
(....

('"

(

(

(
.

60470000

&:J 1::\ CONT"OL DATA
\::I r::J CO~OR{\TION

. f--
(

f

f

(

{
(

(

(

COMMUNICATIONS CONTROL PROGRAM
VERSION 1
REFERENCE MANUAL

. (------------------------
CONTROL DATA ®

(CYBER 170 SERIES
.(_.. CYBER 70 SERIES MODELS 72, 73, 74

- 6000 SERIES COMPUTER SYSTEMS

(~

(-
/

{~

(~~

CYBER 18 COMPUTER SYSTEMS
255X HOST COMMUNICATIONS PROCESSORS

REVISION RECORD
REVISION DESCRIPTION

A Initial Release (ECO 05942)

9-15-75

B Changed to include PSR corrections and QA comments.
6-29-76

Publication No.
60470000

© 1975
by Control Data Corporation

Printed in the United States of America

ii

(ECO 06420)

r'
I
"'-.. ,/

{ "

;," ,
" ---/

Address comments concerning this (l'
manual to: ~/
Control Data Corporation
Publications and Graphic Division
3519 West Warner Avenue
Santa Ana, California 92704
or use Comment Sheet in the back of
this manual. (.. "

f:
;:

./

('

(

(

(

{

(

(

(

(

IT' '/

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in
this manual are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

PAGE SFct REV PAGE SFCt REV PAGE SFCt REV PAGE SFCt REV

Cover - 3-30 A 4-29 A 5-18 A
1'1";+-1"" - 3-31 A 4-30 A 5-19 A
ii B 3-32 A 4-31 A 5-20 A
iii B 3-33 A 4-32 A 5-21 A
v B 3-34 A 4-33 A 5-22 A
vii A 3-35 A 4-34 A 5-23 A
viii A 3-36 A 4-35 A 5-24 A
~x A 3-37 A 4-36 A 6-1 A
x A 3-38 A 4-37 A 6-2 A
xi B 3-39 B 4-38 A 6-3 A
1-1 B 3-40 B 4-39 A 6-4 A
1-2 B 3-41 B 4-40 A 6-5 A
1-3 A 3-42 B 4-41 A 6-6 A

11-4 B 3-43 B 4-42 A A-I A
2-1 B 3-44 B 4-43 A A-2 A
2-2 A 3-45 B 4-44 A A-3 A
3-1 B 3-46 B 4-45 A A-4 A
3-2 B 4-1 B 4-46 A A-5 A
3-3 B 4-2 A 4-47 B A-6 A
3-4 A 4-3 A 4-48 A A-7 A
3-5 A 4-4 B 4-49 A B-1 B
3-6 A 4-5 A 4-50 A B-2 B

13-7 A 4-6 A 4-51 A B-3 A
3-8 A 4-7 A 4-52 A B-4 A
3-9 A 4-8 A 4-53 A B-5 A
3-10 A 4-9 A 4-54 A C-l A
3-11 A 4-10 A 4-55 A Index-l B
3-12 B 4-11 A 4-56 A Index-2 B
3-13 B 4-12 A 5-1 A Comment -
3-14 A 4-13 A 5-2 A Address -
3-15 B 4-14 A 5-3 A Cover -
3-16 B 4-15 A 5-4 A
3-17 A 4-16 A 5-5 B
3-18 A 4-17 B 5-6 A
3-19 A 4-18 A 5-7 A
3-20 B 4-19 B 5-8 A
3-21 B 4-20 B 5-9 A
3-22 A 4-21 A 5-10 A
3-23 A 4-22 A 5-11 A
3-24 A 4-23 A 5-12 A
3-25 A 4-24 A 5-13 A
3-26 A 4-25 B 5-14 A
3-27 B 4-26 A 5-15 A
3-28 A 4-27 A 5-16 A
3-29 A 4-28 A 5-17 A

SFC t Software Feature Change

60470000 B iii/iv

(
\. .
, __ P'

(..

~.",

~.j

(

f
l/
(

(

(

PREFACE

This manual describes Version 1 of
the Communications Control Program
(CCP 1) that is used with the .
CONTROL DATA® 2550 Series Host Commu­
nications Processor (HCP).

The manual is intended to provide
sufficient information for computer
programmers to make minor modifica­
tions in adapting these programs to
specific user functions. The manual
is not intended to provide complete
explanations of the programs such as
would be required to make major mod­
ifications to the programs.

Publication

NOS/BE System Programmer's
Reference Manual

NOS/BE Reference Manual

NOS/BE Installation Handbook

NOS/BE Operator's Guide

UPDATE 1. 2 Reference Manual

CCP Support Software 1 Reference
Manual

PASCAL Reference Manual

CCP Support Software 1 General
Information Manual

It is recommended that the user be
familiar with the PASCAL programming
language, the NOS/BE operating system,
and the CROSS support software
system.

Unless otherwise noted, all numeric
values are decimal.

Additional information on both the
hardware and software elements of
the Control Data 2550 Series Computer
Systems and other related equipment
and systems can be found in the
following documents:

Publication
Number

60494100

60493800

60494300

60493900

60342500

88988400

96836100

88988600

CCP Support Software 1 Diagnostic
Handbook

88988700

• 60470000 B

Micro Assembler Reference Manual

Macro Assembler Reference Manual

Link Edit/Library Maintenance
Reference Manual

CCP 1 Software Diagnostic Handbook

88988800

88988900

60471200

60470200

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the pro­
per functioning of undescribed features
or par.ameters •

v

/ '

(/

(-

(

-(

(

(..

·f
l

rt

(

(

(

{'

1. GENERAL DESCRIPTION

Introduction
Information Representation

System Hardware
Software Overview

Host Software
Communications Control

Program
Support Software

programming Languages

2. PROGRAM ADAPTION

Introduction
Program Element Selection
Program Modification

Installation Parameter
Changes

Source Coding Logic Changes
Software Additions

3. SOFTWARE FUNCTIONAL
DESCRIPTION

Introduction
Load Process

Load File Prefix Format
Load File Header Format
Load File Packet Format

Dump Process
Dump Header Record Format
Main Memory Dump Record

Format
Micromemory Dump Record

Format
Register Dump Record Format
Dump Bootstrap NPU Memory

Format
Initialize Process
Block Protocol

Block Format
Destination/Source Nodes
Connection Number
Service Channel

Block Types
Data Blocks
Command Blocks
Service Message Blocks
Control Blocks

60470000 A

CONTENTS

1-1

1-1
1-1
1-1
1-3
1-3

1-3
1-4
1-4

2-1

2-1
2-1
2-1

2-1
2-2
2-2

3-1

3-1
3-1
3-1
3-2
3-3
3-3
3-4

3-5

3-5
3-5

3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-9

Configuration Process
Configure Line Service

Message
Line Type Code
Terminal Type Code
Automa~ic Recognition

Configure Line Response
Service Message

Configure Terminal Service
Message

Configure Terminal Response
Service Message

Line and Terminal Status
Enable Line Message
Line Operational/Line

Inoperative Messages
Terminal Status

Host Interface Package
CYBER Coupler Hardware

Programming
Registers
Coupler Operating Modes
Host Interface
NPU Interface

Data Transfer Physical
Protocol
Data Transfer
Error Checking
Timers

Host Failure and Recovery
Terminal Interface Packages

Network Interface
Output Queuing
Upline Break
Downline Break

Teletype (TTY) TIP
Operating Modes
Data Formats
Mode Set
Input Regulation
Input Stopped Sequence
Upline Break

Mode 4 TIP
Operating Modes
Transmission Block and

Terminal Block Formats
Terminal Addressing
E~Codes
Error Correction and

Load Regulation
Long-Term Error Recovery
Mode 4 TIP Flow Diagram

3-10

3-10
3-11
3-12
3-12

3-14

3-14

3-15
3-15
3-15

3-16
3-17
3-17

3-17
3-17
3-20
3-21
3-21

3-21
3-26
3-26
3-26
3-27
3-27
3-27
3-27
3-27
3-30
3-30
3-30
3-30
3-30
3-31
3-31
3-31
3-31
3-32

3-33
3-34
3-34

3-35
3-35
3-35

vii

Set Mode Command and
Response

Start Polling Command
Error Reporting and Statistics

Reports to CE Error File
Statistics
Error/Statistics Message

Reroute
On-Line Diagnostics

On-Line Diagnostic Commands/
Responses
Place Line Out of Service
Place Line in Service
Start CLA Internal Loopback

Test
Start Modem Loopback Test
Start External Loopback

Test
Terminate Test

4. BASE SYSTEM SOFTWARE

Introduction
Buffer Maintenance

Obtaining Buffers
Obtaining a Single Buffer
Obtaining One or More

Buffers
Releasing Buffers

Releasing a Single Buffer
Releasing One or More

Buffers
Releasing a Mixed Chain

Testing Buffer Availability
Buffer Adjusting, Mating, and

Stamping
List Services

Make a Worklist Entry
General
OPS Level
By Terminal Type
Without Disturbing Inter­

mediate Array
Extract a Work list Entry

General
OPS Level

System Monitor
Scan Sequencing
User Interfaces

Timing Services
Time-Dependent Program (TDP)

Types
Timer Maintenance
Interrupt Level Timer
Date-Time Maintenance
Active Line Control Block

(LCB) List Maintenance

viii

3-39
3-39
3-39
3-40
3-40

3-41
3-42

3-42
3-43
3-43

3-43
3-43

3-44
3-44

4-1

4-1
4-1
4-2
4-2

4-2
4-2
4-2

4-2
4-3
4-3

4-3
4-3
4-9
4-9
4-9
4-10

4-10
4-10
4-10
4-10
4-10
4-11
4-11
4-11

4-13
4-13
4-13
4-14

4-14

Interrupt Handler
Basic Interrupt Processing
Mask Re9ister
User Interfaces

Initialization
Buffer Initialization (First

Phase)
List Control Block

Initialization
Multiplex Loop Interface

Adapter (MLIA) Initiali­
zation

Microprogram Linkage
Ini tiaU .. za tion

Equipment Configuration Test
Protect System Set-Up
Buffer Initialization (Second

Phase)
Standard Subroutines

Overview
Calling Assembly Language

Programs from PASCAL
Calls to PASCAL Programs

From Assembly Language
Defeating Type-Checking

in PASCAL Procedure Calls
PBAEXIT - Save Rl andR2
PBAMASK - AND Interrupt Mask
PBBEXIT - Restore Rl and R2
PBCALL - Call Program by

Address
PBCLRPOT - Clear Protect Bit
PBDISPLAY - Display Message

on Console
PBDLTXT - Delete Text
PBDUMP - On-Line Dump
PBFILE - Load/Display File 1
PBFMAD - Convert from ASCII

Decimal
PBFMAH - Convert from ASCII

Hexadecimal
PBHALT - System Halt
PBLMASK - Reload Interrupt

Mask
PBLOAD - Load a Canned

Message
PBMAX - Get Maximum of Two

Numbers
PBMEMBER - Test ASCII Set

Membership
PBMIN - Get Minimum of Two

Numbers
PBOMASK - OR Interrupt Mask
PBQUICKIO - Quick Output
PBSETPROT - Set Protect Bit
PBSMASK - Set Interrupt Mask
PBTIPDBG - Execute User Code
PBTOAD - Convert to ASCII

Decimal

4-14
4-15
4-15
4-15
4-16

4-16

4-16

4-16

4-16
4-18
4-18

4-18
4-18
4-18

4-18

4-18

4-21
4-21
4-21
4-22

4-22
4-22

4-23
4-23
4-24
4-24

4-25

4-25
4-26

4-27

4-27

4-27

4-28.

4-28
4-29
4-29
4-29
4-29
4-30

4-30

60470000·A

c

\"-../

(

{,

(

(

(

(

(

(

(

,,{. '.

(

(/

(

PBTOAH - Convert to ASCII
Hexadecimal

PIPRINT - Print Structure
Addresses

PTCTCHR - Count Characters
PBSTRIP - Strip Empty Data

Buffers
PBCOPYBFRS - Copy a Chain

of Buffers
Miscellaneous User Aids
PASCAL Compiler Subroutines

Queue Services
Put One Segment in Queue
Get One Segment from Queue

Process Driver
Console Services

Console Worklist Entry
Console Control Messages

Text Processor
Macro Text Processor
Microprogram Text Processor
Text Processor Data

Structures
Returning to the User
CRC/LRC Polynomials

Debug Aids
Test Utility Program (TUP)

System Halt
Sys·tem Restart
Load Hex
Dump Hex
Enter Halt
Restart from Halt
Display Registers
Load Register
Display File 1
Load File 1
Get a Buffer
Release a Buffer
Get a Worklist Entry
Put a Worklist Entry
Place Entry into Breakpoint

Table
Remove Entry from Break­

point Table
Enable Software Breakpoint
Disable Software

Breakpoint
Device Assignment

Traps
Trap Procedure Entry
Trap Procedure Disable
Available Traps

Maintenance/Programmer Panel
Interface
Control Character H

Functions
Control Character I

Functions

60470000 A

4-30

4-31
4-31

4-31

4-33
4-34
4-34
4-35
4-35
4-37
4-37
4-37
4-38
4-38
4-38
4-41
4-41

4-41
4-43
4-44
4-44
4-44
4-47
4-47
4-47
4-47
4-48
4-48
4-48
4-48
4-49
4-49
4-59
4-50
4-50
4-50

4-50

4-50
4-50

4-51
4-51
4-51
4-51
4-52
4-52

4-52

4-53

4-53

Control Character J
Functions

Control Character K
Functions

Control Character L
Functions

Stop/Go Functions
Master Clear Function
Breakpoint Functions

5. MULTIPLEX SUBSYSTEM
INTERFACES

Introduction
Hardware Components

Multiplex Loop Interface
Adapter (MLIA)

Loop ,Multiplexers
Communications Line Adapters

(CLAs)
Subsystem Interfaces

Command Driver Interface
Clear Line Command
Initialize Line Command
Control Command
Enable Line Command
Input Command
Output Command
Terminate Input Command
Terminate Output Command
Disable Line Command

Terminal Interface Program
(TIP) Subroutines
PTWAIT - TIP Event Wait
PTTER - TIP Event Processor
Program Control Block (PCB)

Definition
Supporting TIP Subroutines
Global Interfaces

State Program Tables
State Process Instructions

Set/Reset Input Message-In­
Process Flag Instruction

Replace Character
Instruction

Build Event Worklist
Instruction

Terminate Input Buffer
Instruction

Skip if CRC Equal
Instruction

Decrement Character Count
Instruction

Initialize Character Count
Instruction

Set/Execute Input State
Instruction

4-53

4-53

4-55
4-55
4-55
4-56

5-1

5-1
5-1

5-1
5-1

5-3
5-3
5-3
5-3
5-4
5-4
5-6
5-6
5-7
5-9
5-9
5-9

5-9
5-10
5-10

5-10
5-10
5-16
5-17
5-17

5-19

5-19

5-19

5-19

5-19

5-20

5-21

5-21

ix

Store Block Length Charac- 5-22
ter Instruction 5-22

Skip if Character Less Than
Operand Instruction 5-22

Skip if Input Less Than
Operand Instruction 5-22

Skip if Character No Equal
Instruction 5-23

Skip if Special Character
Equal Instruction 5-23

Resync Instruction 5-23
Set/Reset Translate Mode

Instruction 5-23
Reset Cyclic Checksum

Storage Instruction 5-24
No Operation (NOP)

Instruction 5-24

6. NETWORK COMMUNICATIONS
SOFTWARE 6-1

Introduction 6-1
Directory Services 6-1

Internode Routing
Intranode Routing
Adding or Deleting Directory

Entries
Operating Level
Destination Node (DN)

Directory
Source Node (SN) Directory
Connection (CN) Directory
Routing Process
Add Directory Entry
Delete Di~ectory Entry

Service Module
System Configuration Function

Functions
TIP Worklist Entries

Statistics and Error Messages
Statistics Dump
CE Error File

Upline Block Handler (Header
Build)

Downline Block Handler
Inputs
Outputs

APPENDICES

A Glossary
B CE Error Messages and

System Error Codes

1-1

3-1
3-2

3-3

3-4

3-5
4-1
4-2

4-3

4-4

Typical System
Configuration

CYBER Coupler Registers
Data Transfer Protocol -

Host S.equence, Flow
Diagram

Data Transfer Protocol -
NPU Sequence, Flow
Diagram

Common TIP Subroutines
Flow Diagram

Mode 4 TIP Flow Diagram
Buffer GET and Stamping
Buffer Release and

Stamping
Buffer Break~up and

Stamping
Buffer Collection and

Stamping

A-I

B-1

C Data Buffer - General
Format

FIGURES

1-2
3-18

3-22

3-25

3-29
3-36
4-4

4-5

4-6

4-7

4-5 Worklist Organization
4-6 OPS Monitor Table

Organization
4-7 Structure of a Queue
4-8 Process Driver System

Relationship
4-9 Overview Diagram of the

Debug Aids System
4-10 C Command and Response

Format
4-11 DPC or CPL Command and

Response Format
4-12 Enter Halt Command and

Response Format
5-1 Basic Elements of the

Multiplex Subsystem
5-2 Program Control Block

(PCB) Format
5-3 State Program OVerview

6-1
6-1

,,6-,1
6-1

6-1
6-2
6-2
6-2
6-2
6-3
6-3

6-4
6-4
6-5
6-5
6-5

6-5
6-6
6-6
6-6

C-l

4-8

4-12
4-36

4-39

4-45

4-48

4-49

4-49

5-2

5-11
5-18

x 60470000 A

,r""
V
f~',

0
/r-"
~

/'

\''''-0'/

~/

" -,

\'<c,~

'"
"< /

, "

/

,/-~

i
" J

\... ,,/

--_/

/~ : \

(

(

(

(

{f ..

.-"

(

(

(

c

3-1
3-2
3-3
3-4

3-5
3-6
3-7
3-8
3-9
3-10

3-11

3-12

4-1

4-2
4-3

4-4

4-5

Block Types
Line Type Codes
Terminal Type Codes
Character Transmission

Characteristics Key
Codes

Coupler Status Register
Host Function Codes
NPU Command Codes
TIP Flag Interpretations
Modem Class
Response Code

Interpretation
Error Code

Interpretation
Data Compare Error

Reponse Code
Interrupt State Defini­

tions (PBINTRAPS)
Interrupt Assignments
Alphabetic List of

Standard Subroutines
PIPRINT Address area

Format
QDEBUG Error Identifi­

cation

60470000 B

TABLES

3-7
3-11
3-13

3-13
3-19
3-23
3-24
3-28
3-45

3-46

3-47

3-48

4-6

4-7
4-8

4-9

4-10
4-11
4-12
4-13

4-14
5-1

5-2

4-17 5-3
4-17

4-19

4-32

4-35

5-4

5-5

INDEX

Process Driver Sequence
Inputs

Console Control Messages
Text Processor File 1

Register Assignments
Text Processor Parameter

Packet
CRC/LRC Polynomials
TUP Commands
Available Trap Listing
Function Control Regis-

ter (FCR)
Display Code Definitions
Optional Modem/Circuit

Functions
PTWAIT Line Control

Block Field Names
·and Definitions

Program Control Block
(PCB) Word Definitions

Error Field (Words) Names
and Definitions

Line Status Field (Word
7) Names and
Definitions

4-38
4-40

4-42

4-43
4-44
4-46
4-52

4-54
4-55

5-5

5-12

5-13

5-14

5-15

xi

(--

(

(

(

(

(

(

(/

()

(.

0."

./

GENERAL DESCRIPTION 1

INTRODUCTION

Version 1 of the Communications
I Control Program (CCP 1) comprises

all software residing in the 2550
HCP, including the base system soft­
ware (with multiplex subsystem),
network communications software, and
interface programs. The CCP provides
front-end communications functions
for the CDC 6000, CYBER 70, and
CYBER 170 Computer Systems utilizing
the NOS/BE operating system.

INFORMATION REPRESENTATION

The 2550 HCP, CYBER 70, and other
devices with which the system inter­
faces use a variety of bit numbering
conventions and data format expres­
sions. The convention used for
information representation through­
out this manual is defined below.

From the point of view of both the
host (CYBER 70, 170, 6000) and the
2550 HCP, "input" refers to data
flowing up line from 2550 HCP to host.
Similarly, "output" means data flow­
ing downline from host to 2550 HCP.

To represent a field within a word
or byte, the least significant bit
of the smallest addressable unit is
labeled bit zero. According to
ASCII standard, this is the bit
transmitted or received first.
Pictorially, the least significant
bit is shown at the right of all
byte or word layouts.

Bytes are numbered in the sequence
in which they are transmitted or
received over an interface, with the
first byte labeled byte zero.

Consecutive bytes of a data stream
(e.g., as received from a communica­
tions line) are pictorially repre­
sented as one or more rows of bytes

60470000 B

with byte zero at the upper left,
independent of the manner in which
the same data might be represented
in a storage layout. In general, a
contiguous data stream received from
a communications line is not written
into a single block of consecutive
storage locations, but rather is
split into scattered storage buffers
that contain control and chaining
information in addition to the
stored data values.

Consecutive words of a control block
or table entry are labeled with the
address of the lowest-addressed word
of the group. The lowest address is
relative address zero and appears at
the top of the pictorial.

SYSTEM HARDWARE

The CDC 2550 Series Computer Systems
are designed for integration into a
network communications system in
which a large-scale computer (such
as the CDC 6000 or CYBER 70/170) is
the host computer for which the CDC
2550 Series Computer provides front­
end communications services. Figure
1-1 illustrates a typical configura­
tion for such a system.

The CDC 2550 Series Computers are
currently offered in two models
(2550-1 and 2550-2) ip which, for
the most part, hardware and software
components are identical with the
major differences occurring in the
memory and line termination capaci­
ties. In this manual, the CDC 2550
HCP and its associated software are
referred to as the Network processing
Unit (NPU).

In general, system hardware compo­
nents are described in detail in
separate documents (see preface);
and, therefore, such descriptions
are not repeated here.

1-1

I

"

I-'
I

IV

0'1
o
~
-J
o
o
o
o
tx:J

CYBER
6000
70/170

CYCLIC
ENCODER

r-
P
P 1-------1
U

I-

CYBER
COUPLER

PPU - PERIPHERAL PROCESSING UNIT
DMA - DIRECT MEMORY ACCESS
IDC - INTERNAL DATA CHANNEL

COMMUNICATIONS
PROCESSOR
(INCLUDES MUL TI­
PLEX SUBSYSTEM
MICROPROGRAM/
SOFTWARE)

DMA I IDC

]

128K BYTES
MAXIMUM
MEMORY

MULTIPLEX
LOOP
INTERFACE
ADAPTER

[
MULTIPLEX
LOOPS

CLA - COMMUNICATIONS LINE ADAPTERS

• • • • LOOP LOOP
MUX MUX

\ --- ------ J
Y"

128 MAX. COMMUNICATIONS LINES

Figure 1-1. Typical System Configuration

•• JIi'"'" \.

(

("":
. /

(

(

r
(

Total system software falls into
three major classifications: host
software, the communications con­
trol program (CCP), and support
software. Only the CCP is des­
cribed in this manual.

HOST SOFTWARE

This manual describes only that
version of the CCP which inter­
faces with the CDC NOS/BE operat­
ing system. In conjunction with
the NOS/BE operating system, the
NPU acts as a front-end and
multiplexer to connect the host
computer to varied communications
terminals. The NOS/BE operating
system access method is described
in detail in other documents
(see preface); and, therefore,
such descriptions are not
repeated here.

COMMUNICATIONS CONTROL PROGRAM

The CCP is the software package
contained within the NPU. It is
divided into three major parts:
base system software, network
communications software, and
interface programs.

The base system software, which
includes the multiplex subsystem,
comprises those elements of the
CCP that are required for all
system applications. These in­
clude system subroutines that
provide NPU resource allocation,
memory space management, and con­
trol of peripheral devices direct­
ly associated with the NPU (local
peripheral devices). Facilities
to add line-dependent or terminal­
dependent logic at various soft­
ware levels are also provided.
Basic line and terminal data
structures support combinations
of switched, dedicated, point-to­
point, multipoint, synchronous,
or asynchronous lines at a full
range of standard line trans-

60470000 A

mission speeds between 50 and 9600
bits-per-second (bps). A terminal
connection may contain clustered
devices with traffic addressability
t9 the device level. The maximum
number of devices associated with
each line and the maximum total
number of devices is not limited
by the base system software; but,
rather, is a function of memory
space and the requirements of the
given application.

The multiplex subsystem, which
forms a major portion of the base
system software, contains both
hardware and software elements
that establish data and control
paths for information interchange
between the communications lines
and the appropriate protocol
handlers within the NPU. The mul­
tiplex subsystem employs a "multi­
plex loop" concept in which data
is received from communications
lines and stored in line-oriented
input buffers and data from line­
oriented output buffers is dis­
tributed to the communications
lines, all on a real-time demand­
driven basis.

The network communications software
provides network routing and ser­
vice message processing to estab­
lish initial line and terminal
configurations and to report error
and traffic statistics.

The interface programs provide log­
ical connections and interaction
necessary to transmit information
to and from the NPU. They include
the host interface program (HIP)
and terminal interface programs
(TIPs). The HIP accomplishes block
data transfers between the host
computer and the NPU, monitors the
host for failure and recovery, and
reports host status to the NPU.
The TIPs provide the logic to con­
trol the line and terminal protocol
and to ensure orderly data trans­
mission (in either direction) be­
tween the NPU and the connected
terminal.

1-3

SUPPORT SOFTWARE

The CCP support software includes
compiler, assembler, and utility
programs for the development and
maintenance of CCP software. The
CCP support software runs on the
CYBER 70/170 computers and may be
used to enhance the CCP for adap­
tion to particular user applications

The CCP support software system,
described in detail in a separate
document (see preface) consists of
the following programs:

• Pre-Compiler
• 2550 Series PASCAL Compiler
• Format Program
• 2550 Series Micro Assembler
• 2550 Series Macro Assembler
• Library Maintenance Program
• Link Editor

1-4

Another specially designed support I
software program, the link editor
provides additional off-line table
initialization capabilities (see
preface) .

PROGRAMMING LANGUAGES

The 2550 HCP is a microprogrammable
processor for which programs can be
written at three different levels.
For maximum efficiency, the micro
assembler generates programs oper­
ating at the basic machine level, a
macro assembler frees the program­
mers from much of the details of the
microlevel, and the PASCAL compiler
language may be used to generate
the majority of functions.

Each programming language is de­
scribed in detail in separate
documents (see preface). I

60470000 B

., C''''

(

(

(

(

(

r
(

{

(

(

(-

PROGRAM ADAPTION 2

INTRODUCTION

The CCP is designed to facilitate
easy user-adaption to meet a wide
range of applications. This is
accomplished by permitting the user
to select only those elements of
the basic programs that meet the
particular needs of his applications
and allowing him to easily configure
the selected elements to the types
of terminals and the data rates and
formats expected. Further, the CCP
is designed to permit easy modifi­
cation of certain basic program
interfaces to accomplish special user
functions; and, when needed, addi­
tions may be added to the software
for applications not within the
immediate contemplation of the
manufacturer.

PROGRAM ELEMENT SELECTION

The selection of programs that are
built into the CCP is controlled by

I UPDATE DEFINE, directives described
in the UPDATE 1.2 Re ference Nan ual.
These are directives input to the
UPDATE program that control the pro­
grams to be compiled and built into
the CCP. These directives can be
modified at the time of system instal­
lation so that certain programs and
associated data structures are either
included or excluded from the CCP,
as necessary.

The features defined by these direc­
tives, which are optional and

I dependent upon specific installation
requirements, include the following:

• TTY Terminal Driver - If an
installation has teletype­
compatible terminals, include
the DEFINE TTY card in the
UPDATE directive card deck.
Causes all logic necessary to

60470000 B

service teletype terminals to
be built into the CCP.

• Mode 4 Terminal Driver - If an
installation must service Mode
4 terminals, include the DEFINE
MODE4 card in the UPDATE direc­
tives card deck. This causes
all logic necessary to service
Mode 4 terminals to be built
into the CCP.

• Debug Aids - To include avail­
able debug aids into CCP gen­
eration l include the DEFINE
DBUGALL card in the UPDATE
directives card deck. This
causes debug aids including
the test utility program
(TUP), breakpoint l and traps
to be included in- the CCP.

• Buffer Stamping - To invoke
buffer stamping, include the
DEFINE STAMPING card in the
UPDATE directives card deck.
Although classified as a debug
aid l buffer stamping must be
separately defined to be in­
cluded in the CCP.

PROGRAM MODIFICATION

Program modifications can be cate­
gorized as either installation
parameter changes or logic changes
to source coding.

INSTALLATION PARAMETER CHANGES

Installation parameters provide a
method to easily change CCP vari­
ables to comply with installation
requirements. For expample, the
2550 memory size might vary for
each installation. By appropri­
ately changing the CCP variables

2-1

pertaining to memory size during
system installation, such system
variations may be easily
accommodated.

Installation parameters may be
changed either through changes
to the Post Link Editor (LINKZAP)
initialization directives or by
changes to the PASCAL source
global variables. LINKZAP initial­
ization directive changes affect
the initialization of CCP varia­
bles at the time of load module
generation. PASCAL source global
variables are changed by performing
source code updates to the varia­
bles and recompiling.

Extreme care must be employed when
updating these parameters as any
errors can critically affect sys­
tem operation. All installation
parameters and acceptable value
ranges for each parameter are
identified in the CCP 1.0 instal­
lation procedures. All changes to
these parameters must be within
their specified ranges.

SOURCE COD ING LOGIC CHANGES

To make modifications to logic in
existing source programs, the pro­
grammer must be extremely familiar
with all aspects of the system so
that the changes do not negatively
affect the CCP. Before any such
changes are incorporated they
should be verified as correct and
compatible with the remainder of
the system. This includes retain­
ing consistency with the system
global variables and the basic
system philosophy of structural
programming.

SOFTWARE ADDITIONS

CCP design permits easy addition
of new software in several areas.
Additions are made using PASCAL
source programs and LINKZAP
initialization directives. However,

2-2

before incorporating any additions
to the system, it is extremely
important that the programmer be
thoroughly familiar with the sys­
tem to prevent deterioration of
the system. It is also important
to note that additions to the
software may also entail additions
to the system globals and LINK ZAP
initialization directives.

The following software areas are
accessible for software addition:

• TIPs - To service terminals not
usually supported by CCP 1.0,
add terminal interface logic
for the new terminals. Current­
ly, CCP 1.0 supports only tele­
type and Mode 4 terminal types.

• POls - Additional logic se­
quences can be added to the
five predefined points-of­
interface (POls), such as
those necessary to provide
logic for functions such as
aUditing or statistics.

• Timing Procedures - To incor­
porate additional time­
dependent functions, code the
procedure and add its name to
the table (CBTIMTBL) that
drives all timing procedures.

• Worklist and OPS Level Program
Expansion - To receive program
control, new OPS level proce­
dures must be added to the pro­
gram table (BOPGMS) scanned by
the system monitor. Associated
with each entry in the program
table is a worklist queue.
Therefore, each new OPS level
procedure must also have a
worklist queue (BOWKLSTS) added
to the system. All OPS level
procedure additions entail
adding the procedure source
code, adding any system globals
and LINKZAP directives, adding
the procedure to the OPSMON
program table, and adding an
associated worklist queue.

60470000 A

\, '
~.:...-"

r"-,
I

(j'

(f"
\L./

(-

c

(

(

(-

(

(

L
r-
f
(

(-.

SOFTWARE FUNCTIONAL DESCRIPTION

INTRODUCTION

This section provides an overall
view of the CCP software functions
performed and the general manner
in which these functions are
accomplished.

LOAD PROCESS
Typically, NPU operating programs
and tables are formatted into a
load file that is resident in the
mass storage of the host. To
start NPU operation, that load
file containing both the main
memory-resident programs and
writable micromemory-resident
programs must be transferred
(loaded) into the NPU.

The CCP load file contains all pro­
grams and tables except line con-

trol blocks and terminal control
blocks. For line control blocks,
the load file defines a contiguous
space in main memory and, thus,
fixes the maximum number of such
blocks that can be configured.
Terminal control blocks, however,
are built in dynamically acquired
space and, therefore, are not
limited in the number that can
be configured.

The format of a load file record
includes a prefix made up of 15
60-bit words, a header that is a
single 60-bit word, one or more
blocks (each having a maximum of
120 16-bit words), and an end-of­
record.

LOAD FILE PREFIX FORMAT

The load file prefix includes 15
60-bit words in the following
format:

rr-----------SIGNIFICANT BIT POSITIONS----------------------~,

WORD
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14

150':70DOO B

59 47 41 35 129 23 17 _Q

7700 I 0016 I Binary Zero Fill
Deck Name I Binary Zero Fill

Date
Time

Operating System Name IOper. System Version
Lan~ua~e Processor Name I Lang. Proc. Ver.

Lang. Proc. Mod. Level I Binary Zero Fill
Binary Zero Fill

Language Processor Information
or

Binary Zero Fill

User Comments
or

Binary Zero Fill

3

I

I

3-1

Field values are in octal notation;
words 2 through 14 are in display
code. The prefix fields are
described below:

Deck Name

Date, Time

Operating System Name,
Language Processor Name

Language Processor
Modification Level

Language Processor
Information

User Comments

LOAD FILE HEADER FORMAT

The single 60-bit header word
format is as follows:

59 41

Deck Name I 00

The deck name in this word is the
same as that appearing in the
prefix.

Three-character deck (file) name in
display code

Compile-time values returned by
operating system DATE and CLOCK
requests (display code)

1 to 6 left-justified characters with
binary zero fill (e.g. NOS/BE, CROSS,
etc.)

1 to 6 left-justified characters with
binary zero fill qiving language pro-
cessor modification level such as PSR
summary number or Julian type date of
latest mod (e.g. 143 or 74190)

Options that affect the object code
that are supplied by the language
processor (e.g. , DEBUG MODE or
RELEASE MODE)

Information supplied by the user, such
as deck modification level (e.g. , PSR
LEVEL 53)

35 23

7777 Binary Zero Fill

o

3-2 60470000 B

C-"
j

I
(

,

',,- -'

/
I

I \.-

('
~j'

i~----'

(

(

(

(

f
l
f

(

(

(

(/'

(.....
. _/

LOAD FILE PACKET FORMAT

Each block contains a maximum of
120 contiguously located 16-bit
NPU main memory words. The NPU
main memory address of the first
word of the group appears first,
followed by the number of words
(length) of the block in 16-bit
words, followed by the word con­
tents. These fields are formatted
as illustrated below.

Successive blocks need not be con­
tiguous in the NPU main memory nor
in ascending memory address se­
quence. A block may contain any
number of words between 1 and 120
(decimal) •

47 25

I z I A I
17 16

23

z

When the NPU is operating normally,
it periodically sends status in­
formation to the host. If the NPU
fails, the host detects the lack
of status transmission and may ini­
tiate a dump process to transfer
the contents of the NPU memory
to the host.

To transfer (dump) information
from the NPU to the host, the host
executes the following procedure:

1. The host reads the three coup­
ler registers (coupler status
register, NPU status register,
and order word register) and
retains these values for in­
corporation into the register
dump record (Record 4).

19 11 7 0

I A I z I A

15 8 7 0
I

First Word (Address Field)

23 7 0

I z I Length I
7 0

Second Word (Length Field)

23 19 11 7 0

J z I High 8-Bits I Z I Low 8-Bits I
15 8 7 0

NPU Main Memory Word contents

A = NPU main memory address
Z = Binary zero Fill
Length = 1 to 170 (octal)

604700QO B 3-3

I

2. The host builds the dump header
record (Record 1) containing
the channel and equipment num­
ber of the coupler, the date,
and the time.

3. The host reads the entire NPU
main memory (starting at address
zero) and formats the data into
blocks containing up to 120
16-bit words each, with the
entire group of blocks thus
constructed comprising the
main memory dump record
(Record 2) of the dump file.

4. The host loads a "dump boot­
strap" program into the NPU
main memory starting at address
zero and causes the program to
be executed. This program
overwrites a portion of the
micromemory with a "micro­
memory dump" routine that
copies micromemory into main
memory and generates a l6-bit
checksum of the micromemory
dump. The "dump bootstrap"
program then copies the 2550
file registers, writes the
value 8 (decimal) into the

BITS 59 53 47 41 35

I ~ I
bl EN H

bl M M

H

/

29

NPU status register of the
coupler (to indicate ready
for dump), and halts.

5. The host then reads the NPU
main memory and formats the
micromemory dump record
(Record 3) and the register
dump record (Record 4).

Upon completion of the dump proce­
dure the operator can initiate a
reload of the NPU. In such a
reload operation, the host fetches
and writes the NPU load into the
NPU main memory in an attempt to
restart NPU operation. After
writing each packet into the NPU
main memory, the host reads back
the packet and compares it to the
load record. Any mismatch causes
the host to note the failure.

DUMP HEADER RECORD FORMAT

The dump header record format con­
sists of two 60-bit words followed
by a blank fill character in bit
position 59 of a third word, for­
matted as follows:

23 17 11 5 o
N N S

D / Y Y

where: CN = Channel number (binary)

3-4

EN Equipment number of NPU coupler (binary)
HH = Hour
NN Minute
SS = Second
.HM = Month
DD Day Display Code
YY Year

= Period character
/ = Slash character

bl Blank fill

60470000 A

.. - ---- -------

j

\.- ~/

c

("

(

(

(

(

f

{

f
-(

MAIN MEMORY DUMP RECORD FORMAT

The main memory dump record con­
sists of multiple packets of data
in the format previously de­
scribed for the load file packet.
All such blocks contain up to
120 NPU memory words. The first
word address- of the first packet
is zero, and succeeding blocks
contain the contents of success­
ively higher addressed NPU
memory words.

MICROMEMORY DUMP RECORD FORMAT

The micromemory dump record also
consists of multiple packets in
the format previously for the
load file packet, with the first
word address the micromemory
address, and no block containing
more than 60 words of 32 bits
each in the word format shown below:

REGISTER DUMP RECORD FORMAT

The format of the register dump
record (Record 4) consists of
file register group 1 (256 16-bit
words), file register group 2
(32 16-bit words), and three or
more 16-bit register words. The
first three register words are
the coupler status register, NPU
status register, and the order
word obtained from the coupler
prior to the main memory dump
operation.

BITS 47-43 35~1

Z M Z

BITS 31--24 23

where: Z = Binary zero fill
M = Micromemory word contents

(bits 0-7, 8-15, 16-23,
and 24-31)

60470000 A

M

The file and register words are
transferred in a 24-bit format
as follows:

BITS 23 19 11 7

I z I W I z I
BITS 15 8 7

where: Z = Binary zero fill
W Word contents

W

o

I
o

DUMP BOOT STRAP NPU MEMORY FORMA T

The following is a memory map
illustrating the dump bootstrap
NPU memory format:

ADDRESS

Dump Bootstrap Code o

200
Micromemory Image
(single 32-bit micro-
memory word for two
16-bit main memory
words)

2200
File 1 Registers

2300
Number of Entries

Following

2301
Checksum

Additional
Optional
Entries

23-19 11-7 0

Z M zi M

16 15 8 7 0

3-5
•

INITIALIZE PROCESS

Following NPU main mernory load,
the host issues a function code
to start NPU operation. The NPU
performs its initialization opera­
tions and begins normai coupler
idle protocol by loading the NPU
status register in the coupler
with the IDLE code. The host may
then begin configuration.

BLOCK PROTOCOL

The block is the basic unit of
transmission through the NPU for
the transfer of information in
either direction between the host
computer and the communications
terminals. Blocks come in three
general types: data, command,
and control. A block, including
header, is never more than 2048
bytes in length, but may be shorter.

