o~ -

{ CONTROL DATA®

6000 SERIES COMPUTER SYSTEMS
BASIC Language Reference Manual

RN AN ol NN SN BN AN N ST T o W N W W s e T e T e T

REVISION RECORD

REVISION DESCRIPTION

A Original printing.

(2-13-70)

Publication No.
60305000

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

©1970
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION

Documentation Department
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

q

=

PREFACE

This manual describes the BASIC programming language for CONTROL DATA® 6000
Series Computers.

Methods employed to write, compile and execute BASIC programs in both remote
terminal and local batch environments are discussed in detail. To simplify
the wuser's task, terms have been narrowly defined and are not generally
applicable outside the immediate context.

60305000 A iii

P W W W e W W W VW W eew W VW w v w vV w v v w

. T W e N N S -

~ A A A A A A A

CONTENTS

PREFACE

INTRODUCTION

1 ELEMENTS OF THE BASIC
LANGUAGE

Character Set
Operands
Constants
Variables
Operators
Arithmetic Expressions
Relational Expressions

2 BASIC STATEMENTS

BASIC Programming
Line Numbers
Statement Format

BASIC Statements
DIM Statement
LET Statement
GO TO Statement
IF Statement
FOR and NEXT

Statements
END Statement
STOP Statement
REM Statement

3 FUNCTIONS AND SUBROUTINES

Standard Functions
User Functions
DEF Statement
Subroutines
GOSUB and RETURN
Statements

4 BASIC INPUT/OUTPUT
STATEMENTS

Internal Data File
Input/Output

DATA Statement
READ Statement
RESTORE Statement
NODATA Statement

Terminal Input/Output
PRINT Statement
INPUT Statement

60305000 A

iii

vii

NN DN
1 [|
PR R

NN N
i
NN A

[[
N VAT VAR SR o

B S SR I
]

File Input/Output
READ FILE and WRITE
FILE Statements

INPUT FILE and PRINT

FILE Statements
RESTORE FILE

Statement
NODATA FILE

Statement

5 MATRIX OPERATIONS

Matrix Arithmetic

Matrix Functions

Matrix Input/Output
MAT READ Statement
MAT PRINT Statement

6 BASIC BATCH OPERATION

BASIC Control Card
Sample BATCH Jobs

7 BASIC TERMINAL OPERATION

INTERCOM I Terminals
Teletype
CRT Terminal
Entering INTERCOM I
Command Mode
SETUP
Entering BASIC
BASIC Operations
SETUP Directives
INTERCOM I Commands
Leaving INTERCOM I
Sample Terminal Session

APPENDIX A CHARACTER SET

APPENDIX B DIAGNOSTICS

APPENDIX C INDEX OF BASIC
STATEMENTS

APPENDIX D INDEX OF
INTERCOM I
COMMANDS AND
DIRECTIVES

NN N NN N N NN NN
} [T B
0 W~ UtUTHPBUWRWN

) W e W W W W W W W wew W W W W e v w W v -

INTRODUCTION

BASIC (beginner's all-purpose symbolic instruction code) enables the layman to
write programs in a language resembling standard mathematical notation.
Because of its simplicity and flexibility — as well as its precision — BASIC
is used by programmers and nonprogrammers alike.

Designed and implemented at Dartmouth College, wunder the direction of
Professors John G. Kemeny and Thomas E. Kurtz, the original version of BASIC
is known as Dartmouth BASIC. CONTROL DATA'S version (BASIC 1.0), developed
for use with CONTROL DATA 6000 Series Computers, provides optimum
compatibility with the Dartmouth version.

BASIC is commonly used in time sharing environments where a number of users
can gain simultaneous computer access; input 1is generated at a remote
terminal, such as an electric typewriter or similar keying device, and is
transmitted through telephone lines to a central computer facility.

The language designation, BASIC, refers to both the source language in which a
programmer codes his instructions, and to the medium that translates source
code into a form recognizable to a particular computer. The translating
medium for BASIC is a program called a compiler. During the translation
process source code emerges as object code—the form in which the computer
executes all instructions.

BASIC 1.0 incorporates a communication feature which enables the user to
modify his program or correct compilation errors at the terminal prior to
program execution. Terminal mode may be bypassed in favor of batch mode; jobs

may be submitted at the terminal and executed in direct sequence at the
central computer.

An integral part of every computer system is the operating system. Synonymous
with supervisory or executive systems, operating systems generally consist of
a collection of program sets which oversee and control the performance of the
total system. The operating system for CONTROL DATA 6000 Series Computers is
SCOPE (supervisory control of program execution}. Remote terminal processing
is controlled through INTERCOM I— an adjunct to the SCOPE operating system.
Detailed information relative to SCOPE and INTERCOM is presented in the

following publications:
6000 Series Computer System Reference Manual (Publication No. 60100000)
SCOPE 3 Reference Manual (Publication No. 60189400)

6000 Series Computer System INTERCOM I Reference Manual (Publication No.
60305300)

60305000 A vigi

-~

-~~~ A~ ~ ~

ELEMENTS OF THE BASIC LANGUAGE 1

The BASIC language is oriented toward numerical problem solving; as such, it
is primarily concerned with the evaluation of expressions. The following
paragraphs describe the components and the methods by which they may be
combined to form BASIC expressions.

CHARACTER SET
The BASIC language utilizes all alphanumeric characters (A to Z and 0 to 9).
Special characters which serve as separators, delimiters, or operators are

discussed in sections covering their usage.

The representation of BASIC symbols may vary depending on the character set of
different hardware devices.

All BASIC «characters acceptable to the 6000 Series and their internal
representation (display code) are listed in Appendix A.

OPERANDS

BASIC uses three <classes of operands: constant values, variable values and
functions. Refer to section 3 for a description of BASIC functions.

CONSTANTS
BASIC recognizes numeric and string constants. Numeric constants represent
values which do not change during program execution. String constants

Tepresent information to be printed during program execution.

Numeric Constants

Numeric constants, written as strings of signed or unsigned numeric
characters, can be expressed with or without decimal points. The following
are examples of valid numeric constants:

1 -1 33333 -10003

34.5 -23.445 6. -.3 -0.3
A numeric constant may contain any number of numeric characters; but the value
of the constant must not exceed the capacity of the computer, approximately

1E-308 to 1E337. The <computer is capable of representing values with an
accuracy of about 14 significant digits.

60305000 A 1-1°

Very large or small numbers utilize a shorthand form of expression. The
numeric constant is followed by an exponent symbol, E. The number .000789
could be expressed as 7.89E-4. The letter E signifies "times 10 to the power
of."

7.89E-4 is equivalent to 7.89x10°%.
Examples:

-1.45E3 1.0032E+20 0.0234E-12 123456E-11

String Constants

String constants serve as comments Or messages. Restricted to PRINT
statements, their usage is described in section 4.

VARIABLES

A variable represents a quantity having a value that may change during program
execution. The size of the value of a variable must not exceed the capacity
of the computer, which is capable of representing values from approximately
1E-308 to 1E337, All ~variables, represented internally as floating point
numbers, are preset to zero at the beginning of progranm execution. BASIC
variables are written as identifiers; each consists of a single alphabetic
character with or without a succeeding single numeric character. They must
no't exceed two characters. For example:

A Z3 c9 E
The following types are not allowed:

B23 49 G* AA

Scalar Variables

A scalar variable has a single value and is written as an identifier without
subscripts. Whenever an identifier 1is used in an expression, the computer
substitutes its current value.

Array Variables

An array variable designates the elements of an array such as a vector or a
matrix; it is written as an identifier with subscripts. The general form of
the array variable is:

A (sl1l,s2,s3)
Up to three subscripts are allowed. They are separated by commas and enclosed
in parentheses. Each subscript may be an expression of any complexity. The

following array variables are acceptable:

A1) B(2,5) G3{X*5+A349,7* (A+1)) X(A546%4,3%(Y+2),C)

1-2 60305000 A

The individual items in an array, called elements, indicate the position of a
value within the array. If the subscript is an arithmetic expression, it will
be evaluated and converted to an integer by truncating before it is used as a
subscript.

Variables in BASIC are normally declared implicitly. Unless otherwise
specified, each subscript of an array variable is assumed to have bounds of 0
and 10. Thus, an array variable with one subscript has 11 elements, two
subscripts has 121 elements, and three subscripts has 1331 elements. With a
DIM statement (refer to section 2), variables need be declared only if a
subscript value greater than 10 is required, or if the programmer wishes to
save space by dimensioning an array to have an upper bound of less than 10.

The same identifier may be used to denote both a scalar variable and an array

variable within the same BASIC program. However, two or more array variables
may not have the same identifier if the number of subscripts varies.

OPERATORS

Arithmetic operators, used with constants, variables, and parentheses to fornm
expressions, are listed below:

Operator Definition
tor ** exponentiation

* multiplication

/ division
+ addition
- subtract/negation

Relational operators, used to compare two expressions, are as follows:

Operator Definition

= equal to

<>0r >< not equal to

> greater than

< less than

>= or = > greater than or equal to
<= 0or =< less than or equal to

ARITHMETIC EXPRESSIONS

An arithmetic expression (or formula) is a rule for computing a value.
Expressions are composed of alternating operands and arithmetic operators,
beginning and ending with an operand. During evaluation of the expression,
the current values of the operands are used to compute a single value
according to the rules for executing the arithmetic operators.

