
1• IRE f6 STOCIC <IRE>
2" TICICER S\'11111. <IRE>
l• fXOflME (JWIE)

4'10-(JlfTEllEJI-)
,.,.IRE <IRE>
60 SIC QlOf <llfTEllEJI ..,..,
l• SJfltES OOTSTfll>ltll < IKTEOD .._..,
9' ~lllGS MTI <MTI>
"EMlllJMlS 1'£1 SfNE <OECllll. llNO>

,.. PE lflTJO <OEClfll. IUllO>
1 .. OfULV PlltXET OftTlt CIO>

I

11• OflTE <MT£ IN 11>
U. MY (If WEEK Cfllllf llf St>
1l• Yll.t.flE c zmou ,.,.. 1• 11>
1 .. Hllli COECJfll. flJl9U llf 11>
1,_ LOW CDEClPR.. M.fBER JN 11>
16' Q.OSE COECllft. NUWI IN 181
17• l!HO <DECUll. M.NEa IN 11>
18o flSICED <OEC!lft. ,._ IN 11>
19' OJ, lll>OSTIWl.S <OECllft. - IN 11>
54• OJ lflJLS CDECJlll lfllf 11>

user information manual

1• 1R1E OF STOCIC CIWIE>
Z-. TICKER SVllQ. CIRIE >
l• ElCCIMlE C 1R1E >
IO lUIEI <INTEGER IUllO>
,_ fP IRIE <IRIE>
69 SIC COOE <INTEGER IUllO>
7• SlflRfS OOTSTAllDillO <IlfTEOO IUllER>
8'o EMllINGS OllTE <OflTE>
'9 EMllINGS PER SINE <DECllll. IUllD)
~ PE llllTIO <DECllft. !Ulla)
1 .. OlllLV lll!ICET OflTll (llQ)

11• OllTE COATE IN 19>
12-. DflV Of IEEJC CIWIE IN 18>
13• VOLi.ft'. <INTEGER IUllER IN 19>
1# HIGH <DECllft. IUlllER IN 11>
1,_ LOii <DECilft. IUIBER IN 11>
169 Q.OSE <OECllft. IUIBER IN 19>
17• BIO <DECllft. IUIBER IN 11>
18'o flSICEI) COECllft. IUllO IN 11>
~ OJ0 IN>IJSTRill.S <DECIMI. IUIBER IN 19>
54• OJ RAILS CDECllft. IUllO IN 11>

SYSTEM 2000™

I / / -------.v---· D .. · r -· ~-~_, /] //
//. / r_,..

1' ,/ '/

A MUL Tl-PURPOSE DATA MANAGEMENT SYSTEM
FOR THE CDC® 6600 COMPUTER SYSTEM

(PRELIMINARY)

DATA SERVICES DIVISION

CONTROL DATA
CORPORATION

FOREWORD

SYSTEM 2000 ™is a multi-purpose data management system that was developed by Management
Research International, Inc. (Austin, Texas). It is designed to run on the CDC® 6600 Computer
Systems within CDC Data Services' nationwide network of computers and terminals (CYBERNET
Service).

This preliminary user manual is divided into two main sections: (l) a SYSTEM 2000 Reference
l\Ianual, copyrighted by Management Research in 1970, and (2) a summary of SYSTEM 2000 diagnostic
messages, also copyrighted by Management Research in 1970. This material is republished by CDC
Data Services with the permission of Management Research.

A postcard is included at the end of this manual for mailing to Management Research. This procedure
will guarantee that the reader will be sent appropriate updates for the most recent version of SYSTEM
2000. Additionally, each CDC Data Center (that maintains a CDC 6600) employs an anlyst who is
trained in the use of SYSTEM 2000. Consequently, the reader can contact his nearest 6600 Data
Center if he has any questions regarding this manual or SYSTEM 2000.

.9J~E1970 1*-S2K-l.3

SYSTEM 20JJTM

REFERENCE MANUAL

UlPYRIGHT1 1970, BY MANAGEMENT RESEARCH INTERNATIONAL, INC.

Au_ RIGHTS RESERVED, No PART OF THIS PUBLICATION MAY BE

REPRODUCED BY ANY MEANS, NOR TRANSMITIED, NOR TRANSLATED

INTO A COMPUTER LANGUAGE WITHOUT WRITTEN PERMISSION FROM

MANAGEMENT RESEARCH INTERNATIONAL, INC.

1.0

2.0

3.0

TABLE OF CONTENTS

INTRODUCTION ...
Page

1

EXECUTIVE .. 2

2.1

2.2

SYSTEM-WIDE COMMANDS
2.1.1
2.1. 2

2.1.3

2.1.4

Module CoIIlIIlands ••
Change Parameter CoIIlIIlands ••••••••••••••••••••••

2.1.2.1 System Separator
2.1.2.2 Entry Terminator
User File-Name CoIIlIIlands

2.1.3.1
2.1.3.2

Input Files to SYSTEM 2000
Outpu.t from SYSTEM 2000

Data Base Control CoIIlIIlands •••••••••••••••••••••••••••

Password CoIIlIIland •••••••
Access Data Base •••••••
Save Data Base •••••••••
Load Data Base ••••••.••
Create Copy
Release •••••••••

2

2
3

3
3
4

4
5
6

6
7
7
8
9
9

2.1.4.1
2.1.4.2
2.1.4.3
2.1.4.4
2.1.4.5
2.1.4.6
2.1.4.7 Erase 10

SYSTEM-WIDE DEFAULT SETTIN~ 10

DEFINE MODULE ••• 13

3.1

3.2

3.3

3.4

INTRODUCTION

DATA BASE STRUCTURE

DATA BASE COMPONENTS

3.3.1
3.3.2
3.3.3
3.3.4

Elements
Repeating Groups
User-Defined Functions
Strings •••••••••••••••.•••

DATA BASE CONSTRUCTION
3.4.1 Basic DEFINE Procedures

.13

.13

.14

... 14

... 18
•.• 19

.... 21

• ••• 22

• ••• 22

3.4.1.1
3.4.1.2
3.4.1.3
3.4.1.4

Password and Module Command ••••••••••••••••••••• 23
Declare Data Base Name ••••••••••••••• • ••• 23

3.4.2

Component Declarations ••••••••••••••• ••.•••• 23
Mapping the Definition •••••••••• • . 24

Padding Options •••••••••••••••• • • 29

3.4.2.1
3.4.2.2
3.4.2.3

Null Options - Repeating Groups • ••• 29
Padding for Unique Element Values ••••••••••••••• 30
Padding for Multiple Occurrences of Each

Unique Value ••••••••••••••••••••••••••••••••• 3 2

4.0

5.0

3.5

3.6

3.7

Page

DATA BASE MODIFICATION • 32

3.5.1
3.5.2
3.5.3

................................ Adding New Components
Changing Padding Options
Specific DEFINE Commands

.........................
32
34
34

3.5.3.1
3.5.3.2

Change Single Component Number •••••••••••••• 35
Renumber Components ••••••••••••••••••••••••• 35

DATA BASE PASSWORD CONTROL
3.6.1
3.6.2

Assign Password
Delete Password

......................................
DEFAULT CONDITIONS IN THE DEFINE MODULE

36

36
37

37

LOADER MODULE ... 38

4.1

4.2

4.3

4.4

4.5

4.6

INTRODUCTION ...
LOADER DATA INPUT STRING FORMAT

38

42

4.2.1
4.2.2
4.2.3

Data Value Assignments ••••••••••••••••••n•••••••• 44
Data Set Assignments .•••••••••••••••••••••••••• 46
Special Labels and Non-Data User Messages .•••••••• 47

USER DIRECTIVES

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

NOTIFY Directive
ISSUE REPORT Directive
STOP AFTER Directive ••••••
SUPPRESS COMMENTS Directive
ASSUME Directive
SCAN Directive ••••••

OUTPUT FROM THE LOADER MODULE

ERROR HANDLING

DEFAULT CONDITIONS IN THE LOADER MODULE

48

49
49
52
52
53
53

54

54

56

RETRIEVAL MODULE 57

5.1

5.2

INTRODUCTION
RETRIEVAL COMMANDS ...
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14

PRINT
PRINT
PRINT
PRINT

Request ..
Request With Two Components ••••••••••••••••••••
Request With Format Instructions •••••••••••••••
Request Using Component Numbers ••••••••••••••••

_A_c_c_e_s_s_i_n_gw.._D_i_f_f_e_r_e_n_t __ D_a_t_a __ B_a_s_e_s_ •••••••••••••••••••••••
DESCRIBE ..
PRINT ENTRY
The WHERE Clause
Relational Operators

SP AN, SP ANS, or SP ANNING ••••••••••••••••••••••••••
EXISTS, FAILS
System Functions With WHERE Clause ••••••••••••••••••
System Functions Without WHERE Clause •••••••••••••••
Logical Operators

ii

57

57

57
58
59
59
60
60
61
62
62
62
63
64
65
66

6.0

5.3

5.4

5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.2.23
5.2.24

Logical Operator Combinations •••••.••••..•••••..••
Nested Logical Operators ••••••.••••.••••• , .••.
The Use of AT
The Use of HAS, HAVE, HAVING ••.•••••.••..•.•••....
The Use of DITTO
The Use of SAME and SAME AND ••••••••••••.••••••...
Strings a •••••••••

User-Defined Functions ••••••••••••••••••••••••.•..
Maintenance Function Commands •••••.•••••••••••.•••
Concept of Normalizing .•••••.•••••.••••••.••••.•..

OUTPUT FORMAT ...
5.3.1
5.3.2
5.3.3

Output
Output
Output

Format for Data Values
Format for System Functions •...•.•.•.•..••.•
Format for User-Defined Functions •••••••••••

DEFAULT CONDITIONS IN THE RETRIEVAL MODULE

67
68
70
71
73
74
76
77
78
79

84

84
85
85

86

UPDATE MODULE .. 88

6.1
6.2

INTRODUCTION .•••••.•••••••.••..••••• , •••••••••••••••. 88
90 UPDATE COMMANDS

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11

General Format for UPDATE Commands
The ADD or AD Conunand ..••••••••••••••••••••••••••..•
~~~~~~~~~~~~~~~-

The CHANGE or CH Command ••••••••••••••••••••••••••• 
~~~~~~~~~~~~~~~~~~ 

The REMOVE or RE Command •••••••••••••••••••••••••.•
~~~~~~~~~~~~~~~~~-

The ASSIGN or AS Command ••••••••••••••••••••••• 
~~~~~~~~~~~~~~~~~-

