CYBERNET SERVICES

XEDIT
Extended Text Editor

User Information Manual

G2

CONTROL
DATA

XEDIT COMMAND SUMMARY

Command
ADD
ADDLN
ADDLNS
BOTTOM
BRIEF
CHANGE
CHANGES
COPY
COPYD
DBADL
DEFTAB
DELETE
DELETELN
DELIMIT
DEOF
DEOR
DLBLANKS
eEDIT
END
EXPLAIN
FBADL
FILE
FINDLL
INPUTe
INSERT
INSERTB
HELP
linenumber
LISTAB
LOCATE
MODIFY

Page Command
2-16 NEXT

2-39 NOBELLS
2-39 OCTCHANGE
2-14 PRINT

2-6 Q NOS command
2-17 QMOD

2-17 QUIT

2-47 READ

2-47 READP

2-34 REPLACE
2-42 REPLACELN
2-60 RESTORE
2-29 RMARGIN
2-40 STOP

2-56 TABS

2-43 TEOF

2-42 TEOR

2-44 TOP

2-36 TOPNULL
2-66 TRIM

2-52 TRUNCATE
2-15 VERIFY
2-64 WEOF

2-63 WEOR

2-36 WHERE

2-33 WMARGIN
2-34 XEDIT NOS command
2-52 Y

2-10 YQMOD
2-61 Z

2-10

2-21 -

Page
2-13

2-52
2-45

[\

D-1

2=23
2-66
2-50
2=50
2=-32
2-41
2-53
2-62
2-66
2-61
2-53
2-53
2-14
2=37
2-25
2-63
2-6

2-43
2-43
2-54
2-26
2-1

2-57
2-23
2-57
2-55
2-55

76071000 C

CYBERNET SERVICES

XEDIT
Extended Text Editor

User Information Manual

G2

CONTROL
DATA

REVISION RECORD

REVISION DESCRIPTION
(4-1-75) Initial printing
A Reflects miscellaneous corrections and changes, including the new interrupt procedures applicable to time-
(2-15~76) sharing usage.
B Reflects minor name and procedure changes effected by conversion from the KRONOS 2.1 Operating System to
(10-15-76) NOS Operating System.
C Reflects XEDIT version 3.0 which includes the following: full ASCII processing; Tab Control commands
(11-04-77) DEFTAB, LISTAB, TABS; multi-file processing commands DEOF, WEOF; new upward compatible command

syntax for easier line editing; addition of INPUT and EDIT commands for unlimited batch test input; new copy

by line count (not string count) feature in COPY, COPYD; new appendix for XEDIT batch processing; change in

MODIFY command line number syntax; new carriage return terminate input feature in INSERT, INSERTB, and

REPLACE commands; new no line advance string search feature in CHANGE, CHANGES, DELETE, LOCATE,

OCTCHANGE, COPY, and COPYD commands; plus and minus (+/-) postfix characters in BRIEF and VERIFY

commands for turning these modes on and off respectively; plus (+) command prefix character for use in

conjunction with DELIMIT, Y, or Z command sequence; new EXPLAIN command for explaining XEDIT

messages; new mode toggle commands TEOR and TEOF; new margin control commands FINDLL, RMARGIN,

and TRUNC; additional syntax on the LOCATE command; allowing of a comma for a DELIMIT character; new

default line width of 160 characters; replacement of WIDTH command with RMARGIN command; no line advance

feature in the point (.) and minus (~) commands; line truncation only on lines greater than 160 characters;

deletion of procedure file W= parameter; deletion of FLN and FINDLN forms of the find line number command;

new Wrap—-around (circular) line search feature in the find line number (ln) command; change in the meaning of

the RESTORE command; new NOBELLS command for turning off the bells that ring in XEDIT messages;

improved syntax for the DLBLANKS command; XEDIT message coded to ring the bell a different number of

times depending on type of message; new WMARGIN and TRIM commands for controlling string searches;

removal of the S abbreviation for thc STOP command; more user-oriented direct access file capability; and

addition of an in-line editor.

Publication No.
76071000

REVISION LETTERS |, 0, @ AND X ARE NOT USED

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Publications & Graphics Division

© 1975, 1976, 1977 Data Services Publications
by Control Data Corporation P.O. Box 0 HQCo02C

Printed in the United States of America

ii

Minneapolis, Minnesota 55440

or uée Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV I PAGE REV | PAGE REV

Cover
Inside Front
Cover
Title Page
ii

iii/iv

v/vi

vii

[eNoNeoNeoRENe!

1-1 thru 1-20 C
2-1 thru 2-69 C

Appendixes
A-1 thru A-6
B-~1

C-1 thru C-5
D-~1 thru D-3

Qaaoan

Index-1 thru
Index-5 C

Comment Sheet
Mailer -
Back Cover -

76071000 C iii/iv

PREFACE

XEDIT, an extended interactive text editor, developed by the University of Minnesota, is available for
use on CDC® NOS systems which function under CDC CYBERNE’I‘® Service. As a CYBERNET utility,
XEDIT provides an alternative to the conventional NOS text editor (that is, EDIT). While both XEDIT
and EDIT are offered by CYBERNET Interactive Service and essentially perform the same editing
functions, XEDIT is considered an extended editor as it offers a series of additional, key features.

This manual presents instructional information which should help users understand how to employ
XEDIT. To accommodate this instructional goal, the manual is organized in the following manner:

® Section 1 presents a condensed version of XEDIT user information. It is particularly slanted
toward users who are already familiar with XEDIT, those who can learn from a cursory explan-
ation of the editor's operation, and people who only need to employ the editor's most basic
features.

® Section 2 provides a comprehensive version of XEDIT user information. Since it contains
detailed instructions, it applies to readers who are interested in taking advantage of various
editor options (for example, as offered through specific XEDIT command parameters) and those
who want in-depth information about the editor.

While this manual is written to help new XEDIT users, it assumes the reader has a basic familiarity
with NOS (especially regarding NOS file concepts). If the user needs to learn more about NOS, the
CYBERNET Interactive Service Time-Sharing Tutorial (Publication No. 84000028) provides appropriate
background information.

In addition, other Control Data manuals which relate to the operation of CYBERNET/NOS are:

Publication
Title Number
CYBERNET Interactive Service APL Reference Manual 84000031
CYBERNET Interactive Service Compiler Subroutine and Function
Manual 84002000
CYBERNET Interactive Service FTNTS Reference Manual 84000027
CYBERNET Interactive Service CYBERLIB Library Programs
Reference Manual 86605900
CYBERNET Interactive Service Project Control Guide 76073200
CYBERNET Interactive Service Time-Sharing FORTRAN Reference
Manual 84001700
CYBERNET Interactive Service Time-Sharing Tutorial 84000028
CYBERNET Interactive Service Time-Sharing Usage Reference
Manual 84000029
CYBERNET Service ALGOL 4 Reference Manual 84000001
i . CYBERNET Service BASIC Reference Manual . 84000026
CYBERNET Service COBOL 4 Reference Manual 84000002
CYBERNET Service COMPASS 3 Reference Manual 84000003

76071000 C v

vi

Title

CYBERNET Service CYBER Record Manager Reference Manual
CYBERNET Service CYBERLINK User Guide

CYBERNET Service FORTRAN Extended 4 Reference Manual
CYBERNET Service Loader Reference Manual

CYBERNET Service SORT/MERGE 4 Reference Manual
CYBERNET Service UPDATE Reference Manual

MODIFY File Editing System Reference Manual

NOS 1.0 Reference Manual, Volume 1

NOS 1. 0 Text Editor Reference Manual

Publication

_Number

84000004
84000120
84000009
84000014
84000015
84000016
60281700
60435400
60436100

76071000 C

CONTENTS

1. USING XEDIT: QUICK String Editing 2-16
REFERENCE 1-1 String Search Control 2-25
Overview i-1 Line Editing 2-29
s . _ag

Conventions for Employing XEDIT 1-2 Editing Line Numbers " 23
Performing Miscellaneous Editing 2-41

XEDIT Commands 1-4 R . .
Selective Command Samples 1-4 Manipulating Files 2-47
Generalized Commands 2-51
2. USING XEDIT: COMPREHEN- S‘S“i’lgztlgfn:[“”m‘e Entries in a 5o
E ORMAT 2-

SIVE INFOR ION 1 Tab Control 2-60
Calling XEDIT 2-1 Margin and Truncation Control 2-62
General XEDIT Conventions 2-4 Terminating XEDIT Execution 2-64
Positioning the File Pointer 2-8

APPENDIXES
A XEDIT Diagnostics and Messages A-1 C XEDIT Batch Command Processing C-1
B Editing Direct Access Files B-1 D In-Line Editor Usage D-1
INDEX

FIGURES
1-1 Use of HELP Command 1-4 1-9 Use of Z and Y Commands 1-19
1-2 Use of Pointer Movement Commands 1-11 1-10 Terminating XEDIT Execution 1-20
1-3 Use of String Editing Commands 1-12 B-1 Editing Direct Access Files B-1
1-4 Use of String Search Control C-1 Use of XEDIT Batch Processing

Commands 1-13 Parameters To Create a New

1-5 Use of Tab Control Commands 1-14 File C-4
1-6 Use of Margin Control Commands 1-15 C-2 Use of XEDIT Batch Processing
1-7 Use of Line Editing Commands 1-16 Parameters To Edit a File C-5
1-8 Use of General XEDIT Commands 1-17

TABLES
1-1 XEDIT Conventions 1-3 2-2 Display Code Conventions 2-46
1-2 XEDIT Commands 1-5 A=1- XEDIT Diagnostics and
2-1 MODIFY Directives 2-22 Messages A-1

76071000 C vii @

USING XEDIT: QUICK REFERENCE 1 I

OVERVIEW

XEDIT FUNCTION

¥

As an extended text editor, XEDIT enables NOS users to modify files by issuing various editing com-
mands. Accordingly, the following kinds of files can be manipulated by XEDIT:

® Primary files
@ Secondary files
@ Indirect access files

e Direct access files (appendix B)

® Multi-file, multi-record files (that is, files containing more than one end-of-file or end-of-record

mark)

o Files containing either programs, data or text (listable files)
e Files prepared in ASCII mode (the user issues the NOS ASCII command)

The user should not use XEDIT on files that do not contain recognizable text (that is, nonlistable files or
nonzero byte-terminated files).

XEDIT FEATURES AND BENEFITS

The following features and benefits illustrate why XEDIT is considered an enhanced editing system:

1

4.

Feature

Simple command formats

Multiple commands in a

single line

Verification of user entries

Internal interrupt processing

76071000 C

Benefit

XEDIT requires fewer command delimiters than certain conven-
tional editors. As a result, users have fewer rules to remember
and are less likely to commit syntax errors.

XEDIT users can submit more than one command in a single line.'
Consequently, XEDIT users have greater flexibility and can
speed-up their interactive editing sessions.

XEDIT automatically verifies that key user commands have been
executed by listing those portions of the file that the user modi-
fied. Accordingly, XEDIT users save time since otherwise they
would have to issue separate PRINT commands if they wanted

to obtain this result.

Under XEDIT, users stay under the control of the editor even
though they disrupt processing (for example, interrupting
printer-ltstings). They are nottransferred-back to operating
system control.

8.

10.

11.

12.

Feature

Editing on the basis of line
numbers

Availability of permanent
file commands

Easier line modification

Editing multi-file,
multi-record files

Tab control capability

Window capability

Batch processing

In-line editing mode

Benefit

While XEDIT can edit on the basis of searching for key alpha-
numeric phrases (context editing) it can also unambiguously
search on the basis of just a line number (line number editing).

XEDIT users can issue certain permanent file commands while
remaining under control of the editor. This feature saves time
since XEDIT users do not have to terminate editor control,
issue a NOS file command, and then recall the editor to perform
more editing.

By issuing the MODIFY command, XEDIT users can make
changes in a line using a visual character-by-character align-
ment, instead of the context editing method.

By employing XEDIT, users can edit multi-file or multi-record
files.

XEDIT users can enter data more rapidly and accurately in
cases where paragraph, columnar, or tabular data is being
entered into a file.

XEDIT users can focus the scope of all string search commands
to within specific columns. Thus, the user does not need to be

concerned about accidentally making a change to part of the file

outside of the window area (see WMARGIN command).

In addition to normal interactive processing, XEDIT can also
be called in a batch or remote job entry environment so that
editing input directives can be retained for future use (see
appendix C on XEDIT Batch Command Processing).

In addition to normal interactive processing, XEDIT can also
be used to make quick ""spot"" changes to a file since the user
can enter all commands on the same line as the editor call
itself (see appendix D).

CONVENTIONS FOR EMPLOYING XEDIT

Table 1-1 presents the basic conventions which apply to XEDIT. Users can acquire more detailed
information about these condensed explanations by reviewing the section 2 references listed in this
table.

®1-2

76071000 C

TABLE 1-1. XEDIT CON VENTIONS

Section 2 Section 2
Convention Explanation Reference Convention Explanation Reference
Issuing XEDIT sends a double question 2-4 Line size XEDIT can process file lines 2-3
XEDIT mark (? ?) when it expects the ranging in size from 0 to 160
commands user to issue an editing com- characters in length. Lines
mand. greater than 160 characters
will be truncated to 160
Entering XEDIT sends a single question 2-5 characters.
editing mark (?) after the user issues
data certain commands. Accord- String Within XEDIT commands, 2-6
ingly, the user should type -delimiters strings can be delimited by
input to specify exactly what any character (except a blank,
should be placed in the file. space, comma, numbers, or
asterisk) not found in the
Interrupting User can interrupt XEDIT print 2-7 delimited string.
XEDIT processing by pressing their
processing terminal's BREAK key. XEDIT Command In this manual, the re- z-st
responds by waiting for the parameters placeable command
user to issue a new XEDIT nm In parameters are n, m,
command. The file pointer - and In. The n parameter
remains positioned at the last always specifies how
line in the user's file which many file lines or
XEDIT processed. Users can string-lines should be
interrupt XEDIT when it is affected by the com-~
expecting the user to enter mand in question. The
data (that is, in response to a m parameter specifies
single question mark), by the number of occur-
pressing just carriage return. rences of an entity
such as a string,
Command After XEDIT issues a double 2-4 end-of-record, or
syntax question mark (? ?), enter a end-of-file count. The
command in the following syntax: In parameter specifies
a particular line number.
prefix In command
prefix =/ advance one line File During its execution, XEDIT 2-8
4 go to top of file pointer positions a file pointer at the
x suppress verification movement line (in the user's file) that is
+ data is on command currently being processed.
line Initially, the pointer is posi-
n = line number tioned to the first line in the file.
= After the user issues a com~
command = commands in table 1-2 mand, XEDIT advances the
pointer accordingly to complete
Extra spaces are permitted the execution of that command.
between command parameters. Then, the next command which
- is issued will be processed
Verifying By default, XEDIT prints all 2-6 from the new pointer position.
XEDIT lines that have been affected by
operations the issuance of an XEDIT com- As a general rule, if the user
mand (that is, verify mode is in is processing in XEDIT verify
effect). BRIEF and VERIFY mode, the pointer is positioned
commands can be issued to alter at the last line which is dis-
verification procedures. Addi- played.
tionally, users can choose .
whether to verify the actions of Altering a All XEDIT operations are per- 2-66
individual commands. Users permanent formed on working copy of the
should enter an X to prefix a file edited file. Users must
command when they want that issue an appropriate termi-
command to be treated differ- nating command with ap-
-ently than the mode. {that is,......... B AT S . propriate disposition option
verify mode or brief mode) that in order to save these opera-
is in effect. tions permanently.
TSee individual commands.

76071000 C

1-3 @

XEDIT COMMANDS

Table 1-2 lists all the commands which can be issued under XEDIT, briefly explains their function, and
specifies the portion of section 2 where more detailed information can be obtained about the command.

SELECTIVE COMMAND SAMPLES

The following sample interactive sessions demonstrate many of the most basic XEDIT commands. To
facilitate easier understanding, a collection of similar commands are included in the same sample
session, As a result, the following categorization applies:

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9

-- acquiring HELP instructions

—-- pointer movement commands

-~ string editing commands

-~ string search control commands

-~ tab control commands

-= margin control commands

-- line editing commands

-- general XEDIT commands (VERIFY, BRIEF, and FILE)
-~ issuing multiple commands in a single line

Figure 1-10 -- terminating XEDIT execution

o©o. smmes_l
READY.

1. User calls XEDIT into execution.

XE01T q-l
XEDIT 3.0+

?T HELP, PRINT
PRINT $ (45]

2. User issues HELP command; wants information about
PRINT command.

ACTION- PRINTS $ LINES STARTING AT THE CURRENT POINTER POSITISN. m:l. 3. XEDIT prints information about the PRINT command.

POINTER IS LEFT PBSITIONED AT THE LAST LINE PRINTED.

17 Ho TOP

4. User issues an abbreviated HELP command; wants infor-

TP <Ty mation about the TOP command.
aRm
ACTION- MEVES THE POINTER T@ T6P F FILE. 5. XEDIT prints information about TOP,
" L 6. XEDIT indicates user should enter another XEDIT
command.
Figure 1-1, Use of HELP Command
1-4 76071000 C

TABLE 1-2. XEDIT COMMANDS

Command

Function

Command

Function

Calling XEDIT

GET,sfn
XEDIT, sfn

ATTACH, sfn/M=W
XEDIT, sfn

The following variations apply
when a user wants to call
XEDIT into execution (page 2-1).

Calls XEDIT into execution to

edit an indirect access primary

file which resides in a user's
permanent file catalog (page 2-2).

Calls XEDIT to edit a new empty
primary file (page 2-2).

Calls XEDIT into execution to
edit an indirect access secondary
file (page 2-3).

Calls XEDIT into execution to
edit a direct access file (page
2-3; see also appendix B).

Postfix Characters

Any command which does a
string search such as CHANGE
and LOCATE may be postfixed
by the following postfix char-
acters provided that a window
has heen defined by issuing a

WMARGIN command (page 2-26).

Forces only the first (leftmost)
character of the first string to
reside in the window. All other
characters can reside outside
of the window. Otherwise the
string is not found (page 2-27).

Forces all characters in the
string to reside in the window.
Otherwise the string is not
found (page 2-27).

Interrupting XEDIT Printing

BREAK key

Causes XEDIT to terminate output
currently being printed at the
user's terminal. Subsequently,
XEDIT requests that the user
enter a new command, and its
file pointer is positioned at {or
one line after) the last line
processed (page 2-7).

Prefix Characters

+ orA

76071000 C

Any command may be prefixed
with any number or combination
of the following prefix characters
(pages 2-7, 2-9, 2-59).

Advances the file pointer ahead
one line before processing the
prefixed command (page 2-9).

When verify mode is in effect,
this prefix suppresses editor
verification. When brief mode
is in effect, the results of the
prefixed command are verified
(page 2-7).

Moves the file pointer to the top
of the file before processing the
prefixed command (page 2-9).

Forces editing data in ADD,
INSERT, INSERTB, MODIFY,
QMOD, REPLACE, and YQMOD
to exist on the same line as the
command itself rather than from

- & gingle question- mark (?) -~
prompt (page 2-59).

Pointer Movement

BOTTOM
or

FBADL n
or
FBLn

LOCATE/string/n

or
L/string/n

L/stringl...string2/n

The following commands can be
issued to reposition the XEDIT
file pointer (page 2-9).

Moves pointer to last line of the
current record in the file (page
2-14).

Searches for a specified number
of "bad" lines. A 'bad" line is
defined as one which does not
begin with a line number.

NOTE: When the verify mode
is in effect (a default condition),
each bad line is printed (page
2-15).

Performs a circular search for
the line that is identified by a
specified line number (In) (page
2-10). See also "General
XEDIT Conventions" (page 2-4).

Locates n lines that contain

a particular string of characters.
In verify mode, each line con-
taining the string is printed
(page 2-11).

Locates n lines that con-

tain two specified strings of
characters which are separated
by an indeterminate number of
other characters or phrases
and stringl is followed by

| string? tpage 2-11)

1-5 @

TABLE 1-2. XEDIT COMMANDS (Cont'd)

or
C/stringl/string2/n

C/stringla. . . stringlb/
string2/n

CHANGES/ striggl/
string2/m
or

CS/stringl/string2/m

CS/stringla. . . stringlb/
string2/m

® 1-6

lines of one specific string of
characters (that is, stringl)
with another set of specific
characters (that is, string?2)
(page 2-17).

Replaces every occurrence on n
lines of two strings (stringla and
stringlb) separated by an inde-
terminate number of other
characters with another string
(string2) (page 2-17).

Replaces m occurrences of

stringl with string2 (page 2-17).

Replaces m occurrences of two
strings (stringla and stringlb)
separated by an indeterminate
number of other characters
with another string (string2)
(page 2-17).

TRIM
or

TRIM+
or

TRIM~-

WMARGIN col1l col2
or
WM coll col2

Command Function Command Function
L/stringl---string2/n Locates n lines that contain MODIFY Allows the user to modify a
stringl and not followed by or particular portion of the cur-
string2 (page 2-12). M rent line. The editor first
prints the line. Then, the user
L/---string2/n Locates n lines which do not types his modification directly
contain string2 (page 2-12). under the specific printed por-
tion of the line that he wants to
NEXT n Advances the file pointer a speci- change. (See section 2 for a
or fic number of lines from its list of valid MODIFY direc-
Nn current position (page 2-13). tives.) XEDIT then verifies
the modification by typing the
NEXT-n Moves the file pointer backwards affected line as it now appears
or (that is, toward the top of the in the file (page 2-21).
N-n file) a specific number of lines
(page 2-13). QMOD n Allows the user to modify a
or particular portion of one or
PRINT n Prints a specific number of lines, QM n more lines as the editor first
or starting at the current pointer prints a set of column numbers.
Pn position (page 2~15). Then, the user types his modi-
fication in the respective
TOP Moves the pointer to the top of columns where he wants the
or the file (page 2-14). modification to appear. XEDIT
T verifies this operation by
printing the affected line(s)
String Editing The following commands can be (page 2-23).
issued to edit specific strings of
characters which appear within a YQMOD n Allows the user to perform the
file line (page 2-16). or same kind of modificatior as
YQM n QMOD except that the act of
ADD n Adds a specified string of input to column numbers is not printed
or the end of one (or more) existing (page 2-24).
An lines (page 2~16).
String Search Controls
CHANGE/stringl/stﬂngZ/x_x Replaces every occurrence onn

Toggles or sets either on or off
the TRIM switch setting. If
the TRIM setting is on, all
commands using string
searches (for example, LO-
CATE, CHANGE, etc.)
ignores trailing blanks in a

line (page 2-25).

Sets the left and right window
margin column settings to de-
fine a "window" that restricts
the scope of string searches
to just the specified columns
inclusively. The "W'" and "A"
command postfix characters
are used on string search
commands (such as LOCATE
and CHANGE) to tell XEDIT
when to put the window re-
striction into effect (see

table 1-2 and page 2-26).

76071000 C

TABLE 1-2, XEDIT COMMANDS (Cont'd)

Command Function Command Function
Line Editing The following commands can be INSERTB n Inserts a specific mmmber of
issued to alter an entire line as or lines into the file before (that
it appears in the edited file (page IBn is, in front of) the line desig-
2-29). nated by the current pointer
position (page 2~34).
DELETEn Deletes a particular number of N
or lines from the file, starting at REPLACE n Replaces a specified number of
Dn the current pointer position or lines with another set of lines
(page 2-29). Rn containing different entries
(page 2-32).
D/string/n Deletes a particular number of
B lines from the file on the basis TOPNULL Inserts a blank line at the
of specified string criteria or beginning of a file and sets the
(page 2-30). TN file pointer to that line (page

D/stringl. .. string2/n

D/stringl---string2/n

eEDIT

INPUT e

INSERT n
or

Deletes a particular number of
lines that contain two specified
strings, even though those
strings of characters may be
separated by an indeterminate
number of other characters or
phrases (page 2-30).

Deletes a particular number of
lines which contain stringl and
are not followed by string2
(page 2-29).

Used in conjunction with the
INPUT command while under
INPUT mode to put XEDIT back
into normal command EDIT mode
(double question mark (? ?); see
page 2-36).

By pressing the carriage return,
a user can insert an unspecified
number of lines into the file
after the line designated by the
current pointer position (page
2-35).

Same effect as the @ command
except that the user can issue
most XEDIT commands while
under INPUT mode to make quick
changes to the line just entered,
by prefixing the command with
the escape character e (page
2-36).

Inserts a specific number of lines
into the file after (that is, behind)
the line designated by the current
pointer position (page 2-33).

2-37).

Editing Line Numbers

ADDIN In n
or
AlLNInnp

ADDLNS In n
or
ALNSInn

DELETELN
or
DLN

REPLACELN Inn
or
RLNInn

The following commands
change file line numbers.
WARNING: These commands
will not modify the branch
line numbers which appear
in BASIC programs.

Adds line numbers to the
entire file where none cur-
rently exist (page 2-39).

Performs same function as
ADDLN except that the line
numbers are followed by a
space (page 2-39).

Deletes all line numbers in
the file (page 2-40).

Replaces the existing set of line
numbers in a file with a new set
of line numbers (page 2-41).

Miscellaneous Editing
Commands

DBADL n
or
DBL n

DEOF m
or
DF m

76071000 C

The following commands allow
the user to modify the contents
of his file in a variety of mis~
cellaneous ways:

Searches for and deletes a
specified mumber of "bad"
lines (beginning at the current
pointer position), A "bad"
line is defined as one which
does not begin with a line num~
ber (page 2-42).

Deletes the next m number of
end-of-file marks (page 2-43).

1-7 0

TABLE 1-2. XEDIT COMMANDS (Cont'd)

WEOF
or
WF

WEOR
or
WR

rubout orx line feed) that they
normally could not enter into
their file (page 2-45).

Writes an end-of-file mark on the
file at the position before the line
currently designated by the file
pointer (page 2-44).

Writes an end-of-record mark
on the file at the position before
the line currently designated by
the file pointer (page 2-43).

COPYD fname /---string2/n

READ fnamel...fnamen

READP fnamel...fnamen

Command Function Command Function
DEOR m Deletes the next m number of COPY fname /---string2/n | Same as above except that the
or end-of-record marks (page 2-42). - string-line count n is decre-
DR m mented only if the line does not
contain string2 (page 2-48).
DLBLANKS n Deletes leading blanks from n
or lines that appear in the file from COPYD fname n Performs the same function as
DLBn the current pointer position or COPY except the copied lines
(page 2-44). COPYD fname /: string/n are deleted from the edit file
or (page 2-49).
OCTCHANGE octl oct2 n Converts the octal display code COPYD fname /stringl...
or of a specific character or string string2/n
OC octloct2n to a different octal code charac- or
ter or string. Typically, users COPYD fname /stringl---
employ this to acquire an exe- string2/n
cutable function (for example, or

Copies the contents of specific
local files into the file which the
user is editing (page 2-51).

Copies the contents of specific
permanent files into the file
which the user is editing (page
2-50).

File Commands

COPY fname n
or

COPY fname / string/r_x
or

COPY fname /stringl...
string2/n
or

COPY fname /stringl---
string2/n

or

e 1-8

The following commands let the
user manipulate entire files:

Copies n lines from the edit file
onto file fname; the edit file re-
mains intact (page 2-48).

Copies inclusively all lines from
the edit file current pointer posi-
tion to file fname until either the
string-line count n is satisfied or
END OF FILE is encountered
(page 2-48).

Same as above except string may
be specified as two strings
(stringl and string2) that are
separated by an indeterminate
number of other characters
(page 2-48).

Same as above except that the
string-line count n is decre-
mented only when a line contains
stringl which is not followed by
string2 (page 2-48).

General Commands

BRIEF
or

BRIEF +
or

BRIEF -
or

BR

EXPLAIN

HELP, cmd
or
H,cemd

NOBELLS
or
NB

The following commands per-
form generalized, nonediting
functions:

Suppresses XEDIT verification
procedures (page 2-6).
Turn Brief mode on.

Turn Brief mode off.

Gives the user a more detailed
description of the most recent
error message that has been
printed by XEDIT. If the mes-
sage was not as a result of an
error condition, no explanation
is given (page 2-52).

Requests information about a
specific XEDIT command
(page 2-52).

Prevents XEDIT from ringing
the user's terminal bell when
error messages are printed
(page 2-52).

76071000 C

TABLE 1-2, XEDIT COMMANDS (Cont'd)

Command Function Command Function

RESTORE Cancels any changes that have LISTAB Lists the current tab character

or been made after the occurrence or and tab stop column positions

REST of any of the RESTORE condi- LT (page 2-61).
tions (page 2-53).

TABS t1,..48 Defines tab stop column posi-

TEOF Toggles or sets either on or off or tions. Defaults are 11, 18 and

or the printing of the message TAB tl...t8 30 (COMPASS) (page 2-61).

