CONTROL DATA" 6000 SERIES COMPUTER SYSTEMS
CHIPPEWA LABORATORIES FORTRAN COMPILER RUN

Preliminary Edition

CONTROL DATA CORPORATION

DEVELOPMENT DIVISION - APPLICATIONS

CHIPPEWA LABORATORIES FORTRAN COMPILER

RUN

April 15, 1966

CHIPPEWA FORTRAN COMPILER - RUN

Revision 1

Description

Simplified flow charts for the CXP
subroutine (pages CXP-4, CXP-5)

CHAIN subroutine description

Sample compilation, sheets 1 - 3

Add/Insert

Added to CXP subroutine description
in section 3

Inserted alphabetically in section 3

Added sheets 1 - 3 at the end of
section 2

CHIPPEWA FORTRAN COMPILER - RUN

TABLE OF CONTENTS

Section
General Description) 1
Statement Processing 2
Subroutine Descriptions ' 3
Compiler Flow Charts A
Compiler Constants and Temporaties B

Execution Time Routines C

CHIPPEWA FORTRAN COMPILER - RUN

Section 1

GENERAL DESCRIPTION

INTRODUCTION

"RUN", the Chippewa Laboratory's FORTRAN compiler for the 6000 series
computer systems, generates binary object code directly from FORTRAN II
and FORTRAN IV source programs. The compiler also accepts programs
written in a subset of the ASCENT assembly language, and -in the MACHINE
assembly language. The compiler also accepts certain Control Data 3000
series FORTRAN statements, such as ENCODE, DECODE, BUFFERIN, and BUFFEROUT.

The memory layout of the compiler is shown in Figure 1-1. The compiler
routines are loaded into memory at location RA, and occupy 24,0008
locations. Memory space for the compiler buffers and tables, which
require approximately,63008 locations, is allocated downward from
location FL. The minimum space required by the compiler is therefore
approximately 32,3008 locations. Unless adequate space has been res-
erved for the compiler (by specifying the proper value on the job card),

the compiler will exit without attempting to compile.

The Input and Qutput buffers are used by the compiler in conjunction with
the Chippewa Operating System's CIO peripheral package to read in source
cards and to list the source and object programs. The transmittal of
data between the various buffers is illustrated in Figure 1-2. Source
cards from the input file on the disk are read into the Input buffer,
yhich is 10018 words in length. As source cards are processed they are
- transferred, one at a time, into a 108~word card buffer. Within the
card buffer, the source card is examined to determine if it is a state-
ment card or a comments card. A statement card is transmitted to the
string buffer, where it is initially packed one character per word, and
another card is brought to the card buffer from the Input buffer, If
the next card is a continuation card, it too is transferred to the

1-1

c-1

COMPILER TABLES

F1-6000
- 7 -
MAIN BODY OF COMPILER | COMPILED CODE 1|ulalslclo|elFls [nlk|LmMin|olplalrlx| r|z|s | |ulv [w]|STRING | CARD | LINE {{/Uég INPUT | OUTRUT
Y purrer| surFer| surrer | 2YSED) BuFFer | BUFFER
RA 24000g < INITIALIZED TG 105 WORDS/TABLE (320 TOTAL) 24605 10g 105 305 1005 17775 FL
.
INSTRUGTIONS TABLES LAID OUT ACCORDING
PACKED ONE PER TO FREQUENCY OF USE
WORD, COMPRESSED
WHEN ‘END’ CARD A TABLE IS ADVANCED BY [0g
REACHED. WHEN FILLED
INITIAL COMPILER LAYOUT
MAIN BODY OF COMPILER | MAIN OBUECT PROGRAM | PROGRAMMER SUBROUTINES | LIBRARY suakourmss—»({ ‘COMPILER TABLES ureur

RA

RA+240004

1°1 @and1y

COMPILER LAYOUT DURING LIBRARY SUBROUTINE LOADING

TABLES MOVED TO OVERLAY
STRING, CARD, LINE, AND
INPUT BUFFERS

string buffer. This process is repeated until an entire statement has
been loaded into the string buffer. Since the size of the string buffer,
in which a statement is initially‘packed one character per word, is
24608 or 132810, the number of continuation cards is limited to 19. All
source cards, including both statement cards and comments cards, are
transmitted directly from the card buffer to the Output buffer for sub-
sequent listing. Depending upon the mode of compilation, object code
instructions may be converted and placed in the line buffer (108 words),

and from there transmitted to the Output buffer for listing.

Once a statement has been transmitted to the string buffer, the first
four characters of the statement are examined to determine the statement
type, and the appropriate subcoutine is called to process the statement.
Since the souing buifer is packed one character per word, in most cases
cuae nexc step 1s Lo assemble the contents of the string into a sequence
of variables, constants and separators. Since memory assignments

cannot be made until all source statements have been processed, variables
and constants are replaced in the string by various types of tags, and
the variables and constants stored in the compiler tables. (The compiler.
tables are expanded as entries are made.) The statement is then analyzed
and the generated object instructions are packed one instruction per
word. In all instructions referencing memory, the K portion of the
instruction will at this point contain a tag. Thus, during the
compilation of a program, the generated object code expands upward from
g° When

an END card is detected, the generated instructions are packed and memory

RA+240008, and the compiler tables expand downward from FL-6000

assignments made. All tags other than those defining external references
are replaced with addresses, and the compiler tables are reduced
accordingly. Subsequent subprograms are read from the input file and
compiled, the object code for each beginning where the object code of

its predecessor ended. When the end of the input file is reached,
library subroutines are loaded and all subroutine references are replaced
with memory addresses. The compiled program is then written on the disk,
and the compilation procéss terminated. Since the string buffer, card
buffer, and line buffer are not required for the loading of library
routines, the tables are moved up to overlay these buffers before the

library routines are loaded (see Figure 1-2).

In processing MACHINE or ASCENT subprograms, the compiler transfers source

1-3

SOURCE CARDS __J
FROM DISK

CIO BUFFER FOR
INPUT FILE

COMPILER CARD BUFFER

-

ALL
SOURCE
CARDS

OUTPUT
LISTING
ON DISK

1-4

v

STATEMENT CARDS
PACKED ONE CHARACTER PER WORD
AND LATER COMPRESSED

STRING BUFFER

COMPILED
INSTRUCTIONS

SHORT FILE

Figure 1-2

COMPILER BUFFER USAGE

cards to the string buffer in the manner described earlier. A subroutine
is then called to process the assembly language record. Memory references
are tagged, and the appropriate compiler tables entered. The assembled
instructions are packed in the object program area. During the processing
of the END card, the tags are replaced by memory addresses and constants

are transferred from the appropriate table to the program area.

COMPILER TAGS AND TABLES

As constants, variables, subroutine and function names, and statement
numbers are encountered in the processing of the source language state-
ment in the string buffer, they are entered in one of the compiler tables
and replaced in the string buffer by tags. The tags are entered in

tables also, and their relative position within these tables corresponds
to the table position of the constnat, variable, external name or state-
ment number which the tag replaced. Many of the compiler tables are

used in pairs: the address-dependent quantity is entered in one table,
and the tag which replaces it in the string buffer is also entered in

the corresponding location in the following table. For example, the
Constant Value Table (Table A) and the Comstant Tag Table (Table B)

are paired tables. When a constant is encountered in the source state-
ment, it is converted to its binary equivalent and entered in the Constant
Value Table. A Constant Tag is generated and entered in the string buffer,
and also in the Constant Tag Table. Thus, if the constant was entered in
location 35 of the Constant Value Table, the tag which replaced it in

the string will be entered in location 35 of the Constant Tag Table.

ihe nine different types of tags used by the compiler are uniquely
identified by the value of the high-order five bits of the tag. Tags

are advanced as they are assigned: the current value of each tag is
maintained in a temporary (TIGA, TGB, etc.). All tags, with the exception
of library tags, are re-initialized prior to the compilation of each
subroutine. Library tags are initialized only when the compiler is

first loaded. Tags are usually advanced by one, although they may be
advanced by two when a double-precision or complex value is entered in

a table. Library tags are advanced by 1008. The types of tags used by
the compiler, and the numeric ranges which these tags may assume, are

listed below.

1-5

Temporary Containing

Listing

Current Tag Value Tag Type Tag Values Indicator

TGA Program Tag 200000-217777 L
TGI Indirect Tag 220000-237777

TGT Temporary Tag 240000-257777 T
TGK Constant Tag 260000-277777 C
TGF Function Tag 300000-317777 F
TGW Array Tag 320000-337777 A
TGV Variable Tag 340000-357777 v
TGH Statement Tag 360000-377777 N
TGL Library Tag 400000-600000 S

The listing indicator appears on the object code listing preceding the
tag number as specified in the low-order 15 bits of the tag. The tag
number as given in the low-order 15 bits may range from 0 to 177778.

Thus, the compiler permits up to 8192 tags of each type.

Constants, variables, subroutine and function references, and statement
numbers are entered in the compiler tables when they are encountered in
the string buffer, as are the tags which replace these quantities. There
are 26 of these tables. The location of these tables is shown in the
compiler layout illustration of Figure 1-1., The size of each table is
initially set at 10
by 108

room for the increase. Associated with each table is a temporary which

8‘words: as tables are filled, they are expanded

words: tables at lower memory locations are moved down to provide
contains the parameters required to enter, search, and expénd the tables.
The format of these temporaries (which are labelled in the compiler as
TBA, TBB, etc.) is shown below.

parameter
word address

starting
address

next entry
address

36 18 0

TBn

Note that this word contains its own address. This permits table scanning
routines, which are entered with this word in an X register, to readily
obtain the parameter word for the succeeding table in memory (i.e., para-

meter word address + 1 = parameter word address for the succeeding table).

1-6

TABLE ENTRY FORMATS

TABLE TAG TABLE NAME o > 8 7 6 5 4 3 2 1
oo conmr o T
T8¢ TEMPORARY TAG H-TAG A T HAAAAAN
TBD PERMANENT TAG A-OR K-TAG 7 /////////////////\<</////
T8E FUNCTION NAME FUNCTION NAME N
TBF FUNCTION TAG F-TAG Ve Lar Y/ /] m f;&?f
786 DO NUMBER STATEMENT NUMBER \\\\\\\\\\\\\\\\\\\ \\\\ COUNT
TBH DO PARAMETERS INDEX ADDRESS | INCREMENT LIMIT // Trane
TBK STATEMENT NUMBER STATEMENT NUMBER ALLMNINRRNRNNGY - 40
TSL STATEMENT TAG A~ H-OR K-TAG f////////////////////////////
TBM VARIABLE NAME VARIABLE NAME ANy
TBN VARIABLE TAG a5 0R W-TaG /T I A
50 COMMON NAME COMMON NAME | AN
) BLOCK NAME
TBP ARRAY TAG 4- 07 w-r4s_ AAANNNITTWTIRRRY]
(177770 cener
2ANNNNNNNNN\NY prmension 1 LENGTH
, ARRAY PARAMETERS 3| DIMENSION 1 | DIMENSION Ix2 LENGTH
‘” i | BT NN o
21 aas _ATAG RIS vy
TBR DATA STATEMENT > :‘RANSLATED DATA STATEMENTS . v
TBX EQUIVALENCE 2M0 namE SECONDARY NAME k\\\\\\\\\\\\\\\\\
TBY EQUIVALENCE 15T NaME PRIMARY NAME BASE ADDRESS
TBZ EQUIVALENCE BIAS AN 6us
T8S SUBROUTINE NAME SUBROUTINE NAME LENGTH
78T SUBROUTINE TAG L-TAG \\\\\\\\\\\\\\l\\\\\ WAy Ano. oF
78U SUBROUTINE PARAMETER CODE LENGTH TOTAL LENGTH |STARTING ADDRESS| N
TBY COMMON BLOCK BLOCK NAME STARTING ADDRESS } 2-WORD
0000000000000 7 S AT avoress ENTRY
Taw PROGRAM FILE NAME FILE NAME ARGUMENT ADDR. 2-WORD
, /////////////////////////// BUFFER LENGTH } ENTRY
TBI* ARGUMENT NAME FUNCTION ARGUMENT NAME \\\\\\\\\\\
rsu’i(' ARGUMENT TAG FTAG //////[/////////////
TAG _ BASE VALUE TYPE L[NIQS[Z%'GQ& MODE (M) TYPE

COMPILER TABLES

1-7

Figure 1,3

The Zormat of the table entries is shown in Figure 1-3. Note that some
tag tables may hold more than one type of tag. Although there are 26
tables, several tables are used as paired tables (see table descriptions)
and so, counting these tables as single multi-word entry tables, we may

consider the compiler tables to be functionally fourteen in number.

The compiler tables, and the manner in which the tags and tables are

used in the compilation process, are briefly described below.

Constant Value Table;

Constant Tag Table: When a constant is encountered in the translation

of a source language statement, it is converted to its equivalent binary
form and entered in the Constant Value Table. A Constant Tag (K-tag)

is generated, and entered in the corresponding location in the Constant
Tag Table. The Constant Tag replaces the original constant in the string.
The instruction compiled to fetch the constant will be of the form SAi =
K-tag. Constants which are integer or octal in mode, and less than

| 216

(unless they are subroutine arguments). The instruction compiled for a

-1 in absolute value, are not entered in the Constant Value Table

constant of this type will be of the form SXi = K, where K is the constant
value. The Constant Value Table is also used to store format statements
during compilation. The format descriptors are packed in consecutive
words of the Constant Value Table, 10 characters per word, and a Constant
generated and entered in the Constant Tag Table for each word. Sub-
sequent references to the format statement will be compiled with the
Constant Tag associated with the first word of the format statement.

Prior to entering a constant in the Constant Value Table, the table is
scanned to determine if a constant of the desired value has been defined
earlier and, if so, the tag associated with the earlier entry is used

rather than generating a new tag and a new entry.

Temporary Tag Table;

Permanent Tag Table: These tables are most commonly used when a source

program statement references another part of the program which has not
yet been compiled, e.g., a GO TO n statement where statement n has not
vet been processed. Reference points within the compiled program are
defined by program tags (A-tags). The Temporary Tag Table provides a
means of recording references to points as yet undefined in the program:

The manner in which this is accomplished is illustrated in Figure 1.4.

1-8

GO TO 10

INITIAL STATEMENT PROCESSING

® ENTER "10" IN THE STATEMENT NUMBER TABLE (TABLE K)

® GENERATE A STATEMENT TAG (H-TAG) AND ENTER IT IN THE
CORRESPONDING LOCATION IN THE STATEMENT TAG TABLE (TABLE L)

¢ ENTER THIS STATEMENT TAG IN THE TEMPORARY TAG TABLE (TABLE C):
RESERVE CORRESPONDING ENTRY IN THE PERMANENT TAG TABLE (TABLE D)

® COMPILE INSTRUCTION: 0400 H-TAG

WHEN STATEMENT 10 IS ENCOUNTERED

6-1

® GENERATE PROGRAM TAG (A-TAG) FOR FIRST INSTRUCTION COMPILED FOR
THIS STATEMENT V

® SEARCH STATEMENT NUMBER TABLE FOR THIS STATEMENT NUMBER: WHEN
FOUND, GET CORRESPONDING ENTRY FROM STATEMENT TAG TABLE

® SEARCH THE TEMPORARY TAG TABLE FOR THE STATEMENT TAG (H-TAG)
OBTAINED FROM THE STATEMENT TAG TABLE: WHEN FOUND, ENTER THE
PROGRAM TAG (A-TAG) IN THE CORRESPONDING LOCATION IN THE
PERMANENT TAG TABLE

® REPLACE THE STATEMENT TAG (H-TAG) IN THE STATEMENT TAG TABLE
ENTRY CORRESPONDING TO THE STATEMENT NUMBER WITH THIS PROGRAM
TAG (A-TAG)

SE OF TEMPORARY £ PERMANENT TAG TABLES: EXAMPLE

Function Name Table;

Function Tag Table: When an arithmetic statement function is encountered,

the function name is entered in the Function Name Table, and a Function
Tag is generated and entered in the Function Tag Table. Subsequent
references to this function name are replaced in the string by the
Function Tag. When this tag is processed, instructions are compiled to
bpass the arguments, and then an RJ F-tag is compiled to enter the

coding compiled for the arithmetic statement function.

DO Number Table;

DO Parameter Table: When a DO statement is encountered, the statement

number which terminates the DO loop is entered in the DO Number Table.
Instructions are then compiled to initialize the DO index. The address
of the SA6 instruction compiled to store the initial value in the index
(i.e., the index store), and the Variable tags (or constants) for the
increment and limit values are stored in the DO Parameter Table; Each
time a statement number is processed, the DO Number Table is scanned to
determine if the statement number terminates a DO loop. If it does,
the entry in the DO Parameter Table corresponding to the statement number
is obtained, and the limit and increment tags (or constants) used to
compile the index increment and test instructions. When the index
store instruction was compiled, it was tagged with a Program tag (A-
tag). In processing the statement number which terminates the DO,

the address of the index store instruction is obtained from the DO
Parameter Table entry, and a PL or NG A-tag instruction compiled to

provide the loop return,

Statement Number Table;

Statement Tag Table: Whenever a statement number is encountered in a

source language statement, it is entered in the Statement Number Table
(unless previously entered), and a tag is entered in the corresponding
entry in the Statement Tag Table. This tag may be a Statement Tag, a
Program tag, or a Constant tag. If the first reference to the state-
ment number defines it (i.e., if it is first encountered in the
statement number field), a Program tag (A-tag) is entered in the State-
ment Tag Table., This Program tag will also be used to tag the first
compiled instruction for the statement which had this number. The case

where the statement number is referenced before it is defined was discussed

1-1¢C

earlier (see Figure 1.4). In this case, a Statement tag (H-tag) is.
generated and entered in the Statement Tag Table. This tag is later
equated to a Program tag through the use of the Temporary and Permanent
Tag Tables, If the statement number refers to a format statement, a
Constant tag is entered in the Statement Tag Table. This Constant tag
defines the starting location of the format statement in the Constant
Value Table.

Variable Name Table;

Variable Tag Table: When a variable is first encountered in a source

program, the variable name is entered in the Variable Name Table, and

a tag is entered in the éorre5ponding location in the Variable Tag
Table. If the variable is not dimensioned, a Variable tag (V-tag) is
generated and entered in the Variable Tag Table. If the variable is
first encountered in a DIMENSION statement, an Array tag (W-tag) is
generated and entered in the Variable Tag Table. Should the variable
be an argument in a subroutine, a Program tag is entered in the Variable
Tag Table. This Program tag will indicate where this value is located

in the subroutine argument list which follows the subroutine entfy point.

Common Name Table: When a COMMON statement is encountered; it is

entered in the Common Name Table to be subsequently processed when the
END statement is encountered. GCommon block names appear in the lower

42 bits, while common variable names appear in the upper 42 bits.

Array Tag Table;

Array Parameter Table: When a variable is encountered in a DIMENSION

 statement, the variable name is entered in the Variable Name Table, and
an Array tag is entered in the corresponding entry in the Variable Tag
Table. This Array tag is also entered in the Array Tag Table, while fhe
dimension parameters are entered in the corresponding location in the
Array Parameter Table (see Figure 1.3 for the format for 1, 2, and 3-
dimensional arrays). If the dimensions are variables, the Array
Parameter Table will contain a Program tag (A-tag) for each dimension
parameter. This program tag will indicate where this value is in the
argument list which follows the subroutine entry point. If the dimensions
are constants, the Array Parameter Table will contain the values of the

dimensions and (for 3-dimensional arrays) dimension product.

1-11

Data Statement Table: When a DATA statement is encountered, it is

partially translated (i.e., variables are replaced by tags, constants
are converted, etc.) and entered in the Data Statement Table to be

subsequently processed when the END statement is encountered,

Equivalence Second Name Table;

Equivalence First Name Table;

Equivalence Bias Table: When an EQUIVALENCE statement is encountered,

the variable names and bias values specified in the statement are
entered in the equivalence tables. The equivalence tables are processed

when the END statement is encountered.

Subroutine Name Table;

Subroutine Tag Table;
Subroutine Parameter Table: When a SUBROUTINE, FUNCTION, or CALL

statement is encountered, or when a function subprogram reference is
found, the subprogram name is entered in the Subroutine Name Table.

A Library tag (L-tag) is generated and entered in-the corresponding
location in the Subroutine Tag Table. When the subprogram is compiled,
the length of the compiled code, the total length (including compiled
code, constants., local variables, etc.), the starting address., and the
number of arguments are assembled into a single word and this word is
entered in the Subroutine Parameter Table entry which corresponds to the
subroutine name. The first entry made in each of these tables is for

the main program.

Common Block Table: The Common Block Table is one of the tables in which

entries occupy two consecutive locations. When the COMMON statement
is first encountered, the common name and the block name are entered
in the Common Name Table. During the processing of the END statément,'
the block name, together with the starting and ending address of the
block, is entered in the Common Block Table in the format shown in

Figure 1.3.

Program File Name Table: When a PROGRAM card is encountered, the argu-

ments on the card are entered in the Program File Name Table in two

consecutive words. The first word contains the file name and the address

1-12

of the CIO parameters for the buffer assigned (the CIO parameters
occupy the first 108 words of the buffer area). The second word of
the Program File Name Table contains the buffer length for the file.
If no buffer length is specified, this length entry is set to 20108.
(This includes the space occupied by the CIO parameters.)

Argument Name Table;

Argument Tag Table: Although the nominal purpose of these tables is to

assist in the processing of arithmetic statement functions, the Argument
Name and Argument Tag Tables serve as compiler utility tables, and are
used for a variety of purposes. For example, these tables are used in
processing the EQUIVALENCE statement, in computing array references, and

in processing the END statement.

While most of the compiler tags define quantities appearing in a source
statement, the program tag (A-tag) is used to define locations within

the compiled object code, Dufing the compilation process, the generated
instructions are packed in the upper 30 bits of a word, one instruction’
per word. °‘All address fields in the generated instructions contain

tags of various types. When the END statement is encountered, these tags
are replaced with addresses and the object code is then compressed.

When instructions are compiled for a statement which has a statement
number, a program tag is entered in the low-order 18 bits of the word
containing the first instruction compiled for this séatement. For

example, a statement such as I = O might be compiled as

SX6 =0
SA6

V-tag§

if it were an un-numbered statement. If, however, this statement had

a statement number, it might be compiled as

SX6
SA6

0 f A-tag
V-tag?

This program tag serves two purposes. First, a source program transfer
of control to the numbered statement will result in the compilation of
a jump instruction in which the address field contains this program tag.

When the END statement is processed and the object code is compressed,

113

the program tag in instructions referencing the first instruction compiled
for the numbered statement will be replaced with the address of this

first instruction. Seéondly, since the appearance of a program tag in

the low-order bits of a word containing a compiled instruction indicates
that this instruction is referenced elsewhere in the program,‘the
instruction must be forced to the upper parcel(s) of a word when the

object code is compressed.

Program tags are also used to define subroutine parameters. Since all
tags (with the exception of library tags) are initialized at the beginning
of subroutine compilation, there is a fixed relationship between the value

of the program tag and the parameter number, as shown below.

Subroutine Word No. - Contents Program Tag
1 Subroutine Name 100002
2 Number of Arguments L00003
3 Parameter 1 L0000&
4 Parameter 2 100005
n Parameter m L0000 (M+3)
n+l Entry Line 100001

Since the first six parameters (i.e., argument addresses) of a subroutine
are also passed in a B register, there is a fixed relationship between
the parameter number, the register in which it appears, and the program

tag assigned to the parameter.

Register Associates

To assist in minimizing the number of fetches generated, the compiler
utilizes 19 temporaries called Register Associates. These temporaries
are associated with registers A0O-A5, B1-B7, and X1-X6. As instructions
are compiled for a source language statement, these Register Associates
are updated to reflect the contents which the X, A, and B registers will
have during the execution of the object program. For example, suppose
an SA2 instructioh is compiled to fetch a variable. The address field
of the SA2 instruction will contain a variable tag (V-tag) which will be
replaced by an address during Fhe processing of the END statement. When

this instruction is compiled, this variable tag is entered in the X2 and

1-14

A2 Register Associates, indicating that the X2 register contains the
value of the variable while the A2 register contains its address. Before
complling a subsequent fetch, the Register Associates are examined to
determine if the value is already available or, failing that, if the
address is available and a 15-bit fetch instruction can be generated
(i.e., in place of a 30-bit fetch instruction). Should subsequent
instructions be compiled which use the X2 register as a result register,

the X2 Register Associate will be cleared.

Compiler Master Loop

The flow chart for the compiler master loop is shown on pages A-1 and
A-2 of Appendix A. The master loop may be considered as being composed
of an outer loop and an inner loop. The outer loop controls program
and subprogram processing, while the inner loop controls statement pro-
cessing. The main functions of the compiler master loop are described
below.
After clearing the Chain and Error indicators, the
compiler calls the peripheral processor package
"CHK" to determine the status of the OUTPUT file.
This status is subsequently used to determine what,
if any, repositioning of this file is required.
The compiler then picks up the field length from
the A0 register and, unless a field length of at
least 320008 words was specified, immediately exits.
If the specified field length was adequate, the
Initialize for Input/Output (II0) routine is called
to set up the compiler buffers and to process the
COMPILER ~ compiler arguments from the RUN card. These
INITIALIZATION arguments are passed to the compiler in locations
RA+2, RA+3, etc., during the loading of the compiler.
The order in which these arguments appear, and the
value assigned by the compiler if an argument is
omitted, are shown in Figure 1-5. IIO also enters
the string buffer starting address (FL-6000) in the
AO register, where it will remain for the duration
of compilation. Next, the Read Next Card (RNX)

subroutine is called to bring the first card to the

1-15

COMPILER ENTS

VALUE IF NOT

SPECIFED
RA + 8 | LINE LIMIT 20000g
‘RA+ 7 | OUTPUT FILE ‘ouTtPuT”
RA+ 6 | INPUT FILE SINPUT”
RA+5 | BUFFER LENGTH 2010g
RA + 4 COMMON LENGTH AS PER MAIN PROG.
RA + 3 PROGRAM LENGTH JOB LENGTH
RA+ 2 | COMPILE MODE 6"
RA + | 0 0
RA 0 0

NOTE: THE FIELD LENGTH FROM THE JOB CARD IS IN AjON ENTRY.

Figure 1-5

Card Buffer. This routine is used throughout tﬁe
compiler to transfer a card from the Input Buffer

to the Card Buffer and, if the Input Buffer is empty,
to initiate a CIO call to fill the buffer. The
Initialize Program Tables (IPT) subroutine is called
to initialize the Library tag, set the Short File
Start and Long File Start, and to set up the Subroutine
Parameter, Common Block, and Program File Name Tables.
These tables are initialized only at the beginning

of compilation: all other tables, with the exception
of the Argument Name and Argument Tag Tables, are
initialized each time a program or subprogram is
compiled. The Argument Name and Argument Tag Tables

are initialized as required.

The Initialize Subroutine Tables (IST) routine is
called next. This subroutine initializes the
remaining tables and tags, and sets A7 to the Short
File Start address. During compilation, the A7
register will always contain the address of the last
instruction compiled and X7 will be used to store
instructions as they are compiled. (Note: the
return to compile the next subroutine is made to
this point in the master loop.) RNX brought the
first card into the card buffer: this card is
examined to determine if it contains a + or - in
SUBPROGRAM column 1. If it does, then the following program or
ANITIALIZATION subfoutine is not a source program but a binary deck,

' and control is transferred to the END statement
processor which will load the binary object deck,
extract any external references, and enter these in
theSubroutine Name Table. If the first card does
not contain a + or - in column 1, the Assemble FORTRAN
Statement (AFS) subroutine is called. This subroutine
transfers source cards from the card buffer to the

string buffer, packing one character from the card

1-17

into one word in the string buffer. AFS also trans-
mits the source card to the Output Buffer (via the
WNX routine) for listing. Next, AFS brings the

next card to the card buffer and examines it to
determine if it is a continuation card. If it is,
is also is loaded in the string buffer. If the next
card is a comments card, AFS transmits it to the
Output Buffer. This process is repeated until AFS
finds a non-comments, non-continuation card in the

card buffer.

The first.seven letterxs of the statement assembled in
the string buffer by AFS are examined to determine if
they are ASCENTF, MACHINE, or FORTRAN. If these
letters are ASCENTIF or MACHINE, the subprogram mode
indocator (and subsequently the program mode indicator,
if this is a main program) is set to -2 or -1,
respectively. If these letters are FORTRAN, the next
two letters are examined to determine if they are II,
IV, or VI, and the mode indicator(s) set accordingly.

A A + L s 3
d does not begin with

SCENTFEF. MACHINE, or

1f the car » ASCENTF, MACHINE,
FORTRAN, a FORTRAN IV compilation is assumed. (This
mode is set by the Initialize Program Tables subroutine.)
If these letters appeared on the first card, they are
blanked out and the next seven letters are assembled.
These letters are compared with entries in the table

of Program Title Types: PROGRAM, SEGMENT, SUBROUT,

DETERMINING FUNCTIO, END, and BLOCKDA. If not found in this
COMPILATION table, the letters are examined to determine if they
MODE are the FUNCTION predecessors DOUBLE PRECISION, DOUBLE,

READ, INTEGER, LOGICAL, or COMPLES. If they are, the
function type indicator is set accordingly, these
letters are blanked out, and the next seven letters
assembled and checked. The header card is passed on
to the inner portion of the compiler's master loop

for processing. If the card was a PROGRAM card, the
Program/Subprogram Indicator is set to zero: otherwise,

it is set to a non-zero value., This indicator is

1-18

STATEMENT
PROCESSING
INITIALIZATION

STATEMENT
RECOGNITION

exémined‘by the END statement processor to deter-

mine if tags should be replaced by absolute memory
addresses or by memory addresses relative to the start
of the subprogram when subroutines are separately

compiled.

The statement processing portion of the compiler
master loop is now entered. (The program title card,
or header card, is passed on to this portion of

the compiler master loop for processing.) Various
statement-related flags and indicators are cleared,
and a program tag is generated and saved as the
Current Program Tag. The Get Statement Number (GSN)
routine is called to assemble the statement number,
if any, associated with this statement. Processing
of this statement number will be performed after this

statement has been compiled.

Column 1 of the source card is checked to seée if it
contains an F (FORTRAN II external function) and,

if it does, the Process Function Name (FUN) sub-
routine is called to process the function. If the
statement is not a FORTRAN II external function, the
first two letters are examined and, if these letters
are DO. If they are, the Sense DO Statement (SDO)
subroutine is called to determine if the statement

is a DO statement and to initiate DO statement
processing. If the statement is not a DO statemeht,
the Sense Formula (SFO) subroutine is called to
determine if the statement is an arithmetic statement
and to initiate arithmetic statement processihg. If
the statement is not a FORTRAN II external function,
a DO statement, or an arithmetic statement, the first'

four letters of the statement are assembled and used

to scan a Statement Letter group Table., If the state-

ment is not found in this table, and the four letters
are not TYPE, a Format Error diagnostic is generated.

If the statement is found in this table, the Current

1-19

Jump and Continue indicators are processed, and a

jump table used to transfer control to the appropriate
statement processing routine. (Note that the

relative location of the statement within the State-
ment Letter group table indicates if the statement

is executable or non-executable.

Statement processing routines generally enter the

Process Statement Number (PSN) subroutine upon com-

RETURN FOR pletion of statement processing, and this routine
NEXT in turn returns control to the compiler master
STATEMENT loop. If the program title card called for a

MACHINE or ASCENTF assembly, the Process Machine/

Ascent Records (MAA) subroutine is called.

1-20

CHIPPEWA FORTRAN COMPILER ~ RUN

Section 2

STATEMENT PROCESSING

INTRODUCTION

At the time the statement processing routine is entered from the compiler
master loop, the source language statement in the string buffer is packed
one character per word. Most statement processing routines call the
Normalize Statement (TAB) subroutine. The TAB subroutine (see TAB
description in Section 3) assembles the contents of the string buffer
into a series of words containing variable, constants (which may occupy
more than ome word) and separators. The TAB subroutine also enters the
format statement in the Constant Value Table. Next, the Translate
Individual Quantities (TIQ) subroutine is called. TIQ translates the
contents of the string buffer into a sequenée of tags, separators, and
constants which can easily be manipulated by the statement processing

routines. The TIQ subroutine is discussed in Section 3.

There are two indicators which are tested during the processing of most
executable statements as well as in the compiler master loop. One of
thesevis the Current Jump Indicator, which is used in the processing of
arithmetic statement functions and logical IF statements. Since arith-
metic statement functions may occur anyplace within the source program,
it is necessary -to compile a jump over the code generated for a function.
Therefore, before compiling the instructions for the function, a
Statement Tag (H-tag) is generated and entered in the Temporary Tag
Table; the corresponding entry in the Permanent Tag Table is reserved,
and an 0400 H-tag instruction is compiled for the jump over the generated
code for the function. The Current Jump Indicator is set to the address
of this jump within the compiled code. Similarly, in the case of the
Logical IF statement, a jump instruction over the coding generated for

the TRUE condition must be compiled. In this case, an 0200 H-tag is

2-1

compiled and the Current Jump Indicator set to the address of this jump
instruction. The Current Jump Indicator is carried along during the
processing of non-executable statements and other arithmetic statement
functions. When an executable statement is encountered, a Program tag
is used to tag the first instruction compiled for this statement. The
Address contained in the Current Jump Indicator is used to obtain the
jump instruction, and the Statement tag (H-tag) is extracted from the
jump instruction. The Temporary Tag Table is then searched for the
entry containing this tag, and the Program tag (A-tag) entered in the
corresponding location in the Permanent Tag Table, t@us equating the
two tags. The use of the Current Jump Indicator is illustrated in

Figure 2.1.

A second indicator which must be examined when a statement is compiled
is the Continue Indicator. If a CONTINUE statement is encountered which
does not terminate a DO loop, the Continue Indicator is set. This
indicates that the A-tag which otherwise would be generated for the
CONTINUE statement is instead to be assigned to the first executable
statement following the CONTINUE statement. This is accomplished by

the compiler master loop which, during the initialization performed for
each statement, generates a Program tag and enters it in the X7 register,
thus tagging the first instruction compiled for the next statement. If
-the Continue Indicator is set, this tag is left in X7 for subsequent
processing., If the Continue Indicator is not set, the X7 register is

cleared before a transfer to the statement processing routine takes place.

HEADER CARDS
Five different types of header cards are acceptable to the FORTRAN compiler:

PROGRAM, SEGMENT, FUNCTION, SUBROUTINE, and BLOCKDATA. All but the last

may have formal parameters included on the card. BLOCKDATA is a special

type of subprogram which contains only declarative statements. PkOGRAM
and SEGMENT are closely related because the name appearing on the card

of either is the identifying name of file on the disk containing the
object program as the first record. Each of these files may contain many

SUBROUTINE and/or FUNCTION subprograms.

2-2

€£-¢

LOGICAL IF COMPILATION _ ARITHMETIC STATEMENT FUNCTION

COMPILATION
OBJECT CODE FOR ‘ . OBJECT CODE FOR
PRECEDING STATEMENTS : PRECEDING STATEMENTS

&
[N
o
[+
Iad
o
[\
—

LOGICAL IF \ 0200 (H-TAG)
INITIAL INSTRUCTIONS _ : .
/ CURRENT JUMP .

GENERATED CODE FOR
ARITHMETIC STATEMENT

0300 (H~TAG)

FUNCTION
LOGICAL IF
CONDITIONAL INSTRUCTIONS FIRST COMPILED
’ INSTRUCTION OF XXXXXX A-TAG
—) " ATAG | SUCCEEDING

STATEMENT

|

——— OBJECT CODE FOR ——u
SUCCEEDING STATEMENTS .|

L OBJECT CODE FOR
SUCCEEDING STATEMENTS —

| -

—————

FIRST COMPILED INSTRUGTION A-TAG IS ENTERED IN THE CORRESPONDING LOCATION
OF SUCCEEDING STATEMENT , IN THE PERMANENT TAG TABLE

H-TAG IS ENTERED IN THE TEMPORARY TAG TABLE

USE OF THE CURRENT JUMP

PROGRAM and SEGMENT differ in that numbered or blank common and the 1/0
buffers are initialized with a PROGRAM declaration but not with SEGMENT.
Both are compiled to be read in from the disk beginning at RA. Any SEGMENT
called will completely overlay the main program and its subroutines, but
the 1/0 buffers and common will not be disturbed. A SEGMENT may be called
repeatedly by any other segmenﬁ or from the main file, and arguments may be
transferred through COMMON. Any SUBROUTINE or FUNCTION referenced within a
SEGMENT must be compiled with it because no portion of the main program or
previous segment is available for use. The maximum number of 1/0 files re-
ferenced by the main program or any segments called must be declared on the
PROGRAM card because only in this way is the buffer reserved for the file.

All segments to be chained must be compiled with the same file names.

If no length is specified on either the RUN card or PROGRAM card for the
buffers, then 20108 words are reserved for each file declared. An individual
buffer length may be specified on the PROGRAM card which will override that
specified on the RUN cérd, but neither length may be less than 10018 words.,
Equivalenced files will utilize the same buffer. Instructions are compiled
to initialize buffer parameters, to set unused memory space to indefinites
and blank or numbered common area cleared to zero upon encountering the

PROGRAM card.

The mode of the FUNCTION is set from the preceding type declaration or by
checking the first character of the name. This mode must agree with the
type from a previous reference or the diagnostic "FUNCTION TYPE ERROR"
results. An "ARGUMENT COUNT ERROR" identifies a previous call requiring
more arguments than are béing compiled. All arguments on a SUBROUTINE or
FUNCTION card receive a location tag pointing to a reserved word beginning at
the third relative word of the subprogram. Since the addresses of the first
six arguments are passed to the subprogram via index registers B1-B6, instru-
ctions are compiled to pack the address, three per word, into two temporary
words. Bl and B4 occupy the lower 18 bits of the two words with B2 and B3
packed in the next 18 bit portionms of the first word., B5 and B6 reside in

the second word in the same relation as B2 and B3.

A more detailed discussion of this initialization process is contained
in the Process Name and Arguments (PPG) subroutine description in

Section 3.

2-4

DO _STATEMENT PROCESSING

In initialing the processing of a source language statement, the compiler
master loop checks the first two letters of the FORTRAN statement to

see if they are "DO'". 1If they are, a routine called Sense DO Statement
(SDO) is called to determine if the statement is actually a DO statement.
The basic steps performed by SDO are tabulated in Figure 2.2. SDO

scans the first part of the statement to determine if it has the sequence

[DO] [numberJ [variable] [=]

If this sequence is found, SDO scans the Variable Name Table for the
variable and, if found, examines the corresponding tag from the Variable
Tag Table to determine if the mode indicator for the variable is a 2
(integer mode). If the variable is not in the Variable Name Table, the
first letter of the variable is checked to determine if it is I, J,

K, L, M, or N. If the above sequence is found, and if the variable is
an integer variable, SDO assumes that the statement is a DO statement,

and proceeds with DO initialization processing.

The TAB subroutine is called to normalize the statement. Since executable
instructions will be compiled to initialize the DO loop, the Current Jump
and Continue indicators are processed. If the DO statement itself was
numbered, a Program Tag (A-tag) is entered in X7 to tag the first
executable instruction of the DO statement. Next, the TIQ subroutine

is called to translate the statement into a sequence of separators,

tags, and constants. TIQ will make any necessary entries in the

Variable Name and Constant Value Tables.

The CDI (Compile DO Initial Iﬂstructions) subroutine is then called to
compile the DO loop initialization instructions. The basic steps
performed by this routine are illustrated in Figure 2.2. CDI enters
the statement number (of the DO termination statement) in the DO Number
Table (Table G), and then examines the string entry for the initial
value (i.e., nl) to determine if the initial value is a variable or a
constant. If the initial value is a constant, CDI compiles an SX6 = K

instruction to set the initial value. Should the initial value be a

variable (i.e., as indicated by a variable tag in the string) CDI calls

2-5

9-2

SDO

(SENSE DO STATEMENT)

Z°z @2and13

SENSE LETTERS "D@"

SENSE NUMBER IN NEXT
FIELD

SENSE VARIABLE IN
NEXT FIELD

SENSE VARIABLE MODE
SENSE EQUAL SIGN
NORMALIZE STATEMENT
TRANSLATE STATEMENT

CALL CDI TO COMPILE

Y

INITIAL INSTRUCTIONS /

DO STATEMENT PROCESSING

> CD1

(COMPILE D@ INITIAL INSTRUCTIONS)

ENTER STATEMENT NUMBER IN D§
NUMBER TABLE (TABLE G)

IF n, IS A CONSTANT:

1

COMPILE SX6 = CON TO INITIALIZE
THE INDEX

IF n, IS A VARTIABLE:
COMPILE SA; = V-TAG OR SA; = Bj
TO FETCH INITIAL VALUE UNLESS
ALREADY AVAILABLE IN AN X REGISTER

COMPILE BX6 = X; TO BRING INITTAL VALUE
TO X6 (UNLESS AﬂREADY AVAILABLE IN X6)

COMPILE SA6 = V-TAG TO STORE INDEX

ASSEMBLE ADDRESS OF INDEX STORE, THE
INCREMENT TAG (OR CONSTANT), AND THE
LIMIT TAG (OR CONSTANT): ENTER IN
THE D@ PARAMETER TABLE (TABLE H)

the CIR (Compile Read Instructions) subroutine to compile a fetch instruction
for the initial value. It is possible that the variable used as the

initial value may (at execution time) be available in an X register.

In this case, CIR will not generate a fetch instruction, but will supply

CDI with the number of the X register in which the variable can be found

at execution time. Whether or not a fetch instruction had to be compiled,
CDI next compiles a BX6 = Xi instruction to bring the initial value to a

write register.

CDI next compiles an SA6 = Variable Tag instruction to store the initial
value in the index location. A program tag (A-tag) is set in the lower
half of the word in which this compiled instruction is stored, since
this instruction is the return point from the bottom of the DO loop.
Next, CDI examines the string to determine if an increment has been
specified. - If an increment has not been specified, the increment value
is set to 1. If there is an increment entry in the string buffer, CDI
examines the entry to determine if it is a variable tag for an integer
variable or a constant. If it is not, an error exit occurs. The limit
field is similarly checked. An example of the initial code compiled

for the DO is shown in Figure 2.3.

Finally, CDI assembles the address of the index store instruction, the
increment tag or constant, and the limit tag or constant into a single
word (see Figure 1-3 for the format), and enters this word in the DO
Parameter Table, (Table H). When the statement number of the statement
which terminates the DO loop is encountered, these parameters will be
used to compile the index test instructions. Processing of the DO

is now complete, and so CDI jumps to PSN (Process Statement Number) to
process the statement number, 'if any, associated with the DO statement,
and from there control is returned to the compiler master loop for

processing of the next statement.

Each time the compiler master loop processes a source statement, it calls
the GSN (Get Statement Number) to perform the initial statement number
processing. GSN determines if the statement which is about to be
processed has a statement number, and, if so, extracts this statement
number from the string buffer. GSN then scans the Statement Number

Table and the DO Number Table for this statement number: if the

2-7

€°z @and1g

DO _LOOP INITIALIZATION CODE

SET INITIAL VALUE

STORE INITIAL VALUE IN
INDEX

f_——

1 [

[sx6 = con {77777/
OR
SA; = V-TAG W
o R
OR
BX6 = X 7//// /
3A; = B, W
BX6 = X, N\
8A6 = V-TAG] A-TAG
OR
$A6 = Bj A-TAG

n, = CONSTANT

= VARIABLE

n, = VARTABLE ALREADY AVAILABLE
IN AN X REGISTER

n, = VARIABLE, INITIAL VALUE
ADDRESS AVAILABLE IN A
B REGISTER

PROGRAM TAG (A-TAG) .
MARKS LOOP RETURN POINT

IF INDEX ADDRESS WAS AVAILABLE IN
‘A B REGISTER

statement number is found in both tables, the DO termination indicator
is set. The instructions for this statement are then compiled (unless
the statement is a CONTINUE statement) and then the PSN (Process State-

ment Number) is called to process the statement number.

