O

CONTROL DATA® 6600 Computer System
Operating System/Reference Manual

SIPROS 66

SImultaneous PRocessing Operating System

FIRST EDITION

PREFACE

This manual describes the capabilities of the Con-
trol Data® 6600 Operating System — SIPROS 66.
Detailed information on the system macros, infor-
mation concerning the processing flow, principles
of operation, and features available to the pro-
grammer are included.

The information provided in this manual, together
with the information in the 6600 Programming Sys-
tem publications (the FORTRAN, ASCENT, and
ASPER publications), is sufficient to allow the

writing of operational programs.

TABLE OF CONTENTS

INTRODUGCTION e e e, vii
1. SIPROS OPERATION e e, 1-1
11 SYSTEM CONFIGURATION ... i-i
12 EQUIPMENT UTILIZATIONo, 1-1
2. JOB ORGANIZATION AND FLOW ... 2-1
2.1 JOB INPUT SEQUENCINGcouuuimiaiiiii, 2-2
2.2 CONTROL CARD SPECIFICATIONS 2-2
2.3 SAMPLE JOB DECKS ..., 2-8
2.4 JOB FLOW ... 2-11
3. JOB PROCESSINGo oottt ittt e e et e e e e, 3-1
3.1 JOB IDENTIFICATION, 3-1
3.2 LIMIT SPECIFICATIONS, 3-1
38 MEMORY DUMP 3-1
34 FIXED EQUIPMENT REQUIREMENTS 3-1
3.5 VARIABLE EQUIPMENT REQUIREMENTS 3-4
3.6 PRIORITYoooi 3-4
3.7 CRITERIA FOR LOADING A JOBco .. 3-5
3.8 INPUT DATA ... i 3-7
3.9 JOB ACCOUNTING ...t i 3-7
300 OUTPUT ..o 3-8
3.11 STOP CONDITIONS 3-8
3.12 INSTALLATION PARAMETERS 3-9
4. SYSTEM MACROS .. it e s 4-1
41 MAGNETIC TAPE OPERATIONS o . 4.5
4.2 DISK TRANSFERS 4-7
4.3 PRINTER OPERATIONSt 49
4.4 CARD OPERATIONS 4-11
45 CONSOLE OPERATIONS ... i, 4-12
4.6 SYSTEM ACTION ..., 4-14
4.7 CP PROGRAM OVERLAYooooiin i 4-16
48 PP PROGRAM OVERLAY o i 4-17
49 WAIT CHECK ... 4-18
4.10 DESCRIPTION OF MACRO INSTRUCTIONS 4-19
5. UTILITY ROUTINES -t 5-1
51 CARD TO PUNCHc.ouiiiiiin 5-1
52 CARD TO PRINTo 5-1
53 CARD TO TAPE 5-1
54 TAPE COMPARISON 5-1
55 TAPE TO CARD ... 5-2

iv

56 TAPE TO PRINTotiiiiieie i 5-2

57 TAPE TO TAPE ... i ceee. B2
FIGURES

1. CONTROL DATA 6600 ..ccvviiiiiinniteeiiinnian s vi

9. BLOCK DIAGRAM OF 6600ccciiiiiiiianiiaenniannns vii

3. SIPROS COMMUNICATION FLOWoiiiiiiiiinnnnns 1-2

4. PERIPHERAL PROCESSOR COMMUNICATIONoh0e 1-6

5. JOB DECK ORGANIZATIONooiniiiinniieirneeeenens 2-1

6. COMPILE-ONLY JOBitiiitiiiii e 2-8

7. EXECUTE-ONLY JOBttt 2-9

8. COMPILE - AND - EXECUTE JOBc.iiiiiiiiinniiinenens 2-10

9. JOB FLOW, PART Icoooiiiiiiiiiiiierneee e 2-12

PART II .t i 2-13

10. SPECIAL PERIPHERAL PROCESSOR PROGRAMS 3-3

11. 12-BIT PRIORITY WORDttt 35

12. SUMMARY OF PRIORITY ST RUCTUREoiiveiiiiiaeaeneenns 3-6

13. PRINTER FORMAT OF JOB ACCOUNTING INFORMATION 3-7

14. DISPLAY FORMAT OF JOB ACCOUNTING INFORMATION 3-8

15. BINARY CARD FORMATo it A-9
APPENDIX

1. CHARACTERISTICS SUMMARYcooivniiinnminnnrenen A-1

9. SYSTEM MACROSiiiiiint e A-3

3. PERIPHERAL PROCESSOR OPERATION CODES A-4

4 CENTRAL PROCESSOR OPERATION CODES A-6

5 BINARY CARD FORMATS ..o A9

s s 5 4 »
o PN it e T ’ . N ¢ o .
ke E ks it W . 4 Sl

e

b
ina

i A e

ey

e
i)

D
i,

g

6600 COMPUTING SYSTEM

Main frame (center)— contains 10 peripheral and control processors, central processor, central
memory, some //0O synchronizers.

Display console (foreground)— includes a keyboard for manual input and operator control, and two
10-inch display tubes for display of problem status and operator directives.

CONTROL DATA 607 tapes (left front)— V5 inch magnetic tape units for supplementary Storage;
binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 tapes fieft rearj— I-inch magnetic tape units for supplementary storage;
binary data handled at 800 bpi.

Disc file fright rear) —Supplementary mass storage device holds 500 million bits of information.
CONTROL DATA 405 card reader (right front) — reads binary or BCD cards at 1200 card per minute rate.

INTROD

The Control Data® 6600 Computing System is a
complex of computers and peripheral equipment
with unprecedented operating modes and capabil-
ities for multiprocessing. It has been designed to
handle special applications in which on-line inputs
and outputs with real-time calculations are involved
as well as large volumes of conventional applica-

it has been designed to handle
multiple problems of both types, real-time and con-
ventional, simultaneously. Efficient application of
this hardware to several jobs simultaneously in a
dynamic job environment is one of the basic objec-
tives of the SImultaneous PRocessing Operating
System, SIPROS 66.

ae T 13-
dditio
{ions. in addifion,

- e 1

N

1

TIO

Wherever possible, SIPROS 66 has been designed
as a parametric system. Where operations of the
system require buffer regions, the lengths are con-
trolled with parameters; where the operations re-
quire peripheral devices, the units and number of
units are designated by parameters; and where time

it are enforced the actial val
s ar

and '1"'1]!79{'1“!" hm © CRIOYTCCG, TNe aciuad: vaiues

of the limits are parameters. Through selection of
parameter values, it is expected that the multi-
processing properties of the system can be balanced
to the average job mix of a user. In this way,
SIPROS 66 can be made to fit the individual user’s

needs without the cost of system modification.

vii

SYSTEM ORGANIZATION

The CONTROL DATA® 6600 is a large-scale, solid-
state, general-purpose digital computing system.
The advanced design techniques incorporated in
the system provide for extremely fast solutions to

data processing, scientific and control center prob-
lems.

Within the 6600 are eleven independent computers

(Fig. 1). Ten of these are constructed with the pe-
ripheral and operating system in mind. These ten
have separate memory and can execute programs

v e,
I“ADpeﬂf‘ﬁn”" of each o uuhel' or the central Processor.

The eleventh computer, the central processor, is a
very high-speed arithmetic device. The common

i +h 1sy
element between these CO""".J'C:'(@ S 1§ (e iarge

central memory.

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR -4096 WORD
CORE MEMORY

6600 CENTRAL MEMORY

> on

x [+

S 8
4096 WORD -] o ggge— WORD"
M c MEMORY

CORE MEMORY ” 6600 g
PERIPHERAL s CENTRAL 4 PERIPHERAL
& CONTROL z PROCESSOR ~ & CONTROL
PROCESSOR 3 z PROCESSOR

—_— 8 g

8 2

6600 CENTRAL MEMORY

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

4096 WORD

CORE MEMORY

PERIPHERAL PERIPHERAL

8 CONTROL & CONTROL
I PRCCESSOR l PROCESSOR
Figure 1 CONTROL DATA 6600

QUTPUT
CHANNELS

PERIPHERAL & CONTROL PROCESSORS

UPPER

’5 BOUNDARY

MULTIPLY

MULTIPLY
DIVIDE
24 LONG ADD

OPERATING

REGISTERS SHIFT

BOOLEAN

INCREMENT

INCREMENT
BRANCH

CENTRAL PROCESSOR

CENTRAL MEMORY
— 131,072 words

— 60-bit words

— Memory organized in 32 logically independent
banks of 4096 words with corresponding multi-

phasing of banks

— Random access, coincident-current, magnetic core

— One major cycle for read-write

— Maximum memory reference rate to all banks —

one address/minor cycle

— Maximum rate of data flow to/from memory —

one word/minor cycle

DISPLAY CONSOLE
— Two display tubes

— Modes
Character
Dot

— Character size
Large — 16 characters/line
Medium — 32 characters/line
Small — 64 characters/line

— Characters
26 alphabetic
10 numeric
11 special

Figure 2 BLOCK DIAGRAM OF 6600

1. SIPROS OPERATION

During normal operation, SIPROS 66 assumes full
control of the system and multiprocesses jobs to the
extent of job and equipment availability. If an
operator intervenes or a high priority job is en-
countered, SIPROS 6§ continues to maintain a flow
of jobs as input into a disk stack. It schedules jobs
from the stack based upon priorities, equipment,
and memory availability, keeps utilization accounts,
catalogs output data from the jobs in execution, and
schedules output data to peripheral devices. This
procedure is described more thoroughly below in
terms of the tasks performed by the various parts

of the system.

1.1 SYSTEM CONFIGURATION

SIPROS 66 is a highly flexible system which has
been designed to operate with many different hard-
ware configurations. A basic system is assumed,
however, since SIPROS 66 is made up of several
programs which reside and operate in various com-
ponents of the computer system. (A summary of
hardware characteristics is given in Appendix 1.)
The assumed configuration consists of a main frame
containing a central processor with 131,072 60-bit
words of magnetic core memory, ten peripheral
processors with 4096 12-bit words of magnetic core
memory each, and, as a minimum, one each of the
following:

Disk unit with 37,355,520 12-bit words
Display console

1200 card/minute reader

1000 line/minute printer

2350 card/minute punch

Bank of two 607 or 626 magnetic tape units

1.2 EQUIPMENT UTILIZATION

This section outlines the utilization of the various
components of the Control Data® 6600 Computer.
The functional groups are as follows:

Central Processor and Memory
System Disk
Peripheral Processors

Other Equipment

Figure 3 illustrates these groups and the inter-
communication required by SIPROS 66.

1.2.1 CENTRAL PROCESSOR AND MEMORY

The central processor and memory operate under

the control of the Executive which is housed in one
Of th

e peripheral processors. The primary function

of the central processor is handling the computa-
tional Joad as directed by the Executive. This in-
cludes operating on data provided for production
runs, and compiling or assembling new programs
written in the various programming languages. The
primary function of central memory is storing opera-
tional and system programs together with the data
they require. Central memory also serves as a link
between the central processor and peripheral
processors since both types of processor may access
it.

The operational programs that are stored in central
memory are user programs which are to be executed,
assembled, or compiled. They are stored in the job
area along with data for the programs to be executed
and a job table which is used by the Executive to
control the scheduling and processing of jobs.

A SIPROS 66 program, the Central Processor Resi-
dent, is also stored in the job area of central memory
along with each operational program. It interprets
system macros, transfers parameters supplied by the
macros to the first twelve locations of the opera-
tional program, and fills buffer areas with print,
punch, and card reader data being transferred to

the disk.

A variety of control information required by
SIPROS 686 is stored in central memory. It includes:
a peripheral library directory; a central library
directory; a disk table directory which identifies the
physical records on the disk that are in use; a disk
release table which tells what disk space to release;
disk control information which allows the processors
to communicate with one another; and equipment
request tables to which peripheral processors look
for jobs.

Some of the SIPROS 66 system routines may also be
stored in central memory on an optional basis. In-
cluded in this group are: loader routines which load
jobs onto disk or into central memory; a routine
that displays information on the console; overlays

11

o

T T
COMPUTE , CONTROL | INPUT-OUTPUT
| I e —
- . > , | r 1
CENTRAL 1 EXECUTIVE AND [| |
PROCESSOR | MONITOR PP | | |
N | | | CARD READER |
| ; I I AND PUNCH |
CENTRAL MEMORY | | | :
DISK EXECUTIVE l |
CP RESIDENT [I AND DISPLAY PP [* | | | !
JOB #1 | | | 607 |
| | | TAPES
|
|
CP RESIDENT | OPERATOR : ! |
| CONSOLE | |
JOB #2 | | | [
[626 |
: SYSTEM DISK [| TAPES |
[
- —{ SYSTEM ROUTINES | [|
I | | I
| I
| > JOB STACK : : |
O | | DISPLAY |
‘ | o OUTPUT BUFFERS | | |
|
| o PROGRAMMER | | :
CONTROL I SCRATCH AREA ' : |
SYSTEM ROUTINES | L) PP B : l
: POOL PPs ! | |
BUFFERS —I———-h c——'——
| o = J
] I

Figure 3. SIPROS COMMUNICATION FLOW

for the SIPROS 66 routines that are in permanent
residence in peripheral processors; and the print,
punch, and tape packages. The installation decides
whether or not central memory space will be used
for these routines and, if so, the amount of space
that will be used.

Information being transferred by SIPROS 66 system
routines to and from the disk is buffered through
central memory.

1.2.2 SYSTEM DISK

The system disk unit is logically partitioned into
sections as follows:

System Library
Job Stack (Programs and Input Data)
Printer and Card Output Data

Temporary Storage for Object Programs

The system library section provides permanent
storage for the programs of SIPROS 66, the pro-
gramming svstems (FORTRAN, ASCENT, and
ASPER), and the object code subroutine library.
These programs are called into central memory or
peripheral processor memory when needed.

The job stack provides temporary storage for source
and object programs and data en route to memory.
To the extent of job availability, the job stack is
dynamically maintained at capacity to provide the
Executive with a wide choice in scheduling.

Maintenance of the proper output sequence of data
from each job under execution, and utilization of
peripheral equipment at full speed, requires tem-
porary disk storage of printer and punch data from
each job until the entire job has been completed.
Once the task has been completed, the transfer of
this data to the appropriate peripheral device is
performed in serial and continuous fashion as an
off-line operation.

The remainder of the system disk unit is available
for temporary use by object programs. SIPROS 66
provides space assignment, information access, and
job accounting services for the various programs
that are using the disk at any given time. Allocation
is based on variable length logical records. These

logical records are defined and referenced symbol-
ically through the programming languages and in-
terpreted by SIPROS 66 as combinations and,/or
parts of fixed length physical records on the disk
but are not in any way restricted to fixed length
records. Fixed length physical records are defined
by the installation and may be from eight to 64
sectors in length (as long as each record is a multiple
of eight sectors, i.e. a multiple of 512 60-bit words).

1.2.3 PERIPHERAL PROCESSORS

Peripheral processors are used by SIPROS 66 to
control and monitor the system and to perform
various I/O functions in support of operational and
system programs. Two of the peripheral processors
are permanently assigned system functions. They
are the Executive and Monitor PP and the Disk
Executive and Display PP (see Figure 3). The re-
maining eight processors are assigned tasks on a
temporary basis as the need arises.

Executive and Monitor PP

The Executive and Monitor PP is permanently as-
signed the duties of activities director and opera-
tions monitor. The two separate but interrelated
programs, the Executive and Monitor, which per-
form these duties are described in the following
paragraphs.

The Executive program has complete charge, from
a scheduling standpoint, of the central processor,
other peripheral processors, input/output channels
and peripheral equipment. It also maintains a status
list on each job in the system. The Monitor assists
the Executive by continuously watching the
progress of the job in central memory upon which
the central processor is operating. Any need for
action, such as an 1/0O request, is passed along for
appropriate action by the Executive. If the request
indicates that no further processing can be accom-
plished until the request is satisfied (normal, non-
buffered operation), the Executive reassigns the
central processor. This causes the Monitor to switch
to a new job.

In scheduling the activity of the central processor,
the Executive sets up all jobs in central memory in
a priority sequence and prepares a list for the Moni-
tor. As the Monitor cycles through the list of jobs

1.3

and finds wait conditions, it exchange jumps the
next job in the priority sequence. On the next
iteration, the Executive reschedules the jobs in
central memory and prepares a new list for the
Monitor. Thus, Executive scheduling of the central
processor is based on priorities with I/0O waits.

To schedule the activity of other peripheral proces-
sors, the Executive arranges the operations to be
performed into classes (such as tape operations,
print operations, etc.) and assigns processors to the
various classes. The number of processors assigned
to each class is limited by the installation and is
determined by priority and the volume of operations
in the class. Upon completion of one operation, the
processor automatically goes to the next operation
in the same class unless instructed otherwise by the
Executive. By using this approach, SIPROS 66
avoids the frequent reloading of peripheral proces-
SOr programs.

Executive scheduling of 1/0 channels and periph-
eral equipment is done at the time a job is loaded
from the disk into central memory. All jobs in the
disk job stack are continuously examined by the
Executive. As soon as a job has the proper priority
and there is sufficient peripheral equipment avail-
able, the Executive builds a load request and sends
it to a STPROS 66 routine called the Job Loader. The
Job Loader transfers the job from the disk to central
memory. During the loading process, the Executive
assigns equipment to the job.

