CONTRQL DATA CORPORATION

Development Division - Applications

DISK ROUTINES AND OVERLAYS

Chippewa Operating System

11/1/65

Disk Routines and Overlays

Contents

Introduction

6603 Disk File: Description and Organization
6603 Disk File: Timing Comsiderations
6603 Disk File: Disk Capacity
Chippewa Operating System Disk Usage
The Disk Write Overlay, 2WD

The Disk Read Overlay, 2RD

The Backspace Disk Overlay, 2BD

The Drop Track Overlay, 2DT

2WD Flow Chart

2RD Flow Chart

2DT Flow Chart

2BD Flow Chart

Page

DISK ROUTINES AND OVERLAYS

Introduction

In the Chippewa Operating System, there is no single system element used
to perform disk operations for all other elements of the system.
Instead, each system element performs its own disk operatioms. This,
while requiring additional coding for each of the system elements using
the disk, eliminates the need for a request queueing and priority

scheme required by the use of a single system element to process all
disk operations. In addition, the housekeeping required by a disk
subroutine in one system element can overlap, to some extent, a disk
operation being performed by another system element. Among the system

elements which perform disk operations are:

. peripheral processor resident (reads transient programs from the
disk library) .
+ MTR (writes the contents of the dayfile buffer to the disk)

. some transient programs (read overlays from the disk)

Disk operations for external users are performed via the overlays

2WD (write disk), 2RD (read disk), and 2BD (backspace disk). These
overlays are called by CIQ when a disk operation is requested by a
central processor program. In addition, these overlays are used by
certain transient programs to perform disk operations. Thus, 1LJ

and 1LT call 2WD when loading jobs from the card reader and a tape unit,
respectively, while 1DJ and 1TD call 2RD when transferring job output to

the printer or a tape unit.

Regardless of where in the system they are performed, disk operations are
similar: this discussion will therefore be limited to the overlays
2WD, 2RD, and 2BD. Before discussing these routines a short review of

the physical characteristics of the 6603 disk file is in order.

6-1

6603 Disk File: Description and Organization

The 6603 Disk File contains fourteen disks, each coated on both sides

with magnetic oxide. Thus, there are a total of twenty-eight recording
surfaces. On two of these surfaces timing tracks are recorded, two are
used for spares, and twenty-four are used for recording data (see figure 1).
All fourteen disks are mounted (in a vertical plane) on a common axis and
rotate at a speed of approximately 900 revolutions per minute. Twelve

of the data surfaces are on the right side of the unit, and twelve are

on the left. Information is recorded on the disk in 12-bit bytes:

each bit in a 12-bit byte is recorded on a separate disk surface.

Associated with each disk surface is a set of four read/write heads
(see figure 2). An assembly consisting of a rocker arm and a head bar
fits between each pair of facing disk surfaces. The head bar holds two
sets of four heads, one set for each of the two facing surfaces. The
read/write heads are mounted on this head bar in a fixed position
relative to each other. The rocker arm-head bar assemblies for all
disks mount on a common bracket which can be rotated. This rotation
moves all the head bars simultaneously (with the exception of the

heads accessing the timing track surfaces: these heads are fixed).

The disk surface is divided into four zones. A zone is that portion of
the disk surface transversed by one of the four heads associated with
that surface as the head (on its head bar-rocker arm assembly) moves
through its maximum angular rotation. A byte may be written on the
twelve data surfaces on the right side of the disk file or on the

twelve data surfaces on the left side of the disk file: on either side,
a byte may be written in any one of four zones. On each side of the disk
file and for each zone on side, a single set of twelve read/write heads
are used to record a byte (see figure 1), This set of twelve heads is
called a head group. There are four head groups for each of the two sets

of twelve disk surfaces: a total of eight head groups.
Each zone contains 128 tracks. A track is the recording path available
to a given head group in a given position as the disk makes a complete

revolution. To move from one track to another requires a physical

6-2

€-9

1 ®and1g

SPARE

Lot

DATA DISCS
A
r - » ooy 1

<¢~— CLOCK ~——=

DATA DISCS
A

MOTOR
PEDESTAL

"HEAD
GROUPS]]
6 - . - -
2 Vi v 7 ;7’ 3 !ZW ;A "7 7
Uy B HE b By ak
211—4
(\
—
DATA HEADS
SPARE
HEADS

ALL HEADS (EXCEPT FIXED HEADS) MOVE TOGETHER

SPARE

HEAD
GROUPS

- W

6603 DISC FILE

movement, or repositioning, of the head bar-rocker arm assemblies. At

a given position, each head group accesses the same track in its zone.
Thus, if head group 2 is pdsitioned to track 125, the other 7 head

groups are also positioned to track 125.

