UPDATE

Reference Manual

CONTROL
DATA

Directive Format

*ABBREV
*ADDFILE
*ADDFILE
*BEFORE
*CALL
*CHANGE

*COMDECK
*COMDECK
*COMPILE
*COMPILE
*COPY
*COPY
*COFPY
*CWEOR
*DECK
*DECLARE
*DEFINE
*DELETE
*DELETE
*DO

*DONT
*END
*ENDIF
*ENDTEXT
*IDENT

*IF

*IF
*INSERT
*LIMIT
*LIST
*MOVE
*NOABBREV
*NOLIST
*PULLMOD
*PURDECK
*PURDECK
*PURGE
*PURGE
*PURGE
*READ
*RESTORE
*RESTORE
*REWIND
*SELPURGE

*SELYANK

*SEQUENCE
*SEQUENCE
*SKIP
*TEXT
*WEOR
*YANK
*YANK
*S/(ANKDECK

UPDATE DIRECTIVES INDEX

file, ¢

file, dname

c
dname

idnamej, idnames,, idname3, idna.me4,

...,idnamep_q, idnamey,

dname

dname, NOPROP
dname,. dnamey,
dnamey, dnamey, .

dname, ¢
dname, cy, Cp

.., dnamep

dname, c,, Cpy» file

n

dname

dname

namej, names,

Ca» Cb

Cc

...,name

n

idna.mel, idname,, ..., idna.men

idnamel, idname,, ..., idname

idname, p1, P2, -
type, name, num
-type, name, num

Cc
n

dname 1’ dnameg

n

R -

idnamel, idnamez, ...,1ldnamey

dnamej, dnamey, .
dname,. dnamey,

.., dname,

idnamel, idnames, ..., idna:men
idnameg. idnameb

idname, *
file
c

C,, C
fﬁeb

dnamel. idnameq, dnameg. idnamez,

...,dnam en idnamen

dnamel. idnamel, dnamez. idnamez,

.., dname,, idname

dname,, dnam

n
idnamey, idnamez, ...,idname,
idname,. idnamep,

IREED dnamep
dname_ . dnamey,
file,n

dname,, dnamey, ..., dname

comments

Abbreviation

Section

none
*AF
*AF
*B
*CA

*CH
*CD
*CD

*O

*C
*CY
*CY
*CY
*CW
*DK
*DC
*DF
*D
*D
none
*DT
none

*SY
*S
*S
*SK
*T
*W
*Y

*YD
none

[\V]
o

N DN -3 LW =N
> >

ORI

NN N NN

NN R R e H ORISR WNBR R RONOTIID BTN DOD

B ad ~T i =3 =T 00 = =3 > > 00 00 CO =T i 1 ih O O W W

[=2]

. ®
-

GV S O B i R 00 00 00 1 00 00

[el A

MMM MNNONNNNDNDNMNNNMNNDNDNONNNDNDNDNDNDNDN NN

N

W

< b
[K3 W] w

O 0000 gy N

NN NDNDNDNDNDNDN
Y NN NS JUNNIS

CYBERNET SERVICES

UPDATE

Reference Manual

G2

CONTROL
DATA

REVISION RECORD

REVISION DESCRIPTION
A Initial printing
(04-15-76)
B To reflect changes in support of the NOS 1 operating system and an upgrading of the Common Products
(10-15-77) through PSR level 433.

84000016

Publication No.

REVISION LETTERS |, 0, @ AND X ARE NOT USED

© 1976, 1977

by Control Data Corporation
Printed in the United States of America

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

Data Services Publications

P. O. Box 0 HQCo02C

Minneapolis, MN 55440

or use Comment Sheet in the back of
this manual,

LIST OF EFFECTIVE PAGES

New features, as well as change/s, deletions, and additions to information in this manuai, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE

Cover

Title Page

Revision
Record

iii/iv

v/vi

vii, viil

ix/x

1-1 thru 1-4
1-5

2-1

2-2

2-3 thru 2-10

2-11

2-12 thru
2-15

2-16

2-17 thru
2-19

2-20 thru
2-22

2-23, 2-24

2-25

2-26

2-27

2-28 thru

4-1 thru 4-6

4-7, 4-8

4-9, 4-10

4-11

4-12 thru
4-22

4-23 thru
4-27

A-1
B-1, B-2

B-3
B-4 thru B-8

REV

Wrwr> W Woww W

N

Wwrwr > wWrwWw>W

wew» >

>

w

W e

PAGE
C-1, C-2
D-1, D-2

Index-1,
Index-2

Index-3,
Index-4

Comment
Sheet

Mailer

Back Cover

REV | PAGE | REV| | PAGE

REV

Ir PAGE REV

A

A

84000016 B

iii/iv

PREFACE

This manual is intended primarily for CYBERNET Service users employing either the
SCOPF 3.4 or NOS 1 operating systems. Its description of the UPDATE program for
maintaining and updating source decks on libraries in compressed symbolic format is,

however, applicable under all of the following operating systems and computer systems.

SCOPE 3.4 and NOS 1 for the CONTROL DAT A® 6000 Series Computer Systems

and for the CONTROL DATA®R CYBER 70/Models 72, 73, and 74 Computer Systems.

SCOPE 2.1 for the CONTROL DATARCYBER 176 Computer System.

NOS 1 for the CONTROL DATA®PCYBER 170 Series Computer Systems.

It is assumed that the reader is familiar with the operating system under which his

processing is being performed.

Additional manuals which the user may find useful include:

Publication Title

CYBERNET Interactive Service Time-Sharing Usage Reference
Manual :

CYBERNET Services BASIC Reference Manual

CYBERNET Services COBOL 4 Reference Manual

CYBERNET Services COMPASS 3 Reference Manual

CYBERNET Services CYBER Common Utilities Reference Manual

CYBERNET Services CYBER Record Manager Guide for Users of
COBOL 4

CYBERNET Services CYBER Record Manager Guide for Users of
FORTRAN Extended

CYBERNET Services CYBER Record Manager Reference Manual

CYBERNET Services CYBER Record Manager User Guide

CYBERNET Services FORM 1 Reference Manual

CYBERNET Services FORTR AN Extended Debug User Guide

CYBERNET Services FORTR AN Extended 4 Reference Manual

CYBERNET Services LOADER Reference Manual

CYBERNET Services Remote Batch Terminal User Guide

CYBERNET Services SCOPE 3.4 Reference Manual

CYBERNET Services SIFT Programming Systems Bulletin

CYBERNET Services SORT/MERGE 4 Reference Manual

84000016 B

Publication
Number

84000029
84000026
84000002
84000003
84000007

84000006

84000005
84000004
84000020
84000008
84000010
84000009
84000014
84000025
84000021
84000012
84000015

vivi e

CHAPTER 1

CHAPTER 2

84000016 B

CONTENTS

INTRODUCTION
1.1 Features
1.2 Execution

1.3

1.2.1 Creation Run
1.2.2 Correction Run
1.2,3 Copy Run
Installation Options

DIRECTIVES

2.1
2.2
2.3

2.4

2.5

Directive Format

Card Identification

Deck Identifying Directives

2.3.1 DECK - Source Deck

COMDECK - Common Deck

rection Directives

.1 IDENT - Identify New Correction Set

.2 INSERT - Insert Cards After

.3 BEFORE - Insert Cards Before

4 DELETE - Delete and Insert Cards

RESTORE - Reactivate Cards

COPY - Copy Text

CHANGE - Change Correction Set

Identifier

‘gANK - Remove Effects of Correction
et

YANKDECK - Deactivate Cards

SELYANK - Selectively Remove

Effects of Correction Set

PURGE - Purge Correction Sets

PURDECK - Purge Decks

SELPURGE - Selectively Purge

Correction Sets

ADDFILE - Add File of New Decks

SEQUENCE - Resequence Decks

MOVE - Move Deck

Manipulation Directives

.1 READ - Read Alternate Directives File

.2 SKIP - Skip Forward On File

3 REWIND - Rewind File

aw
©
[

o]

=

. . ® .
.

ol T :bih:hn&n#uhnb

.

Ll .
Ittt O O SIOW
W= O

N NN NN N [\Cl L) N NNN'NNNN
. e o o P .

.
.

gh:&u&
Pt et s
- 4

NNN
U‘U‘U‘

1-2
1-3
1-3
1-4
1-5
1-5

vii |

2.6 Selective Compile Directive (COMPILE) 2-19
2.6.1 Normal Selective Mode 2-20
2.6.2 Full Update Mode 2-20
2.6.3 Quick Mode 2-20
2,7 Compile File Directives 2-20
2.7.1 WEOR - Write End-of-Record or
End-of-File 2-21
2.7.2 CWEOR - Conditionally Write
End-of-Record or End-of-File 2-22
2.7.3 CALL - Call Common Deck 2-22
2.7.4 IF - \,u..luu.iﬁi‘lall.‘y Write Text 2-2
2.7.5 ENDIF - End-of-Conditional Text 2-24
2.7.6 TEXT and ENDTEXT - Identify Text 2-25
2.7.7 DO and DONT - Temporarily Rescind
YANK and SELYANK 2-26
2.8 Special Directives 2-26
2.8.1 | - List Comments 2-27
2.8.2 ABBREV and NOABBREYV - Do or
Do Not Check for Abbreviated Directives 2-27
2.8.3 LIMIT - Limit List Output 2-217
2.8.4 LIST and NOLIST ~ Select or
Deselect List Option 4 2-28
2.8.5 DEFINE - Define Names for Use by IF 2-28
2.8.6 PULLMOD - Recreate Correction Sets 2-29
2.8.7 DECLARE - Declare Restricted
Corrections 2-29
2.8.8 END - End Deck 2-30
CHAPTER 3 FILES
3.1 Source Decks and Files 3-1
3.1.1 Source Decks Prepared by User
as Input 3-1
3.1.2 Source File Generated by UPDATE 3-2
3.2 Program Library Files 3-3
3.2.1 Random Format 3-3
3.2.2 New Sequential Format 3-9
3.2.3 Old Sequential Format 3-11
3.3 Input Files 3-12
3.4 Compile File 3-13
3.5 Pullmod File 3-15
3.6 Scratch Files 3-15

I viii 84000016 B

CHAPTER 4

APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Figure 4-1

84000016 B

UPDATE EXECUTION

4.1 Control Cards
4.1.1 Job Card
.2 UPDATE Call Card
.3 7/8/9 Card
.4 6/7/8/9 Card
k Examples
Library File Creation
Input File Not INPUT
Insertions/Deletions /Copying
Yanking and Purging
Addition of Decks
Q Option
PULLMOD Option
Program Library as SCOPE 3.4
Permanent File

4,3 Sample FORTRAN Extended Program

W

O =

4.2

vl
o

»
« »

MmN NDNNDNND N

.
0 =10 Ui WN M

.

N e

OVERLAPPING CORRECTIONS

LISTABLE OUTPUT

FILE SUMMARY

FILE FORMATS VS OPERATING SYSTEM USED
FIGURES

Example of Source Decks on a Source File

Random Program Library

New Format Sequential Program Library File

0Old Sequential Program Library Format

Flow Diagram of Sample FORTRAN Extended
Program

3-2
3-4

3-10

3-12

4-23 | l

ix/x I

INTRODUCTION 1

UPDATE provides a means of maintaining source decks in conveniently updatable compressed
format,

By using UPDATE, a user initially transfers a collection of source decks to a file known as

a program library. Each card of each deck is assigned a unique identifier when it is placed
on the library. This allows each card to be directly referenced during an UPDATE correction
run. During correction runs, cards are inserted into or deleted from the program library
according to sequence identification. However, the image of a card, even though deleted,

is maintained permanently on the program library with its current status (active or inactive)
and a chronological history of modifications to the status. If the history lists the card as
being currently inactive, the card has been deleted and is, in effect, removed from the deck.
If the status of the card is active, the card is in the deck; either it has never been deleted or
has been deleted and restored. During a single UPDATE correction run, a card may undergo
one or more modifications or no modifications.

If the user wishes to permanently and irrevocably remove cards from the program library,
he can do so through UPDATE purge features. Once a purge has been performed on a
program library, it cannot be restored to an earlier level. A set of corrections also has

an identifier associated with it. Any cards affected by the correction set can be referred to,
relative to the correction set. In later correction runs, all or part of a correction set can be
removed (yanked). Yanking differs from purging in that it is a logical operation. The effects
of a yank can be reversed.

With UPDATE directives and control card options, the user directs the process of creating
a program library, correcting it, and copying the updated programs to a compile file for
subsequent use by assemblers and compilers.

The compile file is a primary output of an UPDATE run and contains only the active cards of
non-common decks requested by the user. A typical application is for a user to call UPDATE
to update a FORTRAN source language deck maintained on an UPDATE program library,
request that the modified decks be written in source language format onto the compile file, and
then, in the same job call the FORTRAN compiler to read source input from the compile file.

A second type of output is a new program library. This contains updated decks requested
by the user in program library format for use as an old program library in subsequent
UPDATE runs. This is a required form of output during an UPDATE creation run. It may
become an old program library on subsequent correction runs.

A third type of UPDATE output is in the form of an UPDATE source file. This file re-
sembles the decks originally used to create the program library. It contains active source
cards of the decks and common decks taken from the updated program library. The source
file provides a means of obtaining a back-up copy of the library, of purging all inactive
cards, and of resequencing the library.

1-1

A source deck can be assigned common status at the time it is first incorporated into a
program library file. Common decks can be called from within other decks as they are
being written on the compile file. On the compile file, UPDATE replaces the card calling a
common deck with a copy of the deck provided that the call occurs within a deck or within

a common deck called within a deck.

Source decks can be added to a program library during a creation UPDATE run or during a_
correction run provided that all common source decks precede any source decks in which
they are called.

UPDATE permits two program libraries to be merged. In this mode, UPDATE alters any
deck on the merge file having a name that duplicates a name already on the primary program
library by assigning it a deck name that is unique.

1.1 FEATURES

Features of UPDATE include:

Creation of a program library from source decks.
Copying of old program libraries from sequential to random format and vice versa,
Merging of two program library files.

Updating of source decks by inserting, deleting, and restoring cards according to
sequence in the deck or according to correction set.

® Ability to completely and permanently remove correction sets from the program
library.

® Generation of a compile file containing corrected output acceptable as input to other
processing programs, such as compilers and assemblers. Contents of the compile file
and subdivision of the compile file into logical records and files is controlled through
UPDATE directives. This file can be formatted as 80- or 90-column card images
or can be in compressed form.

® Processing of directives, new text, and new source decks from a file other than the
job INPUT file.

® Production of fresh source decks from the program library.
Generation of a new, updated program library.

Comprehensive list output noting any changes occurring during the run and status of
the program library.

® Ability to change the directive card master control character.

Recognition of abbreviated forms of directives and capability of turning off the search
for the abbreviated forms to speed up processing.

Ability to use full 64~character set, including the colon.
Checksumming of program library.

1.2 EXECUTION

UPDATE executes as a CPU program on the CONTROL DATA® 6000 Series, 7000 series,
CYBER 170 series or CYBER 70 series Computer System under control of the operating
system. Certain features (section 1, 3) are only available through installation assembly options,

Execution begins when the operationg system interprets an UPDATE call card on the job
INPUT file control record, loads the UPDATE program from the system library, and
transfers control to it. An UPDATE run is one of three primary types: creation,
correction, or copy.

1.2.1 CREATION RUN

Before a user can manipulate and correct a proegram library, he must create one from a
source file (section 3.1). The creation run provides a means of creating a program library.

The following directives can be used prior to the first DECK or COMDECK directive in
either a creation run or a correction run:

ABBREV NOABBREV
DECLARE NOLIST
END READ
ENDTEXT REWIND
LIMIT SKIP

LIST TEXT

Any other directive changes the run from a creation run to a correction run. When UPDATE
does not encounter any other directives prior to encountering a DECK or COMDECK directive,
the run is a creation run and UPDATE ignores the old program library if one is present. The
only directives legalily encountered during a creation run are DECK, COMDECK, ABBREV,
NOAB;3REV, file manipulation directives and compile file directives (except for DO and
DONT).

A creation run consists of one or two phases. If a sequential program library is being
created, two phases are required: the read source decks phase and the write program
library phase. If a random program library is being created, the program library is
written during the first phase.

During the read source phase, UPDATE reads the input stream and creates a scratch file
(or a program library in the case of a random program library) and extracts the deck names
that are to be used for the generation of the ident directory and the deck list. Each deck is
preceded by a DECK directive and each common deck is preceded by a COMDECK directive.
If a compile file is desired, it is created as the source decks are read from the input stream.
When UPDATE encounters an end-of-record mark in the input stream, it writes the ident
directory and the deck list onto the new program library. When UPDATE is creating a
sequential program library (section 3.2), the scratch file is copied to the program library
(phase two). On subsequent UPDATE runs, each card of each deck on this library can be
referred to by deck name and sequence number. The deck directive (DECK or COMDECK)
for each deck is always identified as the first card image (sequence number one).

1-3

When the library is created, UPDATE generates a deck named YANK$$$ as the first deck
on the library, This deck is described further in section 3. 2.

A compile file generated during a creation run contains all decks that are on the new program
library. This file contains decks to be assembled or compiled.

1.2.2 CORRECTION RUN

UPDATE considers a run as a correction run when it encounters a directive other than one of
the following prior to encountering a DECK or COMDECK directive:

ABBREV NOABBREV
DECLARE NOLIST
END READ
ENDTEXT REWIND
LIMIT SKIP

LIST '}‘EXT

A correction run consists of a read input stream phase and a correction phase. During the
first phase, UPDATE reads directives and text, adds new decks, and constructs a dictionary
of requested correction operations.

During the second phase, UPDATE performs the requested modifications on a deck-by-deck
basis.

Correction directives cause card images to be inserted or deleted from program library decks
according to card sequence number. A card can be identified by deck name and sequence
number or correction set identifier and sequence number. Each new card is assigned a
correction set identifier specified by the user. UPDATE sequences the new cards. All
cards having the same correction identifier comprise a correction set. UPDATE permits
a user to remove (yank) the effects of a correction set (or deck) and later restore the set
(or deck). This feature is convenient for testing new code. Requests for yanking are
maintained in the YANK$$$ deck. Before obeying a correction, UPDATE checks the
correction identifier against the YANK$$$ deck to see if the correction has been yanked.
This effect on the YANK$$$ deck can be selectively controlled through DO and DONT
directives in program library decks.

UPDATE also allows a complete and irreversible purging of correction sets and allows the
name of a correction set to be changed.