The REMOVE TREE or RT Command •••.••••••••••••••
~~~~~~~~~~~~~~~~~~~~~ 

The ASSIGN TREE or AT Command ••.••••••••••.••••••.. 
The INSERT TREE Command •••••••••••.•••••••••••••••• 

91 
93· 
93 
94 
96 
97 
98 
99 

The Use of DITTO SAME and PREVIOUS ••••••••••••.•••• 100 
LIMIT Option ..................................... . 101 
Trace Notation •••••••••••••••••••••••••••.••••• · ••• 102 

6. 3 UPDATE FILE CONTROL •••••••••••••••••••••••••••••••••••••••• 104 

6.4 

6.3.1 
6.3.2 
6.3.3 
6.3.4 
6.3.5 

General Information ••..••••••••••.••••••••.•••.••.• 105 
KEEP ALL or KEEP <n> SEGMENTS Command •••••••••••••• 107 
SUSPEND Conunand •••••••••••••••••••••••••••••••••••. 107 
APPLY ALL or APPLY <n> SEGMENTS Command •••.•.•••••• 108 
TERMINATE Command ••••••••••••••••••••••••••••••.••• 109 

DEFAULT CONDITIONS IN THE UPDATE MODULE ••••••••••••••••••• 109 

iii 



LIST OF FIGURES 

Figure 1 Logical Entry Graphic Illustration••••••••••••••••••••••••• 15 

Figure 2 Sample Portfolio Data Base Definition•••••••••••••••••••••• 25 

Figure 3 Sample Housing Authority Definition •••••••••••••••••••••••• 26-27 

Figure 4 Sample Health Planning Definition •••••••••••••••••••••••••• 28 

Figure 5 .Sample Loader String for PORTFOLIO Data Base ••••••••••••••• 39 

Figure 6 Data Base Structure for Example PORTFOLIO Loader String •••• 40 

Figure 7 General Format for UPDATE CoDllllands ••••••••••••••••••••••••• 92 

iv 



1 June 1970 1 RM-S2K-l.l 

1.0 INTRODUCTION 

SYSTEM 2000 is a multi-purpose data management system which has the capability 

and flexibility to provide a complete data management service to business and 

government. It contains the ability to perform data base development, mainte­

nance, functional computations, and complex information retrieval activities. 

SYSTEM 2000 operates on large volume, high speed computers under the control 

of the computer's operating system. SYSTEM 2000 operations are controlled by 

the Executive, which allows access to four functional modules: DEFINE, LOADER, 

RETRIEVAL and UPDATE. The Executive contains the system-wide commands used 

in the development and overall operational utilization of user defined data 

bases. The first functional module, DEFINE, allows the user to structure his 

own data base by defining the data base components. The LOADER module is used· 

to load new or existing data files into the system. The RETRIEVAL module 

contains the command language providing the ability to gain access to any 

stored data item, to compare data, to perform functional computations and 

to output the data in either standard list format, or by use of a post proces­

sor, output the data in a user defined report format. The UPDATE module allows 

a complete range of data base maintenance activities including adding, deleting, 

changing and inserting of data. 

The system provides throughout its varied capabilities a user oriented concept. 

All of the communications language within SYSTEM 2000 uses the English language, 

in all of the commands within all of the modules, as well as within the complete 

range of system diagnostics. 



I 

9 June 1970 2 RM-S2K-l. 3 

2.0 EXECUTIVE 

The Executive contains all of the system-wide commands which allow access to 

all system capabilities. Any of these commands are available for use any time 

the user has access to the system. This chapter will discuss each of these 

commands which are divided into four job-related sections. In addition to the 

system-wide connnands, the system-wide default settings are given. 

2.1 SYSTEM-WIDE COMMANDS 

SYSTEM 2000 system-wide connnands are classified into four types, with each type 

including a number of specific commands. All of the system-wide commands have 

at least one thing in common as suggested by their title: they can be used at 

any time the user has access to the system, regardless of which functional 

module is active. Each functional module has its own module specific commands 

which are appropriate only when that module is active and are used to carry 

out the various operations of the module. 

All SYSTEM 2000 commands have a common format appearance to the extent that 

• each command ends with a colon. 

2.1.1 Module Commands 

There are four functional modules and each is called into service by a one-word 

command, as follows: 

DEFINE: 

LOADER: 

RETRIEVAL: 

UPDATE: 

Each of these commands and their associated uses is discussed quite fully 

within the individual chapters reserved for the four functional modules. 

The system allows selecting more than one module in any one job session. 



1 June 1970 3 RM-S2K-1.l 

2.1.2 Change Parameter Commands 

There are two system-wide commands in the parameter change group. They 

concern the ability to change the system separator and the entry terminator. 

2.1.2.1 System Separator 

Purpose To change the system separator. 

Command SEPARATOR IS <separator symbol>: 

Discussion SYSTEM 2000 uses the system separator in practically all of 

its operations and it is used to separate data values from other system items. 

The default system separator is the asterisk ("*"). Unless the asterisk will 

appear as a data value within a data base, the user need not change the system 

separator from the asterisk to some other symbol. 

The purpose of the system separator is to separate data; therefore it cannot 

appear within the data values. If the user has a need to use the asterisk 

within his data, he may change the system separator at any time to any one of 

the characters listed below: 

(1) - (8) t 
(2) [ (9) ~ 

(3) ] (10) < 
(4) ; (11) > 
(5) -+ (12) s. 
(6) v (13) ~ 

(7) /\ (14) ...... 

The system separator used by the user in the development of his data base is 

stored within the data base tables for system reference. 

2.1.2.2 Entry Terminator 

Purpose To change the entry terminator. 

Command ENTRY TERMINATOR IS <entry terminator word>: 



9 June 1970 4 RM-S2K-l.3 

Discussion The entry terminator word is used when a user wants to signal 

the end of all data for a logical entry or a data string. As such, it is 

employed within the LOADER and UPDATE modules. The terminator word may be 

any combination of alphanumeric or special characters, up to a maximum of 10. 

Whenever the entry terminator is used, it is always associated with a double 

system separator preceding it with a mandatory blank prior to the system 

separators. By default, the standard entry terminator word is END. Therefore, 

by default the standard entry terminator is as follows: 

**END 
!!l 

Much freedom in the selection of the terminator word is possible because the 

same word may occur frequently within data bases without causing ambiguity. 

2.1.3 User File-Name Commands 

SYSTEM 2000 utilizes four files over which the user can exhibit some direct 

control. 

2.1.3.1 Input Files to SYSTEM 2000 

All commands, requests and data that the user sends to SYSTEM 2000 are given 

to the system on one of two files. The DATA FILE contains only the loader 

data input string, and the COMMAND FILE contains all user commands and requests. 

Commands are available to establish the location where SYSTEM 2000 should go 

to find these input files. The COMMAi~D FILE, by default, is named INPUT, which 

identifies the card reader or remote input device as the source of user commands 

and requests. The DATA FILE must be placed on a file other than INPUT before 

calling the LOADER module. If an operating system control card has requested 

either file to be a certain magnetic tape prior to calling SYSTEM 2000, then the 

system will read commands or data from that tape. The commands available to 

signal a change in either of the input file names are: 

COMMAND FILE IS <file name>: 

DATA FILE IS <file name>: 



9 June 1970 5 RM-S2K-1.3 

where <file name> is any standard 7-character file name of up to 7 

characters, beginning with an alphabetic character, but may not be 

TAPExx, i.e., "TAPE3". To restore the COMMAND FILE dynamically back 

to the card reader during a job where many files are used, the 

user may give the following command: 

COMMAND FILE IS INPUT: 

File name changes are instantaneous upon command and remain in effect until 

another file name command for the file is encountered in the job. 

2.1.3.2 Output from SYSTEM 2000 

All output from SYSTEM 2000 including messages, comments and retrieval 

results are sent to the user on either the MESSAGE FILE or the REPORT FILE. 

The purpose, then, of the two output file connnands is to specify the physical 

location or device where SYSTEM 2000 should send its output. These two out-

put files, by default, are set to be the printer or remote output device for local 

batch or remote batch jobs. Messages and comments are returned to the user on 

the MESSAGE FILE; retrieval results are returned on the REPORT 

FILE. If both files are under the same default file or if the user sets both 

files to be under the same file name, then messages, echos of commands and 

retrieval results will appear in the order of their occurrence during 

processing. Either output file may be set to a file name associated with 

magnetic tape if a tape request card declaring the file is processed 

before calling SYSTEM 2000. Retrieval results are sent to the REPORT FILE 

under a standard SYSTEM 2000 format; if the REPORT FILE is specified (and 

saved as a tape, common, or permanent file externally by the operating 

system control cards), it can then be read by any external program. The 

commands available to signal a change in the output file names are: 

MESSAGE FILE IS <file name>: 

REPORT FILE IS <file name>: 

where file name conforms to a legal operating system file name, and is not 

TAPE <xx>. If during a job, the user wishes to dynamically restore either 



9 June 1970 6 

output file back to the printer, he may give the following 

connnands: 

MESSAGE FILE IS OUTPUT: 

REPORT FILE IS OUTPUT: 

RM-S2K-l.3 

Of ten it is convenient or necessary to produce a "clean" report containing 

no messages or echoes of retrieval requests; by simply setting the MESSAGE FILE 

to some "dummy" file name, the REPORT FILE only is displayed in pure fonn 

on the printer. Another desirable use of diverting output often 

happens when unloading a data base; in this case, the REPORT FILE can be 

diverted to a user-specified file and saved for further processing. 

SYSTEM 2000 is capable of interfacing with any I/O device such as an optical 

scanner, 252 display scope, etc., when these devices are available. 

2.1.4 Data Base Control Connnands 

The fourth and final type of system-wide command deals with data base access, 

control and manipulation. 

2.1.4.1 Password Command 

Purpose To establish legal access to SYSTEM 2000. 

Command USER,<Password>: 

Discussion This is the first SYSTEM 2000 card in the job deck structure 

for local or remote batch operations. All preceding cards in the job deck 

structure are operating system control cards. Users are assigned passwords, which 

change from time to time for security purposes. The system checks the 

legality of the password, and, if honored, allows access to the system. The 

password is an assigned 5-character word and maybe one of two types. Certain passwords 

permit the user to Define, Load, Retrieve and Update a data base; other passwords are 

Retrieval-only passwords. Assignment of these passwords is generally the responsi­

bility qf the computer center management. 



1 June 1970 7 RM-S2K-l.l 

2.1.4.2 Access Data Base 

Purpose To gain access to an established data base. 

Connnand There are two separate and distinct system-wide commands that 

have this connnon purpose. 

(1) DATA BASE NAME IS <data base name>: 

The user has created a data base, named it, probably stored it and now wants 

to access it with this connnand. The data base name is originally assigned 

by a DEFINE module specific connnand, NEW DATA BASE <data base name>:. The 

data base name is limited to 20 characters or less including blanks when 

it is originally assigned. Thereafter, it is referred to by that same name. 

When the user issues this connnand, the system first checks to see if the data 

base is available on the disk and then checks the user password to see if the 

user should be allowed access to this data base. If not, a diagnostic message 

will be output. If access is available and legal, the system automatically 

assigns the data base and the RETRIEVAL module to the job. 

(2) DATA BASE COPY IS <data base name>: 

This command does exactly what the previous connnand did, except, it accesses 

the ~ of the data base which was created by the system-wide command, 

CREATE COPY: (to be discussed). 

2.1.4.3 Save Data Base 

Purpose To copy the data base tables from the disk file to a tape file. 

Secondarily, to specify the Update File Tape visual reel.number. 

Commands SAVE DATA BASE ON <dbtvr#>:, or 

SAVE DATA BASE ON <dbtvr#>/<uftvr#>: 

where: (1) <dbtvr#> = data base tape visual reel number 

(2) <uf tvr#> = update file tape visual reel number (optional) 



I 

9 June 1970 8 RM-S2K-l.3 

Discussion When a data base has been created by use of the DEFINE and 

LOADER module, the data base exists on disk as eight files associated with a 

ninth file, called the working update file (originally empty). The user can 

save the data base he is currently accessing by issuing this command, issued 

at any time in the life of the data base. The user must specify the data 

base tape visual reel number <dbtvr#>, but the specification of the update 

file tape visual reel number <uftvr#> is optional. If the <uftvr#> is not 

specified, the working update file is automatically suspended. (See 

Section 6.3 for a more detailed discussion of the use of the update 

file.) 

2.1.4.4 Load Data Base 

Purpose To load a data base from tape to disk. 

Commands LOAD <data base name> FROM <dbtvr#>:, or 

LOAD <data base name> FROM <dbtvr#>/<uftvr#>: 

where: (1) <dbtvr#> = data base tape visual reel number 

(2) <uf tvr#> = update file tape visual reel number {optional) 

Discussion The logic of this command follows directly from the logic of 

the Save Data Base command. Before a Load Data Base command is legal or 

logical, the data base must have been saved. This command must specify the 

<dbtvr#>, the same reel number specified when the associated Save Data Base 

command was issued. If the Save Data Base command indicated the <uftvr#>, 

the Load command need not repeat it. If, however, the Save command did not 

specify the <uftvr#>, then the Load command can include it as an optional 

item if the user wishes to record update segments on the working update 

file. If neither command specifies the Update File Tape Visual Reel Number, 

then the working update file is automatically in suspend mode. 



9 June 1970 9 RM-S2K-l.3 

2.1.4.5 Create Copy 

Purpose To copy the nine data base tables of the accessed data base to 

nine new tables, creating two identical data bases both residing on disk. 

Command CREATE COPY : 

Discussion This command assumes the user has previously accessed a data 

base. The user may wish to create a copy of the data base which can be 

manipulated or tested so that such manipulation will not disturb normal use 

of the standard data base. The original data base is known as the standard 

data base and the copy is known as the test data base. The test data base 

concept lends itself to controlled update processing. As soon as the command 

has been processed and the test data base has been created, the user is 

attached to the test rather than the standard data base. 

If the user submits a subsequent job, the test data base may be accessed by 

the command: 

DATA BASE COPY IS <data base name>: 

If the user desires to replace the standard copy with the test copy, the two 

following commands are given: 

DATA BASE NAME IS <data base name>: 

RELEASE: 

Disk storage allocated to the standard data base is released and the test data 

base automatically becomes the standard data base. 

2.1.4.6 Release 

Purpose To purge the nine data base tables of the accessed data base 

residing on disk. 

Command RELEASE 

Discussion If the user wishes for whatever reason to release the data base 

tables from the disk, he merely needs to access the appropriate data 



1 June 1970 10 

base by one of two commands: 

DATA BASE NAME IS <data base name>: , or 

DATA BASE COPY IS <data base name>: 

RM-S2K-1.l 

and issue the Release command. If he would like to keep an archival copy 

of the released data base, he must issue a Save Data Base command before 

giving the Release command. 

2.1. 4. 7 Erase 

Purpose To purge the nine data base tables of the accessed data base 

residing on disk (RELEASE), and remove· from the system all reference to the 

name of the standard or test data base which was accessed. 

Command ERASE: 

Discussion If the user wishes to perform a RELEASE as well as erase the 

data base name from the system, this command should be performed. 

2.2 SYSTEM-WIDE DEFAULT SETTINGS 

The system-wide default settings for SYSTEM 2000 are listed here. Each 

functional module has additional default settings which are introduced 

within the appropriate module discussion. 

1. The standard separator symbol is the asterisk, "*." 

2. The separator symbol will be the standard separator, ("*"), or the 

symbol last associated with the data base unless the SEPARATOR IS 

<separator symbol>: command is given. The current separator symbol 

is saved with the data base when a SAVE DATA BASE command is given. 

3. The standard entry terminator word is END. 

4. The entry terminator will be the standard entry terminator or the 

entry terminator last associated with the data base unless the 



9 June 1970 11 RM-S2K-l.3 

ENTRY TERMINATOR IS <entry terminator>: command is given. The 

current entry terminator is saved with the data base when a SAVE 

DATA BASE command is given. 

5. The COMMAND FILE (containing all SYSTEM 2000 requests and commands) 

is initialized to INPUT which means cards for local or remote batch. 

6. The DATA FILE (containing the loader input string) is initialized 

to INPUT, meaning cards or keyboard input and must always be set by 

the user to the name of the file containing the loader input string 

when using the LOADER module. (See LOADER module chapter.) 

7. The following is the set 6f commands which may legally follow 

the USER command: 

DATA BASE NAME IS <data base name> 

DATA BASE COPY IS <data base name> 

LOAD <data base name> FROM <dbtur#> 

LOAD <data base name> FROM <dbtur#>/<uftvr#> 

DEFINE: 

The first four commands are used to establish access to an 

already-existing data base. The fifth connnand may be used 

to permit the definition of a new data base to be specified 

(See Section 3.4.1.2). 

8. The user password used during the creation of a new data base is 

identified within the system as the only password authorized to 

access the data base. That password may be used to assign other 

valid passwords for the accessed data base, but only the creating 

password may use other than the RETRIEVAL module with that data 

base. The new valid passwords assigned by the creating password 

may only operate in the RETRIEVAL module. 

9. A test data base, formed by the CREATE COPY: command, can only be 

created by the password which created the original or standard 

data base. 



9 June 1970 12 RM-S2K-1. 3 

I 
• 
I 

10. If an existing data base is loaded with a LOAD <data base> connnand, 

that data base name is not associated with the password unless the 

PATA BASE NAME IS <data base name> command has been given. 

11. 'lhe RETRIEVAL module is automatically available to the user after 

loading or naming a data base. 

12. 'lhe MESSAGE FILE {containing error messages and echoes of user 

commands) is initiated to the OUTPUT FILE which is the on-line 

13. 

14. 

15. 

printer or remote output device for local batch or remote batch 

operations. 

The REPORT FILE (containing retrieval output and LOADER reports) 

is initiated to the OUTPUT FILE which is the on-line printer for 

local batch or remote batch operations. 

The user's password must be correctly specified on every job. 

'lhe use of SAME across the RETRIEVAL and UPDATE modules: 

a. SAME implies use of the results of the last 
WHERE clause containing Boolean conditions. 

b. It does not mean process the previous WHERE 
clause again. 

Therefore, if the following series of requests are issued, then the 

expected results should be: 

PRINT Cl WHERE Cl EQ JONES: 

l* JONES 

UPDATE: 

CHANGE Cl EQ SMITH **END WHERE SAME: 

RETRIEVAL: 

PRINT Cl WHERE SAME: 

l* SMITH 

(If the WHERE clause were reprocessed each time SAME occurred, 

then in the above example, the last result would be "No Output 

Found.") 



1 June 1970 13 RM-S2K-1.l 

3.0 DEFINE MODULE 

3.1 INTRODUCTION 

The DEFINE module has been designed to assist in solving the first direct 

question facing the user of SYSTEM 2000: How will I organize or structure my 

data which I wish to load into my data base(s) and later access in retrievals 

and updating? Learning how to optimize all of the DEFINE module powers within 

the particular environments in which it is used will take some study, but 

learning the mechanics of actually doing it is quite a simple task. The 

first and really the only step required is to define the data base. 

What is a data base? One definition which may help is as follows: A 

data base is an organized collection of data about something. In SYSTEM 2000, 

we solve the problem by letting the user define what that organization will 

be. Since different types of data suggest different organizations, SYSTEM 

2000 provides the user the flexibility to organize or structure his own 

data base. 

3.2 DATA BASE STRUCTURE 

The data base is structured by the user to solve the user's problems and to 

answer his questions. He defines his own data base using the tools of the 

DEFINE module. He does this by choosing appropriate words which will stand 

for the different types of data which he will store. The user will probably 

be storing numerous quantities of what we call logical entries. A logical 

entry is all the information about one of the major items being stored. 

Examples will help at this point. If a school is developing a data base 

of student records, a complete student record about one student would be a 

logical entry. If a government housing development has a data base, a 

housing project with all of the tenants might be the logical entry. If 

the courts are building a data base to assist their court calendar scheduling, 

an individual docket within the court system might be the best logical entry. 

A data base developed to assist in portfolio management might solve the problem 

of designing the logical entry to be about ORGANIZATIONS (large investment 



I 

9 June 1970 14 RM-S2K-l.3 

firms), which have several PORTFOLIOS, which have many STOCKS. In that 

case, a logical entry would be an ORGANIZATION. 

A logical entry is what the name suggests, an entry of data logically 

related to solve the user's problem. A data base, then, consists of the total 

collection of all logical entries. Data bases may have many logical entries 

or only a few. It is strictly up to the user. 

A graphic illustration of a portfolio logical entry would look something 

like Figure 1. Within this simplified graphic of a logical entry or data 

tree, the levels of information, i.e., the hierarchy of the user's source 

data is shown. Level zero is at the top, level one is next and so on such 

that our illustration demonstrates four levels. SYSTEM 2000 is so designed 

that it can accept and associate data nested hierarchically to 64 levels 

with numerous categories at each level. 

These many levels of data and the detailed classification of the data within 

levels is done by the user through the data base definition, which consists 

of an orderly arrangement of component names or labels. These labels indicate 

the type of data which the user will be loading into the data base; they are 

not the data values, but, instead, become identification tags which the user 

employs in accessing his data. But, before we get too involved, let us discuss 

the different components available to the user. 

3.3 DATA BASE COMPONENTS 

There are four types of components within SYSTEM 2000: elements, repeating 

groups, user-defined functions, and strings. 

3.3.1 Elements 

Elements are components which permit the naming and grouping of data stored in 

the data base. We will be developing in this chapter the definition of a 

portfolio data base. 



Trans­
action 

1 

PORTFOLIO I 

STOCK 
A 

DATA 

Trans­
action 

2 

DATA 

Trans­
action 

3 

,----, ~ 
ORGANIZATION 

A 

ORGANIZATION I ~ 
----------~-~~------; -- -~ 

STOCK 
B 

DATA 

DATA 

STOCK 
c 

DATA 

I I 

PORTFOLIO II 

DATA 

I 
STOCK STOCK 

D E 

DATA DATA 

i 
I 

I - -'. I -- ,- 1---1 
Trans­
action 

4 
I I 
~---J 

FIGURE 1 

Logical Entry Graphic Illustration 

I 

I I I I 

I I __ I ----· 

B P 

DATA I : 
- - - \0 

I '\ -..... 
I o 

I \.. 
_I \ 

-1 t-

I 

- - -' 

~ 
ln 

\ 
\ 
I ---, 

l 



1 June 1970 16 RM-S2K-l.l 

One of the types of data we will be storing in this data base are stocks 

held in the portfolio. The names of the stocks held will be an element, 

which will be called NAME OF STOCK. As you can see, this component will 

undoubtedly contain many values, but we identify it by one element name, 

and a user-assigned number which appears before the element name. Elements 

can take on several different types of values. They are: 

1. Name - Any alphanumeric data with all leading, trailing and 

extraneous (more than one) embedded blanks discarded when 

the data is stored. (255 characters maximum) 

2. Text - Any alphanumeric data with all blanks being retained in the 

data. Text is the element type selected when storing reports or 

graphics where control of blank storage is imperative to maintain 

the original appearance of the material. (255 characters maximum) 

3. Date - MM/DD/YYYY or MM/DD/YY, standing for month, day and year. If 

only two numbers are used for the year, the system assumes 1900, 

until the century changes. Dates before the advent of the Gregorian 

calendar, October 15, 1582, cannot be stored as type "date." Each 

date in the data base is stored as the number of days elapsed since 

10/15/1582 (day zero). 

4. Decimal Number1- A positive or negative string of numbers with a 

decimal point. No decimal number may exceed 15 characters, 

including the sign and the decimal point. 

5. Integer Number1- Any string of numerals (0-9) up to 15 

characters, including the sign. 

6. Exponential Number1- The form for this element type is ± nn.nnE±mm 

where both n and mare any integers (0-9). The "E" is used to 

denote mm to be the base 10 exponent. Again, 15 characters are 

allowed including the sign. 

1when the sign is omitted, it is assumed to be positive. 



I 

I 

9 June 1970 17 

Actual examples of defined elements are as follows: 

l* ORGANIZATION (NAME) 
6* ZIP CODE (INTEGER NUMBER) 
7* CURRENT DATE (DATE) 

RM-S2K-l.3 

The preceding number in each case is a user-defined number which is called 

the component number. Therefore, the first element may be referred to by 

ORGANIZATION or Cl. The asterisk is the default system separator. 

All component names, which are always user-defined, may contain 1 to 50 

characters. The user may wish to avoid lengthy component names, as they may 

become cumbersome during retrieval and update operations. Also, the follow­

ing list of words and symbols cannot be used in any component name: 

1. Logical Operators (AND,NOT,OR) 

2. Relational Operators (EQ,NE,LT,LE,GT,GE) 

3. AT, SAME 

4. SPAN, SPANS, SPANNING 

5. FAIL, FAILS, FAILING 

6. EXIST, EXISTS, EXISTING 

7. HAS, HAVE, HAVING 

8. Connectors (WHERE, BEFORE, AFTER) 

9. Symbols (conuna, colon, system separator, parentheses) 

Each of the above words or symbols occur somewhere within the system conunands 

syntax. If these words or symbols were allowed within a component name and 

that component ~were used within a RETRIEVAL or UPDATE command, the system 

could not distinguish between these words and would assume that they were 

part of a system command, which would result in an error diagnostic message. 

The parenthetical expression following the element name designates the type 

of data which will be given to the element as previously discussed. It is 

within this parenthetical expression that SYSTEM 2000 keeps track of the 

relationships of elements to each other and between the elements and the 

entire logical entry. This will be explained in the next section dealing 

with repeating groups. 



1 June 1970 18 RM-S2K-l.1 

In summary, the general form of an element definition, or for any component 

for that matter, is as follows: 

0 component number (numbers from 1 to 9999) 

o system separator 

o component name 

0 component type description (in parentheses) 

3.3.2 Repeating Groups 

The second component type is the repeating group (sometimes abbreviated 

RG1) which associates elements or other lower level repeating groups, and 

cannot take on a data value. This is the component which allows elements to 

take on multiple values. In the portfolio data base mentioned earlier, we 

indicated the element, NAME OF STOCK. Each stock in a portfolio is going to 

have several buy and sell transactions. In order to keep these organized, 

we will assign a repeating group component the name of TRANSACTIONS and assign 

several elements to be in that TRANSACTIONS repeating group, namely TRANSACTION 

TYPE (which will take on data values like BUY and SELL), DATE (which will be 

the date of the buy or sell), SHARES (which will be the actual number of 

shares bought or sold) and the PRICE (which will be the buy or sell price). 

Like elements, repeating groups are assigned identification numbers as are 

all components. 

Actual examples of defined repeating groups combined with the defined elements 

shown previously are as follows: 

l* ORGANIZATION (NAME) 
6* ZIP CODE (INTEGER NUMBER) 
7* CURRENT DATE (DATE) 
8* PORTFOLIOS (RG) 

9* PORTFOLIO NAME (NAME IN 8) 
11* MANAGER (NAME IN 8) 
12* STOCKS (RG IN 8) 

13* NAME OF STOCK (NAME IN 12) 

1If REPEATING GROUP is used within a SYSTEM 2000 command, the abbreviation 
RG may always be used in place of the complete term. 



9 June 1970 19 RM-S2K-1. 3 

In the examples given, repeating groups have been defined as components 8 

and 12. Also note the numbers now appearing in the parenthetical expressions. 

Components which are located at level zero in the hierarchical structure of 

SYSTEM 2000 have no linkage numbers because they reside at the top. In 

addition, those elements which reside at level zero are said to be in an 

assumed repeating group, called ENTRY or C0 (zero). All descendants from 

the level zero repeating group require numbers in the right-hand parenthetical 

statement to show their related linkage. In this example, components 9, 11 

and 12 are in repeating group C8, PORTFOLIOS. Additionally, component 13 is 

an element within the repeating group Cl2, STOCKS. Elements and repeating 

groups below level zero are always linked with or tied to repeating groups. 

(B Components may be declared "in" any repeating group at any point in the definition as 

long as the "parent repeating group" has previously been declared. Indentation 

by level is controlled by the system. 

3.3.3 User-Defined Functions 

The third type of component is the user-defined function. Functions, defined 

by the user, provide problem solving capabilities. A function is any arith­

metic e~pression consisting of element numbers, element names and constants 

separated by arithmetic operators and parentheses. The function may be used 

only during retrieval operations and permits the result of the defined 

computation to be output to the user. Since such computation takes place 

at retrieval time, it is not necessary to store the computed functional 

value in the data base as an element. 

The allowable arithmetic operators in their indicated order of operation 

associated with the symbol used in the definition, are as follows: 

ORDER 

First 

Second 

Third 

SYMBOL 

t 

* 
I 

+ 

OPERATION 

exponentiation (e.g., C3t2 = c3
2

) 

multiplication (e.g., Cl*C2 =Cl x C2) 

division (e.g., C4/C20 = C4) 
C20 

addition 

subtraction 



1 Jtme 1970 20 RM-S2K-1.1 

All of the preceding operations may be defined within nested parenthetical 

expressions as necessary. Nested operations are processed first, before any 

check is made of the normal order of processing. 

Ftmctions are described by the user in his data base definition, and apply 

only to that data base. The general form of a function definition is identical 

to the format for other component definitions, i.e., component (function) num­

ber, system separator, component (function) name, (maximum of 50 characters) 

and type description. An example function description is: 

where 

30* DOLLAR AMOUNT (DECIMAL FUNCTION (C28 * C29 / 100)) 

30 is the user defined function number, 

* is the system separator, 

DOLLAR A}K)UNT is the user defined function name, 

DECIMAL FUNcrION is the component type, and 

(C28 * C29 I 100) is the arithmetic expression, with 100 
being a defined constant. C28 and C29 are component 
numbers standing for component names. Either compo­
nent names or numbers may be used. 

The component types which can be used in defining a function are an INTEGER, 

DECIMAL, or EXPONENTIAL NUMBER, or a DATE. The referenced components (e.g., 

C28 and C29) must exist in the definition before they can be referenced. The 

type of ftmction (INTEGER, etc.) determines the output format of the function 

value. If the numeric function type is not declared, DECIMAL is assumed. Out­

put formats for the three numeric types of functions are: 

DECIMAL FUNCTION 

INTEGER FUNCTION 

EXPONENTIAL FUNCTION 

xxxxxxxxxx.xxxxxxxxxx (10 significant 
digits plus 
decimal point) 

xxxxxxxxxxxxxxx (15 digits max) 

x.xxxxxxxxx E ± nn (10 digits max) 

Functions are numbered independently of other components; therefore, a function 

may be assigned the same nuni>er as other components within the data base defi­

nition. To distinguish between other components, the functions are referred to 

by their F number rather than their C number. Therefore, function number 30 

would be referred to as F30, and not C30. They, of course, may be referred to 



9 June 1970 21 RM-S2K-l.3 

by name also. When describing a function, no association with a repeating 

group is explicitly defined. In other words, all functions are defined as 

if they were level 0 components. In the retrieval output, however, functions 

have an implied level and RG association. The implied level and RG associa­

tion of a function is dictated by the deepest level element appearing in the 

function definition. For example, if a function contains a level 0 and a 

level 2 element, the function will be evaluated for every occurrence of the 

level 2 element and thus will be output as a level 2 function associated with 

the RG parent of the level 2 element. 

3.3.4 Strings 

Ill A string is a user defined component which can be assigned to identify a 

long string of components used frequently in the RETRIEVAL module; a string 

may also contain several complete connnands which are to be used in sequence 

during retrievals. This is particularly useful when the user has a repetitive 