The status of each job in the system is maintained
by the Executive to provide information telling
where the job is and what is happening to it. The
Executive continuously examines this status for a
change and takes action based on the change. For
example, when a job is terminated, the Monitor
examines the P register to determine whether there
has been a normal or error halt and sets job status
to the stop condition. The Executive then calls in
the job Termination Package which builds the print
and punch requests and performs a post-mortem
dump if one was requested. After the Job Termina-
tion Package has completed its functions, the Execu-
tive releases the central memory space used by the
job. Disk space is not released until the print and
punch operations have been completed.

1-4

Disk Executive and Display PP

The Disk Executive is the STPROS 66 program that
directs the activities of the system disk. It schedules
requests received from the various programs that
are using the disk for two slave processors which
do the reading and writing. In performing this
scheduling function, the Disk Executive searches
its wait stack for all requests that can be processed
at the current position of the disk read-write heads.
After it has identified the ones that can be processed,
it sorts them into a sequence that will allow as many
of them as possible to be serviced during each
revolution of the disk. When this has been done,
the Disk Executive instructs the slave processors to
read or write. Repositioning of the read-write heads
takes place only after all requests for the current
position have been processed. If there are multiple
system disks in use, the Disk Executive will overlap
disk functions by repositioning the read-write heads
of one disk while the slaves are reading or writing
another disk.

The Display program is used primarily to inform
the operator of the status of jobs in central memory.
It is also used to give the operator information about
tape mounting and to allow him to communicate
with the system. In communicating with the system,
the operator may display or change priorities, dis-
play jobs in the job stack or in central memory, or
add a utility routine such as a core dump to a job
already in the system.

Pool PPs

The remaining peripheral processors, called Pool
PPs, are the task performers. They carry out, under
the direction of the Executive, the operations re-
quested by central processor programs or by pro-
grams in other peripheral processors. Each time a
request is made, the first available Pool PP is as-
signed the task. When the task has been completed,
the Pool PP reports back to the requesting program
and to the Executive that it is available for another
task.

Each of the Pool PPs has a SIPROS 66 program in
permanent resident. This program, the PP Resident,
interprets requests sent to it, loads the required
system or user program into the peripheral proc-
essor's memory, and transfers to that program.

After the system or user program completes its proc-
essing, it transfers back to the PP Resident. The PP
Resident then notifies the Executive that the request
has been completed.

A variety of tasks may be assigned to Pool PPs. In
general, these tasks can be broken down into three
categories:

System Operations
Off-line Operations
Internal Operations

System operations are initiated by the Executive
and always involve central memory or the disk.
Some of the common system operations include:
disk reading and writing, job loading, and job
termination.

Whenever there are disk read or write requests in
the disk request stack, two Pool PPs are assigned to
work with the Disk Executive as slaves. These slave
processors do the reading and writing as directed
by the Disk Executive. One slave reads or writes a
disk sector (320 12-bit words) while the other trans-
fers a sector to or from central memory. This two-
processor approach to disk reading and writing
maximizes the disk transfer rate. Although the two
slave processors are returned to the pool when not
in use, they are normally assigned to the task of disk
reading and writing.

Jobs are loaded from cards or tape into the disk job
stack by a SIPROS 66 routine called the Batch
Loader. This routine is brought in by the Executive
which examines the disk job stack to determine
whether or not there is space for additional jobs.
If there is space and there are jobs to be loaded, the
Executive initiates a Batch Loader request and sends
it to the resident in a Pool PP. The PP Resident loads
the Batch Loader into the peripheral processor’s
memory and transfers to the loader. The Batch
Loader then reads jobs in from cards or tape and
transfers them to the disk job stack. It continues to
load jobs into the stack as long as there is space in
the stack and the Executive continues to build
Batch Loader requests. During the loading process,
the Batch Loader also constructs a job table entry
for each job; this entry is used by the Executive to
control the scheduling and processing of the job.

Jobs are loaded from the disk job stack into central
memory on a priority basis whenever there is suffi-
cient central memory space and peripheral equip-
ment available. The STPROS 66 routine that per-
forms this loading function is the Job Loader. This
routine is loaded into a Pool PP after the Executive
has initiated a request and sent it to that processor.
When control has been transferred from the PP
Resident to the Job Loader, the Job Loader trans-
fers the job to central memory and reports back to
the Executive through the status list that the job is
waiting in central memory.

Upon completion of the processing of a job, the
Executive sends a request to a Pool PP to load the
Job Termination Package. When the Job Termina-
tion program has been loaded and receives control,
it starts closing out the job. This consists of prepar-
ing accounting information, building a dump re-
quest if necessary, and building print and punch
requests. After a job has been terminated, it is re-
moved from the system.

Other system operations include:

1. Disk-to-printer transfer of printer data stored on
the disk,

2. Disk-to-punch transfer of card punch data stored
on the disk,

3. Disk-to-tape transfer of system output data over-
flowing from the disk to magnetic tape,

4. Display of system information.

Off-line operations performed by Pool PPs are
utility operations which are initiated by the operator
through use of control cards. These operations in-
volve only the peripheral processor and peripheral
equipment performing the operation; central mem-
ory and the disk are not involved. The off-line op-
erations are as follows:

1. Card to punch,

o

. Card to print,
3. Card to tape,
4. Tape comparison,

5. Tape to card,

....
n

6. Tape to print,
7. Tape to tape.

Section 5 has additional information on these opera-
tions.

Internal operations are initiated by system macros
in user programs and may involve central memory
and the disk or just the peripheral processor and
peripheral equipment performing the operation.
The following are typical of these operations:

1. Construction of printer data records in memory
for disk transfer (ASPER programs only),

)

Construction of card punch data in memory for
disk transfer (ASPER programs only),

3. Memory-to-disk transfers and disk information
cataloging,

4. Tape manipulations,
5. Console displays and keyboard input to memory,

6. Execution of ASPER programs.

Peripheral Processor Communication

Figure 4 summarizes the communication flow from
one peripheral processor to another. Along the left
side of the figure, the arrows show the flow of job
assignments. Along the right side, the arrows show
the flow of status reports back to the controlling
Processor.

1.2.4 OTHER EQUIPMENT

Magnetic tape is used by SIPROS 66 for library
editing and to store printer and card punch data
overflowing from the disk. SIPROS 66 stores all
printer and card punch data on the disk until the
job has been terminated and then transfers the data
to the appropriate output device. If the disk output
buffer becomes full during the processing of the
job, the overflow print and punch data are written
on magnetic tape. As soon as there is disk space
available again, the data on the tape are written
back on the disk.

SIPROS 66 allows printer and card punch data to
be written directly on magnetic tape when large
volumes are expected. This is accomplished by spec-
ifying an output limit as an installation parameter.
Then, if the estimated output exceeds the limit, it is
written directly on magnetic tape instead of the
disk. Data written on magnetic tape in this way
are not written back on the disk when the job is
terminated.

The system console unit is used by SIPROS 66 for
operator-computer communication. During normal
operation, SIPROS 66 displays the status of the jobs
in the peripheral processors and in central memory
and the usage of input/output channels. Messages
are also displayed to the operator when his actions
are required, or when requested by executing pro-
grams. Inputs are accepted from the keyboard for
operator intervention and in response to requests.

nHZEZZO~0nwnp>

Figure 4. PERIPHERAL PROCESSOR COMMUNICATION

EXECUTIVE AND MONITOR PP [~

Py

DISK EXECUTIVE PP

Py

PRIMARY DISK SLAVE PP
P
)

4

SECONDARY DISK SLAVE PP
P
3

POOL PPs

QZ~-A=m3OoO~"H=

2. JOB ORGANIZATION AND FLOW

The job deck consists of a set of control cards, a
deck of program cards, and the input data cards
required by the job. Figure 5 shows the composition
and organization of a SIPROS 66 job deck.

Every job deck must have at least two control cards:
the job identification card and the end-of-job card.

The job identification card designates the beginning

of the job and is always the first card in the job
deck. The end-of-job card designates the end of the
job; it will always be the last card in the deck. The
remainder of the control cards are used only if
called for by the program (e.g. a control card for
scratch tape is required only if the program uses
scratch tape). These cards are always placed in the
job deck between the job identification card and the
program cards. The only exception to this is the end-
of-program card which is placed between the pro-
gram and data cards.

*END-OF-JOB CARD

Program cards contained in the job deck include
source language (FORTRAN, ASCENT, and
ASPER) cards for routines to be compiled or as-.
sembled and/or binary cards for routines which
have already been compiled or assembled. Source
language routines may be arranged in any sequence
with one exception: ASPER routines must follow
the central processor routine with which they are
associated. Any source language routine for the
central processor may contain FORTRAN and
ASCENT program cards intermixed on a card-for-
card basis.

Input data cards contain the data to be operated on
by the program. They must always be placed after
the end-of-program card but before the end-of-job
card.

. . . DATA CARDS

‘ END-OF-PROGRAM CARD

3.

{ / OTHER CONTROL CARDS

........ *JOB IDENTIFICATION CARD

[N

. . . . PROGRAM CARDS

Priority

Limit Specifications
Fixed Requirements
Variable Requirements
Special Purpose
Debugging Aids
Utility Routines

*INDICATES CONTROL CARDS REQUIRED FOR ALL JOBS

Figure 5. JOB DECK ORGANIZATION

2-1

2.1 JOB INPUT SEQUENCING

Job decks presented to SIPROS 66 are processed in
either one of two ways:

1. They are placed on-line in the card reader for
transfer directly into the disk job stack; or

2. They are placed in the card reader for off-line
transfer by a peripheral processor to magnetic
tape. (This tape is formatted in card image and
is written in binary mode — odd parity.)

For purposes of discussion, the Control Data® 6600
is assumed to be processing jobs from a full disk job
stack or in a wait-for-input condition at the time a
set of jobs is made available. When the jobs are
ready to enter the operating system, the operator
keys in the input unit specification, if necessary, and
initiates a ready signal from the card reader or
magnetic tape unit. The input specification (card
reader or magnetic tape) need not be entered into
the system if the input umit is the same as the one
previously used. As soon as space in the disk job
stack and a peripheral processor are available, the
system starts accepting the jobs and loads as many
as the disk job stack will hold. The rest of the jobs
are accepted without further intervention from the
operator as space becomes available. Once a job
reaches the job stack, its future processing is deter-
mined by the system control cards.

If an off-line card-to-tape transfer is specified, the
operation takes place independent of the operating
system once the peripheral processor and equipment
have been assigned to the operation. Jobs placed on
the tape in this off-line operation may be subse-
quently entered into the system in the manner
described in the preceding paragraph.

2.2 CONTROL CARD SPECIFICATIONS

System control cards are used to supply SIPROS 66
with various types of control information. Some of
this information, such as job identification or equip-
ment parameters, must be supplied by control cards
when required by the system. The halance of the
information, such as priority, is left to the discretion
of the programmer. If this discretionary information

2-2

is not supplied by control cards, SIPROS 66 will
automatically assign standard system values which
have previously been established by the installation.

In addition to supplying SIPROS 66 with control
information, system control cards are used to call in
debugging aids and standard utility routines. The
control cards used for this purpose are described in
this section following the description of the cards
which are used to supply control information.

Control cards have the following format:

COLUMNS CONTENT
1 Card identification (8-9 punches)
2-10 Blank
11-72 Control information
73-80 Deck identification

Control information entered into columns 11-72 in-
cludes a pseudo-op such as JOB, PRI, etc. and
parameters such as name or account number. Com-
mas are used to separate items in each entry and
must not be omitted. Blank spaces may precede the
commas but may not follow them since the first digit
following a comma is always taken as the first digit
of the next field. A $ symbol is used to terminate an
entry.

Any number of entries (from pseudo-op to §) may
be punched into columns 11-72 and they may be in
any order with one exception: the JOB entry must
be the first entry in the first card. An entry cannot
be split between cards.

A period is used after the last entry in a card to
indicate that there is no more control information in
the card. Comments may be entered after the period.
(The only items in the entry that may contain a
period are the account number and the priority
specification.)

In the following description of control cards, an
asterisk (*) indicates the entries required for all jobs.
A double asterisk (**) indicates entries that are left
to the discretion of the programmer. The remaining
entries must be made by control card when required.

2.2.1 JOB IDENTIFICATION
*JOB,NAME,ACC#$
where NAME is 8 characters
ACC# is 10 characters
Example: JOB,POLYNOM,136%

his entry assigns a name and identification num-
ber to the job and must not be omitted. The identifi-
cation number is used by the operator to identify the
job once it is in the system.

2.2.2 PRIORITY
**PRI,#1,#2%
where #1 is job run priority
#2 is job 1/0 priority
and the specification for #1 and #2 is as fol-

lows:
XN
| l— Sublevel (0-511)
Separator
Level (0-3)
Type

U = Unchanging
C = Changing

Example: PRI, C2.0,U1.200$

The priority entry is used to assign a priority rating
to the job and to the job’s I/0 operations. If priority
is not specified by control card, a system value will
be assigned. For additional information, see Section
3.6.

2 2.3 LIMIT SPECIFICATIONS
Central Processor Time Limit
**CPT,MINUTESS

where MINUTES is a non-fraction with a range
from 1 through 4095,

Example: CPT,308

The CPT entry specifies a running time limit for the
central processor. If a time limit is not specified by
control card, a system value will be assigned.

Peripheral Equipment Time Limit
EQP,DES, TIME,MINUTES,L#$
where DES is the unit designator (ITAPE,

PRINT etc.); MINUTES is the number of min-
utes (from 1 to 4095) to which the running time
of the specified peripheral processor or device
is to be limited; and L# is the logical unit num-

ber of the processor or device.
Example: EQP,PCP, TIME,15,5$

Peripheral processor logical unit #5
is restricted to a running time of 15
minutes.

This entry specifies the running time limit for the
specified peripheral processor or device. If the entry
is not made, the unit will not be limited since no
system value is assigned (see Section 3.2.2).

Page or Card Limit
**EQP,DES,LIMIT NUMBER,L#$

where DES is the unit designator (PRINT or
PUNCH); NUMBER is the maximum number
of pages to be printed or cards to be punched;
and L# is the logical unit number of the device.

Example: EQPPRINT,LIMIT,100,2%
Line printer number 2 is limited to

100 pages for the job.

This entry defines the number of pages or cards to
which the designated line printer or card punch
should be restricted (see Section 3.2.2). If the entry
is not made by control card, SIPROS 66 will assign a
system value as a limit.

2.2.4 FIXED REQUIREMENTS
Scratch Tape

EQP,STAPE,L#$

where L# is the logical unit number of a physi-
cal tape unit and consists of a decimal number
(1 to 3 digits) followed by an A to designate
626 tapes or B to designate 607 tapes.

2-3

Example: EQP,STAPE,2A,3A,1B$
This entry defines the scratch tapes to be used by
the job and must have an L# for each scratch tape.
Input Tape
EQP,ITAPE,FILE,L#$

where FILE is the reel name or number (6
characters); L# is the logical unit number of a
physical tape unit and consists of a decimal
number (1 to 3 digits) followed by an A to
designate 626 tapes or B to designate 607 tapes.
Example: EQP,ITAPE 432,2A$

The ITAPE entry defines the input tapes to be used
by the job and must have an L# for each input
tape.

Output Tape

EQP,OTAPE,L# L#$

where L# is the logical unit number of a physi-
cal tape unit and consists of a decimal number
(1 to 3 digits) followed by an A to designate 626
tapes or B to designate 607 tapes.

Example: EQP,OTAPE,1A,1B,2B,3B$

The OTAPE entry defines the output tapes to be
used by the job and must have an L# for each out-
put tape.

Printer

EQP,PRINT,L#,L#$

where L# is the logical unit number (1 to 3
decimal digits) of one of the printers.

Example: EQP,PRINT,1,4$

The PRINT entry defines the printer to be used by
the job and must have an L# for each unit.

Disk

EQP,DISK,L# L#$

where L# is the logical unit number (1 to 3
decimal digits) of one of the disk units.

Example: FQP DISK 2.3%

The disk entry defines the disk units to be used by
the job and must have one L# for each unit.

2-4

Card Reader
EQP,CARD,L#,L#$

where L# is the logical unit number (1 to 3
decimal digits) of one of the card readers.

Example: EQP,CARD,3$

This entry defines the card readers to be used by
the job and must have an L# for each unit.

Card Punch
EQP,PUNCH,L#,L#$

where L# is the logical unit number (1 to 3
decimal digits) of one of the card punches.

Example: EQP,PUNCH,2$

The punch entry defines the card punches to be
used by the job and must have one L# for each
unit.

Peripheral Equipment Exchange
EQP,DESI,L#,EXCDES2,L#$
where DES1 and L# are the unit designator
and logical unit number of the device refer-
enced in the program and DES2 and L# are

the unit designator and logical unit number of
the device to be substituted for DES1, L#.

Example: EQP,PUNCH,L,EXC,OTAPE,1A$

Wherever the program specifies a
punch operation on unit #1, the
information will be written on mag-
netic tape #1.

This entry allows the programmer to substitute one
peripheral device for another without requiring a
change in the program. The system disk cannot be
exchanged for another device (see Section 3.4.1).

Peripheral Processor
EQP,PCP,L#,L#$

where L# is the logical unit number (I decimal
digit) of one of the peripheral processors.

Example: EQP,PCP,5,6%

The PCP entry defines the peripheral processors
to be used by user routines and must have an L#
for each unit.

Central Memory
**MEM,#$

where # is the estimated number (in 1000s oc-
tal) of 60-bit words in central memory required
by the job.

Example: MEM,5%
5000 (octal)60-bit words of central

memory are required.

