CONTROL DATA® 6000 SERIES COMPUTER SYSTEMS
Chippewa Operating System FORTRAN Reference Manual

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION
Documentation Department

May, 1966 3145 PORTER DRIVE ©1966, Control Data Corporation
Pub. No. 60132700, Rev. A PALO ALTO, CALIFORNIA Printed in the United States of America

PREFACE

This document describes the FORTRAN T language and compiler for the CONTROL DATA 6000
Series Chippewa Operating System. The statement language is compatible with FORTRAN II and
FORTRAN 1IV; but new programs should be written in FORTRAN IV.

The compiler can operate as load-and-go and produce 6000 Series machine language output. It
operates as an independent program under control of the operating system and can be called to
use only the storage required for compilation of a particular program. Several compilations may
be processed simultaneously using the normal Chippewa Operating System multiprogramming
features.

FORTRAN accepts main programs and subprograms written either in FORTRAN source language
or 6000 Series assembly language as well as binary decks of previously compiled subprograms.

These features permit a flexible program arrangement for each particular job.

This document assumes a knowledge of the FORTRAN language and the CONTROL DATA 6000
Series Computer System.

T FORmula TRANSslation originally developed for International Business Machines equipment.

iii

CONTENTS

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CODING PROCEDURES
1.1 Coding Line
1.2 Punched Cards

ELEMENTS OF CHIPPEWA FORTRAN
2.1 FORTRAN Character Set

2.2 Identifiers

2.3 Constants

2.4 Variables

2.5 Subscripted Variable

2.6 Arrays

EXPRESSIONS

3.1 Arithmetic Expressions
3.2 Relational Expressions
3.8 Logical Expressions

3.4 Masking Expressions

REPLACEMENT STATEMENTS
4.1 Arithmetic Replacement
4.2 Mixed-Mode Replacement
4.3 Logical Replacement

4.4 Masking Replacement

TYPE DECLARATIONS AND STORAGE ALLOCATION
5.1 Type Declaration
5.2 Dimension Declaration

5.3 Common Declaration

iii

1-1
1-1
1-2

2-1
2-1
2-1
2-2
2-5
2-7
2-8

4-1

CHAPTER 6

CHAPTER 7

CHAPTER 8

vi

5.4
5.5

Equivalence Declaration

Data Declaration

CONTROL STATEMENTS

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

GO TO Statements

IF Statements

DO Statement
CONTINUE Statement
PAUSE Statement
STOP Statement
RETURN Statement
END Statement

PROGRAM, FUNCTION, AND SUBROUTINE

7.1 Program Communication
7.2 Subprogram Communication
7.3 Formal Parameters

7.4 Actual Parameters

7.5 Main Program

7.6 Subroutine Subprogram

7.7 Call Statement

7.8 External Statement

7.9 Library Subroutines

7.10 Function Subprogram

7.11 Function Reference

7.12 Statement Function

7.13 Library Functions

7.14 Program Modes

7.15 Variable Dimensions in Subprograms
7.16 Program Arrangement
CHAINING

8.1 Chaining

5-6
5-8

6-1
6-1
6-3
6-4
6-7
6-7
6-8
6-8
6-8

7-1
7-1
7-2
7-2
7-2
7-4
7-6
7-6
7-8
7-8
7-9
7-10
7-11
7-12
7-12
7-13
7-14

8-1

CHAPTER 9

CHAPTER 10

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

INDEX

INPUT/OUTPUT FORMATS

9.1 Input/Output List

9.2 Format Declaration

9.3 Conversion Specifications

9.4 nP Scale Factor

9.5 Editing Specifications

9.6 Repeated Format Specifications

9.7 Variable Format

INPUT/OUTPUT STATEMENTS

10.1 Output Statements

10.2 Read Statements

10.3 Tape Handling Statements

10.4 Buffer Statements

10.5 Encode/Decode Statements

6000 SERIES FORTRAN CHARACTER CODES
FORTRAN STATEMENT LIST

FORTRAN FUNCTIONS

SOME FORTRAN II, 63, 66, IV DIFFERENCES
COMPUTER WORD STRUCTURE OF CONSTANTS - 6600

COMPILATION AND EXECUTION

FORTRAN ERROR PRINTOUTS

9-1
9-1
9-3
9-5
9-15
9-17
9-20
9-21

10-1
10-1
10-3
10-5
10-6
10-8

vii

CODING PROCEDURES 1

1.1
CODING LINE A FORTRAN coding line contains 80 columns in which FORTRAN characters are
written one per column. The four types of coding lines are listed below:
Column Content
Statement 1-5 statement number
£ or
) 1 D,I,B,F, - FORTRAN II
6 blank or zero
7-72 FORTRAN statement
73-80 identification field
Continuation 1-5 blank
6 FORTRAN character other than blank
or zZero
7-72 continued FORTRAN statement
73-80 identification field
Comment 1 C.$or*
2-80 comments
Data 1-80 data
1.1.1
STATEMENT Statement information is written in columns 7 through 72. Statements longer
than 66 columns may be continued to the next line. Blanks are ignored by the
FORTRAN compiler except in H fields. The character $ may be used to separate
statements when more than one is written on a coding line, however, it ma» not
be used with FORMAT or DATA statements. A blank card may be used to
separate the statements.
1.1.2
CONTINUATION The first line of every statement must have a blank or zero in column 6. If

statements occupy more than one line, all subsequent lines must have a FORTRAN
character other than blank or zero in column 6. Continuation cards may be sepa-
rated by cards whose first 72 columns are blank. A statement may have up to 19
continuation lines.

1-1

1.1.3

STATEMENT
NUMBER

1.1.4

IDENTIFICATION
FIELD

1.1.5
COMMENTS

1.2
PUNCHED CARDS

1-2

Any statement may have an identifier, statement number, but only statements
referred to elsewhere in the program require identifiers. A statement number
is a string of 1 to 5 digits occupying any column positions 1 through 5.

Columns 73 through 80 are always ignored in the compilation process. They
may be used for identification when the program is to be punched on cards.
Usually these columns contain sequencing information provided by the
programmer,

Each line of comment information is designated by a C, *, . , or $ in column 1.
Comment information appears in the source program and the source program

listing, but it is not translated into object code. The continuation character in
column 6 is not applicable to comments cards.

Each line of the coding form corresponds to one 80-column card; the terms

"line" and "card'' are often used interchangeably. Source programs and data
can be read into the computer from cards; a relocatable binary deck or datg
can be punched directly onto cards. '

When cards are being used for data input, all 80 columns may be used.

ELEMENTS OF CHIPPEWA FORTRAN 2

2.1

FORTRAN
CHARACTER SET

2.2
IDENTIFIERS

2.2.1

ALPHANUMERIC
IDENTIFIER

Alphabetic: Ato Z

Numeric: 0to9
Special: = equals) right parenthesis
+ plus , comma
- minus . decimal point
* asterisk $ dollar sign
/ slash (space) blank

left parenthesis

All characters appear internally in 6000 Series display code (Appendix A). A
blank is ignored by the compiler except in Hollerith fields within DATA state-
ments; otherwise it may be used freely to improve program readability.

An alphanumeric identifier can be any combination of 1-7 characters beginning
with a letter, with one exception. The combination of the letter O and 6 digits is
recognized as an octal constant. Embedded blanks within an identifier are
ignored.

Example:

0123456 illegal (as an identifier)
012KK3 Legal
0123 Legal

2-1

222

STATEMENT
IDENTIFIER

2.3
CONSTANTS

2.3.1

INTEGER
CONSTANTS

2-2

Alphanumeric Identifiers are used for:

Constants

Variables

Subprograms

Main programs
Input/output units
Labeled common blocks

Name list names

Statements are identified by unsigned numbers, 1-5 digits, which can be referred
to from other sections of the program. A statement identifier (from 1-99999)
may be placed anywhere in columns 1-5 of the initial line of a statement. Lead-
ing zeros are ignored. In any given program or subprogram, each statement
identifier must be unique.

Seven types of constants are used in FORTRAN: integer, octal, real, double
precision, complex, Hollerith, and logical: Complex and double precision
constants are formed from real constants. The type of a constant is determined
by its form. The computer word structure for each type is listed in Appendix E.

An integer constant, N, is a string of up to 18 decimal digits in the range
-(259-1) = N = (259-1),

Examples:
63 3647631
247 464646464
314159265 574396517802457165

During execution, the maximum allowable value is 2481 when an integer
constant is converted to real. The maximum value of the result of integer

multiplication or division must be less than 248—1. High order bits will be

lost if the value is larger; but, no diagnostic is provided.

2.3.2

OCTAL
CONSTANTS

2.3.3
REAL CONSTANTS

An octal constant consists of 6 to 20 octal digits preceded by the letter O or
1 to 20 octal digits suffixed with a B. The form is:

n...nB

A constant of the second form is assigned logical mode and may be used only
in arithmetic or DATA statements.

If the constant exceeds 20 digits; or if a nonoctal digit appears, a compiler
diagnostic is provided.

Examples:
000007777777700000000 2374216B
o7777700077777 7T7T776B
02323232323232323 777000777000777B
0000077
OoT7771777777777700

A real constant is represented by a string of up to 15 digits; it contains a
decimal point and may contain an exponent representing a power of 10. Real
constants may be in the following forms:

n.n n. .n n.nE+s n.E+s .nE+s
The base is n; s is the exponent to the base 10; the plus sign may be omitted
if s is positive, the range of s is 0 through 308. If the range of the real constant

is exceeded, a compiler diagnostic is provided.

All real numbers are carried in normalized form.

Examples:
3.E1 (means 3.0 x 101;i.e., 30.)
3.1415768 31.41592E-01
314.0749162 31415E01
-3.141592E+279 .31415E+01

2-3

234

DOUBLE PRECISION
CONSTANTS

235

COMPLEX
CONSTANTS

2.3.6

HOLLERITH
CONSTANTS

2-4

A double precision constant is represented by a string of up to 18 digits.
Double precision constants are represented internally by two words; the
second is always zero. The forms are similar to real constants, the base
is n; s is the exponent to the base 10.

.nD+s n.nDz+s n.D+s
The D must always appear. The plus sign may be omitted for positive s; the

range of s is 0 through 308. If the range is exceeded, a compiler diagnostic is
provided.

Examples:
3.1415927D 3141.593D3
3.1416D0 31416.D-04

3141.593D-03

A complex constant is represented by a pair of real constants separated by a

comma and enclosed in parentheses (rl,rz); ry represents the real part of the
complex number, r, the imaginary part. Either constant may be preceded by
a minus sign.

If the range of the real numbers comprising the constant is exceeded, a
compiler diagnostic is provided. Diagnostics also occur when the pair consists
of integer constants, including (0,0).

Examples:
FORTRAN Representation Complex Number
(1., 6.55) 1.+6.55i
(15., 16.7) 15. + 16.7i
(-14.09, 1.654E-04) -14.09 + .0001654i
(0., -1, 0-1.0i

A Hollerith constant is a string of FORTRAN characters of the form hHf; h is
an unsigned decimal integer between 1 and n representing the length of the
field f. n is limited to the number of characters that can be contained in up to
19 continuation lines. Spaces are significant in the field f. When h is not a

237

LOGICAL
CONSTANTS

24
VARIABLES

multiple of 10, the last computer word is left justified with blank fill. Alternate
forms are nLf (left justified) and nRf (right justified) Hollerith constants with
zero fill for incomplete words. They may be used in arithmetic and DATA
statements. Hollerith constants are stored internally in 6000 Series console
display code.

Examples:
6HCOGITO 12HCONTROL DATA
4HERGO 5LSUMbb = SUMbb00000
3HSUM 1H)
5RSUMbb = 00000SUMbb SLbTT =DbTT0000000

A statement of the form: T=(+5HABCDE) is permitted as a Hollerith constant.

Logical constants may be in the forms:

.TRUE. or .T,
.FALSE. or .F.

A false constant is stored internally as binary zero. A true constant is stored
internally as the one's complement of binary zero (all bits).

FORTRAN recognizes simple and subscripted variables; a simple variable
represents a single quantity; it references a storage location. The value
specified by the name is always the current value stored in the location.
Variables are identified by a symbolic name of 1-7 alphanumeric characte rs,
the first of which must be alphabetic.

The type of variable is defined in one of two ways:

EXPLICIT. Variables may be declared a particular type with the FORTRAN
TYPE declarations.

IMPLICIT. A variable not defined in a FORTRAN TYPE declaration is
assumed to be integer if the first character of the symbolic
name is I, J, K, L, M, or N.

2-5

2.4.1

INTEGER
VARIABLES

24.2
REAL VARIABLES

2-6

Example:
115, JK26, KKK, NP362L, M

All other variables not declared in a FORTRAN TYPE declaration are assumed
to be real.

Examples:

TEMP, ROBIN, A55, R3P281

Integer variables can be defined explicitly or implicitly; values may be in the
range —(259-—1) =I= (259-1). Each integer variable occupies one word in
storage.

Examples:
N NEGATE
ITEM K2S04
M58A M58

Real variables can be defined explicitly or implicitly; they may be values in the
range 107308 =y = 10308 with 15 significant digits. Each real variable is stored
in 6000 Series floating-point format and occupies one word.

Examples:
VECTOR A62597 X
YBAR BARMIN XT4A

The variable, r, may have any of the following values:

08 _ 308

+ -_
308S 308 =10

-10 r = -10 ,r =0, 107

2.4.3

DOUBLE PRECISION
VARIABLES Double precision variables must be defined explicitly by a TYPE declaration.

Each double precision variable occupies two words of storage and can assume
values in the range 107308 =< d = 10308 with 15 significant digits.

2.4.4

COMPLEX

VARIABLES Complex variables must be explicitly defined by a TYPE declaration. A complex
variable occupies two words in storage. Each word contains a number in real
variable format. This ordered pair of real variables (C1.C9) represents the
complex number: Cq +i Cy

245

LOGICAL

VARIABLES Logical variables must be defined explicitly by a TYPE declaration. Each
logical variable occupies one word of storage; it can assume the value true or
false. A logical variable with a plus zero value is false; any other value true.
When logical variable appears in an expression whose dominant mode is real,
double, or complex, it is not packed and normalized prior to its use in the
evaluation of an expression (as is the case with an integer variable).

25

SUBSCRIPTED

VARIABLE A subscripted variable may have one, two, or three subscripts enclosed in

parentheses. More than three subscripts produce a compiler diagnostic. The
subscripts can be expressions in which operands are simple integer variables
and integer constants and operators are addition, subtraction, multiplication,
and division only. A subscripted variable represents a single quantity within
an array of quantities.

When a subscripted variable represents the entire array, the subscripts are the
dimensions of the array. When a subscripted variable references a single
element in an array, the subscripts describe the relative location of the element
in the array.

Simple Variable Subscripted Variable
FRAN A(L,J)
P B(I+2,J+3,2*K+1)
714 Q(14)
EVAL STRING (3*K*ILIM+3)
MAX3 Q(1,4,2)
I

2-1

2.6
ARRAYS

2.6

ARRAY
STRUCTURE

2-8

An array is a block of successive storage locations which is divided into areas
for storage of variables. The entire array may be referenced by the array
name without subscripts (I/O lists and Implied DO-loop notation). Arrays may
have one, two, or three dimensions; the array name and dimensions must be
declared in a DIMENSION, COMMON, or TYPE declaration prior to the first
program reference to that array.

Each element in an array may be referenced by the array name plus a subscript
notation. Program execution errors may result if subscripts are larger than
the dimensions initially declared for the array. The maximum number of
elements in an array is the product of the dimensions.

Array elements are stored by columns in ascending locations. In the array
declared as A(3,3,3):

The planes are stored in order, starting with the first, as follows:

A111 A121 A131
A211 A221 A231
A311 321 A331
A112 A122 A132
A212 A222 A232
312 322 332
A113 A123 A133
A213 A223 A233
A313 A323 333

— — 143 ... — L#
Alll L A121 L+3 133 L+24

—_— + —_— 1 — -+
A211 L+1 991 L+4 . .. 933 L+25

— I+ — L5 ... — L+
A311 L+2 321 L 333 L+26

Array allocation is discussed under DIMENSION declaration. The location of
an array element with respect to the first element is a function of the maximum
array dimensions and the type of the array.

Given DIMENSION A(L,M,N), the location of A(i,j,k), with respect to the first
element A of the array, is given by A+(i-1+L*(j-1 +M *(k-1)))*E.

The quantity enclosed by the outer parentheses is the subscript expression.

E is the element length—the number of storage words required for each element
of the array. For real, logical, and integer arrays, E = 1. For complex and
double precision arrays, E =2,

Example:

In an array defined by DIMENSION A(3,3,3), the location of A(2,2,3) with
respect to A(1,1,1) is:
Locn A(2,2,3) = Locn A(1,1,1) + (2-1+3(1+3(2)))
=1L +22

FORTRAN permits the following relaxation of the representation of subscripted
variables:

Given A(Dl’Dz’Dg)’ where the Di are integer constants,

then A(I,J,K) implies A(1,J,K)
A(I,J) implies A(1,J,1)
AQD) implies A(1,1,1)
A implies A(1,1,1)

similarly, for A(Dl,Dz)
A(L,J) implies A(L,J)
A() implies A(I,1)
A implies A(1,1)

and for AD 1)
A(D) implies A(I)
A implies A(1)

The elements of a single-dimension array A(D,) may not be referred to as
A(I,J,K) or A(I,J). Diagnostics occur if this is attempted.

2-9

EXPRESSIONS 3

3.1

ARITHMETIC
EXPRESSIONS

An expression is a constant, variable (simple or subscripted), function, or any
combination of these separated by operators and parentheses. The four kinds

of expressions in FORTRAN are: arithmetic and masking (Boolean) expressions
which have numerical values, and logical and relational expressions which have
truth values. Each type of expression is associated with a group of operators
and operands.

An arithmetic expression can contain the following operators:

+ addition

- subtraction

* multiplication
/ division

*ok exponentiation

Operands are:

Constants
Variables (simple or subscripted) _
Evaluated functions
Any unsigned constant, variable, or function is an arithmetic expression. If X

is an expression, then (X) is an expression. If X and Y are expressions, then
the following are expressions:

X+Y X-Y
X *y X/ Y
-X X**y

If op is valid operator and X and Y are valid expressions, then X op op Y is
never a valid expression.

3-1

3.1.1

ARITHMETIC
EVALUATION

3-2

Examples:

A

3.14159

B + 16.427

(XBAR+(B(I,J+I,K)/3))

-(C+DELTA*AERO)

(B-SQRT(B**2-(4*A*C)))/(2.0*A)
GROSS-(TAX*0.04)

(TEMP+V(M,MAXF(A,B))*Y**C)/(H-FACT(K+3))

The hierarchy of arithmetic evaluation is:

*x exponentiation class 1
/ division class 2
* multiplication

+ addition class 3
- subtraction

In an expression with no parentheses or within a pair of parentheses in which
unlike classes of operators appear, evaluation proceeds in the above order. In
expressions containing like classes of operators, evaluation proceeds from left
to right. For example, A**B**C is evaluated as (A**B)**C.

Parenthetical and function expressions are evaluated first in a right-to-left scan
of the entire statement. In parenthetical expressions within parenthetical expres-
sions, evaluation begins with the innermost expression. Parenthetical expressions
are evaluated as they are encountered in the right-to-left scanning process.

