CONTROL DATA

CoRPORATION |

F

CONTROL DATA"
6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

FORTRAN EXTENDED INSTANT
: 6000 VERSION 3
* 7600 VERSION 1

CORPORATION:

CONTROL DATA
R

CONTROL DATA®
6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

FORTRAN EXTENDED INSTANT
6000 VERSION 3
7600 VERSION 1 -

REVISION RECORD

REVISION DESCRIPTION
A Original printing.
(5-28-71)
Publication No.
60305900
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

CONTROL DATA CORPORATION
Documentation Department
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

1971
Control Data Corporation
Printed in the United States of America

60305900 A

INTRODUCTION

FORTRAN Extended 6000 version 3/7000 version 1 processes a scien-
tific language for programming on Control Data Corporation® 6000 and
7000 Series Computers under control of the SCOPE Operating System.

This Instant provides a short reference tool for frequently used infor-
mation. Detailed information on FORTRAN Extended and the other
languages mentioned is available in the applicable reference manuals.

FORTRAN STATEMENTS & CODING FORM

FORTRAN Extended source programs consist of an ordered set of state-
ments from which the compiler generates machine instructions and con-
stants. Each lineofa FORTRAN coding form corresponds to a punched
card containing one statement line. Statements are written in the
following columns:

Column Content
1-6 Statement label
6 Blank or zero
Statements
7-72 FORTRAN statement
73-80 Identification field
1-5 Ignored
6 Non-zero, non-blank
Continuations FORTRAN character
7-72 Continued statement
73-80 Identification field
1 Cor$or*
Comments
2-80 Comments

CONTROL CARD FORMAT
FTN.comments

FTN (pq,P---/Pp)
FTN. is equivalent to:
FTN (I=INPUT,L=OUTPUT,B=LGO,S=SYSTEXT,OPT=1,R=1)

The parameter list may include the following options:

Control Card

Option Usage Release Setting
A Abort to EXIT(S) card if fatal No abort
errors encountered during
compilation
B Produce object code file Object code on
standard file
(LGO)
C Use COMPASS assembler for FORTRAN
compiler generated code (almost | assembler is
trebles amount of central pro- used

cessor time for compilation)

D Debug mode of compilation No debug mode
E Format file for editing (COM- No file for
PASS card images file is pro- editing

duced with *DECK cards for
each program unit, suitable as
input for UPDATE)

G Compile and go option No compile and
go
I1=Ifn Select compiler input file Ifn=INPUT
list=Ifn Select compiler listing file (Ifn) 1fn=0UTPUT
and listing option (list): list=L
L List source code L

O List COMPASS card images | No
X List ANSI extension

diagnostics No
N Suppress informative

diagnostics No
R (equivalent to long reference

map option R=2) No

Control Card
Option

Usage

Release Setting

Reference
Map Level

R=0
=1

OPT=level

ROUND=s

SYSEDIT=ss

Kind of reference map:

No map

Short map (symbols, addresses,
properties)

Long map (short map, references
by line numbers, DO-loop map)
Long map, printed common block
members and equivalence classes

Select level of optimization:

0 lowest optimization

1 slightly above FORTRAN
Extended 2.0 optimization

2 program unit flow analysis
used in optimization

s=*/+- 1-4 operators to
indicate rounded arithmetic

For system programmer usage:

ss=FILES, form execution time
input/output unit references
through indirect search of low
core table rather than by using en-
try points and external references

ss=IDENT, append a $ to IDENT
name of recognized routines in
addition to ENTRY point name.
Implies a special selection for users
of SEGMENT feature since seg-
ments are specified by IDENT
names

SYSEDIT only is equivalent to
SYSEDIT = FILES and IDENT

Maximum error checking in
mathematical library routines
(basic external functions)

Selects minimal 1/0 buffer
allocation (513 word) for com-
pilation. May increase compile
time, but jobs with large numbers
of declarative statements compile
in smaller field length than other-
wise

R =1 unless
L option =0;
then R=0

OPT =1

No rounding

No search

No special
selection

Maximum
checking not
carried out

SOURCE DECK

ORTRAN statements

FUNCTION RTSM (A,B)

COMPILATION

TN

Record
v separator

COMPILATION & EXECUTION

COMPILATION & EXECUTION

(end of file)

Vs

. (data
{7 (end of record) |
8 7 -
9 =
(FORTRAN source deck
(end of record) |

FCOMPLEX,T1000,CM63000,EC6600,P3.