This entry allows the programmer to estimate the
number of central memory words required by the
job. If the estimate is not entered into the system by
control cards, SIPROS 66 will attempt to load the
job into a standard size block of memory (see Sec-
tion 3.4.3).

Disk Memory
**DISK, #$

where # is the estimated number (in 1000s oc-
tal) of 60-bit words of disk space required by
the job.

Example: DISK,2$
2000 (octal) 60-bit words of disk

space are required.

The DISK entry enables the programmer to estimate
the number of 60-bit words of disk space required
by the job. The space estimated by this entry is in
the programmer scratch area of the disk. If the entry

is not made]'“7 control card and there ic not oniff

cient space for the job, the job will be aborted (see
Section 3.4.4).

2.2.5 VARIABLE REQUIREMENTS

Peripheral Equipment
EQPDES,VARL# L#$

where DES is any of the peripheral equipment
designators (ITAPE,CARD,etc.) and L# is the
logical unit number of a physical unit.

Example: EQP,STAPE,VAR,1A,1B$

This entry is used to define the peripheral devices
that may be used by the job in addition to those
specified as fixed requirements. It should have L#s
for the maximum number of units that might be

used. See Section 3.5 for additional information on
variable requirements.

Central Memory

**MEM,VAR,#$
where VAR specifies that this is a variable esti-
mate and # is the estimated number (in 1600s
octal) of 60-bit words of central memory.
Example: MEM,VAR,10$

10,000 (octal) 60-bit words of central
memory may be required by the job
in addition to fixed requirements.

This entry allows the programmer to estimate the
number of central memory words that may be
required by the job in addition to fixed require-
ments. The exact number of words is determined
during the processing of the job (see Section 3.5)

Disk Memory

**DISK,VAR, #$

where VAR specifies that this is a variable esti-
mate and # is the estimated number (in 1000s
octal) of 60-bit words of disk space.

Example: DISK,VAR,4$

4,000 (octal) 60-bit words of disk

space may be required by the job in

addition to fixed requirements.
This entry allows the programmar to estimate the
number of 60-bit words of disk space in the pro-
grammer scratch area that may be required by
the job. This is in addition to fixed requirements.
The exact number of words is determined during
the processing of the job (see Section 3.5).

2.2.6 END OF PROGRAM AND JOB
End of Program
ENDS$

This card merely identifies the end of the program
cards and beginning of data cards. It is not required
when there are no data cards.

End of Job
*FINIS$
This card identifies the end of the job and is re-

2-5

quired for all jobs. It indicates to SIPROS that all
control cards, program cards, and data cards have
entered the system.

2.2.7 SPECIAL PURPOSE

Execute Program

EXECUTES$

This entry is used only when a program is to be
compiled or assembled and then executed. When
all the program cards in the job deck are binary
cards, it is not needed.

Compile or Assemble Program

COMPILES

This entry specifies that there are source language
program cards in the job deck to be assembled or
compiled. It is not required in a compile-and-execute
situation.

Job Accounting
LOAD,ACCS$

This control card calls in a special accounting pro-
gram which assigns charges to the running times
and volumes.

LOAD,MTP$

This control card requests SIPROS 66 to print out
the job accounting and maintenance test information
on the printer.

2.2.8 DEBUGGING AIDS
Error Halt Conditions

The central processor provides for three types of
error halt conditions:

1. Address out of range,
2. Operand out of range,

3. Indefinite result.

As an aid to debugging programs, SIPROS 66 allows
the programmer to ignore two of these conditions,
operand out of range (exponent overflow) and inde-
finite result, through the use of control cards.

IGNORE,CONDITION$

2-6

where CONDITION is
S2 for exponent overflow
S3 for indefinite result

S23 for exponent overflow and
indefinite result

Example: IGNORE,S2$

An exponent overflow condition is
ignored.

The IGNORE entry causes the specified exponent
or indefinite result error halt condition to be ignored.
SIPROS 66 continues to process the job when the
specified condition occurs.

Memory Dump
DUMP,BA,EAS

where BA is the beginning address and EA is
the ending address; both addresses are rela-
tive and must be in octal.

Example: DUMP,100,200$

1r. 1

Dump the contents of central mem-
ory locations from location 100
through location 200.

The memory dump control card will cause the speci-
fied central memory locations to be printed out after
a normal or error halt condition. The information is
printed out from the disk after the job has stopped.

Memory Map
MAPS$

This control card is used to cause a printout of the
memory map. The memory map contains the name
of each routine in the job, the name of the common
area, and the relative address of the location in
which each starts. The memory map is printed out
at the same time the rest of the printout for the job
occurs.

Console Debugging

DEBUGS

The DEBUG control card instructs SIPROS 66 to
load Uie on-line debugging routine into the system.
This routine gives the programmer control over the
processing of the job and allows him to perform

numerous on-line debugging functions. On-line
functions which may be performed include:

1. Changing items in the job table such as job
status,

2. Entering data into central memory,
3. Changing instructions in central memory,

4. Dumping all or part of central memory on

an on-line printer,

3

5. Displaying hardware registers and central
memory locations,

6. Executing portions of the program.

2.2.9 UTILITY ROUTINES

These control cards call in standard SIPROS 66
utility routines and supply the routines with the
required parameters. For a more complete descrip-
tion of these routines, see Section 5.

In the description of each of these control cards,
certain symbols are used to define the designators
and required parameters for the routines. These
symbols are defined as follows:

CTC Card-to-Punch Routine
CTP Card-to-Print Routine
CTT Card-to-Tape Routine
TCM Tape-Comparison Routine
TTC Tape:to-Card Routine
TTP Tape-to-Print Routine
TTT Tape-to-Tape Routine

CN is the conversion code and is defined for
each control card

FP is the number of magnetic tape files to be
processed (0-511)

FS is the number of magnetic tape files to be
skipped (0-511)

IC s the input device channel number (in
octal)

IL is the input device record length (0 to
4095)

IS s the input device synchronizer number
(in octal)

IU s the input device unit number (in octal)

OC is the output device channel number (in
octal)

OL s the output device record length (0 to
4095)

OS is the output device synchronizer number
(in octal)

OU is the output device unit number (in
octal)

PD is the type of code following the last rec-
ord (0 = zeros, 9 = nines)

TM s the tape mode (0 = binary and
1 = BCD)

Card to Punch
UTILITY,CTC,IC,IS,IU,0C,0S,0U$
Card to Print
UTILITY,CTP,IC,IS,IU,0C,0S,0U,CN$
where conversion codes are:
0 = No conversion

2 = Convert from Hollerith code

Card to Tape

UTILITY,CTT,IC,IS,IU,IL,0C,0S,
OU,OL,PD,CN$

where conversion codes are:
0 = No conversion
1 = Convert Hollerith to BCD code
2 = Convert Hollerith to display code
Tape Comparison
UTILITY, TCM,IC,IS,1U,0C,08,0U$
Tape to Card

UTILITY,TTC,ICIS,IU,IL,0C,0S,0U,TM,
FP,FS,CN$

where conversion codes are:

0 = No conversion
1 = Convert BCD to Hollerith code
2 = Convert binary to Hollerith code

2-7

Tape to Print
UTILITY, TTP,IC,IS,IU,IL,0C,08,0U,
TM,FP,FS,0L,CN$
where conversion codes are:
0 = No conversion
1 = Convert from binary
2 = Convert from display code
Tape to Tape

UTILITY,TTT,IC,IS,IU,IL,0C,0S,0U, TM,FP$

2.3 SAMPLE JOB DECKS

This section illustrates the organization of SIPROS
66 job decks and the use of control cards. Three

sample cases are described. They are:
Job Compilation
Job Execution

Job Compilation and Execution

2.3.1 JOB COMPILATION

In this case, it is assumed that the job contains a
routine with FORTRAN and ASCENT program
cards intermixed on a card-for-card basis, an
ASCENT routine, and an ASPER routine which is
associated with the ASCENT routine. The only con-
trol cards required for the job are the job identifica-
tion, compile, and end-of-job cards since this is a
compile-only operation. Figure 6 illustrates the job
deck.

8 FINISS

9
ASPER routine
associated with
ASCENT routine.

(8 COMPILES
9

8 JOB, POYL, 12§
9

Routine containing
ASCENT program cards
only.

Routine containing FORTRAN and
ASCENT program cards intermixed
on a card-for-card basis.

Figure 6. COMPILE-ONLY JOB

2-8

2.3.2 JOB EXECUTION

Here it is assumed that there is only one FOR-
TRAN-ASCENT routine and it is in binary card
form ready to be executed. Also, it is assumed that

this job uses one input tape and one scratch tape but
no line printer other than the system printer. Prior-
ity and a central memory estimate are to be specified
by a control card. Figure 7 illustrates the job deck.

8 FINISS
9

Data cards.

(8 MEM, 10S
9

Binary program cards
for FORTRAN-ASCENT

(8 PRI, C2.1, G4.2008
9

[8 EQP, STAPE, 18
9

(8 EQP, ITAPE, MAY, 1%

9

8 JOB, RAND, 13$
9

routine.

Figure 7. EXECUTE-ONLY JOB

2.3.3 JOB COMPILATION AND EXECUTION requires one input tape, one output tape, and a line
printer which is required by the ASPER routine. A

This sample job deck is assumed to be the same as priority is to be assigned to the job and to I/O oper-

in Section 2.3.1 except that it is to be compiled and ations, and central and disk memory are to be esti-
executed. In addition, it is assumed that the job mated. Figure 8 illustrates the job deck.
8 FINISS
9
~
P

(3 E[\ID$ /Data cards.
9

(ASPER routine asso-
I ciated with ASCENT

[routine.
s/ Routine containing ASCENT
[r program cards only.
5 DISK Routine containing FORTRAN and ASCENT
SK, 2% K
(9 program cards intermixed on a card-
r 293 MEM, 5% for-card basis.

(8 EQP, PRINT, 1%
9

(g EQP, OTAPE, 1%

r 8 EQP, ITAPE, DEC, 1$
9

r g EXECUTES$

8 JOB, POLY, 12$
9

Figure 8. COMPILE-AND-EXECUTE JOB
2-10

2.4 JOB FLOW

The SIPROS 66 Batch Loader reads jobs into the
disk job stack either from cards or from magnetic
tape (see Figure 9). While it is doing this, the Batch
Loader also places information supplied by control
cards into a job table. This table is continuously
examined by the Executive for jobs that are ready
to be loaded into central memory.

Based upon the control card information in the job
table, the Executive picks the jobs with the highest
priorities that best fit the available equipment and
memory. If a compilation or assembly is required,
the first evaluation is based upon the equipment and
memory requirements of the programming system.
The requirements for execution are considered only
after the object code from the compilation reaches
the job stack.

Once a job has been selected for execution, the
Executive loads the Job Loader into a Pool PP and
instructs it to transfer the selected jobs from the
disk job stack to central memory. The Executive
then makes all equipment assignments for the job.
If the disk is called for, disk requirements are coor-
dinated with other needs for its use. If a magnetic
tape unit is called for, the Executive puts out a re-
quest on the console for the operator to mount a
particular tape if it has been specified by a file num-
ber on a control card. Then, after the job is in central
memory, the Job Loader indicates that the job has
been successfully loaded and sets the status of the
job to “waiting in central memory.” The newly
loaded job is given control of the central processor
if it has a higher priority than other jobs currently in
central memory or if the jobs in central memory that
have a higher priority are waiting on I/O requests.

During execution, the program may make input/out-

put requests of SIPROS 66 through the execution of
macro instructions. These requests are interpreted
by the Central Processor Resident and are presented
to the Monitor. The Monitor assigns a Pool PP to
the task of providing the service requested. When
the resident in the Pool PP receives the request, it
loads the required input/output program into the
peripheral processor’s memory and transfers control
to that program. If the central processor program
must wait upon completion of the input/output
request before it can continue, the Executive
removes control from the executing program and
gives it to one of the other jobs in central memory.
Normally, this job will be the one with the next
highest priority providing it does not have I/0 waits.

Printer and card punch output from a central proces-
sor program is placed in a central memory buffer by
the CP Resident and is transferred to the disk output
buffers. When the job has been completed and the
printer or card punch is free, the Executive assigns
the first available peripheral processor — normally
the one that has just completed the last print or
punch job — to the task of printing or punching the
results from the disk.

If a job requires compiling or assembling, the 6600
Programming System is loaded. During this phase,
the source deck is drawn from the job stack as data
for the programming system. The same procedures
are used by this system as are used by other pro-
grams. Outputs from the 6600 Programming System
may be source listings, assembly listings, and/or
the binary programs. The binary program can be
routed to the job stack for scheduling and execu-
tion and/or to be punched on binary cards. Any
data routed to the printer or card punch are retained
on the disk (or tape, in overflow cases) to be com-
bined with program results during execution.

CI-¢

CENTRAL MEMORY PROCESSING STEPS

1. BATCH LOADER

JOB TABLE LOADS JOB INTO JOB STACK ON DISK
FROM CARDS OR TAPE

MAKES ENTRY IN JOB TABLE FOR

MAGNETIC FEACH JOB LOADED
TAPE CARDS
TO JOB
STACK

CENTRAL MEMORY

JOB 9. EXECUTIVE
#1 EQ%%I\EENT JOB TABLE EXAMINES JOB TABLE FOR JOBS TO

BE LOADED INTO CM

INSTRUCTS JOB LOADER TO LOAD
JOB WITH HIGHEST PRIORITY (IF IT.
MEETS LOADING REQUIREMENTS)

SYSTEM
DISK

FROM
JOB STACK

MAKES EQUIPMENT ASSIGNMENTS
/ IN EQUIPMENT TABLE
REQUESTS OPERATOR TO PREPARE
EQUIPMENT

JOB LOADING CRITERIA

JOB MUST HAVE PROPER PRIORITY
MUST BE SUFFICIENT CENTRAL MEMORY

MUST BE SUFFICIENT DISK SPACE
MUST BE ENOUGH FREE EQUIPMENT -
EXE,S‘ﬁgWE OPERATORS REQUEST
MONITOR PP MOUNT TAPES
CENTRAL MEMORY
JQB EQUIPMENT 3. EXECUTIVE
L TABLE JOB TABLE EXCHANGE JUMPS TO JOB TO BE
EXECUTED

EXECUTIVE EXCHANGE

AND
MONITOR PP JUMF

Figure 9. JOB FLOW, PART 1

€I¢

CENTRAL MEMORY

SYSTEM
DISK

FROM
JOB STACK

D

JOB [JOB | JOB EQUIPMENT
#1 #9 #3 TABLFE JOB TABLE
SYSTEM
DISK —
I'ROM
JOB STACK _
]
CENTRAL MEMORY
JOB | JOB | JOB EQUIPMENT
#1 #9 #3 TABLE JOB TABLE
) -~
SYSTEM
DISK TO OUTPUT
BUFFER
|
EXECUTIVE POOL PP MAGNETIC
AND — TAPE TAPE
MONITOR PP PACKAGE
CENTRAL MEMORY
JOB | JOB | JOB EQUIPMENT
#4 #9 | "3 TABLE JOB TABLE

Figure 9. JOB FLOW, PART 2

4. EXECUTIVE
INSTRUCTS JOB LOADER TO LOAD
OTHER JOBS INTO CENTRAL MEMORY
UNTIL IT IS FULL

MULTIPROCESSES JOES IN CENTRAL
MEMORY

5. EXECUTIVE
DIRECTS QUTPUT DATA FOR PRINTER
AND PUNCH TO OUTPUT BUFFER
ON DISK
DIRECTS OUTPUT DATA FOR TAPE TO
POOL PP WHICH WRITES TAPE

6. EXECUTIVE
SCHEDULES NEW JOB FOR CM WIIEN
JOB TERMINATES

INSTRUCTS JOB LOADIJER TO LOAD
NEW JOB FROM JOB STACK ON DISK
INTO CM

3. JOB PROCESSING

When processing jobs, SIPROS 66 follows certain
prescribed methods in identifying jobs, in limiting
jobs to a given time or output, in allocating memory
and equipment, in assigning a processing sequence
to jobs, and so on. These processing methods are
described in this section.

3.1 JOB IDENTIFICATION

Jobs being processed by SIPROS 66 are doubly iden-
tified, externally and internally. Every job has an
external job identification which is supplied by the
job identification card on the front of each job.
When reference is made to a job by an external
source such as the display console, it is this external
job number which is used. The internal identifica-
tion is a number assigned to a job by SIPROS 66 at
the time it is entered into the system. This number
is not available to programmers since it is used only
to identify the job within the various parts of
SIPROS 66.

3.2 LIMIT SPECIFICATIONS

SIPROS 66 allows separate running time limits to be
assigned to the central processor program and to
input/output programs. It also permits the assign-
ment of a fixed volume of printed or punched output
for the job.

3.2.1 CENTRAL PROCESSOR TIME LIMIT

A central processor time limit may be specified by a
system control card. This time limit is the amount
of time needed by the central processor to complete
this job, not taking into account input or output
time. If no specification is made by control card,
the time limit will be set at a standard value. This
standard value can be chosen to fit the requirements
of the installation and may, at one extreme, be a
small value to prevent undue waste from program
error loops, or, at the other extreme, be a large value
that effectively removes the limitation. If the limit
is exceeded, the program is dumped and the appro-
priate error indication is given on the job log.