60305000 A 1-3

Arithmetic operators may not appear in sequence and must be explicitly stated.
The following are invalid arithmetic expressions:

X++Y (X+1) (Y+2)
Rule for precedence of arithmetic operations: Exponentiation is performed
first, followed by multiplication or division, and finally addition or
subtraction is performed. Expressions are evaluated from left to right.
Example:
X+ (Y+(A+3))
This expression is evaluated in this order:
1. A+ 3
2. Y + the result of 1
3. X + the result of 2
Left and right parentheses must balance within an expression. Redundant
parentheses have no effect; for example, (X), X and ((X)) are all
representations of the same expression.
Any expression may be preceded by a + or - arithmetic (unary) operator. They
are called unary because they affect only one variable or constant. To
maintain compatibility with Dartmouth BASIC, unary operations are performed
before other arithmetic operations. For example, the value of -2 12 is +4.
The following are examples of valid arithmetic expressions:
A+B*C/DtE
A1(3,I+4)42.6-G3/2
A+BtC
(A(I.J.K)+3.95)*(G3+B+(C2+3))
G2(A(1,4)+3,12) t(D4 +(X+3))
-3.14*R*2
C*(-G2(1,3)-D4)

A8(3) 1(-49) +B (2, -X+15)

1-4 60305000 A

(

- . s e, A A A A

RELATIONAL EXPRESSIONS

Relational expressions are formed by operands, arithmetic expressions and/or
mathematical functions joined by relational operators. When evaluated,
relational expressions may have one of two values—true or false. A
relational expression may have only one relational operator. The following
are legal relational expressions:

A=B

X >CO0S(B)

(F+I 6) =B/5

Relational expressions compare two values or expressions. They may appear
only in IF statements (section 2).

60305000 A 1-5

~ ~

=~~~

BASIC STATEMENTS 2

BASIC PROGRAMMING

A BASIC program is composed of statements formed by the components of the
BASIC language. Each statement 1is a step in the solution of the program's
problem and tells the computer how to evaluate an expression and assign its
results, Each statement occupies one line and cannot be continued to another
line.

LINE NUMBERS

Each BASIC statement must begin with a unique 1line number of one to five
numeric characters. These numbers identify statements in the program and
provide a means for editing the program at the terminal,

The line number is assumed to terminate at the first non-numeric character.
Embedded blanks are ignored and leading zeros are not significant; 1, 01, and
001 are all considered the same line number. Line numbers must be integers
within the range 0 to 99999,

The BASIC compiler checks for missing or duplicated line numbers. Further,
the compiler ascertains whether line numbers are in ascending order. When a
duplicate line number is encountered in a program entered from a terminal, the
INTERCOM I system will arrange the statements in ascending order and interpret
the duplicate line as a replacement for the first line of the same number.
When a program is submitted to the SCOPE batch of jobs, the programmer must
insure that 1line numbers appear in ascending order; as statements are
processed as they are received.

Throughout this manual a line number is assumed for each BASIC statement.

STATEMENT FORMAT

A statement consists of up to 72 characters of information written in columns
1-72 of a punched card or typed at a terminal keyboard for direct transmission
to the computer. A statement on a punched card terminates at column 72, A
statement typed in at a terminal terminates when the carriage return key is
pressed; in any case, no more than 72 characters are translated by the BASIC
compiler.

A BASIC statement may begin and end at any character position. Blanks have no

significance, except within string constants; and they may be included or
omitted without changing the meaning of the statement.

60305000 A 2-1

BASIC STATEMENTS

After the line number, each BASIC statement begins with a word which indicates
the statement type. The following are the simple BASIC statements. Functions
and subroutines, matrix statements and input/output statements are discussed
in subsequent chapters.

DIM STATEMENT

The DIM statement declares the dimensions of an array variable. Variables
need a DIM statement if a subscript value greater than 10 is required. If the
programmer wishes to save space, he also may use the DIM statement to
dimension an array so that the upper bound is less than 10.
Format:
DIM v1 (il), v2(i2), v3(i3),...vn(in)
v Name of array variable
i Upper limit of array, must be an unsigned integer

Example:

To declare a two dimensional array variable, A, with
elements 0 to 20 and 0 to 5:

DIM A(20,5)

This statement reserves space for array A with 21%*6 or 126

elements. Each time A is used in the program, it must be

used with two subscripts.
DIM statements may appear anywhere in a program. If the same array variable
is declared more than once in the same program, the last declaration is used
for the entire program.

Examples of acceptable DIM statements:
DIM X(5,5), B3(1,2), X1(50) reserves space for a two dimensional array X
with 36 elements, a two dimensional array B3 with 6 elements, and a one

dimensional array X1 with 51 elements.

DIM G2(5,6,7),A0(9,2) reserves space for a three dimensional array G2 with
336 elements and a two dimensional array A0 with 30 elements,.

2-2 60305000 A

¢
¢
¢
¢
|

A A A A A A A, -~

L WY e Voun

~

LET STATEMENT

The LET statement assigns a value to a variable
BASIC program.

Formats:
LET vl=v2=v3...=vn=e
vli=v2=v3...=vn=e
vi Variables
e Expression
Use of the word LET is optional.

Example:

LET X=2 assigns the value 2 to the variable X

X=Y=2 assigns the value 2 to both X and Y

during

the

LET X=A*B assigns the value of the expression A*B to X

The order of computation is left to right.

Lefthand-side

execution

expressions are evaluated before righthand subscript expressions (the

are positioned after the final equal sign).
Example:

LET I=1

LET A(I) = I = I+1

is equivalent to

I=1

A(I) = I+1

I = I+1
Examplesf

LET X = (A+B)*(C+D)

1}

Y(1,A(3)) = Q = 2*3.14*R t2

A1(G+99*X ¢+ 2)

60305000 A

2* (X3+B4)*X(Q2,23142) t(-8)+6

of

subscript
latter

GO TO STATEMENT

The GO TO statement transfers control from one point in a program to another,
and interrupts the normal sequence of instructions.

Format:
GO TO n
n Line number of statement to which control transfers

This statement causes the statement at the referenced line number to be
executed. Normal sequential execution will follow from that point. If the GO
TO references a non-executable statement, such as a DIM statement, the system
will go to the next executable statement after the referenced statement and
resume execution from there.

IF STATEMENT

The IF statement specifies conditions to control the sequence of operations.

Format:
IF r THEN n
T Relational expression
n Line number to which control transfers conditionally

If the relational expression is TRUE, program control transfers to the
specified line number of the statement. If the relational expression is FALSE,
the nmext sequential statement is execu
Example:

If I=8 and J=4, the statement:

IF 2*1I = J*t 2-1 THEN 165

Causes the value 16 to be compared to 15, Since it is true that 16 is

greater than 15, the next statement executed is at line number 165.

FOR AND NEXT STATEMENTS

The FOR and NEXT statements allow repetition of specified portions of a
program (loop).

2-4 60305000 A

Formats:

FOR sv

el TO e2

FOR sv = el TO e2 STEP e3
sV Any scalar variable
el Initial value assigned to sv
e2 Maximum value sv can reach

e3 Value by which sv is incremented when the NEXT statement is
executed; if not specified, a step value of +1 is assumed.

Format:
NEXT sv
sV Scalar variable used in the companion FOR statement

The scalar variable must be the same in the FOR and NEXT statements; it is
known as the control variable.

When the FOR statement is executed, the expressions are evaluated; and their
values are saved as initial, step, and final values of the loop. The control
variable is assigned the 1n1t1a1 value, and the statements between the FOR and
NEXT statements are executed repeatedly. Each time the NEXT statement is
reached, the value of the control variable is incremented or decremented by
the step value {(one if not specified) The control value is compared to the
final value. If the step value is positive, the loop is continued wuntil the
control value becomes greater than the final value. If the step value is
negative, the loop is continued until the control value becomes less than the
final value. 1In either case, the loop is complete; and execution continues in
normal sequence, beginning with the statement following NEXT.

Example of a BASIC loop routine:

10 FCR X=1 TC 11 STEP 2
15 LET Y=X+1

20 PRINT Y

30 NEXT X

40 END

The successive values of X (1,3,5,7,9, and 11) will determine the value of
Y, which will be output as the results of the routine. Statements 10
through 30 will be repeated six times, once for each value assigned to X.

The expressions in the FOR statement are evaluated only once— at the start of
the loop. These values are not changed during execution of the loop, even
though the values of the variables in the expressions may change. The value
of the control variable, however, may be changed by statements within the
loop; its latest value is always updated by the step value and is used in
comparison to the final value.

60305000 A 2-5

Example:

10 FOR X=1 TO 10
20 LET X=X+1

30 PRINT X

40 NEXT X

The FOR statement specifies that X will be incremented by a step value of
+1 until it exceeds 10; however, the next statement also adds +1 to X
which causes the counter variable X to be incremented by +2 each time it
passes through the loop.

If the dinitial value is greater than the final value and the step value is
positive when the FOR statement is first entered, the loop is not executed;
and control passes to the statement following the companion NEXT statement.
Similarly, if the initial value is less than the final value and the step
value is negative, the 1loop is mnot executed. However, in both cases the
control variable retains the value it had before entrance to the loop.

The following examples show the effect of FOR statements on control variables:

Statement Values of Control Variable
FOR X=-4 TO-2 STEP .5 -4,,-3,5,-3.0,-2.5,-2.0
FOR G= 6 TO 3 STEP -1 6, 5, 4, 3

FOR Z= 5 TO 10 STEP -1 loop is not executed

Nested Loops

As lllustrated Dbelow, 1loops imay contain loops; however, they mwust not
intersect each other.
Correct: Incorrect:
FOR X... FOR X...
— FOR Y... FOR Y
[FOR Z... NEXT X
__NEXT Z NEXT Y
—FOR Q...
| NEXT Q
L NEXT Y
NEXT X
2-6 60305000 A

4

|

A,

~

~ o~ A~ A~

GO TO Statements in Loops

Loops may contain GO TO and other statements that jump outside the range of
the 1loop. In this case, the loop terminates prematurely and the control
variable retains its latest value. It is possible also for a GO TO statement
to jump to a statement within a FOR loop; but since no check is made at
compile or execution time to determine that a NEXT statement 1is executed
before its corresponding FOR statement, the results are unpredictable,

END STATEMENT

The END statement signals termination of a program. Every program must have
an END statement as the last and highest line number. When it is executed,
the program stops and control returns to the operating system.