TEOF + -~EOR-~ (page 2-54).

or Margin Control Commands The following commands allow

TEOF - the user to control the right

margin of the user's file

TEOR Toggles or sets either on or off (page 2-62).

or the printing of the message

TEOR + ~-EOR-- (page 2~54). FINDLL n Finds and lists n long lines,

or or where long lines are defined

TEOR - FLLn to be lines having more char-

- acters than the current

VERIFY Initiates XEDIT verification pro- RMARGIN setting (page 2-65).

or cedures. NOTE: XEDIT oper-

VERIFY + ates in verify mode by default RMARGIN m Sets the right margin char-

or (page 2-6). or acter position to m (page 2-62).

VERIFY - RM m

or N Truncates p long lines to
v cates n long lines
TRUNiATE a RMARGIN length starting at the
WHERE Prints the current line count TRUNC n current pointer position
or {that is, the number of lines _ (page 2-63).

w from the top of the file to the Multiple Commands The following commands let a
line designated by the current user enter more than one com-~
pointer position) (page 2-54). mand in a single line of entry:

‘n Advances the file pointer n lines DELIMIT char Establishes a particular char-
and reexecutes the last command or acter as the delimiter which
that the user entered (page 2-55). DEL char the user will employ to sepa-

rate multiple lines of input

-n Advances the file pointer n lines (page 2-56).

and reexecutes the last Z or Y
command that the user entered

(page 2-55).

Tab Control Commands

DEFTAB char
or
DT char

The following commands allow
the user to perform tabbing
(column format spacing) in con-
junction with the INSERT,
INSERTB, REPLACE, INPUT
and @ input requesting
commands:

Establishes char as the tab oper-
ator for later use, when inputing
editing data via the INSERT
INSERTB, REPLACE and
commands (page 2-60).

ZSomd1gomd2s. . . Somdn

Y§gnn_d1§cmd2§. .. §cmdn

76071000 C

Allows user to enter several
commands in one line of entry;
XEDIT lists each command
before it executes that com-
mand (page 2-57).

Performs same function as Z
except that commands are not
listed before being executed
(page 2-57).

1-9 e

TABLE 1-2. XEDIT COMMANDS (Cont'd)

Command Function Command Function
Terminating XEDIT The following commands can (in accordance with the user's
be issued to terminate XEDIT mode parameter). Subsequently,
execution: XEDIT execution is automatically
resumed! (page 2-65).
END fname mode Terminaies iext editing and
or allows the user to dispose of QUIT fname mode Performs same function as
E fname mode his edited file (in its modified or END! (page 2-67).
form) by saving it as a per- Q fname mode
manent filet (page 2-67).
STOP Terminated text editing without
FILE fname mode Temporarily suspends text writing the modified edited file
or editing and saves or replaces the anywhere (page 2-66).
F fhame mode edited file (in its modified form)

as a permanent and/or local file

TValid mode parameters are:

SAVE = edited file should be saved as a new indirect access permanent file
or
S

REPLACE = edited file should replace an existing indirect access permanent file
or
R

LOCAL = edited file should be written onto a local file. Default: If the user does not enter any mode parameter,
or XEDIT assumes LOCAL should apply unless a direct access file is attached. LOCAL mode is illegal
L for direct access files.

COPY = edited file changes should be copied to file fname, if file fname is a direct access file attached in write mode.
or This parameter is default for direct access files (that is, the user may simply type END or FILE). If the
C direct access file has not been attached in write mode, the user will get an error message.

RL = performs both LOCAL and REPLACE specifications
SL = performs both the SAVE and LOCAL specifications
Additionally, the fname parameter should specify the name which will be applied to the edited file when it is saved, replaced, or

made local. Default: If no fname parameter is entered, XEDIT assumes the file's original name should be employed. In this
instance, commas must separate the command from the mode parameter. Some examples:

QUIT, ,REPLACE
or

E,,RL
or

F,,RL

e 1-10 76071000 C

OLD, SAVINGS
READY.

1.
XEDIT
XEDIT 3.0.
7?7 PRINT® 2.

00110 PRINT

00120 PRINT “DAYS, "DAILY AMOUNT™,“TOTAL SAVINGS™
00130 LET N=i

00140 LET D=.01

00150 LET A=0

00160 LET A=A+¢D

00170 PRINT USING 00180,N,D.-A

00100 PRINT TAB(C10)»"DAYDREAM SAVINGS PLAN™

[3.

User calls XEDIT.

User issues PRINT command to list entire contents of the file
(that is, * is entered as the n parameter).

XEDIT lists entire file.

%::g I:l."l"l'hﬁtl) sr0080800.04 reeereree. o 4. User issues PRINT command; by default since no n parameter appears,
00200 LET NaN¢1 XEDIT assumes only 1 line should be listed.
00 oumm gl)'“:" THEN 00160 5. XEDIT prints the line indicated by the current pointer position.
END OF FILE. NOTE: Since the first PRINT command reached an end-of-file, the
77 PRINT pointer was repositioned to the top of the file.
00100 PRINT TABC10),"DAYDREAM SAVINGS PLAN™ ‘—6. User enters a particular line number (170) to place pointer at
?? 170 that position. By default, verify mode is in effect.
00170 PRINT USING 00180,NsDs;A
?? X200 7. User enters line number 200 but indicates that XEDIT should not
?? NEXT verify the current pointer position (that is, an X prefixes the
00210 IF N<31 THEN 00160 user entry).
7?7 *NEXT3
- 003130 LET Ns=1 8. User issues NEXT command to advance the pointer by one line;
?? NEXT =3 XEDIT verifies the pointer position.
00100 PRINT TABC10),"DAYDREAM SAVINGS PLAN™
7? LOCATE/LET/J - 9. User issues an up~arrow (+) prefix to reposition pointer to the
00130 LET N=1 beginning of the file and to NEXT command. Advances the pointer by
00140 LET D=.0t three lines.
00150 LET A=0
27 LOCATE/LETeooe/% 10. Us.er issues NEXT command to move the pointer backwards by three
00160 LET A=AsD lines.
00200 LET NaN+¢1 .
END OF FILE 11. User issues LOCATE command to find the third line (from the
27 PRINT current pointer position) containing the string LET.
00100 PRINT TABC10),"DAYDREAM SAVINGS n.m-_-_]"_ .
27 BETTOM 12. User issues LOCATE command to find all lines in the file containing
00220 END & combination of two strings (LET and +j.
7?
‘—-—————13. User issues PRINT command; pointer is positioned at the beginning
of the file.
14. User issues BOTTOM command; pointer is now positioned at the last
line in the file.
Figure 1-2. Use of Pointer Movement Commands
76071000 C 1-11e

OLD, SAVINGS ™|
1. User calls XEDIT to edit a file called SAVINGS.

READY.
XEDIT
XEDIT 3-0-Q_I I— 2. User issues PRINT command to list entire file.
7?7 PRINTs
00100 PRINT TABC10),"DATEDREAM SAVING PLAN" f_ 3. XEDIT lists the SAVINGS file.
00110 PRINT
00120 PRINT "DAYS™,"DAILY AMOUNT*",™TOTAL SAVINGS™ 4. User issues LOCATE command to move pointer to first line containing the
00130 LET Mat string TAR: XEDIT verifies which line was located.
00140 LET D=.01
00150 LET A=0 5. User issues CHANGE command to replace each reference to (10) with (13)
00160 LET AsA+D in the first line containing a (10); XEDIT verifies how the change was
00170 PRINT USING 00180.N.D»A made.
00180 ¢+ #» soRRRRORSI. M0 resene
00190 LET Ds22D 6. User issues CHANGE command to replace each reference to < with < = in
00200 LET NsN+1 the first line containing a < sign; XEDIT verifies how the change was
00210 IF N<31 THEN 00160 made.
00220 END
END OF FILE 7. User issues an abbreviated CHANGE command with an up-arrow (1) prefix to
27 LOCATE/TABY delete all references to LET with a blank (in other words, delete the LET
00100 PRINT TABC10),"DATEDREAM SAVING PLAN™ references) throughout the entire file.
7? CHANGE/(€103/¢13)/
00100 PRINT TAB(C13),"DATEDREAM SAVING PLAN" ———— 8. XEDIT indicates which lines were affected by the preceding CHANGE
1?7 CHANGE/ </ <=/ command.
00210 IF N<=31 THEN 00160
7?7 tC/LET//% 9. User issues LOCATE command to find the first line containing an N=string;
00130 N=1 XEDIT places pointer to line 130.
00140 D=. l-l
00150 A=0 —————10. User issues ADD command to attach information onto the end of the line
00160 AspA+D designated by the current pointer position (that is, line 130).
00190 D=2«D
00200 N=N+ 11. User specifies that ".75" should be added to the end of line 130.
END OF FILE
77 LOCATE/N=x/ 12. XEDIT verifies the change which resulted because of the above ADD
00130 Nsi} command .
77 ADD
T 7S 13. User issues MODIFY command to alter line 100.
00130 N=1.75 I__

77 100M8DIFY rl4. XEDIT prints line 100.
00100 PRINT TABC13),"DATEDREAN SAVING PLAN"
'S & 15. User issues MODIFY directives to indicate how line 100 should be

? Ye
00100 PRINT TABC13),*“DAYDREAM SAVINGS PLAN™ —L altered.
7
16. XEDIT verifies how line 100 was affected by the above MODIFY command.

Figure 1-3. Use of String Editing Commands

®1-12 76071000 C

1. User calls XEDIT to edit a file called DEPART.

2. User issues PRINT command to list entire file; XEDIT lists file.

OLD» DEPART
ADY . 3. User D to find executive number 130 but instead finds executive

XEDIT 100 since his facility number HQR24-130 happened to also have the number

XEDIT 3.0¢ 130 in it.

77 PRINTS X

SDEPARTMENT 4208+ 4. To correctly locate executive 130, the user issues a TRIM command to tell
D420/ E®27 EX100 KRAMER. SCATT W. MOR24-130 XEDIT to ignore the trailing spaces (hlanks) to the right of all facility
D420S E208 EX130 JIHNSON, JACK J. SWP19-250 numbers such as HQR24~130.

D4208 E442 EX120 MILLER, RICK L. HOR44-140

D420S E698 EX125 SCETT, FRANK Re MXJ97-220 5. The user intends to search for employee number 208, so the WMARGIN

END OF FILL command is issued to restrict the search window to just the employee

7?7 LOCATEZ130 / number field (columns 7 through 10 inclusively).
D4208 E927 EX100 KRAMER, SCOTT W. HOR24-13Q

17 TRIM 6. Once the window has been defined, the user issues an abbreviated LOCATE
77 tLOCATE/130 7 command (the window "W" postfix) to specify that XEDIT should look at only
D4208 E208 EX130 JOMNSOEN, JACK J. SWP19-25Q) the employee number field during the search. XEDIT responds by finding
77 WMARGIN 7 10 employee "Jack Johnson" number E208 as requested, instead of the first
7T *LW/208/ line with D4208 in it.

D4208 E208 EX130 JOHNSON, JACK JS. SWP19-25

7 W 18 I8 7. Next the user wants to find the first employee whose last name is "Scott.”
?? TLA/SCOTI/ Since the last name field begins in column 18, the user issues an abbre-
D4208 E698 EX125 SCOTT, FRANK R. MXJ97-220 viated WMARGIN command to redefine the window to be just that column.

7"

8. The user finally issues an abbreviated LOCATE command with the anchor
postfix "A". The up-arrow (%) prefix tells XEDIT to begin the search
at the top of the file. XEDIT correctly finds "Frank Scott™ instead
of "Scott Kramer”.

Figure 1-4. Use of String Search Control Commands

76071000 C 1-13e

OLD» PLAN
READY.

XEDIT
XEDIT 3.040]
77 PRINTS

TABLE ONE]_

TABLE Twe_|
END OF FILE
7 DEFTAS 5

77 TABS 20 30 40 SO 60
17 LISTAS -

» TABS 20 30 40 30 60
”

INPUT
SIPROFIT PICTURE
Jjeswnsssssunass
11@3209303 403 TOTAL
’Q.“-’.-'--.—'.-.-
SALES REVENULS 40, 5783 S1, 0273 532 5983 56, 3003 32095 503
TOTAL EXPENSES3 42, 2733 43,9583 45, 7093 47, 5481 $179, 482
GPERATING PROF1T36,30537,075)7,88938, 7521 330, 021

R TR

77 TABS 24 34 44

77 LISTAB

» TABS 24 34 a4 60
7

INPUT
33CASH FLOW FERECAST
J)uesnEEsssEERERSENR
JJULYS AUG: SEPT
jeccajesajecce
TOTAL CASH AVAILABLEI 450, 0003 452, 3003 459,316
TOTAL CASH REQUIRED3 378, 1003 388, 6003 397,908

ENDING CASH BALANCE: 71,900363, 700361, 408

coccnsccssnccsncse

EE LR X E R

EDIT
7?7 *PRINT»

TABLE ONE

PROFIT PICTURE
sssussssasesss
19 20 39 0
48,578 51,027 53, 998 565 300
42,273 42,952 45, 709 47, 548
6,305 7,078 7,889 8,752

SALES REVENUE
TOTAL EXPENSES
OPERATING PROFIT
TARLE Twe

CASH FLBV FORECAST
SERSSENSENESNSANNS
AL SEPT
452,300 459,316
388,600 397,908
63,700 61, 408

Juy
450,000
378, 100
71,900

TOTAL CASH AVAILABLE
TOTAL CASH REQUIRED
ENDING CASH BALANCE

corscveccercnscnves

TOTAL

$209, 502

3179, 482 |

$30. 021

[17.

IND @F FILE
”?

User calls XEDIT to edit a file called PLAN.
User issues PRINT command to list entire file.
XEDIT lists file.

User issues DEFTAB command to establish a semi-colon
(;) as the tab character.

User issues TABS command to establish tab stop column
positions 20, 30, 40, 50 and 60.

User issues LISTAB command to list the current tab
character and tab stop column positions.

User presses carriage return to insert an unknown
number of lines after the TABLE ONE line.

User enters several new lines with the tab character
used where tabbing is desired.

User presses carriage return to terminate the insertion
of new lines.

User issues NEXT command to advance the pointer by
one line; XEDIT verifies the pointer positian.

User issues another TABS command to reset the tab
stops to positions 24, 34, and 44.

User issues LISTAB command to list the current tab
character and tab stop column positions.

User pressas carriage return to insert an unknown
number of lines after TABLE TWO line.

User adds several new lines with the tab character
used where tabbing is desired.

User presses carriage return to terminate the insertion
of new lines.

User issues a PRINT command with an up-arrow (%) prefix
to list the entire file.

XEDIT lists the file verifying that tabbing was
correctly performed.

Figure 1-5. Use of Tab Control Commands

o1-14

76071000 C

OL D> MANAGER
READY.

XEDIT
XEDIT 3.0.

72 PRINTs
SEXECUTIVE MANAGEMENTS

User calls XEDIT to edit a file called MANAGER.

User issues PRINT command to list entire file.

XEDIT lists file.

User sets the right margin to column 30.

User req XEDIT to find all lines that are larger than 30 characters

EX100 S.W. KRAMER HOR24-130
EX110 JoJo JOMN SWP19-130
£X120 R.E. MILLER HOR44-130
£X125 F.R. SCOTT nxJe1

END OF FILE

7?7 RMARGIN 30

27 FINDLLS

EX100 SeW. KRAMER HOR24~130
EX110 J.J. JONNSON SWP19-130
EX120 Re.E. MILLER HOR44~ 130 |
END OF FILE

7?7 TRUNCe

SEXECUTIVE MANAGEMENT+

EX100 So¥e KRAMER HeR24-13
EX110 JeJe JOHNSON SWP19-13
EX120 ReE. MILLER HOR44-13
EX125 F«Re SCOTT MXJ9T___J
END oF FILE

7?

(current RMARGIN setting) by issuing the FINDLL command; XEDIT responds
accordingly.

User req XEDIT to tr all lines larger than 30 characters

(current RMARGIN setting) by issuing the TRUNC command; XEDIT responds
accordingly.

76071000 C

Figure 1-6. Use of Margin Control Commands

1-15e

OL D, ADDRESS
READY.
XEDIT . 1.
XEDIT s.o.qJ

77 PRINT# — 2.
#09 NAMES/ADDRESSES ARE FICTITIOUS ###
00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP 55722

00120 EXT 6533

00160 8.E. SMITH

00165 APT 23

00170 PPB 55 Z1P 99107

00180 EXT 8837

00190 P.T. BEE

00200 8710 14TH ST

00210 EXT 18
END OF FILE
7?7 190DELETE3
00190 P.T. BEE |
00200 8710 14TH ST 5.

00210 EXT 18

END OF FILE

277 LOCATE/P@B/ 6

00170 POB 55 ZIP 99107

7?7 REPLACE
7 00170 138 CHESS AVE

77 INSERTB
? 00166 C/8 B.T. SMITH SR
77 BOTTOM

00180 EXT 8837

7
INPUT

? 00190 T.R. DOE

? 00200 662 ELM ST
7 00210 EXT 7714

?
01T

17 ¢INSERT
? #SAMPLE LINE EDITING COMMAND SESSIONS
77 *PRINTS —
#4# NAMES/ADDRESSES ARE FICTITIOUS #47
#SAMPLE LINE EDITING COMMAND SESSION#
00100 M. Te JONES

00110 1544 WILSHIRE ST ZIP 55722

00120 EXT 6533

00160 8.E- SMITH

00165 APT 23

00166 C/8 B.T. SNITH SR

00170 138 CHESS AVE

00180 EXT 8837

00190 T+Re DOE

00200 662 ELM ST

00210 EXT 7714

END OF FILE
"

11,

User calls XEDIT to edit a file called ADDRESS.

User issues PRINT command to list the entire file.

XEDIT lists ADDRESS file.

User issues a DELETE command with a 190 prefix to specify that he wants to
position pointer to line 190 and wants to delete the next three file lines
starting at line 190.

XEDIT verifies which three lines were deleted.

User issues LOCATE command to find first line containing the string POB;
XEDIT indicates line 170 is found in response.

User issues REPLACE command to insert an entirely new line of information
in place of line 170.

User indicates what new information should replace line 170.

User issues INSERTB command to enter an entire line of information in front
of the current pointer position (that is, in front of line 170).

User enters the new information that should be placed in the line which will
precede line 170.

User issues BOTTOM command.

User presses carriage return to insert an unknown number of lines after line
180.

User enters three new lines.

User presses carriage return to terminate the insertion of new lines.

User issues INSERT command with an up~arrow (*) prefix character to enter one
new line after the first line in the file (the pointer is positioned to the
first line in the file).

User enters the new line.

User enters a PRINT command with an up-arrow (*) prefix character to list the
file in its edited form.

XEDIT lists the edited file.

Figure 1-7, Use of Line Editing Commands

®1-16

76071000 C

LD, ADDRESS
READY.
XEDIT qJ
XEDIT 3.0.
77 PRINT® —
#00 NAMES/ADDRESSES ARE FICTITIOUS #97
00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP 55722
00120 EXT 6533

00160 0.E. SMITH

00165 APT 23

00170 PBB 55 ZIP 99107

00180 EXT 8837

00190 P.T. BEE

00200 8710 14TH ST

00210 EXT 18
END OF FILE
?? BRIEF
77 CHANGE/ZIP/ZIP CODE/«
END oF FILE

7? CHANGE/EXT/EXTENSION/*
END OF FILE

77 PRINTe —
#00 NAMES/ADDRESSES ARE FICTITIGUS 007
00100 M.T. JONES

00110 1544 WILSKIRE ST 21P CODE S5722
00120 EXTENSION 6533

00160 §.E. SMITH

00165 APT 23

00170 PEB SS ZIP CODE 99107

00180 EXTENSION 8837

00190 P.T. BEE

00200 8710 14TH ST

00210 EXTENSION 18
END OF FILE

J— 9.
77 VERIFY

?? CHANGE/ZIP C@DE/ZIP/% 10.
00110 1544 WILSHIRE ST ZIP 55722' 1
00170 POB 55 ZIP 99107 °
END OF FILE

?? CHANGE/EXTENSION/EXT/e
00120 EXT 6533 '
00180 EXT 8837
00210 EXT 18
END OF FILE

??

6.

7.

12,

13.

User calls XEDIT to edit a file called ADDRESS.

User issues

XEDIT lists

User issues
commands.

User issues

User issues

User issues

XEDIT lists
file.

User issues
commands.

User issues

PRINT command to list the entire file.

file.

BRIEF command so that XEDIT will not verify the effects of XEDIT

CHANGE command; XEDIT does not verify its results.
another CHANGE command; XEDIT does not verify its results.

PRINT command.

edited file; indicates how the above commands altered the user's

VERIFY command so that XEDIT will verify the effects of XEDIT

CHANGE command.

XEDIT verifies which lines were affected by the preceding CHANGE command.

User issues

another CHANGE command.

XEDIT verifies which lines were affected by the preceding CHANGE command.

Figure 1-8 (Part 1). Use of General XEDIT Commands (VERIFY and BRIEF)

76071000 C

1-17e

LD, Anon:ss_]
READY

XEDIT Q_I
XEDIT 3.0.

7?2 PRINT® —
#6¢ NAMES/ADDRESSES ARE FICTITIOSUS ##¢
00100 M«T. JONES

00110 1544 WILSHIRE ST 21P 55722

50180 EXT 6333

001 RT 8533
00160 O.E. SMITH
00165 APT

23
00170 POB 55 ZIP 99107
00180 EXT 8837

00190 P.T. BEF

00200 8710 14TH ST
00210 EXT 18
ND OF FILE

?? XCHANGE/ZIP/Z1P CODE/¢ ——————

END OF FILE

1?7 FILE,NEWF,S
NEWF SAVED

7?7 XCHANGE/EXT/EXTENSION/»

END #F FILE

77 FILE. o REPLACE
ADDRESS REPLACED

7

User calls XEDIT to edit ADDRESS file.

User issues PRINT command to list entire file.
XEDIT lists file.

User issues CHANGE command prefixed by an X; since verify mode is automatically
in effect, the X prefix suppresses command verification.

User issues FILE command to save the editing changes on a new permanent file
called NEWF.

XEDIT indicates that NEWF has been saved in the user's permanent file catalog.
User issues another CHANGE command with X prefix.

User issues another FILE command to save these editing changes; since the
REPLACE option is selected and the fname parameter defaults to the primary

local file, the change from both CHANGE commands now appear on the permanent
copy of ADDRESS.

XEDIT indicates that the edited file has replaced the original file in the
user's permanent file catalog.

Figure 1-8 (Part 2).

®1-18

Use of General XEDIT Commands (FILE)

76071000 C

LD, Amm:ss_l

READY
XIDIT. q_' 1. User calls XEDIT to edit ADDRESS file.
XEDIT 3.0
7? PRINT; : 2. User issues PRINT command to list entire file.
#88 NANES/ADDRESSES ARE FICTITIOUS #04 | . .
. file.
00100 M.Te JONES 3. XEDIT lists file
00110 1544 WILSHIRE ST 4. User issues a Z command which contains 4 component commands; its objec-
00120 ExXT 65331" tive is to add a numeric zip code to the file line containing an
00160 8.E. Sl address. In this Z command, a § acts as the delimiter which separates
00170 PoB 5S component commands. In addition, the plus (+) prefix on the ADD command
00180 EXT 8::‘7 tells XEDIT that ADD input data (in this case a zip code) will come from
m :;I(.! 14TH ST the next entry on the Z command sequence, rather than from normal input
i i ?2)).
00210 EXT 18 mode (a single question mark (?))
END OF FILE .)
77 ZSXLOCATE/EXT/SNEXT-18+ADDS 55722SXNEXT2 5. XEDIT verifies that the First three component commands (LOCATE, NEXT,
77 XLOCATEZEXTZ | and ADD) are executed.
T NEXT-1
44 W RE ST
2‘,"1‘.’0.',5 ILSHIRE ST — 6. XEDIT verifies how the ADD command affected the file.
110 1544 WILSHIRE ST 55722
% 7. XEDIT verifies that the 4th component command (NEXT) is executed.
77 XNEXT2
7" -
77 XLOCATE/EXT/ L 8. User enters a - sign to advance the file pointer (one line by default)
27 NEXT-1 and reexecute the preceding Z command; user wants to modify the second
00170 P8B SS address in the file.
1?7 +ADD
00170 PEB 55 55722 — 9. XEDIT r the Z q .
7? XNEXTE . .
7 - 10. User enters a - sign to advance pointer and reexecute Z command; user
?? XLOCATE/EXT/ wants to modify the third address in the file.
7T NEXT-1 | . R
00200 8710 14TH ST ——11. XEDIT r the Z a .
T? +ADD
00200 8710 14TH ST 55722 12. User enters a Y command which is made up of 4 component commands; its
77 XNEXTZ objective is to add the word ZIP before each numeric zip code in the
END OF FILE file. NOTE: Unlike the Z command, the Y command does not list each
177 YSXLOCATE/EXT/SNEXT=) SMODIF YSXNEXT2 component command before it is executed.
00110 1544 WILSHIRE ST 55722 |
00110 1544 WILSHIRE ST 55722] L 13, XEDIT executes the MODIFY command (which is one of the component ¥
k] *ZIP ¢] commands) .
J01i16 1544 WILSHIRE ST 2IP 587128 = I_
27 - 14. Since the plus (+) prefix was not used on the MODIFY command the user
00170 POB 55 $5722 issues his MODIFY directives from normal input mode (a single guestion
00170 P9B 55 55722 mark (?)) to alter line 110.
? *tZIP
00170 PEB S5 ZIP 55722 15. XEDIT verifies how these directives affected line 110.
7 - -
00200 8710 14TH ST 55722 l'—————16. User enters - sign to reexecute the preceding Y command after advancing
00200 8710 14TH ST $35722 the pointer one line; user wants to modify the second address in the file.
? tZIP 0
00200 8710 14TH ST ZIP 55722] \'—————————17. XEDIT reexecutes the Y sequences; user modifies the second address.
END OF FILE
27 t———————————18. User enters - sign to reexecute Y command and modify the third address
in the file.

19. XEDIT reexecutes the Y sequence; user modifies the third address.

Figure 1-9. Use of Z and Y Commands and Plus (+) Prefix Character

76071000 C 1-19e

©LD» ADDRESS
READY. 1.
XEDIT d

XEDIT 3+0.

27 PRINTS — 2.
#00 NAMES/ADDRESSES ARE FICTITIOUS #00
00100
00110
00120
00160
00170
00180
00190

1544 VILSHIRE ST ZIP 55722
EXT 6533

8.E. SMITH

P8B S5 ZIP 35703

EXT 8837

P.T. BEL

00200 8710 14TH ST ZIP 55713
00210 EXT 18

END F FILE
71 CHANGE/#80/3%%/%
##% NAMES/ADDRESSES ARE FICTITIOUS s»»
END OF FILE

77 END», REPLACE 6.
ADDRESS REPLACED
READY.

LNH 8.
#88 NAMES/ADDRESSES ARE FICTITIOUS ##7]

00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP 55722
00120 EXT 6533

00160 ®.E. SMITM

00170 P#B 55 ZIP 55703

00180 EXT 8837

00190 P.T. BEE

00200 8710 14TH ST ZIP 55713
00210 EXT 18

READY.

User calls XEDIT to edit ADDRESS file.

User issues PRINT command to list entire file.

XEDIT lists file.

User issues CHANGE command to replace each instance of ### with ##*,
XEDIT verifies which line(s) is affected by preceding command.

User issues END command to terminate XEDIT execution and replace the original
ADDRESS file with its edited version.

XEDIT indicates that the edited file now resides in the user's permanent file
catalog.
d to list

User issues LNH of the current primary local file.

NOS lists primary local file; listing indicates that the local file does not contain
the XEDIT editing changes. This situation occurs as a result of the user's selection
of REPLACE as the mode parameter in the preceding END command.

OLD»> ADDRESS 10.
READY.

LNH
s9% NAMES/ADDRESSES ARE FICTITISUS #»%»
00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP SS722
00120 EXT 6533

11.

I—12.

00160 B.E. SMITH

00170 POBt *INTERRUPTED* 13,

XEDIT 1 e

XEDIT 3+0.0 |

77 PRINT

*%% NAMES/ADDRESSES ARE FICTITIOUS ...J‘——IS.

77 CHANGE/es8/080/6 16.

##8 NAMES/ADDRESSES ARE FICTITISUS #0¢

END OF FILE

27 ENDssRL 17.

ADDRESS REPLACED

ADDRESS IS A LBCAL FILES

READY. ‘_
18.

LNH- 19.

#4#2 NAMES/ADDRESSES ARE FICTITIOUS #ef—— o,
00100 M.T. JBNES
00110 1544 WILSMIRE ST ZIPt INTERRUPTED®~——21.

User accesses the permanent file version of ADDRESS.
User issues LNH command to check its contents.

NOS listing indicates that the permanent file version of ADDRESS does contain the
above XEDIT editing changes.

User presses break key to terminate listing.

