 IS NEXT SECTOR THE FIRST SECTOR OF A TRACK ? I—NL'——> ExXIT

YES

rHOLD CURRENT TRACK NUMBER N I

YES = l
rIS N THE FIRST TRACK FOR THE FILE ? i* ExiT

NO

REWIND DISK FILE
REQUEST CHANNEL FOR DISK FILE

2 | POSITION DISK TO NEXT SECTOR J

NO | READ ONE SECTOR
1S THIS THE LAST SECTOR IN THIS TRACK ?

YES

————-———ﬂrls NEXT TRACK NUMBER N ?J

YES

RELEASE CHANNEL
EXIT

A-22

2BT OVERLAY
BACKSPACE TAPE

LMONFY OVERLAY FOR EQUIPMENT PARAME TERS

Y
- NO

NO

YES
———{ IS TAPE UNIT TYPE WT ?] BACK ONE BLOCK
l BACK ONE BLOCK l | READ ONE BLOCK ’

SET CIRCULAR BUFFER IN = OUT =FIRST I IS BLOCK A SHORT BLOCK ? }_No_—
ExiT YES
SET CIRCULAR BUFFER IN =OUT = FIRST
L] ser rinsT ReFeRENcE FLAG | ExXIT

MCOMPUTE D=iN-ouT |

BACK ONE BLOCK I
I READ ONE BLOCK '

YES [|
I IS BLOCK A FILE MARK ? F =1 BACK ONE BLOCK
NO

SET CIRCULAR BUFFER [N =0UT = FIRST

ExiT
vEs SET OUT = FIRST + BLOCK LENGTH - D
I IS BLOCK LENGTH GREATER THAN D ?]é SET IN=FIRST + BLOCK LENGTH
NO STORE BLOCK IN CIRCULAR BUFFER BEGINNING AT FIRST
I REDUCE D BY BLOCK LENGTH] YES
——>{ DoEs OUT = FIRST
No
I IS8 FIRST REFERENCE FLAG SET ? —I—____
YES
| CLEAR FLAG l
\
NO
[DOES (OUT —|) CONTAIN A BLANK LOWEST BYTE ? J<——
YES

UPDATE CIRCULAR BUFFER IN AND OUT ADORESSES
A-23 ExiT :

2BT SUBROUTINE
BACK ONE BLOCK

YES

IS TAPE POSITIONED AT BEGINNING YES SET CIRCULAR BUFFER IN=OQUT= FIRST
OF FIRST BLOCK ON TAPE ? EXIT FROM OVERLAY
NO
- TAPE T ADY
REDUCE BLOCK COUNT 2:-‘3;2 ::isnl:;i TAPE XX NOT READ
REQUEST CHANNEL FOR TAPE UNIT | NO
READ TAPE STATUS PAUSE ~ FOR MONITOR
Is TAPE READY 7 ReaD RA
- IS ERROR FLAG SET ?
YES NO
NO
yEg | REQUEST CHANNEL FOR TAPE UNIT
‘ o e
BACKSPACE TAPE [€ READ TAPE STATUS
IS TAPE READY ¢
RELEASE CHANNEL YES
PAUSE FOR MONITOR \I RELEASE PPUl
READ RA
IS ERROR FLAG SET ?
NO
l EXIT l
2BT SUBROUTINE
READ ONE BLOCK
CONSOLE MESSAGE - TAPE XX NOT READY
REQUEST CHANNEL FOR TAPE UNIT |, RELEASE CHANNEL

READ TAPE STATUS
IS TAPE READY ?

PAUSE FOR MONITOR

YES

?{ RELEASE PPU |

READ RA
IS ERROR FLAG SET ?
NO
NO
vEg | REQUEST CHANNEL FOR TAPE UNIT

NO

YES

READ TAPE

IS PARITY CHECK OK ?
YES

RELEASE CHANNEL
ADVANCE BLOCK COUNT
EXIT

READ TAPE STATUS
IS TAPE READY ¢

%Il RELEASE PPU l

RELEASE CHANNEL
ADVANGE BLOCK COUNT

YE!
———aﬁﬂs A FILE MARK READ ?Jl S

NO

YES
HAS BLOCK BEEN READ 3 TIMES ?

NO

j‘ BACKSPACE TAPE l

A-24

EXIT

DAYFILE MESSAGE - TAPE XX PARITY
RELEASE CHANNEL

ABORT CONTROL POINT

RELEASE PPU

ERROR

2DF OVERLAY
DROP FILE
FILE NAME IN 40/44

SEARCH FNT FOR NAME NO

IS FILE NAME IN FNT ?
YES

READ FILE STATUS YES
IS AN EQUIPMENT ASSIGNED ?
NO

"{ ExiT |

REQUEST MONITOR DROP EQUIPMENT J

IS FILE IN COMMON STATUS 7

1 YES
|

NO

RELEASE COMMON FILE
EXIT

l IS FILE A DISK FILE ? }No
YES
I HAS FILE BEEN USED ? ‘rNo

YES

[MODIFY OVERLAY FOR EQUIPMENT PARAMETERS J

REQUEST CHANNEL FOR DISK FILE
REWIND FILE

POSITION DISK TO NEXT TRACK

YES

REQUEST MONITOR RELEASE TRACK

CLEAR FILE STATUS
CLEAR FNT ENTRY
EXIT

READ NEXT DISK SECTOR YES
IS SECTOR A FILE MARK ?
NO
NO

RELEASE CHANNEL
CLEAR FILE STATUS
CLEAR FNT ENTRY
EXIT

IS SECTOR THE LAST SECTOR IN THIS TRACK ?

A-25

2DT OVERLAY
DROP DISK TRACKS

FILE STATUS IN 20/24

rMODIFY OVERLAY FOR EQUIPMENT PARAMETERS

‘ HAS FILE BEEN USED ? I

1 NO

YES

REQUEST CHANNEL FOR DISK FILE

HOLD CURRENT TRACK NUMBER AND SECTOR NUMBER

—%l’POSlTION DISK FOR NEXT

SECTOR

READ NEXT SECTOR

1S SECTOR A FILE MARK ?

YES

‘{ ExiT l

NO

NO

IN THIS TRACK ?

IS SECTOR THE LAST SECTOR

YES

——l REQUEST MONITOR RELEASE NEXT TRACK

A-26

RELEASE CHANNEL
RESTORE TRACK AND SECTOR NUMBER

EXIT

2EF OVERLAY
PROCESS ERROR FLAG

l CLEAR ERROR FLAG AT THE CONTROL POINT]

IS A TIME LIMIT INDICATED ? P‘EHDAYFILE MESSAGE ~TIME LIMIT.]—

NO

IS AN ARITHMETIC ERROR INDICATED 7—|—Y—E§—el DAYFILE MESSAGE —ARITH. ERROR.]—

NO

[Is A PPU CALL ERROR INDICATED ?M DAYFILE MESSAGE — PP CALL ERROR. I—

NO

| IS AN OPERATOR DROP iNDICATED M DAYFILE MESSAGE —OPERATOR DROP.]—

NO

I IS A TRACK LIMIT INDICATED ? PEE—HI DAYFILE MESSAGE —TRACK LIMIT. ’—

NO

ﬁ{ READ NEXT CONTROL STATEMENT [I<

l 1S STATEMENT A BLANK ? I YES "! EXIT I

NO

—NO{ IS STATEMENT AN EXIT ?

YES

ADVANCE TO NEXT CONTROL STATEMENT
EXiT

A-27

2TJ OVERLAY
TRANSLATE JOB NAME

ARE THERE MORE THAN 95 WORDS IN THE CIRCULAR BUFFER ? |'V—E'S'——> DAYFILE MESSAGE -TOO MANY CONTROL CARDS

RELEASE PPU
NO

READ FIRST CONTROL CARD

ASSEMBLE ALPHANUMERIC WORD TO SEPARATOR | YES
DOES WORD EXCEED 7 CHARACTERS ?

NO

DAYFILE MESSAGE - JOB CARD ERROR
RELEASE PPU

rls FIRST CHARACTER A LETTER ?
YES

] NO
I

| SToRe WoRD s NAME OF JoB]

SET PRIORITY .
SET TIME LIMIT ONE MINUTE

! YES SET FIELD LENGTH 40000
| WAS SEPARATOR A BLANK ? EXIT

NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR YES

DAYFILE MESSAGE -JOB CARD ERROR
DOES WORD EXCEED 7 CHARACTERS ?

RELEASE PPU

NO
CONVERT OCTAL CHARACTERS TO BINARY | YES SET PRIORITY |, .
ARE LOWEST ORDER 4 BITS ZERO ? SET TIME LIMIT ONE MINUTE
NO SET FIELD LENGTH 40000
ExIT

I STORE LOWEST ORDER 4 BITS AS PRIORITY l

SET TIME LIMIT ONE MINUTE
YES SET FIELD LENGTH 40000
ExiT

I WAS SEPARATOR A BLANK ?
NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO separaTor | YES
DOES WORD EXCEED 7 CHARACTERS ?

NO

DAYFILE MESSAGE - JOB CARD ERROR
RELEASE PPU

CONVERT OCTAL CHARACTERS TO BINARY
ROUND UP LAST OCTAL DIGIT

STORE LOWEST ORDER 5 OCTAL DIGITS AS TIME LIMIT

I IS TIME LIMIT ZERO ? J YES 3'|7$ET TIME LIMIT ONE MINUTE I

NO 4 \I{

ET F
I WAS SEPARATOR A BLANK 7 }YES S IELD LENGTH 40000
EXIT
NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES
DOES WORD EXCEED 7 CHARACTERS ?

NO

DAYFILE MESSAGE - JOB CARD ERROR
RELEASE PPU

CONVERT OCTAL CHARACTERS TO BINARY
ROUND UP LAST TWO OCTAL DIGITS
STORE LOWEST ORDER I7 BITS AS FIELD LENGTH

SET FIELD LENGTH 40000
[1S FIELD LENGTH ZERO ? | YES
J ExiT
NO

CLEAR PPU TIME CHARGES TO CONTROL POINT
EXiT

A-28

2TS OVERLAY

TRANSLATE CONTROL STATEMENT

READ NEXT CONTROL STATEMENT | YES = ExIT l
IS STATEMENT A BLANK ?
NO
YES ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR YES
IS FIRST WOR IGN ? ERROR EXIT
r FIRST WORD ASSIGN DOES WORD EXCEED 7 CHARACTERS ?
NO NO
NEXT PAGE
IS WORD A BLANK 7 }YES
NO
I STORE WORD AS EQUIPMENT TYPE DESIGNATION
ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES ERROR EXIT
DOES WORD EXCEED 7 CHARACTERS ?
NO
1S WORD A BLANK ? I YES
NO
STORE WORD AS FILE NAME
YES

REQUEST MONITOR ASSIGN EQUIPMENT TYPE DESIGNATED
WAS AN EQUIPMENT ASSIGNED 7

NO

RELEASE PPU

CONSOLE MESSAGE —WAITING FOR XX

———9' CLEAR OPERATOR ASSIGNED EQUIPMENT NUMBER

1S THERE A BLANK ENTRY IN FNT ?

REQUEST FNT CHANNEL NO

YES

RELEASE CHANNEL

ENTER FNT WITH NAMED LOCAL FILE

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
SET FILE STATUS TO NEW FILE

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS

DAYFILE MESSAGE — (XX ASSIGNED) J

I RELEASE PPU !

A-29

RELEASE CHANNEL

REQUEST MONITOR RELEASE EQUIPMENT
CONSOLE MESSAGE — WAIT FNT SPACE
RELEASE PPU

(2TS CONTINED)

0
{ IS FIRST WORD COMMON ?
YES

ASSEM NEXT ALPHANUMER RD TO SEPARATOR YES
BLE LPHANUMERIC WO SEl ERROR EXIT
DOES WORD EXCEED 7 CHARACTERS ?

NO

REQUEST FNT CHANNEL YES YES
SEARCH FNT FOR ASSEMBLED NAME ﬁ' Is FILE A DISK FiLE ? }-——

IS THERE AN AVAILABLE COMMON FILE (N FNT WITH THIS NAME ? NO
NO

REQUEST MONITOR ASSIGN YES
EQUIPMENT TO CONTROL POINT
WAS EQUIPMENT ASSIGNED ?

NO

CONSOLE MESSAGE ~ WAITING FOR XX
RELEASE FNT CHANNEL
RELEASE PPU

IS THERE A FILE ASSIGNED TO THis | YES ASSIGN FILE TO CONTROL
CONTROL POINT WITH THIS NAME ? POINT IN COMMON STATUS
! RELEASE FNT CHANNEL
NO
RELEASE FNT CHANNEL : ISSUE STATEMENT TO DAYFILE
CONSOLE MESSAGE — WAITING FOR 'COMMON FILE ADVANGE STATEMENT. AODRESS
RELEASE PPU ReLense PR

7|| Is FIRST WORD RELEASE ?