When writing an integer expression, it is important to remember not only the
left-to-right scanning process but also that dividing an integer quantity by .an
integer quantity always yields a truncated result; thus 11/3 = 3. The expression
1*J/K may yield a different result than the expression J/K*1.

For example, 4*3/2 = 6 but 3/2%4 =4,

Examples:

In the following examples, R indicates an intermediate result in evaluation:

A**B/C+D*E*F-G is evaluated:
A*¥*B —
B Rl
Rl/C — Rz
* —
D*E R3

* —
R3F R4

+R -
R4 R2 R5

R5—G — R 6 evaluation completed

A**B/(C+D)*(E*F-G) is evaluated:
E*F-G — R,
C+D —~ R,
A*B — R,
R3/R2 — R,
R *R, — R evaluation completed

41 5
H(I3)+C(I,J+2)*(COS(Z))**2 is evaluated:
COS(z) — R,
L 1) Qe
Rl 2 R2
* -+ ——
R,*C(LJ+2) — R,

R3+H(13) — R 4 evaluation completed

The following is an example of an expression with embedded parentheses.

A*(B+((C/D)-E)) is evaluated:
C/D — R,

Rl—E — R2

+ —
R2 B R3

RB*A — R 4 evaluation completed
(A*(SIN(X)+1.)-Z)/ (C*(D~-(E+F))) is evaluated:
E+F — R1
D—R1 — R2
* —-
C R2 R3
SIN(X) — R4

3-3

3.1.2
MIXED-MODE
ARITHMETIC
EXPRESSIONS

3-4

+ —
R4 1. R5
*R —
A R5 R6
RG—Z —_— R7
R7/ R3 — R evaluation completed

Mixed-mode arithmetic with the exception of exponentiation is completely
general; however, most applications probably mix operand types, real and
integer, real and double, or real and complex. The relationship between the
mode of an evaluated expression and the types of operands it contains is
established as follows.

Order of dominance of the operand types within an expression from highest
to lowest:

Complex

Double

Real

Integer

Logical

Simple double precision expressions are not evaluated by closed subroutines,
but by in-line arithmetic instructions.

The type of an evaluated arithmetic expression is the mode of the dominant
operand type.

In expressions of the form A**B, the following rules apply:

If B is preceded by a unary minus operator, the form is A**(-B).
B is treated as an integer if type logical.

For the various operand types, the type relationships of A**B are:

Type B
1 R D C L
T I I n n n 1
R
3; D RD RD g 2 RD mode of A¥*B
e C C n n n C .
A L I n n n I n indicates an

invalid operation

For example, if A is real and B is integer, the mode of A**B is real.

Examples:

1) Given real A, B; integer I, J. The type of expression A*B-I+J is real

because the dominant operand type is real.

The expression is evaluated:

Convert I to real

Convert J to real

A*B — R1 real

Rl—I—-—R2 real
+. —

R2 J R3 real

2) The use of parentheses can change the evaluation. A,B,I,J are defined

as above. A*B-(I-J) is evaluated:

I-J — R1 integer
A*B — R2 real
Convert R 1 to real

R2—R1 — R3 real

3) Given complex C,D, real A,B. The type of the expression A* (C/D)+B

is complex because the dominant operand type is complex. The

expression is evaluated:

C/D — R, complex

Convert A to complex
* —

A*R 1 R2 complex

Convert B to complex

+B —
R2 B R3 complex

4) Consider the expression C/D+(A-B) where the operands are defined in

3 above. The expression is evaluated:

A-B — R 1 real
C/D — R, complex
Convert Rl to complex

=+ —
R1 R2 R3 complex

3-5

5) Mixed-mode arithmetic with all types is illustrated by this example:

Given: the expression C*D+R/I-L

C Complex
D Double
R Real

I Integer
L Logical

The dominant operand type in this expression is complex; therefore, the
evaluated expression is complex.

Evaluation:

Round D to real and affix zero imaginary part.
Convert D to complex
C*D — R1 complex
Convert R to complex
Convert I to complex
R/1 — R, complex
R2+R1 —_ R3 complex
R3—L — R4 complex

If the same expression is rewritten with parentheses as C*D+(R/I-L) the
evaluation proceeds:

Convert I to real

R/1 — R, real

Rl—L — R2 real

Convert D to complex

C*D — R3 complex

Convert R2 to complex

R +R_ —
9 R3 R4 complex

3.2

RELATIONAL

EXPRESSIONS A relational expression has the form:
a, op a,

3-6

The a's are arithmetic expressions; op is an operator belonging to the set:

EQ. Equal to

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
LT. Less than

.LE. Less than or equal to

A relation is true if a; and ag satisfy the relation specified by op; otherwise, it
is false. A false relational expression is assigned the value plus zero; a true
relational expression is assigned the value minus zero (all one bits).

Relations are evaluated as illustrated in the relation p.EQ.q. This is equivalent
to the question: doesp-q=0?

The difference is computed and tested for zero. If the difference is zero or
minus zero, the relation is true. If the difference is not zero or minus zero,
the relation is false. Relational expressions are converted internally to
arithmetic expressions according to the rules of mixed-mode arithmetic. These
expressions are evaluated and compared with zero to determine the truth value
of the corresponding relational expression. When complex expressions are
tested for zero or minus zero, only the real part is used in the comparison.

Relational expressions of the following forms are allowed:

IL.LLT.R
ILLLT.D
I.LT.C

Iis integer, R is real, D is double precision and C is complex.

Order of dominance of the operand types within an expression is the order stated
in mixed mode arithmetic expressions.

The relation of the form I.GE.0 is treated as true if I assumes the value -0.

a_ opa

1 op a

. is not a valid expression.

2 3

A relation of the form a_ op a_ is evaluated from left to right. The relations

a, op az,a1 op (a2), (al) op a,, (al) op (az) are equivalent.

3-7

3.3

LOGICAL
EXPRESSIONS

3-8

Examples:

A .GT. 16. R®).GE.R(I-1)
R-Q(I*Z.LE.3.141592 K .LT. 16
B-C .NE. D+E I .EQ. J(X)

I .EQ. (J(K))

A logical expression has the general form:

LlopL OpL3...

2

The terms L; are logical variables, logical constants, or relational expressions
and op is the logical operator .AND. indicating conjunction or .OR. indicating
disjunction.

The logical operator .NOT. indicating negation appears in the form:
.NOT.
NOT. L 1

The value of the expression is examined. If the value is equal to plus zero, the
logical expression has the value false. All other values are considered true.

The hierarchy of logical operations is:

First NOT. or .N.
then AND, or AL
then .OR. or .0.

A logical variable, logical constant, or a relational expression is, in itself, a
logical expression. If Ly, L,are logical expressions, then the following are
logical expressions:

.NOT.L1

L1 .AND.L2

L1 .OR. L2

If L is a logical expression, then (L) is a logical expression.

If Ly, Lo are logical expressions and op is .AND. or .OR., then L1 op op L2 is
never legitimate.

3.4

MASKING
EXPRESSIONS

.NOT. may appear in combination with .AND. or .OR. only as follows:

L, .AND. .NOT.L2
L
L
L

.OR. .NOT.L2

AND.(.NOT. . . .)
.OR.(.NOT. . . .)

o e e

.NOT. may appear with itself only in the form .NOT.(.NOT.(.NOT. L))
Other combinations cause compilation diagnostics.

If L, Lyare logical expressions, the logical operators are defined as follows:

.NOT.L1 is false only if L1 is true

L1 .AND.L2 is true only if Ll’ L2 are both true

Ll.OR.L2 is false only if Ll’ L2 are both false
Examples:

1) B-C=A = B+ Cis written
B-C.LE.A.AND.A.LE.B+C

2) FICA greater than 176.0 and PAYNMB equal to 5889.0 is written
FICA.GT.176.0.AND.PAYNMB.EQ.5889.0

3) An expression equivalent to the logical relationship (P — Q) may be
written in two ways:
.NOT.(P.AND.(.NOT.Q))
N.(P.A.(N.Q))

The masking expression is a generalized form of the logical expression in
which the variables may be types other than logical.

In a FORTRAN masking expression, 60-bit logical arithmetic is performed
bit-by-bit on the operands within the expression. The operands may be any

type variable, constant, or expression. No mode conversion is performed during
evaluation. ¥ the operand is complex, operations are performed on the real
part. Although the masking operators are identical in appearance to the logical
operators, their meanings are different. They are listed according to hierarchy.
The following definitions apply:

.NOT. or .N, complement the operand
AND. or .A. form the bit-by-bit logical product of two operands
.OR. or .0. form the bit-by-bit logical sum of two operands

3-9

The operations are described below:

P v p AND. v p .OR.V .NOT. p
1 1 1 1 0

1 0 0 1

0 1 0 1 1

0 0 0 0 1

Let B; be masking expressions, variables or constants of any type. The following
are masking expressions:

.NOT. B1 B1 AND. B2 B1 .OR. B2

If B is a masking expression, then (B) is a masking expression.
.NOT. may appear with .AND. or .OR. only as follows:

.AND, .NOT.,

.OR. .NOT.

AND. (.NOT. " ")
.OR. (.NOT. ')

Masking expressions of the following forms are evaluated from left to right.

A AND. B .AND. C...
A OR. B .OR. C...

Masking expressions must not contain parenthetical arithmetic expressions or
functions.

Examples:
A 77770000000000000000 octal constant
D 00000000777777777777 octal constant
B 00000000000000001763 octal form of integer constant
C 20045000000000000000 octal form of real constant

.NOT. A is 0000777777777 7777777
A .AND. C is 20040000000000000000
A AND. .NOT. C is 57730000000000000000
B .OR. .NOT. D is 77777777000000001763

The last expression could also be written as B .O. .N. D

3-10

REPLACEMENT STATEMENTS 4

4.1
ARITHMETIC
REPLACEMENT

4.2
MIXED-MODE
REPLACEMENT

The general form of the arithmetic replacement statement is A = E, where E

is an arithmetic expression and A is any variable name, simple or subscripted.
The operator = means that A is replaced by the value of the evaluated expression,
E, with conversion for mode if necessary.

Examples:

A=-A
B(B,4) = CALC(I+1)*BETA+2.3478
39 XTHETA=7.4*DELTA+A(I,J,K)**BETA)
RESPSNE=SIN(ABAR(INV+2,JBAR)/ALPHA(J,KAPL()))
4 JMAX=19
AREA = SIDE1 * SIDE2
PERIM = 2.%(SIDE1 + SIDE2)

The type of an evaluated expression is determined by the type of the dominant
operand. This, however, does not restrict the types that identifier A may
assume. A complex expression may replace A, even if A is real. The following
chart shows the A = E relationship for all the standard modes. The mode of A
determines the mode of the statement.

When all the operands in the expression E are logical, the expression is evalu-
ated as if all the logical operands were integers.

For example, if Ll’ L2, Lj, Ly are logical variables, R is a real variable, and
Iis aninteger variable, thenI = Li*Ly + Lg - Ly is evaluated as if the L; were

all integers and the resulting value is stored as an integer in I.

R = Ll*L2+ Lg - Ly is evaluated as stated above, but the result is converted to
a real (a floating point quantity) before it is stored in R.

4-1

Type of Expression E
Type of Complex Dou!olg Real Integer
A Precision
Complex A=E Set A = most Convert E
significant half to Real
of E
real E Areal B Areal = E
imag - imag =0 imag =0
Double A=E A=E A=E Convert E
. . real
Precision . e to Real
less signifi- less signifi-
cant is set cant is set A=E
to zero to zero
Real A= Ereal Set A = most A=E Convert E
significant half to Real
of E A=E
A =E
less signifi-
cant is set
to zero
Integer Truncate Truncate E to Truncate E A=E
real to Integer to Integer
Integer
A=E A=E A=E
Logical If E al;é If E#0, If E #0, If E #0,
re A=1 A= A=1
0,A=1
HErealz IfE=0, If E=0, ¥E=0,
A= A=0 A=0
0,A=0 0
Examples:
Given: Ci’ A1 Complex
D, A Double
i’ 2
R,,A Real
i’ 73
A
Ii’ 4 Integer
A .
Li’ 5 Logical

4-2

4.3

LOGICAL
REPLACEMENT

= * - = *
1. Al C C2 03/C4 (6.905, 15.393) = (4.4, 2.1)

1 (3.0, 2.0) - (3.3, 6.8) / (1.1, 3.4)
The expression is complex; the result of the expression is a two-word,
floating point quantity. A is complex, and the result replaces Aj.

2. A3 = C1 4.4000+000 = (4.4,2.1)
The expression is complex. Agq is real; therefore, the real part of Cq re-
places A3.

3. A3 = Cl*(O. ,~1.) 2.1000+000 = (4.4,2.1)*

(0. ,-1.)

The expression is complex. Ag is real; the real part of the result of the
complex multiplication replaces Ag.

4. A =R, /R_*R_-R,)H.- 13=8.4/4.2%(3.1-2.1)+
4 (I;*Ri) 341 14-(1*2.3)

The expression is real. A4 is integer; the result of the expression evalua-
tion, a real, is converted to an integer replacing A,.

5. A, =D *2%D,HD,*D,)) 4.96800000000000+001=
+D,*D *D,) 2.0D**2*(3.2D+(4.1D*1.0D))

1 +(3.2K*2.0D*3.2D)

The expression is double precision. Ao is double precision; the result of
the expression evaluation, a double precision floating quantity, replaces A2'

. =C_*R_-R_+ =(4.4,2.1)*8.4-4.2+
6 A5 C1 1R211 1=(4.4,2.1)*8.4-4.2+14

The expression is complex. Since Ay is logical, the real part of the evalu-
ated expression replaces A5. If the real part is zero, zero replaces Ag.

The general form of the logical replacement statement is L = E, where L is a
logical variable and E may be a logical, relational, or arithmetic expression:

Examples:
LOGICAL A, B, C, D, E, LGA, LGB, LGC

REALF, G, H
A =B .AND. C .AND. D
A=F .GT.G.OR. F .GT. H
5 A=.N.(A.A..N.B) .AND. (C.0.D)
LGA = .NOT. LGB
2109 LGC = E .OR. LGC .OR. LGB .OR. LGA .OR. (A .AND. B)

4-3

4.4

MASKING
REPLACEMENT

The general form of the masking replacement statement is M = E. Eis a

masking expression, and M is a variable of any type except logical.

conversion is made during the replacement.

Examples:

INTEGER 1,J,K,L,M,N(16)
REAL B,C,D,E,F(15)

N(2) =1 .AND. J
B=C .AND. L
84 F(J) =1I.0R. .NOT. L .AND. F(J)
N(1) =1.0.J.0.K.0.L.O.M
I=.N.I
D = (B.LS. C) .AND. (C .LE. E) .AND. .NOT. I

No mode

TYPE DECLARATIONS AND STORAGE ALLOCATION 5

5.1

TYPE
DECLARATION The type declaration statement provides the compiler with information on the
structure of variable and function identifiers.

Statement Characteristics

COMPLEKX list 2 words/element Floating Point
DOUBLE PRECISION list 2 words/element Floating Point
or DOUBLE list

REAL list 1 word/element Floating Point
INTEGER list 1 word/element Integer
LOGICAL list 1 word/element Logical

TYPE list may be used for compatibility during compilation time.

DOUBLE may replace DOUBLE PRECISION in any FORTRAN statement
in which the latter is allowed.

List is a string of identifiers separated by commas; integer constant subscripts
are permitted. For example:

A, B1, CAT, D36F, GAR (1, 2, 3)

The type declaration is non-executable and must precede the first reference to
the variable or function in a given program. If an identifier is declared in two
or more type declarations, the first declaration holds until the second is read,
the second holds until the third, etc.

An identifier not declared in a type declaration is type integer if the first letter
of the name is I, J, K, L, M, N; for any other letter, it is type real.

When subscripts appear in the list, the associated identifier is the name of an

array, and the product of the subscripts determines the amount of storage to be
reserved for that array.

5-1

Examples:

COMPLEX A412,DATA,DRIVE,IMPORT

DOUBLE PRECISION PLATE,ALPHA(20,20),B2MAX,F60,JUNE
REAL I1,J(20,50,2),LOGIC,MPH

INTEGER GAR(60),BETA,ZTANK,AGE,YEAR,DATE

LOGICAL DISJ,IMPL,STROKE,EQUIV,MODAL

DOUBLE RL,MASS(10,10)

5.2

DIMENSION

DECLARATION A subscripted variable represents an element of an array of variables. Storage
is reserved for arrays by the non-executable statements DIMENSION, COMMON,
or a type statement.

The standard form of the DIMENSION declaration is:

DIMENSION Vl, vz, I ,Vn

The variable names v; may have 1, 2, or 3 integer constant subscripts separated
by commas, as in SPACE (5, 5, 5). Under certain conditions within subprograms
only, the subscripts may be constants or variables.

Example:

SUBROUTINE X(A,L,M)
DIMENSION A(L,10,M)

The DIMENSION declaration is non-executable and it must precede the first
reference to the array in a given program.

The number of computer words reserved for an array is determined by the
product of the subscripts in the subscript string and the type of the variable. A
maximum of 217-1 elements may be reserved in any one array. If the maximum
is exceeded, a diagnostic is provided.

COMPLEX ATOM

DIMENSION ATOM (10,20)
In the above declarations, the number of elements in the array ATOM is 200.
Two words are used to contain a complex element; therefore, the number of
computer words reserved is 400. This is also true for double precision arrays.

For real, logical, and integer arrays, the number of words in an array equals
the number of elements in the array.

5-2

If an array is dimensioned in more than one declaration statement, a diagnostic
is provided.

Examples:

DIMENSION A(20,2,5)
DIMENSION MATRIX(10,10,10),VECTOR(100),ARRAY(16,27)

5.2.1

VARIABLE DIMENSIONS When an array identifier and its dimensions appear as formal parameters in a
function or subroutine, the dimensions may be assigned through the actual
parameter list accompanying the function reference or subroutine call. The
dimensions must not exceed the maximum array size specified by the
DIMENSION declaration in the calling program. (See Variable Dimensions in
Subprograms in Chapter 7.)

53

COMMON

DECLARATION The COMMON declaration provides blocks of storage that can be referenced by
more than one subprogram. The declaration reserves both numbered and labeled
blocks. Only labeled common blocks may be preset. Data may be stored in
labeled common blocks by the DATA declaration and is made available to any
subprogram, using the appropriate labeled block.

The starting addresses for both numbered and labeled blocks are indicated on
the map listing.

Areas of common information may be specified by the declaration:
COMMON/il/list/iz/list. ..

The common block identifier, i, may be 1-7 characters. If the first character

is alphabetic, the identifier denotes a labeled common block; remaining

characters may be alphabetic or numeric. If the first character is numeric,

remaining characters must be numeric and the identifier denotes a numbered

common block. Leading zeros in numeric identifiers are ignored. Zero by
itself is an acceptable numbered common block identifier.

Example:

COMMON/200/A, B, C

5-3

5-4

Such common assignments are treated as blank common assignments; they are
made to the high end of the field in which the program runs. Data may not be
entered into these blocks by the DATA declaration. The following are common
identifiers:

Labeled Numbered
AZ13 1
MAXIM 146
VA 6600
XRAY 0

List is a string of identifiers representing simple and subscripted variables.
If a non-subscripted array name appears in the list, the dimensions must be
defined by a type or DIMENSION declaration in that program. If an array is
dimensioned in more than one declaration, a computer diagnostic is provided.
The order of array storage within a common block is determined by the
COMMON declaration.