User calls XEDIT to edit the current primary file (that is, the permanent file
version of ADDRESS).

User issues PRINT command to list the first line in the file; XEDIT prints that line.
User issues CHANGE command.

User enters END command to terminate XEDIT execution; specifies RL option as a mode
parameter so that the edited file will replace the existing permanent file in the
user’s catalog and simultaneously also appear as the new primary local file.

XEDIT indicates that the edited file has replaced the older permanent file and also
appears as the primary local file.

User issues LNH command to list contents of current primary local file.

NOS lists the local file; listing indicates the editing changes appear on the local
file.
User terminates listing by pressing S key.

User accesses the current version of ADDRESS permanent file.

OL D, ADDRESS 22.
READY.
LNH 23.

#8# NAMES/ADDRESSES ARE FICT1TIOUS #o#

00100 M«T+ JONES ‘—24.

00110 1544 WILSHIRE ‘XNTERRUPTEDO.——————L
25

User issues LNH command to check the pe: file's .

NOS lists the permanent file; listing indicates that the edited file replaced the
original file.

User presses break key to terminate listing.

Figure 1-10.

® 1-20

Terminating XEDIT Execution

76071000 C

USING XEDIT: COMPREHENSIVE INFORMATION

2

This section discusses in detail how users should employ XEDIT to modify files by issuing editing
commands. Accordingly, it is divided into the following sections:

Calling XEDIT into execution (page 2~1)
General XEDIT conventions (page 2-4)
Moving the file pointer (page 2-10)

String editing (page 2-16)

Line editing (page 2-29)

Editing line numbers (page 2-38)
Miscellaneous editing (page 2-41)
Manipulating files (page 2~47)
Generalized commands (page 2-51)
Submitting multiple entries (page 2-55)
Tab control (page 2-60)

Margin and truncation control (page 2~62)
Terminating XEDIT execution (page 2-64)

CALLING XEDIT

The first step which users must take when employing XEDIT is to call the editor into exeeution:r
However, the procedure for calling XEDIT varies depending upon whether primary or secondary
files are being edited (for this discussion, direct access files will be considered secondary).

EDITING PRIMARY INDIRECT ACCESS FILES

When users want to edit indirect access files as primary files, they submit the following entries to call

XEDIT into execution.

_ TUsers of certain terminals should issue an NOS.ROUT command before calling-XEDIT (in order to
insure correct terminal positioning when users employ MODIFY, QMOD, and YQMOD commands
under the editor). See the CYBERNET Interactive Service Time-Sharing Tutorial listed in the
Preface for a description of the ROUT command.

76071000 C

Old Files

where:
pin = name of an existing (primary) indirect
access permanent file which the user

wants to edit.

New Files

where:

1fn = local (primary) file name that the
user wants to assign to the new file.

Example

OLD ,ADDRESS
READY .
XEDIT

XEDIT 3.0.0
2?

Explanation: User calls XEDIT to edit an existing
permanent file called ADDRESS as the primary

file.
Example

NEW,BTFILE

READY .

100 INPUT N

110 IF N < 0 THEN TAGIl
120 PRINT SQR (N)

130 STOP

140 PRINT "NEGATIVE NOT ALLOWED"
150 END

PACK

READY.

XEDIT

XEDIT 3.0.0

?? CHANGE/TAGl/140/*
110 IF N < 0 THEN 140
END OF FILE

?? E,,SL

BTFILE SAVED

BTFILE IS A LOCAL FILE
READY.

Example Explanation: User calls XEDIT to edit a newly created file called BTFILE. After entering

BASIC coding, the user issues an NOS PACK command (to pack the file).

Then, he calls XEDIT into

execution by entering XEDIT, XEDIT sends a double question mark (? ?) indicating that the user can
now enter an editing command. User enters a CHANGE command since he now knows what line number
identifies the statement temporarily identified by TAG1l. XEDIT proceeds to verify the CHANGE com-
mand's effect upon line 110. Finally, the user issues an END command to save BTFILE as both a local

file and a permanept indirect access file.

TSee also appendix D, for the method of using XEDIT for in-line editing.

e 2-2

76071000 C

EDITING SECONDARY INDIRECT ACCESS FILES

If users want to edit indirect access files as secondary files, they call XEDIT by entering:

Format Example
GET,si €B) oLD,BPGH
1 READY.

XEDIT,sfn @ GET ,BDATA

READY.
where: RNH
ERROR IN DATA FILE AT LINE 260
sfn = name of the secondary indirect access RUN COMPLETE.
file which the user wants to edit.

XEDIT ,BDATA
XEDIT 3.0.0

22

Example Explanation: User calls an existing program file (called BPGM) which takes its input data
from a file called BDATA. After calling both of these files, the user issues an RNH command to run
BPGM. However, during its execution BPGM encounters an error in the input data file (that is, in
BDATA). Subsequently, the user calls XEDIT to edit the BDATA file (which is a secondary file) and
correct the input error.

EDITING DIRECT ACCESS FILES

To call XEDIT when manipulating direct access files, users enter:

Format Example

ATTACH, sfn/M=W @ ATTACH ,PFTOP/M=W
READY.

XEDIT, sfn @T XEDIT,PFTOP
XEDIT 3.0.0

where: ??
sfn = name of the direct access file which Explanation: User calls XEDIT to edit a perman-
the user wants to edit. ent direct access file called PFTOP.

For more detailed information on editing direct access files, see appendix B.

See also appendix D, for the method of using XEDIT for in-line editing.

76071000 C 2=3

GENERAL XEDIT CONVENTIONS

Once users call XEDIT into execution, they can issue appropriate XEDIT commands to manipulate the

file in question. However, before users issue any command, they should review the basic editing con-
ventions and rules which govern XEDIT.

ISSUING XEDIT COMMANDS IN CORRECT COMMAND SYNTAX

XEDIT transmits a double question mark (? ?) whenever it expects the user to enter an XEDIT command.
Accordingly, if the user enters a valid command, XEDIT simply processes that command. A command
is considered valid when the following conventions are followed:

1. The general syntax for an XEDIT command is as follows:

prefixIncommand

where:
prefix = optional prefix characters for use as indicated below:

/ to advance the pointer one line before processing the prefixed
command (see page 2-9).

+ or A to reposition the pointer to the beginning-of-file before processing
the prefixed command (see page 2-9). This character is octal 76.

X to temporarily suppress verify or brief mode while processing the
prefixed command (see page 2-7).

+ to tell XEDIT that editing data exists on the same line as the com-
mand itself when used in conjunction with the DELIMIT, Y, or
Z command; the commands ADD, INSERT, INSERTB, MODIFY,
QMOD, REPLACE, and YQMOD are the only commands that
logically use the + prefix, thus the + prefix will be ignored
when using it with other commands (see page 2~59 for
examples).

Prefix characters can be in any order and combination.

In = optional line number prefix which specifies the line at which the user wants the
specified command to be executed. This prefix works identical to the find line
number (In) command with one added feature. If the desired line is not found,
the command is not executed, an informative message is given, and the line at
the current pointer position is printed (if in VERIFY mode).

command = any legal XEDIT command as given in table 1-2.

A double question mark is not transmitted if the user has assigned the input or output file to a mass
storage device or to a file using XEDIT Batch control card I= parameter (see appendix C).

02-4 76071000 C

2. The command must be spelled correctly.
3. Command parameters must follow the sequence shown in the documented command format.

4. Command parameters must stay within their maximum and minimum numerical limits. How-
ever, an asterisk (*) can be used in place of any n or m parameter and has the value 99999.

5. The command itself must be entered immediately at the position where the terminal stopped
after XEDIT sends the double question mark.

6. No embedded blanks can appear in the command itself or between In and command fields.

7. If the first character in the command is alphabetic, the command must be separated from its
parameters by either a comma or a space.

8. Extra spaces may appear between command parameters.

If the double question mark (? ?) appears and the user issues any entry other than a valid command,
XEDIT responds with one of the messages described in appendix At

ENTERING EDITING DATA

Certain XEDIT commands require that the user explicitly enter data to indicate how his file should be

modified. In these instances, XEDIT transmits a single question mark (?) to specify that the user can
now submit his particular entry. ADD, MODIFY, QMOD, YQMOD, INSERT, INSERTB and REPLACE
are examples of commands that provoke this response. For instance, consider the following situation:

Example Explanation

?2? 110MODIFY XEDIT sends double question mark; user responds
00110 1544 WILSHIRE ST ZIP 55722<—L by issuing a MODIFY command to alter line 110.

? 2

00110 2544 WILSHIRE ST ZIP 55722 =~— XEDIT prints line 110.

22

XEDIT transmits single question mark; user re-
sponds by indicating how he wants line 110 modi-
fied (that is, he supplies editing data).

XEDIT prints the modified version of line 110.

When XEDIT expects editing data to be entered, the user can interrupt this procedure by simply entering
a carriage return. XEDIT then transmits a double question mark (? ?) to specify that the user can now
enter a new command.

Editing data can also be entered in the same line as the command by using a plus (+) prefixed command
in a Y or Z command list or by entering a plus prefixed command in a delimited command sequence
(see Submitting Multiple Entries in a Single Line, page 2-55).

TSee appendix A for a list of all XEDIT diagnostic messages.

76071000 C 2-5 e

STRING DELIMITERS

Certain XEDIT commands allow the user to modify small pieces of information which appear within a
file line. These alphanumeric words, phrases, or numbers are called strings. When users enter
string commands, they separate strings from the command itself, other parameters and other strings
by employing string delimiters. Throughout this manual, delimiters are represented by a slash (/)
character, as shown in the following LOCATE command format:

LOCATE/string/n @

However, under XEDIT, a delimiter can be any character (other than a space, number, asterisk, or
comma) not found in the string that is being delimited. Consider the following example: A user wants
to locate the first line in the file which contains the phrase (that is, string) IF N=. Accordingly, any of
the following LOCATE commands are valid and identical in purpose, even though their string delimiters

vary.

LOCATE/IFN =/ (B
LOCATEMF N=" B
LOCATE ZIF N =2 @

VERIFYING XEDIT OPERATIONS

VERIFY Mode vs BRIEF Mode

By default, XEDIT assumes that users will want the editor to verify the effect of an XEDIT command
after the user issues that command. For example, suppose a user wants to delete two lines in the

file, beginning at the current file pointer position. Accordingly, the user would issue a DELETE
command. Under XEDIT, the editor automatically lists the lines which were deleted so that the user
can verify that the command in fact performed the task which was intended. This automatic verification
occurs when XEDIT operates in VERIFY mode.

While VERIFY mode is a standard, default condition under XEDIT, users can negate this procedure by
issuing a BRIEF command so that verification does not automatically occur. In other words, if a user
does not want to verify the effect of commands like DELETE, he can issue a BRIEF command and
verification will be suppressed. When users suppress automatic verification by issuing a BRIEF com-
mand, they are said to operate under BRIEF mode.

Users can select whether they want verification or no verification by choosing the command from the
following table:

Action Legal Commands
verification VERIFY CB VERIFY+ CB BRIEF- CB)
no verification BRIEF B BRIEF+ CB) VERIFY- CB)

The abbreviations for BRIEF and VERIFY take the following forms respectively:

BR (B
v €3

2-6 76071000 C

The following example illustrates the difference between VERIFY mode and BRIEF mode. In both
instances, the user issues a CHANGE command to delete the word (that is, string) ZIP from every
line in the file. In VERIFY mode, XEDIT executes the command and lists each line where the
specified change was made. In BRIEF mode, the command is merely executed.

VERIFY Mode BRIEF Mode
?? CHANGE/ZIP//* ?? CHANGE/ZIP//*
00110 1544 WILSHIRE ST 55722 END OF FILE
00170 POR 55 55703 ??

00200 8710 14TH ST 55713
END OF FILE
22

Temporarily Suppressing VERIFY or BRIEF Mode

When editing under either VERIFY mode or BRIEF mode, users may periodically want fo execute a
single command and have it processed as if it were under the alternate mode -~ without having to issue
a BRIEF or VERIFY command. This can be accomplished by prefixing the deviant command with an X,
A typical example (shown below) occurs when a user is operating in VERIFY mode but does not have
the actions of a particular CHANGE command verified. In this instance, the user would prefix the

command in the following manner:

Example . Explanation
?? VERIFY User issues VERIFY command.
?? LOCATE/ZIP /=~ User issues unprefixed LOCATE command.
00110 1544 WILSHIRE ST ZIP CODE 55722<——XEDIT verifies effect of preceding LOCATE com-
?? XCHANGE/ZIP CODE/ZIP/ mand
?22
o User issues a CHANGE command with an X prefix.

XEDIT suppresses its verification.

INTERRUPTING XEDIT PROCESSING

Users can terminate both the printing of XEDIT output and all XEDIT line or editing input requests
(signified by the appearance of a single question mark).

To terminate the transmission of XEDIT terminal output, the user must press the BREAK key.
When a user interrupts output transmission, XEDIT reacts in the following manner:
® The editor stops processing the command that it was executing.

e XEDIT sends a double question mark to the user, indicating that a new XEDIT command should be
issued.

76071000 C 2-7 o

® The file pointer is positioned at (or one line after) the last line that was being processed when the
user interrupted XEDIT execution. Under VERIFY mode, this may mean that the pointer is
positioned several lines beyond the last line that was verified. Accordingly, users are advised
to issue a PRINT command immediately after interruption to determine the current pointer

position.

If the interruption occurs while a Z, Y, or delimited command sequence is executing, the remaining
component commands in the command list will be skipped.

To terminate XEDIT requests for éditmg input or line input (via commands such NSERT,
REPLACE, INPUT), the user simply presses the carriage return.

When a user terminates input requests, XEDIT reacts in the following manner:

® The editor stops processing the command that it was executing.

® XEDIT sends a double question mark to the user, indicating that a new XEDIT command should
be issued. However, if a multiple command is being executed, XEDIT continues processing
with the next command in the list.

® The file pointer is positioned at the last line that was input.

XEDIT COMMAND PARAMETERS
Throughout this manual, many XEDIT commands contain the following replaceable parameters:

n = how many file lines or string-lines should be affected by the command in question. The value
entered as n must be an integer and can not exceed 99999. Its default value is 1. Users can
enter an asterisk (*) for n when they want the command executed until the file pointer reaches
the end-of-information (the END OF FILE message). A string-line is defined as a line which
contains at least one occurrence of a specified string.

In = same as n parameter except it specifies the number of occurrences of an entity such as a
string, end-of-file mark or end-of-record mark.

In = line number that identifies which file line will be edited. The value of In must be integer and
can not exceed 99999. By default, its value is 1.

FILE POINTER CONVENTIONS
Conventions pertaining to the movement of the XEDIT file pointer are discussed in the subsequent section

on "Positioning the File Pointer, " which also lists the various XEDIT commands which manipulate the
pointer.

POSITIONING THE FILE POINTER

During its editing, XEDIT maintains a pointer that is positioned at (that is, points to) the line in the user's
file which is currently being processed. When XEDIT is called into execution, the pointer initially is
positioned at the first line in the user's file.

® 2-8
76071000 C

When the user issues an XEDIT command, the pointer will be advanced to the line in the file that is
affected by the execution of the command. Then, when a subsequent command is issued, the new
command's execution will start at the new pointer position. In other words, each command will not
automatically begin its execution from the first line in the file.

As a general rule, if the user is processing in verify mode, the pointer is usually positioned at the
last line which is displayed.

Additionally, when the
following actions occur:

f a command causes XEDIT to read the end-of-information mark, the

® The following message is listed at the user's terminal:
END OF FILE
® Further processing of the command is terminated.
® The pointer is repositioned to the beginning of the user’s file.

In summary, the following file pointer conventions apply to XEDIT.

Condition Pointer Position
1. XEDIT is initially called. Beginning-of-file
2. A command is executed. Last position in file affected by the completed

execution of the command (in verify mode, usually
at the last line which is displayed)

3. Command execution causes end-of-informa- Beginning-of-file
tion (the END OF FILE message) o be
reached.
4. Interruption of XEDIT output. At (or one line after) the last line being proéessed,

not necessarily the last line printed.

POINTER MOVEMENT BY COMMAND PREFIXING

Users can vary pointer position before the execution of an XEDIT command by prefixing the command
with either a slash or a caret (or up arrow). Accordingly, the following conventions apply:

Prefix Character Function
/ Advances the pointer one line before pro-
cessing the prefixed command in all
cases.
Nort ' Reposttions the pointer to-the-beginning-of-file

before processing the prefixed command. This
character is octal 76.

76071000 C 2-9

POINTER MOVEMENT COMMANDS

The following XEDIT commands control file pointer movement and are discussed in detail throughout
this section.

Locating Lines Via Line Numbers (In Command)

Users can advance the pointer to a line identified by a specified line number by simply entering the line
number. After the user issues the command, XEDIT begins its search for the specified line number

at the current pointer position. The search for the line number is circular (wrap-around). Thus, the
top of the file may be passed in order to position the pointer at the specified line. XEDIT terminates
the command's execution by positioning the pointer at a line having the specified line number. However,
if no line number in the file matches the specified In value, then XEDIT positions the pointer at the line
with the next closest (and higher) line number. To combine the In command with other commands, see
General XEDIT Conventions on page 2-4.)

Format Example

In €B 22 120

00120 EXT 6533

where: ' 22 140
00150 Q.E. SMITH

. . . . ps . ?2? 190
In = line number which identifies the line 00190 P.T. BEE

that the user wants to locate. 22 170
00170 POB 55 ZIP 99107

Example Explanation: In the first entry, the user issues an In command to locate line 120. XEDIT
responds by verifying that the pointer is positioned at line 120. Subsequently, the user simply enters

a line number (140). XEDIT responds by indicating the pointer is positioned at line 150. This deviation
occurs because line 140 does not exist in this file and the pointer is automatically positioned at the next
closest (highest) line number. In his third entry, the user issues an In command to locate line 190. In
response, XEDIT verifies that the pointer rests at line 190. In the final entry, the user issues an In
command to locate line 170. XEDIT automatically "backs up" to line 170 and prints the line.

Locating Lines Via Specified Strings (LOCATE Commands)

Users can advance the pointer to a line which contains a specific string of alphanumeric characters by
issuing a LOCATE command. LOCATE commands take three different forms: One form applies when
the user wants the search to be based on a single string criteria; another form is employed when the
user wants XEDIT to find a line with one string followed by a second string; a third form is used to find
a line with one string not followed by a second string.

When the user wants to locate a line that contains one particular string, the following command should
be issued:

®2-10 76071000 C

where:

string

I=

Il

Format

LOCATE/string/n B

or

1/string/n @

string of alphanumeric characters

which XEDIT will attempt to locate.

NOTE: if the user omits the ter-
minating delimiter, XEDIT as-
sumes one should appear after the
last non~-blank character.

user wants the pointer positioned
to the gth line which meets the
specified string criteria. Highest
allowable value = 99999; default
value = 1 (that is, user wants to
locate the first line which contains
the specified string). If n=0 and
the string is not in the line, the
pointer position remains the same,
and the message "STRING NOT
FOUND" is issued.

Example

?? LOCATE/ZIP/

00110 1544 WILSHIRE ST ZIP 55722
?? /LOCATE/ZIP/2

00170 POB 55 ZIP 55703

00200 8710 14TH ST ZIP 55713

?? L/8711/0

STRING NOT FOUND

Explanation: In the first entry, the user issues a
I.OCATE command to position the pointer to the

first line in the file containing ZIP. XEDIT veri-
fies that line 110 is located.

In the second entry, the user issues a slash-pre-
fixed LOCATE command to advance the pointer

one line before the search. XEDIT verifies that
the pointer is finally positioned at line 200. In
addition, it lists line 170 which was an intermediate
line that met the ZIP string criteria.

In the third entry, the user issues an abbreviated
LOCATE command with zero count parameter.

search for the string 8711 is to be restricted to
just the line at the current pointer position (line
00200) since the zero parameter was used. In this
example the string 8711 was not found on that line.

The

When verify mode is in effect and the user issues a LOCATE command, XEDIT performs the following

actions:

® It lists the line to which the pointer is finally positioned.

® If the user-entered n parameter is greater than 1, XEDIT lists every intermediate line which
meets the specified string criteria.

When the user wants to locate a line that contains one string followed by a second string, the following
command should be issued:

Format

LOCATE/stringl. .. string2/n €B)

or

L/stringl. .. string2/n @

76071000 C

Example

?? LOCATE/WILSHIRE..
END OF FILE
?? LOCATE/WILSHIRE...ZIP 55722/

00100 1544 WILSHIRE ST ZIP 55722
??

.ZIP 55711/

2-11

where:

stringl...string2 = stringl followed by
string2, K the user
omits the terminating
delimiter, XEDIT
assumes one should
appear after the last
nonblank character.

h = user wants the pointer
positioned to the nth line
which meets the criteria
established by the stringl,..
string2 entry, Highest
allowable value = 99999;
default value = 1 (that is,
user wants to locate the
first line containing both
stringl and string2). I
=0 and the stringl...
string2 string is not in the
line, the pointer position
remains the same and an
informative message is
issued.

Explanation: In the first entry, the user wants the
pointer positioned at the first line in the file which
contains WILSHIRE followed by ZIP 55711, XEDIT
responds by indicating it reached the end-of-file

without locating that specific combination of strings.

After reaching the end-of-file, XEDIT repositions
pointer to the beginning-of-file. User issues a
second LOCATE command to place pointer at the
first file line which contains both WILSHIRE and
Z1IP 55722, XEDIT responds by verifying the
pointer now is located at line 110, the first line
which satisfies both string criteria,

When the user wants to locate a line that contains one string but not followed by another string, the

following command should be issued:

Format

LOCATE/stringl---string2/n @

or

L/stringl---string2/n CR)

where:

stringl = the string of alphanumeric
characters which XEDIT
will attempt to locate in a
single line which is not
followed by string2. Stringl
can be null (that is, not
specified), in order to lo-
cate n lines which do not
contain string2.

the string of alphanumeric
characters that the user
does not want to find in
the same line as a line
with stringl before it.

string2 =

® 2-12

Example

?? LOCATE/WILSHIRE/

00010 3780 WILSHIRE AVE ZIP 55722
?? ALOCATE/WILSHIRE---AVE/

00110 1544 WILSHIRE ST ZIP 55722
??

Explanation: The user has a file of addresses
and wants to find Wilshire Street. In the first
entry, the user attempts to locate Wilshire Street
by specifying only the string WILSHIRE and
XEDIT responds with a line containing WILSHIRE
AVE, Since this is not what the user was inter-
ested in, the user enters a second LOCATE
command with the up-arrow (+) prefix to begin
the search again from the top of the file. The
user specifies with the WILSHIRE-~~AVE
sequence that XEDIT should look for a line that
contains WILSHIRE but not followed by AVE since
the user wants Wilshire Street, not Wilshire
Avenue,

76071000 C

h = user wants the pointer
positioned to the _x;th line
which meets the criteria
established by the stringl---
string2 entry. Highest
allowable value = 99999;
default value = 1 (that is,

the user wants to locate the
first line that containg

v axdlT LISy ULLRAL

stringl but not followed by
string2). If n=0 and stringl

is not in the line, the pointer
position remains the same
and an informative message
is issued.

Advancing and Reversing the Pointer (NEXT Command)

When users want to advance the pointer (from its current position) toward the end of the file, they enter
a NEXT command in the following form:

NEXTn €B)
or
Nn @

where:

n = number of lines that the pointer should be advanced, Highest allowable value =
99999; default value =1,

When users want to reverse the pointer (toward the beginning-of-file) from its current position, they
enter a NEXT command in the following form:

NEXT-n B

where:

-n = number of lines that the pointer should be moved toward the beginning of the file.
NOTE: Once the pointer reaches the beginning~of-file position, this command's
execution is terminated., Highest allowable value = 99999; default: If n is omitted
or given a value of 0, no pointer movement is performed.

,,,,,, S | NOTE

Reverse pointer movements using this command are much slower
than forward pointer movements,

76071000 C 2-13 @

The following example illustrates these commands:

Example

Explanation

User issues PRINT command to list six lines.

?2 PRINT 6

00100 M.T. JONES
00110 1544 WILSHIRE ST ZIP 55722
00120 EXTENSION 6533

00130 A.B. NEWTON

00140 166 HASKELL CIRCLE ZIP 55713

00150 EXTENSION 227

+———————XEDIT prints six lines

User issues NEXT command to reverse pointer

22 NEXT-3

00120 EXTENSION 6533

L—three lines.

??2 NEXT 2 =

00140 166 HASKELL CIRCLE ZIP 55713<—

22

XEDIT verifies where previous command moved
the pointer,

User issues NEXT command to advance pointer
two lines.

XEDIT verifies effect of the preceding command.

Repositioning Pointer to Top and Bottom of File (TOP and BOTTOM Commands)

Users can reposition the pointer to the beginning of the file by issuing a TOP command in the following
form (see also the up-arrow prefix character on page 2-4):

ToP €B
or
T €8

In addition, users can move the pointer to the bottom of the current record in a file by issuing a
BOTTOM command in the following form:

BOTTOM €B

or
B €3

The following example illustrates these commands:

Example

22 160

Explanation

User issues line number to position pointer at line

00160 Q.E. SMITH

2?2 TOP
?? PRINT

160,
I LXEDIT verifies its pointer was moved to line 160,

NAMES/ADDRESSES ARE FICTITIOUS
?? BOTTOM

User issues TOP command to reposition pointer to

Hik the first line in the user's file; no automatic veri-

00210 EXT 18
??

2-14

fication.

User issues PRINT command,

XEDIT lists the line to which the pointer is cur-
rently positioned (that is, the first line in the

file).

User issues BOTTOM command to move pointer to
the last line in the current record of the file,
XEDIT verifies where the pointer is now positioned
(that is, line 210, the last line in the file),

76071000 C

Locating '‘Bad’’ Lines (FBADL Command)

When users want to locate a specific number of "bad' lines, they can issue FBADL commands, In this
instance, 'bad" lines are defined as lines which do not begin with a line number. This command is most
useful when the user is operating in verify mode since the '"bad' lines are listed in this situation, The
following command format is valid for entering FBADL commands:

Format Example
FBADL n @ ?? FBADL*
NAMES/ADDRESSES ARE FICTITIOUS
or END OF FILE

22

Explanation: In first entry, user issues FBADL

where:
command to locate every "bad' line in the file
n = number of "bad" lines which the user (that is, the n parameter is an *), Since XEDIT
wants to locate, An asterisk (*) should is in verify mode, it lists all "bad" lines, In
be entered when the user wants to locate this file, only one '"bad' line was found. XEDIT
every 'bad'" line in the file, Highest also indicates it read the end-of-information

allowable value = 99999; default value = 1. mark,
NOTE: The file pointer will be positioned

at the last "bad" line encountered unless

END OF FILE is encountered. A value =

0 assumes n=1,

Listing File Lines (PRINT Command)

Users can list lines from their files by issuing PRINT commands. This command begins its execution
at the current pointer position, When the PRINT command terminates its execution, the pointer is
positioned at the last line that is printed., PRINT commands take the following form:

Format Example
PRINT n @ ?? PRINT
00160 Q.E. SMITH
or ?? PRINT 4
Pn @ 00160 Q.E. SMITH
- 00170 POB 55 ZIP 55703
00180 EXT 8837
where: 00190 P.T. BEE
?? PRINT*
n = number of lines which the user wants to 00190 P.T. BEE
print, Highest allowable value = 99999; 00200 8710 14TH ST 2ZIP 55713
default value =1, When the user wants 00210 EXT 18 '

to print every line in the file from the END OF FILE
?? PRINT*

current pointer position fo END OF ### NAMES/ADDRESSES ARE FICTITIOUS ###
FILE, the n parameter should contain 00100 M.T. JONES

an *, Avalue = 0 assumes n=1, 00120 EXT 6533
00160 Q.E. SMITH
00170 POB 55 ZIP 55703
00180 EXT 8837
00190 P.T. BEE
e - 00200 8710 14TH ST ZIP 55713 -
00210 EXT 18

END OF FILE
2?

76071000 C 2-15

Example Explanation: In the first entry, the user issues a PRINT command to list the line to which the
pointer is currently positioned. In response, XEDIT prints line 160. In the second PRINT entry, the
user issues a PRINT command to list four lines, beginning at the current position (that is, line 160),
Accordingly, XEDIT lists four lines, Inthird PRINT command, the user wants to list all lines in the
file that fall between the current pointer position and the end-of-file mark. XEDIT replies by listing
lines 190 to 210. In addition, XEDIT indicates that it has read END OF FILE. Finally, in the last
entry, the user issues a PRINT command to list the entire file. This occurs because the pointer is
automatically repositioned to the beginning-of-file once END OF FILE is encountered. XEDIT responds
by printing all lines in the file,

STRING EDITING

XEDIT users can modify particular strings of alphanumeric characters that appear within a file line
by issuing string editing commands, The following section describes these commands in detail.