need for a lengthy retrieval and would like to refer to this lengthy retrieval 

by some shortened code word. 

The format for the strings definition is similar to the other components, as 

indicated below: 

0 component (string) number (can be a duplicate of any other 
component number, because when referred 
to, it is used with an S prefix, i.e., S30.) 

o system separator 

o component (string) name (maximum of 50 characters) 

o component type (STRING (maximum of 700 characters)) 

An example of the use of strings would be the case of the user who needed to 

frequently retrieve information using the following connnand: 

PRINT Cl, C2, C3, C4, ClO, C25, C26, C27, F30 
WHERE PORTFOLIO NAME EQ INCOME: 

We are going to define this retrieval statement in a string and assign the code 

word REPORT A, as follows: 

30* REPORT A (STRING (PRINT Cl,C2,C3,C4,C10,C25,C27,F30 WHERE 
PORTFOLIO NAME EQ INCOME:)): 



I 

9 June 1970 22 RM-S2K-l.3 

Later, when using the string in the RETRIEVAL module, the code word would be 

used between system separators, as in the following: 

*REPORT A* 

which would be interpreted by the system the same as submitting the long 

retrieval statement. 

3. 4 DATA BASE CONSTRUCTION 

This section will identify those procedures for the actual construction of the 

data base. We will draw heavily upon the discussions already presented con­

cerning the structure and components of the data base. 

3.4.1 Basic DEFINE Procedures 

After the user has worked out on paper an optimum data base definition, he 

is ready to load his definition into his data base using the DEFINE module. 

This activity will m::>st often be done on a high speed terminal with a card 

reader, so that commands and component statements will be on cards. As a 

general rule, all SYSTEM 2000 connnands and statements are concluded by a 

colon(:). The system is able to interpret this as an end of statement. 

Therefore, it is possible to put one or more commands or statements on 

one card. 

The DEFINE module has a complete set of user diagnostics both for error 

checking and progress notification. It usually takes several job submissions 

before the user arrives at a finalized definition that is error free. There 

are two main types of errors, neither of which are serious, which usually 

require multiple job submissions: structural errors and card errors. Struc­

tural errors are of several types such as duplicate component names and/or 

numbers, inappropriate repeating group indicators, character length of data 

base name, etc. Card errors include keyptmch errors, incorrect card deck 

arrangement, etc. With the complete SYSTEM 2000 set of diagnostics, the user 

is told exactly what his problem is and in most cases it is cleared up by a 

simple card change. During these re-submitted jobs, the user can make minor 

or major revisions to his definition with little effort. Once the user has 

developed an error free definition, he is ready to turn his attention to load­

ing his data by use of the LOADER module after using the MAP: c01mnand. 



9 June 1970 23 RM-S2K-l.3 

3.4.1.1 Password and Module Command 

The first two required SYSTEM 2000 connnands are system-wide connnands. They 

are used to first gain access to the system and secondly, to call the DEFINE 

module. For example purposes, we will assign the user password as ABCDE. 

USER,ABCDE: 
DEFINE: 

3.4.1.2 Declare Data Base Name 

The third connnand is the one which names the user's data base, NEW DATA BASE 

<data base name>:. Any data base name is limited to 20 characters or less 

including blanks. In the example definition we will be building, we are 

going to name the new data base, PORTFOLIO, so the first three commands would 

be: 

USER, ABCDE: 
DEFINE: 
NEW DATA BASE PORTFOLIO: 

The results of these corrnnands, after the data base creation process is com­

plete, is to establish ABCDE as the authorized, and only, password for the 

PORTFOLIO data base. If, however, the new data base name duplicates any 

other existing data base name, the error message returned would be - DATA BASE 

NAME ALREADY USED - <data base name> and the remainder of the DEFINE job would 

be aborted. (This is an example of a FATAL type error.) 

3.4.1.3 Component Declarations 

As we learned in section 3.3, there are four types of components. Any definition 

would contain the first two discussed, elements and repeating groups, but user­

defined functions and strings are both used as required and definitions may or 

may not contain them. As we will learn, components may be added to an existing 

definition, so functions, and, in particular, strings are frequently added to a 

definition after a specific need is identified. The maximum number of components 

which may be declared in a data base is 127. 



1 June 1970 24 RM-S2K-1.1 

The PORTFOLIO data base definition, which is given in Figure 2, is the example 

data base definition which will be used throughout most of this document. Two 

additional data base definitions are given in Figures 3 and 4 as comparative 

samples of different types of data bases. All three are used throughout this 

document, with the later two being used in the RETRIEVAL module chapter. As 

previously indicated, each of these commands and/or component declarations 

would probably be submitted on a separate card. The previously presented com­

mands are again listed for the sake of continuity. 

3.4.1.4 Mapping the Definition 

The MAP: connnand need not and should not be used until an error free definition 

is achieved. An error free definition is achieved by submitting a job deck as 

just defined through the DEFINE module. This module will provide all of the 

required tests of acceptability and issue appropriate error diagnostics. When 

no more errors are detected by the module, the error free definition is displayed 

at the conclusion of the job. The u5er is now ready to load data into the data 

base using the LOADER module. 

The MAP: command is now entered, following the component declarations, and before 

the LOADER module is called; which results in the following: 

(1) The internal SYSTEM 2000 definition tables are created. 

(2) The data base name is set. 

(3) The definition version number is set to one (this is a 

sequential number indicating the number of times the 

definition has been modified), 

(4) The data version number is set to ~ (because no data has been 

loaded at this time), and 

(5) The system considers the data base to exist for the life of the job. 

At this point in time, the user has accomplished all of the production activities 

required of the DEFINE module and is now ready to call the LOADER module to load 

data into the newly defined data base. The DEFINE module has set up the data base 



1 June 1970 25 

USER,ABCDE: 
DEFINE: 
NEW DATA BASE PORTFOLIO: 

l* ORGANIZATION (NAME): 
2* COGNIZANT OFFICIAL (NAME): 
3* ADDRESS (NAME): 
4* CITY (NAME): 
5* STATE (NAME): 
6* ZIP CODE (INTEGER NUMBER) : 
7* CURRENT DATE (DATE): 
8* PORTFOLIOS (RG): 

9 * PORTFOLIO NAME (NAME IN 8) : 
10* PORTFOLIO CODE (NAME IN 8): 
11* MANAGER (NAME IN 8): 
12* STOCKS (RG IN 8) : 

13* NAME OF STOCK (NAME IN 12): 
14* TICKER SYMBOL (NAME IN 12): 
15* EXCHANGE (NAME IN 12): 
16* INDUSTRY NAME (NAME IN 12): 
17* INDUSTRY CODE (INTEGER NUMBER IN 12): 
18* SHARES OUTSTANDING (INTEGER NUMBER IN 12) : 
19* LATEST EARNINGS (NAME IN 12): 
20* LATEST EARNINGS DATE (DATE IN 12): 
21* ESTIMATED EARNINGS (NAME IN 12): 
22* ESTIMATED EARNINGS DATE (DATE IN 12): 
23* DIVIDEND (DECIMAL NUMBER IN 12): 
24* CURRENT PRICE (DECIMAL NUMBER IN 12) : 
25* TRANSACTIONS (RG IN 12): 

26* TRANSACTION TYPE (NAME IN 25): 
27* DATE (DATE IN 25): 
28* SHARES (INTEGER NUMBER IN 25) : 
29* PRICE (DECIMAL NUMBER IN 25): 

30* BONDS (RG IN 8) : 
31* NAME OF ISSUER (NAME IN 30): 
32* ASKED PRICE (DECIMAL NUMBER IN 30): 
33* PURCHASE PRICE (DECIMAL NUMBER IN 30) : 
34* MATURITY DATE (DATE IN 30): 
35* PURCHASE DATE (DATE IN 30) : 
36* FACE AMOUNT (DECIMAL NUMBER IN 30) : 

MAP: 

FIGURE 2 

Sample Portfolio Data Base Definition 

RM-S2K-1.1 



1 June 1970 26 

USER,ABCDE: 
DEFINE: 
NEW DATA BASE HOUSING AUTHORITY: 

1 * PROJECT NAME (NAME) : 
2* PROJECT NUMBER (NAME) : 
3* PROJECT TYPE (NAME) : 
4* PROJECT ADDRESS (NAME): 
5* HOUSING MANAGER NAME (NAME): 
6* HOUSING MANAGER PHONE (NAME): 
7* ACCOUNTS (RG WITH NULLS): 

8* ACCOUNT NUMBER (INTEGER NUMBER IN 7): 
9 * TENANT NAME (NAME IN 7 WITH MANY FUTURE ADDITIONS) : 

10* DATE ADMITTED (DATE IN 7): 
11* FAMILY SIZE (INTEGER NUMBER IN 7): 
12* RACE (NAME IN 7) : 
13* BIRTH COUNTRY (NAME IN 7): 
14* BASIS FOR SELECTION (RG IN 7) : 

15* BASIS (NAME IN 14): 
16* TOTAL ASSETS (NAME IN 7) : 
17* SOURCES OF INCOME (RG IN 7) : 

18* SOURCES (NAME IN 17): 
19* EMPLOYMENT OF PRINCIPAL WAGE EARNER (RG IN 7): 

20* OCCUPATION (NAME IN 19): 
21* INDUSTRY (NAME IN 19): 

22* INITIAL NET INCOME FOR RENT (DECIMAL NUMBER IN 7): 
23* PREVIOUS ADDRESS (NAME IN 7 WITH 45 PERCENT PADDING) : 
24* PREVIOUS BOROUGH (NAME IN 7): 
25* PREVIOUS PROJECT (NAME IN 7) : 
26* PREVIOUS HOUSING OCCUPANCY (NAME IN 7): 
27* SIZE OF PREVIOUS APARTMENT (INTEGER NUMBER IN 7): 
28* GROSS MONTHLY RENT FOR APARTMENT (DECIMAL NUMBER IN 7) : 
29* PRIOR PERCENTAGE OF INCOME FOR RENT (NAME IN 7): 
30* LENGTH RESIDENCE LAST APARTMENT (NAME IN 7) : 
31* CURRENT DATA REPORTS (RG IN 7 WITH NULLS) : 

32* BASIS FOR REPORT (NAME IN 31) : 
33* REPORT DATE (DATE IN 31): 
34* APARTMENT SIZE (INTEGER NUMBER IN 31): 
35* GROSS ANTICIPATED INCOME (DECIMAL NUMBER IN 31) : 
36* NET INCOME FOR RENT (DECIMAL NUMBER IN 31) : 
37* MONTHLY GROSS RENT (DECIMAL NUMBER IN 31): 
38* PERCENTAGE OF INCOME FOR RENT (INTEGER NUMBER IN 31): 
39* RENT ADJUSTMENT MADE (NAME IN 31): 
40* CLASSIFICATION OF NEW RENT (NAME IN 31): 
41* ELIGIBILITY FOR CONTINUED OCCUPANCY {NAME IN 31): 
42* SIZE OF FAMILY (INTEGER NUMBER IN 31): 
43* FAMILY COMPOSITION (NAME IN 31): 
44 * NUMBER OF CHILDREN UNDER 21 (INTEGER NUMBER IN 31) : 
45* PERSONS CURRENTLY EMPLOYED (INTEGER NUMBER IN 31): 
46* EMPLOYMENT OF WIFE OR MOTHER (NAME IN 31): 
4 7* MINORS CURRENTLY EMPLOYED (INTEGER NUMBER IN 31): 

FIGURE 3 
Sample Housing Authority Definition 

(continued) 

RM-S2K-1.l 



1 June 1970 27 

48~' SOURCES OF CURRENT INCOME (RG IN 31) : 
49* CURRENT SOURCES (NAME IN 48): 

50* AGE OF HEAD OF HOUSEHOLD (INTEGER NUMBER IN 31): 
51* SEX OF HEAD OF HOUSEHOLD (NAME IN 31): 
52* AGE OF SPOUSE (INTEGER NUMBER IN 31): 
53* MILITARY SERVICE RECORD (RG IN 31): 

54* MILITARY RECORD (N.AME IN 53) : 
55* DATES OF SERVICE (NAME IN 53) : 

RM-S2K-1.1 

56* SERVICE-CONNECTED DISAB+DEATH COMP (DECIMAL NUMBER IN 31): 
57* CHARGES (RG IN 7): 

58* DATE OF CHARGE (DATE IN 57): 
59* NAME OF CHARGE (NAME IN 57 WITH FEW FUTURE ADDITIONS): 
60* DESCRIPTION OF CHARGE (NAME IN 57 WITH FEW FUTURE ADDITIONS): 
61* AMOUNT OF CHARGE (DECIMAL NUMBER IN 57): 

62* PAYMENT RECORD (RG IN 7): 
63* PAYMENT DATE (DATE IN 62): 
64* PAYMENT AMOUNT (DECIMAL NUMBER IN 62): 
65* ITEMIZED STATEMENT (RG IN 62): 

66* ITEM (NAME IN 65): 
67* ITEM AMJUNT (DECIMAL NUMBER IN 62): 

68* TERMINATION REASON (NAME IN 7) : 
69* DATE TERMINATED (DATE IN 7) : 
70* TRANSFER REASON (NAME IN 7): 
71* DATE TRANSFERRED (DATE IN 7) : 
72* BALANCE DUE (DECIMAL NUMBER IN 7): 

73* ARREARS (FUNCTION(C37+C6l+C72-C64)): 

PAD FOR SOME VALUE DUPLICATIONS: 

MAP: 

FIGURE 3 

Sample Housing Authority Definition 

(continued from previous page) 



1 June 1970 

USER, ABCDE: 
DEFINE: 
NEW DATA BASE HEALTH PLANNING: 

1* HEALTH PLANNING AREA (NAME): 
2* C.ODNTIES (RG) : 

3* COUNTY (NAME IN 2): 
4* CITIES (RG IN 2) : 

5* CITY (NAME IN 4) : 
6* BIRTHS (RG IN 4 WITH NULLS): 

28 RM-S2K-l.1 

8* DATE OF BIRTH (DATE IN 6 WITH SOME FURTHER ADDITIONS) : 
9* SEX OF BIRTH (NAME IN 6): 

48* HOSPITAL NAME (NAME IN 6): 
10* THIS BIRTH (NAME IN 6): 
11* ORDER OF BIRTH (NAME IN 6) : 
12* RACE OF BIRTH (NAME IN 6): 
14 * FATHERS RACE (NAME IN 6) : 
15* FATHERS AGE (INTEGER NUMBER IN 6): 
16* FATHERS BIRTHPLACE (NAME IN 6) : 
18* MOTHERS RACE (NAME IN 6) : 
19 * MOTHERS AGE (INTEGER NUMBER IN 6) : 
20* MOTHERS BIRTHPLACE (NAME IN 6): 
21* OTHER LIVING CHILDREN (INTEGER NUMBER IN 6): 
22* CHILDREN NOW DEAD (INTEGER NUMBER IN 6): 
23* CHILDREN BORN DEAD (INTEGER NUMBER IN 6): 
24* ATTENDANT AT BIRTH (NAME IN 6): 
25* LEGITIMATE (NAME IN 6): 
26* LENGTH OF PREGNANCY (INTEGER NUMBER IN 6) : 
27* WEIGHT AT BIRTH (DECIMAL NUMBER IN 6): 
28* CONGENITAL OR OTHER ABNORMALITY (NAME IN 6) : 
29* MONTH OF PRENATAL CARE (INTEGER NUMBER IN 6) : 

30* DEATHS (RG IN 4 WITH NULLS): 
32* DATE OF DEATH (DATE IN 30 WITH SOME FUTURE ADDITIONS): 
33* SEX OF DECEASED (NAME IN 30) : 
34* RACE OF DECEASED (NAME IN 30) : 
35* MARITAL STATUS (NAME IN 30): 
37* AGE OF DECEASED (INTEGER NUMBER IN 30): 
39* BIRTHPLACE (NAME IN 30): 
40* CITIZEN (NAME IN 30): 
45* PRIME CAUSE OF DEATH (NAME IN 30) : 
46* AUTOPSY PERFORMED (NAME IN 30) : 
47* UNNATURAL DEATH (NAME IN 30): 

205* VITAL STAT REPORT (STRING(PRINT COUNT BIRTHS, COUNT DEATHS WHERE HEALTH 
PLANNING AREA EQ)): 

MAP: 

FIGURE 4 

Sample Health Planning Definition 



1 June 1970 29 RM-S2K-1.1 

structure as defined by the user. 

This need not be the final use of the DEFINE module. As we will see, defini­

tions can be later modified. Also, if the user would like to see his defini­

tion, he can call the RETRIEVAL module, following a mapped definition, and give 

the DESCRIBE command (discussed in the RETRIEVAL module chapter). 

3.4.2 Padding Options 

The user has the capability within SYSTEM 2000 while defining his data base of 

preparing for future data storage characteristics which might affect his retrieval 

times. Padding options allow the user to reserve space in the internal tables 

for consecutive blocks of pointers for all data values. 

If the user is going to have a data base containing less than 7000 logical entries, 

he need not concern himself with any of the considerations discussed within this 

section. Padding options should only be used when dealing with very large data 

bases and large, fairly frequent data modifications or updates are anticipated. 

If these options have not been exercised, and massive updates have taken place, 

creating excessively slow response time during retrievals, the user has the 

ability to improve his response time by exercising his previous options and per­

forming a simple RELOAD operation (see RETRIEVAL module) . These operations would 

compact existing data and reserve space for future update operations. 

Padding options can be divided into three main types, each of which are discussed 

in the following sections. 

3.4.2.1 Null O~tions - RepeatinE Groups 

As we have seen, repeating groups are usually made up of elements which contain 

values. When repeating groups are defined with a null option, it causes the 

LOADER module to allow a complete and consecutive block of pointers for all data 

values in the associated repeating group, whether or not data values were enter­

ed for all or only a few of the elements. Later updates would store these values 

in their reserved location, associated with their appropriate data set. If the 



1 June 19 70 30 RM-S2K-l.l 

user would ignore this option, data values entered at different update sessions 

would be chained together over the table partitions, widely scattered and the 

overall effect will probably cause an increase in retrieval time when the user 

employs the RETRIEVAL module. This can be averted by assigning the null option 

to those repeating groups which might be most affected. Null options only apply 

to repeating groups (remember that level zero elements are considered to be mem­

bers of the level zero repeating group). 

Null options may be declared during the initial definition phase or sometime 

later. Those actions which create the null options are as follows: 

(1) Level Zero Repeating Group 

Before the MAP: command, insert the following: 

ADD NULL OPTION TO LEVEL ZERO ELEMENTS: 

To remove this option at some later time, the next command would be: 

REM:>VE NULL OPTION FROM LEVEL ZERO ELEMENTS: 

(2) All Non-Zero Level Repeating Groups 

Within the repeating group declaration the component type is contained 

in a parenthetical expression to the right of the component name. The null 

option is given within this expression during the initial definition phase, as 

follows: 

8* PORTFOLIOS (RG WITH NULLS): 

or 

12* STOCKS (RG IN 8 WITH NULLS): 

Later, if the user would like to add or remove a null option to a repeating group, 

he can issue, for example, the following connnands: 

ADD NULL OPTION TO REPEATING GROUP <component number>: 

REMOVE NULL OPTION FROM REPEATING GROUP <component number>: 

3.4.2.2 Paddinz for Unique Element Values 

Each element in the data base has a set of unique values. This option is a 

valuable one where an element is expected to have many unique values. Typically, 

these unique values will be entered over a period of time during many different 



1 June 1970 31 RM-S2K-1.1 

loading and updating sessions. The option may be quite useful because it 

permits the user to insert unique values consecutively in their appropriate 

storage tables regardless of when they are inserted. The extra space or 

padding leaves the necessary space. There are two general ways in which this 

type of padding can be assigned to an element. 

(1) Assigned In the Element Declaration 

When the element is initially defined in the definition, the 

padding option may be specified within the element type speci­

fication in one of two ways: 

(a) . WITH <nn> PERCENT PADDING 

or (b) ..• WITH <amount> FUTURE ADDITIONS 

where: 

<nn> = integer number 

<a~=t> =~ 
from 0 to 60 

where: 

NO = 0% 
FEW = 15% 
SOME 30% 
MANY = 50% 

A few examples using the foregoing options in the PORTFOLIO data base definition 

would be as follows : 

7* CURRENT DATE (DATE WITH 60 PERCENT PADDING) : 
13* NAME OF STOCK (NAME IN 12 WITH MANY FUTURE ADDITIONS) : 
24* CURRENT PRICE (DECIMAL NUMBER IN 12 WITH 40 PERCENT PADDING): 

Where the user assigns a padding option amount to an element the system counts 

the number of unique values stored via the initial load and then reserves that 

percentage of additional space in the appropriate tables for the to-be-added 

values. 

(2) Assigned After the Element Declarations 

This same padding option may be specified by another set of commands 

after an element has been declared: 

or 

(a) PAD [component 

(b) PAD [component 

number][nn] PERCENT: 

number] FOR~~w~ FUTURE 

SOME 
MANY 

ADDITIONS: 



1 June 1970 32 RM-S2K-l.l 

The values for these commands are the same as the ones just given. These 

connnands stand alone and can be used during the initial definition declaration 

before the MAP: command or can be used at some future time, as will be shown 

in a later section with the REMAP: connnand discussion. 

3.4.2.3 Padding for Multiple Occurrences of Each Unigue Value 

The third and last padding option allows the user to pad for multiple occurrences 

of each unique element value, across the entire data base for all elements. Two 

alternate forms are available: 

or 

(a) 

(b) 

PAD VALUE DUPLICATIONS <nn> PERCENT: 

PAD FOR ~O J VALUE DUPLICATIONS: 
FEW 
SOME 
MANY 

where: <nn> = integer number from 0 to 60 

NO = 0% 
FEW = 15% 
SOME = 30% 
MANY = 50% 

These last padding options may be taken during the initial definition, or they 

can be used at some later time, as will be shown in a later section with the 

REMAP: command discussion. 

3.5 DATA BASE MODIFICATION 

Data base definitions may be modified at will prior to loading 

the data. It is at these early stages of definition development that most of 

the bugs should be worked out. But, after data has been loaded into the data 

base, it is still possible to modify the definition in several different ways, 

adding another powerful problem-solving tool to SYSTEM 2000. 

3.5.1 Adding New Components 

Any of the four component types can be added to an existing data base. It is 

accomplished through use of the REMAP: command. The procedure is almost 



9 June 1970 33 RM-S2K-l. 3 

identical to the initial declaration except that the new component declara­

tions are the only ones that need to be given. The actual procedure is shown 

in the following steps. 

(1) Call DEFINE Module 

The user must issue the sys tern-wide command 

DEFINE: 

(2) Declare Old Data Base Name 

Once a data base has been given a name, a definition version number, 

and a data version number .and has been mapped into a definition, 

it becomes an "old" data base. If the user wants to refer 

to his "old" data base by name while in the DEFINE module, he must 

issue the following conunand: 

OLD DATA BASE <data base name>: 

which, in our continued example, would be; 

OLD DATA BASE PORTFOLIO: 

In response, the DEFINE module makes that definition available for modi­

fication. 

(3) Component Declarations 

The desired component declarations are now specified. All components added to 

a data base through these procedures are added physically to the end of the 

definition; although logically they exist within the repeating group (a level 0) 

of the definition. Any combination· of components may be added so long as the 

structural convention rules are followed. 

(4) REMAP: 

When the initial definition tables were constructed, the definition was 

MAPPED. 

REMAP: • 

Now, when accomplishing a definition modification, the command is 

This action will now cause the DEFINE module to modify the exist-

ing definition residing on disk, e.g., increment the definition version 

number by one and incorporate the specified changes and additions into the 

definition tables. In sunnnary, the commands required to add new components 

are as follows : 



1 June 1970 34 RM-S2K-l. l 

DEFINE: 

OLD DATA BASE PORTFOLIO: 

Component Declarations: 

REMAP: 

3.5.2 Changing Padding Options 

Padding options were previously discussed in section 3.4.2 as they pertained 

to the initial definition declaration. Padding options can be declared during 

the initial definition declaration or can be added at a later time in exactly 

the same manner as new components are added. As discus3ed in the previous 

section the certain initial commands are required. Examples are shown below 

with all of the available padding option commands which might be used. 

REQUIRED 

OPTIONAL 

REQUIRED 

DEFINE: 

OLD DATA BASE PORTFOLIO 

[Ano NULL OPTION TO LEVEL ZERO ELEMENTS: 

l.B!:MOVE NULL OPTION FROM LEVEL ZERO ELEMENTS: 

p;no NULL OPTION TO RG 25: 

l.B!:MOVE NULL OPTION FROM RG 25: 

p;no NULL OPTION TO RG 25: 

~MOVE NULL OPTION FROM RF 25: 

(PAD 13 20 PERCENT: 

lR_AD 13 FOR NO FUTURE ADDITIONS 

[PAD VALUE DUPLICATIONS 35 PERCENT: 

~AD FOR NO VALUE DUPLICATIONS: 

REMAP: 

3.5.3 Specific DEFINE Commands 

There are two additional commands in the DEFINE module repertoire which have 

yet to be introduced. Both are used after the initial definition declaration 

and require the use of the OLD DATA BASE <data base name>: and the REMAP: com­

mands. 



1 June 1970 35 RM-S2K-1. l 

3.5.3.1 Change Sin&le Component Number 

If the user desires to change the component number of a component within his 

old data base he may use the following command. 

CHANGE NUMBER OF <component type><integer number> TO <integer number>: 

where: (1) component type = ELEMENT 
REPEATING GROUP 
FUNCTION 
STRING 

(2) integer number = 1-9999 

An example of this command would be: 

DEFINE: 

OLD DATA BASE PORTFOLIO: 

CHANGE NUMBER OF ELEMENT 13 TO 75: 

REMAP: 

3.5.3.2 Renumber Components 

There are four commands available to the user to change the numbering scheme 

of the data base components. All of them may be utilized during the initial 

definition declaration, followed by the MAP: command, or at some later time, 

using the OLD DATA BASE < >: and REMAP: commands. One word of caution. 

If your definition contains strings and/or user-defined functions, the com­

ponent numbers referred to within these components are not affected by any 

of the renumber commands, which creates internal inconsistencies which cannot 

be tolerated by the system. Therefore, strings and functions should be defined 

with component names rather th~n component numb~rs. 

(1) RENUMBER: 

(2) RENUMBER STARTING WITH <n>: 

(3) RENUMBER INCREMENTING BY <k>: 

(4) RENUMBER STARTING WITH <n> AND INCREMENTING BY <k>: 

In all these commands the renumbering affects every component number in the 

definition, including the component numbers identifying strings and user-defined 

functions. The RENUMBER direc.tive causes all components to be renumbered in 

their current order with the first component's number set equal to one and 



I 

9 June 1970 36 RM-S2K-l. 3 

incrementing by one for each successive component. Commands 2,3, and 4 above 

are similar to the RENUMBER: command, except that the user can designate any 

integer number <n>, 1 ~ n ~ 9999 as the beginning number for the first component 

number and a suitable integer increment <k>. When either the second or third 

form of this command are used, then <k> or <n>, (whichever is omitted), respec­

tively, is considered to be one. 

3.6 DATA BASE PASSWORD CONTROL 

The accessing of a data base is controlled by use of user passwords. The system 

will contain in its data base directory two types of passwords. These passwords 

will be assigned to users. By definition, some of them will be authorized to 

create data bases as well as all other SYSTEM 2000 activities and the second 

type will only be authorized to retrieve from a data base. The original mating 

of a password to a data base is accomplished during the creation phase via the 

New Data Base command. It is this command that takes the user password utilized 

within the job deck and assigns it to the data base named in the creation com­

mand. That is the only password authorized to access the data base until additiona~ 

passwords are assigned. Also, it is the original password which has the sole 

access to all modules while accessing that data base. If additional passwords, 

which can only use the RETRIEVAL module while accessing the data base, are 

desired or they are no longer desired, special commands are required. 

3.6.1 Assign Password 

Purpose - To assign a valid password to a data base for retrieval capability only. 

Command - VALID PASSWORD IS <password>: 

where: password = 5 characters 

Discussion - The system checks to see if the password exists in the list of 

available passwords. This list must be established and maintained by the 

computer center's Operations Department. If it does not exist, an error 

diagnostic - ILLEGAL PASSWORD - will be generated. If it does exist, the 

password is assigned and given the retrieve only permission while using the 

data base. Th~ command may be issued during the original definition activity 

or during a remap action. 



1 J\llle 1970 37 RM-S2K-l.1 

3.6.2 Delete Password 

Purpose - To make a valid password invalid for a particular data base. 

Command - INVALID PASSWORD IS <password>: 

where: password = 5 characters 

Discussion - This command is used when undesirable passwords are authorized 

access to a data base. This connnand is related, of course, to a previously 

accessed data base. This action would logically be used during a remap activity. 

This command has the possibility of creating either of two error messages. If 

the password used in the command never existed, the diagnostic would be -

ILLEGAL PASSWORD. If the password existed but was not valid for the accessed 

data base the error message created would be - PASSWORD Nar VALID FOR DATA BASE. 

3.7 DEFAULT CONDITIONS IN THE DEFINE MODULE 

(1) If any syntactic errors occur while using the DEFINE module: 

a) the job continues if defining a new data base 

b) the job terminates if redefining an old data base 

(2) Functions are "DECIMAL" functions if not otherwise defined by the user. 

(3) Illegal data base names or illegal passwords designation are always 

fatal to the rest of the job. 

(4) The password in use when the definition is mapped (and when the LOADER 

module has successfully entered data into a new data base) is the only 

password that can automatically access the new data base. 



1 June 1970 38 RM-S2K-l.l 

4.0 LOADER MODULE 

4.1 INTRODUCTION 

Once the data base has been defined, data may be loaded into it. This is 

done using the LOADER module. The user simply lays out the data in a 

string, associating with each piece of data the element number (e.g., 

l* for ORGANIZATION) to which that piece has been assigned. A typical 

loader string would look like the example given in Figures 5 and 6. 

All of the complex coding usually associated with the somewhat tedious task 

of loading data into a data base is no longer necessary. If the data is 

already in machine-readable format, like most of the stock exchange data, 

a simple conversion to loader string format can be accomplished using an 

external proprietary program language developed by MRI called RE/FORM-I; 

then SYSTEM 2000 will load the data into the user's data base. 

The LOADER module enters data values for new logical entries into the 

data base. The user calls the LOADER module initially to build a new data 

base; he may call LOADER to do incremental loads whenever he has additional 

logical entries to be added to the data base. The LOADER module does not 

add data values to existing logical entries. 

The user may call upon the LOADER module whenever he has collected a 

"batch" of "new" logical entries. In other words, the user may enter source 

data for "this year," for example, and immediately begin to use that data. 

Then he may enter a "batch" of last year's data and so on until all source 

data he may have on file from a backlog of files has been put into the data 

base. 

The source data need not be complete, nor need it be completely accurate 

or "standardized." The UPDATE module can modify or insert any piece of 

data individually or whole sets of data across the data base. Therefore, 

the user need not decide beforehand what key terms are important or if they 



r-i 

0 
H 

1 June 1970 39 

for Exam le Definition 

l* CITY TRUST COMPANY 2* J.B. WISER 3* 303 WEST 52ND ST. 

4* NEW YORK 5* NEW YORK 6* 10022 7* 10/22/69 

8* 9* INCOME 10* A 11* J.B. PACE 

12* 13* AMERICAN CYANAMID 14* ACY 15* NYSE 

16* CHEMICALS 17* 2899 18* 44509000 19* 2.00 

20* 06/30/69 21* 2.05 22* 12/31/69 23* 1.25 24* 29.00 

25* 26* BUY 27* 01/14/69 28* 12000 29* 31.50 

26* SELL 27* 05/15/69 28* 5000 29* 33.25 

26* SELL 27* 08/15/69 28* 3500 29* 27.50 

12* 13* GENERAL MOTORS 14* GM 15* NYSE 16* MOTOR VEHICLES 

25* 26* BUY 27* 03/28/69 28* 2000 29* 81.75 

12* 13* UPJOHN 

30* 31 * GAC CORP . 32* 101. 25 33* 98.50 34* 01/01/98 
35* 05/04/70 36* 100. 

8* 9* TRUST 10* E 11* W.D. GARDNER 

**END 

~ l* GOOD LIFE INSURANCE CO. 2* L.G. OGDEN 4* SAN FRANCISCO 
.µ 

~ 5* CALIFORNIA 
r-i 

~ **END **END 
-rt 

0 
H 

FIGURE 5 

RM-S2K-1. l 

LOADER Anal sis 

Data set 1 (level 0) 

Data set 2 (level 1) 

Data set 3 (level 2) 

Data set 4 (level 3) 

Data set 5 (level 3) 

Data set 6 (level 3) 

Data set 7 (level 2) 

Data set 8 (level 3) 

Data set 9 (level 2) 

Data set 10 (level 2) 

Data set 11 (level 1) 

Data set 12 (level O) 

Sample Loader String for PORTFOLIO Data Base 



Level 0 

Level 1 

Level 2 

BUY 
01/14/69 
12000 
31.50 

Level 3 

I 

Logical Entry 1 

CITY TRUST COMPANY 
J.B. WISER 
303 WEST 52ND ST. 
NEW YORK 
NEW YORK 
10022 
10 22 69 

INCOME 
A 
J.B. PACE 

1 

AMERICAN CYANAMID J 
ACY 

GENERAL MOTORS 
GM 

NYSE NYSE 
CHEMICALS MOTOR VEHICLES 
2899 
44509000 
2.00 
06/30/69 
2.05 
12/31/69 
1.25 
29.00 

4 SELL 5 SELL 6 

05/15/69 08/15/69 
5000 3500 
33.25 27.50 

FIGURE 6 

Logical Entry 2 

GOOD LIFE INSURANCE 
L.G. OGDEN 
SAN FRANCISCO 
CALIFORNIA 

11 

7 UP JOHN 

BUY 8 

03/28/69 
2000 
81. 75 

Data Base Structure for Example Portfo1io Loader String 

co. 12 

GAC CORP. 
101. 25 
98.50 
01/01/98 
05/04/70 
100. 

10 

\0 

Lt 
§ 
Ct> 

~ 
\0 
""-J 
0 

~ 
I 

Ul 
N 
~ 
I 
~ . 
w 



1 June 1970 41 RM-S2K-l.l 

are appropriate and identical across the entire source data. The RETRIEVAL 

module will allow him to browse through the data base and the UPDATE module 

will allow him to modify at will. All of the above capabilities afford the 

user early use of his data base whether or not his source data is complete or 

absolutely accurate. 

The LOADER module has three general functions: 

1) to enter large volumes of data into a data base. 

2) to pre-edit the user's raw data by checking the data values 

and data structure against the user's definition of the 

data base. 

3) to give the user statistical counts at various checkpoints 

throughout the loading process. 

First, a definition must exist before the LOADER module is called. Secondly, 

a DATA FILE must be prepared which contains the data input string of values 

to be entered into the data base. Lastly, a set of joQ related commands must 

be given to the LOADER module to direct its services in loading the user's 

data. 

An example set of job related commands are given below. This illustration 

assumes that the DEFINE module has been called prior to issuing the call to 

LOADER. 

LOADER: 

ISSUE REPORT WHEN ALL CHECKPOINTS OCCUR: 

DATA FILE IS <file name>: 

ASSUME NO ERRORS: 

SCAN: 



June 1970 42 RM-S2K-1.3 

After the first batch of loader data values have been successfully entered 

into the data base, the data base automatically is available for access on 

disk storage. After the data base is created on the disk, it is available 

for permanent external storage on tape by the Save Data Base command. 

4.2 LOADER DATA INPUT STRING FORMAT 

The overall design of the data input string consists of groups of data values 

each preceded by an element number; each group (or data .set) is preceded by 

a repeating group number. The end of a data value is signaled by the occur­

rence of a component number of the next value, etc., until finally an entry 

terminator word is encountered; at that point, data begins for the next 

"logical entry." The end-of-file at the end of the DATA FILE preceded by 

I two occurrences of a double system separator followed by the entry terminator 

is the signal to LOADER that the end of the string has occurred. 

The LOADER module reads the DATA FILE for the data input string of data 

values. This means that before calling SYSTEM 2000, the user has gathered 

his source data and prepared a DATA FILE. The data may have simply been con­

verted from another machine readable source or may have been constructed 

directly from raw data. The DATA FILE may be a disk file, magnetic tape or 

punched cards that were "copied" onto a disk file. 

The data input string is one, long continuous string of characters up to 

an "end-of-file." The format is absolutely free field within the file, 

meaning that blanks may be used freely between data values and within data 

values. LOADER ignores all extraneous blanks and retains only one embedded 

blank between words if the type of data is NAME; if the data is type TEXT 

(see DEFINE module) blanks will be retained. Characters are read consecutively 

• so that if a word spreads across the end of one record to the beginning. of the 

next, then the user should consider the effect of blanks. 



1 June 1970 43 RM-S2K-1.l 

Loader data input string is composed from the source material at hand ac­

cording to the categories of data which he has outlined in his definition of 

the data base. The data is first organized by logical entry. Next, the user 