If a compile€ file is desired, it is written during the correction phase. Common decks can
be called conditionally or unconditionally according to compile file directives embedded in the
program library decks. Additional control of compile file format is afforded the user through
directives that cause end-of-file or end-of-recordf marks to be written at the end of decks.
The compile file directives can be in original source decks or can be inserted into program
library decks during correction runs. These directives are not written on the compile file.

The compile file directives are interpreted when the compile file is written.

YFor SCOPE 2, end-of-partition and end-of-section marks are written,

1.2.3 COPY RUN

When either the A or B modes are selected on the UPDATE control card (section 4. 1.2), the
only function of the UPDATE run is to perform the sequential-to-random or random-to-
sequential copy of the program library file.

1.3 INSTALLATION OPTIONS

The following UPDATE features are available or unavailable through assembly options (see
NOS ar SCOPR Tne{-a'n atinn uapr"-\r\nlr\

AVISD UL DWW AL LD ALLAWI VI LIARUNUVUNE .

DECLKEY Enables DECLARE directive (section 2.8.7)

CHARG64 Supports full 64-character set (see compressed text description)

PMODKEY Enables PULLMOD card and G option (sections 2. 8.6 and 4.1.2)

AUDITKEY Allows audit functions (section 4.1.2)

EDITKEY Allows merge and edit (section 4. 1,2)

OLDPLKEY Enables UPDATE to read both old-style and new-style old program
libraries (section 3.2)

SCOPE33 Declares that interface is with SCOPE 3. 3 or later systems, if
SCOPE33 is defined. Otherwise, interface is with earlier versions.

EXTOVLP Enables detection of four types of overlap involving two or more
cards in a correction set. (Appendix A)

DYNAMFL Declares dynamic table expansion. When this option is assembled,

UPDATE automatically expands tables as required and dynamically
requests SCOPE to change the user field length to accommodate
the additional table area. At the end of the run, the field length

is reduced to that requested by the user.

An attempt to use features when the option has not been assembled causes UPDATE to issue

error messages. For example, when PMODKEY is not set, the PULLMOD card is not
recognized as a legal directive.

84000016 B 1-5

DIRECTIVES - 2

Directives allow the user to create libraries and extensively control and direct the correction
and modification process. Creation directives identify text to be placed on program libraries
as named decks or common decks. Correction directives identify the source of text to be
inserted, set parameters of the updating process, and inform UPDATE of insertions,
deletions, and other corrections. File manipulation directives allow user control of the

input files. Compile file directives can be in source decks originally or can be inserted
during an UPDATE run. These directives are manipulated much like source cards during
the creation, updating, and correction phases but are recognized when the compile file is
written.

2.1 DIRECTIVE FORMAT

A directive has the following format:

(x| omectve Pt 1 P : Pn
1|
: S
3 = 5| gl
x a lﬁl ai
g H '“l |o)
i I)
|
3 ', 1 !
master control The master control character is in column one. It is defined by
character UPDATE to be an asterisk but may be changed through use of the

* parameter on the UPDATE control card (section 4.1.2). Compile
file directives are inserted with the character used on the directive,
UPDATE recognizes them in a run only if the same master control
character as that used on the directive has been specified on the
program library header.

In this manual, all directives show asterisk as the conventional
rather than the required master control character.

directive name The directive name field starts in column two. It is terminated
by a comma or one or more blanks. A blank is conventional.
Most directives have a full name and an abbreviated name, e. q.,
the abbreviated name for ADDFILE is AF. When the NOABBR™V
directive is in effect, UPDATE does not recognize the abbrevia :ed
forms of the directive names.

separator Parameters are separated by any character other than A through
Z, 0 through 9, or +- * [() $ or =, A separator has a display
code value of 55g or greater. Some directives require specific
separators. No embedded blanks are permitted within a parameter.
UPDATE searches all 80 columns when interpreting its directives.
Therefore, any number of blanks can be between the directive
name and the first parameter.

2-1

jo Parameter. Depending on the requirements of the directive, the
t directive may have no parameters or a number of parameters.
Numeric parameter fields are decimal.

NOTE

If columns 73 through 80 contain information (that

is, sequencing information from a previous UPDATE

or comments),this information is appended to seemingly
blank *WEQOR, *CWEOR, or *DECLARE directives,
Therefore, a null field should be specified on these
directives in the following manner: *WEOR,, or
*CWEQR,, or ¥DECLARE

TaiNsLvy AT 23

2.2 CARD IDENTIFICATION

The corrections to the library, that is, the newly inserted cards, replaced cards, and de-
leted cards make up a correction set. The IDENT directive provides a unique name to be
assigned to each card inserted by this correction set and each card for which the status is
changed. Each change is also assigned a sequence number beginning with one for each
IDENT name.

Future corrections affecting these cards can reference these cards by their correction set
identifiers.

Card identifiers assigned by UPDATE are usually permanent and can be changed only through
use of the SEQUENCE directive (section 2. 4. 15) and the CHANGE directive (section 2.4.7).

UPDATE recognizes a full form and two short forms of identifiers.
The full form of a card identifier is:
ident. seqnum
ident 1-9 character name of a correction set or deck.

A period terminates the ident.

segnum Decimal ordinal (1 to 131071) of the card within the correction
set or deck. Any character other than 0-9 terminates the sequence
number.

The shortened forms of card identifiers can be used on BEFORE, INSERT, DELETE,
RESTORE, and COPY directives. Shortened forms are expanded as follows:

seqnum Expands to idname. seqnum where idname is a correction set
identifier whether or not it is alsoa deck name.

. Sseqnum Expands to dname. seqnum where dname is a deck name.

In the short form, idname is assumed to be the last explicitly named ident given on a
BEFORE, INSERT, DELETE, RESTORE, or COPY directive whether or not it is a deck
name. The dname is assumed to be the last explicitly named ident given on a BEFORE,
INSERT, DELETE, RESTORE, or COPY directive that is known to be a deck name. Both
of these default idents are originally set to YANK$$$ so the first directive using a card
identifier must use the full form to reset the default.

All deck names are also idents, Thus, if EXAMPLE is the deck name last used, and
there is no subsequent explicit reference to a correction set identifier, then both .281
and 281 expand to EXAMPLE .281. If there is an explicit reference to a correction
set identifier after the explicit reference to the deck name, then 281 would expand to
the correction set ident while .281 would expand to EXAMPLE .281

2-2 84000016 B

Example:
A is a deck name and B is a correction set on an UPDATE OLDPL.

¥ID C
*INSERT A.2
<data card>
*INSERT B.!1
<data card>

*D 2,3 expands to *DELETE B.2,B.3

D 4,.5 expands to *DELETE B.2,A.5

*D .7,5 expands to *DELETE A.7.B.5

*D .9,.10 expands to *DELETE A, 9, A. 10
whereas:

*ID D

*INSERT B.1

<data card>

*INSERT A.2

<data card>

*» 2,3 expands to *DELETE A.2,A.3

*D 4,.5 expands to *DELETE A.4,A.5

*» .7,5 expands to *DELETE A.7,A.5

*D .9,.10 expands to *DELETE A.9,A.10

2.3 DECK IDENTIFYING DIRECTIVES

Each deck to be placed on a program library must be introduced into the system by a DECK
or COMDECK directive during a creation or correction run. When UPDATE encounters one
of these directives on the input file prior to any correction directive, the run is a creation
run. When UPDATE encounters one of these directives while inserting corrections, it
terminates the insert and adds the decks tothe old program library following the card specified
by the INSERT, DELETE, etc.

A deck is terminated by the first occurrence of a DECK or COMDECK card or by an end-of-
record card. All intervening cards other than file manipulation directives comprise text.
Text cards, when placed on the library, are identified with a deck name and are numerically
sequenced starting with 1 for the DECK or COMDECK card, itself. File manipulation
directives can be embedded within the text cards. They are valid directives and are not
included in the numbering scheme. Text cards introduced as a result of a READ directive
are included in the numbering scheme. Any END directives are ignored; they are accepted
for compatibility with the SCOPE EDITSYM program only.

Usually, a DECK or COMDECK directive precedes each program or subprogram in a given

system. However, more than one subprogram may be included in a deck, as is indicated in
the following example:
*¥*DECK FIRST
IDENT FIRST
IDENT SECOND
*COMDECK FDATA
o BLOCK DATA
COMMON /J3/A(10)
DATA A/3%0,, 71,0/
END

Normally, a user groups two programs together if modification of one requires reassembly of

both programs.
2-3

UPDATE uses the DECK and COMDECK directives while writing the compile file to delimit
decks for UPDATE output. This division is meaningful during a correction run when the
selective UPDATE mode is employed. Under the selective update mode only decks in which
one or more cards have been changed, decks specified on COMPILE directives, and called
common decks are included on the compile file. In selecting the cards to be written, UPDATE
compares card activities in the current run with those on the old program library. If the
status for a card has changed, the deck is considered to have been modified. Any deck that
calls a common deck that has changed is also considered to be changed unless the common
deck is of the nonpropagating type.

2.3.1 DECK-SOURCE DECK

Formats:

(*DECK dname
*DK

dname 1-9 character name of deck being introduced; this name must
differ from any names already in the deck list. Legal characters
are:

A-Z 0-9 + - %) () $ =

The DECK directive identifies the beginning of a new source deck. Cards up to the next
DECK or COMDECK directive comprise the deck.

2.3.2 COMDECK-COMMON DECK

Formats:

(*COMDECK dname, NOPROP

*CD

dname 1-9 character name of deck being introduced; this name must
differ from any names already in the deck list. Legal characters
are:

A-Z 0-9 + - % [() $ =

NOPROP Inclusion of this parameter specifies that if this deck is modified,
decks calling this common deck are not to be considered as
modified; that is, the effects of the changes are not propagated
during UPDATE mode (F option not specified, section 4.1, 2),

2-4

The COMDECK directive introduces a common deck. These decks are written on a compile
file as a result of CALL statements encountered in regular decks while writing the compile
file. ‘

For sequential libraries, a common deck should be placed prior to any of the decks calling
it. For a random library, it is possible to call a common deck from a deck that precedes the
common deck in the deck list. However, to facilitate copying of libraries from random to
sequential, the user is advised to place common decks prior to any decks calling them.,

In a normal UPDATE run with a random or sequential old program library, a deck calling
a common deck being modified that precedes the common deck is not automatically written

on the compile file.

2.4 CORRECTION DIRECTIVES

Correction directives control updating of the old program library. New text is assigned a
unique identifier. The corrected programelibrary is written on the new program library;
the old program library is not actually changed. Correction directives are illegal on a
creation run.

The following directives are used for inserting and deleting text:

INSERT (I) Insert text after specified card

BEFORE (B) Insert text before specified card

DELETE (D) Deactivate card and optionally insert text in its place
RESTORE (R) Reactivate card and optionally insert text after it
COPY {C} Copy and insert text from specified library deck

These directives indicate to UPDATE that:

1. New text is to be inserted into the library and sequenced according to the current
correction set identifier.

2. That old text is to be deleted.

While inserting, UPDATE interprets file manipulation directives (e. g., READ changes the
source of insertion cards but does not terminate insertion). COPY does not terminate
insertion and can be used to obtain insertion text from another deck on the library. Compile
file directives (section 2.7) are inserted as if they are text; the master control character
written on the program library is that specified on the directive.

Unless a TEXT directive has been encountered, UPDATE terminates an insertion when it
encounters the next insertion directive or one of the following directives:

PURGE

SELPURGE

PURDECK

ADDFILE

IDENT

2-5

File manipulation directives are interpreted (and may change the source for insertion cards)
but they do not terminate insertion. They are not inserted into the deck. Insertion cards can
include compile file directives and directives destined for the YANK$$$ deck.

Correction directives that modify on a correction set or deck basis rather than on a card
basis are the following:

YANK (Y) Deactivate correction sets

SELYANK (SY) Selectively deactivate correction sets

YANKDECK (YD) Deactivate all cards in decks

PURGE (P) Permanently remove correction sets

SELPURGE (SP) Permanently remove cards belonging to correction sets
from specific decks

PURDECK (PD) Permanently remove all cards in decks

CHANGE (CH) Change correction set name

SEQUENCE (S) Resequence decks and purge all inactive cards

2.4.1 IDENT-IDENTIFY NEW CORRECTION SET

A correction set usually begins with an IDENT but need not if no new program library is
being generated. In this case, UPDATE uses the default .NO.ID. for new text cards.

A PURGE, SELPURGE, PURDECK, ADDFILE, IDENT, SEQUENCE, or end-of-recordf
terminates a correction set.

Formats:

(¥IDENT idname, py,pp,...,P,
*ID

idname 1-9 character identifier to be assigned to this correction set.
Legal characters are:

A-Z 0-9 + - % [() § =

This name causes a new entry in the directory. Each card inserted
by this correction set and each card for which the status is changed
receives a correction historybyte that indexes this idname.
Sequencing of new cards begins with one for this idname.

Omitting idname causes a format error. If idname duplicates a
name previously used, UPDATE issues an error message,

Both errors are nonfatal as long as no new program library is
created in the same run.

. This idname remains in effect until UPDATE encounters another
IDENT directive or encounters PURGE, SELPURGE, PURDECK,
ADDFILE, or SEQUENCE directive.

T End-of-section for SCOPE 2.

2-6

Pi Any number or none of the following parameters.

B=num Bias of num is to be added to sequence numbers.
If more than one B parameter is specified, UPDATE
uses the last one encountered.

K=ident The specified ident must be already in the directory
for this correction set to be incorporated. If ident
is unknown, UPDATE skips the correction set and
resumes processing with the next IDENT, PURGE,
SELPURGE, PURDECK, or ADDFILE directive,
If more than one K parameter is specified, all the
idents must be known or the correction set is skipped.

U=ident The specified ident must not be known for this
correction set to be processed. If ident is known,
UPDATE skips the correction set and resumes
processing with the next IDENT, PURGE, SELPURGE,
PURDECK, or ADDFILE directive. If more than one
U parameter is specified, all the idents must be
unknown or the correction set is skipped.

NOTE

An ident that has been yanked is still
known; that is, an ident is known whether
it is active or inactive, An ident must
be purged to become unknown.

Example:

(*IDENT ZAP,B=100, K=ACE, U=NON, U=ARF

The bias of 100 (decimal) is added to all ZAP correction set card sequence numbers. That
is, the first card in correction set ZAP has sequence number 101 not 1. UPDATE skips
the correction set if ACE is unknown or either NON or ARF is known.

2.4.2 INSERT-INSERT CARDS AFTER

Formats:

[*INSERT c
*1I

c Identifies card (section 2.2) after which new cards will be inserted.

Cards to be inserted immediately follow the INSERT or I card on the input file,

2.4.3 BEFORE-INSERT CARDS BEFORE

Formats:

(*BEFORE c
*B

c Identifies card (section 2.2) before which new cards will be inserted.

Cards to be inserted immediately follow the BEFORE or B card on the input file.

2.4.4 DELETE-DELETE AND INSERT CARDS

Formats:

*DELETE c
l *D

(*DELETE Cas Cp

*D
c Card identifier (section 2. 2) for single card to be deleted.
Ca, Cb Card identifiers (section 2.2) of first and last cards in sequence

of cards to be deleted. c, must occur before cy, on the library.
The range can include cards already deleted which are not affected
by the DELETE.

With the DELETE or D directive, the user deactivates a card or block of cards and optionally
replaces it with insertion cards following the DELETE directive.

A deactivated card remains on the library and retains its sequencing. It can be referred
to in the same way as an active card.

A deactivated card is not included in the compile decks or source decks.

2.4.5 RESTORE-REACTIVATE CARDS

Formats:

[*RESTORE c
*R

(*RESTORE c,, cp

| *R

c Card identifier of single card (section 2.2) to be restored.

Ca, Ch Card identifiers of first and last cards in sequence of cards to be
restored. Any cards in the sequence that are already active
are not affected by the RESTORE. c, must occur before ¢, on the
library.

With the RESTORE directive a user reactivates a card or block of cards previously de-
activated through a delete and optionally inserts additional cards after the restored card
or block of cards. The cards to be inserted immediately follow the RESTORE card.

2.4.6 COPY-COPY TEXT

The COPY directive has two forms. The first form is used only during insertion and directs
UPDATE to copy one or more active cards from a deck on the old program library and insert
them as if they were text on the input stream. The second form cannot be used during inser-
tion. It provides a means of obtaining a copy of one or more active cards from a deck on the
old program library and writing them on a file specified by the user. An attempt to copy
decks being introduced during the same UPDATE produces an informative message.

Copying into a new deck from an existing deck is legal. UPDATE copies the cards before
applying any corrections to them. Thus, the first form allows a user to move a sequence

of cards by copying them and deleting the original cards in the same UPDATE run.

Format one:

*COPY dname,c
*CY

*COPY dname, c,, cp
ﬁCY a

dname Deck on old program library that contains cards to be copied.

c Card identifier (section 2.2) of single card to be copied.

Ca, Cp Card identifiers of first and last cards in sequence of cards to be
copied.

2-9

For this form of COPY, an INSERT, DELETE, BEFORE, or RESTORE must be in effect.

In the following example, this first form of COPY is valid because the INSERT has initiated

insertion.

Cards BDECK. 4 through BDECK. 8 are copied and inserted after the text cards.

The copied cards are sequenced as part of correction set X.

*IDENT X
*INSERT BLAP. 11
(text cards)

*COPY BDECK, BDECK. 4, BDECK. 8

The following text stream is not valid because insertion is not in effect and UPDATE does
not know where to write the card copies:

*[DENT X

*COPY BDECK, BDECK. 4, BDECK. 8

Format two:

*CY

(*COPY dname, Ca» Cpy» file

dname

Ca: Cp

file

Name of deck containing text to be copied. This deck must be on
the old program library.

Card identifiers (section 2. 2) of first and last cards in sequence
of cards to be copied.

Name of file onto which cards are to be copied. The user is
responsible for the disposition of this file. The file is a coded
file that contains 80~column card images. It has one record for
each COPY directive. No sequencing information is appended.

Placement in the input stream of this form of COPY is not restricted to insertion. This
form of COPY is not a correction directive.

2-10

2.4.7 CHANGE-CHANGE CORRECTION SET IDENTIFIER

Format:

fCH.ANGE idnamel, idnamesy, idname3, idname4, «..,idname n-1° idnamen

*CH
idnamei Name of correction set to be changed.
idname; New correction set name, 1-9 alphaumeric characters.