Format:

END

STOP STATEMENT

The STOP statement halts program execution and returns control to the
operating system. Unlike the END statement, the STOP statement may appear at
any point in a program.

Format:

STOP

STOP is equivalent to a GO TO line number statement that is the program's END
statement,

REM STATEMENT

A programmer uses the REM statement to insert comments in the body of the
program.

Format:
REM any string of valid 6000 series display code characters

REM is non-executable and has no effect on the execution and Tesults of a
program.

60305000 A 2-7

-~ ~

FUNCTIONS AND SUBROUTINES 3

STANDARD FUNCTIONS

The standard mathematical functions evaluated by BASIC are described below:

Function Meaning

SIN(x) Find the sine of x expressed as an angle in radians

COX (s) Find the cosine of x expressed in radians

TAN (x) Find the tangent of x

ATN (x) Find the arctangent of x in the principal value range
-7T/2 to +w/2

EXP (x) Find the value of eXx

LOG (x) Find the natural logarithm of x

ABS (x) Find the absolute value of x

SQR (x) Find the square root of X

INT (x) Find the largest integer not greater than x
Example: INT(5.95) = 5 and INT(-5.95) = -6

SGN (x) Assign a value of 1 if x is positive; 0 if it is 0;

or -1 if x is negative

RDN(x) Find a random number between 0 and 1. If the value of
x is 0, a standard random number sequence is used. If
X is positive, its value is used to initiate a random
number sequence. If negative, a random number is
generated to initiate the random number sequence.

In all the above functions, x can be any expression.

A function is an operand and may be used in any expression wherever a variable
Or numeric constant may be used. Like a scalar variable, a function has a
single value; unlike a variable, some calculation may be required to produce
that value. When a function is written in a program, it is essentially a
request for a procedure or routine to compute a value.

In the above 1ist, the quantity x is called the argument or parameter of the
function. The value determined by the function may be directly dependent on
this argument. A function is called in an expression by writing the name of
the function followed by the argument in parentheses. The parameter may be an
arithmetic expression of any complexity and may include other functions;
however, no function call may contain more than one parameter.

60305000 A 3-1

The following are acceptable expressions using mathematical functions:
SIN(A-b)
ABS (48%2,348/44)

COS(12+SIN(Y))

USER FUNCTIONS

In addition to the standard functions provided by BASIC, a programmer may
define new functions with the following statement.

DEF STATEMENT

To avoid repetition of coding, a programmer can use the DEF statement to
define a new function to be used throughout a program. The function name is
restricted to three alphabetic characters, the first two of which must be FN;
therefore, 26 user function names (FNA through FNZ) are possible.

Format:

DEF FNa (sv) = e

a Alphabetic character completing user function name
sV Scalar variable :
e Expression to be evaluated by function
The variable sv is the formal parameter of the user function. It Treserves a

place for the variable to be used when the function is called in the program.
The value of the argument in the function «call is wused 1in evaluating the

expression, Every wuser function must have one parameter. The formal
parameter however, need not appear in the expression on the righthand side of
the DEF statement. In cases where it does appear in this position, it

represents a dummy argument and has no effect on computation.

Each time the user function is needed in a program, the expression on the
righthand side of the DEF statement is evaluated and the resultant value is
used at that point in the program. This value may vary depending on the value
of the function argument. The expression may be any mathematical formula or
function or combination of ©both; however, its length is restricted to the
remainder of the statement line.

A DEF statement may appear anywhere in a program, not necessarily before its
corresponding function call., As the DEF statement may contain other function
calls, functions can call each other, but they are not recursive; that is,
they cannot call themselves. A function may be redefined within a program;
its most recent definition will be used for each reference.

3-2 60305000 A

7~ AN AN

~

2NNl ate e

Example:

The following statement defines a function to calculate the area of a
circle:

DEF FNC(D) = (3.14159*Dt2)/4
The function FNC may be used anywhere in the same progranm:

Y(5) = X3+FNC(SIN(X2)*H4)

SUBROUTINES

Subroutines represent complex sets of repetitious operations performed at
various points throughout a program. Methods for subroutine use are described
below:

GOSUB AND RETURN STATEMENTS

The GOSUB statement directs program control to the first line of a subroutine.
The RETURN statement signals the end of the subroutine and returns control to
the line following the GOSUB statement.

Formats:
GOSUB n
n First line number of the subroutine
RETURN
Example:

5 GOSUB 100
10 —mmmmmmm-

In the above -example, statement 5 diverts program control to the
subroutine beginning at line number 100. Statement 150, at the end of the
subroutine, returns control to the main program, resuming execution at
statement 10,

Subroutines also may contain GOSUB statements, and thus call other
subroutines. Recursion 1is allowed; subroutines may call themselves. GOSUB
statements may nest subroutines to a maximum depth of 40,

60305000 A 3-3

) W e W W W W 9 9 W eww W W @ W W Y e w v e

BASIC INPUT/OUTPUT STATEMENTS 4

BASIC provides the means to specify internal data files and to access the
associated data. Input statements enable the programmer to submit raw data at
a terminal; output statements permit him to Teceive printed results at the
terminal. File input/output statements are also available.

INTERNAL DATA FILE INPUT/OUTPUT

DATA STATEMENT
The DATA statement creates a file of data internal to a BASIC program. In
conjunction with a READ statement, it performs essentially as a LET statement;
a value 1is assigned to a variable.
Format:

DATA cl,c2,c3,...cn

ci Signed or unsigned numeric constants

Any number of DATA statements may appear anywhere in a program; the BASIC
compiler considers them contiguous and places them 1in one data block in
sequential order.

Examples:
DATA 2, 3, 4, 4, 5, 6,
DATA -3.1,4.5,-5.678,2.31
DATA -3.596E-2, 0, 0, 987

Like the DIM, REM and DEF statements, DATA statements are non-executable and

have no effect on the results of a program if they are encountered in normal
sequence.

READ STATEMENT

The READ statement uses values created by DATA statements to assign values to
certain variables. The READ statement always is used in conjunction with a
DATA statement.

Format:
READ v1,v2,v3,...vn

vi Variables

60305000 A 4-1

The values of the constants in the DATA statements are assigned in sequence to
the variables listed with the READ statement.)

Examples:

READ X

READ X(I), B4, Y, N, 0, P, E
The BASIC system maintains a pointer to the data block created by all DATA
statements within a given program. Each time a READ statement 1lists a
variable, a value from the data block is assigned to it; and the pointer moves
forward through the 1ist of wvalues. The values of constants in DATA
statements are assigned in sequence to the corresponding variables 1listed in
the READ statement.
Example:

DATA 2,3.4,1,0.12,0

READ A,C,Y,X

DATA 6, 7, 8, 9, 110

READ B(K), J4

The above four lines of coding are equivalent to:

LET A = 2
., LET.C = 3.4
LET Y = 1

LET X = 0.12

LET B(K) = 0

LET J4 = 6
Extra constants not matched by variables in the READ statements are
inconsequential. However, if the READ statement specifies more variables than

there are constants, constituting an attempt to read past the end of a data
block, the program will be terminated.

RESTORE STATEMENT

The RESTORE statement returns the data block pointer to the first value in the
block.

Format:
RESTORE

Whenever RESTORE is encountered, the next unsatisfied variable in a READ list
is assigned as the first constant of the data block.

4-2 60305000 A

4

Yy v

- -, s, A A A A

~

™

Example:

DATA 1,2,3

READ A,B,C

READ D
This combination of READ and DATA statements alone would cause the program to
terminate, If the second READ were preceded by a RESTORE statement, however,
the previously unsatisfied variable, D, would be assigned the wvalue 1; and
program execution would continue.
NODATA STATEMENT

The NODATA statement should precede a READ statement. It determines whether
the data block pointer has been moved beyond the end of the data block.

Format:
NODATA n
n Statement line number

If data in the block is exhausted, program control will transfer to the
specified line number, otherwise the next sequential statement is executed.

TERMINAL INPUT/OUTPUT

Printed output is received at the terminal by using the PRINT statement. Data
is input at a terminal by using the INPUT statement. (INPUT statements are
not submitted in batch mode.)

PRINT STATEMENT

The PRINT statement controls output of expressions and constants at a user
terminal. All variables in the PRINT statement must have had values assigned
before execution of the statement.

Format:
PRINT x1d x2d x3d...xnd
xi Expressions or string constant

d Delimiter (comma or semicolon).
A final delimiter is optional.

60305000 A 4-3

String Constants

A string constant is any number of valid 6000 series display code characters
enclosed in quotation marks. Blanks may be included; quotation marks may not.
The following are acceptable string constants:

"THIS IS A BASIC STRING CONSTANT"

"123.45678"
The following are incorrect:

"TOO0 MANY QUOTATION "MARKS"

"NO CLOSING MARKS

String constants serve as comments oOr messages and are wused only in
conjunction with PRINT statements. For example:

LET X=Y=Z=2
PRINT "ANSWER","X AND Z="Z, "X*Y*Z="X*Y*Z
This coding would produce the response:

ANSWER X AND Z=2 X*Y*Z=8

Number Formats

Expressions are evaluated and printed out in sequence at a terminal. Their
values are printed in one of three standard number formats, depending on the
size of the number. String constants are printed without yuotation marks,

otherwise, they are printed exactly as they appear in PRINT statements.
In the following standard number formats, n signifies a numeric character.
For an integral number of less than nine digits, this format is used:
Annnnnnnnn
Leading zeros are suppressed and the number is printed left justified.

If the number is not an integer and can be expressed in six digits, the
following format is used:

Annnnnn (where one n is a decimal point)

The decimal point is floating; leading zeros before and trailing zeros
after the decimal point are suppressed. The number is left justified.