FORTRAN COMPILATION, COMPASS
ASSEMBLY & EXECUTION

6 (end of file) |
7 L
§ -

(data

g (end of record) —l
1
s =
1
COMPASS source deck
L
Wa
L
(FORTRAN source deck
/7 (end of record)
8 /LGO.
/FTN(LX)

EV103,T6000,CM55000,EC100,P7.

(en bf |I) ‘

6
7
8
9

g (end of record)

ENTRY A1
(JDENT SUB

SUBROUTINE S1(P1,P2)

PROGRAM DONE (INPUT,OUTPUT)

57; (end of record)
9

LGO.
FTN.
DMW13,T200,CM55000,EC1000,P7.

source deck

PROGRAM BOB(INPUT,OUTPUT, TAPE1)

FTN (B=PUNCHB)
CBSP,T600,CM70000,EC1000,P2.

LOAD & EXECUTE BINARY PROGRAM

10

COMPILE & EXECUTE
) WITH RELOCATABLE BINARY DECK

11

COMPILE ONCE & ExECUTE
WITH DIFFERENT DATA DECKS .

I(data#ﬂ
-

r PROGRAM SUBS (INPUT,OUTPUT)

KSCED, T500,CM60000, EC500,P3.

source deck

OVERLAY(CH,0,0)

FTN(B=X)
JOBTWO,T100,CM50000,P3.

EXPRESSIONS

Arithmetic, masking, relational, and logical operations may be specified
for the evaluation of expressions.

Arithmetic Expression using operands of types other than
logical .
Masking Arithmetic expression using one of the operators:

.OR. .AND. .NOT.

Relational Arithmetic or masking expressions separated by
relational operators

Logical Logical variables, functions, constants, and rela- .
tional expressions separated by logical operators

NAME TYPE

Type of variable names, array names, and statement function names
may be indicated implicitly or explicitly.

Implicit typing: Determined by initial letter of name.
Real: A-H, O-Z. Integer: I,J, K, L, M, N

Explicit typing: Determined by declaration with or without the
prefix TYPE:
REAL DOUBLE or DOUBLE PRECISION
INTEGER LOGICAL ‘
COMPLEX ECS

CONSTANTS
Data Type Characteristics
Integer 1-18 digits, 0»(259 -1), no decimal point .
Real 1-15 digits, with decimal point, optional exponent
base 10

Double Precision 1-29 digits, decimal point, optional exponent base
10 which may be signed ‘

14

Data Type Characteristics
Complex Real part and imaginary part, decimal point,
optionally signed, real numbers
Octal 1-20 octal digits with B suffix, no sign or decimal
point
Logical .TRUE. .T. .FALSE. .F.
true is -1, false is all zero bits
Hollerith nHf, nRf (right justified), nLf (left justified),
n number of characters in string
H left justified, blank fill
R right justified, zero fill
L left justified, zero fill
f characters in string (embedded blanks inclu-
ded); 1-10 in replacement statement, 1-150
in FORMAT statement; DATA statement and
parameter list of a call may extend through
19 continuation lines
VARIABLES & ARRAYS
Data Type Variables Arrays
Integer Implicit or explicit Implicit or explicit
type single variable type array name with
Real

name subscripts in paren—

theses

Double Precision

Explicit type single | Explicit type array

Complex

variable name name with sub-

Logical

scripts in parentheses

NAME: An alphabetic character followed by 0-6 alphanumeric

characters.

SUBSCRIPTS AND ARRAYS

A subscript is written as a list of subscript expressions. An array
element is an alphanumeric identifier that is the name of an array,
followed by up to three subscript expressions representing a single
element within the array. A subscript expression may be any legal
arithmetic expression.

Subscript expressions are separated by a comma and the subscript is
enclosed in parentheses. If the number of subscript expressions in a
reference is less than the declared dimensionality, the compiler assumes
missing subscripts have a value of one.

A(2)=A(2,1)

A(,2)# A(1,2) illegal form
A subscript expression may be missing from the right only; if a comma
appears, it must be preceded and followed by a subscript expression.

If the subscript list does not appear, all subscript expressions are as-
sumed to be one, and an informative diagnostic is issued. If the sub-
script expression is not integer, the value will be truncated to integer.