Legal characters are:
A-Z 0-9 + - % [() § =

The CHANGE directive changes idname; in the directory to idname, ;. As a secondary

effect, changing the name of the correction set invalidates any YAﬁklor SELYANK directives
in the YANK$$$ deck that refer to the set by its previous name. A CHANGE directive goes into
effect immediately. Thus, any subsequent references to the correction set must use the new

name.

The CHANGE directive does not terminate insertion and need not be part of a correction set.

CHANGE cannot be used to change deck names.

2.4.8 YANK-REMOVE EFFECTS OF CORRECTION SET

Format one:

(*YANK idnamey, idnameg, . .., idname,
*Y

idnz—s.mei Name of correction set previously applied to the program library.
If UPDATE fails to find idname;y, it issues an error message.

Format two:

*YANK idname,.idnamey,
*Y

The correction set idname_ and all sets up to and including idname,, are yanked. If idname,
and idnamey, cannot be locdted or are in reverse order, UPDATE issues an error message.

UPDATE places the YANK directive in the YANK$$$ deck. During the modification phase,
UPDATE checks each correction to see if it has been yanked. All yanked corrections are
ignored. If the card was deactivated by the yanked correction set, UPDATE reactivates it.
If the card was activated by the yanked correction set, UPDATE deactivates it. Thus,
UPDATE changes the correction history byte for every card that changed status.

84000016 B 2-11

The YANK can be selectively nullified during the correction phase through the introduction
of DO and DONT directives in the decks.

For an example of YANK use, refer to section 4.2.4,
A YANK must be part of a correction set.

A YANK directive does not terminate insertion.

2.4.9 YANKDECK-DEACTIVATE DECKS
The YANKDECKV directive deactivates all cards within the decks specified.

Format:

*YANKDECK dnamej, dnamey, . .., dname
*YD

dnamey Name of deck to be deactivated. All cards in the deck are de-
activated regardless of the correction set to which they belong.
If UPDATE is unable to find dname;, it issues an error message.
The YANK$$$ deck cannot be yanked.
The YANKDECK directive must be part of a correction set.
YANKDECK does not terminate insertion.

For an example of YANKDECK, see section 4.2.4.

2.4.10 SELYANK-SELECTIVELY REMOVE EFFECTS OF CORRECTION SET

The SELYANK directive resembles the YANK directive but the effect is. limited to the deck
specified on the SELYANK directive.

Formats:

(*SELYANK dnamej.idname;, dnamey. idnames, . . . dnamey. idname,

*SY
dname; Name of deck from which correction set idname; is to be removed.
idnamei Correction set to which cards to be removed belong.

2-12

If UPDATE is unable to find either dname; or idname;, it issues an error message.
Cards in the YANK$$$ deck can be yanked with SELYANK.
The SELYANK directive must be part of a correction set. It does not terminate insertion.

For examples of use, see section 4.2.4.

2.4.11 PURGE-PURGE CORRECTION SETS

The PURGE directive causes the permanent (irreversible) removal of a correction set or
group of correction sets.

A PURGE directive can be any place in the directives input. The YANK$$$ deck cannot be
purged.

Purging cannot be rescinded. See section 4.2.4 for an example of use.
The PURGE directive has three basic formats:

Format one:

(*PURGE idname,, idname,, . . ., idname,
*P

idname; Identifiers for correction sets o be purged.

Format two:

*PURGE idnamea. idnameb
*P

Correction set idname, and all sets up to and including idname,, on the directory are purged.
If idname, and idnamey, cannot be located or are in reverse order, UPDATE issues an error
message.

Format three:

(*PURGE idname, *
*P

2-13

Correction set idname and all correction sets that have been introduced after idname are
purged. This returns the library to an earlier level only if no PURGE, SELPURGE, PURDECK,
or SEQUENCE directive has been issued previously. :

If UPDATE cannot locate a specified correction set, it issues an error message. Purged
idnames can be reused on subsequent correction sets provided they do not appear in the
YANK$$$ deck.

2.4.12 PURDECK-PURGE DECKS

A PURDECK directive causes the permanent (irreversible) removal of a deck or group of decks
from the program library. Every card in a deck is purged, regardless of the ident it

belongs to. PURDECK does not purge idnames. Thus, a deck name purged as a result of
PURDECK can be reused as a dname. It can be used as a new idname only if it is not

already in the directory list. See section 4.2.4 for example of use.

The deck name remains in the directory until removed through use of the E option on
the UPDATE control statement (section 4.12) on a subsequent UPDATE run.

The deckname can also be removed by resequencing the library, that is, by creating a
source file in one UPDATE run and using the source file as input on a second run.

A PURDECK directive can be any place in the directives input. The YANK$$$ deck
cannot be purged. Purging cannot be rescinded.
The PURDECK directive has two basic formats:

Format one:

rkPURDECK dnamel, dnamez, ooy dna.men
*PD

d.na.mei Deck names for decks to be purged.

Format two:

*PURDECK dname,. dnamey,
*PD

The deck named dname, and all decks up to and including dname, listed in the deck list are
purged. If dname_ and dnamey, cannot be located or are in revérse order, UPDATE issues
an error message.

2-14

2.4.13 SELPURGE-SELECTIVELY PURGE CORRECTION SETS

The SELPURGE directive causes all cards in a specified deck that belong to the specified
correction set to be purged. It permanently removes the effects of correction set idname
in deck dname. The idname is not purged and therefore remains known to UPDATE. No
deck other than dname is altered in any way.

A SELPURGE directive can be any place in the directives input.

Formats:

ﬁSELPURGE dname;.idname;, dnamey.idnamey, ..., dnamey. idnamep

*SP
ciname Name of deck from which correction set is to be removed.
idname Correction set to which cards to be removed belong.

If UPDATE is unable to find either dname or idname, it issues an error message.

Cards in the YANK$$$ deck can be purged.

2.4.14 ADDFILE-ADD FILE OF NEW DECKS

ADDFILE directs UPDATE to read creation directives (DECK and COMDECK) and text
data from the named file and insert this information after the specified deck or card on the
new program library. The first card on the file must be a DECK or COMDECK directive.
UPDATE reads from the file until it encounters a 7/8/9 card and then returns to

the primary input file. If the file referred to by the ADDFILE is the primary input file,
UPDATE adds cards until it encounters a 7/8/9 or the next directive that is not a

compile file directive or file manipulation directive. UPDATE does not reposition the file
specified on the ADDFILE directive. Any repositioning must be requested through SKIP or
REWIND directives. ADDFILE is illegal on an alternate input file. A READ directive is
illegal during processing of the added file.

Formats:

*ADDFILE file, c
*AF

*ADDFILE file, dname
*AF

2-15

file Name of file from which information is to be read. This text
cannot contain correction directives. If file is omitted, it is
assumed to be the UPDATE input file (INPUT or its équivalent as
specified by the I parameter).

c Identifier for card (section 2.2) after which decks are to be
placed on program library.

dname Name of deck after which new decks are to be placed on program
library.

If the dname parameter is *, it refers to the ident that
is known to be a deck name most recently mentioned on a

*BEFORE, *COPY, *DELETE, *INSERT, or *RESTORE
directive (refer to section 2.2). If no such directive pre-
cedes the ADDFILE, YANK$$$ is used.

If only one parameter is present, it is assumed to be the file name. Omission of the second
parameter causes UPDATE to add the decks at the end of the library.

For example of use, see section 4.2, 5.

2.4.15 SEQUENCE- RESEQUENCE DECKS

The SEQUENCE directive directs UPDATE to resequence and purge inactive cards from the
specified decks on the new program library.

Formats:

r!‘SEQUENCE dname;, dnamey, ..., dname,
:::S

f‘SEQUENCE dname,. dnamey,
:::S

dname; All active cards in dname, are resequenced under identifier
dname.. All previous correction history bytes and all inactive
cards are purged. In the first form, each of the decks is re-
sequenced. In the second form, each of the decks in the deck list
starting with dname, and ending with dnamey, is resequenced.

UPDATE normally allows deck and correction sets having the same name to co-exist on
the old program library. If a deck having the same name as a correction set is re-
sequenced and cards for the correction set are in other decks. UPDATE purges any
modifications made by that correction set outside the resequenced deck to prevent dupli-
cate identifiers.

Only those decks explicitly mentioned on the SEQUENCE directive are resequenced, Thus,
if a correction set (e.g., SET1) has been applied that affects more than one deck on a
program library (e.g., DECKI1 and DECK2), and only DECKI1 has been subsequently re-
sequenced through SEQUENCE, the SEQUENCE directive does not affect SET1 cards within
DECK2.

2-16 84000016 B

SEQUENCE does not result in idnames being deleted from the library even if, as a result

of resequencing, no references to an idname are on the library. This situation arises when
all the corrections of a correction set refer to a deck that is resequenced, Deletion of the
idname in this case requires an EDIT or PURGE in a subsequent UPDATE run.

2.4.16 MOVE-MOVE DECK

Format:

*MOVE dname,, dname,
*M

The MOVE directive enables the user to reorder decks while producing a new program library.
The deck dname, is moved from its position on the old library and placed after dnamey on

the new library.” A MOVE referencing a deck introduced in the same UPDATE run produces
an informative diagnostic.

MOVE does not terminate insertion and need not be part of a correction set.

2.5 FILE MANIPULATION DIRECTIVES

File manipulation directives allow user control over files during UPDATE processing.
The READ directive may be used to change the source of directives and insertion text
from the input file to an alternate file. A file change while an insertion is in progress
does not terminate insertion. File manipulation directives are illegal when UPDATE

is reading from an alternate file (such as during ADDFILE processing). They can be
on the primary input file only.

File manipulation directives include:

READ (RD) Read input stream from specified file
SKIP (SK) Skip forward specified number of records on file
REWIND (RW) Rewind named file

These operations cannot be performed on the following reserved files or their equivalents:

INPUT Source of directives and input text
ouTPUT List output

COMPILE Compile output

SOURCE Source output

OLDPL O1d program library

NEWPL New program library

MERGE Merge

2-17

UPDTSCR \
UPDTCDK
UPDTTPL
UPDTEXT
UPDTAUD
UPDTPMD |

e UPDATE scratch files

The scratch fileg are always reserved but the other files are reserved by thei
UPDATE control card optlons only That is, if the S or T options do not speci e
SOURCE, (e.g., the source file is S1) the user can have a file named SOURCE to which file

manipulation directlves can refer; however, he cannot manipulate the file name

s
o+
fng
[0]
et
2]

[N
2]
,..a

2.5.1 READ-READ ALTERNATE DIRECTIVES FILE

Formats:

*READ file
*RD

file Name of file containing insertion text and/or directives; READ,
SKIP, REWIND, and ADDFILE are illegal on the file.

The READ directive causes UPDATE to temporarily stop reading the input file and begin
reading directives and insertion text from the named file at its current position. UPDATE
reads from this alternate directives file until it encounters an end-of-recordfand then resumes
with the next card on the primary input file.

Example:

((#RESTORE 0D.80
(¥READ TPI
*I DDLIO

INSERTION TEXT IS NEXT RECORD ON TPI T

T End-of-section for SCOPE 2.

2-18

2.5.2 SKIP-SKIP FORWARD ON FILE
Formats:

*SKIP file
*SK v

f *SKIP file,n
*SK

file Name of file to be positioned

n Number of logical recordsito be skipped in the forward direction.
If n is omitted, UPDATE skips one record.

The SKIP directive repositions the named file forward one or more logical records.
If an end-of-file (end-of-partition) or end-of-information is encountered before the re-

quested number of records has been skipped, the file is positioned at the EOF, EOP,
or EOI that stopped the skipping.

2.5.3 REWIND-REWIND FILE

Format:

*REWIND file
*RW

file Name of file to be rewound
The REWIND directive repositions the file to its first logical record. T

2.6 SELECTIVE COMPILE DIRECTIVE (COMPILE)

Formats:

(*COMPILE dname;, dnames,, ..., dname,
*C |

(*COMPILE dname,,. dnameb
*C

dnamei Name of deck to be written onthe compile file, new program
library, and source file.

T Section(s) for SCOPE 2.

2-19

The first form of the directive requests one or more decks in any sequence on the library.
The second form requests all decks in the deck list on the old program ‘library starting
with dname, through dnamey. If UPDATE fails to find the named deck or if the deck
names are reversed, it issues a diagnostic message.

When a deck is being introduced in the same run that contains a COMPILE directive for the
deck, UPDATE must not encounter the COMPILE directive before the DECK directive.
Otherwise, COMPILE directives can be anywhere in the input stream.

Calling a common deck from within a deck being updated results in the common deck being
updated.

2.6.1 NORMAL SELECTIVE MODE

During a normal UPDATE run (F and Q are not selected on the UPDATE control card),
UPDATE writes on the compile file all decks specified on COMPILE directives as well as
all decks corrected during the run. COMPILE causes a deck to be written regardless of
whether it was corrected or not. In normal mode, decks are written on the compile file in
the sequence encountered on the old program library. If a common deck is modified, a deck
calling it that precedes the common deck is not automatically written on the compile file.
The deck preceding a deck that has been purged by PURDECK and/or PURGE will be written
on the compile file. By selecting the K parameter on the UPDATE control card, the user
causes decks to be written in the sequence specified on COMPILE directives followed by any
decks for which corrections were made that were not mentioned on COMPILE directives.

2.6.2 FULL UPDATE MODE

During a full update run (F selected on UPDATE control card), UPDATE ignores COMPILE
directives. It updates all decks in the sequence encountered on the library. This sequence
cannot be changed through the K option.

2.6.3 QUICK MODE

During a quick UPDATE run (Q selected), only decks specified on COMPILE directives and
called common decks are written on the compile file. These decks are written in the sequence
encountered on the program library unless the K option has been specified, in which case,
they are written in the order specified on the COMPILE directives. For an example, see
section 4.2, 6. -

2.7 COMPILE FILE DIRECTIVES

The directives described in this section provide user control over the compile file. These
directives are interpreted when the program library decks are being corrected and written
onto the compile file. Calls for common decks result in the common deck being written on
the compile file. Other directives allow control of file format. None of the directives are
written on the compile file.

2-20 84000016 B

The user can prepare his original source deck with compile file directives embedded in

it (except for DO or DONT) or he can insert compile file directives into program library decks
as a part of a correction set. Compile file directives are not recognized when they are on

the input file; they do not terminate insertion but are simply considered as text cards to be
inserted and are sequenced accordingly.

Compile file directives include:

WEOR (W) Wprite end-of-record of specified level on compile file
CWEOR (CW) Write end-of-record or end-of-file on compile file if the buffer
is not empty
CALL (CA) Write called common deck onto compile file
IF Write text onto compile file if condition is defined
ENDIF (EI) Optionally used to specify end-of-conditional text
TEXT (T) The text following is not to be scanned for directives
ENDTEXT (ET) Resume scan for directives
DONT (DT) Do not rescind yanks of correction set applying to the following text
DO Rescind yanks of correction sets applying to the following text

To be recognized while the compile file is being written, these directives must have the
same master control character as that defined when the library was created.

2.7.1 WEOR-WRITE END-OF-RECORD OR END-OF-FILE

Format:

WEOR level

level If level is 0-14 decimal, UPDATE (SCOPE 3.x and NOS 1) writes

an end-of-record of the specified level on the compile file.
UPDATE (SCOPE 2) writes an end-of-section.

If level is 15 decimal or greater, UPDATE writes a zero-level
end-of-record followed by an end-of-file on the compile file (end-
of-partition for SCOPE 2). If level is omitted, UPDATE writes
a zero-level end-of-record.

This directive aids organization of a compile file to be used by compilers, assemblers,
etc.

84000016 B 2-21

2.7.2 CWEOR-CONDITIONALLY WRITE END-OF-RECORD OR END-OF-FILE

Format:

*CWEOR 1level
*CW

level If level is 0-14 decimal, UPDATE (SCOPE 3.x and NOS 1) writes an
end-of-record of the specified level on the compile file. UPDATE
(SCOPE 2) writes an end-of-section. If level is 15 or greater, UPDATE
writes an end-of-file on the compile file (end-of-partition for SCOPE 2),
If level is omitted, UPDATE writes an end-of-record.

If level is 15 decimal, or greater, UPDATE writes a zero-level end-
of-record followed by an end-of-file on the compile file (end-of-partition
for SCOPE 2). If level is omitted, UPDATE writes a zero-level end-of-
record.

This directive causes UPDATE to write an end~of-record mark or end-of-file mark only
if information has been placed in the output buffer since the last end-of-record (or end-of-file)
was written,

2.7.3 CALL-CALL COMMON DECK

Format:

*CALL dname
*CA

dname Name of common deck to be written on compile file.

UPDATE writes the text of a previously encountered common deck, dname, onto the compile
file. Common code, such as system symbol definitions, may be declared in the common
deck and used in subsequent decks or assemblies without repeating the data cards. The
CALL card does not appear on the compile file. The contents of the common deck, excluding
the COMDECK card, follow immediately. Common decks can call other common decks.
However, to avoid circularity of calls, a common deck must not call itself or call decks

that contain calls to the common deck., A CALL directive is effective only when it is within

a deck.

2.7.4 IF-CONDITIONALLY WRITE TEXT

The writing of text cards on the compile file can be conditionally controlled through the IF
directive. When UPDATE encounters an IF directive while it is writing on the compile file,
UPDATE conditionally writes the text following the IF or skips the text.

2-22 84000016 B

Formats:

ﬁIF type, name, num

type

DECK
IDENT

DEF

name

num

Examples:

1.

or rkIF -type, name, num

Type of conditional name. When type is not preceded by a minus
sign, the name must be known for text to be written. When type is
preceded by a minus sign, the name must not be known for text to
be written.

Name

Name is a deck name. To be known, it must be in the deck list.

Name is a correction set identifier. To be known, it must be in the
directory.

Name is defined through DEFINE directive encountered during
correction phase. DEFINE directives are maintained in the
YANK$$$ deck.

According to type, a deck name, correction set identifier, or
defined name.

When the condition is not met, this is the number of card images
that are skipped. If the condition is not met and num is omitted,
UPDATE searches for an ENDIF directive and resumes processing
of the deck at that point. When the condition is met, no cards are
skipped.

During the correction phase, UPDATE processes the following directive:

*DEFINE ABC

PROG2, a deck to be written on the compile file, contains the following sequence:

*DECK PROG2

.
.

*[F DEF, ABC

.
.

*ENDIF

All active text cards between IF and ENDIF are
written as if they are part of PROG2. Removing
the DEFINE from the YANK$$$ deck would cause
these text cards to be skipped.