ADDING STRINGS TO THE END OF A LINE (ADD COMMAND)

Users can append a particular string to the end of an existing file line by issuing ADD commands.
Accordingly, after users issue an ADD command, XEDIT proceeds to send a single question mark (?)
to indicate that the user should enter the specific string, XEDIT will then append the specified string
to the end of the line designated by the current pointer position (after the last nonblank character in
that line), ADD commands take the following format.

Format Example
ADD n @ ?? 160ADD

. 00160 Q.E. SMITH
? string @ > JR

or 00160 Q.E. SMITH JR

22

Explanation: User positions pointer to line 160
where: and issues an ADD command. XEDIT responds
by verifying this position. By default, this
n = number of consecutive lines to command specifies that the next line of user
which the specified string should be input should be appended to the end of the line
appended. Highest allowable value = designated by the current pointer position.

99999; default value = 1; users can XEDIT sends a single ? to inform the user that he
enter an * for n when they want the should now enter the string which he wants appended
string to be appended to every line to line 160. User reacts by entering a blank space
in the file between the current pointer and then the characters JR as his appendable string.
position and END OF FILE, A XEDIT automatically verifies how it added the

value = 0 assumes n =1, specified string (JR) to line 160.

string = string of alphanumeric characters
which the user wants to append;
the string should be entered after
XEDIT responds to the ADD com-~
mand with a single ?,

2~16 76071000 C

REPLACING, DELETING AND INSERTING STRINGS BY CONTEXT
(CHANGE AND CHANGES COMMANDS)

CHANGE and CHANGES commands enable XEDIT users to: 1) replace the contents of one string with a
different string, 2) delete strings from file lines, and 3) insert strings at the beginning of a line. If
the user wants to restrict what columns the change should occur in, the windowing feature can be used
with the CHANGE and CHANGES commands (see WMARGIN command). If the user prefers to change
strings by visual character-by-character alignment instead of the context method, see the MODIFY
command.

Replacing Strings by Context

Users can replace one string with a different string by issuing a CHANGE or CHANGES command in the
following format, In this instance, the edited string and the original string can be of arbitrary length
and character content.t addition, the search for the first specified string starts at the line designated
by the current pointer position.

Format Example

CHANGE /stringl/string2/n @ ?? PRINT*
NAMES/ADDRESSES ARE FICTITIOUS

or 00100 M.T. JONES
C/stringl/string2/n @ 00110 1544 WILSHIRE ST ZIP 55722
—= = 00120 EXT 6533
or 00160 Q.E. SMITH
o o, 00170 POB 55 ZIP 55703
C/stringla,..stringib/string2/n @ 00180 EXT 8837
or 00190 P.T. BEE
00200 8710 14TH ST ZIP 55713
CHANGES/stringl/string2/m @ 00210 EXT 18
- - END OF FILE
or 22 CHANGE/EXT /853-/%
. . 00120 853-6533
CS/stringl/string2/m @ 00180 853-8837
or 00210 853-18

END OF FILE
CS/stringla, . .stringlb/string2/m (CB) 22 190
- - = 00190 P.T. BEE
' 2?2 CHANGE/BEE/BEAN/
00190 P.T. BEAN

??

where:

stringl = old string which the
user wants to replace.

stringla, ..stringlb = similar to stringl
except that stringla is
followed by stringlb.
Other characters
appearing between the
two strings are included
in the string that gets
changed to string2.

THowever, if the edited string causes the file line to exceed 160 characters, XEDIT will truncate the
edited version of the line and send an informative message.

76071000 C 2-17 @

string2 = new string that replaces stringi. Explanation: User issues a PRINT command to

NOTE: stringl and string2 can list entire file; XEDIT lists file, In the first

be different lengths and arbitrary CHANGE command, the user indicates that every

content, instance of EXT should be replaced by 853 through-

out the entire file, XEDIT responds by verifying

h = number of lines containing at least which lines were affected by the preceding

one occurrence of stringl which CHANGE command. After the user issues a

should undergo the specified command to locate line 190, he enters another

string change, XEDIT will apply CHANGE command. This second CHANGE

the change to every appearance command specifies that the name BEE should be

of stringl in a line, By default, replaced with the BEAN in the line to which the

if the user omits an n value, pointer is currently positioned. XEDIT verifies

XEDIT will only replace every that this change was made,

occurrence of stringl with string2

in the first line found which
contains stringl. Highest
allowable value = 99999.

In addition, if the user wants the
string change applied to every
line in the file from the current
pointer position to END OF FILE
an * ghould be entered as the n
parameter, K n = 0, XEDIT will
not advance the pointer, and any
changes will occur at the current
pointer position, K n =0 and
stringl is not found, XEDIT will
issue the message "STRING NOT
FOUND."

NOTE: I the user fails to enter

a terminating delimiter, XEDIT

assumes one should appear after
the last nonblank character. An
informative message is also sent
to the user's terminal,

m = number of occurrences of stringl
or stringla...stringlb. By
default, if the user omits the m
value, XEDIT will only replace
the first occurrence of the string
from the current pointer position,

02-18 76071000 C

Deleting Strings by Context

CHANGE or CHANGES commands can also be used to delete a string. To accomplish this, users simply
do not enter any characters for the string2 parameter. In effect, string2 becomes a null string. The
effects of these commands begin at the current pointer position and are executed on n number of file

lines or m number of strings.

Format Example
CHANGE /stringl//n @ 2? PRINT*
00100 M.T. JONES
or 00110 1544 WILSHIRE ST ZIP 55722
. 00120 EXT 6533
t ()
C/string1//n 00160 Q.E. SMITH
or 00170 POB 55 ZIP 55703
. . 00180 EXT 8837
C/stringla, .,stringlb//n @ 00190 P.T. BEE
00200 8710 14TH ST ZIP 55713
or 00210 EXT 18
CHANGES/stringl//m €B) END OF FILE
=6/ ?? CHANGE/ZIP//*
or 00110 1544 WILSHIRE ST 55722
] 00170 POB 55 55703
CS/stringl//m @ 00200 8710 14TH ST 55713
or END OF FILE

22

CS/stringla. . stringlb//m @

Explanation: User enters PRINT command to list
the file; XEDIT responds accordingly, Then, the

where:
user issues a CHANGE command to delete every
stringl = string of alpha- appearance of the word ZIP from every line in the
numeric characters file., XEDIT responds by verifying which lines
which the user wants were deleted by the preceding command,
to delete.

stringla, . .stringlb = similar to stringl except
that stringla is followed
by stringlb, Other
characters appearing
between the two strings
are included in the string
that gets deleted,

76071000 C 2-19e

n = number of lines, containing stringl,
that should be affected by this
deletion command., Highest
allowable value = 99999; default
value = 1; an * indicates that the
deletion should occur in every
line from the current pointer

position to END OF FILE, K
n=0, XEDIT will not advance

the pointer, and any deletions
will occur at the current pointer
position. If n = 0 and stringl is
not found, XEDIT will issue the
message ""STRING NOT FOUND"
and the line is not deleted.

NOTE: If the user fails to
enter a terminating delimiter,
XEDIT will automatically place
one immediately after the last
nonblank character and issue
an informative message,

m = number of occurrences of
stringl or stringla,..stringlb.
By default, if the user omits the
m value, XEDIT will delete only
the first occurrence of the string
from the current pointer position.

Inserting Strings at the Beginning of a Line

Users can insert strings before the first (leftmost) character of a line. To accomplish this, users
simply do not enter any characters for the stringl parameter. In effect, stringl becomes a null string.
As in the standard CHANGE or CHANGES command formats, the effects of these commands begin at
the current pointer position and are executed on n number of file lines.

Format Example
CHANGE//string2/n @ 2? PRINT3

00100 M.T. JONES

or 00110 1544 WILSHIRE ST ZIP 55722
C//string2/n @ 00120 EXT 6533
— == ?? ACHANGE//EX/3
or EX00100 M.T. JONES
. EX00110 1544 WILSHIRE ST ZIP 55722
CHANGES//string2/n @ EX00120 EXT 6533
?2?
or c

Cs//string2/n €B)

€2-20 76071000 C

where: Explanation: User enters PRINT command to list
part of the file; XEDIT responds accordingly.
string2 = string of alphanumeric characters Then, the user issues a CHANGE command to
which the user wants to insert insert the characters EX in front of three lines.
before the leftmost character of a XEDIT responds by verifying which lines were
line, affected,

n = number of lines which the user
wants string2 inserted before.
Highest allowable value = 99999;
default value = 1; an * indicates
that the insertion should occur in
every line from the current pointer
position to END OF FILE, Kn=0
XEDIT will not advance the pointer
and any insertions will occur at
the current pointer position,

MODIFYING STRINGS ON CHARACTER-BY-CHARACTER BASIS (MODIFY COMMAND)

MODIFY commands let users alter string contents on a character-by-character basis. Accordingly,
the user issues a MODIFY command that references a specific line number. XEDIT responds by
listing the line in question. On a subsequent line, XEDIT prints a single question mark to indicate
that the user should enter his MODIFY directives, which specify how the line should be altered.
These directives should be entered immediately under that portion of the printed file line which the
user wants to modify.T Table 2-1 lists valid MODIFY directives.

NOTE

If the user's MODIFY directives cause the edited line to exceed
160 characters, XEDIT truncates the line and sends an informa-
tive message (see appendix A).

Finally, once the user performs a carriage return to transmit the MODIFY directives to XEDIT, the
editor responds by verifying how the file line was actually modified, (However, if the user does not
enter any directives in the directives line, XEDIT neither performs its verification nor makes changes.)
The following format applies to this command.

Format ‘ Example
MODIFY @ ?? 10MODIFY
or 10XTHIS STRING TO BE MORITFD
? & +IS THE # D # +IE#
M @ 10 THIS IS THE STRING TO BE MODIFIED

22

Explanation: In the first entry, the user issues a
MODIFY command with the line number prefix to
modify line 10. Accordingly, XEDIT lists line 10.
In the third line, the user issues MODIFY direc-
tives to-alter the line appearing above it. Finally,
in the last line, XEDIT verifies how the user's
MODIFY directives changed line 10.

TSince correct alignment is crucial for the successful execution of this command, users should be
certain their terminal carriage return operates at a correct speed. See the note on page 2-1 for
information pertaining to the NOS ROUT command.

76071000 C 2-21e

TABLE 2-1, MODIFY DIRECTIVES

Directive

Function

Example

*string#

blank space

other alpha-
numeric
characters

Causes the string of alphanumeric characters between
the + and the # to be inserted in front of the character
pointed to by the *. On Teletypewriter units and CDC
713's, a # character corresponds to a sharp (upper
case 3). A ' character corresponds to an up arrow
(upper case N) on Teletypewriter units or a carat on
CDC 713's,

Issuing a *# combination results in placing a # in the
file line. NOTE: If an & or a + is entered within the
string, that special character will be treated as a
normal character (instead of as a directive). Addi-
tionally, if a + appears before a string but without
the terminating # , XEDIT assumes the # should
appear after the last nonblank character in the
directives line,

When a + appears alone (that is, without any other
trailing characters), XEDIT inserts one blank space
in front of the character immediately above the + ,
On Teletypewriter units, the + character corre-
sponds to an up arrow (upper case N), while it
corresponds to a caret on CDC 713's,

When a # appears alone (that is, without a preceding
+), it causes the character above it to be deleted.
XEDIT automatically closes up the space left by the
deletion.

Leaves the character above it unchanged,

Replaces the character above it with a blank space.
Unlike the # directive, there is no automatic closing
up of space when an & directive is issued., On CDC
713 and Teletypewriter units, an & corresponds to
an ampersand (upper case 6),

Replace the characters above them with the characters
which appear in the directives line. Users should

not enter characters which do not exist with the nor-
mal 64-character TTY character set.

?? 200MODIFY
00200 8710 14TH ST
? + SOUTH#

00200 8710 SOUTH 14TH ST
?2?

2?2 110MODIFY

00110 1544 WILSHIREST
? 4
00110 1544 WILSHIRE ST
??

?? 170MODIFY

00170 POB 55 ZIP 55703
? #
00170 PO 55 ZIP 55703

22

?2? 200MODIFY

00200 8710 SOUTH 14TH ST
?
22

2?2 100MODIFY

00100 M.T.RJONES
2 &
00100 M.T. JONES
?2?

?? 160MODIFY
00160 Q.E. SMITH
? Y FE

00160 Q.E. SMYTHE
??

2-22

76071000 C

MODIFYING STRINGS ON BASIS OF COLUMN NUMBERS (QMOD AND YQMOD COMMANDS)

Users can modify portions of their files on the basis of column numbers by issuing QMOD and YQMOD
instructions. In the case of QMOD commands, the user issues the command to indicate that a specific
number of lines (starting at the current pointer position) should be modified. In response, XEDIT
prints a sequential list of column numbers, On a subsequent line, it transmits a single question mark
to inform the user that this blank line (appearing under the column number line) constitutes the direc-
tives line. Consequently, the user should enter appropriate MODIFY directives (see table 2-1) to
specify exactly how the file line(s) should be modified. In this instance, the appropriate directive
should be entered directly under the numbered column that should be modified.T

After the user enters a carriage return to transmit the directives to XEDIT, the editor verifies how the
modification(s) affects the line(s) in question. If the user does not submit any entry in the directives line,
XEDIT will not verify this action and will not execute the command. The format for entering a QMOD
command is:

where:

n = number of lines (starting af the current pointer position) that should be modified. Highest

allowable value = 99999; default value = 1. If users want to modify every line in the file
between the current pointer position and END OF FILE an * should be entered for this
parameter. A value =0 assumesn=1,

Example
2? PRINT#*
00100 PART NO= 749322 QUAN= 757 VALUE= 945.50
00110 PART NO= 749323 QUAN= 1298 VALUE= 23.95
00120 PART NO= 749324 QUAN= 446 VALUE= 138.05
00130 PART NO= 749325 QUAN= 15 VALUE= 1650.50
00140 PART NO= 749326 QUAN= 376 VALUE= 182.75
END OF FILE
?? QOMOD*
0 1 2 3 4 5 6
1234567890123456789012345678901234567890123456789012345678901234567890
? t—# COST#
00100 PART NO= 7493-22 QUAN= 757 COST= 945.50
00110 PART NO= 7493-23 QUAN= 1298 COST= 23.95
00120 PART NO= 7493-24 QUAN= 446 COST= 138.05
00130 PART NO= 7493-25 QUAN= 15 COST= 1650.50
00140 PART NO= 7493-26 QUAN= 376 CoST= 182.75

END OF FILE
?2?

TSince correct alignment is crucial for the successful execution of QMOD and YQMOD commands, users
should be certain their terminal carriage return operates at a correct speed. See the note on page 2-1
for information pertaining to the NOS ROUT command.

76071000 C 9-93

Example Explanation: In the first entry, the user issues a PRINT command to list the entire file.
XEDIT reacts by listing the file (in this case, a relatively structured inventory file). In the next enfry,
the user issues a QMOD command indicating that his subsequent MODIFY directives should affect
every file (that is, n = *). XEDIT responds by printing a sequence of column numbers and sending a
single question mark for the user's directives input. Then, the user proceeds to enter appropriate
MODIFY directives into the directives line (that is, he inserts a hyphen in front of column 20 and
modifies the content of column 42 so that the word COST replaces the word VALUE). XEDIT reacts

by verifying the modified content of this file.

When users want to modify a line (or lines) on the basis of column numbers, but do not want XEDIT to
print the column numbers above the directives line, they should issue YQMOD commands. The con-
ventions and rules pertaining to YQMOD are identical to those governing QMOD, The format for
issuing YQMOD commands is:

Format

YQMODn €B

or

YQMn €B)

where:

b = number of lines (starting at the current pointer position) that should be affected by the
subsequent MODIFY directives. Highest allowable value = 99999; default value = 1, To
modify all lines from the current pointer position to END OF FILE, enter an *, A value =0
assumesn=1,

Example
2?2 PRINT*
00100 PART NO= 7493-22 QUAN= 757 COST= 945.50
00110 PART NO= 7493-23 QUAN= 1298 COST= 23.95
00120 PART NO= 7493-24 QUAN= 446 COST= 138.05
00130 PART NO= 7493-25 QUAN= 15 COST= 1650.50
00140 PART NO= 7493-26 QUAN= 376 CcosT= 182.75
END OF FILE
?? YQMOD*
? + FACTORY#
00100 FACTORY PART NO= 7493-22 QUAN= 757 COST= 945.50
00110 FACTORY PART NO= 7493-23 QUAN= 1298 COST= 23.95
00120 FACTORY PART NO= 7493-24 QUAN= 446 COST= 138.05
00130 FACTORY PART NO= 7493-25 QUAN= 15 COST= 1650.50
00140 FACTORY PART NO= 7493-26 QUAN= 376 COST= 182.75
END OF FILE
??

Example Explanation: In the first entry, the user issues a PRINT command to list the entire contents
of a file, XEDIT proceeds to list the file (in this case, a relatively structured file of inventory infor-
mation), As a second command, the user issues a YQMOD command and specifies that the subsequent
MODIFY directives should apply to every line in the file (that is, n =*), After XEDIT sends a single
question mark, the user enters one MODIFY directive. In this instance, he counts over seven spaces
and inserts the word FACTORY in front of the information which begins in column seven (that is, in
front of the word PART). Subsequently, XEDIT verifies how the preceding directive affected in edited
file,

2-24 76071000 C

STRING SEARCH CONTROL

Users can control string searches in the following ways, in addition to the several forms of a legal
string search (that is, /string/ or /stringl.,.string2/ or /string1---string2/ or /---string2/):

e TRIM Tells XEDIT to ignore trailing blanks on string search commands such as LOCATE.

WMARGIN Defines columns which restrict he scope of all string search commands when used

Delines ¢oiumns walea resiricl L

with the "W and ""A" command postfix characters.

IGNORING TRAILING BLANKS (TRIM COMMAND)

Users can tell XEDIT to ignore trailing blanks on commands that involve string searches by issuing the
TRIM command. The TRIM command can be issued in any one of three forms. The TRIM mode switch
is either toggled or set on or off depending on which of the following forms the user enters:

Format Function
TRIM @ Toggles between TRIM mode on and TRIM mode
or off, That is, if TRIM mode is off, issuing a

TRIM command will turn it on and trailing blanks
will be ignored on string search commands, If
TRIM mode is on, issuing a TRIM command will
turn it off, Default value is TRIM mode off
(trailing blanks are not ignored).

TRIM+ @ Turns TRIM mode on -- ignores trailing blanks,
or
TRIM- @ Turns TRIM mode off -- uses trailing blanks.

The commands that are affected by the TRIM mode on state are:

CHANGE COPY DELETE OCTCHANGE
CHANGES COPYD LOCATE
NOTE

Lines that are entirely blank will not be searched at all when
the user is in TRIM mode,

76071000 C 2-25@

Example

22 PRINT*

EXECUTIVE MANAGEMENT
EX100 A.B. KRAMER HQR24130
EX130 J.J. JOHNSON SWP19130
EX120 B.C. MILLER HQR44130
END OF FILE

?? LOCATE/130 /

EX100 A.B. KRAMER HQR24130
2?2 TRIM

?? +LOCATE/130 /

EX130 J.J. JOHNSON SWP19130
?2?

Example Explanation: After a listing of the file is obtained, the user attempts to find manager number
130 but instead finds manager number 100 since his facility number HQR24130 happened to also have
the number 130 in it, To correctly locate manager number 130, the user issues a TRIM command to
tell XEDIT to ignore the trailing spaces (blanks) to the right of all facility numbers such as HQR24130.
The LOCATE command now finds the right line with 130 in it that was desired, namely EX130,

DEFINING A WINDOW (WMARGIN COMMAND)

Users can restrict the scope of all string searches to a specified range of columns by issuing the
WMARGIN command, Once the window columns have been defined, the user can ask for the window
whenever desired. The user makes the window request by simply appending either a "W" or "A"
postfix character to the end of any of the string search commands (for example, CHANGEW and
LOCATEW). To set the left and right window margin columns use the WMARGIN command as follows:

Format Example
WMARGIN Im rm @ ?? p*

or DEPT4208 EMP927 KRAMER, SCOTT W.

DEPT4208 EMP208 JOHNSON, JACK J.

WM Im rm @ DEPT4208 EMP742 MILLER, RICK E.

_—— DEPT4208 EMP698 SCOTT, FRANK R.
END OF FILE

where: ?? WMARGIN 10 15
2?2 Lw/208/
Im = column position setting of the left DEPT4208 EMP208 JOHNSON, JACK J.
window margin, Initial value =1, 2?2 wM 17 17
?? +La/scorr/
rm = column position setting of the right DEPT4208 EMP698 SCOTT, FRANK R.

22

window margin, Initial value = 160.

1<Im £rm <160

®2-26 76071000 C

Example Explanation: User issues an abbreviated PRINT command to list the employee file. The user
then defines a window as columns 10 through 15 inclusive., To locate employee number 208, the user
enters an abbreviated LOCATE command with the window postfix ""W" to specify that XEDIT should look
at only the employee number field of the file during the search, XEDIT responds by finding employee
"Jack Johnson' number EMP208 as requested instead of the first line with DEPT4208 in it, Next, the
user wants to find the first employee whose last name is "Scott". Since the last name field begins in
column 17, the user issues an abbreviated WMARGIN command to redefine the window to be just that
column, The user finally issues an abbreviated LOCATE command with the anchor postfix "A", The
up-arrow (+) prefix tells XEDIT to begin the search at the top of the file, XEDIT correctly finds
"Frank Scott" instead of "Scott Kramer",

Notice that when using the anchor "A" postfix character, the only requirement is that the first character
of the string be found within the window.

USING THE WINDOW (W AND A POSTFIX CHARACTERS)

Once a window has been defined, the user can request that the window restraints be used by appending
either a "W' or "A" postfix character to the end of any of the string search commands. Thus legal
commands would be:

LOCATEW CHANGEW CHANGESW DELETEW COPYW COPYDW
LOCATEA CHANGEA CHANGESA DELETEA COPYA COPYDA

The corresponding command abbreviations are also allowed to have a postfix character,
The "W" or window postfix character requires that all characters in the string specified by string or

stringl.,.,.string2 or stringl---string2 must reside within the window area, otherwise, the string is not
found by XEDIT.

The "A" or anchor postfix character requires that only the first character of the string specified by
string or stringl.,.string2 or stringl---string2 must reside within the window margins, otherwise, the
string is not found by XEDIT. All other characters can extend beyond the windowed area.

Consider the following example where the window is defined by issuing a WMARGIN 4 11 on the following
text:

ABCDEFGHIJKLM
I window
Locate within the window string 'EF"' followed by '1J':
LW/EF...1J3/ succeeds
Locate within the window string 'EF' not followed by "M":
LW/EF---M/ succeeds

Locate within the window string 'CDEF' followed by '1J':

LW/CDEF.. .13/ fails

76071000 C 2-27e

Locate within the window string 'EF' not followed by 'H':
LW/EF---H/

Locate within the window the anchor of string 'EF' followed by 'KLM':

LA/EF...KLM/

Locate within the window the anchor of string 'KLM':

-~ & Jwr Vs

A/KLM/

Locate within the window the anchor of string 'EF' not followed by 'M':

LA/EF---M/

Locate within the window the anchor of string 'CDEF' followed by 'LJ':

LA/CDEF...13/

fails

succeeds

succeeds

fails

fails

Locate within the window the anchor of string 'DEF"' not followed by 'ZZ':

LA/DEF---2Z/

Test the window to see if it does not include string 'LM"':

LW/---LM/
or
LA/~--LM/

Change within the window string 'EF"' followed by '1J" to 'XX':

CW/EF...1J/XX/
Change within the window string 'JKL' to 'XX'; do not move pointer:
CW/JKL/XX/0
Change the anchored string 'JKL' to 'XX':
CA/JKL/XX/

Insert string 'XX' at the beginning of the window:
CW//XX/

or

CA//XX/

CAUTION

succeeds

succeeds

succeeds

produces

produces

produces

produces

produces

'ABCDXXKLM!'

'STRING NOT FOUND'

'ABCDEFGHIXXM'

'ABCXXDEFGHIJKLM'

'ABCXXDEFGHIJKLM!'

All of the above examples assume that the window 4 through
11 (DEFGHIJK) is defined for a one-line file with text
ABCDEFGHIJKLM. If the user wants to run these examples
sequentially, the RESTORE command should be issued after

each example is executed.

®2-28

76071000 C

LINE EDITING

Users can modify entire lines under XEDIT by issuing a series of line editing commands, These com-

mands are discussed in the following section.

DELETING LINES (DELETE COMMAND)

Users can deleie entire lines from their files by employing DELETE commands in four different ways: §

e By deleting a sequence of lines starting from the current pointer position.

o By deleting selective lines on the basis of specified string criteria.

e By deleting a single line with a specified string without moving the line pointer if the string is

not found.

e If the user wants to restrict what columns the specified string should occur in before the line
deletion takes place, the windowing feature can be used with the DELETE command (see

WMARGIN command).

See also the COPYD command for additional ways of deleting lines.

Once a DELETE command has been executed, the file pointer is positioned at the line that appears
after the last deleted line, The forms of the DELETE command are:

where:

n = number of lines (starting at the
current pointer position) which should
be deleted. Highest allowable value =
99999; default value = 1, When users
want to delete all lines which appear
between the current pointer position
and END OF FILE, they should enter
an *, A value =0 assumes n = 1.

76071000 C

Example
?? 130
00130 B.P.PEEPERS
?? DELETE 3

00130 B.P.PEEPERS

00140 116 WEST ELM DRIVE ZIP 55648

00150 EXT 3222

2?2 190

00190 P.T. BEE

?? XDELETE* |
END OF FILE

22

Explanation: User positions pointer to line 130,

then issues a DELETE command which specifies
that (starting at the current pointer position) three |
lines should be deleted. XEDIT responds by veri-
fying which three lines are deleted,

In the next sequence, the user positions pointer to |
line 190, Then, he issues a DELETE command to
remove all lines that appear between line 190 and
END OF FILE, XEDIT indicates the END OF

FILE was encountered, but does not verify which l
lines were deleted since the X prefix was used.

2-29

Format

DELETE/string/n @

or

D/string/n

where:

string = string of alphanumeric characters
that XEDIT will use as a criteria
for locating which lines to delete,

b = number of lines (starting at the
current pointer position) that should
be deleted if they meet the user-
specified string criteria, Highest
allowable value = 99999; default
value = 1. Users can enter an *
if they want to delete every line
that appears between the current
pointer position and END OF FILE
as long as it meets the specified
string criteria. If n = 0 and the
string is not in the line, the pointer
position remains the same, an in-
formative message is issued, and
the line is not deleted.

Format

DELETE/stringl. . .string2/n (CB)

or
D/stringl. . .string2/n @
where:

stringl,..string2 = two strings of alphanumeric
characters (existing within
a single line) that establish
the string criteria upon
which XEDIT will base its
deletion, These specified
strings will constitute the
deletion criteria even though
they may be separated in a
line by an indeterminate num-
ber of other characters or
phrases.

2-30

Example

?? DELETE/EXT/*
00120 EXT 6533
00150 EXT 227
00159 EXT 5339
00180 EXT 8866
00210 EXT 18
END OF FILE

27

Explanation: User issues a DELETE command to
delete every line in the file which containg the
word (that is, string) EXT,

NOTE

This assumes that the initial pointer position
was the beginning-of-file, XEDIT responds
by verifying which particular lines were
deleted,

Example

2?2 PRINT*

00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP CODE 55722
00120 EXT 6533

00130 A.B. MACDONALD

00140 1313 LEMONTREE AVE ZIP CODE 55722
00150 EXT 5339

00160 T.G. SLATER

00170 322 WILSHIRE ST ZIP CODE 55723
00180 EXT 67

00190 R.C. CARTER

00200 6100 WILSHIRE ST ZIP CODE 55722
00210 EXT 1101

END OF FILE

?? DELETE/WILSHIRE ST...55722/#*

00110 1544 WILSHIRE ST ZIP CODE 55722
00200 6100 WILSHIRE ST ZIP CODE 55722
END OF FILE

22

76071000 C

n = number of lines that the user wants

to delete if they meet the specified
stringl,.,string2 criteria, Highest
allowable value = 99999 ; default
value =1, I the user wants to
delete every line which falls between
the current pointer position and END
OF FILE and meets the stringl...
string2 criteria, an * should be
entered for this parameter. If

n =0 and the stringl...string2
string is not in the line, the pointer
position remains the same, an in~-
formative message is issued, and
the line is not deleted.

Format

DELETE /stringl---string2/n (CB)

or

D/stringl—-string2/n B

where:

stringl~~~gtring2

delete n lines which contain

76071000 C

stringl but not followed by
string2. Stringl can be null
(that is, not specified), in
order to delete n lines which
do not contain string2.

user wants the pointer posi-
tioned to the nth line which
meets the criteria esta-
blished by the stringl---
string2 entry. Highest
allowable value = 99999;
default value = / (that is,
the user wants to delete n
lines which contains stringl
but not followed by string2).
If n = 0 and stringl is not in
the line, the line-is not
deleted, the pointer position
remains the same, an infor-
mative message is issued,
and the line is not deleted.