PSN checks the DO termination indicator: if this indicator is not set,
PSN scans the Statement Number Table for the statement number and, if not
found, enters the statement number in the Statement Number Table. The
current program tag (A-tag) is entered in the Statement Tag Table, and
the PDT (Process DO Tables) subroutine is called to compile the index
test instructions. PDT first checks the Continue Indicator and the
Current Jump Indicator, and processes these indicators if they are set.
Next, the DO Number Table is scanned and, when found, the corresponding
entry in the DO Parameter Table is saved. This entry is then deleted
from the DO Number Table. The address of the index store instruction is
then compared with the start of the group of instructions compiled for
this statement (i.e., the DO termination statement) to determine if

this is a one-statement DO. 1If so0, an indicator is set, since one-
statement DO loops are later analyzed to determine if the generated

object code can be improved.

Next, the index store instruction was examined to determine if it was

an SA6 = Bj instruction. If it was, the index address was the parameter
of the subroutine, and so a Program tag can be formed by adding the B
register number to a base tag value of 200003 (see page 1-14). 1If the
index store was an SA6 = V-tag instruction, the Variable tag (V-tag)

is extracted from the instruction. The Variable tag or Program tag
which defines the location of the index is passed to the Compile Read
Instructions (CIR) subroutine. CIR will generate a fetch instruction

(if necessary) to fetch the index value. The increment parameter is next
extracted from the DO Parameter Table entry, and examined to determine ifl
it is a Variable tag or a constant. If the increment parameter is a
Variable tag, the Analyze Loop Conditions subroutine is called to
determine register availability, and the CIR subroutine called to

compile a fetch instruction. This process is repeated for the limit

parameter.,

2-9

01-2

RUN COMPILER
DO STATEMENT PROCESSING

SUBROUTINE FLOW

]

'-l-
(0,2}
c
R
®
r
L]
&

NOTE 1: ADF, SCT, AND SCM
SUBROUTINES NOT SHOWN

NOTE 2: SUBROUTINES BEYOND THE
2nd LEVEL MAY NOT
NECESSARILY BE CALLED

IN NORMAL D@ PROCESSING

When the index, limit, and increment parameters have been processed and
any necessary fetch instructions have been compiled, PDT compiles the
index increment instruction. If the increment parameter is a constant,
this will be an SX6 = Xj + K iﬁstruction, while if this parameter is a
Variable tag, an SX6 = Xi + Xj instruction is compiled (since a fetch

instruction was compiled to bring the increment to Xi).

Next, the limit parameter is examined to determine what type of index

test instructions must be generated. If the limit parameter is a constant,

an "546 = X6 - K, NG X7 A?tag” sequence is compiled. If the limit

parameter is a Variable tag, then an instruction has been compiled to

bring the limit value to an X register, and so an "IX7 = Xi - X6, PL X7 A-tag"
sequence is compiled., In either case, the A-tag is that initially

assigned to the index store instruction.

If this is a one-statement DO loop, the Analyze One-Statement DO sub-
routine is called to atteﬁpt to improve the object code generated for

the statement. The DO Number Table is then scanned again to determine

if this statement appears again (remember that entries in this table are
cleared as they are processed). If this statement number appears again
in this table, then a nested DO loop is indicated, and so PDT repeats
‘the précess described. When all entries with this statement number in
the DO Number Table have been processed, PDT exits to PSN, and from there

-control is returned to the compiler master loop.

ARTTHMETIC STATEMENT PROCESSING

Prior to searching the table of statement types, the compiler master loop
calls the Sense Formula (SFO) subroutine is called to determine if the
statement is an arithmetic statement and, if it is, to initiate statement
processing. SFO determines if the statement is an arithmetic statement
function, in which case the Compile Function Definition (CFF) subroutine
is called, or a replacement type arithmetic statement, in which case

control is passed to the Compile Normal Formula (CNF) subroutine.

Statement evaluation by the CFF subroutine and by the CNF subroutine is
similiar in many respects. The basic steps in the evaluation process are

tabulated in figures 2.5 and 2.6. Both CFF and CNF call the TAB subroutine

2-11

[4 %t/

G*z 2in31y

CNF - COMPILE NORMAL FORMULA: BASIC STEPS

¢ CALL "TAB" TO NORMALIZE THE STATEMENT

® CALL "TIQ" TO TRANSLATE THE STATEMENT INTO
A SERIES OF SEPARATORS AND TAGS

® (CALL "UNP" TO ELIMINATE PARENTHESIZED EXPRESSIONS

® CALL "CXP" TO COMPLETE EVALUATION OF THE EXPRESSION

® SET THE RESULT MODE TO AGREE WITH THE MODE OF THE TERM
ON THE LEFT SIDE OF THE EXPRESSION

¢ COMPILE INSTRUCTIONS TO STORE THE RESULT

£1-2

9°Z 2an81g

CFF - COMPILE FUNCTION DEFINITION: BASIC STEFS

SET UP THE CURRENT JUMP

ENTER EACH FUNCTION ARGUMENT IN THE ARGUMENT NAME TABLE (TABLE I)

ENTER A TAG FOR EACH FUNCTION ARGUMENT IN THE ARGUMENT TAG TABLE (TABLE J)
COMPILE A ZERO WORD FOR EACH ARGUMENT

ENTER THE FUNCTION NAME IN THE FUNCTION NAME TABLE (TABLE E)

ENTER A FUNCTION TAG IN THE CORRESPONDING ENTRY IN THE
FUNCTION TAG TABLE (TABLE F)

CALL "TAB" TO NORMALIZE THE STATEMENT

CALL "TIQ" TO TRANSLATE THE STATEMENT INTO A SERIES OF SEPARATORS AND TAGS
CALL "UNP" TO ELIMINATE PARENTHESIZED EXPRESSIONS

CALL "CXP" TO COMPLETE EVALUATION OF THE EXPRESSION

SET THE RESULT MODE TO AGREE WITH THE FUNCTION MODE

COMPILE A JUMP INSTRUCTION TO THE FUNCTION'S ENTRY POINT

to assemble the statement in the string buffer into a series of variables,
constants, and separators. CFF enters the function name in the Function
Name Table and replaces it in the string with a Function tag. The function
arguments are entered in the Argument Value Table and replaced in the string
by function tags. The TIQ subroutine is used by both CNF and CFF to trans-
late the constants and variables in the string into a sequence of tags, and
to enter these values in the appropriate tables. In processing statements,
the Function Name Table is searched for a variable before the Variable Name
Table is searched. Thus, in processing an arithmetic statement of the
replacement type, the Function Name Table will be empty and so the variables
in the statement are determined to be active variables rather than dummy
arguments. 1In processing an arithmetic statement function, statement '
variables will be found in the Function Name Table, indicating that these

variables are dummy arguments.

Both CNF and CFF call the Unpack Parentheses (UNP) subroutine to eliminate
array references, function references, and parenthesized expressions from
the statement. A simplified flow chart of the UNP subroutine is shown in
figure 2.7. When UNP finds an array reference, it compiles the instruct-
ions required to fetch the array element after scanning the statement to
determine if this element has previously been referenced and is therefore
available. If the parenthesized quantity is part of a function reference,
UNP calls the CRF (Compile Function Reference) subroutine to construct the
calling sequence for the function. If the parenthesized quantity is an
expression, the Compile Expression (CXP) subroutine is called. CXP deter-
mines the dominant mode of the expression and selects the proper subroutine
to compile instructions for the evaluation of the expression and the con-

version of the result to the dominant mode.

When UNP has eliminated all parenthesized quantities from the statement,
control is returned to CNF or CFF. These routines may call CXP directly

to complete evaluation of the right-hand side of the statement. CNF and
CFF then generate the instructions needed to store the result., In the case
of CFF, instructions may be compiled to convert the mode of the result to
the mode of the variable on the left-hand side of the statement, and a jump

instruction to the function's entry/exit line is compiled.
: Yy p

When statement compilation is complete, control is transferred to the PSN
subroutine to process the statement number, and from there control is

returned to the master loop.
2-14

~

UNP - UNPACK PARENTHESES
(SIMPLIFIED FLOW GHART)

<]

NO

NO

SEARCH STRING BACKWARDS
FOR A LEFT PARENTHESIS

| COLUMN 6 REACHED ?

s SLEx)

NO

LEFT PARENTHESIS FOUND?

|

YES

DOES PARENTHESIS PRECEDE
AN ARITHMETIC EXPRESSICON?

YES

NO

IS PARENTHESIS PART OF AN
ARRAY REFERENCE ?

YES NO

1_ACOMPILE FUNCTION REFERENGE

CALL "CXP" TO EVALUATE
THE EXPRESSION
STORE RESULT

. IS PARENTHESIS ON THE LEFT
SIDE OF THE STATEMENT ?

YES

NO -

SEARCH STRING BACKWARDS
DOES THIS ARRAY REFERENCE
APPEAR ELSEWHERE ?

YES

REPLACE THIS AND THE
IDENTICAL ARRAY REFERENCE
WITH AN INDIRECT TAG

COMPILE ARRAY ADDRESS AND

INSERT IN INDIRECT TAG
COMPRESS STRING BUFFER

REPLACE THIS STRING ENTRY
AND ANY IDENTICAL STRING
ENTRIES WITH THIS TAG

COMPRESS STRING BUFFER

UNP-UNPACK PARENTHESES

Figure 2.7

INPUT/OUTRPUT STATEMENTS

Upon encountering an input or output statement, the compiler generates a
calling sequence for use by the execution time subroutines. There is no
format cracking done during compilation, so all format diagnsotics are
produced during execution. Each particular set of I/0 statements, i.e.,
READ, WRITE, ENCODE, BUFFER IN, etc., use an individual execution time
subroutine. These subroutines do their own processing within themselves
and do not depend on a central or generalized routine for the I/0. All
information necessary for the completion of the task is generated by

the compiler and passed to the execution time routine with successive

calls.

In order for a central memory program to communicate with an external
file, all information entering or leaving the program must pass through
a buffer. For every I/0 file, whether it be standard input or output,
scratch tape, or data tape, used by the FORTRAN program, a declaration of
- the file name must be made on the PROGRAM card. Each file name causes

a buffer with a minimum length of 1010 words or normally 2010 words to

be reserved for its use. Any file that is not assigned to a special
equipment via a control card will be assigned to the disk., The execution
time subroutines use the system CIO (Circular Input/Output) for the

physical transfer of data.

All information written on 1" tape or binary data written on %" tape is
recorded in blocks of 1000B words (physical record). The terminating
block of a transfer is called a short block whose size is between 1 and
777B words. A logical record is defined as containing any number of
physical records and terminated by a short block. Coded one inch tapes
use packed display code with two consecutive characters whose value is
zero terminating the records, These records may not be larger than 136
characters long but are written on 1" tape in the aforementioned logical
record scheme. Therefore, the system makes no distinction between coded
or binary data when a one inch tape is involved. There is a difference
on %" tape. All coded information is translated to BCD and written in

136 character physical records. In this case, a logical record is the

2-16

came as a physical record.

For a disk file, there is no specific record limit. The data is
streamed out on the disk with a short sector (less than 100B words)
being the terminating factor of a logical record. Like the one inch tape,

coded and binary information appear the same to the system,

The compiler has I/0 statement processors which decide from the form of
. statement which execution time routines are to be called. If a format
statement is required, then the address of it must be aVéilable during
exeuction. 8ince all I/0 has to pass through a buffer, the address of
this buffer mﬁst also be known. This information is compiled and sent to
the subroutine in one entry. The I/0 list is processed and one entry

is made for each array or data item. It is during these entries that
the format statement is cracked. A final entry is made to signal the

end of the list,

The coded input statements (READ n, L; READ (i, n) L; READ INPUT TAPE i,
n, L) call INPUTC. The file specified by "i" is read and the data e
returns to the program according to the format "n". The following
specifications are handled by INPUTC: E, F, D, 0, A, *, I, 1, X, R,

L, P. Only with "F" conversion is a scale factor allowed. The format

cracking utilized in INPUTC is flow charted in Appendix C, pages 1-5.

During compilation, the address of the format statement is set into B3
to be passed to the subroutine. The address of a variable format is
retrieved by assigning a variable tag to the format statement; thereby

fetching the proper address during execution.

Binary data may be read byAREAD (1) L or READ TAPE i, L. During
execution, INPUIB is referenced to read file "i" and insert the data

in "L". No special word count is reserved in the data itself. The
number of words defined by L determines the number of physical records
that are read. Binary data may be written on a file by WRITE (i) L or
WRITE TAPE i, L. Either of these statements'request OUTPIB to transfer
the informafion from "L" to file "i"., The number of words written by
these statements must be greater or equal to the number of words read

by the corresponding READ statement.

2-17

OUTPTC is the execution time subroutine called to write coded data on a
file. The statements PRINT n,L; PUNCH n,L; WRITE (i, n) L; or WRITE
OUTPUT TAPE i, n, L will all cause OﬁTPTC to be referenced, As with
coded input, the format is cracked during execution. The types of

format specifications allowed on output are: I, X, A, 0, H, /, F, E,

D, R, L, *, P. There is little difference between the procedure of format

cracking used by OUTPIC and INPUTC.

ENCODE and DECODE statements are also implemented. Storage manipulation
to transfer data under a specific FORMAT statement is all that is involved
so no physical data file is referenced. Therefore, the list processor
used by READ/WRITE compileé a calling sequence to the exeéution time
subroutines OUTPTS and INPUTS. These subroutines work on the same

format cracking scheme as OUTPTC and INPUIC.

All the aforementioned statements result in the I/0 being completed by
the execution time subrout ines before control is returned to the
central program. Therefore, the data is immediately available to the
programmer after an 1/0 statement has been processed. However, the user

may choose to buffer his own I/0 in which case the BUFFER IN and BUFFER

TN o
U &2

o

atements are availahle. RUFFERI and BUFFEO (execution time sub-
routines) are called, respectively, to initiate the transfer of data via
CIO. 1In this case, the central processor is not released by a recall
(RCL) request. Instead control is returned to the central program as
soon as CIO has initiated the request. Any block of data, up to normal
central memory restrictions, will be handled by these statements. Before
using the data it is up to the user to check the status of the buffered
unit by an IF (UNIT, i). This statement compiles a calling sequence

to IOCHEK which is the execution time routine used for checking the

status.

‘The execution time subroutines receive all addresses from the program
via index registers. A cailing sequence is constructed by the compiler
for each statement. Listed on the following page are the calling sequences

compiled to be used during execution,

2-18

CALLING SEQUENCES

READ, WRITE, PRINT, PUNCH

First Entry B1=0
B2 = address of buffer parameter list or
comp lemented address of variable
tape number '

B3 = address of format statement
Intermediate Entries Bl = address of data item or
beginning address of array
B2 = array length or O
Final Entry , Bl = -1
ENCODE, DECODE
First Entry . Bl =20
B2 =20
B3 = address of format statement
" B4 = character length
Second Entry Bl = beginning address of packed data
B2 =0
Intermediate Entries Bl = address of data item or
beginning address of array
B2 = array length or 0
Final Entry Bl = -1
BUFFER IN, BUFFER QUT
First Entry Bl = mode constant
B2 = address of buffer parameter list or
comp lemented address of variable
tape number
Second Entry | B7 = address of first word of data block
Third Entry B7 = address of last word of data block

2-19

END STATEMENT PROCESSING

Three conditions will cause entry to the END processing routine.
1. An END statement ‘
2. A plus in column one of the next input card
- 3. An end of record on input. '
In case one of the following conditons prevail: _
1. The instructions for the last subprogram have been compiled
one per central memory word. v
2, The location tag, if any is needed, is in the lower 18 bits of
the compiled instruction. '
3. All information needed to make memory assignments and process
generated tags is contained in the temporary tables.
At this time, the instructions are packed and the location tags along
with their absolute address are saved. Various routines are then called
to make temporary, common, and unique variable assignments. The tags of

the variables along with their memory addresses are saved.

The routine RAD is then called to replace tags with memory addresses.

It will search the complete short file, that is the last program/sub-
program compiled, and replace all K portions of 30 bit instructions that
have tags with memory addresses. 1f, for some reason, a K tag is found
-that has not been given a memory assignment, some type of diagnostic is
given. This could be caused by a missing statement, a dimension

ordering error or could be a system error,

* The DATA statement is then processed, the variable map written, and a

return is made to the main loop for the next subprogram.

1f there is a plus in column one of the next input card, a routine is
entered to read in binary programs. These programs are positioned with
the object deck already compiled. The information about each routine
"read in is extracted from the RA and RA+l of the binary routine and
entered into the subroutine tables, Processing then continues the same

as if an end of record was detected originally on the input file.

2-20

A call is made to the PP routine CLL to load all subroutines not yet
defined. The starting address of subroutines is now equated to memory
addresses, and RAD is called once for each program/subprogram to replace
all subroutine tags with memory addresses. The complete file, if no

errors have been detected, is written on the disk.
Then, depending on the mode of compilation, a return may be made for
another deck, the compiler may terminate, the deck may be punched or_the

EXU may be called to load and execute this compiled program.,

A simplified flow of the END processing is found on the next page.

2-21

END - PROCESS END STATEMENT
(STMPLIFIED)

RESTORE VARIABLE TABLES
POSITION LIBRARY ROUTINES
YES SET CLEARING PARAMETERS

HAS END OF PROGRAM AND/OR
SUBPROGRAMS TQ BE COMPILED
BEEN REACHED ?

NO

IS THIS A FORTRAN PROGRAM REPLACE SUBROUTINE TAGS
OR SUBPROGRAM: ? -—-——HNO PROCESS MACHINE/ASCENT END] WITH ADDRESSES

YES

YES
COMPILE PROGRAM/SUBPROGRAM ®__. IS MODE OF COMPILATION |
TERMINATING INSTRUCTIONS nINCOMPLETE" 7

PRINT INSTRUCTION GROUP

NO

M SHORT FIELD LENGTH ERROR WAS TOO MUGH COMMON OR
COMPILE NAMELIST SPACE l }Q-E INIqUn STome o

REPLACE TEMPORARY TAGS

NO

PACK INSTRUCTIONS
POSITION CONSTANTS
PACK VARIABLE TABLES

WRITE SUBROUTINE MAP
PROCESS BINARY FILE

1S MODE OF COMPILATION

PROGESS COMMON ASSIGNMENTS 1 rcHAIN®, vBATGH®, OR .
PROCESS UNIQUE ASSIGNMENTS YES | wMyLTIPLEM ?
PROCESS SPECIAL ARRAY TAGS
CPR . NO
MASTER LOOP RE-ENTRY POINT NO
YES | FORM NAMELIST SPAGE IS MODE OF COMPILATION _—
[| ARE SUBROUTINES ONLY : “INCOMPLETE" ?
BEING COMPILED ?
NO YES
REPLACE VARIABLE TAGS S o PROGEAH AND/OR
SUBPROGRAMS TO BE COMPILED
A R TAB ‘
WITH ADDRESSES |INITIALIZE PROGRAM TABLES h-_NO BEEN REACHED ?
YES
CPX
PROCESS SUBROUTINE MASTER LOOP RE-ENTRY POINT REQUEST MTR TO END OR .
ﬁ PARAMETERS ABORT COMPILATION
[Cstor_]
NO | ARE SUBROUTINES ONLY
BEING COMPILED ?
YES
POSITION LIBRARY ROUTINES
REPLACE TAGS WITH FLAGGED :
ADDRESSES END STATEMENT PROCESSING

_m_l PROCESS DATA STATEMENTS
'“"l CHECK MISSING NUMBERS

l

WRITE VARIABLE MAP

ARE SUBROUTINES ONLY
IS MODE OF COMPILATION ———t
WINCOMPLETEN NO BEING COMPILED ? NO

@ YES | ves Cerx D

MASTER LOOP RE-ENTRY POINT

2-23

RA+FL

I1/0 BUFFERS

NUMBERED AND BLANK COMMON

] .
m < PROGRAMMER SUBROUTINES

; | (IF ANY) FOLLOWED BY
LOCAL ‘VARIABLES LIBRARY SUBROUTINES

LABELED COMMON

INDIRECT ADDRESSES

TEMPORARIES

CONSTANTS

OBJECT PROGRAM

RA

ARGUMENTS (FILE NAMES, ETC.) FROM PROGRAM
CARD BEGIN AT RA + 2

MAIN PROGRAM ORGANIZATION

2-24

LISTING INTERPRETATION

ASCENT EQUIVALENT COMMENTS
PROGRAM TEST(INPUT,TAPE1 = INPUT) . Header card, processed by PPG
000000 O L00002 L00002 BSSZ 1
000001 O L00003 LO0003 BSSZ 1 RA, RA + | are MIR communications area
000002 0 L00004 LO0004 BSSZ 1 File Name and Buffer Address (INPUT)
000003 O L00005 LO000S BSSZ 1 File Name and Buffer Address (TAPEl)
0000t - O L00001 L0000l BSSZ 1 Reserved word (subprogram entry/exit line)
000005 5110 €C00001 SAl1 C00001 C00001 - parameter word set up by END
63110 SB1 X1 Extract local length
21122 AX1 228
0000/ 63210 SB2 X1 Extract beginning address of COMMON
21122 AX1 228
63310 SB3 X1 Extract compiled field length
74200 SXZ AQ Pick up field length from AQ
000007 137121 IX1 X2.X1
0331 000000 NG XxI1,0 Exit 1f insufficlent space
000010 7160 001777 SX6 0017778
20660 ; LX6 60B Set X6 to an indefinite value
000011 56610 L00006 LO0006 SA6 Bl
6111 000001 SB1 Bl + 1 Set unused program space (i.e,, from
000012 0712 L00O006 LT B1,B2,L00006 the end of local to the beginning of
43600 MX6 O COMMON) to indefinite: clear COMMON
000013 56610 L00007 L00007 SA6 Bl and buffer areas to zero
6111 000001 SBl Bl + 1
000014 0713 LO00OO7 LT B1,B3,L00007
5110 CO0002 . SAl C00002 Fetch compiled field length
000015 63110 SB1 X1
43052 MX0 52B Set mask for ftle name
5120 CO0004 SA2 C00004 Fetch compiled buffer length
000016 63220 SB2 X2
67312 SB3 BI-B2 Compute starting address for 1% buffer
5130 000002 SA3 000002 Fetch first file name from BA + 2
000017 11730 BX7 X3*¥X0 Mask out buffer address, store file name
56730 SA7 B3 as 18t buffer parameter
5140 C00005 : SA4 C00005 Fetch compiled file name and buffer
000020 10740 BX?7 X4 address, store in RA + 2 (replace
5170 000002 SA7 000002 execution time file name)
000021 7173 000010 SX7 B3+ 10B Initialize circular buffar nointers
5173 000001 SA7 B3+ 1 Set FIRST -
000022 5173 000002 - SA7 B3I + 2 : Set IR
5173 000003 SA7 B3 + 3 Set QUT
000023 76710 §X7 Bl Pick up compiled field length
5173 000004 SA7 B3 + 4 Set LIMIT
43700 M7 Q
000024 5173 000005 SA7 B3+ 5 Set sixth and seventh buffer paramsters
5173 000006 SA7 B3+ 6 to zero
000025 5150 C00003 SA5 C00003 Fetch liné limit
10750 BX7 XS
000026 5173 000007 SA7 B3 + 7 Set line limit as eighth parameter
67112 SB1 Bl1-B2 Set LIMIT for next buffer (unused in
‘ this example)
NAME = 2 Source card, processed by SFO
000027 7160 000002 SX6 000002 Instructions compiled for this state-
5160 V00001 SA6 V00001 wment by CXP

Note: words O - 26g were compiled by the PPG (Process Name and Arguments) subroutine. When the compiler master
loop encounters a PROGRAM card, the PGM (Process Program Statement) subroutine is called: PGM checks to
insure that a prior program or segment has not been compiled, and then calls PPG,

L0O000On = PROGRAM TAG (A~TAG)
CO000n = CONSTANT TAG (K-TAG)
V0000n = VARIABLE TAG (V-TAG)

SAMPLE COMPILATION: SHEET 1

LISTING

INTERPRETATION

000030
000031

000032
000033
000634

000035

000036

000037

000040

000041
000042
000043
000044
000045

000046

000047

000050

7160

3160 V00002

3

5150
5110

10610

5160
5120
7262

37756

0327

5110

DO 3 I = 1,NAME

000001
L00013

BAT = ROB

V00001
V00004

V00003
V00002
000001
L00013
A = 16.

C00006

10610

5160

0400

1

43600

5160

6110
6120
6130
6140
6150
6160
7160
5160
7170
5170
0100
0710

V00005
GO TO 1

N00OO1
Q= 0.

L00020 (N00OO1)
V00006

CALL BATSUB(A,B,C,D,E,F,G,10)

V00005
V00007
V00010
vooo11
V00012
V00013
voool4
500207
€00007
500210
500200
Loooo2

L00022

END

5120 €00010

16720

0100

500300

ASCENT EQUIVALENT COMMENTS
Source card, processed by SDO
SX6 000001 CDI(called by SDO) compiles instructions
L00013 SA6 V00002 to initialize the DO index
Source card, processed by SFO. Statement
1 number processed by PSN, which calls PDT
SA5 V00001 to compile index increment and test instrs.
SA1 V00004 Fetch ROB
BX6 X1
SA6 V00003 Store (ROB) in BAT
SA2 V00002 Fetch I compiled
SX6 X2 + 1 I=1+1 by PDT
IX7 X5-X6 NAME - I
PL X7, LO0O13 Loop if limit not reached
Source card, processed by SFO
SA1 CO0006 Fetch counstant
BX6 X1
SA6 V00005 Store constant in A
Source card, processed by SGO
EQ BO,B0,N0O00OL NOOOOl = statement tag (H-tag)
Source card, processed by SFO
L00020 Mx6 O L00020 is equated to NOOOO1 through the
SA6 V00006 Temporary and Permanent Tag Tables
Source card, processed by CLL. CLL calls
PRR to compile argument handling instrs.
SB1 V00005 -
SB2 V00007 The addresses of the first six
SB3 V00010 arguments are passed to the
SB4 V00011 subroutine in registers Bl - B6
SB5 V00012
SB6 V00013
SX6 V00014 Pick up address of seventh argument
SA6 S00207 Store 7th argument addr. in reserved word
SX7 €00007 Get address of 8th argument - a constant -
SA7 500210 and store in reserved word
L00022 RJ 500200
Lower half of instruction word contains
argument count and name of caller
Source card, processed by END
SA2 C00010 Zero word passed to execution time
BX7 X2 subroutine END
RJ S00300 Jump to execution time subroutine END

1:

the instruction in the lower half of word 31 is the 1imit fetch instruction for the DO index increment and test.

Do index incremert and test instructio
(Analyze One-Statement Do) to attempt
instructions compiled for the statement which terminated the DO loop.

ms are compiled by PDT (called by PSN). PDT calls the AOS subroutine
to place the increment and limit fetches (if any) at the beginning of the

SAMPLE COMPILATION: SHEET 2

LISTING

INTERPRETATION

ASCENT EQUIVALENT

COMMENT S

000077
000100
ooolo1
000102
000103
000104
000105
000106
000107
000110
000111
000112

000113

000114

000115

000116

000117

000120

000121

SUBROUTINE BATSUB(W,X,V,D,R,J,M,L)

OCO0O0O0OO0OO0COOCOOCO

76710
76120
20122
36717
76230
20244
36727
5170 100001
76740
76350
20322
36737
76460
20444
36747
5170 TC0002

RETURN
0400 LOCOO1

END
5150 C00001

10750
0100 500300

L00002
L00003
L0O0004
L0000S
L00006
L00007
L00010
LO0O11
L00012
L00013
L00001

L00002
L00003
LO0004
L00005
L00006
L00007
Loo010
L00011
L00012
L00013
L00001

SAMPLE COMPILATION: SHEET 3

BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
BSSZ
sX7
X1
Lx1
X7
X2
LX2
X7
SA7
5X7
sx3
LX3
1xX7
SX4
LX4
17
SA7

EQ

SAS
BX7

[e

Bl

B2

228

X1 + X7
B3

44B

X2 + X7
T00001

BS
22B
X3+ X7
B6
44B
X4 + X7
T00002

BO,B0,L00001

€00001

S00300

Header card, processed by PPG
Reserved for subroutine name

Reserved for argument count

These six words are unused, since the
argumsents to which they correspond are
passed in registers Bl - B6

Reserved for the seventh argument
Reserved for the eighth argument
Entry/exit line

Save addresses of first three arguments
in temporary word 1

Store first three argument addresses

Save addresses of next three arguments
in temporary word 2

TOO00n = Temporary Tag (T-Tag)

Store second three argument addresses
Source card, processed by RTN

Jump to entry/exit line

Source card, processed by END

Pass a zero word to the execution time
subroutine END. These instructions are
unused in this example: they would be

used {f the RETURN statement was not
present,

CHIPPEWA FORTRAN COMPILER - RUN

Section 3

SUBROUTINE DESCRIPTIONS

AAR - ANALYZE ARRAY REFERENCE

This routine is called during the processing of an arithmetic expression
when it has become necessary to bring the address of an array entry to
B7. It is entered in an attempt to stop the storing of the array address
into an indirect cell. Two conditions will make this routine flag that

the store is probably necessary.

1. 1If there are any more array references'to be processed, the store
must be geherated.

2. If the mode of the array is integer and if there is a division
specified in the expression before this array reference is made,

the address must be saved.

Otherwise,’the single array reference count is increased, the next

indirect tag and index 7 are packed into X6 and the routine exits.

Subroutines Called: None

Temporaries/Flags: ARI - Array Reference Count

IGX -~ Current Index Assignment
SAR - Single Array Reference Count
TGI - Indirect Tag

TMF - Start of Array Reference
TMH - Start of Expression

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: None
Exit: X6 - zero implies no processing done

X6 # zero implies the next indirect tag and B7 have
been packed in X6 and no store of the array
address must be made.

ABS-1

ABS - PROCESS ABSOLUTE LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters
an ABS declarative, the ABS subroutine (Process Absolute List) is called.
The ABS declarative permits the unsigned number on the right to be
assembled into instructions containing the identifier in their address
field. An example of the ABS declarative together with the basic

steps in processing the list is shown in Figure ABS-1l.

.On entering the ABS subroutine, the TAB subroutine is called to normalize
the 1list. The Variable Name Table (Table M) is scanned to determine if
the variable which has been equated to the subroutine name has been
entered and, if not, the variable is entered in the Variable Name Table.
If the variable has previously been entered in the Variable Name Table,
an error exit (Duplicate Tag Error) occurs. The variable name is also
checked to insure that the first character is alphabetic and that the

name is composed of two or more characters for machine programs.

Next, a check is made for the equal sign and the CVN (Convert Number)
subroutine is called. If the constant is greater than -216 and less
than 216-1, it is stored in the Variable Tag Table (Table N). If the
constant lies between 216-1 and 217-1, a Statement Tag (H-tag) is
generated and stored in the corresponding Variable Tag Table and the

constant is stored in the Argument Tag Table (Table J).

Subroutines Called: TAB

Normalize Statement

SCT - Scan Table
CVN - Convert Octal or Decimal Number
ADF - Advance Table

Temporaries/Flags:s MOD
TGH
IPS

Subprogram Mode

Statement Tag (set)

Program/Subprogram Indicator

1-s9v 2an814

ABS DECLARATIVE PROCESSING

EXAMPLE :

1.

6.

7.

8.

4BS (JJ=100, KK=1008, LL=7777)

STORE THE VARIABLE NAME (e.g.,JJ) IN THE VARIABLE NAME TABLE

CHECK FOR AN EQUAL SIGN

CONVERT THE CONSTANT

LOOK FOR A TAG OR CONSTANT

STORE IN THE APPROPRIAIE TABLE

IF THE NEXT ENTRY IS A COMMA, REPEAT 1-5
CHECK FOR A RIGHT PARENTHESIS

RETURN FOR THE NEXT RECORD

Z-sqv

Tables Referenced: TBM - Variable Name
TBN - Variable Tag

TBJ - Argument Tag

Entry/Exit Register Conditions: DNA

Note: Error Lists: EMC Machine Constant

EMD - Machine Duplicate Tag Error
EMF - Machine Format Error
EMT - Machine Tag Definition Error

ABS-3

ACE-1

ACE - PROCESS ASCENT EQU

When the MAA (Process Ascent and Machine Records) subroutine encounters

an EQU Ascent pseudo-operation instruction, the ACE subroutine is called.

The ACE routine writes a constant of "all fives" into the output buffer
then transfers to WNX (Write Coded Record) and RNX (Read Coded Record).
Next a call to TAB (Normalize Statement) reorders the string entries to
one variable or separator per word. An equal sign is stored in column 9
and the location variable is stored in column 8. Further processing is

handled with a jump to the ABS (Process Absolute List) subroutine.

Subroutines Called: WNX - Write Coded Record

RNX - Read Coded Record
TAB - Normalize Statement
ASV - Assemble Variable

Temporaries/Flags: CAS - Constant of Blanks

MHI

Machine Header Card Indicator (set)

Tables Referenced: None

Entry/Exit Register Conditions:

Al string address of first character beyond EQU pseudo-
operation code.

ACH-1

ACH - PROCESS ASCENT DPC AND BCD

When the MAA (Process Ascent and Machine Records) subroutine encounters
The PST

routine is called to process the location tag and the ARA routine is

a BCD or DPC pseudo-operation, the ACH subroutine is called.
called to adjust the address and write the register. Next the first

character of the address field is erased from the string, and the next
ten characters are accumulated. A test is made to insure that the
pseudo-op appeared in the constant section. On exit from the routine,

the code is in X6.

Subroutines Called:

Temporaries/Flags:

Tables Referenced:

PST - Process Statement Tag
ARA - Adjust Running Address and Write Register

IWC - Instruction Word Count

Al - Address of first non-blank following opcode.
X6 - Hollerith field

ACE-1

ACE - PROCESS ASCENT EQU

When the MAA (Process Ascent and Machine Records) subroutine encounters

an EQU Ascent pseudo-operation instruction, the ACE subroutine is called.

The ACE routine writes a constant of "all fives" into the output buffer
then transfers to WNX (Write Coded Record) and RNX (Read Coded Record),
Next a call to TAB (Normalize Statement) reorders the string entries to
one variable or separator per word. An equal sign is stored in column 9
and the location variable is stored in column 8. Further processing is

handled with a jump to the ABS (Process Absolute List) subroutine,

Subroutines Called: WNX - Write Coded Record
RNX -« Read Coded Record

TAB - Normalize Statement
ASV

Assemble Variable

Temporaries/Flags: CAS - Constant of Blanks

MHI

Machine Header Card Indicator (set)

Tables Referenced: None

Entry/Exit Register Conditions:

Al string address of first character beyond EQU pseudo-
operation code.

ACH-1

ACH - PROCESS ASCENT DPC AND BCD

When the MAA (Process Ascent and Machine Records) subroutine encounters

a BCD or DPC pseudo-operation, the ACH subroutine is called.

The PST

routine is called to process the location tag and the ARA routine is

called to adjust the address and write the register. Next the first

character of the address field is erased from the string, and the next

ten characters are accumulated.

A test is made to insure that the

pseudo-op appeared in the constant section. On exit from the routine,

the code is in X6.

Subroutines Called:

Temporaries/Flags:

Tables Referenced:

PST - Process Statement Tag
ARA - Adjust Running Address and Write Register

IWC - Instruction Word Count

Al - Address of first non-blank following opcode.
X6 - Hollerith field

ACK-1

ACK - PROCESS ASCENT CON

When the MAA (Process Ascent and Machine Records) subroutine encounters
a CON Ascent pseudo-operation code, the ACK subroutine is called. The

constant in the address field is moved left beginning in column 7 of the
string buffer. When an end of statement or a blank is encountered, a

zero is written into the string and a transfer back to the main loop of
MAC for further processing occurs,

Subroutines Called: None

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Al string address of last character before the address field

ACR-1

ACR - PROCESS ASCENT BSS AND BSSZ

When the MAA (Process Ascent and Machine Records) subroutine encounters

a BSS or a BSSZ pseudo-operation code, the ACR subroutine is called.

- Column 7 of the string buffer is set to a left parenthesis and the value
of the address field is moved to the left beginning in column 8. Upon
encountering the first blank or end of statement, a right parenthesis

and a zero are stored into the next two columns of the string. Further

processing is done in the Master loop of MAA,

Subroutines Called: None

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Al - String address of the last character before the address
field

AFS-1

AFS - ASSEMBLE FORTRAN STATEMENT

The AFS subroutine assembles a FORTRAN statement or assembly instruction
from card buffer into the string buffer, If a statement is continued

on one or more succeeding (continuation) cards, all such cards are also

transmitted to the string buffer, Within the string buffer, information
is packed one character per word, right-justified. The string buffer

loading process is illustrated in figures AFS-1 and AFS-2.

On entry, the multiple statement indicator, ICE, is examined to determine
if there were multiple statements on the card previously transmitted to
the string buffer, If ICE is zero, then there were no multiple state-
ments on the card previously transmitted to the string buffer: otherwise,
ICE contains the address in the string buffer of the dollar sign which
terminated the statement just processed. In the latter case, AFS blanks
out the preceding statement and scans the remainder of the card until
either a dollar sign or the end of the statement (a zero word) is
encountered. If a dollar sign in encountered, the multiple statement
indicator is set to the address of the dollar sign in the string buffer,

Control is then returned to the calling program.

If there were no multiple statements on the previous card, AFS enters

a loop which inputs, examines, and lists cards until a statement or
instruction card is found. AFS calls the RNX subroutine to bring a card
from the input buffer to the card buffer, and calls the WNX subroutine
to transmit the card to the output buffer for listing. As each card is
processed, AFS checks to see if the end of file has been reached., 1If
the previous statement was an END statement, then PNM (program/sub-
program name) will be zero: 1f PNM = 0 and an end of file is encountered,
AFS transfers control to END (Process End Statement). In all other
cases, detection of the end of file will result in an error exit. On
the first entry to the loop, the card already in the card buffer is
examined. If column 1 contains a period (page eject card), an asterisk
or a dollar sign (remarks card), or in a FORTRAN program, the letter C
(comments card), the card is listed (i.e., transmitted to the output
bﬁffer) and the next card brought to the card buffer., This process is

repeated until a statement/instruction card is found: i.e., a non-

d BETA=71.56 §x(2)=0. €DCI050

SOURCE CARDS ARE TRANS-
MITTED FROM THE INPUT
BUFFER TO THE CARD BUFFER
BY THE RNX SUBROUTINE

SOURCE CARDS [N INPUT BUFFER

ABAADLAAAABETA=71 .568x(2)=0.8A0A———AACDCIOSO

1-sdv 2an31g

COLUMNS 1 « 72 OF STATE-

SOURCE CARD IN CARD BUFFER ﬁ

MENT CARDS
Ap+ 2460 TO THE smx:cuax:::u:?m
THE AFS SUBROUTINE (ONE
CHARACTER PER WORD)
A E T A = 7 ! . 5 6 $ X (2) =) .lo 0o

SOURCE CARD IN STRING BUFFER

THE MULTIPLE STATEMENT END OF CARD, INDICATED BY
TNDICATOR (ICE) 1S SET A ZERO WORD. IF THERE
TO THIS ADDRESS . ARE CONTINUATION CARDS,

THESE ARE ALSO TRANSFERRED
TO THE STRING BUFFER

STRING BUFFER LOADING
AFS SUBROUTINE

Z=Sdv

AFS=-3
blank card which is not one of those described above.

Next, column 6 of the card is examined. If column 6 is blank, contains
a zero (FORTRAN program), or does not contain as asterisk, AFS transfers
the card from the card buffer to the string buffer. All 72 characters
on the card (spaces included) are transmitted to the string buffer,
Characters in the string buffer are packed one per word, right-justified.
If a dollar sign is encountered in the transfer process, the multiple
statement indicator is set to the address of the dollar sign in the
string buffer. (Note: this dollar sign is replaced with a zero word

on return to the main loop of RUN.) The end of the card in the string
buffer is then marked by a zero word. This zero word will be overlaid

if this statement is continued on succeeding cards.

After processing a statement or instruction card, AFS inputs another
card into the card buffer to determine if the statement just procéssed
is continued: if so, the associated continueation cards must also be
transferred to the string buffer. AFS examines the card to determine
if it is a comments card (C in column 1), If it is, it is listed and
AFS brings another card to the card buffer., If a card is found which
is not a comments card, column 6 is examined to determine if it is a
continuation card (non-blank and non-zero in FORTRAN, an asterisk

in assembly language). If it is not a continuation card, control is
returned to the calling program: the card in the card buffer will be
processed on the next entry to AFS. If the card is a continuafion

card, it is transferred to the string buffer and the process repeated.

If the first statement/instruction card found did not contain a blank
or zero in column 6 (FORTRAN program) or contained an asterisk in
column 6 (assembly program), then it is assumed that an out-df-sequence
continuation card has been found. AFS enters a loop in which cards

are read and listed until a non=-continuation, non-comments card is

found, at which point an error exit takes place (continuation error).

Z-Sdv 2an31y4

~

MULTIPLE STATEMENT INDICATOR SET ?

BLANK OUT LAST STATEMENT IN THE

NO

PREVIOUS STATEMENT AN‘END/STATEMENT
AND END OF FILE REACHED ?

YES

> STRING BUFFER
SET MULTIPLE STATEMENT INDICATOR
TO START OF NEXT STATEMENT ($)

NO

INPUT AND LIST CARDS UNTIL A NON-
BLANK, NON-COMMENTS CARD IS FOUND

IS THERE AN INVALID CHARACTER IN
COLUMN 6 ?

YE3

£>» PROCESS END STATEMENT

NO

TRANSFER CARD TO STRING BUFFER, ONE
CHARACTER PER WORD, RIGHT-JUSTIFIED

SET MULTIPLE STATEMENT INDICATOR
WHEN FIRST $ IS ENCOUNTERED

SCAN NEXT CARD IN CARD BUFFER
IS IT A COMMENTS CARD ?

YES

Y1

ol

S

> INPUT AND LIST SUCCEEDING CARDS
““| UNTIL A NON-COMMENTS, NON-
CONTINUATION CARD IS FOUND

CONTINUATION ERROR

P> LisT THIS caRD

NO

YES

IS IT A CONTINUATION CARD ?

Ano ,_

EXIT

INPUT THE NEXT CARD

MAJOR FUNCTIONS
AFS SUBROUTINE

EXIT

. =84V

Subroutines Called: RNX

ASM

Temporaries/Flags: ICE
MHI
IGS
PNM
MOD
FST
SIG
ICA

Tables Referenced: none

AFS~5

Read Coded Record
Write Coded Record
Assemble Mnemonic Code

Process End Statement

Multiple Statement Indicator (set)
Machine Heading Indicator (set)
Instruction Group Start (set)
Program/Subprogram Name
Subprogram Mode Indicator

Long File Start

Compile Mode Indicator

Display Coded Running Address

Entry/Exit Register Conditions: n/a

ANK-1

ANK - ANALYZE ADDRESS GENERATING INSTRUCTIONS FOR RIGHT MEMBER

This routine is called during the processing of an expression when B7
has been used to hold the address of an array entry and there are more
array references in the statement, If AO is still available, the last
compiled instruction is changed to a set A0 instruction and the AO
register associate is set to the next indirect tag which is passed back

to the calling program. It also clears the instruction register X7.

Subroutines Called: None

Temporaries/Flags: TGI - Indirect Tag
VIA - AO Register Associate

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: ©None
Exit: X6 = zero if A0 was not available

X6 # zero if AO was used to hold the address of the
array entry. Actually it would have the next
indirect tag and bit 21 set to say the address
was in AO.

ARA-1

ARA - ADJUST RUNNING ADDRESS AND WRITE REGISTER

When the MAA (Process Ascent and Machine Records) subroutine has packed
as many consecutive instructions into one machine word as possible, the
ARA routine is called to increment the running address by one and write
the previously stored word. Should ARA be entered when the counter has
been reset to zero, blanks are stored into the output buffer, then

current running address is converted and stored., Should the counter be
set to non-zero, the current word is written and the running address is

incremented before the converting and storing of the running address.

Subroutines Called; None

Temporaries/Flags: ICT - Intraword counter

ADM - Current Running Address

Tables Referenced: None

Entry/Exit Register Conditions: N/A

ASL-1

ASL - ASSEMBLE LETTERS

The ASL subroutine assembles a specified number of letters from the
string buffer into an assembly register. On entry to this subroutine,
the B4 register contains the address of the location in the string
buffer where assembly is to begin, and the B2 register contains the
number of letters to be assembled. The assembled letters are returned
to the calling program in the X6 register (left-justified). Spaces
are ignored during assembly, If the end of the statement (indicated
by a zero word in the string buffer) is encountered, or if a character
is found which is not a letter, the assembly is terminated: the
letters already processed, if any, are left-justified in the assembly

register and control returned to the calling program.