NO I YES
(NEXT PAGE)

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES
ERROR EXIT
DOES WORD EXCEED 7 CHARACTERS ?
NO

SEARCH FNT FOR A COMMON FILE ASSIGNED NO
TO THIS CONTROL POINT WITH THIS NAME
IS THERE SUCH A FILE P

YES

CHANGE FILE STATUS TO LOCAL FILE

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS
RELEASE PPU

A-30

(2TS CONTINUED)

I Is FIRST WORD EXIT ? —;YES

NO

Lxs FIRST WORD REQUEST ? }—‘L

NO

>|‘ EXIT FROM OVERLAY

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES

DOES WORD EXCEED 7 CHARACTERS ?

NO

—@'I HAS OPERATOR ASSIGNED AN EQUIPMENT ?j

YES

CLEAR OPERATOR ASSIGNMENT YES
REQUEST FNT CHANNEL

ERROR EXIT

IS THERE A BLANK ENTRY IN THE FNT ?
NO

RELEASE FNT CHANNEL

REQUEST MONITOR RELEASE EQUIPMENT
CONSOLE MESSAGE —WAIT FNT SPACE
RELEASE PPU

DISPLAY STATEMENT AS CONSOLE MESSAGE

RELEASE PPU

Is FIRST WORD MODE ? I—L%

NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES

ENTER ASSEMBLED NAME AS LOCAL FILE IN FNT
ENTER EQUIPMENT NUMBER IN FILE STATUS WORD

SET FILE STATUS TO NEW FILE
RELEASE FNT CHANNEL

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS

DAYFILE MESSAGE ~ (XX ASSIGNED)
RELEASE PPU

DOES WORD EXCEED 7 CHARACTERS ?

NO

REQUEST MONITOR ASSIGN EXIT MODE
AS INDICATED BY ASSEMBLED DIGIT

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS
RELEASE PPU

[IS FIRST WORD SWITCH ? YES
NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES

ERROR EXIT

DOES WORD EXCEED 7 CHARACTERS ?

(NEXT PAGE)

NO

| IS WORD A DIGIT BETWEEN | AND 6 ? |_N0_
YES

I SET SENSE SWITCH IN (RA) AS INDICATED l

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS
RELEASE PPU

A-31

ERROR EXIT

(2TS CONTINUED)

l

SEARCH FNT FOR AN ASSIGNED FILE WHOSE

NAME AGREES WITH THE FIRST WORD YES >
1S THERE SUCH A FILE ASSIGNED TO THIS _—eDOES THIS FILE HAVE AN ASSIGNED EQUIPMENT ¢ J

CONTROL POINT ?

NO

YES NO

REQUEST CHANNEL ZERO

POSITION DISK TO FIRST SECTOR OF FILE

READ FILE INTO CENTRAL STORAGE BEGINNING AT RA
UNTIL END OF RECORD OR FIELD LENGTH (S REACHED
RELEASE CHANNEL O

CLEAR EXCHANGE AREA FOR CONTROL POINT
SET PROGRAM ADDRESS TO LOWEST € BITS OF (RA+1) +3
STORE FIELD LENGTH IN AO

SET RA + 2 AS NEXT ARGUMENT ADDRESS
CLEAR {RA) AND (RA +1)

IS THE NEXT CHARACTER IN THE CONTROL STATEMENT

A PERIOD OR A CLOSED PARENTHESIS ?
NO

DOES WORD EXCEED 7 CHARACTERS ?
NO

STORE WORD IN NEXT ARGUMENT POSITION LEFT JUSTIFIED
ADVANCE ARGUMENT ADDRESS

SEARCH CLD FOR A PROGRAM WHOSE YES

:%:I 15 RSS FLAG SET IN PPU INPUT REGISTER ? |

NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES

I REQUEST CENTRAL PROCESSOR TO BEGIN EXECUTION PROGRAM

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS

RELEASE PPU

REQUEST CHANNEL ZERO
POSITION DISK TO FIRST SECTOR OF PROGRAM
READ PROGRAM INTO CENTRAL STORAGE BEGINNING AT RA

NAME AGREES WITH THE FIRST WORD
IS THERE SUCH A PROGRAM ?

NO

(NEXT PAGE)}

UNTIL END OF RECORD OR FIELD LENGTH IS REACHED
RELEASE CHANNEL O

A-32

ERROR EXIT

(2TS CONTINUED)

SEARCH PLD FOR A PERIPHERAL PACKAGE vES
WHOSE NAME AGREES WITH THE FIRST WORD ———-—>| DOES THE PACKAGE NAME BEGIN WITH A LETTER ?J
IS THERE SUCH A PACKAGE 7 NO YES

NO

ISSUE STATEMENT TO DAYFILE

DAYFILE MESSAGE ~ CONTROL CARD ERROR
ERROR EXIT SET ERROR FLAG

ADVANCE STATEMENT ADDRESS

RELEASE PPU

NO | ASSEMBLE OCTAL 0I1GITS TO SEPARATOR
IS SEPARATOR A COMMA ?

YES

ENTER ASSEMBLED NUMBER IN PP RECALL
REGISTER BIT POSITIONS I8 THRU 35

ASSEMBLE OCTAL DIGITS TO SEPARATOR

ENTER ASSEMBLED NUMBER IN LOWEST
18 B1TS OF PP RECALL REGISTER

ENTER PACKAGE NAME AND CONTROL
POINT NUMBER IN PP RECALL REGISTER
ISSUE STATEMENT TO DAYFILE

ADVANCE STATEMENT ADDRESS
RELEASE PPU

A-33

2SD OVERLAY
SEARCH DAYFILE

[READ JOB NAME FROM CONTROL POINT AREA

] YES
:l 1S CIRCULAR BUFFER EMPTY ? |

NO

YES
[IS BROKEN MESSAGE FLAG SET ? |—_

NO

B YES
IS NEXT WORD THIS JOB NAME ? ‘———‘

NO

COPY WORD TO PERIPHERAL BUFFER
ADVANCE OUT ADDRESS
DO NOT ADVANCE PERIPHERAL BUFFER

SET BROKEN MESSAGE FLAG
ADVANCE PERIPHERAL BUFFER

COPY WORD TO PERIPHERAL BUFFER

SET IN=0UT = FIRST 1 NO
HAS DAYFILE REACHED END RECORD 7

YES

REQUEST MONITOR ASSIGN PP TIME TO CONTROL POINT
CONVERT TIME TO DECIMAL SECONDS
DAYFILE MESSAGE - PP XXXX SEC.

ENTER PAGE SPACE AS FIRST ENTRY IN CIRCULAR BUFFER
COPY PERIPHERAL BUFFER TO CIRCULAR BUFFER

ADD MESSAGE — PP XXXX SEC.— TO CIRCULAR BUFFER
COPY DATE LINE TO CIRCULAR BUFFER

ADD PAGE SPACE TO CIRCULAR BUFFER

UPDATE iN ADDRESS

ADVANCE PERIPHERAL BUFFER

NO
I IS LOWEST; BYTE OF WORD CLEARED ? I———
) YES

I CLEAR BROKEN MESSAGE FLAGJ

_—-[iowmce ouT ADDﬂEsLle———

| EXIT |

A-34

{AJ PACKAGE
ADVANCE JOB

|

READ REFERENCE ADDRESS AND FIELD
LENGTH FROM CONTROL POINT

\L NO
[IS ERROR FLAG SET ? l——

YES

CALL 2EF OVERLAY
CALL 2TS OVERLAY

DOES CONTROL POINT HAVE ZEFO PRIORITY 7 |N0 | BEGIN SEARCH OF CENTRAL STORAGE FOR OUTPUT BUFFER
- SET INITIAL ADDRESS TO RA + 2
\LYES J/
SEARCH FNT FOR ASSIGNED FILE no l DOES NEXT WORD HAVE A CLEARED UPPER av‘rzly:___s—__-‘_“‘
Is THERE A FILE ASSIGNED TO THIS CONTROL POINT 2 .
J{NO
YES
CALL 2DF OVERLAY ‘ DOES NEXT WORD HAVE LOWEST I8 8ITS CLEARED ? |—
\Luo
YES
SEARCH EST FOR ASSIGNED EQUIPMENT v l DOES LOWEST I8 BITS EXCEED FIELD LENGTH ? }———
IS THERE AN EQUIPMENT ASSIGNED TO THIS CONTROL POINT ? ﬂ \I/No
YES
YES | Is CONTROL WORD AT THIS 18
BIT ADDRESS NAMED OUTPUT ?
REQUEST MONITOR RELEASE EQUIPMENT]
\I{No
A ‘y NO
DVANCE SEARCH ADDRESS
REQUEST MONITOR RELEASE CENTRAL STORAGE VAN
PAUSE FOR MONITOR HAS SEARCH REACHED RA + 100B ?

YES

YES
? |__—
IS FIELD LENGTH ZERO ? DOES CONTROL WORD CONTAIN A FILE MARK STATUS 7
\va—:s NO

CLEAR CONTROL POINT AREA
RELEASE PPV

NO

I SET CONTROL WORD STATUS TO REQUEST FILE MARK I

Wiy

CALL 2BP OVERLAY

1 NO

?
l IS THIS FILE ON DISK O 7 —

\Lves
NO
‘—'—I HAS FILE BEEN USED 7]

\L YES

] YES
I IS FILE IN READ MODE 7 I
J/wo
>/ cauL 2wD overLar |

UPDATE FILE STATUS
UPDATE BUFFER STATUS

!

READ CP TIME FROM CONTROL POINT AREA
CONVERT TIME TO DECIMAL SECONDS AND MILLISECONDS
DAYFILE MESSAGE - CP XXXX.XXX SECONDS

|

READ PP TIME FROM CONTROL POINT AREA
CONVERT TIME TO DECIMAL SECONDS AND MILLISECONDS
DAYFILE MESSAGE — PP XXXX.XXX SECONDS

A-35 ‘l’
(NEXT PAGE)

(1AJ PACKAGE CONTINUED)

YES
—‘l DOES FNT CONTAIN AN OUTPUT FILE ASSIGNED TO THIS CONTROL POINT ?
NO

REQUEST FNT CHANNEL I
IS THERE A BLANK ENTRY IN FNT ? >| RELEASE FNT CHANNEL]’
YES

NO

ENTER AN OUTPUT FILE
RELEASE FNT CHANNEL

FOR THIS CONTROL POINT

{ 1s FiLe assioneD To oISk 0 7 O
I T]
YES

REWIND FILE

REPLACE OUTPUT FILE NAME WITH JOB NAME AND PRIORITY
RELEASE FILE FROM CONTROL POINT

— YES
CALL 2DF OveRLAY |

SEARCH FNT FOR ASSIGNED FILE

IS THERE A FILE ASSIGNED TO THIS CONTROL POINT ?
NO

YES

| SEARCH EST FOR ASSIGNED EQUIPMENT
REQUEST MONITOR RELEASE EQUIPMENT

—=>| IS THERE AN EQUIPMENT ASSIGNED TO THIS CONTROL POINT ?

NO

CLEAR CONTROL POINT AREA
CALL 1BJ PACKAGE TO THIS PPU

A-36

{BJ PACKAGE
BEGIN JOB

READ REFERENCE

1S ERROR FLAG SET ?

ADDRESS AND FIELD LENGTH YES

NO

NO [

1 IS PRIORITY ZERO ?

YES

REQUEST FNT CHANNEL

IS THERE AN UNASSIGNED

% RELEASE PPU |

SEARCH FNT FOR HIGHEST PRIORITY UNASSIGNED INPUT FILE YES

INPUT FILE ?

NO

RELEASE FNT CHANNEL

ENTER JOB NAME NEXT
CONSOLE MESSAGE — IDLE
ENTER PP RECALL

RELEASE PPU

¥

YE '
S{ HAVE JUOB CARDS BEEN LOADED ? |l<

REQUEST MONITOR ASSIGN JOB PRIORITY
ENTER JOB NAME IN CONTROL POINT AREA
CHANGE FILE TYPE TO ASSIGNED LOCAL FILE
CHANGE FILE NAME TO INPUT

RELEASE FNT CHANNEL

NO

l REQUEST MONITOR ASSIGN 300B WORDS OF STORAGE

[WAS STORAGE ASSIGNED ?

] NO
J

YES

CLEAR CONTENTS OF RA,RA-+!,RA+2 :
ENTER BUFFER CONTROL WORDS FOR INPUT FILE AT RA+3 THRU RA+7

[CALL 2BP OVERLALI

I"a.n. 2RD overLaY |

UPDATE INPUT FILE STATUS

SET NEXT STATEMENT LOCATOR

READ DATA FROM CIRCULAR BUFFER TO PERIPHERAL STORAGE
COPY DATA FROM PERIPHERAL STORAGE TO CONTROL POINT AREA

IN CONTROL POINT AREA TO INITIAL VALUE

[CALL

2TJ OVERLAY

REQUEST MONITOR ASSIGN TIME
ENTER FIELD LENGTH FOR JOB

LIMIT
IN 3RD BYTE OF PPU INPUT REGISTER

———?‘ REQUEST MONITOR ASSIGN STORAGE FOR JOB FIELD LENGTH

WAS STORAGE ASSIGNED ?