Standard form: (constant * variable + constant)

For DIMENSION A(L,M,N) the location of A(i,j,k) with respect to
A(1,1,1) is determined by the formula:

A+(i-T+L* (j-1+M* (k-1))) *e

where e is the number of words occupied by each element of A. For
double precision and complex, e =2; otherwise, e=1.

DATA DECLARATION AND STORAGE
ALLOCATION
Key:

v Variable (all can be v; (i;) also)

i Integer variables or integer constants (maximum 3)

x Common block name (may be null)

a List of variable names

k Data variable list (optionally DO-implied)
d Data constant list

Data variable list

-

INTEGER vy,vg, ...,V
REAL VN9, .-V
DOUBLE PRECISION vq,vg, ..., v,
COMPLEX vq,vg, ...,V
LOGICAL vq,vo,...,Vy
tECS VqNg, ..,V
tTYPE INTEGER vq,vs, ..., v,
TTYPE REAL vqvp, ...,V
tTYPE DOUBLE PRECISION vq,vy, ..., v,
tTYPE COMPLEX vy vy, ..., V,,
tTYPE LOGICAL vq,vo, ...,V
TTYPE ECS vq vy, ...,V
DIMENSION vy{iq),valin) ..., vulip)
COMMON /xq/aq/ ... /xp/a,
EQUIVALENCE (kq), (ko) ,.:., (k)
DATA kq/dq/ koldo/ ... kp/dy/

tDATA (ry=dq),{rp=dy) ..., (r,=dp)

t permitted non-ANSI form

REPLACEMENT STATEMENT

v Variable or array element

e Arithmetic, logical, or masking expression

CONTROL STATEMENTS

Control statements alter sequential execution of statements, perform .
tests and iterations, and terminate subprograms and programs.

Form Example
DO
DO ni=mq,mym3 DO 50K =3,18,6
DOni=mq,my DO50K=3,18
n Terminal statement label
i Integer control variable
mq Initial value
my Terminal value
mg3 Incremental (maximum
value of running index is
217 9
If m3 is omitted, a value of one
is assumed.
IF

IF (e)kqko,kg

e

® ®© o X

IF (elkq ko

e

<

>

Variable or arithmetic
expression of integer, real,
double precision, or com-
plex type

Statement labels

0 control transfers to k4

0 control transfers to ko
0 control transfers to k3

Masking or arithmetic
expression

e # 0 control transfers to k4

e = 0 control transfers to ko

ANSI equivalent is:

IF(e)ky, kg kq

18

IF (J-M**2)5,15,2

IF (X/(D**4))6,14

st

Form Example

IF (e)s IF (X.LE.B)GO TO 73
e Logical expression

s Any executable statement
except DO or logical IF.

If e is false, s is not executed;
if e is true, s is executed.

IF (e)kq.ko IF (ZR.GT.F)31,36
e Logical expression

k Statement labels

If e is true, transfer to kq;
if e is false, transfer to ko

ANSI equivalent is:
IF(ZR .GT.F)GOTO31

GO TO 35
GO TO
GO TOk GO TO 500
k Statement label ’
ASSIGNk TO i ASSIGN 25 TO |

k Executable statement label
i Integer variable
then .
GO TOi,{kqkg,..., k) ASSIGN 7 to JNP
k Statement labels .
i Integer variable; must con- GO TO INP,(4,2,7)
tain value assigned by pre- 7 DKW(K) = DKW(K+5)
ceding ASSIGN statement .
and be a label in list.

When i < 0 or i > maximum, a
fatal error occurs at execution.

GO TO (kq,kg, ..o kp), i GO TO (3,7,49) JL
k Statement labels ’
i Variable or expression

Form Example

CONTINUE

CONTINUE (usually preceded by 100 CONTINUE
statement label)

PAUSE
PAUSE PAUSE
PAUSE n PAUSE 23456
n String of 1-5 octal digits

STOP
sTOP STOP
STOP n STOP 55675
n String of 1-5 octal digits

without a B suffix

CALL
CALL s (aq,ap,...,ap) CALL X (A,B,C,D)
CALLs CALL X

CALLs(ay...a,),RETURNS(by...b,) CALL X (A,B),RETURNS(35,62)
CALL s, RETURNS (bq,by,...,b,) CALL X, RETURNS (5,9)

s Subroutine name

a Actual parameters

b Statement labels in calling
program or subprogram

RETURN
RETURN RETURN
RETURN a RETURN CHI

a Parameter in RETURNS list

END

END (only characters on card; END
anywhere in columns 7-72)

20

INPUT/OUTPUT

Input/output statements control the flow of data. Two modes.are
possible: formatted (coded) and unformatted (binary).

