CONTROL DATA

CORPORATION

CONTROL DATA®

CYBER 170 COMPUTER SYSTEM MODELS 172,173,174,175
CYBER 70 COMPUTER SYSTEM MODELS 72,73,74

6000 COMPUTER SYSTEMS

o0 000000 ocoo@EoOoOOOGOOGOOEONEOO

BASIC LANGUAGE VERSION 2
REFERENCE MANUAL

CONTROL DATA

CONTROL DATA®

CYBER 170 COMPUTER SYSTEM MODELS 172,173,174,175
CYBER 70 COMPUTER SYSTEM MODELS 72,73,74
6000 COMPUTER SYSTEMS

BASIC LANGUAGE VERSION 2
REFERENCE MANUAL

REVISION RECORD

REVISION DESCRIPTION
A Original printing.
(7-73)
B Includes corrections to Revision A and the Network Operating System (NOS) update.
(10-74)

Publication No.
19980300

© 1973, 1974

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America ’ this manual.

PREFACE

This manual describes the BASIC subsystem which permits the SCOPE, KRONOS® and the
Network Operating System (NOS) time - sharing terminal user to enter, compile, and exe-
cute interactive programs. The BASIC 2,1 compiler is a modification to the CONTROL
DATA BASIC Version 2.0 compiler for CYBER 70, Models 72, 73 and 74, CYBER 170,
Models 172, 173, 174 and 175, and 6000 Series computers. This version is an extension
of the original BASIC language which was designed and implemented at the Dartmouth

College Computation Center.

Although BASIC is normally used interactively from a remote terminal, BASIC programs

can be compiled and executed as batch programs,

This rnanual does not contain a description of the complete system hardware or software.
For additional information pertaining to the CDC CYBER 70, CYBER 170, and 6000 Series
computers; SCOPE 3.4, KRONOS 2.1, NOS 1.0 operating systems; and time-sharing job

processing, refer to the following manuals:

Control Data Publication Publication No.

Control Data 6400/6500/6600

Computer Systems Reference Manual 60100000
INTERCOM Reference Manual, Version 4, 2 60307100
KRONOS 2.1 Reference Manual 60407000
SCOPE Reference Manual, Version 3.4 ‘ 60307200
KRONOS 2.1 TEXT EDITOR Reference Manual 60408200
KRONOS 2.1 TIME SHARING Reference Manual 60407600
NOS V1,0 Reference Manual 60435400
NOS V1.0 TIME SHARING Reference Manual 60435500
NOS V1.0 TEXT EDITOR Reference Manual 60436100

CYBER 70/Model 72 System
Description,Volume 1 60347000

CYBER 70/Model 73 System
Description,Volume 1 60347200

CYBER 70/Model 74 System
Description, Volume 1 60347400

19980300 B iii

iv

Control Data Publication

CYBER 170/Models 172, 173, 174 System
Description,Volume 1

CYBER 170/Model 175 System
Description,Volume 1

Publication No.

19981200

60420000

19980300 B

PREFACE
INTRODUCTION

1,0 BASIC PRIMER
Programming and Languages
Statement of the Problem
Sample BASIC Program
Analysis of Statements

Complete Program and Output

Expressions in BASIC
Arithmetic Expressions
Relational Expressions

Defining and Reading Data

DATA and READ Statements

Liooping in BASIC
IF and GOTO Statements
FOR and NEXT Statements
Lists and Tables
Break-even Program

Modified for Dimensions

Terminal Input and Output
Using BASIC

CONTENTS

Using BASIC from KRONOS/NOS 21

Using BASIC under SCOPE

2.0 BASIC LANGUAGE REFERENCE 2,0-

Introduction
Modes of Operation
Character Set
Statement Structure

2.1 ELEMENTS OF THE BASIC
LANGUAGE
Constants
Numeric Constants
String Constants
Variables
Simple Numeric Variables
Simple String Variables
Subscripted Variables
Forming BASIC Expressions
Arithmetic Expressions
String Expressions
Relational Expressions

2.2 FUNDAMENTAL BASIC
STATEMENTS
Remark (Program Comments)
REM Statement
Array Definition
DIM Statement
BASE Statement

19980300 B

[\

.

—
1

OO WWWH =

Value Assignment

LET Statement
Test and Branch

IF Statement

GOTO Statement

ON GOTO Statement
Looping

FOR...NEXT Statements
Program Termination

STOP Statement

END Statement
String/Number Conversion

CHANGE Staternent

2.3 FUNCTIONS AND SUB-

ROUTINES

Predefined Functions
Mathematical Functions
System Functions
String Functions

User Functions
DEF Statement
Referencing a Function

Subroutines
GOSUB Statement
RETURN Staternent

2.4 INPUT AND OUTPUT
Files and Internal Data Block
Permanent File Access
FILE Statement
DATA Statement
RESTORE Statement
NODATA Statement
Binary Input/Output
READ Statement
WRITE Statement
Coded Input
INPUT Statement
DELIMIT Statement
Coded Output
PRINT Statement
Default Output Formats
Print Zoning
TAB Function
IMAGE Statement
SETDIGITS Statement
MARGIN Statement

2.5 MATRIX OPERATIONS
Matrix Arithmetic
Matrix Functions
Matrix Redimensioning

QO OOV R WW

COXRXT-TJDNDU b Wk =

==
> DN

Matrix Input/Output
Matrix READ Statement
Matrix INPUT Statement
Matrix PRINT Statement
MatrixWRITE Statement

Matrix File Manipulation

2.6 ERROR PROCESSING

ON ERROR Statement
JUMP Statement

ESI. Function

ESM Function

NXI1, Function

2.7 TERMINAL OPERATIONS

vi

UNDER SCOPE
SCOPE System
Terminal Keyboards
TTY Terminal
CRT Terminal
Command Mode
INTERCOM Commands
BASIC Command
BRESEQ Command
EFL Command
ETL Command
File Commands
Editor
Creating a Program Under
Editor
Using Data Files
Leaving Editor
Using BASIC under SCOPE

=
O O a3

an
(s
.
[=)
i

QWD D=t =

2.8

2.9

4 85 o o w

TEEMINAL OPERATION
UNDER KRONOS/NOS
KRONOS/NOS System

TTY Terminal Description

2,8~

[

Conversational Display Terminal,

Model 713
USING BASIC

USING BASIC from KRONOS/NOS

KRONOS/NOS Data Files
BATCH OPERATIONS
Deck Structure

BASIC Control Card

Batch Processing from a
Terminal

APPENDICES

CHARACTER SETS

SCOPE Character Sets

KRONOS Character Sets
DIAGNOSTICS
INDEX OF BASIC STATEMENTS
INDEX OF BASIC FUNCTIONS
KRONOS FILE HANDLING

SAMPLE BASIC PROGRAMS

3
4
4
1

19980300 B

INTRODUCTION

BASIC is an all-purpose programming language that includes features which render it
well-suited for scientific, business, and educational applications, BASIC provides a small
but powerful set of easy-to-learn statements that are ' English-like' and written in free

format., Some of the more important features provided by BASIC are:
° Numeric and character string manipulation.
° Array definition and redimensioning.
Y Access to trigonometric, matrix, and string functions.
Y Facility for writing user-defined functions.
° Facility for writing subroutines.
° Matrix I/O for one and two dimensional arrays.
P Output format determination.
PY File manipulation of coded and binary files.
° Error detection and processing during program execution,

This document is intended to describe these and other BASIC features to both non-
programmer and experienced programmer., The information in this manual is therefore

provided in three major sections:

P Section 1 - is a primer or introduction to the BASIC language directed at the

non-programmer,

° Section 2 - includes reference information that is an expansion of Section 1,

and reference information directed at the experienced programmer,

PY Appendixes - include information that support Sections 1 and 2, and summary

information.

19980300 B vii

BASIC PRIMER 1.0

Modern digital computers are designed for a wide range of applications. However, all
digital computers have certain common characteristics. They all perform tasks specified

by a set of instructions.

A set of sequential instructions designed to solve a specific problem is called a program,
Such a program might perform a simple task such as adding or subtracting two numbers,
or printing a single letter or digit. Typically, a program for a complete scientific compu-

tation could require a few thousand computer instructions.

Computer programs process or manipulate information called data. A program can be
used to perform calculations using data and to print out the results, Most programs per-
mit new data to be input each time the program is used, The three phases of a program

operation are: Input, Computation, andOutput.

When a program is performing tasks in a computer, the process is called ''program exe-

cution'" or " running'a program,

PROGRAMMING AND LANGUAGES

Computers can execute thousands and even millions of computer instructions each second;
therefore, computer instructions must be structured in a form suited to the computers
architecture. To write a program using computer instructions in the form used dir.ectly
by the computer (machine instructions) is tedious and time-consuming. To simplify
writing programs, computer specialists have developed several '"high level', easy-to-use
programming languages and associated compilers and translators to convert these high
level languages to machine instructions. BASIC, the Beginner's All Purpose Symbolic
Instruction Code, is one such high level language. BASIC was originally developed by
professors Kemeny and Kurtz at Dartmouth College.

The BASIC language is used on Control Data CYBER 70 Series, CYBER 170 Series, or
6000 series time-sharing computer systems. This time-sharing capability permits the
simultaneous use of the computer by more than one user without apparent restriction.
The compilation and execution of each user program is controlled and monitored through

!

use of an ' operating system' which is the case of the CYBER or 6000 computers can be

SCOPE V3.4, KRONOS V2.1, or the Network Operating System (NOS) V1.0.

19980300 B 1,0-1

This section deseribes to a non-programmer how to write, enter and execute a BASIC
program by solving a sample problem with a BASIC program and describing the BASIC

statements used in solving the problem.

After studying this section the reader will be familiar enough with the BASIC language to
write BASIC programs and to understand the more detailed description of the BASIC

language provided in section 2.

STATEMENT OF THE PROBLEM

The following general description of a manufacturing system is the problem to be solved
using BASIC. In the following problem F represents fixed costs per year associated with
production, C represents variable costs incurred per unit, and V represents the annual
volume of production (and sales) in units. Then the total cost incurred per year is

T =F + CV, If the revenue per unit made (and sold) is R per unit, then the total annual
revenue is R1 = RV. The profit obtained on an annual basis is the difference between R1
and T, if that result is positrive. A loss occurs if R1 - T is negative., The break-even

point is reached when the volume is sufficient to make R1 = T,

A company operates with fixed costs of $1 million per year, variable costs of $10 per unit,

and a revenue of $30 per unit of production.

a. What is the break-even point?
b. If the predicted sales are 25,000 units, what is the exptected profit or loss?

c. What is the expected profit or loss for sales of 50,000, 75,000 and 100, 000 units?

The following BASIC program was written to solve parts A and B of the problem. The

solution to part C is provided later in this section,

1.0-2 19980300 B

SAMPLE BASIC PROGRAM

001
002
003
004
005
006
007
008
009
010
011
o12
013
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
200
210
220
230
240

19980300 B

REM
REM
REM
REM
REM
REM
rEM
REM
REM
REM
REM
REM
REM
LET
LET
LET
LET
REM
REM
LET

THIS IS A BREAKEVEN PROGRAM
THE FOLLOWING VARIABLES ARE USED

FIXED ANNUAL COST F
VARIABLE COST PER UNIT Cc
SALES REVENUE PER UNIT R
SALES VOLUME v
BREAK=-EVEN POINT (VOLUME) Vi1
TOTAL COST T
TOTAL REVENUE Rri
PROFIT/LOSS P
ASSIGN VALUES TO VARIABLES F»CsRaV

F=1000000
C=10

R=30
v=25000

COMPUTE BREAK-EVEN POINT
V1i=F/(R-C)

PRINT "BrREAK-EVEN POINT="3VI13"VILUME UNITS"

REM
REM
LET
REM
REM
LET
REM
REM
LET

COMPUTE TOTAL C@ST
T=F+C*V

COMPUTE TOTAL REVENUE
R1=R*V

COMPUTE PROFIT/LOSS
P=R1-T

IFV>V1 THEN 230

PRINT "LOSS = $'3P,"VOLUME ="3V3"UNITsS"
GOTd 240

PRINT "PROFIT=$'"3P,""VOLUME="3V3 UNITS"

END

1,0-3

ANALYSIS OF STATEMENTS

REM Statement

Observe that each line of the following example includes a number and these numbers are
presented in ascending order,

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USEDS
003 REM FIXED ANNUAL COST F
004 REM VARIABLE C@ST PER UNIT C
005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN P@INT (VOLUME) V1
008 REM TATAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

These numbers are called line numbers and identify individual lines of a BASIC program.
Each line of a BASIC program is called a statement, and each statement must begin with

a line number. Line numbers normally indicate the sequence in which the computer is to
perform (execute) the statements, Statements may be typed in any order; however, before
the computer executes the statements, it sorts them into the sequence indicated by their

line numbers.

The line number is followed by a word or an abbreviation (abbreviation in the above insert)
which identifies the type of BASIC statement, The sample program contains six statement
types; the above insert contains one, REM. The REM statement allows the user to insert
remarks which increase readability and comprehension in a program; it has no effect
during execution of the program. A maximum of 72 characters can be included in a REM

statement,

In the sample program, the REM statements identify the type of program, the variables
used, and their identifiers. These identifiers are used later in program computations.

1,0-4 19980300 B

LET Statement

The LET statement specifies that the variable to the left of the equals sign be set to a
value or the value of the formula or expression to the right of the equals sign.

Examples:
1, Constant Value Assignment - Statements 20 through 50 in the sample program
assign a value to variables ¥, C, R, and V which are later used in computing

the break-even point. The value for F, C, R, and V represent dollars and the

value for V represents units.,

013 REM ASSIGN VALUES T@ VARIABLES FsC,R»V
020 LET F = 1000000

030 LET C = 10

040 LET R = 30

0S50 LET v = 25000

060 REM

2. Formulas Value Assignment - In the sample program statements 120, 150, and
180 compute total cost, total revenue and profit or loss, respectively and assign

these values to variables T, R1 and P. (The symbol * gpecifies multiplication.)
BASIC conforms to the normal algebraic rules for order of arithmetic computation,

e. g., multiply before addition, etc.

110 REM COMPUTE TOTAL COST
120 LET T =F + C » v

130 REM

140 REM COMPUTE TOTAL REVENUE
150 LET R1 = R * v

160 REM

170 REM COMPUTE PROFIT / LOSS
180 LET P = Rl - T

Statement 120 directs the computer to multiply V(25000) by C(10) and add the product (250000)
to F(1000000) giving a sum of 1250000, This sum is assigned to the variable T.

In computing total revenue, the volume (V) is multiplied by the revenue per unit (R)
(25000 * 30), and the product (750000) is assigned to R1.

To determine profit or loss, the total cost (T) is subtracted from the total revenue (R1):
(750000 - 1250000) and the remainder (-500000) is assigned to P.

19980300 B 1.0-5

PRINT Statement

The PRINT statement can be used to: (1) print out a value; (2) print a message;

(3) print a combination of 1 and 2; (4) or print a blank line. BASIC normally separates
an output line into five print zones; each 15 characters wide. Spacing is controlled with
commas and semicolons embedded in the PRINT statement, The comma is used to space
over to the next print zone (insert blank spaces between items); the semicolon permits
items to be printed with no additional blanks between them. When printing headings or
labels, enclose the heading or label in quotes in the PRINT statement, To print a blank
line, simply use the PRINT statement without specifying what to print; €.g., PRINT.

Example:

Statements 080 and 090, illustrate the assignment of a value derived from a formula
to a variable via the LET statement and the use of the PRINT statement in printing
an identifying label along with the derived value,

070 REM COMPUTE BREAK-EVEN PBINT

080 LET Vi = F/(R-C)

090 PRINT 'BREAK-EVEN POINT ="3Vi3*VALUME UNITS"

100 REM
Statement 080 directs the computer to subtract C from R (30~-10) and, using the re-
mainder (20) as a divisor, divide F{1000000). The quotient (50000) is then assigned to
the variable V1. (The symbol / indicates divide.) Statement 090 directs the computer
to print the value of V1, and the "BREAK-EVEN POINT" identifying label. The unit
of measure for V1 is labelled " VOLUME UNITS'. When executed this PRINT state-

ment produces:

BREAKEVEN-P@INT =5000 VOLUME UNITS

1,0-6 19980300 B

IF, GOTO and END Statements

If sales volume V is greater then (>) break-even volume, then a profit is earned. If the

sales volume is less than (<) break-even volume, a loss is incurred,

200 IFV>V1 THEN 230)
210 PRINT “L@SS = $"3P,"VOLUME ="3V3"UNITS"

220 GOTO 240
230 PRINT “PROFIT=8$"3P,"VOLUME="3V3"UNITS"

240 END

The IF statement (line 200) directs the program execution to the statement at line 230 if
the condition V is greater than V1 (V>V1) is met or to the following statement (line
210) if the condition is not met. This illustrates how execution sequence by line number

is altered.

The purpose of the IF statement (line 200) is to select the print label PROFIT or LOSS

to be printed with the values associated with variables P and V.

In this example, the PRINT at 210 is executed because V = 25000 and V1 = 50000, After
executing the PRINT statement, the computer then executes statement 220. Statement 220
is a GOTO statement that directs the computer to continue execution at statement 240,

The END statement directs the computer to stop executing the BASIC program. Its corre-

sponding line number must be the highest in the program.

19980300 B 1.0-7

Here is the complete break-even program with solutions to parts A and B of the problem.

001 REM THIS 1S A BREAKEVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED

003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME v
007 REM BREAK=-EVEN PZINT (VILUME) A
008 REM TBTAL COST T
009 REM TOTAL KEVENUE K1
010 REM PROFIT/L@SS P
011 REM

012 REM

013 REM ASSIGN VALUES T@ VARIABLES F»CsRaV
020 LET F=1000000

030 LET C=10

040 LET R=30

050 LET v=25000

060 REM

070 REM COMPUTE BREAK-EVEN PJINT

080 LET Vi=F/(rR-C)

090 PRINT '"BREAK=-EVEN P@INT="3V13"VOLUME UNITS"
100 REM

110 REM COMPUTE TOTAL COST

120 LET T=F+C*V

130 rEM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R*V

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=RI~-T

200 IFV>V1 THEN 230

210 PRINT "L@SS = $"3P,'"VOLUME ='"3V3"UNITS"
220 GOATO 240

230 PRINT “PROFIT=$"3P,'""VOLUME="3V; " UNITS"
240 END

After the program is entered into the computer, the BASIC compiler is directed to execute

the program. Below is the computer output after program execution.

BREAK-EVEN PQINT = S0000 VOLUME UNITS
LOSS = $-500000 VOLUME = 25000 UNITS

1.0-8 19980300 B

EXPRESSIONS IN BASIC

An expression may be simple, i.e., consists of one term (A) or complex, i.e., consists
of two or more terms connected by operations (A+B-C). Expressions evaluate to a single
value which can later be used in computation or can be used in determining program exe-
cution sequence (see line 200), etc. There are three types of expressions in BASIC:

Arithmetic, Relational, and String. String expressions are discussed in section 2 of this
manual; Arithmetic and Relational expressions are discussed in the following paragraphs

and in section 2.

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed from numeric variables, numeric constants, function
references and arithmetic operators. BASIC provides the following arithmetic operators:

Symbol Meaning

f or * Exponentiation
/ Division
* Multiplication
+ Addition
- Subtraction

In the sample program, line numbers (080, 120, 150, 180), operators (+, -, *, and /)
are used, The exponentiation operator raises a number to a specified power. For
example, 2%%3 means 2 raised to the third power or 23.

The arithmetic operators have a hierarchy for evaluation: exponentiation; then multipli-
cation and division; then addition and subtraction. The hierarchy is altered by the use of
parentheses, When using parentheses in BASIC, the rules of algebra apply. For example,
2%3+2 = 8 and 2*(3+2) = 10,

When using numbers in BASIC, commas cannot be used for separation of groups of numbers
instead of for decimal grouping within a number (e.g., ten million must be written
10000000 and not 10, 000, 000),

A numeric variable (i.e., F, C, R and V in the sample program) is named with a single
alphabetic character or an alphabetic character followed by a digit. The detailed rules for
using numbers and variables are included in section 2.1,

BASIC provides several mathematical functions that may be requested within an arithmetic
expression (e.g., SINE, COSINE, SQUARE ROOT, etc.). Functions are described in
section 2, 4,

19980300 B 1.0-9

RELATIONAL EXPRESSIONS

Relational expressions are formed by combining variables and/or arithmetic expressions
constants via relational operators. Relational expressions are used in IF' statements to

compare two values. BASIC provides the following relational operators:

Symbol Meaning
= Equal to
<> or >< Not equal to
> Greater than
>=or=> Greater than or equal to
< Less than
< =or=< Less than or equal to

An example of the use of the relational operator, > (e.g., V>V1) can be found in line 200
of the sample program. For more detail and the rules for using relational operators, see

section 2. 1.
DEFINING AND READING DATA
DATA AND READ STATEMENTS

In the break-even program, values are assigned to variables by using the LET statements
as follows:

013 REM ASSIGN VALUES T2 VARIABLES FsCsRsV

020 LET F = 1000000
030 LET C = 10

040 LET R = 30

050 LET Vv = 25000
060 REM

A more efficient method of assigning values to variables is provided through use of the
READ statement and the DATA statement. We can delete statements 020 through 050 and
add the following:

035 DATA 1000000,10,30,25000
037 READ FsC»sR»sV

The DATA statement creates a block of data which is internal to the program. Within the
DATA statement, values must be separated by commas. In the above insert the DATA
statement precedes the READ statement. This is not required because the DATA statement
may be placed anywhere in the program. -The READ statement is used to access the values
contained in the internal data block. The variables in the READ statement are assigned
values sequentially from the data block; i.e.,, F = 1000000, C =10, R = 30, and V = 25000,
This method is more efficient from the programmers standpoint because when the user
desires to change the input data for his program, only the associated DATA statements need

to be changed.

1.0-10 19980300 B

Example:

The following break-even program is revised to include READ and DATA staternents.

001
002
003
004
005
006
007
008
009
010
on
o12
013
03s
037
060
070
080
090
100
110
120
130
140
150
160
170
180
200
210
220
230
240

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
DAT
REA
REM
REM
LET
PRI
REM
REM
LET
REM
REM
LET
REM
REM
LET
IF

PRI

THIS IS A BREAK-EVEN PROGRAM

THE FILLOWING VARIABLES ARE USED:
FIXED ANNUAL COST F
VARIABLE COST PER UNIT c
SALES REVENUE PER UNIT R
SALES VOLUME v
BREAK~EVEN POINT (VOLUME) V1
TATAL COST T
TATAL REVENUE R1
PROFIT/LOSS P

ASSIGN VALUES T@ VARIABLES F»sCsRsV .

A 1000000, 10,30,25000 } New Inserts
D FsCsRsV

COMPUTE BREAK-EVEN P@INT

Vi = F/Z{(R-C)

NT "BREAK-EVEN P@INT ="3V13"VOLUME UNITS"

COMPUTE TOTAL COST
T=F +C %V

CIMPUTE TOTAL REVENUE
Rt = R x V

CaMPUTE PROFIT / LOSS

P =Rl - T

V > V1 THEN 230

NT *“LOSS = $'"3P,'VOLUME ='""3V3'"UNITS"

GOTo 240

PRI
END

NT " PROFIT = $"3P,"VOLUME ="3V3"UNITS"

When executed this program produces:

BREAK-EVEN P@INT= 50000 V3LUME UNITS

LASS

19980300 B

$-500000 VALUME = 25000 UNITS

1,0-11

LOOPING IN BASIC

We are frequently interested in solving a problem, using BASIC, in which a specified
sequence of statements is executed a number of times. Each time it is executed, a vari-
able is assigned a different value. In programming this is done by using a technique called
looping. The following statements provide two methods for looping.

. IF and GOTO statements.

g FOR and NEXT statements.
IF AND GOTO STATEMENTS

In the original problem, part C requested the profit/loss for sales of 50000, 25000, 75000,
and 100000 units. Through use of the IF statement (104) and GOTO statement (235), a loop
is inserted to solve parts A and B of the problem for these four values.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED:

003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT c
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL C@ST T
009 REM TATAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO VARIABLES F»sCsR
035 DATA 1000000,10,30
037 READ F»C»R
060 REM
070 REM COMPUTE BREAK-EVEN PJINT
080 LET V1 = F/(R-C)
090 PRINT "BREAK-EVEN PQINT ="3V13"VOLUME UNITS"
100 REM
102 LET v = 25000
> 104 IF v > 100000 THEN 240
110 REM COMPUTE T@TAL COST
120 LET T = F + C * V
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET Rl = R * V
160 REM
LOOP 170 REM COMPUTE PROFIT / LOSS
180 LET P = Rt - T
200 IF V > V1 THEN 230 .
210 PRINT "L2SS = $"3P,"VOLUME ='"3V3"UNITS"
220 GOT@ 235
230 PRINT " PROFIT = $"3P,"VALUME. ="3V3"UNITS"
235 LET V = V + 25000
-~ V236 GaTd 104
240 END

1,0-12 19980300 B

In this example, V is assigned the initial value of 25000 (statement 102). Statement 104
then compares V to 100000, If V> 100000, control is transferred to statement 240 and

the loop ends. If V is not greater than 100000, statements 110 through 236 are executed

in the normal sequence., Statement 235 increments V by 25000 and statement 236 transfers
control back to statement 104, Statement 104 compares the new value of V to 100000 to
determine whether or not to go through the loop again. ILooping continues until the loop is
executed with V = 100000,

For each value of V, T (total cost), R1 (total revenue), P (profit/loss) is computed;
IL.OSS or PROFIT is printed depending on the value of V. This, then is the loop.

During the first pass through the loop V = 25000, the second pass V = 50000, the third pass
V = 75000 and the fourth pass V = 100000, The printed output from the program shows the

break-even point and the profit /loss for the four volume levels.

BREAK-EVEN PQOINT = 50000 VOALUME UNITS

LaSS = $-500000 VALUME = 25000 UNITS
LASS = $ 0 VALUME = 50000 UNITS

PRAFIT = $ S00000 VALUME = 75000 UNITS
PRAFIT = $ 1000000 VBLUME = 100000 UNITS

19980300 B 1.0-13

FOR AND NEXT STATEMENTS

The following sample program shows a loop created by using the FOR statement (line 101)
and NEXT statement (line 235):

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLAWING VARIABLES ARE USED:

003 REM FIXED ANNUAL C3ST F
094 REM VARIABLE C3ST PER UNIT c
005 REM SALES REVENUJE PER UNIT R
006 REM SALES VILUME v
007 REM BREAK-EVEN PJINT (VOLUME) Vi
008 R&EM TOTAL C3ST T
009 REM T3TAL REVENUE R1
010 REM PRIFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES T@ VARIABLES F,CsR
035 DATA 1000000,10,30
037 READ F,C,sR
050 REM
070 REM COMPUTE BREAK-EVEN PJINT
089 LET V1 = F/(R-C)
090 PRINT “3REAK-EVEN POINT ="3V13"“VOLUME UNITS"
100 REM
—>101 FBR V = 25000 T@ 100000 STEP 25000
110 REM COMPUTE TATAL COST
120 LET T = F + C % V
130 REM
140 REM COMPUTE T2TAL REVENUE
150 LET Rl = R * V
160 REM
170 REM COMPUTE PRZFIT / L3SS
180 LET P = Rl - T
200 IF V > V1 THEN 230
210 PRINT "LOSS = $"3P,"VOLUME ="3V3"UNITS"
220 GOT@ 235
239 PRINT * PROFIT = $"3P,"VOLUME ="3V3"UNITS"
L> 245 NEXT V
240 END

The FOR statement establishes the first value of V. (25000), the final allowable value of

V (10000), and the step value (25000), Statements between the FOR statement and NEXT
statement are repeatedly executed until V is greater than the final allowable V value.

The value of V is incremented by the step value each time the NEXT statement is executed.
Output from the program is identical to the output produced when the IF and GOTO state-

ments controlled the loop.

1.0-14 19980300 B

LISTS AND TABLES

For some problems, it is desirable to present data or the solution in the form of a list or
table. Such lists and tables are called arrays. An array is an ordered collection of items
(data elements) arranged in a multi-dimensional structure. A one-dimensional array, or
list, is called a vector and a two-dimensional array, or table, is called a matrix, These
terms have been borrowed from mathematical terminology because vectors and matrices
in BASIC obey other special properties expected by mathematicians. Arrays with three

dimensions may also be used.

Variables are used to name arrays. The individual elements of an array are identified by
the use of subscripts and are called subscripted variables. The subscripts, one for each
dimension of the array, are position indicators which locate elements within the array.

Subscripts are enclosed by parentheses and separated by commas. The first matrix sub-

script designates a row, and the second designates a column.

Example:

In the following 3 by 4 matrix, A, the element designated by A(2, 3) is underlined.

1 2 3 4
A= |5 6 7 8
9 10 11 12

In the BREAK-EVEN program, where the profit/loss for four different sales volumes was
computed, V (volume), P (profit), T (cost), and Rl (revenue) can be organized in array
form, each array with 4 elements. For each volume, an associated revenue, cost, and

profit is computed.

In the sample program on the following page, the DIM statement was used to specify each
array as containing four elements (statements 39, 40, 41, and 42); however, the use of
this statement was not required. To specify an array of up to 10 elements only the selected
variable name and associated subscripts are required. If the array is to contain more

than 10 elements then the DIM statement is required. The advantage of using the DIM in
this situation is the conservation of space, because the use of a variable and subscript
results in an automatic allocation of space for 10 array elements by BASIC.

For additional information pertaining to the DIM statement, see section 2.

19980300 B 1,0-15

001
002
003
004
005
006
007
008
009
010
011
012
013
035
037
038
039
040
041
042
060
070
080
090
095
096
101
102
103
130
140
141
160
161
170
181
183
201
202
203
204
240

REM THIS IS A BREAK-EVEN PROGRAM

REM THE FQLLOWING VARIABLES ARE USED:
REM FIXED ANNUAL COST F

REM VARIABLE COST PER UNIT Cc

REM SALES REVENUE PER UNIT R

REM SALES VOLUME v

REM BREAK-EVEN POINT (VOLUME) V1

REM TOTAL COST T

REM TOTAL REVENUE R1

REM PROFIT/LOSS P

REM

REM

REM ASSIGN VALUES TO@ VARIABLES F,C,R

DATA 1000000-,10,30

READ FsC»sR

REM DEFINE ARRAYS FAR VARIABLES V»PsTsR1
DIM V(4)

DIM PC4)

DIM TC(C4)

DIM R1C4)

REM

REM COMPUTE BREAK-EVEN POINT

LET V1 = F/(R-C)

PRINT '"BREAK-EVEN POINT ="3V13“VOLUME UNITS"
REM INITIALIZE ARRAY V>COMPUTE PsTsR1

I =0

FBR J =1 TO 4

I = I + 25000

V) = 1

REM

REM COMPUTE TOTAL REVENUE

TCJ) = F + C *x V(D)

REM COMPUTE TOTAL REVENUE

R1¢J) = R * VCJ)

REM COMPUTE PROFIT 7/ L3SS

PCJ) = RICJI) - T

NEXT J

PRINT ' VALUME",V(1),V(2),V(3),V(4)
PRINT * REVENUE",R1(1),R1(2)5R1(3),R1(4)
PRINT * COAST"»T(1),T(2)>T(3),TC(4)

PRINT * PROFIT"SP(1),P(2),P(3)5P(4)

END

The DIM statement (line 039) reserves space for an array named V. The amount of space
reserved is determined by the subscript; in this case, 4. This means that array V has

four elements. Arrays P, T and Rl are similar.

element 1

element 2 element 3 element 4

1.0-16

ARRAY V

19980300 B

Following is the method used for initializing (placing data into) the array:

095 REM INITIALIZE ARRAY V,COMPUTE P,T»RIl
096 1 =0

101 FOR J = 1 TO 4

102 I = I + 25000

103 v(J) = I

130 REM

"1'" is used to initialize the volume array, V. Initially 1 is set to 0 (zero), and is incre-
mented within the FOR loop (line 102) by 25000 for each increment of J. '"J'' is a variable
used as a subscript to address the individual elements of array V. When J is 1, the first
element is addressed. The statement at line 103 places the current value of I into the

array V at the location identified by the current value of J. J is also used as a subscript

for addressing the elements of arrays P, T and R1.

140 REM COMPUTE T@TAL REVENUE
141 TCJ) = F + C * V)

160 REM COMPUTE TGOTAL REVENUE
161 R1CJ) = R * V()

170 REM C@OMPUTE PROFIT / LOSS
181 P(J) = RICJ) - TCJ)

183 NEXT J

After completing the loop between statements 101 and 183, all of the arrays contain the
results of the computation, The PRINT statements (line numbers 201, 202, 203 and 204)

will print the individual elements of each array.

201 PRINT * VOLUME"™,V(1),V(2),V(3),V(4)

202 PRINT ' REVENUE'",R1(1),R1(2),R1(3),R1(4)
203 PRINT ' COST"»T(1),T(2),T(3),TC4)

204 PRINT ' PROFIT™,P(1),P(2)5P(3),P(4)

240 END

The program output displays the contents of each array as follows:

BREAK-EVEN PQINT = 50000 VOLUME UNITS

VOLUME 25000 50000 75000 100000

REVENUE 750000 1500000 2250000 3000000
CosT 1250000 1500000 1750000 2000000
PRAFIT ~500000 0 500000 1000000

19980300 B 1,0-17

TERMINAL INPUT AND OUTPUT

Sometimes it is desirable to enter data while a program is in execution. For example, let
us assume that the break-even program has been generalized to permit several different
products with different fixed costs, variable costs and revenue per unit, The program can

be modified to request the values for these variables as it executes.

The INPUT statement is used in a BASIC program when the user wishes to enter data to be
used by the program via the terminal keyboard. When the INPUT statement is executed,
the user is queried,via a displayed " ?'", for data. Execution stops until the requested data
is entered. Data entered via the keyboard is assigned sequentially to variables listed as

INPUT statement arguments (variable).

When more than one item is requested by one INPUT statement, the exact number of items
must be entered and items must be separated by commas. If not enough data or too much
data is entered, diagnostics are issued by BASIC. The user must take the specified action

before execution can resume.