Tracks are divided into sectors: a sector is the smallest addressable
segment of a track. There are 128 sectors in each of the tracks in the
two outer zones. In the two innermost zones, there are only 100 sectors
per track because of the reduced track length near the center of the
disk compared to the track length available near the outside edge. A
sector contains 351 bytes (each bit in a byte is'fecd;ﬁéd in one of 12
corresponding sectors across 12 disk surfaces). The first four bytes
recorded are reserved for use by the controller: Thej provide a time
lag between consecutive sectors and contain all zero bits. After the
last data byte has been written, the controller writes a longitudinal
parity byte, . The sector format is illustrated in figure 3. Of the
351 bytes in a sector, then, five are used by the controller: The
remaining 346 bytes may be used for data. Normally, 320 bytes (the

equivalent of 64 central memory words) are used for data.

The number of words read from or written to the disk is solely a function
of the word count specified in the IAM or OAM instruction. It is
possible to read or write more than one sector at a time; it is

possible to read or write in the group switch gap; it is possible for

a read or write to wrap around on the same track. A read or write
operation always begins at the beginning of a sector. When a write is
initiated, the disk controller inserts four zero bytes before the data
and inserts a parity byte after the last data byte.. (The parity byte

is not necessarily in the last byte position in a.éector.) When a read
is initiated, the controller assumes that the first four bytes are zero
bytes, and does not pass these on to the data channel. When the word
count in a read has been reduced to zero, the controller assumes that the
next byte to be read is the parity byte. Thus, any attempt to read a
number of bytes different than the number of bytes written will invariably
create problems due to the interpretation of zero bytes and parity bytes
as data and vice versa. For this reason, regardless of the amount of

data to be recorded, a fixed number of bytes is written in each sector,

6-4

SECTOR 0O (OUTER)

—_—_\ -.‘:,/,
o

GROUP SWITCH GAP ——p..

2 @and14

4&"—@\%///
-

oo Ao

DISC_ORGANIZATION

9-9

SECTOR

\

12 DISK SURFACES ON 7 DISKS

® UP TO 346 DATA BYTES

® 4 ZERO BYTES: INSERTED AND
EXTRACTED BY DISK CONTROLLER

€ @2an3d1g

SECTOR FORMAT: 6603 DISK FILE

and only one sector is written at a time (i.e., data is recorded in

‘physical records of one sector).

A reference mark on the disks containing the timing tracks defines the
beginning of sector 0 in all four zones. Beyond this point, the
starting point of sectors in the two inner zones does not coincide with
the starting point of sectors in the two outer zones (see figure 2).

The clock surfaces contain timing tracks for each zone. As the disk
rotates, one of these timing tracks (depending on which head group is
selected) drives a cell counter. This counter in turn triggers a sector
counter. Both counters are initialized when the reference mark is
detected. The cell counter is incremented as the timing track is read:
When it reaches a count of 351, it is reset and the sector count
advanced. The controller compares the sector number specified in a read
or write function code: When equality is obtained, the read or write
operation is initiated. The contents of the sector counter appear in

the low-order 7 bits of the status response.

6603 Disk File: Timing Considerations

The rotational speed of the disk is approximately 900 revolutions per
minute, corresponding to a revolution time of about 66 milliseconds.
The time required to read or write a byte is approximately 1.4 micro-
seconds on the two outer zones and 1.8 microseconds on the two inner
zones. 1In the outer zones, then, a sector passes under the heads

every 490 microseconds., It requires a minimum of 325 microseconds to
transfer the 64 central memory words in a sector from peripheral pro-
cessor memory to central memory, and, because of memory and pyramid
conflicts, will probably require longer. A single peripheral processor

cannot maintain a continuous data flow between consecutive sectors on the

disk and central memory.

If the programmer wishes to read or write in a given sector, he simply
issues the appropriate function code and, when the sector comes under
the heads, the operation is initiated. The programmer may prefer to

minimize the time spent waiting for this sector by sensing (via a

status request) the position of the disk. Timing considerations make

6-7

it impossible to sense for a given sector and then initiate an operation
in that sector: If one wishes to read or write sector N, then sector

N-2 should be sensed in order to assure that a revolution will not be

lost.

There are two types of delays which are of concern to the disk programmer.

One of these is the positioning delay: The time required to move the

heads to a new track. When a track select function has been received

by the disk controller and positioning initiated, a delay determined by
counting 4 reference marks is provided to permit the head assembly to
stabilize. Thus, depending on when positioning is initiated, up to 264
milliseconds may be required. During positioning, a status request will

receive a "NOT READY" reply.

The second type of delay is the switching delay encountered when a

different head group is selected. When head group switching is initiated,
the controller provides a one millisecond delay to allow the circuits to
stabilize: Furthermore, reading or writing cannot be initiated until a
reference mark is detected. Thus, depending on when the head group

select function is issued, up to 66 milliseconds may be required for head

group selection.

Between the last sector in a track (sector 127 in the outer zones, sector
99 in the inner zones) and the first sector (sector 0) on that track

is an area called the group switch gap (see figure 2), This area is

approximately equivalent to three sectors in size., It is provided to
accommodate the minimum 1 millisecond switching delay. A programmer can
thus read or write the last sector in a track, select a new head group,
and read or write sector zero of the new track without incurring a

AN

delay.