For all other numbers, the following format is used:
An.nnnnnAEAnnn

Leading zeros in the exponent are suppressed, and the exponent is left
justified.

4-4 60305000 A

4

U Al S o ol a NN a N N . N NV S N N N SV NV N N S SN

Print Line Zoning

The print line normally is divided into five zones of 15 positions each. The
comma in the PRINT statement is a signal to move to the next print zone; or if
the fifth zone has been filled, the move is to the first zone on the next
line.
Example:

PRINT 4000, 303, 0051,432, 1.000, 5678.4

Output format:

4000 303 51 432 1

5678.4

A semicolon is used in the PRINT statement instead of a comma to reduce the
size of print zones. The print zone is shortened to 6 spaces if the
previously printed number is 1 to 3 characters; 9 spaces for numbers of 4 to 6
characters; 12 spaces for numbers of 7 to 9 characters; and the normal 15
spaces for other numbers. If a string constant terminates with a semicolon,
the next zone is assumed to begin immediately thereafter. If no delimiter
follows a string constant, a semicolon is assumed. Commas and semicolons may
be intermixed in a PRINT statement.

A delimiter at the end of a PRINT statement causes the next PRINT statement to
continue printing at the same line, or next available zone.

Example:
PRINT 300,400,500,.600,
PRINT 7060
Produces:
300 400 500 600 700

If a PRINT statement terminates without a delimiter, the next PRINT statement
will begin its output on a new line.

Example:
PRINT 200,300,400,500

PRINT 600,700

Produces:
200 300 400 500
600 700

The statement, PRINT, by itself either will cause a whole line to be skipped,
or it will nullify the effect of a delimiter on the previous PRINT statement
line.

60305000 A 4-5

Examples:

FOR I =1 to 15
PRINT I
NEXT I
Produces (prints):
1
2
3
etc,

If the second statement were PRINT I,

Result:

1 2 3 4
6 7 8 9
11 12 13 14

If it were PRINT I;

Result:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15

The program:

FOR X =1 TO 100

PRINT "X = ";X
PRINT "X2 = ";X2
NEXT X

would print:
X =1
X2 =1

etc.,

10

15

However, if the first PRINT statement were terminated by a comma it would

print:

X =1 X2 =1

X = 2 X2

etc.

60305000 A

-~ A~ A A~ A~ A

INPUT STATEMENT

The INPUT statement enables the programmer to assign values to variables fron
the terminal during program execution.

Format:
INPUT v1,v2,v3,...vn
vi Variables

When a program in execution encounters this statement, a question mark is
printed at the terminal. To satisfy the input request, the operator or user
must enter data in exactly the same format at it appears in a DATA statement.
The correct response to an input request is a string of optionally signed
numeric constants, separated by commas, and terminated by a carriage return.

If the wuser supplies insufficient data, the question mark is iterated until
the request is satisfied. If the user makes a typing error, or supplies too
much data, a diagnostic message is issued. The user should retype the entire
response to the input request.

Delimiters in an input response may be any BASIC character except a digit,
period, + or - or the letter E. Redundant delimiters are ignored.

Generally a PRINT statement is used with an INPUT request, to inform the user
of the response required.

Example:
PRINT "WHAT IS THE VALUE OF X";
INPUT X
would produce at the terminal:
WHAT IS THE VALUE OF X°?

The user should respond by typing in one number immediately after the
question mark.

INPUT statements generally are used for entering only small amounts of data,
as entering data from the terminal is time consuming.

FILE INPUT/OUTPUT

BASIC mass storage file input and output statements correspond to the READ and
DATA statements for internal data files, and INPUT and OUTPUT statements for
terminal input/output. The file I/O statements are READ FILE and WRITE FILE,
INPUT FILE, and PRINT FILE. These statements must be used in pairs. An input
statement must be used to read back data written by a print statement; and a
read statement must be used for accessing data written by a write statement.
Any attempt to read a file produced by a print statement will cause
unpredictable results.

A maximum of three different file names may be used in a BASIC program. Files
referenced by BASIC programs must be assigned to a mass storage device.

3

60305000 A 4-7

READ FILE AND WRITE FILE STATEMENTS

The READ FILE and WRITE FILE statements are analogous to the READ and DATA
STATEMENTS for internal data files.

Formats:
READ FILE (file name) v1,v2,v3,...vn
(file name) Any valid SCOPE file
vi Variables
WRITE FILE (file name) x1,x2,x3,...Xxn
(file name) Any valid SCOPE file
xi Expressions
The WRITE FILE statement writes out the values of the expressions sequentially
onto the file specified by the file name. The values are written in internal
format and string constants are not allowed. As with DATA statements,
consecutive WRITE FILE statements generate one contiguous block of data on the
file.
The data can then be read by the READ FILE statement as if the file were an
internal data file.

INPUT FILE AND PRINT FILE STATEMENTS

The INPUT FILE and PRINT FILE statements are identical to the INPUT and PRINT
statements for terminal input/output.

Formats:

INPUT FILE (file name) v1,v2,v3,...vn
(file name) Any valid SCOPE file
vi Variables

PRINT FILE (file name) x1dx2dx3d...xn(d)
(file name) Any valid SCOPE file
xi Expressions or string constants
d Comma or semicolon; optional at end of list

These statements function exactly as for terminal input/output except that an
error in the data terminates the program.

4-8 60305000 A

¢
|
¢
«

i

A A A A A A A A A -~

/~ A A A A,

RESTORE FILE STATEMENT

The RESTORE FILE statement operates exactly as it does for internal data
files.

Format:
RESTORE FILE (file name)
The effect of this statement is to set the file named to its beginning of

information, When the type of input/output on a file is to be mixed, the
RESTORE FILE statement is required.

NODATA FILE STATEMENT

The NODATA FILE statement is identical to the NODATA statement for internal
data files.

Format:
NODATA FILE (file name) line number

If the file named is positioned at its end of information, this statement

transfers program control to the statement that appears at the specified 1line
number,

60305000 A 4-9

) e W e W W W W W W eew W W W W W W VWV -

(
(
¢
¢
,
C
C
(
(
(
i
(
(
(
C
(
C
C
C
C
(

MATRIX OPERATIONS 5

Although it is possible to construct programs to perform matrix operations
with the ordinary statements of the language, BASIC also provides a set of
statements explicitly for matrix operations.

Matrix statements are restricted to one and two dimensional arrays. A one
dimensional array 1is always treated as a column vector. To obtain a row
vector, a two dimensional array must be specified with only one row.
Example:
DIM X(19), Y(0,19), 2(19,19)
This statement introduces matrix X with a column of 20 elements, matrix Y
with one 7row of 20 elements, and matrix Z with 20 rows and 20 columns of

elements.

If a variable used in a matrix statement has not appeared in a DIM statement,
it is assumed to be two dimensional with element ranges from 0 to 10.

MATRIX ARITHMETIC

Matrix Statement Arithmetic Operation

MAT M1 = M2+M3 addition

MAT M1 = M2-M3 subtraction

MAT M1 = M2*M3 multiplication

MAT M1 = (expression)*M2 scalar multiplication by value of the

expression

In each of the above statements M may be any identifier; each identifier
represents an array variable. The dimensions of the arrays must conform for
each operation, and none of the operands of a matrix multiplication may be
used as the result of that matrix multiplication.

MATRIX FUNCTIONS

Matrices can be inverted or transposed by using the INV (inversion) and TRN
(transposition) functions.

Formats:
MAT M1 = INV(M2)
MAT M1 = TRN(M2)
M Array variable
60305000 A 5-1

The two matrices must conform for inversion or transposition, and inversion
and transposition in place is not allowed.

Example:
40 DIM A(5,2), B(8,4), C(5,6)

50 MAT A

INV(B)

80 MAT C

TRN (C)

Statement 50 is incorrect as the dimensions of matrices A and B do not
conform; statement 80 °~ is incorrect as the operand of a matrix statement
may not be used as a result of the same statement.

The maximum size of an inversion matrix is 50 by 50.
The following three matrix statements may be used to generate a matrix of all

zeros, all ones, or to assign ones to the elements along the principal
diagonal and zeros elsewhere (identity matrix):

MAT M = ZER[(x1[,x2])]
MAT M = CON[(x11[,x2]1)]
MAT M = IDN[(x1[,x2])]
M Array variable
X Expressions

Items enclosed 'in brackets are optional.

Parenthesized expressions can be used to redimension the matrix at execution
time. Expressions are evaluated and used to reset the values of the upper
limits of the number of elements in the matrix. However, a matrix must not be
redimensioned to be larger than its initial value, whether established by
default or a DIM statement or redimensioned to change its number of
dimensions. A matrix used in an identity statement must be a square.

Examples:
MAT Z = ZER(Y*4,6)
MAT B = IDN(X12)
MAT A = CON

MATRIX INPUT/OUTPUT

MAT READ STATEMENT

The MAT READ statement causes information on the internal data file to be read
into a matrix.

5-2 60305000 A

¢
¢
(
¢
(
¢
¢
¢
(

Format:

MAT READ A[(x1 [,x2]1)],BI(x3[,x4]1)],C. ..

X Expressions

Items in brackets are optional.
Expressions in parentheses indicate the matrix may be redimensioned at
execution time. Evaluated expressions are used to reset the values of the
upper limits as with the ZER, CON and IDN functions.
The MAT READ statement completely fills the matrices specified from the
internal data file generated by the DATA statements. Matrices are read in row
order.

Example: matrix A (3,3) is read as follows:

A(0,0), A(0,1), A(0,2), A(0,3), A(1,0),

A(1,1), A(1,2)etc.

MAT PRINT STATEMENT
The MAT PRINT statement is used to write matrices.
Format:
MAT PRINT Ad BdcCd ...
d Comma or semicolon
Matrices are printed out in row order using the same rules as for the normal

PRINT statement. The delimiter specifies the print zone for each element of
the matrix. BASIC automatically generates a line of blanks between each row.