For teletype or teletype-compatible
terminals, a block usually contains
a particular message or, when the
message exceeds the maximum block
length, the message is divided into
two or more blocks. For Mode 4
terminals, the block corresponds
to the unit of transmission to or
from the terminal.

BLOCK FORMAT

Every block contains a header that,
as a minimum, includes a three-byte
address, a four-bit block type
field, and a four-bit block serial
number. The header mayor may not
contain other information, and its
format along with the remainder
of the block is a function of
the block type (data, command, or
control). The basic block header
format is as follows:

BYTES 0 1 2

1c __ "'V' __ .J1 7
- T

ADDRESS

3-6

3

I REMAINDER I
BSN OF BLOCK

430

where: DN = Destination Node
SN = Source Node
CN = Connection Number
BT = Block Type (Byte 3,

bits 4-7)
BSN Block Serial Number

(Byte 3, bits 0-3)

As the address portion of all blocks
is identical, block formats will
hereafter be shown in the gen-eral
form:

ADDRESS BT BSN

DESTINATION/SOURCE NODES

REMAINDER
OF BLOCK

Within the block header, the des­
tination node (DN) field identi­
fies the receiving facility (node),
and the source node (SN) field
identifies the transmitting
facility for the block in which
they are contained. As each node
field is a single byte, the per­
missible range of values is 0
through 255.

Generally, the host computer is
assigned a single node identifi­
cation (ID) number and each termi­
nal connected to a particular NPU
is assigned a unique ID. When
the number of logical connections
between a host computer and a par­
ticular NPU exceeds 255, however,
additional node ID numbers (as '
many as four) are assigned to the
host computer. Host interfaces
are assigned the lower ID values
and NPU (terminal) nodes are
assigned the higher.

In a single-host, single-NPU sys-.
tern the host interface is assigned
node ID zero and the terminal node
is assigned node ID one. Thus,
traffic going upline (NPU to host)
has a destination node of zero
and a source node of one. Traffic
going downline (host to NPU) has
a destination node of one and a
source node of zero.

60470000 A

\"./'

(

c

-(

(

f'

(

l

(

(

(

(

(:

CONNECTION NUMBER

A logical connection is the associ­
ation between a terminal control
block (TCB) in an NPU and an
application process (AP) in a host
computer. By this logical connec­
tion, traffic is communicated be­
tween the terminal and the
application process. The TCB
contains all status information
relative to a particular terminai
and also contains a host-assigned
connection number. The connection
number is a single byte, yielding
a permissible range of 1 to 255.
Each block traveling downline to
the TCB or upline from the TCB
bears the connection number as­
signed to the TCB. Connection
numbers assigned to all TCBs
associated with a particular host­
NPU pair must be unique.

SERVICE CHANNEL

A block with a connection number
equal to zero is called a "service
message" and the logical connection
by which it is communicated is

Block Type
Code Name

TABLE 3-1.

called the "service channel". Un­
like logical connections that can
be dynamically created or destroyed,
the service channel always exists.
Service messages are always com~
mands and are used to establish
logical connections and to communi­
cate control, status, and error
data in support of the common
equipment and software servicing
the logical connections.

BLOCK TYPES

There are three general block
types: data, command, and control.
However, there are two types of
data blocks (BLK and MSG). Command
blocks include the general command
block (CMD) and the specially for­
matted service message block.
Control blocks include four differ­
ent control types (BACK, BREAK,
RESET, and TERMINATE). Each is
separately described in the follow­
ing paragraphs. Table 3-1 lists
and defines the block type (BT)
codes placed in byte 3, bits 4-7,
of the header.

BLOCK TYPES

Function

1 BACK Block Acknowledgement - indicates
that the block with the same serial
number which had been passed in the
opposite direction via the same
logical connection has been processed.

2 BLK

3 MSG

4 CMD

5 BREAK

6 RESET

7 TERMINATE

60470000 A

A block containing a portion, but not
the last segment, of a data message.

A block containing the last segment,
or all, of a data message.

Command

A block indicating a discontinuity
in the data stream traveling in the
opposite direction.

An element which resets a data stream
following BREAK.

An element which terminates the
logical connection.

3-7

DATA BLOCKS

A data block contains between zero
and 2043 bytes of data immediately
following a five-byte header. The
general format for such blocks is
as follows:

BYTES 0-2

ADDRESS

where: BLK
or

BLK
or
MSG

3 4 5-2

BSN BFC DATA

MSG = Block type code 2 or 3
BSN = Block serial number
BFC = Block format code

A data message is a self-contained
data stream unit of communications
terminated by an end-of-message
indicator. In a half-duplex two­
party communication, the end-of­
message indicator signals that the
transmitter is ready to receive.

If a message contains 2043 or
fewer bytes, it may be transmitted
by a single MSG-type block. If
longer (or if for any other reason
it is desired to segment the mes­
sage), all segments except tue
last are transmitted via BLK-type
blocks and the final segment is
transmitted as a MSG-type block.

The block format code appears in
every data block, both upline and
downline. For all except down­
line blocks to. a MODE 4 TIP, the
block format code value is zero.
For MODE 4 output data blocks,
the block format code (BFC) is
as follows:

BYTES 0 I 2 3

BFC Code Interpretation ..

0 Clear Write

I Reset Write

2 Write

Data blocks are maintained in
dynamically allocated data buffers
and conform ~o the format shown
in Appendix C of this manual.

COMMAND BLOCKS

The format for a command block is
as follows:

I ADDRESS I 4 I BSN I CC I P=~~~S I
where: CC = Command code

Typically, a command block is im­
bedded within a stream of data
blocks and is executed as it is
encountered. That is, all data
blocks received prior to the com­
mand must be transmitted to the
terminal before the command is
executed.

Because of the wide variety of
commands and because certain
commands only have significance
to certain TIPs, command func­
tions are described in conjunc­
tion with the descriptions of
the TIPs which follow later in
this section.

SERVICE MESSAGE BLOCKS

A service message is a command
with a connection number (part of
the add;ress) equal to ~ero. The
format for a service message
block is as follows:

4 5 6 I DN SN \ 41 BSN DP I
-----J'bONNECTION NUMBER

SP SC I OPTIONAL I
. PARAMETERS .

'--ADDRESS

3-8 60470000 A

("
j.

C·' ~: \

"-. ..7'/

(

(

(

(

(

(

(

(

where: DP Destination process
SP Source process
SC = Service code

The three bytes DP, SP, and SC can
be considered together as the
command code.

Service messages generally include
those employed in configuring
lines and terminals and acquiring
status information from the NPU.

CONTROL BLOCKS

A logical connection consists of
four logical channels: upline
forward, upline reverse, downline
forward, and downline reverse.
Upline defines a block traveling
from NPU to host, down line is from
host to NPU. Forward identifies
blocks transmitted by the generator
of the block serial number (types
BLK, MSG, or CMD) and reverse
identifies blocks carrying response
block serial numbers (types BACK or
BREAK). The RESET and TERMINATE
types always have a block serial
number of zero.

Data and commands traveling down­
line are communicated via the
downline forward channel and up­
line block acknowledgment (BACK)
is sent to the host via the upline
reverse channel. If the output
stream is interrupted, the NPU
sends a BREAK (instead of BACK)
via the upline reverse channel.
The NPU then accepts no further
output data o~ commands on the
logical connection until a RESET
is received via the downline for­
ward channel.

All blocks carry a block serial
number (BSN). The highest number
allowable for the BSN is set dur­
ing program build by the block
serial number limit (BSNL) para­
meter and can be any value be­
tween 1 and 15. Blocks traveling
on forward channels are sequen­
tially numbered beginning with
zero and recycling to zero each
time the BSNL is reached.

60470000 A

When BSNL is non-zero, a logical
connection can only support that
pre-established number of out­
standing blocks (transmitted but
not acknowledged) on a forward
channel.

When an output data block is
delivered to a terminal and
receipt is verified by the termi­
nal, the NPU returns a BACK
control block to the host via the
upline reverse channel. The for­
mat for the BACK is as follows:

BYTES 0-2 3

ADDRESS 1 BSN

The BACK will have a BSN equal to
that of the block being
acknowledged.

When it becomes necessary to dis­
continue output, the NPU sends a
BREAK control block to the host
via the upline reverse channel.
That BREAK will have a BSN one
greater than the previous BACK
(modulo BSNL+l). The format for
the BREAK is as follows:

BYTES 0-2 3 4

ADDRESS 5 BSN RB

where: RB = Reason for BREAK

The reason for BREAK field is zero
for all except those generated by
the Mode 4 TIP (see Mode 4 TIP
description later in this section).

After sending a BREAK, the NPU
discards all data and commands
for that logical connection for
which it has not sent a BACK and
continues to do so until a RESET
is received.

The process sending a BREAK must
not send another BREAK until
after it receives a RESET. The
process receiving a BREAK must
perform recovery from the BREAK
condition. A TIP always recovers
from a downline BREAK by.retrans-

3-9

mitting to the host all data and
command blocks sent to the host
but not acknowledged when the
BREAK is received. The way in
which the host recovers is
determined by the RB field.

T~e format for the RESET control
block is as follows:

BYTES 0-2 3

ADDRESS 6 o

The RESET is communicated via the
forward channel and data or com­
mands following the RESET are
queued for the receiving process.
The block serial number (BSN) on
the first data or command block
following a RESET is the same as
that which appeared in the BREAK
that solicited the RESET.

The format for the TERMINATE con­
trol block is as follows:

BYTES 0-2 3

ADDRESS 7 o

No blocks are sent following a
TERMINATE and the NPU processes a
TERMINATE even if a BREAK is out­
standing. After a host sends a
TERMINATE, it may receive any block
type before the upline TERMINATE
response is received.

The NPU does not necessarily for­
ward all outst?nding BACKs before
it sends an upline TERMINATE
response. Blocks in the process
of being transmitted to or from
the terminal at the time the
TERMINATE is received from the
host are normally completed, but
no new transmission is started or

f

3-10

solicited. If receipt of input
in response to a poll has not
commenced when the downline
TERMINATE is processed, such input
is ignored if received. For TIPs
operating non-buffered terminals,
partial input blocks, assembled
when the TERMINATE is processed,
are discarded.

CONFIGURAT ION PROCESS

The host dynamically configures
both lines and terminals for the
NPU by sending downline messages
during normal system operation.
The downline service message to
configure a line is sent for each
line and defines the operating
parameters for the line type.
The NPU responds with a "configure
line response" upline service
message and the host sends an
"enable line" message. When the
line is enabled, the NPU returns
a "line operational" service
message to the host •. The host
then configures terminals for the
line by sending one or more
"configure terminal" messages.
The NPU returns a "configure
terminal response" message for
each terminal configured.

Only the ·"configure line", "con­
figure line response", "configure
terminal", and "configure terminal
response" service messages are
described here. The "enable line"
and "line operational" service
messages are described in this
section under the heading LINE
AND TERMINAL STATUS.

CONFIGURE LINE SERVICE MESSAGE

Format for the "configure line"
service message is as follows:

Numbers

60470000 A

.,

\" ... /

)

(

(

(-

(

c
(

(

(

(

(

(~,

where: DN
SN

BSN
PORT

SUB-PORT
LINE TYPE

TERri. TYPE
MASK

Destination Node Addr
Source Node Address
Block Serial Number
1 through 127
o
(see table 3- 2)
(see table 3-3)
o (unless TERM. TYPE is
8, then see "Automatic
Recogni tion")

LINE TYPE CODE

The line type code in the
"configure line" service message
is acquired by combining the CLA,
modem, and circuit type informa­
tion according to the specifica­
tions given in table 3-2.

TABLE 3-2. LINE TYPE CODES

Line
Type CLA Modem
Code Type Type

1 2560-1 RS232-201A
Compo

2 2560-1 RS232-201B
Compo

3 2560-1 RS232-201B
Compo

4 2561-1 RS232-103E/113
Compo

5 2561-1 RS232-103
Compo

CLA types 2560-1 and 2561-1 are
both general-purpose communica­
tions line adapters. Type 2560-1
operates synchronously and type
2561-1 operates asynchronously.
Both types feature half- or full­
duplex operation; even, odd, or
no parity generation and checking;
and self-test (loop back) mode.
In addition, type 2560-1 has the
following general features:

1. Code length 6, 7, 8, or 9
(8+1 parity) bits

2. Software established frame
synchronization on character

3. All of the above features
(including those in the para­
graph above) can be selected
by program command

4. Speeds to 9600 bps (determined
by modem)

60470000 A

Circuit Transmission Controlled
Type Facility Carrier

Switched Half Duplex Yes

Dedicated Full Duplex Yes

Dedicated Full Duplex No

Switched Full Duplex No

Dedicated Full Duplex No

5. Provisions for external clock
source

6. Full RS-232C/CCITT V24 interface

7. Data transfer overrun/underrun
detection

Type 2561-1 has the following
general features in addition to
those given in the foregoing
paragraph:

1. Code length 5, 6, 7, or 8 bits
(exclusive of parity bit, if
any)

2. All standard speeds to 9600 baud

3. Input and output speeds may
be different

4. Stop bit length of 1, 1.5, or
2 bit times

3-11

5. All of the above features
(including those in the
foregoing paragraph) can
be selected by program
command

6. Full RS-232C/CCITT V24 inter­
face, including reverse
channel detection and control,
terminal busy, and originate
mode

7. Break detection and generation

8. Data transfer overrun detection

The modem type code specifies an
interface standard (e.g., EIA

• RS-232C) and one or more AT&T Data
Sets for which the defined control
procedures are compatible. Modems
produced by other manufacturers
may be used if they are compatible

• with the listed AT&T Data Sets.

For switched lines, the modem is
conditioned by the "data terminal
ready" interface signal and answers
incoming calls upon receipt of the
"ring indicator" signal from the
modem.

Communications lines must be iden­
tified as either half-duplex (HDX)
or full-duplex (FOX), representing
the characteristics of the commun­
ications facility and not the mode
of data transfer over the line.
Thus, it is important not to
assume that a 2-wire circuit is
necessarily a half-duplex facility
as some modems operate full-duplex
with 2-wire circuits.

The NPU can operate full-duplex
facilities with a constant carrier
or controlled carrier. With con­
stant carrier, the transmit
carrier remains on continuously;
and line failure is reported if
the received carrier remains off
for a period equaling or exceeding
the failure verification period.
With controlled carrier, the
transmit carrier is raised and
lowered with each transmission

3-12

block and the received carrier is
expected to behave similarly.

TERMINAL TYPE CODE

The terminal type code contained
in the "configure line" service
message is acquired as specified
by table 3-3. Table 3-4 defines
the character transmission charac­
teristic key codes employed in
forming the terminal type code.

~UTOMATIC RECOGNITION

Automatic recognition is an op­
tion available only on switched
lines. If selected (by specify­
ing terminal type 4 or 8), the
TIP identifies the terminal type
by analysis of input after the
line becomes operational.

The user of a teletype-compatible
terminal on an automatic recogni­
tion line must press the carriage
return key after line connection
is established. The TIP programs
the CLA to sample the line at 300
baud, and the first character re­
ceived by the TIP indicates the
speed of the terminal as follows:

Hexadecimal Terminal
Character Speed
Received (in baud)

9C or 8C no

E6 150

80 300

The TIP then reports the current
terminal type in the "line
operational" service message and
resets the CLA to sample and
transmit at the indicated rate.

For Mode 4 automatic recognition
(terminal type 8), a 3-bit mask
value specifies which 6f the Mode
4 category terminals are to be
supported on the line, as follows:

60470000 B

(

('"

01" .,
;~

(~

(

TABLE 3-3. TERMINAL TYPE CODES

('
Term Char.

Type TIP Transmission General Specific Terminals

Code Type Characteristics Description Supported
Key

1 TTY 1 10 cps, 110 baud Teletype M33, M35,
and M38
CDC 713-10

2 TTY 2 15 cps, 150 baud Teletype M37

(- CDC 713-10

3 TTY 3 30 cps, 300 baud CDC 713-10

(-- 4 TTY 1-3 Automatic recogni- Any teletype com-
tion of above line patible terminals
speeds specified above

5 MD4 4 Mode 4A BCD 214, 217 (200 UT),
713-12, 732-12,
714-1

6 MD4 4 Mode 4A ASCII 217, 731-12, 732-12,

(734-1

7 MD4 4 Mode 4C 711-10, 714-10/20

8 MD4 4 Automatic recogni- Any Mode 4 terminals
tion of above by specified above,
repeated poll of after address strap-
Controllers 70, ping which implies
71, and 72 terminal type from

controller address

9 TTY 5 60 cps, 600 baud Teletype M40

A TTY 6 120 cps, 1200 baud Teletype M40 I
(TABLE 3-4. CHARACTER TRANSMISSION CHARACTERISTICS KEY CODES

(Key Bits Character Stop Bit Character Sync
Code

per Length Length Parity Character
Second*

(1 110 8 2 none -
2 150 8 1 none -
3 300 8 1 none -
4 - 7 - odd 16

(hexadecimal)

5 600 8 1 none -
6 1200 8 1 none -

*Input and Output, Asynchronous Only I
('"

";/ 60470000 B 3-13

Mask Terminal Type
Value Supported

1 5
2 6
3 5 and 6
4 7
5 5 and 7
6 6 and 7
7 5, 6 and 7

For automatic recognition of
Mode 4 terminals, a convention is
established that relates the
address of the terminal controller
to the terminal type as follows:

Terminal
Controller Terminal
Address Type

70 5
71 6
72 7

BYTES 0 1 2 3

:
ON SN 0 4lBSN

I

where: ON, SN, BSN, and SUB-PORT
are as defined in the
"configure line" service
message and the RESPONSE
CODE is interpreted as
follows:

RESPONSE
CODE INTERPRETATION

0 Line configured
1 Line number too

large or zero
i Line already

configured
3 Invalid line type
4 Invalid terminal

type
5 Invalid mask

3-14

4 5

0 I

Only one controller can be connec­
ted to a Mode 4 line for which
automatic recognition is specified.
When the line becomes operational,
the TIP repeatedly polls those
controller addresses permitted by
the mask value. When a response
is obtained to a poll, polling
stops and the terminal type in­
ferred from the responding con­
troller is reported in the "line
operational" service message.

CONFIGURE LINE RESPONSE
SERVICE MESSAGE

In response to the "configure line"
service message from the host, the
NPU always returns the "configure
line response" upline service mes­
sage which is formatted as follows:

6 7 8 9

SUB- RESPONSE
0 PORT PORT CODE

CONFIGURE TERMINAL SERVICE MESSAGE

After a line has been configured
and the NPU has properly responded
to the configuration, the line
still must be enabled by an
"enable line" service message to
which the NPU responds with a
"line operational" or "line
inoperative" message.

When the line is operational, the
host then proceeds to configure
terminals for the line by issuing
one or more "configure terminal"
service messages. The format for
the "configure terminal" message
is as follows:

60470000 A

,<"-'h,
I' ,

~~ ..

c

c=

;f-'"

'\l",.'

(

(

(

(

('

(

(

(;

where: DN, SN, BSN, PORT, and
SUB-PORT are as defined
in the "configure line"
service message

CN = Connection Number
CA = Cluster address
TA Terminal address

A terminal control block (TCB) can
be built only when a line is
enabled and operational and such
a block remains in existence until
a TERMINATE is received or a

BYTES o 1 2 3 4

where:

!
DN SN 0 4/BSN 0

I

DN, SN, BSN, PORT, and
SUB-PORT are as defined
in the "configure line"
service message

CN Connection number and
RESPONSE CODE is inter­
preted as follows:

RESPONSE
CODE INTERPRETATION

o

1
2
3
4
5
6
7

Terminal control
block (TCB) built

Line inoperative*
TCB already exists
Line not enabled
Invalid line no.
CN already assigned
Invalid CA
Invalid TA

*If a line becomes inoperative
prior to receipt of the "configure
terminal" message, the NPU first
reports "line inoperative", then
responds to the "configure

60470000 B

5

1

7

PORT

8

SUB­
paRT

9 10

CN CA

"disable line" or disconnect
line" service message is processed.

CONFIGURE TERMINAL RESPONSE
SERVICE MESSAGE

In response to the "configure
terminal" message, the NPU always
returns a "configure terminal re­
sponse" service message formatted
as follows:

6

1

7 8 9 10

PORT I SUB- I CN
RESPONSE

PORT CODE

terminal" message with a
"configure terminal response"
message in which the response
code indicates line inoperative
(code 1).

LINE AND TERMINAL STATUS

The following service messages are
employed to establish line and
terminal status. In general, lines
can be enabled, disabled, discon­
nected, and ruled operational or
inoperative. Terminal status is
normally reported by a TIP when
terminal failure is detected via
an upline command.

ENABLE LINE SERVICE MESSAGE

In the normal sequence of events,
the host responds to a "configure
line response" service message
from the NPU by issuing an "enable
line" service message in the
following format:

3-15

I

BYTES 0 1 2 3 4 5 6 7 8

.rl-O-N--T-S-N~I--O~I--4~!-B-S-N~I--2~I--O~I--O~-P-O-R-T--~~-~-:-;-'

ON, SN, BSN, PORT, and SUB­
PORT are as defined in the
"configure line" service
message

BYTES 0 1 2 3

ON SN o 4!BSN

ON, SN, BSN, PORT, and
SUB-PORT are as defined
in the "configure line"
service message and CTT
is the current terminal
type.

Upon receiving the "line opera­
tional" service message, the host
normally configures the terminals
for the line by sending one or
more "configure terminal" service
messages.

4

o

LINE OPERATIONAL/LINE INOPERATIVE
SERVICE MESSAGE

The response to a downline "enable
line" service message is either
a "line operational" or "line
inoperative" service message, as
appropriate. The format for the
"line operational" service mes­
sage is as follows:

5 6 7

3 o PORT

8

SUB­
PORT

9

CTT

The "line inoperative" service
message is sent from the NPU to
the host only when an attempt is
made to enable an inoperative
line or when line or modem condi­
tions cause the line to become
inoperative. This service message
is not sent when the line is
disabled, disconnected, or termi­
nated by the host. The format for
the "line inoperative" service mes­
sage is as follows:

BYTES 0 1 2 3 4 5 6 7 8 9

LEC

0

1

2

3-16

r[-O-N--~-S-N~--O~--4~i-B-S-N~--O~--3~--1--~P-O-R-T--~~-~-:-T--~--L-E-C~

ON, SN, BSN, PORT, and
SUB-PORT are as defined
in the "configure line"
service message and the
line error code (LEC) is
interpreted as follows:

INTERPRETATION

Re-enable line at
first opportunity.

Re-enable line after
predetermined timeout.

OO'not re-enable line
until next initializa-
tion of NPU.

LEC equal to zero is the normal
response for a switched line. LEC
equal to one indicates an abnormal
modem signal or diagnostic test to
prevent line enables from flooding
the NPU. LEC equal to two indi­
cates a bad CLA or other long-term
outage.

Terminal control blocks (TCBs) are
not automatically deleted when a
line becomes inoperative. The host
must explicitly TERMINATE each
logical connection or command a
"disable line" or "disconnect
line".

60470000 B

{;' , '
;~.

, ..,J

c

(

(

(

(

(

f

(..

(

(

The following modem conditions
cause the line to be reported as
inoperative. Timeouts used in
conjunction with conditions ensure
that lines are not declared inoper­
ative because of transient
conditions.

Data-Set-Ready - If data-set-ready
(DSR) drops, data-terminal-ready
(DTR) is immediately turned off
and "line inoperative" is reported
with LEC = 0 for switched lines
(types 1 or 4) and LEC = 1 for
dedicated lines (types 2, 3, or 5).

Clear-to-Send (Type 201 modems
only, line types 1, 2, or 3) - If
clear-to-send (CTS) does not rise
within one second after request-to­
send (RTS) and fall within one
second of the fall of RTS, DTR is
turned off and "line inoperative"
is reported with LEC = 1. CTS is
not monitored for 103/113 modems
(line types 4 or 5).

Data-Carrier-Detect (FDX constant
carrier, line types 1, 2, or 3) -
Once the line is operational, if
data-carrier-detect (DCD) drops
and remains off for 10 seconds,
DTR is turned off and "line
inoperative" is reported with LEC
= 1. Abnormal operation of DCD on
HDX lines or controlled carrier
lines (line types 1 or 2) does not
influence line status.

TERMINAL STATUS

Terminal status is reported to the
host via an upline command message
from the TIPs when terminal failure
is detected. The format of these
command messages is described later
in this section. Such messages do
not change the state of the termi­
nal control block (TCB) with regard
to the logical connection nor is the
the line state (as recorded in the
line control block) modified. The
host may attempt to recover from
terminal failure or may TERMINATE
the associated logical connection.

60470000 A

HOST INTERFACE PACKAGE

CYBER COUPLER HARDWARE PROGRAMMING

The CYBER coupler is the hardware
interface between the CYBER 70/170
host and the NPU. The host may in­
terface with one or two couplers
on the same channel, but the NPU
interfaces with only one coupler.

The coupler, essentially, has
three transmission circuits:

1. A half-duplex data circuit for
transmission of programs or
data between the host memory
and the NPU memory.

2. A full-duplex control circuit
over which the host and NPU
perform necessary "handshaking"
protocol.

3. A supervisory circuit that mon­
itors transaction status. The
coupler also provides an execu­
tion control circuit used by
the host to start or stop NPU
microprogram execution or to
reset the microinstruction
address counter.

REGISTERS

The coupler registers directly
accessed by the host for normal
data transmission and status re­
porting are illustrated in figure
3-1 and are briefly described as
follows.

1. Coupler Status Register - A 16-
bit register of which only the
12 low-order bits can be read
by the host. This register
identifies the reason for an
interrupt or alarm and indi­
cates occurrence of a transac­
tion or change in register
status to both the host and the
NPU. See table 3-5 for regis­
ter specifications.

2. NPU Status Word - A l6-bit reg­
ister of which only the 12 low-

3-17

('j

IN
I

CIO

en
o
o
o
O.
o
>0

(-) t ~
\

HOST MEMORY

SUPERVISORY

aR1.
COUPLER STATUS
REGISTER

18

NPU MAIN MEMORY

;. ~\ I \

\ ; , ..
l

.' \

\ . /

11 9 0 11 8 0 23 20 12 8 0

II II I II I I I I

1 CONTROL
.. CIRCUIT -I

12 12

ADDRESS SETUP
FOR PROGRAM
TRANSFER 1
L--.L

15 8 0 18 15 8 7 0

INPUTIOUTPUT
DATAIPROGRAM

r ORDER WORD -]

• bN • " , i

J\lPU ST~TUS WORD
I I MEMORY
I : ADDRESS
I I ZERO

MEMORY
ADDRESS
ONE

18 18 18

DATA CIRCUIT

BYTE 0 BYTE 1

T T

Figure 3-1. CYBER Coupler Registers

C-\ (,)
/- '"'\ (\

() \ ./'
/ \ ~,) \ ~ \ ")

..- ~ .. F) (; [\
\

(

(

(-

(

(

(--J
--

{
f
(

(

(--

j

Bit
Number

o
1

2

3

4

5

6

7

8

9

10

11

12-13

14

15

NOTES:

TABLE 3-5. COUPLER STATUS REGISTER

Flag Name

~1emory Par i ty

Memory Protect Fault

NPU Status Word
Loaded

Memory Address
Register Loaded

External Cab. Alarm

Transmission
Complete

Transfer Terminated
by NPU

Transfer Terminated
by Host

Orderword Register
Loaded

NPU Status Read

Timeout

CYBER 170 Channel

Not Used

Chain Address Zero

Alarm

Set Condition

NPU memory parity error

NPU memory protect fault

NPU writes status word

Host or NPU writes
memory address one

Power failure

Host completes any input
or output operation

NPU terminates transfer
(not used)

Host sets channel inac­
tive during data I/O

Host writes orderword

Host reads NPU status
word

Coupler selected and
active 3+ seconds in
host data I/O operation

Enable parity switch on
and data channel l2-bit
word (plus parity) not
odd

Coupler finds zero in
last word of NPU buffer

positive transition of
any flag causing alarm

Inter­
rupt
Alarm*

A

A

I

I

I

I

I

I

A

A

Reset**
Condi­
tion

1

1

2

3

4

4

4

4

5

4

1

6

4

4

*Raising associated flag causes alarm (A), interrupt (I) or neither alarm or
interrupt (-).

**All flags are reset (cleared) by Master Clear. All except bit 2 are reset
when NPU or host clears the coupler. Other reset conditions are as follows:

1. Reset when coupler status register is cleared.
2. Reset when host reads NPU status word.
3. Reset on first direct memory access (DMA).
4. Reset when NPU reads coupler status register.
5. Reset when NPU reads orderword.
6. Reset when NPU reads coupler status register or by enable parity switch

positive transition.

60470000 A 3-19

order bits can be read by the host.
This register is used by the NPU
to com~unicate software-defined
status codes to the host. These
status codes are interpreted as
follows:

Code Interpretation Value

0 Ignore value and read again
1 Idle
4 Ready for output
7 Not ready for output
8 Ready for dump

11 Input available - other
than BLK or MSG

13 Input available - BLK or
MSG with no more than
248 characters

14 Input available - BLK or
MSG with more than
248 characters.

3. NPU Order Word - A 16-bit regis­
ter of which only the 12 low-order
bits can be written into by the
host. This register permits the
host to communicate a software­
defined order code to the NPU.
Output ready is the only order
currently used. The code identi­
fies the type of output available
as follows:

Code Value Interpretation

1 BACK block
2 BLK block
3 MSG block
4 CMD block
5 BREAK block
6 RESET block
7 TERMINATE block

4. NPU Addre~s Register - A 17-bit
register, all of which can be
written into by the host, is used
in .loading or dumping NPU memory.
The high-order 9 bits (address
register bits 16-8) are designated
as "memory address zero" and the
low-order 8 bits (address reigster
bits 7-0.) are designated "memory
address one". The host writes
addresses into the register by
first writing "memory address

3-20

zero", then "memory address one".
Address register bit 16 is actu­
ually implemented as NPU status
word bit 8 and, therefore, cannot
be used for other purposes.

COUPLER OPERATING MODES

The coupler employs four operating
modes: NPU control, load/dump,
single word transfer, and block
transfer. Two of these modes (load/
dump and block transfer) transfer
information between the coupler and
the NPU memory via a direct memory
access (OMA) port. The OMA port
transfers 16-bit words, but the host
transfers only 12-bit words to or
from the coupler. Therefore, to form
a full 16-bit word in either direc­
tion, the host performs two trans­
fers, the first transferring bits
15-8 (byte 0) of the 16-bit NPU word
and the second transferring bits
7-0 (byte 1). The four high-order
bits of each host word are not
transferred to the NPU and when
transferring from NPU to host, the
coupler sets the four high-order
bits of each host word to zero. As
an even number of 12-bit words must
be transferred in each transaction,
the coupler adds a word of all zeros
when an uneven number of bytes is
encountered.

When the coupler operates in the
block transfer mode, data is trans­
ferred as 8-bit characters occupy­
ing bit positions 7-0 in the 12-bit
host word and either bit positions
15-8 or 7-0 in the 16-bit NPU word.
During both input and output, bit
11 of the host word is set to indi­
cate the last character of a trans­
mission. Bits 10-8 of the host word
are not normally used. If, however,
they are set to a non-zero value
during an output transaction, the
coupler executes an immediate chain
to the next buffer sequence. This
forced chaining prior to an end-of­
buffer condition should be used
sparingly to prevent excessive buf­
fer usage.

Characters ·are transferred to and
from contiguous host memory loca­
tions, but locations within the

60470000 B

(

(

(

(

{

(

f
(

(

(

(/

()

NPU memory buffers and the buffer
chaining mechanism are of no con­
sequence to host operation.

When the coupler operates in the NPU
control mode, it allows the host to
stop and restart execution of the NPU
microprogr'am and, to set the micro­
instruction counter to zero.

The single-word transfer mode is
used for NPU status word and Qrder
word transfers. The NPU can write
into the NPU status word at any time,
but the host can read it only after
it has been loaded by the NPU and
must not read it again until a new
word is loaded. The host determines
when the NPU status word is loaded
by testing bit 2 of the coupler status
register. This bit is set when the
NPU loads the word and reset when the
host reads the word. Similarly, the
host can load the order word at any
time and the NPU can read it only
after it has been loaded. Bit 8 of
the coupler status register is set
when the host loads the order word
and is reset when the NPU reads the
word.

For block (multiple character data)
transfer operation, the coupler re­
quires cooperation of both the host
and NPU. Either the host or NPU may
initiate the operation and, when both
have completed setup, the transfer
ca~ take place. For output, the host
cannot directly determine if the NPU
has completed setup and, therefore,
must rely upon cooperation by the
NPU. For input, the host can test
the channel to determine whether the
channel is full or empty. Unless the
channel is filled by the NPU within
12 microseconds after the input re­
quest to the coupler, a failure is
signaled.

The NPU sets up its side of the
coupler for a data transfer by
loading the buffer length register
(not used by the host) and storing
the address of the first buffer of a
buffer chain into the NPU memory
address register. Output transfer
is terminated by the presence of bit
11 in any character in the host out-

60470000 B

put data stream. The host must dis­
connect the channel following trans­
fer of this word. Input transfer is
terminated when the last valid char­
acter of the last buffer of a buffer
chain is transferred. The last char­
acter is stored in the host with bit
11 on and the coupler automatically
disconnects the channel after the
word is transferred. If bit 15 of
the second word is set to one, it
indicates the last buffer.

HOST INTERFACE

The coupler is programmed from the
host side by setting a function code
and executing an I/O instruction.
Table 3-6 lists and describes these
function codes which occupy the nine
low-order bits of the l2-bit host
word. The equipment code (coupler
address on the channel) is contained
in the three high-order bits. The
equipment code is determined by
switch settings on the coupler.

Load, dump, and multiple character
transfers occur at a maximum rate
of one 12-bit host word per micro­
second. DMA contention may, however,
cause a somewhat lower overall ratei
but such delays should be infrequent
and of relatively short duration.

NPU INTERFACE

The NPU issues commands using the
SIO instruction to program the coup­
ler. The SIO is also used to read
the order word and to write the sta­
tus word. Data block input/output
takes place via direct memory access
(OMA) which is transparent to the
software. Table 3-7 lists and
describes the NPU commands.

DATA TRANSFER PHYSICAL PROTOCAL

The data transfer physical protocol
performs data transfer and error
checking. The physical protocol
is described by a pair of flow
diagrams, one showing operation of
the host (figure 3-2) and the

3-21 •

3-22

DECLARE
NPU
DEAD

Figure 3-2. Data Transfer Protocol - Host Sequence, Flow Diagram

60470000 A

(
\"", :/

... /

(: .".
\t~.

("."
/

('

.(

(

(

(

(

(

(

-(

C~/
'"I

Host Function
Code

Clear NPU

Start NPU

Input Program

Output Program

Clear Coupler

Output Memory
Address Zero
Output Memory
Address One

Output Order
Word

Input Coupler
Status

Input NPU
Status

Input Order Word

Input Data

Output Data

60470000 A

TABLE 3-6. HOST FUNCTION CODES

Octal
Value

200

040

007

015

400

010

011

016

005

004

006

003

014

Description

Used prior to loading or dumping the
NPU, stops NPU operation and sets the
micromemory address register to loca­
tion zero.

Starts the NPU emulator (microcode) at
the address in the micromemory address
register. Emulator must always be
started at location zero; therefore
NPU must be cleared before issuing
this function code.

Used to dump NPU main memory.

Used to load NPU main memory.

Resets coupler control logic and most
registers.

This pair of function codes is used to
set NPU main memory accessing for load
and dump operations.

Loads the coupler orderword register.
Causes an NPU interrupt.

Checks the state of various registers
and flags in the coupler. Tests
whether NPU has loaded the NPU status
word.

Inputs NPU status word previously
loaded by the NPU.

Allows host to read. back order word
it has written. Used only prior to
NPU dump operation.

Allows characters to be input to the
host. Coupler must have been pre­
viously set up by the NPU.

Allows characters to be output from
the host. The coupler must have been
previously set up by the NPU.

3-23

TABLE 3-7. NPU COMMAND CODES

NPU Command

Input Switch
Status

Output Buffer
Length

Clear Coupler

Input Coupler
Status

Input Order
Word

Output NPU
Status

Output Memory
Address

Hexadecimal
Value

0654

0658

060C

0650

0660

0648

066C

other showing operation of the NPU
(figure 3-3).

In figure 3-3, a large arrowhead
is used in some locations to indi­
cate a point at which the NPU waits
for the next coupler interrupt.
While waiting, the coupler program
reentry point is saved and the
"dead" timer runs while the NPU
services other processes. When the
interrupt occurs, the NPU resumes
service of the coupler at the loca­
tion saved. If the reason for the
interrupt is one of those listed
below the arrow, the service pro­
ceeds as shown. If an interrupt
occurs for some other reason, an
error has occurred. In such case,
the error is logged and the proto-

3-24

Description

Allows NPU to check host data
channel device address, online/
offline switch setting, alarm over­
ride switch setting, etc. Used
during initialization.

Sets coupler to follow NPU buffer
chains for current-buffer length
in use. Used during initialization
and each data transfer.

Resets coupler control logic and
most registers. Used during pro­
tocol error processing. NPU status

.word contents, except for bit 8,
are not affected.

Used in NPU interrupt handler to
determine reason for interrupt.

Used in NPU interrupt handler to
input order word previously loaded
by. the host.

Used to send control codes to the
host.

Sets up coupler for data transfer
by pointing coupler to the start
of an NPU·buffer chain.

col is restarted at point A. If
the "dead" timer timeout occurs
before the interrupt, the host is
classified by the terminals as
being down, but the transaction
remains pending. When the trans­
action is completed, the terminals
again consider the host to be
operational.

As detailed in figures 3-2 and 3-3,
the principal features of the pro­
tocol are:

• At any time, the host can order
output or the NPU can specify
input available and set the
coupler appropriately.

60470000 A

/f-~\

V

(:(--",

~/

,
'-.-

(

(

.(

(

(

(

(

(

(

(

' ,~~ \

START KEEP
ALIVE TIMER
11 SECI

SET BUFFER
ADDRESS IN
COUPLER

RESTART
'DEAD'
TIMER

NO
~~------~~~-------r~--------------~ TIME INPUT OUT

ISSUE

ORDER
WORD
LOADED

ORDER
WORD
LOADED

NO

'HOST DOWN'
NOTICE

SET STATUS
WORD TO
'NOT-READY­
FOR-OUTPUT'

QUEUED

ORDER
WORD
LOADED

ISSUE
'HOST-UP'
NOTICE

YES SET BUFFER
ADDRESS IN
COUPLER

SET STATUS
WORD TO 'IDLE'
RESTART "KEEP
ALIVE TIMER

ISSUE
'HOST-DOWN'
NOTICE

SET STATUS
WORD TO
'READY-FOR­
OUTPUT'

OUTPUT
COMPLETE

LOG ERROR lSI
AND DISCARD
DATA

Figure 3-3. Data Transfer Protocol - NPU Sequence, Flow Diagram

60470000 A 3-25

• If a conflict occurs, the NPU
normally allows output, but
the NPU can reject output when
buffer space is lacking.

• The host can refuse input by
simply ignoring the input
available signal from the NPU.

• If the dead timer in the host
times out, indicating a
response failure, the NPU is
reloaded. If the dead timer
in the NPU times out, indica­
ting a host busy or failure
condition, the protocol remains
in its present state.