Parameters

u Identifies I/0 unit; integer constant or simple integer variable
f Identifies format specification; FORMAT label or array name
k 1/0 list of data to be transferred
Formatted Input/Output

Form Example

READ (u,f)k READ (10,15)A,B,CF,R

READ (u,f) READ (1,4)

tREAD fk READ 10,LISTX,BLOK,WEB

TREAD f READ 25

WRITE (u,f)k WRITE (10,15)B,(A(l),1,1=1,100),C,X,Y,Z
WRITE (u,f) WRITE (14,50)

TPRINT fk PRINT 12,ADS,KLM

TPRINT f PRINT 25

TPUNCH fk PUNCH 30,HITE

TPUNCH f PUNCH 50

TNon-ANSI forms

NAMELIST
Form Example
NAMELIST /yq/aq.../yp/a, NAMELIST /X1/R1,R3/X2/R2
y NAMELIST name NAMELIST /SL01/D1,D2,L5
a List of variables or array names
Forms of input data for use with namelist
$NAME V =C J=52
a=d1,‘..,dj B=125.6,7*32
a(n) =dq,...,dy, XAP (6,9) = 73.2E4,45,9*21

NAME Corresponds to y (above)

21

Form Example

Forms of input data for use with namelist (Continued)

v Variable name
c Constant)
a Array
n Integer constant subscript
d Simple constants or repeated

constants of form k*c where

k is repetition factor
Namelist 1/0
Read (u,y) READ (5,XI)
Write (u,y) - WRITE (10,CONTS)
Read y READ SECD
Printy PRINT ADDED
Punchy PUNCH TRY 14

Unformatted Input/Output

Form Example

READ (u)k READ (35)DATA,INFO

READ (u) READ (10)

WRITE (u)k WRITE (15) CAN,LOCA PLP
WRITE (u) WRITE (5)

REWIND u REWINDM or REWIND 3
BACKSPACE u BACKSPACE | or BACKSPACE 10
ENDFILE u ENDFILEJ or ENDFILEQ
ECS /O

CALL READEC (a,b,n) CALL READEC (D,J(4,1,3),17)
CALL WRITEC (a,b,n) CALL WRITEC (XY,G,50)

a Variable or array element
in central memory

b Variable or array element
in ECS common block

n Integer constant or integer
expression

22

Form Example

Mass Storage 1/0

CALL OPENMS (u,ix,l,p) CALL OPENMS (1,INDEX,100,0)
CALL READMS (u,fwa,n,i) CALL READMS (1,RECORD;N,IND)
CALL WRITMS (u,fwa,n,i) CALL WRITMS (1,RECORD,N,IND)
CALL STINDX (u,ix,!) CALL STINDX (1,WIND,50)

u Logical unit number

ix First word address of index
(in CM)
| Length of index
I > 2 (number of index entries)
+1 for name index
1> number of entries +1 for
number index

fwa First word address

n Number of CM words to be
transferred

i Record number/cell address

containing record name or
number

Buffered 1/0

BUFFER IN (u,p)(fwa,lwa) BUFFER IN (1,1)(A(1),A(LEN))
BUFFER OUT (u,p)(fwa,lwa) BUFFER OUT (1,J)(B(L1),B(L2))
u Logical unit number

p Recording mode

fwa First word address

lwa Last word address

Encode/Decode Statements

ENCODE (n,f,A)k ENCODE (30,2,BETA)X,Y
DECODE (n,f,A)k DECODE (15,1,DELTA)R5,C7
n Number of characters in

record ((n+9)/10 words long)

FORMAT statement

A Identifier, variable, or array

which supplies starting
location

k 1/0 list

-

23

DEBUGGING FACILITY

The debugging mode of compilation, along with the source cross-
reference map selection, is provided specifically to aid in the develop-
ment or conversion of programs. In the debugging mode of compilation,
a programmer can establish a record of selected operations as they are
performed in the execution of his program. This mode facilitates
debugging from a source listing, and perhaps a source cross-reference
map; if core dumps are required, interpretation is much easier.