60305000 A 5-3

AA A A A A A~

BASIC BATCH OPERATION

BASIC programs may be submitted to the SCOPE input queue for processing; under
this mode of processing, all terminal I/0 is inhibited.

BASIC CONTROL CARD

Programs submitted for batch processing must include a BASIC control

call the BASIC compiler from the SCOPE library.

Format:

BASIC(parameters)

Parameters on

L

L=filename

K=filename

I

I=filename

B

B=filename

A

A=filename

N

If Dboth the
overrides the

60305000 A

the BASIC control card indicate the following options:

Source listing, diagnostics and execution output will be
on the file OUTPUT,

Source listing, diagnostics and execution output will be
on file indicated.

Diagnostics and execution output will be on the file
OUTPUT; obtains if K is omitted.

Diagnostics and execution output on file specified.

Source input will be from the file INPUT; obtains if I
is not specified.

Source input will be from the file specified.

Relocatable code will be on the LGO file; if B is not
specified, no relocatable code is produced.

Relocatable code will be on the file specified.

Assembly listing will be on the file OUTPUT; if omitted,
no listing is produced.

Assembly listing will be on the file specified.

Suppresses program execution; if omitted, program will be
executed.,

card

to

K and L options are used on the same control card, the L option

K option.

Examples:
BASIC.
This control card will direct a BASIC program to be compiled and
executed and generates a listing of the diagnostics on the file
OUTPUT. Output from the execution of the program will also go to
OUTPUT.
BASIC(L,B,N)
This control card will generate relocatable code on LGO, with source

and diagnostic listings on OUTPUT. The LGO control card will cause
this program to be executed.

SAMPLE BATCH JOBS

The following three jobs illustrate how BASIC is used in batch mode. They
show how some of the more common features of BASIC are used and are not
necessarily models for programming or mathematical techniques in problem
solving.

Example 1:

This job illustrates the wuse of the DEF and GOSUB statements for
calculating the value of PI by the evaluation of a series.

10 PRINT ''CALCULATE A VALUE FOR PI"!
20 PRINT
25 Z = 100000

26 PRINT ''NUMBER OF ITERATIONS'';Z

27 PRINT
30 A =1
40 B = 3

50 DEF FNA (D) (1/D)

(D - FNA(B))

60 DEF FNB (D)

70 DEF FNC (D) = (D + ENA (B))
80 FOR I = 1 TO Z

90 A = FNB (A)

100 GOSUB 150

110 A = FNC (A)

120 GOSUB 150

130 NEXT 1

6-2 ' 60305000 A

¢
|
t
¢
¢
¢
«
(
‘

.~ ™~

NS A/ A AR A AAA A A A A A A

140 GO TO

150 B=B+2

170

160 RETURN

170 PRINT
200 END
The outpu
CALCULATE
NUMBER OF
PI = 3.14
Example 2:
This job
10 A =1
50 Z = 20
60 FOR I
70 A=A*1
75 PRINT
80 NEXT I

100 END

"PI=";4*A
t from this job is:
A VALUE FOR PI
ITERATIONS 100000

16

calculates a table of factorials using a looping technique.

=1 TO Z

"'"FACTORIAL '',I,A

The output from this job is:

FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL
FACTORIAL

FACTORIAL

60305000 A

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880
10° 3628800
11 39916800

FACTORIAL 12 479001600
FACTORIAL 13 6227020800
FACTORIAL 14 8.71783 E 10
FACTORIAL 15 1.30767 E 12
FACTORIAL 16 2.09228 E 13
FACTORIAL 17 3.55687 E 14
FACTORIAL 18 6.40237 E 15
FACTORIAL 19 1.21645 E 17
FACTORIAL 20 2.43290 E 18
Example 3:
This job calculates a value for PI using

fun

10

20

30

50

60

70

75

76

80

90

100

110

120

130

140

150

160

170

ctions.

PRINT "CALCULATE A VALUE FOR PI"

PRINT

A

1]

-1/2

R

100

PRINT "RADIUS OF DARTBOARD "; R
Z = 100000

PRINT ''NUMBER OF DARTS THROWN '';Z
PRINT
N=(R*2)+1
M=(N*N)-1

H=R*R

DEF FNA (D) = ABS (D-R)

FOR I=1 TO Z

A=RND (A)

B=INT (A*M)

Y=INT (B/N)

X=INT (B-(Y*N))

Y=FNA (Y)

some

of

BASIC's

standard

60305000 A

NN ol T ol o N N N T e el e N e N e T e T e = N U PN

180

190

200

210

220

230

240

250

The

X=ENA (X)

J= X t 2+Y%**2

IF J > H THEN 220

K=K+1

NEXT I

P=4*K/Z

PRINT ''VALUE OF PI = '';P
END

output from this job is:

CALCULATE A VALUE FOR PI

RADIUS OF DARTBOARD 100

NUMBER OF DARTS THROWN 100000

VALUE OF PI = 3.10988

60305000 A

) @ W e O W W W VWY eew W VW Y W W W e w -

”~

N N A T T o N N N N e e

BASIC TERMINAL OPERATION 7

All BASIC programs submitted for processing on a CONTROL DATA 6000 Series
computer from a terminal may be executed under the control of the INTERCOM I
system. This chapter describes a subset of the INTERCOM I commands—those
used most frequently by the BASIC programmer. The <capabilities of the
INTERCOM I system are detailed in the INTERCOM I Reference Manual.

INTERCOM | TERMINALS

INTERCOM I provides interface between users at terminals and a central site
6000 series computer. The terminals may be Teletype Model 33 or 35 or Model
217-2 CRT (cathode ray tube).)

TELETYPE

The programmer types lines of information to the INTERCOM I system on the
Teletype. INTERCOM I responds on the Teletype at the terminal. The Teletype

keyboard is similar to an ordinary electric typewriter with a few additional
keys as described below:

RETURN Key

The user must terminate every line of information by pressing the RETURN
key. This signals to INTERCOM I that the message is complete and returns
the Teletype carriage to the beginning of the line just typed. INTERCOM I
responds by sending a line feed to the terminal. This moves the carriage
to the next line at which point the user may enter input.

Backspace Arrow (<)

Entry errors can be corrected by using the backspace arrow and typing over
the erroneous character.

Example:

BAX < SJK =« < IC will be interpreted by
INTERCOM I as BASIC

CTRL and X Keys

Entire lines may be deleted by simultaneously pressing the X and CTRL
keys. The entire line will be ignored by INTERCOM I, and the Teletype
carriage will be positioned at the beginning of a new line.

60305000 A 7-1

Key

Once the RETURN key 1is pressed, the command is accepted by INTERCOM I.
However, execution of the command can be aborted by typing a # (pound) on
the Teletype. INTERCOM I will interrupt processing of the current
command, re-enter command mode, and accept a new command.

CRT TERMINAL

The operation of the 217-2 CRT terminal is similar to the Teletype terminalj;
except that as messages are typed in, they are displayed on the CRT.
Successive messages appear on successive lines of the CRT until the bottom of
the screen is reached. The display then overwrites information at the top of
the screen. Three markers indicate where a message 1is positioned on the
screen, The following special symbols and keys are used to operate the 217-2
CRT:

Beginning-of-Line Symbol (wm)

The solid bar indicates the beginning of the line where the current input
message begins.

SEND Key and End-of-Line Symbol (&)

The SEND key is equivalent to the RETURN key on the Teletype. It
indicates the end of a message and displays the end-of-line symbol (&) on
the screen. The information Dbetween thesm and the & is transmitted to
INTERCOM I.

Underline Marker

An underline marker indicates to the user where the next input character
will appear. Each character position of the current message line has an
underline marker. As characters are entered and displayed this marker
disappears.

BKSP Key

The BKSP key backspaces the entry marker one character position so that
the user can write over information.

CLEAR Key

The CLEAR key erases the contents of the entire screen and positions the
entry marker and beginning-of-line indicator at the top of the screen.

% Key

The % character causes an interrupt of the currently executing command.

7-2 60305000 A

]

-

‘1

~

A A A~ A~AAAA A AAA

ENTERING INTERCOM |

To access a 6000 series computer from a terminal the user must link up with
the INTERCOM I system. The method of establishing the connection between the
terminal and the central site computer will vary depending on the type of
terminal equipment and the connection provided by the telephone company. Once
the connection is established, INTERCOM I can be accessed by the following:
1. User indicates that the terminal requires INTERCOM I by typing:
LOGIN.
2, INTERCOM I responds with the message:
TYPE VALID USER NAME-

3. User responds with a valid user name of no more than 10 alphanumeric
characters,

4. INTERCOM I responds:

TYPE PASSWORD-

S. User responds with a password of up to 10 alphanumeric characters.
6. INTERCOM I checks that the user name and password are valid; and if
so, displays the message: ’
COMMAND -
7. ?he user/terminal is in command mode and INTERCOM I is waiting for
input.

COMMAND MODE

Under command mode, each message sent to INTERCOM I 1is interpreted as a
request to load and execute a program. In general, all SCOPE control cards
are also INTERCOM I commands.

After a command is entered, control is given to the program which ©processes
that command; and it remains with that program until processing terminates or
the user voluntarily leaves the program. Command mode is re-established, and
INTERCOM I is ready to accept another command.

INTERCOM I performs two kinds of tasks for the user. Under command mode
INTERCOM I loads a library (utility) program that processes the given command.
Subsequent commands are transferred to the utility wuntil the latter is
terminated. The system then reverts to command mode.

As almost any SCOPE control card is also an INTERCOM I command, such messages
as REWIND (filename) may be sent from the terminal and executed.

Primarily, the BASIC user will be concerned with the operation of only one
INTERCOM I command, SETUP.