1,0-18 19980300 B

Example:

001 KEM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLBWING VARIABLES ARE USED:
003 REM FIXED ANNUAL COST
004 REM VARIABLE COST PER UNIT
005 REM SALES REVENUE PER UNIT
006 REM SALES VOLUME
007 REM BREAK-EVEN POINT(VOLUME)
008 REM TOTAL COST
009 REM TOTAL REVENUE
010 REM PROFIT/LASS
011 REM
012 REM
013 REM ASSIGNS VALUES TQ VARIABLES F,C,R
New 015 PRINT "INPUT: FIXED COSTS VARIABLE COSTS REVENUE PER UNIT*
Inserts§ 036 INPUT F,C,R
039 DIM V(4)
040 DIM PC(4)
041 DIM TCa)
042 DIM RC4)
060 REM
070 REM COMPUTE BREAK-EVEN PQINT
080 LET VI=F/(R-C)
090 PRINT "BREAK-EVEN PQINT='"3V13'"VOLUME UNITS"
095 REM INITIALIZE ARRAY V,COMPUTE P,TsRl
096 1=0
101 FOR J=1T0 4
102 I=1+25000
103 vdJI=1
110 REM
140 REM COMPUTE TOTAL COST
141 TC(JI)=F+C*xV(J)
160 REM COMPUTE TOTAL REVENUE
161 R1CJI=R*V(J)
170 REM COMPUTE PROFIT/L@SS
181 P(JI)=R1CJI=-T ()
183 NEXT J
201 PRINT “VOLUME V1),V (2),VC3),VCa)
202 PRINT “"REVENUE",R1(1),R1¢2),R1(¢3),R1(4)
203 PRINT YCOAST"H»TC1)HLTC2)5T(3),TC4)
204 PRINT “PRAFIT"SPC1)>P(2),P(3),P(4)
240 END

—

Vxx=m<<cazO™
-

19980300 B 1.0-19

The statement at line number 15 prints a message on the terminal indicating the values and
their sequence to be typed in when the INPUT statement (36) makes the request.

013 REM ASSIGNS VALUES T@ VARIABLES F,C:,R
015 PRINT '"INPUT: FIXED C@STS VARIABLE C@STS REVENUE PER UNIT"

036 INPUT F,»C»sR

The output of the PRINT statement (15) is shown below in addition to the result

of the INPUT statement (36), the question mark. Note that only two values were entered
and that the ' NOT ENOUGH DATA'" diagnostic was issued. The additional value was then
entered,

INPUT: FIXED C@STS VARIABLE COSTS REVENUE PER UNIT
? 1000000,10

NOT ENOUGH DATA, TYPE IN MORE AT 36
? 30

Below is the program output. Revenue, cost, and profit were computed based on the data

entered at the terminal.

BREAK-EVEN P@INT= 50000 VOLUME UNITS

VALUME 25000 50000 75000 100000

REVENUE 750000 1500000 2250000 3000000
CosT 1250000 1500000 1750000 2000000
PROFIT -500000 0 500000 1000000

Refer to section 2. 4 and the appendix for more information pertaining to INPUT/OUTPUT.

1.0-20 19980300 B

USING BASIC

The previous paragraphs have described BASIC statements and how to organize these
statements into a BASIC program. The following describes how to enter a program into
a computer and how to execute that program.,

BASIC is primarily a terminal oriented language; however, programs in card deck form
can be entered and executed (batch mode)., The following paragraphs describe the method
for entering and executing BASIC programs interactively through use of a Teletype (TTY)
or Cathode Ray Tube (CRT) terminal., For a descriptionof BASIC program card deck struc-

tures and batch mode operations, see section 2.9,

When operating interactively, the user must write the program in a file, as shown in the
examples which follow, and execute from the file. To correct a syntax, semantic, or
logic error, the user need only enter the line number which contains the error followed by
the corrected code. When the corrected line is entered and the terminal RETURN key is
pressed, the existing program statement is replaced. To delete a line, enter the line
number and press the RETURN key,

BASIC can be run interactively under anyone of these operating systems: KRONOS and
NOS, the usage of which is described in the following paragraphs, and SCOPE (INTERCOM)
which is described at the end of this section,

USING BASIC FROM KRONOS/NOS

KRONOS/NOS provides multi-user access to one large-scale computer, BASIC programs
can be submitted from a remote time-sharing terminal, To access a central computer
from the terminal, the user must link up with the computer. The method used to establish
connection between the terminal and the central site computer varies depending on the type

of terminal equipment and the connection provided by the telephone company.

When the connection is completed, the computer responds:

yy/mm/dd hh, mm, ss
TIME SHARING SYSTEM>*

and requests:
USER NUMBER:

* The particular message typed at your installation may be different.

19980300 B 1,0-21

When this occurs, perform the following:

Step 1:

Step 2:

Step 3:

Submit the user number on the same line:

w&*

The user number consists of up to seven alphanumeric characters.

The system then requests:

PASSWORD
sEEEEEEE

Enter the password:

ZZZZZZZ

The password must consist of one to seven alphanumeric characters.
To provide a greater measure of security, type the password in the
area the system has blacked out., If a password is not needed, type:

If the user number and password are not acceptable, the system types:

ILLEGAL LOGIN, TRY AGAIN.
USER NUMBER.

If the user number and password are acceptable, the system responds:

TERMINAL: nnn, TTY (where nnn is the particular terminal no.
being used).

RECOVER/SYSTEM:
Enter the desired subsystem on the same line:

BASIC

Because all interactive programs run under KRONOS/NOS reside in a
file, the system queries the user as to the applicable file type by re-

sponding:

OLD, NEW, OR LIB FILE:

Throughout this section, the convention , Carriage Return, is used to denote the
RETURN key on the keyboard.

1,0-22

19980300 B

Step 4:

Step 5:

19980300 B

Submit the appropriate status:

OLD @ for a file that was previously created and saved.
NEW @ for a new file.
LIB (CR) for a file from the system library.

The system responds:
FILE NAME:

Enter the file name:

nnnnnnn

The file name consists of up to seven alphanumeric characters.
If an OLD or LIB file does not exist, the system responds:

FILE NOT FOUND.

If the file name entered contains illegal characters, the system responds:

FILE NAME ERROR.

After the system finds the specified file, it responds:
READY.

The following example illustrates a sample log-in:

74/07/19. 13.19,28.

TIME SHARING SYSTEM

USER NUMBER: ABCDEFG

PASSWORD

[T [VIWIXTY[Z]HE— The password is blocked out

TERMINAL:60, TTY and cannot be seen by the user,

RECOVER/SYSTEM:BASIC It is shown for purposes of
OLD, NEW, OR LIB FILE:NEW, EX4 illustration only.

READY.

1,0-23

Step 6: Enter the new BASIC program. Each line must begin with a 1-5 digit
line number and end with @ . BASIC statements need not be typed
in correct order, because KRONOS and NOS automatically sequence

them according to line number.

Step 7: To execute the program, type:

RUN or RNH

This command initiates compilation and execution of the BASIC program.

The output of a BASIC program is in the form:

yy/mm/dd hh. mm., ss

PROGRAM nnnnnnn

(data printed by the program - error messages, if program
errors occurred)

RUN COMPLETE.
Step 8: When a run is completed, the user has the following options:

. Continue processing - build and execute new programs;
modify existing program and rerun; rerun the sarne

program,
or

. Terminate the terminal session via the following commands:

o
or
p
GOODBYE (c@
N,
Either command releases all local files and prints the following:

xxxxxxx LOG OFF hh, mm. ss.

xxxxxxx CPU s.sss SEC,
where:
XXXXXXX user number,
S. 888 number of seconds of central processor time used.
(This is not the amount of time used between I.LOGIN
and BYE.)

1.0-24 19980300 B

Sample Terminal Session

The following example was run at a TTY terminal. User responses are underlined,
The user must press the carriage return key after typing in each response.

74709709+ 12406437

KRONQ@S TIME SHARING SYSTEM = VERe. 2.1-03/AA. log-in procedure-type

USER NUMBER: 412
P ASSW@RD

senssess
%ERMTNKE: 73, TTY
RECOVER /SYSTEM:BASIC

OLD», NEW» @R LIB FILE: NEW,EX4
READY

10 PRINT "TYPE A NUMBER'" T
20 INPUT X

30 LET F=1

40 FOR I1=1T0OX —
SO0 LFT F=F*I

60 PRINT “FACTORIAL “3X3"1S ''3F
70 _GOT@ 10

80 _END

RUN

74709709« 124136260
PROGRAM EX4

FOR WITHOUT NEXT AT 40
cp 0.023 SECS.

RUN COMPLETE.

55 NEAT 1
5 IF X=0 THEN 8Q
RUN
74/09/709. 12¢14.40.
PROGKAM EX4

TYPE A NUMBER

>3

FACTORIAL 3 IS 6
TYPE A NUMBER

?2 0

cP 0.036 SECS.

RUN COMPLETE.

19980300 B

user number and password.

Requests BASIC subsystem,
Program is from NEW file.

Program statements-
congist of a line number
followed by a space,
followed by the appropriate
statement.

Compile and execute program,

BASIC issues diagnostic.

Adding statements to correct
program.,

Compile and execute again.

User input 3 as value for X,

X = 0 and program terminates
at line 80.

1,0-25

LIST

74709709+ 12.15.41.
PROGRAM EX4

10
20
25
30
40
50
55
60
70
80

PRINT "TYPE A NUMBER"

INPUT X

IF X=0 THEN 80

LET F=1

FOR 1=1TOX

LET F=Fx*]

NEXT 1

PRINT “FACTORIAL '"3X3'1S '3F
GaTo 10

END

READY .

SAVE,EX4
READY .

KRONOS/NOS command to
list program.,

Program listing.

KRONOS/NOS command
savesprogram with file name
EX4 for later use.

For a detailed description of the KRONOS/NOS commands used is this example and other

available commands, see the KRONOS /NOS Reference Manual.

In this example, the user saved the program as a file name EX4, The program in this file

is now stored as an indirect access permanent file which can later be accessed by use of

the OLD command, e.g.

OLD,EX4
READY .

LIST

74/09/09« 12417035
PROGRAM EX4

PRINT “TYPE A NUMBER®

INPUT X ‘

IF X=0 THEN 80

LET F=1

FOR 1=1T@X

LET F=Fx*]

NEXT 1

PRINT “FACTORIAL *3X3"IS "3F
GaTO 10

END

READY .

1.0-26

makes a copy of the file
accessable to the user,
requests a list of the file
contents.,

19980300 B

At 'this time, the user can add, delete, or change program statements, See USING BASIC.

RUN

74709709« 12.18.05,
PROGRAM EX4

TYPE A NUMBER

? 6

FACTORIAL 6 IS 720
TYPE A NUMBER

20

cp 0.037 SECS.

RUN COMPLETE.

BYE
LN76 LOG OFF. 12418437,
LN76 CcpP 0.096 SEC.

Compiles and executes the
new program,

User enters 6 as value for X,

Logs off,

If the user wishes to store the changed program, this can be accomplished by the REPLACE

command which replacesthe old program with the corrected prograrm,

REPLACE, EX4

19980300 B

Stores the updated program
in file EX4, If the user
logs off before replacing
EX4, the corrected
version is lost but the old
version of EX4 remains in
tact,

1,0-27

USING BASIC UNDER SCOPE

To access a central computer from a terminal, the user must link up with the computer
system. The method of establishing the connection between the terminal and the central
site computer varies depending on the type of terminal equipment and the connection pro-
vided by the telephone company. When connected to the terminal, the system responds:

CONTROL DATA INTERCOM 4.1
DATE mm/dd/yy
TIME hh, mm, ss
PLEASE LOGIN

Step 1: The terminal user logs into the system by entering:
LOGIN
The system responds:

ENTER USER NAME-

Step 2: Enter your user name. The user name may be any combination of up to
ten letters or digits and must not be followed by a period.

When the user name has been entered at a TTY terminal, the system
responds:

888088888 @ ENTER PASSWORD-

At a 200 USER or display terminal, the system responds:
ENTER PASSWORD-

The user then enters his password. A password is any combination of up
to ten letters or digits which must not terminate with a period. On a tele-
type listing, the password is overprinted on the ten-character, blocked-
out line to preserve privacy. The display terminal screen is automatically
cleared on acceptance of the entered password to preserve privacy.

When the user name and password are accepted, the user id (a two-
character user code) and the time at which the user logged in, followed by
the equipment number (multiplexer equipment status table ordinal) and the
port number at which he logged in, are displayed at the terminal.

1.0-28 19980300 B

e' g.

Step 3:

Step 4:

Step 5:

Step 6:

19980300 B

ENTER USER NAME- USERA
SESESESR B ENTER PASSWORD-

19/07/74 LOGGED IN AT 17.47.26
WITH USER-ID AB
EQUIP/PORT 52/03
COMMAND-

After the user successfully logs-in, the system responds with COMMAND
and the user enters the command " EDITOR".

COMMAND - EDITOR
The user is now in text edit mode.

Enter FORMAT, BASIC.

When this command is entered, a format specification is automatically
established at the terminal which permits the user to enter lines in
BASIC language format,

Enter the BASIC program statements-line number followed by BASIC state-

ment.
e.g.10 LET X =5

Each line must begin with a 1-5 digit line number and end with (@ .
BASIC statements need not be typed in correct order because the EDITOR

automatically sequences them according to line number,
Once the entire program is entered, compile and execute the program by
typing:

RUN BASIC

After execution is completed the output is printed or if a program error

occurs, the appropriate error message is displayed.

1,0-29

Step 7: When the run is completed, the user can select one of the following options:

. Continue processing - build and execute new programs; modify

existing programs and rerun; or rerun the same program.

. Terminate the terminal session by saving the program and entering
the BYE and LOGOUT commands or by entering the BYE BYE and
LOGOUT commands, When the BYE or BYE BYE commands are
entered, user returns to INTERCOM mode from EDITOR mode.

When in INTERCOM mode, the system responds with:
COMMAND

At this time the user enters the LOGOUT command which releases local files which
the user may have created under EDITOR. Only permanent files are retained between
the time of a LOGOUT and any subsequent LOGIN, The user is disassociated from
INTERCOM until a subsequent LOGIN command is entered. INTERCOM displays the
date and time the user is logged-out. The LOGOUT command is not allowed when the
user is under control of EDITOR.

Example:

COMMAND~- LOGAUT

CP TIME 9458

PP TIME 8.181

CONNECT TIME 0 HRS» 8 MIN.
19706773 LOGGED BUT AT 08.31.23.(

The order of the date (month, day, year) may be changed as an installation option.
The time of LOGOUT is given in hours, minutes, seconds (24-hour clock); CP/PP
time is given in seconds. The user should disconnect his terminal from INTERCOM

by turning it off, or by hanging up the data set receiver.

Sample Terminal Session

After the user has logged in, he can create and execute BASIC programs. The following
sample BASIC program, run under the INTERCOM system, illustrates how to run a

BASIC program. The program was entered at a TTY terminal. Uge onseg are under-
lined, After typing the response, user must depress the carriage return key (CR) .

1,0-30 19980300 B

COMMAND- EDIT@R
e sFORMAT,BASIC

ee1Q PRINT “TYPE A NUMBERY3,

20 INPUT X

E\

40 FOR 1=1TQ@ X
50 F=F*l_

60 PRINT 'FACTORIAL "3X3"IS "3F

70 _PRINT

go GATA 10

RUN,BASIC

BASIC COMPILATION ERRORS
FOR WITHOUT NEXT AT 40

S5 NEXT 1
25 IF X=0 THEN 80
RUN»BASIC

TYPE A NUMBER 2?3
FACT@RIAL 3 IS 6
TYPE A NUMBER 70

oo LIST,ALL

10=10 PRINT *"TYPE A NUMBER®3

20=20 INPUT X
30=30

25225 IF X=0 THEN 80
30=30 LET F=1

40=40 FOR 1=1TQ X
50=50 F=F*I|

55=55 NEXT I

60=60 PRINT 'FACT@RIAL "3 X3'1S "3F

70=70 GOATY 10
80=80 END

19980300 B

User calls EDITOR.

User requests BASIC
format specifications and
following EDITOR command
mode response, enters a
BASIC program line by line.

Compiles and executes
BASIC program,

BASIC issues diagnostic
messages.

Statement 55 is added to
satisfy looping requirements.
Statement 25 is added to
provide an exit from the
program,

User calls BASIC compiler-~
again requests compile and
execution of the BASIC
program

Zero causes exit from exe-
cution and return to EDITOR
command mode,

User requests listing of his
program in the edit file,

1,0-31

Usger requests contents of
*+SAVE,BASPROG edit file be saved as a local
file named BASPROG until

L.OGOUT.
Store BASPROG as a perma-
e+« STORE »BASPROG nent file,
+«+BYE User requests a return to
- INTERCOM command mode,
COMMAND-

By saving the file (BASPROG) the user reserves it for later use during the terminal
session (before logging out). To permanently save the file, it must be stored ‘as a perma-
nent file (STORE, BASPROG). To retrieve and execute this program later the following
command sequence must follow the user login sequence.

COMMAND- EDITOR

i file made permanent earlier tells
« sFETCH»BASPRAG Retrieve lile made p er
EDITOR that BASPROG is to be edit file.
«+EDIT»BASPRAG .
- Compile and execute program.
« e RUNsBASIC

TYPE A NUMBER 26,
FACTORIAL 46 1S 720
TYPE A NUMBER 2?0

For a detailed description of INTERCOM and EDITOR commands used in this example
and other available commands, see section 2,8 or the INTERCOM Reference Manual,

1,0-32 19980300 B

BASIC LANGUAGE REFERENCE 2.0

INTRODUCTION

MODES OF OPERATION

Although BASIC is normally used interactively from a remote terminal under an operating

system, BASIC programs can also be compiled and executed as batch programs.

CHARACTER SET

Table 2-1 lists the BASIC character set.

TABLE 2-1, BASIC CHARACTER SET

A-2Z 0-9
+ A Blank
/ 1"
(1
) <
3 >
= ?
#

In addition to these characters, any character available to the operating system can be used

in data and string constants. See appendix A for a description of all available characters.

19980300 B 2,0-1

STATEMENT STRUCTURE

All BASIC statements have the following common characteristics:

2,.0-2

Each statement begins with a line number.

Each statement must be completed on a single line. No line continuation is allowed,

Generally, blanks within a BASIC statement have no meaning. For example, the

following two statements are equivalent:

100 LET A=B+C
10LETA=B+C

The exceptions to this rule are discussed in the applicable areas of the sections

which follow.
A BASIC statement can include a maximum of 72 characters.

On input, a statement on a punched card terminates at column 72; a statement
from a terminal terminates when the carriage return key is pressed. No more

than 72 characters per statement are translated by the BASIC compiler.

19980300 B

ELEMENTS OF THE BASIC LANGUAGE 2.1

BASIC is designed to manipulate numeric and character string data. Numeric data includes
integer, decimal, and exponential constants. String data includes alphanumeric text with
or without quotation marks. The following paragraphs describe those elements which
comprise numeric and character-string data. Also described are variables, operators

and expressions,

CONSTANTS

A constant is a fixed unchanging value. In BASIC, there are numeric and string constants.

NUMERIC CONSTANTS
In BASIC, there are three types of numeric constants:

® Integer
® Decimal

e Exponential
Although each has specific rules governing its use, some rules apply to all.

1. A comma cannot be used to delimit thousands, millions, etc.

2, When a numeric constant is not signed explicitly by a negative or positive sign,

the constant is assumed positive,

3. Any number of digits can appear in a numeric constant; a maximum of 14

digits accuracy is used in computation.

4, Whether integer, decimal, or exponential, the absolute value of a constant

must be in the range 3.13152 x 107294 45 1. 26501 x 10522,

Integer Constants

An integer constant is a whole number written without a decimal point.
Examples:

-49 25000
+123456789 O

19980300 B ' 2.1-1

Decimal Constants

A decimal constant is any whole number, fraction, or mixed number written with a decimal
point. Leading zeros to the left of the decimal point and trailing zeros to the right of the
decimal point are ignored; the decimal point can appear anywhere in the number.

Examples: -4,08 1,91632614 .0000001
50.5 147, 2 +3025,098

Exponential Constants

The representation of extremely large and small numbers.is simplified using exponential
constants, For example, to write ten billion, in its full form requires 11 digits
(10000000000); however, ten billion can also be represented by:

1.0 x 1010

In BASIC, this exponential form is expressed by:

1.0E10

The E indicates, 'times ten to the power . . ."\.

Similarly, a small number such as .00000000923 can be represented by:

9.23 x 1072

In BASIC, this notation can be expressed by:
9.23E-9

To use exponential constants in a BASIC program, the following rules must be observed:

1. A number must precede the E. The number preceding the E can be any valid

integer or decimal constant.

2. The exponent (number that follows the E) can consist of one-to-three digits and a

positive or negative sign. If a sign is absent, a positive sign is assumed.

3. Decimal points are not permitted in the exponent.

Examples: -2.517E130
TE+20
4,91872634F-18

2.1-2 19980300 B

STRING CONSTANTS

A STRING is a collection of alphanumeric text. In BASIC, this alphanumeric text is
normally enclosed in quotation marks to set it off from the rest of thé program. This is
called " quoted text'. Unquoted strings are also permitted; but, can only be used in DATA

statements, IMAGE statements or as input data.

Rules:
1. A string enclosed in quotes consists of all characters between quotes,

2, The length of string is 0-78 characters; a zero length or null string is re-

presented by a pair of quotes ("").

3. Valid characters for quoted text are any available character except the
quotation mark; i.e., characters are not restricted to the BASIC character set.

4. A blank is a significant character when used in a string.
5. TUnquoted string constants must not begin with a digit, plus (+), minus (-),

comma (,), period (.), blank, or quote.

Example: " PART 25"
"THIS IS A TEST"

The quotation marks are not part of the string constant, For an example of unquoted

strings, see section 2,4 (IMAGE staternent).

VARIABLES

Varlables represent values which are not fixed. Values can be assigned to variables and
later changed by other statements or conditions during execution of the BASIC program.
Variables can represent numeric or string data. In BASIC, a numeric variable can have

an integer, decimal or an exponential value,
SIMPLE NUMERIC VARIABLES

A simple numeric variable represents a numeric value that may change during program
execution. Simple numeric variables are named by a single alphabetic characterr and an
optional numeric character, Variable names must not exceed two characters in length.

Examples of simple numeric variables are:

A Z3 C9 E

19980300 B 2.1-3

Examples of invalid numeric variable identifiers are:
B23 49 G* AA
The following rules apply to numeric variables:

1., Numeric variables represent numeric data only.

2. Numeric variables are preset to zero before the program executes.

3. The absolute value of a numeric variable must be in the range 3.13152 x 10_294

to 1.26501 x 10522,

[]
4, If a value smaller than the minimum is a.ssignecl‘, the variable is set to zero.

5. If a walue greater then the maximum is assigned, a fatal diagnostic is issued.

SIMPLE STRING VARIABLES

String variables represent alphanumeric text and are named with a two-character identifier.

The first character must be alphabetic, and the second character must be a dollar sign ($).
Examples of valid string variables are:
A$ B$ Y$

The value represented by the string variables can consist of a group or string of 0 to 78
characters. Internally each character is represented by a six-bit numeric code (see
appendix A,character sets). The characters at the beginning of the alphabet have code
values which are less than the characters at the end of the alphabet. For example, if A$
and B$ represent strings ' ABC' and " XYZ" respectively, then A$ has a value less than
BS.

SUBSCRIPTED VARIABLES

BASIC permits the use of numeric and string arrays; therefore numeric and string sub-
scripted variables are permitted. A subscripted variable locates the value of a particular
element of an array (vector or matrix). It is written as a simple variable identifier

followed by a maximum of three subscripts enclosed in parentheses.

The identifier portion is the same format as a simple numeric or string variable; i.e.,

letter or letter digit for numeric variables, and letter $ for string variables. Each sub-

or as an arithmetic expression. The format of arithmetic expressions is discussed later

in this section.

2.1-4 19980300 B

Examples of valid subscripted wariables are:

A(l) B2(3) A(B2(3) X(1,N+M, A(3) numeric subscripted variables

B3(4) L§(1,J+3) } string subscripted variables
C$(1,J+3,A(1))

In BASIC, array dimensions are normally declared implicitly by using subscripted

variables.

Unless an array has been explicitly defined by a DIM statement (section 2. 2), the first
subscripted variable that references an element in an array automatically defines the
array. FEach dimension in the automatically defined array is set to 10, Thus a one-
dimensional array has 10 elements; a two-dimensional array has 10 x 10 = 100 elements,

and a three-dimensional array has 10 x 10 x 10 = 1000 elements.

Subscripted variables with one subscript refer to elements in one-dimensional arrays;
subscripted variables with two subscripts refer to two-dimensional arrays, and with three

subscripts to three-dimensional arrays.

The lower limit on subscripts is normally 1. However, this limit can be zero if the BASE 0
statement is used (see section 2.2). If BASE 0 is in effect, array elements number from 0
and automatically defined arrays contain 11 elements (0-10) if one dimension; 11 x 11 =121

elements if two dimensions; and 11 x 11 x 11 = 1331 elements if three dimensions.

If a subscript value greater than 10 is required, or if the programmer wishes to save space
by dimensioning an array to have an upper boundary of less than 10, arrays can be declared
with a DIM statement (section 2. 2).

The following rules apply to all subscripted variables - numeric and string:

1. A maximum of three subscripts is allowed.

2. A subscript may be any arithmetic expression. The subscript used is the value of

the expression truncated to an integer.

3. A subscript must never be less than zero; subscript may be zero only if BASE is

set to 0 (section 2. 2).

4., The normal range of subscripts is from 1 to 10. If a larger subscript is required,

the variable name must appear in the DIM statement.

5. Simple and subscripted variables with the same name may be used in the same
program,., For example, T, T(1,2), T$ and T$(1,3) can all be used in the same

program and remain distinct.

6. Once an array is referred to in a BASIC program, the number of array subscripts
-<an not be changed. For example, T(5) and T(2, 3) cannot be used in the same pro-
gram.,

19980300 B 2.1-5

FORMING EXPRESSIONS IN BASIC

An expression is usually formed from a series of operands and operations; however, an
operand such as a constant or variable can be considered an expression. In BASIC there
are three types of expressions: arithmetic, relational and string. The value of an arith-
metic expression is numeric; the value of a relational expression is either true or false;

and the value of a string expression is a string of characters.
ARITHMETIC EXPRESSIONS

Arithmetic expressions consist of a series of operands and operators. Operators may be
any arithmetic operator listed in table 3-1; operands may be any numeric constant, simple
or subscripted variable, function reference (section 2. 3), or any expression enclosed in

parentheses. See section 2,3 for a list of available mathematical functions.

Rules for Writing Arithmetic Expressions

In the formation of arithmetic expressions, certain rules must be followed:

1, Only numeric operands and numeric operators can be used.

2. Two arithmetic operators cannot appear side by side (e. g., X++Y is not allowed). If
a minus sign is used to indicate a negative value in an expression,then parentheses
must be used to separate the negative sign and associated operand from the re-

mainder of the expression, e.g.,

Correct Incorrect
A*x(-B) A*-B

3. Operators cannot be implied, e.g., (X+1) (Y+2) is not allowed. The correct form
is (X+1) * (Y4+2).

The following are examples of valid arithmetic expressions:

A+B*C/DtE
A1(3,1+4)12.6-G3/Z

A+B**C

(A(L, J, K)+3. 95)%(G 3+B+t (C2+3))
A+SIN(X)+COS(Y)

-3, 14%R+12

C#(-G2(1, 3)-D4)
A8(3)t(-49)+B(2, ~X+15)

2,1-6 199380300 B

Arithmetic Expression Evaluation

The rules for the evaluation of arithmetic expressions follow:
1. Expressions within parentheses are evaluated first.

2. Operations of higher precedence are performed before those of lower
precedence. This precedence (hierarchy) is provided in table 3-1 from
highest (1) to lowest (4).

3. Operations of equal priority or precedence are performed in order from left to right,

TABLE 3-1. ARITHMETIC EXPRESSION OPERATOR HIERARCHY

Hierarchy Operator Definition
1. t or k¥ Exponentiation
2. *, [Multiplication, division
3. +, - Unary +, -
4, 4y = Addition, subtraction

Examples of expression evaluation are:

Expressions Evaluation steps
A+B*C/DtE 1. DtE=a

2, B¥C=bH

3. bla =c¢

4, A+c = d (final value)
A+(B-C)*3 1. B-C=a

2, a*3 =b

3. A+b = c (final value)
-212 1, 2t2 =a

2., -a = -4 (final value)
(-2)12 1, -2 =a

2. at2 = 4 (final value)

STRING EXPRESSIONS

Because there are no string operators available,string expressions are limited to single

string operands which may be:

1. a string constant;
2, a simple or subscripted string variable;
3. a string function reference (see section 2,3 for a list of available string

functions.)

19980300 B : 2,1-7

There are no operators in a string expression.

Examples: '"" THIS IS A STRING CONSTANT"
A3
B$(1, 3)
CLK$

RELATIONAL EXPRESSIONS

A relational expression compares two numeric values or two string values.

A relational expression is made up of two numeric expressions or two string expressions

separated by a relational operator. Operators used to form a relational expression are

shown in Table 3. 2.

TABLE 3.2. RELATION AL EXPRESSION OPERATORS

Operator Definition Operator Definition
= equal to < less than

<>or >< not equal to >=or = > greater than or equal to
> greater than < =0r =< less than or equal to

Rules for Writing Relational Expressions

1. Comparison of a string to numeric expressions is not allowed.
2. Only one relational operator is allowed in an expression.

3. Relational expressions can be used only in IF statements (section 2. 2).

Rules for Evaluation Relational Expressi s

Numeric Relational Expressions - The two arithmetic expressions are evaluated

and then their resultant values are compared algebraically, For example:
The two expressions are evaluated and then compared as specified by the operator

to yield a "true'' or ''false'' value.

19980300 B

If A= 2 and B = 3, the expressions below are evaluated as shown:

Relational Expression Value.
A=B False
A><B True
A>B False
A<B True
A>=B False
A<=B True
A*A+3<B*2 False

° String Relation Expressions - The following rules apply:

1.

2.

19980300 B

Strings are compared character-by-character in left-to-right order.
BASIC compares characters according to their numeric codes;
see Appendix A (Ordering Sequence) for the character set,

e.g., A has a numeric code of "01"
B has a numeric code of ''02"

Therefore, A is less than B,

Strings are equal only if they have exactly the same length and contain
the same characters (including blanks) in the same order. Blanks are

important.

When strings are equal in length, the first pair of corresponding characters
that are not equal determines the greater string.

e.g., "ABXY" is greater than ""ABCZ'" because the
numeric code for X is greater than the numeric
code for C.

When strings are unequal in length but corresponding characters that
can be compared are equal, the longer string is always considered

greater,
e.g., "ABX " is greater than "ABX"

When strings are unequal in length but one of the corresponding
characters that can be compared - scanning from left-to-right -
is greater, then the string with the first character of greater
value is greater string.
e.g., "X7" is greater than '"X6542"
""X76" is greater than '"X75123"

2.1-9

FUNDAMENTAL BASIC STATEMENTS 2.2

REMARK (PROGRAM COMMENTS)

REM STATEMENT

The REM statement is used to insert explanatory remarks or comments into a program.,

REM is a nonexecutable statement and has no effect on program execution,

Format:
REM ch
ch Any comment or explanation within the 72-character statement
length limitation,
Comments can be continued on additional REM statements.
Example:

110 IF J=>X THEN 200

115 REM IF J IS EQUAL TO OR

120 REM GREATER THAN X, THE PROGRAM
125 REM WILL JUMP TO LINE 200

130 REM AND TERMINATE

200 END

ARRAY DEFINITION

DIM STATEMENT

The DIM statement establishes the dimensions of an array. Arrays require a DIM statement
if a subscript value greater than 10 is needed; or to save space, the programmer may use
the DIM statement to dimension an array with an upper subscript limit less than 10. The
lower boundary (origin) of a subscript is normally 1; the origin can be 0 if the BASE state-

ment is used as defined later in this section,

19980300 B 2,2-1

Format:
DIM al(ncl. cees nc3). ees an(ncl, cees nc3)
a;-a, Numeric or string array identifier.

nec, -ncg One to three integers separated by commas representing
the maximum value of each subscript.

Example:

To declare a two-dimensional array, A, with subscript boundaries of 1 to 20 and 1 to 5:
120 DIM A(20, 5)

This statement reserves space for array A with 20x5 or 100 elements., The subscripted
variable A(3, 4) references the fourth element in the third row of array A.

DIM statements may be usedanywhere in a program; however, if an array variable is
declared more than once in the same program, the last declaration is used for the entire
program,

Examples of acceptable DIM statements:
1., 100 DIM X$(5, 5), B3(1, 2), X1(50)
This statement reserves space for:

X$ atwo-dimensional string array with 5x5=25 elements.
B3 a two-dimensional numeric array with 2 elements.

X1 a one-dimensional numeric array with 50 elements.
2. 50 DIM G2(5, 6,7), A0(9,2), P$(2,3)
This statement reserves space for:

G2 a three-dimensional numeric array with 5x6x7=210 elements.
A0 a two-dimensional numeric array with 9x2=18 elements.

P$ a two-dimensional string array with 6 elements.

NOTE: Each element of a numeric array requires one computer word (10, 6-bit charac-
ters). Each element of a string array requires eight computer words enough for the maxi-
mum 78-character string.

BASE STATEMENT

The BASE statement explicitly defines the origin or base of all arrays within a program;

it is an optional statement and need not be included in each program. There can be only
one BASE statement in a program, and it must precede any DIM statement or any reference
to an array. If BASE is not specified, array origin is assumed at 1 (i. e., elements are
numbered from 1).

2.2-2 19960300 B

Format:

BASE x
X, Oor1l

Example:

100 BASE 0

110 DIM A(3, 4, 3), B(2,13)
When compiled, the BASE statement at line 100 specifies that all arrays are origined at 0
and that subscripts of zero can therefore be used, Because the bagse has been established
at 0, the DIM statement defines array A as a 4x5x4=80 element array and B as a 3x14=42

element array.

VALUE ASSIGNMENT

LET STATEMENT
The LET statement assigns a value to a variable during execution of the BASIC program,

Formats:
LETv1=e LETV1=v2=v3...=vn=e
or
vy =e Vi =Vg=Vgees =V =€
e expression of any complexity
Vi =V, can be a numeric, string, simple, or subscripted variable.
NOTE: String values must be assigned to string variables and
numeric values rnust be assigned to numeric variables.
Example:
1., 10LETX =2 Assigns value of 2 to variable X.