Subroutines Called: mnone

Temporaries/Flags: none

Tables Referenced: none

Entry/Exit Register Conditions

Entry: B4 = address in string buffer where assembly is to

begin
B2 = number of letters to be assembled
Exit: X6 = assembled letters, left-justified (zero if none

assembled)

B2 = difference between number of letters requested
to be assembled and number of letters actually
assembled

B4 = address + 1 in the string buffer of the last
letter assembled :

Note: 1In the case where less than the requested number of letters were
assembled, ASL exits with the non-alphabetic character which

terminated the assembly in the X1 register.

ASM-1

ASM - ASSEMBLE MNEMONIC CODE

The ASM subroutine assembles the mnemonic code for an Ascent or Machine
statement from the string buffer into the X6 register. First the routine
scans over the leading blanks of thefield being assembled. Then up to
four alphabetic characters are moved into the X6 régister. The first
number or separator will terminate the collecting of letters in the

X6 register. This character will be left in the X1 register. The result
in X6 will be left justified and the B2 register will contain a flag

(see chart below) to indicate the instruction type.

Subroutines Called: None

Temgoréries/Flags: MOD - Subprogram Mode

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: B4 - contains address in the string buffer where
assembly is to begin ‘

Exit: X6 - opcode left justified
X1 - next non-alpha string character

Note: The Ascent mnemonics composed of 2 letter and a number are
split between X6 and X1 (i.e., SXl X6 = SX and X1 = 34)

B2 Value Assembled Letters Examples
0 4 letters except BSSZ FORTRAN STATEMENTS
1 3 letters END
BSSZ ASCENT PSEUDO-OPS
2 2 letters

2 letters + Number ASCENT MNEMONICS

3 1 letter Machine Mnemonic
0 letters CONSTANT

ASN-1

ASN - ASSEMBLE NUMBERS

The ASN subroutine assembles consecutive numbers from the string buffer
into the assembly register. The routine attempts to assemble 7 numbers,
On entry to this subroutine, the B4 register contains the address of

the location in the string buffer where assembly is to begin, The
assembled letters are returned to the calling program in the assembly.
register, X6 (left-justified). Spaces are ignored during assembly

and, in the case of statement number assembly (i.e., assembly starting
address not greater than column 5), leading zeroes are ignored. Numbers
are transferred to the assembly register until either a non-space,
non-numeric character is encountered or seven numbers have been assembled:

The contents of the assembly register are then left-justified.
If no numbers were encountered, the assembly count (B2 register) is set

to zero, and a display code zero is placed, left-justified, in the

assembly register,

Subroutines Called: none

Temporaries/Flags: none

Tables Referenced: none

Entry/Exit Register Conditions

Entry: ‘B4 = address in string buffer where assembly is to begin
Exit: X6 = assembled numbers, left-justified (display code
zero if none assembled)
B2 = 7 - number of numeric characters assembled
(0 if none assembled)
B4 = address + 1 in the string buffer of the last

letter assembled

Note: In the case where less than the requested number of digits were
assembled, ASN exits with the non-numeric character which

terminated the assembly in the X1 register,

ASV-1

ASV - ASSEMBLE VARIABLE

The ASV subroutine assembles consecutive alphanumeric characters from
the string buffer into the assembly register. The routine attempts to
assemble 7 such characters., On entry to this subroutine, the B4
register contains the address of the location where assembly is to begin.
The assembled characters are returned to the calling program in the
assembly register, X6 (left-justified). Spaces are ignored during the
assembly. Characters are transferred to the assembly register until
either 7 alphanumeric characters have been assembled or a non-space,
non-alphanumeric character is encountered., If 7 consecutive alphanumeric
characters are found, succeeding characters in the string buffer are

read and examined until a non-space character is found. The contents

of the assembly register are then left-justified.

The last character scanned is then examined to determine if it is an
asterisk, If it is, and if this is an assembly program, it too is
packed in the assembly register. Control is then returned to the

calling program.

Subroutines Called: none

Temporaries/Flags: MOD - Subprogram Mode Indicator

Tables Referenced; none

Entry/Exit Register Conditions

Entry: B4 = éddress in string buffer where assembly is to begin
Exit: X6 = assembled characters, left-justified (0 if none
assembled)
B2 = 7 - number of alphanumeric characters assembled
B4 = address of next non-space, non-alphanumeric

character in the string buffer

Note: 1If an asterisk was packed in the assembly register, X1 is loaded
with the character immediately following the asterisk in the
string buffer. B4 is not advanced but still contains the address

of this character.

BNX -

BNX - BINARY OUTPUT RQUTINE

This routine is called at the end of compilation when the complete
program including library subroutines are all in central memory. If
a binary deck was requested, either the PBS or PBC PP punch routines
are called. PBS is called if the mode of compilation is incomplete as
it gives a status response when the punching is complete which PBC

does not do.

-A request is then made to CIO to write the program as a binary file
whose name is in the same as the program name and the compiler remains
- in recall until the output has been completed. Another CIO request is
sent to rewind the file. If the mode was not compile and execute,
the routine exits.‘ Otherwise, if a program was the first routine
compiled, the name of the program is written into the dayfile and the
PP routine EXU is called to read the program back in. AAB is called
to adjust the program field length and BNX exits.

Subroutines Called: AAB - AdjustiProgram Field Length

Temporaries/Flags:i BOA
BOB
BOC
BOD
FST - Long File Start

Binary Buffer Parameters

ICM - Incomplete Compile Mode Indicator
INQ - Name for Dayfile

INV - Segment Indicator

IPS - Program/Subprogram Indicator

STG - Compile Mode Indicator

ZAA - Relative Start of Current Program or
Subroutine

Tables Referenced: None

Entry/Exit Register Conditions: None

1

BRX - 1

BRX - READ BINARY SUBROUTINES

This routine is called to read any subroutines that have been detected
by the presence of a + in column 1 of the next input card. This
routine transfers the binary routines from the input buffer to the
compiled program area. It does its own requests to CIO when it is
necessary, and does not use the RNX routine to read cards. When all
routines have been transferred or when there is no room to continue

the transfer, a zero entry is made and the routine exits.

Subroutines Called: None

Temporaries/Flags: INA - CIO Input Buffer Parameters

Tables Referenced: None

.

Entry/Exit Register Conditions:

Entry: X7 - address start of tables
X6 - start of the region to transfer routines to

Exit: None

CDC-1

CDC - CONVERT INSTRUCTION OR CONSTANT TO DISPLAY CODE

The CDC subroutine converts to display code the binary instruction
formed from an Ascent or Machine source card, Upon entry into this
routine, Bl contains a 5, & or 24B indicating a short, long or full
word instruction, respectively. Detecting a short instruction, CDC
will write one word into the output buffer and exit. The long
instruction will call KOT to convert the binary tag to a mnemonic tag
and thereby cause a two word entry into the output buffer. A full
word instruction appends a zero word to its entry so that the buffer
has three words stored. The exact form of these entries are shown

in Figure CDC-1,

Subroutines Called: KOT - Convert Binary Tag to a Mnemonic Tag

Temporaries/Flags: None .

Tables‘Referenced: None

Entry/Exit Register Conditions:

Bl 24B, 5, 4

X1 binary instruction left-justified

CDC OUTPUT BUFFER ENTRIES

SHORT INSTRUCTION XXIJKO0OO0O0O gl
LONG INSTRUCTION E{XIJABnnna@oooooooom
FULL WORD INSTRUCTION‘ CH, ... qﬂlq‘j [CH;;...CHg 00 0 Q]
XX —_— OPER'ATION CODE
I —_— RESULTANT REGISTER
— FIRST OPERAND REGISTER
K J— SECOND OPERAND REGISTER
ABnnnn MNéﬁONIC TAG
CH. -CH OCTAL DIGITS

16

Figure CDC-1

¢=-00d0

CFF=~1

CFF_~- COMPILE FUNCTION DEFINITION

This routine controls the processing of all arithmetic statement
functions after they are detected by the SFO routine, These functions
are handled in the same manner as a function subprogram except that
they may only contain one statement while a function subprogram may
contain many. The function is a closed subroﬁtine, entered via a
return jump and exited from via the entry point. A zero word is
compiled for each function argument plus one zero word for the entry/
exit line. Since these functions are allowed to appear anyplace in the
program, it is necessary to compile a jump over the closed subroutime that
the arithmetic statement function generated. When such a jump is
generated, the address of the jump is saved in "GJP" - current jump

address.

On entry, the current jump address is examined to see if there is a
current jump pending. If there is, a check is made to see that it was
generated by an ASF rather than a logical if statement and a diagnostic
given if not. If there is no current jump pending, a jump instruction
is compiled to a statement or H tag and the address of this compiled

jump is entered into CJP for later use.

The arguments to the function are then processed one at a time, The
argument name is entered into the Argument Name Table and a Function

Tag is generated, grouped.with the mode and index assignment of the
argument (if any) and entered into the Argument Tag Table. The function
name is then entered into the Function Name Table and its tag and a mode
indicator are entered into the Function Tag Table. This tag also
replaces the name of the function in the string, and then the list of

arguments are squeezed out of the string.

TAB is called to normalize the statement and TIQ is then called to
translate the rest of the string entries into appropriate tags. If

the dominant mode of the expression is double or complex or if the
expression references other subroutines, the string is searched and for

each function argument that has an index register associated with it,

the argument reference count is decreased by one and the index designation

for the argument in the string is deleted.

UNP is then called to generate instructions to evaluate all expressions

within parenthesis and replace these expressions with tags. An attempt

is made to delete an unnecessary store if the function is a very simple

one., Otherwise, CXP is called to compile the final answer and bring it

to X6, An attempt is then made to have the answer end up in X6 and thus

eliminate any unnecessary 10 instructions. Instructions are generated

to convert the expression to the mode of the function and finally a

jump instruction is compiled to exit through the function's entry point,

Subroutines Called: ADF
CLT
CXP
SCT
TAB
TIQ
UNP

Temporaries/Flags: ARF

Advance Table

Clear Temporary Tables

Compile Expression

Scan Table

Normalize Statement

Translate Individual Quantities

Unpack Parenthesis

Argument Reference Count

ARG - Argument Count

CJP - Current Jump Address

IGX - Current Index Assignment

INO - Dominant Mode Indicator

MOD - Subprogram Mode

STN - Statement Number

TBE - E TABLE PARAMETERS

TBF - F TABLE PARAMETERS

TBI - I TABLE PARAMETERS

TBJ - J TABLE PARAMETERS

TEM - M TABLE PARAMETERS

TGF - Function Tag

TGH - Temporary or Statement Tag
Tables Referenced: Function Name (E)

Function Tag (F)

CFF=2

CFF-3

Argument Name (1)
Argument Tag @D
Variable Name)

Entry/Exit Register Conditions: None

CHAIN - 1

CHAIN

The method of chaining employed within the Fortran compiler, RUN,
is a complete overlaying process., No portion of the main program'is
available to any segment; likewise, no portion of one segment is avail-
able to another. Only the main program or one segment resides in
central memory at a time., Arguments may be passed between the main
program and a segment or between segments only through blank or numbered
common. A segment may be called for execution more than once but the
ﬁain program should not be recalled since it clears common and the buffers.
The maximum amount of numbered or blank common used by any segment must
either be declared within the main program or on the RUN card. No diag-
nostic will result if a segment declares more common than has been
4_previously reserved. A portion of the segment would in that case he
overlayed with common.

A job that requires segmentation must have a main program. Initiali-
zation code for a program clears common and the I/0 buffers. For each file
designated on the PROGRAM card a buffer is allocated and the nhmes, number,
and order of these files musﬁ agree for each SEGMENT cgrd. The segments
are separated in the job deck by end-of-record (7-8-9) cards. These
records are compiled and written on the disk as individual named files.
The name'of which is the word following segment on the SEGMENT card.
Therefore, if the job deck consisted of a main program and five segments
(each separated by an end-of-record card), there would be six named files

on the disk for this job.

CHAIN - 2

Segments are called for execution by the statement CALL CHAIN (seg),
where seg is the name appearing on the SEGMENT card. During compilation
a calling .sequence which passes the address of the segment name in.Bl
to the subroutine CHAIN’is generated. The subroutine fetches the segmeht
name at execution time and sends a request to CIO (circular input/output)
to rewind the file before it is loaded into central memory. Certain
parameters must be initialized before calling CIO so CHAIN sets them in
the first five executable words of the calling routine, That is, the
CIO buffer parameters are stored in the calling routine beginning at
RA+2+n where n is the number of I/0 files declared.

A dayfile message informing the user of which segment is next to
be executed is made by MSG (peripheral package). A limit of 100B
messages is standard so if many segments are called and the MESSAGE LIMIT
error is reached with of two system changes will solve the problema

a) increase the limit in MSG.

b) remove the call to MSG in CHAIN so that no segment - calls
are entered into the dayfile.

Another peripheral package EXU (executed compiled program) is used to
locate the file with the requesteﬂ segment name on the disk and read it
into central memory., The file is loaded beginning &t relative zero (RA)
so that there is no linkage of segments. Only one segment (that portion
of the job deck between two end-of-record cards) resides in central
memory at a time. EXU also requests the central processor to begin

executing the new file in central memory.

CIR

CIR is called to compile read instructions. The tag of the desired
read along with a mode indicator and an index assignment, if any,

are specified in X6 upon entry in the following format:

(e D V7770

M indicates the mode of the tag and can range in value from one to
seven., It is examined and directs the processing in the following
order and essentially controls the type of instructions compiled.

M=7 This implies that the tag portion of X6 is a value rather than
a tag. If the value is zero, a MXi 0 instruction is compiled
to set the value of Xi to zero, while if the value of the tag is
minus zero, a MXi 60 is compiled to set the value of Xi to

minus zero. CIR then exits.

M=5, 6 This indicates that the tag portion of X6 is a double or complex
tag and thus requires the fetching of two central memory words.
If the address of the tag is assigned to an index register

(B will be the index register the address is in) a SAi Bj

is compiled. If B is zero, the A register associates are searched

to see if the address is associated with an address register.

I1f so, a SAi Aj is compiled. If not, a SAi TAG is compiled.

The tag itself is examined to see if it is an indirect or location

tag. If so the instruction just compiled will be reading an
address and a SAi Xi is compiled to bring the desired value to

Xi. Then a SA Ai+l is compiled to fetch the second part

(i+l)
of the double or complex number. The Xi and Ai register

associates are set to this tag.

M=3 This indicates that the tag portion of X6 is a number whose value

is less than 216. The X register associates are searched to see

if this value is already in an X register. If it is, a BXi Xj is

compiled and if not a SXi CONSTANT is compiled. In either case,

the Xi register associate is set to this value before CIR exits.

CIR=1

If the mode of the tag was not one of the above, it is assumed
to be a tag for a logical, integer, or real value and will
require the fetching of one central memory word. The same
method of determining the type of instruction to be compiled is
employed as when the mode was double or complex (5,6) except

that the final SA(i+1) Ai+l 1s not compiled.

-Subroutines Called: ALX

Temporaries/Flags;

Tables Referenced:

Entry/Exit Register Conditions:

ANI
ANR

BIT
INL
INN

" RGX

VTA
VTY

None

- Analyze Read Tag

- Bypass Interregister Transfer Indicator

Assign Long Register

Analyze Possible Index Read

Logical If Indicator

Mode Indicator for Read

Long Register Assignment

A Register Associates

X Register Associates

Entry:

Exit:

X6 =-

X6 =

42 18
[tac__] [B] [M]
B - Index Assignment
M - Mode Indicator
3
L (R{ |

Register Assignment

CIR-2

CKD - 1

CKD - CHECK MISSING DO NUMBERS

The DO Number Table is searched to see if there are any entries left that
are not pseudo DO numbers. If there are, this indicates missing DO

numbers and these are listed.

Subroutines Called: WST - Write Special Tag

Temporaries/Flags: None

Tables Referenced: DO Number (G)

Entry/Exit Register Conditions: None

CKL -~ 1

CKL - CHECK MISSING SUBROUTINES

The list of subroutines requested via the CLL call is examined to see if

there are any missing., This will be noted because of the fact that none
of the missing ones will have a starting address and those missing sub-

routines will be listed.

Subroutines Called: WST - Write Special Tag

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Register Conditions:

Entry: Bl - start of the list of routines requested via CLL
Exit: None

CLL-1

CLL - PROCESS CALL STATEMENT

A CALL statement transfers control to a subroutine. Actual parameters may be
exchanged between the calling program and the subroutine., No more than 60
parameter may be passed and successive calls to the same routine do not have

to agree in the number of parameters used. Calling a subroutine with more actual
parameters than formal parameters specified causes a diagnostic during compila-
tion. A function call is compiled in the same manner as a subroutine call

except that a value is returned in X6 from the function which must be saved

upon reentry to the calling program.

A full word is reserved for each parameter on a SUBROUTINE or FUNCTION card.

Each of these words receive a location tag during compilation. The first six
arguments in a call are passed through index registers Bl-B6 and the remaining
addresses are compiled to be stored via external tags in their corresponding
reserved word, which has a location tag, in the subroutine, Initial instructions
in the subprogram pack the addresses,‘three per word, from the index registers

in two temporary cells, Bl is saved in the lowest 18 bits of the first word
with B2 and B3 packed in the next two 18 bit portions. The next temporary

cell holds B4-B6 with the address in B4 residing in the lowest 18 bits. When

o
one ©

£ these packed addresses is needed and is not available in the index

register, then the proper temporary cell is read and the address is unpacked.

Two Fortran subroutines CHAIN and DUMP/PDUMP are specifically processed by CLL.
The name of the segment called by CHAIN is replaced by a constant tag and the
name is entered into the constant value table. A DUMP/PDUMP indicator is set
for calls to these subroutines. After these initial checks and replacements
are made, a call to CHAIN or DUMP/PDUMP is processed as any other subprogram

request.

Only a routine with an external or a location tag may be called. The subroutine
name is entered in the subroutine name table and may have the same name as the
program. There will be no conflict because the program name is the first entry
in the subroutine name table, so another entry is made for a subroutine name
that is the same. When an actual parameter is the name of a function or sub-
routine, that name must also appear in an EXTERNAL statement in the calling

program, This statement causes an external or library tag to be generated for

CLL=-2

the subprogram name. This name will have a location tag in the subprogram
called which used the name as an argument. Therefore, the name of the sub-

program being called may have only a library or location tag.

A call that has arguments allows an arithmetic statement function as an argument.
TIQ translates the individual arguments into appropriate tags, or constants,

The segment called by CHAIN has already been given a constant tag. Any
arithmetic expression or subscripted variable will not be evaluated but each
portion of the expression will be replaced with the tag generated by a

previous definition or assigned a tag at this point.

UNP directs the processing of expressions imbedded within parenthesis and
function references., The outermost set of parentheses are removed and temporary
tags are generated to save fhe information. A call is compiled to the function
referenced whether it be an arithmetic function or a function subprogram and

the answer which is returned in X6 is saved. (CRF is called by UNP for this

purpose).

Upon return from TIQ and UNP, all the arguments have been replaced with tags,
the function references processed, and the arithmetic expressions simplified by
removing the imbedded parenthesis, PRR (process function/subprogram reference)
is calléd to'pass the addresses of the arguments to the subprogram. Any sub-

~ scripted variable has the variable and subscript replaced with one tag when the
array address is determined in the SAD (sense and process single array address)
routine. The arithmetic expression partially processed by UNP is completely
evaluated by CXP (compile expression). The expression is replaced in the string
buffer by a temporary tag which saves the result of the expression. When all
the arguments have been evaluated, the addresses of the first six are set into
index registers B1-B6, and-the remaining ones are to be stored in their
corresponding reserved word via an external tag, A DUMP/PDUMP call causes the

number of arguments to be passed in B7 and the field length to be set in XO.

If the subprogram called was not an argument to the subroutine, then a return
jump to the subprogram is compiled. The return jump instruction is forced to

the upper portion of the word. The lower 30 bits contain the number of

CLL-3

arguments in the reference to the subroutine and a tag corresponding to the
location of the first word of the calling program or subroutine. The contents
of the word has the subroutinet name in the left adjusted display code if the
reference is from a subroutine; otherwise, the location is actually RA, which
will be zero, if the call is made from a program or segment. Example =

0100 S00600

0715 1000602
where $00600 is location of the entry/exit word of the subroutine
15 is the number of arguments in the call
L00002 is the location of the name of the subroutine,

A subroutine used as an argument is a special case., Instead of entering the sub-
routine via a return jump, instructions are compiled to insert the proper return
address in the entry/exit line and generate an unconditional jump to the first
executable instruction of the subroutine, In this way a subprogram may call any
one of many subroutines depending upon the argument passed from the main program,
Each of the subroutines used as an argument to the subprogram must have been
declared external to the main program - otherwise the argument is assumed to be

a simple variable,

When the call to the subroutine has been generated, them instructions are compiled
to restore the argument addresses to index registers if the called subroutine

was used as an argument to this subprogram or a function was used as an argument
in this call, PSN is called to process the next statement when the call statement

processor has completed.

SUBROUTINES CALLED: ADF Advance Table
CLT Clear Temporary Table
CRI Compile Restore Instruction
PPR Process Function/Subprogram Reference
SCT Scan Table
TAB Normalize Statement

TIQ Translate Individual Quantities

UNP Unpack Parenthesis
TEMPORARIES/FLAGS ARF Argument Reference Count

FAG Function Argument Use

FSR Function Statement Reference Count

ICE Multiple Statement Count

TABLES REFERENCED:

INF

SIR

TBA

TBB
TBM
TBS
TBU
TGK
TGL
™ML
™M
TMN

CLL-4

DUMP/PDUMP Indicator
Return Jump Count
Subroutine Reference Count
A Table parameters

B Table parameters
M Table parameters

S Table parameters

U Table parameters
Constant Tag

Library Tag

Argument Count
Subroutine Name

Subroutine Tag

Constant Name (A)

Constant Tag (B)
Variable Name .(M)
Variable TAG (N)
Array Tag (P)

Subroutine Name (8)

Subroutine Tag (T)

Subroutine Parameter (U)

CNF-1

CNF - COMPILE NORMAL FORMULA

CNF is entered when SFO detects an arithmetic replacement statement. It
controls the processing of the statement, the conversion of the expression

evaluation to that of the answer, and the storing of the answer.

Upon entry, the last statement is checked to see if it was a conditional
statement and if so, the expression is cracked immediately. If it
wasn't the current jump cell (CJP) is examined. If there was a current
jump, the cell is cleared and the expression is cracked. I1f there was
no current jump, but there was a statement number, the expression is
cracked. Otherwise, the continue indicator is cleared and if the

last statement was not a CONTINUE, X7 is cleared to wipe out any program

tag.

In order to evaluate the statement, TAB is called first to normalize
the statement, TIQ is called to change the variables and constants to
tags and then UNP is to control the compilation of instructions to
evaluate and save all portions of the expressions that were imbedded
in parentheses. Upon return from UNP, all expressions that were in

parentheses are replaced with temporary tags.

A check is then made to see if the expression was a simple onme. If so,
and the right side is a constant, an instruction is compiled to set
X6 to this constant and then go to the portion of the routine that

takes care of converting and storing the answer.

1f the right side was not a constant, but rather represented by a
temporary tag, an attempt is made to delete a store. If the store

is deleted, an attempt is made to delete a 106 instruction if there

was one. Then the answer is converted and stored. If the right side was
not represented by a temporary and was not a constant, or if it was a
temporary but the last instruction did not store the

answer into this temporary, CXP is called to compile instructions to

evaluate what is left of the arithmetic expression.

CNF~2

Thus, CXP is the routine that finally compiles the last of the statement
and brings the answer to X6 (and X7 if mode of expression is double or
complex). An attempt is made to delete an extra 106 instruction by
making the result of the last arithmetic operation X6, Instructions are
then generated to convert the mode of the calculated answer to that of

the left number of the statement if they are necessary.

The answer is now in X6 (and X7) and is ready to be stored in memory.

If the address that the answer should be stored in is in an index
register or if the address does not have to be calculated CIW is called
to compile the proper write instruction and CNF exits to PSN (Process
Statement Number), Otherwise, a search backwards of the compiled
instructions is made‘to see if there is a register free between the
present location and that of the temporary store of the address for the
énswer. If there is, an attempt is made to delete this address store
and use the address as it is in the register. Otherwise, CIW is again
called to compile the proper store instructions and then an exit is made

to PSN.

Subroutines Called: ALX - Assign Long Register

CIW - Compile Write Instructions

CXP - Compile Expression

TAB - Normalize Statement

TIQ - Translate Individual Quantities

UNP - Unpack Parenthesis

Temporaries/Flags: CJP = Current Jump Indicator

INK - Continue Indicator
RGX - Long Register Assignment
STN - Statement Number

Tables Referenced: None

Entry/Exit Register Conditions

Entry: B6 # zero if this is part of a conditional statement

Exit: None

COM-1

COM - PROCESS COMMON LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters
a COM declarative, the COM subroutine (Process Common List) is called.
The COM declarative permits the programmer to allocate blank common
. 8torage by indicating the number of words and an identifier for the
first word of the array. An example of the COM declarative together

with the basic steps in processing the list is shown in Figure CM-1.

On entering the COM subroutine, the TAB subroutime is called to normalize
thé list, If the mode indicator shows anything other than FORTRAN II,

a zero block name is entered into. the Common Name Table (Table 0). The
Variable Name Table (Table M) is scanned to determine if the identifier
has been previously entered and, if not, the identifier is entered into
the Variable Name Table. If the variable has previously been_entered in
the Variable Name Table, an error exit (Duplicate Tag Error) occurs,

The variable name is also checked to insure that the first character ié

alphabetic and that the name is composed of two or more characters.,

Next, a check is made for the equal sign, and the CVN (Convert Number)
subroutine is called, A machine constant error exit is taken if the

constant is negative or greater than 217-1

. If the constant is in the
proper range it is stored in the Array Parameter Table (Table Q). An
Array Tag (W-tag) is generated and stored in the corresponding Array

Tag Table (Table P) and Variable Tag Table (Table N).

Processing of the list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: ADF - Advance Tables
CVN
SCT

TAB - Normalize Statement

Convert Octal and Decimal Numbers
Scan Table

1~K0O 2an81g

COM DECLARATIVE PROCESSING

EXAMPLE: COM(BI=1,82=2, B3=3)

1.

2.

5.

6.

STORE VARIABLE NAME IN VARIABLE NAME TABLE
CHECK FOR EQUAL SIGN

CONVERT CONSTANT

STORE CONSTANT IN ARRAY PARAMETER TABLE

IF NEXT CHARACTER IS A COMMA, REPEAT 1 - 5
CHECK FOR A RIGHT PARENTHESIS

RETURN FOR THE NEXT SOURCE CARD

TR0D

COM-3

Temporaries/Flags: MOE - Program Mode (set)

Tables Referenced: TBM - Variable Name

TBN - Variable Tag
TBO - Common Name
TBP = Array Tag

TBQ - Array Parameter

'

Entry/Exit Register Conditions

CON-1

CON - PROCESS CONSTANT LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters

a CON declarative, the CON subroutine (Process Constant List) is called.
The CON declarative stores the constant in the list and tags the storage
location with the identifier in the list. An.example of the CON
declarative together with the basic steps in processing the list is

shown in Figure CON-1.

On entering the CON subroutine, the TAB subroutine is called to normalize
the list. The Variable Name Table (Table M) is scanned to determine if
the variable which has been equated to the constant has been entered, and,
if not, the variable is entered in the Variable Name Table. If the
variable has previously been entered in the Variable Name Table, an

‘error exit (Duplicate Tag Error) occurs. The variable name is also
checked to insure that the first character is alphabetic and that the

name is composed of two or more characters.

Next, a check is made for the equal sign, and the CVN (Convert Number)
subroutine is called. The constant is stored in the Hollerith Word
Table (Table A), and a Constant Tag (K-tag) is generated and stored
into the corresponding Hollerith Tag Table (Table B) and Variable Tag
Table (Table N).

Processing of list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: TAB - Normalize Statement

SCT - Scan Table
ADF - Advance Table
CVN - Convert Octal and Decimal Numbers

Constant Tag (set)

Temporaries/Flags: TGK

1~uon 2an31g

CON DECLARATIVE PROCESSING

EXAMPLE: CON(CI =25,C2=777B, C3=6.54E-2)

1.

STORE VARTABLE NAME (e.g., Cl) IN VARIABLE
NAME TABLE

CHECK FOR EQUAL SIGN

CONVERT CONSTANT

STORE CONSTANT IN CONSTANT VALUE TABLE
IF NEXT ENTRY IS A COMMA, REPEAT 1 - 4
CHECK FOR RIGHT PARENTHESIS

RETURN FOR NEXT SOURCE CARD

¢-NOD

CON.3

Tables Referenced: TBM - Variable Name Table
TBA - Constant Table
TBB - Constant Tag
TBN

Variable Tag

Entry/Exit Register Condition: DNA

Note: Error Exits: EMT - Machine Tag Definition Error
EMD - Machine Duplicates Tag Error
EMF - 1 Format Error

CRF - COMPILE FUNCTION REFERENCE

CRF is called to control the processing of a subroutine
reference. Upon entry, the string entry containing the
function is specified. Control will be routed to three

depending upon the type of subroutine reference. If it

CRF=-1

or function
tag for the
routines

is a built-in

function, PBR is called to evaluate it; for an arithmetic statement

function, PFR is called while PRR is called for a function/subprogram

reference. Upon return from these routines, CRF will exit.

Subroutines Called: PBR
PFR
PRR

Temporaries/Flags: TML - Argument Count for Call

:

Name Tag for Call
TMN - Argument Tag for Call

Tables Referenced: None

Entry/Exit Register Conditions:

Process Built-in Function
Process Statement Function

Process Function-Subprogram

Entry: B5 + address of start of subroutine reference

Exit: X7 = zero

CVN-1

CVN - CONVERT OCTAL OR DECIMAL NUMBER

The CVN subroutine converts an octal or decimal number, It is used for
constants in the address field of either a Machine or Ascent instruction.
The unsigned constant is sent to DEC (Convert Decimal Number) and if the
mode is Ascent, the sign is restored and a return to the calling program
with the value in the X6 register occurs. However, if the mode is
Machine, the B6 register is set to one and X6 contains the signed
converted constant. Also leading blanks of the address field are com-

pressed for machine instructions.

Subroutines Called: " DEC - Convert Decimal Number

Temporaries/Flags: MHI - Machine Instruction

Tables Referenced: None

Entry/Exit Register Conditions:

X6 - Converted Constant

B6 - if Machine =1

CXP-1

CXP - COMPILE EXPRESSION

CXP controls the evaluation of all arithmetic expressions, whether the
expression is part of an arithmetic replacement statement, in an argument
list, or the arithmetic expression of an IF statement., The starting
address of the expression is specified upon entry and instructions will
be compiled to evaluate the expression until a left parenthesis or comma
is found that is not part of an array reference, or until end of state-

ment has been reached.

Instructions are first compiled to calculate the address of all array
entries within the expression. CSR (Compile Subscripted References)

is called to compile these instructions and it will bring the address

of the array entry to a specified index register. As each array address
is calculated, the actual entry in the string is changed to an indirect
tag along with an indication of which index register the address in in,
and the rest of the array entry is squeezed out of the string. After
index register 6 has been used, AO is used to hold the next array address,
B7 is used to hold the address of the 1asﬁ array entry and all addresses

in between are saved in indirect cells.

It is assumed that by the time CXP is entered, all addresses for array
entries that appear more than once in the statement have already been
calculated and saved in an indirect cell and CXP makes no check to see
if this has been done. After instructions have been compiled'to
determine the address of all array entries in the expression and the
entries have been replaced by tags, the expression is ready to be
evaluated. The HEX routine is called first to evaluate any exponentials
within the statement., It will compile instructions to evaluate these
exponentials, and store the answer into a temporary cell. The string
entry for the exponential will be replaced by this temporary tag and

the expression will be squeezed down. Since HEX has to examine every
éntry in the expression, it will also determine the dominant mode of the
expression and, if there are any logical relations, it will set the

logical relation flag.

CXP=-2

When HEX returns to the CXP routine, the logical relation flag is checked
and the HLR routine to handle logical relations is entered if any have
been detected. Depending upon the dominant mode of the expression, CXP
will then branch off to a routine to handle each mode. Generally, these
routines are responsible for compiling instructions to evaluate the rest
of the expression, converting all entries in the expression to the
dominant mode if they. are not in that mode already, and finally bringing
the result of the expression to X6 and X7 if the dominant mode is double
or complex. CXP will then change the last string entry of the expression

to flag the dominant mode of the expression and exit.

Subroutines Called: AAR

ANK - Analyze Address Generating Instructions
for Right Number

ALX - Assign Long Register

Analyze Array Reference

BEX - Compile Simple Boolean Expression
CSR - Compile Subscripted Reference

FEX - Compile Simple Floating Expression
HEX - Handie Exponentials

HLR - Handle Logical Relations

JEX - Compile Simple Integer Expression
KEX - Compile Simple Complex Expression
LEX - Compile Simple Logical Relation
MEX - Compile Simple Double Expression

Temporaries/Flags: ARI - Array Reference Count
BIT - Bypass Interregister Transfer Indicator
HIC - Highest Index Couﬁt
ICL - Simple Logical Relation Indicator
ICU - Index Tag
ICV - Upcoming Statement and Unpack Indicator
IGX - Current Index Assignment
INM - Logical Relation Indicator
INO - Dominant Mode Indicator
INX - Upcoming Statement Indicator
INY - Complete Unpack Indicator

CXP-3

SAR - Single Array Reference Count
TGL - Indirect Tag

TGT - Temporary Tag

TMF - Start of Array Reference

IMG - Expression of Index Assignment

TMH - Start of Expression
VIA - A Register Associate '
VIY - X Register Associate

Tables Referenced: None

Entry/Exit Register Conditioms:

Entry: B5 - Address of the start of expression

Exit: None

CXP - COMPILE EXPRESSION (SIMPLIFIED)

IS THE ARRAY REFERENCE
COUNT ZERO ?

NO

READ STRING BUFFER ENTRY
END OF STATEMENT REACHED?

NO

IS ENTRY ")M QR m,n ?

| wo

I8 STRING ENTRY A "(n" ?

NO

YES

IS THERE AN AVAILABLE
INDEX REGISTER ?

YES

YES

YES

> ‘!’ NEXT PAGE

YES
AT

RJ COMPILE SUBSCRIPTED
REFERENCE (COMPILE
INSTRUCTIONS TO BRING
ELEMENT ADDRESS TO By)

REPLACE STRING ENTRY WITH
TAG AND INDEX ASSIGNMENT
(IF ANY): COMPRESS STRING

NO

RJ COMPILE SUBSCRIPTED
REFERENCE (COMPILE

INSTRUCTIONS TO BRING
ELEMENT ADDRESS TO B7)

BRING NEXT ELEMENT
ADDRESS TO Ao

4

YES

HAVE ALL ARRAY REFER-
ENCES BEEN PROCESSED ?

YES

NO

18 Ao AVAILABLE ?

NO

STORE NEXT ELEMENT
ADDRESS IN INDIRECT
LOCATION

CXP-COMPILE EXPRESSION

4¥=dX0

FROM PREVIOUS PAGE

RJ HANDLE EXPONENTIALS
(SET DOMINANT MODE
INDICATOR)

DID THE EXPRESSION CONTAIN

ANY LOGICAL RELATIONS 7 TES RJ HANDLE LOGjGAL RELATIONS |
NO |-
[IS THIS A BOOLEAN EXPRESSION? |—————» RJ COMPILE SIMPLE BOOLEAN p{ EXIT
NO YES EXPRESSION '
IS THE DOMINANT MODE INDICATOR 2| RJ COMPILE SIMPLE LOGICAL o EXIT
SET TO LOGICAL ? I vEs EXPRESSION
NO
IS THE DOMINANT MODE INDICATOR | po| RJ COMPILE SIMPLE INTEGER |
SET TO INTEGER ? YES EXPRESSION
NO
IS THE DOMINANT MODE INDICATOR | pJRJ COMPILE SIMPLE FLOATING EXIT
SET TO FLOATING-POINT ? YES EXPRESSION
NO
IS THE DOMINANT MODE INDICATOR | oI RJ COMPILE SIMPLE DOUBLE EXIT
SET TO DOUBLE PRECISION ? YES DOUBLE EXPRESSION
NO
IS THE DOMINANT MODE INDICATOR | o R; COMPILE SIMPLE COMPLEX T
SET TO COMPLEX YES EXPRESSION

NO

| EXPRESSION FORMAT ERROR

§=dX0

DEC-1

DEC - CONVERT DECIMAIL NUMBER

The DEC subroutine converts a decimal constant to its binary equivalent:
it also checks for octal constants of the form nnn....nB. (Note: octal
constants of the form fnnn....n which appear in arithmetic statements
are recognized by the Translate Variable subroutine.) DEC is called
when a numeric entry is recognized in a DATA statement or arithmetic
statement. On entering DEC, the string buffer address of the numeric
entry is contained in the B5 register. When the TAB subroutine
normalized the statement, it employed the ASN subroutine to pack digits
into words. The ASN subroutines assembles up to seven digits per word,
so numbers in the string buffer may occupy several entries. TFor
example, a 20 digit octal constant would appear in the string buffer

as shown in figure DEC-la. Similarly, decimal constants may occupy
several words. For example., a floating-point number such as 37.84625184E~40

would appear in the string buffer as shown in figure DEC-1b,

DEC searches the next three entries following the numeric entry to
determine if the number is followed by a "B", TIf it is, the Convert
Octal Constant (OCT) routine is called to comvert the number. If the
numeric entry was not followed by a B, this and succeeding entries are
read, converted to binary, and packed in an assembly register. Con~-
version continues until a non~numeric entry is encountered or until more
than 18 digits have been processed. The latter condition results in

an error exit, The non-numeric which terminated this part of the con-
versation is examined to see if it is a period (i.e., a decimal point):
if it is not, then the constant is an integer constant, If the non-
numeric is a decimal point, then the entries following the decimal

point are read, converted to binary, and packed in the assembly register,
Conversion again continues until a non-numeric entry is encountered or
until more than 18 digits have been processed. The number of digits

in the fractional part are saved to be used later in computing the proper
exponent value, and the assembled binary number is converted to

floating=~point and n:rmalized.

Figure DEC-la: FORMAT OF A 20-DIGIT

nnnnnnn nannnnn nnnnnn B OCTAL NUMBER IN THE
. STRING BUFFER

Word 1 Word 2 Word 3 Word 4

37 . 8462518 4 E - 40

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

Figure DEC-1b:

'FORMAT OF A FLOATING-POINT CONSTANT,
37.84625184E-40, IN THE STRING BUFFER

[Aatt (44

DEC=-3

The non-numeric entry which terminated the conversion of the fractional
part of the number is then examined: if it is a D or an E, the sign
of the exponent is stored and the exponent converted to binary, This
exponent is then combined with the number of digits in the fractional

part of the number, and converted to the appropriate powers of two.

Subroutines Calléd: OCT - Convert Octal Constant

Temporaries/Flags: none

n
Tables Referenced: Table of Powers of 102 (REG)

Entry/Exit Register Conditions

Entry: B5 = address of numeric entry in string buffer
Exit: B5 = address + 1 of last entry processed (i.e., the
string buffer address of the entry following
the number) .
X6 = number
X2 = 0 (second word of a double precision conversion)
B6 = Mode Indicator

Note: The mode indicator is set as follows:

Mode Constant
1 Octal
2 Integer
4 Floating Point
5 Double Precision

FIN-1

FIN - FORM INSTRUCTION

In the processing of Ascent or Machine records, an intermediate language
is generated and stored in the string buffer. The FIN subroutine forms
the octal instruction by examining the string buffer which has been
flagged by the RDA routiﬁes. FIN first determines if the instruction

is a long (30-bit) instruction. An equal sign in column 8 and either a
positive result in the TOS Table look-up or entries 0-3 of the TOI Table
look-up (see Appendix B) are 30-bit instructions. For these long
instrﬁctions, FIN can determine the instruction by examining columns 7,
12 and 13. If column 7 is a P or R and column 12 is a period, then
column 13 defines which 03 instruétion‘should be formed. The X, A and
B registers are always indicated by an A, C or B respectively, and a

K address is flagged with a G. If column 7 is a P or R and column 12

is not a period, then column 12 describes instructions 04-07.

If column 7 is an A, C or B, it describes the resultant or "i" register

and a table look-up provides the exact instruction. The tables searched
are TOI for instructions 50-77, TOP for instructions 11-13, 15-17,

30-42, 44-45 and TOS for 10, 14, 20-27, 43, 47 and certain long instructions
with implied XO registers (see Figure RDA-1 for the flags corresponding

to given instructions). Once the instruction is selected, a jump to

FSI (Form Short Instruction) or FLI (Form Long Instruction) is taken.

Entry conditions are the flagged string, III, JJJ and KKK register
constants. X5 contains the K value where applicable and X7 contains
the current word address. Calls to further routines combine the opéode

and registers.

Subroutines Called: SCS - Special Search

FSI - Form Long Instruction
FLI - From Short Instruction

Temporaries /Flags:

Tables Referenced:

III
JJJ

TOI
TOP
TOS

FIN-2

i Portion of Machine Word
j Portion of Machine Word

k Portion of Machine Word

Table of Format Checks on Instructions 50-77
Table of Identifying Characters
Table of Special Formats

FLI=-1

FLI - ASSEMBLE LONG INSTRUCTION

When the FIN (Form Instruction) subroutine encounters a 30-bit Ascent
or Machine instruction, the FLI subroutine is called. The FLI routine
assembles these instructions as a 6-bit opcode, a 3-bit resultant
register, a 3-bit operand register and a 15-bit address. Then it
arranges these instructions -in the parcels of a 60-bit machine word.

If an RJ instruction is found, a full word is indicated. Upon entry,
X0 contains the opcode right-justified, Bl and B2 contain the resultant
and operand registers respectively. FLI calls the CDC (Convert
Instruction or Constant Tag to Display Code).subroutine to form and
insert in the output buffer the display code equivalent for this
instruction. Next, the routine checks the intraword count and if the
30-bit instruction cannot be inserted, a call to the ARA (Adjust Address
and Write Registers) subroutine is made and the 30-bit instruction goes
to parcels 0 and 1 of the next word., If the 30-bit instruction can fit,
a test is made to properly place this instruction and the intraword
counter is incremented by 2. Upon exit from this routine, both the

display code and binary forms have been recorded.

Subroutines Called: CDC - Convert to Display Code
ARA - Adjust Address and Write Register

Temporaries/Flags: ICT - Intraword Instruction Counter (set)

Tables Referenced: None

Entry/Exit Register Conditions:

X0 opcode (binary)
Bl - i portion of instruction else O
B2 - j portion of instruction

X7 - current instruction word address

FSI-1

EST - ASSEMBLE SHORT INSTRUCTION

When the FIN (Form Instruction) subroutine encounters a fifteen bit
Ascent or Machine instruction, the FSI subroutine is called. The FSI
subroutine assembles a six bit opcode, three bit resultant register (1)
and two three bit operand registers (j, k), then stores the display code
equivalent in the output buffer. Upon entry into this routine, X0
contains a table (TOP, TOS or TOIL) entry, If bit 18 of X0 is set then

a test is made on bits 6-11, if 6-11 are zero, Bl, B2 and B3 contain
the correct ijk register respectively. If bits 6-11 are equal to one,
then X5 contains the corrected values for the i, j and k registers and
if bits 6-11 equal two, the j and k registers must be interchanged.
These bits may cohtain another value only if the i and j registers are
equivalent. If bit 18 is not set, then B1, B2 and B3 contain the i,

j and k registers and X0 contains the octal op code, A call is made

to CDC (Convert Instruction or Constant Tag to Display Code) then a
check is made as to the correct parcel in the current word. Since
only one fifteen bit instruction is assembled, the intraword counter

is incremented by one. Upon exit from this routine, both the display

code and binary forms of the instruction have been recorded.