The function code for head group selection is 160X, where X is the head
group number (0-7). It is possible to vary the second octal digit in this
function code (normally zero) from 1 to 7: 1In doing so, the manner in
which the data signals from the disk are sampled is varied. Use of the

feature is reserved for error routines.

6-8

6603 Disk File: Data Capacity

There are 128 physical positions of the heads: At any one position,

a track may be accessed by selecting one of eight head groups. Thus,

the disk has a total of 8 x 128 = 1024 tracks. Of the eight head

groups, four cover inner zones and four cover outer zones. In the

inner zones, there are 100 sectors per track: In the outer zones, there
are 128 sectors per track. Therefore, 512 tracks each contain 100 sectors
while the other 512 tracks each contain 128 sectors. The disk file thus
contains 116, 736 sectors. In normal use, up to 64 central memory words
are recorded in a sector. The capacity of the 6603 disk file is thus

approximately 7,5 million central memory words.

Chippewa Operating System Disk Usage

As we have seen, a single peripheral processor cannot maintain a con-~
tinuous data flow from consecutive disk sectors to central memory.
Therefore, the Chippewa Operating System uses a half track scheme in

its disk operations. A half track is compesed of either the odd-numbered
or the even-numbered sectors in a track. In a disk operation, the system
reads or writes alternate sectors, transferring data to or from central
memory while passing over the intervening sector. Since the disk
contains 1024 physical tracks, the equivalent half track capacity is
2048, The allocation of half tracks is controlled by MIR: disk

write routines obtain half track addresses from MIR via the Request

Track function. MTR maintains a table called the Track Reservation

Table (TRT) which contains an entry for each half track on a disk. On
receipt of the Request Track function, MTR searches the table for an
unassigned half track, and returns the half track address to the requestor
in the upper byte of the Message Buffer, If no half track is available,
a zero address is returned to the requestor. A half track is never

split between files: thus, the ha}f track is the smallest unit of

storage allocated on the disk.

The format of the half track address, and its relationship to physical

disk addresses, is illustrated below.

6-9

01-9

+ 92an31g

HALF

LOGICAL
SECTORS

PHYSTICAL
SECTORS

_TRACK 134g -

TRACK USE: AN EXAMPLE

THE SYSTEM READS SECTOR 3lg OF THE
HALF TRACK INTO PERIPHERAL PROCESSOR
MEMORY

WHILE PASSING OVER THE NEXT PHYSICAL
SECTOR, THE DATA JUST READ IS TRANS-
FERRED TO CENTRAL MEMORY

THE SYSTEM IS THEN READY TO READ THE
NEXT SECTOR ON THE HALF TRACK

HALF TRACK ADDRESS 6302

1 1 0111 O O 001 O

TRACK 1348 /
EVEN-NUMBERED SECTORS

HEAD GROUP 2

[5.0.6:6,00:0.0:0:0.0'¢
'—[:————-head group number (0-78)

1" if odd sectors, "0" if even sectors

track number (0-1778)

Sector numbers maintained by the system (such as the Current Sector

in an FST entry) are logical sector numbers, and refer to a sector
within a half track. In the outer zones, sectors within a half track
are numbered 0-778: In the inner zones, sectors within a half track are
numbered 0-618. To convert a logical sector number to a physical sector
number, the system shifts the logical sector number left one place and
inserts the 24 bit from the half track address into the low-order bit
position. For example, consider logical sector 778 (6310) in a half
track composed of the odd-numbered sectors in a physical track. 1In this
case, the 24 bit of the half track addfess will be a "1"., By shifting
the logical sector left one place and inserting the "1" bit from the 24
bit position of the half track address, we obtain 1778 (12710) for the
physical sector number. For the remainder of our discussion, a reference

to ''sector number" will refer toc the logical sector number unless other-

wise described.

For files recorded on the disk, the physical record is, of course, the
sector. A logical record may be composed of several sectors. The
format of the physical record is shown in figure 5. 5028 bytes are
always written in each sector. The first two bytes written are control

bytes: the remaining 500, bytes are data bytes. Control byte 2 contains

the number of useful cential memoxy words in this sector: If control byte
2 contains 1008, all 5008 bytes in this sector contain useful information.
A sector in which control byte 2 contains less than 1008 is called a

short sector, and is interpreted as a record mark. A logical record

may comprise several full sectors, but is always terminated by a short
sector. If the data to be recorded as a logical record is a multiple of
1008 CM words, the system will write, as the record mark, a sector in

which control byte 2 contains zero.