The common block identifier with or without the separating slashes may be
omitted for blank common. Blank common is treated as numbered common by
the compiler. Numbered common blocks must be declared in the main program.

COMMON is non-executable and can appear anywhere in the program. Any
number of COMMON declarations may appear in a program. If DIMENSION,
COMMON or type declarations appear together, the order is immaterial.

Since labeled and numbered common block identifiers are used only within the
compiler, they may be used elsewhere in the program as other kinds of
identifiers except subroutine names in the same job. An identifier in one common
block may not appear in another common block. (If it does, the name is doubly
defined.)

Numbered common blocks are treated as blank common assignments. Data may
not be entered into these blocks by the DATA statement. At the beginning of
program execution, the contents of all common areas are zero except labeled
common areas specified in a DATA declaration.

Examples:

COMMON A,B,C

COMMON/ /E,F,G,H
COMMON/BLOCKA,/A1(15),B1,C1/BLOCKD/DEL(5,2),ECHO
COMMON/VECTOR/VECTOR(5),HECTOR,NECTOR

The length of a common block in computer words is determined from the number
and type of the list variables. In the following statements, the length of common
block A is 12 computer words. The origin of the common block is Q (1).

COMMON/A/Q(4), R(4), S(2)
REAL Q,R
COMPLEX S

Block A

origin Q)
Q(2)
Q(3)
Q(4)
R(1)
R(2)
R(3)
R(4)
S(1) real part
S(1) imaginary part
S(2) real part
S(2) imaginary part

If a subprogram does not use all of the locations reserved in a common block,
unused variables may be necessary in the COMMON declaration to insure proper
correspondence of common areas.

COMMON/SUM/A,B,C,D (main program)

COMMON/SUM/E(3),D (subprogram)

In the above example, only the variable D is used in the subprogram. The unused
variable E is necessary to space over the area reserved by A,B, and C.

Each subprogram using a common block assigns the allocation of words in the

block. The identifiers used within the block may differ as to name, type, and
number of elements; but the block identifier must remain the same.

Example:

PROGRAM MAIN
COMPLEX C
COMMON/TEST/C(20)/36/A,B,Z

The length of the block named TEST is 40 computer words. The length of
the block numbered 36 is 3 computer words.

5-5

54
EQUIVALENCE
DECLARATION

5-6

The subprogram may rearrange the allocation of words as in:

SUBROUTINE ONE
COMMON/ TEST/A(10),G(10),K(10)
COMPLEX A

The length of TEST is 40 words. The first 10 elements (20 words) of the
block represented by A are complex elements. Array G is the next 10 words,
and array K is the last 10 words. Within the subprogram, elements of G are
treated as floating point quantities; elements of K are treated as integer
quantities.

The length of a common block must not be changed by subprograms using the
block. The symbolic names used within the block may differ, however, as
shown above.

The EQUIVALENCE declaration permits variables to share locations in storage.
The general form is:

EQUIVALENCE (A,B, .. .), (A1,BL, .. .), .

(A,B, . ..)is an equivalence group of two or more simple or singly subscripted
variable names. A multiply subscripted variable can be represented only by a
singly subscripted variable. The correspondence is:

A(i,j,k) is the same as A(the value of (i+(j-1)*I+(k-1)*I*J))
i,j,k are integer constants; I and Jare the integer constants appearing in
DIMENSION A(1,J,K). For example, in DIMENSION A(2,3,4), the element
A(1,1,2) is represented by A(7).
EQUIVALENCE is most commonly used when two or more arrays can share the
same storage locations. The lengths need not be equal.

Example:

DIMENSION A(10,10),1(100)
EQUIVALENCE (A,])
5 READ 10, A

6 READ 20,1

The EQUIVALENCE declaration assigns the first element of array A and array I
to the same storage location. The READ statement 5 stores the A array in
consecutive locations. Before statement 6 is executed, all operations using A
should be completed since the values of array I are read into the storage
locations previously occupied by A.

Variables requiring two memory positions which appear in EQUIVALENCE
statements must be declared to be COMPLEX or DOUBLE prior to their
appearance in such statements.

Example:

COMPLEX DAT,BAT
DIMENSION DAT(10,10),BAT(10,10),CAT(10,10)
DOUBLE PRECISION CAT
COMMON/IFAT/FAT(2,2)

EQUIVALENCE (DAT(6,3),FAT(2,2)),(CAT,BAT)

EQUIVALENCE is non-executable and can appear anywhere in the program or
subprogram.

Any full or multiword variable may be made equivalent to any other full or
multiword variable. The variables may be with or without subscript. In
FORTRAN II, equivalence groups can reorder the common variables and arrays,
and more than one variable in an equivalence group may be in common.

The following examples illustrate changes in block lengths caused by the
EQUIVALENCE declaration.

Given: Arrays A and B
Sa subscript of A
Sb subscript of B

Examples:

1. A and C in common, B not in common
Sb = Sa is a permissible subscript arrangement

Sb > Sa is not

5-7

Block 1

origin A1) COMMON/1/A(4),C
A(2) B(1) DIMENSION B(5)
A(3) B(2) EQUIVALENCE (A(3),B(2))
A(4) B(3)
C B(4)
B(5)
55
DATA
DECLARATION Values may be assigned to program variables or labeled common variables
with the DATA declaration:
Py
DATAd,, . .. ,dn/al,k By o ,an/,dl, e ,dn/al, ce ,an/, .
d, identifiers representing simple variables, array names, or

! variables with integer constant subscripts or integer variable

subscripts (implied DO-loop notation).
literals (any constant); they may be signed or unsigned.

k integer constant repetition factor that causes the literal following
the asterisk to be repeated k times. If k is noninteger, a com-
piler diagnostic occurs.

DATA is non-executable and can appear anywhere in the program or subprogram
When DATA appears with DIMENSION, COMMON, EQUIVALENCE, or a type
declaration, the order is immaterial. Variables in blank or numbered common
or formal parameters may not be preset by a DATA declaration.

Single-subscript, DO-loop-implying notation is permissible. This notation may
be used for storing constant values in arrays.

Example:

DIMENSION GIB(10)
DATA (GIB(I), I=1, 10)/1. , 2. , 3. , 7*4.32/

Array GIB: 1.
2.
3.
4.32
4.32
4.32
4.32
4.32
4.32
4.32

5-8

In the DATA declaration, the type of the constant stored is determined by the

structure of the constant rather than by the variable type in the statement. In
DATA A/2/, an integer 2 replaces A, not a real 2 as might be expected from

the form of the symbolic name A.

There should be a one-one correspondence between the variable names and the
list. This is particularly important in arrays in labeled common. For instance:

COMMON/BLK/A(3),B
DATA A/1. ,2. ,3. ,4./

The constants 1. ,2. ,3. , are stored in array locations A, A+1, A+2; the
constant 4. is stored in location B. If this occurs unintentionally, errors

may occur when B is referred to elsewhere in the program.

COMMON/TUP/C(3)
DATA C/1. ,2./

The constants 1. , 2. are stored in array locations C and C+1;
the content of C(3), that is, location C+2, is not defined.

When the number of list elements exceeds the range of the implied DO, the
excess list elements are not stored.

DATA (A(D), I=1, 5, 1)/1.,2.,...,10./

The excess values 6. through 10. are discarded.

Examples:

1) DATA LEDA, CASTOR, POLLUX/15,16.0,84.0/

LEDA 15
CASTOR 16.0
POLLUX 84.0

2) DATA A(1,3)/16.239/
ARRAY A
A(1,3) 16.239

5-9

3) DIMENSION B(10)

DATA B/0000077, 0000064, 3*0000005, 5*0000200/

ARRAY B o77

064

05

05

05

0200

0200

0200

0200

0200

4) COMMON/HERA/C(4)
DATA C/3.6, 3%10.5/
ARRAY C 3.6
10.5
10.5
10.5

5) COMPLEX PROTER (4)
DATA PROTER/4*(1.0,2.0)/

ARRAY PROTER 1.0

2.0

1.0

2.0

1.0

2.0

1.0

2.0

6) DIMENSION MESAGE (3)
DATA MESAGE/9HSTATEMENT,2HIS,10HINCOMPLETE/

ARRAY MESAGE STATEMENT
IS
INCOMPLETE

5-10

Data declaration statements of the following forms may also be used to assign
constant values to program or labeled variables at load time.

DATA (il=va1ue list), (12=va1ue list), . . .

DATA (i(j,k,]1)=list), . ..

DATE (((1(I,J),I=nl,nz),J=m1,m2)=hst), ..

The variable identifier, i, may be:

non-subscripted variable

array variable with constant subscripts

array name

array element with integer variable quantifiers

The value list is either a single constant or set of constants whose number is
equal to the number of elements in the named array.

List contains constants only and has the form:

al,az, e ’k(bl’bz’ .. .),cl,cz, .

k is an integer constant repetition factor that causes the parenthetical list
following it to be repeated k times. Ifk is non-integer a compiler diagnostic
is provided.

Examples:

COMMON/DATA/GIB

DATA ((GIB(I), I=1,10)=1. , 2. , 3. , 7(4.32))
COMMON/DATA/ROBIN(5,5,5)

DATA (ROBIN(4,3,2)=16.)
COMMON/DATA/BAT(10,10)

DATA ((BAT(10,N), N=1,3)=2. , 6. , 10.)

5-11

5.5.1

BLOCK DATA ‘

SUBPROGRAM A block data subprogram may be used to enter data into labeled common prior
to program execution in place of a DATA declaration and it may appear more
than once in a FORTRAN program. A block data subprogram has the form:

BLOCK DATA
FORTRAN declaration statements only

END

All elements in the common blocks must appear in a COMMON declaration in
the subprogram even if they are not in the DATA declaration.

Example:

BLOCK DATA

COMMON/ABC/A(5),B,C/DEF/D,E,F

COMPLEX D,E

DOUBLE PRECISION F

DATA (A(L),L-=1,5)/2.3,3.4,3*7.1/B/2034.756/D,E,F/2*(1.0,2.5),
17.86972415872E30/

END

5-12

CONTROL STATEMENTS 6

6.1
GO TO
STATEMENTS

6.1.1
UNCONDITIONAL
GO TO

6.1.2
ASSIGNED GO TO

6.1.3
ASSIGN STATEMENT

Program execution normally proceeds from one statement to the statement
immediately following it in the program. Control statements can be used to
alter this sequence or cause a number of iterations of a program section.

Control may be transferred to an executable statement only; a transfer to a
non-executable statement results in a program error.

Program control is transferred to a statement other than the next statement in
sequence by the GO TO statements.

GO TO n

An unconditional transfer is made to the statement labeled n.

GO TO m, (nl,nz, e ,nm)

GO TO m

This statement acts as a many-branch GO TO; m is a simple integer variable
assigned an integer value n in a preceding ASSIGN statement. The n; are
statement labels. As shown, the parenthetical statement label list need not
be present.

The comma after m is optional; however, when the list is omitted, the comma
must be omitted. m cannot be defined as the result of a computation. No
compiler diagnostic is given if m is computed, but the object code is incorrect.
If an assignment has not been made for an assigned GO TO statement during
run time, a diagnostic is provided at object time.

ASSIGN s TO m

This statement is used with the assigned GO TO statement; s is a statement label,
m is a simple integer variable.

6-1

6.1.4
COMPUTED GO TO

6-2

Example:

ASSIGN 10 TO LSWTCH

GO TO LSWTCH, (5,10,15,20)

Control transfers to statement 10.

GO TO (nl,nz, e ,nm),l

This statement acts as a many-branch GO TO; s is preset or computed prior
to its use in the GO TO.

The n; are statement labels and i is a simple integer variable. Ifi < 1 or if
i > m, the transfer is undefined and an object time diagnostic will be issued

indicating the point at which the error was detected. If 1 = i = m, the transfer
is to n;.
i

The comma separating the statement number list and the index is optional.

Example:

N=3

GO TO (100,101,102,103) N
Statement number 102 will be the selected control transfer.

For proper operations, i must not be specified by an ASSIGN statement. No
compilation diagnostic is provided for this error, but the object code is in-
correct.

Example:
ISWICH =1
GO TO (10,20,30), ISWICH

10 JSWICH =ISWICH + 1

GO TO (11,21,31), JSWICH
Control transfers to statement 21.

6.2
IF STATEMENTS

6.2.1
THREE-BRANCH
ARITHMETIC IF

6.2.2

ONE-BRANCH
LOGICAL IF

6.2.3

TWO-BRANCH
LOGICAL IF

Program control is transferred to a statement depending upon the condition of

the computed results of the IF statements.

IF (A) n1 ,nz,n3

A is an arithmetic expression, and the n; are statement labels. This statement

tests the evaluated expression A and jumps accordingly as follows:

A< 0 jump to statement n
A=0 jump to statement nz
A>0 jump to statement ng

In the test for zero, +0 = -0. When the mode of the evaluated expression is
complex, only the real part is tested for zero.
IF(A*B-SINF(X)) 10,20,10
IF (1)5,6,7
402 IF (A/B ** 2) 3,6, 6

IF (L) s

L is a logical expression and s is a statement. If L is TRUE (negative,
including minus zero), the statement is executed. If L is FALSE (plus zero)
the statement immediately following the IF statement is executed.

IF(A.LE.2.5) A=2.0

IF (VALUE*4.73.GT.PRICE.OR.VALUE.LT.150.0)BUY=.TRUE,
IF(P.AND.Q)GO TO 427

IF (L) nl ,n2

Lis a logical expression; n; are statement labels.
The evaluated expression is tested for true (nonzero) or false (plus zero)

condition. If L is true, the jump is to statement ny. If L is false, the jump
is to statement ng.

6-3

6.3
DO STATEMENT

6.3.1
DO LOOP
EXECUTION

6-4

Example:

IF(K)5,6
5 IF(K.EQ.100)70,60
6 IF(IJUMP.LT.K)10,11

DOni-= ml,mz,m3
This statement makes it possible to repeat groups of statements and to change
the value of an integer variable during the repetition. n is the statement label
ending the DO loop; i is the index variable (simple integer). m; are the indexing
parameters; they may be unsigned integer constants or simple integer variables.
The initial value assigned to i is my, my is the largest value assigned to i, and
mq is the amount added to i after each time the DO loop is executed. If mg does
not appear, it is assigned the value 1. If a statement number terminating a DO
loop has not been previously referenced except in a DO statement, it is ignored.
A later reference to test number causes a missing statement number indication.

The DO statement, the statement labeled n, and any intermediate statements
constitute a DO loop. Statement n may not be an arithmetic IF or GO TO
statement, FORMAT declaration, or another DO statement.

The indexing parameters m,,mq,mg are either unsigned integer constants or
simple integer variables. Subscripted variables and negative or zero integer
constants cause a diagnostic.

The indexing parameters mj and mgy, if variable, may assume positive or
negative values or zero.

The values of mj,my, and mg may be changed during the execution of the
DO loop.

The initial value of i, my, is increased by mg and compared with m, after
executing the DO loop once, and if i does not exceed mg, the loop is executed a
second time. Then, i is again increased by mg and again compared with mo;
this process continues until i exceeds m,. Control then passes to the statement
immediately following n, and the DO loop is satisfied.

Should mq exceed m, on the initial entry to the loop, the loop is executed once
and control is passed to the statement following n. When the DO loop is satisfied,
the index variable i is no longer well defined. If a transfer out of the DO loop
occurs before the DO is satisfied, the value of i is preserved and may be used in
subsequent statements.

6.3.2
DO NESTS When a DO loop contains another DO loop, the grouping is called a DO nest.

Nesting may be to any level. The last statement of a nested DO loop must either
be the same as the last statement of the outer DO loop or occur before it. If
Dy,Do, . . .Dy, represent DO statements where the subscripts indicate that Dy
appears before D, appears before Dg and ny,0y, . .. 0, represent the

corresponding limits of the D, then n,, must appear at or before n,_q-
— D
1
D2
[: D3
3
"

Examples:
DO loops may be nested in common with other DO loops:

—D — D — D

1 1 1
— D2 — D2 D2
I:D3 bn2 D3
—n_=n_=n

. n3 —D3 2 3

2
-1

—D4 N 3

n 1

4

6-5

DO 1 I-1,10,2 DO 100 L=2,LIMIT DO 5 I=1,5

DO 5 J=I,10
. . DO 5 K=J,15
DO 2 J=1,5 DO 10 I=1,10
DO 10 J=1,10
. 5 A = B*C
DO 3 K=2,8 .
10 CONTINUE
3 CONTINUE .
DO 20 K=K1,K2
2 CONTINUE .
20 CONTINUE
DO 4 1L=1,3 100 CONTINUE
4 CONTINUE
1 CONTINUE

6.3.3

DO LOOP TRANSFER In a DO nest, a transfer may be made from one DO loop into a DO loop that
contains it, but not from the outer DO loop to the inner DO loop without first
executing the DO statement of the inner DO loop.

= P
S |ID

6-6

6.4
CONTINUE
STATEMENT

6.5

PAUSE
STATEMENT

One exception is allowed: when control is transferred completely out of the
nested DO to perform some calculation and then transfers back into the range
of the same DO from where the original transfer exit was made. For example:
In a DO nest, if the range of i includes the range of j and a transfer out of j
occurs, then a transfer into the range of j is permissible, but a transfer into
the range of i or a transfer to either terminal statement is not permissible.

In the following diagram, PERCALC, represents a portion of the program being
completely outside of the DO nest.

out

i j PERCALC

] } not allowed

CONTINUE

The CONTINUE statement is most frequently used as the last statement of a
DO loop to provide a loop termination when a GO TO or IF would normally be
the last statement of the loop. If CONTINUE is used elsewhere in the source
program it acts as a do-nothing instruction and control passes to the next
sequential program statement. The CONTINUE statement must contain a state-
ment label in column 1-5.

PAUSE
PAUSE n

n = 5 octal digits without an O prefix or B suffix. PAUSE n stops program
execution with the words PAUSE n displayed as a day file message. An
operator entry from the console can continue or terminate the program.
Program continuation proceeds with the statement immediately following
PAUSE. If n is omitted, it is understood to be zero.

6-7

6.6
STOP STATEMENT

6.7
RETURN
STATEMENT

6.8
END STATEMENT

6-8

STOP
STOP n

n = 5 octal digits without an O prefix or B suffix. STOP terminates the
program execution and returns control to the monitor. If n is omitted, it is
understood to be zero.

A subprogram normally contains one or more RETURN statements to indicate
the end of logic flow within the subprogram and return control to the calling
program.

In function subprograms, control returns to the statement containing the
function reference. In a subroutine subprogram, control returns to the next
executable statement following the CALL. A RETURN statement in the main
program causes an exit to the monitor.

END must be the final statement in a program or subprogram. It is executable
in the sense that it effects termination of the program.

The END statement may include the name of the program or subprogram which
it terminates; the name is ignored, however.

PROGRAM, FUNCTION, AND SUBROUTINE 7

7.1

PROGRAM
COMMUNICATION

A Chippewa FORTRAN program consists of a main program with or without
subprograms. Subprograms are of two kinds: subroutine and function. In
the following discussions, the term subprogram refers to both. Subprograms
may be compiled independently of the main program.