Subroutines Called: CDC - Convert Instruction or Constant Tag to
Display Code

Temporaries/Flags: ICT - Intraword Counter (set)

Tables Referenced: None

Entry/Exit Register Conditions:

B1 resultant register

B2 first operand register

B3 second operand register

X0 opcode

X5 register values under certain conditions

X7 current instruction word address

HOL-1

HOL - PROCESS HOLLERITH LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters

an HOL declarative, the HOL subroutine (Process Hollerith List) is
called. The HOL declarative allows a ten character group to be stored
in display code and tagged with an identifier. An example of the HOL
declarative together with the basic steps in processing the list is shown

in Figure HOL-1.

On entering the HOL subroutine a jump is taken to ASV (Assemble Variable)
to isolaté the identifier. If the identifier is not followed by an

equal sign an error exit (Machine Format Error) is taken. The identifier
is also checked to insure that the first character is alphabetic and

that the identifier is composed of two or more characters. Then the
Variable Name Table (Table M) is scamned to determine if fhe identifier
had been previously entered, and, if not, the identifier is entered into
the Variable Name Table. If the identifier had previously been entered

in the Variable Name Table, an error exit (Duplicate Tag Error) occurs.

Next, ten characters are assembled from the string. These ten characters
are entered into the Hollerith Word Table (Table A). A Constant Tag
(K-tag) is generated and stored into the corresponding Hollerith Tag
Table (Table B) and Variable Tag Table (Table N),

Processing of the list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: ASV
SCT
ADF

Assemble Variable
Scan Table

Advance Table

Temporaries/Flags: TGK - Constant Tag (set)

I-10H @an813

HOL DECLARATIVE PROCESSING

EXAMPLE : HOL (HI:ABCDE FGHIJ | H2 :l234567890>

1. CHECK FOR AN EQUAL SIGN
2. STORE VARIABLE NAME (e,g.,H1) IN THE VARTABLE NAME TABLE
3. ASSEMBLE TEN CHARACTERS

4. STORE THZ HOLLERITH -FIELD IN THE CONSTANT TABLE

5. GENERATE A CONSTANT TAG AND STORE IN TABLE

6. IF THE NEXT ENTRY IS A COMMA, REPEAT 1- 5

7. CHECK FOR A RIGHT PARENTHESIS

8. RETURN FOR THE NEXT RECORD

¢-"T0H

HOL-3

Tables Referenced: TBM - Variable Name Table

TBA - Hollerith Word Table
TBB - Hollerith Tag
TBN - Variable Tag

Entry/Exit Register Conditions: DNA

Note: Error Exits: EMT =- Machine Tag Definition Error
EMF - Machine Format Error
EMD - Machine Duplicate Tag Error

IFH

IFH - PROCESS IF SENSE STATEMENT

IFH is called from IFS when it is determined that the IF might be a

SENSE SWITCH or SENSE LIGHT type IF. After some initial checking to

see that the format of the statement is correct, and determining which
type sense it is, the two branches of the statement are changed to tags.
Instructions are then generated to read RA of the program, to mask off

the declared switch or light (actually these are the same), and a zero
jump is compiled to the second branch. If the statément was a SENSE LIGHT
IF,linstructions are compiled to turn this light on. Finally, instructions
are compiled to jump to the other branch of the statement if it is not

the same as the upcoming statement number, and control is transferred to

PSN to process the statement number.

Subroutines‘Called: ASL - Assemble Letters
ASN - Assemble Numbers
ISN
cun

Identify Statement Number

Tag Upcoming Statement Number

Temporaries/Flags: None

Tables Referenced: None

Entry/Exit Conditions:

Entry: None
Exit: None

IFL-1

IFL - PROCESS LOGICAL IF STATEMENT

IFL is entered once the IFS routine determines that the statement is not
an I/0 type IF and that the first entry past the right parenthesis is not
a statement number, At this time, the last parenthesis is replaced by a
zero entry to flag the end of the statement and the statement is normalized
starting with the second parenthesis. The first parenthesis is replaced
by an equals sign in order to simulate an arithmetic expression and the
individual entries in the statement are translated to proper tags. UNP

is called to control the evaluation of all portions of the expression that
are imbedded in parenthesis., CXP is then called to complete the eval-
uation of the ‘expression. An instruction is compiled to count the number
of ones in X6 and a zero jump instruction over the coding that will be
generated by the evaluation of the rest of the logical IF statement is
compiled. An attempt is made here to eliminate a BX6 Xi instruction if

it was the last one compiled in the evaluation of the expression. The
processed portion of the IF statement is changed to blanks, the address

of the zero jump instruction is saved as the current jump and a return to
the main routine is made at CPQ which is the return for a conditional

statement,

Subroutines Called: CXP - Compile Expression

TAB - Normalize Statement
TIQ - Translate Individual Quantities

UNP -~ Unpack Parenthesis

Temporaries/Flags: CJP - Current Jump

TGH - Statement Tag
TMO - Start of Conditional Statement

Tables Referenced: None

IFL-2

Entry/Exit Register Conditions

Entry: B3 = address of first left parenthesis in string

B4 = address plus one of last right parenthesis

Exit: BS = 243 to flag a conditional statement next

IFS-1

IFS - PROCESS IF STATEMENT

The IFS routine controls the evaluation of an IF statement. The system
allows four types of IF including the I/0 checks, the SENSE SWITCH AND
SENSE LIGHT checks, the logical type IF, and the normal arithmetic
expression with two or three branches. The first seven characters past
the first left parenthesis are extracted and a check is made tc see if
this might be a SENSE type IF. If so, control is passed to the IFH
routine. If not a check is made to see if it is some type of 1/0 check,
and if it is, it is evaluated within this routine. If it is not an I/0
type IF, the first entry after the last right parenthesis is examined. If
it is not a number, a logical type IF is assumed and control is trans-

ferred to the IFL routine.

I/0 type IF: After extracting the tape number and determining which type
of I/0 check is being made, the routine to compile tape
handling instructions (PMT) is called. After returning
from this routine, the call.to the proper routine will have
been compiled and then the proper tests will have to be
generated., For an "IF(UNIT, """ I/0 check, tests are
generated to jump to each one of the branches. The upcoming
statement number is checked for the reétfof_the 1/0 checﬂs
and one of the test jumps is eliminated if possible.

Normal IF: When it has been determined that it is a normal IF, the
statement has been normalized and the first entry past the
last right'parenthesis is a number. In order to use the
existing arithmetic statement procéssing,column seven is
changed tc an equals sign, and the routine called UNP is
called to control the processing of all portions of the
statement embedded in parenthesis. CXP is then called to
complete the evaluation of the expression and the appropriate
test jumps are then generated with checking for equal
branches and branches the same as the upcoming statement
number. Any unnecessary test jumps are thus eliminated.
Control is fhen given to the PSN routine to process the

statement number.

Subroutines Called: ASL - Assemble letters

ASN - Assemble numbers

ASV - Assemble variable

CUN - Tag upcoming statement numbers

CXP ~ Compile expression

ISN - Identify statement number

PMT -~ Compile tape handling instructions
TAB - Normalize statement

TIQ ~ Translate quantities

UNP - Unpack parenthesis

Temporaries/Flags: TMI - First statement number

TMJ - Second statement number
TMK - Third statement number

Iables Referenced: None

Entry/Exit Register Conditions

Entry: B4 = First left parenthesis of statement
Exit: None A ‘

IFS=-2

ISL-.

ISL - IDENTIFY SYMBOLIC TAG

The ISL subroutine is called when a symbolic tag is being processed by
PIC (Process Tag and Constant)., ISL checks the tag length; it must be
less than six alphanumeric characters, then the Argument Name Table
(Table I) is scanned and if the variable is found to be there, a normal
return is taken. If the variable does not yet appear in the table, a
statement tag is generated and both the tag and name are sent to the

Variable Name Table. The generated tag is returned in the X6 register.

Subroutines Called: SCM - Scan With Masking

Advance Tables

5

Temporaries/Flags: TGH - Statement Tag

Tables Referenced: TBI

Argument Name Table

Entry/Exit Register Conditions:

Entry: X6 - Variable Name

Exit: X6 - Generated Statement Tag

ISN - IDENTIFY STATEMENT NUMBER

The ISN subroutine searches the Statement Number Table (Table K) for a
specified statement number and, if not found, enters it in the Statement
Number Table. On entering the ISN subroutine, leading zeroes are
deleted from the statement number, and the number checked to see if it
is composed of more than five digits. If the number contains more than
five digits, or contains a non-numeric character, an error exit (State-
ment Number Erroxr) occurs. If the number is a valid statement number,
the Statement Number Table is searched: if the number is found in this
table, control is returned to the calling program., If the number is

not found in the Statement Number Table, it is entered in this table,
and a statement tag (H tag) is generated and stored in the corresponding
entry in the Statement Tag Table (Table L). Control is then returned

to the calling program,

Subroutines Called: SCT - Scan Tables
ADF - Advance Tables

Temporaries/Flags: TGH - Statement Tag (set)

TIables Referenced: Statement Number Table (Table K)
Statement Tag Table (Table L,)

Entry/Exit Register Conditions

Statement number

Entry: X6

Exit: X6 = corresponding tag from Statement Tag Table

KOT-:

KOT - CONVERT BINARY TAG TO MNEMONIC TAG

The KOT subroutine converts the binary tag associated with the instruction
to a mnemonic tag which is printed with a compiled listing. Input to
the routine is from CDC (Convert Instruction or Constant Tag to Display
Code) which places the binary tag left-justified in the X1 register,
Output is the alphanumeric tag in display code. Tags in the range of
200000 to 600000 are converted by examining the upper 5 bits and
selecting a letter (L, I, T, C, F, A, V, N or S) for this configurationm.
The sixth bit, if set, generates a 1 as the second character and if
unset, generates a zero. The remaining four digits are merely converted
to their display code equivalent. The program tag description given

in the appendix shows the exact letter given above for any given numeric
tag.

Subroutines Called: None

Temporaries /Flags: MOD - Machine/Ascent Indicator

Tables Referenced; None

Entry/Exit Register Conditions:

X1 binary tag left-justified
X6 mnemonic tag left-justified

LST - PROCESS INPUT/OUTPUT LIST

The calling sequence to the execution time I/0 routines is constructed
by LST. The statement ppocessor, RIT (READ), WOT (WRITE), PNC (PUNCH),
etc., decides from the form of the statement which execution time
routine is to be referenced. Also, the file name from the logical unit
parameter has been constructed and B3 contains the address of the format

statement.

At least three calls are made to the I/0 subroutines - 1) initialization
2) intermediate 3) termination. There will be an intermediate entry
for each array or data item to be transferred. Naturally, an I/0
statement without a list would have only two entries made to the sub-
routine. The ENCODE/DECODE statements have a different initialization
entry for their subroutines but the intermediate and termination entries

are the same. The subroutines that will be referenced are:

INPUTC for coded reading

INPUTB for binary reading
INPUTS for DECODE

OUTPTIC £for coded writing

OUTPTB for binary writing
OUTPTS for ENCODE

The calling sequence for these subroutines, except INPUTS and OUTPTS is:

Initialization: Bl =0

B2 = address of parameter or complemented
address of variable tape number

B3 = address of format statement

Intermediate: Bl = address of data item or beginning
address of array

B2 = array length or 0

Termination: Bl -1

LST-1

LST=-2

For INPUTS and OUTPTS:

Initialization I BL =0
B2 =0
B3 = address of format statement

B4 = number of coded characters

Initialization II Bl = address of packed data
B2 =0

All files to be referenced within a program must be declared on the
PROGRAM card. Each name is entered into the File Name Table. When-
even a reference is made to a file, the location of the buffer parameter
list may be retrieved from this table if the logical unit number is not
a variable. The address is then set in B2 to be sent to the subroutine.
In the case that the logical unit number may vary, PMD (Process Tape
Medium for Input/Qutput) will pass the address of the variable in
complemented form to the subroutine. The initialization entry to the
subroutine is then made with Bl, B2, and B3 set accordingly. TSF

(Tag Special Function) finds the tag associated with the subroutine to

be called and this tag is used in the return jump instructionm.

TAB (Normalize Statement)-removes unnecessary blanks, and packs the
variables and constants into one-word string buffer entries. Replacing
the variables with tags is done by TIQ (Translate Individual Quantities).
A simple variable address is set in Bl and B2 is zero unless the

variable is double or complex in which case B2 = 2,

An implied DO-loop transfer makes an entry into the subroutine for

each item in the array. Example: READ (25, 10) (T(I), I=1, 8) causes
the subroutine to be referenced eight times. However, if T had been
dimensioned then READ (25, 10) T would transfer the whole array with only
one entry becuase the array length is retriéved from the Array Parameter
Table and set in B2. The implied DO-loop code is generated by HBL
(Process Left Parenthesis) and HCL (Process Equal Sign).

An array variable which is subscripted in the list requires CSR (Compile
Subscripted Reference) to fetch the address of the word within the array.

This address is sent in Bl and B2 will be zero since only one word of

LST-3

the array is being transferred.

If the variable was an argument to the routine, then it would have a
location tag. If this tag is not in the Array Tag Table, then it must
not have been dimensioned. GAT (Compile Afgument Address Pick) gets the
address that was passed to the routine and sets it into Bl.

A variable with a location tag that was found in the Array Tag Table
may '
1) be followed by a subscript
2) have had fixed dimensions and the entiré‘array is to be transferred

3) have variable dimensions and the entire array is to be transferred

In the first case, the subscript is handled in the same way as an array
that was not passed to the routine as an argument. CSR (Compile
Subscripted Reference) compiled instructions to fetch the proper word

within the array and this address is set in Bl.

An array variable used as an argument which appears in a DIMENSION
statement may have the dimensions as constants or variables. A variable
dimension also enters the routine as an argumént. If the dimensions are
constants, then the array length of the variable is read from the Array
Tag Table and saved in the Constant Value Table. CIR (Compile Read
Instructions) is called to fetch this value as a different argument is
passed to the routine. B2 is then set to this array length and the
beginning address of the array is found by GAT (Compile Argument Address
Pick). '

Variable dimensioned arrays have an entry in the Array Tag Table but
the array parameters are given location tags instead of constant values,

16 bit of the corres-

By scanning the Array Tag Table and checking the 2
poinding entry, it can be determined whether or not the dimensions have
location tags. Instructions are compiled to construct the length of the
array. If it is a single dimensioned array, then just the address of
the one variable is sent in B2. A two dimensioned array must use the
product of these two variables as a length. So with three dimensions,
another product of the third dimension and the first two necessary for

the length. 1In all cases-the beginning address of the array is sent to

LST-5

the subroutine in Bl and the length is set in B2. A double or complex
‘variable always has an array length twice the size available from the

Array Parameter Table set in B2,

When the last data item has been processed, then a final entry with Bl = 1
is compiled to the subroutine. CRI (Compile Restore Instruction) is called
to restore the addresses of the arguments to index registers if there

were any arguments passed to the routine.

Subroutines Called: ADF - Advance Table
ASV - Assemble Variable
CLA - Clear All Registers
CIR - Compile Read Instructions

CRI - Compile Restore Instructions

CSR - Compile Subscripted Reference
GAT - Compile Argument Address Pick
HKCL - Process Equal Sign

HBL - Process Left Parenthesis

PMD ~ Process Tape Medium

-SCM - Scan Table With Mask

SCT - Scan Table

TAB -~ Normalize Statement

TIQ -~ Translate Individual

TSF - Tag Special Function

rgbra;mghg: T™MA - Pseudo Statement Number
TMD - Subroutine Tag

Tables Referenced: Constant Value (A)
' Constant Tag (B)
Array Tag (P)
Array Parameter (Q)

Entry/Exit Register Conditions:

Entry: X4 - Subroutine Name

X5 - Filename

B6 - Nz if ENCODE/DECODE
Exit: ©None

LST-6

MAA-1

MAA - PROCESSING MACHINE OR ASCENT RECORDS

When the Run compiler interprets an Ascent or Machine header card, all sub-
sequent records, without an * in column 1 until the next END card, are
processed by the MAA subroutine. MAA first concerns itself with the
operation field of the current record., Examining this field determines

one of four types for this record (reference Figure MAA-1): 1) a constant

or Machine register notation, 2) an Ascent mnemonic, 3) an Ascent pseudo-op or

4) a Machine declarative or FORTRAN non-executable.

The first group is processed in the MAA routine while the other three are
linked with a series of subroutines. Upon determining a Machine
operation or constant, MAA calls the PST (Process Location Tag) sub-
routine to store and tag the statement label or suppress any leading
blanks. Next, a check is made for a left parenthesis indicating a

block reservation request. Several checks are made for the correct

form for this instruction. if there is a positive decimal or octal

number enclosed within parenthesis, followed by an end of statement, and a
core overflow will not occur, then MAA allocates and initializes to

zero the given number of cells, and a jump to a common return area
occurs. (reference Figure MAA-2). Should the type one processing encounter
a constant, a jump is taken to ARA {Adjust Address and Write Register)

to write the previous word. Thewa jump to TAB (Normalize Statement)
reordersthe string buffer and a jump to CVN (Convert Comstant) stores

the octal equivalent to the FORTRAN acceptable constant. If this section
has been entered from another type processing a check is made on the
‘constants range. In any event, the common return area is entered.
(reference Figure MAA-3). Sensing a dollar sign in the instruction

field transfers control to the type 2 processing of a NO instruction.
Another acceptable form for type 1 is the constant section header card.
This card will cause a call to ARA (Adjust Address and Write Register)
subroutine, set the instruction word counter, write blanks into the
output buffer,write the record, read the next record, check for an

end of file which is illegal at this point, then return to the main

Run loop. (reference Figure MAA-4).

Type 1 processing of a Machine register notation calls the PAF (Process

1=VVR @2an313

TYPE | TYPE [/ TYPE 11l TYPE |V
NO LETTERS TWO LETTER ASCENTF PSUEDO- MACHINE
ASCENT MNENOMICS OPERATIONS DECLARATIVES
® HEADER CARD
| ® 2 LETTER OPCODES ® BSS ® CON
® CONSTANTS
® 2 LETTER + DIGIT * EQ ® ABS
OPCODES |
MACHINE OPCODES ® DEC * SUB
® BCD ® RES
® CON * coM
® BSSZ ® HOL
® FORTRAN
STATEMENTS

OPERATION CODE FIELD TYPES

VW

MAA-2-2

Additive Field) subroutine. This routine flags the string buffer with
an intermediate language identical to RDA's processing of Ascent
instructions (reference Figure RDA-1). If a tag or constant has not
been processed, the PTC (Process Tag and Constant) subroutine is called,
then FIN (Form Instruction) is called and the processing is continued

as in type 2.

The common return'section indicates a full word has been processed, calls
CDC (Convert to Display Code) for the output listing, writes the record
into the buffer area, reads the next record, checks for an illegal end
of file, then returns for processing this record. The return calls

AFS (Assemble FORTRAN Statement) and if an * is found, the next record
is read and checked; if not, MAA is re-entered from the Run main loop.
The processing of type 2 Ascent mnemonics also calls the PST (Process
Location Tag) subroutine then calls the RDA (Reduce Ascent Format)
subroutine to flag the string buffer with an intermediate language
(reference Figure RDA-1). A test is made to determine if the Ascent
instruction had a constant or tag in the address field, or a literal

in the instructioﬁ field. If the latter condition exists, control is
transferred to type 1 processing described above., If the former
condition exists, a call to PTC (Process Tag and Constant) will convert
these fields before calling the FIN routine., If neither of the above
conditions exist, then a direct transfer to FIN (Form Instruction)
routine which interprets the string buffer and generates the 15 or 30
bit instruction. These routines also store the binary word.. Then

the buffer is written and the next record read, checked for an end of

file, and control returns to the Run main loop.

Type 3 processing is merely a table look-up resulting in an unconditional
transfer to an open routine which generally returns to the common return
area of the type 1 proceséing (reference MAA-5). These open routines are
ACE (Process Ascent EQU), ACH (Process Ascent BCD and DPC), and ACR, ACK
(Process Ascent CON). A transfer to this section without a f£ind results

in an error exit.

The processing of type 4 instructions checks the relative position of

the declarative or FORTRAN statement, These instructions must appear

at the beginning of the program. If a FORTRAN statement is detected,

Z-VWW @an81g

BLOCK RESERVATION PROCE SSING

EXAMPLE 3 BLKI (/00) |

¢ CHECK THE FORMAT

®* CONVERT THE CONSTANT

® INCREMENT THE RUNNING RELATIVE ADDRESS
¢ CHECK THE TOTAL FIELD LENGTH

* INITIALIZE THE STORAGE AREA

®* CONVERT TO DISPLAY CODE

* OUTPUT TO BUFFER

‘ INPUT THE NEXT RECORD AND RETURN FOR PROGESSING

E=-YWH

€-¥WVW 21n31g

CONSTANT __SECTION PROCESSING

EXAMPLE : CONI 15.64E03

* NORMALIZE STATEMENT

¢ CONVERT TNE CONSTANT

. STORE CONSTANT INTO OUTPFT BUFFER
* INDICA&E FULL WORD INSTRUCTION

* CONVERT TO DISPLAY CODE

¢ TRANSFER TO OUfPUT BUFFER

* READ %¥E NEXT RECORD

* IF NOT AN END OF FILE, RETURN FOR PROCESSING

=YV

#=VVH 2an31g

CONSTANT HEADER CARD PROCESS|NG

* CHECK FOR THE FIRST HEADER CARD

® SET CONSTANT SECTION FLAG

* WRITE ﬁLANKS INTO THE OUTPUT BUFFER
¢ READ THE NEXT RECORD

IF NOT AN END OF FILE, RETURN FOR PROCESSING

S-VVR

MAA-6

Additive Field) subroutine. This routine flags the string buffer with

an intermediate language identical to RDA's processing of Ascent
instructions (reference Figure RDA-1). If a tag or constant has not

been processed, the PTC (Process Tag and Constant) subroutine is called,
then FIN (Form Instruction) is called and the processing is continued

as in type 2. (reference MAA-6). The common return section indicates a
full word has been processed, calls CDC (Convert to Display Code) for

the output listing, writes the record into the buffer area, reads the next
record, checks for an illegal end of file, then returns for processing this
record. The return calls AFS (Assemble FORTRAN Statement) and if an *

is found, the mext record is read and checked; if not, MAA is re-entered

from the Run main loop.

The processiné of type 2 Ascent mnemonics also calls the PST (Process
Location Tag) subroutine then calls the RDA (Reduce Ascent Format)
subroutine to flag the string buffer with an intermediate language
(reference Figure RDA-1). A test is made to determine if the Ascent
instruction has a constant or tag in the address field, or a literal

in the instruction field. If the latter condition exists, control is
transferred to type 1 constant processing described above. If the former
condition exists, a call to PTC (Process Tag and Constant) will convert
these fields before calling the FIN routine. 1If neither of the above
conditions exist, then a direct transfer to FIN (Form Instruction)
routine which interprets the string buffer and generates either a 15-bit
or 39-bit instruction. The routines called by FIN store the binary word.
Then the buffer is written and the next record is read, checked for an
end of file which is illegal at this point and then transferred to the

main loop of Run.

Type 3 processing is merely a table look-up resulting in an unconditional
transfer to an open routine which generally returns to the common return
area of the type 1 processing (reference MAA-5). These open routines are
ACE (Process Ascent EQU), ACH (Process Ascent BCD and DPC), ACR (Process
BSS and BSSZ, ACK (Process Ascent CON). A transfer to this section without

a find results in an error exit.

The processing of type &4 instructions checks the relative position within the

program of the declarative or FORTRAN statement. These instructions must
appear at the beginning of the program. 1f a FORTRAN statement is detected,

S-VVK 2an81g

PSUEDO OPERATION PROCESSING

EXAMPLE: TAGA BSS 5

BSS5Z 7
CON 6.3

MOVE OPCODE TO COLUMN 7 OF THE STRING
END STRING AT FIRST BLANK

IF BSS/BSSZ: STORE A RIGHT
PARENTHESIS IN THE STRING

GO TO TYPE I PROCESSING

EXAMPLE: TAGE EQU 777

1. PROCESS LOCATION TAG
2. INSERT EQUAL SIGN

3. GO TO TYPE IV (ABS) PROCESSING

EXAMPLE: TAGD BCD nAA. A, 2Z/0

TAGE DPC ¥A,,.. Agx

1. 'PROCESS LOCATION TAG

2. ACCUMULATE TEN GHARACTERS

3. NORMAL EXIT IF IN CONSTANT SEGTION
‘4. ERROR EXIT TF NOT IN CONSTANT SEGTION

5. GO TO TYPE I PROCESSING

L=VVR

9-yyW 2an81g

MACHINE INSTRUCTION PIROCESSING

EXAMPLE .

T= (C*'TAG)

PROCESS ADDITIVE FIELD

PROCESS TAG OR CONSTANT, IF ANY
FORM INSTRhCTION

WRITE CODED RECORD

READ NEXT RECORD

IF NOT AN END OF FILE, RETURN FOR.PROCESSING

8=VYVH

PROGRAM ORDER

HEADER CARD

FORTRAN CARDS, IF ANY

DECLARATION CARDS, IF MACHINE HEADER CARD
INSTRUC?ION CARDS

CONSTANT HEADER CARD

CONSTANT CARDS

END CARD

11- WK

ASCENT MNEMONIC PIROCESSING

EXAMPLE : SXl = X+ TAG

1.

PROCEéS TAG IN THE LOCATION FIELD
REDUCE THE ASCENT CODE

FORM THE 30-BIT or 15-BIT INSTRUCTION
OUTPUT DISPLAY CODE TO BUFFER

RETURN FOR THE NEXT ' RECORD

(AR AN

MAA-13

then a transfer back to the RUN compiler is initiated to complete the
processing. If a declarative is encountered, then a table look-up and
jumps similar to type 3 processing occurs. These routines return to an
unconditional transfer to the Run compiler. The routines involved in

the six declarative processing are CON, COM, ABS, HOL, RES, and SUB.

The common error exiﬁ for the MAA subroutine sets the buffer to a string
of * and sets several flags. The next record is read and checked for an
END card or a second END card which is processed by ENO; a single END

card is processed by MND, and all other cards return to the Run compiler

and AFS then returns to MAA.

Subroutines Called: Reference Figure MAA-7

Temporaries/Flags: ADM - Running Relative Address
ICE - Dollar Sign Pointer (set)
INJ - Continue Indicator (set)

ICT - Intraword Instruction Counter (set)
FLH - Subprogram Error Flag (set)

FLF. - Job Error Flag (set)

PNM - Program/Subprogram Name

IWC - Number of Instruction Words (set)

ZAA - Relative Start of Current Program or
Subroutine

Tables Referenced: MTB - Table of Tag-defining Operation Codes
MTA - Table of Ascent Pseudo Operations
TBJ - Argument Tag Table

Entry/Exit Register Conditions: N/A

MAA-14

RUN COMPILER
ASCENT-MACHINE ASSEMBLY

MAIN SUBROUTINE CALLS

D oren
A D ecosen

MCA-1

MCA - MAKE REIATIVE COMMON ASSIGNMENTS FOR FORTRAN IV

This routine is called during the processing of the END card to make

the common assignments. Upon entry, CTY (Common Block Type Indicator)
is set to zero if blank common is to be processed, and set to one if labeled
common is to be processed. After blank common is processed, the

routine processes numbered common and then exits. The PCA routine
(Process Common Assignments) calls this routine to make numbered and
blank common assignments while the PUA (Process Unique Assignments)
routine calls this routine to process labeled common. In the processing
of common, the Common Name Table is searched until a non-eliminated
block name is found. If the block has not yet been declared in a
previous program or subroutine, the current common block relative address
_(in the case of blank common) or the base address of the variables (in
the case of labeled common) is entered, along with the block name or
number, into the Gommon Block Name Table. If the block was declared,
its starting address is extracted from the Common Block Name Table.

Each succeeding variable tag is examined and assigned memory location(s)
until another block name is found or until the end of the table is
detected. Each variable whose tag is not an address tag is entered

into the J Table along with its relative address. If the variable has
an address tag, it is not entered into Table J. The Primary Name Table
is then searched to see if any variables were declared equivalent to
this one. If there are some, these entries in the Primary Name Table.
and Secondary Name Table are cleared. If the secondary tag is in the
Variable Tag Table; the tag and address are entered into the J Table.
Whether or not the tag is in the Variable Name Table, the block length

1s extended if the equivalences make it necessary.

When all variables belonging to the block are processed, the limit
address of the block is entered into the Common Block Name Table unless
the block was previously defined. If it was previously defined, the
limit address is compared to the previous limit address to make sure
this address is not greater. If it is a diagnostic is given. The

routine then exits.

Subroutines Called: ADF - Advance Table

SCT - Scan

Temporaries/Flags: BAV - Base Address of Variables

CBA - Current Common Block Relative Address

Table

CTY - Common Block Type Indicator

TBJ -
TBO -
TBP -
TBV -

Table Parameters

TMC - Free Temporary

TMP - Current Extended Common Block Length
TMQ - Current Common Block Name

TMR - Base Address for Equivalence Group

Tables Referenced: Argument Name

Common Name

Array Tag

Common Block Name and Address

Entry/Exit Register Conditions:

None

)
(0)
®
W)

MCA-2

MTU~1

MTU - MOVE TABLES UP

This routine is responsible for relocating the 26 temporary tables and
adjusting the TBn parameters to reflect this change, It is called
prior to processing of library subroutines and usually overlays the input

buffer to make more room available for the loading of library subroutines.

Subroutines Called: None

Temporaries/Flags: None

Tables Referenced: Argument Name (T
(Referenced because it is the first table)

Program File Name (W)
(Referenced because it is the last table)

Entry/Exit Register Conditions:

Entry: Bl - how much the tables should be moved

Exit: None

PAF-1

PAF - PROCESS ADDITIVE FIELD

When the MAA (Process Ascent and Machine Records) subroutine encounters
a Machine instruction, PAF is called to examine this instruction.

This routine collects the terms, stores the register values in constants
II1I, JJJ, and KKK, then converts the register notation to the notation
used by RDA for the Ascent instructions (reference Figure RDA-1). The
string buffer is flagged identically to the way RDA flags it so that FIN
(Form Instruction) can be called to further process these Machine
instructions. PAF uses the RCD Table look-up to convert the letters to
the conventional A, B, and X registers., Error exits are taken if too

many terms or a blank within the address field occurred.

Subroutines Called: TAB
CVN - Convert Number
ADF - Advance Tables
ASN - Assemble Number
ASV - Assemble Variable

Normalize Statements

Temporaries/Flags: III - i Portion of Machine Word

TGK - Constant Tag)
JJJ - j Portion of Machine Word
KKK - k Portion of Machine Word

Tables Referenced: RCD - Table of Operational-Register Codes
TBA - Constant Value Table
TBB - Constant Tag

Entry/Exit Register Conditions:

B6 - non-zero if a tag or constant has not been processed

PAT-1

PAT -~ PROCESS ADDITIVE ADDRESS

When the MND (Process Machine or Ascent End) subroutine encounters a
tag plus a constant in the address field, the PAT Subroutine is called.
The Variable Tag (V-tag) is in the upper 18 bits of the Argument Tag
Table (Table J) and the Constant tag is in the lower 18 bits. These
tags are merged together so that upon exit the X6 register contains

the address of the location of the V-tag plus the constant.

Subroutines Called: SCM - Scan With Masking

Temporaries/Flags: BAK - Base Address for Constants

Tables Referenced; TBJ - Argument Tag

Entry/Exit Register Conditions:

X6 - Combined tag

PBR-1

PBR - PROCESS BUILT-IN-FUNCTION REFERENCE

PBR is entered when a built-in function has been detected. It merely
routes the processing to one of the other routines depending upon the
number of arguments the built-in function has and whether or not it is

a logical function.

Subroutines Called: CMA - Compile Multiple Argument Function

COA - Compile One Argument Function

CTA - Compile Two Argument Functions

KMA - Compile Multiple Double Argument Functions
KSF - Compile Special Logical Function

Temporaries/Flags: FIV - Start of the last of library functions

Tables Referenced: None

Entrv/Exit Register Conditions:

Entry:. B4 - address of string entry of function

Exit: None

PCA~1

PCaA - PROCESS COMMON VARIABLE ASSTIGNMENTS

This routine is called during the processing of an END card after the
instructions have been packed and the constants moved into the program
area. If any variables were declared common, the equivalence tables
are searched to process variables which were declared equivalent to a
variable in common. If the mode is FORTRAN IV; the secondary name is
removed from the common table and replaced by the primary name., If
the mode is FORTRAN II the secondary name is replaced by the primary
name and all equal primary names in the Primary Name Table are changed

to the secondary name,

After the equivalence tables have been processed, the relative common
assignments are made by calling either the FORTRAN II routine (MRA)

or the FORTRAN IV routine (MCA). The FORTRAN IV routime will first
make blank common and then numbered common block assignments., When the
memory assignment has been made the variable tags and starting address
will be entered into the J Table by MRA or MCA, This routine will then
set bit 16 of the address to flag them relocatable to the start of

common.,

Subroutines Called: ADF - Advance Tables
MCA - Make FORTRAN IV Relative Assignments
CKA - Make FORTRAN II Relative Assignments
SCT - Scan Table

Temporaries/Flags: CBA "~ Current Common Block Relative Address

CSA - Common Starting Address

FLC - Program Common Field Length
IPS - Program/Subprogram Indicator
LBA - Latest Buffer Address

MOD - Subprogram Mode

MOE - Program Mode

TBJ -

80 - Table Parameters

TBV -

TBX -
TBY - Table Parameters
TBZ -

Tables Referenced: Argument Name Table

Common Name Table

Common Block Name and Address
Equivalence Secondary Name
Equivalence Primary Name

Equivalence Bias

Entry/Exit Register Conditions: None

)
(0
V)
x)
(¥)
@)

PCA-2

PCT-1

PCT - PROCESS SPECIAL ARRAY TAGS

PCT is entered during the processing of the END statement to process
any temporary array tags in the Temporary Tag Table. For each array
tag in this table, Table J is searched to find the starting address
of the array. The array address increment is added to the starting
address of the array, incorporated with the corresponding permanent
tag in Table C and then entered into the J Table.

This type of entry is made when calculating array addresses such as

A(I+10)=.

Subroutines Called: ADF - Advance Tables
ScM

Scan With Masking

Temporaries/Flags: TBGC - Table Parameters

TBD -

Tables Referenced: Temporary Tag (C)

Permanent Tag (D)

Entry/Exit Register Conditions: None

PFR~1

PFR - PROCESS STATEMENT FUNCTION REFERENCE

PFR compiles instructions to transfer arguments to an arithmetic state-
ment function and a return jump to the function., Two methods are employed
in the passing of arguments., If the function does not reference any
subroutines, the actual argument itself rather than the address is
transferred to the space reserved for it at the start of the function.
If the function does reference subroutines, the number of arguments is
saved, the addresses of the first N arguments are transferred via

index registers and the value of the remaining arguments are transferred
to the reserved space. N will equal five minus the number of arguments
and the first index used will be the number of arguments plus one. For
example, if the function had four arguments, the address of the first
two would be passed in B5 and B6 while the values of the last two would

be transferred to the corresponding cells at the beginning of the function.

Subroutines Called: ADF - Advance Tables
CIR - Compile Re
CLA - Clear Index and Address and Input Tags

CXP - Compile Expression

GAT - Compile Argument Address Pick

SAD - Sense and Process Single Array Address
SCT - Scan Table

Temporaries/Flags: ARG - Argument Count

IGX - Index Assignment

TBA - Constant Name Table Parameters
TBB - Constant Tag Table Parameters
TGK ~ Constant Tag Table Parameters
TGL - Argument Count for Call

TMM - Name Tag For Call

TMN - Argument Tag for Call

VIY -~ X6 Register Associate

Tables Referenced: Constant Name (A)
Constant Tag (B)

PGP-1

PGP - PROCESS SUBPROGRAM PARAMETERS

1f the compilation mode is incomplete, the first part of the program
is changed to the following format, with the needed information
extracted from the table entries for each subroutine. The format of the

first N+2 words where N is the number of parameters is as follows:

!Name ' 47| total 1engthlgA

ibuffer addr, of base addr. | no. of

[start ({first inst./q of temps.¢| arguments {

base addr., of| base addr. addr. of modq.

constant ig of indirec%g local var.ig L

If the compilation mode is not incomplete, the name of the routine and

the total length are entered into the first program location, the instruction
word count entered into the Subroutine Parameters Table and also the .
total length. The start of the new short file is set and the unused

space indicator is updated if need be.

Subroutines Called: SCT - Scan Table

Temporaries/Flags: BAI - Base Address for Indirects

BAK - Base Address for Constants
BAT - Base Address for Temporaries
FST - Long File Start

ICB ~ Argument Count

ICM - Incomplete Compile Mode Indicator
I1C0 - Base Address for Variables
INT - First Instruction Address
INV - Unused Compiler Space

IWC - Number of Instruction Words
MOD - Subprogram Mode

PNM - Program/Subprogram Name

TBI -

PGP-2

TBI -
TBJ - Table Parameters
TBS -
ZAA - Relative Start of Current Program or
Subroutine
ZAB - Short File Start
Tables Referenced: Argument Name (1)
Argument Tag)
Subroutine Name (s)

Subroutine Parameters (U)

PIG-1

PIG - PRINT INSTRUCTION GROUP

This routine is called during the processing of the statement number
and during the processing of the END card. It is responsible for
listing all object code compiled for the last statement along with the
current running address. The listing will correspond exactly to the
actual program that is loaded into core for execution except that the
K portions of the 30 bit instructions will necessarily contain tags
rather than absolute addresses as the assignment of variables and

temporary cells is not made until the subprogram is completely compiled.

If no object listing is required, this routine merely calls PJG to process

the group ending address and then exits.

Otherwise, the instructions are examined one at a time. The current
running address is updated and listed when it is detected that the
examined instruction will not fit into the word that is presently being
processed. The method of forcing instructions to start a neﬁ word is
exactly the same that is used when the instructions are packed during

the processing of the END statement. The 15 bit instructions are
converted to display code and listed. If the K portion of the 30 bit
instruction is a tag, the first two numbers of the tag, which describe
which type of tag it is, are replaced by a letter and then the instruction
is converted to display code and listed. If there is an address tag
associated with the instruction, it is also listed. After all instructions
have been examined, the execution address of the next instruction group

is saved, a line of blanks is written and the routine exits,

Subroutines Called: KOT - Convert Binary Tag to Mnemonic Tag

PJG - Process Group Ending Address
WNX - Write Coded Record

Temporaries/Flags: ADM - Running Relative Address

ICT - Intraword Instruction Counter
- IGE - Instruction Group End
'1GS - Imstruction Group End

"INU - Unused Compiler Space

PIG-2

Tables Referenced: TBC - Temporary Tag Table

TBD -~ Permanent Tag Table
TBI - Argument Name Table

Entry/Exit Register Conditions: None

PKI-1

PKI - PACK INSTRUCTIONS

In processing the END statement, the instructions are packed. PKI is called
after the temporary tags have been replaced with permanent tags, but

before the variable tags are replaced by addresses. The 15 and 30 bit
instructions are shifted into consecutive words with the unused portions
filled with pass (46000) instructions. An instruction with an operation
code of 01, 02, or 04 does not allow any more instructions packed into

the word with the exception that an 07 instruction following an 01

may occupy the lower bits of the word. All tagged instructions (location
tags) are saved along with their corresponding addresses in the J Table.
These addresses are relocatable to the beginning of the program or
subprogram if, in this case, the subroutines are being compiled separately.
Bit 17 is set to indicate that the address is relocatable from the beginning

of the subroutine.

When the end of the instructions is found, the number of words of instru-

ctions is saved.

Subroutines Called: ADF - Advance Tables

Temporaries/Flags: ICM - Incomplete Compile Mode Indicator

IGE = Instruction Group End
- IPS - Program-Subprogram Indicator
INC - Number of Instruction Words

ZAA - Relative Start of Current Program or
Subprogram

ZAB - Short File Start

Tables Referenced: Argument Tag Table (Table J)

(not used as such at this time)

Entry/Exit Register Conditions: None Used

PLR - POSITION LIBRARY SUBROUTINES AND EQUATE TAGS WITH ADDRESSES

This routine is responsible for reading in binary decks that appear in
the input file, making a call to CLL (PP routine) to bring in any sub-
" routines that have not yet been defined, and then to relocate the

flagged addresses within these routines to absolute memory addresses.

The routine is called after it has been detected that all source input
has been compiled. It first calls MTU to move the 26 temporary tables
up over the string and over the input file buffer if no binary decks
appear in the file in order to make more room to load in library
subroutines. BRX is called to read in the binary routines appearing in
the input file if any. CLL is called to read in the routines that

have not yet been defined, and the compiler enters RECALL until CLL

has terminated. Each routine is then checked to make sure that it was
not called with more parameters than the routine just read in was
assembled to handle. Eachsubroutine is examined one word at a time and
all addresses that were flagged as program relocatable are relocated

as are all locations that were flagged common relocatable. The Sub-
routine Tag Table is then searched and all tags along with the address
of their entry/exit line are entered into the J Table.. Each argument

is given a tag and address in the J Table also.

Subroutines Called: ADF - Advance Table

BRX - Read Binary Subroutines
CKL - Check Missing Subroutines
MTU ‘- Name Tables Up

SCT - Scan Table

WNX - Write Coded Record

Temporaries/Flags: CAS - Word of Blank Display Codes

CSA - Common Starting Address

ICM - Incomplete Compile Mode Indicator
TBI - '

IBS - Table Parameters

TBT -

TBU -

PLR-1

PLR-2

ZAA - Relative Start of Current Program or
Subprogram

ZAB - Short File Start

Tables Referenced: Argument Name ¢9)
. Subroutine Name (s)
Subroutine Tag (T)

Subroutine Parameters (U)

Entry/Exit Register Conditions: None

PPG-1

PPG - PROCESS NAME AND ARGUMENTS

Upon encountering a header card, PROGRAM, SEGMENT, SUBROUTINE, FUNCTION, or
BLOCKDATA, PPG is called to compile initialization instructions. Whether

or noé the routine being compiled is Fortran, the arguments are counted,

the name is saved, and the relative start of the routine is saved. Incon-
sistancies in the calling of a subprogram with more arguments than specified
or declaring a function a different type than a previous call are checked

in this routine.

In the case of a Fortran program card entry, the name of the program is
saved., Each I/0 file declared has a word reserved for it beginning at RA+2,
The first two words, RA and RA+l, are system communication words and are
given location tags. For every file designated an I/0 buffer is reserved
except for equivalenced files. The file appearing on right side of the
equals for equivalencing must have already been defined because the file
being equated to it must share the buffer. Also a buffer may be given an
individual length which would appear on the right side of an equals sign.
Each file is given a beginning address which will point to the parameter
list of its own buffer or its equivalenced file buffer. This beginning
address along with the file name is eutered into the file name table (W).
A buffer length of 20108 is assigned to each file if no length was
specified on the "RUN" card or the file was not equated to a number.

Either of these specified lengths must be greater than 10018 or that amount
of space is saved anyway. Eight buffer parameters are saved for each
buffer. These are used by CIOl(circular input/output), The first of
these parameters contains the name of the file (in left adjusted display
code) onto which the transfer of data is to be made. This name will
always correspond to the file on which reading or writing is to be done
for this execution. The names may be changed on the program call card,
used to call a compiled program for another execution, to transfer the data

to a file different than the one named in the compilation,

A word is saved in the constant value table for use during initializationm.
When a record has been compiled, the END processor fills this word with
the field length, the beginning address of blank or numbered common (or the

- beginning address of the buffers is no common has been defined) and the

1. Chippewa Operating System, Internal Reference, E012, November 1965.

PPG-2

local length of the program. Instructions are generated to initialize,

Bl - local length

B2 - beginning address of common or buffers
B3 = compiled field length

X2 - requested field length

The field length requested for this execution of the program may not be less
than the compiled field length or an error exit is taken, The area reserved.
for common and the buffers is cleared to zero and the unused program space

(area between the 1oca1‘1ength and common) is set to indefinites.