Control byte one points to the next physical record in this file. If

the next sector is on the same half track, then this byte contains the

- 6-11

¢1-9

¢ 2an31g

CONTROL
BYTE 1

CONTROL
BYTE 2

320 BYTES ALWAYS ? 8WRITTEN

Z{—————aaNUMBER OF USEFUL CM WORDS IN THIS SECTOR

POINTER TO NEXT SECTOR

SECTOR NUMBER (0 - 77g) IF ON SAME HALF TRACK

® HALF TRACK NUMBER IF ON ANOTHER HALF TRACK

CONTROL BYTE 1

NON-ZERO

NON-ZERO

NON-ZERO

ZERO

- NON-ZERO, <1 008

CONTROL BYTE 2 RECORD

1008 "FULL" SECTOR: PART OF A LOGICAL RECORD

"SHORT" SECTOR: PART OF A LOGICAL RECORD; RECORD MARK
ZERO "SHORT" SECTOR: RECORD MARK

ZERO FILE MARK

DISK FILE PHYSICAL RECORD FORMAT

number of that sector. If the next sector is on another half track,
then this byte contains the half track address for that half track. '
(The file would be continued beginning with sector zero of the new half

track.)

At the end of each write operation, the system writes a file mark. The
Current Sector byte of the FST entry is not incremented to reflect this
file mark sector, so the effect is equivalent to writing a file mark.

and backspacing over it. On the disk, a file mark is a sector in which

both control bytes contain zero.

The Disk Write Overlay, 2WD

Disk write requests by users are executed by CIO's overlay 2WD. This
overlay is also used by 1LJ and 1LT in loading jobs on the disk. Before
calling 2WD, CIO calls the 2BP overlay to check the legality of the buffer
parameters FIRST, IN, OUT, and LIMIT. After checking these parameters,
2BP searches the File Name Table for the file name specified in the CIO
call (i.e., in the first word of the argument list). When found, 2BP
stores the address of the corresponding FST entry. Should the file name
not be found in the FNT, 2BP constructs an FNT entry for this file.
Finally, 2BP clears the 20 bit in the buffer status byte of the FST

entry to reserve the file.

CIO then calls 2WD. (Refer to the flow chart on page A-l.) 2WD reads
the FST entry for the file and extracts the equipment number from byte
one. The equipment number is added to the EST base address, and the

EST entry read. The channel number from byte 2 of the EST entry is then

inserted in the appropriate I/0 instructions.

The output data in the circular buffer may appear as a contiguous block,
or may wrap around the buffer, as illustrated in figure 6. In computing
the total number of sectors in the circular buffer, then, the 2WD routine
first subtracts OUT from IN. If the difference is positive, then this’
difference is the total number of words to be written, and ZWD shifts

off the lower six bits of this word count in order to obtain the
equivalent number of sectors. If OUT-IN is negative, the value of

LIMIT is added to the difference and FIRST subtracted to obtain the

6-13

719

9 2an31yg

LIMIT

OUT
FULL SPLIT
SECTORS SECTOR
00000 y,
P
|
eser

CIRCULAR BUFFER

POINTERS STORED BY 2BP PARTIAL SECTOR: WRITTEN
ONLY IF END RECORD OR END

FILE REQUEST

CIRCULAR BUFFER PARAMETER PROCESSING - 2WD OVERLAY

BUFFER PARAMETER PROCESSING

1.

N

COMPUTE TOTAL NUMBER OF
WORDS IN OUTPUT AREA

COMPUTE TOTAL NUMBER OF
SECTORS IN OUTPUT AREA
BY SHIFTING TOTAL WORD
COUNT RIGHT 6 PLACES

COMPUTE NUMBER OF WORDS
BETWEEN OUT AND LIMIT

COMPUTE NUMBER OF SECTORS
BETWEEN OUT AND LIMIT BY
SHIFTING OUT-LIMIT WORD
COUNT RIGHT 6 PLACES

EXTRACT LOW-ORDER 6 BITS

OF OUT-LIMIT WORD COUNT:

THIS GIVES THE NUMBER OF

WORDS IN THAT PART OF THE
SPLIT SECTOR BETWEEN OUT

AND LIMIT

SUBTRACT NUMBER OF WORDS
COMPUTED IN (5) FROM 100g
TO GET NUMBER OF WORDS

TO BE READ FROM THE BUFFER
BEGINNING AT FIRST 1IN
ORDER TO COMPLETE THE
SPLIT SECTOR

SET UP INSTRUCTIONS FOR
PROCESSING THE SPLIT
SECTOR

total word count and, from that, the equivalent number of sectors.

Regardless of whether the data is contiguous or wraps around the buffer,
2WD proceeds on the assumption that the data does wrap around, and
proceeds to compute the values needed to process the wraparound case.

The steps involved are listed in figure 6. These values, although

always computed, are not required in the contiguous case: in either
case, the terminal path is entered when the total sector count is reduced
to zero. By computing these values regardless of whether the data is
contiguous in the buffer or wraps around the buffer, computations during

the period when the disk is actively in use are reduced.