• If the NPU rejects output, the
host performs a short timeout
before again requesting output
to prevent swamping the NPU
with interrupts.

• If the NPU accepts output, the
host allows the NPU to indicate
if input data is available be­
fore again ordering output.

• Once a data transfer is initia­
ted, the transaction must be
completed or the entire trans­
action is discarded.

• The receiver (host or NPU) per­
forms error checking and, if
detected, errors are logged in
the CE error file, the data
received is discarded, and the
protocol is reset. A retry is
not automatically attempted.

DATA TRANSFER

The coupler can perform block
transfers in only one direction at
a time. Therefore, the data trans­
fer protocol is half-duplex. The
host and NPU independently bid
for the channel. The host bids
for the channel by issuing an out­
put order word with the OUTPUT
function code. The NPU bids by
commanding the output memory
address to point to the start of
the input block buffer chain and
further commanding output NPU sta­
tus with the input-available

3-26

status bit set. If both host and
NPU bid for the channel at approx­
imately the same time, the NPU
normally allows output and rebids
for input at completion of the
output operation.

The NPU receives an interrupt when
the host writes an order word or
completes a data transfer. The
coupler status word indicates the
reason for interrupt. Therefore,
the host need not separately indi­
cate via the control circuit that
a transaction is complete, as that
information is automatically
available via the supervisory
circuit.

ERROR CHECKING

Errors are of three types: con­
taminated data, incomplete trans­
actions, or failure of the
interface to respond. The first
two types are handled by the
physical protocol. Only good and
complete data blocks are accepted
and bad blocks are discarded.
Physical level protocol does not
perform transmission retry or
attempt recovery of discarded or
lost blocks. Interface failure
causes the interface to be declared
inoperative, but the protocol re­
turns to the initial state and
waits for interface response.

TIMERS

Five timers (three in the host and
two in the NPU) are used by this
protocol. The host contains the
"dead", "output continue", and
"output rejected" timers and the
NPU includes "keep alive" and
"dead" timers.

Three timers accomplish failure
detection. The I-second "keep
alive" timer in the NPU provides
periodic idle status signals to
the host when no traffic is in
progress. ThelO-second "dead"
timer in the host times out if
the host fails to receive either
an idle or an input request signal

604'70000 A

/

C,.-··, ::;

,-r~.

~./

(

(

(-

(

(

(
(

(

«

(

(/

within its 10-second period. Upon
such "dead" timer timeout, the
host declares the NPU to be dead
and initiates the NPU dump/reload

I sequence. Similarly, the NPU 30-
second "dead" timer senses coupler
interrupts and, if none arrive

I within the 30-second period, the
NPU declares the host dead, but
continues the transaction.

When the host and the NPU both
bid for the channel at approxi­
mately the same time, the conten­
tion is resolved in favor of the
host by permitting output. When
the output transaction ends, the
host starts a brief (1 to 10-
millisecond) "output continue"
timer to allow the NPU to request
input if the NPU has data queued
for the host. This timer pre­
vents the host from monopolizing
the channel with output and flood­
ing the NPU with data.

If the NPU encounters a scarcity
of buffers, it rejects the host's
request for output. To regulate
the rate at which the host bids
for the channel, a 100-milli­
second "output rejected" timer
limits the frequency of coupler
interrupts to the NPU when the
NPU has a scarcity of buffers.

HOST FAI LURE AND RECOVERY

When the NPU detects failure of
the coupler to provide an inter­
rupt before "dead" timer timeout,
it causes a message (HOST DOWN)
to be placed in the output queue
of all terminals except those in
the batch mode. The status of the
terminals or the logical connec­
tions is not changed in any way.
However, while the host is down,
no new input messages are accepted
from the terminals as input
regulation is forced. As required,
service messages continue to be
generated by the NPU and are
queued for input to the host. In
this way, when the host again
becomes operational, these messages
will be transferred to the host.
The NPU stops generating service

60470000 B

messages if too few buffers are
available for their storage.

When the host again begins respond­
ing, a message (HOST UP) is sent to
those terminals previously notified
of the HOST DOWN condition if they
are'still connected.

A terminal interface package (TIP)
interfaces the terminal control
blocks (TCBS) and line control
blocks (LCBs) of the communications
network to the terminal. A TIP in­
cludes both hardware and software
elements. In interfacing with the
communications network, the princi­
pal concerns of the TIP are mode
control and error control with most
of the software elements devoted
to "exception processing". The
interface between the TIP and the
terminal is a function of the de­
sign of the terminal, with several
broad classes of design and several
variations within each class. Each
class of terminal is supported by
a TIP designed for the class.

NETWORK INTERFACE

OUTPUT QUEUING

A common routine in the NPU queues
downline forward blocks output
data and commands to the TCB.
This routine discards the block if
the accept output (AO) flag in the
TCB is zero. An output 9ueued
(OQ) flag indicates the presence
of output information for the TIP
to process (see table 3-8).

UPLINE BREAK

The common "send break" subroutine
(figure 3-4) indicates a discon­
tinuity in the output stream.
This routine purges the output
queue described above, sets AO to
zero to prevent further queuing
of output information, and sends
an upline BREAK message with a code
indicating the reason for the
break.

3-27

TABLE 3-8. TIP .FLAG INTERPRETATIONS

Flag Initial
Code Value Name Set Reset

00 0 Output Output Data or 1. Upline Break
Queued Command Received 2. Purge Last Block

From Host in Queue

AO 1 .>.ccept O tpllt Reset Received lJpline Break

Al TTY: 1 .>.ccept Input Poll Command 1. Downline Break
MD4: 0 2. Batch or Intcr-

active command
3. Batch Interrupt
4. End of Cards
S. Upline Break

BT 0 Batch Mode Batch Command Interactive
Command

Tel(0 Toggle Poll for Toggle Poll for Toggle
Currently Determines Value Can't Determine
Known Value

TSE o or I Toggle State 1. Toggled ~lhen Any Write Performed
Expected 2. Set to Received 'roggle ~lhen

Response Received to Poll for
Toggle

DFQ 0 Blank Fill At Creation of Terminal Verifies
Queued Input Blank Fill That Write EI

Accepted

E3Q 0 E3 Queued At Creation of Terminal Verifies
liri te E3 (Read that Write E3
Cards) Accepted

WFC 0 Naiting for Starting Polling Data Received in
Cards for Cards Response to Card

Read Poll

BNB 0 Block Not 1. Write Per- Write Transaction
'Back'ed formed But Properly Co~pleled

Toggle can't
be Determined

2. Write to
Printer
Completed, but
E-Code Response
Not Obtained

'l'IfI(o or I Toggle was Write to Printer Write Performed,
Known Completed but but Toggle can't be

E-Code Response Determined
not Obtained

TSD o or I Toggle Poll for Toggle When BNB is Set
Subsequently Obtains Response
Determined to Update State

of Another TCB

TIfC o or 1 Toggle was Received Toggle Received Toggle
Correct Equals TSE when Does not Equal TSE

Response Obtained ~lhen Response Obtained
to Poll for Toggle to Poll for Toggle
Which Updates Which Updates State of
State of I,nother Another TeD
TCD

3-28

Tested

1. Quiescent Loop
2. Idle Loop

Output Queueing

1. Quiescent Loop
While in Batch
Mode

2. Idle Loop
3. After Print OUt-

put
4. Any Input Received

from Terndnal

1. Quiescent Loop
2. Initiating Poll
3. Input Received When

Polling for Ca¢s

1. Pc.! I for E-Code/
Data

2. Before Output

When Polling for
Toggle, to Determine
if Write Needs to be
Retransmitted

1. Output Data
2. Poll Command

1. Output Data
2. Poll Command
3. Interactive

Command

1. Poll Command
2. Interactive

Com!nand
3. Before Output

1. Output Data
2. Poll for Toggle

Obtains Response to
Update State of
Another TCD

1. Output Data but
BNS is set

2. Poll for Toggle
Obtains Response to
Update State of
Another TCD

1. Restart Output
After Failure

2. Poll for Toggle
Obtains Response
to Update State
of Another 'l'CB

Restart Output
After Failure

60470000 A

/' ~,

/'- ~",
i
\j

(

(

(

(
(

(

(

(-

c

QUEUE BLOCK
TO TCB

OQ +1

RESEND ALL
BLOCKS NOT
ACKNOW­
LEDGED

RESET

AO+ 1

Figure 3-4. Common TIP Subroutines Flow Diagram

BACK

RELEASE ASSOCI­
ATED DATA OR
COMMAND BLOCK
FROM UPLINE
QUEUE

60470000 A 3-29

DOWNLINE BREAK

The host commands the TIP to stop
input by sending a downline BREAK
message. This block is acted
upon when received, without being
output queued. This message
causes the accept input (AI) flag
to be set to zero. Blocks not
acknowledged by the host will be
resent by the TIP following an
upline RESET. The method by which
input is again accepted (AI set
to one) is a function of the par­
ticular TIP design.

TELETYPE (TTY) TIP

OPERATING MODES

The TTY TIP operates in either the
interactive or tape mode. In the
interactive mode, the TIP inter­
faces the network to a teletype
device for either input or output.
In the tape mode, the TIP inter­
faces the network to a tape
reader.

In the interactive mode, the TIP
operates in half-duplex fashion
with three states (idle, input,
and output). The TIP is driven
from the idle state to the input
state by arrival of a character
from the terminal and is driven
from the idle state to the output
state by arrival of an output
block from the host.

Once in the input state, the TIP
remains in that state until an
end-of-input message is sensed.
If no output is in queue, the TIP
returns to idle. If there is out­
put in queue, the TIP goes direct­
ly to the output state. The TIP
remains in the output state until
the output queue is exhausted or
until the terminal operator
presses the BREAK key or inputs
a character. While in the input
state, the break (input framing
error) is ignored.

3-30

When the TTY TIP is commanded to
enter the tape mode, it sends
X-ON to start the tape reader.
While the TIP is in the tape mode,
the host should not send output.

DATA FORMATS

Characters transmitted between the
host and terminal during both
input and output are passed in full
a-bit form,_without code transla­
tion or parity generation and
checking. Messages or characters
sent by the TTY TIP to the term­
inal, however, always have even
parity.

An input message is sent in one or
more blocks. The maximum size of
an input BLK or MSG block gener­
ated by the TIP is controlled by
a program build parameter and is
in the range 1-2043 bytes. When
the message length exceeds the
maximum block size parameter, all
but the last block will be type 2
(BLK) blocks and the last block
will be a type 3 (MSG) block.
Where the message length is less
than the maximum block size, the
single block sent is of the type
3 (MSG) type. If input is termi­
nated by other than normal input
delimiting (as defined in para­
graph entitled Mode Set), the
message is never completed and the
last block of the incomplete mes­
sage is of type BLK.

MODE SET

The host sends the mode set com­
mand to the TIP. Its format is
as follows:

BY'l'ES 0-2 3 4 5

ADDRESS 4!BSN 1 MODE

60470000 A

/'

(-

(

(

('

(

r
(

:(

(

c

where:

Mode Name ~escription

o

1

Inter~ On input, echo car­
active riage return to line

feed and line feed
to carriage return.
Carriage return de­
fines end~of-input
message

Tape An X-ON is sent to
the terminal to start
the tape reader when
the command is exe­
cuted. End-of-input
message is defined by
the input line remain­
ing in the marking
state for 200 milli-'
seconds or longer.

The mode set command is not executed
and the mode set response is not
sent unless the mode can be changed.
If the terminal is already in the
mode commanded, no response is sent.
When the TIP changes mode, the com­
mand is returned to the host as a
mode set response. Since the com­
mand is part of the output queue,
it is not processed while the TIP
is in the input state.

Comparison of input characters to
ca~riage return and line feed
considers bits 0-6, but not bit 7.

INPUT REGULATION

Before soliciting or accepting
input messages, the TTY TIP
checks buffer thresholds to
ensure a sufficient supply of
the size required. A higher
threshold value is used for new
messages than for messages
already in progress. This gives
higher priority to messages in
progress when contending for
available buffers.

If a message once started cannot
acquire a buffer to maintain con­
tinuity, the partial block is
sent to the host as a BLK type,
followed by an upline command

60470000 A

indicating that the message is
not complete (i.e., no MSG block
follows) •

INPUT STOPPED SEQUENCE

The following sequence occurs when
either a downline break (host
failure) or input regulation
(insufficient buffers) occurs.

1. The part~al input block is
placed into the upline data
queue as a BLK type block.

2. An input stopped command with
the following format is
created:

BYTES 0-2 3 4

ADDRESS 41 BSN o

3. A message consisting of an out­
put break (250-millisecond
spacing condition) followed
by the text INPUT STOPPED is
immediately sent to the
terminal.

4. The above message places the
TIP in the output mode and any
input characters received are
discarded.

5. The TIP remains in the output
state if output is in the queue.

UPLINE BREAK

If the operator presses the BREAK
key or inputs a character during
output, the TIP calls the SEND
BREAK subroutine and causes out­
put to stop. The break condition
is not timed out. If the break
condition continues too long, the
modem disconnects the line if
that option is installed in the
system.

MODE 4 TIP

The Mode 4 TIP interfaces the com­
munications network to the card

3-31

reader, printer, keyboard, and
CRT display of a CDC 200 user
terminal (UT). Mode 4 terminals
are connected to the NPU via
synchronous lines operating at
speeds to 9600 bits per sec.ond.
The TIP is insensitive to line
speed, with the CLA performing
bit sampling and transmission
under control of modem-supplied
clock signals.

Operation of point-to-point or
multi-drop Mode 4 lines is half­
duplex (i.e., the TIP either
transmits or receives, but does
not simultaneously do both on the
same line). Dedicated (non­
switched) lines may support mul­
tiple clusters and multiple
terminals per cluster, but all
clusters on a line must be of the
same terminal type. A switched
line may connect to a single
cluster only, but the cluster may
support multiple terminals. Where
multiple terminals are on a line,
terminals are serviced in a peri­
odically repeating sequence without
priority.

OPERATING MODES

The card reader, printer, keyboard,
and CRT display of a 200 UT all
have the same terminal address.
The 200 UT operates with the card
reader and/or printer in the batch
mode and with the keyboard or CRT
display in an interactive mode.
Mode selection is performed by the
terminal operator via operator
commands interpreted by the
application process or by down­
line commands from the host.
Device selection is performed by
E-codes appended to the output
by the TIP as a function of the
current mode. E-codes coming
from the terminal are stripped
from the input before the data
is forwarded to the -host.

Interactive Mode

In the interactive mode, output
assumes priority over input.
Solicitation of input is accom-

3-32

plished by polling, initiated by
the host sending a downline start
polling command or after the host
has delivered output to the term­
inal. Thereafter, polling con­
tinuesuntil receipt of a mode set
command, a downline break, or a
terminal error that generates an
upline break. Data is sent to the
host as MSG blocks.

If there is data in the output
queue, the TIP stops polling the
terminal and-delivers the block.
If a BLK block, the TIP uncondi­
tionally awaits more output and
does not resume polling. If a
MSG block and there is no more
data in the queue, the TIP
resumes polling if input is being
accepted (AI flag on) or returns
to a quiescent loop to await more
output. The terminal verifies
receipt of output data by sending
BACK to the host.

The interactive mode is typically
used with CRT terminals. When
the TIP receives interactive input,
it generates blank fill response
to force the cursor to the first
position of the next lower line.
To accomplish this, the TCB must
be supplied with screen width
information. Normally, when the
TCBis built, screen width is
initialized to 80 characters.
However, this parameter may be
changed by a downline command with
format as follows:

BYTES 0-2 3 4 5

I ADDRESS 141BSN 13 1 SCREEN WIDTH I

Batch Mode

In the batch mode, output and in­
put have equal priority. This
mode is typically used with card
readers or line printers, with
card reading and printing inter­
leave~ on a one-block-in then one­
block-out basis as long as output
data is queued.

Card reading is only initiated by
the host sending a start polling

60470000 A

c
C"',

. ../'

!

.~ /

\

(

(

(

(

r
(

<' ' ("

()

downline command. The TIP gener­
ates the write E3 output to the
terminal to enable card buffer
transfer. The TIP then polls for
card data. Upon receiving data,
the process continues until re­
ceipt of a mode set command,
downline break, terminal error, the
last card is read, or until the
terminal interrupts card reading.
If the input has an E3 code, input
data is sent as a BLK block. If
E2 code or a CYBER EOF (3E-56,
hexadecimal), input data is sent
as a MSG block. If an El is re­
ceived when polling for card input
or the printer E code, the input
data is discarded, the send break
subroutine is called, and a batch
interrupt is indicated.

Output data may be either BLK or
MSG blocks, without effect upon
input solicitation. The BACK for
an output block is sent to the
host when an E3 or El is obtained
from the printer. If an E2 is
obtained from the printer, the TIP

TRANSMISSION HEADER

SYNC I SOH I CA I TA I MTI I

calls the send break subroutine
and a printer failure is indicated.
If an El is received when polling
for the printer E code, the out­
put block BACK is sent before the
break.

TRANSMISSION BLOCK AND TERMINAL
BLOCK FORMATS

Data blocks are always coded in
ASCII. The TIP does character-for­
character code conversion for BCD
terminals (terminal type = 5).
Those BCD terminals with switch
selection of internal or external
BCD code must have the switch in
the external position. Certain
control sequences imbedded within
the data stream consist of an
escape code followed by a second
byte. The escape code is con­
verted, but the second byte is
not.

The format of a Mode 4 data trans­
mission block is as follows:

TRANSMISSION TRAILER

TEXT I ESC I E-CODE I ETX I LPC I
Transmit four,
receive at least
two.

I I
(I
(TRANSMISSION (

BYTES 0 1 2 3 4

INTERNAL BLOCK

The TIP inserts 14 SYN characters
between the MTI and TEXT on all
output where MTI is coded for clear
write or reset write. Each byte,
including the longitudinal parity
check (LPC) character, has odd
parity in bit 7. The LPC is coded
to create odd parity on bits 0-6
of all characters except SYN char­
acters. The TIP generates output
parity and passes the received
parity bit (entire received 8-bit

60470000 A

BLOCK

TEXT

character) to the host. Input
converted from BCD to ASCII coding
will have correct ASCII parity.

Poll, reject, acknowledge (ACK),
and error transmission blocks are
non-data blocks and have the fol­
lowing format:

I SYNC I SOH I CA I TA I MTI I ETX I LPC

3-33

TERMINAL ADDRESSING

Terms CA and TA in the transmission
header illustrated above are the
cluster address and terminal
address, respectively. The range
of permissible values (in hexa-

CA (Cluster Address)

TA (Terminal Address)
Cluster Controller
CRT/Keyboard

Bit 4 of the terminal address is
the toggle bit. As shown in the
foregoing table, the bit value is
zero. However, it may be one.
When the NPU transmits to the clus­
ter, it changes this bit with each
succeeding output. The input
response carries the same value
in the same bit position if the
output was correctly received by
the cluster controller or the
opposite value if the output was
not correctly received.

E-Code

El

E2

E3

E4

3-34

WRITE (Output)

to CRT (text)

to printer (text)

to card reader (no text),
enables transfer of card
buffer to CRT buffer

to CRT (text), position
the start index '

decimal notation exclusive of
parity) for the cluster and termi­
nal addresses is a function of
terminal type, as indicated below:

200 UT 711 714

70-7F 20-7F 20-7F

60 6l-6F
60
61

E-CODES

Device selection is performed by
E-codes appended to the output by
the TIP. Similarly, E-codes in­
coming from the terminal indicate
the responding device and also
report status. Received E-codes
are stripped from the input data
by the TIP. The codes below are
in hexadecimal notation, exclusive
of parity.

READ (Input)

from CRT (text)

from printer (no text),
indicates possible error
in printing last block

from card reader (text),
indicates that card reading
has stopped

from printer (no text),
indicates that last block
correctly printed

from card reader (text),
normal card data

Not'possible

60470000 A

(

{

(

(

(

(

t(

(

(

(

. (

(

('

ERROR CORRECTION AND LOAD
REGULATION

The Mode 4 TIP performs short­
term recovery for both input and
output. The TIP retains three
error counters as follows:

Error
Counter Type.of Error

I No response---after transmitting to the terminal a
response timeout occurs. SOH is never received.

2 Bad response---CA or TA does not correspond to
terminal addressed by transmit block, invalid MTI,
invalid or missing E-code, ETX missing (over-length
block or premature drop of data carrier detect,
character parity or LPC error, or text in a block that
should not have text.

3 ERROR response---indicates

Whenever any error occurs, the
TIP increments the appropriate
counter and retries the output­
input sequence. If any counter
reaches a pre-established (at
program build) threshold in an
attempt to complete a single
transaction with the terminal, the
TIP calls the SEND BREAK routine
and specifies the reason for
break (RB) as one of the error
counter numbers defined above.

If the TIP is unable to acquire
sufficient buffers for an input
block or if the host is down, it
discards the p~rtial block and
again polls the terminal at a la­
ter time when the condition is
cleared. No error counter is
incremented by this operation.
However, a counter in the NPU
statistics block is incremented
to indicate the number of times
such regulation has taken place •

LONG-TERM ERROR RECOVERY

Rather than continue error retries
for an extended period, the TIP
sends an upline BREAK and discon­
tinues service to an error-

60470000 A

transmit error

producing terminal, but retains
status information to allow order­
ly recovery. To accomplish such
recovery, the host must send a
downline RESET followed by out-
put blocks and commands not pre­
viously block acknowledged.
These output blocks and commands
are sent in precisely the same
sequence in which they were
originally sent. A permissible
alternative is to TERMINATE the
logical connection. Any other
action (such as initiating a mode
change) may result in loss or
duplication of data at any termi­
nal serviced by the same controller.

MODE 4 tiP FLOW DIAGRAM

Figure 3-5, sheets 1 through 3, is
a flow diagram of the Mode 4 TIP
showing the interface of the TIP
with both the host and the termi­
nal. Shown are:

• Mode of the terminal (batch/
interactive)

• Input state (polling or not
polling, ACPINP flag)

3-35

COMMAND-TYPE

ACPINP ... 1 ACPINP ... 0

INTERACTIVE

BATCH ... 0 BATCH ... 1

Figure 3-5. Mode 4 TIP Flow Diagram (Sheet 1 of 3)

3-36 60470000 A

/~ -,
i(,./

'....... .. /

(

(

(

{

(

(

(

(

(

ACPINP+ 0

SEND
WRITE-E2

POLL FOR
PRINTER­
STATUS

NO

RESPONSE

E2

PR I NT­
FAILURE
BREAK

SEND
WRITE­
E1/Eot

BLK

ACPINP+ 0

Figure 3-5. Mode 4 TIP Flow Diagram (Sheet 2 of 3)

ACPINP + 1

60470000 A 3-37

3-38

ACPINP -+- 0

SEND
WRITE-E3

POLL
FOR
CARDS

RESPONSE

E2

ACPINP -+- 0

POLL
FOR
DISPLAY

SEND
BLANKFILL
(WRITE-E1/E41

YES

NO

Figure 3-5. Mode 4 TIP Flow Diagram (Sheet 3 of 3)

REJECT

60470000 A

d' "'"
(l "i

'-'""

"-., /

c

«

(-

(-

r
(

(-

(

• Reason for poll (cards, display,
print status)

• Output queue checking-processing

• Batch interrupts

• Printer failure sequence

• Command processing

• Block acknowledgement (BACKs)

Not shown are:

• Error recovery

• MUltiplexing multiple terminals
on the same line

• Protocol details (such as toggle
bit maintenance)

The following are summaries of the
Mode 4 commands and upline break
code interpretations:

Command
Code Direction Description

I Downline Set Mode

I Upline Mode Set
Response

2 Downline Start Polling

3 Downline SET Screen
Width

Reason for
Break (RB) Description

I No Response
2 Bad Response
3 Error Response
4 Printer Failure
5 Batch Interrupt

SET MODE COMMAND AND RESPONSE

The following is the format for the
Mode 4 TIP downline set mode com­
mand and upline mode set response
command:

60470000 B'

BYTES 0-2 3 4 5

ADDRESS 4!BSN I IB

where: IB 0 Interactive Mode
IB I Batch Mode

The host sends the mode set com­
mand to the TIP and, when the
TIP changes mode, it returns the
command to the host as a mode
set response. A TCB is initial­
ized to interactive mode when
built. Downline data following
an interactive mode set command
is sent to a CRT by appending an
EI or E4 as a function of the
terminal type. Terminal type 5
gets El, terminal type 6 or 7
gets E4. Downline data following
batch mode set command is sent to
the printer by appending E2.

START POLLING COMMAND

The format for the start polling
command is as follows:

BYTES 0-2

I ADDRESS

3
i

4:BSN

4

2

No response is made to this com­
mand. In the interactive mode,
receipt starts polling of the
keyboard. In batch mode, receipt
causes the TIP to send "clear
write E3" to transfer the card
reader buffer to the CRT buffer.
The TIP then polls the terminal
until the block of card records
is received, then repeats the
process.

I

ERROR REPORTING AND 5TA 1I5TIC5

All error reports and statistics
are upline service messages with
the following format:

3-39

I

I

BYTES o 1 2 3

DN SN o

where: SC Service code as follows:

SC Message

0 Report to CE error file
1 NPU statistics
2 Line statistics
3 t-lode 4 terminal statistics

All service messages with a source
I process of 4 are limited to 28 bytes

of data in the data field. All such
messages received by the host are
time-stamped and recorded on a file.

REPORTS TO CE ERROR FILE

A service message is created for
every detected hardware-related
abnormality. This includes all
NPU-related hardware such as the
coupler, MLIA, loop multiplexers,
and CLAs and also all connected
hardware such as modems, lines,
and terminals. The creation of
a CE error file report is separate
from and in addition to statistics
accumulated in the NPU and period­
ically supplied to the host as
described in later paragraphs.

To prevent swamping the NPU or
host with error messages when an
oscillatory condition arises, an
error counter is incremented with
each error message generated and,
when the counter reaches a pre­
established (at program build)
threshold, the error event is
discarded rather than recorded.
The counter is periodically reset
to zero by timeout of another coun­
ter whose threshold is also a pre­
established parameter.

The first byte of the data portion
of a CE error report (byte 7) con­
tains an error-type code. As many
as 27 bytes of identification data
may follow this code byte.

3-40

4 5 6

o 4 SC DATA

STATISTICS

The NPU contains a statistics re­
porting timer (interval selected
at program build time) that causes
statistics messages to be genera­
ted at pre-established intervals.
Statistics blocks are maintained
for the NPU, for each line control
block, and for each Mode 4 termi­
nal control block. One such block
is dumped and cleared at each timer
timeout. Therefore, the accumula­
tion period for a statistic is
equal to the number of statistics
blocks multiplied by the timer
interval in seconds.

In addition to the normal statis­
tics message generated by timer
timeout, disabling a line causes
the associated statistics block
to be dumped and cleared. A Mode
4 terminal statistics block is
also dumped and cleared when the
logical connection to the termi­
nal is broken. If a counter con­
tained within a statistics block
overflows, that counter is set to
all ones and the statistics block
is dumped and cleared.

The data field of a statistics
message contains up to 12 counters,
each consisting of a single 16-bit
word. These counters begin at
byte ,10. For an NPU statistics
message, bytes 7 through 9 are
zero. For a line statistics mes­
sage, byte 7 is the port number
and bytes 8 and 9 are zero. For
a Mode 4 terminal statistics mes­
sage, byte 7 is the port number,
byte 8 is the cluster address (CA);
and byte 9 is the terminal address
(TA) •

Each of the counters within a par­
ticular statistics message is in­
cremented upon occurrence of a
particular event. The events
monitored by each counter in each
message are as follows:

60470000 B

(

(",j

(!f' ~,
(,

\0. ,/

«
(~

(

('

(

(

(

(

(

(~

NPU Statistics Message

Counter
Word Event Monitored

0 Service message generated
I Service message processed
2 Block discarded due to bad address
3 Block discarded due to bad format
4 Mode 4 input regulation started
5 Teletype input regulation started
6 Host failure
7 Service message received out of sequence

Line Statistics Message

Counter Event Monitored
Word

0 Block transmitted
I Block received
2 Characters transmitted*
3 Characters received*

*For good blocks, length of block is added to the
total at end-of-block transmission or reception.

Mode 4 Terminal Statistics Message

Counter
Word Event Monitored

0 Block transmitted*
I Block received**
2 Block retransmitted
3 Block received, but not accepted due

error
4 Upline BREAK due to error (not batch

interrupt)

*Does not include blocks retransmitted.

to

**Does not include blocks not accepted due to errors.

ERROR/STATISTICS MESSAGE REROUTE

The NPU local teletype console
can be designated as the message
delivery point for all upline
error and statistics service
messages. The command that per­
forms this function is entered at
the NPU console and specifies a
parameter as follows:

60470000 A 3-41

Parameter Interpretation

0 Discard all upline error and statistics
service messages.

1 Print all upline
service messages
NPU console.

2 Send all upline
messages to the

3 Send all upline
messages to
NPU console.

ONLINE DIAGNOSTICS

The NPU online software includes
basic CLA and modem loopback tests.
These tests execute basic data and
control functions to determine if
all received data and status is
normal. The online diagnostics
can be invoked from the local NPU
console to test one or more commu­
nications lines without impacting
services on other lines ~n the
system. Local modem loopback tests
can also be initiated from the NPU
console for modems possessing the
loopback feature.

Use of a suspected bad line is
halted via a command entered at
the NPU console which removes the
line from service. The NPU con­
sole is then used to initiate the
resident online diagnostics to loop
data at various points in the com­
munications system. A loopback
jumper plug for both synchronous
and asynchronous CLAs is furnished
as a special tool with every NPU
system. Using the online diagnos­
tics and the loopback plug, prob­
lems can be isolated to a CLA.
Methods and procedures for further
isolation of problems in the exter­
nal communications system, includ~
ing loopback modems and communica­
tions lines, are described in the

I software diagnostic handbook (see
preface) •

The host is notified that a line
has been taken out of service by
the "line inoperative" service
message. Line error code 0 is used

3-42

the

error and statistics
(in hexadecimal) at the

error and statistics
host.
error and statistics
host and also print at

and causes the host software to
attempt to enable the line (either
dedicated or switched) after a pre­
determined time delay. When the
host sends the "enable line" mes­
sage to the NPU, a BACK message
acknowledges receipt of the "line
enable" message, but no "line
inoperative" ,message is returned
to the host. After corrective
action has been taken and the line
is returned to service from the
NPU console, the NPU software
responds to the "enable line" mes­
sage from the host by enabling the
line and sending the upline "line
operational" service message.

ONLINE DIAGNOSTIC
COMMANDS /RESPONSES

The following commands and res­
ponses establish the interface
between the operator and the on­
line diagnostic program. Commands
are entered and responses are re­
ceived through the local NPU
console in the standard service
message format. The terms used
in the commands are interpreted
as follows:

DN = Destination node
address = 2 hexa­
decimal characters
specifying the 1D for
the NPU.

SN = Source node address =
2 hexadecimal charac­
ters specifying the 1D
for the host.

60470000 B

C·' \
, ,

~o;/

(

(' ..

(.. -
.. '

(,

c
(

(

c

PORT = Port number = 2 hexa­
decimal characters
specifying the port
associated with the
line to be affected
by the command.

SUBPORT Subport number = 2 hex­
adecimal characters
specifying the subport
associated with the
line to be affected by
the command.

CLA TYPE = 00 if 2560-1 CLA
01 if 2561-1 CLA
02 if 2560-2 CLA

MDCL = Modem Class (table 3-9)

PLACE LINE OUT OF SERVICE

This command, entered at the NPU
console, causes the TIP to termi­
nate all activity on the specified
line. The host is notified that
the line is not in service by the
"line inoperative" service message
with line error code = 0, which
specifies that the line is to be
re-enabled after a predetermined
time delay. The format of this
command is as follows:

BYTES 0 1 2 3 4 5 6 7 8

I~D-N--~-S-N--~-0~1~4-1~i -B-S-N~~3~---0~---0~~-P-O-R-T~~-S-U-B-PO--RT~1

PLACE LINE IN SERVICE

This command, entered at the NPU
console, allows the line to be
returned to operational service
by an "enable line" service mes-

sage that may be either currently
outstanding or subsequently issued
by the host. The format for this
command is:

BYTES 0 1 2 3 4 5 6 7 8

~1-DN--~-S-N--~-0--TI-4~!-B-S-N--~3~---1~~-0--~-P-O-R-T--~-S-U-B-P-O-R-T~I

ST ART CLA INTERNAL LOOPBACK TEST

This command initiates the CLA
internal loopback test which con­
sists of a CLA command test and a
data verification test. The CLA
command test verifies operation

Any errors detected during the CLA
test result in printout of a re­
sponse service message with an
appropriate error code at the local
NPU console and termination of the
test. To restart the test, re­
enter the "start CLA internal loop­
back test" command at the local
console.

6047000.0 B

of the CLA as it relates to command
functions. System servicing of
other lines is not affected by this
command. The command has the fol­
lowing format:

SUBPORT CLA TYPE

START MODEM LOOPBACK TEST

If modem loopback is available,
this command isolates problems
occurring further out in the com­
munication system. The test con­
sists of a data verification test
with limited analysis of modem
control signals. System servicing

3-43

•

I

I

I

of other lines is not affected by
this command. The command has the
following format:

START EXTERNAL LOOPBACK TEST

This command provides for loopback
of data external to the CLA. The
test consists of a command and
data verification test with the
primary purpose of verifying opera­
tion of the line drivers and re­
ceivers. The loopback jumper plug
(2560-1 External Test Connector
for synchronous CLA or 2561-1

TERMINATE TEST

This command, entered while a test
is in progress, causes the test
to terminate at the end of the
normal test cycle currently being

DN SN 00 40

The diagnostic test responses are
output to the local console in
the following standard format:

DN SN 00 40

where: RCEC = Response Code or
Error Code (see
below)

00

I Response codes are interpreted as
shown in tables 3-10 through 3-12.

3-44

03 03

04

SUBPORT CLA TYPE

External Test Connector for asyn~
chronous CLA) must be connected
to the CLA to be tested before
this command is entered at the
console. System servicing of
other lines is not affected by
this command. The command has
the following format:

SUBPORT CLA TYPE

executed. System servicing of
other lines is not affected by
this command. The command format
is as follows.

00 PORT SUBPORT

00 RCEC PORT SUBPaRT I

60470000 B

I

I

,1 ,

l/
!' ",

~ ... ?'

/--

"'- .;/.

//. -.....,

"---
("
'--,j

-~,

I

~-----,

'''---..-/1

(

/'

c/

If'
\t"_~

(

(~

(-

f:
(

(

r
{

(

(

c
,
,""

Test
Type CLA Type

INTERNAL ALL
LOOPBACK

EXTERNAL ALL
LOOPBACK

2560-1

2560-2

2560-3

MODEM 2561-1
LOOPBACK

60470000 B

TABLE 3-9. MODEM CLASS

Max MOD
Modem Speed Class MODEMS

N/A 0 N/A

N/A 0 N/A

All Synchronous Modems with

Loopback Capabilities i. e. ,

201B, 203

100 2 103, 113, 202E, 202C,

llO 3 D, R, VADIC

120 4

133.3 5

150 6

300 7

600 8

800 9

1,050 A

1,200 B

1,600 D

2,400 F

4,800 10

9,600 12

3-45

TABLE 3-10. RESPONSE CODE INTERPRETATION

Response
Code (hex)

AO

Al

A2

A3

A4

AS

A6

A7

A8

A9

AA

DD

DE

Meaning

Line is out of
service

Command rejected

Line in service

Diagnostics in
process

Diagnostics
started

Invalid line
number or bad
command

Invalid CLA type

Invalid test
mode

Line not out of
service

Test already in
process

Invalid modem
class

Test completed l

no errors

Diagnostic not
in progress

Error codes indicate detection of an
abnormal condition during text exe­
cution. Error detection causes the

3-46

Remarks

Normal response to "place line
out of service" command.

System temporarily low on
buffers.

Normal response to "place line in
service" command.

Response to "place line in
service" command if diagnostics
still in process.

Normal response to "diagnostic
function" command.

Invalid line number issued in
command or command code (byte 5)
is not valid.

Invalid CLA type issued in
command.

Invalid diagnostic test mode
(byte 6) issued with command.

Response to "start diagnostics"
command if line specified was
not out of service when command
issued.

Response to a "start diagnostic"
command if any test is already
in process.

Invalid modem class issued in
command.

Normal response to a "terminate
test" command.

Response to "terminate test"
command if not preceded by
diagnostic command.

on-line diagnostic program to termi­
nate the test. Error codes are
interpreted in tables 3-11 and 3-12.

60470000 B

I

(

(f"
\\...j

C'" :, ,
',. -'

" ,/

(

(

(-

(

(.

(

(

(

(

(

(--'
/

C·_--)
J

c
(

Error
Code (hex)

AB

AC

AD

AE

AF

BO

Bl

B2

B3

B4

B5

B6

B7
B8

B9

BA

BB

BC

BD

BE

BF

CO

CI

C2

C3

C4

C5

DF

60470000 B

TABLE 3-11. ERROR CODE INTERPRETATION

Meaning

Unsolicited input detected

Unsolicited output data demand detected

Input loop error

Output loop error

Parity error

Framing error

Data transfer overrun

Next character not available

No CLA status after CLA status was requested

Unsolicited CLA status

CLA status not cleared after input supervision on (ISON)
was sent

No status after request to send (RTS) or input status
request (ISR) was sent

No clear to send (CTS) after RTS

No status after data terminal ready (DTR)

No data set ready (DSR) after DTR

No signal quality detect (SQD) after DTR

No ring (RI) after DTR

No status after secondary request to send (SRTS)

No secondary received line signal detector (SRLSD)
after SRTS

No CLA status after local mode (LM)

No data carrier detect (DCD) after LM

Unsolicited status after originate mode (OM)

No status or improper operation of RI after terminal
busy (TB)

No status after new sync (NSYN)

Improper operation of DCD, RI, quality monitor (QM)
after NSYN

No RI after RTS

Input data timeout during data verification test

Unsolicited status after LM I

3-47

TABLE 3-12. DATA COMPARE ERROR RESPONSE CODE

Error CLA Parity Baud Stop Bit
Code Type

C6 SYNC Even - -
C7 SYNC Odd - -
C8 SYNC No - -
C9 ASYNC Even 40 1

CA ASYNC Odd 85.4 2

CB ASYNC No 100 1

CC ASYNC Even 110 2

CD ASYNC Odd 120 1

CE ASYNC No 133.3 2 ''<.....-_.7

CF ASYNC Even 150 1

CO ASYNC Odd 300 2

Dl ASYNC No 600 1

D2 ASYNC Even 800 2

D3 ASYNC Odd 1,050 1

D4 ASYNC No 1,200 2

D5 ASYNC Even 1,600 1

D6 ASYNC Odd 1,600 2

D7 ASYNC No 2,400 1

D8 ASYNC Even 2,400 2

D9 ASYNC Odd 4,800 1

DA ASYNC No 9,600 2

DB ASYNC Even 9,600 1

3-48 60470000 B • c

(

(

(-

(

(;

f
(

(

(

(

c
,;:.,

BASE SYSTEM SOFTWARE

INTRODUCTION

The base system software comprises
those elements of the total CCP that
are required for all 2550 system
applications. It includes the stand­
ard operating system components for
program control and allocation of
system resources, commonly used sub­
routines, and the program logic to
control the multiplex subsystem and
peripheral equipment. It is designed
for easy incorporation of user
options and program modification for
adaptation to particular applications.

The multiplex subsystem is included
as a part of the base system soft­
ware. Howeve~, because of its
importance within the system, the
multiplex subsystem is separately

I described in section 5 of this
manual.