When a program is ready for execution, the names of the files requested appear in
RA+2 through RA+n+2. The names may change from one execution to another so
the originally compiled.file name along with the beginning address of its
buffer is saved in a tagged location. The name from RA+2 is transferred to
the first word of the buffer parameters and the compiled file name replaces
it at RA+2. Whenever an I/0 request is made on an original file, the
information ﬁill be transferred to the corresponding file named on the
~program call card. For -example: 7t a program was compiled with the data
entering it via INPUT, the program card would look like PROGRAM BIG (INPUT).
All read requests would be compiled to take the data from the input file,

If the compiled program is called for execution again and the data is to be
read from an input tape, the call could be BIG(TAPE5). The name, TAPE5,
would be set in RA+2, but the program initialization instructions would
transfer the name to the buffer parameter list and set the name INPUT and

the beginning address pointing to TAPE5 in RA+2. Whenever CIO is called

to make a transfer, the file name in the parameter list identifies the. file.
The remaining I/0 parameters are initialized. The line limit which is the
seventh argument on the RUN card is transferred to the eighth word of the
parameter list, This limit applies to the number of lines of listable output.
and is set to 200008 if no special allotment is made, Instructions to set

up the buffer parameters in this way are repeated for each file designated.

The SEGMENT card processing saves two words for system communication before
the reserved words for the arguments. Each file name along with a beginning
address for the buffer is entered into the file name table (W), Changing

the file names on the SEGMENT card will have the same effect as calling a

FL

033770

031760

027750

RA+6
RA+5
RA+4
RA+3
RA+2
RA+1

e 0]
TAPE25 027750
[OUTPUT 031760
[INPUT 033770]

pe

=
=

first executable instruction’]

Program - compiled and executed
with header card: '
PROGRAM A (INPUT,OUTPUT,TAPE25)

 TAPE25 BS

[OUTPUT BS
TAPE25 BS
//A\
[0-mmmemmmmcm e -0
TAPE25 027750
TAPE6]
TAPES -

Program loaded with program
call card:
A (TAPE5,TAPEG6)

FILE BUFFER ASSIGNMENTS

e 0
TAPE25 027750
OUTPUT ’ 037160
[INPUT 033770

~Program executed after being

loaded with program call card:
A (TAPES5,TAPE6)

£=0dd

PPG-4

program with different file names as was previously described. No buffer

space is relinquished from segment to segment. All of the files used by the
program and the segments must be declared on the PROGRAM card. An entry/exit
word is reserved with a 200001’tag after all the arguments have been processed, -
Instructions are generated to set the index registers Bl-B3 to the same values
as the PROGRAM initializatibn. No memory is cleared or set to indefinites

and the I/0 buffers are not initialized,

Two system communication words are reserved when a Fortran SUBROUTINE card is
encountered, One word for each argument is also saved and each argument is
given a location tag (A). An argument list error is generated whenever a
variable is used more than once for an argument. The entry/exit word is

given a 200001 tag (first location tag). An entry is made into the subroutine
néme table (S), subroutine tag table (T) and subroutine parameter table (U)

if the name has not already been entered. The relative start of the subroutine
along with the number of arguments are set in the subroutine parameter entry.
If the name appears in the-subroutine name table, that is the subroutine that
has previously been called, then the number of arguments used by the call

must be equal to or less than the number of arguments being compiled or an
argument count diagnostic results, Instructions are generated to pack the
addresses of the arguments passed to the subroutine in index registers into
ten temporary tagged words. BI1-B3 are set into the first word and B4-B6 into the

second.

The only difference between processing a FUNCTION card and a SUBROUTINE card
is that the mode of the function must be checked. If the compiled type is .
different from the called type, a function typé error results. The function
name is entered into the variable name table and it is given a V-type tag.
This tag along with the mode is entered into the variable tag table, An
entry of the same type is made into the subroutine name table except a L-tag
is inserted in the subroutine tag table. Since there is no difference in
compiling a subroutine or a function, the RETURN statement processor checks
the name of the routine for an entry in the variable name table, If this
entry is formed, then the subprogrém must be a function and the answer will

be set into X6,

PPG-5
A BLOCKDATA statement causes three system communication words to be reserved

and tagged. The name BLKDAT is entered into the subroutine name table and

given an L-type tag. No other processing of this statement is done,

The arguments defined on an ascent or machine subprogram header card are
entered into the variable name table but no word is reserved for it. The
name is entered into the subroutine name table and the number of arguments
‘are checked. No special initialization instructions are generated. Table
entries are made so that subroutine linkage between the Fortran program and

"the coded routine can be made,

SUBROUTINES CALLED: ADF Advance Tables
' ALX Get Register Assignment
KON Convert Octal Argument
SCM Scan Tables with Mask
SCT Scan Table
- TAB Normalize Statement

TRV Translate Variable

TEMPORARIES/FLAGS ARG Argument Count
CAS Space Codes
FTY Function Type
ICB Argument Count
ICK Block-Data indicator
ICY Line Limit
INQ Name for Dayfile
INT First Instruction Address
INV Segment Indicator
INW Chain-mode Indicator
IPS Program Indicator
JPS Current Subprogram '
LBA Latest Indicator Buffer Address
PNM Program/Subprogram name
STG Compile mode Indicator
TJP Subprogram Type

TABLES REFERENCES: Constant Name (A)
' Constant Tag (B)
Variable Name (M)
Variable Tag (N)
Subroutine Name (S)

Subroutine Tag (T)

PPG-6

Subroutine Parameter (U)
File name (W)

PRR-1

PRR - PROCESS FUNCTION/SUBPROGRAM REFERENCE

When a FUNCTION or SUBROUTINE is called, PRR handles the passing of the
arguments between the calling program and the subprogram. All arithmetic
expressions have been stripped of their outermost parenthesis so that

a somewhat simplified expression is evaluated in PRR. Each argument
except constants have been replaced with appropriate tags. Further
processing is required for a subscripted variable or an arithmetic

expression.

Any argument that is not followed by either a comma or a right parenthesis
must be a subscripted variable or an arithmetic expression. SAD (Sense
and Process Single Array Address) makes the decision as to which it

is. An array will have as its second character a left parenthesis and
also a comma-right parenthesis or two right parentheses sequence
following it. CSR (Compile Array Address) gets the address of the word
within the array and returns it to SAD. The variable and its subscript
are replaced with a new tag in the string buffer, If SAD did not

iocate a subscripted variable, then a zerc in BS is returned to PRR,
CXP (Compile Expression) will evaluate the expression with the result
in X6. Upon return to PRR, the result is stored in a temporary tagged

location.

1f the argument in the string has a mode indicator of 3 in the lower
six bits, then the argument is a constant whose value is less than
2163

given a constant tag. A simple variable argument remains in the string

. This value is entered into the Constant Value Table (A) and is
buffer with no operations being performed on it.

All of the arguments in the call have now been processed, so the next
‘step is to generate instructions to pass them to the subprogram. Any
argument in the call that was péssed to the routine as an argument has

a location tag. Therefore, the address in the location tag must be used
as the address of the argument. In this case, GAT (Compile Argument
Address Pick) retrieves the address from the location tag and returns

it to PRR. The addresses of the first six arguments are set into B1-B6.

When the index registers are exhausted, the addresses of the remaining

PRR=-2

arguments are stored in the reserved word of the subprogram via external
tags. Instructions are generated to set the tag in X6 or X7 and then it

is stored by an external tag (400000). This tag will be linked with the

word reserved in the subprogram for the argument,

When the arguments have been set in either index registers or external
tags, then a return jump will pass control to the subprogram. A call to
DUMP/PDUMP also causes the number of arguments to be set in B7 and the
program total field length to be sent in X0. If the subroutine being
called was used as an argument to this routine, then it will not be
entered by a return jump. Into the entry/exit line of the subprogram is
stored a jump back to the calling routine and the subprogram is entered

by a jump to the word after the entry/exit line.

A subprogram which is being called but was not used as an argument is
‘entered with a return jump. The return jump instruction will be forced
upper and the lower 18 bits will contain the number of arguments in the

call and a location tag pointing to the name of the calling routine.

Example: 0100 S00600
0715 L00002

where S00600 is the location of the entry/exit word of the

subroutine
15 is the number of arguments
L00002 is the location of the name of the subroutine

No more than 60 parameters may be passed to a subroutine. If the number
of arguments in this call--to the subprogram is greater than the number
. of any previous call, then the new number is saved in the argument count

byte of the Subroutine Parameter Table.

CRI (Compile Restore Instructions) is called if the subprogram being
referenced had been previouély used as an argument. The location to which
control is returned by this called subprogram is given a location tag.
This tag will be the same one that was stored in the entry/exit line of

the called subprogram.

PRR is called by CLL (Process Call Statement) and CRF (Compile Function

Reference)'s

Subroutines Called:

Temporaries/Flagss

Tables Referenced:

PRR-3

ADF - Advance Table

AIX - Get Long Register Assignment
CLA - Clear Tables I and J

CRI - Compile Restore Instruction
CXP - Compile Expression

GAT - Compile Argument Address Pick
SAD - Process Single Array Address
SCT - Scan Table

ARF - Argument Reference Count

FLT - Program Total Field Length
FSR - Function Statement Reference Count
"IGX - Current Index Register

INF - DUMP/PDUMP Indicator

SRI - Subroutine Reference Count
TML - Argument Count

TMM ~ Subprogram Name

TMN - Subprogram Tag

Constant Value A)

Constant Tag (B)
Subroutine Name (s)

Subroutine Parameter (U)

PSC-}

PSC_- POSITION CONSTANTS

PSC is called to position the constants into the program after the
instructions have been Packed. It first sets the base address for the
constants (BAK) to the short file start (ZAA) + the number of instruction
words (IWC). It then sets the base address for the temporaries (BAT) to
the constants base address plus the number of constants. If there is

room for the constants, the base address for indirects is set to. the base
address of temporaries plus the number of temporaries and the base address
for variables (BAV, ICO0) is set to t he base address for indirects plus

the number of indirects.

The constants are then transferred to the program area and the program

is set up as follows:

PROGRAM CONSTANT | INDIRECT | TEMPORARY | VARIABLE

(PACKED SECTION | SECTION | SECTION SECTION * * *

INSTRUCTIONS) | |
BAK BAI BAT BAV

Subroutines Called: None

Temporaries/Flags: BAK - Base Address for Constants
BAI - Base Address for Indirects

BAT - Base Address for Temporaries
BAV - Base Address for Variables
FST - File Start

ICO - Baee Address for Variables
IwWeC - Instructiqn Word Count

IGI - Indirect Tag

IGK - Constant Tag

IGT - Temporary Tag

ZAA - Short File Start

PST-1

PST - PROCESS LOCATION TAG

-The PST subroutine processes the location tag for all Ascent or Machine
records. The Location Tag is assembled by the ASV (Assemble Variable)
subroutine and if the tag is non-alphabetic, the only acceptable value is
a plus sign. The PST Subroutine will also process the blank location
field if parcel 3 of the current word is not full. The running address
is set to blanks. When a plus sign has been detected, the running
address is stored and incremented by one. The check for an alphabetic
tag involves a search in the Argument Name Table (Table I) and a find in
this table causes a search of the Argument Tag Table (Table J) to see if
the variable has been doubly defined. If the variable was not in the
Argument Name Table, it is stored there and a Statement Tag (H-tag) is
generated and stored in the corresponding tag table. In generating the
entry for the tag table, a check is made for common relocation and a bit
is set if necessary. Once the location tag has been processed, the PST
subroutine moves the machine operation field if the string buffer had
blanks beginning in column 7 and tags as the end of the string at the
first blank, thus the machine instructions must not have blanks in the

address fielid.

Subrout ines Called: ASV - Assemble Variable

ARA - Adjust Running Address and Write Register
SCM - Scan Tables With Masking
ADF - Advance Tables

Temporaries/Flags: ICT - Intraword Counter

ADM - Current Running Address
IPS - Program Mode

STG - Compile Mode

TGH - Statement Tag (set)

Tables Referenced: TBI - Argument Name

TBJ - Argument Tag

Entry/Exit Register Conditions: n/a

PSC-}

PSC_- POSITION CONSTANTS

PSC is called to position the constants into the program after the
instructions have been packed. It first sets the base address for the
constants (BAK) to the short file start (ZAA) + the number of instruction
words (IWC). It then sets the base addfess for the temporaries (BAT) to
the constants base address plus the number of constants. If there is

room for the constants, the base address for indirects is set to. the base
address of temporaries plus the number of temporaries and the base address
for variables (BAV, ICO) is set to t he base address for indirects plus

the number of indirects.

The constants are then transferred to the program area and the program

is set up as follows:

PROGRAM CONSTANT | INDIRECT | TEMPORARY VARIABLE
(PACKED SECTION SECTION SECTION SECTION * ° °
INSTRUCTIONS)

BAK BAI BAT BAV

Subroutines Called: None

Temporaries/Flags: BAK - Base Address for Constants
BAI - Base Address for Indirects

BAT - Base Address for Temporaries
BAV - Base Address for Variables
FST - File Start

ICO - Baee Address for Variables
IWC - Instruction Word Count

TGI - Indirect Tag

TIGK - Constant Tag

IGT - Temporary Tag

ZAA - Short File Start

PST-1

PST - PROCESS LOCATION TAG

-The PST subroutine processes the location tag for all Ascent or Machine
records. The Location Tag is assembled by the ASV (Assemble Variable)
subroutine and if the tag is non-alphabetic, the only acceptable value is
a plus sign. The PST Subroutine will also process the blank location
field if parcel 3 of the current word is not full. The running address
is set to blanks. When a plus sign has been detected, the running
address is stored and incremented by one. The check for an alphabetic
tag involves a search in the Argument Name Table (Table 1) and a find in
thisitable causes a search of the Argument Tag Table (Table J) to see if
the variable has been doubly defined. If the variable was not in the
Argument Name Table, it is stored there and a Statement Tag (H-tag) is
generated and stored in the corresponding tag table. In generating the
entry for the tag table, a check is made for common relocation and a bit |
is set if necessary. Once the location tag has been processed, the PST
subroutine moves the machine operation field if the string buffer had
blanks beginning in column 7 and tags as the end of the string at the
first blank, thus the machine instructions must not have blanks in the

address field.

Subrout ines Called: ASV - Assemble Variable

ARA - Adjust Running Address and Write Register
SCM - Scan Tables With Masking '
ADF - Advance Tables

Temporaries/Flags: ICT - Intraword Counter

ADM - Current Running Address
IPS - Program Mode

STG - Compile Mode

TGH - Statement Tag (set)

Tables Referenced: TBI - Argument Name

TBJ - Argument Tag

Entry/Exit Register Conditions: n/a

PTC-1

PTC - PROCESS TAG AND CONSTANT

The PTC subroutine processes tags and constants in the Ascent or Machine
coded routines. Upon entry into the routine from MAA, X5 contains the
tag and/or X4 contains the constant. If a tag does not existe and the

16-1 to 216-1, the number is left-

constant is in the range of -2
justified and placed in the X5 register. If the comstant is greater than
1

2 6-1 and less than 217

constant and tag are stored in the Argument Tag Table (Table J). Then

-1, a Statement Tag (H-tag) is generated and the
the tag is returned in the X5 register,

If there is a tag in the X5 register upon entry, the Variable Name
Table (Table M), Common Name Table (Table 0), and the Equivalence Name
Tables (Table X and Y) are scanned. Should the name not appear in any
of the tables, a jump to ISL (Identify Symbolic Tag) for a tag is
executed, and the tag is returned in the X5 register and the constant,
if itexists, is processed as above, but is returned in the X& register.
If the variable is in the common or equivalence tables, the variable
and a Variable Tag (V-tag) are stored in the Variable Name Table and
the V-tag is returned in the X5 register. If the variable is already
in the Variable Name Table (Table M) the previously stored tag is

returned in the X5 register.

Subroutines Called:; ADF - Advance Tables
ISL
SCT

Identify Symbolic Tag
Scan Table

Temporaries/Flags: IPS
TGH
TGV

Program Type

Statement Tag (set)

Variable Tag (set)

PTC-2

Tables Referenced: TBJ - Argument Tag

TBN ~ Variable Tag

TBM - Variable Name

TBY - Equivalence Primary Name
TBX - Equivalence Secondary Name
TBO - Common Name

Entry/Exit Register Conditionms:

Entry: X4 - constant or zero

X5 - tag or zero

Exit: if X5
X5

0 on entry

constant -21071 - 216'1,~0

Hotag 21671 - 21771

if X5 #0, X4 =0
Variable Tag

b
w
I

if X540, X4 =0
Variable Tag

&

o
N
i
]
3

Statement Tag (H-tag)

PUA - PROCESS UNIQUE VARIABLE ASSIGNMENTS

After all blank and numbered common locations have been assigned, PUA is
entered to make unique agsignments. If the mode of compilation is
FORTRAN IV, the MCA routine is called to make labeled common assignments.
The equivalence tables are then examined and the PXG routine which
procesées equivalence groups is called for each primary name that has
not yet been processed. After all equivalences have been handled, the
Variable Name Table is searched to assign core locations for all
variables that have not yet been assigned. The tag for the variable along
w1th the starting address is entered into Table J. The length of the
array or variable is added to the starting address in order to determine
the starting address of the next array or variable. When all variables
have been assigned, the starting address for the next one is set as the

relative start of the next program and the routine exits.

Subroutines Called: ADF - Advance Tables
MCA - Make FORTRAN IV Relative Assignments
SCT =~ Scan Table

Temporaries/Flags: BAV - Ba:ze Address for Variables

CTY - Common Block Type Indicator
IPS - Program/Subprogram Indicator
MOD - Subprogram Mode

MOE - Program Mode

TBN -

TBP -

TBX - Table Parameters

TBY -

TBZ -

IMC - Free Temporary

ZAA - Relative Start of Current Program or
Subroutine

PUA~1

Tables Referenced: Variable Tag

Array Tag
Equivalence Secondary Name
Equivalence Primary Name

Equivalence Bias

Entry/Exit Register Conditions: None

Q)
(®)
(X)
@9
(2)

PUA-2

PXG_- PROCESS EQUIVALENCE GROUP

PUA (Process Unique Variable Assignments) calls this routine to process
one equivalence group at a time. The primary name for the equivalence
is specified upon entry and any variables declared equivalent to this

primary one are assigned memory locations.

The length of the primary array is determined and the tag along with

the staring address is entered into the J Table. The equivalence

tables are searched for a variable equivalenced to the specified primary
one. When one is found, its starting address is determined by adding

the corresponding entry in the Equivalence Bias Table to the base address
of the primary variable. This address along with the secondary tag is
entered into the J Table. When no more variables are found that are

equivalenced to the specified primary entry, this routine exits.

Advance Table

Subroutines Called: ADF

SCT - Scan Table
Temporaries/Flags: TBJ -

TBM - Table Parameters

TBP -

TMR: -

Tables Referenced: Argument Name J)
Variable Name (M)
Array Tag (®)

Entry/Exit Register Conditions:

Entry: X4 - primary name to be processed

Exit: None

PXG-1

PXG-2

Tables Referenced: Argument Tag Table (TBJ)
(used for address only)

Entry/Exit Register Conditions: None are utilized

RAD - REPLACE TAGS WITH ADDRESSES

RAD is called twice for each program or subprogram that is compiled for
the purpose of replacing the compiler generated tags with memory addresses.
The first time it is called is during the processing of the END state-
ment of each program/subprogram. At this time the base address of the
constants, the temporaries, and the ihdirects has been determined. The
assignment of all variables in the program has been made and the tags for
the variables along with their assigned memory address has been entered
into the J Table. RAD will examine the object code, one word at a time,
and any K portion of a 30 bit instruction that is a tag will be replaced
by a memory address and the instruction word is stored back into the
object program. Since the address of subroutines is not known at this
time, subroutine tags are ignored at this time. If the compilation mode
is incomplete, the modified word is not stored back into the object
program. If subroutines are being assembled separately to be executed
at a later time, the memory addresses are flagged as program or common

relocatable before being stored.

RAD is entered a second time after all compiler input has been processed,
and the library routines have been loaded. At this time, all library
tags along with their corresponding memory addresses have been entered
into the J Table and RAD will again search the object code of the
program and replace any subroutine tags with memory addresses. RAD

will be entered once for each program/subprogram as it will process

only one routine at a time. Thus, RAD will examine the object code
generated by a program twice, once to replace variable tags, and once

to replace subroutine tags with absolute or relocatable memory addresses.,

Subroutines Called: RAX - Translate Tag (local routine to RAD
entered via a return jump)

Temporaries/Flags: BAI - Base Address for Indirects
BAK

BAT

Base Address for Constants

Base Address for Temporaries

RAD-1

FST
icM
INT
IPS
IWC
MSN
MST
TBI
ZAB

RAD-2

Long File Start

Incomplete Compile Mode Indicator
First Instruction Address
Program/Subprogram Indicator
Instruction Word Count

Missing Statement Indicator
System Error Indicator

Table Parameters

Short File Start

Tables Referenced: Argument Name (I)

Entry/Exit Register Conditions: None

RDA-1

RDA - REDUCE ASCENT INSTRUCTION

When the MAA (Process Machine and Ascent Records) subroutine encounters
an Ascent mnemonic other than a pseudo-opcode, the RDA subroutine is
called. RDA first determines if the instruction is a two letter

mnemonic (i.e. opcodes 00-07 or 46) which are further processed in the
RII (Reduce Jump Instruction) subroutine or a three digit mnemonic, in
which case the third digit is the resultant register. Here the resultant
register is stored in the III constant. Then these instructions are
further divided into the Set instructions (i.e. 50-77) which are further
processed in the RSI (Reduce Set Instruction) subroutine and the X-
register instructions which are processed in the main loop of RﬁA.

In further processing these instructions, RDA generates an intermediate
language in the string buffer for the Ascent Source Card. This language
is shown in detail in Figure RDA-1. Before transferring control to

RIT for two digit processing, RDA compares the instruction to a NO or

PS, in which case the string is flagged by RDA. Both RSI and RJI

flagged the string (See RSI and RJI write-up). In the processing of the
address field RDA will also store the operation registers (j and k) into
the JJJ and KKK constants. Before exiting RDA will flag the string buffer
~with three consecutive zeros and sets the B6 register toa 1) -1 if
the instruction has a six bit constant or no address field; to a 2)

0 if the instruction has been completely formatted and to a 3) +1 if

there is a constant or tag to be processed.

Subroutines Called: RSI - Reduce Set Instructions
| RIT

L

Reduce Jump Instructions

Temporaries/Flags: III - i portion of Machine Instruction (set)

JJJ - j portion of Machine Instruction (set)

KKK - k portion of Machine Instruction (set)

Tables Referenced: None

SOURCE LANGUAGE

STRING ENTRIES GENERATED BY RDA

OPERATION CODE

INSTRUCTION Col, 7 Col, 8 Col., 9 Col. 10 Col. 11 Col., 12 Col. 13 Col. 14 GENERATED BY FIN
RI K R = G 0 01
JP BL+K P = B + G 02
Jp K + Bi P = G + B 02
JP Bi P = B 0 02
ZR Xj + X P = G s A . = 0 030
NZ Xj +K P = G R A . / 0 031
PL Xj +K P = G s A . (0 032
NG Xj +K P = G s A .) 0 033
IR Xj + X P = G , A . 1 0 034
OR Xj +X P = G s A . 0 0 035
DF- Xj + K P = G s A . D 0 036
ID Xj +K P = G R A . N 0 037
ZR Bi K P = G 0 04
EQ BiBjK P = G s B = B 0 04
NZ Bi K P = G » B / B 05
NE Bi Bj K

GE Bi Bj K P = G s B) B 06
PL Bi K

LT BiBjK P = G s B (B 07
NG Bi K

BXi Xj 0 0 0 0 A A 0 10
BX1i Xj*Xk A . L = A * A 0 11
BXi Xj + Xk A . L = A + A 0 12
BXi Xj - Xk A . L = A - A 0 13
BXi -Xk A s - A 14
BXi -Xk¥Xj A . d = A * A 0 15
BXi -Xk + Xj A . c = A + A 0 16
BXi -Xk - Xj A . ¢ = A - A] 17

¢-vad

SOURCE LANGUAGE

STRING ENTRIES GENERATED BY RDA

OPERATION CODE

INSTRUCTION Col. 7 Col. 8 Col. 9 col. 10 Col. 11 Col. 12 Gol, 13 Col. 14 GENERATED BY FIN
IXi jk A R A (G) 0 20
AXi 3k A . A (- G) 0 21
IXi Bj Xk A . A (B) 0 22
AXi Bj Xk A s A (- B) 0 23
NXi Bj Xk A s B = A - 0 24
ZXi Bj Xk A s B = A + 0 25
UXi Bj A . B = A 0 26
PXi Bj A . B , A 0 27
FXi Xj + Xk A . N = A + A .0 30
FXi Xj - Xk A . N = A - A 0 31
DXi Xj + Xk A . D = A + A 0 32
DXi Xj - Xk A . D = A - A 0 33
RXi Xj + Xk A . R = A + A 0 34
RXi Xj - Xk A . R = A - A] 35
IXi Xj + Xk A . I = A + A 0 36
IXi Xj - Xk A . 1 = A - A 0 37
FXi Xj * Xk A . N = A * A 0 40
RXi Xj * Xk A . R = A * A 0 41
DXi Xj * Xk A . D = A * A 0 42
MXi jk A ’ * G 43
FXi Xj / Xk A . N = A / A 0 44
RXi Xj / Xk A . R = A / A 0 45
NO /ps - $
46/0
CXi Xk A s * A 47
SAi Aj +K c = c + (¢} 0 50
Bj +K c = B + G 0 51
Xj +K c = A + G 0 52
Xj + Bk c = A + B 0 53
Aj + Bk c = C + B 0 54
Aj - Bk c = c - B 0 55
Bj + Bk d = B + B 0 56
Bj - Bk c = B - B 0 57

V@

SOURCE LANGUAGE

STRING ENTRIES GENERATED BY RDA

OPERATION CODE

INSTRUCTION Col. 7 GCol. 8 Col. 9 Col. 10 Col, 11 Col. 12 Col. 13 (Col. 14 GENERATED BY FIN

SBL Aj + K B = c + G 0 60
B + K B = B + G 0 61
X3 + K B = A + G 0 62
Xj + Bk B = A + B 0 63
Aj + Bk B = c + B 0 64
Aj - Bk B = c - B 0 65
Bj + Bk B = B + B 0 66
Bj - Bk B = B - B 0 67

sXi Aj +K A = c + G 0 70
Bj + K A = B + G 0 71
Xj + K A = A + G 0 72
X3 + Bk A = A + B 0 73
A} + Bk A = c + B 0 74
A} - Bk A = c - B 0 75
Bj + Bk A = B + B 0 76
Bj - Bk A = B - B 0 77

=y

RDA-5

Entry/Exit Register Conditions:

X2 - Character following opcode

X6 - Opcode (2 digits)

B2 - Number of digits in opcode

B4 - String address of the opcode 1

RDA - REDUCE ASCENT INSTRUCTIONS

SIMPLIFIED FLOW

IS ASCENT OPERATION CODE

TWO DIGITS ?

NO
| STORE 1 REGISTER DESIGNATOR |

IS THE FIRST CHARACTER OF

1S OPERATION CODE A "N@"

YES

THE OPERATION CODE AN "S" ?
NO

IS THE SECOND CHARACTER OF

THE OPERATION CODE AN "Xm ?

YES
| SET STRING BUFFER FLAGS |

STORE j AND k REGISTER
DESIGNATORS

| EXITI

o
YES OR A "PSY ?
NO
RJ RJI - REDUCE JUMP
INSTRUCTIONS
RJ RSI - REDUCE SET
YEs ©| INSTRUCTIONS
& ERROR
NO

e
R S

SET STRING BUFFER FLAGS

RDA- REDUCE ASCENT INSTRUCTIONS

9-va@y

RES-1

RES - PROCESS RESERVE LIST

When the MAA (Process Assembly Record) subroutine encounters a RES opcode,
the RES (Process Reserve List) subroutine is called. The RES declarative
permits block reservations with the number of words on the right of the
equal sign and the identifier associated with the first word on the

left. An example of the RES declarative together with the basic steps

in processing the list is shown in Figure RES-1.

On entering the RES subroutine, the TAB (Normalize Statement) subroutine
is célled. The identifier is checked to insure that the first character
is alphabetic. The Variable Name Table (Table M) is scanned to deter-
mine if the identifier has been entered and, if not, the identifier is'
entered into the Variable Name Table. If the variable has been previously
entered in the Variable Name Table, an error exit (Duplicate Tag Error)

occurs,

Next, a check is made for an equal sign. If one does not appear, or if
the end of statement is encountered, a machine-format error exit is
taken. The CVN routine is called to convert the constant which signifies
the number of words to reserve. Should the constant be negative or
greater than 217-1 an error exit (Machine-Constant Error) is taken.

If the constant is in the proper range, it is entered into the Array
Parameters Table (Table Q), and an array tag is assigned and stored into
the corresponding Variable Tag Table (Table N) and Array Tag Table
(Table P).

Processing of list entries continues in the manner described above until

a right parenthesis, indicating the end of list, is encountered.

Subroutines Called: TAB - Normalize Statement
SCT - Scan Table
CVN
ADF

Convert Octal or Decimal

Advance Table

1-sm @8an31g

‘RES DECLARATIVE PROCESSING

EXAMPLE : RES (KI=10,K2=1008,L3=1000)

1.

7.

STORE VARIABLE NAME (e.g., kl) IN VARIABLE NAME TABLE

CHECK FOR AN EQUAL SIGN

CONVERT CONSTANT

STORE CONSTANT IN THE DIMENSION TABLE

IF THE NEXT ENTRY IS A COMMA, REPEAT 1-4

'GHECK FOR A RIGHT PARENTHESIS

RETURN FOR THE NEXT SOUR:™ . “ARD

¢-sdd

RES-3

Temporaries/Flags: TGW - Array Tag (set)

Variable Name Table
Variable Tag Table

Tables Referenced: TBM
TBN
TBQ
TBP - Array Tag

Array Parameters

Entry/Exit Register Conditions: DNA

RJI-1

RJI - REDUCE JUMP INSTRUCTION

The RSI subroutine is entered from RDA whenever an Ascent jump instruction
is encountered. RUA (Reduce Additive Field) is called to collect and
check the terms in the address field. Then a check is made for the

"RJ" and "JP'" instructions. These are the only jumps which may contain
a single term in the address field. JP is also checked with the multi-

" term group. This group is further divided into those containing X
registers in the address and those containing B registers. Each of these
groups are further subdivided. The X register group is divided into

ZR, NZ, PL and NG and IR, OR, DF and ID. The B register group has the
same subgroupings the first group being identical to the X register

group and the second being EQ, NE, GE and LT. RJI also checks for the

correct number of terms.

Subroutines Called: RUA Reduce Additive Field

Temporaries/Flags: INJ - Ascent Mnemonic Code (S)

III - i Portion of Machine Word
JJJ - j Portion of Machine Word
KKK - k Portion of Machine Word

Tables Referenced: None

Entry/Exit Register Conditions:

B2 - Number of digits in code

X2 - Opcode

RSI-1

RSI - REDUCE SET INSTRUCTION

The RSI subroutine is entered from RDA whenever an Ascent Set Instruction
(50-77) is encountered. RSI determines the resultant register (i) for
SAi, SBi, SXi and SBO. Next the routine examines the first character

of the address field for a left parenthesis. If a left parenthesis is
found, the next character must be a ".", "<'", number or letter. If a
letter appears, the RUA (Reduce Additive Field) subroutine will be

called to check the terms within the parenthesis. Should the character
following the left parenthesis not be a letter, then a scan for a right
parenthesis ")" is initiated. The B6 register is set to indicate a

constant has not been processed.

If the address field had not contained a left parenthesis, then RUA is
called and a check is made for operation registers to determine the

"j" and "k" operational registers. Since these registers have been
stored in RUA, the RSI subroutine merely checks for legality in the

number of terms.

Subroutines Called: RUA Reduce Additive Field

Temporaries/Flags: INJ - Ascent mnemonic code or register Number (set)

JJJ - j Portion of Machine Instruction (set)
KKK - k Portion of Machine Instruction (set)
III - i Portion of Machine Instruction (set)

Tables Referenced: RCD - Operational Register Codes

Entry/Exit Register Conditions:

X3 contains Sxk =B
X
A

X1l contains i register designators

RTN-1

RTN - PROCESS RETURN STATEMENT

A RETURN statement is primarily used in a function or subroutine to
indicate the end of logic £low and return control to the calling
program. Any subprogram may contain more than one RETURN statement. I£

used in the main program, terminating instructions are compiled.

Encountering a RETURN statement in a main program, SPR (Handle Stop, .
Pause, and End) is called to compile terminating instructions.

Essentially, the statement has the same effect as an END card.

If the RETURN statement is the terminator of a DO lobp, then the next
instruction to be compiled will be tagged. A subroutine will have the
jump to the entry/exit line tagged and a function will have the fetch

instruction tagged.

RTU (Compile Return Instructions) checks the routine name to see if it

is a function or not. In the processing of the FUNCTION statement (PPG),
the name of the routine was entered into the Variable Name Table amnd

also the Subroutine Name Table. In this way a function and a subroutine
subprogram can be distinguished from one another. If the routine is a
function, then CIR (Compile Read Instructions) fetches the value of the
variable. This value is transferred to X6 and if it is double or complex

the less significant portion is set into X7.

Both subroutines and functions, exit through their entry/exit line.
This word always receives the location tag, 200001, so a jump to this

tag is compiled.

Subroutines Called: ASL - Assemble Letters

CIR - Compile_Read Instructions
CLT - Clear Tables I and J

PSN - Process Statement Number
RTU - Compile Return Instructions
SCT - Scan Table

SPR - Compile Terminating Instructions

Temporaries/Flags:

Tables Referenced:

CIG

DTI - DO Termination Indicator

Current Location Tag

JPS - Current Program Indicator

PNM - Routine Name

Variable Name (M)

Entry/Exit Register Conditions:

Entry:
Exit:

X6 = RETU (display code)

None

RTN-2

RUA-1

RUA - REDUCE ASCENT ADDITIVE FIELDS

The RUA subroutine is entered for processing of an Ascent address field.
RUA scans to the address field,if an A, X, or B register is detected,
the register is stored in the JJJ constant. If the term in the address
field is not a register, a call to ASV (Assemble Variable) is generated.
'Nexg.ASN (Assemble Number) is called to isolate the second term and if
it is a constant CVN (Convert Number) is calied. If the second term is
a register, the register is saved in the KKK constant. Then the next
term is selected, examined and processed. As each term is processed,

a check for too many terms is made. The B6 régister is set to a 1, if

necessary, to relay information to MAA (see RDA write-up) subroutine,

Subroutines Called: ASV - Assemble Variable
ASN
CVN

Assemble Number

Convert Octal or Decimal Number

Temnoraries/Flags: TIII - i Portion of Machine Word

JJJ - j Portion of Machine Word
KKK - k Portion of Machine Woxrd

Tables Referenced: RCD

Operational-Register Codes

Entry/Exit Register Conditions:

B6 register - 1 variable or constant not processed.

8CS-1

SCS - SCAN SPECIAL TABLE

The SCS subroutine scans a specified table to determine if the high-order
42 bits are a given value. If the value is found, the low-order 18 bits
of that entry are returned in the X6 register. On entering the SCS
routine, B4 contains the number of entries in the table to be scanned,

B> contains the starting address of this table, and X6 contains the

value right-justified. The value in X6 is shifted 18 places to left-
justify it and it is compared to bits 18-59 of the table until either

all table entries have been examined or a match is found. In the first
case, an error exit occurs, the latter case brings the low-order 18 bits

into X6 right-justified and returns.

Subroutines Called: None

Temporaries/Flags: None -

Tables Referenced: Specified in B5 register

Entry/Exit Register Conditions:

Entry: B4 - number of entries to search
B5
X6

table address

value to be compared

Exit: B4 - relative position of entry from beginning of table
X6

low-order 18 bits of the table entry

SCT-1

SCT - SCAN TABLE

The SCT subroutine scans a specified table to determine if it contains
a given argument, If the argument is found in the table, the contents
of the corresponding entry in the table following this table in memory
is returned to the calling program., For example, if the Constant Value
Table (Table A) is scanned and the argument found, the corresponding
entry in the Constant Tag Table (Table B) is returned to the calling
program. On entering the SCT subroutine, the X6 register contains the
argument, and the X1 register contains the table parameter. The table

parameter has the following format:

\QS parameter | starting next entry
\\ word address address address

36 18 0

SCT subtracts the starting address from the next entry address to obtain

the number of entries in the table., If there are no entries in the table,

control is immediately returned to the calling program. The table is
then searched (beginning with the most recent entry) for the argument.
1f the argument is found, the address of the corresponding entry in the
succeeding table is computed (this address equals the starting address
of the scanned table plus the number of entries in the scanned table
plus the relative location of the argument in the scanned table, since
paired tables each have the same number of entries) and this entry is

read.

Subroutines Called: none

Temporaries/Flags: none

Tables Referenced: specified table and its successor

Entry/Exit Register Conditions

Entry: X1 = table parameter for table to be scanned

]

X6 = argument to be located in table

Exit: B1
Bl

X2, X6

X1

L]

relative
negative
contents

argument

SCT-2

address of argument in table if found
if not found or table is empty

of corresponding entry in succeeding table

SUB-1

SUB_ - PROCESS SUBROUTINE LIST

When the MAA (Process Machine or Ascent Records) subroutine encounters
a SUB declarative, the SUB subroutine (Process Subroutine List) is
called. The SUB declarative permits a programmer to assemble a sub-
program into his program and to reference this subprogram by a name of
his choice. An example of the SUB declarative together with the basic

steps in processing the list is shown in Figure SUB-1.

On entering the SUB subroutine, the TAB subroutine is called to normalize
the list., The Variable Name Table (Table M) is scanned to determine if
the variable which has been equated to the subroutine name has been
entered and, if not, the variable is entered in the Variable Name Table.
If the variable has previously been entered in the Variable Name Table,
an error exit (Duplicéte Tag Error) occurs.,. The variable name is also
checked to insure that the first character is alphabetic and that the

name is composed of two or more characters.

Next., a check is made for the equal sign, and the Subroutine Name Table
(Table S) scanned to determine if the subroutine .name has previously
been entered: if not, the subroutine name is entered in the Subroutine
Name Table and the corresponding entry in the Subroutine Parameter Table
(Table U) is reserved. 1If the subroutine name was a previous entry in
the Subroutine Name Table, the corresponding Library Tag (L-tag) from
the Subroutine Tag Table (Table T) is entered in the Variable Tag Table
(Table N). If the subroutine name was not a previous entry in the
Subroutine Name Table, a Library Tag is generated and entered in the

Variable Tag Table.

Processing of list entries continues in the manner described above

until a right parenthesis, indicating the end of the list, is encountered.

Subroutines Called: TAB - Normalize Statement
SCT ~ Scan Tables
ADF - Advance Tables

SUB DECLARATIVE PROCESSING

EXAMPLE: SUB (S!=SUB5, QUT=@UTPTC, LG= LPG)

1'

STORE VARTABLE NAME (e.g., SI) IN VARIABLE NAME TABLE

CHECK FOR EQUAL SIGN

CHECK SUBROUTINE NAME TABLE: ENTER SUBROUTINE NAME
(e.g., SUB5) IF NOT PREVIOUSLY ENTERED

RESERVE ENTRY IN SUBROUTINE ARGUMENT TABLE
ENTER LIBRARY TAG IN VARIABLE TAG TABLE

IF NEXT ENTRY IS A COMMA, REPEAT 1 - 5
CHECK FOR RIGHT PARENTHESIS

RETURN FOR NEXT SOURCE CARD

¢-408

SUB-3

Temporaries/Flags: TGL - Library Tag (set)

Tables Referenced: Variable Name Table (Table M)
Variable Tag Table (Table N)
Subroutine Name Table (Table S)
Subroutine Tag Table (Table T)
Subroutine Parameter Table (Table 0)

Entry/Exit Register Conditions: n/a

TAB - NORMALIZE STATEMENT

When the Assemble FORTRAN Subroutine, AFS, transferred a statement

(or statements,, if there were multiple statements on the card) from

the card buffer to the string buffer, successive characters on the card
were packed in successive words in the string buffer, one character
per word. The TAB routine examines a specified statement, packing
variables and constants as one-word string buffer entries. Separators,
such as parentheses, commas, etc., remain packed one per word, Figure
1 illustrates how a statement in the string buffer would appear before

and after normalization by the TAB subroutine,

A simplified flow chart of the TAB subroutine is shown in Figure 2. A
string buffer entry is read, beginning at the specified address. The
entry may be a space, a letter, a number, or a separator. The steps

in processing each of these is described below.

Space: if the entry is a space, it is ignored, and the next
entry is read.

Letter: if the entry is a letter, the ASV subroutine is called
to assemble the variable. The variable, packed in a single word,

is then written back in the string buffer.

Number: if the entry is a number, the ASN subroutine is called

to assemble the digits (up to 7) in the number. The digits, packed
in a single word, are then written back in the buffer. The next
entry in the string buffer is then read and examined to determine
if it is an H, L, or R; if it is not, the entry is processed in
the normal manner, If the entry following the number was an H, L,
or R, then a literal of the form nHdddd...d is being processed.
The number just assembled is converted to decimal to provide a
count of the number of characters in the literal. The data state-
ment indicator is then examined to determine if a DATA statement
is processed. If so, the specified number of characters following
the H, L, or R are packed, ten per word, and written back into the

string buffer. A comma is entered in the string after each full

1-gvl @2an813

A 5 6 $ b 4) = 0 .Joo—o
t_ Ao Z_ Ao +6 LICE
STRING BUFFER LOADING BY THE AFS SUBROUTINE
VARIABLES AND NUMBERS ARE SEPARATORS REMAIN PACKED ONE
ASSEMBLED IN A SINGLE WORD, PER WORD
LEFT-JUSTIFIED
rEND OF STATEMENT INDICATOR
A >> A|BETA =|7 Jdse loo—o| 1 . s| e # «x)l =| o .|oo—o0
T, /

o+6

CLEARED ON NEXT CALL TOAFS

1——ICE

STRING BUFFER AFTER NORMALIZATION BY THE

J
y

TAB SUBROUTINE

NOTE:

UP TO 7 DIGITS ARE PACKED
IN A SINGLE WORD: LARGER
NUMERIC FIELDS ARE PACKED
IN CONSECUTIVE WORDS, 7

.DIGITS PER WORD

[A: A A1

TAB-3

word processed. If, after the specified number of characters have
been processed, a partly filled word remains, it is filled with
spaced (558) if the descriptor was an H, or is zero-filled if the
descriptor was an L or R. If the descriptor was an R, the characters
are right-justified. The literal end indicator is then set in

the rightmost six bits (R descriptor) or leftmost six bits (L

descriptor), and the next entry is processed,

If the literal was not in a data statement, the specified number
of characters are packed, ten per word, and stored as consecutive
entries in the Constant Value Table (table A)., TFor each table A
entry, a constant tag (K-tag) is entered in the Constant Tag Table
(table B). The tag corresponding to the first word entered in

the Comstant Value Table is also entered in the string buffer., A
partly filled entry is completed and justified in a manner similar
to that for a literal in a DATA statement. Agter the last word of
characters in the literal has been stored in the Constant Value
Table, an end flag (zero word) is entered in the Constant Value
Table: a constant tag is generated and stored in the Constant

Tag Table entry corresponding to the literal end flag. The next
string buffer entry is then processed,

Separator: When AFS detected the first § on a card, it replaced
the $ with a zero word and set the multiple statement indicator

to the address of the $ in the string buffer, When the Sense
Formula (SFO) subroutine compiles a statement on a card containing
multiple statements, the § is replaced and the multiple statement
indicator cleared, TAB therefore senses for a §: when found,

the multiple statement indicator is set to the original location of
the $ in the buffer and the $ replaced with a zero word. Note that
this process is required because the compression of the statement -
as it is normalized by TAB changes the location of the statement

end,

If the separator is an open or close parenthesis; the parenthesis,
counter is incremented or decremented, and the parenthesis written

back into the styxing buffer.

2-9vL °an31g

prestms——r

el

READ STRING BUFFER ENTRY YES -l EXTT

END OF STATEMENT REACHED ?

| no

1
“FpacE | TEST CHARACTER

] ALPHANUMERIC

| SEPARATOR

NOT ().