Features provided with the debugging mode of compilation:
Array bounds checking
Prc;gram flow tracing
Call and return tracing
Function call and value returned tracing
Stores checking
Assigned GO TO checking

Partial execution of routines containing fatal errors

The debugging mode is selected by the option D on the FTN control
card. In this mode, debugging selection cards are recognized. If
this mode is not specified, debugging selection cards are treated as
comments.

In the debugging mode, a program is compiled so that specified checks
can be performed during execution; however, execution will stop when
a fatal error is detected.

When a program is compiled in debug mode, 120008 words will be
required beyond the minimum field length for non-debug mode
compilation. To execute, 25600g words beyond the minimum will be
required.

24

Individual Debug Cards Interspersed in Program Unit

L
L

Data Deck

6
7
8 Va
9

Executable Statements

Debug
Cards

Executable Statements

Debug
Cards

Executable Statements

/

VA
L

Specification Statements

Program Name Card

7
8
9

g

Control Card Record

This positioning is especially useful when a new program is run for the
first time and the accuracy of specific areas, such as array bounds,

is in doubt.

25

Placed Immediately After Program Name Card and
Before Specification Statements

O©oo~NO»

Source Deck

Program Name Card

Control Card Record

All statements in program unit will be debugged (unless limiting bounds
are specified in the debug deck), but no statements in other program
units will be debugged. Especially useful when several program units
are known to be free of bugs but one unit is new or known to have bugs.

26

Placed Immediately in Front of First Source Line
(When D file is same as source input file)

wooNm

—
L
e

Data Deck |
7
8
9

Subroutine B |

Program A

Control Card Record

All program units (Program A and Subroutine B) will be debugged
(unless exclusive program units are specified in the debug deck).
Particularly useful when a program is run for the first time, since it
ensures that all program units will be debugged.

27

Debug Deck on Separate File (External Debug Deck)

L

/L

/L
Debug Deck

(Input) (Input)

FTN (I=TAPE1,D)

Compiler

/
/

P

Source Deck

(Input) (Input)

FTN (D= TAPE1)

Compiler

All program units are debugged (unless exclusive program units are
specified in the deck). Several jobs can be debugged using the same
debugging deck.

28

Debugging statements follow all normal FTN formation rules, with.the
additional requirement that columns 1 and 2 of each statement line,
including continued statements, must contain C$. Columns 3-5 of

continuation lines must be blank.

If no parameters are specified, all

applicable statements are checked except STORES.

Name Function Format
DEBUG | Initiates debugging; C$ DEBUG(namey, ..., name,)
must begin with this C$ DEBUG
statement
AREA | Designates specific C$ DEBUG
area to be checked in | cg AREA(boundsy), ..., (bounds,,)
a program unit.
or
C$ DEBUG(namey , ..., namey)
C$ AREA/name4/(bounds),
.../namen/(bounds) e
CALLS | Traces calls to and C$ CALLS(aq,...,ay)
returns from specified C$ CALLS
subroutines.
FUNCS [Traces usage of Cc$ FUNCS(a1 feeeiap)
functions in a program | cg FUNCS
unit.
GO TOS | Assures that the selected] C$ GOTOS
statement numbers are
valid when executed in
an assigned GO TO.
NOGO |Suppresses partial execu-| C$ NOGO
tion of a compiled
routine whenever a
fatal compilation error
occurs.
STORES | Records stores into C$ STORES(cq,¢p,.-.,cp)

specified variables as a
result of replacement

statements;

29

Name

Function Format

STORES
(Cont)

Can be variable
names or relational
expressions in either
of the forms:

I3}

variable .relational operator. constant

.range. (out of range)

.valid. (out of range or indefinite)
variable {
.indef. (indefinite)

TRACE

Produces a message for | C$ TRACE(level)
each intraprogram C$ TRACE
transfer in control at a
DO-nest level < level
specified.

OFF

Suppresses interspersed | C$ OFF(xq,...,x,)
debugging statements C$ OFF
at compilation time.

CROSS REFERENCE MAP

The cross reference map produced of all programmer created symbols
in a program unit is determined by the R option on the control card.