BUFFER MAINTENANCE
All main memory space not allocated
to program and permanent data struc­
tures is assigned as dynamic work
area. Such areas are assignable as
buffers ih word sizes of 8, 16, 64,
or 128 words. A system option allows
sequentially ordered selection of
from one to four of these sizes, of
which two sizes can be designated
as data buffers (see Installation
Handbook). The base system assumes
16-word and 32-word buffers are
always ~ailable. The buffer main­
·tenance procedures control alloca­
tion of these areas among the
various size buffers-and regulate
obtaining and releasing of these
buffers for required purposes.

Buffer maintenance functions provided
include:

1. Obtain a single buffer of a
specified size,

60470000 B

2. Release a single buffer of a
specified size,

3. Obtain several buffers of a
specified size,

4. Release several buffers of a
specified size,

5. Release a chain of mixed buffers
in two sizes, and

6. Test buffer availability against
a specified threshold.

Functions 1, 2, and 6 are available
at any interrupt level and 3, 4, and
5 are restricted to use at the OPS
level only.

In conjunction with testing buffer
availability against a specified
threshold, buffer maintenance peri­
odically adjusts buffer distribution
by size by using buffer mating
facilities to, where possible,
replenish buffer pools that are
below threshold.

As an option, buffer stamping is
available (see Installation Hand­
book). With this option a separate
word outside of the buffer is used
to keep diagnostic status of each
buffer. A separate stamp word
location must be available for the
greatest nUmber of possible buffers
in the system. Therefore, the
buffer stamp area set aside in the
memory must be sufficient to accom­
modate a separate stamp word for
the maximum number of the smallest
size buffer that can be fitted into
the allotted buffer area. This
option extends the diagnostic
ability of buffer maintenance at
the expense of greater use of pro­
cessor time.

4-1

OBTAINING BUFFERS

The buffer maintenance can provide
either a single buffer or several
buffers ,of a specified size.

OBTAINING A SINGLE BUFFER

The calling sequence to obtain a
single buffer of a specified size is:

PBGETIBF (parm)

where parm is a constant of the
enumeration type BOBUFSIZES that
specifies buffer size. PBGETIBF is
a PASCAL function and returns the
value of BOBUFPTR that points to
the base of the buffer obtained.
BBGETIBF also uses the buffer control
block for the specified size buffer.

Interrupts are inhibited during
execution. A system halt is evoked
if the buffer pool is down to the
last buffer, the next free buffer
has a bad chain address, or (option­
al) buffer stamping indicates the
buffer is already in use. The chain
word of the buffer is cleared to zero.

OBTAINING ONE OR MORE BUFFERS

The calling sequence to obtain
several buffers of the same size is:

PBBUFGET (parmI, parm2)

where parmI specifies the number of
buffers to be obtained and is of the
type integer and parm2 specifies buf­
fer size and is of the enumeration
type BOBUFSIZES. PBBUFGET is a
PASCAL function and returns a value
of the type BOBUFPTR that points to
the first (and possibly only) buffer
obtained.

PBBUFGET is used only at the OPS
interrupt level and no threshold
checks are performed.

RELEASING BUFFERS

The following calling sequences are
used, respectively, to release a

4-2

single buffer of a specified size,
release one or more buffers of a
specified size, or release a chain
of mixed buffers of two different
sizes. When released, a buffer
returns to the free pool of other
buffers of that size. Checks are
made to ensure that the address is
a valid buffer address and to deter­
mine if the buffer has already been
released to the free buffer pool.
If the stamping option is selected,
special checks are performed to
verify that the buffer has not
already been released and is of the
correct size.

RELEASING A SINGLE BUFFER

The calling sequence to release a
,single buffer is:

PBRELIBF (parmI, parm2)

where parmI is a pointer to any
address within the range of the
buffer to be released and parm2 is
a constant of the enumeration type
BOBUFSIZES specifying buffer size.
ParmI is a PASCAL VAR parameter that
is altered by the procedure so that,
upon completion, parmI contains the
chain value of the last buffer
released.

RELEASING ONE OR MORE BUFFERS

The calling sequence to release
several buffers of the same size is:

PBBUFREL (parmI, parm2, parm3)

where parmI specifies the number of
buffers to be released and'is of
type integer, parm2 is a constant
of the enumeration type BOBUFSIZES
that specifies buffer size, and
parm3 is a pointer to the first (and
possibly only) buffer being released
and is of type BOBUFPTR. Parm3 is
altered by the procedure to contain
the chain value of the last buffer
released.

If parmI is set to zero, all buffers
in the chain are released. If parmI
is greater than the number of buffers

60470000 A

Ii ;, ," U'

r.-r -..,

rf' "'.
\~,".

c

(

(-

(

(

(

(

(

(

(

in the chain, only those buffers in
the chain are released and the excess
value of parml is ignored.

This calling sequence can only be
used at the OPS interrupt level.

RELEASING A MIXED CHAIN

The calling sequence to release a
chain of mixed buffers of two differ­
ent sizes is:

PBDBREL (parml, parm2)

where parml specifies the number of
buffers to be released and is of
type integer,and parm2 is a pointer
to the first buffer to be released
and is of the type BOBUFPTR. Parm2
is altered to contain the chain value
of the last buffer released and, if
parml is either zero or of a greater
value than the number of buffers in
the chain, results are the same as
for PBBUFREL.

This calling sequence can only be
used at the OPS interrupt level.

TESTING BUFFER AVAILABILITY

The calling sequence to test buffer
availability is:

PBBFAVAIL (parml, parm2, parm3)

where parml specifies the number of
buffers required and is of the type
integer, parm 2 specifies the size
of buffers required and is --of type
BOBUFSIZES, and parm3 specifies the
total free space threshold and is of
type BOBUFLEVELS. PBBFAVAIL is a
PASCAL function and returns a "true"
value if the test indicates suffi­
cient buffers available.

This procedure permits testing for
buffer available space. Availability
of total free space is recorded each
time the buffer adjustment procedure
(PBADJUST) is called. Sufficient
overall buffer space and buffers of
the specified size must be available.

60470000 A

To force input regulation, the
system causes PBBFAVAIL to refuse
buffers to all except the service
module.

This calling sequence may be used at
any interrupt level.

BUFFER ADJUSTING, MATING, AND
STAMPING

Buffer maintenance includes facili­
ties automatically called by the
timing services to periodically
replenish, where possible, the pools
of particular buffer sizes that are
below their established thresholds.
This is done by employing the com­
bined adjusting (PBADJUST) and
mating (PBfffiTE) procedures to take
buffers from pools that are above
their thresholds and pair them to
form a buffer of the next larger
size or break them to form two of
the next smaller size. These ca-lling
sequences are not available to the
user.

A buffer stamping facility is also
available as a system option to
increase the diagnostic capability
of buffer maintenance at the expense
of greater execution time. When
used, a word outside of the buffer
area is assigned to each potential
buffer of the smallest allocated
size. This word records whether the
buffer is free or in use, buffer
size, and the address of the last
procedure that either requested or
released the buffer. The buffer
stamping calling sequence is not
available to the user, but operates
automatically when the option is
selected. Figures 4-l through 4-4
illustrate buffer stamping formats
for common operations.

LIST SERVICES

Lists provide a convenient method to
handle communications between soft~
ware modules that do not use direct
calls. Figure 4-5 depicts worklist
organization. The list services

4-3

I

o

m·t

o

","1

LCD I FCD

FLAGS

:~

OLD CHAIN

SIZE m

BACKWARD CHAIN

FORWARD CHAIN

FREE BUFFER OF SIZE m

LCD I FCD

FLAGS

NIL

A) BEFORE GET AND STAMPING OF BUFFER OF
SMALLEST AVAILABLE SIZE

B)

LCD .. LAST CHARACTER DISPLACEMENT
FCD = FIRST CHARACTER DISPLACEMENT

I 0 I 00 I USER ADDR.

CORRESPONDING BUFFER STAMP AREA

AFTER GET AND STAMPING

w

~ w
N
iii

USER ADDR.·

·OF PROGRAM CALLING PBGETtBF

Figure 4-1. Buffer GET and Stamping

4-4 60470000 B

(/

(

(--­

(

(

(

(

(

(

(
(

(

("-­

~ ..

o

m-1 CHAIN 1

BUFFER OF SIZE m

o LCD I FCD

FLAGS

OLD CHAIN (CHAIN 1)

SIZE m

BACKWARD CHAIN

m-1 FORWARD CHAIN

At BEFORE RELEASE AND STAMPING OF BUFFER OF
SMALLEST AVAILABLE SIZE

USER ADDR.

CORRESPONDING BUFFER STAMP AREA

B) AFTER RELEASE AND STAMPING

USER ADDR·

·OF PROGRAM CALLING PBREL1BF

Figure 4-2. Buffer Release and Stamping

60470000 A 4-5

AI BEFC)RE BREAK.lJP AND STAMPING

o LCD I FCD'

FLAGS
t------~_t LARGEST

SIZE
BUFFER . .. , .. , ..

~

PREVIOUS CHAIN SIZE 8m

SIZE (8m1

BACKWARD CHAIN

8m-1 FORWARD CHAIN

CORRES­
PONDING

. BUFFER
STAMP
AREA

w

~
o I 11 I ADDRESS

7 WORDS NOT
USED

B) AFTER BREAK·UP AND STAMPING

o

, .. , ..

1

o

~~

1

LCD I FCD

FLAGS

PREVIOUS CHAIN

SIZE (4m)

BACKWARD CHAIN

FORWARD CHAIN

LCD I FCD

FLAGS

PREVIOUS CHAIN

SIZE (4m)

BACKWARD CHAIN

FORWARD CHAIN

.~

CORRESPONDING
STAMP AREA

OLD LARGE BUFFER,
NOW TWO SMALLER
BUFFERS

:~

w

~
o I 10 I •

3 WORDS NOT
USED

o I 10 I
3 WORDS NOT

USED

-ADDRESS OF PBADJUST

Figure 4-3. Buffer Break-up arid Stamping

4-6 60470000 A c

(

{"

(-

(o

-(,'

(

(
2m-1

(o

(~

(

(2m-1

o

(
, "

I"

(
2m-3

(
2m-1

(~ ::::

.('

-{'
4m-1

f
(~/

C~' 60470000 A

C

LCD I FCD

FLAGS

OLD CHAIN

SIZE 2m

BACKWARD CHAIN

FORWARD CHAIN

LCD 1 FCD

FLAGS

OLD CHAIN

SIZE 2m

8ACKWARD CHAIN

FORWARD CHAIN

LCD I FCD

FLAGS

SIZE 2m

BACKWARD CHAIN

FORWARD CHAIN

OLD CHAIN

SIZE 4m

BACKWARD CHAIN

FORWARD CHAIN

AI BEFORE COLLECTION AND STAMPING

w

~ w
N
iii

~ BUFFER A
OF

SIZE 2m

o I 01 I USER ADDR-

NOT USED

I ,

I

" "

: ..

o I 01 I USER ADDR

NOT USED

CORRESPONDING BUFFER STAMP
AREA

BUFi=ER B
OF

SIZE 2m

BI AFTER COLLECTION AND STAMPING

CORRESPONDING
BUFFER STAMP
AREA

NEW BUFFER
OF

SIZE 4 m

.

w

~
W
N
US

o 1 10 1 •

NOT USED

NOT USED

NOT USED

• ADDRESS OF PBADJUST

Figure 4-4. Buffer Collection and Stamping

4-7

~

~~

4-8

BYWLCB

BYCNT

BYPUT

BYGET

BYFEINC I BYINC

NEXT ENTRY
TO GET

FWD CHAIN

BYCNT

BYINC

;~

r--

BYFEINC .

r--+

. :

.....

BYFEINC

ENTRY

ENTRY

FWD CHAIN

ENTRY COUNT

ENTRY SIZE

:~

~

.

r-~

~ NExt ENTRY
TO PUT

.1.

I 1 FWD CHAIN

DISPLACEMENT IN BUFFER TO FIRST ENTRY

Figure 4-5. Worklist Organiz~tion

60470000 A

Af' .""

\j'

',-.J

,/' '

(/

(,-"',
" ,j

C

. --._-------

(

(-

(~

(

-(

(

(

(-

{

(

{
(

f

'-
(

(

(

(

(

("

('

function manipulates worklistswith
variable entry sizes. Functions
provided by list services include:

1. Make (PUT) worklist entries from
any priority level (including OPS
level), by terminal type, or with­
out disturbing the intermediate
array.

2. Extract (GET) an entry from a
list.

Characteristics of lists managed by
list services are:

1. First in, first out.

2. Entries may be from one to six
words in length, but all entries
in a particular list must be the
·same length.

3. Lists are maintained in dynam­
ically assigned space.

4. There is no maximum on the number
of entries in a list or on the
number of lists serviced.

Contention between priority inter­
rupt'levels is resolved by defining
an intermediate worklist array
(BWWLENTRY) with 6-word entries for
each possible system interrupt level.
Worklist entry parameters are assem­
bled and extracted in the intermedi­
ate worklist area corresponding to
their interrupt level.

A worklist entry is passed to PBLSPUT
and data is obtained from PBLSGET
through a global array named
BWWLENTRY. Each element of the array
has a variant record structure con­
sisting of one case for each logical
entry structure. ~qhen each new
worklist-driven program is created,
the format of the new worklist may
be added as another case to the
PASCAL-type definition BOWKLSTS.
Thus, each worklist may have unique
fields and names.

There are 17 elements to the array
BWWLENTRY, one for each priority
interrupt level. To access the
proper interrupt level, the global
variable LEVELNO is used. For exam-

60470000 A

pIe, to access a field of a particu­
lar worklist entry at the proper
interrupt level, the following
expression is used:

BWWLENTRY [LEVELNO] • FIELDNAME

Access the fields of the worklist
entry to store information before
calling PBLSPUT or to obtain infor­
mation after calling PBLSGET. For
programs always run at a specific
interrupt ~evel (e.g., OPS, CPL, RTC,
etc.), constants may be used to
increase efficiency.

If a program using PBLSPUT or
PBLSGET calls a program also using
PBLSPUT or PBLSGET, information in
the worklist entry BWWLENTRY may be
changed upon return. In such cases,
one of the following techniques
must be used to ensure proper data
integrity:

1. Put all information in worklist
entry and call PBLSPUT before
calling the second program.

2. Call PBLSGET and access all
pertinent information from work­
list entry before calling the
second program.

3. Save and restore the worklist
entry from BWWLENTRY.

MAKE A WORKLIST ENTRY

GENERAL

PBLSPUT puts an entry into aworklist
from any priority interrupt level.
The calling sequence is as follows:

PBLSPUT (parm)

where parm is a symbolic constant of
the enumeration type BOWKLSTS and is
an index to the proper worklist
control block.

OPS LEVEL

PBPUTLIST is for use at OPS level
only and is the exact equivalent of

4-9

PBLSPUT exc~pt that more efficient
code is generated. This procedure
should be used by all OPS level
users.

BY TERMINAL TYPE

PBPUTYP is intended for use only by
those procedures where the worklist
in which the entry is made is deter­
mined by the type of terminal being
serviced. PBPUTYP takes as input
an integer that is treated as the
address of a worklist entry. The
second word of the worklist must
be the number of the line being
serviced. PBPUTYP then resolves the
worklist name and calls the list
services firmware.

NOTE

If the address given to PBPUTYP
is zero, it is assumed that the
worklist entry is located in
the appropriate element of the
intermediate array BWWLENTRY
[LEVELNOJ.

The calling sequence to make a
worklist entry by terminal type is
as follows:

PBPUTYP (parm)

where parm is a PASCAL variable or
constant of type INTEGER. For exam­
ple, the user building a worklist
entry in BWWLENTRY [LEVELNO] uses
PBPUTYP (0) and the user building a
worklist entry in a local data
structure uses:

ADDR (local structure, var)
PBPUTYP (var)

WITHOUT DISTURBING INTERMEDIATE ARRAY

To make a worklist entry in a speci­
fied worklist without destroying the
contents of the intermediate array
(BWWLENTRY [LEVELNO]), use the fol­
lowing calling sequence:

PBDLPUT (parmI, parm2)

4-10

where parmI is a record variable con­
taining the worklist entry to be put
and parm2 is a variable or constant
of type BOWKLSTS indicating which
worklist is to receive the entry.

EXTRACT A WORKLIST ENTRY

GENERAL

PBLSGET obtains an entry from a
worklist for a program at any prior­
ity interrupt level and signals if
the list is empty. The calling
sequence is as follows:

PBLSGET (parm)

where parm is a symbolic constant of
the enumeration type BOWKLSTS and is
an index to the proper worklist con­
trol block. PBLSGET is a PASCAL
function that returns a 'true' value
only when the list is empty.

OPS LEVEL

PBGETLIST is used only at OPS level
and is the exact equivalent of
PBLSGET except that more efficient
code is generated. This calling
sequence should be used by all OPS
level users.

SYSTEM MONITOR
The 2550 series computer is a
multiple-interrupt-level processor.
Interrupts are serviced in a priority
scheme in which all lower priority
interrupts are disabled during execu­
tion of a program operating at a
higher priority level. When no inter­
rupt is in effect, the processor runs
at its lowest priority, known as the
operations monitor (OPS) level.

The system monitor controls alloca­
tion of time to programs running at
the OPS level and gives control to a
program by scanning tables that
define programs and the worklist ser­
viced by the program. Control is

60470000 A

,/-"'\

\.",.- -,/

(

("

(':

(

("

(

(.

(

(

(

f
l
,(

4

l

C,

('

(

('

(
.. ('

(~

(~

released to the first program encoun­
tered with work in queue.

SCAN SEQUENCING

By appropriate structuring of the
driver tables, both a priority and a
program dependency scheme are incor­
porated into the system monitor.
First, one or more programs are
associated to become a segment.
Then segments are defined as either
priority or nonpriority segments.
Scanning is performed as follows:

1. Each priority segment is scanned
in turn.

2. After each complete scan of the
priority segments, scan the non­
priority segments.

3. Return to the priority scan after
one nonpriority program is ser­
viced or after no work is found
for any nonpriority program.

4. In scanning the programs within
a segment, start at the next pro­
gram after the last program to
receive control or at the end of
the previous inconclusive scan.

5. Release control to the first
program encountered having work
in queue or, if no such program
is found, return to the segment
scan.

NOTE

A program may cause the segment
to which it belongs to wait
(PBWAIT). In such cases, con­
trol returns to the waiting
program each time that segment
is scanned. The program moni­
tors for the end of the WAIT
condition and all programs in
the waiting segment are locked
out for the period of the WAIT.

USER INTERFACES

Figure 4-6 illustrates the organiza­
tion of the OPS monitor tables.
Note that the table setup exists for

60470000 A

both priority and nonpriority pro­
grams and that a pointer indicates
which of the two structures is cur­
rently being accessed. To add an
OPS level program, add a new priority
or nonpriority segment table and
establish a worklist to drive the
new program.

To provide a multiprogramming
feature, OPSMON allows a program to
WAIT for completion of a particular
event. The WAIT function provides
a means of sontention resolution
between programs and increases over­
all program response time since only
programs in other segments may be
scheduled while a program is waiting.

When OPSMON scans a WAITing segment,
control is immediately returned to
the waiting program. It is left to
the individual programs to monitor
for completion of the event or
events for which the WAIT has been
issued. Only programs given control
by OPSMON may call the WAIT calling
sequence, the format of which is as
follows:

WAIT

OPSMON exits by transferring control
to the OPS level program that has
been selected for execution.

Each time a program completes, OPSMON
initializes a timer (BTTIMER). This
timer is advanced and checked by
the interrupt level timer routine
(PBTIMER) at specific system-defined
intervals and, if the timer expires,
it indicates that some OPS level
program (perhaps OPSMON) has been
abnormally delayed. OPSMON execu­
tion is then terminated by a call to
to PBHALT.

TIMING SERVICES

Any system program that requi~es
time regulation and which must be run
at regular intervals is referred to
as a time-dependent program (TDP).
Timing services provides the means
of running these programs at regular
intervals. Also included in timing
services are procedures used to main-

4-11

BTMONOWN

BTCURSP V
BTCURPP

BTMRIX

,........... -v--~ ...

BVSEGTBL BYWLCB

BVOVLYWT BYCNT
SEG A

BVAPOVLA BYGET

BVATOVLA BYPUT

BVRTNADR I
~ BVNSPT BY EXPR I

BVCPPT ~ BYOVLYDR

BVLPPT ~ BYNPPT -
SPARE BYPRADDR

~ BVOVLYWT BYCNT +-
SEG B

BVAPOVLA BYGET

BVATOVLA BYPUT

BVRTNADR I
- BVNSPT BYEXPRI

BVCPPT BYOVLYDR

BVLPPT ~ BYNPPT

. SPARE BYPRADDR

---+ BVOVLYWT
SEG C

BVAPOVLA

BVATOVLA I
BVRTNADR

BVNSPT P BVCPPT

BVLPPT
I

SPARE

P

- ~

Figure 4-6. OPS Monitor Table Organization

PROGRAM 1
SEGMENT A

PROGRAM 2
SEGMENT A

PROGRAM 1
SEGMENT B

PROGRAM 2
SEGMENT B

PROGRAM 3
SEGMENT B

(LAST
PROGRAM IN
SEGMENT
POINTS TO
FIRST)

4-12 60470000 A

\.'-. /'

/,. ",

c

(

(

(

(

(

(

(

(

(

('"

-'

tain the list of active line control
blocks (LCBs) and a system option
for maintenance of month, day, hour,
minute, and second timers.

,TlME.DEPENDENT PROGRAM (TOP) TYPES

TOPs are divided into two groups,
those run at an interrupt level and
those run at the OPS level. Typi­
cally, interrupt level TOPs run many
times each second and OPS level pro­
grams have periods that are multiples
of half seconds.

OPS level TOPs are controlled by
PBTIMAL, an OPS level program that
provides timing for TIPs and other
programs. Timing for TIPs is pro­
vided via the LCB timers. Each base
systemLCB has an 8-bit field that
is used by the TIP as a timer.
PBTIMAL advances these LCB timers at
regular intervals. ' If a TIP requires
additional timing, the program must
provide a procedure (referred to as
a timal appendage) to handle such
additional timing. TIMAL gives con­
trol to timal appendages at the same
rate that it advances LCB timers.

Interrupt level TOPs are managed by
the interrupt level timer routine,
PBTIMER. This routine is driven by
the MPl7 real-time clock and is
responsible for controlling the rate
at which the clock interrupts. A
counter and limit indicator control
the real-time clock interrupt rate.
The counter is advanced by the real­
time clock each 3.33 milliseconds
and a macro interrupt occurs when
the count reaches the limit. The
count is globally available as a
general-purpose binary clock, but
must never be altered by any software.

TIMER MAINTENANCE

PBTIMAL is a worklist-driven OPS
level program that is given control
at half-second intervals. PBTIMAL
services TOPs that are completely
independent of each other and the
only restriction on programs con­
trolled by PBTIMAL is that the inter­
vals at which they are run must be
multiples of one-half second.

60470000 A

Any TOPs controlled 'by PBTIMAL may
be put on skip by setting the time­
remaining indicator for that program
to zero. The program is then dis­
abled until the time-remaining indi­
cator is set to a nonzero value.

TOPs defined in the TDP table receive
control by procedure call at the
specified interval. No parameters
are passed. Timing services are
provided to TIPs via the base timer
field (BZLTIMER) in each LCB and via
timal appendages provided by the
TIP itself.

When BZLTIMER is not in use, its
value is zero. When a TIP must
start a timer for a particular active
line, it sets BZLTI~mR to the inter­
val to be measured (in units of on'e­
half second) to a maximum of 127.5
'seconds. PBLCBTMSCN decrements
BZLTIMER each half second and, when
BZLTIMER expires (becomes zero),
PBLCBTMSCN makes a worklist entry
for the TIP controlling that line.
The LCB timer can be deactivated or
restarted at any time by setting the
timer field to the appropriate value.
The LCB timer may only be modified
by OPS level programs.

The format of the TIP worklist entry
is as follows:

EVENT CODE

LINE NUMBER

where EVENT COOE is AOTIMEOUT.

INTERRUPT LEVEL TIMER

The interrupt level timer (PBTIMER)
is given control each time a real­
time clock interrupt is acknowledged.
Functions of PBTIMER include control
of the interval between real-time
clock interrupts, providing control
to the multiplex subsystem timer
(PMT200M) at specified intervals,

making a worklist entry for PBTIMAL
at half-second intervals, and (op­
tional) incrementing COCOUNT at a
specified interval. The calling
sequence for this routine is:

PBTIMER

4-13

The interrupt level timer requires
no parameters and returns no values.
PBTIMER is called only from the first
level real-time-clock interrupt
handler (PBLN08).

DATE-TIME MAINTENANCE

PBTIMOFDAY is a time-dependent
program that may optionally be
included with timing services at sys­
tem build time. Its function is to
maintain the current date and time,
with time being kept as the standard
24-hour clock with hours, minutes,
and seconds in binary (as opposed to
internal ASCII) The date is kept
as month and day, also in binary.
Once each second, PBTIMOFDAY is
called by PBTlMAL (via CBTIM) to
update the time and date. For proper
operation of PBTIMOFDAY, there must
be an entry in CBTIMTBL as follows:

CBTIf.1TBL [nJ .CBTIMER has a value
of 2.

CBTIMTBL[nJ.CBINTVAL has a value
of 2.

CBTIMTBL [nJ.CBADDR has the entry
address of PBTIMOFDAY.

where n is a constant of the enumera­
tion type COTDPGMS.

Output of PBTIMOFDAY is the advance­
ment of the time of day and advance­
ment of the date (at midnight).

ACTIVE LINE CONTROL BLOCK (LCBI

LIST MAINTENANCE

Timing services includes programs
to maintain the active LCB list.
Included are routines to enter an
LCB into the active list, remove an
LCB from the active list, and to
search the active list to determine
if a particular LCB is included.
The active LCB list is maintained in
zero (when empty) or more chained
buffers.

To enter an LCB into the list of
active LCBs, execute the following
calling sequence:

4-14

PBLLENTR (parm)

where parm is a variable of the
INTEGER type representing the l6-bit
line number of the LCB to be" added
to the list CELCBACTt. When the
last buffer of the active LCB chain
is full, PBLLENTR obtains another
buffer and establishes appropriate
chaining links. New entries are
made at the end of the active list.

To remove an entry from the active
LCB list, use the following calling
sequence:

PBLLRMOV (parm)

where parm is a variable of the
INTEGER type that specifies the line
number of the LCB to be removed.
The entry to be removed is located
and replaced by the last entry in
the list (except when the last entry
is specified for removal). If the
last buffer in the chain becomes
empty, that buffer is released. If
an attempt is made to remove an
entry not in the list, SYSTEM HALT
is called.

The calling sequence:

PBLLSRCH (parm)

where parm is a variable of the
INTEGER type that specifies the line
number of the searched-for LCB. If
the searched-for LCB is found in the
active list, a true Boolean value is
returned. If not, a false Boolean
value is returned. In addition to
the Boolean value, PLLLSRCH provides
the exact location of the last entry
found. A pointer to the buffer and
index within the buffer is saved in
the global data structure CFLLPARM.
By using a global structure, the
information is made available to all
users without requiring passing of
the parameters if they are not
needed.

INTERRUPT HANDLER

The computer can recognize 16 dif­
ferent macro interrupts, each with
its own address to which control

60470000 A

\
'- --

'\

I.. j

: '\

c

(

(

(

(

(

(

f

:{

(

(

-(

f'

is transferred when the interrupt
is recognized. When the computer
is processing a particular inter­
rupt, it is d€fined as being in
that interrupt state (state ob
through 15). However, before the
computer can recognize an inter­
rupt, the corresponding mask bit
in the interrupt mask register
must be set and the interrupt
system must be activated.

BASIC INTERRUPT PROCESSING-

The interrupt mask register is set
by an inter-register command and the
interrupt system is activated by the
enable interrupt command. Upon rec­
ognizing an interrupt, the hardware
automatically stores the appropriate
program-return address in a storage
location reserved for the activated
interrupt state. This ensures that,
after interrupt processing, the soft-'
ware can return to the interrupted
program.

With the return address stored, the
hardware deactivates the interrupt
system and transfers control to an
interrupt handler program that begins
at an address specified for that
interrupt state. The program thus
entered stores all registers (includ­
ing the interrupt mask register and
overflow) in addresses reserved for
the interrupt state. The interrupt
mask register is then loaded with a
mask to be used while in this inter­
rupt state, with one-values in this
mask indicating interrupts with
higher priority than the interrupt
state being processed. The program
then saves the current software pri­
ority level, sets the new software
level, activates the interrupt sys­
tem, and processes the interrupt.

During such interrupt processing,
an interrupt request with higher
priority may interrupt. However,
such interrupts also cause storage
of return address links to permit
sequential interrupt processing
according to priority level with
eventual return through the re­
turn addresses to the main-stream
computer program.

60470000 A

The computer exits from an interrupt
state when processing is completed at
that level by inhibiting interrupts,
restoring registers to their states
prior to interrupt, and executing
the exit interrupt command. This
command retrieves the return address
stored when the interrupt state was
entered. Control is transferred to
the return address and the interrupt
system is again activated.

MASK REGI STE R

The priority of interrupts is under
control of the computer program.
Such priority is established by an
interrupt mask for each interrupt
state that enables all higher prior­
ity interrupts and disables all lower
priority interrupts. When an inter­
rupt state is entered, the mask for
that state is placed in the mask
register. Bit a of the mask register
corresponds to interrupt state 00,
bit 1 corresponds to interrupt state
01, etc. If a bit is set, it indi­
cates that the corresponding inter­
rupt state has a higher priority
than the interrupt state to which
the mask belongs. Thus, there may
be as many as 16 levels of priority.

NOTE

priority of an interrupt state
can be changed during program
execution.

USER INTERFACES

Because each interrupt handler is an
independent program, there are no
specific user interfaces. However,
pertinent information is necessary
to enable modification of and addi­
tions to the interrupt handlers.

XJKMASK is an array containing
interrupt masks for the 16 interrupt
states. To access a particular
interrupt mask, use the interrupt
state number as an index. LEVELNO
is the core location where the cur­
rent software priority level is
saved.

4-15

Table 4-1 lists the 16 interrupt
states, gives the value for the
delta field for its exit instruction,
the storage location for its return
address, and the location of the
first instruction of the interrupt
handler program. Current interrupt
assignments and their associated
software priority are listed in
table 4-2.

INITIALIZATION

The initialization module gains
control immediately after the NPU is
loaded and prepares the system for
on-line operation. After these ini­
tialization functions are performed,
the initialization program is no
longer needed. Just prior to releas­
ing control, the space occupied by .
this program is added to the dynamic
buffer pool.

Initialization consists of a series
of procedures. The base system sup­
plies those procedures common to all
systems and customized initialization
procedures may be added as required.
As each initialization procedure is
completed, an appropriate flag bit
is set in the NPISFL word of the
NPINTAB table. When procedures are
added, the call that returns the
initialization space to the buffer
pool must remain in the last posi­
tion, and the procedure that effects
this return must remain as the last
physical procedure.

BUFFER INITIALIZATION (FIRST PHASE)

Each buffer size defined for a system
is represented by a buffer control
block that contains GET and PUT point­
ers, etc., and a threshold indicating
need for replenishment by the buffer
adjustment program. The buffer ini~
tialization program starts at the
base of the area assigned to buffers
and releases appropriate increments
of space to the buffer pool. Start­
ing with the smallest size buffer
pool and moving up through the
defined pools, sufficient space is
released up to the base of the buffer
area holding the initialization pro-

4-16

gram itself. That area is not
released at this time.

LIST CONTROL BLOCK INInALIZATION

List service assumes that all list
control blocks are in a condition
that allows an entry to be made to
an empty list without first having
to obtain a buffer. Thus, initiali­
zation obtains a buffer for each list
control block and primes the GET and
PUT pointers.

MULTIPLEX LOOP INTERFACE ADAPTER (MLlA)

INITIALIZATION

The MLIA constitutes the major
communications interface for the NPU.
MLIA initialization consists of a
series of commands that place the
MLIA in the proper operating mode.
Parameters are read back to ensure
that the MLIA took correct action.
If the MLIA is not ready or cannot
be set up correctly, initialization
is aborted.

MICROPROGRAM LINKAGE INITIALIZATION

The emulation and multiplex sub­
system microprograms use volatil~
storage elements such as the in­
terrupt mask registers and file
registers which must be initial­
ized prior to operation. In
addition, the microprograms may
be partially resident in non­
volatile ROM and partially resident
in reloadable RAM. Thus, initiali­
zation is required to perform the
following:

1. Load RAM with multiplex subsystem
firmware.

2. Set interrupt vector table and
other constants in file registers
1 and 2.

3. Ehable internal and external
interrupts.

60470000 A c

(-

(

(
TABLE 4-1. INTERRUPT STATE DEFINITIONS (PBINTRAPS)

Interrupt Exit Instruction Location of Location of First Instruction
State Delta Field Value Return Address of Interrupt Handler Program

00 00 0100 0101

c 01 04 0104 0105
02 08 0108 0109
03 OC 010C 0100
04 10 0110 0111
05. 14 0114 0115
06 18 0118 0119
07 lC 011C 0110

(08 20 0120 0121
09 24 0124 0125
10 28 0128 0129

(
11 2C 012C 0120
12 30 0130 0131
13 34 0134 0135
14 38 0138 0139

(15 3C 013C 0130

TABLE 4-2. INTERRUPT ASSIGNMENTS

Interrupt Software Interrupt Description State priority

0 PI Memory parity, program protect, power fail,
software breakpoint

1 P6 Communications console (TTY or CRT)

(
2 P2 Multiplex loop error (MLIA)
3 P3 Multiplex subsystem - level 2
4 P16 - Line Printer (2571/2570)
5 P7 Coupler No. 2 (2558-1) I

(6 P7 Coupler No. 1
7 P8 Tape cassette
8 P9 Real-time clock
9 pIO

10 Pll
11 P12 Card Reader (2571/2572)
12 P13 Output data demand received (MLIA)
13 P14 Input line frame received (MLIA)
14 PIS Spare
15 --- Macro breakpoint

P17 OPS level programs

c 60470000 B 4-17

Prior to operation, an equipment
configuration test is performed to
ensure that specific hardware is
present, powered, and in the correct
operating mode. The tests primarily
check that: 1) two or more CLAs are
not assigned the same port number,
2) proper status is received from
the coupler, and 3) the MLIA is
operating properly.

PROTECT SYSTEM SET-UP

The NPU has a program protect feature
using a protect bit associated with
each storage location to prevent
inadvertent corruption of programs
in transfer of control. During ini­
tialization, all core storage except
the buffer area is set to the protect
mode. This prevents a hardware mal­
function from storing into program
areas.

BUFFER INITIALIZATION (SECOND PHASE)

After all initialization procedures
have been executed, the buffer area
containing the initialization program
is released to the free buffer pool
for the largest size buffer defined.

STANDARD SUBROUTINES

OVERVIEW

The standard subroutines included as
part of CCP 1.0 are self-contained
programs available to the user for
performance of useful and commonly
needed functions. Table 4-3 lists
these subroutines in alphabetical
order by mnemonic subroutine name.
This same sequence is used in
descr~bing the subroutines in follow­
ing paragraphs. As shown in the
table, most can be called from any
software priority level.

4-18

CALLING ASSEMBLY LANGUAGE
PROGRAMS FROM PASCAL

Procedure calls to assembly language
programs from PASCAL are the same as
calls to other PASCAL programs. The
same calling sequence code is
generated:

RTJ program
ADC parmI

ADC parmn

An assembly language program handles
parameters as PASCAL. To treat a
parameter as a value parameter, load
the contents of the parameter and
store locally. To treat a parameter
as a variable parameter, load the
address of the parameter and use as
a pointer. Parameters that are
fields less than a word in length in
a packed record are unpacked into a
temporary word and the address of
the temporary word is passed to the
called program.

Function calls to assembly language
programs differ in that a PASCAL
forward reference describing the
calling sequence must appear before
all function calls in the source
code so that type-checking on the
function return value can be
performed.

CALLS TO PASCAL PROGRAMS FROM
ASS~MBL Y LANGUAGE

All calls to PASCAL programs from
assembly language must conform to
the calling sequence code described
in the preceding paragraph. The
caller, of course, must be familiar
with the calling sequence of the
PASCAL program being called.

6()470000 A

":......-- '

(

lj

f'
~j.

{

(
TABLE 4-3. ALPHABETIC LIST OF STANDARD SUBROUTINES

(Type
Subroutine t Checking

Name Description Type* Language Defeated

(
PBAEXIT Save Rl and R2 NI AP X

PBAMASK AND Interrupt Mask NI AP X

PBBEXIT Restore Rl and R2 NI AP X

PBCALL Call Program by NI AP X
Address

PBCLRPROT Clear Protect Bit NI AP X

PBCOPYBFRS Copy a Chain of 0 PF
Buffers

PBDISPLAY Display Msg on 0 PP X
Console

PBDLTXT Delete Text 0 PP

PBDUMP On-line Dump NI PP X (
PBFILE Load/Display File 1 0 AP X

PBFMAD Convert from ASCII to R PF
Decimal

(

PBFMAH Convert from ASCII to R PF
Hex (

PBHALT System Halt NI PP X

PBLMASK Reload Interrupt Mask NI AP X
(

(PBLOAD Load a Canned Message R PP X

PBMAX Get Max of 2 Numbers NI PF

PBMEMBER Test ASCII Set NI PF
Membership

(

(

60470000 B 4-19

4-20

TABLE 4-3. ALPHABETIC LIST OF STANDARD SUBROUTINES (Continued)

Subroutine
Name

PBMIN

PBOMASK

PBQUICKIO

PBSETPROT

PBSMASK

PBSLJ

PBSTRIP

PBTIPDBG

PBTOAD

PBTOAH

PI PRINT

PTCTCHR

QDEBUG

QENTRY

QEXIT

QULOCK

Description

Get Min. of 2 Numbers

OR Interrupt Mask

Quick Output

Set Protect Bit

Set Interrupt Mask

Test Selective Jump
Switch

Strip Empty Buffers

Execute User Code

Convert to ASCII
Decimal

Convert to ASCII Hex

Print Structure
Addresses

Count Characters

PASCAL Debug Option
Handler

Recursive Procedure
Entry Code

Recursive Procedure
Exit Code

Non-Int. Function
Exit Code

*NI = Non-interruptable
o = OPS Level only

tpp

PF
R = Re-entrant AP

AF

Type* Languaget

NI PF

NI AP

R PP

0 AP

NI AP

NI AF

0 PP

0 PP

R PP

R PP

-- PP

NI PF

NI PP

-- AP

-- AP

-- AP

=
=

PASCAL procedure
PASCAL function

Type
Checking
Defeated

x

X

X

X

=
=

Macro Assembler procedure
Macro Assembled function

60470000 B

I

At" '"'.

\y'

,4('-\

~,7'

(~.

I

\..

J

/- ,

('
,

\..j

('
\.. .. ,."

('-
", ~J;>'

t1! "
~,'

j

(f-

~./

"

(
-~

(' "
'f :

¥'

(:'

(

(

(

(

(

(

. (

(

(

DEFEATING TYPE-CHECKING IN PASCAL
PROCEDURE CALLS

As the PASCAL compiler is a one-pass
compiler, when it encounters a pro­
cedure call in source code it mayor
may not. have processed the calling
sequence of the called program.

If the calling sequence has been
processed, all parameters of the
user's procedure are error checked.
The type of each parameter must cor­
respond to the type specified in the
calling sequence and the number of
parameters must be the same. No
expressions and no fields of less
than a word in length in a packed
record can be variable parameters.