COPY SEPARATOR BACK IN

STRING BUFFER
TEST SEPARATOR

P TEST ALPHANUMERIC

} LETTER

] NUMBER

ASSEMBLE VARIABLE
COPY PACKED VARIABLE BACK
IN STRING BUFFER

ASSEMBLE NUMBER
WRITE NUMBER BACK IN
STRING BUFFER

In(n OR m)n NEXT CHARACTER "Hw, nLw,nRr? | NO
<3————{ MODIFY PARENTHESES COUNT | I YES PACK SPECIFIED NUMBER OF
[1s THIS A DATA STATEMENT ? W CHARACTERS, COPY PACKED
< NO) WORDS BACK IN STRING
ASSEMBLE VARIABLE BUFFER
1S NEXT CHARACTER A "."? S GENERATE CONSTANT TAG
o YE STORE TAG IN STRING '
BUFFER
COPY PACKED VARIABLE BACK
< IN STRING BUFFER l
PACK SPECIFIED CHARACTERS,
STORE IN CONSECUTIVE
1S VARIABLE A LOGICAL b} CONSTANT VALUE TABLE ENTRIES
SEPARATOR ? ERROR GENERATE CONSTANT TAG AND
YES NO STORE IN CONSTANT TAG TABLE
FOR EACH ENTRY
- WRITE SEPARATOR CODE IN
I STRING BUFFER
>
g — *
& ;

NORMALIZE STATEMENT SUBROUTINE

MAIN FUNCTIONS

#-9VL

TAB -5

If the separator is a period, the variable which follows it is

assembled, and the character following the variable is examined

to determine if it is a period. If it is, then the variable

must be a logical separator, and the appropriate flag or code is

stored in the string buffer (see below).

Separator
.LT.

.N. or .NOT,
A, or ,AND,
.0. or ,OR,
.F, or ,FALSE,
.I. or ,TRUE.

Code/Flag
60)

61
62
63
64 > right=-justified
65
66
67
70
000000000
777777000

07
07

Processing continues until the end of the statement (indicated by a zero

word or a §) is encountered. The parentheses counter is then checked

and, if zero, control is returned to the calling program,

Subroutines Called: ASV -
ASN -
DEC -
ADF -~

Temporaries/Flags: ICE -
I1G -
INR .-
DFG -~
TGK =~

Assemble Variable
Assemble Number
Convert Decimal Number
Advance Tables

Multiple Statement Indicator (set)
Logical Relation Count (set)
Justify Indicator (set)

Data Statement Indicator

Constant Tag (set)

TIables Referenced: Constant Value Table (Table A)
Constant Tag Table (Table B)

TAB-6

Entry/Exit Register Conditions

Entry: B3, B4 = address in string buffer where normalization
is to begin

Exit: nfa -

Note: B4 is advanced as entries are read from the string buffer and
processed. B3 is advanced as entries are written back into the string

buffer,

TIQ

TIQ - TRANSIATE INDIVIDUAL QUANTITIES

The Translate Individual Quantities (TIQ) subroutine is called by
various statement processing routines to translate all or a portion
of the string into a series of tags, constants, and separators. On
entrance to the TIQ subroutine, the B4 register contains the string
buffer address of the location in the string where translation is to
begin: translation is terminated on detecting the end of the state-

ment,

TIQ examines. each string buffer entry to determine if it is a separator.
If the entry is a separator and is not a period (i.e., a decimal point),
the next entry in the string is examined, If the separator is a right
'parenthesis, it is assumed that the end of a list of arguments has been
reached, and so the use of a function name as an argument is inhibited
by setting the Inhibit Function Argument flag to zero (see Translate
Variable description). If the entry is a period or is not a separator,
it is assumed that this entry (and possibly succeeding entries) con-
stitutes a variable or constant, If this entry is followed by a left
parenthesis, it is either a function name Or an array name, If this
entry is not followed by a left parenthesis, it is a simple variable,

a constant, or an argument, and the Translate Variable (TRN) subroutine
is called to perform the translation. If the entry is a constant, TRV
will call TNK to translate the constant, and, depending on the type of
constnat, either TNK or TRV will replace the string entry with a
Constant Tag (K-tag) or, depending on the mode and magnitude of the
constant, with the translated constant. 1In translating the constant,
further compression of the string (i.e., beyond that performed by TAB)
may be required, since a constant may occupy several entries., This
will be performed by TNK. If the string entry being examined is not

a constant but is a variable, and function argument use is not allowed,
TRV searches the Variable Name Table for the variable and, if not found,
enters the variable in this table, 1In either case, the corresponding
entry from the Variable Tag Table is entered in the string. If function
argument use is allowed (i.e., if the string entry is part of an

argument list), TRV searches the Subroutine Name Table as well as the

END OF STATEMENT INDICA’I‘OR‘———-—%

A \\A!BETA =In . |56 00 e
b 4

STRING BUFFER AFTER NORMALIZATION BY THE TAB SUBROUTINE

VARIABLE TAG—-———\ :MODE “_—_—END OF STATEMENT INDIGATOR
r A {A|340001o—-04 =]2600030—— 04} 00———o0 (|
Z—Ao | Z'Ao + 6 Z:msmm'r TAG \— MODE

STRING BUFFER AFTER TRANSLATION BY THE TIQ SUBROUTINE

1-DI1L 2an81g

z-b11

TIQ-3

Variable Name Table.

If the entry being examined is followed in the string by a left parenthesis,
it may be a function name or an array name, If it is an array name,

the name will have been entered in the Variable Name Table during
processing of the DIMENSION statement, and so the absence of the name

from this table indicates that variable is a function name. However,

a function name may also be in the Variable Name Table (e.g., if specified
in a Type statement), Therefore, in order to ascertain that entry is
indeed an array name, TIQ scans the Array Tag Table to determine if it
contains the Variable Tag for this entry. If the variable is an array
name, this tag will have been entered in the Array Tag Table during
processing of the DIMENSION statement. If the variable is an array name,
TIQ enters the tag from the Variable Tag Table in the string, and gaes

on to examine the next entry.

If the variable was not in the Variable Name Table, or if it was in the
Variable Name Table and the corresponding tag was not in the Array Tag
Table (and was not a program tag), TIQ calls the Transiate Special
Function (TSF) subroutine to tag the variable, which must be a function
name. TSF searches the Function Name Table, the Subroutine Name Table,
and the library function tables for the function name and, if not found,
enters the name in the Subroutine Name Table and generates a Library Tag
for it. TSF returns a Library Tag to TIQ in all cases except that in
which the function was one for which in-line code is generated: in

the case, the function name is returned. The tag or name returnéd by
ISF is entered in the string by TIQ.

Subroutines Called: SCT - Scan Tables
TRV

TSF

Translate Variable

Tag Special Function

Temperaries/Flags: FAG - Inhibit Function Argument Use flag (set)

ARF - Argument Reference Count (set)
ART

Array Reference Count (set)

TIQ-4

TIables Referenced: Variable Name Table (Table M)
Array Tag Table (Table P)

Entry/Exit Register Conditions

Entry: B4 = Address in string buffer where translation is
' to begin

" Exit: nfa

TNK

INK - TRANSIATE CONSTANT

The Translate Constant subroutine is called by the Translate Variable
subroutine when the latter encounters a period (i.e., a decimal point)
or a numeric entry in the string, or when the variable to be processed
by TRV turns out to be an octal constnat of the form Onnnnnn, On
entrance to TNK, the B4 register contains the strlng buffer address of

the constant to be translated.

INK first checks column 1 to see if it contains a "B": if so, then the
constant to be translated is an octal constant and the OCT subroutine is
called to convert the number to its binary equivalent. Note that TRV,
on detecting an octal constnat of the form Onnnnnn, deletes the 0,
writes a "B" in the column 1 position of the string buffer, and calls

INK to translate the constant.

" If column 1 did not contain a B, TNK examines the entries preceding and
following the constant to determine if the constant is of the form

1] ot s []

The RUN compiler permits a statement number followed by the letter S

to be used as a subroutine argument, so.when the form described above

is encountered, the Identify Statement Number (ISN) subroutine is called
to determine if this statement number has already been tagged and, if not,
to enter the statement number in the Statement Number Table (Table K) and
a Statement Tag (H-tag) in the Statement Tag Table (Table L), If the
statement was already tagged with a Program Tag (A-tag), the Program Tag
is entered in the Permanent Tag Table (Table D) and.a Statement Tag

entered in the Temporary Tag Table (Table c).

If the number is neither an octal number nor a statement number, TNK
calls DEC to convert the number to its binary equivalent: DEC returns
the converted number in X6 and a mode indicator in B6. If the number
was a double precision number, both words of the number are entered in

the Constant Value Table (Table A), Constant Tags (K-tags) are generated

TNK=2

for both entries and stored in the Constant Tag Table (Table B). The

tag corresponding to the first word is entered in the string buffer.

If the number was not double precision, TNK performs additional analysis
of the constant in an attempt to eliminate a constant-associated plus or
minus sign (i.e., as opposed to a sign indicating an arithmetic operation),
to determine if the constant value itself can be entered in the string
(eliminating the necessity of generating a tag), to determine if the
constant is part of a complex constant, and finally to determine if a
constant of this value has previously been entered in the Constant

Value Table. This processing is summarized in figure TNK-1.

TNK will store a constant whose value is in the range -216 to 216-1 in
the buffer in the form shown below if the constant is an integer or
octal constant. Also, a floating-point zero preceded by an equal sign
and followed by an end of statement indicator is entered directly in

the string.

‘o.oz CONSTANT Ws

59 57 42 0

A flag (3) is set in the low-order 3 bits of the string entry to indicate
that the entry is a constant and not a Constant tag: the constant itself

is shifted to the high-order bit positions.

Floating-point, double precision, and complex constants, as well, as

16 to 216-1 are entered

integer and octal constants not in the range =2
in the Constant Value Table (Table A) and a Constant Tag (K-tag) is
genérated and entered in the Constant Tag Table (Tablé B). The mode
indicator is then set in the low-order bits of the tag, and the tag

entered in the string buffer. The tag format in the string is as follows:

o

59 42

WA

mode

TNK-3

TNK PROCESSING SUMMARY

Note: Brackets are used to indicate entries preceding/following the constant

FORM

ACTION

1. constant

where constant = =0

Store constant in the Constant Value table,
generate a constant tag and store it in the
string and in the Constant Tag table

2. [=] constant [ES]

where constant = 0 and ES repres-
ents the end of the statement

Enter the constant in the string

3.

+
- constant

where L represents a logical
operator

e |~ i

Delete the plus sign. If the constant is
not followed by **, delete the minus sign
and complement the number

4. -216< constant < 216 _ 1

where constant is integer or octal

Enter the constant in the string

5. [(] comstane [,]

where constant is a floating-
point number '

Set complex mode indicator and delete the
left parenthesis from the string. Store
constant in the Constant Value table,
generate a constant tag and store it in
the string and in the Constant Tag table

6. complex-
constant- [,] constant [)]
tag

where constant is a floating-
point number

Set complex mode indicator and delete the
comma, the constant, and the right paren-
thesis from the string. Store the constant
in the Constant Value table, generate a
constant tag and store it in the Constant
Tag table but not in the string

7. - constant

where constant is not double
precision, not the first word of
complex constant, and cannot be
be entered directly in the string
(as per 1 or 4 above)

If the constant cannot be misinterpreted
as part of a format, search the Constant
Value table: if this constant is already
entered, write the corresponding tag in
string. If not already entered, enter it,
generate a constant tag and store the tag
in the string and Constant Tag table

Figure

TNK-1

TNK=4

The mode indicator may take on the following values.

Constant Type Mode Indicator
1 Logical
2 Integer
4 Floating=-Point
5 Double Precision
6 Complex

In certain cases, the Constant Value Table is searched to determine if

a constant of the same value has been previously entered., If it has,

then the tag corresponding to this entry will be used. Prior to searching
the Constant Value Table, the constant is checked to insure that it
cannot be misinterpreted as part of a format statement: in other words,
considering the constant as a sequence of 2-digit octal numbers, it is
checked to see that at least one number falls outside the range 0 - 578.
If this is not the case, the Constant Value Table search is bypassed, and

the constant entered in the table.

Note that in the case of a double precision or complex constant, both
words are entered in the Constant Value Table and tags generated for
each word. However, only the tag corresponding to the first word is

entered in the string.

A constant may occupy several words in the string prior to translation:
‘ furthermore, in the translation of the constant, separators may be
deleted from the string. Therefore, on exiting from the TNK routine,

a check is made to determine if more than one entry has been translated

and, if so, the entire statement is shifted down in the buffer,

Subroutines Called: OCT - Convert Octal Number

ISN - Identify Statement Number
ADF ~ Advance Tables
DEC - Convert Decimal Number

Temporaries/Flags: TGH - Statement Tag (set)

TNK=5

IGK - Constant Tag (set)

Tables Referenced: Permanent Tag Table (Table D)

Temporary Tag Table (Table C)
Constant Value Table (Table A)
Constant Tag Table (Table B)

Entry/Exit Register Conditions

Entry: B4 = address in string buffer of constant to be
translated
Exit: X6 = tag or constant value entered in the string
B4 = address in string buffer of tag or constant value

entered

TRV

TRV - TRANSLATE VARIABLE

The TIQ subroutine (Translate Individual Quantities) tfanslates string
buffer entries other than separators into tags and constants. When V
TIQ encounters a string buffer entry which is not a separator and is not
followed by a right parenthesis, it calls the Translate Variab1e~CTRV)
subroutine to translate the entry. On entr;nce to TRV, the address of
the string buffer entry to be translated is contained in the B4 register, -

The entry to be translated is examined: if it is a period, or begins
- with a number, it is assumed that this entry and possibly succeeding
entries comprise a constant, and so the Translate Constant (TNK) sub=-
routine is called to process the constnat. TNK will enter either a

constnat tag in the string or, in the case of integer and octal constants

. 16 16 .

in the range -2 to +27 -1, will enter the constant value itself in
the string.,

TE +hn Antrer $a o wawmdahlas 74 A hoaodna vrd A Tartaw\ TDY ocaswahao
e b b LA MIA&LJ et G VO de G bt \L. AT E] VUB&IA“ W Wwdd € dow s b&h, oY el de e A

several tables to see if the variable has previously been tagged and, if
it has, enters the corresponding tag in the string buffer in place of
the variable., The first such table searched is the Argument Name Table
(Table I). Next, the Inhibit Function Argument flag is examined. This
flag is set in TIQ when a function has been encountered, and is also
set when processing the list of arguments in a CALL statement: it is
cleared when the left parenthesis terminating the argument list is
encountered. The Inhibit Function Argument flag is used to permit the
use of a subroutine name as an argument only in a CALL or function

statement.,

If the Inhibit Function Argument flag is set, the Variable Name Table
(Table M) is scanned:; if the variable is found in this table, the
corresponding tag is entered in the string buffer. 1If the variable
was not found in the Variable Name Table, the Subroutine Name Table
(Table S) is searched: if the variable is found in this table, the
corresponding subroutine tag (L-tag) is entered in the string. If the

variable was preceded by a comma or left parenthesis and is followed by

~~

DOES ENTRY BEGIN WITH A
DECIMAL POINT OR DIGIT ?

NO

IS THIS VARIABLE AN ENTRY
IN THE ARGUMENT NAME TABLE
OR VARTABLE NAME TABLE ?

NO

NO

IS THIS VARIABLE AN ARGU-
MENT OF A SUBROUTINE CALL
OR FUNCTION STATEMENT ?

YES

IS THIS VARIABLE IN THE
SUBROUTINE NAME TABLE ?

NO

IS FIRST CHARACTER A ¢
FOLLOWED BY 6 DIGITS ?

NO

ENTER THIS VARIABLE IN
THE VARIABLE NAME TABLE

GENERATE VARIABLE TAG
SET VARIABLE MODE IN TAG
ENTER TAG IN THE VARIABLE
TAG TABLE AND IN THE
STRING BUFFER

EXIT

£ TRANSLATE CONSTANT) o Exar]
YES
_ | ENTER CORRESPONDING TAG .
YES “ IN THE STRING BUFFER L EXTIT
ENTER CORRESPONDING TAG el EXTT
YES IN THE STRING BUFFER
TRANSLATE CONSTANT > EXIT
YES

BASIC FUNCTIONS
TRV SUBROUTINE

Z-A4L

TRV-3

a comma, equal sign, or right parenthesis, then the variable is assumed'
to have been an argument, and so control is returned to the calling

program,

If the Inhibit Function Argument flag is not set, the Variable Name Table
only is searched for the wvariable: if found, the corresponding tag is
entered in the string buffer and control is returned to the calling
program, If the variable is not found in the Variable Name Table or,

for the special cases described earlier, in the Subroutine Name Table,
the variable is examined to see if it could be an octal constant of the
form Onnnnnn. If it is, the "O" is deleted, and the digits written

back into the buffer. A "B" is then written in the column 1 position
of.the string buffer, and the Translate Constant subroutine called to
translate the number. The tag/constant returned by TNK is then entered

in the string, and control returned to the calling program.

If the variable was not an octal constant, it is entered in the Variable
Name Table and a Variable tag (V-tag) is generated. Column 1 is sensed
to see if it contains a '"D" (double-precision) or an "I" (complex) and,
if so, the tag is advanced by 2: otherwise, the tag is advanced by 1.
The first letter of the variable name is then examined to determine if
it is an I, J, K, L, M, or N, and the mode indicator set accordingly.
The mode indicator in the low-order three bits of the tag is set as

follows:

Mode Indicator Variable Type
2 Fixed Point
4 Floating Point
5 Double Precision
6 Complex »

The variable tag is then entered in the Variable Tag Table (Table N)
and in the string buffer,

TRV=-4

Subroutines Cailed: INK = Translate Constant

SCT Scan Tables

ADF - Advance Tables

Temporaries/Flags: FAG - Inhibit Function Argument Flag (set)

INH - Column 1 Temporary (set)

TGU

Variable Tag (set)

Tables Referenced: Variable Name Table (Table M)

Subroutine Name Table (Table S)

Variable Tag Table (Table N)

Entry/Exit Register Conditions

Entry: B4 = address in string buffer of variable to be
translated
Exit: B4 = address in string buffer of tag/constant
X6 = tag/constant

TSF

TSF - TAG SPECIAL FUNCTION

The Tag Special Function (TSF) subroutine is called by various routines
(e.g., TIQ, NDC, LST, FUN, etc.) to provide a tag for a function or
subroutine name, On entrance to TSFJ the variable to be tagged is
contained in the X6 register. TSF f;rst searches the Function Name
Table (Table E) to determine if the variable is the name of a pre-
viously defined arithmetic statement function, If it is, the corres- °
ponding Function Tag (F-tag) is returned to the calling routine, If
the variable is not found in the Function Name Table, the Subroutine
Name Table (Table S) is searched. If the variable is found in this
table and is not the first entry, the corresponding Subroutine Tag
(L-tag) is returned to the calling program. The first entry in the
Subroutine Name Table is the program name: if a function subprogram
attempts to call a subprogram with the same name as the main program,

an error exit occurs,

da
- W

Hh

ram may be specified in a Type state-
ment. When a function name is encountered in a Type statement, the
name is entered in the Variable Name Table, and a Variable tag containing
the mode of the function is entered in the Variable Tag Table. Thus,
when a function name is not found in the Function Name Table or in the
Subroutine Name Table, TSF searches the Variable Name Table. If the
name is found in this table, a Library tag is genmerated and the mode
extracted from the Variable Tag and inserted in the Library Tag. The
function name is then entered in the Subroutine Name Table, and the
Library Tag entered in the Subroutine Tag Table (Table T) and returned
to the calling program. A zero word is entered in the corresponding
location in the Subroutine Parameter Table (Table U) to reserve space

‘for the subroutine parameters.,

If the variable was not found in the Variable Name Table, the tables of
FORTRAN II and FORTRAN IV library function names are searched. If the
variable name is found in these tables, a check is made (by determining
the relative position within the table) to determine if in-line code is

generated for this function. If so, control is returned to the calling

~~

CHECK FUNCTION NAME TABLE
IS VARIABLE A PREVIQUSLY
DEFINED FUNCTION NAME ?

NO

CHECK SUBROUTINE NAME TABLE
IS VARIABLE A PREVIOUSLY

DEFINED SUBROUTINE NAME ?

NO

CHECK VARIABLE NAME TABLE
IS VARIABLE A PREVIOUSLY
DEFINED VARIABLE ?

NO

IS VARIABLE A LIBRARY
FUNCTION NAME ?

NO

SET MODE ACCORDING TO NAM-
ING RULES OR LIBRARY
LOCATION

ENTER VARIABLE/FUNCTION
NAME IN SUBROUTINE NAME
TABLE

GENERATE LIBRARY TAG
INSERT MODE IN TAG AND
ENTER IN SUBROUTINE TAG

TABLE

:
EXIT |

Figure TSF-1

EXIT
YES
EXIT
YES
SET MODE INDICATOR FOR
f————>| LIBRARY TAG TO MODE OF
YES VARIABLE TAG
e» 1S THIS FUNCTION AN
YES IN-LINE FUNCTION ?
YES NO
EXIT
<Z—

TSF-2

BASIC FUNCTIONS
TSF SUBROUTINE

TSF-3

routine: the function is returned in place of a tag.

In order to avoid unnecessary duplication of library subroutines, a
FORTRAN II function name is replaced by the equiVélent FORTRAN 1V
function name. Since the FII and FIV names may éiffar, TSF searches

the Subroutine Name Table again to determine if it contains the FIV
function name., If it does, the corresponding Subroutine Tag is returned
to the calling program. If it does not, the function name is entered

in the Subroutine Name Table and the corresponding entry reserved in the
Subroutine Parameter Table. A Library Tag is gemerated, the function
mode inserted, and the tag entered in the Subroutine Tag Table and'
returned to the calling program. If the function name was not found

in the tables of FORTRAN II and FORTRAN IV function names, the table

of double precision function names is searched: if the variable name

is found in this table, it is processed in a manner very similar to

that for FII or FIV function names.

If the variable name was not found in the Function, Subroutine, or Variable
Name Tables, and was not a library function, then it is the first
reference to a programmer~defined function subprogram, and so the

variable name is entered in the Subroutine Name Table. The mode of the
~variable is determined by the FII or FIV naming rules, and inserted in

a generated Library Tag. The Library Tag is entered in the Subroutine

Tag Table and returned to the calling routine,

The mode indicator set in the low-order bits of the Library Tag has
the same connotation as the mode indicator in Variable or Constant
Tags: a 2 indicates integer mode, a 4 indicates floating-point mode,

and so on,

Subroutines Called: SCT - Scan Tables
ADF - Advance Tables

TSF=4

lemporaries/Flags: RJC - Return Jump Count (set)

FSR - Function Statement Reference Count (set))

IPS - Program/Subprogram Indicator
SRI - Subroutine Reference Count (set)
MOD - Subprogram Mode

TIGL - Library Tag (set)

Tables Referenced: Variable Name Table (Table M)
Function Name Table (Table E)
Subroutine Name Table (Table S)
Subroutine Tag Table (Table T)

Subroutine Parameter Table (Table U)

Entry/Exit Register Conditions

Entry: X6 = Variable to be tagged

Exit: X6

[}

Library tag or, in the case of an in-line
FII or FIV function, the FIV function name

TTT=-1

TTT - REPLACE TEMPORARY TAGS

This routine is called during the processing of the END statement in
order to replace any temporary tags that were generated during com-
pilation with corresponding permanent tags. The K portion of each
thirty bit instruction is examined to see if it is a temporary tag. If
it is, the Temporary Tag Table is searched to see if the tag is there
and the permanent tag replaces the temporary tag in the object code.

If the tag is not there, the reference is ignored. Temporary tags are
used to tag a referenced location that has not yet been defined such as
in the GO TO 10 statement. If 10 is not yet defined, a temporary tag
is generated for it. When it becomes defined, the assembled location
tag for the statement number is entered into the corresponding location
in the Permanent Tag Table. Also temporary array reference tags may
also be generated in the evaluation of the left member of an arithmetic
expression. For instance, in the evaluation of A(I+5) = ... an Array
Tag along with an address increment is entered into the Temporary Tag
Table and the Array Tag for the A array is entered into Permanent Tag

Table. These are handled in the process special array tags routine.

Subroutines Called; SCT - Scan Tables

Temporaries/Flags: ZAB - Short File Start

Tables Referenced: Temporary Tag Table (Table C)

Permanent Tag Table (Table C)

Entry/Exit Register Conditions: None Used

UNP-1

UNP_- UNPACK PARENTHESIS

UNP controls the processing of an arithmetic statement until all portions

of the statement that appear within parenthesis have been evaluated.

The statement is searched backwards, starting with a specified location,
until either a left parenthesis or column 6 is found. When a left
parenthesis is detected, the entry previous to it is examined to see if
it is a separator. If it is, an arithmetic expression imbedded in
parenthesis has been found. CXP is called’to compile instructions to
evaluate the expression; the expression’itself is replaced by a temporary
tag in the string and an instruction is compiled to save the result of
the evaluation in this temporary. The Search backwards for another left
parenthesis is resumed. If the entry previous to the left parenthesis
was not a separator, the parenthesis could be for an array reference or
could be used to set off the arguments to a subroutine or function. In
the case of an array reference, the rest of the statement is searched
back to column 6 to see if this same array reference appears again. If
it does not, the reference is not processed at this time. Otherwise,

the CSR routine is called to compile instructions to bring the address

of the specified array entry to an index register. This address is then
saved in an indirect and all of the array references in the staiement are

replaced by this indirect tag.

The last case is the subroutine or function reference. The CRF routine
is called to compile the instructions to make the call to the function/
subprogram. It will take care of built-in functions, statement functions,
and function-subprogram references. The function/subprogram reference

in the string is replaced by a temporary tag, and instructions are

compiled to store the result of the function/subprogram in this temporary.

If the left member of the expression is a dimensioned variable, UNP will
call CSR to compile the instructions to bring the address of the entry
to an index register. The string entry will be replaced by an:indirect

tag and the address of the array entry will be stored in this indirect.

UNP will exit once column 6 has been reached.

Subroutines Called: AIX -
ANO -

CRF -
CSR -~
CXp -

Temporaries/Flags; ARI -
ICD -
IGX -
INY -
SRT -
1BP -
TGI -
TGT -
M-
TOT -
VTA_
VTY_

Tables Referenced: Array

Array

Assign Long Register

Analyze Address Generating Instruction

for Left Member

Compile Function Reference

Compile Subscripted Reference

Compile Expression

Array Reference Count
Subroutine Reference Tag
Current Index Assignment’
Complete Unpack Indicator
Subroutine Reference Count
P Table Parameters
Indirect Tag

Temporary Tag

Start of Array Reference
Temporary for Unpack

A Register Associate

X Register Associate

Tag (P)
Parameters (Q)

Entry/Exit Register Conditions:

Entry: B4 - Location
Exit: None

at which Scan should start

UNP=-2

WVM - WRITE VARIABLE MAP

This routine is called during the processing of an END card just before

the return to the main loop for the next subprogram is made. If there
were any program errors, the map is not printed, Otherwise, the Function
Name Table, the Statement Number Table, and the Variable Name Table are
used to help form the map. The corresponding tag in each table is
examined to see if it has been equated to a memory location, ‘If so,

the name of the function, the statement number, or the variable name

along with its memory location extracted from the J Table entry, is listed.

If the tag is not in the J Table, it is ignored.

After all functions, statement numbers, and variable assignments have
been listed, the base address of the constants and indirects are

converted to display code and listed.

Subroutines Called: PNI - Print Item
SCM - Scan Table With Masking
WNX - Write Coded Record

'Base Address for Indirects

Temporaries/Flags: BAI

BAK - Base Address for Constants
BAT - Base Address for Temporaries
FLG - Program Error Flag
MOD - Subprogram Mode
MPI -
MPF -
MPK - Map Headers
MPN -
MPT -
MPV -
PNM - Program/Subprogram Name
TBE =~
TBF -
- TBJ - Table Parameters

TBK -

WVM-1

TBL -
TBM
IBN -
T™MA

Tables Referenced: Function Name

Function Tag
Argument Name
Statement Number
Statement Tag
Variable Name

Variabie Tag

Entry/Exit Register Conditions: None

Table Parameters

Pseudo-Statement Number for Indexed Lists

(E)
(F)
&)
x)

1¢D)
™)

()

WVM-2

CHIPPEWA FORTRAN COMPILER - RUN

APPENDIX A

FLOW CHARTS

December, 1965

I-v

NO

| cHIPPERA FORTRAN COMPILER - RUN]

CLEAR CHAIN INDICATOR
CLEAR ERROR INDICATOR

CALL CHK PACKAGE TO PPU
REQUEST OUTPUT FILE STATUS

|

YES

|LINITIALFZE FOR INPUT/OUTPUT]

TRANSFER RECORD FROM
- CIRCULAR BUFFER TO CARD
BUFFER

I INITIALIZE PROGRAM TABLES]

INITIALIZE SUBPROGRAM
TABLES

IS THIS A BINARY DECK ?
(+ OR = IN COLUMN 1)

YES

L_ProcEss Enp staTEMENT |

~ASSEMBLE STATEMENT FROM
CARD BUFFER IN STRING

BUFFER

ARE THERE MULTIPLE

IS FIELD LENGTH ADEQUATE ___
FOR COMPILATION? ’

NO

STATEMENTS ON THIS CARD ?

l YES

REPLACE $ IN STRING BUFFER
WITH END OF STATEMENT
INDICATOR (ZERO WORD)

L

NO

NO

NO

SET FUNCTION TYPE

BLANK OUT THIS POETION OF | .

STRING

%1 ASSEMBLE NEXT 7 LETTERS |

—1_ARE_LETTERS "ASCENTF" 7 |

YES

SET SUBPROGRAM MODE
INDICATOR TO -2

1

—1 ARE LETTERS 'mACHINE" 7]

YES

SET SUBPROGRAM MIDE
INDICATOR TO -1

R

{_ ARE LETTERS v ForTRAN® 2 }

SAVE SUBPROGRAM TYPE

YES

ASSEMBLE NEXT 2 LETTERS |

SET SUBPROGRAM MODE
INDICATOR TO 1
ARE LETTERS "11"?

I NO

SET SUBPROGRAM MOJE
INDICATOR TO 0
ARE LETTERS "1vr?

] NO

NO

()

YES

YES

SET SPECIAL MODE INDICATOR o
ARE LETTERS "VI" 7

NO

L

NAME CARD ERRCR]

YES

NO :

NO

SAVE CURRENT PROGRAM -
SUBPROGRAM INDICATOR

I

1S THIS THE FIRST PROGRAM
OR SUBPROGRAM ?

I YES

SET PROGRAM MODE INDICATOR
EQUAL TO SUBPROGRAM MODE

INDICATOR

SAVE PROGRAM TYPE
SET PROGRAM/SUBPROGRAM

INDICATOR

1S THIS STATEMENT LISTED
IN PROGRAM TITLE TABLE ?

————H : ' NEXT PAGE

Iuo

1S THE FIRST LETTER OF
THIS STATEMENT AN “Rv 7

YES

luo

1S THE FIRST LETTER OF
THIS STATEMENT A "D ?

NO

YES

[AssEMBLE FIRST 10 LETTERS |

IS THIS STATEMENT

"DOUBLEPREC" ?

YES

| ASSEMBLE LETTERS

):_—*—_;

1S TH1S STATEMENT LISTED
IN THE TITLE TABLE ?

NO

YES

O

IS THIS STATEMENT

"DOUBLE" ?

NO

I NAME CARD ERROR l-

YES

NN

FROM PRECEDING PAGE

CLEAR DATA STATEMENT
INDICATOR
CLEAR RETURN JUMP COUNT

l

CLEAR REGISTER ASSIGNMENT.
COUNT
CLEAR LOGICAL IF INDICATOR

|

ADVANCE PROGRAM TAG
SAVE PROGRAM TAG AS
CURRENT TAG

|

SET INDEX ASSIGNMENT,
HIGHEST INDEX COUNT TO
NUMBER OF ARGUMENTS

GET STATEMENT NUMBER
CHECK UPCOMING STATEMENT

NUMBER

CLEAR STATEMENT PROCESSING .,____@
COUNTERS AND INDICATORS

15 THERE AN F 1IN COLUMY 12 | o l"PROCESS FUNGTION NAME)

(F1I EXTERNAL FUNCTION)

|N0

X0

ARE FIRST TWO LETTERS OF
STATEMENT "D@" 7

YES

SENSE D@ STATEMENT I

SENSE FORMLA |

| ASSEMBLE FIRST 4 LETTERS |

(© S

ARE THESE LETTERS IN THE

RETURN FROM
PROCESSING
LOGICAL IF
STATEMENT

YES

YES

PARTIAL STATEMENT NAME
TABLE ?

NO

NO

RETURN FROM STATEMENT PROCESS

ING

o] 15 A LOGICAL IF STATEMENT YES
*1 BEING PROCESSED 7
l NO
1S THE CURRENT JUMP | ASSEMBLE NEXT STATEMENT)
INDICATOR SET ? -
l YES
1S THIS A NON-EXECUTABLE I:ﬂcjgg;km“"“ HODE |———f PrOCESS MACHINE/ASCE
STATEMENT 2 15 THIS A FORTRAN PROGRAM? 0
YES , NO YES
CLEAR CURRENT JUMP ARE THERE MULTIPLE STATE- s CLEAR END sTaTEMENT
INDICATOR MENTS ON THIS CARD ? INDICATOR
I NO YES
TRANSFER TO STATEMENT ~ c
PROCESSING ROUTINE
T SUBPI
o] TNoICATORTOGRAN MODE Yes o] 1S THERE A STATEMENT No. YES
o 15 TH': A FORTRAN PROGRAM? FOR THIS STATEMENT ?
] NO I NO
IS THIS AN ALLOVED ASGENT YES CLEAR CONTINUE INDICATOR | ys
OR MACHINE STATEMENT 1 WAS THE CONTINUE INDICATOR
SET ?
NO | NO
| MACHINE FORMAT ERROR CLEAR COMPILED INSTRUCTION
REGISTER (REGISTER X7)
TRANSFER TO STATEMENT
PROCESSING ROUTINE
YES

——-———1 ARE_LETTERS "TYPE" 7

NO

| FORMAT ERROR

[ASSEMBLE NEXT 4 LETTERS

NNy

€-v

AFS o« ASSEMBLE FORTRAN STATEMENT

SET INSTRUCTION START

ADDRESS

CLEAR MULTIPLE STATEMENT

T N e
MENTS ON THIS CARD ? N
YES | MENT IN STRING BUFFER
] NO
YES
1S THIS THE START OF END OF FILE REACHED ? = WO
COMPILATION ?
YES
I NO
WAS AN END CARD JUST [ENDFILE ERROR |
PROCESSED ? NO
7
YES
YES
|_END oF FILE REACHED 2 |——uef PROCESS END STATEMENT |
NO
ves] PAGE EJECT
DOES COLUMN 1 CONTAIN ", n? LIST THIS CARD
- INPUT NEXT CARD
NO
{DoES cOLING 1 CONTAIN ngn? '-—B—-DI 15 THIS A FORTRAN PROGRAN? |
YE

NO

NO

YES
DOES COLUMN 1 CONTAIN "$u? I'—'

NO

O

NO

SCAN RECORD IN CARD BUFFER
18 TH1S A BLANK RECORD ?

l YES

LIST THIS CARD
INPUT NEXT CARD

DOES COLUMN 1 CONTAIN "¥n? }—-—-—st

YES

NO

v

.4

INDICATOR

TRANSFER CHARACTER FROM

CARD BUFFER TO STRING
BUFFER (1 CHAR./WORD)

YES

18 MULTIPLE STATEMENT
INDICATOR SET ?

NO

| #aS CHARACTER A n$n 7
YES

NO

SET MULTIPLE STATEMENT
INDICATOR TO ADDRESS OF §$
IN STRING BUFFER

|

HAS ENTIRE CARD BEEN

KO

Lowd LIST THIS CARD

PROCESSED ? (72 CHARS.)

M

YES

MARK END OF CARD IN THE
STRING BUFFER

—{ 1S THIS A FORTRAN PROGRAM?}

NO

l ASSEMBLE MNEMON1IC CODE '

SET MACHINE HEADING
INDICATOR

WAS AN INSTRUCTION
ASSEMBLED ?

INPUT NEXT CARD

NO

[T15 THIS A FORTRAN PROGRAM? Jremsmmimg

YES

J15 COMPILE MODE M OR L 7

}_Y_.S

NO

TRANSFER RUN

TO BUFFER FOR LISTING

NING ADDRESS

fett———s——] 1S COLIMY 6 BLANK 7

L
4 Pl

YES

NO

| 1S THIS A FORTRAN PROGRAM?}==

YES

NO

CONTATN "u7 |

et DOES COLUMN 6
NO

YES

-——@

END OF PILE ReacHED t__ J——{EXIT)
o Yes
D) Next

PAGE

CONTAIN "Qu? jead

————-I DOES COLUMN 6
YES

NO

X 14

B-v

m——uoes coLUMN 1
YES

PREVIOUS

PAGE

%es COLUMN 1
YES

EXIT

EXIT DOES COLLMN 1 CONTAIN v§n7)
YES
NO
IS COLUMN 6 BLANK 7]
YES
No
YES
| 1s ThIs & FoRTRAN PROGRAM ?}—
NO
— DOES COLUMN 6 CONTAIN r#nz]
YES
DOES COLUMN 6 CONTAIN "0 g
YES
No
YES

PREVIOUS PAGE
C

CONTAIN nm n7 I

No

@v—uous coLMY |

CONTAIN "Cr? '

YES

NO

CONTAIR 7]

NO

1

IS MULTIPLE STATEMENT
INDICATOR SET ?

I No

WAS THERE A § IN COLUMNS
7~-1:07

' YES

SET MULTIPLE STATEMENT
INDICATOR TO ADDRESS OF $
IN STRING BUFFER

SET INDEX REGISTER TO
CONTINUE TRANSFER
BEGINNING WITH COLUMN 11

HAS CONTINUATION CARD
LIMIT BEEN REACHED ?

I

NO

STRING BUFFER

TRANSFER COLUMNS 7 - 10
FROM CARD BUFFER TO

PREVIOUS PAGE

FROM PREVIQUS PAGE

®

LIST THIS CARD

YES

~fi INPUT NEXT CARD

CLEAR MULTIPLE STATEMENT
INDICATOR

YES

[END OF FILE REACHED 7

11—

NO

YES
|[DOES_COLUMN 1 CONTAIN w77 o

NO

‘—-———-[BOES COLUMN 1 CONTAIN »Cn ?I

4

YES NoO
YES
| poEs coLnm 1 coNTAIN ey }
N NO

[poEs_coLinm 1 contatn nsn 7}

-Hew] 15 COLUMN 6 BLANK ?

%o YES
(—] IS _THIS A FORTRAN PROGRAM ?7]
' NO]
NO
|[poEs coLumv 6 CONTAIN wxn 1}
YES
-1___ YES

NO

[poes coim 6 contaIN on? J—uf

NO

YES

CONTINUATION ERROR]

siv

| ASL . ASSEVBLE LETTERS] [asM - ASSEMBLE MNEMON1C CODE]

C-v

|_CLEAR ASSEMBLY REGISTER | | CLEAR ASSEMBLY REGISTER | LEFT JUSTIFY co.\'ri.:'rz .
) 1 OF THE ASSEMBLY REGISTER
1 READ CHARACTER FROM el e eern T [ERe 3 LeTTeRs
STRING BUFFER
YES
[3D OF STATEMENT REAZUED 2 o END OF STATEMENT REACHED ? } - 15 NEXT CHA
No
No
15 CHARACTER A BLANK 7 | YES 18 CHARACTER A SPACE ?] | SET AsSEMBLY caunt T B
YES NO NO
NO
[1s CHAR\CTER A LETTER ? | [is th1s & sacanse progras f———{ ExiT]
YES' _ ” YES
PACK CHARACTER 1IN THE ~wf 15 CHARACTER A LETTER ? | > 1S NEXT CHARACTER A | ves
ASSEMBLY REGISTER NO SEPARATOR ?
I YES
)
HAVE SPECIFIED NUMBER OF PACK CHARACTER IN THE [TseT assembLy coust T2 1)
o LETTERS BEEN PROCESSED ? ASSEMBLY REGISTER
] YES ' I
LEFT JUSTIPY THE CONTENTS [HAVE 4 LETTERS BEEN .____.,® BT
OF THE ASSEMBLY REGISTER |eg : ASSEMBLED ? YES
I I NO
READ CHARACTER FROM STRING
BUFFER s -+
END OF STATEMENT REACHED ?
L J
[Tuas Last characTER A 22 } - >
»
YES g'ﬂ
] »
[ser assevsLy count 101} g

9-v

ASN - ASSEMBLE NUMBERS |

{ CLEAR ASSEMBLY REGISTEK]

READ CHARACTER FROM
STRING BUFFER

1S CHARACTER A SPACE 7 |

YES NO

1S CRARACTER 4 zerO 7 J—

YES

IS A STATEMENT NUMBER

YES

YES

(————»] 1S CHARACTER

BEING ASSEMBLED ?

NO

RO

NO

[LIS CHARACTER A NUMBER 7 |t

YES

PACK CHARACTER IN THE
ASSEMBLY REGISTER

HAVE 7 NUMBERS BEEN
ASSEMBLED ?

NO

READ CHARACTER FROM THE
STRING BUFFER

15 CHARACTER A SPACE ? I

NO

A LETTER ? NJ

YES.

NO

LEFT JUSTIFY THE CONTENTS
OF THE ASSEMBLY REGISTER

YES
[WERE_ANY NUMBERS ASSEMBLED? e

NO

SET A DISPLAY CODE ZERO

YES IN THE ASSEMBLY REGISTER

(LEFT JUSTIFIED)

[sET asseMLY count TO 0

]

'

[__ASV - ASSEMBLE VARIABLE

[CLEAR ASSEMBLY REGISTER

YES

g

READ CHARACTER FROM THE
STRING BUFFER

1S CHARACTER A SPACE 7

NO

YES
|1s cHaracter ALPHANUHERICT—l'—-—-—‘

NO

YES
| END OF STATEMENT REACHED? Jomoe

NO

PACK CHARACTER IN THE
ASSEMBLY REGISTER

HAVE 7 ALPHANUMERIC CHAR-

NO

YES

ACTERS BEEN ASSEMBLED ?

] YES

READ CHARACTER FROM THE
STRING BUFFER

IS CRARACTER A SPACE ? I

NO

LEFT JUSTIFY CONTENTS OF
THE ASSEMBLY REGISTER

a

L1s cHARACTER AN man 2 }

YES

YES
L1s_THIS A_FORTRAN PROGRAN 7}——

NO

PACK * IN THE ASSEMBLY
REGISTER

NO

ASVYNSY

L-y

[cOT - COMPILE D¢ INITIAL INSTRS. |

ENTER STATEMENT NUMBER IN
D@ NUMBER TABLE

I

NO

NO

D9 ERROR

READ STRING ENTRY PRECED-
ING LIMIT FIELD
15 ENTRY A "," ?

YES

READ LIMIT FIELD

IS LIMIT QUANTITY AN "

INTEGER VARIABLE TAG ?

NO

] LIMIT QuANTITY A consTanT? |

YES

ASSEMBLE ADDRESS OF INDEX
STORE, INCREMENT, & LIMIT
ENTER IN D@ PARAMETER TABLE

1S INITIAL VALUE AN
ANT 7 DP ERHOR
INTECER VARIABLE ? —;-b{mnm. VALUE A CONSTANT |-——-B>|o ?]
YES R
I YES
COMPILE READ INSTRUCTIONS COMPILE 7160 CON (SX6 = X)
WERE INSTRUCTIONS TO SET INITIAL VALUE
COMPILED ?
YES NO
| wiiL VALUE BE IN X6 2 YES
NO
COMPILE 106X0 (BX6 = X{)
TO BRING VALUE TO X6
CLEAR ARGUMENT NAME TABLE
CLEAR ARGUMENT TAG TABLE
COMPILE WRITE INSTRUCTIONS
(TO STORE INDEX)
TAG STORE WITH PROGRAM TAG
READ STRING ENTRY PRECEDING READ STRING ENTRY FOLLOW-
INCREMENT FIELD ING INCREMENT FIELD
1S ENTRY A "," ? YES
| * |
1S ENTRY AN END OF STATE- YES
__| 1s THIS ENTRY AN END OF
STATEMENT INDICATOR ? MENT INDICATOR ?
YES | NO I NO
‘) 18 AN IMPLIED D@ LIST
1S AN IMPLIED D@ LIST s
BEING PROCESSED ? — DP ERROR H————“o BEING PROCESSED ?
NO
YES YES
I 1S THIS ENTRY A ")" ? }——»{ INDEXED LIST ERROR “J4—————{ 15 ENTRY A ") ? J
YES NO NO YES
L. READ INCREMENT FIELD
SET INCREMENT T0 1
SET CONSTANT MODE IND. YES IS INCREMENT A CONSTANRT ?
| NO
SAVE ADDRESS OF INDEX 1S INCREMENT QUANTITY AN | gl
STORE INSTRUCTION INTEGER VARIABLE TAG ?
YES ¥O

102

8-v

.
[[ctu - PROCESS CONTINUE STATEMENT]

.