] NO

CONSOLE MESSAGE - WAITING FOR STORAGE
ENTER PP RECALL
RELEASE PPU

YES

RELEASE PPU

TSSUE JOB CARD AS DAYFILE MESSAGE

A-37

A -G,

CONSOLE MESSAGE — WAITING FOR STORAGE
ENTER PP RECALL
RELEASE PPU

IDJ PACKAGE
PHASE 3 PRINT

[READ REFERENCE ADDRESS AND FIELD LENGTH FROM CONTROL POINT AREA

ES B : I
I Is ERROR FLAG SET ? Iu RELEASE PPU

NO
l IS FIELD LENGTH 40008 WORDS ? } No } REQUEST MONITOR ASSIGN FIELD LENGTH OF 4000B WORDS j
YES
ENTER CIRCULAR BUFFER ADDRESS (0003) IN PPU INPUT REGISTER CONSOLE MESSAGE - WAITING FOR STORAGE
CLEAR RA THRU RA + 2 ENTER PP RECALL
RELEASE PPU

YES
_{ 1S LP EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTERS ?]
NO

CONSOLE MESSAGE -NO LP AVAILABLE
ENTER PP RECALL
RELEASE PPU

REQUEST MONITOR ASSIGN LP EQUIPMENT TO CONTROL POINT NO
WAS EQUIPMENT ASSIGNED ?

YES

| ENTER EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER I

H MODIFY PACKAGE FOR EQUIPMENT PARAMETERS]

(:) ENTER JOB NAME - PRINT
CONSOLE MESSAGE - IDLE

REQUEST FNT CHANNEL NO RELEASE FNT CHANNEL
SEARCH FNT FOR HIGHEST PRIORITY COMPLETED QUTPUT FILE ENTER PP RECALL
IS THERE A COMPLETED QUTPUT FILE ? RELEASE PPU

YES

ASSIGN FILE TO CONTROL POINT AS LOCAL FILE
ASSIGN FILE NAME AS JOB NAME
RELEASE FNT CHANNEL

[DAYFILE MESSAGE - PRINT

RELEASE CHANNEL

REQUEST CHANNEL FOR LP NO CONSOLE MESSAGE - PRINTER NOT READY YES
READ LP STATUS NO PAUSE FOR MONITOR
IS PRINTER READY ? READ RA

IS ERROR FLAG SET ?

YES

CLEAR CARRIAGE CONTROLS

SELECT CARRIAGE CONTROL LEVEL ONE
RELEASE CHANNEL

CLEAR PP TIME CHARGES TO CONTROL POINT

l

(NEXT PAGE) A-38

(10J CONTINUED)

ENTER CIRCULAR BUFFER CONTROL PARAMETERS

ENTER JOB NAME AS FILE NAME
CaLL 2BP OVERLAY

CALL 2RD OVERLAY

UPDATE FILE STATUS IN FST
UPDATE CIRCULAR BUFFER STATUS

ENTER PRINT AS CIRCULAR BUFFER FILE NAME
CaLL 2BP OVERLAY

ENTER LP EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2LP OVERLAY

NO UPDATE FILE STATUS IN FST

UPDATE CIRCULAR BUFFER STATUS
WAS LAST REFERENCE A FILE MARK ?

YES

A
ENTER JOB NAME AS FILE NAME
CALL 2DF OVERLAY

PRESET TEMPORARY STORAGE FOR READING DAYFILE
REQUEST MONITOR COMPLETE DAYFILE

H CALL 2RD OVERLAY I

FALL 2SD OVERLAY]

NO
—‘I IS DAYFILE AT END OF RECORD ? l
YES

ENTER PRINT AS CIRCULAR BUFFER FILE NAME
CALL 2BP OVERLAY

CALL 2LP OVERLAVJ

UPDATE FILE STATUS IN FST
UPDATE CIRCULAR BUFFER STATUS

A-39

ITD PACKAGE
PHASE 3 TAPE DUMF

DOES CONTROL POINT HAVE A JOB NAME ? }YES
NO

ENTER JOB NAME-DUMP
REQUEST MONITOR ASSIGN FIELD LENGTH OF 100008 | NO

— RELEASE PPU I

READ RA AND FL FROM CONTROL POINT
HAS FIELD LENGTH BEEN ASSIGNED ?

YES

ENTER CIRCULAR BUFFER ADDRESS (0003) IN PPU INPUT REGISTER
CLEAR RA THRU RA + 2

ENTER CIRCULAR BUFFER PARAMETERS

CONSOLE MESSAGE ~REQUEST TAPE YE
PAUSE FOR MONITOR S

IS ERROR FLAG SET ?
NO

NO | READ RA FROM CONTROL POINT
HAS OPERATOR ENTERED EQUIPMENT NUMBER ?
YES

STORE EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER
CLEAR OPERATOR ASSIGNMENT IN CONTROL POINT AREA
CLEAR CONSOLE MESSAGE

REQUEST FNT CHANNEL
@% SEARCH FNT FOR HIGHEST PRIORITY COMPLETED OUTPUT FILE NO

‘;I—l RELEASE PPU I

IS THERE A COMPLETED OUTPUT FILE ?
YES

ASSIGN FILE TO CONTROL POINT AS A LOCAL -FILE
ASSIGN FILE NAME AS JOB NAME
RELEASE FNT CHANNEL

| DAYFILE MESSAGE — DUMP]

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER
@% ENTER REQUEST CODED READ STATUS
CALL 2BP OVERLAY

| CALL 2RD OVERLAYI

UPDATE FiLE STATUS
UPDATE BUFFER STATUS

(NEXT PAGE)
A-40

RELEASE FNT CHANNEL

ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
ENTER REQUEST FILE MARK STATUS

CALL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2WT OVERLAY
WRITE FILE MARK

UPDATE FILE STATUS

UPDATE BUFFER STATUS

ENTER REQUEST BACKSPACE STATUS
CALL 2BP OVERLAY

CALL 2BT OVERLAY
UPDATE FILE STATUS
UPDATE BUFFER STATUS

I RELEASE PPU|

(ITD CONTINUED)

ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
CALL 2BP OVERLAY

YES ENTER EQUIPMENT NUMBER IN FILE STATUS WORD

CALL 2WT OVERLAY
IS A FILE MARK REQUESTED ?

NO

[15 Tape Tvpe WT ? JYES

NO

I RJ CODED WRITE IN 2WT OVERLAY

UPDATE FILE STATUS

1 RJ BINARY WRITE IN 2WT OVERLAY

UPDATE BUFFER STATUS

WAS A FILE MARK REQUESTED ? }AO
YES

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER
CALL 2DF OVERLAY

YES

PRESET TEMPORARY STORAGE FOR READING DAYFILE
REQUEST MONITOR COMPLETE DAYFILE

———)@D OVERLAY |

| caLL 25D overiay ‘

ﬂ{ 1S DAYFILE AT END OF RECORD P J
YES

ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
CALL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2WT OVERLAY

IS A FILE MARK REQUESTED ?

NO

S

rxs TAPE TYPE WT ?
NO

1 YES
I

I RJ CODED WRITE IN 2WT OVERLAY I

UPDATE FILE STATUS

RJ BINARY WRITE IN 2WT OVERLAY J

UPDATE BUFFER STATUS

CLEAR PP TIME CHARGES IN CONTROL POINT AREA

A-4|

ILJ PACKAGE
PHASE ONE CARD LOAD

ENTER READ AS CONTROL POINT JoB NAME | YES :}RELEASE PPU
IS ERROR FLAG SET ?

NO
REQUEST MONITOR ASSIGN 4000B FIELD LENGTH
READ RA AND FL FROM CONTROL POINT AREA | NO CONSOLE MESSAGE — WAITING FOR STORAGE
Is FL = 40008 ? ENTER PP RECALL
YES RELEASE PPU

ENTER CIRCULAR BUFFER ADDRESS (0003) IN PPU INPUT REGISTER
CLEAR RA THRU RA +2
PRESET CIRCULAR BUFFER PARAMETERS

REQUEST MONITOR ASSIGN EQUIPMENT TYPE CR

IS EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER ? |N°—>
WAS EQUIPMENT ASSIGNED ¢

YES
YES
(:) - ENTER READ AS CONTROL POINT JOB NAME STORE EQUIPMENT NUMBER IN THIRD
CONSOLE MESSAGE ~IDLE BYTE OF PPU INPUT REGISTER

CONSOLE MESSAGE—NO CR AVAILABLE

ENTER PP RECALL
RELEASE PPU

REQUEST CHANNEL FOR CARD READER
READ STATUS NO ENTER PP RECALL
RELEASE CHANNEL RELEASE PPU
IS CARD READER READY ?
YES

ENTER FILE NAME READ IN CIRCULAR BUFFER
CALL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2RC OVERLAY

UPDATE FILE STATUS
UPDATE BUFFER STATUS
CALL 2TJ OVERLAY

ENTER JOB NAME IN CONTROL POINT AREA
DAYFILE MESSAGE —READ

ENTER JOB NAME IN CIRCULAR BUFFER AS FILE NAME
% CHANGE BUFFER STATUS FROM INPUT TO OUTPUT
CALL 2BP OVERLAY

l IS A FILE MARK REQUESTED ? }YES

NO

CALL 2WD OVERLAY
UPDATE FILE STATUS B) (NEXT PAGE)
UPDATE BUFFER STATUS

A-42

(ILJ CONTINUED)

®

ENTER FILE NAME READ IN CIRCULAR BUFFER
CAaLL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2RC OVERLAY

UPDATE FILE STATUS
UPDATE BUFFER STATUS No—e@
WAS A FILE MARK READ ?
YES

REQUEST MONITOR ASSIGN PP TIME TO CONTROL POINT
READ PP TIME AND CONVERT TO DECIMAL
DAYFILE MESSAGE —PP XXXX SEC.

ENTER JOB NAME IN BUFFER AS FILE NAME
CALL 2BP OVERLAY

REWIND FILE STATUS

ADD JOB PRIORITY TO FILE NAME

UPDATE FILE NAME AND STATUS IN FNT/FST
RELEASE FILE AS COMPLETED INPUT FILE

ENTER FILE NAME READ IN CIRCULAR BUFFER
CALL 2BP

rCLEAR FILE STATUS WORD TO NEW FILE IN FST

A-43

ILT PACKAGE
PHASE ONE TAPE LOAD

LDOES CONTROL POINT HAVE A JOB NAME ? ILYES
NO

ENTER CONTROL POINT NAME LOAD
REQUEST MONITOR ASSIGN FIELD LENGTH OF 100008

NO
READ RA AND FL RELEASE PPU

DOES FL=10000B ?

YES

ENTER BUFFER ADDRESS (O003) IN PPU INPUT REGISTER
CLEAR RA THRU RA +2
ENTER BUFFER PARAMETERS

CONSOLE MESSAGE —REQUEST TAPE |

PAUSE FOR MONITOR

READ RA YES = RELEASE PPU I
Is ERROR FLAG SET 7

NO

—&'I HAS OPERATOR ASSIGNED AN EQUIPMENT NUMBER ?
YES

ENTER EQUIPMENT NUMBER IN THIRD BYTE OF PPU INPUT REGISTER
CLEAR OPERATOR ASSIGNMENT IN CONTROL POINT AREA
CLEAR CONSOLE MESSAGE

ENTER FILE NAME TAPE (N CIRCULAR BUFFER
@——> REQUEST READ STATUS

CALL 2BP OVERLAY

ENTER E€QUIPMENT NUMBER IN FILE STATUS WORD
CALL 2RT OVERLAY

UPDATE BUFFER STATUS

UPDATE FILE STATUS

Lms A FILE MARK READ ?7 YES 7\{ RELEASE PPU I
NO

l CALL 2TJ OVERLAY

ENTER NEW JOB NAME IN CONTROL POINT AREA
DAYFILE MESSAGE —LOAD

{NEXT PAGE)
A-44

(ILT CONTINUED)

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER
CALL 2BP OVERLAY

1S A FILE MARK REQUESTED ?

YES

NO

FALL 2WD ovu-:m_ﬂ

UPDATE FILE STATUS

UPDATE BUFFER STATUS

ENTER FILE NAME TAPE IN CIRCULAR BUFFER
REQUEST READ STATUS
CALL 2BP OVERLAY

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2RT OVERLAY

UPDATE BUFFER STATUS

UPDATE FILE STATUS

—-————'&FWAS A FILE MARK READ ?