2-23

2. DECKA has mutually exclusive requirements depending on the availability of
correction get IDC.

*DECK DECKA

*IF IDENT, IDC, 15

(15 active text cards) Written if IDC is available
¥[F - IDENT, IDC

(active text cards) Not written if IDC is available
*ENDIF

3. The following example illustrates nesting of IF directives. SAM has an IF-controlled
sequence containing a second IF-controlled sequence. :

*DECK SAM

+IF IDENT, JOE Text following is written if JOE is available.

HF IDENT, BOB Text following is written if both JOE and BOB are
. available

*ENDIF Terminates both IFs

2.7.5 ENDIF -END OF CONDITIONAL TEXT

Format:

*ENDIF

*EIL
This directive is used with IF when the num parameter is omitted from the IF directive.
An ENDIF indicates the end of conditional text. It is' not written on the compile file.

NOTE

ENDIF should not be used if num is specified
on the IF directive. If it is used, num takes
precedence. The ENDIF is included in the
count of active cards and is written on the
compile file.

2-24

2.7.6 TEXT AND ENDTEXT-IDENTIFY TEXT

Formats:

*TEXT
*T

(*ENDTEXT

| *ET

The TEXT (or T) and ENDTEXT (or ET) directives delimit a sequence of text card images
that might be interpreted as correction directives by UPDATE. When UPDATE encounters

a TEXT directive, that card and all following it up to and including the ENDTEXT directive
are considered as data and are written on the program library. These cards are not checked
or altered in any way. They do, however, have an identifier associated with them and may
be modified and corrected as any other UPDATE text. A TEXT directive in the input stream
must be either in a deck or in text being inserted. The TEXT and ENDTEXT directives are
maintained on the program library as text cards; they are not written on the compile file.

Any information in columns 10 - 80 is taken as a comment.

Example:

_(*ENDTEXT

INSERTED AS TEXT (%-----

{)HNSERT
*IDENT

If ENDTEXT is encountered before TEXT, UPDATE issues the message UNBALANCED
TEXT/ENDTEXT CARDS, LAST ENDTEXT CARD IGNORED.

84000016 B 2-25

2.7.7 DO AND DONT- TEMPORARILY RESCIND YANK AND SELYANK

Formats:

ﬁDO idnamej, idnamesy, ..., idnamep,

*DONT idnamel, idnamez, cae, idnamem
*DT

iclnamei Name of correction set for which yanking is to be rescinded or
initiated. Omitting idname results in a format error.

When UPDATE encounters a DO directive and until it encounters a DONT directive for a
correction set, it checks to see if a card was deactivated by a YANK or SELYANK and -
reactivates it. If it was activated by the YANK or SELYANK, UPDATE deactivates the card.

If UPDATE encounters a DO for an unyanked correction set, it issues an informative message
and ignores the DO,

Although a DONT is normally used to terminate a DO, the DONT directive can also be
used to initiate a yank of an unyanked correction set at some place other than the beginning
of the old program library. When UPDATE encounters a DONT for a correction set that
has not been yanked, it yanks the set until it encounters a DO directive for the set. If the:
deck is already yanked, UPDATE issues an informative message and ignores the DONT.

DO and DONT directives can be any place in the library. They are not written on the compile
file. For an example of use, see section 4.2.4,

2.8 SPECIAL DIRECTIVES

The directives described in this section provide extended features. With the exception of
PULLMOD, they can be any place in the directives file for creation or correction and
primarily affect the operating features of UPDATE.

/ List Comment

NOABBREV (NA) Deselects the abbreviated directives feature
ABBREV Reselects the abbreviated directives feature
LIMIT (LT) Changes maximum size allowed for list output file
NOLIST (NL) Inhibits list output

LIST (L) Resumes list output

DEFINE (DF) Defines names for subsequent use by IF directives
PULLMOD (PM) Recreates correction sets

DECLARE (DC) Restrict corrections to declared deck.

2-26

2.8.1 /-LIST COMMENTS

Format:

(‘ %/ comments

Other than being copied onto the UPDATE list output, a comment card is simply ignored.
If column 3 does not contain a comma or a blank, the card is interpreted as a text card.

R}

The comment character / can be changed through the / option on the UPDA

2.8.2 ABBREV AND NOABBREV-DO OR DO NOT CHECK FOR ABBREVIATED DIRECTIVES

Formats:

(*ABBREV

(*NOABBREV

#NA

Most UPDATE directive names can be written in abbreviated form. UPDATE expands

the name when it reads an abbreviated form so that it is a full name on the listings, in all
UPDATE output, and in the program library. Because checking for the abbreviated forms
and expanding them is a time-consuming feature, the user has the option of not using
abbreviations and turning off the check through the NOABBREV feature. In this mode, an
abbreviated directive is not recognized but is taken as text. The ABBREYV directiive causes
checking for abbreviations to resume.

UPDATE searches for abbreviations until a NOABBREYV directive is encountered. In
ABBREV mode, directives can be either abbreviated or unabbreviated.

2.8.3 LIMIT-LIMIT LIST OUTPUT

Format:
*LIMIT n
:;:LT
n New line limit for list cutput (decimal)

The LIMIT directive changes the maximum size for the list output file from the default value
of 6000 lines to n lines.

When the limit is reached, options 3 (card image, deck name, and modification key) and 4
(input stream) are turned off. Errors and control cards are still listed, however, if options
1 and 2 were selected. Options 5 (active compile file directives) to 9 (correction history
resulting from list options 5, 7, and 8) are not affected. See L option, section 4. 1.2,

84000016 B 2-217

’

2.8.4 LIST AND NOLIST-SELECT OR DESELECT LIST OPTION 4

Formats:

*NOLIST
*NL

ALIsT
*L

NOLIST and LIST disable and enable list option 4, the list of cards in the input stream.
UPDATE stops listing cards in the input stream when it encounters a NOLIST and resumes
listing cards when it encounters a LIST.
Decks inserted by ADDFILE are not listed if list option 4 is selected by default but they are
listed if option 4 is explicitly selected. See L parameter on UPDATE control card, section
4,1.2,

LIST and NOLIST can occur anywhere in the input stream. They do not terminate insertion
or a correction set. The LIST/NOLIST directives are ignored if list option 0 is selected.

2.8.5 DEFINE-DEFINE NAMES FOR USE BY IF

Format:

*DEFINE name,, name,, ..., name;
*DF

name; One or more names to be tested by IF directive during the write
compile phase (section 2, 7. 4),

UPDATE places DEFINE directivesinthe YANK$$$ deck. A DEFINE directive has no purpose
other than to establish a condition to be tested by IF directives. DEFINE names are unrelated
to correction set identifiers or deck names,

A DEFINE directive can be placed anywhere in a correction set. It does not terminate insertion.

2-28

2.8.6 PULLMOD-RECREATE CORRECTION SETS

Format:

(*PULLMOD idname,, idname,, . .., idname,
*PM

idname; Identifiers of correction sets to be recreated.

The PULLMOD directive can be used when the PMODKEY installation option has been
assembled for UPDATE. This directive requests UPDATE to search the library for all
cards belonging to each of the correction sets and to reconstruct a set of directives and
text that produces the same results as the original correction set. Each reconstructed
correction set is written on the file specified by the G parameter on the UPDATE card.
The information is contained within one recordf on the file.

NOTE

It is the user's responsibility to determine
whether or not the regenerated sets accurately
reflect the original corrections. For example,
PULLMOD is unable to determine if cards have
been purged subsequent to the addition of the
correction sets requested.

A PULLMOD file has the same format as an input file. This feature permits a user to take
an earlier versionof thelibrary and apply selected correction sets.

A PULLMOD directive does not affect the library.

2.8.7 DECLARE- DECLARE RESTRICTED CORRECTIONS

The DECLARE directive can be used when the DECLKEY installation option has been
assembled. This directive provides a means of checking on the validity of UPDATE
corrections. It protects decks other than the declared deck from being inadvertantly altered.

Format:

ﬁDECLARE dname
*DC

dname Name of deck to which following corrections are restricted. The
restriction remains in effect until UPDATE encounters a DECLARE
directive with no deck name, or another DECLARE directive
with a different deck name.

tSection for SCOPE 2

2-29

When the DECLARE directive is encountered, the following restrictions go into effect:
1. PURGE and YANK directives are illegal.
2. INSERT, DELETE, RESTORE, and BEFORE directives can apply only to cards in the
declared deck. If they do not, the operation is not performed and UPDATE issues an
informative message.

3. Inserting or reactivating a DECK or COMDECK directive is illegal.
New decks inserted via the ADDFILE directive need not be named in a DECLARE directive.

2.8.6 END-END DECK

Format:

[*END

UPDATE ignores an END directive if it encounters one in a source deck. It does not copy
it onto the old program library.

The END directive provides compatibility with the SCOPE EDITSYM program.

2-30

FILES 3

Types of UPDATE files that concern the user are:

Source files

Program library iiles
Input file

Compile file

Pullmod file

Scratch files

3.1 SOURCE DECKS AND FILES

Before they can be updated, source decks must be converted to a program library through an
UPDATE creation run or added to a library through a correction run. A source file is a
group of source language decks either prepared by a user or generated by UPDATE,

The presence of the UPDATE directives generally prohibits the use of source decks as input
to most language processors (e.g., COBOL). However, the COMPASS assembler treats

the directives as comments (if the master control character is *) and accepts input from an
UPDATE-generated scurce file, :

3.1.1 SOURCE DECKS PREPARED BY USER AS INPUT TO UPDATE

A user prepares a source deck for input to UPDATE by placing a DECK or COMDECK
directive (section 2. 3.1 and 2. 3. 2) in front of the source language deck (Figure 3-1). At the
same time, he can also insert compile file directives (section 2.7) into the source language
deck to control compile file output from UPDATE, The next DECK or COMDECK directive
or a 7/8/9 cardterminates the deck. The DECK or COMDECK directive becomes

the first card of the deck on the program library and has sequence number 1. This deck is
assigned the deck name specified on the DECK or COMDECK directive. Common decks
should precede non-common decks in the source file.

3-1

% COMDECK COMMON1

(SOURCE OF PROGf)
% DECK PROGY

SOURCE DECKS OPTIONALLY
CONTAIN COMPILE FILE
o DIRECTIVES

Figure 3-1. Example of Source Decks on a Source File

UPDATE source decks should not be confused with a compiler or assembler program. An
UPDATE deck can contain any number of FORTRAN programs, subroutines, or functions,
or COMPASS assembler IDENT statements or sets of data. Usually, each UPDATE deck
contains one program for the assembler or compiler.

Source decks are placed in the input stream for UPDATE during a creation run or a correction
run; they can also be on an alternate file accessed through the READ and ADDFILE directives.

3.1.2 SOURCE FILE GENERATED BY UPDATE

The source file contains a copy of all active DECK and COMDECK directives and all active
cards within each deck. The source file is optional output from UPDATE (through use of the
S or T options on the UPDATE control card) and once created can be used as source input

on subsequent UPDATE runs. The source file is a coded file that contains 80-column images.

When Q is not selected on the UPDATE control card, the source file generated contains all
cards needed to create a program library. This source file can be used as a back-up copy

of the library or, providing that common decks occur first, can be used as input for an
UPDATE run that produces a resequenced program library with all the inactive cards purged.
When Q is selected on the UPDATE control card and the old program library is in random
format, the source file contains only the decks explicitly requested on the COMPILE directives
and any common decks called by those decks. The only directives that can legally appear in
a source file are DECK, COMDECK, and compile file directives (section 2.7). If the old
program library is in sequential format, the source file contains all decks requested on
COMPILE directives, all common decks that they call, and any common decks encountered
prior to processing of all of the specified decks.

3.2 PROGRAM LIBRARY FILES

A program library file is created during an UPDATE run and may be used as a primary data
base for later UPDATE runs. The library provides a means of maintaining source decks in
conveniently updatable compressed format. Along with each deck is a correction history for
each card image.

Card images on the program library are grouped into decks. A deck consists of a DECK

or COMDECK card image and all following card images either up to but not including the

next DECK or COMDECK card image, or to an end-of-record.! Because DECK and COMDECK
directives can be deactivated by DELETE, YANK and SELYANK, card images belonging

to one deck at the beginning of an UPDATE run may belong to a different deck at the end of
the run. When a DECK directive is deactivated, all card images in the deactivated deck
become members of the preceding deck on the old program library and, thereafter, are
affected by directives that affect the previous deck as a unit, such as PURDECK and
SEQUENCE.

The UPDATE program can create and maintain symbolic library files written in two distinctly
different formats: random and sequential.

3.2.1 RANDOM FORMAT

' On a random format program library, each deck is a separate logical record (Figure 3-2).
The deck records are followed by logical records containing the deck list, the directory, and
the random index.

Using random format is substantially faster than using sequential format. '

Under SCOPE 3, do not copy a random library to tape using COPYBF. The system
will not recognize the format as random when you attempt to use the library on tape.
Use the UPDATE B and A options, instead.

Under SCOPE 2, a random library can be copied to tape but must be copied back to
mass storage on input to deblock the library. Use COPYS to copy a random program
library to or from tape. Copy all sections of the program library (number of sections
equals number of decks excluding the YANK$$$ deck, plus 5). Then use COPYR to copy
the random index (one record),

! End-of-section for SCOPE 2.

84000016 B 3-3

EACH DECK 18 A T
LOBICAL RECORD

Deck o
:é:'::'
FIRST ENTRY POINTS
Deck List TO YANK$$S DECK
Directery

SCOPE 2 Heoder11

Rendom Inden

Rondom index TTT

Under SCOPE 3.x, the random index
record can be obtained by issuing an ——- EOL ---
OPEN function on the file.

Under SCOPE 2, however, to obtain
random index, skip to EOI, backspace
one record, and read.

Figure 3-2. Random Program Library

1 For SCOPE 2, each deck is a section,
Tt Header applies to SCOPE 2 only.
1t Second copy if system is not SCOPE 3.x or NOS 1,

3-4 84000016 B

SCOPE 2 Random Index Header
-

DIRECTS

n Number of words in random index; format is shown below.

Random Index F'ormat

Depending on the operating system under which UPDATE is executing, the system gen-
erates either one or two copies of the random index. Under 7000 SCOPE 1.1, 6000
SCOPE 3.3, and 6000 KRONOS 2.0, only one copy of the index is produced. On any
other system, two copies are produced because a CLOSE causes the index to be written
on newer systems but not on older systems.

_ 59 48 30 18 1206 00
WORD O 7000 dn diira
22 3 dirra ‘
lab] y I c
Word Bits Field Description
0 59-48 7000 Identifies random directory record
0 47-30 di Length of the deck list in words
0 29-00 dilra Random address of first word of deck list
1 59-48 uone Unused
1 47-30 dirl Length of directory in words
1 29-00 dirra Random address of first word of directory
2 59-18 none Unused
2 17-12 lab Label flag; if non-zero, words 3 and 4 are present in random

directory and contain tapelabel. SCOPE 1 and SCOPE 2
do not recognize tape labels.

2 11-06 y Type of program library; mustbe Y or null to indicate
64-character set. e -

2 05-00 c Master control character used when the program library
was generated.

3-5

Deck List Format

The deck list contains a two-word entry for each deck on the library. The first entry points
to the YANK$$$ deck.

Each entry has the following format:

ro
Word Bits Field Description
0 59-06 dname 1-9 alphanumeric character deck name obtained from DECK or

COMDECK directive when deck was placed on library. The
first dname is YANK$$$.

0 05-00 none Unused
1 59-30 none Unused
1 29-00 ra Random address of first word of compressed text for the deck.

.-

Directory Format

-The directory is a table that contains one entiry for each DECK, COMDECK and IDENT that
has ever been used for this library. Directory entries each consist of one word containing
the 1-9 character identifier in display code, left justified with zero fill. Correction set
identifiers and deck names are listed chronologically as they are introduced into the library.
An identifier that has been purged is not printed on the listable output file although table space
is allocated to it. The purged identifiers are removed from the table when the E (edit) option
is specified on the UPDATE control card (section 4.1), The number of identifiers in the
directory is limited by the amount of central memory (or small core memory) available.

59 06 00
ident

For a purged ident, bits 59-06 are zeroed and bits 05-00 contain a 20g.

YANK$$$ Deck

The YANK$$$ deck is automatically created on a creation run as the first deck on the program
library. On correction runs, UPDATE inserts into the YANK$$$ deck any YANK, SELYANK,
YANKDECK, and DEFINE directives that it encounters during the read directives phase.
These directives acquire identification and sequence information from the correction set

from which they originate.

Although the YANK$$$ deck, as a whole, cannot be yanked or purged, cards in the deck can
be deleted, yanked or purged from it. If information other than the four directive types
‘mentioned inadvertently gets in the YANK$$$ deck, it can be purged through the E option on
the UPDATE control card. On a merge, the two YANK$$$ decks are merged into a single
deck. This deck does not have a DECK card as its first card image.

Compressed Text Format

Text is an indefinite number of words that contain a correction history and the compressed
image of each card in the deck. Information for each card is in the following format:

59 54 36 18 00

chb
flag

Bits Field Description

59 chb flag Indicates the last word containing correction history bytes.
0 Not last word ' ‘
1 Last word

58 a Activity bitfor the card.

0 Card is inactive
1 Card is active

57-54 none Unused
53-36 wc Number of words of compressed text for this card.
35-18 seqnum Sequence number of card (octal) according to position in deck or

correction set identified by chb,.

Bits Field Description

17-00 and chby Correction history byte. UPDATE creates a byte for each
subsequent correction set that changes the status of the card. The
18-bit bytes format of chb; is:
7 00
[yH ident no]
y Yank bit

0 Card not yanked
1 Card has been yanked

a Activity bit

0 Correction set deactivated the card
1 Correction set activated the card

identno Index to the entry in the directory that contains
the name of the correction set or deck that
introduced the card or changed the card status.

Compressed card The compressed image of the card in display code.
Single and double spaces are unaltered. Three or
more embedded spaces are replaced in the image

as follows:
- 3 spaces replaced by 0002
4 spaces replaced by 0003
5 spaces replaced by 0004

64 spaces replaced by 0077g

65 spaces replaced by 007755g

66 spaces replaced by 00775555g

67 spaces replaced by 00770002g, etc.

When a space is the first character of a line, it is
always represented as 55g even when it is part of a
string of spaces.

Trailing spaces are not considered as embedded and
are not included in the card image. A 4-digit octal
code 0000 or word count (wc) reached marks the
end of the card. This is conditional on the CHAR64
option.

When the full-character set installation option is
assembled, a byte of 0001 represents a colon.