20 LET Y$ = "AB" Assigns the string "AB'" expression to Y$.

30 LET Z = F*C+V Assigns the result of the expression F*C+V to Z.

40 LET A(3) = Y*Z Assigns the result from expression X*Z to the
to the third element of A,

When a LET statement consists of a string of equalities, each variable is assigned the
value of the expression. Subscript expressions are evaluated prior to the assignment of
the value. All expressions are evaluated according to the rules of operator precedence in

section 2.1,

19980300 B 2.2-3

2. I0LETI=1
20 LET Z(I) =1 =1+1

is equivalent to

10I=1
20Z(1) =1 +1
30I=1I+1

TEST AND BRANCH
IF STATEMENT
The IF statement tests conditions, and controls the sequence of operations.

Format:
IF r THEN ln
r Relational expression

1n Line number

If the relational expression is evaluated as TRUE, program control transfers to state-
ment 1n; if FALSE, the next sequential statement is executed.

Example:
where: I1=8andJ =4
120 IF 2*I = >J12-1 THEN 165

The value 16 is compared to the value 1b; because the evaluation result is TRUE, the next

statement executed is at line number 165,

2.2-4 19980300 B

GO TO STATEMENT
The simple GOTO statement unconditionally (always) transfers control from one point in a
program to another and interrupts the normal sequence of instructions.

Format:
GOTO 1n

1n Line number

GOTO specifies that the statement at the referenced line number is to be executed, Normal
sequential execution continues from that point. If a GOTO statement references a non-
executable statement such as a DIM statement, execution continues from the first executable
statement directly following the referenced non-executable statement. For an example of
this statement, see the example in the following paragraph.

ON GOTO STATEMENT

Format:

ON ne GOTO lnl, ,1n2, 1n3, coes lnn
ne Arithmetic expression
1n1 -lnln Line numbers

The ON GOTO statement provides for conditional branching depending on the value of an
expression. The expression is evaluated and truncated to an integer value and control is
transferred to ln1 ifne=1, lnz if ne = 2, etc., If the value of the expression is negative,
zero, or greater than the number of line numbers specified, an execution diagnostic is
issued. '""ON EXPRESSION OUT OF RANGE AT ..'.

Example: *

95 ON SGN(A)+2 GOTO 100, 110, 120
100 PRINT ""A IS NEGATIVE"

105 GOTO 130

110 PRINT " A IS ZERO"

115 GOTO 130

120 PRINT " A IS POSITIVE"

130 LET B=A+1

In the example, SGN(A) could have the value =.-1, 0, or 1 (section 2.3). The expression
SGN(A)+2 could have the value 1, 2, or 3 and control would transfer to statements 100, 110
or 120, respectively., If, for example, A has the value 2,5, then SGN(A)+2 has the value 3
and the order of statement execution is 95, 120, 130, etc.

19980300 B 2.2-5

LOOPING

FOR...NEXT STATEMENTS

The FOR and NEXT statements provide for efficient looping within a program; the FOR
statement must appear as the First statement of the loop, and the NEXT statement, must
be the Last statement of the loop.

Format:

FOR snv = ne, TO ne,, STEP neg or

FOR snv = ne, TO ne,

NEXT snv
snv Simple numeric variable (called the control variable; it must be

identical in both statements).

ne, Any arithmetic expression (called the initial value).
ne, Any arithmetic expression (called the final value).
neg Any arithmetic expression (called the step value).

If STEP neg is omitted, BASIC assumes a step value of +1. The following are equivalent
statements:
10 FOR J
10 FOR J

1 TO 15 STEP 1
1 TO 15

i

When the FOR statement is executed, the expressions are evaluated and their values are
saved as initial, step, and final values of the loop. The control variable is assigned the
initial value and if it does not surpass the final value the statements between the FOR and
NEXT statements are executed., When th. NEXT statement is encountered, the value of
the control variable is adjusted by the step value, A comparison is made between the value
of the adjusted control variable and the specified final value; if the control value has not
surpassed the final value, looping continues at the statement following the FOR.

If it has, the loop is complete and execution continues with the statement following NEXT.
The statements between the FOR and NEXT statements are never executed if the initial

value is beyond the final value.

2.2-6 19980300 B

Example:

10 FOR X = 1 T3 11 STEP 2
15 PRINT X

20 NEXT X

30 END

This program produces:

e e L7 g

The successive values of X(1,3,5,7,9 and 11) are output by the PRINT statement as a re-
sult of this routine. Statements 15 through 20 are repeated six times; once for each value

assigned to X,

The initial, final, and step expressions are evaluated only once, i.e., on entrance into
the loop. These values do not change during execution of the loop, even if the program

changes the value of the variables within the expressions.

The value of the control variable may be changed by statements within the loop; its latest

value is always adjusted by the step value and used in comparison to the final value.

Example:

10 FAR X = 1 T2 10 .

20 LET X = X + 1 (increments the control variable X)
30 PRINT X

4) NEXT X

S0 END

This program produces:

gl * AN SN]

0

The FOR statement specifies that X is incremented by an implicit step value of +1 until it
exceeds 10; however, statement 20 also adds 1 to X causing the control variable X to be
incremented by 2 for each pass through the loop.

19980300 B 2.2-7

For a positive step value, the initial value must be less than the final value on-entrance to
the loop. Similarly, for a negative step value, the initial value must be greater than the

final value., If not, the loop is not executed and processing continues after the NEXT
statement.

The following examples show the effect of the FOR statement on control variables:

Statement Values of Control Variables
110 FOR X = -4 TO -2 STEP .5 -4, -3,5, -3, -2,5, -2
111 FOR G = 6 TO 3 STEP -1 6, 5, 4, 3
112 FOR X =5 TO 10 STEP -1 The loop will not be executed;

the initial value must be greater
than the final value when a negative
step value is used.

Loops may be nested (i.e., loops specified within loops) to a maximum depth of 10, but
must not intersect each other.

Correct; Incorrect:
FORX. .. FORX. ..
—-——FO;RY. . - FOi%Y...
FOZR Z. .. NE;{T X
NE;KT z L— NE;{T Y
FO;R. Q .
NE;CT Q
L NE;fT Y
NEZ“XT X

A loop may contain a GOTO or other statements that transfer control outside the range of
the loop. In this case, the loop terminates prematurely and the control variable retains its
latest value. It is also possible that a GOTO statement may jump to a statement within a
FOR loop and, thereby, execute the corresponding NEXT statement before the FOR state-
ment initializes the control variable. This will produce unexpected results. BASIC does

not check for this type of situation at compile or execute time.

2.2-8 19980300 B

PROGRAM TERMINATION

STOP STATEMENT

This statement may appear at any point in a program. When it is executed, an immediate
exit is made from the program. The STOP statement is equivalent to an unconditional
GOTO statement which specifies the line number of the END statement.

Format:

STOP

END STATEMENT

This statement signals termination of the BASIC program. Use of the END statement is
optional. BASIC assumes END on encountering the last statement., When executed, the
program stops and control returns to the operating system. If used, END must be the

statement with the highest line number in the program.

Format:

END

STRING/NUMBER CONVERSION

CHANGE STATEMENT

One form of the CHANGE statement is used to store a number corresponding to each
character of a string into consecutive elements of a numeric array. The first element of

the numeric array contains the number of characters in the string.

The second form of the CHANGE statement performs the opposite function. It is used to
build a string of characters from numbers stored in consecutive elements of a numeric
array. The first element of the array determines the length of the string.

19980300 B 2.2-9

Formats:
1) CHANGE sv TO na
2) CHANGE na TO sv
sv string variable
na numeric array variable

When CHANGE is used in format 1, the following occurs:

1. The length of the string is stored in the first element of the array.

2. The numeric code of the first character of the string is stored in the second element
of the array; the numeric code of the second character is stored in the third element
of the array; etc.

3. If the maximum value, M, allowed for the subscript of the array is less than the
number of characters in the string, only the first M-1 characters of the string
will be unpacked into separate array elements., The first element of the array will
have the value M-1,

4, The original string is unaltered.

When a CHANGE statement in format 2 is executed, the following occurs:

—

. If the first element of the array is less than 1, greater than 78, or if it is greater
than the dimension of the array, a fatal diagnostic, INVALID LENGTH, is issued.

2. If the first element contains a valid length, then the length of the string is set to
this value and the string is built as follows: the character which corresponds to
the number stored in the second element of the array becomes the first character
of the string; the character which corresponds to the number stored in the third

element of the array becomes the second character of the string; etc.

3. If any of the values stored in the numeric array are not valid numeric code, a fatal

diagnostic is issued,

4, The numeric array is unaltered.
Appendix A lists all characters and their corresponding numeric codes.

Functions STR$ and VAL can also be used to convert numbers to strings and strings to

numbers.

2,2-10 19980300 B

The program:

10 READ M$
20 CHANGE M$ TO A (stores a value 5 as the 1st element of array A.)
30 AC1) = 3 (changes the value of the 1st element:to 3.)
40 CHANGE A T2 M$ (rebuilds the string with 3 characters '""MAR")
50 PRINT '"SHORTENED STRING ='"3M$
60 DATA MARCH
99 END
produces:

SHORTENED STRING =MAR

The program:

10
20
30
40
50

B(1) =1
B(2) = 48

CHANGE B Td Q% (build string Q$ with one character #)
PRINT "WE HAVE STORED IN Q3 THE CHARACTER:"3Q$

END

produces:

WE HAVE STORED IN Q% THE CHARACTER:#

If arrays are origined at 0 by using the BASE 0 statement, the first element of an array

is referenced with a subscript of zero.

19980300 B

2,2-11

FUNCTIONS AND SUBROUTINES 2.3

A function is a named procedure or routine that may be used repeatedly from within a
program by referencing its name. Each time a function is referenced it executes and
returns a single value. A function may be referenced in any expression whenever a
variable or numeric constant can be used. BASIC provides a number of predefined functions
and permits the user to define his own functions. User functions are defined through use of

the DEF statement which is described later in this section.

A subroutine consists of a group of BASIC statements referenced by its first line number
and which returns program control to the line following the subroutine reference. Sub-
routines can be referenced any number of times from any point in the program. In
BASIC, subroutines are referenced by the GOSUB statement and the transfer of control
from the subroutine to the main program is effected by the RETURN statement. The
GOSUB and RETURN statements are described at the end of this section.

PREDEFINED FUNCTIONS

BASIC provides three classes of predefined functions: Mathematical Functions, System

Functions, and String Functions.

19980300 B 2,3-1

MATHEMATICAL FUNCTIONS

The following are standard MATHEMATICAL functions which can be evaluated by the
BASIC program. In these functions, (x) can be an expression of any complexity and may

include other function references. The quantity (x) is an argument (parameter) of the

function.

Function Description

ABS(x) Finds the absolute value of x.

ATN(x) Finds the arctangent of.x in the principal value range
-T2 to +1/2.

COSs(x) Finds the cosine of x; the angle x is expressed in radians.

EXP(x) Finds the value of e to the power of x.

INT(x) Finds the largest integer not greater than x.
Example: INT(5.95) = 5 and INT(-5.95) = -6.

LGT (x) Finds the base 10 logarithm of x; x>0, otherwise an
execution error causes program termination.

LOG(x) Finds the natural logarithm of x; x> 0, otherwise an
execution error causes program termination.

RND(x) See description on next page.

ROF(x) or Finds the value of x rounded to nc decimal places. If

ROF(x, nc) nc is-omitted, then x is rounded to the nearest integer.

SGN(x) Interrogates the sign of x and returns a value of 1 if x
is positive; 0 if x is 0; or -1 if x is negative.

SIN(x) Finds the sine of x; the angle x is expressed in radians.

SQR(x) Finds the square root of x; x > 0, otherwise an execution
error causes program termination.

TAN(x) Finds the tangent of x; the angle x is expressed in

2. 3-2

radians.

19980300 B

RND Function

The RND function returns a pseudo random number from the set of numbers uniformly
distributed over the range 0 < RND (x) < 1.0,

Format:

RND(x)

X any numeric expression (<0, 0, > 0)
The value of x affects random number generation as follows:

x>0 A random number sequence is initialized based on the value of x and
the first number in the sequence is returned. Each reference to RND with
x equal to a particular positive constant value initializes the sequence at
the same starting point and returns the same value. Therefore, the same
number or the same sequence of numbers can be returned each time RND
is referenced and/or each time the program is run if x > 0 arguments are

used.

x = 0 The next number in the established sequence of pseudo random numbers
is returned. If the sequence was not previously established by an x >0
RND reference, a standard constant is used to initiate the sequence. The
same sequence of random numbers is returned when using RND (0)
references each time the program is run, unless the user initializes the
same sequence with a different positive (> 0) value each time the program
executes. This could be done by using a first reference such as
X = RND (CLK (0)).

x<0 The first reference initializes a random number sequence based on the
current time of day and returns the first value in that sequence. Subse-
quent references with x < 0, return the next number in the sequence. A
program which uses x <0 returns a different value on each reference and
a different sequence each time it is run. Although not apparent to the
user, the sequence initialized by x < 0 is separate from the sequence

controlled by x >0 and x = 0 references to RND sequences.

19980300 B 2.3-3

Examples:

The following four short examples illustrate the use of each possible value for
x (+, -, = 0) and a complete program illustrates the use of the RND(0) option.

1. 10 FOR T=1T03
20 L=RND(9)
30 E=RNDCQ)
40 I=RND(O0)
S50 PRINT L,E»l

60 NEXT T
produces:
«8125 6.262233E-2 «275991
«8125 6.26233E-2 «275991
«8125 6+.26233E-2 «275991

RND initialized > 0; the same values are generated during each loop because the
sequence is reinitialized by RND(9) each time ‘through the loop.

2. 100 FOR I=1T03
110 PRINT RNDCO)>,RND¢0),RNDCO)
120 NEXT I
produces:
6+78473E-2 * 398675 905878
178008 +810749 876414
679641 «438766 «985444

Different values are returned each time through the loop because the sequence
is never reinitialized. A standard constant is used to initialize the sequence at

the first RND(0) reference.

2.3-4 19930300 B

3. 5 FOR A=1T@3
i0 R=RND(=1)
20 S=RND(O0)
30 T=RND(-2)
40 U=RND(0)
45 PRINT R»S,»T»U

50 NEXT A

60 END

produces:

1 «20398E~-2 6.78473E-2 «810629 398675
2216317 «905878 «546084 «178008
+2636 «810749 +87498 «876414

With each execution of RND(<0) different numbers are generated. The sequence
is only initialized by time-of-day once per program execution; therefore, a

different sequence of numbers is generated each time the program is executed.

4. The following example illustrates a typical use of the RND functions. The
program simulates the rolling of a pair of dice (A and B) and outputs the number
of occurrences that a particular value is observed. In this program, lines 100
and 110 use the RND function which produces random numbers between 0 and 1.
These values are then converted to integer format to simulate the number of dots

showing by a roll of the die.

The conversion of these values is accomplished by first multiplying the random
value generated by 6 and then adding a value of 1; e. g., if random number

generated at line 100 was .62891 -

then: .62891 x 6 = 3,77346
+1.00000 INT(4.77346) = 4 (represents 4 dots showing)

4.77346

The converted values from lines 100 and 110 are summed to represent the total
number of dots showing by a roll of the dice, and this value is used in statement
130 to specify an array location. Each of the possible array locations were
initialized to zero in statement 50, and in statement 130 the value in the location
specified is incremented by 1. If the number of rolls specified was 10 and a
result of ''4" was generated twice in statement 120, then the location F(4) would
contain a value of ''2'"". The values in F(R) locations correlate the value randomly

generated with the frequency of occurrence of that value.

Note that this program will produce the same results each time it is run unless a
statement such as 85 LET x = RND(CLK(x)) is included or the argument for RND

in lines 100 and 110 is changed to some negative value.

19980300 B 2.3-5

110
120
130
140
150
160
170
180
190
200
REA

DIM FC12)

FOR Q=1Ta12
F(Q>=0

NEXT Q

X=1000
PRINT *'THE NUMBER @F ROLLS SELECTED IS"3X
FOR S=1T@X

A=INT (6 %RND(O)+1)

B=INT(6*RNDCO)+1)

R=A+B

F(RI=F(R)+]

NEXT S

PRINT

PRINT “THE NUMBER @F SPOTS SHOWING','"NUMBER OF OCCURENCES"
FOR v=2T2 2

PRINT TAB(12)3V3TAB(38)3IF (V)

NEXT V

END

DYe.

produces:

THE NUMBER @F ROLLS SELECTED IS 1000

THE NUMBER @F SP@ATS SHOWING NUMBER OF OCCURENCES

2, 3-6

2 26
3 49
4 81
5 111
6 122
7 161
8 166
9 114
10 92
11 60
12 18

19980300 B

SYSTEM FUNCTIONS:

The BASIC supplied SYSTEM functions are:

Function Description
CLK$ Returns the time of day as a string constant in the form:

HH. MM. SS.
e.g., 17. 36. 37,

CLK(x) Returns the time of day in hours and fractions of an hour in
a 24-hour scale (x is a dummy argument).

e.g., (1) Three minutes and 58 seconds past the hour of 9
is represented:
9.06611

(2) Midnight is represented:

0.00
(3) Noon is represented:
12,000
(4) Two-thirty p. m. is represented:
14,50
DATS$ Returns the date as a siring constant in the following form:
YY/MM/DD }
74/08/11 KRONOS/NOS
MM /DD/YY }
10/31/74 SCOPE
TIM(x) Returns the total elapsed central processor time in seconds

used to-date (x is a dummy argument),

Example:
10 X=TIM(1)
20 PRINT '"CLKS$ TIME OQF"3CLK$3'=""3CLKC(1)3"IN CLK(X) TIME"

30 PRINT DATS
40 Y=TIM(2)
50 PRINT "“TOTAL ELAPSED TIME IS"3Y-X

60 END

This program produces:
CLKS TIME OF 13.04.03¢= 13.0675 IN CLK(X) TIME

74709706
TOTAL ELAPSED TIME IS-.004

19980300 B

STRING FUNCTIONS

LENGTH Function

The LENGTH function yields the current length in characters of a string.

Format:
LEN (se)

se is a string constant, expression or string variable,

The resultant value may be assigned to a numeric variable or used in any statement where

numeric variables are allowed,

Examples:
1) 10 LET S$ = "543"
20 A = LEN(SS)
30 PRINT A
40 END

This program produces:

3

2) DIM B$(20)

200 IF' LEN(B$(4)) < 24 THEN 225

At execution time the length of the string in the 4th element of the string array B$ is com-

pared to 24; if the‘length is less than 24, control is passed to statement 225,

3) 10 LET D$ = '"ABCD"
20 PRINT '"N@ OF CHARACTERS'"3LEN(DS)
30 END

The program produces:

N@ OF CHARACTERS 4

2.,3-8 199€0300 B

STRING Function

The STRING function converts a numeric value n to its corresponding string representation

as specified by an optional image f.

Formats:
STR$(ne) or
STR$(ne, f)
ne numeric constant variable, or arithmetic expression
f image of the desired format,

The resulting string may be assigned to a string variable or used explicitly in any state-

ment where string variables are allowed. The string is formatted in accordance with the
image specified by f. The image f can contain alphanumeric constants and any specifica-
tion control characters which are allowed in the IMAGE statement, See section 2.4 for a

complete discussion of format images.
If f ig absent, the string is tormatted according to the standard rules for numeric output,

Examples:
1) B$ = STR$(A(1, 6))

Execution of this statement assigns B$ the string converted from the numeric value con-
tained in an element of array A, If A(1,6) contained a value 1234, then string variable

B$ is assigned the string constant " 1234",

2) IF ''4894" = STR$(A9) THEN 200
A$ = STR$ (I, COSTPRICE = $###. ## LESS DISCOUNT)

Execution of the first statement provides a comparison between two strings and a corre-
sponding branch to 200. In the second statement, the numeric value of I is formatted
according to the image specified; e.g., if the value of I is 203, 23 then A$ is assigned the
string-COSTPRICE = $203, 23 LESS DISCOUNT.

19980300 B 2.3-9

SUBSTRING Function

SUBSTR may be used to extract a substring of specified length and starting position from a
string. It may be used to replace the substring of an existing string with a substring
specified by the user,
Formats:

SUBSTR(se, ne,, nez)

SUBSTR(se, nel)

se is a string variable representing the string from which the substring is
to be extracted, or inserted. It may be a string constant for substring
extraction, '

ne, is a numeric constant, variable, or expression indicating the start of

the substring,

ne, is a numeric constant, variable, or expression indicating the length of
the substring,
Extraction: When referenced as part of a string expression, the SUBSTR function extracts
and returns the substring of se which starts at cnaracter ne, and is ne, characters long.
If ne, is not specified or if greater than the number of available characters in se, all the

remaining characters are returned. If the starting position ne, is beyond the end of se,
a null string is returned.

For substring extraction, SUBSTR may be used in any expression where string variables
are allowed.,
Examples:

1) 10 LET A$ = SUBSTR(" DEPARTMENT', 3, 4)
Execution of this statement results in A$ being assigned the string ""PART''

2) 10 A$ = " PART"
20 LET X$ = SUBSTR(AS$, 2, 10)
30 LET X$ = SUBSTR(AS$, 2)

These statements assign the string "' ART' to X$. Statement 20 asks for ten characters
starting with the second, but there are only three. Statement 30 asks for all characters

beginning with the second.
3) 40 IF SUBSTR(BS$, 1, 4) = " XXXX'" THEN 90

This statement transfers control to statement 90 if the first four characters of B$ are
XXXX.

2.3-10 19980300 B

Insertion

When SUBSTR(se, ne,, ne2) is used to the left of the equal-sign in a LET statement, the
substring of se which begins at character ne, and is ne, characters long is replaced by the
first ne, characters of the string or string expression specified to the right of the equal-
sign. The se must be a string variable and may not be a string constant in any case.
SUBSTR is a unique function name that permits this form of usage. No other function may
be referenced on the left of an equal-sign.

If ne, is not specified, the ne;hand all following characters of se are replaced by the entire
string specified on the right side of the equal-sign. The length of se is increased to accomo-
date the right-hand string if necessary. A diagnostic is generated if the length must extend

beyond 78, This feature enables SUBSTR to concatenate two strings.

If the starting position ne, is beyond the end of se, blanks are inserted between the end of
the original se and the beginning of the inserted substring. Similarly, if ne, characters
are called for and the right-hand string is less than ne,, characters long, enough blanks
are added to the end of the inserted substring to make it exactly ney characters long.

For substring insertion, SUBSTR must appear on the left side of the equal-sign in a LET

statement. It may not appear in any other position or in any other statement.

Examples:

1) 10 A$ = " DEDUCTION"
20 LET SUBSTR(A$,1,2) = " IN"

Execution of these statements results in A$ being assigned to the string "INDUCTION".

2) 10 A$ = " HOG"
20 B$ = "' TIED"
30 LET SUBSTR(A$, LEN(A$)+1) = B$

The execution of these statements results in the string " HOGTIED'. This is an example
of using SUBSTR to concatenate two strings. All characters in B$ are inserted after the
last character of the original A$ because the starting position, ne, , is set to the length of
A$+1 and the length indicator, ne,, is not specified.

3) 50 X$ = " XXX"

66 LET SUBSTR(X$,6,6) = " YYY"

After executing these statements, X$ identifies string "XXX yYYY " . Two spaces
between the X and Y are inserted because the starting position, neq in SUBSTR is 6 and the

original X$ is only three characters long, The three trailing blanks are added because the

requested length, nezis 6 and the right-hand string is only three characters long.

19980300 B 2,3-11

VALUE Function

The VALUE function converts a string to its numeric value. The function is the inverse of
STR$ function.

Format:

VAL(se)
se is a string constant, variable or expression containing only characters

which form a valid number.
The VAL function may be used in any arithmetic expression.

Examples:
B9 = VAL(B$(1))
X4 = 2¥B4 + VAL('"123.7")
IF VAL(B$(I, J)) > 24 THEN 291

When the first example is executed and if B$(1) contains a string "'1234", then the numeric

value 1234 is assigned to B9,

Similarly, in the latter two examples, numeric values are extracted and used for arith-

metic purposes or for comparison with a numeric constant.

2,3-12 19980300 B

USER

FUNCTIONS

BASIC permits the user to define his own functions within his program through use of the

DEF statement and later reference the function by specifying the name assigned to it on

the DEF statement. Results from a function execution (single value) are returned to the

function reference.

DEF STATEMENT

Functions mav be defined by the user with the DEF statement.

Format:

DEF FNI1 (snv) = ne

1 alphabetic character uniquely identifying the function name.
snv simple numeric variable; the formal parameter.
ne arithmetic expression; the rule for evaluating the function,

The following rules apply in defining a function:

1, The variable snv is a formal parameter. It may be used elsewhere in the program
without affecting the function,

2. The arithmetic expression (ne) may include the formal parameter and it may
include other program variables, simple or subscripted.

3. The definition must be complete on one line,

4. The expression in a DEF statement may include references to BASIC or user-
defined functions, but not to the function being defined; i.e,, recursive definitions
are not allowed,

5. A DEF statement may appear anywhere in a BASIC program, not necessarily before
the function is used.

Examples:

DEF FNA(D) = 1/D
DEF FNB(D) = D- FNA(B)

A

= FNB(A)

19980300 B 2.3-13

REFERENCING A FUNCTION

The format of a function reference is:

function name (ne)

function name name assigned in the DEF' statement

ne any numeric expression

The following rules apply when using a function:

1, The argument (ne) in parentheses in the function call is evaluated and the resultant
value is used in the expression of the DEF statement as the value of the formal

parameter,

2. The expression of the DEF statement is evaluated (using the current value of any

variables in the expression) to yield the function value.

3. When the formal parameter does not appear in the expression of the DEF statement,
a tunction reference must still have an argument (ne), although its value has no

effect on the function value.

4, A function may-be redefined within a program. When it is referenced, the defini-
tion used is the one on the highest numbered line before the line containing the
function reference. When a function is referenced at a line before any of its defini-
tions, the definition used is the one with the lowest line number after the function

reference.

2.3-14 19980300 B

Example:

10
20
30
40
50
60
70
80

DEF FNA (R) 3414159 * R ¢ 2

DEF FNC ¢D) 3.14159 * D

DEF FNV (R) FNA (R) % R/3

PRINT "RADIUS",'"CIRCUMFERENCE'," " AREA","VOLUME"
FOR R = «1 T@ 1 STEP .1

PRINT R, FNC(2%R)» FNA(R)s FNV(R)

NEXT R

END

This program produces:

RAD
o1
2
3
;]
S
6
7
-8
-9
1.

In the example above,

1US CIRCUMFERENCE AREA VOLUME
628318 3.14159E~2 1.04720E-3
1.25664 »125664 B8+37757E-3
188495 +282743 2.82743E-2
2.51327 +502654 6+70206E-2
314159 « 785397 <1309
3.76991 113097 «226194
4.39823 153938 +359188
5.02654 2.01062 «536165
5.65486 254469 « 763406
6.28318 3.14159 1,0472

FNA computes the area of a circle when given its radius; FNC

computes the circumference of a circle when given its diameter; and FNV computes the

volume of a sphere when given its radius. Notice that the definition of FNC uses the

function FNA.

At line 40 four column headings are printed, The FOR loop prints on successive lines a

radius and the corresponding circumference, area, and volume computed by the user-

defined functions,

19980300 B

2.,3-15

SUBROUTINES

A program may include a number of subroutines, each consisting of any number of BASIC
statements terminated by a RETURN statement, Control is transferred to a subroutine
from the main program by the GOSUB statement and return is always made to the main
program at the next line following the GOSUB statement which transferred control to that

subroutine, Subroutine recursion is permitted.

Example:
10 REM " USER PROGRAM CALLS SUBROUTINE A"
15 GOSUB 50
—» 20 Z = AX*2 CALL
40 GOTO 510
" "
RETURN 45 REM SUBRO_]_'JTINE A
50 A= 14X S I——
: B SUBROUTINE
— 500 RETURN

510 C = A%kx24B%%2

.

700 END

The above illustrates a subroutine call and return sequence. Lines 50 through 500 contain
subroutine A. After execution of subroutine A, control is transferred to line 20 and at line

40 execution sequence is directed to line 510, bypassing the subroutine A statements.

9.3-16 19980300 B

GOSUB STATEMENT

The GOSUB statement directs the program to the first line of a subroutine. Each time this
statement is executed the reference line number of the statement following the GOSUB
statement is placed at the top of a stack (list). Each execution of the RETURN statement
removes the most recent entry in the stack., The stack contains 40 locations; therefore,

subroutine references can be nested 40 deep.

Format:
GOSUB 1In
ln line number of the first statement of the subroutine.

RETURN STATEMENT

The RETURN statement must appear as the last statement of the subroutine. It directs
the program to resume execution at the statement immediately following the previously

executed GOSUB statement.

Format:
RETURN

Example:
The following demonstration program makes use of one subroutine three times and a second
subroutine once. The 4-line printout shows a user input of x = 2 and the three results ob-

tained. An analysis of the program statements follows the printout.

100 PRINT '*GOSUB TEST"
105 X=2
110 GOSUB 200 =
—» 120 PRINT X
130 GBsuB 200 —
»140 PRINT X
150 G@suB 200 —
» 160 GOSUB 220
» 170 PRINT X
180 STOP
200 X=X+] <*-——
210 RETURN
220 X=X+2 -
230 RETURN
240 END

This program produces:

GAsSUB TEST
3
4
7

19980300 B 2.3-17

Analysis of Program Statements:

100 Prints the heading GOSUB TEST.

105 Assigns a value of "' 2" to x.

110 Control is transferred to the subroutine at 200,

200 X=2+1=3

210 Control is returned to the statement following the most recent GOSUB,
i.e., 120,

120 The value 3 for X is printed.

130 Control is transferred to the subroutine at 200,

200 X=3+1=14

210 Control is returned to the statement following the most recent GOSUB,
i.e., 140,

140 The value for X is printed.

150 Control is transferred to the subroutine at 200.

200 X =441 =5

210 Control is returned to the statement following the most recent GOSUB,
i.e., 160.

160 Control is transferred to the subroutine at 220,

220 X =542 =17

230 Control is returned to the statement following the most recent GOSUB,
i.e., 170.

170 The value 7 for X is printed.

180 The program terminates.

2.3-18 | 19980300 B

INPUT AND OUTPUT 2.4

This section describes the BASIC statements related to input and output. Included are the
file manipulation statements, special output formatting statements, and statements to read

and write data,

FILES AND INTERNAL DATA BLOCK

A file is a named collection of data which a BASIC program can reference and manipulate,
A file name (1fn) consists of 1 to 7 alphanumeric characters, the first of which is always a
letter (A123)., Files used with BASIC are normally located on mass storage. Exceptions
are those files connected or assigned to the terminal and internal data block. Terminal
files accept and display data directly at a terminal. The internal data block exists within
the BASIC program.

When using files, it is important to remember that BASIC programs can read and write
data in two formats: binary format (files created by WRITE and DATA statements) and
coded format. These formats should never be mixed in a file. Binary format data can be
used by the program with no conversion, but it cannot be printed at a terminal or printer.
Coded format data can be printed, but it must be converted into binary by BASIC before
the program can use it. All data entered by the user on cards, or at his terminal, and all
data printed is in coded format. In general, binary data is written only if the data is to

be read later, while coded data can be either printed or read later by a BASIC program.

PERMANENT FILE ACCESS

BASIC deals with local (working) files, A local file is any file other than a permanentfile;
i.e., a file created during the terminal session or, a copy of a permanent file which con-
tains program code to be executed during the session or which contains data to be accessed
during the execution of a program created during the session, or a file obtained by copy-
ing the permanent file. A local file can be updated (via additions or deletions) at the ter-
minal, Local files which are permanent file copies can be changed without affecting their
respective permanent files, Appropriate operating system file commands are used to make

a local file permanent and a permanent file local. These commands must be used prior to

BASIC program executions. (See sections 2,7, 2,8 and appendix E for a description of

these commands.)

19980300 B ' 2.4-1

The coded files named "INPUT and OUTPUT'" have special meaning to BASIC programs. In
interactive mode coded data written on the file OUTPUT is automatically printed at the
terminal. The file OUTPUT is connected to the terminal, The file INPUT is also con-
nected to the terminal; whenever a BASIC program requests data from the user at a
terminal, the data entered is automatically placed in the file INPUT. Files OUTPUT and
INPUT are the defaults for the coded input and output statements; i.e., if no file is speci-
fied in a coded output (PRINT) statement, the output is displayed at the terminal., A de-
scription of the PRINT statement is provided later in this section.

In batch processing, the file OUTPUT isg normally the default for coded output statements,
and this file is automatically printed after the program has executed. The file INPUT is
the default for the coded input statements, and is created from the cards submitted by the
user. The specification of the file parameter options is accomplished via the BASIC
control card, See section 2.9 for a description of these options.

9. 4-2 19980300 B

FILE STATEMENT

Format:
FILE #n; = lfn,, #ny = 1fn,, ... #ng = lfng
n, - n the file ordinal is any numeric constant variable or expression with a
1 3 18-
value between 1 and 2
liz”n1 -lfn3 the file name is a string constant or variable with seven or fewer alpha-
numeric characters; the first character must be letter,

The file statement is used to associate a number, called the file ordinal, with a file name,
After the file statement is executed, all remaining INPUT/OUTPUT statements may refer-
ence the named file by its ordinal.

Examples:
1) 10 FILE #1 = "OLDM", #11 = " NEWM"
2) 50 FILE #48 = A$
3) 100 FILE #X = A$

4) 110 FILE #99 = "ouTPUT"

In the first example, files OLDM and NEWM are assigned ordinals, 1 and 11, respectively.
In the second example, a file whose name is determined during execution of the program,

is assigned ordinal 48. In the third example, both file name and ordinal are determined
during execution, If the variable X is not an integer, it iz truncated, In the fourth example,
the ordinal 99 is assigned to the file "OUTPUT", so that all data placed on file 99 is out-
put to the user's terminal or the printer.

All files are allocated at compile time. The compilation of a FILE statement that contains
a string variable for a file name, results in the allocation of a file without a name. The
first execution of the FILE statement with a value for the string variable, which is not
already the name of a file, results in the unnamed file being given that name. Once named,
the file always retains that name, The names of files cannot be changed; only their ordinals
can be changed. A maximum of 15 files, including INPUT and OUTPUT, can be used in a
BASIC program.