3.2.2 INPUT OR OUTPUT LIMIT

An input/output time limit may also be specified
by a system control card to limit the time the job
spends in an I/O loop (except for a print or punch
loop). For each peripheral processor or device to be

limited, a logical unit number and time limit are
specified. Then, if the limit is exceeded, the program
is dumped and the appropriate error indication is
given on the job log. If a limit is not entered into the
system by a control card, the 1/O operation will not
be limited since SIPROS 66 does not assign standard
system values as I/O time limits.

In addition to time limits on other I/O equipment,
card punch and line printer equipment may have
output limits imposed on them through the use of
control cards. These limits specify the number of
cards to be punched or pages to be printed. Stand-
ard system values will be assigned if the limits are
not specified by control cards. Whenever the card
punch or line printer output exceeds the limit, the
program is dumped and the error indication is given

on the job log.

3.3 MEMORY DUMP

All or part of the central memory area of the job
may be dumped after a normal or error halt condi-
tion occurs. This is accomplished by inserting the
memory dump control card, which specifies the area
to be dumped, into the job deck. The content of the
specified area is then printed out from the disk after
the job has been terminated.

3.4 FIXED EQUIPMENT REQUIREMENTS

For most jobs, it is possible to specify the exact tape,
memory, and disk requirements before the jobs are
processed. Equipment is assigned to these jobs at
the time they are loaded into central memory.

3.4.1 PERIPHERAL EQUIPMENT ASSIGNMENT

With the exception of the disk, the peripheral equip-
ment necessary for the execution of a job is specified
on the equipment request control cards (those with
an EQP pseudo-op). The logical unit numbers used
to reference the devices are assigned to physical
units by SIPROS 66 at the time the job is loaded into
central memory. All of the equipment specified for
the job must be available before SIPROS 66 allows
the job to be loaded.

SIPROS 66 allows peripheral equipment to be ex-
changed at load time by specifying the units to be
exchanged on an exchange control card. Any two
units other than the system disk may be exchanged

3-1

as long as they are compatible (e.g. a line printer
cannot be exchanged for a card reader). The fol-
lowing list illustrates compatible exchanges:

Card reader for tape
Tape for card reader
Printer for tape
Tape for printer
Punch for tape

Tape for punch

3.4.2 PERIPHERAL PROCESSOR ASSIGNMENT

The allocation of peripheral processors (other than
system processors) to a job is accomplished by
control cards in much the same manner as is the
allocation of other peripheral devices. However, this
allocation does not include the actual assignment of
the peripheral processor to the job but merely pre-
cludes the loading of combinations of jobs that
could need more than are available. Actual assign-
ment is made dynamically during the processing of
the job by system macros which cause the processors
to be loaded and reloaded with specialized periph-
eral processor programs. Five peripheral processors
can be assigned in this manner to specific user jobs
at the same time.

One of the features of this method of assignment is
that it allows peripheral processors to be assigned
to special user programs which have been written
in the ASPER language. Again, the assignment is
made dynamically during the processing of the job
by a system macro (see Section 4.6). After the assign-
ment has been made and the special user program
is in operation, STPROS 66 can be used to process
other jobs in the normal manner providing the spe-
cial program is not using the full potential of the
6600.

As an example of the assignment of peripheral proc-
essors to special user programs, assume the follow-
ing: In addition to the jobs in central memory which
use the system 1/0 programs, there are three special
peripheral processor programs. One is a program in
which no input or output is involved (Case 1 in
Figure 10). The peripheral processor is merely per-
forming an auxiliary function such as cditing for a
central processor program. The second special pro-
gram (Case 2 in Figure 10) is a real-time program

3-2

which is controlling and transferring real-time infor-
mation for a central processor program. The last
special program (Case 3 in Figure 10) is transfer-
ring information from normal jobs into and out of
the system over remote devices.

3.4.3 MEMORY ALLOCATION

An estimate of the memory required to execute a
job can be given as a control card parameter. This
estimate is used by SIPROS 66 in scheduling the job
for loading. If no estimate is given then SIPROS 66
attempts to load the program in a standard size
block of memory. The size of this block is estab-
lished by the installation. If the program is larger
than the standard size block, the loading process is
pseudo-completed and the total memory needed is
recorded for rescheduling of the job.

When the system is in operation, a variety of jobs
can be making demands on central memory. As the
central memory load fluctuates (by some jobs ter-
minating or by new jobs entering the system), the
sy.tem automatically reallocates memory, if neces-
sa1y, to provide space for new jobs. The reallocation
is necessary whenever the following two conditions
exist: no one block of unused memory is large
enough for any job in the disk job stack; and, there
are unused blocks of memory which could, if placed
together, provide a block which is large enough to
load a job. Even though reallocation is necessary, it
will not take place if the central memory program
that has to be relocated has a special peripheral
processor program in operation. Standard input-out-
put programs initiated by system macros, however,
will not prevent reallocation of memory when they
are in operation.

If a central memory program requires memory ex-
pansion during execution, the variable amount of
memory must be specified by control card (see Sec-
tion 3.5). SIPROS 66 then allows the program to
request additional memory up to the amount speci-

fied.

A central memory program may release memory
that was previously estimated as a fixed require-
ment. The space released is always at the high end
of the job area and is in 512-word blocks. A system
macro is used for this purpose (see Section 4.6).

CENTRAL PROCESSOR

CENTRAL MEMORY

SYSTEM REQUIREMENTS

OTHER PROGRAMS

CASE 1: CP PROGRAM

—HZmO~-wm

—— e —— — — -

SYSTEM AND POOIL PPs

FOR NORMAL SYSTEM FUNCTIONS

NORMAL IN

NORMAL OUT

|
|
| T~

—4Zmo-vmx

-“Zmo-vm3

CASE 1
PP
PROGRAM

)

CASE 2: CP PROGRAM

|
|

£ ot

REAL

TIME
DEVICE

|
|
|
|
|
|
|
|
i
I
|
[
1
| INFORMATION & CONTROL
|
1
|
|
|
]
|
|
|
|
|
|
I

MULTIPLEXER f[==

|
|
|
|
|
|
|
I
|
I
|
[
!
[
|
|
+
|
[
[
[
[
I
[
[
!
[
I
F

R ~
CASE 3: DUMMY CP PROGRAM £ CASE 2
b PP
E
N | PROGRAM
R
£ | CASE 3
S
b PP
E
SYSTEM DISK N |PROGRAM
JOB STACK NORMAL JOBS]]
ROM REMOTE STATIONS
|
I
]
/O AREA OUTPUT

PROGRAMMER “SCRATCH” AREA

€€

TO REMOTE STATIONS

Figure 10. SPECIAL PERIPHERAL PROCESSOR PROGRAMS

T

CASE 1-AUXILIARY

SPECIAL PP PROGRAM PERFORMING
AUXILIARY FUNCTION FOE CP PROGRAM.,
NO 1/0 INVOLVED.

EXAMPLE: EDITING

CASE 2—EEAL TIME

SPECIAL PP PROGRAM PERFORMING
CONTROL AND TRANSMISSION OF
REAL TIME INFORMATION FOR CP
PROGRAM.

CASE 3—REMOTE STATION

SPECIAL PP PROGRAM FUNNELING
NORMAL JOBS IN AND QUT OF
SYSTEM.

REMOTE
DEVICES

3.4.4 DISK ALLOCATION

SIPROS 66 provides space assignment, information
access, and accounting services for jobs which use
the disk units. Since there very likely can be several
jobs in the job stack and in central memory needing
disk space, a means must exist to determine the
disk space allocation required by each job to avoid
saturation of the disk unit’s capacity in the midst of
an execution phase. There are two methods avail-
able to determine the disk requirements of a job.
One is simply not to mention anything about it.
SIPROS 66 attempts to load the job. The disk
space requirements for each routine within the
job are determined by the compiler or assem-
bler. During the loading process, the disk require-
ments for each job are determined. If there is suffi-
cient space available on the specified units, the
loading process proceeds normally. If there is not,
the loading operation is aborted and the job is
rescheduled for loading at a time when there is
sufficient space. A second provision allows for an
estimate of disk requirements by means of a control
card. Exercise of this option lessens the chance of
the load abort. On all but the first run, the exact
amount of disk space used by each job, which was
obtained during the previous run, is available in the
job table.

3.5 VARIABLE EQUIPMENT
REQUIREMENTS

There are certain classes of jobs for which it is diffi-
cult to specify the exact tape, memory, and/or disk
requirements. One class, which probably represents
the exception, consists of recursive procedures.
Equipment requirements arising during the process-
ing of recursive procedures are dependent upon the
class of data encountered. For this reason, exact
requirements are not known until the job is in execu-
tion. Exceptional situations such as these necessitate
specifying a fixed requirement (which would sat-
isfy the majority of cases) and also a variable re-
quirement which is determined during processing.

SIPROS 66 provides a means of requesting addi-
tional memory, disk storage, or magnetic tapes while
jobs are in process. These requests require special
control because it is possible for several jobs of this
class o be in process concurrently. This could bring
about a conflicting situation in that each job in cen-
tral memory could not continue until additional

3-4

units were assigned. SIPROS 66 provides this con-
trol. All the programmer has to do is to specify fixed
and variable (maximum) amounts of memory, disk
storage, and magnetic tape. Then, during execution
when a program is ready to use equipment defined
as variable, a request for that equipment from the
system is made by the appropriate system macro
(section 4.6). STPROS 66 maintains the status of such
requests to prevent an equipment deadlock from
occurring.

SIPROS 66 also provides a means of releasing mem-
ory that has been allocated to the job as a variable
requirement. Again, this is done by using a system
macro (see Section 4.6) in the central processor pro-
gram. The memory released will be from the high
end of the job area and will be in 512-word blocks.

3.6 PRIORITY

The priority of a job determines the order in which
SIPROS 66 processes that job and allocates equip-
ment to it. In SIPROS 686, it is possible to assign one
priority to the job and a separate priority to 1/O op-
erations. These priorities are normally specified by
the operator through the use of control cards but will
be set up by the system if control cards are not used.
When the system assigns the priorities, it uses a
value previously defined as an installation parameter
for job priority then equates I/O priority to that
value.

The SIPROS 66 system provides for two types of
priority: changing and unchanging. A changing pri-
ority is periodically increased as long as the job is
waiting in central memory or in the job stack. This
automatic upgrading of the priority rating ensures
that a job with a relatively low priority it not de-
layed indefinitely by programs with higher priorities.
Eventually, the job has the highest rating and is then
processed. Note that this automatic upgrading of
priority results in alternate processing of jobs. As an
example, assume that there are two jobs in the sys-
tem with the same priority and that one job is wait-
ing while the other is running. Only the priority of
the job which is waiting will be upgraded. As a
result, it will take control away from the job being
processed which will, in turn, become the waiting
job and will have its priority increased. This alter-
nate processing will continue as long as both jobs

are in the system. An unchanging priority differs
from a changing priority in that it allows a job to
remain at a fixed rating for an indefinite period of
time. Both types of priority may be assigned to the
job and to the I1/O operations for the job.

For either of the two types of priority, there are
four priority levels. Within each level, there is a
range of values from 0 through 511. Figure 11 illus-
trates a 12-bit priority word.

TYPE LEVEL RANGE

11 0

Figure 11. 12-BIT PRIORITY WORD

A 1 in bit position 11 indicates an unchanging pri-
ority; a 0 indicates a changing priority.

In the SIPROS 66 system, an installation may
specify whether a changing priority is to be up-
graded across levels or is to stay within its own level.
Also, it may set an arbitrary limit in the fourth level
above which no changing priority may go. This
makes it possible for the programmer to specify a
high (unchanging) priority job which will maintain
control of the system until it has been completed. It
should be noted, however, that only job priority may
be restricted to specific levels. I/O priority will
always increase across levels to the limit set in the
fourth level.

Figure 12 summarizes the structure of priorities used
in the SIPROS system.

3.7 CRITERIA FOR LOADING A JOB

In order for a job to be selected and loaded into
central memory for execution, several criteria must
be satisfied. They are:

1. The job must have the highest priority.

2. There must be sufficient contiguous central mem-
ory space available to meet fixed and variable
requirements. Either the standard requirement

or an amount equal to that estimated for the job
on its control cards must be met.

3. There must be at least as much free space on the
disk as is estimated as fixed and variable require-
ments on the job’s control cards.

4. There must be enough free equipment of the
type specified to meet estimated fixed and vari-
able requirements.

All of these criteria are determined from informa-
tion obtained from control cards accompanying the
job or they are assumed to be standard.

3.7.1 COMPILATION OR ASSEMBLY ONLY

For jobs containing only routines to be compiled or
assembled, the criteria for job loading, with the
exception of priority, is not specified explicitly on
the control cards. This is because these criteria are
the same for all jobs of this type and are supplied
from the programming system to SIPROS 66. When
all the criteria are met, the compiler-assembler is
transferred into the central memory to process the
job. From this point on, the job is treated as input
data to the compiler-assembler program.

3.7.2 EXECUTION ONLY

For jobs which are already compiled, the job load-
ing criteria can be explicitly specified on the job’s
control cards. When all the criteria are met, the job

v +1 o
is transferred by means of the Job Loader into the

central memory space allocated to it by SIPROS 66.
Jobs of this type are assumed to be made up of
independently compiled or assembled routines in
relocatable binary card deck form. These routines
are read into central memory and relocated accord-
ing to the control information included with each
routine and according to special punches on each
card in each deck (see Appendix 5).

Each routine is loaded into memory consecutively,
ie., each is loaded into the location immediately
following the last location used by the routine im-
mediately preceding it. Use is made of the subrou-
tine library to obtain additional subroutines needed
by the job but not contained in the job deck.
As each routine is being loaded, COMMON and
disk storage area references of the same name
are linked together. Once the job has been loaded
successtully, its routines are linked together through

3-5

the calling sequences by the Job Loader. This com-
pletes the loading procedure for a normal unseg-
mented job.

In cases where a job is very large, too large to
be conveniently loaded into memory at one time,
provision has been made to break up the job into
pieces or segments. The segments are of two types:
basic and normal. There can be only one basic seg-
ment for a job; it contains a set of routines and stor-
age areas that are never affected by segment overlay
operations. Normal segments contain the routines
and storage areas that are transferred to core as a
result of overlay requests. There can be any num-
ber of normal segments in a job. Each normal seg-
ment, upon request, is loaded by the Job Loader
into memory immediately following the basic seg-
ment. Listed below are some of the more important
characteristics of the handling of segmented jobs:

1. The request for an overlay of a normal segment
can occur in either type of segment present in
memory.

2. An overlay request initiates a loading process
which is similar to that used for an unsegmented
job, thereby assuring compact memory usage
with only one copy of each routine in memory.

3. Segments are defined at execute time by special
control cards containing the segment identifiers
and a list of the routines or other segments in
each of them.

4. Only one copy of each routine needs to be loaded
with the job, even though it is used by several
segments.

5. Control transfers may be indicated by the over-
lay request and defined at execute time.

1. FOUR BASIC LEVELS OF PRIORITY

LEVEL
HIGHEST 3
HIGH 0
INTERMEDIATE
LOW 0

3. TWO TYPES OF PRIORITIES CAN
BE SPECIFIED:

A. CHANGING

— PRIORITY INCREMENTED

PERIODICALLY (INSTALLATION
PARAMETER)

B. UNCHANGING
— NO INCREMENTING

U
C LEVEL 3 N
H C
A LEVEL 2 H
N A
G N
1 LEVEL 1 G
N I
¢l vevero |8

2. FINER BREAKDOWN WITHIN EACH
LEVEL IS PROVIDED

LEVEL 3

512 SUBLEVELS

T

4, FOR CHANGING TYPE ONLY
INSTALLATION PARAMETER SPECIFIES:

A. INCREMENTING TO TOP OF LEVEL
OR
B. INCREMENTING ACROSS LEVELS

T
LEVEL 3
-+
LEVEL 2
LEVEL 1
N
LEVEL 0

ACROSS WITHIN
LEVELS LEVEL

Figure 12. SUMMARY OF PRIORITY STRUCTURE

3-6

3.7.3 COMPILE AND GO

Jobs of this type are a combination of the previous
two types. These jobs are handled in two phases.
The first phase treats the job almost as if it had
only routines to be compiled or assembled. When
the first phase is complete, the relocatable binary

Aarlre £ b sasxrler Aanrnnilad vacibieag
GECKS 107 wi€ newiy ComMpunea routines

P) I AT
been combined with those loaded with the job.
This combined deck is used for phase two which
treats the job as an executio
longer contains any routine to be compiled. Thus,
jobs of this type are handled by SIPROS 66 almost

as if there were two jobs to be run consecutively.

n mamdrr dmda it 3E
-0y jOD Since it o

3.8 INPUT DATA

Input data decks are placed in the card reader fol-
lowing the end-of-program card and are loaded
onto the disk along with the program deck. When
the program first executes a read card macro (see
Section 4.4) the system traps the request and loads
the appropriate data from the disk into a central
memory buffer area reserved by the assembler or
compiler for card input data. Subsequent requests
for card reading cause data to be transferred from
the central memory buffer to the program data
region. After the request that removes the last block
of data from the central memory buffer is processed,
the system loads another block of data from the
disk. (The size of the central memory buffer is a
parameter which is established by the installation
and is the same size as the disk record — from 512
to 4096 60-bit words in increments of 512.)

3.9 JOB ACCOUNTING

The job account number must appear on the iden-
tification card that precedes each job deck. Absence
of this identification number results in the immedi-
ate termination of the job since it is used by
SIPROS 66 to associate various equipment usages,
etc. with the proper program.