3-8

3.2.2 NEW SEQUENTIAL FORMAT

UPDATE optionally creates new library files in sequential format. On magnetic tape,
sequential library files are written in SCOPE internal tape format. The entire sequential
format library file is written as one binary record (Figure 3-3). The first word in the file

is a display code key word; the second is a counter word containing the number of deck names
in the deck list and a count of correction set identifiers in the directory. The last word in
the file is a checksum.

Word One
59 30 .23 18 12 06 00
{ CHECK foo [x Jw]y [c]
Bits Field. Description
59-30 CHECK Identifies the file as being a new format sequential file.
This field contains the word CHECK in display code.
29-24 none Unused; zero
23-18 X Character set identifier determined by IP. CSET para-
meter. If IF.CSET is set for a 63-character set, the
field contains a 3(octal 36); if IP, CSET is set for a
64-character set, the field contains a 4 (octal 37).
17-12 lab Presence of L indicates labeled tape. Null indicates
unlabeled tape. SCOPE 2 does not recognize tape
labels.
11-06 y Indicates whether or not this library was generated using
full 64-character set.
Y Yes; colon is supported
00 No; colon is not supported
05-00 c Indicates master control character in use when this library

was created.

* First character of directives is asterisk, the
conventional master control character. See section
4.1.2.

Other First character of directives is character indicated.
On a correction run, if the master control character
specified on the UPDATE card does not match this
character, UPDATE changes the character to c.

On a merge run, if the control characters for the
two libraries do not match, the run is aborted.

84000016 B 3.9

59 36 30 24 18 12 6 00
WORD | CHECK 00 % L y %*
» 7, ident dname
woro2 777777 idemi | dname
|
|
|
DIRECTORY |
|
|
?
|
|
DECK LIST |
|
L
YANK$SS DECK
FIRST CARD OF A USER
DECK IS A DECK OR — USER DECK|
COMDECK DIRECTIVE
TEXT STREAM }USER DECKo
/ _—
}ussn DECK,,
Checksum 4— COUNT OF BITS IN

End -Of-Record 1

PROGRAM LIBRARY

tEnd of section if record typeis W, Each W record is 512 words.

Figure 3-3.

3-10

New Format Sequential Program Library File

84000016 B

Word Two

The second word of the program library file is composed of two binary counts: The count
of the identifiers in the directory, and the count of the deck names in the deck list.

59 36 18 00

Directory Format

Entries in the directory are in the same format as for a random library.

Deck List Format

The deck list is a table consisting of one entry for each deck on the program library. Each
entry consists of one word containing the deck name in display code, left justified, with
zero fill. Decks are listed in the order in which they were introduced on the library.

Text Stream

The text stream immediately follows the deck list. Compressed text up to the first DECK or
COMDECK directive comprise the YANK$$$ deck. Each subsequent deck begins with a
DECK or COMDECK directive and consists of each card up to the next DECK or COMDECK
directive or the end-of-record.

Compressed Text Format

Text on the sequential library is compressed in the same manner as on a random library.

3.2.3 OLD SEQUENTIAL FORMAT

UPDATE optionally accepts old library files in the old (pre-SCOPE 3. 3) UPDATE sequential
format (Figure 3-4). These libraries resemble the new sequential format but do not contain
the CHECK word or checksum and the text format and chb's are different. Word two on the
new format is the same as word one on the old format. UPDATE does not generate this
obsolete sequential format.

3-11

woro | 2, ‘e | S

DIRECTORY

DECK LIST

-~

jmnsss DECK

e |

FIRST CARD OF USER
DECK IS DECK OR TEXT > USER DECK,
COMDECK DIRECTIVE

STREAM USER DECK,

USER DECKy

End-of-Record
Figure 3-4. Old Sequential Program Library Format

3.3 INPUT FILES

The input file contains the UPDATE input recordt. This record consists of directives and

any source cards (including compile directives) to be inserted into the program library decks.
The I option on the UPDATE control card (section 4.1.2) designates the file from which
UPDATE reads directives. Normally, the input file is the job INPUT file. READ and
ADDFILE directives can be used to direct UPDATE to stop reading directives from the primary
input file named on the UPDATE card and to begin reading from some other file containing
directives or insertion cards.

¥ Equivalent to a section for SCOPE 2

3-12

The Z option on the UPDATE control card designates that the input record is in compressed
format created by a program such as the Production Control System (PCS).

3.4 COMPILE FILE

The COMPILE file is a primary form of output from UPDATE. It contains updated source
card images to be assembled or compiled. The default name of the compile file is COMPILE,
})ut the name o)f the file can be changed throughthe C option on the UPDATE control card
section 4.1.2).

During a full update run or during a creation run, the compile file contains all decks that are
on the new program library. In normal mode (F and Q not selected), the compile file contains
only decks updated during the current UPDATE run or decks specified on COMPILE directives.
The sequence of the decks on the compile file is determined by control card options.

Through control card options, a user can specify whether the text on the file is to be com-
pressed or expanded and sequenced or unsequenced.

The expanded compile file format for each card consists of 72 or 80 columns of data followed
by 0 to 18 columns of sequence information. The maximum size of a card image is 90 columns.

Expanded card image:

0 TO 18 COLUMNS OF

72 OR 80 COLUMNS OF DATA SEQUENCING INFORMATION
'] A \Y A \
S~ I~
Data ideni/seq. no.
S~ ~

80- or 90- Column Card Image

UPDATE attempts to place sequence information in the columns remaining in the card image
after the data columns have been allocated. When the data field is 72 and the card image is
90 columns, column 73 is blank and 17 columns are available for sequencing information.

In this case, the 1-9 character ident is left adjusted in column 74 and the sequence number is
right adjusted in column 86.

When the data field is 72 and the card image is 80 columns, 8 columns are available for
sequencing information. If the data field is 80 and the card image is 90, then 10 columns are
available for sequencing information. In either of these cases, if the ident and sequence
number exceed the field, UPDATE truncates the least significant characters of the ident
leaving the sequence number intact.

If the data field and card image are both 80, the compile file output cannot have sequence
information appended.

3-13

In this example, the ident is SEVENCH, the sequence number is 1144:

73|74 80 86 90
——»|A|S|E|V]E|N]C|H Pl 4
—> Ss|eE|JV]|E|N]|]C]1]1]a]a

rSEVE|I44

L.lTH 8 OPTION
— WITH D OPTION
e NORMAL COMPILE OUTPUT

If the 80 (90) character card image on the compile file has two blanks as the last two
characters, these are converted to a 0000 line terminator and the card image is 8 (or 9) words
long.

If the last two columns do not contain blanks, a word containing 8 blanks and a zero byte line
terminator are added, thus making the card image 9 (or 10) words long. This same procedure
is used for creation of the source file.

The format of the compressed compile file is shown below. The first word is a loader prefix
table (77g). Compressed format is generated through the X option on the UPDATE control
card.

Compressed Compile File Format:

9 54 36) 00
77 | 00 | oo | 0o
sequence field,

[

S

mov—

sequence fleld,

compressed cord

___/,/—\\l

3-14

seqi:ence field; 17 characters comprising card columns 74-90. Column 73
is always blank.

nwj Binary number of words in compressed card;.

compressed card; Columns 1-72 of a COMPASS source card in compressed form.

That is, each 00 character is replaced by the 12-bit value 0001,
" and three or more consecutive blanks (to a maximum of 64)

are replaced by a 12-bit value 0002 through 0077g. A single
blank is represented in display code (558); two consecutive
blanks are represented by the 12-bit value 5555g. If the last
word is not full, it is padded on the right with binary zeros.
Because word count nw; is present, an extra all-zero word
is not required to guarantee 12 zero bits.

3.5 PULLMOD FILE

A PULLMOD file is generated when the correction deck contains PULLMOD cards (section
2.8.6). The PULLMOD file is in the same format as an input file and contains directives
and text of a recreated correction set.

If none of the G, S, or T options on the UPDATE control card is specified, pulled modifications
are written on a file named SOURCE. '

If Sor T options are specified, and no specific file is defined through the G option; pulled
modifications are written at the end of a source file.

3.6 SCRATCH FILES

UPDATE uses the following scratch files:

File Name Functions : Comments‘
UPDTSCR Used to make copy of decks

to be written later to
COMPILE file.

.

UPDTCDK Used to hold common decks for These files must be mass storage files.
later expansion of *CALL cards.]| For SCOPE 3.x, NOS 1.0, and KRONOS
' files are evicted before, and closed and
unloaded after the updating operation,

UPDTTPL Used as temporary program’ Foz; SCOPE 2, the files are not

library. evicted before the operation but are
closed and unloaded after the operation.
UPDTEXT Used to copy card images to be
inserted in correction run.
UPDTAUD Used to hold temporary audit
information.
These are files that can be assigned
UPDTPMD ~.Used to collect card images to magnetic tape (SCOPE 3.x, NOS 1.0,
in response to PULLMOD and KRONOS systems).
directive.

3-15

UPDATE EXECUTION 4

UPDATE is called from the library and placed in execution through an UPDATE call card.

4.1 CONTROL CARDS

The first record? of a job file contains a job card, the UPDATE call cards, and other
optional cards described in the operating system reference manual. The record ends
with an end-of-record! card. ¥ UPDATE directives are on the job INPUT file, they

usually comprise a record that follows the control card record. However, the place-
ment of the record in the file depends on whether the job makes any calls prior to the

UPDATE call,

4.1.1 JOB CARD

A job card of the following format must be the first card in the deck. " The parameters
following name can be in any order or can be omitted. For any omitted field, the
operating system supplies a default value, which is an installation option.

Control card format:

(jobname, Pp, Tt, CMscm, EClcm.

jobname 1-7 character alphanumeric name by which the job is identified at the
1/O station. The first character must be a letter.

Pp Job priority; see operating system reference manual.

t Section for SCOPE 2.1,

Tt CPU time limit in octal seconds (1-77778) ; must be sufficient to
process all control cards for the job, including assembly and execution.

CMscm Estimate of maximum amount of SCM or CM required for execution
(1-6 octal digits). If the DYNAMFL installation option has been
assembled, core allocation is handled dynamically and the default value
for the operating system will usually suffice. If the DYNAMFL option
has not been assembled, a minimum of 45000 should be specified.

EClcm Estimate of maximum amount of LCM/ECS in octal thousands. UPDATE
has no LCM/ECS requirements.
4.1.2 UPDATE CALL CARD
The following control statement causes the UPDATE program to be loaded from the SYSTEM

library and to be executed. Parameters specify modes and files for the run. A period
or right parenthesis terminates the statement.

(U’PDATE (P1. P2, Pp)

The word UPDATE begins in column one. The optional parameters, pPj, can be in any order
within the parentheses. Generally, a parameter can be omitted or can be in one of the
following forms:
option
option=filename
option=0 (valid for modes C and L only)
Option Significance
A - Sequential-to-random copy
omitted No special mode
A When this mode is selected UPDATE copies a sequential old program
library to a random new program library, It performs no other UPDATE
operations. The only control card options that can be used are those

specifying files, and * and /. An error results if the old program
library is not sequential or the new program library is not random.

B - Random-to-sequential copy
omitted No special mode
B When this mode is selected UPDATE copies a random old program
library to a sequential new program library. It performs no other
UPDATE operations. The only other control card options that can be

used, are those specifying files,and * and /. An error results if the
old program library is not in random format.

4-2

Option Significance
C - Compile file output

omitted or C Compile output decks will be written on file COMPILE; contents
are determined by type of UPDATE (F, Q, or normal), -

C=filename UPDATE writes compile output decks on named file; contents
are determined by type of UPDATE (F, Q, or normal).

C=PUNCH . This ig a special form of C=filename. UPDATE writes compile
output decks on PUNCH file. Decks are punched according to
type of UPDATE (F, Q, or normal). This option also causes the
8 and D modes to be selected.

C=0 No compile output

D - Data width
omitted Compile output has 72 columns for data
D Compile output has 80 columns for data

E - Edit; provides a means of cleaning up old program libraries
omitted The old program library is not edited.

E UPDATE rearranges the directory to reflect the actual order
of decks on the program library.

First, editing removes from the directory all previously purged
idents and reassigns ordinals to idents in the directory according
to the actual order of decks on the program library. Then

editing purges the idents that exist simply as entries in the
directory and have no cards or chb's associated with them.

Idents purged on this run are removed from the directory in a
subsequent edit run. Thus, to completely edit the library re-
quires two edit runs. The first edit run detects unused idents and
flags them as purged. The second edit run deletes the unused
idents from the directory. Again, any idents purged on the second
run would require yet another edit run before the directory entries
would be deleted.

During editing, UPDATE purges any cards other than YANK,
SELYANK, and YANKDECK from the YANK$$$ deck
(section 3.2.1).

TEDITKEY installation option

4-3

Option
F - Full update

omitted

Significance

If Q is not specified, F omitted is the normal (selective) UPDATE
mode. All regular decks and common decks are processed. The
new program library, if specified, contains all regular and com-
mon decks, after any corrections have been made, in the sequence
in which they occur on the old program library. The source file,
if specified, contains all active cards with decks in deck list
sequence. The compile file contains all decks corrected during
this UPDATE run and all decks specified on COMPILE directives
(section 2.6,1). A deck that calls a corrected common deck is also
considered to be corrected unless the common deck is a NOPROP
deck (see COMDECK directive) or unless the deck precedes the
commom deck.

Source and compile files, if specified, contain all active decks in
old prograr library sequence. The contents of the new program
library are the same as if F were not specified.

G - Generate separate PULLMOD output filet

omitted

G=filename

H - Header change

omitted or H

3

fa o
]

H=4

I - Input
omitted or 1

I=filename

Output from PULLMOD cards is appended to source file defined by
S or T option or to the SOURCE file. ‘ '

Output from PULLMOD cards is written on named file. Any re-
wind option applying to the source file also applies to this file.
OUTPUT is not a valid file for this option.

UPDATE treats the old program library character set as the

character set type indicated in the old program library header
word.

UPDATE treats the old program library as a 63-character set
program library regardless of the character set type specified
in the old program library header word.

UPDATE treats the old program library as a 64-character set

program library regardless of the character set type specified
in the old program library header word.

Input is on job INPUT file

Input comprises next record on named file

K -~ COMPILE card sequence (takes precedence over C mode)

omitted

K

K=filename

Output determined by C option.

Compile output decks to be written on file COMPILE in COMPILE
directive sequence, that is, the order in which decknames are en-
countered on *COMPILE directives, If a deckname is mentioned

more than once, its latest specification determines the deck's place
within the COMPILE directive sequence.

Compile output decks to be written on named file in COMPILE
directive sequence,

T PMODKEY installation option

4-4

Option
L - List options
Omitted

L=C1Cg...Cp

Significance

If creation run, 1.=Al12 is automatically selected. If correction
run, 1.=A1234 is automatically selected. I A or B mode, L=Al
is automatically selected. :

List options selected.

Character
A

[

‘ Controls

Lists the following
1., Known DECK names
2. Known IDENT names

3. COMDECK directives that were processed
(subset of 1)

4, Decks written on the compile file
5. Known definitions (see *DEFINE directive)

All selections othér than 0.

Suppresses all UPDATE listing. I the digit
0 is included in the string of other list selec-
tions, the string is equivalent to L=0,

Lists cards in error and the associated error
messages. The flag *ERROR* is appended
to the left and right of each card in error.

Lists all active UPDATE directives encountered
either on input or on the old program library.
Those directives encountered in input are
flagged with five asterisks to the left unless
the directive is abbreviated or the card identi-
fier is in short form. In this case, the
directive is flagged with five slashes, If the
directive has been encountered on the old
program library, the name of the deck to
which this card belongs is printed in place

of the five asterisks/slashes,

Lists all cards that changed status during this
UPDATE. This listing consists of the name of
the deck to which the card belongs, the card
image, card identifier with sequence number,
and a key as shown below:

Key Meaning

I Card was introduced

A Inactive card was reactivated
D Active card was deactivated
P Card was purged

SEQ Card was resequenced

If a currently active card is purged, the word
ACTIVE appears to the right of the P. .
-5

Option

L (continued)

Significance

Character Controlg
4 'Lists all non-UPDATE directives encountered

in the input stream. Cards resulting from

a *READ directive are marked to the right
with the name of the file from which they were
read.

Decks inserted by ADDFILE are not listed if
list option 4 is selected by default but they are
listed if list option 4 is explicitly selected.
Option 4 may be turned on by a LIST card (see
*LIST directive) and off by a NOLIST card (see
*NOLIST directive).

5 All active compile file directives

6 Number of active and inactive cards by deck
name and correction set identifier

All active cards
8 All inactive cards

9 Correction history of all cards listed as a result
of list options 5,7, and 8.

List options 5-9 are provided for auditing an old program library. These
options are available only when the AUDITKEY installation option is assembled.
Output is written to a temporary file and appended to the output (O) file at the
end of the UPDATE. When the F option is selected, options 5-9 apply to all
decks on the old program library. If F is not selected, options 5-9 apply to
decks listed on COMPILE directives only.

If the old program library is sequential and F is not selected, called
common decks that precede the decks that call them must be explicitly
named on COMPILE directives to be audited. A common deck is
audited automatically if it follows the deck that calls it. If the old
program library is random, called common decks are audited auto-
matically.

Cards listed under option 7 are marked to the right of the card by the letter A
(active); cards listed under option 8 are marked by the letter I (inactive).

M - Merge input ; allows two program libraries to be merged and written onto the new
program library (see N option).

The old program library is considered the master file. UPDATE adds the

directory and deck list from the merge file to the directory and list on the old
program library. Deck names and ident names on the merge file that duplicate
names on the old program library are modified to make them unique as follows:

1. The last character of the ident name is changed by adding 01
(modulo 558) until all valid characters have been tried.

2. A character is appended to the ident name and the first step is re-
peated. Characters are appended until the ident reaches nine
characters.

3. If no unique name can be generated by this method, the UPDATE
run is abnormally terminated.

Decks from the merge file are added to the new program library file after all
decks from the old program library have been added unless the sequence is
altered by MOVE directives (section 2.4.16). All deck and ident names that

4-6

required modification are listed.

Option

M (continued)

Significance

UPDATE changes all DECK, COMDECK, YANK, SELYANK, YANKDECK, and
CALL directives containing references to modified deck or ident names to agree
with the new names.

Sequencing is unchanged. All UPDATE functions legal in a correction run are
legal with the merge option, including use of the MOVE directive to specify the
sequence in which merged decks are to be written on the new program library.