The main program and subprograms communicate with each other via parameters

and COMMON variables. Subprograms may call or be called by any other sub-
program as long as the calls are nonrecursive; that is, if program A calls B,
B may not call A. A calling program is a main program or subprogram that
refers to another subprogram. A subroutine referenced by a program or
segment may have the same name as the program or segment. However, a
program or subprogram may not call itself. The following examples illustrate

such calling reference:

Example:

PROGRAM MAIN (INPUT)
The program and the subroutine
have the same name.

CALL MAIN

END
SUBROUTINE MAIN (OUTPUT)

END

SEGMENT LOOP1 (INPUT)
The segment and the subroutine

have the same name.

CALL LOOP1
END
SUBROUTINE LOOP1 (OUTPUT)

END

7.2

SUBPROGRAM
COMMUNICATION

7.3
FORMAL
PARAMETERS

74

ACTUAL
PARAMETERS

7-2

Subprograms, functions, and subroutines use parameters as one means of
communication. The parameters appearing in a subroutine call or a function
reference are actual parameters. The corresponding arguments appearing with
the program, subprogram, statement function, or library function name in the
definition are formal parameters. One or more of the formal parameters or
common variables can be used to return output to the calling program.

Formal parameters may be the names of arrays, simple variables, library
functions, and subprograms. Since formal parameters are local to the sub-
program containing them, they may be the same as names appearing outside the
procedure.

No element of a formal parameter list may appear in an EQUIVALENCE or
DATA statement within the subroutine. If it does, a compiler diagnostic results.

When a formal parameter represents an array, it must be dimensioned within
the subprogram. If it is not declared, the array name must appear without
subscripts and only the first element of the array is available to the subprogram.

Permissible forms:

Arithmetic expression

Logical expression

Constant

Simple or subscripted variable

Array name

FUNCTION subprogram name

Library function and subroutine name

SUBROUTINE name

A calling program statement label, identified by suffixing the label
with the character S and used only in MACHINE SUBROUTINE.

A function name or a function reference may be used as an actual parameter.
The function reference is a special case of an arithmetic expression.

Function name:

SUBROUTINE PULL(X,Y,Z)

Z = xiY)

Calling Program Reference

EXTERNAL SIN
CALL PULL(SIN,R, Q)

Function reference:

SUBROUTINE PULL(X,Z)

Calling Program Reference

CALL.PULL(SIN(R) Q)

A subroutine name may appear as an actual parameter; any parameters to be

associated with a call of this subroutine must appear as separate actual

parameters.

Example:

Calling Routine

EXTERNAL ADDER

CALL SUB (ADDER,A,B)

Called Routine

SUBROUTINE SUB (X,Y,Z)

CALL Y(X,Q,P,Z)

CALL SUB (ADDER(A,B)) implies that ADDER is a function, not a
subroutine.

When an actual parameter is the name of a function or subroutine, that name
must also appear in an EXTERNAL statement in the calling program.

Actual and formal parameters must agree in order, type, and number.

7.5
MAIN PROGRAM The first statement of a main program must be one of the following forms where
name is an alphanumeric identifier of 1-7 characters:

PROGRAM name (f ,f)
FORTRAN IV PROGRAM name (f , . . . ,f)

FORTRAN Il PROGRAM name (£, . . . ,f)

MACHINE PROGRAM name (f , . . . ,f) l See
ASCENTF PROGRAM name (£, . . . ,f) | Appendix F

The first two forms cause the program to be compiled in FORTRAN IV mode.
The third form causes compiling in FORTRAN II mode. The last two forms are
the first statements of programs written in assembly language and compiled by
the FORTRAN compiler. The parameter list is optional on all forms.

The parameter f; must be the names of all input/output files required by the
main program and its subprograms. Although these parameters may be changed
at execution time, they must, at compile time, satisfy the following conditions:

1.

The file name INPUT must appear if any READ statement is included in the
program or its subprograms.

The file name OUTPUT must appear if any PRINT statement is included in
the program or its subprograms.

The file name PUNCH must appear if any PUNCH statement is included in
the program or its subprograms.

The file name TAPE i, must appear if a READ INPUT TAPE i, WRITE
OUTPUT TAPE i, READ TAPE i, WRITE TAPE i, READ(i,n), WRITE (i,n),
READ (i), or WRITE (i) statement is included in the program or its
subprogram. (i is an integer)

If I is an integer variable name for a READ INPUT TAPE I, WRITE
OUTPUT TAPE I, READ TAPE I, WRITE TAPE I, READ (I,n),
WRITE (I,n), READ (I), or WRITE (I) statement which appears in the
program or its subprograms, the file names TAPEi_,..., TAPE i
must appear. The integers 11, ..., i, must include a]11 values whicllf
are assumed by the variable I. The file name TAPE I may not appear
in the list of arguments to the main program.

File names may be made equivalent and their buffer lengths may be specified
at compile time.

Example:

PROGRAM name (INPUT,OUTPUT=10000,TAPE1=INPUT, TAPE2=OUTPUT)

All input normally provided by TAPE 1 would be extracted from INPUT and
all listable output normally recorded on TAPE 2 would be transmitted to the
OUTPUT file. Buffer length is specified by OUTPUT=10000 which establishes
an output buffer length of 10000g. If buffer length is not indicated, a standard
buffer size is allocated. Buffer length may not be less than 1001 words. For
instance, PROGRAM X(INPUT=20) will cause a buffer of 1001 words to be
formed. Equivalenced file names must follow, in the list of parameters,
those to which they are made equivalent. Their corresponding parameter
positions may not be changed at the time the program is executed, although
the names of the files to which they are made equivalent may be changed at
this time.

7-5

7.6
SUBROUTINE
SUBPROGRAM

77
CALL STATEMENT

7-6

A subroutine subprogram is a closed loop computational procedure which may
return none, one or more values. A value or type is not associated with the
subroutine name itself.

The first statement of a subroutine subprogram must have one of the following
forms:

SUBROUTINE name (pl, e ,pn)

FORTRAN 1V SUBROUTINE name (pl, .. ,pn)

FORTRAN II SUBROUTINE name (pl, SN ,pn)

MACHINE SUBROUTINE name (pl, ce ,pn) l See
ASCENTF SUBROUTINE name (pl, . .,pn) j Appendix F

name is an alphanumeric identifier and p; are formal parameters; n may
be 1 to 60.

The parameter list is optional. If the parameter list is not specified, the
following form is allowed:

SUBROUTINE name

The executable statement in the calling program for referring to a subroutine is:

CALL name
or
CALL name (pl, PR ,pn)
name is the name of the subroutine being called, and p; are actual param-
eters; n is 1 to 60. The name should not appear in any declarative state-

ment in the calling program, with the exception of the EXTERNAL statement
when name is also an actual parameter.

The CALL statement transfers control to the subroutine. When a RETURN
statement is encountered in the subroutine, control is returned to the next
executable statement following the CALL statement in the calling program.
If the CALL statement is the last statement in a DO loop, looping continues
until the DO loop is satisfied.

Examples:

1) SUBROUTINE BLDX(A,B,W)
W=2_*B/A
END

Calls

CALL BLDX(X(I),Y(I),W)
CALL BLDX(X(I)+H/2. ,Y(I)+C(J),PROX)
CALL BLDX(SIN(Q5),EVEC(I+J),0VEC(L))

2) SUBROUTINE MATMULT
COMMON/ITRARE/X(20,20),Y(20,20),Z(20,20)

DO101=1,20
DO 10 J = 1,20
Z(L,J) = 0.
DO 10 K=1,20

10 Z(1,J) = Z(LJ) + X(,K)*Y(K,J)
END

Operations in MATMULT are performed on variables contained in the common

block ITRARE. This block must be defined in all calling programs.

COMMON/ITRARE/AB(20,20),CD(20,20) , EF(20,20)
CALL MATMULT

3) SUBROUTINE AGMT(SUB,ARG)
COMMON/ABL/XP(100)
ARG = 0.
DO 51=1,100
5 ARG = ARG + XP(])
CALL SUB
END

In this case the subprogram used as an actual parameter must have its name

declared in an EXTERNAL statement in the calling program.

COMMON/ABL/ALST(100)
EXTERNAL RTEMTA, RTEMTB
CALL AGMT(RTEMTA,V1)
CALL AGMT(RTEMTB,V1)

-1

7.8
EXTERNAL
STATEMENT

7.9

LIBRARY
SUBROUTINES

7-8

When the actual parameter list which calls a function or subroutine subprogram
contains a function or subroutine name, that name must be declared in an
EXTERNAL statement.

EXTERNAL namel, na.mez, .

The EXTERNAL statement must precede the first statement of any program
which calls a function or subroutine subprogram using the EXTERNAL name.
When it is used, EXTERNAL always appears in the calling program; it may not
be used with statement functions. If it is, a compiler diagnostic is provided.

Chippewa FORTRAN contains several built-in subroutine subprograms which
may be referenced by any program with a CALL statement. i must be an integer
variable or constant; j is an integer variable.

CALL SLITE (i)

Turn on sense light i. If i =0, turn all sense lights off. iis 0 to 6; if i > 6, the
results are undefined and no diagnostic is provided.

CALL SLITET (i,j)

If sense light i is on, set j =1, if sense light i is off, set j = 2; then turn sense
light i off. iis 1to 6. If i is out of the range, the results are undefined.
CALL SSWTCH (i,j)

If sense switch i is down, set j = 1; if sense switch i is up, set j =2. iis 1 to 6.
If i is out of the range, the results are undefined.

CALL OVERFL (j)

If a floating point overflow condition exists, set j = 1; if no overflow exists,

set j = 2; and set the machine to a no overflow condition.

CALL DVCHK (j)

If division by zero occurred, set j =1 and clear the indicator; if division by zero
did not occur, set j =2.

7.10

FUNCTION
SUBPROGRAM

CALL EXIT

Terminate program execution and return control to the monitor.

CALL DUMP (a_,b_,f.,...,a ,b ,f)
1171 n nn

CALL PDUMP (a_,b_f ,...,a ,b ,f)n= 20
1’171 n"nn

Dump storage on the OUTPUT file in the indicated format. If PDUMP was
called, return control to the calling program; if DUMP was called, terminate
program execution and return control to the monitor.

a; and bi’ identifiers or statement numbers, indicate the first word and the
last word of the storage area to be dumped. The statement numbers must be
1 to 5 digits trailed by an S; CALL DUMP (108, 208, 0).

The dump format indicators are as follows:

f =0 or 3 octal dump
f =1 real dump

f =2 integer dump; if bit 48 is set (normalize bit), the dump is real (f =1).
If no parameters are provided, an octal dump of all storage occurs.

If b; is the last statement of a DO loop, then b;S is not allowed to be used as the
last word of the storage area to be dumped.

A function is a computational procedure which returns a value associated with
the function name. The mode of the function is determined by a type indicator
or the name of the function.

The first statement of a function subprogram must be one of the following forms
where name is an alphanumeric identifier and p; are formal parameters. A
FUNCTION statement must have at least one parameter. 1 =n = 60.

FUNCTION name (pl, “e ,pn)
type FUNCTION name (pl, .. ,pn)

FORTRAN IV FUNCTION name (pl, Ce ,pn)
FORTRAN IV type FUNCTION name (pl, ce ,pn)
FORTRAN II FUNCTION name (pl, ce ,pn)

FORTRAN II type FUNCTION name (p R ,pn)

7-9

7.11

FUNCTION
REFERENCE

7-10

Type is REAL, INTEGER, DOUBLE PRECISION, DOUBLE, COMPLEX, or
LOGICAL. When the type indicator is omitted, the mode is determined by the
first character of the function name.

The name of a function must not appear in a DIMENSION declaration. The name
must appear, however, at least once as any of the following:

The left-hand identifier of a replacement statement

An element of an input list

An actual parameter of a subroutine reference

In the general form, name identifies the function referenced, it is an alphanumeric
identifier, and its type is determined in the same way as a variable identifier.
p; are actual parameters, n is 1 to 60.

name (pl, «e.5p)
n

A function reference may appear any place in an expression that an operand may
be used. The evaluated function has a single value associated with the function
name.

When a function reference is encountered in an expression, control is transferred
to the function indicated. When a RETURN statement in the function subprogram
is encountered, control is returned to the statement containing the function
reference.

Examples:

1) FUNCTION GRATER(A,B)
IF(A.GT.B)1,2
1 GRATER=A-B
RETURN
2 GRATER=A+B
RETURN
END

A reference to the function GRATER might be:
W(I,J)=FA+FB-GRATER(C-D,3.*AX/BX)

7.12

STATEMENT
FUNCTION

2) FUNCTION PHI (ALPHA,PHI2)
PHI=PHI2(ALPHA)
RETURN
END

This function can be referenced:

EXTERNAL SIN
C=D-PHI(Q(K),SIN)

The replacement statement in the function PHI will be executed as if
it had been written PHISSIN(Q(K))

A statement function is defined by a single expression and applies only to the
program or subprogram containing the definition. The name of the statement
function is an alphanumeric identifier; a single value is always associated with
the name.

name (pl, e ,pn) =E

p; are formal parameters and must be simple variables; n is 1 to 60. The
expression E may be any arithmetic or logical expression which may contain
reference to library functions, statement functions, or function subprograms.

The nonparameter identifiers appearing in the expression have the same values
as they have outside the function.

A statement function reference has the form:

name(pl, v ,pn)

name is the name of the statement function; the actual parameters p; may
be any arithmetic expressions.

During compilation, the arithmetic statement function definition is compiled
once at the beginning of the program and a transfer is made to this portion of
the program whenever a reference is made to the arithmetic statement function.

The statement function name must not appear in a DIMENSION, EQUIVALENCE,
COMMON, or EXTERNAL statement; the name can appear in a TYPE declaration
but cannot be dimensioned. Statement function names must not appear as actual
or formal parameters.

7-11

7.13

LIBRARY
FUNCTIONS

714
PROGRAM MODES

7-12

Actual and formal parameters must agree in number, order, and mode. The
types of the statement function name or formal parameters is ignored. The
mode of the evaluated statement function is determined by the name of the
arithmetic statement function. However, the mode of the right-hand expression
is determined by the highest mode of the formal parameters of the function.

A statement function must precede the first statement in which it is used, but
it must follow all declarative statements (DIMENSION, Type, etc.) which contain
symbolic names referenced in the statement function.

Examples:

LOGICAL A,B
EQV(A,B)=(A.AND.B).OR.(.NOT.A.AND. .NOT.B)
COMPLEX Z

Z(X,Y)=(1. ,0.)*EXP(X)*COS(Y)*+(0. ,1.)* EXP(X)*SIN(Y)
GROPAY (RATE,HRS,0THRS)=RATE*HRS+RATE*.5*OTHRS

Function subprograms that are used frequently have been stored in a reference
library and are available to the programmer through the compiler. Library
function references may appear in the main program, subprograms, and
statement functions.

Chippewa FORTRAN contains the standard library functions available in earlier
versions of FORTRAN. (Appendix C.) The parameter and result type of all
library functions is also listed in Appendix C.

A Chippewa FORTRAN program or subprogram is compiled in one of four modes:

FORTRAN IV
FORTRAN II
Assembly language (MACHINE) (Appendix F)
ASCENTYF assembly language

When a mode is not indicated, the program or subprogram is compiled in
FORTRAN IV mode.

The compiling mode for the main program is the prevailing mode and is assumed
for all subsequent subprograms unless specific subprograms are declared to be

7.15

VARIABLE
DIMENSIONS IN
SUBPROGRAMS

of a different mode. A subprogram declared to be of a different mode is
processed in its declared mode. The subprogram following it, unless declared
to be of a different mode, is processed in the prevailing mode.

FORTRAN II and FORTRAN IV statements which are not inherently incompatible
may be intermixed in a program to be compiled in either mode (Appendix D).
Inherently incompatible statements are those involving function subprogram
references and EQUIVALENCE statements, causing a reordering of variables

in COMMON. However, any standard FORTRAN II or FORTRAN IV library
function or subroutine reference may appear in a program to be compiled in
either mode.

In many subprograms, especially those performing matrix manipulation, the
programmer may wish to vary array dimensions each time the subprogram
is called.

This is accomplished by specifying the array name and its dimensions as formal
parameters in the FUNCTION or SUBROUTINE statement. The corresponding
actual parameters specified in the calling program are used by the called
subprogram. The maximum dimensions that any given array may assume are
determined by dimensions in a DIMENSION, COMMON, or type statement in the
calling program at compile time.

The formal parameters representing the array dimensions must be simple
integer variables. The array name must also be a formal parameter. The
actual parameters representing the array dimensions must have integer values.
The total number of elements of the corresponding array in the subprogram may
not exceed the total number of elements of a given array in the calling program.
Example:

Consider a simple matrix add routine written as a subroutine:

SUBROUTINE MATADD (X,Y,Z,M,N)
DIMENSION X (M,N),Y(M,N),Z(M,N)

DO10I=1,M
DO 10 J =1,N

10 Z(I,J)=X(1,J)+Y(1,J)
END

The arrays X, Y, Z and the variable dimensions M, N must all appear as
formal parameters in the SUBROUTINE statement and also in the DIMENSION

7-13

7.16

PROGRAM
ARRANGEMENT

7-14

statement as shown. If the calling program contains the array allocation
declaration

DIMENSION A(10,10),B(10,10),C(10,10),E(5,5),F(5,5),G(5,5), H(10,10)

the program may call the subroutine MATADD from several places within
the main program as follows:

CALL MATADD(A,B,C,10,10)
CALL MATADD(E,F,G,5,5)

CALL MATADD(B,C,A,10,10)
CALL MATADD(B,C,H,10,10)

The compiler does not check to see if the limits of the array established by the
DIMENSION statement in the main program are exceeded.

Chippewa FORTRAN assumes that all statements and comments appearing
between a PROGRAM, SUBROUTINE, or FUNCTION statement and an END
statement belong to one program. A typical arrangement of a set of main

program and subprograms follows.

PROGRAM WHAT

END

FORTRAN II SUBROUTINE S1(A,B)
END

FORTRAN IV SUBROUTINE S2

END

REAL FUNCTION F1(P1)

END

CHAINING 8

8.1
CHAINING

Chaining is a method used to execute a program which would otherwise exceed
available storage. The program is separated into a main program with or with-
out subprograms and any number of segments which may be called and executed
as needed. Each segment must begin with the statement:

SEGMENT name (fl, e ,fn)

name is an alphanumeric identifier and transfer address for the segment;
fi are file names which appear in the PROGRAM statement in the main
program.

The main program is the first portion loaded and executed; segments are loaded
from the disk file when called. Only main or one segment may occupy storage at
a given time. The main program may not be recalled once a segment has been
called but a segment may be called for execution more than once. The main pro-
gram must declare the largest value of common used by any one segment.
Parameters may be transferred to a segment only through blank common. A
subprogram beginning with the SEGMENT statement is compiled as one beginning
with the PROGRAM statement except that blank common is not cleared when
starting execution of the segment.

Segments are called by

CALL CHAIN (name)
CHAIN is a central FORTRAN subroutine which loads the called segment from
the disk file. The only parameter to CHAIN must be the segment name to which

control is transferred after loading.

See Appendix F for basic deck structure.

8-1

INPUT/OUTPUT FORMATS 9

9.1

INPUT/OUTPUT
LIST

Data transmission between storage and external units requires the FORMAT
statement (BCD only) and the I/O control statement (chapter 10). The 1/O
statement specifies the input/output device and process READ, WRITE, etc.,
and a list of data to be moved. The FORMAT statement specifies the manner
in which the data is to be moved. In binary statements no FORMAT statement
is used.

