19983900

G 9 CONTROL DATA
CORPORATION

BASIC
VERSION 3
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1

APPEND

CALL
CHAIN
CLOSE

DATA
DEF
DELIMIT
DIM

END

FILE
FNEND
FOR

GOSUB
GOTO

Mathematical

ABS
ATN
cos
cor

ROF
SGN
SIN
SQR
TAN

Error and Interrupt Processing

ASL
ESL
ESM
NXL

19983900 K

INDEX TO BASIC STATEMENTS AND FUNCTIONS

7-6

\IOI'\O\
s~ W

7-25
5-11
7-12
3-3

ummmwmmmglnmuwu-mmwu-
NN NDNRNDNDNDNDNDNDNDNDND NN

STATEMENTS

IF

IF END

IF GOTO ELSE
IF MORE

IF THEN ELSE
image

INPUT

JUMP

LET

MARGIN

MAT assignment
MAT INPUT

MAT PRINT

MAT PRINT USING
MAT READ

MAT WRITE

NEXT
NODATA

FUNCTIONS

String

ASC
CHR$
LEN
LPADS
LTRM$
LWRCS
ORD
POS
RPADS
RPTS
RTRMS
STR$
UPRCS
VAL

System

CLK
CLK$
DAT$
TIM
USR$

7-24

8-10
8-11
8-12
8-9
8-9

4-3
7-4

WVWWOWWOWOWORONNNOU &

U‘U‘l’»f\kﬂul
B o A

ON ATTENTION
ON ERROR

ON GOSUB

ON GOTO
OPTION

PRINT
PRINT USING

RANDOMIZE
READ

REM

REM LIST
REM TRACE
RESTORE
RETURN

SET
SETDIGITS
STOP

WRITE

Matrix Manipulation

CON
DET
IDN
INV
TRN
ZER

Input/Output

LoC
LOF
TAB

19983900

@ CONTROL DATA
CORPORATION

BASIC
VERSION 3
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1

REVISION RECORD

—

Revision

A (06/23/75)

-}

(11/05/75)

Q

(02/15/76)

o

(05/23/78)

1

(11/10/78)

F (07/20/79)

@

(10/31/80)

H (02/26/82)

J (04/06/83)

K (08/31/84)

Description .
Original printing.

Includes corrections to revision A and user information pertaining to the Network
Operating System/Batch Environment (NOS/BE Version 1.0).

Includes minor editorial changes to revision B, plus modifications for the following new
features: CHAIN Statement, user number function, file number 0, trace option, comments
at end of source lines, positioning beyond bad input items, and improved field length
management.

Revised to include new features upgrading the products to BASIC Version 3.2, PSR level
472. These consist of the IF...THEN...ELSE statement and the capability to handle large
strings.

Revised to include new features upgrading the product to BASIC Version 3.3, PSR level
485. These consist of the RPT function and the ON ATTENTION statement.

Revised to reflect BASIC 3.4. The changes and additions include substring addressing;
CYBER Interactive Debug facility; eight new string functions (LPAD$, LTRMS§, LWRC$, ORD,
POS, RPAD$, RTRM$, and UPRC$); alphabetic characters in file name must be uppercase; CALL
statement limitation with IF...THEN...ELSE; operating system terminology; and
miscellaneous changes. This printing obsoletes all previous editioms.

Revised to conform to the American National Standard for Minimal BASIC (ANSI). Changes
and additions include new statements OPTION and RANDOMIZE; subscript and index rounding;
FOR...NEXT control variable value; handling of unquoted strings; new RND and DET function
forms; default array base 0 (zero); formatting of large integers; new TAB features; ASCII
default collating sequence; print comma spacing control; redimensioning result matrices;
reading numeric data as string data; INPUT validation; other miscellaneous changes; and
appendixes explaining guidelines for a possible CDC merge to ANSI standard BASIC and the
difference between BASIC 3.4 (last revision) and BASIC 3.5 (this revision). Released at
PSR level 528. This printing obsoletes all previous editionms.

Revised at PSR level 552 to reflect BASIC 3.5, which supports NOS Version 2, and to
clarify use of the RESTORE statement with the SET statement, use of a carriage return as
a delimiter, and use of format 2 of the PRINT and PRINT USING statements when files are
connected to the terminal. This revision also includes a new appendix on in-line editing
commands, two new compile time diagnostics, and miscellaneous changes. This printing
obsoletes all previous editioms.

Revised at PSR level 577 to include corrections which change line numbering range from 1
to 99999, to 0 to 99999, and define rules for unquoted strings. The BASIC language
command summary card has been removed from the manual and is published as a separate

" summary card, publication number 60482800. Appendix J now contains a summary of BASIC

language formats. Several minor corrective changes are also included.

Revised at PSR level 617 to include miscellaneous corrections and modifications to the
print density control, page size control, burstable listing comtrol, NODATA statement,
and CHAIN statement.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©COPYRIGHT CONTROL DATA CORPORATION P. 0. Box 3492

1975, 1976, 1978, 1979, 1980, 1982, 1983, 1984 * SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved

Printed in the United States of America - or use Comment Sheet in the back of this manual
ii 19983900 K

LIST OF EFFECTIVE PAGES

L~ R

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revigion

B-12 H
c-1

c-2

p-I thru D-5

E-1

E~2

F-1

F-2

G-1

H-1 thru H-3

I-1 thru I-3

J-1

J-2 thru J-4

K~1 thru K-6
Index~1

Index-2

Index-3

Index-4

Comment Sheet/Mailer
Inside Back Cover
Back Cover

N

Front Cover

Inside Front Cover
Title Page

ii

iii/iv

v

vi

vii

viii

ix

X
xi/xii

xiii

1-1 thru 1-17
2-1

2-2

2-3

2-4 thru 2-8
3-1 thru 3-5
4~1

4-2

4-3 thru 4-6
4-7 thru 4-9
5-1

5-2 thru 5-8
5-9

5-10

5-11

5-12

5-13

5-14

6-1 thru 6-5
6-6

7-1

7-2

7-3 thru 7-5
7-6

7-7

7-8

7-9 thru 7-12
7-13 thru 7-15
7-16 thru 7-24
7-25

7-26

8-1 thru 8-13
9-1

9-2 thru 9-7
10-1

10-2" thru 10-6
11-1 thru 11-5
12-1 thru 12-3
12-4 thru 12-6
A-1 thru A-4
B-1

B-2 thru B-5
B-6

B-7

B-8 thru B-11

IR IR R R RN NN P XN NN

@EQERNERDE DR KR G PR R R R R R N R R G P PR R N R P R R G N RN X EREARRI R

19983900 K : iii/iv

PREFACE

This manual describes the BASIC Version 3.5 language
which operates under control of the following
operating systems:

NOS 1 for the CONTROL DATA® CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000

Series Computer Systems

NOS 2 for the CDC® CYBER 170 Series; CYBER 180
Series; CYBER 70 Models 71, 72, .73, and 74; and
6000 Series Computer Systems

NOS/BE 1 for the CDC CYBER 170 Series; CYBER 70
Models 71, 72, 73, and 74; and 6000 Series
Computer Systems

Any reference to NOS refers to either the NOS 1 or
NOS 2 operating system. In all instances where the
two operating systems differ, NOS 1 or NOS 2 is
specified.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear
in appendix E. Before using the software described

in this manual, the reader is strongly urged to
review the content of this appendix. The guide-

lines recommend use of this software in a manner
that reduces the effort required to migrate appli-~
cation programs to future hardware or software
systems.

BASIC 3 is an extension of the original BASIC
language which was designed and implemented at the

Dartmouth College Computation Center. Although
BASIC is normally used interactively from a remote
terminal, BASIC programs can be compiled and exe-
cuted as batch programs. The CDC CYBER Interac-—
tive Debug (CID) facility can be used in interactive
mode to debug a BASIC program.

BASIC is an all-purpose programming language that

includes features which render it well-suited for

scientific, business, and educational applications.

BASIC provides a small but powerful set of easy-to-

learn statements that are similar to English and

written in free format. Some of the more important
- features provided by BASIC are:

Numeric and character string manipulation
Array definition and redimensioning

Access to trigomometric, matrix, and string
functions

Facility for writing multiple~line and multiple-
argument user-defined functions

Facility for calling BASIC and non-BASIC
subroutines

Facility to chain to other BASIC programs

19983900 K

Matrix I/0 for 1- and 2-dimensional numeric and
string arrays

Output format determination, including various
commercial formats

Manipulation of coded and binary files, includ-
ing random access for binary files

Error detection and processing during program
execution

Facility to trace program flow

Facility to debug a program (CYBER Interactive
Debug)

This document is intended to describe these and
other BASIC features to both the nonprogrammer and
the experienced programmer. The information in
this manual is provided in three major parts:

Section 1 is a primer or introduction to the
BASIC language directed at the nonprogrammer.
Appendix H contains sample BASIC programs.

Sections 2 through 12 include reference infor-
mation that expands on section 1 information
and is directed at the experienced programmer.
Appendixes A through D and I support and
summarize information in these sections.

Appendix E contains general feature use guide—
lines to ensure ease of migration to future
hardware or software systems and appendix F
contains an overview of the differences between
this version of BASIC (BASIC 3.5) and the pre-
vious version (BASIC 3.4). Appendix G summa-
rizes those features that are described in the
American National Standard for Minimal BASIC as
implementation-defined.

The BASIC language command summary card, publication
number 60482800, provides a convenient summary and
brief description of the BASIC language formats.

You can find additional pertinent information in
the Control Data Corporation manuals. The NOS
Manual Abstracts and the NOS/BE Manual Abstracts
are pocket-sized manuals containing brief descrip-
tions of the contents and intended audience of all
NOS and NOS/BE manuals and all the product set
manuals of these two systems. The abstracts manuals
can be useful in determining which manuals are of
greatest interest to a particular user. The Soft-
ware Publications Release History serves as a guide
in determining which revision level of software
documentation corresponds to the Programming System
Report (PSR) level of installed site software.

The manuals are listed alphabetically in groupings
that indicate relative importance to the readers of
this manual.

vi

The

The

following manuals are of primary interest:

Publication
Publication - Number NOS 1 NOS 2 NOS/BE
Network Products Interactive Facility
Version 1 Reference Manual 60455260 X
Network Products Interactive Facility
Version 1 User’s Guide 60455250 X
NOS Version 1 Reference Manual,
Volume 1 of 2 60435400 X
NOS Version 2 Reference Set,
Volume 3 of 4, System Commands 60459680 X
NOS/BE Version 1 Reference Manual 60493800 X

following manuals are of secondary interest:

: Publication :
Publication Number NOS 1 NOS 2 NOS/BE
CYBER Interactive Debug
Version 1 Reference Manual : 60481400 X X . X
CYBER Loader Version 1 Reference Manual 60429800 X X
INTERCOM Version 5 Reference Manual 60455010 X
NOS Time-Sharing Version 1 User’s Guide 60436400 X
NOS Time~Sharing Version 1
User’s Reference Manual 60435500 X
NOS Version 1 Manual Abstracts 84000420 X
NOS Version 2 Manual Abstracts 60485500 X
NOS/BE Version 1 Manual Abstracts 84000470 X
Software Publications Release History 60481000 X X
Text Editor Reference Manual 60436100 X X
XEDIT Version.3 Reference Manual 60455730 X X

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

19983900 H

NOTATIONS
1. BASIC PRIMER

Programming and Languages
Statement of the Problem
Analysis of Statements
REM Statement
LET Statement
PRINT Statement
IF, GOTO, and END Statements
Break-Even Program and Output
Expressions in BASIC
Arithmetic Expressions
Relational Expressions
Defining and Reading Data
DATA and READ Statements
Looping in BASIC
IF and GOTO Statements
FOR and NEXT Statements
Lists and Tables
Terminal Input and Output (I/0)
Using BASIC Under NOS and NOS/BE
NOS
Login, Execution, and Logoff
Procedures for the Interactive
Facility
Login, Execution, and Logoff
" Procedures for the Time-Sharing
- System .
Sample Terminal Session
NOS/BE
Sample Terminal Session

2. ELEMENTS OF THE BASIC LANGUAGE

BASIC Language Structure
Character Set
Statement Structure
Program Structure
Constants
Numeric Constants
Integer Constants
Decimal Constants
Exponential Constants
String Constants
Variables
Simple Variables
Numeric
String
Subscripted Variables
Substring Addressing
Expressions
Arithmetic Expressions
Rules for Writing Arithmetic
Expressions
Arithmetic Expression Evaluation
String Expressions
Concatenation
Relational Expressions
Simple Relational Expressions
Compound Relational Expressions

19983900 H

CONTENTS

TETTTTT
NN N

1

|
OO W

r-Tn—-TT»—-»-v—-»—-
(W RN TR, R Y

T
© W

1-10
1-10

1-10

1-12
1-12
1-14
1-16

N
I
o

L
-

REERYY
NNNON - -

Nl})N

TEERLYRY
VP LLLWWWN

[
1
v

3. FUNDAMENTAL STATEMENTS

Value Assignment
LET Statement
OPTION Statement and DIM Statement
OPTION Statement
OPTION BASE n
OPTION COLLATE
DIM Statement
Program Comments
REM Statement
Tail Comments
Program Termination
STOP Statement
END Statement

4. BASIC FLOW CONTROL STATEMENTS

Test and Branch Statements

GOTO Statement

ON GOTO Statement

IF Statement

IF...THEN...ELSE Statement
Looping

FOR...NEXT Statements
Error and Interrupt Processing

ON ATTENTION Statement

ON ERROR Statement

JUMP Statement

ASL Functiom

ESL Function

ESM Function

NXL Function

5. . BASIC FUNCTIONS

Referencing a Function
Mathematical Functions
Random Number Generation
RND Function
RANDOMIZE Statement
System Functions
String Functions
ASC Function
CHR$ Function
LEN Function
LPAD$ Function
LTRMS$ Function
LWRC$ Function
ORD Function
POS Function
RPAD$ Function
RPT$ Function
RIRM$ Function
STR$ Function
UPRC$ Function
VAL Function

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-5

4-1
4-1
4-2
4-2
4-3
4-3
4-3
4~5
4-5
4~6
4-6
4-8
4-8
4-9
4-9

5-1
5-1
5~1
5-2
5-3
5-3
5-4
5-4
5-4
5-5
5-6
5-6
5~7
5-7
5-7
5-8
5-8
5-9
5-9
5-9
5-9

vii

Error And Interrupt Processing
Matrix Functions
I/0 Functions
User-Defined Functions
Single-Line Function Using DEF

Multiple-Line Functions Using DEF...FNEND

6. SUBROUTINES, SUBPROGRAMS, AND CHAINING

BASIC Subroutines

GOSUB Statement

ON GOSUB Statement

RETURN Statement
External Subprograms

CALL Statement

Writing External Subprograms
Program Chaining

CHAIN Statement

CHAIN Processing

7. 1/0 STATEMENTS AND FUNCTIONS

BASIC Files and File I1/0 Statements
File Access Methods
Permanent File Access
FILE Statement
CLOSE Statement
File Control Statements
RESTORE Statement
NODATA Statement
IF END Statement
IF MORE Statement
APPEND Statement
Binary I/0 Statements and Functions
WRITE Statement
READ Statement
SET Statement
LOC Function
LOF Function
Display Format I/0 Statements and Functions
INPUT Statement
Terminal Input
File Input
DELIMIT Statement
DELIMIT Not in Effect (Normal Case)
DELIMIT in Effect
PRINT Statement
Default Print Formats
Numeric Formats
String Formats
Print Zoning
TAB Function
PRINT USING Statement
Image
Format Fields
Order Restrictions
Special Cases
MARGIN Statement
SETDIGITS Statement
Internal Data Table I/0
DATA Statement
READ Statement

8. MATRIX OPERATIONS
Matrix Definition and Declaration
Array Boundaries

Array Declaration
Redimensioning

viii

5-9

5-10
5-10
5-10
5-11
5-13

6-1
6-1
6-2

6-3
6-3
6-5
6-5
6-5
6-6

~
|
—

1 PoE 1
NNV EPSEPRPPWVWWLWN -

41
[r-Rv-JV-]

7
7-10
7-10
7-10
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-14
7-15
7-15
7-17
7-18
7-20
7-22
7-24
7-24
7-24
7-25
7-26

Matrix Arithmetic
Matrix Assignment
Matrix Addition
Matrix Subtraction
Matrix Multiplication
Matrix Scalar Multiplication
Matrix Functions
Matrix CON Function
Matrix IDN Function
Matrix ZER Function
Matrix INV Function
Matrix TRN Function
Matrix DET Function
Matrix 1/0
MAT WRITE Statement
MAT READ Statement
MAT INPUT Statement
MAT PRINT Statement
MAT PRINT USING Statement

9. DEBUGGING

BASIC Debug Features
Inserting PRINT Statements
Conditional Trace Statement
Unconditional Trace Parameter
CYBER Interactive Debug)
Entering and Exiting the CID Environment
Executing Under CID Control
Referencing BASIC Line Numbers and Variables
Variables :
Line Numbers
Resuming Program Execution
GO Command
GOTO Command
STEP Command
Setting and Clearing Breakpoints and Traps
SET BREAKPOINT Command
CLEAR BREAKPOINT Command
SET TRAP Command
CLEAR TRAP Command
Default Traps
Displaying Program Values
PRINT Command for CID
MAT PRINT Command for CID
LIST VALUES Command
Changing and Testing Program Values
LET Command for CID
IF Command for CID
Other Commands and Features

10. TERMINAL OPERATION UNDER NOS

Entering a Program
BASIC Subsystem

BATCH Subsystem

Using Data Files
Renumbering BASIC Lines

11. TERMINAL OPERATION UNDER NOS/BE

Entering a Program

Interactive BASIC Terminal Session
Using the BASIC Command Interactively
Using Data Files

Renumbering BASIC Lines

8-2
8-2
8-3
8-3
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8-8
8-8
8-8
8-9
8-9
8-10
8-11
8-12

10-1

10-1
10-1
10-1
10-1
10-4

11-1
11-1
11-1
11-4
11-5

19983900 H

12. BATCH OPERATIONS

Deck Structure
BASIC Control Statement
REM LIST Statement

Batch Processing From a Terminal
NOS
NOS/BE

APPENDIXES

A Character Sets

B Diagnostics

C Glossary

D NOS File Handling

E Future System Migration Guidelines

F Differences Between BASIC 3.5 and

BASIC 3.4

G Implementation-Defined Features

H Sample BASIC Programs

I In-Line Editing Commands

J Language Summary

K BASIC Control Statement Parameters

INDEX

FIGURES

1-1 Break-Even Program

1-2 REM Statement Lines

1-3 LET Statement Lines (Constants)

1-4 LET Statement Lines (Formulas)

1-5 PRINT Statement Lines

1-6 IF, GOTO, and END Statement Lines

1-7 Break-Even Program and Output

1-8 LET Statement Value Assignment

1-9 Break-Even Program With READ and DATA
Statements

1-10 Break-Even Program With IF and GOTO
Statements

1-11 Break-Even Program With FOR and NEXT
Statements

1-12 Break-Even Program With DIM Statements

1-13 Array V

1-14 Placing Data Into Arrays

1-15 PRINT Statements for Array Elements

1-16 Break-Even Program With DIM Statements
Output

1-17 Break-Even Program With INPUT Statement

1-18 Break-Even Program With INPUT Statement
Interactive Input/Qutput

1-19 NOS Login Examples

1-20 Sample Timesharing Login)

1-21 TIAF System

1-22 OLD Command Accesses Permanent File
Under NOS

1-23 Editing a Program Under NOS

1-24 BASIC Program Under NOS/BE

1-25 Retrieval and Execution Example

2-1 Numeric and String Subscripted Variables

2-2 Substring Addressing Format

2-3 String Concatenation Format

2-4 Format for Simple Relational Expressions

2-5 Evaluating Simple Relational Expressions

2-6 Format for Compound Relational
Expressions

3-1 LET Statement Format

3-2 LET Statement Examples

3-3 Substring Addressing Using LET Statement

3-4 OPTION Statement Formats

3-5 DIM Statement Format

19983900 K

12-1

12-1
12-1
12-4
12-4
12-5
12-5

A-1
B-1
Cc-1
D-1

CE-1

F-1
G-1
H-1
I-1
J-1
K-1

bt
[UL
WNNN -~

Ll N S
1

|
-~ ww

1-9

1-9

1-12
1-12
1-13

1-14
1-15
1-16
1-17
2-4
2-4
2-6

2-7

2-7
3-1
3-1
3-2
3-3
3-3

DIM Statement Examples

REM Statement Format

REM Statement Examples

STOP Statement Format

END Statement Format

GOTO Statement Format

Infinite Loop

ON GOTO Statement Format

Example of ON GOTO and GOTO Statements

IF Statement Format

IF Statement Examples

Nested IF...THEN Statement Example

IF...THEN...ELSE Statement Format

IF...THEN...ELSE Statement Examples

FOR...NEXT Statement Formats

Loop With Specified STEP Value

Control Variable Value Changed

Loop Exit Effect on Control Variable

FOR...NEXT Statement Examples

FOR...NEXT Loops

ON ATTENTION Statement Formats

ON ATTENTION Statement Example

ON ERROR Statement Formats

JUMP Statement Format

Example Using ON ERROR, JUMP, ESL, ESM,
and NXL

ASL Function Format

ESL Function Format

ESM Function Format

NXL Function Format

Function Reference Format

ABS and SQR Functions Example

RND Function Format

RND Function Example

RANDOMIZE Statement Format

RANDOMIZE Statement Example

Program Using System Functions CLK$,
DAT$, and TIM

ASC Function Format

CHR$ Function Format

CHR$ Function Example

LEN Function Format

LEN Function Example

LPAD$ Function Format

LPAD$ Function Example

LTRM$ Function Format

LTRM$ Function Example

LWRC$ Function Format

LWRC$ Function Example

ORD Function Format

ORD Function Example

POS Function Format

POS Function Example

RPAD$ Function Format

RPAD$ Function Example

RPT$ Function Format

RPT$ Function Examples

RTRM$ Function Format

RTRM$ Function Example

STR$ Function Format

STR$ Function Example

UPRC$ Function Format

UPRC$ Function Example

VAL Function Format

VAL Function Examples

Single~Line Function Using DEF

Single~Line Function Examples Using DEF

Multiple-Line Function Format With
DEF...FNEND

Multiple-Line Function Examples Using
DEF. . .FNEND

BASIC Subroutine and RETURN Statement

GOSUB Statement Format

Nested Subroutines

3-4
3-4

3-5
3-5
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
b=k
b=t
bk
4-5
4-5
45
4-5
4-7
4-7
4-7

4-8
4-8
4-9
4-9
4-9
5-1
5-1
5-2
5-3
5-3
5-3

5-4
5-4
5-5
5-6
5-6
5-6
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-7
5-7
5~-8
5-8
5-8
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-11
5-12
5-13
5-14
6-1

6-1
6-2

ix

6-4
6-5
6-6

6-10

ON GOSUB Statement Format

ON GOSUB Statement Example

RETURN Statement Format

CALL Statement Format

BASIC Program Call to FORTRAN Subprogram
CHAIN Statement Format

Keywords for Optional Values

CHAIN Processing Example

FILE Statement Format

FILE Statement Examples

CLOSE Statement Format -~

CLOSE Statement Example

RESTORE Statement Format

RESTORE Statement Example

NODATA Statement Format
End=of~Information Processing

IF END Statement Format

IF END Statement Example

IF MORE Statement Format

IF MORE Statement Example

APPEND Statement Format

APPEND Statement Example

WRITE Statement Format

WRITE Statement Example

READ Statement Format

READ Statement Example

SET Statement Format

SET Statement Example

LOC Function Format

LOF Function Format

Example of LOC and LOF Functions
INPUT Statement Format

INPUT Statement Example

DELIMIT Statement Format

PRINT Statement Format

PRINT Statement Example

Program Example of Numeric Formats
String Formats Using the PRINT Statement
Use of Semicolon With Numeric Data
Use of Semicolon With String Data
Print Zoning Examples

TAB Function Format

TAB Function Examples

PRINT USING Statement Foimats

The Image for a PRINT USING Statement
Image Statement Format

Image With PRINT USING Statement
Delimiters in Image

Delimiters in Image Reused

Format Field Types

Sign and Edit Option Examples
Fields of Image Statement Identified
Field Character in Literal
Correction of Field Character Use
Special Cases for Format Fields
MARGIK Statement Formats

MARGIN Statement Example

Program Example Using MARGIN Statement
SETDIGITS Statement Format

SETDIGITS Statement Example

DATA Statement Format

DATA Statement -Examples

READ Statement Format

READ Statement Example

Array A(2,4) With OPTION BASE 0
Array (2,4) With OPTION BASE 1
Fortiats for Redimensioning Specifiers
Redimensioning Exatiple Using MAT READ
Matrix Assignment Statement Format
Matrix Assignment Example

L
(SR R N V)

Noooumuwkm

NN
U
NN N

7-8
7-8

8-7
8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8~19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
9-1

9-2

9-3

9-4

9-5

9-6

9-7

9-8

9-9

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9=25
9=26
9-27
10-1
10=2
10-3

10-4
10-5
10=6
i1=1
11-2
11=3
114
11-5
12-1
12=2

Matrix Addition Format

Matrix Addition Example
Matrix Subtraction Format
Matrix Subtraction Example
Matrix Multiplication Format
Matrix Multiplication Example
Scalar Multiplication Format
Scalar Multiplication Example
Matrix CON Function Format
Matrix CON Function Example
Matrix IDN Function Format
Matrix IDN Function Example
Matrix ZER Function Format
Matrix ZER Function Example
Matrix INV Function Format
Matrix INV Function Example
Matrix TRN Function Format
Matrix TRN Function Example
Matrix DET Function Format
Matrix DET Function Example
MAT WRITE Statement Format

MAT WRITE Statement Example
MAT READ Statement Format

MAT READ Statement Example
MAT INPUT Statement Format

MAT INPUT Statement Example
MAT PRINT Statement Formats
MAT PRINT USING Statement Formats
MAT PRINT USING Statement Example
REM TRACE Statement Formats
REM TRACE,ALL Example

REM TRACE Statement Example
Variables Examples

Line Number Referencing Format
GO Command Format

GOTO Command for CID Format
STEP Command Format

STEP Message Format

SET BREAKPOINT Command Format
SET BREAKPOINT Examples
Breakpoint Message Format
CLEAR BREAKPOINT Command Format
CLEAR BREAKPOINT Examples

SET TRAP Command Format

Trap Message Format

SET TRAP Command Examples
CLEAR TRAP Command Format
CLEAR TRAP Examples

PRINT Command for CID Format
PRINT Command for CID Examples
MAT PRINT Command for CID Format
MAT PRINT Command for CID Examples
LIST VALUES Command

LET Command for CID Format

LET Command for CID Examples
IF Command for CID Format
BASIC Subsystem Under NOS

OLD Command Under NOS

Program Executed Interactively Under

BATCH Subsystem
Using Data Files Under NOS
RESEQ Command Format
RESEQ Command Example
Interactive BASIC Terminal Session

BASIC Command Parameters Under NOS/BE

Using Data Files Under NOS/BE
BRESEQ Command Format

BRESEQ Command Example

Job Structure Under NOS

Job Structure Under NOS/BE

8-3
8-3
8-4
8-4
8-4
8-4
8-4 |
8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-9
8-9
8-9
8-10
8-10
8-11
8-11
8-12
8-12
9-1
9-2
9-2
9-3
9-3

w

O \C WO DD
I rr

[
NN o ULULMULULULUULMEERPRPREW

N'O\O\O\D\IO\O\O\O

[Y-JAV- RV IV]
1 1 11

o
1

9-7
9-7
10-2
10-3

10-3
10-4
10-5
10-6
11-2
11-4
11-4
11-5
11-5
12-1
12-1

19983900 H

12-3
12-4

12-5
12-6
12-7

12-8
12-9

BASIC Compile and Execute Job Under NOS

BASIC Compile and Execute Job Under
NOS/BE

BASIC Compile to Binary File, Load,
and Execute Job Under NOS

BASIC Compile to Binary File, Load,
and Execute Job Under NOS/BE

REM LIST Statement Format

REM LIST Statement Example

Batch Processing From a Terminal
Under NOS 1

12-10 Batch Processing From a Terminal

Under NOS/BE

12-11 Printing a Batch Job

TABLES

1-1 Arithmetic Operators

1-2 Relational Operators

2-1 BASIC Character Set

2-2 Arithmetic Expression Operator

Hierarchy
Expression Evaluations
Relational Expression Operators
Logical Operator Hierarchy
NOT (UNARY) Operator Evaluations
AND Operator Evaluations

19983900 K

12-2
12-2
12-3
12-3
12-4
12-5
12-5

12-6
12-6

2-8
3-1
3-2
3-3
3-4
4-1
4-2
4-3

5-1
5-2

U]

m@m\lTl\l\l\l\l
LN W -

OR (INCLUSIVE) Operator Evaluations

Value Assignment

OPTION and DIM Statements

REM Statement and Tail Comment

END and STOP Statements

Test and Branch Statements

Looping Statements

Error and Interrupt Processing
(Statements and Functions)

Mathematical Functions

Predefined System Functions

String Functions

Error and Interrupt Processing
Functions

Matrix Functions

1/0 Functions

User-Defined Functions

Subroutine, Subprogram, and Chaining
Statements

I/0 Statements and Functions

I/0 Statements and Related Type of I/0

Sequential Access Versus Random Access

Standard Numeric Output Formats

Types of Fields

Sign and Edit Options

Matrix Arithmetic Statements

Matrix Functions

Matrix I/0 Statements

2-8
3-1
3-2
3-4
3-5
4-1
4-4

4-6
5-2
5-4
5-5

5-10
5-11
5-11
5-11

6-2
7-1
7-2
7-3
7-14
7-19
7-19
8-3
8-5
8-9

xi/xii

NOTATIONS

%

Certain notations are used throughout this manual. A Delta indicates a space (blank).
The notations and their meanings are:

voe Horizontal ellipses indicate repe- @ - Carriage return denotes the trans~
tition. mission key on the keyboard.

. Vertical ellipsis indicate program

. lines not shown.

UPPERCASE Uppercase text in examples of

terminal dialog indicates termi-
nal output. Uppercase words in
statement and command formats
must appear exactly as shown.

Lowercase Lowercase text in examples of
terminal dialog indicates user Examples of actual terminal sessions appearing in
input. Lowercase words in state- this manual were produced on a class 1 terminal.
ment and command formats indicate The format of these terminal sessions might dif-
values or options supplied by the fer slightly from the formats appearing at your
user. terminal.

19983900 H xiii

BASIC PRIMER 1

Modern digital computers are designed for a wide
range of applications. However, all digital comput-
ers have certain common characteristics; they all
perform tasks specified by a set of instructions.

A set of sequential instructions designed to solve
a specific problem is called a program. A program
can perform a simple task, such as adding or sub-
tracting two numbers, or printing a single letter
or digit. However, a program usually performs a
more complicated task. A program for a complete
scientific computation could require a few thousand
computer instructions.

Computer programs process or manipulate information
called data. A program can be used to perform
calculations by using data, and to print out the
results. Most programs permit new data to be input
each time the program is used. The three phases of
program operation are input, computation, and out-
put. The process of a program performing tasks in
a computer is called program execution, or running
a program.

PROGRAMMING AND LANGUAGES

Computers can execute "thousands and even millions
of computer instructions each second; therefore,
computer instructions must be structured in a form
suited to the computer’s architecture. Writing a
program by using computer instructions in the form
used directly by the computer (machine instructions)
is tedious and time-consuming. In order to sim-
plify writing programs; computer specialists have
developed several high-level, easy~to-use, program-
ming languages and associated compilers and trans-
lators to convert these high-level languages to
machine instructions. BASIC, the beginner’s all-
purpose symbolic instruction code, is one such
high-level language. BASIC was originally developed
by professors John G. Kemeny and Thomas E. Kurtz at
Dartmouth College.

This section describes the process of writing and
executing a BASIC program by solving a sample - prob-
lem. The BASIC statements used in solving the
problem are explained. This section is intended
for nonprogrammers. This section provides the
information necessary to write BASIC programs and
understand the more detailed descriptions of the
BASIC. language provided in the sections that follow
this section. .

STATEMENT OF THE PROBLEM

The following general description outlines a manu-
facturing system problem that is to be solved by
using BASIC. In this problem, F represents fixed
costs per year associated with production, C repre-
sents variable costs incurred per unit, and V rep-
resents the annual volume of production (and sales)
in units. The total cost incurred .per year -is

19983900 H

T=F + C*V. 1If the revenue per unit made (and
sold) is R per unit, then the total annual revenue
is Rl = R*V. The profit obtained on an annual
basis 1s the difference between Rl and T, if that
result is positive. A loss occurs if Rl - T is
negative. The break-even point is reached when the
volume is sufficient to make Rl = T,

For example, a company operates with fixed costs of
$1 million per year, variable costs of $10 per
unit, and a revenue of $30 per unit of production,
Using this data, answer the following questions:

1. What is the break-even point?

2. If the predicted sales are 25000 units, what is
the expected profit or loss?

3. What is the expected profit or loss for sales
of 50000, 75000, and 100000 units?

The BASIC program in figure 1~1 answers questions 1
and 2 of the problem. The solution to question 3
is provided later in this section.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT c
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1

008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000 '
030 ‘LET ¢=10
040 LET R=30
050 LET v=25000
060 REM)
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT “BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM
110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=RxV
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1~-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240
230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
240 -END

Figure 1-1. Break-Even Program

ANALYSIS OF STATEMENTS

Each line of a BASIC program is called a statement;
each statement must begin with a line number. Line
numbers normally indicate the sequence in which the
computer is to execute the statements. The follow-
ing statements are used in the break-even program
shown in figure 1-1.

REM Sfafement

Figure 1-2 shows a segment of the break-even pro-
gram that contains the REM statement. The REM
statement allows the user to insert remarks. These
remarks increase readability and comprehension in a
program; they have no effect on the program during
execution. A maximum of characters can be
included in a REM statement.

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000

030 LET C=10

040 LET R=30

050 LET v=25000

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT c

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

Figure 1-2. REM Statement Lines

Figure 1-2 shows the use of the REM statement to
identify the type of program, the variables used,
and the variable identifiers. These identifiers
are used later in program computations.

LET Statement

The LET statement specifies that the variable
(quantity that can vary during execution of the
program) to the left of the equals sign be set to a
value (the value is the formula or expression to
the right of the equals sign).

Examples:

Constant Value Assignment - Statements 20
through 50 of the program in figure 1-3 assign
values to variables F, C, R, and V, which are
used later in computing the break-even point.
The .values for F, C, and R represent dollars
and the value for V represents units.

Formula Value Assignment - In the program in
figure 1-4, statements 120, 150, and 180 com-
pute total cost, total revenue, and profit or
loss, respectively, and assign these values to
variables T, Rl, and P. The symbol * specifies
multiplication. The value of the variable or
expression to . the right of the equals sign
becomes the value of the variable to the left
of the equals sign. BASIC conforms to the
normal algebraic rules for order of arithmetic
computation. (See Arithmetic Expressions in
this section.)

1-2

Figure 1-3. LET Statement Lines (Constants)

110 REM COMPUTE TOTAL COST
120 LET T=F+C»V

130 REM

140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V

160 REM

170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T

Figure 1-4. LET Statement Lines (Formulas)

Statement 120 directs the computer to multiply V
(25000) by C (10) and add the product (250000) to F
(1000000) equaling a sum of 1250000. This sum is
assigned to the variable T.

In computing total revenue, the volume (V) is mul-
tiplied by the revenue per unit (R) (25000 * 30),
and the product (750000) is assigned to Rl.

To determine profit or loss, the total cost (T) is
subtracted from the total revenue (R1l): (750000 -
1250000) and the remainder (-500000) is assigned
to P.

PRINT Statement

The PRINT statement can be used to: print out a
value; print a message; print a combination of a
value and a message; and print a blank line. BASIC
normally separates an output line into five print
zones, each 15 characters long. Spacing is con-
trolled with commas and semicolons embedded in the
PRINT statement. The comma is used to space over
to the next print zone (insert blank spaces between
items); the semicolon permits items to be printed
with no additional blanks between them. When
printing headings or labels, enclose the heading or
label in quotes in the PRINT statement. To print a
blank line, simply use the PRINT statement without
specifying what to print.

Statement 080 in figure 1-5 illustrates the assign-
ment of a value to a variable by wusing the LET
statement. Statement 090 illustrates the use of
the PRINT statement to print an identifying label
and the derived value.

16983900 H

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

Figure 1-5. PRINT Statement Lines

Statement 080 directs the computer to subtract C
from R (30-10) and, by using the remainder (20) as
a divisor, divide F (1000000) by 20. The quotient
(50000) is then assigned to the variable Vl. (The
symbol / indicates divide.) ' Statement 090 directs
the computer to print the value of V1 and the BREAK-
EVEN POINT identifying label. The unit of measure
for V1 is labeled VOLUME UNITS. When executed,
this PRINT statement in figure 1-5 produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS

IF, GOTO, and END Statements.

In the sample program (figure 1-1), if sales volume
V is greater than the break-even volume, a profit

is earned. 1If the sales volume is less than the
break-even volume, a loss is incurred.

The IF statement at line number 200 in figure 1-6
directs the program execution to the statement at
line number 230, if the condition V is greater than

V1 is met. The IF statement directs execution to
the statement at line number 210, if the condition

is not met. Line 200 illustrates how execution
sequence by line number can be altered.

200 IF V>V1 THEN 230 .
210 PRINT "LOSS = $";~P,"VOLUME =";V;"UNITS"
220 60TO 240

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
240 END '

Figure 1-6. 1IFf, GOTO, and END
Statement Lines

The IF statement (line 200) selects the print label
PROFIT or LOSS to be printed with the values asso-
ciated with variables P and V.

In figure 1-6, the PRINT statement at line number
210 is executed because V = 25000 and V1 = 50000.
After executing the PRINT statement, the computer
executes statement 220, Statement 220 ‘is a GOTO
statement that directs the computer to continue
execution at statement 240.

The END statement directs the computer to stop

executing the BASIC program. Its corresponding
line number must be the highest in the program.

19983900 H

BREAK-EVEN PROGRAM AND OUTPUT

Figure 1-7 shows the break-even program and the
output that answers questions 1 and 2. After the
program is entered into the computer, the BASIC
compiler is directed to compile and execute the
program.,

007 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000

030 LET ¢=10

040 LET R=30

050 LET v=25000

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET "V1=F/(R~C) ‘

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

110 REM COMPUTE TOTAL COST

120 LET T=F4+Cav

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R#V

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T

200 IF V>V1 THEN 230 ,
210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNLTS"
240 END

After the program is entered into the computer,
the BASIC compiler is directed to compile and
execute the program. Below is the output after
program execution.

BREAK-EVEN POINT= 50000 VOLUME UNITS
LOSS = $ 500000 VOLUME = 25000 UNITS

Figure 1-7. Break-Even Program and Output

EXPRESSIONS IN BASIC

An expression can be simple, that is, consisting of
one term (A); or complex, that is, consisting of
two or more terms connected by operators (A+B-C).
Expressions evaluate to a single value, which can
be used later in computation, or can be used in
determining program execution sequence. (See line
number 200.) There are three types of expressions
in BASIC: arithmetic, relational, and string.
Arithmetic and relational expressions are discussed
in the following paragraphs and in section 2;
string expressions are discussed in section 2 of
this manual.

1-3

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed from numeric
variables, numeric constants, function references,
and arithmetic operators. The arithmetic operators
allowed for BASIC are shown in table 1-1.

TABLE 1-1. ARITHMETIC OPERATORS

Symbo1 Meaning

Exponentiation (¢ on
some teletypewriters)

/ Division

* Multiplication

+ Addition

- Subtraction
NOTE

The circumflex (A) is the preferred character
symbol for exponentiation. See Future System
Migration Guidelines, appendix E.

In the sample break-even program, operators (+, -,
* and /) are used in line numbers 080, 120, 150,
and 180. The exponentiation operator raises a num-
ber to a specified power. For example, 2*%*3 means
2 raised to the third power, or 23,

The arithmetic operators have a hierarchy for
evaluation: exponentiation; multiplication and
division; addition and subtraction. Evaluation
proceeds from left to right through an expression.
The hierarchy is altered by the use of parenthe-
ses. When using parentheses in BASIC, the rules
of algebra apply. For example, 2*3+2 = 8 and
2*(3+2) = 10. .

Within a number in BASIC, commas cannot be used
to separate decimal groupings. For example, ten
million is written 10000000, not 10,000,000.

A numeric variable (such as F, C, R, or V in the
sample program) is named with a single alphabetic
character or an alphabetic character followed by a
digit. The detailed rules for using numbers and
variables are included in section 2.

BASIC provides several mathematical functions that
can be requested within an arithmetic expression
such as SIN (sine), COS (cosine), and SQR (square
root)., Functions are described in section 5.

RELATIONAL EXPRESSIONS

Relational expressions” are formed by combining
variables and/or constants into arithmetic ex-
pressions that are compared by using relational
operators. Relational expressions are used in IF
statements to compare two values, Table 1-2 illus-
trates the relational operators.

1-4

TABLE 1-2. RELATIONAL OPERATORS

Symbol Meaning

= Equal to

Not equal to

> Greater than

Greater than or equal to

< Less than

Less than or equal to

An example of the use of the relational operator
can be found in line number 200 of the sample break-
even program. For more details and the rules for
using relational operators, see section 2.

DEFINING AND READING DATA

An efficient method of assigning values to variables
is through the use of the READ and DATA statements.

DATA AND READ STATEMENTS

In the break-even program, values are assigned
to variables by using LET statements as shown in
figure 1-8.

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000

030 LET ¢=10

040 LET R=30

050 LET v=25000

060 REM

Figure 1-8. LET Statement Value Assignment

Statements at line numbers 020 through 050 can be
replaced with the following:

035 DATA 1000000,10,30,25000
037 READ F,C,R,V

The DATA statement creates a block of data that is
internal to the program. Within the DATA state-
ment, values must be separated by commas. In the
above program, the DATA statement precedes the READ
statement; however, this is not required. The DATA
statement can be placed anywhere in the program.
The READ statement is used to access the values
contained in the internal data block. The vari-
ables in the READ statement are assigned values

19983900 H

sequentially from the data block; for example, F =
1000000, € = 10, R = 30, and V = 25000. This method
is more efficient from the programmer’s standpoint
because only the associated DATA statements need to
be changed for added or different data. Figure 1-9
illustrates the use of the READ and DATA statements
in the break-even program.

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT C

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R, V
035 DATA 1000000,10,30,25000
037 READ F,C,R,V
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM
110 REM COMPUTE TOTAL COST
120 LET T=F+CaV
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*v
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF Vv>V1 THEN 230
210 PRINT "LOSS = $";-P,"VOLUME =";V;"UNITS"
220 GOTO 240
230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS
LOSS = $ 500000 VOLUME = 25000 UNITS

Figure 1-9. Break-Even Program With
READ and DATA Statements

LOOPING IN BASIC

We are frequently interested in solving a problem

. in which a specified sequence of statements is exe-
cuted a number of times. Each time the sequence is
executed, a variable is assigned a different value.
In programming, this is done by using a technique
called looping. The following statements provide
two methods for looping:

IF and GOTO statements

FOR and NEXT statements

19983900 H

maticians

IF AND GOTO STATEMENTS

In the original problem, question 3 requests the
profit or loss for sales of values 50000, 75000,
and 100000 units. To solve questions 1 and 2 of
the problem for these four values, a loop is in-
serted using the IF statement (line number 104 in
figure' 1-10) and the GOTO statement (line number
236).