Use caution in including modifications in a merge run.
deck or ident name to which correction cards have been applied.
corrections may refer to the wrong deck or ident.

omitted
M

M=filename

No merge file

UPDATE may change a
In this case,

Second old program library on file MERGE

Second old program library on named file

N - New program library output

A new program library can be in random or sequential format,

The format is

determined by file residence (mass storage or magnetic tape) and/or by specifi-
cation of the UPDATE W option as shown in the following table.

SCOPE 3.x/NOS 1 SCOPE 2
Random File is on mass storage and W is | File is on mass storage, record
not selected type is W unblocked, and W is
not selected
Sequential | File is on magnetic tape or card File is staged or on-line tape or
punch or W is selected. is on mass storage as record
type S or record type W blocked,
or W is selected or R specifies
no rewind.
N New program library to be written on file NEWPL

N=filename

omitted

New program library to be written on named file.

UPDATE does not generate a new program library. ,

O - List output file

omitted or O

O=filename

P - Old program library; ignored on creation run.

omitted or P

P=filename

84000016 B

List output is written on job OUTPUT file.

automatically printed.

This file is

List output is written on named file

Old program library on file OLDPL

Old program library on named file

4-17

Option

Significance

Q - Quick update (takes precedence over F)

omitted

Q

R - Rewind files

omitted

R

R=cjeg...c,

If F is not specified, this is the normal (selective) mode.
See F omitted,

Only decks specified on COMPILE directives and decks added' via
ADDFILE directives are processed. Corrections other than
ADDFILE that reference cards in decks not specified on COMPILE
directives are not processed and UPDATE abnormally terminates
after printing the unprocessed corrections. The compile file con-
tains decks specified on COMPILE directives and any common decks
called from decks plus those decks added via ADDFILE and their
called common decks. The contents of the source file and the new
program library, if specified, depends on type of old program li-
brary (random or sequential) and on deck names specified on
COMPILE directives.

If the old program library is sequential, the new program library
contains all decks mentioned on COMPILE directives as well as
all common decks they call and common decks encountered on
the old program library prior to processing of all of the specified
decks. The source file contains the same active cards that are
written on the new program library if a new program library is
selected.

If the old program library is random, the new program library and
the source file are the same as for a sequential with the exception
that the only common decks included are those called by decks
specified on COMPILE directives.

CAUTION

In Q-mode using a random old program library,

a single correction IDENT containing corrections

to both a DECK and a COMDECK may cause trouble

if the COMDECK logically precedes the DECK on

the old program library. No errors will be detected,
but if the same run is repeated with the N parameter
specified on the UPDATE card and/or the old program
library is sequential, the sequence numbers assigned
to the text cards in the correction set will not be the
same as they were in the Q-mode run. This situation
cannot be prevented without sacrificing the speed for
which Q-mode was designed. The correct sequence
numbers are those assigned when N is specified or the
old program library is sequential.

The old and new program libraries, the compile file, and the
source file are rewound before and after the UPDATE run.

No rewinds are issued for the program libraries, compile file, or
source file.

Each character in string indicates a file to be rewound before and
after the UPDATE run.

c File

C Compile

N New program library

P Old program library and merge library
S Source and PULLMOD

84000016 B

Option Significance

S - Source output; the contents of the source file are determined by the mode in which
UPDATE is operatmg, the decks named on COMPILE directives, and the type of old
program library in use (randon or sequential).

1. If Q is not selected (regardless of F), the source file contains all cards required
to recreate the library. This recreated library is resequenced because sequenc-
ing information is not included on the source file. This file contains all
currently active DECK, COMDECK, WEOR, CWEOR, CALL, TEXT, IF, ENDIF,
and ENDTEXT dn»nr\'hvpg in adrhhnn to all an'hvn fpsrl' lnfnrmahnn 'nnnleﬁ are

LKLITLCSLVES 22 UGS S &22 LAY E SCAS Ll 2SI, LTRSS &

not necessarily in a sequence accepted by UPDATE for creating a new program
library (section 3.1.2),

2. If Q is selected and the old program library is sequential, decks written on the
: source file are those named on COMPILE directives and common decks they
call, All common decks encountered on the old program library before all
explicitly specified decks are included on the source file,

If Q is selected and the old program library is random, decks written on the
source file are those named on COMPILE directives. The only common decks
included are those called by decks named on COMPILE directives.

omitted UPDATE does not generate a source output file unless the
source output is specified by T.

S Source output written on file source.

S=filename Source output written on named file.

T - Source output excluding common decks (takes precedence over S)

omitted No source output unless source output specified by S.
T Source output excluding common decks on file. SOURCE.
T=filename Source output excluding common decks on named file.

U - Debug mode
omitted UPDATE execution terminates upon encountering a fatal error.
U UPDATE execution is not terminated by normally fatal errors.
W - Sequential new program library

omitted The new program library (see N option) will be determined by
characteristics of the file specified by N.

w The new prograim library (see N option) will be a sequential
file.

4-9

Option Significance
X - Compressed compile file
omitted Compile file is not in compressed format

X Compile file is in compressed format (section 3. 4)

Z - Compressed input file

zZ The input file (see I option) is assumed to be in PCS compressed
format. This parameter applies to the directives input file
only; it does not apply to files specified by READ directives.

8 - 80-column output on compile file

omitted Con;pile file output is composed of 90-column card images (section
3.4).
8 Compile file output is composed of 80-column card images.

#* - Master control character?
omitted The master comtrol character is *,

*=char The master contral character (first character of each directive)
for this UPDATE run is char which can be any character having
a display code octal value in the range 01-54 except for 51 and 52
(the open and close parentheses).

On a correction run, if the master control character is not the same as the
character used when the old program library was created, UPDATE uses the

character indicated on the old program library. On a merge run, if the
master control characters for the two libraries to be marged are not the same,

UPDATE aborts the run.
|/ - Comment control charactert

omitted The comment control character (section 2. 8.1) is /

/=char The comment control character for this UPDATE run is char
which can be A through Z, 0 throughQor+-%* [/ § =
Note, however, that the character should not be changed to one
of the abbreviated forms of directives unless NOABBREYV is.in
effect.

{ Under SCOPE 2, SCOPE 3.4, KRONOS 2.1, or NOS 1, 0 specify a $ character as
*=$$$$ or /=$$$3.

4-10

4.1.3 7/8/9 CARD

The card that separates recordst in the job deck is characterized by having rows 7, 8, and
9 punched in column one. The level is assumed zero unless columns 2 and 3 contain an
octal level number punched in Hollerith code. The remainder of the columns optionally
contain comments.

As an example, a deck consisting of a control card record, an UPDATE input record, and
a data record would include two 7/8/9 cards. The first terminates the control cards and
the second terminates UPDATE input. A 6/7/8/9 card would terminate the deck.

4.1.4 6/7/8/9 CARD

The card that signals the end of the job deck is characterized by having rows 6, 7, 8, and 9
punched in column one. Columns 2-80 optionally contain comments.

4.2 DECK EXAMPLES

4.2.1 LIBRARY FILE CREATION

1. Creation of a program library called PL, consisting of four decks, the first two
written in COMPASS, the next two in FORTRAN, and generation of a compile file
to be processed by the assembler and compiler requires the following deck structure:

(job card)
File related .
control UPDATE (N=PL)
cards M

7/8/9

*DECK COMPGROUP

(First COMPASS source deck)
*DECK COMPGRP1

{Second COMPASS source deck)
*WEOR

*DECK FORTGROUP

{(First FORTRAN source deck)
#*DECK FORTGRP1

(Second FORTRAN source deck)
6/7/8/9

The compile file produced by this run contains two logical records as a result of the
WEOR directive. Grouping of more than one source program written in a given language
is permitted following one DECK directive. Such is the case when modification of one
program requires reassembly of all programs in the group.

INPUT

t Separates sections for SCOPE 2.

84000016 B 4-11

2.

Read from alternate file.
(job card)

UPDATE (N)

7/8/9

*READ REMTAPE.
*DECK LOCAL
(Text of LOCAL)
6/7/8/9

Read
Contents of REMTAPE

*DECK A
(Text of A)
Return to *DECK B
input stream (Text of B)
*DECK C.
(Text of C)
6/7/8/9

Resulting library file contains decks A, B, C and LOCAL.

INPUT
STREAM

UPDATE

3. Create program library NEWPL containing two program decks and two common decks:

{job card)

UPDATE (N)

.

*CALL D2
6/7/8/9

The COMPILE file that is produced by default contains decks XA and XB in that order.
Deck XB has been expanded to contain common deck D2.

4.2.2 INPUT FILE NOT INPUT
Identifier given to card

Contents of File Al (does not appear on file Al):
*COMDECK CSET CSET.1
COMMON A,B,C CSET. 2
*DECK SET1 SET1.1
PROGRAM ZIP SET1.2
C A DO-NOTHING JOB SET1.3
END SET1.4
*DECK SET2 SET2.1
SUBROUTINE JIM SET2.2
A = B - SIN(C) SET2.3
END SET2.4
6/7/8/9

4-13

For the UPDATE task:

(job card)

UPDATE (I=A1, N)

6/7/8/9

The compile file contains two source decks having cards that are identified by their deck name
and sequence number:

PROGRAM ZIP SET1.2
C A DO-NOTHING JOB SET1.3
END SET1.4
SUBROUTINE JIM SET2.2
A =B - SIN(C) SET2. 3
END SET2.4

4.2.3 INSERTIONS/DELETIONS/COPYING

1. To alter the library created by Preceding example:

‘(job card)

: (OLDPL is file produced by
UIPI/)ATE preceding example)

7/8/9

*IDENT ADD1
*DELETE SET1. 3, SET1. 4
*CALL CSET

B=1.0 Inserted into SET1
C=3.14159
CALL JIM
*COPY SET1,SET1.4
*COPY SET2, SET2.2
*CALL CSET Inserted into SET1 with identification ADD1. 7
*COPY SET2, SET2. 3, SET2.4
6/7/8/9

Deck SET1 is on the COMPILE file as:

PROGRAM ZIP SET1.2
COMMON A, B, C CSET.2
B=1.0 ADD1.2
C=3.14159 ADD1.3
CALL JIM ADD1.4
END ADDL1.5
SUBROUTINE JIM ADD1.6
COMMON A,B,C CSET.2
A =B - SIN(C) ADD1.8
END ADD1.9

4-14

2, To modify a program library> and produce an assembly listing:

UPDATE COMPASS

(job card)
UPDATE(P=FN)

;:OMPASS(I=COMPILE) Old program library file FN was

created in a prior run.

7/8/9

*IDENT CS1

*INSERT XA.1
(Insertions)

*DELETE XA. 20, XA.23
6/7/8/9

The COMPILE file that is read by COMPASS contains deck XA since that deck was

modified by UPDATE.
3. To generate a new sequential program library with corrections:

(job card)

UPDATE(P=FN1,NeFN2, W)

7/8/9

*IDENT XRAY
*DELETE D2.3,D2.5
*INSERT D2.8
(Insertions)

6/7/8/9

Old program library FN1 was created in- & prior run.

4.2.4 YANKING AND PURGING

1. To reverse the effect of a correction set temporarily, but not permanently remove it

from the program library LIB:

This change may be made temporarily for testing purposes:

(job card)

UPDATE(P=LIB)
COMPASS(I=COMPILE)
7/8/9

*IDENT NEGATE
*YANK GOTTOGO
6/7/8/9

4-15

2.

To put the preceding change onto a new program library.
(job card)

UPDATE(P=LIB, N=-NEWLIB)

COMPASS(I=COMPILE)
7/8/9

*IDENT NEGATE
*YANK GOTTOGO
6/7/8/9

The YANK directive in the above example becomes the first card on the new library
NEWLIB. Thé identifier for this card is NEGATE. 1. The effects of YANK may be
nullified in future runs (and consequently the effects of GOTTOGO restored) by

specifying:

*IDENT RESTOR

*DELETE NEGATE. 1
or

*IDENT RESTOR

*YANK NEGATE

or
*PURGE NEGATE

If the correction set NEGATE contained other corrections as well as YANK, the YANK
could be permanently removed by specifying:

*SELPURGE YANK$$$. NEGATE
It could be removed temporarily by specifying:
*SELYANK YANK$$$. NEGATE

Within deck ZOTS on the old program library are correction cards introduced by cor-
rection set DART. A later correction set contained a YANK directive that yanked
correction set DART. Now the user wishes to nullify a portion of the YANK that affected
the cards following ZOTS. 19 through ZOTS. 244. All other cards belonging to correction
set DART are to remain yanked. Inserting a DO at ZOTS. 19 and a DONT at ZOTS. 244
causes UPDATE to temporarily rescind the YANK while writing decks ZOTS on the
compile file. The input stream includes:

*IDENT REST
¥INSERT ZQOTSs. 19
*DO DART
*INSERT ZOTS. 244
*DONT DART

The DO and DONT directives are considered as text when the input stream is read.

4-16

-
=

As a means of comparing the effects of YANK, SELYANK and YANKDECK, consider
the following: '

*YANK OLDMOD

This directive causes all effects of the correction set OLDMOD on the entire 11brary to be
nullified. Cards introduced by OLDMOD are deactivated; cards deactivated by OLDMOD
are reactivated.

*SELYANK OLDDECK.OLDMOD

This directive accomplishes the same effect as the YANK directive above except its
effect is limited to cards within the deck OLDDECK:.

*YANKDECK OLDDECK

This directive affects all cards in OLDDECK, without regard to which correction set
they belong.

Correction sets BAD, WORSE, and WORST are no longer needed. The following job
removes them from the new library (NEWPL).

(job card)

File related / UPDATE(N, C=0, L=12)
control cards—m1——

7/8/9
*PURGE BAD, WORSE, WORST
6/7/8/9

Sequential program library LIBAUG has been modified periodically over a number of
months. It becomes desirable to return to a previous 1level. The following deck
sequence illustrates this use of UPDATE,

(job card)

UPDATE(N=LIBMAY, P=LIBAUG, C=0)

7/8/9
*PURGE JUNMODL1, *
6/7/8/9

LIBAUG is the most recent (August) version of the program library. This deck recreates

a library modified only through May. The deck purges-all modifications made after
May (beginning with JUNMODI1 in the directory).

4-17

10,

Deck BAD on program library LIB is no longer of use and is to be removed per-
manently from the program library. The following deck sequences illustrate such
permanent removal:

(job card)

UPDATE(P=LIB, N=LESSBAD, C=0)

71819
*PURDECK BAD
6/7/8/9

LIB is the most recent program library.
LESSBAD is the new program library with BAD purged.
*PURDECK purges all cards within deck BAD.

The deck BAD is removed from the library. If BAD is also a correction set identifier
name, that idname would not be purged. *PURDECK operates so that any cards

having the identifier BAD but physically located outside of the deck BAD are not purged.
A ¥*PURGE BAD directive should be added to the above run if the correction set identifier
name is to be purged. If BAD was previously yanked, the ¥*YANK BAD card must be
deleted from the YANK$$$ deck.

4.2.5 ADDITION OF DECKS

A new program library, NEWPL, is to be constructed from the old program library, OLDPL,
with the addition of one new common deck and two new decks. The new common deck, D1A,
will be the first deck after the YANK$$$ deck; the new deck XC will follow deck XB; and

the new deck SYSTEXT will be the last deck on the new program library. No compile file
will be produced.

1. All three of the ADDFILES are to be read from the main INPUT file:
(job card)

UPDATE(N, C=0)

7/8/9
*ADDFILE INPUT, YANK$$$ or *ADDFILE ,YANK$$$
*COMDECK D1A

*ADDFILE INPUT or *ADDFILE
*DECK SYSTEXT

*ADDFILE INPUT, XB or *ADDFILE ,XB
*DECK XC

6/7/8/9

4-18

2.

All three of the ADDFILEs are to be read from the UPDATE input file; FNAME:
(job card)

UPDATE(N, C=0, I=FNAME)

g/7/8/9
Visjger e

Contents of file FNAME:

*ADDFILE FNAME, YANK$$$ or *ADDFILE , YANK$$$
*COMDECK DI1A

*ADDFILE FNAME or *ADDFILE
*DECK SYSTEXT

*ADDFILE FNAME, XB or *ADDFILE ,XB
*DECK XC

Each of the three ADDFILE directives will cause UPDATE to read from a separate
file, none of which is the UPDATE input file, Common deck D1A and its text are
on FILEA; deck SYSTEXT and its text are on FILEB; and deck XC and its text are
on FILEC.

(job card)

UPDATE(N, C=0)

7/8/9

*ADDFILE FILEA, YANK$$$
*ADDFILE FILEB
*ADDFILE FILEC,XB
6/7/8/9

4-19

4.2.6 Q OPTION

UPDATE places the deck DNAME from file FN1 on the COMPILE file. COMPASS reads deck
DNAME from COMPILE file and assembles it.

(job card)

UPDATE(Q, P=FN1)
COMPASS(I=COMPILE)

7/8/9

*IDENT YOKE

(Correction Set for DNAME)

*COMPILE DNAME Deck DNAME to be placed on COMPILE file for
COMPASS assembly.

6/7/8/9

4.2.7 PULLMOD OPTION

The library created by the example shown in section 4.2.2 has been altered by the following
correction run:

(job card)

UPDATE(N=PL2)

7/8/9
*IDENT PMEX
*DEL.ETE SET1.3

C THIS IS FOR PULLMOD EXAMPLE
*COMPILE SET1
6/7/8/9
One of the decks on PL2 is SET1:
*DECK SETI1 SET1.1
_ PROGRAM ZIP SET1.2
C THIS IS FOR PULLMOD EXAMPLE PMEX.1
END SET1.4

Pull the modification as follows:
(job card)

UPDATE(G=PMFILE, P=PL2)
7/8/9

*PULLMOD PMEX
6/7/8/9

File PMFILE contains:

*[DENT PMEX
*DELETE SET1.3, SET1.3
C THIS IS FOR PULLMOD EXAMPLE

4-20

4.2.8 PROGRAM LIBRARY AS SCOPE 3.4 PERMANENT FILE
1. Create program library and catalog as SCOPE 3.4 permanent file,
SCOPE 3.4 DECK

(job card)

REQUEST(PL, *PF)

UPDATE(N=PL, W, L=1234)

CATALOG(PL, PERMUPLIB, ID=JONES, PW =*#%%%)
7/8/9 ‘

(source decks)

6/7/8/9

2. Update program library using UPDATE under either SCOPE 2 or SCOPE 3. 4.

JOBCARD, CP76.