If the calling sequence of a program
has not been processed when a call
to it is encountered, a subroutine
jump to an external symbol is gen­
erated, the standard calling
sequence is generated, and no error
checking is done on the parameters.
This situation is said to defeat
type-checking in the procedure call.

If used carefully, defeating type­
checking is a useful technique. For
example, arrays with the same element
types but of different lengths are
treated as different types by PASCAL.
Therefore, any program needing vari­
able length array input as a variable
parameter must defeat type-checking .
Ramifications of defeating type­
checking are:

1. All calls from PASCAL programs to
assembly language procedures auto­
matically defeat type-checking.

2. PASCAL and assembly language
functions cannot defeat type­
checking.

PBAEXIT - SAVE R1 AND R2

PBAEXIT is used at the label of a
GOTO(EXIT) statement when that state­
ment occurs within one or more exe­
cutable WITH statements. PBAEXIT
restores Rl and R2 from a specified
save area so that they may be used
as base addresses of the structures

60470000 A

associated with the first two execut­
able WITH statements in the PASCAL
program. The calling sequence is:

PBAEXIT (parm)

where parm is the name of the two­
word save area for Rl and R2.

PBBEXIT is used to save Rl and R2
before executing the GOTO(EXIT).
Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type-Checking
Defeated:

Noninterruptable

Macro Assembler

Procedure

Yes

NOTE

A GOTO(EXIT) from within a non­
interruptable program does not
perform an UNLOCK before
exiting.

PBAMASK - AND INTERRUPT MASK

PB~~SK forms a logic AND function
between a given interrupt mask and
the current interrupt mask in the M
register. The old value is stored in
the global array JKTMASK [LEVELNO].
The resultant mask becomes the new
mask value in the M register.
PBAMASK, in conjunction with PBLMASK,
is used to selectively disable and
enable one or more software interrupt
levels. The calling sequence is:

PBAMASK (parm)

where parm is a value parameter
specifying the value to be logically
ANDed with the current interrupt mask.
Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Noninterruptable
Macro Assembler

Procedure

4-21

Type-Checking
Defeated: Yes

The following restriction also
applies:

PBAMASK and PBLMASK pairs cannot be
nested on the same software priority
level. See PBLMASK.

PIIEXIT - RESTORE R 1 AND R2

PBBEXIT is used before a GOTO(EXIT)
is executed from within one or more
executable WITH statements. PBBEXIT
saves RI and R2 in a specified save
ar.ea which may be used as base
addresses of the structures associ­
ated with the first two executable
WITH statements. The calling
sequence is:

PBBEXIT (parm)

where parm is the name of the two­
word save area for RI and R2. Other
'user information is:

Program Type:
Language:

Procedure or
Function:

Function Type:

Type-Checking
Defeated:

Noninterruptable

Macro Assembler

Procedure

Yes

_PICALL -CALL PROGRAM IY ADDRESS

PBCALL calls a.procedure from PASCAL
by address, rather than by name.
Unlike other procedure calls, PBCALL
can pass a variable number of param­
eters, corresponding to the number
of parameters expected by the calling
procedure. Example:

type pgms = (pgml, ••• pgmn);
var ~able: array [pgms) of integer:

1ndex: pgmS;
addr ({programl}, table [pgml];

4-22

--- ----------- ---~-----------------------------

addr ({programn}, table [pgmn]);

.
{set up index}
PBCALL (table [index]); {call progrm,

no parameters}

The PBCALL calling sequence is:

PBCALL (addr, parml, ••• parmn)

where addr is the address of the pro­
gram to be called and parmI through
parmn are optional and are the param­
eters passed to the called program.
Other user information is:

Program Type: Noninterruptable
Language: Macro Assembler
Procedure or
Function: Procedure
Function Type:

Type Checking
Defeated: Yes

Structured flow is as follows:

procedure PCBALL;
beTin

store return address in called
procedures entry point}

{jump to procedure}
end;

PIClRPOT - CLEAR PROTECT lIT

PBCLRPOT clears the protect bit at
the specified address. Its calling
sequence is as follows:

PBCLRPOT (parm)

where parm is the address at which
the protect bit is to be cleared.
Other user information is:

Program Type:

Languag.e:

Procedure or
Function:

Noninterruptable

Macro Assembler

Procedure

60470000 A

(.~

/

,r'~ -~

Ci
/

-/

(

(

(

(

('

[

(

(/

c

Function Type:

Type Checking
Defeated: Yes

PIDISPLA Y • DI$PLA Y MESSAGE
ON CONSOLE

This sequence queues a message for
output to the local console. Its
calling sequence is:

PBDISPLAY (parm)

where parm is a variable parameter
specifying the message to display.
Example:

= $DOA
= $707;

const crlf
bell

var msg packed array [0 •• 10]
of char;

value msg (crlf, bell,=ABCDEF]=);

PBDISPLAY (msg);

NOTE

Every canned message must have a
right bracket (J) as an end of
text delimiter.

Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

OPS Level Only

PASCAL

Procedure

Yes

PBDISPLAY uses the PBLOAD and
PBIOSERV subroutines to, respectively,
load a canned message and to provide
input/output services. PBDISPLAY
also uses system structure JCOPSLRP
(OPS level console LRP).

PIDLTXT • DELETE TEXT

PBDLTXT deletes text in a data buffer
chain by advancing the FCD. The
calling sequence is:

60470000 A

PBDLTXT (parml,.parm2, parm3)

where parmI is a variable parameter
of type BOBUFP~ containing the
address of the buffer where text
deletion is to begin. The FCD in
this buffer must point to the first
character to delete. ParmI is up­
dated if deletion crosses buffer
boundaries. The FCD in the returned
buffer points to the next character
to process.

Parm 2 is a ~oolean value parameter
specifying whether to release source
buffers if buffer boundaries are
crossed during deletion. If true,
source buffers are released.

Parm3 is an integer value parameter
specifying the number of text char­
acters to delete.

NOTE

PBDLTXT does not advance beyond
the end of text. Deletion stops
when end of text is reached. .
The OPS level errOr flag B60SERR
is returned false if deletion
beyond end of text is attempted.

Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

OPS Level Only

PASCAL

Procedure

No

Structured flow is as follows:

procedure PBDLTXT;
begin {set B60SERR}
10: if {buffer boundary crossed} then

---if {chain nil} then
---begin {set FCD = LCD in buffer}

{reset B60SERR}
end

else-
--segin {chain to next buffer}

{decrement deletion
count by LCD-FCD of
previous buffer}

4-23

if {buffer release
--- requested}

then {release previous
-- buffer}

GOTO 10 •
end

else-rBet FCD to FCD + deletion
- count}

~;

P.DUMP - ON-LINE DUMP

PBDUMP transfers information from
within specified limits of the core
memory to a specified local periph­
eral device. The calling sequence is:

PBDUMP (parmI, parm2, parm3)

where parmI and parm2 are value
parameters specifying the start and
stop dump addresses respectively, and
parm3 is a value parameter specifying
the local peripheral device as
follows:

o
1

2

Null device

Teletype

Line Printer

Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Noninterruptable

PASCAL

Procedure

Yes

External subroutines used by PBDUMP
are:

PBTUPDUMP

PBQUICKIO

PBTESTIORDY

PBWRITE

TUB Dump Formatter

Quick Output

Test I/O Device
Ready

Write Character or
Function

The output is formatted in the
dedicated TUP buffer JUTUPOUT. The

4-24

structured flow for PBDUMP is as
follows:

procedure PBDUMP;
begin

if {output to teletype}
----then {set teletype to write mode}

---- {reset EOT flag in JUTUPOUT}
repeat {format one buffer of output}

PBQUICKIO
until {EOT flag set in JUTUPOUT}

end;

P.fILE - LOAD/DISPLAY fiLE 1

PBFILE actually consists of two
programs: PBEF (Load File 1) and
PBDF (Display File 1). Both programs
execute special firmware sequences
to perform the load or display oper­
ations. Because of firmware timing
constraints, a maximum of 12 trans­
fers per call can be specified during
on-line operation. During off-line
operation, as many as 256 transfers
can be specified.

PBEF transfers the contents of memory
to File 1 starting at a specified
register. The PBEF calling sequence
is:

PBEF (parmI, parm2)

where parmI is a value parameter
formatted as follows:

Bits 15

Number of
words to
load

8 7
First File
1 register
to load

o

To load all 256 registers, set parmI
to o. Parm2 is a value parameter
specifying the address of the first
memory location to transfer.

PBDF transfers the contents of File
1, starting at register n,to memory.
The PBDF calling sequence is:

PBDF (parmI, parm2)

where parmI is a value parameter
formatted as follows:

60470000 A

~

(

j

c

(

(-

(

(

(

(

l
(

(

(--

Bits 15 8 7 0

Number of First File
words to 1 register
move to transfer

To display all 256 registers, set
parmI to $0. Parm2 isa value param­
eter specifying the memory address to
receive the first register transfer.

Other user information for both PBEF
and PBDF is as follows:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

OPS Level Only

Macro Assembler

Procedure

Yes

PBFMAD - CONVERT FROM ASCII DECIMAL

PBFMAD converts up to five ASCII
decimal digits in a buffer into one
16-bit word. The calling sequence is:

PBFMAD (parmI, parm2, parm3)

where parmI is a variable parameter
of type INTEGER. The converted word
is returned in parmI. Parm2 is a
value parameter of type BOBUFPTR
specifying the buffer address where
the decimal digits to be converted
are located. Parm3 is a variable
parameter of type integer specifying
the index where the first decimal
digit to be converted is located
within the buffer.

PBFMAD is a Boolean function in which,
if PBFMAD is true, the conversion is
successful and, if false, indicates
bad data or a bad start/stop index.
Other user information is:

Program Type: Re-entrant

Language: PASCAL

Procedure or Function: Function

Function Type: Boolean

Type Checking Defeated: No

60470000 B

PBFMAD uses external subroutine
PBMID1BER to test ASCII set membership.
System table JNCNVTFROM (convert from
ASCII) is used.

PBFMAH - CONVERT FROM ASCII
HEXADECIMAL

PBF~mH converts ASCII hexadecimal
characters in a buffer to a 16-bit
word. The calling sequence is:

PBFMAH (parmI, parm2, parm3)

where parmI is a variable parameter
of type BOOVERLAY. The converted
word is returned in parmI. Parm2 is
a value parameter of type BOBUFPTR
that points to the buffer address
where the hexadecimal characters to
be converted are located. Parm3 is
a variable parameter of type integer
specifying the index where the first
hexadecimal character to be converted
is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean
function which, if true, indicates
the conversion is successful and, if
false, indicates either bad data or
a bad start/stop index. Other user
information is:

Program Type: Re-entrant

Language: PASCAL

Procedure or Function: Function

Function Type: Boolean

Type Checking Defeated: No

PBFMAH, like PBFMAD, uses external
subroutine PBMEMBER and system table
JNCNVTFROM. Structured flow for
PBFMAD is as follows:

function PBFMAHi
begin

~f {start/stop index in range}
-then

repeat
~f {character a delimiter

(blank, slash, comma
or @}

then GOTO 10

@ is controlled D on console I
keyboard

4-25

else
--oegin {test for valid hex

character}

end

{convert character}
{bump to next character}

un£i1 {bad character} v {end
of buffer reached}

10: {bump buffer index}
{PBFMAH : = NOT [error

indicator] }

PBHALT halts the system after a
recognizable but irrevocable
condition has occurred. System
halt always locks interrupts,
saves the software registers,
and clears the MLIA and coupler.
The user. then has the option to
either branch directly to post
mortem dump or to print the halt
message at the local console,
enable the local console and line
printer interrupts, and enter the
TUP mode. This option is con­
trolled by the global Boolean
JXHALTFLAG. If true, post mortem
dump is called. The default value
is false.

The calling sequence for system
halt is:

PBHALT (parm)

where parm is an integer value
parameter specifying the halt
code •. The halt message printed
at the local console is:

*HALT XXXX YYYY

where XXXX is the return address
of the program calling PBHALT and
YYYY is the hexadecimal halt code.
The halt code is also stored at
location $30, the halt return
address is stored at $31, and the
registers are stored beginning at
location $32.

Other user information is:

Program Type:

Language:

4-26

Noninterruptable

PASCAL

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Procedure

No

External subroutines used by PBHALT
are:

PBMDUMP

PBTESTIORDY

PBWRITE

PBLOAD

PBTOAH

PBQUICKIO

PBSMASK

PBTUP

Post Mortem Dump

Test I/O Device
Ready

Write to I/O
Device

Load a Canned
~1essage

Convert to ASCII
Hexadecimal

Quick I/O
Set Interrupt Mask

Test Utility
Program

System tables used are:

TUP Table JUTUPTABLE

JACT[TTY] Local Console
Controller Table

JIQUICKPTR Global Buffer
Pointer for
PBQUICKIO

The structured flow for PBHALT is
as follows:

procedure PBHALT;
begin

{save registers}
{clear coupler, MLIA}
if JXHALTFLG then {post-mortem
-- ---- dump}
{clear all local peripherals}
{set up *HALT message}
{print *HALT message}
{enable teletype and line
printer interrupts}

reteat
enable interrupts}

{call TUP}
until false

end;

60470000 A

('

('.

(

(

(

(

(
(

(

.(

c
Ci

PILMASI(- RELOAD INTERRUPT MASK

This sequence loads the interrupt
mask stored in the global array
JKTMASK into the mask (M) register.
JKTMASK is indexed by LEVELNO, the
current system priority level.
PBLMASK, in conjunction with PBAMASK,
selectively disables and enables one
or more software priority levels.

Example: Assume the user has a
segment of code where the local con­
sole interrupt must be locked out.
Reference type definition J8HDWLINE
in SDS.

var ALLINT SETWORD;
varue ALLINT = ($FFFF);

PBAMASK (ALLINT - [J8TTY]);
{code to protect from local
console interrupt}

PBLMASK;

The calling sequence is:

PBLMASK

Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Noninterruptable

Macro Assembler

Procedure

Yes

NOTE

To ensure that once an interrupt
is disabled by PBMASK that it is
not inadvertently re-enabled by
an intermediate interrupt level,
all first level interrupt hand­
lers logically AND the current
value of the interrupt mask (M)
register with the new interrupt
mask value for that software
priority level.

60470000 A

'ILOAD - LOAD A CANNED MESSAGE

The PBLOAD sequence loads a user­
defined message into a user-supplied
buffer at.a user-specified start
position. The calling sequence is:

PBLOAD (parmI, parm2, parm3,
parm4)

where parmI is a value parameter of
type BOBUFPTR and points to the loca­
tion where the canned message is to
be loaded, parm2 is a variable param~
eter specifying the message to be
loaded, parm3 is an integer value
parameter that is the index of the
start position in the buffer for the
first character of the message, and
parm4 is the index to the last data
position in the buffer. Parm4 over­
rides the message length. Example:

Buffer: BOBUFPTR; {assume a
32-word
buffer}

MSG JOMLlO:
value MSG = (=0123456789]=);

PBLOAD (BUFFER, MSG, JIFRSTCHAR,
JILST3'2) ;

NOTE

All canned messages must have a
right-bracket (]) as end of mes­
sage delimiter unless parm4 -
parm3 is less than the message
length.

Other user information is:

Program Typer Re-entrant

Language: PASCAL

Procedure or Function: Procedure

Function Type:

Type Checking Defeated: Yes

PIMAX - GET MAXIMUM OF TWO NUMIERS

PBMAX is a function that returns the
maximum of two given numbers. The
calling sequence is:

4-27

PBMAX (parmI, parm2)

where parmI and parm2 and integer
value parameters. The maximum of
parmI and parm2 is returned by ·PBMAX.
Other user information is:

Progr am Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Non interruptable

PASCAL.

Function

Integer

No

'BMEMBER - TEST ASCII SET MEMBERSHI'

PBMEMBER is used to determine whether
or not a given ASCII character is a
member of a user-defined set of ASCII

characters. PBMEMBER overcomes the
2550 PASCAL restriction of having
one-word, l6-element sets by acces­
sing an array of one-word sets. A
character is broken up for testing
as follows:

Bits 7 6 4 3 o
r--------------r------------~ Index into Element number

array of sets in set

0-7 0-15

128 bits are.reserved (one for each
possible ASCII character) in an
array of type JSASCIISET, where
JSASCIISET = array [0 •• 7] of SETWORD.
Characters are located in tne set by
bit number; e.g., a blank ($20) is
bit number $20. Bits of the
JSASCIISET array are numbered as
follows:

F o IF 10 2F 20 3F 30 4F 40 5F 50 6F 60 7F 70

Bit Numbers

Therefore, the value initialization
for testing hexadecimal characters
is:

var JSHEXSET JSASCIISET;
varue JSHEXSET = (0, 0, 0, $3FF,

-'"
'DIGITS 0:9'.

$7E, 0, 0, 0); .
r="

CHARACTERS A-F

The calling sequence is:

PBMEMBER (parmI, parm2)

where parmI is a value parameter of
type BOOVERLAY containing the char­
acter to test and parm2 is a variable
parameter of type JSASCIISET and is
the set to test parmI for membership.
PBMEMBER is a Boolean function and
returns a true if the character is
in the set and false if it is not.
Other user information is:

Program Type:·

Language:

4-28

Noninterruptable

PASCAL

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Function

Boolean

No

'BMIN - GET MINIMUM OF TWO NUMIERS

PBMIN isa function that returns the
minimum of two given numbers. The
calling sequence is:

PBMIN (parmI, parm2)

where parmI and parm2 and integer
value parameters. The minimum of
parmI and parm2 is returned by.
PBMIN. Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Noninterruptable

PASCAL

Function

Integer

No

60470000 A c

(

(

(

(

(

(

,(

.(.

PBOMASK - OR INTERRUPT MASK

PBOMASK employs a logical OR
function to combine a given inter­
rupt mask with the current mask in
the M register, the result becoming
the new interrupt mask value in the
M register. The calling sequence is:

PBOMASK (parm)

where parm is a value parameter
specifying the mask value to OR with
the current interrupt mask. Other
user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Noninterruptable

Macro Assembler

Procedure

Yes

PBQUICKIO - QUICK OUTPUT

PBQUICKIO writes one buffer of ASCII
information to a user-specified
peripheral device. PBQUICKIO is a
noninterruptable program and is not
intended for use while the system
is on-line. The calling sequence is:

PBQUICKIO (parmI, parm2)

where parmI is an integer value
parameter specifying the local
peripheral device as follows:

o Null device

1 Teletype

2 Line Printer

Parm2 is a value parameter of type
BOBUFPTR containing the address of
the buffer of AS~II output that is
to be output. Other user informa­
tion is:

Program Type:

Language:

Procedure or
Function:

Function Type:

60470000 A

Noninterruptable

PASCAL

Procedure

Type Checking
Defeated: No

External subroutines used are:

PBTESTIORDY Test I/O Device Ready

PBWRITE Write to I/O Device

System table used is:

JACT Peripheral I/O
Controller Tables

PBSETPROT - SET PROTECT BIT

PBSETPROT sets the protect bit at a
specified address. The calling
sequence is:

PBSETPROT (parm)

where parm is the address where the
protect bit is to be set. Other user
information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Noninterruptable

Macro Assembler

Procedure

Yes

PBSMASK - SET INTERRUPT MASK

This calling sequence loads a
specified interrupt mask value into
the M register to become the new
interrupt mask. The calling
sequence is:

PBSMASK (parm)

where parm is a value parameter
specifying the new interrupt mask
value to be loaded into the M
register. Other user information

Program Type:

Language:

Procedure or
Function:

Function Type:

Noninterruptable

PASCAL

Procedure

is:

4-29

Type Checking
Defeated: Yes

P8TIPD8G. EXECUTE USER CODE

PBTIPDBG is an OPS program available
as a debug aid. It enables the user
to execute special code via a work­
list entry into PBTIPDBG. The code
is added to an already existing case
statement in PBTIPDBG. The case
statement label is the first word of
a five-word worklist entry made to
engage the code. The remaining four
words are optionally used to pass
information to drive the user code.
In current implementation, case
statement label 0 is a 20-word patch
area.

The worklist entry to PBTIPDBG can
be made from anywhere in the system
or from the local console via the
TUP LP command. As PBTIPDBG is an
OPS program, there is no calling
sequence. Other user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Entered from OPS
Monitor only

PASCAL

Procedure

No

Structured flow is:

procedure PBTIPDBG;
be~in

~f {worklist non-empty} then
--case {first word of WL entry} of

--0: {20-word patch area}
2: {print date-time}
3: {modify POI and/or block

length for TIP testing}
4: {set date and time}

end
end;--

P8TOAD . CONVERT TO ASCII DECIMAL

PBTOAD converts one 16-bit word to
as many as five ASCII decimal digits

4-30

with leading zeros suppressed. The
converted digits are stored in a
specified position in a buffer, fol­
lowed by a blank. The calling
sequence is:

PBTOAD (parmI, parm2, parm3,
parm4)

where parmI is an integer value
parameter containing the word to be
converted, parm2 is a value parameter
of type BOBUFPTR pointing to the buf­
fer that will-store the converted
ASCII digits, and parm3 and parm4 are
integer value parameters respectively
specifying the start and stop indices
for storing the converted ASCII
digits in the buffer. Other user
information is:

Program Type: Re-entrant

Language: PASCAL

Procedure or Function: Procedure

Function Type:

Type Checking Defeated: No

The JMCNVTO (convert to ASCII) system
table is also used. Structure flow
is as fo.llows:

procedure PBTOAD;
betin

adjust start/stop index if too
small/large}

{reset flag}
for I : = {stop index} down to
--- {start index} do

if {flag} A {parmI = Or-
---then {store blank. in position

I in buffer}
else
be1in

convert one decimal digit}
{divide parmI by 10}
{set flag}

end
{store blank after last character
converted}

~;

P8TOAH . CONVERT TO ASCII HEXADECIMAL

PBTOAH converts one 16-bit word into
four hexadecimal characters. The

60470000 A

((--­

("----

(

(

(

f

(

(

converted characters are stored in a
specified position in a buffer,.fol­
lowed by a blank. The calling
sequence is:

PBTOAH (parmI, parm2, parm3,
parm4)

where parmI is a value parameter of
type BOHEX and contains the word to
be converted, parm2 is a value param­
eter of type BOBUFPTR that points to
the buffer where the converted hexa­
decimal characters are to be stored,
and parm3 and parm4 are integer value
parameters, respectively, specifying
the start and stop indices for stor­
ing the characters within the buffer.
Other user information is:

Program Type: Re-entrant

Language: PASCAL

Procedure or Function: Procedure

Function Type:

Type Checking Defeated: No

The JMCNVTO (convert to ASCII) system
is used.

PIPRINT . PRINT STRUCTURE ADDRESSES

This is an initialization program
that prints the names and addresses
of commonly used system structures.
PIPRINT is engaged by setting the
global Boolean JXPRINT to true before
entering initialization. The default
value of JXPRINT is false. PIPRINT
obtains addresses from a fixed area
of core memory starting at location
$150. Thus, all addresses available
are present in the post-mortem dump.
The format of the address area is
given in table 4-4. Additional
structure addresses can be easily
added by:

1. Enter an EXT and an ADC for the
new structure into the MACRO
assembler program ADDRESSES.

2. In PIPRINT, increment the con­
stant NUM by the number of new
structure addresses added.

60470000 A

3. Add the first si~ letters of the
structure names to the value
statement in PIPRINT, being sure
to add these statements in the
same position as the ADC in
ADDRESSES.

PIPRINT is an initialization program
and, therefore, cannot be called by
an on-line user.

PTCTCHR - COUNT CHARACTERS

This calling sequence is a function
that returns the total number of
characters in a mixed chain of data
buffers. The calling sequence is:

PTCTCHR (parm)

where parm is a value parameter of
type BOBOFPTR pointing to the first
buffer in the chain to be counted.
PTCTCHR is an integer function
returning the number of characters
in the buffer chain. Other user
information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

Noninterruptable

PASCAL

Function

Integer

No

PBSTRIP - STRIP EMPTY DATA BUFFERS

This calling sequence strips empty
buffers from a mixed chain of data
buffers. An empty data buffer is
defined as a buffer with the LCD
less than the FCD. Any empty buffers
in the chain are released to the
free buffer pool. The chain to the
first nonempty buffer in the chain
is returned. If all buffers in the
chain are empty, nil is returned.
The calling sequence is:

PBSTRIP (parm)

where parm is a variable parameter
of type BOBUFPTR pointing to the

4-31

TABLE 4-4. PIPRINT ADDRESS AREA FORMAT

$150 0 BYWLCB WORKLIST CONTROL BLOCK

1 JSWLADDR WL ENTRY BY LEVELNO

2 BITCB INTERNAL PROCESSING TCB

3 BIBUFF INTERNAL PROCESSING BLOCK

4 JKMASK INTERRUPT MASKS

5 JKTMASK PBAMASK SAVE AREA

6 BGPLIST OPS PROGRAM LIST

7 CBTIMTBL TlMAL TABLE

8 JACT PD CONTROLLER TABLE

9 BECTLBK BUFFER CONTROL BLOCK

A BEBSA BUFFER-STAMP AREA

B CLBFSPACE BFR SPACE IN NO. SMALL BFRS

C BKPIKT POI TABLE

D JIUERRSTAT UPLINE ERR-STAT ROUTING

E JlUSVM UP LINE SERVICE MSG ROUTING

F JIDSVM DOWNLINE SERVICE MSG ROUTING

10 0

11 NAPORT PORT TABLE

12 BQCIB CIRCULAR INPUT BUFFER

13 NECCST CLA CMD STATUS TABLE

14 MLSTABLE CLA CURRENT STATUS TABLE

15 0

16 CGLCBS LINE CONTROL BLOCKS

17 CHSUBLCB SUB LCBS

18 BJTIPTYPT TIP TYPE TABLE

19' NJTECT TERMINAL CHARACTERISTICS TABLE

lA 0

IB JFISNPTBLE SNAPSHOT CORE TABLE

lC JFWRAP WRAP-SNAP TABLE

ID JISTRT START ADDR FOR PBDUMP

IE JIQUICKPTR BFR PTR FOR PBQUICKIO

IF 0

4-32

I ...

>

~

~

...

~

BASE

MUX
SUBSYSTEM

LINES -
TIPS

DEBUG AIDS

60470000 A

,f --

(j

-, ./

/ '-,

\
'-" /

(,~ .-

(

~, '/
('

(

(

(

(\

[

(

(

first buffer of the chain to be
checked for empty buffers. Other
user information is:

Program Type:

Language:

Procedure or
Function:

Function Type:

Type Checking
Defeated:

OPS Level only

PASCAL

Procedure

No

paCOPY'FRS - COPY A CHA IN OF aUFFERS

This calling sequence copies the data
portion ofa chain or part of a chain
of any size buffers (all the ~ame
size or mixed) into data buffers.
The input of PBCOPYBFRS is the first
buffer of the chain to copy and a
one-word packed record of type
JTCOPYB containing:

1. The number of source buffers to
copy. Zero causes PBCOPYBFRS to
copy to nil source chain.

2. The source buffer size.

3. The destination buffer size (large
or small data buffers only).

4. A Boolean indicating whether or
not the source is a mixed data
buffer chain. This parameter
overrides number 2 above.

5. A Boolean specifying whether or
not to release the source buffers
after copying.

The calling sequence is:

PBCOPYBFRS (parmI, parm2)

where parmI is a value parameter of
type JTCOPYB as follows:

JTCOPYB = packed record
JTNUM B08BITS;
JTSSIZE BOBUFSIZES
JTDSIZE,
JTSMIXED,
JTRLS BOOLEAN

end;

60470000 A

Parrn2 is a value parameter of type
BOBUFPTR pointing to the first source
buffer to copy. PBCOPYBFRS is a
function that returns a buffer
pointer to the first buffer of the
copied buffer chain. Other informa­
tion is:

Program Type: OPS Level only

Language: PASCAL

Procedure or
Function: Function

Function Type: BOBUFPTR

Type Checking
Defeated: No

The following external subroutines
are used by PBCOPYBFRS:

PBRELlBF
PBGETlBF

Release 1 Buffer
Get 1 Buffer

Structured flow is as follows:

function PBCOPYBFRS;
begin

if {source chain not nil} then
bel in ------­

get first destination buffer}
{set FCD in first destination
buffer for Q-chaining}
re~eat

1f {source buffer not empty}
then {copy source buffer}
TCnain to next source buffer}
{decrement JTNUM}

until {source buffer nil} v
{JTNUM = O}

end;
end;

{no. of buffers to copy}
{source buffer size}
{dest. buffer size}
{mixed data buffer source chain}
{release source buffers}

4-33

MISCELLANEOUS USER AIDS

Useful information is recorded in
various locations of core as follows:

Location Information

$lOF

$llF

$l2F

$l3F

$140

$142

$144

$150

Build Release Number

Associated SCOPE
build level (i.e.,
410)

Source Cycle Number
and Patch Level
Indicator

Terminal Support
Indicator (OF3,
OF4, OF7)

Jump to Post-Mortem
Dump

Jump to UTOPIA

Jump to initializa­
tion of system
(MAIN$)

Table of commonly
used structure
addresses (see
PIPRINT). The table
name is ADDRESSES.

After downline loading of the system,
execution begins at location O. The
Macro Assembler program BEGIN is
linked at location 0 to set up
PASCAL run time information in regis­
ters and transfer control to initial­
ization. BEGIN loads registers Rl
through R4 as.follows:

Rl Last word of dynamic stack
area (DSTKLW)

R2 Last word of dynamic vari-
able area (DVARLW)

R3 First word of dynamic stack
area (DSTKFW)

R4 First word of dynamic vari-
able area (DVARFW)·

DSTKLW, DVARLW, DSTKFW and DVARFW
are initialized as entry points at

4-34

----- ------ .

Link Edit time. After these regis­
ters are loaded, BEGIN jumps to the
start of system initialization
(MAIN$) •

PASCAL COMPILER SUBROUTINES

The PASCAL compiler can generate
calls to four special subroutines:

QDEBUG

QENTRY

QEXIT

QULOCK

PASCAL Debug Option
Handler

Recursive Procedure
Entry Code

Recursive Procedure
Exit Code

Noninterruptable
Program Exit Code

These four routines are not available
to the user but must be present in
the system.

The PASCAL compiler generates calls
to QDEBUG when errors are detected
by code generated by turning on cer­
tain compile time PASCAL debug
options. Refer to the PASCAL Refer­
ence Manual for details concerning
these options. QDEBUG prints a mes­
sage on the local console identifying
the error:.

*XXXX Y zzzz
where XXXX is the return address to

the program calling
QDEBUG (hexadecimal)

Y is the error number
(decimal) (see table 4-5)

ZZZZ is the error parameter
(hexadecimal)

QENTRY is the recursive procedure
entry code that updates the dynamic
stack pointers and saves off the
necessary values when a recursive
procedure is called.

QEXIT is the recursive procedure exit
code that unstacks the latest entry
in the dynamic stack when a recursive

60470000 A

(

-(

(

(

(

(

(

(.....

[
(

'{'
"

(

(

('

('"

y

TABLE 4-5. QDEBUG ERROR IDENTIFICATION

Error,
Number Cause Error Parameter

I Assignment Out-of-Range Out-of-Range Value

2 Array Index Out-of-Range Out-of-Range Value

3 Divide by 0 ---
4 Dynamic Variable Overflow Next Available Address

5 Dynamic Stack Overflow

6 Global Interrupt
Negative

procedure exits (either normally or
via a GOTO EXIT).

Count

QULOCK is called upon exit from a
noninterruptable PASCAL program.
QULOCK performs an UNLOCK and returns
control to the caller without
destroying a function return value
in the A register.

QUEUE SERVICES

The queue services subroutines
provide for the first-in, first-out
queuing of linked lists of data buf­
fers (referred to as segments in the
following). One or more of the four
available queue services routines
(PBPTISEG, PBPTNSEG, PBGTISEG, and
PBGTNSEG) may be included in a point­
of-interface (POI) sequence of sub­
routine calls.

Each queue is associated with a
particular terminal control block
(TCB) that contains either a pointer
to the first segment in the queue or
a pointer to a queue control block
(QCB). The QCB contains a count of
the number of segments in the queue
and pointers to the first and last
segments in the queue.

Figure 4-7 illustrates queue
structure for both input and output
queues. Each data buffer in a seg­
ment may be either of two different
sizes. Segments are linked in the

60470000 A

Next Available Address

order in which they are to be re­
moved from the queue. The chain
address is contained in the last word
of the data buffer and the last data
buffer is identified by a NIL pointer
in the chain address location. The
first segment in the list (that
which is not pointed to by any seg­
ment in the list) is the first seg­
ment to be removed from the queue.

PUT ONE SEGMENT IN QUEUE

To put a single segment into a queue,
execute the following calling
sequence:

PBPTLSEG (R3SEGPTR)

where R3SEGPTR contains a pointer to
the segment to be placed in the queue
and is of the type BOBUFPTR. B60SERR
is true if this segment is the first
to be placed in queue. For parameter
setup, BITCB is a global variable
that contains a pointer to the TCB
associated with the queue.

PBPTISEG is the name of the fUnction,
is of the type integer, and contains
zero if the queue was busy and a seg­
ment was not placed in queue, or con­
tainsone if the queue was not busy
and a segment was placed in queue.

In the foregoing, it is assumed that
R3SEGPTR and BITCB do not contain
NIL pointers.

4-35

I • I
TERMINAL CONTFIOL BLOCK

•

I
• r ~ IIIOPTVPE -I • r r+ TRUE • • FALSE

BSQPTR I- . BSOPTfI

IIIOPTVPE -

• I • •
I
L - --- --~_...J .

QUEUE CONTROL BLOCK

aoocoUNT

BOOPUTP

BOOGETP '1

• BFLCD BFFCD BFLCD I BFFCD

FLAGS FLAGS

I-
• • : • • NIL

+

NIL

'-- -V "" FIRST SEGMENT
OUT

* NOTE:
EACH DATA BUFFER IN A,.
MAY BE ONE OF 1WO laD.

'--

Figure 4-7. Structure of a Queue

• 1

BFLCD BFFCD

FLAGS

NIL

•
• •

+

+

NIL

V -
LAST SEGMENT

IN

,
t
t *

-tI'

4-36 60470000 A

If~
~/

(

-{

(

(

{
(

(

(

(

GET ONE SEGMENT FROM QUEUE

The following calling sequence gets
(removes) one £egment from queue:

PBGTlSEG (R3SEGPTR)

where R3SEGPTR contains a pointer to
the segment to be removed from queue
and is of the type BOBUFPTR. For
parameter setup, BlTCB is a global
variable containing a pointer to the
TCB associated with the queue.

PBGTlSEG is a PASCAL function which
returns a value of type integer:
zero if the queue was busy and no
segment was removed from the queue;
one if the queue was not busy, but
was empty, and no segment was removed
from the queue; and two if the queue
was not busy and not empty and a seg­
ment was removed from the queue.

It is assumed in the foregoing that
BlTCB does not contain a NIL pointer.
It should further be noted that the
chain word of a returned segment will
not necessarily be NIL.

PROCESS DRIVER

The process driver subroutine selects
application pOints-of-interface (POI).
There are five such POIs, two related
to the source of a transaction and
three related to the destination.
These POIs are post input (BlIPSIN),
internal input (BlIPINT), internal
output (BlPROQ), pre-output (BlIPROP),
and post-output (BlIPSOP). The call­
ing sequence for the process driver
is as fo llows :.

PBPOI (parm)

where parm is one of the five POI
values given above.

Prior to calling the process driver,
the user program (TIP or internal
process) must set parameters in a
globally defined area. Those param­
eters include:

BlTCB = Address of terminal
control block (TCB)

60470000 A

BlBUFF = Address of first buffer

BlSEGS = Number of segments

BlPRI = Priority of queue from
which selection is to be
made (null = select high­
est priority available)

BlKEY = POI key (if zero, key is
obtained from TCT)

The process driver is called with
the appropriate POI key value be­
tween land 5, extracted either from
BlKEY or from the input or output
TCB. Except for the POI key, all
parameters are passed by priming
global variables to allow a common
interface to the process driVer, to
facilitate passing of parameters to
the POI sequences, and to provide
debug assistance. The inputs for
the various sequences are shown in
table 4-6.

Figure 4-8 illustrates process
driver system relationships. This
procedure operates only at the OPS
level.

CONSOLE SERVICES

For certain applications, a local
console is used as a communications
supervisory position. Three con­
sole functions can be selectively
activated or deactivated by the con~
sole operator (or at build time).
These functions are: communications
supervisor, orderwire, and diagnos­
tics. When one or more of these
functions are transferred to a remote
console, the corresponding functions
must be deactivated at the local
console.

The communications supervisor
(COMSUP) function is employed for
input of console control messages.
The orderwire function is employed
for both input and output traffic
messages. The diagnostic function
is used for output of hardware
diagnostic messages.

4-37

TABLE 4-6. PROCESS DRIVER SEQUENCE INPUTS

TCB
Address

Post Input X

Internal Input X

Internal Output X

Pre-Output X

Post Output X

CONSOLE WORKLIST ENTRY

A type BOCHWL worklist entry is
made by the internal process out­
put procedure for every message
placed in an empty console queue.
Such entry contains the console
TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin
with a slash (/) and end with an
end-of-transmission code (D).
Table 4-7 contains console control
messages and the results of each.

TEXT PR-OCESSOR

The TIP programmer is .responsible
for preparing all output in line­
compatible form before dispatch­
ing it via the multiplex subsystem.
Preparing such output may require
code conversion, enveloping, CRC
or LRC calculation, and other
protocol~defined conventions.
Since this requirement can be very
time consuming, text processing is
accomplished by firmware.

The text processor (TP) provides
the basic features needed to perform
common text processing functions.
For specialized protocols, the
facility to execute user-written
state programs is also available
within the TP to alter text process­
ing on a character-by-character

4-38

Segment Queue Number of
Address Priority Segments

X

X

X

X

X X

basis. The microprogram decodes
and executes the state program
instructions.

The basic features of the text
processor are:

1. CRC/LRC accumulation

2. Code conversion

3. Exception character recognition

4. Character insertion

5. Character counting

The following options are also
available for text preparation:

1. Overwrite source text during
processing or create a new text
string in destination buffers.

2. Select release of source buffers
after processing into destination
buffers.

3. Select the. size (large or small)
of the destination data buffers.

The text processor accepts input
chains of mixed data buffers. Empty
buffers (LCD less than FCD) are
allowed anywhere in the source chain.
No e~pty destination buffers are
generated.

The user can write any of four
different state program types:

60470000 A

(., ' ..

, ..-

(

(

(

(

(

(

(

(~;

INPUT PARAMETERS
(GLOBALS)

B1TCB

B1BUFF

B1SEGS

B1PRI

B1KEY

•
•
•
•

POST INPUT

(1) B1IPSIN

INTERNAL IN

(2) B.1IPINT

SEQUENCE NO. 1 ADDRESS

SEQUENCE NO. n ADDRESS

SEQUENCE NO. 1 ADDRESS

SEQUENCE NO. n ADDRESS

SEQUENCE NO. 1 ADDRESS

INTERNAL OUT

(3) B1PROO SEQUENCE NO. n ADDRESS

SEQUENCE NO.1 ADDRESS

PRE·OUTPUT

(4) B11PROP

POST-OUTPUT

(6) B1IPSOP

SEQUENCE NO. n ADDRESS

SEQUENCE NO. 1 ADDRESS

BKPIKT

POI KEY TABLE

EACH SET OF ENTRIES IS OF THE SIZE
OF THE LARGEST SET OF ENTRIES.