At the beginning and at the end of each event dur-
ing the processing of a job, accounting information
is logged in a job log on the disk. In addition, as
maintenance test routines are used, the results of
these tests are placed in the job log. This log con-
tains:

. Job Name
. Job Account Number

. The time of assignment and elapsed time for
the following:

Central Processor
Peripheral Processor
Peripheral Devices
Memory

Disk

The elapsed time for a peripheral device is
the total time a peripheral processor is tied
up by that device.

. Diagnostic information encountered by the
system routines during processing.

The job accounting information for each program is
automatically printed out from the disk on the last
page of output for the job (see Figure 13). Operat-
ing personnel may also make requests through the
console keyboard for all or portions of the job
accounting log to be displayed (see Figure 14),
printed, or written on magnetic tape. In all cases,
the information is retained on the disk after output.

Should the job accounting log on the disk become
full, both the job accounting information and main-
tenance test information will be printed out or writ-
ten on magnetic tape. However, since the size of the
disk log is determined by the installation, situations
such as this will not normally occur.

JOB NAME
CP RUN TIME
PP RUN TIME

ACCOUNT NUMBER

(Errors encountered, e.g., time limit exceeded’
MEMORY SPACE USED
DISK SPACE USED

EQUIPMENT TYPE LOGICAL TIME USED PHYSICAL UNIT =

UNIT # IN MIXN. CHAN. SYNC. CUNIT
TAPE-607 2 20 3 2 1
PRINTER 1 1000 LINES 4 1 1
PUNCH 2 500 CARDS 2 1 1

Figure 13. PRINTER FORMAT OF JOB
ACCOUNTING INFORMATION

3.7

LEFT TUBE JOB HISTORY DISPLAY

TIME IDENTIFICATION STATUS
MINUTES - THOUSANDTHS JOB NAME ACCOUNT #

COMPILED
LOADED
READ.
PRINT
PUNCH
COMPLETE

RIGHT TUBE SYSTEM STATUS DISPLAY

JOB NAME AND INTERNAL JOB NUMBER

JOB ACCOUNT #

PRIORITY

170 PRIORITY

RUN TIME ESTIMATED

TIME USED IF JOB IS ON DISK THESE ENTRIES WOULD
ABSOLUTE LOCATION IN MEMORY i . o prre 3 -
EQUIPMENT ASSIGNMENTS BE REPLACED WITH “IN JOB STACK’

EQUIPMENT TYPE, LOG]CAL UNIT £ EQUIPMENT TYPE, PHYSICAL UNIT NUMBER
EQUIPMENT TYPE, LOGICAL UNIT # EQUIPMENT TYPE. PHYSICAL UNIT NUMBER

Figure 14. DISPLAY FORMAT OF JOB ACCOUNTING INFORMATION

A special job accounting program may be written
at each installation to assign charges to processing
times and volumes. This program is called into
memory by a control card.

3.10 OUTPUT

The programmer must specify, as a control card
parameter, the logical unit number of output tapes
which are to be saved. Output to the printer or
card punch is stored on the disk until completion
of the job. If the output limit for the operation ex-
ceeds a system limit as specified at the installation,
the print or punch data are sent to magnetic tape.
Upon termination of the job, STIPROS schedules the
print or punch output to the appropriate peripheral

device. A peripheral processor transfers the final
output to the peripheral device.

3.11 STOP CONDITIONS

There are two kinds of central processor stop con-
ditions recognized by the Control Data® 6600 and
thus by SPIROS 66.

. Normal Stop

. Error Stops

Normal Stop

This is the normal means of terminating a job and
returning control to SIPROS 66. This is accom-
plished merely by executing the STOP instruction.

Error Stop

There are three types of error stops recognized by
the 6600. They are:

1. Address out of range — an attempt to reference
memory Jocation outside the area allocated to
this job.

. Exponent overflow — The maximum size of the

(39

exponent of a floating point number was ex-
ceeded during a floating point operation.

el

1 _ 0 -, x A
h
Indefinite result — A floating point operation has

occurred which resulted in an indefinite result.
An example of this would be an attempted divi-
sion by zero.

)

An option is provided for the programmer to ignore
either or both of the last two error stop conditions.
In case of an error stop the programmer may, at his
option, specify either one or both of the following
items:

1. Map (list of names and memory locations of sub-
routines) of the job’s allocated memory area.

2. Dump of the job’s allocated memory area.

3.12 INSTALLATION PARAMETERS

Wherever possible, SIPROS 66 has been designed
to give the installation maximum flexibility in select-
ing the various system values which define central
and disk memory allocation and processing limits.
These values are selected by the installation in one
of two ways: by entering the values as control card
parameters or by entering them as installation par-
ameters. Control card parameters were described in
Section 2.2. Installation parameters are described in
this section.

Installation parameters are entered as card input
into the system at the time SIPROS 66 is loaded
into the 6600 and may be subsequently altered only

by reloading. The following lists specify the param-
eters that may be selected by each installation.

CENTRAL MEMORY FARAMETERS

1. Memory size 131,072 or 65,536 60-bit words.
2. Total system requirements.

3. I/0 buffer size (512 60-bit word minimum).
4

- Space allotted to system routines.

&
(¢
W
[my
3
o
ot
D
=]
Q
&
w
i)
[0
Q
=p]
[
[o W)
o
>4

Size of job table area.

DISK MEMORY PARAMETERS

1. Space allotted to library functions.

2. Space allotted to output area.

3. Space allotted to job stack.

4. Space allotted to programmer scratch area.
5

. Physical (or fixed) record size (from 512 to 4096
60-bit words in increments of 512 60-bit words).

PROGRAMMING SYSTEMS PARAMETERS
1. Symbol table size.
2. Temporary storage region.

3. Programmer macro storage.

OPERATION PARAMETERS

1. Standard installation priority.

Central processor execution time limit.
. Print or punch output limit.

. Programmer display time limit.

[SL RNy)

. System balance parameters for peripheral
processors.

4. SYSTEM MACROS

System macro instructions provide communication
links between an ASPER or central processor pro-
gram and system peripheral processors. While most
of these macros direct the operating system to per-
form input/output operations, others request equip-
ment assignment, check the status of external
operations, produce program overlays, use system
peripheral processors in conjunction with an ASPER
or central processor programs, and request the
operating system to provide channel scheduling
services.

The communication link provided by the system
macros allows a two-way information transfer. The
ASPER or central memory routine not only gives
the system peripheral processor request information
but also a location in central memory in which the
system peripheral processor enters the status of the
requested operation, reporting its success back to
the ASPER or central processor routine. Each sys-
tem macro must have a status response word which
is set by the operating system in performing the
function of the individual macro request.

All communication links are made through central
memory. The status response word identified by the
request must be a central memory word. Similarly,
requests for the system to input or output data for
an ASPER or central processor program assume the
data region is located in central memory. The
regions required may be defined either by the cen-
tral processor program, if one is used, or by the
ASPER BSSCM pseudo operation.

When applicable, system macros provide a buffered
and a non-buffered mode. In the buffered mode,
where the macro is used without an appended “W,”
the ASPER or central processor routine is free to
continue processing while waiting for the results
requested. However, it must do its own status
checking, by means of another macro, to determine
when the requested operation is completed. In the
non-buffered mode, where “W” is appended to the
macro opcode, the macro itself determines when the
requested operation is completed or aborted, and

the ASPER or central processor program stops until
the results are known. Both modes return full infor-
mation on the status of the request.

ASCENT generates a sequence of code from the

system macro which initiates the requested system
function. The Return Tump generated is followed

111C P ciielialcQ 1010

by the parameters in line with the object code. The
parameters may be any of the following forms:

Constant (integer or octal) — specifies the parameter
itself, such as a unit number, the record
length, or the conversion mode.

contains the parameters.

Literal — specifies the parameter itself. ASCENT
places in a location at the end of the object
code the parameter specified by the literal.

Name — certain macros require a file or program
name. The NAME is converted to display
code and becomes the parameter.

An example of a macro follows:

RDCW 1, (S), (BA), (BA+8), 8, 2

S = 1001
BA = 2500

Assume:

Then: ASCENT generates a location for each
literal specified by the macro. If the end of the
object code is location 4200, then:

4201 = 0...01001
4202 — 0 ... 02500
4203 = 0...02510

The communication link in the object code for the
Central Resident program becomes:

4-1

59

3029 0

P |R] SUB

P+1|EQ BO BO P+5 OP N

P+2[00. .. 01| 40. .. 04201

P+3[40. .. 4202 40...04203) Parameters
P+4[00. .. 0010 | 00 . . . 00002

P+5 OBJECT CODE

SUB — A routine that forms the parameters in locations 000002-00000 (N+1) for communication with the
operating system. Location 000001 contains the operation code that the macro requested.

OP — Operation code assigned by the system to each macro

N — Number of parameters.

For each system macro encountered, ASPER gener-
ates a sequence of coding which communicates the
requested function to the system through the pe-
ripheral processor resident program. The coding
consists of a Return Jump to the resident routine
followed by an unconditional jump past a vector of
words containing the octal opcode, buffer-mode
flag, and evaluated parameters.

A list of required parameters is specified for each
system macro. These parameters may be written in
various forms depending on the type of parameter.
Parameters representing peripheral processor loca-
tions which contain the actual parameter may be
written in the forms:

SYMBOL
SYMBOL -= CONSTANT

Parameters representing central memory locations
may be written in the LITERAL forms:

(SYMBOL)
(SYMBOL = CONSTANT)

Parameters representing numbers per se may be
written in the forms:

CONSTANT
SYMBOL
SYMBOL == CONSTANT

4-2

Parameters representing a file or program name
must be written in the form:

SYMBOL

The following is an explanation of certain letters,
terms, and phrases used in connection with macros:

A Symbolic address in CP or PP memory
which contains the CM address of the
first word of the requested block assigned
by the system or which contains the CM
address, as specified by the programmer,
of the first word of the block in memory
to be released to the system. If the macro
is used in a PP program, the CM address
is absolute; but if used in a CP program,
the address is relative.

BA Symbolic address in CM or PP memory
which contains the beginning address of
the central memory buffer area.

C Conversion mode
Card operations:
C = blank or 0 — no conversion (binary
image)

1—Hollerith to display
code for read; display
code to Hollerith for
punch

EA

NAME

NW

RL

2 — Hollerith to BCD for
read; BCD to Holler-
ith for punch

Magnetic tape:

C = blank or 0 — no conversion
1—-BCD to display code
2 —display code to BCD

Printer:

C = blank or 0 — no conversion
2 —display code to BCD

Physical number (or PP symbolic address
of number) of the I/O channel requested
or released (this applies only to macros
used in ASPER programs).

Symbolic address in CM or PP memory
which contains the ending address + 1
of the central memory buffer area.

Number (or CM or PP symbolic address
of number) of logical tape records.

Number (or CM or PP symbolic address
of number) of 60-bit words in the longest
record in the file identified by NAME.

Equipment logical number (or CM or PP
symbolic address of number), ie., 1,2...
M for M total units of equipment type
in the system.

Symbolic name uniquely identifying the
disk logical file being referenced.

Total number (or CM or PP symbolic
address of number) of central memory
words requested or released.

Logical record number (or CM or PP
symbolic address of number) in disk file
to start read or write.

Maximum number (a CM or PP symbolic
address of number) of logical records into
which the disk file may be segmented.

Record Length

Card operations: total niimber (or CM
or PP symbolic address of number) of
leftmost 5 columns (binary image) or

SYMBOL

TAG

10-character fields (coded mode) of the
card. For BCD or DPC conversion
mode, each 60-bit word contains the
6-bit characters. For binary image,
each 60-bit word contains 5 columns.

Console operations: total number (or
CM or PP symbolic address of num-
ber) of characters in the message to be
transmitted.

Magnetic tape: number (or CM or PP
symbolic address of number) of 60-bit
words per tape record.

Printer: number (or CM or PP sym-
bolic address of number) of 10-charac-
ter words per line to print.

Symbolic address in CM or PP memory
which contains the address for the status
response word from the PP I/O routine.
Each macro request requires a location
in central memory be reserved and iden-
tified. The PP I/0 routine (or the system
if the macro is in an ASPER program)
reports to this location the status of the
requested operation. The parameter for
the status response word in a macro must
be the same as that used in assigning the
central memory location.

Program overlay: name of overlay region

to be loaded.

System actions: name of PP program de-
fined by ASPER pseudo operation.

Wait check: name of transfer location of
abort is indicated by the status response
word.

Display character size:

T = blank or 0 — 64 char./line
— 32 char./line
2 — 16 char./line

3 — plot mode

Identification number = 18 bits (or CM
or PP symbolic address of number) of
message to be displayed.

4-3

4-4

A W appended to the opcode of a macro
indicates a “wait for reply.” if the W is
not used (buffered mode), the CP or PP
program may continue processing while
the requested I,/0 operation is being per-
formed. However, the program must do
its own checking on the progress of the
request by means of the WAI (Wait
Check) macro. If the request is in proc-
ess, the status response word is positive

g . 5 -
e 14 Fina warssandk S0 Ann s s
and nonzero; if the request is compieted,

the word is zero; if the request is aborted,
the word is negative.

When the W is appended to the macro
(non-buffered mode) and the requested

operation can be performed, the action
taken depends on whether the macro is
in a CP or PP program. If in a CP pro-
gram, control is turned oved to the oper-
ating system and the CP program delays
until the status response word is zero
(completed) or negative (aborted), at
which time control is given back to the
program. If the macro is in an ASPER
program, the routine delays until status
response word is zero {(completed) or
negative (aborted).

In both modes, the next in-line instruc-

tions is executed if the requested opera-
tion is successful.

4.1 MAGNETIC

TAPE OPERATIONS

Opcode Address Field Remarks

RQTW N, S Request tape assignment from system. ~ Wait if W used.
DRTW N, S Release tape back to system. Wait if W used.
SFFW N, S Search file mark forward. Wait if W used.
SFBW._ N, S Search file mark backward. Wait if W used.
WEMW N, S Write file mark. Wait if W used.
RWLW N, S Rewind tape to load point. Wait if W used.
RWUW N, S Rewind tape for unload. Wait if W used.
FSPW N, S, K Forespace Wait if W used.
BSPW_ N, §, K Backspace Wait if W used.
RFCW N, S, BA, EA, RL, C Read tape forward coded mode. Wait if W used.
RFBW N, S, BA, EA, RL, C Read tape forward binary mode. Wait if W used.
WRCW N, S, BA, EA, RL, C Write tape coded mode. Wait if W used.
WRBW N, S, BA, EA, RL, C Write tape binary mode. Wait if W used.

N = Magnetic tape logical unit number; 1,2,... M for M tape units in the system.

S = Location containing central memory address for status response code from System PP I/0
routine.

K = Number of logical tape records.
BA = Location containing beginning address of buffer area in central memory.
EA = Location containing ending address +1 of bufer area in central memory.
RL = Number of 60-bit words per tape record.

C = Conversion mode.

Blank or 0 — No conversion.
1—BCD to display code.
2 — Display code to BCD.

STATUS RESPONSE CODES — positioned as per address S.
Rs = 0 Request completed with no trouble.
Rs — 1 Reqguest in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

4-6

w

I

59

48 47

36 35 1817

N I\

¥ Y
Number of words in Number of records
record where read completed including
length error oc- bad one.
curred.

Program error — BA > EA. (BIT 48)
End of file. (BIT 49)

Read length error. (BIT 51)

Write parity error unrecoverable. (BIT 52)
Read parity error unrecoverable. (BIT 53)

End of tape mark encountered before function complete (forwar). (BI

Device unassigned. (BIT 57)
Device not ready. (BIT 58)
Request aborted. (BIT 59)

where: 1implies the condition exists.
0 implies the condition does not exist.

T 54)

4.2 DISK TRANSFERS

Provision is made in the operating system for the programmer to read and write scratch data to and from
disk storage units. Data are usually broken up into related blocks called files. The files, in turn, are segmented
into the blocks of data that are transmitted at one time. These are called logical records. For most eflicient
utilization of disk storage, logical records contain a minimum of 512 central memory words. A file is de-
fined by an instruction or statement which specifies the number of 60-bit words in the longest record, the
maximum number of logical records into which the file is to be segmented, and the symbolic name by
which the file is identified. The actual data transmission is accomplished through the use of the following
macro operators.

Opcode Address Field Remarks

RDHW N, S, BA, EA, NAME, P Read record and hold data on disk. Wait If W used.
RDRW_ N, S, BA, EA, NAME, P Read record and release data on disk. Wait if W used.
WRDW N, S, BA, EA, NAME, P Write record on disk. Wait if W used.

N = Disk logical unit number; 1,2, . . . M for M disk units in the system.

S = Location containing central memory address for status response code from System PP 1/0
routine.

BA = Location containing beginning address of buffer area in central memory.
EA = Location containing ending address +1 of buffer area in central memory.
NAME = Symbolic name to identify disk logical file to be referenced.
P = Logical record number used to identify record read from disk or written onto disk.
STATUS RESPONSE CODES — positioned as per address S.
Rs = 0 Request is completed with no trouble.
Rs = 1 Request is in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

4-7

4-8

Rs

Il

59

48 47

1817

v
Number of words
left after abort.

Program error — BA > EA or P > P max. (BIT 48)
File Directory error. (BIT 49)

Length error — all data not transmitted. (BIT 51)
Read parity error. (BIT 53)

Logical file limit is exceeded. (BIT 54)

Disk is not ready. (BIT 58)

Request aborted. (BIT 59)

where: 1 implies the condition exists.