REQUEST(NEWPL, *PF)

FILE(OLDPL, RT=S)

FILE(NEWPL, RT=S)

ATTACH(OLDPL, PERMUPLIB, ST=SVL, ID=JONES, TK = ****)
UPDATE(P=OLDPL, N>=NEWPL, L=1234, W)

CATALOG(NEWPL, PERMUPLIB, ST=SVL, tID=JONES, CY=2, PW=sik%¥)
7/8/9

(correction deck)

6/7/8/9

tStation ID ignored when job is processed by SCOPE 3. 4.

4-21

4-22

STEP |

SCOPE 2 |
COC CYBER 70/ | SCOPE 3.4 STATION
MODEL 76

[INPUT
STREAM y

STEP 2

UPDATE

RMANENT FILE
NEWPL
(CYCLE 1)

PERMANENT FILE
OLDPL

UPDATE

PERMANENT FILE
NEWPL
(CYCLE 2)

4.3 SAMPLE FORTRAN EXTENDED PROGRAM

This set of UPDATE examples illustrates how UPDATE can be used for maintaining a

FORTRAN Extended program in program library format.

The FORTRAN program is very

simple. It calculates the area of a triangle from the base and height read from the data

record.

s s A

i. The following job places the FORTRAN program and subrouiine as a singie deck (ONE)
on the new program library (NEWPL) and on the compile file (COMPILE). Following
UPDATE execution, FTN is called to compile the program; the source is on the
COMPILE file. The LGO card calls for execution of the compiled program. This pro-
gram does not execute because of an error in the SUBROUTINE statement. The name

of the subroutine should be MSG, not MSA.

(JOB1 CARD)
.
®

UPDATE (P=0, N, F)
FTN(I=COMPILE)

7/8/9 END-OF-RECORD

File related cards

*DECK ONE =
PROGRAM ONE (INPUT, OUTPUT, TAPE1)
PRINT 5

5 FORMAT (1H1)

10 READ 100, BASE, HEIGHT, I

100 FORMAT (2F10.2, I1)
IF (I.GT. 0) GO TO 120
IF (BASE. LE. 0) GO TO 105
IF (HEIGHT. LE. 0) GO TO 105
GO TO 106
CALL MSG
106 AREA = ,5*BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///,* BASE=%F20.5,* HEIGHT =%
I-F18:5, 1, *AREA=*F20;5)
WRITE (1) AREA

84000016 B

Deck name I

4-23 @

GO TO 10
120 STOP

END Should be
SUBROUTINE MSA - SUBROUTINE MSG
PRINT 400 .
400 FORMAT (///,* FOLLOWING INPUT DATA NEGATIVE OR ZERO *)
RETURN
END - End of source deck
7/8/9 END-OF-RECORD
200. 24 500.76
300. 24 600. 76
400. 00 700. 00
326. 32 425, 36
500. 00 600. 00
000. 00 150. 00 ’ Data record
700. 43 800. 00
100. 00 300. 00
050. 00 100. 00
150. 00 200. 00

1
6/7/8/9 END-OF-INFORMATION

2. Examination of UPDATE output from the creation job reveals that the erroneous SUB-
ROUTINE statement has card identifier ONE. 20. The following job corrects the error
and generates a new program library,

(JOB2 CARD)

[J

[J

[J
UPDATE(N, F)
FTN(I=COMPILE)
LGO.
7/8/9 END-OF-RECORD
*[DENT MODI1
*DELETE ONE. 20

SUBROUTINE MSG -

Identified as
MOD1.1 on NEWPL

7/8/9

04-24 84000016 B

200.24 500.76]

300.24 600. 76

400. 00 700. 00

326.32 425. 36

500. 00 600. 00

000. 00 150. 00 Data record]
700. 43 800, 00

100. 00 300. 00

050. 00 100. 00

150. 00 200. 00

1
6/7/8/9 END OF INFORMATION

3. This job uses the same input as the first job but divides the program into two decks,
ONE and MSG. Deck MSG is a common deck. A CALL MSG directive is inserted into
deck ONE to assure that MSG is written on the compile file whenever deck ONE is
edited.

(JOB3 CARD)
UPDATE(P=0, N, F)
FTN(I-COMPILE)
LGO.

File related cards I

1

7/8/9 END-OF-RECORD
*COMDECK MSG
SUBROUTINE MSG

PRINT 400
400 FORMAT (///,* FOLLOWING INPUT DATA NEGATIVE OR ZERO %)
RETURN
END
*DECK ONE
PROGRAM ONE (INPUT,OUTPUT, TAPE1)
PRINT 5
5 FORMAT (1H1)
10 READ 100, BASE, HEIGHT, I
100 FORMAT (2F10.2, I1)

IF (L.GT. 0) GO TO 120

IF (BASE. LE. 0) GO TO 105
IF (HEIGHT. LE. 0) GO TO 105
GO TO 106

84000016 B 4-25@

105 CALIL MSG

106 AREA = .5%*BASE*HEIGHT
PRINT 110, BASE, HEIGHT, AREA
110 FORMAT (///,* BASE=*F20.5,* HEIGHT =%

I F18.5, 1, *AREA=*F20, 5)
WRITE (1) AREA

GO TO 10
120 STOP

END Replaced by
*CALL MSG = common deck MSG
on compile file

7/8/9 END-OF-RECORD

200.24 500.76

300.24 600.76

400. 00 700. 00

326. 32 425.36 -
500. 00 600. 00]

000. 00 150. 00 Data record I

700.43 800. 00

100. 00 300.00

050. 00 100.00

150. 00 200. 00

1
6/7/8/9 END OF INFORMA TION

4. This example adds a deck to the library created in the previous example. Since no new
program library is generated (N is omitted from UPDATE card), the addition is tem-
porary.

(JOB4 CARD)

UPDATE.
FTN(I-COMPILE)
LGO.

File related cards

7/8/9 END-OF -RECORD

94-26 84000016 B

*ADDFILE, ONE
*IDENT MOD2
*INSERT ONE. 20
*DECK TWO
PROGRAM TWO(INPUT, OUTPUT)

)
®
.
END Replaced by
*CALL MSG - common deck MSG
*DELETE MSG. 3 on compile file

400 FORMAT (///,* FOLLOWING INPUT DATA POSITIVE %)
*COMPILE TWO

7/8/9

(DATA RECORD)

6/7/8/9

84000016 B 4-27 @

OVERLAPPING CORRECTIONS A

When the EXTOVLP installation option has been assembled, UPDATE detects four types of
overlap involving two or more cards in a correction set.

Type 1 Two or more modifications fo one card made in a single correction set,
Type 2 Attempt to activate an already active card.
Type 3 Attempt to deactivate an already inactive card.
Type 4 Insertion after a card that was inactive on the old program library.
When any of these types is detected, UPDATE prints the offending line with the words
TP.n OVLOP appended on the far right. The listing of overlap lines is controlled by list

option 3. If any overlap condition is encountered during a run, this dayfile message is
printed: number OVERLAPPING CORRECTIONS.

Detection of an overlap does not necessarily indicate a user error. Overlap messages are
advisory, and indicate conditions in which the probability of error is greater than normal.

Types TP.2 and TP. 3 are detected by comparing correction history bytes with those to be
added. Complex operations involving YANK and PURGE may generate these overlap messages
even though no overlap occurs.

Types TP.1 and TP. 3 are normally detected during an UPDATE RUN and usually can be
ignored.

Modifications for each correction set are performed by UPDATE in the order in which sets
are introduced. The order is irrelevant if no correction is dependent on another. If a de-
pendent relationship exists, however, order is of paramount importance.

LISTABLE OUTPUT B

Creation of a new program library produces a listing of all file manipulation and creation
cards and a list of deck names and correction set names known at the end of the UPDATE
run, as well as error diagnostic messages.

During a correction pass, the listings are more detailed. The first listing is a printout of the
correction sets as encountered. Each IDENT (or PURGE) appears on a titled page. A
printout of each card image on the input file follows. All cards resulting from the READ
directive are included and identified on the right by the file from which they were read.

The second set of listings, a continuous commentary of all effective changes introduced to the
file, includes all purged cards as well as cards for which the activity status changed since
they were placed on the program library. Cards inserted by the ADDFILE statement are

not listed. The right-hand side of the listing shows each card identifier with the idname
followed by the sequence number. The deck name is to the left of the card image.

Diagnostic messages are listed as they occur. Whether or not the updating process is
successful, an appropriate dayfile message appears.

When a COMPILE file is written, the locations of all CWEOR, WEOR, and CALL directives
are listed. If L.=0 on the UPDATE card, all listable output from UPDATE is suppressed.
If L=1, the deck name list, identifier list, and continuous commentary are suppressed.

Messages on UPDATE Listing

n ERRORS IN UPDATE INPUT

Dayfile message. First pass of UPDATE processing encountered n fatal errors
while reading a correction set. '

x DECK STRUCTURE HAS BEEN CHANGED
Informative dayfile message.

x DECLARE ERRORS
Dayfile message

x FATAL ERRORS

Dayfile message

x NONFATAL ERRORS
Dayfile message
x OVERLAPPING CORRECTIONS
Dayfile message when correction set introduced during current run changes status

of some cards more than once. Cards affected are printed. The message is
informative.

x UPDATE ERRORS, JOB ABORTED
Dayfile message when errors encountered in reading the input file.
A OPTION INVALID WITH RANDOM OLDFPL OR SEQUENTIAL NEWPL
Fatal dayfile message
B OPTION INVALID WITH SEQUENTIAL OLDPL

Fatal dayfile message
CREATING NEW PROGRAM LIBRARY

Informative dayfile message

COPYING INPUT TO TEMPORARY NEWPL

Informative dayfile message appearing for creation run when sequential new
program library is requested.

COPYING OLDPL TO RANDOM FILE
Informative dayfile message

DECK STRUCTURE CHANGED
Informative dayfile message

FILE NAME ON UPDATE CARD GR 7 CHAR
Dayfile message

G AND O FILES CANNOT HAVE SAME FILENAME.
Fatal dayfile message

GARBAGE IN OLDPL HEADER, UPDATE ABORTED
Dayfile message

IMPROPER MASTER CHARACTER CHANGED TO char

Nonfatal dayfile message

IMPROPER UPDATE PARAMETER, UPDATE ABORTED.

Dayfile message. Unrecognizable parameter on UPDATE card.
INSUFFICIENT FIELD LENGTH, UPDATE ABORT.

Table manager ran out of room for internal tables. Dayfile message.
NO INPUT FILE, Q MODE, UPDATE ABORTED

Dayfile message
NO OLDPL, NOT CREATION RUN, UPDATE ABORT

Dayfile message
PLS HAVE DIFFERENT CONTROL CHARACTERS, ABORT

Dayfile message

READING INPUT
Informative dayfile message
STACK DEPTH EXCEEDED

Fatal dayfile message. Stack in which cards are saved becomes full while processing
BEFORE or ADDFILE directive.

TABLE MANAGER LOGIC ERROR
Fatal dayfile message.
THIS UPDATE REQUIRED n WORDS OF CORE.
Informative message.
UPDATE COMPLETE
Informative dayfile message.
UPDATE CREATION RUN
Informative dayfile message.
WAITING FOR 45000B WORDS
Informative dayfile message.
#%tdeckname IS NOT A VALID DECK NAME=#:
Fatal error

#s%n ERRORS IN INPUT, NEWPL, COMPILE, SOURCE SUPPRESSED. ***

**%n ERRORS IN INPUT, %%

Informative message. Fatal errors in input stream. UPDATE continuesto "~

process corrections in order to detect further errors. The second form of

the message is issued when the U option is specified on the UPDATE statement.

«:«ADDFILE FIRST CARD MUST BE DECK OR COMDECKs

Fatal error

84000016 B B-3

¥% ADDFILE CARD INVALID ON REMOTE FILE*%x*

ADDFILE directive cannot be used for file to be entered onto OLDPL with a READ
directive. Fatal error.

BAD ORDER ON YANK DIRECTIVE

Identifiers separated by a period on YANK directive are in wrong order.
Nonfatal error.

***CARD NUMBER ZERO OR INVALID CHARACTER IN NUMERIC FIELD##%#%
Sequence number field on correction directive is erroneous. Fatal error.
*¥%*CONTROL CARD INVALID OR MISSING*#**

UPDATE detected format error on a directive, or detected directive that was un-
recognizable. Illegal operation such as INSERT prior to IDENT may also have been
attempted. Fatal error.

*%COPY TO EXTERNAL FILE NOT ALLOWED WHEN READING FROM ALTERNATE INPUT
UNITH%*

Results in a null copy.
***DECK NAME ON ABOVE CARD NOT LAST DECLARED DECK*%**

Informative message.

¥¥DECK SPECIFIED ON MOVE OR COPY CARD NOT ON OLDPL. CARD WILL BE
IGNORED*%*

Deck not on old program library. Informative messsge.
#*%xDO /DONT IDENT idname is NOT YANKED/YANKED/NULL DO/DONT***
A DO card to negate the effect of a YANK references an idname that has not been
yanked; or a DONT card to restore a YANK references an idname that was already
yanked. Informative message.
***DUPLICATE DECK dname NEWPL ILLEGAL#%3
UPDATE encountered active DECK or COMDECK card that duplicates a previous
card. Condition is fatal if new program library is being created; nonfatal if new
probram library is not being created.
**DUPLICATE FILE NAME OF file, JOB ABORTED*%
Same file name has been assigned to two UPDATE FILES. Fatal error.
*¥*DUPLICATE IDENT CHANGED TO idname*#%
Informative message.

***DUPLICATE IDENT NAME#*x**

During a merge run, UPDATE encountered a duplicate idname that it could not make
unique. Fatal error.

*¥*DUPLICATE IDENT NAME IN ADDFILE*%%

Name of corrections to be added as a result of an ADDFTLE directive duplicates
correction set name cn old program library. Fatal error.

F*xERROR*#*NOT ALL MODS WERE PROCESSED***
All changes indicated in the input ;leck were not processed. Names specified on

correction directives should corrspond to deck or identifier names on old program
library. Fatal error.

A file name exceeds seven characters. Fatal error.
%% FILE NAME ON ABOVE CARD GREATER THAN SEVEN CHARACTERS*#**
Fatal error.)

*+¥[DENT CARD MISSING, NO NEWPL REQUESTED, DEFAULT IDENTIFIER OF .NO.ID.
USED?%%

Informative message
x¢[DENT LONGER THAN NINE CHARACTERS idnam e%¥

Fatal error.
##+[DENTIFIERS SEPARATED BY PERIOD IN WRONG ORDER#**

Identifiers on directive in wrong order. Fatal error.
[LLEGAL CONTROL CARD IN ADDFILE#%%

ADDFILE insertions cannot contain correction directives. Fatal error.
***INVALID NUMERIC FIELD*%%

Directive does not contain required numeric field. Fatal error.
#*¥*L,ENGTH ERROR ON OLDPL, UNUSABLE OLDPL OR HARDWARE ERROR, *%#*

Card length on old program library is greater than maximum allowed or is less
than one. Fatal error.

*%*LISTED BELOW ARE ALL IDENT NAMES WHICH WERE CHANGED DURING THE
MERGE#*#*%

**¥ALL YANK, SELYANK, YANKDECK, AND CALL CARDS AFFECTED HA VE BEEN
CHANGED***

#:%NEW IDENT ON CHANGE CARD IS ALREADY KNOWN#s%

An attempt was made to change a correction set identifier to one already in existence.
Fatal error.

*%*NO ACTIVE CARDS WERE FOUND WITHIN THE COPY RANGE. NULL COPY#*#¥%
Nonfatal error, UPDATE continued.

*4¥*NO DECK NAME ON DECK CARD###
Fatal error message.

#*kNULL ADDFILE*%3

The first read on the file specified by ADDFILE encountered an end-of-record.
Informative message.

¥¥NULL DECK NAME#*#*%*

During ADDFILE or creation run, a DECK or COMDECK card encountered does not
contain a deck name. Fatal error.

*XNULL IDENT%%%

Fatal error.

+OLDPL READ ERROR - POSSIBLE LOST DATA AFTER FOLLOWING CARD%*

card image}

#*%*AND BEFORE THE FOLLOWING CARD **%*

card image2

A parity error or other read error has occurred while processing an UPDATE version 1,2
old program library. As a result, UPDATE is uncertain of the position of the old program
library. The first card shown is the last card on the old program library that UPDATE

successfully processed. The second card is the next valid card that UPDATE is able to
find following the parity error or other read error. Fatal error.

#*%%QUTPUT LINE LIMIT EXCEEDED. LIST OPTIONS 3 and 4 DEFEATED, *#*

UPDATE output exceeds line limit specified by default or on LIMIT card. Nonfatal
error.

#***PREMATURE END OF RECORD ON OLD PROGRAM LIBRARY #¥%

Fatal error. End of record encountered in midst of card image. If a second
run of this job is not successful, the old program library probably contains
irrecoverable errors.

A common deck has called itself or called decks that contain calls to the common
deck. A circularity of calls has resulted. Fatal error.

#*+*SEQUENCE NUMBER EXCEEDS 131071

Fatal error. UPDATE immediately aborts the run. The proper range of sequence
numbers is 1 through 131071,

#*%*THE ABOVE CALLED COMMON DECK WAS NOT FOUND***

Fatal error.

*%*THE ABOVE CARD AFFECTS A DECK OTHER THAN THE DECLARED DECK**%*
Nonfatal error. The card is ignored.

*x*THE ABOVE CARD IS ILLEGAL DURING A CREATION RUN#* 8
Fatal error.

*%%THE ABOVE CONTROL CARD IS ILLEGAL AFTER A DECK HAS BEEN DECLARED**%

#*x%THE ABOVE LISTED CARDS CANNOT EXIST IN THE YANK DECK AND HAVE BEEN
PURGED DURING EDITING**%

Informative
*4*THE ABOVE OPERATION IS NOT LEGAL WHEN REFERENCING THE YANK DECK3#*#%¥
Fatal error.
***THE ABOVE SPECIFIED CARD WAS NOT ENCOUNTERED*#*
Printed as part of the printing of unprocessed modifications. Fatal error message.
+THE INITIAL CARD OF THE COPY RANGE WAS NOT FOUND. NULL COPY#¥*
Nonfatal error.
#x*THE TERMINAL CARD SPECIFIED ABOVE WAS NOT ENCOUNT ERED?*#*
Printed as part of the printing of unprocessed modifications. Fatal error message.
*#4[T MAY EXIST IN A DECK NOT MENTIONED ON A COMPILE CARD**%*
Printed when in Q mode.