19980300 B ‘ 2.4-3

DATA STATEMENT

Format:

DATA Cys» Cgs Cgs eee ¢,

¢y - ¢, numeric or string constant

The DATA statement is used to create a block of binary format data internal to the BASIC
program; this data can then be accessed by a READ statement,

Any number of DATA statements may appear anywhere in the program. The BASIC com-
piler considers them contiguous statements, and places the data in sequential order in one

data block (referred to as an internal data block).

DATA statements are non-executable and have no effect on the results of a program if

they are encountered in the normal sequence of execution.

Examples:

1) 5 DATAS5.3, 2, 3, 4, 4.5, -0,003E-5
10 DATA 0.00000589, +55, 384.6, 890
20 DATA "STRING EXAMPLE"

2) S DATA "E",2,3,455
10 READ A%$,B,C,D»E
20 PRINT AS3E

produces:
E S

3) 5 DATA "STRINGS'"s 4.3, STRING 2
10 READ A$,B,CS$
20 PRINT A$3B3CS

produces:
STRINGS 4.3 STRING 2

Both quoted and unquoted strings are allowed. However, unquoted strings must not begin

with a +, -, ., comma, digit, or blank,

2.4-4 19980300 B

RESTORE STATEMENT

Formats:

1) RESTORE
2) RESTORE #ne

ne numeric variable or constant or expression which evaluates to a file

or

ordinal which is associated with a file name.

A file or internal data block has a pointer associated with it which indicates the position of
the file. For an input file, as the file is being read, the pointer moves ahead indicating
the next item of data to read. For an output file, the pointer is always at the end of the
file indicating where the next item of information is to be written. The RESTORE state-
ment positions this pointer back to the beginning of the file. If format 1 is specified, the

statement refers to the internal block of binary data created by the DATA statements.

Example:

210 DATA 152,33
220 READ A,B»C
225 RESTORE

230 READ D

240 PRINT As»Bs»C>sD
250 END

produces the following results:

19980300 B 2.4-5

NODATA STATEMENT

Formats:

1) NODATA 1In
2) NODATA #ne, 1n

In line number
ne numeric variable, constant, or expression which evaluates to a file

ordinal, associated with a file name

The NODATA statement is used to test the location of the file position pointer, If the
pointer is at the end of data, control is transferred to the statement whose line number
was specified byln. Thus, the NODATA statement can be used to determine if all the data
in a file has been read. If format 1 is used, the statement refers to the block of binary

data created by the DATA statements.
A file which has just been written has no data available for reading.

A NODATA statement can reference a file which has never been read.

Example:

100 N@DATA 150 (when all items in the DATA statement are

110 READ A1,A2,A3 read, go to line 150)
120 PRINT Al,A2,A3

130 G@T3 100

140 DATA 152535455565 75859

150 END

produces the following results:

0w

2
4 5
8

19980300 B

BINARY INPUT/OUTPUT
READ STATEMENT

Formats:

1) READ VisVgsVgsee sV
2) READ #ne, VisVgs VgseaaVy

viTVa variable identifier (numeric string or subscripted)
ne numeric variable constant or expression which evaluates to a file

ordinal which is associated with a file name.

The READ statement is used to read binary data; i.e., files created by WRITE or DATA
statements. Each item of data is read from the file, and assigned to the next variable in
the READ statement. If format 1 is specified, the binary block of data created by the
DATA statement is read. Both string and numeric data can be read by the READ statement,
but string data must not be read into numeric variables. When reading from an internal
data block, if the program attempts to read strings into numeric variablés or numbers

into strings, the diagnostic "BAD DATA IN READ" is issued, This diagnostic is not

issued when reading from a file; however, the results of such a read are unpredictable.

As each item of data is read and assigned to the corresponding variable, the pointer to the
next item of data is advanced. If a READ exceeds the end of data, the diagnostic, ' END

Example:

1) 100 DATA 1,2,3
110 READ A,B,C
120 PRINT A,B,C
130 END

produces:

1 2 3

2) 100 DATA 1.,2,3

110 READ A,BsCsD
120 PRINT A,Bs»C»D
130 END

produces:

END OF DATA AT 110

19980300 B 2.4-7

WRITE STATEMENT

Formats:
WRITE #ne, €15€9, €35 0048
e;-e. expression, variable or constant (numeric or string)
ne numeric variable, constant, or expression which evaluates to a file

ordinal which is associated with a file name.

The WRITE statement places the data referenced on a specified file which is written as
one contiguous block. All WRITE's tb the file contribute to the same block. The data is
written in binary format at the current position of the data pointer. Normally, data placed
on a file by a WRITE statement will be read by a READ statement contained in the same
program or another BASIC program, Binary data cannot be read by an INPUT statement.

Example:

95 FILE #1="0LDM"
100 LET A=B=C=1
110 WRITE #1,A,B»C
120 RESTORE #1

130 READ #1,D,E»F
140 PRINT A-B»C
150 END

produces:

2. 4-8 ' 19980300 B

CODED INPUT
INPUT STATEMENT

The INPUT statement is used to read coded data from a file or to permit the user to enter

data during execution from the terminal,

Formats:

1) INPUT VisVgseesVy

2) INPUT #ne, VisVoseseVy
ViV, string or numeric variable

ne numeric variable constant or expression which evaluates to a file

ordinal which is associated with a file name

When a BASIC program is run interactively from a terminal, the INPUT statement without
an ordinal (format 1) reads data into the program from the terminal. One item is input

for each variable of the INPUT statement.

Each time an INPUT statement is executed, a question mark is displayed at the current
print position of the terminal line. The user must then enter data to satisfy the input .
"request, The data entered must correspond one-for-one with the variables in the INPUT
statement. Numbers must be entered for numeric variables and quoted or unquoted strings
must be entered for string variables. Unless DELIMIT is in effect, numeric constants

may be separated by commas or blanks; string constants must be separated by commas.

A carriage return marks the end-of-data to be entered. If insufficient data is entered, a
diagnostic message " NOT ENOUGH DATA, TYPE IN MORE" is issued. The user should
continue entering data until the input requirement is satisfied, A diagnostic message
followed by a question mark is issued if too much data, or data unacceptable to BASIC, is

entered. The user must then retype the entire data list.

19980300 B 2.4-9

Example:

10 INPUT X,Y

20 REM QUESTION MARK WILL MEAN TW@ VALUES ARE REWUIRED
30 PRINT "X="3X,"Y="}Y

40 END

produce: (user responses are underlined)

20

NGT EN2IJGH DATA, TYPE IN MARE AT 10
?254

T@d MUCH DATA -RETYPE AT 10

21,2

X= 1 Y= 2

A PRINT statement (30) associated with the INPUT statement (10) eliminates any confusion

as to how many and what type of data items to enter.

Example:

The statements

80 PRINT "WHAT IS THE VALUE OF X"3
85 INPUT X

produce:

WHAT IS THE VALUE aF X ? 9

The user responds by typing one numeric constant immediately after the question mark.

Following are the rules for entering the data from a terminal:

2.4-10

INPUT items are delimited by commas unless a DELIMIT statement is in effect.

Numeric items are also delimited by blanks.
A Carriage Return marks the end of data entry.
If insufficient data is entered, BASIC will issue a request for rnore.

If too much data or unacceptable data is entered, BASIC will request that the data

be reentered,
All trailing blanks are eliminated from the input line.

Redundant delimiters preceeding or following data items are ignored.

19980300 B

When used in batch mode, the format 1 INPUT statement reads from the file named INPUT;
i.e., in the same way as an INPUT statement with an ordinal associated with a file named

"INPUT" (default input file). The data pointer is advanced for each item read.

When format 2 is used, then input is essentially the same as input from a terminal except

that too much data and not enough data conditions are not applicable.

Following are the rules for inputting data from a file:

1-

2.

A file is considered one block of data. Items are read sequent'ially - one at a time,

Items are delimited by commas unless DELIMIT is in effect. Numeric items can
be delimited by blanks,

End-of-line (EOL) always acts as a delimiter, However, it does not mark the end
of data as carriage return does for a terminal line, End-of-line (EOL) is a
special indicator on coded files which marks the end of each line, It is the logical
equivalent of carriage return on a terminal, EOL's are automatically written on
coded files created by BASIC (see CODED OUTPUT).

. If more data is requested than is available in the current line, data is
taken from the following line.
If more data exists in the current line than is needed, no diagnostic is

issued. The next INPUT begins where the current INPUT terminates.

The program terminates and the diagnostic, END OF DATA ON FILE is issued if
the program attempts to INPUT more data than exists in the file.

All trailing blanks are eliminated from each input line.

Redundant leading and trailing delimiters are ignored,

19980300 B 2,4-11

DELIMIT STATEMENT

Formats:

1) DELIMIT (chl), (Chz)’ (ch3)
2) DELIMIT #ne(chl), (ch2), (ch3)

ch,-chs any character or CR (carriage return)
ne numeric variable or constant used as a file ordinal which is asso-

ciated with a file name

DELIMIT specifies the character or characters to be used as input item separators. The
characters specified override default separators, comma and blank. Any characters, or
the mnemonic CR (carriage return), may be specified as separators. If CR is specified,

the entire line is accepted as one data item.

Zero, one, two, or three characters may be specified in a DELIMIT statement. If no
characters are specified, the default delimiters (comma and blank) are restored. If no
file is specified in the DELIMIT statement, the delimiters apply to the file INPUT, and
thus to all input from the terminal.

Examples:

1) 5 FILE #1 = " DATAIN"
10 DELIMIT (CR)
55 DELIMIT #1(), (;)

In the first example, if the program is run interactively from the terminal, all requests
for input from the terminal read all information typed up to the carriage return@)in’co a
single variable. It should be noted that this form would most likely be used to read data
into a string variable. In the second example, a blank and semicolon (;) are interpreted as

delimiters (numeric and string) when inputting from a file with an ordinal of 1 (DAT'AIN).

2) 110 DELIMIT
155 DELIMIT #1

The above two examples restore the default delimiters (blank and comma).

2, 4-12 : | 19980300 B

To show concisely the difference between DELIMIT not in effect and DELIMIT in effect,
a comparigson of the two cases follows.

Normal Case (DELIMIT not in effect):

1. Carriage return on a terminal (or end-of-line on files) is always treated as a
delimiter.

e When the input is from a terminal and @ (Carriage Return) is encountered

before the input list is satisfied, the meSsage " NOT ENOUGH DATA, TYPE
MORE'" is issued.

e When input from a terminal and data exists on the input line after the input list
is satisfied, the message ' TOO MUCH DATA, RETYPE...'" is issued,

e When the input is from a file and end-of-line is encountered before the input
list is satisfied, it is treated as a delimiter (item separator) and input con-
tinues from the next line,

e When the input is from a file and data exists on the input line after the input
list is satisfied, no diagnostic is issued. The next INPUT starts reading where
this INPUT ends.

e If a delimiter is encountered after the input list is exhausted, it is ignored,

2. Leading and trailing blanks on the input line are ignored.

3. Comma is the delimiter for all input items (numbers, quoted strings and un-
quoted strings).

4, Blanks are delimiters for numbers, but not for strings.

DELIMIT in effect:

1., Default delimiters are turned off except carriage return @@ or end-of-line.
Only explicitly named characters act as delimiters.

e Comma and blank do not delimit items unless they are specified in a DELIMIT
statement.

e Quotes have no special meaning.
e All characters including quotes and leading blanks are valid string characters.

e All strings are considered to be unquoted., There are no string boundary
characters equivalent to quotes.

2. Carriage return (end-of-line on files) is always a delimiter and need not be ex-
plicitly defined in a DELIMIT statement.

3. Trailing blanks on an input line are ignored unless CR is explicitly defined as a
delimiter.

4, Leading blanks are not ignored unless the item being input is a number.

19980300 B 2,4-13

CODED OUTPUT

This section describes the statement used to create coded output; i.e., the PRINT state-

ment, as well as, statements related to the formatting of coded output.

PRINT STATEMENT

Formats:

PRINT eldezd. ..e d
1) n or
PRINT USING l1n, eldezd. .o end

2
or

{PRINT #ne, elde de..e_d
2) n
PRINT #ne USING l1n, eldezd. . end

e expression, variable, constant (numeric or string)

d delimiter (comma or semicolon);. specification of the final delimiter is
optional

ne numeric variable, constant, or expression which evaluates to a file ordinal
which is associated with a file name

In line number of IMAGE statement (described later in this section)

The PRINT statement is used to write coded data on a file. As previously described, if

the coded file OUTPUT is used, then the data appears on the user's terminal if the program
is being run as in interactive job from a terminal, or on the printer if the program is being
run as a batch job. The file OUTPUT is the default file, The default file name for PRINT
can be changed by using the Land K options on the BASIC batch control card, See

section 2.9.

The PRINT statements with the USING option cause the output to be formatted to an IMAGE

statement, This is discussed in detail in the IMAGE statement description.

In this discussion and most examples that follow, the PRINT statement is discussed for
format 1, which does not specify a file, It should be understood that the same output would

appear on a file if one were specified.

2.4-14 19980300 B

Examples:

20 PRINT A, B, SIN(A)
prints the values of A, B and SIN(A).
30 PRINT #N, " VALUES ARE X AND X SQUARED", X;X*X
prints the string constant and the values of X and X*X on the file whose ordinal is N.
40 PRINT USING 140, 14.3,.143.0
prints 14,3 and 143.0 according to the format image at line 140,
50 PRINT
prints a blank line,

To inhibit automatic printer and terminal carriage spacing, a blank is always appended to
the beginning of each line to be output by format 1 PRINT statements. This blank is not
normally prefixed to lines output by format 2 PRINT statements, unless the file ordinal
referenced is that of the default print file "' OUTPUT" or default file specified by the L or

K option of the batch BASIC control card.

19980300 B 2,4-15

DEFAULT OUTPUT FORMATS

Unless a USING clause is used or the SETDIGITS statement (described later) is in effect,

all numbers and strings printed are printed in standard default formats. These formats

and the meaning of the print item delimiters are explained below.

Numeric Formats

Numeric values are formatted in one of the three standard formats shown in table 2. 4-1

where:
e n represents a numeric digit.
e cach format is preceded by a minus sign (for negative values) or a blank (for positive
values)
e each format is terminated by one trailing blank.
e leading zeros are suppressed,
e trailing zeros after a decimal are suppressed.
e numbers are left-justified.
e the final digit in format 2 is obtained by rounding.
TABLE 2.4-1. STANDARD NUMERIC OUTPUT FORMAT
INTERNAL VALUE OUTPUT FORMAT USED
e exact integers of less than ten digits nnnnnnnnn

e non-integers whose integer portion is not
more than six digits nannnnn (where one n

represents a decimal

point)

e non-integers whose integer portion is zero
and whose six most significant digits im-
mediately follow the decimal

e all other numbers n. nnnnnE-+nnn

2,4-16 19980300 B

10 Al
20 BI
30 C1
40 D1
50 El
60 F1i
70 Gt
80 H1
90 J1
100 Kt =

110 PRINT
120 PRINT
130 PRINT
140 PRINT
150 PRINT
160 PRINT
170 PRINT
180 PRINT
199 PRINT
200 PRINT
210 PRINT
220 END

0
1
1

1
1

g on o ouN

produces:

124
234556789
23456 .789
7623481
00192
234567890
234567.8

«07623488

-+0000192
"INTERNAL VALUE '
M0, -124",'123456789",'"123456 789, .7623481"

"QUTPUT FORMAT*'
Al1,81,C1,D1,E1

"INTERNAL VALUE "
'=e00192",%1234567890",5'"'1234567.8",'".07623438",-,2000192"

"aITPUT FIIMAT'
F1,G1,H1,J1,K1

INTERNAL VALUE
0 -124 123456789

2UTPUT FIRMAT
0 -124 123455789

INTERNAL VALUJE
-+.00192 1234567890 1234567.8

2UTPUT FIRMAT
-»00192 123457E+9 1.23457E+6

19980300 B

123456.789

123457.

207623488

Te562349E-2

«7623481

« 762348

-«0003192

=1+92000E-5

2,4-17

String Formats

String constants are printed exactly as they appear in the PRINT statement without the
quotation marks.

Example:
115 LET X =Y = Z =2
117 PRINT *ANSWER'","X AND Z ='"3Z,""XkY*Z="3XkY*Z
118 END
produces:
ANSWER X AND Z = 2 XkY*Z= 8

If statement 117 is changed to:

117 PRINT "ANSWER3X AND Z =3Z3X¥YkZ=3X¥YHZ"

the program produces:

ANSWER3 X AND Z =3Z3X*Y*Z=3XkY*Z

2.4-18 19980300 B

PRINT ZONING

The print line normally is divided into five zones of 15 spaces each. A comma, used as a
separator or a final delimiter, signals BASIC to move to the next zone of the print line, or

to the first zone of the next print line when the last zone is filled.

When a semicolon is used as a separator, it has no spacing effect; i.e., print line zoning
effect is inhibited. Because the numbers are printed preceded by a blank or a minus sign,
and followed by another blank, two positive numbers will be separated by two blanks.

Example:

1) 10 A1 = 123
20 B2 = 256
200 PRINT "0123456789"
300 PRINT Al13B2
400 END

produces:

0123456789
123 256

Whena semicolon is used to separate strings, they are printed consecutively without any

preceding or intervening blanks.

2) 10 PRINT "THIS IS"3"AN EXAMPLE"
30 PRINT *“THIS IS",''AN EXAMPLE"
40 END

produces:

THIS ISAN EXAMPLE
THIS IS AN EXAMPLE

Commas and semicolons can be intermixed in any PRINT statement., When commas are
used as separators with numeric data, each number occupies one zone: but with string

data, each string may occupy more than one zone.

19980300 B 2.4-19

If a PRINT statement does not end with a delimiter (either semicolon or comma), subsequent
printing commences at the beginning of a new line. If a PRINT statement does end in a de-
limiter, subsequent printing continues on the same line until the line is filled. If a semi-
colon is used as the final delimiter, the next item printed starts in the next available space,

If a comma is the last delimiter, the next item printed starts at the beginning of the next

zone,
3) 490 LET X = 1
S00 PRINT "VALUE OF X=''3X
510 END
produces:
VALUE OF X= 1
4)
300 PRINT 300,400,500,600
320 PRINT 700,800
330 END
produces:
300 400 S00 600
700 800
5) _
300 PRINT 300340035003600370038003900
310 END
produces:

300 400 500 600 700 800 900

2.4-20 19980300 B

6)
10 FR I =1 T9 10
15 PRINT 1
20 NEXT I
30 END

produces:

VRN ADWN-

o

If line 15 is changed to:
15 PRINT I,
the above program produces:

1 2 3 4 5
7 8 9 190

If line 15 is changed to:

15 PRINT I3

the program produces:

1 2 3 4 5 6 7 8 9 10

19980300 B 2,4-21

TAB FUNCTION

A TAB function used in a PRINT statement causes the printing to start at the position in-

dicated by an argument,

All arguments are considered modulo the line width, Print

positions are counted from 0. Line width is normally 75; however, it may be changed by

the use of the MARGIN statement (discussed later in this section).

than the current print position, TAB has no effect,

If the argument is less

The semicolg_g should be used as a

separator when the TAB function is used, because the comma causes a move to the next
i

print zone, The TAB function is legal only in the PRINT stétements.

Format:
TAB (ne)

ne

Examples:

1)

produces:

2)

produces:

2.4-22

a constant, variable or expression indicating print position number

20 PRINT TAB(10)3*1'3TAB(20)3'2"3 TAB(30)3'3"

30 PRINT *'0123456789012345678901234567890"

40 END

1 2 3

0123456739012345678901234567890

100
110
120
130
140
145
150
160
170
180

12345678
123456789
12345678901
123.4

D2 123456

D3 1234567

PRINT I1,TAB(30);3D1
PRINT I2,TAB(30)3D2
PRINT 13,TAB(30)3D3
END

I
12
13
D1

12345678 123.4
123456789 123.456
1.23457E+10 123+ 457

19980300 B

IMAGE STATEMENT

The IMAGE statement is used with PRINT USING to explicitly describe the desired output
format.

Format:

s literal f1f2f3. . fn

~ literal quoted or unquoted string (optional)

fl-fn any string constant format specification in quotes;

or any unquoted string constant not containing +, -, ., #ort,

or a format specification made up of the characters +, -, ., #andt.

NOTE: The IMAGE statement does not contain a key word as other BASIC statements. The
IMAGE statement is identified by the leading colon.

A format specification describes the exact printed format of the value and the literal to be
printed by the PRINT statement., The literal is printed as written; it is the format of the
value which is determined by the IMAGE statement. When the format is filled by string
data, the specification determines only the number of characters to be included from the
string. When the format is filled by numeric data, the format specification directs the
placement of the value in the field, and the number of digits retained in the converted value.
The PRINT statement is described earlier in this section.

A format specification is built from the following table of specification control characters.

19980300 B 2.4-23

CHARACTER

+

SPECIFICATION CONTROL CHARACTERS

First character,
optional

First character,
optional

Any position,
required

Any position,
optional

Last five,
optional

POSITION/OPTION

NO. /FORMAT

One only

One only

At least one

One only

Must be
five

EFFECT

When outputting numbers,
specifies that the output
field is to be signed; a
minus sign or a plus

sign precedes the first
significant digit of the
output field.

When outputting strings,
specifies concatenation.

For numeric data, spec-
ifieg that the output field
is to be signed if the
value is negative, and
unsigned if the value is
positive; a minus sign
precedes the first sig-
nificant digit of the out-
put field.

For numeric data, spec-
ifies a possible digit
from the converted
nurneric data.

For string data, spec-
ifies a possible character
for the output string.

Specifies the placement
of the decimal point in
the output field; this
character remains in.
output field.

Specifies the exponent
portion of a field to be
output in exponential
format.,

The associated value is
output in E-format with
letter 'E', an exponent

sign and 3 digits for the
exponent value.

The specification control characters are combined to provide four classes of format
The pictorial representation of the line to be printed is built by combining
the necessary format specifications and character strings.

specification,

The classes of format specification are:

2.4-24

Integer

Fixed Point
Floating Point
Alphanumeric

19980300 B

Integer Format

An integer format consists of an optional plus or minus sign and one or more pound signs (#).
The associated value is right-justified within the defined format.
Any non-integer value is truncated before printing.

If the specification includes a minus sign and the associated value is negative, a minus sign
is printed immediately preceding the first significant digit.

If the specification includes a plus sign, the sign of the associated value (+ or -) is printed

preceding the first significant digit.

If there is no place reserved for the sign and the value is negative, the left-most position is
used for the sign.,

If the associated value and its sign are larger than the format specification, an asterisk is

printed and the format is widened to the right.
Examples:

1) 10 PRINT USING 20,879
20 3 (##)
30 END

produces:

(x879)

2) 100 READ Z1,X2,C3
120 PRINT USING 130,Z1,X2,C3
130 &t #HEE HEH CHNERS
135 N@DATA 999
140 G@T2 100
900 DATA 123,45,-3+856545.8,548434,-19
999 END

produces:

123 45 -3
45 548 -19

19980300 B 2.4-25

Fixed Point Format

A fixed point specification consists of an optional + or - and a string of not less than 1 nor
more than 14 pound signs (#) with a decimal point either preceding, embedded in, or
terminating the pound signs.

° If the format contains a plus sign (+), the sign of the associated value (+ or -)
precedes the most significant digit.

I’ If the specification includes a minus sign and the associated value is negative,

a minus sign precedes the most significant digit.

If the number of digits to the left of the decimal point is greater than the number of positions
allowed in the format specification, an asterisk is printed, and the format is expanded to
accommodate the value by shifting the remaining fields to the right.

If the value is negative and if the number of digits to the left of the decimal point is equal to
the number of positions allowed in the format specification, the number of digits to the

right of the decimal point is reduced by one to provide room for the minus sign.-

The associated value is right-justified within the format specification and the decimal point

inserted as specified in the format specification.

The associated value is rounded and truncated according to the number of pound signs to

the right of the decimal point in the format specification.

5. 4-96 19980300 B

Examples:

1)
100 ¢ <#### ol —~#NENE.
110 READ Z1.,X2,C3
120 PRINT USING 100,Z1,X2,C3
130 NODATA 999
140 GOTO 110
500 DATA -.134255,3,123.45
510 DATA +001775-1+9999,-4596.432
999 END
produces:
~e134 3.00 123.
«0018 -2.0 -4596.

To correct the problem of insufficient room for the number of digits to the left of the
decimal point and a sign, the number of pound signs (#) can be increased by one or the
format control characters, plus or minus, may be used to provide space for the sign.

Using the previous example and changing line 100 to:

2) 100 ¢ +.#### ~Hol# X III T
produces:
-¢1343 3.00 +123.
+.0018 -2.00 -4596.

19980300 B 2.4-27

Floating Point Format:

A floating point format consists of an optional plus or minus sign followed by a string of
pound signs (#), with a decimal point preceding or embedded following the #'s, and fol-

lowed by five t characters.

As with the fixed point format, a plus sign (+) or a minus sign (-) can be used in the format
specification to reserve a place for the sign. A plus sign always causes a sign to be
printed; a minus sign causes a sign to be printed only if the value is negative. If there is
no place reserved for the sign, and the value is negative, the number of places to the right

of the decimal point is decreased by one, and the minus sign is printed.
The associated value is shifted to fit the format specification and the exponent is adjusted

_to reflect the shifting.

After the associated value is shifted, it is rounded to match the number of pound signs

following the decimal point,

Examples:

1) 100 READ Z1,%X2,C3
110 PRINT USING 1205Z1sX2,C3
120 2 ##HFtTTET Bl NNNITIELSE I IERERER;
130 NODATA 999
140 G2T2 100
400 DATA 94.6145,3.1415926536,-011466
410 DATA 4.118,439¢8143698,1.00149
999 END

produces:
94.61£+000 3.1415927£+000 -«115E+005
41 .1852-001 4.3931437£+002 «1001E+001

In the above example, the first value in column three has had the number of digits to the

right of the decimal point reduced to accommodate the minus sign. Changing line 120 to:

120 ¢ ## #2200 HoHH#NANMTTE LY +oH#tFtEYIYYE
produces:

94.65+230 3.1415927£+000 ~e1147E+205

41 .2KE-001 443981437E+002 +.1001E+001

2, 4-28 19980300 B

If the number of variables to be output is less than the number of field specifications in the

IMAGE line, the print line ends at the first unused specification.

The following examples illustrate the use of the IMAGE statement with the PRINT USING

statement previously described,

2) 100
105
110
120
150
160
170
999

produces:

R1C1) = 225

A4 = RIC1) + (1/4) * RI(1)

X4 = 44515642

D2 = A4/3.13 *X4

$OVER $### BUT LESS THAN S#### PAY S#¥#EH#
PRINT USING 150,R1(¢1)5,A4, INTC(X4%100 + .5001)
PRINT USING 150,5%50,340,D2

END

QVER $225 BUT LESS THAN $ 281 PAY $ 45.00
OVER $250 BUT LESS THAN § 340 PAY 8 40.58

Using the previous example and changing line 170 to:

170 PRINT USING 150,5%50,340

produces:
QVER $225 BUT LESS THAN $ 281 PAY $ 45.00
OVER $250 BUT LESS THAN $ 340 PAY $

If the number of variables to be output is greater than the number of format specifications
in the IMAGE line, the format specifications are reused until all the variables have been

output,
3) 10 FR I =1 T2 3
20 PRINT USING 40,SaR(IV,1
30 NEXT 1
40 1##4.#44 IS SQR OF Image has seven trailing blanks.
99 END
produces:
1.030 IS SAR OF 1.000 IS SAR @F
1414 IS S3aR OF 2000 IS sar 3F
1.732 IS SAR OF 3.000 1S SaR aF
19980300 B 2,4-29

Alphanumeric Format

An alphanumeric format consists of one or more pound signs (#).

Strings are left-justified with blank padding to the right when the string is shorter than the

format specification.

Strings which are longer than the format specification are truncated on the right,

Examples:

1) 10 AS="NEW"
20 B$=''VALUES"
30 PRINT USING S0,A$
40 PRINT USING 50,B$
SO0 ¢ STRING IS /####/
KRUN

produces:

STRING IS /NEW 7/
STRING IS svALuU/

Strings may be concatenated (linked together) for printing by using the specification control
character plus (+) between pound signs (#).

2) 10 AS=""BAT"
20 B$=""MAN"
30 2 #¥reniN
40 PRINT USING 30,A$,BS$

RUN

produces:

BATMAN

2.4-30 19980300 B

SETDIGITS STATEMENT

Format:
SETDIGITS ne

ne a numeric constant, variable or expression

The SETDIGITS statement may be used to specify the number of significant digits to be
output in subsequent PRINT statements when the default formatting is used. Use of the
SETDIGITS statement allows the user to obtain data printed up to 14 significant digits.,

The value assigned by SETDIGITS is truncated to an integer in the range 1 to 14. Numbers
are printed within the defined significance until:

a. the end of the program;

b. another SETDIGITS statement is encountered.

Note that any relevant sign or exponent is still printed even if a SETDIGITS value of 1 is in

effect,
Example:

100 LET A = 55045454545

110 PRINT "A =55445454545 AND IS NORMALLY QUTPUT AS"™3A
120 PRINT "SETDIGITS"»'"VALUE GUTPUT"
130 FGR N = 1 T? 10

140 SETDIGITS N

150 PRINT N»A

160 NEXT N

170 END

produces:

A =55.45454545 AND IS NORMALLY QUTPUT AS 55.4545
SETDIGITS VALUE QUTPUT

1 6E+1

2 55

3 555

4 5545

5 55455

6 554545

7 5545455

8 550454545

9 55.4545455

10 55.45454545

19980300 B 2.4-31

MARGIN STATEMENT

Formats:

MARGIN ne,

MARGIN #nel, ne,

ne; a numeric constant variable or expression which evaluates to a file

ordinal which is associated with a file name.

ne a numeric constant variable or expression which is truncated to the

nearest integer, and which must be between 15 and 160.

This statement defines the right-hand margin and overrides the default margin of 75, The
use of the MARGIN statement permits the building of lines up to 160 characters in length for

printing on wide carriage terminals or printers.

When the MARGIN statement is used without specifying a file, it applies to the terminal

or the printer,

The MARGIN value (ne_z) may be varied from 15 to 160, and its value affects all PRINT state-
ments to the associated file or the terminal until another MARGIN statement is executed.
If a string is longer than the defined margin, it is broken into pieces so that as many full

lines as required are used,

Examples:

1) 200 MARGIN #6, 136
2) 310 MARGIN I*J/K

In the first example, the right margin is set at 136 for output to a file with an ordinal of 6
previously specified by a FILE statement. In the second example, the expression is evalu-

ated, truncated and used as the right margin value for PRINT statements.

3) 100 MARGIN 17
110 PRINT "ABCDEFGHIJKILLMNOPQRSTUVWXYZ",1.75,88

produces:

ABCDEFGHI JKLMNOPQ
RSTUVWXYZ

1.75

88

2.4-32 19980300 B

MATRIX OPERATIONS 2.5

Although it is possible to construct programs to perform matrix operations with the
ordinary statements of the language, BASIC also provides a set of statements explicitly

for matrix operations.

Matrix operations are restricted to one- and two-dimensional numeric arrays. A one-
dimensional array is always treated as a column vector. To obtain a row vector, a two-

dimensional array must be specified with only one row,

Example:
‘100 DIM X(19), Y(1,11)

This statement generates matrix X with one column of 19 elements, and matrix Y with one
row of 11 elements.

It is not necessary to provide dimensional specification for each matrix used in a BASIC
program. This canbe accomplished by a DIM statement (Explicit Dimensioning) or within
the matrix statement (Implicit Dimensioning). In BASIC a default limit of 10 x 10 is per-
mitted for implicitly dimensioned matrices.

Example:

The following accomplish the same:

EXPLICIT DIMENSIONING IMPLICIT DIMENSIONING
DIM A(2, 3), B(4, 5) MAT READ A(2, 3), B(4, 5)

.

MAT READ A, B

19980300 B 2.5-1

MATRIX ARITHMETIC

Matrix Statement Arithmetic Operation

MAT my = my+mg Addition

MAT m; = m,-mg Subtraction

MAT m, = rnz'*rn3 Multiplication

MAT m, = (expression)*m2 Scalar multiplication by value

of an expression

In each of the above statements, m may be any matrix identifier. The array dimensions
must conform for each operation, and none of the operands of a matrix multiplication can
be used as the result of that matrix multiplication; for example, MAT my = m,*mg is

not allowed.

. Example:
For a description of the READ and PRINT statements see the following paragraphs:

100 DIM M3(2,2),M4(2,2),M5(2,2),M6(2,2)
110 MAT READ M1 (2,2),M2(2,2)

120 MAT ™M3=M1+M2

130 MAT M4=M2-M1

140 MAT MS=M1*M2

150 MAT M6=(2)*M1

160 MAT PRINT M13M23M33MA43MS3M6

170 DATA 2,35254535554,-2

180 END

At line 110, when READ is executed, the matrices dimensioned at line 100 are filled with

the data in the internal storage block, line 170.

MATRIX M1 MATRIX M2
Column Column
Row 1 2 Row 1 2
1 2% 5N 3 45

2

2 2\\\ 4;\\ /“1

74

170 DATA 2,3,2,4,3,5,4, -

4 177

2,5-2 ‘ 19980300 B

This program produces

2% 3
M1
4 +

2
A s
+
M2 Hos
line 120 5 8
6 2
line 130 12
2 -6
18 a
line 140
22 2
6
line 150 4
4 8

Note that the two input matrices (M1 and M2) are dimensioned in the READ statement
while the four computed matrices (M3, M4, M5 and M6) are dimensioned in a DIM statement.

19980300 B 2,5-3

MATRI

Matrices

X FUNCTIONS

can be inverted or transposed by using the inversion (INV) and transpose (TRN)

functions. The matrices within a statement must conform, and inversion and transposition

in place is not allowed. The maximum size of an inversion matrix is 50 x 50.

Formats:
MAT m = INV(a)
MAT m = TRN(a)
m - matrix identifier
a - numeric array variable
Example:

For a description of the MAT READ and MAT PRINT statements, see the following para-

graphs:

100
110
120
130
140
150
160
RUN

3

DIM 1(2,2),T(2,2)
MAT READ C(2,2)
MAT I=INV(C)

MAT T=TRN(C)

DATA 2,3,42,4

MAT PRINT 15373
END

4

The following matrix statements may be used to generate a matrix of all zeros, all ones,

or an identity matrix (assign ones to the elements along the principal diagonal and zeros
elsewhere).
MAT m = ZER[(ne, [, ne2])] - generates a matrix of all zeros.