In figure 1-10, V is assigned the initial value of
25000 (line number 102). The statement of line
number 104 then compares V to 100000. If V is
greater than 100000, control is transferred to line
number 240 and the loop ends. If V is not greater
than 100000, line numbers 110 through 236 are exe-
cuted in. the normal sequence. The statement at
line 235 increments V by 25000, and the statement
at line - 236 transfers control back to line 104.
The statement at line number 104 compares the new
value of V to 100000 to determine whether or not to
execute the loop again. Looping continues until V

- is greater than 100000.

For each value of V, the values of T, Rl, and P are
computed, and LOSS or PROFIT is printed depending
on the value of V; this completes the execution of
the loop in the break-even program.

During the first pass through the loop, V equals
250005 during the second pass, V equals 50000; dur-
ing the third pass, V equals 75000; and during the
fourth pass, V equals 100000. The printed output
from the program shows the break-even point and the
profit or loss for the four volume levels.

FOR AND NEXT STATEMENTS

The sample program in figure 1-11 shows a loop
created by using the FOR statement (line number
101) and the NEXT statement (line number 235).

The FOR statement establishes the first value of V
(25000), the final allowable value of Vv . (100000),

-and the step value of (25000). Statements between

the FOR statement and the NEXT statement are repeat-
edly executed until V is greater than the final
allowable value. The value of V is incremented by
the step value each time the NEXT statement is exe—
cuted. OQutput from the program is identical to the
output produced when the IF and GOTO statements
controlled the loop. :

LISTS AND TABLES

For some problems, it is desirable to present data
or the solution in the form of a list or table;
such lists and tables are called arrays. An array
is an ordered collection of items (data elements)
arranged in a multidimensional structure. A 1-
dimensional array, or list, is called a vector -and
a 2-dimensional array, or table, is called a matrix.
These terms have been borrowed from mathematical
terminology because -vectors and matrices in BASIC
obey other special properties expected by mathe-

Loop

——

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT c

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R

035 DATA 1000000,10,30

037 READ F,C,R

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

102 LET V = 25000

104 IF V>100000 THEN 240

110 REM COMPUTE TOTAL COST

120 LET T=F+CxV

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=R#V :

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T

200 IF V>V1 THEN 230

210 PRINT "LOSS = $";~P,"VOLUME =";V;"UNITS"
220 GOTO 235

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"
235 LET V = V + 25000

236 GOTO 104

240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS

LOSS = $ 500000 VOLUME = 25000 UNITS
LOSS = $ 0 VOLUME = 50000 UNITS

PROFIT=$ 500000 VOLUME= 75000 UNITS
PROFIT=$ 1.00000E+6 VOLUME= 100000 UNITS

Figure 1-10.

Variables are used to name arrays. .

Break-Even Program With IF and GOTO Statements

The individual 1 2 3 4

elements of an array, identified by the use of sub-
scripts, are called subscripted variables. The
subscripts, one for each dimension of the array,
are position indicators that locate elements within
the array. Subscripts are separated by commas and
enclosed by parentheses. The first matrix sub-
script designates a row; the second matrix sub-
script designates a column. Numbering of the
elements begins with zero; the first element in the

first row and the first column has subscripts (0,0).

Example:

In the following matrix, the element designated
. by A(1,2) is circled.

1-6

In the break-even program, where the profit or loss
for four different sales volumes is computed, the
values V, P, T, and Rl can be organized in array
form, with each array containing four elements.
For each volume (V), an associated revenue (Rl),
cost (T), and profit (P) are computed.

19983900 H

008 REM TOTAL COST T

009 REM TOTAL REVENUE R1

010 REM PROFIT/LOSS P
- 011 REM

012 REM

=101 FOR V = 25000 TO 100000 STEP 25000

L 235 NEXT v

001 REM THIS IS A BREAK-EVEN PROGRAM

002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT C

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v

007 REM BREAK-EVEN POINT (VOLUME) V1

013 REM ASSIGN VALUES TO F, C, R, V

035 DATA 1000000,10,30,25000

037 READ F,C,R,V

060 REM

070 REM COMPUTE BREAK-EVEN POINT

080 LET V1=F/(R-C)

090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
100 REM

110 REM COMPUTE TOTAL COST

120 LET T=F+C*V)

130 REM

140 REM COMPUTE TOTAL REVENUE

150 LET R1=Ra»v

160 REM

170 REM COMPUTE PROFIT/LOSS

180 LET P=R1-T :

200 IF V>V1 THEN 230

210 PRINT “LOSS = $";-P,"VOLUME ="V "UNITS"
220 6010 235 .

230 PRINT "PROFIT=$";P,"VOLUME=";V;"UNITS"

240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS

L0SSs = $ 500000
PROFIT=$ 500000

LOSS =$ 0 VOLUME = 50000 UNITS
PROFIT=$ 1.00000E+6

VOLUME = 25000 UNITS

VOLUME= 750600 UNITS
VOLUME= 100000 UNITS

Figure 1-11. Break-Even Program With FOR and NEXT Statements

In the sample program (figure 1-12), the DIM state-
ment is used to specify each array as. containing
four elements (line numbers 039, 040, 041, and
042); however, the use of this statement is not
required. To specify an array of wup to eleven
elements, only the selected variable name and asso~
clated subscripts are required. The advantage of
using DIM in this situation is the conservation of
space because the use of a variable and subscript
results in an automatic allocation of space for
eleven array elements by BASIC., 1If the array is to
contain more than eleven elements, the DIM state-
ment is required. See section 3 for additional
information pertaining to the DIM statement.

The DIM statement in line number 039 of figure 1-12
reserves space for an array named V. The amount of
space reserved is determined by the bound speci-~
fier; the bound for array V is 3. This means that
the largest subscript for array V is 3 and that

19983900 H

array V has four elements: V(0), V(1), V(2), and
V(3) because a count of the elements begins with
zero (0). (See figure 1-13.) Arrays P, T, and Rl
in figure 1-12 are also four-element arrays. A
count of the elements can also begin with 1. See
the OPTION statement described in this manual.

Figure 1-14 shows the method used for placing data
into the array. The variable I is used to ini-
tialize the volume array V. The variable I is set
to the value of zero, and is incremented within the
FOR loop (line number 102) by 25000 for each incre—
ment of J. The variable J is a subscript used to
address the individual elements of array V; when
J is zero, the first element is addressed. The
statement at line 103 places the current value of I
into the array V at the location identified by the
current value of J, J is also used as a subscript
for addressing the elements of arrays P, T, and Rl.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT c
005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM

012 REM

013 REM ASSIGN VALUES TO F, C, R

035 DATA 1000000,10,30

037 READ F,C,R

038 REM DEFINE ARRAYS FOR V, P, T, R1

039 DIM V(3)

040 DIM P(3)

041 DIM T(3)

042 DIM R1(3)

060 REM

070 REM COMPUTE BREAK-EVEN POINT.

080 LET V1=F/(R=C)

090 PRINT “BREAK-EVEN POINT=";V1;'"VOLUME UNITS"
095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1

096 LET I =0

101 FORJ =0 TO 3
102 LET 1 = I + 25000
103 LET VW) =1

130 REM

140 REM COMPUTE TOTAL COST

141 LET TQ) = F + C * V()

160 REM COMPUTE TOTAL REVENUE

161 LET R1(J) =R * V({J)

170 REM COMPUTE PROFIT/LOSS

181 LET P(J) = R1WD) =~ TW)

183 NEXT J

201 PRINT " VOLUME", V(D) ,V(1),V(2),V(3)
202 PRINT " REVENUE",R1(0),R1(1),R1(2),R1(3)
203 PRINT ' COST",T(0),T(1),T(2),T(3)
204 PRINT " PROFIT",PCD),P(1),P(2),P(3)
240 END .

Figure 1-12. Break-Even Program With
DIM Statements

element 0 element 1 element 2 element 3

Figure 1-13. Array V

After completing the loop between line numbers 101
and 183 (figure 1-14), all of the arrays contain
the results of the computation. The PRINT state-
ments in lines 201, 202, 203, and 204 (figure 1-15)
print the individual elements of each array. The
program output displays the contents of each array
as shown in figure 1-16.

095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1

096 LET 1 =0

101 FOR J =0 T0 3
102 LET I = I + 25000
103 LET V() = I

130 REM

140 REM COMPUTE TOTAL COST
141 LET TW) =F + C * VW)
160 REM COMPUTE TOTAL REVENUE
161 LET R1QU) =R * V(J)

170 REM COMPUTE PROFIT/LOSS
181 LET P(J) = R1W) - T
183 NEXT J

Figure 1-14. Placing Data Into Arrays

201 PRINT " VOLUME",V(D),V(1),V(2),V(3)

202 PRINT " REVENUE",R1(0),R1(1),R1(2),R1(3)
203 PRINT " COST",T(0),T(1),T(2),T(3)

204 PRINT " PROFIT",P(0),P(1),P(2),P(3)

240 END

Figﬁre i-15. PRINT Statements for
© Array Elements

TERMINAL INPUT AND
OUTPUT (1/0)

Sometimes it is desirable to enter data while a
program ‘is executing. For example, if the break-
even problem is generalized to permit several
different products with different fixed costs,
variable costs, and revenue per unit, the program
can be modified to request the values for these
variables while the program is executing.

The INPUT statement is used in a BASIC program when
entering data from the terminal keyboard. When the
INPUT statement is executed, a displayed ? asks for
data. Execution stops until the requested data is
entered. Data entered through the terminal key-
board is assigned sequentially to variables listed
as INPUT statement arguments.

If more than one item is requested by one INPUT
statement, the exact number of items requested must
be entered and the items must be separated by
commas. If not enough data or too much data is
entered, diagnostics are dissued by BASIC. The
specified action must be taken before execution can
resume.

BREAK-EVEN POINT= 50000 VOLUME UNITS

VOLUME 25000 50000 75000 100000

REVENUE 750000 1.50000E+6 2.25000E+6 3.00000E+6
cosT 1.25000E+6 1.50000E+6 1.75000E+6 2.00000E+6
PROFIT -500000 0 500000 1.00000€+6

Figure 1-16. Break-Even Program With DIM Statements Output

19983900 H

Figure 1-17 illustrates the break-even program Note that only two values were entered and that the

using the INPUT statement. The values of variables NOT ENOUGH DATA diagnostic was issued;
F, C, and R are to be input. The PRINT statement then reentered.

at line number Ol5 prints a message on the terminal

indicating the values and the sequence of the values The program output is shown in figure
to be input. The output of this statement is fol- nue, cost, and profit were computed on
lowed by the question mark and the result of the data entered at the terminal.

input and output.

the data was

Reve-
the basis of
Refer to section 7

INPUT statement line 036 is shown in figure 1-18. and appendix D for more information pertaining to

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F

004 REM VARIABLE COST PER UNIT ¢

005 REM SALES REVENUE PER UNIT R

006 REM SALES VOLUME v

007 REM BREAK-EVEN POINT (VOLUME) V1

008 REM TOTAL COST T

009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM

013 REM ASSIGN VALUES TO F, C, R

036 INPUT F,C,R
" 038 REM DEFINE ARRAYS FOR V, P, T, R1
039 DIN V(3)
040 DIM P(3)
041 DIM T(3)
042 DIM R1(3)
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1
096 LET I = 0
101 FOR J = 0 TO 3
102 LET I = I + 25000
103 LET VW) = I
130 REM
140 REM COMPUTE TOTAL COST
141 LET TW) = F + C * V(J)
160 REM COMPUTE TOTAL REVENUE
161 LET R1UJ) = R * V)
: 170 REM COMPUTE PROFIT/LOSS
181 LET PW) = R1W) - T()
183 NEXT J
201 PRINT " VOLUME",V(0),V(1),V(2),V(3)
202 PRINT " REVENUE",R1(0),R1(1),R1(2),R1(3)
203 PRINT " COST",T(0),T(1),T(2),T(3)
204 PRINT " PROFIT",P(0),P(1),P(2),P(3)
240 END

015 PRINT "INPUT:FIXED COSTS VARIABLE COSTS REVENUE PER UNIT"

Figure 1-17. Break-Even Program With INPUT Statement

INPUT:FIXED COSTS VARIABLE COSTS REVENUE PER UNIT
? 1000000,10

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 36

? 1000000,10,30

BREAK-EVEN POINT= 50000 VOLUME UNITS

VOLUME 25000 50000 75000 100000

- REVENUE 750000 1.50000E+6 2.25000€+6 3.00000€e+6
CosT 1.25000E+6 1.50000€+6 1.75000E+6 2.00000€E+6
PROFIT ~500000 0 . 500000 1.00000E+6

Figure 1-18. Break-Even Program With INPUT Statement Interactive Input/Qutput

19983900 H

1-9

USING BASIC UNDER NOS
AND NOS/BE

The previous paragraphs describe BASIC statements
and the organization of these statements into a
BASIC program. The following paragraphs describe
the procedures for entering a program into a com-
puter and for executing that program.

BASIC is primarily a terminal-oriented language;
however, programs in card deck form can be entered
and executed (batch mode). The following para-
graphs describe the method for entering and exe-
cuting BASIC programs interactively through use of
a teletypewriter (TTY) or cathode ray tube (CRT)
terminal. See section 12 for a description of
BASIC program card deck structures and batch mode
operations.

BASIC runs under both the NOS and NOS/BE operating
systems. Its usage under NOS is described in the
following paragraphs; its usage under NOS/BE 1is
described later in this section. See sections 10
and 11 for more detailed informationm.

If operating from a terminal, the program must be
written into a file, as shown in the examples that
follow, and must be executed from the file. To
correct a line, reenter the line number, followed
by the corrected line. To delete a line under ‘NOS,
enter the line number and press the transmission
(carriage return) key. To delete a 1line wunder
NOS/BE, enter DELETE, the line number, and press
the transmission (carriage return) key. New lines
can be added freely.

NOS

BASIC programs can be run from a time-sharing termi-
nal under NOS through Interactive Facility (IAF) or
the Time-Sharing System. Login procedures for IAF
and the Time-Sharing System differ. The procedures
are described in the following paragraphs.

To initiate the login procedure, establish physical
connection between the -terminal and the computer.
The method used to establish this connection varies
depending on the type of terminal being used and
the type of coupling between the terminal and the
computer. Connection methods for IAF are described
in the Network Products Interactive Facility ref-
erence manual (NOS 1 sites) and Volume 3 of the
NOS 2 reference set (NOS 2 sites). Connection
methods for the Time-Sharing System are described
in the NOS Time-Sharing User’s reference manual.

Login, Execution, and Logoff Procedures
for the Interactive Facility

The login procedure for the Interactive Facility
(IAF) begins with the system printing the following
three lines at the terminal. The second line of
this message is dependent on the installationm.

yy/mm/dd. hh.mm.ss termname
CDC NOS
FAMILY:

1-10

When this occurs, perform the following steps:

1. Enter the family name on the same line. If
the family name is the default family for the
system, press the carriage return. Certain
installations do not request a family name. ’
The system responds:

USER NAME:

2. Enter the user name on the same line. The

user name consists of alphanumeric characters
assigned by the installatiom.

The system responds:
PASSWORD:

3. Enter the password. The password must consist
of up to seven alphanumeric characters. To
provide a greater measure of security, over-
typing is dome on hardcopy terminals.

If the family name, user name, and password
are not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user name, and password
are acceptable, the system responds:

termname -~ APPLICATION:
The termname on this line is the same as that
on the first line of the login sequence and
can be disregarded.
4, Select the Interactive Facility by entering:
IAF

Under NOS 1, if validation is given to access
the Interactive Facility, the system responds:

TERMINAL: nn, NAMIAF
RECOVER/ CHARGE :

or .
TERMINAL: nn, NAMIAF
RECOVER/SYSTEM:

where nn is the terminal number. Remember this
number because it can be used for recovery.

Under NOS 2, if wvalidation is given to access
the Interactive Facility, the system responds:

JSN: zzzz, NAMIAF
CHARGE NUMBER:
7 REERXEAERK
or .
JSN: zzzz, NAMIAF

READY.

where zzzz is the job sequence name. Remember
this name because it can be used for recovery.

19983900 H

5. If RECOVER/SYSTEM (NOS 1) or READY (NOS 2) is
printed, the login procedure is complete; any
valid command can be entered.

If, under NOS 1, RECOVER/CHARGE 1is printed,
type CHARGE followed by the assigned charge
number and project number on the same line:

CHARGE ,chargeno,projectno
The system responds by printing:

READY.
The login procedure is now complete,
If, under NOS 2, CHARGE NUMBER is printed,
type the assigned charge number in the area
that has been blacked out. The system will

respond:

PROJECT NUMBER:

RS R RY R RO XKL

Type in the assigned project number in the
area that has been blacked out.

If the charge number and project number are
valid, the system responds by printing:

READY.
The login procedure is now complete.
6. Enter the desired subsystem by typing:
BASIC
Because all interactive programs run under
NOS reside as files, the system queries the
applicable file type by responding:
OLD, NEW, OR LIB FILE:

7. Submit the appropriate file status: 1fn is
the local file name.

OLD,1fn

Indicates the file previously created and
available. .

NEW,1fn

Indicates a new file.
LIB,1fn

Indicates a file from the system library.
The file name consists of up to seven alpha-
numeric characters. If an OLD or LIB file
does not exist, the system responds:

1fn NOT FOUND, AT nnnnn.

If the file name entered contains illegal
characters, the system responds:

ERROR IN ARGUMENT

Correct the file name.

19983900 H

If the file name entered contains . too many
characters, the system responds:

ILLEGAL PARAMETER
Correct the file name.

After the system finds the specified file, it
responds: i

READY.

The example in figure 1-19 illustrates a sample
login for both NOS 1 and NOS 2.

8. Enter the new BASIC program. Each line must
begin with a 1- through 5-digit line number,
and end with a carriage return. BASIC state-
ments need not be typed in correct order; the
BASIC subsystem automatically sequences the
statements according to line number. The NOS
edit facility, XEDIT, can be used to enter a
new BASIC program or change an existing file.
See the XEDIT reference manual for use of this
facility.

9. To execute the program, type:
RUN

This command initiates compilation and execu~
tion of the BASIC program. If there are com—
pilation or execution errors, the appropriate
error messages will be displayed.

10. When a run is completed, the following options
are available:

Continue processing (build and execute new
programs; modify existing program and re-
run; or rerun the same program).

or
Terminate the terminal session with the
following command:

BYE

All files not saved (see appendix D, Indirect Access
Permanent Files) are released.

Under NOS 1, the following is printed:

XKXXXXX LOG OFF hh.mm.ss.

AKXXXXXX SRU S.8SS UNTS

XXXXXXX Indicates the user name.

S.S88 Indicates the total number of system

resource units used under this charge
and project number.

Under NOS 2, the following is printed:

UN=XXXXXXX LOG OFF hh.mm.ss.
JSN=zzzz SRU S.88S UNITS.
XXXXXXX Indicates the user name.

zZ222Z Indicates the job sequence name.

S.888S Indicates the total number of system
. resource units used under this charge
and project number. :

1-11

NOS 1 Login:

82/01/08. 10.50.14. T128

CdC NOS 1

FAMILY:

USER NAME: xxXxxxxx

PASSWORD: xxxx

T128 - APPLICATION: iaf
TERMINAL: 61, NAMIAF
RECOVER/ CHARGE: charge,xXxX,XXXxxxx
CHARGE , XXXX ,XXXXXXX

/basic

OLD, NEW, OR LIB FILE: new,ex4

READY.

NOS 2 Login:

82/01/08. 10.42.16. T143A
CDC NOS 2
FAMILY:
USER NAME: xxxxxxx
PASSWORD: xxxx
T143A - APPLICATION: iaf
JSN: AADI, NAMIAF

CHARGE NUMBER:
2 YRG0

PROJECT NUMBER:

OLD, NEW, OR LIB FILE: new,ex&4

READY.

Figure 1-19. NOS Login Examples

Login, Execution, and Logoff Procedures
for the Time-Sharing System

The 1login sequence for the Time-Sharing System
begins with the system printing the following three
lines at the terminal. The second line of this
message is dependent on the installation.

yy/mm/dd. hh.mm,.ss.
CDC TIME-SHARING SYSTEM NOS
FAMILY:

When this occurs, perform the following steps:

1. Enter the family name on the same line. If
the family name is the default family for the
system, press the carriage return. If your
installation does not use family names, a
family name is not requested,

The system requests:
USER NUMBER:
2. Enter the user number on the same line. The

user number consists of up to seven alphanu-
meric characters assigned by the installation.

1-12

The system requests:

PASSWORD:

3. Enter the password. The password must con-
sist of up to seven alphanumeric characters.
To provide a greater measure of security,
type the password in the area the system has
blacked out. If a password is not needed,
enter a carriage return.

If the family name, user number, and password
are not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user number, and password
are acceptable, the system responds:

TERMINAL: nnn,TTY

RECOVER/CHARGE :
or

TERMINAL: nnn,TTY

RECOVER/SYSTEM:

The nnn indicates the particular terminal
number being used. (These responses are
installation-dependent.)

4-6. These steps are the same as steps 5 through
7 of the previous description of Login,
Execution, and Logoff Procedures for the
Interactive Facility.

The example in- figure 1-20 illustrates a
sample login.

7-9. These steps are the same as steps 8 through
10 of the previous description of Login,
Execution, and Logoff Procedures for the
Interactive Facility.

81/07/31. 13.19.28.
TIME SHARING SYSTEM
FAMILY:

USER NUMBER: xXXXXXX
PASSWORD

XXXX

TERMINAL: 60,TTY
RECOVER/SYSTEM: basic
OLD,NEW,0R LIB FILE: new,ex4

READY.

Figure 1-20. Sample Timesharing Login

Sample Terminal Session

The sample program in figure 1-21 was run at a ter-
minal under the NOS 2 IAF System. Responses entered
at the terminal are in lowercase letters. Press
the transmission (carriage return) key after typing
in each response.

19983900 H

/basic -
OLD, NEW, OR LIB FILE: new,ex4 -<——m—w -

READY.

100 print "type a number"

110 input x

120 let f=1

130 for i=1 to x

140 Let f=fxi

150 print "factorial ";x,"is f
160 goto 110

170 end

Llist -

100 PRINT "“TYPE A NUMBER"

110 INPUT X

120 LET F=1

130 FOR I=1 TO X

140 LET F=Fx1

150 PRINT "FACTORIAL “;X,“IS ";F
160 G070 110

170 END

READY.
alter,160,/110/100/ —=

160 60T0 100

READY.
run -

FOR WITHOUT NEXT AT 130 —=
BASIC COMPILATION ERRORS

-RUN COMPLETE.

145 next i ;

115 if x=0 then 170 | ==
run J
TYPE A NUMBER N
?3

FACTORIAL 3 IS 6
TYPE A NUMBER
20 ’

RUN COMPLETE, A
list -

100 PRINT “TYPE A NUMBER"

110 INPUT X

115 IF X=0 THEN 170

120 LET F=1

130 FOR I=1 TO X

140 LET F=F*1

145 NEXT 1

150 PRINT “FACTORIAL ";X,"IS ";F
160 6010 100

170 END '

READY.,

save,ex4 =

READY.

Requests BASIC subsystem.
Creates new file EX4.

Enters BASIC program.

Lists BASIC program.

Changes statement 160 to correct error.

Compiles and executes program.

BASIC issues diagnostic.

Correct program and rerun.

Program requests input and prints output.

Lists BASIC program.

Makes file EX4 permanent.

19983900 H

Figure 1-21.

IAF System

In figure 1-21, the program is saved as a file
named EX4. The program in this file is stored as
an indirect access permanent file which can later
be accessed by use of the OLD command (as shown
in figure 1-22). At this time, add, delete, or
change program statements as shown in figure 1-23.
(See appendix I for an explanation of the editing
commands used in figure 1-23.)

In figure 1-23, the REPLACE command .replaces the
0ld version of EX4 with the updated version. If
logoff of the system had occurred before replacing
EX4, the corrected version would have been lost
while the old version of EX4 remained intact.

For a detailed description of the NOS commands used
in figure 1-21, as well as other available NOS
commands, see the IAF reference manual (NOS 1
sites), Volume 3 of the NOS 2 reference set (NOS 2
sites), or the NOS Time-Sharing User’s reference
manual.

NOS/BE

To access a central computer from a terminal,
establish physical connection with the computer
system. The method of establishing the connection
between the terminal and the central site computer
varies depending on the type of terminal equipment
and the connection provided by the telephone com~
pany., See the INTERCOM Version 5 reference manual.
When connected to the terminal, the system responds:

CONTROL DATA INTERCOM 5.n

DATE mm/dd/yy
TIME hh.mm.ss
PLEASE LOGIN

When this occurs, perform the following steps:
1. Log in to the system by entering:
LOGIN
The system responds:

ENTER USER NAME-

2. Enter the user name followed by a carriage
return. The user name can be any combination
of up to ten letters or digits and must not be
followed by a period.

When the user name has been entered at a TTY
terminal, the system responds:

YKEREIXAS ENTER PASSWORD—

At a 200 User Terminal (200 UT) or amy display
terminal, the system responds:

ENTER PASSWORD-

3. Enter the password followed by a carriage
return. A password is any combinatiom of up to
ten letters or digits that must not terminate
with a period. On a teletypewriter (TTY) list-
ing, the system preserves privacy by allowing
the password to be entered over ten character
spaces that have been blacked-out by over-
printing.

When the user name and password are accepted,
the time logged in and the user id (a 2-
character user code), followed by the equipment
number (multiplexer equipment status table
ordinal) and the port number logged in, are
displayed at the terminal, as shown below:
19/07/79 LOGGED IN AT 17.47.26
WITH USER-ID AB
EQUIP/PORT 52/03

4, After a successful login the system responds:
COMMAND-
Enter the tex£ edit mode by typing
EDITOR

The system indicates text edit mode by display-
ing two consecutive periods.

old,ex4 —=

READY.
List -

100 PRINT "TYPE A NUMBER"

110 INPUT X

115 IF X=0 THEN 170

120 LET F=1

130 FOR I=1 TO X

140 LET F=F*I

145 NEXT I

150 PRINT "FACTORIAL ";X,"IS ";F
160 G0TO 100

170 END

READY.

Makes a copy of file EX4 accessible.

Lists BASIC program on file EX4.

Figure 1-22. OLD Command Accesses Permanent File Under NOS

19983900 H

Lists BASIC program.

Llist =
100 PRINT "TYPE A NUMBER"

110 INPUT X

115 IF X=0 THEN 170

120 LET F=1

130 FOR I=1 10 X

140 LET F=F+1

145 NEXT I

150 PRINT "FACTORIAL ":X,"1S ";F
160 GOTO 100

170 END

READY.
alter,100,/type/please input

100 PRINT "PLEASE INPUT A NUMBER"

READY.
delete,150

150 PRINT "FACTORIAL ";X,"IS “;F

READY.
150 print f;" is the factorial of

";x J

Llist -

100 PRINT "PLEASE INPUT A NUMBER"
110 INPUT X

115 IF X=0 THEN 170 .

120 LET F=1

130 FOR I=1 TO X

140 LET F=Fal

145 NEXT I ,

150 PRINT F;" IS THE FACTORIAL OF
160 6070 100

170 END

“;x

READY.

run -

PLEASE INPUT A NUMBER
?4
26 IS THE FACTORIAL OF 4

A

PLEASE INPUT A NUMBER
70
RUN COMPLETE.

replace,ex4 -

READY,

bye =

~=————— Make changes to program.

Lists corrected version.

Compiles and executes program.

Program requests input and prints output.

Replaces old version of file EX4 with corrected version.

Log off NOS.

Figure 1-23.

5. Once in text edit mode, enter the command

FORMAT, BASIC

When this command is entered after the two
periods, a format specification is automati~
cally established at the terminal that permits
lines to be entered in BASIC language format.
The comma is optional.

19983900 H

Editing a Program Under NOS

6. Enter the BASIC pProgram statements (line number

followed by BASIC statement).

After the first line, the two period Prompts
are not given; continue inserting statements.
Each line must begin with a 1- through 5-digit
line number and end with a carriage return.
BASIC statements need not be typed in correct
order because the EDITOR automatically sequences
them according to line number.

7.

Once the entire program is entered, compile and
execute the program by typing:

RUN,BASIC

After the program compiles and executes, the
appropriate error messages are displayed if
program errors occur. The comma is optional.

When the run completes, select one of the
following options:

Continue processing (build and execute new
programs; modify and rerun existing pro-
grams; or rerun the same program).

or
Terminate the terminal session by entering
the BYE or BYE BYE command. When the BYE

or BYE BYE command is entered, the system -

is returned to command mode from EDITOR
mode. The BYE command does not save the
EDIT file. (See the INTERCOM Version 5
reference manual.)

The system responds with:
COMMAND-

At this time, enter the LOGOUT command to
release any local files created under EDITOR.

Only files that are permanent are retained
after logout. Disassociation from NOS/BE
occurs until a subsequent LOGIN command is
entered. NOS/BE displays the date and time
logged out. LOGOUT is mnot allowed when oper-
ating under control of the EDITOR. (Leave
EDITOR via the END or BYE command.)

For example 1f the command LOGOUT is entered,
the system responds: :

CPA 6.377 SEC. 6.377 ADJ.
CPB .000 SEC. .000 ADJ.
SYS TIME 7.774
CONNECT TIME 0 HRS. 19 MIN.

10/21/79 LOGGED OUT AT 08.43.09.

Logout time is given in hours, minutes, seconds
(24-hour clock); CP time is given in seconds.
Disconnect the terminal from NOS/BE by turning
it off, or by hanging up the data set receiver.

Sample Terminal Session

After logging in, create and execute BASIC pro-
grams. The sample BASIC program in figure 1-24
illustrates how to run a BASIC program under NOS/BE.
The program was entered at a TTY terminal. After
typing each response, press the carriage return key.

20
30

50
60
70
80

10
20
25
30
40
50
55
60
70
80

FOR WITHOUT NEXT AT 40 —=
BASIC COMPILATION ERRORS
-=55 next i —

25 if x=0 then 80 J
run,basic =

FACTORIAL 3 1S 6
TYPE A NUMBER 2?0
.-Llist,all,sup =

TYPE A NUMBER ?3]

-«.Save,basprog —==
-sStore,basprog,jones -

COMMAND- editor = Enter EDITOR.
..format ,basic =
..10 print "type a number";

input x
let f=1

40 f i=
lg: ;J*:o X ~—————— Enter BASIC program.

print "factorial ";x,"is ";f
goto 110
end

run,basic —e Compile and execute the program.

PRINT "TYPE A NUMBER";

INPUT X

IF X=0 THEN 80

LET F=1

FOR I=1 TO X

LET F=F*I

NEXT I

PRINT "FACTORIAL ";X;" IS";F
GOTO 10

END

Request BASIC program format.

BASIC issues diagnostic.

Correct errors.
Rerun program.

Program requests input and prints output.

List program; sup suppresses additional line number prefixes.

Make edit file a local file named BASPROG.
Make local file BASPROG permanent.

CT Ib= JONES PFN=BASPROG: '
CT CY= 001 SN=PFQSET 00000064 WORDS.:
«.end —- Exit EDITOR.
Figure 1-24. BASIC Program Under NOS/BE
1-16 19983900 H

Using the SAVE command to save file BASPROG allows
the file to be reserved for later use during the
terminal session (for example, before logging out).
To save the file permanently, it must be stored as
a permanent file using the STORE command . (Some
accounting information might be necessary before
saving a file with STORE. Check site procedures.)
To retrieve and execute this program later, the
command sequence in figure 1-25 must follow the
user login sequence.

The FETCH command retrieves the file previously
made permanent and tells EDITOR that BASPROG is
to be the edit file. The commas are optional.
The RUN command compiles and executes the program.

19983900 H

COMHAND-fetch,basprog
COMMAND-editor
..format ,basic
-.edit, basprog

«erun, basic

Figure 1-25. Retrieval and Execution Example

For a more detailed description of INTERCOM EDITOR
commands used in this example, as well as other
available commands, see the section on Terminal
Operation under NOS/BE and the INTERCOM Version 5
reference manual.

ELEMENTS OF THE BASIC LANGUAGE 2

“

This section describes the BASIC language structure, TABLE 2-1. BASIC CHARACTER SET
and explains the elements of the language. The

language elements include: numeric data consisting
of integer, decimal and exponential constants; Symbo1 Description
string data consisting of alphanumeric text with or
without quotation marks; variables representing
values that are not fixed; and operators of the A thru Z Letters (uppercase)
language, expressions, and function references.
+ Plus
BASIC LANGUAGE STRUCTURE - Minus
A BASIC program is comprised of statements that * Asterisk
define the type of operations performed and the
types of data manipulated by the program. The / Slash
statement lines are written by using characters
from the BASIC character set. The following para- Left parenthesi
graphs define the BASIC character set, the struc- (P s
ture of a BASIC statement, and the structure of a) Right parenthesis
BASIC program.
$ Dollar
CHARACTER SET - Equal
The characters listed in table 2-1 can be used to : Colon
form BASIC statements. Any character available to
the operating system can be used in data and string ' Apostrophe
constants. See appendix A for a description of all
available characters. 0 thru 9 Numerals
A Blank’
STATEMENT STRUCTURE
: s Comma
A BASIC statement can be in the form of an exe-
cutable statement that specifies a program action . Period
(LET X=10) or a nonexecutable statement that pro-
vides information necessary for program execution n Quote
(DATA 1,3,5). A1l BASIC statements have the
following common characteristics: A Circumflexi T
Each statement begins with a line number. Line < Less than
numbering must range fro
> Greater than
Each statement must be completed on a single .
line. Statement continuation onto another line ? Question mark
is not allowed.
H Semicolon
Number
TRefer to appendix E for recommendations
for the use of blanks.
TTUp arrow (4) on some terminals.

- Tail comments serve only as docu-
entation except for being included in the 150
character statement limit.

A BASIC statement, including blank
s, and tail comments, can be i
characters.,

PROGRAM STRUCTURE

A BASIC program is a group of statement lines
arranged according to the following general rules:

19983900 K 2-1

Program statements must be in line number order
when the program is compiled. If entering
program lines in the BASIC subsystem under NOS
or using the EDITOR command FORMAT,BASIC under
NOS/BE, the program statements need not be
entered in line number order because they are
automatically sorted. See the Interactive
Facility reference manual (NOS 1 sites), Vol-
ume 3 of the NOS 2 reference set (NOS 2 sites),
or the INTERCOM Version 5 reference manual for
information about sorting line numbers before
execution.

Executable and nonexecutable statements can be
intermixed. In the following example, a non-
executable statement is the DATA statement at
line number 110, and an executable statement is
the IF statement at line number 100. These
executable and nonexecutable statements are
explained in more detail later in this manual.

100 IF A=B THEN.110
110 DATA 10,20,30
120 READ C,D,E

130 END -

An END statement must have the highest line
number in the source program.

Although BASIC programs can be compiled and exe-
cuted as batch programs, BASIC is normally used
interactively from a remote terminal.

CONSTANTS

A constant is a fixed, unchanging value. In BASIC,
there are numeric and string constants.

NUMERIC CONSTANTS

In BASIC there are three types of numeric constants:
Integer
Decimal
Exponential

Although each of the numeric constant types has
specific rules that govern its use, the following
rules apply to all three constant types:

A comma cannot be used to delimit placement
over the one~hundredth place, such as thousands
and millions.

When a numeric constant is not signed ex-
plicitly by a negative or positive sign, the
constant is assumed .to be positive.

Any number of digits can appear in a numeric
constant; a maximum of 1l4-digit accuracy is
used in computation. The CYBER 170 Model 176
uses a method different from other CYBER models
when rounding the results of division. - The
difference is in the 15th digit of accuracy,
but can become apparent when several divides
and multiplies are done 1in succession (as in
the case when matrix inversion is followed by
matrix multiplication).

12

Whether integer, decimal, or exponential, the
absolute value of a constant must be in the
range 3.13152 times 10-294 to 1.26501 times
10322, To compile a program containing con-
stants with values above this range results in
the diagnostic ILLEGAL NUMBER. Constants with
values below this range are treated as zeros.

integer Constants

An integer constant is a whole number written
without a decimal point.

Examples:

~49
+123456789
25000

0

Decimal Constants

A decimal constant is any whole number, fractionm,
or mixed number written with a decimal point.
Leading zeros to the left of the decimal point and
trailing zeros to the right of the decimal point
are ignored; the decimal point can appear anywhere
in the number.

Examples:

-4,08

50.5
1.91632614
147.2
.0000001

+3025.098

Exponential Constants

The representation of very large or very small num-—
bers 1s simplified by using exponential constants.
For example, to write ten billion in its full form
requires 11 digits (10000000000); however, ten
billion can also be represented as 1.0 times 1010,

In BASIC, this exponential form is expressed by
1.0E10. The 1.0 is the significand and the 10 is
the exponent. The E means times ten to the power
of.

Similarly, a small number, such as .00000000923,
can be represented as 9.23 times 10-9. 1In BASIC,
this notation can be expressed by 9.23E-9.

To use exponential constants in a BASIC program,
the following rules must be observed:

A number, the significand, must precede the E.
The significand can be any valid integer or
decimal constant.

The exponent (number that follows the E) is an
integer constant with a positive or negative
sign. If a sign is _absent, a positive sign is
assumed. If the exponent is too large to be
represented in the computer, a diagnostic is
issued.

Decimal points are not permitted in the
exponent. :

19983900 K

Examples:

-2.517E130
7E+20
4.91872634E-18

STRING CONSTANTS

A string is a collection of alphabetic, numeric,
and special characters. In BASIC, these characters
are usually set off by quotes from the rest of
the program; this is called quoted text. Strings
that are not set off with quotes, called unquoted
strings, are permitted, but they can only be used
in DATA statements or as input data.

Rules:

A string enclosed in quotes consists of all
characters between quotes, including blanks.

depends on the
ormal mode, the
in AS

maximum length is 131070
ode, the maximum length
characters, dependin,
code - characters in the string. See
appendix A.

A zero-length string, also called a null string,
is represented by a pair of quotes ("").

Any character can be used in quoted strings.

An embedded quote

Examples:

"PART 25"
"THIS IS A TEST"
"An""embedded""quote"

The outside quotation marks are not part of the
string constant. See DATA statement under 1I/0
Statements and Functions, section 7, for an example
of unquoted strings.

VARIABLES

Variables represent values that are not fixed.
Values can be assigned to variables and later
changed by other statements or conditions during
execution of the BASIC program. Variables can
represent numeric or string data and can be simple
or subscripted.

SIMPLE VARIABLES

Simple variables can be. either numeric or string.
These two types of simple variables are deseribed
in the following paragraphs.

19983900 -J

Numeric

A simple numeric variable represents a numeric
value. It is named by a single alphabetic charac-
‘ter or a single alphabetic character and a numeric
character. Variable names must not exceed two
characters in length. Examples of simple numeric
variables are:

A
Z3
c9
E

Examples of invalid numeric variable identifiers
are:

B23
49
G*
AA

The following rules apply to numeric variables:
Numeric variables represent only mumeric data.

Numeric variables are preset to zero before the
program executes.

The absolute value of a numeric variable must
be in the range of 3.13152 times 10294 to
1.26501 times 10322,

If a value smaller than the minimum is assigned,
the variable is set to zero.

If a value greater than the maximum is assigned,
a fatal diagnostic is issued.

String

String variables repr
are named with a 2- or, 3-¢|
first character must be al

The

in either case, the last character must be a dollar
sign (§). For example:

3%

The value represented by a string variable is a
string of characters. Internally, each character
is represented by one or two 6-bit numeric codes.
(See appendix A.) Each character has a code wvalue
that represents a position in the collating se-
quence. The characters at the beginning of the’
alphabet have code values that are less than the
characters at the end of the alphabet. For exam-
ple, if A$ and B$ represent strings ABC and XYZ,
respectively, then A$ has a value less than BS.

The string represented by a string variable can
contain from 0 th h 6-bit characters or
from 0 through _ 12-bit escape code (ASCII)
characters. The maximum for a string containing
both 6- and 12-bit characters (the usual case when
operating in ASCII mode) .lies somewhere between
65535 and 131070 characters depending wupon the
number of 12-bit escape code characters.

The memory space allocated to each string is deter-
mined by the length of the string. The minimum is
one computer word; the maximum is 13108 computer
words. The one-word minimum space is allocated by
the BASIC compiler for every string variable men-
tioned in the program. The remaining words are
allocated and de-allocated dynamically at execution
time.

SUBSCRIPTED VARIABLES

Subscripted variables represent one value in an
array of values. There are two types of sub~
d iabl :

y P H g
subscripted variables are formed by a simple string

variable followed by a subscript list. A subscript
list consists of one to three numeric expressions
bounded by parentheses. (See figure 2-1.) Rules
for the values of subscripted variables are the
same as for simple variables.’

NUMERIC SUBSCRIPTED VARIABLES

A(0)

B2(3)

B(5,10)
A(B2(3))
X(1,N+M,A(3)}

STRING SUBSCRIPTED VARIABLES

BS(4)
L$(1,3+3)
CS(1,+3,A(1)

Figure‘ 2-1. Numeric and String
Subscripted Variables

Rules for subscripted variables are listed below:

BASIC permits 1-, 2-
In BASIC, array dim
implicitly by using subscripted variables.

Unless an array has been explicitly defined by
a DIM statement, as described in section 3, the
first subscripted variable that references an
element in an array automatically defines the
array as containing 11 elements (0 through 10)
in each dimension. Thus, a . l-dimensiomal
array has 11 elements; a 2-dimensional array
has 11 times 11 (or 121) elements, and a 3-
dimensional array has 11 times 11 times 11 (or
1331) elements.

2-4

A subscript value greater than 10 requires a
DIM statement. If a maximum subscript value of
less than 10 is desired, a DIM statement can be
used. (See section 3.) :)

Subscripted variables with one subscript refer
to elements in l-dimensional arrays; sub-
scripted variables with two subscripts refer to
2-dimensional ' arrays; subscripted variables
with three subscripts refer to 3-~dimensional
arrays.

A subscript can be any arithmetic expression.
The subscript used is the value of the expres-—
sion rounded to an integer.

The lower limit on subscripts is zero. How-
ever, this limit can be changed to ome by using
OPTION BASE 1. (See OPTION statement in sec—
tion 3.) OPTION BASE 1 instructs the system
to start array subscripting with element 1,
rather than the default element 0. Thus, when
OPTION BASE 1 'is in effect, automatically-
defined l-dimensional arrays contain 10 ele-
ments (1 through 10), automatically-defined
2-dimensional arrays contain 100 elements, and
automatically-defined 3-dimensional arrays
contain 1000 elements.

Once an array is defined in a BASIC program,
the number of array dimensions cannot be
changed. For example, T(5) and T(2,3) cannot
be used in the same program. However, the
number of elements within a particular dimen-
sion can be changed if the total number of
elements in the resulting array is less than or
equal to the total number of elements in the
original array. For example, array T(2,3)
could be redefined as T(3,2).

19983900 B

EXPRESSIONS

An expression is usually formed from a series of
operands and operations; however, a single constant
or variable can also be considered an expression.
In BASIC, there are three types of expressions:
arithmetic, string, and relational. The value of
an arithmetic expression is numeric; a relational
expression is either true or false; and a string
expression is a string of characters.