*+*THE TERMINAL CARD OF THE COPY RANGE WAS NOT FOUND. COPY ENDS AT END
OF SPECIFIED DECK***

#*#xTOO MANY CHBS -- INCREASE L. CHB%**

Correction history bytes exceed specified limit of 100 octal for a card. Fatal
error; job terminated.

¥UNBALANCED TEXT/ENDTEXT CARDS, LAST ENDTEXT CARD IGNORED*

Nonfatal error
#xUNKNOWN IDENTIFIER NAME idname*#%

A correction directive references an idname not in directory. Fatal error.

*¥*WARNING**+*OLDPL CHECKSUM ERROR*##

Informative dayfile message. At least one updated deck from ola program library
is bad.

*:*WARNING, RETURNING PRIOR NEWPL, *#%
Informative dayfile message. Two consecutive UPDATEs are being attempted,
each of which creates a random new program library of the same name, without

returning the new program library created by the first UPDATE.

*¥%¥YANK, SELYANK, OR YANKDECK IDENT ident NOT KNOWN %%

The ident referenced on a YANK or SELYANK directive has probably been purged;
this applies to cards already on library. Nonfatal error.

FILE SUMMARY : C

File

Input
(Directives)

Output
Compile

Old Pfogré.m
Library

New Program
Library

Source

Merge

Function

Provides control
information

Contains listings

Contains card
images for assembly
and/or compilation

Contains old
program library

Contains new
program library

Contains copy of
all active cards
on program library
except YANK, SEL-

Coded

Coded

Binary

Binary

Coded

YANK and YANKDECK

cards. The cards

contain no sequencing

information.

By default, any out-
put resulting from

PULLMOD is appended

to the SOURCE file.
The user may write
this information to
a different file by

equating G on UPDATE
control card to desired
file name. Any rewind

‘option which applies to

the S (Source) file also

applies to the G file.

Secondary library
to be merged into
new program
library.

Binary

Position after UPDATE Call

Remains at end of record terminating

UPDATE diréctives. Other cards
may follow. If UPDATE aborts, location
of input file is unpredictable.

Current position of OUTPUT file unless
O isequated to a file other than OUTPUT.,
File is not rewound.

Rewound before and after UPDATE
operation.

Rewound before and after UPDATE
operation.

Rewound before and after UPDATE
operation.

Rewound before and after UPDATE
operation.

Rewound before and after UPDATE
operation.

Files mentioned in ADDFILE, READ, REWIND, and SKIP operations are positioned ac-
cording to the latest directive encountered on the directives file.

The files OLDPL, NEWPL, MERGE, COMPILE, and SOURCE or their equivalents normally
are rewound before and after the UPDATE operation. The R parameter on the UPDATE
control card specifies which files are to be rewound. Any rewind action specified on the

old program library also applies to the merge file.

INPUT

/ OUTPUT

ufPoATE... LISTING
DIRECTIVES __—
COMPILE
OLDPL COMPILABLE
> AND/OR
SOURCE I “|assemsLaaig
| SOURCE
MI |
M2 - — UPDATE - NEWPL
I : SOURCE
|
MX I l MI
' = > M2
SOURCE | '
cl |
- | | MY
- ' | SOURCE
CN | |)
DI - — | :
D2 .
: ' CNN
. L]
DM =2
DMM

FILE FORMATS VS OPERATING SYSTEM USED D

o e

The files generated and used by UPDATE have formats determined by both the operating
system in use and the user. This appendix attempts to answer some of the questions con-
cerning default file for-—.ats, allowed file formats, and the interchangeability of files
among the systems.

In particular, it strives to explain when a file is random or sequential, when it must be
binary or coded, which SCOPE2/SCOPE 3. 4/KRONOS/NOS 1.0 record types are permitted,
and when a random file can be copied to tape and read back into the system.

Sequential program libraries are interchangeable among operating systems when they are in
SCOPE logical format (record manager type S records or SCOPE 1.1 I-mode records).

The below table indicates the interchangeability of random format old program libraries
that have been copied onto tape. To read the table, look down the left column to determine
the operating system used for generating and copying the library onto tape. Then locate
the operating system with which you wish to read the tape by scanning the horizontal list.
A yes indicates the tape can be read. A no indicates it cannot be read. This table does
not attempt to supply procedures for using a tape when it is not readily interchangeable.

Read Random Library From Tape

Generate Random | KRONOS 2 SCOPE 3.3 |SCOPE 3.4 | SCOPE 1.1 |[SCOPE 2

Library on Tape or NOS 1.0

KRONOS 2 or

NOS 1.0 Yes No No No No

SCOPE 3.3 Yes No No No No

SCOPE 3.4 Yes No No No No

SCOPE 1.1 No No No Z,I-mode Yes No
X-mode No

SCOPE 2 No No No No Yest

T Must be copied to unblocked mass storage file when read in.

*SpPJIOdaI M ‘paydoIquUN 9q jsnix AIvJaql] jBULIO) wopusy ‘o1qeidadcdwun 8] jewrdoj L1evaqyl ‘1je}
836893 304 JI a1y [eyIuanbas jo suo paom ul YOFHD Jo adussaxd J0j pue o]} wWopued AFPuepr o3 $IDTUIA SUTUTEIUOD Jopesy £X030041p Jo @ouasaad Jof 8)09YD ML VAdN 2 FI0DS
*WRBuLT UT SIBVRIBYD-(ZTG OJE FPIOISI M ST} pPeyoo[qun m ® o} perdod 8q 384} 3SNWI 3} OTIF SIY} 58800® 0} J9pJo Ul *ade} 03 o1y 9y Bujhdoo £q ade; uo nd oq uwd 88T WOpueH |}
*sade;} spowr-xX J0; Tejjuanbas aq Ao us)
T T §d0ODS Iepun sode) spow-7Z Jo -] J0j eljuanbas 40 wopuea aq us) |

Paed FIJ yBnoays paes
001 >1d ‘Z=14 LSENOIY
pIed @114 y¥noawyy payyroads J1 Z=JL Y4 10 PoN0OIq M=1H a0 Bupiooirq Id3Y0 £q paupu eHuanbag papod
paxydorqun ‘M-14 ‘PONOOIq I ‘M-1Y TewraoN] -J9RQ BuLIoN € IJ00S o} avdys
Pae0d FIId ySnoays preo
001 >1d ‘Z=1Y9 LSINdIY
PIe2 @7 Winouayy payroade 31 Z=1Y 40 Poxoolq M=I1H a0 Buppooiq I9410 £q paupu TeHuanbag papod
pPayoorqun ‘Mm=JL¥ ‘PIROOIq I “M=1Y EwIoN] -JI3jq mBuIoy € AJ0DS o) dDUNOS=§
paeo paeo
TTJ udnoay; agq LSANOAH
-1880d sadf) 3a30 £q paurux renyuanbag papod
PayooIquUN ‘M=14 *POYOOIq I ‘M=1H [ewION| -JI33] TewJIoN ¢ Id0DS o LNdLNO=0
PI8Y ATId yZnoayy preo
Pre? T'IId Snoay) 001>1d 00T >1d ‘Z=14 \LSANDTY
‘Z=1Y 30 P3320Iq M=LY I0 P01q J8YI0 £q pautw renuanbag papod
Paydoiqun M=1Y ‘POYI0Iq I ‘M=1Y TewION -J933d BurIoN ¢ Ad0DSs o INdNI=I
PIed HTIA pJed
£q peupmaajop \LSINOTY .
pred IIdYAneayy payoeds g fary pesseaduwod J1 g= 1y sedf} - 1oy30 £q paurux Terjuanbag papod
payoorqun m=LYy POFOOIq T ‘M=LH rwJIoN -J93eQ rewIoN | ¢ AI0OS O | ETdNOD=D
paed FId "ySnoayy peyroads g 10 M PONOOIq=LY
‘egep £q payooiqun m=IM
PI8d HILvddN uo paywads M JT J0 paxdolq J1 renuanbag S 30 M=1Y Tenuanbag- M. rerjuanbag-m
Pa3o0Tqun T uropuey Tenuenbes ‘Arsuig wopusy| Areurg wopusy Lrurg ay TdMIN=N
paed grIrd ynoay; Peyyoads J1 payoolq X 10 ‘S M=LY
peydoIqun M-Iy
irerauanbag X J0 ‘S‘M=14 muanbag Tenyuanbag
payoorqun M=J4 |]]1etjuenbag. ‘Kreurg J0 wopusy| } Lreurg J0 wopusy Lreurg g4 Tda10=d
‘wopuey
afvaolg ssey ede], a8e10)g 8B odey, afva03g ssEN adeg, SENd dIvadn
¢ AJODS 1 4d0Oos x*g Id00S
/0°T "SON/SONOWM

D-2

INDEX

- A list option 4-5 COPY directive

A mode 4-2 description 2-9
A onlisting 4-5,6 example 2-10; 4-14
ABBREYV directive 2-27 Correction directives 2-5
ACTIVE on listing 4-5 Correction history byte 3-8
ADDFILE directive Correction run 1-4
description 2-15 Correction set identifier 2-6
example 4-18 Creation run 1-3
listing 4-5 CW directive 2-22
AF directive 2-15 CWEOR directive 2-22
AUDITKEY installation option 1-5, 4-6 CY directive 2-9
B directive 2-8 D directive 2-8
B mode 4-2 D on listing 4-5
BEFORE directive 2-8 D option 4-3

DC directive 2-29
DECK directive

C directive 2-19 .description 2-4
C option 4-3 example 2-3; 4-11, 12, 13,18
CA directive 2-22 Deck name
CALL directive as ident 2-3

description 2-22 _common 2-4

example 4-12, 14 list 3-6
Card identifier 2-2 normal 2-4
Card image Decks

format 3-2,7,13,15 job examples 4-11

width 3-13; 4-10 program library 3-3
CD directive 2-4 source 3-1
CH directive 2-11 DECLARE directive 2-29
CHANGE directive 2-11 DECLKEY installation option 1-5; 2-29
CHARG64 installation option 1-5; 3-5,8,9 DEFINE directive
Character set, full 1-5; 3-5,8,9 description 2-28
COMDECK directive example 2-23

description 2-4 DELETE directive

example 2-3; 4-12,13,18 description 2-8
Comment card 2-27 example 4-14,15,16,19,20
Comment character 2-27; 4-10 DF directive 2-28
COMPILE directive Directives

description 2-19 compile file 2-20

example 4-19 correction 2-5
Compile file 2-19; 3-13; 4-3 correction run 1-4
COMPILE file 4-3 creation run 1-3
Compressed card 3-8 deck 2-3

Index~-1

file manipulation 2-17 IDENT directive

format 2-1 description 2-6
name 2-2 example 2-7,10; 4-13, 14, 15, 16, 19, 20
selective compile 2-19 Identifier, card
short form 2-1,27 changed 2-11, 16
special 2-26 full form 2-2
DK directive 2-4 listing of B-1
DO directive program library 3-6,7,13
description 2-26 short form 2-2
example 4-16) Identifier, correction set
DONT directive default 2-6
description 2-26 directory 3-6
example 4-16 legal format 2-6
DT directive 2-26 .NO,ID. 2-6
DYNAMFL installation option 1-5; 4-2 Identifier, deck

also ident 2-3
legal format 2-4

E option 4-3 list 3-6

Edit 4-3 IF directive

EDITKEY installation option 1-5; 4-3 description 2-22

El directive 2-24 example 2-23, 24

END directive 2-30 Input stream 4-5

ENDIF directive INSERT directive
description 2-24 description 2-7
example 2-23,24 example 2-10; 4-15, 16

End-of-information card 4-11 Installation options 1-5

End-of-partition card 4-11
End-of-record card 4-11
ENDTEXT directive 2-25 Job card 4-1
ET directive 2-25
EXTOVLP installation option 1-5; A-1
K option 4-4

F control card option 4-4

F list option 4-5 L directive 2-28

File conversion 1-5; 4-2 L option 4-5

File formats Label flag 3-5,9
compile 3-13 LIMIT directive 2-27
input 3-12 LIST directive 2-28; 4-5
new sequential 3-9 Listing
old sequential 3-11 control 2-28; 4-5
pullmod 3-15 description 4-5; B-1
random 3-3 size limit 2-27
source 3-1 LT directive 2-27

G option 4-4

M directive 2-17

M option 4-7

H option 4-4 Master control character 2-1; 3-5,9; 4-10
Merge file 4-6

Messages B-1

I directive 2-7 MOVE directive 2-17

I on listing 4-5,6
I option 4-4
ID directive 2-8

Index-2

N option 4-7

NA directive 2-27
NEWPL file 4-7
NL directive 2-28

NOABBREY directive 2-27
NOLIST directive 2-28; 4-5

NOPROP 2-4

Nonpropagating decks 2-4; 4-4

O option 4-7

OLDPLKEY installation option 1-5

P directive 2-13
P on listing 4-5

P option 4-7

PD directive 2-14
PM directive 2-29

PMODKEY installation option 1-5; 2-29; 4-4
Prefix character (see master control

character)

Program library 3-3

PULLMOD directive
description 2-29
example 4-20

PURDECK directive
description 2-14
example 4-18

PURGE directive
description 2-13
example 4-17

Q option
description 4-8

effect on library file 3-3

example 4-13

R directive 2-9
R option 4-8

Random index format 3-5

Random library

control card option 4-7

conversion 1-5; 4-2
format 3-3
RD directive 2-18
READ directive
description 2-18
example 4-12
listing 4-5

RESTORE directive 2-9
REWIND directive 2-19
RW directive 2-19

S directive 2-16

S option 4-9

Scratch files 2-18; 3-15

SELPURGE directive
description 2-15
example 4-16

SELYANK directive
description 2-12
example 4-16,17

SEQ on listing 4-5

SEQUENCE directive 2-16
Sequence information 2-2; 3-7,13
Sequence number bias 2-7

Sequential library

control card options 4-7,9

conversion 1-5; 4-2
example 4-11,12
new format 3-9
old format 3-11
SK directive 2-19
SKIP directive 2-19
Source file format 3-2
SOURCE file 3-15; 4-9
SP directive 2-15
SY directive 2-12

T directive 2-25
T option 4-9
TEXT directive 2-25

U option 4-9

UPDATE control card 4-2
UPDTxxx files 2-18; 3-15

W control card option 4-9

W directive 2-21

W record type option 4-7

WEOR directive 2-21

X option 4-10

Y directive 2-11

Index-3

YANK directive
description 2-11
example 4-15, 16, 17
YANKDECK directive
description 2-12
' example 4-17
YANK$$$ deck 1-4; 2-3; 3-4,7, 11, 12
YD directive 2-12

2 conirol card option 4-10

* Master control character 2-1; 4-10
8 control card option 4-10
/ comment character 2-27; 4-10

Index-4

CUT ALONG LINE

COMMENT SHEET

MANUAL TITLE _CYBERNET Service UPDATE Reference Manual

PUBLICATION NO. 84000016 Revision B October 1977
FROM: ' NAME:

BUSINESS

ADDRESS:
COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corpora-
ton. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number refer-
ences.)

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

FOLD

STAPLE

FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. BOX 0 HQCo02C
MINNEAPOLIS, MINNESOTA 55440

ATTN: DATA SERVICES PUBLICATIONS

LY

Lo

FOLD

CUT ALONG LINE

UPDATE CONTROL CARD PARAMETERS

2

T Q@ Hmyu Qe

”
¥*

oNM ® o 4w ®m O WO Z g O A"

UPDATE (pq, P2, ..., Pp)

Sequential-to-random copy

Random-io-sequential copy

Compile file output; COMPILE if C or omitted. No compile if C=0. Otherwise, output
to file named.

Data width; 72 columns if no D. 80 columns if D.

Edit. No editing if no E.

Full update. If F omitted, corrected decks and those named on COMPILE cards are
compiled. If F is specified, all decks are compiled.

Pullmod file. If omitted, pulled modifications are appended to source file. Otherwise,
output is written on named file. ,

Header change. If omitted, character set is determined from old program library.

If H=3, 63-character set is used regardless of header; if H=4, 64-character set is
used regardless of header.

Input. If omitted, directives and text on INPUT. Otherwise on named file.

COMPILE card sequence. Takes precedence over C mode. If K, decks written on file
COMPILE in COMPILE card sequence. If K=filename, decks written on named file.
List options. If omitted, options A, 1, 2, 3, and 4 selected. Options A, F, and 0-9
not separated by commas. Any use of 0 suppresses listing.

Merge input. Omitted, no merge. M, merge input on file MERGE. M-=filename,
input on named file.

New program library. Omitted, no new library. N, output on NEWPL, N=filename,
output to named file.

List output file. Omitted or O, listings on OUTPUT. O-=filename, output to named file.
O1d program library. Omitted or P, library on OLDPL. P=filename, library on
named file,

Quick update. Takes precedence over F. Omitted, normal selective mode. If Q,
only decks on COMPILE cards are processed.

Rewind. Omitted, files are automatically rewound. If R, no rewinds issued. If
R=cqycy...c then only files indicated by C, N, P, 8 are rewound.

Source output. Omitted and no T, no source output. S, output on SOURCE, S=filename,
output on named file.)

Source output excluding common decks (takes precedence over S). Omitted and no S,
no source output. If T, output on SOURCE. T-=filename, output on named’ file.

Debug mode. Omitted, fatal error ends execution. If U, fatal error does not end
execution.

Sequential new program library. Omitted, new library will be random if possible.

If W, new library will be sequential.

Compressed compile file. Omitted, compile file not compressed.

Compressed input file. Omitted, input file is not compressed.

80-column output on compile file. Omitted, 90-column card images. If 8, 80-column
card images.

Master contrcl character. Omitted, control character is *. If *=c, new character

is c.

Comment control character. Omitted, comment character is/. If /=c, new comment
character is c.

CORPORATE HEADQUARTERS

8100 34TH AVENUE SOUTH

MINNEAPOLIS, MINNESOTA

MAILING ADDRESS » BOX 0, MPLS., MINN. 55440

SALES OFFICES AND SERVICE CENTERS
IN MAJOR CITIES THROUGHOUT THE WORLD

IMPORTANT REGULATORY NOTICE

Users of Control Data services should be aware that the rules and regulations of the United States and International
Telecommunications Regulatory Agencies prohibit Control Data from using communications services it leases from
domestic, international and foreign communications carriers to transmitinformation for its users which is notpartofa
“single integrated” data processing service. All information transmitted must be directly related to the data processing
applications or service provided by Control Data and unprocessed information shall not be allowed through the
service between user terminals, either directly or on a store and forward basis. Noncompliance with these rules and
regulations may force Control Data to discontinue the users’ data processing service.

G2

CONTROL
DATA