arranges the data values within each logical entry according to the repeating 

groups which he has defined. There is no maximum number of data sets. Each 

repeating group at any level may contain as many data sets as necessary to 

contain the available data. In composing the data input string, the user 

is forming an implied "data tree" of data sets and also, an implied order of 

entrance into the data base. If functions or strings have been defined, they 

are ignored during the loading process. The values of functions are not 

stored in the data base; they are calculated dynamically by the RETRIEVAL 

module. 

A data set may contain one value for each element that the user has defined 

in the particular repeating group under consideration. A data set, then, 

may contain many data values associated one-to-one with the appropriate 

elements in the repeating group. If the user's source data does not have a 

data value for an element in a particular data set, then that element should 

be omitted from the input string for that specific data set. Thus, a data 

set may contain values for all elements in the defined repeating group, for a 

few of the elements, or perhaps for none of the elements. If no values exist 

for a data set, then that data set is called a non-valued data set; generally 

speaking, a non-valued data set will not occur unless the user has source data 

for descendant data sets. The user may give level 0 values together at the 

beginning or end of each logical entry or he may scatter them throughout the 

logical entry -- as long as no family of repeating group data sets is broken. 

If no values exist for any of the level 0 elements, then the LOADER module 

automatically creates a non-valued level 0 data set for the logical entry. 



9 June 1970 44 RM-S2K-l.3 

• A repeating group data tree begins with the topmost parent re-

peating group and extends vertically to the lowest level repeating group of 

that family tree. One or many data sets may be entered at any level de­

pending entirely upon the available source data. Each descendant data set 

in every subtree must have a parent data set somewhere above it in the same 

subtree. If data values are to be entered at any level below a data set 

having no values, then a non-valued data set must be specified in the input 

string before entering the descendants. 

SYSTEM 2000 retains the original order of entrance of values and data sets 

in the data base. This persistent knowledge of ordinal position of data 

sets is true for any data base, but may not be of any significance to the 

user unless he specifically wants to utilize it in retrievals or updates. 

The system then can follow any branch of any tree or any chain of subtrees 

across the entire data base without a sequential search of the data base. 

4.2.1 Data Value Assignments 

Each data value is preceded by its associated element number. The element 

number must be preceded by a blank and must be followed by the separator 

symbol. Therefore, the first column on the first loader string card, by 

definition, must be blank. The data value must conform to the type of value 

which the user has categorized for the element number specified, that is, 

if an element is a type DATE, then the value must be in DATE format or if 

type INTEGER NUMBER, then an integer number. Each element number must be 

followed by a value; if an element has no value in a particular instance, 

then the number for that element must be omitted from the string. Using 

the * as the system separator symbol, an example of a correct data value 

assignment is shown below. 



1 June 1970 45 RM-S2K-1. l 

l* CITY TRUST COMPANY 

There may be no embedded blanks within the numerals of the element number 

and a blank must not occur between the element number and the separator. A 

blank may, but need not follow the separator. In the example, the several 

blanks before "CITY TRUST COMPANY" will be ignored by the LOADER module be­

cause component 1 is type NAME (see DEFINE module). 

_Acceptable data value assignments: 

l* GOOD LIFE INSURANCE 2* J.B. WISER 

25* 

27* 03/28/69 

Unacceptable data value assignments: 

27 *03/28/69 

l* 2*J.B. WISER 

22* 12/1/1935 

(blanks cannot be embedded between component 

number and the separator) 

(no data value was given for component 1 -­

if no value exists, then omit the element 

number) 

(incorrect format for type date -- day field 

should contain 2 digits) 

The user must position his DATA FILE (rewind or whatever) before calling 

LOADER. The "blank" preceding a component number is always associated with 

the number. Thus, while the input string is free field regarding use of blanks, 

it is especially noteworthy that if an element is type TEXT and trailing blanks 

are to be included for that element's data values (for instance, in graphs, 

pictures, or columnar material), then care should be taken to form the "next" 

component number beyond the exact last blank of TEXT. 



I 

9 June 1970 46 RM-S2K-1.3 

4.2.2 Data Set Assignments 

The level 0 elements and their associated data values always become the 

level 0 data set in each logical entry; therefore, the user never "assigns" 

the level 0 data set. Data sets below level 0, that is, for all repeating 

groups must be furnished by the user. Each data set is formed by giving a 

repeating group number followed by the data value assignments for that par­

ticular data set. Thus, any repeating group number found in the data input 

string signals the end of the previous data set and the beginning of th~ next 

data set. All elements assigned data values in a data set must belong to the 

repeating group specified. Within a data set, the user may enter the actual 

data values for the elements in any order. If any element does not belong 

to the repeating group specified, an error message will be given to the user 

and the data will be rejected. All values for a data set (for all elements 

having values in that repeating group) must be given before another repeating 

group number is given. 

The repeating group number must be preceded by a blank, have no embedded 

blanks, and must be followed immediately by the separator symbol. For example, 

8* 6 12* ~ 25* ~ 26* BUY 

Blanks may be used freely after a system separator; the LOADER module 

ignores them up to the blank preceding the first non-blank character. At Least 

one blank must exist after the separator; it is part of the next component 

number. 

Acceptable data set assignments: 

8* 9* INCOME 10* A 11* J.B. PACE 

12* 13* AMERICAN CYANAMID 14* ACY 15* NYSE 



9 June 1970 47 RM-S2K-1. 3 

Unacceptable data set assignments: 

4.2.3 

12* 13* UPJOHN 

9* TRUST 10* E 11* W.D. GARDNER (repeating group 8* is missing 

for the data set TRUST, E, W.D. 

GARDNER) 

25* BUY 27* 03/28/69 28* 2000 (a value cannot follow a repeating 

group number 26* has been omitted) 

Special Labels and Non-Data User Messages 

A special label is two adjacent separator symbols preceded by a blank, for 

instance, **· The special label may be used anywhere in the input string. 

It is used as a signal to the LOADER module that the message inunediately 

following the special label is not to be put into the data base. One 

of the main functions of the special label, when used with the entry 

terminator, is to signal the end of each logical entry. As discussed 

above, the end of a value is signalled by the occurrence of another 

component number; the end of a data set is signalled by the occurrence 

of a repeating group number. The end of the data values belonging to each 

logical entry is signalled by a special label followed by the entry terminator 

word. The end of the entire string is signalled by two entry terminators and 

then an end-of-file mark. The standard entry terminator word by default is 

END; it is short and meaningful. The user may choose his own entry termi­

nator word, but must give the system-wide connnand ENTRY TERMINATOR IS <entry 

terminator word> so that LOADER will recognize the non-standard terminator. 

Another use of the special label is to allow the user to insert "comments" 

throughout his data input string. These comments are useful only to the user. 

They allow him to annotate any item he wishes. A comment here and there may 

be useful in locating errors in his source material or in telling him what 

data has been· formed. All comments are displayed on the MESSAGE FILE unless 

the user has told the LOADER module to SUPPRESS COMMENTS. A comment is given 



1 June 1970 48 RM-S2K-l.l 

in the following way: 

**COMMENT 'this transactions data set is the 4th one ····**COMMENT 

we do not have data for the portfolio on growth. 

A comment may occur anywhere in the data string between values or data sets. 

Blanks may be used freely within a comment; a.maximum of 255 characters, not 

including extraneous blanks, may be given in a single comment. 

4.3 USER DIRECTIVES 

The following sequence of connnands is the minimal and mandatory set of 

commands for using the LOADER module. 

(previous connnands to other modules, perhaps) 

LOADER: 

DATA FILE IS ~file name>: 

SCAN 

The LOADER connnand calls in the LOADER module. The data input string must be 

pre-constructed on the DATA FILE prior to calling LOADER: then, that DATA 

FILE's name must be furnished to LOADER. The SCAN directive is local to the 

LOADER module; it tells LOADER to scan the data input string and build the 

data base. No other commands are necessary. If the user thinks there may be 

errors in his data input string, he can ask LOADER to "pre-edit" his data and 

STOP AFTER SCAN. 

Several local directives are available to let the user tell LOADER what options 

to perform during that particular loading process. Local directives must be 

given after calling LOADER and before telling LOADER to SCAN. These local 



1 June 1970 49 RM-S2K-l.l 

commands are discussed in detail below. Depending upon the nature of the job, 

the user can combine one or more of these directives to produce the desired 

results. 

4.3.1 NOTIFY Directive 

The 
NOTIFY directive is as follows: ~NTIRE ENTRj 

NOTIFY MESSAGE FILE IF ANY ERROR(S) OCCUR(S), DISPLAY EVEL 0 ONLY : 
RRORS ONLY 

The NOTIFY directive concerns the display of error messages. If the data 

string contains no errors, the NOTIFY command does nothing. The first error 

in a logical entry causes all data values after the error to be excluded from 

the data base. The next logical entry, however, is treated as though it were 

error free, and so on. The LOADER module tries to enter as much acceptable 

data as it can into the data base unless the user has told the LOADER module 

to STOP The NOTIFY directive allows the user to designate what he wants 

displayed in case of errors. If he chooses the ENTIRE ENTRY option, all accepted 

data values are displayed before the excluded values. This might produce a 

lengthy list unnecessarily; if the user can locate the source of error in his 

input by knowing a few unique values for the level 0 elements only, he can 

choose the LEVEL 0 ONLY option. If errors are very easily isolated in the 

source data, he may want to obtain a display of ERRORS ONLY. The default option 

if the NOTIFY connnand is not given, is a display of ERRORS ONLY. 

4.3.2 ISSUE REPORT Directive 

The ISSUE REPORT directive is as follows: 

ALL LEGALITY CHECKED 
VALUES FOR EACH ELEMENT ARE ENTERED 

ISSUE REPORT WHEN SELECTION TABLES ARE COMPLETE 
FINAL SORT IS COMPLETE 
LOADING IS COMPLETE 
ALL CHECKPOINTS OCCUR 



1 June 1970 50 RM-S2K-l.l 

The user may specify any combination of reports to be issued by giving one 

or more of the alternatives above; each alternative must be separated from 

the next by a comma or the word "and." All checkpoint reports are issued if 

the last alternative is given. If the ISSUE REPORT command is not given to 

the LOADER module, then by default no reports are given to the user. 

ALL LEGALITY CHECKED - means that LOADER has scanned the entire data input 

string (or was told to STOP) and the user wishes a report of the number of 

entries accepted, number of accepted data values, number of rejected data 

values, etc. 

VALUES FOR EACH ELEMENT ARE ENTERED - means that while LOADER is building 

the internal Selection Tables, those containing the data values, the user 

wishes to have a report of the number of unique values being entered for each 

element. 

SELECTION TABLES ARE COMPLETE - means that a report will be given after all 

data values have been successfully entered into the data base. 

FINAL SORT IS COMPLETE - means that a checkpoint message will be given as 

the LOADER module is beginning to build the Retrieval Tables, those that con­

tain data set and data tree associations. 

LOADING IS COMPLETE - means that a final summary report containing statistics 

and counts of values, etc., will be displayed. 

ALL CHECKPOINTS OCCUR - means that all of the above checkpoint reports will be 

given to the user. 

An example of each report is presented below. 



I 

9 June 1970 

16.39.10 
10/28/69 

51 RM-S2K-1. 3 

ALL LEGALITY IS CHECKED FOR THIS LOADER CALL 
NUMBER OF ACCEPTABLE ENTRIES = 36 
NUMBER OF VALUES ACCEPTED = 1562 

16.39.40. 
16.39.40. 
16. 39. 41. 
16.39.42. 
16.39.43. 
16. 39. 43. 
16.39.44. 

16.40.07. 
16.40.08. 
16. 40. 08. 

16. 40.10. 

16.40.39. 

16.40.48. 

NUMBER OF ENTRIES WITH REJECTED VALUES 0 
NUMBER OF VALUES REJECTED = 0 
NUMBER OF VALUES EXCLUDED = 0 
NUMBER OF DATA SETS ACCEPTED = 343 
NUMBER OF NON-VALUED DATA SETS ACCEPTED = 30 

TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 1 4 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 2 = 4 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 3 = 2 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 5 4 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 6 4 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 9 36 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT c 10 31 

TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT C 26 = 34 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT C 27 = 30 
TOTAL NUMBER OF UNIQUE VALUES FOR ELEMENT C 28 = 27 

SELECTION TABLES ARE COMPLETE 

FINAL SORT IS COMPLETE 

LOADING COMPLETED 
NUMBER OF ACCEPTABLE ENTRIES = 36 
NUMBER OF VALUES ACCEPTED = 1562 
NUMBER OF ENTRIES WITH REJECTED VALUES 0 
NUMBER OF VALUES REJECTED = 0 
NUMBER OF VALUES EXCLUDED = 0 
NUMBER OF DATA SETS ACCEPTED = 343 
NUMBER OF NON-VALUED DATA SETS ACCEPTED = 30 
NUMBER OF NULLS CREATED IN THIS JOB = 0 
TOTAL NUMBER OF UNIQUE VALUES IN DATA BASE = 691 
TOTAL SIZE OF CURRENT DATA BASE = 68 PARTITIONS OR 

174080 CHARACTERS 

PORTFOLIO 

16.40.48. 

DEFINITION VERSION 

10/28/69 

1 DATA VERSION 1 



1 June 1970 52 

4.3.3 STOP AFTER Directive 

The STOP AFTER directive is as follows: 

STOP AFTER 

ONE ERROR 
1 ERROR 
0 ERROR 
<integer> ERRORS 
SCAN 

RM-S2K-l. l 

The user may tell LOADER to stop after the scan no matter how many errors 

occurred or did not occur. This option is used effectively for a "pre-edit" of 

a new input string. The ASSUME ERRORS directive should also be given for a 

pre-edit. The user can then correct the errors and resubmit the input string 

for another pre-edit, etc., until all errors disappear. 

The other alternatives indicate that the LOADER module is to scan the input 

string until the specified number of errors occur at which point LOADER is 

to stop the scan. If 0 ERRORS is specified, it means STOP AFTER SCAN. If 

LOADER is not told to stop after the scan, all acceptable values will auto­

matically be entered into the data base whether or not errors occurred. 

ERRORS ARE COSTLY -- IN DISPLAY TIME, IN LATER UPDATE SESSIONS TO CORRECT A 

DATA BASE AND IN ACTUAL COMPUTER TIME. 

The user should always pre-edit all data input strings and correct all errors 

by telling the LOADER module to STOP AFTER SCAN before letting LOADER build a 

data base with ASSUME NO ERRORS. 

4.3.4 SUPPRESS COMMENTS Directive 

The SUPPRESS COMMENTS directive simply tells the LOADER module that if it finds 

any user comments within the data input string, the user does not want them 

displayed. If the directive is not given, connnents are displayed for the user. 

He will usually want connnents displayed during a pre-edit run, but in general 

they should be suppressed when he wants LOADER to go ahead and build the data 

base. 



1 June 1970 

4.3.S ASSUME Directive 

The ASSUME directive is as follows: 

ASSUME ~NO ERRORS l. 
ERRORS i

0 

.... 

53 RM-S2K-1. l 

The ASSUME directive allows the user to let the LOADER module know whether 

the data input string should be checked for errors or not. Scanning for all 

legality and isolating errors, giving error messages, etc., takes more time 

than knowing beforehand that the string is error free. After the user has 

assumed errors, corrected any errors, then he may issue an ASSUME NO ERRORS 

directive. This will be timesaving in that LOADER assumes all error checking 

has been done on a previous run. Most of the error checking will not be 

performed when assuming no errors and the user runs the risk of entering bad 

data into the data base if the user has not made a "pre-edit" run previously. 

Some structural error checking is performed at all times and if an error 

occurs, the LOADER module will issue a message to the user that it encountered 

an error while "assuming no errors," and then halt. The default for assume 

directives is to ASSUME ERRORS always unless otherwise directed. The ASSUME 

directive and the STOP AFTER directives may be issued effectively in combi­

nation. 

If the user ASSUMEs NO ERRORS and undetected errors occur within the loader 

string, the result will be indeterminate. 

4.3.6 SCAN Directive 

The SCAN connnand causes the LOADER module to start scanning the data input 

string. If no STOP command was given, the data base will be built. No more 

commands can be given to LOADER after the SCAN command. 



1 June 1970 54 RM-SZK-1.1 

4.4 OUIPUT FROM THE LOADER MODULE 

The only output from the LOADER module (aside from error messages) is the 

data base itself, newly constructed or reconstructed, with all data internally 

ready for retrievals, updates, or report generation. A secondary and optional 

output at the user's choice is a display of checkpoint reports produced 

during the loading operation. 

The user may call any task module immediately after using LOADER. If an 

archival tape of the data base is desired, a Save Data Base command should 

be given. 

4.5 ERROR HANDLING 

The LOADER module always tries to scan the entire data input string and 

will always enter all acceptable data values into the data base unless the 

user has told LOADER to stop after the scan or after a certain number of 

errors have occurred. If errors occur in the user's data, they will always 

be detected during the scanning process -- not while the data base is being 

constructed. Therefore, all errors will be known to the LOADER module before 

it begins to enter the data into the data base. If the user has specified 

that he wishes to see the first checkpoint report and that LOADER should stop 

after the scan, then all errors are displayed according to the NOTIFY directive 

(or default if none was issued) that the user chose and a summary of the 

number of rejected and accepted values, etc., will be displayed. 

The data values along with their corresponding element numbers are displayed 

with error messages if any occur. The display of errors may include three 

types of displays: 

1. accepted data values within a logical entry 

2. rejected data values 

3. excluded data values 

Accepted data values are those values whose type and structure are legal and 

acceptable for the data base. Rejected data values are those values that are 



1 June 1970 55 RM-S2K-1.l 

erroneous either because of legality tests, wrong type of data, incorrect 

repeating group membership, data set structure, or any one of the many errors 

that may possibly occur in the data input string. Excluded data values are 

those data values that occur within the logical entry containing rejected 

data values after the point of the first error in the logical entry. 

Excluded data values are those values which by themselves are "acceptable" 

(that is, all error checking has been performed upon them), but they may 

be dependent upon rejected data values and therefore are excluded from the 

data base until all errors have been corrected. 

The LOADER module always tries to read to the end of the DATA FILE. Each 

new logical entry is treated as though no errors exist. Acceptable data 

values are not displayed for logical entries having no errors. Thus, if not 

told to stop after the scan, the LOADER module could, for instance reject 

50 values because of illegal data, exclude 1500 data values because they 

occurred after errors in logical entries having rejected data, and then still 

go ahead building the data base with 50,000 accepted data values. The user 

should pre-edit until all data is error free or costly time will be spent 

using the UPDATE module in correcting, inserting and adding the corrected 

values to the existing logical entries. 

An example of a display from the LOADER module illustrating the occurrence 

of errors, and illustrating the "DISPLAY ENTIRE ENTRY" option is given below. 

-ACC- l* CITY TRUST COMPANY 
-ACC- 2* J.B. WISER 
-ACC- 4* NEW YORK 

3 ACCEPTED DATA VALUES FOR LOGICAL ENTRY 2 

-REJ- 9* INCOME 

-REJ-

-EXC-
-EXC-
-REJ-

NO PRECEDING PARENT DATA SET REJECTIONS = 1 

27* 12/5/66 

ILLEGAL DATE DATE VALUE 

27* 05/01/66 
16* BUY 
25* SELL 

REJECTIONS = 2 

VALUE GIVEN AFTER A DATA SET LABEL REJECTIONS = 3 
TOTAL REJECTED DATA VALUES FOR LOGICAL ENTRY 2 = 3 

NOTE: Logical entry 1 had no errors, evidently, so it was not displayed. 



1 June 1970 56 RM-S2K-l.l 

4.6 DEFAULT CONDITIONS IN THE LOADER MODULE 

Minimally the following connnands must be given to the LOADER module: 

LOADER: 

DATA FILE IS <file name>: 

SCAN: 

If no other commands are given, then by default: 

1. All user comments are displayed. 

2. A display of all rejected and excluded data values (if any 

error occurred) is sent to the MESSAGE FILE. No accepted 

data values are displayed. The "ERRORS ONLY" option is 

employed. 

3. No accepted data values are ever displayed for any logical 

entry which was error free. The user may use the 

RETRIEVAL module to print any or all logical entries in the 

data base. 

4. The LOADER module ASSUMES ERRORS and performs all legality 

and data set structure testing unless directed otherwise. 

Error checking takes more time and could be avoided if the 

data is error free. 

5. If any acceptable data values exist after the scanning process, 

the LOADER module will enter them into the data base. No 

matter how many hundreds of errors occur or reoccur in the 

string, fragments of all accepted values are entered into the 

data base unless the user issues a STOP AFTER SCAN directive. 

This could be costly and dangerous if performing an incremental 

load. 

6. LOADER stops scanning the loader input string when it encounters 

two consecutive entry terminators. No data will be read beyond 

that point whether or not an end-of-file is detected. 

7. All padding and null options as given in the definition for 

the current data base are used in loading. 

8. Any error in a LOADER command terminates the job. 



9 June 1970 57 RM-S2K-l.3 

5.0 RETRIEVAL MODULE 

5.1 INTRODUCTION 

The DEFINE and LOADER modules discussed in the two previous sections are used 

to create a data base; the RETRIEVAL and UPDATE modules are used to interact 

with the data base. 

The UPDATE module, discussed in a following section, loads the most recent 

data values into the data structure and keeps the data current. The RETRIEVAL 

module, discussed below, consists of a number of access tools to get infor­

mation from data bases. 

The data bases used in the examples are those from the DEFINE module section 

3.4.1.3. 

5.2 RETRIEVAL COMMANDS 

RETRIEVAL commands can take on many forms. The conunands normally take on the 

format of PRINT information:, PRINT information WHERE certain conditions· exist:, 

or DESCRIBE something:. The corrmands can be quite simple or as complex as the 

user requires. The only SYSTEM 2000 comrnands required prior to one or more 

RETRIEVAL commands are the User and Data Base Name commands. The next several 

RETRIEVAL commands assume the data base accessed is the HEALTH PLANNING data 

base, presented in section 3.4.1.3. 

5.2.1 PRINT Request 

Command PRINT MARITAL STATUS: 

Printout PRINT MARITAL STATUS: 

35* DIVORCED 
35* MARRIED 
35* NEVER MARRIED 
35* WIDOWED 



1 Jtme 1970 

Explanation 

occurrences 

58 RM-S2K-l.l 

TI1is is a request for all the unique values -- not multiple 

for a single component, which in this case is Component 35. 

Even though every death recorded in the Health Planning Data Base has a value 

for this component, only the unique values are printed. It will be shown 

later that when a WHERE clause is used, all of the values that qualify are 

printed out, not just the unique ones. 

In the resulting printout, the cormnand is always given with the printout, so 

that the question and answer can be clearly associated. The number 35 indicates 

the component nunber. The adjacent asterisk is the system separator or the 

changeable character which separates the component numbers from their values. 

5.2.2 PRINT Request With Two Components 

Connnand PRINT HEALTH PLANNING AREA, COUNTY: 

Printout 

Explanation 

PRINT HEALTH PLANNING AREA, COUNTY: 

l* ALAMO PLANNING REGION 
l* CENTRAL TEXAS PLANNING REGION 

3* ATASCOSA 
3* BELL 
3* BEXAR 
3* BOSQUE 
3* COMAL 

3* ZAVALA 

This example is quite similar to the first, except that it 

requests the unique values of two components; the two are set off by commas. 

The two components, numbers one and three respectively, are not associated 

with each other, but are listed separately. The output for Component 3, 

COUNTY, is indented from the output for Component 1 because of the organiza­

tion of this data base definition: Collllties exist within Health Planning 



1 June 1970 59 RM-S2K-l.l 

Areas, which is referred to in SYSTEM 2000 as an indication of the hierarchical 

structure. 

5.2.3 PRINT Request With Format Instructions 

Command PRINT BLOCK, STUB SUPPRESS, DOUBLE SPACE, HEALTH PLANNING 
AREA, COUNTY : 

Printout PRINT BLOCK, STUB SUPPRESS, DOUBLE SPACE, HEALTH PLANNING 

AREA, COUNTY: 

ALAMO PLANNING REGION 

CENTRAL TEXAS PLANNING REGION 

ATASCOSA 

BELL 

ZAVALA 

~lanation There are three types of format instructions available to SYSTEM 

2000 users. The first, as used above, is the control of the left hand margin 

by the command of INDENT or BLOCK. The second format instruction determines 

whether the stub - the component number and system separator to the left of the 

component values - appears or is suppressed. The two commands are STUB or STUB 

SUPPRESS. The last format instruction is the control of the spacing by the 

command of SINGLE SPACE or DOUBLE SPACE. If no format instructions are given, 

the conditions which prevail by default are: INDENT, STUB and SINGLE SPACE. 

5.2.4 PRINT Request Using Component Numbers 

Command PRINT STUB, SINGLE SPACE, INDENT, Cl, C3: 



I 

9 Jtme 19 70 

Printout 

60 

PRINT STUB, SINGLE SPACE, INDENT, Cl, C3: 

l* ALAMO PLANNING REGION 
1* CENTRAL TEXAS PLANNING REGION 

3* ATASCOSA 
3* BELL 

3* ZAVALA 

RM-S2K-l.3 

Explanation Component numbers, e.g., Cl, C2, etc., can be substituted for 

component names in any SYSTEM 2000 command. This is a convenient shorthand 

for the operator after he gains familiarity with the data base definition. 

The User-Defined Ftmctions and Strings, discussed later, can be referred to 

by their component numbers, e.g., Fl, F2, or Sl, S2, etc. 

5.2.5 Accessing Different Data Bases 

Command DATA BASE NAME IS HOUSING AUTHORITY: 

Printout DATA BASE NAME IS HOUSING AUTHORITY: 

Explanation The standard data base can be changed at any time by use of the 

command DATA BASE NAME IS <data base name>: . Operationally, the user usually 

issues one or more commands following this one, as in the next example. 

5. 2. 6 DESCRIBE 

Command DATA BASE NAME IS HOUSING AUTHORITY: 
DESCRIBE: 

Printout DATA BASE NAME IS HOUSING AUTHORITY: 

DESCRIBE: 
SYSTEM 2000, VERSION 19 
DATA BASE NAME IS HOUSING AUTHORITY: 

DEFINITION NUMBER: 1 
DATA BASE VERSION NUMBER: 1 

l* PROJECT NAME (NAME) 
2* PROJECT NUMBER (NAME) 



9 June 1970 61 

7* ACCOUNTS (RG) 
8* ACCOUNT NUMBER (INTEGER NUMBER IN 7) 
9* TENANT NAME (NAME IN 7) 

72* BALANCE DUE (DECIMAL NUMBER IN 7) 

RM-S2K-1. 3 

Explanation The command changing the working data base is repeated here 

along with the DESCRIBE command. It is the DESCRIBE command which produces a 

printout of the entire data base definition. The present operating version of 

SYSTEM 2000 and the name of the data base are given first. The current 

Definition and Data Base Version Numbers are then output with this conunand. 

If the definition or the data base is modified or changed, the Definition and 

Data Base Version Numbers are incremented appropriately. The DESCRIBE conunand 

has several forms. The one used above produces a full printout of all elements 

and repeating groups (not Functions and Strings which are discussed later). 

The other forms of the DESCRIBE command that relate to components are as follows: 

DESCRIBE Cl/: 
DESCRIBE C# THROUGH C#: 
DESCRIBE C# THRU C#: 
DESCRIBE C# TO END: 

5.2.7 PRINT ENTRY 

Command PRINT ENTRY: 

Printout PRINT ENTRY: 

(Entire Data Base would be printed here) 

Explanation This is the command which prints the entire data base. All SYSTEM 

2000 data bases are organized around logical entries of data. The Housing Authority 

Data Base uses a housing project as a logical entry and each of the housing pro­

jects contains accounts or tenants. The command, PRINT ENTRY, asks for the print­

out of each logical entry, and therefore is rarely used. The use of the term 

ENTRY is more normally used with a WHERE clause, which will usually limit the 

entries qualifying, such as: 

PRINT ENTRY WHERE PROJECT NAME EQ ADAMS HOUSES: 



1 June 1970 62 RM-S2K-l.l 

The WHERE clause will be introduced later, but this example shows that the 

only entry to be output is the ADAMS HOUSES entry. 

5. 2. 8 The WHERE Clause 

The WHERE clause is used to subject retrievals to specific criteria. The 

PRINT portion of the command asks for all information qualified by the cri­

teria listed in the WHERE clause. The WHERE clause conditions are specified 

using the general format shown below: 

PRINT information WHERE certain conditions exist: 

5.2.9 Relational Operators 

Command PRINT TENANT NAME, DATE ADMITTED WHERE TENANT NAME EQ BAFFORD J E: 

Printout 

Explanation 

PRINT TENANT NAME, DATE ADMITTED WHERE TENANT NAME EQ BAFFORD J E: 

9 * BAFFORD J E 
10* 06/01/60 

The SYSTEM 2000 relational operators are: 

EQ EQUAL 
NE NOT EQUAL 
LT LESS THAN 
LE LESS THAN OR EQUAL TO 
GT GREATER THAN 
GE GREATER THAN OR EQUAL TO 

They are used within the condition statement of the WHERE clause and are formulated 

as foll<Y.Ys: EQ 
NE 

.•• WHERE <element name> LT <specific value>: 
LE 
GT 
GE 

5.2.10 SPAN, SPANS or SPANNING 

Connnand PRINT TENANT NAME, NET INCOME FOR RENT WHERE NET INCOME 
FOR RENT SPANS 8900., 10000.: 



1 Jrme 1970 

Printout 

63 RM-S2K-1.l 

PRINT TENANT NAME, NET INCOME FOR RENT WHERE NET INCOME 

FOR RENT SPANS 8900., 10000.: 

9* ALCANTARA FIDEL 
36* 8971. 

9* BETER D M 
36* 9600. 

Explanation The SPANS connnand can be considered one of the relational 

operators. The command allows spanning of any data inclusive of the values 

given. This example also shows the related pieces of data presented together, 

which is the result of the WHERE clause usage. Recall that a simple PRINT 

command did not result in any association of values. Any data value can be 

used in the SPAN connnand. The conunon format for the SPANS command is as fol­

lows: 

... WHERE <element name> PANS <A>,<B>: ~PAN d 
PANNING 

where A < B. 

5.2.11 EXISTS, FAILS 

Command 

Printout 

Explanation 

PRINT TENANT NAME, SERVICE-CONNEcrED DISAB+DEATH COMP WHERE 
SERVICE-CONNECTED DISAB+DEATH COMP EXISTS: 

PRINT TENANT NAME, SERVICE-CONNECTED DISAB+DEATH COMP WHERE 

SERVICE-CONNECTED DISAB+DEATH COMP EXISTS: 

9 * ACKERBAUM EDW I 
56* 0252. 

9* CARRUTHERS BEN F 
56* 0598. 

9* CARTAGENA JOSE 
56* 0612. 

9 * ADAMOWITZ ELENA 
56* 0612. 

The EXISTS and FAILS commands are used in the WHERE clause 

with the following format: 



1 Jtme 19 70 64 RM-S2K-l.l 

WHERE <element name>rEXIST, EXISTS, or EXISTINGl . 
l_!AIL, FAILS or FAILING j . 

EXISTS will limit retrieval to data sets whose specified element is valued. 

FAILS limits retrieval to data sets whose specified element has no data value. 

They may be used to arrange data in a specified format, as the example above 

indicates. These conunands may also be used to check data integrity: 

PRINT ACCOUNT NUMBER WHERE TENANT NAME FAILS: 

5.2.12 System Functions, With WHERE Clause 

Commands PRINT COUNT TENANT NAME, SUM PERSONS CURRENTLY EMPLOYED, 
AVERAGE MONTHLY GROSS RENT, MAXIMUM MONTHLY GROSS RENT 
WHERE PROJECT NAME EQ ADAMS HOUSES: 
PRINT MINIMUM MONTHLY GROSS RENT WHERE PROJECT NAME 
EQ ADAMS HOUSES: 
PRINT SIGMA MONTHLY GROSS RENT WHERE PROJECT NAME EQ 
ADAMS HOUSES: 

Printout PRINT COUNT TENANT NAME, SUM PERSONS CURRENTLY EMPLOYED, 
AVERAGE MONTHLY GROSS RENT, MAXIMUM MONTHLY GROSS RENT 
WHERE PROJECT NAME EQ ADAMS HOUSES: 

COUNT 9* 
SUM 45* 
AVG 37* 
MAX 37* 

38 
18 
5 8 • 4 4 7 36 84 2 

125. 

PRINT MINIMUM MONTHLY GROSS .RENT WHERE PROJECT NAME 
EQ ADAMS HOUSES: 

MIN 37* 026. 

PRINT SIGMA IDNTHL Y GROSS RENT WHERE PROJECT NAME EQ 
ADAMS HOUSES: 

SIGMA 37* 22.94847032 

Explanation The six system functions used above are an integral part of 

SYSTEM 2000. Only one function may be specified with a component at one time. 

In the above.example, the functions COUNT, SUM, AVERAGE and MAXIMUM are shown 

for illustrative purposes only in a single print request. The other two functions 



1 June 1970 65 RM-S2K-1.l 

are shown, again for illustrative purposes only, in individual print requests. 

The output format between the two methods is different. COUNT is the function 

used to count the number of occurrences of element values, repeating groups, or 

whole entries. Examples of each, in the order just given, are as follows: 

PRINT COUNT TENANT NAME WHERE • 

PRINT COUNT CHARGES WHERE • 

PRINT COUNT ENTRY WHERE • 

Since the function COUNT merely counts the number of times something occurs, it 

can be used to count alphabetical and/or numeric data. SUM is the function used 

to add the numeric value of elements which are requested. 

Therefore, SUM must be applied to numeric data, in the same manner as the functions 

AVERAGE and SIGMA (Standard Deviation). The SIGMA formula used in SYSTEM 2000 is 

as follows: 

SI~l L:X2 
(L:X) 2 

n 

n - 1 

The functions, MAXIMUM and MINIMUM, can be applied to alphabetical as well as 

numeric data. The set of values which will be used to obtain the function's 

value is determined by the presence or absence of a WHERE clause. 

If a WHERE clause exis·ts, then only that part of the data base which satisfies 

the WHERE clause is used to evaluate the function. If no WHERE clause exists, 

then the entire data base qualifier and each unique value (but not their mul­