ARITHMETIC EXPRESSIONS

Arithmetic expressions consist of a series of
numeric operands and operators. Operators can be
any arithmetic operator listed in table 2-2; oper-
ands can be any numeric constant, simple or sub-
scripted variable, numeric function reference, or
any expression enclosed in parentheses. A function
reference is a notation for activating a predefined
algorithm. If arguments are required by the func-
tion, the arguments are evaluated and passed to the
function. The function then calculates and returns
a result based on the arguments. The returned value
is used in place of the function reference. BASIC
provides several built-in functions and allows you
to write your own functions. See BASIC Functions
in section 5.

19983900 H

TABLE 2-2. ARITHMETIC EXPRESSION
OPERATOR HIERARCHY

Hierarchy | Operator Definition

Exponentiation (Note: ¢ on
some teletypewriters)

1 A or

2 * and / | Multiplication and division
3 + and - | Unary + and -
4 + and - | Addition and subtraction

Rules for Writing Arithmetic Expressions

In the formation of arithmetic expressions, certain
rules must be followed:

Only numeric operands and numeric operators can
be used.

Two arithmetic operators cannot appear side by
side; for example, X++Y is not allowed. If a
minus sign is used to indicate a negative value
in an expression, parentheses must be used to
separate the negative sign and associated oper-
and from the remainder of the expression. For

example:
Correct A*(-B)
Incorrect A*-B

Operators cannot be implied; for example,

(X+1) (Y+2) is not allowed. The correct form
is (X+1) * (Y+2).

The following are examples of valid arithmetic
expressions:

A+B*C/DAE

Al1(3,I+4)~2.6-G3/2Z

A+B**C

A+SIN(X) (SIN is a built-in function)
=3.14*%RN2

Arithmetic Expression Evaulation

The rules for the evaluation of arithmetic expres—
sions are as follows:

Expressions within parentheses are evaluated
first.

Operations of higher precedence are performed
before those of lower precedence. Precedence
is determined by the hierarchy illustrated in
table 2-2 from highest (1) to lowest (4).

2-5

Operations of equal priority or precedence are
performed in order from left to right.

Table 2-3 illustrates some examples of arithmetic
expression evaluation.

TABLE 2-3. EXPRESSION EVALUATIONS

Expressions Evaluation Steps
A+B*C/DNE 1. D~NE = a

2. B*C =b

3. b/la=c

4, A+c = d (final value)
A+(B-C)*3 1. B-C=a

2. a*3=b

3. A+b = ¢ (final value)
272 1. 2~n2 = a

2. -a = -4 (final value)
(-2)~2 1. -2=a

2. an2 = 4 (final value)

STRING EXPRESSIONS

String expressions consist of a series of string
operands and operators. There is only one string
operator available, string concatenation (+).
String operands can be one of the following:

A string constant

s

| string variable

HE

The following are examples of string expressions:

"TEST1"
B$(1)+D$
B$(1:4)

RELATIONAL EXPRESSIONS

There are two types of relational expressions:
simple and compound. Simple relational expressions
are formed by connecting two numeric or string
expressions with a relational operator. Compound
relational expressions are formed by connecting
two simple relational expressions with a logical
operator.

Simple Relational Expressions

The format of a simple relational expression is
shown in figure 2-4. The relational expression
operators that can be used to connect numeric or
string expressions are shown in table 2-4.

eq op ey

eq, €3 Indicates numeric or string constants,
variables or expressions.

op Indicates relational operator,

Figure 2-4. Format for Simple
Relational Expressions

The rules for writing simple relational expressions
are as follows:

Comparison of a string to numeric expressions
is not allowed.

Only one relational operator is allowed in an
expression.

Relational expressions can be used only in IF
statements (section 4).

19983900 H

TABLE 2-4. RELATIONAL EXPRESSION OPERATORS When strings are equal in length, the first
pair of corresponding characters that are not
i equal determines the greater string. For
Operator Definition example, ABXY is greater than ABCZ because the
numeric code for X is greater than the numeric
code for C.

Equal to
When strings are unequal in length, but corre-

Not equal to i sponding characters that can be compared are
equal, the longer string is always considered
Greater than greater. For example, ABX is greater than AB.

Less than When strings are unequal in length, but one of
: the corresponding characters that can be com~
Greater than or equal to pared when scanning from left-to-right is
greater, the string with the first character of
Less than or-equal to greater value is the greater string. = For
example, X7 is greater than X6543, and X76 is
greater than X75123.

The rule for evaluating simple numeric relational

expressions is as follows: Compound Relational Expressions
The two arithmetic expressions are evaluated A compound relational expression is a sequence of
and. then their resultant values are compared simple relational expressions separated by logical
algebraically to yield a true or false value. operators. A compound relational expression evalu-
If A=2 and B = 3, the expressions in figure ates to TRUE or FALSE. The format for the compound
2-5 are evaluated as shown. o relational expression is shown in figure 2-6. The

logical operator hierarchy is shown in table 2-5.

Relational Expression Value ryopry
A=B False r{.r2 Simple relational expression or com-
pound relational expression.
A<>B True
op Logical operator (AND, OR, unary
A>B False | NOT).
A<B True
Figure 2-6. Format for Compound
A>=8B False Relational Expressions
A<=B True '
A*A+3<B*2 False TABLE 2-5. LOGICAL OPERATOR HIERARCHY
Hierarchy | Operator Definition
Figure 2-5. Evaluating Simple
Relational Expressions
1 NOT Logical negation
The rules for evaluating simple string relational 2 AND Logical multiplication or

expressions are as follows: logical intersection

Strings are compared 3 OR Logical addition or union

(inclusive or)

The rules for evaluating compound relational ex-
pressions are as follows:

ASCII is the default collating sequence used for

all string comparisons in BASIC. OPTION COLLATE Expressions within parentheses are evaluated

can be used to change the collating sequence to first. :

a collating sequence that is native to the char- :

acter set being used. See the OPTION state- Operators of higher precedence (hierarchy) are
ment, and appendix A (describes the various performed before those of lower precedence.

character sets supported by BASIC). The hierarchy and definition of the logical

. operators are provided in table 2-5.
Strings are equal if they have the same length

and contain the same characters (including NOT is a unary operator and can appear to the left
blanks) in the same order. Blanks are important of any operand; however, it cannot appear as the
when they are used in strings. only operator between two operands.

19983900 H ' 2-7

NOT can appear between the other logical operators
(AND, OR) and an operand (for example, r; AND NOT

r2; r]1 OR NOT r2).

In the truth table 2-6, the NOT (unary) operator is
evaluated. The NOTp is the opposite of p. In the
following examples, A=1 and B=2; thus, TRUE is

printed for the first example, and FALSE is printed i

for the second example.

IF A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"

IF NOT A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"
In the first example, it is true that A is less

than B; in the second example, it is false that A
is not less than B (A is less than B).

TABLE 2-6. NOT (UNARY) OPERATOR EVALUATIONS

NOT (ADB AND C=D)

Evaluates to NOT false,

is true.

I=J OR NOT J>I

so the expression

Evaluates to false OR true, so the expres-
sion is true.

2%I=J/2 AND I<J

Evaluates to true AND false, so the expres-~
sion is false.

p NOTp
FALSE TRUE
TRUE . FALSE

The logical operators AND, OR are defined in truth
tables 2-7 and 2-8.

In the examples below, which illustrate the use of
NOT, AND, and OR, if A=5, B=4, C=2, D=1, I=8, and
J=4, the results are as follows:

NOT A>B AND C=D

Evaluates to false AND false, so the ex-
pression is false.

2-8-

TABLE 2-7. AND OPERATOR EVALUATIONS
q
FALSE TRUE
p
—-
FALSE FALSE FALSE
TRUE FALSE TRUE
TABLE 2-8. OR (INCLUSIVE)
OPERATOR EVALUATIONS
<
FALSE TRUE
p
FALSE FALSE TRUE
TRUE TRUE TRUE

19983900 H

FUNDAMENTAL STATEMENTS

E

This section describes the statements that are used
for the following purposes:

Perform value assignment during program execu-
tion.

Choose the lower boundary of an array.

Choose the collating sequence to be used for
string and function comparisons.

Define and allocate storage for arrays.
Terminate execution of a program.
Insert explanatory remarks into a program.

The tables in each category of statements summarize
the effect and usage of each statement.

VALUE ASSIGNMENT

The value of a variable can be assigned with the
LET statement. For numeric variables, the present
value is replaced by a new value. For string vari-
ables, the complete present value or a specified
substring of the value can be replaced by a new
value,

LET STATEMENT

The LET statement assigns a value to one or more
variables during execution of a BASIC program. The
effect and usage of the LET statement is shown in
table 3-1. The format of the LET statment is shown
in figure 3-1. The use of the word LET is optional
in the LET statement.

TABLE 3-1. VALUE ASSIGNMENT

Statement Effect Usage
LET Assigns a numeric LET B = 3+2
or stri
to one T 1
variabl peci-
fied in the LET C(4) = 20

statement Tline.

"When the LET statement contains a single variable

(nv or sv) on the left-hand side of the equals
sign, the value of the expression ne or se on the
right-hand side of the equals sign is assigned to
the variable. When the LET statement contains a
series of equalities, each variable is assigned the
value of the expression. Subscript. expressions are
evaluated prior to the assignmeat of the value, and
all expressions are evaluated according to the
rule of operator precedence. (See table 2-2 in
section 2.) For examples, see figure 3-2.

19983900 H

{or)

nv Indicates a numeric variable (simple or subscripted).
The string variables can also have a substring
descriptor.

sv Indicates a string variable (simple or subscripted).

ne Indicates a numeric expression of any complexity.

se Indicates a string expression of any complexity.

Figure 3-1. LET Statement Format

10 LET A1=X+Y

20 LET A2=A3=A4=X+Y
25 LET I=2+1

30 LET Z(I)=I=6

35 LET Z(I)=4

40 LET B$="TEST"

Figure 3-2. LET Statement Examples

In figure 3-2, the LET statement at line number 10
assigns the value of the expression X+Y to the
variable Al. The LET statement at line number 20
assigns the same expression value to each of the
variables A2, A3, and A4. The LET statement at
line number 25 assigns the value 3 to variable I.
The LET statement in line number 30 simultaneously
assigns the value 6 to variable I and Z(3). (The
subscript is evaluated before any assignments
occur; therefore, the value of I in Z(I) is 3.)
The LET statement in "line number 35 assigns the
value 4 to Z(6). The LET statement in line number
40 assigns the character string TEST to the string
variable BS.

Substring addressing can be used anywhere that
string variables are used. Use the LET and the
INPUT statements to replace, delete, extract, or
insert substrings into or from a simple or sub-
scripted string variable. Any length string (up to

3-1

the limits) can be vinserted' into a string by using -

a substring descriptor. A substring can be re-

placed by assigning a new value to that particular -

part of the string. A substring can be deleted by

assigning a null value to it. The value of the

original string can be lengthened or shortened with
these insertion, deletion, and replacement opera-
tions. A variable containing a null string can be
assigned a value by extracting a substring value
from one string and inserting it into the null
string. Figure 3-3 shows several - examples of
substring addressing; all the examples assume an
original string variable value of ABCDEF.

The following examples of substring addressing use an original
string value of ABCDEF.

20 LET A$(2:5)="XXXX"" Value XXXX replaces BCDE;
value of string A$ becomes
AXXXXF.

215 LET C$(3:5)="" Null value replaces CDE;

value of string C$ becomes

ABF.

110 LET B$(4)(2:0)="MM"* Value MM replaces the null
string before B; value of
subscripted string variable
B$(4) becomes AMMBCDEF.

30 LET Z$(1:3)=2%$(4:6) Value DEF replaces the

first three characters of

string Z$; value of Z$
becomes DEFDEF.

10 LET B$=A$(2:4) A$ is the original string

value of ABCDEF; B$

contains the null value; B$
is assigned the extracted
value BCD.

Figure 3-3. Substring Addressing
Using LET Statement

OPTION STATEMENT AND
DIM STATEMENT

To choose a particular collating sequence for
comparing strings and computing values, and to
declare the base (origin) of all arrays, use the

OPTION statement. To declare and allocate storage
for 1-, 2-, or 3-dimensional arrays that are not
the default size, use the DIM statement. See table
3-2 for a summary of the effects and usage of the
OPTION and DIM statements.

OPTION STATEMENT

Use the OPTION statement for two distinct pur-

poses: to explicitly declare the lower boundary

(or origin) of all arrays being used in the program
1

tered during normal program execution, control

passes to the next statement, with no effect on the
program.

OPTION BASE n

The OPTION BASE n statement explicitly sets the ori-
gin of all arrays to either 0 or 1. OPTION BASE n
can appear only once in a program, and it must
precede any DIM statement or any reference to an
array. If OPTION BASE n is not specified, the
lower boundary of all arrays is assumed to be
base 0. The default for array subscripting ‘starts
with element O.

In the following example, BASE n is declared as 1.
Since the example specifies that subscripting starts
with element 1, the DIM statement defines A as a 3
by 4 (or 12 element) array, and B as a 2 by 13 (or
26 element) array.

100 OPTION BASE 1
110 DIM A(3,4),B(2,13)

Usiag OPTION BASE 0 (the default) in the above
example would cause the array A to be dimensioned
as a 4 by 5 (or 20 element) array, and B to be
dimensioned as a 3 by 14 (or 42 element) array.
Other examples of using OPTION BASE n are shown
under Matrix Statements in section 8. Figure 3-4
shows the possible formats for OPTION BASE n.

TABLE 3-2. OPTION AND DIM STATEMENTS

Statement Effect

Usage

OPTION Can set the lower boundary of all
arrays being used by the program
1

-DIM Defines and allocates storage for
1-, 2-, and 3-dimensional arrays.

OPTION BASE 1

DIM A(4,4), B(15)

19983900 H

1. OPTION BASE n

(or)

n Indicates the origin to be set; it can be
either 0 or 1.

Note

You should not use OPTION COLLATE NATIVE
in normal mode. See Future System Migration
Guidelines, appendix E.

display code. However, - because of the antici-
pated changes in BASIC, it is recommended that
OPTION COLLATE NATIVE not be used in normal mode.
See the Future System Migration Guidelines, appen-
dix E. BASIC treats display character codes in the
same way as ASCII character codes. That is, the
smaller the display character code, the earlier the
character appears in the collating sequence.
Table A-2 in appendix A provides a list of char-
acters and their corresponding display character
codes.

The COLLATE option can be used only once in a pro-
gram. If the statement is not specified, OPTION
COLLATE STANDARD is assumed by default.

DIM STATEMENT

The DIM statement explicitly defines one or more
arrays and allocates storage space for the named
arrays. The format for the DIM statement is shown
in figure 3-5.

Figure 3-4. OPTION Statement Formats

OPTION COLLATE

The OPTION COLLATE NATIVE and OPTION COLLATE
STANDARD determine the collating sequence used by a
program for comparing strings and for computing
values of the CHR$ and ORD functioms. Figure 3-4
shows the formats for these two choices.

OPTION COLLATE STANDARD is the default collating
sequence; it specifies . that the ASCII collating
sequence is to be used by the program for comparing
strings and computing values of the CHR$ and ORD
functions. Every character in the BASIC character
set (as shown under BASIC Language Structure) is
assigned an ASCII character. code; the smaller the
ASCITI character code, the earlier the character
appears in the collating sequence. This ordering
is important in string comparison operations be-
cause BASIC compares characters according to their
assigned numeric codes in the applicable character
set. For example, A is less than B because the
ASCII (or BASIC decimal) code is 65 for A and 66
for B. Table A-1 in appendix A provides a list of
characters and their corresponding ASCII character
‘codes.

OPTION COLLATE NATIVE instructs BASIC to select the
collating sequence native to the character set
being used by the program. The character set used
by a program is determined by the AS parameter of
the BASIC control statement. (See Batch Opera-
tions, section 12.) As shown in appendix A, the
native character sets supported by BASIC can be
classified as the ASCII character set or as the
normal character set. The native collating se-
quence for ASCII character - sets (described in
appendix A as NOS ASCII 128-character set, NOS/BE
ASCII 128-character set, and the Extended Character
Set) is the same as for the standard collating
sequence. The native collating sequence used for
normal character sets (described in appendix A as
CDC 63-character set, CDC 64-character set, ASCII
63-character set, -and ASCII 64-character set) is

19983900 H

DiMm m1(nc1, .. , mn(nc1,

mq - m, Indicates numeric or string matrix
identifier.

ncy - ncy Indicates one-to nsigned integers,

separated by commas, that represent the
maximum value of each subscript.

Figure 3-5. DIM Statement Format

Arrays require a DIM statement when a subscript
value greater than 10 is needed. To save space,
use the DIM statement to dimension an array with an
upper subscript limit of less than 10. An array
not previously defined by the DIM statement is im-—
plicitly declared to have one dimension (10) when
an element is referenced by an array variable with
one subscript; two dimensions (10,10) when the ele-
ment is referenced by an array variable with two
subscripts; and three dimensions (10,10,10) when
the element is referenced by an array variable with
three subscripts. In all cases, the maximum sub-
script for each dimension in implicitly declared
arrays is 10.

Use DIM statements anywhere in a program, but
define an array prior to usage of that array. See
Future System Migration Guidelines, appendix E.
However, an array variable cannot be declared in a
DIM statement more than once in the same program.
An array can be redimensioned when a matrix state-
ment is executed. - (See Redimensioning and Matrix
Operations, section 8.) DIM is not executable;
the program is not affected if DIM is encountered
during normal program execution.

Arrays passed as arguments to the INV function are
limited to 100 times 100 elements. (See INV func-
tion, section 8.) 1In all other cases, the number
of dimensioned array elements is limited only by
the amount of available memory. Figure 3-6
illustrates use of the DIM statement to define
arrays and to reserve space for each of the
declared array elements. The examples presented in
figure 3-6 assume that subscripting begins with
element 0. ' ‘

3-3

e 100 DIM X$(5,5), B3(1,2), X1(50)
This statement reserves space for:

'X$ A two-dimensional string array with
6 times 6, or 36 elements.

B3 A two-dimensional numeric array with
6 elements.

X1 A one-dimensional numeric array with
51 elements.

e 50 DIM G2(5,6,7), A0(9,2), P$(2,3)
This statement reserves space for:

G2 A three-dimensional numeric array with
6 times 7 times 8, or 336 elements.

A0 A two-dimensional numeric array with
10 times 3, or 30 elements.

P$ A two-dimensional string array with
12 elements.

NOTE

Each element of a numeric array requires one
computer word. Each element of a string array
requires 1 + n computer words where n is a
function of the number of 6-bit characters
currently assigned to the string. [If the number
of characters is zero, n=0. 1f the number of
characters is nonzero, n=INT ((number of 6-bit
characters +11) /10}) + 1.

Figure 3-6. DIM Statement Examples

PROGRAM COMMENTS

Program comments in a BASIC program are indicated
by using the REM statement

», ‘summarizes the
e REM statement and the tail

usage o
comment .

REM STATEMENT

The REM statement is used to insert explanatory
remarks or comments into a program. REM is a non-
executable statement and, therefore, has no effect
on program execution. The format of the REM state-
ment appears in figure 3-7. Figure 3-8 shows some
examples of the REM statement.

I1f control reaches, or is transferred to, a REM
statement, the next executable statement following
the REM statement is executed. In the following
example, if A is equal to 10, control is trans-
ferred to the REM statement and the next executable
statement becomes 40.

10 IF A=10 GOTO 30

20 PRINT "A=AVERAGE"

30 REM TEST FOR SECOND AVERAGE
40 IF B=20 PRINT "B=AVERAGE2"

3-4

TABLE 3-3. REM STATEMENT AND TAIL COMMENT

Statement Effect Usage

REM SOLVE FOR Y

REM Adds comments
to a program
without
affecting
execution.

REM chq . . . chy

chy ... ch,, Any comment or explanatory character
string within the 1560 -character total
statement length limitation; comments
can be continued on additional REM

statements.

Figure 3-7. REM Statement Format

100 REM M EQUALS MASS IN GRAMS
110 REM V EQUALS VELOCITY IN CM/SEC.

120 REM T EQUALS KINETIC ENERGY

Figure 3-8. REM Statement Examples

PROGRAM TERMINATION

To terminate a program, use either the END state-
ment or the STOP statement. Table 3-4 shows the
purpose of these two statements.

STOP STATEMENT

The STOP statement can be used anywhere in a BASIC
program to cause an immediate exit from the pro-
gram. When the STOP statement is encountered,
program execution terminates at that particular
point, and control is returned to the operating
system. Figure 3-9 shows the format of the STOP
statement.

19983900 H

TABLE 3-4. END AND STOP STATEMENTS

Statement Purpose
SToP Terminates program
execution.
END Marks physical end

of a source program
and terminates
execution.

sTOP

Figure 3-9. STOP Statement Format

The STOP statement is equivalent to an uncondi-
tional GOTO statement that specifies the line
number of an END statement.

In the following example, the STOP statement causes
program execution to terminate if Al is less than
zero; if Al is greater than or equal to zero, pro-
gram execution continues until the END statement is
encountered.

19983900 H

100 IF Al<0 GOTO 120

110 IF Al>=0 GOTO 130

120 STOP’

130 PRINT "VALUE 1S SUFFICIENT."

999 END

END STATEMENT

The END statement signals the end of a BASIC pro-
gram; if control -reaches the END statement during
program execution, the program terminates as if a
STOP statement had been executed. ed . the END
statement must be the last statement in the pro-
gram. The format of the END statement appears in
figure 3-10,

The END statement but it should be
used in programs b e versions of BASIC
might require its use. See the Future System
Migration Guidelines, appendix E.

END

Figure 3-10. END Statement Format

3-5

BASIC FLOW CONTROL STATEMENTS) 41

---------------------------I--------------------..-.-.--.---.

This section describes control statements of the Since the GOTO statement unconditionally causes
language that are used to change the sequence of control to be transferred to the specified line
execution of statements, to test and branch on a number, care must be taken that this does not set
condition, to perform loops, and to monitor and up an infinite loop.

control errors and interrupts.
For example, consider the program in figure 4-2.-

When this program is executed, it cycles continu-
ously through lines 10, 20, and 30, and never

TEST AND BRANCH STATEMENTS reaches the END statement at line 40. It can be
' terminated only by interrupting the program. (See
Testing and branching to certain points in a program the NOS Interactive Facility reference manual

e GOTO, the ON GOTO, the IF, (NOS 1 sites), Volume 3 of the NOS 2 reference set

1 statements. Table 4-1 (NOS 2 sites), or the INTERCOM Version 5 reference
defines the test and branch statements and their manual.) Inserting an IF statement before the GOTO
effects in a program. Further details of these (25 IF X=100 GOTO 40) provides an exit. When the
statements follow table 4-1. value of X equals 100, the IF statement branches to

line 40 and automatically terminates the program.
The IF statement is described later im this section.

GOTO STATEMENT

The GOTO statement unconditionally transfers
control from one point in the program to another,
thereby interrupting the normal sequence of in-
structions. The format for this statement is shown
in figure 4-1.

GOTO In

In Indicates line number,

Figure 4-1. GOTO Statement format

GOTO specifies that the statement at the referenced 10 LET X=X+1
line number is to be executed next. Normal sequen- 20 INPUT X
tial execution continues from that point. If a 30 GOTO 10
GOTO statement references a nonexecutable state— 40 END
ment, such as a DIM statement, execution continues

with the first executable statement that follows
the referenced nonexecutable statement. Figure 4-2. 1Infinite Loop

TABLE 4-1. TEST AND BRANCH STATEMENTS

Statement Effect Usage
GOTO | ~ Unconditionally transfers GOTO 50

control to a specified state-

ment .
ON. GOTO Transfers control to one of ON A/3 GOTO 50,60

a group of statements depen-
ding on the integer value
specified in the ON GOTO
statement.

IF Tests a relationship or a IF A=20 THEN 80
group of relationships. If
the test is true, control
moves to a referenced pro-
gram statement; otherwise,
control falls through to the
next executable statement.

19983900 H , - ' 41

ON GOTO STATEMENT

The ON GOTO statement provides for conditional
branching depending on the value of an expression.
The expression is evaluated and rounded to an in-
teger value. Then control is transferred to 1ng
if ne is equal to 1l; to Inp if ne is equal to 2;
and so forth., If the value of the expression is
negative, zero, or greater than the number of line
numbers specified, an execution diagnostic ON
EXPRESSION OUT OF RANGE is issued. Figure 4-3
illustrates the formats for the ON GOTO state-
ment. The second format should not be used because
it might not be supported in future versions of
BASIC. See the Future System Migration Guidelines,
appendix E.

1. IF r THEN In (or) IE

r Indicates simple or compound relational
expression.

In Indicates line number.

stm Indicates executable BASIC statement.

1. ON ne GOTO Inq, Ing, Ing, .. ., In,

or

ne Indicates numeric expression.

In Indicates line number.

Figure 4-3. ON GOTO Statement Format

In figure 4-4, SGN(A) can have the value -1, 0, or
1.. The expression SGN(A)+2 can have the value 1,
2, or 3, and control transfers to statements 100,
110, or 120, respectively. 1f, for example, A has
the value 2.5, then SGN(A)+2 has the value 3, and
the order of statement execution is 95, 120, 130,
and the next logical statements.

095 ON SGN(A)+2 GOTO 100,110,120
100 LET A=A*A

105 60TO 130

110 LET A=A*B

115 GOTO 130

120 LET A=A*B A 2

130 LET B=AH

Figure 4=4. Example of ON GOTO and
GOTO Statements

IF STATEMENT

The IF statement tests conditions and controls the
sequence of operations. The formats for the IF
statement are shown in figure 4-5. If the rela-
tional expression r‘is true, the program transfers
control to the statement at line number 1ln, if
format 1 is used, and executes statement stm, if
format 2 is used. Do not use the format GOTO be-
cause it might not be supported in future versions
of BASIC. See the Future System Migration Guide-
lines, appendix E. If the relation r is false, the
next sequential statement is executed. Examples of
simple IF...THEN clauses are shown in figure 4-6.

Figure 4-5. IF Statement Format

20 IF 2*1 >= J A 2-1 THEN 165

Assuming | = 8 and J = 4, the value 16 is compared to the
value 15; the evaluation is true, the next statement executed
is at line number 165.

15 IF 1 =J OR NOT J < | THEN 140

Assuming | = 8 and J = 4, the relation 1 = J is false. The
relation J < | is true; however, NOT J < | is false. The
compound relational expression evaluates to false (false or
false is false) and the branch to statement 140 is not made.

25 IF A<>0THEN LETB =10

This statement causes B to be set to 0 if A is not equal
to 0. The next statement in sequence is then executed.
If A = 0 the next statement in sequence is executed but
the LET B = 0 is not.

figure 4-6. IF Statement Examples

The stm parameter can contain any executable state-
ment other than a FOR or a NEXT statement. The
nonexecutable statements OPTION, DATA, DEF, DIM,
END, FNEND, image, and REM are not allowed in the
stm parameter.

Multiple IF...THEN clauses can be embedded within a
single IF statement to perform various kinds of
conditional tests, as shown in figure 4-7. The
maximum number of IF...THEN clauses is governed
only by the 150 character line width limitationm..
The IF statement in figure 4-7 contains two
IF...THEN clauses to test for a zero value in each
of the numeric variables A and B. If both A and B
are zero, C is assigned the value 14. If neither A
nor B is zero, C is not assigned the value 14.

When the IF statement contains multiple IF...THEN
clauses, the clauses are tested consecutively,
beginning with the first clause.

030 IF A=0 THEN IF B=0 THEN LET C=14

Figure 4-7. Nested IF...THEN
Statement Example

19983900 H

IF A<O THEN 150 ELSE 160

IF A$="STOP" OR A$="END" THEN STOP
ELSE 100

IF X=0 THEN LET Y=0 ELSE LET Y=Y/X

IF A=0 THEN IF B=0 THEN PRINT 1
ELSE PRINT 2 ELSE PRINT 3

IF A=0 THEN IF B=0 THEN PRINT 1
ELSE PRINT 2

IF A=0 THEN GOSUB 500 ELSE IF B=0
THEN GOSUB 600 ELSE LET B=3

19983900 K

Figure 4-9. IF...THEN...ELSE
Statement Examples

LOOPING

Looping, the repetitive execution of the same
statement or statements, can be efficiently con~
trolled in BASIC with the FOR and NEXT statements.
Table 4-2 summarizes these looping statements and
their effect in a program.

FOR... NEXT STATEMENTS

The FOR statement initiates repeated looping
through the statements that physically follow the
FOR statement, up to and including a corresponding
NEXT statement. The FOR statement must appear as
the first statement of the loop, and the NEXT
statement must be the last statement of the loop.
The format of the FOR...NEXT statements is illus-
trated in figure 4-10.

When the FOR statement is executed, the expressions
are evaluated and their values are saved as ini-
tial, step, and final values of the loop. The con-
trol variable is assigned the initial value and, if
it does not surpass the final value, the statements
between the FOR and NEXT statements are executed.
When the NEXT statement is encountered, the value
of the control variable is adjusted by the step
value. A comparison is made between the value of

4-3 1

TABLE 4-2. LOOPING STATEMENTS

Statement Effect Usage

FOR Marks the beginning of a loop and in- FOR I=1 TO 10
itiates its execution.

NEXT Marks the end of the FOR loop; tests for NEXT 1
end-of-loop condition and reexecutes or
terminates depending on the results.

The initial, £final, and STEP expressioné are

= ’ evaluated only once (upon entrance into the loop).
1. FOR snv = neq TO nep STEP neg These values do not change during execution of the

loop, even if the program changes the value of the

for) variables within the expressions. v

2. FOR snv = ney TO ney

NEXT snv

snv Indicates simple numeric variable
(called the control variable; it must
be identical in both statements).

neq Indicates any arithmetic expression
(called the initial value).

ney Indicates any arithmetic expression
(called the final value).

nes Indicates any arithmetic expression

(called the step value).

Figure 4-10. FOR...NEXT Statement Formats

the adjusted control variable and the specified
final value: if the control value has not sur-
passed the final value, looping continues at the
statement following the FOR; if it has, the loop is
complete and execution continues with the statement
following NEXT. The statements between the FOR and
NEXT statements are never executed if the initial
value is beyond the final value.

The STEP value can be positive or negative. For a
positive STEP value, the initial value must be less
than the final value upon entrance to the loop.
Similarly, for a negative STEP value, the initial
value must be greater than the final value. If
either condition is not met, the loop does not exe-
cute, and control branches to the statement follow-
ing the NEXT statement, Figure 4-11 illustrates a
‘loop with a specified STEP value of +2. Execution
of the loop in figure 4-11 causes the values 1, 3,
5, 7, 9, and 11 to be printed. Statements 20
through 30 are repeated six times, once for each
value assigned to X.

010 FOR X=1 TO 11 STEP 2
020 PRINT X

030 NEXT X

040 END

Figure 4-11. Loop With Specified SfEP Value

b=t : 19983900 K

After a loop has repeated itself the specified
number of times, the final value of the control
variable is the first value not used. That is,
upon normally exiting from a loop, the control
variable assumes its final value plus an additional
STEP value (+1 when a STEP value is not speci-

fied). Using a control statement, such as GOTO, to
prematurely terminate a loop causes the control

variable to retain the value it has when the con-
trol statement is executed. Figure 4-13 shows the
effect that a normal exit from a loop has on the
control variable. The X in line number 120 assumes

the value of 1, 3, 5, 7, 9, and 11, and the X in
line number 140 assumes the value 13.

110 FOR X=1 TO 11 STEP 2
120 PRINT X

130 NEXT X

140 PRINT X

150 END

Figure 4-13. Loop Exit Effect
on Control Variable

Loops can be nested (loops specified within loops)
to a maximum depth of 10, but the loops must not
intersect each other. Examples of correct and
incorrect looping are shown later in this sectiom.

A loop can contain a GOTO statement or other state-
ments that transfer control outside the range of
the loop. In this case, the loop terminates prema-
turely, and the control variable retains its latest
value. Do not transfer control into a FOR...NEXT
loop. See Future System Migration Guidelines,
appendix E.

Figure 4-14 shows the effect of the FOR statement
cn control variables. The loop initiated in 1line
number 112 did not execute because the initial
value is not greater than the final value, and the
step value is negative. TFigure 4-15 shows examples
of correct and incorrect looping.

Correct:

—FOR X . ..

[—Foln_v...

FFORZ...

-NEXT Z

~FOR Q

~NEXT Q

—NEXT Y

—NEXT X

Incorrect:

FOR X ...
FORY...

NEXT X

NEXT Y

Statement Values
110 FOR X =2to 4 2,3,4,5
111 FOR G = 6 TO 3 STEP -1 6,54,3,2
112 FOR X =5 TO 10 STEP -1 5

Figure 4-14. FOR...NEXT Statement Examples

19983900 K

Figure 4-15.

FOR...NEXT Loops

4~51

19983900 K

| A

100 ON ATTENTION GOTO 900

200 5RINT "ENTER NEXT ORDER NUMBER OR 0"
210 INPUT N
220 IF N=0 GOTO 500 '0 MEANS END OF ORDERS

300 ;RINT "ENTER NEXT ITEM NUMBER OR Q"

310 INPUT I

320 IF 1=0 GOTO 400 '0 MEANS END OF ITEMS

330 PRINT "ENTER QUANTITY"

340 INPUT Q

900 Z=ASL(0) 'Z IS LINE NUMBER AT WHICH TO CONTINUE

910 ON ATTENTION GOTO 910 'RESET SO INTERRUPT WILL NOT CHANGE Z
920 PRINT "INTERRUPTED AT LINE";Z;", LAST ORDER ";N;', LAST ITEM";I
930 PRINT "TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE"

940 INPUT Z$

950 IF Z$="STOP" THEN STOP

960 ON ATTENTION GOTO 900 'RE-ENABLE AT ORIGINAL LINE NUMBER
970 IF Z$="NEXT ORDER" THEN GOTO 200

980 IF Z$="NEXT ITEM" THEN GOTO 300

990 IF Z$="CONTINUE" THEN JUMP Z

995 G0TO 910 'INVALID RESPONSE. REPEAT QUESTION
999 END

ENTER NEXT ITEM NUMBER OR O

? 443

ENTER QUANTITY

? ATTIN

INTERRUPTED AT LINE 340 , LAST ORDER 6087 , LAST ITEM 443
TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE
? NEXT ITEM :

ENTER NEXT ITEM NUMBER OR 0

? 444

ENTER QUANTITY

? 2

TThe key that initiates an interrupt varies with the operating system
and the terminal mode. Consult the appropriate reference manual for
this information.

19983900 H

Figure 4-17. ON ATTENTION Statement Example

/

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

ON ERROR GOTO 160

PRINT "READ ERROR WILL BE PROCESSED BY PROGRAM'"
READ X1,X2,X3

PRINT "VALUES READ WERE ";X1;",";X2;",AND";X3
sToP

REM ERROR PROCESSING ROUTINE

LET X=ESL(X)

LET Y=ESM(X)

IF X=120 THEN 210 -

PRINT "ERROR NOT IN STATEMENT 120"

sTOP

PRINT “ERROR NUMBER #";Y;"DETECTED AT LINE #";X
JUMP NXL (X)

DATA 2.0,3.0,"STRING"

END

produces:

READ ERROR WILL BE PROCESSED BY PROGRAM
ERROR NUMBER # 126 DETECTED AT LINE # 120
VALUES READ WERE 2 , 3 ,AND O

Figure 4-20. Example Using ON ERROR, JUMP, ESL, ESM, and NXL

19983900 H

19983900 H

BASIC FUNCTIONS 3

A function is a predefined algorithm. A function
returns a value to the point of reference each time
the function is invoked from an executing program.

Two kinds of functions are provided with BASIC:
the predefined functions of the language, called
built-in functions; and the functions that can be
written by using the DEF and FNEND statements,
called user—-defined functions. The built-in func-
tions are in the form of subset programs written to
perform specific kinds of tasks.

The built-in functions and user-defined functions
are classified as follows:

Built-in functions:

Mathematical functions

System functions

String functions

Matrix functions

Error and interrupt processing functions
I/0 functions

User—-defined functions:

Single-line functions
Multiple~line functions

Although all of the built-in functions are defined
in this section, some of the functions are described
in more detalil in other sections of this manual.
The seven tables in this section identify the
built-in functions and indicate their functional
classification. (See the table of contents for
specific section references.) The user-defined
functions are described at the end of this section.

REFERENCING A FUNCTION

Built-in and user-defined functions are referenced
by specifying a function name followed by asso-
ciated function parameters in parentheses. If no
parameters are used in the function definition, no
parameters are needed in the function reference.
The form for a function reference is shown in
figure 5-1.

function name (eq.,eq, . . . ,&,)

e Indicates numeric or string expression;
parameter is aptional.

‘Figure 5-1. Function Reference Format

19983900 K

The number and type of parameters (e) passed with a
function reference must exactly correspond to the
number and type of parameters expected by the func-
tion; for example, a string must be passed where a
string is expected and a number must be passed
where a number is expected. A diagnostic is issued
if the type and number of parameters contaired in
the function reference do not correspond to those
expected in the definition.

Built-in function parameters that are integer
quantities use the value of the numeric expression
rounded to an integer. User-defined functions can-
not specify that a parameter is an integer. With
user-defined functions, all numeric values are real
numbers and the function either truncates or rounds
values to 1integers, depending upon the written
statement. Function reference parameters are eval-
uated and the values of the parameters are passed
to the function. The function is then evaluated
and the result is returned to the point of the
function reference.

MATHEMATICAL FUNCTIONS

Table 5-1 is an alphabetical 1list of the standard
mathematical functions that can be referenced by a
BASIC program. In this table, the function argu-
ment ne can be a numeric expression of any com-
plexity and can include other function references.

Figure 5-2 shows an example of the ABS and the SQR
mathematical functions. The absolute value of -71
is multiplied by the square root of 520.

10 LET C=ABS(~71)

20 PRINT ¢

30 LET D=SQR(520)

40 PRINT D

50 LET T=C*D

60 PRINT "ABS (-71)*SQR(520)=";T
70 END

produces:

7
22.8035 ,
ABS (~71)*SQR (520)= 1619.05

Figure 5-2. ABS and SQR Functions Example

RANDOM NUMBER GENERATION

The generation of pseudo random numbers is con-
trolled by the RND function and . by the RANDOMIZE
statement., The RANDOMIZE statement overrides the
predefined sequence of numbers generated by RND.

TABLE 5-1. MATHEMATICAL FUNCTIONS

Function Description
ABS(ne) Finds the absolute value of ne.
ATN(ne) Finds the arctangent of ne in the principal value range (-m /2) to (+7/2).
C0S(ne) Finds the cosine of ne; the angle ne is expressed in radians.

EXP(ne) Finds the value of e to the power of ne.
INT(ne) = Finds the largest integer not greater than ne.
Example:

s

INT(5.95)

e

.
= M

LOG(ne) Finds the natural logarithm of ne; ne must be greater than zero.

Returns a pseudo random number from the set of numbers uniformly distributed
over the range of 0 to 1. See the description and examples in this section.

SGN(ne) Interrogates the sign of ne and returns a value of 1 if ne is positive;
0 if ne is 0; or -1 if ne is negative.

SIN(ne) Finds the sine of ne; the angle ne is expressed in radians.

SQR(ne) Finds the square root of ne; ne must be > 0.

TAN(ne) . ‘Finds the tangent of ne; the angle ne is expressed in radians.

RND FUNCTION

The RND function returns a pseudo random number
from the set of numbers uniformly distributed over
the range of 0 to 1. The formats for the RND func-
tion are shown in figure 5-3. Do not use the second
format because it might not be supported in future
versions of BASIC, - (See Future System Migration
Guidelines, appendix E.) i

RND is equivalent to RND(O) in that it returns a
value in the established sequence of pseudo random
numbers uniformly distributed over the range of 0
to 1. Random numbers are returned in the same An example of the RND function is shown in
sequence each time the program containing RND is figure 5-4. The program was executed twice. The
executed unless the RANDOMIZE statement . is wused RND function twice returned the same set of pseudo
to override the predefined sequence. RANDOMIZE random numbers. An example later in this section
affects RND(O). RND(ne) affects RND, if ne>0. The shows this same program with the RANDOMIZE state-
RANDOMIZE statement and its effect on random number ment that ensures that a different sequence of

Figure 5-3. RND Function Format

generation is discussed in more detail later in
this section.

5-2

pseudo random numbers is generated each time the
program is executed.

19983900 H

reference and a different sequence each

100 FOR T=1 TO0 3 time it is run. The sequence initial-
110 L=RND ized by ne<0 is separate from the se-
120 E=RND quence controlled by ne>0, and ne=0
130 I=RND references to RND sequences.
140 PRINT L,E,I
150 NEXT T
160 END ~ RANDOMIZE STATEMENT

The RANDOMIZE statement causes a new initial or
produces: seed value to be placed in the random number gen-

erator each time a program containing the RND func-
tion is run. The placement of this new value in

.580114 950513 . 786371 the random number generator overrides the prede~
.29762 4537 6.26194E-3 fined sequence of pseudo random numbers generated
.275736 -305651 -689101 by the RND function; therefore, the RND function

returns a different sequence of values each time
the program is executed. Figure 5-5 shows the

produces: format for the RANDOMIZE statement.
.580114 .950513 786371
.29762 .4537 6.26194E-3 RANDOMIZE
.275736 .305651 .689101

Figure 5-5. RANDOMIZE Statement Format

Figure 5-4. RND Function Example
Figure 5-6 shows an example using RANDOMIZE to
control random number generation. This program was
The value of ne in RND(ne) affects random number executed twice. The RANDOMIZE statement causes RND
generation as follows: to return a different sequence of values, unlike
the example shown for the RND function that does
not use RANDOMIZE (figure 5-3).
ne>0 A random number sequence is initialized
based on the value of ne; and the first
number in the sequence is returned.
Each reference to RND with ne equal to

090 RANDOMIZE
100 FOR T=1 TO 3

a particular positive constant value 110 L=RND
initializes the sequence at ‘the same 120 E=RND
starting point and returns the same 130 I=RND
value. Therefore, the same number or 140 PRINT L,E,I
the same sequence of numbers can be 150 NEXT T
returned each time RND is referenced 160 END
and/or each time the program is run if
the ne>0 arguments are used. If ned0,
RND(ne) can affect RND without the produces:
argument.
ne=0 The next number in the established - 34368 -310629 -590422
sequence of pseudo random numbers is -993254 .237534 .876869
returned. If the sequence was not 481367 .900958 - .320888

previously established by an ne>Q RND
reference, a standard constant is used
to initiate the sequence. The same produces:
sequence of random numbers is returned
when using RND(0) references each time

the program is run unless you initial- -463818 -82842 .977286
ize the. sequence with a different posi- - 882296 - 96833 6.09989E-2
tive (>0) value each time the program 630496 41131 -654263

executes. This can be done by using a
first reference, such.as RND(CLK(0)). X . . :
CLK(0) returns the time-of-day. 1f Figure 5-6. RANDOMIZE Statement Example

ne=0, RANDOMIZE .affects RND(ne).

ne<0 The first reference initializes a random
number sequence based on the current .
time of day, and returns the first value
in that sequence. Subsequent refer-
ences with ne<0 return the next number
in the sequence. A program that uses
ne<0 returns a different value: on each

19983900 H ‘ - 5-3

10 LET X=TIM(1)
20 PRINT "CLKS TIME OF";CLKS;"=";CLK(1);"IN CLK(X) TIME"
30 PRINT DATS
40 LET Y=TIM(2)
. S0 PRINT "TOTAL ELAPSED TIME IS";Y-X
60 END

produces:

CLK$ TIME OF 12.40.43.= 12.6786 IN CLK(X) TIME
81/06/22.
TOTAL ELAPSED TIME IS .001%

5-4 19983900 H
»

-
i
.