YES

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER
CaLL 2BP OVERLAY

REWIND FILE STATUS
ADD PRIORITY TO FILE NAME
RELEASE FILE AS INPUT FILE

ENTER FILE NAME TAPE IN CIRCULAR BUFFER
REQUEST READ STATUS

CALL 2BP OVERLAY

CLEAR FILE STATUS WORD TO NEW FILE

A-45

CLL PACKAGE
CENTRAL LiBRARY LOADER

READ RA AND FL FROM CONTROL POINT AREA
READ ARGUMENT AREA ADDRESS FROM PPU INPUT REGISTER
READ STARTING ADDRESS AND LIMIT ADDRESS

Is LIMIT ADDRESS GREATER THAN FIELD LENGTH ?

] YES
I

NO

Is NEXT ARGUMENT ADDRESS OVER FIELD LENGTH ?

1 YES
|

O

NO

READ NEXT ARGUMENT
IS ARGUMENT A BLANK WORD ?

YES

— RELEASE PPU ,

NO

SEARCH RSL FOR ARGUMENT NAME

IS PACKAGE IN RSL ?

YES

RELEASE PPU

CLEAR NEXT PROGRAM ADDRESS LOCATION
CLEAR FIRST ARGUMENT
REQUEST CENTRAL PROCESSOR

NO

SEARCH CLD FOR ARGUMENT NAME

IS PACKAGE IN CLD ?

YES

!

N
———g—l WILL PACKAGE EXCEED LIMIT ADDRESS ?—I

YES

[SET LIMIT FLAG IN ARGUMENT LOCATION]—}@

STORE INITIAL PROGRAM ADDRESS IN ARGUMENT LOCATION

COPY PROGRAM
ADVANCE PROGRAM ADDRESS

NO

NO

SEARCH FNT FOR ARGUMENT NAME
ASSIGNED TO THIS CONTROL POINT

IS PACKAGE IN FNT ?

YES

———ﬂ-l IS PACKAGE ON DISK FILE Q ?

YES

|

NO

STORE INITIAL PROGRAM ADDRESS IN ARGUMENT LOCATION

REQUEST CHANNEL O

POSITION DISK FILE TO BEGINNING OF PACKAGE
COPY PACKAGE UNTIL SHORT SECTOR OR LIMIT ADDRESS

WAS LIMIT ADDRESS REACHED

?

YES

RELEASE CHANNEL

SET LIMIT FLAG IN ARGUMENT LOCATION

A-46

RELEASE CHANNEL
ADVANCE PROGRAM ADDRESS

_YES

DMP PACKAGE
STORAGE DUMP

READ INITIAL AND TERMINAL ADDRESS FROM PPU INPUT REGISTER
[S TERMINAL ADDRESS LESS THAN INITIAL ADDRESS ?

YES DAYFILE MESSAGE —~ DMP ARG ERROR
ABORT CONTROL POINT

NO RELEASE PPU
[IS TERMINAL ADDRESS EQUAL TO INITIAL ADDRESS ? YES
NO
YES

‘ IS TERMINAL ADDRESS GREATER THAN FIELD LENGTH ?
NO

SEARCH FNT FOR OUTPUT FILE ASSIGNED TO THIS CONTROL POINT
IS THERE AN OUTPUT FILE ?

ENTER INITIAL AND TERMINAL ADDRESS FOR

EXCHANGE PACKAGE AT CONTROL POINT
MODIFY HEADLINE OF PPU BUFFER TO DMPX

NO QWNW
gzoueer:NT CHANNEL . NO RELEASE CHANNEL
EARCH FNT FOR A BLANK ENTRY > ReLzAsE PPU
IS THERE A BLANK ENTRY ?
YES
ENTER AN OUTPUT FILE IN THE FNT
RELEASE CHANNEL
REQUEST FST CHANNEL YES RELEASE CHANNEL
IS AN EQUIPMENT ASSIGNED TO THE OUTPUT FILE ? RELEASE PPU
NO
1S THE OUTPUT FILE BEING USED ? :YES
NO
SET FILE STATUS TO REQUEST CODED WRITE
RELEASE CHANNEL
PRESET PPU STORAGE BUFFER WITH TWO LINE SPACES AND DMP | YES REQUEST MONITOR ASSIGN DISK TRACK | YES ENTER TRACK NUMBER
[S OUTPUT FILE A NEW FILE ? WAS TRACK ASSIGNED ? IN FILE STATUS WORD

NO

] YES
J

NO

RELEASE FIiLE STATUS

I WAS LAST FILE REFERENCE IN READ MODE ?
NO

READ NEXT WORD TO BE DUMPED

A

RELEASE PPU

ENTER A LINE OF CODING IN PPU BUFFER CONSISTING OF A

6 DIGIT ADDRESS AND 4 FIVE DIGIT GROUPS OF DATA

HAS BUFFER LIMIT BEEN REACHED ?
NO

NO | ADVANCE DUMP ADDRESS

YES

[Ry ouwe PPU BUFFER |

HAS TERMINAL ADDRESS BEEN REACHED P
YES

[CLEAR NEXT WORD IN PPU BUFFERI

l RJ OUMP PPU BUFFER |

UPDATE FILE STATUS WORD IN FST
RELEASE PPU

A-47

DMP SUBROUTINE
DuMP PPU BUFFER

REQUEST CHANNEL O

RESET BUFFER OUTPUT ADDRESS

_‘—>| IS THERE SUFFICIENT DATA IN THE BUFFER

FOR A FULL SECTOR ? |

YES

NO

POSITION DISK TO NEXT SECTOR
WRITE FULL SECTOR
ADVANCE BUFFER OUTPUT ADDRESS

POSITION DISK TO NEXT SECTOR
WRITE SHORT SECTOR
WRITE FILE MARK

RELEASE CHANNEL
RESET BUFFER INPUT ADDRESS

EXIT

EXU PACKAGE
EXECUTE PROGRAM

READ RA AND FL FROM CONTROL POINT AREA | YES

IS ERROR FLAG SET ?

NO

READ ARGUMENT ADDRESS FROM PPU INPUT REGISTER
READ FILE NAME FROM ARGUMENT LOCATION NO

‘I RELEASE PPU]

SEARCH FNT FOR FILE NAME
1S NAMED FILE ASSIGNED TO THIS CONTROL POINT ?
YES

DAYFILE MESSAGE —PROGRAM NOT ON DISK
ABORT CONTROL POINT
RELEASE PPU

[IS AN EQUIPMENT NUMBER ASSIGNED ? {YES

NO

1 NO

HAS FILE BEEN USED ?
YES

REQUEST CHANNEL O

POSITION DISK FILE TO BEGINNING TRAGK AND SECTOR

READ DISK DATA TO A SHORT SECTOR OR FIELD LIMIT BEGINNING AT RA
WAS FL REACHED ?

YES

RELEASE CHANNEL
DAYFILE MESSAGE —PROGRAM TOO LONG

NO

RELEASE CHANNEL

CLEAR EXCHANGE AREA

SET P TO LOWER SIX BITS OF (RA+1) PLUS 3
ENTER FL IN AO

CLEAR RA AND RA+t

REQUEST CENTRAL PROCESSOR
RELEASE PPU

A-49

ABORT CONTROL POINT
RELEASE PPU

LBC PACKAGE
LOAD BINARY CORRECTIONS

READ RA AND FL FROM CONTROL POINT AREA

READ INITIAL DATA ENTRY ADDRESS FROM PPU INPUT REGISTER

SEARCH FNT FOR INPUT FILE
IS INPUT FILE ASSIGNED TO THIS CONTROL POINT ?

NO

YES

REQUEST FST CHANNEL

YES

% RELEASE PPU l

READ FILE STATUS WORD
IS AN EQUIPMENT NUMBER ASSIGNED ?
NO

RELEASE CHANNEL

I IS FILE BEING USED ? ILYES
NO

SET FILE STATUS WORD TO ACTIVE STATE
RELEASE FST CHANNEL

REQUEST CHANNEL. O NO

RELEASE PPU

HAS FILE BEEN USED ?
YES

POSITION DISK FILE TO NEXT TRACK AND SECTOR
READ SECTOR TO PPU STORAGE

WAS SECTOR A FILE MARK ?

YES

UPDATE FILE STATUS WORD

NO

ADVANCE FILE STATUS TO NEXT SECTOR YES

RELEASE CHANNEL O
RELEASE PPU

WILL DATA EXCEED FIELD LENGTH ?
NO

NO STORE DATA IN CENTRAL STORAGE

ADVANCE DATA ADDRESS
WAS SECTOR A SHORT SECTOR ?

YES

UPDATE FILE STATUS
RELEASE CHANNEL O
RELEASE PPU

A-50

DAYFILE MESSAGE —LBC RANGE LIMIT
UPDATE FILE STATUS

RELEASE CHANNEL O

ABORT CONTROL POINT

RELEASE PPU

LOC PACKAGE
LOAD OCTAL CORRECTIONS

READ RA AND FL FROM CONTROL POINT AREA
READ ARGUMENTS FROM PPU INPUT REGISTER
IS FIRST ARGUMENT GREATER THAN SECOND ARGUMENT ?

YES

NO

YES
| ARE ARGUMENTS EQUAL ?

NO

YES
IS SECOND ARGUMENT GREATER THAN FIELD LENGTH ? }————%

NO

CLEAR CENTRAL STORAGE FROM FIRST ARGUMENT
ADDRESS TO SECOND ARGUMENT ADORESS

SEARCH FNT FOR AN INPUT FiLE

Is THERE AN INPUT FILE ASSIGNED TO THIS CONTROL POINT ?

NO

DAYFILE MESSAGE-LOC ARGUMENT ERROR
ABORT CONTROL POINT
RELEASE PPV

RELEASE PPU
> reesse eeu |

YES

REQUEST FST CHANNEL YES

™ RELEASE FST CHANNEL

READ FILE STATUS WORD
I5 AN EQUIPMENT NUMBER ASSIGNED ?

NO

] YES

>

IS THE INPUT FILE BEING USED ? n
NO

RESERVE FILE
RELEASE FST CHANNEL

REQUEST CHANNEL O NO

HAS FILE BEEN USED ?
YES

YES | POSITION DISK FILE TO NEXT SECTOR

RELEASE FILE STATUS
RELEASE CHANNEL O
RELEASE PPU

UPDATE FILE 8TATUS
RELEASE CHANNEL O

READ SECTOR TO PPU BUFFER
WAS A FILE MARK READ ?
NO
YES
| 13 PPU suFFER FULL 7 | >
NO
NO
————L WAS A SHORT SECTOR READ ?
YES
RELEASE FILE STATUS |
“1

RELEASE CHANNEL O

A-51

NO
Is PPU BUFFER EMPTY ? I——)@ (NEXT PAGE)

YES

l RELEASE PPU I

(LOC CONTINUED)

[CLEAR LINE BUFFER I

Né HAS END OF BUFFER DATA BEEN REACHED ? —I

YES

S
l WAS LAST SECTOR A SHORT SECTOR ? }i
NO

REQUEST CHANNEL O
RESET PPU BUFFER ADDRESS

YES | POSITION DISK FILE TO NEXT SECTOR
READ SECTOR TO PPU BUFFER
WAS A FILE MARK READ ?

NO

UPDATE FILE STATUS

YES
[Is PPU BUFFER FULL ?F

NO
NO
—[WAS A SHORT SECTOR READ ?—I
YES

RELEASE FILE STATUS

RELEASE CHANNEL O

RELEASE CHANNEL O

ﬁ‘llliPPu BUFFER EMPTY ?

NO

wPACK NEXT WORD INTO LINE BUFFER }Q

I YES
HAS LINE BUFFER LIMIT BEEN REACHED T'_—

NO

4]
“N—I;DOES LAST WORD END IN A BLANK BYTE ? —]

YES

ASSEMBLE OCTAL DIGITS IN FIRST SIX CHARACTER POSITIONS OF LINE v

ES

SKIP SPACES
IS THERE A NON- OCTAL CHARACTER IN FIRST SiX POSITIONS ?

NO

STORE ASSEMBLED ADDRESS FOR DATA ENTRY
ASSEMBLE 20 OCTAL DIGITS BEGINNING IN POSITION 7 OF LINE BUFFER

YES

SKIP SPACES
IS THERE A NON - OCTAL CHARACTER BEFORE 20 DiGITs ?

NO

YES
[IS ASSEMBLED ADDRESS GREATER THAN FIELD LENGTHT{—
NO

l ENTER ASSEMBLED WORD AT ASSEMBLED ADDRESS]

A-52

YES

RELEASE PPU

MSG PACKAGE
DAYFILE MESSAGE

DAYFILE MESSAGE - MESSAGE FORMAT ERROR
ABORT CONTROL POINT
RELEASE PPU

READ ARGUMENT ADDRESS FROM PPU INPUT REGISTER YES
READ F{ELD LENGTH FROM CONTROL POINT AREA

IS AGRUMENT ADDRESS GREATER THAN FIELD LENGTH ?
' NO

COPY MESSAGE FROM ARGUMENT AREA TO PPU MESSAGE BUFFER | YES
ARE THERE ANY ILLEGAL CHARACTER CODES ?