The list portion of an input/output statement indicates the data items and the
order, from left to right, of transmission. The input/output list can contain
any number of elements; list items may be array names, simple or subscripted
variables, or an implied DO loop. Items are separated by commas, and their
order must correspond to any FORMAT specification associated with the list.
External records are always read or written until the list is satisfied.

Subscripts in an I/O list may be in the following forms:

(c*Id)
1=d)
(c*T)

)

(c)

¢ and d are unsigned integer constants, and I is a simple integer variable,
previously defined, or defined within an implied DO loop.

Examples:

READ 100, A,B,C,D

READ 200, A,B,C(I),D(3,4),E(1,J,7),H

READ 101, J,A(J),I,B(I,J)

READ 102, DELTA(5*J+2,5*-3,5*K),C,D(I+7)

READ 202, DELTA

READ 300, A,B,C,(D(1),I=1,10),E(5,7),F(J),(G(I),H(I),I=2,6,2)
READ 400, 1,J,K,(((A(II,JJ,KK),II=1,1),d¥1,J),KK=1,K)
READ 500, ((A(1,J),I=1,10,2),B(J,1),J=1,5),E,F,G,(L+5,M-7)

9-1

9.1.1

ARRAY
TRANSMISSION Part of all of an array can be represented for transmission as a single 1/0 list

item by using an implied DO notation in the form:

(((A(LJ,K),L =m_,m,,m,),L,=n,,n,,n,),La=p, .py.P)

2
mi,ni,pi unsigned integer constants or simple integer variables.
If mg, ng, or pg is omitted, it is assumed equal to 1.
I,J,K subscripts of A.
Ll,Lz,L3 index variables I, J, K in some order.

During execution, each subscript (index variable) is set to the initial index value:
L;=m,, Ly=my, Lg =p;. The first index variable defined in the list is incre-
mented first, following the rules for a DO loop execution. When the first index
variable reaches the maximum value, it is reset; the next index variable to the
right is incremented, and the process is repeated until the last index variable
has been incremented. If m; is greater than my initially, one card is read.

An array name which appears without subscripts in an 1/0 list causes trans-
mission of the entire array by columns.

An implied DO loop can be used to transmit a simple variable more than one
time. For example, the list item (A(K),B,K=1,5) causes the transmission of
variable B five times. However, in the case of (B,A(K),K=1,5), B is transmitted
only once. A list of the form K,(A(I),I=1,K) is permitted and the input value of
K is used in the implied DO loop.

Examples:

1) Simple implied DO loop list items.
READ 400,(A(1),I=1,10)
400 FORMAT (E20.10)
This statement is equivalent to the following DO loop.
DO 5 1I=1,10
5 READ 400, A(I)
READ 100, ((A(JV,JX),JV=2,20,2),dX=1,30)
READ 200, (BETA(3*JON+7),JON = JONA ,JONB,JONC)
READ 300, ((ITMLST(,¥1,K-2),1-1,25),J=2,N),K=IVAR,IVMAX,4)
READ 600, (A(I),B(I),I=1,10)
600 FORMAT (F10.2, E6.1)
The previous statement is equivalent to the DO loop.
DO 171=1,10
17 READ 600, A(I),B(I)

2) Nested implied DO list items.
READ 100,(((((A(,J,K)B(I,L),C(J,N),I=1,10),J=1,5),K=1,8),
1L=1,15),N=2,7)
Data is transmitted in the following sequence:
A(1,1,1),B(1,1),C(1,2),A(2,1,1),B(2,1),C(1,2). . .
. \A(10,1,1),B(10,1),C(1,2),A(1,2,1),B(1,1),C(2,2). . .
. .A(10,2,1),B(10,1),C(2,2). . .A(10,5,1),B(10,1),C(5,2). . .
. .A(10,5,8),B(10,1),C(5,2). . .A(10,5,8),B(10,15),C(5,2). . .
.. .A(10,5,8),B(10,15),C(5,7)
The following list item will transmit the array E(3,3) by columns:
READ 100, ((E(1,Jd),I=1,3),J=1,3)
The following list item will transmit the array E(3,3) by rows:

READ 100,((E(I,J),J=1,3), I=1,3)

3) DIMENSION MATRIX(3,4,7)
READ 100, MATRIX
100 FORMAT (I6)
The above items are equivalent to the following statements:
DIMENSION MATRIX(3,4,7)
READ 100,(((MATRIX(1,J K),I=1,3),J=1,4),K=1,7)
The list is equivalent to the nest of DO loops:
DO 5 K=1,7
DO 5 J=1,4
DO 5 I-1,3
5 READ 100, MATRIX(I,J,K)

9.2
FORMAT
DECLARATION BCD input/output statements require a FORMAT declaration which contains
conversion and editing information relating to internal/external structure of the
corresponding I/0 list items. A FORMAT declaration has the following form:
FORMAT (specl, .. ,k(specm, .. .),specn, e e)
Speci format specification

k optional repetition factor which must be an unsigned integer
constant.

9-3

The FORMAT declaration is non-executable and may appear anywhere in the
program. FORMAT declarations must have a statement label in columns 1-5.

The data items in an 1/0 list are converted from one representation to another
(external/internal) according to FORMAT conversion specifications. FORMAT
specifications may also contain editing codes.

Conversion specifications:

Ew.d
Fw.d
Dw.d
Iw
Ow
Aw
Lw
nP

Single precision floating point with exponent
Single precision floating point without exponent
Double precision floating point with exponent
Decimal integer conversion

Octal integer conversion

Alphanumeric conversion

Logical conversion

Scaling factor

Complex data items are converted on input/output according to a pair of
consecutive Ew.d or Fw.d specifications.

Example:
COMPLEX A,B
PRINT 10,A
10 FORMAT (F7.2,F9.2)
READ 11,B

11 FORMAT (E10.3,E10.3)

Editing specifications:

wX
wH
/

Intraline spacing
Heading and labeling

Begin new record

Both w and d are unsigned integer constants; w specifies the field width in
number of character positions in the external record, and d specifies the number
of digits to the right of the decimal within the field.

9.3

CONVERSION
SPECIFICATIONS

9.3.1

Ew.d OUTPUT Real numbers in storage are converted to the BCD character form for output
with the E conversion. The field occupies w positions in the output record;
with the real number right justified in the form:

ba.a. . .ateee 100 =eee =308
or

ba.a. . .aExee 0=ee=99

b indicates blank character. a are the most significant digits of the integer and
fractional part and eee are the digits in the exponent. If d is zero or blank, the
decimal point and digits to the right of the decimal do not appear as shown
above. Field w must be wide enough to contain the significant digits, signs,
decimal point, E, and the exponent. Generally, w=d+7. Positive numbers need
not reserve a space for the sign of the number.

If the field is not wide enough to contain the output value, an asterisk is inserted
in the high order position of the field. If the field is longer than the output value,
the quantity is right justified with blank fill to the left.

Examples:
Ew.d Output
PRINT 10,A A contains -67.32
+67.
10 FORMAT(EL0.3) or +67.32
Result: -6.732E+01 or b6.732E+01
PRINT 10,A
10 FORMAT(E13.3)
Result: bbb-6.732E+01 bbbb6.732 E+01
PRINT 10,A A contains -67.32
10 FORMAT(ES.3) provision not made
for sign

Result: *.732E+01

PRINT 10,A
10 FORMAT(E10.4)
Result: *.6732E+02

9-5

9.3.2
Ew.d INPUT The E specification converts the number in the input field to a real number and
stores it in the proper location.

Subfield structure of the input field:

input field

— e e —
+ +
digit . E

integer \ fraction exponent

decimal point

The total number of characters in the input field is specified by w; this field is
scanned from left to right; blanks are interpreted as zeros. A field may contain
up to 15 significant digits.

The integer subfield begins with a sign (+ or -) or a digit and may contain a
string of digits. The integer field is terminated by a decimal point, D, E, +, -,
or the end of the input field.

The fraction subfield which begins with a decimal point may contain a string of
digits. The field is terminated by D, E, +, -, or the end of the input field.

The exponent subfield may begin with D, E, + or -. When it begins with D or E,

the + is optional between D or E and the string of digits of the subfield. The
value of the string of digits in the exponent subfield must be less than 308.

Permissible subfield combinations:

+1.6327E-04 integer fraction exponent
-32.7216 integer fraction

+328+5 integer exponent

.629E-1 fraction exponent

+136 integer only

136 integer only

.07628431 fraction only

E-06 (interpreted as zero) exponent only

In the Ew.d specification, d acts as a negative power-of-ten scaling factor when
an external decimal point is not present. The internal representation of the
input quantity is:

(integer subfield)x10 _dxl 0 (exponent subfield)

9-6

For example, if the specification is E7.8, the input quantity 3267+05 is converted
and stored as: 3267x10-8x105 = 3.267.

A decimal point in the input field overrides d. The input quantity 3.67294+5 read
by an E9.d specification is always stored as 3.6729x10%. When d does not appear,
it is assumed to be zero.

The field length specified by w in Ew.d should always be the same as the length
of the field containing the input number. When it is not, incorrect numbers may

be read, converted, and stored as shown below. The field w includes the
significant digits, signs, decimal point, E or D, and exponent.

Example:

READ 20,A,B,C
20 FORMAT (E9.3,E7.2,E10.3)

Input quantities on the card are in three contiguous fields columns 1
through 24:

9 5 10

[N e St
+6.47E-01-2.36+5.321E+02bb

The second specification (E7.2) exceeds the width of the second field by
two characters.

Reading proceeds as follows:

+6.47E—01l -2.36+5 .321E+02bb
+6.47E-01]-2.36+5].321E+02bb

+6.47E-01-2.36+5 |.321E+02bb

First, +6.47-01 is read, converted, and placed in location A. Next, -2.36+5
is read, converted, and placed in location B. The number actually desired
was -2.36, but the specification error (E7.2 instead of E5.2) caused the two
extra characters to be read. The number read (-2.36+5) is a legitimate
input representation under the definitions and restrictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here again,
the input number is legitimate and is converted and stored, even though it is
not the number desired.

9-17

9.3.3
Fw.d OUTPUT

The above example illustrates a situation where numbers are incorrectly read,
converted, and stored, and yet there is no immediate indication that an error
has occurred.

Examples:
Ew.d Input
Specifi- Converted

Input Field cation Value Remarks

+143.26E-03 El11.2 .14326 All subfields present

-12.437629E+1 E13.6 -124.37629 All subfields present

8936E+004 E9.10 .008936 No fraction subfield; input
number converted as 8936.
x 10710+4

327.625 E7.3 327.625 No exponent subfield

4.376 E5 4.376 No d in specification

-.0003627+5 E11.7 -36.27 Integer subfield contains
- only

-.0003627E5 E11.7 -36.27 Integer subfield contains
- only

blanks Ew.d -0. All subfields empty

1E1 E3.0 10. No fraction subfield; input
number converted as 1.x101

E+06 E10.6 0. No integer or fraction sub-
field; zero stored regardless
of exponent field contents

1.bEbl E6.3 10. Blanks are interpreted as

Zeros

The field occupies w positions in the output record; the corresponding list item
must be a floating point quantity, which appears as a decimal number, right '
justified:

ba.. .a.a.. .a
b indicates a blank. The a's represent the most significant digits of the number.
The number of decimal places to the right of the decimal is specified by d. If d
is zero or omitted, the decimal point and digits to the right do not appear. If
the number is positive, the + sign is suppressed. If the field is too short to
accommodate the number, one asterisk appears in the high-order position of the
output field. If the field is longer than required to accommodate the number, the
number is right justified with blank fill to the left.

9.34
Fw.d INPUT

Examples:
A contains +32.694

PRINT 10,A
10 FORMAT (F7.3)
Result: b32.694

PRINT 11,A
11 FORMAT (F10.3)
Result: bbbb32.694

A contains -32.694

PRINT 12,A
12 FORMAT (F6.3)
Result: *2.694 no provision for - sign and most
significant digit
A contains .32694

PRINT 13,A,A
13 FORMAT (F4.3, F6.3)
Result: .327b0.327

This specification is a modification of Ew.d. The input field ‘consists of an

integer and a fraction subfield. An omitted subfield is assumed to be zero.

The restrictions described under Ew.d input apply.

9-9

Examples:

Specifi- Converted
Input Field cation Value Remarks
367.2593 F8.4 367.2593 Integer and fraction field
37925 F5.7 .0037925 No fraction subfield; input
number converted as
37925 x 1077
~-4.7366 F7 -4.7366 No d in specification
.62543 F6.5 .62543 No integer subfield
.62543 . F6.2 .62543 Decimal point overrides d
of specification
+144.15E-03 F11.2 14415 Exponents are legitimate
in F input and may have
P-scaling
5bbbb F5.2 500.00 No fraction subfield; input
number converted as
50000x 10~2
9.3.5
Dw.d OUTPUT The field occupies w positions of the output record, the list item is a double
precision quantity which appears as a decimal number, right justified:
ba.a. . .aieee 100 =eee =308
or
ba.a. . .aD+ee 0=ee=99
b indicates blank. D conversion corresponds to Ew.d Output.
9.3.6
Dw.d INPUT D conversion corresponds to E conversion except that 18 is the maximum number

of significant digits permitted in the combined integer-fraction field. D is
acceptable in place of E as the beginning of an exponent subfield.

Example:

DOUBLE Z,Y,X
READ1,Z,Y,X
1 FORMAT (D18.11,D15,D17.4)

9-10

9.3.7
iw OUTPUT

9.3.8
iw INPUT

Input Card:

(—6.31675298443E-03 +2.718926453147 6293477528869D-09

et e et ™ et e
18 15 17

I specification is used to output decimal integer values. The output quantity
occupies w output record positions, right justified:

ba. . .a

b is a blank. The a's are the most significant decimal digits (maximum 18) of
the integer. If the integer is positive, the + sign is suppressed.

If the field w is larger than required, the output quantity is right justified with
blank fill to the left. If the field is too short, characters are stored from the
right, an asterisk occupies the leftmost position.

Example:

PRINT 10,L,J,K I contains -3762

10 FORMAT (I8,I10,I5) I‘; Zgﬁ::ig: I‘:ZGZQN

Result: bbb-3762bbb4762937bbb13
\-’\/\/L‘\

8 10 5

The field is w characters in length, and the list item is a decimal integer
constant. The input field w consists of an integer subfield, containing +, -,

0 through 9, or blank. When a sign appears, it must precede the first digit in
the field. Blanks are interpreted as zeros. The value is stored right justified
in the specified variable.

Example:

READ 10,1,J,K,L,M,N
10 FORMAT (13,17,12,13,12,14)

9-11

9.3.9
Ow OUTPUT

9.3.10
Ow INPUT

9-12

Input Card:

ﬁsgbb-lsbb18bb7b3b1b4
Y — el —— S -~

3 7 2 3 2 4
In storage:

I contains 139

J -1500
K 18

1 7

M 3

N 104

O specification is used to output octal integer values. The output quantity
occupies w output record positions right justified:

aa. . .2

The a's are octal digits. If w is 20 or less, the rightmost w digits appear. If
w is greater than 20, the number is right justified in the field with blanks to the
left of the output quantity. A negative number is output in its one's complement
internal form.

Octal integer values are converted under O specification. The field is w
characters in length, and the list item must be an integer variable.

The input field w consists of an integer subfield only (maximum of 20 octal
digits) containing +, -, 0 through 7 or blank.

Only one sign may precede the first digit in the field. Blanks are interpreted
as zeros.
Example:

TYPE INTEGER P,Q,R
READ 10,P,Q,R
10 FORMAT (010,012,02)

9.3.11
Aw OUTPUT

9.3.12
Aw INPUT

Input Card:

(3737373737666b6644b444-0

e —
10 12 2

In storage:

P 00000000003737373737
Q 00000000666066440444
R 77TTTTTTTTIVT9T0T79
A negative number is represented in one's complement form.

A negative octal number is represented internally in seven's complement form
(20 digits) obtained by subtracting each digit of the octal number from seven.
For example, if -703 is an input quantity, its internal representation is
TTTTNTTTIIIU007T074.

That is, 77777777777777777777
-00000000000000000703
TTTTTT77777777777074

A conversion is used to output alphanumeric characters. If w is 10 or more,
the quantity appears right justified in the output field, blank fill to left. If w is
less than 10, the output quantity is represented by leftmost w characters.

This specification accepts FORTRAN characters including blanks. The internal
representation is 6000 Series display code; the field width is w characters.

If w exceeds 10, the input quantity is the rightmost 10 characters in the field.
If w is 10 or less, the input quantity is stored as a left justified BCD word; the
remaining spaces are blank filled.

Example:

READ 10,Q,P,0
10 FORMAT (A8,A8,A4)

9-13

Input Card:

LUX MENTIS LUX ORBIS
T — el N !

8 8 4
In storage:

Q LUXbMENTbb
P ISbLUXbObb
O RBISbbbbbb

9.3.13
Rw OUTPUT This specification is similar to the Aw Output with the following exception. If
w is less than 10, the output quantity represents the rightmost characters.

9.3.14

Rw INPUT This specification is the same as the Aw Input with the following exception. If
w is less than 10, the input quantity is stored as a right justified binary zero
filled word.

Example:

READ 10,Q,P,0
10 FORMAT (R8,R8,R4)

Input Card:

LUX MENTIS LUX ORBIS

8 8 4
In storage:
Q OOLUXbMENT

P 00ISbLUXbLO
O 000000RBIS

9.3.15
Lw OUTPUT L specification is used to output logical values. The output field is w characters
long, and the list item must be a logical element.

9-14

9.3.16
Lw INPUT

9.4
nP SCALE FACTOR

A value of TRUE or FALSE in storage causes w-1 blanks followed by a T or F
to be output.

Example:

LOGICAL I,J K,L I contains -0 J contains 0
PRINT 5,1,J ,K,L K contains ~0 L contains -0
5 FORMAT (4L3)

Result: bbTbbFbbTbbT

This specification accepts logical quantities as list items. The field is considered
true if the first nonblank character in the field is T or false if it is F. An all-
blank field is considered false.

The D, E, and F conversion may be preceded by a scale factor which is: External
number = Internal number x10Scale factor, The scale factor applies to Fw.d on
both input and output and to Ew.d and Dw.d on output only. A scaled specification
is written as shown below; n is a signed integer constant.

nPDw.d

nPEw.d

nPFw.d

npP
The scale factor is assumed to be zero if no other value has been given; however,
once a value has been given, it holds for all D, E, and F specifications following
the scale factor within the same FORMAT declaration. To nullify this effect in
subsequent D, E, and F specifications, a zero scale factor, OP, must precede a

D, E, or F specification. Scale factors for D, E, and F output specifications must
be in the range -8 =n =8,

Scale factors on D or E input specifications are ignored.
The scaling specification nP may appear independently of a D, E, or F specifi-
cation; it holds for all subsequent D, E, and F specifications within the same

FORMAT statement unless changed by another nP.

The specification (3P,3I9,F10.2) is the same as the specification (319,3PF10.2).

9-15

9.4.1
Fw.d SCALING

9.4.2

Ew.d ORFw.d
SCALING

9-16

Input

The number in the input field is divided by 10" and stored. For example, if the
input quantity 314.1592 is read under the specification 2PF8.4, the internal
number is 314.1592x1072 = 3.141592.