.

=
3’5%’@ .

i sy
e
S S
.

.
o 7
i —\"‘mﬁxf%‘?’?m}

...

...
w@*“’“%xggﬁ%m -

.

& S
G

shows a
itn the

.

19983900 H

10 REM 98 IS THE ASCII CODE FOR LOWERCASE 8
15 OPTION COLLATE STANDARD

20 LET B$=CHR$(98)

30 PRINT BS;" IS";LEN(BS);"CHARACTER(S)"
40 END

In ASCII mode, produces:
b IS 1 CHARACTER(S)
In normal mode, produces:
“B IS 2 CHARACTER(S)

10 REM 98 IS THE ASCII CODE FOR LOWERCASE B
15 OPTION COLLATE NATIVE

20 LET B$=CHR$(98)

30 PRINT BS;" IS";LEN(BS);'CHARACTER(S)"

40 END

In ASCII mode produces:

b IS 1 CHARACTER(S)

I H
n normal mode, produces 100 LET AS="1234"
110 LET B$=LPADS(AS,6)
ILLEGAL CHR$ ARG AT 20 120 PRINT "0";BS$;"5"
BASIC EXECUTION ERROR 130 END
Figure 5-10. CHR$ Function Example produces:
0AM 2345

Figure 5-14. LPADS Function Example

100 LET S$="543"
110 LET A=LEN(S$)
120 PRINT A

130 END

produces:

Figure 5-12. LEN Function Example

5-6 8 : : 19983900 H

100 LET B$="AA12345"
105 PRINT "8";BS$;"5"

110 PRINT "8";LTRMS (BS);"5"
120 END

produces:

8AA123455
8123455

Figure 5-16. LTRM$ Function Example

1]

Yol A

G e

100 PRINT "PROGRAM FOR ORD FUNCTION'
105 LET As$="a"

110 LET A=0RD (AS)

115 PRINT "CHARACTER '
120 PRINT ORD("LCA™)
130 PRINT ORD('S")
140 PRINT ORD("BS")
150 END

;AS$;" HAS ORDINAL OF ";A

produces:

PROGRAM FOR ORD FUNCTION
CHARACTER a HAS ORDINAL OF 97
97

53

8

G
.
]

Figure 5-20. ORD Function Example

100 LET AS="FILE A"
110 PRINT AS

120 LET BS=LWRC$(AS)
130 PRINT BS

140 END

produces:

FILE A
file a

Figure 5-18. LWRC$ Function Example

. Gl

o

19983900 H 5-7

100 LET A$='D"

110 PRINT "ABC";AS$;"EF" .
120 PRINT "ABC'";RPADS(AS$,2);"EF"
130 END

produces:

ABCDEF
ABCDAEF

Figure 5-24. RPAD$ Function

Example

10 PRINT "POS FUNCTION PROGRAM"

20 PRINT

30 LET AS="OUTSTANDING"

40 LET A=POS(AS,"AN",2)

50 PRINT "THE POSITION OF 'AN' STARTING WITH CHARACTER POSITION 2 IS ";A
60 PRINT POS(AS,"ST™

70 PRINT POS (AS,"AN",15)

80 PRINT POS(AS,"T")

90 END

produces:

POS FUNCTION PROGRAM

THE POSITION OF 'AN' STARTING WITH CHARACTER POSITION 2 IS 6
4
0
3

5-8

Figure 5-22. POS Function Example

19983900 H

10 LET A$="1A345AA"

20 PRINT A$;"ABC"

30 PRINT RTRMS$(A$);"ABC"
40 END

produces:

1A3450AABC
1A345ABC

Figure 5-28. RTRM$ Function Example

e

10 LET A$ = RPT$("*",132) : AS$ is assigned the string consisting of 132 asterisks (*). .
20 IF B$ = RPT$(‘A",80) THEN 90 Control is transferred to statement 90 if B$ consists

of 80 blanks.)
05 LET C$ = RPT${“ABC"”,2) C$ is assigned the string ABCABC.

Figure 5-26. RPT$ Function Examples

19983900 J

5-9

TABLE 5-4. ERROR AND INTERRUPT PROCESSING FUNCTIONS

10 LET B$ = STR$(A(1,6))

20 LET A$ = STR$(I,”PRICE = $# ##. ##")

Assuming A(1,6) = 1234, execution of this statement
assigns the string 1234 to B$.

Assuming | = 203.23476, execution of this statement
assigns the string PRICE = $203.23 to A$.

Figure 5-30. STR$ Function Example

10 LET AS=UPRC$("Department 4")
20 PRINT AS
30 END

produces:

DEPARTMENT &

Figure 5-32. UPRC$ Function Example

I/O FUNCTIONS

Table 5-6 briefly describes the functions used in
I/0 operations. Further details of these functions
are described in the section I/0 Statements and
Functions.

USER-DEFINED FUNCTIONS

BASIC, in addition to providing built-in functions
of the language, also permits you to define your own
functions. User-defined functions can be written
either as single- or multiple-line functions. When

these functions are referenced, they return a value

based upon the parameters passed by the function
reference and the function definition. User-defined
functions are referenced the same as built-in
functions. See Referencing a Functiom.

110 LET B9 = VAL(B$(1))
100 LET X4 = 2*C4 + VAL("123.7")

090 LET IF VAL(D$(1,J))< 24 THEN 291

Assuming that B$(1) contains a string 1234, then the numeric value
1234 is assigned to B9.

Similarly for these two examples, numeric values are extracted and used
for arithmetic purposes or for comparison with a numeric constant.

Figure 5-34.

5-10

VAL Function Examples

19983900 H

TABLE 5-6. 1/0 FUNCTIONS

Function Description

Returns a string of blanks, which
results in moving the print mecha-
nism to print position ne. TAB can
onl{ be used with the PRINT state-
ment.

The DEF and FNEND statements are provided to write
user~defined functions. To write a single-line
function, only the DEF statement is used. To write
a multiple-line function, the function definition
must begin with the DEF statement and end with the
FNEND statement. Any BASIC statement, except END
and another DEF statement, can be located between
the DEF and FNEND statements. Table 5~7 summarizes
the effect and usage of the DEF and FNEND state-
ments.

TABLE 5-7. USER-DEFINED FUNCTIONS

Statement Effect Usage

DEF Defines a
function.

DEF FNA(X) = A+B+C

19983900 H

SINGLE-LINE FUNCTIONS USING DEF

The DEF statement is used to write a single-line
user—defined function. A single-line function is a
complete definition on one statement line. It can
be in the form of a numeric function or a string
function, and it can contain parameters (up to 20
parameters are allowed). The format for a single-
line function appears in figure 5-35.

1. DEF FNa=ne

2. DEF FNa (svqsvy, . .. Svgg) = ne

a Any alphabetic character that uniquely
identifies the function.
ne Indicates numeric expression.
se Indicates string expression.
$Vq . . . sVpq Indicates simple variable numeric or
string.
NOTE

Formats 1 and 2 are for numeric functions;
formats 3 and 4 are for string functions.

Figure 5-35. Single-Line Function Using DEF

The rules for writing a single-line function using
DEF are as follows:

The variables sv are formal parameters. They
can be used elsewhere in the program without
affecting the function. Each formal parameter
must be unique within the function. From 0 to
20 formal parameters are permitted.

5-11

The expression defining the function can include
variables : other than formal parameters. The
current value of these variables is used when
the function is evaluated.

The definition must be complete on one line.

A function can include references to built-in
BASIC functions or other user-defined func-
tions, but not to the function being defined;
recursive definitions are not allowedand cause
an error diagnostic to be issued at compilation
time.

Although a user-defined function can be refer-
enced before it is defined, this is not recom-
mended. A compile time warning diagnostic is
issued when - this occurs (WARNING - FUNCTION
REFERENCE BEFORE DEFINITION). See the Future
System Migration Guidelines, appendix E.

Although a function can be redefined within a
program, it 1is not recommended; a compile time
warning diagnostic is issued when this occurs
(WARNING - FUNCTION REDEFINITION). If a func-
tion is redefined, the definition used is the
one on the highest line number before the line

containing the function reference; for a func-
tion referenced at a line number before any
definitions, the definition used is the one
with the lowest line number after the function
reference. See the Future Systems Migration
Guidelines, appendix E.

Figure 5-36 shows three examples using the DEF
statement to express a single-line function. In
example 1 of figure 5-36, line number 10 contains
the function definition, and line number 20 contains
the function reference.

In example 2 of figure 5-36, FNA computes the area
of a circle when given its radius, FNC computes the
circumference of a circle when given its diameter,
and FNV computes the volume of a sphere when given
its radius. Note that the definition FNV uses the
function FNA. At line 40, four column headings are
printed. The FOR loop prints, on successive lines,
a radius and the corresponding circumference, area,
and volume computed by the user—-defined functioms.

In example 3 of figure 5-36, a DEF statement with
no formal parameters is used to define the area of
a circle having a radius of .2.

10 DEF FNA(M,N,0,P)=M+N+0+P
20 LET E=FNA(2,3,4,5)

30 PRINT E

40 END

produces:
14

10 DEF FNA(R)=3.14159*R**2
20 DEF FNC(D)=3.14159*D
30 DEF FNV(R)=4*FNA(R)*R/3

50 FOR R=.1.TO 1 STEP .3

10 DEF FNP=3.14159

20 DEF FNA(R)=FNP*R**2
30 PRINT "AREA=";FNA(.2)
40 END

produces:

AREA=.125664

40 PRINT "RADIUS",''CIRCUMFERENCE"," AREA"," ~VOLUME"

60 PRINT R,FNC(2*R),FNACR) ,FNV(R)

70 NEXT R

80 END

produces:

RADIUS CIRCUMFERENCE AREA VOLUME
.1 .628318 3.14159E-2 4.18879€-3
-4 2.51327 .502654 .268082
7 4.39823 1.53938 1.43675
1 6.28318 3.14159 4.18879

Figure 5-36. Single-Line Function Examples Using DEF

19983900 X

.

: -
= e

19983900 H 5-13

100 DEF FNRS(AS,I,J,B$)

120 REM REPLACE J CHARACTERS OF A$ BEGINNING AT CHARACTER I
130 REM WITH THE FIRST J CHARACTERS OF BS$

140 REM BS IS PADDED TO LENGTH J IF NECESSARY
150 IF J<LEN(BS) THEN LET B$=RPADS(BS,J)

160 LET A$(I:I+J-1)=B$(1:J)

170 LET FNRS$=AS

180 FNEND

190 LET X$="ABCDEFGH"

200 LET Y$="12345"

210 PRINT FNR$S(XS,3,4,Y$)

220 END

produces:

AB1234GH

100 DIM B(5)

110 PRINT "TYPE IN ANY 5 NUMBERS"
120 INPUT B(D),B(1),B(2),B(3),B(4)
130 LET M = 17

140 REM FUNCTION DEFINITION

150 DEF FNM(N)

160 LET FNM=B(0)

170 FOR N=1 TO 5

180 IF FNM>=B(N) THEN 200

190 LET FNM=B(N)

200 NEXT N

210 FNEND

220 LET Y=FNM(M)

230 PRINT "THE VALUE OF M IS UNCHANGED BY THE FUNCTION"
240 PRINT "IT IS STILL ";M

250 PRINT "MAXIM IS ";

260 END

produces:

TYPE IN ANY 5 NUMBERS

? 89,78,45,67,9

THE VALUE OF M IS UNCHANGED BY THE FUNCTION
IT IS STILL 17

MAXIM IS 89

5-14

Figure 5-38. Multiple-Line Function Examples Using DEF...FNEND

19983900 H

SUBROUTINES, SUBPROGRAMS, AND CHAINING

—

This section describes the statements used to write
BASIC subroutines, link to external subprograms,
and chain to other programs. Table 6-1 outlines
the subroutine, subprogram, and chaining state-
ments. Further details for these functions and
statements follow the table.

BASIC SUBROUTINES

When a particular part of a program must be
performed more than once, it is useful to use a
subroutine. Control can be transferred to a sub-
routine from the main program and, at the conclu-
sion of the subroutine, be returned to the main
program.

Within the main BASIC program, control can be
transferred to BASIC subroutines. These subrou-~
tines are compiled along with the main program.
The following paragraphs describe the method of
calling subroutines using the GOSUB or
statements. The RETURN statement directs execution
to the most recently executed GOSUB or]
The following rules must be followed when using
these statements:

‘Any number and type of BASIC statements are
allowed in a BASIC subroutine.

GOSUB statements can be nested to a depth of 40.

Recursion is allowed; a subroutine can contain
a call to itself.

Figure 6-1 illustrates a subroutine call and return
sequence. Lines 150 through 220 contain subroutine
A. The subroutine is called from line 60. After

execution of subroutine A, control is transferred
to line 70, and at line 80 execution is directed to
line 230 (the end of the program) bypassing the
subroutine statements.

GOSUB STATEMENT

The simple GOSUB statement unconditionally transfers
control to-a line number that is the first state-
ment of the subroutine. Figure 6-2 shows the
format of the GOSUB statement.

GOSUB In

In Indicates the line number of the first
statement of the subroutine.

Figure 6-2. GOSUB Statement Format

Execution of the GOSUB statement and the RETURN
statement (described later) can be described in
terms of a stack of line numbers. The stack is
empty prior to execution of the first GOSUB state-
ment. Each time a GOSUB statement is executed, the
line number referred to in the GOSUB statement is
placed on top of the stack and execution of the
program continues at this line number, which is the
first statement of a subroutine. Each time a RETURN
statement is executed, the line number on top of
the stack is removed. from the stack and execution
of the program is continued at the line following
the line number presently at the top of the stack.

70 LET Z=A*%2
- 80 60TO 230

10 REM USER PROGRAM TRANSFERS CONTROL TO SUBROUTINE A

20 -
30 -
40 -
50 .
60 GOSUB 150 — — — — — — — — — —

90 I
| 100 . | Transfer control to subroutine
| 120 . |
l 130 .

140 REM SUBROUTINE A |
| 150 LET A=1+x — e 1
I 160 .
I 170 .

180 . .
| 190 . Subroutine A

200 .

210 .

—220 RETURN
230 END
Figure 6~1. BASIC Subroutine and RETURN Statement
19983900 H 6-1

TABLE 6-1. SUBROUTINE, SUBPROGRAM, AND CHAINING STATEMENTS ’ i

Statement Effect Usage

GOSuB Transfers control to a BASIC sub- GOSuUB 150
routine.

e : ; B

Upon completion of the subroutine,
returns control to the statement im-
mediately following GOSUB or ON GOSUB.

A GOSUB (or) statement can be used within
one subroutine to tfatlsfer control to another sub-
routine; these are nested subroutines. The GOSUB
statement can be used 40 times in these nested sub-
routines. Each subroutine in nested subroutines is
executed by the stack order, explained under the
GOSUB statement. A GOSUB can be ended without a
RETURN. For example, execution can be stopped
inside a subroutine. An example of nested subrou-
tines is shown in figure 6-3.

80 GOSUB 150—
-»90 . I

. |
" 150 . -__l

160 GOSUB 250

I-—- 170 .

T T T/

I'__

e 1

L 200 © RETURN
[250 .

I—LBOO RETURN

RETURN STATEMENT

Figure 6-3. Nested Subroutines.

The RETURN statement is usually the last statement
of a BASIC subroutine; however, it can be wused
anywhere and any number of times within the subrou-
tine; RETURN directs the program to resume execu-
tion at the statement immediately following the

most recently executed GOSUB or ON GOSUB state-
ment. Figure 6~-6 shows the format of the RETURN
statement.

6-2 : 19983900 H

90 ON X-Y GOSUB 200, 250, 200, 300 —I

j
|

— 200 ~— _.I Integer value of 1 or 3
. |
RETURN
[—250 -..__.____._..—Ilntegervalueofz

L 200 Return 4 __j|
T 300 -~ — — — — Integer value of 4

g
i
3

L 340 ReETURN -

Figure 6-5. ON GOSUB Statement Example

RETURN

Figure 6-6. RETURN Statement Format

Each time a RETURN statement is executed, a line
number is removed from the top of the GOSUB stack,
and control -is transferred to the next line follow-
ing that line number. See GOSUB statement for a
description of GOSUB stack. The diagnostic RETURN
BEFORE GOSUB is issued if there is no return line
number on the GOSUB stack (if there is no remaining
GOSUB or ON GOSUB from which to return). For exam-
ples of the RETURN statement, see the GOSUB and ON
GOSUB statements in this section.

19983900 H ' ' ‘ " 6-3

100
110
120
130
140
150
160
165
170
185
186
190
191
192
194
195
210
220

100
200

BASIC Program on File F681:

OPTION BASE 1 'BASE 1 NEEDED SO BASE IS SAME AS FORTRAN SUBPROGRAM
DIM A(2,3) '
FOR I=1 TO 2

FOR J=1 TO 3

ACI,J)=I%J

NEXT J
NEXT I
PRINT "THESE ARE THE BASIC ELEMENTS"
FOR I=1 TO 2

PRINT ACI,1),A(I,2),ACI,3)
NEXT I
CALL FSUB (A(1,1)) =

PRINT "THESE ARE THE BASIC ELEMENTS CHANGED WITH THE FORTRAN SUBPROGRAM"
FOR I=1 T0 2
’ PRINT A(I,1),A(1,2),A(1,3)
NEXT I
sTOP
END

FORTRAN Subprogram on File F682:

C SUBROUTINE FSUB -

| C NOTE THAT ORDER OF SUBSCRIPTS MUST BE REVERSED FROM BASIC

SUBROUTINE FSUB(A)

DIMENSION A(3,2)

D0 200 I=1,3
D0 100 J=1,2

ACI,J)=ACI,)+10

CONTINUE

CONTINUE

RETURN

END

Control Statements:

/x,basic(i=f681,1=0,b=f68b) =

.011 CP SECONDS COMPILATION TIME

/£tn5(i=1682,1=0,b=168b)

0.009 CP SECONDS COMPILATION TIME

Call to FORTRAN subprogram.

FORTRAN subprogram.

Compile BASIC program.
Compile FORTRAN subprogram.

/f68b - . : Execute BASIC main program
and FORTRAN subprogram.

Output:

THESE ARE THE BASIC ELEMENTS

1 2 3

2 4 6

THESE ARE THE BASIC ELEMENTS CHANGED WITH THE FORTRAN SUBPROGRAM

1 12 13

12 14 16

Figure 6-8. BASIC Program Call to FORTRAN Subprogram

6-4 19983900 H

19983900 H 6-5

6-6

100
110
120
130
140
150
160
170
180
190
200
210
220
230

PRINT "ENTER NAME OF THE GAME"
INPUT AS

IF A3="POKER" GOTO 170

IF A$="ROULETTE" GOTO 190

IF A$="STARTREK" GOTO 210
PRINT "I DON'T HAVE THAT GAME. TRY AGAIN"
GOTO 110

PRINT "CALLING POKER"

CHAIN "POKER,LIBRARY"

PRINT "CALLING ROULETTE"

CHAIN "ROULETT,LIBRARY"

PRINT "CALLING STARTREK"

CHAIN "STARTRK,LIBRARY"

END

Figure 6-11. CHAIN Processing Example

19983900 K

1/0 STATEMENTS AND FUNCTIONS 7

%

This section

input and output.

explains file wusage in BASIC and
describes the statements and functions related to

Included are the statements and

functions to input and print display format; read

and write binary data;

data tables;
and produce

summarizes the input and output statements.

construct and read internal

aid random access; manipulate files;
special output formats. Table 7-1

BASIC FILES AND FILE I/O
STATEMENTS

Data can be contained within the BASIC program
internally in a data block or externally in a
file. A file is a named collection of data that a
BASIC program can reference and manipulate. A

TABLE 7-1. 1/0 STATEMENTS AND FUNCTIONS

Statement

Effect

S

RESTORE

DATA

Resets data table pointer to thé first data value, or restores RESTORE
file pointer to the beginning of the file.

i

=

m a binary file or from an internal data table.

S s T

program execution.

-

a file or at a terminal.

Creates a table of data

Reads data from a display format file or from the terminal during INPUT X,Y

Prints data in display format (as specifi

Causes the print mechanism to tab to a specified column. i TAB(5)

= %

ed in the PRINT line

) in PRINT "“VALUE",Y

Sen

values internal to a program. DATA "A",1,2,3

19983900 H

logical file name (1fn) consists of 1 to 7 alpha-
numeric characters. . The first character must
always be a letter. Any letters that are used must
be uppercase. Files used with BASIC are normally
located on mass storage; exceptions are those files
connected or assigned to the terminal. Terminal
files accept and display data directly at a termi-
nal. If a BASIC program implicitly or explicitly
references the name of a nonexistent file, the
operating system (NOS or NOS/BE) automatically
creates an empty file by that name. Direct access
to tape files is not supported.

Files named INPUT and OUTPUT have special meaning
in a BASIC program. In interactive mode, if these
files are connected or assigned to the terminal,

N

printer. Thus, all data entered on cards or at the
terminal, and all printed data, is formatted in
display format. 1In general, binary data files are
written only if the data is to be read later by a
BASIC program and a printed copy is not needed.

The BASIC statements described in this section are
used for binary input and output, display input and
output, and input and output for internal data
tables. Some of the statements, such as RESTORE,
apply to all of these categories; while others,
such as INPUT and PRINT, apply to only one cate-
gory. Table 7-2 identifies each I/0 statement that
is applicable to each category. The statements
listed in this table are grouped according to their
respective functioms. '

data written on file OUTPUT is automatically printed
at the terminal, and data read from file INPUT must
be entered at the terminal. These files are always
connected to the terminal in interactive mode under
NOS. Sometimes the files INPUT and OUTPUT must be
explicitly connected to the terminal by using the
CONNECT command under NOS/BE. (See section 11.)
In batch mode, data written on file QUTPUT is auto-—
matically printed at the end of the job and data
read from INPUT must be included in the file that
contains job control statements.

BASIC programs can read and write files in two
formats: binary format (a file created by WRITE)
and display format (files created by PRINT or an
external method). It is more efficient and more
accurate to manipulate data in binary format be-
cause no translation is needed before processing,
but it is sometimes inconvenient to use binary data
because it cannot be printed at the terminal or
printer. Conversely, it is less efficient and
sometimes less accurate to manipulate data in dis-
play format because translation into binary is nec-
essary before the data can be used by BASIC, but it
is usually more convenient to use display format
data because it can be printed at the terminal or

TABLE 7-2. 1/0 STATEMENTS AND RELATED TYPE OF I1/0

. . 1/0 for
Type Display 1/0 Binary 1/0 Internal Data Tables
of
Statements Sequential Sequential Random ~ Sequential
Access Access Access Access
File Access FILE FILE FILE
and CLOSE CLOSE CLOSE CLOSE
statement '
Input INPUT READ i READ : READ
DELIMIT
Output PRINT WRITE WRITE DATA
PRINT USING
Image
MARGIN
SETDIGITS
File ' RESTORE . RESTORE SET ‘ RESTORE
Control NO DATA NODATA RESTORE NODATA
IF END IF END NODATA
IF MORE IF MORE - IF END
APPEND APPEND IF MORE
APPEND

7-2) 19983900 H

19983900 K ' ' 7-3

1. 110 FILE #99 = “OUTPUT"
10 FILE #1 = “OLDM", #11 = “NEWM”
50 FILE #48 = A$

> w N

100 FILE #X = A$

Figure 7-2.

FILE Statement Examples

100 FILE #1="DTFIL1"
110 CLOSE #1

120 FILE #1="DTFIL2"
130 FILE #2="DTFIL1"
140 CLOSE #1

150 CLOSE #2

160 END

Figure 7-4. CLOSE Statement Example

FILE CONTROL STATEMENTS

The file control statements RESTORE,
D are used to
files and internal data tables in various ways.
For example, these file control statements can be
h k the pPo ition of the file pointer

G

. and to move the file
filg (RESTORE) and to

‘All of the file control statements can be used with
binary and display format files; the RESTORE and
f ATA statements can also be used with internal

RESTORE STATEMENT

A file or internal data table has a pointer associ-
ated with it that indicates the position .of the
file or table. For an input file, as the file is
being read, the pointéer moves ahead, indicating the
next item of data to read. For an output file, the
pointer is always at the end of the file, indicat-
ing where the next data item is to be writtem. The
RESTORE statement positions this pointer to the
beginning of the file or internal data table. A
file is not automatically rewound at the end of
program execution. A file can be rewound with a
RESTORE or CLOSE statement. Once a file has been
restored, it can be written into or read. After
execution of a RESTORE statement, a file is in
sequential mode. If data is written to the file
without using a SET statement, information that is
on the file might be destroyed. The file can be in
either binary or display format. Be careful not to
write over any data that is to be saved. Figure 7-5
shows the formats for the RESTORE statement.

1. RESTORE

Figure 7-5. RESTORE Statement Format

In figure 7-5, if format 1 of the RESTORE statement
is used, the statement refers to the internal data
block created by the DATA statement. :

An example of the RESTORE statement is
figure 7-6. The DATA, READ, and PRINT
statements are described later in this section.

10 DATA 1,2,3
20 READ A,B,C

30 RESTORE

40 READ D

50 PRINT A;B;C;D
60 END

produces:

1.2 31

Figure 7-6. RESTORE Statement Example

19983900 K

090 FILE #1="NODAT1"

100 DATA 1,2,3,4

110 NODATA 150

120 READ A

130 PRINT A

135 WRITE #1,A

140 6OTO 110

150 PRINT "END OF DATA BLOCK"
160 NODATA #1,180

170 STOP

180 PRINT "END OF FILE #1"
190 END)

produces:

SWN =

END OF DATA BLOCK
END OF FILE #1

100 FILE #1="IFEND"
110 IF END* #1 GOTO 160
120 INPUT #1,A

130 PRINT ,A

140 LET S=S+A

150 GOTO 110

160 PRINT ,"-—=t

170 PRINT “TOTAL:",S
180 END

File IFEND contains the values 10, 10, 20,
20, 30, 30, 40, 40. Program output:

10
10
20
20
30
30
40
40

TOTAL 200

Figure 7-8. End-of-Information Processing

19983900 K

Figure 7-10. IF END Statement Example

7-5

100 FILE #1="IFEND"

120 INPUT #1,A

130 LET S=S+A

140 PRINT ,A

150 IF MORE #1 GOTO 120
160 PRINT ,"-—="

170 PRINT "TOTAL:",S
180 END

File IFEND contains the values 10, 10, 20,
20, 30, 30, 40, 40. Program output:

10
10
20
20
30
30
40
40

TOTAL 200

Figure 7-12. IF MORE Statement Example

19983900 H

Incorrect APPEND Statement Example Program:

100 FILE #1="CREATED"
110 READ #1,A

120 IF MORE #1 THEN 110
130 LET A=99

140 WRITE #1,A

150 END

Output from Incorrect Program:

ILLEGAL OUTPUT ON FILE AT 140
BASIC EXECUTION ERROR

Corrected APPEND Statement Example Program:

100 FILE #1="CREATED"
110 APPEND #1

120 LET A=99

130 WRITE #1,A

140 RESTORE #1

150 READ #1,A

160 PRINT A;

170 IF MORE #1 THEN 150
180 END

File CREATED initially contains the values 96,
97, 98. After program execution it contains:

9 97 98 99

100 FILE #1="0OLDM"
110 LET A=1

120 LET B=10

130 WRITE #1,A,B
140 RESTORE #1

150 READ #1,0,E
160 PRINT D,E

170 END

produces:

1 10

Figure 7-14. APPEND Statement Example

19983900 H

Figure 7-16.

WRITE Statement Example

7-7

100
110
120
130
140
150
160
170
180
190
200
210
220
230
999

1

FILE #1="MYFILE"

RESTORE #1 'ENSURES FILE IS AT BEGINNING .
LET A$="WRITE A FILE OF SEQUENTIAL NUMBERS FROM 1 TO 20"
WRITE #1,AS

FOR I=1 T0 20

WRITE #1,1

NEXT I

RESTORE #1

READ #1,AS$

PRINT AS$

IF END #1 THEN 999

READ #1,A

PRINT A;

IF MORE #1 THEN 210

END |

produces:

WRITE A FILE OF SEQUENTIAL NUMBERS FROM 1 TO 20

2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7-18. READ Statement Example

19983900 K

PRINT STATEMENT

The PRINT statement writes display format data on a
terminal or a file. The formats for the PRINT
statement are shown in figure 7-27.

1 PRINTe1de2d...end

e Indicates constant, variable, or expression
(numeric or string).

d Indicates delimiter (comma or semicolon);
final delimiter is optional.

’

Figure 7-27. PRINT Statement Format

When the PRINT statement is executed, the value of
each expression (e) is printed according to stand-
ard format. Spacing between the printed values is
controlled by delimiters (d) in the print list., If
no expressions are specified, a blank 1line is
printed.

The PRINT statement of format 1 in figure 7-27
writes on a default file named OUTPUT. When run—
ning the program interactively, file OUTPUT is the
terminal; when running in batch mode, file OUTPUT
is the printer. The default file name can be

changed by using the K option of the BASIC control
(See Batch 0

statement

Format 1 prefixes a carriage control character at
the beginning of each line. Except for the first
printed line, this - character is always a blank.
The carriage control character 1is not normally
affixed to lines output if the second PRINT format
is used, unless the file ordinal referenced is that
of the default print file OUTPUT or default file
specified by the K option of the batch BASIC
control statement,

When printing data on a file that is to be read
later with the INPUT statement, ensure that items
on the file are separated by delimiters. When only
numbers are printed, default delimiters (blanks)
are automatically included in the output. When
printing a file containing strings, each string
must be printed on a separate line, or explicitly
specified print delimiter characters must be printed
between data items. In addition, if the string
includes leading or trailing blanks, quote marks
must be printed around the -string, Figure 7-28
illustrates an example of the PRINT statement.

19983900 K

10 LET A$="STRING"

20 LET B$="STRING2"

30 LET X=1

40 FILE #7="FILEX"

50 REM PRINT ON FILE

60 PRINT #7,A$:",";B$
70 PRINT #7,X,X+X,SIN(X)
80 REM PRINT ON TERMINAL
90 PRINT AS;",";B$.
100 PRINT X, X+X,SIN(X)
110 END

produces:

STRING, STRING2
1 2 . .841471

Figure 7-28. PRINT Statement Example

DEFAULT PRINT FORMATS

Unless a USING clause 1is used or the SETDIGITS
statement (described later) is in effect, all num-
bers and strings printed are printed in standard

default formats. These formats are explained below.

Numeric Formats

Numeric values are formatted in one of the three
standard formats shown in table 7-4, A program
example using the numeric formats 1s shown in
figure 7-29., The following items refer to the
output formats in table 7-4.

The n represents a numeric digit.

The s represents a minus sign if the value is
negative and a blank if the value is positive.

Fach format is terminated by one trailing blank,

Leading zeros are suppressed.

Trailing zeros after a decimal are suppressed
in F format, but not in E format.

The final digit in both the first and second
formats of table 7-4 is obtained by rounding to
the sixth place from the first nonzero digit,
for example:

123 456 789.453 is rounded to 123 457 000.000
and
.001234567 is rounded to .001234570

String Formats

String values are formatted as a contiguous group
of characters. For example, only the characters in
the original string value are displayed; no quota-

"-tion marks or blanks are added.

100 LET
110 LET
120 LET
130 LET
140 LET
150 LET
160 LET
165 LET
170 LET
180 LET

310 END

0

0

-.00192

190 PRINT "INTERNAL VALUE"

200 PRINT "0","-124","123456" ,"1234567","123456.789"
210 PRINT

220 PRINT "OUTPUT FORMAT"

230 PRINT

240 PRINT A1,B1,C1,D1,E1

250 PRINT

260 PRINT "INTERNAL VALUE"

270 PRINT "-.00192","1234567890","1234567.8" ,".07623488" ,"-.0000192"
280 PRINT

290 PRINT "OUTPUT FORMAT"

300 PRINT F1,61,H1,41,K1

produces:

INTERNAL VALUE

QUTPUT FORMAT

INTERNAL VALUE

OUTPUT FORMAT

A1=0

B1=-124
€1=123456
D1=1234567
E1=123456.789
F1=-.00192
61=1234567890
H1=1234567.8
J1=.07623488
K1=-.0000192

-124 123456 1234567 123456.789
=124 123456 1.23457E+6 123457.
1234567890 1234567.8 .07623488 -.0000192

-.00192 1.23457E49 1.23457€E+6 7.62349€E-2 -1.92000E-5
Figure 7-29. Program Example of Numeric Formats
TABLE 7-4. STANDARD NUMERIC OUTPUT FORMATS String constants are prihted exactly as they appear

in the PRINT statement, without the quo

Internal Value

marks

Qutput Format
Used formats using the PRINT statement are illustrated

in figure 7-30.

Exact integers less than seven snnnnnn
digits. (I format) PRINT ZONING
Nonintegers that after spnnnnnn The print line is divided into zomes of 15 spaces
rounding can be represented as (where one n each. Unless the MARGIN statement (described
accurately in decimal notation represents a later) is used to specify some other value, the
as in exponential (E format) decimal point) default margin (line lemgth) is 75; there are five
notation. (F format) print zomes in a line. A comma, used as a sepa-
rator or a final delimiter, signals BASIC to move
A1l other numbers. sn.nnnnnE+nnn to the next zone of the print line, or to the first
(E format) zone of the next print line when the last zone is

filled. 1If a print zone is exactly filled by a

print item, a comma separator causes the print
mechanism to skip over the following print zone.

19983900 X

10 LET x=2

20 LET Y=2

30 LET z=2

40 PRINT "ANSWER","X AND Z ARE ";Z,"X*Y#Z=';X#YxZ
50 PRINT "ANSWER","X AND Z ARE "Z;''X*Y*Z='"';XxY#Z
60 PRINT "ANSWER",STR$(X);STR$(Y);STR$(Z)

70 PRINT "ANSWER",X;Y;Z

80 END

produces:

ANSWER - * X AND Z ARE 2 - XkYxZ2= 8
ANSWER X AND Z ARE 2 XxYxZ= 8 °
ANSWER 222

ANSWER 22 2

Figure 7-30. String Formats Using the
PRINT Statement

A semicolon used as ‘a separator has no spacing
-effect (the -print 1line zoning effect is inhib-
ited). Numbers are printed, preceded by a blank or
a minus sign, and followed by another blank, so two
positive numbers are separated by two blanks. (See

figure 7-31.)

When a semicolon .is used to separate strings, the
strings are printed consecutively without any

preceding or intervening blanks, as shown in figure
7-32.

Commas and semicolons can be intermixed in any
PRINT statement. = When commas are used as sepa-
rators with numeric data, each number occupies one
zone; but with string data, each string can occupy
more than one zome.

Successive commas can be used to skip zones. Each
comna causes a skip to the beginning of the next
print zone. Successive semicolons have no spacing
effect.

If a PRINT statement does not end with a delimiter
(either semicolon or comma), subsequent printing
commences at the beginning of a new line. If a
PRINT statement does end in a delimiter, subsequent
printing continues on the same line until the line
is filled. 1If a semicolon 1is used as the final
delimiter, the next item printed starts in the next
available space. If a comma is the last delimiter,
the next item printed starts at the beginning of
the next zone.

If the formatted print item does not fit entirely
on the current line, it is. printed as the first
item of the next line. 'If an item does not fit on
an empty line, it is broken at the margin and

continued on the next line, (See figure 7-33.)

TAB Function

The TAB. function causes . the pPrinting mechanism to

tab to a specified column. Printing can commence
in the specified column, The semicolon should

19983900 K

be used as a separator when the TAB function is
used because the semicolon has no spacing effect.
Figure 7-34 {llustrates the format for the TAB
function, The TAB function is legal only in the
PRINT statement; it should not be used in MAT PRINT
or PRINT USING statements. If the argument is less
than the current position, the print mechanism is
positioned to the specified column of the next
print line. If the argument is greater than the
current line margin, it is divided by the 1line
margin, and the remainder is used as the argument.
If the argument is less than one, a warning diag-
nostic is issued, and the value one is substituted.
Examples of the TAB function appear in figure 7-35.

10 LET A1=123

20 LET B2=256

30 PRINT "12345678901234567890"
40 PRINT A1;B2

S0 PRINT -A1;-B2

60 PRINT -A1;14.3

70 END

produces:

12345678901234567890
123 256

=123 -256

=123 14.3

Figure 7-31. Use of Semicolon With
Numeric Data

10 PRINT "THIS IS";"AN EXAMPLE"
20 PRINT "THIS IS","AN EXAMPLE"
30 enp

produces:

THIS ISAN EXAMPLE
THIS IS AN EXAMPLE

Figure 7-32. Use of Semicolon
With String Data

7-15

"Example 1:

10 FOR I=1 TO 10
15 PRINT I

20 NEXT I

30 END

produces:

SO NOVEWN -

Example 2:

10 FOR I=1 TO 10
15 PRINT I,

20 NEXT I

30 END

produces:

-
n

Example 3:

10 FOR I=1 TO 10
15 PRINT I;

20 NEXT 1

30 END

produces:

123 45 67 809

10

Figure 7-33.

Print Zoning Examples

TAB(ne)

ne

Indicates constant, variable, or expression
indicating the print position number.

Figure 7-34. TAB Function Format

19983900 B

Example 1:

20 PRINT TAB(10);"1";TAB(20);"2";TAB(30);
30 PRINT "123456789012345678901234567890"

40 END . .
- .
L L
produces:

1 2 3
123456789012345678901234567890

Example 2:

100 LET 11=12345678
110 LET 12=123456789
120 LET 13=12345678901
130 LET p1=123.4

140 LET D2=123.456

150 LET D3=123.4567
160 PRINT 11,TAB(25);D1
165 PRINT 12,TAB(25);D2
170 PRINT 13,TAB(25);D3

180 END

produces:

1.23457E+7 123.4
1.23457E+8 123.456
1.23457€+10 123.457

Figure 7-35. TAB Function Examples

19983900 H

Example 1:

100 LET T1=544

200 PRINT USING 300,T1

300 :TOTAL OF ORDERS HA##H
400 END f

produces:
TOTAL OF ORDERS 544
Example 2:

100 LET T1=544
200 PRINT USING “TOTAL OF ORDERS #####",T1
300 END

produces:
TOTAL OF ORDERS 544
Example 3:

100 LET T1=544

110 LET A$="TOTAL OF ORDERS #HHHH"
120 PRINT USING AS,T1

130 END

produces:

TOTAL OF ORDERS 544

10 LET N=5

25 PRINT USING 30,N,

30 :$TOTALS PAGE ### DATE
40 PRINT DATS

50 END

produces:

$TOTALS PAGE 5 DATE 81/06/23.

Figure 7-40. Delimiters in Image

Figure 7-39. Image With PRINT USING
Statement

7-18

100 LET N=5

101 LET M=10

102 PRINT USING "##" ,N;M
103 PRINT USING "##",N,M
104 END

produces:

510
5
10

Figure 7-41. Delimiters in Image Reused

19983900 B

19983900 H

’ ' 7-19

Example 1 (integer field):

10 LET A=12345.67

15 PRINT USING 20,A

20 :SUMMARY TOTAL=##HiHN#Y
30 END

produces:

SUMMARY TOTAL= 12346

Example 2 (fixed-point field):

10 LET A=12345.678
20 PRINT USING "TOTAL COST H#HA#H.HH",A
30 END

produces:

TOTAL COST 12345.68

Example 3 (floating-point -field):

10 LET A=12.345E01
20 PRINT USING "#.HHB#NNNY,A
30 END

produces:

1.2345E+2

Example 4 (string and neuter fields):

10 LET A=12345
11 PRINT USING 12,"FRACTION =",A

12 : <HHUHRBHBHBHE Hiiis
13 END
produces:

FRACTION = 12345

Figure 7—42; Format Field Types

7-20

19983900 H

Example 1 (sign specifications):

10 PRINT USING 30,11,11,11

20 PRINT USING 30,-12,-12,-12
30 :+## —#n HitH

40 END

produces:

+11 11 "
-12 =12 -12

Example 2 (comma insertion):

10 PRINT USING "HH#, #RH , #ith, #44" 1000000
20 END

producgs:
1,000,000
Example 3 (parentheses and DB/CR sign options):

500 PRINT USING 550,1000.588,1000.588

520 PRINT USING 550,-14738.10,-14738.10

530 : CHAH, HAH, HER.HH) OR HEH, HHH,H44.4#HDB YOUR CHOICE
600 END

produces:
1,000.59 OR 1,000.59 YOUR CHOICE
(14,738.10) OR 14,738.10DB YOUR CHOICE

Example 4 (floating dollar option):

600 PRINT USING 650,10.75,138.7,111.888
610 PRINT USING 650,-1738,-28,-29

650 :$3,88$. #HCR $33333 (SSS##H . #11)
660 PRINT USING "+$3$$3$$",-7

700 END
produces:
$10.75 $139 $111.89
$1,738.00CR $-28 ($ 29.00)
-$7

19983900 H

Figure 7-43. Sign and Edit Option Examples (Sheet 1 of 2)

7-21

Example 5 (check protect):

600 LET F$="$kkk wix #it"
610 PRINT USING F$,1745.50
620 PRINT USING FS$,25

700 END :

produces:

$xx1,745.50
$xxxkx25,00

Figure 7-43. Sign and Edit Option Examples (Sheet 2 of 2)

1010 :TOTALS : $$.$##d# #HHHSSSS#HHAMOUNT: $8,5H: 44
t t L t t t t
® @ @@ 6 ® @
The character T is not an allowable format field character so it indicates the start of a literal.
The $$ begins a field. One $ by itself is not considered a numeric field.
Blanks are not allowable format field characters so they indicate the end of the field and beginning of a literal.
The # begins a new field.
The $ because of position cannot be part of the previous field, so that field ends. $$ begins a new field.

The A is not an allowable format field character, so it indicates the start of a literal.

The $$ begins a new field.

©@Q0POe®e 006

The end-of-line terminates the last field.

Figure 7-44, Fields of Image Statement Identified

22 PRINT USING “A IS # ## IN THE LIST”.
20 LET N=5 g N
21 PRINT USING “A IS # ## IN THE LIST”, N

produces:
produces:

A IS 5 IN THE LIST
AISS #

Figure 7-46. Correction of
Field Character Use

Figure 7-45. Field Character in Literal

7-22) 19983900 B

Example 1:

130 PRINT USING "MNNRRERUHHHHHARAHAR" ,1.08988E20
140 END

produces:
*+1E+20
Example 2:

100 LET A=-7.82

120 PRINT USING 130,A
130 = ##t HREBRHHHNAHBREDB
140 END

produces:
7.8200000000000 pB
Example 3:

100 LET A=7.82

120 PRINT USING 130,A

130 H.ARBREBHHHHRBREBBRANAAN
140 END

produces:
. 78200000000000 E+001
Example 4:

100 LET A=-78
200 PRINT USING "## HH;A,7.82
300 END

produces:
*-78 *7.82
Example 5:

400 LET A=-17.82
410 PRINT USING "S.##",A
420 END

produces:
KAk
Example 6:

800 LET A=12000000000.0

810 PRINT USING "H#.## ~NA~"_A
820 END

produces:

1.20E*10

Example 7:

500 LET A$="THIS IS THE TOTAL"

600 PRINT USING "<###############“,A$
700 PRINT USING ">HEEHHBHEHRHH#HA" AS

800 END
produces:

THIS IS THE TOTA
HIS IS THE TOTAL

Figure 7-47. Special Cases for Format Fields

19983900 #

7-23

7-24

200 MARGIN #6, 136

310 MARGIN I*J/K

Figure 7-49. MARGIN Statement Example

10 MARGIN 17
20 PRINT RPT$("a",26),1.75,88
30 END

produces:

aaaaaaaaaaaaaaaaa
aaaaaaaaa

1.75

88

Figure 7-50. Program Example Using
MARGIN Statement

INTERNAL DATA TABLE I/O

I/0 for internal data tables (blocks of data inter-—
nal to a BASIC program) uses the DATA statement to
create and the READ statement to access the tables.