60305000 A 7-3

SETUP
SETUP is an INTERCOM I utility routine which enables the user to create and
modify files of information and submit them for execution. Primarily, SETUP
is a text editor designed for manipulation of program files with the added
capability to direct the execution of these files. The user can access SETUP
by entering the command:

SETUP.
The SETUP routine is then loaded and the user is provided with a buffer within
which he may manipulate his files. SETUP will indicate readiness with the
message:

ON AT *hh.mm.ss

SYSTEM-FORTRAN

NEW OR OLD FILE

hh.mm.ss is the time of day in hours, minutes and seconds when SETUP is

loaded.
ENTERING BASIC
After SETUP is loaded, the BASIC user should type:

SYSTEM
SETUP will reply:

NEW SYSTEM-
BASIC can be entered by typing:

BASIC
An alternative form of entering BASIC is:

SYSTEM/BASIC
The slash must be used to separate SETUP directives. The user can anticipate
questions from SETUP and give several answers, separated by slashes, thereby
saving time at the terminal.

Once BASIC mode is entered, the system will type:

NEW OR OLD FILE-

7-4 60305000 A

(
¢

\ﬁbhbﬁﬁﬁﬁﬁfsﬁﬁﬁﬂﬁﬁaaaﬁﬂ

If the wuser wants to continue
respond:
OLD

The terminal will answer:
OLD FILE NAME

The user should type a valid SCOPE f
be created by typing:

NEW / filename
SETUP replies:
READY

From this point, the file is created

BASIC OPERATIONS

After the terminal is in BASIC mode,
text buffer as described in the
statement must have a line number

statements. A line may be edited or
with a new or altered statement.
number only. A new line may be inse
numbered between the line numbers wh

SETUP DIRECTIVES

While the terminal is in SETUP mode
manipulate the contents of the text

LIST

The contents of the text buffer may
directive LIST. Listing of the
completion by typing S. A portion o
LIST (line number) for only one 1i
indicate the range of the list.
DELETE

Portions of the text buffer may be d

DELETE (line number) or DELETE (

60305000 A

work on a prevously saved file he should

ile name; or alternatively, a new file may

or edited.

BASIC statements may be entered into the

preceding sections of this manual. Each
indicating its order in the sequence
replaced by entering the same line number

A line may be deleted by typing the line
rted by typing a statement with a 1line
ere the insertion is to be made.

and before program execution, the user can
buffer with the following directives:

be examined at any time by typing the
text buffer may be terminated before
f the text buffer may be listed by typing
ne, or LIST (line numberl,line number2) to

eleted with the DELETE directive:

line numberl,line number2)

SAVE

This directive saves contents of the text buffer for later use. If SAVE is
not used, the file will be lost when the user leaves the SETUP routine.

Format:
SAVE/filename

If a file already exists with the same name, the new file replaces the old.

UNSAVE
A file may be deleted by typing:

UNSAVE/ filename

RENAME

The name of the file in the text buffer may be changed by typing:

RENAME[filename

When the BASIC program 1is ready for execution, it may be submitted to the
BASIC compiler by typing RUN. INTERCOM I will respond with:

PROGRAM TRANSFERRED TO COMPILER
Errors in the program will be listed at the terminal along with the message:
BASIC CCOM
The user then can modify the program in the text buffer by correcting the
errors, When a program compiles correctly, it is executed immediately; and
the results are returned to the terminal. If an execution error occurs, a

diagnostic is printed outfollowed by:

BASIC EXECUTION ERROR

The wuser can modify the program in the text buffer and again resubmit it for
BASIC compilation and execution until the program is debugged and the user is
satisfied with the results. Since, at this point, the BASIC program is in the
text buffer; it may be saved and recalled at any time to be run again.

SCRATCH

The SCRATCH directive clears the contents of the text buffer which enables the
user to work on a new program. Contents of saved files are not altered.

7-6 60305000 A

(

- - -

BYE
BYE directs exit from the SETUP utility. SETUP will reply:
OFF AT *hh.mm.ss

The command mode is re-established.

TRANS
A BASIC program read into INTERCOM I from the central site, or created in any
way without using SETUP, can be transferred to the text buffer by the
directives:

OLD/filename/TRANS
This directive causes the BASIC program to be transferred to SETUP so that it
may be edited by using BASIC line numbers.

INTERCOM | COMMANDS

INTERCOM I commands of particular relevance to the BASIC user follow:

FILES
The user can obtain a list of files available to him by typing:

FILES.
Only private files and attached permanent files are listed; SCOPE common or
permanent files accessible through the permission feature are not listed.
ETL and EFL

The system default time 1imit (in octal seconds) and the field length (in
octal words) for a job can be altered by typing:

ETL, time limit, and/or EFL, field length

BASIC

The BASIC control card enables the user to run a BASIC program without wusing
SETUP. If filenamel contains a BASIC source program, the latter can be
compiled and executed by entering the normal BASIC control card:

BASIC (I=filenamel)
The results of a program entered in this manner will not be returned to the

terminal automatically but will appear on the file named OUTPUT. This file
can be examined by using the LIST directive in SETUP.

60305000 A 7-7

CONNECT

This command connects any file to the terminal.

To direct any output from filename2 to the terminal:
CONNECT (filename2)

To obtain printed output at the terminal:
BASIC (I=filenamel,L=filename2l)

To obtain error listing and execution output only:
BASIC (I=filenamel,K=filename2)

A user may create his own object program with the command:
BASIC (I=filenamel, K=filenamel, B=filename3)

The object program can be executed at any time with the commands:

CONNECT (filenamel, filename2,...)

DISCONT
A file may be disconnected from a terminal with this statement:
DISCONT (filename)

Any subsequent use of the file named in this statement will refer to mass
storage.

LEAVING INTERCOM I

The user can exit from the INTERCOM I system by entering the command:
LOGOUT.

The system will respond:
YOU NO LONGER OWN ANY FILES

Finally the system will print the date, time of day, and time consumed during
the session with the system.

SAMPLE TERMINAL SESSION

The following sample BASIC job run under the INTERCOM I system illustrates
some of the INTERCOM I commands section and the creation of a BASIC program
using the SETUP utility.

7-8 60305000 A

q
¢

o~ -

~

~ o~

N N a N o W WY N Y o T e

LOGIN,

TYPE VALID USER NAME - BROWN
TYPE PASSWORD - CHARLIE
COMMAND - SETUP.

ON AT *10.30.00

SYSTEM FORTRAN

NEW OR OLD FILE - SYSTEM/BASIC/NEW/BASPROG

READY

10 PRINT M"TYPE A NUMBER"Y;
20 INPUT X

30 LET X=1

40 FOR I=1 to N<X

50 F=F*I

30 F=1

60 PRINT "FACTORIAL"X;"IS"F
70 GO TO 10

80 END

RUN

PROGRAM TRANSFERRED TO COMPILER
FOR WITHOUT NEXT AT 40

BASIC COMPILATION ERRORS
READY

55 NEXT I

25 IF X=0 THEN 80

RUN

PROGRAM TRANSFERRED TO COMPILER
TYPE A NUMBER ? 3

FACTORIAL 3 is 6

TYPE A NUMBER ? 0

READY

LIST

10 PRINT "TYPE A NUMBER";
20 INPUT X

25 IF X=0 THEN 80

30 F=1

40 FOR I=1 TO X
S50 F=F*I

55 NEXT I

60 PRINT "FACTORIAL"X;"IS"F
70 GO TO 10

80 END

READY

SAVE

READY

BYE

OFF AT *10.50.33

COMMAND - CONNECT (BASOUT)

COMMAND - BASIC (I=BASPROG,K=BASOUT)

TYPE A NUMBER ? 6

FACTORIAL 6 IS 720

TYPE A NUMBER ? 0

COMMAND - LOGOUT.

YOU NO LONGER OWN ANY FILES
CP TIME - 3,103

PP TIME - 6.002

10/27/69 OFF AT * 11.01.16

60305000 A

) W W W e W e e e v wew W W e W W W W w v e

- ¢ —
]
B4
o~
1
~ CARUAAEUOEHDM AN ZOA O NEHEDSE XN NO N NM <N O~ w0 + e S~~~ 1< o
i
~N
>
ﬂ ABCDEFGHIJKLMNOPQRSTUVWXY20123456789+ L S~ 1] -~
[]
°0] I
o
(72] -
o S ABCDEFGHIJKLMNOPQRSTUVWXY20123456789+ Lk "o I <] a
o
[
= o
O o O <t <t <+ tn 00 0
~“ - 1 [N | [I N |
© O 12345678912345678923456789012345678921818883C868
&N &] _________________._______. e 0 1 & 1 &t @ t 1t
NNANNNNNNNAH A A A A A AADOOOOODO HOO N0 O N
111111111111111111 ~ — e n O
EN
©
— 0
.9 01234567012345670123456701234567012345670123456 ~
n o 00000000111111112222222233333333444444445555555 tn
o~ Q
[=)
.
o
o
Lo} o
QO . O N
e 0 o
M.m CAVAHPDUIHNIM IS ZOA XN DS Ex>NO N0 <10~ + L N~~~ 3 Il < ~> %
=]
mQ =} i

- o W W W W W W W W e WOV WU WV W VU W

" 60 0-8-6 = Y H
unused 61 8-7 [[[
unused 62 0-8-2]]] “
unused 63 8-2 : :
unused 64 8-4 # ! #
unused 65 0-8-5 e reserved A 4
unused 66 11-0 t
or 11-8-2 v N\ v
unused 67 0-8-7 A] A :
70 11-8-5 4 4 1 t
unused (71 11-8-6 v reserved '
72 12-0
or 12-8-2 < < < ‘
73 11-8-7 > > > ‘
unused 74 8-5 = reserved =
unused 75 12-8-5 = @ = {
? 76 12-8-6 — ? % ‘
; 77 12-8-7 H H 5 :

Display code characters not used by the BASIC system may be used within
string constants or remarks.