Output

The number in the output field is the internal number multiplied by 10%. In the
output representation, the decimal point is fixed; the number moves to the left
or right, depending on whether the scale factor is plus or minus. For example,
the internal number 3.145926538 may be represented on output under scaled F
specifications as follows:

Specification Output Representation
F13.6 3.141593
1PF13.6 31.415927
3PF13.6 3141.592654
-1PF13.6 .314159
Output

The scale factor has the effect of shifting the output number left n places while
reducing the exponent by n. Using 3.1415926538, some output representations
corresponding to scaled E specifications are:

Specification Output Representation

E20.2 3.14 E+00
1PE20.2 3142 E-01
2PE20.2 314.16 E-02
3PE20.2 3141.59 E-03
4PE20.2 31415.93 E-04
5PE20.2 314159.27 E-05
-1PE20.2 0.31 E+01

9.5
EDITING
SPECIFICATIONS

9.5.1
wX

9.5.2
wH OUTPUT

This specification may be used to include w blanks in an output record or to

skip w characters on an input record to permit spacing of input/output quantities.
0X is not permitted; bX is interpreted as 1X. In the specification list, the comma
following X is optional.

Examples:

INTEGER A A contains 7
B contains 13.6
PRINT 10, A, B, C C contains 1462.37
10 FORMAT (2, 6X, F6.2, 6X, E12.5)
Result: b7bbbbbbb13.60bbbbbbbl.46237E+03
READ 11, R, S, T '

11 FORMAT (F5.2, 3X, F5.2, 6X, F5.2)
or
11 FORMAT (F5.2,'3XF5.2, 6XF5.2)

Input Card:

(14.62bb$13.78bCOSTH15.97
In storage:

R 14.62
S 13.78
T 15.97

With this specification 6-bit characters, including blanks may be output in the
form of comments, titles, and headings. w, an unsigned integer, specifies the
number of characters to the right of H that are transmitted to the output record;
w may specify a maximum of 136 characters. H denotes a Hollerith field; the
comma following H is optional.

9-17

Examples:

Source program:

PRINT 20
20 FORMAT (28 HbBLANKSbCOUNTbOINbANbHLFIELD.)
produces output record:

bBLANKSbCOUNTbINbANbHLFIELD.

Source program:

PRINT 30, A A contains 1.5, comma is optional
30 FORMAT (6HbLMAX=,F5.2)
produces output record:

bLMAX =Db1.50

The H specification may be used to read Hollerith characters into an existing H
field within the FORMAT specification.
Example:

Source program:
READ 10
10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb)

Input Card:

bTHIS IS A VARIABLE HEADING
e T ————

27 cols

After READ, the FORMAT statement labeled 10 contains the alphanumeric in-
formation read from the input card; a subsequent reference to statement 10 in
an output statement acts as follows:

PRINT 10
produces the print line:

bTHIS IS A VARIABLE HEADING

9-18

9.54

NEW RECORD The slash (/) signals the end of a record anywhere in the specifications list.
Consecutive slashes may appear in a list and they need not be separated from
the other list elements by commas. During output, the slash is used to skip
lines, cards, or tape records. During input, it specifies that control passes to
the next record or card. K(/) results in K-1 lines being skipped.

Examples:

1) PRINT 10
10 FORMAT (6X, THHEADING/ / /3X, 5HINPUT, 2X, 6HOUTPUT)

Printout:
HEADING line 1
(blank) line 2
(blank) line 3
INPUTbbOUTPUT line 4

Each line corresponds to a BCD record. The second and third records are
null and produce the line spacing illustrated.

2) PRINT 11, A, B, C, D
11 FORMAT (2E10.2/2F7.3)

In storage:

A -11.6
B .325

C 46.327
D -14.261

Printout:

b-1.16 E+01bb3.25E-01
b46.327-14.261

3) PRINT 11, A,B,C,D
11 FORMAT (2E10.2/ /2F7.3)

Printout:
b-1.16 E+01bb3.25E-01 line 1
— (blank) — line 2
b46.327-14.261 line 3

9-19

9.6

REPEATED
FORMAT
SPECIFICATIONS

9.6.1

UNLIMITED
GROUPS

9-20

4) - PRINT 15, (A(l), I=1, 9)
15 FORMAT (SHbRESULTS2(/) (3F8.2))

Printout:
RESULTS line 1
____ (blank) line 2
3.62 -4.03 -9.78 line 3
-6.33 7.12 3.49 line 4
6.21 -6.74 -1.18 line 5

FORMAT specifications may be repeated by using an unsigned integer constant
repetition factor, k, as follows: k(spec), spec is any conversion specification
except nP. For example, to print two quantities K, L:

PRINT 10K, L
10 FORMAT (12,12)

Specifications for K, L are identical; the FORMAT statement may also be:
10 FORMAT (212)

When a group of FORMAT specifications repeats itself as in: FORMAT (E15.3,
F6.1,14,]14,E15.3,F6.1,14,I4), the use of k produces: FORMAT (2(E15.3,F6.1,
214))

FORMAT specifications may be repeated without using a repetition factor. The
inmermost parenthetical group that has no repetition factor is unlimited and will
be used repeatedly until the I/O list is exhausted. Parentheses are the controlling
factors in repetition. The right parenthesis of an unlimited group is equivalent

to a slash. Specifications to the right of an unlimited group can never be reached,
as in the following example:

Format specifications for output data:

(E16.3,F20.7,2(14),(13,F7.1),F8.2)
The first two fields are printed according to E16.3 and ¥F20.7. Since 2(I4) is a
repeated parenthetical group, the next two fields are printed according to 14

format. The remaining print fields follow (I3,F7.1), which does not have a
repetition factor, until the list elements are exhausted. F8.2 is never reached.

9.7

VARIABLE
FORMAT

FORMAT specifications may be specified at the time of program execution. The
specification, including left and right parentheses but not the statement label or
the word FORMAT, is read under A conversion or in a DATA statement and
stored in an integer array. The name of the array containing the specifications
may be used in place of the FORMAT statement labels in the associated input/
output operation. The array name that appears without subscript specifies the
location of the first word of the FORMAT information.

Examples:
1. Assume the following FORMAT specifications:
(E12.2,F8.2,17,2E20.3,F9.3,14)

This information can be punched in an input card and read by the state-
ments of the program such as:

DIMENSION IVAR(3)
READ 1 (IVAR(1),I=1,3)
1 FORMAT (3A10)

The elements of the input card are placed in storage as follows:

IVAR(1): (E12.2,F8.
IVAR(2): 2,17,2E20.
IVAR(3): 3,F9.3,14)

A subsequent output statement in the same program can refer to these
FORMAT specifications as:

PRINT IVAR,A,B,,C, D, E, J
This produces exactly the same result as the program:

PRINT 10, A,B,1,C,D, E, J
10 FORMAT (E12.2,F8.2,17,2E20.3,F9.3,14)

2. DIMENSION LAIS1(3),LAIS2(2),A(6),LSN(3), TEMP(3)
DATA LAIS1/21H(2F6.3,17,2E12.2,311)/ LAIS2/20H(16,6X,3F4.1,2E12.2)/

Output statement:

PRINT LAIS1,(A(I),I=1,2),K,B,C,(LSN(J),J=1,3)
which is the same as:

PRINT 1,(A(1),I-1,2),K,B,C,(LSN(J),J=1,3)
1 FORMAT (2F6.3, 17, 2E12.2k, 311)

9-21

9-22

Qutput statement:

PRINT LAIS2,LA,(A(M),M=3,4),A(6),(TEMP(I),I=2,3)
which is the same as:

PRINT 2,LA,(A(M),M=3,4),A(6),(TEMP(L),L=2,3)
2 FORMAT (16, 6X,3F4.1,2E12.2)

DIMENSION LAIS (3), VALUE(6)
DATA LAIS/26H(I3,13HMEANbVA LUEbIS,F6.3)/

Output statement:
WRITE (10,LAIS)NUM,VALUE(6)
which is the same as:

WRITE (10,10)NUM,VA LUE(6)
10 FORMAT (I3,13HMEANbVA LUEDIS,F6.3)

INPUT/OUTPUT STATEMENTS 10

The following definitions apply to all I/O statements:
i logical I/O unit number. i can be either an integer constant of one
or two digits. (The first digit must not be a zero.)
integer variable with a value from 1 to 99.
n FORMAT declaration identifier as follows:
statement number

variable identifier which references the starting storage
location of FORMAT information.

name name of NAMELIST record

L 1/0 list
10.1
OUTPUT
STATEMENTS PRINT n,L

Information is transferred from the storage locations in the list (L) to the
standard output unit. Information is transferred as line printer images, 136
characters or less per line in accordance with the FORMAT declaration, n. The
maximum record length is 136 characters, but the first character of every record
is not printed as it is used for carriage control when printing on-line. Characters
in excess of the print line appear on the succeeding line. Each new record starts
a new print line.

Character Action

Blank or any character Single-space after printing

other than 0, 1, +

0 Double-space after printing

1 Eject page before printing; followed by a

single-space after printing

+ Suppress spacing after printing; print two
successive records on the same line

The characters 0, 1, +, are not printed.

10-1

10-2

For off-line printing, the printer control is determined by the installation's
printer routine.

PUNCH n,L

Information is transferred from the storage locations given by the list (L)
identifiers to the standard punch unit. Information is transferred as Hollerith
images, 80 characters or less per card in accordance with the FORMAT
declaration, n.

WRITE (i,n)L
WRITE OUTPUT TAPE i,n,L

These forms are equivalent; they transfer information from storage locations
given by the list (L) to a specified output unit (i) according to the FORMAT
declaration (n).

With a half inch tape unit, a logical record containing up to 120 characters is
recorded in even parity (BCD mode). Each logical record is one physical record.
The number of words in the list and the FORMAT declaration determine the num-
ber of records that are written on a unit. If the logical record is less than 136
characters, the remainder of the record is filled with blanks (to the nearest
multiple of ten characters).

With a one-inch tape unit, a packed 5120-character physical record is reeorded
in odd parity. Each physical record consists of as many logical record charac-
ters as required to fill the physical record. The information is recorded in 6000
series display code with no special control characters added, and it represents a
continuous stream of logical output records. Trailing blanks on each logical
record are removed and two consecutive characters with a value of zero separate
logical records on the tape.

If the tape is to be printed, the first character of a record is not printed as it is
a printer control. If the programmer fails to allow for a printer control charac-
ter, the first character of the output data is lost on the printed listing.

WRITE (i)L
WRITE TAPE i,L
These equivalent forms transfer information from storage locations given by the

list (L) to a specified output unit (i). If L is omitted, the WRITE (i) statement
acts as a do-nothing statement. See READ (i)L.

10.2

READ
STATEMENTS

The number of words in the list determines the number of physical records that
are written on that unit. A physical record contains a maximum of 512 central
storage words. The last physical record may contain from 1 to 512 words. The
physical records written by one WRITE (i)L statement constitute one logical
record. The information is recorded in odd parity (binary mode).

A logical record which is an exact multiple of 512 words is followed by a physical
record of eight zero characters called a zero length record.

Examples:

DIMENSION A (260), B(4000)
WRITE(10)A,B
DO51=1,10
5 WRITE TAPE 6 AMAX (I), (M({,J),J=1,5)
PRINT 50,A,B,C(1,J)
50 TFORMAT (X 8HMINIMUM=F17.7,2X8HMAXIMUM=F17.7,
2X10HVALUE IS $F8.2)
PRINT 51, (A(D), I=1,20)
51 FORMAT(X23HTRUTH MATRIX VALUES ARE/ (3X4L3))
PUNCH 52,ACCT,LSTNME,FSTNME,TELNO,SHPDTE,ITMNO
52 FORMAT (I8,3X4A10,2X110,X15,F8.2)
The above format assumes the following dimension statement:
DIMENSION LISTNME(2),FSTNME(2)
WRITE (2,53)A,B,C,D
53 FORMAT (4E21.9)
WRITE OUTPUT TAPE 2,52,A,B,C,D
WRITE (2,54)
54 FORMAT (32HTHIS STATEMENT HAS NO DATA LIST.)

READ n,L

One or more card images are read from the standard input unit. Information is
converted from left to right in accordance with FORMAT specification (n), and it
is stored in the locations named by the list (L). Input may be on 80-column
Hollerith cards or magnetic tapes prepared off-line, containing 80-character
records in BCD mode.

10-3

10-4

Example:

READ 10,A,B,C
10 FORMAT (3F10.4)

READ (i,n)L
READ INPUT TAPE in,L
These equivalent forms transfer one logical record of information from logical

unit (i) to storage locations named by the list (L), according to FORMAT speci-
fication (n).

The number of words in the list and the FORMAT specifications must conform
to the record structure on the logical unit.

READ (i)L
READ TAPE i,L

These equivalent forms transfer one logical record of information from a speci-
fied unit (i) to storage locations named by the list (L).

Records to be read by READ (i) should be written in binary mode. The number
of words in the list of READ (i)1. must not exceed the number of words in the

corresponding WRITE statement.

If L is omitted, READ (i) spaces over one logical record. See WRITE (i)L.

Examples:
1) DIMENSION C(264)
READ (10)C
DIMENSION BMAX (10), M2 (10,5)
DO7I=1, 10

7 READ TAPE 6, BMAX (I), (M2(I,J),J=1,5)
READ (5) (skip one logical record on unit 5)
READ (6) ((A(1,J),I=1,100),J=1, 50)

READ TAPE 6,((A(I,J),I=1,100),J=1, 50)

10.3
TAPE HANDLING
STATEMENTS

2) READ INPUT TAPE 10,50,X,Y,Z
50 FORMAT (3F10.6)
DOUBLE PRECISION DB(4)
READ (10,51) DB
51 FORMAT (4D20.12)
READ 51,DB
READ (2,52) (Z(J),J=1,8)
52 FORMAT (F10.4)

REWIND i

Magnetic tape unit i is rewound to load point. If the tape is already rewound,
the statement acts as a do-nothing statement.

BACKSPACE i
Magnetic tape unit i is backspaced one logical record. (A logical record is a

physical record, except for tape written by a WRITE (i)L statement.) If tape is
at load point (rewound), this statement acts as a do-nothing statement.

END FILE i

An end-of-file is written on magnetic tape unit i.

IF (ENDFILE i) ,n
IF (EOF,i)n

2
1%
These statements check the previous read operation to determine if an end-of-

file has been encountered on unit i. If so, control is transferred to statement n._ :

if not, control is transferred to statement n2. 1

10-5

IF (IOCHECK,i)n1 Ny

This statement checks for end-of-file and parity errors on previous input
operations. If either condition occurred, control transfers to n;; if not, to n,.

IF (UNIT,i)nl,n2 N

n1 not ready

n, ready and no previous error

ng EOF sensed on last input operation

n, parity or lost data error on last input operation

If errors are sensed during standard read or write operations, the FORTRAN
1/0 routines attempt to repeat the operation four times. On a buffer operation,
only one attempt is made.

10.4

BUFFER

STATEMENTS The primary differences between buffer 1/O and read/write I/O statements are
given below:

1. The mode of transmission (BCD or binary) is tacitly implied by the
form of the read/write control statement. In a buffer control state-
ment, parity must be specified by a parity indicator.

9. The read/write control statements are associated with a list and, in
BCD transmission, with a FORMAT statement. The buffer control
statements are not associated with a list; data transmission is to or
from one area in storage.

3. A buffer control statement initiates data transmission, and then returns
control to the program, permitting the program to perform other tasks
while data transmission is in progress. Before buffered data is used,
the status of the buffer operation should be checked. A read/write
control statement completes the operation before returning control to
the program.

In the descriptions that follow, these definitions apply.

u logical unit number

p parity key. May be specified by a simple variable (not subscripted).
0 for even parity (BCD); 1 for odd row binary; 2 for odd column binary.

10-6

i logical unit number

BUFFER p recording mode
out 0 even-BCD
1 odd-binary
A first word
Length [A,B1] B last word
—— K
Y
Is K< 17 Yes
ERROR

Y

WRITE K words
[binary or BCD]
on unit i

A variable identifier: first word of data block to be transmitted.
B variable identifier: last word of data block to be transmitted.
In the BUFFER statements the address of B must be greater than that of A, A

unit referenced in a BUFFER statement may not be referenced in other 1I/0
statements.

BUFFER IN (u,p) (A,B)

Information is transmitted from unit u in mode p to storage locations A through
B. Only one physical record is read for each BUFFER IN statement.

10-7

10.5
ENCODE/DECODE
STATEMENTS

10-8

BUFFER OUT (u,p) (A,B)

Information is transmitted from storage locations A through B and one physical
record is written on unit u in mode p containing all the words from A to B
inclusive.

The ENCODE/DECODE statements are comparable to the BCD WRITE/READ
statements; however, no peripheral equipment is involved. Information is
transferred under FORMAT specifications from one area of storage to another.
The parameters in these statements are defined as follows:

n statement number, variable identifier, or formal parameter repre-
senting the FORMAT statement
L input/output list

v variable identifier or an array identifier which supplies the starting
location of the BCD record.

¢ unsigned integer constant or a simple integer variable (not subscripted)
specifying the number of characters in the record. ¢ may be an
arbitrary number of BCD characters.

The first record within an encoded (decoded) area starts with the leftmost
character position specified by v and continues ¢ BCD characters, 10 BCD
characters per computer word. For ENCODE, if ¢ is not a multiple of 10, the
last word in the record is blank-filled. For DECODE, if the record ends with
a partial word the balance of the word is ignored.

Since each succeeding record begins with a new computer word, an integral
number of computer words is allocated for each record with €9 words. The
total words allocated for the combined records in one encoded 10 (decoded) area
must not exceed 12.

Example:

A(1) = ABCDEFGHIJ
A(2) = KLMNO

B(1) = PQRSTUVWXY
B(2) = 212345

1) ¢ = multiple of 10

ENCODE (20, 1, ALPHA) A,B
1 FORMAT (A10,A5/A10,A6)

record a record b
7\ 7\

ALPHA ABCDEFGHIJI KLMNO | bbbbb | PQRSTUVWXY | 212345 [bbbb\l

word 1 word 2 word 3 word 4

2) ¢ # multiple of 10

ENCODE (16,1, ALPHA) A,B
1 FORMAT (A10, A6)

record a record b
7\ N\

ALPHA IABCDEFGHIJI KLMNOD | { bbb |I PQRSTUVWXY | 212345 | bbbb]

- word 1 word 2 word 3 word 4

beginning of new record

3) ¢ # multiple of 10

DECODE (18, 1, GAMMA) A6,B6
1 FORMAT (A10, A8)

record a record b
2\ 7\

£ AN .
GAMMA HEADERblZl[HEADbel 31| HEADERb122 | HEADbb02 [31

word 1 word 2 word 3 word 4

beginning of new record

A6(1) = HEADERb121
A6(2) = HEADbbO1
B6(1) = HEADERb122
B6(2) = HEAD02

ENCODE (c,n,v)L

The information of the list variables, L, is transmitted according to the
FORMAT (n) and stored in locations starting at v, ¢ BCD characters per record.
If the I/0 list (L) and specification list (n) translate more than c characters per
record, an execution diagnostic occurs. If the number of characters converted
is less than c, the remainder of the record is filled with blanks.