ANY USER
PROGRAM

POI o PR~ESSES

Figure 4-8. Process Driver System Relationship

60470000 A 4~39

TABLE 4-7. CONSOLE CONTROL MESSAGES

~1essag:e Results

ISUP

lORD

IDIA

lOIS

IACT

IDEA

IREO

ICAN

ICPR

Selects COMSUP function

Selects ORDERWIRE function

Selects DIAGNOSTIC function

NOTE

Only one of the above functions can be active at any
given time. The last function selected before the
operator goes to write mode is the active function.

aaa*

aaa*

Current function printed

Function activated

Function deactivated

Interrupted output message requeued

Interrupted output message cancelled

Printer and paper tape reader connected
to controller (hardware echo)

IDPR Printer and paper tape reader disconnected
from controller (no hardware echo - for
non-ASCII input)

*aaa = SUP, ORD, or DIA

1. Header build

2. Trailer build

3. Exception character processing

4. Processing when a character count
limit is reached

Header and
are always
processor.
nested.

trailer build programs
performed by the text
State programs can be

The state program instructions are
the building blocks for more complex
protocol logic. The currently de­
fined state program instructions are:

1. Load TP command word

4-40

2. Process next source character

3. Process character given in
instruction

4. Process character from user
packet

5. Bump to next source character

6. Process left 8 bits of CRC

7. Process right 8 bits of CRC

8. Load TP parameter

9. Save TP parameter

10. Exit TP

11. Continue TP

60470000 A

/

'~ /

(

[
(

(

(

(

12. Jump relative

Parameters are passed to the micro­
code TP through the File 1 registers.
These registers are accessible to
the user state programs via the load
and save TP parameter state instruc­
tions (table 4-8).

MACRO TEXT PROCESSOR

The interface between the user and
the firmware text processor is the
PASCAL program PBTP which sets a few
of the TP parameters in the File 1
registers, calls the firmware TP,
and handles returns from the firm­
ware TP to enable macro interrupts
and to obtain destination buffers.
The calling sequence of the macro
text processor is:

PBTP (parm)

where parm is a variable parameter
of type JPTPACKET, the text proces­
sor parameter packet (table 4-9).

MICROPROGRAM TEXT PROCESSOR

The microprogram TP contains an
internal counter that is decremented
for each character processed. The
initial value set into the counter
is a build-time parameter loaded
into File 1 register IB during
initialization. As the firmware TP
executes, macro and IDP interrupts
are inhibited. Therefore, the ini­
tial value is selected to control
the length of time such interrupts
are to be inhibited. When the
counter becomes zero, the firmware
returns to PBTP to enable macro and
IDP interrupts to occur. PBTP does
nothing but return to the firmware
TP to continue processing.

The end-of-buffer check for both
source and destination buffers is
performed after the last character
has been processed and stored, but
before the next character is ob­
tained, to save processing time.

When an exception character is
encountered, control is transferred

.60470000 A

to the designated exception state
program if the state program address
is greater than $FF (hexadecimal).
If less, the state program address
is returned to the user as a result
code.

When the character count equals the
character count limit, the character
counter is cleared and control is
transferred to the character count
limit state program if the state
program address is greater than $FF
(hexadecimal). Otherwise, the state
program address is returned to the
user as a result code.

TEXT PROCESSOR DATA STRUCTURES

The text processor parameter packet
(table 4-9) contains nine words,
specified as words 0 through 8.
Words 1 through 5 are parameters
that may be initialized by the user.
Words 6 and 7, the header and trailer
build state program addresses, must
be provided by the user. Words 0
and 8, respectively the user return
code and destination buffer address,
are parameters that return values
from the text processor to the user.

Other parameters that the user can
set up (TP command word, exception
table address, CRC/LRC initial value,
etc.) should be set in the header
build state program using the load
TP parameter state instruction. The
user parameter packet structure is
open to the user and, typically;
contains characters for insertion,
charac·ter counts, TP parameter load
values, TP parameter save areas, and
state program addresses. The source
buffer address is assumed by PBTP to
be in the global variable BIBUFF.

The TP command word controls the
character counting, CRC calculation,
code translation, and exception char­
acter processing functions. The for­
mat of the TP command word is as
follows:

Bits 7 4 3 2 1 o

4-41

4-42

TABLE 4-8. TEXT PROCESSOR FILE 1 REGISTER ASSIGNMENTS

File 1
Register

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

El

E2

E3

E5

E6

lB

User
Mnemonic

JOUSERPKT

JOHBSPA

JOTBSPA

JODBFR

JODLFCD

JOSBFR

JOSLFCD

JOSLNTH

JOCRCWD

JOCRC

JOCHRLMT

JOCHRCNT

JOCMDWD

JOEXCP

JOXLATE

JOEl SPA

JOE 2 SPA

JOE3SPA

JOCLSPA

JOCSPA

JORTNSPA

Description

User parameter packet address

Header build state program address

Trailer build state· program address

Destination buffer address

Destination LCD, FCD

Source buffer address

Source LCD, FCD

Source buffer 1ength-l

CRC polynomial

CRC result

Character count limit

Character count

TP command word

Exception table address

Code translate table address

Exception 1 state program address

Exception 2 state program address

Exception 3 state program address

Character count limit state program
address

Current state program address

Internal character count

Return state program address

Internal character count limit

60470000 A

'/

\~

c

(

()

(

(

(

[
{

(

(

.(

(/

TABLE 4-9. TEXT PROCESSOR PARAMETER PACKET

JPTPCODE User Return Code Integer

JPBRLS

o

1 Source Buffer Release Flag Boolean

JPSRCETOSRCE 2 Source to Source Flag Boolean

JPDBSZE 3 Destination Buffer Size (large or small) Boolean

JPCRCWD 4 CRC/LRC Polynomial (see figure 4-11) Integer

JPUSERPRT 5 User Parameter Packet Address Integer

JPHDR 6

7

Header Build State Program Address Integer

JPTRLR Trailer Build State Program Address Integer

JPDBFR 8 Destination Buffer Address BOBUFPTR

where:

FO = Exception character
processing

Fl = Character counting

F2 = Code translation

F3 CRC calculation

To enable one or more of the func­
tions, set the desired bit or bits.
These bits are processed from right
to left. If the code translate/
exception character bits are set,
but the translate table/exception
table addresses are zero, no code
translation/exception character
processing will be done.

The code translation table format is
as follows:

Bits 15 8 7 o

Word 0 Character 0 Character 1

Bits 15 8 7 o

Word n;l ICharacter n-ll Character n '1

The character to translate is used
as the index into the code transla­
tion table.

60470000 A

The format of an exception character
table is as follows:

~its

Word 1

15

Exception
Code

8 7

Exception
Character 1

o

Bits 15 8 7 o

Word n Exception
Code I Exception

Character n

End-of­
Table All zeros

The exception codes are JOEISPA,
JOE2SPA, and JOE3SPA (table 4-8).
Thus, each exception table can con­
tain any number of characters.
Encountering any such character in
the source text results in control
being transferred to one of three
exception state programs specified
by the exception code.

RETURNING TO THE USER

Any state program address less than
$100 (hexadecimal) causes control to
be re·turned to the user. Values
3-$FF in the state program address
are returned to the user in JPTPCODE
in the TP parameter packet. Return
codes 0-2 are reserved. Code 0
means that ~xt processing is com-

4-43

plete (end-of-text or exit TP state
program instruction encountered).
Return codes 1 and 2 are used inter­
nally by PBTP. This enables the
user to gain control to perform
logic the text processor cannot
perform. To return to the firmware
TP without calling PBTP, the user
must employ the following code:

INST ($C400,JOFRTN,
$BA2);

{LDQ return}
{EMS Q }

Control is returned to the firmware
routine that last called the main
firmware TP sequence.

eRe/LRe POLYNOMIALS

Table 4-10 illustrates the poly­
nomials used to generate CRC/LRC.

DEBUG AIDS_
There are four types of debug aids
available:

1. Test Utility Program (TUP)

2. Traps

3. Maintenance/Programmer Panel
Interface

4. Post-Mortem Dump

Each is separately described in the
following paragraphs. Figure 4-9
is an overview diagram of the debug
aids system.

TEST UTILITY -PROGRAM (TUP)

TUP is an interactive, machine­
language-oriented debug aid that
allows the user to perform a wide
variety of functions. Table 4-11
lists the available TUP commands.
Rules for operating TUP from the
communications console include:

1. Maximum of eight parameters (each
consisting of one to four hexadec­
imal characters) per TUP command.

2. Control ® to enter TUP mode,
control QD to leave TUP mode.

TABLE 4-10. CRC POLYNOMIALS

4-44

Initialization
Polynomial Value

x 16 + xIS + x 2 + 1 0

x 16 + x12 + x 5 + 1 0

x 12 -+ xlI + x 3 + x 2 + X + 1 0

x 6 + x 5 + 1 0

(X8 + 1) O/$FFOO
(See note)

x 8 + x 7 + x 6 + X + 1 0

x 8 + x7 + x 6 + X + 1 0

Used also to generate LRC polynomials.
o for even LRC, $FFOO for odd LRC.

Polynomial
Value

0

1

2

3

4

S

6

60470000 A

('--'-

(

\.,,- _/

./

// ~\

c

(- -

/'

(

(

(

(

(

(

(

(

(

('

(
(

(

(

(

,(,

('

(

(­
(,

{

60470000 A

MAINTENANCE/PROGRAMMER
PANEL

2550
COMPUTER

Figure 4-9. Overview Diagram of the Debug Aids System

4-45

Command

System Halt

System Restart

Dump Hex

Load Hex

Enter Halt

Halt Restart

Display Registers

Load Registers

Display File 1

Load File 1

Get a Buffer

Release a Buffer

Get a Worklist Entry

Put a Worklist Entry

Make BP Table Entry

Remove BP Table Entry

Enable Software BP

Disable Software BP

Device Assignment

*H = halt mode only
NH = not in halt mode
U = unrestricted

4-46

TABLE 4-11. TUP COMMANDS

Mode*

NH

H

U

U

U

H

H

H

U

U

U

U

U

U

U

U

U

U

U

SH/

SRI

Syntax

{ DPC} start addr, stop addr, base addr/ DPL '

LHX,

EH,

RS/

DR/

start addr, base addr/c
word l, ••• word 8/

halt loc l, ••• halt loc 4/

E{R}, load value/
R=1,2,3,4,Q,A,I,or M

DF,

EF,

BG,

BR,

LG,

LP,

EB,

~,

BL,

DL,

file 1 register (O •• $FF)/

file 1 register (O •. $FF), load value/

buffer size (0 •. 3)/

buffer addr, buffer size (0 .. 3)/

WL number/

WL number, word l, ••• word 6/

start addr, stop addr, breakpoint code/

start addr, stop addr, breakpoint code/

priority level (0 •• $11)/

priority level (0 •• $11)/

DA,LIO,PD/

60470000 A

',;-, .;"-/

(

(

(

(

(

(

r
{

(

(

(.

3. Slash (I) is TUP end-of-message
delimiter.

4. Question mark (?) or control ©
cancels TUP input message.

5. Manual interrupt cancels TUP
output.

6. Every TUP input message has
response (minimum of carriage
return and line feed).

7. Commas and blanks are interchange­
able TUP parameter delimiters.

Backspace (represented by + or
underline) and CONTROL-H erase
previous characters.

9. *ERR prints if input is invalid
(e.g., bad command, nonhex param­
eters, etc.).

In the following paragraphs that
describe the available TUP command,
the terms restricted mode and halt
mode are synonymous and both refer
to the condition in which the OPS
level is locked out. When the char­
acters XXXX are shown in the input
format, they indicate that zero to
four hexadecimal characters can be
entered. XXXX in the output response
indicates that four hexadecimal char­
acters are printed. Where the symbol
A is shown in the input format,
either a blank space or a comma may
be entered. In the response formats,
commas and spaces are normally
printed as shown.

SYSTEM HALT

The system halt (SH) command places
the system in the restricted mode
with the OPS level locked out.
Certain TUP commands can only be
executed while the system is in the
restricted mode (see table 4-5).

Format:
Response:

60470000 B

SHI
*SYS HLT
(or *ERR SYS HLT if
already in restricted
mode)

SYSTEM RESTART

System restart (SR) returns the
system to the unrestricted mode (OPS
level) after a system halt.

Format: SRI

Response: *
(or *ERR SYS HLT if not
in restricted mode)

LOAD HEX

The load hex (LHX) command sets up
the load address for subsequent C
commands to use in loading hexadeci­
mal information from the local con­
sole to the processor core memory.
The formats associated with the LHX
and subsequent C commands are as
shown in figure 4-10.

The base address value in the LHX
command is optional and is used for
relative addressing.

The C command can load from 1 to 8
words in core memory. For each word
loaded, the load address is incre­
mented. Thus, multiple C commands
load contiguous core locations. Any
other TUP command can be executed
between C commands without destroy­
ing the load address. A new load
address is set by executing a
subsequent LHX command.

The response to the C command is the
previous contents of the word loca­
tions being loaded with new words.
If an attempt is made to load an
out-of-range location, dashes are
printed following the last word
successfully loaded.

DUMP HEX

Two commands (OPC and OPL) are
provided to control dumping of hexa­
decimal information. OPC dumps the
core memory contents to the local
console. OPL dumps the core memory
contents to the assigned TUP dump
device. The OPC and OPL command and

4-47

~start load address

t ______ ~base address (optional)

Format: LHX!:IXXXX!:IXX~X/

Response: *
Format: ~ No limit to number of

C XXXX!:lXXXX!:l ••• XXXX! words loaded, but maximum
of 8 words per line.

Response: *XXXX L,.X_X __ X __ X;.;........-____ ---'

start-----1
location

previous contents of word locations
(or dashes if load address out-of­
range)

Figure 4-10. C Command and Response Format

response formats are similar and are
as shown in figure 4-11.

In either the DPC or DPL command, if
only a start address is specified
(no stop address), a single word is

dumped from core. If the user
attempts to dump from an out-of-range
address, the following error response
is printed:

Response: *ERR

ENTER HALT

The enter halt (EH) command patches
a 2-word return jump into the TUP
breakpoint handler at a specified
location. The command establishes
memory address traps that cause the
system to enter the halt (restricted)
mode. See figure 4-12.

The return jump is a 2-word macro
assembler instruction. The halt
address contents printed in response,
therefore, are also two words. If
the halt address attempts to access
an out-of-range address, dashes are
printed as a response. When the
return jUmp is executed, the TUP
breakpoint procedure is entered and
the following response is printed
before the system is placed in the
halt (restricted) mode:

Response: *HLT XXXX- halt
location

4-48

RESTART FROM HALT

The restart from halt (RS) command
returns control to the system from
the TUP breakpoint handler at the
instruction after the return jump
patched in by the enter halt (EH)
command or from a software break
breakpoint:

Format:

Response:

RS/

*
(or *ERR SYS HLT if the
user attempts to restart
from the system halt
(SH) command)

DISPLAY REGISTERS

The display registers (DR) command
causes the contents of registers Rl,
R2, R3, R4, Q, A, I, and M to be
displayed in the sequence stated.
Valid information is displayed only
when the system is in the halt
(restricted) mode.

Format: DR/

Response: *1 = XXXX 2 = XXXX
3 = XXXX ••• M = XXXX

LOAD REGISTER

The load register command enters a
specified value into a specified

60470000 A

\
\

/.~.

/--

/.
\

(

(

(

(

(

r
(

(

r---------------start address I ! ~:::: ::::::: (optional)

Format: OPC~XXXX~XXXX~XXXX/
OPL~XXXX~XXXX~XXXX/

~start address

Response: *xx'xX XXXX XXXX ••• xxxx--iup to 8 words
*X1XX XXXX xxxx ••• XXXX Iper line

start address +8

dumped

Figure 4-11. OPC or 'DPL, Command and Response Format

[halt locations (up to 4 per line)

Format: EH~~XXX~~XXXX~~ ••. xxxxY

Response:

halt address contents (2 words),
dashes print if halt location
out-of-range.

Figure 4-12. Enter Halt Command and Response Format

register. The response is the old
register contents.

Format:

tr-----load
value

Er~XXXX/

Response: *XXXX _-- previous
register
contents

where r equals 1, 2, 3, 4, Q, A, I,
or M to specify the register to be
loaded.

DISPLAY FILE 1

t file 1
register
(0 ..• $FF)

Format: DF~XXXX/

Response: *XXXX"'---contents of
specified
file register

An error response prints if the user
attempts to display an invalid file
1 register.

LOAD FILE 1

Format:

rfile 1
register
(0 ••• $FF)

load
t value

EF~XXXX~XXXX/

Response: *XXXX...---previous
contents of
specified'
file register'

An error response prints if the user
attempts to load an invalid file 1
register.

60470000 A 4-49

GET A BUFFER

Format:

Response:

r-buffer size
, (0 ••• 3)

BGlIXXXX/

*XXXX~.'-~address of
obtained buf­
fer (or *ERR
if buffer
size invalid)

RELEASE A BUFFER

Format:

Response:

address rbuffer

r buffer size
(0 ••• 3)

BRlIXXXXlIXXXX/

*
(or *ERR if buffer size
is invalid)

GET A WORKLIST ENTRY

Format:

Response:

l ---work1ist
, number

LGlIXXXX/

*XXXX ('XXX •.• XXXX,

t
worklist entry
(JlWLMAX words)
(or *ERR if work­
list number is
invalid)

PUT A WORKLIST ENTRY

Format:

Response:

4-50

worklist

numbe!r worklist entry
(JlWLMAX words)

i t i
LPlIXXXXlIXXXX ••• XXXX

*
(or *ERR if worklist
number is invalid)

PLACE ENTRY INTO BREAKPOINT TABLE

Format:

Response:

start
location

location I stop

!

breakpoint
code ,

EBlIXXXXllXXXXlIXXXX/

*
(or *ERR if start/stop
location out-of-range)

REMOVE ENTRY FROM BREAKPOINT TABLE

Format:

Response:

start
location

stop
location

, !

breakpoint
code

RBlIXXXXlIXXXXlIXXXX/

*
(or *ERR if start/stop
location out-of-range
or entry not found in
breakpoint table)

ENABLE SOFTW.ARE BREAKPOINT

This command allows software break­
points to occur on a specified
software priority level to allow
re-entrant code to be breakpointed
at desired priority levels only.

Format:

Response:

rpriority level
, (0 ••• $11)

BLlIXXXX/

* (or *ERR if priority
level is invalid)

60470000 A

/
~

c
(-~

(

(

(

[
{

(

_(0"
,/

('

c
~\ '/

DISABLE SOFTWARE BREAKPOINT

r--priority level
, (0 ••• $11)

Format: OLllXXXX/

Response: *
(or *ERR if priority
level is invalid)

DEVICE ASSIGNMENT

The device assignment (OA) command
allows the user to dynamically assign
logical input/output (LIO) to phys­
ical devices (PO).

Format:

Response:

rLIO rpo

OAllXXXXllXXXX/

*
(or *ERR if either LIO
or PO is out-of-range)

The available PO codes are:

o = null device

1 = local console

The available LIO codes are:

1 = supervisory output

8 = TUP dump to assigned device

9 = snapshot core

$A = snapshot registers

$B = online dump

$0 = quick output

TRAPS

Softwar.e traps (breakpoints) are
created by generating program pro­
tect faults using the maintenance/
programmer panel program protect
system. At initialization, all of
core memory is protected except for
the buffer and global areas. When
the enter breakpoint (EB) TUP com­
mand is issued, the specified
instruction is left unprotected.
When the protected instruction fol-

60470000 A

lowing the unprotected instruction
is executed, a program protect fault
occurs. The fault instruction exe­
cutes as a selective stop and a level
1 interrupt is generated. The inter­
rupt handler then passes control to
the desired debug routine if the
interrupt occurred at a software
priority level for which software
breakpoints have been enabled.

The following general information
concerning breakpoints should be
noted:

1. Software breakpoints are machine­
language-oriented, not PASCAL­
oriented.

2. Routines in which interrupts are
locked out cannot be breakpointed.

3. The following instruction types
cannot be breakpointed:

a. Instructions that write into
non-buffer or non-global
memory.

b. Jump, return jump, or skip
instructions.

c. Instructions that are privi­
leged (EIN, lIN, SPB, CPB, and
inter-register instructions
with destination register M).

4. Two consecutive instructions
cannot be breakpointed.

S. The instruction length must be
entered with the EB instruction.
For example, to breakpoint the 3-
word instruction at locations
$100, $101, and $102, the EB for­
mat is EB, 100, 102, - {BP code} /.

TRAP PROCEDURE ENTRY

To enter a trap procedure from a
so~tware priority level via a soft­
ware breakpoint, perform the follow­
ing steps:

1. Using the enter breakpoint (EB)
TUP command, make an entry in the
breakpoint table.

4-51

2. To enable the trap to occur, use
the enable breakpoint (BL) TUP
command.

3. Leave the TUP mode (optional).

4. Set the console to write mode
(optional) .

5. Switch on the program protect
system.

TRAP PROCEDURE DISABLE

To turn off (disable) all breakpoints,
switch off the program protect system.
To turn off all breakpoints on spec i­
fined priority levels, use the DL TU
TUP command. To remove an entry
from the breakpoint table, use the
RB TUP command.

AVAILABLE TRAPS

The currently available traps are
listed in table 4-12.

The trap calling sequences are as
follows:

PBTUPBREAKPT

PBlSNAP (parm)

PB2SNAP (parm)

PB3SNAP (parm)

where parm is a variable parameter
of type JFSNAPTABLE.

PBDUMP (parmI, parm2, parm3)

where parmI and parm2 contain the
start dump and stop dump addresses,
respectively, and parm3 is the out­
put device mnemonic (type integer).

PBQUICKIO (parmI, pa~2)

where parmI is the output device
mnemonic (type integer) and parm2 is
the pointer to the output buffer
(type BOBUFPTR) .

PBWRAPSNAP (parmI, parm2)

where parmI is a variable parameter
of type JFSNAPTABLE and parm2 is the
index into the snapshot table JFWRAP.

MAINTENANCE/PROGRAMMER PANEL
INTERFACE

The maintenance/programmer panel
interface accepts seven different
control characters. These are: H,
I, J, K, L, colon (:), and question
mark (?). H through L identify the
type of data or operation entered or
returned, the colon terminates all
entries except master clear, and the
question mark accompanied by correct
parity generates a master clear to
the computer, memory, and peripheral
devices. There is no response to
the master clear entry.

TABLE 4-12. AVAILABLE TRAP LISTING

Breakpoint Procedure Queues Available
Trap Name as System Code Called Output Debug Aid

TUP 7 PBTUPBREAKPT No Yes

Snapshot Core 9 PBlSNAP Yes Yes

Snapshot Registers $A PB2SNAP Yes Yes

Snapshot Return Address $F PB 3 SNAP Yes Yes

On-Line Dump $B PBDUMP No Yes

Quick I/O $D PBQUICKIO No Yes

Wrap Around Snap $E PBWRAPSNAP No Yes

4-52 60470000 A

(

/

/~

\ /

(

('

(

(

(

(

(,

[

(

(

A normal entry consists of one con­
trol character H through Li zero,
two, four, or eight hexadecimal
digits (0 through F), and colon. A
normal response consists of one con­
trol character that identifies the
data that follows, four or eight
hexadecimal digits, and colon. If
a transmission or operator error
occurred on entry, the control char­
acter is replaced by an asterisk (*)
and the function control register
(see table 4-13) is displayed. All
entries except question mark cause a
response· unless bit 16 of the func­
tion control register is set.

CONTROL CHARACTER H FUNCTIONS

Control character H clears the
function control register (FCR) bit
position specified by the two hexa­
decimal digits following the control
character. For example, HIB clears
hexadecimal position IB (decimal
position 27) of the FCR, thereby
resetting the Interrupt System
Active bit.

See also Stop/Go functions.

CONTROL CHARACTER I FUNCTIONS

Control character I functions iden­
tical to control character H except
that the specified bit position is
set rather than cleared.

See also Stop/Go functions.

CONTROL CHARACTER J FUNCTIONS

Control character J replaces the
contents of specified digit posi­
tions in the FCR. While it may
be used to change the value of any
FCR digit (0-7), it is generally
used to change display digits 0
and 1. The value of display digits
o and 1 specify the MP17 parameter
to be displayed or entered (see
table 4-14).

J functions generally consist of
the control character J, followed
by two hexadecimal digits, followed

60470000 A

by a colon. The first hexadecimal
digit specifies the FCR digit (0-7)
and the second specifies the value
that digit is to assume (O-F).
Thus, to set display digit 1 to
specify the A register (register
4), enter:

J14:

The J code is also used to alter­
nately display the upper and lower
16-bit portions of a 32-bit reg­
ister. For example, entry of:

J:

complements the upper/lower (U/L)
indicator on the maintenance
panel and causes the opposite halt
of the specified register to be
displayed.

CONTROL CHARACTER K FUNCTIONS

Control character K is used to
either display or enter data values
into the facility specified by dis­
play digit 1. Therefore, before
using this control function, the
value of display digit 1 must be
properly established. Thereafter,
enter K followed by a colon to dis­
play the value or enter K followed
by four or eight hexadecimal digits
that are to be entered, followed by
a colon.

For example, to display the P
register, enter the following
sequence:

Jll: (Sets display digit 1 to
value 1 to specify P
register)

K: (Causes display of
facility specified
by display digit 1)

To enter the hexadecimal value
l4FE into the breakpoint regis­
ter, enter the following
sequence:

J16: (Sets display digit 1 to
value 6 to specify BP
register)

4-53

Bit

31 lF

30 lE

29 lD

28 lC

27 lB

26 1A

25 19

24 18

23 17

22 16

21 15

20 14

19 13

18 12

17 11

16 10

15 OF

14 OE

13 OD

12 OC

11 OB

10 OA

09 09

08 08

07 07

06 06

05 05

04 04

03 03

02 02

01 01

00 00

4-54

TABLE 4-13. FUNCTION CONTROL REGISTER (FCR)

Digit Bit Definition

(LSB) Overflow Status

Protected Instruction
7

Status

Protect Fault Status

Parity Error Status

Interrupt System Active Status

Auto-Restart Enabled Status
6

Micro Running Status

Macro Running Status

5
Auto Display

Enable Console Echo

Enable Micromemory Write

Multilevel Ind Add Mode
4

Suppress Console Transmit

3
BP Int (BP Stop if C1r)

Micro BP, Step, Go, Stop (Macro if C1r)

Step

Selective Stop
2

Selective Skip

Protect Switch

1 Display 1

0 Display 0

(MSB)

,

,

Status
Only

} OO=BP off
Ol=Inst ref BP
10=Store op BP
ll=A1l ref BP

(including
READ
operand)

60470000 A

/ .'"

._"",'

C' ~,
. j

(

(

(

(-

(

[
(

(

c

TABLE 4-14. DISPLAY CODE DEFINITIONS

Code Display 1 Display 0

0 0 0 0 0 Function Control Register F2 (File 2)

1 0 0 0 1 P Register (lAC) N Register

2 0 0 1 0 I Register (current inst.) K Register

3 0 0 1 1 X Register

4 0 1 0 0 A Register Q Register

5 0 1 0 1 Micro-Instruction Registe~ F Register

6 0 1 1 0 Breakpoint Fl (File 1)

7 0 1 1 1 P-MA (Micro Page Address) Main Memory

8 1 0 0 0 SMI Status/Mode 1

9 1 0 0 1 Ml (Interrupt Mask) Micro Return
Jump Register

A 1 0 1 0 SM2 Status/Mode 2

B 1 0 1 1 M2 (Interrupt Mask)

C 1 1 0 0

D 1 1 0 1 A*

E 1 1 1 0 X*

F 1 1 1 1 Q*

K14FE:(Enters 14FE value into
facility specified by
display digit 1)

CONTROL CHARACTER L FUNCTIONS

The function of control character
L is identical to the function of
control character K except that it
is associated with display digit
0, rather than display digit 1.

Note that when main memory is dis­
played or entered, the display
digit 1 selection specifies the
main memory address to be displayed
or entered and, therefore, display
digit 1 must be set for either the
P register (1) or A register (4).
After display or entry, the regis­
ter specified by display digit 1
is incremented by 1.

When micromemory is displayed or
entered, the K register is the
least significant eight bits of the

60470000 A

Micromemory

address and the N register pro­
vides the remaining bits. After
display or entry, the K register
is incremented by 1.

STOP/GO FUNCTIONS

Control characters H and I provide
stop/go control functions when used
without following hexadecimal char­
acters. Control character H pro­
vides the Go function and control
character I provides the Stop
function. If bit 12 (decimal) of
the FCR is set, a micro stop/go
function is specified. If bit 12
is not set, a macro stop/go func­
tion is specified. The response
to a start/stop function is display
of the FCR.

MASTER CLEAR FUNCTION

A master clear can be generated in
any of several different ways:

4-55

1. Entry of a question mark (?)
character from the console.

2. Pressing the MC (master clear)
button on the maintenance panel.

3. Pressing the autoload button.

4. A signal from a peripheral
controller.

5. By the power-on master clear.

BREAKPOINT FUNCTIONS

There are two types of break­
points, macro and micro. If bit
12 of the FCR is clear, macro
breakpoint (BP) is selected. If
bit 12 is set, micro BP is
selected.

For macro BP, bits 14 and 15 of
the FCR are used together to
select one of four macro BP modes:

4-56

00 = Breakpoint off

01 = Instruction reference BP

10 = Store operand BP

1 = All references BP (includes
READ operand)

A macro BP occurs if the breakpoint
register is equal to the main mem­
ory address and the select condi­
tions are met. If bit 13 (decimal)
of the FCR is set, an interrupt
(rather than a stop) occurs when
the breakpoint conditions are met.
Currently, there is no software
supporting a hardware breakpoint
interrupt.

For micro BP, the micro page ad­
dress (P/MA) is compared to the
lower 12 bits of the breakpoint
register and the upper/lower (U/L)
indicator is compared to bit 13 of
the breakpoint register. If all
bits are equal and the combination
of FCR bits 14 and 15 is not zero,
a micro stop occurs.

60470000 A

c

(

(

(

(

(

{\

{
(

(

(

MULTIPLEX SUBSYSTEM INTERFACES 5

INTRODUCTION

The multiplex subsystem contains
the hardware, microprograms, and
software elements necessary to
provide data and control paths for
information interchange between
the various protocol handlers in
the communications system soft­
ware and the many communications
lines. The design of the subsys­
tem is based on the "multiplex
loop" concept which is a demand­
driven mechanism for gathering
input data and status from the
communications lines and distribut­
ing output data and control infor­
mation to the communications lines
on a real-time basis. Figure 5-1
depicts the basic elements of the
multiplex subsystem.

Line oriented input and output
buffers provide temporary storage
for data in the multiplex subsystem.
The subsystem also provides special
table-driven and dynamically con­
trolled processing of characters
received from communications lines.
Generally, the subsystem processes
data on a character-by-character
basis while the user programs
(e.g., terminal interface programs)
process data on a message or block
basis. Circuit, modem, and subsys­
tem status is oetected and trans­
ferred to the user programs in the
form of work demands. Control in­
formation is received from the
user programs in the form of com­
mands and these commands are
decoded and executed by one or
more of the subsystem elements.

HARDWARE COMPONENTS

The multiplex subsystem, as illus­
trated in figure 5-1, includes
the multiplex loop interface
adapter (MLIA) , loop multiplexers,

60470000 A

and communications line adapters
(CLAs) •

MULTIPLEX LOOP INTERFACE ADAPTER

(MLlA~

The MLIA provides hardware inter­
face between the multi~lex input/
output loops and the multiplex
subsystem software. Major func­
tions provided by the MLIA are:

1. Management of the input/output
loops.

2. Input data buffering to com­
pensate for the difference
in rate at which characters
are removed from the input
loops and the rate at which
they are stored in the main
memory.

3. Output data demand (ODD) detec­
tion and buffering.

4. Multiplex loop error detection.

5. Generation of interrupts for
the multiplex subsystem micro­
programs and software for
functions such as:

a. Output data demand received.

b. Line frame received.

c. Loop error conditions.

LOOP MULTIPLEXERS

The loop multiplexers provide in­
terface between a group of as many
as 32 CLAs and the demand-driv~n
multiplex loop. Its primary
function is to receive parallel
data from the CLAs and present
it to the serial input loop in
the loop cell format. Conversely,

5-1

f'\,
")

VI
I

'"

0\
o
o
o
o
o
>0

n
\, j

I
COMMUNICATIONS PROCESSOR

81
: I

8:
I
MEMORY BUFFERS
I

I

MULTIPLEX
LOOP
INTERFACE
ADAPTER

...... --I~wl (MLlA)

OUTPUT LOOP

MULTIPLEX
LOOPS

I.. MULTIPLEX SUBSYSTEM • I

CLA- COMMUNICATIONS LINE ADAPTER
TIP - TERMINAL INTERFACE PROGRAM

Figure 5-1. Basic Elements of the Multiplex Subsystem

r ,~

, , '. j , ,
(':, '\

/

I~
I :

" j

\

)
(
~,

'\ ("\
) \ , "

COMM.
LINES

/'\
\ r"" p:;-"

\ "

(

('

(

(

(

f
(

(

c
c

it assembles serial data in the
loop cell format from the output
loop and presents it to the CLAs
in parallel form.

COMMUNICATIONS LINE ADAPTERS

The CLAs provide the communications
interface between the loop multi­
plexers and the communications
lines. The primary functions of
the CLAs are to assemble serial
data from the communications line
into parallel data and present
this data to the loop multi-
plexer or, conversely, to dis­
assemble parallel data from the
loop multiplexer and present it
in serial form to the communica­
tions line. The CLA operating
characteristics may be altered
under program control for such
functions as signaling rate, char­
acter length, parity, stop bit
duration, etc.

SUBSYSTEM INTERFACES

User interfaces to the multiplex­
subsystem can be divided into
three categories:

1. Command Driver Interface -
Command communication to the
multiplex subsystem to control
data flow to and from the com­
munications lines.

2. TIP Subroutines - Techniques
employed by the multiplex
subsystem to communicate input
events to the user.

3. State Program Tables - Tech­
niques employed by the user to
direct the multiplex subsystem
to provide specific input pro­
cessing functions on a character­
by-character basis via the
STATE program tables.

COMMAND DRIVER INTERFACE

The command driver calling
sequence from the OPS level is:

PBCOIN (parm)

60470000 A

and the command driver calling
sequence from level 2 is:

PMCDRV (parm)
where parm is the name of the
request packet. The general
format of a request packet is as
follows:

Bits 15----------------0

WORD 0 Command I Parameter

WORD I Line Number

WORD 2 Parameters

WORD 3 Parameters

WORD 4 Parameters

The following commands are availa­
ble to the user for controlling
the flow of data to and from the
communications lines:

NKCLRL
NKINIL
NKCONTR
NKENBL
NKINPT
NKOUTPUT
NKENDIN
NKENDOUT
NKDISL

Clear Line
Initialize Line
Control
Enable Line
Input
Output
Terminate Input
Terminate Output
Disable Line

CLEAR LINE COMMAND

The clear line command causes the
subsystem to clear (reset) all
line-oriented software and hard­
ware (CLA) functions associated
with the line specified by the
line number. The command format
is as follows:

Bits 15

WORD 0

WORD I

WORD 2

where:

NKCMD

NKLINO

8 7

NKCMD I
NKLINO

I NKLTYP

= Command code
(NKCLRL)

= Line number (iden­
tifies port and
subport)

o

5-3

NKLTYP = Line type.
Specifies line-type
table entry.
Defines the physi­
cal characteristics
of the port, modem,
and circuit type.

INITIAI.IZE LINE COMMAND

The initialize line cbmmand
establishes the line type of the
specified port and places the
line in a mode in which the sub­
system monitors and processes
modem and circuit related status.
Other line related functions (e.g.,
processing of input and output
characters) are inhibited while
the line is in the initialize mode.
The command format is as follows:

Bits 15

WORD 0

WORD 1

WORD 2

where:

NKCMD

NKLINO
NKLTYP

8 7

NKCMD I
NKLINO

I NKLTYP

= Command Code
(NKINIL)

= Line number
= Line type.

Specifies the line
type table entry.

CONTROL COMMAND

The control command serves a two­
fold purpose. It may define the
character transmission characteris­
tics of a given line according to
the transmission characteristics
key (NKTCKY) for input/output sig­
naling rate, character length,
parity type, stop bit duration,
and sync character. The command
may also specify up to five modem/
circuit control functions such as:
echo, break, terminal busy, resync,
etc. Such control functions are
specified in the optional fields
of the command packet.

5-4

o

Generally, the command is used to
initialize or alter the character
transmission characteristics of
the line or to generate circuit
control functions. This command
must not be issued prior to the
initialize command. The command
format is as follows, with option­
al modem/circuit functions as'
defined in table ~-l.

Bits 15 14 8 7 6

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4

where:

NKCMD

NKTCKY

NKLINO
NKFUNI

thru

NKFUN5

ZEROS

Fl

F3

F5

NKCMD NKTCKY

NKLINO

NKFUNI F2 NKFUN2

NKFUN3 F4 NKFUN4

NKFUN5 . ZEROS

=

=

=
=

Command code
(NKCONTR)
Optional character
transmission key.
If non~zero, ref­
erences the charac­
ter transmission
characteristics
table to specify
the input/output
speed, character
length, parity,
stop bit duration,
and sync character.
Line number
Optional modem/
circuit function.
If Fl-F5equals one,
the function is
set (turned on).
If Fl-F5 equals
zero, the funct10n
is reset (turned
off).

Delimit end of
options and must be
placed in the byte
following the last
requested modem/
circuit function.
A maximum of five
functions may be
specified.

o

60470000 A

/'. ~

C"·
, .

(

(
,
(

(

(

(

(:'

r
(

t

(

('

, " ('"

(

Function
Mnemonic

NOISR

NORTS

NOSRTS

NOOM

NOLM

NODTR

NOTB

NORSYN

NONSYN

NOBREAK

NODLM

NOECHO

NOLBT

NOPARY

NOPI

TABLE 5-1. OPTIONAL MODEM/CIRCUIT FUNCTIONS

Function
Provided

STATUS *

RTS

SRTS

OM

LM

DTR

TB

RSYN*

NSYN

BREAK

DLM*

ECHO

LBT

Even/Odd
Parity

Parity
Inhibit

Description

CLA Status Request

Request to Send

Secondary Request to Send (Supervisory
Channel)

Originate Mode/Auxiliary Modem Control

Local Mode/Auxiliary Modem Control

Data Terminal Ready

Terminal Busy (line busy out)

Resynchronize

New Sync

Send Break

Data Line Monitor

Echop1ex Mode

Loop Back Test

Select even or odd parity**

Disable parity option

*Pu1sed functions. Provide momentary signal and need not
be reset.

**If reset flag is set in request packet (F1-FS), even
parity is selected. If reset, odd parity is selected.

60470000 B

NOTE: Reference the applicable CLA manuals for
descriptions of the above functions. •

5-5

ENABLE LINE COMMAND

This command directs the subsystem
to activate, as a function of line
type, the necessary modem signals
to allow the local modem to con­
nect to the specified communica­
tions line. The command also
conditions the subsystem to moni­
tor and analyze any changes in
the modem status for signals
indicating that a "line connect"
has occurred. As a further func­
tion, this command dynamically
allocates memory space for the
line control block (LCB). Charac­
ter processing functions are
inhibited during the time the line
is in the enable mode. The format
for the enable line command is as
follows:

Bits 15 8 7

WORD 0 NKCMD

WORD 1 NKLINO

where:

NKCMD = Command code
(NKENBL)

NKLINO = Line number

INPUT COMMAND

0

This command directs the subsystem
to initiate the processing of data
on the specified input line (i.e.,
turn on' the input side of the CLA) •
The processing functions provided
by the subsystem are determined by
the following parameters: ,

1. Terminal Type (NKTTYP) - Indexes
a terminal characteristics table
that defines the terminal char~
acteristics in terms of the code
set, character transmission
characteristics, CRe polynomial
type, packet size, etc. The
subsystem initializes the line
control block (LCB) with the
above parameters.