Display code characters 65, 71 and 74 are used by the INTERCOM I system for
special functions and cannot be used at a Teletype terminal.

‘

Display code character 76 is interpreted as an interrupt character from a
217-2 and cannot be input from a CRT terminal.

A-2 60305000 A

<A,

~~

~

=™~

¥ ¥

DIAGNOSTICS

All diagnostics produced by the BASIC system at compile and execution time are

printed in the following format:

message AT line-number

The line number

COMPILE TIME DIAGNOSTICS

The following messages
compile time
dayfile message:

Message

DUPLICATE LINE NO

END NOT

LAST

FOR NEST TOO DEEP

FOR WITHOUT NEXT

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL
ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

60305000 A

BOUND

CHARACTER

FN NAME

FILE NAME

LINE NO

LINE REF

NUMBER

STATEMENT

STRING

WORD

may be

indicates the statement in error.

produced during program compilation.

Error

Same line number used twice

END statement incorrectly placed
More than 10 nested for statements

FOR statement has no balancing NEXT
statement

DIM statement declared variable >131071
Unrecognizable character

User function name not of the form FNx,
X is any alphabetic character

Name is not allowed as a SCOPE file name
Line number greater than 99999

Incorrectly written line number, or line
number referenced greater than 99999

Numeric constant incorrectly written

Statement does not begin with a recog-
nizable word or is written incorrectly

String constant incorrectly written

Unrecognizable word

All

diagnostics inhibit execution of the program and BASIC writes a
BASIC COMPILATION ERRORS.

4

LINES OUT OF ORDER Line numbers not in ascending order

MISSING LINE NO Statement written without a line number ‘*

NEXT WITHOUT FOR NEXT statement has no balancing FOR
statement ‘

NO END STATEMENT Program does not have END statement ‘

OUT OF SPACE* Program too large to continue checking [
source statements; compilation stops :

PROGRAM TOO LARGE* ' Compiled program too large to execute ;
in the field length given to the BASIC «
compiler

PROGRAM TOO LONG* Program too long to compile, but the com- mi
piler continues to check the source ‘
statements

READ WITHOUT DATA Program containing a READ statement has no ¢
DATA statements

RECURSIVE FN Recursive DEF statement l

TOO MANY FILES More than three file names

UNDEFINED FN REF Undefined user function t

UNDEFINED LINE REF Line number referenced does not exist

1
‘I

I f any of these errors occur, the program should be recompiled with a larger
field 1length. No maximum size is defined for a BASIC program, as the limits
depend entirely on the field length given to the BASIC systenm. If, at the
beginning of a compilation, BASIC determines that the field length is too
small to attempt compilation, the dayfile message BASIC FIELD LENGTH TOO SHORT
is written and the compilation is terminated.

B-2 60305000 A

EXECUTION TIME DIAGNOSTICS

The following diagnostics may occur during execution of a program. All
terminate execution, and BASIC writes a dayfile message BASIC EXECUTION ERROR.

Message

ARGUMENT IS POLE IN TAN
ARGUMENT NEGATIVE IN LOG
ARGUMENT NEGATIVE IN SQR
ARGUMENT TOO LARGE IN COS
ARGUMENT TOO LARGE IN EXP
ARGUMENT TOO LARGE IN SIN
ARGUMENT TOO LARGE IN TAN
ARGUMENT ZERO IN LOG

BASIC SYSTEM ERROR

DIVISION BY ZERO

END OF DATA
END OF DATA ON FILE

GOSUB NEST TOO DEEP
ILLEGAL DEVICE FOR FILE

ILLEGAL INPUT ON FILE

ILLEGAL NUMBER ON FILE

ILLEGAL OUTPUT ON FILE

INFINITE VALUE

MATRIX DIMENSION ERROR

60305000 A

Error

Malfunction of BASIC system. Please
report the problem

READ statement executed when all the DATA
statements are exhausted

READ FILE or INPUT FILE statement
executed after file data exhausted

More than 40 GOSUB's nested
File assigned to a non-mass storage device

Type of input/output statement changed
without repositioning file to beginning
of information, or an input request
follows an output request on the same
file

INPUT FILE statement attempted to read
a file in incorrect format

Type of input/output statement changed
without repositioning the file to begin-
ning of information

Dimension inconsistency in one of the
MAT statements

-~

NEARLY SINGULAR MATRIX Attempt to invert a singular or nearly
singular matrix

NEGATIVE NUMBER TO A POWER
POWER TOO LARGE

RETURN BEFORE GOSUB RETURN statement has been executed and no
GOSUB is in effect

SUBSCRIPT ERROR Attempt to reference an element outside
bounds of an array

TIME EXCEEDED Program exceeded its time limit

TRANSMISSION ERROR ON FILE BASIC system unable to complete an input/
output request

UNDEFINED VALUE
The following messages may occur after the data typed in response to an INPUT

request from the terminal has been checked. The BASIC system will print a
question mark and the user should retype the data.

ILLEGAL NUMBER, RETYPE INPUT
TOO MUCH DATA, RETYPE INPUT

TRANSMISSION ERROR, RETYPE INPUT

B-4 60305000 A ‘i

~

INDEX OF BASIC STATEMENTS C

The following alphabetical 1ist of BASIC statements gives the formats,
functions, and pages on which they appear. Throughout this appendix the
following abbreviations are used: ‘

c numeric constant m matrix

e expression T relational operator
d delimiter sV scalar variable

fn file name ufn user function name
i identifier v variable

1n line number

Items enclosed in brackets are optional.

60305000 A c-1

Statement Format

DATA cl,c2,c3,.:.cn

DEF ufn(i) = e

DIM Vl,VZ,VS,.“Vn

END

FOR sv = el to e2[STEP e3]

GO TO 1n

GOSUB 1In

IF elr e2 THEN In

INPUT v1,v2,v3,.:.Vn

INPUT FILE (fn) vl1,vZ,v3,...vn

[LET] vl = v2 = v3...vn =

MAT ml = m2 + m3

MAT ml = m2 - m3

MAT ml = m2 * m3

MAT ml = (e) * m2

MAT m = CON [(el[,e2])]
MAT m = IDN(e)

MAT ml = INV(m2)

MAT ml = TRN(m2)

MAT m = ZER(e)

Function Page No,
Creates a file of data internal 4-1
to the BASIC program

Defines a new function to be used 3-~3
within a BASIC program

Declares the dimensions of an 2-2
array variable

Terminates a program 2-7
Begins a program loop; this state- 2-4
ment must be saved with a NEXT

statement

Interrupts the normal sequence of 2-4

program execution and transfers
program control to indicated line
number

Transfers program control to a sub- 3-3
routine beginning at line number
indicated
Transfers program control to 2-4
indicated line number if certain
conditions are met
Enters data from a terminal 4-~7
Enters a file from a terminal 4-8
Assigns a value to a variable during 2-3
program execution
Matrix addition 5-1
Matrix subtraction 5-1
Multiplies one matrix by another 5-1
matrix
Multiplies a matrix by an expression 5-1
Creates a matrix of all ones 5-2
Creates an identity matrix 5-2
Inverts a matrix 5-1
Transposes a matrix 5-1
Creates a matrix of zeros 5-2
60305000 A

4

Statement Format

MAT READ ml [(el[,e21)],
m2 [(e3[,e4])] ,m3...

MAT PRINT mld m2d m3... [d]

NEXT sv

NODATA 1n

NODATA FILE (£fn)ln

PRINT eld e2d e3d...en|[d]

PRINT FILE (fn) eld e2d e3[d]«..

READ vl1, v2, v3,...vn

READ FILE (fn) v1,v2,v3,...Vvn

REM any string of valid 6000
series display code characters

RESTORE

RESTORE FILE (fn)

RETURN

STOP

WRITE FILE (fn) el,e2,e3,...en

60305000 A

Function

Reads matrices from the internal
data file

Prints matrices on the terminal

Terminates a program loop or incre-
ments the value tested by the loop

Tests data pointer for increment
beyond end of data block

Transfers program control to spec-
ified line number if named file is
positioned at end of information

Prints data at terminal
Prints data on specified file

Accesses data created by DATA
statements

Accesses data created by WRITE
FILE statements

Inserts explanatory remarks into
a program

Reinitializes data pointer to the
first word of the data block

Sets named file to beginning of
information

Resumes execution at statement
following companion GOSUB state=~
ment

Terminates program execution at
places other than the END
statement

Writes expression values onto
named file

Page No.

5-2

5-3

2-4

y W W W W W W W w w weweepw W W w @O W W W W W w

A A A A A A A A~

INDEX OF INTERCOM | COMMANDS AND DIRECTIVES

D

Alphabetical list of SCOPE 3 and INTERCOM I commands as well as SETUP
directives used in processing BASIC programs:

Command/Directive

Backarrow key

BKSP key

BASIC
BYE

CLEAR key

CONNECT (fn)
DELETE(1nl [,1n21)

DISCONT (£fn)

EFL,field length
ETL,time limit

FILES

LIST [Inl [,1n2])]

LOGIN.
LOGOUT.
NEW

Percent (%) key

Pound (#) key

OLD

RENAME

60305000 A

Function

Deletes last character of current
input line

Deletes last character of current
input line

Call for BASIC compiler
Exit from SETUP routine

Erases entire contents of display
screen

Connects file named to user terminal
Erases portions of the text buffer

Disconnects file named from the
terminal

Changes system default field length
Changes the system default time limit

Obtains a list of files available to
the user

Displays current contents of text
buffer

Calls for INTERCOM I system
Exits INTERCOM I system
Creates a new file

Inhibits the execution of the
current command

Inhibits the execution of the
current command

Retrieves a previously saved file

Changes name of file in text buffer

7-1

Page No.