[|=]
]

Explanation: User issues a PRINT command to
list the entire file; XEDIT complies. Then, he
issues a DELETE command to remove every line
in the file that contains WILSHIRE ST and 55722,
XEDIT responds by verifying which lines were
deleted.

Example

?? DELETE/WILSHIRE/

00010 3780 WILSHIRE AVE ZIP 55722
?2 RESTORE

?? DELETE/WILSHIRE-—--AVE/

00110 1544 WILSHIRE ST ZIP 55722
22

Explanation: The user has a file of addresses and
wants to delete Wilshire Street. In the first entry,
the user attempts to delete Wilshire Street by
specifying only the string WILSHIRE and XEDIT
responds by deleting a line which contains
WILSHIRE AVE, Since this is not what was
desired, the user issues a RESTORE command to
reinstate the accidentally deleted line, The user
issues a second DELETE command, this time
specifying that a line with the string WILSHIRE
but not followed by AVE should be deleted.

2-31e

REPLACING LINES (REPLACE COMMAND)

REPLACE commands allow users to replace a specific number of existing file lines (starting at the
current pointer position) with a same number of substitute lines. After the user issues the command,
XEDIT transmits a single question mark to inform the user that he should enter his substitute line.
This procedure is repeated until the user has submitted the number of lines specified in the original
REPLACE command,’ These commands take the following form:

where:

1 = number of lines starting at the current
pointer position which the user wants
to replace. Highest allowable value
= 99999; default value =1, When
users want to replace every line from
the current pointer position to END
OF FILE, they should enter an *
for this parameter value. A value =0
assumes n = 1,

INSERTING NEW LINES

?2?2 170

00170 POB 55 ZIP 55703

?? REPLACE 2

? 00170 18 PARK PLACE APT 111 ZIP 55704

? 00180 EXT 8866
??

Explanation: User positions pointer at line 170,

then igsues a REPLACE command indicating that
two lines (starting at line 170) should be replaced.
XEDIT sends a single ? indicating user should
enter his first replacement. User reacts by
adding a modified address. Subsequently, XEDIT
sends the second single ? and the user enters a
modified extension number,

Users can insert entire new lines into a file, without affecting any existing lines, in three different

ways:

® Issuing INSERT commands -- to insert a specific number of lines after the current pointer

position

® Issuing INSERTB commands ~- to insert a specific number of lines in front of the current

pointer position

® Entering INPUT mode by performing a carriage return or issuing an INPUT command -~ to
insert any number of subsequent user-specified lines after the current pointer position

TIf the user performs a carriage return without any accompanying entries, XEDIT exits REPLACE
mode and requests that the next command be entered (a double question mark: ??), To replace with
a blank line, the user enters a space and presses carriage return,

2-32

76071000 C

INSERT Command

INSERT commands iet a user insert a specific number of entire new lines into a file immediately afier
the line designated by the current pointer position, Once the user submits the INSERT command,

XEDIT transmits a single question mark (to indicate the user can now enter his initial line for insertion).
The process of issuing the inserted lines one line at a time is repeated until the user has submitted the
specified number of lines.T After the user transmits the final insert, XEDIT positions the pointer at

the last inserted line, INSERT commands take the following form:

Format Example
INSERT n €B) 27 120
00120 EXT 6533
or ?? INSERT 3
In @ ? 00130 A.B. NEWTON
= ? 00140 166 HASKELL CIRCLE ZIP 55713
? 00150 EXT 227
where: ?? APRINT* |
NAMES/ADDRESSES ARE FICTITIOUS
n = number of lines which the user 00100 M.T. JONES
value = 99999; default value =1, 00120 EXT 6533

00130 A.B. NEWTON

00140 166 HASKELL CIRCLE ZIP 55713
00150 EXT 227

00160 Q.E. SMITH

00170 18 PARK PLACE APT 111 ZIP 55704
00180 EXT 8866

00150 P.T. BEE

00200 8710 14TH ST ZIP 55713

00210 EXT 18

END OF FILE
22

Avalue = 0 assumesn=1,

Example Explanation: User positions pointer to line 120, Subsequently, he issues an INSERT com-
mand to specify that three new lines should be inserted immediately after line 120 (that is, the current
pointer position), XEDIT responds by transmitting a single question mark and the user reacts by
entering a new line that contains an employee name. This pattern is repeated twice more as the user
enters new lines containing an address and a phone extension.

To check this sequence, the user issues a PRINT command with an up-arrow (+) prefix to reposition
the pointer at the top of the file, Accordingly, XEDIT prints every line in the file and the user can
see where the new lines (130-150) were inserted,

' T’Tf the user performs a carriage return without any accompanying entries, XEDIT exits INSERT mode
and requests that the next command be entered (a double question mark: ??), To insert a blank line,
the user enters a space and presses carriage return,

76071000 C 2-33

INSERTB Command

When users want to insert a specific number of lines into a file in front of the line designated by the
current pointer position, they do so by issuing INSERTB commands. Accordingly, the user enters

an INSERTB command indicating how many lines should be inserted. XEDIT responds by transmitting
a single question mark (to indicate the user should enter the top-most line that is part of the insert
sequence), This procedure of XEDIT prompting/user entry continues until the user has issued the
same number of inserted lines as he specified in the initial INSERTB command. After XEDIT finishes
executing an INSERTB command, the pointer remains at the original position it occupied before the
command was first issued, INSERTB commands take the following form:

Format

INSERTB2 B
or

Bg@

where:

n = number of lines which the user wants
to insert, Highest allowable value =
99999; default value =1, A value =0
assumesn=1,

Example

?? 160

00160 Q.E. SMITH

2? INSERTB 3

? 00157 A.P. MACDONALD

? 00158 1313 LEMONTREE AVE ZIP 55722
? 00159 EXT 5339

?? 140PRINT6

00140 166 HASKELL CIRCLE ZIP 55713
00150 EXT 227

00157 A.P. MACDONALD

00158 1313 LEMONTREE AVE ZIP 55722
00159 EXT 5339

00160 Q.E. SMITH
22

Example Explanation: User positions pointer to line 160. Subsequently, he issues an INSERTB com-
mand to insert three new lines that should be placed in front of line 160, After XEDIT transmits the

first single question mark, the user enters the line (that is, line 157) which he wants to appear as the
top-most line of the new three-line sequence. This XEDIT-prompting/user-entry pattern is repeated
twice more as the user enters lines 158 and 159. Then, the user enters a PRINT command of six lines
beginning at line 140 to check how XEDIT processed the preceding insertion. As the file listing indicates,
lines 157, 158, and 159 were sequentially inserted between lines 150 and 160.

INPUT Mode Entries (Carriage Return or INPUT/EDIT Commands)

When users want to insert an unspecified number of new lines into a file, they can enter INPUT mode

in either of the following two ways:

1. press carriage return (only for interactive usage); or

2, enter the INPUT command (for either interactive or batch usage).

Either of these methods enable the user to enter lines for insertion into the file immediately after the

current pointer position,

TIf the user performs a carriage return without entering any accompanying data, XEDIT exits INSERTB
mode and requests that the next command be entered (a double question mark: ??), To insert a blank
line, the user enters a space and presses carriage return,

2-34

76071000 C

Carriage Refurn Method

The sequence of steps for the carriage return method include: 1) users enter a carriage return instead
of a command, 2) XEDIT responds by printing the word INPUT, followed on a separate line by a single
question mark, 3) users terminate this procedure by pressing the carriage return instead of entering
a new line of information, 4) XEDIT indicates this insertion procedure is now finished by printing the
word EDIT, 5) XEDIT then transmits a double question mark to indicate that users are now expected to

issue an appropriate XEDIT command,

An example of entering INPUT mode using the carriage return method is shown below.

Example

Explanation
User positions pointer to line 120,

?2 120
00120 EXT 6533
2?2 -

INPUT

User presses carriage return.

00121 M.C.GREENWAY
00122 867 MISSION ST ZIP 55744

XEDIT indicates that the user can now enter appro-
priate new lines for insertion.

00123 EXT 1500
00124 SPECIAL CLASS**SUPERVISOR
00125 EMP: 12
00126 LIST: C

AV IRV IRV IRV IRV S]

XEDIT transmits a series of single question marks,
User reacts to each one by entering a line for in-
sertion,

EDIT -

User presses carriage return to terminate the

?? 77

] insertion procedure.

27 P *]
NAMES/ADDRESSES ARE FICTITIOUS
00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP 55722
00120 EXT 6533
00121 M.C.GREENWAY
00122 867 MISSION ST ZIP 55744
00123 EXT 1500

XEDIT indicates that normal editing can now con-
tinue.

User issues abbreviated TOP and PRINT commands
to check the insertion process.

—— During file listing, user can see that the newly
inserted lines were correctly placed after line 120

(the original pointer position).

00124 SPECIAL CLASS**SUPERVISOR
00125 EMP: 12
00126 LIST: C
00130 A.B. NEWTON

00140 166 HASKELL CIRCLE ZIP 55713
00150 EXT 227

00170 A.P. MACDO
??

User terminates listing by pressing the break key,

76071000 C

2-35

INPUT/EDIT Command Method

The user may also enter and exit INPUT mode by issuing INPUT and EDIT commands respectively
instead of pressing carriage return, This is especially useful when doing batch processing with XEDIT
(see appendix C on '"XEDIT Batch Command Processing'). In addition, it has an advantage over the
carriage return method, The user can issue a useful subset of XEDIT commands while under INPUT
mode to make "spot" changes to the line just entered, Thus, if an error was made in entering 2 line
while under INPUT mode, the user does not have to exit INPUT mode to make the correction,

To use the INPUT/EDIT method, the user must issue an escape character on the INPUT command. The
escape character is subsequently used during INPUT mode as a prefix character for any XEDIT command
lines which do not move the pointer. The escape character will remain in effect until the user issues
another INPUT command, even if the user exits and reenters INPUT mode via a carriage return.

During input, if the user enters a line with the escape character as the first character, XEDIT will
strip off the escape character and will execute the rest of the line as a command line. As long as the
user remains in INPUT mode, any command which repositions the pointer is illegal (specifically
DELETE cannot be used -~ use REPLACE instead). XEDIT requires all specified command line repeti-
tion counts (n parameter) to be zero or null, otherwise ARGUMENT ERROR is issued.

Upon completion of the escaped command sequence or if a syntax error occurred, XEDIT will auto-
matically return the user to INPUT mode, He can then continue to enter lines of input or can exit
INPUT mode,

Format Example
INPUT e @ ??2 120
and 00120 EXT 6533
?? INPUT §
e EDIT @ INPUT

? 00121 M.C.GREEENWAY
? SCHANGE/EEE/EE/
00121 M.C.GREENWAY

? 00122 867 MISSION ST ZIP 55744
e = escape character; any character ? SEDIT

except space or an existing command EDIT
delimiter (DELIMIT), To get a comma, ??
use (INPUT,,)., K e is the same as

the tab character (DEFTAB), the tab

character cannot occur in column one

since it will be interpreted as an

escape character,

where:

Example Explanation: User positions pointer to line 120, The user then issues the INPUT command
with the dollar sign ($) as the escape character, XEDIT responds by indicating that is is now ready

to accept lines of INPUT to be inserted after the current pointer position, In entering a line, the user
notices that he spelled GREENWAY wrong so he issues a CHANGE command prefixed by the escape
character ($) to indicate that he wants the command executed, rather than being used as another line of
text, XEDIT verifies that the change was made and requests more lines of input, The user enters
another line of text and then exits INPUT mode to go back into normal command EDIT mode by entering
the EDIT command prefixed with the escape character ($). The escape character enables XEDIT to
distinguish between text input and command line input.

®2-36 76071000 C

Batch users should note that the use of the INPUT and EDIT commands is the only way to enfer and exit
INPUT mode, and the escape character must be specified with both INPUT and EDIT.

NOTE

Users of multiple commands (that is, Z or Y commands) can
make use of INPUT mode by using the INPUT command as
one of the commands in the list.

The following example, which uses a dollar sign as the user's command delimiter, illustrates this:

Z$XLOCATE/R.M,.SMITH/$INPUT

INSERTING A BLANK LINE AT TOP OF A FILE (TOPNULL COMMAND)]

Under certain circumstances, a user may want to insert a blank line as the first line in a file, This
most commonly occurs when the user wants to delete leading record marks, but is prohibited from
this since XEDIT always searches the file for the first line, This command will allow the user to
write a blank line before the leading record marks. The user can then issue a DEOR command to
delete the record marks, The following command format and example illustrate how to employ
TOPNULL,

Format Example

TOPNULL OLD,BPGM
READY.
XEDIT

TN @ XEDIT 3.0.0
~-EOR--
-~EOR--
?? PRINT*
00200 PRINT "SOR EXAMPLE"
00210 INPUT N
00220 PRINT SQR(N)
00230 END
END OF FILE
~~EOR~=
~-EOR-~
?? TOPNULL
?? XDEOR2
?? ADELETE
?? PRINT*
00200 PRINT "SQR EXAMPLE"
00210 INPUT N
00220 PRINT SQR(N)
00230 END

END OF FILE
?2?

Example Explanation: User calls XEDIT to edit a file called BPGM, As his first XEDIT command, the
user issues a PRINT command to list the contents of BPGM. XEDIT responds by listing the entire
BPGM file which shows that it contains leading record marks. Next, the user issues a TOPNULL
command to insert a blank line as the first line in the BPGM file, (The file pointer is now set to this
null line.) Then, he proceeds to issue a DEOR (with an X pref1x) command to delete the leading record
‘marks, After XEDIT inserts HDR file info BPGM, the user issues a DELETE command (with a 4
prefix) to delete the first line in the file (that is, the blank line). Finally, the user issues a PRINT
command to check how the BPGM file was modified (that is, to see whether the two record marks were
in fact deleted from the beginning of the BPGM file),

76071000 C 9-37 e

EDITING LINE NUMBERS

XEDIT users can issue a series of commands to modify the line numbers that appear in their files.
A set of general conventions apply to all of the line numbering commands. These include:

1.

2,

Before any line numbering command is executed, the file pointer is automatically set to the
beginning-of-file position,

After all line numbering commands are executed, XEDIT sends the following message to indi-
cate that the specified line number editing was executed throughout the entire file:

END OF FILE
Subsequently, the pointer is automatically repositioned to the beginning-of-file,

If a line numbering command causes the edited file line to exceed 160 characters, then
XEDIT truncates the edited line and sends an appropriate informative message.

No line number can ever exceed a value of 99999, If a line numbering command results in a
modification which breaks this rule, the file will be restored to its original condition, an infor-
mative message will be issued, and the pointer will be positioned to the beginning-of-file.

Line numbering commands are primarily intended for editing line-numbered card-image text
files and programs written in time-sharing FORTRAN Extended. However, these commands
are unacceptable for use on BASIC programs, since BASIC branch line numbers are not
modified by these commands.

XEDIT does not verify the effects of any line numbering command (even if verify mode is
operational),

ADDING LINE NUMBERS (ADDLN AND ADDLNS COMMANDS)

Two different XEDIT commands allow users to add line numbers to a file where none previously existed:

ADDLN commands -- apply only when a line number is added to each line'

ADDLNS J;:ommands -~ apply when both a line number and a trailing blank space are added to
each line

TIf line numbers already exist in the user's file, ADDLN and ADDLNS will add another set of line
numbers to that file,

2-38

76071000 C

ADDLN Command

When userg want {o add a line number fwithout a trailing space) to every line in a file, they can enter
an ADDLN command in the following form:

Format Example
ADDLN In n ?? p* .
M.T. JONES
or 1544 WILSHIRE ST 2ZIP 55722
EXT 6533
ALN Inn @ A.B. NEWTON
166 HASKELL CIRCLE ZIP 55713
EXT 227
where: A.P. MACDONALD
1313 LEMONTREE AVE 2IP 55722
In = line number that should be assigned EXT 5339
to the first line in the user's file, f’XDAgi LI\FT Izﬁo.lo 10
No line number can ever exceed END OF FILE
99999. M_'—' 1. ?? p*
00010 M.T. JONES
n = number by which each line number 00020 1544 WILSHIRE ST ZIP 55722
in the file will be incremented, No 00030 EXT 6533
line number can exceed a value of 00040 A.B. NEWTON
99999, Default = 1. 00050 166 HASKELL CIRCLE ZIP 55713

00060 EXT 227

00070 A.P. MACDONALD

00080 1313 LEMONTREE AVE ZIP 55722
00090 EXT 5339

END OF FILE

?2?

Example Explanation: After listing his file (notice how the first character in each file line is a blank),
the user issues an ADDLN command, The first line in the file is to be given a line number of 00010
and each succeeding number is to be incremented by 10, Finally, the user issues a PRINT command
to check effect of the ADDLN command,

ADDLNS Command

When users want to add both a line number and a trailing blank space to every line in a file, they
should enter an ADDLNS command in the following form:

Format Example
ADDLNS In n @ 27 p#
Q.E. SMITH
or 18 PARK PLACE APT 111 ZIP 55704
ALNSInn €B) EXT 8866
- P.T. BEE
here: 8710 14TH ST ZIP 55713
where: EXT 18
END OF FILE
In = line number that should be assigned ??2 ADDLNS 00200 10
to the first line appearing in the user's END OF FILE
file, No line number can ever exceed 2?2 p*
99999, Default =1, 00200 Q.E. SMITH

76071000 C 2-39

Format Example

b = humber by which each line number 00210 18 PARK PLACE APT 111 ZIP 55704
will be incremented., Noline num- 00220 EXT 8866
ber can ever exceed 99999, Default = 00230 P.T. BEE
1. 00240 8710 14th ST ZIP 55713

00250 EXT 18

END OF FILE
??

Example Explanation: After listing his file (notice how all lines begin flush left, without a leading blank),
the user issues an ADDLNS command, Accordingly, the first line will be assigned a line number of
00200 and each succeeding line will be given a number that is incremented by 10, Finally, user issues

a PRINT command to check the results of the ADDLNS command.,

DELETING LINE NUMBERS (DELETELN COMMANDS)

DELETELN commands let users remove every existing line number from a file. This command takes
the following form:T

Format Example

DELETELN @ ?? p*

00100 M.T. JONES
or 00110 1544 WILSHIRE ST ZIP 55722

00120 EXT 6533

DLN @ 00130 A.B. NEWTON

) 00140 166 HASKELL CIRCLE ZIP 55713

00150 EXT 227
?? DELETELN
END OF FILE
27 p*
M.T. JONES
1544 WILSHIRE ST ZIP 55722
EXT 6533
A.B. NEWTON
166 HASKELL CIRCLE ZIP 55713
EXT 227
END OF FILE
??

Example Explanation: After listing his file, the user issues a DELETELN command to delete every
line number from that file. Then, the user issues an abbreviated PRINT command to check the results
from the preceding command.

T

DELETELN commands have no effect on a file line unless the line is preceded by a line number.

2-40 76071000 C

REPLACING EXISTING LINE NUMBERS (REPLACELN COMMAND)

When users want to replace an existing set of line numbers with a different set of line numbers, they
can do so by entering REPLACELN commands in the following form:T

Format

REPLACELNInn B

or

RLNInn €B)

where:

In = line number that should be assigned
to the first line appearing in the
user's file. No line number can
exceed 99999, Default =1,

h = number by which each line number
will be incremented, No line num-
ber can exceed 99999, Default =1,

Example

2?2 p*

00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP 55722
00120 EXT 6533

00130 A.B. NEWION

00140 166 HASKELL CIRCLE ZIP 55713
00150 EXT 227

END OF FILE

?? REPLACELN 00500 5

END OF FILE

22 P*

00500 M.T. JONES

00505 1544 WILSHIRE ST 2IP 55722
00510 EXT 6533

00515 A.B. NEWTON

00520 166 HASKELL CIRCLE ZIP 55713
00525 EXT 227

END OF FILE

??

Example Explanation: After listing contents of the file, the user issues a REPLACELN command,
This command indicates that the first line number in the new set of line numbers should be 00500 and
be incremented by 5. Subsequently, user lists the edited file to check the effects of the REPLACELN

command,

PERFORMING MISCELLANEOUS EDITING

The following XEDIT commands let a user perform various miscellaneous editing functions:

DBADL command -~ to delete "bad' lines from the file

DEOF command -- to delete end-of-file marks from the file
DEOR command -- to delete end-of-record marks from the file
DLBLANKS command -~ to delete leading blanks from file lines
OCTCHANGE command -- to convert display code strings
WEOF command -- to write end-of-file marks onto a file
WEOR command -- to write end-of-record marks onto a file

1.REPLAC ELN commands will not affect any line unless it is preceded by a line number.

76071000 C

2-41

DELETING "'BAD' LINES (DBADL COMMAND])

User can delete lines which do not begin with a line number (that is, "bad' lines) by issuing DBADL
commands., Accordingly, starting at the current pointer position, XEDIT will locate and delete as
many 'bad" lines as are specified in the user's n parameter, When XEDIT operates in VERIFY mode,

the editor automatically lists each line that is deleted.

Format Example
DBADL n @ ?? DBADL*
NAMES/ADDRESSES ARE FICTITIOUS
or END OF FILE
DBLn €B) 22
where: Explanation: User issues DBADL command to

delete every '"bad' line in the entire file (that is,

n = number of "bad" lines which the user pointer is positioned to beginning-of-file). XEDIT

wants to delete (starting at the current verifies that it deleted one line in response to the

pointer position)., Highest allowable above command (that is, the file only contained

value = 99999; default value = 1, one "bad" line),

Users enter an * when they want to

delete every '"bad" line between the

current point position and END OF

FILE. A value =0 assumesn = 1.

DELETING AND INSERTING RECORD AND FILE MARKS
{DEOR, WEOR, DEOF, WEOF COMMANDS)

XEDIT users can both insert and delete record and file marks. DEOR and DEOF commands enable
users to delete these marks, while WEOR and WEOF commands allow users to insert them.

DEOR Command

By ig'_suing DEOR commands, users can delete a specified number of end—of-record marks from the
file,

Format Example

DEOR m @ 27 p#

00190 P.T. BEE
or 00200 8710 14th ST ZIP 55713
DR m @ ~~EOR--
- 00210 EXT 18
##H#EXECUTIVE LISTINGH###
END OF FILE
?? DEOR*
--EOR—-

END OF FILE
22

TIf the user wants to delete an end-of-record mark that appears in front of the first line in the file,
he must first issue a TOPNULL command.

2-42 76071000 C

where:

m = number of end-of-record marks which
the user wants to delete (starting at
the current pointer position), Highest
allowable value = 99999; default value
=1, User should enter an * when
they want to delete every end-of-
record mark between the current
pointer position and END OF FILE,

A value = 0 assumes m =1,

DEOF Command

Explanation: After listing a portion of his file,

the user discovers where an inadvertent end-of-
record appears. Subsequently, he issues a DEOR
command to delete that mark,

By issuing DEOF commands, users can delete a specified number of end-of-file marks from the file.

where:

m = number of end-of-file marks which
the user wants to delete (starting at
the current pointer position), Highest
allowable value = 99999; default value

=1, User should enter an * when they

want to delete every end-of-file mark
between the current pointer position
and the end-of-information., A value
=0assumes m=1,

Example

?? p*

00190 P.T. BEE

00200 8710 14TH ST ZIP 55713
-—EOF~—

00210 EXT 18

###EXECUTIVE LISTING###

END OF FILE

?? DEOF*

~—-EOF~-

END OF FILE
?2?

Explanation: After listing a portion of his file,
the user discovers where an inadvertent end-of-
file appears. Subsequently, he issues a DEOF
command to delete that mark,

CAUTION

The DEOF command will delete only end-of-file marks, not
end-of-record marks created by the WEOF command.

WEOR Command

When users want to insert an end-of-record mark into the file in front of the current pointer position,
they can do so by issuing a WEOR command in the following form:

76071000 C

Example

?? LOCATE/EXECUTIVE/
###EXECUTIVE LISTING###
?? WEOR

?? +LOCATE/BEE/

00190 P.T. BEE

?? p*

001U BT BEE "+ e
00200 EXT 18

~-EOR--

###EXECUTIVE LISTINGH###
END OF FILE

??

2-43

Example Explanation: After positioning the pointer to the line which contains the word EXECUTIVE,
the user issues a WEOR command to insert an end-of-record mark in front of that line. Then, the
user issues an abbreviated PRINT command to check whether the end-of-record was correctly inserted.

WEOF Command

When users want to insert an end-of-file mark into the file in front of the current pointer position, they
can do so by issuing a WEOF command in the following form:

Format Example
WEOF (B ?? LOCATE/EXECUTIVE/
###EXECUTIVE LISTINGH###
or ?? WEOF
?? +LOCATE/BEE/
WF @ 00190 P.T. BEE
?? p*

00190 P.T. BEE

00200 8710 14TH ST ZIP 55713
00210 EXT 18

—-EQF——

##HEXECUTIVE LISTING###

END OF FILE

2?

Example Explanation: After positioning the pointer to the line which contains the word EXECUTIVE,
the user issues a WEOF command to insert an end-of-file mark in front of that line. Then, the
user issues an abbreviated PRINT command to check whether the end-of-file was correctly inserted.

CAUTION

When using WEOF, the system will often force an end-of-record
mark before the end-of-file mark.

DELETING LEADING BLANKS (DLBLANKS COMMAND)

DLBLANKS commands enable users to delete leading blanks from a specified number of lines in the file
that appear between the current pointer position and END OF FILE. Blank lines are entirely deleted.

Format Example
DLBLANKS n @ 2?7 p*
NAMES/ADDRESSES ARE FICTITIOUS
or M.T. JONES
1544 WILSHIRE ST ZIP 55722
DLBn EXT 6533
A.B. NEWTON
where: 166 HASKELL CIRCLE ZIP 55713
EXT 227
n =the number of lines with leading END OF FILE
blanks which the user wants leading ?? DLBLANKS#*
blanks deleted (starting at the cur- flgngF FILE
rent pointer position). Highest
TI
allowable value = 99999; default value z#g, Nggf,ggADDRESSES ARE FICTITIOUS ###
= 1. Users should enter an * when 1544 WILSHIRE ST ZIP 55722
they want to delete leading blanks EXT 6533
from all lines which contain leading A.B. NEWTON
blanks between the current pointer 166 HASKELL CIRCLE ZIP 55713
position and END OF FILE., A EXT 227
END OF FILE

value = 0 assumes n=1, oo

® 2-44 76071000 C

Example Explanation: After listing the file, the user issues a DLBLANKS command to delete the single
blank gpace which appears in front of almost every line in the file, Subsequently, the user lists the file
again to see how the DLBLANKS command affected the file.

CONVERTING OCTAL STRINGS (OCTCHANGE COMMAND)

OCTCHANGE commands let the user convert one set of octal code (internal display) to another set of

octal code, Typically, this command is employed when a user wants to enter certain terminal line

controls (for example, line~feeds and carriage returns) into his file that otherwise cannot be specified.

Format

OCTCHANGE octl oct2 n €B)

or
0C octioctz n €R)
where:

octl = octal (display) code that represents
the existing string which will be
changed within the user's file, Each
display code character must be re-
presented by an even number of octal
digits, An odd number of digits (or a
nonoctal character within an octal
parameter) is illegal. See table 2-2
for a list of valid display codes and
their various graphic counterparts.

oct2 = octal (display) code that represents
the string that should replace octl.
Each display code character must
be represented by an even number
of octal digits, NOTE: Unpre-
dictable results occur when char-
acters are changed to 00 codes.
See table 2-2 for a list of valid dis-
play codes and their various graphic
counterparts,

n = number of lines (starting at the cur-
rent pointer position) that should be
affected by the specified conversion
if they contain at least one occurrence
of octl. Highest allowable value = 99999;
default value =1, When users want to
convert every appropriate line between
the currentpointer position-and-END
OF FILE, they enter an * for this
parameter. If n = 0, XEDIT will not
advance the pointer, and any changes
will occur at the current line pointed to.

76071000 C

Example

NEW ,PASS

READY .

ASCIT

READY .

TEXT

ENTER TEXT MODE.

TODAY'S PASSWORD IS:
ORANGE

EXIT TEXT MODE
PACK
READY.
XEDIT
XEDIT 3.0.0
?? DRINT#*
TODAY'S PASSWORD IS:
ORANGE
END OF FILE
?? NEXT
ORANGE
?? XADD
? SSWWWWWWS SMMMMMM
?? +PRINT*
TODAY'S PASSWORD IS:
ORANGES SWWWWWWS3 S MMMMMM
END OF FILE
?? OCTCHANGE 53 7655
BBBHEEE
?? 4+PRINT*
TODAY'S PASSWORD IS:
BEBEBE

END OF FILE
?2?