2. Initial Input Processing State
(NKISTAI) - Indexes a state
process to define the initial

5-6

input processing functions pro­
vided by the subsystem.

3. Special Character (NKSCHR) -
Optional field. If called in a
state instruction, directs the
subsystem to compare incoming
characters against a special
character. Instruction may be
included in any state process.

4. Block Length (NKBLKL) - Optional
field. The TIP may override
the maximum block length
specified in the terminal char­
acteristics table with the new
block length value in this
field. The subsystem stores
the block length count in the
character count 2 field of the
LCB. The TIP may then define
a state process to decrement
character count 2 when charac­
ters are received and to provide
processing functions when the
count reaches zero.

5. Buffer Options - The subsystem
allows the TIP to specify either
of two different data buffer
sizes for each terminal type.
Another option directs the sub­
system to store the first char~
acter of a new data block (or
packet) into a new data buffer
at the address specified by the
first character displacement
(FCD). These options are im­
plemented as follows:

a. If WORD 3 of the command
packet contains a buffer
pointer (NKIBP), the subsys­
tem derives the FCD from
WORD 0 of the data buffer.
The buffer size defined in
this first data buffer
specifies the size of sub­
sequent data buffers.

b. If WORD 3 of the command
packet contains a first
character displacement
(NKIFCD), the subsystem
obtains a buffer from the
available buffer pool and
uses NKIFCD as a displace­
ment to store the first
character. Before obtain-

60470000 A

/

\~ "

(

(0···

-(

(0

(

[
(

(

(

(

ing the buffer, the subsys~
tem selects the buffer size
accord~ng to two parameters
stored in the terminal
characteristics table.
Parameter 1 (packet size)
has an implied buffer size
(established at program
build time) or, if parameter
1 is zero, the subsystem
selects the buffer size
from parameter 2 (buffer
size).

Once executed, an input command
remains in effect until the sub­
system receives either a terminate
or disable command. The character
transmission characteristics must
be defined by the control command
before the input command is issued.
The format for the input command
is as follows:

12 a 7

NKCMD I NKTTYP

NKLINO

NKSCHR I NKISTAI

NKIBP or NKIFCD

Bits 15

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4 FlIF21F31 NKBLKL

where:

NKCMD

NKTTYP

NKLINO
NKSCHR

NKISTAI

=

=

=

=

Command code
(NKINPT)
Index to terminal
characteristics
table
Line number
Special character
(optional)
Initial input pro­
cessing state. In-

o

dex to initial state
process executed
when first character
is received.

NKIBP
or

NKIFCD

60470000 A

= Input buffer pointer
or first character
displacement., If
NKIBP, contains
address of first
input buffer. If
NKIFCD, the subsys­
tem obtains the next
available buffer

Fl

F2

F3

NKBLKL

from the pool and
stores the first
character received
in the byte speci­
fied by NKIFCD. If
bits 0-15 are zero,
the subsystem ob­
tains the next
available buffer
from the pool and
uses the NKIFCD
stored in the termi­
nal characteristics
table as displace­
ment for the first
data character.

= Code Translation
Required Flag
(NFNOXL). One
equals translate,
zero equals no
translation.

= Parity Strip Flag
(NKRPRT). One
causes high order
bit .of a-bit char­
acter (7 bits plus
parity) to be
stripped, zero
causes no stripping.

= Input after output
flag (NKINOUT).
Must be set by HDX
protocols which
must operate with
full duplex lines.

= Maximum Block
Length (optional).
An entry in this
field overrides
the block length
specified in the
terminal charac­
teristics table.

OUTPUT COMMAND

This command permits output mess­
ages .to be directed to a specified
output line. Line, modem, and
control functions, as defined in
the line type tables, are gener­
ated by the subsystem as a func­
tion of the physical line
requirements.

5-7

The output buffer pointer and FeD
in the first word of the output
buffer specifies the first charac­
ter to be output. An option in
the command packet (NKOFCD) allows
the TIP to specify the first out­
put character regardless of the
FCD in the output buffer.

NOTE

Before selecting the NKOFCD
option, the TIP must ascertain
that the output line is idle.
The command driver extends con­
trol to the system error routine
if this option is selected
while an output message is in
process.

Output continues until the charac­
ter specified by the last character
displacement (LCD) is transmitted.
At that point, the subsystem either
chains to the next output buffer,
if the chain address in the buffer
just output is non-zero; or stops
output, if the chain address is
zero, or if the suppress chaining
flag (BFSUPCHAIN) is set in the
flag word of the first output
buffer.

The subsystem generates a worklist
entry for the user program for
each data block output by the sub­
system. If the buffer output is
the last data buffer of a trans­
mission block and line turnaround
is required, the subsystem gener­
ates the proper modem control
signals to turn the line around,
monitors modem status for line
turnaround, and notifies the
appropriate terminal-dependent
subroutine that the line is ready
for input. Modem signals and
modem status analysis functions
are specified by the line type
tables.

Either the terminate output or
disable command may also be used
to terminate output processing
functions on a specified line.
Receipt of either command causes
~he subsystem to immediately cease

5-8

all processing functions associated
with the specified line.

Receipt of an output command for a
line on which an output message is
in process causes the subsystem
to chain the new message to the
last buffer of the message current­
ly being output. If the possibil­
ity exists that the new message
may be chained to the current
message, the user must prime
NKLBPMP.

The format of the output command
is as follows:

Bits 15----------8 7----------0

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4

where:

NKCMD

NKLINO

F11

NKOPB

NKLBPMP

Fl

NKOFCD

NKCMD 1
NKLINO

NKOBP

NKLBPMP

I NKOFCD

Command code
(NKOUTPUT)

= Line number

= Output buffer
pointer

= Address of last
buffer of previous
message. Chains
new message to
last buffer of the
message being output.

= End of Transmission
Flag (NKENDX). On
controlled carrier
lines, directs the
subsystem to turn
the line around
after the last buf-
fer of the block is
transmitted.

= Optional first
character
displacement.

60470000 A

[.
'\/

/ -",

\", --/

'.

"

~.- -....,

'~ ./

-",'---...---/

,~/

~

If
\il,

(

(

(
>.'

..

(

f
(>

(

r
C'

(

(.

(>

TERMINATE INPUT COMMAND

Enables the TIP program to direct
the subsystem to immediately term­
inate input processing functions
on the specified line. Input char­
acters received after execution of
this command are discarded. The
TIP program may, by issuing an
input command, direct the subsys­
tem to resume input on the line.
Transmission line characteristics
are not altered by the terminate
command and, therefore, the TIP
need not generate a control
command.

Bits 15----------8 7----------0
WORD 0

WORD 1

where:

NKCMD

NKLINO

NKCMD

NKLINO

= Command code
(NKENDIN)

= Line number

I

After processing the terminate in­
put command, the subsystem gener­
ates a worklist entry containing
the first and last buffer addresses
of a message, assuming a message
was in the process of being input.

TERMINATE OUTPUT COMMAND

This command enables the TIP pro­
gram to direct the subsystem to
immediately terminate output pro-'
cessing.functions on the specified
line. After processing the termi­
nate command, a worklist entry is
generated containing the memory
address of the current output buf­
fer and the position of the last
character transmitted to allow the
TIP to resume output of an inter­
rupted message at the point of
interrupt. This command is used
when the TIP wishes to interrupt
an outgoing message for a higher
priority message or because of an
abnormal line condition.

The format of the terminate output
command is as follows:

60470000 A

Bits 15----------8 7----------0

~:: ~I~----N-K-C-M-D--N-K-L-ILN-O----------~

where:

NKCMD

NKLINO

= Command code
(NKENDOUT)

= Line number

DISABLE LINE COMMAND

This command directs the subsystem
to terminate all processing func­
tions of the specified line with
the exception of monitoring changes
in modem status. Proper modem con­
trol signals are generated to in­
hibit further communication
exchange between the local modem
and the communications line. The
subsystem also releases all data
structures defining the character
processing functions for the line.
Character transmission character­
istics are maintained. To reacti­
vate, an enable command followed
by either an input or output com­
mand must be issued.

Format for the disable line command
is as follows:

Bits 15 8 7

WORD 0 I NKCMD

NKLINO WORD 1

where:

NKCMD = Command code
(NKDISL)

NKLINO = Line number

TERMINAL INTERFACE PROGRAM (TIP)
SUBROUTINES

0

The common TIP subroutines module
consists of two major subroutines
(PTWAIT and PTTER) supported by a
number of control (PBCONT) subrou­
tines. These routines provide the
interface between the multiplex

5.-9

subsystem and, the TIP handlers,
removing from the TIP the necessi­
ty of handling-all possible
multiplex-generated event work "
lists. This is accomplished
through a program control block
(PCB) defined as part of each
base line control block (LCB).

As event worklists are received by
the multiplex level handler
(PTTER), the worklist code is
translated into a l-bit flag whose
position within the PCB defines
the event. A corresponding user
event word specifies under which
events the user requires control.
Therefore, when correspondence'
exists between the user word and
the event word, the user receives
control.

The supporting subroutines allow
the user to selectively manipulate
fields in the PCB.

'PTWAIT - TIP EVENT WAIT

This subroutine allows the user
to specify any combination of 16
pre-defined events occurring at
the multiplex level for which con­
trol will be returned to the user
if the specified correspondence
occurs. The user can also specify
the length of time the system will
wait for such an occurrence and
the level at which control will
return when either the events or
timeout occurs.

Table 5-2 lists and defines PTWAIT
field names. The calling sequence
for this subroutine is as follows:

PTWAIT (parml, parm2, parm3)

where parml specifies the level at
which control will return (HLOPS
for OPS level or HLMUX for multi­
plex level), parm2 is the user
event mask of type WTSET, and
parm3 indicates the length of wait
in half-second increments (type
B08BITS).

5-10

PTTER - TIP EVENT PROCESSOR

This subroutine is called by the
work list processor to process
TIP-related events. The routine
translates the work code defining
the event into one of 16 possible
event flags, then checks to deter­
mine if the event is one for which
the TIP is waiting. If such is
the case, the routine prepares to
return to the specified level. If
not, the event is noted and the
routine exits back to the work
list processor. The calling se­
quence for this subroutine is:

PTTER

The routine requires a multiplex
level work list entry containing
the work code, line number, and
work code dependent parameters.
It further requires that global
word SBLEVEL be set to HLMUX prior,
to the call of PTTER and reset to
HLOPS at return fromPTTER.

PROGRAM CONTROL BLOCK (PCB)
DEFINITION

The program control block (PCB) is
included within each line control
block (LCB) as words 3 through E
(hexadecimal) ~ The PCB format is
as illustrated in figure 5-2 with
word definitions as detailed in
tables 5-3, 5-4, and 5-5.

SUPPORTING TIP SUBROUTINES

The following is a list of the
supporting control subroutines
(PBCONT) associated with PTWAIT
and PTTER:

Routine

PTSTWM
(P : WTSET),

PTRSWM
(P : WTSET);

Action

Inclusive OR P with
BZWAITMASK

Selective Clear
BZWAITMASK by P

60470000 A

c

,/

' .. _./

./

/, . ..,

~ ~

CI'I
o
-.J
o
o
o
o
lJ:oo

U1
I

~ ~

WORD 15

3 F1

4 F1

5 F17

6

7 F33

a

9

A

B

C

D

E

~ ~

14 13 12

F2 F3 F4

F2 F3 F4

F1a F19 F20

F34 F35 F38

F42

~ ~ ~ :fi7Wwt:::? --, ~ ~

11 10 9 a 7 6 5 4 3

F5 F6 F7 Fa F9 F10 F11 F12 F13

F5 F6 F7 Fa F9 F10 F11 F12 F13

F21 F22 F23 F24 F25 F26 F27 F28 F29

F37 F38 F39 F40 F41

F43

Figure 5-2. Program Control Block (PCB) Format

~ ~ ~~ ~ ~
~,

~ ~ "

2 1 o NAME TYPE

F14 F15 F16 BZWSTAT WTSET

F14 F15 F16 BZWAITMASK WTSET

FlO F31 F32 BZERRORS INTEGER

BZRETADDR HTERROR

BZLlNSTA HTLiNSTA

BZWTCOUNT B08BITS

BZERAC HTERROR

BZR1SAVE INTEGER

BZR2SAVE INTEGER

BZITBA BOBUFPTR

BZOTBA BOBUFPTR

BZ1FBA BOBUFPTR

Word

3

4

Routine

PTSTSW
(P : WTSET);

PTRSSW
(P : WTSET);

PTSTLS
(P : PCSET);

PTRSLS
(P : PCSET);

PTTERM;

PTCLRPCB;

5-12

TABLE 5-2. PTWAIT LINE CONTROL BLOCK
FIELD NAMES AND DEFINITIONS

Set
Field Name

FI HWI'lK8
F2 Hl'lWK7

F3 HWWK6

F4 HWWK5

F5 HWWK4

F6 HtlWK3

F7 HWWK2

F8 HWWKI

F9 HWSTAT

FlO HWOTERM

Fll HWITEml

Fl2 HWOBT

F13 HWRING

Fl4 HWCON

Fl5 HWRFO

Fl6 Hl'lRFI

Identical to Word

specified event

. Action

Inclusive OR P with
BZWSTAT

Selective Clear
BZWSTAT by P

Inclusive OR P with
BZLINSTA

Selective Clear
BZLINSTA by P

3

Set flush, clear wait
and timer run bits

Clear BZWSTAT,
BZWAITMASK, BZERRORS,
BZLINSTA (left byte)
BZRETADDR, BZERAC,
BZIFBA, BZITBA, and
BZOTBA

Definition

Work code 8 detected by PTTER

Work code 7 detected by PTTER

Work code 6 detected by PTTER

l'lork code 5 detected by PTTER

Work code 4 detected by PTTER

Work code 3 detected by PTTER

Work code 2 detected by PTTER

Work code I detected by PTTER

CLA status detected by PTTER

Output terminated detected

Input terminated detected

Output buffer transmitted

Ring indicator detected

Connect indicator detected

Ready for output detected

Ready for input detected

- User requests wait mask for

Routine

PTGOOPS;

PTRETOPS;

PTRETMUX;

Action

This routine immedi­
ately returns control
to the TIP except
that execution contin­
ues at the OPS level.

TIP must call this
routine (when at OPS
level) at the comple­
tion of its tasks to
properly return con­
trol to the calling
routine.

Same as PTRETOPS
except that this rou­
tine is only called
to relinquish control
at the MUX level.

60470000 A

(
\

\,," -

(

(

(

(

(

(,

[
(

(

(

TABLE 5-3. PROGRAM CONTROL BLOCK (PCB)
WORD DEFINITIONS

Word Field Set BY Reset By

3 Fl-F16 PTTER TIP

4 Fl-Fl6 PTWAIT PTWAIT

5

6

7

Fl7-F32 PTTER PTWAIT

8

9

A

B

C

D

E

F33

F34

F35

F36

F37

F38

F39

F40

F4l

F42

F43

PTWAIT PTWAIT

PTWAIT PTWAIT

PTWAIT PTlV'AIT

PTWAIT PTt'lAIT

TIP TIP

TIP TIP

TIP TIP

. PTCLAS PTCLAS

PTWAIT PTWAIT

PTCLAS PTCLAS

PTTER TIP

PTWAIT PTWAIT

PTWAIT PTWAIT

PTTER TIP

PTTER TIP

PTTER TIP

Subroutines PTGOOPS, PTRETOPS, and
PTRETMUX are further described in
the following paragraphs as is
the subroutine PBCONTINUE which
is also associated with PTWAIT and
PTTER.

60470000 A

Description

Event Status Word

User Wait Mask

Errors Detected Since Last PTWAIT

User's Return Address

Timer Active

Return Level

Wait Outstanding

-Spare-

-Spare-

Input Active

Output Active

Line Active

CLA Status Analyzer Control Field

Count of the No. of times PTWAIT is Called

CLA Status Imalyzer Control Field

Accumulated Error Event History

User's Register 1 at Time of PTWAIT Call

User's Register 2 at Time of PTWAIT Call

Buffer Address Received when Input Began

Buffer Address Received when Input Ended

Buffer Address Received when Output Ended

PTGOOPS

This subroutine, available only at
the MUX level, allows the caller
to co·ntinue execution at the OPS
level. The user must then refer-

5...,13

TABLE 5-4. ERROR FIELD (WORDS) NAMES
AND DEFINITIONS

Field Set Name

F17 HE200

F18 HEDCDNOT

F19 HEDTO

F20 HEBUFTNR

F2l HEFES

F22 HEMRTO

F23 HEMXLOOP

F24 HECLAS TOV

F25 HEDSRNOT

Boolean
Name

HB200MSTO

HBDCDNOT

HBDTO

HBBUFTHR

HBFES

HBMRTO

HEMXLOOP

HBCLASTOV

HBDSRNOT

Definition

200 Millisecond timeout detected

Data Carrier Detected not on

Data transfer overrun

Buffer threshold exceeded

Framing error status detected

Modem response timeout

MUX loop error detected

CLA Status overflow

Data Set Ready not on

F26 HEUNSOLIO HBUNSOLIOUnsolicited input/output detected

F27

F28

F29

F30

F3l

F32

Field

HEODDTO

HETIMEOUT

HESDSRNOT

HEBREAK

HENCNA

HESPI

Name

HIERROR

HISFTINP

HIHARDER

HISFTOUT

HIINPERR

HIOUTPE:RR

HBODDTO

HBTIMEOUT

HBSDSRNOT

HBBREAK

HBNCNA

HBSPI

Fields

F17-3l

F17-2l

F22-29

F30-32

F17-29

F22-32

ence level-dependent parameters at
the OPS level as control has been
returned to the instruction follow­
ing the procedure call at the OPS
level.

The user calls PTGOOPS at the MUX
level and the routine builds a
continue worklist, saving in the
worklist the following information:

1. The current call count
(BZWTCOUNT) •

5-14

ODD Timeout

Event timeout detected

Switched-line Data Set Ready not on

Break character detected

Next character not available

Spare

Definition Type

All errors BO OVERLAY

Soft input errors B05 BITS

Hard errors B08 BITS

Soft output errors B03 BITS

All input errors BOl3 BITS

All output errors BOll BITS

2. The line number (HALINO
[HLMUX) •

3. The address of the instruction
following the procedure call.

4. The error status (HAERR[HLMUX]).

The worklist entry is then placed
in the continue worklist proces­
sor's queue. When the entry is
processed, the caller receives
control at the OPS level.

60470000 A

(" . .

/

\ ,

"'" "'/

c
(0,
'e,;

(

(

(

(

(

(

r
(

(

(

-(.

(-

(/

(-~

"./

TABLE 5-5. LINE STATUS FIELD (WORD 7)
NAMES AND DEFINITIONS

Boolean
Field Set Name Name

F33 HSTRUN HTTRUN

F34 HSLEVEL HTLEVEL

F35 HSWAIT HTWAIT

F36 HSSP9 HTSP9

F37 HSFLSH HTFLSH

F38 HSIACT HTIACT

F39 HSOACT HTOACT

F40 HSLACT HTLACT

PTRETOPS

As a TIP may receive control from
a variety of sources (continue
worklists, timeouts, direct monitor
call, etc.), PTRETOPS provides a
means by which the TIP will return
control to its caller. PTRETOPS
also preserves the continuity of
control flow. For example, if the
TIP receives control as a result
of a timeout, the timeout program
has extended control. Consequent­
ly, to properly relinguish control
back to the timeout program, the
TIP must call PTRETOPS to prevent
return of control to the monitor
and bypassing of the remainder of
the timeout program functions.

PTRETOPS may only be called at the
OPS level. Prior to extending con­
trol to the TIP, the continuation
address SRETOPS is primed by the
program extending control. The
value of SRETOPS depends upon the
program extending control. SRETOPS
is used by PTRETOPS to extend con­
trol back to the caller of the TIP
to preserve continuity.

PTRETMUX

PTRETMUX is functionally identical
to PTRETOPS, except that continuity
is preserved at the MUX level.

60470000 A

"----"._-"_._-----_ .. _ .. _ .. _----

Definition

Timer active

Return level: 0 = OPS
I = MUX

Wait outstanding

Spare

Not used

Input active

Output active

Line active

PTRETMUX may only be called by the
TIP at the MUX level and uses
SRETMUX to preserve continuity.
The TIP at the MUX level must call
PTRETMUX whenever the TIP wishes
to relinguish control.

PBCONTINUE

This procedure receives control
from the monitor program as a
result of a continue worklist entry
in its queue. PBCONTINUE provides
interface between MUX-related
events and the TIP at the OPS
level. As events are detected at
the MUX level by PTTER, control
may be returned to the TIP at the
OPS level through the enqueuing
of the continue worklist entry
for PBCONTINUE.

Continue worklist entries are
processed as follows:

1. The line number is used to set
up array entries HALCBP
[HLOPS] andHALINO[HLOPS].

2. The error field is used to set
up array HAERR[HLOPS].

3. The return address specifies
the address at which the TIP
will receive control.

5-15

4. The count determines if control
should be returned. The count
in the worklist must match the
count in the PCB or the work­
list entry will not be processed

and the TIP will not receive
control.

The continue worklist entry format
is as follows:

o
I

2

3

FI I F2 I F3

F4

F5

F6

Word Field Field Name Definition

0 FI MMWTCOUNT Call count in PCB at time entry was queued

F2 MMBAV Buffer Address Valid flag. Always zero

F3 MMWKCOD Worklist work code

I F4 MMLINO Line Number

2 F5 MMRETADDR TIP return address

3 F6 MMWTERR Error status at time entry was queued

GLOBAL INTERFACES

HALCBP [HLOPS, HLMUX] of BZLCBP

This array contains pointers to
the current LCB. PTWAIT accesses
the appropriate entry depending
upon the current level in order
to perform the required wait
functions.

HALINO [HLOPS, HLMUX] of BZLINO

In similar fashion as above, the
array contains the line number
of the current line.

HAERR IHLOPS, HLMUX] of HTERROR

The us.er may reference an entry
in this array upon return from
PTWAIT to determine the errors
for the line since the previous
call to PTWAIT.

SBLEVEL

This parameter contains the
values HLOPS or HLMUX. It is
value initialized to HLOPS but

5-16

must be set to HLMUX prior to
call of PTTER by the Worklist
Processor. It is used by the
supporting subroutines to access
the proper entry in HALCBP •.

SRETOPS

The variable contains the address
of the instruction in the monitor
following the monitor's call to
the TIP.

SRETMUX

This variable contains the MUX
level address to which control
will return at the MUX level
when the TIP has completed its
functions. It is set to cause
a return to the Worklist Processor.

S5TEMP

This variable is used by the TIP
subroutine PBCONTINUE and PBLCBT
to pass parameters to subroutine
SRET, a routine to set up the
required return parameters to
the TIP at the OPS level.

60470000 A

,- .,,/

(

(

(

(

(

(

(

(

(

c

STATE PROGRAM TABLES

A state program consists of main
memory tables controlling input
processing functions for a speci­
fied line based upon the current
input state (field ISTAI in the
MUX LCB) and the current input
character. Such a program may con­
sist of one or more state processes,
with each state process containing
one or more state process instruc­
tions. The number of state
processes and state process in­
structions is a function of the
processing requirements for the
particular terminal protocol.
Figure 5-3 is an overview of the
state program.

A state process instruction con­
tains an operand, function (Fl)
code, and operation (Op) code in
the following format:

Bits 15 8 7 5 4 o
r-----------~----~--------~

Operand Fl Op Code

where:

Operand - Contains parameters
used during execution of the Op
code.

Fl

60470000 A

- Specifies one of the
following actions:

1. If Fl is zero,
execute next state
process instruction.

2. On skip instruc­
tions, skip­
relative to the
current state
process instruc­
tion, with Fl
specifying the
relative skip
count.

3. Exit and relinguish
control to the
input data processor
microprogram at one
of seven entry

Entry Fl

points specified
by Fl as follows:

Point Value Entry Point Function

1 001 Discard character

2 010 Store character

3 011 Accumulate CRC and
store character*

4 100 Accumulate CRC and
discard character

5 101 Undefined

6 110 Undefined

7 111 Undefined

*CRC accumulation is performed on
the untranslated character. The
character stored is always the
translated character if such trans­
lation is required.

Op Code - Defines specific pro­
cessing task, such as
replace character, set
state counter, build
worklist entry. Also
defines interpreta­
tion of Fl field.

STATE PROCESS INSTRUCTIONS

Subject to expansion as new re­
quirements become evident during
implementation of the multiplex
subsystem, the following process
instructions represent a list of
those instructions now defined:

1. Set/Reset Input Message-In­
.Process Flag

2. Replace Character

3. Build Event Worklist

4. Terminate Input Buffer

5. Skip If CRCS Equal

6. Decrement Character Count

7. Initialize Character Count

5-17

,.c~
~)

V'I
I

CO

0\
,0,
o
o
o
o
:roo

(>"!

LI

A
..)

F~
\.. ..J

Ie \
\.) ..J

STATE PROGRAM TABLES

" OPERAND

H

~ OPERAND

..

..

..
~

OPERAND

..

..

..

..

~
OPERAND

..

..

Figure 5-3. State Program Overview

.(

" "-.. /
! ./

'.... /

F1 OP CODE I

.. ..

F1 OP CODE

.. .. ! ,

.. . . I

.. ..

F1 OP CODE

. . ..

.. ..

.. ..

.. ..
•
• •
F1 OP CODE

.. ..

.. ..

I~

") \

• EACH STATE PROCESS
CONTAINS ONE OR MORE
STATE PROCESS INSTRUC­
TIONS WHICH PROVIDE A
PREDEFINED SET OF PRO­
CESSING TASKS BASED ON
THE CURRENT INPUT
CHARACTER AND THE
CURRENT INPUT STATE.

• STATE PROCESS INSTRUC­
TIONS ARE EXECUTED BY
A SPECIAL MULTIPLEX
SUBSYSTEM MICROPROGRAM.

• END OF STATE PROCESS
EXECUTION IS SPECIFIED
BY THE VALUE OF F1 IN
CONJUNCTION WITH THE
OP CODE .

.r ..

~) ..) r)
\ , \.;,

(j ~ ..

(

(

(-'

(

(

(

['
(

(

(

('

8. Set/Execute Input State

9. Store Block Length Character

10. Skip If Character Less Than
Operand

11. Skip If Input State

12. Skip If Character Not Equal

13. Skip If Special Character Equal

14. Resync

15. Set/Reset Translate Mode

16. Reset Cyclic Checksum Storage

17. No Operation (NOP)

SET/RESET INPUT MESSAGE-IN-PROCESS
FLAG INSTRUCTION

This command directs the subsystem
to set or reset the input message­
in-process flag maintained in the
multiplexer line control block ..
Format of this instruction is as
follows:

Bits 15 14 8 7 5 4

I F21 Not Used Fl Op Code

where:

F2 = If zero, reset
message-in-process
flag. If one, set
message-in-process
flag.

Fl = See basic format in
paragraph entitled

o

State Process Table.

Op Code = 01 (hexadecimal)

REPLACE CHARACTER INSTRUCTION

This instruction provides for the
substitution of a special input
character by the character specified
in the operand field. The format
of this instruction is as follows:

60470000 A

Bits 15 8 7 5 4

Character Fl Op Code

where:

Character

Fl

Op Code

Substitute
character

= See basic format
in paragraph
entitled State
Process Table.

= 02 (hexadecimal)

BUILD EVENT WORKLIST INSTRUCTION

Directs the subsystem to generate
an event worklist entry using the
work code specified by the con­
tents of the operand field. The
subsystem also places the current
value of the input buffer pointer
and line number in the worklist
entry. The format of this instruc­
tion is as follows:

o

Bits 15 8 7 5 4 0

Work Code FlOp Code

where:

Work Code

Fl

Op Code

Work code to be
placed in the
worklist entry.

= See basic format
in paragraph
entitled State
Process Table.

= 03 (hexadecimal)

TERMINATE INPUT BUFFER INSTRUCTION

This instruction terminates the
current input buffer and generates
a worklist entry containing the
current buffer address and the
first buffer address of the input
data block. Upon execution, this
instruction causes the lOP to

5-19

obtain a new buffer upon receipt of
the next input character. The FCD
for this buffer is obtained from
field IBFCD in the LCB, initialized
by the command driver at the time
an input command is issued. IBFCD
must always specify the left byte
of a data buffer word. The format
for the terminate input buffer
instructions is as follows:

Bits 15 14 13 8 7 5 4 o

I 0)F2) Work Code) Fl Op Code

where:

F2

Fl =

OP Code =

Flag which, when set,
indicates that the level
2 worklist processor is
to repoint the current
input buffer (stored in
word +2 of the worklist
entry) to top of buffer,
calculate the LCD and
store the LCD in word 0
of the current input
buffer.

See basic format in
paragraph entitled State
Process Table.

04 (hexadecimal)

NOTE

When designing a state process
using this instruction, this
instruction should be the last
instruction executed in the
state process table.

SKIP IF CRC EQUAL INSTRUCTION

Directs the subsystem to test a 1-
character block check character
(BCC) against an accumulated CRC.

An equal condition causes a rela­
tive skip to the state process
instruction specified by Fl. An
unequal condition causes the next
state process instruction to be
executed. The format of the in­
struction is as follows:

5-20

Bits 15 14 8 7 5 4 0

I F2\ Not Used FlOp Code

where:

F2 = If zero, compare 8-
bit result. If one,
compare 7-bit result
(provides for accu­
mulation and test-
ing of a longitu­
dinal encoded BCC,
including a vertical
parity bit).

Fl = If the incoming CRC
is equal to the ac­
cumulated CRC,
specifies the rela­
tive skip address
within the state
process.

Op Code = 05 (hexadecimal)

NOTE

For a hexadecimal CRC poly­
nomial, the first BCC charac­
ter should be accumulated by
a state process that reI in­
guishes control to the input
data processor at entry point
4 (accumulate CRC and discard
character).

DECREMENT CHARACTER COUNT
INSTRUCTION

This instruction directs the sub­
system to decrement and test
either of two character counters
maintained in the LCB. F2 speci­
fies the counter to be decremented.
When the character counter reaches
zero, the contents of F3 are used
(in lieu of Fl) as a relative skip
address. The instruction format is
as follows:

Bits 15 14 8 7 5 4

I F2\ F3 Fl Op Code

o

60.470000 A

/(.... \

i\" 7"

rf\,
\,;i /

(

(

(

(

(/

[
('

where:

F2

F3

Fl

-, If zero, decrement
character counter 1.
If one, decrement
character counter 2.

When the specified
character counter'
reaches zero, F3
specifies relative
skip address (in
lieu of Fl).

= See basic format
in paragraph
entitled State
Process Table.

op Code = 06 (hexadecimal)

INITIALIZE CHARACTER COUNT
INSTRUCTION

Initializes either of two character
counters maintained in the LCB.
F2 specifies the character counter
to be initialized. Character coun­
ter 1 is initialized from the
packet size maintained in the TCT
table. Character counter 2 is
initialized from the maximum
block length maintained in the
LCB. The instruction format is
as follows:

Bits ~5 l4 8 7 .s 4

I F21 Not Used Fl op Code

where:

F2 = If zero, initialize
character counter

o

1. If one, initial­
ize ch.r..racter
counter 2.

Fl = See basic format in
paragraph entitled
State Process Table.

op Code = 07 (hexadecimal)

60470000 A

SET/EXECUTE INPUT STATE INSTRUCTION

This instruction changes the cur­
rent input state (field ISTA in
the LCB) to the value specified
by bits 8-12 of the operand field.
The input state selects the state
process to be executed as a'func­
tion of external stimuli such as
the input data. An option is
also provided to immediately
execute the state process speci­
fied by field ISTA in the LCB,
allowing the current state process
to select and execute a new state
process. The instruction format
is as follows:

Bits 15 12 8 7 5 4 o

I F21 I Input State I Fl lop Code I
where:

F2

Input State =

Fl =

If zero, the state
process interpreter
executes the func­
tion specified by
Flo If one,
ignores Fl field
and executes the
state process
specified by field
ISTA in LCB. In
either case, assum­
ing the input state
field is non-zero,
the input state
field is transferred
to ISTA field in
LCB.

Input state code
transferred to ISTA
field in LCB.

See basic format in
paragraph entitled
State Process Table.

Op Code = 08 (hexadecimal)

5-21

STORE BLOCK LENGTH CHARACTER
INSTRUCTION

Directs the subsystem to use the
current input character as the
initial block length value and to
store this value in the character
count 1 (CNTl) field of the LCB.
The operand field must specify
whether the count in the block
length character includes charac­
ters preceding the block length
character. An example of the
block length character is illus­
trated below:

Block of 17 Characters

1 2 3 4 5 6 7 8 9 10

Block Length Character

~ ______ ~Two characters preceding
block length character

For the above example, the operand
must contain an adjustment count
of three to compensate for charac­
ters A and B and the block length
character itself.

The instruction format is as
follows:

Bits 15 8 7 5 4 o

I Adjustment Count Fl lop Code I
where:

The adjustment count field
specifies the number of char­
acters preceding the block
length characters, as indica­
ted above.

Fl = See basic format in
paragraph entitled
State Process Table.

Op Code = 09 (hexadecimal)

5-22

SKIP IF CHARACTER LESS THAN OPERAND
INSTRUCTION

Compares the untranslated input
character with the value contained
in the operand field. If the input
character is less than the operand,
a relative skip is executed to the
state process instruction specified
by the value of Fl. If the input
character is equal to or greater
than the operand, the next state
process instruction is executed.
The instruction format is as
follows:

Bits 15 8 7 5 4

Operand Fl Op Code

where:

Operand

Fl

Op Code

= Comparison character

= See basic format in
paragraph entitled
State Process Table.

= OA (hexadecimal)

SKIP IF INPUT STATE LESS THAN OPERAND
INSTRUCTION

Compares the current input state
(field ISTAI in the LCB) with
the operand. If the input state
is less than the operand, a rela­
tive skip is executed to the state
process instruction specified by
the value of Fl. If the input
state is equal to or greater than
the operand, the next state pro­
cess instruction is executed. The
instruction format is as follows:

Bits 15 8 7 5 4

Operand Fl Op Code

o

o

60470000 A

.'if '
\~j

'{!- """
\

(

(

(

{: I
I

(

(

(

where:

Operand = Comparison character

Fl See basic format in
paragraph entitled
State Process Table.

Op Code = OB (hexadecimal)

SKIP IF CHARACTER NOT EaUAL
INSTRUCTION

Compares the untransl~ted input
chara.cter with the operand value,
and an unequal condition results
in a relative skip to the state
process instruction specified by
the value of Fl. An equal com­
parison results in execution of
the next sequential state process
instruction. The instruction
format is as follows:

Bits 15 8 7 5 4

where:

Operand

Fl

Op Code

Operand Fl Op Code

= Comparison character

= See basic format in
paragraph entitled
State Process Table.

= OC (hexadecimal)

SKIP IF SPECIAL CHARACTER EaUAL
INSTRUCTION '

Compares the special character
(SCHR) stored in the LCB with the
input character. If equal, the
state process interpreter uses
the value in the skip count field
as a relative skip address to a
state process instruction. Upon
a non-compare condition, the
state process interpreter tests
Fl and reacts according to the
basic format. The instruction
format is as follows:

60470000 A

o

Bits 15 8 7 5 4

Skip Count Fl Op Code

where:

Skip Count = Relative skip
address employed
if special charac­
ter and input
character are
equal.

Op Code

Fl See basic format
in paragraph en­
titled State Pro­
cess Table.

= 00 (hexadecimal)

RESYNC INSTRUCTION

o

This instruction directs the state
process interpreter to generate a
resynchronization command to the
CLA on which the current character
was input. The resynchronization
command places the CLA in the sync
acquisition mode and the CLA dis­
cards all characters until the next
SYNC character is sensed. The in­
struction format is as follows:

Bits 15 8 7 5 4 0 I Not Used FlOp Code

where:

Fl = See basic format in
paragraph entitled
State Process Table.

Op Code = OE (hexadecimal)

SET/RESET TRANSLATE MODE
INSTRUCTION

Sets or resets the input trans­
late logic in the input data
processor microprogram. The
current input character is stored
according to the previous mode of

5-23

translation. This instruction is
normally used on communication
lines on which data can be switched
from character mode to binary
(transparent) mode. The instruc­
tion format is as follows:

Bits 15 14 8 7 5 4

I F21 Not Used Fl Op Code

where:

Fl = If zero, set
translate mode.
If one, reset
translate mode.

Fl = See basic format in
paragraph entitled
State Process Table.

Op Code OF (hexadecimal)

RESET CYCLIC CHECKSUM STORAGE

o

where:

F2

Fl

Op Code

=

If zero, reset
cyclic checksum
storage to all
zeros. If one,
reset cyclic
checksum storage
to all ones.

See basic format in
paragraph entitled
State Process Table.

= 10 (hexadecimal)

NO OPERATION (NOP) INSTRUCTION

This instruction directs the state
process interpreter to execute a
no operation (NOP) instruction.
The format of the instruction is
as follows:

Bi ts 15 8 7 5 4 0

INSTRUCTION Not Used FlOp Code

This instruction resets the cyclic
checksum word (field CRCS in the
LCB). This word contains the
partially accumulated checksum
for communication lines requiring
cyclic encoding and decoding.
The instruction is normally used
in the state process that detects
the first character to be check­
summed. The instruction format
is as follows:

Bits 15 14 8 7 5 4 0

I F2 (Not Used FlOp Code

5-24

where:

Fl = See basic format in
paragraph entitled
State Process Table.

Op Code = 00 (hexadecimal)

60470000 A

'--. ./

J

(

(

(

(

(

(

('

.(.

(

(

(

C'

NETWORK COMMUNICATIONS SOFTWARE 6

INTRODUCTION

The network communications software
comprises all programs that are not
included in the base system (includ­
ing the multiplex subsystem) and are
not part of the interface programs.
These procedures include directory
services programs, a service module,
and header build functions.

DIRECTORY SERVICES

Directory services consist of the
routing process and a group of pro­
cedures that support directories
required by the routing process.
In general, the routing process is
divided into internode and intra­
node routing. Directory services
also perform directory updates.

INTER·NODE ROUTING

Internode routing is the process
of determining to which node a
block is addressed. The destina­
tion node directory is indexed by
the destination node (DN) value
contained in the block header to
obtain the address of a link con­
trol block or, when a block arrives
at its destination node, to obtain
the address of a source node direc­
tory. The NPU may contain only
one logical node, with its identi­
fying number maintained in a global
data structure. For rout~ng, host
nodes need not be distinguished
from terminal nodes.

INTRANOD.E ROUTING

Intranode routing determines to
which terminal or internal process
a block is addressed once the block
has reached its destination node.
Two directory lookups are performed

60470000 A

using the connection number (eN)
and source node (SN) values within
the block header to provide ad­
dressing information.

In intranode-routing, eN is first
tested and, if zero, the block is
addressed to internal process and
routing is finished. If eN is non­
zero, SN indexes the source node
directory to select the connection
directory associated with the SN.
Then, eN indexes that connection
directory to provide the TeB ad­
dress. Either of these directory
lookups may indicate an invalid
block address, in which case an
indication to that effect is given
to the caller.