Next, 2WD picks up the channel number from the EST entry and requests
reservation of that channel from MTR. The Current Track byte of the
FST entry for this file is then examined. If this byte is zero, then
this file has not previously been used. A half track assignment is
requested from MTR: MTR returns a half track address to the requestor
in byte one of the first word in the message buffer. If no half track
is available, MTR will return a zero byte to the requestor: 2WD then
inserts an error message in the dayfile and aborts the control point
after dropping the channel reservation. 2WD now has the address of the
half track where the next operation is to be performed, and proceeds

to position the disk to this half track. This half track address:is
compared with byte 2 of the TRT pointer word for this disk, and
repositioning or head group selection performed only if required. Byte

2 of the TRT pointer is then updated.

2WD next requests another half track assignment from MTR. This half
track is a spare: by keeping it available, it is possible for 2WD to
switch head groups within the group switch gap if this action should be

required when the end of the current half track is reached.

The transfer of data from the buffer to the disk then begins. 2WD reads
1008 words from central memory into peripheral processor memory, sets
control bytes one and two, and then writes the completed sector to the
disk. As each sector is written, the number of the sector is examined
to determine if the end of the half track is reached. To do this, 2WD

compares the sector number with byte 4 of the TRT pointer word (if head

6-15

group number = 0-3) or byte 5 of the TRT pointer word (if head group
number = 4-7)., These bytes contain the values 1008 and 628, respectively.

If the end of the half track has been reached, 2WD positions the disk to
the spare half track: again, the half track address is compared with byte
2 of the TRT pointer word and positioning or head group selection per-
formed only if required. éfter initiating any repositioning which might

be required, 2WD requests a spare half track from MIR.

2WD continues reading 1008—Word blocks from central memory and writing
them to the disk until it recognizes that there is not enough data in
the circular buffer for a complete sector. (Some part of a sector may
still, however, remain.) 2WD then examines the buffer status contained
in byte 5 of the FST entry to see if an end record was requested

(24 bit = 1). If an end record was requested, 2WD writes a short sector
to the disk., If any data remained in the circular buffer, it will be
written in this short sector: otherwise, contxrol byte 2 will simply be

set to zero.

After the last data sector has been written to the disk, 2WD writes a
file mark - a sector with both control bytes equal to zero. The Current
Sector byte of the FST entry is not, however, incremented to reflect the
writing of this file mark: the next write to this file will write over
the file mark sector. After the file mark has been written, 2WD requests
MTR to drop the spare half track assignment and to release the channel

reservation.

If no end record function was requested, 2WD simply updates the OUT
pointer before returning control to CIO: There may still be some data
in the circular buffer, If an end record function was requested, no
data remains in the buffer: 2WD therefore sets IN = OUT = FIRST to

indicate that the buffer is empty.

When control is returned to CIO, CIO sets the 20 bit of the buffer
status in the FST entry to 1 to indicate that the file is no longer in
use, and sets the 20 bit of the buffer status in the calling program's
argument list to 1 to indicate to the calling program that the operation

has been completed.

6:-16

The Disk Read Overlay, 2RD

Disk read requests by users are executed by CIO's overlay 2RD. This
overlay is also used by 1DJ and 1TD. The processing performed by 2BP

in this case is identical to that performed in the case of 2WD. On

entry, 2RD reads the FST entry for the file, picks up the equipment number
from byte one, and uses thié number to obtain the EST entry. The channel

number from the EST entry is then set in the I/0 instructions.

2RD then proceeds to compute the number of sectors which can be loaded

into the circular buffer. If there is not room for a full sector, control
is returned to CIO. The data to be read may fit in the buffer in a
contiguous block, or may wrap around the buffer. The computation of

the values (total word count, total sector count, etc.) used in controlling
the transfer of data to the buffer is performed in a manner similar to

2WD. Again, the wraparound case is assumed.

The Current Track byte of the FST entry is examined. If this byte is
zero, the file has not been used before and so contains no data. 2RD
sets the buffer status to indicate a file mark and returns control to

CIO.

2RD requests a channel reservation from MIR and positions the disk to

the half track address contained in the FST entry's Current Track byte.
As in all disk routines, the half track address is compared with the disk
position specified in the TRT pointer, and repositioning or head group

switching performed only if necessary.

2RD then uses the Current Sector byte of the FST entry to comstruct the
read function code, and reads the specified sector into peripheral
processor memory. A status request is then issued, and the response

is examined to determine if a parity error occurred. In the event of a
parity error, the system rereads the sector three times; once using the
normal sampling method and twice at ’
varied sampling margins. If the parity error re-occurs in each of the
rereads, 2RD inserts an error message in the dayfile and stops (via a
UJIN O instruction). Since the halt occurs without the disk channel being

released, all system activity will shortly cease (if this disk is the

6-17

system disk, disk 0). A dead start load will be necessary to reinitiate

processing.

If the read was successful, 2RD examines the high-order six bits of
control byte one: if these bits are zero, then this control byte contains
a sector number, while if these bits are non-zero, this control byte
contains a half track number. 1In the latter case, 2RD positions the disk
to the new half track address. While any repositioning or head group
switching which might be required is in process, 2RD transfers the

number of words specified in control byte 2 from peripheral processor
memory to the circular buffer, and updates the values used in controlling
the transfer, If the sector just read was a full sector (1008 CM words

of data), and if there is enough room in the circular buffer for another

full sector, 2RD loops to read the next sector from the disk.