NO

DAYFILE MESSAGE - MESSAGE LIMIT

YES
DOES MESSAGE LENGTH EXCEED BUFFER LENGTH ? }——> ABORT CONTROL POINT
RELEASE PPU

NO

RELEASE MESSAGE TO DAYFILE
RELEASE PPU

A-53

NO

PBC PACKAGE
PUNCH BINARY CARDS

READ INITIAL AND TERMINAL ADDRESSES FROM PPU INPUT REGISTER
IS TERMINAL ADDRESS 400008 OR GREATER ?

YES

SUBTRACT 40000B FROM TERMINAL ADDRESS AND ENTER AS INITIAL ADDRESS
READ LOWER 18 BITS FROM THIS STORAGE LOCATION AND ADD TO NEW

INITIAL ADDRESS TO FORM NEW TERMINAL ADDRESS
ARE NEW INITIAL AND TERMINAL ADDRESSES EQUAL ?

YES

-ﬁal IS INITIAL ADDRESS GREATER
h—&Lls INITIAL ADDRESS EQUAL

READ LOWER 18 BITS OF (RA) AND ENTER AS TERMINAL ADDRESS
IS TERMINAL ADDRESS ZERO ?

NO

THAN TERMINAL ADDRESS ?

7|J RELEASE PPU I

NO

TO TERMINAL ADDRESS ?j

YES

| YES
|

YES

NO

LCLEAR INITIAL ADDRESS TO ZERO 1

REQUEST MONITOR ASSIGN CP

WAS EQUIPMENT ASSIGNED ?

NO

EQUIPMENT TO CONTROL POINT

YES

CLEAR CARD COUNT

MODIFY PACKAGE FOR EQUIPMENT PARAMETERS

PAUSE FOR MONITOR

READ RA AND FL

NO

YES RELEASE PPU
IS ERROR FLAG SET ?

CONSOLE MESSAGE~NO CP AVAILABLE
PAUSE FOR MONITOR

READ RA AND FL

Is ERROR FLAG SET P

NO

YES S ReLease PPU

—m-llS TERMINAL ADDRESS GREATER THAN FIELD LENGTH ?]

YES

DAYFILE MESSAGE —PBC RANGE ERROR
ABORT CONTROL POINT
RELEASE PPU

IS TERMINAL ADDRESS GREATER THAN FIELD LENGTH ? }iES

\LNO

LOAD PPU PUNCH BUFFER WITH DATA FOR NEXT CARD
STORE CARD LENGTH AND 7—9 PUNCH IN COLUMN ONE
STORE MOD 4095 CHECK SUM IN COLUMN TWO

STORE CARD NUMBER IN COLUMN 80

NO

REQUEST CHANNEL FOR CARD PUNCH]

READ PUNCH STATUS NO

1S PUNCH READY ?
YES

PUNCH ONE CARD

RELEASE CHANNEL
HAS TERMINAL ADDRESS BEEN REACHED ?

iYES

REQUEST MONITOR RELEASE CARD PUNCH
RELEASE PPU

A-54

—>] ConsoLE MESSAGE —PUNCH NOT READY |

MTR PACKAGE
SYSTEM MONITOR

ASSIGN DISK FILE O TRACK FOR DAYFILE
ENTER DAYFILE STATUS IN FST
EXCHANGE JUMP TO IDLE ROUTINE J
\ﬁcj ADVANCE CLOCK I
READ PPU | OUTPUT REGISTER NO
1S REGISTER EMPTY 7 ,|*| RJ PROCESS PPU MESSAGE]
YES
READ PPU 2 OUTPUT REGISTER
Is REGISTER EMPTY ? NO }"lr RJ PROCESS PPU MESSAGEJ
YES
READ PPU 3 OUTPUT REGISTER
IS REGISTER EMPTY ? NO *Jl RJ PROCESS PPU MESSAGEJ
YES
READ PPU 4 OUTPUT REGISTER
IS REGISTER EMPTY ? NO >'l RJ PROCESS PPU MESSAGE]
YES
READ PPU 5 OUTPUT REGISTER
IS REGISTER EMPTY ? NO >{ Ry PRocESS PPU MESSAGE J
YES
READ PPU 6 OUTPUT REGISTER
IS REGISTER EMPTY ? NO \|,‘ RJ PROCESS PPU MessAeEJ
YES
READ PPU 7 OUTPUT REGISTER
1S REGISTER EMPTY ? NO %1,7 RJ PROCESS PPU MESSAGE |
YES
READ PPU 8 OUTPUT REGISTER .
IS REGISTER EMPTY ? NO ,lJ RJ PROCESS PPU MESSAGE l
YES
READ PPU 9 OUTPUT REGISTER
15 REGISTER EMPTY ? NO >1I RJ PROCESS PPU MESSAGE |
YES
READ PPU O OUTPUT REGISTER
1S REGISTER EMPTY ? NO \{ RJ PROCESS PPU MESSAGEJ
YES
rIS CENTRAL PROCESSOR ASSIGNED TO A CONTROL POINT ? WO (C)
YES
{NEXT PAGE)
READ (RA+1) FOR CONTROL POINT YES
IS WORD CLEARED ?
NO
rRJ PROCESS PP CALL ‘f B

A-55 (NEXT PAGE)

(MTR PACKAGE CONTINUED)

®

IS SIMULATOR OPERATING ? YES READ P FROM SIMULATOR

NO

[READ P FROM CENTRAL PROCESSOR]

NO Is P=0 ? e
YES

I RJ SET ERROR FLAG 2

(:) ;l IS A PPU AVAILABLE FOR ASSIGNMENT ? HRJ SEARCH FOR FREE PPU‘I

YES

| RJ ADVANCE CPU JOB STATUS 'I<

US DUMP FLAG SET ? ‘i—IEs_-%L RJ DUMP DAYFILE NEXT PHASE I

NO

B

MTR SUBROUTINE

~<
ADVANCE CLOCK . ., L,p\
CD‘Q?\;: Y

READ CURRENT CLOCK VALUE NO EXIT
HAS NEXT MILLISECOND BEEN REACHED ?
YES

0000.0 = |7$°8

ADVANCE CLOCK PHASE TO NEXT MILLISECOND
ADVANCE MILLISECOND COUNT
HAS COUNT REACHED 1000 MILLISECONDS ?

YES

NO

ADVANCE SECOND COUNT
UPDATE DATE LINE ONE SECOND IN DISPLAY CODE

A-56

MTR SUBROUTINE
PROCESS PPU MESSAGE

IS MONITOR IN

NO

READ FUNCTION FROM REQUESTING
PPU OUTPUT REGISTER
RJ TO CORRESPONDING MTR SUBROUTINE

YES l
STEP MODE ? I————?'isET WAIT STEP FLAG AT CENTRAL AODRESS 00I4

RJ ADVANCE CLOCK

NO
—-ITAS OPERATOR STEPPED MONITOR ? j

YES

[RJ ADVANCE CLOCK l

l ExiT I

l CLEAR STEP FLAG]

MTR FUNCTION

PROCESS DAYFILE MESSAGE

ol

f IS DUMP FLAG SET P }YES >|| EXIT '

NO

[COPY MESSAGE FROM PPU MESSAGE BUFFER TO CONTROL POINT AREA ‘

NO

ENTER TIME IN DAYFILE BUFFER
ENTER JOB NAME IN DAYFILE BU
COPY MESSAGE FROM PPU MESS

FFER
AGE BUFFER TO DAYFILE BUFFER

CLEAR PPU OUTPUT REGISTER
DOES DAYFILE BUFFER CONTAIN A

FULL DISK SECTOR OF DATA ?

YES

[SET PHASE ONE DUMP FLAG J

MTR FUNCTION 02
REQUEST CHANNEL

READ CHANNEL STATUS TABLE YES
IS REQUESTED CHANNEL BUSY ?

NO

ExitT

ASSIGN CHANNEL TO REQUESTING PPU
UPDATE CHANNEL STATUS TABLE
CLEAR PPU OUTPUT REGISTER

MTR FUNCTION 03
DROP CHANNEL

READ CHANNEL STATUS TABLE

CLEAR REQUESTED CHANNEL ASSIGNMENT
UPDATE CHANNEL STATUS TABLE

EXIT

MTR FUNCTION 04
ASSIGN PP TIME

READ STARTING TIME FOR REQUESTING PPU

SUBTRACT FROM CURRENT TIME IN SECONDS AND MILLISECONDS
ADD TO ACCUMULATED TIME CHARGE IN CONTROL POINT AREA
STORE NEW PPU STARTING TIME

CLEAR PPU OUTPUT REGISTER

EXIT

MTR FUNCTION 05
MONITOR STEP CONTROL

SET MONITOR STEP CONTROL FLAG
CLEAR PPU OUTPUT REGISTER

EXiT
MTR FUNCTION 06
REQUEST DISK TRACK
CLEAR WOR F PPU M FFER
SEARCH REQUESTED TRT FOR AN UNASSIGNED TRACK NO CLEAR ;‘PRLSJTOU'?PSTOREMSTERESSAGE 8y
IS THERE ‘A TRACK AVAILABLE ?
ExiT
YES
ENTER TRACK NUMBER IN PPU MESSAGE BUFFER
UPDATE TRT FOR ASSIGNED TRACK NO I € I
CLEAR PPU OUTPUT REGISTER XiT
IS TRACK ON DISK FILE O ?
YES
ADVANCE TRACK COUNT IN CONTROL POINT AREA YES -
HAS TRACK LIMIT BEEN REACHED ? “1 RJ SET ERROR FLAQ 7

NO

[exr e

MTR FUNCTION O7
DROP DISK TRACK

CLEAR TRACK ASSIGNMENT IN REQUESTED TRT
REDUCE TRACK COUNT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

EXIT

A-59

MTR FUNCTION {0
REQUEST STORAGE

YES NO CLEAR PPU OUTPUT REGISTER
1S STORAGE MOVE FLAG snﬂ-—)‘ IS FLAG FOR REQUESTING PPU 7]——————) EXIT

NO YES

SET STORAGE MOVE FLAG FOR REQUESTING PPU

[IS REQUESTED STORAGE AN INCREASE ? } NO
YES
YES SET MOVE FLAGS IN ALL CONTROL POINTS
| e
[IS THERE ROOM FOR THE STORAGE INCREASE AFTER REQUESTING CONTROL POINT
NO

YE!
CLEAR STORAGE MOVE FLAG Fs THERE ANY PPU ACTIVITY AT CONTROL POINTS WITH MOVE FLAGS ? S

CLEAR PPU OUTPUT REGISTER
EXIT No

EXCHANGE ALL RUNNING CPU PROGRAMS IN CP STACK AND SET W FLAGS
EXCHANGE JUMP TO STORAGE MOVE PROGRAM WITH PROPER PARAMETERS
SENSE P=0 FOR END OF STORAGE MOVE PROGRAM

L—— NO >
I 1s P=0? [~] RdJ ADVANCE CLOCK
L

UPDATE RA AND FL IN EACH EXCHANGE PACKAGE
CLEAR STORAGE MOVE FLAGS

[RJ SEARCH FOR CP PRIORITY

CLEAR PPU OQUTPUT REGISTER
EXiT

A-60

MTR FUNCTION i
COMPLETE DAYFILE

l IS A DUMP FLAG SET ? ?iES ﬁ\ll EXiT ,

NO

CLEAR COMPLETE DAYFILE FLAG

YE
1 IS THE COMPLETE DAYFILE FLAG SET ?‘}———s——é CLEAR PPU OUTPUT REGISTER

NO EXIT

EXiT

SET COMPLETE DAYFILE FLAG
SET DUMP FLAG PHASE ONE

MTR FUNCTION (2
RELEASE PPU

CLEAR PPU ASSIGNMENT AT CONTROL POINT
COMPUTE PPU RUNNING TIME AND ADD TO ACCUMULATED PP TIME

UPDATE PPU STARTING TIME

CLEAR PPU INPUT REGISTER
CLEAR PPU OUTPUT REGISTER
EXIT

MTR FUNCTION 13
ABORT CONTROL POINT

CLEAR PPU ASSIGNMENT AT CONTROL POINT
COMPUTE PPU RUNNING TIME AND ADD TO ACCUMULATED PP TIME
UPDATE PPU STARTING TIME

SET ERROR FLAG 3

CLEAR PPU INPUT REGISTER
CLEAR PPU OUTPUT REGISTER
ExXIT

A-61

MTR FUNCTION |4
ENTER NEW TIME LiMIT

ENTER NEW TIME LIMIT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION 15
REQUEST CENTRAL PROCESSOR

YES
R FLA T?]
IS AN ERROR FLAG SET ¢ I

NO

YES CLEAR PPU OUTPUT REGISTER
DOES (RA + 1) CONTAIN END ? l————> EXIT

NO

YES
l IS CONTROL POINT LISTED iN CPU STACK ? |[

NO

SET W FLAG FOR CONTROL POINT
RJ SEARCH FOR CP PRIORITY
CLEAR PPU OUTPUT REGISTER
ExiT

MTR FUNCTION 16
RELEASE CENTRAL PROCESSOR

CLEAR W AND X FLAGS AT CONTROL POINT

NO
IS CONTROL POINT LISTED IN STACK ? I_—-_é CLEAR PPU OUTPUT REGISTER

YES ExIT
RJ SEARCH FOR CP PRIORITY
EXCHANGE RUNNING PROGRAM AND PUSH uP STACK | YES RJ ADVANCE CLOCK
WAS REQUESTING CONTROL POINT EXCHANGED ? CLEAR PPU OUTPUT REGISTER
NO ExiT