0 implies the condition does not exist.

4.3 PRINTER OPERATIONS

Opcode Address Field Remarks

SSPW. N, S Single space printer. Wait if W is used.
DSPW. N, S Double space printer. Wait if W is used.
FCTW N, S Select Format Channel 7. Wait if W is used.
FC8wW. N, S Select Format Channel 8. Wait if W is used.
MC1W N, S Select Monitor Channel 1. Wait if W is used.
MC2W N, S Select Monitor Channel 2. Wait if W is used.
MC3W N, S Select Monitor Channel 3. Wait if W is used.
MC4W N, S Select Monitor Channel 4. Wait if W is used.
MC5W N, S Select Monitor Channel 5. Wait if W is used.
MC6W N, S Select Monitor Channel 6. Wait if W is used.
CMCW N, S Clear Monitor Channels 1 - 6. Wait if W is used.
SPAW N, S Suppress space after next print. Wait if W is used.
PRNW N, S, BA, EA, RL, C Print single line or multiple lines.* Wait if W is used.

* If SPA is given preceding a multiple line print, it applies only to the first line.

N = Printer logical unit number; 1,2, . . . M for M printers in the system.

S = Location containing central memory address for status response code from System PP 1/0
routine.

BA = Location containing beginning address of buffer area in central memory.
EA = Location containing ending address +1 of buffer area in central memory.
RL = Number of 10 character words per line to print.

C = Conversion mode.

Blank or 0 — No conversion.

2 — Display code to BCD.

STATUS RESPONSE CODES — positioned as per address S.
Rs = 0 Request is completed with no trouble.
Rs = 1 Request is in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

4-10

e’
17

59

48 47

Program error — BA > EA. (BIT 48)
Request aborted. (BIT 59)

where: 1 implies the condition exists.

0 implies the condition does not exist.

4.4 CARD OPERATIONS

Opcode Address Field Remarks
PCHW N, S, BA, EA, RL, C Punch cards. Wait if W is used.
RDCW. N, S, BA, EA, RL, C Read cards. Wait if W is used.

BA = Location containing beginning address of buffer area in central memory.

tem.

N = Card reader or punch logical unit number; 1,2,

... M for M readers or punches in the sys-

S = Location containing central memory address for status response code from System PP I/O
routine.

EA = Location containing ending address +1 of buffer area in central memory.

RL = Number of leftmost 10-character fields or 5 columns of the card.

STATUS RESPONSE CODES — positioned as per address S.

C = Conversion mode.

Blank or 0 — No conversion; i.e., binary image input/output.
1 — Hollerith to display code for read; display code to Hollerith for punch.

2 — Hollerith to BCD for read; BCD to Hollerith for punch.

Rs = 0 Request is completed with no trouble.

Rs = 1 Request is in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

59

48 47

z
I

Program error — BA > EA. (BIT 48)
End of file. (BIT 49)

No read data available (not loaded). (BIT 58)

Request aborted. (BIT 59)

where: 1 implies the condition exists.

0 implies the condition does not exist.

4-11

4.5 CONSOLE OPERATIONS

Request procedures are provided for CP or ASPER routines to display messages on the primary console
right scope or either of the scopes on other consoles. The system provides a timing service for removal of
displays after a certain exposure. However, the request procedure gives an option to override the system
time limit on display. In this mode, it is assumed that the CP or ASPER routine will request a removal of
the display as a result of console acknowledgment or internal decision.

Opcode Address Field Remarks
DSRW N, S, BA, EA, RL, TAG, T | Display on Right Scope for

system time limit. Wait if W is used.
DSLW N, S, BA, EA, RL, TAG, T | Display on Left Scope for

system time limit. Wait if W is used.
DHRW N, S, BA, EA, RL, TAG, T | Display on Right Scope

and hold indefinitely Wait if W is used.
DHLW N, S, BA, EA, RL, TAG, T | Display on Left Scope and

hold indefinitely Wait if W is used.
RDPW N, S, TAG Remove display. Wait if W is used.
RTYW N, S, BA, EA, RL, TAG Read console typewriter. Wait if W is used.

N = Console logical unit number; 1,2,... M for M consoles in the system.

S = Location containing central memory address for status response codes from System

PP 1/0 routine.

BA = Location containing beginning address of buffer area in central memory.

EA = Location containing ending address + 1 of buffer area in central memory.

RL = Total number of characters in the message to be transmitted.

TAG = Identification number = 18 bits for display message.

T = Display character size.

Blank or 0—64 characters/line.
1—32 characters/line.
2—16 characters/line.

3—plot mode.

STATUS RESPONSE CODES —positioned as per address S.

Rs = 0 Request is completed with no trouble.

Rs =1 Request is in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

4-12

Rs

Il

59

4847

Program error — BA > EA. (BIT 48)
Scope is full. (BIT 54)

Console is not ready. (BIT 58)
Request is aborted. (BIT 59)

where: 1 implies the condition exists

0 implies the condition does not exist.

4-13

4.6 SYSTEM ACTION

Opcode Address Field Remarks
TPPW N, S, SYMBOL Transfer program SYMBOL from CM to PP memory and
begin execution with first ASPER
instruction. Wait if W is used.
ROMW NW, §, A Request memory. Wait if W is used.
DRMW NW, S, A Release memory. Wait if W is used.
RQDW N, §, L, NAME, R Request disk space. Wait if W is used.
DRDW N, S, NAME Release disk space. Wait if W is used.
RQCW* D, S Request I/0 channel. Wait if W is used.
DRCW#* D, S Release 1/0 channel. Wait if W is used.
DRPP* N, S Release peripheral processor.

*These macros are used in ASPER programs only.

N = Logical number of PP or disk unit.

S = Location containing central memory address for status response code from System
PP 1/0 routine.

D = Physical number of the I/0 channel requested.

R = Maximum number of logical records into which the file may be segmented.
NW = Total number of words.

L = Number of 60-bit words in longest record.

A = Location containing central memory address of the first word of block assigned
by the system or released by the programmer.

NAME = Symbolic name uniquely identifying the disk logical file being referenced.
SYMBOL = Name of PP program defined by ASPER pseudo operation.

STATUS RESPONSE CODES —positioned as per address S.
Rs = 0 Request completed with no trouble.
Rs =1 Request in process.

Rs <0 Request aborted. Reason given in bits 58-48.

4-14

Rs

59

4847

Core exceeded. (BIT 48)

Program not present at load time. (BIT 49)
Checksum error. (BIT 53)

Not available. (BIT 56)

Request aborted. (BIT 59)

4-15

4.7 CP PROGRAM OVERLAY

tarimy dnikial

During initial luauiug, segmentation controi

P PNy P,

~1

cards are matched against subroutines present to assure overlay

capability when called. Therefore, control is taken from the central memory program during the load and
is only returned when the load is successful. The loading could fail because of an attempt to load a non-
existent segment or subroutine. No status is required since success is necessary to regain control.

Opcode Address Field Remarks
LOAD SYMBOL Load segment SYMBOL.
LOAD *SYMBOL* Load segment SYMBOL and transfer control to indicated

routine.

SYMBOL = Name of overlay region to be loaded.

4-16

4.8 PP PROGRAM OVERLAY

No execution takes place unless all SUBP’s called in LOAD macros are present. During execution of the
LOAD macro, control is kept in the macro and returned to the routine only upon successful completion of
the load. Therefore, no status is provided.

Opcode Address Field Remarks

LOAD SYMBOL Load SUBP SYMBOL into PP memory

SYMBOL = Name of overlay region to be loaded.

4-17

4.9 WAIT CHECK

After a buffered operation is initiated, a Wait Check macro may be used to check status. The routine delays
until the status response word is zero (completed) or negative (aborted). If it is zero, the next instruction in
line is executed. If the status word is negative, the routine exits to the location specified by SYMBOL.

Oncode Address Field Remarks
WAIW S, SYMBOL Check status of S. Exit to SYMBOL if abort.
Wait for reply if not ready and W is used.

S = Location containing central memory address for status response code from System
PP I/0 routine.

SYMBOL = Transfer location if an abort is indicated by the status response code.

4-18

4.10 DESCRIPTION OF MACRO
INSTRUCTIONS

Backspace
BSP N, S, K

Backspaces K number of records on logical tape
unit N,

Clear Monitor Channels 1-6
CMC N, S

Deselects monitor channels 1-6 on line printer N.
This macro must be used before selecting another
channel.

Display on Left Scope and Hold Indefinitely
DHL N, S, BA, EA, RL, TAG, T

Displays a message on the left scope of the console
and holds the display indefinitely or until an RDP
request is received. When displayed the message is
accompanied by the 18-bit identifier, TAG. BA and
EA contain the locations for the beginning and end-
ing addresses of the buffer area storing the message
to be displayed. Each CM word contains 10 con-
secutive display-coded characters of the message
ordered from left to right in the word. The display
character size is determined by T. RL specifies the
number of characters to be displayed on each line
on the scope and is limited by the character size
chosen. The logical console number, N, indicates
which console is to be used.

Display on Right Scope and Hold Indefinitely
DHR N, S, BA, EA, RL, TAG, T

Displays a message on the right scope of the console
and holds the display indefinitely or until an RDP
request is received. See macro DHL for further
explanation of parameters.

Release Channel Back to System
DRC D,S

Releases the channel specified by D back to the
system for general purpose use.

Release Disk Space Back to System
DRD N, S, NAME

Releases the file identified by NAME on the logical
disk unit N.

Release Memory

DRM NW, S, A

Releases from the block of central memory words
which the CP or PP has reserved the total number
of words specified by NW beginning with the CM
address given in A.

Release Tape Back to System
DRT N, S

Releases the logical tape unit specified by N for
general system usage.

Display on Left Scope for System Time Limit
DSL N, S, BA, EA, RL, TAG, T

Displays a message on the left scope of the console
for the length of time set by the system. See macro
DHL for further explanation of parameters.

Double Space Printer
DSP N, S

Advances logical printer N two lines.

Display on Right Scope for System Time Limit
DSR N, S, BA, EA, RL, TAG, T

Displays a message on the right scope of the console
for the length of time set by the system. See macro
DHL for further explanation of parameters.

Select Format Channel 7
FC7 N, S

Selects format channel 7 on logical printer unit N.
This format channel advances the paper to a
selected line.

Select Format Channel 8
FCS8 N, S

Selects format channel 8 on logical printer unit N.
This format channel ejects the page to the top of
the form.

Forespace
FSP N, S, K

Spaces forward K number of records on logical tape
unit N.

4-19

Select Monitor Channel 1
MC1 N, S

Selects monitor channel 1 on logical printer unit N.
The monitor channel contains predesigned line-
space formats.

Select Monitor Channel 2
MC2 N, S

(P A FTIRR O, I | ot
Seiect monitor channel 2 on

logical printer unit N.

Select Monitor Channel 3
MC3 N, S
Select monitor channel 3 on logical printer unit N.

Select Monitor Channel 4
MC4 N, S

Select monitor channel 4 on logical printer unit N.

Select Monitor Channel 5
MC5 N, S

Select monitor channel 5 on logical printer unit N.

Select Monitor Channel 6
MC6 N, S

Select monitor channel 6 on logical printer unit N.

Punch Cards
PCH N, S, BA, EA, RL, C

Punches cards on logical unit N for the number of
leftmost 5 columns (binary output, no conversion)
or 10-character fields (coded mode) as given by RL.
The conversion mode is specified by C. The card
images are read out from central memory begin-
ning at the address contained in location BA and
ending at the address contained in location EA.

Print Single Line or Multiple Lines
PRN N, S, BA, EA, RL, C

Prints on logical unit N the number of 10-character
words per line as given by RL in the conversion
mode specified by C. RL may specify up to 12 or
14* words per line. The print image is stored in
central memory beginning at the address contained
in location BA and ending at the address contained
in location EA.

4-20

Read Card
RDC N, S, BA, EA, RL, C

Reads cards on logical unit N for the number of
leftmost 5 columns (binary input, no conversion) or
10-character fields (coded mode) as given by RL.
The conversion mode is specified by C. The cards
are read into central memory beginning at the
address contained in location BA and ending at the
address contained in location EA.

Read Record and Hold Data on Disk
RDH N, S, BA, EA, NAME, P

Reads the record identified by NAME commencing
with record number P from logical disk unit N. BA
and EA contain the locations for the beginning and
ending addresses of the buffer into which the words
are read. The data are held on disk for subsequent
re-use.

Remove Display
RDP N, S, TAG

Erases from the scope at console N the display
identified by TAG.

Read Record and Release Data on Disk
RDR N, S, BA, EA, NAME, P

Reads the record identified by NAME commencing

. 1T Aicly 1:vis NI RA
with record number P P from log;ca; GISK UIit iN. DA

and EA contain the locations for the beginning and
ending addresses of the buffer into which the
macros are read. Once the data are in memory, the
disk space is released for use by other programs.

Read Tape Forward, Binary Mode
RFB N, S, BA, EA, RL, C

Reads, in binary parity, the number of 60-bit words
per tape record, RL, from logical tape unit N. Each
6-bit character is converted as specified by the con-
version mode C. BA and EA contain the locations
for the beginning and ending addresses of the buffer
into which the words are read.

“for the 120 character/line 1612 printer and the 136 char-

acter/line 501 printer, respectively.

Read Tape Forward, Coded Mode
RFC N, S, BA, EA, RL, C

Reads, in BCD parity, the number of 60-bit words
per tape record, RL, from logical tape unit N. Each
6-bit character is converted as specified by the con-
version mode C. BA and EA contain the locations
for the beginning and ending addresses of the buffer
into which the words are read.

Request Channel
RQC D, S

Requests the channel specified by D for the exclu-
sive use of the requesting program.

Request Disk Space
RQD N, S, L, NAME, R

Reserves on logical disk unit N the file identified by
NAME which has L number of 60-bit words in its
longest record. R specifies the maximum number of
logical records into which the file may be segmented.
The parameters N, L, and R must be numbers,
where N = 16,,, L =2 and R =4000,,, NAME
must be unique within the routine.

Request Memory Space
ROQM NW, S, A

Reserves in central memory the total number of
words specified by NW. The system sets A to the
location containing the address of the first word
of the assigned block in central memory.

Request Tape Assignment from System
RQT N, S

Requests logical tape unit N for the exclusive use
of a program.

Read Console Typewriter
RTY N, S, BA, EA, RL, TAG

Reads and identifies a message with the identifica-
tion number, TAG, typed on the typewriter at
logical console unit N. Transmits RL number of
characters to a buffer area in central memory be-
ginning at the address contained in location BA and
ending at the address contained in location EA.

Rewind Tape to Load Point
RWL N\, S

Rewinds logical tape unit N to the physical load
point on the tape.

Rewind Tape for Unload
RWU N, S

Rewinds logical tape unit N so that the tape may be
dismounted.

Search File Mark Backward
SFB N, S

Searches the tape on logical unit N one record at a
time back towards the load point until a file mark
is passed over. When the mark is found, the tape is
positioned on the load-point side of the file mark.
If none is found, the macro is equivalent to RWL.

Search File Mark Forward
SFF N, S

Searches the tape on logical unit N one record at a
time from the current position forward until a file
mark is passed over. When the mark is found, the
tape is positioned on the side of the file mark away
from the load point. If no mark is found, the end
of tape marker stops the search.

Suppress Space After Next Print
SPA N, S

Suppresses on logical printer N the automatic ad-
vance after the next line printed with a PRN macro.

Single-Space Printer
SSP N, S
Advanees logical printer N one line.
Transfer PP Program and Begin Execution
TPP N, S, Symbol

Produces a calling sequence to the PP loader which,
during execution, transfers PP program SYMBOL
from central memory to logical peripheral processor
N and begins execution with the first ASPER in-
struction. This macro is used to load an ASPER
program into a PP from CM at execute time. The
load begins at the first binary card and continues
until the loader encounters another ASPER header
card, a SUBP header card or a terminate card
Execution begins at the first ASPER instruction
defined under an ORGR pseudo code.

4-21

The TPP call from a CM program can load any PP

i Par | B RGN ez
in the system. However, the TPP call by a PP pro-

gram can load any other PP in the system but can-
not load itself.

Wait Check
WAI S, SYMBOL

Checks the status response word of other macros
during a buffered operation. If the operation has
been aborted, the WAI macro exits to the address

specified by SYMBOL. If not, the next instruction,
in line, is executed.

Write File Mark
WFM N, S

Writes an end of file mark on the tape on logical
unit N.

Write Tape, Binary Mode
WRB N, S, BA, EA, RL, C

Writes, in binary parity, the data between BA and
EA in records of RL 60-bit words each onto logical
tape unit N. Each 6-bit character transferred is con-
verted as requested by the conversion mode C. The
words are written from a buffer area in central
memory beginning at the address contained in loca-
tion BA and ending at the address contained in
location EA. If the conversion mode is 0, a straight
binary output is expected.

Write Tape, Coded Mode
WRC N, S, BA, EA, RL, C

Writes, in BCD parity, the data between BA and
EA in records of RL 80-bit words each onto logical
tape unit N. Each 6-bit character transferred is con-
verted as requested by the conversion mode C. The
words are written from a buffer area in central mem-
ory beginning at the address contained in location
BA and ending at the address contained in location

T A
DAL
Write Record on Disk

WRD N, S, BA, EA, NAME, P

Writes on logical disk N the logical record identi-
fied by NAME starting with record number P. The
words are written without code translation from a
buffer area in central memory beginning at the
address contained in location BA and ending at the
address contained in location EA.