If the last sector read was a short sector, then the end of a logical
record has been reached, and the buffer status is set to reflect a

record mark, If the end of logical record has been reached, or if there
is not enough room in the circular buffer for a full sector, 2RD requests
MIR to release the channel reservation, updates the IN pointer in the
calling program's argument list, and returns control to CIO. CIO
updates the buffer status in the FST entry to release the file reser-
vation, and updates the buffer status in the calling program's argument

list to indicate that the operation has been completed.

If, after reading the last logical record in a file, the calling program
issues another read to the file, the file mark will be read. The pro-
cessing proceeds as described above: 2RD reads a sector whose address is
specified in the Current Track and Current Sector bytes of the FST entry.
Since control byte 2 is zero, 2RD recognizes this as a short sector, sets
the buffer status to reflect a record mark, and releases the channel,

2RD then examines control byte one; since this contains zero, the file
mark is recognized and the buffer status set accordingly before returning

control to CIO.

6-18

The Backspace Disk Overlay, 2BD

Disk backspacing may take the form of a BCD backspace or, more commonly,
a binary backspace. In either case, it is desired to backspace over a
logical record, and it is assumed that any backspacing over logical
records in the buffer has been done by the calling program. Backspacing
over the physical records which may constitute a logical record is
essentially a matter of backspacing over two sectors and then reading a

sector.

2BD uses a subroutine to backspace over a sector. (See flow chart on
page A-5.) This subroutine examines the Current Sector byte of the FST
entry, and, if non-zero, subtracts one from this number and exits.

This is equivalent to backspacing over one physical record (i.e., one
sector). If the Current Sector number is zero, then the preceding
physical record is on another half track. In this case, the subroutine
stores the Current Track byte from the EST entry for this file, since it
will have to search the file for a sector which has this half track

address contained in control byte one.

The subroutine rewinds the file by picking up the Beginning Track byte
from the FST entry. (Should the Beginning Track byte be equal to the
Current Track byte, the subroutine exits, since this indicates that the
system has backspaced over all physical records in this file.) After
rewinding the file, the subroutine reads each sector in the file until
it finds a sector with the desired half track address in control byte
one. The number of this sector is then stored, and control returned to
the calling routine. A backspace operation on a file of any size may
take considerable time if it should become necessary to rewind the file

and search forward.

A binary backspace on the disk consists of backspacing over two sectors
(using the subroutine described above) and reading a sector until a

short record is found, indicating the end of a logical record. 2BD sets
the circular buffer pointers IN and OUT equal to FIRST, and returns
control to CIO. CIO updates the buffer status in the FST entry and in the

calling program's argument list before exiting.

6-19

It is also possible to issue a BCD backspace to the disk. For the disk,
as for 1" tape (but not for 1" tape), a logical BCD record consists of
a series of central memory words presumably containing display code data,

terminated by a central memory whose low-order byte (byte 5) is zero.

The BCD backspace begins with the computation of the amount of data left
in the buffer as a result of the last read. This quantity, referred to

as D, is equal in IN-OUT if the data in the buffer is contiguous, or
IN-OUT + LIMIT-FIRST if the data wraps around the buffer. This data was
left in the buffer as a result of the last read, and may have been

stored on the disk in several sectors. The system assumes that the
calling program will backspace within the buffer, and so, before beginning
a logical BCD record backspace on the disk, 2BD will backspace the

disk a number of sectors.equivalent to the amount of data contained in

the buffer. This quantity is represented by D.

2BD therefore backspaces over a sector (by the same subroutine used in
binary backspacing and described earlier) and reads that sector into
peripheral processor memory. The sector length in control byte 2 is

then compared with D: if less than D, then this sector is assumed to
contain data which has already been read into the buffer. 2BD then
decreases D by this amount, backspaces over this sector and the sector
preceding it, and then reads a sector. The process of backspacing,
reading, and reducing D is repeated until a sector is read whose length
is greater than the present value of D: this sector could not entirely
be part of the read data in the buffer, and so must be searched for a
logical record. 2BD transfers this sector from peripheral processor
memory to the circular buffer beginning at FIRST. If D is still non-zero,
then part of this sector c!mtains data residing in the buffer at the time
the backspace was requested, and presumably has been searched by the
calling program: 2BD therefore sets the OUT pointer to FIRST + sector
length - D. At the same time, the IN pointer is set to reflect the

transfer of the sector to the buffer.

2BD then searches each word in the buffer from OUT - 1 down to FIRST
until a word with a zero low-order byte is found, indicating the end of
a logical BCD record. When the end of the record is found, 2BD updates

the IN and OUT pointers in the calling program's argument list, and

6-20

returns control to CIO. OUT now points to the first word following the
end of the logical record. 1If no zero low-order byte was found, then
2BD backspaces two sectors and reads one, and then repeats the buffer

search.