2-45@

Example Explanation: After listing the file, the user issues a NEXT command to position the pointer

at the second line in the file.

to the end of the line designated by the current pointer position.
see how the ADD command affected the file. Next, the user issues an OCTCHANGE command to have a
carriage return (octal code 7655) replace each instance of dollar sign (octal code 53). After XEDIT
verifies the single line that was modified, the user issues another PRINT command to see how the

entire file was altered.

TABLE 2-2. DISPLAY CODE CONVENTIONS?

Then, he issues an ADD command (prefixed with an X to suppress veri-
fication). In response to the single ?, user indicates he wants to add the string $$§WWWWWWSSMMMMMM
User then issues a PRINT command to

Display Graphic Display Graphic
Code Representation Code Representation
00 : 31 Y
01 A 32 Z
02 B 33 0(zero)
03 C 34 1
04 D 35 2
05 E 36 3
06 F 37 4
07 G 40 5
10 H 41 6
11 I 42 7
12 J 43 8
13 K 4 9
14 L 45 +
15 M 46 -
16 N 47 X
17 o 50 /
20 P 51 (
21 Q 52)
22 R 53 $
23 S 54 =
24 T 55 (Space)
25 U 56 ,
26 v 57
27 w 60 #
30 X 61 [

TFor full ASCII character set, see appendix B of the CYBERNET Interactive Service Time-Sharing
Usage Manual listed in the preface.

2-46

76071000 C

TABLE 2-2. DISPLAY CODE CONVENTIONS (Cont'd)’

Display Graphic Display Graphic
Code Representation Code Representation
62 | 71 ?
63 % 72 <
64 " 73 >
65 _ 74 @
66 ! 75 \
67 & 76 t
70 ! 77 3
TFor full ASCII character set, see appendix B of the CYBERNET Interactive Service Time-Sharing '
Usage Manual listed in the preface.

MANIPULATING FILES

Users can manipulate files during editing by employing the following XEDIT commands:

® COPY -- to copy a particular set of lines from the edited file and write them onto another file |
while keeping the edited file intact.

® COPYD -~ to copy a particular set of lines from the edited file and write them onto another file.
However, in this instance, the copied lines are deleted from the edited file.

® READ -- to copy the contents of specified local files onto the edited file.

® READP -- to copy the contents of specified permanent files onto the edited file.

COPYING SPECIFIED LINES ONTO ANOTHER FILE (COPY AND COPYD COMMANDS)

When users want to copy lines from the edited file and write them onto a separate working (local) file, |
they can issue COPY or COPYD commands. Both of these commands perform the same function,

except that the edited file remains in its original form when COPY commands are issued. However,

the copied lines are deleted from the edited file with COPYD commands. The following rules apply to I
both COPY and COPYD commands.

® The copy process begins at the current pointer position and will include all lines in the file that |
fall between the current pointer position and the position identified by the g_th occurrence of a
specified string. If XEDIT reaches END OF FILE while executing this command, all lines in the
__file between the initial pointer position and END OF FILE are copied to the working file. I

76071000 C 2-47

® After the copy process is completed, the pointer is positioned at the last line which is copied,
or top if END OF FILE is encountered.

® When verify mode is in effect, XEDIT only prints those lines that contain the specified string.

® Before the first copying procedure begins, XEDIT causes the working file to be rewound. Con-
secutive copies onto the same working file result in the copied information begin added to the end
of that working file.

® If the user wants to restrict what columns the specified string should occur in before the line is
copied, the windowing feature can be used with the COPY and COPYD commands (see WMARGIN

command).

The following formats apply to COPY commands:

Format Function
COPY fname n Copies n lines from the edit file onto file fname;
or the edit file remains intact.
COPY fname / string/n @ Copies inclusively all lines from the edit file
or current pointer position to file fname until either

the string line count n is satisfied or END OF
FILE is encountered.

COPY fname /stringl...string2/n @ Same as above except string may be specified as
or two strings (stringl and string2) that are separated
by an indeterminate number of other characters.

COPY fname / stringl-—-stringz/n_ Same as above except that the string count n is
or decremented only when a line contains stringl
which is not followed by string2.

COPY fname /---string2/n Same as above except that the string count n is
decremented only if the line does not contain

string2.

where:

fname = name of the working file onto which the copied lines will be written; fname can be one to
seven alphanumeric characters in length. If fname = OUTPUT, the specified lines are
copied to OUTPUT. This is useful for context printing. If fname = NULL and COPYD
is used, the specified lines are deleted. This is useful for context deletions. The
NULL specification can also be used with COPY.

NOTE

At least one blank must appear before and after the fname
entry, otherwise an error diagnostic will be generated.

®2-48 76071000 C

1 = line or string-line count; number of lines to be copied or number of lines which contain at
least one occurrence of the specified string that XEDIT must locate before terminating its
copying process. Highest allowable value = 99999; default value = 1. When users want to

copy every line between the current pointer position and END OF FILE, an * should be

entered for the n parameter and the string parameter should be left out. If n= 0 and the

string is not found, the pointer position remains the same and the string is not copied;
however, the working file fname is rewound if this is the first COPY specified.

string = string of alphanumeric characters for which XEDIT will search when attempting to terminate

the copy process.

Example

?? LOCATE/*DIVISION/
DIVISION 1#

?? COPY DIVl /*END/
END OF DIVISION

?? END,,RL

ADDRESS REPLACED
ADDRESS IS A LOCAL FILE

READY.

LNH ,F=DIV1
DIVISION 1
00130 A.B. NEWION

00140 166 HASKELL CIRCLE ZIP 55713

00150 EXT 227
00157 A.P. MACDONALD

00158 1313 LEMONTREE AVE ZIP 55722

00159 EXT 5339
00160 Q.E. SMITH

00170 18 PARK PLACE APT 111 ZIP 55704

00180 EXT 8866
END OF DIVISION

Explanation: Initially, user sets pointer to the line which reads *DIVISION 1*, Then, the user issues
a COPY command to copy all entries that fall between the current pointer and the first string which

contains *END onto a local file called DIV1. After issuing an END command to terminate XEDIT pro~
cessing (RL parameter is employed), the user issues a NOS LNH command to review what information

was copied

COPYD commands employ the same parameters as COPY commands. Again, the only difference

onto DIV1.

between these two commands is that the extracted lines are deleted from the edited file when a COPYD

command is issued. COPYD commands take the following forms:

Format

COPYD frame n B

or

COPYD fname /string/n @

or

COPYD fname /stringl. .. string2/n B

I) o

COPYD fname /stringl---string?/n (CB)

or

COPYD fname /-—-string2/n (CB)

76071000 C

Function

Performs the same function as COPY except the
copied lines are deleted from the edit file.

2-49 ®

MERGING FIiLES INTO THE EDITED FiLE (READ AND READP COMMANDS)

When COPY or COPYD is issued using the string parameter,
all lines in the file between the current pointer position and
unti] END OF FILE or the n parameter string-line count is
satisfied will be copied to the file fname. Thus COPY and

CAUTION

COPYD do not merely extract just lines containing the

specified string.

When users want to merge one or more files into the edited file, they employ READ or READP commands.
While both commands function in exactly the same manner, READ commands apply when the user wants to
copy local files. Alternatively, READP commands pertain to copying permanent files and, thus,eliminate

the need for the user to issue NOS, GET, ATTACH, or OLD commands.
govern use of both READ and READP commands.

The following general rules

® The specified local or permanent file is copied onto the edited file after the current pointer

position, starting with the first record, and continuing until either an empty record or until the
first -~EOF-- mark or END OF FILE mark is sensed. Embedded --EOR~- marks are maintained.

@ Once each copying operation is completed, the pointer is positioned at the last line that was

copied onto the edited file.

@ XEDIT rewinds the specified local or permanent files before and after the copying operation.

® If a specified local or permanent file can not be read (for examiple, it does not exist or the user

READP commands employ the following format:

READP fnamel fname2...fnamen

where:

fnamel = name of the first file that the
user wants copied onto the edited
file immediately after the current

fname2 = name of the second file that
should be copied (that is, if
the user wants to copy more

fnamen = name of subsequent files that
the user wants copied in the

2-50

Format

pointer position.

than one file).

sequential order in which
they should appear on the
edited file.

Example

?? p*

EXECUTIVE MANAGEMENT
00100 A.B. KRAMER
00110 J.J. THOMPSON
00120 B.C. MILLER

END OF FILE

2?2 120

00120 B.C. MILLER

?? READP DIVM1 RADI1

?? 4PRINT#*

EXECUTIVE MANAGEMENT
00100 A.B. KRAMER
00110 J.J. THOMPSON
00120 B.C. MILLER

HQR24
SWP19
HOR44

HOR44

HQOR24
SWP19
HQR44

entered the wrong file name), XEDIT immediately terminates its execution of the READ or
READP command without attempting to copy any more specified files.

DIVISIONAL MANAGEMENT--PRT DIVISION

00100 F.R. OLSON
00110 M.L. MORRIS
00120 B.V. ELLIOT
00130 T.C. ROWE
00140 H.K. MCGUIRE

RPTO1
RPT23
RPT24
RPT48
RPT89

76071000 C

RPT RESEARCH AND DEVELOPMENT

00100 E.R. STANLEY RPT55
00110 R.V. HOIM RPT56
00120 W.D. ALTHOLZ RPT57
00130 K.B. BELLMON RPT58
END OF FILE

??

Example Explanation: After listing the file by issuing an abbreviated PRINT command, the user sets
the pointer to line 120. Then, he issues a READP command to copy the DIVM1 and RAD1 files into the

edited file, Subseguently, the user issues a PRINT command with a + prefix to list the modified file to

M 2eiTe HUAMOTHUTILIVAY § ViiT MS T4 aSSuT S At BA LR SO A0 WIC INDQLAACRR AL

see how the READP command affected its contents.

READ commands follow the same format and parameters as READP commands. However, as noted
earlier, READ commands copy each local file while READP commands pertain to permanent files. READ
commands can also be applied to files that were created during an XEDIT operation (for example, via
COPY and COPYD commands). This is useful when the user needs to move text from one part of the file
to another. A local file to be read by the READ command could also have been created by NOS commands
such as GET, ATTACH, OLD, NEW, or LIB.

READ fnamel fname2...fnamen @

GENERALIZED COMMANDS

This section discusses a series of generalized XEDIT commands that apply to the following functions:
® EXPLAIN command — to request a more detailed explanation of an XEDIT message.
® HELP command -- to request information about specific XEDIT commands.
® NOBELLS command -- to tell XEDIT to not ring the user's terminal bell.

® RESTORE command -~ to cancel all editing operations performed since the last time the pointer
was positioned to the beginning-of-file.

® TEOF and TEOR commands -~ to toggle the printing of the messages --EOF-- and --EOR--
respectively.

e WHERE command -- to print the current line count.

® Repeating commands -- to advance the pointer and reexecute the last command that was
entered.

76071000 C 2-51

REQUESTING DETAILED MESSAGE EXPLANATIONS (EXPLAIN COMMAND)

EXPLAIN commands let users request more detailed information about any XEDIT message, such
as an error message that has just printed out or the most recent message that was printed. The
messages that apply to the EXPLAIN command are listed in appendix A. To get a message explained
in detail, the user uses the following form:

Format Example
EXPLAIN 27 GET,PLAN
NO SUCH COMMAND
?? EXPLAIN

EXPLANATION OF-

NO SUCH COMMAND
THE COMMAND IS ILLEGAL OR AN
IMPROPER SEPARATOR WAS USED AFTER

THE COMMAND.

Example Explanation: User enters an illegal command and issues an EXPLAIN command to request an
explanation of the message "NO SUCH COMMAND. "

REQUESTING INSTRUCTIONAL INFORMATION (HELP COMMAND)

HELP commands let users request information about each of the various XEDIT commands. Accord-
ingly, this instructional information can be requested in the following form:

Format Example
HELP, cmd @ ?? HELP,PRINT
PRINT § [P]
or ACTION: PRINT $ LINES STARTING AT
H, cmd @ THE POINTER. THE POINTER IS POSITIONED
= AFTER THE LAST LINE PRINTED.
??
where:
cmd = any valid XEDIT command or its Explanation: User issues HELP command to
abbreviation. Default: If the request information about the PRINT command

user does not enter any command, and XEDIT responds.
XEDIT explains how the HELP

command is used and lists all

XEDIT commands.

SUPPRESSING TERMINAL BELL RINGING (NOBELLS COMMAND)

The NOBELLS command allows the user to turn off the bell that rings when various XEDIT messages
print out. XEDIT defaults to ringing the bell unless the NOBELLS command is issued. The form is

as follows:

Format Example
NOBELLS @ ?? NOBELLS
or ?? PRINT/
NB @ ILLEGAL PARAMETER
??

® 2-52 76071000 C

Example Explanation: User issues a NOBELLS command to prevent the bell from ringing when sub-
sequent messages are printed. The user tests to see if the bell has been locked from ringing by
issuing a PRINT command with an illegal parameter to get the error message ILLEGAL PARAMETER
which normally rings the bell.

CANCELING EDITING OPERATIONS (RESTORE COMMAND)

Users issue RESTORE commands to cancel all the editing operations that have been performed since
the last time the pointer was positioned to the beginning-of-file. Typically, this command is entered
when the user determines that one (or more) recently issued command was not correctly entered or
did not accomplish what the user originally intended. Changes made before the following conditions can
not be restored to their previous state:

1. an END OF FILE message is issued;

2, a TOP command was executed;

3. anup-arrow (+) command prefix was executed;

4, a NEXT -n command was executed; or

5. a find line number (In) command was executed so that a circular (wrap-around) operation was

necessary.
Format Example

RESTORE (CB) 22 XLOCATE/SMITH/

?? DELETE 3
or . 00160 Q.E. SMITH

REST @ 00170 18 PARK PLACE APT ‘111 2IP 55704
00180 EXT 8866
?? RESTORE
?? 160

00160 Q.E. SMITH
2?

Example Explanation: User sets pointer to first line which contains the string SMITH. However, since
the LOCATE command was prefixed by an X, no verification of the current pointer position occurs.
User then issues a DELETE command to delete the next three lines. XEDIT responds by verifying
what lines were deleted. At the time, the user realizes he deleted information about the wrong SMITH.
Consequently, he issues a RESTORE command to cancel the preceding DELETE instruction. To verify
that the information was restored, the user attempts to locate line 160, XEDIT indicates that line 160
was, in fact, restored.

SUPPRESSING THE PRINTING OF F|LE MARKS (TEOF AND TEOR COMMANDS)

TEOF and TEOR commands cause XEDIT to alternate or toggle between printing and no printing of
--EOF-- (end-of-file) messages and --EOR-- (end-of-record) messages. By default, XEDIT is in a
state of printing these file mark messages. To perform this toggle, the user issues commands of the
following form:

76071000 C 2-53 @

Format Example

TEOF @ 2? PRINT*
EXECUTIVE MANAGEMENT

TEOR (CB) -~EOR--
00100 A.B. KRAMER HOR24
00110 J.J. THOMPSON SWP19
--EOR--—
--EOF--—
00120 B.C. MILLER HOR44
END OF FILE
?2? TEOF
2? TEOR
?? PRINT#*
EXECUTIVE MANAGEMENT
00100 A.B. KRAMER HOR24
00110 J.J. THOMPSON SWP19
00120 B.C. MILLER HQR44

END OF FILE
22

Example Explanation: After listing the file by issuing a PRINT command, the user notices that there
are file marks -~EOR-- and ~--EOF-- in the file. The user decides that the file marks should exist in
the file, but does not want them printed on the terminal so the TEOF and TEOR commands are issued.
The user then issues another PRINT command to list the file again as a verification that the —~EOR--
and --EOF-- messages are not printed.

If the user wants to actually delete file marks, rather than merely suppress the printing of them, see
the DEOF and DEOR commands.

Four additional forms of TEOF and TEOR commands exist:

to turn on the printing of ~~EOF~~ messages
to turn off the printing of ~-EOF-- messages
to turn on the printing of --EOR-~ messages
to turn off the printing of --EOR-- messages

PRINTING THE CURRENT LINE COUNT (WHERE COMMAND]

WHERE commands let a user determine the "current line count." Calculated and printed by the editor,
this number indicates how many file lines appear between the beginning-of-file and the current pointer
position.

Format Example

WHERE ’ 22 157
or

00157 A.P. MACDONALD
?? WHERE

9
v €3

Example Explanation: After setting the pointer to line 157, the user issues a WHERE command to
determine how far (that is, in terms of number of lines) line 157 is from the first line in the file.
XEDIT responds by indicating the pointer is now positioned at the ninth line in the file.

®2-54 76071000 C

REPEATING COMMANDS

Users can repeat the execution of the preceding command at a different pointer position by entering a
period followed by an n parameter. In this instance, the n parameter indicates how much further the
pointer should be advanced before the preceding command is reexecuted. Additionally, users can
advance the pointer and reexecute a preceding Z or Y command by entering a minus sign followed by an

n parameter.

where:

Format Example
.n CR ?? PRINT
- @ 00130 A.B. NEWTON
or 2?2 .3
-n @ 00157 A.P. MACDONALD
- 2?2 .3
00160 Q.E. SMITH
22
. = reexecute the preceding normal Explanation: User issues a PRINT command to
XEDIT command. list the line designated by the current pointer
position. XEDIT responds by printing line 130.
- = reexecute the preceding Z or Y Subsequently, the user enters .3 to specify that
command. XEDIT should advance the pointer three lines and
reexecute the PRINT command. XEDIT responds
n = number of lines that the pointer by printing line 157.

should be advanced before re-

executing the preceding com- Finally, the user issues another .3 entry to advance

mand. Default value=1. A the pointer another three lines and reexecute the
value = 0 means execute the last PRINT command. XEDIT reacts by listing line 160.
command without advancing the

pointer.

SUBMITTING MULTIPLE ENTRIES IN A SINGLE LINE

XEDIT users can issue more than one entry in a single line by issuing any of the following command
variations:

DELIMIT commands and delimited command sequences -- to enter more than one command in a
single line separated by delimiters, including editing data (if + prefix is used). Delimited com~
mand sequences enable the user to reduce the amount of time that the user is connected to the
terminal and thereby reduce costs.

Z or Y commands -- to enter séveral XEDIT commands in a single line, including editing data
(if + prefix is used). The primary use of a Z or Y command sequence is to enable the user to
repeat the sequence at a later time by using the -n command (see above).

+ prefix commands within delimited comn ' sequences or Z or Y commands -~ to tell XEDIT
that, for the specified command, editing aa.a will appear as the next delimited item on the same
line as the command itself, instead of the normal primary mput source (single question mark (?)).

76071000 C 2-55

ENTERING MULTIPLE COMMANDS AND DATA (DELIMIT COMMAND])

Users can enter both multiple commands and editing data in a single line by first issuing a DELIMIT
command and then entering several commands and data on a subsequent line. The basic rules governing
this procedure include:

Any valid XEDIT command can appear within the user's single line of delimited commands and
editing data.

The user employs the delimiter specified in the DELIMIT command to separate commands and
editing data.

The delimit character specified in the DELIMIT command stays in effect until the user issues a
subsequent DELIMIT command.

The delimiter used in 2 Y or Z command must not be the same character as the delimiter
specified by the current DELIMIT command execution.

Both commands and editing data (for example, input related to an ADD command) can appear
within a delimited command sequence. However, if a command requires editing data and the user
wishes to include it on the same line as the command, the user should use the + prefix character
(see pages 2-4 and 2-59). Otherwise, editing data is requested as needed via a single question

‘mark prompt.

DELIMIT commands should be issued in the following form:

where:

char = any numeric or special character

2-56

Format Example
DELIMIT char @ ?? PRINT 2
00220 B.P. COLLINS
or 00230 710 ELM ST

?? DELIMIT &

?? +XA& ZIP 55722&+I1&00240 EXT 726&220P3
00220 B.P. COLLINS

00230 710 ELM ST ZIP 55722

00240 EXT 726

2?

DEL char @

(except a space or alphabetic)

which the user wants to establish
as the delimit character. This
character will be used to separate
the several commands or editing
data that appear in a subsequent
line of user entries. Default: If
the user issues a DELIMIT com-
mand and omits the char parameter,
XEDIT assumes the user wants to
clear the effect of an earlier
DELIMIT command. To specify a
comma use: DELIMIT,,

Explanation: User issues PRINT command to list two
lines. After XEDIT responds with the result that the
point is positioned to line 230, the user issues a
DELIMIT command to establish an ampersand (&) as
the line delimiter. Then, the user issues a single
line that contains both commands and editing data.
This multiple input is separated by numerous user-
selected line delimiters. Specifically, this line
contains: 1) an abbreviated + and X prefixed ADD
command, 2) the editing data that accompanies the
ADD command, 3) an abbreviated + prefixed INSERT
command, 4) the editing data that accompanies the
INSERT command, and 5) an abbreviated PRINT
command to list the portion of the file that was
modified by this series of commands, beginning at
line 220. Note the use of the plus prefix to enable
XEDIT to read editing data input from the command
list instead of normal input.

76071000 C

A command sequence using the DELIMIT character should be issued in the following form:

cmdl char cmd2 char ... char emdn

where:

emd = a legal XEDIT command, command data or directives (if plus (+) prefix is used) which the

T user wants to process. XEDIT will execute each command according to its sequential (left
to right) position in the list of component commands. The command or command
parameters must not contain the DELIMIT character char.

char = any legal character as specified by the DELIMIT command-above.

If any command encounters an error, such as ILLEGAL PARAMETER, all remaining commands in the
list are ignored and the editor requests the next command line.

Users can tell XEDIT that command data or command directives will appear as the next delimited item
on the same line as the command itself by making use of the + prefix character (see pages 2-4 and 2-59).
Otherwise, the editing data is requested as needed by XEDIT via a single question mark (?) prompt.

ENTERING MULTIPLE COMMANDS AND DATA (Z AND Y COMMANDS)

7 and Y commands enable users to issue more than one command including editing data (if plus (+) prefix
is used) in a single line. In these instances, the user enters the letter Z or Y, followed by a list of
XEDIT commands. Each command in the list must be separated from the other commands by means of

a user-selected delimiter. While Z commands perform the same function as Y commands, they differ in
their procedural operations. When a Z command is executed, XEDIT prints each component command as
it is processed by the editor. However, Y commands are executed without listing the component command
as it is being processed.

The following basic rules apply to both Z and Y commands:

e Users can issue any valid XEDIT command within their list of component commands except Z
and Y commands. If a DELIMIT command is issued in a Z or Y command, the DELIMIT charac-
ter takes effect only after XEDIT has executed all component commands in the Z or Y command
sequence. In other words, a DELIMIT command character defined within a Y or Z command
sequence does not affect the Y or Z command delimiter. However, the Y or Z command
delimiter should never be the same as a delimiter specified by a DELIMIT command.

e If any command encounters an error, such as ILLEGAL PARAMETER, all remaining commands
in the list are ignored and the editor requests the next command line. This action prevents
XEDIT from accidentally ruining the file with the remaining commands and also allows the user
to use the EXPLAIN command to find out what caused the error.

e Both commands and editing data (for example, input related to an ADD command) can appear
within a Z command. However, if editing data is included, the + prefix character must be
included with the command (see pages 2-4 and 2~59).

. Users can employ any alphanumeric or special character as the command delimiter so long as

that character does not appear within any of the component commands or their command strings,
and provided it is not the same as the DELIMIT command delimiter.

76071000 C 2=5T7e

NOTE

It is highly recommended that users employ dollar signs ($) or
semi-colons (;) as command delimiters, while slashes (/) are

suggested for string delimiters.

suppress this printing.

® 7Z commands cause XEDIT to list each component command as it is executed. Y commands

® Z and Y commands can be reexecuted at an advanced pointer position by entering -n (see page

i 2-55).

Z and Y commands should be issued in the following form:

Format
I Z$cmd1$cmd2$. . . $emdn @
or
| Y$cmdl$emd2$. . . $emdn

where:

$ = command delimiter. This must
be different from the DELIMIT
command delimiter.

cmd = a legal XEDIT command, com-
mand data, or command direc-
tives the user wants to process;
| XEDIT will execute each com-
mand according to its sequential
(left to right) position in the list
of component commands

Example

?? ZSLOCATE/SMITH/$+ADD$ JR.SDELETE/BEE/
?? LOCATE/SMITH/

00160 Q.E. SMITH

?? +ADD

00160 Q.E. SMITH JR.

?? DELETE/BEE/

00190 P.T. BEE

?2?

Explanation: User issues a Z command that con-
tains three component commands (LOCATE, ADD,
and DELETE); in this instance, the user employs
a dollar sign as the command delimiter. As
XEDIT executes each component command, it
prints the command and any appropriate verifi-
cation. First, XEDIT indicates the LOCATE
command has been executed; verification is
printed. Since editing data is required, the user
issues a plus (+) prefix character on the ADD
command. This tells XEDIT to take the next
delimited item as the input string which, in this
case, is the word JR. This is added to the

end of line 160. XEDIT proceeds to verify this
instruction. Finally, the DELETE command is
executed and verified.

76071000 C

ENTERING MULTIPLE COMMANDS AND DATA (+ PREFIX)

Z and Y commands and delimited command sequences normally assume that editing data (that is, input
related to the ADD, INSERTB, MODIFY, QMOD, REPLACE, and YQMOD commands) will be specified
by the user from the normal input source (a single question mark (?)). However, users can tell XEDIT
that editing data will appear as the next delimited item on the same line as the command itself by making
use of the plus (+) prefix character. The format of a command using the plus prefix character is given
in the General XEDIT Conventions section on page 2-4 and as follows:

where:

cmd = one of the following XEDIT

commands:

ADD QMOD
INSERT REPLACE
INSERTB YQMOD
MODIFY

The + prefix will be ignored
by other commands.

Example

?? DEL §

?? L/ADDRESS :/$+INSERT$ZIP CODE:
ADDRESS :

?? APRINT*

NAME :

ADDRESS :

2IP CODE:

END OF FILE

?? ADD$+/ADDSPOB 558+/ADDS55703
? Q.E. SMITH JR

NAME: Q.E. SMITH JR

ADDRESS: POB 55

ZIP CODE: 55703

?? 4APRINT*

NAME: Q.E. SMITH JR

ADDRESS: POB 55

ZIP CODE: 55703

END OF FILE

?2?

Example Explanation: The user issues an abbreviated DELIMIT command to establish a dollar sign ($)
as the line delimiter. Then, the user issues a delimited command sequence that contains both com-
mands and editing data. Specifically, this line contains: 1) an abbreviated LOCATE command, 2) an
INSERT command with the plus (+) prefix, and 3) one line of editing data that accompanies the INSERT
command. The user then issues a tPRINT* to list the entire file to verify that the line was properly
inserted. Next, the user enters a delimited command sequence (commands separated by the dollar
sign ($) delimiter character). The first command in the sequence is an ADD command without a plus
(+) prefix character. Since the plus (+) prefix is not used, XEDIT requests the user to enter a line of
editing data such as Q. E. SMITH JR from the normal input source (single question mark (?)). Next,
the plus (+) and slash (/) prefix characters are issued on two more ADD commands. The editing data
POB 55 and 55703 are added from the same line as the command itself since the plus prefix was
specified. The slash tells XEDIT to skip to the next line before executing the command. Finally, the
user issues another + PRINT* to verify the ADD operation on all lines of the file.

76071000 C

2-59 @

TAB CONTROL

Users can control tab settings during editing by employing the following XEDIT commands:

® DEFTAB -- to define a tab character for subsequent use in entering editing data with the

INSERT, INSERTB, REPLACE, INPUT and

commands.

® LISTAB -- to list the current tab character and tab stop positions.

® TABS -~ to define tab stop column positions.

DEFINING THE TAB CHARACTER (DEFTAB COMMAND)

Users can define a tab character by issuing a DEFTAB command in the following form:

Format -

DEFTAB char CR)

or

DT char €B)

where:

char = the tab character to be used in
entering editing data with the
INSERT, INSERTB, REPLACE
and @ command., Default:
If the user issues a DEFTAB
command and omits the char
parameter, XEDIT assumes the
user wants to clear the effect
of an earlier DEFTAB com-~
mand. In order to avoid confu-
sion on input, there is no default
tab character. To specify a
comma use: DEFTAB,,

® 2-60

Example
?? DEFTAB §
?? INSERT
? SMTDSYTDSTOTAL
?? PRINT
MTD YTD TOTAL

Explanation: User issues a DEFTAB command to
establish dollar sign ($) as the tab character.
Using the tab character with the INSERT command
edit data, the column headings "MTD", "YTD",
and "TOTAL" are created spaced by the default
tab column positions (11 18 30). The user then
enters a PRINT command to verify the tabbing
operation.