19983900 H

100 LET A=55.45454545

130 FOR N=1 TO 10
140 SETDIGITS N
150 PRINT N,A

160 NEXT N

170 END

produces:

SETDIGITS VALUE OUTPUT
6E+1

55.

55.5

55.45
55.455
55.4545
55.45455
55.454545
55.4545455
55.45454545

=20V NOWVHAWN -

o

110 PRINT "A=55.45454545 AND IS NORMALLY OUTPUT AS";A
120 PRINT "SETDIGITS","VALUE OUTPUT"

A=55.45454545 AND IS NORMALLY OUTPUT AS 55.4545

Figure 7-52.

DATA STATEMENT

constructs an internal data
values appearing in the DATA
statement line; this data can then be accessed by
the READ statement, Figure 7-53 shows the format
for the DATA statement.

The DATA statement
table containing the

DATA ¢q, €9, . . ., Cy .

c Indicates numeric or string constant.

Figure 7-53. DATA Statement Format

The data values ¢y, ¢y, ..., ¢, are entered
in the data table in the same order that they
appear in the DATA statement line. The number of
values per DATA statement line is restricted only
by the length of the line. Any number of DATA
statements can be used anywhere in the program to
construct the data table; the BASIC compiler con-
siders the statements to be contiguous statements
and ' automatically places the data in sequential
order in one internal data block before the program
executes.

Both quoted and unquoted strings are allowed in a
DATA statement line. Leading or trailing blanks in

unquoted strings are ignored

’ ’ ’
betic, or period should not be used in an unquoted
string because they might not be supported in
future versions of BASIC. All characters in quoted
strings are considered to be significant, including
any leading or trailing blanks.

19983900 J -

SETDIGITS Statement Example

DATA statements are mnonexecutable and have no
effect on the results of a program if they are

-encountered in the normal sequence of execution.

Figure 7-54 shows two examples of using the DATA
statement to construct internal data tables. Exam-
ple 2 also illustrates the diagnostic for not
enough data. Both examples also demonstrate the
READ statement. :

Example 1:

100 DATA 1,2,3
110 READ A,B,C
120 PRINT A,B,C
130 END

produces:

Example 2:

100 DATA 1,2,3
110 READ A,B,C,D
120 PRINT A,B,C,D
130 END

produces:

END OF DATA AT 110
BASIC EXECUTION ERROR

Figure 7-54. DATA Statement Examples

7-25

READ STATEMENT

The READ statement (READ without a file ordimal) is
used to read data values contained in the internal
data table. The internal data table is a table
containing data values that has been built into a
program by using DATA statements. The format for
the READ statement appears in figure 7-55.

READ V1, V2, “ ey Vn

v Indicates variable identifier (numeric or string).

NOTE

An alternate form of the READ statement is provided
for reading binary files created by the WRITE state-
ment. See Binary 1/O Statements in this section.

Figure 7-55. READ Statement Format

When a READ statement is executed, data values
contained in the data table are placed sequentially
into the variables v, v, ..., V. The read
position pointer is advanced one data item for each
value read.

The variables in a READ 1list must correspond in
type to data items being read from a data table.
For example, numeric variables -must correspond to
numeric data; otherwise, program execution termi-
nates, displaying the diagnostic BAD DATA IN READ.
If the ON ERROR statement is used to trap this
situation, the diagnostic BAD DATA IN READ is not
returned, and a subsequent READ statement accesses
the next data item (the one following the bad
data). Note that unquoted strings that look like
numbers can be read either as strings or numbers.

If a READ statement attempts to read more data than
is available, the diagnostic END OF DATA is given,

7-26

and program execution terminates. Check for end-
of-data by using the NODATA statement (described in
this section under File Control Statements). The
IF END or IF MORE statements cannot be used to
check for end-of-data in an internal data table;
these two statements apply only to files. After
issuing a READ, use RESTORE to move the data pointer
to the beginning of the data table.

In figure 7-56, the DATA statements at lines 10 and
20 establish values for the data table. The READ
statement at line 30 reads the first two data
values (10 and 15). The READ statements at lines
40 and 50 read the remaining data values. The
substring reference F$(1:4) in the READ statement
at line 50 indicates that the complete data value
is to be read into a substring of F$. The char-
acter string THREE replaces characters 1 through 4
of F$. The value of F$ after execution of this
READ statement is THREE5678; the PRINT statement at
line 80 outputs this value.

10 DATA 10,15,17

20 DATA "ONE","TWO","THREE",''FOUR"
25 LET F$="12345678"

30 READ A,8

40 READ C,D$

50 READ ES$,F$(1:4),6$

60 PRINT A,B

70 PRINT C,D$

80 PRINT ES$,F$,GS

90 END

produces:

10 15

17 ONE

TWO THREES678 FOUR

Figure 7-56. READ Statement Example

19983900 H

MATRIX OPERATIONS 8

19983900 H

o
e

5

s

o

82 ‘ 19983900 H

. . . s -
. . .
2 i G % 2

L i

i L

. %‘“@ .
éle

Q ' elemente of &
. 1@%“ ; » ﬁy itg of

' > array .
. = Ll .
" : = 2 i b = i : b
moon the = — e e
T T S :
s is not the -

8
- o

S

. - ‘Wh gmb %@%ﬁ ‘ itrix
- - - £ L MLIE HAcbax
reteme array dimensions on the

S
e

o
B

19983900 H

8-4 ’ . 19983900 H

o

i
g

s

G

19983900 H : ’ 8-5

o
.
.
o

i
S

dimencio

8-6 "’ o 19983900 H

e

:;;',g i

. wma

19983900 H

8-8 , | 19983900 H

19983900 H

8-10 19983900 H

19983900 H

g

e

-
e

150,

X

5 19983900 H

G
L
e

o

LEMEN)

L
S

19983900 H - 813

DEBUGGING . 9

%

Often newly written programs do not operate
correctly on the first attempt to execute them.
They either stop with a run~time diagnostic (such
as SUBSCRIPT ERROR AT 230) or run to completion but
produce incorrect results. The process of iso-
lating and removing errors or bugs in a program is
referred to as debugging.

BASIC itself provides some tools to help debug a
program (PRINT statements and tracing). In addi-
tion, a companion product, CYBER Interactive Debug
(CID), provides a powerful interactive debug facil-
ity. The choice of particular tools to use is
determined by personal preference, mode of opera-
tion (batch or interactive), and availability. CID
is the most powerful and easy-to-use tool; CID is
not available at all sites.

BASIC DEBUG FEATURES

Three debugging aids or techniques that are
available in BASIC are: inserting PRINT state-
ments, conditional tracing of program flow, and
unconditional tracing.

INSERTING PRINT STATEMENTS

A common debugging technique is to temporarily
insert PRINT statements in a program. Output from
these PRINT statements can indicate program control
flow (what order statements are executed) and
values of selected program variables at specific
points in the program. However, these PRINT state-
ments must be removed once the program is debugged
and making any changes to the program (even rela-
tively minor changes, such as removing temporary
PRINT statements) provides the opportunity for
introducing new errors. Refer to section 7 for the
format and examples of the PRINT statement.

Similarly when arrays are involved, the MAT PRINT
statement can be used for debugging purposes.
Refer to section 8 for the format and examples of
using the MAT PRINT statement.

19983900 J ‘ 9-1

150 REM TRACE,ALL
160 FOR X=1 T0 10
170 LET X=X+1

180 NEXT X
190 END
produces:
* AT 160
* AT 170
* AT 180
* AT 170
* AT 180
* AT 170
* AT 180
* AT 170
* AT 180
* AT 170
* AT 180
* AT 190

Figure 9-2. REM TRACE,ALL Example

100 PRINT "REM TRACE,PART BEING EXECUTED"
110 REM TRACE,PART '

120 GosuB 200 -

130 PRINT "REM TRACE,NONE BEING EXECUTED"
140 REM TRACE,NONE

160 GosuB 200

165 PRINT "REM TRACE,ALL BEING EXECUTED"
170 REM TRACE,ALL

190 GOsSuB 200

195 sTOP

200 PRINT "SUBROUTINE 200"

210 RETURN

240 END

produces:

REM TRACE,PART BEING EXECUTED

* AT 120
SUBROUTINE 200
* AT 130

REM TRACE,NONE BEING EXECUTED
SUBROUTINE 200
REM TRACE,ALL BEING EXECUTED

* AT 190
* AT 200
SUBROUTINE 200
* AT 210
* AT 195

Figure 9-3. REM TRACE Statement Example

UNCONDITIONAL TRACE PARAMETER

In addition to the conditional trace statements
that can be included within the program, BASIC
provides a parameter on the BASIC control statement
that can be used to force program flow tracing to
be printed no matter what statements are included
in the program.

If the TR (trace) option of the DB parameter is
selected- on the BASIC control statement when the
program is compiled, the message * AT nnn is output
for each executable line encountered during program
execution. The nnn represents the line number of
the executed statement.

This debug feature does not require program
modifications, not even insertion of REM TRACE
statements. However, only a full trace of the
entire program can be obtained.

CYBER INTERACTIVE DEBUG

The CYBER Interactive Debug (CID) facility is a
companion to BASIC. CID permits external moni-
toring and controlling of the execution of the
program from an interactive terminal without making
any changes to the program. The CID commands and
features are only available if CID is installed in
the system. CID commands and features can be used
when the BASIC program is compiled in debug mode.
The use and features of CID are described below.
For further information, see the CYBER Interactive
Debug reference manual.

The CID facility allows the following to be done:

Suspend program execution when control reaches
a predefined point (called a breakpoint).

Suspend program execution when a particular
event, such as a store into a specific variable
or program termination, occurs (called a trap).

Display and/or change the values of program
variables while program execution is suspended.

Restart program execution at the point of
interruption or at some other point in the
program.

ENTERING AND EXITING THE CID
ENVIRONMENT

To execute a BASIC program under CID control, you
must compile and execute the program in debug
mode. Debug mode is turned on by using the system
control statement DEBUG or DEBUG(ON). The DEBUG
control statement must be entered before compiling
and executing the program. When debug mode is on,
the operating system and terminal can be used in
the normal manner.

When compiling the BASIC program, you can specify
the parameter DB in the BASIC control statement.
See section 12 for the optioms that can be selected
using the DB parameter. DB=0 must not be speci-
fied; if DB=0 is specified, the program will not be
compiled for use with CID even if debug mode is
turned on.

A CID session is terminated by using the CID command
QUIT. The QUIT command returns control to the
operating 'system; however, the debug environment
remains in effect until the system control state-
ment DEBUG(OFF) is issued. DEBUG(OFF) should be
used if subsequent debugging is not needed.

19983900 H

EXECUTING UNDER CID CONTROL

A debug session is a sequence of interactions
between the programmer and CID that occurs while
the object program is executing in debug mode. The
session begins with the execution of the object
program. Under the NOS/BE EDITOR or under the NOS
BASIC subsystem, the session can be initiated with
the RUN command. Under the NOS BATCH subsystem,
the session can be initiated using the BASIC con-
trol statement X,BASIC,I=1fn; this control state-
ment compiles and executes the BASIC program on
file 1fn.

When the debug session begins, control transfers to
an entry point in CID and the following message is
issued: - ’

CYBER INTERACTIVE DEBUG
0 .

The question mark prompts for input of a CID
command. In response, enter a CID command. and
press the transmission key (RETURN on most termi-
nals). CID processes the command and generates any
appropriate output, such as a message or another
prompt. -

REFERENCING BASIC LINE
NUMBERS AND VARIABLES

The following paragraphs explain the formats for
referencing variables and 1line numbers in CID
commands. R :

VARIABLES

Program variables are referenced in CID commands in
the same format as they are in BASIC statements.
Simple and subscripted variables, full arrays, and
substring addressing can be referenced. Variables
referenced in CID commands must exist in the pro-
gram; and execution wmust be suspended inside a
function before formal parameters are known to CID.

See figure 9-4 for examples.

A

A1$
X$(2:4)
X(1)

Figure 9-4. Variables Examples

LINE NUMBERS

‘Line numbers for CID commands are referenced with a
special format not similar to BASIC. This format
is shown in figure 9-5.

Example:
L.310

19983900 H

L.n

n Indicates line number.

Figure 9-5. Line Number Referencing Format

An exception to this format is the GOTO command ,
which references line numbers in the same format as
it does in BASIC statements. (See the GOTO command
described in this section.) ‘

Example:

GOTO 310

RESUMING PROGRAM
EXECUTION

The CID commands GO, GOTO, and STEP can be used to
resume the execution of a program. These commands
are explained in the following paragraphs.

GO COMMAND ¢

The GO command resumes program execution from the
point at which program execution was suspended.
The format is shown in figure 9-6..

GO

Figure 9-6. GO Command Format

_ When the GO command is entered, the program resumes

execution from the last point of suspension and
executes -until it reaches a. breakpoint or trap.
The GO command cannot be used after an END trap
because execution is complete and cannot continue
any further.

GOTO COMMAND

The GOTO command resumes execution of the program
at a specified line number. This command has the
same format as the BASIC statement GOTO. The
format is shown in figure 9-7.

GOTO n

n Indicates line number.

Figure 9-7. GOTO Cdlmand for CID Format

Example:
GOTO 50

The . GOTO command causes program execution to
continue at the specified statement line number 50.
Execution proceeds wuntil the program reaches a
breakpoint or trap.

STEP COMMAND

The STEP command executes a specified number of
lines. Execution begins where it was previously
interrupted. The format is shown in figure 9-8.

STEP n LINES
or
Sn
or
S
n An integer that indicates the number of
lines to be executed; optional.

SET BREAKPOINT COMMAND

The SET BREAKPOINT command sets a breakpoint at a
specific program line number. The format is shown
in figure 9-10.

See figure 9-11 for examples.

A breakpoint remains set until it is explicitly
cleared. Figure 9-12 shows the format of the
breakpoint message displayed when the program
reaches a breakpoint during execution.

Example:

*B #1, AT L.110

Figure 9-8. STEP Command Format

If the n parameter is not specified, the value used
for the previous STEP command is used; if there is
no previous STEP command, the value 1 is used.

A message is 1issued after the number of lines
specified in the STEP command are executed.
Figure 9-9 shows the format of the step message.

SET BREAKPOINT ,Ln
or
SB.L.n

n . Indicates line number.

Figure 9-10. SET BREAKPOINT Command Format

*S LINE AT L.n

n The line number where execution is
suspended.

SET BREAKPOINT,L.120

SB,L.150

Figure 9-11. SET BREAKPOINT Examples

Figure 9-9. Step Message format

If a breakpoint or trap is reached before the

specified number of lines are executed, the break--

point or trap overrides the STEP command and
terminates the STEP operation.

Example:

STEP,7

SETTING AND CLEARING
BREAKPOINTS AND TRAPS

The following commands allow specific breakpoints
and traps to be set or cleared in the BASIC pro-
gram. A breakpoint is a point within a program at
which CID takes control. When program execution
reaches a breakpoint, execution is suspended, a
message is issued, and CID requests input of com—
mands by displaying a question mark. Any number of
commands can be entered once CID gains control. A
breakpoint is set by using the SET BREAKPOINT com—
mand and cleared by wusing the CLEAR BREAKPOINT
command .

Traps are set to cause program suspension on the
occurrence of a particular event. Traps are set by
using the SET TRAP command and are cleared by using
the CLEAR TRAP command. :

9-4

*B #i, AT L.n

i Indicates identifying ordinal for the
breakpoint.

n Indicates line number or point in the

program where the breakpoint is set.

Figure 9-12. Breakpoint Message Format

CLEAR BREAKPOINT COMMAND

The CLEAR BREAKPOINT command clears a breakpoint
that exists at a specific line number. The format
is shown in figure 9-13.

CLEAR BREAKPOINT,L.n
or
CB,L.n

n Indicates line number or point at which
the breakpoint is set.

Figure 9-13. CLEAR BREAKPOINT
Command Format

19983900 H

See figure 9-14 for examples.

The last example clears all of the breakpoints.
Breakpoints can also be cleared by referring to the
identification number, such as CB,#l1. See the
CYBER Interactive Debug reference manual for more
details.

CLEAR BREAKPOINT,L.120
CB,L.150
CcB.*

SET TRAP,type,scope

or

ST,type,scope

type Indicates keyword describing the condi-
tion that causes the trap.

scope Indicates range of applicability.

Figure 9-14. CLEAR BREAKPOINT Examples

SET TRAP COMMAND

The SET TRAP command is used to set a trap of a
specified type for a specified range of applica-
bility. The format is shown in figure 9-15.

When a trap event occurs, program execution is
suspended, a message is issued, and CID requests
commands. Any number of commands can be entered
once CID is in control. Figure 9-16 shows the
format of the trap message.

There are many forms of the keyword type used in
the trap commands. See the CYBER Interactive Debug
reference manual for a complete list. Two important
types are STORE and LINE.

STORE traps can catch stores into any variable or

- range of variables; however, BASIC string pointers
are sometimes manipulated without affecting the
string to which they point, so extraneous STORE
traps can occur for string variables. The source
statement should be inspected to verify that the
named string variable is actually being referenced.
The first example in figure 9-17 shows an example
of the STORE trap.

LINE traps cause a trap prior to execution of each
statement in the specified range. For instance, in
the second example of figure 9-17, a trap occurs at
any statement from 1iné 100 to line 200 so this
type of trap enables program flow to be traced in a
specific area.

CLEAR TRAP COMMAND

The CLEAR TRAP command clears specific traps. The
format is shown in figure 9-18.

See figure 9-19 for examples.

Traps can also be cleared by referring to the
identification number, such as CT,#1 or by clearing
all traps at once, CT,*. See the CYBER Interactive
Debug reference manual for more details.

19983900 H

Figure 9-15. SET TRAP Command Format

*T #i type AT n

i Indicates identification ordinal for this’
trap.

type Describes briefly the condition that
caused the trap.

n Indicates line in the program where
execution was suspended. If IN,
rather than AT, is specified, then
execution is suspended inside, not
before the indicated line.

Figure 9-16. Trap Message Format

SET TRAP,STORE,A(4,7) Trap occurs after any
STORE in variable
Al4,7).
ST,LINE,L.100...L.200 Trap occurs before any
line in the range of 100
to 200 is executed. .

Figure 9-17. SET TRAP Command Examples’

CLEAR TRAP,type, scope
or
CT ,type,scope

Type and scope must be the same as
those used when setting the trap.

type,scope

Figure 9-18. CLEAR TRAP Command Format

CLEAR TRAP,LINE,L.100...L.200
CT,STORE,A(4,7)

Figure 9-19. CLEAR TRAP Examples

DEFAULT TRAPS

Three traps are on by default and cannot be
cleared: END, ABORT, and INTERRUPT. The END trap
occurs whenever the BASIC program reaches normal
completion, which occurs when a STOP, END, or CHAIN
statement is executed. Program execution can be
resumed at a specific line with the GOTO command;
the GO command cannot be used because the program
has completed and cannot continue from these traps.

The END trap for the CHAIN statement causes
execution to end at the point just before the next
chained-to program is executed. Compilation and
execution of the chained-to program is not auto-
matic; enter the QUIT command in order to terminate
the present CID session, then enter any necessary
control statements in order to compile and execute
the chained-to program.

The ABORT trap occurs whenever the BASIC program
terminates because of an error. If the program
executes an ON ERROR statement before the trap
occurs, a GO command causes execution to resume at
the ON ERROR line. If the program does not execute
an ON ERROR, execution cannot be resumed with a GO
command; however, it can be resumed with the GOTO
command. Note that the ABORT trap does not occur
for interactive input errors and the normal BASIC
recovery options still apply.

The INTERRUPT trap occurs whenever the BASIC
program is interrupted from the terminal. If ON
ATTENTION is in effect, that is, if the program
executes an ON ATTENTION statement before the
interrupt is trapped, GO causes the program to
begin executing at the ON ATTENTION line. If ON
ATTENTION is not in effect, GO causes execution to

resume at the point where it was interrupted. The
GOTO command can be used to cause execution to
restart at a particular line.

DISPLAYING PROGRAM
VALUES

Three of the commands that allow program values in
the BASIC program to be displayed are PRINT, MAT
PRINT, and LIST,VALUES. The first two commands are
similar to BASIC statements.

PRINT COMMAND FOR CID

The PRINT command is similar to the BASIC PRINT
statement. It prints values of program variables
or computed expressions. The format is shown in
figure 9-20.

See figure 9-21 for examples.

Variables used in the output list must exist in the
program. Multiple semicolons must be used to sepa-
rate the PRINT command from the next command on the
same line (also true for the MAT PRINT command).
Expressions cannot contain references to functions
or to the exponentiation operator. CID does not
allow partial print lines. The trailing comma or
semicolon is ignored in CID. Images, PRINT USING
statements, and file ordinals cannot be used in CID.

9-6

PRINT output-list
output-list List of any number of restricted
arithmetic or string expressions;
separated by commas or
semicolons.

Figure 9-20. PRINT Command for CID Format

PRINT "THE VALUE OF B="B
PRINT A A*A,A+135.7,B(17J)
PRINT C$(1)(2:3)

Figure 9-21. PRINT Command for CID Examples

MAT PRINT COMMAND FOR CID

The MAT PRINT command is similar to the BASIC MAT
PRINT statement. It prints complete 1-, 2-, or
3-dimensional arrays. (The BASIC MAT PRINT state-
ment prints only 1- or 2-dimensional arrays.) The
format is shown in figure 9-22, ‘

See figure 9-23 for exampleé.

Arrays listed in the array list must exist in the
BASIC program. Elements of the array are printed
in row order with spacing between items controlled
by the comma or semicolons (as with the PRINT com-
mand). A blank line is output after each row and
an extra blank line is output between matrices.
The MAT PRINT command is separated from the next
command on the same line by using two semicolons
(as with the PRINT command).

MAT PRINT array-list
array-list List of one or more of 1-, 2- or 3-
dimensional arrays; separated by
commas or semicolons.

Figure 9-22. MAT PRINT Command
for CID Format

MAT PRINT AB
MAT PRINT X1$

Figure 9-23. MAT PRINT Command
for CID Examples

LIST VALUES COMMAND

The LIST VALUES command 1lists values of all
variables within the program. The format is shown
in figure 9-24. '

The names and values of all variables, including
arrays, are listed in alphabetical order. Formal
arguments of user—defined functions are listed only
if program execution was suspended inside and while
executing the function DEF.

19983900 H

LIST VALUES
or

Lv

Figure 9-24. LIST VALUES Command

CHANGING AND TESTING
PROGRAM VALUES

Two commands that can be used to change and test
program values are the LET command and the IF com-
mand. These commands are similar to the BASIC
statements,

LET COMMAND FOR CID

The LET command is similar to the BASIC LET
statement. It assigns values to program vari-
ables. The command can be used with simple and
subscripted variables and substrings. The format
is shown in figure 9-25.

See figure 9-26 for examples.

The variables referenced must exist in the BASIC
program being debugged. Multiple assignments,
references to functions, and use of the exponen-
tiation operator are not allowed; all other arith-—
metic operators (+, -, *, and /) and the string
concatenation operator can be wused in the
expressions.,

IF COMMAND FOR CID

The IF command is similar to the BASIC IF statement.
It controls the selection of CID commands based on
a comparison of program variables or computed
values. See the CYBER Interactive Debug reference
manual for further uses of the IF command in debug
mode. The format is shown in figure 9-27.

The following is an example of the IF command:

IF A<=B THEN PRINT A

OTHER COMMANDS AND
FEATURES

There are many other CID features and commands.
The following is a 1list of some features and .

commands not explained in this manual:

19983900 H

Sets of CID commands can be predefined to
execute automatically when a breakpoint or trap
occurs.

Breakpoints can be defined to occur every nth
time through a loop.

A debug session can be suspended so that
operating system commands can be entered. The
debug session can then be resumed.

Sequences of commands can be saved on and read
from files.

Other commands include HELP, LIST,BREAKPOINT and
LIST,TRAP.

CID can be used interactively in ASCII mode only
under NOS. CID can be used in normal mode under
NOS and NOS/BE. See the CYBER Interactive Debug
reference manual for further information regarding
CID commands and features.

LET nv=ne

nv Indicates numeric variable.

ne Indicates restricted arithmetic expression.
or

LET sv=se

sV . Indicates string variable.

se lndiwies restricted string expression.

Figure 9-25. LET Command for CID Format

LET A=A+45

LET B$(3,2)=A$ + "ABC"
LET D$(3:6)="DEFG"
LET F$(1)(4:6)=""

Figure 9-26. LET Command for CID Examples

IF re THEN db

re Indicates any BASIC relational expres-
sion; variables must exist in BASIC
program being debugged.

db Indicates any CID or BASIC debugging
command.

Figure 9-27. 1IF Command for CID Format

9-7

TERMINAL OPERATION UNDER NOS | 10

‘

NOS is the Network Operating System for CDC’s
CYBER 170, CYBER 70, and 6000 Series computer
systems. NOS provides BASIC users with both a
batch and an interactive processing environment.
BASIC can be accessed from a remote time-sharing
terminal, such as a Teletype Model 33 or Model 35
teletypewriter (TITY), or a CDC Model 713 CRT
terminal.

When accessing NOS from a remote terminal, BASIC
programs can be entered and executed by using
either the BASIC subsystem or BATCH subsystem when
under the NOS Interactive Facility (IAF). Also,
data files created under NOS can be built at the
terminal through use of TEXT mode, Text Editor, or
XEDIT.

This section illustrates the use of the BASIC and
BATCH subsystems, a method of creating data files
at a terminal, and some tips on using the line
editor when writing programs at a TTY or CRT
terminal.

For a detailed description for all supported
terminal usage, see the Networks Interactive
Facility reference manual (NOS 1 sites), Volume 3
of the NOS 2 reference set (NOS 2 sites), or the
NOS Time-Sharing reference manual. For a detailed
description of Text Editor or XEDIT usage, see the
Text Editor reference manual or the XEDIT reference
manual,

ENTERING A PROGRAM

The process for interactively entering a program
into a file is shown in the examples that follow.
To correct an existing syntax, semantic, or logic
error, enter the line number that contains the
error, type in the corrected line, and press the
carriage return key. To delete a line, enter the
line number and press the carriage return key. To
correct an error while typing a line, backspace n
characters by pressing the backspace key or by
holding down the control key -and pressing H once
for each incorrect character; then type the correct
information. For additional control key informa-
tion, refer to the NOS Network Products Interactive
Facility reference manual, the NOS Time~-Sharing
User’s reference manual, and the operator’s guide
for a specific terminal. ‘

BASIC SUBSYSTEM

When in the BASIC subsystem under IAF (or TELEX), a
BASIC program can be written at a TTY or CRT termi-
nal, and the program can be edited or executed
interactively. The program in figure 10-1 was
created and run at a terminal under IAF and the
BASIC subsystem. Responses entered are in lower—
case; the carriage return key is pressed after
typing in each response.-

19983900 K

For a detailed description of the NOS commands used
in figure 10-1 and other available commands, see
the Networks Interactive Facility reference manual
or the NOS Time-Sharing User’s reference manual.
In figure 10-1, the program is saved as a file
named EX4. The program in this file is now stored
as an indirect-access permanent file that can later
be accessed by use of the OLD command. (See
figure 10-2. Responses entered are in lowercase.)

Use the REPLACE command to store the changed
program; this replaces the old program with the
corrected program. For example, the following
command stores an updated program in file EX4:

REPLACE,EX4

The updated file EX4 is lost if the session is
logged off before storing the corrected version.

BATCH SUBSYSTEM

The batch subsystem provides batch control statement
capability from the terminal. It enables control
statements to be typed at the terminal; otherwise,
control statements must be entered through a card
reader at the central site or must be entered from
a remote batch terminal that calls the statements
from a procedure file or includes the statements in
a submitted job.

BASIC can be run interactively in the batch
subsystem. The BASIC control statement in the form
X,BASIC is issued to call the BASIC compiler. All
options of the BASIC control statement described in
the section on Batch Operations are available when
BASIC is run interactively in the batch subsysten.

The program contained in file SUM (figure 10-3) was
written during a previous terminal session, while
in the BASIC subsystem, and saved with the SAVE
command ., The BATCH command requests the batch
subsystem, and the X,BASIC(I=SUM) command requests
the BASIC compiler to compile and execute the
program found in file SUM.

USING DATA FILES

To create a data file under NOS 1 or NOS 2, specify
the name of the new file and enter the TEXT com~
mand. The TEXT command permits the file to be

‘created without sequence numbers. If, after the

file is created, corrections, additions, or dele-
tions are required, enter EDIT or XEDIT and use
Text Editor or XEDIT commands. (For a complete
description of Text Editor or XEDIT commands, see
the Text Editor reference mafiual or the XEDIT
reference manual.)

10-1

/basic - Request BASIC subsystem.
OLD, NEW, OR LIB FILE: new,ex4t —-«——— Create new file named EX4.

READY.

10 print "type a number"
20 input x
25 let f=1

30 f i=1 to x
40 LZ: ;:f*i -=— Enter BASIC statements.

50 print "factorial '";x,"is ";f
60 goto 10
70 end

List = - List file EX4.

10 PRINT "TYPE A NUMBER"

20 INPUT X

25 LET F=1

30 FOR I=1 TO X

40 LET F=F=*I

50 PRINT "FACTORIAL ";X,"IS ";F
60 GoTO 10

70 END

READY.
run — Compile and execute program.

FOR WITHOUT NEXT AT 30 -«——————— Program contains an error.
BASIC COMPILATION ERRORS

RUN COMPLETE.

45 next i k :
2% if x=0 then 70 ~———————— (Correct error by entering more BASIC statements.

list —=e List file EX4.

10 PRINT "TYPE A NUMBER"

20 INPUT X

24 IF X=0 THEN 70

25 LET F=1

30 FOR I=1 TO X

40 LET F=F*I

45 NEXT I

50 PRINT "FACTORIAL ";X,"IS ";F
60 6OTO 10

70 END

READY.
run - Compile and execute program again.

TYPE A NUMBER

? 3 - Input 3 to executing program.
FACTORIAL 3 Is 6

TYPE A NUMBER

? 0 - Input 0 to executing program.
RUN COMPLETE.

save,ex4 —= Make file EX4 permanent.

READY.

10-2

Figure 10-1. BASIC Subsystem Under NOS

19983900 H

Make file EX4 accessible.

old,ex4 —=

READY.

List -

10 PRINT “TYPE A NUMBER"
20 INPUT X

24 IF X=0 THEN 70

25 LET F=1

30 FOR I=1 TO X

40 LET F=F*I

45 NEXT I

List program.

50 PRINT "FACTORIAL *';X,"IS ";F

60 GOTO 10
70 END

READY.

run -

TYPE A NUMBER

26

FACTORIAL 6 IS 720
TYPE A NUMBER

20 -

RUN COMPLETE.

bye -

Compile and execute program.

Log off.

Figure 10-2.

OLD Command Under NOS

batch =

RFL,0.

/get ,sum

/list, f=sum

10 INPUT N

20 PRINT TAB(2);"INTEGER","SUM"
30 LET s=0

40 FOR I=1 TO N

50 LET S=S+I1

60 PRINT TAB(5);I,S

70 NEXT 1

80 END

EOI ENCOUNTERED.

/rewind,sum

REWIND,SUN.

/x,basic(i=sum) ==

7210 :

INTEGER SUM
1 1
2 3
3)
4 10
5 15
6 21
7 28
8 36
9 45
10 55

Enter the BATCH subsystem.

Compile and execute program on file SUM.

19983900 H

Figure 10-3. Program Executed Interactively Under BATCH Subsystem

10-3

Under NOS 2, data files also camn be created in a
two step process. First of all, the data, with
line numbers, 1is entered into a file. The line
numbers allow the use of the in-line editing com—
mands. When all the data is correct, the in-line
edit command WRITEN will copy all the data from the
line numbered file, excluding the line numbers, to
the file specified in the command. (See appendix I
for further explanation of the in-line editing
commands.)

In figure 10-4, the first data file is created
using the two step process. The data is initially
entered into file TCLIENT using the AUTO mode. (In
AUTO mode, line numbers are supplied by the system.)
Using the line numbers as a reference, the data is
corrected. When the data has been corrected, the
WRITEN command is used to write the data, without
line numbers, to file CLIENT. File CLIENT is then
made permanent using the SAVE command.

The second data file is created using the TEXT

command and inserting the data line by line. Each
line ends by pressing the carriage return key.
TEXT Mode is terminated by using the user break 1
or 2; see the Network Products Interactive Facility

reference manual (NOS 1 sites), Volume 3 of the
NOS 2 reference set (NOS 2 sites), NOS Time-Sharing
User’s reference manual, and the operator’s guide
for a specific terminal., After terminating TEXT
mode, file UPDATE is made permanent under its
respective name by the using the SAVE command.

Later, local copies of the files are made by using
the GET command in order to make them accessible to
the BASIC program. For additional file handling
information, see appendix D.

RENUMBERING BASIC LINES

In the BASIC subsystem, the RESEQ command re-
sequences BASIC programs and automatically updates
all line references. The format of the RESEQ com-
mand is shown in figure 10-5, and an example of
this command is illustrated in figure 10-6.

For additional information, see the NOS Time-
Sharing User’s - reference manual, the Network
Products Interactive Facility reference manual
(NOS 1 sites), and Volume 3 of the NOS 2 reference
set (NOS 2 sites).

new,tclient -

Establish a new file named TCLIENT.

READY.
ascii —-=

Activate ASCII mode.

READY.
auto. -

Activate automatic line number

00100 J.Brown,1422 East St,charge no 1111,510.00
00110 R.Apple,3434 Chery St,charge no 2211,222.22
00120 N.Redi,7896 Algo Ave,charge no 1660,133.98
00130 —=

generation.

Enter data into file TCLIENT.

Enter user break to stop 1line number

TERMINATED

alter,110,/Chery/Cherry/ —=

generation.

Correct date.

00110 R.Apple,3434 Cherry St,charge no 2211,222.22

READY.

Write all data in file TCLIENT

writen,client =

READY.

(excluding line numbers) to file
CLIENT.

save,client -
READY.

Make file CLIENT permanent.

new,update —=

READY.
text

ENTER TEXT MODE.

Establish new file UPDATE.

10.56
20.53 | ---=
13.78

Enter data into file UPDATE.

EXIT TEXT MODE.

Enter user break to exit text mode.

Figure 10-4. Using Data Files Under NOS (Sheet 1 of 2)

10-4

19983900 H

READY.

Make file UPDATE permanent.

save =

READY.
new,test —=

Establish a new file named TEST.

READY.

auto = —

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200

file #1="CLIENT"

file #2="UPDATE"

restore #1

restore #2

for i=1 to 3

input #1,a$,b$,c$,d

input #2,s

Let x=d+s

print tab(Z);as;tab(12);bS;tab(32);c$;tab(52);"BALANCE=$";x
next i

Activate .automatic line number
generation,

Enter BASIC program into file TEST.

—~=— (Line numbers are supplied by
system.)

end]

00210 —==
INTERRUPTED

TERMINATED

get, client

generation.

READY.
get ,update

READY.

Make data files local.

run —ee

Compile and execute program.

J.BROWN = 1422 EAST ST CHARGE NO 1111 BALANCE=$ 520.56
R.APPLE 3434 CHERRY ST CHARGE NO 2211 BALANCE=$ 242.75
N.REDI 7896 ALGO AVE CHARGE NO 1660 BALANCE=$ 147.76

RUN COMPLETE.

Enter user break to stop line number

Figure 10-4; Using Data Files Under NOS (Sheet 2 of 2)

RESEQ,nn,ii

nn Indicates new line number of the first statement in the file; maximum size is

five digits; if omitted, the default is 00100.

ii Indicates increment to be added to nn;: default value is 10.

Figure 10-5. RESEQ Command Format

19983900 H

10-5

/basic —=
OLD, NEW, OR LIB FILE:-old,ex4

READY.

Llist =

10 PRINT "TYPE A NUMBER"
20 INPUT X

24 IF X=0 THEN 70

25 LET F=1

30 FOR I=1 TO X

40 LET F=F+*I

45 NEXT I -

50 PRINT "FACTORIAL ";X,"IS ";F
60 60TO 10

70 END

READY.

reseq —==

READY.

list —=

00100 PRINT "TYPE A NUMBER"

00110 INPUT X

00120 IF X=0 THEN 00190

00130 LET F=1

00140 FOR I=1 TO X

00150 LET F=F*I

00160 NEXT I

00170 PRINT "FACTORIAL “;X,"IS ";F

. 00180 60TO 00100

00190 END

READY.

- Enter BASIC subsystem.

Make file EX4 accessible.

List BASIC program (file EX4).

Resequence file EX4.

List resequenced file.

10-6

Figure 10-6. RESEQ Command Example

19983900 H

TERMINAL OPERATION UNDER NOS/BE 11

E

The Network Operating System/Batch Environment
(NOS/BE) permits multiple-user access to CDC’s
CYBER 170, CYBER 70, and 6000 Series computers.
From a remote terminal, the INTERCOM commands and
directives can be used to enter and execute BASIC
Programs interactively, to create and submit BASIC
programs for batch execution, and to create data
files to be accessed by BASIC programs. The remote
terminal can be any teletypewriter (TTY) or CRT
supported by NOS/BE.

This section describes and illustrates the creation
of BASIC programs for interactive processing; a
method of creating data files to be accessed by a
BASIC program; and the utility for renumbering
BASIC programs. For a complete description of Text
Editor commands, and remote terminals supported by
NOS/BE, see the INTERCOM Version 5 reference manual.
Creation and submission of BASIC programs for batch
processing is described in the section on Batch
Operations.

ENTERING A PROGRAM

When creating a BASIC program that is to be run
interactively or submitted for batch execution,
first enter text edit mode. Text edit mode can be
entered at any time after the login sequence is
completed by typing EDITOR and the carriage return
key after the system prompt:

COMMAND-

The system editor responds with two consecutive
periods, indicating text edit mode is in effect.
After the EDITOR command, enter the following
command (after the periods):

- .FORMAT,BASIC (CR)

This command establishes a special BASIC program
environment. The maximum line length is estab-
lished at 150 characters. BASIC line numbers serve
as EDITOR sequence numbers, and EDIT with SEQUENCE,
CREATE, ADD, or RESEQ becomes illegal. " Once speci-
fied, the BASIC format environment remains in
effect for the duration of the terminal session or
until the one of the following is specified: a
FORMAT without parameters, or a FORMAT with a
COMPASS, FORTRAN or COBOL parameter (such as
FORMAT ,COBOL) .

Once the FORMAT command is accepted (apparent by
two periods displayed on the next line following
the command), enter program text in one of the fol-
lowing two forms: 1line number (one space) text
(for the BASIC format) or line number = text (in
other formats). If an error is made while typing a

19983900 B

line, back space n characters by pressing the back-
space key or by typing CONTROL H, n times, and
enter the correct information, or erase the entire
line by pressing CONTROL X. The CONTROL key must
be held down while the H or X key is pressed. To
correct an existing line, reenter the line number
and type the correct information. To delete an
existing line, type DELETE, line number. If an
entered line exceeds 150 key strokes, it is trun-
cated and a message is displayed at the terminal.

INTERACTIVE BASIC
TERMINAL SESSION

A BASIC program can be entered, edited, and exe-
cuted interactively from a CRT or TIY terminal.
Figure 11-1 was created and run at a TTY termi-
nal.. Responses entered are in lowercase. Press
the carriage return key, » after typing in each
response.

USING THE BASIC
COMMAND INTERACTIVELY

Basic can be run interactively using the full capa-
bility of the BASIC control statement, described in
section 13, by performing the following steps:
l. Create the BASIC program under EDITOR.
2. Save the program by entering:
SAVE,1fn
For a program created in BASIC format

SAVE, 1£n,NOSEQ

For a program created in other . than
BASIC format

3. To leave EDITOR, type in END.
4. Connect required files to terminal by entering:
CONNECT,1fn),1fny,...

Normally the J and K files on the BASIC command
(default INPUT and OUTPUT) should by connected.

5. Compile and execute the program by entering:
BASIC(I=1fn,...)
An example of these command parameters is shown in

figure 11-2. BASIC command parameters are described
in the section on Batch Operations.

CONTROL DATA INTERCOM 5.1
DATE 06/25/80
TIME 14.30.50

PLEASE LOGIN
Login

ENTER USER NAME-xxx

WRAKRRKIE ENTER PASSWORD-

LOGGED IN AT 15.35.15.

~¢——————— lLogin procedure.

06/25/81
WITH USER-ID 4K
EQUIP/PORT 63/073
LOGIN CREATED 06/25/81 TODAY IS 06/25/81

COMMAND- editor .«

Calls EDITOR.

..format ,basic -

..10 rem this program computes interest payments
20 print "enter total amount of loan”

21 input a

22 if a<=0 then
26 print "enter
30 input j

35 let j=j/100
40 print "enter
45 input n

50 print "enter
55 input m

60 Llet n=n*m

65 let i=j/m

70 let b=1+i

75 Llet r=axi/(1-1/b**n)

79 amount per payment =$$$$#.##
80 :total interest =$$SSS#.##

200
interest percentage"

total number of years"

number of payments per year"

Requests BASIC format.

-«——— Enters BASIC program line-by-line.

ILLEGAL STATEMENT AT 79

81 print using 79,r

82 print using 80,r*n-a

88 print

94 :interest app to prin $ balance $

95 print using 94

100 Let L=axi

110 Llet p=r-L

120 let a=a-p

130 print using 135, L,p,a

135 :###. 44 il i Hitiin .84

140 if a>=r then 100

150 print using 135, a*i,r-aki

155 print

160 print using "lLast payment =$$S#.##" ,axi+a
170 goto 20

200 end _
run,basic -

Compiles and executes program.

NON-IMAGE REFERENCED AT 81
BASIC COMPILATION ERRORS

|-

BASIC issues diagnostic.

««79 :amount per payment =$$$S$#.#H =
run,basic - ‘

Corrects error.
Compiles and executes program again.

Figure 11-1.

11-2

Interactive BASIC Terminal Session (Sheet 1 of 2)

19983900 H

ENTER TOTAL AMOUNT OF LOAN

25000

ENTER INTEREST PERCENTAGE

211

ENTER TOTAL NUMBER OF YEARS

72

ENTER NUMBER OF PAYMENTS PER YEAR
?6

AMOUNT PER PAYMENT = $467.97
TOTAL INTEREST = $615.66

INTEREST APP TO PRIN $ BALANCE $
91.67 376.31 4623.69

84.77 383.20 4240.49 -
77.74 390.23 3850.26 o
70.59 - 397.38 3452.88

63.30 404.67 3048.21

55.88 412.09 2636.12

48.33 419.64 2216.48

40.64 427.34 1789.14

32.80 435.17 . 1353.97

24.82 443.15 910.82

16.70 451.27 459.55

8.43 459.55

LAST PAYMENT =$467.97
ENTER TOTAL AMOUNT OF LOAN
20 .