REDUCE PROGRAM TAG BY ONE
TO NULLIFY THE LAST

ADVANCE

[ous - CHECK UPCOMING STATEMENT NO.]

1S DY TERMINATION
INDICATOR SET ?

YES

PROCESS STATEMENT NUMBER
(PSV ENTRY)

lNO

DOES THIS STATEMENT HKAVE
A STATEMENT NUMBER ?

]

CONTINUE ERROR

NO

YES

CLEAR ARGUMENT NAME TABLE
CLEAR ARGUMENT TAG TABLE
SET CONTINUE INDICATOR

|

PROCESS STATEMENT NUMBER
(PSM ENTRY)

[cus - TAG UPCOMING STATEMENT NO. |

WAS AN UPCOMING STATEMENT
NUMBER FOUND ?

I YES

1S STATEMENT NUMBER IN THE
STATEMENT NUMBER TABLE ?

YES

NO

RETURN ZERO IN PLACE OF
TAG TO CALLING ROUTINE

*-———4

READ COLUMN 1 OF CARD 1IN
CARD BUFFER (NEXT CARD
LOOK-AHEAD)

DOES COLUMN 1 CONTAIN "C",
"*"' OR ‘lsﬂ ?

YES

LIST THIS CARD
INPUT NEXT CARD

|No

DOES COLUMN 1 CONTAIN A
NUMBER ?

NO

I YES

ASSEMBLE THE CHARACTERS
IN COLUMNS I - 5
DELETE SPACES

ASSEMBLE THE CHARACTERS
IN COLUMNS 2 - 5
DELETE SPACES

SAVE UPCOMING STATEMENT NO.
CLEAR UPCOMING STATEMENT
INDICATOR

-

—{WAS STATEMENT NUMBER ZERO ?|

YES NO

SET UPCOMING STATEMENT

INDICATOR

ASSEMBLE CHARACTERS IN

Ll coLumns 6 - 10
DELETE SPACES

SAVE CHARACTERS AS
UPCOMING CHARACTER GROUP

I

ARE THE FIRST TWO
CHARACTERS "Dp" ?

YES

IS THE NEXT CHARACTER

|so

A NUMBER ?
] YES

ARE THE FIRST THREE
CHARACTERS "G@T" ?

SET UPCOMING STATEMENT
INDICATOR

NO

1T Ll
»{EXIT |

NO

sno NN ‘Nt

6-¥

[DEC - CONVERT DICIMAL NUMBER |
READ NEXT 2 STRING ENTRIES CLEAR ASSEMBLY RECSTER SET FLOATING MODE INDICATOR
i INITIALLZE DIGIT COUNT INITIALIZE DIGIT COUNT FOR
15 st ENTRY A SEPARATOR? SET FIXED MODE INDICATOR i FRACT1ONAL PART
YES
[[
READ STRING BUFFER ENTRY
(l,: :-I,ﬁgnﬁ::'(:,ﬁc::g; ”] END OF STATEMENT REACHED ? e
YES -0 READ STRING BUFFER ENTRY | .
NO NO
————1 15 FIRST ENTRY A "B" ? | 1S THIS ENTRY AN END- _4.,@ | 1S ENTRY A SEFARATOR ? }—=-
- OF-STATEMENT INDICATOR ? vES %o YES
YES o
NO
READ NEXT (3rd) STRING L] exTraCT cisracTER
BUFFER ann(varr ! [isTiis eNTRY A SEPARATOR 2 WAS SEPARATOR A “," ? | YES | HAVE ALL CHARACTERS 1IN
IS 2nd ENTRY A SEPARATOR ? YES NO YES NO YES (¥ WORD BEEN EXTRACTED ?
I NO NO
EXTRACT CHARACTER ——
1S SECOND ENTRY AN END- YES| LAVE ALL CHARACTERS IN |15 CHARACTER A NUMBER ? hx—o-—w
OF-STATEMENT INDICATOR ? YES ~t»| WORD BEEN EXTRACTED ? YES
NO NO
j#——{15 SECOND ENTRY A "B" ?] { IS CHARACTER A NUMBER ? =1 yo cpgr;ﬁx;&‘m;ﬁgnl:o BINARY
YES s
NO YES ASSEMBLY REGISTER
CONVERT NUMBER TO BINARY NoO l —
| IS THIRD ENTRY & B ? j—m—- POSITICN BITS IN ASSEMBLY L— 19 DIGITS PROCESSED ?]
REGISTER VES
YES
ro LI 19 DIGITS PROCESSED ? |
Nt [“oecimaL covstant error |
SET LOGICAL MODE INDICATOR YES
* DOES ASSEMBLED INTEGER
PART PLUS FRACTIONAL PART
[DECIMAL-CONSTANT ERROR | EXCEED 24 DIGITS ? NEXT PAGE
YES
[oecivaL constant ErroR |
INTEGER RANGE EXCEEDED ? pd
t.e., [n|?> PE

YES

I DECIMAL.CONSTANT ERROR |

234

01-v

FROM PREVIOUS PAGE

(®

SAVE NUMBER OF DIGITS IN
FRACTIONAL PART
CONVERT NUMBER TO FLOATING

—1VAS LAST CHARACTER AN "E"7]

YES o

[¥as LAST cHARACTER a "DT?_I—-——VM“*@

YES

LSET_DP bz 18DTcatoR]

DOES AN EXPONENT FOLLOW ? —l
NO YES

DELETE LETTER (E OR D)

WRITE EXPONENT BACK IN
STRING BUFFER

READ NEXT STRING BUFFER

Ui ENTRY £
18 ENTRY A nan 2 YES
No
LIS ENTRY & v 5 7 2 I
YES
O

¥ END OF STATEMENT REAGHED 1

READ STRING BUFFER ENTRY

NO

|5 _ENTRY A_SEPARATOR 7 == vEcimaL covstant ErROR]
YES

NO

EXTRACT CHARACTER

YES

rt=| WORD BEEN EXTRACTED ?

HAVE ALL CHARACTERS IN

NO

|15 _cusracTer a numpeR 7 }——%{ pEcimAL constaNT ERROR]
NO

YES

CONVERT NUMBER TO BINARY
POSITION BITS IN ASSEMBLY
REGISTER

WAS EXPONENT PRECEDED BY
A MINUS SIGN ?

NO

YES

|__compLement Exponent]

SUBTRACT NUMBER OF DIGITS

IN FRACTIONAL PART FROM -
EXPONENT

IS RESULT REGATIVE 7]

YES

l COMPLEMENT EXPONENT '

15 EXPONENT OUT OF RANGE ?

NO

(GREATER THAN 464g ?7)

YES

L_pEciAL consTaNT ERROR]

NO

q

CONVERT EXPONENT FROM
POWERS OF TEN TO POWERS
OF TWO

COMBINE EXPONENT AND
COEFFICIENT

23a

11-v

I GSN - GET STATEMENT NUMBER

—

CLEAR DP TERMINATION
INDICATOR

READ COLUMN 1
DOES IT CONTAIN "B", "D",

v, OR "1 2
| YES

RO

ASSEMBLE NUMBER BEGINNING
AT COLUMN 2

ASSEMBLE NUMBER BEGINNING
AT COLUMN 1

|

|

WAS A NON-SPACE, NON«

NO

| WRITE & SPACE 1N coLUMN 6 |

WAS A NON-ZERO NUMBER
ASSEMBLED 7

l YES

1S STATEMENT NUMBER IN

NUMERIC CHARACTER FOUND? [P STATEMENT NO. FIELD ERROR |

YES

NO

THE D@ NUMBER TABLE ?

I YES

1S STATEMENT NUMBER IN THE

NO

STATEMENT NUMBER TABLE ?

NO

15 coNTINVE INDICATOR SET? }

YES

NO

L 4

SET D TERMINATION
INDICATOR EQUAL TO
STATEMENT NUMBER

CLEAR ARGUMENT NAME TABLE
CLEAR ARGUMENT TAG TABLE

EXIT J-

L
in

Cl-v

L IPT - INTTIALIZE PROGRAM TABLES)

CLEAR PROGRAMRELATED
_FLAGS AND INDICATORS

[

SET NAME FOR DAYFILE
TO rkkkdakn

l

SET LATEST BUFFER ADDRESS
EQUAL TO FIELD LENGTH

SET SHORT FILE START EQUAL
TO LONG FILE START .

SET UNUSED SPACE INDICATOR
TO COMPILER FIELD LENGTH

INITIALIZE SUBROUTINE TAG
SET UP SUBROUTINE NAME,
TAG, PARAMETER TABLES

SET UP COMMON BLOCK AND
PROGRAM FILE NAME TABLES

l ISL - IDENTIFY SYMBOLIC TAG

—

ARE THERE MORE THAN
SIX CHARACTERS IN THIS
VARIABLE ?

RETURN TO ERROR EXIT IN
f——%:1{ PROCESS MACHINE/ASCENT
YES | RECORDS SUBROUTINE (MAY)

luo

IS THIS VARIABLE IN THE
ARGUMENT NAME TABLE ?

NO

| GENERATE STATEMENT Tac

]

COMBINE STATEMENT TAG AND
VARIABLE, ENTER IN THE
ARGUMENT NAME TABLE

EXIT

[1sN - IDENTIFY STATEMENT WO.

4

YES

l DELETE LEADING ZEROES

ARE THERE MORE THAN FIVE
CHARACTERS IN THIS VALUE?

|No

ARE THERE ANY NON~NUMERIC
CHARACTERS IN THIS VALUE?

YES

lno

1S TRIS VALUE IN THE
STATEMENT NUMBER TABLE ?

Ino

ENTER VALUE 1IN THE
STATEMENT NUMBER TABLE

GENERATE STATEMENT TAG
ENTER STATEMENT TAC IN THE
STATEMENT TAG TABLE

YES

——-——-ﬁ[STATEMENT NUMBER ERROR

]

NST 18I 4T

€1-v

ARGUMENTS AND LIST

NDC - PROCESS ENCODE/DECODE]
.

ASSEMBLE VARIABLE
ARE LETTERS "DE" ?

f———{ FORMAT ERROR

NO

YES

Lzs NExT clamactEr & n(n 7 e

YES

NO

ASSEMBLE VARIABLE
18 NEXT CHARACTER A *,"

?

p———>»{ ARCUMENT-LIST ERROR
NO

l YES

TRANSLATE VARIABLE
1S VARIABLE A CONSTANT

COMP1LE 6140(CON)
? YES (SB4 = CONSTANT)

NO

I COMPILE READ INSTRUCTIONS I

lCO‘HPILE 63410 (SB4 = Xj)

IPROCESS FORMAT NUMBER/TAG

No | 1777778

"__—_ IS CONSTANT GREATER THAN

YES

LIS NAMELIST INDICATED ?

—

NO

YES

Y

|15 _NEXT CHARACTER a . °

}———t>] ARGUMENT-LIST ERROR

YES

REPLACE COMMA IN STRING
BUFFER WITH ("

COMPILE
66100 (SBl = BO)
66200 (5B2 = BQ)

TAG SPECIAL FUNCTION
“INPUTS" (FOR DECODE) OR

"OUTPTS" (FOR ENCIDF.;

p=—==${ COMPILE RJ TO FUNCTION |

| CLEAR REGISTER TaGS |

NORMALIZE STATEMENT,
DELETING "ENCODE (c,n"
FROM STRING

TRANSLATE INDIVIDUAL
QUANTITIES

READ STRING BUFFER ENTRY
1S ENTRY A =(“ ?

I NC

15 EN N ARRA
v.\mtﬂ xc ’ Y oR pmmted COMPILE 61108 (5Bl = K) |

YES

COMPILE' RESTORE

INSTRUCTIONS poemeeetd CONPILE R5170 (SEL - 77,)
vEs |_COMPILE ARRAY ADDRESS

NO

pm={ 1S ENTRY A PROGRAM TAS 7 |
NO YES

JcOMPILE ARGUMENT ADDRESS]

[copiLe 63130 (sBL = X35 |

READ STRING BUFFER ENTRY
1S ENTRY A ")n ?

YES 1
NO

COMPILE 66200 (SB2 = 0.
COMFILE RJ TO FUNCTION

el ARGUMENT-L1ST ERROR] I

CLEAR REGISTER TAGS
SET ENCODE/DECODE INDICATOR

]

| rrocess List]

20N

I EXIT ,

L_OCT_- CONVERT OCTAL CONSTANT]

YES

YI-v

NO

r. READ STRING BUFFER ENTRY

—${ PROCESSED ?

“-j ASSEMBLY REGISTER

CLEAR ASSEMBLY REGISTER
INITIALIZE DIGIT COUNT

END OF STATEMENT REACHED ?

NO

| IS ENTRY A SEPARATOR ? EXIT

YES

XNo

HAS A FULL WORD BEEN

luo

NO

YES

CONVERT DIGIT TO OCTAL
WAS THERE AN 8 OR 9 1 1——#®|_BOOLEAN-CONSTANT ERROR

LUAS A LETTER FOUND ? YES IS LETTER A "B» ? "-

No

PACK OCTAL DIGIT IN

MORE THAN 20 DIGITS FOUND?
YES

I BOOLEAN CONSTANT ERROR I

YES

ADVANCE STRING BUFFER
ADDRESS PAST LETTER

EXIT

O

120

ST-v

[Ppt - ProcEsS pp TaniEs

1S STATEMENT NUMRER IN THE
N NUMBER TABLE ?

NO YES

15 CONTINUE INDICATOR SET?]

No YES

[Apvance procra TAG |

l

1S THIS A PSUEDO-

STATEMENT NUMBER ?

NO

[[1s curkent sumr 1w, sET? 3

YES

NO

[SENSF. CURRENT JUMP INSTR.

IS 1T AN 02 TUMP ?

lno

ADVANCE PROGRAM TAG
SE1 i tcal TF INDTCATOR
EQUAY TO PROGRAM TAG
ENTER PROGRAM TAG IN

INSTRUCTION REGISTER AND
PREMANENT TAG TABLE

ENTER STATEMENT TAG FROM
CURRENT JUMP IN TEMPORARY
TAG TABLE

CLEAR CURRENT JUMP

INDICATOR

1S STATEMENT NUMBER IN THE
DP NUMBER TABLE ?

I YES

SAVE CORRESPONDING ENTRY
FROM D@ PARAMETER TABLE

CLEAR THIS ENTRY IN THE
D@ NUMBER TABLE

[cLear continvve 1spicator |

YES

I

EXTRACT PROGRAM TAG FROM
INDEX STORE INSTRUCTION

AND SAVE

COHMPARE LOCATION OF INDEX
STORE WITH INSTRUCTICN
START FOR THIS STATEMENT

~--1!S_THIS A4 1-STATEMENT DO ?]

NO

YES

SET DO TERMINATION
PROCESSING INDICATOR

WAS INDEX STORE AN SA6= Bj
INSTRUCTION ?

9

YES

USE B REGISTER NO. TO FORM
PROGRAM TAG (INDEX ADDR.
*WAS A SUBROUTINE ARGUMENT)

NO

SET BYPASS INTER~-REGISTER
TRANSFER INDICATOR

GET VARIABLE TAG FOR 1NDEX

GCOMPILE READ INSTRUCTIONS
{INDEX FETCH)
SAVE REGISTER ASSIGNMENT

EXTRACT INCREMENT PARAMETER
FROM DP PARAMETER ENTRY
1S PARAMETER A CONSTANT ?

NO

ANALYZE LOOP CONDITIONS
COMPILE READ INSTRUCTIONS
(INCREMENT FETCH)

|

=

SAVE REGISTER ASSIGNMENT
EXTRACT LIMIT PARAMETER
FROM Dp PARAMETER ENTRY

l

IS LIMIT PARAMETER A

CONSTANT ?

lNO

ANALYZE LOOP CONDITIONS
COMPILE READ INSTRUCTIONS

(LIMIT FETCH)

l

1S INCREMENT FARAMETER
A CONSTANT ?

-
YES

COMPILF 726X (v

(sx6 - Xj + K)

COMPILE 366XY
(IX6 = X; + Xy)

IS LIMIT -PARAMETER A

CONSTANT ?
I NO

COMPILE 37726
(IX7 = Xj - X6)
SELECT PL JUMP FOR TEST

YES

COMPILE 7276 CON
(SX7 = X6 - K)
SELECT N JUMP TOh

I3

J

J1s THIS A 1-STATEMENT D@ 2

YES

SCAN INSTRUCTION GROUP FOR
THIS STATEMENT

1S THE INDEX STORE IN THIS
INSTRUCTION GROUP ?

| NO

TAG FIRST INSTRUCTION IN
THIS GROUP WITH A PROGRAM

TAG

COMPILE PL or NG TAG
(TAG = PROGRAM TAG FOR
INDEX STORE)

YES

IIS THIS A 1-STATEMENT Dp ?

YES

JANALYZE 1-STATEMENT D@

(RETURN FOR NESTED DO)

NO

NO

)

9I-v

YES

__PSX - PROCESS STATEMENT NUMBER)

{ IS THIS A FORTRAN PROGRAM?

SV« PROCESS STATEMENT NUMBER
CONTINUE STATEMENT ENTRY)

RETURN FOR NEXT ASSEMBLY
STATEMENT

w5 No | (e susrouring)
IS DO TERMINATION |——»{ RESTORE STATEMENT MinmER
INDICATOR SET ? yEs | PROCESS DO TABLES

NO

[—1.DOES STATEMENT NUMBER = 07 |

NO

PSM - PROCESS STATEMENT NUMBER
(CONTINUE STATEMENT ENTRY)

1S THIS NUMBER IN THE

2] ENTER STATEMENT NUMBER IN

STATEMENT NUMBER TABLE ?

YES

NO

YES

No

| DUPLICATE NUMBER FOUND 7 i gggmrz STATEMENT NUMBER

STATEMENT NUMBER TABLE

I

STORE CURRENT PROGRAM TAG
IN STATEMENT TAG TABLE

ENTER STATEMENT TAG IN
| TEMPORARY TAG TABLE

GET CURRENT PROGRAM ‘TAG

ENTER CURRENT PROGRAM TAG
IN STATEMENT TAG TABLE AND
PERMANENT TAG TABLE

|

CURRENT JUMP INDICATOR SET?2Je

&

|_PROCESS DO TABLES]

RO YES

STORE TEMPORARY TAG FOR
CURRENT JUMP IN TEMPORARY
TAG TABLE

STORE NEXT PROGRAM TAG
IN PERMANENT TAG TABLE

| CLEAR REGISTER TAGS |

SET INSTRUCTION GROUP END

~84 INDICATOR TO ADDRESS OF

LAST INSTRUCTION COMPILED

|[PRINT INSTRUCTION GROUP)

RETURN FOR NEXT STATEMENT

e ed

P8P . PROCESS STATEMENT NUMBER
(MON- EXECUTABLE STATEMENT ENTRY

IN BUN, PAGE A2 [

DECREMENT PROGRAM TAG

(Asd) (s d)(dsd) NSd

LT -V

|IDENT 1FY STATEMENT NUMBER |t--mi
YES

ASSEMBLE NUMBER
WAS A NUMBER FOUND ?

NO

L ASSEMBLE vaRIABLE |

1S VARIABLE AN ENTRY IN

|+ comPILE 7170k (sx7 = - Rk
THE TEMPORARY TAG TABLE? > (R —+{Exr]
YES | INDICATE NAMELIST
l NO
TRANSLATE VARIABLE
DOES IT HAVE AN ARRAY OR
VARTABLE TAG ? NO

YES

[15_VARIABLE AN ARRAY NaME ?]
)

FORMAT ERROR

YES

Sl OMPILE 6130k (SB3 = K) |

YES

IS THIS A FORMAT NUMBER
BEING PROCESSED ?

NO

COMPILE 6133(-1)

PROGRAM TAG

. DOES VARIABLE HAVE A

?

-

FORMAT ERRUR

YES

| coMPILE ARG

ENT ADDRESS |

{compiLE 6130k

(s83=Kx)]

(SB3 = B3 - 1)

NO

8 I-v

l RIT - PROCESS READ STATEMENT]

[SELECT FILE NaME "INPUT" |

|

SELECT INPUTC SUBROUTINE
FOR CODED READ

ASSEMBLE LETTERS ' #o{ 15 NEXT CHARACTER & (" °
WERE ANY LETTERS FOUND ? NO YES No
A
YES O
ASSEMBLE VARTABLE NO
| ARE LETTERS »INPU" ? }——— ASSEMBLE NEXT 3 LEITfRS WAS A NAME OR NUMBER (LOG-}— [Fssomis s ASSEMBLE VARIABLE
3 YES ARE LETTERS "TTAPE! ? YES ICAL UNIT) ASSEMBLED ?] IS NEXT CHARACTER A v ° NO
NO
) YES . l e
ARE_LETTERS "TAPE" ? j-’@ raraT LOGICAL UNIT IN YES WAS A NAME OR NUMBER (LOG-
L L YES "APE _ _ _ _ _ _m [END OF STATEMENT REACHED ? J] 1GAL UNIT) ASSEMBLED
NoO FOR FILE NAME o
NO I YES
‘- PROCESS FORMAT NUMBER/TAG | INSERT LOGIGAL UNIT IN
o UMBER/ e ~———————————1_1S NEXT CHARACTER A "," ? | "TAPE _ _ _ _ "
ro YES FOR FILE NAME
YES . !
(~—1.END OF STATEMENT REAGHED ?] WAS A NAME OR NUMBER (LOG- [PROCESS FORMAT NNBER/TAG]
L__FormaT eRROR ICAL UNIT) ASSEMBLED ?
No '
l YES
| 1S NEXT CHARACTER a =, 7 }—={ Forvat ErROR] INSERT LOGICAL UNIT IN | 1s NEXT chaRacTER l-——m(:)
NO @—{Is NEXT CHARACTER & ") 2 pb——3 "TAPE _ _ _ _ _ _ et
YES YES | FOR FILE NAME NO
o I
L FomMaT ERROR N
SELECT INPUTE SUBROUTINE
= PROCESS LIST | FOR BINARY READ “®! . FORMAT ERROR]

|LPROCESS STATEMENT MMBER |

LIy

61-v

-EXIT 1S MODE OF VARIABLE
FIXED POINT ?

YES

| spo - SENSE Dp STATEMENT

NO

ASSEMBLE NEXT 2 LETTERS
ARE LETTERS "Dg" ?

lvm

ASSEMBLE NUMBER

] YES

ASSEMBLE VARIABLE
WAS AN ALPHANUMERIC FIELD
ASSEMBLED ?

YES

1S NEXT CHARACTER ven 7
YES

1S VARIABLE IN THE

NO

NO

NO

WAS A NUMBER FOUND ? [——{_EXIT

+{_EXIT]

VARIABLE NAME TABLE ?

I YES

NO

EXAMINE VARTABLE TAG

I YES

NORMALIZE STATEMENT

DOES VARIABLE NAME BEGIN
WITH 1. J. K, L. M, N ?

CLEAR CURRENT JUMP
INDICATOR

WAS CURRENT JUMP

—4 WAS CONTINUE INDICATOR

—4{ ADVANCE PROGRAM TAG

INDICATOR SET ?

Iso

CLEAR CONTINUE INDICATOR

SET?

YES NGO

LCLEAR INSTRUCTION REGISTERI

WAS "DP" STATEMENT

"
NUMBERED ?

| ves

ENTER PROGRAM TAC IN
INSTRUCTION REGISTER

TRANSLATE INDIVIDUAL
QUANTITIES

L

]

COMPILE DP INITIAL
INSTRUCT IONS

IPROCESS STATEMENT NUMBER —l

n

[}

0¢-v

[SFo_- SENSE FORMULA STATEMENT)

CNF -~ COMPILE NORMAL FORMULA

4

ASSEMBLE VARTABLE 1S MULTIPLE STATEMENT
1S NEXT CHARACTER " = n 7 e INDICATOR SET ? NO
NO l YES
RESET $ IN STRING BUFFER
kd
(BT e—{1s vext cmerer v¢r 7] CLEAR MULTIPLE STATEMENT
¥o YES INDICATOR
}1S VARIABLE "DATAn ¢ -
YES
NO

1 1S VARIABLE "FORMATN 7

NO

READ STRING BUFFER ENTRY

LaragO

JASSEMBLE NEXT

VARIABLE

IS FOLLOWING CHARACTER "("?

RO

ES_FOLLOVING CHARAGTER "mn? J——w{ EXTT]

YES
END OF STATEMENT REACHED ?
No
| IS ENTRY r)n 7 EXTT
g - No
. I YES
READ STRING BUFFER ENTRY
YES 1S ENTRY A SPACE ?
NO
L 1S ENTRY " = v 7 p{_EXIT

L, ves xo
je

NO

YES

LOCATE END OF STATEMENT IN
THE STRING BUFFER

]

SEARCH STATEMENT BACKWARDS
IS FIRST NON-BLANK CHAR~
ACTER FOUND n)» 7

YES

,ND

IS FIRST NON-BLANK CHAR-
ACTER FOUND " = v 7

NO

IS MULTIPLE STATEMENT

RESET § IN STRING BUFFER

INDICATOR SET ?

Yes |INDICATOR

CLEAR MULTIPLE STATEMENT

1S CORRESPONDING TAG FROM

NO

-———#{ CFF_. COMPILE FUNCTION DEFINITION]

NO I.If. }
IS VARIABLE IN THE VARIABLE
. NAME TABLE ?
NO'
YES

THE VARIABLE TAC TABLE IN ‘—-.‘ CNF « COMPILE NdRHAL FORMULA)
THE ARRAY TAG TABLE ?

YES

04s

s

l TAB - NORMALIZE STATI™

I ciear Par

~—0O

) 4

TEv

READ CHARACTER FROM THE
STRING BUFFER

4

SPACE ?

1S CHARACTER A
RO

(——————t:ND OF STATEMENT FEACHED ? |
YES o
1
NO

]

1 1S CHARACTER A LETTER ?

YES

NO

ASSEMBLE VARIABLE
WR1TE VARIABLE 1IN BUFFER
(PACKED IN A SINGLE WORD)

READ CHARACTER FROM THE
STRING BUFFER

{ END OF STATEMENT REACHED ? |

NO

|15 CHARACTER A SPACE 1
NO

I

lIS CHARACTER A SEPARATOR ?

YES

15 MULTIPLE STATEMENT

INDICATOR SET ?
NO

r— IS CHARACTER A"$'?
NO
YES

REPLACE $ IN STRING BUFFER
WITH AN END STATEMENT
INDICATOR (ZERO WORD)

I

SET MULTIPLE STATEMENT
INDICATOR TO ADDRESS OF

STATEMENT END

NEXT PAGE

COPY SEPARATOR BACK INTO

-
4] THE STRING BUFFER

A (n 7

NO

F——2:{1s craRaCTER &4) 2
o
YES

‘ 1S CHARACTER
YES

ENTHESES COUNT|

[DEcRRMENT PARENTHESES COUNT)

@d———{ls CHARACTER A SEPARATOR ? |
YES
)
]

2

[rycreMENT PAR

T

B “=——<q 1§ CHARACTER
O"ﬂ YES L

{15 cHARACTER o MUMBER
NO

{15 sePaRsTOR "m!:'?“r.\xsr:-:}m-—-'>@
NO

YES

ASSEMBLE VARIABLE
1S NEXT CHARACTER A ".v ?
YES

Y

STORE SEPARATOR CODE 1IN
STRING BUFFER

l

WAS THIS A RELATIONAL
OPERATOR ?

I YES

COUNT

INCREMENT LOGICAL RELATION

m_"@

IN STRING BUFFER

STORE CORRESPONDING FLAG

SEARCH LOGICAL SEPARATOR
TABLE: IS VARIABLE A

LOGICAL SEPARATOR ?
NO
"TW R "F" 1 1——:.-@
YES

| 15 VARIABLE ¢
NO

YES

on, nAn, nNw® 7]'

LIS VARIABLE »
NO

YES

| FORMAT ERROR

l"—‘———’“"l EXIT '
YES

{ PARENTHESES COUNT = 0 ?
NO

L

w0 OF STATEMENT REN
ML SF STaTEMENT

YES

| ParexTHESES ERROR

(4404

NO

FROM PREVIOUS PAGE

ASSEMBLE NUMBER
WRITE NUMBER BACK IN
STRING BUFFER

IS NEXT CHARACTER
"He, wLm, OR WRw ?

NO

YES

SET JUSTIFY INDICATOR
CONVERT NUMBER TO DECIMAL

INTEGER
I

WAS A NON-ZERO NUMBER
CONVERTED ?

FORMAT ERROR

..._._.L
NO

I YES

15 DATA STATEMENT
INDICATOR SET ?

GENERATE CONSTANT TAG

F'l CLEAR ASSEMBLY REGISTER |

READ CHARACTER FROM THE
STRING BUFFER
END OF STATEMENT REACHED ?

PACK CHARACTER IN ASSEMBLY
REGISTER
10 CHARACTERS PACKED ?

NO
YES
] FORMAT ERROR
YES
O
NO

l YES

WRITE PACKED WORD BACK IN
STRING BUFFER
WRITE ",” IN BUFFER

I

HAVE THE SPECIFIED NUMBER

-] OF CHARACTERS BEEN

PROCESSED ?

YES

[¥as_a FuLL woro Packep - }—-———p@

NO

HAVE THE SPECIFIED NUMBER

YES

OF CHARACTERS BEEN

<3

NO

r—] _WAS DESCRIPT

OR AN "R" 72}

YES

[RICHT JUSTIFY CHBARACTERS

]

STORE CONSTANT AND END
FLAG (ZERO WORD) IN THE
CONSTANT VALUE TABLE

GENERATE CONSTANT TAG
STORE CONSTANT TAG IN
CONSTANT TAG TABLE

| ——

WAS DESCRIPTOR AN "Hu ?
NO

YES

FILL REMAINDER OF WORD
WITH BLANKS (55g)

ZERO F1LL REMAINDER OF
WORD

WRITE PACKED WORD IN THE
STRING BUFFER

{_vAs DESCRIPTOR AN mhn 2 }-~——-—>®
YES

NO

| #As a FULL WORD PACKED 7

NO

[was oEscriProR AN vRY 7 e

YES

NO

YES C

PROCESSED ?
L YES

NO

RIGHT JUSTIFY CHARACTERS
SET RIGHTMOST 6 BITS TO 77

(LITERAL END INDICATOR)

SET LEFTMOST 6 BITS TO 77
(LITERAL END INDICATOR)

#»1 STORE TAG IN THE STRING

BUFFER

god STORE CONSTANT TAG IN

[} REGISTER

< STORE ASSEMBLED WORD IN

COMSTANT TAG TABLE

[cLEaR assEMBLY REGISTER]

READ CHARACTER FROM THE
STRING BUFFER
END OF STATEMENT REACHED ?

YES

NO

| FORMAT ERROR -}

PACK CHARACTER IN ASSEMBLY

10 CHARACTERS PACKED ?

lno

HAVE THE SPECIFIED NUMBER

OF CHARACTERS BEEN
PROCESSED ?

CONSTANT VALUE TABLE

HAVE THE SPECIFIED NUMBER
OF CHARACTERS BEEN

YES

PROCESSED ?

YES

NO

|_cenerate constant Tac)

I
{_was DESCRIPTOR AN 1 7

YES

FILL REMAINDER OF WORD

WITH BLANKS (55g)

}——

NO

ZERO FILL REMAINDER OF
WORD

gvi

€T-v

[T1q - TRANSLATE INDIVIDUAL QTYS |

SAVE COLUMN 1 - POSSIBLE
D, I, OR B INDICATOR FOR

FORTRAN TI1

X

READ STRING BUFFER ENTRY
END OF STATEMENT REACHED ?

NC

IS ENTRY A SEPARATCR ? b

YES NO

IS SEPARATOR A . 2 }-o

NO YES

{15 SEPARATOR & ") ? |

NO

YES

RESTORE COLUMN 1
INHIBIT FUNCTION
ARGUMENT USE

YES

—

TAG SPECIAL FUNCTION

TRANSLATE VARIABLE

IS THE NEXT ENTRY A (" ? l"'—"‘". HAS AN INDEX REGISTER

YES

1S THIS ENTRY IN THE

NO BEEN ASSIGNED 7

TNCREMENT ARGUMENT-
REFERENCE COUNT

NO

1 WRITE TAG IN STRING
BUFFER

INCREMENT SUBROUTINE-
REFERENCE COUNT

VARIABLE NAME TABLE ?

I YES

SAVE VARIABLE TAG
HAS AN INDEX REGISTER
BEEN ASSIGNED ?

l YES

INCREMENT ARGUMENT-
REFERENCE COUNT

l

1S THIS TAG IN THE
ARRAY TAG TABLE ?

NO

WAS THIS A LIERARY TAG ? |

NO YES

ALLOW FUNCTION ARGUMENT
USE

YES

WRITE THIS TAG IN THE
STRING BUFFER

l

INCREMENT ARRAY REFERENTE

WT COLUMY 1

]

B WAS THIS A PROGRAM TAG !

J____.

YES

NO

WRITE TAG IN STRING BUFFER
BLANK OUT COLUMN 1

INCREMENT SUBROUTINE-
REFERENCE COUNT

ori

hT-v

[TNK - TRANSLATE CONSTANT]

READ COLUMN 1

CCRVERT OCTAL CONSTART

1S CHARACTER A "B ?

lxo

READ NEXT 2 ENTRIES FROM
STRING BUFFER (LOOK AHEAD)

YES

WAS RESULT -0 ?

NO

YES

|is Frast entry ax vsv 2}

YES

5 SECOND ENTRY \)" 2 |
YES o

o
{ 1s sEcoND ENTRY a4 ",% 7

YES

READ COMSTANT TO BE

CONVERT DECIMAL NUMBER
WAS MODE OF RESULT

~9 TRANSLATED FROM STRING
BUFFER

—{coNSTANT PRECEDED BY = |
YES NO

JCONSTANT PRECEDED BY "," 2 prmeoo |

NO
YES
IDENTIFY STATEMENT NUMBER
DID STATEMENT NUMBER HAVE
A PROGRAM TAG ? NO

l YES

ENTER PROGRAM TAG IN THE
PERMANENT TAG TABLE

i l

GENERATE STATEMENT TAG

DOUBLE PRECISION ?

“NO

I YES

ENTER BOTH WORDS OF DP
 NUMBER IN THE CONSTANT

VALUE TABLE

GENERATE CONSTANT TAG FOR
EACH WORD AND STORE IN THE
CONSTANT TAG TABLE

ENTER VALUE IN CONSTANT
VALUE TABLE

}

GENERATE CONSTANT TAG
STORE CONSTANT TAG IN
CONSTANT TAG TABLE

ENTER STATEMENT YAG IN

TEMPORARY TAG TABLE

NO

WRITE TAG/CONSTANT.IN
STRING BUFFER (REPLACE

TRANSLATED CONSTANT)

]

YES I WAS RESULT A -0 7

NO

| 15 COEFFICIENT ZERO ?

| e—

] s

NO

1S MODE OF RESULT .
FLOATING POINT ?

EXAMINE EN
FRECEDE <0

A 4

18 CHARACTER FRECEDING
CONSTA!
BY A -7

e, tm

IN TURN PRECEDED

T, OR LOGICAL UPERATOR

YES

— IS CHARACTER A~ + " 1

NO
YES

| DELETE -~ FROM STRIN®

NO

l YES

SET RESULT TO ZERO
WAS CONSTANT PRECEDED BY

NO

AN " m n 7
[YES

READ NEXT STRING BUFFER
ENTRY
END OF STATEMENT REACHED ?

NO

YES

]

[SET CONSTANT INDICATOR
I

BUFFER COMPRESSION REQUIR«
ED? (i.e,, DID CONSTANT
OCCUPY MORE THAN 1 WORD?)

514

| v

SHIFT BUFFER CONTEMTS
DOWN UNTIL END STATEMENT
INDICATOR 15 REACHED

13 CHARACTER A " « " 7

YES

NO

I5 CONSTANT FOLLOWED BY

\ 4

YES

nakn 3
] N0

DELETE MINUS SIGN FROM
STRING .
COMPLEMENT CONSTANT

l

I5 MODE OF CONSTANT
FLOATING POINT ?

YES

LIS CONSTANT zERO ?

——o»

YES

NO

| ¥AS THERE & *B" IN COL. 17}—rrminf

NO

| COMPLEMENT CONSTANT

NEXT PAGE

YES

[

NEXT PAGE

XNL

Sz-v

FROM PREVIOUS

WAS CONSTANT IN THE RANGE

- 216 104 216 L 2
YES
| SET cONSTANT 1NDICATOR]
| WAS CONSTANT zERO ? |——N°._
YES
1S THIS A FLOATING POINT N
CONSTANT ? =
No
YES
ON
[fAS THERE A "8 IN COL. 2|-—-——--zn@ PREVIOUS
" YES PAGE
NO
SET FLOATING POINT MODE .
INDICATOR
I FROM
IS ENTRY PRECEDING 4—-—'@ PREVIOUS
CONSTANT IN TURN PRECEDED PAGE
BY A SEPARATOR ?

4

1S ENTRY PRECEDING CONSTANT

| YES

IS ENTRY PRECEDING
CONSTANT A "(" ?

l YES

18 ENTRY FOLLOWING
CONSTANT A ", ?

I YES

1S MODE OF CONSTANT
FLOATING POINT ?

FORMAT ERROR

‘ YES

SET COMPLEX MODE INDICATOR
DELETE "(' FROM STRING

®

ON PREVIOUS PAGE

IN TURN PRECEDED BY A
JCOMPLEX CONSTANT ?

'YES

1S CONSTANT PRECEDED
BY A "," ?

I YES

IS "," IN TURN PRECEDED
BY A CONSTANT TAG ?

| YES

IS CONSTANT FOLLOWED BY
A nyn T

| YES

1S MODE OF CONSTANT
FLOATING POINT ?

YES

ENTER CONSTANT IN THE
CONSTANT VALUE TABLE

]

GENERATE CONSTANT TAG
STORE ?AG IN THE CONSTANT

TAG TABLE

DELETE ",", ")", AND
CONSTANT FROM THE STRING

©

ON PREVIOUS PAGE

COULD THIS CONSTANT BE

po| MISINTERPRETED AS PART OF

A FORMAT STATEMENT ?

|.\'0

IS TH1S CONSTANT ALREADY
IN THE CONSTANT VALUE
TABLE ?

YES

ON PREVIOUS PAGE

NO
O
NO
Lo
NO
£
NO
| FORMAT ERROR

NO

ON
CREVIOUS
PAGE

MNL

[TRV - TRANSLATE VARIABLE]

9C -v

READ STRING BUFFER ENTRY »] ARE THERE LESS THAN 7
IS ENTRY A "." 7 YES Y CHARACTERS IN THIS ENTRY ?
ENTER VARIABLE IN THE
l NO NO "] VARIABLE NAME TABLE
DOES ENTRY BEGIN WITH A [) il |
N A " Ny » 1S FIRST CHARACTER & " ? |———
LEvIER 2 b——4u] TRANSLATE CONSTANT o ex1T] YES | SET COMPLEX MODE INDICATOR
) NO } YES — READ coLuMy 1
I YES 1S CHARACTER AN "I" ?
%0
STORE CORRESPONDING TAG
15 EHIS VARIABLE IN IHE £+ FROM INDEX TAG TABLE IN &> EXIT ARE THE NEXT 6 CHARACTERS NO
ARGUMENT NAME TABLE ? s | STRING BUFFER DIGITS ? NO SET DP MODE I1NDICATOR
1S CHARACTER A “D" ?
' NO YES
YES
1S FUNCTION ARGUMENT
" DELETE "@"
USE ALLOWED 1 LEFT JUSTIFY DIGITS L ovance varIaBLe Ta Y 2 |
I YES I
1S TH1S VARIABLE IN THE WRITE "B" IN COLUMN 1
VARIABLE NAME TABLE ? TS WRITE NUMBER BACK IN O
THE STRING BUFFER __JIS FIRST LETTER OF VARIABLE |op)
1, J, X, L. M, OR N ?
E |
YES
IS THIS VARIABLE IN THE TRANSLATE CONSTANT
! SUBROUTINE NAME TABLE ? STORE TAG/CONSTANT VALUE
NO IN STRING BUFFER [ser tvTEGER MoDE 1NDIGAT IR
l YES
STORE CORRESPONDING TAG [Ex1T1)
FROM SUBROUTINE TAG TABLE
IN STRING BUFFER LeofSET FLOATING M0DE 1NDICATOR]
[1s vext extRY &) 2 1 e
o [Rovance variapie tag oo e
—] IS NEXT ENTRY A 0 ? |
o] SET MODE INDICATOR IN
NO YES VARIABLE TAG
WAS THIS VARIABLE PRECEDED [&¥—
BY A (", "=", OR ,"?
«, » OR 7y P EXIT ENTER TAG IN VARIABLE TAG
TABLE AND IN THE STRING
NO BUFFER
“B4 15 THIS VARIABLE IN THE STORE CORRESPONDING TAG
1 VARIABLE NAME TABLE ? $1 FROM VARIABLE TAG TABLE
YES | IN STRING BUFFER
NO
EXIT

AL

{__TSF_- TAG SPECIAL FUNCTION |

LT-v

1S FUNCTION A FORTRAN 11 51 1s runcrion A poUBLE
INCREMENT RETURN JUMP FUNCTION NAME 7 | PRECISION FUNCTION MAME ?
COUNT NO
YES NO l YES
[15 Funcrion a Tac 2 J——=&__EXPRESSION FORMAT ERROR | GET EQUIVALENT FORTRAN IV 15 FUNCTION A FORTRAN IV 1S FUNCTION IN THE SUB-
" YES FUNCTION NAME FUNCTION NAME ? o ROUTINE NAME TABLE ? Yes
YES] NO
NO » ENTER FUNCTION IN THE
1S FUNCTION IN THE r—{IS_THIS AN IN-LINE FUNCTIONZ}® SUBROUTINE NAME TABLE
FUNCTION NAME TABLE ? Yo s SET DP MODE INDICATOR
| YES
INCREMENT FUNCTION STATE-~ DECREASE SUBROUTINE g
MENT REFERENGE COUNT REFERENCE COUNT P_EXIT

DECREASE RETURN JUMP COUNT ——-———_l

S
{ IS THIS A FORTRAN Il YE
*——_I PROGRAM ?