—-l SET W FLAG FOR EXCHANGED CONTROL POINT l

MTR FUNCTION 17
PAUSE FOR STORAGE RELOCATION

YES
IS MOVE FLAG SET FOR CONTROL POINT ?H ExiT I

NO

CLEAR PvF‘U OUTPUT REGISTER
exit

MTR FUNCTION 20
REQUEST PPU

NO
r IS THERE A PPU AVAILABLE ? JI

YES

CLEAR PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER
EXiT

ENTER FIRST WORD OF MESSAGE BUFFER IN PPU INPUT REGISTER
ASSIGN PPU TO CONTROL POINT

ASSIGN PPU IDLE TIME TO CONTROL POINT ZERO

URDATE PPU STARTING TIME

ENTER NEW PPU INPUT REGISTER ADDRESS IN FIRST BYTE OF REQUESTING PPU MESSAGE BUFFER
CLEAR PPU OUTPUT REGISTER

RJ SEARCH FOR FREE PPU

ExIT

MTR FUNCTION 2|
RECALL CPU

] YES
LIS AN ERROR FLAG SET ? [
NO
NO CLEAR PPU OUTPUT REGISTER
Is THE X FLAG SET 7 | ExiT

YES

YES
I IS REQUESTING CONTROL POINT IN CPU STACK? =

NO

SET W FLAG

CLEAR X FLAG

RJ SEARCH FOR CP PRIORITY
CLEAR PPU OUTPUT REGISTER
ExIT

A-63

MTR FUNCTION 22
REQUEST EQUIPMENT

—] NO

Is REQUEST A NUMBER ?)
YES

ﬂ| IS CORRESPONDING EQUIPMENT BUSY ?]
YES

CLEAR PPU MESSAGE BUFFER NO

CLEAR PPU OUTPUT REGISTER
ExIT

SEARCH EST FOR AN EQUIPMENT OF REQUESTED TYPE
Is THERE A PROPER TYPE FREE ?

YES

YES
IS EQUIPMENT A DISK FILE ? |'———_

NO

-—ﬁl IS EQUIPMENT A DISK FILE ? —l&——%

ASSIGN EQUIPMENT TO CONTROL POINT
SET EQUIPMENT ASSIGNMENT IN CONTROL POINT AREA

YES

ENTER EQUIPMENT NUMBER IN PPU MESSAGE BUFFER
CLEAR PPU QUTPUT REGISTER
ExiT

MTR FUNCTION 23
RELEASE EQUIPMENT

RELEASE EQUIPMENT ASSIGNMENT IN EST

CLEAR EQUIPMENT ASSIGNMENT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

ExiT

MTR FUNCTION 24
REQUEST PRIORITY

ENTER NEW PRIORITY IN CONTROL POINT AREA
RJ SEARCH FOR CP PRIORITY

CLEAR PPU OUTPUT REGISTER

ExIT

A-64

MTR FUNCTION 25
REQUEST EXIT MODE

N
IS CONTROL POINT IN CPU STACK 7}———%| CLEAR W FLAG AND X FLAG FOR CONTROL POINT—,—~

0

YES

PUSH UP CPU STACK

EXCHANGE CURRENT CPU PROGRAM

NO

———‘I SET W FLAG FOR EXCHANGED CONTROL

POINT

MTR FUNCTION 27
TOGGLE SIMULATOR STATUS

1S THERE A PPU AVAILABLE ? | NO

YE
| WAS REQUESTING CONTROL POINT EXCHANGED ? l‘—i—'———al RJ SEARCH FOR CP PRIORITY j

RJ ADVANCE CLOCK

ENTER NEW EXIT MODE IN EXCHANGE PACKAGE
CLEAR PPU OUTPUT REGISTER
EXIT

|
YES

RESET EXCHANGE AREA FOR IDLE PROGRAM
I> SIMULATOR CURRENTLY OPERATING 7

YES

/{ EXIT

EXCHANGE SIMULATOR TO {DLE PROGRAM

NO

EXCHANGE TO IDLE PROGRAM
ENTER SIMULATOR CALL IN PPU INPUT REGISTER
RJ SEARCH FOR FREE PPU

MODIFY MONITOR PROGRAM TO TOGGLE ALL SIMULATOR REFERENCES
SET MONITOR FLAG
CLEAR PPU OQUTPUT REGISTER

ExIT

CLEAR INPUT REGISTER FOR SIMULATOR PPU
WAIT FOR SIMULATOR TO FINISH

EXCHANGE CPU TO IDLE PROGRAM

MODIFY MONITOR PROGRAM TO TOGGLE SIMULATOR REFERENCES
CLEAR MONITOR FLAG

CLEAR PPU OUTPUT REGISTER

ExiT

MTR FUNCTION 30
OPERATOR DROP

RJ SET ERROR FLAG 6
CLEAR PPU OUTPUT REGISTER
EXIT

MTR FUNCTION 3
READY TAPE

MODIFY EST ENTRY TO CLEAR EQUIPMENT LOCKOUT BIT
CLEAR PPU OUTPUT REGISTER
EXiT

MTR FUNCTION 32
DROP TAPE

MODIFY EST ENTRY TO SET EQUIPMENT LOCKOUT BIT
CLEAR PPU QUTPUT REGISTER
EXIT

MTR FUNCTION 33
ASSIGN EQUIPMENT

READ EST ENTRY YES

IS EQUIPMENT ALREADY ASSIGNED ?
NO

ENTER EQUIPMENT NUMBER IN CONTROL POINT AREA AS OPERATOR ASSIGNMENT | YES

IS EQUIPMENT A DISK FILE ?

NO

ASSIGN EQUIPMENT TO CONTROL POINT

SET EQUIPMENT ASSIGNMENT BIT IN CONTROL POINT AREA
CLEAR PPU OUTPUT REGISTER

EXiT

A-66

CLEAR PPU OUTPUT REGISTER
EXIT

MTR SUBROUTINE
RJ PROCESS PP CALL

EXCHANGE CURRENT CPU PROGRAM

E.
DOES (RA+1) CONTAIN END ? li———:- PUSH UP CPU STACK

NO EXIT

EXCHANGE CURRENT CPU PROGRAM
PUSH UP CPU STACK

[DOES (RA+I) CONTAIN RCL ? YES SET X FLAG AT CONTROL POINT
NO CLEAR (RA+1)
EXIT
DOES (RA+|) CONTAIN ABT 2?2 | ES RJ SET ERROR FLAG 4
j| EXIT
NO

IS THERE A PPU AVAILABLE ? } NO HJ ExiT |

YES

IS FIRST CHARACTER IN PP CALL A LETTER ?]—Ng——e z: TSET ERROR FLAG 5
{

YES

ENTER PP CALL IN PPU INPUT REGISTER

ASSIGN PPU TO CONTROL POINT

ASSIGN PPU {DLE TIME TO CONTROL POINT ZERO
UPDATE PPU STARTING TIME

RJ SEARCH FOR FREE PPU
CLEAR (RA+1)
EXIT

A-67

MTR SUBROUTINE
RJ SET ERROR FLAG

STORE ERROR EXIT FLAG NUMBER IN CONTROL POINT AREA
(1) = TIME LIMIT
(2) = ARITH ERROR
(3) = PPU ABORT
(4) = CPU ABORT
(5) = PP CALL ERROR
(6) = OPERATOR DROP
(7)= DISK TRACK LIMIT

[IS CONTROL POINT IN CPU STACK ? I NO >] CLEAR W FLAG AND X FLAG H@

YES

EXCHANGE CURRENT CPU PROGRAM YES

>

PUSH UP CPU STACK
WAS THE CONTROL POINT EXCHANGED ?

NO

—'I SET W FLAG FOR EXCHANGED CONTROL POINT

MTR SUBROUTINE
RJ SEARCH FOR FREE PPU

RJ SEARCH FOR CP PRIORITY
RJ ADVANCE CLOCK

SEARCH PPU NUMBERS ONE THROUGH EIGHT FOR AN EMPTY INPUT REGISTER
1S THERE A FREE PPU ?

NO CLEAR NEXT PPU INPUT REGISTER ADDRESS

YES

STORE PPU INPUT REGISTER ADDRESS FOR NEXT ASSIGNMENT
EXIT

A-68

ExIT

_-———9] 1S A PPU AVAILABLE ? ,|<

MTR SUBROUTINE
RJ ADVANCE CPU J0B STATUS

;1%

L ore st 1o

1N
LHAS 64 MILLISECONDS ELAPSED SINCE LAST REFERENCE ¢ o

YES

__NO_{ HAS ONE SECOND ELAPSED SINCE LAST SECOND ADVANCE ? _]

EXIT I

/

YES
ADVANCE SECOND COUNT NO
IS CPU IN IDLE PROGRAM ?

YES

ADD.TIME INCREMENT TO CONTROL POINT CPU ACCUMULATED TIME
HAS TIME LIMIT BEEN REACHED ?

J NO YES

v

[

YES | NO

| RJ SET ERROR FLAG | _I

|

MODIFY SUBROUTINE TO ADVANCE TO
DOES CONTROL POINT HAVE A JOB NAME ?

NEXT CONTROL POINT (MODULUS 7) | NO

EXIT

YES

[IS THE RECALL FLAG (X) SET FOR THE CONTROL POINT ?‘I YES

o]

NO

ﬂ' IS PP RECALL WORD FILLED AT CONTROL POINT ?

YES

ASSIGN PPU TO PP RECALL FUNCTION

CLEAR PP RECALL WORD AT CONTROL POINT
ASSIGN PPU TO CONTROL POINT

SET PPU ASSIGNMENT BIT IN CONTROL POINT AREA
ASSIGN PPU IDLE TIME TO CONTROL POINT ZERO
UPDATE PPU STARTING TIME

RJ SEARCH FOR FREE PPU] A-0%

‘% IS THERE ANY ACTIVITY AT THE CONTROL POINT ?

RJ SEARCH FOR CP PRIORITY

NO

[IS THE STORAGE MOVE FLAG SET ?
NO

l IS THE CONTROL POINT LISTED IN THE CPU STACK ?

SET W FLAG
I|< CLEAR X FLAG
7 YES
|
] YES
|
1 YES
J

g
)

NO

ENTER IAJ IN PPU INPUT REGISTER

ASSIGN PPU TO CONTROL POINT

SET PPU ASSIGNMENT B{T IN CONTROL POINT AREA
ASSIGN PPU IDLE TIME TO CONTROL POINT ZERO
UPDATE PPU STARTING TIME

RJ SEARCH FOR FREE PPU

EXIT I

MTR SUBROUTINE
RJ SEARCH FOR CP PRIORITY

[PRESET CONTROL POINT SEARCH INDEX TO CONTROL POINT ONE

READ CONTROL POINT STATUS YES
Is W FLAG SET ?

NO

NO | ADVANCE CONTROL POINT SEARCH ADDRESS é—-————INo IS CONTROL POINT PRIORITY HIGHER THAN PRIORITY OF CURRENT CPU PROGRAM 7
WAS THIS THE LAST CONTROL POINT ?
YES

YES

ASSIGN ACCUMULATED CPU TIME TO CURRENT CPU PROGRAM

E PUSH DOWN CPU STACK

EXCHANGE JUMP TO NEW CONTROL POINT

CLEAR W FLAG AT NEW CONTROL POINT
ExIT

MTR SUBROUTINE
RJ OUMP DAYFILE PHASE ONE

ENTER REQUEST CHANNEL O IN MONITOR PPU OUTPUT REGISTER
SET PHASE TWO DUMP FLAG

ExXIT
MTR SUBROUTINE
RJ DUMP DAYFILE PHASE TWO
y NO
1S MONITOR PPU OUTPUT REGISTER CLEAR ? -

YES

POSITION CHANNEL O DISK FILE TO NEXT DAYFILE TRACK
SET PHASE THREE DUMP FLAG
ExiT

A-70

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE THREE

READ CHANNEL O DISK FILE STATUS NO
IS DISK POSITIONED TO WRITE NEXT DAYFILE SECTOR 7
YES
WRITE A SHORT SECTOR ON DISK FILE
[DOES DAYFILE BUFFER CONTAIN A FULL SECTOR OF DATA ? ‘! NO DO NOT UPDATE DAYFILE BUFFER PARAMETERS
YES DO NOT ADVANCE DAYFILE SECTOR
WRITE ONE SECTOR ON DISK FILE NO
NO { UPDATE DAYFiLE BUFFER PARAMETERS l 1S THERE A SPARE DISK TRACK ASSIGNED ? }—————1
ADVANCE DAYFILE SECTOR NUMBER YES
WAS THIS THE LAST SECTOR ON THIS TRACK ?
YES

ENTER RELEASE CHANNEL O IN MONITOR PPU OUTPUT REGISTER
SET PHASE SiIX DUMP FLAG

NO
l IS A SPARE TRACK AVAILABLE ? STOP PPU EXiT

ASSIGN FIRST SECTO
CLEAR SPARE TRACK

YES
R OF SPARE TRACK ENTER RELEASE CHANNEL O IN MONITOR PPU OUTPUT REGISTER
INDICATOR SET PHASE FOUR DUMP FLAG

EXIT

EXIT

SET PHASE TWO DUMP FLAG

MTR SUBROUTINE
RJ DUMP DAYFILE PHASE FOUR

NO
1S MONITOR PPU OUTPUT REGISTER EMPTY ?