«s5ave,basprog =

-.Store,basprog =

..list,all, sup —=

10 REM THIS PROGRAM COMPUTES INTEREST PAYMENTS
20 PRINT "ENTER TOTAL AMOUNT OF LOAN"

21 INPUT A

22 IF A<=0 THEN 200

26 PRINT "ENTER INTEREST PERCENTAGE"

30 INPUT J

35 LET J=J/100

40 PRINT "ENTER TOTAL NUMBER OF YEARS"

45 INPUT N

50 PRINT "ENTER NUMBER OF PAYMENTS PER YEAR"
55 INPUT M

60 LET N=N#*M

65 LET I=Jy/M

70 LET B=1+I

75 LET R=A%I/(1-1/B**N)

79 :AMOUNT PER PAYMENT =$$$$#.##

80 :TOTAL INTEREST =$$3$$#.4#

81 PRINT USING 79,R

82 PRINT USING 80,R*N-A

88 PRINT

94 :INTEREST APP TO PRIN $ BALANCE $
95 PRINT USING 94

100 LET L=AI

110 LET P=R-L

120 LET A=A-P

130 PRINT USING 135, L,P,A

135 :itih .48 Hi B HuRiH 44

140 IF A>=R THEN 100

150 PRINT USING 135, A*I,R-A%I

155 PRINT

160 PRINT USING "LAST PAYMENT =SSS#.##",A*I+A
170 GOTO 20

200 END

Program asks for input and generates output.

Saves edit file in local file BASPROG.
Makes BASPROG a permanent file.
Lists edit file without sequence numbers.

Figure 11~1. Interactive BASIC Terminal Session (Sheet 2 of 2)

19983900 H

11-3

COMMAND- editor

..format basic

..100 print "sample program"
save ,ex1

-.end

COMMAND- connect,input,output
COMMAND- basic(i=ex1,l)

EX1 BASIC 3.5 81027

100 PRINT "SAMPLE PROGRAM"

SAMPLE PROGRAM

06/25/81 16.08.25. PAGE 1

Figure 11-2. BASIC Command Parameters Under NOS/BE

USING DATA FILES

Data files to be used by a BASIC program can be
created under EDITOR. To create data files accept-
able to the BASIC program, select a format; the
format must be a format other than BASIC. In the
BASIC format, line numbers are part of the text and
cannot be removed.

Data is entered one line at a time in 1line
number=text format. After the entire file is

created, save the file (file becomes local file)
without sequence numbers by using the SAVE,1fn,NOSEQ
command. EDITOR line numbers are stripped when the
SAVE command with no sequence number option (NOSEQ)
is selected. To edit a file that was saved without
sequence numbers, enter the EDIT,1fn,SEQ command.
The SEQ parameter causes an EDITOR line number to
be appended to each line of text. An example of
using data files under NOS/BE is illustrated in
figure 11-3.

COMMAND- editor

..format ,fortran =
.sCreate
100=j .brown, 1422 east st,charge no 1111,500.00

120=h.redi,7896 algo ave,charge no 1660,133.98
130==

110=r.apple,3434 cherry st,charge no 2211,222.22 | -=

Chooses a format other than BASIC
for data.

Creates and places data in edit
file; the line numbers are supplied

by EDITOR. The equals sign termi-
nates input.

..save,client , noseq =
..Create

100=10

110=20

120=30

130==
..Save,update, noseq
..delete,all —=

Saves edit file as local file
CLIENT without sequence numbers.

Deletes contents of edit file.

..format ,basic =

..5 file #2="update"
10 file #1="client"
20 restore #1

30 restore #2

40 for i=1 to 3

50 input #1,a$,b$,c$,d
60 input #2,s

70 let x=d+s

90 next i
100 end
run,basic -

80 print tab(2);a$;tab(12);b$;tab(32);c$;tab(52);"balance=$";x

Chooses BASIC format for program.

———— (Creates a BASIC program.

|

J.BROWN 1422 EAST ST CHARGE NO 1111
R.APPLE 3434 CHERRY ST CHARGE NO 2211
H.REDI 7896 ALGO AVE CHARGE NO 1660

..Save,test -

BALANCE=$ 510
BALANCE=$ 242.22 |-=— Program output.
BALANCE=$ 163.98

Executes the program.

..end —-=

?av$s the program as local file

Exits EDITOR.

COMMAND -

Figure 11-3. Using Data Files Under NOS/BE

11-4

19983900 H

RENUMBERING BASIC LINES

The BRESEQ command provides a means of resequencing
the line numbers in a BASIC local file. Line num-
ber references in the BASIC program are automati-
cally updated. The format for the BRESEQ command
is shown in figure 11-4. When only one parameter
is specified, it is assumed to be the starting line
number for the new file, and the default increment
value (10) is used.

BRESEQ,Ifn start,incr

ifn Indicates filename of the local file to
be resequenced.

start Indicates new line number to be

assigned to the first line in the file.

incr Indicates increment to be added to
nn; defauft value is 10.

Figure 11-4. BRESEQ Command Format

The BASIC file must exist as a local file and can-
not be the local name for an attached permanent
file. To resequence a permanent file s copy the
file and assign a unique filename. This can be
accomplished by the use of the COPY command or by
loading the file into an EDIT file and then using
the SAVE command.

The BRESEQ command affects only the specified local
file and not the edit file. If further modifica-
tions are to be performed, the resequenced file
must be reloaded into the EDITOR edit file by using
the following directive:

EDIT, filename

19983900 H

An example of the BRESEQ command and reloading of
the resequenced file is shown in figure 11-5.

COMMAND—- editor

.. format basic

..5 print "type a positive number"
10 input a

50 if a<0 then 80

60 print using 71, a

71 :+i##t is positive

75 stop -

80 print a;" is negative, try again"
100 goto 10

save,ex
..breseq(ex,10,10)
..edit, ex

..list,all,sup

00010 PRINT "TYPE A POSITIVE NUMBER"
00020 INPUT A

00030 IF A<D THEN 00070

00040 PRINT USING 00050, A

00050 :+### IS POSITIVE

00060 sToP

00070 PRINT A;" IS NEGATIVE, TRY AGAIN"
00080 GOTO 00020

Figure 11-5. BRESEQ Command Example

BATCH OPERATIONS ' 12

\

A batch job includes a wuser-written program,
associated data, and control statements organized
as separate logical records. A batch job can be
input through a card reader at the central site,
input from a remote batch terminal, invoked from a
procedure, or, if the batch job is stored on a file
or created during an interactive terminal session,
it can be entered into the batch queue from the
interactive terminal.)

This section describes the general structure of a
batch job, the BASIC control statement parameters,
and the procedure for .creating and submitting a
batch job under NOS or NOS/BE. Figure 12-1 shows
the control statements for a batch job under NOS
and figure 12-2 shows the control statements under
NOS/BE. The BASIC statement can be used to compile
and execute your program, or you can use the B op-
tion on the BASIC control statement to place the
object code on a file. Figures 12-1 and 12-2 place
the object code on the file LGO, then load and
execute the file LGO.

Job statement Specifies job name, and optionally,
the memory and time requirements,
priority, and other information.

USER and Specifies accounting information

CHARGE for NOS. CHARGE might be

statements optional at your site.

BASIC Calls the BASIC compiler. If the B

statement option is specified, the object code is
written on the specified file: other-
wise, it is written into memory and
executed immediately.

LGO. Leads and executes the binary file
LGO. If B = LGO is not specified
on the BASIC control statement,
omit this statement.

7/8/9 Indicates end-of-record.

Figure 12-1. Job Structure Under NOS

DECK STRUCTURE

Compile-to-memory enables you to compile and
execute a BASIC program without loading a binary
file. Thus, you need only specify the BASIC comn-
trol statement in order to compile and execute the
program, and you need not and must not specify the
B option.

19983900 H

Job statement Specifies job name, and optionally,
the memory and time requirements,
priority, and other information.

ACCOUNT Specifies accounting information

statement for NOS/BE.

BASIC Calls BASIC compiler. If the B option

statement is specified, the object code is written
on the specified file; otherwise, it is
written into memory and executed
immediately.

LGO. Leads and executes the binary file
LGO. If B = LGO is not specified
on the BASIC control statement, omit
this statement.

7/8/9 Indicates end-of-record.

Figure 12-2. Job Structure Under NOS/BE

Both compile-to-memory (nmo B option on control
statement) and compiling to a binary file (using
the B option) are allowed on NOS and NOS/BE. An
example of a compile-to-memory job deck for use
under NOS is shown in figure 12-3; an example for
use under NOS/BE is shown in figure 12-4. An

example of compiling a BASIC program to a binary
file and then loading and executing that file under

NOS is shown in figure 12-5; an example for use
under NOS/BE is shown in figure 12-6.

Information on entering a job from an interactive
terminal can be found in the Network Products
Interactive Facility reference manual (NOS 1 sites),
Volume 3 of the NOS 2 reference set (NOS 2 sites),
the XEDIT reference manual for NOS, and in the
INTERCOM Version 5 reference manual for NOS/BE.

A 6/7/8/9 statement specifies end-of-information
(end-of-deck). A complete description of the BASIC
control statement follows. Refer to the NOS or
NOS/BE reference manual for a detailed description
of these and other control statements.

BASIC CONTROL STATEMENT

Programs submitted for batch' processing must
include a BASIC control statement. This control
statement calls the compiler and is formatted as
follows: :

BASIC(Py,..+,Pp)

12-1

Yy BASIC.

A CHARGE Statement
USER Statement
Control JOB Statement

Statement
Record

Y

Figure 12-3.. BASIC Compile and Execute Job Under NOS

A
Data
Record
A
Program BASIC Statements
Record
7
8
9
X BASIC.
'ACCOUNT Statement
JOB Statement
Control
Statement
Record

|

Figure 12-4. BASIC Compile and Execute Job Under NOS/BE

12-2. ; 19983900 H

Data
Record

>l

BASIC Program Statements

Program
Record
4 LGO.
A BASIC (B=LGO)
CHARGE Statement
: USER_Statement
Control
Statement JOB Statement
Record

Figure 12-5. BASIC COﬁpi le to Binary File, Load, and Execute Job Under NOS

A
Data
Record
Y
A
Program BASIC Statements
Record
: 7
8
v 9
LGO.
A

BASIC (B=LGO).
ACCOUNT Statement

Control JOB Statement
Statement
Record

Y

Figure 12-6. BASIC Compile to Binary File, Load, and Execute Job Under NOS/BE
19983900 H

12-3

The simplest form of the BASIC control statement is:
BASIC.

This control statement specifies that the BASIC
program on file INPUT is to be compiled and exe-
cuted. A source listing is produced on file OUTPUT
unless the control statement was issued from a ter-
minal. A relocatable binary file is not produced.
The parameters (pl,...,pn) associated with this
control statement permit the selection of the
following parameter types:

Compiler listable output options
Compiler input options
Compiler binary options

Program execution options

Tables K~1 through K~4 in appendix K list available
control statement parameters under the appropriate
category, and describe their use. Some control
statement parameters can have multiple values asso-
ciated with them. Multiple values are separated by
slashes and are cumulative.

The following examples illustrate some combinations
of control statement parameters and the following
paragraphs discuss possible optionmns.

Compile and Execute
BASIC(B=SAM,GO)

The above control statement compiles the pro-
gram found on file INPUT (I parameter default),
places the compiler binary output on file SAM
(B=SAM), and loads and executes the compiled
program (GO), Execution-time output is written
on file OUTPUT (K parameter default). Compile-
time errors prevent execution and, when detec-
ted, are written to file OUTPUT (E and EL
parameter default). A source list is created
on file OUTPUT (L parameter default and LO
parameter default) unless it is assigned to a
terminal. When under NOS, source 1listing 1is
not written when the program is in interactive
mode (default L value is zero) because file
OUTPUT is automatically associated with the
terminal.

ASCII Compile and Execute
BASIC(AS,I=PROG3)

The AS parameter specifies that the source code
found in file PROG3 is encoded in ASCII charac-
ters and that data produced by the BASIC
program is in the ASCII character set. The
program 1is compiled-to-memory and executed
immediately (B and GO parameter defaults). A
source listing is produced on file OUTPUT un-
less it is assigned to a terminal (L parameter
default). On NOS, the source code of the pro-
gram must be in ASCII 6/12 characters. On
NOS/BE, the source can be in either display
code (6-bit) characters or in ASCII 8/12
characters.

12-4

Compile, Execute, and List
BASIC(I=SOURCE,L=LIST)

This control statement compiles-to-memory and
executes; compiler input (source) is on file
SOURCE, Listable compiler output is written on
file LIST. Source listing 1is specified by the
L0 parameter default. Error diagnostics are
written on file LIST (default of E parameter).
Source code and data do mnot contain ASCII
characters.

Compile and Execute with Listing Options and
Controls

BASIC(I=TESTP,EL=F,L0=0,PD=8,PS=20)

The compiler input (source code) is omn .file
TESTP (I=TESTP) and the program is compiled and
executed (default B and GO parameters).
Compile~time errors are written on file OUTPUT.
However, warning diagnostics are suppressed
(EL=F). Also, a source and object listing is
written on file OUTPUT (default L parameter and
10=0). Print density of file OUTPUT is set to
8 (PD=8). ROUTE (DISPOSE on NOS/BE) the file
OUTPUT to a device that can print 8 lines per
inch. Page size for the printed output file is
set at 20 lines per page (PS=20).

BATCH PROCESSING FROM A
TERMINAL

BASIC programs can be created at a terminal and
submitted for batch processing. This 1s accom
plished by setting up the program in a Text Editor
file that includes control statements.

19983900 K

For the program:

10 LET J4=10

20 REM LIST,NONE
30 PRINT J

40 LET S=J+.07
50 REM LIST,ALL
60 PRINT S

70 END

the compiler-generated source listing is:

1 DONE BASIC 3.5 81208

10 LET J=10

20 REM LIST,NONE
50 REM LIST,ALL
60 PRINT S

70 END

81/08/13. 16.27.26. PAGE 1

Figure 12-8. REM LIST Statement Example

NOS

Figure 12-9 shows an example of a terminal session
where a job is created and submitted for batch
processing.

/new,guide

/100 /job

120 user,xxxxXxxx,XXxX.
130 charge,xxxx,XXXXXXX .
150 basic.

151 dayfile,prog.

152 replace,prog.

153 exit.

154 dayfile,prog.

155 replace,prog.

160 /eor

170 /noseq

180 let a=304

190 Let b=403

200 let t=a*b

210 print t

220 end

250 /eof

submit,guide,b

10.01.57. SUBMIT COMPLETE. JOBNAME IS ACLIBCP
/enquire,jn=bcp

ACLIBCP IN INPUT QUEUE,

Figure 12-9. Batch Processing From a
Terminal Under NOS 1

The /JOB directive indicates that the file is to be
reformatted for batch processing. Some defaults
indicated by the directive are:

Remove sequence numbers.

Remove internal EOR and EOF marks (converts
/EOR and /EOF found in this deck to end-of-
record and end-of-file, respectively).

19983900 K

See the Network Products Interactive Facility
reference manual (NOS 1 sites), Volume 3 of the
NOS 2 reference -set (NOS 2 sites), or the NOS
Time-Sharing User’s reference manual (Reformatting
Submit File) for remaining directive descriptions.
The options of the BASIC control statement are
available to the interactive user when using the
batch subsystem.

NOS/BE

To send a batch job to NOS/BE from a remote termi-
nal, first enter EDITOR, as described in Terminal
Operation under NOS/BE. You can then issue the
CREATE command to construct the program statements
to be processed. When using CREATE, a FORMAT com-
mand need not be specified, but if one is, the
format cannot be BASIC.

The job must include the NOS/BE control statements,
along with the BASIC program. Each control state-—
ment and BASIC statement 1is entered on a separate
line., A line with *EOR indicates the place in the
deck where an end-of-record mark is to be inserted;
when the EDITOR command SAVE is issued, the *EOR is
transformed into an actual end-of-record mark. A
typical deck setup is shown in figure 12-10.

When entering BASIC statements (under a format
other than BASIC), the EDITOR sequence numbers are
distinct from the BASIC line numbers and must be
specified separately. In figure 12-10, 610 is the
EDITOR sequence statement number generated by the
system, and 100 is the BASIC line number input from
the terminal. Once this is accomplished, the file
can be modified by using EDITOR commands and can be
saved by using the SAVE,1fn,NOSEQ form of the SAVE
command .

To submit a batch job created under EDITOR, save
the edit file without sequence numbers, then submit
the saved file to the batch input queue by using

12-5

COMMAND-editor : _
.sCreate = Creates the file. :

100=job statement. - - Control statements (lines 100-600).
5m=t.>asic.

600=;eor i

610=100 input X e BASIC statements (lines 610-700).

620=110 if x=0 then 190

680=‘i70 print "factorial";x;"is";f
690=180 goto 110

700=190 end
710=%eor = End of BASIC source record; optional if no succeeding information.
= - End CREATE mode.
..5,testjob,ns = Saves job in file named TESTJOB with no sequence line numbers.
Figure 12-10. Batch Processing From a Terminal Under NOS/BE
the BATCH or ROUTE command. The following are two Optionally, the job can be submitted for batch
types of processes for submitting a job into file processing with the results directed to the sub-
TESTJOB for batch execution; results are automati- mitting terminal for inspection. If acceptable,
cally printed at the central site. the job can be printed at the central site. Figure
) 12-11 shows an example of printing a batch job.
SAVE, TESTJOB,NOSEQ
BATCH,TESTJOB, INPUT
or Refer to the INTERCOM Version 5 reference manual
SAVE, TESTJOB,NOSEQ, for additional details and examples concerning
ROUTE,TESTJOB,DC=IN. these commands.
BATCH,TESTJOB,INPUT HERE Submits the job.
Allow time for batch job to complete.
FILES Lists file names so you can identify remote output file Ifn created by the job.
BATCH,IfnT,LOCAL Makes remote output file local to terminal.
PAGE,IfnT,L Prepares to display contents of file Ifn. The L is optional to display ASCIlI
coded file.
When prompted with READY . . . enter 1 to see the first page and + to see each
additional page. Enter E or END to exit from the PAGE mode.
BATCH,Ifn,PRINT.,id - Submits the file to the batch print queue with user identification id.
tThe remote output file name consists of the first five characters from the job statement (job name) and two characters
generated by the system.

Figure 12-11. Printing a Batch Job

B 12-6 v ' : 19983900 K

CHARACTER SETS A

E

Each computer has its own character set, which
includes a collection of graphics (letters, digits,
and special symbols) that the computer recognizes.
Associated with each graphic of a character set is
a number called a code. The code represents the
character within the computer. Computers differ in
their codes as well as their graphic sets, so in
order to permit intercomputer communication, the
American Standard Code for Information Interchange
(ASCII) has been established. The ASCII character
set includes all letters (uppercase and lowercase),
digits, and many special symbols. The characters
used in BASIC are taken from the ASCII character
set. Table A-1 lists the full ASCII character set.

Any one of several character sets can be used on
CDC CYBER and the 6000 Series computers. These
character sets include CDC 63- and 64-character
sets, ASCII 63- and 64-character sets, and ASCII
128-character set. Differences in character sets
occur in either graphics (CDC or ASCII), or the
number of characters (63 or 64 and normal or
128-ASCII). Graphic differences are a function of
the terminal or printer that is used; some devices
use CDC symbols; others use ASCII symbols. These
differences do not affect the BASIC program pro-
vided the programmer realizes that all BASIC char-
acters are defined in terms of ASCII codes. When
using CDC character set devices, the programmer
must use CDC symbols equivalent (same internal
code) to ASCIL symbols required by BASIC. Table A-2
lists ASCII and CDC character sets so that equiva~
lent symbols can be easily determined; for example,
the ASCII # is equivalent to the CDC = .

Differences in internal representations of char-
acters can have an effect on programs and program
results. Differences in program results can only
occur when a program is developed on a 63-character
set system, then run on a 64-character set system,
or vice versa, and the program uses the OPTION
COLLATE NATIVE statement and the normal (not ASCII)
character set. Normally, however, there is no
problem because computer systems operate either
with a 63- or 64-character set system and do not
switch between character sets. Even if one of the
character set disparities exists, there is a prob-
lem only if the program uses string data that
contain the characters % (percent) and : (colon).
The character % is not available in a 63-character
set system; the character : has a numeric code 0 in
a bh-character system, but a numeric code 51 (63g)
in a 63-character set system. As a result, for a
program in normal mode that uses the OPTION COLLATE
NATIVE statement, the relation ":BCD"<"ABCD" is
true in a 64-character set system, but false in a
63-character system.

19983900 H

CHARACTER USAGE
RESTRICTIONS

If operating with the 64-character set in normal
mode, it is advisable to restrict the use of the
colon, as follows:

Never use the colon at the end of a string.

Do not use multiple colons (:::) because they
could be interpreted as the end of the string
or end of the line.

Do not use a colon at the end of a line or on a
line by itself.

Do not use :A, :B, :D, :E, or :H at the end of
a terminal output (PRINT) line because it is
interpreted by the operating system as a
terminal command. Other colon and letter com—
binations, :L, :F, :G, and :1, could be misin-
terpreted depending on the carriage control at
the beginning of a terminal PRINT line.

NOS ASCIl 128-CHARACTER
SET

NOS enables the BASIC programmer at an ASCII code
terminal to make use of the ASCII 128-character
set. (See table A-1.) This character set, which
includes lowercase letters, special symbols, and
device control characters, is only available when
the user’s terminal and program are in ASCII mode.
A terminal is switched into ASCII mode by entering
the ASCII command. The terminal is returned to
normal mode by entering the NORMAL command. (Refer
to the Network Products Interactive Facility refer-—
ence manual (NOS 1 sites), Volume 3 of the NOS 2
reference set (NOS 2 sites), or the NOS Time-
Sharing User’s reference manual). Under the BASIC
subsystem, the BASIC compiler and the BASIC program
automatically operate in ASCII mode when the termi-
nal is in ASCII mode. In order for the compiler
and program to handle the ASCII 128-character set
in batch mode, the AS parameter must be explicitly
specified.

In order to provide 128 characters, some characters
must be represented as 12-bit instead of 6-bit
characters. The 6-~bit characters are distinguished
from the 12-bit characters by using the 6-bit codes
743 and 76g as escape codes to indicate that
the next six bits are actually part of this 12-bit
character. This coding method is referred to as
the 6/12 or extended display code. When operating
in ASCII mode, the BASIC compiler assumes that all
data files contain 128-ASCII characters, so display
code 74g and 76g are interpreted as escape code
characters; they are never characters by themselves.

NOS/BE ASCIl 128-CHARACTER
SET

NOS/BE provides an ASCII 128-character set, as
listed in table A-l1l. This character set includes
the symbols, uppercase and lowercase letters, and

control characters that are available when the
terminal operates in ASCII mode.

In NOS/BE, the terminal is switched to ASCII mode
only when directed from within the user program.
There is no ASCII command available under NOS/BE.
To specify ASCII mode, include the AS parameter
option in the BASIC control statement. Once the
program switches the terminal to ASCII mode, the
ASCII mode remains in effect until the program
terminates.

In order to provide 128 characters, each character
is represented by 12 bits (the eight rightmost bits
in a 12-bit byte). 1I1f a BASIC program is run in
ASCII mode, all associated data files must be in
8/12 ASCII code. NOS/BE does not use the 6/12 dis-
play code. BASIC converts all 8/12 characters to
6/12 characters so that only 6/12 characters are
available internally. On output, BASIC converts
the 6/12 characters back to 8/12 characters.

19983900 H

TABLE A-1. EXTENDED CHARACTER SETS

BASIC BASIC Display | ASCHi ASCII BASIC BASIC Display |ASCII ASCII

BASIC Character Decimal Code Code Code BASIC Character Decimal Code | Code Code

Character | Abbrevia- Codet (6/12-Bit| (7-Bit (7-Bit Character | Abbrevia- Codef (6/12-Bit | (7-Bit (7-Bit

tion Octal) | Octal) [Hexadecimal) tion Octal) | Octal) | Hexadecimal)

oott | nun c Lce 929 7603 | 143 63
A UCA 65 01 101 41 d LCD 100 7604 144 64
B UcCB 66 02 102 42 e LCE 101 7605 145 65
Cc ucc 67 03 103 43 f LCF 102 7606 146 66
D ucob 68 04 104 a4 g LCG 103 7607 147 67
E UCE 69 05 105 45 h LCH 104 7610 150 68
F UCF 70 06 106 46 i LCI 105 7611 151 69
G UCG 71 07 107 47 j LCJ . 106 7612 152 6A
H UCH 72 10 110 48 k LCK 107 7613 163 68
] ucl 73 1 11 49 i LcL 108 7614 154 6C
J ucJ 74 12 112 4A m LCM 109 7615 155 6D
K UCK 75 13 113 4B n LCN 110 7616 156 6E
L ucL 76 14 114 4C) LCco 111 7617 "187 6F
M ucm 77 15 115 4D P Lce 112 7620 160 70
N UCN 78 16 116 4E q Lca 113 7621 161 71
[¢] uco 79 17 17 4F r LCR 114 7622 162 72
P uce 80 20 120 50 s LCS 115 7623 163 73
Q uca 81 21 121 51 t LCT 116 7624 164 74
R UCR 82 22 122 52 u LCU 117 7625 165 75
S ucs 83 23 123 53 v Lcv 118 7626 166 76
T ucT 84 24 124 54 w tcw 119 7627 167 77
3] ucu 85 25 125 55 X LCX 120 7630 170 78
\" ucv 86 26 126 56 vy LCcYy 121 7631 171 79
w ucw 87 27 127 57 z LCZ 122 7632 172 7A
X ucx 88 30 130 58 { LBR 123 7633 173 7B
Y ucy 89 31 131 59 : VLN 124 7634 174 7C
4 ucz 90 32 " 132 5A ; RBR 125 7635 175 7D
[1] 48 33 060 30 ~ TIL 126 7636 176 7€
1 49 34 061 31 DEL DEL 127 7637 177 7F
2 50 35 062 32 NuLTHT 0 7640 | o000 00
3 51 36 063 33 'H 1 7641 001 o1
4 52 37 064 34 X 2 7642 002 02
5 53 40 065 35 ETX 3 7643 003 03
6 54 41 066 36 EOT 4 7644 004 04
7 55 42 067 37 ENOQ 5 7645 005 05
8 56 43 070 38 ACK 6 7646 006 06
9 57 44 071 39 BEL 7 7647 007 07
+ 43 45 053 28 BS 8 7650 010 08
- 45 46 055 2D HT 9 7651 011 09
* 42 47 052 2A LF 10 7652 012 OA
/ a7 50 057 2F vT 11 7653 013 0B
(40 51 050 28 FF 12 7654 014 ocC
) 41 52 051 29 CR 13 7655 015 oD
$ 36 53 044 24 SO 14 7656 016 0E
= 61 54 075 3D Si 15 7657 017 OF
SP (space) 32 55 040 20 DLE 16 7660 020 10
' 44 56 054 2C DC1 17 7661 021 1
. 46 57 056 2E DC2 18 7662 022 12
35 60 043 23 DC3 19 7663 023 13
[91 61 133 5B DcCa 20 7664 024 14
1 93 62 135 5D NAK 21 7665 025 15
%88 37 63 045 25 SYN 22 7666 | 026 16
“ (quote) Quo 34 64 042 22 ETB 23 7667 027 17
o lunderline)§ UND 95 65 137 5F CAN 24 7670 030 18
! 33 66 041 21 EM 25 7671 031 19
& 38 67 046 26 suUB 26 7672 032 1A
‘ (apostrophe) 39 70 047 27 ESC 27 7673 033 1B
? 63 71 077 3F FS 28 7674 034 1Cc
< 60 72 074 3C GS 29 7675 035 1D
> 62 73 076 3E RS 30 7676 036 1E
74 (escape us 31 7677 037 1F
code) : 7400 - -
\ 92 75 134 5C @ 64 7401 100 40
[76 (escape Alcircumflex) 94 7402 136 5E
code) 7403 - -
s (semicolon) 59 77 073 3B 88 58 7404 072 3A
7600 - - 7405 - -
a LCA 97 7601 141 61 7406 - -
b iLcs a8 7602 142 62 \ GRA 96 7407 140 60

TThese codes are the decimal equivalent of the 7-bit octal ASCII codes. They are returned by the ORD function, used by the CHR$
function and used for comparing strings when the standard collating sequence is in effect (regardless of the character set used) and when
the native collating sequence is in effect and the ASCII character set is being used. (See AS parameter or BASIC control statement.)

ttTwelve zero bits at the end of a 60-bit word are an end-of-line or end-of-record mark rather than two colons. Colons at the end of
lines or strings are considered part of the end-of-line or end-of-string marker. In the 63-character set, this display code represents a
null character.

T+t Those characters which are not included in the NOS/BE 95-character set are shaded.
§0n TTY models having no underline, the backarrow (<) takes its place.

§8 In a 63-character set the internal octal representation for colon (:) is 638, and the internal octal representation for percent (%) is
7404g. (The characters reverse posiitons.)

19983900 H

TABLE A-2.

CDC AND ASCII 63- AND 64-CHARACTER SETS

BASIC cDC ASCH
Display Hollerith E |
Character | Decimal Code . otterl xterna Graphic Punch Code
Character | Appreviationt| Code 11| (Octal) [Graphic Punch BCD Subset (029) (Octal)
(026) Code
b e —— ——— -
: (coton) T1T 58 008 |:(colon)tTT 8-2 00 : (colon) TTT 8-2 072
A UCA 65 01 A 121 61 A 12-1 101
B ucB 66 02 B 12-2 62 B 12-2 102
[ucc 67 03 c 12-3 63 C 12-3 103
D ucp 68 04 D 12-4 64 D 12-4 104
E UCE 69 05 E 125 65 E 125 105
F UCF 70 06 F 12-6 66 F 126 106
G UcG 71 07 G 127 67 G 127 107
H UCH 72 10 H 12-8 70 H 128 110
1 uct 73 1 1 12-9 71 | 12-9 11
J ucd 74 12 J 1141 a1 J 1141 112
K UcK 75 13 K 11-2 42 K 11-2 113
L ucL 76 14 L 11-3 43 L 11-3 114
M ucm 77 15 M 11-4 a4 M 11-4 115
N UCN 78 16 N 115 45 N 115 116
o uco 79 17 o} 11-6 46 o] 116 117
P uce 80 20 P 11-7 47 P 11-7 120
Q uca 81 21 Q 11-8 50 Q 11-8 121
R UCR 82 22 R 11-9 51 R 119 122
S ucs 83 23 s 0-2 22 3 0-2 123
T ucT 84 24 T 0-3 23 T 0-3 124
u ucu 85 25 v 0-4 24 u 0-4 125
v ucv 86 26 \% 05 25 v 0-5 126
w ucw 87 27 w 0-6 26 w 0-6 127
X ucx 88 30 X 0-7 27 X 0-7 130
Y ucy 89 31 Y 0-8 30 Y 0-8 131
z ucz 90 32 z 0-9 31 z 0-9 132
0 48 33 0 0 12 0 0 060
1 49 34 1 1 01 1 1 061
2 50 35 2 2 02 2 2 062
3 51 36 3 3 03 3 3 063
4 52 37 4 4 04 4 4 064
5 53 40 5 5 05 5 5 065
6 54 a1 6 6 06 6 6 066
7 55 42 7 7 07 7 7 067
8 56 43 8 8 10 8 8 070
9 57 44 9 9 1 9 9 071
+ 43 45 + 12 60 + 12-8-6 053
- 45 46 - 11 40 - 11 055
' 42 47 * 11-8-4 54 * 11-8-4 052
/ a7 50 / 0-1 21 / 0-1 057
(40 51 { 0-8-4 34 (12-8-5 050
) 41 52) 12-8-4 74) 11-8-5 051
$ 36 53 $ 11-8-3 53 $ 11-8-3 044
= 61 54 = 8-3 13 = 8-6 075
SP (space) 32 55 blank no punch 20 blank no punch 040
, (comma) 44 56 , (comma) 0-8-3 33 ,{comma) 0-8-3 054
. (period) 46 57 . (period) 12-8-3 73 . (period) 12-8-3 056
35 60 = 0-8-6 36 # 8-3 043
[91 61 [8-7 17 [12-8-2 133
] 93 62] 0-8-2 32] 11-8-2 135
%ttt 37 e3fTtt] ottt 8-6 16 %ttt 0-8-4 045
" (quote) Quo 34 64 #* 8-4 14 " (quote) 8-7 042
_ (underline) UND 95 65 [nd 0-8-5 35 __ (underline) 0-8-5 137
! 33 66 v 110 52 ! 12-8-7 041
& 38 67 A 0-8-7 37 & 12 046
‘ (apostrophe) 39 70 4 1185 55 ‘ (apostrophe) 8-5 047
? 63 71 4 11-8-6 56 ? 0-8-7 077
< 60 72 < 120 72 < 12-8-4 074
> 62 73 > 11-8-7 57 > 0-8-6 076
@ 64 74 < 85 15 @ 8-4 100
\ 92 75 > 12-8-5 75 \ 0-8-2 134
| A {circumflex) 94 76 - 12-8-6 76 Alcircumflex) 11-8-7 136
; (semicolon) 59 77 ; {semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

TThe BASIC character abbreviation can be used only with the ORD function.

1'TThese decimal codes are the values returned by the ORD function, used by the CHR$ function, and used for string comparison when
the native collating sequence is in effect and the normal (not ASCI1) character set is in use.

111 installations using a 63 character set, display code 00 has no associated graphic or card code; display code 63 is the colon ,
(8-2 punch); the % character and related card code; do not exist and transiations yield a biank (55g).

$ Twelve zero bits at the end of a 60-bit word in a zero-byte record are an end-of-line or end-of-record mark rather than two colons.

A4

19983900 H

DIAGNOSTICS | B

“

BASIC produces three categories of diagnostic message AT line-number

messages: dayfile messages, compile~time diag-

nostics, and execution-time diagnostics. These With the following exceptions, all compile-time
messages and diagnostics are listed in tables B~1 diagnostics listed in table B-2 inhibit program

execution. The messages OBSOLETE FORM, LINES
TRUNCATED AT 150 CHARACTERS, WARNING - FUNCTION
REDEFINITION, and WARNING - TFUNCTION REFERENCE
BEFORE DEFINITION are warning types of diagnostics
that do not inhibit program execution. The program
that contains compilation errors can be forced to
execute by specifying the DB=B parameter in the
BASIC control statement.

through B-4,

DAYFILE MESSAGES

When a job 1is operating interactively, dayfile
messages are displayed at the terminal. In con-
trast, dayfile messages for a batch job are appended
to the output file for the job. Special control
statements are required to access the dayfile of a
job submitted by using the NOS command SUBMIT.
(See section 12, Batch Operations.)

EXECUTION-TIME DIAGNOSTICS

BASIC allows two modes of execution-time error
processing. During normal error processing, control
is returned to the operating system. If the pro-
gram has executed an ON ERROR statement, the program
retains control. The program can then inspect the

error number by use of the ESM function.

Dayfile messages are listed in table B-1. BASIC
automatically increases its memory field length as
required up to the maximum allowed; therefore, this
maximum is the field length referred to in the
dayfile messages.

Errors 100, 106, and 115 can be recovered from only
once. Should these errors occur a second time
during the same execution period, the BASIC program
aborts without transferring control to the ON ERROR
address.

COMPILE-TIME DIAGNOSTICS

While compiling or translating a program into object
code, BASIC checks the source code for such things
as incorrect syntax, improper use of statements,
and missing or illegal arguments. If any of these
checks fail, the program (in most cases) compiles
unsuccessfully and an error message, indicating the
nature of the problem, is returned to the terminal
from where the program originated. The messages
that can be produced during program compilation are
listed in table B-2. These messages are printed in
the following format:

Execution-time diagnostics are listed in alphabeti-
cal order in table B-3. These messages are printed
in the following format:

message AT line-number

For ease of reference, diagnostics are listed by
error numbers in table B-4,

TABLE B-1. DAYFILE MESSAGES

Message

Significance

Action

BAD CONTROL CARD
ARGUMENT-parm

BASE STATEMENT OCCURS
MORE THAN ONCE

BASIC COMPILATION
ERRORS

BASIC EXECUTION ERROR

INPUT FILE EMPTY OR
MISPOSITIONED

FIELD LENGTH TOO
SHORT FOR BASIC

FL TOO SMALL FOR
EXECUTION

The specified control statement parameter or
the parameter value is invalid.

Only one BASE statement is allowed.

Indicates that errors occurred during
compilation. :

An error has terminated program execution.

Input file is empty or positioned at end-of-
information.

The maximum field length is too short to allow
compilation.

The program compiled correctly but there was
not enough assigned memory for execution.

This .condition is usually caused by excessive
array dimensions. This message only occurs -in
compile-to-memory and execute mode.

Correct the parameter.
Delete multiple occurr
of the BASE statement.

Correct the errors.

Correct the error.

Rewind the input file.
Increase field Tength.

Increase field length.

.

ences

19983900 K

TABLE B-2. COMPILE TIME DIAGNOSTICS

Message Significance Action
BLANK FILE File ordinal or name missing in a Correct and rerun.
STATEMENT file statement.

BLANK CLOSE
STATEMENT

DEF WITHIN DEF

DELIMITER
OVERFLOW

DUPLICATE LINE NO
END NOT LAST

FL TOO SMALL FOR
COMPILATION

FNEND MISSING

FOR NESTED TOO
DEEP
FOR WITHOUT NEXT

ILLEGAL ARGUMENT
IN ASC

ILLEGAL BOUND

ILLEGAL CHARACTER
ILLEGAL
COMPARISON
ILLEGAL EXTERNAL
NAME

ILLEGAL FILE NAME

ILLEGAL FILE
NUMBER

TLLEGAL FN NAME

ILLEGAL LINE NO

ILLEGAL LINE REF

The CLOSE statement does not specify
which file to close.

A DEF statement occurs before the
current multiple-line function defi-
nition is terminated by FNEND.

More than three characters are
specified in the DELIMIT statement.

The same line number was used twice.

An END statement is placed prior to
the last statement.

The maximum field length allowed is

too small to allow compilation. The
more compilation options requested,

the more memory required. The B
option requires more memory than the L.

A multiple-line function is not ter-
minated by FNEND before the end of the
program.

FOR statements are nested more than
ten deep.

A FOR statement has no balancing
NEXT statement.

The argument in an ASC function is not
a character or a defined abbreviation
for a character.)

An array bound declared in a DIM state-
ment is < 0 or > 131070. If OPTION
BASE 1 was specified, the array bound
cannot be = 0.

BASIC encountered an unrecognizable
character.

A numeric quantity was compared to a
string in an IF statement. ’

A name in a CALL statement does not
begin with a letter, or it is longer
than seven characters.

The specified name is not allowed as a
file name.

The numb?r in a FILE statement is < G
or > (2'8-1),

The user funcfion name is not in the
form FNx or FNx$.

A line number is > 99999,

Referenced line number is incorrectly
written or > 99999.

Correct and rerun.

Move the DEF statement outside
of the multiple-line function.

Specify three or fewer char-
acters.

Change one of the line numbers.
Remove the END statement and
replace it with a STOP state-
ment if necessary.

Increase field length.

Supply an FNEND statement.

Rewrite so that no more than ten
FOR statements are nested.

Supply a NEXT statement.

Replace the argument with a valid
one.

Replace the array bound with a
valid one.

Replace the character with a
valid one.

Replace the comparison with a
valid one.

Correct the name.

Replace the file name with
a valid one.

Replace the file number with
a valid one.

Correct the function name.

Replace the line number with
one < 99999.

Correct the line number
reference.

19983900

TABLE B-2. COMPILE TIME DIAGNOSTICS (Contd)

Message

Significance

Action

ILLEGAL MARGIN
ILLEGAL NUMBER
ILLEGAL OPERAND
ILLEGAL

REDIMENSIONS

ILLEGAL STATEMENT

ILLEGAL STATEMENT
WITHIN IF

ILLEGAL STRING

ILLEGAL USE OF
LEFT PAREN

ILLEGAL USING -

INVALID BASE
STATEMENT

INVALID BASE
VALUE

INVALID CHANGE
LINES TRUNCATED
AT 150 CHARACTERS
LINES OUT OF
ORDER

MISSING LINE NO

NEXT WITHOUT FOR

NON IMAGE
REFERENCED

NOT -ENOUGH
ARGUMENTS

19983900 H -

The margin specified in a MARGIN
statement is < 0 or > 131070.

A numeric constant is incorrectly
written.

A string is used in an arithmetic
expression.

An array specified in a DIM statement
has been dimensioned in a previous DIM
statement, or a statement attempts to
change the number of dimensions (sub-
scripts) of an array.

A statement does not begin with a
recognizable word or is written
incorrectly.

The statement is not allowed as an
object of THEN or ELSE in an IF THEN
ELSE statement. The object of THEN
or ELSE must be executable.

A string constant is incorrectly
written.

An attempt was made to use an argument

with a system function when none was
required. .

USING clause is not allowed where it is
written or it is not allowed at all.

OPTION BASE statement appears after the
DIM statement or array reference.

Base value is not 0 or 1.

CHANGE statement arguments are other
than string-expression TO one-dim-
array or one-dim-array T0 string-
expression.

Some lines are greater than 150 char-
acters. Although lines were truncated,
program compilation continued.

Line numbers are not in ascending
order. k

A statement was written without a line
number .

A NEXT statement has no balancing FOR
statement.

The line number referenced in the
USING clause is not an image statement.

The number of arguments in a function
reference is less than the number ex-
pected by the function.

Specify the margin with a valid
value.

Write the constant correctly.
Write the expression correctly.

Delete the duplicate DIM state-
ments or use the proper number
of subscripts.

Rewrite the statement.

Replace the invalid statement
with a valid one.

Rewrite the string correctly.

Remove the argument.

Correct the placement of the
USING clause.

Place the OPTION BASE statement
before the DIM statement or
array reference.

Correct the value in the
OPTION BASE statement.

Replace this statement. It is
no longer supported.

Shorten the lines.

Renumber lines in ascending
order.

Rewrite the statement with a line

number.

Supply a FOR statement.

Change the line number to one
that references an image state-
ment.

Reference the function with
with the proper number of
arguments.)

B-3

TABLE B-2. COMPILE TIME DIAGNOSTICS (Contd)

Message

Significance

Action

OBSOLETE FORM

PARAMETER LIST
CONFLICT

READ WITHOUT
DATA

RECURSIVE FN
REDEFINITION OF
COLLATE

SET VALUE ILLEGAL

STATEMENT TO0O
COMPLEX

TOO MANY

ARGUMENTS

TOO MANY FILES

TOO MANY FORMALS

TRANSFER INTO DEF

TRANSFER OUT OF
DEF.

UNDEF INED IN REF

UNDEF INED LINE
REF

WARNING-DIM
AFTER REFERENCE

WARNING - FUNCTION
REDEF INITION

WARNING - FUNCTION
REFERENCE BEFORE
DEFINITION

The statement form used is no longer
supported; compilation continues.

Too many or too few parameters for the
function reference; a string is used
where the function expects a number; or
a number is used where the function
expects a string.

The program contains a READ statement
but no DATA statement.

A user function calls itself. This is
not allowed.

The program contains more than one
OPTION COLLATE statement.

The value in the SET statement is spec-
ified as a string or is not specified
at all.

The statement or the expression is too
long or complex.