MAT m = CON[(ne; [,ne,1)]

generates a matrix of ones.

MAT m = IDN [(ne1 [, ne2])] - generates an identity matrix.

m matrix identifier

ne numeric expression, constant, or variable. This value specifies the
desired dimensions.

Items enclosed in brackets are optional.

2. 5"4

19980300 B

Example:

10 v=1

11 X=2

12 MAT Z=ZER (Y*4,6)

13 MAT B=IDNC(X%%2,X*%x*2)
14 MAT A=CON

15 MAT PRINT Z3BsA3

16 END

READY .

RUN

O 0 0 0 0 0O
0O 0 0 0 0 o

1 0 0 O
0O t 0 O
0O 0 11+ o
0 0 0 1

19980300 B

MATRIX REDIMENSIONING

Matrices can.be redimensioned, i.e., length may be reset through use of the MAT

READ statements, MAT INPUT statements or DIM statement. Expressions can be used

to redimension the matrix dynamically at execution time, Expressions are evaluated and
used to reset the upper limit to the number of elements in the matrix. A matrix cannot

be redimensioned larger than its initial value (see the example which follows) or redimen-
sioned to change the number of dimensions. A matrix used in an identity statement must be

redimensioned to a square.

Example:

This example illustrates an attempt to redimension a matrix larger than its initial dimen-
sion, For a description of the MAT READ and MAT PRINT statements see the following
paragraphs:

100 DIM M1C4,4)

110 MAT READ M1(2,2)

120 DATA 1525324555657 5%59505152535455265T758592013253,4551657575920
130 MAT PRINT M1

140 DIM M1(35,3)

150 MAT READ M1(3,3)

160 MAT PRINT M1

170 MAT READ M1(5,5)

180 MAT PRINT M1

190 END
RUN
produces:
1 2
3 4
5 6 7
8 9 0]
1 2 3

MATRIX DIMENSION ERROR AT 170

2.5-6 " 19980300 B

MATRIX INPUT/OUTPUT

The following matrix input/output conventions are used by BASIC. In the formats, the
parameters my, m, and mg represent tue names of matrices. Examples using matrix read
and write statements are given in the first part of this section. An example of matrix file

manipulation is given in the last part of this section.
MATRIX READ STATEMENT
Formats:
MAT READ m,, m,, Mg
MAT READ #ne, m,, m,, Mg
ne numeric expression, constant, or variable

m,-mg matrix identifier.

These statements compiletely fill the matrices specified from the internal data file or the
specified file, respectively. The numeric value which results from the evaluation of argu-
ment ''ne'" is used as an ordinal and identifies the requested file., To read a file with this
statement it must be in binary torm; i.e., it must have been created by a MAT WRITE or

WRITE statement. Matrices are read in row order.

19980300 B 2.5-7

MATRIX INPUT STATEMENT

Formats:
MAT INPUT my, m,, Mg,e o .

MAT INPUT #ne,ml, My, Mg, o o &

ne - numeric expression, constant, or variable

m,-mg - matrix identifier,

With the MAT INPUT statement, matrices can be created at the terminal, one row at a
time, A question mark displayed at the terminal indicates that the user should type in
one row of the matrix. The system continues to display question marks until the re-
quirements of the matrix are satisfied, If the user attempts to enter less than or more
than one row of a matrix, a diagnostic ig issued. The user must then complete the row
by typing in the missing data (if less than one row was entered) or reenter the entire row
if too much data was entered.

The MAT INPUT #ne statement accepts matrices in row order from the specified file,
which must have been created with a MAT PRINT statement.

Matrix redimensioning is allowed for either type of matrix input statement.

Example:

10 MAT INPUT A(3,3)
20 MAT PRINT A3

30 END

RUN

This produces the printout:

? 1,25354

TP@ MUCH DATA -RETYPE AT 10

? 1,2,3

? 455,56

? 758

N@T ENGUGH DATA, TYPE IN MORE AT 10
?29

2.5-8 19980300 B

MATRIX PRINT STATEMENT
Format:

MAT PRINT m.d m,d m,d. . . d

1 2 3

MAT PRINT #ne, m.d mzd m3d o o od

1
ne numeric constant, variable, or expression
m,-mg matrix identifier
d delimiter (comma or semicolon); the final delimiter is optional.

These statements cause matrices to be printed out in row order using the same rules as
the normal PRINT and PRINT #ne statements. The delimiter specifies the print zoning
control for each element of the matrix. A blank line is automatically generated after

each row.

MATRIX WRITE STATEMENT

Format:
MAT WRITE #ne, my, My, Mg e o «

ne numeric expression, constant, or variable

m matrix identifier.

This statement writes the specified matrices in row order on the specified file. Files
created by MAT WRITE are in binary form and can only be read by READ or MAT READ

statements.

19980300 B 2,5-9

MATRIX FILE MANIPULATION

The following program creates a file containing two matrices. This file is read in and
printed by the same program. A subsequent program references and prints out ALPHA,
Following the programs is an analysis of program statements.

DEMO1

40 FILE #1="ALPHA"

S0 MAT READ A(2,2),B(3)
60 MAT WRITE #1,A,B

70 DATA 1525324555657
80 RESTORE #1

81 MAT READ #1.,A,B

82 REST2RE #1

83 MAT PRINT A3B

90 END

READY «

RUN

This produces the printout:

1 2
3 4
S
6
7

2.5~-10 . 19980300 B

DEMO2

NEW,DEMO2
READY .

N@DROP
READY .

95 FILE #1="ALPHA"

100 MAT READ #1,A(€2,2),B(3)
110 RESTORE #1

120 MAT PRINT A3B

130 END
READY"%
RUN

1 2
3 4

5

6

7

19980300 B 2.5-11

Analysis of Program Statements

DEMO1

40
50

60

70

80

81

82

83

90

DEMO2

The numeric constant 1 is assigned to file ALPHA,
The READ statement dimensions two matrices, A and B, which it fills with

values from the data statement (70).

A file, ALPHA, is written with the two matrices read in above, Compare this
with using the simple WRITE in which the values had to be entered with a FOR--
NEXT loop.

The DATA statement supplies the four values for matrix A and the following

three values for matrix B.

Once the data is written, the pointer is at the end of the file. To move the
pointer to the beginning of data (rewind), use is made of the RESTORE statement,

The two matrices in the secondary file area are read back into the program.,

The file is rewound for future use.
The values read in from file ALPHA are printed out in matrix format.

Specifies end of the program.

NODROP This system command must be used immediately after the specification

95

100

110

120

of a new program in order to retain secondary files. Without this com-
raand, ALPHA would be lost as soon as the first statement of DEMO2 was

entered,

The numeric value 1 is assigned to file AL PHA.
The file ALPHA is read in as two matrices.
AL PHA is rewound for future use.

A and B are printed out in matrix format,

If file ALPHA is to be referenced by a third program, the NODROP command will have to

be used as before.

2.5-12

19980300 B

ERROR PROCESSING 2.6

The following statements are used for detecting and processing errors which occur during

program execution.

ON ERROR STATEMENT

Format:

1) ON ERROR GOTO In
2) ON ERROR THEN !In
3) ON ERROR

Where In is a line number constant.

Formats 1 and 2 specify that control is to transfer to statement ln, if a subsequent run-
time error occurs. This statement in conjunction with the Error Statement Line number
(ESL) function and the Error Statement Message (ESM) function which allows the BASIC

program to respond to run-time errors.

The statements at line ln can use ESL and ESM functions to determine where the error
occurred and what the error was. After the error location and type is determined,
appropriate action to process the error can be taken; execution can be reinitiated at any

point in the program.

Normal error processing is suppressed when the ON ERROR statement (Formats 1 and 2)
has been executed. Normal error processing is reinstated by the execution of ON ERROR
without target (Format 3) statement or after control has been transferred to the

specified statement ln as a result of an error.

19980300 B 2.6-1

JUMP STATEMENT

The JUMP statement transfers control to the statement at the line number determined by the

value of an arithmetic expression,

Format:

JUMP ne

ne numeric expression, constant or variable.

The expression is evaluated and truncated to an integer value; control is transferred to the
statement at the resultant line number provided it exists. If the statement does not exist,

a diagnostic is issued. A JUMP statement cannot refer to a REM statement.

The JUMP statement is designed to be used in error processing routines where line
numbers are assigned to variables by use of the NXL and ESL functions. It should never

be used in place of a GOTO statement.

ESL FUNCTION

The Error Statement Line number (ESL) function yields the line number of the statement
which caused the most recent program execution error,
Format:

ESL(x)

X is a dummy variable,

When an execution error has not occurred or after the execution of an ON ERROR statement,
the function yields the value -1. Thus in processing errors the function value should
be saved before issuing another ON ERROR statement.
Example:

Y = ESL(x)

The line number of the error statement is saved in Y.

2.6-2 19980300 B

ESM FUNCTION

The Error Statement Message (ESM) tunction yields the error number associated with the
most recent program execution error.

Format:
ESM(x)

X is a dummy variable,

When an execution error has not occurred or after the execution of an ON ERROR statement,
the function yields the value -1, The function value should be saved before issuing
another ON ERROR statement.

Example:
Z = ESM(x)

The message number of the error is saved in Z.

All errors and their corresponding error numbers are listed in appendix B,

NXL FUNCTION

The Next Line Number (NXL) function yields the line number of the next statement after
the statement whose line number is specified in the argument.

Formart:
NXI.(x)

X is a constant, variable, function, or numeric expression.

The value of x is truncated to an integer. This function can be used to determine at which
statement execution is to resume in the event of an error. Function ESL(x) will return
the line number of the statement which caused the error and NXL(ESL(x)) will return the
statement number of the statement following the one which caused the error.

The NXIL function cannot rerer to a REM statement or return the line number of a REM
statement. An attempt to refer to a REM statement or to any non-existent statement
results in a fatal error "ILLEGAL LABEL".

19980300 B 2.6-3

JUMP NXL(ESL(X))

Execution of this statement passes the control back to the statement following the
statement responsible for the error in the program.

The following example illustrates the use of the error processing method provided by BASIC.
The program:

090 @N ERROR GOTQ 210

100 LET X = 2

1 30 PRINT ** READ ERROR WILL BE PRGCESSED BY PRGGRAM'
1 40 READ X1,Y2,X3

1 SO PRINT ""VALUES READ WERE®3X13*,*3Y23*AND'"3X3
160 STOP

200 REM ERROR PROCESSING ROUTINE

210 X = ESL(X)

220 Y = ESM(X)

250 IF X = 140 THEN 300

260 PRINT "ERROR NOT IN STATEMENT 140

270 STOP

300 PRINT "ERROR NUMBER #'3Y3“DETECTED AT LINE #°3X
310 JUMP NXL(X)

400 DATA 2.053+0,"STRING"

410 END

produces:

READ ERROR WILL BE PROCESSED BY PROGRAM
E RRGR NUMBER # 126 DETECTED AT LINE # 140
VALUES READ WERE 2 », 3 AND O

090 Execution of this statement suppresses normal error processing and
ensures that on a subsequent error, control will be transferred to
statement 210.

140 If an error occurs in reading the data, control is transferred to
statement 210, Normal error processing is then reinstated, i.e., if
during further execution another error occurs, the program aborts.

210, 220 Value 140 is saved in X and value 126 is saved in Y. Further action
can be taken based on the user requirements for processing errors.

Value 126 is the error message number,

250 If error occurred in statement 140, execution control is transferred
to statement 300,

310 A jump is made to statement 150 and normal execution continues. In
case of another error during execution, the job will abort.

2,6-4 19980300 B

TERMINAL OPERATIONS UNDER SCOPE 2.7

SCOPE SYSTEM

The INTERCOM system, operating in conjunction with SCOPE permits multi-user access
to CYBER and 6000 Series computers, INTERCOM commands and directives permit the
terminal user to process BASIC programs interactively or to submit BASIC programs for
execution from a remote terminal. The remote terminal may be any terminal supported

by its respective INTERCOM version.

This section provides a description of appropriate Teletype (T'TY) and CRT terminals
supported by INTERCOM. Also provided are a description of TEXT EDIT and INTERCOM
commands which are most frequently used by the BASIC programmer., Through use of
EDITOR, the terminal user creates both data files and programs. To assist the user, a
discussion pertaining to the creation and use of SCOPE data files and an example of a

complete terminal session are included.

TERMINAL KEYBOARDS

The following paragraphs describe and illustrate the keyboards of those TTY and CRT
terminals which are supported by INTERCOM, A dial-in procedure for the TTY Models 33

and 35 terminals is also provided.

TTY TERMINAL

The programmer types lines of information to the INTERCOM system on the TTY terminal,
INTERCOM responds interactively to the TTY terminal. The Teletype keyboard (figure
2.7-1) for both models 33 and 35 resembles a standard typewriter keyboard. Special char-
acters shown on the upper portion of the keys are entered by holding the SHIFT or CTRL
key down while pressing the special character key., INTERCOM requires special function
keys as well as special characters, The keys used and interpreted by INTERCOM are de-
scribed below; information is included as to what is stored, what action is taken, and what

is printed on the Teletype listing,

19980300 B 2,7-1

OOOOOOOOOOOOE
AOOOOOOOPODBE
POOOOOOOOBOE © &
EOOOOOOEOO0

|

SPACE BAR I

Figure 2.7-1, Typical Teletype Keyboard

SHIFT SHIFT accesses the characters or functions shown on the upper portion
of most Teletype keys. If pressed alone, SHIFT has no effect.

CTRL This key is used to access the special function keys (TAB, X-OFF,
EOT, etc.) and character and line delete functions. If pressed alone,

it has no effect.

CTRL X Pressing CTRL and X deletes the entire entry typed by the user since
the previous RETURN. The entry is not erased from the printout, but
it is ignored by INTERCOM. No character is stored or printed.

CTRL Z

(ESC or ALT MODE) CTRL Z (on some models ESC or ALT MODE also may be used) is
pressed to interrupt current Teletype activity. The user then enters
a directive: A (Abort Program), S (Discard Accumulated Qutput) or

a line feed/carriage return to continue.

TTY's connected via the 791 LCC require a carriage return to be

entered after the desired control function.

CTRL H Signals INTERCOM to erase ine previous character from its input
buffer. The Teletype listing is not erased. For example,
if the user types FILEY and then backspaces and types S to replace the

Y, the listing appears as FILEYS; however, the corrected command

FILES is entered in the buffer. No character is stored or printed.

2.7-2 19980300 B

RETURN

LINE FEED

SPACE

REPEAT

Alphanumeric

19980300 B

The carriage return key signals, to INTERCOM, the end of a message.
It also returns the Teletype printer carriage to its left-most position;
the computer returns a line feed to advance the carriage to the suc-
ceeding line, No character is stored or printed,

This key spaces to the next line, INTERCOM issues a carriage return
to the beginning of the new line. No end-of-message signal is sent.
This method provides for entering lines greater than 72 characters.

No character is stored or printed.

The space bar generates the space character. A blank is stored
and printed.

Pressing the REPEAT key along with another character key produces
character repetition for as long as the key is pressed; the character
key may be released. If the repeated character requires use of the

SHIFT or CTRL key, they should be pressed along with the REPEAT

key and desired character key.

The alphanumeric keys are used to input commands, data, and

programs. FEach is stored and printed as the key is pressed.

2.7-3

DIAL-IN Procedure

Connecting TTY Models 33/35: If the telephone line is connected directly to the TTY, the
following procedure is used:

Turn on the TTY by setting the rotary power switch to the LINE position
or by depressing the ORIG button (on those models having this feature).

Dial the correct phone number. The system will request answerback, re-
turn a header, and request the user number.

There is a slight pause from the time the phone is answered until the TTY begins to type.

This is caused because:

A time delay is allowed, before any data transmission is attempted, to
ensure that the line is settled.

A fixed delay of about three seconds is allowed to ensure that answerback
drum transmission is complete. This is necessary for all terminals, as

the number of characters on the answerback drum are unknown at this time.

If the teletypewriter is connected to the system by an acoustic coupler, the following proce-

dure is used:

Turn on the TTY as described above.
Turn on the acoustic coupler.
Dial the correct phone number.

When the connection has been made, that is, a constant high-pitched sound
is heard in the receiver, place the receiver in the acoustic coupler. The

system will request answerback, return a header, and request user number,

Connecting TTY Model 37: To connect Model 37 to INTERCOM, use the following

procedure:

2.7-4

Turn on the TTY by pressing the DATA button.

TFollow the procedure described for Models 33/35 depending on whether
the TTY is connected directly to the system or connected to the system

by an acoustic couvler.

19980300 B

CRT TERMINAL

On the terminal keyboard, the programmer types lines of information as messages to
INTERCOM. The typed information is displayed on a cathode ray tube (CRT) screen. The
INTERCOM system responds interactively to the CRT terminal. The following paragraphs
describe the Model 713 terminal and 200 Series display terminals,

Model 713 Terminal

The 713 keyboard (figure 2, 7-2) is compatible with the TTY keyboard discussed previously,
the differences being the cluster of numeric keys to the right of the keyboard, similar to a
calculator keyboard, and the row of function keys above the keyboard. The keys used and
interpreted by INTERCOM are described below: information is included as to what is stored,
what action is taken, and what the effect is on the display,

=
I I I N | R

LINE ,
cLean | | ESCAPE] | BREAK FS GS RS

us PRINT | STX ETX

)
9

| DEI

AR EEEE AR]
eI LG G R E TR
I = = A o
Figure 2.7-2. Model 713 Teletype Compatible Terminal
SHIFT and Two shift keys and the SHIFT LOCK key enable selection of upper
SHIFT LOCK case letters or the upper character on the double-character keys,
Pressing SHIFT LOCK locks the keyboard in upper case position,
Pressing the SHIFT key adjacent to the SHIFT LOCK key releases the
keyboard from upper case operation,
CNTRL This key is used with several special function keys (X, Z, H, etc.)

and edit functions. If pressed alone, it has no effect.

19980300 B 2.7-5

CNTRL H

CNTRL X

RETURN

LINE FEED

SPACE

CLEAR

LINE CLEAR

RESET

CNTRL Z

20 7"6

Pressing CNTRL and H signals INTERCOM to erase the previous
character from its input buffer. The cursor moves back one character

position without affecting displayed data,

Pressing CNTRL and X deletes the entire entry typed by the user since
the previous RETURN. The entry is not cleared from the display, but
it is ignored by INTERCOM. The cursor remains in the same position.

Signals, to INTERCOM, the end of an entry. The

cursor resets to the first character position of the current line;
INTERCOM returns a line feed to advance the cursor to the succeeding
line. No character is stored or displayed.

This key spaces to the next line, INTERCOM issues a return to reset
the cursor to the beginning of the new line. No end of message signal
is sent. This method allows lines of any length to be entered. The
cursor is reset automatically to the beginning of the next line upon

reaching the 80th character position of the current physical line,

The space bar enters a space character above the cursor,

The cursor moves forward one character postition.

Removes all displayed data from the screen.

If the terminal is in scroll format mode, the cursor resets to the first
character position of the current line, If the terminal is in page mode,
the cursor resets to the first character position of the top line.
Removes all displayed data from the cursor position to the end

of the line only when the terminal is in page format mode. The
cursor does not move and only the line with the cursor is affected.

Scroll mode disables this function.,

Pressing the RESET key does not affect displayed data. If the terminal
is in scroll format mode, the cursor resets to the first character
position of the current line. If in page mode, cursor is reset to the

first character position of the top line.

CNTRL and Z ai'e pressed to interrupt current Teletype activity.

The user then enters a directive: A (Abort Program), S (Discard
Accumulated Output) or a line feed/return to continue, The cursor

remains in the sarne position.

When Teletypes are connected through an LCC, a carriage return

must be entered after the control function, A/S.

19980300 B

200 Series Display Terminals

A 200 Series display terminal is equipped with a cathode ray tube (CRT) display screen, a
display controller, and a keyboard. In addition, a 224 Card Reader and/or 222 Line
Printer may be included to provide a complete 200 User terminal. A 71l display terminal
is similar to a 200 Series CRT, but peripherals may not be attached. The following is a
brief description of these terminals. (See figures 2,7-3 and 2,7-4,)

Light Switch Button
UNATTENDED ATTENDED ALERT
CLEAR| e
wr -—
= = = $ % * # () B _ + SEND
1 2 3 4 5 6 i 8 9 9 : =1 =
A
el {w E R T Y uj ! o P v
RETURN
{ |
A S D F G H J K L ' |
LN =
RESET - : SHIFT Z X c v B N M < > / SHIFT
BKSP sKIp REPT SPACE

Figure 2.7-3. CRT Display Keyboard (217, 214 Type Terminals)

B EEEEEEEE EHE]

]

S—

Figure 2,7-4, CRT Display Keyboard (710 Series)

19980300 B 2.7-1

DISPLAY SCREEN MARKERS

Three markers appear automatically on the display screen to facilitate message transmis-
sion: the line indicator, the entry marker, and the message terminator.

LINE INDICATOR

This small solid block appears on the screen to the left of the line on which the current
input message. is to appear. The location of this indicator is dependent on the type of
display terminal.

On the 214-11, 214-12, 217-11, and 217-12 display terminals, this small block appears on
the screen to the left of the line on which the next message will start. The indicator moves
automatically to the next line at the completion of an output operation to the display.

On the 217-13 and 217-14 display terminals, this small block may appear in any character
position on the screen. All output messages to the display are terminated with a line
indicator at the end of the last output line.

ENTRY MARKER __

The entry marker is the first of a series of dashed underlines; it indicates the next open
character position on the input line. The series extends to the right margin of the screen
to indicate remaining character positions. Initially, the underlines extend from the line
indicator to the right margin of the top line of the screen.

As a symbol is entered, the underline in that position disappears, and the next underline
in the series becomes the entry marker, FEach time a message is sent to INTERCOM a

message terminator appears and the line indicator and entry marker advance to the next
line position.

MESSAGE TERMINATOR A

A solid delta symbol is displayed to indicate the end of a message. This symbol appears
when the SEND key is pressed.

KEYS

The following special keys are used to operate the CRT terminal:

SEND KEY

This key is equivalent to the RETURN key on the TTY terminal. It indicates the end of a
message by displaying the message terminator (A) on the screen., All information between
the line indicator (M) and the message terminator is transmitted to INTERCOM.

BKSP KEY

The BKSP key backspaces the entire marker one character position so that the user can
type over that position,

CLEAR KEY

Pressing this key causes the contents of the screen to be erased and positions the line
indicator and entry marker at the top of the screen. Use of this key has no effect on
execution or compilation,

2.7-8 19980300 B

COMMAND MODE

Once the user has logged in, the system responds by displaying:
COMMAND-

at the terminal., At this point the user may enter any INTERCOM commands including
SCOPE control cards.

After a command is entered, control is given to the program which processes that
command; control remains with that program until processing terminates or the user
voluntarily leaves the program. Command mode is re-established, and INTERCOM is

ready to accept another command.,

INTERCOM performs two kinds of tasks for the user. Under command mode, INTERCOM
loads a library (utility) program that processes the given command. As most SCOPE
control cards are also INTERCOM commands, such control card messages may be sent
from the terminal and executed, The syntax of INTERCOM commands is similar to that
for SCOPE control cards.

For a description of the INTERCOM log in sequence, see USING BASIC from INTERCOM
at the end of this section.

19980300 B 2.7-9

INTERCOM COMMANDS

INTERCOM commands of particular relevance to the BASIC user follow., Although the
EDITOR command is part of the INTERCOM command repertoire, a discussion of this

command and edit utility is discussed later in this section,

BASIC COMMAND

The BASIC command allows the user to execute a BASIC program without using and
EDITOR utility routine. See section 2,9 of this manual for a discussion of parameters
associated with this command.

Format:

BASIC (pl, Pos +oe pn)

With this command input from or output to system or user files can be specified, To
permit terminal I/0O, files INPUT and OUTPUT must be explicitly connected by use of the
CONNECT command (discussed later).

2. 7-10 19980300 B

BRESEQ COMMAND

BRESEQ is an INTERCOM Version 4.1 oriented program to resequence a BASIC program,
The user controls how the file is resequenced; he can specify the starting value and in-
crement for resequencing. The user enters:

Format:

BRESEQ (file, parami, param?2)
The file to be resequenced is specified by file. The parameters are optional; paraml is
the starting value for the file, and param2 is the increment. If no values are specified,
paraml is set by default to 100, param?2 has a default value of 10, If only one parameter

is specified, it is assumed to be the starting line number for the new file; and the increment
is set to 10 by default,

To resequence a file named MYPROG, starting at line number 9000, in increments of 10, the

user enters:

BRESEQ(MYPROG, 9000, 10)
The following entry would accomplish the same:
BRESEQ(MYPROG, 9000)
Only the initial line number is specified; the increment is 10 by default.
Using the following format:
BRESEQ(MYPROG)
the resequenced file would start at line number 100 and have increments of 10,

Since BRESEQ is intended primarily for the INTERCOM user, it uses files formatted by
EDITOR. A program entered directly into EDITOR while in "FORMAT, BASIC' will be
correctly formatted for resequencing. For a program not entered through EDITOR, a call
to the INTERCOM routine CONVERT must be made.

When in "FORMAT, BASIC'" and after resequencing a file, the EDITOR directive "EDIT,
file-name' must be used to enter the new file into the edit file. Otherwise the unrese-

quenced old file remains. The resequenced file retains its original name.

19980300 B 2.7-11

EFL COMMAND

The user can alter the system field length (in octal words) by typing:

EFL, field-length
ETL COMMAND

The user can alter the system default time limit (in octal seconds) by typing:

ETL, time-limit

FILE COMMANDS

The following commands are related to the use of local and permanent files:

2,7-12 19980300 B

CONNECT Command

The user can request that specific files be designated for terminal interaction by entering
the CONNECT command.,

Format:

CONNECT((filename-1, filename-2, . . . , filename-n)

Input and output will be routed to and from the terminal when the named files are sub-
sequently read or written, The file names may be INPUT and OUTPUT, as well as any

other files.

Each time a connected input file is referenced in the source program, the system waits
for input from the terminal. Each time a connected output file is referenced in the source

program, the output is printed or displayed at the terminal, It is not saved.

When input is expected, the system waits for the user to enter it from the keyboard. For
BASIC programs, the INPUT statement displays a question mark at the terminal when user

input is expected,

The CONNECT command need not be entered when programs are executed with the EDITOR
RUN command; the files INPUT and OUTPUT are connected automatically. To connect

any other input/output files to his terminal, the user may enter the CONNECT command.

A user may create his own object program through use of the BASIC command with I, K,
and B options specified and later execute the object program with the following:

CONNECT((filename-2, INPUT)
XEQ(filename- 2)

The BASIC command is described in section 2.9 of this manual; XEQ is described later

in this section.

DISCARD Command

Used to purge a permanent file saved by the STORE command, If the file is attached by
FETCH or ATTACH, only the file name is required.
DISCARD, fn, id, pp.

fn - permanent file name
id, pp - 1 to 9 alphanumeric characters relating to the STORE command

id and pp parameters

19980300 B 2.7-13

DISCONT Cormmand

This command disconnects a file from the terminal.

Format:
DISCONT (filename-1, filename-2, ..., filename-n)

A file specified in this statement will no longer be directed to the terminal, but it will

be directed to and reside on allocatable mass storage.

FILES Command

The user can obtain a list of files accessible to him by typing:
FILES

User private files and attached permanent files are listed. User private files are local
files created by the individual user. They can be read, altered, or deleted only by the
originator., Permanent files are mass storage files, the location and identification of which
are always known to the INTERCOM system. Permanent files are protected from un-
authorized access according to privacy controls specified by the creators of the files.

Example:

CLMMAND- FILES.
--LGCAL FILES--

SINPUT $OUTPUT *FILA $FILB
LGE FORTX $TESTI
COMMAND-

a' $ " prefixed to the file name specifies a connected file.

an "*" prefixed to the file name specifies a permanent file.

2.7-14 19980300 B

FETCH Command

Permits the user to access permanent files saved by the STORE command., Through use
of this command a permanent file is made local; however, the FETCH command must be
used before any reference to the file by SCOPE or INTERCOM commands. Files saved
under the CATALOG command cannot be accessed by FETCH unless they were saved in a
manner compatible with the STORE command., To modify a FETCH'd file requires a
write-in-place; therefore, the user should make modifications on a scratch file, then
DISCARD the old file, and STORE the scratch file under the old file name,

Format:
FETCH, fn, id, pp.

fn file name to be fetch'd

id, pp 1-9 alphanumeric characters relating to STORE command.

RETURN Command

Unwanted private files can be replaced with this SCOPE control card command. If the
file referenced by this command is an attached permanent file, the file is returned to per-

manent mass storage and deleted from his list of private files.

Format:
RETURN, filename-1, filename-2, ..., filename-n,

STORE Command

Catalogs a users local file as a permanent file, When catalogued, the file remains as an

attached permanent file,
Format:

STORE, fn, id, pp.

fn a local file name
id, pp 1-9 alphanumeric characters
- id wuser identifier

- pp privacy code,

19980300 B 2,7-15

XEQ Command

With this INTERCOM Version 4,1 command, the user can load binary programs from his
own local files or user libraries and submit these programs for execution or construct
absolute overlays from them., After user specified programs are loaded from the currently
defined library set, the loader attempts to satisfy remaining unsatisfied externals. Speci-
fied file names, including user libraries, must be user local file names or local file names

of attached permanent files, To initiate program loading, the user enters:
XEQ

The system responds:
OPTION=

The user then enters one of the options described below. If he does not enter EXECUTE,

NOGO, or a file name, the system again responds:
OPTION=

This sequence will continue until the user-enters EXECUTE, NOGO, or a file narne to
initiate the loading operation. The user may enter END at any time to exit from the XEQ

command,
Command Options

o LOAD=filename-1,filename-2,...,filename-n

Files are specified whose contents are to be loaded. The file names can be specified
in one of the following forms:

filename Installation defined rewind parameter is assumed

filename/R Rewind before loading

filename/NR No rewind before loading

LIBIL.LOAD=libname, ename-1, ename-2,..., ename-n,

The loader examines the directory of the user library specified by libname and selects

programs containing the entry points specified by ename,.

e SLOAD=filename, pname-1, pname-2,.,.., pname-n

The loader searches through the specified file and loads only those programs specified
by pname, The file name may be entered in one of the following forms:

filename Installation defined rewind parameter is assumed

filename/R Rewind before loading

filename/NR No rewind before loading

2.7-16 19980300 B

e SATISFY=libname-1,libname-2,...,libname-n

The loader searches through the libraries specified by libname to fill unsatisfied
external references without completing the load. Further loading may be specified
following the SATISFY option. If no parameters are specified, the currently defined
library set is assumed,

filename, param-1, param-2, ..., param-n.

The named file is rewound and loaded. Optional execution parameters specified by

param are passed to the loaded programs in RA + 2 through RA + 63.
o EXECUTE=ename, param-1,param-2,..., param-n

The loaded programs are executed beginning at the entry point specified by ename; if
ename is omitted, execution begins at the last transfer address encountered by the
loader. Optional execution parameters specified by param are passed to the loaded
program in RA + 2 through RA + 63.

e NOGO-=filename, ename-1, ename-2,..., €name-n

Loading is forced to completion without execution. The file name specified becomes
the file on which loaded programs are saved as an absolute overlay. The filename
parameter is only applicable to non-segmented relocatable loads. Otherwise, it is
ignored. Optional entry point names to be included in the overlay header may be

specified by ename, but they are ignored if filename is omitted.

LDSET Option

Loading operations in INTERCOM 4.1 are executed by the LDSET statement which provides
user control with a variety of options. Options specified through LDSET apply to the
current load only; loader completion statement (name call, EXECUTE, or NOGO) termi-
nates their effect. Each LDSET statement can be used to set several options, or several

LDSET statements may be used.

Detailed information on the loader directives and options may be obtained from: LOADER
Reference Manual and INTERCOM Version 4 Reference Manual.

19980300 B 2,7-117

EDITOR

With the INTERCOM editor utility the user can create, examine, and modify coded sequent-
ial files from a remote terminal. Access to text editor is accomplished by entering
EDITOR immediately following the system COMMAND request,
Example:

COMMAND-EDITOR

Once the user replies by entering EDITOR, he may enter any EDITOR, SCOPE,or INTERCOM
commands. The EDITOR command mode response (..) will be displayed after each com-
mand is processed, When entering a program or creating a data file, after each line if

text is entered, editor responds with a line feed. In either case another command may

then be entered,

CREATING A PROGRAM UNDER EDITOR

When creating a program under EDITOR, the user must enter a FORMAT command
immediately after the system accepts the EDITOR request (COMMAND-EDITOR). This
command establishes installation defined format specifications depending on the language
option specified.

Format:

BASIC

COBOL

COMPASS
FORTRAN

FORMAT |

The tabular column positions, valid tabulating character, and maximum character count
per input line are controlled by this specification. Specifications established with this
command remain in effect for the duration of the user's session with EDITOR, or until

changed by the user,

Once the FORMAT command is accepted (apparent by two dot displayed on the line follow-
ing the FORMAT command), the user enters program text in the form 'line-number text'.
If the lines entered exceed the specified character count, they are truncated to the maxi-
mum permitted; and a message is displayed at the terminal, When the BASIC option is
selected, the EDITOR line number is duplicated and becomes the BASIC statement number
and part of the text,

In the "FORMAT, BASIC" mode, use of the EDIT with SEQ, CREATE, ADD, and RESEQ
EDITOR commands is not permitted.

2,7-18 19980300 B

Example:

To enter a BASIC program into the edit file under BASIC format, request a listing of the
edit file, and save the program as a local file named BASFIL:

« «FORMAT»BASIC
« 200 FOR X=1 TO 100
400 PRINT ""X="3X

user enters FORMAT, BASIC
user enters BASIC statements line
by line

600 PRINT "X¥%2=""3X*%2

800 NEXT X

1000 END

LIST»A user enters LIST, A
206=200 F@R X=1 T2 100 system lists contents of edit file
400=400 PRINT "X="3X
600=600 PRINT "'X*%2="';X#%%*2
800=800 NEXT X
1000=1000 END

««SAVE,»BASFIL

. o

user enters SAVE, filename
EDITOR is ready for next command

Program Execution

When the BASIC program is ready for execution, it may be submitted to the BASIC compiler
by typing.

RUN, BASIC

If the program executes correctly, the results are returned to the terminal, For an
example of a BASIC program execution, see the sample terminal session at the end of

this section.