YES

ENTER REQUEST DISK TRACK IN MONITOR PPU OUTPUT REGISTER
SET PHASE FIVE DUMP FLAG
ExiT

MTR SUBROUTINE
RJ DUMP. DAYFILE PHASE FIVE

1S MONITOR PPU OUTPUT REGISTER EMPTY ? } NO >l| EXIT l
YES

l IS MESSAGE BUFFER EMPTY ? MSET SPARE DISK TRACK INDICATOR

YES

CLEAR DUMP FLAG

EXiT
MTR SUBROUTINE
RJ DUMP DAYFILE PHASE SIX
NO
IS MONITOR PPU OUTPUT REGISTER EMPTY ?

YES

- CLEAR DUMP FLAG
EXIT

A-72

APPENDIX B

I/0 SUBROUTINE FLOW CHARTS

BACKSP

YES
X6 >0 ? X6 1S ADDRESS OF PARAMETER LIST l——*-‘

NO

I COMPLEMENT X6 |

NO VARIABLE TAPE NO. 7)

YES

resneame "TAPE XX" l

N TR D L @

YES

YES
BUFFER ACTIVE?)

NO

‘ FILE BEEN REFERENCED ? NO

YES

(Y
WAS PREVIOUS FUNCTION WRITE + NO END OF RECORD? ES SEND END OF RECORD FUNCTION l

NO

SEND BACKSPACE FUNCTION l,(

exiT

! REWINM

ENTRY

YES , e
‘ X6>07? = X6 IS ADDRESS OF PARAMETER LIST }—

NO

)

S

I COMPLEMENT X6

NO

YES

I GENERATE "“TAPE XX"

NO
> (s e e w 170 cer 7)

’\J‘

YES

NO

(FILE BEEN REFERENCED ?

YES
YES
(IS THERE DATA IN BUFFER WRITE MODE AND NO E.O.R. ? }———9[SEND END OF RECORD FUNCTION TO EMPTY BUFFER
NO

I SEND REWIND FUNCTION J|<

EXIT

ENDFIL

V4

X6 >07 YES X6 iS ADDRESS OF PARAMETER LIST }———

NO

i COMPLEMENT X6 I

NO
VARIABLE TAPE NO. ?)

YES

GENERATE “TAPE XX" |

NO
—>CIS FILE NAME IN 1/0 LIST ? > REQUEST ABORT @

YES

e

YES
1s BUFFER ACTIVE ?
NO

rREouEsT E.O.F FUNCTION |

{ Exit

INPUTB

SEND REQUEST FOR NEXT READ }—“_

NO
YES
END OF FILE ? SKIP TO END OF LOGICAL RECORD

NO

YES
Wwas E.OR. FUNCTION FOUND ON INPUT ?)é—————-

ARRAY | YES

TRANSM!IT DATA TO PROGRAM

IS FILE NAME IN THE
LIST OF I/0 NAMES
N NO YES
B2>07 o COMPLEMENT B2 f)i MO?NS;G:'f'ZA';T cHaRACTER ") STARTING AT RELATIVE |
YES FILE NAME - J LOCATION 000002 oF
YES THE PROGRAM ?
NO

LSAVE ADDRESS OF CIO PARAMETER LIST Ie————@ . l GENERATE "TAPE XX" l_

[SEND ERROR MESSAGE I

YES N
BUFFER ACTIVE 7

NO I REQUEST PROGRAM ABORT]
NO
NO
(WAS PREVIOUS FUNCTION WRITE MODE ?HDA‘TA IN BUFFER AND WRITE MODE ?)
YES YES

STopP

SEND E.O.R. REQUEST TO EMPTY BUFFER]

EXIT

QUTPTB

ExiT

SEND E.O.R. FUNCTION

TRANSMIT DATA TO
CIRCULAR BUFFER

NO
YES

"l COMPLEMENT B2 l

YES

() 5 SAVE ADDRESS OF CIO
PARAMETER LIST

YES BUFFER ACTIVE ?)

NO

ES
(WAS LAST FUNCTION WRITE ?JLH

TRANSMIT E.0.R. TO
EMPTY BUFFER

NO

ExiT

I:EARCH FOR FILE NAME j

(FILE NAME FOUND 7

NO

’ SEND ABORT REQUEST l

SToP

YES

APPENDIX C

SIM FLOW CHARTS

Sim
CPU SIMULATOR

READ PPU INPUT REGISTER TO GET ADDRESS
OF Q REGISTER AND EXCHANGE JUMP TRIGGER

— .\ YES
(IS INPUT REGISTER ZERO ?/

NO

YES
(Is P REGISTER OF CENTRAL PROGRAM = O ?}
NO

YES
——(IS EXCHAN =0?)
Is E GE JUMP = O 7

(READ NEXT LOCATION FROM CENTRAL P+ RA l

NO e
O 1
EXIT
TO OI0O OF
l READ EXCHANGE PACKAGE INTO PPU PPU RESIDENT

‘ STORE

COMPUTE ADDRESSES FOR PSEUDO
X-REGISTERS X(j),X(j) AND X(x)

TRANSFER TO PROCESS INSTRUCTION

C00-C77
CODES OO0 THRU 77

PACK CURRENT REGISTERS

WRITE PACKAGE TO CENTRAL

UNPACK CURRENT EXCHANGE PACKAGE l

MODIFY LOCATIONS FOR PRESENT
REFERENCE ADORESS

SET NEW P REGISTER VALUE TO CENTRAL

SET EXCHANGE TRIGGER =0

I €00 STOP I

rSAVE CURRENT VALUE l

NO
65 00 IN LOWEST QUARTER OF WORD)—‘—

YES

‘ ADD | TO P REGISTER VALUE |

COl RETURN JUMP TO KJ

FORM UNCONDITIONAL JuMP 0400 P + | J

WRITE P REGISTER VALUE TO CENTRA&_]

SET ADDRESS OF NEXT CENTRAL
INSTRUCTION = 000000

®

FORM VALUE OF K FIELD + RA l

I WRITE UNCONDITIONAL JUMP TO (A) J

l CLEAR PARCEL COUNTER |

ﬁzsc‘r P REGISTER TO K+1

&

l €02 60 TO K+ (Bi)]

I SET PARCEL COUNTER =0 |

O—

MODIFY INSTRUCTIONS FOR
NEXT READ FROM CENTRAL

’ WRITE NEW P VALUE TO CENTRALI

I CLEAR PARCEL COUNT]

(:) B SET PARCEL COUNT
= COUNT + 2

C0O3 CONDITIONAL BRANCH
ON X] REGISTER

o

~
=4
o

§

YES

GO TO K IF XjI1s O

SET LOOP COUNT = 5

t

: YES
Is BYTE = 00007

NO

I RESET LOOP COUNT = 5 I

NO

YES
ISET P=P+I COUNT = 47

NO
LOOP COUNT =0 ?
YES
1s BYTE = -O(7777)7

NO
LOOP COUNT =02

YES

I FORM VALUE FOR K FIELD l

.

I WRITE P TO CENTRAL I

MOVE CURRENT INSTRUCTION
SEQUENCE uP I5 BITS

was LAST (NsTRucTion | NO
15 BiTS ?

YES

®

Cc-3

YES

‘GOTOKIFX}*O

NO

SET L=5
st BYTE L= 00007 SET L=L- 1
NO
l RESET L= 5 NO
C Is 8yTe L= -0(7777) ?) fxa =0...0 NO GO J

YES

NO

A [ser L= c-1 |

[xi#oao |

©®

O,

Is biT 2! oF
BYTE 6§ = O

YES
E—-—————)l G0 TO K IF Xj IS POSITIVE

NO

Is 8iT 2!t oF
BYTE 6 = |

YES .
(i =B———-%| GO TO K IF Xj IS NEGATIVE

NO

YES

YES Is ABSOLUTE VALUE OF
I-_4—_?>-—>| GO TO K IF Xj IS IN RANGE EXPONENT = 1777 2

EXPONENT NOT
3777

NO

YES
i =M G0 TO K IF Xj NOT IN RANGE = (" T EXPONENT ¢ 3777

NO

YES
i =E>——>I GO TO K IF Xj NOT DEFINITE: IS EXPONENT = % 777

NO
(gi)

GO TOK IF Xj IS INDEFINIHIS EXPONENT = t I777 YES

c-4

BRANCH

NO

NO

CO04 60 TO K IF
Bi=Bj

COMPARE B1TS
212-217 gy

DO LOWER 12 BITS
of Bi=Bj?

-Bj=07?

CO06 6O TO K IF
BiZ8B)

Bi NEGATIVE ?

i
I

(Bj NEGATIVE ?

NO

Bma;@(——

CO5 60 TO K IF
BixBj

COMPARE BITS
22-2'7 Bgi-Bj:07?

NO

B} POSITIVE ?

YES

C-5

YES
NO / COMPARE BITS
20.2!'Bi-Bj=07?
YES

CO7 60 TO K IF
Bi<Bj

YES Bi POSITIVE ?)

NO

YES

NO

YES
Bi-Bj20 ?

NO

©

ClO TRANSMIT
Xj = Xi

SET LOOP COUNT
L=0

Cil LOGICAL PRODUCT
Xj- Xk = Xi

SET LOOP COUNT
L=0

——)F(MLP) Xk > Xi J

CI3 LoGicAL DIFF.
Xj=- Xk => Xi

SET LOOP COUNT
L=0

BYTE

L=l+! l

YES

©

Cl4 TRANSMIT Xk
COMPLEMENT —> Xi

SET LOOP COUNT
L=0

XiL= Xj (LD) Xk

L=L+1 ‘

NO

FETCH BYTE Xk(

Cl2 LoGICAL SUM
Xj+ Xk > Xi

SET LOOP COUNT
L=0

SET A = COMPLEMENT

TO A REBISTER

l COMPLEMENT A I
‘ Xip= A
L+ |

]

L=5?
YES

BYTE Xj

SET B = COMPLEMENT
BYTE Xki

] Ser C=A(LP)B l

SET BYTE Xi_=
COMPLEMENT C

CI5 LOGICAL PRODUCT
Xj- Xk COMPLEMENT -> Xi

SET LOOP COUNT
L=0

FETCH BYTE Xk
TO A REGISTER

l COMPLEMENT A I
I Xig= XjL(LP) A |
<]

Cl6 LOGICAL SUM
Xi = Xj + Xk COMPLEMENT

‘ SET LOOP COUNT L=0 I

FOMPLEMENT A REGISTER l

| A = LOGICAL PRODUCT A % Xk I

rXiL= COMPLEMENT AJ

[

C20 LEFT SHIFT
Xi jk PLACES

- l SET A =ik ‘

RJM LSFT SHIFT
. Xi BY (A)

€22 SHIFT Xk NOMINALLY|
LEFT (Bj) PLACES

rTRANSFER Xk TO XL‘

NO

(IsBj>777

RIM RSFT

C{7 LOGICAL DIFF
Xi= Xj = Xk COMPLEMENT

SET LOOP COUNT L= O

—%I’FETCH COMPLEMENT XkL—I

| Xip= A (LD) Xji_ |

[eer]

C21 RIGHT SHIFT
Xi jk PLACES

I SET A =jk

RJM RSFT SHIFT
Xi BY (A)

C23 SHIFT Xk NOMINALLY
RIGHT (Bj) PLACES

I TRANSFER Xk TO Xi l

' Is Bj>777? SET Xi=0....0

RJUM RSFT

RSFT SHIFT COUNT IN

LSFT SHIFT COUNT A REG.

IN A REG.