76071000 C

DEFINING THE TAB POSITIONS (TABS COMMAND)

Users can define up to eight tab column positions by issuing a TABS command in the following form:

Format Example
TABS t t t, ..ot ?? DEFTAB;
172733 -8 3 27 TABS 5 10 15 20
or ?? INSERT 7
? I, STATISTICS
TAB t. ¢t t ...t ? ;A. PROBABILITY
17273 8 @ ? ;B. EXPECTED VALUE
? ;7 1. AVERAGE
where: ? ;; 2. VARIANCE

"

;2 3. STANDARD DEVIATION
t = tab column positions with increasing +C. REGRESSION THEORY
(left to right) values between 1 and ?? APRINT*
160 inclusive; default values are I. STATISTICS
11 18 and 30 (COMPASS Assembly A. PROBABILITY

" B. EXPECTED VALUE
Language). If the user issues a 1.

Y}

AVERAGE
TABS command and omits the t para- 2. VARTANCE
meters, XEDIT assumes the user 3. STANDARD DEVIATION
wants to clear the effect of an earlier C. REGRESSION THEORY
TABS command. Any tab stops not END OF FILE

?22?

defined have no effect on the tabbing
and any tab characters given in the
input line which occur past the last
tab stop will be copied to the file.

Example Explanation: User issues a DEFTAB command to establish semi-colon (;) as-the tab character.
The user then issues a TABS command to set the tab column positions at 5, 10, 15, and 20. The user
issues an INSERT command and begins inserting lines and the tab character where appropriate tabbing
is desired. Finally, the user enters an *PRINT* command to verify that the tabbing was correctly
performed.

NOTE
Tab positions 15 and 20, although set, were not used in this
example.
LISTING THE TAB SETTINGS (LISTAB COMMAND)

Users can list the current tab character and tab stop column positions by issuing a LISTAB command in
the following form:

Format Example
LISTAB @ ?? DEFTAB;
) ??2 TABS 4 8 12
or ‘ ?? LISTAB
; TABS 4 8 12
T €3 -

76071000 C 2-6l1e

Example Explanation: User issues a DEFTAB command to establish semi-colon (;) as the tab
character. The user then issues a TABS command to set the tab column positions at 4, 8, and 12.
Finally, the user issues a LISTAB command to list the current tab character and tab stop column
positions.

MARGIN AND TRUNCATION CONTROL

During XEDIT processing, the editor operates under control of a maximum line width of 160 characters
which defines how many characters can be entered per editing line. If the user enters more than 160
characters, XEDIT automatically truncates the line and sends the following message:

TRUNCATION AT n
where:

n = number of lines from the beginning of the file where the truncation occurred.

If the user desires more control over truncation and the right margin during editing, the following
commands can be used:

® RMARGIN -~ to set the right margin position.

® FINDLL -- to find lines longer than the current right margin RMARGIN setting.

® TRUNC -~ to truncate long lines as defined by the RMARGIN and the FINDLL commands.

SETTING THE MARGIN (RMARGIN COMMAND)

The RMARGIN command is used for setting the column position of the right margin of a file. Lines
longer than this value are considered to be 'long lines" by the find long line FINDLL command and are
truncated to the right of this position by the TRUNC command. After this command is executed, the
pointer retains its original position.

Format Example
RMARGIN m @ ?? RMARGIN 140
??
or
RM m Explanation: User issues a RMARGIN command
to specify that subsequent FINDLL and TRUNC
where: commands base their operations on a right

margin of 140 characters per line.
m = column position of the right margin
of the file. Range of allowable entries
is 10 to 160,

NOTE

This command only has effect when used in conjunction with the
FINDLL and TRUNC commands.

® 2-62 76071000 C

FINDING LONG LINES (FINDLL COMMAND]

When users want to locate a specific number of long lines, they can issue FINDLL commands, Long
lines are defined as lines which are longer than the current right margin setting (see RMARGIN com-
mand). This command is most useful when the user is operating in verify mq.de since the long lines

are listed in this situation. The following command format is valid for entering FINDLL commands:

Format Example
o N\
FINDLL n @ ?? PRINT*
or *EXECUTIVE MANAGEMENT#*
EX100 S.W. KRAMER HQOR24
FLL n @ EX130 J.J. JOHNSON
= EX120 R.E. MILLER HOR44
EX125 F.R. SCOTT
where: END OF FILE
?? RMARGIN 25
n = number of lines that are longer than ?? FINDLL*
the current RMARGIN setting which EX100 S.W. KRAMER HQOR24
the user wants to locate. An asterisk EX120 R.E. MILLER HOR44
(*) should be used when the user wants f’;D OF FILE

to locate every long line in the file.
Highest allowable value = 99999;
default value = 1. The file pointer will Explanation: A listing is obtained to determine

be positioned at the last long line what right margin setting is needed in order to
encountered unless END OF FILE is locate lines which have fields to the right of the

name field (for example, S.W. KRAMER). The
user decides o get a listing of all lines longer
than 25 characters.

encountered. A value = 0 assumes
n=1i.

TRUNCATING LONG LINES (TRUNC COMMAND)

As mentioned earlier in this section, XEDIT automatically truncates lines greater than 160 characters.
If the user desires more control over what lines get truncated within the 160 character limit, the
TRUNCATE command in conjunction with the RMARGIN and FINDLL commands provide this capability.
The TRUNC command takes the following form:

Format Example
TRUNCATE n @ ?? PRINT*
EXECUTIVE MANAGEMENT
or EX100 S.W. KRAMER HOR24
TRUNC n EX130 J.J. JOHNSON
EX120 R.E. MILLER HQR44
EX125 F.R. SCOTT
END OF FILE

76071000 C 2-630

where:

n = number of lines that are longer than
the current RMARGIN setting which
the user wants to truncate. An
asterisk (*) should be used when the
user wants to truncate every long
line in the file from the current
pointer position. Highest allowable
value = 99999; default value = 1.
The file pointer will be positioned
at the last truncated line unless
END OF FILE is encountered. A
value = 0 assumes n = 1.

?? RMARGIN 25

?? TRUNCATE*
EXECUTIVE MANAGEMENT
EX100 S.W. KRAMER
EX130 J.J. JOHNSON
EX120 R.E. MILLER
EX125 F.R. SCOTT

END OF FILE
2?

Example Explanation: After a listing of the file is obtained, the right margin is set to position 25. The

TRUNCATE command is then issued to truncate all lines greater in length than the RMARGIN setting

(25).

TERMINATING XEDIT EXECUTION

XEDIT users can terminate the editor's execution in different ways by issuing different commands.
These include:

® FILE commands -- to temporarily suspend editing and save the edited file in its intermediate

® END and QUIT commands -- to permanently terminate editing and save the edited file

form

® STOP commands —— to permanently terminate editing without saving any of the editing operations

TEMPORARILY SUSPENDING XEDIT (FILE COMMAND)

FILE commands enable users to temporarily suspend XEDIT execution in order to save an intermediate
version of the edited file. Once the user issues a FILE command, the following procedure takes place:

® XEDIT temporarily terminates its execution.

® The entire edited file is saved as a NOS permanent file in the manner designated by the user-
entered mode parameter, regardless of where the pointer was positioned when the FILE com-

-mand was issued.

® XEDIT processing is resumed after the FILE command is successfully executed. The pointer is

2-64

now positioned to the beginning~of-file.

76071000 C

The form for issuing FILE commands is shown below:

where:

fname = name (1-7 alphanumeric char-

Format

FILE, fname, mode @

or

F, fname, mode @

acters long) of the file onto
which the editing operations
will be written. Default:
If no file name is entered,

XEDIT assumes the name of

the edited file (that is, the file

name specified when XEDIT

was first called). If the user
wants to omit the fname entry,

indicate that omission by
typing an extra comma.
example:

FILE,,SAVE

For

mode = manner in which NOS should
dispose of the intermediate
Valid entries for this
parameter are:

file.

SAVE

S or = edited file should be
saved as a new in-
direct access per-

R or = edited file should
REPLACE replace an existing
(that is, OLD) in-
direct access per-

L or = edited file should be
LOCAL written onto a local

manent file.

manent file.

NOS file.t

Example

2?2 120

00120 EXTENSION 6533
?? CHANGE/EXTENSION/EXT/*
00120 EXT 6533
00150 EXT 227

00159 EXT 5339
00180 EXT 8866
00210 EXT 18

END OF FILE

?? FILE,,R

ADDRESS REPLACED

?? 120

00210 EXT 6533
?22?

Explanation: After positioning the pointer at line
120, the user issues a CHANGE command fo re-
place each reference to EXTENSION with EXT,
XEDIT then proceeds to verify which file lines
were modified by the CHANGE command. Next,
the user issues a FILE command to save this
editing change without permanently terminating
XEDIT execution. In this command, the user
omits the fname parameter. Consequently, the
original file name specified when XEDIT was
called (that is, ADDRESS) will apply to the inter-
mediate file.

In addition, the user selects R as the mode para-
meter. Accordingly, the ADDRESS permanent
file will be replaced so that it will contain the
user's editing changes. Additionally, the user's
local edited file retains these changes, as is indi-
cated by the user's positioning the pointer to line
120.

TLOCAL mode cannot be selected when using direct access files.

76071000 C

2-65

C or = edited file changes

COPY should be copied
back to file fname.
C can only be used
with files that can
be written on. This
parameter is default
for direct access
files attached in
write mode (that is,
the user may simply
type FILE).

RL = performs functions
of both the REPLACE
and LOCAL options.

SL = performs functions
of both the SAVE
and LOCAL options.

Default: If a mode parameter is
omitted, XEDIT assumes the user
wants LOCAL mode, unless the
edit file is direct access. For
direct access edit files the
default is COPY mode.

PERMANENTLY TERMINATING XEDIT (END, QUIT, AND STOP COMMANDS)

END and QUIT commands allow a user to permanently terminate XEDIT execution and at the same time
dispose of the edited file in a manner that will save its contents. However, STOP commands merely
terminate XEDIT without allowing for any disposal of the edited file (that is, the editing changes can
never be retrieved).

STOP Command

Users issue STOP commands when they want to permanently terminate XEDIT execution without saving
any of the operations performed during the editing session. In other words, the file will remain exactly
as it appeared before XEDIT was called into execution, assuming the user has not issued any FILE com-~
mands. If the STOP command is issued in batch mode, the first statement after an NOS EXIT card is
executed; otherwise, the job is terminated.

These commands take the following form:
Format Example
STOP @ ?? DELETE 3
00190 P.T. BEE
00200 8710 14TH ST ZIP CODE 55713

00210 EXTENSION 18
END OF FILE

® 2-66 76071000 C

?? RESTORE
?? 190

END OF FILE
77 STOP
ABORTED

READY.

XEDIT

XEDIT 3.0.0 |
2?2 190

00190 P.T. BEE

??

Example Explanation: User issues a DELETE command to delete three lines, beginning at the current
pointer position. XEDIT responds by verifying which lines were deleted. Then, the user realizes he
inadvertently deleted the wrong lines. To negate this mistake, the user attempts to issue a RESTORE
command but since the pointer reached END OF FILE while executing the DELETE command, the '
RESTORE command can not restore the deleted lines (as indicated by the user's subsequent unsuccess-
ful attempt to locate line 190). Then, the user issues a STOP command to terminate XEDIT execution.

As a result, the editing changes are not retained. This is verified as the user recalls XEDIT and

locates one of the originally deleted lines (190).

END and QUIT Commands

When users want to permanently terminate XEDIT execution and dispose (for example, save) their edited
files, they issue QUIT or END commands.

NOTE
Both END and QUIT perform exactly the same function and
employ identical parameters.

The following general rules pertain to these commands:

® Once the command is issued, XEDIT permanently terminates its execution. Then, the edited
file (with all the results of the user's editing operations) is written onto a specified file fname
parameter), which in turn is disposed of in accordance with a user-specified mode parameter.

® Assume that a user enters a LOCAL option for the mode parameter. In this instance, the edited
file can not be the primary NOS file unless the user's fname entry matches the name of the
file that originally existed as the primary file when XEDIT was first called into execution.

® Users should enter SAVE and REPLACE options (as mode parameters) with care. SAVE and
REPLACE parameters do not write the edited file modifications onto the existing local version
of the file. Only permanent files are affected by SAVE and REPLACE commands. See figure
1-7 for an example of this characteristic.

76071000 C 2-67

END and QUIT commands should be entered in the following form:

Format

END, fname, mode

or

E, fname, mode

I e
QUIT, fname, mode @
or

Q,fname, mode

where:

fname = name (1-7 alphanumeric characters
long) of the file onto which the editing
operations will be written. Default:
If no file name is entered, XEDIT
assumes the name of the edited file
(that is, the name specified when
XEDIT was first called into execu-
tion) should be employed. If the
user wants to omit the fname entry,
he must indicate that omission by
typing an extra comma (for example,
END,,R).

mode = manner in which NOS should dispose
of the fname file. Valid entries for
this parameter are:

S or = edited file should be
SAVE saved as a new indirect
access permanent file.

R or = edited file should re-
REPLACE place an existing (that
is, OLD) indirect
access permanent file.

C or = edited file changes

COPY should be copied back to
file fname. C can only
be used with files that
can be written on. This
parameter is default for
direct access files
attached in write mode
(that is, the user may
simply type END or
QUIT). See appendix B.

2-68

Example 1

2? 120

00120 EXT 6533

?? CHANGE/EXT/EXTENSION/*
00120 EXTENSION 6533
00150 EXTENSION 227
00159 EXTENSION 5339
00180 EXTENSION 8866
00210 EXTENSION 18
END OF FILE

?? END, ,R

ADDRESS REPLACED

READY.
LNH
NAMES/ADDRESSES ARE FICTITIOUS
00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP CODE 55722
00120 EXT 6533
00130 A.B. NEWTON

TERMINATED

Explanation: After positioning the pointer at line
120, the user issues a CHANGE command to re-
place all occurrences of EXT with EXTENSION.
Then, XEDIT responds by verifying which lines
were modified. Subsequently, the user issues an
END command. Since the fname parameter is
omitted, XEDIT employs the name specified when
XEDIT was called into execution (that is,
ADDRESS). Additionally, the user enters an R
option for the mode parameter. As a result,

the permanent file version of ADDRESS will con-
tain the above editing change. However, since
LOCAL mode was not selected, the local edited
file will not contain the above editing operation.
This is confirmed when the user issues a NOS
LNH command and sees that line 120 was not
modified.

Example 2

2?2 120

00120 EXT 6533

?? CHANGE/EXT/EXTENSION/*
00120 EXTENSION 6533
00150 EXTENSION 227

00159 EXTENSION 5339
00180 EXTENSION 8866
00210 EXTENSION 18

END OF FILE

76071000 C

L or = edited file should be
LOCAL written onto a local
NOS file.

RL = performs functions of
both REPLACE and
LOCAL modes.

SL = performs function of
both SAVE and LOCAL
modes.

Default: If a mode parameter is
omitted, XEDIT assumes the user
wants the LOCAL mode, unless
the edit file is direct access. For
direct access edit files the default
is COPY mode.

76071000 C

?? END,,RL
ADDRESS REPLACED
ADDRESS IS A LOCAL FILE

READY.

LNH

NAMES/ADDRESSES ARE FICTITIOUS
00100 M.T. JONES

00110 1544 WILSHIRE ST ZIP CODE 55722
00120 EXTENSION 6533

ANTIN ST AT
00130 A.B. NEWION

TERMINATED

Explanation: User proceeds exactly as in Example
1 except that he enters an RL parameter in his
END command. Consequently, both the ADDRESS
permanent file and the local edited file will contain
the above editing change. The user confirms this
by issuing an LNH command to list his local file
copy and seeing that line 120 does contain the
editing modification.

2-69

XEDIT DIAGNOSTICS AND MESSAGES A

X —

Table A-1 lists (in alphabetical order) the error diagnostics and informative messages which XEDIT

generates in response fo user entries.

TABLE A-1. XEDIT DIAGNOSTICS AND MESSAGES

Diagnostic

Message

ABORTED

ARGUMENT ERROR

76071000 C

XEDIT terminated its execution without recording
the editing changes performed during the editing
session. However, changes written to files via
FILE, COPY or COPYD commands during the ses-
sion remain intact. This message is not issued
during in-line edit mode aborts.

User issued a legal command, but incorrectly
specified one or more parameters as follows:

1. One string field is needed and it is missing
(for example, /string/).

2. Two string fields are needed and the second
is missing (for example, /stringl...string2/
or /stringl---string2/).

3. While the user was in INPUT mode (used the
INPUT command with the escape character),
a line count n or string count m parameter
value other than zero was used on a com~
mand which might possibly move the pointer.
Some affected commands are CHANGE,
LOCATE, COPY and REPLACE.

4, While the user was in INPUT mode (used the
INPUT command with the escape character),
the up-arrow (+) or slash (/) prefix char-
acters were used on a command. Pointer
movement is not allowed while under INPUT
mode.

5. Margin specifications on the WMARGIN
command are in the wrong order (for
example, WM 10 5),

6. The Y or Z command list is missing.

7. In OCTCHANGE, an even number of digits
was not specified for the octal number.

A-1e

TABLE A-1. XEDIT DIAGNOSTICS AND MESSAGES (Cont'd)

Diagnostic

Message

BAD FILE NAME

BAD TEXT LINE ENCOUNTERED

BATCH ABORT - COMMAND ERROR

BATCH ABORT -~ RETRY COUNT EXCEEDED

CANNOT EDIT EXECUTE ONLY FILES

COMMAND NOT VALID

COMMAND STACKING ERROR

® A-2

User either did not specify a required file name
or specified a file name which:

1. Contains bad characters or is over seven
characters in length.

2. Is reserved by XEDIT,

The last word of a nonempty record does not con-
tain an end of line byte. This message most
frequently occurs when the user forgets to issue
a PACK command after leaving TEXT mode when
processing interactively. XEDIT aborts.

While in batch mode, a command syntax or para-
meter error (other than DELIMITER) was en-
countered. XEDIT aborts.

XEDIT allows only one retry for "NAME EDIT
FILE" if the user has a mass storage input or
output file. XEDIT aborts.

User attempted to edit a file which has been siored
in a user's permanent file area by using the M=E
parameter on the NOS SAVE or DEFINE control
cards. This is a security feature of the NOS sys-
tem.

User issued a legal command, but not valid for use
under INPUT mode or CREATION mode as follows:

1. If under INPUT mode, user can not issue a
command which will always move the pointer
(for example, DELETE, COPYD, FILE, etc.).

2. If under CREATION mode, user can not issue
a command which assumes the presence of an
existing text line (for example, DELETE,
INSERTB).

User attempted to recursively call an input source

(for example, using a Y or Z command within
another Y or Z command such as Y/Y;P/Y;P;N).

76071000 C

TABLE A-1.

XEDIT DIAGNOSTICS AND MESSAGES (Cont'd)

Diagnostic

Message

DELIMITER

=l

EMPTY FILE/CREATION MODE ASSUMED

END OF FILE

END OF INPUT ENCOUNTERED - ABORTED

--—EOF--—-

---EOR---

ERROR IN XEDIT ARGUMENTS

76071000 C

User omitted the closing delimiter of a delimited
string parameter. As this is a warning message
only, XEDIT will execute the command by assuming
that a string delimiter should appear after the last
nonblank character of the string (for example,
L/AB CDE will be interpreted as L/AB CDE/).

'n er v
ser pressed the carriage return or entered the

eEDIT command to termma\‘e the line input prompts
that are produced while under INPUT mode. XEDIT
will now accept normal editing commands.

User entered XEDIT without specifying a file to
edit or by specifying a file that contains no infor-
mation. XEDIT automatically puts the user in
CREATION mode to create a new edit file (see C
parameter on the XEDIT control statement in
appendix C).

XEDIT read the end-of-information mark while
executing the most recent command. XEDIT will
no longer continue to execute that command and
will position the file pointer to the beginning-of-
file.

While in batch mode an end-of-record, end-of-file,
or end-of-information mark was encountered on the
input file. XEDIT aborts.

XEDIT read an end-of-file mark. Execution of the
command will continue until its normal termination.
The end-of-file mark will be retained in the user's
file unless a DEOF command is being executed.
This message can be turned off by use of the

TEOF command.

XEDIT read an end-of-record mark. Execution

of the command will continue until its normal
termination. The end-of-record mark will be
retained in the user's file unless a DEOR command
is being executed. This message can be turned off
by use of the TEOR command.

User issued an XEDIT control card with illegal
options specified (see appendix A on Batch
Command Processing). This most commonly
occurs when the user issues the I= parameter
with the @ NOS command or when the Q NOS
command is issued with no in-line edit
commands.

A-3 e

TABLE A-1. XEDIT DIAGNOSTICS AND MESSAGES (Cont'd)

Diagnostic

Message

FILE FUNCTION ILLEGAL

FILE NAME CONFLICT

FILE NOT XEDITABLE

filename CANNOT BE ACCESSED

filename IS A LOCAL FILE

filename REPLACED

filename REWRITTEN

filename SAVED

®A-4

User is working with direct access files and used
one of the following options with the END, FILE or
QUIT commands:

1. The L or LOCAL option is not defined for
direct access files.

2, The C or COPY option is not legal for dir-
ect access files not attached in WRITE mode.

User issued two or more XEDIT control card
parameters which specified the same file name
such as I=ABC and L=ABC (see appendix A on
Batch Command Processing).

User has specified a file that does not contain a
legal line but does contain something.

User has requested a file which is:
1. An execute only or append only file.
2. Not local.

3. Not available from the user's permanent file
area (for appropriate commands). Make
sure your direct access file is attached in
WRITE mode if you are editing a direct
access file.

User issued an L or LOCAL parameter on an END,
FILE or QUIT command; XEDIT indicates that it
has written any changes to the edit file as a NOS
indirect access local file (see appendix D).

The edited file with any changes replaced the
original NOS indirect access file under the same

name as in the user's permanent file area (see
appendix D).

The edited file with any changes has been copied
back to the file filename. This message is mainly
the result of editing direct access files attached in
WRITE mode when the user issues an END, FILE
or QUIT command with no parameters (see
appendix D).

The edited file was saved under NOS as a new
indirect access permanent file (see appendix D).

76071000 C

TABLE A-1. XEDIT DIAGNOSTICS AND MESSAGES (Cont'd)

Diagnostic

Message

FR COMMAND STACKING ERROR

ILLEGAL DELIMITER CHARACTER

ILLEGAL PARAMETER

INPUT

LINE NUMBER NOT FOUND, COMMAND NOT
EXECUTED

LINE NUMBER TOO LARGE

LOCAL FILE ERROR

NAME EDIT FILE

76071000 C

XEDIT internal error. The FR XEDIT control card
option has not been processed. Execution continues.
Contact Customer Service.

XEDIT control card delimiter character is a space
alphabetic numeric + - * / or up-arrow (}).

User issued a legal command, but specified one
of the following:

1. An alphabetic DELIMIT command delimiter.
2. Extra data after the last parameter.

3. A parameter on a command that does not
require a parameter.

4. An RMARGIN value less than 10 or greater
than 160.

5. Tab stops values not between 1 and 160 or
tab stops value not in increasing order.

User is in INPUT mode. User pressed the carriage
return or entered the INPUT command and can now
enter an indefinite number of lines that will be
inserted immediately after the current pointer
position.

The line number prefix specified a line number
which is not in the file. XEDIT does not execute
the command and the pointer position remains
the same.

A line number formed by the ALN, ALNS and
RLN commands exceeded 99999.

XEDIT internal error. Contact Customer Service.

XEDIT wants the name of a file to edit. The user
should enter the desired file name. If the file

name is followed by a ', P" it will be read from the
user's permanent file catalog if possible (that is,

the file must be indirect access or must be direct
access attachable in WRITE mode). If the file name
is followed by a ",C" XEDIT will create a new local
file under that name. See the XEDIT Batch Com-
mand Processing information in appendix C for a
more detailed description of the C and P parameters.

A-5e

TABLE A-1. XEDIT DIAGNOSTICS AND MESSAGES (Cont'd)

Diagnostic

Message

NO SUCH COMMAND

NULL LINE - IN CREATION MODE

STRING NOT FOUND

TRUNCATION AT n

XEDIT INTERNAL ERROR (ERD). NOTIFY
CONSULTANT.

XEDIT version

YOU DELETED THE ENTIRE FILE

0 - IN CREATION MODE

User issued an entry (in response to a double
question mark) that was not a valid XEDIT com-
mand. Accordingly, either the entry itself is
illegal or an improper separator appeared after
the command.

User issued a PRINT command, however, there is
nothing for XEDIT to print since no lines have
been created yet under CREATION mode. The
user should issue any of the valid CREATION
mode commands (see C parameter on the XEDIT
control statement in appendix C).

The specified string could not be located on the
current line and the 0 option was used. The
XEDIT pointer is not moved.

A processed file line exceeds the maximum line
width. XEDIT will truncate the nth line in the file
(see Margin and Truncation Control).

An XEDIT internal error has occurred; inform the
central system's NOS Customer Service imme-
diately. '

Begin text editing; XEDIT has successfully been
called into execution. In in-line edit mode, this
message is suppressed.

XEDIT can not locate any line at which to position
the pointer. XEDIT terminates execution; the
original input file remains intact.

User issued a WHERE command, however, the
current line count is zero since no lines have
been created yet under CREATION mode.

Most other terminal error messages not listed previously are issued by the NOS operating system. See
appendix A of the CYBERNET Interactive Service Time-Sharing Usage Reference Manual listed in the

Preface.

An on-line explanation of any of the previously listed messages can be obtained by entering the EXPLAIN
command after the message is printed. See the EXPLAIN command for further details.

e A-6

76071000 C

EDITING DIRECT ACCESS FILES

In addition to manipulating NOS indirect access files, XEDIT can apply to direct access files. While
the command entry procedures and command functions are identical, XEDIT users differ when dealing

with direct access in two ways:

® Direct access files are called differently (that is, with ATTACH commands). See page 2-3 for
detailed information. Users should ATTACH their direct access files in WRITE mode so that
they can be written on with the changes.

® When the user wants to replace the original direct access file with the edited changes, the
XEDIT FILE or END commands should be used with no parameters. XEDIT knows when the
user is using a direct access file. Through the use of the FILE and END commands, XEDIT
will rewrite the user's file as requested. Figure B-1 illustrates this procedure.

XEDIT- TOTFILE

ATTACH, TOTFILE/M=W
READY.

1. User issues an ATTACH command to access a direct access file (called
TOTFILE) in WRITE mode.

mn 3.0.0

l—— 2. User calls XEDIT.

00!00 THIS IS A mmr FILE EXAMPLE _____ |
"

ooloo T™HIS IS m l"Dlm'l’ FILE EXAMMLE | 3 UyUser issues abbreviated NODIFY command and alters line 100 according

to three modify directives.

TOTFILE REWRITTEN
READY.

4. User issues an END command to terminate XEDIT execution. All
changes are automatically copied back to the direct access file
TOTFILE since it was attachsd in WRITE mcde.

76071000 C

Figure B~1. Editing Direct Access Files

B-1e

XEDIT BATCH COMMAND PROCESSING C

J

In addition to normal interactive processing, XEDIT can also be executed in a batch environment, such
as input via cards. This is accomplished by calling the XEDIT system with user-selected control card

parameters.

To call the XEDI

T system, in a batch environment, use either of the foilowing controi card formats:

~<«——— 80 column max —————>

XEDIT (fn, optionl, . .. ,optionn)dcs

or

XEDIT, fn,optionl, . ..,optionn.des

m:

where:
optiomi =B
C

the name of the file that the user wants to edit (see P option). This file is automatically
rewound before and after processing, and if primary it is automatically sorted when
necessary (new lines or text added). If this parameter is left off, the file to be edited
defaults to the primary file, as in XEDIT,,... .

Forces normal batch processing (64 character set). This parameter is needed only if
the user's NOS job using the XEDIT control statement is a iime-sharing origin job
(TXOT ™) such as in an NOS procedure file called interactively or when under the
BATCH Subsystem. T If the user submits his NOS job from cards or with an NOS
SUBMIT control statement, he does not use this parameter. This parameter (or Batch
origin) causes any error in XEDIT to be fatal; XEDIT will immediately abort.

Puts XEDIT into CREATION mode. This mode allows the user to create a new file
from within XEDIT, without having to previously define the file with NOS control
cards. The only legal initial XEDIT commands that are allowed are as follows:

carriage return INSERT TEOR
BRIEF LISTAB TOPNULL
DEFTAB NOBELLS TRIM
DELIMIT RMARGIN VERIFY
EXPLAIN STOP WHERE

- HELP TABS Y
INPUT TEOF zZ

Use of the C parameter will automatically generate a local file upon exit. If the file is
to be primary, H either use the NEW control card prior to use or the PRIMARY control
card after use.

'See the CYBERNET Interactive Service Time-Sharing Usage Reference Manual listed in the Preface.

M See the NOS Reference Manual, Volume 1 listed in the Preface.

76071000 C

C-1e

option; = FR Allows the user to define a default set of commands which can be used to initialize the

=i
]

lv'-';
5

delimiter, tab character and tab stops, etc. Specifically, the FR parameter instructs
XEDIT to scan the first line of the file being edited for the initial command (only one
line of XEDIT input is allowed; for multiple commands use the Y or Z commands).