Release Peripheral Processor

DRPP N, S

Returns the PP, logical unit N, to the system for
general purpose use. This macro must be the final
instruction executed before the program completes.

Load Segment

LOAD SYMBOL

Loads the subroutine SYMBOL into CP or PP
memory. SYMBOL is a subroutine defined by a
pseudo opcode. When asterisks enclose SYMBOL,
the control is transferred to the indicated routine.

5. UTILITY ROUTINES

The system library on the disk contains several
standard utility routines that may be put into opera-
tion by control cards. These routines perform com-
mon input/output operations and, once set up and
initiated by the operating system, are executed off-
line. Routines in this group include:

Card to Punch
Card to Print
Card to Tape
Tape Comparison
Tape to Card
Tape to Print
Tape to Tape

5.1 CARD TO PUNCH

The card-to-punch routine reads card data into the
peripheral processor’s memory from the card reader
and punches out identical information on the card
punch. Any code may be punched in the cards being

read

1Ca.

Required parameters:
Channel number of card reader
Synchronizer number of card reader
Unit number of card reader
Channel number of card punch
Synchronizer number of card punch
Unit number of card punch

Error halt conditions:
Card reader not ready

Card punch not ready

5.2 CARD TO PRINT

The card-to-print routine reads Hollerith coded
data into the peripheral processor’s memory from
the card reader, converts the data to BCD code,
and prints the data on the line printer.
Required parameters:

Channel number of card reader

Synchronizer of card reader

Unit number of card reader

Channel number of line printer

Synchronizer of line printer

Unit number of line printer

Conversion code
0 = No conversion
2 = Convert from Hollerith code

Error halt conditions:
Card reader not ready
Line printer not ready

5.3 CARD TO TAPE

The card-to-tape routine reads Hollerith coded data
into the peripheral processor’s memory from the
card reader, converts the data to BCD or display
code, arranges the data into blocks, and writes the
blocks on magnetic tape (607 or 626).
Required parameters:

Channel number of card reader

Synchronizer number of card reader

Unit number of card reader

Channel number of magnetic tape

Synchronizer number of magnetic tape

Unit number of magnetic tape

Input record length (number of columns per
card to be read)

Output record length (number of input records
per block)
Type of padding
0 = Follow last record with zeros
9 = Follow last record with nines

Conversion code
0 = No conversion
1 = Convert Hollerith to BCD code
2 = Convert Hollerith to display code

Error halt conditions:
Card reader not ready
Tape unit not ready
Read parity error unrecoverable
Write parity error unrecoverable
End of tape before function completed

5.4 TAPE COMPARISON

The magnetic tape comparison routine reads data
into the peripheral processor's memory from the
two magnetic tape units, compares the data trame
for frame, and exits when one of the following con-

5-1

ditions is detected: unequal comparison, five con-
secutive file marks, or end of tape. Either 607 or 626
tapes may be compared.
Required parameters:

Channel numbers for both tapes

Synchronizer numbers for both tapes

Unit numbers for both tapes
Error halt conditions:

Tape units not ready

Tapes not at load point

Read parity error unrecoverable

End of tape before function completed

Records not equal

5.5 TAPE TO CARD
The tape-to-card routine reads binary or BCD data
into the peripheral processor’s memory from mag-
netic tape (607 or 626), converts the data to Holler-
ith code, and punches the data into cards.
Required parameters:
Channel number for magnetic tape
Synchronizer number for magnetic tape
Unit number for magnetic tape
Channel number for card punch
Synchronizer number for card punch

Unit number for card punch

Tape mode
0 = Binary
1=BCD

Tape record length (frames per record)
Number of files to be processed
Number of files to be skipped (before starting)
Conversion code

0 = No conversion

1 = Convert BCD to Hollerith

2 = Convert binary to Hollerith

Error halt conditions:
Tape unit not ready
Card punch not ready
Tape not at load point
Read length error

Read parity error unrecoverable

5.6 TAPE TO PRINT

The tape-to-print routine reads BCD, binary, or dis-
play coded data into the peripheral processor’s
memory from magnetic tape (607 or 626), converts
the data if necessary to BCD code, and prints the
data on the line printer. Tape records may be any
length and any number of characters per line may
be printed.

Required parameters:
Channel number of magnetic tape
Synchronizer number of magnetic tape
Unit number of magnetic tape
Channel number of line printer
Synchronizer of line printer

Unit number of line printer

Tape mode
0 = Binary
1=BCD

Tape record length (12-bit words per record)
Number of characters per line
Number of file to be processed
Number of files to be skipped (before starting)
Conversion code
0 = No conversion
1 = Convert from binary
2 = Convert from display code
Error halt conditions:
Tape unit not ready
Line printer not ready
Tape not at load point
Read length error

Read parity error unrecoverable

5.7 TAPE TO TAPE

The tape-to-tape routine reads data into the periph-
eral processor’s memory from one tape and writes
identical data on another tape. This is merely a tape
duplication routine and will duplicate any number
of files on either the 607 or 626 tape unit.
Required parameters:

Channel numbers for both tapes

Synchronizer numbers for both tapes

Unit numbers for both tapes

Tape mode of input tape
0 = Binary
1=BCD
Input record length (maximum length)

Number of files to process

Error halt conditions:

Tape units not ready

Tapes not at load point

Tape write lockout

Read parity error unrecoverable

Write parity error unrecoverable

End of tape before function completed

5-3

APPENDIX

1. CHARACTERISTICS SUMMARY

SYSTEM

Large-scale, general-purpose computer system
11 independent computers
1 central processor (60-bit)
10 peripheral and control processors (12-bit)
Central memory (60-bit)
Display console and keyboard

System communicates with a variety of external
equipment
Disk files
Magnetic tapes
Card equipment
Printers

Central memory common to the 11 computers
Central memory storage
131,072 words (60-bit)
Major cycle = 1000 ns*
Minor cycle = 100 ns
Memory organized in 32 banks of 4096 words
Multiphase
Central processor instructions
Arithmetic, logical, indexing, branch
Peripheral and control processor instructions
Logical, input-output, access to central
processor and central memory
Each peripheral and control processor has 12-bit,
4096-word memory
Solid-state system
Transistor logic
*ns = nanoseconds

CENTRAL PROCESSOR
10 arithmetic and logical units

Add Shift
Multiply Branch
Multiply Boolean
Divide Increment
Long add Increment

94 operating registers for functional units
8 operand (60-bit)
8 address (18-bit)
8§ increment (18-bit)
8 transistor registers (60-hit) hold 32 instructions
(15-bit) or 16 instructions (30-bit) or combination
of two for servicing functional units

Floating point add — 4 minor cycles
Floating point multiply — 10 minor cycles
Floating point divide — 29 minor cycles
Floating point arithmetic
Single and double precision
Optional rounding and normalizing
Format
Integer coefficient — 48 bits
Biased exponent — 11 bits (21°)
Coefficient sign — 1 bit
Fixed point arithmetic (subset of floating point
arithmetic)
Full 60-bit add-subtract

Controlled and started by peripheral and
control processors

Addresses in central memory relative

PERIPHERAL AND CONTROL
PROCESSORS

10 identical processors (characteristics as listed are
per processor except as noted)
4096 word magnetic core memory (12-bit)
Random access, coincident — current
Major cycle — 1000 ns
Minor cycle — 100 ns
12 input/output channels
All channels common to all processors

Maximum transfer rate per channel —
one word/major cycle

All 12 channels may be active simultaneously
All channels 12-bit bi-directional

Real-time clock (period = 4096 major cycles)
Instructions

Add/Subtract
Logical
Branch
Input/Output
Central processor access
Central memory access
Average instruction execution time = two major
cycles
Indirect addressing

Indexed addressing

CENTRAL MEMORY
131,072 words
60-bit words

Memory organizing in 32 logically independent
banks of 4096 words with corresponding multi-
phasing of banks

Random access, coincident — current, magnetic core
One major cycle for read-write

Maximum memory reference rate to all banks
one address/minor cycle

Maximum rate of data flow to/from memory
one word/minor cycle

A-2

DISPLLAY CONSOLE
Two display tubes

Modes
Character
Dot

Character size
Large — 16 characters/line
Medium — 32 characters/line

Small — 84 characters

Characters
26 alphabetic
10 numeric
11 special

2. SYSTEM MACROS

RQTW
DRTW
SFFW
SFBW
WFMW
RWLW
RWUW
FSPW.
BSPW
RFCW.
RFBW
WRCW
WRBW
RDHW
RDRW.
WRDW.
SSPW.
DSPW_
FCTW.
FC8W.
MC1W
MC2W
MC3W
MC4W
MC5W
MCEW.

Request tape assignment from system.

Release tape back to system.
Search file mark forward.
Search file mark backward.
Write file mark.

Rewind tape to load point.
Rewind tape for unload.
Forespace.

Backspace.

Read tape forward coded mode.
Read tape forward binary mode.
Write tape coded mode.

Write tape binary mode.

Read record and hold data on disk.

Read record and release data on disk.

Write record on disk.
Single space printer.
Double space printer.
Select Format Channel 7.
Select Format Channel 8.
Select Monitor Channel 1.
Select Monitor Channel 2.
Select Monitor Channel 3.
Select Monitor Channel 4.
Select Monitor Channel 5.
Select Monitor Channel 6.

CMCW
SPAW
PRNW
PCHW
RDCW
DSRW

DSLW
DHRW
DHLW

RDPW
RTYW
WAIW
TPPW.

LOAD
RQMW.
DRMW
RQDW.
DRDW
RQCW.
DRCW.
DRPP

Clear Monitor Channels 1-6.
Suppress space after next print.
Print single line or multiple lines.
Punch cards.

Read cards.

Display on Right Scope for system
time limit.

Display on Left Scope for system
time limit.

Display on Right Scope and hold
indefinitely.

Display on Left Scope and hold
indefinitely.

Remove display.
Read console typewriter.

Check status word.

Transfer program SYMBOL from CM to
PP memory and begin execution with

first ASPER instruction.
Load segment SYMBOL.
Request memory.
Release memory.
Request disk.
Release disk space.
Request 1/0 channel.
Release 1/0 channel.

Release peripheral processor.

A-3

3. PERIPHERAL PROCESSOR
OPERATION CODES
Octal

Opcode Mnemonic Address Comments
00 PSN . Pass
01 LM md . Long jump to m + (d)
02 RiM md . Return jump tom + (d)
03 UJN d . Unconditional jump d
04 ZJN d . Zero jump d
05 NJN d . Nonzero jump d
06 PIN d . Plus jump d
07 MJN d . Minus jump d
10 SHN d . Shift d
11 LMN d . Logical difference d
12 LPN d . Logical product d
13 SCN d . Selective clear d
14 LDN d . Load d
15 LCN d . Load complement d
16 ADN d . Addd
17 SBN d . Subtract d
20 LDC dm . Load dm
21 ADC dm . Add dm
22 LPC dm . Logical product dm
23 LMC dm . Logical difference dm
24 PSN . Pass
25 PSN . Pass
26 EXN . Exchange jump
27 RPN . Read program address
30 LDD d . Load (d)
31 ADD d . Add (d)
32 SBD d . Subtract (d)
33 LMD d . Logical difference (d)
34 STD d . Store (d)
35 RAD d . Replace add (d)
36 AOD d . Replace add one (d)
37 SOD d . Replace subtract one (d)
40 LDI d . Load ((d))
41 ADI d . Add ((d))
42 SBI d . Subtract ((d))
43 LMI d . Logical difference ((d))
44 STI d . Store ((d))
45 RAI d . Replace add ((d))
46 AOI d . Replace add one ((d))

A4

Octal

Opcode Mnemonic Address Comments
47 SOI d . Replace subtract one ((d))
50 LDM md . Load (m 4+ (d))
51 ADM md . Add (m +(d))
52 SBM md . Subtract (m + (d))
53 LMM md . Logical difference (m + (d))
4 STM md . Store (m + (d))
55 RAM md . Replace add (m + (d))
56 AOM md . Replace add one (m + (d))
57 SOM md . Replace subtract one (m + (d))
60 CRD d . Central read from (A) to d
61 CREM md . Central read (d) words from (A) tom
62 CWD d . Central write to (A) from d
63 CWM md . Central write (d) words to (A) from m
64 AIM md . Jump to m if channel d active
65 IIM md . Jump to m if channel d inactive
66 FIM md . Jump to m if channel d full
67 EJM md . Jump to m if channel d empty
70 IAN d . Input to A from channel d
71 IAM md . Input (A) words to m from channel d
72 OAN d . Output from A on channel d
73 OAM md . Output (A) words from m on channel d
74 ACN d . Activate channel d
75 DCN d . Disconnect channel d
76 FAN d . Function (A) on channel d
77 FNC md . Function m on channel d
FOOTNOTE TO APPENDIX 3
Notation Interpretation
d Implies d itself
(d) Implies the contents of d
((d)) Implies the contents of the location specified by d
m Implies m itself used as an address
m -+ (d) The contents of d are added to m to form an operand
(jump address)
(m + (d)) The contents of d are added to m to form the address
of the operand
dm Implies an 18-bit quantity with d as the upper 6 bits

and m as the lower 12 bits

A-5

4. CENTRAL PROCESSOR

e S— L

OPERATION CODES

Octal
Opcode Mnemonic Address Comments
. BRANCH UNIT
00 PS . Program stop
01 RJ] K . Return jump to K
02 JP Bi + K . Jump toBi + K
030 ZR Xj K . JumptoKif Xj =0
031 NZ Xj K . Jump toKif Xj=£0
032 PL Xj K . Jump to K if Xj = plus (positive)
033 NG Xj K . Jump to K if Xj = negative
034 IR Xj K . Jump to K if Xj is in range
035 OR Xj K . Jump to K if Xj is out of range
038 DF Xj X . Jump to K if Xj is definite
037 ID Xj K . Jump to K if Xj is indefinite
04 EQ Bi Bj K . Jump to K if Bi = Bj
04 ZR Bi K . Jump to X if Bi = BO
05 NE Bi Bj K . Jump to K if Bi =~ Bj
05 NZ Bi K . Jump to K if Bi == B0
06 GE Bi Bj K . Jump to K if Bi == Bj
06 PL Bi K . Jump to K if Bi = BO
07 LT Bi Bj K . Jump to K if Bi < Bj
07 NG Bi K . Jump to X if Bi < B0
. BOOLEAN UNIT
10 BXi Xj . Transmit Xj to Xi
11 BXi Xj*Xk . Logical Product of Xj & Xk to Xi
12 BXi Xj + Xk . Logical sum of Xj & Xk to Xi
13 BXi Xj — Xk . Logical difference of Xj & Xk to Xi
14 BXi — Xk . Transmit the comp. of Xk to Xi
15 BXi — Xk*Xj . Logical product of Xj & Xk comp. to Xi
16 BXi — Xk + Xj . Logical sum of Xj & Xk comp. to Xi
17 BXi - Xk — Xj . Logical difference of Xj & Xk comp. to Xi
. SHIFT UNIT
20 LXi ik . Left shift Xi, jk places
21 AXi ik . Arithmetic right shift Xi, jk places
22 LXi Bj Xk . Left shift Xk nominally Bj places to Xi
23 AXi Bj Xk . Arithmetic right shift Xk nominally Bj places to Xi
24 NXi Bj Xk . Normalize Xk in Xi and Bj
25 ZXi Bj Xk . Round and normalize Xk in Xi and Bj
26 UXi Bj Xk . Unpack Xk to Xi and Bj
27 PXi Bji Xk . Pack Xi from Xk and Bj
43 MXi ik . Form mask in Xi, jk bits

A6

Octal

Opcode Mnemonic Address Comments

. ADD UNIT

30 FXi Xj + Xk . Floating sum of Xj and Xk to Xi

31 FXi Xj — Xk . Floating difference Xj and Xk to Xi

32 DXi Xj + Xk . Floating DP sum of Xj and Xk to Xi

33 DXi Xj — Xk . Floating DP difference of Xj and Xk to Xi

34 RXi Xj + Xk . Round floating sum of Xj and Xk to Xi

35 RXi Xj — Xk . Round floating difference of Xj and Xk to Xi
. LONG ADD UNIT

36 IXi Xj + Xk . Integer sum of Xj and Xk to Xi

37 IXi Xj — Xk . Integer difference of Xj and Xk to Xi
. MULTIPLY UNIT

40 FXi Xj * Xk . Floating product of Xj and Xk to Xi

41 RXi Xj * Xk . Round floating product of Xj & Xk to Xi

42 DXi Xj * Xk . Floating DP product of Xj & Xk to Xi
. DIVIDE UNIT

44 FXi Xj / Xk . Floating divide Xj by Xk to Xi

45 RXi Xj / Xk . Round floating divide Xj by Xk to Xi

46 NO . No operation

47 CXi Xk . Count the number of I’s in Xk to Xi
. INCREMENT UNIT

50 SAi Aj + K . SetAitoAj + K

50 SAi Aj — K . Set Aito Aj + comp. of K

51 SAi Bj + K . SetAitoBj + K

51 SAi Bj — K . Set Ai to Bj + comp. of K

52 SAi Xj + K . SetAitoXj + K

52 SAi Xj— K . Set Ai to Xj + comp. of K

53 SAi Xj + Bk . Set Ai to Xj + Bk

54 SAi Aj + Bk . Set Ai to Aj + Bk

55 SAi Aj — Bk . Set Aito Aj — Bk

56 SAi Bj + Bk . Set AitoBj + Bk

57 SAi Bj — Bk . Set Ai to Bj — Bk

60 SBi Aj + K . SetBito Aj + K

60 SBi Aj — K . Set Bito Aj -+ comp. of K

61 SBi Bj + K . SetBito Bj + K

61 SBi Bji — K . Set Bi to Bj + comp. of K

62 SBi Xj + K . SetBito Xj + K

62 SBi Xj — K . Set Bi to Xj + comp. of K

63 SBi Xj + Bk . Set Bi to Xj + Bk

64 SBi Aj + Bk . Set Bito Aj + Bk

65 SBi Aj — Bk . Set Bito Aj — Bk

66 SBi Bj + Bk . Set Bi to Bj + Bk

67 SBi Bj — Bk . Set Bi to Bj — Bk

Octal

Opcode Mnemonic Address Comments

70 SXi Aj + K . SetXitoAj + K

70 SXi Aj — K . Set Xito Aj + comp. of K
71 SXi Bj + K . SetXitoBj + K

71 SXi Bj — K . Set Xi to Bj + comp. of K
72 SXi Xj + K . SetXitoXj + K

72 SXi Xj — K . Set Xi to Xj + comp. of K
73 SXi Xj + Bk . Set Xito Xj + Bk

74 SXi Aj + Bk . Set Xi to Aj + Bk

75 SXi Aj — Bk . Set Xito Aj — Bk

76 SXi Bj + Bk . Set Xi to Bj + Bk

77 SXi Bj — Bk . Set Xito Bj — Bk

A-8

NNW'—WI.“—H- »--éh

FOOTNOTE TO APPENDIX 4

One of eight address registers (18 bits)

One of eight index registers (18 bits)

B0 is fixed and equal to zero

Instruction code (6 bits)

Specifies which of eight designated registers (3 bits)
Specifies which of eight designated registers (3 bits)
Constant, indicating number of shifts to be taken (6 bits)
Specifies which of eight designated registers (3 bits)
Constant, indicating branch destination or operand (18 bits)
One of eight operand registers (60 bits)

5. BINARY CARD FORMATS

There are several types of binary card formats that
could appear in the job deck. Most of these are the
result of assemblies or compilations. They are dis-
tinguished from one another by means of specific
identification punches in column one. To make the
definition of these punches easier, column one has
been assumed to be a 12-bit word with each punch
row in the column corresponding to a bit in a word;
the 12 row corresponds to the high-order end of the
word and the 9 row to the low-order end. As an
example, Figure 15 shows the number 0005 punched
into a card.