COMPUTE MULTIPLES OF 6

COMPUTE MULTIPLES BIT SHIFTS N AND R

OF 6 BIT SHIFTS N
AND R

SET L = REGISTER LENGTH |

—
____._Y_ES¢0?>

MODIFY ADDRESSES
WITH STARTING

. ADDRESS OF XI
L= 4
SeTL=4 S

YES
I SET OVERFLOW BITS = 00 l @07
NO

MODIFY ADDRESSES FOR
—>l SHIFT Xi + L LeFT 6 | RIGHT SHIFT 6

SET Xi+L=A
+ OVERFLOW

RUM RSFN RIGHT
SHIFT Xi

‘ SAVE OVERFLOW l N=N-1I

YES
NO
Is LNEG?) YES R=@é———
YES NO
INSERT OVERFLOW MODIFY FOR SHIFT

INTO Xi + 4 R PLACES RSFN

N - CORRECT FOR SIGN
N=N-1 SETM =L l

EXTENSION

EXIT
ExiT
___—9@ NO RESIDUE
SHIFT
MODIFY INSTRUCTIONS NO M= 07?7
TO LEFT SHIFT BY
R PLACES YES

|

SETR=0

C24 UNROUNDED C25 ROUNDED

C26 UNPACK Xk TO
NORMALIZE NORMALIZE

Xi AND Bj

SeT BT 27'=0 SeET BIT 27'=1

YES
t DOES Xi = Xk ’———

NO

rGET UNBIASED EXPONENT | | TRANSMIT Xk TO Xi

YES
POSITIVE ? EXTEND SIGN OF

NO COEFFICIENT
NO
7777777
YES TRANSMIT UNBIASED

EXPONENT TO B}

@

&

YES
001777 ? !

NO

I FORM NORMALIZE COUNT U

IS NORMALIZE UNROUNDE[@
NOJ YES

RJM LSFT SHIFT Xi
LEFT N PLACES

SET Xi=0Q....0

C27 PACK Xi FROM
l GET UNBIASED EXPONENT -N l Xk AND Bj

NO YES
(Are 175 20 anp 2! ALike H SET Xi=0....0 UNDERFLOW J GJNB!ASED EXPONENT 2 1777 ? SET Xi=0...0

YES NO

SET BIASED EXPONENT I TRANSMIT Xk TO Xi I WAS ERROR UNDERFLOW ?
INTO BYTE 4 OF Xi

SET BIASED EXPONENT
‘ STORE N IN Bj l INTO BYTE 4 OF Xi
®

C30 FLOATING
ADD

IS EITHER OPERAND =
* INDEFINITE ?

) SET Xi=1777..0
ARE OPERANDS \ YES
INFINITE 7
NO

RJM F PAD ADD
Xj AND Xk

Is FM =32 oR 337

YES

YES

STORE EXIT
TYPE TO R.A

SET P= 000000

GET UNBIASED
EXPONENT - 60

EXPONENT <= 1777 ?

NO

SET Xi=0...0

CORRECT EXPONENT
FOR COEFFIENT SIGN ENTRY

\l/ F PAD

TRANSFER LOWER
48 BITS TO Xi

EXTEND SIGN OF
COEFFICIENT FOR

Xj AND Xk

y

C3! FLOATING
SUBTRACT

COMPLEMENT Xk

C32 FLOATING
DP ADD

C33 FLOATING
DP SUBTRACT

&

C34 FLOATING
ADD ROUND

&

C35 FLOATING
SUBTRACT ROUND

&

NO

(Xj NORMALIZED ?

SET ROUND BIT IN
L ARGER OPERAND

YES
SIGN X = SIGN Xk ?)———9

YES

Xk NORMALIZED ?

\LNO

SET ROUND BIT IN
BOTH OPERANDS

A

REPLACE ROUND BITS
WITH CORRESPONDING

NO
(ls FM =34 or 35?3————9

YES

SIGN BITS
I

EXTEND SIGN BITS INTO
LOWER 48 BIT POSITIONS
OF Xj AND Xk.

v

SHIFT SMALLER OPERAND
BY EXPONENT DIFFERENCE

y

ADD Xj AND Xk AS
A 9 BYTE QUANITY

Y

RIGHT SHIFT | PLACE IF
COEFFICIENT OVERFLOW

{

TRANSFER UPPER
48 BITS TO Xi

C36 INTEGER ADD

C37 INTEGER SUBTRACT
Xi=Xj+ Xk

Xi= Xj=~ Xk

COMPLEMENT Xk
Xi= Xj+ (- Xk)

rSET CARRY BIT =0 II<

rSET LOOP COUNT L=4

SET XiL = CARRY
BIT + XjL+ Xk

| STORE CARRY BIT I
| SET L=L~-1|

EED

YES

I SET LOOP COUNT L= 4]

YES

NO

SET XiL= CARRY
BIT + Xip

| STORE CARRY BIT l
t=L=-1 l

NO
L<0?)

YES
NO
(1s Xi=77...7°2 7
YES
(YES
WERE THERE 5 CARRIES ?
NO

SET Xi=00....0

—_—
C40 MULTPLY [C4 | MULTIPLY ROUND J

V

SET ROUNU
l SET ROUND BtT = 0000] 81T = 4000
. | C42 D.P MULTIPLY l
l STORE SIGN OF PRODUCT | SET ROUND
\l/ BIT = 0000
YES T X =
(Is Xj OR Xk INDEFINITE _?)———) 13;5770'000 o 9
o " SET Xi= IS Xj OR Xk
C) 17770....0 INDEFINITE ?
. NO
ARE BOTH OPERANDS SET CORREGT @
VALID NUMBERS ? FAULT IN Xi
YES @é SET CORRECT NO / ARE BOTH OPERANDS
FAULT IN Xi VALID NUMBERS ?
RJM MPY MULTIPLY
Xj % Xk
RJM MPY
IS FINAL EXPONENT SET Xi = 37770....0 9@) -
1777 ? OVERFLOW @e SET Xi = IS FINAL EXPONENT
S —————— 37770...0 -48 > 1777 ?
NO
g YES SET Xi = 0.....0 9@
< - ?
(ExPONEN@é UNDERFLOW C) SET Xi = IS EXPONENT
NO 0....0 -48 < -17777?
NO
TRANSFER UPPER -
48 BITS TO Xi EMP TRANSFER LOWER
ENTRY @ 48 BITS TO Xi
SET BOTH COEFFICIENTS
POSITIVE
SET LOOP COUNT L=0
BYTE COUNTER
CLEAR MULTIPLY
REGISTERS SET LOOP COUNT D=4
J; DIGIT COUNTER

STORE ROUND BIT IN

PRODUCT REGISTER 27! ——%{ GET MSD FROM BYTE LJ
\L L=L+ |
;j
RJM FMP MULTIPLY SHIFT LEFT 3
COEFFICIENTS AND STORE BYTE L
] Coar)=
3 YES YES

-

NO
WERE BOTH OPERANDS)\ NO
WAS PRODUCT NORMALIZED ?
NORMALIZED ?
ADD MULTIPLICAND TO YES
NO PRODUCT REGISTER N TIMES
IS PRODUCT YES

‘ SEYT M =M- | NORMALIZED ?

SHIFT MULTIPLICAND NO

LEFT 3 PLACES

COMPUTE SUM OF

EXPONENTS + M LEFT SHIFT | PLACE

NO YES

C43 FORM MASK OF | €44 DIVIDE [cas owioe rouno |

% BITS IN Xi J

IS EITHER OPERAND
£ SET Xi= 17770....0 I——a@
INDEFINITE ?
NO
NO
(ARE OPERANDS VALID ?)—————«) SET PROPER —9@
FAULT IN Xi
YES

r SET OPERANDS POSITIVE l

YES
fm = 44

(’ RJM RSFT EXTEND SIGN)é— NO

é | ser rouno evre = 2525 |

SET L = 60

IS DIVIDEND —
DIVISOR < O ?

NO

C47 suMm OF I's
N Xk TO Xi [RESTORE NEW DIVIDENDJ

=
"
[]

SET] ADD | TO OUOTlENTJ

SET COUNT L= 4

EmA
ﬁJU

YES

COEFFICIENT
OVERFLOW ?

OMPLETED

RIGHT SHIFT ; I l
M = -
| PLACE SEr "

[E3

NO

FETCH BYTE Xk l L=t -1 | COMPUTE EXPONENT

Xj-Xk-M

il

IS MOST SIGNIFICANT SHIFT DIVIDEND AND YES STORE 37770...0 CORRECT EXPONENT
BIT =0 7 QUOTIENT LEFT | PLACE (ovsn@——%‘ 10 Xi FOR QUOTIENT SIGN

NO NO

5_YES
| SET M=M + 1 l (U"DE“F""‘”' @
NO
NO

- STORE BIASED

YES EXPONENT TO Xi
Gamreon e -
IsL-1<07 d
CORRECT Xi FOR SIGN J
YES

| SET Xi=0...0
[ser evre xi+a- w |

Cc-13

€50
Ai=Aj+K

|

€60
Bi= Aj+K

|

RJM CINA COMPUTE
ADDRESSES FOR Ai
SAVE ININCA

AND INCB

STORE LOWER 12
BITS TO (INCB)

STORE UPPER 6 BIT
To (INCA)

50 SERIES ?

C53
Ai=Xj+ Bk

RJM CINA)

RJM SMXK
ADD Xj+ Bk

RJM SMAK
ADD Ajt K

—®

STORE LOWER {2
BITS Y0 (INCB)

RJM CINB COMPUTE
ADORESSES FOR Bi
SAVE IN INCA AND
INCB

c51 '
Ai = Bj+K ’

Bi=Bj+K

(RJM cnK) (RJM

cs2 c62
Ai= Xj+K Bi=Xj+ K
CINB > RJM CINA) RIM

RJM SMBK
ADD Bj+K

RJM RDWT EXECUTE
READ OR WRITE

STORE UPPER 6 BI
TO (INCA)}

TS

GO SERIES ?

NO

YES

c56
Ai=Bj + Bk

RJM CINA

RJM SMBB
ADD Bj + Bk

cé3
Bi= Xj+ Bk

RJM CINB)

‘

3 RJM ROWT

Cc54
Ai= Ajt Bk

RJM CINA

RJUM SMAB
ADD Aj+Bk

c66
Bi= Bj+ Bk

RJM CINB)

RJM SMXK
ADD Xj+ K

c64
Bi=Aj+ Bk

RJM CIMB)

Cc57
Ai= Bj— Bk

RJM CINA

RJM DFBB

Cc55
Ai=Aj—Bk

RJM DFAB
ADD Aj— Bk

RJM CINA

CINB)

Cc65
Bi=Aj~ Bk

RJM CINB

c67
Bi = Bj — Bk

ADD Bj— Bk

YES

ROWT
ENTRY

IS | DESIGNATOR = 01)

NO

MODIFY CENTRAL READ
AND WRITE WITH
ADORESS OF Xi

CIS ADDRESS

YES

YES
CINXI)
= ?
Isi= 6 OR 77
NO

[write xi 1o cm |

| Reao c.m. 1o Xi

ExiT

NO YES
IN RANGE ? ISi=60R7 ?

Cc-15

NO

| SEL“O.. l

EXIT ON ADDRESS
OUT OF RANGE
REQUESTED ?

STORE EXIT TYPE

c70
Xi=Aj + K

:

SET Xi

RJM CINX STORE

ADORESS OF Xi IN
INCA AND INCB

CRJM SMAK ADD Aj +K)

RJM CINX)

ﬁM SMBK ADD Bj+K)

STORE LOWER 12 BITS
IN (INCB)

STORE UPPER 6 BITS
IN (INCA)

iser27=17?

Cc73
Xi = Xj+ Bk

SET BITS
2185 259 o

(RJM CINX)

RJM SMXB
ADD Xj + Bk

--®

SET BITS
217 - 259 o

c74
Xi = Aj+ Bk

"
o

.0

| SET Xi

RJM CINX)

STORE LOWER 12
BITS N (INCB)

STORE UPPER 6
BITS IN (INCA)

RJM SMAB
aop Aj + Bk
YES SET BITS
([) >
BIiT 2°0 =17 | 217 - 289 & |

Cc72
Xi=Xj +K

SET 8ITS
285 259: o

RJM CINX)

GNM SMXK ADD Xj + K)

Cc75
Xi = Aj - Bk

RJM CINX >

RJM DFAB
ADD Aj — Bk

)

Cc76
Xi = Bj+ Bk

| SET Xi= 0...0

RJM SmBB
ADD Bj + Bk

c77
Xi=Bj — Bk

| SET Xi

RJM SMBB
ADD Bj - Bk

CUT ALONG LINE

COMMENT SHEET
6600 CHIPPEWA OPERATING SYSTEM
Pub. No. 60124500

COMMENTS: (pescriBe ERRORS, SUGGESTED ADDITION OR
DELETION AND INCLUDE PAGE NUMBER, ETGC.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

FOoLD

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
8100 34TH AVENUE SOUTH
MINNEAPOLIS 20, MINNESOTA

ATTN: TECHNICAL PUBLICATIONS DEPT,

STAPLE

COMPUTER DIVISION
PLANT TWO

|
S
L
IR
L
I
I
I
I
N
L
I
I
FoLD

STAPLE

i

| ———————— ————— T —————— - T " " —— - = ——— - T —— > T = G - ———— - . — - — ——— Y S . € D = - S S S W S A W S T - A - -

- —— - - — — —— -

CUT ALONG LINE

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	replyA
	replyB