When using the FR option, XEDIT assumes that the first command to be executed will
begin with the first nonblank character which occurs after at least two consecutive
blanks and continues until the end of the line. This allows the use of both files with
and without line numbers and the use of XEDIT commands in comment fields of the
various compilers. Some examples follow:

COMPASS: * Y/DEL;/DT$/TAB 10 20 30
FTNTS: 00100C Y/DEL;/DT$/TAB 10 20 30
MODIFY: */ Y/DEL;/DT$/TAB 10 20 30
BASIC: 00100 REM Y/DEL;/DT$/TAB 10 20 30

The FR option is ignored when in CREATION mode. See C option.

Causes XEDIT input commands and input directives to be read from the named local file
lfn instead of the normal interactive prompts ? ? and ? or the default NOS file INPUT.

If the I = parameter is not used, XEDIT will take its input directives from the current
INPUTT record of the NOS job deck (after an end-of-record mark, --EOR--, or a card
multi-punched with a 7, 8, and 9 in column one). The file specified by an I = parameter
is neither rewound before nor after XEDIT processing. Users should make sure that
they include an XEDIT END or QUIT command as the last command in the current record
of file Ifn or XEDIT will abort.

IfI =0, XEDIT ignores the INPUT file and requires that all commands and command data
must appear in the delimited command sequence dcs field on the XEDIT control card.
Thus, if I = 0 is used, all lines of data used as input to commands such as INSERT must
appear on the control card; otherwise XEDIT aborts.

CAUTION IN-LINE EDIT USERS

The use of the I= parameter when in in-line edit mode is illegal and will issue
the message ERROR IN XEDIT ARGUMENTS (see appendix D).

Causes normal XEDIT printed output to be placed on the named local file Ifn instead of
being printed at the interactive terminal. This file is neither rewound before nor after
XEDIT processing. Also, XEDIT does not automatically shift the user's file by one
character position to take care of erroneous printer carriage control characters.?
Therefore, if the user wants to print the XEDIT output on a batch printer, it is advisable
to add the following two NOS control statements after the XEDIT card:

REWIND(Lfn)
COPYSBF(lfn)

If L = 0, no XEDIT output will be generated. The most common use of the L = 0 option
would be when editing is desired as an intermediate control card or procedure file step
in another user designed application.

NOTE
XEDIT inserts end-of-record (-—~EOR--) marks in the output file

(Lin), if the user issues XEDIT control statements in succession
which use the L= parameter.

t
See the NOS Reference Manual, Volume 1 listed in the Preface.

e C-2

76071000 C

option, = P
—

Causes the indirect or direct access file fn that the user wants to edit to be retrieved
from the user's permanent file catalog. Use of the P parameter eliminates the need for
an NOS GET(lfn) or ATTACH(1fn/M=W) control statement. Indirect access files will not
be made primary. Use the NOSt PRIMARY control card after exiting XEDIT, if a pri-
mary file is desired. The P parameter will only ATTACH direct access files in
WRITE mode.

Suppress the printing of the XEDIT header version message such as XEDIT 3.0.0.
Note: when in in-line edit mode this parameter is ignored since the header is automatical-

1v sunnressed.
o g ~

a delimited command sequence; an optional list of commands separated by delimiters to
be executed immediately by XEDIT before any other command input directives are pro-
cessed such as the I = gpecified input file. The format of a delimited command sequence
on the XEDIT control card is the same as a multiple command interactive entry (see the
DELIMIT command) except that the initial delimiter character is specified by the first
character of the delimited command sequence or by default (semi-colon). Thus, the
form is:

char0 cmdl char cmd2 char ... char cmdn

where:
char0 = same as char below but if not specified, it defaults to semi-colon(;).

char = any special character except a space alphanumeric + - * / or
up-arrow (f) which the user wantg to establish as the delimit character.
This character is used to separate the several commands or editing
data that appear on the XEDIT control card. The default delimiter is
semi-colon (;) and this delimiter remains in effect when normal editing
continues unless a DELIMIT command is issued.

cmd = a legal XEDIT command, command data, or command directives which
the user wants to process; XEDIT will execute each command according
to its sequential (left to right) position in the list of component commands.

CAUTION IN-LINE EDIT USERS
The use of a delimited command sequence when in in-line edit mode will default the last

command to END, will not prompt the user with a double question mark (? ?) and will
give ERROR IN XEDIT ARGUMENTS if an I= parameter is specified (see appendix D).

CAUTION KEYPUNCH USERS

It is especially important that the correct octal display code representation of special
characters be read by XEDIT when entering these characters via keypunch. Users should
consult Tables B-2, B-6 and B-7 of the CYBERNET Time-Sharing Usage Reference Manual
listed in the Preface. Note that the up-arrow (4 octal 76) can not be represented directly
with the Export Character Set (Table B-6) i.e., remote-batch. See the OCT CHANGE
command instead. T e o : A

fSee the NOS Reference Manual, Volume 1 listed in the Preface.

76071000 C

c-3e

Explanation

NOS control statements
to call XEDIT into execu~
tion with the appropriate
options. (first record)

XEDIT input directives
and data to create a new
NOS file. (second record)

Example

[NEWPLAN.

REWIND(0OUT) |

USER (USRNAME ,PASSWRD ,FAMILY)
XEDIT (PLAN,L=0UT,C) -——

| coPYSBF (0UT)|

7/8/9

DEFTAB*

TABS 20 30 40 50 60
INPUT,$

**PROFIT PICTURE

*10*20*30*40*TOTAL
[U SN SN N

SEDIT 4——
TOP
PRINT#*

|END, ,RL
6/7/8/9

Explanation

Puts XEDIT into batch
execution and puts the out-
put listing on a file called
OUT. In this example, the
user elects to create a new
indirect access file

{C parameter) called PLAN.
Directs the XEDIT output
listing file to the user's
batch printer.

Directs XEDIT to go into
editing data INPUT mode.
The XEDIT INPUT command
is the batch equivalent of
the XEDIT carriage return
command.

SALES REVENUE*48,578*51,027*53,598*56,300*5209,503
TOTAL EXPENSES*42,273%*43,952*45,709*%47 ,548*5179 ,482
OPERATING PROFIT*6,305*7,075*7,889%*8,752*530,025

Directs XEDIT to exit the
editing data INPUT mode
and continue processing
more commands. The
XEDIT EDIT command is
the batch equivalent of
pressing carriage return
at this point in the pro-
cessing. Note the use of
the INPUT mode escape
character (dollar sign).
This tells XEDIT that an
XEDIT command follows
the dollar sign rather than
to interpret the command
as a line of input.

e C-4

Figure C-1. Use of XEDIT Batch Processing Parameters to Create a New File

76071000 C

1. NOS control statements rpz)aamn,
to call XEDIT into USER (USRNAME ,PASSWRD,FAMILY)

execution with the XEDIT (PLAN ,L=OUT,P) $CHANGE/ 30,025/30,021/$TOP$PRINT*SEND,, ,RL=
jate ontions. REWIND (OUT)
appropriate opti COPYSBF (OUT)
6/7/8/9

[— 2. Puts XEDIT into batch execution with input directives from the delimited command
sequence on the XEDIT control statement and puts the output listing on a file called
OUT. In this example, the user elects to edit an indirect access file called PLAN
that is stored in the user's own permanent file catalog (P parameter). The user
requests that XEDIT commands, CHANGE, PRINT, and END, be executed initially.
The user selects dollar sign ($) to be the delimiter character by putting it before
the first command to be executed. If the END command were left off and the user
specified an I= parameter on the XEDIT control statement, XEDIT execution would
continue with the commands and editing data in the named input file.

3. Directs the XEDIT output listing file to the user's batch printer.

Figure C-2. Use of XEDIT Batch Processing Parameters to Edit a File

76071000 C C-5e

IN-LINE EDITOR USAGE ~ D

—

In addition to normal interactive processing, XEDIT can be used in in-line editing mode. This gives the
user the ability to make quick "spot" changes to a file since the editor call and editing commands are
entered all on the same line. Thus, waits for the prompt (? ?) are avoided and editing sessions can be
completed in a shorter amount of time.

Some typical in-line editing calls are as follows:
Q.D3

Q.P5
Q.1000P5

Q.C/ABC/XYZ/

Q.500C/ABC/XYZ/0

Q.12

?

CAT

? DOG

Q.N3sI
? MOUSE

Q. +XYQM*;###

e/

/

=

%

\

76071000 C

This will delete the first three lines of the primary file (a file
specified by OLD, NEW, LIB, or PRIMARY).

This will print the first five lines of the primary file.

This will print five lines of a line-numbered primary file,
beginning at line 1000.

This will locate string ABC and change it to XYZ in the primary
file.

This will change string ABC to string XYZ, but only if the string
is found on line 500.

This will insert strings CAT and DOG after the first line of the
primary file.

NOTE
The editor prompts the user with (?).

This will insert string MOUSE after the third line of the primary
file.

This tells XEDIT to delete the first three characters of all lines
in the primary file and do not verify the changes.

Explanation:
YQM command input directives (# means delete one character) are

on the same line as the command because the plus (+) prefix
character was used.

Default delimiter is semicolon (;).

Specifies that command applies to all lines.

See the YQMOD command description.

Tells XEDIT to suppress change verification printing.

Tells XEDIT to look for the input directives on the same line as
this statement immediately following the command specification.

Calls XEDIT into in-line editing mode. The command, XEDIT,
can be used also, but prompts the user with (? ?) when all of the
in~line commands have been executed (see appendix C).

D-le

Q,REPORT.2000P This calls XEDIT to print line 2000 of direct access (see NOS?
ATTACH or DEFINE commands) or secondary indirect access
(see NOS GET command) file REPORT.

Q.$CS/MONTH;THUS/MONTH;HOWEVER/$P2
This changes the in-line editing command delimiter character

from semicolon (;) to dollar sign ($) so that a change string by
context can be made with a string which contains semicolon (;).
Two lines are then printed.

From the above examples, the in-line editing format should be clear; however, the following presents
a formal definition of the in-line editor. .

To edit a primary file in in-line edit mode use the following syntax:
<80 max—+»
Q.des
or
<—80 column max ——

Q, ,optionl, ...,optionn.dcs

To edit a direct access or secondary indirect access file in in-line edit mode, use the following syntax:
~<+—— 80 column max ———

Q, fn,optionl,... yoptionn.dcs

where:

fn = same as appendix C.

option, = same as appendix C, except under in-line edit mode the I= parameter is illegal and
will produce the message ERROR IN XEDIT ARGUMENTS.

dcs = same as appendix C, except the last command always defaults to END unless an
END, E, QUIT or Q command is explicitly specified. See the additional rules
specified below.

The following basic rules apply only to in-line edit mode (NOS Q commands):
e The entry header message such as XEDIT 3. 0.0 will not print.

® The editor will always return the user back to NOS control after the last command has been
processed. The last command will default to END if an END, E, QUIT, or Q command is
not explicitly specified.

TSee the NOS Reference Manual, Volume 1 listed in the Preface.

® D-2 76071000 C

76071000

If an error occurs any place within the command string (des), the editor will exit in-line edit
mode giving only the normal error messages and will abort. For the user's protection if an
abort occurs, no changes against the edited file will be kept {even if the user is editing a
direct access file). The message ABORTED will not appear (see appendix A).

If the user is editing an indirect access file, the message filename IS A LOCAL FILE will not
be issued upon completion of the last command in the list unless the user has explicitly used
the L parameter, such as END,,L (see pages 2-67 through 2-69 and appendix A).

e ER £ _

If the user is editing a direct access file, the appropriate message such as filename RE
will always be issued (see pages 2-67 through 2-69 and appendix A).

If the user is editing an indirect access file and explicitly specifies a paiameter on END, E,
QUIT, or Q such as S, R, or L, the appropriate message such as filename SAVED will be
issued (see pages 2-67 through 2-69 and appendix A).

If no command list (dcs) is specified, the message ERROR IN XEDIT ARGUMENTS is issued
and processing returns to NOS.

D-3e

A command 1-6, 2-16
A postfix character 2-27

Ahnwl—ed YENDIT avanutinn A_1

Also see "STOP command"
ADD command 1-6, 2-5, 2-16
Adding end-of-record marks 2-43
Adding line numbers 2-38
Adding lines 2-29 to 2-32
Adding strings 2-16
ADDLN command 1-7, 2-39
ADDLNS command 1-7, 2-39
Advancing the file pointer 2-13
AILN command 1-7, 2-39
ALNS command 1-7, 2-39
Altering a permanent file 1-3, 2-66
Anchor (def.) 2-27
And sign (&) modify directive 2-22
ASCII character code 1-1
ATTACH command 1-5, 2-3

Aisia eXedurion =4

B command 1-5, 2-14
B parameter C-1
Bad lines

Deleting 2-42

Locating 2-15
Batch command processing C-1
Beginning-of-file position 2-14
BOTTOM command 1-5, 2-14
Bottom-of-file position 2-14
BR command 1-8, 2-6
Break key 1-5
BRIEF command 1-8, 2-6
BRIEF mode 2-6

C command 1-6, 2-17

C mode 1-10

C parameter C-1

Calling the in-line editor @ D-1

Calling XEDIT 1-5, 2-1 to 2-4

Canceling editing operations 2-53

Caret prefix 2-5

Carriage return command 2-34

CHANGE command 1-6, 2-17

CHANGES command 1-6, 2-17

Changing string contents 2-17
Also see '""Modifying strings"

76071000

INDEX

Circular line search 1-5, 2-10

Column numbers 2-4, 2-23
Onmmandae (YEDTT

LoOmmanas \“ruisaiy

A 1-6, 2-16
ADD 1-6, 2-5, 2-16
ADDLN 1-7, 2-39
ADDLNS 1-7, 2-39
ALN 1-7, 2-39
ALNS 1-7, 2-39
ATTACH 1-5, 2-3
B 1-5, 2-14
BOTTOM 1-5, 2-14
BR 1-8, 2-6
BRIEF 1-8, 2-6
C 1-6, 2-17
Carriage return 2-34
CHANGE 1-6, 2-17
CHANGES 1-6, 2-17
CoPY 1-8, 2-48
COPYD 1-8, 2-49
2-34’
D 1-7, 2-29
DASH (-) 2-55
DBADL 1-7, 2-42
DBL 1-7, 2-42
DEFTAB 1-9, 2-60
DEL 1-9, 2-56
DELETE 1-7, 2-29
DELETELN 1-7, 2-40
DELIMIT 1-9, 2-56
DEOF 1-7, 2-43
DEOR 1-8, 2-42
DF 1-7, 2-43
DLB 1-8, 2-44
DLBLANKS 1-8, 2-44
DLN 1-7, 2-40
DR 1-8, 2-42
E 1-10, 2-67
EDIT 2-36
eEDIT 1-7, 2-36
END 1-10, 2-67
EXPLAIN 1-8, 2-52

¥ 1-10, 2-7, 2-65

FBADL 1-5, 2-15
FBL 1-5, 2-15

Index-1 o

Commands (XEDIT) (Contd)
FILE 1-10, 2-7, 2-64
File manipulation 2-47 to 2-51
Find line number 1-5, 2-9
FINDLL 1-9, 2-65
FLL 1-9, 2-65
General 1-8

- Generalized 2-51
GET 1-5, 2-3
H 1-8, 2-52
HELP 1-4, 2-52
I 1-7, 2-5, 2-33
mB 1-7, 2-5, 2-34
In-line editing D-1
INPUTe 1-7, 2-36
INSERT 1-7, 2-5, 2-33
INSERTB 1-7, 2-5, 2-34
Issuing 2-4
L 1-5, 1-10, 2-11
Line editing 2-29
Line number 2-38
LISTAB 1-9, 2-61
In 1-5, 2-10
LOCATE 1-5, 2-11
LT 1-9, 2-61
M 1-6, 2-21
Margin control 2-62
Minus (-) 2-55
Miscellaneous editing 1-7, 2-41
MODIFY 1-6, 2-5, 2-21
Multiple 1-9
N 1-5, 2-13
NB 1-8, 2-52
NEW 1-5, 2-2
NEXT 1-5, 2-13
NOBELLS 1-8, 2-52
OoC 1-8, 2-45
OCTCHANGE 1-8, 2-45
OLD 1-5, 2-2
P 1-6, 2-15
Parameters 1-3, 2-8
Period (.) 2-55
Pointer movement 2-10 to 2-16
Prefixes 1-5, 2-7, 2-9
PRINT 1-6, 2-15
Q 1-10, 2-67
Q in-line edit NOS D-1
QM. 1-6, 2-23
QMOD 1-6, 2-5, 2-23
QUIT 1-10, 2-67
R 1-7, 2-5, 2-32
READ 1-8, 2-51

® Index-2

Commands (XEDIT) (Contd)

READP 1-8, 2-50
Repeating 2-55
REPLACE 1-7, 2-5, 2-32
REPLACELN 1-7, 2-41
REST 1-9, 2-53
RESTORE 1-9, 2-53
RLN 1-7, 2-41

RM 1-9, 2-62

RMARGIN 1-9, 2-62
STOP 1-10, 2-66

String editing 2-16 to 2-24
String search control 2-25 {o 2-28
Summary list 1-5 to 1-7
Syntax rules 1-3, 2-4

T 1-6, 2-14

TAB 1-9, 2-61

Tab control 1-9, 2-60
TABS 1-9, 2-61

TEOF 2-54

TEOR 2-54

TN 1-7, 2-37

TOP 1-6, 2-14
TOPNULL .1-7, 2-37
Trailing blank control 2-25
TRIM 1-6, 2-25

TRUNC 1-9, 2-63
TRUNCATE 1-9, 2-63
Truncation control 2-62
vV 1-9, 2-6

VERIFY 1-9, 2-6
Verifying results 1-3, 2-6
W 1-9, 2-54

WEOF 1-8, 2-44

WEOR 1-8, 2-43

WF 1-8, 2-44

WHERE 1-9, 2-54
Window control 2-26 to 2-28
WM 1-6, 2-26

WMARGIN 1-6, 2-26

WR 1-8, 2-43

Y 1-9, 2-7, 2-57

YQM 1-6, 2-5, 2-24
YQMOD 1-6, 2-5, 2-24

Z 1-9, 2-7, 2-57

Conventions (XEDIT) 1-3, 2-4 to 2-8

Summary list 1-3

Converting octal strings 2-45
COPY command 1-8, 2-48
Copy mode 1-10

COPYD command 1-8, 2-49

command 2-34, 2-35
reation mode C-1

76071000 C

D command 1-7, 2-29
Dash (-) command 2-55
DBADL command 1-7, 2-42
DBL command 1-7, 2-42
Defining a window 2-26
DEFTAB command 1-9, 2-60
DEL command 1-9, 2-56
DELETE command 1-7, 2-29
DELETELN command 1-7, 2-40
Deleting bad lines 2-42
Deleting blanks 2-44
Deleting end-of-record marks 2-43
Deleting line numbers 2-40
Deleting lines 2~29
Deleting strings 2-17, 2-19
DELIMIT command 1-9, 2-56
Delimited command sequence 2-56, C-3
Delimiters

Command delimiters 2-56

Diagnostic A-1

© String delimiters 2-3, 2-6

DEOF command 1-7, 2-43
DEOR command 1-8, 2-42
DF command 1-7, 2-43
Diagnostics (XEDIT) A-1to A-3
Direct access files 2-4, B-1
Display code

See "Octal strings" 2-45
DLB command 1-8, 2-44
DLBLANKS command 1-8, 2-44
DLN command 1-7, 2-40
DR command 1-8, 2-42
DT command 1-9, 2-60

E command 1-10, 2-67
EDIT command 2-36
EDIT mode 2-36
Editing
Data 1-3, 2-5
Also see "Input mode"
Line numbers 2-38 to 2-41
Lines 2-29 to 2-37
Miscellaneous editing 2-42
Octal strings 2-45
Strings 2-~16 to 2-24
¢EDIT command 1-7, 2-36
END command 1-10, 2-67
End of file message 2-8
"End-of-ffle marks
Deleting marks 2-43
Inserting marks 2-43

76071000 C

End-of-file positioning
See "End of information positioning" 2-9
End-of-information positioning 2-9
End-of-record marks 1-1, 1-2, A-~1
Deleting marks 2-43
Inserting marks 2-43
Entering editing data 1-3, 2-5
Executing XEDIT 1-5, 2-1 to 2-4
Termination 1-10, 2-65 to 2-69
EXPLAIN command 1-8, 2-52

F command 1-10, 2-7, 2-65
FBADL command 1-5, 2-15
FBL command 1-5, 2-15
FILE command 1-10, 2-7, 2-64
File commands 1-8
Files
Direct Access 2-4, B-1
File names A-1, A-2
File pointer 1-3, 2-8 to 2-16
Indirect access 1-1, 2-1 to 2-3
Manipulation by command 2-47 to 2-51
Primary 2-1 to 2-3
Saving the edited file 1-10, B-1
Find line number command 1-5, 2-9
FINDLL command 1-9, 2-65
FLL command: 1-9, 2-65
FR parameter C-2

Generalized commands = 2-51
GET command 1-5, 2-3

H command 1-8, 2-52
HELP command 1-4, 2-52

I command 1-7, 2-5, 2-33

I= parameter C-2

IB command 1-7, 2-5, 2-34

In-line editor D-1

Indirect access files 1-1, 2-1 to 2-3
INPUT command 1-7, 2-5, 2-33
INPUT mode 2-34

INPUTe command 1-7, 2-36
INSERT command 1-7, 2-5, 2-33
INSERTB command 1-7, 2-5, 2-34
Inserting blank lines 2-37

Inserting end-of-record marks 2-43
Inserting line numbers 2-38
Inserting lines 2-29 t0-2-32
Inserting strings 2-16, 2-20

Index-3 @

Internal display codes 2-46

Also see "Octal strings"
Interrupting XEDIT printing 1-5
Interrupting XEDIT processing 1-3, 2-7
Issuing XEDIT commands 1~3

Keypunch users C-3

L command 1-5, 2-11
L mode 1-10
L= parameter C-2
Line count 2-54
Line editing 2-29 to 2-37
Line number editing commands 2-38 to 2-41
Line number search

See "Find line number command"
Line size 1-3
Line truncation 2-3
Line width

See ""Margin and truncation control"
LISTAB command 1-9, 2-61
Listing file lines 2-15
In command 1-5, 2-10
LOCAL mode 1-10
LOCATE command 1-5, 2-11
Locating bad lines 2-15
Locating lines by line number 2-10
Locating lines by string 2-10
LT command 1-9, 2-61

M command 1-6, 2-21
Margin and truncation control 2-62
Maximum line width

See "Margin and truncation control"
Merging files 2-50
Messages (XEDIT) A-1to A-3

See also "EXPLAIN command"
Minus (-) command 2-55
Miscellaneous editing commands 1-7, 2-41
MODIFY command 1-6, 2-5, 2-21
MODIFY directives 2-22
Modifying strings 2-21, 2-23

Also see '"Changing string contents'
Multi-record files 1-1, 1-2
Multiple commands 1-9
Multiple entries in a single line 2-55 to 2-59

N command 1-5, 2-13
NB command 1-8, 2-52
NEW command 1-5, 2-2
New files 2-2

® Index-4

NEXT command 1-5, 2-13

NH parameter C-3

NOBELLS command 1-8, 2-52

Number sign (#) MODIFY directive 2-22

OC command 1-8, 2-45

Octal strings 2-45

OCTCHANGE command 1-8, 2-45
OLD command 1-5, 2-2

Old files 2-2

P command 1-6, 2-15

P parameter C-3

Period (.) command 2-55

Plus (+) postfix 2-6, 2-25, 2-54

Plus (+) prefix 2-4, 2-59

Pointer movement 1-5, 2-8 to 2-16
Commands 2-9 to 2-16
Conventions 2-8, 2-9

Postfix characters 1-5

Pound sign (#) MODIFY directive 2-22

Prefixes (command) 1-5, 2-7, 2-9

Primary files 2-1 to 2-3

PRINT command 1-6, 2-15

Q command 1-10, 2-67

Q in-line edit NOS command D-1
QM command 1-6, 2-33

QMOD command 1-6, 2-5, 2-23
QUIT command 1-10, 2-67

R command 1-7, 2-5, 2-32
R mode 1-10
READ command 1-8, 2-51
READP command 1-8, 2-50
Repeating command execution 2-55
REPLACE command 1-7, 2-5, 2-32
REPLACE mode 1-10
REPLACELN command 1-7, 2-41
Replacing line numbers 2-41
Replacing lines 2-32
Replacing permanent files

See ""Saving the edited file"
Replacing strings 2-17
Repositioning pointer 2-14
REST command 1-9, 2-53
RESTORE command 1-9, 2-53
Restoring edited file contents 2-53
Reversing pointer movement 2-13
RLN command 1-7, 2-41
RM command 1-9, 2-62
RMARGIN command 1-9, 2-62

76071000 C

S mode 1-10
SAVE mode 1-10
Saving the edited file 1-10, B-1
Secondary files 2-3
Selective command samples 1-4
Slash (/) prefix 1-5, 2-9
STOP command 1-10, 2-66
String editing 2-16 to 2-24
String-line (def.) 2-8
trings (def.) 2-6

Delimiters 1-3, 2-6

Search controls 1-6, 2-25
Suspending XEDIT 2-64
Syntax (command) 2-4

T command 1-6, 2~14
TAB command 1-9, 2-61
Tab control commands 1-9, 2-60
TABS command 1-9, 2-61
TEOF command 2-54
‘TEOR command 2-54
Terminating XEDIT execution 1-10, 2-65 to
2-67
TN command 1-7, 2-37
TOP command 1-6, 2-14
TOPNULL command 1-7, 2-37
Trailing blanks 2-25
TRIM command 1-6, 2-25
TRIM mode 2-25
TRUNC command 1-9, 2-63
TRUNCATE command 1-9, 2-63
Truncation (line) 2-62
See "Margin and truncation control"

Up arrow (}) prefix 1-5
Up arrow MODIFY directive 2-22
Using the window 2-27

V command 1-9, 2-6

VERIFY command 1-9, 2-6
VERIFY mode 1-9, 2-6
Verifying XEDIT operations 1-3

76071000 C

W command 1-9, 2-54
W postfix character 2-27
WEOF command 1-8, 2-44
WEOR command 1-8, 2-43
WF command 1-8, 2-44
WHERE command 1-9, 2-54
Window definition and usage 2-26 to 2-28
WM command 1-6, 2-26
WMARGIN command 1-6, 2-26
WR command 1-8, 2-43
X prefix 1-5, 2-7
XEDIT (def.) 1-1
Benefits 1-1
Command parameters 2«8
Command summary 1-5 to 1-10
Control card parameters C-1to C-3
Convention summary 1-2, 2-4 to 2-8
Diagnostics A-1to A-3
Execution of 2-1to 2-4
Features 1-1
File manipulation 2-47 to 2-51
Functions 1-1
In~line editing mode D-1
Line editing 2-29 to 2-37
Line number editing 2-38 to 2-41
Miscellaneous editing 2-41
Multiple entries 2-55 to 2-59
NOS command format C-1
Sample user sessions 1-4, 1-8 to 1~-15, B-1
Terminating execution 2-64 to 2-69

Y command 1-9, 2-7, 2-57

Repeating Y command execution 2-55
YQM command 1-6, 2-5, 2-24
YQMOD command 1-6, 2-5, 2-24

Z command 1-9, 2-7, 2-57
Repeating Z command execution 2-55

.n command 1-9, 2=55
-n command 1-9, 2-55

Index-5 ®

CUI ALUNG LINE

S cl— G —— — S T— CIELMEED T S N ST —— ——— — ——

COMMENT SHEET

MANUAL TITLE XEDIT User Information Manual

PUBLICATION No. 10071000 revision __ C November 1977
FROM: NAME:

BUSINESS

ADDRESS:
COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of ihis manual will be welcomed by Control Data Corpora-
tion. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number refer-
ences.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. BOX 0 HQCo02C
MINNEAPOLIS, MINNESOTA 55440

ATTN: DATA SERVICES PUBLICATIONS

FOLD

CUT ALONG LINE

IMPORTANT REGULATORY NOTICE

Users of Control Data services should be aware that the rules and regulations of the United States and International
Telecommunications Regulatory Agencies prohibit Control Data from using communications services it leases from
domestic, international and foreign communications carriers to transmitinformation for its users whichis notpartofa
“single integrated” data processing service. All information transmitted must be directly related to the data processing
applications or service provided by Control Data and unprocessed information shall not be allowed through the
service between user terminals, either directly or on a store and forward basis. Noncompliance with these rules and
regulations may force Control Data to discontinue the users’ data processing service.

CORPORATE HEADQUARTERS

8100 34TH AVENUE SOUTH

MINNEAPOLIS, MiNNESOTA

MAILING ADDRESS « BOX 0, MPLS., MINN. 55440

SALES OFFICES AND SERVICE CENTERS
IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL
DATA