USING DATA FILES

Execution aborts when a BASIC program attempts to read a data file which was created in
BASIC Format (sequence numbers prefixed to each line of text). To create data files
which are acceptable to a BASIC program, the user must select the COBOL, FORTRAN,

or COMPASS FORMAT statement option, enter the file data in ''line no. text format'', and
after the file is created, save the file (becomes a permanent file) without sequence numbers
using the "SAVE, 1fn, NO' command. Any format option other than BASIC assigns only the
EDITOR line number to each line of text; this number is then stripped when the no sequence
number option (NO) of the SAVE command is selected, To re-edit a permanent file which
was saved without sequence numbers, enter the " EDIT , filename' command (described
later in this section). This command automatically assigns sequence numbers to each line
in the file, The user may now modify the file using edited utility commands and save the
modified file using the SAVE, 1fn, NO command.

19980300 B 2.7-19

DELETE Command

The user enters this command to delete lines in the edit file.

ALL

li_ne-l L {line—Z}]g |:,/text/ [,(col—l [,col—2])] [,QNIT]] [,VETO]

DELETE,
LasT \LAST

éLL Keyword; all lines in the edit file are deleted or searched for the text

search string.

line-1 Line number; 1-6 digits, from 1 to 999999; first or only line to be
deleted or searched.

line-2 Line number; 1-6 digits, from 2 to 999999; last line to be deleted or

searched in a range beginning at line-1,

_I_JAST Keyword; as first parameter, causes last line in edit file to be de-
leted or searched; as second parameter, causes deletion or search of
lines beginning at line-1 through the last line in the file.

[text/ Text search string; 1-20 characters delimited by slashes or an
equivalent delimiter; file is searched for this text string (search may
be restricted to range of line and column numbers), Lines containing

this string are deleted from edit file.

col-1 Column number; 1-3 digits, from 1 to 510; first or only column
number of text string search. Must be preceded by a left parenthesis
and followed by either col-2 or a right parenthesis.

col-2 Column number; 1-3 digits, from 2 to 510; last column number to be
searched in a range beginning at col-1. Must be greater in value than
col-1 and followed by a right parenthesis. The range must be at least
equal to the number of characters specified in the text search string.
Column specification is significant only if a text search string is
specified, Lines are deleted only if the text string occurs within the
range, or if it begins in col-1, when a single column is specified.

UNIT Keyword; dictates that the text search string appear as a unit within
a line; it must be delimited by special characters (including blank)

other than letters or digits.

VETO Keyword; permits the user to approve deletions before they occur,
The line to be deleted is displayed at the terminal; the user may enter:

2,7-20 ' 19980300 B

® Y, YE, or YES to delete the line.

® C, CO, CON,..., or CONTINUE to delete the line and any subsequent
lines which satisfy the requirements specified in the DELETE

command.

® Any character other than Y or C to retain the line.

The DELETE command must include at least one parameters; ALL, LAST, or a line
number,

If a text search string is specified in the command, a message reports the number of
deletions performed,

n DELETIONS

n is the number of lines deleted., If more than 20 characters are entered as a text search
string, the string is truncated to the first 20 characters. An informative message is dis-
played at the terminal and VETO automatically takes effect; each line that satisfies the
search conditions is displayed; the user may enter the VETO responses given in the

DELETE command description.

An interrupt command may be entered to terminate execution of a DELETE command;
however, the edit file may be left with the specified lines partially deleted. (For a descrip-
tion of the INTERCOM command see sections 2 and 4 of the INTERCOM Version 4 Reference
Manual or section 2 of the INTERCOM Version 3 Reference Manual.)

Examples:

To delete line 100 in the edit file:

««DELETE 100 user enters DELETHR, line-1
.o EDITOR is ready for next command

To delete from lines 200 through the last line, only if the character string AX

appears in columns 7 through 72:

.o user enters DELETE, /text/, (col-1,
DELETE /AX/ (7,72) 200,L col-2), line-1, LAST
2 DELETI®ONS system message

EDITOR is ready for next command

19980300 B 2,7-21

2.7-22

To delete all lines from line 100 through line 200:

«+DELETE 100 200 user enters DELETE, line-1,
line-2,
EDITOR is ready for nex{ command

To delete all lines in the edit file so that a new file may be constructed:

user enters DELETE, ALL
»-DELETE ALL EDITOR is ready for next command

To delete with veto power, all lines in the edit file only if they contain the
character C in column 1 as a unit:
user enters DELETE, ALL/text/,

(col-1), UNIT, VETO
«+DELETE> éLL /C;;l(é;’ E‘('B;;P system displays qualifying line
20=C BEG user elects to retain line

N system displays qualifying line
50=C END SCAN user elects to retain line

N system message, all qualifying

- O DELETIONS lines displayed, none deleted.

EDITOR is ready for next command

19980300 B

EDIT Command

The user enters the EDIT command to load a local file into the edit file:

EDIT, filename

filename Name of file to be edited; required imymediately following the

command verb,

The file name may be any coded sequential file to which the user has read access, in-
cluding local and attached permanent files., The file to be loaded is called the source file;

it is not modified by execution of the EDIT command.

When BASIC format specifications are in effect, the keyword SEQUENCE is not allowed.

If the user enters the EDIT command when the edit file contains information that has not

been saved as a local file since it was last modified, EDITOR ignores the command and dis-
plays the message:

WARNING-EDIT FILE NOT SAVED

The user may then save the edit file, or if the contents of the edit file need not be retained,
simply re-enter the EDIT command. In the latter case, the contents of the edit file are
destroyed.

Multi-record files and multi-file sets may be loaded.for editing, but they appear in the

edit file as one record. On encountering an end-of-record in the source file, the character
string *EOR is assigned a sequential line number and written in the edit file to indicate an
end-of-record condition. If the end-of-record is of level nn (and nn# zero) a character
string *EOR, nn is generated. For end-of-file, the character string *EOF is generated.

Example:
To load the local file named AFIL into the edit file:

user enters EDIT, filename
«-EDIT, AFIL EDITOR is ready for the next
e command

19980300 B 2.7-23

LIST Command

This command permits the user to list edit file lines at the terminal.

2,7-24

LIST

ALL

line-1

line-2

LAST

SUP

[text/

col-1

col-2

UNIT

ALL
,{l—ine-l [, {ILTS%}] (SUP) | /jtext/ [(col-1 Leok2D) | LUNIT]
LAST = =

Keyword; all lines in the file are listed or searched for the text
search string.

Line number; 1-6 digits, from 1 to 999999; first or only line to be
listed or searched.

Line number; 1-6 digits, from 2 to 999999; last line to be listed or
searched in a range beginning at line-1.

Keyword; if specified as first parameter, the last line in the file is
displayed or searched; if specified as second parameter, the listing
or search begins at line-1 and continues through the last line in the
file,

Keyword; suppresses EDITOR line numbers from list displayed at

terminal.,

Text search string; 1-20 characters delimited by slashes or an
equivalent delimiter; file is searched for this text string (search may
be restricted to a range of line and column numbers). Lines containing

the text string are listed at the terminal.

Column number; 1-3 digits, from 1 to 510; first or only column
number of a text string search. Must be preceded by a left parenthesis

and followed by either col-2 or a right parenthesis.

Column number; 1-3 digits, 2 to 510; last column number of a text
string search in a range beginning in col-1., Must be greater in value
than col-1 and followed by a right parenthesis. The range of columns
must be at least equal to the number of characters in the text string.

Column specification is significant only if a text search string is speci-
fied, Lines are listed only if the text string occurs within the range, or

if it begins in col-1 when only a single column is specified.

Keyword; dictates the text search string appear as a unit within a line;
the text string must be delimited by special characters (including blank)
other than letters or digits.

19980300 B

If the LIST command is entered with no parameters, the current line is listed (line to which
the edit file pointer is set).

If more than 20 characters are entered as a text search string, the string is truncated to
the first 20 characters., An informative message is displayed at the terminal, followed by

the lines that satisfy the search conditions.

Unless the SUP parameter is specified, lines which satisfy the LIST command requirements

are displayed in the form:
line number = text line
Examples:

To list all lines in the edit file which contain the variable AX as a unit:

eLIST»A /AX/ U user enters LIST, ALL, /text/, UNIT
100= BX=X%%2 system lists all lines which satisfy
620= PRINT» AX command requirements

oo EDITOR is ready for next command

To list lines 10 through 20 of the edit file, and then the current line:

«++LIST»10 20 user enters LIST, line-1, line-2
10=DATA 10 system lists appropriate lines
15=DATA 15
20=DATA 20

e« o LIST user enters LIST
20= system lists current line

.o O=DATA 20 EDITOR is ready for next command

19980300 B 2,7-25

SAVE Command

To save the edit file as a local file, the user enters:

SAVE, filename [NOSEQ] [,OVERWRITE] [MERGE]

k)

ALL line-2
line-1 [,{ \ }]%
LasT \LAST
[,/text/ [,(col—l[,col-Z])] [,UNIT]] [,VETO]

filename Name under which edit file is saved as a local file; required
immediately following the command verb.

NOSEQ Keyword; causes EDITOR line numbers to be suppressed in
local file.

OVERWRITE Keyword; causes any local file of the same file name to be
overwritten,

MERGE Keyword; causes the entire edit file or .selected portions of
the edit file to be saved followed by an end-of-record. The
named file remains positioned immediately after the end-of-

record.

ALL Keyword; all lines in the file are saved or searched for the
text search string.

line-1 Line number; 1-6 digits, from 1 to 999999; first or only

line to be saved.

line-2 Line number; 1-6 digits, from 2 to 999999; last line to be

saved in a range beginning at line-1.

LAST Keyword; if specified as first parameter, the last line in the
file is saved; if specified as second parameter, the file is

saved beginning at line-1 through the last line in the file,

/text/ Text search string; 1-20 characters delimited by slashes or
an equivalent delimiter; file is searched for this text string
(search may be restricted to a range of line and column

numbers). Lines containing the text string are saved.

col-1 Column number; 1-3 digits, from 1 to 510; first or only
column number of a text string search, Must be preceded
by a left parenthesis and followed by either col-2 or a right
parenthesis.

2.7-26 19980300 B

col-2 Column number; 1-3 digits, from 2 to 510; last column number
of a text string search beginning in col-1. Must be greater in
value than col-1 and followed by a right parenthesis. The range
of columns must be at least equal to the number of characters
in the text string.

Column specification is significant only if a text search string is
specified., Lines are saved only if the text string occurs within
the column range.

UNIT Keyword; dictates that the text search string appears as a unit
within a line; the text string must be delimited by special
characters (including blank) other than letters or digits.

VETO Keyword; permits the user to approve each line before it is
saved on the file specified, The line to be saved is displayed
at the terminal; the user may enter:

Y,YE, or YES to save the line.

C, CO, CON, ..., or CONTINUE to save the line and
any subsequent lines which satisfy the requirements
specified in the SAVE command.

Entry of any character other than Y or C indicates
that the displayed line is not to be saved on the
file specified.

If the SAVE command is entered with no selective parameters; all lines are saved,

The entire file or part of the file is saved as a sequential mass storage file, The line
length in the saved file is determined by the format specification currently in effect at

the terminal. Lines will be blank filled or truncated accordingly unless the variable length
line specification (CH=999) is in effect. If truncation is necessary, a message is sent in-
dicating the length of the longest line encountered; the user may change the format char-
acter count and reenter the SAVE command. The SAVE command does not destroy the
edit file,

If the user has not specified the keyword OVERWRITE, and a local file exists with the
same file name, the SAVE command is ignored and an error message is displayed. An

attached permanent file cannot be overwritten,

19980300 B 2,7-27

TEXT REPLACEMENT Command

To replace text strings in lines of the edit file, the user enters:

[text-1/=/text-2/ [,

[text-1/=/text-2/
[text-1/
[text-2/

ALL

line-1
line-2

LAST
col-1

col-2

19980300 B

ALL line-2 |
line-1 [, { o g] (col-1 [,col-2]) | [LUNIT] [,VETO
LasT | \LAST [] u VETO]

Text strings; equals sign must be specified with no spaces
on either side,

Text search string; 1-20 characters delimited by slashes
or an equivalent delimiter. File is searched for this string
(search may be restricted to a range of line and column
numbers).

Text replacement string; 0-20 characters delimited by
slashes or an equivalent delimited., Replace text search
string when conditions of the search are satisfied.

Keyword; causes a search of all lines in the edit file.

Line number; 1-6 digits, from 1 to 999999; first or only

line to be searched.

Line number; 1-6 digits, from 2 to 999999; last line to be
searched in a range beginning at line-1.

Keyword; as first parameter, a search is made of the last
line in the file; as second parameter, a search is made
beginning at line-1 through the last line in the file.

Column number; 1-3 digits, from 1 to 510; first or only
column to be searched. Must be preceded by a left parenthesis
and followed by either col-2 or a right parenthesis.

Column number; 1-3 digits, from 2 to 510; last column to
be searched in a range beginning at col-1. Must be greater
than col-1 and followed by a right parenthesis. The range
must be at least equal to the number of characters in the
text search string. Replacement takes place only if the text
string occurs within the column range, or if the text string

begins in col-1, when a single column is specified.

2,7-29

UNIT Keyword; dictates that the text search string appear as a
unit within a line; the text string must be delimited by special
characters (including blank) other than letters or digits.

VETO Keyword; permits the user to approve text replacement be-
fore it occurs. The changed form of the line is displayed at
the terminal; the user may enter:

Y, YE, or YES to accept the change.

C, CO, CON, ..., or CONTINUE to
accept the change and any subsequent
changes which satisfy the requirements
specified in the Text Replacement
command.

Any character other thanY or C to
retain the original line.

If the TEXT REPLACEMENT command is entered with no parameters, the search will be
performed on the line to which the current line pointer is set.

The number of replacements performed are reported in a message:

n CHANGES

where n is the number of changes made. Because more than one replacement may occur
in any line, the number of changes displayed may differ from the number of lines changed.

The two text strings specified as the command verb need not contain the same number of
characters; the line affected will be expanded or contracted as necessary. If the maximum
character count is exceeded, the replacement occurs, and an informative message is dis-
played. Truncation occurs if a line exceeds 510 characters.

The text replacement string may be entered as a null string (two consecutive slashes, no
imbedded blanks). This specification causes the text string to be deleted if all search con-
ditions are satisfied.

If more than 20 characters are entered as a text search or text replacement string, the
string is truncated to the first 20 characters. An informative message is displayed at the
terminal and VETO automatically takes effect. The changed form of each line that satisfies
the search conditions is displayed; the user may enter the VETO responses given in the

Text Replacement command description,

2,7-30 19980300 B

The Text Replacement command cannot be used to edit tabulation characters (FORMAT
command) into an existing line. If done, the entered character is accepted as a data
character; no tabulation occurs.

Examples:

To replace the variable name AX with the name BZ in the ‘current line; AX must

be a unit:

e /AX/=/BZ/5U user enters/text-1/=/text-2/, UNIT
1 CHANGES system message

.o EDITOR is ready for next command

To replace the character string TCS, wherever it appears in the edit file, with the
string TERMINAL CONTROL SYSTEM. (Two TEXT REPLACEMENT commands
must be entered because the text replacement string is greater than 20 characters.)
The user requests veto power:

«e /TCS/=/TERMINAL CONTROL SYe./sAsV user enters/text-1/=

/text-2/, ALL, VETO
60=THE TERMINAL CENTROL SY. HAS THE system displays changed line
Y user accepts change

190=IN THE TERMINAL CONTROL SY. USERS system displays changed line
YES user accepts change

2000=%*%xTERMINAL CONTRBL SY. ABORT*** system displays changed
N line;user retains original
2 CHANGES line system message;

= user enters [text-1/=
ee/SYe/=/SYSTEM/ 60,190 U Jtext-2/, line-1, line-2,
UNIT system message;
2 CHANGES EDITOR is ready for next
oo command

To replace the character C with the character * only if C appears as a unit in
column 1, All lines are searched:

e /C/=/%/ A (1) U user enters [text-1/ = [text-2/, ALL,
15 CHANGES (col-1), UNIT system message
.o EDITOR is ready for next commmand

19980300 B 2,7-31

To replace the character string PROGRAM in line 2310 with a null string.

(line currently
appears as 2310=END PROGRAM.) The user requests veto power:

user enters [text-1/=/text-2/,
.+ /PROGRAM/=//52310,V line-1, VETO system displays changed line
YE2310=END user accepts change
—_— system message .
1 CHANGES E};)ITOR is ready for next command

To compile a BASIC program contained in the edit file (an error is encountered by the
compiler):

««RU B user enters RUN, system-name
ILLEGAL STRING IN 330 compilation error message

.. EDITOR is ready for next command

To assemble and execute a BASIC program contained in the edit file (an arithmetic error
terminates the job during execution):

-+RUN.BASIC
ARITHMETIC ERRGR M@DE=1 ADDRESS=023427

user enters RUN, system-
name, system message
EDITOR is ready for next
command

LEAVING EDITOR

To exit from the EDITOR routine the user types:

BYE

The user is then returned to INTERCOM,

2,7-32 19980300 B

USING BASIC UNDER SCOPE

To access a central computer from a terminal, the user must link up with the computer

system., The method of establishing the connection between the terminal and the central

site computer varies depending on the type of terminal equipment and the connection pro-

vided by the telephone company. When connected to the terminal, the system responds:

Step 1:

Step 2:

19980300 B

CONTROL DATA INTERCOM 4.1
DATE mm/dd/yy
TIME hh, mm, ss
PLEASE LOGIN

The terminal user logs into the system by entering:
LOGIN
The system responds:

ENTER USER NAME-

Enter your user name. The user name may be any combination of up to

ten letters or digits and must not be followed by a period.

When the user name has been entered at a TTY terminal, the system

responds:

S89B8E8B R B ENTER PASSWORD-

At a 200 USER or display terminal, the system responds:

ENTER PASSWORD-

The user then enters his password. A password is any combination of up
to ten letters or digits which must not terminate with a period. On a tele-
type listing, the password is overprinted on the ten-character, blocked-
out line to preserve privacy. The display terminal screen is automatically

cleared on acceptance of the entered password to preserve privacy.

When the user name and password are accepted, the user id (a two-
character user code) and the time at which the user logged in, followed by
the equipment number (multiplexer equipment status table ordinal) and the

port number at which he logged in, are displayed at the terminal.

2.7-33

e.g. ENTER USER NAME- USERA
sséagsss @ ENTER PPASSWORD-

19/07/74 LOGGED IN AT 17.47.26
WITH USER-ID AB
EQUIP/PORT 52/03
COMMAND-

Step 3: After the user successfully logs-in, the system responds with COMMAND
and the user enters the command "' EDITOR".

COMMAND - EDITOR.
The user is now in text edit mode.

Step 4: Enter FORMAT, BASIC

When this command is entered, a format specification is automatically

established at the terminal which permits the user to enter lines in
BASIC language format.

Step 5: Enter the BASIC program statements-line number followed by BASIC state-
ment,

e.g.10 LET X =5

Each line must begin with a 1-5 digit line number and end with o
BASIC statements need not be typed in correct order because the EDITOR

automatically sequences them according to line number,

Step 6: Once the entire program is entered, compile and execute the program by
typing:
RUN BASIC

After execution is completed the output is printed or if a program error

occurs, the appropriate error message is displayed.

2.7-34 19980300 B

Step 7: When the run is completed, the user can select one of the following options:

. Continue processing - build and execute new programs; modify

existing programs and rerun; or rerun the same program.

. Terminate the terminal session by saving the program and entering
the BYE and LOGOUT commands or by entering the BYE BYE and
LOGOUT commands. When the BYE or BYE BYE commands are
entered, user returns to INTERCOM mode from EDITOR mode.

When in INTERCOM mode, the system responds withs

COMMAND

At this time the user enters the LOGOUT command which releases local files which
the user may have created under EDITOR. Only permanent files are retained between
the time of a LOGOUT and any subsequent LOGIN. The user is disassociated from
INTERCOM until a subsequent LOGIN command is entered. INTERCOM displays the
date and time the user is logged-out. The LOGOUT command is not allowed when the
user is under control of EDITOR.,

Example:

CIMMAND=- LIGIJT

CP TIME 94458
PP TIME Be131
CANNECT TIME Q2 HRS. 8 MIN.

19706773 LAGHED 2UT AT 08431230

The order of the date (month, day, year) may be changed as an installation option.
The time of LOGOUT is given in hours, minutes, seconds (24-hour clock); CP/PP
time is given in seconds. The user should disconnect his terminal from INTERCOM

by turning it off, or by hanging up the data set receiver,

SAMPLE TERMINAL SESSION

After the user has logged in, he can create and execute BASIC programs. The following
sample BASIC program, run under the INTERCOM system, illustrates how to run a

BASIC program. The program was entered at a TTY terminal. User responses are under-
lined, After typing the response, user must depress the carriage return key CED .

19980300 B 2,7-35

CIMMAND- ED1TYr User calls EDITOR.

e s FARKMATSBASIC User requests BASIC
«+10 PrINT "TYPE A NUMBER'S format specifications and
20 INPUT X following EDITOR command
30 LET F=1 mode response, enters a
40 For 1=1T0 X BASIC program line by line.
S0 _F=F*1
60 PrINT "FACTORIAL "3X3"13 “3F
70 PRINT
50 GOT2 10
YU END
RUN»ZASIC
Compiles and executes
BASIC COMPILATION ERRURS BASIC program.
FOR WITHOUT NEXT ~ AT 40 BASIC issues diagnostic
messages.
L Statement 55 is added to
23 NEAT I] satisfy looping requirements.
25> IF A=0 THEN 80 Statement 25 is added to
SUN,BASIC

provide an exit from the
program,

User calls BASIC compiler-
again requests compile and
execution of the BASIC
program

TYPE A NIJMBER 23
FACT3RIAL 3 IS 6

TYPE A NJYBER ?Q Zero causes exit from exe-
«LIST,ALL cution and return to EDITOR
command mode.
User requests listing of his
program in the edit file.

10=10 PRINT "TYPE A NUMBER";
20=20 INPUT X

30=30

25=25 IF X=0 THEN 80

30=30 LET F=1

40=40 FOR I=1TY X

50=50 F=F*l

55=55 NEXT 1 .
60=560 PRINT "FACT@RIAL "3X3"1S '"3F
70=70 GAaTY 10

80=80 END

2.7-36 | 19980300 B

19980300 B

+ + SAVE » BASPRIG

¢« STARE,BASPRAG

s e BYE

COMMAND - CONNECT,BASAUT.
COMMAND=- REWIND»BASPR2G.

CaMMAND- BASIC,I=BASPRAG,»K=BASAUT.

TYPE A NUMBER ? 6.
FACTORIAL 6 IS 720
TYPE A NUMBER ? _Q_

COMMAND- LOGAUT.
CP TIME 3.800
PP TIME 15.700

CANNECT TIME 0O HRSe. 10 MIN.

12/06/74 LOGGED QUT AT 14.00+43.<

User requests contents of
edit file be saved as a local
file named BASPROG until
LOGOUT,

Store BASPROG as a perma-
nent file,

User requests a return to
INTERCOM command mode,

In INTERCOM command mode,
user requests source input,
diagnostics, and execution out-
put.

Zero causes exit from execution
and return to INTERCOM command

mode.
User requests to leave INTERCOM.

2.7-37

TERMINAL OPERATION UNDER KRONOS/NOS 2.8

This section describes those terminals from which BASIC programs can be submitted;

illustrates the method of running BASIC programs under KRONOS and NOS and the use of
data files. Because of the similarity between a KRONOS and NOS terminal session,

only an example of a KRONOS session is provided in this section.

KRONOS/NOS SYSTEM

KRONOS/NOS allow multi-user access to one large-scale CYBER 70, CYBER 170 abd 6000
Series computers. BASIC programs can be submitted from a remote time-sharing
terminal, such as a Model 33 or Model 35 teletypewriter (TTY) or any TTY compatible

terminal, and CRT Model 713 terminals.

TTY TERMINAL DESCRIPTION

The programmer types lines of information to the KRONOS/NOS system on the TTY
terminal and the operating system responds interactively to the TTY terminal. The TTY
keyboard (see figure 2.8-1) is similar to that of the ordinary electric typewriter with the

exception of the keys which are described below:

OOOOOOOOOOOO®
HOOOOOOOOHEO@E®
HOE@@OOOOOEGOE @ €

HOOOOOOOHOOO)

|

SPACE BAR I

Figure 2,8-1, Typical Teletype Keyboard

19980300 B 2.8-1

Return Kez

The user must terminate every line of information by pressing the RETURN key. This
signals to the operating system that the message is complete and causes the carriage to
return to the beginning of the line. The operating system responds by issuing a line feed
command to the terminal. This moves the carriage to the next line at which point the user
may begin the next line of input.

Backspace Arrow () Key

Entry errors can be corrected before the RETURN key is pressed by using the backspace
arrow and typing the correct character,

Example:

The line: BAXeSJKe «IC
is interpreted by the operating system as: BASIC

ESC Key

Entire lines may be deleted before the RETURN key is pressed by pressing the ESC key.
This causes the entire line to be ignored. The operating system responds by returning the
carriage to the beginning of the line and moving the carriage to the next line position.

Dial-In Procedure

CONNECTING TTY MODELS 33/35

If the telephone line is connected directly to the TTY, the following procedure is used:

e Turn on the TTY by setting the rotary power switch to the LINE position or by de-
pressing the ORIG button, on those models having such a feature.

e Dial the correct phone number. The system will request answerback, return a

header, and request the user number.

There is a slight pause from the time the phone is answered until the TTY begins to type.
This is caused because:
e A time delay is allowed, before any data transmission is attempted, to ensure that
the line is settled.
e A fixed delay of about three seconds is allowed to ensure that answerback drum trans-
mission is complete. This is necessary for all terminals, as the number of charac-

ters on the answerback drum are unknown at this time.

2.8-2 19980300 B

If the teletypwriter is connected to the system by an acoustic coupler, the following proce-
dure is used:

e Turn on the TTY as described above,
e Turn on the acoustic coupler,

e Dial the correct phone number,

e When the connection has been made, that is, a constant high-pitched sound is heard
in the receiver, place the receiver in the acoustic coupler. The system will request

answerback, return a header, and request user number,
CONNECTING TTY MODEL 37

To connect Model 37 to KRONOS, use the following procedure:
e Turn on the TTY by pressing the DATA button,

e I'ollow the procedure described for Models 33/35 depending on whether the TTY is

connected directly to the system or connected to the system by an acoustic coupler,
CONVERSATIONAL DISPLAY TERMINAL, MODEL 713

See section 2.7 for a description of the terminal keyboard,

19980300 B 2.8-3

USING BASIC

The previous paragraphs have described BASIC statements and how to organize these
statements into a BASIC program. The following describes how to enter a program into

a computer and how to execute that program.,

BASIC is primarily a terminal oriented language; however, programs in card deck form
can be entered and executed (batch mode). The following paragraphs describe the method
for entering and executing BASIC programs interactively through use of a Teletype (TTY)
orCathode Ray Tube (CRT) terminal, For a deécription of BASIC program card deck struc-

tures and batch mode operations, see section 2.9.

When operating interactively, the user must write the program in a file, as shown in the
examples which follow, and execute from the file. To correct a syntax, semantic, or
logic error, the user need only enter the line number which contains the error followed by
the corrected code. When the corrected line is entered and the terminal RETURN key is
pressed, the existing program statement is replaced. To delete a line, enter the line
number and press the RETURN key. ’

BASIC can be run interactively under anyone of these operating systems: KRONOS and
NOS, the usage of which is described in the following paragraphs, and SCOPE (INTERCOM)

which is described at the end of this section.

USING BASIC FROM KRONOS/NOS

KRONOS/NOS provides multi-user access to one large-scale computer. BASIC programs
can be submitted from a remote time-sharing terminal. To access a central computer
from the terminal, the user must link up with the computer. The method used to establish
connection between the terminal and the central site computer varies depending on the type

of terminal equipment and the connection provided by the telephone company.

When the connection is completed, the computer responds:

yy/mm/dd hh. mm. ss
TIME SHARING SYSTEM?*

and requests:
USER NUMBER:

The particular message typed at your installation may be different.

2.8-4 19980300 B

When this occurs, perform the following:

Step 1: Submit the user number on the same line:
XXXXXXX @ *
The user number consists of up to seven alphanumeric characters.
The system then requests:
PASSWORD
SEEEEEEE
Step 2:

Enter the password:

ZZZZZ22Z

The password must consist of one to seven alphanumeric characters.

To provide a greater measure of security, type the password in the
area the system has blacked out.

If a password is not needed, type:

If the user number and password are not acceptable, the system types

ILLEGAL LOGIN, TRY AGAIN.
USER NUMBER!

If the user number and password are acceptable, the system responds
TERMINAL:

nnn, TTY (where nnn is the particular terminal no.
being used).
RECOVER/SYSTEM:

Step 3: Enter the desired subsystem on the same line:

BASIC

Because all interactive programs run under KRONOS/NOS reside in a

file, the system queries the user as to the applicable file type by re-
sponding:

OLD, NEW, OR LIB FILE:

Throughout this section, the convention , Carriage Return, is used to denote the
RETURN key on the keyboard.

19980300 B

2,8-5

. Step 4: Submit the appropriate status:

OLD @ for a file that was previously created and saved.
NEW @ for a new file.

LIB @ for a file from the system library.
The system responds:
FILE NAME:

Step 5: Enter the file name:

nnnnnnn

The file name consists of up to seven alphanumeric characters.

If an OLD or LIB file does not exist, the system responds:
FILE NOT FOUND.

If the file name entered contains illegal characters, the system responds:
FILE NAME ERROR.

After the system finds the specified file, it responds:
READY.

The following example illustrates a sample log-in:

74/07/19, 13.19,28.

TIME SHARING SYSTEM
USER NUMBER: ABCDEFG

PASSWORD

MU VIW[X][Y[Z|IMMM —— The password is blocked out
TERMINAL:60, TTY and cannot be seen by the user.
RECOVER/SYSTEM:BASIC It is shown for purposes of

OLD, NEW,OR LIB FILE:NEW, EX4 illustration only.

READY.

2.8-6 19980300 B

Step 6:

Step 7:

Step 8:

19980300 B

Enter the new BASIC program. Each line must begin with a 1-5 digit

line number and end with . BASIC statements need not be typed

in correct order, because KRONOS and NOS automatically sequence

them according to line number.

To execute the program, type:

RUN or RNH

This command initiates compilation and execution of the BASIC program.

The output of a BASIC program is in the form:

yy/mm/dd hh. mm, ss

PROGRAM nnnnnnn

(data printed by the program - error messages, if program

errors occurred)
RUN COMPLETE.

When a run is completed, the user has the following options:

Continue processing - build and execute new programs,
modify existing program and rerun, rerun the same

program,
or

Terminate the terminal session via the following commands:

or
GOODBYE @

Either command releases all local files and prints the following:

xxxxxxx LOG OFF hh. mm, ss.
xxxxxxx CPU s.sss SEC,
where:
XXXKXXXX user number,
S. SSS number of seconds of central processor time used.

(This is not the amount of time used between LOGIN
and BYE.)

2.8-17

Sample Terminal Session

The following example was run at a TTY terminal.

User responses are underlined.

The user must press the carriage return key @ after typing in each response.

74709709« 120637
KRONOS TIME SHARING SYSTEM = VERKe 2.1=-037/AA.
ISER NIUMIER: 412
PASS ™D
SEEEEEEE N

TERNMINAL ¢ 53, 1Y
KECOVER /SYSTEMIBASIC
JLDs, NEws 3K LIB FILE: NEWSEX4
READY « -

10

PRINT "TYPE A NUMBER"

20
30

30 LET F=T

40

INPUT X

FOR 1=1TOX

50

LET F=Fx}

60

PrRINT "“FACTURIAL "3X3"1S '5F

70
80

KUN

£ND

G2T1d 10

74709709« 12613626
PIIGKAM EX4

FOx WITHAUT NEXT AT 40

cp

0.023 SECS.

KUN COMPLETE.

59

NEAT 1

25 IF X=0 THEN 80
RUN.

74709709+ 1214440
PrAGKAM X4

TYPE A NUMBER

? 3

FACTOKIAL 3 1S 6
TYPE A NUMBER

2?20

cp

0.036 SECS.

RUN COMPLETE.

2,8-8

log-in procedure-type
user number and password,

Requests BASIC subsystem,
Program is from NEW file,

Program statements-
consist of a line number
followed by a space,
followed by the appropriate
statement.

Compile and execute program.,

BASIC issues diagnostic.

Adding statements to correct
program.

Compile and execute again.

User input 3 as value for X,

X = 0 and program terminates
at line 80.

19980300 B

LIST

T4/709/09. 12¢15e41.
PROGRAM EX4

10
20
25
30
40
S0
55
60
70
80

PRINT “TYPE A NUMBEK'

INPUT X

IF A=0 THEN @0

LET F=1

FOR I=1TOxX

LET F=Fx*]

NEXT 1

PrRINT "“FACTORIAL "3 X;3'"IS ';
GaTY 10

END

READY o

SAVE,EX4
READY «

KRONOS/NOS command to
list program.

Program listing.

KRONOS/NOS command
savesprogram with file name
EX4 for later use.

For a detailed description of the KRONOS/NOS commands used is this example and other

available commands, see the KRONOS /NOS Reference Manual,

In this example, the user saved the program as a file name EX4. The program in this file

is now stored as an indirect access permanent file which can later be accessed by use of

the OLD command, e.g.

YLD,EX4
READY .

LIST

74/09/09¢ 121703
PKIGRAM EX4

10
20
25
30
40
50
55
60
70
80

PRINT "TYPE A NUMBER"

INPUT X

IF X=0 THEN 80

LET F=1

For I=1TOX

LET F=F*]

NEXT 1

PRINT “FACTORIAL "3 Xx3"1IS "3F
GaTa 10

END

READY .

19980300 B

makes a copy of the file
accessable to the user.
requests a list of the file
contents.

2.8-9

At this time, the user can add, delete, or change program statements, See USING BASIC.

RUN . Compiles and executes the
new program.

74709709 12.18.05,
PROGRAM EX4

TYPE A NUMBER User enters 6 as value for X,
?

FACTORIAL 6 IS 720
TYPE A NUMBER
?2 0

cp 0.037 SECS.

RUN COMPLETE.

BYE Logs off.
LN76 LOG OFFe« 12¢18.37.
LN76 cpP 0.096 SEC.

If the user wishes to store the changed program, this can be accomplished by the REPLACE
command which replacesthe old program with the corrected program.