ADDING OR DELETING DIRECTORY ENTRIES

Directory entries may be added or
deleted at the request of the ser­
vice module. Entries in the con­
nection directory are referred to
as "connection definitions".

OPERATING LEVEL

All procedures within directory
services run at OPS level.

DESTINATION NODE (DN) DIRECTORY

The destination node directory con­
tains an integer value associated
with each valid DN address (0-255).
For the local node (meaning within
the same physical node), the direc­
tory provides the address of the
source node directory associated
with .the logical node. For all
other logical nodes, the directory
entry provides a link control block
address. A zero entry indicates a
nonexistent node (an unassigned
value of DN).

6-1

The destination node directory is
located in a fixed memory location.

SOURCE NODE (SN) DIRECTORY

The local logical node has a source
node directory used to select the
connection directory associated

. with the pair of nodes indicated
by ON and SN. Nonzero entr1es
indicate the address of the con­
nection directory.

The source node directory is lo­
cated in dynamic buffer space.

CONNECTION (CN) DIRECTORY

In each logical node there is a
connection directory for all other
logical nodes with which there is
at least one connection defined.
An entry in the connection direc­
tory provides the address of a
terminal control block (TCB).

The connection directory is located
in dynamic buffer space.

RO UTING PROCESS

The routing process (PNROUTE) per­
forms both internode and intranode
routing using the addressing infor­
mation (ON, SN, CN) found in each
block header and the associated
routing directories. The calling
sequence is as follows:

PNROUTE (parm)

where parm is a PASCAL variable of
type BOBUFPTR that selects the
input block. PNROUTE is a PASCAL
function that returns an integer
value interpreted as follows:

o = Block addressed to internal
process (service module)

1 = Invalid address

2 through 65,535 = Terminal
control block (TCB) address

6-2

The input to PNROUTE is a block
containing ON, SN, and CN in its
header. This block is accessed
via the pointer-type variable parm.
If ON is local and CN is zero, the
block is addressed to internal proc­
essing and value SN is ignored.

ON indexes the destination node
directory to obtain an address.
If the address obtained is zero,
the destination of the block is
undefined and PNROUTE returns an
indication to that effect.

If the destination is not the local
logical node, the address obtained
is a link control block address
that is returned to the caller.
If the destination is the local
logical node, the address obtained
is a pointer to a source node
directory.

If the ON directory lookup yields
a pointer to a source node direc­
tory, SN provides an index within
that directory to obtain either a
pointer to a connection directory
or an indication that SN is in­
valid. If SN is invalid, that
information is returned to the
caller. If not, CN is used as an
index within the connection direc­
tory. If CN is valid and nonzero,
a TCB address is obtained that is
returned to the caller.

ADD DIRECTORY ENTRY

The procedure that adds directory
entries (PNOIRADO) operates at the
request of internal procesSes.
Buffers are added to directories
as necessary. The calling sequence
for this procedure is as follows:

PNOIRADO (parmI, parm2, parm3,
parm4)

where parmI and parm2 are PASCAL
variables whose values must fall
betwe.en 0 and 255 and respectively
represent the ON and SN values,
parm3 is a PASCAL variable that

60470000 A

4··~·.

("j

C· \ , ,,!

(

('

(

{

f

(

(-'

(

must fall between 1 and 255 and
represents CN1 and parm4 is a
PASCAL variable of type BOBUFPTR
that is a pointer to the TCB to
be inserted into the routing
directory.

PNDIRADD output is 'the addition of
DN directory entries and, in some
cases, primary or secondary SN
and CN directory segments.

DELETE DIRECTORY ENTRY

This procedure (PNDIRDLT) removes
entries from the routing directories
at the request of internal processes.
If the removal causes a directory
buffer to become empty, the buffer
is released to the pool of availa­
ble buffers of its size. The call­
ing sequence for this procedure is
as follows:

PNDIRDLT (parmI, parm2, parm3)

where parmI and parm2 are PASCAL
variables whose values must fall
between 0 and 255 and respectively
represent DN and SN. Parm 3 is also
a PASCAL variable that must fall
between 1 and 255 and represents CN.

NOTE

If parm2 is negative 1, all
entries associated with DN
parmI will be removed from
the directories. If parm3
is negative 1, all entries
associated with DN = parmI
and SN = pa;m2 will be re­
moved from the directories.

Output from PNDIRDLT is the removal
of an entry (connection definition)
from the routing directory and the
release of any buffers that become
empty.

SERVICE MODULE

The service module is a .group of
procedures that handle communica­
tions with the host via the service
channel. They provide system con-

60470000 A

figuration, statistics reporting,
user notification on host failurel
recovery, and control of on-line
diagnostics. The service module
consists of the following procedures:

PNSMWL

PNSMES

PNSMTIP

PNTCBREL

PNSMDISP

PNPSTAT

PNDSTAT

PNHOSTSTATUS

PNDIAGIF

Service Module
Worklist Handler

Downline Service
Message Handler

TIP Response Handler

Terminal Control
Block (TCB) Rel.ease

Service Message
Dispatcher

Periodic Statistics
Dump

Immediate Statistics
Dump

Host Status
Notification

On-line Diagnostics
Control

A build-time parameter specifies
the maximum number of lines that
may be configured for the NPU. By
means of service messages, the host
specifies which lines are to be
configured and their parameters.
When each line becomes operational,
the host then specifies the termi­
nals to be configured for that line.
The service module provides hand­
ling of such configuration messages
between the host, the NPU, and the
TIPs.

Within each LCB and TCB, use and
error counters are retained. Peri­
odically the NPU sends line, ter­
minal, and NPU statistics to the
host. The service module also
handles the sending of such statis­
tics messages to the host when a
statistics counter overflows. When
errors are detected, the service
module sends appropriate error
messages to the host.

6-3

SYSTEM CONFIGURATION FUNCTIONS

The service module performs system
configuration under the direction
of the host. Some configuration
tasks are delegated to the individ­
ual TIPs via worklist entry.

TIP WORKLIST ENTRIES

The format of TIP worklist entries
from the service module is similar
to those from the multiplex sub­
system except that only the first
two words of the service module
worklist entry are meaningful.
It is assumed that no TIP has a

Code

worklist entry with fewer than
two words.

The format of a worklist entry from
the service module is as follows:

Bits 15----------8 7--------~O

WORD 0

WORD 1

WORD 2

WORD 4

Not Used I Work Code

Line Number

Not Used

The line number is available as an
integer or as two bytes (port and
subport). The work code is of
type integer and is interpreted
as follows:

Meaning

AOSMEN Service module requests TIP to enable the line indicated. TIP
should respond COLINOP or COLNINOP (described below).

AOSMTCB Service module has attached first (or only) TCB to the indi-
cated line. No response is expected.

AOSMDA Service module requests TIP to disable the line indicated.
After disabling the line (and after Data Set Ready (DSR) drops
on a switched line), the TIP should respond with COLNDA. The
service module purges the TCBs.

The format of a worklist entry to
the service module is as follows:

Bits 15 8 7 0

WORD 0 Extra-Info I Work Code

WORD 1 Pointer or Line Number

where the workcode meanings are as
follows:

Code

COSMSGR Downline service message
service message.

Meaning

received. Word 1 is

COTCBREL Release TCB. When a TIP receives a TERMINATE,

a pointer to the

the associated
TCB is removed from the chain of TCBs and passed to the ser-
vice module. The service module releases the TCB and any
attached queue and sends a TERMINATE to the host. Word 1 is
a pointer to the TCB released.

6-4 60470000 A

c

(

'--,- --'

c

c
c

(

(

(

f
(

(

(

(

(

Code Meaning

COLINOP Sends line operational, indicating the TIP has enabled a line
and successfully connected and identified a terminal. The
left byte of Word 0 specifies the current terminal type and
Wor,d 1 is the line number.

COLNINOP Sends line inoperative, indicating the TIP has detected a line
failure. The left byte of Word 0 contains the line error code
and Word 1 is the line number.

COLNDA Indicates line disabled by TIP. TIPs must send this as a
response to AOSMDA when the line is disabled. The left byte
of Word 0 is not used and Word 1 is the line number.

ST ATISTICS AND ERROR MESSAGES

Statistics and error messages can
be sent to the host via service
module procedures that are availa­
ble at all software priority
levels.

STATISTICS DUMP

When inc~ementation of a statistics
counter causes an overflow (to zero),
the counter must be set to all ones
($FFFF) and the statistics dump
(PNDSTAT) procedure must be called.
PNDSTAT dumps the particular statis­
tics block to the host and clears
that block. The calling sequence
is as follows:

PNDSTAT (parmI, parm2)

where parmI is of type C3STAT and
indicates the type of statistics
block to be dumped (C3NPU, C3LINE,
or C3M4TER) and parm2 is either a
TCB pointer or an LCB. Where parmI
equals C3NPU, parm2 is not used
and should be NIL. Where parmI
equals C3LINE, parm2 is the LCB
whose statistics are to be dumped.
Where parmI equals C3M4TER, parm2
is a pointer to the TCB whose
statistics are to be dumped.

CE eRROR FILE

Upon detection of any hardware
abnormality, users should report
to the host via a CE error file

60470000 A

message (PNCEFILE). To do so, an
error message must be prepared
and sent as an upline message to
the host. Such message must begin
with a I-byte error code and con­
tinue for a maximum message length
of 28 bytes (characters). The
calling sequence for PNCEFILE is
as follows:

PNCEFILE (par~l, parm2)

where parmI is of type integer and
indicates the message length in
bytes and parm2 is of type PACKED
ARRAY OF CHAR that begins with the
error type code and follows with
the error message text of up to
28 characters.

UPLINEBLOCK HANDLER (HEADER BUILD)

The upline block handler is a header
build procedure. It is supplied
as a standard POI sequence used by
TIPs and the service module at the
post-input POI to complete message
headers. Header build assumes that
the TIP has provided room for the
header in the message and provides
the following functions:

1. Inserts DN and CN as indicated
by the input TCB (BITCB).

2. Inserts SN from the global
variable CKLOCNODE.

3. Inserts block type as supplied
by BIBT.

6-5

4. Inserts block serial number
(BSN) from the TCB (upline
or downline).

5. Increments BSN in the TCB
(module H3BSNL+I, upline or
downline) •

6. Posts an entry for the block
in the internaL processing
worklist.

7. For block-types 2, 3, and 4
(BLK, MSG, CMD, or SVM),
enters the block in the source
retention. queue (SRQ).

The upline block handler (header
build) calling sequence is as
follows:

PNHDRBLD

The parameters set up for this
sequence are as follows:

BITCB
BIBUFF
BIBT

(address of source TCB)
(address of block)
(type of block)

On entry, the data block FCD is set
for the first byte of user data.
On exit, the FCD is decremented by
four. Should the new FCD be less
than six, a PBHALT occurs.

DOWNLINE BLOCK HANDLER

The downline block handler (PNDLBH)
is a standard system-supplied POI
sequence used by the HIP at the
internal-in POI. It queues the
BLK, MSG, and -CMD block types and
processes RESET, BREAK, TERMINATE,
and BACK type blocks. It also
maintains the source retention
queue (SRQ) and overflow source
retention queue (overflow SRQ).
PNDLBH communicates with the
TIPs via worklist entries of an
event, depending upon the Boolean
setting of the associated termi­
nal characteristics table (TCT)

6-6

fields. The downline block hand­
ler calling sequence is:

PNDLBH

INPUTS

Global inputs to PNDLBH are as
follows:

BITCB

BIBUFF

OUTPUTS

address of desti­
nation TCB

address of block

For block types BLK, MSG, and CMD,
PNDBLH queues the block in the TCB
output queue and, depending upon
the TCT-defined Boolean values,
generates an output-queued worklist
entry if the output acceptable flag
in the TCB is set. If this flag is
not set, the block is discarded.

For BREAK blocks, PNDLBH generates
an upline RESET and resends all
blocks for which a BACK has not
been received. A BREAK-received
worklist entry is made if theasso­
cia ted Boolean value in the TCT
is set.

For BACK blocks, if BSN matches,
the top entry in the SRQ is re­
leased. If the overflow SRQ is not
empty, the top entry from the OSRQ
is placed at the end of the SRQ and
is sent to internal processing.

For TERMINATE blocks, the buffers
associated with the block are re­
leased and a terminate worklist
entry is built if the associated
'Boolean value in the TCT is set.

For RESET blocks, the buffers asso­
ciated with the block are released
and the output acceptable flag is
set in the TCB.

60470000 A

(;

/" ---"'"

(

(

(

(

(

[
f

{

(

(

(

(-

(

(-

APPENDIX A
GLOSSARY

INTRODUCTION

This glossary defines terms (both
English language and mnemonic)
unique to the descriptions con­
tained in this manual or common
terms whose definitions are dif­
ferent from or more constrained
than definitions commonly held.
A glossary of English language
terms is presented first, followed
by a glossary of mnemonic terms.

ENGLISH LANGUAGE TERMS

ACCEPTANCE TEST PERIOD (ATP)

The period of time, following a
failed-to-operational transit'ion,
during which a facility must remain
continuously operational, prior to
accepting the facility for handling
traffic.

ADDRESS INFORMATION

That information within a block or
message that identifies the source
or intended destination of the
associated data.

APPLICATION PROCESS (AP)

A process resident in a host compu­
ter which provides an information
storage, retrieval and/or processing
service to a remote user via data
communications.

BLOCK

A portion or all of a message. A
message is divided into blocks to
facilitate buffering, transmission,
error detection and correction of
variable length data streams. A
transmission block includes the
protocol envelope, consisting of
the transmission header and trans-

60470000 A

mission trailer information. The
envelope is used to delimit and
control transmission of the block
over the communications channel.

BLOCKING

The process of dividing a contigu­
ous data stream into units of
generally fixed length.

BREAK

1. A method which a terminal
operator employs to indicate
that he desires to interrupt
output in progress. This is
accomplished by pressing the
"break" key on a teoletype.
This causes the line to re­
main in the spacing state
while the key is depressed,
causing a framing error to
be detected by the line adap­
ter which terminates the
asynchronous line. For
terminals operating in half­
duplex mode, break causes
transition from output mode
to input mode.

2. An element of the block pro­
tocol which indicates an
interruption of the data
stream •.

BUFFER

Consecutive bytes of 2550 Communi­
cations Controller Storage used
to hold a portion of an informa­
tion stream.

BYTE

A group of bits. Unless prefixed
(e.g., 6~bit byte), the term
implies a-bit groups. When used
for encoding character data, a
byte represents a single character.

A-I

CLUSTER

A group consisting of a controller
and all terminals which it
supports.

COMMAND

Information passed to a process
which performs control of the
process rather than being data
destined for transmission by the
process.

COMMUNICATIONS LINE

A communications circuit between
a terminal and its network pro­
cessing unit.

COMMUNICATIONS LINE ADAPTER (CLA)

A unit of hardware which inter­
faces a communications line to the
storage of an NPU.

CONNECTION NUMBER

An a-bit number which represents
a pair of processes within the
context of the two nodes associated
with the communicating processes.

CONTENTION

The situation which exists when a
device has information ready to
place on a communications line
which is busy.

CONTROL INFORMATION

Information wh1ch is not part of a
message, but which must be trans­
mitted in support of the communica­
tions protocol.

CONTROLLED TERMINAL

A terminal whose input device will
place data on the communications
line only in response to a poll.
The maximum input rate of the
device can thus be regulated by
control of the polling rate.

A-2

CONTROLLER

A hardware device which interfaces
multiple terminals to a single
communications line, and performs
some common functions for those
terminals (such as protocol
handling) •

DATA

Any portion of a message as created
by the source, exclusive of any
information used to accomplish the
transmission of such message.

DEAD START

The process of loading and starting
a processor.

DEMAND FLOW CONTROL (DFC)

A method of regulating the rate
at which information is forwarded
by a host to the terminal node
for an output device, such that
storage requirements at the term­
inal node are minimized while
keeping the device operating at
capacity, by using transmission
completion events to request
further output data.

DESTINATION

The terminal or host which is
designated to receive the message.

DESTINATION PROCESS

The process at the destination
node which delivers a message
to the destination.

DESTINATION NODE (ON)

The node which directly interfaces
to the destination.

DEVICE

An input-only or output-only por­
tion of a terminal.

60470000 A

,
./

'" ../

(

(

(

(

'(.

' .'"

"
I

r{

(

(

(

(/

('

DISCONNECT

The state transition which occurs
when a terminal connected to the
terminal node via the switched
network ceases to be so connected,
because its modem goes "on hook",
or because of a failure of the
switched network.

DOWNLINE

The flow direction of output from
host to terminal.

FAILURE VERIFICATION PERIOD (FVP)

The period of time, following an
operational-to-failed transition,
during which a facility must remain
continuously failed, prior to
taking the facility out of service
and reporting the failure. The
FVP is used to isolate the host
from high frequency transients in
the state of a communications line.

FREEWHEELING TERMINAL

A terminal which can input at the
discretion of the terminal opera­
tor and whose input rate cannot be
controlled by the terminal node.
Contrast with controlled terminal.

FRONT END

A network processing unit which
directly interfaces one or more
hosts.

FULL DUPLEX (FDX)

Two-way simultaneous transmission,
when applied to a communications
line. Simultaneous, independent
operation of the input and output
devices, when applied to a terminal.

HALF DUPLEX (HDX)

Two-way alternate transmission,
when applied to a communications
line. When applied to a terminal,
it means that the terminal cannot
simultaneously send one message
while receiving another, usually
because the output device locally

60470000 A

copies the input while the termi­
nal is in input mode.

HOST

A digital computer which executes
the programs of an application
process.

HOST COUPLER

An element of hardware which inter­
faces a host computer to a Commun­
ications Controller.

HOST INTERFACE PACKAGE (HIP)

The collection of programs resident
in a Communications Controller
which controls the transfer of
blocks between one or more hosts
and NPUs.

HOST NODE (HN)

The node ID associated with an
interface between an NPU and a host.

INFORMATION

A one-dimensional stream of bits
which is communicated from one
point to another, exclusive of
synchronizing patterns which
establish the sample point for
the receiver.

INOPERATIVE

Not operational.

INPUT

Information flowing upline from
terminal to host.

LINE CONTROL BLOCK (LCB)

A control block in the terminal
node which records the status
and operational parameters of
the associated line.

LINE CONTROL PROTOCOL

The conventions for encoding,
blocking and formatting messages,
redundancy generation and error

A-3

detection, and error correction
procedures, and the formats and
interpretation of the address
and control information used·. to
effect such procedures, as applied
to the communication of data be­
tween a terminal and its terminal
node.

LINE NUMBER

The identifier of a specific
terminal line, consisting of a
CLA hardware address (port) and,
where necessary, a multiplexer
subport.

LINE PROCESS

That process in a terminal node
which controls line (as opposed
to terminal) functions, such as
modem interface, connect and
disconnect.

LINK

A full-duplex point-to-point com­
munications connection between
two nodes, consisting of one or
more trunks.

LINK CONTROL BLOCK (LKCB)

A control block which maintains
the operational parameters and
status of a particular link.

LINK CONTROL PROTOCOL

The conventions for grouping
packets, redundancy generation
and error detection, and error
correction procedures, and the
formats and interpretation of
the control information used to
effect such procedures, as applied
to the communication of packets
between neighboring nodes.

LINK FAILURE

The failure of all trunks of
a link.

LINK INTERFACE PACKAGE (LIP)

The collection of programs resident
in the communications controller

A-4

which controls the transfer of
blocks over one or more links.

LINK PROTOCOL ENVELOPE

That information which is placed
both before and after a collection
of packets to form a link trans­
mission block. The envelope per­
forms the functions of: delimiting
the start and end of the packet
group, identifying the group,
carrying error detection redundant
information, and carrying error
control information.

LINK QUEUE

A queue of packets to be transmitted
to the CNP.

LINK RETENTION QUEUE (LRQ)

A queue of packets which have been
transmitted to the CNP but not
acknowledged as received.

LOAD REGULATION

The mechanism of controlling the
rate of information input to a
node by selectively inhibiting
particular inputs when the number
of available buffers decreases
past a preset threshold.

LOGICAL CHANNEL

The total mechanism provided by the
NPU for the bidirectional transfer
of data and commands between two
particular processes.

LOGICAL CONNECTION

The association of two particular
processes via the assignment of
a network address.

NETWORK ADDRESS

A set of three 8-bit numbers, con­
sisting of two node IDs followed
by a· connection number. The first
node 10 is the destination node.
The second node 10 is the source
node.

60470000 A

(

\.

(
"" ... /

c
r.
\t.",,/

(

(

(

(

(

(-\

(-

(-

(_ ..

NODE

A network element which creates,
absorbs, switches and/or buffers
blocks.

NODE ID

An 8-bit binary serial number
which represents a node.

OFF-LINE

The state in which a terminal can­
not be physically accessed by the
network because power is off, or
terminal is in local mode, or
terminal is not connected via
communications line to the network.

OPERATIONAL

In a condition to perform intended
function of communicating data,
with no further status change
being necessary.

OUTPUT

Information flowing downline from
host to terminal.

PORT

The interface between a communica­
tions line and a network processing
unit.

PRIORITY, INPUT

As free buffers in an NPU are
placed into service, and the free
buffer level crosses succeedingly
lower thresholds, certain terminals
are not permitted to input. Those
terminals permitted to input at
the lowest free buffer level have
highest input priority.

QUIESCENT

When applied to a line, neither is
data in transit nor is polling
scheduled.

RESEQUENCING

Storing received elements by
serial number so that the elements

60470000 A

can be forwarded in the order that
the serial number was assigned.

SERVICE MESSAGE (SM)

A command transferred between
service modules.

SERVICE MODULE

A set of processes which are not
directly involved in the trans­
mission or processing of data, but
which assist in establishing and
maintaining an environment for the
communication of data between
processes.

SOURCE

The terminal or host which created
the message.

SOURCE PROCESS

The process at the source node
which obtains messages from the
source station.

SOURCE NODE (SN)

The node which directly inter­
faces to the source station.

STATION

A provider and/or recipient of
messages.

TERMINAL

An entity, external to the net­
work, but connected to it via
a communications line, which
supplies input messages to, and/
or accepts output messages from,
an application process.

TERMINAL CONTROL BLOCK (TCB)

A control block in the terminal
node which records the status
and operational parameters of the
associated terminal.

TERMINAL CONFIGURATION

That collection of information
which identifies the addresses

A-5

(if any), device types and char­
acteristics, and operational mode
of all terminals connected to a
given communications line.

TERMINAL INTERFACE PROGRAM (TIP)

The collection of programs resi­
dent in a communications controller
which controls the transfer of
messages between a communications
line (to which are connected one
or more terminals and/or clusters)
and the Communications Controller.

TERMINAL MODE

The specification of which unit is
the input device and which unit
is the output device, and how
those units are coupled, if the
option exists.

TERMINAL NODE (TN)

Network processing unit which sup­
ports one or more terminal inter­
face programs and to which
terminals are directly connected
via communications lines.

TERMINAL OPERATOR

That person who is operating the
controls of a terminal. Contrast
with user.

TERMINAL PHYSICAL ADDRESS

A sequence of numbers which re­
present the terminal node, line
number and identification of the
terminal on the line.

TIP CONTROL COMMAND

A command which is communicated
via a logical connection. Con­
trast with service message.

TRUNK

A circuit which is used to carry
packets between computers.

TRUNK BLOCK

A transmission block on a trunk
circuit.

A-6

TRUNK CONTROL BLOCK (TKCB)

A control block in a Network
Processing unit which records
the status and operational para­
meters of the associated trunk.

TRUNK FAILURE

Failure of the link control pro­
tocol to obtain an error free in­
put from a trunk during a
predetermined interval. Such a
failure may be caused by failure
of the communications facility,
or by failure of the neighboring
node.

TURN AROUND

A state transition wherein a half­
duplex circuit changes from
communicating information in one
direction, to communicating in­
formation in the opposite
direction.

UNIT

One of multiple components of a
device. Only one unit of a device
may be active at a time.

UPLINE

The flow direction of input from
terminal to host.

USER

That person or group of people who
are the preparers and/or recipi­
ents of messages communicated with
an application process via the
network. A user may interface
with one or more terminals, or
with no terminals. Contrast with
terminal operator.

MNEMONIC TERMS
AP Application Process

BACK Block Acknowledge

BCC Block Check Character

BCD Binary-coded Decimal

60470000 A

,/

/'
(
l

"

(

{~

(~

("

(

(

[

(

(

('

(

()

BFC

BLK

BP

BSN

BSNL

BT

CC

CCP

CLA

CN

CRC

CRT

CTS

DCD

DMA

BloCK Format Code

All but last block of
message (see MSG)

Breakpoint

Block Serial Number

Block Serial Number Limit

Block Type

Command Code

Communications Control
Program

Communications Line
Adapter

Connection Number

Cyclic Redundancy Check

Cathode Ray Tube

Clear to Send

Data Carrier Detect

Direct Memory Access

DN Destination Node

DP

DSR

DTR

FCD

FCR

FDX

HDX

HIP

ID

IDC

LCB

LCD

Destination Process

Data Set Ready

Data Terminal Ready

First Character
Displacement

Function Control Register

Full Duplex (see HDX)

Half Duplex (see FDX)

Host Interface Program

Identification Number

Internal Data Channel

Line Control Block

Last Character
Displacement

60470000 A

LEC

LPC

LRC

Line Error Code

Longitudinal Parity
Character

Longitudinal Redundancy
Check

MC Master Clear

MLIA

MSG

MTI

NPU

ODD

Multiplex Loop Interface
Adapter

Last-Block of Message
(see BLK)

Message Type Indicator

Network Processing unit

Output Data Demand

PCB Program Control Block

POI Point of Interface

PPU Peripheral Processing Unit

RAM Random Access Memory

RB Reason For Break

ROM Read Only Memory

RTS Request to Send

SC Service Code

SN Source Node

SOH Start of Header

SP Source of Process

TCB Terminal Control Block

TDP Time Dependent Program

TIP Terminal Interface Program

TPN

TTY

TUP

U/L

Terminal Position Number

Teletype

Test utility Program

Upper/Lower Indicator

A-7

/"

\

r " r
r " ..

(

(

(

(

(/

r
(

(

(/

APPENDIX B
CE ERROR MESSAGE AND SYSTEM ERROR CODES

CE ERROR MESSAGES

Format:
Bytes 0 1 2 3 4 5 6 7 8 34

I DN \ SN (00 \4\BSN(00 \ 04 00 \ EC (TEXT

where:
DN Destination Node (2 hexadeci­

mal characters)
SN Source Node (2 hexadecimal

characters)

ERROR REPORTED BY DESCRIPTION
CODE

01 CLA STATUS DISCONNECT SWITCHED
HANDLER LINE

02 CLA STATUS ABNORMAL DSR OR
HANDLER CTS OPERATION

03 CLA STATUS ABNORMAL DATA CAR-
HANDLER RIER DETECT OPERATION

04 WORKLIST UNSOLICITED ODD
PROCESSOR

05 WORKLIST CLA ADDRESS OUR OF
PROCESSOR RANGE

06 WORKLIST ILLEGAL LOOP CELL
PROCESSOR FORMAT

07 WORKLIST UNSOLICITED INPUT
PROCESSOR

08 CLA STATUS INPUT LOOP ERROR
HANDLER

09 CLA STATUS OUTPUT LOOP ERROR
HANDLER

OA PTTER ODD TIMEOUT
OB PTTER MODEM TIMEOUT
00 CLA STATUS CLA STATUS OVERFLOW

HANDLER
OE CLA STATUS FRAMING ERROR

HANDLER
OF CLA STATUS NEXT CHARACTER NOT

HANDLER AVAILABLE
10 CLA STATUS DATA TRANSFER

HANDLER OVERRUN

604·70000 B

BSN

EC

Block Sequence Number (1 hexa­
decimal character)
CE Error Code (2 hexadecimal
characters)

TEXT Error Code Dependent Text
(see below)

TEXT

, ... I pTlspls11s21

PT - PORT NUMBER (CLA ADDRESS)
SP - SUBPORT NUMBER (NOT

USED = (0)
S1 - CLA STATUS BYTE 1 (LOGICAL

FORMATO FORMAT)
S2 - CLA STATUS BYTE 2 (LOGICAL

FORMAT)

CLA STATUS BYTE 1

I CLAIDSRIDCDISCDCIQMISQDIRdSPARE I
CLA STATUS BYTE 2

> I SPARE ISPARE IILEloLEIDTOI NCNAlpESIFES I
CTS - CLEAR TO SEND
DSR - DATA SET READY
DCD - DATA CARRIER DETECT
SDCD - SECONDARY DATA CARRIER

DETECT
aM - QUALITY MONITOR
SQD - SIGNAL QUALITY DETECTOR
RI - RING
ILE - INPUT LOOP ERROR
OLE - OUTPUT LOOP ERROR
DTO - DATA TRANSFER OVERRUN
NCNA - NEXT CHARACTER NOT

AVAILABLE

)
PES - PARITY ERROR STATUS
FES - FRAMING ERROR STATUS

B-1

Error
Code

11

12

18

20

21
22
23
24

25

27

28

29
2A

• B-2

Reported By Description

PBMLIA MLIA Error Status

Mode 4 TIP Upline Break From OVer­
flowed Error Counter

Real-Time Real-Time Clock Error
Clock (RTC) Status

PTSTART Deadman Timeout

PTINTPROC Spurious Interrupt
AOPT2 Chain Address Zero
AOPT2 Hardware Timeout on Input
AOPT2 Input Data Transfer Ter-

minated by PPU

AOPT3 Illegal Orderword

AOPT5 Output Data Transfer
Terminated by PPU

AOPT5 Hardware Timeout on
Output

AOPT5 EOP Missing
AOPT6 Unexpected Status

Text

ET - Error Type
00 - Error Condition

Restored
01 - Error Counts Given
02 - MLIA Failure

LE - Input Loop Error} only
Count listed

LD - Lost Data Count if
AL - Alarm Count ET = 01

100 I RB I PP I SS I CA I TAl

RB - Reason for Break
01 - No Response Counter

Overflowed
02 - Bad Response Counter

OVerflowed
03 - Error Response

Counter Overflowed
PP - Port Number
SS - Subport Number
CA - Cluster Address
TA - Terminal Address

Iss I ssl

SS - Clock Status

ILS I Nsl

LS - Last State
NS - Next State

CP ST - Coupler Status Word

CP ST - Coupler Status Word
OR WD - Orderword Received

Icp I STI

CP ST - Coupler Status Word

604700.aO B

\, ..

(
~ ..

(

(.

(

(

(

(

(\,

{

(

(~

(
/

C·
. ~.'

£:

STATISTICS SERVICE MESSAGE

Format:

Bytes o 1 2 3 4

DN SN 00 14 BSNIOO

where:

DN = Destination Node
SN = Source Node

BSN = Block Sequence Number
SC = Service Code

01 = NPU Statistics
02 = Line Statistics
03 = Mode 4 Terminal Statistics

5

04

TEXT = Service Code Dependent Text (see below)

NPU STATISTICS

Bytes 0 1 2 3 4 5 7 8

where:

DN = Destination Node
SN = Source Node

BSN = Block Sequence Number
MG = Messages Generated Count
MP = M$ssages Processed Cou~t
BA = Bad Address Count
BF = Bad Format Count
MR = Mode 4 Input Regulation Started Count
TR Teletype Input Regulation Started Count
HF = Host Failure Count
MS = Messages Out-of-Sequence Count

LINE STATISTICS

6 7

SC TEXT

T
TEXT

Two
bytes
each

Bytes 0 1 2 3 4 5 6 7 8 9 10/11 12/13 14/15 16/17

IDNISN[OO 141 BSN1 00 104102lpN1 00 100 I TM RC CT CR I
~~ ________________ ~y~ ________________ -JI

TEXT~

60470000 A B-3

where:

DN = Destination Node
SN = Source Node

BSN = Block Sequence Number
PN = Port Number
TM = Blocks Transmitted Gount }-RC = Blocks Received Count bytes
CT = Characters· Transmitted count}G d blocks only each CR = Characters Received Count 00

MODE 4 TERMINAL STATISTICS

Bytes 0 1 2 3 4 5 6 7 8 9 10/11 12/13 14/15 16/17 18/19

IDNISNI oo l41 BSN:(00104103(PNICA(TA I ™ RC RT (NA

where:

DN =
SN =

BSN =
PN =

. CA =
TA =
TM =
RC =
RT =
NA =
UB =

Destination Node
Source Node
Block Sequence Number
Port Number
Controller Address
Terminal Address

,
T

TEXT

Blocks Transmitted Count (does not include retransmission)
Blocks Received Count (does not include blocks with errors)
Blocks Retransmitted Count
Blocks Not Accepted Count }
Upline Break Count Because of error only

SYSTEM HALT CODES

000 Not a valid halt code OOA Duplicate RELEASE

001 Power Fail OOB Chain error

002 Memory Parity OOC Buffer out of range

I UB

}
Two
bytes
each

003 Program Protect OOD Bad conunand, not Type 1
or Type 2

004 Interrupt Count < 0
OOE PMWOLP not called from P3

005 Timal worklist error
OOF Attempted to clear an

006 Active LCB list error enabled line

007 No buffers left 010 Wrong terminal type
specified

008 Size error in stamp
011 Bad MLIA status

009 Duplicate GET (initialization)

I ,

B-4 60470000 A

,'1' --'.
'tj

(

(

{

(

012 Duplicate CLA address
(ini tialization)

013 Attempt to redefine an
existing DN Directory entry

014 Attempt to redefine an
existing CN Directory entry

015

016

017

Attempt to remove a non­
existent DN Directory entry

Attempt to remove a non­
existent SN Directory entry

Attempt to remove a non­
existent CN Directory entry

019 Illegal POT Key

OlA

OlB

OlC

OlD

OlE

OlF

020

021

022

Attempted to add zero CN
to the directories

Program selected to run
is not in core

Monitor did not run for
B2TIME/2 sec.

Service Module called with
worklist empty

Service Module workcode
out of range

MLIA failure

Pointer to read next loop
cell from CIB exceeded the
present line frame pointer

Reserved for Firmware use

Reserved fro Firmware use

60470000 A

023

024

025

026

Reserved for Firmware use

Reserved for Firmware use

Reserved for Firmware use

Reserved for Firmware' use

027 Reserved for Firmware use

028

029

02A

02B

02C

02D

02E

Coupler alarm condition

No Queue Control Block
available for TCB Build

Bad line number from TIP

Unknown TASKNR selected

Unknown Block/CMD received

Improper MUX-Sub operation

Improper M4 - TIP operation

02F Control for disabled line

030

031

032

033

Reserved for M4 - TIP

Error in PNHDRBLD

Error in PNDLBH

Illegal line status detected
by PTCLAS

034 Illegal call to Queue Services

0'35

036

Attempt to queue message to
NPU console in system with­
out console

Directory function attempted
with DN out of range

B-5

(

(

(.

(

(

'('

" . . ,
i,

i
:

(

(

APPENDIX C
DATA BUFFER-GENERAL FORMAT

DATA BUFFER - GENERAL FORMAT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WORD 0 BFLCD BFFCD

WORD 1

WORD 2 BFDATAC (1) BFDATAC (2)

r--.... ./

WORD n-l BFDATAC (n-l) BFDATAC (n)

WORD n BCCHAINS (x)

* Spare F5{BFEOBFLG) End of Block Flag

BFLCD Last Character F6(BFPRTK) Buffer Protect Flag
Displacement

F7(BFPERM) Permanent Buffer Flag
BFFCD First Character

Displacement F8(BFQCNT) Source Retention Queue
and HIP Queue Count

Fl(BFEOTFLG) End of Transmission
Flag F9(BFDBSIZE) Data Buffer Size

(0 = small, 1 =
F2(BFSOTT) Start of Transparent large)

Text Flag
BFDATAC (n) Data Character

F3(BFSONT) Start of Non-Trans-
parent Text Flag BCCHAINS (x) Buffer Chain Word

(Chain to Next Buffer)
F4(BFSUPCHAIN) Suppress Buffer

Chaining Flag

60470000 A C-l

,1(--

", --... /

(

f

(

(

r
(

(

(~i

Address 1-1
Assembler

macro 1-4
micro 1-4

Base system software 1-3
Batch mode 3-32
Bits 1-1

least significant 1-1
Breakpoint

disable 4-52
functions 4-56

Build-time parameter 6-3
Buffer

data C-l
stamping 2-1
storage 1-1

Bytes 1-1

CLAs 5 -1 ; 5 - 3
Communications control program

1-1; 1-3; 2-1
support software 1-4

Control character functions
4-53; 4-55

Coupler status register 3-17

Data buffer C-l
Data Sets 3-12
Data structures 1-3
Debug aids 2-1
Directives

UPDATE 2-1
LINK ZAP 202

Directory entries 6-1
Drivers

TTY Terminal 2-1
Mode 4 Terminal 2-1

Dump bootstrap 3-4; 3-5

Error messages 6-5; B-1

Global interfaces 5-16

60470000 B

INDEX

Half-duplex 3-30
Halt codes B-4
Host down 3-27
Host interface program 1-3

Input 1-1
Installation parameters 2-1
Interfactive 3-31

mode 3-32
Interface programs 1-3
Intranode 6-1

Line status field 5-15
Link editor 1-4
LINKZAP

initialization directives 2-2
Logic changes source coding 2-2

Macro assembler 1-4
Master Clear 4-55
Memory space 1-3
Micro assembler 1-4
Modem class 3-43
Multiplex loop concept 1-3; 5-1
Multiplex subsystem 1-3; 4-1

Network communications software 1-3
Network Processing unit 1-1
NPU status word 3-17

Output 1-1

Parameters
installation 2-1

PASCAL
compiler 1-4; 4-34
source global variables 2-2

Point of entry 2-2
Program

element selection 2-1
modification 2-1

Index-l

Queue service 4-35

Service message 3-8
Software

additions 2-2
base system 1-3
CCP 1-3
host 1-3
interface programs 1-3
support 1-4
system 1-3
traps 4-51

Source coding logic changes 2-1
State

process instruction 5-17
program 5-17

Index-2

Statistics messages 6-5
Storage buffers 1-1

Terminal control block 3-15
Terminal interface

programs 1-3
logic 2-2

Timing procedures 2-2
TIP subroutines 5-9; 5-10
TTY TIP 3-30

Variables
source global PASCAL 2-2

Worklist entry 4-9; 4-38

60470000 B

./'

(

"'.

c

(

(--

C
f
I

f-~"'

(

(

f'

(

(\,

f "

f'

t
('

('

(:

(;

C
(-

C
~,

w z
:i

@f ...
81
~I
~I
51 u

t
I
1
I
I
I
I

COMMENT SHEET

MANUAL TITLE Communications Control Program Version 1

Software Reference Manual

60470000 B PUBLICATION NO. __________ REVISION ____ _

FROM: NAME: ______________________________ _

BUSINESS
ADDRESS: ____________________________ __

COMMENTS:

FOLD ON DOTTED LINES AND STAPLE

STAPlE STAPLE

fOlD fOlD

---~~--------------------------------------~

FOLD

BUSINESS REPLY MAIL
NO PoSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

CONTROL DATA CORPORATION
Publications and. Graphics Division
3519 West Warner Avenue
Santa Ana. California 92704

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS. MINN.

FOLD

(
\-.. .--

/"--0

au
Z
::;

" z
0 ... \...
~ ...
:;)
u !'O

\ ,

c:
C

CORPORATE· HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINNESOTA 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

(S~
CONTI\.OL DATA CORPOR{\.T10N