RETURN key

RUN

SAVE
SCRATCH

SEND key

SETUP
SYSTEM

TRANS

UNSAVE

X and CTRL keys

Terminates a line of input and causes
the system to act upon input
received

Causes current program to be compiled
and executed

Saves contents of text buffer
Clears text buffer

Terminates a line of input causing
system to interpret and act upon
input received

Calls for SETUP utility routine

Indicates change of language

Transfers a program created without
SETUP into the text buffer

Deletes file currently in text buffer

Deletes the entire current input
line when used simultaneously

System requests for information:

System Request

Commands:

NEW OR OLD FILE-

NEW FILE NAME-
OLD FILE NAME-
NEW SYSTEM-

TYPE VALID USER NAME-

TYPE PASSWORD-

User Response

INTERCOM I Command:

OLD to continue work on a previously
saved file; NEW to create a new file

Name of file to be created
Name of previously saved file
Name of the programming language

Valid user name of no more than 10
alphanumeric characters

User's password of up to 10 alpha-
numeric characters

60305000 A

4

~ o~

NN a

System messages other than diagnostics, which will appear at the terminal;

Message

ON AT *hh.mm.ss
SYSTEM -system name

READY
PROGRAM TRANSFERRED
TO COMPILER

OFF at *hh.mm.ss

60305000 A

Significance

SETUP is ready for use. Time of day
in hours, minutes, seconds. Systen
name 1s that of the system currently
in control.

SETUP is ready to handle the creation
or manipulation of a file in the
text buffer.

Program in the text buffer is
transferred to the appropriate
compiler

User is returned to command mode.

7-4

7-5

Page No.

~

INDEX

Alphanumeric
String Constants, Quote marks Alphanumeric output, 4-4
Arithmetic
Arithmetic Expressions, 1-3
Arithmetic Expressions, use of Parentheses, Precedence, 1-4
LET statement, Arithmetic Replacement, 2-3
Array
Array Variables, Subscripts, 1-2
Arrays
Matrix arithmetic, Arrays and Functions, 5-1

BASIC
BASIC control card, 7-7
BASIC
Dartmouth BASIC, vii
BATCH
BATCH operation Control Card, 6-1
Sample BATCH Jobs, 6-2
BYE
BYE command, 7-7

Card

BATCH operation Control Card, 6-1
CcDC

CDC 217-2 user CRT terminals used with BASIC, 7-2
Character

Character set, A-1
CONNECT

CONNECT command, 7-8
Comma

PRINT Zones, use of Comma and Semicolon, 4-5
Command

Command Mode, 7-3
Comments

REM statement, Remarks or Comments, 2-7
Constants

SCOPE and Constants, vii

Numeric Constants, 1-1

String Constants, Quote marks Alphanumeric output, 4-4
Control

BATCH operation Control Card, 6-1
CRT

CDC 217-2 user CRT terminals used with BASIC, 7-2

60305000 A

Index-1

DATA

DATA statement, 4-1

Internal DATA File INPUT OUTPUT, 4-1
Dartmouth

Dartmouth BASIC, vii
DEF

User Functions, DEF statement, 3-2
DELETE

LIST, DELETE and SAVE UNSAVE file commands, 7-5
DIM

DIM statement, Dimensioning, 2-2
DISCONT

DISCONT command, 7-8
Diagnostics

List of Diagnostics, B-1
Dimensioning

Implicit Dimensioning, 1-3

DIM statement, Dimensioning, 2-2

EFL
ETL and EFL, 7-7
END
END statement, 2-7
ETL
ETL and EFL, 7-7
Expressions
Arithmetic Expressions, 1-3

Arithmetic Expressions, use of Parentheses, Precedence,

Relational Expressions, 1-5

File
SAVE and UNSAVE File commands, 7-6
RESTORE File statements, 4-9
File
NODATA File, 4-9
File
Internal DATA File INPUT OUTPUT, 4-1
File INPUT OUTPUT, 4-7
File
READ File, WRITE file statements, 4-8
INPUT File, PRINT file statements, 4-8
FOR
FOR and NEXT statements. Looping, 2-4
Format
Format of Numeric Output, 4-4
Functions
Functions, Standard or Library, 3-1
User Functions, DEF statement, 3-2
Matrix arithmetic, Arrays and Functions, 5-1

GO
GO TO statement, 2-4
GOSUB
Subroutines GOSUB and RETURN statements, 3-3

Index-2

1-4

60305000 A

i

IF
IF statement, 2-4

Implicit
Implicit Dimensioning, 1-3

INPUT
INPUT statement, 4-7
Internal DATA File INPUT OUTPUT, 4-1
INPUT File, PRINT file statements, 4-8
File INPUT OUTPUT, 4-7

Input/output

Matrix Input/output MAT READ and PRINT, 5-2
Input

Terminal Input Output, 4-3
Internal

Internal DATA File INPUT OUTPUT, 4-1

LET
LET statement, Arithmetic Replacement, 2-3
LIST
LIST, DELETE and SAVE UNSAVE file commands, 7-5
Library
Functions, Standard or Library, 3-1
Line
Line Numbers, 2-1
List
List of Diagnostics, B-1
LOGIN
LOGIN, 7-3
LOGOUT
' LoGouTr, 7-8
Looping
FOR and NEXT statements. Looping, 2-4
Loops
Nesting Loops, 2-6

MAT
MAT PRINT, 5-3
Matrix Input/output MAT READ and PRINT, 5-2
Matrix
Matrix arithmetic, Arrays and Functions, 5-1
Matrix Input/output MAT READ and PRINT, 5-2

(
(

Names
Variable Names, 1-2
NEW
NEW, OLD file commands, 7-5
NEXT
FOR and NEXT statements. Looping, 2-4
Nesting

Nesting Loops, 2-6

60305000 A Index-3

=~ ~ ~ "~

NODATA
NODATA statement, 4-3
NODATA File, 4-9
Numbers
Line Numbers, 2-1
Numeric
Numeric Constants, 1-1
Format of Numeric Output, 4-4

OLD
NEW, OLD file commands, 7-5

OUTPUT
Internal DATA File INPUT OUTPUT, 4-1
File INPUT OUTPUT, 4-7

Output
Format of Numeric Output, 4-4
Terminal Input Output, 4-3

Parentheses
Arithmetic Expressions, use of Parentheses, Precedence, 1-4
PRINT
PRINT statement, 4-3
INPUT File, PRINT file statements, 4-8
PRINT Zones, use of Comma and Semicolon, 4-5
PRINT
MAT PRINT, 5-3
Precedence
Arithmetic Expressions, use of Parentheses, Precedence, 1-4

Quote
String Constants, Quote marks Alphanumeric output, 4-4

READ
Matrix Input/output MAT READ and PRINT, 5-2
READ statement, 4-1
READ File, WRITE file statements, 4-8
REM
REM statement, Remarks or Comments, 2-7
RENAME ,
RENAME, 7-6
RESTORE
RESTORE statement, 4-2
RESTORE File statements, 4-9
RETURN
Subroutines GOSUB and RETURN statements, 3-3
Relational
Relational Expressions, 1-5
Remarks
REM statement, Remarks or Comments, 2-7
Replacement
LET statement, Arithmetic Replacement, 2-3

Index-4

60305000 A

- A, M

~~rAA~AA~AA~AA~AA~AA

SAVE
SAVE and UNSAVE File commands, 7-6
Sample
Sample Terminal session, 7-8
Sample BATCH Jobs, 6-2
SCOPE
SCOPE and Constants, vii
SCRATCH
SCRATCH command, 7-6
SETUP
SETUP, 7-4
Semicolon
PRINT Zones, use of Comma and Semicolon, 4-5
STOP
STOP statement, 2-7
Standard
Functions, Standard or Library, 3-1
String
String Constants, Quote marks Alphanumeric
Subroutines
Subroutines GOSUB and RETURN statements, 3-3
Subscripts
Array Variables, Subscripts, 1-2
System
System, 7-4

Teletype

Teletype INTERCOM terminals used with BASIC,
Terminal

Sample Terminal session, 7-8

Terminal Input Output, 4-3
TRANS

TRANS command, 7-7

UNSAVE

SAVE and UNSAVE File commands, 7-6
User

User Functions, DEF statement, 3-2

Variable
Variable Names, 1-2

WRITE
READ File, WRITE file statements, 4-8

Zones

PRINT Zones, use of Comma and Semicolon, 4-5
217-2

CDC 217-2 user CRT terminals used with BASIC,

60305000 A

output,

7-2

4-4

Index-5

) W W W W W W vV W W wyw WV W 9 W W V¥V v v W -

~rA A A" A AAAAARAAA AAAAAAA A A -

CUT ON TRHIS LINE

COMMENT SHEET

TITLE: 6000 Series Computer Systems
BASIC Language Reference Manual February 1970

PUBLICATION NO. 60305000 REVISION A

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later
editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM nNaMmE: POSITION:

BUSINESS
ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DGTTED LINES AND STAPLE

DEMN L

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

|
«

——
BUSINESS REPLY MAIL S— w
NO POSTAGE STAMP NECESSARY IF MAILED IN US.A. — 5
— 2
—— c
POSTAGE WILL BE PAID BY —— S
CONTROL DATA CORPORATION — 3
Documentation Department — ‘
215 Moffett Park Drive Se— "
Sunnyvale, California 94086 E—
— @
am—
a——
FOLD FOLD
¢
¢
|
¢
¢
(
STAPLE STAPLE
(

- w W w W W N W N e www W O W N W W W W W

Pub. No. 60305000

CORPORATION

CONTROL DATA
[corrForation]

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Litho in U.S.A.

TVNANVIN 3ON3IH34d3Y IOVNONVYT 2IsSvd S31Hd3IS 0009

4

- e A A e e aAa a

|
«

maoapg

i o -

- Y