tiple occurrences) for the element determines the function's output. 

The six system functions cannot be referenced in the WHERE clause. 

5.2.13 System Functions, Without WHERE Clause 

Connnand PRINT COUNT BIRTH COUNTRY: 

Printout PRINT COUNT BIRTH COUNTRY: 

COUNT 13* 7 



1 Jt.me 1970 66 RM-SZK-1.1 

Explanation As indicated in earlier examples, without a WHERE clause on 

the print request, only unique values are considered by the functions. This 

example illustrates how this system characteristic may be used to good advan­

tage when the user wants only unique values considered. Each tenant has an 

element called BIRTH COUNTRY. If the user wanted to know how many different 

countries of birth exists within all projects, he would use this command. The 

answer 7 indicates that even though there are 538 countries of birth stored 

in this data base, there are only 7 different ones. 

5.2.14 Logical 0perators 

Command PRINT PROJECT NAME, TENANT NAME, NET INCOME FOR RENT WHERE 
NET INCOME FOR RENT GI' 8000. AND CLASSIFICATION OF NEW RENT 
EQ WELFARE: 

Printout PRINT PROJECT NAME, TENANT NAME, NET INCOME FOR RENT WHERE 

NET INCOME FOR RENT GI' 8000. AND CLASSIFICATION OF NEW RENT 

EQ WELFARE: 

l* GOMPERS HOUSES 
9 * ALCANTARA FIDEL 

36* 89 71. 
l* EASTCHESTER GARDENS 

9* BAILLY RENE M 
36* 8330. 

l* ROOSEVELT HOUSES 
9 * BOSLER GEO W 

36* 8441. 
l* ROOSEVELT HOUSES 

9* BETER D M 
36* 9600. 

l* ST. NICHOLAS HOUSES 
9* LAW RUSSELL 

36* 8487. 

Explanation The logical operators AND, OR, and NOT are used to indicate 

the relation between the conditions found in the WHERE clause. When AND is 

used, the data set values eligible for output must satisfy both conditions. 

When OR is used, the WHERE clause is satisfied by those data sets for which 

either condition is satisfied. When NOT is used, the WHERE clause is satis­

fied by all data sets which do not satisfy a condition. The format of the 

three Logical Operators is as follows: 



1 June 1970 

PRINT 

PRINT 

PRINT 

67 RM-S2K-1.1 

WHERE condition
1 

AND condition2 : 

WHERE condition
1 

OR condition2 : 

WHERE NOT condition
1

: 

The shaded areas in each of the diagrams below illustrate the logic of the 

three operators: 

AND: ( 1 
2 ) 

OR: 

NOT: 

5.2.15 Logical 0perator Combinations 

Connnand PRINT TENANT NAME, GROSS ANTICIPATED INCOME, NET INCOME 
FOR RENT, CLASSIFICATION OF NEW RENT WHERE GROSS ANTICIPATED 
INCOME SPANS 5000., 6000. OR NET INCOME FOR RENT SPANS 
4000. , 5000. AND CLASSIFICATION OF NEW RENT EQ WELFARE: 

Let us examine this PRINT connnand to see what the user wants to retrieve. He 

wants a listing of tenant names, along with each of their gross anticipated 



1 June 1970 68 RM-S2K-1.l 

incomes, net income for rent, and classification of new rent subject to the 

following criteria: 

Printout 

(a) Their gross anticipated income falls between 

$5000 and $6000 annually, OR 

(b) Their net income for rent falls between 

$4000 and $5000 AND the classification of new 

rent is welfare. 

PRINT TENANT NAME, GROSS ANTICIPATED INCOME, NET INCOME 

FOR RENT, CLASSIFICATION OF NEW RENT WHERE GROSS ANTICIPATED 

INCOME SPANS 5000., 6000. OR NET INCOME FOR RENT SPANS 

4000., 5000. AND CLASSIFICATION OF NEW RENT EQ WELFARE: 

9* AURIEMMA FRANK L 
35* 5340. 
36* 4968. 
40* WELFARE 

9* BREINDEL SAML 
35* 4 752. 
36* 4052. 
40* WELFARE 

9* CENCHEK MICHL 
35* 5290. 
36* 4531. 
40* SURCHARGE 

9* BECKER LOUIS I 
35* 5300. 
36* 5028. 
40* SURCHARGE 

5.2.16 Nested Logical Operators 

Command PRINT TENANT NAME, GROSS ANTICIPATED INCOME, NET INCOME FOR 
RENT, CLASSIFICATION OF NEW RENT WHERE (GROSS ANTICIPATED 
INCOME SPANS 5000., 6000. OR NET INCOME FOR RENT SPANS 
4000., 5000.) AND CLASSIFICATION OF NEW RENT EQ WELFARE: 



1 June 1970 69 RM-S2K-l.l 

Printout PRINT TENANT NAME, GROSS ANTICIPATED INCOME, NET INCOME FOR 

RENT, CLASSIFICATION OF NEW RENT WHERE (GROSS ANTICIPATED 

INCOME SPANS 5000., 6000. OR NET INCOME FOR RENT SPANS 

4000., 5000.) AND CLASSIFICATION OF NEW RENT EQ WELFARE: 

9* AURIEMMA FRANK L 
35* 5340. 
36* 4968. 
40* WELFARE 

9* BUCKY GERALD 
35* 5956. 
36* 3861. 
40* WELFARE 

9* BREINDEL SAML 
35* 4752. 
36* 4052. 
40* WELFARE 

Explanation This example illus tr ates nesting, within parentheses, of the 

OR connective. This causes the statement in which the OR is embedded to be 

processed before the AND operator. 

There is an order of processing implicit with the use of these logical operators. 

Without nesting, as in the first example, the order of processing is NOT, AND 

and OR. The user can further control his retrieval by nesting the operators 

in one of the following formats, keeping in mind that statements enclosed by 

paired parentheses are processed before unnested conditions. 

PRINT •.• WHERE {condition1 AND condition2): 

Since no conditions lie outside of the parentheses, they are ignored and the 

WHERE clause is processed as though the parentheses had been omitted. 

PRINT WHERE NOT (condition
1 

AND condition2): 

Because of nesting, the statement within the parentheses is processed first; all 

data which meets both condition1 and condition2 is selected. The NOT connective 

causes this data to then be excluded. Remove the parentheses and see how this 

changes the criteria. 

PRINT .•. WHERE (condition
1 

OR condition2) AND (condition3 AND condition4): 



1 June 1970 70 RM-S2K-1.1 

First, the OR of (condition1 OR condition2) is found; next, the AND of 

(condition3 AND condition4) is found, and finally the AND of these two 

results is found. 

PRINT •.. WHERE (condition1 OR condition2) AND (NOT (condition3 
AND condition4)): 

(a) The AND of condition3 and condition4 is found; the NOT of that result 

is then found. 

(b) The OR of condition1 and condition2 is then found. 

(c) The AND of results (a) and (b) is then used for output. 

Conditions 3 and 4 are nested two levels deep while condition 1 and 2 are 

nested one level deep. The request contains two nestings of conditions. 

5.2.17 The Use of AT 

Command PRINT PROJECT NAME, TENANT NAME, CHARGES 1 WHERE AMOUNT OF CHARGE 

EXISTS AT 2: 

Printout PRINT PROJECT NAME, TENANT NAME, CHARGES WHERE AMOUNT OF CHARGE 

EXISTS AT 2: 

l* BARUCH HOUSES 
9* CADOGAN EDITH 

58* 11/15/69 
59* LEGAL FEES 
60* P + P NOTICES 
61* 2.00 
58* 12/10/69 
59* SERVICFS 
60* LOCKOUTS 
61* .50 

l* BARUCH HOUSES 
9* CAFFREY PATK 

58* 11/15/69 
59* LEGAL FEES 
60* P + P NOTICES 
61* 2.00 
58* 12/10/69 
59* SERVICES 
60* LOCKOUTS 
61* • so 



1 June 1970 

Explanation 

71 

l* CARVER HOUSES 
9* BRYANT KATHERINE 

58* 11/15/69 
59* LEGAL FEES 
60* P + P NOTICES 
61* 2.00 
58* 12/12/69 
59* FINES 
60* STOVE OVEN DOOR - CO~!'LFlE 

61* 5.00 

The format of the AT phrase is as follows: 

WHERE <condition> AT <n>: 

RM-S2K-l. l 

The AT phrase means that the nth.data set in a sequence of data sets is to 

be tested for the condition. "n" must be a positive integer. The example 

above indicates the AMOUNT OF CHARGE is a component in a repeating group, 

CHARGES, having multiple values associated with it. Each logical entry 

that has two or more occurrences will qualify the right hand side of the 

WHERE clause for possible output. When "AT n" is used, the user is requesting 

the last occurrence of the condition. 

5.2.18 The Use of HAS, HAVE, HAVING 

Command 

Printout 

Explanation 

PRINT TENANT NAME WHERE ACCOUNTS HAS DESCRIPTION OF CHARGE 
EQ P+P NOTICES AND ACCOUNTS HAS DESCRIPTION OF CHARGE EQ 
LOCKOUTS: 

PRINT TENANT NAME WHERE ACCOUNTS HAS DESCRIPTION OF CHARGE 
EQ P+P NOTICES AND ACCOUNTS HAS DESCRIPTION OF CHARGE EQ 
LOCKOUTS: 

9* CADOGAN EDITH 
9* CAFFREY PATK 

One of the basic structural rules of SYSTEM 2000 is that an 

element can only assume one value within a single data set. If, however, it 

is desired to retrieve something which can only be qualified on the basis 

that it has different values for the same element occurring in different data 

sets, then the HAS command must be used. 



1 June 1970 72 RM-S2K-l. l 

The standard format for the use of HAS is as follows: 

••• WHERE <repeating group>HAS<condition>: 

The system logic associated with the use of the HAS command is in giving the 

user the ability to choose the level at which a data set will become a Quali­

fied Data Set (see Concept of Normalizing discussion). The <repeating group> 

given to the left of the HAS in the WHERE clause statement actually specifies 

the data sets which can qualify and become Qualified Data Sets. 

When constructing the WHERE clause, the user must be aware of the data base 

tree structure sufficiently to select a <repeating group> which is an ancestor 

to the location of the <condition> being constructed. Choosing any ascending 

data set node above the conditional location will accomplish the stated pur­

pose of the retrieval. If level zero data sets are to become the qualified 

data sets, the user may choose ENTRY. 

However, the user must choose a <repeating group> at or above the data tree 

nodal location of the Specified Data Sets or else output redundancies will 

occur. This, then is the secondary use of the command HAS which allows the 

control of output redundancies. In a WHERE clause statement, the various 

conditions can create multiple Qualified Data Sets. If more than one data 

set qualifies as a Qualified Data Set and any of them occur at a level below 

the Specified Data Sets, they will "nominate" the Specified Data Sets for 

output as Selected Data Sets as many times as they qualified. An example 

of this secondary use will assist understanding at this point. 

Connnand 

Printout 

PRINT PROJECT NAME WHERE AMOUNT OF CHARGE EXISTS AT 2: 

PRINT PROJECT NAME WHERE AMOUNT OF CHARGE EXISTS AT 2: 

l* BARUCH HOUSES 
· 1 * BARUCH HOUSES 
l* BARUCH HOUSES 
l* CARVER HOUSES 
l* CARVER HOUSES 



9 June 1970 73 FM-S2K-l.3 

Explanation The output indicates that Baruch Houses had three accounts 

which had two charges and Carver Houses had two accounts which had two charges. 

This is true since the request asks that the qualification occur at the lower 

level 2 where AMOUNT OF CHARGE exists and each data set which qualified would 

select the PROJECT NAME to be output. If the user wished only to know which 

projects had two charges per tenant then he would phrase the request in the 

following manner: 

Connnand 

Printout 

PRINT PROJECT NAME WHERE ENTRY HAS AMOUNT OF CHARGE EXISTING 
AT 2: 

l* BARUCH HOUSES 
l* CARVER HOUSES 

It is possible to construct a very complicated WHERE clause with many condi­

tions. If there is a combination of HAS and non-HAS conditions in a WHERE 

clause and the logical operator AND ties them together, then the repeating 

group component specified in the HAS condition must be ancestorily related to 

the element appearing in the non-HAS condition to produce output results. That 

is, both the repeating group component and the non-HAS element must be in the 

same data tree. If different repeating group components are used in the WHERE 

clause, they also must be ancestorily related, or belong to the level 0· 

repeating group ENTRY. This does not hold if the logical operator used is OR. 

If the repeating group name happens to be plural in the definition or proper 

English would dictate, the user may use HAVE instead of HAS; HAVING is also 

acceptable. The AT n phrase may be used with the HAS option, which has already 

been demonstrated. 

5.2.19 The Use of DITTO 

Command PRINT PROJECT NAME, TENANT NAME, DESCRIPTION OF CHARGE WHERE 
PROJECT NAME EQ BARUCH HOUSES AND DESCRIPTION OF CHARGE EXISTS 
AT 2: 
DITTO WHERE PROJECT NAME EQ BLAND HOUSES AND DESCRIPTION OF 
CHARGE EXISTS AT 2: 

Printout PRINT PROJECT NAME, TENANT NAME, DESCRIPTION OF CHARGE WHERE 

PROJECT NAME EQ BARUCH HOUSES AND DESCRIPTION OF CHARGE EXISTS 

AT 2: 



1 June 1970 

Explanation 

74 

l* BARUCH HOUSES 
9* BOOKSTAVER BURTON J 

60* MARSHAL 
l* BARUCH HOUSES 

9* ARL INS KY REUBEN 
60* CLOTHES DRYER - COMPLETE 

1* BARUCH HOUSES 
9* ADAMO LUIGI 

60* LIGHT FIXTURE GLOBE 
l* BARUCH HOUSES 

9* CADOGAN EDITH 
60* LOCKOUTS 

l* BARUCH HOUSES 
9* CAFFREY PATK 

60* LOCKOUTS 
1* BARUCH HOUSES 

9* BROMFELD MAX 
60* LOCKOUTS 

RM~S2K-1. l 

DITTO WHERE PROJECT NAME EQ BLAND HOUSES AND DESCRIPTION OF CHARGE 

EXISTS AT 2: 

l* BLAND HOUSES 
9* CARSON J B 

60* TOILET SEAT WITH COVER 
l* BLAND HOUSES 

9* CELLA E R 
60* LOCKOUTS 

Instead of repeating the conditions listed in the PRINT ... speci-

fications, use of DITTO regenerates the same specifications used in the PRINT 

command immediately preceding, which can then be subjected to different retrieval 

criteria in the WHERE clause, as follows: 

DITTO WHERE <conditions exist>: 

The use of DITTO requires a WHERE clause in the previous request. 

5.2.20 The Use of SAME and SAME AND 

Command PRINT TENANT NAME, GROSS ANTICIPATED INCOME, NET INCOME 
FOR RENT, CLASSIFICATION OF NEW RENT WHERE (GROSS ANTICIPATED 
INCOME SPANS 5000., 6000. OR NET INCOME FOR RENT SPANS 4000., 
5000.) AND CLASSIFICATION OF NEW RENT EQ WELFARE: 

PRINT PROJECT NAME, TENANT NAME, MILITARY RECORD WHERE SAME: 

DITTO WHERE SAME AND MILITARY RECORD EQ KOREAN VETERAN: 



1 June 1970 

Printout 

Explanation 

75 FM-S2K-l.1 

PRINT TENANT NAME, GROSS ANTICIPATED INCOME, NET INCOME FOR 

RENT, CLASSIFICATION OF NEW RENT WHERE (GROSS ANTICIPATED INCOME 

SPANS 5000., 6000. OR NET INCOME FOR RENT SPANS 4000., 5000) 

AND CLASSIFICATION OF NEW RENT EQ WELFARE: 

9* AURIEMMA FRANK L 
34* 5340. 
36* 4968. 
40* WELFARE 

9* BUCKY GERALD 
35* 5956. 
36* 3861. 
40* WELFARE 

9* BREINDEL SAML 
35* 4752. 
36* 4052. 
40* WELFARE 

PRINT PROJECT NAME, TENANT NAME, MILITARY RECORD WHERE SAME: 

l* GOMPERS HOUSES 
9* AURIEMMA FRANK L 

54* NO VETERAN OR SERVICE MAN 
l* MARKHAN GARDENS 

9* BUCKY GERALD 
54* KOREAN VETERAN 

l* POMONOK HOUSES 
9* BREINDEL SAML 

54* NO VETERAN OR SERVICEMAN 

DITTO WHERE SAME AND MILITARY RECORD EQ KOREAN VETERAN: 

l* MARKHAN GARDENS 
9* BUCKY GERALD 

54* KOREAN VETERAN 

SAME means that the contents of the WHERE clause of the inunediately 

preceding retrieval request are to be used in the WHERE clause of the next re­

quest. SAME does for the right-hand portion of the WHERE clause what DITTO 

does for the left-hand side. If there was an error in the previous request, 

then no results will be given for a SAME request. A record is kept of WHERE 

clause results; thus, SAME never involves reprocessing any WHERE clause. The 



I 

June 1970 76 RM-SZK-1.3 

command SAME can be used with any of the three logical operators; AND, OR, 

or NOT followed by a condition statement. A modification of the immediately 

preceding request WHERE clause can be expressed by using SAME and any number 

of additional conditions. SAME must immediately follow WHERE. A modified 

SAME clause becomes the "SAME" clause of the next request, and so on, allowing 

the user to browse through the data base without repeating WHERE clause con­

ditions. As shown, DITTO can be used in these combinations. 

5.Z.Zl Strings 

SYSTEM ZOOO users have the ability to associate long strings of characters to­

gether, name the string, and subsequently recall the whole set of characters with 

only the name. This provides the user with an ability to reference long strings 

of characters, as in a request with multiple components, merely by naming 

them. The name given a character string must be preceded by a system· 

separator, as in the following example. 

Assume that the user wishes to reference the stub series contained in the 

following PRINT command: 

PRINT Cl, CZ, C3, C4, C5, C6 WHERE C5 EXISTS: 

The user creates the string, PRINT Cl •.. C6 as follows: 

DEFINE: 
OLD DATA BASE data base name: 
l* PROJECT REPORT (STRING(PRINT Cl, CZ, C3, C4, C5, C6)): 
REMAP: 

Later, the string may be used in the following way: 

RETRIEVAL: 
*PROJECT REPORT* WHERE C5 EXISTS: 

Note that in the PRINT command, the name of the character string, PROJECT 

REPORT, must be bracketed by the system separator, * 

associating strings is: 

The general format for 

nnnn ss string name (STRING (any arbitrary string of characters)): 



1 June 1970 77 RM-S2K-1. l 

where: nnnn = an integer number between 1 and 9999, 

ss = system separator, and 

string name = any user chosen name. 

The commands used to describe Strings are as follows: 

DESCRIBE STRINGS: 
DESCRIBE S#: 
DESCRIBE S# THROUGH S#: 
DESCRIBE S# THRU Sii: 
DESCRIBE Sii TO END: 

5.2.22 User-Defined Functions 

The SYSTEM 2000 user may define his own functions to support his unique oper­

ational requirements. This may be done when the data base is originally defined 

or may be accomplished during its operational utilization. Operating with the 

Portfolio I Data Base, an example is given showing the defining of a function 

and its use in retrieval after defining. The user must request the DEFINE 

Module to initiate this action. 

Connnand 

Printout 

DEFINE: 
OLD DATA BASE PORTFOLIO: 
77* DIVIDEND YIELD (FUNCTION(C23/C24*100)): 
REMAP: 

Later, the function may be used in the following way: 

RETRIEVAL: 
PRINT PORTFOLIO NAME, NAME OF STOCK, F77 WHERE PORTFOLIO NAME 
EQ SPECIAL AND DIVIDEND EXISTS: 

PRINT PORTFOLIO NAME, NAME OF STOCK, F77 WHERE PORTFOLIO NAME 

EQ SPECIAL AND C23 EXISTS: 

9* SPECIAL 
13* NATOMAS 

F77* .2680965147 
9* SPECIAL 

13* KAISER STEEL 
F77* 2.076124567 



1 June 1970 

9* SPECIAL 
13* SYNTEX 

78 

F77* .5228758170 
9* SPECIAL 

13* ELECTRONIC DATA SYSTEMS 
F77* 0. 

9* SPECIAL 
13* INFORMATICS, INC. 

F77* 0. 

RM-S2K-1.1 

Explanation The newly defined function is used in the PRINT command just like 

a component. In this case, however, the function, F77, DIVIDEND YIELD, did not 

request the retrieval of stored values, but the results of a calculation based 

upon the retrieval of stored values. The actual function is the quotient of 

the DIVIDEND, C23, divided by the CURRENT PRICE, C24, multiplied by the constant, 

100. 

The commands used to describe Functions are as follows: 

DESCRIBE FUNCTIONS: 
DESCRIBE Ff!: 
DESCRIBE F# THROUGH F#: 
DESCRIBE Ff! THRU Ff!: 
DESCRIBE Ff! TO END: 

The user-defined functions cannot be referenced in the WHERE clause. 

5.2.23 Maintenance Function Commands 

All of the foregoing RETRIEVAL commands have had some direct relevance in re­

trieving data base information for the purpose of collecting and using the 

information in support of some operational need. There are two other commands 

available in the RETRIEVAL Module which are used for what might be called a 

maintenance function: they manipulate the data base. 

UNLOAD and UNLOAD WHERE 

The UNLOAD and UNLOAD WHERE commands are used to extract data from 

the data base, like any of the other commands discussed. However, 

these commands produce LOADER string input suitable for loading 

into a defined data base. The format of the UNLOAD commands is as 



1 June 1970 79 RM-S2K-1. l 

follows: 

UNLOAD: 

UNLOAD WHERE <conditions exist>: 

The results of an UNLOAD operation are sent to the REPORT FILE, like 

any other retrieval. However, the loader input string produced by an 

UNLOAD contains no carriage control for vertical spacing on the printer 

and would lead to an uncontrollable print. Therefore, the user must 

specify a REPORT FILE other than the default setting by use of the 

REPORT FILE IS < >: command. 

RELOAD 

The RELOAD request causes the entire data base to be unloaded and 

automatically rewritten into the same data base of the same name 

without data change. Should the internal file structures be made 

less efficient by a voluminous number of data base updates, this 

technique will regain the original retrieval efficiency. The format 

of this command is simply RELOAD:. 

5.2.24 Concept of Normalizing 

SYSTEM 2000 uses the concept of normalization, or normalizing, within the 

RETRIEVAL and UPDATE modules. The normalizing concept has to do with the 

problem of selecting the appropriate elements or repeating groups for re­

trieval or update operations. This is important to the user because, under­

standing the concept, he can construct his command to achieve the unique results 

desired. 

Three new terms are required at this point to assist in the understanding of 

this new concept. 

(1) Specified Data Sets - the data sets implicitly identified 

by the components listed to the left of the WHERE clause 

statement in a retrieval request and located to the left 



I 

9 June 1970 80 RM-S2K-l. 3 

of the EQ of the update request. The components may be 

identified by name or by number. The data sets are 

implicitly identified by requesting elements within the 

data sets or naming the repeating group which generates 

the Specified Data Sets. The level within the data base 

structure where these Specified Data Sets occur is of 

great importance. If elements are used to identify the 

Specified Data Sets, then the elements and the data sets 

will be at the same level, since the elements come from 

within the data set. If a repeating group is used to 

identify the data sets, then the Selected Data Sets will 

occur at one level below the listed repeating group. 

(2) Qualified Data Sets - data sets that satisfy the entire 

(3) 

WHERE clause condition(s). When the system starts processing 

a command it processes the WHERE clause first. Those data 

sets which satisfy all the conditions in the WHERE clause are 

temporarily ·"collected" and tested to see if any of the 

Qualified Data Sets are named or implied by the Specified 

Data Sets. If they are, they become: 

Selected Data Sets - data sets produced from the Qualified 

Data Sets. That is, those data sets named by the Specified 

Data Sets and selected by qualification for retrieval or 

update modification. Within the UPDATE module only, a full 

or partial tracing to the logical placement of a data set 

is possible. When this capability is used, the Selected 

Data Set is selected due to its position within the data 

base structure. 

The remainder of this discussion will deal only with normalizing within the 

RETRIEVAL module. Some retrieval requests do not use the WHERE clause. If 

the request contains no WHERE clause, then the entire data base qualifies for 

output. If a WHERE clause is used, but no data sets satisfy the conditions 



I 

6 June 1970 81 RM-S2K-l.2 

imposed by the WHERE clause, no action is taken for the request. If a list 

of Qualified Data Sets is produced, then each Qualified Data Set is examined 

to see if it is also a Specified Data Set. If it is, then it becomes a 

Selected Data Set. If all components in the WHERE clause reference only the 

Specified Data Sets, then all Qualified Data Sets are also the Selected Data 

Sets. The following examples use the Sample PORTFOLIO Data Base Definition, 

Figure 2, and the Data Base Structure ••• PORTFOLIO Loader String, Figure 6. 

PRINT PORTFOLIO NAME, MANAGER WHERE PORTFOLIO NAME EXISTS: 

Effect: The Qualified Data Sets are the Selected Data Sets. 

The Qualified Data Sets are data sets numbers 2 

and 11, because PORTFOLIO NAME has a value in both 

data sets. The Specified Data Sets indicate the same 

two data sets (the data sets were implied by use of the 

element, PORTFOLIO NAME, which is a member of the 

repeating group, PORTFOLIO. 

The WHERE clause may frequently contain components which produce Qualified 

Data Sets which are not the same as, or do not occur at the same level as 

Specified Data Sets. If this happens, a level adjustment up or down must be 

made for each Qualified Data Set that does not belong to the Specified Re­

peating Group. 

Level adjustment may be upward or downward or both depending upon the Specified 

Data Sets and the relationship of the particular Qualified Data Set being ad­

justed. Upward level adjustment takes place when the Qualified Data Set is 

a descendant (at whatever level) lying below the Specified Data Set according 

to the hierarchy of the data base definition. The adjustment follows an upward 

path from the Qualified Data Set to its ancestral data set, the Specified Data 

Set. No additional data sets are ever selected by upward level adjustment; 

one and only one Selected Data Set can be found and substituted for the Quali­

fied Data Set. If ENTRY or CO is the Specified Data Set and the Qualified Data 

Sets lie below level 0, then the upward level adjustment selects entire logical 

entries and the Selected Data Sets are all level 0 data sets. 



6 June 1970 82 RM-S2K-l.2 

PRINT STOCKS WHERE DATE GT 07/01/69: 

Effect: The Qualified Data Sets are those sets at level 3 

where date is greater than 07/01/69. The Specified 

Data Sets are at level 2. The Qualified Data Sets 

are adjusted upward one level to the Specified Data 

Set level for retrieval of the Selected Data Sets. 

In this example, data set 6 is the only Qualified Data 

Set; it is normalized upward to data set 3, the 

Specified Data Set; and then the entire contents of 

data set numbers 3, 4, 5 and 6 are output. This 

illustrates that when a repeating group number is 

specified in the PRINT clause not only Selected Data 

Sets are output, but all of their descendants as well, 

unless otherwise qualified within the retrieval request. 

If the Specified Data Sets are named by an element from within a repeating 

group, then the Selected Data Sets will contain the elements specified and 

descendants are not displayed. If, however, the Specified Data Sets are 

named by a repeating group, then not only data sets from the same level as 

the repeating group are output as Selected Data Sets, but all descendants from 

the Selected Data Sets are output as well. 

Downward level adjustment takes place when the Qualified Data Sets occur at 

a higher level than do the Specified Data Sets. Another way of stating the 

same situation is to say that the Qualified Data Set is an ancestor of the 

Specified Data Set. All paths are followed downward from each Qualified Data 

Set to all descendant Specified Data sets and these become the Selected Data 

Sets. Downward level adjustment may produce none, one, or many Selected Data 

Sets from one Qualified Data Set depending upon how many descendants exist. 

Again, unless otherwise qualified, all descendants from the Selected Data 

Sets are output, if, the Specified Data Sets are named by use of a repeating 

group. 



I 

I 

6 June 1970 83 RM-S2K-1.2 

PRINT NAME OF STOCK WHERE TRANSACTION TYPE EQ BUY: 

Effect: In this example, there are two Qualified Data Sets, 

data set numbers 4 and 8; number 4 is normalized up to 

data set 3 where the NAME OF STOCK is AMERICAN CYANAMID, 

and number 8 is normalized up to data set 7 where the 

NAME OF STOCK is GENERAL MOTORS. The output results in 

two Selected Data Sets and no descendant data sets. The 

Specified Data Sets were named by an element which calls 

for an output of the selected elements: 

13* AMERICAN CYANAMID 
13* GENERAL MOTORS 

When the Qualified Data Set does not belong to the same family repeating 

group represented by the Specified Data Set, the level adjustment follows 

an ~pward path from the node occupied by the Qualified Data Set to the first 

intersection with a node in the data tree of the disjoint repeating group 

data sets, then downward from that common intersection. All Specified Data 

Sets and thus all Selected Data Sets are selected below the common intersection. 

Repeating groups always have a meet at level O, but the intersection might 

occur at lower levels, depending upon the logical entry definition. 

Effect: 

PRINT NAME OF STOCK WHERE NAME OF ISSUER EXISTS; 

Even though the two repeating groups, STOCKS and BONDS 

occur at the same level, you cannot get from one to the other 

without normalizing up and then back down. The Qualified 

Data Set is number 10. To get to the Specified Data Sets 

the system normalizes up to the common node, data set number 

2, and then back down to data sets 3, 7 and 9 which become 

the Selected Data Sets. The output would be: 

13* AMERICAN CYANAMID 
13* GENERAL MOTORS 
13* UPJOHN 



6 June 1970 
RM-S2K-l. 2 84 

One very important facet of normalizing remains: the frequent occurrence 

of multiple Qualified Data Sets. When the right hand side of a WHERE clause 

creates more than one Qualified Data Set, the system may produce duplicate 

values in the output, unless otherwise controlled. This happens because the 

normalization process is repeated from each Qualified Data Set to every 

Specified Data Set, to finally arrive at Selected Data Sets. An example will 

illustrate this point. 

PRINT NAME OF STOCK WHERE TRANSACTION TYPE EQ SELL: 

Effect: This WHERE clause produces two Qualified Data Sets, 

numbers 5 and 6. The system normalizes data set number 5 

up to data set number 3, where NAME OF STOCK exists as 

AMERICAN CYANAMID. But Qualified Data Set number 6 also 

normalizes up to the same data set number 3. Each normaliz­

ing action is unique and results in the following output: 

13* AMERICAN CYANAMID 
13* AMERICAN CYANAMID 

If the user desires to control the level at which qualification takes place, 

he may further constrain the WHERE clause statement by use of the HAS connnand. 

The secondary use of HAS actually allows the user to specify the level at 

which qualification takes place. (See the discussion on the use of HAS, HAVE.) 

5.3 OUTPUT FORMAT 

The current effective options regarding indentation, spacing and inclusion or 

exclusion of component numbers rule the overall output display. 

5.3.1 Output Format for Data Values 

All Dates, Name and Text type data values are displayed exactly as they were 

entered into the data base. All numeric data are output in the format of the 

first occurrence of each unique numeric value within a component. If, for 



1 June 1970 85 RM-S2K-l.l 

example, a component defined as a type integer element has as its first value 

the number 10 expressed in the format of 00010, additional occurrences of the 

unique value 10, regardless of the number of leading zeros,(e.g., 10, 010, 

0010, 00000010) will be displayed as a five digit number, 00010. Similarly, 

occurrences of decimal and exponential numbers will be displayed in the 

format of the first occurrence of each unique value for each element, re­

gardless of leading and trailing zeros in later occurrences of the value. 

5.3.2 Output Format For System Functions 

The standard output format for all system functions (SUM, COUNT, MAX, MIN, 

AVG or SIGMA) includes the function name as part of the stub display (e.g., 

SUM l* 297). If, however, the stub suppress option has been used, the 

function name as well as the component number is suppressed (e.g., 297). 

The results of COUNT are always displayed as integer numbers. The SUM and 

AVG of integer numbers are displayed as integer numbers. The SUM and AVG 

of decimal and exponential numbers are displayed in ten place decimal format, 

if values permit, and 20 places decimal format if values dictate. SIGMA or 

Standard Deviation of all numeric values are displayed in ten digit decimal 

format. The output of MIN and MAX follows the format of stored data values 

described earlier. 

5.3.3 Output Format For User-Defined Functions 

When a user-defined function is requested under the normal STUB display, the 

output associates an F before the component number to differentiate between 

functions and elements (e.g., F75* 200). The type of function (integer, etc.) 

determines the output format of the function value. If the numeric function 

type was not defined by the user, DECIMAL format is assumed. Output formats 

for the three numeric types of functions are: 

DECIMAL FUNCTION 

INTEGER FUNCTION 

EXPONENTIAL FUNCTION 

10 significant digits plus decimal 
point 

up to a maximum of 15 digits 

up to a maximum of 10 digits plus the 
exponential suffix 



9 June 1970 86 RM-S2K-l.3 

5.4 DEFAULT CONDITIONS IN THE RETRIEVAL MODULE 

1. Output Specifications 

a. Format Control Defaults - Standardly initialized to SINGLE 

SPACE, STUB, INDENT 

Once a user has chosen his set of format controls for a given 

sequence of requests, he does not have to re-specify the format in subsequent 

requests in the same job. Format control options are retained and applied 

to subsequent requests as long as no other task is called. If another task 

module is called, then the next call to RETRIEVAL reinitiates all standard 

defaults. 

b. Output Commands 

The PRINT, DITTO and UNLOAD results are always sent to the 

REPORT FILE. The REPORT FILE is by default the on-line printer or the remote 

device unless changed by the user. (See System-Wide defaults.) 

2. Output Display Order 

a. Absence of WHERE Clause 

1) Elements 

When a WHERE clause does not exist in the request, element 

values requested are displayed by element with each set of values 

in ascending order. 

2) Repeating Groups 

If a repeating group is to be displayed, then the data values 

are displayed by the order of the entrance of the data set and data valu~s 

into the data base. Elements of a repeating group may be displayed in 

any order but that order must be explicitly stated by the left-to-right 

order of elements specified in the output list; furthermore, if the 

elements of a given repeating group are grouped together in the request, 

that order overrides the order given in the definition of that repeating 

group. 

b. Presence of WHERE Clause 

1) If the request specifies PRINT ENTRY WHERE < >:, or 

PRINT <repeating group> WHERE < >:, then logical entries or 



l_June 1970 87 RM-S2K-l.1 

repeating group data sets are displayed in order of entrance into 

the data base according to the conditions that were satisfied in 

the WHERE clause. 

2) If the PRINT clause names elements and repeating groups 

specifically, then for each data set satisfying the WHERE clause 

the values associated with that data set for those components 

specified in the PRINT clause are displayed in the order specified 

fully before displaying the values for the next qualified data set. 

The order of qualified data sets is determined partly by 

the data base structure and partly by the WHERE clause conditions. 

3) If any error occurs in a retrieval request, the job 

continues to try to process the next request. 



1 June 1970 88 RM-S2K-l.l 

6.0 UPDATE MODULE 

6.1 INTRODUCTION 

After the data base has been defined by the DEFINE module, and at least one 

logical entry loaded into the data base by the LOADER module, any additional 

data can be inserted into the data base or modified within the data base by 

use of the UPDATE module. 

The UPDATE module modifies data values, data sets, or data trees. To modify 

means to add, change, remove, assign or insert. A data set may be defined 

as each set of values associated with a repeating group at a given level with­

in a data base. A data tree is a data set at a given level plus all its direct 

descendant data sets. 

An illustration of a data base structure will assist the understanding of data 

sets and data trees. The loader string example as shown in the LOADER module 

section, Figure 5, is expressed in a graphic manner as shown in Figure 6, 

Section 4.1. Figure 6 indicates that the data base contains two logical entries; 

City Trust Company and Good Life Insurance Company. Logical entry number one 

contains much more data than does logical entry number two. The data within 

number one is logically distributed into four levels, indicating the hierarchi­

cal relationship of data within SYSTEM 2000. Each box in Figure 6 is a data 

set. A data tree was just defined as any data set at a given level plus all 