R=0 No map
=1 Short map (symbols, addresses, properties)

=2 Long map (short map, references by line number,
and DO-loop map)

=3 Long map and printout of common block
members and equivalence classes

Unspecified Implies R = 1

The default option is R = 1 unless the L option equals O; then R = 0.

30

Intrinsic Function

FUNCTIONS

Argument/Function

ABS(x) Absolute value Real/real
AIMAG(c) Imaginary part of Complex/real
complex argument
AINT(x) Truncation Real/real
AMAXO(iq ,ip, .. L) Maximum argument Integer/real
AMAXT(Xq, X9, ...) Maximum argument Real/real
AMINO(iq ,ip,...) Minimum argument Integer/real
AM|N(X1,X2,..-) Minimum argument Real/real
AMOD(xq, x9) xq modulo xo Real/real
AND(xq, xo) Logical product Single word
CMPLX(xq,X) xq + ixy Real/complex
COMPL(x) Compiement of x Single word
CONJG(c) Conjugate of ¢ Complex/complex
DABS(x) Absolute value Double/double
DIM(xq:, X9) xq = Min(xq, x9) Real/real
DBLE(x) Conversion Real/double

DMAX1(dq,dg,...

)

Maximum argument

Double/double

DMINT(dy,dy, ...

)

Minimum argument

Double/double

DMOD(d ,dy)

dq modulo dy

Double/double

DSIGN(d; , dy)

Sign dy times dq

Double/double

FLOAT i)

Conversion

31

Integer/real

Intrinsic Function

Argument/Function

1ABS(i) Absolute value Integer/integer
IDIIVI(i1 , 12) i1 - Min(i1 ,i2) Integer/integer
IDINT(d) Conversion Double/integer
IFIX(x) Conversion Real/integer
INT(x) Truncation Real/integer
ISIGN(iq, i) Sign iy times iq Integer/integer
MASK(i) Form i bit mask, Integer/octal
left adjusted
MAXO(iq ,ip,...) Maximum argument Integer/integer
MAXI{xq,Xg,...) Maximum argument Real/integer
MINO(iq ,ip,...) Minimum argument Integer/integer
MINH{xq,x9,...) Minimum argument Real/real
MOD(iq,ip) i1 modulo iy Integer/integer
OR(xq, ..., %) Logical sum Single word
REAL(c) Real part of complex |{Complex/real
argument
SIGN (xq, %) Sign x times x4 Real/real
SHIFT(iy ,ip) Shift iq , ip bit positions:|iq: Single word
left cireular if ip ip: Integer
positive, right with
sign extension if iq
negative
SNGL(d) Conversion, unrounded |Double/real

32

External Function

Argument/Function

ACOS(x) Arccosine Real/real
ALOG(x) Log base e Real/real
ALOG10(x) Log base 10 Real/real
ASIN(x) Arcsine Real/real
ATAN(x) Arctangent Real/real
ATAN2(xq, x9) Arctangent x1/xo Real/real

CABS(c) Modulus Complex/real
CCOS(c) Complex cosine Complex/complex
CEXP(c) Complex exponent Complex/complex
CLOG(c) Complex log Complex/complex
COS(x) Cosine Real/real

CSIN(x} Complex sine Complex/complex
CSQRT(c) Complex square root Complex/complex
DATAN(d) Double arctangent Double/double

DATAN2(d , dg)

Double arctangent
dq/dy

Double/double

DATE(x) Date Octal/Hollerith
LOCF(x) Address of argument x | Symbolic/integer
SECOND(x) CPU seconds Real/real

SIN(x) Sine Real/real

33

External Function

Argument/Function

SQRT(x) Square root Real/real
TAN(x) Tangent Real/real
TANH(x) Hyperbolic tangent Real/real
TIME(x) Time of day Octal/Hollerith
UNIT(i) Buffer unit i status Integer/real
-1 = Ready, no error
0 = EOF, last operation
1 = Parity error
EOF(i) 0=No EOF Integer/real
LEGVAR(x) Variable characteristic |Real/integer
-1 = Indefinite
0 = Out of range
1= Normal
IOCHEC Non-buffer parity Integer/integer
0 = No parity error
LENGTH(i) Number of words read |Integer/integer
on previous /0 request
on unit i after BUFFER
IN
DATE(x) Current date Dummy/Hollerith
DCOS(d) Double cosine Double/double
DEXP(d) Double exponent Double/double
DLOG(d) Double natural log Double/double
DLOG10(d) Double log base 10 Double/double

34

-

External Function

Argument/Function

DSIN(d) Double sine Double/double

DSQRT(d) Double square root Double/double

EXP(x) e to the xth power Real/real

RANF(x) Random number Dummy/real
generator

flag,ap,....ay)=e
f Function name
a Formal parameters

e Expression

STATEMENT FUNCTION

Statement functions are compiled in line.