The number of arguments in a function
reference is greater than the number
expected by the function. The number
of arguments in a CALL statement is
greater than 20.

More than 13 FILE statements are in
the program.

The DEF statement contains more than
20 formal parameters.

The statement refers to a line that
is ‘part of a multiple-line function
definition.

A statement within a multiple-line
function definition refers to a line
number not contained in the DEF...
FNEND block.

The user function referenced is
undef ined.

The line number referenced does not
exist. Several statements can refer-
ence the same nonexistent line; only
the first reference is diagnosed.

The DIM statement for an array appears
after the first reference to the
array.

A user-defined function was redefined
within the program; compilation con-
tinues.

A user-defined function was referenced
before it was defined with DEF; com-
pilation continues.

Use proper statement form.

Replace the invalid parameter
list with a valid one.

Include DATA statements.
Eliminate the recursion.
Remove the excessive OPTION
COLLATE statement(s).

Replace the invalid value with

a valid one.

Simplify the éxpression or break
the statement into two or more
simpler statements.

Replace the argument list with

one containing the proper number
of arguments.

Use fewer FILE statements.

Rewrite the DEF statement with 20
or fewer parameters.

Change the statement reference.

Change the statement reference.

Refer to a defined function.

Refer to a defined line number.

Move the DIM statement for the
array before the first reference
to the array.

Remove the affected function
reference.

Move the function definition
ahead of the function reference.

B-4

19983900 H

TABLE B-3. EXECUTION TIME DIAGNOSTICS
Error s o .
Message Number Significance Action

ARGUMENT IS POLE IN COT 148 The argument for the COT function Make sure the argument is
is a multiple of m; therefore, not a multiple of 7.
the results are undefined.

ARGUMENT IS POLE IN TAN 153 The argument for the TAN function Make sure the argument is
is a multiple of w/2; therefore, not a multiple of m/2.
the results are undefined.

ARGUMENT NEGATIVE IN LOG 154 The argument for the LOG function Make sure the argument is
is negative. positive,

ARGUMENT NEGATIVE IN SQR 160 The argument for the SQR function Make sure the argument is
is negative. positive.

ARGUMENT TOO LARGE IN COS 152 The argument for the COS function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN COT 149 The argument for the COT function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN EXP 156 The argument for the EXP function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14,

ARGUMENT TOO LARGE IN SIN 150 The argument for the SIN function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT TOO LARGE IN TAN 151 The argument for the TAN function Make sure the argument is
must be less than 2.21069E14. less than 2.21069E14.

ARGUMENT IS ZERO IN LOG 155 The argument for the LOG function Make sure the argument is
is zero. nonzero.

ARRAY TOO SMALL IN CHANGE 163 Array in the CHANGE statement is Replace this statement;
not large enough to hold the it is no longer sup-
string length plus one word for ported.
each character of the string.

AUTQ RECALL STATUS 116 Internal error. Follow site procedures

MISSING for reporting and re-

solving system problems.

BAD DATA IN READ 126 A string was read when a number Correct the DATA state-
was expected, or vice versa. ment.

BAD FORMAT FIELD 127 The current data conversion field Correct the print image.
in the image is for string data
only, but the item to be printed
is a number, or vice versa.

BAD TAB ARG - 1 USED 197 A TAB function was issued that Change the TAB setting,
contained a bad argument. A tab or take no action.
of 1 (col 1) was assigned. Exe-
cution continues.

CHAIN FILE NOT FOUND 144 The file referenced in CHAIN does Check the spelling of the
not exist as a local or permanent file name.
file.

COMPILATION ERROR 119 The statement caused a compila- Correct the statement.

19983900 H

tion error; therefore, it cannot
be executed. This error occurs
only if the DB=B option is
specified.

B-5

TABLE B-3.

EXECUTION TIME DIAGNOSTICS (Contd)

Message

Error
Number

Significance

Action

CPU ERROR EXIT 00

CPU ERROR EXIT O1

CPU ERROR EXIT 03

CPU ERROR EXIT 05

CPU ERROR EXIT 06

CPU ERROR EXIT 07

DET USED BEFORE INV

DIVISION BY ZERO

ECS OR CY 170 PARITY
ERROR

B-6

107

108

110

12

13

114

162

125

101

An illegal instruction was exe-
cuted. Could result from an
error in a FORTRAN or COMPASS
subroutine.

Address is out-of-range. Can
result from an error in a FORTRAN
or COMPASS subroutine.

Address is out-of-range, or
infinite operand.

Indefinite operand or address is
out-of-range. Could result after
division of zero by zero if an ON
ERROR was used to continue execu-
tion. Could result from an error
in a FORTRAN or COMPASS subrou-
tine that modified the parameters
passed.

Indefinite or infinite operand.
Could result after division of
zero by zero if an ON ERROR was
used to continue execution,
Could result from an error in a
FORTRAN or COMPASS subroutine
that modified the parameters
passed. :

Address is out-of-range, or in-
definite operand. Could result
after division of zero by zero if
an ON ERROR was used to continue
execution. Could result from an
error in a FORTRAN or COMPASS
subroutine that modified the
parameters passed.

DET without a parameter was

called before a square numeric
matrix was inverted by INV.

An attempt was made to divide by
zero.

A hardware error occurred.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.,

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor-
rect the subroutine.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor-
rect the subroutine.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor-

rect the subroutine.

Before issuing DET, in-
vert a matrix (with INV),
or supply a parameter to
DET.

Make sure no division by
zero occurs.

Follow site procedures
for reporting and re-
solving system problems.

19983900 G

TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)
Error P .
Message Number Significance Action

END OF DATA 120 A READ statement was executed Check for end-of-data, or
after the internal data block was supply more data.
exhausted.

END OF DATA ON FILE 136 A READ# or INPUT# statement was Check for end-of-data, or
executed after file data was supply more data.
exhausted.

ERROR IN CHANGE 164 The length as specified in the Replace this statement;
first element of the array that it is no longer sup-
is being changed to a string is ported.
greater than 131070, less than 0,
or an element is not a valid
character code.

FILE ALREADY OPEN 143 The file name specified in the Close the file before
FILE statement has been assigned attempting to open it
a file number in a previous FILE again.
statement and is still in use.

FILE CLOSED/UNDEFINED 141 The file number referenced does Check the file number or

) not correspond to an active file. activate the file with a
: FILE statement.

FILE NUMBER ALREADY IN 142 The file number specified in the Specify an unused file

USE FILE statement is already number,
assigned to an open, active file.

GOSUB NESTED TOO DEEP 123 More than 40 GOSUB statements are Nest 40 or fewer GOSUB
nested. statements.

HUNG IN AUTO RECALL 17 Internal system error. Follow site procedures
for reporting and re-
solving system problems.

ILLEGAL ACTION ON BINARY 175 A DELIMIT, MARGIN, OR SETDIGITS Do not attempt a DELIMIT,

FILE was attempted on a binary file. MARGIN, or SETDIGITS on a
binary file.

ILLEGAL ACTION ON CODED 171 A SET statement or LOC or LOF Do not attempt a SET, LOC

FILE function was attempted on a coded or LOF on a coded file.
file.

ILLEGAL CHAIN PARAMETER 145 A parameter in the CHAIN state- Form the parameter

~ment is incorrectly formed, or correctly.
the referenced file is assigned
or connected to the terminal.

ILLEGAL CHARACTER 165 A string in a string comparison Eliminate‘the invalid
or a string that is referenced in character or change the
a CHANGE statement contains an mode.
invalid character; usually caused
by processing non-ASCII data in
ASCII mode, or vice versa.

ILLEGAL CHR$ ARGUMENT 196 Argument does not correspond to Correct the argument.

: an ordinal in the collating
sequence.

ILLEGAL DATA ON FILE 135 An illegal number or string was Check data on the file.
encountered when INPUT from a
file was attempted; usually
caused by reading a string when a
number was expected.

19983900 H

TABLE B-3.

EXECUTION TIME DIAGNOSTICS (Contd)

Message

Error
Number

Significance

Action

ILLEGAL
INPUT

TLLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

TLLEGAL

TLLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

B-8

DATA, RETYPE

FILE NAME

FILE NUMBER

INPUT ON FILE

LABEL

LPAD$ ARGUMENT

MARGIN

ORD ARGUMENT

OUTPUT ON FILE

RPAD$ ARGUMENT

RPT$ PARAMETER

SET VALUE

SUBSTR PARAMETER

133

139

138

137

170

192

131

194

130

193

191

172

169

An improperly formed number or
string was entered; usually
caused by entering a string when
a number was expected.

The file name is not allowed as a
NOS file name.

The file number referenced is
less than zero or is greater than
131071.

The input operation, READ or IN-
PUT, is not valid for the current
mode of the file (READ on a coded
file, INPUT on a binary file,
READ or INPUT on an output file).

The label referenced in a JUMP
statement or NXL function does
not exist, is greater than 99999,
or is the label of a REM
statement.

The LPAD$ numeric argument is
negative, indefinite, or
infinite.

Margin specified is outside the
allowable range of 0 through
131070.

The value of the ORD argument is
neither a valid character nor a
valid character mnemonic for
characters in the collating
sequence.

The output operation, PRINT or
WRITE, is not valid for the cur-
rent mode of the file (WRITE on a
coded file, PRINT on a binary
file, PRINT or WRITE on an input
file). An attempt to WRITE or
PRINT on a read-only permanent
file causes this error.

The RPAD$ numeric argument is
negative, indefinite, or
infinite.

The RPT$ parameter is negative,
indefinite, or infinite.

The SET value is negative, in-
definite, or infinite.

Parameters specified in the
SUBSTR function are outside the
legal range as determined by the
actual string length.

Reenter the entire line.

Choose another name.

Use a file number within
the proper range.

Use the RESTORE statement

to permit change of mode.

Correct the label.

Correct the argument.

Specify the margin within
the range of 0 through
131070.

Correct the argument.

Restore the file to
change mode.

Correct the argument.

Correct the parameter.
Correct the parameter.

Specify parameters within
the allowable range.

19983900 G

TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)

Error

19983900 G

Message Number Significance Action

INDEFINITE OPERAND m An indefinite floating-point Correct the calculation
value was used in a calculation. that generated the faulty
Could result after division of . number; change ON ERROR
zero by zero if an ON ERROR was code to correct the
used to continue execution. faulty variable before
Could result from an error in a using it again; or
FORTRAN or COMPASS subroutine correct the subroutine.
that modified the parameters
passed.

INFINITE OPERAND 109 An invalid floating-point number Correct the calculation
was used in a calculation. Could that generated the faulty
result from division by zero if number; change ON ERROR
ON ERROR was used to continue. code to correct the
Could result from an error in a faulty variable before
FORTRAN or COMPASS subroutine using it again; or cor-
that modified the parameters rect the faulty sub-
passed. routine.

INPUT WITHIN INPUT 195 INPUT statement includes a Eliminate one of the:
function reference that attempts INPUT statements.
to execute another INPUT state-
ment. No diagnostic is returned
if the second reference INPUT is
in another file.

1/0 TIME LIMIT 106 Time limit exceeded. Increase the time limit.

MASS STORAGE LIMIT 118 Mass storage limit exceeded. Increase the mass storage

limit.

MATRIX DIMENSION ERROR 161 Dimension inconsistency in one of Correct the dimensioning
the MAT statements or the dimen- error.
sion is greater than 100 times
100 in the INV function.

MEMORY OVERFLOW 166 Field length exceeded. More field length needed.

NEGATIVE NUMBER TO POWER 158 An attempt was made to raise a Correct the error.
negative number to a noninteger
exponent.

NO FILE SPACE. ADD 140 A1l declared fill buffers are Add another FILE state-

ANOTHER FILE STMT used. ment or CLOSE a file.

NO FORMAT FIELD SPECIFIED 128 The print image does not contain Rewrite the print image
a data conversion field but the to include a data con-
print list specifies that data is version field.
to be printed.

NONNUMERIC STRING 167 The string in the VAL function is Make the string numeric.
nonnumeric,

NOT ENOUGH DATA, REENTER 134 Not enough data was entered in Either reenter the entire

OR TYPE IN MORE response to an input request. input line or enter a de-

) limiter followed by the
additional data items.

XXX NOT IN PPLIB 103 System software malfunction. Follow site procedures

for reporting and re-
solving system problems.

-B-9

TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)
Message ﬁ:;g;r Significance Action

ON EXPRESSION OUT OF 122 The expression in the ON state- Make sure the expression

RANGE ment is negative, zero, or ex- is valid.
ceeds the count of Tine numbers.

OPERATOR DROP OR KILL 105 The operator dropped or killed None.
the program.

OPERATOR RERUN 115 The operator reran the program. None.

POWER TOO LARGE 159 The exponent in an expression is Use a smaller exponent.
such that an overflow occurs.

PPU ABORT 102 A PPU abort occurred. The pro- Follow site procedures
gram was terminated by an oper- for reporting and re-
ating system-detected error. solving system problems.

PP CALL ERROR 104 Internal system error. Follow site-defined pro-

cedures for reporting
software errors or
operational problems.

RANDOM ACTION BEYOND EOF 174 The SET value is greater than LOF Correct the error.
or a WRITE operation on a random
file attempted to extend the file
length.

RANDOM FILE EMPTY 173 A SET was attempted on an empty Correct the error.
file. i

RETURN BEFORE GOSUB 124 A RETURN statement was encoun- Add a GOSUB or remove the
tered with no GOSUB in effect. RETURN.

STRING OVERFLOW 168 An attempt was made to create a Use two or more strings
string that contains more than that are shorter than the
131070 (6-bit) characters. Timit.

SUBSCRIPT ERROR 121 An attempt was made to reference Use a correct subscript
an element outside the bounds of value or specify a larger
an array. ‘ array with a DIM state-

ment.

TAPE FILE IS NOT ALLOWED 147 An attempt was made to use a tape Use mass storage for the
file. file, Copy an existing

tape file to mass storage
before using with BASIC.

TIME LIMIT EXCEEDED 100 The program time 1imit was Increase the time limit.
exceeded. Check the program for a

nonending loop.

TOO MUCH DATA, RETYPE 132 Too many data items were entered Reenter the entire input

INPUT in response to an input request. line. The exact number
A1l items entered on the last of items requested should

' type-in are ignored. be entered.

UNSATISFIED EXTERNAL 129 An attempt was made to execute a Use the B and GO options

REFERENCE CALL statement in compile-to- on the BASIC control
memory mode. statement.

ZERO TO A NEGATIVE POWER 157 Exponent in an expression is neg- Correct the error.
ative when the mantissa is zero.

B-10

19983900 G

TABLE B-4. EXECUTION TIME DIAGNOSTICS BY ERROR NUMBER

Error

ﬁﬁﬁg& Message Number Message
100 TIME LIMIT EXCEEDED 131 ILLEGAL MARGIN
101 ECS OR CY 170 PARITY ERROR 132 TOO MUCH DATA, RETYPE INPUT
102 PPU ABORT 133 ILLEGAL . DATA, RETYPE INPUT
103 xx NOT IN PPLIB 134 NOT ENOUGH DATA, REENTER OR TYPE IN
MORE
104 PP CALL ERROR
135 ILLEGAL DATA ON FILE
105 OPERATOR DROP OR KILL
136 END OF DATA ON FILE
106 1/0 TIME LIMIT
137 ILLEGAL INPUT ON FILE
107 CPU ERROR EXIT 00 '
138 ILLEGAL FILE NUMBER
108 CPU ERROR EXIT 01
139 ILLEGAL FILE NAME
109 INFINITE OPERAND
140 NO FILE SPACE. ADD ANOTHER FILE STMT
110 CPU ERROR EXIT 03
141 FILE CLOSED/UNDEFINED
111 INDEFINITE OPERAND
142 FILE NUMBER ALREADY IN USE
112 CPU ERROR EXIT 05
143 FILE ALREADY OPEN
113 CPU ERROR EXIT 06
144 CHAIN FILE NOT FOUND
114 CPU ERROR EXIT 07
145 ILLEGAL CHAIN PARAMETER
115 OPERATOR RERUN
147 TAPE FILE IS NOT ALLOWED
116 AUTO RECALL STATUS MISSING
148 ARGUMENT IS POLE IN COT
117 HUNG IN AUTO RECALL
149 ARGUMENT TOO LARGE IN COT
118 MASS STORAGE LIMIT
150 ARGUMENT TOO LARGE IN SIN
119 COMPILATION ERROR k
151 ARGUMENT TOO LARGE IN TAN
120 END OF DATA
152 ARGUMENT TOO LARGE IN COS
121 SUBSCRIPT ERROR
153 ARGUMENT IS POLE IN TAN
122 ON EXPRESSION OUT OF RANGE
154 ARGUMENT IS NEGATIVE IN LOG
123 GOSUB NESTED TOO DEEP
155 ARGUMENT IS ZERO IN LOG
124 RETURN BEFORE GOSUB :
156 ARGUMENT IS TOO LARGE IN EXP
125 DIVISION BY ZERO
157 ZERO TO A NEGATIVE POWER
126 BAD DATA IN READ
158 NEGATIVE NUMBER TO POWER
127 BAD FORMAT FIELD
159 POWER TOO LARGE
128 NO FORMAT FIELD SPECIFIED
160 ARGUMENT NEGATIVE IN SQUARE ROOT
129 UNSATISFIED EXTERNAL REFERENCE :
161 MATRIX DIMENSION ERROR
130 ILLEGAL OUTPUT ON FILE

19983900 G

B-11

TABLE B-4. EXECUTION TIME DIAGNOSTICS BY

ERROR NUMBER (Contd)

r
sl o
162 DET USED BEFORE INV
173 RANDOM FILE EMPTY
163 ARRAY TOO SMALL IN CHANGE
174 RANDOM ACTION BEYOND EOF
164 ERROR IN CHANGE
175 ILLEGAL ACTION ON BINARY FILE
165 ILLEGAL CHARACTER
191 ILLEGAL RPT$ PARAMETER
166 MEMORY OVERFLOW
192 ILLEGAL LPAD$ ARGUMENT
167 NONNUMERIC STRING
193 ILLEGAL RPAD$ ARGUMENT
168 STRING OVERFLOW
194 ILLEGAL ORD ARGUMENT
169 ILLEGAL SUBSTR PARAMETER
195 INPUT WITHIN INPUT
170 ILLEGAL LABEL
196 ILLEGAL CHR$ ARGUMENT
171 ILLEGAL ACTION ON CODED FILE
197 BAD TAB ARG - 1 USED
172 ILLEGAL SET VALUE
B~-12 19983900 H

GLOSSARY C

\

Abort -
The procedure to terminate a program or job
when a specified condition exists.

Alphanumeric -
The letters, digits, and special characters in
the computer character sets defined in appen-
dix A, tables A-1 and A-2.

ASCII -~
American National Standard Code for Information
Interchange, used as the ASCII 128-character
set with either 6- or 12-bit characters.

BASIC -)
Beginner’s all-purpose symbolic instruction
code, an elementary pProgramming language.,

Batch Processing -

A processing method that accumulates and proc—
esses together a number of related input items.

Bound Specifier -
An integer used to define the largest subscript
for an array.

Breakpoint -
A designated location in a program where, if
reached during program execution, a break or
suspension in execution occurs.

Character Set -
The numbers, letters, and symbols having meaning
in a given device or coding system.

Compile -
The procedure that translates a program from a
high-level programming language, such as BASIC,
into machine instructions called object code.

Concatenate -
The procedure of uniting or linking a series of
characters; chaining.

Constant -~
A value assumed to be fixed or invariable in a
given operation or calculation.

CYBER Interactive Debug (CID) -
The facility that externally monitors and con-
trols execution of a program, usually from an
interactive terminal.

Debug -
The procedure to trace, detect, and eliminate
mistakes in a program or in any software.

Direct Access File -
The permanent file, itself, that is made local.

Display Code -
An internal code set that is used by CDC
CYBER 70, CYBER 170, and 6000 Series computers
to represent alphanumeric and special char-
acters. (Refer to tables A-1 and A-2 1in
appendix A.)

19983900 H

End~of-File (EOF) -~
A boundary within a sequential file; the end of
a file. .

End-of-Information (EOI) -
The definition of the actual end of a named
file.

End-of-Line (EOL) -
A special indicator that marks the end of each
line or card image. EOLs are automatically
written on coded files created by BASIC.

End-of-Record (EOR) -
A special indicator that marks the end of a
logical record.

File -
A collection of data with an associated name.

Function -
A procedure that returns a value; invoked by a
function reference in an expression.

Indirect Access File -
A separate local copy of the permanent file
(used under NOS).

Input/Output (I1/0) -
The equipment used to process data with a com-
puter or the data processed and produced by the

computer.

Interactive -
A two-way exchange of information; alternating
input/output dialog; contrast . with batch
processing.

Interrupt -
The procedure to stop a running program in such
a way that it can be resumed at a later time.
The interrupt key depends on the terminal and
system that is being used.

Local File -
Any file assigned to a job; this includes all
temporary files (indirect access permanent
files), all direct access permanent files, and
all files that are not permanent.

Login -
The procedure to initially establish a terminal
session,

Logoff -
The procedure used to end a terminal session.

Null String -
A data string that has a length of zero.

On-Line -~
The condition when equipment communicates with
the host computer.

Parameter Variable -~
A variable that is given a specific value for a
particular purpose or process.

Permanent File -
A file that remains in the operating system
permanent file system after the user logs off.

Record -
A collection of related items of data treated
as a unit., A complete set of such records can
form a file.

Statement -
Each line of a program that begins with a line
number.

String -
A sequence of contiguous characters or bits
treated as a unit.

String Variable -
A variable that holds string values.

Subscripted Variable -~
A representation for one value in an array of
values; consists of numeric and string
variables.

Cc-2

Substring -
A character string that is part of another
string.

Temporary File -
A file that is released from the NOS system
when the user logs off. It is a local file of
an indirect access permanent file. .

Time-Sharing -
The allocation of available computer time among
all users, such that each user has equivalent
access to system resources.

Trap (moun) - :
The established mechanism for detecting a spec~
ified condition and causing a transfer of
control. . In CID, the location to which control
is transferred is in CID itself.

Trap (verb) -~
The automatic transfer of control to a prede-
fined location wupon the detection of some
specified condition.

Variable -
An established identifer that represents a
value or values that can change during program
execution.

19983900 H

NOS FILE HANDLING D

\

A file is a collection of information with an
associated name. A BASIC program is an example of
a file. A BASIC program frequently reads in another
file containing data. All or part of the output
from a program can be stored in a file instead of
being printed at the terminal. This file can then
be listed on a teletypewriter or on a high-speed
printer, or simply used as data for another program.

NOS recognizes two types of files, local and perma-
nent. A local file is amny file assigned to a job;
this includes all temporary and all attached direct
access files. Before any file can be used, it must
be made local. A permanent file is one that re-
mains in the NOS permanent file system after the
system is logged off. There can be both a local
and a permanent copy of the same file. After the
system is logged off, the permanent copy is retained
and the local copy is released.)

There are two types of permanent files, indirect
access and direct access. An indirect access file
is used indirectly; it is always a separate local
copy of the permanent file that is used. With a
direct access file, the permanent file (not a copy)
is made local. (See figure D-1.) An indirect
access file is created by using the NOS system
commands: REPLACE and SAVE; a local copy is made
available to the user by either the OLD, GET, or
LIB commands; the 1local copy 1is updated by the

REPLACE command and released from use (but not from
permanent storage) by the RETURN command. A direct

access file is created by the DEFINE command; it is
made local by the ATTACH command and released from
use by the RETURN command. The PURGE command is
used to remove from permanent storage both direct
and indirect access files.

When a file is made local, it becomes either a
primary or a local file. The local file established
by a NEW, OLD, or LIB command, under the BASIC sub-
system, is always primary. The NEW command creates
a primary file; the OLD and LIB commands obtain a
primary file from an indirect access file. There
can be only one primary file and usually this file
is the program to be run. When the commands LIST,
SAVE, or RUN are issued, the operating system
assumes it refers to the primary file. The GET or
ATTACH commands establish a local file. To refer
to a local file with a NOS command, the file name
must be specified, as in: LIST,F=DAT, or SAVE,DAT.
In SAVE,DAT, file DAT is retained as a permanent
file; DAT can be a primary or local file. When the
current primary file is released by entry of the
OLD, NEW, or LIB commands, all primary and local
files are released unless the ND (no drop) is
included in the command.

NOS FILE CONTROL
COMMANDS

The following subsections include brief descriptions
of some NOS file manipulation commands. Specific
information can be obtained pertaining to permanent
files by using the CATLIST command described in the
Network Products Interactve Facility reference
manual (NOS 1 sites), Volume 3 of the NOS version 2
reference set (NOS 2 sites), or in the NOS Time-
Sharing User’s reference manual.

If the following commands are entered in batch
mode, they should end with a period. The following
commands are divided into those that access direct
access permanent files and those that access indi-
rect access permanent files.

Local Files)
(temporary) Commands Permanent Files
Commands
i oLD
LIST (':"m“; Indirect Access
RETURN Y
SAVE
etc. 66‘
LiST,F=ifnt
RETURN.,!fn .
SAVE, ifn Local ATTACHTT Direct Access
etc.)
Tifn is the name of a local file
same copy
Figure D-1. NOS Files

19983900 H

D-1

DIRECT ACCESS PERMANENT
FILES

Figure D-2 illustrates the formats for the commands
DEFINE and ATTACH, which are used to access direct
access permanent files under NOS. The DEFINE com-
mand creates an empty permanent file pfn with a
local file name. The ATTACH command makes a perma-
nent file pfn a local file. For a description of
the parameters not explained for ATTACH, see the
DEFINE command.

INDIRECT ACCESS
PERMANENT

Figure D-3 illustrates the formats for the commands
that access the indirect access permanent files
under NOS. For a description of the statement
parameters shown in these formats, see the DEFINE
and CHANGE commands (figures D-2 and D-3).

The SAVE command creates an indirect access perma-
nent file, permits a copy of the specified 1local
file to be retained on the permanent file system,
and specifies the subsystem to be associated with
the file.

The GET command retrieves a copy of a specified
indirect access file for use as a local file. To

reference the local file by a name other than the
pfn, the 1fn parameter is used. The current pri-
mary file remains primary unless the file name
specified by 1fn is that of the current primary
file. In that case, the contents of the primary
file are replaced by a copy of pfn, which becomes
the new primary file.

The OLD command requests a copy of the specified
permanent file as a primary file. When a specific
subsystem is associated with the file, it is se-
lected automatically. This occurs only if the file
was originally a primary file and was saved while
a subsystem, other than the null subsystem, was
active.

The LIB command requests a copy of specified indi-
rect access permanent files from the catalog of a
special user library; this file becomes a primary
file.

The REPLACE command permits the contents of an
indirect access permanent file to be replaced with
the contents of a local file. If pfn does not
exist, a new permanent file is created.

The CHANGE command allows attributes of permanent
files to be changed without further operation of
the file; this is valid only for the originator of
the file.

® DEFINE,Ifn=pfn/CT=n,M=m,NA.

underlined letters):
WRITE = write permission

® ATTACH ifn=pfn/M=m,NA.

Ifn If DEFINE is to be used to create an empty direct access permanent file, Ifn (local file name) is
specified only to reference the file by a name other than its permanent file name. If DEFINE is to
be used to define an existing local file as a direct access file, Ifn is the name of the local file. Also,
if Ifn exists, its position is not altered.

pfn This is the permanent file name. If pfn is omitted, the system assumes Ifn = pfn.
CcT Permanent File Category where n is one of the following (n can be abbreviated by concatenating the
underlined letters):
PRIVATE = private
SPRIV = semi-private
PUBLIC = public
M File or User Permission where m is one of the following (m can be abbreviated by concatenating the

MODIFY = modify permission
READMD = read in modify mode
READAP = read in append mode
EXECUTE = execute file permission

NA If a resource is unavailable, NOS suspends requests until a resource is free.

Ifn=pfn This is used when desirable to reference an attached file by other than its permanent file name. If a
current temporary file is referenced as Ifn, the contents of that file are lost when the permanent file
is attached.

M=m This indicates modify permission. If omitted, the system assumes read permission only.

NA This allows waiting for the direct access file to become available. If the file is currently being

accessed, the job is suspended. 1AF uses a user break, such as CTL P, to terminate the request.
Enter STOP to terminate the request under the NOS Time-Sharing system.

Figure D-2. Direct Access Permanent File Commands

D-2

19983900 H

® SAVE ifn=pfn/CT=n,M=m,ss=subsyst,NA.

® GET lfn=pfn/NA.

® OLD,ifn=pfn.

® LIB,Ifa=pfn.

® - REPLACE ifn=pfn/NA.

® CHANGE,nfn=0fn/CT=n,M=m,ss=subsyst,NA .

parameters, see DEFINE command.

nfn This is the new permanent file name to be assigned.
ofn This is the current permanent file name.
CTand M These are to be specified only if they are to be changed. For a description of the command

Figure D-3. Indirect Access Permanent File Commands

EXAMPLE OF FILE CONTROL
COMMANDS

Figure D-4 illustrates a series of programs that
use the system commands to create, reference, list,
and purge files with a time-sharing terminal. The
example is divided into three main columns. The

leftmost column contains a transcript of the text
entered and received at the terminal. The center

column represents the area of temporary files. The
center column is divided into two sections: the
left section shows the life span of each program
(primary file) entered; the right section is the
area of the remaining temporary files and shows
when temporary files enter the working area and how
long they remain. The rightmost column represents
permanent files. It shows when a copy of a tempo-
rary file is made into a permanent file and how
long that permanent file exists.

19983900 H

Temporary files are created with the NEW command - or
a copy of a file that already exists in the system.
All temporary files are released when they are
logged off the system. Local files include tempo-
rary and direct access files assigned to a job.

Duration of a file is indicated by a solid vertical

line. An arrow point signals destination and ter-
mination. The copying of a file from 1fn to pfn,

or the reverse, is indicated by a broken horizomtal
line,

For a complete explanation of system commands,
consult the Network Products Interactive Facility
reference manual (NOS 1 sites), Volume 3 of the NOS
version 2 reference set (NOS 2 sites), or the NOS
Time-Sharing User’s reference manual.

D-3

Temporary Files Permanent Files
Keyboard Text Primary
File (OLD, Local (pfn)
NEW, LIB) (ifn)
NEW,PROG1 PROG1
READY.
090 FILE #1 = “WORK1”
095 FILE #2 = “WORK2"
100 WRITE #1,1,2,3
110 PRINT #2, “A”, “B"”
120 RESTORE #1 -
130 RESTORE #2
140 END
RUN WORK1 WORK2
RUN COMPLETE.
SAVE I N R R
READY. -*-PROG1
NEW,PROG2/ND PROG2 PROG1
READY. WORK1 WORK2
\
145 FILE #1 = “WORK1”
150 READ #1,X,Y,Z
160 PRINT X;Y;Z
170 END
RUN
1 2 3
RUN COMPLETE.
SAVE,WORK1=PERM1 & - — — | — —|=PERMI
READY.
SAVE WORK2=PERM2 ¢ — — + 1+ — 1+ — —t» PERM2
READY.
] Y

NEW,PROG3 PROG3
READY.
175 FILE #3 = “PERM1”
177 APPEND #3
180 WRITE #3,4,5,6
190 RESTORE #3
200 END
GET,PERM1
RUN PERM1 ¢+ — — |- — =9
RUN COMPLETE.
REPLACE,PERM1 ! —_—
OLD,PROG1 PROG]~ —|— — — — — — 4 44
READY.
LIST
090 FILE #1 = “WORK1”
095 FILE #2 = “WORK2"
100 WRITE #1,1,2,3
110 PRINT #2, “A”, “B”
120 RESTORE #1

D-4

Figure D-4.

File Control Commands (Sheet 1 of 2)

19983900 H

Keyboard Text

Temporary Files

Permanent Files

Primary

READY.
200 FILE #4 = “NEW1"”
210 RESTORE #4
230 READ #4, A
240 PRINT A;
250 IF MORE #4 THEN 230
270 PRINT “ALL OUT”
280 END
RUN

1 2 3 4 5 6 ALLOUT
RUN COMPLETE.
CATLIST

CATALOG OF USER007

- INDIRECT ACCESS FILE(S)
PERM1 PERM2

DIRECT ACCESS FILE(S)

0 DIRECT ACCESS FILE(S), TOTAL PRUS= 0.

READY.

2 INDIRECT ACCESS FILE(S), TOTAL PRUS = 14.

File (OLD, 'foff;' (pfn)
NEW, LIB)
1 T
130 RESTORE #2 PROG1 PROG1
140 END PERM1
READY. oEr
PURGE,PROG1
READY. ‘
NEW,PROG4 PROG4
READY.
GET,NEW1=PERM1 NEW]— — — 41 2

Figure D-4.

19983900 H

File Control Commands (Sheet 2 of 2)

D-5

FUTURE SYSTEM MIGRATION GUIDELINES

!\

This appendix contains programming practices recom—
mended by CDC for users of the software described
in this manual. When possible, application pro-
grams based on this software should be designed and
coded in conformance with these recommendations.

Two forms of guidelines are given. The general
guidelines minimize application program dependence
on the specific characteristics of a hardware
system. The feature use guidelines ensure the
easiest migration of an application program to
future hardware or software systems.

GENERAL GUIDELINES

Good progtamniing techniques always include the
following practices to avoid hardware dependency:

Avoid programming with hardcoded constants.
Manipulation of data should never depend on the
occurrence of a type of data in a fixed multiple
such as 6, 10, or 60.

Do not manipulate data based on the binary
representation of that data. Characters should
be manipulated as characters, rather than as
octal display-coded values or as 6-bit binary
digits. Numbers should be manipulated as

numeric data of a known type, rather than as
binary patterns within a central memory word.

Do not identify or classify information based
on the location of a specific value within a
specific set of central memory word bits.

Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages
can complicate migration to future hardware or
software systems. Migration is restricted by
continued use of COMPASS for stand-alone pro—
grams, by COMPASS subroutines embedded in
programs using higher-level languages, and by
COMPASS owncode routines used with CDC standard
products. COMPASS should only be wused to
create part or all of an application program
when the function cannot be performed in a
higher-level language or when execution
efficiency is more important than any other
consideration.

FEATURE USE GUIDELINES

The recommendations in the remainder of this appen-
dix ensure the easiest migration of an application
program for use on fut@re hardware or software sys—
tems. These recommendations are based on known or
anticipated changes in the hardware or software
system, or comply with proposed new industry stan-
dards or proposed changes to existing industry
standards.

19983900 H

ASC Function

Do not use the ASC function. Use the equivalent
ORD function instead.

ANSI Form

If both an ANSI form and a non-ANSI form exist, use
the ANSI form. Non~ANSI forms might not be sup-
ported in future versions of BASIC.

Blanks

Do not embed blanks within line numbers, keywords,
variable names, and any other elements of the
language. .

CHANGE Statement

Do not wuse the CHANGE statement. Use string
functions or substring notation to manipulate char-
acters. Do not manipulate the numeric codes for
characters.

Characters in Unquoted Strings

Use only the characters plus, minus, period, blank,

digit, and letter in unquoted strings. Future ver-
sions of BASIC might only allow these characters;

if other characters are needed, use quoted strings,

CLK$ and DATS Functions

Do not dismantle values returned by the CLK$ and
DAT$ functions; use the result as a whole. The
order of fields in the result might be different in
a future version of BASIC.

Collating Sequence

Do not rely on the display code collating sequence
(native collating sequence in normal mode, non-
ASCII character set in use). The display code
collation order might not be supported in future
systems.

DEF Function

Do not redefine a user-defined function within a
program. In the future, redefining a function
might not be possible.

END Statement

Use the END statement in all programs. Future
versions of BASIC might require the use of this
statement,

Exponentiation

Use the circumflex character (A) rather than two
asterisks (**) for exponentiation.

File Numbers

Do not use file numbers greater than 255. Larger
values might not be supported in future versions of
BASIC.

FOR...NEXT Loops

Do not transfer control into a FOR...NEXT loop.
Results are unpredictable and future versions of
BASIC might not allow it.

Function Names Used as Variables

Do not use a function name as a variable within a
function definition (do not place the name on the
right side of an equals sign). This usage might
not be permitted or might generate code with a
different meaning in future versions of BASIC.

IE..GOTO Statement

Avoid using this statement. Use IF...THEN instead.
IF...GOTO might not be supported in future versions
of BASIC.

Keywords and Language Elements

Do not run keywords and variable names together. A
statement such as PRINTT might not be supported in
the future versions of .BASIC.

Line Numbers

Do not use line number 0 since it might not be
supported in future versions of BASIC.

Multiple Assignments

Do not use multiple assigmments. The form of such
assignments might change in future versions of
BASIC.

Obsolete Forms

Avoid using any statement or function that causes
the compile-time diagnostic OBSOLETE FORM. The
BASE statement, the CHANGE statement, and the
SUBSTR$ function are examples of obsolete forms
that should be avoided.

ON ne THEN Statement

Avoid wusing ON ne THEN 1n;,lnj,...,ln, because
this form might not be supported in future versions
of BASIC. ON ne GOTO 1nj,lny,...,ln, should
be used instead.

Presetting Variables

Do not assume that variables will be preset to zero
or null, Future versions of BASIC might not auto-
matically preset variables.

Referencing Functions

Define functions before referencing them. Future
versions of BASIC might require the function defi-
nition to appear before the first reference to the
function.

RND Function

Use the RND function without a parameter. The
parametric form might not be supported in future
versions of BASIC.

Simple and Subscripted Variable- Names

Do not use the same name for array variables as for
scalar variables. The use of the same name for
both types of variables is mnot supported by stan-—
dard BASIC and might not be supported in future
versions.

SUBSTR Function

Do not use the SUBSTR function. Use the equivalent
substring notation instead.

19983900 J

DIFFERENCES BETWEEN BASIC 3.5 AND BASIC 3.4

“

BASIC 3.5, the subject of this reference manual, is
a version of BASIC 3.4 that was updated to conform
to the American National Standard (ANSI) for Minimal
BASIC. Due to syntax and semantic changes to the
product, BASIC 3.5 is not 100 percent upward com-
patible with BASIC 3.4. Therefore, some BASIC 3.4
programs operate differently when compiled wunder
BASIC 3.5. The following text identifies these
differences and, where possible, provides sugges-
tions for modifying the program to compensate for
the affected change. Differences between 3.4 and
3.5 that are extensions (does not effect existing
3.4 programs) are not listed. BASIC 3.4 binaries
continue to operate the same, except in those cases
noted below.

ARRAY BOUNDARIES

Unless otherwise instructed, in BASIC 3.5 the lower
boundary (origin) of all arrays in a program is
zero; in BASIC 3.4 the lower boundary is one.
Therefore, arrays in BASIC 3.5 normally have one
more element along each dimension than the arrays
in BASIC 3.4. The OPTION statement. using BASE n
(was BASE statement in BASIC 3.4) is provided to
set the lower boundary of an array to zero or one.
Thus, if array subscripts are to begin with ele-
ment 1 rather than element 0, use OPTION BASE 1 to
change the origin to 1. (See OPTION statement
described in section 3.)

ROUNDING VERSUS
TRUNCATION OF NUMERIC
VALUES

BASIC 3.5 rounds all index, subscript, or pointer
values that require integer values (for example,
subscripts, TAB arguments, substring indexes, and
ON statement indexes; BASIC 3.4 truncates these
values to integer values. To truncate numeric quan—
tities in a BASIC 3.5 program, use the INT function
to force the truncation.

TRAILING BLANKS IN
UNQUOTED STRINGS OF DATA
STATEMENTS AND INPUT
REPLIES

BASIC 3.5 ignores all trailing blanks in unquoted
strings of DATA statements and INPUT replies that
use standard delimiters. BASIC 3.4 returns all
trailing blanks of unquoted strings, unless the
trailing blanks are at the end of a line (a string
not followed by a delimiter), then BASIC 3.4 ignores
the blanks. If trailing blanks are important to a
program, enclose all unquoted strings with trail-
ing blanks within quotation marks (for example:
STRINGL, STRING2,"THEN ENDA").

19983900 B

INPUT VALIDATION

BASIC 3.5 validates all interactive responses to an
INPUT request as to data type, number of data items
input, and range of data values, before assigning
any of them to the program. BASIC 3.4 validates
and assigns INPUT responses one at a time. No
programming changes can compensate ‘\Vfor this
difference.)

NOT ENOUGH DATA

When insufficient data is entered in response to an
INPUT request, BASIC 3.5 permits either the entire
INPUT response or only the additional items required
to satisfy the request to be reentered. To add
data, begin the next response with a comma.
BASIC 3.4 only allows the additional data required
to be entered to complete the INPUT request. No
programming changes can compensate for this differ-
ence. This BASIC 3.5 response also applies to
BASIC 3.4 binaries run under the BASIC 3.5 library.

NUMERIC DATA READ AS
CHARACTER STRING DATA

In BASIC 3.5, unquoted strings in DATA statements
that look like numbers can be read either as num-
bers or as strings. In BASIC 3.4, this type of
string can only be read as numbers.

OUTPUT FORMATTING

BASIC 3.5 prints all integers greater than or equal
to 1E7 in E Format (d.ddddddE+nn) if no other for-
mat is specified. In BASIC 3.4, integer values up
to 1E9 are printed in integer format.

PRINT ZONES

If a print zone is exactly filled in BASIC 3,5, the
comma separator causes the print mechanism to skip
over the next print zone causing spaces to be out-
put; in BASIC 3.4, the next print zone is not
skipped if the current print zone is exactly filled.
In those cases where output must conform to
BASIC 3.4 output, replacing the comma separator
with a semicolon causes the print mechanism to be
positioned at the first character of the next print
zone.

TAB POSITION

In BASIC 3.5, TAB(n) causes the print mechanism to
be positioned so that the next character prints in
column n. 1In BASIC 3.4, TAB(n) positions the print
mechanism so that the next character prints in
column nt+l. If positioning is critical, add 1 to
all TAB arguments in the equivalent BASIC 3.5
program.

NEGATIVE TAB ARGUMENT
VALUES ‘

When BASIC 3.5 encounters a negative TAB value
(TAB(n) where n<0), it resets the TAB value to 1
and issues an execution time warning diagnostic
(error message number 197). BASIC 3.4 ignores neg-
ative TAB values. Change negative TAB values to
positive TAB values in a BASIC 3.5 program to
compensate for this difference.

BACKWARD TABBING

In BASIC 3.5, TAB(n) positions the print mechanism
to positon n on the next line, if n is less than
the current print position; BASIC 3.4 ignores
backward tabbing.

COLLATING SEQUENCE

ASCII is the standard collating sequence used by
BASIC 3.5 for string comparison operations and for
computing values of the CHR$ and ORD functions
regardless of the character set being used. 1In
BASIC 3.4, the collating sequence depends upon the
character set being used. It is display code if a
normal, non—~ASCII character set is being used; it
is ASCII if an extended ASCII character set is
being used. In BASIC 3.5, the OPTION statement
using COLLATE can be used to select the collating
sequence native to the character set currently
being used by the program.

FOR...NEXT LOOP CONTROL
VARIABLE

In BASIC 3.5, the value of the loop control vari-
able, upon normal exit from a FOR block via its
NEXT statement, is the first value not used; in
BASIC 3.4, it is the last value used. That is, in
BASIC 3.5 the control variable value is the last
value used plus one additional STEP value (+1 when
no STEP value is specified), and in BASIC 3.4, the
control variable value is the last value used upon
exit from a loop.