10-9

10-10

DECODE (c,n,v)L

The information in ¢ consecutive BCD characters (starting at address v) is
transmitted according to the FORMAT and stored in the list variables. If the
number of characters specified by the I/0 list and the specification list (n) is
greater than ¢ (record length) per record, an execution diagnostic occurs. I
DECODE attempts to process an illegal BCD code or a character illegal under
a given conversion specification, an execution diagnostic occurs.

Examples:

1)

2)

The following illustrates one method of packing the partial contents of
two words into one word. Information is stored in core as:

LOC(1) SSSSxxxx

LOC(6) xxxxdddd
10 bed ch/wd

To form SSSSdddd in storage location NAME:

DECODE(8,1 LOC(6) YTEMP
1 FORMAT (4X,A4)
ENCODE(8,2,NAME) LOC(1)TEMP
2 FORMAT(2A4)
The DECODE statement places the last 4 BCD characters of LOC(6)

into the first 4 characters of TEMP. The ENCODE statement packs the
first 4 characters of LOC(1) and TEMP into NAME,

With the R specification; the program may be shortened to:

ENCODE (8,1,NAME)LOC(1),LOC(6)
1 FORMAT (A4,R4)

DECODE may be used to calculate a field definition in a FORMAT
specification at object time. Assume that in the statement FORMAT
(2A8,Im) the programmer wishes to specify m at some point in the
program, subject to the restriction 2=m =9, The following program
permits m to vary.

3)

4)

IF(M.LT.10.AND.M.GT.1)1,2
1 ENCODE (8,100,SPECMAT) M
100 FORMAT (6H(2A8,1,I1,1H))

PRINT SPECMAT,A,B,J

M is tested to insure it is within limits. If not, control goes to state-
ment 2 which could be an error routine. If M is within limits,
ENCODE packs the integer value of M with the characters: (2A8,I).
This packed FORMAT is stored in SPECMAT. SPECMAT contains
(2A8,Im).

A and B will be printed under specification A8, and the quantity J under
specification 12, or I3, or . . . or I9 according to the value of m.

ENCODE can be used to rearrange and change the information in a
record. The following example also illustrates that it is possible to
encode an area into itself and that encoding will destroy information
previously contained in an area.

PROGRAM ENCO2

I=TRBCDEFGH

IA=1H1

ENCODE (7,10,I)I,IA,I
10 FORMAT (A2,A1,R4)

PRINT 11,1
11 FORMAT(020)

END

PRINT OUT

22012526273060
The BCD equivalent is
B1EFGHblank

In this example, accounting information is to be read from a magnetic
tape prepared off-line from 80-column Hollerith card input. Each
record on this tape will be 10 words (100 characters) long. The
program is to initiate a read, decode the information of this read and
initiate a second read while decoding the information obtained from the

first read. Two 10-word buffers are used (AIN and CIN). The FORMAT
specification in DECODE is:

(6A1,A1,8A1,A3,12,A6,412,2A1,A8,A3,2A1)

10-11

This specification breaks the first 49 characters of each BCD record
read from magnetic tape. Let the list be the string of identifiers:

LISsT: DT,CC,CN,PR,X,XM,N1,M1,N2,M2,CR,
ADJ,PER,RUN,ATT

DT is an array of length 6; CN is an array of length 8; the remaining
identifiers name simple variables.

Flow chart of the basic procedure:

0 —==NRD
1 = |
No
Buffer
Complete
Y
No ’ es
Buffer \ No
Complete J=— Is1=17 Errors?
Yes Yes
Y Y
E No Buffer In: Buffer In:
rrors CIN to CIN +9 AIN to AIN +9

Yes ; {

A] == NRD 0 —=NRD

] 136

DECODE
0| Ist=17 @9,3,CIN)

List

yNoo (i

DECODE
49,3,AIN)
List

miscellaneous
calculations (==

10-12

APPENDIX SECTION

6000 SERIES FORTRAN CHARACTER CODES

Source Console External Punch position
Language Display BCD in a Hollerith
Character Code Code Card Column

A 01 61 12-1
B 02 62 12-2
C 03 63 12-3
D 04 64 12-4
E 05 65 12-5
F 06 66 12-6
G 07 67 12-7
H 10 70 12-8
I 11 71 12-9
J 12 41 11-1
K 13 42 11-2
L 14 43 11-3
M 15 44 11-4
N 16 45 11-5
O 17 46 11-6
P 20 47 11-7
Q 21 50 11-8
R 22 51 11-9
S 23 22 0-2
T 24 23 0-3
U 25 35 0-4
v 26 25 0-5
w 27 26 0-6
X 30 27 0-7
Y 31 30 0-8
Z 32 31 0-9
0 33 12 0
1 34 01 1
2 35 02 2
3 36 03 3
4 37 04 4
5 40 05 5
6 41 06 6
7 42 07 7
8 43 10 8
9 44 11 9
/ 50 21 0-1
+ 45 60 12
- 46 40 11
blank 55 20 space
. 57 73 12-8-3
) 52 74 12-8-4
$ 53 53 11-8-3
* 47 54 11-8-

4
56 33 0-8-3
51 34 0-8-4
54 13 8-3

|~

FORTRAN STATEMENT LIST

SUBPROGRAM STATEMENTS

Entry Points

Intersubroutine
T

Transfer Statements

SEGMENT name (fl’fz’ L)

PROGRAM name (f R ,fn)

FORTRAN IV PROGRAM name (fl, e ,fn)
FORTRAN II PROGRAM name (fl, o ,fn)
MACHINE PROGRAM name (fl’ e ,fn)
ASCENTF PROGRAM name (fl, e ,fn)
SUBROUTINE name (p , - - - .p)

FORTRAN IV SUBROUTINE name (pl, Ce ,pn)
FORTRAN II SUBROUTINE name (pl, ce ,pn)
MACHINE SUBROUTINE name (pl, Ca ’pn)
ASCENTF SUBROUTINE name (pl, P ,pn)
FUNCTION name (pl, . ,pn)

type FUNCTION name (pl, Ce ,pn)
FORTRAN IV FUNCTION name (b, - - - ,p_)
FORTRAN II FUNCTION name (pl, Ca ,pn)
FORTRAN 1V type FUNCTION name (pl, e ,pn)
FORTRAN II type FUNCTION name (pl, N !pn)

EXTERNAL namel,namez. .

name,,name,, . .

CALL name
CALL name (pl, R ,pn)
RETURN

N = Non-executable E = Executable

Z 2 2z 2z =z =z 'z =2 2 2 2 2 2 2 2 2 =2

Z

DATA DECLARATION AND STORAGE ALLOCATION

Type Declaration

Storage Allocations

ARITHMETIC STATEMENT FUNCTION

COMPLEX List

DOUBLE PRECISION List

DOUBLE List

REAL List

INTEGER List
LOGICAL List

TYPE DOUBLE List
TYPE COMPLEX List
TYPE REAL List
TYPE INTEGER List
TYPE LOGICAL List

DIMENSION vy 9
COMMON/Ii/List

EQUIVALENCE (A,B,

Y
n

.. MHALBL, ..). ..

DATA11/List/,12/List/, e
DATA (11=List), (12=List), ...

BLOCK DATA

name (p13p2’ . ‘pn) =

SYMBOL MANIPULATION, CONTROL AND I/0

Replacement

Intraprogram Transfers

A=E Arithmetic
*D A=E
*I A=E

Expression

L=E Logical/Relational

M=E Masking
*B M=E

GO TOn

GO TO m

GOTOm, (n, .. n_)
m

2 2 2 2z 2 2z Z Z Z Z =z

Z 2 2z 2 Z Z

GO TO (nl, “. ,nm),i
IF (A) n,,n
IF (L) n,.n
IF (L) s

IF (SENSE LIGHT i)nl,n2
IF (SENSE SWITCH i)n
IF (DIVIDE CHECK)n
IF (ENDFILE i)n

2773
2

i)

12

12

Ir (EOF,1)n1,1r12

IF (IOCHECK,i)n

IF (UNIT,1)n1,n2,n3_,n 4

IF ACCUMULATOR OVERFLOW nl,n
IF QUOTIENT OVERFLOW nl,n

12

2

LOOP CONTROL DOn i=m s, ,m

1 3

MISCELLANEOUS PROGRAM CONTROLS

ASSIGN s tom
SENSE LIGHT i
CONTINUE
PAUSE

PAUSE n

STOP

STOP n

1/0 FORMAT

FORMAT (specl,specz, .

I/0 CONTROL STATEMENTS

READ n,L
PRINT n, L
PUNCHn,L

2

H H B B EH BEH B BH BB B B &H

H H H &8 B3 = =

I/0 Tape Handling

READ (i,n)L

READ INPUT TAPE i,n,L
WRITE (i,n)L

WRITE OUTPUT TAPE i,n,L
READ (i)L

READ TAPE i,L

WRITE (i)L,

WRITE TAPE i,L
ENCODE (¢,n,v)L
DECODE (c,n,v)L
BUFFER IN (i,p) (fi,li)
BUFFER OUT (i,p) (fi,li)

END FILE i
REWIND i
BACKSPACE i

PROGRAM AND SUBPROGRAM TERMINATION

END

*Col. 1 indicator is used in FORTRAN II modes, ID B F

H =@ 8H5 BH 5 8B 353 835 85 8B H H

=

FORTRAN FUNCTIONS C

Actual
Parameter Mode of
Form Definition Type Result
ABS(X) Absolute value Real Real
AIMAG(C) Obtain the imaginary part of a complex argument Complex Real
AIMT (X) Truncation, integer Real Real
AMAXO(Il,Iz, Determine maximum argument Integer Real
AMAX1(X 1,X 9 Determine maximum argument Real Real
)
AMINO(I 1,12, Determine minimum argument Integer Real
L)
AMINI(X 1 ,Xz, Determine minimum argument Real Real
.
AMOD (Xl,Xz) X1 module X2 Real Real
COMPLX(Xl,Xz) Convert real to complex (X1 + in) Real Complex
CONJG(C) Conjugate of C Complex Complex
DIM(XI,Xz) If X1>Xo: X - Xy Real Real
If X{=X5:0
DMAX1(D 1,D 9 Determine maximum argument Double Double
2
DMIN1(D 1,D 9 Determine minimum argument Double Double
L)
FLOAT(®) Integer of real conversion Integer Real
JABS(T) Absolute value Integer Integer
IDIM(Il,Iz) If I > 1, I -1, Integer Integer
If I;=I5: 0

Form
IFIX(X)
INT (X)
ISIGN(I .L,)
MAXO@ L, . . .
MAX1(X X, . .
MINO(I I, . .)
MIN1(X, X,, . .
MOD(_ L)
REAL(C)

SIGN(X . X,)

ACOS(X)
ALOG(X)
ALOG10(X)
AND(X_, . . X)
ASIN(X)
ATAN(X)
ATAN2(X X,)
CABS(C)
CCOS(C)
CEXP(C)
CLOG(C)

COMPL(X)

)

)

Definition
Real -to-integer conversion
Truncation, integer

. : I
Sign of I 1 times 9
Determine maximum argument
Determine maximum argument
Determine minimum argument
Determine minimum argument
I dulo X

, modulo X,

Obtain the real part of a complex argument

Sign of X2 times X1

LIBRARY FUNCTIONS
Arccosine
Natural log of X
Log to the base 10 of X
Logical product of X1 c. Xn
Arcsine
Arctangent X radians
Arctangent X 1/X2
Absolute value
Complex cosine
Complex exponent
Complex log

Complement of X

Actual

Parameter Mode of
Type Result
Real Integer
Real Integer
Integer Integer
Integer Integer
Real Integer
Integer Integer
Real Real
Integer Integer
Complex Real
Real Real
Real Real
Real Real
Real Real
Real Logical
Real Real
Real Real
Real Real
Complex Real
Complex Complex
Complex Complex
Complex Complex
Real Logical

<> I <> IR 5 N <5 B <5 B ¢ B > B © N 5 N <> I > I © |

=

Actual

Parameter Mode of
Form Definition Type Result
COS(X) Cosine X radians Real Real
CSIN(C) Complex sine Complex Complex
CSQRT (C) Complex square root Complex Complex
DABS(D) Absolute value Double Real
DATAN(D) Double arctangent Double Double
DATAN2(D 1,D 2) Double arctangent: D 1/D2 Double Double
DBLE (X) Real to double Real Double
DCOS(D) Double cosine Double Double
DEXP (D) Double exponent Double Double
DLOG(D) Natural log of D Double Double
DLOG10(D) Log to the base 10 of D Double Double
DMOD(D) D 1 modulo D2 Double Double
DSIGN (D 1,D 2) Sign of: D2 times D 1 in absolute value Double Double
DSIN(D) Sign of double precision argument Double Double
DSQRT (D) Square root of double Double Double
EXP(X) e to Xth power Real Real
IDINT (D) Double to integer Double Integer
LENGTH () Returns number of words read on unit I Integer Integer
OR(Xl, R Xn) Logical sum of Xl’ Ce Xn Real Logical
RANF (X) Random number generator Real Real
SECOND(I) Returns time in seconds from dead start Integer Integer
SINGL(D) Double to real Double Real

SIN (X) Sine X radians Real Real

Actual

Parameter Mode of
Form Definition Type Result
SQRT (X) Square root of X Real Real
TANX) Tangent X radians Real Real
TANH (X) Hyperbolic tangent X radians Real Real

Following functions accept type A as a variable address name for an actual parameter:

Actual

Parameter Mode of
Form Definition Type Result
LOCF (A) Returns address of argument A — Integer
XLOCF (F) Returns address of argument A — Real

SOME FORTRAN 11, 63, 66, IV DIFFERENCES D

The following FORTRAN II statements are accepted by Chippewa FORTRAN:

1. In FORTRAN II arithmetic replacement statements, column 1 may contain either of the following
characters

D Double Precision mode

I Complex mode

When these characters are encountered, all variables and constants in the statement are assumed
to be of the same type (double precision or complex).

2. FORTRAN II statements which contain a B in column 1 (Boolean) are evaluated as masking expres-
sions. The operator equivalences are:

CHIPPEWA FORTRAN FORTRAN II
. AND, *
. NOT. -
. OR, +

Exclusive OR function defined as:

v p/v

k=

1
0
1
0

O O

3. Mixed mode variables may appear in any FORTRAN II Boolean, B-type, Statement.
4. SENSE LIGHT STATEMENTS
SENSE LIGHT i

The statement turns on the sense light i; i may be a simple integer variable or constant (1 to 6).
SENSE LIGHT 0 turns off all sense lights,

IF (SENSE LIGHT i)nl,n2
The statement tests sense light i. If it is on, it is turned off, and a jump occurs to statement ny.
If it is off, a jump occurs to statement ng. The n, are statement labels; i may be a simple integer
variable or constant.

IF SENSE SWITCH STATEMENT

IF (SENSE SWITCH i)nl,n2
If sense switch i is set (on), a jump occurs to statement ny. If it is not set (off), a jump occurs to
statement no; i may be a simple integer variable or constant (1 to 6).

FAULT CONDITION STATEMENTS

At execute time, the computer may be set to interrupt on divide overflow or exponent fault. The
fault indicator must be checked immediately after any statement that could possibly cause a fault
condition.

IF DIVIDE CHECK nl,n2

A divide check occurs following division by zero. The statement checks for this condition; if it

has occurred, the indicator is turned off and a jump to statement ny takes place. If no check exists,
a jump to statement n, takes place.

IF QUOTIENT OVERFLOW n,.n,

IF ACCUMULATOR OVERF LOW nl,n2

An overflow occurs when the result of a real, double precision, or complex arithmetic operation
exceeds the upper limits specified for these types. Results that are less than the lower limits are
set to zero without indication. This statement is therefore a test for floating point overflow only.
If the condition has occurred, the indicator is turned off, and a jump to statement ny takes place.
If the condition does not exist, a jump to statement n, takes place.

Chippewa FORTRAN accepts the FORTRAN II version of the EXTERNAL statement. This form
contains the same name list, but the word EXTERNAL has been replaced by the character F in

column 1 of the statement.

1 7

(F namel,namez, e

The only inherently incompatible areas are the following:

COMMON-EQUIVALENCE Statement Relationships
In FORTRAN II, equivalence groups can reorder the common variables and arrays, and
more than one variable in an equivalence group can be in common.

In Chippewa FORTRAN, equivalence groups do not reorder common, but may only extend
the length of a common block.

Function-Naming Conventions
In FORTRAN II, the following rules apply for function subprogram, library function and
statement function names:

The name is 4-7 alphanumeric characters, ending with the character F.
The first character must be X if, and only if, the value of the function is integer; for
any other first character, the value of the function is real.

In Chippewa FORTRAN, the number of characters in the function name is 1-7; the first
character must be alphabetic.

DO STATEMENT

FORTRAN 63 and FORTRAN IV DIFFERENCES

If the terminal value of the DO statement (mz) is less than the initial value (m 1):

END STATEMENT

FORTRAN IV

FORTRAN 63

FORTRAN IV

FORTRAN 63

DO loop is executed once

DO loop is not executed

in subprograms, the END statement not preceded by a
RETURN statement will cause the compilation of termination
instruction (STOP)

similar condition is compiled with an assumed RETURN
statement

FORTRAN 66 AND FORTRAN IV DIFFERENCES

DO STATEMENT

If the terminal value of the DO statement (m2) is less than the initial value of the index (m 1):

FORTRAN 1V
FORTRAN 66
END STATEMENT
In subprograms:
FORTRAN IV
FORTRAN 66

EQUIVALENCE STATEMENT

FORTRAN IV

FORTRAN 66

DO loop is executed once

DO loop is not executed

causes compiling instructions to terminate

compiles the instructions for returning control to the
calling program

programs and subroutines may not contain EQUIVALENCE
statements which would cause a reordering of variables
assigned to a COMMON region

such reordering is possible

COMPUTER WORD STRUCTURE OF CONSTANTS-6600

59 58]
INTEGER % | l
_f 59
SIGN
59 58 4847 o]
REAL y BlasEe FRACTION (m)
SIGNJ 48
59 5453 4847 424) 3635 3029 2423 1817 12n 65 o]
HOLLERITH BCD AND o | a5 | as | as | as] as | ar | a5 | s | @
DISPLAY CODE
6 6 6 6
59 58 48 47 [o) 59 58 4847 [e]
- BIASED BIASED
DOUBLE-PRECISION N | m | N7 | m! |
_, MOST SIGNIFICANT LEAST SIGNIFICANT
SIGN SIGN {PRESENTLY ZERO)
59 58 4847 (o] 59 58 4847 o
COMPLEX o % BIAsSED | m I e % Biaseo l m
REAL IMAGINARY
SIGN—f Sl(;N—f
59 [o]
LOGICAL FaLse [0000 5053
TRUE [t 11 [RE N}
57 54 51 48 45 42 39 36 12 9 6 3 O
OCTAL Iazolw,g e ¢,7|¢‘5 615 (14 0, |85 Iaz Ios,
3 3 3 3 3 3 3 3 3 3 3

COMPILATION AND EXECUTION F

FORTRAN Control card

The FORTRAN compiler is called by the control card:
RUN (cm,fl,d,bl,if,of ,fb)

cm compiler mode option; (if omitted, assume G)

compile and execute
compile, no execute

compile and punch, no execute

G
S
P
L compile and list, no execute
C chain mode

B batch mode

M

(multiple mode) compiling is done as in batch mode, except octal versions of object programs,
segments, and subroutines®are produced for listing.