F(P1,P2) = P1*P2+P1/P2+CON

A=F(A3.0)+B
is equivalent to writing:

A = (A*3.0+A/3.0+CON)+B

LIBRARY SUBROUTINES

DISPLA (nHname,x)
n < 10; x may be real or integer

Display name and value in dayfile

EXIT

Terminate execution

RANGET(x)

Current value RANF

35

RANSET(x) Initial value RANF
SECOND(x) CP time used
REMARK(nHmessage) Dayfile message

message < 40 characters

SLITE(i) Sense light on
SLITET(i,j) Sense light test
i Sense light

i Condition: 10n

0 Off

SSWTCH(i, j)
i Sense switch

i Condition: 1 Down -on
2 Up - off

Sense switch test

OPENMS(u,ix,L,p)

Mass storage 1/0

ERRSET(a,b)

Set maximum number of errors
allowed in input data before fatal
termination

READMS(u,fwa,n,i)

‘Read mass storage

WRITMS(u,fwa,n,i)

Write mass storage

STINDX(u,ix,L)

Store index

u Logical unit number

ix First word address of index in central memory

L Length of index

L > 2 (number of entries) + 1 for name index
L > number of entries + 1 for number index

P Type of index
1 for name index
0 for number index

fwa First word address of record in central memory

n Number of central memory words to transfer

i Record number or location of record name

a Error count

b Maximum number of errors in input data

36

SUBPROGRAM STATEMENTS

s Symbolic name

f. Filename

f Function name

a Formal/actual parameters

b Formal/actual returns list parameters

v Subroutine or function name

PROGRAM s
PROGRAM s (f1,fy,...
SUBROUTINE s
SUBROUTINE s (ag,ap,...,ap)

SUBROUTINE s, RETURNS (bq,boy,.. .bm)
SUBROUTINE s {aq ,ay,...,a;) , RETURNS (by by, ..., b))
FUNCTION flaq,as,...,ap)

REAL FUNCTION f (ay 2y, ..., a,)

DOUBLE FUNCTION f (aq , a0, . ..,an)

COMPLEX FUNCTION f (a4 a9, ..,an)

INTEGER FUNCTION f (ag,ap,...,a,)

LOGICAL FUNCTION (ag ,ay,...,a,)

DOUBLE PRECISION FUNCTION f (a1, ag, ..., a,)

ENTRY s

BLOCK DATA

BLOCK DATA s

E)(TERNALV1,v2,...vp

)

rn

Inter-Subroutine Statements

CALLs

CALLs(aq,ap,...,ay)

CALL s, RETURNS (bq,by,...,by)

CALLsS, (ag,ay,...,a,), RETURNS (bg by, ..., b)
RETURN

RETURN b

37

ECS

READEC
WRITEC

Mass Storage 1/0

7000 File Buffers

Segment Feature

Vertical Spacing

ERRSET (a,b)

Labeled Tapes

7000 DIFFERENCES

Refers to large core memory (LCM) where ECS
variables will reside.

Operate on large core memory and small core
storage (SCM) in the same manner as 6000 ECS

and central memory.

A 30-bit index is used for random file processing
instead of the 24-bit index of the 6000 series.

If no parameter is specified, a buffer size of 412
octal is assumed.

Not supported for version 1.

For many characters, including A, B, 2, and minus,
determined by input/output station serving 7000
SCOPE version 1.

Library subprogram added. It sets the maximum
number of errors, b, allowed in input data before

fatal termination. Error count is kept in a.

Not supported for version 1.

38

'CONTROL DATA S

corPoRATION

CORPORATE HEADQUARTERS, 8100 34th AVE. SO,
MINNEAPOLIS, MINN, 55440 ‘

SALES OFFICES AND SERVICE CENTERS
IN MAJOR CITIES THROUGHOUT THE WORLD

Pub. No. 60305900 A Litho in U.S.A.