The Drop Track Overlay, 2DT

When CIO receives a disk write request, it first calls the 2BP overlay
to check the legality of the buffer parameters and to search the FNT for
the file name. CIO then reads the EST entry for this file, and examines
the buffer status in byte 5. If the buffer status indicates that the
last operation performed on this file was a read operation, then an
overlay, 2DT, is called to drop the subsequent portion of the file. In
effect, then, if some part of a file is read and it is then decided to

write to that file, the remainder of the file is erased.

The flow chart for the 2DT overlay is shown on page A-3 of the attached
flow charts. The routine picks up the Current Track byte and Current
Sector byte from the FST entry for the file, and reads the sector at this
address. If this sector is a file mark, 2DT returns control to CIO.

If control byte one of this sector contains a half track address, 2DT
requests MTR to drop this half track reservation. MTR then clears the
bit in the Track Reservation Table corresponding to this half track
address. 2DT positions the disk to this half track address and begins
reading sectors until a file mark is found or the end of the half

track is reached. The process of reading and dropping half tracks

continues until the end of the file is reached.

At the end of a job, all local files associated with the job are

dropped. For disk files, a process similar to that described above is
required to release half track reservations. This is performed for

1AJ by the 2DF overlay. 2DF differs from 2DT in that 2DF drops files
assigned to other equipment as well as those assigned to the disk, and

2DF drops all the half tracks reserved by a file, not just those folldwing
the half track specified in the Current Track byte of the FST entry.

2DF is also called by 1DJ and 1TD when printing files or writing files

on tape.

6-21

ENTER 2WO OVERLAY
WRITE DiSK FIiLE

N
GOFY OVERLAY FOR EGQUIPMENT PARAMETERS]

z

[REQUEST CHANNEL FGR DISK FILE

\/
[HAs Tris FILE GEEN USED BEFORE p oy RUOUEST & NEW TRACK FROM MONITOR "o DAYFILE MESSAGE—DISK X TRACK LIMIT
IS A TRACK AVAILAGLE ? .
YES — RELEASE CHANNEL
YES ABORT CONTROL POINT
RELEASE PPU
Y DAYFILE MESSAGE=DISK X TRACK LIMIT
POSITICN DISK TO PROPER TRACK . WRITE END OF FiLE SECTOR
| REGUEST A NEW TRACK FROM MONITOR NO RELEASE CHANNGL
t IS A TRACK AVAILASLE ? ABORT CONTROL POINT
YES RELEASE PPU

\/

. [is TrEAE ENGUGH DATA IN THE CIRCULAR | N]
— ene BRLY A IN THE CIRCUL NO IS AN END RECORD FUNCTION REQUESTED ? I[r\o
| GUFFER FOR A FULL SECTOR ?
YES !
YES v
VRITE END OF FILE SECTOR
DO NOT ADVANCE FILE STATUS FOR THIS SECTOR
M CALL MONITOR TO DROP SPARE TRACK
WRITE SECTOR ON DiSK RELEASE CHANNEL

IS THIS THE LAST SECTOR ON THIS TRACK ?

NG
‘ YES
i . \
l
v DAYFILE WSSAGE—DISK X TRACK LIMIT UPDATE BUFFER CONTROL OUT ADORESS
i POSITION DISK TO NEW TRACK N WRITE END OF FILE SECTOR EXIT
i REQUEST & NEW TRACK FROM MONITOR [RELEASE CHANNEL
i IS A TRACK AVAILABLE ? ABORT CONTROL POINT
YES RELEASE PPU

y \/

P =]
_....___'\.9_.{ WAS THIS SZCTGR A SHORT SECTOR P |

YES

\y

WRITE END OF FILE SECTOR

CO NOT ADVANCE FILE STATUS FOR THIS SECTOR
CALL MONITGR TO DROP SPARE TRACK

RELEASE CHANNEL

\/

STORE BUFFER CONTROL IN=OUT »FIRST
ExiT

A-1

—
. ENTER 2RC OVERLAY
: CiSK FILE HEAD

W
! MGTFY GVERLAY FOR
EGUIPMENT PARAMETERS

}

i
|
\y
Y

COMPUTE NuMBIR OF SECTORS

CIRCULAR BUFFER.
IS NUMDER OF SECTORS ZERO ?

WhICH CAN BE LOADED INTGC THE

YES

ST ewr

NC

./

YES

REGQUEST CHANNEL FOR DISK FILE
PUSITION CiSK TG PROPER TRACK

"

\/
——

RCAD Ung SECTOR

i HAS THIS FILE BEEN USED BEFORE ? I—NO—>

EXiT

SET FILE MARK
EXIT

——3~ READ DISK STATUS
{15 PARITY OK 2

Yo

\/

REREAD SECTOR
READ OISK STATUS
IS PARITY OK ?

SELECT MARGIN |
REREAD SECTOR

1S CONTHOL oYTE A NEW TRACK NUMGER ?

| YES
i
|

READ DISK STATUS
IS PARITY OK ?