1S FUNCTION IN THE NO NO
: > 1S FUNCTION IN THE SUB-
wo | SUBROUTINE NAME TABLE ? {15 THIS A COMPLEX FUNCTION?| %] ROUTINE NAME TABLE 7
YES YES Yo p— ENTER NAME IN THE SUB-

ROUTINE NAME TABLE

|1 IT THE FIRST ENTRY ? — EXIT EVTER FUNGTION IN SUB- 1S 1T THE FIRST ENTRY 7 J—
YES ROUTINE NAME TABLE YES o
SET COMPLEX MODE INDICATOR [

ENTER NAME IN THE SUB-

| ROUTINE NAME TABLE ?
1S A SUBPROGRAM BEING - ‘éﬁg}‘lm‘ﬂ NAME CONFLICT ENTER FUNCTION IN THE NAME MORE THAN 4 LETTERS ?
COMPILED ? YES SUBROUTINE NAME TABLE NO o
] NO
<?—{ DOES NAME END IN F °]
+.] IS FUNCTION IN THE OES NAME BEGIN WITH I NO YES
VARIABLE NAME TABLE ? Yo | SET_INTEGER MODE INDICATOR p———] DOES NAM U
— YES J, K, L, M, OR N ?
I YES o
1S GORRESPONDING ENTRY IN
VARIABLE NAME CONFLICT
THE VARIABLE TAG TABLE A ToR J—~——{ DOES COLUMN | CONTAIN #1v? fa————|DOES NANE BEGIN WITH X 7]
VARIABLE 74C 1 No | ERROR €| SET_COMPLEX MODE_INDICATOR vy — Yo s
YES
ENTER FUNCTION IN THE @{SET DP MODE INDICATOR —k___lnoss COLUMN | CONTAIN npr2 | |LsET_1NTEGER MODE INDICATOR |
SUBROUTINE NAME TABLE YES NO
GENERATE LIBRARY TAG, A I
INSERT MODE, AND ENTER TAG - {SET FLOATING MODE INDICATOR] A

IN SUBROUTINE TAG TABLE

RESERVE AN ENTRY IN THE
SUBROUTINE PARAMETER TABLE

JsL

l EXIT l

8¢-v

(W01 - PROCESS WRITE STATEMENT |

ASSEMBLE NEXT 5 LETTERS
WERE, LETTERS FOUND ?

=& FORMAT ERROR

NO

YES

{ ARE LETTERS nEOUTP ?

NO

YES

[ARE LETTERS "ETAPE" 7 |-

NO

YES

| ARE LETTERS vEv 7

]

FORMAT ERROR

324 ASSEMBLE VARIABLE]

YES

NO

] | END OF STATEN

) —

YES

EXY REACHED ? }

NO

LIS NEXT CHARACTER r(v :]-——;{-Ea»{

FORMAT ERROR

YES

[ASSEMBLE VARIABLE |

]qj_l IS NEXT CHARACTER A " 2 |
NO YES

18 NEXT CMARACTER A *,"? J———pnl 15 NEXT GRARACTER & 7}~ 7 ! ‘i‘gl’"u:’;;“;‘ 2‘;3‘;5&53 (Loce L g 1.?,5\?? LOGICAL UNIT 1IN
NO YES : YES ——————
YES ¥o
NO
WAS A NAME OR NUMBER (LOG- - 1a-
1CAL UNIT) ASSEMBLED ? NOhL‘ FORMAT ERROR I*
YES :
INSERT LOGICAL UNIT IN
VTAPE _ _ _ __ "
|LPROZESS FORMAT NUMBER/TAG }d———@
YES
P SELECT QUTPUTC SUBROUTINE SELECT OUTPUTB SUBROUTINE
| 1S NEXT CHARACTER A ") 7 | FOR CODESTETeE OB BINARY WRITE
NO
| process List J—]

| ForMaT ERRoR

[LrrRocESs sTaTEMENT NoMEER]

v

ASSEMBRLE NEXT 6 LETTERS
ARE LETTERS "UTTAPE" ?

YES

ASSENBLE VARIABLE

WAS A NAME OR NUMBER (LOG-
ICAL UNIT) ASSEMELED ?

YES

INSERT LOSICAL UNIT IN

"TAPE e e e

10M

62-v

| WX - WRITE NEXT LINE

YES

B HAS BUFFER BEEN USED ?

s

SET OUTPUT STATUS

YES wo
HAS A FILE MARK BEEN m-.-__{ IS BUFFER BUSY ?
REQUESTED ? YES |
g T NO
o -t
e §-]____18 BUFFER FULL ? B e | ISSUE RECALL]
NO YES
»~d HAS END OF RECORD BEEN oA SET END OF RECORD
REACHED ? YES INDICATOR

KO

[TRANSFER WORD TO BUFFER

 PP—

NO

—T

1S BUFFER SPLIT ?

1

YES

"OUT" = “FIRST" ?

}__..;r[SET “IN® = “FIRST"
YES

NO

ISSUE RECALL

___g{

ADVANCE "IN"

NO

HAVE 12 WORDS BEER
TRANSFERRED ?

] YES

NO

1S END OF RECORD
INDICATOR SET ?

YES

@

—®

IS BUFFER BUSY ?

YES

NO

I N DOES BUFFER CONTAIN A
FULL BLOCK OF DATA 7

YES

SET OUTPUT STATUS
CALL CIO0

NO

P gy B

& EXIT p«

"
¥

XNM

CHIPPEWA FORTRAN CCMPILER - RUN

APPENDIX B

CONSTANTS, TEMPORARIES, AND NAME TABLES

December, 1965

TAG

CAA

CAC
CAD
CAE
CAF
CAG
CAH
CAI
CAJ
CAK
CAL

CAO
CAP
CAQ
CAR
CAS
CAT
CAU
CAV

CAW
CAX
CAY
CAZ
CCA
CCB
cce
cCD
CCE
CCF
cce

CHIPPEWA FORTRAN COMPILER - RUN

CONSTANTS

CONSTANT

RAM
FORTRAN
CUMULATOR
OVERFLOW
OTIENT
VALENCE

3 NO (No Operation) Instructions
ASCENTF
NSION
LEPRECISION
RNAL

TION

' VIDECHECK

SENSELIGHT

SENSESWITC

ELIGHT

QUTINE

DOUBLEPREC

10 Blanks

8 Blanks Right-Adjusted
FORMAT

1000010000010B (Used to Generate
A-Z Tables)

OP5
INPUTC
INPU
TTAPE
TAPE
INPUTB
INPUT

PUNCH

OUTPUT
EOUTP
UTTAPE

TAG

CCH
ccI
ccy
CCK
CCL
ccM
CCN
€Co
CcCP
ccQ
CCR
ccs
CCT
CCU
ccv
CCW
CCx
CCY

ccz

B-2

CONSTANT

ETAPE
OUTPUA
OUTPUC
REWIND
BACKSP
ENDFIL
SPACE
IBAIEX
RBAIEX
Zero Word
RTRANDBERR
ORSbbINbbLD
Zero Word
Sedededoickd
MACHINE

4 NO (No Operation) Instructions
Fededelededekdoiek
ACGOEP
IFENDF

CHIPPEWA FORTRAN COMPILER - RUN

BINARY OUTPUT ARGUMENTS*

TAG
BOA
BOB
BOC
BOD
BOE

TAG

INA
INB
INC
IND

TN
ke k¥ At

TAG
OUA
OUB
ouC
OUD

OUE

VALUE
Qutput File Name
Start of Buffer
Input Pointer
Qutput Pointer
End of Buffer

CODED INPUT ARGUMENTS#*

VALUE
Input File Name
Start of Buffer
Input Pointer

Output Pointer

CODED OUTPUT ARGUMENTS¥*

VALUE
Output File Name
Start of Buffer
Input Pointer
Output Pointer
End of Buffer

% All value initialized to zero

B-3

CHIPPEWA FORTRAN COMPILER - RUN

DBL - Table of Double Precision Function Names

ENTRY FUNCTION NAMES (Left-Justified)

0 DBLE

1 DABS

2 DSIGN
3 DMOD

& DEXP

5 DLOG

6 DLOGL0
7 DATAN
10 DATAN2
11 DSIN

12 DCOS
13 DSORT
14 DTANH

B-4

CHIPPEWA FORTRAN COMPILER - RUN

FII - Table of FORTRAN II Function Names

ENTRY FUNCTION NAMES
0 MAXOF
1 MAXTF
2 MINOF
3 MINIF
4 XMAXOF
5 XMAXIF
6 XMINOF
7 XMINIF

10 ABSF
11 XABSF
12 XINTF
13 XFIXF
14 FLOATF
15 INTE
16 REAL
17 ATMAG
20 CONJG
21 DMAX1
22 DMINL
23 DBLE
24 SNGL
25 SIGN
26 XSIGNF
27 DIMF
30 XDIMF
31 MODF
32 XMODF
33 . LOGF
34 LOGLOF
35 ATANF
36 SINF
37 COSF

B-5

ENTRY FUNCTION NAMES

40 SQRTF
41 TANF
42 SINHF
43 ASINF
44 ACOSF
45 ATAN2F
46 SINGL
47 ' IDINT

B-6

CHIPPEWA FORTRAN COMPILER - RUN

FIV - Table of FORTRAN IV Function Names

ENTRY

N o LN PO

L o i e e
M~ LN RO

FUNCTION NAME

AMAXO
AMAX1
AMINO
AMIN1
MAXO
MAX1
MIXO
MIX1

IABS
INT
IFIX
FLOAT
AINT
REAL
ATIMAF
COMJF
DBLE
SNGL
SIGN
ISIFN
DIM
IDIM
AMOD
MOD
CMPIX

AT.0G
AT0G10
ATAN
SIN
CoS

- ENTRY FUNCTION NAME

40 SQRT
41 TAN

42 TANH

43 ASIN

44 ACOS

45 ' ATAN2

46 SNGL

47 IDINT
50 778 - Right-Justified
51 CABS

52 CEXP

53 CLOF

54 CSIN

55 CCoS

56 CSQRT

B-8

CHIPPEWA FORTRAN COMPILER = RUN

UDD - Table of Program Title Types

ENTRY NAME (Left-Justified)

PROGRAM
SEGMENT
SUBROUT
FUNCTIO
END

BLOCKDA

mi L= O

HDF - Table of Variable Declaration Types

ENTRY NAME (Left-Justified) CODEX
0 LOGICAL 1
1 INTEGER 2
2 REAL 4
3 ISION 5
4 COMPLEX 6

*Type code appears in low-order 3 bits.

CHIPPEWA FORTRAN COMPILER - RUN

LGR -~ Table of Statement Letter Groups

ENTRY STATEMENT LETTER GROUP (Left-Justified)
0 RETU
1 . ASSI
2 IF
3 IFQU
4 IFDI
5 TFAC
6 SENS
7 STOP
10 PAUS
11 ' GOTO
12 CALL
13 READ
14 | PUNC
15 PRIN CLASSED AS
” on [Do
17 REWT
20 ENDF
21 BACK
22 ENCO
23 DECO
24 BUFF
25 END
26 PROG
27 SEGM
30 SUBR
31 FUNC
32 CONT _J
33 BLOC
34 FREQ
35 FORM

B-10

ENTRY STATEMENT LETTER GROUP (Left-Justified)
36 NAME

37 ENTR
40 DOUB
41 REAL
42 INTE
43 LOGI
44 cop
45 DIME
46 EXTE
47 EQUI
50 DATA
51 COMM

B-11

CHIPPEWA FORTRAN COMPILER - RUN

LTB - Table of Logical Separators and Constants

WORD : ENTRY (Left-Justified)
0 LT
1 LE
2 EQ
3 NE
4 GE
5 GT
6 NOT
7 AND
10 OR
11 FALSE
12 TRUE

B-12

CHIPPEWA FORTRAN COMPILER - RUN

Map Headlines

MPF OFUNCTIOND
ASSIGNMENT
s

MPN OSTATEMENT
bASSIGNMEN
TS

MPV OVARIABLED
ASSIGNMENT
s

MPK OSTARTbOFb
CONSTANTSb

0

MPT OSTARTbOFb
TEMPORARIE
s

MPI OSTARTbOFb
INDIRECTS

0

MPS OSUBROUTIN
EbASSIGNME
NTS ’

MPR OBLOCKbASS
IGNMENTS

MPM OBUFFERbAS
SIGNMENTSb
0

MPL OLOCALbLEN
GTH

- MPC OCOMMONbL
ENGTH

MPB OBUFFERDLE
NGTH

MPP OUNUSEDbPR

MPU

MPD

OGRAMbSPAC
E
OUNUSEDbBCO
MPILERbSPA
CE
UNUSEDDbJOB
bSPACEbbbb

CHIPPEWA FORTRAN COMPILER - RUN

MTA - Table of ASCENT Pseudo-Operations

ENTRY NAME (Left-Justified)
BSS
BSSZ
EQU
DPC
BCD
CON

[V - I VU B =)

MTB - Table of Tag - Defining Operation Codes

ENTRY NAME (Left-Justified)
0 CON
1 ABS
2 HOL
3 CcoM
4 RES
5 SUB

B-15

CHIPPEWA FORTRAN COMPILER ~ RUN

RCD - TABLE OF OPERATIONAL-REGISTER CODES

ENTRY REGISTER TYPE REGISTER NUMBER
(left-justified) (right-justified)
0 T , T
1 C 0
2 C 1
3 C 2
4 C 3
5 C 4
6 C 5
7 C 6
8 C 7
9 B 1
10 B 2
11 B 3
12 B 4
13 B 5
14 B 6
15 B 7
16 D* o%
17 E* %
18 B 0%
19 A 0
20 A 1
21 A 2
22 A 3
23 A 4
24 A 5
25 A 6
26 A 7

* Used in Machine processing only
%% Unused

C = A registers, B = B registers, A = X registers

B-16

CHIPPEWA FORTRAN COMPILER - RUN

2.0 8
REG - POWERS OF 10~ - 10

2

ENTRY VALUE
20

0 10°, = 10
1 10 5 100
2 10(2)3 - 10%
3 10(2>4 = 10°
4 10(2)5 = 10%6
5 10(2)6 = 1032
6 102 = 10%
7 10(2)8 = 10%28
8 103" = 10256

B-17

CHIPPEWA FORTRAN CCYPILER - RUN

Table Parameters

Table Parameter Word Format:

\Q§S§§address of this starting address next entry
N : parameter word of table address
NNV

36 18 0
Table Parameter Tag Table Tags Entered
TBI ARGUMENT NAME
TBJ ARGUMENT TAG FUNCTION TAG
TBA CONSTANT VALUE
TBB CONSTANT TAG CONSTANT TAG
TBC TEMPORARY TAG STATEMENT TAG
TBD PERMANENT TAG PROGRAM TAG
CONSTANT TAG
TBE FUNCTION NAME
TBF FUNCTION TAG FUNCTION TAG
3G DO NUMBER
TBH DO TAG STATEMENT TAG
TBK STATEMENT NUMBER
TBL STATEMENT TAG PROGRAM TAG
STATEMENT TAG
CONSTANT TAG
TBM VARIABLE NAME
TBN VARIABLE TAG PROGRAM TAG
VARIABLE TAG
ARRAY TAG
TBO COMMON NAME
TBP ARRAY TAG PROGRAM TAG
ARRAY TAG
IBQ ARRAY PARAMETERS
TBR TRANSLATED DATA STATEMENTS
TBX EQUIVALENCE SECONDARY NAME
TBY EQUIVALENCE PRIMARY NAME
TBZ EQUIVALENCE BIAS

SUBROUTINE NAME

Table Parameter Tzag Table Tags Entered

TBT SUBROUTINE TAG LIBRARY TAG
TBU SUBROUTINE PARAMETERS

TBV COMMON BLOCK NAME AND ADDRESS

TBW PROGRAM FILE NAME AND ADDRESS

B-19

CHIPPEWA FORTRAN COMPILER - RUN

Program Tags

TAG FUNCTION TYPE

TGL LIBRARY TAG (L-TAG) 40xxxx
TGA PROGRAM TAG (A-TAG) 20xxxx
TGI INDIRECT TAG (I-TAG) 22xxxx
TGT TEMPORARY TAG (T-TAG) 2xxx
. TGK CONSTANT TAG (K-TAG) 2630
TGF FUNCTION TAG (F-TAG) 3 Oxaxx
TGW ARRAY TAG (W-TAG) 323xxx
TGV VARIABLE TAG (V~TAG) 3lxxxx

TGH - STATEMENT TAG (H~-TAG) 36xxxx

B-20

TOI - TABLE FOR CHECK ON INSTRUCTIONS 50-77

CHIPPEWA FORTRAN COMPILER - RUN

ENTRY

\DOONO\"-P‘WNHC)%

R T ol e =
LU N O R S O I o =

-
co

N Oy WO

CHIPPEWA FORTRAN COMPILER - RUN

FLAG

C+G
B+G
A+G
A+ B
C+B
C-38
B+ 3B
B -~-B

INSTRUCTION

00
01
02
03
04
05
06
07

TOP - TABLE OF IDENTIFYING CHARACTERS

~

O0A
0A
0OA
0A
0 A
0OA
0A
0 A
0OA
0A
0A
0A
0A
0A
0OA
0O A
0A
0A

FLAG

[|
L B e

i

P R <
I L L B
> > b > o P

n 1]
> b
S
.

A+A
A-A
A*A
A/lA
B-21

2 2 o2 oW oW W H B HHOO0O0UY YU
I

2
"

INSTRUCTIONS

32
33
42
15
16
17
36
37
11
12
13
34
35
41
45
30
31
40

44

CHIPPEWA FORTRAN COMPILER - RUN

I0S - TABLE OF SPECIAL FORMATS

ENTRY FLAG SHORT/LONG* REGISTER FLAG¥* INSTRUCTION
(left-justified) (bit-18) (bits 6-7) (right-justified)
0 OAB=A. 1 0 26
1 OAB=A4+ 1 0 25
2 OAB=A- 1 0 24
3 OAB, A. 1 0 27
4 OA(-B) 1 2 57
5 OAA (B) 1 2 22
6 OAA(-3B) 1 2 23
7 OA-A.A 1 2 15
8 OA-A A 1 2 16
9 OAA (G) 1 3 20
10 OAA(-G) 1 3 21
11 OO0A (G) 0 0 51
12 OO0A (C) 1 0 54
13 OO0OA (B) 1 0 56
14 O00A (A) 1 0 53
15 OOAA+A 1 0 36
16 OOAA-A 1 0 37
17 OO0OAA*®A 1 0 40
18 OO0AA /A 1 0 b4
19 O0OAA . A 1 0 11
20 OOCAA A 1 0 12
21 O0O0OA*G 1 1 43
22 O00A®*A 1 2 47
23 000A-B 1 2 77
24 0O00B -8B 1 2 67
25 000C-B 1 2 57
26 O00A-A 1 2 14
27 0000AG 0 0 71
28 O0OO0O0BG 0 0 61
29 000O0CG 0 0 51
30 coo0oo0CC 1 0 54

B-22

ENTRY FLAG SHORT/LONG* REGISTER FLAG** INSTRUCTION

(left-justified) (bit-18) (bits 6-7) (right-justified)
- 31 0000CHB 1 0 56
32 O0O0O0OAGC 1 0 74
33 OO0OO0OO0AB 1 0- 76
34 0O00O0OBC 1 0 64
35 OO0OO0OO0OBB 1 0 66
36 0000CA 1 0 - 53
37 0000BA 1 0 63
38 OO0OO0O0AA 1 0 10
* 0 = long instruction
= short instruction
%% 0 = operation registers are contained in I, J and K constants
1 = masking instruction
2 = J and X values should be interchanged
-3 = shift instruction

B-23

CHIPPEWA RUN COMPILER - RUN

VTA - TABLE OF REGISTER-ASSOCIATED TAGS

TAG REGISTER ASSOCIATED
VTA A0
VIB Al
VIC - A2
VID A3
VIE YA
VIF A5
VTI B1
VIJ B2
VIK B3
VIL B4
vm ~ B5
VIN B6
VTO B7
VIY X6
VIT X1
VIU X2
VIV | X3
VIW X4
VIX X5

B-24

CHIPPEWA FORTRAN COMPILER - RUN

TEMPORARIES/FLAGS
TAG TEMPORARY
ADM RUNNING RELATIVE ADDRESS
ARF ARGUMENT-REFERENCE COUNT
ARG ARGUMENT COUNT
ARI ARRAY-REFERENCE COUNT
BAI BASE ADDRESS FOR INDIRECTS
BAK BASE ADDRESS FOR CONSTANTS
BAT "BASE ADDRESS FOR TEMPORARIES
BAV BASE ADDRESS FOR VARIABLES
BIT BYPASS-INTERREGISTER-TRANSFER INDICATOR
BLN BUFFER LENGTH FOR INPUT/OUTPUT
CBA CURRENT COMMON-BLOCK RELATIVE~-ADDRESS
CJp CURRENT JUMP ADDRESS
CSA COMMON STARTING ADDRESS
CTG CURRENT PROGRAM TAG
CTY COMMON-BLOCK-TYPE INDICATOR
DFG DATA-STATEMENT INDICATOR
DSN DO STATEMENT-NUMBER
STI DO-TERMINATION INDICATOR
FAG INHIBIT FUNCTION-ARGUMENT FLAG
FLC 4 PROGRAM COMMON FIELD-LENGTH
FLF JOB ERROR FLAG
FLG PROGRAM ERROR FLAG
FLH SUBPROGRAM ERROR FLAG
FLT PROGRAM TOTAL FIELD-LENGTH
FSR FUNCTION-STATEMENT-REFERENCE COUNT
FST LONG-FILE START
FTY FUNCTION TYPE
HIC - ' HIGHEST-INDEX COUNT
ICA DISPLAY-CODED RUNNING-ADDRESS
ICB ARGUMENT COUNT
1CC RELATIVE SUBROUTINE START
ICD SUBROUTINE REFERENCE TAG

B-25

TAG

ICE
ICF
ICG
ICH
ICI
ICJ
ICK
ICL

e

ICN
1IC0
Icp
1cQ
ICR
ICs
ICT
ICU
ICVv
IcW
ICX
ICY
ICcZ
IGE
IGS
IcX
ILG
INF
ING
INH
INI

© - INJ

INK
INL
INM
INN

TEMPORARY

DOLLAR-SIGN POINTER

*I-TAG MAXIMUM

T-TAG MAXTMUM
DATA-REPEAT INDICATOR
INCOMPLETE-READBACK INDICATOR

COMPILER FIELD LENGTH

BLOCK-DATA INDICATOR
STMPLE-LOGICAL-RELATION INDICATOR
INCOMPLETE~-COMPILE-MODE INDICATOR

TABLE LENGTH FOR INCOMPLETE-CQMPILE MODE
BASE ADDRESS FOR VARIABLES
BINARY-SUBROUTINE REGION END

UPCOMING STATEMENT-NUMBER

UPCOMING CHARACTER-GROUP

ERROR-EANDLER TAG

INTRAWORD INSTRUCTION COUNTER

INDEX TAG

UPCOMING-STATEMENT AND UNPACK INDICATOR

 DO-TERMINATION-PROCESSING INDICATOR

BUILT-IN-FUNCTION POINTER
LINE LIMIT

FREE TEMPORARY
INSTRUCTION-GROUP END

. INSTRUCTION~-GROUP START

CURRENT INDEX ASSIGNMENT
LOGICAL-RELATION COUNT

DUMP~-PDUMP INDICATOR

SUBSCRIPT COUNT

FIRST CHARACTER OF STATEMENT WITH O-TYPE CONSTANT
MAP-ITEM COUNT

ASCENT MNEMONIC CODE OR REGISTER NUMBER
CONTINUE INDICATOR

LOGICAL-IF INDICATOR

LOGICAL-RELATION INDICATOR

MODE INDICATOR FOR READ

B-26

TAG

INO
INP
INQ
INR
INS
INT
INU
INV
INW
INX
INY
INZ
IPS
IWC
JPS
LBA

LRC
MOD
MOE
MOF
MSN
MST
PNM
RGC
RGX
RIC
RNZ
SAR
SBA
SBP
SRI
STG
STN
TIP

TEMPORARY

DOMINANT-MODE INDICATOR
OUTPUT-FILE STATUS

NAME FOR DAYFILE

H OR L OR R INDICATOR
ARRAY~-REFERENCE MODE
FIRST INSTRUCTION ADDRESS

"UNUSED COMPILER SPACE

SEGMENT INDICATOR

CHAIN-MODE INDICATOR
UPCOMING-STATEMENT INDICATOR
COMPLETE-UNPACK INDICATOR
EXPRESSION-TERM COUNT
PROGRAM~-SUBPROGRAM INDICATOR

NUMBER OF INSTRUCTION WORDS

CURRENT PROGRAM-SUBPROGRAM INDICATOR
LATEST BUFFER ADDRESS

ADDRESS OF LAST MULTIPLY OR DIVIDE INSTRUCTION
CURRENT LOGICAL RELATION

MACUTINE-HEADTNG TNDTCATOR

A L P o A S A I T PO B VT IRV /AN

SUBPROGRAM MODE
PROGRAM MODE

SPECIAL COMPILE-MODE INDICATOR
MISSING-STATEMENT INDICATOR
SYSTEM~ERROR INDICATOR
PROGRAM/SUBPROGRAM NAME
REGISTER-ASSIGNMENT COUNT
LONG-REGISTER ASSIGNMENT
RETURN-JUMP COUNT

READ-ENTRY COUNTER
SINGLE-ARRAY-REFERENCE COUNT
ADDRESS OF BASE-SETTING INSTRUCTION

LATEST INDEX-DIMENSION

SUBROUTINE-REFERENCE COUNT
COMPILE-MODE INDICATQR
STATEMENT NUMBER

PROGRAM TYPE

B-27

TPT
WNZ
ZAA

III
JJJ

TEMPORARY

SUBPROGRAM TYPE
PSEUDO~STATEMENT~NUMBER FOR INDEXED LISTS
DO STATEMENT-NUMBER

FREE TEMPORARY

INPUT/OUTPUT SUBROUTINE TAG

START OF LOGICAL RELATION

START OF ARRAY REFERENCE

EXPRESSION INDEX ASSIGNMENT

START OF EXPRESSION

FIRST STATEMENT NUMBER

SECOND STATEMENT NUMBER

THIRD STATEMENT NUMBER

ARGUMENT COUNT FOR CALL

NAME TAG FOR CALL

. 'ARGUMENT TAG FOR CALL

START OF CONDITIONAL STATEMENT
CURRENT EXTENDED COMMON BLOCK~LENGTH
CURRENT COMMON BLOCK~NAME

BASE ADDRESS FOR EQUIVALENCE GROUP

END OF RECORD FLAG

DIMENSION COUNTER

CONSTANT PORTION OF ARRAY ADDRESS
MULTIPLIER FOR SECOND SUBSCRIPT

MULTIPLIER FOR THIRD SUBSCRIPT

SECOND OR THIRD SUBSCRIPT MULTIPLIER

INDEX REGISTER ASSIGNMENT FOR ARRAY ADDRESS
ARGUMENT POINTER FOR FUNCTION REFERENCE
TEMPORARY FOR UNPACK

WRITE-ENTRY COUNTER

RELATIVE START OF CURRENT PROGRAM OR SUBROUTINE
SHORT-FILE START

I~PORTION OF MACHINE INSTRUCTION

J~PORTION OF MACHINE INSTRUCTION

K-PORTION OF MACHINE INSTRUCTION

B-28

CHIPPEWA FORTRAN COMPILER - RUN

APPENDIX C

ELOW CHARTS FOR EXECUTION TIME ROUTINES

December, 1965

YES

GET FORMAT NUMBER AND
STORE IN ERROR MESSAGE

IINPUTC = OBJECT TIME INPUT SUBRT]

1S ARGUMENT THE ADDRESS

OF THE PARAMETER LIST ?

lno

READ ARGUMENT
1 1S ARGUMENT A TAPE
NUMBER ?

=

0 I YES

CONVERT TAPE NUMBER TO
DISPLAY CODE
GENERATE "TAPEXX"

Lo SEARCH LIST OF FILE
NAMES AT RA + 2

[1s FILE NAME 1N LIST ?

YES

1S ADDRESS OF PARAMETER
{—4 LIST IN FILE NAME WORD ?

YES NO

STORE FILE NAME IN ERROR
MESSAGE
"UNDEFINED INPUT MEDIUM"

NEXT PAGE

L-pd INITIALIZE FLAGS & POINTE
SAVE ARGUMENT LIST ADDRESS

81 SET GROUP COUNT TO 1

|

SET RE-ENTRY SWITCH
FILL FORMAT BUFFER
READ NEXT .RECORD

{ 1S THIS THE FIRST ENTRY ?

]

NO

| CLEAR DATA Frac

| SAVE' DATA ADDRESS
(:) 2 SavE ARRAY LENGTH

YES

IS THE ITEM REPEAT COUNTER
NON-ZERO ?

JUMP TO PRESET RE-ENTRY
POINT

NO

IS FORMAT BUFFER EMPTY 7 FILL FORMAT BUFFER I

NO

YES

READ FORMAT CHARACTER
IS CHARACTER A SPACE ?

NO

I 15_FORMAT CHARACTER A ")"?
NO

YES

IS REPEAT GROUP COUNTER
NON-ZERO ?

NO

lus

DECREMENT REPEAT GROUP
COUNTER

MO] IS COUNTER NOW ZERO ?

lus

1S PARENTHESIZED GROUP
[] CoUNTER zERO ?

L YES

IIS DATA FLAG SET ?

1S FORMAT BUFFER EMPTY 7 == FILL FORMAT BUFFER

READ FORMAT CHARACTER
1S CHARACTER A SPACE,
YES nyn, ORM, M 1

NO

HAS END OF FORMAT BEEN
REACHED ?

YES

-—lIS THIS THE FINAL ENTRY ?

NO YES

[IS THE DATA FLAG SET ?

ﬁna

SET REPEAT GROUP CTR TO 1
READ NEXT DATA RECORD

3 - g 1
L g

SET REPEAT GROUP CTR TO 0
SET ITEM MULTIPLIER TO 1

5 1S FORMAT CHARACTER
NUMERIC ?

()

NO

YES

CONVERT NUMBER TO RINARY
SET ITEN MULTIPLIER

ADVANCE TO NEXT NON-SPACE
FORMAT CHARACTER

vr:s

J——»{ sex_rereat crour c1r 1o 1}
No

SET FORMAT CHARACTER POINT-
ER TO BEGINNING OF FORMAT
TO BE REPEATED

FILL POMMAT BUFFER WITR
_|FORMAT TO BE REPEATED

NEXT
PAGE

ILNdN/

[3s Foruat chsracter (- 1 p——z 75 o

YES

j4—{ IS THERE A MULTIPLIER 2 |
YES

NO

{15 GROUP REPEAT COUNT 1 7]
YES

NO

SBELECT ERROR MESSAGE
"NO CLOSING PARENTHESIS"

EMAT CHARACTER A /"7 J———t{15 FORMAT CHARACTER "IV 7 |
YES Ko YES NO YES
—{1S GROUP REPEAT COUNT ZERO?| . CONVERT FOLLOWING w FIELD
TO BINARY AND 3TORE
O 1 READ NEXT DATA RECORD |

DECREMENT MULTIPLIER

N0 1S MULTIPLIER ZERO ?

YES

KO

SET FLAG FOR 1 CONVERSION

®

REXT PAGE

YES

—t"{ 15 FORMAT CHARACTER A" 74|-—Ng’®

v——{ IS MULT1PLIER ZERO ?

NO YES

SELECT ERROR MESSAGE
"ZERO MULTIPLIER ON SPEC"

[E¥0 OF FORMAT REACHED 7 J—
YES

NO

©

SET GROUP REPEAT COUNT
=$= EQUAL TO MULTIPLIER
SAVE ADDRESS OF n("

— IS THERE A MULTIPLIER ?]
YES

NO

SAVE ADDRESS OF "(" AS
INNER PARENTHESIS POINTER

ON
PREVIOUS
PAGE

~(2)

| 15 FORMAT CHARACTER wxn 7 |

YES

WILL DATA EXCEED AVAIL=-
ABLE INPUT FIELD 7

N YES

ADVANCE DATA POINTER OVER

ADVANCE TO NEXT NON-SPACE,
NON-COMMA CHARACTER

ON PREVIOUS PAGE

?

ADVANCE FORMAT POINTER TO
CHARACTER FOLLOWING " ,n A

SPECIFIED NUMBER OF
CHARACTERS

SELECT ERROR MESSAGE
YEXCEEDED RECORD SIZE"™

c)

DECREMENT REPEAT COUNT

STORE CONVERTED DATA WORD
SAVE DATA POINTER
SAVE FORMAT POINTER

1S DATA BEING LOADED IN AN
ARRAY ?

ADVANCE ARRAY 1ATA ADDRESS

DECREMENT ARRAY LENGTH

STORE SECOND DATA WORD
ADVANCE ARRAY DATA ADDRESS
DECREMENT ARRAY LENGTH

f#———]WAS DATA DOUBLE-PRECISION?]

I ¥ES

NO

@‘—fos ARRAY LOADING COMPLETE ? |

YES

SAVE MULTIPLIER AS REPEAT
COUNT

CONVERT w FIELD TO BINARY

WILL DATA EXCEED AVAILABLE
INPUT FIELD ?

NO I YES

SELECT ERROR MESSAGE
"EXCEZDED RECORD SIZE"

,

-“l IS THIS THE FINAL ENTRY?

NO YES

| IS THE DATA FLAG SET ?

YES

ADVANCE DATA POINTER BY
“${ 15 w GREATER THAN 10 ? |=———ds{w = 10
SET w = 10
RO YES

PACK ASSEMBLY WORD WITH

ON
NEXT
PAGE
SEARCH LIST OF FILE
g NAMES AT RA + 2

|

lEND OF LIST REACHED ?

}.__....

NO

YES

1S FILE IN USE ?
RO YES

{15 FILE AN OUTPUT FILE 7 |

L YES

C19 REQUEST:
WRITE FILE MARK

—

ENTER RECALL

C

FILE OPERATIONS COMPLETE?

ENTER DAYFILE MESSAGE
"JOB ABORTED."

NO l YES

| RequEST MTR TO ABORT JoB_)

STOP

|

w DATA CHRARACTERS

WAS A FULL WORD PACKED ?
| YES

SET RE-ENTRY POINT TO@ -t

NO

LEFT JUSTIFY AND SPACE
FILL ASSEMBLY WORD

2LNaN!

€2

FROM PREVIOUS PAGE

on
| 15 FORMAT CHARACTER "Ev 7]————v@ NEXT

YES

NO PAGE

SET E CONVERSION FLAG
SAVE MULTIPLIER AS REPEAT
COUNT

CONVERT w TO BINARY & SAVE
[~] 1S NEXT FORMAT CHARACTER A
DECIMAL POINT ?

NO YES

|coNvERT d TO BINARY & SAVE |

-t

SET RE-ENTRY POINT TO @ 1

—Q

T-' IS THIS THE FINAL ENTRY ? |
Ko

YES

|Is THE DATA FlLAG SET 2

YES

®

B e IFTE)

WILL DATA EXCEED AVAILa-
ABLE INPUT FIELD ?

NO I YES

-SELECT ERROR MESSAGE:
"EXCEEDED RECORD SIZE"

‘{15 THIS AN "F" CONVERSION ? jo—ror———epl

YES

FETCH p SCALE FACTOR
SAVE AS OVERFLOW COUNTER

I

NO

s FETCH DATA CHARACTER
1S CHARACTER A BLANK ?

V4

YES

REDUCE w. COUNT
1S w COUNT ZERO ?

Ino

NO

I YES

1S CHARACTER A + OR -

r— SIGN 7

SET ASSEMBLY WORD TO 0
FOR BLANK FIELD CONVERSION

NO I YES

SET DATA SIGN
(SET DATA SIGN TO PLUS
IF NO SIGN)

[FETCH NEXT DATA CHARACTER |

| g {HAVE w DATA CHARACTERS
BEEN PROCESSED ?

‘YES :

PREVIOUS PAGE

[1s craracTER A srace 2 J-————o-@
YES

NO

|LIS_THIS AN °I" CONVERSION? b

NO

YES

SELECT ERROR MESSAGE
"ILLEGAL DATA COL. xx"

1S CHARACTER A »," ?

—{

NO YES

INITIALIZE FRACTIONAL
DIGIT COUNT

P

—0

—%>| IS THIS AN "1" CONVERSION? }——tb

NO

YES

SELECT ERROK MESSAGE
"ILLEGAL CODE IN EXP. FIELD|

—] 15 CHARACTER

npn OR "E" ?]

15 CHARACTER NUMERIC ?

NO
—:{_IS CHARACTER ALPHANUMERIC? | s
YES

0

)

YES

CONVERT DIGIT TO BINARY
POSITION BITS IN ASSEMBLY

REGISTER

HAS A DECIMAL POINT BEEN
ENCOUNTERED YET ?

—

NO I YES

INCREMENT FRACTIONAL

DIGIT COUNT

8 FETCH NEXT DATA CHARACTER
DECREMENT w COUNT

7

NO

1S w COUNT ZERO ?

O

YES

NO

[IS THIS AN "1" CONVERSION? l—

I YES NO

CONSTRUCT INTEGER
MORE THAN 59 BITS
ASSEMBLED ? .

I YES

Os=
@q_

SELECT ERROR MESSAGE:
WINTEGER TOO LARGE"

o ——

SCALE AND ROUND RESULT
RESULT OUT OF RANGE ?

NO YES

SELECT ERROR MESSAGE:

YES NO

SELECT ERROR MESSAGE:
"ILLEGAL CODE IN EXP.
ONENT FIELD"

Lyl FETCH NEXT DATA CHARACTER
INCREMENT w COUNT
415 w COUNT ZERO ?

—(0)

FETCH NEXT DATA CHARACTER

No
SET SIGN OF EXPONENT
|LIS_CHARACTER » + o OR e |t
NO YES
7} ol
L_1s character "”“E:m ! wo | SELECT ERROR MESSAGE
YE

"ILLEGAL DATA COL, xx"

CONVERT DIGIT TO BINARY
POSITION BITS IN EXPONENT
ASSEMBLY REGISTER

"EXPONENT TOQ LARGE"

——{EXPONENT GREATER THAN 5127]

NoO | YES

SELECT ERROR MESSAGE:
"EXPONENT TOO LARGE"

J2LNdN!

-2

FROM PREVIOUS PAGE

)
115 FORYAT CHARACTER "F~ 7 |

) [[15 FORM\T CHARACTER "B~ ? e[715 FORMAT CILLRAGTER "5 7 I———n@
NO
O YES

o1 ves YES
FETCH DATA CHARACTER .
1S CHARACTER A SPACE? y
- SAVE MULTIPLIER AS REPEAT —t»] 15 FORMAT BUFFER FILLED ? |
|SET_F cosversion Frac.) cOUNT [—
YES RO CONVERT w TO BINARY & SAVE)
I ASSEMBLE FORMAT BUFFER
ON PREVIOUS PAGE |L1S_CHARACTER + o - ? I-—-r CONTENTS INTO A SINGLE
. YES WILL DATA EXCEED AVAIL- WORD
ABLE INPUT FIELD ? I
—x] 1S FORMAT CHARACTER np" 7 —————i
NO SET DATA SION TO PLUS : YES
YES OR MINUS NO COPY ASSEMBLED WORD INTO

CALLING PROGRAM'S FORMAT
: | STATEMENT AREA

SAVE MULTIPLIER AS REPEAT I e IDRROR MESSACE:, _"’C) AT

COUNT :

CONVERT w TO BINARY & SAVE

¥+ FETCH NEXT DATA CHARACTER |
DECREMENT w COUNT .——(p@
1S w COUNT ZERO ?

-3

on
ves FETCH NEXT DATA CHARACTER _,_@ NEXT
1S CHARACTER AN "t 7)
: NO Yes —f w=02] race
—{ IS THIS THE FINAL ENTRY? | o I Yo YES
NO YES
|#—— 15 CHARACTER A spack 7| — FETCH NEXT FORMAT CHARACTER
| 1s THE DATA FLAG SET ? s Ex17 |} YES o 1S FORMAT BUFFER FILLED? |— IS CHARACTER AN nin 7 YES
NO YES
YES NO No
CONVERT CHARACTER TO OCTAL
- POSITION IN ASSEMBLY REG. |t TRANSFER CHARACTER FROM
WAS CHARAGTER NUMERIC ? DATA BUFFER 70 FORMAT L_| TRANSFER DATA CHARACTER
BUFFER TO FORMAT BUFFER
YES o .
WILL DATA EXCEED AVAILABLE 2
| INPUT FLELD No L—{ SET NON-OCTAL DIGIT FLAG
f@—— DECREMENT w COUNT] FROM
YES ASSEMBLE REMAINING FORMAT e
BUFFER CONTENTS INTO A mc;
SINGLE WORD
SELECT ERROR MESSAGE: I g
"EXCEEDED REGORD SIZE" ASSEMBLE FORMAT BUFFER I
N3 CONTENTS INTO A SINGLE "
| 1S DATA SIGN NEGATIVE 7 WORD 2231::552&‘:‘“?20?3&2.[
YES l STATEMENT AREA
[cowrLoment REsvin] COPY ASSEMBLED WORD INTO l
CALLING PROGRAM'S FORMAT
STATEMENT AREA ADVANCE TO NEXT NON-BLANK,
T NON-COMMA FORMAT CHARACTER
_SET RE-ENTRY POINT ro@ l———{NON-OCTAL DIGIT FLAG SET?
X YES r————
) ASSEMBLE REMAINING FORMAT
SELECT ERROR MESSACE: BUFFER CONTENTS INTO A
"ILLEGAL DATA COL. xx" WORD, RIGHT-JUSTIFIED

COPY ASSEMBLED WORD INTO
CALLING PROGRAM'S FORMAT
STATEMENT AREA

ADVANCE TO NEXT NON.BLANK,
NON.COMMA FORMAT CHARACTER

21NdN/

FROM PREVIOUS PAGE

?.

NO

FETCH NEXT FORMAT CHARACTER ._4.@
[|15 CHARACTER AN ¥ 2

YES

|1 _FORMAT BUFFER FILLED 7 J— RO

YES

ASSEMBLE FORMAT BUFFER
CONTENTS INTO A SINGLE
WORD

b

COPY ASSEMBLED WORD INTO
CALLING PROGRAMS'S FORMAT
STATEMENT AREA

BUFFER

ENTER A BLANK IN FORMAT qj

ON
PREVIOUS
PAGE

FRQM PREVIOUS PAGE

| 1S FORMAT CHARACTER "R® 7]—-——-——cm{w FORMAT CHARACTER "L" ? |
NO NO
YES YES
SAVE MULTIPLIER AS REPEAT SAVE MULTIPLIER AS REPEAT
COUNT COUNT
CONVERT w TO BINARY & SAVE CONVERT w TO BINARY & SAVE
WILL DATA EXCEED AVAILABLE ._@ WILL DATA EXCEED AVAIL- w
[] ABLE INPUT FIELD ?

r INPUT FIELD ?

NO I YES

SELECT ERROR MESSAGE:
"EXCEEDED RECORD SIZE"

1S THIS THE FINAL ENTRY 7]

RO YES

|15 THE pATA FlLAG SET 7 N S R

NO l YES

SELECT ERROR MESSAGE:
"EXCEEDED RECORD SIZE"

1S THIS THE FINAL ENTRY 7 |
NO YES

.o

YES

®

r——{ls w_GREATER THAN 10 ?

T

]

NO YES

ADVANCE DATA POINTER OVER
w - 10 CHARACTERS

ASSEMBLE DATA CHARACTERS

IN A SINGLE WORD, RIGHT-
JUSTIFIED

SET RE-ENTRY POINT TO@

NO

{55 THE DATA FLAG SET 7

I = 2350

NO

YES

[SET ¥aLsE FiaG]
i

SEARCH NEXT w DATA CHAR-
ACTERS FOR A NON-BLANK
CHARACTER

—f DOES FIELD CONTAIN A NON.
BLANK CHARACTER ?

NO . YES

fat-{ I8 CHARAGTER A "T" 7]

N0 YES

["ser triE FiaG]

SET RE-ENTRY POINT TO ®

NO

L COMPLEMENT SCALE FACTOR

¥ 15 FORMAT CHARACTER "P" 1 |

YES

COMPLEMENT MULTIPLIER AND
SAVE AS SCALE FACTOR

ADVANCE TO NEXT NON-BLANK,
NON-COMMA FORMAT CHARACTER

—

r———1{I5 FORMAT CHARACTER + OR - 7}

YES

SET SIGN REGISTER
CONVERT n TO BINARY AND
SAVE AS SCALE FACTOR

IS THE NEXT FORMAT
CHARACTER A "pv 7

YES l NO

SELECT ERROR MESSAGE:
"ILLEGAL FUNCTIONAL CODE"

©

ACCOR.DIING TO SIGN

ADVANCE TO NEXT NON-BLANK
NON-COMMA FORMAT CHARACTER

®

: 1S FORMAT CHARACTER "D" 7 I

No YES

|_8ET 0" convERsToN FiAG

SELECT ERROR MESSAGE:
“ILLEGAL FUNCTIONAL CODE®

©

' NO

21LNdN1

CONTROL DATA

CORPORATION 8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

PRINTED IN U.SA.

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-23
	2-24
	2-24a
	2-24b
	2-24c
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	xBack