its direct descendant data sets. An example of a data tree would be data set 

three, the one containing the information on AMERICAN CYANAMID, and the descen­

dant data sets 4, 5 and 6, or the BUY-SELL information pertaining to trans­

actions of AMERICAN CYANAMID. One way of describing the structure of logical 

entry number one is to say that the ORGANIZATION contains two PORTFOLIOS. The 

first PORTFOLIO, INCOME, contains three STOCKS and one BOND; the first STOCK 

contains three TRANSACTIONS; the second STOCK contains one transaction and the 

third STOCK contains no transactions. The second PORTFOLIO, TRUST, contains no 

STOCKS or BONDS and thus, no TRANSACTIONS. The second logical entry has no 

descendant data sets. 



9 Jtme 19 70 89 RM-S2K-l. 3 

The varied capabilities within UPDATE include: 

* Adding or modifying information within existing data sets. 

*Removing information from existing data sets. 

*Adding or modifying partial or total logical entries (data trees). 

* Removing partial or total logical entries. 

The user must request the UPDATE module before any UPDATE connnands are legal. 

He does this by giving the system-wide connnand, UPDATE:, followed by one or 

more UPDATE conunands for every UPDATE job submission. During any one job, 

the UPDATE module could be called several times by its system-wide connnand, 

[;jl if the UPDATE requests are interspersed with other module activity, such as 

DEFINE or RETRIEVAL. Every time the UPDATE module is called and an UPDATE 

connnand or colllllands results in successful modification of the data base, the 

system increments the data base version number by one so as to advise the 

user of the number of times his data base has been changed. If the specific 

UPDATE connnands which follow are not legal, or fail to select any data sets 

for modification, the data base version number does not get incremented be­

cause there was no change. 

There is no output as a result of UPDATE connnands similar to the output re­

sulting from RETRIEVAL connnands. There are only four outputs that can ever 

occur as the direct result of an UPDATE connnand. They are: 

(1) An Error Message, or 

(2) 0 Selected Data Sets 

Data Base Unaltered, or 

(3) The New Data Base Version Number 

The Number of Data Sets Selected for Modification. 

(4) Update File Informative Messages 

If the user desires verification of the UPDATE command results, he can request 

appropriate retrievals following his updates. 



9 June 1970 90 RM-S2K-l.3 

6.2 UPDATE COMMANDS 

The UPDATE commands used to modify the working data base are discussed within 

this section. When preparing for an UPDATE request, the user decides: 

(a) which UPDATE operation is desired, and 

(b) which data sets are to be selected for the operation. 

UPDATE commands are categorized as operations which either modify existing data 

values, data sets and data trees, or create new data sets and new logical 

entries. Operations modifying existing data sets may be further classified 

as either single level operations or multiple level operations. Single level 

UPDATE operations modifying existing data sets are: 

(a) ADD 
(b) CHANGE 
(c) REMOVE 
(d) ASSIGN 

Multiple level (TREE) UPDATE operations modifying existing data sets are: 

(a) REMOVE TREE 
(b) ASSIGN TREE 

The INSERT TREE operation creates new data sets before or after existing data 

sets. Though insertion implies a multiple level operation, the new tree might 

only contain only a single data set. 

In all TREE operations, the TREE concept or structure must be kept in mind such 

that a TREE, by definition, has only one data set at whatever level it starts 

and can descend downward with multiple data sets occurring below the nodal data 

set. 

Knowledge of the RETRIEVAL module will prove helpful when constructing the 

various UPDATE commands. Practically all UPDATE conunands utilize the WHERE 

clause which is used and constructed exactly as discussed in the RETRIEVAL module. 

The WHERE clause qualifies data sets within the data base for possible modifica­

tion. If a WHERE clause would be inappropriate, then a trace notation or a com­

bination of trace notation with a WHERE clause can be used. A request contain­

ing no WHERE clause or trace notation is meaningless and illegal. 



1 June 1970 91 RM-S2K-l.l 

6.2.1 General Format for UPDATE Commands 

The general format for all UPDATE commands is given in Figure 7. There are 

three different formats indicated. The initial word or words in each command 

give a direct indication of its power and capability as suggested in the pre­

vious section. The capability of each will be discussed in a separate section 

devoted to the conmand itself. 

Descriptions of terms used in the general formats in Figure 7 are as follows: 

Component Identification 

Each of the commands must contain the component identification of 

the element or repeating.group(s) to be modified. The legal values 

to be inserted here can be: 

* an element or repeating group name, or 

* an element or repeating group number, or 

* the word ENTRY or its equivalent, C0. 

Data String 

The data string contains the data values to be inserted into the 

data base. Its format consists of the following: 

data values ~[two (2) system separators][entry terminator word] 

The data values consist of a single value when modifying a single 

element or a loader string when more than one element value is being 

modified. The entry terminator word is an optional item. The com­

ponent identification and the data string must logically agree as 

follows: 

Component Identification 

element name or number 

repeating group name or number 

Retrieval Conditions 

Data String 

single value 

loader string 

The retrieval conditions following the WHERE clause are the same con-



I 

I 

I 

• 

Format 1 

~D or 

~ CHANGE or <component identification>1 EQ <data string> WHERE <update conditions>: 
ASSIGN or 
ASSIGN TREE or AT 

Format 2 

~MOVE or ~ <component identification>1 WHERE <update conditions>: 
REMOVE TREE or 

Format 3 

INSERT TREE or IT <component identification> EQ <data string> ~EFO~ <update conditions>: 
AFTER 

or INSERT TREE or IT <component identification>1 EQ <data string>~ERE] <update conditions>: 

FIGURE 7 

General Format for UPDATE Commands 

1Immediately following the component identification, a trace notation may be inserted. Trace 
notation is discussed in section 6.2.11. 

\D 

'-4 
§ 
Ct> 

~ 
\0 
...... 
0 

\0 
l'oJ 



I 

9 June 1970 93 RM-S2K-l.3 

ditions as discussed in the RETRIEVAL module. The WHERE SAME and WHERE SAME 

modified commands may be used within the UPDATE module or across the UPDATE 

and RETRIEVAL modules. 

6.2.2 The ADD or AD Command 

Purpose To add data within existing data sets where no data currently exists. 

General Format 

ADD <component identification>1 EQ <data string> WHERE <update conditions>: 

Add One Element If a data value is to be added to a single element in all of 

the selected data sets, then the component identification is the user-defined name 

or number of the element and the data string is the single data value terminated 

by two system separators and, optionally, the entry terminator word. The follow­

ing examples utilize the PORTFOLIO Data Base as defined in section 3.4.13. 

ADD CURRENT DATE EQ 02/25/70 **END WHERE Cl EQ GOOD LIFE INSURANCE CO: 

ADD Cl4 EQ UPJ **WHERE Cl3 EQ UPJOHN: 

Adding Multiple Elements If a data value is to be added to more than one element, 

then the component identification is the name or number of the repeating group 

which associates the elements. The data string is composed of the elements with 

their data values in data string format. The order of the data values to be 

added is irrnnaterial as long as each value is preceded by its appropriate element 

number. ENTRY or C0 signify the level 0 data sets. 

ADD STOCKS EQ 14* UPJ 15* NYSE 17* 2834 16* PHARMACEUTICAL ** 
WHERE C9 EQ INCOME AND Cl3 EQ UPJOHN: 

ADD C8 EQ 10* E 11* W.D. GARDNER **END WHERE C9 EQ TRUST: 

6.2.3 The CHANGE or CH Command 

Purpose To change data within existing data sets where data exists. 

1A trace notation may be entered following the component identification. For 
an explanation of trace notation, see Section 6.2.11. 



I 

CJ June 19 70 94 RM-S2K-l. 3 

General Fonnat 

CHANGE <component identification> 1 EQ <data string> WHERE <update conditions>: 

Change One Element Identifying the element(s) whose value is to be changed is 

like that of the ADD operation. If a data value is to be changed for a single 

element in all selected data sets, the component identification specifies the 

element and the data string contains the data value. 

CHANGE MANAGER EQ B.J. DILLARD **END WHERE C9 EQ INCOME: 

CHANGE C24 EQ 27. 25 **WHERE Cl3 EQ AMERICAN CYANAMID: 

Changing Multiple Elements If several elements in a repeating group are to have 

their values changed, then the specified repeating group is identified. Order of 

data values in the data string is immaterial as long as each is preceded by the 

correct element number. Elements not mentioned in the data string are not affected. 

CHANGE STOCKS EQ 14* TWA 15* NYSE 17* 4511 **WHERE Cl3 
EQ TRANS WORLD AIRLINES: 

CHANGE C25 EQ 36* BUY 27* 02/05/70 **END WHERE C9 EQ INCOME AND 
Cl3 EQ CHUBB CORPORATION AND C26 EQ SELL AND C27 EQ 02/06/70: 

Discussion The CHANGE conrrnand has exactly the same fonnat as does the ADD com­

mand. The CHANGE command, however, can only change data values if the data values 

exist. 

For each selected data set, the CHANGE operation looks at the status of each 

element specified in the request. If the element has a value, it is changed to 

the new value specified in the data string. If the element has no value, no 

action is taken. The CHANGE operation changes existing values; it never adds new 

values (see ADD or ASSIGN). 

6.2.4 The REMOVE or RE Command 

Purpose To remove data from selected data sets. 

1A trace notation may be entered following the component identification. For 
an explanation of trace notation, see Section 6.2.11. 



I 

9 June 1970 95 RM-S2K-l. 3 

General Format 

REMOVE <component identification>1 WHERE <update conditions>: 

Remove One Element The REMOVE operation removes the data value of either a 

single element or all elements in each selected data set. If the specified 

component is an element, then for each selected data set, if that element'has 

a value, the value is removed. If it has no value, no action occurs. 

REMOVE MANAGER WHERE MANAGER EQ B .J. DILLARD: 

REMOVE Cl 7 WHERE Cl3 EQ BOEING CO. : 

Removing Multiple Elements or Data Sets If the specified component is identified 

as a repeating group (or ENTRY) then every value is removed from every selected 

data set. Remember, this can occur at only a single level. 

REMOVE TRANSACTIONS WHERE C9 EQ RESERVE AND Cl3 EQ AMERICAN CYANAMID: 

REMOVE CB WHERE C9 EQ BALANCED: 

Discussion The REMOVE operation only removes data at a single level, but it 

may affect the data set structure at upper levels. The system attempts to dis­

card non-valued data sets. A data set will be discarded from the structure 

within the data base if it passes two. tests: 

(1) If it is non-valued (contains no data), and 

(2) It possesses no valued descendant data sets. 

If all of the data has been removed from the specified data set, the data set 

may be removed from the data base. If the subject data set has valued descend­

ants hanging from it, then it is retained within the structure as a non-valued 

data set. If it does not, the data set is removed and its parent is located 

for potential removal. All data sets, upward from the subject data set, are 

inspected for contained values and for valued descendants. 

1A trace notation may be entered following the component identification. For 
an explanation of trace notation, see section 6.2.11. 



• 

9 June 1970 96 RM-S2K-l. 3 

6.2.5 The ASSIGN or AS Conunand 

Purpose To assign data within existing data sets whether or not the existing 

data sets contain data. 

General Format 

ASSIGN <component identification>1 EQ <data string> WHERE <update conditions>: 

Assign One Element If the request specifies a single element and its single new 

data value, then each selected data set is examined to determine if the specified 

element has a value in that data set. If it has a value, the value is changed to 

the new value; if it does not have a value, then the new value is added. 

ASSIGN DATE EQ 02/25/70 **END WHERE Cl EXISTS: 

ASSIGN C24 EQ 28.75 **WHERE Cl3 EQ AMERICAN AIRLINES: 

Assign Multiple Elements If the component identification specifies a repeating 

group by name or number, then each selected data set is entirely emptied of all 

values and then filled with as many new values as are found in the data string 

in the request. For a specified repeating group, a total REMOVE operation is 

done for each selected data set, then a total ADD operation. If a repeating 

group is specified and if any original data is still to be retained along with 

new assignment of values, the new data string must contain that original data 

also or it will be lost in the total removal. All values in the data string 

must belong to elements associated with the singularly specified repeating group. 

The order is immaterial as long as the value is preceded by its proper element. 

ASSIGN ENTRY EQ l* NEW FUND 2* BOB JONES 7* 02/25/70 ** 
WHERE Cl EQ PILFER FUND: 

ASSIGN CB EQ 9* MIXED 10* M-1 11* DAVE SMITH **END WHERE C9 
EQ BALANCED: 

Discussion The ASSIGN operation always alters the contents of all selected data 

sets. Unlike ADD and CHANGE operations which are conditional depending upon the 

1A trace notation may be entered following the component identification. For 
an explanation of trace notation, see section 6.2.11. 



I 

9 June 1970 97 RM-S2K-l.3 

status of the values in the data set, ASSIGN is unconditional in that it 

always assigns the new value(s) . The ASSIGN operation never changes the 

structure of the data sets in the data trees. No matter how much the selected 

data set is emptied, it is always filled again with whatever is in the data 

string; the data set contents are altered, but the data set never disappears. 

6. 2. 6 The REMOVE TREE or RT Connnand 

Purpose To remove each selected data set and all of its descendant data sets. 

General Format 

REMOVE TREE <component identification> 1 WHERE <update conditions>: 

Specific Examples 

REMOVE TREE PORTFOLIO WHERE C9 EQ GROWTH: 

REMOVE TREE C12 WHERE Cl3 EQ HILTON HOTELS AND C9 EQ GROWTH: 

Discussion The REMOVE TREE operation removes each selected data set and all 

of its descendant data sets. By specifying and selecting the parent data sets, 

entire data trees are removed without regard to the status of their contents. 

After each data tree has been removed, the remaining data trees in the data base 

are relinked to close the gap at the topmost level created by the removal. For 

example, if the second logical entry was removed, the first is then linked to 

the original third logical entry which now becomes the second logical entry in 

the data base. 

As indicated earlier, the REMOVE command only removes the data from the specified 

data sets and does not remove data from data sets lying above or below the 

specified ones. The REMOVE TREE command as just shown, not only removes the 

data from the specified data sets but also removes the data and the data sets 

lying below the specified ones. Neither command contains a data string within 

the formatted command due to the fact that data strings within any command indi­

cate the data values to be put into and not removed from the data base. 

1A trace notation may be entered following the component identification. For 
an explanation of trace notation, see section 6.2.11. 



I 

9 June 1970 98 RM-S2K-l.3 

6.2.7 The ASSIGN TREE or AT. Command 

Purpose To replace current data trees with new data trees. 

General Format 

ASSIGN TREE <component identification> 1 EQ <data string> WHERE <Update 

conditions> : 

Specific Examples 

ASSIGN TREE PORTFOLIOS EQ 9* PRIVATE 10* XYZ 12* 13* CONTROL DATA 
15* NYSE 24* 56.25 25* 26* BUY 27* 02/25/70 28* 10000 29* 56.25 
12* 13* LITTON INDUSTRIES 12* 13* COMPUTER TERMINAL CORPORATION 
**END WHERE C9 EQ STOCK: 

ASSIGN TREE ENTRY EQ l* NEW-NAME FUND 2* J.J. GRANT 8* 9* WILDFIRE 
8* 9* HOPEFUL 8* 9* LOADED **WHERE Cl EQ PILFER FUND: 

Discussion Where the ASSIGN TREE connnand is used, the system checks the 

command for accuracy and then accomplishes a complete REMOVE TREE operation 

for the selected data sets, removing the information to allow the assignment 

of new information. The new information is contained in the data string por­

tion of the command in loader string format. The first data set detailed in 

the loader string contains the new information for the specified repeating 

group given in the component identification. The subsequent or descendant 

data sets follow within the loader string and may contain as many data sets 

to as many levels as desired regardless of the original data tree that was 

removed. 

Within the general format, the repeating group name may be ENTRY or C~ (zero) 

if an entire existing logical entry is going to be replaced by the ASSIGN TREE 

data string. 

1 A trace notation may be entered following the component identification. For 
an explanation of trace notation, see section 6.2.11. 



I 

• 

9 June 1970 99 RM-S2K-1. 3 

6.2.8 The INSERT TREE Conunand 

Purpose To add new data trees were.data trees do not exist. 

General Formats 

(1) INSERT TREE <component identification> EQ <data string> 

(2) 

fBEFORE J 
l~FTER 

<Update conditions>: 

INSERT TREE <component identification> <trace notation>! EQ 

<data string> WHERE <update conditions>: 

Specific Examples 

INSERT TREE ENTRY EQ l* IOU FUND 2* JOHN DOE 8* 9* GLOSSY 12* 13* 
BOEING CO. 12* 13* HILTON HOTELS 8* 9* BLACK 12* 13* AMERICAN AIRLINES 
**BEFORE Cl EQ GOOD LIFE INSURANCE CO.: 

INSERT TREE C25 EQ 26* BUY 27* 02/25/70 28* 5000 29* 52.25 **END 
AFTER C27 EQ 06/30/69 AND Cl3 EQ HILTON HOTELS AND C9 EQ GLOSSY: 

Discussion This connnand differs from all other UPDATE connnands in that it 

creates a new data tree where no data tree ever existed. All other.comniands 

modify, in some way, existing data sets. Even the ASSIGN TREE command, which 

can create new data sets below the level of the specified repeating group must 

modify an existing data set where it attaches itself to the logical entry. 

After inspection of the two formats just given for this command, it is apparent 

that several new concepts are introduced. The trace notation has always been 

optional in all of the UPDATE connnands previously discussed. In the INSERT TREE 

command, a partial trace notation must be used when the connnand includes a WHERE 

IA. partial trace notation must be used in this connnand if a WHERE clause is 
used. See trace notation 6.2.11. 



9 June 1970 100 RM-S2K-l.3 

clause. The command name gives a direct clue to the next item of uniqueness, 

the ability to insert a data tree where the user desires. Besides the WHERE 

clause, two new words reflecting insertion location are introduced: BEFORE 

and AFTER. Either of these two terms may be used in place of the word WHERE 

• to indicate a specific location to be satisfied after the update conditions 

have been met. When either of the words BEFORE or AFTER are used, a trace 

notation must not be used because of a direct contradiction of logic. 

6.2.9 The Use of DITTO, SAME and PREVIOUS 

There are three command words within the SYSTEM 2000 syntax which may be 

used to shorten the language required within an UPDATE command. Each of the 

three words are used similarly. These command words may only be used 

when multiple coIImlands are submitted within the same job. When they are used, 

they stand for the related phrase in the preceding command. 

DITTO This command word has the same meaning in the UPDATE module as when it 

is used in the RETRIEVAL module; it applies only to the portion of the request 

on the left hand side of the WHERE/BEFORE/AFTER clause. Any error in the pre­

vious request causes the job to halt; therefore, no action will be taken on 

subsequent DITTO requests in case of previous errors. Examples: 

CHANGE C26 EQ SELL **END WHERE C26 EQ DISPOSE: 
DITTO WHERE C26 EQ S: 
DITTO WHERE C26 EQ SL: 

SAME Like the command word DITTO, SAME is identical to the SAME of the 

RETRIEVAL module. SAME and SAME modified apply only to the portion of the 

request following the WHERE/AFTER/BEFORE clause. An error detected in the 

previous request causes the job to halt and prevents subsequent action of an 

erroneous SAME condition. 

SAME may be used across the RETRIEVAL and UPDATE modules. Examples: 



1 June 1970 101 RM-S2K-l. l 

UPDATE: 
CHANGE Cl5 EQ OTC **WHERE C14 EQ EDS-U: 
REMOVE Cl7 WHERE SAME: 
RETRIEVAL: 
PRINT Cl3, Cl5, Cl7 WHERE SAME: 

PREVIOUS This word when used in an UPDATE command repeats the data string 

of the previous command. Any error in the previous command causes the job 

to halt and prevents subsequent action. Examples: 

CHANGE TRANSACTIONS EQ 26* BUY 27* 03/19/70 28* 5000 29* 11.625 
**END WHERE Cl3 EQ CONTINENTAL AIRLINES AND C9 EQ GROWTH: 

ADD TRANSACTIONS EQ PREVIOUS WHERE Cl3 EQ CONTINENTAL AIRLINES 
AND C9 EQ SPECIAL: 

6.2.10 LIMIT Option 

SYSTEM 2000 provides the user with the ability to establish a minimum and 

a maximum boundary for the number of data sets that may be selected for update 

action in any UPDATE command. This provides an effective safeguard against 

unwanted and unpredicted updates. The various commands appropriate to this 

capability are: 

(1) LIMIT <integer numl:er> : 

(or) (2) LIMIT< integer number, integer number~ 

(and) (3) END LIMIT: 

The integer numbers in the command refer to the number of allowable data 

sets to be selected by the command. If one integer number is given, then 

exactly that number of data sets must be selected. If two integer numbers 

are given, the first establishes the minimum number of data sets which can 

be selected. The second number establishes the maximum number of data sets 

that can be selected. The system count of selected data sets only includes 

the selected data sets which are horizontally related and does not include 

within the count any descendant data sets affected by the command. The 

LIMIT specification is good only during the SYSTEM 2000 job submission where 

the limits were set. All prior and subsequent jobs have a LIMIT default 



• 

9 June 1970 102 RM-S2K-l.3 

setting of zero, where zero means unlimited. During any one job, of course, 

the limit command may be used, changed several times, and then ended by the 

END LIMIT command prior to termination. The END LIMIT command causes 

the restoration of the zero setting, i.e., unlimited. 

6.2.11 Trace Notation 

The Concept of Normalizing as discussed in the RETRIEVAL module also applies 

within the UPDATE module to a great measure, particularly in the area of 

level adjustment, upward or downward, from the Qualified Data Sets. Within 

UPDATE, level adjustment is necessary because each selected data set that 

UPDATE operates on, must belong to the Specified Data Sets. After all 

necessary normalizing has been done for all Qualified Data Sets, the resulting 

list of Selected Data Sets is pruned by removing all duplications of Selected 

Data Sets. Thus, no UPDATE operation will ever affect a Selected Data Set 

more than once in a single request. 

When adding or modifying new information to the data base, it is sometimes 

necessary to be able to point to a data set and say in effect, that is the 

one I want to change. This, of course, requires a rather specific knowledge 

of the affected data base, such that you know how and where to point. Pointing 

is done by identifying the exact data set at each level within a logical entry 

that forms the hierarchical linkage for the selected data sets. The activity 

just specified is called tracing and the data set· identification is called 

trace notation. 

Full Trace 

Trace notation requires some knowledge of the data base structure. Trace 

notation selects a data set by its position as a node in the data base without 

regard to any condition of data values. Each integer number in the trace 

notation signifies the position of a data set within a particular subtree. 

Each integer number is separated from the next by the current separator; no 

imbedded blanks are allowed. The integer number immediately following the 



9 June 1970 103 RM-S2K-l.3 

component identification refers to the level of the specified data set; 

the next integer refers to its parent at the next highest level; the next to 

the parent of the parent and so on. A WHERE clause is illegal when a full 

trace is used. In a full trace, an integer number must be supplied for each 

level starting with the level of the specified repeating group and ending 

with level 0. 

The integer numbers must be non-negative. A positive number, <n> denotes 

the nth position on a level (e.g. *14 means the 14th data set of the appro­

priate repeating group). The number 0 denotes the last position on a level. 

Examples: 

REMOVE TREE ENTRY*4: 

The fourth logical entry is removed from the data base. 

ASSIGN PORTFOLIOS*2*~ EQ 9* CLIMBER 11* J.D. Gilpen **END: 

The second PORTFOLIOS data set in the last logical entry is 

selected. Its contents are removed and replaced with the 

data string values. 

Combined WHERE Clause and Trace Notation: 

A partial trace extends upward to any desired level except level 0. A 

trace extending all the way to level 0 is a full trace. A request with a 

partial trace always contains a WHERE clause. A full trace and a WHERE 

clause is meaningless and illegal. 

In a request using a partial trace the WHERE clause is processed first as 

usual, and a list of qualifying data sets is produced. From the list of 

qualified data sets, selected data sets are chosen on the basis of the trace 

notation. Data set selection extends one level higher than the level of the 

specified data set, in order that the position of the specified repeating group 

within its parent repeating group can be determined when the partial trace is 

applied. These selected data sets are referred to as "selected ancestral data 



1 June 1970 104 RM-S2K-1. l 

sets." Each "selected ancestral data set" is followed down through the trace 

notation to the specified position in the data tree. The data set occurring 

at the bottom of the trace becomes the selected data set to be affected by 

the UPDATE operation. 

In general, the WHERE clause is used for broad selection of data sets, and 

the partial trace serves to isolate the nth data set below the generalized 

qualified data sets. 

A partial trace included in an INSERT TREE •.• WHERE ..• request has a somewhat 

different meaning. Qualification anq tracing does not change, but since 

insertion is specified, the partial trace means insert as the nth position. 

Examples: 

REMOVE C25*1 WHERE Cl EQ PILFER FUND: 

The qualified data set is the level 0 data set for PILFER FUND. The selected 

ancestral data sets are all Cl2 repeating groups (STOCKS) for PILFER FUND. 

The trace extends to the first occurrence of C25 repeating group (TRANSACTION) 

and removes it. 

ASSIGN C25*0*2 EQ 26* BUY 27* 02/25/70 28* 5000 29* 25.00 **END 
WHERE C9 EQ RESERVE: 

The qualified data set is the level 1 data set for the RESERVE portfolio. 

The selected ancestral data sets are all CB (PORTFOLIOS) repeating groups. 

Since the WHERE clause qualified only one CB repeating group (RESERVE port­

folio), the selected ancestral data set is the RESERVE portfolio. Following 

the trace downward, the last transaction entered for the second occurrence 

of the STOCK repeating group is assigned new values. 

6.3 UPDATE FILE CONTROL 

The previous section has discussed the methods by which the user may modify 

the data within a SYSTEM 2000 data base. This section describes the SYSTEM 

2000 capabilities that are additionally provided to record the data base 



9. June 1970 105 RM-S2K-1.3 

modifications and to save the desired recordings in order to apply them to 

the data base at a later time. 

6.3.1 General Information 

When a data base is said to exist via the initial DEFINE and LOADER operations 

it occupies space on the disk, organized into eight tables. The version 

number of the definition as well as the data is number one. The user has 

several options at this point. 

The user may decide to modify this working data base by making data base 

modifications via the previously discussed UPDATE commands. The datd vers·ion 

number will be incremented by one each time an UPDATE job has been success­

fully completed. From this point the user may brAnch into the next option, 

if he desires. 

The user will eventually want to save his working data base on tape. When-

1 ever he takes this option, using the system-wide SAVE DATA BASE command, the 

data version saved on tape will equal the data version on disk because they 

are the same data base. 

Up to this point, there has been no recording of the results of the update 

commands other than the actual data base modifications themselves. But once 

an archive data base tape has been made of the working data base, the user 

has the capability to modify, via UPDATE commands, the working data base 

independent of the archive tape. If no record were kept of these modifications 

then the two data bases could never be reconciled. The user can decide to 

continue in this operational manner by repetitively saving the new versions 

as they are produced. However, the user should carefully consider the additional 

options which are available. 

Rather than keeping many archival tapes, the user can save a particular version 

of the data base and then maintain a record of modifications made to that base 

version so that the current data base or any intermediate version can always be 

reproduced by the archival recordings. 



I 

9 June 1970 106 RM-S2K-1. 3 

These recordings are kept on the Update File as directed by the user. The 

Update File is established by specifying the Update File Tape Visual Reel 

Number (uftvr#) when either a Load or Save Data Base command is given. This 

number, once specified, maintains the relationship between the archival data 

base saved on tape and the associated Update File. 

Once this file has been established, the results of every successful update action 

are recorded on it. Each of these actions results in a recording. One or 

more recordings on the file constitute a Segment. A Segment is created as 

the result of actions taken between the call to the UPDATE module and any one 

of the following: 

(1) Calling any other module 

(2) A TERMINATE command is given 

(3) End of job. 

Each time a segment has been completed the data base version number is incre­

mented by one which makes the archival data base one or more versions behind 

the data base on disk. The user can keep as many of these Segments as he 

wishes on the uf tvr# and later apply as many Segments as necessary to re­

create any desired version. 

The user may wish to release his working data base from the disk. Prior to 

taking this action, he should consider saving some or all of the Segments on 

the Update File. Later when loading his archival data base, he may apply as 

many Segments as he wishes to his new working data base. If the user wishes 

to experiment with his working data base he may create a copy for his own use 

and even suspend the recording of update Segments. 

Some of the commands referenced in the preceding discussion have been pre­

viously introduced in section 2.1.4, Data Base Control Commands, as system­

wide commands. The remainder of the Update File commands are local to the 

UPDATE module and are introduced below. 



I 

I 

9 June 1970 W7 RM-S2K-l.3 

6.3.2 KEEP ALL or KEEP <n> SEGMENTS Command 

Purpose To copy update segments from the working update disk file to the 

Update File Tape. 

Command Options 

Discussion 

(1) KEEP ALL: 
(2) KEEP <n> SEGMENTS: 
(3) KEEP <n> SEGMENT: 
(4) KEEP <n>: 

where n = positive integer number 

If the user has saved an Archive data base, declared an 

Update File Tape Visual Reel Number, and wishes to keep update changes on 

the Update File Tape, this command allows the controlled recording of those 

update segments. desired for permanent storage. The first segment recorded 

also records the following: 

a. Data Base Name 
b. Base Version Number 
c. Date (b) was created 
d. Time (b) was created 

When the ALL command is used, all of the update segments which have been 

recorded on the disk file will be copied onto the tape. When n is used, n 

refers to the first <n> segments recorded on the disk file. The user should 

keep track of the number, <n>, of update segments which have been recorded on 

the Update Disk File if the user wishes to use the KEEP <n> SEGMENTS option. 

If the user is in doubt as to the number of update segments which have been 

recorded on the disk file, he can use the KEEP ALL command. This action, when 

complete, creates an informative message output to the user, indicating the 

<n> segments which were kept. When the KEEP <n> SEGMENTS command is used, 

with <n> less than ALL, the final result is an automatic SUSPEND action. 

6.3.3 SUSPEND Command 

Purpose To erase or wipe out the Update Disk File and suspend further 

recording. 



I 

9 June 1970 108 RM-S2K-l.3 

Command SUSPEND: 

Discussion The suspension of update segment recording speeds up processing. 

This connnand causes the suspension of the recording of update segments on the 

Update Disk File and the erasing of any previously recorded update segments. 

This command would be used if the user wished to experiment with update connnands 

but would not wish to record the results on the Update Disk File. 

Automatic suspension occurs when any one of the following occurs: 

(1) KEEP<n>SEGMENTS connnand is given, where<n>is less than ALL. 

(2) If the user has never named the Update File Tape Visual Reel 

Number in either the Save or Load Data Base commands. 

Suspension of the Update Disk File is lifted if the Update File Tape Visual 

Reel Number is named in either the Save or Load Data Base commands. 

6.3.4 APPLY ALL or APPLY<n>SEGMENTS Connnand 

Purpose To load and apply requested update segments from the tape to the 

accessed data base tables residing on disk. 

Command Options (1) APPLY ALL: 

(2) APPLY<n>SEGMENTS: 

(3) APPLY<n>SEGMENT: 

(4) APPLY<n>: 

where <n> = positive integer number 

Discussion These command options assume that update segments ·have previously 

been recorded and stored on the Update File Tape via the KEEP SEGMENTS command. 

These options allow the application of some or all of the kept segments to a 

compatible data base. Each segment which is applied to the data base will in­

crement the data base version number by one. 



I 

9 June 1970 109 R~-S2K-l. 3 

The user may apply segments incremently as long as no intervening changes are 

made to the data base such as individual update requests or a call to the LOADER 

module. If the data base is modified using commands other than the APPLY com­

mands, then the working update disk file is suspended and no further segments 

can be applied. If the APPLY ALL: command is given, an informative message 

is issued telling the user how many segments were applied. 

6. 3. 5 TERMINATE Command 