INPUTTING ARRAY DATA

BASIC 3.5 allows an entire array being read by a
MAT INPUT statement to appear on one INPUT line in
row order. A delimiter following the last item on
the line indicates that the response is continued
on the next line. BASIC 3.4 allows only one row of
the array in each input reply line. In BASIC 3.5,

F-2

if only one row of the array is entered, the diag-
nostic NOT ENOUGH DATA is received. The data for
the complete matrix can be reentered or the
remaining data can be entered to complete the
matrix by beginning the response with a comma.
This BASIC 3.5 feature also applies to BASIC 3.4
binaries run under the BASIC 3.5 library.

REFERENCING DET BEFORE INV

Referencing the DET function before a matrix has
been inverted via the INV function is considered a
fatal error by BASIC 3.5. BASIC 3.4 simply returns
a value of zero if no matrix has been inverted.

REDIMENSIONING RESULT
MATRICES

If required, BASIC 3.5 automatically redimensions a
result matrix to accommodate the result; BASIC 3.4
generates a fatal error if the result matrix does
not conform to the previously specified dimensions.
No programming change can compensate for this dif-
ference. Redimensioning also applies to BASIC 3.4
binaries run under the BASIC 3.5 library.

INVERTING A SINGULAR
MATRIX

BASIC 3.5 does not diagnose as fatal error an
attempt to invert a singular matrix; BASIC 3.4 does
diagnose this as a fatal error. The DET (determi-
nant) function must be used in BASIC 3.5 programs
to determine if the matrix was singular or nearly
singular; when DET returns a zero, it indicates that
the matrix is singular.

INVALID USE OF THE CHR$
FUNCTION

If the argument given to the CHR$ function is not
the ordinal of any character in the selected col-
lating sequence, BASIC 3.5 generates a fatal error
and BASIC 3.4 returns a null string and no diag-
nostic. Use the ON ERROR mechanism to simulate 3.4
under 3.5.

PRINT USING INTEGER FORMAT

In BASIC 3.5, values are rounded to an integer when

printing according to an integer PRINT USING image
field. 1In BASIC 3.4, these values are truncated.
To force truncation under BASIC 3.5, use the INT
function in the PRINT list.

19983900 H

IMPLEMENTATION-DEFINED FEATURES G

“

BASIC, Version 3.5, is a revision of BASIC,
Version 3.4. BASIC 3.5 conforms to the American
National Standard for Minimal BASIC as specified in
document ANSI X3.60-1978 published by the American

National Standard institute. The ANSI publication
identifies some features as implementation-defined.
These features and their definitions for BASIC 3.5
are shown in table G-1.

TABLE G-1. [IMPLEMENTATION-DEFINED FEATURES

Item

BASIC 3.5 Definition/Comment

Initial value of numeric and string
variables

End-of-Tine (End of source line)

End-of-input reply
Precision of numeric constants
Range of numeric constants

Length of string constant

Length of line
Length of string associated with a string
variable

Precision of numeric value associated with
a numeric variable

Range of numeric value associated with a
numeric variable
End-of-print line

Print significance-width (d)
Print extra-width (e)

Length of print zone

Margin

Input-prompt

Numeric variables are preset to zero; string variables are
preset to null. However, your program should not depend
on this initialization. See Future System Migration
Guidelines, appendix E.

Indicated with carriage return when entering source lines
at a terminal, with end-of-card when entering statements
on cards. Trailing blanks are ignored by the BASIC com-
piler or removed by the operating system. Internally,
end-of-line is denoted by a zero-byte terminator.

Same as end-of-1line.

Approximately equal to 13+ decimal digits. Not all stan-
dards of BASIC support 13 digits of precision because only
six digits are required.

Range can be from 3.13152E-294 to 1.26501E+322. However,
the standard only requires a range of 1E-38 to 1E+39.

Length is limited only by line length. Since line length
is longer for BASIC 3.5 than required by the ANSI stan-
dard, string constants can be longer than required by

the ANSI standard.

Length can.be 150 characters; the ANSI standard requires
only 72 characters.

Length can be 131,070 6-bit characters; the ANSI standard
requires only 18 characters.

Same as for precision of numeric constant.

Same as for range of numeric constant.

Internally, it is a zero-byte terminator; last two or more
6-bit characters of a word are zero.

Width is six digits, the minimum required by the ANSI
standard. The d controls the number of digits printed
when the default format is used.

Width is three digits. The minimum required by the ANSI
standard is two, but BASIC 3.5 uses three to accommodate
the large exponents available on CYBERs.

Length is 15 characters. The minimum required by the ANSI
standard is d+e+6=15.

Margin is 75 characters.

Prompt is "?", the same as recommended by the standard.

19983900 J

SAMPLE BASIC PROGRAMS

\

The following sample programs illustrate some common
features of BASIC. They are not presented as models
for programming or mathematical techniques in
problem solving.)

The program in figure H-1 illustrates the use of
the DEF and GOSUB statements to calculate the value
PI by evaluation of a series.

The program in figuré H-2 illustrates the use of a
FOR...NEXT loop to calculate a table of factorials.

00100 DEF FNA(D)=(1/D)
00110 DEF FNB(D)=(D-FNA(B))
00120 DEF FNC(D)=(D+FNA(B))
00130 PRINT "CALCULATE A VALUE FOR PI"
00140 PRINT
" 00150 LET z=100000
00160 PRINT "NUMBER OF ITERATIONS";Z
00170 PRINT
00180 LET A=1
00190 LET B=3
00200 FOR I=1 TO 2
00210 LET A=FNB(A)
00220 Gosus 00280
00230 LET A=FNC(A)
00240 Gosus 00280
00250 NEXT I
00260 PRINT "PI=";4*A
00270 stoP
00280 LET B=B+2
00290 RETURN
00300 END

produces:

CALCULATE A VALUE FOR PI

NUMBER OF ITERATIONS 100000

PI= 3.1416

Figure H-1. Using DEF and GOSUB Statements

19983900 H

The program in figure H-3 illustrates the sorting

of a list of names (string variables) into alpha-
betic order.

The program in figure H-4 illustrates the inversion
of a Hilbert Matrix (n times n) by using BASIC
matrix operations.

The interactive terminal session shown in figure H-5
illustrates the CYBER Interactive Debug (CID)
facility under NOS.

00100 LET A=1

00110 LET z=20

00120 FOR I=1 7O Z

00130 LET A=AxI

00140 PRINT "FACTORIAL";I,A
00150 NEXT I

00160 END

produces:

FACTORIAL 1 1

FACTORIAL 2 2

FACTORIAL 3 6

FACTORIAL 4 24
FACTORIAL 5 120
FACTORIAL 6 720
FACTORIAL 7 5040
FACTORIAL 8 40320
FACTORIAL 9 362880
FACTORIAL 10 3.62880E+6
FACTORIAL 11 3.99168E+7
FACTORIAL 12 4.79002E+8
FACTORIAL 13 6.22702E+9
FACTORIAL 14 8.71783E+10
FACTORIAL 15 1.307676+12
FACTORIAL 16 2.09228E+13
FACTORIAL 17 3.55687E+14
FACTORIAL 18 6.40237E+15
FACTORIAL 19 1.21645E+17
FACTORIAL 20 2.43290E+18

Figure H-2. Using FOR...NEXT Loop

00100 PRINT "UNSORTED LIST"
00110 READ N

00120 FOR I=1 TO N

00130 READ A$(I)

00140 PRINT A$(D)

00150 NEXT I

00160 FOR I=1 TO N-1

00170 FOR J=I+1 TO N

00180 IF AS$(I)<A$(J) THEN 00220
00190 LET T$=AS(D)

00200 LET A$(CI)=A$(J)

00210 LET A$(J)=T$

00220 NEXT J

00230 NEXT I

00240 PRINT

00250 PRINT "SORTED LIST"
00260 FOR I=1 TO N

00270 PRINT AS$(I)

00280 NEXT I

00290 sTOP

00300 DATA 8

00310 DATA MARY,JOHN,SUE,JOE,JACK,BILL,TED,ANN
00320 END

produces:

UNSORTED LIST
MARY
JOHN
SUE
JOE
JACK
BILL
TED
ANN

SORTED LIST
ANN

BILL

JACK

JOE

JOHN

MARY

SUE

TED

00100 DIM A(20,20),B(20,20)
00110 READ N

00120 MAT A=CON(N,N)

00130 MAT B=CON(N,N)

00140 FOR I=1 TO N

00150 FOR J=1 TO N

00160 LET ACI,d)=1/(1+J-1)
00170 NEXT J -
00180 NEXT I

00190 MAT B=INV(A)

00200 MAT PRINT B;

00210 DATA 4

00220 END

produces:

-6.66667E-2 -.266667 4. -12.

-.266667 14.9333 -104. 192. -102.667

4. -104. 960. -1980. 1120.
-12. 192. -1980. 4320. -2520.
9.33333 -102.667 1120. -2520.

9.33333

1493.33

Figure H-3. Sorting String Variables

H-2

Figure H-4. Using Matrix Operations

19983900 B

/basic
OLD, NEW, OR LIB FILE: old,db1

READY.

debug (on) =

READY.
Llist

100 LET A=2.1

110 LET B=A*A

120 LET C$="SUBSTRING ADDRESSING"
130 PRINT A,B

140 PRINT C$

150 END

READY.

run ==

CYBER INTERACTIVE DEBUG

? sb [.110 —=

? go =

*B #1, AT L.110 =

? print a,b —==

2.1 0

? ¢b L.110 —=

? st line L.110...1.120 ==

? goto 100 ==

*T #1, LINE AT L.110 ==

? let a=2.3 ==

? go —=
*T #1, LINE AT L.120
? let b=30 —=
? print a,b
2.3 30

? ct * =

? goto 100 —=
2.1 4,41
SUBSTRING ADDRESSING

*T #17, END IN L.150 —=—
? print a,c$
2.1 SUBSTRING ADDRESSING
? let a=20
? let ¢$=c$(1:9) ==

? print a,c$
20 SUBSTRING

? lv -=
P.DB1
A= 20, B = 4.41, ($ = "SUBSTRING"

? goto 100 —==
2.1 4.41
SUBSTRING ADDRESSING
*T #17, END IN L.150

? quit =
SRU 10.236 UNTS.

RUN COMPLETE.

debug(off) =

READY.

Enters CID facility command while in the BASIC subsystem.

Compiles and executes the BASIC program.

Sets breakpoint at 110.

Initiates execution.

Program reaches breakpoint.

Displays values of variables A and B.
B=0 since line 110 has not yet executed.
Clears breakpoint at 1ine 110.

Sets line traps.

Resumes execution at line 100.

LINE trap detected at line 110.
Assigns 2.3 to variable A.

Resumes execution.

Assigns 30 to variable B.

Clears all traps.
Resumes execution at line 100.

Default trap occurs at program termination.

Replaces C$ with substring of C§.
Lists all program values for program DBI.

Resumes execution at line 100.

Terminates this CID session.

Exits CID environment.

Figure H-5.

19983900 H

Using CID Under NOS

H-3

IN-LINE EDITING COMMANDS

.l-lIIIIIIIIlIIllIIIllIllIII-I-IIIIIlllIIIIlI.lIIIIIII-I-II----III-IIIIlIllIlIIl--lI-IlIIlll---l-l----.-

This appendix briefly covers the in-line editing
(IEDIT) commands available when the user is in
BASIC subsystem under NOS 2/IAF. IEDIT is an
extension of the in-line editing functions avail-
able under NOS 1/IAF. For a detailed pPresentation
of these commands, see Volume 3 of the NOS Ver-
sion 2 reference set.

In the BASIC subsystem, IEDIT allows the user to
perform some fundamental editing functions on the
user’s files without explicitly entering or exiting
the editor. IAF recognizes IEDIT commands and
generates calls to the in-line editor. This allows
the user to intermix IEDIT commands with operating
system commands.

The file to be edited is called the edit file. To
use IEDIT commands, the edit file must be the pri-
mary file and a line-numbered file. The edit file
is. positioned to beginning-of-information - (BOI)
before and after each IEDIT command. The edit file
will be altered whenever an IEDIT command which
changes the content of the file is successfully
executed.

IEDIT commands consist of a command name followed
by parameters. The command name must be separated
from the parameters by a non-blank separator; also,

parameters must be separated from each other by a
non-blank separator. 1In this appendix, a comma is
always used as the separator.

PARAMETERS

IEDIT command parameters must be specified in the
order defined by each command format. The MOVE,
DUP, and READ command parameters are position
dependent; therefore, embedded parameters which are
omitted must be explicitly indicated by two succes—
sive separators. For all other commands, omitted
parameters need not be explicitly indicated by two
successive separators.

The parameters used by the IEDIT commands are the
lines parameter, the string parameter, and the file

parameter. The formats of these parameters are
discussed in the following paragraphs.

LINES PARAMETER

The lines parameter specifies a noncontiguous set
of lines in the edit file. The general format of
the lines parameter is as follows:

MmyN,Peeq,r,Seat,u..v,w

19983900 H

where m, n, p, q, r, s, t, u, v, and w are line
numbers. If a line in the edit file is referenced
more than once in a lines parameter, a syntax error
occurs.

STRING PARAMETER

The string parameter consists of a sequence of
characters (possibly the null string) with a string
delimiter at the beginning and end of the sequence.
The general format of the string parameter is as
follows:

/string/

The string delimiter cannot occur within the string.
A valid string delimiter is any character except a
digit, a comma, an asterisk, a colon, or a space.
In this appendix, a slash is used as the string
delimiter. ’

FILE PARAMETER

The file parameter specifies a file name consisting
of one to seven characters where each character is
a letter or digit. ' Either uppercase or lowercase
letters can be used.

COMMANDS

The following paragraphs present the formats and
functions of the IEDIT commands.

ALTER COMMAND

The ALTER command allows the user to change the
specified string of characters in the edit file.
The format of the ALTER command is as follows:

ALTER,1ines,/stringl/string2/

lines A line and/or a range of lines in the
edit file. This parameter is optional.
If omitted, all 1lines in the file
are considered when the command is
executed.

stringl The character string to be replaced.
This parameter is required; however,
it can be the null string.

string2 The character string to replace

stringl. This parameter is required;
however, it can be the null string.

I-1

DELETE COMMAND

The DELETE command deletes the specified line or
lines containing the specified character string
from the edit file. The format of the DELETE
command is as follows:

DELETE,lines,/string/

lines A line and/or a range of lines to be
deleted. This parameter is optional.
If omitted, all lines containing the
specified string are deleted.

string A string of characters that must be
contained in all 1lines that are de-
leted. This parameter 1is optional.
If omitted, all specified lines are
deleted. :

Note that although both the lines parameter and the
string parameter are optional, at least one must be
specified.

DUP COMMAND

The DUP command allows the user to duplicate lines
in the edit file. The duplicated 1lines can be
inserted anywhere in the edit file. The DUP com-
mand copies the specified lines; it does not move
or delete the original lines. The format of the
DUP command is as follows:

DUP,lines,n,z

lines A line and/or range of lines to be
duplicated. This parameter is required.

n The line number after which the dupli-
cated lines are to be inserted. This
parameter is optional. If omitted,
the default line number is the number
of the last line in the edit file.

z The 1line number increment for the
duplicated lines. This parameter is

optional. If omitted, the default
value is 1.

LIST COMMAND

The LIST command displays lines in the edit file.
The user can also use the LIST command to display
lines in the edit file which contain the specified
character string. The format of the LIST command
is as follows:

LIST,lines,/string/

lines The line and/or range of lines to be
displayed. This parameter is optional.

string The character string that must be
contained in all lines which are dis-
played. This parameter is optional.

If both the lines parameter and the string param-

eter are omitted, the entire edit file is displayed.

MOVE COMMAND

/
The MOVE command moves lines to another place in
the edit file. The format of the MOVE command is
as follows:

MOVE,lines,n,z

lines The line and/or range of lines to be
moved. This parameter is required.

n The line number after which the lines
being moved are to be inserted. This
parameter 1is optional. If omitted,
the default line number is the number
of the last line in the edit file.

z The line number increment for the lines
being moved. This parameter is op-
tional. If omitted, the default value
is 1.

READ COMMAND

The READ command adds the contents of the specified
file to the edit file. The user can coantrol where
the lines being added to the edit file will be
inserted. The format of the READ command is as
follows:

READ,file,n,z

file The name of the file which is being
added to the edit file. This parameter
is required.

n The line number after which the lines
being added should be inserted. This

parameter is optiomal. If omitted, the
default line number is the last line

in the edit file.

z The line number increment for the lines
being added. This parameter is op-
tional. If omitted, the default value
is 1.

WRITE COMMAND

The WRITE command writes lines from the edit file
to the specified file. The line gumbers associated
with the lines in the edit file are included in the
data written to the specified file. The format of
the WRITE command is as follows:

WRITE,file,lines,/string/

file The name of the file to which the
specified 1lines are written. This
parameter is required.

lines The 1line and/or range of lines to
written to the specified file. This

parameter is optional.

string The string of characters which must be
contained in all limes written to the

specified file. This parameter is
optional.

19983900 H

If both the lines parameter and the string parameter
are omitted, the entire edit file, including 1line
numbers, is written to the specified file.

WRITEN COMMAND

The WRITEN command writes lines from the edit file
to the specified file. The line numbers associated
with the lines in the edit file are not included in
the data written to the specified file. The format
of the WRITEN command is as follows:

WRITEN, file,lines,/string/

19983900 H

file The file name to which the lines are
to be written. This parameter 1is
required.

lines The line and/or range of lines to be

written. This parameter is optionmal.

string The character string which must be
contained in all lines written to the
file. This parameter is optional.

If both the lines parameter and the string parameter

are omitted, the entire edit file, excluding 1line
numbers, is written to the specified file,

I-3

LANGUAGE SUMMARY

A summary of BASIC language formats appears in this
appendix. Detailed information for each format is
referenced by page number., Similar information is
also contained on the BASIC language command summary
card, publication number 60482800.

STATEMENTS AND FUNCTIONS

Throughout the following summary tables these
notations are used. Terms in these tables that are
in lowercase represent words or symbols supplied by
the programmer.

a Alphabetic identifier

c Numeric or string constant

ch Any character or carriage return
d Delimiter

e Expression, constant, or variable
£ Format specification

1 Letter

1fn Logical file name

In Line number

m Matrix identifier (l1- or 2-dimensional array)
na Numeric array name

nc Numeric constant

ne Numeric expressiomn, constant, or variable

r Relational expression

sc String constant

se String expression, constant, or variable

snv Simple numeric variable

stm Executable statement

stv String variable

sV Simple variable

v Variable 1identifier (simple, subscripted,
numeric, or string)

X Constant, variable, function, or numerical
expression

[] Enclosed elements are optional.

{1} Only one element must be selected.

cee Repeat elements as needed.

19983900 K

BASIC STATEMENTS

Statement Format

DATA cj,C9,e095Cn

DEF FNa [(SVI,SVZ,...,SV20)1=ne

FOR snv=ne; TO ney [STEP ne3]

GOSUB 1n

GOTO 1n

7-6

6-3

7-25

5-11

5-11

5-13

4-3

Statement Format) Page Page

8-9

4-2

8-11

8-12

8-12

8~10

8-9

:w%%a 2 w@ﬁ T

g
S
-

—)
(ON ERROR THEN 1n 4-6

B
P T

RO

T o

8-5

I
1l
e

® -2 » 19983900 J

Statement Format Page Function Page

PRINT e d ey d...e; d 7-13 4-8
7-15 ATN(ne) ' 5-2
5-4

7-13
5-3

7-17
5-3

RANDOMIZE 5-3

) COS(ne) 5-2

READ VisVaseeesVy 7-26
5-2

7-7

5-4
12-4 5o
9-1 4-8
4-9
REM chy...ch, 3-4 EXP(ne) 5-2
RESTORE T~4 INT(ne) : 5-2
7-4 LEN(se) 5-5
RETURN 6-2 5-2
7-8 7-9
7-24 7-9
3-4 5-2
7-7 5-6
5-6
BASIC FUNCTIONS 5-7
Function Page 5-2
ABS(ne) : 5-1 5-2
5-4 4-9

19983900 J . J-3 e

Function

SGN(ne)

SIN(ne)

® J-4

Page Function Page

5-7 SQR(ne) ' 5-2
/

5-7 5-9
5-2 TAB(ne) 7-15
5-2 TAN(ne) 5-2
5-8 5-4
5-8 5-9
5-9- 5-4
5-2 5-9
5-2

19983900 J

BASIC CONTROL STATEMENT PARAMETERS K

L ————.

Tables K-1 through K-4 contain BASIC control state— binary
ment parameters that include compiler 1listable
output options, compiler input options, compiler

output options, and program ' execution
options.

19983900 K K-1 @

TABLE K-1.

COMPILER LISTABLE OUTPUT PARAMETERS

Parameter

density to 8 and automatically
resets after output is written to
the files.

Parameter Format Description Remarks
Compile-Time omitted For batch jobs, default list file is If the program is in ASCII, the
List File (L) OUTPUT. For interactive jobs, listing file must be sent to the

default is no compiler listable out- ASCII printer, not to the normal
put file {same as L=0). 64-character printer.
L Listable compiler output on file
OUTPUT.
L=1fn Listable compiler output on file
1fn.
L=0 No compile list file.
(zero)
Listing Options omitted or Produces a source listing on a file This parameter can have multiple
(LO) LO or LO=S specified by the L parameter. values associated with it.
Values are separated by slashes
and are cumulative.
L0=0 Produces a source listing and an S is on by default.
(letter 0) object listing on L file.
L0=0/0 Produces an object listing on L The number zero (0) turns off
(zero/ file. all previously specified values.
letter) In this case, it turns off the
default S value. The letter 0
L0=0 (zero) Turns off all 1list options. turns on object listing.
Burstable List- omitted Page ejects between portions of the The installation can change the
ing Control compiler output (source listing and meaning of BL omitted to that
(BL) object listing) are suppressed; specified by the BL option that
listing is not burstable. If the follows.
compile-to-memory and execute-in-
one-step option is selected (no B
option), both the page between the g
compiler output eject and the
first Tine of execution output is
suppressed; four blank lines are
listed instead. However, if less
than five printable lines remain
on the last page of the compiler
output, & page eject is issued
rather than printing four blank
Tines.
BL Includes page ejects between com- Does not apply if the L file is
" piler output portions and between the terminal.
the compiler output and the first
Tine of execution output.
Print Density omitted Specifies the print density (lines-
Control (PD) per-inch) currently in effect for
the job on the files specified by
the L and K parameters. (NOS 2
feature onlyg
PD=6 For L and K files, sets print Only effective on an output
density to 6. Automatically resets device whose density can be
after all output is written to the changed.
files.
PD=8 or PD For L and K files, sets the print

19983900 K

TABLE K-1. COMPILER LISTABLE OUTPUT PARAMETERS (Contd)
Parameter P?gz:gger Description Remarks
Page Size omitted Uses the page size (number of print-
Control (PS) able lines per page excluding upper
and lower margins for the file) cur-
rently in effect for the job. (NOS
2 feature only)
PS=n Establishes the L file page size as Four is the smallest possible
(where n is n printable lines per page. This page size because each page must
4<n<32768) parameter has no effect on execution include a 3-1ine header and
output. Lines are not counted at " at least one additional line.
execution time.
Compile-Time omitted Compile-time error diagnostics If the program is in ASCII, the
Error File (E) written on the file specified by Tisting file must be sent to the
the L parameter. If there is no L ASCII printer, not to the normal
file (L=0), diagnostics are written 64-character printer,
to file OUTPUT.
E Compiler error diagnostics are -
written on file ERRS.
E=1fn Error diagnostics are written on Diagnostics are listed only once
file 1fn. even when the file specified by
the E parameter is the same as
that specified by the L param-
eter.
Error Level omitted or Writes warning diagnostics and
Control (EL) EL=W fatal compiler diagnostics on the
file specified by the E parameter.
EL=F Fatal error diagnostics, but no
warning diagnostics, are written
on the E file.
TABLE K-2. COMPILER INPUT PARAMETERS
Parameters Pg;gmg%er Description Remarks
ASCII Character omitted Source program and data files con-
Set (AS) or AS=0 tain only normal (non-ASCII display
(zero) code) characters. (See appendix A.)
AS Source program and data are encoded Under NOS/BE, a normal character
in the extended ASCII character set. set source program is also accept-
(See appendix A.) Program runs in able.
ASCII mode.
Compile-Time - omitted Compiler input (BASIC source program) Normally ‘the program ID (name)
Input (I) is on file INPUT. contained in optionally generated
relocatable binary decks is the
name of the source file specified
I Compiler input (BASIC source program) in the I parameter. The only
is on file COMPILE. : exception occurs when the I file
is the system file, INPUT or
I=1fn Compiler input (BASIC source program) COMPILE; in which case the program
is on file 1fn. name in the binary deck is BASICXX.

19983900 K

K-3

TABLE K-3. COMPILER BINARY OUTPUT PARAMETERS
Parameter ipti
Parameter Formats Description Remarks
Binary File omitted Compile<to-memory. Does not produce a Automatic execution .is controlled by
(B) or B=0 relocatable binary. : the GO parameter. See table K-4.
(zero) If in CID mode (DEBUG (ON) has been
executed, or DB=ID has been speci-
fied), a relocatable binary is
written onto the reserved system file
Z7771DC.
B Binary of compiled program written on
file BIN.
B=1fn Binary of compiled program written on
file 1fn.

Debug (DB) omitted Trace feature, force binary gener- Binary generation and automatic
ation, and program execution are program execution are inhibited by
not activated. CID feature is not compilation errors, and REM TRACE
activated unless an explicit DEBUG statements are only comments.
or DEBUG(ON) command has been Generation of CID information is
previously issued. controlled solely by an explicit

DEBUG command.

pB=0T CID and trace features are not acti- Same as if omitted except that CID

(zero) vated. information is inhibited even if an
explicit DEBUG command has been
issued.

DB Same as DB=B/DL. The default 1ist of parameters.

DB=0/BT Forces binary generation and/or See B and GO parameters. A program

(zero) program execution regardless of containing compiltation errors exe-

compilation errors. cutes normally until a statement that

caused the compilation error is en-
countered.

DB=0/DLT Activates program tracing as con- See section 9.

(zero) trolled by REM TRACE debug lines.

DB=0/1D¥ Activates generation of CID infor- Causes generation of CID tables and

(zero) mation. special code.

DB=0/TRT Traces all statements regardless of Turns on the trace feature.

(zero) REM TRACE debug lines. '

DB=TR Same as DB=B/DL/TR. TR parameter is added to the default
list of parameters.

DB=ID Same as DB=B/DL/ID. ID parameter is added to the default

Tist of parameters.

TThe zero turns off all previously specified values.
and DL and turns on TR.

For example, DB=0/TR turns off default values B

19983900 K

piled BASIC program is 1fn.

TABLE K-4. PROGRAM EXECUTION PARAMETERS
Parameter ng::g%gr Description Remarks
ASCII Mode omitted Program runs in normal mode. Data
(AS) or AS=0 files are presumed to be in
(zero) normal, not ASCII mode (display
code, not ASCII, charactersg.
AS Program runs in ASCII mode. All
character data is interpreted as
ASCII, not display code. See
appendix A.
Execution omitted Compiled BASIC program executes Program can be executed despite com-
Control without loading provided it was pilation errors. See DB parameter
(Go) compiled-to-memory (i.e., no B table K-3.
parameter specified) and there was
no compilation errors. When the B
option (table K-3) is specified,
the compiled program does not exe-
cute.
GO Compiled BASIC program executes See DB parameter in table K-3.
provided there were no compil-
ation errors.
GO0=0 Inhibits execution. Neither the
(zero) compile-to-memory version nor the
relocatable binary version of the
BASIC program executes.
Execution-Time omitted Default input file for compiled
Input File (J) or d BASIC program (file read when
INPUT statement is executed)
is INPUT.
J=1fn Default input file for compiled
BASIC program is 1fn.
J=0 No default run-time input file. Use of the INPUT statement aborts the
(zero) executing BASIC program.
Execution-Time onitted Default output file for compiled J and K options control the default
Print File (K) or K BASIC program (file used for PRINT input and output files of the compiled
statement and run-time error diag- program because BASIC does not provide
nostics) is OUTPUT. a means of controlling file assign-
ment for the simple form of the PRINT
and INPUT statements; also, the normal
K=1fn Default output file for the com- mode of operation, compile-to-memory

and execute-in-one-step option, pro-
hibits file assignments from being
manipulated by intervening loader
control statements. When loading and
executing a program from relocatable
binaries, parameters can be used to
change the names of the J and K files,
such as when relocatable binaries have
been written on file LGO:

LGO, FILEIN, FILEOUT.

This causes the program to be loaded
and executed with INPUT data from
FILEIN and output PRINT data on
FILEQUT.

19983900 K

TABLE K-4. PROGRAM EXECUTION PARAMETERS (Contd)

Parameter Pg;::gggr Description Remarks
Debug and Activates trace feature and forces
Trace (DB) execution regardless of compila-

tion errors. See table K-3.

Print Density
Control (PD)

Controls density (lines per inch)
of printed output. See table K-1.

K-6

19983900 k

INDEX

“

ABS function 5-2

APPEND statement 7-6
Arithmetic expressions 1-4, 2-5
Arithmetic operators 1-4, 2-5
Arrays 1-5, 3-3

AS parameter K-3, K~5

ASC function 5-4

ASCII mode 5-4, A~1, K-3, K-5
ASL function 4-8

ATN function 5-2

ATTACH command D-2

BASIC character set 2-1
BASIC control statement 12-1
BASIC control statement parameters K-1
BASIC subsystem 10-1
BATCH operations
Control statement 12-1
Deck structure 12-1
BATCH ‘subsystem -10-1
BATCH terminal processing
NOs 12-5
NOS/BE 12-5
Binary I/0 functions
LoC 7-9
LOF 7-9
Binary 1/0 statements
Random access 7-2, 7-6
READ 7-7
SET 7-8
WRITE 7-7
Blanks 2-1
Branching
GOTO statement 4-~1
IF statement 4-2
IF...THEN...ELSE 4-3
ON GOTO statement 4-2
BRESEQ command 11-5

CALL statement 6-3
CHAIN processing 6-6
CHAIN statement 6-5
CHANGE command D-2
Character sets
NOS or ASCII 128~ A-1
NOS/BE ASCII 128- A-2
63— or 64~ A-1
CHR$ function 5-4
CID (see CYBER Interactive Debug
CLK function 5-4 i :
CLK$ function 5-4
CLOSE statement 7-4
Coded format files
DELIMIT statement 7-12
Image 7-17
INPUT filename 7-2
INPUT statement 7-10
MARGIN statement 7-24
OUTPUT filename 7-2
PRINT statement 7-13 .
PRINT USING statement 7-15
Standard print formats (numeric and
string) 7-13

19983900 X

Comments
REM statement, remarks 3-4
Tail comments 3-4
Compound relational expressions 2-7
Concatenation 2-6
Constants
Numeric 2-2
String 2-3
Control statement parameter examples 12-4
CO0S function 5-2
COT function 5-2
CR 7-12
CYBER Interactive Debug (CID)
Changing and testing program values
IF command for CID 9-7
LET command for CID 9-7
Displaying program variables
LIST VALUES command 9-6
MAT PRINT command for CID 9-6
PRINT command for CID 9-6
Entering and exiting the CID environment 9-2
Executing under CID control 9-3
Introduction 9-2
Other commands and features 9-7
Referencing BASIC line numbers and variables
Line numbers 9-3
Variables 9-3
Resuming program execution
GO command 9-3
GOTO command 9-3
STEP command 9-4
Setting and clearing breakpoints and traps
Breakpoint commands
CLEAR BREAKPOINT 9-4
SET BREAKPOINT 9-4
Default traps
ABORT 9-6
END 9-6
INTERRUPT 9-6
Trap commands
CLEAR TRAP 9-5
SET TRAP 9-5

Data file usage
NOS 10-1
NOS/BE 11-4
DATA statement (BASIC I/0) 1-4, 7-25
DAT$ function 5-4
Debugging 9-1
Decimal constants 2-2

Deck structures

Compile and execute 12-1
Compile, load, and execute 12-1
DEF statement 5-11
DEFINE command D=2
DELIMIT statement 7-12
DET function 5-2, 8-8
Diagnostics
- Compile time B-2
Dayfile B-1
Execution time
Error number B-11
Message B-5
DIM statement 3-3
Direct access file (NOS) D-2

Index-1

EDITOR 1-14, 11-1
END statement 1-3, 3-5
Entering a program
NOS 10-1
NOS/BE 11-1
Error and interrupt processing
ASL function 4-8
ESL function 4-8
ESM function 4-9
JUMP statement 4-6
NXL function 4-9
ON ATTENTION statement 4-5
ON ERROR statement 4-6
Error messages (see Diagnostics)
EXP function 5-2
Exponential constants 2-2
Expressions
Arithmetic 1-4, 2-5
Relational 1-4, 2-6
String 2-6
External programs
CHAIN statement 6-5
External subprograms
CALL statement 6-3

File access methods 7-2
File control commands D-1
File ordinal 7-3
FILE statement 7-3
Files and internal data blocks
APPEND statement 7-6
CLOSE. statement 7-4
DATA statement 7-25
FILE statement 7-3
IF END statement 7-5
IF MORE statement 7-5
NODATA statement 7-4
RESTORE statement 7-4
FNEND statement 5-13
FOR statement 1-5, 4-3
Format
Image
Fields 7-18
Order restrictions 7-20
Special cases 7-22
Output format, numeric 7-13
Output format, string 7-13
Print zoning 7-14
Statement structure 2-1
Functions
Mathematical functions 5-1
Referencing functions 5-1
String functions 5-4
System functions 5-3
User-defined functions 5-10

GET command D-2
GOSUB statement, branching 6-1
GOTO statement 1-3, 4-1

IF END GOTO statement 7-5
IF END THEN statement 7-5
IF MORE GOTO statement 7-5
IF MORE THEN statement 7-5
IF statement 1-3, 1-5, 4~2
IF...THEN...ELSE statement 4-3
Image statement
Definition 7-17
Fixed-point format 7-18

Index-2

Image statement (Contd)
Floating-~point format 7-18
Integer format 7-18
Neuter 7-18
Order restrictions 7-20
Sign and edit options 7-19
Special cases 7-22
String format 7-18

Indirect access file (NOS) D-2

In-line editing commands I-1

INPUT statements
INPUT 1-8, 7-10
MAT INPUT 8-10

INT function 5-2

Integer constant 2-2

Internal Data Table I/0 statements
DATA 7-25
READ 7-26

JUMP statement 4-6

LENGTH (LEN) function 5-5
LET statement 1-2, 3-1
LGT function 5-2
Library D-1
Line numbers 1-2
LIST command D-1
Lists and tables 1-5
LOC statement 7-9
Local files D-1
LOF statement 7-9
LOG function 5-2
Logical operators 2-7
Login procedure (NOS)
IAF 1-10
Time-sharing 1-12
Login procedure (NOS/BE) 1-14
Logoff procedure (NOS)
IAF 1-11

Time-sharing 1-12
Logoff procedure (NOS/BE) 1-16
Looping
FOR...NEXT statements 1-5, 4-3
IF GOTO statements 1-5
LPAD$ function 5-6
LTRM$ function 5-6
LWRCS function 5-7

MARGIN statement 7-24
MAT INPUT statement 8-10
MAT PRINT statement 8-11
MAT PRINT USING statement 8-12
MAT READ statement 8-9
MAT WRITE statement 8-9
Matrix arithmetic
Addition 8-3
Assignment 8-2
Multiplication 8-4
Scalar multiplication 8-4
Subtraction 8-3
Matrix declaration 8-2
Matrix definition 8-1
Matrix functions
Determinant (DET) 8-8
Identity matrix (IDN) 8-6
Matrix inversion (INV) 8-7
Matrix transposition (TRN) 8-8
One matrix (CON) 8-5
Zero matrix (ZER) 8-6
Matrix Input/Output (I/0) 8-8

19983900 H

Matrix Input/Output (I/0) statements Permanent file access 7-3

MAT INPUT statement 8-10 Permanent file (NOS) D-1
MAT PRINT statement 8-11, 9-1 POS function 5-7
MAT PRINT USING statement 8-12 Predefined functions 5-1
MAT READ statement 8-9 Primary file D-1
MAT WRITE statement 8-9 PRINT statements
Matrix operations 8-1 MAT PRINT 8-11
Matrix redimensioning 8-2 MAT PRINT USING 8-12
MAX function 5-2 - PRINT 1-2, 7-13
MIN function 5-2 PRINT USING 7-15
Multiple-line functions (DEF...FNEND) 5-13 Print zoning 7-14

Program structure 2-1
Program termination

ND D-1 END statement 3-5
Nested loops 4-5 STOP statement 3-4
NEW command D-1 PURGE command D-1

NEXT statement 1-5, 4~3
NODATA statement 7-4

NOS commands Quoted strings 2-3
ATTACH D-2
CHANGE D-2
DEFINE D-2 Random access 7-2, 7-6
GET D-2 Random number generation 5-1
LIB 1-11, D-2 RANDOMIZE statement 5-3
. LIST D-1 READ statements
ND D-1 MAT READ statements 8-9
NEW 1-11, D-1 READ statement 1-4, 7-7, 7-26
OoLD 1-11, D-2 Redimensioning 8-2
PURGE D-1 Relational expression operators 1-4, 2-6
REPLACE 1-~14, 10-1, D-2 Relational expressions 1-4, 2-6
RESEQ 10-4 REM LIST 12-4
RETURN D-1 . REM statement (remarks) 1-2, 3-4
RUN 1-11, D-1 REM TRACE 9-1
SAVE 10-4, D-2 Remote terminals (TTY) 10-1
NOS file handling Renumbering BASIC lines 10-4, 11-5
Direct access permanent files D-2 REPLACE command 1-14, 10-1, D-2
Indirect access permanent D-2 RESEQ command 10-4
NOS terminal operations 10-1 RESTORE statement 7-4
NOS/BE commands RETURN command D-1
BRESEQ 11-5 RETURN statement 6-2
EDITOR 1-14, 11-1 RND function 5-2
FETCH 1-17 ROF function 5-2
FORMAT 1-15, 11-1 RPAD$ function 5-8
RUN 1-16 RPT$ function 5-8
SAVE 1-17, 11-1 . RTRM$ function 5-9
NOS/BE terminal operations 11-1 RUN command D-1

Numeric constants 2-2
NXL function 4-9
Sample programs H-1
: SAVE command 10-4, D-2
OLD command 1-11, D-2 Secondary file D-1

ON ATTENTION statement 4-5 SET statement 7-8

ON ERROR statement 4-6 SETDIGITS statement 7-24

ON GOSUB statement 6-2 SGN function 5-2

ON GOTO statement 4~2 Significand 2~2

Operations Simple relational expressions 2-6
BATCH operations 12-1 Simple string variables 2-3
Terminal operations under NOS 10-1 SIN function 5-2
Terminal operations under NOS/BE 11-1 Single-line functions (DEF) 5-11

Operators SQR function 5-2
Arithmetic 2-5 Statement structure 2-1
Relational 2-6 STOP statement 3-4

OPTION statement 3-2 String comparison 2-7

ORD function 5-7 String concatenation 2-6

Output String constants 2-3
Examples H-1 : String expressions 2-6
Numeric formats 7-13 String functions 5-4
Print zoning 7-14 String output formats 7-13
String format 7-13 STR$ function 5-9

19983900 J 7 : Index-3 @

Subprograms 6-3
Subroutines

GOSUB statement 6-1

ON GOSUB statement 6-2

RETURN statement 6-2
Subscripted variables 2-4
Substring addressing 2-4
System functions 5-3

TAB function 7-15
Tail comments 3-4
TAN function 5-2
Temporary files D-1
Terminal Input/Output (I/0) 1-8
Terminal operations
NOS 10-1
NOS/BE 11-1
Test and branch statements
GOTO statement 4-1
IF statement 4-2
IF...THEN...ELSE statement 4-3
ON GOTO statement 4-2

® Index-4

TEXT mode 10-1
TIM function 5-4

Unquoted strings 2-3, 7-25

UPRC$ function 5-9

User-defined BASIC subroutines 6-1
User-defined fumctions 5-10

Using data files 10-1, 11-4

USR$ function 5-4

VAL function 5-9

Value assignment " 3-1

Variables
Simple, numeric 2-3
Simple, string 2-3
Subscripted 2-4
Substring addressing 2-4

WRITE statements
MAT WRITE 8-9
WRITE 7-7

19983900 J

3NIT ONOTV LND

COMMENT SHEET

MANUAL TITLE: BASIC Version 3 Reference Manual
PUBLICATION NO.: 19983900

REVISION: K

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

]
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
L]
POSTAGE WILL BE PAID BY . R
CONTROL DATA CORPORATION e —
Publications and Graphics Division
]
P.O. BOX 3492
L]
Sunnyvale, California 94088-3492 [—
L]
|
|
FOLD FOLD
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
NAME:
COMPANY :

STREET ADDRESS:

CITY/STATE/ZIP:

TAPE : . : . TAP

t=

BASIC CONTROL STATEMENT PARAMETERS

Compiler Listable Output

BL Burstable Listing Control

omitted Suppresses page ejects on output
listing.,
BL Does not suppress page ejects on

output listing.
E Compile-Time Error File

omitted L parameter file, if no

. 'L file, OUTPUT.
E ‘File ERRS.
E=1fn File 1fn.

EL Error Level Control
omitted or Fatal and warning to
EL=W E parameter file.
EL=F Fatal only to E file.
L Compile-Time List File

omitted Default file OUTPUT.

L File OUTPUT.
L=1fn File 1fn.
L=0 None.

L0 Listing Options

omitted or Source listing on L
LO or parameter file.
LO=S
LO=0 Object listing on L
parameter file.
L0=0/0 Object listing only on L file.
LO=0 None.

PD Print Density Control

omitted Default on L and K
parameter files,

PD=6 Density 6.

PD=8 or Density 8.

PD

PS Page Size Control

omitted Default to current page size.

PS=n (n is 4 < n < 32768)

Compiler Input
AS ASCII Character Set

omitted or Normal (non~ASCII).
AS=0
AS Encoded and run in ASCII.

I Compile-Time Input

omitted File INPUT.
I File COMPILE.
I=1fn File 1fn.

Compiler Binary Output

B

DB

Program Execution

Binary File

omitted or
B=0

B

B=1fn

None.

File BIN.
File 1fn.

Debug, Trace, and Force Binary
Generation and/or Program

Execution

omitted
DB=0

DB
DB=0/B

DB=0/DL
DB=0/1ID

DB=0/TR
DB=TR
DB=ID

AS

DB

GO

PD

ASCII Mode

omitted or
AS=0
AS

None activated.

Debug and trace not activated.
Default(DB=B/DL).

Execute normally regardless
of compilation errors.
Program tracing with REM Trace.
Interactive debug (CID tables
and special code).

Trace all statements.

Same as DB=B/DL/TR.

Same as DB=B/DL/ID.

Run in normal (non-ASCII) mode.

Run in ASCII.

Debug and Trace
(see Compiler Binary Output)

Execution Control

omitted

Execute without loading

if B not specified.

Execute compiled program, if
no compilation errors.
Inhibits execution.

Execution~Time Input File

omitted or
J

J=1fn

J=0

Default file INPUT.

Default file 1fn.
None.

Execution-Time Print File

omitted
K
K=1fn

Default file OUTPUT.
Same as omitted.
Default file 1fn.

Print Density Control
(see Compiler Listable Output)

19983900 K

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