-

incomplete mode
fl object program field length (octal); if omitted, it is set equal to the field length at compile time.
(240004 for compiler and constants)

d object program common length (octal); if omitted, it is set equal to the amount of common storage
required for the main program being compiled.

bl object program 1/0 buffer lengths (octal); if omitted, assumed to be 2001 octal.

if file name for compiler input; if omitted, assumed to be INPUT.

of file name for compiler output; if omitted, assumed to be OUTPUT.

fb line-limit (octal) on the OUTPUT file of an object program. If not specified, it is set to 10000.

If the line count exceeds the specified line limit, the job is terminated.

In if and of the file name may be followed by an equal sign and an octal constant to indicate a new buffer
length. The length is normally 2001g words.

Example: Input = 100008

The starting addresses for I/O buffers appear on the map listing.

Compiler output, except in the G mode, includes a reproduction of the source program, a variable map,
and indications of errors detected during compilation. If the G mode is selected, all output is sup-
pressed unless errors are detected, in which case the output is the same as indicated for the other
modes. If the L mode is selected, the output includes an octal list of the compiled instructions.

A copy of the compiled program is always left in disk storage as a binary file with the name of the
program as file name. It may be called and executed repeatedly by name.

If the field length allocated by the system for a FORTRAN object program or compilation is less than
the minimum required by the compiler, a jump to address 000000 occurs; the system indicates an
arithmetic error.

In a Dayfile message at the end of compilation, the compiler indicates the amount of storage not used
by the compiler and‘the object program. The unused spaces are filled with indefinite indication rather
than with zeros. A count of errors detected and indicated during compilation appears in a Dayfile
message at the end of compilation.

The compiler requires a minimum of 320008 locations.

Any program, segment, or subroutine punched in the incomplete mode (I mode) may produce a variable
map if it is read back for incorporation in a running program or segment. When two or more sub-
routines have the same name, only the first one is assembled and the names of the deleted ones appear
in the output listing. However, the variable map is not produced if the read back takes place during
compiling in the G or C mode with no errors.

A FORTRAN coded or binary subroutine punched in the incomplete mode will override any other sub-
routine punched in the incomplete mode which appears later in the deck and which has the same name.

An I mode (an incomplete mode) compiles a program, subroutine, or function to binary cards in a
form which can be reloaded by the compiler. Only instructions and constants of the object program or
subroutine are punched. Compilation is continued until an end-of-record card is detected, and each
program or subroutine punched is reloadable either by itself or along with others in the same mode.

F-2

Example:

File Separator

d
L

N WO~

¢
[

rPROGRAM u

4
¢

)
g
¢

IFUNCTION X

P

4

[
4

(SUBROUT!NE z

j

[
[
e

ﬁROGRAM T

Record Separator

i
EUN 0

JOB |, 10, 100, 4000.

FORTRAN Control Card

JOB Card

When a RUN card specifies G or C mode and the object program field length differs from the length
designated on the JOB card, the compiler does not request the system to change the job field length
until completion of the compilation.

F-3

Example:

File Separator

éRTRAN PROGRAM
9

7
faun (G, 10000)

JoB, 10, 10000, 40000.

Record Separator

FORTRAN Control Card

JOB Card

The above control card sequence will compile in a field of 40000 words and run in a field of 10000

words.

CHAIN COMPILATION AND EXECUTION

In C (chain) mode, a program followed by segments, separated by end-of-record cards, must follow
the control statements. Source language is not reproduced, binary versions of the program and
segments are compiled to disk, and compilation terminates upon detection of two successive end-of-
record cards, or one end-of-file card, followed by a call to the first program of the chain.

F-4

Job name JOBQ1
Priority 10
Time limit approx. 1 minute

Field length 40000g words

Compile PROGRAM MAIN and SUBROUTINE SUBI.

Compile SEGMENT LINK1, LINK2, and LINKS3. /
Load PROGRAM MAIN and SUBROUTINE SUB1 /

gz

which call SEGMENTS LINK1, LINK2, and LINKS3
and read data cards.

No SOURCE language reproduced. E

7
8
9

[

Source

g
4
[
g

SEGMENT LINK 3 (INPUT,
OUTPUT, TAPE 3, TAPE 5)

&
/

pd
pd Source

SEGMENT LINK 2 (INPUT,
OUTPUT, TAPE 3, TAPE 5)

Source

SEGMENT LINK I (INPUT,
OUTPUT, TAPE 3, TAPES)

WO~y

Source

fusnounua SUBI(X,Y)

Source ~

¢
PROGRAM MAIN (INPUT,
OUTPUT, TAPE 3, TAPE5)

ﬁ Record Separator
f?un)

FORTRAN Control Card

JOBQ!I, 10, 100, 40000.

File Separator

BATCH COMPILATION

B mode (batch) compiles segments, subroutines, and functions, separated by record separator cards,
to the disk without reloading the compiler each time. Source language is reproduced, and compilation
is terminated upon detection of two successive end-of-record cards or one end-of-file card.

Job name JOBQ2

Priority 11

Time limit approx. 1 minute
Field length 400004 words

Source language reproduced.

File Separator

WO~

Source

\
N

fouau: FUNCTION Z(A)

jd
]
9
i

Y —

b
ﬁEGMENT Y (OUTPUT)

/ Source

rEROGRAM X(INPUT)

(7
8
9
ﬁun (€

J0BQ2, II, 100, 40000.

Record Separator

FORTRAN Control Card

Binary cards to be reloaded by the compiler must be separated from the FORTRAN coded deck by a
card with a minus sign (-) in column one. If the main program is also in a binary card form, the card
with the minus sign must immediately follow the end-of-record card which separates the control cards

from the data portion of the job.

Example:

6

&
oy

i

¢

)i
DATA
&
9
&
i
¢
i
(Binary Deck
//
b
éBROUTINE z(Aa)
[
a
b
¢

K;?OGRAM Y(OUTPUT)
J/7
8
9

ﬁUN.

J,10, 100, 4000.

Binary Deck

J

feun ®)

K, 10, 100, 4000.

WITH MAIN
PROGRAM
APPEARING FIRST

Mixed Source Deck

The FORTRAN compiler, RUN, processes programs and subroutines written in assembly language or
in a subset of ASCENT assembly language. Such programs or subroutines may be intermixed with
regular FORTRAN programs and subprograms.

MACHINE PROGRAM name (fl, ce ,fn)
MACHINE SUBROUTINE name (pl, NN ,pn)

Either of the above must be the first statement of a program or subroutine coded in assembly language.

ASCENTF PROGRAM name (fl, .o ,fn)
ASCENTF SUBROUTINE name (pl, cee ,pn)

Either of the above must be the first statement of a program or subroutine coded in a subset of ASCENT.

name is an alphanumeric identifier.
fi are file names.

p, are formal parameters.

DECK STRUCTURE FOR A NORMAL COMPILE AND EXECUTE

Job name JOB123
Priority 6
Time limit approx. 4 minutes
4 File
Field length 270004 words é Separator
4
Compile and execute with no list and no binary deck. 4
)
¢
DATA
[
[
9
i
g Source Program
i
f’ROGRAM DONE (INPUT, OUTPUT)
(g Record Separator
ﬁUN (6) FORTRAN Control Card

108123, 6, 400, 27000.

With a mixed source deck:

[MACHINE SUBROUTINE MI(P3)

¢
¢

jd
i
yd
SUBROUTINE SH{PI, P2)

e

SOURCE DECK

[PROGRAM DONE (INPUT, OUTPUT)

[
ﬁum (6)

JOBI23, 6, 400, 27000.

DECK STRUCTURE FOR COMPILE AND PRODUCE BINARY DECK

Job name RA6600

Priority 7

Time limit approx. 1 minute
Field length 40000g words

Compile program and punch binary deck;
do not execute.

File Separator

Record Separator
feuwcp) FORTRAN Control Card
RAG600, 7,100, 40000. JOB Card

DECK STRUCTURE FOR COMPILE WITH BINARY SUBROUTINES

s .
Job name ACCO015 é File Separator
4
Priority 5
Data Cards
Time limit approx. 2 minutes
Field length 220008 words r/
Compile and execute with no list and punched G
binary output plus a set of subroutines as a A
binary deck.

Binary Deck Pre-Punched
Binary Cards

Binary Deck Indicator
f (Minus Sign Column 1)

Source Statements

(PROGRAM PIP({INPUT, OUTPUT)

(i
(o

ACCOIS, 5, 200, 22000.

F-10

FORTRAN ERROR PRINTOUTS G

During a FORTRAN compilation, two-character error printouts follow statements which are incorrect;
other printouts may follow the END statement, indicating other types of errors in the program. The
two-character error indicators are explained below:

AC Argument Count

The number of arguments in a current reference to a subroutine differs from the number which
occurred in a prior reference.

AL Argument List

Format error in a list of arguments.

AS Assign

Format error in an ASSIGN statement.

BC Boolean Constant

Format error in thevdesignation of a FORTRAN Boolean constant in a B-type expression.

BI Binary Input

Incorrect header card in a subroutine of binary cards following the FORTRAN program.

BO Common Block Overflow

Current requirements for a labeled block of common storage exceed the block length estab-
lished in a preceding COMMON statement.

BX Boolean Expression

Format error in a B-type Boolean statement.

CD Duplicate Common

A variable being assigned to the common region has been previously assigned to this region.

CE Common-Equivalence Error

Incorrect equivalence of two variables assigned to common storage.

CL CALL

Format error in a CALL statement.

CM

CN

CcO

CT

DA

DC

DD

DF

DM

DO

bP

DS

DS

DT

COMMON

Format error in a COMMON statement.

Continuation

More than 19 continuation cards or one such card appears in an illogical sequence.

Common Overflow

Amount of common storage required by the main program or specified to the compiler is less
than that required by the current program or subroutine.

CONTINUE

CONTINUE statement is missing a statement number.

Duplicate Argument

Duplicate dummy arguments appear in a function-definition statement.

Decimal Constant

Format error in the expression of a FORTRAN decimal constant.

Duplicate Dimension

A variable being dimensioned has been previously dimensioned.

Duplicate Function Name

The function name in the current function-definition statement has occurred as the name of a
previously defined function.

DIMENSION
Format error in a DIMENSION statement.

DO

Format error in a DO statement.

Duplicate Statement Number

Current statement number has previously appeared in the statement-number field.

Missing DO Number

Current statement number has previously appeared in the statement number field.

Missing DO Number

In DO statements, non-existent numbers have been referenced.

DATA

Format error in a DATA statement.

EC

EF

EM

EQ

FL

FM

FN

FS

FT

GO

IF

IL

LR

LS

Equivalence Contradiction

A variable cannot appear in an EQUIVALENCE statement because of an inherent contradiction

in the statement.

End of File

End-of-file card detected before the END card encountered.

Exponential Mode

Mode of the base or the exponent is incorrect.

Equivalence

Format error in the exponential statement.

Function List

Format error in an EXTERNAL statement or F-type statement.

Format

Format error in a statement whose type cannot be determined.

Format Statement Number

Statement number is missing from a FORMAT statement.

Format Specification

Format error in the specification portion of a FORMAT statement.

Funection Type

Format error in a type statement.

GO-TO

Format error in a GO statement.

IF

Format error in an IF statement.

Indexed List

Format error in an indexed list of current input/output statement.

Library Reference

In a reference to a standard library subroutine, more arguments appeared than are provided

for by the subroutine.

List

Format error in an input/output list.

G-3

MC

MD

MF

ML

MO

MR

MS

MT

MU

NC

NM

Misuse of Argument

An argument of the subroutine or function being compiled has been incorrectly used in an
EQUIVALENCE statement.

Machine Constant

Error in format of a constant in a tag-defining line of coding involving the pseudo operations
RES, COM, CON, ABS, SUB, or HOL.

Machine-Duplicate-Tag Error

Previously defined tag appears in a tag-defining line of coding involving the pseudo operations
RES, COM, CON, ABS, SUB, or HOL.

Machine-Format Error

Format error in a tag-defining line of coding involving the pseudo operations RES, COM, CON,
ABS, SUB, or HOL.

Machine Location Tag

A tag in an additive address field of a machine instruction did not appear in a subsequent
location field.

Memory Overflow

Compiler field length specified on the job card is too short.

Missing Subroutine

Subroutines have been referenced that are not in the standard subroutine library.

Missing Statement Number

References have been made to non-existent statement labels.

Machine Tag Definition

Format error in a tag-defining line of coding involving the pseudo operations RES, COM, CON,
ABS, SUB, or HOL.

Machine Undefine Tag

A tag appearing alone in an address field of a machine instruction did not appear in a subse-
quent location field.

Name Conflict

A subroutine or function name conflicts with prior usage of the name.

Name

Format error in name (header) card.

OD

PN

RN

SB

SE

SF

SL

SM

SN

SY

™

TY

UA

UE

DIMENSION Statement Order

An array has been referenced prior to being named in a DIMENSION statement.

Parentheses

Indicates unpaired parenthesis.

RETURN

Format error in a RETURN statement.

Subscript

Format error in subscript of an array reference.

SENSE

Format error in a SENSE statement.

Short Field

Indicates the number of words by which the required field length of the object program or sub-

routine exceeds the specified length.

Subroutine Storage Limit

Compiler field length is exceeded.

Statement Number Field

Format error in the statement-label field.

System Number

Format error in a position where a statement label should appear.

System

Error in the FORTRAN system.

Too Many Arguments

A subroutine reference or the program or subroutine being compiled has more than 60
arguments.

Type

Format error in a type statement.

Unidentified Array

An array has not been previously named in a DIMENSION statement.

Unidentified Equipment

A referenced input/output file was not listed in the header card of the main program.

Us

vC

VD

VN

XF

XM

Unreferenced Binary Subroutine

A subroutine on binary cards following the FORTRAN program has not been referenced.

Variable Name Conflict

A variable name conflicts with a prior usage.

Variable Dimensioned Array

An array whose dimensions are arguments to the subroutine or function being compiled has
been used incorrectly.

Variable Name

Variable name is in error.

Expression Format

Format error in expression.

Expression Mode

Modes are mixed in an expression.

INDEX

Actual parameters 7-2
Alphanumeric identifier 2-1
Arithmetic expressions 3-1
Arithmetic evaluation 3-2
Arithmetic replacement 4-1
Arrays 2-8

Array transmission 9-2
Assign statement 6-1
Assigned GO TO 6-1

Block data subprogram 5-12
Buffer statements 10-6

Call statement 7-6

Chaining 8-1

.Character codes A-1
Character set 2-1

Coding continuation 1-1
Coding identification field 1-2
Coding line 1-1

Coding statement 1-1
Comments 1-2

Common declaration 5-3
Compilation (Appendix F)
Complex constants 2-4
Complex variables 2-7
Computed GO TO 6-2
Constants 2-2

Continue statement 6-7
Control statement 6-1
Conversion specifications 9-3

Data declaration 5-8

Decode statement 10-8
Dimension declaration 5-2
DO loop execution 6-4

DO loop transfer 6-6

DO nests 6-5

DO statements 6-4

Double precision constants 2-4
Double precision variables 2-7

Editing specifications 9-17
ENCODE statement 10-8
End statement 6-8
Equivalence declaration 5-6
Execution (Appendix F)
External statement 7-8

Formal parameters 7-2
Format declaration 9-3
Function reference 7-10
Function subprograms 7-9

GO TO statements 6-1
Hollerith constants 2-4

Identification field 1-2
Identifiers 2-1
Identifier, statement 2-2
IF statements 6-3

Input format 9-1

Input list 9-1

Input statements 10-1
Integer constants 2-2
Integer variables 2-6

Library functions 7-12
Library subroutines 7-8
Logical constants 2-5
Logical expressions 3-8
Logical replacement 4-3
Logical variables 2-7

Main program 7-4
Masking expressions 3-9
Masking replacement 4-4

Mixed-mode arithmetic expressions

Mixed-mode replacement 4-1

3-4

Index-1

Octal constants 2-3
One-branch logical IF 6-3
Output format 9-1

Output list 9-1

Output statements 10-1

Pause statement 6-7

Print 10-1

Program arrangement 7-14
Program communication 7-1
Program modes 7-12

Punch statement 10-2
Punched cards 1-2

Read statements 10-3

Real constants 2-3

Real variables 2-6

Relational expressions 3-6
Repeated format specifications 9-20
Replacement statement 4-1

Return statement 6-8

Scale factor 9-15

Simple variable 2-5

Statement function 7-11
Statement identifiers 2-2
Statement number 1-2

Stop statement 6-8

Storage allocation 5-1
Subprogram communication 7-2
Subroutine subprogram 7-6
Subscripted variable 2-7

Tape handling statements 10-5
Three-branch arithmetic IF 6-3
Two-branch logical IF 6-3
Type declaration 5-1

Unconditional GO TO 6-1
Unlimited groups 9-20

Variable dimensions 5-3

Variable dimensions in subprograms 7-13
Variable format 9-21

Variables 2-5

Write statements 10-2

Index-2

CONTROL DATA
__conronarion

CORPORATION

COMMENT AND EVALUATION SHEET
6000 Series Chippewa Operating System

FORTRAN Reference Manual

Pub. No. 60132700, Rev. A May, 1966

THIS FORM IS.NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS. SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nawmE:

USINESS
D

B
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOL IS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA

I
|
I
|
I
|
|
f

n
[¢]
r
s}

STAPLE

CONTROL DATA SALES OFFICES

ALAMOGORDO + ALBUQUERQUE « ATLANTA « BILLINGS « BOSTON « CAPE
CANAVERAL « CHICAGO « CINCINNATI « CLEVELAND - COLORADO SPRINGS
DALLAS « DAYTON « DENVER « DETROIT « DOWNEY, CALIFORNIA « GREENS-
BORO, NORTH CAROLINA « HONOLULU « HOUSTON « HUNTSVILLE «» MIAMI|
MONTEREY, CALIFORNIA « INDIANAPOLIS + ITHACA « KANSAS CITY, KANSAS
LOS ANGELES « MADISON, WISCONSIN « MINNEAPOLIS « NEWARK « NEW
ORLEANS « NEW YORK CITY « OAKLAND « OMAHA « PALO ALTO . PHILA-
DELPHIA - PHOENIX + PITTSBURGH . SACRAMENTO . SALT LAKE CITY
SAN BERNARDINO . SAN DIEGO « SANTA BARBARA . SAN FRANCISCO
SEATTLE . ST.LOUIS « TULSA . WASHINGTON, D. C.

Pub. No. 60132700 Rev. A

AMSTERDAM - ATHENS « BOMBAY . CANBERRA « DUSSELDORF » FRANK-
FURT + HAMBURG + JOHANNESBURG « LONDON + LUCERNE « MELBOURNE
MEXICO CITY » MILAN « MONTREAL - MUNICH . OSLO « OTTAWA . PARIS
TELAVIV « STOCKHOLM « STUTTGART . SYDNEY . TOKYO (C. ITOH ELEC-
TRONIC COMPUTING SERVICE CO., LTD.) « TORONTO - ZURICH

CORPORATION

CONTROL DATA
[comromaTion]

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55340

LITHO IN U.S.A.

	001
	002
	003
	005
	006
	007
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-01
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	A-0
	A-1
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	D-3
	D-4
	D-5
	E-1
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	Index-1
	Index-2
	ReplyA
	ReplyB
	zBack