Purpose To end an update session. 

Command TERMINATE: 

Discussion Any time the user is using the UPDATE module, the TERMINATE command 

may be issued. The result of this action is as follows: 

(1) ends the current update session, 

(2) creates an update segment on the Update Disk File, if the Update Disk 

file is not suspended, 

(3) increments the data base version number, and 

(4) leaves the user in the UPDATE module. 

This command essentially allows the user to create an update segment without 

having to leave the UPDATE module. Selecting another module after giving some 

UPDATE commands or ending the job session will create an automatic TERMINATE. 

Whenever an Update segment is created, an informative message is given to the 

user showing the current version number of the data base. 

6.4 DEFAULT CONDITIONS IN THE UPDATE MODULE 

(1) The limit on number of data sets selected for updating is unlimited 

unless a LIMIT command has been given. 

(2) Padding and null options are effective as defined in the current 

definition for a data base and data base modification is performed 

accordingly. 

(3) Any error in an UPDATE corrmand terminates the job. This safeguards 



1 June 1970 110 RM-S2K-l.l 

unwanted destruction of the data base if update requests are dependent 

on previous update request results. 

(4) Default mode is the suspended mode, i.e., no update file is produced unless 

an Update File Tape nmnber has been specified. 

(5) Terminate is automatic when user leaves the Update module or exits from 

the system; that is, a segment is created as though the TERMINATE command 

was given. 

SYSTEM 2000 is a service mark of Management Research International, Inc. 



Sr'SlEM 2CXX) TM 

DIAGNOSTIC M:SSAGES 

U>PYRIGHT, 1970, BY MANAGEMENT REsEAROi INTERNATIONAL, INc. 

Au. RIGHTS RESERVED. Mo PART OF nus PUBLICATION MAY BE 

REPROWCED BY AfN tJEANS, NOR TRANSMITrED, NOR TRANSLATED 

INTO A ~UTER LANGUAGE WITHOUT WRIITEN PERMISSION FR<Jt1 

~GEMENT RESEARCH ltmRNATIONAL1 INC. 



June 1, 1970 RM(2)-S2K-1. l 

After collating the enclosed material, the version numbers* on each page should 
be as follows: 

Pages 

All Pages 

Version numbers 

1.1 

*Version numbers appear in the document code which is in the upper right-hand 
corner of each page. For example, the version number embedded in RM-S2K-1.4 
is the decimal number 1.4, indicating that this is the fourth revision of this 
particular page of the first edition. 

i 



June 1, 1970 RM(2)-S2K-l.l 

SYSTEM 2000 DIAGNOSTIC MESSAGES 

INTRODUCTION 

SYSTEM 2000 contains a large set of user diagnostics. The diagnostics 
are generally of two types: error and informative messages. They are 
designed to keep the user apprised of system reaction to his actions. 
This document contains a full list of the SYSTEM 2000 user diagnostics 
alphabetically. The table of contents organizes the diagnostics by 
module of occurrence. If the diagnostic message does not appear suf­
ficiently clear by itself, a descriptive paragraph is added. The under­
standing of each is greatly enhanced when they are presented in context 
with their actual occurrence. The modules which can generate each diag­
nostic message are also indicated. 

If the message is not considered an error message, the word INFORMATIVE 
is shown. Each message is concluded with appropriate code letters to 
indicate the system treatment of additional commands which may have been 
submitted along with the action creating the message, and the effect 
upon the data base, if any. The code letters and their meaning are as 
follows: 

INFORMATIVE Informative message only. Never fatal to the 
rest of the job. Never destructive to the data 
base. 

F = Fatal to the rest of the job. Actions requested following 
the action creating the message are not processed. 

PF Potentially fatal to rest of the job, depending upon the 
user directives to stop. 

NF = Non-fatal to rest of the job. 

D = Destructive to the data base. 

PD Potentially and probably destructive to the data base. 

ND = Non-destructive to the data base. 

The additional information represented by the code letters are presented 
in the belief that the user may need to know the consequences of the error 
conditions. 

Each diagnostic message may or may not be preceded by a hyphen (-) or a 
string of hyphens. Diagnostic messages which begin with a variable, in­
dicated here by the symbols <xxx>, are listed in the X section. 

ii 



June 1, 1970 

TABLE OF CoNTENTS 

SYSID1-WllE 

RM(2)-S2K-l.1 

CONTROL CARD ERR.OR •••••••••••••••••••••••••••••••••••••••••••••••••••••••• C - 5 

COPY CREATED ••. 

<xxx> DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> •••••••••••••••••••••••• C 5 

DATA BASE NAfiE NOT ON DBN TABLE •••••••••••••.••••••.•••••••••••••••••••••• D 1 

DATA BASE NAME NOT SPECIFIED YET ..••••.•••••.••••••••••••••••••••••••••••. D 1 

ILLEGAL CHOICE OF SEPARATOR OR TOO MANY CHARS .•.•••••••.•••••••••••••••••• ! 1 

ILLEGAL PAS SWORD •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• I 2 

ILLEGAL T.APE Nill!BER •••••••••••...•••••.••••••••••••••••••••••••••••••••••• I 3 

LOADED 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> ••...•.•.••••..•••••••• L 2 

NO USER SPECIFICATION ••••••••••••••••••••••••••••••••••••••••••••••••••••• N 3 

PASSWORD <xxx> NOT AUTHORIZED TO USE <yyy> ..••••••.••••••.•.••.•.••••••••• P 1 

PRESERVED 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> •..•••.••••••••••••••.. P - 1 

RELEASED •.. 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> •..••••••••••••••..••.• R - 1 

SAVED ••. 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> ••••.••••••••.••.•••.•• S 1 

SYNTAX ERROR IN CO~D •••••••••• e •••••••••••••••••••••••••••••••••••••••• S 4 

'UNRECOGNIZABLE COlvll-lAND ••••••.••••••...•••••.•••••••••••••••••••.•••••••••• U 2 

<xxx> HAS AI.READY BEEN LOADED ••.•••••.•.••••.•.•••••••••.••••••••••••••••• X 1 

iv 



June 1, 1970 TABLE OF CoNTENTS 

DEFINE 

RM(2)-S2K-L 1 

A COMPONENT IN THE FUNCTION DEFINITION IS NOT TYPE NUMBER OR DATE •••••••••• A - 1 

A COMPONENT MAY NOT PRECEDE ITS PARENT ••••••••.•••••••.•.••.•••••••...•••.• A - 1 

A DATA BASE IS CURRENTLY LOADED ••••••••••••••..••••••••••••••••.••••••..••• A - 1 

A NEW DATA BASE NAME HAS ALREADY BEEN DECLARED .•••••••.••••••••••••..••.•.• A - 1 

CHANGES IMPLY RESTRUCTURING OF THE DATA SETS AND VALUES •••.•••••••..•••.••• C - 3 

COMMAND CURRENTLY NOT OPERATIONAL .•..••..•.•.•..••...••••••••.•..••..•.••.. C - 3 

COMPONENT NUMBER GIVEN DOES NOT EXIST •.•.•.••..••••••.•.•••.•.•••••••••.•.. C - 4 

COMPONENT NUMBERS WILL EXCEED THE MAXIMUM OF 9999 ..•...••...•.••••..•.••••. C - 5 

COMPONENT TYPE NOT A REPEATING GROUP ••.••..•.•.••••.•••••.•••...•••.•.•.•.. C - 5 

DATA BASE N.Al1:E ALREADY USED •••••••••••••••••••••••••••••••••••••••••••••••• D - 1 

DUPLICATE COMPONENT NAfiES •.••.•...••••..•.•••.•.•.••••••..•••.•..•••.•.. · • · D - 4 

DUPLICATE COMPONENT NUMBERS .•...••.•.••••••••.•.•••••.•.•••.•••.•.••••.• · •• D - 4 

GO TO RETRIEVAL FOR DESCRIBE •.•..•....•••••••.•••••.•.•..•....•.•..••.••... G - 1 

ILLEGAL AMOUNT (OVER 60 PERCENT) OF PADDING ...•••...•....•.•....•......••.. I - 1 

INCORRECT ARITHMETIC EXPRESS ION .••..•.•.•.•..•.•••••••.•••.•.....•.•.•...•. I - 3 

INCORRECT DATA BASE NAfiE ..•.••....••.••.•....•.••...•.••.•••..........••••• I - 3 

INDETERMINATE VALUE OR COMPONENT NUMBER •••.•..••..••••••.....•............. ! - 4 

MAP COMMAND MUST BE USED FOR A NEW DEFINITION ...•.••••.•.........••.....•.. M - 1 

MORE THAN 127 COMPONENTS - MAXIMUM UNDER THIS VERSION ••.••.•..•..••.••...•• M - 1 

MORE THAN 64 REPEATING GROUP LEVELS - MAXIMUM REACHED ....•...•.•••••••.•... M - 1 

NO CHANGES HAVE BEEN MADE TO THE DEFINITION •.•••.•••.••..•..•.•.••••.•.•..• N - 1 

NO DATA BASE DECLARATION EXISTS ••.•••••••.•••.••.•••••.•..•••• • .•. · · •. · · · · · N - 1 

NO DATA BASE NAMED .•••••.••.•••••.•.••••.•••••• • •.• • • • • • · • • · • · · · • • • • • • • • · · • N - 2 
NO RESTRUCTURING MODIFICATIONS WERE MADE •••.••••...•••.••...•....••.•.•••.• N - 3 

NO RESTRUCTURING NECESSARY ON A NEW DATA BASE ..•..................••••••••• N - 3 

NULLS APPLY ONLY TO REPEATING GROUPS ••••....•.••.••.•.•••••. • • • •. · · • • · • • • • • N - 4 

PADDING INVALID FOR A REPEATING GROUP .•••..••.•••••••.••• • • · • • • · • • • • • · • • • • • P - 1 
PASSWORD NOT VALID FOR DATA BASE •••••..••••••.•••••••••••••••.•.••••••••••. P - 1 

REPEATING GROUP DOES NOT EXIST ..•••••••••••••.•••••••••••.•••.••••••••••••• R - 2 

STRING DEFINITION GREATER THAN 700 CHARACTERS .••••••••••.•..•••••••.••••.•• S - 3 

SYNTACTIC ERROR IN COMPONENT DESCRIPTION ..•...•...•..•..•.•...••••••••••••• S - 3 

SYNTACTIC ERROR IN DATA BASE N.Al1:E ••••.•••••••.•••••.••••••••••••••••••••.•• S - 3 

SYNTACTIC ERROR IN PADDING OPTION ••••••••••••.•••••••••.••••••••••••••••.•• S - 3 

v 



June 1, 1970 RM(2)-S2K-1.1 

LEFINE CONTINUED 

SYNTAC ERROR IN FUNCTION DEFINITION •••••.•••••..••.•.•••.••••••••••••••••• $ - 4 

THE DATA BASE HAS NOT BEEN MAPPED OR REMAPPED ..•.•.•.•••.••••••..••••••••• T - 1 

UNBAI..AN'CED PARENTHESES • •.••..•••••••••.•.•.•••••••.•.•.•••••••••••••.••••• U - 1 

UNDEFINED OPERAND USED IN FUNCTION DEFINITION •••......••..•..•••••.••••••• U - 2 

USER SHOULD REMAP CHANGES TO OLD DATA BASE .......••.•..•.•...•••••••••••.• U - 4 

vi 



June 1, 1970 
TABLE OF CoNTENTS 

LDAIIR 

RM(2)-S2K-1.1 

ABOVE VALUE REJECTED DUE TO.ERROR IN NEXT LABEL •••••••••••••••••••••• A - 2 

ACC - <XXX> < YIT> •.••••••••••••••••••••••••••••••••••••••••••••••••••• A - 2 

ACC - DU11MY DATA SET FOR RG <XXX> ••••••••••••••••••••••••••••••••••• A - 2 

BINARY ZEROES EXIST ON DATA FILE ••••••••••••••••••••••••••••••••••••• B - 1 

COMPONENT Nln1BER UNIDENTIFIED •.•••••••••••••••••••••••••••••••••••••• C - 4 

DATA BASE DEFINITION DOES NOT EXIST FOR LOADER MODULE •••••••••••••••• D - 1 

DATA BELOW NOT ACCEPTED FOR LOGICAL ENTRY <xxx> •••••••••••••••••••••• D - 2 

DATA FILE EMPTY OR NOT REWOUND ...•.•..••.••..••.•••••••••••.••••••••• D - 2 

DATA LABEL WITHOUT A DATA VALUE •.••••..••••••••.••.••••••.•.••••••••• D - 2 

ELEMENT HAS A DATA VALUE IN THIS DATA SET •••••..••.••...•••.••••••••• E - 1 

ELEMENT NOT A MEMBER OF THIS RG ....••....•...•....•••..•••••.••.••••• E - 1 

ENTIRE ENTRY DISPUY ••••••••••••••••••••••••••••••••••••••••••••••••• E - 2 

ILLEGAL DATE DATA VALUE •..••.....•..••.•.••.••••.•.•...••••.••••••.•. I - 1 

ILLEGAL KEYWORD AFTER A SPECIAL LABEL ERROR 9 REJECTIONS= <xxx> ••••• I - 1 

ILLEGAL NUMERIC DATA VALUE ••....••••••••••••..•••.•.•••••.••..•.•.••• I - 2 

LEVEL 0 DISPUY OPTION ••••••••••••••••••••••••••••••••••••••••••••••• L - 1 

LOADER STOPPED AFTER <n> ERRORS ....•...•.•.....••.•..••.••••.•••••••. L - 2 

LOADER STOPPED AFTER <n> EXCLUDED VALUES ..•••••••••.••••••..••••••••• L - 2 

LODAER WAS DIRECTED TO STOP AFTER SCANNING INPUT STRING ••••..••..•••• L - 2 

LOGICAL ENTRY <Kx:x>. <yyy> VALUES ACCEPTED .••••••••••.•••.•.•••••••• L - 3 

MORE THAN 255 CHARACTERS IN A DATA VALUE •..•••••.•••••••••.•.•.••.••• M - 1 

NEW SEPARATOR IS ILLEGAL OR NON-EXISTENT ERROR 10 REJECTIONS = 

< XXX> ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• N - 1 

NO DATA ACCEPTED FOR LOGICAL ENTRY <xx:x> ••••••••••••••••••••••••••••• N - 1 

NO DATA ACCEPTED FOR THIS SESSION .••...••..•••...•....••••••.•••••••• N - 1 

NO ENTRY TERMINATORS BEFORE EOF REJECTIONS= <XXX> ••••••••••••••••••• N - 2 

NO PRECEDING PARENT RG DATA SET •••....•••.•••••.••••••.•••••••••••••• N - 2 

ONLY ONE ENTRY TERMINATOR BEFORE EOF REJECTIONS= <XXX> •••••••••••••• 0 - 1 

-REJ- <Separator> <separator> <Yyy> •••••••••••••••••••••••••••••••••• R - 1 

- REJ - <Xx.JC> < yyy> • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • R - 1 

vii 



June 1, 1970 RM(2)-S2K-l. l 

lDAf.ER CONTINUED 

SCANNER FOUND AN ERROR WHILE ASSUMING NO ERRORS, TRY AGAIN 

WITH ASSilliE ERRORS ••••••••••••••••••••••••••••••••••••••••••••••••• S - 1 

SPECIAL LABEL WITROUT A VALUE, ERROR 8 REJECTIONS= <xxx> •••••••••••• s - 3 

SYNT.AX ERROR IN L.ABEL •..••...•.•.•.•.•••.•.•.•••.•••••••••.••••••.•.• S - 4 

VALUE GIVEN AFTER A DATA SET LABEL .•.•.•..••.•••••.•••.•.•.•.•.•••... V - 1 

<xxx> DEFINITION VERSION <yyy> DATA VERSION <zzz> <ttt> <ddd> •••••••• X - 1 

<x.xx> ERROR <yyy> REJECTIONS = <zzz> •••••••••••••..•••••••••••••.•••• X - 1 

<xxx> EXCLUDED VALUES IN LOGICAL ENTRY <yyy> •.••••.••••••••••••••.••• X - 1 

<xxx> REJECTED VALUES IN LOGICAL ENTRY <yyy> ••••••••••••••••••••..••• X - 2 

<xxx> VALUES ACCEPTED BUT NOT DISPLAYED FOR LOGICAL ENTRY <yyy> •••••• X - 4 

viii 



June 1, 1970 TABLE OF CoNTENTS RM(2)-S2K-1.1 

fBRIEVAL 

AND IS UNSATISFIED . .....•.•••.•••.•..••••.•...•••.•••••••••••••••••.• A - 2 

AT <-xxx> IS NON-NUMERIC OR OUT-OF-RANGE •••••••••••••••••••••••••••••• A - 3 

AT <xxx.> IS 'UN'SATIS FIED •••••••••••••••••••••••••••••••••••••••••••••• A - 3 

c <xxx> yyY -- DATE OCCURS BEFORE 10/15/1582 ••••••••••••••••••••••• c - 1 

C <xxx> EXISTS -- NOT SATISFIED ....................................... C - 1 

c <xxx> <yyy> -- lli\S PROHIBITED DAY CODE .•••••••••••••••••••••••••••• c - 1 

c <xxx> 

c <xxx> 

C <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

lli\S PROHIBITED MONTH CODE ••••••.•••••••••••••••••.•• C - 1 

INCORRECT MONTH/DAY CODE COMBINATION •••••••••••••••• C - 2 

<yyy> REFERS TO RG INSTEAD OF AN ELEMENT ••••••••.•.. C - 2 

UNSATISFIED CONDITION •••••••••••••••••••••••••••.••. C - 2 

VALUE HAS PROHIBITED CHARACTER LENGTH ••••••••••••.•• C - 2 

VALUE IS NON-NUMERIC .•.......•.••.•..•..•..•.•.••••• C - 3 

VALUE IS OUT-OF-RANGE ..•..••••••.•••..••••••••••.••• C - 3 

COMMAND TOO LONG OR TOO COMPLICATED •••.••...•••.••••.•••••••••••••••• C - 4 

COMPONENT NUMBER NOT FOUND •.•••.•.•.•••••...•..•••.•...•.••..•••.•.•• C - 4 

DITTO ILLEGAL DUE TO ERROR IN PREVIOUS REQUEST •..••••..••••••.••••••. D - 3 

ILLEGAL OPERATION - DIVISION BY ZERO •••.•.••.••••...•••...•••.•••..•• I - 2 

ILLEGAL OPERATION - NEGATIVE NUMBER TO A REAL POWER •••.•••.•.•.•.•.•. I - 2 

INCORRECT NUMBER OF OPERANDS FOR OPERATOR ••.•••••••.•••••.••••••••••• I - 4 

LARGE RETRIEVAL, NEED ADDITIONAL FIELD LENGTH. <xxx> WORDS MORE 

TO RUN • •....•.....•.•.•.......•........••.••.••.••.•..•.....•.•..... L - 1 

NO DATA BASE EXISTS FOR RETRIEVALS .••••..•.••••.••.•••••••...•.•••.•• N - 2 

NO OUTPUT FOUND . .•.•.••........•..•.......•..••..•......••.•....•.•.. N - 3 

NOT OPERATOR EXCLUDED ENTIRE DATA BASE .••••.•••••••••••••••••••••••.. N - 4 

NOT OPERATOR QUALIFIED ENTIRE DATA BASE •••.••••••.••••••••••••••••••• N - 4 

OR IS UNSATISFIED . ..••.••.•.....••.•.•..••........•....••.•.••.•.••.• 0 - 1 

ORING OF A NOT (CONDITION) HAS SPECIFIED ENTIRE DATA BASE •.•.•••••••• O - 2 

RELOAD CURRENTLY INOPERATIVE ••••••••••••.•••••••••••••••••••••••••••• R - 2 

SAME ILLEGAL DUE TO ERROR IN PREVIOUS REQUEST •••••.•••••••...••••.•.• S - 1 

SECOND COMPONENT NUMBER APPEARS BEFORE THE FIRST COMPONENT NUMBER .••• S - 2 

SECOND <separator symbol> NOT FOUND AFTER 50 CHARACTERS •••••••..••••• S - 2 

SP ANS A, B REQUIRES A LE B .•••••.•••••••.••••••••••.•••••••.•.•••••.• S - 2 

ix 



June 1, 1970 RM(2)-S2K-l.l 

RETRIEVAL CONTINUED 

SYSTEM 2000, VERSION <xxx> : ••••••••..••••....•••.•.•.••...••.•...•.•• S - 5 

UNDEFINED COMPONENT/FUNCTION.<.xxX> USED IN COMMAND •••••••••..•••••••• U - 1 

UNDEFINED STRING USED IN COMMAND •.•••••••.•••••••••••••.••.•.••.••••• U - 2 

WHEN USING C<xxx> HAS C<yyy>, - C<.XXX> MUST BE A SENIOR RG TO 

c <yyy> ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• w - 1 

WHEN USING C<xxx> HAS C<yyy>, C<xxx> MUST BE AN RG 

WHERE CLAUSE QUALIFIED ENTIRE DATA BASE .•.•.•••••••...•.•.••.•••...•. W - 1 

<xxx> <yyy> -- REFERS TO RG INSTEAD OF AN ELEMENT •..•••..•••..•••.•.. X - 2 

<xxx> -- REQUIRES NUMERIC DATA VALUES FROM C<yyy> .•.•...••.•.••...•.• X - 2 

<xxx> <yyy> 

<xxx> <yyy> 

RESULTS WERE OUT-OF-RANGE .••.•.......•.•••....•.••..•. X - 2 

UNSATISFIED - NO DATA VALUES FOR C<yyy> ..•.•...•.••..• X - 4 

x 



June 1, 1970 TABLE OF CoNTENTS 

LPDATE 

RM(2)-S2K-1. l 

A FULL TRACE IS REQUIRED IN REQUESTS OMI.TTING THE WHERE CLAUSE ••••••• A - 1 

AND IS UNSATISFIED ..••...•...•.•.•.•.•.•.•.•••.•••.•••••••••••••••.•• A - 2 

ARCHIVE UPDATE TAPE HAS INVALI.D LABEL ......•.•..••••••••••••••.•.•••. A - 3 

AT <xxx> IS NON-NUMERLC OR OUT-OF-RANGE ..•.•..•.•.••••••....••.•••••• A - 3 

AT <xxx> IS UNSATISFIED .....•.•.....••....•••..•.•.••••••.•••••••.••• A - 3 

BEFORE AND AFTER CLAUSE CAN ONLY BE USED WITH INSERT CURRENTLY .•.•.•• B - 1 

c <xxx> <yyY> -- DATE OCCURS BEFORE 10/15/1582 ..•.•.....•.••••...•... c - 1 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

c <xxx> 

EXISTS 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

<yyy> 

~yyy> 

<yyy> 

-- NOT SATISFIED ..........•...•••...••.•...•...••... C - 1 

HAS PROHIBITED DAY CODE ...••......•.....•....•...•. C - 1 

HAS PROHIBITED MONTH CODE ..•..•••........•.•..•.•.. C - 1 

INCORRECT MONTH/DAY CODE COMBINATION .••.•.......... C - 2 

<yyy> REFERS TO RG INSTEAD OF AN ELEMENT ....•....... C - 2 

UNSATISFIED CONDITION .......•...................... C - 2 

VALUE HAS PROHIBITED CHARACTER LENGTH •..•.....•.... C - 2 

VALUE IS NON-NUMERIC .....................•......... C - 3 

VALUE IS OUT-OF-RANGE .............................•.... C - 3 

270 CHARACTERS SCANNED WITHOUT FINDING A SEPARATOR -- DISCARD 

FIRST 265 CllARACTERS ......................................•........ C - 3 

COMMAND TOO LONG OR TOO COMPLICATED .................................. C - 4 

DATA BASE HAS BEEN MODIFIED VIA INDIVIDUAL UPDATE REQUESTS ........... D - 1 

DATA BASE UNALTERED .................................................. D - 2 

DATA SET <xxx> ELEMENT <yyy> BELONGS TO ANOTHER RG .............• D - 3 

DATA SET <xxx> (RG <yyy>) HAS NO PARENT DATA SET .......•.....•....... D - 3 

DATE SET <xxx>, NO VALUE FOR ELEMENT <yyy> ..........•.....•.....•.••• D - 3 

DITTO ILLEGAL DUE TO ERROR IN PREVIOUS REQUEST .........•............. D - 3 

END-OF-FILE AFTER READING <xxx> SEGMENTS ... NO SEGMENTS APPLIED ..... E - 1 

ERROR IN DATE OR NUMERIC VALUE .......•.......................•.••.••. E - 2 

EXTRANEOUS VALUE FOR ELEMENT <xxx> IN DATA SET <yyy> •..••••.••••••.•• E - 2 

ILLEGAL LIMITS -- ONLY NON-NEGATIVE INTEGERS ARE PERMITTED ...•.•••••. I - 2 

ILLEGAL VALUE STRING IN REMOVE REQUEST .......•......•••••...•.••...•. I - 3 

INCLUSION OF WHERE CLAUSE CONFLICTS WITH USE OF FULL TRACE ••.••.••••• I - 3 

xi 



June 1, 1970 RM(2)-S2K-1.1 

UPDATE CONTINUED 

INCORRECT NUMBER OF OPERANDS FOR OPERATOR •••.•.....••••••••••••.••••• I - 4 

LARGE RETRIEVAL, NEED ADDITIONAL FIELD LENGTH.. <xxx> WORDS MORE 

TO RUN •••••..••...•.••...••..•.•.•.•..••....•.....•.•.....•..••.•.. L - 1 

LAST PREVIOUS REQUEST IN ERROR OR NO PREVIOUS REQUEST .•.•••.•••••...• L - 1 

LIMITS ARE < xxx> AND <yyy> ••••••••••••••••••••••••••••••••••••••••••• L - 1 

NO DATA BASE LOADED FOR UPDATE REQUESTS ..•..........•.•.•••••.•••.•• ~N - 2 

NO PRIOR VALUE STRING OR PREVIOUS VALUE HAD ERRORS ....•.•.....•.•.... N - 3 

NOT OPERATOR EXCLUDED ENTIRE DATA BASE ..•...........•....•......•.... N - 4 

NOT OPERATOR QUALIFIED ENTIRE DATA BASE ...•.........•.•...•.......... N - 4 

NUMBER OF SELECTED SETS IS ABOVE USER SELECTED UPPER LIMIT ........... N - 4 

NUMBER OF SELECTED SETS IS BELOW USER SELECTED LOWER LIMIT •.•.••.••.. N - 5 

OBJECT COMPONENT CANNOT BE AN ELEMENT THIS REQUEST TYPE .•.•.....•.... O - 1 

OBJECT COMPONENT MUST BE IDENTICAL TO PREVIOUS OBJECT COMPONENT .•.... O - 1 

OR IS UNSATISFIED .......................•...............•••.•.•...... 0 - 1 

ORING OF A NOT (CONDITION) HAS SPECIFIED ENTIRE DATA BASE .•.•...•.... O - 2 

REQUEST REJECTED .........................................•......•.... R - 2 

REQUIRED VALUE STRING MISSING ........................................ R - 2 

RESULT OF WHERE CLAUSE IS A NOTTED LIST ... UPDATE CANNOT HANDLE IT 

AT P RES EN T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . • . . . . R - 2 

RESULT OF WHERE CLAUSE IS WHOLE SHEGANG ... UPDATE CANNOT HANDLE IT 

AT PRESENT ..............................................•.....•...•. R - 2 

SAME ILLEGAL DUE TO ERROR IN PREVIOUS REQUEST ..........•............. S - 1 

SEGMENT COUNT MUST BE POSITIVE INTEGER ..........•...•......•..•..•... S - 2 

SPANS A, B REQUIRES A LE B ........................•......•........... S - 2 

SYNTACTIC ERROR IN APPLY OR KEEP ..•...•.............•.....•...• · • · · · · S - 3 

SYNTACTIC ERROR IN TRACE ............................•...........•..•. S - 4 

SYNTAX ERROR IN COMPONENT NUMBER OR MISSING REQUIRED BLANK ...•....... S - 4 

TOO MANY BRANCHES SPECIFIED IN TRACE •......................•..•••••.. T - 1 

TOO MANY SETS DEFINED IN VALUE STRING ..•.....••......•.•.••.•••....•• T - 1 

TOO MANY VALUES IN VALUE STRING •..........•.•...•..............•••••. T - 1 

TRACE CANNOT BE USED IN CONJUNCTION WITH BEFORE OR AFTER CLAUSE ..•.•• T - 2 

TRACE REQUIRED WITH. INSERT .•. WHERE .•..•.•........•..•.......•••...• T - 2 

xii 



June 1, 1970 RM(2)-S2K-1. l 

UPDA1E CONTINUED 

UNDEFINED COMPONENT NAME <Xxx> •••••••••••••••.••••••••••••••••••••••• U - 1 

UNDEFINED COMPONENT NUMBER <.xxx> .•••••••.......••••••••••.•••••••.••• U - 1 

UNEXPECTED END-OF-FILE ON ARCHIVE TAPE •••.••.••••••••.•••.••••••••••• U - 2 

UNRECOGNIZED OBJECT COMPONENT ......................................... U - 3 

UP DATE FILE AUGMENTED . •...•.•....•••.••••......••••••.••••.•••••.•••• U - 3 

UPDATE FILE HAS BEEN SUSPENDED •••.••..•••.......•.•.....•..•••....•.. U - 3 

UPDATE FILE HAS ONLY <XXX> SEGMENTS •••••...•.••••.•••.••••.••••..••.• U - 3 

UPDATING COMPLETE .•. CURRENT VERSION IS <XXX> <YYy> <zzZ> ••••••••••• u - 4 

UPPER LIMIT LOWER THAN LOWER LIMIT ........•......•••.•••••••..••••••• U - 4 

VALUE EXCEEDS 255 CHARACTERS .••...•.•..•...•••..•••...•••..•...•.•••• V - 1 

VALUE GIVEN AFTER RG IDENTIFIER ....•..••.••.....•••••••••.•••••••••.. V - 1 

WHEN USING C<xxx> HAS C<yyy>, -- C<xxx> MUST BE A SENIOR RG 

TO C<yyy> •.••••••••••••••••••••••.•••.•••••••••••••••••••••••••••• W - 1 

WHEN USING C<xXX> HAS C<yyy>, C<xXX> MUST BE AN RG •••••••••..••••..• W - 1 

WHERE CLAUSE QUALIFIED ENTIRE DATA BASE ..•...•.••.••.••••••.•.•.••••• W - 1 

WHERE CLAUSE STATUS MUST BE CONSISTENT WITH THAT OF PREVIOUS 

REQUEST ••..•••..•••..•.•..••••••••••••.••••.••••.•••••••••••••••••• W - 1 

<xxx> IS AN UNDEFINED COMPONENT NUMBER ........•.••..••.••.••.••.•••.• X - 2 

<xxx> SEGMENTS DISCARDED ... UPDATE FILE SUSPENDED ..•.••••.•.••••.•.• X - 3 

< xxx> SEGMENTS WILL BE APPLIED .......••....•••••••••••••••.•••.•••••. X - 3 

< xxx> SEGMENTS WILL BE SAVED ....•..•.•......••.•••••••.••••.•••..•••• X - 3 

<xxx> SELECTED DATA SETS ...•.•..•.••..••..•.••..•.••••••••••••..•••.• x - 3 

xiii 



SYSTEM 2000 

Diagnostic Messages 



June 1, 1970 RM(2)-S2K-l. l 

A 

A COMPONENT IN THE FUNCTION DEFINITION IS NOT TYPE NUMBER OR DATE 

DEFINE ND, NF - new definition 
ND, F - old definition 

A COMPONENT MAY NOT PRECEDE ITS PARENT 

DEFINE F, ND 

A DATA BASE IS CURRENTLY LOADED 

When an existing data base has been loaded 
or named for this job, a new data base 
cannot be defined. 

DEFINE F, ND 

A FULL TRACE IS REQUIRED IN REQUESTS OMITTING THE WHERE CLAUSE 

The update request was not processed. 

UPDATE F, ND 

A NEW DATA BASE NAME HAS ALREADY BEEN DECLARED 

More than one name has been specified for a 
new data base definition. 

DEFINE F, ND 

A - 1 



June 1, 1970 RM(2)-S2K-l.l 

ABOVE VALUE REJECTED DUE TO ERROR IN NEXT LABEL 

In the loader input string, if a data value and 
the succeeding component ntnnber are not separated by 
a blank or if there is a question as to whether the 
component number indeed belongs to the value (incorrect 
use of a separator) both the preceding and conflicting 
data are rejected. This prevents erroneous data from 
entering the data base if no STOP connnand was given. 

LOADER 

ACC - <xxx> <yyy> 

PF - depending on effective 
STOP connnand 

ND - but hazardous depending on 
effective STOP command 

If errors occur in the loader input string and the 
user specified a full or partial display of accepted 
values, then for each logical entry having errors, 
each accepted data value is displayed line by line, 
single space. <xxx> is the element number followed 
by the separator followed by the accepted data value. 

LOADER ND 

ACC - DUMMY DATA SET FOR RG<xxx> 

If errors occur in the loader input string and the 
user specified a display of accepted values, then 
for each logical entry having errors non-valued data 
sets that were accepted are displayed. 

LOADER ND 

AND IS UNSATISFIED 

In the WHERE clause a logical AND operation produced 
no results. Request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

A - 2 



June 1, 1970 RM(2)-S2K-1. l 

ARCHIVE UPDATE TAPE HAS INVALID LABEL 

When using KEEP or APPLY co1Illilands, the archive 
UPDATE TAPE must correspond exactly regarding 
tape and data base identification. 

UPDATE F, ND 

AT <xxx> IS NON-NUMERIC OR OUT-OF-RANGE 

In the WHERE clause an AT phrase contained an 
erroneous numeric value. <xxx> is the numeric 
value. '!his request is not processed. 

RETRIEVAL and 
UPDATE 

AT <xxx> IS UNSATISFIED 

ND, NF - retrieval 
.ND, F - update 

In the WHERE clause an AT phrase produced 
no results. <xxx> is the number associated 
with AT. This request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

A - 3 



June 1, 1970 RM(2)-S2K-1. l 

B 

BEFORE AND AFTER CLAUSE CAN ONLY BE USED WITH INSERT CURRENTLY 

The update request was not processed. 

UPDATE F, ND 

BINARY ZEROES EXIST ON DATA FILE 

The DATA file consists of display code characters 
only; a binary zero (00) is an illegal display code 
character. This error usually occurs because of 
machine generated loader input string. 

LOADER F, ND 

B - 1 



June 1, 1970 RM(2)-S2K-1. l 

c 

C <xxx> <yyy> -- DATE OCCURS BEFORE 10/15/1582 

In the WHERE clause the data value for a type DATE 
element occurs before the advent of the Gregarian 
calendar and cannot be converted to number of days 
elapsed. This request is not processed. <xxx> is 
the component number and <yyy> is the date specified. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

C <xxx> EXISTS -- NOT SATISFIED 

In the WHERE clause use of EXISTS produced no results 
for that condition. <xxx> is the element number in 
the condition. The request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

C <xxx> <yyy> -- HAS PROHIBITED DAY CODE 

In the WHERE clause the data value for a type DATE 
element contains a day value not equal to 01 through 
31. <xxx> is the element number and <yyy> is the rela­
tional operator and the date data value. This request 
is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

C <xxx> <yyy> -- HAS . PROHIBITED MONTH CODE 

In the WHERE clause the data value for a type DATE 
element contains a month value not equal to 01 through 
12. <xxx> is the element number and <yyy> is the rela­
tional operator and the date data value. This request 
is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

c - 1 



June 1, 1970 RM(2)-S2K-l.l 

C <xxx> <yyy> -~ INCO!IBECT MONTH/DAY CODE COMBINATION 

In the WHERE clause the data value for a type DATE 
element contains a day value not compatible with 
the specified month or 29 days were specified with 
a year value that is not a leap year. This request 
is not processed. <xxx> is the element number and 
<yyy> is the relational operator and the date data 
value. This request is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

C <xxx> <yyy> -- <yyy> REFERS TO RG INSTEAD OF AN ELEMENT 

In the WHERE clause the .component associated with 
relational operators in any specified condition 
must be an element that can have data values 
associated with it in the data base. <xxx> is the 
number for the erroneous component and <yyy> is a 
relational operator such as EQ, LE, GT, GE, NE, LT, 
SPANS, EXISTS or FAILS. This request is not 
processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

C <xxx> <yyy> -- UNSATISFIED CONDITION 

In the WHERE clause the condition displayed produced 
no results. <xxx> is the element number and <yyy> 
is the relational operator and the first ten 
characters of the value. The request is processed. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

C <xxx> <yyy> -- VALUE HAS PROHIBITED CHARACTER LENGTH 

In the WHERE clause the data value has none or too 
many characters for the type of element related to 
.the data value. <xxx> is element number and <yyy> 
gives the relational operator and first ten characters 
of the value. This request is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

c - 2 



June 1, 1970 RM(2)-S2K-l.l 

C <xxx> <yyy> -- VALUE IS NON-NUMERIC 

In the WHERE clause the data value in a condition 
contains a non-numeric character(s) and is related 
to an element defined to be a DECIMAL, INTEGER, or 
EXPONENTIAL NUMBER. <xxx> is the element number 
and <yyy> gives the relational operator and the 
first ten characters of the value. This request 
is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

C <xxx> <yyy> VALUE IS OUT-OF-RANGE 

In the WHERE clause the data value in a condition 
contains a number that is out-of-range for the 
Control Data 6000 series computers. <xxx> is the 
element number and <yyy> gives the relational 
operator and the first ten characters of the value. 
This request is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

CHANGES IMPLY RESTRUCTURING OF THE DATA SETS AND VALUES 

DEFINE F, ND 

270 CHARACTERS SCANNED WITHOUT FINDING A SEPARATOR -- DISCARD FIRST 

265 CHARACTERS 

An update request containing thls error in the 
data string is not processed. 

UPDATE F, ND 

COMMAND CURRENTLY NOT OPERATIONAL 

Deletion, changing elements to RGs, etc., not allowed. 

DEFINE F, ND 

c - 3 



June 1, 1970 RM(2)-S2K-l. l 

COMMAND TOO LONG OR TOO COMPLICATED 

Parentheses in a nested Boolean go deeper than 
64 levels or more than 30 or 40 conditions are 
contained in the WHERE clause; request should 
be broken up into several requests using SAME 
AND or SAME OR to obtain results. This request 
is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

COMPONENT NUMBER GIVEN DOES NOT EXIST 

A command was given indicating a number change 
or padding/null option change to an undefined 
component number. 

DEFINE F, ND 

COMPONENT NUMBER NOT FOUND 

The component number in a DESCRIBE command is 
not contained in the definition. 

RETRIEVAL ND, NF 

COMPONENT NUMBER UNIDENTIFIED 

An undefined component number was encountered 
in the loader data input string. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

c - 4 



June 1, 1970 RM(2)-S2K-1. l 

COMPONENT NillIBERS WILL EXCEED THE MAXIMuM OF 9999 

A RENUMBER command has been given with a starting 
number or an increment too large that would result 
in component numbers exceeding the 9999 maximum. 

DEFINE F, ND 

COMPONENT TYPE NOT A REPEATING GROUP 

A null option change was specified for a component 
number defined as an element, function or string. 

DEFINE F, ND 

CONTROL CARD ERROR 

For an on-site or 200 terminal batch job, if the 
Scope Control Card that calls SYSTEM 2000 contains 
a syntax error, e.g., a keypunch error, the job 
terminates giving this message. For remote jobs, 
the control cards are generated by the system and 
this error should not occur. 

SYSTEM-WIDE F, ND 

COPY CREATED ... 

<xxx> DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> 

When a data base has been successfully copied (caused 
by a CREATE COPY command), an informative message is 
given where: 

<xxx> = data base name 
<yyy> = definition version number 
<zzz> data base version 
<ddd> = date when copied 
<ttt> = time when copied 

SYSTEM-WIDE INFORMATIVE 
ND, NF 

c - 5 



June 1, 1970 RM(2)-S2K-l.l 

D 

DATA BASE DEFINITION DOES NOT EXIST FOR LOADER MODULE 

LOADER F, ND 

DATA BASE HAS BEEN MODIFIED VIA INDIVIDUAL UPDATE REQUESTS 

The user cannot apply more segments once the data 
base has been modified by individual requests such 
as CHANGE, ADD, etc. 

UPDATE F, ND 

DATA BASE NAME ALREADY USED - <data base name> 

Generated when NEW DATA BASE <data base name>: command 
specifies an existing data base. 

DEFINE F, D 

DATA BASE NAME NOT ON DBN TABLE 

Use of the DATA BASE NAME IS command has given 
the system a misspelled data base name or has 
specified a data base that has not been loaded 
or created. 

SYSTEM-WIDE F, ND 

DATA BASE NAME NOT SPECIFIED YET 

An informative message is given before the data 
base is named in the first job during a workday 
for all passwords. If the first command (after 
the password command) is not DATA BASE NAME IS 
<data base name>, then none of the modules can 
perform any serivce. Once the data base has been 
named, it is then automatically attached to subse­
quent jobs using that password. Each workday a 
data base must be named (or newly created), i.e., 
associated with the specified password. 

SYSTEM-WIDE ND, NF 

D - 1 



June 1, 1970 RM(2)-S2K-l.l 

DATA BASE UNALTERED 

No errors occurred, but an update request 
caused no action to be taken. 

UPDATE INFORMATIVE 
ND, NF 

DATA BELOW NOT ACCEPTED FOR LOGICAL ENTRY <xxx> 

If errors occur while scanning the loader input 
string, this heading appears before the list of 
errors for each logical entry having errors. 
<xxx> is the logical entry number. 

LOADER ND 

DATA FILE EMPTY OR NOT REWOUND 

The DATA file must be rewound, i.e., properly 
positioned at the beginning of a Section of 
loader input string, or the file will appear 
to be empty - or is empty. 

LOADER F, ND 

DATA LABEL WITHOUT A DATA VALUE 

In the loader data input string no data value was 
found after an element number; either the number 
was in error or the value was omitted. If an 
element has no value, the element number should 
be omitted. 

LOADER PF - depending on effective STOP conunand 
ND - but hazardous depending on effective 

STOP conunand 

D - 2 



June 1, 1970 RM(2)-S2K-l.l 

DATA SET <xxx> --- ELEMENT <yyy> BELONGS TO ANOTHER RG 

In the data string of an update request an element 
number was miscoded or an RG was omitted. <yyy> 
is the element number. This request is not processed. 

UPDATE F, ND 

DATA SET <xxx> (RG <yyy>) HAS NO PARENT DATA SET 

The hierarchy of RGs in the data string of an update 
request must be maintained. This request is not 
processed. <xxx> is the data set number and <yyy> 
is the RG number lacking a parent RG. 

UPDATE F, ND 

DATA SET <xxx>, NO VALUE FOR ELEMENT <yyy> 

In data set number <xxx> in an update request, an 
element number appeared without an associated data 
value. 

UPDATE F, ND 

DITTO ILLEGAL DUE TO ERROR IN PREVIOUS REQUEST 

1. In the RETRIEVAL module: 

a) The use of DITTO implies that a WHERE 
clause was given in the most previous 
request: 

PRINT Cl: 

DITTO WHERE (illegal use) 

b) If any error occurred to the left of 
the WHERE clause in a retrieval request, 
subsequent use of DITTO is illegal until 
an error-free PRINT clause, for instance, 
is encountered. 

D - 3 



June 1, 1970 RM(2)-S2K-l.l 

c) DITTO has no meaning across the RETRIEVAL 
and UPDATE modules, thus, the following 
sequence is illegal: 

RETRIEVAL: 

PRINT Cl WHERE Cl EXISTS: 

UPDATE: 

DITTO WHERE SAME: 

2. In the UPDATE module: 

a) If any errors occurred to the left of 
the WHERE clause in an update request, 
then use of DITTO is illegal on the 
next request. 

b) DITTO has no meaning across the RETRIEVAL 
and UPDATE modules, thus, the following 
sequence is illegal: 

UPDATE: 

CHANGE Cl EQ .... WHERE 

RETRIEVAL: 

DITTO WHERE SAME: 

c) (Unlike RETRIEVAL, DITTO may be used 
legally in an update request when the 
previous update request had no WHERE 
clause.) 

RETRIEVAL and 