REPLACE, EX4 Stores the updated program
in file EX4, If the user
logs off before replacing

X4, the corrected
version is lost but the old
version of EX4 remains in
tact.

2.8-10 19980300 B

KRONOS/NOS DATA FILES

The following example illustrates the creation of a data file used by a KRONOS BASIC
program., To create a data file under KRONOS/NOS specifying the name of the new file

and enter the TEXT command. The TEXT command permits the user to create the file
without sequence numbers. If after the file is created, connections, additions, or deletions
are required, enter EDITOR and use TEXT Editor commands. In the following example
the program reads a data base file (REST) and update file (SAMI); calculates a new change

account balance; and prints an updated statement. Both data files were created by ent'ering
the TEXT command and after the system message

"ENTERING TEXT MODE"

inserting data line by line; each line ends by typing . Each file was saved under
their respective names and later made secondary files accessable by program " TEST1"
through use of the GET statement.

For a complete description of the TEXT command, see KRONOS/NOS Time Sharing
User's Guides. For a complete description of TEXT EDITOR commands, see KRONOS/

NOS TEXT EDITOR Reference Manuals.
DATA FILE " REST"

JBROWN,1422 EAST ST.,CHARGE N@.1111,500.00
S.APPLE»3434 CHERRY ST.,CHARGE N2. 2211,222.22
ReDREW» 7896 ALGO AVE.»CHARGE Nd.1660,133.9%

DATA FILE " SAMI"

000000010
000000020
000000030

19980300 B 2.8-11

PROGRAM "TEST1"

74709710« 1204443,

KRONOS TIME- SHARING SYSTEM - VEK.
USER NUMBER: LN76,T3X8LI1
TERMINAL 72,TTY

RECOVER /SYSTEM:BASIC
OLD, NEW, OR LIB FILE:

OLD,» SAMI
READY «

LIST

74709710« 12409434
PROGRAM TESTI

S FILE #2="SAMI"

10 FILE #1="REST"

20 RESTORE #1

21 RESTORE #2

25 FOR 1=1T03

30 INPUT #1,A%,B%,C$,D
SO0 INPUT #2,S5

60 X=D+5

2.1-03/AA.

70 PRINT TAB(2)3A$3TAB(12)3B$3TAB(32)3C33 TAB(S52);3 ""BALANCE=%"3X

71 NEXT 1
READY .

GET,REST
READY

GET,SAMI
READY

RUN

RESULTS:

74709710+ 1241036
PrRAGrAM TEST1

J«BRAWN 1422 EAST ST. CHAKGE N@.1111 BALANCE=% 510
S«APPLE 3434 CHERRY STe. CHARGE N@. 2211 BALANCE=$ 242.22
ReDREW 7896 ALGO® AVE. CHARGE N@.1660 BALANCE=% 163.98&

2.8-12

19980300 B

BATCH OPERATIONS 2.9

BASIC jobs can be submitted to the KRONOS/NOS or SCOPE operating system input queue for

batch processing either at the central site or from a remote terminal.

At any terminal, a job previously stored on disk can be entered into the SCOPE batch queue
using the INTERCOM command BATCH. The BATCH command is used to direct the dis-
position of the file which the user has previously created and saved. Output can be directed
to a line printer at the central site or to any terminal with a line printer. Similarly, under
KRONOS or NOS a previously stored file can be entered into the KRONOS/NOS batch queue by
using the SUBMIT command.

At a remote batch terminal, the BASIC job can also be entered through the terminal card
reader for execution by the operating system, Output can be directed to a line printer at the

terminal, at another terminal, or at the central site.

Any program file submitted for batch processing must contain the necessary control cards
as the first logical record. These control cards may include any applicable operating
system control cards.

DECK STRUCTURE

The following examples, figures 2.9-1 and 2, 9-2, illustrate the general deck structure for
a typical BASIC program. In the control card record:

JOB card specifies job name, memory and time requirements; also

priority, etc,

ACCOUNT varies with each installation; wvalidates the user. Required for
card KRONOS and NOS only. -
BASIC card calls BASIC compiler,
LGO loads binary decks from LGO file and initiates execution.
7/8/9 end-of-record.

A 6/7/8/9 card specifies end-of-information. A complete description of the BASIC
control card follows; a description of KRONOS/NOS batch control cards is contained in the
KRONOS 2.1 and NOS Reference Manual. A description of SCOPE batch control cards is
contained in the SCOPE Reference Manual.

19980300 B 2.9-1

BASIC CONTROL CARD

Programs submitted for batch processing must include a BASIC control card to call the
BASIC compiler from the KRONOS/NOS or SCOPE library.

Formats:

The

BASIC (pl. Pgseee pn)

BASIC,pysPgs s s P

BASIC compiler accepts the following parameter options:

Parameter

L

L=1fn

L. omitted
K

K=1fn

K omitted
I

I=1fn

I omitted

B#

B=lfn*

B omitted
A

A=1fn

A omitted
N

N=1fn

N omitted

Result

Source listing, diagnostics, and execution output on file OUTPUT.
Source listing, diagnostics, and execution output on 1lfn.
Diagnostics and execution output on file OUTPUT.
Diagnostics and execution output on file OUTPUT.
Diagnostics and execution output on 1fn,

Diagnostic and execution output on file OUTPUT.,

Source input from file INPUT,

Source input from 1fn.

Source input from file INPUT.

Relocatable code on file LGO.

Relocatable code on 1fn.

No relocatable code generated.

Assembly listing on file OUTPUT.

Assembly listing on lfn.

No assembly listing generated.

Inhibits program execution.

Inhibits program execution. Absolute code written to file lfn.

Execute in place.

If both K and L. options are specified on the control card, K is ignored; the L, A, and B

options require a larger field length than I, K, and N options.

+ Relocatable program has identifier ''1fn" if the source input is from file "1fn", or BASICXX

if the source input is from file ""INPUT'.

19980300 B

Examples:
The control card: BASIC.

results in the compilation and execution of a BASIC program giving a listing

of diagnostics and execution output on the OUTPUT file.
The control card: BASIC (L, B, N)

generates relocatable code on the LGO file, and source and diagnostic
listings on the OUTPUT file. Then the program may be executed by the LGO
control card (figure 2.9-2).

19980300 B 2.9-3

/e
=
a
9
e ==
= ==
DATA 7
RECORD DATA
BASIC STATEMENTS a
PROGRAM
RECORD
>
a
q
BASICaL.
* ACCOUNT ~ABCDEFG-TUVWXYZ. T
CONTROL4¢ JOBAAA.TLODD-CM35000. =
CARD
RECORD
-

Figure 2,9-1. BASIC Compile and Execute

*# ACCOUNT card not required for SCOPE.

(Central memory field length of 35000 is adequate for most BASIC programs., Larger
field lengths can be employed for exceptionally large programs.

2.9-4

19980300 B

DATA

RECORD
—
PROGRAM
RECORD
LGO -
BASICaLAaBaNe
ACCOUNT +ABCDEFG.TUVUXYZ. ¥
u
CONTROL JOBAAA.T1000-CMY40D0OD.
CARD
RECORD
r—i
F

Figure 2,9-2, BASIC Compile, Load and Execute Deck

ACCOUNT card not required for SCOPE.

19980300 B 2.9-5

BATCH PROCESSING FROM A TERMINAL
BASIC programs can be created at a terminal and submitted for processing in BATCH

mode. To accomplish this the user must set up his program in a text editor file which
includes control cards.

Using INTERCOM

To create a BATCH job from a terminal, the user must enter the job in an edit file under
any format other than BASIC (e.g., COBOL, FORTRAN, COMPASS). This edit file must
include control cards, as well as, BASIC program statements. A typical batch deck set up
follows:

SCOPE JOB CARD LN76.

-
.

Control cards { BASIC, I: L,
L L]
End of Record {*EOR
BASIC STATEMENTS
'nd of Record {*EOR

To run a BATCH job from the terminal after creating the edit file, perform the following:

1. Save the edit file SAVE, TESTFILE, N

2. Execute BATCH, TESTFILE, INPUT, HERE
3. Identify the output file FILES or Q,O

4, Look at output BATCH, 1fn, LOCAL

PAGE, 1fn“;\ file id found under remote
output files when "FILES"
was entered

After the PAGE command is entered the system responds with "READY".
Enter a 1 and press to inspect the first page. After the entire page is
displayed the user may inspect the next page by entering a !t .

5. PRINT output listing
at central site BATCH, lfn, PRINT, user id

2.9-6 19980300 B

Using KRONOS/NOS

The following is an example of a terminal session where a job is created and submitted for

batch processing.
Example:

RECOVER/SYSTEM:BATCH
$RFL, 2000

/NEW, GUIDE

100 /JOB
110 /Program Name,

120 ACCOUNT, account number,
password.

150 BASIC,]I, L.

160 /EOR

170 /NOSEQ

/SAVE, GUIDE

/SUBMIT, GUIDE, B

09.01, 36. AB3AACL

/RETURN, GUIDE
$RETURN, GUIDE.

[STATUS, J=AB3AACL

JOB IN OUTPUT QUEUE.

19980300 B

User requests batch mode.

System provides default field length.
If additional field length is required
enter: RFL, xxxx.

User specifies file name '""GUIDE".

Control cards -/JOB must be the first;
also all others must end with a period.

End-of-Record

Ensure that the BASIC sequence numbers
for the statements which follow are not
stripped,

End-of-File
"GUIDE' becomes a permanent file,

Directs batch execution of the BASIC pro-
gram, Output is directed to central site
printer as specified by the B parameter.

System replies with time the job was
entered (hr, min, ss.) and system supplied
job identifier,

Releases working file GUIDE.

System reply.

Requests status of a remote batch job
initiated by the SUBMIT command.
AB3AACL is the alphanumeric name previ-
ously assigned by the system to the job.

Typical reply to status request.

2.9-7

The /JOB directive indicates that the file is to be reformatted for batch processing. Some

defaults indicated by the directive are:
. remove sequence numbers
. remove internal EOR and EOF marks - does not apply to /EOR and [EOF

found in this deck.

See KRONOS/NOS Time Sharing Reference Manual (REFORMATTING SUBMIT FILE)
for remaining directive descriptions.

2.9-8 19980300 B

The keyword MERGE enables the user to merge many files or parts of files under one file
name., He may load a local file into the edit file and enter the SAVE command witk MERGE
and any other selective parameters., Specification of NOSEQ is advised to avoid a conflict
in sequence numbers. After the SAVE operation, the named file consists of selected lines
from the edit file followed by an end-of-record. The saved file remains positioned at the
end-of-record.

The user may repeat this procedure until his file is complete. The end-of-record gener-
ated between merged files may be later deleted by the user, if necessary.

If more than 20 characters are entered as a text search string, the string is truncated to
the first 20 characters. An informative message is displayed at the terminal and VETO
automatically takes effect. Each line that satisfies the search conditions is displayed; the

user may enter the VETO responses given in the SAVE command description.
Examples:
To save the edit file under the file name FTNPRG:

user enters SAVE,filename
-+ SAVE, FINPRG EDITOR is ready for the next
command

To save the edit file in place of an existing local file named FTNDATA, with a line
length of 400 characters and no EDITOR line numbers:

user enters FORMAT, CH=nnn

« « FGRMAT> CH=400 user enters SAVE, filename,

» «SAVE> FINDATA» @5 N OVERWRITE, NOSEQ

.o EDITOR is ready for the next
command

To save all lines between 10 and 100 which have the character * in column 1:

user enters SAVE, line-1,line-2,

+«SAVE» 105,100 /%/ (1) /text/, col-1
*° EDITOR is ready for the next -
command

2.7-28 19980300 B

CHARACTER SETS A

This appendix describes the SCOPE, KRONOS and NOS character sets which are available
to the BASIC user.

SCOPE CHARACTER SETS

Table A-1 lists the standard SCOPE 3. 4 character sets: CDC-63, CDC-64, ASCII-63, and
ASCII-64. The character set used is installation dependent.

BASIC operates with the ASCII-63 or ASCII-64 character sets only. All of the characters
are not part of the BASIC language, but can be used in data and string constants.

If operating in batch mode and if either of the CDC character sets is in use, the user must
look up the desired BASIC character in the table A-1 ASCII Graphics Subset column and

punch the corresponding character listed in the CDC Graphics column,

When using BASIC, the character@is equivalent to the@(circumflex) or ' (apostrophe)
shown in the ASCII Graphics Subset column.

19980300 A A-1

+, I0 v JojorIeYD Otydean TIDSV O} jusTeamnba sT| J910BIBYD #

£1uo ndut Joy pajdaoor agr sayound (8zZ0) IIDSV PUE (920) UITISTIOH dYeUIdTE SYL ._.I
*(yound g-g) UOT0O 3y} ST G 3POD

drJeWINU {9pOd YILISTIOH o orydead pajleroosse ou seY () 9Pod drrownu‘}es orydead-gg I9YITL Sursn suoIRIIBISUT Ul ._.._.
*SUOTOD OM] UBRUL JOUIRI NJIBWL dUIT-JO-DUS SE Pa19a1dJaalul oJe PJIOM 3Ig-09 B JO PUd 3} JB S3IQ OJDZ SJIOW JO SASMT

9-8-11 1-8-21 €9 uofooTWes ¢ Uo7oOTWdS ¢ 4 G 4 S G
L-8-11 9-8-21 29 +(})XOTFWNDITO — - e ¥ 153 i4 iz
2-8-0 ¢-8-21 19 \ 2 g g 0¢ g 3
¥-8 G-8 09 @ s z z 62 4 4
9-8-0 L-8-T1T 65 < < I I 82 I !
Ho-z1| tHz-8-z21 0 0 LZ 0 0
a0 $-8-31 a0 0-21 8g > > 6-0 6-0 92 Z A
L-8-0 9-8-1T LS ¢ t 8-0 8-0 4 X X
G-8 G-8-11 9g #(i)oydoaysode , ¢ L-0 L-0 44 X X
21 L-8-0 Gg 3 v 9-0 9-0 4 m m
HHo-11| HHz-s8-11 g-0 G-0 ze A A
J0 ,-8-21 J0 0-T1T 24 i A ¥-0 ¥-0 12 n n
G-8-0 G-8-0 €¢ surfIapun « €-0 €-0 02 L L
L-8 ¥-8 4 ajonb # g-0 2-0 61 S S
¥-8-0 9-8 15 % 4% 6-11 6-11 81 S| £
z2-8-11 2-8-0 0S ([8-T11 8-1T LT (V) ()
2-8-21 L-8 6%]] L-T1T L-T1 91 d d
£-8 9-8-0 8y # = 9-1T 9-1T g1 o) o)
€-8-21 €-8-21 LY potxad * potaad * | G-TT 6-11 Al N N
€-8-0 £-8-0 9% BUILIOD ¢ BUIWOD ¢ | H-TT F-11 €1 W n
yound ou{ yound ou cy Suerq yuelq | ¢-11 e-11 A 1 T
9-8 €-8 47 = = z-11 z-11 11 3 |
g-8-11 g-8-11 572 $ $ I-11 I-11 0T r r
G-8-11 $-8-21 (472 ((6-21 6-21 60 I 1
¢-8-21 ¥-8-0 152)) 8-321 8-21 80 H H
1-0 1-0 (1] 2 / / L-21 L-21 L0 D D
v-8-11 ¥-8-11 6¢ % * 9-21 9-21 90 | a
1 11 8¢ - - G-21 A co q c
9-8-21 Al LE + + ¥-21 ¥-21 ¥0 a a
6 6 9¢ 6 6 g-2g1 €-21 €0 o) o)
8 8 cg 8 8 z-21 2-321 2o a |
L L ¥e L L 1-21 1-21 10 v N
9 9 ¢e 9 9 z-8 z-8 00 1: }:
(X1LI) (ALL)

(620) (920) 1osqng (620) (920) jesqns ((@D9-1A

youndg young apoD owdean [(@dd-1LN 00g) [ydund yound apo) |orydead (00g) DAD

1I0SV UILISTIOH | OTJaumN osv orydean DAD |IIDSV |uitasrioy |otxewmN | IIOSV | otydean

19980300 B

SLAS HALOVYVHD QUVANVLS ¥°¢ EdODS '1-V HTdV.L

A-2

KRONOS/NOS CHARACTER SETS

There are two KRONOS/NOS character sets applicable to BASIC: Table A-2, TTY Charac-
ter Set, lists the characters for terminal use; Table A-3 lists the character set used in

batch operations.

To use the 12-bit ASCII characters in the TTY character set, the user must be in ASCII

Mode; see the appropriate Time-Sharing User's Guides, ASCII command.

19980300 B A-3

TABLE A-2. KRONOS/NOS TTY CHARACTER SET
Char Numeric Code Char Numeric Code ‘
(unused) 00 5 39 |
A 01 6 33
B 02 7 34
C 03 8 35
D 04 9 36
E 05 + 37
P 06 = 38
G 07 * 39
H 08 / 40
I 09 (41
J 10) 42
K 11 $ 43
L 12 = 44
M 13 (space) 25
N 14 , 46
O 15 . 47
P 16 " 48
Q 17 [49
R 18] 50
S 19 : 51
T 20 ' 52
U 21 & 53
A% 22 CR 54
i 23 LF 55
X 24 t 56
Y 25 # 57
Z 26 < 58
0 27 > 59
1 28 (unused) -
2 29 ? 61
3 30 (unused) -
4 31 ; 63

tOn TTY models having no left arrow, the underline character takes its place.

}For version 1.0 compatibility.

19980300 B

Char Numeric Code JI Char Numeric Code

Caution: Each of the following characters are considered by BASIC as one logical character for
string manipulation and I/O operations. Each of these characters requires the storage
space of two 6-bit characters.

@ 3841 DC2 3997
) 3842 ETX 3998
\ 3843 DC4 3999
- 3844 NAK 4000
X-ON 3845 SYN 4001
X-OFF 3846 ETB 4002
a 3969 CAN 4003
b 3970 EM 4004
c 3971 VT 4005
d 3972 SOH 4006
e 3973 ! 4007
3 3974 SI 4008
g 3975 BS 4009
h 3976 # HT 4010
i 3977 EOT 4011
i 3978 GS 4012
k 3979 NUL 4013
1 3980 FF 4014
m 3981 SO 4015
n 3982 STX 4016
o 3983 { 4017
p 3984 } 4018
q 3985 SUB 4019
r 3986 ACK 4020
s 3987 & 4021
t 3988 \ 4022
u 3989 ; 4023
v 3990 ~ 4024
w 3991 # 4025
x 3992 FS 4026
y 3993 RS 4027
z 3994 DEL 4028
DLE 3995 Us 4029
BELL 3996 ENQ 4030
ESC 4031

19980300 B

TABLE A-3.

BATCH CHARACTER SET EQUIVALENCES

Char,. N“(’j"(‘;’;;m ' Hc()?lzez?ith Char,. N“éﬁggic Hcfﬁzi)ith
A 01 12-1 6 33 6

B 02 12-2 7 34 7

C 03 12-3 8 35 8

D 04 12-4 9 36 9

E 05 12-5 + 37 12

F 06 12-6 - 38 11

G 07 12-17 * 39 11-8-4
H 08 12-8 / 40 0-1

I 09 12-9 (41 0-8-4
J 10 11-1) 49 12-8-4
K 11 11-2 $ 43 11-8-3
L 12 11-3 = 44 8-3

M 13 11-4 space 45 space
N 14 11-5 , 46 0-8-3
o) 15 11-6 . 47 12-8-3
P 16 11-7 tt=(") 48 0-8-6
Q 17 11-8 [49 8-7

R 18 11-9 | 50 0-8-2
S 19 0-2 : 51 8-2

T 20 0-3 # 52 8-4

U 21 0-4 — 53 0-8-5
A 22 0-5 \% 54 11-0
W 23 0-6 A 55 0-8-17
X 24 0-7 t 56 11-8-5
Y 25 0-8 ”1 (#) 57 11-8-6
Z 26 0-9 < 58 12-0
0 27 0 > 59 11-8-17
1 28 1 < 60 ' | 8-5

2 29 2 > 61 12-8-5
3 30 3 —_ g2 1 12-8-6
4 31 4 ; 63 12-8-17
5 32 5

+BASIC considers these 6-bit characters as the front end of an ASCII 12-bit character and

should be avoided in batch operations.
1+11-0 and 11-8-2 are equivalent
$12-0 and 12-8-2 are equivalent

1t BASIC characters are in parentheses.

19980300 B

DIAGNOSTICS B

All diagnostic messages produced by the BASIC system at compile and execution time are

printed in the following format:
message AT line-number

The line number indicates the statement in error.

COMPILE TIME DIAGNOSTICS

The following messages can be produced during program compilation, All compile time

diagnostics inhibit execution of the program and BASIC writes a dayfile message: BASIC

COMPILATION ERRORS.

Message
BASIC FIELD LENGTH TOO SHORT

BLANK FILE STATEMENT
DELIMITER OVERFLOW
DUPLICATE LINE NO
END NOT LAST

EXCEED LITERAL TBL
FOR NEST TOO DEEP
FOR WITHOUT NEXT

ILLEGAL BOUND

ILLEGAL CHARACTER
ILLEGAL COMPARISON

ILLEGAL FILE NAME
ILLEGAL FILE NUMBER
ILLEGAL FN NAME
ILLEGAL LINE REF

ILLEGAL LINE NUMBER

19980300 B

Error
Field length too short to begin compil-
ing; increase FL and run again.
File ordinal or name missing.
More than three delimiters used.,
Same line number used twice,

END statement placed prior to the
last statement in a BASIC program.

Too many literals used.
More than ten nested FOR statements.

FOR statement has no balancing
NEXT statement.

DIM statement declared variable
greater than 131071.

Unrecognizable character,

Numeric quantity compared to string
in IF statement.

Name is not allowed as a KRONOS or
SCOPE file name,

Nunilger in FILE statement zero or
-1).

User function name not of the forin
FNx; x is any alphabetic character.

Incorrectly written line number, or
line number referenced >99999,

Line number >99999.

Message

ILLEGAL MARGIN
ILLEGAL NUMBER
ILLEGAL OPERAND
ILLEGAL STATEMENT

ILLEGAL STRING
ILLEGAL USING
ILLEGAL WORD

INVALID BASE STATEMENT

INVALID BASE VALUE
INVALID CHANGE

LINES OUT OF ORDER
MISSING LINE NO

NEXT WITHOUT FOR

NON FORMAT CALLED

OUT OF SPACE*

PROGRAM TOO LARGE

PROGRAM TOO LONG*

READ WITHOUT DATA

RECURSIVE FN

STRING TOO LONG
TOO MANY FILES

UNDEFINED FN REF
UNDEFINED LINE REF

Error

Margin <15 or >160.
Numeric constant incorrectly written.
String used in arithmetic expression.

Statement does not begin with a
recognizable word or is written
incorrectly.

String constant incorrectly written.
Using clause incorrect syntax.
Unrecognizable word,

BASE statement after DIM statement
or array reference.

BASE not 0 or 1.

CHANGE argument is not a string or
string variable,

Line numbers not in ascending order.

Statement written without a line
number,

NEXT statement has no balancing
FOR statement,

PRINT USING references a state-
ment which is not an image.

*Program too large to continue check-
ing source statements; compilation
stops.

Compiled program too large to
execute in the field length given to
the BASIC compiler.

*Program too long to compile, but
the compiler continues to check the
source statements.

Program containing a READ state-
ment has no DATA statements.

Recursive DEF statement; illegal
usage.

String longer than 78 characters.

The user has more than 15 files in-
cluding INPUT and OUTPUT.

Undefined user function,

Line number referenced does not exist,

* If any of these occur, the program should be recompiled with a larger field length. No

maximum size is defined for BASIC programs.

given to the BASIC system.

Limits depend entirely on the field length

19980300 B

The following messages are all caused by incorrect image in IMAGE statement or in
STRING FUNCTION (STRS$).

Message Error
EMPTY FORMAT Must be exactly 5 (1) in the IMAGE
EXPONENT COUNT ILLEGAL statement,
FIELD TOO LONG More than 16 pound signs,
ILLEGAL EXPONENT SIGN
ILLEGAL FORMAT Field absent or more than 1, or right

parenthesis missing.
ILLEGAL MINUS
ILLEGAL PERIOD
ILLEGAL PLUS
ILLEGAL POUND
ILLEGAL QUOTES
ILLEGAL SEQUENCE
INCOMPLETE FORMAT
OPEN QUOTES

EXECUTION TIME DIAGNOSTICS

BASIC allows two modes of execution-time error processing.

During normal error processing the following diagnostics may occur during execution of a
program. All errors terminate execution and cause the message BASIC EXECUTION
ERROR to be written.

When an error statement is in effect, normal processing is suppressed and the program
retains control. The program can then inspect the error number by using the ESM function.

Message Error Number Error

ARGUMENT IS POLE IN TAN 153 Argument is nTr/2.

ARGUMENT NEGATIVE IN LOG 154 Must supply positive argument.
ARGUMENT NEGATIVE IN SQR 160 Must supply positive argument,
ARGUMENT TOO LARGE IN COS 152

ARGUMENT TOO LARGE IN SIN 150

Argument must be <2, 21069E14,

ARGUMENT TOO LARGE IN TAN 151

ARGUMENT IS ZERO IN LOG 155

19980300 B B-3

%_es sage

ARRAY TOO SMALL
BAD DATA IN READ

BASIC SYSTEM ERROR

DIVISION BY ZERO
END OF DATA

END OF DATA ON FILE

GOSUB NEST TOO DEEP
ILLEGAL CHARACTER

ILLEGAL FILE NAME

ILLEGAL FILE NO

ILLEGAL I/O ON FILE

ILLEGAL LABEL

ILLEGAL MARGIN

ILLEGAL INPUT ON FILE

ILLEGAL OUTPUT ON FILE

ILLEGAL SUBSTR PARAMETER

INDEFINITE OPERAND

INFINITE AND INDEFINITE
OPERAND

INFINITE OPERAND

B-4

Error Number

163
126

125
120

136

123
165

139

138

137

170

131

135

130

169

111
113

109

Error

Self-explanatory.

String read, numeric expected;
or vice versa.

Malfunction of BASIC system.
Please report the problem.

Self-explanatory.

READ statement executed when
intérnal data block is exhausted.

READ FILE or INPUT FILE
statement executed after file
data is exhausted.

More than 40 GOSUB's nested.
Self-explanatory.

File name does not correspond
to alphanumeric rule,

File number referenced is less
t}iBSn one or exceeds the value
2-°9-1,

1/0O operation not legal for
current mode of file; e. g.,
READ in a write mode file;
READ on a BCD file;
MARGIN on a binary file, etc.
File must be RESTOREd

to change mode.

Label referenced in a JUMP
statement or NXL function does
not exist; is greater than 99999;
or is the label of a REM statement.

Margin specified is outside the
allowable range 15 to 160,
INPUT statement attempt-

ed to read a file in incorrect
format.,

Type of input/output statement
changed without repositioning
the file to beginning of informa-
tion,

Parameters specified in SUBSTR
function are outside the legal
range as determined by the
actual string length.

Self-explanatory.
Self-explanatory.

Self-explanatory.

19980300 B

Message

INVALID LENGTH
MATRIX DIMENSION ERROR

NEARLY SINGULAR MATRIX
NEGATIVE NUMBER TO POWER
NO FILE SPACE

NON-NUMERIC STRING

ON EXPRESSION OUT OF RANGE

POWER TOO LARGE
RETURN BEFORE GOSUB

STRING OVERFLOW
SUBSCRIPT ERROR

TIME LIMIT EXCEEDED
TYPE 2 PROGRAM ABORT
TYPE 3 PROGRAM ABORT
TYPE 4 PROGRAM ABORT
TYPE 5 PROGRAM ABORT
TYPE 6 PROGRAM ABORT
TYPE 7T PROGRAM ABORT
TYPE 8§ PROGRAM ABORT
TYPE 10 PROGRAM ABORT

TYPE 12 PROGRAM ABORT
TYPE 14 PROGRAM ABORT

UNDEFINED FILE NO
UNDEFINED VALUE
ZERO TO A NEGATIVE POWER

19980300 B

Error Number

164

161

162

158

140

167

122

159
124

168

121

100
102
103
104
105
106
107
108
110

112

114

141

157

Error

Length >78 in CHANGE.

Dimension inconsistency in one
of the MAT statements or is
>50x50 for INV function,

Attempt to invert a singular or
nearly singular matrix,

Negative number raised to non-
integer exponent.

User must specify another FILE
statement.

String is non-numeric in VAL
function.

Expression in ON statement is
negative, zero, or exceeds the
count of line numbers.

Self-explanatory.

RETURN statement has been
executed and no GOSUB is in
effect.

Attempt to define a string which
is more than 78 characters long.

Attempt to reference an element
outside bounds of an array.

Program exceeded its time limit.
PP abort.

CP abort.

PP call error,

Operator drop.

Program stop.

Unknown abort,

Address out of range.

Address out of range and infinite
operand,

Address out of range and in-
definite operand.

Address out of range and infinite
operand and indefinite operand.

Self-explanatory.
Self-explanatory.
Self-explanatory.

The following messages may occur after the data typed in response to an INPUT request
from the terminal has been checked. The BASIC system will print a question mark and
the user should retype the data,

Message Error Number
ILLEGAL INPUT, RETYPE INPUT 133
TOO MUCH DATA, RETYPE INPUT 132

The following message may occur after the data typed in response to an input request from
the terminal has been checked. The user should continue typing data until the requirements
of the input request are satisfied,

NOT ENOUGH DATA, TYPE IN MORE 134

For ease of reference, diagnostics have been arranged by the error numbers in ascending

order.

Error Number Error

100 Program exceeded its time limit,

101 Not used,

102 PP abort,

103 CP abort,

104 PP‘ call error.

105 Operator drop,

106 Program stop.

107 Unknown abort.

108 Address out of range.

109 Infinite operand.

110 Address out of range and infinite
operand,

111 Indefinite operand,

112 Address out of range and in-
definite operand.

113 Infinite and indefinite operand.

114 Address out of range and infinite
operand and indefinite operand.

115 Not used.

116 Not used.

117 Not used.

118 Not used.

119 Not used.

B-6 19980300 B

Error Number

19980300 B

120

123
124

125

126

127
128
129
130
131

132
133
134
135

136

137

138

139

140

141
142

Error

READ statement executed when
the internal data block has been
exhausted.

Attempt to reference an element
outside bounds of array.

ixpression in ON statement is
negative, zero, or exceeds the
count of line numbers,

More than 40 GOSUB's nested.

RETURN statement has been
executed and no GOSUB is in
effect,

Division by zero.

String read, numeric expected;
or vice versa.

Not used.
Not used.
Not used.

Type of input/output statement
changed without repositioning the
file to beginning of information.

Margin specified is outside the
allowable range 15 to 160.

Too much data, retype input.
Illegal data,. retype input.
Not enough data, type in more,

INPUT statement attempted
to read a file in incorrect format.

READ FILE or INPUT FILE state-
ment executed after file data is
exhausted.

1/0O operation not legal for carrent
mode of file; e.g., READ in write
mode file; READ on BCD file;
MARGIN on binary file; etc. File
must be RESTOREd to change
mode.

File number referenced is less than
one or exceeds the value 2-°-1,

File name does not correspond to
alphanumeric rule of formation.

Attempt to specify more than three
files by the execution of only one
FILE statement,

Undefined file number,
Not used.

Error Number

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161
162
163
164
165
166
167

168
169

170

Error

Not used.

Not used,

Not used.

Not used.

Not used.

Not used.

Not used.

Argument too large in SIN.
Argument too large in TAN,
Argument too. large in COS.
Argument is POLE in TAN,
Argument is negative in LOG.
Argument is zero in LOG.
Argument is too large in exponent,
Zero to a negative power,
Negative number to a power.
Power too large,

Argument is negative in a square
root.

Matrix dimension error,
Nearly singular matrix.
Array too small,

Invalid length,

Illegal character.

Not used.

String is non-numeric in VAL
function.

String overflow.

Parameters specified in SUBSTR
function are outside the legal range
as determined by the actual string
length,

Illegal label does not exist or >99999
in JUMP statement or NXL function.

19980300 B

INDEX OF BASIC STATEMENTS

The following alphabetical list of BASIC statements gives the formats, functions, and pages
on which they appear. Throughout this appendix the following abbreviations are used:

a array identifier

numeric or string constant

ch any character or carriage
return 6

d delimiter

e expression, constant or
variable

f format specification

1 letter

lfn file name

In line number

m matrix identifier (one-or-two-

dimensional array)

Items enclosed in brackets [] are optional.

na numeric array name

nc numeric constant

ne numeric expression, constant
or variable

r relational expression

sc string constant

se string expression, constant or
variable

snv simple numeric variable

sv string variable

v variable identifier (simple,

subscripted, numeric, or string)

X Oorl

Shaded formats are retained for compatibility purposes and should not be used in new

programs.

Statement Format

BASE x
CHANGE naTO sv

CHANGE sv TO na

DATA C1,C9,C3s 00+ ch

DEF FNI1 (snv) = ne

DELIMIT (chy), ... (ch3)

19980300 B

Page
Function _No.
Defines the origin of arrays. 2, 2-2
Creates string from an array 2. 2-9

containing display code characters.

Stores each character of a 2,2-9
string into a separate element
of an array.
Creates a block of data internal 2,4-4
to the BASIC program.
Defines a new function to be used 2,3-13
within a BASIC program.
Defines separators between 2.4-12
input items on the terminal.

C-1

Statement Format

DELIMIT #ne(Chl)‘

DIM aj(ncy, . ..,ncg)...,anncy, ..., nc3)

END

FILE #nej = lin}, #neg = lfny, .. .#nepn =lin,

FOR snv = ne] TO neg [STEP ne,]

GOSUB 1n

GOTO 1In

IF r THEN In

(IMAGE)
: [literal] fif2fg,...fpn

INPUT Vl, V2, s e Vn

INPUT #ne Vl’vz’ ceeV

JUMP ne
[LET]Vv] =V = Vg eeeVp =€
MARGIN neo

MARGIN #ne;, neg

Function

Defines separators between input
items on specified file,

Declares the dimensions of an

array variable. nc may be l
to 3 integers.

Terminates a program.

Defines file ordinal and equates
it to a file name,

Begins a program loop; this
statement must be used with
a NEXT statement.

Transfers program control to
a subroutine beginning at line
number indicated.

Interrupts the normal sequence
of program execution and trans-
fers program control to indicated
line number.