NO

YES

SELECT MARGIN 2
REREAD SECTOR
READ DISK STATUS
IS PARITY OK ?

YES NO

P
i
i

N/

! POSITION DILK 7O NEW TRACK

vy

|
i
N
1

v

NO

ADVANCE FILE STATUL FOR NEXT SECTCR

{
!
!
{
i

\Y

STORE SECTOR CATA N CIRCULAR bUFFER

ADVANCE bUFFER IN ACDRESS

IS This SECTOR A SmORT SECIOR ?

YES

I no

v

IS THERE RKOOM FOR ANCTRER SECTOR OF

DATA IN TnE CIRCULAR bUFFER 2

’ ET END OF RECORD

RELEASE CHANNEL

UPDATE CIRCULAR BUFFER
IS DISK AT FILE MARK 2

IN ADORESS

TYES

SET FILE MARK

A2

NO

DAYFILE MESSAGE —
DISK PARITY ERROR
GX TXXX SXXX
STopP

20T OVERLAY
CROP DISK TRACKS
FILE STATUS IN 20/24

\

/

MODIFY OVERLAY FOR EQUIPMENT

PARAMETERS

|

—

\

[HAS FiLE BEEN USED 7 J

] NO

\Va

YES

HOLD CURRENT TRACK NUMBER AND SECTOR NUMBER
REQUEST CHANNEL FOR DISK FILE

v

f
——‘—'\71 POSITION DiSK FOR NEXT SECTOR J

\

7

YES

J’ EXIT

READ NEXT SIZCTCR
IS SECTOR A FiLE MARK ?

RELEASE
RZSTORE
EXIT

CHANNEL
TRACK AND SECTOR NUMBER

N

i NO

i
NO | \r

Is
iN

THIS TRACK

SECTGR THE LAST SECTOR

?
i YES
|

\V3

—
——1 REQUEST

MGNITOR RELEASE NEXT TRACK

A-3

O
;

—

|

[8l
3

o
>
“
Ry
©
O
m

OiSK
¥4
| 1 YES SET CIRCULAR BUFFER IN= OUT= FIRST
| WAS LAST REFERENCE A FILE MARK 7 I > et
17
NO
- Y
! MOODIFY GVERLAY FOR EGQUIPMENT PARAMETERS
.] YES i _
{ IS 4 BINARY BACKSPACE REGUESTED 7 | BACK ONE SECTOR
"'NO
!
Y
[SET FIRST REFERENCE FLAG J BACK ONE SECTOR
. ; V
———————————3s COMPUTE D=IN—OQUT J REQUEST CHANNEL FOR DISK
- POSITION DiSK
READ ONE SECTOR
M RELEASE CHANNEL
. 1 YES
I3 MXT SLCTON ThE FIRST SECTOR N THE FILE 7
NO
N E IS SECTOR A SHORT SECTOR ? }—No—
| BACK ONE SECTOR | YES
| S ——— |
\/
\ SET CIRCULAR BUFFER IN= OUT x FIRST
~— EXIT
REQUEST CHANNEL FOR DISK
POSITION DISK TO NEXT SECTOR
READ ONE SECTOR
RELEASE CHANNEL
[— T
| | SET OUT = FIRST + SECTOR LENGTH = D
i [’_’5'. SET IN = FIRST + SECTGR LENGTH
Vv | STOREZ SECTCR IN CIRCULAR BUFFER BEGINNING AT FIRST
1 YES

i IS SICTOR (ENGTH GREATER ThaN D ? r—

'NO
|
v

=
{DECRE»\SE D BY SECTCR LENGTH I

SECTCR

Y

] YES
[

¥
—9’ DOES OUT = FIRST 7

NO

\

Is FIRST REFERENCE FLAG SET ? }NO———

YES

CLEAR FLAG

e

NO
[DoEs (OUT-1) CONTAIN A BLANK LOWEST BYTE ?
YES
Y
UPDATE CIRCULAR BUFFER IN AND OUT ADORESSES

Exir

280 SUBROUTINE
BACK ONE SECTOR

\/
NO REDUCE SECTOR NUMBER ONE COUNT
[IS NEXT SECTGR THE FIRST SECTOR OF A TRACK ?J————P- EXIT
! YES
\/

]’ HOLD CURRENT TRACK NUMBER N

é

~— 1 YES =~
Is N THE FIRST TRACK FOR THE FILE 7 | ExIT

NO

\V)

REWIND DISK FILE
REQUEST CHANNEL FOR DISK FiLE

U
i POSITION DISK TQ NEXT SECTOR !
(" j

\

NO | READ ONE SECTOR
IS THIS THE LAST SECTOR IN THIS TRACK 7

YES
i
NO | 1
—————-—‘—j IS NEXT TRACK NUMBER N 7 J
YES

RELEASE CHANNEL
EXiT

	001
	002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	A-01
	A-02
	A-03
	A-04
	A-05