{0

1

<

[l
—
WOl ULk WO

Figure 15. BINARY CARD FORMAT

Below is a table defining the card identification
using the above convention. These entries can be
logically “ored” with any other entry to convey a
combination of meanings.

Card ID

0005 Binary card containing central memory
words

Definition

0007 Binary card containing peripheral
processor words

Card ID

Card ID Definition

0010 Termination card (generated by source
language END card)

0100 Card contains list of subroutines
referenced by the routine

0200 Card contains subroutine names and entry
points

0300 Card contains program name and entry
point

0400 Card contains list of disk space
requirements

0500 Card contains list of common definitions

1000 Checksum is to be ignored

2000 Card contains program instructions whose
addresses are to be relocated (also con-
tains a relocatable directory)

4000 Load address is to be relocated

Examples: In the examples below, card ID codes
2000, 4000, and either 0005 or 0007 are
combined.

Definition

6005 Binary card containing central memory in-
structions whose addresses may be relo-
cated. The load address of the card may
also be relocated. This is normal FOR-
TRAN or ASCENT output.

6007 The same as above except the instructions
are peripheral processor instructions. This
is normal ASPER output.

A-9

CENTRAL PROCESSOR CARDS
Segment Control Cards

These cards define the way programs which are too
large to fit into memory at one time are to be seg-
mented and executed.

AT

Column 1: CARD ID — This column identifies the
type of segmentation card and must
have one of the following codes:

Code Description

0023 Basic Segment
0043 Normal Segment
0063 Continuation Card

Column 2: SEGMENT NAME — This is the name
of the segment and may be from one to
eight characters. Name is followed by a
comma.

NAME OF PROGRAM, SUBROU-
TINE, or SEGMENT — The fames of
all programs, subroutines, or segments
in SEGMENT NAME are listed here.
Each name may have from one to eight
characters and is followed by a comma.
If more names than can be entered in
one card are defined for a segment, they
are entered in continuation cards.

Columns 76-80: DECK ID.

Common Areas Definitions

These cards rese

areas defined in the program and also reserve cen-
tral memory required by the disk file.

CARD 1D —12-bit identification
code (0305).

Column 1:

LOAD ADDRESS -- This is a card
sequence number. Column two con-
tains the high-order 12 bits of the
number and column three contains
the low-order 6 bits (rows 12-3).

Columns 2-3:

Column 4: ENTRY COUNT — This is a 6-bit
count (rows 4-9) of the number of
common areas defined on this card.

Column 5: CHECK SUM — This is the sum of

all columns except 5, 76-80.
Columns 6-10: Blank.

A-10

Columns 11-14: COMMON AREA NAME — This
consists of up to eight BCD char-
acter codes starting in column 11.

Columns 15-16: LENGTH OF AREA — This is an
18 bit number which designates the
number of central memory words to

]”\P TPCP‘I'VP(‘] ‘Fnr f}')n commeon area

named. Column 15 contains the
high-order 6 bits (rows 4-9) and

column 18 contains the low order

428188183 15 e 0VY OIGETD

12 bits.
Columns 17-75: OTHER ENTRIES.
Columns 76-80: DECK ID.
Common Area Data Card

This card contains data to be loaded into common
areas.

CARD ID —12-bit identification
code (0605).

LOAD ADDRESS — This is a com-
mon address of the area in which
the data are to be loaded. Column
two contains the high-order 12 bits,
of the number and column three

contains the low-order 6 bits (rows
12-3).

WORD COUNT — This is a 6-bit
count (rows 4-9) of the number of
60-bit data words contained in the

card \up to 14 are d.u()W(:(l}

Column 1:

Columns 2-3:

Column 4:

CHECK SUM — This is the sum of
all columns except 5, 76-80.

Column 5:

Columns 6-10: Ist DATA WORD — These columns
contain the first 60-bit data word.

Columns 11-75: OTHER DATA WORDS.
Columns 76-80: DECK ID.

Disk Space Requirements

Disk space requirements cards define the disk files
to be used by the central processor routine and
reserve space in the programmer scratch area for the
files.

CARD ID — 12-bit identification
code (0405).

Column 1:

Columns 2-3: LOAD ADDRESS — This is a card
sequence number. Column two con-
tains the high-order 12 bits of the
number and column three contains

the low-order 6 bits (rows 12-3).

Column 4: ENTRY COUNT — This is a 6-bit
count of the number (rows 4-9 only)
of disk files defined on this card.

Column 5: CHECK SUM — This is the sum of

all columns except 5, 76-80.
Columns 6-10: Blank.

Columns 11-12: MAXIMUM NUMBER OF
WORDS — This is the number of
60-bit words in the longest logical
record. Column 11 (rows 4-9) con-
tains the high-order 6 bits and col-
umn 12 the low-order 12 bits.

LOGICAL DISK NUMBER — This
is a 12-bit number which identifies
the logical number of the disk file.

Columns 14-75;: OTHER ENTRIES.
Columns 76-80: DECK ID.

Column 13:

Central Memory Program Name Card

These cards identify the central processor program,
define the length of the program, and designate the
program entry point.

CARD 1D — 12-bit indentification
code (0305).

LOAD ADDRESS — This is a card
sequence number. Column two con-
tains the high-order 12 bits of the
number and column three contains
the low-order 6 bits (rows 12-3).

ENTRY COUNT — This is a 6-bit
count (row 4-9) of the number of
programs named by the card.

CHECK SUM — This is the sum of
all columns except 5, 76-80.

Columns 6-10: Blank.

Columns 11-14: PROGRAM NAME — This is the
name which identifies the program
and consists of one to eight 6-bit
BCD character codes starting in
column 11.

Column 1:

Columns 2-3:

Column 4:

Column 5:

Columns 15-16: PROGRAM ENTRY POINT — This
is the relative address of the entry
point to the program. Columns 15
contains (rows 4-9) the high-order
6 bits of the address and column 16
contains the low-order 12 bits.

Columns 17-75: Blank.
Columns 76-80: Deck ID.

Central Memory Subroutine Name Card

These cards identify a central processor subroutine,
define the length of the subroutine, and designate
the subroutine entry point.

CARD ID — 12-bit identification
code (0205).

LOAD ADDRESS — This is a card
sequence number. Column two con-
tains the high-order 12 bits of the
number and column three contains
the low-order 6 bits (rows 12-3).

ENTRY COUNT — This is a 6-bit
count (rows 4-9) of the number of
subroutines named by the card.

CHECK SUM — This is the sum of
all columns except 5, 76-80.

Columns 6-10: Blank.

Columns 11-14;: SUBROUTINE NAME — This is
the name which identifies the sub-
routine; it consists of from one to
eight 6-bit BCD characters starting
in column 11.

Columns 15-16: SUBROUTINE ENTRY POINT —
This is the relative address of the
entry point to the subroutine. Col-
umn 15 contains (row 4-9) the high-
order 6 bits of the address and
column 16 contains the low-order
12 bits.

Columns 17-75: OTHER ENTRIES.
Columns 76-80: DECK ID.

Column 1:

Columns 2-3:

Column 4:

Column 5:

Subroutines References

This card contains a list of all routines called by
this routine but not assembled with it.

CARD 1D — 12-bit identification
code (0105).

Column 1:

A-11

LOAD ADDRESS — This is a card
sequence number. Column two con-
tains the high-order 12-bits of the
number and column three contains
the low-order 6 bits (rows 12-3).

Columns 2-3:

ENTRY COUNT — This is a 6-bit
count (rows 4-9) of the number of
subroutines named by the card.

Column 4:

CHECK SUM —This is the sum of

all columns excent 5. 76-80

18)
COIRAINNS AT U, (U0,

Column 5:

Columns 6-10: Blank.

Columns 11-14: NAME OF SUBROUTINE — This
is the name of the subroutine called
by the program but not assembled
with it and consists of one to eight
6-bit BCD characters starting in
column 11.

Columns 15-16: LOCATION OF LAST REFER-
ENCE — This is the relative ad-
dress of the last reference to the
subroutine referenced. Column 15
contains (rows 4-9) the high-order
6 bits of the address and column 16
contains the low-order 12 bits.

Columns 17-75: OTHER ENTRIES.

Columns 76-80: DECK ID.

Central Processor Program Text Cards

Central processor program text cards contain thir-
teen ceniral processor instructions each, along with
relocation information for each instruction.

CARD ID — 12-bit identification
code (2005 or 6005).

Column 1:

LOAD ADDRESS — This is the
number of locations from the start
of the routine to the first instruction
word. Column two contains the
high-order 12-bits of the number
and column three contains (rows
12-3) the low-order 6 bits.

Columns 2-3:

Column 4: WORD COUNT — This is the num-
ber (from 1 to 13) of central mem-
ory words contained in the card.

Column 5: CHECK SUM — This is the sum of

all columns except 5, 76-80.
A-12

Columns 6-10: RELOCATION OF DIRECTORY
— This field has one 4-bit binary
code for each of the thirteen central
processor instructions in the card.
The code for the first word is in
column 6, rows 12-1, the second is
in column 6, rows 2-5, etc.

Columns 11-15: WORD ONE — This is the first cen-
tral processor instruction in the
card.

Columns 16-75: OTHER INSTRUCTIONS.
Columns 76-80: DECK ID.

PERIPHERAL PROCESSOR CARDS
Peripheral Processor Program Name Card

This card is used to identify the peripheral proc-
essor program and tells the Job Loader how much
central memory space is to be reserved for the
program.

CARD ID — 12-bit identification
code (0307).

Column 1:

Columns 2-3: Blank.

ENTRY COUNT — This is a 6-bit
count (rows 4-9) of the entries in the
card and is always 01 for peripheral
processor name cards.

Column 4:

CHECK SUM - This is the sum of
all columns except 5, 76-80.

Column 5:

Columns 6-7: Blank.

AMOUNT OF SPACE — This is an
18-bit number identifying the num-
ber of central memory words re-
served by the peripheral processor
program. Column 8 contains (rows
4-9) the high-order 6 bits of the
address and column 9 contains the
low-order 12 bits.

Blank.

Columns 11-14: PROGRAM NAME — This consists
of up to eight 6-bit BCD characters
starting in column 11.

Columns 8-9:

Column 10:

Columns 15-75: Blank.
Columns 76-80: DECK ID.

Disk Space Requirement Card

The disk space requirement card defines the disk
files used in the peripheral program.

Column 1: CARD ID — 12-bit identification
code (0407).

Columns 2-3: Blank.

Column 4: ENTRY COUNT — This is a 6-bit-
count (rows 4-9) of the number of
disk files defined by the card.

Column 5: CHECK SUM — This is the sum of
all columns except 5, 76-80.

Column 6: LOGICAL DISK NUMBER—This
is the logical number of the disk
unit.

Columns 7-8: MAXIMUM NUMBER OF CM

WORDS — This is the number of
60-bit words in the longest logical
record. Column 7 (rows 4-9) con-
tains the high-order 6 bits and
column 8 contains the low-order 12

bits.

Columns 9-10: LOCATION OF LOGICAL REC-
ORD TABLE — This is the relative
address of the logical record table
in central memory. The address is
relative to the start of the space
reserved by columns 8-9 of the pro-
gram name card. Column 9 contains
(rows 4-9) the high-order 6 bits and
column 10 contains the low-order
12 bits of the address.

Columns 11-12: MAXIMUM NUMBER OF LOGI-
CAL RECORDS — This is the maxi-
mum number of logical records in
the first disk file defined on the
card. Column 11 contains (rows 4-
9) the high-order 6 bits and column
10 contains the low-order 12 bits of
the address.

Columns 13-75: OTHER ENTRIES.
Columns 76-80: DECK ID.

Peripheral Processor Program Text Card

Peripheral processor program text cards contain the
instructions for the peripheral processor program

and the relocation codes which tell how the ad-
dresses of instructions are to be relocated.

CARD ID — 12-bit identification
code (2007 or 6007).

Column 1:

LOAD ADDRESS — This is the
number of locations from the start
of the routine to the first instruction
word.

Column 2:

Column 3-4: WORD COUNT — This is the 6-bit
count (rows 4-9) of the number of

12-bit words starting in column 16.

CHECK SUM — This is the sum of
all columns except 5, 76-80.

Column 5:

Columns 6-15: RELOCATION DIRECTORY -
This field contains one 2-bit reloca-
tion code for each instruction word
in the card. Rows 12-11 of column 6
contain the code for the first in-
struction word, rows 0-1 of column
6 contain the code for the second
instruction word, and so on.

Columns 16-75: INSTRUCTION WORDS — Each
12-bit column contains one periph-
eral processor instruction.

Columns 76-80: DECK ID.

Peripheral Processor Subroutine Overlay Name Card

This card defines the part of the peripheral proces-
sor program to be overlaid.

Column 1: CARD ID — 12-bit identification
code (0207).

Columns 2-3: Blank.

Column 4: ENTRY COUNT — This is a 6-bit
count (rows 4-9) of entries but is
always 01 for this card.

Column 5: CHECK SUM — This is the sum of

all columns except 5, 76-80.
Columns 6-10: Blank.

Columns 11-14: NAME OF OVERLAY — This is
the name of the program segment
to be overlaid and consists of from
one to eight 6-bit BCD characters.

Columns 15-75: Blank.
A-13

Columns 76-80: DECK ID. Column 1: CARD 1D — 12-bit identification

Termination Card code (0015).
This card identifies the end of the central processor Columns 2-75: Blank.

and associated peripheral processor programs in a

job. Columns 76-80: DECK ID.

A-14

CONTROL DATA SALES OFFICES

ALAMOGORDO » ALBUQUERQUE + ATLANTA « BILLINGS « BOSTON « CAPE
CANAVERAL + CHICAGO « CINCINNATI « CLEVELAND « COLORADO SPRINGS
DALLAS « DAYTON « DENVER « DETROIT « DOWNEY, CALIFORNIA « HONOLULU
HOUSTON « HUNTSVILLE « ITHACA + KANSAS CITY, KANSAS « LOS ANGELES
MADISON, WISCONSIN « MINNEAPOLIS + NEWARK + NEW ORLEANS « NEW
YORK CITY « OAKLAND + OMAHA « PALOALTO « PHILADELPHIA « PHOENIX
PITTSBURGH « SACRAMENTO « SALT LAKE CITY « SAN BERNARDINO « SAN

DIEGO « SEATTLE . ST. LOUIS « WASHINGTON, D.C.

Pub. No. 60101800A

ATHENS « CANBERRA « DUSSELDORF « FRANKFURT « THE HAGUE « HAMBURG
JOHANNESBURG - LONDON . MELBOURNE +« MEXICO CITY (REGAL ELEC-
TRONICADE MEXICO,S.A.) « MILAN + MONTREAL « MUNICH « OSLO «OTTAWA
PARIS « SAVYON « STOCKHOLM « STUTTGART « SYDNEY « TOKYO (C. ITOH

ELECTRONIC COMPUTING SERVICE CO., LTD.) « TORONTO » ZURICH

CONTROL DATA
8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

© 1965, Control Data Corporation
Printed in the United States of America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	xBack