Transfers program control to
indicated line number if certain
conditions are met.

Specifies output formats.

Enters data from a terminal,

Inputs coded data from specified
file #ne.

Inputs coded from specified file
1fn.

Inputs coded data from specified
file lfn.

Transfers control to statement
where line number = ne,

Assigns a value to a variable
during program execution.

Defines a right-hand margin for
output to a terminal.

Defines right-hand margin for
output to a specified file.

Page
No.

2,4-12

2,2-9

2,4-3

2.3-17

2.4-23
2.4-9

2.4-9

2.2-3

2.4-32

2. 4"32

19980300 B

Statement Format

MAT m; = mg + mg

MAT my =mog - m3
MAT mj = mg * m3

MAT my = e * my

MAT m = INV(a)

MAT m = TRN(a)

MAT m = ZER[(ne;[,ne,])]
MAT m = CON([(ne, [,ne,])]
MAT m = IDN [(ne,[,ne,])]

MAT READ mj, mg, M3...

MAT READ #ne, mj, mg, m3. ..

MAT t PRINT mldmzdm3d. oe d

MAT PRINT #ne, mldmzd. eod

MAT INPUT m;, mg, mg,

o)

19980300 B

Function

Defines right-hand margin for
output to a specified file.

Defines right-hand margin for
output to a specified file.

Matrix addition.
Matrix subtraction.

Matrix multiplication.

Matrix scalar multiplication by
value of an expression.

Inverts a matrix.

Transposes a matrix.

Creates a matrix of all zeros.
Creates a matrix of all ones.
Creates an identity matrix.
Reads matrices from internal
data file.

Reads matrices from specified
file 1fn in binary format.

Reads matrices from file #ne
in binary format.

Reads matrices from file lfn
in binary format.

Prints matrices on a terminal.

Prints matrices in a coded
format on specified file.

Inputs matrices from a terminal,

Inputs matrices from specified
file Ifn (coded format).

Inputs matrices from a file #ne.

Inputs matrices from a file 1fn.

Page
No.

2,5-2
2. 5-2
2. 5-2

2. 5-2

2.5-17

Statement Format

MAT WRITE #ne,ml, Mg, Mgy e

NEXT snv

NODATA In

NODATA #ne, In

ON ne GOTO lnl, 1n2, 1n3, eeelng

ON ERROR GOTO In
ON ERROR THEN In

ON ERROR
PRINT ejdegd...e,d
PRINT USING In, ejdegd...e.d

PRINT #ne, eldezd. . end
PRINT #ne USING In, elde

2

dl.led
n

Function

Writes matrices in binary
format on a specified file.

Terminates a program loop
or increments the value tested
by the loop.

Tests data pointer for
increment beyond end of data
block. Branches to 1n if data
exhausted.

Transfers program control to
specified line number if file is
positioned at end of information.

Expression is evaluated and
truncated to an integer value;
transfers control to line number
ln1 if ne=1, line number lng if
ne=2, etc.

Transfers control to In on run-
time error.

Transfers control to In on run-
time error.

Page
No.

2,5-9

Turn on normal error processing. 2,6-1

Prints data at terminal.

Output to be formatted on an
IMAGE statement on a terminal.

Prints data on specified file.

Output to be formatted to an
IMAGE statement on specified
file,

Prints data on specified file.

Output to be formatted to an
IMAGE statement on specified
file.

2,4-14
2.4-14

2.4-14

2.,4-14

19980300 B

Statement Format

READ V15 V25 V35 e eV

READ #ne, v], V2, V3, e+ .V

REM ch...ch

RESTORE

RESTORE #ne

RETURN

SETDIGITS ne

STOP

WRITE #ne, e}, eg,€g,...€

19980300 B

Function

Accesses data created by DATA
statements.

Reads binary data from named
file created by WRITE FILE
statements.

Inserts explanatory remarks
into a program.

Reinitializes data printer to
the first word of the data block.

Sets named file to beginning of
information.

Resumes execution at statement
following most recently executed
statement.

Specifies number of significant
digits for output.

Terminates program execution
at places other than the END
statement.

Writes data in binary format on
specified file.

Page
No,

2,4-7

Legend:

Function
ABS(x)
ATN(x)

CLK(x)
CLK$
COS(x)
DATS$
EXP(x)

INT(x)

LEN(sv)

LGT (x)

LOG(x)

RND(x)

19980300 B

INDEX OF BASIC FUNCTIONS

constant or variable
f - format specification

Meaning
Finds the absolute value of x.

Finds the arctangent of x in the principal value range
-Tm/2to +1M/2.

Returns the time of day in hours and fractions of an hour
in a 24 hour scale.
Determines time of day as a string.

Finds the cosine of x expressed in radians.
Determines the date as a string.
Finds.the value of e t x.

Finds the largest integer not greater than x. Example:
INT(5. 95) = 5 and INT(-5,95) = -6.

Determines current length of a string.

Finds the base 10 logarithm of x; x>0, otherwise an
execution error will cause the program to terminate.

Finds the natural logarithm of x; x> 0, otherwise an
execution error will cause the program to terminate.

Returns pseudo-random numbers from the set of numbers
uniformly distributed over the range 0 < RND (x) <1.0.

If x> 0 a random number sequence is initialized based on
the value of x and the first number of the sequence is
returned.

If x = 0 the next number in the established sequence of

random numbers is returned. If the sequence was not
previously established by an x>0 RND reference, a

standard constant is used to initiate the sequence.

If x < 0 the first RND reference initializes a random
number sequence based on the time of day and returns

the first value of the sequence. Subsequent x< 0 RND
references return the next number in the sequence.

numeric constant se - string expression, constant or
variable
numeric expression, sv - string or string variable

Page
2.3-2
2,3-2

2.3-7
2.3-17

2,3-2

Function

ROF(x) or
ROF (x,nc)

SGN(x)

SIN(x)

SQR(x)
STR$(ne) or
STR$(ne, f)
SUBSTR(se, ney,
neg) or

SUBSTR(se, nej)

TAB(ne)
TAN(x)
TIM(x)

VAL(se)

Meaning Page

Finds the value of the first argument rounded to the number 2,3-2

of decimal places specified by the second argument.

Omission of nc rounds variable x to the nearest integer,

Assigns a value of 1 if x is positive; 0 if x is 0; or -1 2.3-2

if x is negative.

Finds the sine of x expressed as an angle in radians. 2.3-2

Finds the square root of x; x> 0, otherwise an execution 2,3-2

error will cause the program to be terminated.

Converts numeric value to string representation. 2.3-9

Extract or insert a substring. 2,3-10

Move print line to position (ne). 2.4-22

Finds the tangent of x expressed in radians. 2.3-2

Elapsed time in seconds (x is a dummy argument). 2.3-7

Converts a string to its numeric value. 2,3-12
19980300 B

KRONOS/NOS FILE HANDLING E

A file is a collection of information with an associated name. A BASIC program is an
example of a file. Another file may contain data to be read in and used by a separate
BASIC program. Therefore, all or part of the output from a program may be stored in

a file instead of being printed at the terminal. This file might then be listed on a teletype
or on a high-speed printer, or it may simply be used as data for another program.

KRONOS and NOS recognize two types of files: local and permanent. A local file is one
which ceases to exist (is released) when the user disconnects or issues a NEW, OLD or
LIB command. Before any file can be used, it must be "'made local''. A permanent file

is one which remains in the KRONOS/NOS permanent file system after the user signs off.
There may be both a local and a permanent copy of the same file. When the user signs off,
the permanent copy is retained; the local copy is released.

There are two types of permanent files: indirect access and direct access. An indirect

access file is so named because it is used''indirectly''; it is always a separate local copy
of the permanent file that is used. With a direct access file, the permanent copy itself is

made local. (See figure E-1.) An indirect access file is created using the KRONOS system
commands NEW and SAVE; a local copy is made by either the OLD or GET
commands; it is updated by the REPLACE command and released from use (but not from

permanent storage) by the RETURN command. A direct access file is created by the
DEFINE command; it is opened for access (made local) by the ATTACH command and
released from use by the RETURN command. The PURGE command is used to remove

from permanent storage both direct and indirect access files.

When a file is ''made local', it becomes either a primary or a secondary file. The local
file established by a NEW, OLD or LIBRARY command is always primary. The NEW
command creates a primary file; the OLD and LIBRARY commands obtain a primary file

from an indirect access file. There can be only one primary file and usually it is the
program to be run. When the commands LIST, SAVE or RUN are issued, the operating
system assumes it refers to the primary file. The GET, or ATTACH commands establish
a secondary file. There may be as many as eight secondary files and usually these

are data input and output files. To refer to a secondary file with a KRONOS command, the
file name must be specified as in: LIST, F=DAT or SAVE, DAT. In the latter, file DAT is
retained as a permanent file; DAT could be a primary or secondary file. When the current
primary file is released by entry of OLD, NEW, or LIBRARY commands, all primary and

secondary files are released unless the next command encountered is a NODROP command.

19980300 B E-1

Local Files Permanent Files
Commands (working) Commands
LIST OLD
RETURN Primary - Indirect Access
SAVE (1 only)
etc.
&
LIST, F=1fn +
RETURN, lfn Secondary ATTACH Direct Access
SAVE, 1fn (maximum of 8)
etc,
% 1fn is the name of a local file.
* same copy

Figure E-1. KRONOS Files

KRONOS/NOS FILE CONTROL COMMANDS

The following includes a brief description of some KRONOS/NOS file manipulation
commands. A user can obtain specific information pertaining to his permanent files by
using the CATLIST command described in Section 5 of the appropriate KRONOS 2.1 and
NOS Time-Sharing User's Reference Manual.

DIRECT ACCESS PERMANENT FILES

P’ DEFINE, Ifn=pfn/CT=n, M=m, NA stores local file name as a permanent
file to be later referenced by permanent

file name.

where:

1fn - If DEFINE is to be used to create an empty direct access
permanent file, 1fn is specified only if the user desires to
reference the file by a name other than its permanent file
name,
If DEFINE is to be used to define an existing local file as a
direct access file, 1fn is the name of the local file. Also,

if 1fn exists, its position is not altered.

pfn - Permanent file name, If pfn is omitted, the system assumes

1fn =pfn .

E-2 19980300 B

CcT - Permanent File Category:

P = private
S = semi-private
PU = public

M - File or User Permission:
W = write permission
M = modify permission
RM = read in modify mode
RA = read in append mode
E = execute file permission
NA - if a resource is unavailable KRONOS suspends user requests

until resource is free.

® ATTACH,lfn=pfn/M=m, NA obtains a file defined by a DEFINE
command for use during program

executions.
where:

Ifn=pfn - is used when desirable to reference an attached file by other than its
permanent file name. If a current working file is referenced as lfn,

the contents of that file are lost when the permanent file is attached.

M=m - modify permission. If omitted, the system assumes read permission
only.
NA - User wishes to wait for direct access file to become available. If the

file is currently being accessed, the user's job is suspended. Enter

STOP to terminate the request.

For a description of the remaining parameters, see DEFINE command

previously described.

® CHANGE See Indirect Access Permanent Files.

19980300 B E-3

INDIRECT ACCESS PERMANENT FILES

° SAVE, Ifn=pfn/M=m, NA creates an indirect access permanent
file; permits the user to retain a copy of
the specified working file on the

permanent file system.

For a description of the statement parameters, see DEFINE command previously
described.

PY GET, lfn=pfn/NA retrieves a copy of a specified indirect
access file for use as a working file. If
the user wishes to reference the working
file by a name other than the pfn, the lfn
parameter is used. The current primary
file remains primary unless the filename
specified by lfn is that of the current
primary file. In this case, the contents
of the primary file are replaced by a
copy of pfn which becomes the new

primary file.

For a description of the statement parameters, see DEFINE command

previously described.

° OLD,lfn=pfn requests a copy of the specified
permanent file as a primary file. When
a specific subsystem is associated with
the file, it is selected automatically.
This occurs only if the file was
originally a primary file and saved
while a subsystem other than the sub-

system null is active.

Ps LIBRARY, lfn=pfn requests a copy of specified indirect
access permanent files from the catalog
of a special user library; this file be-~

comes a primary file.

For a description of the command parameters, see DEFINE command

previously described.

E-4 19980300 B

e CHANGE, nfn=ofn/CT=n, M=m, NA.

allows use of direct or indirect access
permanent file to alter several
parameters without further operation on
the file (attach, save, etc.). This is
valid only for the originator of the file.

where:
nfn new permanent file name to be assigned
ofn current permanent file name

CT,M specify only if these are to be changed. For a description of the
command parameters, see DEFINE command,

° REPLACE, lfn=pfn/NA

permits the user to replace the contents
of an indirect access permanent file
with the contents of a working file. If
pfn does not exist, a new permanent file

is created.

For a description of the command parameters, see DEFINE command

previously described.

19980300 B

FILE CONTROL COMMANDS EXAMPLE

The following presents a series of demonstration programs that illustrate the use of system
commands to create, reference, list, and purge files via the time-sharing terminsl. The
example is divided into three main columns. The left-most colurnn contains a transcript of
the text entered and received at the terminal, The center colun:mL represents the area of
working files, It is divided into two sections: the left section shows the life span of each
program (primary file) entered; the right section is the area of the remaining loczl files
and shows when temporary files enter the working area and how long they endure. The
right-most column is the area of permanent files. It shows when a copy of a working file is

made into a permanent file and how long that permanent file exists.

Duration of a file is indicated by a solid vertical line. An arrow point signals termination.
The copying of a file from 1fn to pfn, or the reverse, is indicated by a broken horizontal

line, An arrow point designates destination.

For a complete explanation of system commands, consult the KRONOS and NOS Time-Sharing

Users Reference Manuals.

19980300 B

Working Files Permanent Files

Keyboard Text Primary

File (OLD, Sef&ggary (pfn)
NEW, LIB)

NEW, PROG1 PROG1
READY.

090 FILE #1 = "WORK1"
095 FILE #2 = "WORK2"
100 WRITE #1,1,2,3
110 PRINT #2," A", "B"
120 RESTORE #1

130 RESTORE #2

140 END

RUN WORK1 WORK?2

RUN COMPLETE.

SAVE Y -4 -} - — L — {#PROGI
READY.

NEW, PROG2 PROG
READY.

NODROP
READY.

145 FILE #1 = "WORK1"
150 READ #1,X,Y,2Z
160 PRINT X;Y;Z
170 END
RUN

1 2 3
RUN COMPLETE.

SAVE, WORK1=PERM1 o — - 1+ — —|1-% PERMI1
READY.

SAVE, WORK2=PERM2 o~ -+ ~~-+I-+--4-» PERM2
READY. v

NEW, PROG3 PROG3
READY.

175 FILE #3 = "WORK3" v v
180 WRITE #3,4,5, 6
190 RESTORE #3

200 END
RUN WORK3

19980300 B E-7

Keyboard Text

Working Files

Permanent Files

Primarvy
File (OLD,
NEW, LIB)

Secondary
(1fn)

(pfn)

RUN COMPLETE.

APPEND, PERM1, WORK3
READY.

OLD, PROG1
READY.

LIST

090 FILE #1 = "WORK1"
095 FILE #2 = "WORK2"
100 WRITE #1,1, 2,3
110 PRINT #2, "A", "B"
120 RESTORE #1

130 RESTORE #2

140 END

READY.

PURGE, PROG1
READY.

NEW, PROG4
READY.

GET, NEW1=PERM1
READY.

200 FILE #4 = "NEW1"
210 DIM A(15)

220 FOR I=1 TO 15

230 READ #4, A(I)

240 PRINT A(I);

250 NODATA #4, 270
260 NEXT I

270 PRINT ""ALL oUT"
280 END

RUN

1 2 3
RUN COMPLETE.

ALL OUT

PROGS3

v
PROG1 4~ -~

PROG4

- - - - - — -

|
WORK3

NEW1l<- - - -

I
PROG1

e |

— - ——

PERM1

PERM1
- -~ WORK3

PERM2

19980300 B

Working Files Permanent
Files
Primary
Ke%zgfrd File (OLD, (1fn) (pfn)
NEW, LIB)
I I
RUN PROG4 NEW1 PERM1
WORKS3

4 5 6 ALLOUT PERM2
RUN COMPLETE.,
RUN
END OF DATA ON FILE AT 230
RUN COMPLETE.
CATLIST,LO=0

CATALOG OF USERO007

FILE NAMES

PERM2 PERM1
2 FILE(S)
READY,
E-9

19980300 B

ANALYSIS OF COMMANDS AND PROGRAM STATEMENTS

NEW, PROG1

090
095

100

110
120
130

RUN

SAVE

NEW, PROG2

NODROP

145

150
160

SAVE, WORK1=PERM1

SAVE, WORK2=PERM?2

E-10

The first program to become the primary file is called PROGI.
The system responds with READY.

Assign a file ordinal to file WORK1 and WORK2; these ordinals
are used to reference these files in the following program

statements.

Specifies a binary file called WORK1 with values 1, 2, 3. This

first line of coding establishes PROGI1 as the primary file.
Specifies a coded file called WORK?2 with characters A and B.
Moves the pointer back to beginning of data for WORK1.
Moves the pointer back to beginning of data for WORK2.

Runs the program, This establishes WORK1 and
WORK2 as working files (1fn).
COMPLETE,

The system responds with RUN

This makes the previous program PROGI a permanent file (pfn).

Specifies a new primary file which will contain new program code,
The system responds with READY.

This command retains WORK1 and WORK2 in the working area
when the new program is entered. Otherwise they would be
dropped when the first line of the program was entered. The

system responds with READY.

The ordinal for WORK1 must be respecified or a diagnostic is

returned.
Reads in the values from the working file WORKI1.
Prints out these values.

A copy of WORKI is made a permanent file with the new name

PERM1. The original remains as a working file.

A copy of WORK2 is made a permanent file with the new name

PERM2. The original remains as a working file,

19980300 B

NEW, PROG3
175

180

190

RUN

APPEND, PERM1, WORK3

OLD, PROG1

LIST

PURGE, PROG1

NEW, PROG4

GET, NEW1=PERM1

200

210

220

230

19980300 B

Specifies a new primary file, PROGS3.
A file ordinal is assigned to file WORK3.

Specifies a binary work file, WORK3. When this first line of
the program is entered (with the carriage return), PROG2 is
displaced as the primary file by PROG3. Also, working files
WORKI1 and WORK2 are dropped at this point. Had a NODROP
command been entered just before this line, WORK1 and WORK?2
would have been retained as working files.

Rewinds WORK3.

Runs the program and establishes WORK3 as a 1fn in the

working area.

Adds a copy of WORKS3 to the permanent file PERM1. The
original of WORKS3 remains in working storage.

Makes a copy of permanent file PROG1 and enters it as the
primary file. Since the entire program already exists, it
cancels all previous working files immediately (not when the

first line of the program is entered, as with the NEW command).

Causes the primary file to be typed out. WORK3
can be listed with the command LIST, F=1fn.

Removes PROG1 from the permanent files.
Specifies a new program, PROG4.

Makes a copy of permanent file PERMI1 in the working area and
gives the copy a temporary name NEW1. (PERMI1 has WORK3
appended to it.)

Assigns an ordinal to file NEW1.

Dimensions a 15-element array. This first line of coding

makes PROG4 the primary file.
Begins a loop which may go through 15 iterations.

Reads one element from file NEW1. Each time through the
loop it will read the next element (A(1), A(2), A(3)...)

E-11

240
250

260
270
RUN

RUN

RUN

CATLIST,LO=0

E-12

Types out the single element read at line 230,

Checks NEW1 to see if there are any more elements to read.
When end of data is reached, control is transferred to state-
ment 270.

Ends the loop.
Types "ALL OUT'" to the right of the output data.

Running the program reads and types out the three values in
PERM1. It does not go on to WORKS3 because it hits an end-
of-record mark (PERM1 and WORKS3 are treated as two
records in one file designated PERM1). |

Running the program a second time reads the values in the

second record WORKS.

Running the program a third time immediately encounters an

end of data and the appropriate message is typed.

Gives a catalog of all current permanent files for the user
with the user number USER007 as of the year, month and
day at x hours, x minutes and x seconds.

19980300 B

SAMPLE BASIC PROGRAMS F

The following sample programs illustrate some common features of BASIC and are not

presented as models for programming or mathematical techniques in problem solving.

Example 1:

This program illustrates the use of the DEF and GOSUB statements to calculate the

value P1 by evaluation of a series:

Program:

10
20
25
26
27
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
200

PRINT "CALCULATE A VALUE FOR PI"
PRINT

Z=100000

PRINT “NUMBER OF ITERATIOANS'3Z
PRINT

A=1

B=3

DEF FNAD)Y=(1/D)

DEF FNB(D)=(D-FNA(B))
DEF FNC(D)=(D+FNA(B))
FOR 1=1T0@Z
A=FNBC(AY

GosuB 150

A=FNCCA)

GASUB 150

NEXT 1

GOTO 170

B=B+2

RETURN

PRINT *"PI='"34%A

END

READY .

RUN

174
PRO

CAL
NUM

PI=

19980300 B

/709706« 11.43.28.
GRAM EXAMP

CULATE A VALUE FOR PI1
BER OF ITERATI@GNS 100000

3.1416

Example 2:

This job illustrates the use of a FOR--NEXT loop to calculate a table of factorials.

Program:

10 A=

50 Z=20

60 FOR I=1T0 ¢

70 A=AxI

75 PRINT "FACTORIAL"3I1,A
80 NEXT 1

100 END

READY .

RUN

74709706+« 11.45.31.
PROGRAM EXAMP2
FACTORIAL 1 1
FACTORIAL 2 2
FACTORIAL 3 6
FACTORIAL 4 24
FACTORIAL 5 120
FACTORIAL 6 720
FACTORIAL 7 5040
FACTORIAL 8 40320
FACTORIAL 9 362880
FACTARIAL 10 3628800
FACTORIAL 11 39916800
FACTORIAL 12 479001600
FACTORIAL 13 6.22702E+9
FACTORIAL 14 8.7T1783E+10
FACTORIAL 15 1.30767E+12
FACTORIAL 16 2.09228E+13
FACTORIAL 17 3+55687E+14
FACTORIAL 18 6 +40237E+15
FACTORIAL 19 1.21645E+17
FACTORIAL 20 2+.43290E+18

19980300 B

Example 3:

This job illustrates the sorting of a list of names (string variables) into alphabetic order.

Program:

SP
10
20
30
40
50

REA
RUN

T4
PRrRO

UNS
MAR
JOH
SUE
JOE
JAC
BIL
TED
ANN

SOR
ANN
BIL
JAC
JOE

RINT *UNSORTED LIST"
READ N
FOR 1I=1TO N

READ AS(I)
PRINT ASCI)

NEXT 1
FOR I=1TO N-1
FOR J=I+1TO@ N

IF ASC(I)<AS$(J) THEN 120
LET TS$=ASCI)

LET ASCI)=AS8CJ)

LET A$(J)=TS$

NEXT J

NEXT 1

PRINT

PRINT '*SORTED LIST"
FOR I=1TO N

PRINT ASCI)

NEXT I

SToP

DATA 8

DATA MARY,»JOHN,s SUE,» JOE» JACK,BILL, TED,»ANN

DY.

709706+ 11.48.02.
GRAM EXAMP3

@RTED LIST
Y
N

K
L

TED LIST

L
K

JOHN
MARY

SUE
TED

19980300 B

Example 4:

This job illustrates the inversion of a Hilbert Matrix (n by n) using BASIC matrix operations.
Program:

10 DIM AC20,20),B(20,20)
20 READ N

30 MAT A=CONINsN)

40 MAT B=CONIN,N)

50 FOR I=1T@ N

60 FOR J=1TO N

70 LET ACI,J)=1/(C1+J-1)
80 NEXT J

90 NEXT 1

100 MAT B=INV(A)

110 MAT PRINT B3

190 DATA 4

READY .

RUN

74709706+ 11.49.28.
PROGRAM EXAMP 4

16 -120. 240. =-140.
-120. 1200. ‘2700- 16800
240 (] ‘27000 6480- ’4200 3

-140. 1680. -4200. 2800.

19980300 B

INDEX

ABS Function 2.3-2 DATA Statement (BASIC I/0) 2.4-1,
2.4-4,
Arithmetic 2.4-6,
Arithmetic Operators 2.1-7 2, 4-17
Relational Operators 2.1-8 DATS$ Function 2.3-9
Array 2,2-1 Decimal Constants 2,1-2
Deck Structures 2,9-1
ATN Function 2.1-5 Compile and Execute 2,9-4
Compile, Load, and Execute 2.9-5
BASIC Character Set 2.0-1 DEF Statement (User Function
BASIC Control Card 2,9-2 Definition) 2,3-10
BASE Statement 2.2-1, DELIMIT Statement 2,4-9,
2.2-2, 2,4-12
2,3-2 2.1-5,
Binary Input/Output Statements 2,2-1,
READ 2.4-1, 2,5-1,
2.4-7 2,5-6
WRITE 2,4-1, Diagnostics
2.4-8 Compile Time B-1
. . Execution Time B-3
BA T 1 t «9- . N ;
el Operations 5oy Direct Access File (KRONOS/NOS) E-1
Brar RONOS/NOS 2.9-7 END Statement 2, 2-9
GOT(g) Statement 2.9-5 Error Messages (see Diagnostics)
5 Error Processing
IF Statement 2.2-4 ESL Function 2.6-9
ON GOTO Statement 2.2-5 ESM Funetion 2. 6-3
JUMP Statement 2,6-2
CHANGE Statement 2.2-9 ON ERROR Statement 2.6-1
Character Sets EOL 2. 4-11
BASICﬂCharacter Set 2.0-1 ESL/ESM Functions 2. 6-1
SCOPE A-2 through 2. 6-3
KRONOS/NOS aroughs 1
TTY A-4 Examples . F-
EXP Function 2.3-2
Batch A-6 Explicit Di .. 2.5-1
CLK Functions 2.2-9, 2,3-7 T tial Constanis 2 1.9
Coded Format Files 2.4-1 E};gggztsliois onstants *
INPU'I; Statement 2.4-9 Arithmetic 2,1-6
PRINT Statement 2.4-14 String 2.1-7
"INPUT" filename 2.4-2 Relational 2,1-8
"OUTPUT'" filename 2.4-2
Comments :) -
REM Statement, Remarks, Fll%i%rf é?;f:r?laéln?ata Blocks 3' i_é
Constanga rents 2.2-1 FILE Statement 2, 4-4
Numeric 9.1-1 NODATA Statement 2,4-5
: ° RESTORE Statement 2,4-6
String 2,1-3 . .
COS Function 2,3-2 File Ordinal 2,4-3
CR 9. 4-12 FOR Statement 2.2-6

19980300 B Index - 1

Format
Output Format, Numeric
Output Format, String
Print Line Zoning
Statement Structure
Functions
DEF Statement (User Function
Definition)
Mathematical Functions
User Function Referencing
System Functions
String Functions
Length Function
String Function
Substring Function
Value Function

GOTO Statement, Looping

GOSUB Statement, Branching

Integer Constants
IF Statement
IMAGE Statement

Alphanumeric Format
Fixed Point Format
Floating Point Format
Integer Format

Specification Control
Characters

INPUT Statements
MAT INPUT

INPUT

INT Function

Integer Constant

INTERCOM
BYE Command
COMMAND Mode
CRT Terminal
DELETE Command
Dial-In Procedure
EDITOR
FORMAT Command
LIST Command
LOG-IN
PROGRAM Execution
Remote Terminals
Replace Text Command
SAVE Command
TTY Terminal

Keyboard

Index - 2

NN N
.

Or;r:-i-b'rh

N P
©©ooq

o

L]
[
'S

LOLOLOLW LR LWL
[}
== O 0000 ~T N

.
[
N O

NDNNDDNDNDNDNN DN

NN N
¢ o o
wWwwi
] 1
=t = O O

N

0
)

.
[

.
11
-

NMNNMNNNMDNDNMDNNDNDNDDND DN
°

1
[\~
N

.
!
-

DD DO DO DD CO DN S
B DD ORORWR

[\
.

.
-

[CECEXECENY
.

-0 1Ot
1

SRR X

=3
1

2

.
-3
[

N OO W

0,21

..
-3 =3 =3 =3
H

MDNNMNNNNMNNDDNDNON N
e o o
3 =3
1

,.

8

. o
i !
o w

1
NN H WA OR

...
33 =3 =333
| I]

o ©

2.7-1

INTERCOM COMMANDS
BASIC
BRESEQ
CONNECT
Data Files
DISCARD
DISCONT
EDIT
EFL
ETL
EXECUTE
FETCH

FILE
FILES
LDSET
LIBLOAD
LOAD
LOGOUT
NOGO
RETURN
RUN
Sample Session
SATISFY
SLOAD
STORE
XEQ

JUMP Statement
KRONOS/NOS Commands
ATTACH
CATLIST
CHANGE
DEFINE
GET
LIBRARY
LIST
NEW
NODROP
OLD
PURGE
REPLACE
RETURN
RUN
CRT TERMINAL DESCRIPTION
Dial-In Procedure
Sample Session
TTY Terminal Description

LENGTH (LEN) Function
LET Statement
Local Files

LOG Function
Looping
GOTO Statement
FOR Statement
NEXT Statement

L] .
i
[Y el

1

DDNMNDNNDNNNDNDND DN
.

1
Pt e e b G b b s QO RS s DN

1

.
PSRN [P IO (PN K P, [P, (PG PG P T, TP, B B B B e B B e B e B B
UM =-TWONTJUIONTANN TTINNDWHhWOWHOO

NNMNMDNNMDNMDNMNNDNDNDDNDDNDNND
.

Pt

N

L]

(=2}
1

1
w

LI B |
-

mmr:jtq“’
Y- S 1}

1
. w

[L
0O 00 00 Q0 = b b b bbb p=b = =3 b I\D QO b= b=
- -
=H o
1 1
o N

mmmmmmmmmymmmmmmmm
HOO[{DW

NN DN

e o o

DN W
]

= N OO

> 5
D
1

N'.

N D DN
.
DD DN
]
[orNer NG}

°
1

19980300 B

MARGIN Statement
MAT INPUT Statements

MAT PRINT Statements
MAT READ Statements
MAT WRITE Statement

Mathematical Functions

Matrix Arithmetic
Matrix Generation

All zeroes (ZER)

All ones (CON)

Identity matrix (IDN)
Matrix Inversion (INV)
Matrix Redimensioning
Matrix Transposition (TRN)

Nested Loops
NEXT Statement
NODATA Statement
Numeric
Numeric Constant
Output Format
Numeric Array
NXL Function

ON ERROR Statement
ON ERROR GOTO Statement
ON ERROR THEN Statement
ON GOTO Statement
Operations
BATCH Operations
BATCH Terminal Operations
KRONOS/NOS
SCOPE (INTERCOM)
Output
Examples
Numeric Format
Print Line Zoning
Statement Structure
String Format

Permanent File (KRONOS/NOS)
Predefined Functions
Primary File
PRINT Statements
MAT PRINT
PRINT

PRINT USING
Print Line Zoning
Quoted Strings
READ Statements

MAT READ Statements
READ Statement

19980300 B

2,4-22 Relational Operators 2,1-8
2.5-6, REM Statement (Comments,
2.5-8 Remarks) 2, 2=1
2.5-9 Remote Terminals (TTY) 2.7-1,
2,5=-7 2.8-1
2.5-7, RESTORE Statements 2.4-5
2,5-9 RETURN Statement 2,3-17
2.3-1, RND Function 2.3-2
2,3-2 through 2,3-6
2,5-2 ROF Function 2,3-2
2.5-4 Secondary File E-1
2.5-4 SETDIGITS Statement 2.4-31
2.5-4 SGN Function 2.3-2
2.5-4 SIN Function 2,3-2
2.5-4 SQR Function 2,3-2
2.5-6 Statement Structure 2,0-2
2,5-4 STOP Statement 2,2-9
Simple Strings 2.1-4
2.2-8 String Array 2.1-4,
2,2-6 2.2-2
2.4-6 String Constants 2,1-3
String Comparison 2,1-8,
2.1-1 2,1-9
2.4-16 String Function (STR$) 2,2-10,
2.2-2 2,3-9
2.6-2, String /Number
2.6-3 Conversion (CHANGE Statement) 2,2-9
String Output Formats 2,4-18
PRINT Zoning 2.4-19
2.6-1 Subscripted String 2,1-4
2, 6-1 Substring Function (SUBSTR) 2,3-10
2.6-1 Extraction ' 2,3-10
2,2-5 Insertion 2,3-11
Subroutine 2.3-1
2,9-1 GOSUB Statement 2.3-1,
2.3-186,
2,9-7 2.3-17
2,9-6 RETURN Staternent 2,3-1,
. 2,3-16,
F~1 2,3-17
2.4-16 System Functions 2.3-17
2,4-19
2.0-2 TAB Function 2,4-22
2.4-18 TAN Function 2.,3-2
TIM Function 2.3-7
E-1
2. 3-1 Unquoted Strings 2,1-3
E-1 USER Function Definition
(DEF Statement) 2,3-13
2.5-9 User Function Referencing 2,3-14
2.4-14,
2.4-22 VALUE Function 2.2-10,
2,4-14, 2,3-12
2,4-23 Variables
2,4-19 Simple, Numeric 2,1-3
Simple, String 2,1-4
2,1-3 Subscripted 2,1-4,
2,1-5
2.5-7 WRITE Statements
2.4-7, MAT WRITE 2.5-17,
2,4-9 2.5-9
WRITE 2.4-8

Index - 3

CUT ALONG LINE

PRINTED IN USA

AA3419 REV. 11/69

COMMENT SHEET

MaNUAL TiTLe . CONTROL DATA®BASIC LANGUAGE REFERENCE MANUAL

VERSION 2.1 FOR KRONOS 2.1, NOS 1.0 AND SCOPE 3.4

PUBLICATION No. 19980300 REVISION B

FROM: NAME:

BUSINESS
ADDRESS:.

COMMENTS:

This form is not intended to be used as an order blank. Your-evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may
be made below. Please include page number references and fill in publication revision level as shown by
the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged
to use the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

FOL.D ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD
FIRST CLASS
PERMIT NO. 8241
MINNEAPOLIS, MINN.
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Technical Publications Department
4201 North Lexington Avenue
Arden Hills, Minnesota 55112

CUT ALONG LINE

CONTROL DATA

T ¢
R A O N

CORPORATE HEADQUARTERS, 8100 34th AVE. SO.. MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

LITHO IN US.A.

g | AL ;