UPDATE 

DUPLICATE COMPONENT NAMES 

DEFINE 

ND, NF job in RETRIEVAL 
ND, F - job in UPDATE 

ND, NF - new definition 
ND, F - old definition 

DUPLICATE COMPONENT NUMBERS 

DEFINE ND, NF - new definition 
ND, F - old definition 

D - 4 



June 1, 1970 

E 

ELEMENT HAS A DATA VALUE IN THIS DATA SET 

In the loader input string two values were 
assigned to one element in a single data set. 
Cause of error may be a missing RG number, an 
erroneous element number, a missing entry 
terminator at the end of a logical entry, or 
two actual values incorrectly assigned to the 
same element. 

RM(2)-S2K-l.l 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP connnand 

ELEMENT NOT A MEMBER OF THIS RG 

Element numbers are tested to see if each belongs 
to the last RG number in the loader input string 
(except level 0 elements). The cause of error 
may be a missing RG, an erroneous RG number, 
elements for one data set were scattered inadver­
tantly, or the element number was erroneous. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

END-OF-FILE AFTER READING <xxx> SEGMENTS ••. NO SEGMENTS APPLIED 

While trying to process an APPLY <n> SEGMENTS 
connnand, an end-of-file mark on the UPDATE FILE 
was encountered prematurely before finding <n> 
segments. <xxx> is a count of the number of 
segments that were read. 

UPDATE F, ND 

E - 1 



June 1, 1970 RM(2)-S2K-l.1 

ENTIRE ENTRY DISPLAY 

If any errors occur when scanning the loader input 
string, the user display option is given as a 
heading to the list of errors. 

LOADER ND 

ERROR IN DATE OR NUMERIC VALUE 

Numeric data value error or date error in the 
data string of any update request. 

UPDATE F, ND 

EXTRANEOUS VALUE FOR ELEMENT <xxx> IN DATA SET <yyy> 

In the data string of an update request each element 
may take on only one value per data set. <xxx> is 
the redundant element number and <yyy> is the data 
set ntmlber. This request is not processed. 

UPDATE F, ND 

E - 2 



June 1, 1970 RM(2)-S2K-1.1 

F 

(There are no diagnostics under this category at the present time.) 

F - 1 



June 1, 1970 RM(2)-S2K-1. l 

G 

GO TO RETRIEVAL FOR DESCRIBE 

DESCRIBE requests are honored by the RETRIEVAL 
module only. 

DEFINE ND, NF 

G - 1 



June 1, 1970 RM(2)-S2K-l. l 

H 

(There are no diagnostics under this category at the present time.) 

H - 1 



June 1, 1970 

I 

ILLEGAL AMOUNT (OVER 60 PERCENT) OF PADDING 

DEFINE ND, NF - new definition 
ND, F - old definition 

ILLEGAL CHOICE OF SEPARATOR OR TOO MANY CHARS 

The standard separator symbol is *· If the 
user changes the separator symbol, it may not 
be an alphanumeric character A - Z or 0 - 9; 
it may not be a",",. a".", a":", or a blank; 
it must be a single character. 

SYSTEM-WIDE F, ND 

ILLEGAL DATE DATA VALUE 

RM(2)-S2K-1. l 

In the loader input string a date value contained 
a syntax error, month or day code was illegal, 
month/day combination was illegal, or date 
was before 10/15/1582. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

ILLEGAL KEYWORD AFTER A SPECIAL LABEL ERROR 9 REJECTIONS = <xxx> 

In the loader data input string the ** must be followed 
by the current <entry terminator>, COMMENT, or 
SEPARATOR IS. Error 9 is known to LOADER and <xxx> 
is the total number of rejections encountered. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

I - 1 



June 1, 1970 RM(2)-S2K-l. l 

ILLEGAL LIMITS -- ONLY NON-NEGATIVE INTEGERS ARE PERMITTED 

UPDATE F, ND 

ILLEGAL NUMERIC DATA VALUE 

In the loader data input string, a data value 
for a numeric type element contained embedded 
blanks, non-numerals, incorrect decimal point 
or omitted decimal point, or incorrect syntax 
of an exponential number or the element number 
is incorrect. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

ILLEGAL OPERATION - DIVISION BY ZERO 

While calculating a user-defined function in a 
retrieval request, the data values caused division 
by zero. 

RETRIEVAL ND, NF 

ILLEGAL OPERATION - NEGATIVE NUMBER TO A REAL POWER 

While calculating a user defined function in a 
retrieval request, a negative data value raised 
to a fractional power such as square root (-9· 5) 
could not be calculated. 

RETRIEVAL ND, NF 

ILLEGAL PASSWORD 

An illegal password has been specified on a remote 
batch job or on a USER command under batch mode, 
also generated when INVALID PASSWORD IS <password>: 
command specifies a non-existent password. 

SYSTEM-WIDE F, ND 

I - 2 



June 1, 1970 RM(2)-S2K-l. l 

ILLEGAL TAPE NUMBER 

The DATA, COMMAND, REPORT, and MESSAGE file names 
may not begin with "TAPE" and must not have more 
than 7 characters; they must begin with an 
alphabetic character and contain no special characters. 

SYSTEM-WIDE F, ND 

ILLEGAL VALUE STRING IN REMOVE REQUEST 

An update REMOVE command should not have a data 
value string. 

UPDATE F, ND 

INCLUSION OF WHERE CLAUSE CONFLICTS WITH USE OF FULL TRACE 

The update request was not processed. 

UPDATE F, ND 

INCORRECT ARITHMETIC EXPRESSION 

Arithmetic expression is not syntactically proper 
in a function definition. 

DEFINE 

INCORRECT DATA BASE NAME 

ND, NF - new definition 
ND, F - old definition 

When redefining an existing definition, the name 
of the old data base does not equal the data base 
currently loaded or in use. 

DEFINE F, ND 

I - 3 



June 1, 1970 

INCORRECT NUMBER OF OPERANDS FOR OPERATOR 

The EQ, GE, GT, LT, LE, NE operators must have 
one operand. FAILS and EXISTS do not have an 
operand. SPANS takes two operands separated 
by a comma. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

INDETERMINATE VALUE OR COMPONENT NUMBER 

Due to arbitrary syntax, perhaps use of 
unbalanced parentheses or incorrect separator 

RM(2)-S2K-1. l 

symbol, a data value or component number is questionable. 

DEFINE NF - job for new definition or retrieval 
F - job for all else 

I - 4 



June 1, 1970 RM(2)-S2K-1.1 

J 

(There are no diagnostics under this category at the present time.) 

J - 1 



June 1, 1970 RM(2)-S2K-1.1 

K 

(There are no diagnostics under this category at the present time.) 

K - 1 



June 1, 1970 RM(2)-S2K-l.1 

L 

LARGE RETRIEVAL, NEED ADDITIONAL FIELD LENGTH. <xxx> WORDS MORE TO RUN 

In the WHERE clause the number of qualified data sets 
requires more field length to process entire results. 
<xxx> equals the number of qualified data sets that 
could not be included in the WHERE clause results. 
Request is processed as usual but those <xxx> data 
sets are not included in the output results. Rather 
than increase field length for remote batch jobs, 
the request perhaps should be splintered into smaller 
sections of WHERE clause conditional results. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
NF - retrieval 
F - update if LIMITS are effective 
PD - update if LIMITS are effective 

LAST PREVIOUS REQUEST IN ERROR OR NO PREVIOUS REQUEST 

Use of DITTO requires the appropriate clause in 
the last previous request. 

UPDATE F, ND 

LEVEL 0 DISPLAY OPTION 

If any errors occur when scanning the loader 
input string, the user display option is given 
as a heading to the list of errors. 

LOADER ND 

LIMITS ARE <xxx> AND <yyy> 

The system echos an informative message when it 
honors a LIMIT command. 

UPDATE INFORMATIVE 
ND, NF 

L - 1 



June 1, 1970 RM(2)-S2K-1.1 

LOADED 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> 

When a data base has been successfully loaded from 
magnetic tape to disk, an informative message is 
given where: 

<xxx> = data base name 
<yyy> = definition version number 
<zzz> = data base version 
<ddd> = date when loaded 
<ttt> = time when loaded 

SYSTEM-WIDE INFORMATIVE 
ND, NF 

LOADER STOPPED AFTER <n> ERRORS 

LOADER found <n> errors and stopped scanning 
the data input string as specified by the user; 
no data values were entered into the data base. 

LOADER ND, F 

LOADER STOPPED AFTER <n> EXCLUDED VALUES 

LOADER stopped after encountering 1000 excluded 
data values in the data input string; <n> is 
not a user option currently; no data values were 
entered into the data base. 

LOADER INFORMATIVE 
ND, F 

LOADER WAS DIRECTED TO STOP AFTER SCANNING INPUT STRING 

LOADER scanned the entire data input string for 
errors and stopped before entering the data values 
into the data base. 

LOADER ND, F 

L - 2 



June 1, 1970 RM(2)-S2K-l.l 

LOGICAL ENTRY <xxx>. <yyy> VALUES ACCEPTED 

For each logical entry having errors in the loader 
data input string, regardless of the specified display 
option, an informative message gives the logical entry 
number <xxx> and the total number of data values 
accepted, <yyy>, for that logical entry. 

LOADER ND 

L - 3 



June 1, 1970 RM(2)-S2K-1.1 

M 

MAP COMMAND MUST BE USED FOR A NEW DEFINITION 

A REMAP command can only be used when redefining 
an existing definition. 

DEFINE F, ND 

MORE THAN 255 CHARACTERS IN A DATA VALUE 

Data values cannot have more than 255 characters. 
While scanning the loader data input string, the 
current separator symbol was encountered too far 
beyond the 255th character of the data value. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

MORE THAN 127 COMPONENTS - MAXIMUM UNDER THIS VERSION 

DEFINE F, ND 

MORE THAN 64 REPEATING GROUP LEVELS - MAXIMUM REACHED 

DEFINE F, ND 

M - 1 



June 1, 1970 RM(2)-S2K-1. l 

N 

NEW SEPARATOR IS ILLEGAL OR NON-EXISTENT ERROR 10 REJECTIONS = <xxx> 

An illegal separator symbol was specified within 
the loader input string. Error 10 is known to 
LOADER and <xxx> equals the total number of rejections 
at that point in the scanning process. 

LOADER F, ND 

NO CHANGES HAVE BEEN MADE TO THE DEFINITION 

A REMAP command has been given and no redefining 
changes were specified. 

DEFINE F, ND 

NO DATA ACCEPTED FOR LOGICAL ENTRY <xxx> 

If errors occur while scanning the loader input 
string, then for each logical entry having errors 
and no accepted data values, this informative 
message is given. 

LOADER ND 

NO DATA ACCEPTED FOR THIS SESSION 

The entire loader data input string was rejected 
or excluded due to errors in the string. 

LOADER F, ND 

NO DATA BASE DECLARATION EXISTS 

A MAP command has been issued and the new definition 
contains no component descriptions. 

DEFINE F, ND 

N - 1 



June 1, 1970 RM(2)-S2K-1.1 

NO DATA BASE EXISTS FOR RETRIEVALS 

RETRIEVAL F, ND 

NO DATA BASE LOADED FOR UPDATE REQUESTS 

No data base was loaded or created or named before 
calling the UPDATE module or a definition exists 
without any data values. LOADER must be called 
at least once to create a minimum of one logical 
entry before using the UPDATE module. 

UPDATE F, ND 

NO DATA BASE NAMED 

A data base name does not exist for the DEFINE 
module to define or redefine. One of the 
following commands must be given: 

NEW DATA BASE <data base name>: 
OLD DATA BASE <data base name>: 

DEFINE F, ND 

NO ENTRY TERMINATORS BEFORE EOF REJECTIONS = <xxx> 

No entry terminators were encountered before an 
end-of-file indicator. <xxx> equals total number 
of rejections to that point in the scan of the 
loader input string. 

LOADER NF - but hazardous if EOF in error 
PD - depending on effective STOP command 

NO PRECEDING PARENT RG DATA SET 

In the loader data input string each RG number must 
be preceded by its parent RG back to the level 0 
ancestral RG. The parent RG need not immediately 

N - 2 



Juno 1, 1970 fill(2)•S2It-l.1 

precede siblings; this depends on the otructurc 
of the data tree being created. 

'.LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

NO PRIOR VALUE STRING OR PREVIOUS VALUE HAD ERRORS 

UPDATE F, ND 

NO OUTPUT FOUND 

No output was found for a retrieval request. 

RETRIEVAL INFORMATIVE 
ND, NF 

NO RESTRUCTURING MODIFICATIONS WERE MADE 

A REMAP command was given to an existing definition 
but the changes did not imply restructuring. 

DEFINE F, ND 

NO RESTRUCTURING NECESSARY ON A NEW DATA BASE 

A REMAP command was given to finalize a new definition; 
the MAP command is sufficient. 

DEFINE F, ND 

NO USER SPECIFICATION 

For on-site or 200 terminal jobs, the first SYSTEM 
2000 command in every job must be the: 

USER, <XXX>, <yyy>: 

N - 3 



June 1, 1970 RM(2)-S2K-l.l 

command where <xxx> is the user password and 
<yyy> is the user account number. The USER 
command gives legal passwords access to SYSTEM 
2000; without the command the job terminates 
with issuance of the error message. For remote 
job submissions, the user must declare his pass­
word and account number once at login time to 
gain access to SYSTEM 2000; from login to logout 
time, SYSTEM 2000 is automatically available to the 
terminal that gave the legal password and this error 
will occur. 

SYSTEM-WIDE F, ND 

NOT OPERATOR EXCLUDED ENTIRE DATA BASE 

Request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

NOT OPERATOR QUALIFIED ENTIRE DATA BASE 

Request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

NULLS APPLY ONLY TO REPEATING GROUPS 

DEFINE ND, NF - new definition 
ND, F - old definition 

NUMBER OF SELECTED SETS IS ABOVE USER SELECTED UPPER LIMIT 

The LIMIT command currently in effect stopped action 
from taking place for the last displayed update request. 

UPDATE F, ND 

N - 4 



June 1, 1970 RM(2)-S2K-1.1 

NUMBER OF SELECTED SETS IS BELOW USER SELECTED LOWER LIMIT 

The LIMIT connnand currently in effect stopped 
action from taking place for the last displayed 
update request. 

UPDATE F, ND 

N - 5 



June 1• 1970 

0 

OBJECT COMPONENT CANNOT BE.AN ELEMENT THIS .REQUEST TYPE 

'!he component specified before EQ in an update 
request involving TREE processing must be a 
repeating group or ENTRY. 

UPDATE F, ND 

RM(2)-S2t<-1.l 

OBJECT COMPONENT MUST BE IDENTICAL TO PREVIOUS OBJECT COMPONENT 

When using PREVIOUS .in an update request, the RG 
or element specified before EQ must be identical 
to that of previous request. 

UPDATE F, ND 

ONLY ONE ENTRY TERMINATOR BEFORE EOF REJECTIONS = <xxx> 

Two entry terminators before an end-of-file 
indicator signals the end of data for the loader 
input string. <xxx> is the total number of 
rejections to that point in the scanning process. 

LOADER NF - but hazardous 
PD - depending on effective STOP command 

OR IS UNSATISFIED 

In the WHERE clause a logical OR operation produced 
no results. Request processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, PF - update if LIMITS are effective 

0 - 1 



June 1, 1970 RM(2)-S2K-l.1 

ORING OF A NOT (CONDITION) HAS SPECIFIED ENTIRE DATA BASE 

In the WHERE clause a NOT condition combined 
with an OR operation qualified the entire data 
base. Request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, F - update if LIMITS are effective 

0 - 2 



June 1, 1970 RM(2)-S2K-1. l 

p 

PADDING INVALID FOR A REPEATING GROUP 

DEFINE ND, NF - new definition 
ND, F - old definition 

PASSWORD <xxx> NOT AUTHORIZED TO USE <yyy> 

The data base security check has found that 
password <xxx> is not authorized to use data 
base <yyy>. 

SYSTEM-WIDE F, ND 

PASSWORD NOT VALID FOR DATA BASE 

Generated when INVALID PASSWORD IS <password>: 
command specifies a password which is not valid 
(legal) for the accessed data base. 

DEFINE ND, NF 

PRESERVED ... 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> 

When the LOADER module successfully completes the 
creation of a new data base, the new data base is 
preserved on disk for future use and the new data 
base name is entered automatically into the data 
base name table. 

<xxx> = data base name 
<yyy> = definition version number 
<zzz> = data base version number 
<ddd> = date of creation 
<ttt> = time of creation 

SYSTEM-WIDE INFORMATIVE 
ND, NF 

p - 1 



June 1, 1970 RM(2)-S2K-1.1 

Q 

(There are no diagnostics under this category at the present time.) 

Q - 1 



June 1, 1970 

R 

-REJ- <separator> <separator> <yyy> 

If a special label (i.e., **) is incorrect or 
is followed by an unrecognizable word in the 
loader input string, the non-data item is 
rejected and displayed. If the rejection was 
a ** CO~T, no damage will occur. 

RM(2)-S2K-l.l 

LOADER PF - depending on use and effective STOP 
command 

-REJ- <xxx> <yyy> 

ND - but hazardous depending on use and 
effective STOP command 

If errors occur in the loader input string, each 
erroneous item is displayed with -REJ- followed 
by <xxx>, the component number and <yyy>, the 
data value. A specific error message is given 
on the line following the rejected item. 

LOADER 

RELEASED .•• 

PF - depending on effective STOP command 
ND - but hazardous depending of effective 

STOP command 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> 

When a RELEASE command has successfully released 
a data base, an informative message is given where: 

<xxx> = data base name 
<yyy> = definition version number 
<zzz> = data 
<ddd> = date 
<ttt> = time 

SYSTEM-WIDE 

base version 
of release 
of release 

INFORMATIVE 
ND, NF 

R - 1 



June 1, 1970 

RELOAD CURRENTLY INOPERATIVE 

RETRIEVAL ND, NF 

REPEATING GROUP DOES NOT EXIST 

A component was described as being IN a 
component number defined to be an element, 
function or string. 

DEFINE 

REQUEST REJECTED 

ND, NF - new definition 
ND, F - old definition 

RM(2)-S2K-1.1 

The last displayed update request was rejected 
because of errors. 

UPDATE F, ND 

REQUIRED VALUE STRING MISSING 

A data value string or PREVIOUS must be supplied 
for all CHANGE, ADD, INSERT and ASSIGN requests. 

UPDATE F, ND 

RESULT OF WHERE CLAUSE IS A NOTTED LIST .•. UPDATE CANNOT HANDLE IT 

AT PRESENT 

UPDATE F, ND 

RESULT OF WHERE CLAUSE IS WHOLE SHEBANG •.• UPDATE CANNOT HANDLE IT 

AT PRESENT 

UPDATE F, ND 

R - 2 



June 1, 1970 RM(2)-S2K-l.1 

s 

SAME ILLEGAL DUE TO ERROR IN PREVIOUS REQUEST 

SAVED ••. 

In the RETRIEVAL and UPDATE modules: 

An error occurred in the WHERE clause of 
the previous request. 

RETRIEVAL and 
UPDATE 

ND, F job in UPDATE module 
ND, NF - job in RETRIEVAL module 

<xxx>, DEFINITION <yyy>, VERSION <zzz>, <ddd> <ttt> 

After a data base has been successfully saved 
on magnetic tape, an informative message is 
given where: 

<xxx> 
<yyy> 
<zzz> 
<ddd> = 
<ttt> = 

data base name 
definition version number 
data base version 
date when saved 
time when saved 

SYSTEM-WIDE INFORMATIVE 
ND, NF 

SCANNER FOUND AN ERROR WHILE ASSUMING NO ERRORS, TRY AGAIN WITH ASSUME 

ERRORS 

Certain types of errors are recognized even though the 
LOADER module may have been told to ASSUME NO ERRORS. 
However, most error conditions that may happen in the 
loader input string are not tested while ASSUME NO 
ERRORS is in effect. User should assure an error­
free loader string by pre-editing before letting 
LOADER enter the values into the data base. 

LOADER F, ND 

s - 1 



June 1, 1970 RM(2)-S2K-L 1 

SECOND COMPONENT NUMBER APPEARS BEFORE THE FIRST COMPONENT NUMBER 

In a DESCRIBE command 

DESCRIBE C<xxx> THRU C<yyy> 

<xxx> must appear before <yyy> in the definition 
regardless of the magnitude of the user component 
numbers. This request is not processed. 

RETRIEVAL ND, NF 

SECOND <separator symbol> NOT FOUND AFTER 50 CHARACTERS 

In a retrieval request a string name was not 
bounded by the current separator symbol. String 
names may have a maximum of 50 characters. This 
request is not processed. 

RETRIEVAL ND, NF 

SEGMENT COUNT MUST BE POSITIVE INTEGER 

When specifying explicitly the number of update 
segments to be kept or applied, the number must 
be a positive integer. 

UPDATE F, ND 

SPANS A, B REQUIRES A LE B 

When using SPANS in the WHERE clause, A must 
be less than or equal to B. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

s - 2 



June 1, 1970 RM(2)-S2K-l.l 

SPECIAL LABEL WITHOUT A VALUE, ERROR 8 REJECTIONS = <xxx> 

If, for instance, ** is encountered in the loader 
string and is immediately followed by a component 
number, then an entry terminator or a COMMENT has 
been omitted, or the special label is erroneous. 
Error 8 is known to LOADER and rejections = <yyy> 
gives current total number of rejections. 

LOADER PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP conunand 

STRING DEFINITION GREATER THAN 700 CHARACTERS 

DEFINE F, ND 

SYNTACTIC ERROR IN APPLY OR KEEP 

UPDATE F, ND 

SYNTACTIC ERROR IN COMPONENT DESCRIPTION 

Type of component misspelled, no type specified, 
no separator after component number when defining, or a 
SYSTEM 200 command word or symbol occurs in a component name. 

DEFINE ND, NF - new definition 
ND, F - old definition 

SYNTACTIC ERROR IN DATA BASE NAME 

DEFINE F, ND 

SYNTACTIC ERROR IN PADDING OPTION 

DEFINE ND, NF - new definition 
ND, F - old definition 

s - 3 



June 1, 1970 

SYNTACTIC ERROR IN TRACE 

UPDATE F, ND 

SYNTAX ERROR IN COMMAND 

1he command has been recognized as a type 
of request that is legal at the time, but 
the syntax of the command is illegal; for 
instance, 

INSERT TREC 

ASSUME NOT ERRORS: 

UNLOAD X WHERE •••• : 

PRINT •••• WHERE SAME Cl 

(SAME must be followed by AND or OR or : ) 

RM(2)-S2K-l.l 

SYSTEM-WIDE ND, NF - new definitions or retrievals 
ND, F - all else 

SYNTAX ERROR IN COMPONENT NUMBER OR MISSING REQUIRED BLANK 

In the data string of an update request, a 
syntax error occurred. 

UPDATE F, ND 

SYNTAX ERROR IN FUNCTION DEFINITION 

DEFINE 

SYNTAX ERROR IN LABEL 

ND, NF - new definition 
ND, F - old definition 

In the loader data input string: 

s - 4 



June 1, 1970 RM(2)-S2K-l.l 

1. No numerals (component number) found before 
a single separator symbol. This may be 
because of an omission or because the 
separator symbol occurred within a data 
value. 

2. Component number contains a non-numeric 
character (same possible causes as 1.) 

3. Component number more than 4 numerals; 
ambiguity between a data value and a 
component number or a blank was omitted 
or the separator is being used incorrectly. 

4. No blank was found before the component 
number. 

5. No blank before an ** <entry terminator> 
or ** COMMENT. 

6. No recognizable word after **· 

LOADER 

SYSTEM 2000, VERSION <xxx>: 
DATA BASE NAME IS < > 
DEFINITION VERSION NUMBER: 
DATA BASE VERSION NUMBER: 

PF - depending on effective STOP command 
ND - but hazardous depending on effective 

STOP command 

<xxx> 
<xxx> 

These four lines appear in the heading with the display of 
full DESCRIBE, DESCRIBE FUNCTIONS and DESCRIBE STRINGS commands. 

RETRIEVAL INFORMATIVE 
ND, NF 

s - 5 



June 1, 1970 RM(2)-S2K"".'1. l 

SYSTEM ERROR CODE NO. xxx 

A system error message is the result of a 
malfunction in the system and does not involve 
the user's connnands. System errors are coded 
with numbers that are meaningful to programmers 
working on SYSTEM 2000. All system errors are 
fatal to the rest of the job. Most of the system 
errors destroy or partially damage the data base 
as it exists on the disk permanent files. A 
RELEASE command can be given to release the 
damaged data base and then the data base may be 
restored by a LOAD connnand. 

The following system errors will not destroy 
any data base. All numbers not listed below 
are destructive. 

NON-DESTRLCTIVE SYSTEM ERROR CODES 

1 18 213 

5 19 214 

7 20 215 

9 21 216 

10 22 217 

11 23 218 

12 24 219 

14 104 303 

15 105 304 

16 106 305 

17 212 307 (if KEEP was used) 

SYSTEM-WIDE F 
D - except for list shown above 

s - 6 



June 1, 1970 RM(2)-S2K-l. l 

T 

THE DATA BASE HAS NOT BEEN .MAPPED OR REMAPPED 

If the DEFINE .module has been called upon to 
define a new data base or to modify an existing 
definition and the user attempts to call another 
module, such as RETRIEVAL, without giving a MAP 
or a REMAP connnand, the job terminates with 
this message. Inadvertantly forgetting to finalize 
a new definition or changes to a definition causes 
the new or changed components to be unavailable for 
use. 

DEFINE F - job always 
ND 

TOO MANY BRANCHES SPECIFIED IN TRACE 

The update request was not processed. 

UPDATE F, ND 

TOO MANY SETS DEFINED IN VALUE STRING 

Only one data set can exist in the data 
string of an update request unless the 
request specifies a TREE operation. 

UPDATE F, ND 

TOO MANY VALUES IN VALUE STRING 

If an element is specified before EQ in 
an update request, only one value can 
ba given in the data string. 

UPDATE F, ND 

T - 1 



June 1, 1970 RM(2)-S2K-1.1 

TRACE CANNOT BE USED IN CONJUNCTION WITH BEFORE OR AFTER CLAUSE 

The update request was not processed. 

UPDATE F, ND 

TRACE REQUIRED WITH. INSERT ••• WHERE 

UPDATE F, ND 

T - 2 



June 1, 1970 RM(2)-S2K-1. l 

u 

UNBALANCED PARENTHESES 

Parentheses in a function definition must be balanced. 

DEFINE ND, NF - new definition 
ND, F - old definition 

UNDEFINED COMPONENT/FUNCTION <xxx> USED IN COMMAND 

Component given in a retrieval request does 
not match any of those contained in the 
definition. This request will not be 
processed. 

RETRIEVAL ND, NF 

UNDEFINED COMPONENT NAME <xxx> 

A component name given in an update request 
does not match any of the component names 
in the definition. This request will not 
be processed. 

UPDATE F, ND 

UNDEFINED COMPONENT NUMBER <xxx> 

A component number given in an update 
request does not match any component 
number in the definition. This request 
will not be processed. 

UPDATE F, ND 

u - 1 



June 1, 1970 

UNDEFINED OPERAND USED IN FUNCTION DEFINITION 

The definition of a function contains a 
component number that does not appear in 
the definition. 

DEFINE ND, NF - new definition 
ND, F - old definition 

UNDEFINED STRING USED IN COMMAND 

A string name given in a retrieval 
request does not exist in the current 
definition. Th.is request is not processed. 

RETRIEVAL ND, NF 

UNEXPECTED END-OF-FILE ON ARCHIVE TAPE 

While processing KEEP or APPLY commands, 
an end-of-file mark was encountered 
before the expected number of segments 
were processed. 

UPDATE F, ND 

UNRECOGNIZABLE COMMAND 

RM(2)-S2K-1.1 

An illegal first word(s) in a request causes 
an unrecognizable command. The erroneous first 
word may have been misspelled or may have been 
illegal for the task module currently in service, 
such as giving a PRINT request to the UPDATE 
module. 

SYSTEM-WIDE ND, NF - new definition and retrieval 
ND, F - all else 

u - 2 



June 1, 1970 RM(2)-S2K-l.l 

UNRECOGNIZED OBJECT COMPONENT 

The component name or number specified for 
update action (before EQ or component in 
REMOVE commands) does not exist in the 
definition. 

UPDATE F, ND 

UPDATE FILE AUGMENTED 

The system returns an informative message 
indicating that another segment has been 
added to the UPDATE FILE each time a 
TERMINATE or an automatic terminate has 
taken place provided that the UPDATE 
FILE has not been SUSPENDED. 

UPDATE INFORMATIVE 
ND, NF 

UPDATE FILE HAS BEEN SUSPENDED 

A KEEP or APPLY command has been given for 
a suspended UPDATE FILE or the UPDATE FILE 
has never been declared. 

UPDATE F, ND 

UPDATE FILE HAS ONLY <xxx> SEGMENTS 

If a KEEP <n> SEGMENTS command is given 
and <n> is greater than the total number 
of segments that have been created, an 
error exists and none of the segments are 
kept. <xxx> is the number of segments that 
have been created on the UPDATE FILE. 

UPDATE F, ND 

u - 3 



June 1, 1970 RM(2)-S2K-1.1 

UPDATING COMPLETE ••• CURRENT VERSION IS <xxx> <yyy> <zzz> 

When a TERMINATE (or an automatic terminate) or 
an APPLY action has been completed, the system 
returns an informative message indicating: 

1. The current version number, <xxx> 

2. 1he current date, <yyy> 

3. The current time, <zzz> 

UPDATE INFORMATIVE 
ND, NF 

UPPER LIMIT LOWER THAN LOWER LIMIT 

Parameters in the LIMIT command must be given 
in ascending order or be equal. 

UPDATE F, ND 

USER SHOULD REMAP CHANGES TO OLD DATA BASE 

The MAP command finalizes a new definition; the 
REMAP command should be used to modify an 
existing definition. 

DEFINE F, ND 

u - 4 



June 1, 1970 

v 

VALUE EXCEEDS 255 CHARACTERS 

A data value was too long in the data 
string of an update request. This could 
be caused by an incorrect separator symbol. 

UPDATE F, ND 

VALUE GIVEN AFTER A DATA SET LABEL 

In the loader data input string a repeating 
group number was followed by a data value 
not another component number. Either the 
RG number is in error or an element number 
has been omitted. 

RM(Z)~SZK-1.1 

LOADER PF - depending on effective STOP connnand 
ND - but hazardous depending on effective 

STOP command 

VALUE GIVEN AFTER RG IDENTIFIER 

Error in data string of an update request. 

UPDATE F, ND 

v - 1 



June 1, 1970 RM(2)-S2K-l.l 

w 

WHEN USING C<xxx> HAS C<yyy>, - C<xxx> MUST BE A SENIOR RG TO C<yyy> 

In the WHERE clause the repeating group specified with 
HAS must be a parent or ancestor RG to the element 
given in the condition. (ENTRY is an implied ancestral 
RG to all elements in the definition.) <xxx> is the 
repeating group number for HAS and <yyy> is the element 
number in the condition. This request is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

WHEN USING C<xxx> HAS C<yyy>, C<xxx> MUST BE AN RG 

In the WHERE clause HAS takes a repeating group 
component or ENTRY operand. <xxx> is the HAS 
operand number and <yyy> is the element number 
associated with the HAS condition. This request 
is not processed. 

RETRIEVAL and 
UPDATE 

ND, NF - retrieval 
ND, F - update 

WHERE CLAUSE QUALIFIED ENTIRE DATA BASE 

Request is processed as usual. 

RETRIEVAL and 
UPDATE 

INFORMATIVE 
ND, NF - retrieval 
ND, F - update if LIMITS are effective 

WHERE CLAUSE STATUS MUST BE CONSISTENT WITH THAT OF PREVIOUS REQUEST 

When using DITTO: 

1. Previous request must have WHERE clause if 
DITTO uses WHERE. 

2. Previous request must have AFTER or BEFORE clause 
to use DITTO with AFTER or BEFORE. 

UPDATE F, ND 

w - 1 



June 1, 1970 RM(2)-S2K-1.1 

x 

<.xxx> DEFINITION VERSION <yyy> DATA VERSION <zzz> <ttt> <ddd> 

LOADER informative message displays data base name 
<xxx> and both version numbers <yyy> and <zzz> 
after loading is complete; message is given whether 
or not checkpoint reports were specified. <ttt> is 
time of day and <ddd> is the date. 

LOADER INFORMATIVE 
ND, NF 

<xxx> ERROR <yyy> REJECTIONS = <zzz> 

If errors occur while scanning the loader input 
string, the appropriate error message, <xxx>, 
is displayed below the rejected item along with 
an error number, <yyy>, known to LOADER, and 
a consecutive total number of rejected values 
up to that point in the scanning process. 

LOADER ND, PF - depending on effective STOP command 

<xxx> EXCLUDED VALUES IN LOGICAL ENTRY <yyy> 

Informative message given if errors occurred 
for a logical entry in the loader data input 
string; <xxx> is the total number of excluded 
values in logical entry <yyy>. 

LOADER ND 

<xxx> HAS ALREADY BEEN LOADED 

If a data base has already been loaded onto 
the disk, an infonnative message is given 
where <xxx> is the data base name. 

SYSTEM-WIDE INFORMATIVE 
ND, NF 

x - 1 



June 1, 1970 RM(2)-S2K-1. l 

<xxx> IS AN UNDEFINED COMPONENT NUMBER 

Error is in the data string of an update request. 

UPDATE F, ND 

<xxx> <yyy> -- REFERS TO RG INSTEAD OF AN ELEMENT 

In a retrieval request AVG, SUM, MAX, MIN 
have no meaning when used with a repeating 
group. <xxx> is the arithmetic function 
and <yyy> is the component number. 

RETRIEVAL ND, NF 

<xxx> REJECTED VALUES IN LOGICAL ENTRY <yyy> 

Informative message given if errors occurred 
for a logical entry in the loader data input 
string; <xxx> is the total number of rejected 
values in logical entry number <yyy>. 

LOADER ND 

<xxx> -- REQUIRES NUMERIC DATA VALUES FROM C <yyy> 

In a retrieval request AVG, SUM, and SIGMA 
only have meaning for elements with numeric 
type data values. 

RETRIEVAL ND, NF 

<xxx> <yyy> -- RESULTS WERE OUT-OF-RANGE 

Where <xxx> is AVG, SUM, COUNT, or SIGMA 
and <yyy> is a component number. 

RETRIEVAL INFORMATIVE 
ND, NF 

x - 2 



June 1, 1970 RM(2)- S2K-l. l 

<xxx> SEGMENTS DISCARDED ••• UPDATE FILE SUSPENDED 

When a KEEP <n> SEGMENTS command is given 
and <n> is a number less than all of the 
segments, the user is informed of the number 
of segments, <xxx>, that were discarded. 
The UPDATE FILE is suspended and no further 
segments can be created. 

UPDATE 

<xxx> SEGMENTS WILL BE APPLIED 

INFORMATIVE 
ND, NF 

An informative message is returned to the 
user when an APPLY ALL command is given 
to the system. 

UPDATE INFORMATIVE 
ND, NF 

<xxx> SEGMENTS WILL BE SAVED 

When KEEP ALL command is given, an informative 
message is returned to the user showing how 
many segments, <xxx>, will be saved on the 
UPDATE FILE. 

UPDATE 

<xxx> SELECTED DATA SETS 

INFORMATIVE 
ND, NF 

<xxx> is the number of data sets selected 
for updating for a request. 

UPDATE INFORMATIVE 
ND, NF 

x - 3 



June 1, 1970 RM(2)-S2K-1.1 

<xxx> <yyy> -- UNSATISFIED - NO DATA VALUES FOR C<yyy> 

Where <xxx> is AVG, SUM, SIGMA, MAX, or MIN 
~nd <yyy> is an element number. 

RETRIEVAL INFORMATIVE 
ND, NF 

<xxx> VALUES ACCEPTED BUT NOT DISPLAYED FOR LOGICAL ENTRY <yyy> 

If the user specified a display of errors only 
while scanning the loader input string, then if 
any errors occur, this informative message is 
given to indicate the number of values, <xxx>, 
that were accepted but not displayed for each 
logical entry, <yyy>, that contained errors. 

LOADER ND 

x - 4 



June 1, 1970 RM{2)-S2K-l. l 

y 

(There are no diagnostics under this category at the present time.) 

y - 1 



/' 
I 

\_ 

June 1, 1970 RM(2)-S2K-l. l 

z 

(There are no diagnostics under this category at the present time.) 

z - 1 



......___ _ _,,, 

,/" 
I 

\ 
'-._, 

w 
z 
:::::i 
(.!) 

z 
0 
....J 
<{ 

I-
:J 
u 

COMMENT SHEET 

MANUAL TITLE SYSTEM 2000 PRELIMINARY USER INFORMATION MANUAL 

PUB LI CA Tl ON No. __ D_0_0_2_8_0_8_7_0 0_2 ___ _ REVISION July 1970 

FROM: 

COMMENTS: 

NAME:----------------------------

BUSINESS 
ADDRESS:-----------------------------------------------

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corpora­
tion. Any errors. suggested additions or deletions. or general comments may be made below. Please include page number refer­
ences. 

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAl-'LE 

FOLD 

STAPLE I 

I 
I 
I 
I 
I 
I 
I 

FOLD I 
----------11 

FIRST CLASS 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
4550 WEST 77TH STREET 
MINNEAPOLIS, MINNESOTA 55435 

ATTN: DATA SERVICES MARKETING STAFF 

MARKETING SERVICES DEPARTMENT 

PERMIT NO. 8241 I 
MINNEAPOLIS, MINN. 

'H SM 

a 

I 
lw 

I~ 
I~ 
la 

I 
I 

-- --- -------- --- --------1 
FOLD FOLD I 



REVISION DISTRIBUTION 

From time to time 
MRI will publish 
revisions of certain 
pages of this document 
and less frequently, 
new1 editions of the entire 
document. 
If vou wish to receive 
re~sions of pages 
and notification 
of when a neW' 
edition is about 
to be published, 
please complete 
the card, detach, 
and mail to MRI. cr3 

u 
0 
Q 

I 
I 
I 
I 
I 

~ I 
I 

~ I 
I 
I 

~ 
~ ~ 
~ ~ 

< E--
E=: z 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I rn I 

~ I 
~ = >4 E--Q < Q E-- E---< u rn 

I 
I 
I 
I 
IQ.. ,_ 
N 



DIRECTOR OF COMMUNICATIONS 
MRI 
2209 Hancock Drive 
Austin, Texas 78756 

PLACE 

STAMP 

HERE 



CORPORATE HEADQUARTERS 
8100 34TH AVENUE SOUTH 
MINNEAPOLIS, MINNESOTA 55440 

SALES OFFICES AND SERVICE CENTERS 
IN MAJOR CITIES 
THROUGHOUT THE WORLD 

CONTROL DATA 
CORPORATION 


	0000
	0001
	0002
	1-0000
	1-0001
	1-0002
	1-0003
	1-0004
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	2-000
	2-001
	2-002
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	G-01
	H-01
	I-01
	I-02
	I-03
	I-04
	J-01
	K-01
	L-01
	L-02
	L-03
	M-01
	N-01
	N-02
	N-03
	N-04
	N-05
	O-01
	O-02
	P-01
	Q-01
	R-01
	R-02
	S-01
	S-02
	S-03
	S-04
	S-05
	S-06
	T-01
	T-02
	U-01
	U-02
	U-03
	U-04
	V-01
	W-01
	X-01
	X-02
	X-03
	X-04
	Y-01
	Z-01
	replyA
	replyB
	replyC
	replyD
	xBack

